argv.c (expandargv): Check for directories passed as @-files.
[deliverable/binutils-gdb.git] / libiberty / regex.c
CommitLineData
2a6ef469
DD
1/* Extended regular expression matching and search library,
2 version 0.12.
3 (Implements POSIX draft P1003.2/D11.2, except for some of the
4 internationalization features.)
4fe19082
DD
5
6 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
389d9b6c 7 2002, 2005, 2010, 2013 Free Software Foundation, Inc.
6ad8a379 8 This file is part of the GNU C Library.
2a6ef469
DD
9
10 The GNU C Library is free software; you can redistribute it and/or
6ad8a379
DD
11 modify it under the terms of the GNU Lesser General Public
12 License as published by the Free Software Foundation; either
13 version 2.1 of the License, or (at your option) any later version.
2a6ef469
DD
14
15 The GNU C Library is distributed in the hope that it will be useful,
16 but WITHOUT ANY WARRANTY; without even the implied warranty of
17 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
6ad8a379 18 Lesser General Public License for more details.
2a6ef469 19
6ad8a379
DD
20 You should have received a copy of the GNU Lesser General Public
21 License along with the GNU C Library; if not, write to the Free
979c05d3
NC
22 Software Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
23 02110-1301 USA. */
2a6ef469
DD
24
25/* This file has been modified for usage in libiberty. It includes "xregex.h"
26 instead of <regex.h>. The "xregex.h" header file renames all external
27 routines with an "x" prefix so they do not collide with the native regex
28 routines or with other components regex routines. */
6ad8a379 29/* AIX requires this to be the first thing in the file. */
01cea699 30#if defined _AIX && !defined __GNUC__ && !defined REGEX_MALLOC
2a6ef469
DD
31 #pragma alloca
32#endif
33
34#undef _GNU_SOURCE
35#define _GNU_SOURCE
36
3e0f1404
DD
37#ifndef INSIDE_RECURSION
38# ifdef HAVE_CONFIG_H
39# include <config.h>
40# endif
2a6ef469
DD
41#endif
42
f9375305
DD
43#include <ansidecl.h>
44
2a6ef469
DD
45#ifndef INSIDE_RECURSION
46
47# if defined STDC_HEADERS && !defined emacs
48# include <stddef.h>
389d9b6c 49# define PTR_INT_TYPE ptrdiff_t
2a6ef469
DD
50# else
51/* We need this for `regex.h', and perhaps for the Emacs include files. */
52# include <sys/types.h>
389d9b6c 53# define PTR_INT_TYPE long
2a6ef469
DD
54# endif
55
56# define WIDE_CHAR_SUPPORT (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC)
57
58/* For platform which support the ISO C amendement 1 functionality we
59 support user defined character classes. */
60# if defined _LIBC || WIDE_CHAR_SUPPORT
61/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
62# include <wchar.h>
63# include <wctype.h>
64# endif
65
66# ifdef _LIBC
67/* We have to keep the namespace clean. */
68# define regfree(preg) __regfree (preg)
69# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
70# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
71# define regerror(errcode, preg, errbuf, errbuf_size) \
72 __regerror(errcode, preg, errbuf, errbuf_size)
73# define re_set_registers(bu, re, nu, st, en) \
74 __re_set_registers (bu, re, nu, st, en)
75# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
76 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
77# define re_match(bufp, string, size, pos, regs) \
78 __re_match (bufp, string, size, pos, regs)
79# define re_search(bufp, string, size, startpos, range, regs) \
80 __re_search (bufp, string, size, startpos, range, regs)
81# define re_compile_pattern(pattern, length, bufp) \
82 __re_compile_pattern (pattern, length, bufp)
83# define re_set_syntax(syntax) __re_set_syntax (syntax)
84# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
85 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
86# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
87
88# define btowc __btowc
89
90/* We are also using some library internals. */
91# include <locale/localeinfo.h>
92# include <locale/elem-hash.h>
93# include <langinfo.h>
94# include <locale/coll-lookup.h>
95# endif
96
97/* This is for other GNU distributions with internationalized messages. */
1a78a35a 98# if (HAVE_LIBINTL_H && ENABLE_NLS) || defined _LIBC
2a6ef469
DD
99# include <libintl.h>
100# ifdef _LIBC
101# undef gettext
102# define gettext(msgid) __dcgettext ("libc", msgid, LC_MESSAGES)
103# endif
104# else
105# define gettext(msgid) (msgid)
106# endif
107
108# ifndef gettext_noop
109/* This define is so xgettext can find the internationalizable
110 strings. */
111# define gettext_noop(String) String
112# endif
113
114/* The `emacs' switch turns on certain matching commands
115 that make sense only in Emacs. */
116# ifdef emacs
117
118# include "lisp.h"
119# include "buffer.h"
120# include "syntax.h"
121
122# else /* not emacs */
123
124/* If we are not linking with Emacs proper,
125 we can't use the relocating allocator
126 even if config.h says that we can. */
127# undef REL_ALLOC
128
129# if defined STDC_HEADERS || defined _LIBC
130# include <stdlib.h>
131# else
132char *malloc ();
133char *realloc ();
134# endif
135
136/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
137 If nothing else has been done, use the method below. */
138# ifdef INHIBIT_STRING_HEADER
139# if !(defined HAVE_BZERO && defined HAVE_BCOPY)
140# if !defined bzero && !defined bcopy
141# undef INHIBIT_STRING_HEADER
142# endif
143# endif
144# endif
145
146/* This is the normal way of making sure we have a bcopy and a bzero.
147 This is used in most programs--a few other programs avoid this
148 by defining INHIBIT_STRING_HEADER. */
149# ifndef INHIBIT_STRING_HEADER
150# if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
151# include <string.h>
152# ifndef bzero
153# ifndef _LIBC
a2d01046 154# define bzero(s, n) ((void) memset (s, '\0', n))
2a6ef469
DD
155# else
156# define bzero(s, n) __bzero (s, n)
157# endif
158# endif
159# else
160# include <strings.h>
161# ifndef memcmp
162# define memcmp(s1, s2, n) bcmp (s1, s2, n)
163# endif
164# ifndef memcpy
165# define memcpy(d, s, n) (bcopy (s, d, n), (d))
166# endif
167# endif
168# endif
169
170/* Define the syntax stuff for \<, \>, etc. */
171
172/* This must be nonzero for the wordchar and notwordchar pattern
173 commands in re_match_2. */
174# ifndef Sword
175# define Sword 1
176# endif
177
178# ifdef SWITCH_ENUM_BUG
179# define SWITCH_ENUM_CAST(x) ((int)(x))
180# else
181# define SWITCH_ENUM_CAST(x) (x)
182# endif
183
184# endif /* not emacs */
185
186# if defined _LIBC || HAVE_LIMITS_H
187# include <limits.h>
188# endif
189
190# ifndef MB_LEN_MAX
191# define MB_LEN_MAX 1
192# endif
193\f
194/* Get the interface, including the syntax bits. */
195# include "xregex.h" /* change for libiberty */
196
197/* isalpha etc. are used for the character classes. */
198# include <ctype.h>
199
200/* Jim Meyering writes:
201
202 "... Some ctype macros are valid only for character codes that
203 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
204 using /bin/cc or gcc but without giving an ansi option). So, all
205 ctype uses should be through macros like ISPRINT... If
206 STDC_HEADERS is defined, then autoconf has verified that the ctype
207 macros don't need to be guarded with references to isascii. ...
208 Defining isascii to 1 should let any compiler worth its salt
209 eliminate the && through constant folding."
210 Solaris defines some of these symbols so we must undefine them first. */
211
212# undef ISASCII
213# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
214# define ISASCII(c) 1
215# else
216# define ISASCII(c) isascii(c)
217# endif
218
219# ifdef isblank
220# define ISBLANK(c) (ISASCII (c) && isblank (c))
221# else
222# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
223# endif
224# ifdef isgraph
225# define ISGRAPH(c) (ISASCII (c) && isgraph (c))
226# else
227# define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
228# endif
229
230# undef ISPRINT
231# define ISPRINT(c) (ISASCII (c) && isprint (c))
232# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
233# define ISALNUM(c) (ISASCII (c) && isalnum (c))
234# define ISALPHA(c) (ISASCII (c) && isalpha (c))
235# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
236# define ISLOWER(c) (ISASCII (c) && islower (c))
237# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
238# define ISSPACE(c) (ISASCII (c) && isspace (c))
239# define ISUPPER(c) (ISASCII (c) && isupper (c))
240# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
241
242# ifdef _tolower
243# define TOLOWER(c) _tolower(c)
244# else
245# define TOLOWER(c) tolower(c)
246# endif
247
248# ifndef NULL
249# define NULL (void *)0
250# endif
251
252/* We remove any previous definition of `SIGN_EXTEND_CHAR',
253 since ours (we hope) works properly with all combinations of
254 machines, compilers, `char' and `unsigned char' argument types.
255 (Per Bothner suggested the basic approach.) */
256# undef SIGN_EXTEND_CHAR
257# if __STDC__
258# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
259# else /* not __STDC__ */
260/* As in Harbison and Steele. */
261# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
262# endif
263\f
264# ifndef emacs
265/* How many characters in the character set. */
266# define CHAR_SET_SIZE 256
267
268# ifdef SYNTAX_TABLE
269
270extern char *re_syntax_table;
271
272# else /* not SYNTAX_TABLE */
273
274static char re_syntax_table[CHAR_SET_SIZE];
275
e064c173 276static void init_syntax_once (void);
2a6ef469
DD
277
278static void
e064c173 279init_syntax_once (void)
2a6ef469
DD
280{
281 register int c;
282 static int done = 0;
283
284 if (done)
285 return;
286 bzero (re_syntax_table, sizeof re_syntax_table);
287
288 for (c = 0; c < CHAR_SET_SIZE; ++c)
289 if (ISALNUM (c))
290 re_syntax_table[c] = Sword;
291
292 re_syntax_table['_'] = Sword;
293
294 done = 1;
295}
296
297# endif /* not SYNTAX_TABLE */
298
299# define SYNTAX(c) re_syntax_table[(unsigned char) (c)]
300
301# endif /* emacs */
302\f
303/* Integer type for pointers. */
dc579051 304# if !defined _LIBC && !defined HAVE_UINTPTR_T
2a6ef469
DD
305typedef unsigned long int uintptr_t;
306# endif
307
308/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
309 use `alloca' instead of `malloc'. This is because using malloc in
310 re_search* or re_match* could cause memory leaks when C-g is used in
311 Emacs; also, malloc is slower and causes storage fragmentation. On
312 the other hand, malloc is more portable, and easier to debug.
313
314 Because we sometimes use alloca, some routines have to be macros,
315 not functions -- `alloca'-allocated space disappears at the end of the
316 function it is called in. */
317
318# ifdef REGEX_MALLOC
319
320# define REGEX_ALLOCATE malloc
321# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
322# define REGEX_FREE free
323
324# else /* not REGEX_MALLOC */
325
326/* Emacs already defines alloca, sometimes. */
327# ifndef alloca
328
329/* Make alloca work the best possible way. */
330# ifdef __GNUC__
331# define alloca __builtin_alloca
332# else /* not __GNUC__ */
333# if HAVE_ALLOCA_H
334# include <alloca.h>
335# endif /* HAVE_ALLOCA_H */
336# endif /* not __GNUC__ */
337
338# endif /* not alloca */
339
340# define REGEX_ALLOCATE alloca
341
342/* Assumes a `char *destination' variable. */
343# define REGEX_REALLOCATE(source, osize, nsize) \
344 (destination = (char *) alloca (nsize), \
345 memcpy (destination, source, osize))
346
347/* No need to do anything to free, after alloca. */
348# define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
349
350# endif /* not REGEX_MALLOC */
351
352/* Define how to allocate the failure stack. */
353
354# if defined REL_ALLOC && defined REGEX_MALLOC
355
356# define REGEX_ALLOCATE_STACK(size) \
357 r_alloc (&failure_stack_ptr, (size))
358# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
359 r_re_alloc (&failure_stack_ptr, (nsize))
360# define REGEX_FREE_STACK(ptr) \
361 r_alloc_free (&failure_stack_ptr)
362
363# else /* not using relocating allocator */
364
365# ifdef REGEX_MALLOC
366
367# define REGEX_ALLOCATE_STACK malloc
368# define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
369# define REGEX_FREE_STACK free
370
371# else /* not REGEX_MALLOC */
372
373# define REGEX_ALLOCATE_STACK alloca
374
375# define REGEX_REALLOCATE_STACK(source, osize, nsize) \
376 REGEX_REALLOCATE (source, osize, nsize)
377/* No need to explicitly free anything. */
378# define REGEX_FREE_STACK(arg)
379
380# endif /* not REGEX_MALLOC */
381# endif /* not using relocating allocator */
382
383
384/* True if `size1' is non-NULL and PTR is pointing anywhere inside
385 `string1' or just past its end. This works if PTR is NULL, which is
386 a good thing. */
387# define FIRST_STRING_P(ptr) \
388 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
389
390/* (Re)Allocate N items of type T using malloc, or fail. */
391# define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
392# define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
393# define RETALLOC_IF(addr, n, t) \
394 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
395# define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
396
397# define BYTEWIDTH 8 /* In bits. */
398
399# define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
400
401# undef MAX
402# undef MIN
403# define MAX(a, b) ((a) > (b) ? (a) : (b))
404# define MIN(a, b) ((a) < (b) ? (a) : (b))
405
406typedef char boolean;
407# define false 0
408# define true 1
409
e064c173
DD
410static reg_errcode_t byte_regex_compile (const char *pattern, size_t size,
411 reg_syntax_t syntax,
412 struct re_pattern_buffer *bufp);
413
414static int byte_re_match_2_internal (struct re_pattern_buffer *bufp,
415 const char *string1, int size1,
416 const char *string2, int size2,
417 int pos,
418 struct re_registers *regs,
419 int stop);
420static int byte_re_search_2 (struct re_pattern_buffer *bufp,
421 const char *string1, int size1,
422 const char *string2, int size2,
423 int startpos, int range,
424 struct re_registers *regs, int stop);
425static int byte_re_compile_fastmap (struct re_pattern_buffer *bufp);
86710ce2
DD
426
427#ifdef MBS_SUPPORT
e064c173
DD
428static reg_errcode_t wcs_regex_compile (const char *pattern, size_t size,
429 reg_syntax_t syntax,
430 struct re_pattern_buffer *bufp);
431
432
433static int wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
434 const char *cstring1, int csize1,
435 const char *cstring2, int csize2,
436 int pos,
437 struct re_registers *regs,
438 int stop,
439 wchar_t *string1, int size1,
440 wchar_t *string2, int size2,
441 int *mbs_offset1, int *mbs_offset2);
442static int wcs_re_search_2 (struct re_pattern_buffer *bufp,
443 const char *string1, int size1,
444 const char *string2, int size2,
445 int startpos, int range,
446 struct re_registers *regs, int stop);
447static int wcs_re_compile_fastmap (struct re_pattern_buffer *bufp);
86710ce2 448#endif
2a6ef469
DD
449\f
450/* These are the command codes that appear in compiled regular
451 expressions. Some opcodes are followed by argument bytes. A
452 command code can specify any interpretation whatsoever for its
453 arguments. Zero bytes may appear in the compiled regular expression. */
454
455typedef enum
456{
457 no_op = 0,
458
459 /* Succeed right away--no more backtracking. */
460 succeed,
461
462 /* Followed by one byte giving n, then by n literal bytes. */
463 exactn,
464
465# ifdef MBS_SUPPORT
466 /* Same as exactn, but contains binary data. */
467 exactn_bin,
468# endif
469
470 /* Matches any (more or less) character. */
471 anychar,
472
473 /* Matches any one char belonging to specified set. First
474 following byte is number of bitmap bytes. Then come bytes
475 for a bitmap saying which chars are in. Bits in each byte
476 are ordered low-bit-first. A character is in the set if its
477 bit is 1. A character too large to have a bit in the map is
478 automatically not in the set. */
479 /* ifdef MBS_SUPPORT, following element is length of character
480 classes, length of collating symbols, length of equivalence
481 classes, length of character ranges, and length of characters.
482 Next, character class element, collating symbols elements,
483 equivalence class elements, range elements, and character
484 elements follow.
485 See regex_compile function. */
486 charset,
487
488 /* Same parameters as charset, but match any character that is
489 not one of those specified. */
490 charset_not,
491
492 /* Start remembering the text that is matched, for storing in a
493 register. Followed by one byte with the register number, in
494 the range 0 to one less than the pattern buffer's re_nsub
495 field. Then followed by one byte with the number of groups
496 inner to this one. (This last has to be part of the
497 start_memory only because we need it in the on_failure_jump
498 of re_match_2.) */
499 start_memory,
500
501 /* Stop remembering the text that is matched and store it in a
502 memory register. Followed by one byte with the register
503 number, in the range 0 to one less than `re_nsub' in the
504 pattern buffer, and one byte with the number of inner groups,
505 just like `start_memory'. (We need the number of inner
506 groups here because we don't have any easy way of finding the
507 corresponding start_memory when we're at a stop_memory.) */
508 stop_memory,
509
510 /* Match a duplicate of something remembered. Followed by one
511 byte containing the register number. */
512 duplicate,
513
514 /* Fail unless at beginning of line. */
515 begline,
516
517 /* Fail unless at end of line. */
518 endline,
519
520 /* Succeeds if at beginning of buffer (if emacs) or at beginning
521 of string to be matched (if not). */
522 begbuf,
523
524 /* Analogously, for end of buffer/string. */
525 endbuf,
526
527 /* Followed by two byte relative address to which to jump. */
528 jump,
529
530 /* Same as jump, but marks the end of an alternative. */
531 jump_past_alt,
532
533 /* Followed by two-byte relative address of place to resume at
534 in case of failure. */
535 /* ifdef MBS_SUPPORT, the size of address is 1. */
536 on_failure_jump,
537
538 /* Like on_failure_jump, but pushes a placeholder instead of the
539 current string position when executed. */
540 on_failure_keep_string_jump,
541
542 /* Throw away latest failure point and then jump to following
543 two-byte relative address. */
544 /* ifdef MBS_SUPPORT, the size of address is 1. */
545 pop_failure_jump,
546
547 /* Change to pop_failure_jump if know won't have to backtrack to
548 match; otherwise change to jump. This is used to jump
549 back to the beginning of a repeat. If what follows this jump
550 clearly won't match what the repeat does, such that we can be
551 sure that there is no use backtracking out of repetitions
552 already matched, then we change it to a pop_failure_jump.
553 Followed by two-byte address. */
554 /* ifdef MBS_SUPPORT, the size of address is 1. */
555 maybe_pop_jump,
556
557 /* Jump to following two-byte address, and push a dummy failure
558 point. This failure point will be thrown away if an attempt
559 is made to use it for a failure. A `+' construct makes this
560 before the first repeat. Also used as an intermediary kind
561 of jump when compiling an alternative. */
562 /* ifdef MBS_SUPPORT, the size of address is 1. */
563 dummy_failure_jump,
564
565 /* Push a dummy failure point and continue. Used at the end of
566 alternatives. */
567 push_dummy_failure,
568
569 /* Followed by two-byte relative address and two-byte number n.
570 After matching N times, jump to the address upon failure. */
571 /* ifdef MBS_SUPPORT, the size of address is 1. */
572 succeed_n,
573
574 /* Followed by two-byte relative address, and two-byte number n.
575 Jump to the address N times, then fail. */
576 /* ifdef MBS_SUPPORT, the size of address is 1. */
577 jump_n,
578
579 /* Set the following two-byte relative address to the
580 subsequent two-byte number. The address *includes* the two
581 bytes of number. */
582 /* ifdef MBS_SUPPORT, the size of address is 1. */
583 set_number_at,
584
585 wordchar, /* Matches any word-constituent character. */
586 notwordchar, /* Matches any char that is not a word-constituent. */
587
588 wordbeg, /* Succeeds if at word beginning. */
589 wordend, /* Succeeds if at word end. */
590
591 wordbound, /* Succeeds if at a word boundary. */
592 notwordbound /* Succeeds if not at a word boundary. */
593
594# ifdef emacs
595 ,before_dot, /* Succeeds if before point. */
596 at_dot, /* Succeeds if at point. */
597 after_dot, /* Succeeds if after point. */
598
599 /* Matches any character whose syntax is specified. Followed by
600 a byte which contains a syntax code, e.g., Sword. */
601 syntaxspec,
602
603 /* Matches any character whose syntax is not that specified. */
604 notsyntaxspec
605# endif /* emacs */
606} re_opcode_t;
607#endif /* not INSIDE_RECURSION */
608\f
609
610#ifdef BYTE
611# define CHAR_T char
612# define UCHAR_T unsigned char
613# define COMPILED_BUFFER_VAR bufp->buffer
614# define OFFSET_ADDRESS_SIZE 2
e064c173 615# define PREFIX(name) byte_##name
2a6ef469
DD
616# define ARG_PREFIX(name) name
617# define PUT_CHAR(c) putchar (c)
2a6ef469 618#else
86710ce2
DD
619# ifdef WCHAR
620# define CHAR_T wchar_t
621# define UCHAR_T wchar_t
622# define COMPILED_BUFFER_VAR wc_buffer
623# define OFFSET_ADDRESS_SIZE 1 /* the size which STORE_NUMBER macro use */
624# define CHAR_CLASS_SIZE ((__alignof__(wctype_t)+sizeof(wctype_t))/sizeof(CHAR_T)+1)
e064c173
DD
625# define PREFIX(name) wcs_##name
626# define ARG_PREFIX(name) c##name
86710ce2
DD
627/* Should we use wide stream?? */
628# define PUT_CHAR(c) printf ("%C", c);
629# define TRUE 1
630# define FALSE 0
631# else
632# ifdef MBS_SUPPORT
633# define WCHAR
634# define INSIDE_RECURSION
635# include "regex.c"
636# undef INSIDE_RECURSION
637# endif
638# define BYTE
2a6ef469
DD
639# define INSIDE_RECURSION
640# include "regex.c"
641# undef INSIDE_RECURSION
642# endif
2a6ef469
DD
643#endif
644
645#ifdef INSIDE_RECURSION
646/* Common operations on the compiled pattern. */
647
648/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
649/* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
650
651# ifdef WCHAR
652# define STORE_NUMBER(destination, number) \
653 do { \
654 *(destination) = (UCHAR_T)(number); \
655 } while (0)
656# else /* BYTE */
657# define STORE_NUMBER(destination, number) \
658 do { \
659 (destination)[0] = (number) & 0377; \
660 (destination)[1] = (number) >> 8; \
661 } while (0)
662# endif /* WCHAR */
663
664/* Same as STORE_NUMBER, except increment DESTINATION to
665 the byte after where the number is stored. Therefore, DESTINATION
666 must be an lvalue. */
667/* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
668
669# define STORE_NUMBER_AND_INCR(destination, number) \
670 do { \
671 STORE_NUMBER (destination, number); \
672 (destination) += OFFSET_ADDRESS_SIZE; \
673 } while (0)
674
675/* Put into DESTINATION a number stored in two contiguous bytes starting
676 at SOURCE. */
677/* ifdef MBS_SUPPORT, we store NUMBER in 1 element. */
678
679# ifdef WCHAR
680# define EXTRACT_NUMBER(destination, source) \
681 do { \
682 (destination) = *(source); \
683 } while (0)
684# else /* BYTE */
685# define EXTRACT_NUMBER(destination, source) \
686 do { \
687 (destination) = *(source) & 0377; \
13b356b2 688 (destination) += ((unsigned) SIGN_EXTEND_CHAR (*((source) + 1))) << 8; \
2a6ef469
DD
689 } while (0)
690# endif
691
692# ifdef DEBUG
e064c173 693static void PREFIX(extract_number) (int *dest, UCHAR_T *source);
2a6ef469 694static void
e064c173 695PREFIX(extract_number) (int *dest, UCHAR_T *source)
2a6ef469
DD
696{
697# ifdef WCHAR
698 *dest = *source;
699# else /* BYTE */
700 int temp = SIGN_EXTEND_CHAR (*(source + 1));
701 *dest = *source & 0377;
702 *dest += temp << 8;
703# endif
704}
705
706# ifndef EXTRACT_MACROS /* To debug the macros. */
707# undef EXTRACT_NUMBER
708# define EXTRACT_NUMBER(dest, src) PREFIX(extract_number) (&dest, src)
709# endif /* not EXTRACT_MACROS */
710
711# endif /* DEBUG */
712
713/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
714 SOURCE must be an lvalue. */
715
716# define EXTRACT_NUMBER_AND_INCR(destination, source) \
717 do { \
718 EXTRACT_NUMBER (destination, source); \
719 (source) += OFFSET_ADDRESS_SIZE; \
720 } while (0)
721
722# ifdef DEBUG
e064c173
DD
723static void PREFIX(extract_number_and_incr) (int *destination,
724 UCHAR_T **source);
2a6ef469 725static void
e064c173 726PREFIX(extract_number_and_incr) (int *destination, UCHAR_T **source)
2a6ef469
DD
727{
728 PREFIX(extract_number) (destination, *source);
729 *source += OFFSET_ADDRESS_SIZE;
730}
731
732# ifndef EXTRACT_MACROS
733# undef EXTRACT_NUMBER_AND_INCR
734# define EXTRACT_NUMBER_AND_INCR(dest, src) \
735 PREFIX(extract_number_and_incr) (&dest, &src)
736# endif /* not EXTRACT_MACROS */
737
738# endif /* DEBUG */
739
740\f
741
742/* If DEBUG is defined, Regex prints many voluminous messages about what
743 it is doing (if the variable `debug' is nonzero). If linked with the
744 main program in `iregex.c', you can enter patterns and strings
745 interactively. And if linked with the main program in `main.c' and
746 the other test files, you can run the already-written tests. */
747
748# ifdef DEBUG
749
750# ifndef DEFINED_ONCE
751
752/* We use standard I/O for debugging. */
753# include <stdio.h>
754
755/* It is useful to test things that ``must'' be true when debugging. */
756# include <assert.h>
757
758static int debug;
759
760# define DEBUG_STATEMENT(e) e
761# define DEBUG_PRINT1(x) if (debug) printf (x)
762# define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
763# define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
764# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
765# endif /* not DEFINED_ONCE */
766
767# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
768 if (debug) PREFIX(print_partial_compiled_pattern) (s, e)
769# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
770 if (debug) PREFIX(print_double_string) (w, s1, sz1, s2, sz2)
771
772
773/* Print the fastmap in human-readable form. */
774
775# ifndef DEFINED_ONCE
776void
e064c173 777print_fastmap (char *fastmap)
2a6ef469
DD
778{
779 unsigned was_a_range = 0;
780 unsigned i = 0;
781
782 while (i < (1 << BYTEWIDTH))
783 {
784 if (fastmap[i++])
785 {
786 was_a_range = 0;
787 putchar (i - 1);
788 while (i < (1 << BYTEWIDTH) && fastmap[i])
789 {
790 was_a_range = 1;
791 i++;
792 }
793 if (was_a_range)
794 {
795 printf ("-");
796 putchar (i - 1);
797 }
798 }
799 }
800 putchar ('\n');
801}
802# endif /* not DEFINED_ONCE */
803
804
805/* Print a compiled pattern string in human-readable form, starting at
806 the START pointer into it and ending just before the pointer END. */
807
808void
e064c173 809PREFIX(print_partial_compiled_pattern) (UCHAR_T *start, UCHAR_T *end)
2a6ef469
DD
810{
811 int mcnt, mcnt2;
812 UCHAR_T *p1;
813 UCHAR_T *p = start;
814 UCHAR_T *pend = end;
815
816 if (start == NULL)
817 {
818 printf ("(null)\n");
819 return;
820 }
821
822 /* Loop over pattern commands. */
823 while (p < pend)
824 {
825# ifdef _LIBC
826 printf ("%td:\t", p - start);
827# else
828 printf ("%ld:\t", (long int) (p - start));
829# endif
830
831 switch ((re_opcode_t) *p++)
832 {
833 case no_op:
834 printf ("/no_op");
835 break;
836
837 case exactn:
838 mcnt = *p++;
839 printf ("/exactn/%d", mcnt);
840 do
841 {
842 putchar ('/');
843 PUT_CHAR (*p++);
844 }
845 while (--mcnt);
846 break;
847
848# ifdef MBS_SUPPORT
849 case exactn_bin:
850 mcnt = *p++;
851 printf ("/exactn_bin/%d", mcnt);
852 do
853 {
854 printf("/%lx", (long int) *p++);
855 }
856 while (--mcnt);
857 break;
858# endif /* MBS_SUPPORT */
859
860 case start_memory:
861 mcnt = *p++;
862 printf ("/start_memory/%d/%ld", mcnt, (long int) *p++);
863 break;
864
865 case stop_memory:
866 mcnt = *p++;
867 printf ("/stop_memory/%d/%ld", mcnt, (long int) *p++);
868 break;
869
870 case duplicate:
871 printf ("/duplicate/%ld", (long int) *p++);
872 break;
873
874 case anychar:
875 printf ("/anychar");
876 break;
877
878 case charset:
879 case charset_not:
880 {
881# ifdef WCHAR
882 int i, length;
883 wchar_t *workp = p;
884 printf ("/charset [%s",
885 (re_opcode_t) *(workp - 1) == charset_not ? "^" : "");
886 p += 5;
887 length = *workp++; /* the length of char_classes */
888 for (i=0 ; i<length ; i++)
889 printf("[:%lx:]", (long int) *p++);
890 length = *workp++; /* the length of collating_symbol */
891 for (i=0 ; i<length ;)
892 {
893 printf("[.");
894 while(*p != 0)
895 PUT_CHAR((i++,*p++));
896 i++,p++;
897 printf(".]");
898 }
899 length = *workp++; /* the length of equivalence_class */
900 for (i=0 ; i<length ;)
901 {
902 printf("[=");
903 while(*p != 0)
904 PUT_CHAR((i++,*p++));
905 i++,p++;
906 printf("=]");
907 }
908 length = *workp++; /* the length of char_range */
909 for (i=0 ; i<length ; i++)
910 {
911 wchar_t range_start = *p++;
912 wchar_t range_end = *p++;
913 printf("%C-%C", range_start, range_end);
914 }
915 length = *workp++; /* the length of char */
916 for (i=0 ; i<length ; i++)
917 printf("%C", *p++);
918 putchar (']');
919# else
920 register int c, last = -100;
921 register int in_range = 0;
922
923 printf ("/charset [%s",
924 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
925
926 assert (p + *p < pend);
927
928 for (c = 0; c < 256; c++)
929 if (c / 8 < *p
930 && (p[1 + (c/8)] & (1 << (c % 8))))
931 {
932 /* Are we starting a range? */
933 if (last + 1 == c && ! in_range)
934 {
935 putchar ('-');
936 in_range = 1;
937 }
938 /* Have we broken a range? */
939 else if (last + 1 != c && in_range)
940 {
941 putchar (last);
942 in_range = 0;
943 }
944
945 if (! in_range)
946 putchar (c);
947
948 last = c;
949 }
950
951 if (in_range)
952 putchar (last);
953
954 putchar (']');
955
956 p += 1 + *p;
957# endif /* WCHAR */
958 }
959 break;
960
961 case begline:
962 printf ("/begline");
963 break;
964
965 case endline:
966 printf ("/endline");
967 break;
968
969 case on_failure_jump:
970 PREFIX(extract_number_and_incr) (&mcnt, &p);
971# ifdef _LIBC
972 printf ("/on_failure_jump to %td", p + mcnt - start);
973# else
974 printf ("/on_failure_jump to %ld", (long int) (p + mcnt - start));
975# endif
976 break;
977
978 case on_failure_keep_string_jump:
979 PREFIX(extract_number_and_incr) (&mcnt, &p);
980# ifdef _LIBC
981 printf ("/on_failure_keep_string_jump to %td", p + mcnt - start);
982# else
983 printf ("/on_failure_keep_string_jump to %ld",
984 (long int) (p + mcnt - start));
985# endif
986 break;
987
988 case dummy_failure_jump:
989 PREFIX(extract_number_and_incr) (&mcnt, &p);
990# ifdef _LIBC
991 printf ("/dummy_failure_jump to %td", p + mcnt - start);
992# else
993 printf ("/dummy_failure_jump to %ld", (long int) (p + mcnt - start));
994# endif
995 break;
996
997 case push_dummy_failure:
998 printf ("/push_dummy_failure");
999 break;
1000
1001 case maybe_pop_jump:
1002 PREFIX(extract_number_and_incr) (&mcnt, &p);
1003# ifdef _LIBC
1004 printf ("/maybe_pop_jump to %td", p + mcnt - start);
1005# else
1006 printf ("/maybe_pop_jump to %ld", (long int) (p + mcnt - start));
1007# endif
1008 break;
1009
1010 case pop_failure_jump:
1011 PREFIX(extract_number_and_incr) (&mcnt, &p);
1012# ifdef _LIBC
1013 printf ("/pop_failure_jump to %td", p + mcnt - start);
1014# else
1015 printf ("/pop_failure_jump to %ld", (long int) (p + mcnt - start));
1016# endif
1017 break;
1018
1019 case jump_past_alt:
1020 PREFIX(extract_number_and_incr) (&mcnt, &p);
1021# ifdef _LIBC
1022 printf ("/jump_past_alt to %td", p + mcnt - start);
1023# else
1024 printf ("/jump_past_alt to %ld", (long int) (p + mcnt - start));
1025# endif
1026 break;
1027
1028 case jump:
1029 PREFIX(extract_number_and_incr) (&mcnt, &p);
1030# ifdef _LIBC
1031 printf ("/jump to %td", p + mcnt - start);
1032# else
1033 printf ("/jump to %ld", (long int) (p + mcnt - start));
1034# endif
1035 break;
1036
1037 case succeed_n:
1038 PREFIX(extract_number_and_incr) (&mcnt, &p);
1039 p1 = p + mcnt;
1040 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1041# ifdef _LIBC
1042 printf ("/succeed_n to %td, %d times", p1 - start, mcnt2);
1043# else
1044 printf ("/succeed_n to %ld, %d times",
1045 (long int) (p1 - start), mcnt2);
1046# endif
1047 break;
1048
1049 case jump_n:
1050 PREFIX(extract_number_and_incr) (&mcnt, &p);
1051 p1 = p + mcnt;
1052 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1053 printf ("/jump_n to %d, %d times", p1 - start, mcnt2);
1054 break;
1055
1056 case set_number_at:
1057 PREFIX(extract_number_and_incr) (&mcnt, &p);
1058 p1 = p + mcnt;
1059 PREFIX(extract_number_and_incr) (&mcnt2, &p);
1060# ifdef _LIBC
1061 printf ("/set_number_at location %td to %d", p1 - start, mcnt2);
1062# else
1063 printf ("/set_number_at location %ld to %d",
1064 (long int) (p1 - start), mcnt2);
1065# endif
1066 break;
1067
1068 case wordbound:
1069 printf ("/wordbound");
1070 break;
1071
1072 case notwordbound:
1073 printf ("/notwordbound");
1074 break;
1075
1076 case wordbeg:
1077 printf ("/wordbeg");
1078 break;
1079
1080 case wordend:
1081 printf ("/wordend");
1082 break;
1083
1084# ifdef emacs
1085 case before_dot:
1086 printf ("/before_dot");
1087 break;
1088
1089 case at_dot:
1090 printf ("/at_dot");
1091 break;
1092
1093 case after_dot:
1094 printf ("/after_dot");
1095 break;
1096
1097 case syntaxspec:
1098 printf ("/syntaxspec");
1099 mcnt = *p++;
1100 printf ("/%d", mcnt);
1101 break;
1102
1103 case notsyntaxspec:
1104 printf ("/notsyntaxspec");
1105 mcnt = *p++;
1106 printf ("/%d", mcnt);
1107 break;
1108# endif /* emacs */
1109
1110 case wordchar:
1111 printf ("/wordchar");
1112 break;
1113
1114 case notwordchar:
1115 printf ("/notwordchar");
1116 break;
1117
1118 case begbuf:
1119 printf ("/begbuf");
1120 break;
1121
1122 case endbuf:
1123 printf ("/endbuf");
1124 break;
1125
1126 default:
1127 printf ("?%ld", (long int) *(p-1));
1128 }
1129
1130 putchar ('\n');
1131 }
1132
1133# ifdef _LIBC
1134 printf ("%td:\tend of pattern.\n", p - start);
1135# else
1136 printf ("%ld:\tend of pattern.\n", (long int) (p - start));
1137# endif
1138}
1139
1140
1141void
e064c173 1142PREFIX(print_compiled_pattern) (struct re_pattern_buffer *bufp)
2a6ef469
DD
1143{
1144 UCHAR_T *buffer = (UCHAR_T*) bufp->buffer;
1145
1146 PREFIX(print_partial_compiled_pattern) (buffer, buffer
1147 + bufp->used / sizeof(UCHAR_T));
1148 printf ("%ld bytes used/%ld bytes allocated.\n",
1149 bufp->used, bufp->allocated);
1150
1151 if (bufp->fastmap_accurate && bufp->fastmap)
1152 {
1153 printf ("fastmap: ");
1154 print_fastmap (bufp->fastmap);
1155 }
1156
1157# ifdef _LIBC
1158 printf ("re_nsub: %Zd\t", bufp->re_nsub);
1159# else
1160 printf ("re_nsub: %ld\t", (long int) bufp->re_nsub);
1161# endif
1162 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1163 printf ("can_be_null: %d\t", bufp->can_be_null);
1164 printf ("newline_anchor: %d\n", bufp->newline_anchor);
1165 printf ("no_sub: %d\t", bufp->no_sub);
1166 printf ("not_bol: %d\t", bufp->not_bol);
1167 printf ("not_eol: %d\t", bufp->not_eol);
1168 printf ("syntax: %lx\n", bufp->syntax);
1169 /* Perhaps we should print the translate table? */
1170}
1171
1172
1173void
e064c173
DD
1174PREFIX(print_double_string) (const CHAR_T *where, const CHAR_T *string1,
1175 int size1, const CHAR_T *string2, int size2)
2a6ef469
DD
1176{
1177 int this_char;
1178
1179 if (where == NULL)
1180 printf ("(null)");
1181 else
1182 {
6ad8a379
DD
1183 int cnt;
1184
2a6ef469
DD
1185 if (FIRST_STRING_P (where))
1186 {
1187 for (this_char = where - string1; this_char < size1; this_char++)
1188 PUT_CHAR (string1[this_char]);
1189
1190 where = string2;
1191 }
1192
6ad8a379 1193 cnt = 0;
2a6ef469 1194 for (this_char = where - string2; this_char < size2; this_char++)
6ad8a379
DD
1195 {
1196 PUT_CHAR (string2[this_char]);
1197 if (++cnt > 100)
1198 {
1199 fputs ("...", stdout);
1200 break;
1201 }
1202 }
2a6ef469
DD
1203 }
1204}
1205
1206# ifndef DEFINED_ONCE
1207void
e064c173 1208printchar (int c)
2a6ef469
DD
1209{
1210 putc (c, stderr);
1211}
1212# endif
1213
1214# else /* not DEBUG */
1215
1216# ifndef DEFINED_ONCE
1217# undef assert
1218# define assert(e)
1219
1220# define DEBUG_STATEMENT(e)
1221# define DEBUG_PRINT1(x)
1222# define DEBUG_PRINT2(x1, x2)
1223# define DEBUG_PRINT3(x1, x2, x3)
1224# define DEBUG_PRINT4(x1, x2, x3, x4)
1225# endif /* not DEFINED_ONCE */
1226# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1227# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1228
1229# endif /* not DEBUG */
1230
1231\f
1232
1233# ifdef WCHAR
1234/* This convert a multibyte string to a wide character string.
1235 And write their correspondances to offset_buffer(see below)
1236 and write whether each wchar_t is binary data to is_binary.
1237 This assume invalid multibyte sequences as binary data.
1238 We assume offset_buffer and is_binary is already allocated
1239 enough space. */
1240
1241static size_t convert_mbs_to_wcs (CHAR_T *dest, const unsigned char* src,
1242 size_t len, int *offset_buffer,
1243 char *is_binary);
1244static size_t
e064c173
DD
1245convert_mbs_to_wcs (CHAR_T *dest, const unsigned char*src, size_t len,
1246 int *offset_buffer, char *is_binary)
2a6ef469
DD
1247 /* It hold correspondances between src(char string) and
1248 dest(wchar_t string) for optimization.
1249 e.g. src = "xxxyzz"
1250 dest = {'X', 'Y', 'Z'}
1251 (each "xxx", "y" and "zz" represent one multibyte character
1252 corresponding to 'X', 'Y' and 'Z'.)
1253 offset_buffer = {0, 0+3("xxx"), 0+3+1("y"), 0+3+1+2("zz")}
1254 = {0, 3, 4, 6}
1255 */
2a6ef469
DD
1256{
1257 wchar_t *pdest = dest;
1258 const unsigned char *psrc = src;
1259 size_t wc_count = 0;
1260
1261 mbstate_t mbs;
1262 int i, consumed;
1263 size_t mb_remain = len;
1264 size_t mb_count = 0;
1265
1266 /* Initialize the conversion state. */
1267 memset (&mbs, 0, sizeof (mbstate_t));
1268
1269 offset_buffer[0] = 0;
1270 for( ; mb_remain > 0 ; ++wc_count, ++pdest, mb_remain -= consumed,
1271 psrc += consumed)
1272 {
dc676635
DD
1273#ifdef _LIBC
1274 consumed = __mbrtowc (pdest, psrc, mb_remain, &mbs);
1275#else
2a6ef469 1276 consumed = mbrtowc (pdest, psrc, mb_remain, &mbs);
dc676635 1277#endif
2a6ef469
DD
1278
1279 if (consumed <= 0)
1280 /* failed to convert. maybe src contains binary data.
1281 So we consume 1 byte manualy. */
1282 {
1283 *pdest = *psrc;
1284 consumed = 1;
1285 is_binary[wc_count] = TRUE;
1286 }
1287 else
1288 is_binary[wc_count] = FALSE;
1289 /* In sjis encoding, we use yen sign as escape character in
1290 place of reverse solidus. So we convert 0x5c(yen sign in
1291 sjis) to not 0xa5(yen sign in UCS2) but 0x5c(reverse
1292 solidus in UCS2). */
1293 if (consumed == 1 && (int) *psrc == 0x5c && (int) *pdest == 0xa5)
1294 *pdest = (wchar_t) *psrc;
1295
1296 offset_buffer[wc_count + 1] = mb_count += consumed;
1297 }
1298
1299 /* Fill remain of the buffer with sentinel. */
1300 for (i = wc_count + 1 ; i <= len ; i++)
1301 offset_buffer[i] = mb_count + 1;
1302
1303 return wc_count;
1304}
1305
1306# endif /* WCHAR */
1307
1308#else /* not INSIDE_RECURSION */
1309
1310/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1311 also be assigned to arbitrarily: each pattern buffer stores its own
1312 syntax, so it can be changed between regex compilations. */
1313/* This has no initializer because initialized variables in Emacs
1314 become read-only after dumping. */
1315reg_syntax_t re_syntax_options;
1316
1317
1318/* Specify the precise syntax of regexps for compilation. This provides
1319 for compatibility for various utilities which historically have
1320 different, incompatible syntaxes.
1321
1322 The argument SYNTAX is a bit mask comprised of the various bits
1323 defined in regex.h. We return the old syntax. */
1324
1325reg_syntax_t
e064c173 1326re_set_syntax (reg_syntax_t syntax)
2a6ef469
DD
1327{
1328 reg_syntax_t ret = re_syntax_options;
1329
1330 re_syntax_options = syntax;
1331# ifdef DEBUG
1332 if (syntax & RE_DEBUG)
1333 debug = 1;
1334 else if (debug) /* was on but now is not */
1335 debug = 0;
1336# endif /* DEBUG */
1337 return ret;
1338}
1339# ifdef _LIBC
1340weak_alias (__re_set_syntax, re_set_syntax)
1341# endif
1342\f
1343/* This table gives an error message for each of the error codes listed
1344 in regex.h. Obviously the order here has to be same as there.
1345 POSIX doesn't require that we do anything for REG_NOERROR,
1346 but why not be nice? */
1347
a2832523 1348static const char *re_error_msgid[] =
2a6ef469 1349 {
a2832523
DD
1350 gettext_noop ("Success"), /* REG_NOERROR */
1351 gettext_noop ("No match"), /* REG_NOMATCH */
1352 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1353 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1354 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1355 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1356 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1357 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1358 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1359 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1360 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1361 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1362 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1363 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1364 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1365 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
2a6ef469
DD
1366 gettext_noop ("Unmatched ) or \\)") /* REG_ERPAREN */
1367 };
2a6ef469
DD
1368\f
1369#endif /* INSIDE_RECURSION */
1370
1371#ifndef DEFINED_ONCE
1372/* Avoiding alloca during matching, to placate r_alloc. */
1373
1374/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1375 searching and matching functions should not call alloca. On some
1376 systems, alloca is implemented in terms of malloc, and if we're
1377 using the relocating allocator routines, then malloc could cause a
1378 relocation, which might (if the strings being searched are in the
1379 ralloc heap) shift the data out from underneath the regexp
1380 routines.
1381
1382 Here's another reason to avoid allocation: Emacs
1383 processes input from X in a signal handler; processing X input may
1384 call malloc; if input arrives while a matching routine is calling
1385 malloc, then we're scrod. But Emacs can't just block input while
1386 calling matching routines; then we don't notice interrupts when
1387 they come in. So, Emacs blocks input around all regexp calls
1388 except the matching calls, which it leaves unprotected, in the
1389 faith that they will not malloc. */
1390
1391/* Normally, this is fine. */
1392# define MATCH_MAY_ALLOCATE
1393
1394/* When using GNU C, we are not REALLY using the C alloca, no matter
1395 what config.h may say. So don't take precautions for it. */
1396# ifdef __GNUC__
1397# undef C_ALLOCA
1398# endif
1399
1400/* The match routines may not allocate if (1) they would do it with malloc
1401 and (2) it's not safe for them to use malloc.
1402 Note that if REL_ALLOC is defined, matching would not use malloc for the
1403 failure stack, but we would still use it for the register vectors;
1404 so REL_ALLOC should not affect this. */
1405# if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1406# undef MATCH_MAY_ALLOCATE
1407# endif
1408#endif /* not DEFINED_ONCE */
1409\f
1410#ifdef INSIDE_RECURSION
1411/* Failure stack declarations and macros; both re_compile_fastmap and
1412 re_match_2 use a failure stack. These have to be macros because of
1413 REGEX_ALLOCATE_STACK. */
1414
1415
1416/* Number of failure points for which to initially allocate space
1417 when matching. If this number is exceeded, we allocate more
1418 space, so it is not a hard limit. */
1419# ifndef INIT_FAILURE_ALLOC
1420# define INIT_FAILURE_ALLOC 5
1421# endif
1422
1423/* Roughly the maximum number of failure points on the stack. Would be
1424 exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
1425 This is a variable only so users of regex can assign to it; we never
1426 change it ourselves. */
1427
1428# ifdef INT_IS_16BIT
1429
1430# ifndef DEFINED_ONCE
1431# if defined MATCH_MAY_ALLOCATE
1432/* 4400 was enough to cause a crash on Alpha OSF/1,
1433 whose default stack limit is 2mb. */
1434long int re_max_failures = 4000;
1435# else
1436long int re_max_failures = 2000;
1437# endif
1438# endif
1439
1440union PREFIX(fail_stack_elt)
1441{
1442 UCHAR_T *pointer;
1443 long int integer;
1444};
1445
1446typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1447
1448typedef struct
1449{
1450 PREFIX(fail_stack_elt_t) *stack;
1451 unsigned long int size;
1452 unsigned long int avail; /* Offset of next open position. */
1453} PREFIX(fail_stack_type);
1454
1455# else /* not INT_IS_16BIT */
1456
1457# ifndef DEFINED_ONCE
1458# if defined MATCH_MAY_ALLOCATE
1459/* 4400 was enough to cause a crash on Alpha OSF/1,
1460 whose default stack limit is 2mb. */
1461int re_max_failures = 4000;
1462# else
1463int re_max_failures = 2000;
1464# endif
1465# endif
1466
1467union PREFIX(fail_stack_elt)
1468{
1469 UCHAR_T *pointer;
1470 int integer;
1471};
1472
1473typedef union PREFIX(fail_stack_elt) PREFIX(fail_stack_elt_t);
1474
1475typedef struct
1476{
1477 PREFIX(fail_stack_elt_t) *stack;
1478 unsigned size;
1479 unsigned avail; /* Offset of next open position. */
1480} PREFIX(fail_stack_type);
1481
1482# endif /* INT_IS_16BIT */
1483
1484# ifndef DEFINED_ONCE
1485# define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
1486# define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
1487# define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1488# endif
1489
1490
1491/* Define macros to initialize and free the failure stack.
1492 Do `return -2' if the alloc fails. */
1493
1494# ifdef MATCH_MAY_ALLOCATE
1495# define INIT_FAIL_STACK() \
1496 do { \
1497 fail_stack.stack = (PREFIX(fail_stack_elt_t) *) \
1498 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (PREFIX(fail_stack_elt_t))); \
1499 \
1500 if (fail_stack.stack == NULL) \
1501 return -2; \
1502 \
1503 fail_stack.size = INIT_FAILURE_ALLOC; \
1504 fail_stack.avail = 0; \
1505 } while (0)
1506
1507# define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1508# else
1509# define INIT_FAIL_STACK() \
1510 do { \
1511 fail_stack.avail = 0; \
1512 } while (0)
1513
1514# define RESET_FAIL_STACK()
1515# endif
1516
1517
1518/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
1519
1520 Return 1 if succeeds, and 0 if either ran out of memory
1521 allocating space for it or it was already too large.
1522
1523 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1524
1525# define DOUBLE_FAIL_STACK(fail_stack) \
1526 ((fail_stack).size > (unsigned) (re_max_failures * MAX_FAILURE_ITEMS) \
1527 ? 0 \
1528 : ((fail_stack).stack = (PREFIX(fail_stack_elt_t) *) \
1529 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1530 (fail_stack).size * sizeof (PREFIX(fail_stack_elt_t)), \
1531 ((fail_stack).size << 1) * sizeof (PREFIX(fail_stack_elt_t))),\
1532 \
1533 (fail_stack).stack == NULL \
1534 ? 0 \
1535 : ((fail_stack).size <<= 1, \
1536 1)))
1537
1538
1539/* Push pointer POINTER on FAIL_STACK.
1540 Return 1 if was able to do so and 0 if ran out of memory allocating
1541 space to do so. */
1542# define PUSH_PATTERN_OP(POINTER, FAIL_STACK) \
1543 ((FAIL_STACK_FULL () \
1544 && !DOUBLE_FAIL_STACK (FAIL_STACK)) \
1545 ? 0 \
1546 : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER, \
1547 1))
1548
1549/* Push a pointer value onto the failure stack.
1550 Assumes the variable `fail_stack'. Probably should only
1551 be called from within `PUSH_FAILURE_POINT'. */
1552# define PUSH_FAILURE_POINTER(item) \
1553 fail_stack.stack[fail_stack.avail++].pointer = (UCHAR_T *) (item)
1554
1555/* This pushes an integer-valued item onto the failure stack.
1556 Assumes the variable `fail_stack'. Probably should only
1557 be called from within `PUSH_FAILURE_POINT'. */
1558# define PUSH_FAILURE_INT(item) \
1559 fail_stack.stack[fail_stack.avail++].integer = (item)
1560
1561/* Push a fail_stack_elt_t value onto the failure stack.
1562 Assumes the variable `fail_stack'. Probably should only
1563 be called from within `PUSH_FAILURE_POINT'. */
1564# define PUSH_FAILURE_ELT(item) \
1565 fail_stack.stack[fail_stack.avail++] = (item)
1566
1567/* These three POP... operations complement the three PUSH... operations.
1568 All assume that `fail_stack' is nonempty. */
1569# define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1570# define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1571# define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1572
1573/* Used to omit pushing failure point id's when we're not debugging. */
1574# ifdef DEBUG
1575# define DEBUG_PUSH PUSH_FAILURE_INT
1576# define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
1577# else
1578# define DEBUG_PUSH(item)
1579# define DEBUG_POP(item_addr)
1580# endif
1581
1582
1583/* Push the information about the state we will need
1584 if we ever fail back to it.
1585
1586 Requires variables fail_stack, regstart, regend, reg_info, and
1587 num_regs_pushed be declared. DOUBLE_FAIL_STACK requires `destination'
1588 be declared.
1589
1590 Does `return FAILURE_CODE' if runs out of memory. */
1591
1592# define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1593 do { \
1594 char *destination; \
1595 /* Must be int, so when we don't save any registers, the arithmetic \
1596 of 0 + -1 isn't done as unsigned. */ \
1597 /* Can't be int, since there is not a shred of a guarantee that int \
1598 is wide enough to hold a value of something to which pointer can \
1599 be assigned */ \
1600 active_reg_t this_reg; \
1601 \
1602 DEBUG_STATEMENT (failure_id++); \
1603 DEBUG_STATEMENT (nfailure_points_pushed++); \
1604 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1605 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1606 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1607 \
1608 DEBUG_PRINT2 (" slots needed: %ld\n", NUM_FAILURE_ITEMS); \
1609 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1610 \
1611 /* Ensure we have enough space allocated for what we will push. */ \
1612 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1613 { \
1614 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1615 return failure_code; \
1616 \
1617 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1618 (fail_stack).size); \
1619 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1620 } \
1621 \
1622 /* Push the info, starting with the registers. */ \
1623 DEBUG_PRINT1 ("\n"); \
1624 \
1625 if (1) \
1626 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1627 this_reg++) \
1628 { \
1629 DEBUG_PRINT2 (" Pushing reg: %lu\n", this_reg); \
1630 DEBUG_STATEMENT (num_regs_pushed++); \
1631 \
1632 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1633 PUSH_FAILURE_POINTER (regstart[this_reg]); \
1634 \
1635 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1636 PUSH_FAILURE_POINTER (regend[this_reg]); \
1637 \
1638 DEBUG_PRINT2 (" info: %p\n ", \
1639 reg_info[this_reg].word.pointer); \
1640 DEBUG_PRINT2 (" match_null=%d", \
1641 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1642 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1643 DEBUG_PRINT2 (" matched_something=%d", \
1644 MATCHED_SOMETHING (reg_info[this_reg])); \
1645 DEBUG_PRINT2 (" ever_matched=%d", \
1646 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1647 DEBUG_PRINT1 ("\n"); \
1648 PUSH_FAILURE_ELT (reg_info[this_reg].word); \
1649 } \
1650 \
1651 DEBUG_PRINT2 (" Pushing low active reg: %ld\n", lowest_active_reg);\
1652 PUSH_FAILURE_INT (lowest_active_reg); \
1653 \
1654 DEBUG_PRINT2 (" Pushing high active reg: %ld\n", highest_active_reg);\
1655 PUSH_FAILURE_INT (highest_active_reg); \
1656 \
1657 DEBUG_PRINT2 (" Pushing pattern %p:\n", pattern_place); \
1658 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1659 PUSH_FAILURE_POINTER (pattern_place); \
1660 \
1661 DEBUG_PRINT2 (" Pushing string %p: `", string_place); \
1662 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1663 size2); \
1664 DEBUG_PRINT1 ("'\n"); \
1665 PUSH_FAILURE_POINTER (string_place); \
1666 \
1667 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1668 DEBUG_PUSH (failure_id); \
1669 } while (0)
1670
1671# ifndef DEFINED_ONCE
1672/* This is the number of items that are pushed and popped on the stack
1673 for each register. */
1674# define NUM_REG_ITEMS 3
1675
1676/* Individual items aside from the registers. */
1677# ifdef DEBUG
1678# define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1679# else
1680# define NUM_NONREG_ITEMS 4
1681# endif
1682
1683/* We push at most this many items on the stack. */
1684/* We used to use (num_regs - 1), which is the number of registers
1685 this regexp will save; but that was changed to 5
1686 to avoid stack overflow for a regexp with lots of parens. */
1687# define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1688
1689/* We actually push this many items. */
1690# define NUM_FAILURE_ITEMS \
1691 (((0 \
1692 ? 0 : highest_active_reg - lowest_active_reg + 1) \
1693 * NUM_REG_ITEMS) \
1694 + NUM_NONREG_ITEMS)
1695
1696/* How many items can still be added to the stack without overflowing it. */
1697# define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1698# endif /* not DEFINED_ONCE */
1699
1700
1701/* Pops what PUSH_FAIL_STACK pushes.
1702
1703 We restore into the parameters, all of which should be lvalues:
1704 STR -- the saved data position.
1705 PAT -- the saved pattern position.
1706 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1707 REGSTART, REGEND -- arrays of string positions.
1708 REG_INFO -- array of information about each subexpression.
1709
1710 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1711 `pend', `string1', `size1', `string2', and `size2'. */
1712# define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1713{ \
1714 DEBUG_STATEMENT (unsigned failure_id;) \
1715 active_reg_t this_reg; \
1716 const UCHAR_T *string_temp; \
1717 \
1718 assert (!FAIL_STACK_EMPTY ()); \
1719 \
1720 /* Remove failure points and point to how many regs pushed. */ \
1721 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1722 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1723 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1724 \
1725 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1726 \
1727 DEBUG_POP (&failure_id); \
1728 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1729 \
1730 /* If the saved string location is NULL, it came from an \
1731 on_failure_keep_string_jump opcode, and we want to throw away the \
1732 saved NULL, thus retaining our current position in the string. */ \
1733 string_temp = POP_FAILURE_POINTER (); \
1734 if (string_temp != NULL) \
1735 str = (const CHAR_T *) string_temp; \
1736 \
1737 DEBUG_PRINT2 (" Popping string %p: `", str); \
1738 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1739 DEBUG_PRINT1 ("'\n"); \
1740 \
1741 pat = (UCHAR_T *) POP_FAILURE_POINTER (); \
1742 DEBUG_PRINT2 (" Popping pattern %p:\n", pat); \
1743 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1744 \
1745 /* Restore register info. */ \
1746 high_reg = (active_reg_t) POP_FAILURE_INT (); \
1747 DEBUG_PRINT2 (" Popping high active reg: %ld\n", high_reg); \
1748 \
1749 low_reg = (active_reg_t) POP_FAILURE_INT (); \
1750 DEBUG_PRINT2 (" Popping low active reg: %ld\n", low_reg); \
1751 \
1752 if (1) \
1753 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1754 { \
1755 DEBUG_PRINT2 (" Popping reg: %ld\n", this_reg); \
1756 \
1757 reg_info[this_reg].word = POP_FAILURE_ELT (); \
1758 DEBUG_PRINT2 (" info: %p\n", \
1759 reg_info[this_reg].word.pointer); \
1760 \
1761 regend[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1762 DEBUG_PRINT2 (" end: %p\n", regend[this_reg]); \
1763 \
1764 regstart[this_reg] = (const CHAR_T *) POP_FAILURE_POINTER (); \
1765 DEBUG_PRINT2 (" start: %p\n", regstart[this_reg]); \
1766 } \
1767 else \
1768 { \
1769 for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
1770 { \
1771 reg_info[this_reg].word.integer = 0; \
1772 regend[this_reg] = 0; \
1773 regstart[this_reg] = 0; \
1774 } \
1775 highest_active_reg = high_reg; \
1776 } \
1777 \
1778 set_regs_matched_done = 0; \
1779 DEBUG_STATEMENT (nfailure_points_popped++); \
1780} /* POP_FAILURE_POINT */
1781\f
1782/* Structure for per-register (a.k.a. per-group) information.
1783 Other register information, such as the
1784 starting and ending positions (which are addresses), and the list of
1785 inner groups (which is a bits list) are maintained in separate
1786 variables.
1787
1788 We are making a (strictly speaking) nonportable assumption here: that
1789 the compiler will pack our bit fields into something that fits into
1790 the type of `word', i.e., is something that fits into one item on the
1791 failure stack. */
1792
1793
1794/* Declarations and macros for re_match_2. */
1795
1796typedef union
1797{
1798 PREFIX(fail_stack_elt_t) word;
1799 struct
1800 {
1801 /* This field is one if this group can match the empty string,
1802 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1803# define MATCH_NULL_UNSET_VALUE 3
1804 unsigned match_null_string_p : 2;
1805 unsigned is_active : 1;
1806 unsigned matched_something : 1;
1807 unsigned ever_matched_something : 1;
1808 } bits;
1809} PREFIX(register_info_type);
1810
1811# ifndef DEFINED_ONCE
1812# define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1813# define IS_ACTIVE(R) ((R).bits.is_active)
1814# define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1815# define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1816
1817
1818/* Call this when have matched a real character; it sets `matched' flags
1819 for the subexpressions which we are currently inside. Also records
1820 that those subexprs have matched. */
1821# define SET_REGS_MATCHED() \
1822 do \
1823 { \
1824 if (!set_regs_matched_done) \
1825 { \
1826 active_reg_t r; \
1827 set_regs_matched_done = 1; \
1828 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1829 { \
1830 MATCHED_SOMETHING (reg_info[r]) \
1831 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1832 = 1; \
1833 } \
1834 } \
1835 } \
1836 while (0)
1837# endif /* not DEFINED_ONCE */
1838
1839/* Registers are set to a sentinel when they haven't yet matched. */
1840static CHAR_T PREFIX(reg_unset_dummy);
1841# define REG_UNSET_VALUE (&PREFIX(reg_unset_dummy))
1842# define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1843
1844/* Subroutine declarations and macros for regex_compile. */
e064c173
DD
1845static void PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg);
1846static void PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc,
1847 int arg1, int arg2);
1848static void PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc,
1849 int arg, UCHAR_T *end);
1850static void PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc,
1851 int arg1, int arg2, UCHAR_T *end);
1852static boolean PREFIX(at_begline_loc_p) (const CHAR_T *pattern,
1853 const CHAR_T *p,
1854 reg_syntax_t syntax);
1855static boolean PREFIX(at_endline_loc_p) (const CHAR_T *p,
1856 const CHAR_T *pend,
1857 reg_syntax_t syntax);
2a6ef469 1858# ifdef WCHAR
e064c173
DD
1859static reg_errcode_t wcs_compile_range (CHAR_T range_start,
1860 const CHAR_T **p_ptr,
1861 const CHAR_T *pend,
1862 char *translate,
1863 reg_syntax_t syntax,
1864 UCHAR_T *b,
1865 CHAR_T *char_set);
1866static void insert_space (int num, CHAR_T *loc, CHAR_T *end);
2a6ef469 1867# else /* BYTE */
e064c173
DD
1868static reg_errcode_t byte_compile_range (unsigned int range_start,
1869 const char **p_ptr,
1870 const char *pend,
1871 char *translate,
1872 reg_syntax_t syntax,
1873 unsigned char *b);
2a6ef469
DD
1874# endif /* WCHAR */
1875
1876/* Fetch the next character in the uncompiled pattern---translating it
1877 if necessary. Also cast from a signed character in the constant
1878 string passed to us by the user to an unsigned char that we can use
1879 as an array index (in, e.g., `translate'). */
1880/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1881 because it is impossible to allocate 4GB array for some encodings
1882 which have 4 byte character_set like UCS4. */
1883# ifndef PATFETCH
1884# ifdef WCHAR
1885# define PATFETCH(c) \
1886 do {if (p == pend) return REG_EEND; \
1887 c = (UCHAR_T) *p++; \
1888 if (translate && (c <= 0xff)) c = (UCHAR_T) translate[c]; \
1889 } while (0)
1890# else /* BYTE */
1891# define PATFETCH(c) \
1892 do {if (p == pend) return REG_EEND; \
1893 c = (unsigned char) *p++; \
1894 if (translate) c = (unsigned char) translate[c]; \
1895 } while (0)
1896# endif /* WCHAR */
1897# endif
1898
1899/* Fetch the next character in the uncompiled pattern, with no
1900 translation. */
1901# define PATFETCH_RAW(c) \
1902 do {if (p == pend) return REG_EEND; \
1903 c = (UCHAR_T) *p++; \
1904 } while (0)
1905
1906/* Go backwards one character in the pattern. */
1907# define PATUNFETCH p--
1908
1909
1910/* If `translate' is non-null, return translate[D], else just D. We
1911 cast the subscript to translate because some data is declared as
1912 `char *', to avoid warnings when a string constant is passed. But
1913 when we use a character as a subscript we must make it unsigned. */
1914/* ifdef MBS_SUPPORT, we translate only if character <= 0xff,
1915 because it is impossible to allocate 4GB array for some encodings
1916 which have 4 byte character_set like UCS4. */
1917
1918# ifndef TRANSLATE
1919# ifdef WCHAR
1920# define TRANSLATE(d) \
1921 ((translate && ((UCHAR_T) (d)) <= 0xff) \
1922 ? (char) translate[(unsigned char) (d)] : (d))
1923# else /* BYTE */
1924# define TRANSLATE(d) \
4fe19082 1925 (translate ? (char) translate[(unsigned char) (d)] : (char) (d))
2a6ef469
DD
1926# endif /* WCHAR */
1927# endif
1928
1929
1930/* Macros for outputting the compiled pattern into `buffer'. */
1931
1932/* If the buffer isn't allocated when it comes in, use this. */
1933# define INIT_BUF_SIZE (32 * sizeof(UCHAR_T))
1934
1935/* Make sure we have at least N more bytes of space in buffer. */
1936# ifdef WCHAR
1937# define GET_BUFFER_SPACE(n) \
1938 while (((unsigned long)b - (unsigned long)COMPILED_BUFFER_VAR \
1939 + (n)*sizeof(CHAR_T)) > bufp->allocated) \
1940 EXTEND_BUFFER ()
1941# else /* BYTE */
1942# define GET_BUFFER_SPACE(n) \
1943 while ((unsigned long) (b - bufp->buffer + (n)) > bufp->allocated) \
1944 EXTEND_BUFFER ()
1945# endif /* WCHAR */
1946
1947/* Make sure we have one more byte of buffer space and then add C to it. */
1948# define BUF_PUSH(c) \
1949 do { \
1950 GET_BUFFER_SPACE (1); \
1951 *b++ = (UCHAR_T) (c); \
1952 } while (0)
1953
1954
1955/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1956# define BUF_PUSH_2(c1, c2) \
1957 do { \
1958 GET_BUFFER_SPACE (2); \
1959 *b++ = (UCHAR_T) (c1); \
1960 *b++ = (UCHAR_T) (c2); \
1961 } while (0)
1962
1963
1964/* As with BUF_PUSH_2, except for three bytes. */
1965# define BUF_PUSH_3(c1, c2, c3) \
1966 do { \
1967 GET_BUFFER_SPACE (3); \
1968 *b++ = (UCHAR_T) (c1); \
1969 *b++ = (UCHAR_T) (c2); \
1970 *b++ = (UCHAR_T) (c3); \
1971 } while (0)
1972
1973/* Store a jump with opcode OP at LOC to location TO. We store a
1974 relative address offset by the three bytes the jump itself occupies. */
1975# define STORE_JUMP(op, loc, to) \
1976 PREFIX(store_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)))
1977
1978/* Likewise, for a two-argument jump. */
1979# define STORE_JUMP2(op, loc, to, arg) \
1980 PREFIX(store_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), arg)
1981
1982/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1983# define INSERT_JUMP(op, loc, to) \
1984 PREFIX(insert_op1) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)), b)
1985
1986/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1987# define INSERT_JUMP2(op, loc, to, arg) \
1988 PREFIX(insert_op2) (op, loc, (int) ((to) - (loc) - (1 + OFFSET_ADDRESS_SIZE)),\
1989 arg, b)
1990
1991/* This is not an arbitrary limit: the arguments which represent offsets
1992 into the pattern are two bytes long. So if 2^16 bytes turns out to
1993 be too small, many things would have to change. */
1994/* Any other compiler which, like MSC, has allocation limit below 2^16
1995 bytes will have to use approach similar to what was done below for
1996 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1997 reallocating to 0 bytes. Such thing is not going to work too well.
1998 You have been warned!! */
1999# ifndef DEFINED_ONCE
2000# if defined _MSC_VER && !defined WIN32
2001/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.
2002 The REALLOC define eliminates a flurry of conversion warnings,
2003 but is not required. */
2004# define MAX_BUF_SIZE 65500L
2005# define REALLOC(p,s) realloc ((p), (size_t) (s))
2006# else
2007# define MAX_BUF_SIZE (1L << 16)
2008# define REALLOC(p,s) realloc ((p), (s))
2009# endif
2010
2011/* Extend the buffer by twice its current size via realloc and
2012 reset the pointers that pointed into the old block to point to the
2013 correct places in the new one. If extending the buffer results in it
2014 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
2015# if __BOUNDED_POINTERS__
2016# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
2017# define MOVE_BUFFER_POINTER(P) \
2018 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
2019# define ELSE_EXTEND_BUFFER_HIGH_BOUND \
2020 else \
2021 { \
2022 SET_HIGH_BOUND (b); \
2023 SET_HIGH_BOUND (begalt); \
2024 if (fixup_alt_jump) \
2025 SET_HIGH_BOUND (fixup_alt_jump); \
2026 if (laststart) \
2027 SET_HIGH_BOUND (laststart); \
2028 if (pending_exact) \
2029 SET_HIGH_BOUND (pending_exact); \
2030 }
2031# else
2032# define MOVE_BUFFER_POINTER(P) (P) += incr
2033# define ELSE_EXTEND_BUFFER_HIGH_BOUND
2034# endif
2035# endif /* not DEFINED_ONCE */
2036
2037# ifdef WCHAR
2038# define EXTEND_BUFFER() \
2039 do { \
2040 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2041 int wchar_count; \
2042 if (bufp->allocated + sizeof(UCHAR_T) > MAX_BUF_SIZE) \
2043 return REG_ESIZE; \
2044 bufp->allocated <<= 1; \
2045 if (bufp->allocated > MAX_BUF_SIZE) \
2046 bufp->allocated = MAX_BUF_SIZE; \
2047 /* How many characters the new buffer can have? */ \
2048 wchar_count = bufp->allocated / sizeof(UCHAR_T); \
2049 if (wchar_count == 0) wchar_count = 1; \
389d9b6c 2050 /* Truncate the buffer to CHAR_T align. */ \
2a6ef469
DD
2051 bufp->allocated = wchar_count * sizeof(UCHAR_T); \
2052 RETALLOC (COMPILED_BUFFER_VAR, wchar_count, UCHAR_T); \
2053 bufp->buffer = (char*)COMPILED_BUFFER_VAR; \
2054 if (COMPILED_BUFFER_VAR == NULL) \
2055 return REG_ESPACE; \
2056 /* If the buffer moved, move all the pointers into it. */ \
2057 if (old_buffer != COMPILED_BUFFER_VAR) \
2058 { \
389d9b6c 2059 PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer; \
2a6ef469
DD
2060 MOVE_BUFFER_POINTER (b); \
2061 MOVE_BUFFER_POINTER (begalt); \
2062 if (fixup_alt_jump) \
2063 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2064 if (laststart) \
2065 MOVE_BUFFER_POINTER (laststart); \
2066 if (pending_exact) \
2067 MOVE_BUFFER_POINTER (pending_exact); \
2068 } \
2069 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2070 } while (0)
2071# else /* BYTE */
2072# define EXTEND_BUFFER() \
2073 do { \
2074 UCHAR_T *old_buffer = COMPILED_BUFFER_VAR; \
2075 if (bufp->allocated == MAX_BUF_SIZE) \
2076 return REG_ESIZE; \
2077 bufp->allocated <<= 1; \
2078 if (bufp->allocated > MAX_BUF_SIZE) \
2079 bufp->allocated = MAX_BUF_SIZE; \
2080 bufp->buffer = (UCHAR_T *) REALLOC (COMPILED_BUFFER_VAR, \
2081 bufp->allocated); \
2082 if (COMPILED_BUFFER_VAR == NULL) \
2083 return REG_ESPACE; \
2084 /* If the buffer moved, move all the pointers into it. */ \
2085 if (old_buffer != COMPILED_BUFFER_VAR) \
2086 { \
389d9b6c 2087 PTR_INT_TYPE incr = COMPILED_BUFFER_VAR - old_buffer; \
2a6ef469
DD
2088 MOVE_BUFFER_POINTER (b); \
2089 MOVE_BUFFER_POINTER (begalt); \
2090 if (fixup_alt_jump) \
2091 MOVE_BUFFER_POINTER (fixup_alt_jump); \
2092 if (laststart) \
2093 MOVE_BUFFER_POINTER (laststart); \
2094 if (pending_exact) \
2095 MOVE_BUFFER_POINTER (pending_exact); \
2096 } \
2097 ELSE_EXTEND_BUFFER_HIGH_BOUND \
2098 } while (0)
2099# endif /* WCHAR */
2100
2101# ifndef DEFINED_ONCE
2102/* Since we have one byte reserved for the register number argument to
2103 {start,stop}_memory, the maximum number of groups we can report
2104 things about is what fits in that byte. */
2105# define MAX_REGNUM 255
2106
2107/* But patterns can have more than `MAX_REGNUM' registers. We just
2108 ignore the excess. */
2109typedef unsigned regnum_t;
2110
2111
2112/* Macros for the compile stack. */
2113
2114/* Since offsets can go either forwards or backwards, this type needs to
2115 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
2116/* int may be not enough when sizeof(int) == 2. */
2117typedef long pattern_offset_t;
2118
2119typedef struct
2120{
2121 pattern_offset_t begalt_offset;
2122 pattern_offset_t fixup_alt_jump;
2123 pattern_offset_t inner_group_offset;
2124 pattern_offset_t laststart_offset;
2125 regnum_t regnum;
2126} compile_stack_elt_t;
2127
2128
2129typedef struct
2130{
2131 compile_stack_elt_t *stack;
2132 unsigned size;
2133 unsigned avail; /* Offset of next open position. */
2134} compile_stack_type;
2135
2136
2137# define INIT_COMPILE_STACK_SIZE 32
2138
2139# define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
2140# define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
2141
2142/* The next available element. */
2143# define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
2144
2145# endif /* not DEFINED_ONCE */
2146
2147/* Set the bit for character C in a list. */
2148# ifndef DEFINED_ONCE
2149# define SET_LIST_BIT(c) \
2150 (b[((unsigned char) (c)) / BYTEWIDTH] \
2151 |= 1 << (((unsigned char) c) % BYTEWIDTH))
2152# endif /* DEFINED_ONCE */
2153
2154/* Get the next unsigned number in the uncompiled pattern. */
2155# define GET_UNSIGNED_NUMBER(num) \
2156 { \
2157 while (p != pend) \
2158 { \
2159 PATFETCH (c); \
2160 if (c < '0' || c > '9') \
2161 break; \
2162 if (num <= RE_DUP_MAX) \
2163 { \
2164 if (num < 0) \
2165 num = 0; \
2166 num = num * 10 + c - '0'; \
2167 } \
2168 } \
2169 }
2170
2171# ifndef DEFINED_ONCE
2172# if defined _LIBC || WIDE_CHAR_SUPPORT
2173/* The GNU C library provides support for user-defined character classes
2174 and the functions from ISO C amendement 1. */
2175# ifdef CHARCLASS_NAME_MAX
2176# define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
2177# else
2178/* This shouldn't happen but some implementation might still have this
2179 problem. Use a reasonable default value. */
2180# define CHAR_CLASS_MAX_LENGTH 256
2181# endif
2182
2183# ifdef _LIBC
2184# define IS_CHAR_CLASS(string) __wctype (string)
2185# else
2186# define IS_CHAR_CLASS(string) wctype (string)
2187# endif
2188# else
2189# define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
2190
2191# define IS_CHAR_CLASS(string) \
2192 (STREQ (string, "alpha") || STREQ (string, "upper") \
2193 || STREQ (string, "lower") || STREQ (string, "digit") \
2194 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
2195 || STREQ (string, "space") || STREQ (string, "print") \
2196 || STREQ (string, "punct") || STREQ (string, "graph") \
2197 || STREQ (string, "cntrl") || STREQ (string, "blank"))
2198# endif
2199# endif /* DEFINED_ONCE */
2200\f
2201# ifndef MATCH_MAY_ALLOCATE
2202
2203/* If we cannot allocate large objects within re_match_2_internal,
2204 we make the fail stack and register vectors global.
2205 The fail stack, we grow to the maximum size when a regexp
2206 is compiled.
2207 The register vectors, we adjust in size each time we
2208 compile a regexp, according to the number of registers it needs. */
2209
2210static PREFIX(fail_stack_type) fail_stack;
2211
2212/* Size with which the following vectors are currently allocated.
2213 That is so we can make them bigger as needed,
2214 but never make them smaller. */
2215# ifdef DEFINED_ONCE
2216static int regs_allocated_size;
2217
2218static const char ** regstart, ** regend;
2219static const char ** old_regstart, ** old_regend;
2220static const char **best_regstart, **best_regend;
2221static const char **reg_dummy;
2222# endif /* DEFINED_ONCE */
2223
2224static PREFIX(register_info_type) *PREFIX(reg_info);
2225static PREFIX(register_info_type) *PREFIX(reg_info_dummy);
2226
2227/* Make the register vectors big enough for NUM_REGS registers,
2228 but don't make them smaller. */
2229
2230static void
e064c173 2231PREFIX(regex_grow_registers) (int num_regs)
2a6ef469
DD
2232{
2233 if (num_regs > regs_allocated_size)
2234 {
2235 RETALLOC_IF (regstart, num_regs, const char *);
2236 RETALLOC_IF (regend, num_regs, const char *);
2237 RETALLOC_IF (old_regstart, num_regs, const char *);
2238 RETALLOC_IF (old_regend, num_regs, const char *);
2239 RETALLOC_IF (best_regstart, num_regs, const char *);
2240 RETALLOC_IF (best_regend, num_regs, const char *);
2241 RETALLOC_IF (PREFIX(reg_info), num_regs, PREFIX(register_info_type));
2242 RETALLOC_IF (reg_dummy, num_regs, const char *);
2243 RETALLOC_IF (PREFIX(reg_info_dummy), num_regs, PREFIX(register_info_type));
2244
2245 regs_allocated_size = num_regs;
2246 }
2247}
2248
2249# endif /* not MATCH_MAY_ALLOCATE */
2250\f
2251# ifndef DEFINED_ONCE
e064c173
DD
2252static boolean group_in_compile_stack (compile_stack_type compile_stack,
2253 regnum_t regnum);
2a6ef469
DD
2254# endif /* not DEFINED_ONCE */
2255
2256/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2257 Returns one of error codes defined in `regex.h', or zero for success.
2258
2259 Assumes the `allocated' (and perhaps `buffer') and `translate'
2260 fields are set in BUFP on entry.
2261
2262 If it succeeds, results are put in BUFP (if it returns an error, the
2263 contents of BUFP are undefined):
2264 `buffer' is the compiled pattern;
2265 `syntax' is set to SYNTAX;
2266 `used' is set to the length of the compiled pattern;
2267 `fastmap_accurate' is zero;
2268 `re_nsub' is the number of subexpressions in PATTERN;
2269 `not_bol' and `not_eol' are zero;
2270
2271 The `fastmap' and `newline_anchor' fields are neither
2272 examined nor set. */
2273
2274/* Return, freeing storage we allocated. */
2275# ifdef WCHAR
2276# define FREE_STACK_RETURN(value) \
2277 return (free(pattern), free(mbs_offset), free(is_binary), free (compile_stack.stack), value)
2278# else
2279# define FREE_STACK_RETURN(value) \
2280 return (free (compile_stack.stack), value)
2281# endif /* WCHAR */
2282
2283static reg_errcode_t
e064c173
DD
2284PREFIX(regex_compile) (const char *ARG_PREFIX(pattern),
2285 size_t ARG_PREFIX(size), reg_syntax_t syntax,
2286 struct re_pattern_buffer *bufp)
2a6ef469
DD
2287{
2288 /* We fetch characters from PATTERN here. Even though PATTERN is
2289 `char *' (i.e., signed), we declare these variables as unsigned, so
2290 they can be reliably used as array indices. */
2291 register UCHAR_T c, c1;
2292
2293#ifdef WCHAR
2294 /* A temporary space to keep wchar_t pattern and compiled pattern. */
2295 CHAR_T *pattern, *COMPILED_BUFFER_VAR;
2296 size_t size;
2297 /* offset buffer for optimization. See convert_mbs_to_wc. */
2298 int *mbs_offset = NULL;
2299 /* It hold whether each wchar_t is binary data or not. */
2300 char *is_binary = NULL;
2301 /* A flag whether exactn is handling binary data or not. */
2302 char is_exactn_bin = FALSE;
2303#endif /* WCHAR */
2304
2305 /* A random temporary spot in PATTERN. */
2306 const CHAR_T *p1;
2307
2308 /* Points to the end of the buffer, where we should append. */
2309 register UCHAR_T *b;
2310
2311 /* Keeps track of unclosed groups. */
2312 compile_stack_type compile_stack;
2313
2314 /* Points to the current (ending) position in the pattern. */
2315#ifdef WCHAR
2316 const CHAR_T *p;
2317 const CHAR_T *pend;
2318#else /* BYTE */
2319 const CHAR_T *p = pattern;
2320 const CHAR_T *pend = pattern + size;
2321#endif /* WCHAR */
2322
2323 /* How to translate the characters in the pattern. */
2324 RE_TRANSLATE_TYPE translate = bufp->translate;
2325
2326 /* Address of the count-byte of the most recently inserted `exactn'
2327 command. This makes it possible to tell if a new exact-match
2328 character can be added to that command or if the character requires
2329 a new `exactn' command. */
2330 UCHAR_T *pending_exact = 0;
2331
2332 /* Address of start of the most recently finished expression.
2333 This tells, e.g., postfix * where to find the start of its
2334 operand. Reset at the beginning of groups and alternatives. */
2335 UCHAR_T *laststart = 0;
2336
2337 /* Address of beginning of regexp, or inside of last group. */
2338 UCHAR_T *begalt;
2339
2340 /* Address of the place where a forward jump should go to the end of
2341 the containing expression. Each alternative of an `or' -- except the
2342 last -- ends with a forward jump of this sort. */
2343 UCHAR_T *fixup_alt_jump = 0;
2344
2345 /* Counts open-groups as they are encountered. Remembered for the
2346 matching close-group on the compile stack, so the same register
2347 number is put in the stop_memory as the start_memory. */
2348 regnum_t regnum = 0;
2349
2350#ifdef WCHAR
2351 /* Initialize the wchar_t PATTERN and offset_buffer. */
2352 p = pend = pattern = TALLOC(csize + 1, CHAR_T);
2353 mbs_offset = TALLOC(csize + 1, int);
2354 is_binary = TALLOC(csize + 1, char);
2355 if (pattern == NULL || mbs_offset == NULL || is_binary == NULL)
2356 {
2357 free(pattern);
2358 free(mbs_offset);
2359 free(is_binary);
2360 return REG_ESPACE;
2361 }
2362 pattern[csize] = L'\0'; /* sentinel */
2363 size = convert_mbs_to_wcs(pattern, cpattern, csize, mbs_offset, is_binary);
2364 pend = p + size;
2365 if (size < 0)
2366 {
2367 free(pattern);
2368 free(mbs_offset);
2369 free(is_binary);
2370 return REG_BADPAT;
2371 }
2372#endif
2373
2374#ifdef DEBUG
2375 DEBUG_PRINT1 ("\nCompiling pattern: ");
2376 if (debug)
2377 {
2378 unsigned debug_count;
2379
2380 for (debug_count = 0; debug_count < size; debug_count++)
2381 PUT_CHAR (pattern[debug_count]);
2382 putchar ('\n');
2383 }
2384#endif /* DEBUG */
2385
2386 /* Initialize the compile stack. */
2387 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2388 if (compile_stack.stack == NULL)
2389 {
2390#ifdef WCHAR
2391 free(pattern);
2392 free(mbs_offset);
2393 free(is_binary);
2394#endif
2395 return REG_ESPACE;
2396 }
2397
2398 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2399 compile_stack.avail = 0;
2400
2401 /* Initialize the pattern buffer. */
2402 bufp->syntax = syntax;
2403 bufp->fastmap_accurate = 0;
2404 bufp->not_bol = bufp->not_eol = 0;
2405
2406 /* Set `used' to zero, so that if we return an error, the pattern
2407 printer (for debugging) will think there's no pattern. We reset it
2408 at the end. */
2409 bufp->used = 0;
2410
2411 /* Always count groups, whether or not bufp->no_sub is set. */
2412 bufp->re_nsub = 0;
2413
2414#if !defined emacs && !defined SYNTAX_TABLE
2415 /* Initialize the syntax table. */
2416 init_syntax_once ();
2417#endif
2418
2419 if (bufp->allocated == 0)
2420 {
2421 if (bufp->buffer)
2422 { /* If zero allocated, but buffer is non-null, try to realloc
2423 enough space. This loses if buffer's address is bogus, but
2424 that is the user's responsibility. */
2425#ifdef WCHAR
2426 /* Free bufp->buffer and allocate an array for wchar_t pattern
2427 buffer. */
2428 free(bufp->buffer);
2429 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE/sizeof(UCHAR_T),
2430 UCHAR_T);
2431#else
2432 RETALLOC (COMPILED_BUFFER_VAR, INIT_BUF_SIZE, UCHAR_T);
2433#endif /* WCHAR */
2434 }
2435 else
2436 { /* Caller did not allocate a buffer. Do it for them. */
2437 COMPILED_BUFFER_VAR = TALLOC (INIT_BUF_SIZE / sizeof(UCHAR_T),
2438 UCHAR_T);
2439 }
2440
2441 if (!COMPILED_BUFFER_VAR) FREE_STACK_RETURN (REG_ESPACE);
2442#ifdef WCHAR
2443 bufp->buffer = (char*)COMPILED_BUFFER_VAR;
2444#endif /* WCHAR */
2445 bufp->allocated = INIT_BUF_SIZE;
2446 }
2447#ifdef WCHAR
2448 else
2449 COMPILED_BUFFER_VAR = (UCHAR_T*) bufp->buffer;
2450#endif
2451
2452 begalt = b = COMPILED_BUFFER_VAR;
2453
2454 /* Loop through the uncompiled pattern until we're at the end. */
2455 while (p != pend)
2456 {
2457 PATFETCH (c);
2458
2459 switch (c)
2460 {
2461 case '^':
2462 {
2463 if ( /* If at start of pattern, it's an operator. */
2464 p == pattern + 1
2465 /* If context independent, it's an operator. */
2466 || syntax & RE_CONTEXT_INDEP_ANCHORS
2467 /* Otherwise, depends on what's come before. */
2468 || PREFIX(at_begline_loc_p) (pattern, p, syntax))
2469 BUF_PUSH (begline);
2470 else
2471 goto normal_char;
2472 }
2473 break;
2474
2475
2476 case '$':
2477 {
2478 if ( /* If at end of pattern, it's an operator. */
2479 p == pend
2480 /* If context independent, it's an operator. */
2481 || syntax & RE_CONTEXT_INDEP_ANCHORS
2482 /* Otherwise, depends on what's next. */
2483 || PREFIX(at_endline_loc_p) (p, pend, syntax))
2484 BUF_PUSH (endline);
2485 else
2486 goto normal_char;
2487 }
2488 break;
2489
2490
2491 case '+':
2492 case '?':
2493 if ((syntax & RE_BK_PLUS_QM)
2494 || (syntax & RE_LIMITED_OPS))
2495 goto normal_char;
4d17eaec 2496 /* Fall through. */
2a6ef469
DD
2497 handle_plus:
2498 case '*':
2499 /* If there is no previous pattern... */
2500 if (!laststart)
2501 {
2502 if (syntax & RE_CONTEXT_INVALID_OPS)
2503 FREE_STACK_RETURN (REG_BADRPT);
2504 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2505 goto normal_char;
2506 }
2507
2508 {
2509 /* Are we optimizing this jump? */
2510 boolean keep_string_p = false;
2511
2512 /* 1 means zero (many) matches is allowed. */
2513 char zero_times_ok = 0, many_times_ok = 0;
2514
2515 /* If there is a sequence of repetition chars, collapse it
2516 down to just one (the right one). We can't combine
2517 interval operators with these because of, e.g., `a{2}*',
2518 which should only match an even number of `a's. */
2519
2520 for (;;)
2521 {
2522 zero_times_ok |= c != '+';
2523 many_times_ok |= c != '?';
2524
2525 if (p == pend)
2526 break;
2527
2528 PATFETCH (c);
2529
2530 if (c == '*'
2531 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
2532 ;
2533
2534 else if (syntax & RE_BK_PLUS_QM && c == '\\')
2535 {
2536 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2537
2538 PATFETCH (c1);
2539 if (!(c1 == '+' || c1 == '?'))
2540 {
2541 PATUNFETCH;
2542 PATUNFETCH;
2543 break;
2544 }
2545
2546 c = c1;
2547 }
2548 else
2549 {
2550 PATUNFETCH;
2551 break;
2552 }
2553
2554 /* If we get here, we found another repeat character. */
2555 }
2556
2557 /* Star, etc. applied to an empty pattern is equivalent
2558 to an empty pattern. */
2559 if (!laststart)
2560 break;
2561
2562 /* Now we know whether or not zero matches is allowed
2563 and also whether or not two or more matches is allowed. */
2564 if (many_times_ok)
2565 { /* More than one repetition is allowed, so put in at the
2566 end a backward relative jump from `b' to before the next
2567 jump we're going to put in below (which jumps from
2568 laststart to after this jump).
2569
2570 But if we are at the `*' in the exact sequence `.*\n',
2571 insert an unconditional jump backwards to the .,
2572 instead of the beginning of the loop. This way we only
2573 push a failure point once, instead of every time
2574 through the loop. */
2575 assert (p - 1 > pattern);
2576
2577 /* Allocate the space for the jump. */
2578 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2579
2580 /* We know we are not at the first character of the pattern,
2581 because laststart was nonzero. And we've already
2582 incremented `p', by the way, to be the character after
2583 the `*'. Do we have to do something analogous here
2584 for null bytes, because of RE_DOT_NOT_NULL? */
2585 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
2586 && zero_times_ok
2587 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
2588 && !(syntax & RE_DOT_NEWLINE))
2589 { /* We have .*\n. */
2590 STORE_JUMP (jump, b, laststart);
2591 keep_string_p = true;
2592 }
2593 else
2594 /* Anything else. */
2595 STORE_JUMP (maybe_pop_jump, b, laststart -
2596 (1 + OFFSET_ADDRESS_SIZE));
2597
2598 /* We've added more stuff to the buffer. */
2599 b += 1 + OFFSET_ADDRESS_SIZE;
2600 }
2601
2602 /* On failure, jump from laststart to b + 3, which will be the
2603 end of the buffer after this jump is inserted. */
2604 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE' instead of
2605 'b + 3'. */
2606 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2607 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
2608 : on_failure_jump,
2609 laststart, b + 1 + OFFSET_ADDRESS_SIZE);
2610 pending_exact = 0;
2611 b += 1 + OFFSET_ADDRESS_SIZE;
2612
2613 if (!zero_times_ok)
2614 {
2615 /* At least one repetition is required, so insert a
2616 `dummy_failure_jump' before the initial
2617 `on_failure_jump' instruction of the loop. This
2618 effects a skip over that instruction the first time
2619 we hit that loop. */
2620 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
2621 INSERT_JUMP (dummy_failure_jump, laststart, laststart +
2622 2 + 2 * OFFSET_ADDRESS_SIZE);
2623 b += 1 + OFFSET_ADDRESS_SIZE;
2624 }
2625 }
2626 break;
2627
2628
2629 case '.':
2630 laststart = b;
2631 BUF_PUSH (anychar);
2632 break;
2633
2634
2635 case '[':
2636 {
2637 boolean had_char_class = false;
2638#ifdef WCHAR
2639 CHAR_T range_start = 0xffffffff;
2640#else
2641 unsigned int range_start = 0xffffffff;
2642#endif
2643 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2644
2645#ifdef WCHAR
2646 /* We assume a charset(_not) structure as a wchar_t array.
2647 charset[0] = (re_opcode_t) charset(_not)
2648 charset[1] = l (= length of char_classes)
2649 charset[2] = m (= length of collating_symbols)
2650 charset[3] = n (= length of equivalence_classes)
2651 charset[4] = o (= length of char_ranges)
2652 charset[5] = p (= length of chars)
2653
2654 charset[6] = char_class (wctype_t)
2655 charset[6+CHAR_CLASS_SIZE] = char_class (wctype_t)
2656 ...
2657 charset[l+5] = char_class (wctype_t)
2658
2659 charset[l+6] = collating_symbol (wchar_t)
2660 ...
2661 charset[l+m+5] = collating_symbol (wchar_t)
2662 ifdef _LIBC we use the index if
2663 _NL_COLLATE_SYMB_EXTRAMB instead of
2664 wchar_t string.
2665
2666 charset[l+m+6] = equivalence_classes (wchar_t)
2667 ...
2668 charset[l+m+n+5] = equivalence_classes (wchar_t)
2669 ifdef _LIBC we use the index in
2670 _NL_COLLATE_WEIGHT instead of
2671 wchar_t string.
2672
2673 charset[l+m+n+6] = range_start
2674 charset[l+m+n+7] = range_end
2675 ...
2676 charset[l+m+n+2o+4] = range_start
2677 charset[l+m+n+2o+5] = range_end
2678 ifdef _LIBC we use the value looked up
2679 in _NL_COLLATE_COLLSEQ instead of
2680 wchar_t character.
2681
2682 charset[l+m+n+2o+6] = char
2683 ...
2684 charset[l+m+n+2o+p+5] = char
2685
2686 */
2687
2688 /* We need at least 6 spaces: the opcode, the length of
2689 char_classes, the length of collating_symbols, the length of
2690 equivalence_classes, the length of char_ranges, the length of
2691 chars. */
2692 GET_BUFFER_SPACE (6);
2693
2694 /* Save b as laststart. And We use laststart as the pointer
2695 to the first element of the charset here.
2696 In other words, laststart[i] indicates charset[i]. */
2697 laststart = b;
2698
2699 /* We test `*p == '^' twice, instead of using an if
2700 statement, so we only need one BUF_PUSH. */
2701 BUF_PUSH (*p == '^' ? charset_not : charset);
2702 if (*p == '^')
2703 p++;
2704
2705 /* Push the length of char_classes, the length of
2706 collating_symbols, the length of equivalence_classes, the
2707 length of char_ranges and the length of chars. */
2708 BUF_PUSH_3 (0, 0, 0);
2709 BUF_PUSH_2 (0, 0);
2710
2711 /* Remember the first position in the bracket expression. */
2712 p1 = p;
2713
2714 /* charset_not matches newline according to a syntax bit. */
2715 if ((re_opcode_t) b[-6] == charset_not
2716 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2717 {
2718 BUF_PUSH('\n');
2719 laststart[5]++; /* Update the length of characters */
2720 }
2721
2722 /* Read in characters and ranges, setting map bits. */
2723 for (;;)
2724 {
2725 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2726
2727 PATFETCH (c);
2728
2729 /* \ might escape characters inside [...] and [^...]. */
2730 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2731 {
2732 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2733
2734 PATFETCH (c1);
2735 BUF_PUSH(c1);
2736 laststart[5]++; /* Update the length of chars */
2737 range_start = c1;
2738 continue;
2739 }
2740
2741 /* Could be the end of the bracket expression. If it's
2742 not (i.e., when the bracket expression is `[]' so
2743 far), the ']' character bit gets set way below. */
2744 if (c == ']' && p != p1 + 1)
2745 break;
2746
2747 /* Look ahead to see if it's a range when the last thing
2748 was a character class. */
2749 if (had_char_class && c == '-' && *p != ']')
2750 FREE_STACK_RETURN (REG_ERANGE);
2751
2752 /* Look ahead to see if it's a range when the last thing
2753 was a character: if this is a hyphen not at the
2754 beginning or the end of a list, then it's the range
2755 operator. */
2756 if (c == '-'
2757 && !(p - 2 >= pattern && p[-2] == '[')
2758 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
2759 && *p != ']')
2760 {
2761 reg_errcode_t ret;
2762 /* Allocate the space for range_start and range_end. */
2763 GET_BUFFER_SPACE (2);
2764 /* Update the pointer to indicate end of buffer. */
2765 b += 2;
2766 ret = wcs_compile_range (range_start, &p, pend, translate,
2767 syntax, b, laststart);
2768 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2769 range_start = 0xffffffff;
2770 }
2771 else if (p[0] == '-' && p[1] != ']')
2772 { /* This handles ranges made up of characters only. */
2773 reg_errcode_t ret;
2774
2775 /* Move past the `-'. */
2776 PATFETCH (c1);
2777 /* Allocate the space for range_start and range_end. */
2778 GET_BUFFER_SPACE (2);
2779 /* Update the pointer to indicate end of buffer. */
2780 b += 2;
2781 ret = wcs_compile_range (c, &p, pend, translate, syntax, b,
2782 laststart);
2783 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
2784 range_start = 0xffffffff;
2785 }
2786
2787 /* See if we're at the beginning of a possible character
2788 class. */
2789 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2790 { /* Leave room for the null. */
2791 char str[CHAR_CLASS_MAX_LENGTH + 1];
2792
2793 PATFETCH (c);
2794 c1 = 0;
2795
2796 /* If pattern is `[[:'. */
2797 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2798
2799 for (;;)
2800 {
2801 PATFETCH (c);
2802 if ((c == ':' && *p == ']') || p == pend)
2803 break;
2804 if (c1 < CHAR_CLASS_MAX_LENGTH)
2805 str[c1++] = c;
2806 else
2807 /* This is in any case an invalid class name. */
2808 str[0] = '\0';
2809 }
2810 str[c1] = '\0';
2811
2812 /* If isn't a word bracketed by `[:' and `:]':
2813 undo the ending character, the letters, and leave
2814 the leading `:' and `[' (but store them as character). */
2815 if (c == ':' && *p == ']')
2816 {
2817 wctype_t wt;
2818 uintptr_t alignedp;
2819
2820 /* Query the character class as wctype_t. */
2821 wt = IS_CHAR_CLASS (str);
2822 if (wt == 0)
2823 FREE_STACK_RETURN (REG_ECTYPE);
2824
2825 /* Throw away the ] at the end of the character
2826 class. */
2827 PATFETCH (c);
2828
2829 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2830
2831 /* Allocate the space for character class. */
2832 GET_BUFFER_SPACE(CHAR_CLASS_SIZE);
2833 /* Update the pointer to indicate end of buffer. */
2834 b += CHAR_CLASS_SIZE;
2835 /* Move data which follow character classes
2836 not to violate the data. */
2837 insert_space(CHAR_CLASS_SIZE,
2838 laststart + 6 + laststart[1],
2839 b - 1);
2840 alignedp = ((uintptr_t)(laststart + 6 + laststart[1])
2841 + __alignof__(wctype_t) - 1)
2842 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
2843 /* Store the character class. */
2844 *((wctype_t*)alignedp) = wt;
2845 /* Update length of char_classes */
2846 laststart[1] += CHAR_CLASS_SIZE;
2847
2848 had_char_class = true;
2849 }
2850 else
2851 {
2852 c1++;
2853 while (c1--)
2854 PATUNFETCH;
2855 BUF_PUSH ('[');
2856 BUF_PUSH (':');
2857 laststart[5] += 2; /* Update the length of characters */
2858 range_start = ':';
2859 had_char_class = false;
2860 }
2861 }
2862 else if (syntax & RE_CHAR_CLASSES && c == '[' && (*p == '='
2863 || *p == '.'))
2864 {
2865 CHAR_T str[128]; /* Should be large enough. */
2866 CHAR_T delim = *p; /* '=' or '.' */
2867# ifdef _LIBC
2868 uint32_t nrules =
2869 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
2870# endif
2871 PATFETCH (c);
2872 c1 = 0;
2873
2874 /* If pattern is `[[=' or '[[.'. */
2875 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2876
2877 for (;;)
2878 {
2879 PATFETCH (c);
2880 if ((c == delim && *p == ']') || p == pend)
2881 break;
2882 if (c1 < sizeof (str) - 1)
2883 str[c1++] = c;
2884 else
2885 /* This is in any case an invalid class name. */
2886 str[0] = '\0';
2887 }
2888 str[c1] = '\0';
2889
2890 if (c == delim && *p == ']' && str[0] != '\0')
2891 {
2892 unsigned int i, offset;
2893 /* If we have no collation data we use the default
2894 collation in which each character is in a class
2895 by itself. It also means that ASCII is the
2896 character set and therefore we cannot have character
2897 with more than one byte in the multibyte
2898 representation. */
2899
2900 /* If not defined _LIBC, we push the name and
2901 `\0' for the sake of matching performance. */
2902 int datasize = c1 + 1;
2903
2904# ifdef _LIBC
2905 int32_t idx = 0;
2906 if (nrules == 0)
2907# endif
2908 {
2909 if (c1 != 1)
2910 FREE_STACK_RETURN (REG_ECOLLATE);
2911 }
2912# ifdef _LIBC
2913 else
2914 {
2915 const int32_t *table;
2916 const int32_t *weights;
2917 const int32_t *extra;
2918 const int32_t *indirect;
2919 wint_t *cp;
2920
2921 /* This #include defines a local function! */
2922# include <locale/weightwc.h>
2923
2924 if(delim == '=')
2925 {
2926 /* We push the index for equivalence class. */
2927 cp = (wint_t*)str;
2928
2929 table = (const int32_t *)
2930 _NL_CURRENT (LC_COLLATE,
2931 _NL_COLLATE_TABLEWC);
2932 weights = (const int32_t *)
2933 _NL_CURRENT (LC_COLLATE,
2934 _NL_COLLATE_WEIGHTWC);
2935 extra = (const int32_t *)
2936 _NL_CURRENT (LC_COLLATE,
2937 _NL_COLLATE_EXTRAWC);
2938 indirect = (const int32_t *)
2939 _NL_CURRENT (LC_COLLATE,
2940 _NL_COLLATE_INDIRECTWC);
2941
2942 idx = findidx ((const wint_t**)&cp);
2943 if (idx == 0 || cp < (wint_t*) str + c1)
2944 /* This is no valid character. */
2945 FREE_STACK_RETURN (REG_ECOLLATE);
2946
2947 str[0] = (wchar_t)idx;
2948 }
2949 else /* delim == '.' */
2950 {
2951 /* We push collation sequence value
2952 for collating symbol. */
2953 int32_t table_size;
2954 const int32_t *symb_table;
2955 const unsigned char *extra;
2956 int32_t idx;
2957 int32_t elem;
2958 int32_t second;
2959 int32_t hash;
2960 char char_str[c1];
2961
2962 /* We have to convert the name to a single-byte
2963 string. This is possible since the names
2964 consist of ASCII characters and the internal
2965 representation is UCS4. */
2966 for (i = 0; i < c1; ++i)
2967 char_str[i] = str[i];
2968
2969 table_size =
2970 _NL_CURRENT_WORD (LC_COLLATE,
2971 _NL_COLLATE_SYMB_HASH_SIZEMB);
2972 symb_table = (const int32_t *)
2973 _NL_CURRENT (LC_COLLATE,
2974 _NL_COLLATE_SYMB_TABLEMB);
2975 extra = (const unsigned char *)
2976 _NL_CURRENT (LC_COLLATE,
2977 _NL_COLLATE_SYMB_EXTRAMB);
2978
2979 /* Locate the character in the hashing table. */
2980 hash = elem_hash (char_str, c1);
2981
2982 idx = 0;
2983 elem = hash % table_size;
2984 second = hash % (table_size - 2);
2985 while (symb_table[2 * elem] != 0)
2986 {
2987 /* First compare the hashing value. */
2988 if (symb_table[2 * elem] == hash
2989 && c1 == extra[symb_table[2 * elem + 1]]
a9022147 2990 && memcmp (char_str,
2a6ef469
DD
2991 &extra[symb_table[2 * elem + 1]
2992 + 1], c1) == 0)
2993 {
2994 /* Yep, this is the entry. */
2995 idx = symb_table[2 * elem + 1];
2996 idx += 1 + extra[idx];
2997 break;
2998 }
2999
3000 /* Next entry. */
3001 elem += second;
3002 }
3003
3004 if (symb_table[2 * elem] != 0)
3005 {
3006 /* Compute the index of the byte sequence
3007 in the table. */
3008 idx += 1 + extra[idx];
3009 /* Adjust for the alignment. */
a9022147 3010 idx = (idx + 3) & ~3;
2a6ef469
DD
3011
3012 str[0] = (wchar_t) idx + 4;
3013 }
3014 else if (symb_table[2 * elem] == 0 && c1 == 1)
3015 {
3016 /* No valid character. Match it as a
3017 single byte character. */
3018 had_char_class = false;
3019 BUF_PUSH(str[0]);
3020 /* Update the length of characters */
3021 laststart[5]++;
3022 range_start = str[0];
3023
3024 /* Throw away the ] at the end of the
3025 collating symbol. */
3026 PATFETCH (c);
3027 /* exit from the switch block. */
3028 continue;
3029 }
3030 else
3031 FREE_STACK_RETURN (REG_ECOLLATE);
3032 }
3033 datasize = 1;
3034 }
3035# endif
3036 /* Throw away the ] at the end of the equivalence
3037 class (or collating symbol). */
3038 PATFETCH (c);
3039
3040 /* Allocate the space for the equivalence class
3041 (or collating symbol) (and '\0' if needed). */
3042 GET_BUFFER_SPACE(datasize);
3043 /* Update the pointer to indicate end of buffer. */
3044 b += datasize;
3045
3046 if (delim == '=')
3047 { /* equivalence class */
3048 /* Calculate the offset of char_ranges,
3049 which is next to equivalence_classes. */
3050 offset = laststart[1] + laststart[2]
3051 + laststart[3] +6;
3052 /* Insert space. */
3053 insert_space(datasize, laststart + offset, b - 1);
3054
3055 /* Write the equivalence_class and \0. */
3056 for (i = 0 ; i < datasize ; i++)
3057 laststart[offset + i] = str[i];
3058
3059 /* Update the length of equivalence_classes. */
3060 laststart[3] += datasize;
3061 had_char_class = true;
3062 }
3063 else /* delim == '.' */
3064 { /* collating symbol */
3065 /* Calculate the offset of the equivalence_classes,
3066 which is next to collating_symbols. */
3067 offset = laststart[1] + laststart[2] + 6;
3068 /* Insert space and write the collationg_symbol
3069 and \0. */
3070 insert_space(datasize, laststart + offset, b-1);
3071 for (i = 0 ; i < datasize ; i++)
3072 laststart[offset + i] = str[i];
3073
3074 /* In re_match_2_internal if range_start < -1, we
3075 assume -range_start is the offset of the
3076 collating symbol which is specified as
3077 the character of the range start. So we assign
3078 -(laststart[1] + laststart[2] + 6) to
3079 range_start. */
3080 range_start = -(laststart[1] + laststart[2] + 6);
3081 /* Update the length of collating_symbol. */
3082 laststart[2] += datasize;
3083 had_char_class = false;
3084 }
3085 }
3086 else
3087 {
3088 c1++;
3089 while (c1--)
3090 PATUNFETCH;
3091 BUF_PUSH ('[');
3092 BUF_PUSH (delim);
3093 laststart[5] += 2; /* Update the length of characters */
3094 range_start = delim;
3095 had_char_class = false;
3096 }
3097 }
3098 else
3099 {
3100 had_char_class = false;
3101 BUF_PUSH(c);
3102 laststart[5]++; /* Update the length of characters */
3103 range_start = c;
3104 }
3105 }
3106
3107#else /* BYTE */
3108 /* Ensure that we have enough space to push a charset: the
3109 opcode, the length count, and the bitset; 34 bytes in all. */
3110 GET_BUFFER_SPACE (34);
3111
3112 laststart = b;
3113
3114 /* We test `*p == '^' twice, instead of using an if
3115 statement, so we only need one BUF_PUSH. */
3116 BUF_PUSH (*p == '^' ? charset_not : charset);
3117 if (*p == '^')
3118 p++;
3119
3120 /* Remember the first position in the bracket expression. */
3121 p1 = p;
3122
3123 /* Push the number of bytes in the bitmap. */
3124 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
3125
3126 /* Clear the whole map. */
3127 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
3128
3129 /* charset_not matches newline according to a syntax bit. */
3130 if ((re_opcode_t) b[-2] == charset_not
3131 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
3132 SET_LIST_BIT ('\n');
3133
3134 /* Read in characters and ranges, setting map bits. */
3135 for (;;)
3136 {
3137 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3138
3139 PATFETCH (c);
3140
3141 /* \ might escape characters inside [...] and [^...]. */
3142 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
3143 {
3144 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3145
3146 PATFETCH (c1);
3147 SET_LIST_BIT (c1);
3148 range_start = c1;
3149 continue;
3150 }
3151
3152 /* Could be the end of the bracket expression. If it's
3153 not (i.e., when the bracket expression is `[]' so
3154 far), the ']' character bit gets set way below. */
3155 if (c == ']' && p != p1 + 1)
3156 break;
3157
3158 /* Look ahead to see if it's a range when the last thing
3159 was a character class. */
3160 if (had_char_class && c == '-' && *p != ']')
3161 FREE_STACK_RETURN (REG_ERANGE);
3162
3163 /* Look ahead to see if it's a range when the last thing
3164 was a character: if this is a hyphen not at the
3165 beginning or the end of a list, then it's the range
3166 operator. */
3167 if (c == '-'
3168 && !(p - 2 >= pattern && p[-2] == '[')
3169 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
3170 && *p != ']')
3171 {
3172 reg_errcode_t ret
3173 = byte_compile_range (range_start, &p, pend, translate,
3174 syntax, b);
3175 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3176 range_start = 0xffffffff;
3177 }
3178
3179 else if (p[0] == '-' && p[1] != ']')
3180 { /* This handles ranges made up of characters only. */
3181 reg_errcode_t ret;
3182
3183 /* Move past the `-'. */
3184 PATFETCH (c1);
3185
3186 ret = byte_compile_range (c, &p, pend, translate, syntax, b);
3187 if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
3188 range_start = 0xffffffff;
3189 }
3190
3191 /* See if we're at the beginning of a possible character
3192 class. */
3193
3194 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
3195 { /* Leave room for the null. */
3196 char str[CHAR_CLASS_MAX_LENGTH + 1];
3197
3198 PATFETCH (c);
3199 c1 = 0;
3200
3201 /* If pattern is `[[:'. */
3202 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3203
3204 for (;;)
3205 {
3206 PATFETCH (c);
3207 if ((c == ':' && *p == ']') || p == pend)
3208 break;
3209 if (c1 < CHAR_CLASS_MAX_LENGTH)
3210 str[c1++] = c;
3211 else
3212 /* This is in any case an invalid class name. */
3213 str[0] = '\0';
3214 }
3215 str[c1] = '\0';
3216
3217 /* If isn't a word bracketed by `[:' and `:]':
3218 undo the ending character, the letters, and leave
3219 the leading `:' and `[' (but set bits for them). */
3220 if (c == ':' && *p == ']')
3221 {
3222# if defined _LIBC || WIDE_CHAR_SUPPORT
3223 boolean is_lower = STREQ (str, "lower");
3224 boolean is_upper = STREQ (str, "upper");
3225 wctype_t wt;
3226 int ch;
3227
3228 wt = IS_CHAR_CLASS (str);
3229 if (wt == 0)
3230 FREE_STACK_RETURN (REG_ECTYPE);
3231
3232 /* Throw away the ] at the end of the character
3233 class. */
3234 PATFETCH (c);
3235
3236 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3237
3238 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
3239 {
3240# ifdef _LIBC
3241 if (__iswctype (__btowc (ch), wt))
3242 SET_LIST_BIT (ch);
3243# else
3244 if (iswctype (btowc (ch), wt))
3245 SET_LIST_BIT (ch);
3246# endif
3247
3248 if (translate && (is_upper || is_lower)
3249 && (ISUPPER (ch) || ISLOWER (ch)))
3250 SET_LIST_BIT (ch);
3251 }
3252
3253 had_char_class = true;
3254# else
3255 int ch;
3256 boolean is_alnum = STREQ (str, "alnum");
3257 boolean is_alpha = STREQ (str, "alpha");
3258 boolean is_blank = STREQ (str, "blank");
3259 boolean is_cntrl = STREQ (str, "cntrl");
3260 boolean is_digit = STREQ (str, "digit");
3261 boolean is_graph = STREQ (str, "graph");
3262 boolean is_lower = STREQ (str, "lower");
3263 boolean is_print = STREQ (str, "print");
3264 boolean is_punct = STREQ (str, "punct");
3265 boolean is_space = STREQ (str, "space");
3266 boolean is_upper = STREQ (str, "upper");
3267 boolean is_xdigit = STREQ (str, "xdigit");
3268
3269 if (!IS_CHAR_CLASS (str))
3270 FREE_STACK_RETURN (REG_ECTYPE);
3271
3272 /* Throw away the ] at the end of the character
3273 class. */
3274 PATFETCH (c);
3275
3276 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3277
3278 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
3279 {
3280 /* This was split into 3 if's to
3281 avoid an arbitrary limit in some compiler. */
3282 if ( (is_alnum && ISALNUM (ch))
3283 || (is_alpha && ISALPHA (ch))
3284 || (is_blank && ISBLANK (ch))
3285 || (is_cntrl && ISCNTRL (ch)))
3286 SET_LIST_BIT (ch);
3287 if ( (is_digit && ISDIGIT (ch))
3288 || (is_graph && ISGRAPH (ch))
3289 || (is_lower && ISLOWER (ch))
3290 || (is_print && ISPRINT (ch)))
3291 SET_LIST_BIT (ch);
3292 if ( (is_punct && ISPUNCT (ch))
3293 || (is_space && ISSPACE (ch))
3294 || (is_upper && ISUPPER (ch))
3295 || (is_xdigit && ISXDIGIT (ch)))
3296 SET_LIST_BIT (ch);
3297 if ( translate && (is_upper || is_lower)
3298 && (ISUPPER (ch) || ISLOWER (ch)))
3299 SET_LIST_BIT (ch);
3300 }
3301 had_char_class = true;
3302# endif /* libc || wctype.h */
3303 }
3304 else
3305 {
3306 c1++;
3307 while (c1--)
3308 PATUNFETCH;
3309 SET_LIST_BIT ('[');
3310 SET_LIST_BIT (':');
3311 range_start = ':';
3312 had_char_class = false;
3313 }
3314 }
3315 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '=')
3316 {
3317 unsigned char str[MB_LEN_MAX + 1];
3318# ifdef _LIBC
3319 uint32_t nrules =
3320 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3321# endif
3322
3323 PATFETCH (c);
3324 c1 = 0;
3325
3326 /* If pattern is `[[='. */
3327 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3328
3329 for (;;)
3330 {
3331 PATFETCH (c);
3332 if ((c == '=' && *p == ']') || p == pend)
3333 break;
3334 if (c1 < MB_LEN_MAX)
3335 str[c1++] = c;
3336 else
3337 /* This is in any case an invalid class name. */
3338 str[0] = '\0';
3339 }
3340 str[c1] = '\0';
3341
3342 if (c == '=' && *p == ']' && str[0] != '\0')
3343 {
3344 /* If we have no collation data we use the default
3345 collation in which each character is in a class
3346 by itself. It also means that ASCII is the
3347 character set and therefore we cannot have character
3348 with more than one byte in the multibyte
3349 representation. */
3350# ifdef _LIBC
3351 if (nrules == 0)
3352# endif
3353 {
3354 if (c1 != 1)
3355 FREE_STACK_RETURN (REG_ECOLLATE);
3356
3357 /* Throw away the ] at the end of the equivalence
3358 class. */
3359 PATFETCH (c);
3360
3361 /* Set the bit for the character. */
3362 SET_LIST_BIT (str[0]);
3363 }
3364# ifdef _LIBC
3365 else
3366 {
3367 /* Try to match the byte sequence in `str' against
3368 those known to the collate implementation.
3369 First find out whether the bytes in `str' are
3370 actually from exactly one character. */
3371 const int32_t *table;
3372 const unsigned char *weights;
3373 const unsigned char *extra;
3374 const int32_t *indirect;
3375 int32_t idx;
3376 const unsigned char *cp = str;
3377 int ch;
3378
3379 /* This #include defines a local function! */
3380# include <locale/weight.h>
3381
3382 table = (const int32_t *)
3383 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEMB);
3384 weights = (const unsigned char *)
3385 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTMB);
3386 extra = (const unsigned char *)
3387 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAMB);
3388 indirect = (const int32_t *)
3389 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTMB);
3390
3391 idx = findidx (&cp);
3392 if (idx == 0 || cp < str + c1)
3393 /* This is no valid character. */
3394 FREE_STACK_RETURN (REG_ECOLLATE);
3395
3396 /* Throw away the ] at the end of the equivalence
3397 class. */
3398 PATFETCH (c);
3399
632a40b3 3400 /* Now we have to go through the whole table
2a6ef469
DD
3401 and find all characters which have the same
3402 first level weight.
3403
3404 XXX Note that this is not entirely correct.
3405 we would have to match multibyte sequences
3406 but this is not possible with the current
3407 implementation. */
3408 for (ch = 1; ch < 256; ++ch)
3409 /* XXX This test would have to be changed if we
3410 would allow matching multibyte sequences. */
3411 if (table[ch] > 0)
3412 {
3413 int32_t idx2 = table[ch];
3414 size_t len = weights[idx2];
3415
3416 /* Test whether the lenghts match. */
3417 if (weights[idx] == len)
3418 {
3419 /* They do. New compare the bytes of
3420 the weight. */
3421 size_t cnt = 0;
3422
3423 while (cnt < len
3424 && (weights[idx + 1 + cnt]
3425 == weights[idx2 + 1 + cnt]))
3426 ++cnt;
3427
3428 if (cnt == len)
3429 /* They match. Mark the character as
3430 acceptable. */
3431 SET_LIST_BIT (ch);
3432 }
3433 }
3434 }
3435# endif
3436 had_char_class = true;
3437 }
3438 else
3439 {
3440 c1++;
3441 while (c1--)
3442 PATUNFETCH;
3443 SET_LIST_BIT ('[');
3444 SET_LIST_BIT ('=');
3445 range_start = '=';
3446 had_char_class = false;
3447 }
3448 }
3449 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == '.')
3450 {
3451 unsigned char str[128]; /* Should be large enough. */
3452# ifdef _LIBC
3453 uint32_t nrules =
3454 _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
3455# endif
3456
3457 PATFETCH (c);
3458 c1 = 0;
3459
3460 /* If pattern is `[[.'. */
3461 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
3462
3463 for (;;)
3464 {
3465 PATFETCH (c);
3466 if ((c == '.' && *p == ']') || p == pend)
3467 break;
3468 if (c1 < sizeof (str))
3469 str[c1++] = c;
3470 else
3471 /* This is in any case an invalid class name. */
3472 str[0] = '\0';
3473 }
3474 str[c1] = '\0';
3475
3476 if (c == '.' && *p == ']' && str[0] != '\0')
3477 {
3478 /* If we have no collation data we use the default
3479 collation in which each character is the name
3480 for its own class which contains only the one
3481 character. It also means that ASCII is the
3482 character set and therefore we cannot have character
3483 with more than one byte in the multibyte
3484 representation. */
3485# ifdef _LIBC
3486 if (nrules == 0)
3487# endif
3488 {
3489 if (c1 != 1)
3490 FREE_STACK_RETURN (REG_ECOLLATE);
3491
3492 /* Throw away the ] at the end of the equivalence
3493 class. */
3494 PATFETCH (c);
3495
3496 /* Set the bit for the character. */
3497 SET_LIST_BIT (str[0]);
3498 range_start = ((const unsigned char *) str)[0];
3499 }
3500# ifdef _LIBC
3501 else
3502 {
3503 /* Try to match the byte sequence in `str' against
3504 those known to the collate implementation.
3505 First find out whether the bytes in `str' are
3506 actually from exactly one character. */
3507 int32_t table_size;
3508 const int32_t *symb_table;
3509 const unsigned char *extra;
3510 int32_t idx;
3511 int32_t elem;
3512 int32_t second;
3513 int32_t hash;
3514
3515 table_size =
3516 _NL_CURRENT_WORD (LC_COLLATE,
3517 _NL_COLLATE_SYMB_HASH_SIZEMB);
3518 symb_table = (const int32_t *)
3519 _NL_CURRENT (LC_COLLATE,
3520 _NL_COLLATE_SYMB_TABLEMB);
3521 extra = (const unsigned char *)
3522 _NL_CURRENT (LC_COLLATE,
3523 _NL_COLLATE_SYMB_EXTRAMB);
3524
3525 /* Locate the character in the hashing table. */
3526 hash = elem_hash (str, c1);
3527
3528 idx = 0;
3529 elem = hash % table_size;
3530 second = hash % (table_size - 2);
3531 while (symb_table[2 * elem] != 0)
3532 {
3533 /* First compare the hashing value. */
3534 if (symb_table[2 * elem] == hash
3535 && c1 == extra[symb_table[2 * elem + 1]]
3536 && memcmp (str,
3537 &extra[symb_table[2 * elem + 1]
3538 + 1],
3539 c1) == 0)
3540 {
3541 /* Yep, this is the entry. */
3542 idx = symb_table[2 * elem + 1];
3543 idx += 1 + extra[idx];
3544 break;
3545 }
3546
3547 /* Next entry. */
3548 elem += second;
3549 }
3550
3551 if (symb_table[2 * elem] == 0)
3552 /* This is no valid character. */
3553 FREE_STACK_RETURN (REG_ECOLLATE);
3554
3555 /* Throw away the ] at the end of the equivalence
3556 class. */
3557 PATFETCH (c);
3558
3559 /* Now add the multibyte character(s) we found
3560 to the accept list.
3561
3562 XXX Note that this is not entirely correct.
3563 we would have to match multibyte sequences
3564 but this is not possible with the current
3565 implementation. Also, we have to match
3566 collating symbols, which expand to more than
3567 one file, as a whole and not allow the
3568 individual bytes. */
3569 c1 = extra[idx++];
3570 if (c1 == 1)
3571 range_start = extra[idx];
3572 while (c1-- > 0)
3573 {
3574 SET_LIST_BIT (extra[idx]);
3575 ++idx;
3576 }
3577 }
3578# endif
3579 had_char_class = false;
3580 }
3581 else
3582 {
3583 c1++;
3584 while (c1--)
3585 PATUNFETCH;
3586 SET_LIST_BIT ('[');
3587 SET_LIST_BIT ('.');
3588 range_start = '.';
3589 had_char_class = false;
3590 }
3591 }
3592 else
3593 {
3594 had_char_class = false;
3595 SET_LIST_BIT (c);
3596 range_start = c;
3597 }
3598 }
3599
3600 /* Discard any (non)matching list bytes that are all 0 at the
3601 end of the map. Decrease the map-length byte too. */
3602 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3603 b[-1]--;
3604 b += b[-1];
3605#endif /* WCHAR */
3606 }
3607 break;
3608
3609
3610 case '(':
3611 if (syntax & RE_NO_BK_PARENS)
3612 goto handle_open;
3613 else
3614 goto normal_char;
3615
3616
3617 case ')':
3618 if (syntax & RE_NO_BK_PARENS)
3619 goto handle_close;
3620 else
3621 goto normal_char;
3622
3623
3624 case '\n':
3625 if (syntax & RE_NEWLINE_ALT)
3626 goto handle_alt;
3627 else
3628 goto normal_char;
3629
3630
3631 case '|':
3632 if (syntax & RE_NO_BK_VBAR)
3633 goto handle_alt;
3634 else
3635 goto normal_char;
3636
3637
3638 case '{':
3639 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3640 goto handle_interval;
3641 else
3642 goto normal_char;
3643
3644
3645 case '\\':
3646 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3647
3648 /* Do not translate the character after the \, so that we can
3649 distinguish, e.g., \B from \b, even if we normally would
3650 translate, e.g., B to b. */
3651 PATFETCH_RAW (c);
3652
3653 switch (c)
3654 {
3655 case '(':
3656 if (syntax & RE_NO_BK_PARENS)
3657 goto normal_backslash;
3658
3659 handle_open:
3660 bufp->re_nsub++;
3661 regnum++;
3662
3663 if (COMPILE_STACK_FULL)
3664 {
3665 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3666 compile_stack_elt_t);
3667 if (compile_stack.stack == NULL) return REG_ESPACE;
3668
3669 compile_stack.size <<= 1;
3670 }
3671
3672 /* These are the values to restore when we hit end of this
3673 group. They are all relative offsets, so that if the
3674 whole pattern moves because of realloc, they will still
3675 be valid. */
3676 COMPILE_STACK_TOP.begalt_offset = begalt - COMPILED_BUFFER_VAR;
3677 COMPILE_STACK_TOP.fixup_alt_jump
3678 = fixup_alt_jump ? fixup_alt_jump - COMPILED_BUFFER_VAR + 1 : 0;
3679 COMPILE_STACK_TOP.laststart_offset = b - COMPILED_BUFFER_VAR;
3680 COMPILE_STACK_TOP.regnum = regnum;
3681
3682 /* We will eventually replace the 0 with the number of
3683 groups inner to this one. But do not push a
3684 start_memory for groups beyond the last one we can
3685 represent in the compiled pattern. */
3686 if (regnum <= MAX_REGNUM)
3687 {
3688 COMPILE_STACK_TOP.inner_group_offset = b
3689 - COMPILED_BUFFER_VAR + 2;
3690 BUF_PUSH_3 (start_memory, regnum, 0);
3691 }
3692
3693 compile_stack.avail++;
3694
3695 fixup_alt_jump = 0;
3696 laststart = 0;
3697 begalt = b;
3698 /* If we've reached MAX_REGNUM groups, then this open
3699 won't actually generate any code, so we'll have to
3700 clear pending_exact explicitly. */
3701 pending_exact = 0;
3702 break;
3703
3704
3705 case ')':
3706 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3707
3708 if (COMPILE_STACK_EMPTY)
3709 {
3710 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3711 goto normal_backslash;
3712 else
3713 FREE_STACK_RETURN (REG_ERPAREN);
3714 }
3715
3716 handle_close:
3717 if (fixup_alt_jump)
3718 { /* Push a dummy failure point at the end of the
3719 alternative for a possible future
3720 `pop_failure_jump' to pop. See comments at
3721 `push_dummy_failure' in `re_match_2'. */
3722 BUF_PUSH (push_dummy_failure);
3723
3724 /* We allocated space for this jump when we assigned
3725 to `fixup_alt_jump', in the `handle_alt' case below. */
3726 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
3727 }
3728
3729 /* See similar code for backslashed left paren above. */
3730 if (COMPILE_STACK_EMPTY)
3731 {
3732 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3733 goto normal_char;
3734 else
3735 FREE_STACK_RETURN (REG_ERPAREN);
3736 }
3737
3738 /* Since we just checked for an empty stack above, this
3739 ``can't happen''. */
3740 assert (compile_stack.avail != 0);
3741 {
3742 /* We don't just want to restore into `regnum', because
3743 later groups should continue to be numbered higher,
3744 as in `(ab)c(de)' -- the second group is #2. */
3745 regnum_t this_group_regnum;
3746
3747 compile_stack.avail--;
3748 begalt = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.begalt_offset;
3749 fixup_alt_jump
3750 = COMPILE_STACK_TOP.fixup_alt_jump
3751 ? COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.fixup_alt_jump - 1
3752 : 0;
3753 laststart = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.laststart_offset;
3754 this_group_regnum = COMPILE_STACK_TOP.regnum;
3755 /* If we've reached MAX_REGNUM groups, then this open
3756 won't actually generate any code, so we'll have to
3757 clear pending_exact explicitly. */
3758 pending_exact = 0;
3759
3760 /* We're at the end of the group, so now we know how many
3761 groups were inside this one. */
3762 if (this_group_regnum <= MAX_REGNUM)
3763 {
3764 UCHAR_T *inner_group_loc
3765 = COMPILED_BUFFER_VAR + COMPILE_STACK_TOP.inner_group_offset;
3766
3767 *inner_group_loc = regnum - this_group_regnum;
3768 BUF_PUSH_3 (stop_memory, this_group_regnum,
3769 regnum - this_group_regnum);
3770 }
3771 }
3772 break;
3773
3774
3775 case '|': /* `\|'. */
3776 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3777 goto normal_backslash;
3778 handle_alt:
3779 if (syntax & RE_LIMITED_OPS)
3780 goto normal_char;
3781
3782 /* Insert before the previous alternative a jump which
3783 jumps to this alternative if the former fails. */
3784 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3785 INSERT_JUMP (on_failure_jump, begalt,
3786 b + 2 + 2 * OFFSET_ADDRESS_SIZE);
3787 pending_exact = 0;
3788 b += 1 + OFFSET_ADDRESS_SIZE;
3789
3790 /* The alternative before this one has a jump after it
3791 which gets executed if it gets matched. Adjust that
3792 jump so it will jump to this alternative's analogous
3793 jump (put in below, which in turn will jump to the next
3794 (if any) alternative's such jump, etc.). The last such
3795 jump jumps to the correct final destination. A picture:
3796 _____ _____
3797 | | | |
3798 | v | v
3799 a | b | c
3800
3801 If we are at `b', then fixup_alt_jump right now points to a
3802 three-byte space after `a'. We'll put in the jump, set
3803 fixup_alt_jump to right after `b', and leave behind three
3804 bytes which we'll fill in when we get to after `c'. */
3805
3806 if (fixup_alt_jump)
3807 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
3808
3809 /* Mark and leave space for a jump after this alternative,
3810 to be filled in later either by next alternative or
3811 when know we're at the end of a series of alternatives. */
3812 fixup_alt_jump = b;
3813 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3814 b += 1 + OFFSET_ADDRESS_SIZE;
3815
3816 laststart = 0;
3817 begalt = b;
3818 break;
3819
3820
3821 case '{':
3822 /* If \{ is a literal. */
3823 if (!(syntax & RE_INTERVALS)
3824 /* If we're at `\{' and it's not the open-interval
3825 operator. */
3826 || (syntax & RE_NO_BK_BRACES))
3827 goto normal_backslash;
3828
3829 handle_interval:
3830 {
3831 /* If got here, then the syntax allows intervals. */
3832
3833 /* At least (most) this many matches must be made. */
3834 int lower_bound = -1, upper_bound = -1;
3835
3836 /* Place in the uncompiled pattern (i.e., just after
3837 the '{') to go back to if the interval is invalid. */
3838 const CHAR_T *beg_interval = p;
3839
3840 if (p == pend)
3841 goto invalid_interval;
3842
3843 GET_UNSIGNED_NUMBER (lower_bound);
3844
3845 if (c == ',')
3846 {
3847 GET_UNSIGNED_NUMBER (upper_bound);
3848 if (upper_bound < 0)
3849 upper_bound = RE_DUP_MAX;
3850 }
3851 else
3852 /* Interval such as `{1}' => match exactly once. */
3853 upper_bound = lower_bound;
3854
3855 if (! (0 <= lower_bound && lower_bound <= upper_bound))
3856 goto invalid_interval;
3857
3858 if (!(syntax & RE_NO_BK_BRACES))
3859 {
3860 if (c != '\\' || p == pend)
3861 goto invalid_interval;
3862 PATFETCH (c);
3863 }
3864
3865 if (c != '}')
3866 goto invalid_interval;
3867
3868 /* If it's invalid to have no preceding re. */
3869 if (!laststart)
3870 {
3871 if (syntax & RE_CONTEXT_INVALID_OPS
3872 && !(syntax & RE_INVALID_INTERVAL_ORD))
3873 FREE_STACK_RETURN (REG_BADRPT);
3874 else if (syntax & RE_CONTEXT_INDEP_OPS)
3875 laststart = b;
3876 else
3877 goto unfetch_interval;
3878 }
3879
3880 /* We just parsed a valid interval. */
3881
3882 if (RE_DUP_MAX < upper_bound)
3883 FREE_STACK_RETURN (REG_BADBR);
3884
3885 /* If the upper bound is zero, don't want to succeed at
3886 all; jump from `laststart' to `b + 3', which will be
3887 the end of the buffer after we insert the jump. */
3888 /* ifdef WCHAR, 'b + 1 + OFFSET_ADDRESS_SIZE'
3889 instead of 'b + 3'. */
3890 if (upper_bound == 0)
3891 {
3892 GET_BUFFER_SPACE (1 + OFFSET_ADDRESS_SIZE);
3893 INSERT_JUMP (jump, laststart, b + 1
3894 + OFFSET_ADDRESS_SIZE);
3895 b += 1 + OFFSET_ADDRESS_SIZE;
3896 }
3897
3898 /* Otherwise, we have a nontrivial interval. When
3899 we're all done, the pattern will look like:
3900 set_number_at <jump count> <upper bound>
3901 set_number_at <succeed_n count> <lower bound>
3902 succeed_n <after jump addr> <succeed_n count>
3903 <body of loop>
3904 jump_n <succeed_n addr> <jump count>
3905 (The upper bound and `jump_n' are omitted if
3906 `upper_bound' is 1, though.) */
3907 else
3908 { /* If the upper bound is > 1, we need to insert
3909 more at the end of the loop. */
3910 unsigned nbytes = 2 + 4 * OFFSET_ADDRESS_SIZE +
3911 (upper_bound > 1) * (2 + 4 * OFFSET_ADDRESS_SIZE);
3912
3913 GET_BUFFER_SPACE (nbytes);
3914
3915 /* Initialize lower bound of the `succeed_n', even
3916 though it will be set during matching by its
3917 attendant `set_number_at' (inserted next),
3918 because `re_compile_fastmap' needs to know.
3919 Jump to the `jump_n' we might insert below. */
3920 INSERT_JUMP2 (succeed_n, laststart,
3921 b + 1 + 2 * OFFSET_ADDRESS_SIZE
3922 + (upper_bound > 1) * (1 + 2 * OFFSET_ADDRESS_SIZE)
3923 , lower_bound);
3924 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3925
3926 /* Code to initialize the lower bound. Insert
3927 before the `succeed_n'. The `5' is the last two
3928 bytes of this `set_number_at', plus 3 bytes of
3929 the following `succeed_n'. */
3930 /* ifdef WCHAR, The '1+2*OFFSET_ADDRESS_SIZE'
3931 is the 'set_number_at', plus '1+OFFSET_ADDRESS_SIZE'
3932 of the following `succeed_n'. */
3933 PREFIX(insert_op2) (set_number_at, laststart, 1
3934 + 2 * OFFSET_ADDRESS_SIZE, lower_bound, b);
3935 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3936
3937 if (upper_bound > 1)
3938 { /* More than one repetition is allowed, so
3939 append a backward jump to the `succeed_n'
3940 that starts this interval.
3941
3942 When we've reached this during matching,
3943 we'll have matched the interval once, so
3944 jump back only `upper_bound - 1' times. */
3945 STORE_JUMP2 (jump_n, b, laststart
3946 + 2 * OFFSET_ADDRESS_SIZE + 1,
3947 upper_bound - 1);
3948 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3949
3950 /* The location we want to set is the second
3951 parameter of the `jump_n'; that is `b-2' as
3952 an absolute address. `laststart' will be
3953 the `set_number_at' we're about to insert;
3954 `laststart+3' the number to set, the source
3955 for the relative address. But we are
3956 inserting into the middle of the pattern --
3957 so everything is getting moved up by 5.
3958 Conclusion: (b - 2) - (laststart + 3) + 5,
3959 i.e., b - laststart.
3960
3961 We insert this at the beginning of the loop
3962 so that if we fail during matching, we'll
3963 reinitialize the bounds. */
3964 PREFIX(insert_op2) (set_number_at, laststart,
3965 b - laststart,
3966 upper_bound - 1, b);
3967 b += 1 + 2 * OFFSET_ADDRESS_SIZE;
3968 }
3969 }
3970 pending_exact = 0;
3971 break;
3972
3973 invalid_interval:
3974 if (!(syntax & RE_INVALID_INTERVAL_ORD))
3975 FREE_STACK_RETURN (p == pend ? REG_EBRACE : REG_BADBR);
3976 unfetch_interval:
3977 /* Match the characters as literals. */
3978 p = beg_interval;
3979 c = '{';
3980 if (syntax & RE_NO_BK_BRACES)
3981 goto normal_char;
3982 else
3983 goto normal_backslash;
3984 }
3985
3986#ifdef emacs
3987 /* There is no way to specify the before_dot and after_dot
3988 operators. rms says this is ok. --karl */
3989 case '=':
3990 BUF_PUSH (at_dot);
3991 break;
3992
3993 case 's':
3994 laststart = b;
3995 PATFETCH (c);
3996 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3997 break;
3998
3999 case 'S':
4000 laststart = b;
4001 PATFETCH (c);
4002 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
4003 break;
4004#endif /* emacs */
4005
4006
4007 case 'w':
4008 if (syntax & RE_NO_GNU_OPS)
4009 goto normal_char;
4010 laststart = b;
4011 BUF_PUSH (wordchar);
4012 break;
4013
4014
4015 case 'W':
4016 if (syntax & RE_NO_GNU_OPS)
4017 goto normal_char;
4018 laststart = b;
4019 BUF_PUSH (notwordchar);
4020 break;
4021
4022
4023 case '<':
4024 if (syntax & RE_NO_GNU_OPS)
4025 goto normal_char;
4026 BUF_PUSH (wordbeg);
4027 break;
4028
4029 case '>':
4030 if (syntax & RE_NO_GNU_OPS)
4031 goto normal_char;
4032 BUF_PUSH (wordend);
4033 break;
4034
4035 case 'b':
4036 if (syntax & RE_NO_GNU_OPS)
4037 goto normal_char;
4038 BUF_PUSH (wordbound);
4039 break;
4040
4041 case 'B':
4042 if (syntax & RE_NO_GNU_OPS)
4043 goto normal_char;
4044 BUF_PUSH (notwordbound);
4045 break;
4046
4047 case '`':
4048 if (syntax & RE_NO_GNU_OPS)
4049 goto normal_char;
4050 BUF_PUSH (begbuf);
4051 break;
4052
4053 case '\'':
4054 if (syntax & RE_NO_GNU_OPS)
4055 goto normal_char;
4056 BUF_PUSH (endbuf);
4057 break;
4058
4059 case '1': case '2': case '3': case '4': case '5':
4060 case '6': case '7': case '8': case '9':
4061 if (syntax & RE_NO_BK_REFS)
4062 goto normal_char;
4063
4064 c1 = c - '0';
4065
4066 if (c1 > regnum)
4067 FREE_STACK_RETURN (REG_ESUBREG);
4068
4069 /* Can't back reference to a subexpression if inside of it. */
4070 if (group_in_compile_stack (compile_stack, (regnum_t) c1))
4071 goto normal_char;
4072
4073 laststart = b;
4074 BUF_PUSH_2 (duplicate, c1);
4075 break;
4076
4077
4078 case '+':
4079 case '?':
4080 if (syntax & RE_BK_PLUS_QM)
4081 goto handle_plus;
4082 else
4083 goto normal_backslash;
4084
4085 default:
4086 normal_backslash:
4087 /* You might think it would be useful for \ to mean
4088 not to translate; but if we don't translate it
4089 it will never match anything. */
4090 c = TRANSLATE (c);
4091 goto normal_char;
4092 }
4093 break;
4094
4095
4096 default:
4097 /* Expects the character in `c'. */
4098 normal_char:
4099 /* If no exactn currently being built. */
4100 if (!pending_exact
4101#ifdef WCHAR
4102 /* If last exactn handle binary(or character) and
4103 new exactn handle character(or binary). */
4104 || is_exactn_bin != is_binary[p - 1 - pattern]
4105#endif /* WCHAR */
4106
4107 /* If last exactn not at current position. */
4108 || pending_exact + *pending_exact + 1 != b
4109
4110 /* We have only one byte following the exactn for the count. */
4111 || *pending_exact == (1 << BYTEWIDTH) - 1
4112
4113 /* If followed by a repetition operator. */
4114 || *p == '*' || *p == '^'
4115 || ((syntax & RE_BK_PLUS_QM)
4116 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
4117 : (*p == '+' || *p == '?'))
4118 || ((syntax & RE_INTERVALS)
4119 && ((syntax & RE_NO_BK_BRACES)
4120 ? *p == '{'
4121 : (p[0] == '\\' && p[1] == '{'))))
4122 {
4123 /* Start building a new exactn. */
4124
4125 laststart = b;
4126
4127#ifdef WCHAR
4128 /* Is this exactn binary data or character? */
4129 is_exactn_bin = is_binary[p - 1 - pattern];
4130 if (is_exactn_bin)
4131 BUF_PUSH_2 (exactn_bin, 0);
4132 else
4133 BUF_PUSH_2 (exactn, 0);
4134#else
4135 BUF_PUSH_2 (exactn, 0);
4136#endif /* WCHAR */
4137 pending_exact = b - 1;
4138 }
4139
4140 BUF_PUSH (c);
4141 (*pending_exact)++;
4142 break;
4143 } /* switch (c) */
4144 } /* while p != pend */
4145
4146
4147 /* Through the pattern now. */
4148
4149 if (fixup_alt_jump)
4150 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
4151
4152 if (!COMPILE_STACK_EMPTY)
4153 FREE_STACK_RETURN (REG_EPAREN);
4154
4155 /* If we don't want backtracking, force success
4156 the first time we reach the end of the compiled pattern. */
4157 if (syntax & RE_NO_POSIX_BACKTRACKING)
4158 BUF_PUSH (succeed);
4159
4160#ifdef WCHAR
4161 free (pattern);
4162 free (mbs_offset);
4163 free (is_binary);
4164#endif
4165 free (compile_stack.stack);
4166
4167 /* We have succeeded; set the length of the buffer. */
4168#ifdef WCHAR
4169 bufp->used = (uintptr_t) b - (uintptr_t) COMPILED_BUFFER_VAR;
4170#else
4171 bufp->used = b - bufp->buffer;
4172#endif
4173
4174#ifdef DEBUG
4175 if (debug)
4176 {
4177 DEBUG_PRINT1 ("\nCompiled pattern: \n");
4178 PREFIX(print_compiled_pattern) (bufp);
4179 }
4180#endif /* DEBUG */
4181
4182#ifndef MATCH_MAY_ALLOCATE
4183 /* Initialize the failure stack to the largest possible stack. This
4184 isn't necessary unless we're trying to avoid calling alloca in
4185 the search and match routines. */
4186 {
4187 int num_regs = bufp->re_nsub + 1;
4188
4189 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
4190 is strictly greater than re_max_failures, the largest possible stack
4191 is 2 * re_max_failures failure points. */
4192 if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
4193 {
4194 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
4195
4196# ifdef emacs
4197 if (! fail_stack.stack)
4198 fail_stack.stack
4199 = (PREFIX(fail_stack_elt_t) *) xmalloc (fail_stack.size
4200 * sizeof (PREFIX(fail_stack_elt_t)));
4201 else
4202 fail_stack.stack
4203 = (PREFIX(fail_stack_elt_t) *) xrealloc (fail_stack.stack,
4204 (fail_stack.size
4205 * sizeof (PREFIX(fail_stack_elt_t))));
4206# else /* not emacs */
4207 if (! fail_stack.stack)
4208 fail_stack.stack
4209 = (PREFIX(fail_stack_elt_t) *) malloc (fail_stack.size
4210 * sizeof (PREFIX(fail_stack_elt_t)));
4211 else
4212 fail_stack.stack
4213 = (PREFIX(fail_stack_elt_t) *) realloc (fail_stack.stack,
4214 (fail_stack.size
4215 * sizeof (PREFIX(fail_stack_elt_t))));
4216# endif /* not emacs */
4217 }
4218
4219 PREFIX(regex_grow_registers) (num_regs);
4220 }
4221#endif /* not MATCH_MAY_ALLOCATE */
4222
4223 return REG_NOERROR;
4224} /* regex_compile */
4225
4226/* Subroutines for `regex_compile'. */
4227
4228/* Store OP at LOC followed by two-byte integer parameter ARG. */
4229/* ifdef WCHAR, integer parameter is 1 wchar_t. */
4230
4231static void
e064c173 4232PREFIX(store_op1) (re_opcode_t op, UCHAR_T *loc, int arg)
2a6ef469
DD
4233{
4234 *loc = (UCHAR_T) op;
4235 STORE_NUMBER (loc + 1, arg);
4236}
4237
4238
4239/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
4240/* ifdef WCHAR, integer parameter is 1 wchar_t. */
4241
4242static void
e064c173 4243PREFIX(store_op2) (re_opcode_t op, UCHAR_T *loc, int arg1, int arg2)
2a6ef469
DD
4244{
4245 *loc = (UCHAR_T) op;
4246 STORE_NUMBER (loc + 1, arg1);
4247 STORE_NUMBER (loc + 1 + OFFSET_ADDRESS_SIZE, arg2);
4248}
4249
4250
4251/* Copy the bytes from LOC to END to open up three bytes of space at LOC
4252 for OP followed by two-byte integer parameter ARG. */
4253/* ifdef WCHAR, integer parameter is 1 wchar_t. */
4254
4255static void
e064c173 4256PREFIX(insert_op1) (re_opcode_t op, UCHAR_T *loc, int arg, UCHAR_T *end)
2a6ef469
DD
4257{
4258 register UCHAR_T *pfrom = end;
4259 register UCHAR_T *pto = end + 1 + OFFSET_ADDRESS_SIZE;
4260
4261 while (pfrom != loc)
4262 *--pto = *--pfrom;
4263
4264 PREFIX(store_op1) (op, loc, arg);
4265}
4266
4267
4268/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
4269/* ifdef WCHAR, integer parameter is 1 wchar_t. */
4270
4271static void
e064c173
DD
4272PREFIX(insert_op2) (re_opcode_t op, UCHAR_T *loc, int arg1,
4273 int arg2, UCHAR_T *end)
2a6ef469
DD
4274{
4275 register UCHAR_T *pfrom = end;
4276 register UCHAR_T *pto = end + 1 + 2 * OFFSET_ADDRESS_SIZE;
4277
4278 while (pfrom != loc)
4279 *--pto = *--pfrom;
4280
4281 PREFIX(store_op2) (op, loc, arg1, arg2);
4282}
4283
4284
4285/* P points to just after a ^ in PATTERN. Return true if that ^ comes
4286 after an alternative or a begin-subexpression. We assume there is at
4287 least one character before the ^. */
4288
4289static boolean
e064c173
DD
4290PREFIX(at_begline_loc_p) (const CHAR_T *pattern, const CHAR_T *p,
4291 reg_syntax_t syntax)
2a6ef469
DD
4292{
4293 const CHAR_T *prev = p - 2;
4294 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
4295
4296 return
4297 /* After a subexpression? */
4298 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
4299 /* After an alternative? */
4300 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
4301}
4302
4303
4304/* The dual of at_begline_loc_p. This one is for $. We assume there is
4305 at least one character after the $, i.e., `P < PEND'. */
4306
4307static boolean
e064c173
DD
4308PREFIX(at_endline_loc_p) (const CHAR_T *p, const CHAR_T *pend,
4309 reg_syntax_t syntax)
2a6ef469
DD
4310{
4311 const CHAR_T *next = p;
4312 boolean next_backslash = *next == '\\';
4313 const CHAR_T *next_next = p + 1 < pend ? p + 1 : 0;
4314
4315 return
4316 /* Before a subexpression? */
4317 (syntax & RE_NO_BK_PARENS ? *next == ')'
4318 : next_backslash && next_next && *next_next == ')')
4319 /* Before an alternative? */
4320 || (syntax & RE_NO_BK_VBAR ? *next == '|'
4321 : next_backslash && next_next && *next_next == '|');
4322}
4323
4324#else /* not INSIDE_RECURSION */
4325
4326/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
4327 false if it's not. */
4328
4329static boolean
e064c173 4330group_in_compile_stack (compile_stack_type compile_stack, regnum_t regnum)
2a6ef469
DD
4331{
4332 int this_element;
4333
4334 for (this_element = compile_stack.avail - 1;
4335 this_element >= 0;
4336 this_element--)
4337 if (compile_stack.stack[this_element].regnum == regnum)
4338 return true;
4339
4340 return false;
4341}
4342#endif /* not INSIDE_RECURSION */
4343
4344#ifdef INSIDE_RECURSION
4345
4346#ifdef WCHAR
4347/* This insert space, which size is "num", into the pattern at "loc".
4348 "end" must point the end of the allocated buffer. */
4349static void
e064c173 4350insert_space (int num, CHAR_T *loc, CHAR_T *end)
2a6ef469
DD
4351{
4352 register CHAR_T *pto = end;
4353 register CHAR_T *pfrom = end - num;
4354
4355 while (pfrom >= loc)
4356 *pto-- = *pfrom--;
4357}
4358#endif /* WCHAR */
4359
4360#ifdef WCHAR
4361static reg_errcode_t
e064c173
DD
4362wcs_compile_range (CHAR_T range_start_char, const CHAR_T **p_ptr,
4363 const CHAR_T *pend, RE_TRANSLATE_TYPE translate,
4364 reg_syntax_t syntax, CHAR_T *b, CHAR_T *char_set)
2a6ef469
DD
4365{
4366 const CHAR_T *p = *p_ptr;
4367 CHAR_T range_start, range_end;
4368 reg_errcode_t ret;
4369# ifdef _LIBC
4370 uint32_t nrules;
4371 uint32_t start_val, end_val;
4372# endif
4373 if (p == pend)
4374 return REG_ERANGE;
4375
4376# ifdef _LIBC
4377 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
4378 if (nrules != 0)
4379 {
4380 const char *collseq = (const char *) _NL_CURRENT(LC_COLLATE,
4381 _NL_COLLATE_COLLSEQWC);
4382 const unsigned char *extra = (const unsigned char *)
4383 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
4384
4385 if (range_start_char < -1)
4386 {
4387 /* range_start is a collating symbol. */
4388 int32_t *wextra;
4389 /* Retreive the index and get collation sequence value. */
4390 wextra = (int32_t*)(extra + char_set[-range_start_char]);
4391 start_val = wextra[1 + *wextra];
4392 }
4393 else
4394 start_val = collseq_table_lookup(collseq, TRANSLATE(range_start_char));
4395
4396 end_val = collseq_table_lookup (collseq, TRANSLATE (p[0]));
4397
4398 /* Report an error if the range is empty and the syntax prohibits
4399 this. */
4400 ret = ((syntax & RE_NO_EMPTY_RANGES)
4401 && (start_val > end_val))? REG_ERANGE : REG_NOERROR;
4402
4403 /* Insert space to the end of the char_ranges. */
4404 insert_space(2, b - char_set[5] - 2, b - 1);
4405 *(b - char_set[5] - 2) = (wchar_t)start_val;
4406 *(b - char_set[5] - 1) = (wchar_t)end_val;
4407 char_set[4]++; /* ranges_index */
4408 }
4409 else
4410# endif
4411 {
4412 range_start = (range_start_char >= 0)? TRANSLATE (range_start_char):
4413 range_start_char;
4414 range_end = TRANSLATE (p[0]);
4415 /* Report an error if the range is empty and the syntax prohibits
4416 this. */
4417 ret = ((syntax & RE_NO_EMPTY_RANGES)
4418 && (range_start > range_end))? REG_ERANGE : REG_NOERROR;
4419
4420 /* Insert space to the end of the char_ranges. */
4421 insert_space(2, b - char_set[5] - 2, b - 1);
4422 *(b - char_set[5] - 2) = range_start;
4423 *(b - char_set[5] - 1) = range_end;
4424 char_set[4]++; /* ranges_index */
4425 }
4426 /* Have to increment the pointer into the pattern string, so the
4427 caller isn't still at the ending character. */
4428 (*p_ptr)++;
4429
4430 return ret;
4431}
4432#else /* BYTE */
4433/* Read the ending character of a range (in a bracket expression) from the
4434 uncompiled pattern *P_PTR (which ends at PEND). We assume the
4435 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
4436 Then we set the translation of all bits between the starting and
4437 ending characters (inclusive) in the compiled pattern B.
4438
4439 Return an error code.
4440
4441 We use these short variable names so we can use the same macros as
4442 `regex_compile' itself. */
4443
4444static reg_errcode_t
e064c173
DD
4445byte_compile_range (unsigned int range_start_char, const char **p_ptr,
4446 const char *pend, RE_TRANSLATE_TYPE translate,
4447 reg_syntax_t syntax, unsigned char *b)
2a6ef469
DD
4448{
4449 unsigned this_char;
4450 const char *p = *p_ptr;
4451 reg_errcode_t ret;
4452# if _LIBC
4453 const unsigned char *collseq;
4454 unsigned int start_colseq;
4455 unsigned int end_colseq;
4456# else
4457 unsigned end_char;
4458# endif
4459
4460 if (p == pend)
4461 return REG_ERANGE;
4462
4463 /* Have to increment the pointer into the pattern string, so the
4464 caller isn't still at the ending character. */
4465 (*p_ptr)++;
4466
4467 /* Report an error if the range is empty and the syntax prohibits this. */
4468 ret = syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
4469
4470# if _LIBC
4471 collseq = (const unsigned char *) _NL_CURRENT (LC_COLLATE,
4472 _NL_COLLATE_COLLSEQMB);
4473
4474 start_colseq = collseq[(unsigned char) TRANSLATE (range_start_char)];
4475 end_colseq = collseq[(unsigned char) TRANSLATE (p[0])];
4476 for (this_char = 0; this_char <= (unsigned char) -1; ++this_char)
4477 {
4478 unsigned int this_colseq = collseq[(unsigned char) TRANSLATE (this_char)];
4479
4480 if (start_colseq <= this_colseq && this_colseq <= end_colseq)
4481 {
4482 SET_LIST_BIT (TRANSLATE (this_char));
4483 ret = REG_NOERROR;
4484 }
4485 }
4486# else
4487 /* Here we see why `this_char' has to be larger than an `unsigned
4488 char' -- we would otherwise go into an infinite loop, since all
4489 characters <= 0xff. */
4490 range_start_char = TRANSLATE (range_start_char);
4491 /* TRANSLATE(p[0]) is casted to char (not unsigned char) in TRANSLATE,
4492 and some compilers cast it to int implicitly, so following for_loop
4493 may fall to (almost) infinite loop.
4494 e.g. If translate[p[0]] = 0xff, end_char may equals to 0xffffffff.
4495 To avoid this, we cast p[0] to unsigned int and truncate it. */
4496 end_char = ((unsigned)TRANSLATE(p[0]) & ((1 << BYTEWIDTH) - 1));
4497
4498 for (this_char = range_start_char; this_char <= end_char; ++this_char)
4499 {
4500 SET_LIST_BIT (TRANSLATE (this_char));
4501 ret = REG_NOERROR;
4502 }
4503# endif
4504
4505 return ret;
4506}
4507#endif /* WCHAR */
4508\f
4509/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4510 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4511 characters can start a string that matches the pattern. This fastmap
4512 is used by re_search to skip quickly over impossible starting points.
4513
4514 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4515 area as BUFP->fastmap.
4516
4517 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4518 the pattern buffer.
4519
4520 Returns 0 if we succeed, -2 if an internal error. */
4521
4522#ifdef WCHAR
4523/* local function for re_compile_fastmap.
4524 truncate wchar_t character to char. */
4525static unsigned char truncate_wchar (CHAR_T c);
4526
4527static unsigned char
e064c173 4528truncate_wchar (CHAR_T c)
2a6ef469 4529{
dc676635
DD
4530 unsigned char buf[MB_CUR_MAX];
4531 mbstate_t state;
4532 int retval;
4533 memset (&state, '\0', sizeof (state));
4534# ifdef _LIBC
4535 retval = __wcrtomb (buf, c, &state);
4536# else
4537 retval = wcrtomb (buf, c, &state);
4538# endif
4539 return retval > 0 ? buf[0] : (unsigned char) c;
2a6ef469
DD
4540}
4541#endif /* WCHAR */
4542
4543static int
e064c173 4544PREFIX(re_compile_fastmap) (struct re_pattern_buffer *bufp)
2a6ef469
DD
4545{
4546 int j, k;
4547#ifdef MATCH_MAY_ALLOCATE
4548 PREFIX(fail_stack_type) fail_stack;
4549#endif
4550#ifndef REGEX_MALLOC
4551 char *destination;
4552#endif
4553
4554 register char *fastmap = bufp->fastmap;
4555
4556#ifdef WCHAR
4557 /* We need to cast pattern to (wchar_t*), because we casted this compiled
4558 pattern to (char*) in regex_compile. */
4559 UCHAR_T *pattern = (UCHAR_T*)bufp->buffer;
4560 register UCHAR_T *pend = (UCHAR_T*) (bufp->buffer + bufp->used);
4561#else /* BYTE */
4562 UCHAR_T *pattern = bufp->buffer;
4563 register UCHAR_T *pend = pattern + bufp->used;
4564#endif /* WCHAR */
4565 UCHAR_T *p = pattern;
4566
4567#ifdef REL_ALLOC
4568 /* This holds the pointer to the failure stack, when
4569 it is allocated relocatably. */
4570 fail_stack_elt_t *failure_stack_ptr;
4571#endif
4572
4573 /* Assume that each path through the pattern can be null until
4574 proven otherwise. We set this false at the bottom of switch
4575 statement, to which we get only if a particular path doesn't
4576 match the empty string. */
4577 boolean path_can_be_null = true;
4578
4579 /* We aren't doing a `succeed_n' to begin with. */
4580 boolean succeed_n_p = false;
4581
4582 assert (fastmap != NULL && p != NULL);
4583
4584 INIT_FAIL_STACK ();
4585 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4586 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4587 bufp->can_be_null = 0;
4588
4589 while (1)
4590 {
585cc78f 4591 if (p == pend || *p == (UCHAR_T) succeed)
2a6ef469
DD
4592 {
4593 /* We have reached the (effective) end of pattern. */
4594 if (!FAIL_STACK_EMPTY ())
4595 {
4596 bufp->can_be_null |= path_can_be_null;
4597
4598 /* Reset for next path. */
4599 path_can_be_null = true;
4600
4601 p = fail_stack.stack[--fail_stack.avail].pointer;
4602
4603 continue;
4604 }
4605 else
4606 break;
4607 }
4608
4609 /* We should never be about to go beyond the end of the pattern. */
4610 assert (p < pend);
4611
4612 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
4613 {
4614
4615 /* I guess the idea here is to simply not bother with a fastmap
4616 if a backreference is used, since it's too hard to figure out
4617 the fastmap for the corresponding group. Setting
4618 `can_be_null' stops `re_search_2' from using the fastmap, so
4619 that is all we do. */
4620 case duplicate:
4621 bufp->can_be_null = 1;
4622 goto done;
4623
4624
4625 /* Following are the cases which match a character. These end
4626 with `break'. */
4627
4628#ifdef WCHAR
4629 case exactn:
4630 fastmap[truncate_wchar(p[1])] = 1;
4631 break;
4632#else /* BYTE */
4633 case exactn:
4634 fastmap[p[1]] = 1;
4635 break;
4636#endif /* WCHAR */
4637#ifdef MBS_SUPPORT
4638 case exactn_bin:
4639 fastmap[p[1]] = 1;
4640 break;
4641#endif
4642
4643#ifdef WCHAR
4644 /* It is hard to distinguish fastmap from (multi byte) characters
4645 which depends on current locale. */
4646 case charset:
4647 case charset_not:
4648 case wordchar:
4649 case notwordchar:
4650 bufp->can_be_null = 1;
4651 goto done;
4652#else /* BYTE */
4653 case charset:
4654 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4655 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
4656 fastmap[j] = 1;
4657 break;
4658
4659
4660 case charset_not:
4661 /* Chars beyond end of map must be allowed. */
4662 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
4663 fastmap[j] = 1;
4664
4665 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
4666 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
4667 fastmap[j] = 1;
4668 break;
4669
4670
4671 case wordchar:
4672 for (j = 0; j < (1 << BYTEWIDTH); j++)
4673 if (SYNTAX (j) == Sword)
4674 fastmap[j] = 1;
4675 break;
4676
4677
4678 case notwordchar:
4679 for (j = 0; j < (1 << BYTEWIDTH); j++)
4680 if (SYNTAX (j) != Sword)
4681 fastmap[j] = 1;
4682 break;
4683#endif /* WCHAR */
4684
4685 case anychar:
4686 {
4687 int fastmap_newline = fastmap['\n'];
4688
4689 /* `.' matches anything ... */
4690 for (j = 0; j < (1 << BYTEWIDTH); j++)
4691 fastmap[j] = 1;
4692
4693 /* ... except perhaps newline. */
4694 if (!(bufp->syntax & RE_DOT_NEWLINE))
4695 fastmap['\n'] = fastmap_newline;
4696
4697 /* Return if we have already set `can_be_null'; if we have,
4698 then the fastmap is irrelevant. Something's wrong here. */
4699 else if (bufp->can_be_null)
4700 goto done;
4701
4702 /* Otherwise, have to check alternative paths. */
4703 break;
4704 }
4705
4706#ifdef emacs
4707 case syntaxspec:
4708 k = *p++;
4709 for (j = 0; j < (1 << BYTEWIDTH); j++)
4710 if (SYNTAX (j) == (enum syntaxcode) k)
4711 fastmap[j] = 1;
4712 break;
4713
4714
4715 case notsyntaxspec:
4716 k = *p++;
4717 for (j = 0; j < (1 << BYTEWIDTH); j++)
4718 if (SYNTAX (j) != (enum syntaxcode) k)
4719 fastmap[j] = 1;
4720 break;
4721
4722
4723 /* All cases after this match the empty string. These end with
4724 `continue'. */
4725
4726
4727 case before_dot:
4728 case at_dot:
4729 case after_dot:
4730 continue;
4731#endif /* emacs */
4732
4733
4734 case no_op:
4735 case begline:
4736 case endline:
4737 case begbuf:
4738 case endbuf:
4739 case wordbound:
4740 case notwordbound:
4741 case wordbeg:
4742 case wordend:
4743 case push_dummy_failure:
4744 continue;
4745
4746
4747 case jump_n:
4748 case pop_failure_jump:
4749 case maybe_pop_jump:
4750 case jump:
4751 case jump_past_alt:
4752 case dummy_failure_jump:
4753 EXTRACT_NUMBER_AND_INCR (j, p);
4754 p += j;
4755 if (j > 0)
4756 continue;
4757
4758 /* Jump backward implies we just went through the body of a
4759 loop and matched nothing. Opcode jumped to should be
4760 `on_failure_jump' or `succeed_n'. Just treat it like an
4761 ordinary jump. For a * loop, it has pushed its failure
4762 point already; if so, discard that as redundant. */
4763 if ((re_opcode_t) *p != on_failure_jump
4764 && (re_opcode_t) *p != succeed_n)
4765 continue;
4766
4767 p++;
4768 EXTRACT_NUMBER_AND_INCR (j, p);
4769 p += j;
4770
4771 /* If what's on the stack is where we are now, pop it. */
4772 if (!FAIL_STACK_EMPTY ()
4773 && fail_stack.stack[fail_stack.avail - 1].pointer == p)
4774 fail_stack.avail--;
4775
4776 continue;
4777
4778
4779 case on_failure_jump:
4780 case on_failure_keep_string_jump:
4781 handle_on_failure_jump:
4782 EXTRACT_NUMBER_AND_INCR (j, p);
4783
4784 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
4785 end of the pattern. We don't want to push such a point,
4786 since when we restore it above, entering the switch will
4787 increment `p' past the end of the pattern. We don't need
4788 to push such a point since we obviously won't find any more
4789 fastmap entries beyond `pend'. Such a pattern can match
4790 the null string, though. */
4791 if (p + j < pend)
4792 {
4793 if (!PUSH_PATTERN_OP (p + j, fail_stack))
4794 {
4795 RESET_FAIL_STACK ();
4796 return -2;
4797 }
4798 }
4799 else
4800 bufp->can_be_null = 1;
4801
4802 if (succeed_n_p)
4803 {
4804 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
4805 succeed_n_p = false;
4806 }
4807
4808 continue;
4809
4810
4811 case succeed_n:
4812 /* Get to the number of times to succeed. */
4813 p += OFFSET_ADDRESS_SIZE;
4814
4815 /* Increment p past the n for when k != 0. */
4816 EXTRACT_NUMBER_AND_INCR (k, p);
4817 if (k == 0)
4818 {
4819 p -= 2 * OFFSET_ADDRESS_SIZE;
4820 succeed_n_p = true; /* Spaghetti code alert. */
4821 goto handle_on_failure_jump;
4822 }
4823 continue;
4824
4825
4826 case set_number_at:
4827 p += 2 * OFFSET_ADDRESS_SIZE;
4828 continue;
4829
4830
4831 case start_memory:
4832 case stop_memory:
4833 p += 2;
4834 continue;
4835
4836
4837 default:
4838 abort (); /* We have listed all the cases. */
4839 } /* switch *p++ */
4840
4841 /* Getting here means we have found the possible starting
4842 characters for one path of the pattern -- and that the empty
4843 string does not match. We need not follow this path further.
4844 Instead, look at the next alternative (remembered on the
4845 stack), or quit if no more. The test at the top of the loop
4846 does these things. */
4847 path_can_be_null = false;
4848 p = pend;
4849 } /* while p */
4850
4851 /* Set `can_be_null' for the last path (also the first path, if the
4852 pattern is empty). */
4853 bufp->can_be_null |= path_can_be_null;
4854
4855 done:
4856 RESET_FAIL_STACK ();
4857 return 0;
4858}
4859
4860#else /* not INSIDE_RECURSION */
4861
4862int
e064c173 4863re_compile_fastmap (struct re_pattern_buffer *bufp)
2a6ef469
DD
4864{
4865# ifdef MBS_SUPPORT
4866 if (MB_CUR_MAX != 1)
4867 return wcs_re_compile_fastmap(bufp);
4868 else
4869# endif
4870 return byte_re_compile_fastmap(bufp);
4871} /* re_compile_fastmap */
4872#ifdef _LIBC
4873weak_alias (__re_compile_fastmap, re_compile_fastmap)
4874#endif
4875\f
4876
4877/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4878 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4879 this memory for recording register information. STARTS and ENDS
4880 must be allocated using the malloc library routine, and must each
4881 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4882
4883 If NUM_REGS == 0, then subsequent matches should allocate their own
4884 register data.
4885
4886 Unless this function is called, the first search or match using
4887 PATTERN_BUFFER will allocate its own register data, without
4888 freeing the old data. */
4889
4890void
e064c173
DD
4891re_set_registers (struct re_pattern_buffer *bufp,
4892 struct re_registers *regs, unsigned num_regs,
4893 regoff_t *starts, regoff_t *ends)
2a6ef469
DD
4894{
4895 if (num_regs)
4896 {
4897 bufp->regs_allocated = REGS_REALLOCATE;
4898 regs->num_regs = num_regs;
4899 regs->start = starts;
4900 regs->end = ends;
4901 }
4902 else
4903 {
4904 bufp->regs_allocated = REGS_UNALLOCATED;
4905 regs->num_regs = 0;
4906 regs->start = regs->end = (regoff_t *) 0;
4907 }
4908}
4909#ifdef _LIBC
4910weak_alias (__re_set_registers, re_set_registers)
4911#endif
4912\f
4913/* Searching routines. */
4914
4915/* Like re_search_2, below, but only one string is specified, and
4916 doesn't let you say where to stop matching. */
4917
4918int
e064c173
DD
4919re_search (struct re_pattern_buffer *bufp, const char *string, int size,
4920 int startpos, int range, struct re_registers *regs)
2a6ef469
DD
4921{
4922 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4923 regs, size);
4924}
4925#ifdef _LIBC
4926weak_alias (__re_search, re_search)
4927#endif
4928
4929
4930/* Using the compiled pattern in BUFP->buffer, first tries to match the
4931 virtual concatenation of STRING1 and STRING2, starting first at index
4932 STARTPOS, then at STARTPOS + 1, and so on.
4933
4934 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4935
4936 RANGE is how far to scan while trying to match. RANGE = 0 means try
4937 only at STARTPOS; in general, the last start tried is STARTPOS +
4938 RANGE.
4939
4940 In REGS, return the indices of the virtual concatenation of STRING1
4941 and STRING2 that matched the entire BUFP->buffer and its contained
4942 subexpressions.
4943
4944 Do not consider matching one past the index STOP in the virtual
4945 concatenation of STRING1 and STRING2.
4946
4947 We return either the position in the strings at which the match was
4948 found, -1 if no match, or -2 if error (such as failure
4949 stack overflow). */
4950
4951int
e064c173
DD
4952re_search_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
4953 const char *string2, int size2, int startpos, int range,
4954 struct re_registers *regs, int stop)
2a6ef469
DD
4955{
4956# ifdef MBS_SUPPORT
4957 if (MB_CUR_MAX != 1)
4958 return wcs_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4959 range, regs, stop);
4960 else
4961# endif
4962 return byte_re_search_2 (bufp, string1, size1, string2, size2, startpos,
4963 range, regs, stop);
4964} /* re_search_2 */
4965#ifdef _LIBC
4966weak_alias (__re_search_2, re_search_2)
4967#endif
4968
4969#endif /* not INSIDE_RECURSION */
4970
4971#ifdef INSIDE_RECURSION
4972
4973#ifdef MATCH_MAY_ALLOCATE
4974# define FREE_VAR(var) if (var) REGEX_FREE (var); var = NULL
4975#else
4ff224cb 4976# define FREE_VAR(var) free (var); var = NULL
2a6ef469
DD
4977#endif
4978
4979#ifdef WCHAR
86710ce2
DD
4980# define MAX_ALLOCA_SIZE 2000
4981
4982# define FREE_WCS_BUFFERS() \
4983 do { \
4984 if (size1 > MAX_ALLOCA_SIZE) \
4985 { \
4986 free (wcs_string1); \
4987 free (mbs_offset1); \
4988 } \
4989 else \
4990 { \
4991 FREE_VAR (wcs_string1); \
4992 FREE_VAR (mbs_offset1); \
4993 } \
4994 if (size2 > MAX_ALLOCA_SIZE) \
4995 { \
4996 free (wcs_string2); \
4997 free (mbs_offset2); \
4998 } \
4999 else \
5000 { \
5001 FREE_VAR (wcs_string2); \
5002 FREE_VAR (mbs_offset2); \
5003 } \
2a6ef469
DD
5004 } while (0)
5005
5006#endif
5007
86710ce2 5008
2a6ef469 5009static int
e064c173
DD
5010PREFIX(re_search_2) (struct re_pattern_buffer *bufp, const char *string1,
5011 int size1, const char *string2, int size2,
5012 int startpos, int range,
5013 struct re_registers *regs, int stop)
2a6ef469
DD
5014{
5015 int val;
5016 register char *fastmap = bufp->fastmap;
5017 register RE_TRANSLATE_TYPE translate = bufp->translate;
5018 int total_size = size1 + size2;
5019 int endpos = startpos + range;
5020#ifdef WCHAR
5021 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
5022 wchar_t *wcs_string1 = NULL, *wcs_string2 = NULL;
5023 /* We need the size of wchar_t buffers correspond to csize1, csize2. */
5024 int wcs_size1 = 0, wcs_size2 = 0;
5025 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
5026 int *mbs_offset1 = NULL, *mbs_offset2 = NULL;
5027 /* They hold whether each wchar_t is binary data or not. */
5028 char *is_binary = NULL;
5029#endif /* WCHAR */
5030
5031 /* Check for out-of-range STARTPOS. */
5032 if (startpos < 0 || startpos > total_size)
5033 return -1;
5034
5035 /* Fix up RANGE if it might eventually take us outside
5036 the virtual concatenation of STRING1 and STRING2.
5037 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
5038 if (endpos < 0)
5039 range = 0 - startpos;
5040 else if (endpos > total_size)
5041 range = total_size - startpos;
5042
5043 /* If the search isn't to be a backwards one, don't waste time in a
5044 search for a pattern that must be anchored. */
5045 if (bufp->used > 0 && range > 0
5046 && ((re_opcode_t) bufp->buffer[0] == begbuf
5047 /* `begline' is like `begbuf' if it cannot match at newlines. */
5048 || ((re_opcode_t) bufp->buffer[0] == begline
5049 && !bufp->newline_anchor)))
5050 {
5051 if (startpos > 0)
5052 return -1;
5053 else
5054 range = 1;
5055 }
5056
5057#ifdef emacs
5058 /* In a forward search for something that starts with \=.
5059 don't keep searching past point. */
5060 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
5061 {
5062 range = PT - startpos;
5063 if (range <= 0)
5064 return -1;
5065 }
5066#endif /* emacs */
5067
5068 /* Update the fastmap now if not correct already. */
5069 if (fastmap && !bufp->fastmap_accurate)
5070 if (re_compile_fastmap (bufp) == -2)
5071 return -2;
5072
5073#ifdef WCHAR
5074 /* Allocate wchar_t array for wcs_string1 and wcs_string2 and
5075 fill them with converted string. */
5076 if (size1 != 0)
5077 {
86710ce2
DD
5078 if (size1 > MAX_ALLOCA_SIZE)
5079 {
5080 wcs_string1 = TALLOC (size1 + 1, CHAR_T);
5081 mbs_offset1 = TALLOC (size1 + 1, int);
5082 is_binary = TALLOC (size1 + 1, char);
5083 }
5084 else
5085 {
5086 wcs_string1 = REGEX_TALLOC (size1 + 1, CHAR_T);
5087 mbs_offset1 = REGEX_TALLOC (size1 + 1, int);
5088 is_binary = REGEX_TALLOC (size1 + 1, char);
5089 }
2a6ef469
DD
5090 if (!wcs_string1 || !mbs_offset1 || !is_binary)
5091 {
86710ce2
DD
5092 if (size1 > MAX_ALLOCA_SIZE)
5093 {
5094 free (wcs_string1);
5095 free (mbs_offset1);
5096 free (is_binary);
5097 }
5098 else
5099 {
5100 FREE_VAR (wcs_string1);
5101 FREE_VAR (mbs_offset1);
5102 FREE_VAR (is_binary);
5103 }
2a6ef469
DD
5104 return -2;
5105 }
5106 wcs_size1 = convert_mbs_to_wcs(wcs_string1, string1, size1,
5107 mbs_offset1, is_binary);
5108 wcs_string1[wcs_size1] = L'\0'; /* for a sentinel */
86710ce2
DD
5109 if (size1 > MAX_ALLOCA_SIZE)
5110 free (is_binary);
5111 else
5112 FREE_VAR (is_binary);
2a6ef469
DD
5113 }
5114 if (size2 != 0)
5115 {
86710ce2
DD
5116 if (size2 > MAX_ALLOCA_SIZE)
5117 {
5118 wcs_string2 = TALLOC (size2 + 1, CHAR_T);
5119 mbs_offset2 = TALLOC (size2 + 1, int);
5120 is_binary = TALLOC (size2 + 1, char);
5121 }
5122 else
5123 {
5124 wcs_string2 = REGEX_TALLOC (size2 + 1, CHAR_T);
5125 mbs_offset2 = REGEX_TALLOC (size2 + 1, int);
5126 is_binary = REGEX_TALLOC (size2 + 1, char);
5127 }
2a6ef469
DD
5128 if (!wcs_string2 || !mbs_offset2 || !is_binary)
5129 {
5130 FREE_WCS_BUFFERS ();
86710ce2
DD
5131 if (size2 > MAX_ALLOCA_SIZE)
5132 free (is_binary);
5133 else
5134 FREE_VAR (is_binary);
2a6ef469
DD
5135 return -2;
5136 }
5137 wcs_size2 = convert_mbs_to_wcs(wcs_string2, string2, size2,
5138 mbs_offset2, is_binary);
5139 wcs_string2[wcs_size2] = L'\0'; /* for a sentinel */
86710ce2
DD
5140 if (size2 > MAX_ALLOCA_SIZE)
5141 free (is_binary);
5142 else
5143 FREE_VAR (is_binary);
2a6ef469
DD
5144 }
5145#endif /* WCHAR */
5146
5147
5148 /* Loop through the string, looking for a place to start matching. */
5149 for (;;)
5150 {
5151 /* If a fastmap is supplied, skip quickly over characters that
5152 cannot be the start of a match. If the pattern can match the
5153 null string, however, we don't need to skip characters; we want
5154 the first null string. */
5155 if (fastmap && startpos < total_size && !bufp->can_be_null)
5156 {
5157 if (range > 0) /* Searching forwards. */
5158 {
5159 register const char *d;
5160 register int lim = 0;
5161 int irange = range;
5162
5163 if (startpos < size1 && startpos + range >= size1)
5164 lim = range - (size1 - startpos);
5165
5166 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
5167
5168 /* Written out as an if-else to avoid testing `translate'
5169 inside the loop. */
5170 if (translate)
5171 while (range > lim
5172 && !fastmap[(unsigned char)
5173 translate[(unsigned char) *d++]])
5174 range--;
5175 else
5176 while (range > lim && !fastmap[(unsigned char) *d++])
5177 range--;
5178
5179 startpos += irange - range;
5180 }
5181 else /* Searching backwards. */
5182 {
5183 register CHAR_T c = (size1 == 0 || startpos >= size1
5184 ? string2[startpos - size1]
5185 : string1[startpos]);
5186
5187 if (!fastmap[(unsigned char) TRANSLATE (c)])
5188 goto advance;
5189 }
5190 }
5191
5192 /* If can't match the null string, and that's all we have left, fail. */
5193 if (range >= 0 && startpos == total_size && fastmap
5194 && !bufp->can_be_null)
5195 {
5196#ifdef WCHAR
5197 FREE_WCS_BUFFERS ();
5198#endif
5199 return -1;
5200 }
5201
5202#ifdef WCHAR
5203 val = wcs_re_match_2_internal (bufp, string1, size1, string2,
5204 size2, startpos, regs, stop,
5205 wcs_string1, wcs_size1,
5206 wcs_string2, wcs_size2,
5207 mbs_offset1, mbs_offset2);
5208#else /* BYTE */
5209 val = byte_re_match_2_internal (bufp, string1, size1, string2,
5210 size2, startpos, regs, stop);
5211#endif /* BYTE */
5212
5213#ifndef REGEX_MALLOC
5214# ifdef C_ALLOCA
5215 alloca (0);
5216# endif
5217#endif
5218
5219 if (val >= 0)
5220 {
5221#ifdef WCHAR
5222 FREE_WCS_BUFFERS ();
5223#endif
5224 return startpos;
5225 }
5226
5227 if (val == -2)
5228 {
5229#ifdef WCHAR
5230 FREE_WCS_BUFFERS ();
5231#endif
5232 return -2;
5233 }
5234
5235 advance:
5236 if (!range)
5237 break;
5238 else if (range > 0)
5239 {
5240 range--;
5241 startpos++;
5242 }
5243 else
5244 {
5245 range++;
5246 startpos--;
5247 }
5248 }
5249#ifdef WCHAR
5250 FREE_WCS_BUFFERS ();
5251#endif
5252 return -1;
5253}
5254
5255#ifdef WCHAR
5256/* This converts PTR, a pointer into one of the search wchar_t strings
5257 `string1' and `string2' into an multibyte string offset from the
5258 beginning of that string. We use mbs_offset to optimize.
5259 See convert_mbs_to_wcs. */
5260# define POINTER_TO_OFFSET(ptr) \
5261 (FIRST_STRING_P (ptr) \
5262 ? ((regoff_t)(mbs_offset1 != NULL? mbs_offset1[(ptr)-string1] : 0)) \
5263 : ((regoff_t)((mbs_offset2 != NULL? mbs_offset2[(ptr)-string2] : 0) \
5264 + csize1)))
5265#else /* BYTE */
5266/* This converts PTR, a pointer into one of the search strings `string1'
5267 and `string2' into an offset from the beginning of that string. */
5268# define POINTER_TO_OFFSET(ptr) \
5269 (FIRST_STRING_P (ptr) \
5270 ? ((regoff_t) ((ptr) - string1)) \
5271 : ((regoff_t) ((ptr) - string2 + size1)))
5272#endif /* WCHAR */
5273
5274/* Macros for dealing with the split strings in re_match_2. */
5275
5276#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
5277
5278/* Call before fetching a character with *d. This switches over to
5279 string2 if necessary. */
5280#define PREFETCH() \
5281 while (d == dend) \
5282 { \
5283 /* End of string2 => fail. */ \
5284 if (dend == end_match_2) \
5285 goto fail; \
5286 /* End of string1 => advance to string2. */ \
5287 d = string2; \
5288 dend = end_match_2; \
5289 }
5290
5291/* Test if at very beginning or at very end of the virtual concatenation
5292 of `string1' and `string2'. If only one string, it's `string2'. */
5293#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
5294#define AT_STRINGS_END(d) ((d) == end2)
5295
5296
5297/* Test if D points to a character which is word-constituent. We have
5298 two special cases to check for: if past the end of string1, look at
5299 the first character in string2; and if before the beginning of
5300 string2, look at the last character in string1. */
5301#ifdef WCHAR
5302/* Use internationalized API instead of SYNTAX. */
5303# define WORDCHAR_P(d) \
5304 (iswalnum ((wint_t)((d) == end1 ? *string2 \
6ad8a379
DD
5305 : (d) == string2 - 1 ? *(end1 - 1) : *(d))) != 0 \
5306 || ((d) == end1 ? *string2 \
5307 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) == L'_')
2a6ef469
DD
5308#else /* BYTE */
5309# define WORDCHAR_P(d) \
5310 (SYNTAX ((d) == end1 ? *string2 \
5311 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
5312 == Sword)
5313#endif /* WCHAR */
5314
5315/* Disabled due to a compiler bug -- see comment at case wordbound */
5316#if 0
5317/* Test if the character before D and the one at D differ with respect
5318 to being word-constituent. */
5319#define AT_WORD_BOUNDARY(d) \
5320 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
5321 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
5322#endif
5323
5324/* Free everything we malloc. */
5325#ifdef MATCH_MAY_ALLOCATE
5326# ifdef WCHAR
5327# define FREE_VARIABLES() \
5328 do { \
5329 REGEX_FREE_STACK (fail_stack.stack); \
5330 FREE_VAR (regstart); \
5331 FREE_VAR (regend); \
5332 FREE_VAR (old_regstart); \
5333 FREE_VAR (old_regend); \
5334 FREE_VAR (best_regstart); \
5335 FREE_VAR (best_regend); \
5336 FREE_VAR (reg_info); \
5337 FREE_VAR (reg_dummy); \
5338 FREE_VAR (reg_info_dummy); \
5339 if (!cant_free_wcs_buf) \
5340 { \
5341 FREE_VAR (string1); \
5342 FREE_VAR (string2); \
5343 FREE_VAR (mbs_offset1); \
5344 FREE_VAR (mbs_offset2); \
5345 } \
5346 } while (0)
5347# else /* BYTE */
5348# define FREE_VARIABLES() \
5349 do { \
5350 REGEX_FREE_STACK (fail_stack.stack); \
5351 FREE_VAR (regstart); \
5352 FREE_VAR (regend); \
5353 FREE_VAR (old_regstart); \
5354 FREE_VAR (old_regend); \
5355 FREE_VAR (best_regstart); \
5356 FREE_VAR (best_regend); \
5357 FREE_VAR (reg_info); \
5358 FREE_VAR (reg_dummy); \
5359 FREE_VAR (reg_info_dummy); \
5360 } while (0)
5361# endif /* WCHAR */
5362#else
5363# ifdef WCHAR
5364# define FREE_VARIABLES() \
5365 do { \
5366 if (!cant_free_wcs_buf) \
5367 { \
5368 FREE_VAR (string1); \
5369 FREE_VAR (string2); \
5370 FREE_VAR (mbs_offset1); \
5371 FREE_VAR (mbs_offset2); \
5372 } \
5373 } while (0)
5374# else /* BYTE */
5375# define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
5376# endif /* WCHAR */
5377#endif /* not MATCH_MAY_ALLOCATE */
5378
5379/* These values must meet several constraints. They must not be valid
5380 register values; since we have a limit of 255 registers (because
5381 we use only one byte in the pattern for the register number), we can
5382 use numbers larger than 255. They must differ by 1, because of
5383 NUM_FAILURE_ITEMS above. And the value for the lowest register must
5384 be larger than the value for the highest register, so we do not try
5385 to actually save any registers when none are active. */
5386#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
5387#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
5388\f
5389#else /* not INSIDE_RECURSION */
5390/* Matching routines. */
5391
5392#ifndef emacs /* Emacs never uses this. */
5393/* re_match is like re_match_2 except it takes only a single string. */
5394
5395int
e064c173
DD
5396re_match (struct re_pattern_buffer *bufp, const char *string,
5397 int size, int pos, struct re_registers *regs)
2a6ef469
DD
5398{
5399 int result;
5400# ifdef MBS_SUPPORT
5401 if (MB_CUR_MAX != 1)
5402 result = wcs_re_match_2_internal (bufp, NULL, 0, string, size,
5403 pos, regs, size,
5404 NULL, 0, NULL, 0, NULL, NULL);
5405 else
5406# endif
5407 result = byte_re_match_2_internal (bufp, NULL, 0, string, size,
5408 pos, regs, size);
5409# ifndef REGEX_MALLOC
5410# ifdef C_ALLOCA
5411 alloca (0);
5412# endif
5413# endif
5414 return result;
5415}
5416# ifdef _LIBC
5417weak_alias (__re_match, re_match)
5418# endif
5419#endif /* not emacs */
5420
5421#endif /* not INSIDE_RECURSION */
5422
5423#ifdef INSIDE_RECURSION
e064c173
DD
5424static boolean PREFIX(group_match_null_string_p) (UCHAR_T **p,
5425 UCHAR_T *end,
5426 PREFIX(register_info_type) *reg_info);
5427static boolean PREFIX(alt_match_null_string_p) (UCHAR_T *p,
5428 UCHAR_T *end,
5429 PREFIX(register_info_type) *reg_info);
5430static boolean PREFIX(common_op_match_null_string_p) (UCHAR_T **p,
5431 UCHAR_T *end,
5432 PREFIX(register_info_type) *reg_info);
5433static int PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2,
5434 int len, char *translate);
2a6ef469
DD
5435#else /* not INSIDE_RECURSION */
5436
5437/* re_match_2 matches the compiled pattern in BUFP against the
5438 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
5439 and SIZE2, respectively). We start matching at POS, and stop
5440 matching at STOP.
5441
5442 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
5443 store offsets for the substring each group matched in REGS. See the
5444 documentation for exactly how many groups we fill.
5445
5446 We return -1 if no match, -2 if an internal error (such as the
5447 failure stack overflowing). Otherwise, we return the length of the
5448 matched substring. */
5449
5450int
e064c173
DD
5451re_match_2 (struct re_pattern_buffer *bufp, const char *string1, int size1,
5452 const char *string2, int size2, int pos,
5453 struct re_registers *regs, int stop)
2a6ef469
DD
5454{
5455 int result;
5456# ifdef MBS_SUPPORT
5457 if (MB_CUR_MAX != 1)
5458 result = wcs_re_match_2_internal (bufp, string1, size1, string2, size2,
5459 pos, regs, stop,
5460 NULL, 0, NULL, 0, NULL, NULL);
5461 else
5462# endif
5463 result = byte_re_match_2_internal (bufp, string1, size1, string2, size2,
5464 pos, regs, stop);
5465
5466#ifndef REGEX_MALLOC
5467# ifdef C_ALLOCA
5468 alloca (0);
5469# endif
5470#endif
5471 return result;
5472}
5473#ifdef _LIBC
5474weak_alias (__re_match_2, re_match_2)
5475#endif
5476
5477#endif /* not INSIDE_RECURSION */
5478
5479#ifdef INSIDE_RECURSION
5480
5481#ifdef WCHAR
e064c173 5482static int count_mbs_length (int *, int);
2a6ef469
DD
5483
5484/* This check the substring (from 0, to length) of the multibyte string,
5485 to which offset_buffer correspond. And count how many wchar_t_characters
5486 the substring occupy. We use offset_buffer to optimization.
5487 See convert_mbs_to_wcs. */
5488
5489static int
e064c173 5490count_mbs_length(int *offset_buffer, int length)
2a6ef469
DD
5491{
5492 int upper, lower;
5493
5494 /* Check whether the size is valid. */
5495 if (length < 0)
5496 return -1;
5497
5498 if (offset_buffer == NULL)
5499 return 0;
5500
5501 /* If there are no multibyte character, offset_buffer[i] == i.
5502 Optmize for this case. */
5503 if (offset_buffer[length] == length)
5504 return length;
5505
5506 /* Set up upper with length. (because for all i, offset_buffer[i] >= i) */
5507 upper = length;
5508 lower = 0;
5509
5510 while (true)
5511 {
5512 int middle = (lower + upper) / 2;
5513 if (middle == lower || middle == upper)
5514 break;
5515 if (offset_buffer[middle] > length)
5516 upper = middle;
5517 else if (offset_buffer[middle] < length)
5518 lower = middle;
5519 else
5520 return middle;
5521 }
5522
5523 return -1;
5524}
5525#endif /* WCHAR */
5526
5527/* This is a separate function so that we can force an alloca cleanup
5528 afterwards. */
5529#ifdef WCHAR
5530static int
e064c173
DD
5531wcs_re_match_2_internal (struct re_pattern_buffer *bufp,
5532 const char *cstring1, int csize1,
5533 const char *cstring2, int csize2,
5534 int pos,
5535 struct re_registers *regs,
5536 int stop,
2a6ef469
DD
5537 /* string1 == string2 == NULL means string1/2, size1/2 and
5538 mbs_offset1/2 need seting up in this function. */
5539 /* We need wchar_t* buffers correspond to cstring1, cstring2. */
e064c173
DD
5540 wchar_t *string1, int size1,
5541 wchar_t *string2, int size2,
2a6ef469 5542 /* offset buffer for optimizatoin. See convert_mbs_to_wc. */
e064c173 5543 int *mbs_offset1, int *mbs_offset2)
2a6ef469
DD
5544#else /* BYTE */
5545static int
e064c173
DD
5546byte_re_match_2_internal (struct re_pattern_buffer *bufp,
5547 const char *string1, int size1,
5548 const char *string2, int size2,
5549 int pos,
5550 struct re_registers *regs, int stop)
2a6ef469
DD
5551#endif /* BYTE */
5552{
5553 /* General temporaries. */
5554 int mcnt;
5555 UCHAR_T *p1;
5556#ifdef WCHAR
5557 /* They hold whether each wchar_t is binary data or not. */
5558 char *is_binary = NULL;
5559 /* If true, we can't free string1/2, mbs_offset1/2. */
5560 int cant_free_wcs_buf = 1;
5561#endif /* WCHAR */
5562
5563 /* Just past the end of the corresponding string. */
5564 const CHAR_T *end1, *end2;
5565
5566 /* Pointers into string1 and string2, just past the last characters in
5567 each to consider matching. */
5568 const CHAR_T *end_match_1, *end_match_2;
5569
5570 /* Where we are in the data, and the end of the current string. */
5571 const CHAR_T *d, *dend;
5572
5573 /* Where we are in the pattern, and the end of the pattern. */
5574#ifdef WCHAR
5575 UCHAR_T *pattern, *p;
5576 register UCHAR_T *pend;
5577#else /* BYTE */
5578 UCHAR_T *p = bufp->buffer;
5579 register UCHAR_T *pend = p + bufp->used;
5580#endif /* WCHAR */
5581
5582 /* Mark the opcode just after a start_memory, so we can test for an
5583 empty subpattern when we get to the stop_memory. */
5584 UCHAR_T *just_past_start_mem = 0;
5585
5586 /* We use this to map every character in the string. */
5587 RE_TRANSLATE_TYPE translate = bufp->translate;
5588
5589 /* Failure point stack. Each place that can handle a failure further
5590 down the line pushes a failure point on this stack. It consists of
5591 restart, regend, and reg_info for all registers corresponding to
5592 the subexpressions we're currently inside, plus the number of such
5593 registers, and, finally, two char *'s. The first char * is where
5594 to resume scanning the pattern; the second one is where to resume
5595 scanning the strings. If the latter is zero, the failure point is
5596 a ``dummy''; if a failure happens and the failure point is a dummy,
5597 it gets discarded and the next next one is tried. */
5598#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5599 PREFIX(fail_stack_type) fail_stack;
5600#endif
5601#ifdef DEBUG
5602 static unsigned failure_id;
5603 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
5604#endif
5605
5606#ifdef REL_ALLOC
5607 /* This holds the pointer to the failure stack, when
5608 it is allocated relocatably. */
5609 fail_stack_elt_t *failure_stack_ptr;
5610#endif
5611
5612 /* We fill all the registers internally, independent of what we
5613 return, for use in backreferences. The number here includes
5614 an element for register zero. */
5615 size_t num_regs = bufp->re_nsub + 1;
5616
5617 /* The currently active registers. */
5618 active_reg_t lowest_active_reg = NO_LOWEST_ACTIVE_REG;
5619 active_reg_t highest_active_reg = NO_HIGHEST_ACTIVE_REG;
5620
5621 /* Information on the contents of registers. These are pointers into
5622 the input strings; they record just what was matched (on this
5623 attempt) by a subexpression part of the pattern, that is, the
5624 regnum-th regstart pointer points to where in the pattern we began
5625 matching and the regnum-th regend points to right after where we
5626 stopped matching the regnum-th subexpression. (The zeroth register
5627 keeps track of what the whole pattern matches.) */
5628#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5629 const CHAR_T **regstart, **regend;
5630#endif
5631
5632 /* If a group that's operated upon by a repetition operator fails to
5633 match anything, then the register for its start will need to be
5634 restored because it will have been set to wherever in the string we
5635 are when we last see its open-group operator. Similarly for a
5636 register's end. */
5637#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5638 const CHAR_T **old_regstart, **old_regend;
5639#endif
5640
5641 /* The is_active field of reg_info helps us keep track of which (possibly
5642 nested) subexpressions we are currently in. The matched_something
5643 field of reg_info[reg_num] helps us tell whether or not we have
5644 matched any of the pattern so far this time through the reg_num-th
5645 subexpression. These two fields get reset each time through any
5646 loop their register is in. */
5647#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
5648 PREFIX(register_info_type) *reg_info;
5649#endif
5650
5651 /* The following record the register info as found in the above
5652 variables when we find a match better than any we've seen before.
5653 This happens as we backtrack through the failure points, which in
5654 turn happens only if we have not yet matched the entire string. */
5655 unsigned best_regs_set = false;
5656#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5657 const CHAR_T **best_regstart, **best_regend;
5658#endif
5659
5660 /* Logically, this is `best_regend[0]'. But we don't want to have to
5661 allocate space for that if we're not allocating space for anything
5662 else (see below). Also, we never need info about register 0 for
5663 any of the other register vectors, and it seems rather a kludge to
5664 treat `best_regend' differently than the rest. So we keep track of
5665 the end of the best match so far in a separate variable. We
5666 initialize this to NULL so that when we backtrack the first time
5667 and need to test it, it's not garbage. */
5668 const CHAR_T *match_end = NULL;
5669
5670 /* This helps SET_REGS_MATCHED avoid doing redundant work. */
5671 int set_regs_matched_done = 0;
5672
5673 /* Used when we pop values we don't care about. */
5674#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5675 const CHAR_T **reg_dummy;
5676 PREFIX(register_info_type) *reg_info_dummy;
5677#endif
5678
5679#ifdef DEBUG
5680 /* Counts the total number of registers pushed. */
5681 unsigned num_regs_pushed = 0;
5682#endif
5683
5684 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5685
5686 INIT_FAIL_STACK ();
5687
5688#ifdef MATCH_MAY_ALLOCATE
5689 /* Do not bother to initialize all the register variables if there are
5690 no groups in the pattern, as it takes a fair amount of time. If
5691 there are groups, we include space for register 0 (the whole
5692 pattern), even though we never use it, since it simplifies the
5693 array indexing. We should fix this. */
5694 if (bufp->re_nsub)
5695 {
5696 regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5697 regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5698 old_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5699 old_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5700 best_regstart = REGEX_TALLOC (num_regs, const CHAR_T *);
5701 best_regend = REGEX_TALLOC (num_regs, const CHAR_T *);
5702 reg_info = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5703 reg_dummy = REGEX_TALLOC (num_regs, const CHAR_T *);
5704 reg_info_dummy = REGEX_TALLOC (num_regs, PREFIX(register_info_type));
5705
5706 if (!(regstart && regend && old_regstart && old_regend && reg_info
5707 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
5708 {
5709 FREE_VARIABLES ();
5710 return -2;
5711 }
5712 }
5713 else
5714 {
5715 /* We must initialize all our variables to NULL, so that
5716 `FREE_VARIABLES' doesn't try to free them. */
5717 regstart = regend = old_regstart = old_regend = best_regstart
5718 = best_regend = reg_dummy = NULL;
5719 reg_info = reg_info_dummy = (PREFIX(register_info_type) *) NULL;
5720 }
5721#endif /* MATCH_MAY_ALLOCATE */
5722
5723 /* The starting position is bogus. */
5724#ifdef WCHAR
5725 if (pos < 0 || pos > csize1 + csize2)
5726#else /* BYTE */
5727 if (pos < 0 || pos > size1 + size2)
5728#endif
5729 {
5730 FREE_VARIABLES ();
5731 return -1;
5732 }
5733
5734#ifdef WCHAR
5735 /* Allocate wchar_t array for string1 and string2 and
5736 fill them with converted string. */
5737 if (string1 == NULL && string2 == NULL)
5738 {
5739 /* We need seting up buffers here. */
5740
5741 /* We must free wcs buffers in this function. */
5742 cant_free_wcs_buf = 0;
5743
5744 if (csize1 != 0)
5745 {
5746 string1 = REGEX_TALLOC (csize1 + 1, CHAR_T);
5747 mbs_offset1 = REGEX_TALLOC (csize1 + 1, int);
5748 is_binary = REGEX_TALLOC (csize1 + 1, char);
5749 if (!string1 || !mbs_offset1 || !is_binary)
5750 {
5751 FREE_VAR (string1);
5752 FREE_VAR (mbs_offset1);
5753 FREE_VAR (is_binary);
5754 return -2;
5755 }
5756 }
5757 if (csize2 != 0)
5758 {
5759 string2 = REGEX_TALLOC (csize2 + 1, CHAR_T);
5760 mbs_offset2 = REGEX_TALLOC (csize2 + 1, int);
5761 is_binary = REGEX_TALLOC (csize2 + 1, char);
5762 if (!string2 || !mbs_offset2 || !is_binary)
5763 {
5764 FREE_VAR (string1);
5765 FREE_VAR (mbs_offset1);
5766 FREE_VAR (string2);
5767 FREE_VAR (mbs_offset2);
5768 FREE_VAR (is_binary);
5769 return -2;
5770 }
5771 size2 = convert_mbs_to_wcs(string2, cstring2, csize2,
5772 mbs_offset2, is_binary);
5773 string2[size2] = L'\0'; /* for a sentinel */
5774 FREE_VAR (is_binary);
5775 }
5776 }
5777
5778 /* We need to cast pattern to (wchar_t*), because we casted this compiled
5779 pattern to (char*) in regex_compile. */
5780 p = pattern = (CHAR_T*)bufp->buffer;
5781 pend = (CHAR_T*)(bufp->buffer + bufp->used);
5782
5783#endif /* WCHAR */
5784
5785 /* Initialize subexpression text positions to -1 to mark ones that no
5786 start_memory/stop_memory has been seen for. Also initialize the
5787 register information struct. */
5788 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5789 {
5790 regstart[mcnt] = regend[mcnt]
5791 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
5792
5793 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
5794 IS_ACTIVE (reg_info[mcnt]) = 0;
5795 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5796 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
5797 }
5798
5799 /* We move `string1' into `string2' if the latter's empty -- but not if
5800 `string1' is null. */
5801 if (size2 == 0 && string1 != NULL)
5802 {
5803 string2 = string1;
5804 size2 = size1;
5805 string1 = 0;
5806 size1 = 0;
5807#ifdef WCHAR
5808 mbs_offset2 = mbs_offset1;
5809 csize2 = csize1;
5810 mbs_offset1 = NULL;
5811 csize1 = 0;
5812#endif
5813 }
5814 end1 = string1 + size1;
5815 end2 = string2 + size2;
5816
5817 /* Compute where to stop matching, within the two strings. */
5818#ifdef WCHAR
5819 if (stop <= csize1)
5820 {
5821 mcnt = count_mbs_length(mbs_offset1, stop);
5822 end_match_1 = string1 + mcnt;
5823 end_match_2 = string2;
5824 }
5825 else
5826 {
5827 if (stop > csize1 + csize2)
5828 stop = csize1 + csize2;
5829 end_match_1 = end1;
5830 mcnt = count_mbs_length(mbs_offset2, stop-csize1);
5831 end_match_2 = string2 + mcnt;
5832 }
5833 if (mcnt < 0)
5834 { /* count_mbs_length return error. */
5835 FREE_VARIABLES ();
5836 return -1;
5837 }
5838#else
5839 if (stop <= size1)
5840 {
5841 end_match_1 = string1 + stop;
5842 end_match_2 = string2;
5843 }
5844 else
5845 {
5846 end_match_1 = end1;
5847 end_match_2 = string2 + stop - size1;
5848 }
5849#endif /* WCHAR */
5850
5851 /* `p' scans through the pattern as `d' scans through the data.
5852 `dend' is the end of the input string that `d' points within. `d'
5853 is advanced into the following input string whenever necessary, but
5854 this happens before fetching; therefore, at the beginning of the
5855 loop, `d' can be pointing at the end of a string, but it cannot
5856 equal `string2'. */
5857#ifdef WCHAR
5858 if (size1 > 0 && pos <= csize1)
5859 {
5860 mcnt = count_mbs_length(mbs_offset1, pos);
5861 d = string1 + mcnt;
5862 dend = end_match_1;
5863 }
5864 else
5865 {
5866 mcnt = count_mbs_length(mbs_offset2, pos-csize1);
5867 d = string2 + mcnt;
5868 dend = end_match_2;
5869 }
5870
5871 if (mcnt < 0)
5872 { /* count_mbs_length return error. */
5873 FREE_VARIABLES ();
5874 return -1;
5875 }
5876#else
5877 if (size1 > 0 && pos <= size1)
5878 {
5879 d = string1 + pos;
5880 dend = end_match_1;
5881 }
5882 else
5883 {
5884 d = string2 + pos - size1;
5885 dend = end_match_2;
5886 }
5887#endif /* WCHAR */
5888
5889 DEBUG_PRINT1 ("The compiled pattern is:\n");
5890 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5891 DEBUG_PRINT1 ("The string to match is: `");
5892 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5893 DEBUG_PRINT1 ("'\n");
5894
5895 /* This loops over pattern commands. It exits by returning from the
5896 function if the match is complete, or it drops through if the match
5897 fails at this starting point in the input data. */
5898 for (;;)
5899 {
5900#ifdef _LIBC
5901 DEBUG_PRINT2 ("\n%p: ", p);
5902#else
5903 DEBUG_PRINT2 ("\n0x%x: ", p);
5904#endif
5905
5906 if (p == pend)
5907 { /* End of pattern means we might have succeeded. */
5908 DEBUG_PRINT1 ("end of pattern ... ");
5909
5910 /* If we haven't matched the entire string, and we want the
5911 longest match, try backtracking. */
5912 if (d != end_match_2)
5913 {
a05e8785
DD
5914 /* 1 if this match ends in the same string (string1 or string2)
5915 as the best previous match. */
664aa91f
DD
5916 boolean same_str_p;
5917
2a6ef469
DD
5918 /* 1 if this match is the best seen so far. */
5919 boolean best_match_p;
5920
664aa91f
DD
5921 same_str_p = (FIRST_STRING_P (match_end)
5922 == MATCHING_IN_FIRST_STRING);
5923
a05e8785
DD
5924 /* AIX compiler got confused when this was combined
5925 with the previous declaration. */
5926 if (same_str_p)
5927 best_match_p = d > match_end;
5928 else
5929 best_match_p = !MATCHING_IN_FIRST_STRING;
5930
5931 DEBUG_PRINT1 ("backtracking.\n");
2a6ef469
DD
5932
5933 if (!FAIL_STACK_EMPTY ())
5934 { /* More failure points to try. */
5935
5936 /* If exceeds best match so far, save it. */
5937 if (!best_regs_set || best_match_p)
5938 {
5939 best_regs_set = true;
5940 match_end = d;
5941
5942 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5943
5944 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5945 {
5946 best_regstart[mcnt] = regstart[mcnt];
5947 best_regend[mcnt] = regend[mcnt];
5948 }
5949 }
5950 goto fail;
5951 }
5952
5953 /* If no failure points, don't restore garbage. And if
5954 last match is real best match, don't restore second
5955 best one. */
5956 else if (best_regs_set && !best_match_p)
5957 {
5958 restore_best_regs:
5959 /* Restore best match. It may happen that `dend ==
5960 end_match_1' while the restored d is in string2.
5961 For example, the pattern `x.*y.*z' against the
5962 strings `x-' and `y-z-', if the two strings are
5963 not consecutive in memory. */
5964 DEBUG_PRINT1 ("Restoring best registers.\n");
5965
5966 d = match_end;
5967 dend = ((d >= string1 && d <= end1)
5968 ? end_match_1 : end_match_2);
5969
5970 for (mcnt = 1; (unsigned) mcnt < num_regs; mcnt++)
5971 {
5972 regstart[mcnt] = best_regstart[mcnt];
5973 regend[mcnt] = best_regend[mcnt];
5974 }
5975 }
5976 } /* d != end_match_2 */
5977
5978 succeed_label:
5979 DEBUG_PRINT1 ("Accepting match.\n");
5980 /* If caller wants register contents data back, do it. */
5981 if (regs && !bufp->no_sub)
5982 {
5983 /* Have the register data arrays been allocated? */
5984 if (bufp->regs_allocated == REGS_UNALLOCATED)
5985 { /* No. So allocate them with malloc. We need one
5986 extra element beyond `num_regs' for the `-1' marker
5987 GNU code uses. */
5988 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5989 regs->start = TALLOC (regs->num_regs, regoff_t);
5990 regs->end = TALLOC (regs->num_regs, regoff_t);
5991 if (regs->start == NULL || regs->end == NULL)
5992 {
5993 FREE_VARIABLES ();
5994 return -2;
5995 }
5996 bufp->regs_allocated = REGS_REALLOCATE;
5997 }
5998 else if (bufp->regs_allocated == REGS_REALLOCATE)
5999 { /* Yes. If we need more elements than were already
6000 allocated, reallocate them. If we need fewer, just
6001 leave it alone. */
6002 if (regs->num_regs < num_regs + 1)
6003 {
6004 regs->num_regs = num_regs + 1;
6005 RETALLOC (regs->start, regs->num_regs, regoff_t);
6006 RETALLOC (regs->end, regs->num_regs, regoff_t);
6007 if (regs->start == NULL || regs->end == NULL)
6008 {
6009 FREE_VARIABLES ();
6010 return -2;
6011 }
6012 }
6013 }
6014 else
6015 {
6016 /* These braces fend off a "empty body in an else-statement"
6017 warning under GCC when assert expands to nothing. */
6018 assert (bufp->regs_allocated == REGS_FIXED);
6019 }
6020
6021 /* Convert the pointer data in `regstart' and `regend' to
6022 indices. Register zero has to be set differently,
6023 since we haven't kept track of any info for it. */
6024 if (regs->num_regs > 0)
6025 {
6026 regs->start[0] = pos;
6027#ifdef WCHAR
6028 if (MATCHING_IN_FIRST_STRING)
6029 regs->end[0] = mbs_offset1 != NULL ?
6030 mbs_offset1[d-string1] : 0;
6031 else
6032 regs->end[0] = csize1 + (mbs_offset2 != NULL ?
6033 mbs_offset2[d-string2] : 0);
6034#else
6035 regs->end[0] = (MATCHING_IN_FIRST_STRING
6036 ? ((regoff_t) (d - string1))
6037 : ((regoff_t) (d - string2 + size1)));
6038#endif /* WCHAR */
6039 }
6040
6041 /* Go through the first `min (num_regs, regs->num_regs)'
6042 registers, since that is all we initialized. */
6043 for (mcnt = 1; (unsigned) mcnt < MIN (num_regs, regs->num_regs);
6044 mcnt++)
6045 {
6046 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
6047 regs->start[mcnt] = regs->end[mcnt] = -1;
6048 else
6049 {
6050 regs->start[mcnt]
6051 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
6052 regs->end[mcnt]
6053 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
6054 }
6055 }
6056
6057 /* If the regs structure we return has more elements than
6058 were in the pattern, set the extra elements to -1. If
6059 we (re)allocated the registers, this is the case,
6060 because we always allocate enough to have at least one
6061 -1 at the end. */
6062 for (mcnt = num_regs; (unsigned) mcnt < regs->num_regs; mcnt++)
6063 regs->start[mcnt] = regs->end[mcnt] = -1;
6064 } /* regs && !bufp->no_sub */
6065
6066 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
6067 nfailure_points_pushed, nfailure_points_popped,
6068 nfailure_points_pushed - nfailure_points_popped);
6069 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
6070
6071#ifdef WCHAR
6072 if (MATCHING_IN_FIRST_STRING)
6073 mcnt = mbs_offset1 != NULL ? mbs_offset1[d-string1] : 0;
6074 else
6075 mcnt = (mbs_offset2 != NULL ? mbs_offset2[d-string2] : 0) +
6076 csize1;
6077 mcnt -= pos;
6078#else
6079 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
6080 ? string1
6081 : string2 - size1);
6082#endif /* WCHAR */
6083
6084 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
6085
6086 FREE_VARIABLES ();
6087 return mcnt;
6088 }
6089
6090 /* Otherwise match next pattern command. */
6091 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
6092 {
6093 /* Ignore these. Used to ignore the n of succeed_n's which
6094 currently have n == 0. */
6095 case no_op:
6096 DEBUG_PRINT1 ("EXECUTING no_op.\n");
6097 break;
6098
6099 case succeed:
6100 DEBUG_PRINT1 ("EXECUTING succeed.\n");
6101 goto succeed_label;
6102
6103 /* Match the next n pattern characters exactly. The following
6104 byte in the pattern defines n, and the n bytes after that
6105 are the characters to match. */
6106 case exactn:
6107#ifdef MBS_SUPPORT
6108 case exactn_bin:
6109#endif
6110 mcnt = *p++;
6111 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
6112
6113 /* This is written out as an if-else so we don't waste time
6114 testing `translate' inside the loop. */
6115 if (translate)
6116 {
6117 do
6118 {
6119 PREFETCH ();
6120#ifdef WCHAR
6121 if (*d <= 0xff)
6122 {
6123 if ((UCHAR_T) translate[(unsigned char) *d++]
6124 != (UCHAR_T) *p++)
6125 goto fail;
6126 }
6127 else
6128 {
6129 if (*d++ != (CHAR_T) *p++)
6130 goto fail;
6131 }
6132#else
6133 if ((UCHAR_T) translate[(unsigned char) *d++]
6134 != (UCHAR_T) *p++)
6135 goto fail;
6136#endif /* WCHAR */
6137 }
6138 while (--mcnt);
6139 }
6140 else
6141 {
6142 do
6143 {
6144 PREFETCH ();
6145 if (*d++ != (CHAR_T) *p++) goto fail;
6146 }
6147 while (--mcnt);
6148 }
6149 SET_REGS_MATCHED ();
6150 break;
6151
6152
6153 /* Match any character except possibly a newline or a null. */
6154 case anychar:
6155 DEBUG_PRINT1 ("EXECUTING anychar.\n");
6156
6157 PREFETCH ();
6158
6159 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
6160 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
6161 goto fail;
6162
6163 SET_REGS_MATCHED ();
6164 DEBUG_PRINT2 (" Matched `%ld'.\n", (long int) *d);
6165 d++;
6166 break;
6167
6168
6169 case charset:
6170 case charset_not:
6171 {
6172 register UCHAR_T c;
6173#ifdef WCHAR
6174 unsigned int i, char_class_length, coll_symbol_length,
6175 equiv_class_length, ranges_length, chars_length, length;
6176 CHAR_T *workp, *workp2, *charset_top;
6177#define WORK_BUFFER_SIZE 128
6178 CHAR_T str_buf[WORK_BUFFER_SIZE];
6179# ifdef _LIBC
6180 uint32_t nrules;
6181# endif /* _LIBC */
6182#endif /* WCHAR */
ea7143ac 6183 boolean negate = (re_opcode_t) *(p - 1) == charset_not;
2a6ef469 6184
776dbd27 6185 DEBUG_PRINT2 ("EXECUTING charset%s.\n", negate ? "_not" : "");
2a6ef469
DD
6186 PREFETCH ();
6187 c = TRANSLATE (*d); /* The character to match. */
6188#ifdef WCHAR
6189# ifdef _LIBC
6190 nrules = _NL_CURRENT_WORD (LC_COLLATE, _NL_COLLATE_NRULES);
6191# endif /* _LIBC */
6192 charset_top = p - 1;
6193 char_class_length = *p++;
6194 coll_symbol_length = *p++;
6195 equiv_class_length = *p++;
6196 ranges_length = *p++;
6197 chars_length = *p++;
6198 /* p points charset[6], so the address of the next instruction
6199 (charset[l+m+n+2o+k+p']) equals p[l+m+n+2*o+p'],
6200 where l=length of char_classes, m=length of collating_symbol,
6201 n=equivalence_class, o=length of char_range,
6202 p'=length of character. */
6203 workp = p;
6204 /* Update p to indicate the next instruction. */
6205 p += char_class_length + coll_symbol_length+ equiv_class_length +
6206 2*ranges_length + chars_length;
6207
6208 /* match with char_class? */
6209 for (i = 0; i < char_class_length ; i += CHAR_CLASS_SIZE)
6210 {
6211 wctype_t wctype;
6212 uintptr_t alignedp = ((uintptr_t)workp
6213 + __alignof__(wctype_t) - 1)
6214 & ~(uintptr_t)(__alignof__(wctype_t) - 1);
6215 wctype = *((wctype_t*)alignedp);
6216 workp += CHAR_CLASS_SIZE;
dc676635
DD
6217# ifdef _LIBC
6218 if (__iswctype((wint_t)c, wctype))
6219 goto char_set_matched;
6220# else
2a6ef469
DD
6221 if (iswctype((wint_t)c, wctype))
6222 goto char_set_matched;
dc676635 6223# endif
2a6ef469
DD
6224 }
6225
6226 /* match with collating_symbol? */
6227# ifdef _LIBC
6228 if (nrules != 0)
6229 {
6230 const unsigned char *extra = (const unsigned char *)
6231 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_SYMB_EXTRAMB);
6232
6233 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;
6234 workp++)
6235 {
6236 int32_t *wextra;
6237 wextra = (int32_t*)(extra + *workp++);
6238 for (i = 0; i < *wextra; ++i)
6239 if (TRANSLATE(d[i]) != wextra[1 + i])
6240 break;
6241
6242 if (i == *wextra)
6243 {
6244 /* Update d, however d will be incremented at
6245 char_set_matched:, we decrement d here. */
6246 d += i - 1;
6247 goto char_set_matched;
6248 }
6249 }
6250 }
6251 else /* (nrules == 0) */
6252# endif
6253 /* If we can't look up collation data, we use wcscoll
6254 instead. */
6255 {
6256 for (workp2 = workp + coll_symbol_length ; workp < workp2 ;)
6257 {
6258 const CHAR_T *backup_d = d, *backup_dend = dend;
dc676635
DD
6259# ifdef _LIBC
6260 length = __wcslen (workp);
6261# else
6262 length = wcslen (workp);
6263# endif
2a6ef469
DD
6264
6265 /* If wcscoll(the collating symbol, whole string) > 0,
6266 any substring of the string never match with the
6267 collating symbol. */
dc676635
DD
6268# ifdef _LIBC
6269 if (__wcscoll (workp, d) > 0)
6270# else
6271 if (wcscoll (workp, d) > 0)
6272# endif
2a6ef469
DD
6273 {
6274 workp += length + 1;
6275 continue;
6276 }
6277
6278 /* First, we compare the collating symbol with
6279 the first character of the string.
6280 If it don't match, we add the next character to
6281 the compare buffer in turn. */
6282 for (i = 0 ; i < WORK_BUFFER_SIZE-1 ; i++, d++)
6283 {
6284 int match;
6285 if (d == dend)
6286 {
6287 if (dend == end_match_2)
6288 break;
6289 d = string2;
6290 dend = end_match_2;
6291 }
6292
6293 /* add next character to the compare buffer. */
6294 str_buf[i] = TRANSLATE(*d);
6295 str_buf[i+1] = '\0';
6296
dc676635
DD
6297# ifdef _LIBC
6298 match = __wcscoll (workp, str_buf);
6299# else
6300 match = wcscoll (workp, str_buf);
6301# endif
2a6ef469
DD
6302 if (match == 0)
6303 goto char_set_matched;
6304
6305 if (match < 0)
6306 /* (str_buf > workp) indicate (str_buf + X > workp),
6307 because for all X (str_buf + X > str_buf).
6308 So we don't need continue this loop. */
6309 break;
6310
6311 /* Otherwise(str_buf < workp),
6312 (str_buf+next_character) may equals (workp).
6313 So we continue this loop. */
6314 }
6315 /* not matched */
6316 d = backup_d;
6317 dend = backup_dend;
6318 workp += length + 1;
6319 }
6320 }
6321 /* match with equivalence_class? */
6322# ifdef _LIBC
6323 if (nrules != 0)
6324 {
6325 const CHAR_T *backup_d = d, *backup_dend = dend;
6326 /* Try to match the equivalence class against
6327 those known to the collate implementation. */
6328 const int32_t *table;
6329 const int32_t *weights;
6330 const int32_t *extra;
6331 const int32_t *indirect;
6332 int32_t idx, idx2;
6333 wint_t *cp;
6334 size_t len;
6335
6336 /* This #include defines a local function! */
6337# include <locale/weightwc.h>
6338
6339 table = (const int32_t *)
6340 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_TABLEWC);
6341 weights = (const wint_t *)
6342 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_WEIGHTWC);
6343 extra = (const wint_t *)
6344 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_EXTRAWC);
6345 indirect = (const int32_t *)
6346 _NL_CURRENT (LC_COLLATE, _NL_COLLATE_INDIRECTWC);
6347
6348 /* Write 1 collating element to str_buf, and
6349 get its index. */
6350 idx2 = 0;
6351
6352 for (i = 0 ; idx2 == 0 && i < WORK_BUFFER_SIZE - 1; i++)
6353 {
6354 cp = (wint_t*)str_buf;
6355 if (d == dend)
6356 {
6357 if (dend == end_match_2)
6358 break;
6359 d = string2;
6360 dend = end_match_2;
6361 }
6362 str_buf[i] = TRANSLATE(*(d+i));
6363 str_buf[i+1] = '\0'; /* sentinel */
6364 idx2 = findidx ((const wint_t**)&cp);
6365 }
6366
6367 /* Update d, however d will be incremented at
6368 char_set_matched:, we decrement d here. */
6369 d = backup_d + ((wchar_t*)cp - (wchar_t*)str_buf - 1);
6370 if (d >= dend)
6371 {
6372 if (dend == end_match_2)
6373 d = dend;
6374 else
6375 {
6376 d = string2;
6377 dend = end_match_2;
6378 }
6379 }
6380
6381 len = weights[idx2];
6382
6383 for (workp2 = workp + equiv_class_length ; workp < workp2 ;
6384 workp++)
6385 {
6386 idx = (int32_t)*workp;
6387 /* We already checked idx != 0 in regex_compile. */
6388
6389 if (idx2 != 0 && len == weights[idx])
6390 {
6391 int cnt = 0;
6392 while (cnt < len && (weights[idx + 1 + cnt]
6393 == weights[idx2 + 1 + cnt]))
6394 ++cnt;
6395
6396 if (cnt == len)
6397 goto char_set_matched;
6398 }
6399 }
6400 /* not matched */
6401 d = backup_d;
6402 dend = backup_dend;
6403 }
6404 else /* (nrules == 0) */
6405# endif
6406 /* If we can't look up collation data, we use wcscoll
6407 instead. */
6408 {
6409 for (workp2 = workp + equiv_class_length ; workp < workp2 ;)
6410 {
6411 const CHAR_T *backup_d = d, *backup_dend = dend;
dc676635
DD
6412# ifdef _LIBC
6413 length = __wcslen (workp);
6414# else
6415 length = wcslen (workp);
6416# endif
2a6ef469
DD
6417
6418 /* If wcscoll(the collating symbol, whole string) > 0,
6419 any substring of the string never match with the
6420 collating symbol. */
dc676635
DD
6421# ifdef _LIBC
6422 if (__wcscoll (workp, d) > 0)
6423# else
6424 if (wcscoll (workp, d) > 0)
6425# endif
2a6ef469
DD
6426 {
6427 workp += length + 1;
6428 break;
6429 }
6430
6431 /* First, we compare the equivalence class with
6432 the first character of the string.
6433 If it don't match, we add the next character to
6434 the compare buffer in turn. */
6435 for (i = 0 ; i < WORK_BUFFER_SIZE - 1 ; i++, d++)
6436 {
6437 int match;
6438 if (d == dend)
6439 {
6440 if (dend == end_match_2)
6441 break;
6442 d = string2;
6443 dend = end_match_2;
6444 }
6445
6446 /* add next character to the compare buffer. */
6447 str_buf[i] = TRANSLATE(*d);
6448 str_buf[i+1] = '\0';
6449
dc676635
DD
6450# ifdef _LIBC
6451 match = __wcscoll (workp, str_buf);
6452# else
6453 match = wcscoll (workp, str_buf);
6454# endif
2a6ef469
DD
6455
6456 if (match == 0)
6457 goto char_set_matched;
6458
6459 if (match < 0)
6460 /* (str_buf > workp) indicate (str_buf + X > workp),
6461 because for all X (str_buf + X > str_buf).
6462 So we don't need continue this loop. */
6463 break;
6464
6465 /* Otherwise(str_buf < workp),
6466 (str_buf+next_character) may equals (workp).
6467 So we continue this loop. */
6468 }
6469 /* not matched */
6470 d = backup_d;
6471 dend = backup_dend;
6472 workp += length + 1;
6473 }
6474 }
6475
6476 /* match with char_range? */
dc676635 6477# ifdef _LIBC
2a6ef469
DD
6478 if (nrules != 0)
6479 {
6480 uint32_t collseqval;
6481 const char *collseq = (const char *)
6482 _NL_CURRENT(LC_COLLATE, _NL_COLLATE_COLLSEQWC);
6483
6484 collseqval = collseq_table_lookup (collseq, c);
6485
6486 for (; workp < p - chars_length ;)
6487 {
6488 uint32_t start_val, end_val;
6489
6490 /* We already compute the collation sequence value
6491 of the characters (or collating symbols). */
6492 start_val = (uint32_t) *workp++; /* range_start */
6493 end_val = (uint32_t) *workp++; /* range_end */
6494
6495 if (start_val <= collseqval && collseqval <= end_val)
6496 goto char_set_matched;
6497 }
6498 }
6499 else
dc676635 6500# endif
2a6ef469
DD
6501 {
6502 /* We set range_start_char at str_buf[0], range_end_char
6503 at str_buf[4], and compared char at str_buf[2]. */
6504 str_buf[1] = 0;
6505 str_buf[2] = c;
6506 str_buf[3] = 0;
6507 str_buf[5] = 0;
6508 for (; workp < p - chars_length ;)
6509 {
6510 wchar_t *range_start_char, *range_end_char;
6511
6512 /* match if (range_start_char <= c <= range_end_char). */
6513
6514 /* If range_start(or end) < 0, we assume -range_start(end)
6515 is the offset of the collating symbol which is specified
6516 as the character of the range start(end). */
6517
6518 /* range_start */
6519 if (*workp < 0)
6520 range_start_char = charset_top - (*workp++);
6521 else
6522 {
6523 str_buf[0] = *workp++;
6524 range_start_char = str_buf;
6525 }
6526
6527 /* range_end */
6528 if (*workp < 0)
6529 range_end_char = charset_top - (*workp++);
6530 else
6531 {
6532 str_buf[4] = *workp++;
6533 range_end_char = str_buf + 4;
6534 }
6535
dc676635
DD
6536# ifdef _LIBC
6537 if (__wcscoll (range_start_char, str_buf+2) <= 0
6538 && __wcscoll (str_buf+2, range_end_char) <= 0)
6539# else
6540 if (wcscoll (range_start_char, str_buf+2) <= 0
6541 && wcscoll (str_buf+2, range_end_char) <= 0)
6542# endif
2a6ef469
DD
6543 goto char_set_matched;
6544 }
6545 }
6546
6547 /* match with char? */
6548 for (; workp < p ; workp++)
6549 if (c == *workp)
6550 goto char_set_matched;
6551
ea7143ac 6552 negate = !negate;
2a6ef469
DD
6553
6554 char_set_matched:
776dbd27 6555 if (negate) goto fail;
2a6ef469
DD
6556#else
6557 /* Cast to `unsigned' instead of `unsigned char' in case the
6558 bit list is a full 32 bytes long. */
6559 if (c < (unsigned) (*p * BYTEWIDTH)
6560 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
ea7143ac 6561 negate = !negate;
2a6ef469
DD
6562
6563 p += 1 + *p;
6564
ea7143ac 6565 if (!negate) goto fail;
2a6ef469
DD
6566#undef WORK_BUFFER_SIZE
6567#endif /* WCHAR */
6568 SET_REGS_MATCHED ();
6569 d++;
6570 break;
6571 }
6572
6573
6574 /* The beginning of a group is represented by start_memory.
6575 The arguments are the register number in the next byte, and the
6576 number of groups inner to this one in the next. The text
6577 matched within the group is recorded (in the internal
6578 registers data structure) under the register number. */
6579 case start_memory:
6580 DEBUG_PRINT3 ("EXECUTING start_memory %ld (%ld):\n",
6581 (long int) *p, (long int) p[1]);
6582
6583 /* Find out if this group can match the empty string. */
6584 p1 = p; /* To send to group_match_null_string_p. */
6585
6586 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
6587 REG_MATCH_NULL_STRING_P (reg_info[*p])
6588 = PREFIX(group_match_null_string_p) (&p1, pend, reg_info);
6589
6590 /* Save the position in the string where we were the last time
6591 we were at this open-group operator in case the group is
6592 operated upon by a repetition operator, e.g., with `(a*)*b'
6593 against `ab'; then we want to ignore where we are now in
6594 the string in case this attempt to match fails. */
6595 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6596 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
6597 : regstart[*p];
6598 DEBUG_PRINT2 (" old_regstart: %d\n",
6599 POINTER_TO_OFFSET (old_regstart[*p]));
6600
6601 regstart[*p] = d;
6602 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
6603
6604 IS_ACTIVE (reg_info[*p]) = 1;
6605 MATCHED_SOMETHING (reg_info[*p]) = 0;
6606
6607 /* Clear this whenever we change the register activity status. */
6608 set_regs_matched_done = 0;
6609
6610 /* This is the new highest active register. */
6611 highest_active_reg = *p;
6612
6613 /* If nothing was active before, this is the new lowest active
6614 register. */
6615 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6616 lowest_active_reg = *p;
6617
6618 /* Move past the register number and inner group count. */
6619 p += 2;
6620 just_past_start_mem = p;
6621
6622 break;
6623
6624
6625 /* The stop_memory opcode represents the end of a group. Its
6626 arguments are the same as start_memory's: the register
6627 number, and the number of inner groups. */
6628 case stop_memory:
6629 DEBUG_PRINT3 ("EXECUTING stop_memory %ld (%ld):\n",
6630 (long int) *p, (long int) p[1]);
6631
6632 /* We need to save the string position the last time we were at
6633 this close-group operator in case the group is operated
6634 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
6635 against `aba'; then we want to ignore where we are now in
6636 the string in case this attempt to match fails. */
6637 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
6638 ? REG_UNSET (regend[*p]) ? d : regend[*p]
6639 : regend[*p];
6640 DEBUG_PRINT2 (" old_regend: %d\n",
6641 POINTER_TO_OFFSET (old_regend[*p]));
6642
6643 regend[*p] = d;
6644 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
6645
6646 /* This register isn't active anymore. */
6647 IS_ACTIVE (reg_info[*p]) = 0;
6648
6649 /* Clear this whenever we change the register activity status. */
6650 set_regs_matched_done = 0;
6651
6652 /* If this was the only register active, nothing is active
6653 anymore. */
6654 if (lowest_active_reg == highest_active_reg)
6655 {
6656 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6657 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6658 }
6659 else
6660 { /* We must scan for the new highest active register, since
6661 it isn't necessarily one less than now: consider
6662 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
6663 new highest active register is 1. */
6664 UCHAR_T r = *p - 1;
6665 while (r > 0 && !IS_ACTIVE (reg_info[r]))
6666 r--;
6667
6668 /* If we end up at register zero, that means that we saved
6669 the registers as the result of an `on_failure_jump', not
6670 a `start_memory', and we jumped to past the innermost
6671 `stop_memory'. For example, in ((.)*) we save
6672 registers 1 and 2 as a result of the *, but when we pop
6673 back to the second ), we are at the stop_memory 1.
6674 Thus, nothing is active. */
6675 if (r == 0)
6676 {
6677 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
6678 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
6679 }
6680 else
6681 highest_active_reg = r;
6682 }
6683
6684 /* If just failed to match something this time around with a
6685 group that's operated on by a repetition operator, try to
6686 force exit from the ``loop'', and restore the register
6687 information for this group that we had before trying this
6688 last match. */
6689 if ((!MATCHED_SOMETHING (reg_info[*p])
6690 || just_past_start_mem == p - 1)
6691 && (p + 2) < pend)
6692 {
6693 boolean is_a_jump_n = false;
6694
6695 p1 = p + 2;
6696 mcnt = 0;
6697 switch ((re_opcode_t) *p1++)
6698 {
6699 case jump_n:
6700 is_a_jump_n = true;
4d17eaec 6701 /* Fall through. */
2a6ef469
DD
6702 case pop_failure_jump:
6703 case maybe_pop_jump:
6704 case jump:
6705 case dummy_failure_jump:
6706 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6707 if (is_a_jump_n)
6708 p1 += OFFSET_ADDRESS_SIZE;
6709 break;
6710
6711 default:
6712 /* do nothing */ ;
6713 }
6714 p1 += mcnt;
6715
6716 /* If the next operation is a jump backwards in the pattern
6717 to an on_failure_jump right before the start_memory
6718 corresponding to this stop_memory, exit from the loop
6719 by forcing a failure after pushing on the stack the
6720 on_failure_jump's jump in the pattern, and d. */
6721 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
6722 && (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == start_memory
6723 && p1[2+OFFSET_ADDRESS_SIZE] == *p)
6724 {
6725 /* If this group ever matched anything, then restore
6726 what its registers were before trying this last
6727 failed match, e.g., with `(a*)*b' against `ab' for
6728 regstart[1], and, e.g., with `((a*)*(b*)*)*'
6729 against `aba' for regend[3].
6730
6731 Also restore the registers for inner groups for,
6732 e.g., `((a*)(b*))*' against `aba' (register 3 would
6733 otherwise get trashed). */
6734
6735 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
6736 {
6737 unsigned r;
6738
6739 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
6740
6741 /* Restore this and inner groups' (if any) registers. */
6742 for (r = *p; r < (unsigned) *p + (unsigned) *(p + 1);
6743 r++)
6744 {
6745 regstart[r] = old_regstart[r];
6746
6747 /* xx why this test? */
6748 if (old_regend[r] >= regstart[r])
6749 regend[r] = old_regend[r];
6750 }
6751 }
6752 p1++;
6753 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
6754 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
6755
6756 goto fail;
6757 }
6758 }
6759
6760 /* Move past the register number and the inner group count. */
6761 p += 2;
6762 break;
6763
6764
6765 /* \<digit> has been turned into a `duplicate' command which is
6766 followed by the numeric value of <digit> as the register number. */
6767 case duplicate:
6768 {
6769 register const CHAR_T *d2, *dend2;
6770 int regno = *p++; /* Get which register to match against. */
6771 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
6772
6773 /* Can't back reference a group which we've never matched. */
6774 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
6775 goto fail;
6776
6777 /* Where in input to try to start matching. */
6778 d2 = regstart[regno];
6779
6780 /* Where to stop matching; if both the place to start and
6781 the place to stop matching are in the same string, then
6782 set to the place to stop, otherwise, for now have to use
6783 the end of the first string. */
6784
6785 dend2 = ((FIRST_STRING_P (regstart[regno])
6786 == FIRST_STRING_P (regend[regno]))
6787 ? regend[regno] : end_match_1);
6788 for (;;)
6789 {
6790 /* If necessary, advance to next segment in register
6791 contents. */
6792 while (d2 == dend2)
6793 {
6794 if (dend2 == end_match_2) break;
6795 if (dend2 == regend[regno]) break;
6796
6797 /* End of string1 => advance to string2. */
6798 d2 = string2;
6799 dend2 = regend[regno];
6800 }
6801 /* At end of register contents => success */
6802 if (d2 == dend2) break;
6803
6804 /* If necessary, advance to next segment in data. */
6805 PREFETCH ();
6806
6807 /* How many characters left in this segment to match. */
6808 mcnt = dend - d;
6809
6810 /* Want how many consecutive characters we can match in
6811 one shot, so, if necessary, adjust the count. */
6812 if (mcnt > dend2 - d2)
6813 mcnt = dend2 - d2;
6814
6815 /* Compare that many; failure if mismatch, else move
6816 past them. */
6817 if (translate
6818 ? PREFIX(bcmp_translate) (d, d2, mcnt, translate)
6819 : memcmp (d, d2, mcnt*sizeof(UCHAR_T)))
6820 goto fail;
6821 d += mcnt, d2 += mcnt;
6822
6823 /* Do this because we've match some characters. */
6824 SET_REGS_MATCHED ();
6825 }
6826 }
6827 break;
6828
6829
6830 /* begline matches the empty string at the beginning of the string
6831 (unless `not_bol' is set in `bufp'), and, if
6832 `newline_anchor' is set, after newlines. */
6833 case begline:
6834 DEBUG_PRINT1 ("EXECUTING begline.\n");
6835
6836 if (AT_STRINGS_BEG (d))
6837 {
6838 if (!bufp->not_bol) break;
6839 }
6840 else if (d[-1] == '\n' && bufp->newline_anchor)
6841 {
6842 break;
6843 }
6844 /* In all other cases, we fail. */
6845 goto fail;
6846
6847
6848 /* endline is the dual of begline. */
6849 case endline:
6850 DEBUG_PRINT1 ("EXECUTING endline.\n");
6851
6852 if (AT_STRINGS_END (d))
6853 {
6854 if (!bufp->not_eol) break;
6855 }
6856
6857 /* We have to ``prefetch'' the next character. */
6858 else if ((d == end1 ? *string2 : *d) == '\n'
6859 && bufp->newline_anchor)
6860 {
6861 break;
6862 }
6863 goto fail;
6864
6865
6866 /* Match at the very beginning of the data. */
6867 case begbuf:
6868 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
6869 if (AT_STRINGS_BEG (d))
6870 break;
6871 goto fail;
6872
6873
6874 /* Match at the very end of the data. */
6875 case endbuf:
6876 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
6877 if (AT_STRINGS_END (d))
6878 break;
6879 goto fail;
6880
6881
6882 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
6883 pushes NULL as the value for the string on the stack. Then
6884 `pop_failure_point' will keep the current value for the
6885 string, instead of restoring it. To see why, consider
6886 matching `foo\nbar' against `.*\n'. The .* matches the foo;
6887 then the . fails against the \n. But the next thing we want
6888 to do is match the \n against the \n; if we restored the
6889 string value, we would be back at the foo.
6890
6891 Because this is used only in specific cases, we don't need to
6892 check all the things that `on_failure_jump' does, to make
6893 sure the right things get saved on the stack. Hence we don't
6894 share its code. The only reason to push anything on the
6895 stack at all is that otherwise we would have to change
6896 `anychar's code to do something besides goto fail in this
6897 case; that seems worse than this. */
6898 case on_failure_keep_string_jump:
6899 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
6900
6901 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6902#ifdef _LIBC
6903 DEBUG_PRINT3 (" %d (to %p):\n", mcnt, p + mcnt);
6904#else
6905 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
6906#endif
6907
6908 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
6909 break;
6910
6911
6912 /* Uses of on_failure_jump:
6913
6914 Each alternative starts with an on_failure_jump that points
6915 to the beginning of the next alternative. Each alternative
6916 except the last ends with a jump that in effect jumps past
6917 the rest of the alternatives. (They really jump to the
6918 ending jump of the following alternative, because tensioning
6919 these jumps is a hassle.)
6920
6921 Repeats start with an on_failure_jump that points past both
6922 the repetition text and either the following jump or
6923 pop_failure_jump back to this on_failure_jump. */
6924 case on_failure_jump:
6925 on_failure:
6926 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
6927
6928 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6929#ifdef _LIBC
6930 DEBUG_PRINT3 (" %d (to %p)", mcnt, p + mcnt);
6931#else
6932 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
6933#endif
6934
6935 /* If this on_failure_jump comes right before a group (i.e.,
6936 the original * applied to a group), save the information
6937 for that group and all inner ones, so that if we fail back
6938 to this point, the group's information will be correct.
6939 For example, in \(a*\)*\1, we need the preceding group,
6940 and in \(zz\(a*\)b*\)\2, we need the inner group. */
6941
6942 /* We can't use `p' to check ahead because we push
6943 a failure point to `p + mcnt' after we do this. */
6944 p1 = p;
6945
6946 /* We need to skip no_op's before we look for the
6947 start_memory in case this on_failure_jump is happening as
6948 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
6949 against aba. */
6950 while (p1 < pend && (re_opcode_t) *p1 == no_op)
6951 p1++;
6952
6953 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
6954 {
6955 /* We have a new highest active register now. This will
6956 get reset at the start_memory we are about to get to,
6957 but we will have saved all the registers relevant to
6958 this repetition op, as described above. */
6959 highest_active_reg = *(p1 + 1) + *(p1 + 2);
6960 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
6961 lowest_active_reg = *(p1 + 1);
6962 }
6963
6964 DEBUG_PRINT1 (":\n");
6965 PUSH_FAILURE_POINT (p + mcnt, d, -2);
6966 break;
6967
6968
6969 /* A smart repeat ends with `maybe_pop_jump'.
6970 We change it to either `pop_failure_jump' or `jump'. */
6971 case maybe_pop_jump:
6972 EXTRACT_NUMBER_AND_INCR (mcnt, p);
6973 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
6974 {
6975 register UCHAR_T *p2 = p;
6976
6977 /* Compare the beginning of the repeat with what in the
6978 pattern follows its end. If we can establish that there
6979 is nothing that they would both match, i.e., that we
6980 would have to backtrack because of (as in, e.g., `a*a')
6981 then we can change to pop_failure_jump, because we'll
6982 never have to backtrack.
6983
6984 This is not true in the case of alternatives: in
6985 `(a|ab)*' we do need to backtrack to the `ab' alternative
6986 (e.g., if the string was `ab'). But instead of trying to
6987 detect that here, the alternative has put on a dummy
6988 failure point which is what we will end up popping. */
6989
6990 /* Skip over open/close-group commands.
6991 If what follows this loop is a ...+ construct,
6992 look at what begins its body, since we will have to
6993 match at least one of that. */
6994 while (1)
6995 {
6996 if (p2 + 2 < pend
6997 && ((re_opcode_t) *p2 == stop_memory
6998 || (re_opcode_t) *p2 == start_memory))
6999 p2 += 3;
7000 else if (p2 + 2 + 2 * OFFSET_ADDRESS_SIZE < pend
7001 && (re_opcode_t) *p2 == dummy_failure_jump)
7002 p2 += 2 + 2 * OFFSET_ADDRESS_SIZE;
7003 else
7004 break;
7005 }
7006
7007 p1 = p + mcnt;
7008 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
7009 to the `maybe_finalize_jump' of this case. Examine what
7010 follows. */
7011
7012 /* If we're at the end of the pattern, we can change. */
7013 if (p2 == pend)
7014 {
7015 /* Consider what happens when matching ":\(.*\)"
7016 against ":/". I don't really understand this code
7017 yet. */
7018 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7019 pop_failure_jump;
7020 DEBUG_PRINT1
7021 (" End of pattern: change to `pop_failure_jump'.\n");
7022 }
7023
7024 else if ((re_opcode_t) *p2 == exactn
7025#ifdef MBS_SUPPORT
7026 || (re_opcode_t) *p2 == exactn_bin
7027#endif
7028 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
7029 {
7030 register UCHAR_T c
7031 = *p2 == (UCHAR_T) endline ? '\n' : p2[2];
7032
7033 if (((re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn
7034#ifdef MBS_SUPPORT
7035 || (re_opcode_t) p1[1+OFFSET_ADDRESS_SIZE] == exactn_bin
7036#endif
7037 ) && p1[3+OFFSET_ADDRESS_SIZE] != c)
7038 {
7039 p[-(1+OFFSET_ADDRESS_SIZE)] = (UCHAR_T)
7040 pop_failure_jump;
7041#ifdef WCHAR
7042 DEBUG_PRINT3 (" %C != %C => pop_failure_jump.\n",
7043 (wint_t) c,
7044 (wint_t) p1[3+OFFSET_ADDRESS_SIZE]);
7045#else
7046 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
7047 (char) c,
7048 (char) p1[3+OFFSET_ADDRESS_SIZE]);
7049#endif
7050 }
7051
7052#ifndef WCHAR
7053 else if ((re_opcode_t) p1[3] == charset
7054 || (re_opcode_t) p1[3] == charset_not)
7055 {
ea7143ac 7056 int negate = (re_opcode_t) p1[3] == charset_not;
2a6ef469
DD
7057
7058 if (c < (unsigned) (p1[4] * BYTEWIDTH)
7059 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
ea7143ac 7060 negate = !negate;
2a6ef469 7061
ea7143ac 7062 /* `negate' is equal to 1 if c would match, which means
2a6ef469 7063 that we can't change to pop_failure_jump. */
ea7143ac 7064 if (!negate)
2a6ef469
DD
7065 {
7066 p[-3] = (unsigned char) pop_failure_jump;
7067 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7068 }
7069 }
7070#endif /* not WCHAR */
7071 }
7072#ifndef WCHAR
7073 else if ((re_opcode_t) *p2 == charset)
7074 {
7075 /* We win if the first character of the loop is not part
7076 of the charset. */
7077 if ((re_opcode_t) p1[3] == exactn
7078 && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
7079 && (p2[2 + p1[5] / BYTEWIDTH]
7080 & (1 << (p1[5] % BYTEWIDTH)))))
7081 {
7082 p[-3] = (unsigned char) pop_failure_jump;
7083 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7084 }
7085
7086 else if ((re_opcode_t) p1[3] == charset_not)
7087 {
7088 int idx;
7089 /* We win if the charset_not inside the loop
7090 lists every character listed in the charset after. */
7091 for (idx = 0; idx < (int) p2[1]; idx++)
7092 if (! (p2[2 + idx] == 0
7093 || (idx < (int) p1[4]
7094 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
7095 break;
7096
7097 if (idx == p2[1])
7098 {
7099 p[-3] = (unsigned char) pop_failure_jump;
7100 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7101 }
7102 }
7103 else if ((re_opcode_t) p1[3] == charset)
7104 {
7105 int idx;
7106 /* We win if the charset inside the loop
7107 has no overlap with the one after the loop. */
7108 for (idx = 0;
7109 idx < (int) p2[1] && idx < (int) p1[4];
7110 idx++)
7111 if ((p2[2 + idx] & p1[5 + idx]) != 0)
7112 break;
7113
7114 if (idx == p2[1] || idx == p1[4])
7115 {
7116 p[-3] = (unsigned char) pop_failure_jump;
7117 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
7118 }
7119 }
7120 }
7121#endif /* not WCHAR */
7122 }
7123 p -= OFFSET_ADDRESS_SIZE; /* Point at relative address again. */
7124 if ((re_opcode_t) p[-1] != pop_failure_jump)
7125 {
7126 p[-1] = (UCHAR_T) jump;
7127 DEBUG_PRINT1 (" Match => jump.\n");
7128 goto unconditional_jump;
7129 }
4d17eaec 7130 /* Fall through. */
2a6ef469
DD
7131
7132
7133 /* The end of a simple repeat has a pop_failure_jump back to
7134 its matching on_failure_jump, where the latter will push a
7135 failure point. The pop_failure_jump takes off failure
7136 points put on by this pop_failure_jump's matching
7137 on_failure_jump; we got through the pattern to here from the
7138 matching on_failure_jump, so didn't fail. */
7139 case pop_failure_jump:
7140 {
7141 /* We need to pass separate storage for the lowest and
7142 highest registers, even though we don't care about the
7143 actual values. Otherwise, we will restore only one
7144 register from the stack, since lowest will == highest in
7145 `pop_failure_point'. */
7146 active_reg_t dummy_low_reg, dummy_high_reg;
45ecb02a
DD
7147 UCHAR_T *pdummy ATTRIBUTE_UNUSED = NULL;
7148 const CHAR_T *sdummy ATTRIBUTE_UNUSED = NULL;
2a6ef469
DD
7149
7150 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
7151 POP_FAILURE_POINT (sdummy, pdummy,
7152 dummy_low_reg, dummy_high_reg,
7153 reg_dummy, reg_dummy, reg_info_dummy);
7154 }
4d17eaec 7155 /* Fall through. */
2a6ef469
DD
7156
7157 unconditional_jump:
7158#ifdef _LIBC
7159 DEBUG_PRINT2 ("\n%p: ", p);
7160#else
7161 DEBUG_PRINT2 ("\n0x%x: ", p);
7162#endif
7163 /* Note fall through. */
7164
7165 /* Unconditionally jump (without popping any failure points). */
7166 case jump:
7167 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
7168 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
7169 p += mcnt; /* Do the jump. */
7170#ifdef _LIBC
7171 DEBUG_PRINT2 ("(to %p).\n", p);
7172#else
7173 DEBUG_PRINT2 ("(to 0x%x).\n", p);
7174#endif
7175 break;
7176
7177
7178 /* We need this opcode so we can detect where alternatives end
7179 in `group_match_null_string_p' et al. */
7180 case jump_past_alt:
7181 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
7182 goto unconditional_jump;
7183
7184
7185 /* Normally, the on_failure_jump pushes a failure point, which
7186 then gets popped at pop_failure_jump. We will end up at
7187 pop_failure_jump, also, and with a pattern of, say, `a+', we
7188 are skipping over the on_failure_jump, so we have to push
7189 something meaningless for pop_failure_jump to pop. */
7190 case dummy_failure_jump:
7191 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
7192 /* It doesn't matter what we push for the string here. What
7193 the code at `fail' tests is the value for the pattern. */
7194 PUSH_FAILURE_POINT (NULL, NULL, -2);
7195 goto unconditional_jump;
7196
7197
7198 /* At the end of an alternative, we need to push a dummy failure
7199 point in case we are followed by a `pop_failure_jump', because
7200 we don't want the failure point for the alternative to be
7201 popped. For example, matching `(a|ab)*' against `aab'
7202 requires that we match the `ab' alternative. */
7203 case push_dummy_failure:
7204 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
7205 /* See comments just above at `dummy_failure_jump' about the
7206 two zeroes. */
7207 PUSH_FAILURE_POINT (NULL, NULL, -2);
7208 break;
7209
7210 /* Have to succeed matching what follows at least n times.
7211 After that, handle like `on_failure_jump'. */
7212 case succeed_n:
7213 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7214 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
7215
7216 assert (mcnt >= 0);
7217 /* Originally, this is how many times we HAVE to succeed. */
7218 if (mcnt > 0)
7219 {
7220 mcnt--;
7221 p += OFFSET_ADDRESS_SIZE;
7222 STORE_NUMBER_AND_INCR (p, mcnt);
7223#ifdef _LIBC
7224 DEBUG_PRINT3 (" Setting %p to %d.\n", p - OFFSET_ADDRESS_SIZE
7225 , mcnt);
7226#else
7227 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p - OFFSET_ADDRESS_SIZE
7228 , mcnt);
7229#endif
7230 }
7231 else if (mcnt == 0)
7232 {
7233#ifdef _LIBC
7234 DEBUG_PRINT2 (" Setting two bytes from %p to no_op.\n",
7235 p + OFFSET_ADDRESS_SIZE);
7236#else
7237 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n",
7238 p + OFFSET_ADDRESS_SIZE);
7239#endif /* _LIBC */
7240
7241#ifdef WCHAR
7242 p[1] = (UCHAR_T) no_op;
7243#else
7244 p[2] = (UCHAR_T) no_op;
7245 p[3] = (UCHAR_T) no_op;
7246#endif /* WCHAR */
7247 goto on_failure;
7248 }
7249 break;
7250
7251 case jump_n:
7252 EXTRACT_NUMBER (mcnt, p + OFFSET_ADDRESS_SIZE);
7253 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
7254
7255 /* Originally, this is how many times we CAN jump. */
7256 if (mcnt)
7257 {
7258 mcnt--;
7259 STORE_NUMBER (p + OFFSET_ADDRESS_SIZE, mcnt);
7260
7261#ifdef _LIBC
7262 DEBUG_PRINT3 (" Setting %p to %d.\n", p + OFFSET_ADDRESS_SIZE,
7263 mcnt);
7264#else
7265 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p + OFFSET_ADDRESS_SIZE,
7266 mcnt);
7267#endif /* _LIBC */
7268 goto unconditional_jump;
7269 }
7270 /* If don't have to jump any more, skip over the rest of command. */
7271 else
7272 p += 2 * OFFSET_ADDRESS_SIZE;
7273 break;
7274
7275 case set_number_at:
7276 {
7277 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
7278
7279 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7280 p1 = p + mcnt;
7281 EXTRACT_NUMBER_AND_INCR (mcnt, p);
7282#ifdef _LIBC
7283 DEBUG_PRINT3 (" Setting %p to %d.\n", p1, mcnt);
7284#else
7285 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
7286#endif
7287 STORE_NUMBER (p1, mcnt);
7288 break;
7289 }
7290
7291#if 0
7292 /* The DEC Alpha C compiler 3.x generates incorrect code for the
7293 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
7294 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
7295 macro and introducing temporary variables works around the bug. */
7296
7297 case wordbound:
7298 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7299 if (AT_WORD_BOUNDARY (d))
7300 break;
7301 goto fail;
7302
7303 case notwordbound:
7304 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7305 if (AT_WORD_BOUNDARY (d))
7306 goto fail;
7307 break;
7308#else
7309 case wordbound:
7310 {
7311 boolean prevchar, thischar;
7312
7313 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
7314 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7315 break;
7316
7317 prevchar = WORDCHAR_P (d - 1);
7318 thischar = WORDCHAR_P (d);
7319 if (prevchar != thischar)
7320 break;
7321 goto fail;
7322 }
7323
7324 case notwordbound:
7325 {
7326 boolean prevchar, thischar;
7327
7328 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
7329 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
7330 goto fail;
7331
7332 prevchar = WORDCHAR_P (d - 1);
7333 thischar = WORDCHAR_P (d);
7334 if (prevchar != thischar)
7335 goto fail;
7336 break;
7337 }
7338#endif
7339
7340 case wordbeg:
7341 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
7342 if (!AT_STRINGS_END (d) && WORDCHAR_P (d)
7343 && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
7344 break;
7345 goto fail;
7346
7347 case wordend:
7348 DEBUG_PRINT1 ("EXECUTING wordend.\n");
7349 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
7350 && (AT_STRINGS_END (d) || !WORDCHAR_P (d)))
7351 break;
7352 goto fail;
7353
7354#ifdef emacs
7355 case before_dot:
7356 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
7357 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
7358 goto fail;
7359 break;
7360
7361 case at_dot:
7362 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
7363 if (PTR_CHAR_POS ((unsigned char *) d) != point)
7364 goto fail;
7365 break;
7366
7367 case after_dot:
7368 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
7369 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
7370 goto fail;
7371 break;
7372
7373 case syntaxspec:
7374 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
7375 mcnt = *p++;
7376 goto matchsyntax;
7377
7378 case wordchar:
7379 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
7380 mcnt = (int) Sword;
7381 matchsyntax:
7382 PREFETCH ();
7383 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7384 d++;
7385 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
7386 goto fail;
7387 SET_REGS_MATCHED ();
7388 break;
7389
7390 case notsyntaxspec:
7391 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
7392 mcnt = *p++;
7393 goto matchnotsyntax;
7394
7395 case notwordchar:
7396 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
7397 mcnt = (int) Sword;
7398 matchnotsyntax:
7399 PREFETCH ();
7400 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
7401 d++;
7402 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
7403 goto fail;
7404 SET_REGS_MATCHED ();
7405 break;
7406
7407#else /* not emacs */
7408 case wordchar:
7409 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
7410 PREFETCH ();
7411 if (!WORDCHAR_P (d))
7412 goto fail;
7413 SET_REGS_MATCHED ();
7414 d++;
7415 break;
7416
7417 case notwordchar:
7418 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
7419 PREFETCH ();
7420 if (WORDCHAR_P (d))
7421 goto fail;
7422 SET_REGS_MATCHED ();
7423 d++;
7424 break;
7425#endif /* not emacs */
7426
7427 default:
7428 abort ();
7429 }
7430 continue; /* Successfully executed one pattern command; keep going. */
7431
7432
7433 /* We goto here if a matching operation fails. */
7434 fail:
7435 if (!FAIL_STACK_EMPTY ())
7436 { /* A restart point is known. Restore to that state. */
7437 DEBUG_PRINT1 ("\nFAIL:\n");
7438 POP_FAILURE_POINT (d, p,
7439 lowest_active_reg, highest_active_reg,
7440 regstart, regend, reg_info);
7441
7442 /* If this failure point is a dummy, try the next one. */
7443 if (!p)
7444 goto fail;
7445
7446 /* If we failed to the end of the pattern, don't examine *p. */
7447 assert (p <= pend);
7448 if (p < pend)
7449 {
7450 boolean is_a_jump_n = false;
7451
7452 /* If failed to a backwards jump that's part of a repetition
7453 loop, need to pop this failure point and use the next one. */
7454 switch ((re_opcode_t) *p)
7455 {
7456 case jump_n:
7457 is_a_jump_n = true;
4d17eaec 7458 /* Fall through. */
2a6ef469
DD
7459 case maybe_pop_jump:
7460 case pop_failure_jump:
7461 case jump:
7462 p1 = p + 1;
7463 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7464 p1 += mcnt;
7465
7466 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
7467 || (!is_a_jump_n
7468 && (re_opcode_t) *p1 == on_failure_jump))
7469 goto fail;
7470 break;
7471 default:
7472 /* do nothing */ ;
7473 }
7474 }
7475
7476 if (d >= string1 && d <= end1)
7477 dend = end_match_1;
7478 }
7479 else
7480 break; /* Matching at this starting point really fails. */
7481 } /* for (;;) */
7482
7483 if (best_regs_set)
7484 goto restore_best_regs;
7485
7486 FREE_VARIABLES ();
7487
7488 return -1; /* Failure to match. */
7489} /* re_match_2 */
7490\f
7491/* Subroutine definitions for re_match_2. */
7492
7493
7494/* We are passed P pointing to a register number after a start_memory.
7495
7496 Return true if the pattern up to the corresponding stop_memory can
7497 match the empty string, and false otherwise.
7498
7499 If we find the matching stop_memory, sets P to point to one past its number.
7500 Otherwise, sets P to an undefined byte less than or equal to END.
7501
7502 We don't handle duplicates properly (yet). */
7503
7504static boolean
e064c173
DD
7505PREFIX(group_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7506 PREFIX(register_info_type) *reg_info)
2a6ef469
DD
7507{
7508 int mcnt;
7509 /* Point to after the args to the start_memory. */
7510 UCHAR_T *p1 = *p + 2;
7511
7512 while (p1 < end)
7513 {
7514 /* Skip over opcodes that can match nothing, and return true or
7515 false, as appropriate, when we get to one that can't, or to the
7516 matching stop_memory. */
7517
7518 switch ((re_opcode_t) *p1)
7519 {
7520 /* Could be either a loop or a series of alternatives. */
7521 case on_failure_jump:
7522 p1++;
7523 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7524
7525 /* If the next operation is not a jump backwards in the
7526 pattern. */
7527
7528 if (mcnt >= 0)
7529 {
7530 /* Go through the on_failure_jumps of the alternatives,
7531 seeing if any of the alternatives cannot match nothing.
7532 The last alternative starts with only a jump,
7533 whereas the rest start with on_failure_jump and end
7534 with a jump, e.g., here is the pattern for `a|b|c':
7535
7536 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
7537 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
7538 /exactn/1/c
7539
7540 So, we have to first go through the first (n-1)
7541 alternatives and then deal with the last one separately. */
7542
7543
7544 /* Deal with the first (n-1) alternatives, which start
7545 with an on_failure_jump (see above) that jumps to right
7546 past a jump_past_alt. */
7547
7548 while ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] ==
7549 jump_past_alt)
7550 {
7551 /* `mcnt' holds how many bytes long the alternative
7552 is, including the ending `jump_past_alt' and
7553 its number. */
7554
7555 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt -
7556 (1 + OFFSET_ADDRESS_SIZE),
7557 reg_info))
7558 return false;
7559
7560 /* Move to right after this alternative, including the
7561 jump_past_alt. */
7562 p1 += mcnt;
7563
7564 /* Break if it's the beginning of an n-th alternative
7565 that doesn't begin with an on_failure_jump. */
7566 if ((re_opcode_t) *p1 != on_failure_jump)
7567 break;
7568
7569 /* Still have to check that it's not an n-th
7570 alternative that starts with an on_failure_jump. */
7571 p1++;
7572 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7573 if ((re_opcode_t) p1[mcnt-(1+OFFSET_ADDRESS_SIZE)] !=
7574 jump_past_alt)
7575 {
7576 /* Get to the beginning of the n-th alternative. */
7577 p1 -= 1 + OFFSET_ADDRESS_SIZE;
7578 break;
7579 }
7580 }
7581
7582 /* Deal with the last alternative: go back and get number
7583 of the `jump_past_alt' just before it. `mcnt' contains
7584 the length of the alternative. */
7585 EXTRACT_NUMBER (mcnt, p1 - OFFSET_ADDRESS_SIZE);
7586
7587 if (!PREFIX(alt_match_null_string_p) (p1, p1 + mcnt, reg_info))
7588 return false;
7589
7590 p1 += mcnt; /* Get past the n-th alternative. */
7591 } /* if mcnt > 0 */
7592 break;
7593
7594
7595 case stop_memory:
7596 assert (p1[1] == **p);
7597 *p = p1 + 2;
7598 return true;
7599
7600
7601 default:
7602 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7603 return false;
7604 }
7605 } /* while p1 < end */
7606
7607 return false;
7608} /* group_match_null_string_p */
7609
7610
7611/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
7612 It expects P to be the first byte of a single alternative and END one
7613 byte past the last. The alternative can contain groups. */
7614
7615static boolean
e064c173
DD
7616PREFIX(alt_match_null_string_p) (UCHAR_T *p, UCHAR_T *end,
7617 PREFIX(register_info_type) *reg_info)
2a6ef469
DD
7618{
7619 int mcnt;
7620 UCHAR_T *p1 = p;
7621
7622 while (p1 < end)
7623 {
7624 /* Skip over opcodes that can match nothing, and break when we get
7625 to one that can't. */
7626
7627 switch ((re_opcode_t) *p1)
7628 {
7629 /* It's a loop. */
7630 case on_failure_jump:
7631 p1++;
7632 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7633 p1 += mcnt;
7634 break;
7635
7636 default:
7637 if (!PREFIX(common_op_match_null_string_p) (&p1, end, reg_info))
7638 return false;
7639 }
7640 } /* while p1 < end */
7641
7642 return true;
7643} /* alt_match_null_string_p */
7644
7645
7646/* Deals with the ops common to group_match_null_string_p and
7647 alt_match_null_string_p.
7648
7649 Sets P to one after the op and its arguments, if any. */
7650
7651static boolean
e064c173
DD
7652PREFIX(common_op_match_null_string_p) (UCHAR_T **p, UCHAR_T *end,
7653 PREFIX(register_info_type) *reg_info)
2a6ef469
DD
7654{
7655 int mcnt;
7656 boolean ret;
7657 int reg_no;
7658 UCHAR_T *p1 = *p;
7659
7660 switch ((re_opcode_t) *p1++)
7661 {
7662 case no_op:
7663 case begline:
7664 case endline:
7665 case begbuf:
7666 case endbuf:
7667 case wordbeg:
7668 case wordend:
7669 case wordbound:
7670 case notwordbound:
7671#ifdef emacs
7672 case before_dot:
7673 case at_dot:
7674 case after_dot:
7675#endif
7676 break;
7677
7678 case start_memory:
7679 reg_no = *p1;
7680 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
7681 ret = PREFIX(group_match_null_string_p) (&p1, end, reg_info);
7682
7683 /* Have to set this here in case we're checking a group which
7684 contains a group and a back reference to it. */
7685
7686 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
7687 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
7688
7689 if (!ret)
7690 return false;
7691 break;
7692
7693 /* If this is an optimized succeed_n for zero times, make the jump. */
7694 case jump:
7695 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7696 if (mcnt >= 0)
7697 p1 += mcnt;
7698 else
7699 return false;
7700 break;
7701
7702 case succeed_n:
7703 /* Get to the number of times to succeed. */
7704 p1 += OFFSET_ADDRESS_SIZE;
7705 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7706
7707 if (mcnt == 0)
7708 {
7709 p1 -= 2 * OFFSET_ADDRESS_SIZE;
7710 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
7711 p1 += mcnt;
7712 }
7713 else
7714 return false;
7715 break;
7716
7717 case duplicate:
7718 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
7719 return false;
7720 break;
7721
7722 case set_number_at:
7723 p1 += 2 * OFFSET_ADDRESS_SIZE;
4d17eaec 7724 return false;
2a6ef469
DD
7725
7726 default:
7727 /* All other opcodes mean we cannot match the empty string. */
7728 return false;
7729 }
7730
7731 *p = p1;
7732 return true;
7733} /* common_op_match_null_string_p */
7734
7735
7736/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
7737 bytes; nonzero otherwise. */
7738
7739static int
e064c173
DD
7740PREFIX(bcmp_translate) (const CHAR_T *s1, const CHAR_T *s2, register int len,
7741 RE_TRANSLATE_TYPE translate)
2a6ef469
DD
7742{
7743 register const UCHAR_T *p1 = (const UCHAR_T *) s1;
7744 register const UCHAR_T *p2 = (const UCHAR_T *) s2;
7745 while (len)
7746 {
7747#ifdef WCHAR
7748 if (((*p1<=0xff)?translate[*p1++]:*p1++)
7749 != ((*p2<=0xff)?translate[*p2++]:*p2++))
7750 return 1;
7751#else /* BYTE */
7752 if (translate[*p1++] != translate[*p2++]) return 1;
7753#endif /* WCHAR */
7754 len--;
7755 }
7756 return 0;
7757}
7758\f
7759
7760#else /* not INSIDE_RECURSION */
7761
7762/* Entry points for GNU code. */
7763
7764/* re_compile_pattern is the GNU regular expression compiler: it
7765 compiles PATTERN (of length SIZE) and puts the result in BUFP.
7766 Returns 0 if the pattern was valid, otherwise an error string.
7767
7768 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
7769 are set in BUFP on entry.
7770
7771 We call regex_compile to do the actual compilation. */
7772
7773const char *
e064c173
DD
7774re_compile_pattern (const char *pattern, size_t length,
7775 struct re_pattern_buffer *bufp)
2a6ef469
DD
7776{
7777 reg_errcode_t ret;
7778
7779 /* GNU code is written to assume at least RE_NREGS registers will be set
7780 (and at least one extra will be -1). */
7781 bufp->regs_allocated = REGS_UNALLOCATED;
7782
7783 /* And GNU code determines whether or not to get register information
7784 by passing null for the REGS argument to re_match, etc., not by
7785 setting no_sub. */
7786 bufp->no_sub = 0;
7787
7788 /* Match anchors at newline. */
7789 bufp->newline_anchor = 1;
7790
7791# ifdef MBS_SUPPORT
7792 if (MB_CUR_MAX != 1)
7793 ret = wcs_regex_compile (pattern, length, re_syntax_options, bufp);
7794 else
7795# endif
7796 ret = byte_regex_compile (pattern, length, re_syntax_options, bufp);
7797
7798 if (!ret)
7799 return NULL;
a2832523 7800 return gettext (re_error_msgid[(int) ret]);
2a6ef469
DD
7801}
7802#ifdef _LIBC
7803weak_alias (__re_compile_pattern, re_compile_pattern)
7804#endif
7805\f
7806/* Entry points compatible with 4.2 BSD regex library. We don't define
7807 them unless specifically requested. */
7808
7809#if defined _REGEX_RE_COMP || defined _LIBC
7810
7811/* BSD has one and only one pattern buffer. */
7812static struct re_pattern_buffer re_comp_buf;
7813
7814char *
7815#ifdef _LIBC
7816/* Make these definitions weak in libc, so POSIX programs can redefine
7817 these names if they don't use our functions, and still use
7818 regcomp/regexec below without link errors. */
7819weak_function
7820#endif
e064c173 7821re_comp (const char *s)
2a6ef469
DD
7822{
7823 reg_errcode_t ret;
7824
7825 if (!s)
7826 {
7827 if (!re_comp_buf.buffer)
f2942ea4 7828 return (char *) gettext ("No previous regular expression");
2a6ef469
DD
7829 return 0;
7830 }
7831
7832 if (!re_comp_buf.buffer)
7833 {
7834 re_comp_buf.buffer = (unsigned char *) malloc (200);
7835 if (re_comp_buf.buffer == NULL)
a2832523 7836 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
2a6ef469
DD
7837 re_comp_buf.allocated = 200;
7838
7839 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
7840 if (re_comp_buf.fastmap == NULL)
a2832523 7841 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
2a6ef469
DD
7842 }
7843
7844 /* Since `re_exec' always passes NULL for the `regs' argument, we
7845 don't need to initialize the pattern buffer fields which affect it. */
7846
7847 /* Match anchors at newlines. */
7848 re_comp_buf.newline_anchor = 1;
7849
7850# ifdef MBS_SUPPORT
7851 if (MB_CUR_MAX != 1)
7852 ret = wcs_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7853 else
7854# endif
7855 ret = byte_regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
7856
7857 if (!ret)
7858 return NULL;
7859
7860 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
a2832523 7861 return (char *) gettext (re_error_msgid[(int) ret]);
2a6ef469
DD
7862}
7863
7864
7865int
7866#ifdef _LIBC
7867weak_function
7868#endif
e064c173 7869re_exec (const char *s)
2a6ef469
DD
7870{
7871 const int len = strlen (s);
7872 return
7873 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
7874}
7875
7876#endif /* _REGEX_RE_COMP */
7877\f
7878/* POSIX.2 functions. Don't define these for Emacs. */
7879
7880#ifndef emacs
7881
7882/* regcomp takes a regular expression as a string and compiles it.
7883
7884 PREG is a regex_t *. We do not expect any fields to be initialized,
7885 since POSIX says we shouldn't. Thus, we set
7886
7887 `buffer' to the compiled pattern;
7888 `used' to the length of the compiled pattern;
7889 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
7890 REG_EXTENDED bit in CFLAGS is set; otherwise, to
7891 RE_SYNTAX_POSIX_BASIC;
7892 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
7893 `fastmap' to an allocated space for the fastmap;
7894 `fastmap_accurate' to zero;
7895 `re_nsub' to the number of subexpressions in PATTERN.
7896
7897 PATTERN is the address of the pattern string.
7898
7899 CFLAGS is a series of bits which affect compilation.
7900
7901 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
7902 use POSIX basic syntax.
7903
7904 If REG_NEWLINE is set, then . and [^...] don't match newline.
7905 Also, regexec will try a match beginning after every newline.
7906
7907 If REG_ICASE is set, then we considers upper- and lowercase
7908 versions of letters to be equivalent when matching.
7909
7910 If REG_NOSUB is set, then when PREG is passed to regexec, that
7911 routine will report only success or failure, and nothing about the
7912 registers.
7913
7914 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
7915 the return codes and their meanings.) */
7916
7917int
e064c173 7918regcomp (regex_t *preg, const char *pattern, int cflags)
2a6ef469
DD
7919{
7920 reg_errcode_t ret;
7921 reg_syntax_t syntax
7922 = (cflags & REG_EXTENDED) ?
7923 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
7924
7925 /* regex_compile will allocate the space for the compiled pattern. */
7926 preg->buffer = 0;
7927 preg->allocated = 0;
7928 preg->used = 0;
7929
7930 /* Try to allocate space for the fastmap. */
7931 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
7932
7933 if (cflags & REG_ICASE)
7934 {
6038baea 7935 int i;
2a6ef469
DD
7936
7937 preg->translate
7938 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
7939 * sizeof (*(RE_TRANSLATE_TYPE)0));
7940 if (preg->translate == NULL)
7941 return (int) REG_ESPACE;
7942
7943 /* Map uppercase characters to corresponding lowercase ones. */
7944 for (i = 0; i < CHAR_SET_SIZE; i++)
6038baea 7945 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
2a6ef469
DD
7946 }
7947 else
7948 preg->translate = NULL;
7949
7950 /* If REG_NEWLINE is set, newlines are treated differently. */
7951 if (cflags & REG_NEWLINE)
7952 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
7953 syntax &= ~RE_DOT_NEWLINE;
7954 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
7955 /* It also changes the matching behavior. */
7956 preg->newline_anchor = 1;
7957 }
7958 else
7959 preg->newline_anchor = 0;
7960
7961 preg->no_sub = !!(cflags & REG_NOSUB);
7962
7963 /* POSIX says a null character in the pattern terminates it, so we
7964 can use strlen here in compiling the pattern. */
7965# ifdef MBS_SUPPORT
7966 if (MB_CUR_MAX != 1)
7967 ret = wcs_regex_compile (pattern, strlen (pattern), syntax, preg);
7968 else
7969# endif
7970 ret = byte_regex_compile (pattern, strlen (pattern), syntax, preg);
7971
7972 /* POSIX doesn't distinguish between an unmatched open-group and an
7973 unmatched close-group: both are REG_EPAREN. */
7974 if (ret == REG_ERPAREN) ret = REG_EPAREN;
7975
7976 if (ret == REG_NOERROR && preg->fastmap)
7977 {
7978 /* Compute the fastmap now, since regexec cannot modify the pattern
7979 buffer. */
7980 if (re_compile_fastmap (preg) == -2)
7981 {
7982 /* Some error occurred while computing the fastmap, just forget
7983 about it. */
7984 free (preg->fastmap);
7985 preg->fastmap = NULL;
7986 }
7987 }
7988
7989 return (int) ret;
7990}
7991#ifdef _LIBC
7992weak_alias (__regcomp, regcomp)
7993#endif
7994
7995
7996/* regexec searches for a given pattern, specified by PREG, in the
7997 string STRING.
7998
7999 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
8000 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
8001 least NMATCH elements, and we set them to the offsets of the
8002 corresponding matched substrings.
8003
8004 EFLAGS specifies `execution flags' which affect matching: if
8005 REG_NOTBOL is set, then ^ does not match at the beginning of the
8006 string; if REG_NOTEOL is set, then $ does not match at the end.
8007
8008 We return 0 if we find a match and REG_NOMATCH if not. */
8009
8010int
e064c173
DD
8011regexec (const regex_t *preg, const char *string, size_t nmatch,
8012 regmatch_t pmatch[], int eflags)
2a6ef469
DD
8013{
8014 int ret;
8015 struct re_registers regs;
8016 regex_t private_preg;
8017 int len = strlen (string);
8018 boolean want_reg_info = !preg->no_sub && nmatch > 0;
8019
8020 private_preg = *preg;
8021
8022 private_preg.not_bol = !!(eflags & REG_NOTBOL);
8023 private_preg.not_eol = !!(eflags & REG_NOTEOL);
8024
8025 /* The user has told us exactly how many registers to return
8026 information about, via `nmatch'. We have to pass that on to the
8027 matching routines. */
8028 private_preg.regs_allocated = REGS_FIXED;
8029
8030 if (want_reg_info)
8031 {
8032 regs.num_regs = nmatch;
8033 regs.start = TALLOC (nmatch * 2, regoff_t);
8034 if (regs.start == NULL)
8035 return (int) REG_NOMATCH;
8036 regs.end = regs.start + nmatch;
8037 }
8038
8039 /* Perform the searching operation. */
8040 ret = re_search (&private_preg, string, len,
8041 /* start: */ 0, /* range: */ len,
8042 want_reg_info ? &regs : (struct re_registers *) 0);
8043
8044 /* Copy the register information to the POSIX structure. */
8045 if (want_reg_info)
8046 {
8047 if (ret >= 0)
8048 {
8049 unsigned r;
8050
8051 for (r = 0; r < nmatch; r++)
8052 {
8053 pmatch[r].rm_so = regs.start[r];
8054 pmatch[r].rm_eo = regs.end[r];
8055 }
8056 }
8057
8058 /* If we needed the temporary register info, free the space now. */
8059 free (regs.start);
8060 }
8061
8062 /* We want zero return to mean success, unlike `re_search'. */
8063 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
8064}
8065#ifdef _LIBC
8066weak_alias (__regexec, regexec)
8067#endif
8068
8069
8070/* Returns a message corresponding to an error code, ERRCODE, returned
8071 from either regcomp or regexec. We don't use PREG here. */
8072
8073size_t
e064c173
DD
8074regerror (int errcode, const regex_t *preg ATTRIBUTE_UNUSED,
8075 char *errbuf, size_t errbuf_size)
2a6ef469
DD
8076{
8077 const char *msg;
8078 size_t msg_size;
8079
8080 if (errcode < 0
a2832523
DD
8081 || errcode >= (int) (sizeof (re_error_msgid)
8082 / sizeof (re_error_msgid[0])))
2a6ef469
DD
8083 /* Only error codes returned by the rest of the code should be passed
8084 to this routine. If we are given anything else, or if other regex
8085 code generates an invalid error code, then the program has a bug.
8086 Dump core so we can fix it. */
8087 abort ();
8088
a2832523 8089 msg = gettext (re_error_msgid[errcode]);
2a6ef469
DD
8090
8091 msg_size = strlen (msg) + 1; /* Includes the null. */
8092
8093 if (errbuf_size != 0)
8094 {
8095 if (msg_size > errbuf_size)
8096 {
8097#if defined HAVE_MEMPCPY || defined _LIBC
258a4893 8098 *((char *) mempcpy (errbuf, msg, errbuf_size - 1)) = '\0';
2a6ef469 8099#else
10fe779d 8100 (void) memcpy (errbuf, msg, errbuf_size - 1);
2a6ef469
DD
8101 errbuf[errbuf_size - 1] = 0;
8102#endif
8103 }
8104 else
10fe779d 8105 (void) memcpy (errbuf, msg, msg_size);
2a6ef469
DD
8106 }
8107
8108 return msg_size;
8109}
8110#ifdef _LIBC
8111weak_alias (__regerror, regerror)
8112#endif
8113
8114
8115/* Free dynamically allocated space used by PREG. */
8116
8117void
e064c173 8118regfree (regex_t *preg)
2a6ef469 8119{
4ff224cb 8120 free (preg->buffer);
2a6ef469
DD
8121 preg->buffer = NULL;
8122
8123 preg->allocated = 0;
8124 preg->used = 0;
8125
4ff224cb 8126 free (preg->fastmap);
2a6ef469
DD
8127 preg->fastmap = NULL;
8128 preg->fastmap_accurate = 0;
8129
4ff224cb 8130 free (preg->translate);
2a6ef469
DD
8131 preg->translate = NULL;
8132}
8133#ifdef _LIBC
8134weak_alias (__regfree, regfree)
8135#endif
8136
8137#endif /* not emacs */
8138
8139#endif /* not INSIDE_RECURSION */
8140
8141\f
8142#undef STORE_NUMBER
8143#undef STORE_NUMBER_AND_INCR
8144#undef EXTRACT_NUMBER
8145#undef EXTRACT_NUMBER_AND_INCR
8146
8147#undef DEBUG_PRINT_COMPILED_PATTERN
8148#undef DEBUG_PRINT_DOUBLE_STRING
8149
8150#undef INIT_FAIL_STACK
8151#undef RESET_FAIL_STACK
8152#undef DOUBLE_FAIL_STACK
8153#undef PUSH_PATTERN_OP
8154#undef PUSH_FAILURE_POINTER
8155#undef PUSH_FAILURE_INT
8156#undef PUSH_FAILURE_ELT
8157#undef POP_FAILURE_POINTER
8158#undef POP_FAILURE_INT
8159#undef POP_FAILURE_ELT
8160#undef DEBUG_PUSH
8161#undef DEBUG_POP
8162#undef PUSH_FAILURE_POINT
8163#undef POP_FAILURE_POINT
8164
8165#undef REG_UNSET_VALUE
8166#undef REG_UNSET
8167
8168#undef PATFETCH
8169#undef PATFETCH_RAW
8170#undef PATUNFETCH
8171#undef TRANSLATE
8172
8173#undef INIT_BUF_SIZE
8174#undef GET_BUFFER_SPACE
8175#undef BUF_PUSH
8176#undef BUF_PUSH_2
8177#undef BUF_PUSH_3
8178#undef STORE_JUMP
8179#undef STORE_JUMP2
8180#undef INSERT_JUMP
8181#undef INSERT_JUMP2
8182#undef EXTEND_BUFFER
8183#undef GET_UNSIGNED_NUMBER
8184#undef FREE_STACK_RETURN
8185
8186# undef POINTER_TO_OFFSET
8187# undef MATCHING_IN_FRST_STRING
8188# undef PREFETCH
8189# undef AT_STRINGS_BEG
8190# undef AT_STRINGS_END
8191# undef WORDCHAR_P
8192# undef FREE_VAR
8193# undef FREE_VARIABLES
8194# undef NO_HIGHEST_ACTIVE_REG
8195# undef NO_LOWEST_ACTIVE_REG
8196
8197# undef CHAR_T
8198# undef UCHAR_T
8199# undef COMPILED_BUFFER_VAR
8200# undef OFFSET_ADDRESS_SIZE
8201# undef CHAR_CLASS_SIZE
8202# undef PREFIX
8203# undef ARG_PREFIX
8204# undef PUT_CHAR
8205# undef BYTE
8206# undef WCHAR
8207
8208# define DEFINED_ONCE
This page took 0.928178 seconds and 4 git commands to generate.