gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / libiberty / splay-tree.c
CommitLineData
252b5132 1/* A splay-tree datatype.
533da483 2 Copyright (C) 1998-2020 Free Software Foundation, Inc.
252b5132
RH
3 Contributed by Mark Mitchell (mark@markmitchell.com).
4
5This file is part of GNU CC.
6
7GNU CC is free software; you can redistribute it and/or modify it
8under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU CC is distributed in the hope that it will be useful, but
13WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU CC; see the file COPYING. If not, write to
979c05d3
NC
19the Free Software Foundation, 51 Franklin Street - Fifth Floor,
20Boston, MA 02110-1301, USA. */
252b5132
RH
21
22/* For an easily readable description of splay-trees, see:
23
24 Lewis, Harry R. and Denenberg, Larry. Data Structures and Their
25 Algorithms. Harper-Collins, Inc. 1991. */
26
27#ifdef HAVE_CONFIG_H
28#include "config.h"
29#endif
30
31#ifdef HAVE_STDLIB_H
32#include <stdlib.h>
33#endif
22467434 34#ifdef HAVE_STRING_H
35#include <string.h>
36#endif
252b5132 37
60c64519
DD
38#include <stdio.h>
39
252b5132
RH
40#include "libiberty.h"
41#include "splay-tree.h"
42
1e45deed 43static void splay_tree_delete_helper (splay_tree, splay_tree_node);
718c0ded
DD
44static inline void rotate_left (splay_tree_node *,
45 splay_tree_node, splay_tree_node);
46static inline void rotate_right (splay_tree_node *,
47 splay_tree_node, splay_tree_node);
1e45deed 48static void splay_tree_splay (splay_tree, splay_tree_key);
98f0b5d4 49static int splay_tree_foreach_helper (splay_tree_node,
1e45deed 50 splay_tree_foreach_fn, void*);
252b5132
RH
51
52/* Deallocate NODE (a member of SP), and all its sub-trees. */
53
54static void
1e45deed 55splay_tree_delete_helper (splay_tree sp, splay_tree_node node)
252b5132 56{
9923bc33
DD
57 splay_tree_node pending = 0;
58 splay_tree_node active = 0;
59
252b5132
RH
60 if (!node)
61 return;
62
9923bc33
DD
63#define KDEL(x) if (sp->delete_key) (*sp->delete_key)(x);
64#define VDEL(x) if (sp->delete_value) (*sp->delete_value)(x);
65
66 KDEL (node->key);
67 VDEL (node->value);
252b5132 68
9923bc33
DD
69 /* We use the "key" field to hold the "next" pointer. */
70 node->key = (splay_tree_key)pending;
71 pending = (splay_tree_node)node;
252b5132 72
9923bc33
DD
73 /* Now, keep processing the pending list until there aren't any
74 more. This is a little more complicated than just recursing, but
75 it doesn't toast the stack for large trees. */
76
77 while (pending)
78 {
79 active = pending;
80 pending = 0;
81 while (active)
82 {
83 splay_tree_node temp;
84
85 /* active points to a node which has its key and value
86 deallocated, we just need to process left and right. */
87
88 if (active->left)
89 {
90 KDEL (active->left->key);
91 VDEL (active->left->value);
92 active->left->key = (splay_tree_key)pending;
93 pending = (splay_tree_node)(active->left);
94 }
95 if (active->right)
96 {
97 KDEL (active->right->key);
98 VDEL (active->right->value);
99 active->right->key = (splay_tree_key)pending;
100 pending = (splay_tree_node)(active->right);
101 }
102
103 temp = active;
104 active = (splay_tree_node)(temp->key);
105 (*sp->deallocate) ((char*) temp, sp->allocate_data);
106 }
107 }
108#undef KDEL
109#undef VDEL
252b5132
RH
110}
111
718c0ded 112/* Rotate the edge joining the left child N with its parent P. PP is the
145f4ab5 113 grandparents' pointer to P. */
252b5132 114
718c0ded
DD
115static inline void
116rotate_left (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
252b5132 117{
718c0ded
DD
118 splay_tree_node tmp;
119 tmp = n->right;
120 n->right = p;
121 p->left = tmp;
122 *pp = n;
123}
252b5132 124
718c0ded 125/* Rotate the edge joining the right child N with its parent P. PP is the
145f4ab5 126 grandparents' pointer to P. */
252b5132 127
718c0ded
DD
128static inline void
129rotate_right (splay_tree_node *pp, splay_tree_node p, splay_tree_node n)
130{
131 splay_tree_node tmp;
132 tmp = n->left;
133 n->left = p;
134 p->right = tmp;
135 *pp = n;
252b5132
RH
136}
137
718c0ded 138/* Bottom up splay of key. */
252b5132
RH
139
140static void
1e45deed 141splay_tree_splay (splay_tree sp, splay_tree_key key)
252b5132
RH
142{
143 if (sp->root == 0)
144 return;
145
718c0ded
DD
146 do {
147 int cmp1, cmp2;
148 splay_tree_node n, c;
149
150 n = sp->root;
151 cmp1 = (*sp->comp) (key, n->key);
152
153 /* Found. */
154 if (cmp1 == 0)
155 return;
156
157 /* Left or right? If no child, then we're done. */
158 if (cmp1 < 0)
159 c = n->left;
160 else
161 c = n->right;
162 if (!c)
163 return;
164
165 /* Next one left or right? If found or no child, we're done
166 after one rotation. */
167 cmp2 = (*sp->comp) (key, c->key);
168 if (cmp2 == 0
169 || (cmp2 < 0 && !c->left)
170 || (cmp2 > 0 && !c->right))
171 {
172 if (cmp1 < 0)
173 rotate_left (&sp->root, n, c);
174 else
175 rotate_right (&sp->root, n, c);
176 return;
177 }
178
179 /* Now we have the four cases of double-rotation. */
180 if (cmp1 < 0 && cmp2 < 0)
181 {
182 rotate_left (&n->left, c, c->left);
183 rotate_left (&sp->root, n, n->left);
184 }
185 else if (cmp1 > 0 && cmp2 > 0)
186 {
187 rotate_right (&n->right, c, c->right);
188 rotate_right (&sp->root, n, n->right);
189 }
190 else if (cmp1 < 0 && cmp2 > 0)
191 {
192 rotate_right (&n->left, c, c->right);
193 rotate_left (&sp->root, n, n->left);
194 }
195 else if (cmp1 > 0 && cmp2 < 0)
196 {
197 rotate_left (&n->right, c, c->left);
198 rotate_right (&sp->root, n, n->right);
199 }
200 } while (1);
252b5132
RH
201}
202
203/* Call FN, passing it the DATA, for every node below NODE, all of
204 which are from SP, following an in-order traversal. If FN every
205 returns a non-zero value, the iteration ceases immediately, and the
206 value is returned. Otherwise, this function returns 0. */
207
208static int
98f0b5d4 209splay_tree_foreach_helper (splay_tree_node node,
1e45deed 210 splay_tree_foreach_fn fn, void *data)
252b5132
RH
211{
212 int val;
98f0b5d4
DD
213 splay_tree_node *stack;
214 int stack_ptr, stack_size;
252b5132 215
98f0b5d4
DD
216 /* A non-recursive implementation is used to avoid filling the stack
217 for large trees. Splay trees are worst case O(n) in the depth of
218 the tree. */
219
220#define INITIAL_STACK_SIZE 100
221 stack_size = INITIAL_STACK_SIZE;
222 stack_ptr = 0;
223 stack = XNEWVEC (splay_tree_node, stack_size);
224 val = 0;
225
226 for (;;)
227 {
228 while (node != NULL)
229 {
230 if (stack_ptr == stack_size)
231 {
232 stack_size *= 2;
233 stack = XRESIZEVEC (splay_tree_node, stack, stack_size);
234 }
235 stack[stack_ptr++] = node;
236 node = node->left;
237 }
252b5132 238
98f0b5d4
DD
239 if (stack_ptr == 0)
240 break;
252b5132 241
98f0b5d4 242 node = stack[--stack_ptr];
252b5132 243
98f0b5d4
DD
244 val = (*fn) (node, data);
245 if (val)
246 break;
252b5132 247
98f0b5d4
DD
248 node = node->right;
249 }
250
251 XDELETEVEC (stack);
252 return val;
253}
2bbcdae9
JB
254
255/* An allocator and deallocator based on xmalloc. */
256static void *
1e45deed 257splay_tree_xmalloc_allocate (int size, void *data ATTRIBUTE_UNUSED)
2bbcdae9 258{
585cc78f 259 return (void *) xmalloc (size);
2bbcdae9
JB
260}
261
262static void
1e45deed 263splay_tree_xmalloc_deallocate (void *object, void *data ATTRIBUTE_UNUSED)
2bbcdae9
JB
264{
265 free (object);
266}
267
268
252b5132
RH
269/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
270 DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
2bbcdae9
JB
271 values. Use xmalloc to allocate the splay tree structure, and any
272 nodes added. */
252b5132
RH
273
274splay_tree
1e45deed
DD
275splay_tree_new (splay_tree_compare_fn compare_fn,
276 splay_tree_delete_key_fn delete_key_fn,
277 splay_tree_delete_value_fn delete_value_fn)
252b5132 278{
2bbcdae9
JB
279 return (splay_tree_new_with_allocator
280 (compare_fn, delete_key_fn, delete_value_fn,
281 splay_tree_xmalloc_allocate, splay_tree_xmalloc_deallocate, 0));
282}
283
284
285/* Allocate a new splay tree, using COMPARE_FN to compare nodes,
286 DELETE_KEY_FN to deallocate keys, and DELETE_VALUE_FN to deallocate
287 values. */
288
289splay_tree
1e45deed
DD
290splay_tree_new_with_allocator (splay_tree_compare_fn compare_fn,
291 splay_tree_delete_key_fn delete_key_fn,
292 splay_tree_delete_value_fn delete_value_fn,
293 splay_tree_allocate_fn allocate_fn,
294 splay_tree_deallocate_fn deallocate_fn,
295 void *allocate_data)
2bbcdae9 296{
219a461e
DD
297 return
298 splay_tree_new_typed_alloc (compare_fn, delete_key_fn, delete_value_fn,
299 allocate_fn, allocate_fn, deallocate_fn,
300 allocate_data);
301}
302
303/*
304
d4d868a2
RW
305@deftypefn Supplemental splay_tree splay_tree_new_with_typed_alloc @
306(splay_tree_compare_fn @var{compare_fn}, @
307splay_tree_delete_key_fn @var{delete_key_fn}, @
308splay_tree_delete_value_fn @var{delete_value_fn}, @
309splay_tree_allocate_fn @var{tree_allocate_fn}, @
310splay_tree_allocate_fn @var{node_allocate_fn}, @
311splay_tree_deallocate_fn @var{deallocate_fn}, @
219a461e
DD
312void * @var{allocate_data})
313
314This function creates a splay tree that uses two different allocators
315@var{tree_allocate_fn} and @var{node_allocate_fn} to use for allocating the
316tree itself and its nodes respectively. This is useful when variables of
317different types need to be allocated with different allocators.
318
319The splay tree will use @var{compare_fn} to compare nodes,
320@var{delete_key_fn} to deallocate keys, and @var{delete_value_fn} to
e2077304 321deallocate values. Keys and values will be deallocated when the
322tree is deleted using splay_tree_delete or when a node is removed
323using splay_tree_remove. splay_tree_insert will release the previously
324inserted key and value using @var{delete_key_fn} and @var{delete_value_fn}
325if the inserted key is already found in the tree.
219a461e
DD
326
327@end deftypefn
328
329*/
330
331splay_tree
332splay_tree_new_typed_alloc (splay_tree_compare_fn compare_fn,
333 splay_tree_delete_key_fn delete_key_fn,
334 splay_tree_delete_value_fn delete_value_fn,
335 splay_tree_allocate_fn tree_allocate_fn,
336 splay_tree_allocate_fn node_allocate_fn,
337 splay_tree_deallocate_fn deallocate_fn,
338 void * allocate_data)
339{
340 splay_tree sp = (splay_tree) (*tree_allocate_fn)
341 (sizeof (struct splay_tree_s), allocate_data);
342
252b5132
RH
343 sp->root = 0;
344 sp->comp = compare_fn;
345 sp->delete_key = delete_key_fn;
346 sp->delete_value = delete_value_fn;
219a461e 347 sp->allocate = node_allocate_fn;
2bbcdae9
JB
348 sp->deallocate = deallocate_fn;
349 sp->allocate_data = allocate_data;
252b5132
RH
350
351 return sp;
352}
353
354/* Deallocate SP. */
355
356void
1e45deed 357splay_tree_delete (splay_tree sp)
252b5132
RH
358{
359 splay_tree_delete_helper (sp, sp->root);
2bbcdae9 360 (*sp->deallocate) ((char*) sp, sp->allocate_data);
252b5132
RH
361}
362
363/* Insert a new node (associating KEY with DATA) into SP. If a
364 previous node with the indicated KEY exists, its data is replaced
0c0a36a4 365 with the new value. Returns the new node. */
252b5132 366
0c0a36a4 367splay_tree_node
1e45deed 368splay_tree_insert (splay_tree sp, splay_tree_key key, splay_tree_value value)
252b5132 369{
af32ff69 370 int comparison = 0;
252b5132
RH
371
372 splay_tree_splay (sp, key);
373
374 if (sp->root)
375 comparison = (*sp->comp)(sp->root->key, key);
376
377 if (sp->root && comparison == 0)
378 {
e2077304 379 /* If the root of the tree already has the indicated KEY, delete
380 the old key and old value, and replace them with KEY and VALUE. */
381 if (sp->delete_key)
382 (*sp->delete_key) (sp->root->key);
252b5132
RH
383 if (sp->delete_value)
384 (*sp->delete_value)(sp->root->value);
e2077304 385 sp->root->key = key;
252b5132
RH
386 sp->root->value = value;
387 }
388 else
389 {
390 /* Create a new node, and insert it at the root. */
391 splay_tree_node node;
219a461e 392
2bbcdae9 393 node = ((splay_tree_node)
219a461e
DD
394 (*sp->allocate) (sizeof (struct splay_tree_node_s),
395 sp->allocate_data));
252b5132
RH
396 node->key = key;
397 node->value = value;
398
399 if (!sp->root)
400 node->left = node->right = 0;
401 else if (comparison < 0)
402 {
403 node->left = sp->root;
404 node->right = node->left->right;
405 node->left->right = 0;
406 }
407 else
408 {
409 node->right = sp->root;
410 node->left = node->right->left;
411 node->right->left = 0;
412 }
413
74bcd529
DD
414 sp->root = node;
415 }
0c0a36a4
ILT
416
417 return sp->root;
252b5132
RH
418}
419
afe36a78
RH
420/* Remove KEY from SP. It is not an error if it did not exist. */
421
422void
1e45deed 423splay_tree_remove (splay_tree sp, splay_tree_key key)
afe36a78
RH
424{
425 splay_tree_splay (sp, key);
426
427 if (sp->root && (*sp->comp) (sp->root->key, key) == 0)
428 {
429 splay_tree_node left, right;
430
431 left = sp->root->left;
432 right = sp->root->right;
433
434 /* Delete the root node itself. */
d7167c67
TT
435 if (sp->delete_key)
436 (*sp->delete_key) (sp->root->key);
afe36a78
RH
437 if (sp->delete_value)
438 (*sp->delete_value) (sp->root->value);
2bbcdae9 439 (*sp->deallocate) (sp->root, sp->allocate_data);
afe36a78
RH
440
441 /* One of the children is now the root. Doesn't matter much
442 which, so long as we preserve the properties of the tree. */
443 if (left)
444 {
445 sp->root = left;
446
447 /* If there was a right child as well, hang it off the
448 right-most leaf of the left child. */
449 if (right)
450 {
451 while (left->right)
452 left = left->right;
453 left->right = right;
454 }
455 }
456 else
457 sp->root = right;
458 }
459}
460
252b5132
RH
461/* Lookup KEY in SP, returning VALUE if present, and NULL
462 otherwise. */
463
464splay_tree_node
1e45deed 465splay_tree_lookup (splay_tree sp, splay_tree_key key)
252b5132
RH
466{
467 splay_tree_splay (sp, key);
468
469 if (sp->root && (*sp->comp)(sp->root->key, key) == 0)
470 return sp->root;
471 else
472 return 0;
473}
474
e00bc6a7
DD
475/* Return the node in SP with the greatest key. */
476
477splay_tree_node
1e45deed 478splay_tree_max (splay_tree sp)
e00bc6a7
DD
479{
480 splay_tree_node n = sp->root;
481
482 if (!n)
483 return NULL;
484
485 while (n->right)
486 n = n->right;
487
488 return n;
489}
490
491/* Return the node in SP with the smallest key. */
492
493splay_tree_node
1e45deed 494splay_tree_min (splay_tree sp)
e00bc6a7
DD
495{
496 splay_tree_node n = sp->root;
497
498 if (!n)
499 return NULL;
500
501 while (n->left)
502 n = n->left;
503
504 return n;
505}
506
74bcd529
DD
507/* Return the immediate predecessor KEY, or NULL if there is no
508 predecessor. KEY need not be present in the tree. */
509
510splay_tree_node
1e45deed 511splay_tree_predecessor (splay_tree sp, splay_tree_key key)
74bcd529
DD
512{
513 int comparison;
514 splay_tree_node node;
515
516 /* If the tree is empty, there is certainly no predecessor. */
517 if (!sp->root)
518 return NULL;
519
520 /* Splay the tree around KEY. That will leave either the KEY
521 itself, its predecessor, or its successor at the root. */
522 splay_tree_splay (sp, key);
523 comparison = (*sp->comp)(sp->root->key, key);
524
525 /* If the predecessor is at the root, just return it. */
526 if (comparison < 0)
527 return sp->root;
528
0f3538e7 529 /* Otherwise, find the rightmost element of the left subtree. */
74bcd529
DD
530 node = sp->root->left;
531 if (node)
532 while (node->right)
533 node = node->right;
534
535 return node;
536}
537
538/* Return the immediate successor KEY, or NULL if there is no
a54ba43f 539 successor. KEY need not be present in the tree. */
74bcd529
DD
540
541splay_tree_node
1e45deed 542splay_tree_successor (splay_tree sp, splay_tree_key key)
74bcd529
DD
543{
544 int comparison;
545 splay_tree_node node;
546
a54ba43f 547 /* If the tree is empty, there is certainly no successor. */
74bcd529
DD
548 if (!sp->root)
549 return NULL;
550
551 /* Splay the tree around KEY. That will leave either the KEY
552 itself, its predecessor, or its successor at the root. */
553 splay_tree_splay (sp, key);
554 comparison = (*sp->comp)(sp->root->key, key);
555
556 /* If the successor is at the root, just return it. */
557 if (comparison > 0)
558 return sp->root;
559
0f3538e7 560 /* Otherwise, find the leftmost element of the right subtree. */
74bcd529
DD
561 node = sp->root->right;
562 if (node)
563 while (node->left)
564 node = node->left;
565
566 return node;
567}
568
252b5132
RH
569/* Call FN, passing it the DATA, for every node in SP, following an
570 in-order traversal. If FN every returns a non-zero value, the
571 iteration ceases immediately, and the value is returned.
572 Otherwise, this function returns 0. */
573
574int
1e45deed 575splay_tree_foreach (splay_tree sp, splay_tree_foreach_fn fn, void *data)
252b5132 576{
98f0b5d4 577 return splay_tree_foreach_helper (sp->root, fn, data);
252b5132
RH
578}
579
580/* Splay-tree comparison function, treating the keys as ints. */
581
582int
1e45deed 583splay_tree_compare_ints (splay_tree_key k1, splay_tree_key k2)
252b5132
RH
584{
585 if ((int) k1 < (int) k2)
586 return -1;
587 else if ((int) k1 > (int) k2)
588 return 1;
589 else
590 return 0;
591}
592
593/* Splay-tree comparison function, treating the keys as pointers. */
594
595int
1e45deed 596splay_tree_compare_pointers (splay_tree_key k1, splay_tree_key k2)
252b5132
RH
597{
598 if ((char*) k1 < (char*) k2)
599 return -1;
600 else if ((char*) k1 > (char*) k2)
601 return 1;
602 else
603 return 0;
604}
22467434 605
606/* Splay-tree comparison function, treating the keys as strings. */
607
608int
609splay_tree_compare_strings (splay_tree_key k1, splay_tree_key k2)
610{
611 return strcmp ((char *) k1, (char *) k2);
612}
613
614/* Splay-tree delete function, simply using free. */
615
616void
617splay_tree_delete_pointers (splay_tree_value value)
618{
619 free ((void *) value);
620}
This page took 0.90039 seconds and 4 git commands to generate.