Fix Thumb-Thumb farcall v6-M (no profile) test
[deliverable/binutils-gdb.git] / opcodes / aarch64-opc.c
CommitLineData
a06ea964 1/* aarch64-opc.c -- AArch64 opcode support.
6f2750fe 2 Copyright (C) 2009-2016 Free Software Foundation, Inc.
a06ea964
NC
3 Contributed by ARM Ltd.
4
5 This file is part of the GNU opcodes library.
6
7 This library is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3, or (at your option)
10 any later version.
11
12 It is distributed in the hope that it will be useful, but WITHOUT
13 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY
14 or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public
15 License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program; see the file COPYING3. If not,
19 see <http://www.gnu.org/licenses/>. */
20
21#include "sysdep.h"
22#include <assert.h>
23#include <stdlib.h>
24#include <stdio.h>
25#include <stdint.h>
26#include <stdarg.h>
27#include <inttypes.h>
28
29#include "opintl.h"
30
31#include "aarch64-opc.h"
32
33#ifdef DEBUG_AARCH64
34int debug_dump = FALSE;
35#endif /* DEBUG_AARCH64 */
36
37/* Helper functions to determine which operand to be used to encode/decode
38 the size:Q fields for AdvSIMD instructions. */
39
40static inline bfd_boolean
41vector_qualifier_p (enum aarch64_opnd_qualifier qualifier)
42{
43 return ((qualifier >= AARCH64_OPND_QLF_V_8B
44 && qualifier <= AARCH64_OPND_QLF_V_1Q) ? TRUE
45 : FALSE);
46}
47
48static inline bfd_boolean
49fp_qualifier_p (enum aarch64_opnd_qualifier qualifier)
50{
51 return ((qualifier >= AARCH64_OPND_QLF_S_B
52 && qualifier <= AARCH64_OPND_QLF_S_Q) ? TRUE
53 : FALSE);
54}
55
56enum data_pattern
57{
58 DP_UNKNOWN,
59 DP_VECTOR_3SAME,
60 DP_VECTOR_LONG,
61 DP_VECTOR_WIDE,
62 DP_VECTOR_ACROSS_LANES,
63};
64
65static const char significant_operand_index [] =
66{
67 0, /* DP_UNKNOWN, by default using operand 0. */
68 0, /* DP_VECTOR_3SAME */
69 1, /* DP_VECTOR_LONG */
70 2, /* DP_VECTOR_WIDE */
71 1, /* DP_VECTOR_ACROSS_LANES */
72};
73
74/* Given a sequence of qualifiers in QUALIFIERS, determine and return
75 the data pattern.
76 N.B. QUALIFIERS is a possible sequence of qualifiers each of which
77 corresponds to one of a sequence of operands. */
78
79static enum data_pattern
80get_data_pattern (const aarch64_opnd_qualifier_seq_t qualifiers)
81{
82 if (vector_qualifier_p (qualifiers[0]) == TRUE)
83 {
84 /* e.g. v.4s, v.4s, v.4s
85 or v.4h, v.4h, v.h[3]. */
86 if (qualifiers[0] == qualifiers[1]
87 && vector_qualifier_p (qualifiers[2]) == TRUE
88 && (aarch64_get_qualifier_esize (qualifiers[0])
89 == aarch64_get_qualifier_esize (qualifiers[1]))
90 && (aarch64_get_qualifier_esize (qualifiers[0])
91 == aarch64_get_qualifier_esize (qualifiers[2])))
92 return DP_VECTOR_3SAME;
93 /* e.g. v.8h, v.8b, v.8b.
94 or v.4s, v.4h, v.h[2].
95 or v.8h, v.16b. */
96 if (vector_qualifier_p (qualifiers[1]) == TRUE
97 && aarch64_get_qualifier_esize (qualifiers[0]) != 0
98 && (aarch64_get_qualifier_esize (qualifiers[0])
99 == aarch64_get_qualifier_esize (qualifiers[1]) << 1))
100 return DP_VECTOR_LONG;
101 /* e.g. v.8h, v.8h, v.8b. */
102 if (qualifiers[0] == qualifiers[1]
103 && vector_qualifier_p (qualifiers[2]) == TRUE
104 && aarch64_get_qualifier_esize (qualifiers[0]) != 0
105 && (aarch64_get_qualifier_esize (qualifiers[0])
106 == aarch64_get_qualifier_esize (qualifiers[2]) << 1)
107 && (aarch64_get_qualifier_esize (qualifiers[0])
108 == aarch64_get_qualifier_esize (qualifiers[1])))
109 return DP_VECTOR_WIDE;
110 }
111 else if (fp_qualifier_p (qualifiers[0]) == TRUE)
112 {
113 /* e.g. SADDLV <V><d>, <Vn>.<T>. */
114 if (vector_qualifier_p (qualifiers[1]) == TRUE
115 && qualifiers[2] == AARCH64_OPND_QLF_NIL)
116 return DP_VECTOR_ACROSS_LANES;
117 }
118
119 return DP_UNKNOWN;
120}
121
122/* Select the operand to do the encoding/decoding of the 'size:Q' fields in
123 the AdvSIMD instructions. */
124/* N.B. it is possible to do some optimization that doesn't call
125 get_data_pattern each time when we need to select an operand. We can
126 either buffer the caculated the result or statically generate the data,
127 however, it is not obvious that the optimization will bring significant
128 benefit. */
129
130int
131aarch64_select_operand_for_sizeq_field_coding (const aarch64_opcode *opcode)
132{
133 return
134 significant_operand_index [get_data_pattern (opcode->qualifiers_list[0])];
135}
136\f
137const aarch64_field fields[] =
138{
139 { 0, 0 }, /* NIL. */
140 { 0, 4 }, /* cond2: condition in truly conditional-executed inst. */
141 { 0, 4 }, /* nzcv: flag bit specifier, encoded in the "nzcv" field. */
142 { 5, 5 }, /* defgh: d:e:f:g:h bits in AdvSIMD modified immediate. */
143 { 16, 3 }, /* abc: a:b:c bits in AdvSIMD modified immediate. */
144 { 5, 19 }, /* imm19: e.g. in CBZ. */
145 { 5, 19 }, /* immhi: e.g. in ADRP. */
146 { 29, 2 }, /* immlo: e.g. in ADRP. */
147 { 22, 2 }, /* size: in most AdvSIMD and floating-point instructions. */
148 { 10, 2 }, /* vldst_size: size field in the AdvSIMD load/store inst. */
149 { 29, 1 }, /* op: in AdvSIMD modified immediate instructions. */
150 { 30, 1 }, /* Q: in most AdvSIMD instructions. */
151 { 0, 5 }, /* Rt: in load/store instructions. */
152 { 0, 5 }, /* Rd: in many integer instructions. */
153 { 5, 5 }, /* Rn: in many integer instructions. */
154 { 10, 5 }, /* Rt2: in load/store pair instructions. */
155 { 10, 5 }, /* Ra: in fp instructions. */
156 { 5, 3 }, /* op2: in the system instructions. */
157 { 8, 4 }, /* CRm: in the system instructions. */
158 { 12, 4 }, /* CRn: in the system instructions. */
159 { 16, 3 }, /* op1: in the system instructions. */
160 { 19, 2 }, /* op0: in the system instructions. */
161 { 10, 3 }, /* imm3: in add/sub extended reg instructions. */
162 { 12, 4 }, /* cond: condition flags as a source operand. */
163 { 12, 4 }, /* opcode: in advsimd load/store instructions. */
164 { 12, 4 }, /* cmode: in advsimd modified immediate instructions. */
165 { 13, 3 }, /* asisdlso_opcode: opcode in advsimd ld/st single element. */
166 { 13, 2 }, /* len: in advsimd tbl/tbx instructions. */
167 { 16, 5 }, /* Rm: in ld/st reg offset and some integer inst. */
168 { 16, 5 }, /* Rs: in load/store exclusive instructions. */
169 { 13, 3 }, /* option: in ld/st reg offset + add/sub extended reg inst. */
170 { 12, 1 }, /* S: in load/store reg offset instructions. */
171 { 21, 2 }, /* hw: in move wide constant instructions. */
172 { 22, 2 }, /* opc: in load/store reg offset instructions. */
173 { 23, 1 }, /* opc1: in load/store reg offset instructions. */
174 { 22, 2 }, /* shift: in add/sub reg/imm shifted instructions. */
175 { 22, 2 }, /* type: floating point type field in fp data inst. */
176 { 30, 2 }, /* ldst_size: size field in ld/st reg offset inst. */
177 { 10, 6 }, /* imm6: in add/sub reg shifted instructions. */
178 { 11, 4 }, /* imm4: in advsimd ext and advsimd ins instructions. */
179 { 16, 5 }, /* imm5: in conditional compare (immediate) instructions. */
180 { 15, 7 }, /* imm7: in load/store pair pre/post index instructions. */
181 { 13, 8 }, /* imm8: in floating-point scalar move immediate inst. */
182 { 12, 9 }, /* imm9: in load/store pre/post index instructions. */
183 { 10, 12 }, /* imm12: in ld/st unsigned imm or add/sub shifted inst. */
184 { 5, 14 }, /* imm14: in test bit and branch instructions. */
185 { 5, 16 }, /* imm16: in exception instructions. */
186 { 0, 26 }, /* imm26: in unconditional branch instructions. */
187 { 10, 6 }, /* imms: in bitfield and logical immediate instructions. */
188 { 16, 6 }, /* immr: in bitfield and logical immediate instructions. */
189 { 16, 3 }, /* immb: in advsimd shift by immediate instructions. */
190 { 19, 4 }, /* immh: in advsimd shift by immediate instructions. */
191 { 22, 1 }, /* N: in logical (immediate) instructions. */
192 { 11, 1 }, /* index: in ld/st inst deciding the pre/post-index. */
193 { 24, 1 }, /* index2: in ld/st pair inst deciding the pre/post-index. */
194 { 31, 1 }, /* sf: in integer data processing instructions. */
ee804238 195 { 30, 1 }, /* lse_size: in LSE extension atomic instructions. */
a06ea964
NC
196 { 11, 1 }, /* H: in advsimd scalar x indexed element instructions. */
197 { 21, 1 }, /* L: in advsimd scalar x indexed element instructions. */
198 { 20, 1 }, /* M: in advsimd scalar x indexed element instructions. */
199 { 31, 1 }, /* b5: in the test bit and branch instructions. */
200 { 19, 5 }, /* b40: in the test bit and branch instructions. */
201 { 10, 6 }, /* scale: in the fixed-point scalar to fp converting inst. */
202};
203
204enum aarch64_operand_class
205aarch64_get_operand_class (enum aarch64_opnd type)
206{
207 return aarch64_operands[type].op_class;
208}
209
210const char *
211aarch64_get_operand_name (enum aarch64_opnd type)
212{
213 return aarch64_operands[type].name;
214}
215
216/* Get operand description string.
217 This is usually for the diagnosis purpose. */
218const char *
219aarch64_get_operand_desc (enum aarch64_opnd type)
220{
221 return aarch64_operands[type].desc;
222}
223
224/* Table of all conditional affixes. */
225const aarch64_cond aarch64_conds[16] =
226{
227 {{"eq"}, 0x0},
228 {{"ne"}, 0x1},
229 {{"cs", "hs"}, 0x2},
230 {{"cc", "lo", "ul"}, 0x3},
231 {{"mi"}, 0x4},
232 {{"pl"}, 0x5},
233 {{"vs"}, 0x6},
234 {{"vc"}, 0x7},
235 {{"hi"}, 0x8},
236 {{"ls"}, 0x9},
237 {{"ge"}, 0xa},
238 {{"lt"}, 0xb},
239 {{"gt"}, 0xc},
240 {{"le"}, 0xd},
241 {{"al"}, 0xe},
242 {{"nv"}, 0xf},
243};
244
245const aarch64_cond *
246get_cond_from_value (aarch64_insn value)
247{
248 assert (value < 16);
249 return &aarch64_conds[(unsigned int) value];
250}
251
252const aarch64_cond *
253get_inverted_cond (const aarch64_cond *cond)
254{
255 return &aarch64_conds[cond->value ^ 0x1];
256}
257
258/* Table describing the operand extension/shifting operators; indexed by
259 enum aarch64_modifier_kind.
260
261 The value column provides the most common values for encoding modifiers,
262 which enables table-driven encoding/decoding for the modifiers. */
263const struct aarch64_name_value_pair aarch64_operand_modifiers [] =
264{
265 {"none", 0x0},
266 {"msl", 0x0},
267 {"ror", 0x3},
268 {"asr", 0x2},
269 {"lsr", 0x1},
270 {"lsl", 0x0},
271 {"uxtb", 0x0},
272 {"uxth", 0x1},
273 {"uxtw", 0x2},
274 {"uxtx", 0x3},
275 {"sxtb", 0x4},
276 {"sxth", 0x5},
277 {"sxtw", 0x6},
278 {"sxtx", 0x7},
279 {NULL, 0},
280};
281
282enum aarch64_modifier_kind
283aarch64_get_operand_modifier (const struct aarch64_name_value_pair *desc)
284{
285 return desc - aarch64_operand_modifiers;
286}
287
288aarch64_insn
289aarch64_get_operand_modifier_value (enum aarch64_modifier_kind kind)
290{
291 return aarch64_operand_modifiers[kind].value;
292}
293
294enum aarch64_modifier_kind
295aarch64_get_operand_modifier_from_value (aarch64_insn value,
296 bfd_boolean extend_p)
297{
298 if (extend_p == TRUE)
299 return AARCH64_MOD_UXTB + value;
300 else
301 return AARCH64_MOD_LSL - value;
302}
303
304bfd_boolean
305aarch64_extend_operator_p (enum aarch64_modifier_kind kind)
306{
307 return (kind > AARCH64_MOD_LSL && kind <= AARCH64_MOD_SXTX)
308 ? TRUE : FALSE;
309}
310
311static inline bfd_boolean
312aarch64_shift_operator_p (enum aarch64_modifier_kind kind)
313{
314 return (kind >= AARCH64_MOD_ROR && kind <= AARCH64_MOD_LSL)
315 ? TRUE : FALSE;
316}
317
318const struct aarch64_name_value_pair aarch64_barrier_options[16] =
319{
320 { "#0x00", 0x0 },
321 { "oshld", 0x1 },
322 { "oshst", 0x2 },
323 { "osh", 0x3 },
324 { "#0x04", 0x4 },
325 { "nshld", 0x5 },
326 { "nshst", 0x6 },
327 { "nsh", 0x7 },
328 { "#0x08", 0x8 },
329 { "ishld", 0x9 },
330 { "ishst", 0xa },
331 { "ish", 0xb },
332 { "#0x0c", 0xc },
333 { "ld", 0xd },
334 { "st", 0xe },
335 { "sy", 0xf },
336};
337
9ed608f9
MW
338/* Table describing the operands supported by the aliases of the HINT
339 instruction.
340
341 The name column is the operand that is accepted for the alias. The value
342 column is the hint number of the alias. The list of operands is terminated
343 by NULL in the name column. */
344
345const struct aarch64_name_value_pair aarch64_hint_options[] =
346{
1e6f4800 347 { "csync", 0x11 }, /* PSB CSYNC. */
9ed608f9
MW
348 { NULL, 0x0 },
349};
350
a32c3ff8 351/* op -> op: load = 0 instruction = 1 store = 2
a06ea964
NC
352 l -> level: 1-3
353 t -> temporal: temporal (retained) = 0 non-temporal (streaming) = 1 */
a32c3ff8 354#define B(op,l,t) (((op) << 3) | (((l) - 1) << 1) | (t))
a06ea964
NC
355const struct aarch64_name_value_pair aarch64_prfops[32] =
356{
357 { "pldl1keep", B(0, 1, 0) },
358 { "pldl1strm", B(0, 1, 1) },
359 { "pldl2keep", B(0, 2, 0) },
360 { "pldl2strm", B(0, 2, 1) },
361 { "pldl3keep", B(0, 3, 0) },
362 { "pldl3strm", B(0, 3, 1) },
a1ccaec9
YZ
363 { NULL, 0x06 },
364 { NULL, 0x07 },
a32c3ff8
NC
365 { "plil1keep", B(1, 1, 0) },
366 { "plil1strm", B(1, 1, 1) },
367 { "plil2keep", B(1, 2, 0) },
368 { "plil2strm", B(1, 2, 1) },
369 { "plil3keep", B(1, 3, 0) },
370 { "plil3strm", B(1, 3, 1) },
a1ccaec9
YZ
371 { NULL, 0x0e },
372 { NULL, 0x0f },
a32c3ff8
NC
373 { "pstl1keep", B(2, 1, 0) },
374 { "pstl1strm", B(2, 1, 1) },
375 { "pstl2keep", B(2, 2, 0) },
376 { "pstl2strm", B(2, 2, 1) },
377 { "pstl3keep", B(2, 3, 0) },
378 { "pstl3strm", B(2, 3, 1) },
a1ccaec9
YZ
379 { NULL, 0x16 },
380 { NULL, 0x17 },
381 { NULL, 0x18 },
382 { NULL, 0x19 },
383 { NULL, 0x1a },
384 { NULL, 0x1b },
385 { NULL, 0x1c },
386 { NULL, 0x1d },
387 { NULL, 0x1e },
388 { NULL, 0x1f },
a06ea964
NC
389};
390#undef B
391\f
392/* Utilities on value constraint. */
393
394static inline int
395value_in_range_p (int64_t value, int low, int high)
396{
397 return (value >= low && value <= high) ? 1 : 0;
398}
399
400static inline int
401value_aligned_p (int64_t value, int align)
402{
403 return ((value & (align - 1)) == 0) ? 1 : 0;
404}
405
406/* A signed value fits in a field. */
407static inline int
408value_fit_signed_field_p (int64_t value, unsigned width)
409{
410 assert (width < 32);
411 if (width < sizeof (value) * 8)
412 {
413 int64_t lim = (int64_t)1 << (width - 1);
414 if (value >= -lim && value < lim)
415 return 1;
416 }
417 return 0;
418}
419
420/* An unsigned value fits in a field. */
421static inline int
422value_fit_unsigned_field_p (int64_t value, unsigned width)
423{
424 assert (width < 32);
425 if (width < sizeof (value) * 8)
426 {
427 int64_t lim = (int64_t)1 << width;
428 if (value >= 0 && value < lim)
429 return 1;
430 }
431 return 0;
432}
433
434/* Return 1 if OPERAND is SP or WSP. */
435int
436aarch64_stack_pointer_p (const aarch64_opnd_info *operand)
437{
438 return ((aarch64_get_operand_class (operand->type)
439 == AARCH64_OPND_CLASS_INT_REG)
440 && operand_maybe_stack_pointer (aarch64_operands + operand->type)
441 && operand->reg.regno == 31);
442}
443
444/* Return 1 if OPERAND is XZR or WZP. */
445int
446aarch64_zero_register_p (const aarch64_opnd_info *operand)
447{
448 return ((aarch64_get_operand_class (operand->type)
449 == AARCH64_OPND_CLASS_INT_REG)
450 && !operand_maybe_stack_pointer (aarch64_operands + operand->type)
451 && operand->reg.regno == 31);
452}
453
454/* Return true if the operand *OPERAND that has the operand code
455 OPERAND->TYPE and been qualified by OPERAND->QUALIFIER can be also
456 qualified by the qualifier TARGET. */
457
458static inline int
459operand_also_qualified_p (const struct aarch64_opnd_info *operand,
460 aarch64_opnd_qualifier_t target)
461{
462 switch (operand->qualifier)
463 {
464 case AARCH64_OPND_QLF_W:
465 if (target == AARCH64_OPND_QLF_WSP && aarch64_stack_pointer_p (operand))
466 return 1;
467 break;
468 case AARCH64_OPND_QLF_X:
469 if (target == AARCH64_OPND_QLF_SP && aarch64_stack_pointer_p (operand))
470 return 1;
471 break;
472 case AARCH64_OPND_QLF_WSP:
473 if (target == AARCH64_OPND_QLF_W
474 && operand_maybe_stack_pointer (aarch64_operands + operand->type))
475 return 1;
476 break;
477 case AARCH64_OPND_QLF_SP:
478 if (target == AARCH64_OPND_QLF_X
479 && operand_maybe_stack_pointer (aarch64_operands + operand->type))
480 return 1;
481 break;
482 default:
483 break;
484 }
485
486 return 0;
487}
488
489/* Given qualifier sequence list QSEQ_LIST and the known qualifier KNOWN_QLF
490 for operand KNOWN_IDX, return the expected qualifier for operand IDX.
491
492 Return NIL if more than one expected qualifiers are found. */
493
494aarch64_opnd_qualifier_t
495aarch64_get_expected_qualifier (const aarch64_opnd_qualifier_seq_t *qseq_list,
496 int idx,
497 const aarch64_opnd_qualifier_t known_qlf,
498 int known_idx)
499{
500 int i, saved_i;
501
502 /* Special case.
503
504 When the known qualifier is NIL, we have to assume that there is only
505 one qualifier sequence in the *QSEQ_LIST and return the corresponding
506 qualifier directly. One scenario is that for instruction
507 PRFM <prfop>, [<Xn|SP>, #:lo12:<symbol>]
508 which has only one possible valid qualifier sequence
509 NIL, S_D
510 the caller may pass NIL in KNOWN_QLF to obtain S_D so that it can
511 determine the correct relocation type (i.e. LDST64_LO12) for PRFM.
512
513 Because the qualifier NIL has dual roles in the qualifier sequence:
514 it can mean no qualifier for the operand, or the qualifer sequence is
515 not in use (when all qualifiers in the sequence are NILs), we have to
516 handle this special case here. */
517 if (known_qlf == AARCH64_OPND_NIL)
518 {
519 assert (qseq_list[0][known_idx] == AARCH64_OPND_NIL);
520 return qseq_list[0][idx];
521 }
522
523 for (i = 0, saved_i = -1; i < AARCH64_MAX_QLF_SEQ_NUM; ++i)
524 {
525 if (qseq_list[i][known_idx] == known_qlf)
526 {
527 if (saved_i != -1)
528 /* More than one sequences are found to have KNOWN_QLF at
529 KNOWN_IDX. */
530 return AARCH64_OPND_NIL;
531 saved_i = i;
532 }
533 }
534
535 return qseq_list[saved_i][idx];
536}
537
538enum operand_qualifier_kind
539{
540 OQK_NIL,
541 OQK_OPD_VARIANT,
542 OQK_VALUE_IN_RANGE,
543 OQK_MISC,
544};
545
546/* Operand qualifier description. */
547struct operand_qualifier_data
548{
549 /* The usage of the three data fields depends on the qualifier kind. */
550 int data0;
551 int data1;
552 int data2;
553 /* Description. */
554 const char *desc;
555 /* Kind. */
556 enum operand_qualifier_kind kind;
557};
558
559/* Indexed by the operand qualifier enumerators. */
560struct operand_qualifier_data aarch64_opnd_qualifiers[] =
561{
562 {0, 0, 0, "NIL", OQK_NIL},
563
564 /* Operand variant qualifiers.
565 First 3 fields:
566 element size, number of elements and common value for encoding. */
567
568 {4, 1, 0x0, "w", OQK_OPD_VARIANT},
569 {8, 1, 0x1, "x", OQK_OPD_VARIANT},
570 {4, 1, 0x0, "wsp", OQK_OPD_VARIANT},
571 {8, 1, 0x1, "sp", OQK_OPD_VARIANT},
572
573 {1, 1, 0x0, "b", OQK_OPD_VARIANT},
574 {2, 1, 0x1, "h", OQK_OPD_VARIANT},
575 {4, 1, 0x2, "s", OQK_OPD_VARIANT},
576 {8, 1, 0x3, "d", OQK_OPD_VARIANT},
577 {16, 1, 0x4, "q", OQK_OPD_VARIANT},
578
579 {1, 8, 0x0, "8b", OQK_OPD_VARIANT},
580 {1, 16, 0x1, "16b", OQK_OPD_VARIANT},
3067d3b9 581 {2, 2, 0x0, "2h", OQK_OPD_VARIANT},
a06ea964
NC
582 {2, 4, 0x2, "4h", OQK_OPD_VARIANT},
583 {2, 8, 0x3, "8h", OQK_OPD_VARIANT},
584 {4, 2, 0x4, "2s", OQK_OPD_VARIANT},
585 {4, 4, 0x5, "4s", OQK_OPD_VARIANT},
586 {8, 1, 0x6, "1d", OQK_OPD_VARIANT},
587 {8, 2, 0x7, "2d", OQK_OPD_VARIANT},
588 {16, 1, 0x8, "1q", OQK_OPD_VARIANT},
589
590 /* Qualifiers constraining the value range.
591 First 3 fields:
592 Lower bound, higher bound, unused. */
593
594 {0, 7, 0, "imm_0_7" , OQK_VALUE_IN_RANGE},
595 {0, 15, 0, "imm_0_15", OQK_VALUE_IN_RANGE},
596 {0, 31, 0, "imm_0_31", OQK_VALUE_IN_RANGE},
597 {0, 63, 0, "imm_0_63", OQK_VALUE_IN_RANGE},
598 {1, 32, 0, "imm_1_32", OQK_VALUE_IN_RANGE},
599 {1, 64, 0, "imm_1_64", OQK_VALUE_IN_RANGE},
600
601 /* Qualifiers for miscellaneous purpose.
602 First 3 fields:
603 unused, unused and unused. */
604
605 {0, 0, 0, "lsl", 0},
606 {0, 0, 0, "msl", 0},
607
608 {0, 0, 0, "retrieving", 0},
609};
610
611static inline bfd_boolean
612operand_variant_qualifier_p (aarch64_opnd_qualifier_t qualifier)
613{
614 return (aarch64_opnd_qualifiers[qualifier].kind == OQK_OPD_VARIANT)
615 ? TRUE : FALSE;
616}
617
618static inline bfd_boolean
619qualifier_value_in_range_constraint_p (aarch64_opnd_qualifier_t qualifier)
620{
621 return (aarch64_opnd_qualifiers[qualifier].kind == OQK_VALUE_IN_RANGE)
622 ? TRUE : FALSE;
623}
624
625const char*
626aarch64_get_qualifier_name (aarch64_opnd_qualifier_t qualifier)
627{
628 return aarch64_opnd_qualifiers[qualifier].desc;
629}
630
631/* Given an operand qualifier, return the expected data element size
632 of a qualified operand. */
633unsigned char
634aarch64_get_qualifier_esize (aarch64_opnd_qualifier_t qualifier)
635{
636 assert (operand_variant_qualifier_p (qualifier) == TRUE);
637 return aarch64_opnd_qualifiers[qualifier].data0;
638}
639
640unsigned char
641aarch64_get_qualifier_nelem (aarch64_opnd_qualifier_t qualifier)
642{
643 assert (operand_variant_qualifier_p (qualifier) == TRUE);
644 return aarch64_opnd_qualifiers[qualifier].data1;
645}
646
647aarch64_insn
648aarch64_get_qualifier_standard_value (aarch64_opnd_qualifier_t qualifier)
649{
650 assert (operand_variant_qualifier_p (qualifier) == TRUE);
651 return aarch64_opnd_qualifiers[qualifier].data2;
652}
653
654static int
655get_lower_bound (aarch64_opnd_qualifier_t qualifier)
656{
657 assert (qualifier_value_in_range_constraint_p (qualifier) == TRUE);
658 return aarch64_opnd_qualifiers[qualifier].data0;
659}
660
661static int
662get_upper_bound (aarch64_opnd_qualifier_t qualifier)
663{
664 assert (qualifier_value_in_range_constraint_p (qualifier) == TRUE);
665 return aarch64_opnd_qualifiers[qualifier].data1;
666}
667
668#ifdef DEBUG_AARCH64
669void
670aarch64_verbose (const char *str, ...)
671{
672 va_list ap;
673 va_start (ap, str);
674 printf ("#### ");
675 vprintf (str, ap);
676 printf ("\n");
677 va_end (ap);
678}
679
680static inline void
681dump_qualifier_sequence (const aarch64_opnd_qualifier_t *qualifier)
682{
683 int i;
684 printf ("#### \t");
685 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i, ++qualifier)
686 printf ("%s,", aarch64_get_qualifier_name (*qualifier));
687 printf ("\n");
688}
689
690static void
691dump_match_qualifiers (const struct aarch64_opnd_info *opnd,
692 const aarch64_opnd_qualifier_t *qualifier)
693{
694 int i;
695 aarch64_opnd_qualifier_t curr[AARCH64_MAX_OPND_NUM];
696
697 aarch64_verbose ("dump_match_qualifiers:");
698 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
699 curr[i] = opnd[i].qualifier;
700 dump_qualifier_sequence (curr);
701 aarch64_verbose ("against");
702 dump_qualifier_sequence (qualifier);
703}
704#endif /* DEBUG_AARCH64 */
705
706/* TODO improve this, we can have an extra field at the runtime to
707 store the number of operands rather than calculating it every time. */
708
709int
710aarch64_num_of_operands (const aarch64_opcode *opcode)
711{
712 int i = 0;
713 const enum aarch64_opnd *opnds = opcode->operands;
714 while (opnds[i++] != AARCH64_OPND_NIL)
715 ;
716 --i;
717 assert (i >= 0 && i <= AARCH64_MAX_OPND_NUM);
718 return i;
719}
720
721/* Find the best matched qualifier sequence in *QUALIFIERS_LIST for INST.
722 If succeeds, fill the found sequence in *RET, return 1; otherwise return 0.
723
724 N.B. on the entry, it is very likely that only some operands in *INST
725 have had their qualifiers been established.
726
727 If STOP_AT is not -1, the function will only try to match
728 the qualifier sequence for operands before and including the operand
729 of index STOP_AT; and on success *RET will only be filled with the first
730 (STOP_AT+1) qualifiers.
731
732 A couple examples of the matching algorithm:
733
734 X,W,NIL should match
735 X,W,NIL
736
737 NIL,NIL should match
738 X ,NIL
739
740 Apart from serving the main encoding routine, this can also be called
741 during or after the operand decoding. */
742
743int
744aarch64_find_best_match (const aarch64_inst *inst,
745 const aarch64_opnd_qualifier_seq_t *qualifiers_list,
746 int stop_at, aarch64_opnd_qualifier_t *ret)
747{
748 int found = 0;
749 int i, num_opnds;
750 const aarch64_opnd_qualifier_t *qualifiers;
751
752 num_opnds = aarch64_num_of_operands (inst->opcode);
753 if (num_opnds == 0)
754 {
755 DEBUG_TRACE ("SUCCEED: no operand");
756 return 1;
757 }
758
759 if (stop_at < 0 || stop_at >= num_opnds)
760 stop_at = num_opnds - 1;
761
762 /* For each pattern. */
763 for (i = 0; i < AARCH64_MAX_QLF_SEQ_NUM; ++i, ++qualifiers_list)
764 {
765 int j;
766 qualifiers = *qualifiers_list;
767
768 /* Start as positive. */
769 found = 1;
770
771 DEBUG_TRACE ("%d", i);
772#ifdef DEBUG_AARCH64
773 if (debug_dump)
774 dump_match_qualifiers (inst->operands, qualifiers);
775#endif
776
777 /* Most opcodes has much fewer patterns in the list.
778 First NIL qualifier indicates the end in the list. */
779 if (empty_qualifier_sequence_p (qualifiers) == TRUE)
780 {
781 DEBUG_TRACE_IF (i == 0, "SUCCEED: empty qualifier list");
782 if (i)
783 found = 0;
784 break;
785 }
786
787 for (j = 0; j < num_opnds && j <= stop_at; ++j, ++qualifiers)
788 {
789 if (inst->operands[j].qualifier == AARCH64_OPND_QLF_NIL)
790 {
791 /* Either the operand does not have qualifier, or the qualifier
792 for the operand needs to be deduced from the qualifier
793 sequence.
794 In the latter case, any constraint checking related with
795 the obtained qualifier should be done later in
796 operand_general_constraint_met_p. */
797 continue;
798 }
799 else if (*qualifiers != inst->operands[j].qualifier)
800 {
801 /* Unless the target qualifier can also qualify the operand
802 (which has already had a non-nil qualifier), non-equal
803 qualifiers are generally un-matched. */
804 if (operand_also_qualified_p (inst->operands + j, *qualifiers))
805 continue;
806 else
807 {
808 found = 0;
809 break;
810 }
811 }
812 else
813 continue; /* Equal qualifiers are certainly matched. */
814 }
815
816 /* Qualifiers established. */
817 if (found == 1)
818 break;
819 }
820
821 if (found == 1)
822 {
823 /* Fill the result in *RET. */
824 int j;
825 qualifiers = *qualifiers_list;
826
827 DEBUG_TRACE ("complete qualifiers using list %d", i);
828#ifdef DEBUG_AARCH64
829 if (debug_dump)
830 dump_qualifier_sequence (qualifiers);
831#endif
832
833 for (j = 0; j <= stop_at; ++j, ++qualifiers)
834 ret[j] = *qualifiers;
835 for (; j < AARCH64_MAX_OPND_NUM; ++j)
836 ret[j] = AARCH64_OPND_QLF_NIL;
837
838 DEBUG_TRACE ("SUCCESS");
839 return 1;
840 }
841
842 DEBUG_TRACE ("FAIL");
843 return 0;
844}
845
846/* Operand qualifier matching and resolving.
847
848 Return 1 if the operand qualifier(s) in *INST match one of the qualifier
849 sequences in INST->OPCODE->qualifiers_list; otherwise return 0.
850
851 if UPDATE_P == TRUE, update the qualifier(s) in *INST after the matching
852 succeeds. */
853
854static int
855match_operands_qualifier (aarch64_inst *inst, bfd_boolean update_p)
856{
857 int i;
858 aarch64_opnd_qualifier_seq_t qualifiers;
859
860 if (!aarch64_find_best_match (inst, inst->opcode->qualifiers_list, -1,
861 qualifiers))
862 {
863 DEBUG_TRACE ("matching FAIL");
864 return 0;
865 }
866
867 /* Update the qualifiers. */
868 if (update_p == TRUE)
869 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
870 {
871 if (inst->opcode->operands[i] == AARCH64_OPND_NIL)
872 break;
873 DEBUG_TRACE_IF (inst->operands[i].qualifier != qualifiers[i],
874 "update %s with %s for operand %d",
875 aarch64_get_qualifier_name (inst->operands[i].qualifier),
876 aarch64_get_qualifier_name (qualifiers[i]), i);
877 inst->operands[i].qualifier = qualifiers[i];
878 }
879
880 DEBUG_TRACE ("matching SUCCESS");
881 return 1;
882}
883
884/* Return TRUE if VALUE is a wide constant that can be moved into a general
885 register by MOVZ.
886
887 IS32 indicates whether value is a 32-bit immediate or not.
888 If SHIFT_AMOUNT is not NULL, on the return of TRUE, the logical left shift
889 amount will be returned in *SHIFT_AMOUNT. */
890
891bfd_boolean
892aarch64_wide_constant_p (int64_t value, int is32, unsigned int *shift_amount)
893{
894 int amount;
895
896 DEBUG_TRACE ("enter with 0x%" PRIx64 "(%" PRIi64 ")", value, value);
897
898 if (is32)
899 {
900 /* Allow all zeros or all ones in top 32-bits, so that
901 32-bit constant expressions like ~0x80000000 are
902 permitted. */
903 uint64_t ext = value;
904 if (ext >> 32 != 0 && ext >> 32 != (uint64_t) 0xffffffff)
905 /* Immediate out of range. */
906 return FALSE;
907 value &= (int64_t) 0xffffffff;
908 }
909
910 /* first, try movz then movn */
911 amount = -1;
912 if ((value & ((int64_t) 0xffff << 0)) == value)
913 amount = 0;
914 else if ((value & ((int64_t) 0xffff << 16)) == value)
915 amount = 16;
916 else if (!is32 && (value & ((int64_t) 0xffff << 32)) == value)
917 amount = 32;
918 else if (!is32 && (value & ((int64_t) 0xffff << 48)) == value)
919 amount = 48;
920
921 if (amount == -1)
922 {
923 DEBUG_TRACE ("exit FALSE with 0x%" PRIx64 "(%" PRIi64 ")", value, value);
924 return FALSE;
925 }
926
927 if (shift_amount != NULL)
928 *shift_amount = amount;
929
930 DEBUG_TRACE ("exit TRUE with amount %d", amount);
931
932 return TRUE;
933}
934
935/* Build the accepted values for immediate logical SIMD instructions.
936
937 The standard encodings of the immediate value are:
938 N imms immr SIMD size R S
939 1 ssssss rrrrrr 64 UInt(rrrrrr) UInt(ssssss)
940 0 0sssss 0rrrrr 32 UInt(rrrrr) UInt(sssss)
941 0 10ssss 00rrrr 16 UInt(rrrr) UInt(ssss)
942 0 110sss 000rrr 8 UInt(rrr) UInt(sss)
943 0 1110ss 0000rr 4 UInt(rr) UInt(ss)
944 0 11110s 00000r 2 UInt(r) UInt(s)
945 where all-ones value of S is reserved.
946
947 Let's call E the SIMD size.
948
949 The immediate value is: S+1 bits '1' rotated to the right by R.
950
951 The total of valid encodings is 64*63 + 32*31 + ... + 2*1 = 5334
952 (remember S != E - 1). */
953
954#define TOTAL_IMM_NB 5334
955
956typedef struct
957{
958 uint64_t imm;
959 aarch64_insn encoding;
960} simd_imm_encoding;
961
962static simd_imm_encoding simd_immediates[TOTAL_IMM_NB];
963
964static int
965simd_imm_encoding_cmp(const void *i1, const void *i2)
966{
967 const simd_imm_encoding *imm1 = (const simd_imm_encoding *)i1;
968 const simd_imm_encoding *imm2 = (const simd_imm_encoding *)i2;
969
970 if (imm1->imm < imm2->imm)
971 return -1;
972 if (imm1->imm > imm2->imm)
973 return +1;
974 return 0;
975}
976
977/* immediate bitfield standard encoding
978 imm13<12> imm13<5:0> imm13<11:6> SIMD size R S
979 1 ssssss rrrrrr 64 rrrrrr ssssss
980 0 0sssss 0rrrrr 32 rrrrr sssss
981 0 10ssss 00rrrr 16 rrrr ssss
982 0 110sss 000rrr 8 rrr sss
983 0 1110ss 0000rr 4 rr ss
984 0 11110s 00000r 2 r s */
985static inline int
986encode_immediate_bitfield (int is64, uint32_t s, uint32_t r)
987{
988 return (is64 << 12) | (r << 6) | s;
989}
990
991static void
992build_immediate_table (void)
993{
994 uint32_t log_e, e, s, r, s_mask;
995 uint64_t mask, imm;
996 int nb_imms;
997 int is64;
998
999 nb_imms = 0;
1000 for (log_e = 1; log_e <= 6; log_e++)
1001 {
1002 /* Get element size. */
1003 e = 1u << log_e;
1004 if (log_e == 6)
1005 {
1006 is64 = 1;
1007 mask = 0xffffffffffffffffull;
1008 s_mask = 0;
1009 }
1010 else
1011 {
1012 is64 = 0;
1013 mask = (1ull << e) - 1;
1014 /* log_e s_mask
1015 1 ((1 << 4) - 1) << 2 = 111100
1016 2 ((1 << 3) - 1) << 3 = 111000
1017 3 ((1 << 2) - 1) << 4 = 110000
1018 4 ((1 << 1) - 1) << 5 = 100000
1019 5 ((1 << 0) - 1) << 6 = 000000 */
1020 s_mask = ((1u << (5 - log_e)) - 1) << (log_e + 1);
1021 }
1022 for (s = 0; s < e - 1; s++)
1023 for (r = 0; r < e; r++)
1024 {
1025 /* s+1 consecutive bits to 1 (s < 63) */
1026 imm = (1ull << (s + 1)) - 1;
1027 /* rotate right by r */
1028 if (r != 0)
1029 imm = (imm >> r) | ((imm << (e - r)) & mask);
1030 /* replicate the constant depending on SIMD size */
1031 switch (log_e)
1032 {
1033 case 1: imm = (imm << 2) | imm;
1034 case 2: imm = (imm << 4) | imm;
1035 case 3: imm = (imm << 8) | imm;
1036 case 4: imm = (imm << 16) | imm;
1037 case 5: imm = (imm << 32) | imm;
1038 case 6: break;
1039 default: abort ();
1040 }
1041 simd_immediates[nb_imms].imm = imm;
1042 simd_immediates[nb_imms].encoding =
1043 encode_immediate_bitfield(is64, s | s_mask, r);
1044 nb_imms++;
1045 }
1046 }
1047 assert (nb_imms == TOTAL_IMM_NB);
1048 qsort(simd_immediates, nb_imms,
1049 sizeof(simd_immediates[0]), simd_imm_encoding_cmp);
1050}
1051
1052/* Return TRUE if VALUE is a valid logical immediate, i.e. bitmask, that can
1053 be accepted by logical (immediate) instructions
1054 e.g. ORR <Xd|SP>, <Xn>, #<imm>.
1055
1056 IS32 indicates whether or not VALUE is a 32-bit immediate.
1057 If ENCODING is not NULL, on the return of TRUE, the standard encoding for
1058 VALUE will be returned in *ENCODING. */
1059
1060bfd_boolean
1061aarch64_logical_immediate_p (uint64_t value, int is32, aarch64_insn *encoding)
1062{
1063 simd_imm_encoding imm_enc;
1064 const simd_imm_encoding *imm_encoding;
1065 static bfd_boolean initialized = FALSE;
1066
1067 DEBUG_TRACE ("enter with 0x%" PRIx64 "(%" PRIi64 "), is32: %d", value,
1068 value, is32);
1069
1070 if (initialized == FALSE)
1071 {
1072 build_immediate_table ();
1073 initialized = TRUE;
1074 }
1075
1076 if (is32)
1077 {
1078 /* Allow all zeros or all ones in top 32-bits, so that
1079 constant expressions like ~1 are permitted. */
1080 if (value >> 32 != 0 && value >> 32 != 0xffffffff)
7e105031
NC
1081 return FALSE;
1082
a06ea964
NC
1083 /* Replicate the 32 lower bits to the 32 upper bits. */
1084 value &= 0xffffffff;
1085 value |= value << 32;
1086 }
1087
1088 imm_enc.imm = value;
1089 imm_encoding = (const simd_imm_encoding *)
1090 bsearch(&imm_enc, simd_immediates, TOTAL_IMM_NB,
1091 sizeof(simd_immediates[0]), simd_imm_encoding_cmp);
1092 if (imm_encoding == NULL)
1093 {
1094 DEBUG_TRACE ("exit with FALSE");
1095 return FALSE;
1096 }
1097 if (encoding != NULL)
1098 *encoding = imm_encoding->encoding;
1099 DEBUG_TRACE ("exit with TRUE");
1100 return TRUE;
1101}
1102
1103/* If 64-bit immediate IMM is in the format of
1104 "aaaaaaaabbbbbbbbccccccccddddddddeeeeeeeeffffffffgggggggghhhhhhhh",
1105 where a, b, c, d, e, f, g and h are independently 0 or 1, return an integer
1106 of value "abcdefgh". Otherwise return -1. */
1107int
1108aarch64_shrink_expanded_imm8 (uint64_t imm)
1109{
1110 int i, ret;
1111 uint32_t byte;
1112
1113 ret = 0;
1114 for (i = 0; i < 8; i++)
1115 {
1116 byte = (imm >> (8 * i)) & 0xff;
1117 if (byte == 0xff)
1118 ret |= 1 << i;
1119 else if (byte != 0x00)
1120 return -1;
1121 }
1122 return ret;
1123}
1124
1125/* Utility inline functions for operand_general_constraint_met_p. */
1126
1127static inline void
1128set_error (aarch64_operand_error *mismatch_detail,
1129 enum aarch64_operand_error_kind kind, int idx,
1130 const char* error)
1131{
1132 if (mismatch_detail == NULL)
1133 return;
1134 mismatch_detail->kind = kind;
1135 mismatch_detail->index = idx;
1136 mismatch_detail->error = error;
1137}
1138
4e50d5f8
YZ
1139static inline void
1140set_syntax_error (aarch64_operand_error *mismatch_detail, int idx,
1141 const char* error)
1142{
1143 if (mismatch_detail == NULL)
1144 return;
1145 set_error (mismatch_detail, AARCH64_OPDE_SYNTAX_ERROR, idx, error);
1146}
1147
a06ea964
NC
1148static inline void
1149set_out_of_range_error (aarch64_operand_error *mismatch_detail,
1150 int idx, int lower_bound, int upper_bound,
1151 const char* error)
1152{
1153 if (mismatch_detail == NULL)
1154 return;
1155 set_error (mismatch_detail, AARCH64_OPDE_OUT_OF_RANGE, idx, error);
1156 mismatch_detail->data[0] = lower_bound;
1157 mismatch_detail->data[1] = upper_bound;
1158}
1159
1160static inline void
1161set_imm_out_of_range_error (aarch64_operand_error *mismatch_detail,
1162 int idx, int lower_bound, int upper_bound)
1163{
1164 if (mismatch_detail == NULL)
1165 return;
1166 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1167 _("immediate value"));
1168}
1169
1170static inline void
1171set_offset_out_of_range_error (aarch64_operand_error *mismatch_detail,
1172 int idx, int lower_bound, int upper_bound)
1173{
1174 if (mismatch_detail == NULL)
1175 return;
1176 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1177 _("immediate offset"));
1178}
1179
1180static inline void
1181set_regno_out_of_range_error (aarch64_operand_error *mismatch_detail,
1182 int idx, int lower_bound, int upper_bound)
1183{
1184 if (mismatch_detail == NULL)
1185 return;
1186 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1187 _("register number"));
1188}
1189
1190static inline void
1191set_elem_idx_out_of_range_error (aarch64_operand_error *mismatch_detail,
1192 int idx, int lower_bound, int upper_bound)
1193{
1194 if (mismatch_detail == NULL)
1195 return;
1196 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1197 _("register element index"));
1198}
1199
1200static inline void
1201set_sft_amount_out_of_range_error (aarch64_operand_error *mismatch_detail,
1202 int idx, int lower_bound, int upper_bound)
1203{
1204 if (mismatch_detail == NULL)
1205 return;
1206 set_out_of_range_error (mismatch_detail, idx, lower_bound, upper_bound,
1207 _("shift amount"));
1208}
1209
1210static inline void
1211set_unaligned_error (aarch64_operand_error *mismatch_detail, int idx,
1212 int alignment)
1213{
1214 if (mismatch_detail == NULL)
1215 return;
1216 set_error (mismatch_detail, AARCH64_OPDE_UNALIGNED, idx, NULL);
1217 mismatch_detail->data[0] = alignment;
1218}
1219
1220static inline void
1221set_reg_list_error (aarch64_operand_error *mismatch_detail, int idx,
1222 int expected_num)
1223{
1224 if (mismatch_detail == NULL)
1225 return;
1226 set_error (mismatch_detail, AARCH64_OPDE_REG_LIST, idx, NULL);
1227 mismatch_detail->data[0] = expected_num;
1228}
1229
1230static inline void
1231set_other_error (aarch64_operand_error *mismatch_detail, int idx,
1232 const char* error)
1233{
1234 if (mismatch_detail == NULL)
1235 return;
1236 set_error (mismatch_detail, AARCH64_OPDE_OTHER_ERROR, idx, error);
1237}
1238
1239/* General constraint checking based on operand code.
1240
1241 Return 1 if OPNDS[IDX] meets the general constraint of operand code TYPE
1242 as the IDXth operand of opcode OPCODE. Otherwise return 0.
1243
1244 This function has to be called after the qualifiers for all operands
1245 have been resolved.
1246
1247 Mismatching error message is returned in *MISMATCH_DETAIL upon request,
1248 i.e. when MISMATCH_DETAIL is non-NULL. This avoids the generation
1249 of error message during the disassembling where error message is not
1250 wanted. We avoid the dynamic construction of strings of error messages
1251 here (i.e. in libopcodes), as it is costly and complicated; instead, we
1252 use a combination of error code, static string and some integer data to
1253 represent an error. */
1254
1255static int
1256operand_general_constraint_met_p (const aarch64_opnd_info *opnds, int idx,
1257 enum aarch64_opnd type,
1258 const aarch64_opcode *opcode,
1259 aarch64_operand_error *mismatch_detail)
1260{
1261 unsigned num;
1262 unsigned char size;
1263 int64_t imm;
1264 const aarch64_opnd_info *opnd = opnds + idx;
1265 aarch64_opnd_qualifier_t qualifier = opnd->qualifier;
1266
1267 assert (opcode->operands[idx] == opnd->type && opnd->type == type);
1268
1269 switch (aarch64_operands[type].op_class)
1270 {
1271 case AARCH64_OPND_CLASS_INT_REG:
ee804238
JW
1272 /* Check pair reg constraints for cas* instructions. */
1273 if (type == AARCH64_OPND_PAIRREG)
1274 {
1275 assert (idx == 1 || idx == 3);
1276 if (opnds[idx - 1].reg.regno % 2 != 0)
1277 {
1278 set_syntax_error (mismatch_detail, idx - 1,
1279 _("reg pair must start from even reg"));
1280 return 0;
1281 }
1282 if (opnds[idx].reg.regno != opnds[idx - 1].reg.regno + 1)
1283 {
1284 set_syntax_error (mismatch_detail, idx,
1285 _("reg pair must be contiguous"));
1286 return 0;
1287 }
1288 break;
1289 }
1290
a06ea964
NC
1291 /* <Xt> may be optional in some IC and TLBI instructions. */
1292 if (type == AARCH64_OPND_Rt_SYS)
1293 {
1294 assert (idx == 1 && (aarch64_get_operand_class (opnds[0].type)
1295 == AARCH64_OPND_CLASS_SYSTEM));
ea2deeec
MW
1296 if (opnds[1].present
1297 && !aarch64_sys_ins_reg_has_xt (opnds[0].sysins_op))
a06ea964
NC
1298 {
1299 set_other_error (mismatch_detail, idx, _("extraneous register"));
1300 return 0;
1301 }
ea2deeec
MW
1302 if (!opnds[1].present
1303 && aarch64_sys_ins_reg_has_xt (opnds[0].sysins_op))
a06ea964
NC
1304 {
1305 set_other_error (mismatch_detail, idx, _("missing register"));
1306 return 0;
1307 }
1308 }
1309 switch (qualifier)
1310 {
1311 case AARCH64_OPND_QLF_WSP:
1312 case AARCH64_OPND_QLF_SP:
1313 if (!aarch64_stack_pointer_p (opnd))
1314 {
1315 set_other_error (mismatch_detail, idx,
1316 _("stack pointer register expected"));
1317 return 0;
1318 }
1319 break;
1320 default:
1321 break;
1322 }
1323 break;
1324
68a64283
YZ
1325 case AARCH64_OPND_CLASS_COND:
1326 if (type == AARCH64_OPND_COND1
1327 && (opnds[idx].cond->value & 0xe) == 0xe)
1328 {
1329 /* Not allow AL or NV. */
1330 set_syntax_error (mismatch_detail, idx, NULL);
1331 }
1332 break;
1333
a06ea964
NC
1334 case AARCH64_OPND_CLASS_ADDRESS:
1335 /* Check writeback. */
1336 switch (opcode->iclass)
1337 {
1338 case ldst_pos:
1339 case ldst_unscaled:
1340 case ldstnapair_offs:
1341 case ldstpair_off:
1342 case ldst_unpriv:
1343 if (opnd->addr.writeback == 1)
1344 {
4e50d5f8
YZ
1345 set_syntax_error (mismatch_detail, idx,
1346 _("unexpected address writeback"));
a06ea964
NC
1347 return 0;
1348 }
1349 break;
1350 case ldst_imm9:
1351 case ldstpair_indexed:
1352 case asisdlsep:
1353 case asisdlsop:
1354 if (opnd->addr.writeback == 0)
1355 {
4e50d5f8
YZ
1356 set_syntax_error (mismatch_detail, idx,
1357 _("address writeback expected"));
a06ea964
NC
1358 return 0;
1359 }
1360 break;
1361 default:
1362 assert (opnd->addr.writeback == 0);
1363 break;
1364 }
1365 switch (type)
1366 {
1367 case AARCH64_OPND_ADDR_SIMM7:
1368 /* Scaled signed 7 bits immediate offset. */
1369 /* Get the size of the data element that is accessed, which may be
1370 different from that of the source register size,
1371 e.g. in strb/ldrb. */
1372 size = aarch64_get_qualifier_esize (opnd->qualifier);
1373 if (!value_in_range_p (opnd->addr.offset.imm, -64 * size, 63 * size))
1374 {
1375 set_offset_out_of_range_error (mismatch_detail, idx,
1376 -64 * size, 63 * size);
1377 return 0;
1378 }
1379 if (!value_aligned_p (opnd->addr.offset.imm, size))
1380 {
1381 set_unaligned_error (mismatch_detail, idx, size);
1382 return 0;
1383 }
1384 break;
1385 case AARCH64_OPND_ADDR_SIMM9:
1386 /* Unscaled signed 9 bits immediate offset. */
1387 if (!value_in_range_p (opnd->addr.offset.imm, -256, 255))
1388 {
1389 set_offset_out_of_range_error (mismatch_detail, idx, -256, 255);
1390 return 0;
1391 }
1392 break;
1393
1394 case AARCH64_OPND_ADDR_SIMM9_2:
1395 /* Unscaled signed 9 bits immediate offset, which has to be negative
1396 or unaligned. */
1397 size = aarch64_get_qualifier_esize (qualifier);
1398 if ((value_in_range_p (opnd->addr.offset.imm, 0, 255)
1399 && !value_aligned_p (opnd->addr.offset.imm, size))
1400 || value_in_range_p (opnd->addr.offset.imm, -256, -1))
1401 return 1;
1402 set_other_error (mismatch_detail, idx,
1403 _("negative or unaligned offset expected"));
1404 return 0;
1405
1406 case AARCH64_OPND_SIMD_ADDR_POST:
1407 /* AdvSIMD load/store multiple structures, post-index. */
1408 assert (idx == 1);
1409 if (opnd->addr.offset.is_reg)
1410 {
1411 if (value_in_range_p (opnd->addr.offset.regno, 0, 30))
1412 return 1;
1413 else
1414 {
1415 set_other_error (mismatch_detail, idx,
1416 _("invalid register offset"));
1417 return 0;
1418 }
1419 }
1420 else
1421 {
1422 const aarch64_opnd_info *prev = &opnds[idx-1];
1423 unsigned num_bytes; /* total number of bytes transferred. */
1424 /* The opcode dependent area stores the number of elements in
1425 each structure to be loaded/stored. */
1426 int is_ld1r = get_opcode_dependent_value (opcode) == 1;
1427 if (opcode->operands[0] == AARCH64_OPND_LVt_AL)
1428 /* Special handling of loading single structure to all lane. */
1429 num_bytes = (is_ld1r ? 1 : prev->reglist.num_regs)
1430 * aarch64_get_qualifier_esize (prev->qualifier);
1431 else
1432 num_bytes = prev->reglist.num_regs
1433 * aarch64_get_qualifier_esize (prev->qualifier)
1434 * aarch64_get_qualifier_nelem (prev->qualifier);
1435 if ((int) num_bytes != opnd->addr.offset.imm)
1436 {
1437 set_other_error (mismatch_detail, idx,
1438 _("invalid post-increment amount"));
1439 return 0;
1440 }
1441 }
1442 break;
1443
1444 case AARCH64_OPND_ADDR_REGOFF:
1445 /* Get the size of the data element that is accessed, which may be
1446 different from that of the source register size,
1447 e.g. in strb/ldrb. */
1448 size = aarch64_get_qualifier_esize (opnd->qualifier);
1449 /* It is either no shift or shift by the binary logarithm of SIZE. */
1450 if (opnd->shifter.amount != 0
1451 && opnd->shifter.amount != (int)get_logsz (size))
1452 {
1453 set_other_error (mismatch_detail, idx,
1454 _("invalid shift amount"));
1455 return 0;
1456 }
1457 /* Only UXTW, LSL, SXTW and SXTX are the accepted extending
1458 operators. */
1459 switch (opnd->shifter.kind)
1460 {
1461 case AARCH64_MOD_UXTW:
1462 case AARCH64_MOD_LSL:
1463 case AARCH64_MOD_SXTW:
1464 case AARCH64_MOD_SXTX: break;
1465 default:
1466 set_other_error (mismatch_detail, idx,
1467 _("invalid extend/shift operator"));
1468 return 0;
1469 }
1470 break;
1471
1472 case AARCH64_OPND_ADDR_UIMM12:
1473 imm = opnd->addr.offset.imm;
1474 /* Get the size of the data element that is accessed, which may be
1475 different from that of the source register size,
1476 e.g. in strb/ldrb. */
1477 size = aarch64_get_qualifier_esize (qualifier);
1478 if (!value_in_range_p (opnd->addr.offset.imm, 0, 4095 * size))
1479 {
1480 set_offset_out_of_range_error (mismatch_detail, idx,
1481 0, 4095 * size);
1482 return 0;
1483 }
9de794e1 1484 if (!value_aligned_p (opnd->addr.offset.imm, size))
a06ea964
NC
1485 {
1486 set_unaligned_error (mismatch_detail, idx, size);
1487 return 0;
1488 }
1489 break;
1490
1491 case AARCH64_OPND_ADDR_PCREL14:
1492 case AARCH64_OPND_ADDR_PCREL19:
1493 case AARCH64_OPND_ADDR_PCREL21:
1494 case AARCH64_OPND_ADDR_PCREL26:
1495 imm = opnd->imm.value;
1496 if (operand_need_shift_by_two (get_operand_from_code (type)))
1497 {
1498 /* The offset value in a PC-relative branch instruction is alway
1499 4-byte aligned and is encoded without the lowest 2 bits. */
1500 if (!value_aligned_p (imm, 4))
1501 {
1502 set_unaligned_error (mismatch_detail, idx, 4);
1503 return 0;
1504 }
1505 /* Right shift by 2 so that we can carry out the following check
1506 canonically. */
1507 imm >>= 2;
1508 }
1509 size = get_operand_fields_width (get_operand_from_code (type));
1510 if (!value_fit_signed_field_p (imm, size))
1511 {
1512 set_other_error (mismatch_detail, idx,
1513 _("immediate out of range"));
1514 return 0;
1515 }
1516 break;
1517
1518 default:
1519 break;
1520 }
1521 break;
1522
1523 case AARCH64_OPND_CLASS_SIMD_REGLIST:
1524 /* The opcode dependent area stores the number of elements in
1525 each structure to be loaded/stored. */
1526 num = get_opcode_dependent_value (opcode);
1527 switch (type)
1528 {
1529 case AARCH64_OPND_LVt:
1530 assert (num >= 1 && num <= 4);
1531 /* Unless LD1/ST1, the number of registers should be equal to that
1532 of the structure elements. */
1533 if (num != 1 && opnd->reglist.num_regs != num)
1534 {
1535 set_reg_list_error (mismatch_detail, idx, num);
1536 return 0;
1537 }
1538 break;
1539 case AARCH64_OPND_LVt_AL:
1540 case AARCH64_OPND_LEt:
1541 assert (num >= 1 && num <= 4);
1542 /* The number of registers should be equal to that of the structure
1543 elements. */
1544 if (opnd->reglist.num_regs != num)
1545 {
1546 set_reg_list_error (mismatch_detail, idx, num);
1547 return 0;
1548 }
1549 break;
1550 default:
1551 break;
1552 }
1553 break;
1554
1555 case AARCH64_OPND_CLASS_IMMEDIATE:
1556 /* Constraint check on immediate operand. */
1557 imm = opnd->imm.value;
1558 /* E.g. imm_0_31 constrains value to be 0..31. */
1559 if (qualifier_value_in_range_constraint_p (qualifier)
1560 && !value_in_range_p (imm, get_lower_bound (qualifier),
1561 get_upper_bound (qualifier)))
1562 {
1563 set_imm_out_of_range_error (mismatch_detail, idx,
1564 get_lower_bound (qualifier),
1565 get_upper_bound (qualifier));
1566 return 0;
1567 }
1568
1569 switch (type)
1570 {
1571 case AARCH64_OPND_AIMM:
1572 if (opnd->shifter.kind != AARCH64_MOD_LSL)
1573 {
1574 set_other_error (mismatch_detail, idx,
1575 _("invalid shift operator"));
1576 return 0;
1577 }
1578 if (opnd->shifter.amount != 0 && opnd->shifter.amount != 12)
1579 {
1580 set_other_error (mismatch_detail, idx,
1581 _("shift amount expected to be 0 or 12"));
1582 return 0;
1583 }
1584 if (!value_fit_unsigned_field_p (opnd->imm.value, 12))
1585 {
1586 set_other_error (mismatch_detail, idx,
1587 _("immediate out of range"));
1588 return 0;
1589 }
1590 break;
1591
1592 case AARCH64_OPND_HALF:
1593 assert (idx == 1 && opnds[0].type == AARCH64_OPND_Rd);
1594 if (opnd->shifter.kind != AARCH64_MOD_LSL)
1595 {
1596 set_other_error (mismatch_detail, idx,
1597 _("invalid shift operator"));
1598 return 0;
1599 }
1600 size = aarch64_get_qualifier_esize (opnds[0].qualifier);
1601 if (!value_aligned_p (opnd->shifter.amount, 16))
1602 {
1603 set_other_error (mismatch_detail, idx,
1604 _("shift amount should be a multiple of 16"));
1605 return 0;
1606 }
1607 if (!value_in_range_p (opnd->shifter.amount, 0, size * 8 - 16))
1608 {
1609 set_sft_amount_out_of_range_error (mismatch_detail, idx,
1610 0, size * 8 - 16);
1611 return 0;
1612 }
1613 if (opnd->imm.value < 0)
1614 {
1615 set_other_error (mismatch_detail, idx,
1616 _("negative immediate value not allowed"));
1617 return 0;
1618 }
1619 if (!value_fit_unsigned_field_p (opnd->imm.value, 16))
1620 {
1621 set_other_error (mismatch_detail, idx,
1622 _("immediate out of range"));
1623 return 0;
1624 }
1625 break;
1626
1627 case AARCH64_OPND_IMM_MOV:
1628 {
1629 int is32 = aarch64_get_qualifier_esize (opnds[0].qualifier) == 4;
1630 imm = opnd->imm.value;
1631 assert (idx == 1);
1632 switch (opcode->op)
1633 {
1634 case OP_MOV_IMM_WIDEN:
1635 imm = ~imm;
1636 /* Fall through... */
1637 case OP_MOV_IMM_WIDE:
1638 if (!aarch64_wide_constant_p (imm, is32, NULL))
1639 {
1640 set_other_error (mismatch_detail, idx,
1641 _("immediate out of range"));
1642 return 0;
1643 }
1644 break;
1645 case OP_MOV_IMM_LOG:
1646 if (!aarch64_logical_immediate_p (imm, is32, NULL))
1647 {
1648 set_other_error (mismatch_detail, idx,
1649 _("immediate out of range"));
1650 return 0;
1651 }
1652 break;
1653 default:
1654 assert (0);
1655 return 0;
1656 }
1657 }
1658 break;
1659
1660 case AARCH64_OPND_NZCV:
1661 case AARCH64_OPND_CCMP_IMM:
1662 case AARCH64_OPND_EXCEPTION:
1663 case AARCH64_OPND_UIMM4:
1664 case AARCH64_OPND_UIMM7:
1665 case AARCH64_OPND_UIMM3_OP1:
1666 case AARCH64_OPND_UIMM3_OP2:
1667 size = get_operand_fields_width (get_operand_from_code (type));
1668 assert (size < 32);
1669 if (!value_fit_unsigned_field_p (opnd->imm.value, size))
1670 {
1671 set_imm_out_of_range_error (mismatch_detail, idx, 0,
1672 (1 << size) - 1);
1673 return 0;
1674 }
1675 break;
1676
1677 case AARCH64_OPND_WIDTH:
d685192a 1678 assert (idx > 1 && opnds[idx-1].type == AARCH64_OPND_IMM
a06ea964
NC
1679 && opnds[0].type == AARCH64_OPND_Rd);
1680 size = get_upper_bound (qualifier);
1681 if (opnd->imm.value + opnds[idx-1].imm.value > size)
1682 /* lsb+width <= reg.size */
1683 {
1684 set_imm_out_of_range_error (mismatch_detail, idx, 1,
1685 size - opnds[idx-1].imm.value);
1686 return 0;
1687 }
1688 break;
1689
1690 case AARCH64_OPND_LIMM:
1691 {
1692 int is32 = opnds[0].qualifier == AARCH64_OPND_QLF_W;
1693 uint64_t uimm = opnd->imm.value;
1694 if (opcode->op == OP_BIC)
1695 uimm = ~uimm;
1696 if (aarch64_logical_immediate_p (uimm, is32, NULL) == FALSE)
1697 {
1698 set_other_error (mismatch_detail, idx,
1699 _("immediate out of range"));
1700 return 0;
1701 }
1702 }
1703 break;
1704
1705 case AARCH64_OPND_IMM0:
1706 case AARCH64_OPND_FPIMM0:
1707 if (opnd->imm.value != 0)
1708 {
1709 set_other_error (mismatch_detail, idx,
1710 _("immediate zero expected"));
1711 return 0;
1712 }
1713 break;
1714
1715 case AARCH64_OPND_SHLL_IMM:
1716 assert (idx == 2);
1717 size = 8 * aarch64_get_qualifier_esize (opnds[idx - 1].qualifier);
1718 if (opnd->imm.value != size)
1719 {
1720 set_other_error (mismatch_detail, idx,
1721 _("invalid shift amount"));
1722 return 0;
1723 }
1724 break;
1725
1726 case AARCH64_OPND_IMM_VLSL:
1727 size = aarch64_get_qualifier_esize (qualifier);
1728 if (!value_in_range_p (opnd->imm.value, 0, size * 8 - 1))
1729 {
1730 set_imm_out_of_range_error (mismatch_detail, idx, 0,
1731 size * 8 - 1);
1732 return 0;
1733 }
1734 break;
1735
1736 case AARCH64_OPND_IMM_VLSR:
1737 size = aarch64_get_qualifier_esize (qualifier);
1738 if (!value_in_range_p (opnd->imm.value, 1, size * 8))
1739 {
1740 set_imm_out_of_range_error (mismatch_detail, idx, 1, size * 8);
1741 return 0;
1742 }
1743 break;
1744
1745 case AARCH64_OPND_SIMD_IMM:
1746 case AARCH64_OPND_SIMD_IMM_SFT:
1747 /* Qualifier check. */
1748 switch (qualifier)
1749 {
1750 case AARCH64_OPND_QLF_LSL:
1751 if (opnd->shifter.kind != AARCH64_MOD_LSL)
1752 {
1753 set_other_error (mismatch_detail, idx,
1754 _("invalid shift operator"));
1755 return 0;
1756 }
1757 break;
1758 case AARCH64_OPND_QLF_MSL:
1759 if (opnd->shifter.kind != AARCH64_MOD_MSL)
1760 {
1761 set_other_error (mismatch_detail, idx,
1762 _("invalid shift operator"));
1763 return 0;
1764 }
1765 break;
1766 case AARCH64_OPND_QLF_NIL:
1767 if (opnd->shifter.kind != AARCH64_MOD_NONE)
1768 {
1769 set_other_error (mismatch_detail, idx,
1770 _("shift is not permitted"));
1771 return 0;
1772 }
1773 break;
1774 default:
1775 assert (0);
1776 return 0;
1777 }
1778 /* Is the immediate valid? */
1779 assert (idx == 1);
1780 if (aarch64_get_qualifier_esize (opnds[0].qualifier) != 8)
1781 {
d2865ed3
YZ
1782 /* uimm8 or simm8 */
1783 if (!value_in_range_p (opnd->imm.value, -128, 255))
a06ea964 1784 {
d2865ed3 1785 set_imm_out_of_range_error (mismatch_detail, idx, -128, 255);
a06ea964
NC
1786 return 0;
1787 }
1788 }
1789 else if (aarch64_shrink_expanded_imm8 (opnd->imm.value) < 0)
1790 {
1791 /* uimm64 is not
1792 'aaaaaaaabbbbbbbbccccccccddddddddeeeeeeee
1793 ffffffffgggggggghhhhhhhh'. */
1794 set_other_error (mismatch_detail, idx,
1795 _("invalid value for immediate"));
1796 return 0;
1797 }
1798 /* Is the shift amount valid? */
1799 switch (opnd->shifter.kind)
1800 {
1801 case AARCH64_MOD_LSL:
1802 size = aarch64_get_qualifier_esize (opnds[0].qualifier);
f5555712 1803 if (!value_in_range_p (opnd->shifter.amount, 0, (size - 1) * 8))
a06ea964 1804 {
f5555712
YZ
1805 set_sft_amount_out_of_range_error (mismatch_detail, idx, 0,
1806 (size - 1) * 8);
a06ea964
NC
1807 return 0;
1808 }
f5555712 1809 if (!value_aligned_p (opnd->shifter.amount, 8))
a06ea964 1810 {
f5555712 1811 set_unaligned_error (mismatch_detail, idx, 8);
a06ea964
NC
1812 return 0;
1813 }
1814 break;
1815 case AARCH64_MOD_MSL:
1816 /* Only 8 and 16 are valid shift amount. */
1817 if (opnd->shifter.amount != 8 && opnd->shifter.amount != 16)
1818 {
1819 set_other_error (mismatch_detail, idx,
1820 _("shift amount expected to be 0 or 16"));
1821 return 0;
1822 }
1823 break;
1824 default:
1825 if (opnd->shifter.kind != AARCH64_MOD_NONE)
1826 {
1827 set_other_error (mismatch_detail, idx,
1828 _("invalid shift operator"));
1829 return 0;
1830 }
1831 break;
1832 }
1833 break;
1834
1835 case AARCH64_OPND_FPIMM:
1836 case AARCH64_OPND_SIMD_FPIMM:
1837 if (opnd->imm.is_fp == 0)
1838 {
1839 set_other_error (mismatch_detail, idx,
1840 _("floating-point immediate expected"));
1841 return 0;
1842 }
1843 /* The value is expected to be an 8-bit floating-point constant with
1844 sign, 3-bit exponent and normalized 4 bits of precision, encoded
1845 in "a:b:c:d:e:f:g:h" or FLD_imm8 (depending on the type of the
1846 instruction). */
1847 if (!value_in_range_p (opnd->imm.value, 0, 255))
1848 {
1849 set_other_error (mismatch_detail, idx,
1850 _("immediate out of range"));
1851 return 0;
1852 }
1853 if (opnd->shifter.kind != AARCH64_MOD_NONE)
1854 {
1855 set_other_error (mismatch_detail, idx,
1856 _("invalid shift operator"));
1857 return 0;
1858 }
1859 break;
1860
1861 default:
1862 break;
1863 }
1864 break;
1865
1866 case AARCH64_OPND_CLASS_CP_REG:
1867 /* Cn or Cm: 4-bit opcode field named for historical reasons.
1868 valid range: C0 - C15. */
1869 if (opnd->reg.regno > 15)
1870 {
1871 set_regno_out_of_range_error (mismatch_detail, idx, 0, 15);
1872 return 0;
1873 }
1874 break;
1875
1876 case AARCH64_OPND_CLASS_SYSTEM:
1877 switch (type)
1878 {
1879 case AARCH64_OPND_PSTATEFIELD:
1880 assert (idx == 0 && opnds[1].type == AARCH64_OPND_UIMM4);
c2825638
MW
1881 /* MSR PAN, #uimm4
1882 The immediate must be #0 or #1. */
1883 if (opnd->pstatefield == 0x04 /* PAN. */
1884 && opnds[1].imm.value > 1)
1885 {
1886 set_imm_out_of_range_error (mismatch_detail, idx, 0, 1);
1887 return 0;
1888 }
a06ea964
NC
1889 /* MSR SPSel, #uimm4
1890 Uses uimm4 as a control value to select the stack pointer: if
1891 bit 0 is set it selects the current exception level's stack
1892 pointer, if bit 0 is clear it selects shared EL0 stack pointer.
1893 Bits 1 to 3 of uimm4 are reserved and should be zero. */
1894 if (opnd->pstatefield == 0x05 /* spsel */ && opnds[1].imm.value > 1)
1895 {
1896 set_imm_out_of_range_error (mismatch_detail, idx, 0, 1);
1897 return 0;
1898 }
1899 break;
1900 default:
1901 break;
1902 }
1903 break;
1904
1905 case AARCH64_OPND_CLASS_SIMD_ELEMENT:
1906 /* Get the upper bound for the element index. */
1907 num = 16 / aarch64_get_qualifier_esize (qualifier) - 1;
1908 /* Index out-of-range. */
1909 if (!value_in_range_p (opnd->reglane.index, 0, num))
1910 {
1911 set_elem_idx_out_of_range_error (mismatch_detail, idx, 0, num);
1912 return 0;
1913 }
1914 /* SMLAL<Q> <Vd>.<Ta>, <Vn>.<Tb>, <Vm>.<Ts>[<index>].
1915 <Vm> Is the vector register (V0-V31) or (V0-V15), whose
1916 number is encoded in "size:M:Rm":
1917 size <Vm>
1918 00 RESERVED
1919 01 0:Rm
1920 10 M:Rm
1921 11 RESERVED */
1922 if (type == AARCH64_OPND_Em && qualifier == AARCH64_OPND_QLF_S_H
1923 && !value_in_range_p (opnd->reglane.regno, 0, 15))
1924 {
1925 set_regno_out_of_range_error (mismatch_detail, idx, 0, 15);
1926 return 0;
1927 }
1928 break;
1929
1930 case AARCH64_OPND_CLASS_MODIFIED_REG:
1931 assert (idx == 1 || idx == 2);
1932 switch (type)
1933 {
1934 case AARCH64_OPND_Rm_EXT:
1935 if (aarch64_extend_operator_p (opnd->shifter.kind) == FALSE
1936 && opnd->shifter.kind != AARCH64_MOD_LSL)
1937 {
1938 set_other_error (mismatch_detail, idx,
1939 _("extend operator expected"));
1940 return 0;
1941 }
1942 /* It is not optional unless at least one of "Rd" or "Rn" is '11111'
1943 (i.e. SP), in which case it defaults to LSL. The LSL alias is
1944 only valid when "Rd" or "Rn" is '11111', and is preferred in that
1945 case. */
1946 if (!aarch64_stack_pointer_p (opnds + 0)
1947 && (idx != 2 || !aarch64_stack_pointer_p (opnds + 1)))
1948 {
1949 if (!opnd->shifter.operator_present)
1950 {
1951 set_other_error (mismatch_detail, idx,
1952 _("missing extend operator"));
1953 return 0;
1954 }
1955 else if (opnd->shifter.kind == AARCH64_MOD_LSL)
1956 {
1957 set_other_error (mismatch_detail, idx,
1958 _("'LSL' operator not allowed"));
1959 return 0;
1960 }
1961 }
1962 assert (opnd->shifter.operator_present /* Default to LSL. */
1963 || opnd->shifter.kind == AARCH64_MOD_LSL);
1964 if (!value_in_range_p (opnd->shifter.amount, 0, 4))
1965 {
1966 set_sft_amount_out_of_range_error (mismatch_detail, idx, 0, 4);
1967 return 0;
1968 }
1969 /* In the 64-bit form, the final register operand is written as Wm
1970 for all but the (possibly omitted) UXTX/LSL and SXTX
1971 operators.
1972 N.B. GAS allows X register to be used with any operator as a
1973 programming convenience. */
1974 if (qualifier == AARCH64_OPND_QLF_X
1975 && opnd->shifter.kind != AARCH64_MOD_LSL
1976 && opnd->shifter.kind != AARCH64_MOD_UXTX
1977 && opnd->shifter.kind != AARCH64_MOD_SXTX)
1978 {
1979 set_other_error (mismatch_detail, idx, _("W register expected"));
1980 return 0;
1981 }
1982 break;
1983
1984 case AARCH64_OPND_Rm_SFT:
1985 /* ROR is not available to the shifted register operand in
1986 arithmetic instructions. */
1987 if (aarch64_shift_operator_p (opnd->shifter.kind) == FALSE)
1988 {
1989 set_other_error (mismatch_detail, idx,
1990 _("shift operator expected"));
1991 return 0;
1992 }
1993 if (opnd->shifter.kind == AARCH64_MOD_ROR
1994 && opcode->iclass != log_shift)
1995 {
1996 set_other_error (mismatch_detail, idx,
1997 _("'ROR' operator not allowed"));
1998 return 0;
1999 }
2000 num = qualifier == AARCH64_OPND_QLF_W ? 31 : 63;
2001 if (!value_in_range_p (opnd->shifter.amount, 0, num))
2002 {
2003 set_sft_amount_out_of_range_error (mismatch_detail, idx, 0, num);
2004 return 0;
2005 }
2006 break;
2007
2008 default:
2009 break;
2010 }
2011 break;
2012
2013 default:
2014 break;
2015 }
2016
2017 return 1;
2018}
2019
2020/* Main entrypoint for the operand constraint checking.
2021
2022 Return 1 if operands of *INST meet the constraint applied by the operand
2023 codes and operand qualifiers; otherwise return 0 and if MISMATCH_DETAIL is
2024 not NULL, return the detail of the error in *MISMATCH_DETAIL. N.B. when
2025 adding more constraint checking, make sure MISMATCH_DETAIL->KIND is set
2026 with a proper error kind rather than AARCH64_OPDE_NIL (GAS asserts non-NIL
2027 error kind when it is notified that an instruction does not pass the check).
2028
2029 Un-determined operand qualifiers may get established during the process. */
2030
2031int
2032aarch64_match_operands_constraint (aarch64_inst *inst,
2033 aarch64_operand_error *mismatch_detail)
2034{
2035 int i;
2036
2037 DEBUG_TRACE ("enter");
2038
2039 /* Match operands' qualifier.
2040 *INST has already had qualifier establish for some, if not all, of
2041 its operands; we need to find out whether these established
2042 qualifiers match one of the qualifier sequence in
2043 INST->OPCODE->QUALIFIERS_LIST. If yes, we will assign each operand
2044 with the corresponding qualifier in such a sequence.
2045 Only basic operand constraint checking is done here; the more thorough
2046 constraint checking will carried out by operand_general_constraint_met_p,
2047 which has be to called after this in order to get all of the operands'
2048 qualifiers established. */
2049 if (match_operands_qualifier (inst, TRUE /* update_p */) == 0)
2050 {
2051 DEBUG_TRACE ("FAIL on operand qualifier matching");
2052 if (mismatch_detail)
2053 {
2054 /* Return an error type to indicate that it is the qualifier
2055 matching failure; we don't care about which operand as there
2056 are enough information in the opcode table to reproduce it. */
2057 mismatch_detail->kind = AARCH64_OPDE_INVALID_VARIANT;
2058 mismatch_detail->index = -1;
2059 mismatch_detail->error = NULL;
2060 }
2061 return 0;
2062 }
2063
2064 /* Match operands' constraint. */
2065 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
2066 {
2067 enum aarch64_opnd type = inst->opcode->operands[i];
2068 if (type == AARCH64_OPND_NIL)
2069 break;
2070 if (inst->operands[i].skip)
2071 {
2072 DEBUG_TRACE ("skip the incomplete operand %d", i);
2073 continue;
2074 }
2075 if (operand_general_constraint_met_p (inst->operands, i, type,
2076 inst->opcode, mismatch_detail) == 0)
2077 {
2078 DEBUG_TRACE ("FAIL on operand %d", i);
2079 return 0;
2080 }
2081 }
2082
2083 DEBUG_TRACE ("PASS");
2084
2085 return 1;
2086}
2087
2088/* Replace INST->OPCODE with OPCODE and return the replaced OPCODE.
2089 Also updates the TYPE of each INST->OPERANDS with the corresponding
2090 value of OPCODE->OPERANDS.
2091
2092 Note that some operand qualifiers may need to be manually cleared by
2093 the caller before it further calls the aarch64_opcode_encode; by
2094 doing this, it helps the qualifier matching facilities work
2095 properly. */
2096
2097const aarch64_opcode*
2098aarch64_replace_opcode (aarch64_inst *inst, const aarch64_opcode *opcode)
2099{
2100 int i;
2101 const aarch64_opcode *old = inst->opcode;
2102
2103 inst->opcode = opcode;
2104
2105 /* Update the operand types. */
2106 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
2107 {
2108 inst->operands[i].type = opcode->operands[i];
2109 if (opcode->operands[i] == AARCH64_OPND_NIL)
2110 break;
2111 }
2112
2113 DEBUG_TRACE ("replace %s with %s", old->name, opcode->name);
2114
2115 return old;
2116}
2117
2118int
2119aarch64_operand_index (const enum aarch64_opnd *operands, enum aarch64_opnd operand)
2120{
2121 int i;
2122 for (i = 0; i < AARCH64_MAX_OPND_NUM; ++i)
2123 if (operands[i] == operand)
2124 return i;
2125 else if (operands[i] == AARCH64_OPND_NIL)
2126 break;
2127 return -1;
2128}
2129\f
2130/* [0][0] 32-bit integer regs with sp Wn
2131 [0][1] 64-bit integer regs with sp Xn sf=1
2132 [1][0] 32-bit integer regs with #0 Wn
2133 [1][1] 64-bit integer regs with #0 Xn sf=1 */
2134static const char *int_reg[2][2][32] = {
2135#define R32 "w"
2136#define R64 "x"
2137 { { R32 "0", R32 "1", R32 "2", R32 "3", R32 "4", R32 "5", R32 "6", R32 "7",
2138 R32 "8", R32 "9", R32 "10", R32 "11", R32 "12", R32 "13", R32 "14", R32 "15",
2139 R32 "16", R32 "17", R32 "18", R32 "19", R32 "20", R32 "21", R32 "22", R32 "23",
2140 R32 "24", R32 "25", R32 "26", R32 "27", R32 "28", R32 "29", R32 "30", "wsp" },
2141 { R64 "0", R64 "1", R64 "2", R64 "3", R64 "4", R64 "5", R64 "6", R64 "7",
2142 R64 "8", R64 "9", R64 "10", R64 "11", R64 "12", R64 "13", R64 "14", R64 "15",
2143 R64 "16", R64 "17", R64 "18", R64 "19", R64 "20", R64 "21", R64 "22", R64 "23",
2144 R64 "24", R64 "25", R64 "26", R64 "27", R64 "28", R64 "29", R64 "30", "sp" } },
2145 { { R32 "0", R32 "1", R32 "2", R32 "3", R32 "4", R32 "5", R32 "6", R32 "7",
2146 R32 "8", R32 "9", R32 "10", R32 "11", R32 "12", R32 "13", R32 "14", R32 "15",
2147 R32 "16", R32 "17", R32 "18", R32 "19", R32 "20", R32 "21", R32 "22", R32 "23",
2148 R32 "24", R32 "25", R32 "26", R32 "27", R32 "28", R32 "29", R32 "30", R32 "zr" },
2149 { R64 "0", R64 "1", R64 "2", R64 "3", R64 "4", R64 "5", R64 "6", R64 "7",
2150 R64 "8", R64 "9", R64 "10", R64 "11", R64 "12", R64 "13", R64 "14", R64 "15",
2151 R64 "16", R64 "17", R64 "18", R64 "19", R64 "20", R64 "21", R64 "22", R64 "23",
2152 R64 "24", R64 "25", R64 "26", R64 "27", R64 "28", R64 "29", R64 "30", R64 "zr" } }
2153#undef R64
2154#undef R32
2155};
2156
2157/* Return the integer register name.
2158 if SP_REG_P is not 0, R31 is an SP reg, other R31 is the zero reg. */
2159
2160static inline const char *
2161get_int_reg_name (int regno, aarch64_opnd_qualifier_t qualifier, int sp_reg_p)
2162{
2163 const int has_zr = sp_reg_p ? 0 : 1;
2164 const int is_64 = aarch64_get_qualifier_esize (qualifier) == 4 ? 0 : 1;
2165 return int_reg[has_zr][is_64][regno];
2166}
2167
2168/* Like get_int_reg_name, but IS_64 is always 1. */
2169
2170static inline const char *
2171get_64bit_int_reg_name (int regno, int sp_reg_p)
2172{
2173 const int has_zr = sp_reg_p ? 0 : 1;
2174 return int_reg[has_zr][1][regno];
2175}
2176
2177/* Types for expanding an encoded 8-bit value to a floating-point value. */
2178
2179typedef union
2180{
2181 uint64_t i;
2182 double d;
2183} double_conv_t;
2184
2185typedef union
2186{
2187 uint32_t i;
2188 float f;
2189} single_conv_t;
2190
cf86120b
MW
2191typedef union
2192{
2193 uint32_t i;
2194 float f;
2195} half_conv_t;
2196
a06ea964
NC
2197/* IMM8 is an 8-bit floating-point constant with sign, 3-bit exponent and
2198 normalized 4 bits of precision, encoded in "a:b:c:d:e:f:g:h" or FLD_imm8
2199 (depending on the type of the instruction). IMM8 will be expanded to a
cf86120b
MW
2200 single-precision floating-point value (SIZE == 4) or a double-precision
2201 floating-point value (SIZE == 8). A half-precision floating-point value
2202 (SIZE == 2) is expanded to a single-precision floating-point value. The
2203 expanded value is returned. */
a06ea964
NC
2204
2205static uint64_t
cf86120b 2206expand_fp_imm (int size, uint32_t imm8)
a06ea964
NC
2207{
2208 uint64_t imm;
2209 uint32_t imm8_7, imm8_6_0, imm8_6, imm8_6_repl4;
2210
2211 imm8_7 = (imm8 >> 7) & 0x01; /* imm8<7> */
2212 imm8_6_0 = imm8 & 0x7f; /* imm8<6:0> */
2213 imm8_6 = imm8_6_0 >> 6; /* imm8<6> */
2214 imm8_6_repl4 = (imm8_6 << 3) | (imm8_6 << 2)
2215 | (imm8_6 << 1) | imm8_6; /* Replicate(imm8<6>,4) */
cf86120b 2216 if (size == 8)
a06ea964
NC
2217 {
2218 imm = (imm8_7 << (63-32)) /* imm8<7> */
2219 | ((imm8_6 ^ 1) << (62-32)) /* NOT(imm8<6) */
2220 | (imm8_6_repl4 << (58-32)) | (imm8_6 << (57-32))
2221 | (imm8_6 << (56-32)) | (imm8_6 << (55-32)) /* Replicate(imm8<6>,7) */
2222 | (imm8_6_0 << (48-32)); /* imm8<6>:imm8<5:0> */
2223 imm <<= 32;
2224 }
cf86120b 2225 else if (size == 4 || size == 2)
a06ea964
NC
2226 {
2227 imm = (imm8_7 << 31) /* imm8<7> */
2228 | ((imm8_6 ^ 1) << 30) /* NOT(imm8<6>) */
2229 | (imm8_6_repl4 << 26) /* Replicate(imm8<6>,4) */
2230 | (imm8_6_0 << 19); /* imm8<6>:imm8<5:0> */
2231 }
cf86120b
MW
2232 else
2233 {
2234 /* An unsupported size. */
2235 assert (0);
2236 }
a06ea964
NC
2237
2238 return imm;
2239}
2240
2241/* Produce the string representation of the register list operand *OPND
2242 in the buffer pointed by BUF of size SIZE. */
2243static void
2244print_register_list (char *buf, size_t size, const aarch64_opnd_info *opnd)
2245{
2246 const int num_regs = opnd->reglist.num_regs;
2247 const int first_reg = opnd->reglist.first_regno;
2248 const int last_reg = (first_reg + num_regs - 1) & 0x1f;
2249 const char *qlf_name = aarch64_get_qualifier_name (opnd->qualifier);
2250 char tb[8]; /* Temporary buffer. */
2251
2252 assert (opnd->type != AARCH64_OPND_LEt || opnd->reglist.has_index);
2253 assert (num_regs >= 1 && num_regs <= 4);
2254
2255 /* Prepare the index if any. */
2256 if (opnd->reglist.has_index)
2257 snprintf (tb, 8, "[%d]", opnd->reglist.index);
2258 else
2259 tb[0] = '\0';
2260
2261 /* The hyphenated form is preferred for disassembly if there are
2262 more than two registers in the list, and the register numbers
2263 are monotonically increasing in increments of one. */
2264 if (num_regs > 2 && last_reg > first_reg)
2265 snprintf (buf, size, "{v%d.%s-v%d.%s}%s", first_reg, qlf_name,
2266 last_reg, qlf_name, tb);
2267 else
2268 {
2269 const int reg0 = first_reg;
2270 const int reg1 = (first_reg + 1) & 0x1f;
2271 const int reg2 = (first_reg + 2) & 0x1f;
2272 const int reg3 = (first_reg + 3) & 0x1f;
2273
2274 switch (num_regs)
2275 {
2276 case 1:
2277 snprintf (buf, size, "{v%d.%s}%s", reg0, qlf_name, tb);
2278 break;
2279 case 2:
2280 snprintf (buf, size, "{v%d.%s, v%d.%s}%s", reg0, qlf_name,
2281 reg1, qlf_name, tb);
2282 break;
2283 case 3:
2284 snprintf (buf, size, "{v%d.%s, v%d.%s, v%d.%s}%s", reg0, qlf_name,
2285 reg1, qlf_name, reg2, qlf_name, tb);
2286 break;
2287 case 4:
2288 snprintf (buf, size, "{v%d.%s, v%d.%s, v%d.%s, v%d.%s}%s",
2289 reg0, qlf_name, reg1, qlf_name, reg2, qlf_name,
2290 reg3, qlf_name, tb);
2291 break;
2292 }
2293 }
2294}
2295
2296/* Produce the string representation of the register offset address operand
2297 *OPND in the buffer pointed by BUF of size SIZE. */
2298static void
2299print_register_offset_address (char *buf, size_t size,
2300 const aarch64_opnd_info *opnd)
2301{
2302 const size_t tblen = 16;
2303 char tb[tblen]; /* Temporary buffer. */
2304 bfd_boolean lsl_p = FALSE; /* Is LSL shift operator? */
2305 bfd_boolean wm_p = FALSE; /* Should Rm be Wm? */
2306 bfd_boolean print_extend_p = TRUE;
2307 bfd_boolean print_amount_p = TRUE;
2308 const char *shift_name = aarch64_operand_modifiers[opnd->shifter.kind].name;
2309
2310 switch (opnd->shifter.kind)
2311 {
2312 case AARCH64_MOD_UXTW: wm_p = TRUE; break;
2313 case AARCH64_MOD_LSL : lsl_p = TRUE; break;
2314 case AARCH64_MOD_SXTW: wm_p = TRUE; break;
2315 case AARCH64_MOD_SXTX: break;
2316 default: assert (0);
2317 }
2318
2319 if (!opnd->shifter.amount && (opnd->qualifier != AARCH64_OPND_QLF_S_B
2320 || !opnd->shifter.amount_present))
2321 {
2322 /* Not print the shift/extend amount when the amount is zero and
2323 when it is not the special case of 8-bit load/store instruction. */
2324 print_amount_p = FALSE;
2325 /* Likewise, no need to print the shift operator LSL in such a
2326 situation. */
2327 if (lsl_p)
2328 print_extend_p = FALSE;
2329 }
2330
2331 /* Prepare for the extend/shift. */
2332 if (print_extend_p)
2333 {
2334 if (print_amount_p)
2335 snprintf (tb, tblen, ",%s #%d", shift_name, opnd->shifter.amount);
2336 else
2337 snprintf (tb, tblen, ",%s", shift_name);
2338 }
2339 else
2340 tb[0] = '\0';
2341
a58549dd 2342 snprintf (buf, size, "[%s,%s%s]",
a06ea964 2343 get_64bit_int_reg_name (opnd->addr.base_regno, 1),
a58549dd
YZ
2344 get_int_reg_name (opnd->addr.offset.regno,
2345 wm_p ? AARCH64_OPND_QLF_W : AARCH64_OPND_QLF_X,
2346 0 /* sp_reg_p */),
2347 tb);
a06ea964
NC
2348}
2349
2350/* Generate the string representation of the operand OPNDS[IDX] for OPCODE
2351 in *BUF. The caller should pass in the maximum size of *BUF in SIZE.
2352 PC, PCREL_P and ADDRESS are used to pass in and return information about
2353 the PC-relative address calculation, where the PC value is passed in
2354 PC. If the operand is pc-relative related, *PCREL_P (if PCREL_P non-NULL)
2355 will return 1 and *ADDRESS (if ADDRESS non-NULL) will return the
2356 calculated address; otherwise, *PCREL_P (if PCREL_P non-NULL) returns 0.
2357
2358 The function serves both the disassembler and the assembler diagnostics
2359 issuer, which is the reason why it lives in this file. */
2360
2361void
2362aarch64_print_operand (char *buf, size_t size, bfd_vma pc,
2363 const aarch64_opcode *opcode,
2364 const aarch64_opnd_info *opnds, int idx, int *pcrel_p,
2365 bfd_vma *address)
2366{
2367 int i;
2368 const char *name = NULL;
2369 const aarch64_opnd_info *opnd = opnds + idx;
2370 enum aarch64_modifier_kind kind;
2371 uint64_t addr;
2372
2373 buf[0] = '\0';
2374 if (pcrel_p)
2375 *pcrel_p = 0;
2376
2377 switch (opnd->type)
2378 {
2379 case AARCH64_OPND_Rd:
2380 case AARCH64_OPND_Rn:
2381 case AARCH64_OPND_Rm:
2382 case AARCH64_OPND_Rt:
2383 case AARCH64_OPND_Rt2:
2384 case AARCH64_OPND_Rs:
2385 case AARCH64_OPND_Ra:
2386 case AARCH64_OPND_Rt_SYS:
ee804238 2387 case AARCH64_OPND_PAIRREG:
a06ea964
NC
2388 /* The optional-ness of <Xt> in e.g. IC <ic_op>{, <Xt>} is determined by
2389 the <ic_op>, therefore we we use opnd->present to override the
2390 generic optional-ness information. */
2391 if (opnd->type == AARCH64_OPND_Rt_SYS && !opnd->present)
2392 break;
2393 /* Omit the operand, e.g. RET. */
2394 if (optional_operand_p (opcode, idx)
2395 && opnd->reg.regno == get_optional_operand_default_value (opcode))
2396 break;
2397 assert (opnd->qualifier == AARCH64_OPND_QLF_W
2398 || opnd->qualifier == AARCH64_OPND_QLF_X);
2399 snprintf (buf, size, "%s",
2400 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0));
2401 break;
2402
2403 case AARCH64_OPND_Rd_SP:
2404 case AARCH64_OPND_Rn_SP:
2405 assert (opnd->qualifier == AARCH64_OPND_QLF_W
2406 || opnd->qualifier == AARCH64_OPND_QLF_WSP
2407 || opnd->qualifier == AARCH64_OPND_QLF_X
2408 || opnd->qualifier == AARCH64_OPND_QLF_SP);
2409 snprintf (buf, size, "%s",
2410 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 1));
2411 break;
2412
2413 case AARCH64_OPND_Rm_EXT:
2414 kind = opnd->shifter.kind;
2415 assert (idx == 1 || idx == 2);
2416 if ((aarch64_stack_pointer_p (opnds)
2417 || (idx == 2 && aarch64_stack_pointer_p (opnds + 1)))
2418 && ((opnd->qualifier == AARCH64_OPND_QLF_W
2419 && opnds[0].qualifier == AARCH64_OPND_QLF_W
2420 && kind == AARCH64_MOD_UXTW)
2421 || (opnd->qualifier == AARCH64_OPND_QLF_X
2422 && kind == AARCH64_MOD_UXTX)))
2423 {
2424 /* 'LSL' is the preferred form in this case. */
2425 kind = AARCH64_MOD_LSL;
2426 if (opnd->shifter.amount == 0)
2427 {
2428 /* Shifter omitted. */
2429 snprintf (buf, size, "%s",
2430 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0));
2431 break;
2432 }
2433 }
2434 if (opnd->shifter.amount)
2435 snprintf (buf, size, "%s, %s #%d",
2436 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0),
2437 aarch64_operand_modifiers[kind].name,
2438 opnd->shifter.amount);
2439 else
2440 snprintf (buf, size, "%s, %s",
2441 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0),
2442 aarch64_operand_modifiers[kind].name);
2443 break;
2444
2445 case AARCH64_OPND_Rm_SFT:
2446 assert (opnd->qualifier == AARCH64_OPND_QLF_W
2447 || opnd->qualifier == AARCH64_OPND_QLF_X);
2448 if (opnd->shifter.amount == 0 && opnd->shifter.kind == AARCH64_MOD_LSL)
2449 snprintf (buf, size, "%s",
2450 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0));
2451 else
2452 snprintf (buf, size, "%s, %s #%d",
2453 get_int_reg_name (opnd->reg.regno, opnd->qualifier, 0),
2454 aarch64_operand_modifiers[opnd->shifter.kind].name,
2455 opnd->shifter.amount);
2456 break;
2457
2458 case AARCH64_OPND_Fd:
2459 case AARCH64_OPND_Fn:
2460 case AARCH64_OPND_Fm:
2461 case AARCH64_OPND_Fa:
2462 case AARCH64_OPND_Ft:
2463 case AARCH64_OPND_Ft2:
2464 case AARCH64_OPND_Sd:
2465 case AARCH64_OPND_Sn:
2466 case AARCH64_OPND_Sm:
2467 snprintf (buf, size, "%s%d", aarch64_get_qualifier_name (opnd->qualifier),
2468 opnd->reg.regno);
2469 break;
2470
2471 case AARCH64_OPND_Vd:
2472 case AARCH64_OPND_Vn:
2473 case AARCH64_OPND_Vm:
2474 snprintf (buf, size, "v%d.%s", opnd->reg.regno,
2475 aarch64_get_qualifier_name (opnd->qualifier));
2476 break;
2477
2478 case AARCH64_OPND_Ed:
2479 case AARCH64_OPND_En:
2480 case AARCH64_OPND_Em:
2481 snprintf (buf, size, "v%d.%s[%d]", opnd->reglane.regno,
2482 aarch64_get_qualifier_name (opnd->qualifier),
2483 opnd->reglane.index);
2484 break;
2485
2486 case AARCH64_OPND_VdD1:
2487 case AARCH64_OPND_VnD1:
2488 snprintf (buf, size, "v%d.d[1]", opnd->reg.regno);
2489 break;
2490
2491 case AARCH64_OPND_LVn:
2492 case AARCH64_OPND_LVt:
2493 case AARCH64_OPND_LVt_AL:
2494 case AARCH64_OPND_LEt:
2495 print_register_list (buf, size, opnd);
2496 break;
2497
2498 case AARCH64_OPND_Cn:
2499 case AARCH64_OPND_Cm:
2500 snprintf (buf, size, "C%d", opnd->reg.regno);
2501 break;
2502
2503 case AARCH64_OPND_IDX:
2504 case AARCH64_OPND_IMM:
2505 case AARCH64_OPND_WIDTH:
2506 case AARCH64_OPND_UIMM3_OP1:
2507 case AARCH64_OPND_UIMM3_OP2:
2508 case AARCH64_OPND_BIT_NUM:
2509 case AARCH64_OPND_IMM_VLSL:
2510 case AARCH64_OPND_IMM_VLSR:
2511 case AARCH64_OPND_SHLL_IMM:
2512 case AARCH64_OPND_IMM0:
2513 case AARCH64_OPND_IMMR:
2514 case AARCH64_OPND_IMMS:
2515 case AARCH64_OPND_FBITS:
a06ea964
NC
2516 snprintf (buf, size, "#%" PRIi64, opnd->imm.value);
2517 break;
2518
fb098a1e
YZ
2519 case AARCH64_OPND_IMM_MOV:
2520 switch (aarch64_get_qualifier_esize (opnds[0].qualifier))
2521 {
2522 case 4: /* e.g. MOV Wd, #<imm32>. */
2523 {
2524 int imm32 = opnd->imm.value;
2525 snprintf (buf, size, "#0x%-20x\t// #%d", imm32, imm32);
2526 }
2527 break;
2528 case 8: /* e.g. MOV Xd, #<imm64>. */
2529 snprintf (buf, size, "#0x%-20" PRIx64 "\t// #%" PRIi64,
2530 opnd->imm.value, opnd->imm.value);
2531 break;
2532 default: assert (0);
2533 }
2534 break;
2535
a06ea964
NC
2536 case AARCH64_OPND_FPIMM0:
2537 snprintf (buf, size, "#0.0");
2538 break;
2539
2540 case AARCH64_OPND_LIMM:
2541 case AARCH64_OPND_AIMM:
2542 case AARCH64_OPND_HALF:
2543 if (opnd->shifter.amount)
2544 snprintf (buf, size, "#0x%" PRIx64 ", lsl #%d", opnd->imm.value,
2545 opnd->shifter.amount);
2546 else
2547 snprintf (buf, size, "#0x%" PRIx64, opnd->imm.value);
2548 break;
2549
2550 case AARCH64_OPND_SIMD_IMM:
2551 case AARCH64_OPND_SIMD_IMM_SFT:
2552 if ((! opnd->shifter.amount && opnd->shifter.kind == AARCH64_MOD_LSL)
2553 || opnd->shifter.kind == AARCH64_MOD_NONE)
2554 snprintf (buf, size, "#0x%" PRIx64, opnd->imm.value);
2555 else
2556 snprintf (buf, size, "#0x%" PRIx64 ", %s #%d", opnd->imm.value,
2557 aarch64_operand_modifiers[opnd->shifter.kind].name,
2558 opnd->shifter.amount);
2559 break;
2560
2561 case AARCH64_OPND_FPIMM:
2562 case AARCH64_OPND_SIMD_FPIMM:
2563 switch (aarch64_get_qualifier_esize (opnds[0].qualifier))
2564 {
cf86120b
MW
2565 case 2: /* e.g. FMOV <Hd>, #<imm>. */
2566 {
2567 half_conv_t c;
2568 c.i = expand_fp_imm (2, opnd->imm.value);
2569 snprintf (buf, size, "#%.18e", c.f);
2570 }
2571 break;
a06ea964
NC
2572 case 4: /* e.g. FMOV <Vd>.4S, #<imm>. */
2573 {
2574 single_conv_t c;
cf86120b 2575 c.i = expand_fp_imm (4, opnd->imm.value);
a06ea964
NC
2576 snprintf (buf, size, "#%.18e", c.f);
2577 }
2578 break;
2579 case 8: /* e.g. FMOV <Sd>, #<imm>. */
2580 {
2581 double_conv_t c;
cf86120b 2582 c.i = expand_fp_imm (8, opnd->imm.value);
a06ea964
NC
2583 snprintf (buf, size, "#%.18e", c.d);
2584 }
2585 break;
2586 default: assert (0);
2587 }
2588 break;
2589
2590 case AARCH64_OPND_CCMP_IMM:
2591 case AARCH64_OPND_NZCV:
2592 case AARCH64_OPND_EXCEPTION:
2593 case AARCH64_OPND_UIMM4:
2594 case AARCH64_OPND_UIMM7:
2595 if (optional_operand_p (opcode, idx) == TRUE
2596 && (opnd->imm.value ==
2597 (int64_t) get_optional_operand_default_value (opcode)))
2598 /* Omit the operand, e.g. DCPS1. */
2599 break;
2600 snprintf (buf, size, "#0x%x", (unsigned int)opnd->imm.value);
2601 break;
2602
2603 case AARCH64_OPND_COND:
68a64283 2604 case AARCH64_OPND_COND1:
a06ea964
NC
2605 snprintf (buf, size, "%s", opnd->cond->names[0]);
2606 break;
2607
2608 case AARCH64_OPND_ADDR_ADRP:
2609 addr = ((pc + AARCH64_PCREL_OFFSET) & ~(uint64_t)0xfff)
2610 + opnd->imm.value;
2611 if (pcrel_p)
2612 *pcrel_p = 1;
2613 if (address)
2614 *address = addr;
2615 /* This is not necessary during the disassembling, as print_address_func
2616 in the disassemble_info will take care of the printing. But some
2617 other callers may be still interested in getting the string in *STR,
2618 so here we do snprintf regardless. */
2619 snprintf (buf, size, "#0x%" PRIx64, addr);
2620 break;
2621
2622 case AARCH64_OPND_ADDR_PCREL14:
2623 case AARCH64_OPND_ADDR_PCREL19:
2624 case AARCH64_OPND_ADDR_PCREL21:
2625 case AARCH64_OPND_ADDR_PCREL26:
2626 addr = pc + AARCH64_PCREL_OFFSET + opnd->imm.value;
2627 if (pcrel_p)
2628 *pcrel_p = 1;
2629 if (address)
2630 *address = addr;
2631 /* This is not necessary during the disassembling, as print_address_func
2632 in the disassemble_info will take care of the printing. But some
2633 other callers may be still interested in getting the string in *STR,
2634 so here we do snprintf regardless. */
2635 snprintf (buf, size, "#0x%" PRIx64, addr);
2636 break;
2637
2638 case AARCH64_OPND_ADDR_SIMPLE:
2639 case AARCH64_OPND_SIMD_ADDR_SIMPLE:
2640 case AARCH64_OPND_SIMD_ADDR_POST:
2641 name = get_64bit_int_reg_name (opnd->addr.base_regno, 1);
2642 if (opnd->type == AARCH64_OPND_SIMD_ADDR_POST)
2643 {
2644 if (opnd->addr.offset.is_reg)
2645 snprintf (buf, size, "[%s], x%d", name, opnd->addr.offset.regno);
2646 else
2647 snprintf (buf, size, "[%s], #%d", name, opnd->addr.offset.imm);
2648 }
2649 else
2650 snprintf (buf, size, "[%s]", name);
2651 break;
2652
2653 case AARCH64_OPND_ADDR_REGOFF:
2654 print_register_offset_address (buf, size, opnd);
2655 break;
2656
2657 case AARCH64_OPND_ADDR_SIMM7:
2658 case AARCH64_OPND_ADDR_SIMM9:
2659 case AARCH64_OPND_ADDR_SIMM9_2:
2660 name = get_64bit_int_reg_name (opnd->addr.base_regno, 1);
2661 if (opnd->addr.writeback)
2662 {
2663 if (opnd->addr.preind)
2664 snprintf (buf, size, "[%s,#%d]!", name, opnd->addr.offset.imm);
2665 else
2666 snprintf (buf, size, "[%s],#%d", name, opnd->addr.offset.imm);
2667 }
2668 else
2669 {
2670 if (opnd->addr.offset.imm)
2671 snprintf (buf, size, "[%s,#%d]", name, opnd->addr.offset.imm);
2672 else
2673 snprintf (buf, size, "[%s]", name);
2674 }
2675 break;
2676
2677 case AARCH64_OPND_ADDR_UIMM12:
2678 name = get_64bit_int_reg_name (opnd->addr.base_regno, 1);
2679 if (opnd->addr.offset.imm)
2680 snprintf (buf, size, "[%s,#%d]", name, opnd->addr.offset.imm);
2681 else
2682 snprintf (buf, size, "[%s]", name);
2683 break;
2684
2685 case AARCH64_OPND_SYSREG:
2686 for (i = 0; aarch64_sys_regs[i].name; ++i)
49eec193
YZ
2687 if (aarch64_sys_regs[i].value == opnd->sysreg
2688 && ! aarch64_sys_reg_deprecated_p (&aarch64_sys_regs[i]))
a06ea964
NC
2689 break;
2690 if (aarch64_sys_regs[i].name)
2691 snprintf (buf, size, "%s", aarch64_sys_regs[i].name);
2692 else
2693 {
2694 /* Implementation defined system register. */
2695 unsigned int value = opnd->sysreg;
2696 snprintf (buf, size, "s%u_%u_c%u_c%u_%u", (value >> 14) & 0x3,
2697 (value >> 11) & 0x7, (value >> 7) & 0xf, (value >> 3) & 0xf,
2698 value & 0x7);
2699 }
2700 break;
2701
2702 case AARCH64_OPND_PSTATEFIELD:
2703 for (i = 0; aarch64_pstatefields[i].name; ++i)
2704 if (aarch64_pstatefields[i].value == opnd->pstatefield)
2705 break;
2706 assert (aarch64_pstatefields[i].name);
2707 snprintf (buf, size, "%s", aarch64_pstatefields[i].name);
2708 break;
2709
2710 case AARCH64_OPND_SYSREG_AT:
2711 case AARCH64_OPND_SYSREG_DC:
2712 case AARCH64_OPND_SYSREG_IC:
2713 case AARCH64_OPND_SYSREG_TLBI:
875880c6 2714 snprintf (buf, size, "%s", opnd->sysins_op->name);
a06ea964
NC
2715 break;
2716
2717 case AARCH64_OPND_BARRIER:
2718 snprintf (buf, size, "%s", opnd->barrier->name);
2719 break;
2720
2721 case AARCH64_OPND_BARRIER_ISB:
2722 /* Operand can be omitted, e.g. in DCPS1. */
2723 if (! optional_operand_p (opcode, idx)
2724 || (opnd->barrier->value
2725 != get_optional_operand_default_value (opcode)))
2726 snprintf (buf, size, "#0x%x", opnd->barrier->value);
2727 break;
2728
2729 case AARCH64_OPND_PRFOP:
a1ccaec9
YZ
2730 if (opnd->prfop->name != NULL)
2731 snprintf (buf, size, "%s", opnd->prfop->name);
2732 else
2733 snprintf (buf, size, "#0x%02x", opnd->prfop->value);
a06ea964
NC
2734 break;
2735
1e6f4800
MW
2736 case AARCH64_OPND_BARRIER_PSB:
2737 snprintf (buf, size, "%s", opnd->hint_option->name);
2738 break;
2739
a06ea964
NC
2740 default:
2741 assert (0);
2742 }
2743}
2744\f
2745#define CPENC(op0,op1,crn,crm,op2) \
2746 ((((op0) << 19) | ((op1) << 16) | ((crn) << 12) | ((crm) << 8) | ((op2) << 5)) >> 5)
2747 /* for 3.9.3 Instructions for Accessing Special Purpose Registers */
2748#define CPEN_(op1,crm,op2) CPENC(3,(op1),4,(crm),(op2))
2749 /* for 3.9.10 System Instructions */
2750#define CPENS(op1,crn,crm,op2) CPENC(1,(op1),(crn),(crm),(op2))
2751
2752#define C0 0
2753#define C1 1
2754#define C2 2
2755#define C3 3
2756#define C4 4
2757#define C5 5
2758#define C6 6
2759#define C7 7
2760#define C8 8
2761#define C9 9
2762#define C10 10
2763#define C11 11
2764#define C12 12
2765#define C13 13
2766#define C14 14
2767#define C15 15
2768
49eec193
YZ
2769#ifdef F_DEPRECATED
2770#undef F_DEPRECATED
2771#endif
2772#define F_DEPRECATED 0x1 /* Deprecated system register. */
2773
f21cce2c
MW
2774#ifdef F_ARCHEXT
2775#undef F_ARCHEXT
2776#endif
2777#define F_ARCHEXT 0x2 /* Architecture dependent system register. */
2778
ea2deeec
MW
2779#ifdef F_HASXT
2780#undef F_HASXT
2781#endif
2782#define F_HASXT 0x4 /* System instruction register <Xt>
2783 operand. */
2784
f21cce2c 2785
a06ea964
NC
2786/* TODO there are two more issues need to be resolved
2787 1. handle read-only and write-only system registers
2788 2. handle cpu-implementation-defined system registers. */
49eec193
YZ
2789const aarch64_sys_reg aarch64_sys_regs [] =
2790{
2791 { "spsr_el1", CPEN_(0,C0,0), 0 }, /* = spsr_svc */
250aafa4 2792 { "spsr_el12", CPEN_ (5, C0, 0), F_ARCHEXT },
49eec193 2793 { "elr_el1", CPEN_(0,C0,1), 0 },
250aafa4 2794 { "elr_el12", CPEN_ (5, C0, 1), F_ARCHEXT },
49eec193
YZ
2795 { "sp_el0", CPEN_(0,C1,0), 0 },
2796 { "spsel", CPEN_(0,C2,0), 0 },
2797 { "daif", CPEN_(3,C2,1), 0 },
2798 { "currentel", CPEN_(0,C2,2), 0 }, /* RO */
f21cce2c 2799 { "pan", CPEN_(0,C2,3), F_ARCHEXT },
6479e48e 2800 { "uao", CPEN_ (0, C2, 4), F_ARCHEXT },
49eec193
YZ
2801 { "nzcv", CPEN_(3,C2,0), 0 },
2802 { "fpcr", CPEN_(3,C4,0), 0 },
2803 { "fpsr", CPEN_(3,C4,1), 0 },
2804 { "dspsr_el0", CPEN_(3,C5,0), 0 },
2805 { "dlr_el0", CPEN_(3,C5,1), 0 },
2806 { "spsr_el2", CPEN_(4,C0,0), 0 }, /* = spsr_hyp */
2807 { "elr_el2", CPEN_(4,C0,1), 0 },
2808 { "sp_el1", CPEN_(4,C1,0), 0 },
2809 { "spsr_irq", CPEN_(4,C3,0), 0 },
2810 { "spsr_abt", CPEN_(4,C3,1), 0 },
2811 { "spsr_und", CPEN_(4,C3,2), 0 },
2812 { "spsr_fiq", CPEN_(4,C3,3), 0 },
2813 { "spsr_el3", CPEN_(6,C0,0), 0 },
2814 { "elr_el3", CPEN_(6,C0,1), 0 },
2815 { "sp_el2", CPEN_(6,C1,0), 0 },
2816 { "spsr_svc", CPEN_(0,C0,0), F_DEPRECATED }, /* = spsr_el1 */
2817 { "spsr_hyp", CPEN_(4,C0,0), F_DEPRECATED }, /* = spsr_el2 */
2818 { "midr_el1", CPENC(3,0,C0,C0,0), 0 }, /* RO */
2819 { "ctr_el0", CPENC(3,3,C0,C0,1), 0 }, /* RO */
2820 { "mpidr_el1", CPENC(3,0,C0,C0,5), 0 }, /* RO */
2821 { "revidr_el1", CPENC(3,0,C0,C0,6), 0 }, /* RO */
2822 { "aidr_el1", CPENC(3,1,C0,C0,7), 0 }, /* RO */
2823 { "dczid_el0", CPENC(3,3,C0,C0,7), 0 }, /* RO */
2824 { "id_dfr0_el1", CPENC(3,0,C0,C1,2), 0 }, /* RO */
2825 { "id_pfr0_el1", CPENC(3,0,C0,C1,0), 0 }, /* RO */
2826 { "id_pfr1_el1", CPENC(3,0,C0,C1,1), 0 }, /* RO */
2827 { "id_afr0_el1", CPENC(3,0,C0,C1,3), 0 }, /* RO */
2828 { "id_mmfr0_el1", CPENC(3,0,C0,C1,4), 0 }, /* RO */
2829 { "id_mmfr1_el1", CPENC(3,0,C0,C1,5), 0 }, /* RO */
2830 { "id_mmfr2_el1", CPENC(3,0,C0,C1,6), 0 }, /* RO */
2831 { "id_mmfr3_el1", CPENC(3,0,C0,C1,7), 0 }, /* RO */
bdfa8b95 2832 { "id_mmfr4_el1", CPENC(3,0,C0,C2,6), 0 }, /* RO */
49eec193
YZ
2833 { "id_isar0_el1", CPENC(3,0,C0,C2,0), 0 }, /* RO */
2834 { "id_isar1_el1", CPENC(3,0,C0,C2,1), 0 }, /* RO */
2835 { "id_isar2_el1", CPENC(3,0,C0,C2,2), 0 }, /* RO */
2836 { "id_isar3_el1", CPENC(3,0,C0,C2,3), 0 }, /* RO */
2837 { "id_isar4_el1", CPENC(3,0,C0,C2,4), 0 }, /* RO */
2838 { "id_isar5_el1", CPENC(3,0,C0,C2,5), 0 }, /* RO */
2839 { "mvfr0_el1", CPENC(3,0,C0,C3,0), 0 }, /* RO */
2840 { "mvfr1_el1", CPENC(3,0,C0,C3,1), 0 }, /* RO */
2841 { "mvfr2_el1", CPENC(3,0,C0,C3,2), 0 }, /* RO */
2842 { "ccsidr_el1", CPENC(3,1,C0,C0,0), 0 }, /* RO */
2843 { "id_aa64pfr0_el1", CPENC(3,0,C0,C4,0), 0 }, /* RO */
2844 { "id_aa64pfr1_el1", CPENC(3,0,C0,C4,1), 0 }, /* RO */
2845 { "id_aa64dfr0_el1", CPENC(3,0,C0,C5,0), 0 }, /* RO */
2846 { "id_aa64dfr1_el1", CPENC(3,0,C0,C5,1), 0 }, /* RO */
2847 { "id_aa64isar0_el1", CPENC(3,0,C0,C6,0), 0 }, /* RO */
2848 { "id_aa64isar1_el1", CPENC(3,0,C0,C6,1), 0 }, /* RO */
2849 { "id_aa64mmfr0_el1", CPENC(3,0,C0,C7,0), 0 }, /* RO */
2850 { "id_aa64mmfr1_el1", CPENC(3,0,C0,C7,1), 0 }, /* RO */
1a04d1a7 2851 { "id_aa64mmfr2_el1", CPENC (3, 0, C0, C7, 2), F_ARCHEXT }, /* RO */
49eec193
YZ
2852 { "id_aa64afr0_el1", CPENC(3,0,C0,C5,4), 0 }, /* RO */
2853 { "id_aa64afr1_el1", CPENC(3,0,C0,C5,5), 0 }, /* RO */
2854 { "clidr_el1", CPENC(3,1,C0,C0,1), 0 }, /* RO */
2855 { "csselr_el1", CPENC(3,2,C0,C0,0), 0 }, /* RO */
2856 { "vpidr_el2", CPENC(3,4,C0,C0,0), 0 },
2857 { "vmpidr_el2", CPENC(3,4,C0,C0,5), 0 },
2858 { "sctlr_el1", CPENC(3,0,C1,C0,0), 0 },
2859 { "sctlr_el2", CPENC(3,4,C1,C0,0), 0 },
2860 { "sctlr_el3", CPENC(3,6,C1,C0,0), 0 },
250aafa4 2861 { "sctlr_el12", CPENC (3, 5, C1, C0, 0), F_ARCHEXT },
49eec193
YZ
2862 { "actlr_el1", CPENC(3,0,C1,C0,1), 0 },
2863 { "actlr_el2", CPENC(3,4,C1,C0,1), 0 },
2864 { "actlr_el3", CPENC(3,6,C1,C0,1), 0 },
2865 { "cpacr_el1", CPENC(3,0,C1,C0,2), 0 },
250aafa4 2866 { "cpacr_el12", CPENC (3, 5, C1, C0, 2), F_ARCHEXT },
49eec193
YZ
2867 { "cptr_el2", CPENC(3,4,C1,C1,2), 0 },
2868 { "cptr_el3", CPENC(3,6,C1,C1,2), 0 },
2869 { "scr_el3", CPENC(3,6,C1,C1,0), 0 },
2870 { "hcr_el2", CPENC(3,4,C1,C1,0), 0 },
2871 { "mdcr_el2", CPENC(3,4,C1,C1,1), 0 },
2872 { "mdcr_el3", CPENC(3,6,C1,C3,1), 0 },
2873 { "hstr_el2", CPENC(3,4,C1,C1,3), 0 },
2874 { "hacr_el2", CPENC(3,4,C1,C1,7), 0 },
2875 { "ttbr0_el1", CPENC(3,0,C2,C0,0), 0 },
2876 { "ttbr1_el1", CPENC(3,0,C2,C0,1), 0 },
2877 { "ttbr0_el2", CPENC(3,4,C2,C0,0), 0 },
250aafa4 2878 { "ttbr1_el2", CPENC (3, 4, C2, C0, 1), F_ARCHEXT },
49eec193 2879 { "ttbr0_el3", CPENC(3,6,C2,C0,0), 0 },
250aafa4
MW
2880 { "ttbr0_el12", CPENC (3, 5, C2, C0, 0), F_ARCHEXT },
2881 { "ttbr1_el12", CPENC (3, 5, C2, C0, 1), F_ARCHEXT },
49eec193
YZ
2882 { "vttbr_el2", CPENC(3,4,C2,C1,0), 0 },
2883 { "tcr_el1", CPENC(3,0,C2,C0,2), 0 },
2884 { "tcr_el2", CPENC(3,4,C2,C0,2), 0 },
2885 { "tcr_el3", CPENC(3,6,C2,C0,2), 0 },
250aafa4 2886 { "tcr_el12", CPENC (3, 5, C2, C0, 2), F_ARCHEXT },
49eec193
YZ
2887 { "vtcr_el2", CPENC(3,4,C2,C1,2), 0 },
2888 { "afsr0_el1", CPENC(3,0,C5,C1,0), 0 },
2889 { "afsr1_el1", CPENC(3,0,C5,C1,1), 0 },
2890 { "afsr0_el2", CPENC(3,4,C5,C1,0), 0 },
2891 { "afsr1_el2", CPENC(3,4,C5,C1,1), 0 },
2892 { "afsr0_el3", CPENC(3,6,C5,C1,0), 0 },
250aafa4 2893 { "afsr0_el12", CPENC (3, 5, C5, C1, 0), F_ARCHEXT },
49eec193 2894 { "afsr1_el3", CPENC(3,6,C5,C1,1), 0 },
250aafa4 2895 { "afsr1_el12", CPENC (3, 5, C5, C1, 1), F_ARCHEXT },
49eec193
YZ
2896 { "esr_el1", CPENC(3,0,C5,C2,0), 0 },
2897 { "esr_el2", CPENC(3,4,C5,C2,0), 0 },
2898 { "esr_el3", CPENC(3,6,C5,C2,0), 0 },
250aafa4 2899 { "esr_el12", CPENC (3, 5, C5, C2, 0), F_ARCHEXT },
47f81142 2900 { "vsesr_el2", CPENC (3, 4, C5, C2, 3), F_ARCHEXT }, /* RO */
49eec193 2901 { "fpexc32_el2", CPENC(3,4,C5,C3,0), 0 },
47f81142
MW
2902 { "erridr_el1", CPENC (3, 0, C5, C3, 0), F_ARCHEXT }, /* RO */
2903 { "errselr_el1", CPENC (3, 0, C5, C3, 1), F_ARCHEXT },
2904 { "erxfr_el1", CPENC (3, 0, C5, C4, 0), F_ARCHEXT }, /* RO */
2905 { "erxctlr_el1", CPENC (3, 0, C5, C4, 1), F_ARCHEXT },
2906 { "erxstatus_el1", CPENC (3, 0, C5, C4, 2), F_ARCHEXT },
2907 { "erxaddr_el1", CPENC (3, 0, C5, C4, 3), F_ARCHEXT },
2908 { "erxmisc0_el1", CPENC (3, 0, C5, C5, 0), F_ARCHEXT },
2909 { "erxmisc1_el1", CPENC (3, 0, C5, C5, 1), F_ARCHEXT },
49eec193
YZ
2910 { "far_el1", CPENC(3,0,C6,C0,0), 0 },
2911 { "far_el2", CPENC(3,4,C6,C0,0), 0 },
2912 { "far_el3", CPENC(3,6,C6,C0,0), 0 },
250aafa4 2913 { "far_el12", CPENC (3, 5, C6, C0, 0), F_ARCHEXT },
49eec193
YZ
2914 { "hpfar_el2", CPENC(3,4,C6,C0,4), 0 },
2915 { "par_el1", CPENC(3,0,C7,C4,0), 0 },
2916 { "mair_el1", CPENC(3,0,C10,C2,0), 0 },
2917 { "mair_el2", CPENC(3,4,C10,C2,0), 0 },
2918 { "mair_el3", CPENC(3,6,C10,C2,0), 0 },
250aafa4 2919 { "mair_el12", CPENC (3, 5, C10, C2, 0), F_ARCHEXT },
49eec193
YZ
2920 { "amair_el1", CPENC(3,0,C10,C3,0), 0 },
2921 { "amair_el2", CPENC(3,4,C10,C3,0), 0 },
2922 { "amair_el3", CPENC(3,6,C10,C3,0), 0 },
250aafa4 2923 { "amair_el12", CPENC (3, 5, C10, C3, 0), F_ARCHEXT },
49eec193
YZ
2924 { "vbar_el1", CPENC(3,0,C12,C0,0), 0 },
2925 { "vbar_el2", CPENC(3,4,C12,C0,0), 0 },
2926 { "vbar_el3", CPENC(3,6,C12,C0,0), 0 },
250aafa4 2927 { "vbar_el12", CPENC (3, 5, C12, C0, 0), F_ARCHEXT },
49eec193
YZ
2928 { "rvbar_el1", CPENC(3,0,C12,C0,1), 0 }, /* RO */
2929 { "rvbar_el2", CPENC(3,4,C12,C0,1), 0 }, /* RO */
2930 { "rvbar_el3", CPENC(3,6,C12,C0,1), 0 }, /* RO */
2931 { "rmr_el1", CPENC(3,0,C12,C0,2), 0 },
2932 { "rmr_el2", CPENC(3,4,C12,C0,2), 0 },
2933 { "rmr_el3", CPENC(3,6,C12,C0,2), 0 },
2934 { "isr_el1", CPENC(3,0,C12,C1,0), 0 }, /* RO */
47f81142
MW
2935 { "disr_el1", CPENC (3, 0, C12, C1, 1), F_ARCHEXT },
2936 { "vdisr_el2", CPENC (3, 4, C12, C1, 1), F_ARCHEXT },
49eec193 2937 { "contextidr_el1", CPENC(3,0,C13,C0,1), 0 },
250aafa4
MW
2938 { "contextidr_el2", CPENC (3, 4, C13, C0, 1), F_ARCHEXT },
2939 { "contextidr_el12", CPENC (3, 5, C13, C0, 1), F_ARCHEXT },
49eec193
YZ
2940 { "tpidr_el0", CPENC(3,3,C13,C0,2), 0 },
2941 { "tpidrro_el0", CPENC(3,3,C13,C0,3), 0 }, /* RO */
2942 { "tpidr_el1", CPENC(3,0,C13,C0,4), 0 },
2943 { "tpidr_el2", CPENC(3,4,C13,C0,2), 0 },
2944 { "tpidr_el3", CPENC(3,6,C13,C0,2), 0 },
2945 { "teecr32_el1", CPENC(2,2,C0, C0,0), 0 }, /* See section 3.9.7.1 */
2946 { "cntfrq_el0", CPENC(3,3,C14,C0,0), 0 }, /* RO */
2947 { "cntpct_el0", CPENC(3,3,C14,C0,1), 0 }, /* RO */
2948 { "cntvct_el0", CPENC(3,3,C14,C0,2), 0 }, /* RO */
2949 { "cntvoff_el2", CPENC(3,4,C14,C0,3), 0 },
2950 { "cntkctl_el1", CPENC(3,0,C14,C1,0), 0 },
250aafa4 2951 { "cntkctl_el12", CPENC (3, 5, C14, C1, 0), F_ARCHEXT },
49eec193
YZ
2952 { "cnthctl_el2", CPENC(3,4,C14,C1,0), 0 },
2953 { "cntp_tval_el0", CPENC(3,3,C14,C2,0), 0 },
250aafa4 2954 { "cntp_tval_el02", CPENC (3, 5, C14, C2, 0), F_ARCHEXT },
49eec193 2955 { "cntp_ctl_el0", CPENC(3,3,C14,C2,1), 0 },
250aafa4 2956 { "cntp_ctl_el02", CPENC (3, 5, C14, C2, 1), F_ARCHEXT },
49eec193 2957 { "cntp_cval_el0", CPENC(3,3,C14,C2,2), 0 },
250aafa4 2958 { "cntp_cval_el02", CPENC (3, 5, C14, C2, 2), F_ARCHEXT },
49eec193 2959 { "cntv_tval_el0", CPENC(3,3,C14,C3,0), 0 },
250aafa4 2960 { "cntv_tval_el02", CPENC (3, 5, C14, C3, 0), F_ARCHEXT },
49eec193 2961 { "cntv_ctl_el0", CPENC(3,3,C14,C3,1), 0 },
250aafa4 2962 { "cntv_ctl_el02", CPENC (3, 5, C14, C3, 1), F_ARCHEXT },
49eec193 2963 { "cntv_cval_el0", CPENC(3,3,C14,C3,2), 0 },
250aafa4 2964 { "cntv_cval_el02", CPENC (3, 5, C14, C3, 2), F_ARCHEXT },
49eec193
YZ
2965 { "cnthp_tval_el2", CPENC(3,4,C14,C2,0), 0 },
2966 { "cnthp_ctl_el2", CPENC(3,4,C14,C2,1), 0 },
2967 { "cnthp_cval_el2", CPENC(3,4,C14,C2,2), 0 },
2968 { "cntps_tval_el1", CPENC(3,7,C14,C2,0), 0 },
2969 { "cntps_ctl_el1", CPENC(3,7,C14,C2,1), 0 },
2970 { "cntps_cval_el1", CPENC(3,7,C14,C2,2), 0 },
250aafa4
MW
2971 { "cnthv_tval_el2", CPENC (3, 4, C14, C3, 0), F_ARCHEXT },
2972 { "cnthv_ctl_el2", CPENC (3, 4, C14, C3, 1), F_ARCHEXT },
2973 { "cnthv_cval_el2", CPENC (3, 4, C14, C3, 2), F_ARCHEXT },
49eec193
YZ
2974 { "dacr32_el2", CPENC(3,4,C3,C0,0), 0 },
2975 { "ifsr32_el2", CPENC(3,4,C5,C0,1), 0 },
2976 { "teehbr32_el1", CPENC(2,2,C1,C0,0), 0 },
2977 { "sder32_el3", CPENC(3,6,C1,C1,1), 0 },
2978 { "mdscr_el1", CPENC(2,0,C0, C2, 2), 0 },
2979 { "mdccsr_el0", CPENC(2,3,C0, C1, 0), 0 }, /* r */
2980 { "mdccint_el1", CPENC(2,0,C0, C2, 0), 0 },
2981 { "dbgdtr_el0", CPENC(2,3,C0, C4, 0), 0 },
2982 { "dbgdtrrx_el0", CPENC(2,3,C0, C5, 0), 0 }, /* r */
2983 { "dbgdtrtx_el0", CPENC(2,3,C0, C5, 0), 0 }, /* w */
2984 { "osdtrrx_el1", CPENC(2,0,C0, C0, 2), 0 }, /* r */
2985 { "osdtrtx_el1", CPENC(2,0,C0, C3, 2), 0 }, /* w */
2986 { "oseccr_el1", CPENC(2,0,C0, C6, 2), 0 },
2987 { "dbgvcr32_el2", CPENC(2,4,C0, C7, 0), 0 },
2988 { "dbgbvr0_el1", CPENC(2,0,C0, C0, 4), 0 },
2989 { "dbgbvr1_el1", CPENC(2,0,C0, C1, 4), 0 },
2990 { "dbgbvr2_el1", CPENC(2,0,C0, C2, 4), 0 },
2991 { "dbgbvr3_el1", CPENC(2,0,C0, C3, 4), 0 },
2992 { "dbgbvr4_el1", CPENC(2,0,C0, C4, 4), 0 },
2993 { "dbgbvr5_el1", CPENC(2,0,C0, C5, 4), 0 },
2994 { "dbgbvr6_el1", CPENC(2,0,C0, C6, 4), 0 },
2995 { "dbgbvr7_el1", CPENC(2,0,C0, C7, 4), 0 },
2996 { "dbgbvr8_el1", CPENC(2,0,C0, C8, 4), 0 },
2997 { "dbgbvr9_el1", CPENC(2,0,C0, C9, 4), 0 },
2998 { "dbgbvr10_el1", CPENC(2,0,C0, C10,4), 0 },
2999 { "dbgbvr11_el1", CPENC(2,0,C0, C11,4), 0 },
3000 { "dbgbvr12_el1", CPENC(2,0,C0, C12,4), 0 },
3001 { "dbgbvr13_el1", CPENC(2,0,C0, C13,4), 0 },
3002 { "dbgbvr14_el1", CPENC(2,0,C0, C14,4), 0 },
3003 { "dbgbvr15_el1", CPENC(2,0,C0, C15,4), 0 },
3004 { "dbgbcr0_el1", CPENC(2,0,C0, C0, 5), 0 },
3005 { "dbgbcr1_el1", CPENC(2,0,C0, C1, 5), 0 },
3006 { "dbgbcr2_el1", CPENC(2,0,C0, C2, 5), 0 },
3007 { "dbgbcr3_el1", CPENC(2,0,C0, C3, 5), 0 },
3008 { "dbgbcr4_el1", CPENC(2,0,C0, C4, 5), 0 },
3009 { "dbgbcr5_el1", CPENC(2,0,C0, C5, 5), 0 },
3010 { "dbgbcr6_el1", CPENC(2,0,C0, C6, 5), 0 },
3011 { "dbgbcr7_el1", CPENC(2,0,C0, C7, 5), 0 },
3012 { "dbgbcr8_el1", CPENC(2,0,C0, C8, 5), 0 },
3013 { "dbgbcr9_el1", CPENC(2,0,C0, C9, 5), 0 },
3014 { "dbgbcr10_el1", CPENC(2,0,C0, C10,5), 0 },
3015 { "dbgbcr11_el1", CPENC(2,0,C0, C11,5), 0 },
3016 { "dbgbcr12_el1", CPENC(2,0,C0, C12,5), 0 },
3017 { "dbgbcr13_el1", CPENC(2,0,C0, C13,5), 0 },
3018 { "dbgbcr14_el1", CPENC(2,0,C0, C14,5), 0 },
3019 { "dbgbcr15_el1", CPENC(2,0,C0, C15,5), 0 },
3020 { "dbgwvr0_el1", CPENC(2,0,C0, C0, 6), 0 },
3021 { "dbgwvr1_el1", CPENC(2,0,C0, C1, 6), 0 },
3022 { "dbgwvr2_el1", CPENC(2,0,C0, C2, 6), 0 },
3023 { "dbgwvr3_el1", CPENC(2,0,C0, C3, 6), 0 },
3024 { "dbgwvr4_el1", CPENC(2,0,C0, C4, 6), 0 },
3025 { "dbgwvr5_el1", CPENC(2,0,C0, C5, 6), 0 },
3026 { "dbgwvr6_el1", CPENC(2,0,C0, C6, 6), 0 },
3027 { "dbgwvr7_el1", CPENC(2,0,C0, C7, 6), 0 },
3028 { "dbgwvr8_el1", CPENC(2,0,C0, C8, 6), 0 },
3029 { "dbgwvr9_el1", CPENC(2,0,C0, C9, 6), 0 },
3030 { "dbgwvr10_el1", CPENC(2,0,C0, C10,6), 0 },
3031 { "dbgwvr11_el1", CPENC(2,0,C0, C11,6), 0 },
3032 { "dbgwvr12_el1", CPENC(2,0,C0, C12,6), 0 },
3033 { "dbgwvr13_el1", CPENC(2,0,C0, C13,6), 0 },
3034 { "dbgwvr14_el1", CPENC(2,0,C0, C14,6), 0 },
3035 { "dbgwvr15_el1", CPENC(2,0,C0, C15,6), 0 },
3036 { "dbgwcr0_el1", CPENC(2,0,C0, C0, 7), 0 },
3037 { "dbgwcr1_el1", CPENC(2,0,C0, C1, 7), 0 },
3038 { "dbgwcr2_el1", CPENC(2,0,C0, C2, 7), 0 },
3039 { "dbgwcr3_el1", CPENC(2,0,C0, C3, 7), 0 },
3040 { "dbgwcr4_el1", CPENC(2,0,C0, C4, 7), 0 },
3041 { "dbgwcr5_el1", CPENC(2,0,C0, C5, 7), 0 },
3042 { "dbgwcr6_el1", CPENC(2,0,C0, C6, 7), 0 },
3043 { "dbgwcr7_el1", CPENC(2,0,C0, C7, 7), 0 },
3044 { "dbgwcr8_el1", CPENC(2,0,C0, C8, 7), 0 },
3045 { "dbgwcr9_el1", CPENC(2,0,C0, C9, 7), 0 },
3046 { "dbgwcr10_el1", CPENC(2,0,C0, C10,7), 0 },
3047 { "dbgwcr11_el1", CPENC(2,0,C0, C11,7), 0 },
3048 { "dbgwcr12_el1", CPENC(2,0,C0, C12,7), 0 },
3049 { "dbgwcr13_el1", CPENC(2,0,C0, C13,7), 0 },
3050 { "dbgwcr14_el1", CPENC(2,0,C0, C14,7), 0 },
3051 { "dbgwcr15_el1", CPENC(2,0,C0, C15,7), 0 },
3052 { "mdrar_el1", CPENC(2,0,C1, C0, 0), 0 }, /* r */
3053 { "oslar_el1", CPENC(2,0,C1, C0, 4), 0 }, /* w */
3054 { "oslsr_el1", CPENC(2,0,C1, C1, 4), 0 }, /* r */
3055 { "osdlr_el1", CPENC(2,0,C1, C3, 4), 0 },
3056 { "dbgprcr_el1", CPENC(2,0,C1, C4, 4), 0 },
3057 { "dbgclaimset_el1", CPENC(2,0,C7, C8, 6), 0 },
3058 { "dbgclaimclr_el1", CPENC(2,0,C7, C9, 6), 0 },
3059 { "dbgauthstatus_el1", CPENC(2,0,C7, C14,6), 0 }, /* r */
55c144e6
MW
3060 { "pmblimitr_el1", CPENC (3, 0, C9, C10, 0), F_ARCHEXT }, /* rw */
3061 { "pmbptr_el1", CPENC (3, 0, C9, C10, 1), F_ARCHEXT }, /* rw */
3062 { "pmbsr_el1", CPENC (3, 0, C9, C10, 3), F_ARCHEXT }, /* rw */
3063 { "pmbidr_el1", CPENC (3, 0, C9, C10, 7), F_ARCHEXT }, /* ro */
3064 { "pmscr_el1", CPENC (3, 0, C9, C9, 0), F_ARCHEXT }, /* rw */
3065 { "pmsicr_el1", CPENC (3, 0, C9, C9, 2), F_ARCHEXT }, /* rw */
3066 { "pmsirr_el1", CPENC (3, 0, C9, C9, 3), F_ARCHEXT }, /* rw */
3067 { "pmsfcr_el1", CPENC (3, 0, C9, C9, 4), F_ARCHEXT }, /* rw */
3068 { "pmsevfr_el1", CPENC (3, 0, C9, C9, 5), F_ARCHEXT }, /* rw */
3069 { "pmslatfr_el1", CPENC (3, 0, C9, C9, 6), F_ARCHEXT }, /* rw */
3070 { "pmsidr_el1", CPENC (3, 0, C9, C9, 7), F_ARCHEXT }, /* ro */
3071 { "pmscr_el2", CPENC (3, 4, C9, C9, 0), F_ARCHEXT }, /* rw */
3072 { "pmscr_el12", CPENC (3, 5, C9, C9, 0), F_ARCHEXT }, /* rw */
49eec193
YZ
3073 { "pmcr_el0", CPENC(3,3,C9,C12, 0), 0 },
3074 { "pmcntenset_el0", CPENC(3,3,C9,C12, 1), 0 },
3075 { "pmcntenclr_el0", CPENC(3,3,C9,C12, 2), 0 },
3076 { "pmovsclr_el0", CPENC(3,3,C9,C12, 3), 0 },
3077 { "pmswinc_el0", CPENC(3,3,C9,C12, 4), 0 }, /* w */
3078 { "pmselr_el0", CPENC(3,3,C9,C12, 5), 0 },
3079 { "pmceid0_el0", CPENC(3,3,C9,C12, 6), 0 }, /* r */
3080 { "pmceid1_el0", CPENC(3,3,C9,C12, 7), 0 }, /* r */
3081 { "pmccntr_el0", CPENC(3,3,C9,C13, 0), 0 },
3082 { "pmxevtyper_el0", CPENC(3,3,C9,C13, 1), 0 },
3083 { "pmxevcntr_el0", CPENC(3,3,C9,C13, 2), 0 },
3084 { "pmuserenr_el0", CPENC(3,3,C9,C14, 0), 0 },
3085 { "pmintenset_el1", CPENC(3,0,C9,C14, 1), 0 },
3086 { "pmintenclr_el1", CPENC(3,0,C9,C14, 2), 0 },
3087 { "pmovsset_el0", CPENC(3,3,C9,C14, 3), 0 },
3088 { "pmevcntr0_el0", CPENC(3,3,C14,C8, 0), 0 },
3089 { "pmevcntr1_el0", CPENC(3,3,C14,C8, 1), 0 },
3090 { "pmevcntr2_el0", CPENC(3,3,C14,C8, 2), 0 },
3091 { "pmevcntr3_el0", CPENC(3,3,C14,C8, 3), 0 },
3092 { "pmevcntr4_el0", CPENC(3,3,C14,C8, 4), 0 },
3093 { "pmevcntr5_el0", CPENC(3,3,C14,C8, 5), 0 },
3094 { "pmevcntr6_el0", CPENC(3,3,C14,C8, 6), 0 },
3095 { "pmevcntr7_el0", CPENC(3,3,C14,C8, 7), 0 },
3096 { "pmevcntr8_el0", CPENC(3,3,C14,C9, 0), 0 },
3097 { "pmevcntr9_el0", CPENC(3,3,C14,C9, 1), 0 },
3098 { "pmevcntr10_el0", CPENC(3,3,C14,C9, 2), 0 },
3099 { "pmevcntr11_el0", CPENC(3,3,C14,C9, 3), 0 },
3100 { "pmevcntr12_el0", CPENC(3,3,C14,C9, 4), 0 },
3101 { "pmevcntr13_el0", CPENC(3,3,C14,C9, 5), 0 },
3102 { "pmevcntr14_el0", CPENC(3,3,C14,C9, 6), 0 },
3103 { "pmevcntr15_el0", CPENC(3,3,C14,C9, 7), 0 },
3104 { "pmevcntr16_el0", CPENC(3,3,C14,C10,0), 0 },
3105 { "pmevcntr17_el0", CPENC(3,3,C14,C10,1), 0 },
3106 { "pmevcntr18_el0", CPENC(3,3,C14,C10,2), 0 },
3107 { "pmevcntr19_el0", CPENC(3,3,C14,C10,3), 0 },
3108 { "pmevcntr20_el0", CPENC(3,3,C14,C10,4), 0 },
3109 { "pmevcntr21_el0", CPENC(3,3,C14,C10,5), 0 },
3110 { "pmevcntr22_el0", CPENC(3,3,C14,C10,6), 0 },
3111 { "pmevcntr23_el0", CPENC(3,3,C14,C10,7), 0 },
3112 { "pmevcntr24_el0", CPENC(3,3,C14,C11,0), 0 },
3113 { "pmevcntr25_el0", CPENC(3,3,C14,C11,1), 0 },
3114 { "pmevcntr26_el0", CPENC(3,3,C14,C11,2), 0 },
3115 { "pmevcntr27_el0", CPENC(3,3,C14,C11,3), 0 },
3116 { "pmevcntr28_el0", CPENC(3,3,C14,C11,4), 0 },
3117 { "pmevcntr29_el0", CPENC(3,3,C14,C11,5), 0 },
3118 { "pmevcntr30_el0", CPENC(3,3,C14,C11,6), 0 },
3119 { "pmevtyper0_el0", CPENC(3,3,C14,C12,0), 0 },
3120 { "pmevtyper1_el0", CPENC(3,3,C14,C12,1), 0 },
3121 { "pmevtyper2_el0", CPENC(3,3,C14,C12,2), 0 },
3122 { "pmevtyper3_el0", CPENC(3,3,C14,C12,3), 0 },
3123 { "pmevtyper4_el0", CPENC(3,3,C14,C12,4), 0 },
3124 { "pmevtyper5_el0", CPENC(3,3,C14,C12,5), 0 },
3125 { "pmevtyper6_el0", CPENC(3,3,C14,C12,6), 0 },
3126 { "pmevtyper7_el0", CPENC(3,3,C14,C12,7), 0 },
3127 { "pmevtyper8_el0", CPENC(3,3,C14,C13,0), 0 },
3128 { "pmevtyper9_el0", CPENC(3,3,C14,C13,1), 0 },
3129 { "pmevtyper10_el0", CPENC(3,3,C14,C13,2), 0 },
3130 { "pmevtyper11_el0", CPENC(3,3,C14,C13,3), 0 },
3131 { "pmevtyper12_el0", CPENC(3,3,C14,C13,4), 0 },
3132 { "pmevtyper13_el0", CPENC(3,3,C14,C13,5), 0 },
3133 { "pmevtyper14_el0", CPENC(3,3,C14,C13,6), 0 },
3134 { "pmevtyper15_el0", CPENC(3,3,C14,C13,7), 0 },
3135 { "pmevtyper16_el0", CPENC(3,3,C14,C14,0), 0 },
3136 { "pmevtyper17_el0", CPENC(3,3,C14,C14,1), 0 },
3137 { "pmevtyper18_el0", CPENC(3,3,C14,C14,2), 0 },
3138 { "pmevtyper19_el0", CPENC(3,3,C14,C14,3), 0 },
3139 { "pmevtyper20_el0", CPENC(3,3,C14,C14,4), 0 },
3140 { "pmevtyper21_el0", CPENC(3,3,C14,C14,5), 0 },
3141 { "pmevtyper22_el0", CPENC(3,3,C14,C14,6), 0 },
3142 { "pmevtyper23_el0", CPENC(3,3,C14,C14,7), 0 },
3143 { "pmevtyper24_el0", CPENC(3,3,C14,C15,0), 0 },
3144 { "pmevtyper25_el0", CPENC(3,3,C14,C15,1), 0 },
3145 { "pmevtyper26_el0", CPENC(3,3,C14,C15,2), 0 },
3146 { "pmevtyper27_el0", CPENC(3,3,C14,C15,3), 0 },
3147 { "pmevtyper28_el0", CPENC(3,3,C14,C15,4), 0 },
3148 { "pmevtyper29_el0", CPENC(3,3,C14,C15,5), 0 },
3149 { "pmevtyper30_el0", CPENC(3,3,C14,C15,6), 0 },
3150 { "pmccfiltr_el0", CPENC(3,3,C14,C15,7), 0 },
3151 { 0, CPENC(0,0,0,0,0), 0 },
a06ea964
NC
3152};
3153
49eec193
YZ
3154bfd_boolean
3155aarch64_sys_reg_deprecated_p (const aarch64_sys_reg *reg)
3156{
3157 return (reg->flags & F_DEPRECATED) != 0;
3158}
3159
f21cce2c
MW
3160bfd_boolean
3161aarch64_sys_reg_supported_p (const aarch64_feature_set features,
3162 const aarch64_sys_reg *reg)
3163{
3164 if (!(reg->flags & F_ARCHEXT))
3165 return TRUE;
3166
3167 /* PAN. Values are from aarch64_sys_regs. */
3168 if (reg->value == CPEN_(0,C2,3)
3169 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_PAN))
3170 return FALSE;
3171
250aafa4
MW
3172 /* Virtualization host extensions: system registers. */
3173 if ((reg->value == CPENC (3, 4, C2, C0, 1)
3174 || reg->value == CPENC (3, 4, C13, C0, 1)
3175 || reg->value == CPENC (3, 4, C14, C3, 0)
3176 || reg->value == CPENC (3, 4, C14, C3, 1)
3177 || reg->value == CPENC (3, 4, C14, C3, 2))
3178 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_1))
3179 return FALSE;
3180
3181 /* Virtualization host extensions: *_el12 names of *_el1 registers. */
3182 if ((reg->value == CPEN_ (5, C0, 0)
3183 || reg->value == CPEN_ (5, C0, 1)
3184 || reg->value == CPENC (3, 5, C1, C0, 0)
3185 || reg->value == CPENC (3, 5, C1, C0, 2)
3186 || reg->value == CPENC (3, 5, C2, C0, 0)
3187 || reg->value == CPENC (3, 5, C2, C0, 1)
3188 || reg->value == CPENC (3, 5, C2, C0, 2)
3189 || reg->value == CPENC (3, 5, C5, C1, 0)
3190 || reg->value == CPENC (3, 5, C5, C1, 1)
3191 || reg->value == CPENC (3, 5, C5, C2, 0)
3192 || reg->value == CPENC (3, 5, C6, C0, 0)
3193 || reg->value == CPENC (3, 5, C10, C2, 0)
3194 || reg->value == CPENC (3, 5, C10, C3, 0)
3195 || reg->value == CPENC (3, 5, C12, C0, 0)
3196 || reg->value == CPENC (3, 5, C13, C0, 1)
3197 || reg->value == CPENC (3, 5, C14, C1, 0))
3198 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_1))
3199 return FALSE;
3200
3201 /* Virtualization host extensions: *_el02 names of *_el0 registers. */
3202 if ((reg->value == CPENC (3, 5, C14, C2, 0)
3203 || reg->value == CPENC (3, 5, C14, C2, 1)
3204 || reg->value == CPENC (3, 5, C14, C2, 2)
3205 || reg->value == CPENC (3, 5, C14, C3, 0)
3206 || reg->value == CPENC (3, 5, C14, C3, 1)
3207 || reg->value == CPENC (3, 5, C14, C3, 2))
3208 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_1))
63511907 3209 return FALSE;
1a04d1a7
MW
3210
3211 /* ARMv8.2 features. */
6479e48e
MW
3212
3213 /* ID_AA64MMFR2_EL1. */
1a04d1a7
MW
3214 if (reg->value == CPENC (3, 0, C0, C7, 2)
3215 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
250aafa4
MW
3216 return FALSE;
3217
6479e48e
MW
3218 /* PSTATE.UAO. */
3219 if (reg->value == CPEN_ (0, C2, 4)
3220 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
3221 return FALSE;
3222
47f81142
MW
3223 /* RAS extension. */
3224
3225 /* ERRIDR_EL1 and ERRSELR_EL1. */
3226 if ((reg->value == CPENC (3, 0, C5, C3, 0)
3227 || reg->value == CPENC (3, 0, C5, C3, 1))
3228 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_RAS))
3229 return FALSE;
3230
3231 /* ERXFR_EL1, ERXCTLR_EL1, ERXSTATUS_EL, ERXADDR_EL1, ERXMISC0_EL1 AND
3232 ERXMISC1_EL1. */
3233 if ((reg->value == CPENC (3, 0, C5, C3, 0)
3234 || reg->value == CPENC (3, 0, C5, C3 ,1)
3235 || reg->value == CPENC (3, 0, C5, C3, 2)
3236 || reg->value == CPENC (3, 0, C5, C3, 3)
3237 || reg->value == CPENC (3, 0, C5, C5, 0)
3238 || reg->value == CPENC (3, 0, C5, C5, 1))
3239 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_RAS))
3240 return FALSE;
3241
3242 /* VSESR_EL2, DISR_EL1 and VDISR_EL2. */
3243 if ((reg->value == CPENC (3, 4, C5, C2, 3)
3244 || reg->value == CPENC (3, 0, C12, C1, 1)
3245 || reg->value == CPENC (3, 4, C12, C1, 1))
3246 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_RAS))
3247 return FALSE;
3248
55c144e6
MW
3249 /* Statistical Profiling extension. */
3250 if ((reg->value == CPENC (3, 0, C9, C10, 0)
3251 || reg->value == CPENC (3, 0, C9, C10, 1)
3252 || reg->value == CPENC (3, 0, C9, C10, 3)
3253 || reg->value == CPENC (3, 0, C9, C10, 7)
3254 || reg->value == CPENC (3, 0, C9, C9, 0)
3255 || reg->value == CPENC (3, 0, C9, C9, 2)
3256 || reg->value == CPENC (3, 0, C9, C9, 3)
3257 || reg->value == CPENC (3, 0, C9, C9, 4)
3258 || reg->value == CPENC (3, 0, C9, C9, 5)
3259 || reg->value == CPENC (3, 0, C9, C9, 6)
3260 || reg->value == CPENC (3, 0, C9, C9, 7)
3261 || reg->value == CPENC (3, 4, C9, C9, 0)
3262 || reg->value == CPENC (3, 5, C9, C9, 0))
3263 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_PROFILE))
3264 return FALSE;
3265
f21cce2c
MW
3266 return TRUE;
3267}
3268
87b8eed7 3269const aarch64_sys_reg aarch64_pstatefields [] =
a06ea964 3270{
87b8eed7
YZ
3271 { "spsel", 0x05, 0 },
3272 { "daifset", 0x1e, 0 },
3273 { "daifclr", 0x1f, 0 },
f21cce2c 3274 { "pan", 0x04, F_ARCHEXT },
6479e48e 3275 { "uao", 0x03, F_ARCHEXT },
87b8eed7 3276 { 0, CPENC(0,0,0,0,0), 0 },
a06ea964
NC
3277};
3278
f21cce2c
MW
3279bfd_boolean
3280aarch64_pstatefield_supported_p (const aarch64_feature_set features,
3281 const aarch64_sys_reg *reg)
3282{
3283 if (!(reg->flags & F_ARCHEXT))
3284 return TRUE;
3285
3286 /* PAN. Values are from aarch64_pstatefields. */
3287 if (reg->value == 0x04
3288 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_PAN))
3289 return FALSE;
3290
6479e48e
MW
3291 /* UAO. Values are from aarch64_pstatefields. */
3292 if (reg->value == 0x03
3293 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
3294 return FALSE;
3295
f21cce2c
MW
3296 return TRUE;
3297}
3298
a06ea964
NC
3299const aarch64_sys_ins_reg aarch64_sys_regs_ic[] =
3300{
3301 { "ialluis", CPENS(0,C7,C1,0), 0 },
3302 { "iallu", CPENS(0,C7,C5,0), 0 },
ea2deeec 3303 { "ivau", CPENS (3, C7, C5, 1), F_HASXT },
a06ea964
NC
3304 { 0, CPENS(0,0,0,0), 0 }
3305};
3306
3307const aarch64_sys_ins_reg aarch64_sys_regs_dc[] =
3308{
ea2deeec
MW
3309 { "zva", CPENS (3, C7, C4, 1), F_HASXT },
3310 { "ivac", CPENS (0, C7, C6, 1), F_HASXT },
3311 { "isw", CPENS (0, C7, C6, 2), F_HASXT },
3312 { "cvac", CPENS (3, C7, C10, 1), F_HASXT },
3313 { "csw", CPENS (0, C7, C10, 2), F_HASXT },
3314 { "cvau", CPENS (3, C7, C11, 1), F_HASXT },
d6bf7ce6 3315 { "cvap", CPENS (3, C7, C12, 1), F_HASXT | F_ARCHEXT },
ea2deeec
MW
3316 { "civac", CPENS (3, C7, C14, 1), F_HASXT },
3317 { "cisw", CPENS (0, C7, C14, 2), F_HASXT },
a06ea964
NC
3318 { 0, CPENS(0,0,0,0), 0 }
3319};
3320
3321const aarch64_sys_ins_reg aarch64_sys_regs_at[] =
3322{
ea2deeec
MW
3323 { "s1e1r", CPENS (0, C7, C8, 0), F_HASXT },
3324 { "s1e1w", CPENS (0, C7, C8, 1), F_HASXT },
3325 { "s1e0r", CPENS (0, C7, C8, 2), F_HASXT },
3326 { "s1e0w", CPENS (0, C7, C8, 3), F_HASXT },
3327 { "s12e1r", CPENS (4, C7, C8, 4), F_HASXT },
3328 { "s12e1w", CPENS (4, C7, C8, 5), F_HASXT },
3329 { "s12e0r", CPENS (4, C7, C8, 6), F_HASXT },
3330 { "s12e0w", CPENS (4, C7, C8, 7), F_HASXT },
3331 { "s1e2r", CPENS (4, C7, C8, 0), F_HASXT },
3332 { "s1e2w", CPENS (4, C7, C8, 1), F_HASXT },
3333 { "s1e3r", CPENS (6, C7, C8, 0), F_HASXT },
3334 { "s1e3w", CPENS (6, C7, C8, 1), F_HASXT },
22a5455c
MW
3335 { "s1e1rp", CPENS (0, C7, C9, 0), F_HASXT | F_ARCHEXT },
3336 { "s1e1wp", CPENS (0, C7, C9, 1), F_HASXT | F_ARCHEXT },
a06ea964
NC
3337 { 0, CPENS(0,0,0,0), 0 }
3338};
3339
3340const aarch64_sys_ins_reg aarch64_sys_regs_tlbi[] =
3341{
3342 { "vmalle1", CPENS(0,C8,C7,0), 0 },
ea2deeec
MW
3343 { "vae1", CPENS (0, C8, C7, 1), F_HASXT },
3344 { "aside1", CPENS (0, C8, C7, 2), F_HASXT },
3345 { "vaae1", CPENS (0, C8, C7, 3), F_HASXT },
a06ea964 3346 { "vmalle1is", CPENS(0,C8,C3,0), 0 },
ea2deeec
MW
3347 { "vae1is", CPENS (0, C8, C3, 1), F_HASXT },
3348 { "aside1is", CPENS (0, C8, C3, 2), F_HASXT },
3349 { "vaae1is", CPENS (0, C8, C3, 3), F_HASXT },
3350 { "ipas2e1is", CPENS (4, C8, C0, 1), F_HASXT },
3351 { "ipas2le1is",CPENS (4, C8, C0, 5), F_HASXT },
3352 { "ipas2e1", CPENS (4, C8, C4, 1), F_HASXT },
3353 { "ipas2le1", CPENS (4, C8, C4, 5), F_HASXT },
3354 { "vae2", CPENS (4, C8, C7, 1), F_HASXT },
3355 { "vae2is", CPENS (4, C8, C3, 1), F_HASXT },
a06ea964
NC
3356 { "vmalls12e1",CPENS(4,C8,C7,6), 0 },
3357 { "vmalls12e1is",CPENS(4,C8,C3,6), 0 },
ea2deeec
MW
3358 { "vae3", CPENS (6, C8, C7, 1), F_HASXT },
3359 { "vae3is", CPENS (6, C8, C3, 1), F_HASXT },
a06ea964
NC
3360 { "alle2", CPENS(4,C8,C7,0), 0 },
3361 { "alle2is", CPENS(4,C8,C3,0), 0 },
3362 { "alle1", CPENS(4,C8,C7,4), 0 },
3363 { "alle1is", CPENS(4,C8,C3,4), 0 },
3364 { "alle3", CPENS(6,C8,C7,0), 0 },
3365 { "alle3is", CPENS(6,C8,C3,0), 0 },
ea2deeec
MW
3366 { "vale1is", CPENS (0, C8, C3, 5), F_HASXT },
3367 { "vale2is", CPENS (4, C8, C3, 5), F_HASXT },
3368 { "vale3is", CPENS (6, C8, C3, 5), F_HASXT },
3369 { "vaale1is", CPENS (0, C8, C3, 7), F_HASXT },
3370 { "vale1", CPENS (0, C8, C7, 5), F_HASXT },
3371 { "vale2", CPENS (4, C8, C7, 5), F_HASXT },
3372 { "vale3", CPENS (6, C8, C7, 5), F_HASXT },
3373 { "vaale1", CPENS (0, C8, C7, 7), F_HASXT },
a06ea964
NC
3374 { 0, CPENS(0,0,0,0), 0 }
3375};
3376
ea2deeec
MW
3377bfd_boolean
3378aarch64_sys_ins_reg_has_xt (const aarch64_sys_ins_reg *sys_ins_reg)
3379{
3380 return (sys_ins_reg->flags & F_HASXT) != 0;
3381}
3382
d6bf7ce6
MW
3383extern bfd_boolean
3384aarch64_sys_ins_reg_supported_p (const aarch64_feature_set features,
3385 const aarch64_sys_ins_reg *reg)
3386{
3387 if (!(reg->flags & F_ARCHEXT))
3388 return TRUE;
3389
3390 /* DC CVAP. Values are from aarch64_sys_regs_dc. */
3391 if (reg->value == CPENS (3, C7, C12, 1)
3392 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
3393 return FALSE;
3394
63511907
MW
3395 /* AT S1E1RP, AT S1E1WP. Values are from aarch64_sys_regs_at. */
3396 if ((reg->value == CPENS (0, C7, C9, 0)
3397 || reg->value == CPENS (0, C7, C9, 1))
3398 && !AARCH64_CPU_HAS_FEATURE (features, AARCH64_FEATURE_V8_2))
3399 return FALSE;
3400
d6bf7ce6
MW
3401 return TRUE;
3402}
3403
a06ea964
NC
3404#undef C0
3405#undef C1
3406#undef C2
3407#undef C3
3408#undef C4
3409#undef C5
3410#undef C6
3411#undef C7
3412#undef C8
3413#undef C9
3414#undef C10
3415#undef C11
3416#undef C12
3417#undef C13
3418#undef C14
3419#undef C15
3420
3421/* Include the opcode description table as well as the operand description
3422 table. */
3423#include "aarch64-tbl.h"
This page took 0.297424 seconds and 4 git commands to generate.