Yet more signed overflow fixes
[deliverable/binutils-gdb.git] / bfd / elfxx-mips.c
1 /* MIPS-specific support for ELF
2 Copyright (C) 1993-2019 Free Software Foundation, Inc.
3
4 Most of the information added by Ian Lance Taylor, Cygnus Support,
5 <ian@cygnus.com>.
6 N32/64 ABI support added by Mark Mitchell, CodeSourcery, LLC.
7 <mark@codesourcery.com>
8 Traditional MIPS targets support added by Koundinya.K, Dansk Data
9 Elektronik & Operations Research Group. <kk@ddeorg.soft.net>
10
11 This file is part of BFD, the Binary File Descriptor library.
12
13 This program is free software; you can redistribute it and/or modify
14 it under the terms of the GNU General Public License as published by
15 the Free Software Foundation; either version 3 of the License, or
16 (at your option) any later version.
17
18 This program is distributed in the hope that it will be useful,
19 but WITHOUT ANY WARRANTY; without even the implied warranty of
20 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21 GNU General Public License for more details.
22
23 You should have received a copy of the GNU General Public License
24 along with this program; if not, write to the Free Software
25 Foundation, Inc., 51 Franklin Street - Fifth Floor, Boston,
26 MA 02110-1301, USA. */
27
28
29 /* This file handles functionality common to the different MIPS ABI's. */
30
31 #include "sysdep.h"
32 #include "bfd.h"
33 #include "libbfd.h"
34 #include "libiberty.h"
35 #include "elf-bfd.h"
36 #include "ecoff-bfd.h"
37 #include "elfxx-mips.h"
38 #include "elf/mips.h"
39 #include "elf-vxworks.h"
40 #include "dwarf2.h"
41
42 /* Get the ECOFF swapping routines. */
43 #include "coff/sym.h"
44 #include "coff/symconst.h"
45 #include "coff/ecoff.h"
46 #include "coff/mips.h"
47
48 #include "hashtab.h"
49
50 /* Types of TLS GOT entry. */
51 enum mips_got_tls_type {
52 GOT_TLS_NONE,
53 GOT_TLS_GD,
54 GOT_TLS_LDM,
55 GOT_TLS_IE
56 };
57
58 /* This structure is used to hold information about one GOT entry.
59 There are four types of entry:
60
61 (1) an absolute address
62 requires: abfd == NULL
63 fields: d.address
64
65 (2) a SYMBOL + OFFSET address, where SYMBOL is local to an input bfd
66 requires: abfd != NULL, symndx >= 0, tls_type != GOT_TLS_LDM
67 fields: abfd, symndx, d.addend, tls_type
68
69 (3) a SYMBOL address, where SYMBOL is not local to an input bfd
70 requires: abfd != NULL, symndx == -1
71 fields: d.h, tls_type
72
73 (4) a TLS LDM slot
74 requires: abfd != NULL, symndx == 0, tls_type == GOT_TLS_LDM
75 fields: none; there's only one of these per GOT. */
76 struct mips_got_entry
77 {
78 /* One input bfd that needs the GOT entry. */
79 bfd *abfd;
80 /* The index of the symbol, as stored in the relocation r_info, if
81 we have a local symbol; -1 otherwise. */
82 long symndx;
83 union
84 {
85 /* If abfd == NULL, an address that must be stored in the got. */
86 bfd_vma address;
87 /* If abfd != NULL && symndx != -1, the addend of the relocation
88 that should be added to the symbol value. */
89 bfd_vma addend;
90 /* If abfd != NULL && symndx == -1, the hash table entry
91 corresponding to a symbol in the GOT. The symbol's entry
92 is in the local area if h->global_got_area is GGA_NONE,
93 otherwise it is in the global area. */
94 struct mips_elf_link_hash_entry *h;
95 } d;
96
97 /* The TLS type of this GOT entry. An LDM GOT entry will be a local
98 symbol entry with r_symndx == 0. */
99 unsigned char tls_type;
100
101 /* True if we have filled in the GOT contents for a TLS entry,
102 and created the associated relocations. */
103 unsigned char tls_initialized;
104
105 /* The offset from the beginning of the .got section to the entry
106 corresponding to this symbol+addend. If it's a global symbol
107 whose offset is yet to be decided, it's going to be -1. */
108 long gotidx;
109 };
110
111 /* This structure represents a GOT page reference from an input bfd.
112 Each instance represents a symbol + ADDEND, where the representation
113 of the symbol depends on whether it is local to the input bfd.
114 If it is, then SYMNDX >= 0, and the symbol has index SYMNDX in U.ABFD.
115 Otherwise, SYMNDX < 0 and U.H points to the symbol's hash table entry.
116
117 Page references with SYMNDX >= 0 always become page references
118 in the output. Page references with SYMNDX < 0 only become page
119 references if the symbol binds locally; in other cases, the page
120 reference decays to a global GOT reference. */
121 struct mips_got_page_ref
122 {
123 long symndx;
124 union
125 {
126 struct mips_elf_link_hash_entry *h;
127 bfd *abfd;
128 } u;
129 bfd_vma addend;
130 };
131
132 /* This structure describes a range of addends: [MIN_ADDEND, MAX_ADDEND].
133 The structures form a non-overlapping list that is sorted by increasing
134 MIN_ADDEND. */
135 struct mips_got_page_range
136 {
137 struct mips_got_page_range *next;
138 bfd_signed_vma min_addend;
139 bfd_signed_vma max_addend;
140 };
141
142 /* This structure describes the range of addends that are applied to page
143 relocations against a given section. */
144 struct mips_got_page_entry
145 {
146 /* The section that these entries are based on. */
147 asection *sec;
148 /* The ranges for this page entry. */
149 struct mips_got_page_range *ranges;
150 /* The maximum number of page entries needed for RANGES. */
151 bfd_vma num_pages;
152 };
153
154 /* This structure is used to hold .got information when linking. */
155
156 struct mips_got_info
157 {
158 /* The number of global .got entries. */
159 unsigned int global_gotno;
160 /* The number of global .got entries that are in the GGA_RELOC_ONLY area. */
161 unsigned int reloc_only_gotno;
162 /* The number of .got slots used for TLS. */
163 unsigned int tls_gotno;
164 /* The first unused TLS .got entry. Used only during
165 mips_elf_initialize_tls_index. */
166 unsigned int tls_assigned_gotno;
167 /* The number of local .got entries, eventually including page entries. */
168 unsigned int local_gotno;
169 /* The maximum number of page entries needed. */
170 unsigned int page_gotno;
171 /* The number of relocations needed for the GOT entries. */
172 unsigned int relocs;
173 /* The first unused local .got entry. */
174 unsigned int assigned_low_gotno;
175 /* The last unused local .got entry. */
176 unsigned int assigned_high_gotno;
177 /* A hash table holding members of the got. */
178 struct htab *got_entries;
179 /* A hash table holding mips_got_page_ref structures. */
180 struct htab *got_page_refs;
181 /* A hash table of mips_got_page_entry structures. */
182 struct htab *got_page_entries;
183 /* In multi-got links, a pointer to the next got (err, rather, most
184 of the time, it points to the previous got). */
185 struct mips_got_info *next;
186 };
187
188 /* Structure passed when merging bfds' gots. */
189
190 struct mips_elf_got_per_bfd_arg
191 {
192 /* The output bfd. */
193 bfd *obfd;
194 /* The link information. */
195 struct bfd_link_info *info;
196 /* A pointer to the primary got, i.e., the one that's going to get
197 the implicit relocations from DT_MIPS_LOCAL_GOTNO and
198 DT_MIPS_GOTSYM. */
199 struct mips_got_info *primary;
200 /* A non-primary got we're trying to merge with other input bfd's
201 gots. */
202 struct mips_got_info *current;
203 /* The maximum number of got entries that can be addressed with a
204 16-bit offset. */
205 unsigned int max_count;
206 /* The maximum number of page entries needed by each got. */
207 unsigned int max_pages;
208 /* The total number of global entries which will live in the
209 primary got and be automatically relocated. This includes
210 those not referenced by the primary GOT but included in
211 the "master" GOT. */
212 unsigned int global_count;
213 };
214
215 /* A structure used to pass information to htab_traverse callbacks
216 when laying out the GOT. */
217
218 struct mips_elf_traverse_got_arg
219 {
220 struct bfd_link_info *info;
221 struct mips_got_info *g;
222 int value;
223 };
224
225 struct _mips_elf_section_data
226 {
227 struct bfd_elf_section_data elf;
228 union
229 {
230 bfd_byte *tdata;
231 } u;
232 };
233
234 #define mips_elf_section_data(sec) \
235 ((struct _mips_elf_section_data *) elf_section_data (sec))
236
237 #define is_mips_elf(bfd) \
238 (bfd_get_flavour (bfd) == bfd_target_elf_flavour \
239 && elf_tdata (bfd) != NULL \
240 && elf_object_id (bfd) == MIPS_ELF_DATA)
241
242 /* The ABI says that every symbol used by dynamic relocations must have
243 a global GOT entry. Among other things, this provides the dynamic
244 linker with a free, directly-indexed cache. The GOT can therefore
245 contain symbols that are not referenced by GOT relocations themselves
246 (in other words, it may have symbols that are not referenced by things
247 like R_MIPS_GOT16 and R_MIPS_GOT_PAGE).
248
249 GOT relocations are less likely to overflow if we put the associated
250 GOT entries towards the beginning. We therefore divide the global
251 GOT entries into two areas: "normal" and "reloc-only". Entries in
252 the first area can be used for both dynamic relocations and GP-relative
253 accesses, while those in the "reloc-only" area are for dynamic
254 relocations only.
255
256 These GGA_* ("Global GOT Area") values are organised so that lower
257 values are more general than higher values. Also, non-GGA_NONE
258 values are ordered by the position of the area in the GOT. */
259 #define GGA_NORMAL 0
260 #define GGA_RELOC_ONLY 1
261 #define GGA_NONE 2
262
263 /* Information about a non-PIC interface to a PIC function. There are
264 two ways of creating these interfaces. The first is to add:
265
266 lui $25,%hi(func)
267 addiu $25,$25,%lo(func)
268
269 immediately before a PIC function "func". The second is to add:
270
271 lui $25,%hi(func)
272 j func
273 addiu $25,$25,%lo(func)
274
275 to a separate trampoline section.
276
277 Stubs of the first kind go in a new section immediately before the
278 target function. Stubs of the second kind go in a single section
279 pointed to by the hash table's "strampoline" field. */
280 struct mips_elf_la25_stub {
281 /* The generated section that contains this stub. */
282 asection *stub_section;
283
284 /* The offset of the stub from the start of STUB_SECTION. */
285 bfd_vma offset;
286
287 /* One symbol for the original function. Its location is available
288 in H->root.root.u.def. */
289 struct mips_elf_link_hash_entry *h;
290 };
291
292 /* Macros for populating a mips_elf_la25_stub. */
293
294 #define LA25_LUI(VAL) (0x3c190000 | (VAL)) /* lui t9,VAL */
295 #define LA25_J(VAL) (0x08000000 | (((VAL) >> 2) & 0x3ffffff)) /* j VAL */
296 #define LA25_BC(VAL) (0xc8000000 | (((VAL) >> 2) & 0x3ffffff)) /* bc VAL */
297 #define LA25_ADDIU(VAL) (0x27390000 | (VAL)) /* addiu t9,t9,VAL */
298 #define LA25_LUI_MICROMIPS(VAL) \
299 (0x41b90000 | (VAL)) /* lui t9,VAL */
300 #define LA25_J_MICROMIPS(VAL) \
301 (0xd4000000 | (((VAL) >> 1) & 0x3ffffff)) /* j VAL */
302 #define LA25_ADDIU_MICROMIPS(VAL) \
303 (0x33390000 | (VAL)) /* addiu t9,t9,VAL */
304
305 /* This structure is passed to mips_elf_sort_hash_table_f when sorting
306 the dynamic symbols. */
307
308 struct mips_elf_hash_sort_data
309 {
310 /* The symbol in the global GOT with the lowest dynamic symbol table
311 index. */
312 struct elf_link_hash_entry *low;
313 /* The least dynamic symbol table index corresponding to a non-TLS
314 symbol with a GOT entry. */
315 bfd_size_type min_got_dynindx;
316 /* The greatest dynamic symbol table index corresponding to a symbol
317 with a GOT entry that is not referenced (e.g., a dynamic symbol
318 with dynamic relocations pointing to it from non-primary GOTs). */
319 bfd_size_type max_unref_got_dynindx;
320 /* The greatest dynamic symbol table index corresponding to a local
321 symbol. */
322 bfd_size_type max_local_dynindx;
323 /* The greatest dynamic symbol table index corresponding to an external
324 symbol without a GOT entry. */
325 bfd_size_type max_non_got_dynindx;
326 /* If non-NULL, output BFD for .MIPS.xhash finalization. */
327 bfd *output_bfd;
328 /* If non-NULL, pointer to contents of .MIPS.xhash for filling in
329 real final dynindx. */
330 bfd_byte *mipsxhash;
331 };
332
333 /* We make up to two PLT entries if needed, one for standard MIPS code
334 and one for compressed code, either a MIPS16 or microMIPS one. We
335 keep a separate record of traditional lazy-binding stubs, for easier
336 processing. */
337
338 struct plt_entry
339 {
340 /* Traditional SVR4 stub offset, or -1 if none. */
341 bfd_vma stub_offset;
342
343 /* Standard PLT entry offset, or -1 if none. */
344 bfd_vma mips_offset;
345
346 /* Compressed PLT entry offset, or -1 if none. */
347 bfd_vma comp_offset;
348
349 /* The corresponding .got.plt index, or -1 if none. */
350 bfd_vma gotplt_index;
351
352 /* Whether we need a standard PLT entry. */
353 unsigned int need_mips : 1;
354
355 /* Whether we need a compressed PLT entry. */
356 unsigned int need_comp : 1;
357 };
358
359 /* The MIPS ELF linker needs additional information for each symbol in
360 the global hash table. */
361
362 struct mips_elf_link_hash_entry
363 {
364 struct elf_link_hash_entry root;
365
366 /* External symbol information. */
367 EXTR esym;
368
369 /* The la25 stub we have created for ths symbol, if any. */
370 struct mips_elf_la25_stub *la25_stub;
371
372 /* Number of R_MIPS_32, R_MIPS_REL32, or R_MIPS_64 relocs against
373 this symbol. */
374 unsigned int possibly_dynamic_relocs;
375
376 /* If there is a stub that 32 bit functions should use to call this
377 16 bit function, this points to the section containing the stub. */
378 asection *fn_stub;
379
380 /* If there is a stub that 16 bit functions should use to call this
381 32 bit function, this points to the section containing the stub. */
382 asection *call_stub;
383
384 /* This is like the call_stub field, but it is used if the function
385 being called returns a floating point value. */
386 asection *call_fp_stub;
387
388 /* If non-zero, location in .MIPS.xhash to write real final dynindx. */
389 bfd_vma mipsxhash_loc;
390
391 /* The highest GGA_* value that satisfies all references to this symbol. */
392 unsigned int global_got_area : 2;
393
394 /* True if all GOT relocations against this symbol are for calls. This is
395 a looser condition than no_fn_stub below, because there may be other
396 non-call non-GOT relocations against the symbol. */
397 unsigned int got_only_for_calls : 1;
398
399 /* True if one of the relocations described by possibly_dynamic_relocs
400 is against a readonly section. */
401 unsigned int readonly_reloc : 1;
402
403 /* True if there is a relocation against this symbol that must be
404 resolved by the static linker (in other words, if the relocation
405 cannot possibly be made dynamic). */
406 unsigned int has_static_relocs : 1;
407
408 /* True if we must not create a .MIPS.stubs entry for this symbol.
409 This is set, for example, if there are relocations related to
410 taking the function's address, i.e. any but R_MIPS_CALL*16 ones.
411 See "MIPS ABI Supplement, 3rd Edition", p. 4-20. */
412 unsigned int no_fn_stub : 1;
413
414 /* Whether we need the fn_stub; this is true if this symbol appears
415 in any relocs other than a 16 bit call. */
416 unsigned int need_fn_stub : 1;
417
418 /* True if this symbol is referenced by branch relocations from
419 any non-PIC input file. This is used to determine whether an
420 la25 stub is required. */
421 unsigned int has_nonpic_branches : 1;
422
423 /* Does this symbol need a traditional MIPS lazy-binding stub
424 (as opposed to a PLT entry)? */
425 unsigned int needs_lazy_stub : 1;
426
427 /* Does this symbol resolve to a PLT entry? */
428 unsigned int use_plt_entry : 1;
429 };
430
431 /* MIPS ELF linker hash table. */
432
433 struct mips_elf_link_hash_table
434 {
435 struct elf_link_hash_table root;
436
437 /* The number of .rtproc entries. */
438 bfd_size_type procedure_count;
439
440 /* The size of the .compact_rel section (if SGI_COMPAT). */
441 bfd_size_type compact_rel_size;
442
443 /* This flag indicates that the value of DT_MIPS_RLD_MAP dynamic entry
444 is set to the address of __rld_obj_head as in IRIX5 and IRIX6. */
445 bfd_boolean use_rld_obj_head;
446
447 /* The __rld_map or __rld_obj_head symbol. */
448 struct elf_link_hash_entry *rld_symbol;
449
450 /* This is set if we see any mips16 stub sections. */
451 bfd_boolean mips16_stubs_seen;
452
453 /* True if we can generate copy relocs and PLTs. */
454 bfd_boolean use_plts_and_copy_relocs;
455
456 /* True if we can only use 32-bit microMIPS instructions. */
457 bfd_boolean insn32;
458
459 /* True if we suppress checks for invalid branches between ISA modes. */
460 bfd_boolean ignore_branch_isa;
461
462 /* True if we are targetting R6 compact branches. */
463 bfd_boolean compact_branches;
464
465 /* True if we're generating code for VxWorks. */
466 bfd_boolean is_vxworks;
467
468 /* True if we already reported the small-data section overflow. */
469 bfd_boolean small_data_overflow_reported;
470
471 /* True if we use the special `__gnu_absolute_zero' symbol. */
472 bfd_boolean use_absolute_zero;
473
474 /* True if we have been configured for a GNU target. */
475 bfd_boolean gnu_target;
476
477 /* Shortcuts to some dynamic sections, or NULL if they are not
478 being used. */
479 asection *srelplt2;
480 asection *sstubs;
481
482 /* The master GOT information. */
483 struct mips_got_info *got_info;
484
485 /* The global symbol in the GOT with the lowest index in the dynamic
486 symbol table. */
487 struct elf_link_hash_entry *global_gotsym;
488
489 /* The size of the PLT header in bytes. */
490 bfd_vma plt_header_size;
491
492 /* The size of a standard PLT entry in bytes. */
493 bfd_vma plt_mips_entry_size;
494
495 /* The size of a compressed PLT entry in bytes. */
496 bfd_vma plt_comp_entry_size;
497
498 /* The offset of the next standard PLT entry to create. */
499 bfd_vma plt_mips_offset;
500
501 /* The offset of the next compressed PLT entry to create. */
502 bfd_vma plt_comp_offset;
503
504 /* The index of the next .got.plt entry to create. */
505 bfd_vma plt_got_index;
506
507 /* The number of functions that need a lazy-binding stub. */
508 bfd_vma lazy_stub_count;
509
510 /* The size of a function stub entry in bytes. */
511 bfd_vma function_stub_size;
512
513 /* The number of reserved entries at the beginning of the GOT. */
514 unsigned int reserved_gotno;
515
516 /* The section used for mips_elf_la25_stub trampolines.
517 See the comment above that structure for details. */
518 asection *strampoline;
519
520 /* A table of mips_elf_la25_stubs, indexed by (input_section, offset)
521 pairs. */
522 htab_t la25_stubs;
523
524 /* A function FN (NAME, IS, OS) that creates a new input section
525 called NAME and links it to output section OS. If IS is nonnull,
526 the new section should go immediately before it, otherwise it
527 should go at the (current) beginning of OS.
528
529 The function returns the new section on success, otherwise it
530 returns null. */
531 asection *(*add_stub_section) (const char *, asection *, asection *);
532
533 /* Small local sym cache. */
534 struct sym_cache sym_cache;
535
536 /* Is the PLT header compressed? */
537 unsigned int plt_header_is_comp : 1;
538 };
539
540 /* Get the MIPS ELF linker hash table from a link_info structure. */
541
542 #define mips_elf_hash_table(p) \
543 (elf_hash_table_id ((struct elf_link_hash_table *) ((p)->hash)) \
544 == MIPS_ELF_DATA ? ((struct mips_elf_link_hash_table *) ((p)->hash)) : NULL)
545
546 /* A structure used to communicate with htab_traverse callbacks. */
547 struct mips_htab_traverse_info
548 {
549 /* The usual link-wide information. */
550 struct bfd_link_info *info;
551 bfd *output_bfd;
552
553 /* Starts off FALSE and is set to TRUE if the link should be aborted. */
554 bfd_boolean error;
555 };
556
557 /* MIPS ELF private object data. */
558
559 struct mips_elf_obj_tdata
560 {
561 /* Generic ELF private object data. */
562 struct elf_obj_tdata root;
563
564 /* Input BFD providing Tag_GNU_MIPS_ABI_FP attribute for output. */
565 bfd *abi_fp_bfd;
566
567 /* Input BFD providing Tag_GNU_MIPS_ABI_MSA attribute for output. */
568 bfd *abi_msa_bfd;
569
570 /* The abiflags for this object. */
571 Elf_Internal_ABIFlags_v0 abiflags;
572 bfd_boolean abiflags_valid;
573
574 /* The GOT requirements of input bfds. */
575 struct mips_got_info *got;
576
577 /* Used by _bfd_mips_elf_find_nearest_line. The structure could be
578 included directly in this one, but there's no point to wasting
579 the memory just for the infrequently called find_nearest_line. */
580 struct mips_elf_find_line *find_line_info;
581
582 /* An array of stub sections indexed by symbol number. */
583 asection **local_stubs;
584 asection **local_call_stubs;
585
586 /* The Irix 5 support uses two virtual sections, which represent
587 text/data symbols defined in dynamic objects. */
588 asymbol *elf_data_symbol;
589 asymbol *elf_text_symbol;
590 asection *elf_data_section;
591 asection *elf_text_section;
592 };
593
594 /* Get MIPS ELF private object data from BFD's tdata. */
595
596 #define mips_elf_tdata(bfd) \
597 ((struct mips_elf_obj_tdata *) (bfd)->tdata.any)
598
599 #define TLS_RELOC_P(r_type) \
600 (r_type == R_MIPS_TLS_DTPMOD32 \
601 || r_type == R_MIPS_TLS_DTPMOD64 \
602 || r_type == R_MIPS_TLS_DTPREL32 \
603 || r_type == R_MIPS_TLS_DTPREL64 \
604 || r_type == R_MIPS_TLS_GD \
605 || r_type == R_MIPS_TLS_LDM \
606 || r_type == R_MIPS_TLS_DTPREL_HI16 \
607 || r_type == R_MIPS_TLS_DTPREL_LO16 \
608 || r_type == R_MIPS_TLS_GOTTPREL \
609 || r_type == R_MIPS_TLS_TPREL32 \
610 || r_type == R_MIPS_TLS_TPREL64 \
611 || r_type == R_MIPS_TLS_TPREL_HI16 \
612 || r_type == R_MIPS_TLS_TPREL_LO16 \
613 || r_type == R_MIPS16_TLS_GD \
614 || r_type == R_MIPS16_TLS_LDM \
615 || r_type == R_MIPS16_TLS_DTPREL_HI16 \
616 || r_type == R_MIPS16_TLS_DTPREL_LO16 \
617 || r_type == R_MIPS16_TLS_GOTTPREL \
618 || r_type == R_MIPS16_TLS_TPREL_HI16 \
619 || r_type == R_MIPS16_TLS_TPREL_LO16 \
620 || r_type == R_MICROMIPS_TLS_GD \
621 || r_type == R_MICROMIPS_TLS_LDM \
622 || r_type == R_MICROMIPS_TLS_DTPREL_HI16 \
623 || r_type == R_MICROMIPS_TLS_DTPREL_LO16 \
624 || r_type == R_MICROMIPS_TLS_GOTTPREL \
625 || r_type == R_MICROMIPS_TLS_TPREL_HI16 \
626 || r_type == R_MICROMIPS_TLS_TPREL_LO16)
627
628 /* Structure used to pass information to mips_elf_output_extsym. */
629
630 struct extsym_info
631 {
632 bfd *abfd;
633 struct bfd_link_info *info;
634 struct ecoff_debug_info *debug;
635 const struct ecoff_debug_swap *swap;
636 bfd_boolean failed;
637 };
638
639 /* The names of the runtime procedure table symbols used on IRIX5. */
640
641 static const char * const mips_elf_dynsym_rtproc_names[] =
642 {
643 "_procedure_table",
644 "_procedure_string_table",
645 "_procedure_table_size",
646 NULL
647 };
648
649 /* These structures are used to generate the .compact_rel section on
650 IRIX5. */
651
652 typedef struct
653 {
654 unsigned long id1; /* Always one? */
655 unsigned long num; /* Number of compact relocation entries. */
656 unsigned long id2; /* Always two? */
657 unsigned long offset; /* The file offset of the first relocation. */
658 unsigned long reserved0; /* Zero? */
659 unsigned long reserved1; /* Zero? */
660 } Elf32_compact_rel;
661
662 typedef struct
663 {
664 bfd_byte id1[4];
665 bfd_byte num[4];
666 bfd_byte id2[4];
667 bfd_byte offset[4];
668 bfd_byte reserved0[4];
669 bfd_byte reserved1[4];
670 } Elf32_External_compact_rel;
671
672 typedef struct
673 {
674 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
675 unsigned int rtype : 4; /* Relocation types. See below. */
676 unsigned int dist2to : 8;
677 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
678 unsigned long konst; /* KONST field. See below. */
679 unsigned long vaddr; /* VADDR to be relocated. */
680 } Elf32_crinfo;
681
682 typedef struct
683 {
684 unsigned int ctype : 1; /* 1: long 0: short format. See below. */
685 unsigned int rtype : 4; /* Relocation types. See below. */
686 unsigned int dist2to : 8;
687 unsigned int relvaddr : 19; /* (VADDR - vaddr of the previous entry)/ 4 */
688 unsigned long konst; /* KONST field. See below. */
689 } Elf32_crinfo2;
690
691 typedef struct
692 {
693 bfd_byte info[4];
694 bfd_byte konst[4];
695 bfd_byte vaddr[4];
696 } Elf32_External_crinfo;
697
698 typedef struct
699 {
700 bfd_byte info[4];
701 bfd_byte konst[4];
702 } Elf32_External_crinfo2;
703
704 /* These are the constants used to swap the bitfields in a crinfo. */
705
706 #define CRINFO_CTYPE (0x1)
707 #define CRINFO_CTYPE_SH (31)
708 #define CRINFO_RTYPE (0xf)
709 #define CRINFO_RTYPE_SH (27)
710 #define CRINFO_DIST2TO (0xff)
711 #define CRINFO_DIST2TO_SH (19)
712 #define CRINFO_RELVADDR (0x7ffff)
713 #define CRINFO_RELVADDR_SH (0)
714
715 /* A compact relocation info has long (3 words) or short (2 words)
716 formats. A short format doesn't have VADDR field and relvaddr
717 fields contains ((VADDR - vaddr of the previous entry) >> 2). */
718 #define CRF_MIPS_LONG 1
719 #define CRF_MIPS_SHORT 0
720
721 /* There are 4 types of compact relocation at least. The value KONST
722 has different meaning for each type:
723
724 (type) (konst)
725 CT_MIPS_REL32 Address in data
726 CT_MIPS_WORD Address in word (XXX)
727 CT_MIPS_GPHI_LO GP - vaddr
728 CT_MIPS_JMPAD Address to jump
729 */
730
731 #define CRT_MIPS_REL32 0xa
732 #define CRT_MIPS_WORD 0xb
733 #define CRT_MIPS_GPHI_LO 0xc
734 #define CRT_MIPS_JMPAD 0xd
735
736 #define mips_elf_set_cr_format(x,format) ((x).ctype = (format))
737 #define mips_elf_set_cr_type(x,type) ((x).rtype = (type))
738 #define mips_elf_set_cr_dist2to(x,v) ((x).dist2to = (v))
739 #define mips_elf_set_cr_relvaddr(x,d) ((x).relvaddr = (d)<<2)
740 \f
741 /* The structure of the runtime procedure descriptor created by the
742 loader for use by the static exception system. */
743
744 typedef struct runtime_pdr {
745 bfd_vma adr; /* Memory address of start of procedure. */
746 long regmask; /* Save register mask. */
747 long regoffset; /* Save register offset. */
748 long fregmask; /* Save floating point register mask. */
749 long fregoffset; /* Save floating point register offset. */
750 long frameoffset; /* Frame size. */
751 short framereg; /* Frame pointer register. */
752 short pcreg; /* Offset or reg of return pc. */
753 long irpss; /* Index into the runtime string table. */
754 long reserved;
755 struct exception_info *exception_info;/* Pointer to exception array. */
756 } RPDR, *pRPDR;
757 #define cbRPDR sizeof (RPDR)
758 #define rpdNil ((pRPDR) 0)
759 \f
760 static struct mips_got_entry *mips_elf_create_local_got_entry
761 (bfd *, struct bfd_link_info *, bfd *, bfd_vma, unsigned long,
762 struct mips_elf_link_hash_entry *, int);
763 static bfd_boolean mips_elf_sort_hash_table_f
764 (struct mips_elf_link_hash_entry *, void *);
765 static bfd_vma mips_elf_high
766 (bfd_vma);
767 static bfd_boolean mips_elf_create_dynamic_relocation
768 (bfd *, struct bfd_link_info *, const Elf_Internal_Rela *,
769 struct mips_elf_link_hash_entry *, asection *, bfd_vma,
770 bfd_vma *, asection *);
771 static bfd_vma mips_elf_adjust_gp
772 (bfd *, struct mips_got_info *, bfd *);
773
774 /* This will be used when we sort the dynamic relocation records. */
775 static bfd *reldyn_sorting_bfd;
776
777 /* True if ABFD is for CPUs with load interlocking that include
778 non-MIPS1 CPUs and R3900. */
779 #define LOAD_INTERLOCKS_P(abfd) \
780 ( ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) != E_MIPS_ARCH_1) \
781 || ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_3900))
782
783 /* True if ABFD is for CPUs that are faster if JAL is converted to BAL.
784 This should be safe for all architectures. We enable this predicate
785 for RM9000 for now. */
786 #define JAL_TO_BAL_P(abfd) \
787 ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == E_MIPS_MACH_9000)
788
789 /* True if ABFD is for CPUs that are faster if JALR is converted to BAL.
790 This should be safe for all architectures. We enable this predicate for
791 all CPUs. */
792 #define JALR_TO_BAL_P(abfd) 1
793
794 /* True if ABFD is for CPUs that are faster if JR is converted to B.
795 This should be safe for all architectures. We enable this predicate for
796 all CPUs. */
797 #define JR_TO_B_P(abfd) 1
798
799 /* True if ABFD is a PIC object. */
800 #define PIC_OBJECT_P(abfd) \
801 ((elf_elfheader (abfd)->e_flags & EF_MIPS_PIC) != 0)
802
803 /* Nonzero if ABFD is using the O32 ABI. */
804 #define ABI_O32_P(abfd) \
805 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
806
807 /* Nonzero if ABFD is using the N32 ABI. */
808 #define ABI_N32_P(abfd) \
809 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI2) != 0)
810
811 /* Nonzero if ABFD is using the N64 ABI. */
812 #define ABI_64_P(abfd) \
813 (get_elf_backend_data (abfd)->s->elfclass == ELFCLASS64)
814
815 /* Nonzero if ABFD is using NewABI conventions. */
816 #define NEWABI_P(abfd) (ABI_N32_P (abfd) || ABI_64_P (abfd))
817
818 /* Nonzero if ABFD has microMIPS code. */
819 #define MICROMIPS_P(abfd) \
820 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS) != 0)
821
822 /* Nonzero if ABFD is MIPS R6. */
823 #define MIPSR6_P(abfd) \
824 ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6 \
825 || (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
826
827 /* The IRIX compatibility level we are striving for. */
828 #define IRIX_COMPAT(abfd) \
829 (get_elf_backend_data (abfd)->elf_backend_mips_irix_compat (abfd))
830
831 /* Whether we are trying to be compatible with IRIX at all. */
832 #define SGI_COMPAT(abfd) \
833 (IRIX_COMPAT (abfd) != ict_none)
834
835 /* The name of the options section. */
836 #define MIPS_ELF_OPTIONS_SECTION_NAME(abfd) \
837 (NEWABI_P (abfd) ? ".MIPS.options" : ".options")
838
839 /* True if NAME is the recognized name of any SHT_MIPS_OPTIONS section.
840 Some IRIX system files do not use MIPS_ELF_OPTIONS_SECTION_NAME. */
841 #define MIPS_ELF_OPTIONS_SECTION_NAME_P(NAME) \
842 (strcmp (NAME, ".MIPS.options") == 0 || strcmp (NAME, ".options") == 0)
843
844 /* True if NAME is the recognized name of any SHT_MIPS_ABIFLAGS section. */
845 #define MIPS_ELF_ABIFLAGS_SECTION_NAME_P(NAME) \
846 (strcmp (NAME, ".MIPS.abiflags") == 0)
847
848 /* Whether the section is readonly. */
849 #define MIPS_ELF_READONLY_SECTION(sec) \
850 ((sec->flags & (SEC_ALLOC | SEC_LOAD | SEC_READONLY)) \
851 == (SEC_ALLOC | SEC_LOAD | SEC_READONLY))
852
853 /* The name of the stub section. */
854 #define MIPS_ELF_STUB_SECTION_NAME(abfd) ".MIPS.stubs"
855
856 /* The size of an external REL relocation. */
857 #define MIPS_ELF_REL_SIZE(abfd) \
858 (get_elf_backend_data (abfd)->s->sizeof_rel)
859
860 /* The size of an external RELA relocation. */
861 #define MIPS_ELF_RELA_SIZE(abfd) \
862 (get_elf_backend_data (abfd)->s->sizeof_rela)
863
864 /* The size of an external dynamic table entry. */
865 #define MIPS_ELF_DYN_SIZE(abfd) \
866 (get_elf_backend_data (abfd)->s->sizeof_dyn)
867
868 /* The size of a GOT entry. */
869 #define MIPS_ELF_GOT_SIZE(abfd) \
870 (get_elf_backend_data (abfd)->s->arch_size / 8)
871
872 /* The size of the .rld_map section. */
873 #define MIPS_ELF_RLD_MAP_SIZE(abfd) \
874 (get_elf_backend_data (abfd)->s->arch_size / 8)
875
876 /* The size of a symbol-table entry. */
877 #define MIPS_ELF_SYM_SIZE(abfd) \
878 (get_elf_backend_data (abfd)->s->sizeof_sym)
879
880 /* The default alignment for sections, as a power of two. */
881 #define MIPS_ELF_LOG_FILE_ALIGN(abfd) \
882 (get_elf_backend_data (abfd)->s->log_file_align)
883
884 /* Get word-sized data. */
885 #define MIPS_ELF_GET_WORD(abfd, ptr) \
886 (ABI_64_P (abfd) ? bfd_get_64 (abfd, ptr) : bfd_get_32 (abfd, ptr))
887
888 /* Put out word-sized data. */
889 #define MIPS_ELF_PUT_WORD(abfd, val, ptr) \
890 (ABI_64_P (abfd) \
891 ? bfd_put_64 (abfd, val, ptr) \
892 : bfd_put_32 (abfd, val, ptr))
893
894 /* The opcode for word-sized loads (LW or LD). */
895 #define MIPS_ELF_LOAD_WORD(abfd) \
896 (ABI_64_P (abfd) ? 0xdc000000 : 0x8c000000)
897
898 /* Add a dynamic symbol table-entry. */
899 #define MIPS_ELF_ADD_DYNAMIC_ENTRY(info, tag, val) \
900 _bfd_elf_add_dynamic_entry (info, tag, val)
901
902 #define MIPS_ELF_RTYPE_TO_HOWTO(abfd, rtype, rela) \
903 (get_elf_backend_data (abfd)->elf_backend_mips_rtype_to_howto (abfd, rtype, rela))
904
905 /* The name of the dynamic relocation section. */
906 #define MIPS_ELF_REL_DYN_NAME(INFO) \
907 (mips_elf_hash_table (INFO)->is_vxworks ? ".rela.dyn" : ".rel.dyn")
908
909 /* In case we're on a 32-bit machine, construct a 64-bit "-1" value
910 from smaller values. Start with zero, widen, *then* decrement. */
911 #define MINUS_ONE (((bfd_vma)0) - 1)
912 #define MINUS_TWO (((bfd_vma)0) - 2)
913
914 /* The value to write into got[1] for SVR4 targets, to identify it is
915 a GNU object. The dynamic linker can then use got[1] to store the
916 module pointer. */
917 #define MIPS_ELF_GNU_GOT1_MASK(abfd) \
918 ((bfd_vma) 1 << (ABI_64_P (abfd) ? 63 : 31))
919
920 /* The offset of $gp from the beginning of the .got section. */
921 #define ELF_MIPS_GP_OFFSET(INFO) \
922 (mips_elf_hash_table (INFO)->is_vxworks ? 0x0 : 0x7ff0)
923
924 /* The maximum size of the GOT for it to be addressable using 16-bit
925 offsets from $gp. */
926 #define MIPS_ELF_GOT_MAX_SIZE(INFO) (ELF_MIPS_GP_OFFSET (INFO) + 0x7fff)
927
928 /* Instructions which appear in a stub. */
929 #define STUB_LW(abfd) \
930 ((ABI_64_P (abfd) \
931 ? 0xdf998010 /* ld t9,0x8010(gp) */ \
932 : 0x8f998010)) /* lw t9,0x8010(gp) */
933 #define STUB_MOVE 0x03e07825 /* or t7,ra,zero */
934 #define STUB_LUI(VAL) (0x3c180000 + (VAL)) /* lui t8,VAL */
935 #define STUB_JALR 0x0320f809 /* jalr ra,t9 */
936 #define STUB_JALRC 0xf8190000 /* jalrc ra,t9 */
937 #define STUB_ORI(VAL) (0x37180000 + (VAL)) /* ori t8,t8,VAL */
938 #define STUB_LI16U(VAL) (0x34180000 + (VAL)) /* ori t8,zero,VAL unsigned */
939 #define STUB_LI16S(abfd, VAL) \
940 ((ABI_64_P (abfd) \
941 ? (0x64180000 + (VAL)) /* daddiu t8,zero,VAL sign extended */ \
942 : (0x24180000 + (VAL)))) /* addiu t8,zero,VAL sign extended */
943
944 /* Likewise for the microMIPS ASE. */
945 #define STUB_LW_MICROMIPS(abfd) \
946 (ABI_64_P (abfd) \
947 ? 0xdf3c8010 /* ld t9,0x8010(gp) */ \
948 : 0xff3c8010) /* lw t9,0x8010(gp) */
949 #define STUB_MOVE_MICROMIPS 0x0dff /* move t7,ra */
950 #define STUB_MOVE32_MICROMIPS 0x001f7a90 /* or t7,ra,zero */
951 #define STUB_LUI_MICROMIPS(VAL) \
952 (0x41b80000 + (VAL)) /* lui t8,VAL */
953 #define STUB_JALR_MICROMIPS 0x45d9 /* jalr t9 */
954 #define STUB_JALR32_MICROMIPS 0x03f90f3c /* jalr ra,t9 */
955 #define STUB_ORI_MICROMIPS(VAL) \
956 (0x53180000 + (VAL)) /* ori t8,t8,VAL */
957 #define STUB_LI16U_MICROMIPS(VAL) \
958 (0x53000000 + (VAL)) /* ori t8,zero,VAL unsigned */
959 #define STUB_LI16S_MICROMIPS(abfd, VAL) \
960 (ABI_64_P (abfd) \
961 ? 0x5f000000 + (VAL) /* daddiu t8,zero,VAL sign extended */ \
962 : 0x33000000 + (VAL)) /* addiu t8,zero,VAL sign extended */
963
964 #define MIPS_FUNCTION_STUB_NORMAL_SIZE 16
965 #define MIPS_FUNCTION_STUB_BIG_SIZE 20
966 #define MICROMIPS_FUNCTION_STUB_NORMAL_SIZE 12
967 #define MICROMIPS_FUNCTION_STUB_BIG_SIZE 16
968 #define MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE 16
969 #define MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE 20
970
971 /* The name of the dynamic interpreter. This is put in the .interp
972 section. */
973
974 #define ELF_DYNAMIC_INTERPRETER(abfd) \
975 (ABI_N32_P (abfd) ? "/usr/lib32/libc.so.1" \
976 : ABI_64_P (abfd) ? "/usr/lib64/libc.so.1" \
977 : "/usr/lib/libc.so.1")
978
979 #ifdef BFD64
980 #define MNAME(bfd,pre,pos) \
981 (ABI_64_P (bfd) ? CONCAT4 (pre,64,_,pos) : CONCAT4 (pre,32,_,pos))
982 #define ELF_R_SYM(bfd, i) \
983 (ABI_64_P (bfd) ? ELF64_R_SYM (i) : ELF32_R_SYM (i))
984 #define ELF_R_TYPE(bfd, i) \
985 (ABI_64_P (bfd) ? ELF64_MIPS_R_TYPE (i) : ELF32_R_TYPE (i))
986 #define ELF_R_INFO(bfd, s, t) \
987 (ABI_64_P (bfd) ? ELF64_R_INFO (s, t) : ELF32_R_INFO (s, t))
988 #else
989 #define MNAME(bfd,pre,pos) CONCAT4 (pre,32,_,pos)
990 #define ELF_R_SYM(bfd, i) \
991 (ELF32_R_SYM (i))
992 #define ELF_R_TYPE(bfd, i) \
993 (ELF32_R_TYPE (i))
994 #define ELF_R_INFO(bfd, s, t) \
995 (ELF32_R_INFO (s, t))
996 #endif
997 \f
998 /* The mips16 compiler uses a couple of special sections to handle
999 floating point arguments.
1000
1001 Section names that look like .mips16.fn.FNNAME contain stubs that
1002 copy floating point arguments from the fp regs to the gp regs and
1003 then jump to FNNAME. If any 32 bit function calls FNNAME, the
1004 call should be redirected to the stub instead. If no 32 bit
1005 function calls FNNAME, the stub should be discarded. We need to
1006 consider any reference to the function, not just a call, because
1007 if the address of the function is taken we will need the stub,
1008 since the address might be passed to a 32 bit function.
1009
1010 Section names that look like .mips16.call.FNNAME contain stubs
1011 that copy floating point arguments from the gp regs to the fp
1012 regs and then jump to FNNAME. If FNNAME is a 32 bit function,
1013 then any 16 bit function that calls FNNAME should be redirected
1014 to the stub instead. If FNNAME is not a 32 bit function, the
1015 stub should be discarded.
1016
1017 .mips16.call.fp.FNNAME sections are similar, but contain stubs
1018 which call FNNAME and then copy the return value from the fp regs
1019 to the gp regs. These stubs store the return value in $18 while
1020 calling FNNAME; any function which might call one of these stubs
1021 must arrange to save $18 around the call. (This case is not
1022 needed for 32 bit functions that call 16 bit functions, because
1023 16 bit functions always return floating point values in both
1024 $f0/$f1 and $2/$3.)
1025
1026 Note that in all cases FNNAME might be defined statically.
1027 Therefore, FNNAME is not used literally. Instead, the relocation
1028 information will indicate which symbol the section is for.
1029
1030 We record any stubs that we find in the symbol table. */
1031
1032 #define FN_STUB ".mips16.fn."
1033 #define CALL_STUB ".mips16.call."
1034 #define CALL_FP_STUB ".mips16.call.fp."
1035
1036 #define FN_STUB_P(name) CONST_STRNEQ (name, FN_STUB)
1037 #define CALL_STUB_P(name) CONST_STRNEQ (name, CALL_STUB)
1038 #define CALL_FP_STUB_P(name) CONST_STRNEQ (name, CALL_FP_STUB)
1039 \f
1040 /* The format of the first PLT entry in an O32 executable. */
1041 static const bfd_vma mips_o32_exec_plt0_entry[] =
1042 {
1043 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1044 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1045 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1046 0x031cc023, /* subu $24, $24, $28 */
1047 0x03e07825, /* or t7, ra, zero */
1048 0x0018c082, /* srl $24, $24, 2 */
1049 0x0320f809, /* jalr $25 */
1050 0x2718fffe /* subu $24, $24, 2 */
1051 };
1052
1053 /* The format of the first PLT entry in an O32 executable using compact
1054 jumps. */
1055 static const bfd_vma mipsr6_o32_exec_plt0_entry_compact[] =
1056 {
1057 0x3c1c0000, /* lui $28, %hi(&GOTPLT[0]) */
1058 0x8f990000, /* lw $25, %lo(&GOTPLT[0])($28) */
1059 0x279c0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1060 0x031cc023, /* subu $24, $24, $28 */
1061 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1062 0x0018c082, /* srl $24, $24, 2 */
1063 0x2718fffe, /* subu $24, $24, 2 */
1064 0xf8190000 /* jalrc $25 */
1065 };
1066
1067 /* The format of the first PLT entry in an N32 executable. Different
1068 because gp ($28) is not available; we use t2 ($14) instead. */
1069 static const bfd_vma mips_n32_exec_plt0_entry[] =
1070 {
1071 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1072 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1073 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1074 0x030ec023, /* subu $24, $24, $14 */
1075 0x03e07825, /* or t7, ra, zero */
1076 0x0018c082, /* srl $24, $24, 2 */
1077 0x0320f809, /* jalr $25 */
1078 0x2718fffe /* subu $24, $24, 2 */
1079 };
1080
1081 /* The format of the first PLT entry in an N32 executable using compact
1082 jumps. Different because gp ($28) is not available; we use t2 ($14)
1083 instead. */
1084 static const bfd_vma mipsr6_n32_exec_plt0_entry_compact[] =
1085 {
1086 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1087 0x8dd90000, /* lw $25, %lo(&GOTPLT[0])($14) */
1088 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1089 0x030ec023, /* subu $24, $24, $14 */
1090 0x03e07821, /* move $15, $31 # 32-bit move (addu) */
1091 0x0018c082, /* srl $24, $24, 2 */
1092 0x2718fffe, /* subu $24, $24, 2 */
1093 0xf8190000 /* jalrc $25 */
1094 };
1095
1096 /* The format of the first PLT entry in an N64 executable. Different
1097 from N32 because of the increased size of GOT entries. */
1098 static const bfd_vma mips_n64_exec_plt0_entry[] =
1099 {
1100 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1101 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1102 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1103 0x030ec023, /* subu $24, $24, $14 */
1104 0x03e07825, /* or t7, ra, zero */
1105 0x0018c0c2, /* srl $24, $24, 3 */
1106 0x0320f809, /* jalr $25 */
1107 0x2718fffe /* subu $24, $24, 2 */
1108 };
1109
1110 /* The format of the first PLT entry in an N64 executable using compact
1111 jumps. Different from N32 because of the increased size of GOT
1112 entries. */
1113 static const bfd_vma mipsr6_n64_exec_plt0_entry_compact[] =
1114 {
1115 0x3c0e0000, /* lui $14, %hi(&GOTPLT[0]) */
1116 0xddd90000, /* ld $25, %lo(&GOTPLT[0])($14) */
1117 0x25ce0000, /* addiu $14, $14, %lo(&GOTPLT[0]) */
1118 0x030ec023, /* subu $24, $24, $14 */
1119 0x03e0782d, /* move $15, $31 # 64-bit move (daddu) */
1120 0x0018c0c2, /* srl $24, $24, 3 */
1121 0x2718fffe, /* subu $24, $24, 2 */
1122 0xf8190000 /* jalrc $25 */
1123 };
1124
1125
1126 /* The format of the microMIPS first PLT entry in an O32 executable.
1127 We rely on v0 ($2) rather than t8 ($24) to contain the address
1128 of the GOTPLT entry handled, so this stub may only be used when
1129 all the subsequent PLT entries are microMIPS code too.
1130
1131 The trailing NOP is for alignment and correct disassembly only. */
1132 static const bfd_vma micromips_o32_exec_plt0_entry[] =
1133 {
1134 0x7980, 0x0000, /* addiupc $3, (&GOTPLT[0]) - . */
1135 0xff23, 0x0000, /* lw $25, 0($3) */
1136 0x0535, /* subu $2, $2, $3 */
1137 0x2525, /* srl $2, $2, 2 */
1138 0x3302, 0xfffe, /* subu $24, $2, 2 */
1139 0x0dff, /* move $15, $31 */
1140 0x45f9, /* jalrs $25 */
1141 0x0f83, /* move $28, $3 */
1142 0x0c00 /* nop */
1143 };
1144
1145 /* The format of the microMIPS first PLT entry in an O32 executable
1146 in the insn32 mode. */
1147 static const bfd_vma micromips_insn32_o32_exec_plt0_entry[] =
1148 {
1149 0x41bc, 0x0000, /* lui $28, %hi(&GOTPLT[0]) */
1150 0xff3c, 0x0000, /* lw $25, %lo(&GOTPLT[0])($28) */
1151 0x339c, 0x0000, /* addiu $28, $28, %lo(&GOTPLT[0]) */
1152 0x0398, 0xc1d0, /* subu $24, $24, $28 */
1153 0x001f, 0x7a90, /* or $15, $31, zero */
1154 0x0318, 0x1040, /* srl $24, $24, 2 */
1155 0x03f9, 0x0f3c, /* jalr $25 */
1156 0x3318, 0xfffe /* subu $24, $24, 2 */
1157 };
1158
1159 /* The format of subsequent standard PLT entries. */
1160 static const bfd_vma mips_exec_plt_entry[] =
1161 {
1162 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1163 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1164 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1165 0x03200008 /* jr $25 */
1166 };
1167
1168 static const bfd_vma mipsr6_exec_plt_entry[] =
1169 {
1170 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1171 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1172 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1173 0x03200009 /* jr $25 */
1174 };
1175
1176 static const bfd_vma mipsr6_exec_plt_entry_compact[] =
1177 {
1178 0x3c0f0000, /* lui $15, %hi(.got.plt entry) */
1179 0x01f90000, /* l[wd] $25, %lo(.got.plt entry)($15) */
1180 0x25f80000, /* addiu $24, $15, %lo(.got.plt entry) */
1181 0xd8190000 /* jic $25, 0 */
1182 };
1183
1184 /* The format of subsequent MIPS16 o32 PLT entries. We use v0 ($2)
1185 and v1 ($3) as temporaries because t8 ($24) and t9 ($25) are not
1186 directly addressable. */
1187 static const bfd_vma mips16_o32_exec_plt_entry[] =
1188 {
1189 0xb203, /* lw $2, 12($pc) */
1190 0x9a60, /* lw $3, 0($2) */
1191 0x651a, /* move $24, $2 */
1192 0xeb00, /* jr $3 */
1193 0x653b, /* move $25, $3 */
1194 0x6500, /* nop */
1195 0x0000, 0x0000 /* .word (.got.plt entry) */
1196 };
1197
1198 /* The format of subsequent microMIPS o32 PLT entries. We use v0 ($2)
1199 as a temporary because t8 ($24) is not addressable with ADDIUPC. */
1200 static const bfd_vma micromips_o32_exec_plt_entry[] =
1201 {
1202 0x7900, 0x0000, /* addiupc $2, (.got.plt entry) - . */
1203 0xff22, 0x0000, /* lw $25, 0($2) */
1204 0x4599, /* jr $25 */
1205 0x0f02 /* move $24, $2 */
1206 };
1207
1208 /* The format of subsequent microMIPS o32 PLT entries in the insn32 mode. */
1209 static const bfd_vma micromips_insn32_o32_exec_plt_entry[] =
1210 {
1211 0x41af, 0x0000, /* lui $15, %hi(.got.plt entry) */
1212 0xff2f, 0x0000, /* lw $25, %lo(.got.plt entry)($15) */
1213 0x0019, 0x0f3c, /* jr $25 */
1214 0x330f, 0x0000 /* addiu $24, $15, %lo(.got.plt entry) */
1215 };
1216
1217 /* The format of the first PLT entry in a VxWorks executable. */
1218 static const bfd_vma mips_vxworks_exec_plt0_entry[] =
1219 {
1220 0x3c190000, /* lui t9, %hi(_GLOBAL_OFFSET_TABLE_) */
1221 0x27390000, /* addiu t9, t9, %lo(_GLOBAL_OFFSET_TABLE_) */
1222 0x8f390008, /* lw t9, 8(t9) */
1223 0x00000000, /* nop */
1224 0x03200008, /* jr t9 */
1225 0x00000000 /* nop */
1226 };
1227
1228 /* The format of subsequent PLT entries. */
1229 static const bfd_vma mips_vxworks_exec_plt_entry[] =
1230 {
1231 0x10000000, /* b .PLT_resolver */
1232 0x24180000, /* li t8, <pltindex> */
1233 0x3c190000, /* lui t9, %hi(<.got.plt slot>) */
1234 0x27390000, /* addiu t9, t9, %lo(<.got.plt slot>) */
1235 0x8f390000, /* lw t9, 0(t9) */
1236 0x00000000, /* nop */
1237 0x03200008, /* jr t9 */
1238 0x00000000 /* nop */
1239 };
1240
1241 /* The format of the first PLT entry in a VxWorks shared object. */
1242 static const bfd_vma mips_vxworks_shared_plt0_entry[] =
1243 {
1244 0x8f990008, /* lw t9, 8(gp) */
1245 0x00000000, /* nop */
1246 0x03200008, /* jr t9 */
1247 0x00000000, /* nop */
1248 0x00000000, /* nop */
1249 0x00000000 /* nop */
1250 };
1251
1252 /* The format of subsequent PLT entries. */
1253 static const bfd_vma mips_vxworks_shared_plt_entry[] =
1254 {
1255 0x10000000, /* b .PLT_resolver */
1256 0x24180000 /* li t8, <pltindex> */
1257 };
1258 \f
1259 /* microMIPS 32-bit opcode helper installer. */
1260
1261 static void
1262 bfd_put_micromips_32 (const bfd *abfd, bfd_vma opcode, bfd_byte *ptr)
1263 {
1264 bfd_put_16 (abfd, (opcode >> 16) & 0xffff, ptr);
1265 bfd_put_16 (abfd, opcode & 0xffff, ptr + 2);
1266 }
1267
1268 /* microMIPS 32-bit opcode helper retriever. */
1269
1270 static bfd_vma
1271 bfd_get_micromips_32 (const bfd *abfd, const bfd_byte *ptr)
1272 {
1273 return (bfd_get_16 (abfd, ptr) << 16) | bfd_get_16 (abfd, ptr + 2);
1274 }
1275 \f
1276 /* Look up an entry in a MIPS ELF linker hash table. */
1277
1278 #define mips_elf_link_hash_lookup(table, string, create, copy, follow) \
1279 ((struct mips_elf_link_hash_entry *) \
1280 elf_link_hash_lookup (&(table)->root, (string), (create), \
1281 (copy), (follow)))
1282
1283 /* Traverse a MIPS ELF linker hash table. */
1284
1285 #define mips_elf_link_hash_traverse(table, func, info) \
1286 (elf_link_hash_traverse \
1287 (&(table)->root, \
1288 (bfd_boolean (*) (struct elf_link_hash_entry *, void *)) (func), \
1289 (info)))
1290
1291 /* Find the base offsets for thread-local storage in this object,
1292 for GD/LD and IE/LE respectively. */
1293
1294 #define TP_OFFSET 0x7000
1295 #define DTP_OFFSET 0x8000
1296
1297 static bfd_vma
1298 dtprel_base (struct bfd_link_info *info)
1299 {
1300 /* If tls_sec is NULL, we should have signalled an error already. */
1301 if (elf_hash_table (info)->tls_sec == NULL)
1302 return 0;
1303 return elf_hash_table (info)->tls_sec->vma + DTP_OFFSET;
1304 }
1305
1306 static bfd_vma
1307 tprel_base (struct bfd_link_info *info)
1308 {
1309 /* If tls_sec is NULL, we should have signalled an error already. */
1310 if (elf_hash_table (info)->tls_sec == NULL)
1311 return 0;
1312 return elf_hash_table (info)->tls_sec->vma + TP_OFFSET;
1313 }
1314
1315 /* Create an entry in a MIPS ELF linker hash table. */
1316
1317 static struct bfd_hash_entry *
1318 mips_elf_link_hash_newfunc (struct bfd_hash_entry *entry,
1319 struct bfd_hash_table *table, const char *string)
1320 {
1321 struct mips_elf_link_hash_entry *ret =
1322 (struct mips_elf_link_hash_entry *) entry;
1323
1324 /* Allocate the structure if it has not already been allocated by a
1325 subclass. */
1326 if (ret == NULL)
1327 ret = bfd_hash_allocate (table, sizeof (struct mips_elf_link_hash_entry));
1328 if (ret == NULL)
1329 return (struct bfd_hash_entry *) ret;
1330
1331 /* Call the allocation method of the superclass. */
1332 ret = ((struct mips_elf_link_hash_entry *)
1333 _bfd_elf_link_hash_newfunc ((struct bfd_hash_entry *) ret,
1334 table, string));
1335 if (ret != NULL)
1336 {
1337 /* Set local fields. */
1338 memset (&ret->esym, 0, sizeof (EXTR));
1339 /* We use -2 as a marker to indicate that the information has
1340 not been set. -1 means there is no associated ifd. */
1341 ret->esym.ifd = -2;
1342 ret->la25_stub = 0;
1343 ret->possibly_dynamic_relocs = 0;
1344 ret->fn_stub = NULL;
1345 ret->call_stub = NULL;
1346 ret->call_fp_stub = NULL;
1347 ret->mipsxhash_loc = 0;
1348 ret->global_got_area = GGA_NONE;
1349 ret->got_only_for_calls = TRUE;
1350 ret->readonly_reloc = FALSE;
1351 ret->has_static_relocs = FALSE;
1352 ret->no_fn_stub = FALSE;
1353 ret->need_fn_stub = FALSE;
1354 ret->has_nonpic_branches = FALSE;
1355 ret->needs_lazy_stub = FALSE;
1356 ret->use_plt_entry = FALSE;
1357 }
1358
1359 return (struct bfd_hash_entry *) ret;
1360 }
1361
1362 /* Allocate MIPS ELF private object data. */
1363
1364 bfd_boolean
1365 _bfd_mips_elf_mkobject (bfd *abfd)
1366 {
1367 return bfd_elf_allocate_object (abfd, sizeof (struct mips_elf_obj_tdata),
1368 MIPS_ELF_DATA);
1369 }
1370
1371 bfd_boolean
1372 _bfd_mips_elf_new_section_hook (bfd *abfd, asection *sec)
1373 {
1374 if (!sec->used_by_bfd)
1375 {
1376 struct _mips_elf_section_data *sdata;
1377 bfd_size_type amt = sizeof (*sdata);
1378
1379 sdata = bfd_zalloc (abfd, amt);
1380 if (sdata == NULL)
1381 return FALSE;
1382 sec->used_by_bfd = sdata;
1383 }
1384
1385 return _bfd_elf_new_section_hook (abfd, sec);
1386 }
1387 \f
1388 /* Read ECOFF debugging information from a .mdebug section into a
1389 ecoff_debug_info structure. */
1390
1391 bfd_boolean
1392 _bfd_mips_elf_read_ecoff_info (bfd *abfd, asection *section,
1393 struct ecoff_debug_info *debug)
1394 {
1395 HDRR *symhdr;
1396 const struct ecoff_debug_swap *swap;
1397 char *ext_hdr;
1398
1399 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1400 memset (debug, 0, sizeof (*debug));
1401
1402 ext_hdr = bfd_malloc (swap->external_hdr_size);
1403 if (ext_hdr == NULL && swap->external_hdr_size != 0)
1404 goto error_return;
1405
1406 if (! bfd_get_section_contents (abfd, section, ext_hdr, 0,
1407 swap->external_hdr_size))
1408 goto error_return;
1409
1410 symhdr = &debug->symbolic_header;
1411 (*swap->swap_hdr_in) (abfd, ext_hdr, symhdr);
1412
1413 /* The symbolic header contains absolute file offsets and sizes to
1414 read. */
1415 #define READ(ptr, offset, count, size, type) \
1416 if (symhdr->count == 0) \
1417 debug->ptr = NULL; \
1418 else \
1419 { \
1420 bfd_size_type amt = (bfd_size_type) size * symhdr->count; \
1421 debug->ptr = bfd_malloc (amt); \
1422 if (debug->ptr == NULL) \
1423 goto error_return; \
1424 if (bfd_seek (abfd, symhdr->offset, SEEK_SET) != 0 \
1425 || bfd_bread (debug->ptr, amt, abfd) != amt) \
1426 goto error_return; \
1427 }
1428
1429 READ (line, cbLineOffset, cbLine, sizeof (unsigned char), unsigned char *);
1430 READ (external_dnr, cbDnOffset, idnMax, swap->external_dnr_size, void *);
1431 READ (external_pdr, cbPdOffset, ipdMax, swap->external_pdr_size, void *);
1432 READ (external_sym, cbSymOffset, isymMax, swap->external_sym_size, void *);
1433 READ (external_opt, cbOptOffset, ioptMax, swap->external_opt_size, void *);
1434 READ (external_aux, cbAuxOffset, iauxMax, sizeof (union aux_ext),
1435 union aux_ext *);
1436 READ (ss, cbSsOffset, issMax, sizeof (char), char *);
1437 READ (ssext, cbSsExtOffset, issExtMax, sizeof (char), char *);
1438 READ (external_fdr, cbFdOffset, ifdMax, swap->external_fdr_size, void *);
1439 READ (external_rfd, cbRfdOffset, crfd, swap->external_rfd_size, void *);
1440 READ (external_ext, cbExtOffset, iextMax, swap->external_ext_size, void *);
1441 #undef READ
1442
1443 debug->fdr = NULL;
1444
1445 return TRUE;
1446
1447 error_return:
1448 if (ext_hdr != NULL)
1449 free (ext_hdr);
1450 if (debug->line != NULL)
1451 free (debug->line);
1452 if (debug->external_dnr != NULL)
1453 free (debug->external_dnr);
1454 if (debug->external_pdr != NULL)
1455 free (debug->external_pdr);
1456 if (debug->external_sym != NULL)
1457 free (debug->external_sym);
1458 if (debug->external_opt != NULL)
1459 free (debug->external_opt);
1460 if (debug->external_aux != NULL)
1461 free (debug->external_aux);
1462 if (debug->ss != NULL)
1463 free (debug->ss);
1464 if (debug->ssext != NULL)
1465 free (debug->ssext);
1466 if (debug->external_fdr != NULL)
1467 free (debug->external_fdr);
1468 if (debug->external_rfd != NULL)
1469 free (debug->external_rfd);
1470 if (debug->external_ext != NULL)
1471 free (debug->external_ext);
1472 return FALSE;
1473 }
1474 \f
1475 /* Swap RPDR (runtime procedure table entry) for output. */
1476
1477 static void
1478 ecoff_swap_rpdr_out (bfd *abfd, const RPDR *in, struct rpdr_ext *ex)
1479 {
1480 H_PUT_S32 (abfd, in->adr, ex->p_adr);
1481 H_PUT_32 (abfd, in->regmask, ex->p_regmask);
1482 H_PUT_32 (abfd, in->regoffset, ex->p_regoffset);
1483 H_PUT_32 (abfd, in->fregmask, ex->p_fregmask);
1484 H_PUT_32 (abfd, in->fregoffset, ex->p_fregoffset);
1485 H_PUT_32 (abfd, in->frameoffset, ex->p_frameoffset);
1486
1487 H_PUT_16 (abfd, in->framereg, ex->p_framereg);
1488 H_PUT_16 (abfd, in->pcreg, ex->p_pcreg);
1489
1490 H_PUT_32 (abfd, in->irpss, ex->p_irpss);
1491 }
1492
1493 /* Create a runtime procedure table from the .mdebug section. */
1494
1495 static bfd_boolean
1496 mips_elf_create_procedure_table (void *handle, bfd *abfd,
1497 struct bfd_link_info *info, asection *s,
1498 struct ecoff_debug_info *debug)
1499 {
1500 const struct ecoff_debug_swap *swap;
1501 HDRR *hdr = &debug->symbolic_header;
1502 RPDR *rpdr, *rp;
1503 struct rpdr_ext *erp;
1504 void *rtproc;
1505 struct pdr_ext *epdr;
1506 struct sym_ext *esym;
1507 char *ss, **sv;
1508 char *str;
1509 bfd_size_type size;
1510 bfd_size_type count;
1511 unsigned long sindex;
1512 unsigned long i;
1513 PDR pdr;
1514 SYMR sym;
1515 const char *no_name_func = _("static procedure (no name)");
1516
1517 epdr = NULL;
1518 rpdr = NULL;
1519 esym = NULL;
1520 ss = NULL;
1521 sv = NULL;
1522
1523 swap = get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
1524
1525 sindex = strlen (no_name_func) + 1;
1526 count = hdr->ipdMax;
1527 if (count > 0)
1528 {
1529 size = swap->external_pdr_size;
1530
1531 epdr = bfd_malloc (size * count);
1532 if (epdr == NULL)
1533 goto error_return;
1534
1535 if (! _bfd_ecoff_get_accumulated_pdr (handle, (bfd_byte *) epdr))
1536 goto error_return;
1537
1538 size = sizeof (RPDR);
1539 rp = rpdr = bfd_malloc (size * count);
1540 if (rpdr == NULL)
1541 goto error_return;
1542
1543 size = sizeof (char *);
1544 sv = bfd_malloc (size * count);
1545 if (sv == NULL)
1546 goto error_return;
1547
1548 count = hdr->isymMax;
1549 size = swap->external_sym_size;
1550 esym = bfd_malloc (size * count);
1551 if (esym == NULL)
1552 goto error_return;
1553
1554 if (! _bfd_ecoff_get_accumulated_sym (handle, (bfd_byte *) esym))
1555 goto error_return;
1556
1557 count = hdr->issMax;
1558 ss = bfd_malloc (count);
1559 if (ss == NULL)
1560 goto error_return;
1561 if (! _bfd_ecoff_get_accumulated_ss (handle, (bfd_byte *) ss))
1562 goto error_return;
1563
1564 count = hdr->ipdMax;
1565 for (i = 0; i < (unsigned long) count; i++, rp++)
1566 {
1567 (*swap->swap_pdr_in) (abfd, epdr + i, &pdr);
1568 (*swap->swap_sym_in) (abfd, &esym[pdr.isym], &sym);
1569 rp->adr = sym.value;
1570 rp->regmask = pdr.regmask;
1571 rp->regoffset = pdr.regoffset;
1572 rp->fregmask = pdr.fregmask;
1573 rp->fregoffset = pdr.fregoffset;
1574 rp->frameoffset = pdr.frameoffset;
1575 rp->framereg = pdr.framereg;
1576 rp->pcreg = pdr.pcreg;
1577 rp->irpss = sindex;
1578 sv[i] = ss + sym.iss;
1579 sindex += strlen (sv[i]) + 1;
1580 }
1581 }
1582
1583 size = sizeof (struct rpdr_ext) * (count + 2) + sindex;
1584 size = BFD_ALIGN (size, 16);
1585 rtproc = bfd_alloc (abfd, size);
1586 if (rtproc == NULL)
1587 {
1588 mips_elf_hash_table (info)->procedure_count = 0;
1589 goto error_return;
1590 }
1591
1592 mips_elf_hash_table (info)->procedure_count = count + 2;
1593
1594 erp = rtproc;
1595 memset (erp, 0, sizeof (struct rpdr_ext));
1596 erp++;
1597 str = (char *) rtproc + sizeof (struct rpdr_ext) * (count + 2);
1598 strcpy (str, no_name_func);
1599 str += strlen (no_name_func) + 1;
1600 for (i = 0; i < count; i++)
1601 {
1602 ecoff_swap_rpdr_out (abfd, rpdr + i, erp + i);
1603 strcpy (str, sv[i]);
1604 str += strlen (sv[i]) + 1;
1605 }
1606 H_PUT_S32 (abfd, -1, (erp + count)->p_adr);
1607
1608 /* Set the size and contents of .rtproc section. */
1609 s->size = size;
1610 s->contents = rtproc;
1611
1612 /* Skip this section later on (I don't think this currently
1613 matters, but someday it might). */
1614 s->map_head.link_order = NULL;
1615
1616 if (epdr != NULL)
1617 free (epdr);
1618 if (rpdr != NULL)
1619 free (rpdr);
1620 if (esym != NULL)
1621 free (esym);
1622 if (ss != NULL)
1623 free (ss);
1624 if (sv != NULL)
1625 free (sv);
1626
1627 return TRUE;
1628
1629 error_return:
1630 if (epdr != NULL)
1631 free (epdr);
1632 if (rpdr != NULL)
1633 free (rpdr);
1634 if (esym != NULL)
1635 free (esym);
1636 if (ss != NULL)
1637 free (ss);
1638 if (sv != NULL)
1639 free (sv);
1640 return FALSE;
1641 }
1642 \f
1643 /* We're going to create a stub for H. Create a symbol for the stub's
1644 value and size, to help make the disassembly easier to read. */
1645
1646 static bfd_boolean
1647 mips_elf_create_stub_symbol (struct bfd_link_info *info,
1648 struct mips_elf_link_hash_entry *h,
1649 const char *prefix, asection *s, bfd_vma value,
1650 bfd_vma size)
1651 {
1652 bfd_boolean micromips_p = ELF_ST_IS_MICROMIPS (h->root.other);
1653 struct bfd_link_hash_entry *bh;
1654 struct elf_link_hash_entry *elfh;
1655 char *name;
1656 bfd_boolean res;
1657
1658 if (micromips_p)
1659 value |= 1;
1660
1661 /* Create a new symbol. */
1662 name = concat (prefix, h->root.root.root.string, NULL);
1663 bh = NULL;
1664 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1665 BSF_LOCAL, s, value, NULL,
1666 TRUE, FALSE, &bh);
1667 free (name);
1668 if (! res)
1669 return FALSE;
1670
1671 /* Make it a local function. */
1672 elfh = (struct elf_link_hash_entry *) bh;
1673 elfh->type = ELF_ST_INFO (STB_LOCAL, STT_FUNC);
1674 elfh->size = size;
1675 elfh->forced_local = 1;
1676 if (micromips_p)
1677 elfh->other = ELF_ST_SET_MICROMIPS (elfh->other);
1678 return TRUE;
1679 }
1680
1681 /* We're about to redefine H. Create a symbol to represent H's
1682 current value and size, to help make the disassembly easier
1683 to read. */
1684
1685 static bfd_boolean
1686 mips_elf_create_shadow_symbol (struct bfd_link_info *info,
1687 struct mips_elf_link_hash_entry *h,
1688 const char *prefix)
1689 {
1690 struct bfd_link_hash_entry *bh;
1691 struct elf_link_hash_entry *elfh;
1692 char *name;
1693 asection *s;
1694 bfd_vma value;
1695 bfd_boolean res;
1696
1697 /* Read the symbol's value. */
1698 BFD_ASSERT (h->root.root.type == bfd_link_hash_defined
1699 || h->root.root.type == bfd_link_hash_defweak);
1700 s = h->root.root.u.def.section;
1701 value = h->root.root.u.def.value;
1702
1703 /* Create a new symbol. */
1704 name = concat (prefix, h->root.root.root.string, NULL);
1705 bh = NULL;
1706 res = _bfd_generic_link_add_one_symbol (info, s->owner, name,
1707 BSF_LOCAL, s, value, NULL,
1708 TRUE, FALSE, &bh);
1709 free (name);
1710 if (! res)
1711 return FALSE;
1712
1713 /* Make it local and copy the other attributes from H. */
1714 elfh = (struct elf_link_hash_entry *) bh;
1715 elfh->type = ELF_ST_INFO (STB_LOCAL, ELF_ST_TYPE (h->root.type));
1716 elfh->other = h->root.other;
1717 elfh->size = h->root.size;
1718 elfh->forced_local = 1;
1719 return TRUE;
1720 }
1721
1722 /* Return TRUE if relocations in SECTION can refer directly to a MIPS16
1723 function rather than to a hard-float stub. */
1724
1725 static bfd_boolean
1726 section_allows_mips16_refs_p (asection *section)
1727 {
1728 const char *name;
1729
1730 name = bfd_section_name (section);
1731 return (FN_STUB_P (name)
1732 || CALL_STUB_P (name)
1733 || CALL_FP_STUB_P (name)
1734 || strcmp (name, ".pdr") == 0);
1735 }
1736
1737 /* [RELOCS, RELEND) are the relocations against SEC, which is a MIPS16
1738 stub section of some kind. Return the R_SYMNDX of the target
1739 function, or 0 if we can't decide which function that is. */
1740
1741 static unsigned long
1742 mips16_stub_symndx (const struct elf_backend_data *bed,
1743 asection *sec ATTRIBUTE_UNUSED,
1744 const Elf_Internal_Rela *relocs,
1745 const Elf_Internal_Rela *relend)
1746 {
1747 int int_rels_per_ext_rel = bed->s->int_rels_per_ext_rel;
1748 const Elf_Internal_Rela *rel;
1749
1750 /* Trust the first R_MIPS_NONE relocation, if any, but not a subsequent
1751 one in a compound relocation. */
1752 for (rel = relocs; rel < relend; rel += int_rels_per_ext_rel)
1753 if (ELF_R_TYPE (sec->owner, rel->r_info) == R_MIPS_NONE)
1754 return ELF_R_SYM (sec->owner, rel->r_info);
1755
1756 /* Otherwise trust the first relocation, whatever its kind. This is
1757 the traditional behavior. */
1758 if (relocs < relend)
1759 return ELF_R_SYM (sec->owner, relocs->r_info);
1760
1761 return 0;
1762 }
1763
1764 /* Check the mips16 stubs for a particular symbol, and see if we can
1765 discard them. */
1766
1767 static void
1768 mips_elf_check_mips16_stubs (struct bfd_link_info *info,
1769 struct mips_elf_link_hash_entry *h)
1770 {
1771 /* Dynamic symbols must use the standard call interface, in case other
1772 objects try to call them. */
1773 if (h->fn_stub != NULL
1774 && h->root.dynindx != -1)
1775 {
1776 mips_elf_create_shadow_symbol (info, h, ".mips16.");
1777 h->need_fn_stub = TRUE;
1778 }
1779
1780 if (h->fn_stub != NULL
1781 && ! h->need_fn_stub)
1782 {
1783 /* We don't need the fn_stub; the only references to this symbol
1784 are 16 bit calls. Clobber the size to 0 to prevent it from
1785 being included in the link. */
1786 h->fn_stub->size = 0;
1787 h->fn_stub->flags &= ~SEC_RELOC;
1788 h->fn_stub->reloc_count = 0;
1789 h->fn_stub->flags |= SEC_EXCLUDE;
1790 h->fn_stub->output_section = bfd_abs_section_ptr;
1791 }
1792
1793 if (h->call_stub != NULL
1794 && ELF_ST_IS_MIPS16 (h->root.other))
1795 {
1796 /* We don't need the call_stub; this is a 16 bit function, so
1797 calls from other 16 bit functions are OK. Clobber the size
1798 to 0 to prevent it from being included in the link. */
1799 h->call_stub->size = 0;
1800 h->call_stub->flags &= ~SEC_RELOC;
1801 h->call_stub->reloc_count = 0;
1802 h->call_stub->flags |= SEC_EXCLUDE;
1803 h->call_stub->output_section = bfd_abs_section_ptr;
1804 }
1805
1806 if (h->call_fp_stub != NULL
1807 && ELF_ST_IS_MIPS16 (h->root.other))
1808 {
1809 /* We don't need the call_stub; this is a 16 bit function, so
1810 calls from other 16 bit functions are OK. Clobber the size
1811 to 0 to prevent it from being included in the link. */
1812 h->call_fp_stub->size = 0;
1813 h->call_fp_stub->flags &= ~SEC_RELOC;
1814 h->call_fp_stub->reloc_count = 0;
1815 h->call_fp_stub->flags |= SEC_EXCLUDE;
1816 h->call_fp_stub->output_section = bfd_abs_section_ptr;
1817 }
1818 }
1819
1820 /* Hashtable callbacks for mips_elf_la25_stubs. */
1821
1822 static hashval_t
1823 mips_elf_la25_stub_hash (const void *entry_)
1824 {
1825 const struct mips_elf_la25_stub *entry;
1826
1827 entry = (struct mips_elf_la25_stub *) entry_;
1828 return entry->h->root.root.u.def.section->id
1829 + entry->h->root.root.u.def.value;
1830 }
1831
1832 static int
1833 mips_elf_la25_stub_eq (const void *entry1_, const void *entry2_)
1834 {
1835 const struct mips_elf_la25_stub *entry1, *entry2;
1836
1837 entry1 = (struct mips_elf_la25_stub *) entry1_;
1838 entry2 = (struct mips_elf_la25_stub *) entry2_;
1839 return ((entry1->h->root.root.u.def.section
1840 == entry2->h->root.root.u.def.section)
1841 && (entry1->h->root.root.u.def.value
1842 == entry2->h->root.root.u.def.value));
1843 }
1844
1845 /* Called by the linker to set up the la25 stub-creation code. FN is
1846 the linker's implementation of add_stub_function. Return true on
1847 success. */
1848
1849 bfd_boolean
1850 _bfd_mips_elf_init_stubs (struct bfd_link_info *info,
1851 asection *(*fn) (const char *, asection *,
1852 asection *))
1853 {
1854 struct mips_elf_link_hash_table *htab;
1855
1856 htab = mips_elf_hash_table (info);
1857 if (htab == NULL)
1858 return FALSE;
1859
1860 htab->add_stub_section = fn;
1861 htab->la25_stubs = htab_try_create (1, mips_elf_la25_stub_hash,
1862 mips_elf_la25_stub_eq, NULL);
1863 if (htab->la25_stubs == NULL)
1864 return FALSE;
1865
1866 return TRUE;
1867 }
1868
1869 /* Return true if H is a locally-defined PIC function, in the sense
1870 that it or its fn_stub might need $25 to be valid on entry.
1871 Note that MIPS16 functions set up $gp using PC-relative instructions,
1872 so they themselves never need $25 to be valid. Only non-MIPS16
1873 entry points are of interest here. */
1874
1875 static bfd_boolean
1876 mips_elf_local_pic_function_p (struct mips_elf_link_hash_entry *h)
1877 {
1878 return ((h->root.root.type == bfd_link_hash_defined
1879 || h->root.root.type == bfd_link_hash_defweak)
1880 && h->root.def_regular
1881 && !bfd_is_abs_section (h->root.root.u.def.section)
1882 && !bfd_is_und_section (h->root.root.u.def.section)
1883 && (!ELF_ST_IS_MIPS16 (h->root.other)
1884 || (h->fn_stub && h->need_fn_stub))
1885 && (PIC_OBJECT_P (h->root.root.u.def.section->owner)
1886 || ELF_ST_IS_MIPS_PIC (h->root.other)));
1887 }
1888
1889 /* Set *SEC to the input section that contains the target of STUB.
1890 Return the offset of the target from the start of that section. */
1891
1892 static bfd_vma
1893 mips_elf_get_la25_target (struct mips_elf_la25_stub *stub,
1894 asection **sec)
1895 {
1896 if (ELF_ST_IS_MIPS16 (stub->h->root.other))
1897 {
1898 BFD_ASSERT (stub->h->need_fn_stub);
1899 *sec = stub->h->fn_stub;
1900 return 0;
1901 }
1902 else
1903 {
1904 *sec = stub->h->root.root.u.def.section;
1905 return stub->h->root.root.u.def.value;
1906 }
1907 }
1908
1909 /* STUB describes an la25 stub that we have decided to implement
1910 by inserting an LUI/ADDIU pair before the target function.
1911 Create the section and redirect the function symbol to it. */
1912
1913 static bfd_boolean
1914 mips_elf_add_la25_intro (struct mips_elf_la25_stub *stub,
1915 struct bfd_link_info *info)
1916 {
1917 struct mips_elf_link_hash_table *htab;
1918 char *name;
1919 asection *s, *input_section;
1920 unsigned int align;
1921
1922 htab = mips_elf_hash_table (info);
1923 if (htab == NULL)
1924 return FALSE;
1925
1926 /* Create a unique name for the new section. */
1927 name = bfd_malloc (11 + sizeof (".text.stub."));
1928 if (name == NULL)
1929 return FALSE;
1930 sprintf (name, ".text.stub.%d", (int) htab_elements (htab->la25_stubs));
1931
1932 /* Create the section. */
1933 mips_elf_get_la25_target (stub, &input_section);
1934 s = htab->add_stub_section (name, input_section,
1935 input_section->output_section);
1936 if (s == NULL)
1937 return FALSE;
1938
1939 /* Make sure that any padding goes before the stub. */
1940 align = input_section->alignment_power;
1941 if (!bfd_set_section_alignment (s, align))
1942 return FALSE;
1943 if (align > 3)
1944 s->size = (1 << align) - 8;
1945
1946 /* Create a symbol for the stub. */
1947 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 8);
1948 stub->stub_section = s;
1949 stub->offset = s->size;
1950
1951 /* Allocate room for it. */
1952 s->size += 8;
1953 return TRUE;
1954 }
1955
1956 /* STUB describes an la25 stub that we have decided to implement
1957 with a separate trampoline. Allocate room for it and redirect
1958 the function symbol to it. */
1959
1960 static bfd_boolean
1961 mips_elf_add_la25_trampoline (struct mips_elf_la25_stub *stub,
1962 struct bfd_link_info *info)
1963 {
1964 struct mips_elf_link_hash_table *htab;
1965 asection *s;
1966
1967 htab = mips_elf_hash_table (info);
1968 if (htab == NULL)
1969 return FALSE;
1970
1971 /* Create a trampoline section, if we haven't already. */
1972 s = htab->strampoline;
1973 if (s == NULL)
1974 {
1975 asection *input_section = stub->h->root.root.u.def.section;
1976 s = htab->add_stub_section (".text", NULL,
1977 input_section->output_section);
1978 if (s == NULL || !bfd_set_section_alignment (s, 4))
1979 return FALSE;
1980 htab->strampoline = s;
1981 }
1982
1983 /* Create a symbol for the stub. */
1984 mips_elf_create_stub_symbol (info, stub->h, ".pic.", s, s->size, 16);
1985 stub->stub_section = s;
1986 stub->offset = s->size;
1987
1988 /* Allocate room for it. */
1989 s->size += 16;
1990 return TRUE;
1991 }
1992
1993 /* H describes a symbol that needs an la25 stub. Make sure that an
1994 appropriate stub exists and point H at it. */
1995
1996 static bfd_boolean
1997 mips_elf_add_la25_stub (struct bfd_link_info *info,
1998 struct mips_elf_link_hash_entry *h)
1999 {
2000 struct mips_elf_link_hash_table *htab;
2001 struct mips_elf_la25_stub search, *stub;
2002 bfd_boolean use_trampoline_p;
2003 asection *s;
2004 bfd_vma value;
2005 void **slot;
2006
2007 /* Describe the stub we want. */
2008 search.stub_section = NULL;
2009 search.offset = 0;
2010 search.h = h;
2011
2012 /* See if we've already created an equivalent stub. */
2013 htab = mips_elf_hash_table (info);
2014 if (htab == NULL)
2015 return FALSE;
2016
2017 slot = htab_find_slot (htab->la25_stubs, &search, INSERT);
2018 if (slot == NULL)
2019 return FALSE;
2020
2021 stub = (struct mips_elf_la25_stub *) *slot;
2022 if (stub != NULL)
2023 {
2024 /* We can reuse the existing stub. */
2025 h->la25_stub = stub;
2026 return TRUE;
2027 }
2028
2029 /* Create a permanent copy of ENTRY and add it to the hash table. */
2030 stub = bfd_malloc (sizeof (search));
2031 if (stub == NULL)
2032 return FALSE;
2033 *stub = search;
2034 *slot = stub;
2035
2036 /* Prefer to use LUI/ADDIU stubs if the function is at the beginning
2037 of the section and if we would need no more than 2 nops. */
2038 value = mips_elf_get_la25_target (stub, &s);
2039 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
2040 value &= ~1;
2041 use_trampoline_p = (value != 0 || s->alignment_power > 4);
2042
2043 h->la25_stub = stub;
2044 return (use_trampoline_p
2045 ? mips_elf_add_la25_trampoline (stub, info)
2046 : mips_elf_add_la25_intro (stub, info));
2047 }
2048
2049 /* A mips_elf_link_hash_traverse callback that is called before sizing
2050 sections. DATA points to a mips_htab_traverse_info structure. */
2051
2052 static bfd_boolean
2053 mips_elf_check_symbols (struct mips_elf_link_hash_entry *h, void *data)
2054 {
2055 struct mips_htab_traverse_info *hti;
2056
2057 hti = (struct mips_htab_traverse_info *) data;
2058 if (!bfd_link_relocatable (hti->info))
2059 mips_elf_check_mips16_stubs (hti->info, h);
2060
2061 if (mips_elf_local_pic_function_p (h))
2062 {
2063 /* PR 12845: If H is in a section that has been garbage
2064 collected it will have its output section set to *ABS*. */
2065 if (bfd_is_abs_section (h->root.root.u.def.section->output_section))
2066 return TRUE;
2067
2068 /* H is a function that might need $25 to be valid on entry.
2069 If we're creating a non-PIC relocatable object, mark H as
2070 being PIC. If we're creating a non-relocatable object with
2071 non-PIC branches and jumps to H, make sure that H has an la25
2072 stub. */
2073 if (bfd_link_relocatable (hti->info))
2074 {
2075 if (!PIC_OBJECT_P (hti->output_bfd))
2076 h->root.other = ELF_ST_SET_MIPS_PIC (h->root.other);
2077 }
2078 else if (h->has_nonpic_branches && !mips_elf_add_la25_stub (hti->info, h))
2079 {
2080 hti->error = TRUE;
2081 return FALSE;
2082 }
2083 }
2084 return TRUE;
2085 }
2086 \f
2087 /* R_MIPS16_26 is used for the mips16 jal and jalx instructions.
2088 Most mips16 instructions are 16 bits, but these instructions
2089 are 32 bits.
2090
2091 The format of these instructions is:
2092
2093 +--------------+--------------------------------+
2094 | JALX | X| Imm 20:16 | Imm 25:21 |
2095 +--------------+--------------------------------+
2096 | Immediate 15:0 |
2097 +-----------------------------------------------+
2098
2099 JALX is the 5-bit value 00011. X is 0 for jal, 1 for jalx.
2100 Note that the immediate value in the first word is swapped.
2101
2102 When producing a relocatable object file, R_MIPS16_26 is
2103 handled mostly like R_MIPS_26. In particular, the addend is
2104 stored as a straight 26-bit value in a 32-bit instruction.
2105 (gas makes life simpler for itself by never adjusting a
2106 R_MIPS16_26 reloc to be against a section, so the addend is
2107 always zero). However, the 32 bit instruction is stored as 2
2108 16-bit values, rather than a single 32-bit value. In a
2109 big-endian file, the result is the same; in a little-endian
2110 file, the two 16-bit halves of the 32 bit value are swapped.
2111 This is so that a disassembler can recognize the jal
2112 instruction.
2113
2114 When doing a final link, R_MIPS16_26 is treated as a 32 bit
2115 instruction stored as two 16-bit values. The addend A is the
2116 contents of the targ26 field. The calculation is the same as
2117 R_MIPS_26. When storing the calculated value, reorder the
2118 immediate value as shown above, and don't forget to store the
2119 value as two 16-bit values.
2120
2121 To put it in MIPS ABI terms, the relocation field is T-targ26-16,
2122 defined as
2123
2124 big-endian:
2125 +--------+----------------------+
2126 | | |
2127 | | targ26-16 |
2128 |31 26|25 0|
2129 +--------+----------------------+
2130
2131 little-endian:
2132 +----------+------+-------------+
2133 | | | |
2134 | sub1 | | sub2 |
2135 |0 9|10 15|16 31|
2136 +----------+--------------------+
2137 where targ26-16 is sub1 followed by sub2 (i.e., the addend field A is
2138 ((sub1 << 16) | sub2)).
2139
2140 When producing a relocatable object file, the calculation is
2141 (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2142 When producing a fully linked file, the calculation is
2143 let R = (((A < 2) | ((P + 4) & 0xf0000000) + S) >> 2)
2144 ((R & 0x1f0000) << 5) | ((R & 0x3e00000) >> 5) | (R & 0xffff)
2145
2146 The table below lists the other MIPS16 instruction relocations.
2147 Each one is calculated in the same way as the non-MIPS16 relocation
2148 given on the right, but using the extended MIPS16 layout of 16-bit
2149 immediate fields:
2150
2151 R_MIPS16_GPREL R_MIPS_GPREL16
2152 R_MIPS16_GOT16 R_MIPS_GOT16
2153 R_MIPS16_CALL16 R_MIPS_CALL16
2154 R_MIPS16_HI16 R_MIPS_HI16
2155 R_MIPS16_LO16 R_MIPS_LO16
2156
2157 A typical instruction will have a format like this:
2158
2159 +--------------+--------------------------------+
2160 | EXTEND | Imm 10:5 | Imm 15:11 |
2161 +--------------+--------------------------------+
2162 | Major | rx | ry | Imm 4:0 |
2163 +--------------+--------------------------------+
2164
2165 EXTEND is the five bit value 11110. Major is the instruction
2166 opcode.
2167
2168 All we need to do here is shuffle the bits appropriately.
2169 As above, the two 16-bit halves must be swapped on a
2170 little-endian system.
2171
2172 Finally R_MIPS16_PC16_S1 corresponds to R_MIPS_PC16, however the
2173 relocatable field is shifted by 1 rather than 2 and the same bit
2174 shuffling is done as with the relocations above. */
2175
2176 static inline bfd_boolean
2177 mips16_reloc_p (int r_type)
2178 {
2179 switch (r_type)
2180 {
2181 case R_MIPS16_26:
2182 case R_MIPS16_GPREL:
2183 case R_MIPS16_GOT16:
2184 case R_MIPS16_CALL16:
2185 case R_MIPS16_HI16:
2186 case R_MIPS16_LO16:
2187 case R_MIPS16_TLS_GD:
2188 case R_MIPS16_TLS_LDM:
2189 case R_MIPS16_TLS_DTPREL_HI16:
2190 case R_MIPS16_TLS_DTPREL_LO16:
2191 case R_MIPS16_TLS_GOTTPREL:
2192 case R_MIPS16_TLS_TPREL_HI16:
2193 case R_MIPS16_TLS_TPREL_LO16:
2194 case R_MIPS16_PC16_S1:
2195 return TRUE;
2196
2197 default:
2198 return FALSE;
2199 }
2200 }
2201
2202 /* Check if a microMIPS reloc. */
2203
2204 static inline bfd_boolean
2205 micromips_reloc_p (unsigned int r_type)
2206 {
2207 return r_type >= R_MICROMIPS_min && r_type < R_MICROMIPS_max;
2208 }
2209
2210 /* Similar to MIPS16, the two 16-bit halves in microMIPS must be swapped
2211 on a little-endian system. This does not apply to R_MICROMIPS_PC7_S1
2212 and R_MICROMIPS_PC10_S1 relocs that apply to 16-bit instructions. */
2213
2214 static inline bfd_boolean
2215 micromips_reloc_shuffle_p (unsigned int r_type)
2216 {
2217 return (micromips_reloc_p (r_type)
2218 && r_type != R_MICROMIPS_PC7_S1
2219 && r_type != R_MICROMIPS_PC10_S1);
2220 }
2221
2222 static inline bfd_boolean
2223 got16_reloc_p (int r_type)
2224 {
2225 return (r_type == R_MIPS_GOT16
2226 || r_type == R_MIPS16_GOT16
2227 || r_type == R_MICROMIPS_GOT16);
2228 }
2229
2230 static inline bfd_boolean
2231 call16_reloc_p (int r_type)
2232 {
2233 return (r_type == R_MIPS_CALL16
2234 || r_type == R_MIPS16_CALL16
2235 || r_type == R_MICROMIPS_CALL16);
2236 }
2237
2238 static inline bfd_boolean
2239 got_disp_reloc_p (unsigned int r_type)
2240 {
2241 return r_type == R_MIPS_GOT_DISP || r_type == R_MICROMIPS_GOT_DISP;
2242 }
2243
2244 static inline bfd_boolean
2245 got_page_reloc_p (unsigned int r_type)
2246 {
2247 return r_type == R_MIPS_GOT_PAGE || r_type == R_MICROMIPS_GOT_PAGE;
2248 }
2249
2250 static inline bfd_boolean
2251 got_lo16_reloc_p (unsigned int r_type)
2252 {
2253 return r_type == R_MIPS_GOT_LO16 || r_type == R_MICROMIPS_GOT_LO16;
2254 }
2255
2256 static inline bfd_boolean
2257 call_hi16_reloc_p (unsigned int r_type)
2258 {
2259 return r_type == R_MIPS_CALL_HI16 || r_type == R_MICROMIPS_CALL_HI16;
2260 }
2261
2262 static inline bfd_boolean
2263 call_lo16_reloc_p (unsigned int r_type)
2264 {
2265 return r_type == R_MIPS_CALL_LO16 || r_type == R_MICROMIPS_CALL_LO16;
2266 }
2267
2268 static inline bfd_boolean
2269 hi16_reloc_p (int r_type)
2270 {
2271 return (r_type == R_MIPS_HI16
2272 || r_type == R_MIPS16_HI16
2273 || r_type == R_MICROMIPS_HI16
2274 || r_type == R_MIPS_PCHI16);
2275 }
2276
2277 static inline bfd_boolean
2278 lo16_reloc_p (int r_type)
2279 {
2280 return (r_type == R_MIPS_LO16
2281 || r_type == R_MIPS16_LO16
2282 || r_type == R_MICROMIPS_LO16
2283 || r_type == R_MIPS_PCLO16);
2284 }
2285
2286 static inline bfd_boolean
2287 mips16_call_reloc_p (int r_type)
2288 {
2289 return r_type == R_MIPS16_26 || r_type == R_MIPS16_CALL16;
2290 }
2291
2292 static inline bfd_boolean
2293 jal_reloc_p (int r_type)
2294 {
2295 return (r_type == R_MIPS_26
2296 || r_type == R_MIPS16_26
2297 || r_type == R_MICROMIPS_26_S1);
2298 }
2299
2300 static inline bfd_boolean
2301 b_reloc_p (int r_type)
2302 {
2303 return (r_type == R_MIPS_PC26_S2
2304 || r_type == R_MIPS_PC21_S2
2305 || r_type == R_MIPS_PC16
2306 || r_type == R_MIPS_GNU_REL16_S2
2307 || r_type == R_MIPS16_PC16_S1
2308 || r_type == R_MICROMIPS_PC16_S1
2309 || r_type == R_MICROMIPS_PC10_S1
2310 || r_type == R_MICROMIPS_PC7_S1);
2311 }
2312
2313 static inline bfd_boolean
2314 aligned_pcrel_reloc_p (int r_type)
2315 {
2316 return (r_type == R_MIPS_PC18_S3
2317 || r_type == R_MIPS_PC19_S2);
2318 }
2319
2320 static inline bfd_boolean
2321 branch_reloc_p (int r_type)
2322 {
2323 return (r_type == R_MIPS_26
2324 || r_type == R_MIPS_PC26_S2
2325 || r_type == R_MIPS_PC21_S2
2326 || r_type == R_MIPS_PC16
2327 || r_type == R_MIPS_GNU_REL16_S2);
2328 }
2329
2330 static inline bfd_boolean
2331 mips16_branch_reloc_p (int r_type)
2332 {
2333 return (r_type == R_MIPS16_26
2334 || r_type == R_MIPS16_PC16_S1);
2335 }
2336
2337 static inline bfd_boolean
2338 micromips_branch_reloc_p (int r_type)
2339 {
2340 return (r_type == R_MICROMIPS_26_S1
2341 || r_type == R_MICROMIPS_PC16_S1
2342 || r_type == R_MICROMIPS_PC10_S1
2343 || r_type == R_MICROMIPS_PC7_S1);
2344 }
2345
2346 static inline bfd_boolean
2347 tls_gd_reloc_p (unsigned int r_type)
2348 {
2349 return (r_type == R_MIPS_TLS_GD
2350 || r_type == R_MIPS16_TLS_GD
2351 || r_type == R_MICROMIPS_TLS_GD);
2352 }
2353
2354 static inline bfd_boolean
2355 tls_ldm_reloc_p (unsigned int r_type)
2356 {
2357 return (r_type == R_MIPS_TLS_LDM
2358 || r_type == R_MIPS16_TLS_LDM
2359 || r_type == R_MICROMIPS_TLS_LDM);
2360 }
2361
2362 static inline bfd_boolean
2363 tls_gottprel_reloc_p (unsigned int r_type)
2364 {
2365 return (r_type == R_MIPS_TLS_GOTTPREL
2366 || r_type == R_MIPS16_TLS_GOTTPREL
2367 || r_type == R_MICROMIPS_TLS_GOTTPREL);
2368 }
2369
2370 void
2371 _bfd_mips_elf_reloc_unshuffle (bfd *abfd, int r_type,
2372 bfd_boolean jal_shuffle, bfd_byte *data)
2373 {
2374 bfd_vma first, second, val;
2375
2376 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2377 return;
2378
2379 /* Pick up the first and second halfwords of the instruction. */
2380 first = bfd_get_16 (abfd, data);
2381 second = bfd_get_16 (abfd, data + 2);
2382 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2383 val = first << 16 | second;
2384 else if (r_type != R_MIPS16_26)
2385 val = (((first & 0xf800) << 16) | ((second & 0xffe0) << 11)
2386 | ((first & 0x1f) << 11) | (first & 0x7e0) | (second & 0x1f));
2387 else
2388 val = (((first & 0xfc00) << 16) | ((first & 0x3e0) << 11)
2389 | ((first & 0x1f) << 21) | second);
2390 bfd_put_32 (abfd, val, data);
2391 }
2392
2393 void
2394 _bfd_mips_elf_reloc_shuffle (bfd *abfd, int r_type,
2395 bfd_boolean jal_shuffle, bfd_byte *data)
2396 {
2397 bfd_vma first, second, val;
2398
2399 if (!mips16_reloc_p (r_type) && !micromips_reloc_shuffle_p (r_type))
2400 return;
2401
2402 val = bfd_get_32 (abfd, data);
2403 if (micromips_reloc_p (r_type) || (r_type == R_MIPS16_26 && !jal_shuffle))
2404 {
2405 second = val & 0xffff;
2406 first = val >> 16;
2407 }
2408 else if (r_type != R_MIPS16_26)
2409 {
2410 second = ((val >> 11) & 0xffe0) | (val & 0x1f);
2411 first = ((val >> 16) & 0xf800) | ((val >> 11) & 0x1f) | (val & 0x7e0);
2412 }
2413 else
2414 {
2415 second = val & 0xffff;
2416 first = ((val >> 16) & 0xfc00) | ((val >> 11) & 0x3e0)
2417 | ((val >> 21) & 0x1f);
2418 }
2419 bfd_put_16 (abfd, second, data + 2);
2420 bfd_put_16 (abfd, first, data);
2421 }
2422
2423 bfd_reloc_status_type
2424 _bfd_mips_elf_gprel16_with_gp (bfd *abfd, asymbol *symbol,
2425 arelent *reloc_entry, asection *input_section,
2426 bfd_boolean relocatable, void *data, bfd_vma gp)
2427 {
2428 bfd_vma relocation;
2429 bfd_signed_vma val;
2430 bfd_reloc_status_type status;
2431
2432 if (bfd_is_com_section (symbol->section))
2433 relocation = 0;
2434 else
2435 relocation = symbol->value;
2436
2437 relocation += symbol->section->output_section->vma;
2438 relocation += symbol->section->output_offset;
2439
2440 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2441 return bfd_reloc_outofrange;
2442
2443 /* Set val to the offset into the section or symbol. */
2444 val = reloc_entry->addend;
2445
2446 _bfd_mips_elf_sign_extend (val, 16);
2447
2448 /* Adjust val for the final section location and GP value. If we
2449 are producing relocatable output, we don't want to do this for
2450 an external symbol. */
2451 if (! relocatable
2452 || (symbol->flags & BSF_SECTION_SYM) != 0)
2453 val += relocation - gp;
2454
2455 if (reloc_entry->howto->partial_inplace)
2456 {
2457 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2458 (bfd_byte *) data
2459 + reloc_entry->address);
2460 if (status != bfd_reloc_ok)
2461 return status;
2462 }
2463 else
2464 reloc_entry->addend = val;
2465
2466 if (relocatable)
2467 reloc_entry->address += input_section->output_offset;
2468
2469 return bfd_reloc_ok;
2470 }
2471
2472 /* Used to store a REL high-part relocation such as R_MIPS_HI16 or
2473 R_MIPS_GOT16. REL is the relocation, INPUT_SECTION is the section
2474 that contains the relocation field and DATA points to the start of
2475 INPUT_SECTION. */
2476
2477 struct mips_hi16
2478 {
2479 struct mips_hi16 *next;
2480 bfd_byte *data;
2481 asection *input_section;
2482 arelent rel;
2483 };
2484
2485 /* FIXME: This should not be a static variable. */
2486
2487 static struct mips_hi16 *mips_hi16_list;
2488
2489 /* A howto special_function for REL *HI16 relocations. We can only
2490 calculate the correct value once we've seen the partnering
2491 *LO16 relocation, so just save the information for later.
2492
2493 The ABI requires that the *LO16 immediately follow the *HI16.
2494 However, as a GNU extension, we permit an arbitrary number of
2495 *HI16s to be associated with a single *LO16. This significantly
2496 simplies the relocation handling in gcc. */
2497
2498 bfd_reloc_status_type
2499 _bfd_mips_elf_hi16_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2500 asymbol *symbol ATTRIBUTE_UNUSED, void *data,
2501 asection *input_section, bfd *output_bfd,
2502 char **error_message ATTRIBUTE_UNUSED)
2503 {
2504 struct mips_hi16 *n;
2505
2506 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2507 return bfd_reloc_outofrange;
2508
2509 n = bfd_malloc (sizeof *n);
2510 if (n == NULL)
2511 return bfd_reloc_outofrange;
2512
2513 n->next = mips_hi16_list;
2514 n->data = data;
2515 n->input_section = input_section;
2516 n->rel = *reloc_entry;
2517 mips_hi16_list = n;
2518
2519 if (output_bfd != NULL)
2520 reloc_entry->address += input_section->output_offset;
2521
2522 return bfd_reloc_ok;
2523 }
2524
2525 /* A howto special_function for REL R_MIPS*_GOT16 relocations. This is just
2526 like any other 16-bit relocation when applied to global symbols, but is
2527 treated in the same as R_MIPS_HI16 when applied to local symbols. */
2528
2529 bfd_reloc_status_type
2530 _bfd_mips_elf_got16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2531 void *data, asection *input_section,
2532 bfd *output_bfd, char **error_message)
2533 {
2534 if ((symbol->flags & (BSF_GLOBAL | BSF_WEAK)) != 0
2535 || bfd_is_und_section (bfd_asymbol_section (symbol))
2536 || bfd_is_com_section (bfd_asymbol_section (symbol)))
2537 /* The relocation is against a global symbol. */
2538 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2539 input_section, output_bfd,
2540 error_message);
2541
2542 return _bfd_mips_elf_hi16_reloc (abfd, reloc_entry, symbol, data,
2543 input_section, output_bfd, error_message);
2544 }
2545
2546 /* A howto special_function for REL *LO16 relocations. The *LO16 itself
2547 is a straightforward 16 bit inplace relocation, but we must deal with
2548 any partnering high-part relocations as well. */
2549
2550 bfd_reloc_status_type
2551 _bfd_mips_elf_lo16_reloc (bfd *abfd, arelent *reloc_entry, asymbol *symbol,
2552 void *data, asection *input_section,
2553 bfd *output_bfd, char **error_message)
2554 {
2555 bfd_vma vallo;
2556 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2557
2558 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2559 return bfd_reloc_outofrange;
2560
2561 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2562 location);
2563 vallo = bfd_get_32 (abfd, location);
2564 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2565 location);
2566
2567 while (mips_hi16_list != NULL)
2568 {
2569 bfd_reloc_status_type ret;
2570 struct mips_hi16 *hi;
2571
2572 hi = mips_hi16_list;
2573
2574 /* R_MIPS*_GOT16 relocations are something of a special case. We
2575 want to install the addend in the same way as for a R_MIPS*_HI16
2576 relocation (with a rightshift of 16). However, since GOT16
2577 relocations can also be used with global symbols, their howto
2578 has a rightshift of 0. */
2579 if (hi->rel.howto->type == R_MIPS_GOT16)
2580 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS_HI16, FALSE);
2581 else if (hi->rel.howto->type == R_MIPS16_GOT16)
2582 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MIPS16_HI16, FALSE);
2583 else if (hi->rel.howto->type == R_MICROMIPS_GOT16)
2584 hi->rel.howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, R_MICROMIPS_HI16, FALSE);
2585
2586 /* VALLO is a signed 16-bit number. Bias it by 0x8000 so that any
2587 carry or borrow will induce a change of +1 or -1 in the high part. */
2588 hi->rel.addend += (vallo + 0x8000) & 0xffff;
2589
2590 ret = _bfd_mips_elf_generic_reloc (abfd, &hi->rel, symbol, hi->data,
2591 hi->input_section, output_bfd,
2592 error_message);
2593 if (ret != bfd_reloc_ok)
2594 return ret;
2595
2596 mips_hi16_list = hi->next;
2597 free (hi);
2598 }
2599
2600 return _bfd_mips_elf_generic_reloc (abfd, reloc_entry, symbol, data,
2601 input_section, output_bfd,
2602 error_message);
2603 }
2604
2605 /* A generic howto special_function. This calculates and installs the
2606 relocation itself, thus avoiding the oft-discussed problems in
2607 bfd_perform_relocation and bfd_install_relocation. */
2608
2609 bfd_reloc_status_type
2610 _bfd_mips_elf_generic_reloc (bfd *abfd ATTRIBUTE_UNUSED, arelent *reloc_entry,
2611 asymbol *symbol, void *data ATTRIBUTE_UNUSED,
2612 asection *input_section, bfd *output_bfd,
2613 char **error_message ATTRIBUTE_UNUSED)
2614 {
2615 bfd_signed_vma val;
2616 bfd_reloc_status_type status;
2617 bfd_boolean relocatable;
2618
2619 relocatable = (output_bfd != NULL);
2620
2621 if (reloc_entry->address > bfd_get_section_limit (abfd, input_section))
2622 return bfd_reloc_outofrange;
2623
2624 /* Build up the field adjustment in VAL. */
2625 val = 0;
2626 if (!relocatable || (symbol->flags & BSF_SECTION_SYM) != 0)
2627 {
2628 /* Either we're calculating the final field value or we have a
2629 relocation against a section symbol. Add in the section's
2630 offset or address. */
2631 val += symbol->section->output_section->vma;
2632 val += symbol->section->output_offset;
2633 }
2634
2635 if (!relocatable)
2636 {
2637 /* We're calculating the final field value. Add in the symbol's value
2638 and, if pc-relative, subtract the address of the field itself. */
2639 val += symbol->value;
2640 if (reloc_entry->howto->pc_relative)
2641 {
2642 val -= input_section->output_section->vma;
2643 val -= input_section->output_offset;
2644 val -= reloc_entry->address;
2645 }
2646 }
2647
2648 /* VAL is now the final adjustment. If we're keeping this relocation
2649 in the output file, and if the relocation uses a separate addend,
2650 we just need to add VAL to that addend. Otherwise we need to add
2651 VAL to the relocation field itself. */
2652 if (relocatable && !reloc_entry->howto->partial_inplace)
2653 reloc_entry->addend += val;
2654 else
2655 {
2656 bfd_byte *location = (bfd_byte *) data + reloc_entry->address;
2657
2658 /* Add in the separate addend, if any. */
2659 val += reloc_entry->addend;
2660
2661 /* Add VAL to the relocation field. */
2662 _bfd_mips_elf_reloc_unshuffle (abfd, reloc_entry->howto->type, FALSE,
2663 location);
2664 status = _bfd_relocate_contents (reloc_entry->howto, abfd, val,
2665 location);
2666 _bfd_mips_elf_reloc_shuffle (abfd, reloc_entry->howto->type, FALSE,
2667 location);
2668
2669 if (status != bfd_reloc_ok)
2670 return status;
2671 }
2672
2673 if (relocatable)
2674 reloc_entry->address += input_section->output_offset;
2675
2676 return bfd_reloc_ok;
2677 }
2678 \f
2679 /* Swap an entry in a .gptab section. Note that these routines rely
2680 on the equivalence of the two elements of the union. */
2681
2682 static void
2683 bfd_mips_elf32_swap_gptab_in (bfd *abfd, const Elf32_External_gptab *ex,
2684 Elf32_gptab *in)
2685 {
2686 in->gt_entry.gt_g_value = H_GET_32 (abfd, ex->gt_entry.gt_g_value);
2687 in->gt_entry.gt_bytes = H_GET_32 (abfd, ex->gt_entry.gt_bytes);
2688 }
2689
2690 static void
2691 bfd_mips_elf32_swap_gptab_out (bfd *abfd, const Elf32_gptab *in,
2692 Elf32_External_gptab *ex)
2693 {
2694 H_PUT_32 (abfd, in->gt_entry.gt_g_value, ex->gt_entry.gt_g_value);
2695 H_PUT_32 (abfd, in->gt_entry.gt_bytes, ex->gt_entry.gt_bytes);
2696 }
2697
2698 static void
2699 bfd_elf32_swap_compact_rel_out (bfd *abfd, const Elf32_compact_rel *in,
2700 Elf32_External_compact_rel *ex)
2701 {
2702 H_PUT_32 (abfd, in->id1, ex->id1);
2703 H_PUT_32 (abfd, in->num, ex->num);
2704 H_PUT_32 (abfd, in->id2, ex->id2);
2705 H_PUT_32 (abfd, in->offset, ex->offset);
2706 H_PUT_32 (abfd, in->reserved0, ex->reserved0);
2707 H_PUT_32 (abfd, in->reserved1, ex->reserved1);
2708 }
2709
2710 static void
2711 bfd_elf32_swap_crinfo_out (bfd *abfd, const Elf32_crinfo *in,
2712 Elf32_External_crinfo *ex)
2713 {
2714 unsigned long l;
2715
2716 l = (((in->ctype & CRINFO_CTYPE) << CRINFO_CTYPE_SH)
2717 | ((in->rtype & CRINFO_RTYPE) << CRINFO_RTYPE_SH)
2718 | ((in->dist2to & CRINFO_DIST2TO) << CRINFO_DIST2TO_SH)
2719 | ((in->relvaddr & CRINFO_RELVADDR) << CRINFO_RELVADDR_SH));
2720 H_PUT_32 (abfd, l, ex->info);
2721 H_PUT_32 (abfd, in->konst, ex->konst);
2722 H_PUT_32 (abfd, in->vaddr, ex->vaddr);
2723 }
2724 \f
2725 /* A .reginfo section holds a single Elf32_RegInfo structure. These
2726 routines swap this structure in and out. They are used outside of
2727 BFD, so they are globally visible. */
2728
2729 void
2730 bfd_mips_elf32_swap_reginfo_in (bfd *abfd, const Elf32_External_RegInfo *ex,
2731 Elf32_RegInfo *in)
2732 {
2733 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2734 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2735 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2736 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2737 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2738 in->ri_gp_value = H_GET_32 (abfd, ex->ri_gp_value);
2739 }
2740
2741 void
2742 bfd_mips_elf32_swap_reginfo_out (bfd *abfd, const Elf32_RegInfo *in,
2743 Elf32_External_RegInfo *ex)
2744 {
2745 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2746 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2747 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2748 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2749 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2750 H_PUT_32 (abfd, in->ri_gp_value, ex->ri_gp_value);
2751 }
2752
2753 /* In the 64 bit ABI, the .MIPS.options section holds register
2754 information in an Elf64_Reginfo structure. These routines swap
2755 them in and out. They are globally visible because they are used
2756 outside of BFD. These routines are here so that gas can call them
2757 without worrying about whether the 64 bit ABI has been included. */
2758
2759 void
2760 bfd_mips_elf64_swap_reginfo_in (bfd *abfd, const Elf64_External_RegInfo *ex,
2761 Elf64_Internal_RegInfo *in)
2762 {
2763 in->ri_gprmask = H_GET_32 (abfd, ex->ri_gprmask);
2764 in->ri_pad = H_GET_32 (abfd, ex->ri_pad);
2765 in->ri_cprmask[0] = H_GET_32 (abfd, ex->ri_cprmask[0]);
2766 in->ri_cprmask[1] = H_GET_32 (abfd, ex->ri_cprmask[1]);
2767 in->ri_cprmask[2] = H_GET_32 (abfd, ex->ri_cprmask[2]);
2768 in->ri_cprmask[3] = H_GET_32 (abfd, ex->ri_cprmask[3]);
2769 in->ri_gp_value = H_GET_64 (abfd, ex->ri_gp_value);
2770 }
2771
2772 void
2773 bfd_mips_elf64_swap_reginfo_out (bfd *abfd, const Elf64_Internal_RegInfo *in,
2774 Elf64_External_RegInfo *ex)
2775 {
2776 H_PUT_32 (abfd, in->ri_gprmask, ex->ri_gprmask);
2777 H_PUT_32 (abfd, in->ri_pad, ex->ri_pad);
2778 H_PUT_32 (abfd, in->ri_cprmask[0], ex->ri_cprmask[0]);
2779 H_PUT_32 (abfd, in->ri_cprmask[1], ex->ri_cprmask[1]);
2780 H_PUT_32 (abfd, in->ri_cprmask[2], ex->ri_cprmask[2]);
2781 H_PUT_32 (abfd, in->ri_cprmask[3], ex->ri_cprmask[3]);
2782 H_PUT_64 (abfd, in->ri_gp_value, ex->ri_gp_value);
2783 }
2784
2785 /* Swap in an options header. */
2786
2787 void
2788 bfd_mips_elf_swap_options_in (bfd *abfd, const Elf_External_Options *ex,
2789 Elf_Internal_Options *in)
2790 {
2791 in->kind = H_GET_8 (abfd, ex->kind);
2792 in->size = H_GET_8 (abfd, ex->size);
2793 in->section = H_GET_16 (abfd, ex->section);
2794 in->info = H_GET_32 (abfd, ex->info);
2795 }
2796
2797 /* Swap out an options header. */
2798
2799 void
2800 bfd_mips_elf_swap_options_out (bfd *abfd, const Elf_Internal_Options *in,
2801 Elf_External_Options *ex)
2802 {
2803 H_PUT_8 (abfd, in->kind, ex->kind);
2804 H_PUT_8 (abfd, in->size, ex->size);
2805 H_PUT_16 (abfd, in->section, ex->section);
2806 H_PUT_32 (abfd, in->info, ex->info);
2807 }
2808
2809 /* Swap in an abiflags structure. */
2810
2811 void
2812 bfd_mips_elf_swap_abiflags_v0_in (bfd *abfd,
2813 const Elf_External_ABIFlags_v0 *ex,
2814 Elf_Internal_ABIFlags_v0 *in)
2815 {
2816 in->version = H_GET_16 (abfd, ex->version);
2817 in->isa_level = H_GET_8 (abfd, ex->isa_level);
2818 in->isa_rev = H_GET_8 (abfd, ex->isa_rev);
2819 in->gpr_size = H_GET_8 (abfd, ex->gpr_size);
2820 in->cpr1_size = H_GET_8 (abfd, ex->cpr1_size);
2821 in->cpr2_size = H_GET_8 (abfd, ex->cpr2_size);
2822 in->fp_abi = H_GET_8 (abfd, ex->fp_abi);
2823 in->isa_ext = H_GET_32 (abfd, ex->isa_ext);
2824 in->ases = H_GET_32 (abfd, ex->ases);
2825 in->flags1 = H_GET_32 (abfd, ex->flags1);
2826 in->flags2 = H_GET_32 (abfd, ex->flags2);
2827 }
2828
2829 /* Swap out an abiflags structure. */
2830
2831 void
2832 bfd_mips_elf_swap_abiflags_v0_out (bfd *abfd,
2833 const Elf_Internal_ABIFlags_v0 *in,
2834 Elf_External_ABIFlags_v0 *ex)
2835 {
2836 H_PUT_16 (abfd, in->version, ex->version);
2837 H_PUT_8 (abfd, in->isa_level, ex->isa_level);
2838 H_PUT_8 (abfd, in->isa_rev, ex->isa_rev);
2839 H_PUT_8 (abfd, in->gpr_size, ex->gpr_size);
2840 H_PUT_8 (abfd, in->cpr1_size, ex->cpr1_size);
2841 H_PUT_8 (abfd, in->cpr2_size, ex->cpr2_size);
2842 H_PUT_8 (abfd, in->fp_abi, ex->fp_abi);
2843 H_PUT_32 (abfd, in->isa_ext, ex->isa_ext);
2844 H_PUT_32 (abfd, in->ases, ex->ases);
2845 H_PUT_32 (abfd, in->flags1, ex->flags1);
2846 H_PUT_32 (abfd, in->flags2, ex->flags2);
2847 }
2848 \f
2849 /* This function is called via qsort() to sort the dynamic relocation
2850 entries by increasing r_symndx value. */
2851
2852 static int
2853 sort_dynamic_relocs (const void *arg1, const void *arg2)
2854 {
2855 Elf_Internal_Rela int_reloc1;
2856 Elf_Internal_Rela int_reloc2;
2857 int diff;
2858
2859 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg1, &int_reloc1);
2860 bfd_elf32_swap_reloc_in (reldyn_sorting_bfd, arg2, &int_reloc2);
2861
2862 diff = ELF32_R_SYM (int_reloc1.r_info) - ELF32_R_SYM (int_reloc2.r_info);
2863 if (diff != 0)
2864 return diff;
2865
2866 if (int_reloc1.r_offset < int_reloc2.r_offset)
2867 return -1;
2868 if (int_reloc1.r_offset > int_reloc2.r_offset)
2869 return 1;
2870 return 0;
2871 }
2872
2873 /* Like sort_dynamic_relocs, but used for elf64 relocations. */
2874
2875 static int
2876 sort_dynamic_relocs_64 (const void *arg1 ATTRIBUTE_UNUSED,
2877 const void *arg2 ATTRIBUTE_UNUSED)
2878 {
2879 #ifdef BFD64
2880 Elf_Internal_Rela int_reloc1[3];
2881 Elf_Internal_Rela int_reloc2[3];
2882
2883 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2884 (reldyn_sorting_bfd, arg1, int_reloc1);
2885 (*get_elf_backend_data (reldyn_sorting_bfd)->s->swap_reloc_in)
2886 (reldyn_sorting_bfd, arg2, int_reloc2);
2887
2888 if (ELF64_R_SYM (int_reloc1[0].r_info) < ELF64_R_SYM (int_reloc2[0].r_info))
2889 return -1;
2890 if (ELF64_R_SYM (int_reloc1[0].r_info) > ELF64_R_SYM (int_reloc2[0].r_info))
2891 return 1;
2892
2893 if (int_reloc1[0].r_offset < int_reloc2[0].r_offset)
2894 return -1;
2895 if (int_reloc1[0].r_offset > int_reloc2[0].r_offset)
2896 return 1;
2897 return 0;
2898 #else
2899 abort ();
2900 #endif
2901 }
2902
2903
2904 /* This routine is used to write out ECOFF debugging external symbol
2905 information. It is called via mips_elf_link_hash_traverse. The
2906 ECOFF external symbol information must match the ELF external
2907 symbol information. Unfortunately, at this point we don't know
2908 whether a symbol is required by reloc information, so the two
2909 tables may wind up being different. We must sort out the external
2910 symbol information before we can set the final size of the .mdebug
2911 section, and we must set the size of the .mdebug section before we
2912 can relocate any sections, and we can't know which symbols are
2913 required by relocation until we relocate the sections.
2914 Fortunately, it is relatively unlikely that any symbol will be
2915 stripped but required by a reloc. In particular, it can not happen
2916 when generating a final executable. */
2917
2918 static bfd_boolean
2919 mips_elf_output_extsym (struct mips_elf_link_hash_entry *h, void *data)
2920 {
2921 struct extsym_info *einfo = data;
2922 bfd_boolean strip;
2923 asection *sec, *output_section;
2924
2925 if (h->root.indx == -2)
2926 strip = FALSE;
2927 else if ((h->root.def_dynamic
2928 || h->root.ref_dynamic
2929 || h->root.type == bfd_link_hash_new)
2930 && !h->root.def_regular
2931 && !h->root.ref_regular)
2932 strip = TRUE;
2933 else if (einfo->info->strip == strip_all
2934 || (einfo->info->strip == strip_some
2935 && bfd_hash_lookup (einfo->info->keep_hash,
2936 h->root.root.root.string,
2937 FALSE, FALSE) == NULL))
2938 strip = TRUE;
2939 else
2940 strip = FALSE;
2941
2942 if (strip)
2943 return TRUE;
2944
2945 if (h->esym.ifd == -2)
2946 {
2947 h->esym.jmptbl = 0;
2948 h->esym.cobol_main = 0;
2949 h->esym.weakext = 0;
2950 h->esym.reserved = 0;
2951 h->esym.ifd = ifdNil;
2952 h->esym.asym.value = 0;
2953 h->esym.asym.st = stGlobal;
2954
2955 if (h->root.root.type == bfd_link_hash_undefined
2956 || h->root.root.type == bfd_link_hash_undefweak)
2957 {
2958 const char *name;
2959
2960 /* Use undefined class. Also, set class and type for some
2961 special symbols. */
2962 name = h->root.root.root.string;
2963 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
2964 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
2965 {
2966 h->esym.asym.sc = scData;
2967 h->esym.asym.st = stLabel;
2968 h->esym.asym.value = 0;
2969 }
2970 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
2971 {
2972 h->esym.asym.sc = scAbs;
2973 h->esym.asym.st = stLabel;
2974 h->esym.asym.value =
2975 mips_elf_hash_table (einfo->info)->procedure_count;
2976 }
2977 else
2978 h->esym.asym.sc = scUndefined;
2979 }
2980 else if (h->root.root.type != bfd_link_hash_defined
2981 && h->root.root.type != bfd_link_hash_defweak)
2982 h->esym.asym.sc = scAbs;
2983 else
2984 {
2985 const char *name;
2986
2987 sec = h->root.root.u.def.section;
2988 output_section = sec->output_section;
2989
2990 /* When making a shared library and symbol h is the one from
2991 the another shared library, OUTPUT_SECTION may be null. */
2992 if (output_section == NULL)
2993 h->esym.asym.sc = scUndefined;
2994 else
2995 {
2996 name = bfd_section_name (output_section);
2997
2998 if (strcmp (name, ".text") == 0)
2999 h->esym.asym.sc = scText;
3000 else if (strcmp (name, ".data") == 0)
3001 h->esym.asym.sc = scData;
3002 else if (strcmp (name, ".sdata") == 0)
3003 h->esym.asym.sc = scSData;
3004 else if (strcmp (name, ".rodata") == 0
3005 || strcmp (name, ".rdata") == 0)
3006 h->esym.asym.sc = scRData;
3007 else if (strcmp (name, ".bss") == 0)
3008 h->esym.asym.sc = scBss;
3009 else if (strcmp (name, ".sbss") == 0)
3010 h->esym.asym.sc = scSBss;
3011 else if (strcmp (name, ".init") == 0)
3012 h->esym.asym.sc = scInit;
3013 else if (strcmp (name, ".fini") == 0)
3014 h->esym.asym.sc = scFini;
3015 else
3016 h->esym.asym.sc = scAbs;
3017 }
3018 }
3019
3020 h->esym.asym.reserved = 0;
3021 h->esym.asym.index = indexNil;
3022 }
3023
3024 if (h->root.root.type == bfd_link_hash_common)
3025 h->esym.asym.value = h->root.root.u.c.size;
3026 else if (h->root.root.type == bfd_link_hash_defined
3027 || h->root.root.type == bfd_link_hash_defweak)
3028 {
3029 if (h->esym.asym.sc == scCommon)
3030 h->esym.asym.sc = scBss;
3031 else if (h->esym.asym.sc == scSCommon)
3032 h->esym.asym.sc = scSBss;
3033
3034 sec = h->root.root.u.def.section;
3035 output_section = sec->output_section;
3036 if (output_section != NULL)
3037 h->esym.asym.value = (h->root.root.u.def.value
3038 + sec->output_offset
3039 + output_section->vma);
3040 else
3041 h->esym.asym.value = 0;
3042 }
3043 else
3044 {
3045 struct mips_elf_link_hash_entry *hd = h;
3046
3047 while (hd->root.root.type == bfd_link_hash_indirect)
3048 hd = (struct mips_elf_link_hash_entry *)h->root.root.u.i.link;
3049
3050 if (hd->needs_lazy_stub)
3051 {
3052 BFD_ASSERT (hd->root.plt.plist != NULL);
3053 BFD_ASSERT (hd->root.plt.plist->stub_offset != MINUS_ONE);
3054 /* Set type and value for a symbol with a function stub. */
3055 h->esym.asym.st = stProc;
3056 sec = hd->root.root.u.def.section;
3057 if (sec == NULL)
3058 h->esym.asym.value = 0;
3059 else
3060 {
3061 output_section = sec->output_section;
3062 if (output_section != NULL)
3063 h->esym.asym.value = (hd->root.plt.plist->stub_offset
3064 + sec->output_offset
3065 + output_section->vma);
3066 else
3067 h->esym.asym.value = 0;
3068 }
3069 }
3070 }
3071
3072 if (! bfd_ecoff_debug_one_external (einfo->abfd, einfo->debug, einfo->swap,
3073 h->root.root.root.string,
3074 &h->esym))
3075 {
3076 einfo->failed = TRUE;
3077 return FALSE;
3078 }
3079
3080 return TRUE;
3081 }
3082
3083 /* A comparison routine used to sort .gptab entries. */
3084
3085 static int
3086 gptab_compare (const void *p1, const void *p2)
3087 {
3088 const Elf32_gptab *a1 = p1;
3089 const Elf32_gptab *a2 = p2;
3090
3091 return a1->gt_entry.gt_g_value - a2->gt_entry.gt_g_value;
3092 }
3093 \f
3094 /* Functions to manage the got entry hash table. */
3095
3096 /* Use all 64 bits of a bfd_vma for the computation of a 32-bit
3097 hash number. */
3098
3099 static INLINE hashval_t
3100 mips_elf_hash_bfd_vma (bfd_vma addr)
3101 {
3102 #ifdef BFD64
3103 return addr + (addr >> 32);
3104 #else
3105 return addr;
3106 #endif
3107 }
3108
3109 static hashval_t
3110 mips_elf_got_entry_hash (const void *entry_)
3111 {
3112 const struct mips_got_entry *entry = (struct mips_got_entry *)entry_;
3113
3114 return (entry->symndx
3115 + ((entry->tls_type == GOT_TLS_LDM) << 18)
3116 + (entry->tls_type == GOT_TLS_LDM ? 0
3117 : !entry->abfd ? mips_elf_hash_bfd_vma (entry->d.address)
3118 : entry->symndx >= 0 ? (entry->abfd->id
3119 + mips_elf_hash_bfd_vma (entry->d.addend))
3120 : entry->d.h->root.root.root.hash));
3121 }
3122
3123 static int
3124 mips_elf_got_entry_eq (const void *entry1, const void *entry2)
3125 {
3126 const struct mips_got_entry *e1 = (struct mips_got_entry *)entry1;
3127 const struct mips_got_entry *e2 = (struct mips_got_entry *)entry2;
3128
3129 return (e1->symndx == e2->symndx
3130 && e1->tls_type == e2->tls_type
3131 && (e1->tls_type == GOT_TLS_LDM ? TRUE
3132 : !e1->abfd ? !e2->abfd && e1->d.address == e2->d.address
3133 : e1->symndx >= 0 ? (e1->abfd == e2->abfd
3134 && e1->d.addend == e2->d.addend)
3135 : e2->abfd && e1->d.h == e2->d.h));
3136 }
3137
3138 static hashval_t
3139 mips_got_page_ref_hash (const void *ref_)
3140 {
3141 const struct mips_got_page_ref *ref;
3142
3143 ref = (const struct mips_got_page_ref *) ref_;
3144 return ((ref->symndx >= 0
3145 ? (hashval_t) (ref->u.abfd->id + ref->symndx)
3146 : ref->u.h->root.root.root.hash)
3147 + mips_elf_hash_bfd_vma (ref->addend));
3148 }
3149
3150 static int
3151 mips_got_page_ref_eq (const void *ref1_, const void *ref2_)
3152 {
3153 const struct mips_got_page_ref *ref1, *ref2;
3154
3155 ref1 = (const struct mips_got_page_ref *) ref1_;
3156 ref2 = (const struct mips_got_page_ref *) ref2_;
3157 return (ref1->symndx == ref2->symndx
3158 && (ref1->symndx < 0
3159 ? ref1->u.h == ref2->u.h
3160 : ref1->u.abfd == ref2->u.abfd)
3161 && ref1->addend == ref2->addend);
3162 }
3163
3164 static hashval_t
3165 mips_got_page_entry_hash (const void *entry_)
3166 {
3167 const struct mips_got_page_entry *entry;
3168
3169 entry = (const struct mips_got_page_entry *) entry_;
3170 return entry->sec->id;
3171 }
3172
3173 static int
3174 mips_got_page_entry_eq (const void *entry1_, const void *entry2_)
3175 {
3176 const struct mips_got_page_entry *entry1, *entry2;
3177
3178 entry1 = (const struct mips_got_page_entry *) entry1_;
3179 entry2 = (const struct mips_got_page_entry *) entry2_;
3180 return entry1->sec == entry2->sec;
3181 }
3182 \f
3183 /* Create and return a new mips_got_info structure. */
3184
3185 static struct mips_got_info *
3186 mips_elf_create_got_info (bfd *abfd)
3187 {
3188 struct mips_got_info *g;
3189
3190 g = bfd_zalloc (abfd, sizeof (struct mips_got_info));
3191 if (g == NULL)
3192 return NULL;
3193
3194 g->got_entries = htab_try_create (1, mips_elf_got_entry_hash,
3195 mips_elf_got_entry_eq, NULL);
3196 if (g->got_entries == NULL)
3197 return NULL;
3198
3199 g->got_page_refs = htab_try_create (1, mips_got_page_ref_hash,
3200 mips_got_page_ref_eq, NULL);
3201 if (g->got_page_refs == NULL)
3202 return NULL;
3203
3204 return g;
3205 }
3206
3207 /* Return the GOT info for input bfd ABFD, trying to create a new one if
3208 CREATE_P and if ABFD doesn't already have a GOT. */
3209
3210 static struct mips_got_info *
3211 mips_elf_bfd_got (bfd *abfd, bfd_boolean create_p)
3212 {
3213 struct mips_elf_obj_tdata *tdata;
3214
3215 if (!is_mips_elf (abfd))
3216 return NULL;
3217
3218 tdata = mips_elf_tdata (abfd);
3219 if (!tdata->got && create_p)
3220 tdata->got = mips_elf_create_got_info (abfd);
3221 return tdata->got;
3222 }
3223
3224 /* Record that ABFD should use output GOT G. */
3225
3226 static void
3227 mips_elf_replace_bfd_got (bfd *abfd, struct mips_got_info *g)
3228 {
3229 struct mips_elf_obj_tdata *tdata;
3230
3231 BFD_ASSERT (is_mips_elf (abfd));
3232 tdata = mips_elf_tdata (abfd);
3233 if (tdata->got)
3234 {
3235 /* The GOT structure itself and the hash table entries are
3236 allocated to a bfd, but the hash tables aren't. */
3237 htab_delete (tdata->got->got_entries);
3238 htab_delete (tdata->got->got_page_refs);
3239 if (tdata->got->got_page_entries)
3240 htab_delete (tdata->got->got_page_entries);
3241 }
3242 tdata->got = g;
3243 }
3244
3245 /* Return the dynamic relocation section. If it doesn't exist, try to
3246 create a new it if CREATE_P, otherwise return NULL. Also return NULL
3247 if creation fails. */
3248
3249 static asection *
3250 mips_elf_rel_dyn_section (struct bfd_link_info *info, bfd_boolean create_p)
3251 {
3252 const char *dname;
3253 asection *sreloc;
3254 bfd *dynobj;
3255
3256 dname = MIPS_ELF_REL_DYN_NAME (info);
3257 dynobj = elf_hash_table (info)->dynobj;
3258 sreloc = bfd_get_linker_section (dynobj, dname);
3259 if (sreloc == NULL && create_p)
3260 {
3261 sreloc = bfd_make_section_anyway_with_flags (dynobj, dname,
3262 (SEC_ALLOC
3263 | SEC_LOAD
3264 | SEC_HAS_CONTENTS
3265 | SEC_IN_MEMORY
3266 | SEC_LINKER_CREATED
3267 | SEC_READONLY));
3268 if (sreloc == NULL
3269 || !bfd_set_section_alignment (sreloc,
3270 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
3271 return NULL;
3272 }
3273 return sreloc;
3274 }
3275
3276 /* Return the GOT_TLS_* type required by relocation type R_TYPE. */
3277
3278 static int
3279 mips_elf_reloc_tls_type (unsigned int r_type)
3280 {
3281 if (tls_gd_reloc_p (r_type))
3282 return GOT_TLS_GD;
3283
3284 if (tls_ldm_reloc_p (r_type))
3285 return GOT_TLS_LDM;
3286
3287 if (tls_gottprel_reloc_p (r_type))
3288 return GOT_TLS_IE;
3289
3290 return GOT_TLS_NONE;
3291 }
3292
3293 /* Return the number of GOT slots needed for GOT TLS type TYPE. */
3294
3295 static int
3296 mips_tls_got_entries (unsigned int type)
3297 {
3298 switch (type)
3299 {
3300 case GOT_TLS_GD:
3301 case GOT_TLS_LDM:
3302 return 2;
3303
3304 case GOT_TLS_IE:
3305 return 1;
3306
3307 case GOT_TLS_NONE:
3308 return 0;
3309 }
3310 abort ();
3311 }
3312
3313 /* Count the number of relocations needed for a TLS GOT entry, with
3314 access types from TLS_TYPE, and symbol H (or a local symbol if H
3315 is NULL). */
3316
3317 static int
3318 mips_tls_got_relocs (struct bfd_link_info *info, unsigned char tls_type,
3319 struct elf_link_hash_entry *h)
3320 {
3321 int indx = 0;
3322 bfd_boolean need_relocs = FALSE;
3323 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3324
3325 if (h != NULL
3326 && h->dynindx != -1
3327 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), h)
3328 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, h)))
3329 indx = h->dynindx;
3330
3331 if ((bfd_link_dll (info) || indx != 0)
3332 && (h == NULL
3333 || ELF_ST_VISIBILITY (h->other) == STV_DEFAULT
3334 || h->root.type != bfd_link_hash_undefweak))
3335 need_relocs = TRUE;
3336
3337 if (!need_relocs)
3338 return 0;
3339
3340 switch (tls_type)
3341 {
3342 case GOT_TLS_GD:
3343 return indx != 0 ? 2 : 1;
3344
3345 case GOT_TLS_IE:
3346 return 1;
3347
3348 case GOT_TLS_LDM:
3349 return bfd_link_dll (info) ? 1 : 0;
3350
3351 default:
3352 return 0;
3353 }
3354 }
3355
3356 /* Add the number of GOT entries and TLS relocations required by ENTRY
3357 to G. */
3358
3359 static void
3360 mips_elf_count_got_entry (struct bfd_link_info *info,
3361 struct mips_got_info *g,
3362 struct mips_got_entry *entry)
3363 {
3364 if (entry->tls_type)
3365 {
3366 g->tls_gotno += mips_tls_got_entries (entry->tls_type);
3367 g->relocs += mips_tls_got_relocs (info, entry->tls_type,
3368 entry->symndx < 0
3369 ? &entry->d.h->root : NULL);
3370 }
3371 else if (entry->symndx >= 0 || entry->d.h->global_got_area == GGA_NONE)
3372 g->local_gotno += 1;
3373 else
3374 g->global_gotno += 1;
3375 }
3376
3377 /* Output a simple dynamic relocation into SRELOC. */
3378
3379 static void
3380 mips_elf_output_dynamic_relocation (bfd *output_bfd,
3381 asection *sreloc,
3382 unsigned long reloc_index,
3383 unsigned long indx,
3384 int r_type,
3385 bfd_vma offset)
3386 {
3387 Elf_Internal_Rela rel[3];
3388
3389 memset (rel, 0, sizeof (rel));
3390
3391 rel[0].r_info = ELF_R_INFO (output_bfd, indx, r_type);
3392 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
3393
3394 if (ABI_64_P (output_bfd))
3395 {
3396 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
3397 (output_bfd, &rel[0],
3398 (sreloc->contents
3399 + reloc_index * sizeof (Elf64_Mips_External_Rel)));
3400 }
3401 else
3402 bfd_elf32_swap_reloc_out
3403 (output_bfd, &rel[0],
3404 (sreloc->contents
3405 + reloc_index * sizeof (Elf32_External_Rel)));
3406 }
3407
3408 /* Initialize a set of TLS GOT entries for one symbol. */
3409
3410 static void
3411 mips_elf_initialize_tls_slots (bfd *abfd, struct bfd_link_info *info,
3412 struct mips_got_entry *entry,
3413 struct mips_elf_link_hash_entry *h,
3414 bfd_vma value)
3415 {
3416 bfd_boolean dyn = elf_hash_table (info)->dynamic_sections_created;
3417 struct mips_elf_link_hash_table *htab;
3418 int indx;
3419 asection *sreloc, *sgot;
3420 bfd_vma got_offset, got_offset2;
3421 bfd_boolean need_relocs = FALSE;
3422
3423 htab = mips_elf_hash_table (info);
3424 if (htab == NULL)
3425 return;
3426
3427 sgot = htab->root.sgot;
3428
3429 indx = 0;
3430 if (h != NULL
3431 && h->root.dynindx != -1
3432 && WILL_CALL_FINISH_DYNAMIC_SYMBOL (dyn, bfd_link_pic (info), &h->root)
3433 && (bfd_link_dll (info) || !SYMBOL_REFERENCES_LOCAL (info, &h->root)))
3434 indx = h->root.dynindx;
3435
3436 if (entry->tls_initialized)
3437 return;
3438
3439 if ((bfd_link_dll (info) || indx != 0)
3440 && (h == NULL
3441 || ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
3442 || h->root.type != bfd_link_hash_undefweak))
3443 need_relocs = TRUE;
3444
3445 /* MINUS_ONE means the symbol is not defined in this object. It may not
3446 be defined at all; assume that the value doesn't matter in that
3447 case. Otherwise complain if we would use the value. */
3448 BFD_ASSERT (value != MINUS_ONE || (indx != 0 && need_relocs)
3449 || h->root.root.type == bfd_link_hash_undefweak);
3450
3451 /* Emit necessary relocations. */
3452 sreloc = mips_elf_rel_dyn_section (info, FALSE);
3453 got_offset = entry->gotidx;
3454
3455 switch (entry->tls_type)
3456 {
3457 case GOT_TLS_GD:
3458 /* General Dynamic. */
3459 got_offset2 = got_offset + MIPS_ELF_GOT_SIZE (abfd);
3460
3461 if (need_relocs)
3462 {
3463 mips_elf_output_dynamic_relocation
3464 (abfd, sreloc, sreloc->reloc_count++, indx,
3465 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3466 sgot->output_offset + sgot->output_section->vma + got_offset);
3467
3468 if (indx)
3469 mips_elf_output_dynamic_relocation
3470 (abfd, sreloc, sreloc->reloc_count++, indx,
3471 ABI_64_P (abfd) ? R_MIPS_TLS_DTPREL64 : R_MIPS_TLS_DTPREL32,
3472 sgot->output_offset + sgot->output_section->vma + got_offset2);
3473 else
3474 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3475 sgot->contents + got_offset2);
3476 }
3477 else
3478 {
3479 MIPS_ELF_PUT_WORD (abfd, 1,
3480 sgot->contents + got_offset);
3481 MIPS_ELF_PUT_WORD (abfd, value - dtprel_base (info),
3482 sgot->contents + got_offset2);
3483 }
3484 break;
3485
3486 case GOT_TLS_IE:
3487 /* Initial Exec model. */
3488 if (need_relocs)
3489 {
3490 if (indx == 0)
3491 MIPS_ELF_PUT_WORD (abfd, value - elf_hash_table (info)->tls_sec->vma,
3492 sgot->contents + got_offset);
3493 else
3494 MIPS_ELF_PUT_WORD (abfd, 0,
3495 sgot->contents + got_offset);
3496
3497 mips_elf_output_dynamic_relocation
3498 (abfd, sreloc, sreloc->reloc_count++, indx,
3499 ABI_64_P (abfd) ? R_MIPS_TLS_TPREL64 : R_MIPS_TLS_TPREL32,
3500 sgot->output_offset + sgot->output_section->vma + got_offset);
3501 }
3502 else
3503 MIPS_ELF_PUT_WORD (abfd, value - tprel_base (info),
3504 sgot->contents + got_offset);
3505 break;
3506
3507 case GOT_TLS_LDM:
3508 /* The initial offset is zero, and the LD offsets will include the
3509 bias by DTP_OFFSET. */
3510 MIPS_ELF_PUT_WORD (abfd, 0,
3511 sgot->contents + got_offset
3512 + MIPS_ELF_GOT_SIZE (abfd));
3513
3514 if (!bfd_link_dll (info))
3515 MIPS_ELF_PUT_WORD (abfd, 1,
3516 sgot->contents + got_offset);
3517 else
3518 mips_elf_output_dynamic_relocation
3519 (abfd, sreloc, sreloc->reloc_count++, indx,
3520 ABI_64_P (abfd) ? R_MIPS_TLS_DTPMOD64 : R_MIPS_TLS_DTPMOD32,
3521 sgot->output_offset + sgot->output_section->vma + got_offset);
3522 break;
3523
3524 default:
3525 abort ();
3526 }
3527
3528 entry->tls_initialized = TRUE;
3529 }
3530
3531 /* Return the offset from _GLOBAL_OFFSET_TABLE_ of the .got.plt entry
3532 for global symbol H. .got.plt comes before the GOT, so the offset
3533 will be negative. */
3534
3535 static bfd_vma
3536 mips_elf_gotplt_index (struct bfd_link_info *info,
3537 struct elf_link_hash_entry *h)
3538 {
3539 bfd_vma got_address, got_value;
3540 struct mips_elf_link_hash_table *htab;
3541
3542 htab = mips_elf_hash_table (info);
3543 BFD_ASSERT (htab != NULL);
3544
3545 BFD_ASSERT (h->plt.plist != NULL);
3546 BFD_ASSERT (h->plt.plist->gotplt_index != MINUS_ONE);
3547
3548 /* Calculate the address of the associated .got.plt entry. */
3549 got_address = (htab->root.sgotplt->output_section->vma
3550 + htab->root.sgotplt->output_offset
3551 + (h->plt.plist->gotplt_index
3552 * MIPS_ELF_GOT_SIZE (info->output_bfd)));
3553
3554 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
3555 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
3556 + htab->root.hgot->root.u.def.section->output_offset
3557 + htab->root.hgot->root.u.def.value);
3558
3559 return got_address - got_value;
3560 }
3561
3562 /* Return the GOT offset for address VALUE. If there is not yet a GOT
3563 entry for this value, create one. If R_SYMNDX refers to a TLS symbol,
3564 create a TLS GOT entry instead. Return -1 if no satisfactory GOT
3565 offset can be found. */
3566
3567 static bfd_vma
3568 mips_elf_local_got_index (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3569 bfd_vma value, unsigned long r_symndx,
3570 struct mips_elf_link_hash_entry *h, int r_type)
3571 {
3572 struct mips_elf_link_hash_table *htab;
3573 struct mips_got_entry *entry;
3574
3575 htab = mips_elf_hash_table (info);
3576 BFD_ASSERT (htab != NULL);
3577
3578 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value,
3579 r_symndx, h, r_type);
3580 if (!entry)
3581 return MINUS_ONE;
3582
3583 if (entry->tls_type)
3584 mips_elf_initialize_tls_slots (abfd, info, entry, h, value);
3585 return entry->gotidx;
3586 }
3587
3588 /* Return the GOT index of global symbol H in the primary GOT. */
3589
3590 static bfd_vma
3591 mips_elf_primary_global_got_index (bfd *obfd, struct bfd_link_info *info,
3592 struct elf_link_hash_entry *h)
3593 {
3594 struct mips_elf_link_hash_table *htab;
3595 long global_got_dynindx;
3596 struct mips_got_info *g;
3597 bfd_vma got_index;
3598
3599 htab = mips_elf_hash_table (info);
3600 BFD_ASSERT (htab != NULL);
3601
3602 global_got_dynindx = 0;
3603 if (htab->global_gotsym != NULL)
3604 global_got_dynindx = htab->global_gotsym->dynindx;
3605
3606 /* Once we determine the global GOT entry with the lowest dynamic
3607 symbol table index, we must put all dynamic symbols with greater
3608 indices into the primary GOT. That makes it easy to calculate the
3609 GOT offset. */
3610 BFD_ASSERT (h->dynindx >= global_got_dynindx);
3611 g = mips_elf_bfd_got (obfd, FALSE);
3612 got_index = ((h->dynindx - global_got_dynindx + g->local_gotno)
3613 * MIPS_ELF_GOT_SIZE (obfd));
3614 BFD_ASSERT (got_index < htab->root.sgot->size);
3615
3616 return got_index;
3617 }
3618
3619 /* Return the GOT index for the global symbol indicated by H, which is
3620 referenced by a relocation of type R_TYPE in IBFD. */
3621
3622 static bfd_vma
3623 mips_elf_global_got_index (bfd *obfd, struct bfd_link_info *info, bfd *ibfd,
3624 struct elf_link_hash_entry *h, int r_type)
3625 {
3626 struct mips_elf_link_hash_table *htab;
3627 struct mips_got_info *g;
3628 struct mips_got_entry lookup, *entry;
3629 bfd_vma gotidx;
3630
3631 htab = mips_elf_hash_table (info);
3632 BFD_ASSERT (htab != NULL);
3633
3634 g = mips_elf_bfd_got (ibfd, FALSE);
3635 BFD_ASSERT (g);
3636
3637 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3638 if (!lookup.tls_type && g == mips_elf_bfd_got (obfd, FALSE))
3639 return mips_elf_primary_global_got_index (obfd, info, h);
3640
3641 lookup.abfd = ibfd;
3642 lookup.symndx = -1;
3643 lookup.d.h = (struct mips_elf_link_hash_entry *) h;
3644 entry = htab_find (g->got_entries, &lookup);
3645 BFD_ASSERT (entry);
3646
3647 gotidx = entry->gotidx;
3648 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3649
3650 if (lookup.tls_type)
3651 {
3652 bfd_vma value = MINUS_ONE;
3653
3654 if ((h->root.type == bfd_link_hash_defined
3655 || h->root.type == bfd_link_hash_defweak)
3656 && h->root.u.def.section->output_section)
3657 value = (h->root.u.def.value
3658 + h->root.u.def.section->output_offset
3659 + h->root.u.def.section->output_section->vma);
3660
3661 mips_elf_initialize_tls_slots (obfd, info, entry, lookup.d.h, value);
3662 }
3663 return gotidx;
3664 }
3665
3666 /* Find a GOT page entry that points to within 32KB of VALUE. These
3667 entries are supposed to be placed at small offsets in the GOT, i.e.,
3668 within 32KB of GP. Return the index of the GOT entry, or -1 if no
3669 entry could be created. If OFFSETP is nonnull, use it to return the
3670 offset of the GOT entry from VALUE. */
3671
3672 static bfd_vma
3673 mips_elf_got_page (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3674 bfd_vma value, bfd_vma *offsetp)
3675 {
3676 bfd_vma page, got_index;
3677 struct mips_got_entry *entry;
3678
3679 page = (value + 0x8000) & ~(bfd_vma) 0xffff;
3680 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, page, 0,
3681 NULL, R_MIPS_GOT_PAGE);
3682
3683 if (!entry)
3684 return MINUS_ONE;
3685
3686 got_index = entry->gotidx;
3687
3688 if (offsetp)
3689 *offsetp = value - entry->d.address;
3690
3691 return got_index;
3692 }
3693
3694 /* Find a local GOT entry for an R_MIPS*_GOT16 relocation against VALUE.
3695 EXTERNAL is true if the relocation was originally against a global
3696 symbol that binds locally. */
3697
3698 static bfd_vma
3699 mips_elf_got16_entry (bfd *abfd, bfd *ibfd, struct bfd_link_info *info,
3700 bfd_vma value, bfd_boolean external)
3701 {
3702 struct mips_got_entry *entry;
3703
3704 /* GOT16 relocations against local symbols are followed by a LO16
3705 relocation; those against global symbols are not. Thus if the
3706 symbol was originally local, the GOT16 relocation should load the
3707 equivalent of %hi(VALUE), otherwise it should load VALUE itself. */
3708 if (! external)
3709 value = mips_elf_high (value) << 16;
3710
3711 /* It doesn't matter whether the original relocation was R_MIPS_GOT16,
3712 R_MIPS16_GOT16, R_MIPS_CALL16, etc. The format of the entry is the
3713 same in all cases. */
3714 entry = mips_elf_create_local_got_entry (abfd, info, ibfd, value, 0,
3715 NULL, R_MIPS_GOT16);
3716 if (entry)
3717 return entry->gotidx;
3718 else
3719 return MINUS_ONE;
3720 }
3721
3722 /* Returns the offset for the entry at the INDEXth position
3723 in the GOT. */
3724
3725 static bfd_vma
3726 mips_elf_got_offset_from_index (struct bfd_link_info *info, bfd *output_bfd,
3727 bfd *input_bfd, bfd_vma got_index)
3728 {
3729 struct mips_elf_link_hash_table *htab;
3730 asection *sgot;
3731 bfd_vma gp;
3732
3733 htab = mips_elf_hash_table (info);
3734 BFD_ASSERT (htab != NULL);
3735
3736 sgot = htab->root.sgot;
3737 gp = _bfd_get_gp_value (output_bfd)
3738 + mips_elf_adjust_gp (output_bfd, htab->got_info, input_bfd);
3739
3740 return sgot->output_section->vma + sgot->output_offset + got_index - gp;
3741 }
3742
3743 /* Create and return a local GOT entry for VALUE, which was calculated
3744 from a symbol belonging to INPUT_SECTON. Return NULL if it could not
3745 be created. If R_SYMNDX refers to a TLS symbol, create a TLS entry
3746 instead. */
3747
3748 static struct mips_got_entry *
3749 mips_elf_create_local_got_entry (bfd *abfd, struct bfd_link_info *info,
3750 bfd *ibfd, bfd_vma value,
3751 unsigned long r_symndx,
3752 struct mips_elf_link_hash_entry *h,
3753 int r_type)
3754 {
3755 struct mips_got_entry lookup, *entry;
3756 void **loc;
3757 struct mips_got_info *g;
3758 struct mips_elf_link_hash_table *htab;
3759 bfd_vma gotidx;
3760
3761 htab = mips_elf_hash_table (info);
3762 BFD_ASSERT (htab != NULL);
3763
3764 g = mips_elf_bfd_got (ibfd, FALSE);
3765 if (g == NULL)
3766 {
3767 g = mips_elf_bfd_got (abfd, FALSE);
3768 BFD_ASSERT (g != NULL);
3769 }
3770
3771 /* This function shouldn't be called for symbols that live in the global
3772 area of the GOT. */
3773 BFD_ASSERT (h == NULL || h->global_got_area == GGA_NONE);
3774
3775 lookup.tls_type = mips_elf_reloc_tls_type (r_type);
3776 if (lookup.tls_type)
3777 {
3778 lookup.abfd = ibfd;
3779 if (tls_ldm_reloc_p (r_type))
3780 {
3781 lookup.symndx = 0;
3782 lookup.d.addend = 0;
3783 }
3784 else if (h == NULL)
3785 {
3786 lookup.symndx = r_symndx;
3787 lookup.d.addend = 0;
3788 }
3789 else
3790 {
3791 lookup.symndx = -1;
3792 lookup.d.h = h;
3793 }
3794
3795 entry = (struct mips_got_entry *) htab_find (g->got_entries, &lookup);
3796 BFD_ASSERT (entry);
3797
3798 gotidx = entry->gotidx;
3799 BFD_ASSERT (gotidx > 0 && gotidx < htab->root.sgot->size);
3800
3801 return entry;
3802 }
3803
3804 lookup.abfd = NULL;
3805 lookup.symndx = -1;
3806 lookup.d.address = value;
3807 loc = htab_find_slot (g->got_entries, &lookup, INSERT);
3808 if (!loc)
3809 return NULL;
3810
3811 entry = (struct mips_got_entry *) *loc;
3812 if (entry)
3813 return entry;
3814
3815 if (g->assigned_low_gotno > g->assigned_high_gotno)
3816 {
3817 /* We didn't allocate enough space in the GOT. */
3818 _bfd_error_handler
3819 (_("not enough GOT space for local GOT entries"));
3820 bfd_set_error (bfd_error_bad_value);
3821 return NULL;
3822 }
3823
3824 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
3825 if (!entry)
3826 return NULL;
3827
3828 if (got16_reloc_p (r_type)
3829 || call16_reloc_p (r_type)
3830 || got_page_reloc_p (r_type)
3831 || got_disp_reloc_p (r_type))
3832 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_low_gotno++;
3833 else
3834 lookup.gotidx = MIPS_ELF_GOT_SIZE (abfd) * g->assigned_high_gotno--;
3835
3836 *entry = lookup;
3837 *loc = entry;
3838
3839 MIPS_ELF_PUT_WORD (abfd, value, htab->root.sgot->contents + entry->gotidx);
3840
3841 /* These GOT entries need a dynamic relocation on VxWorks. */
3842 if (htab->is_vxworks)
3843 {
3844 Elf_Internal_Rela outrel;
3845 asection *s;
3846 bfd_byte *rloc;
3847 bfd_vma got_address;
3848
3849 s = mips_elf_rel_dyn_section (info, FALSE);
3850 got_address = (htab->root.sgot->output_section->vma
3851 + htab->root.sgot->output_offset
3852 + entry->gotidx);
3853
3854 rloc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
3855 outrel.r_offset = got_address;
3856 outrel.r_info = ELF32_R_INFO (STN_UNDEF, R_MIPS_32);
3857 outrel.r_addend = value;
3858 bfd_elf32_swap_reloca_out (abfd, &outrel, rloc);
3859 }
3860
3861 return entry;
3862 }
3863
3864 /* Return the number of dynamic section symbols required by OUTPUT_BFD.
3865 The number might be exact or a worst-case estimate, depending on how
3866 much information is available to elf_backend_omit_section_dynsym at
3867 the current linking stage. */
3868
3869 static bfd_size_type
3870 count_section_dynsyms (bfd *output_bfd, struct bfd_link_info *info)
3871 {
3872 bfd_size_type count;
3873
3874 count = 0;
3875 if (bfd_link_pic (info)
3876 || elf_hash_table (info)->is_relocatable_executable)
3877 {
3878 asection *p;
3879 const struct elf_backend_data *bed;
3880
3881 bed = get_elf_backend_data (output_bfd);
3882 for (p = output_bfd->sections; p ; p = p->next)
3883 if ((p->flags & SEC_EXCLUDE) == 0
3884 && (p->flags & SEC_ALLOC) != 0
3885 && elf_hash_table (info)->dynamic_relocs
3886 && !(*bed->elf_backend_omit_section_dynsym) (output_bfd, info, p))
3887 ++count;
3888 }
3889 return count;
3890 }
3891
3892 /* Sort the dynamic symbol table so that symbols that need GOT entries
3893 appear towards the end. */
3894
3895 static bfd_boolean
3896 mips_elf_sort_hash_table (bfd *abfd, struct bfd_link_info *info)
3897 {
3898 struct mips_elf_link_hash_table *htab;
3899 struct mips_elf_hash_sort_data hsd;
3900 struct mips_got_info *g;
3901
3902 htab = mips_elf_hash_table (info);
3903 BFD_ASSERT (htab != NULL);
3904
3905 if (htab->root.dynsymcount == 0)
3906 return TRUE;
3907
3908 g = htab->got_info;
3909 if (g == NULL)
3910 return TRUE;
3911
3912 hsd.low = NULL;
3913 hsd.max_unref_got_dynindx
3914 = hsd.min_got_dynindx
3915 = (htab->root.dynsymcount - g->reloc_only_gotno);
3916 /* Add 1 to local symbol indices to account for the mandatory NULL entry
3917 at the head of the table; see `_bfd_elf_link_renumber_dynsyms'. */
3918 hsd.max_local_dynindx = count_section_dynsyms (abfd, info) + 1;
3919 hsd.max_non_got_dynindx = htab->root.local_dynsymcount + 1;
3920 hsd.output_bfd = abfd;
3921 if (htab->root.dynobj != NULL
3922 && htab->root.dynamic_sections_created
3923 && info->emit_gnu_hash)
3924 {
3925 asection *s = bfd_get_linker_section (htab->root.dynobj, ".MIPS.xhash");
3926 BFD_ASSERT (s != NULL);
3927 hsd.mipsxhash = s->contents;
3928 BFD_ASSERT (hsd.mipsxhash != NULL);
3929 }
3930 else
3931 hsd.mipsxhash = NULL;
3932 mips_elf_link_hash_traverse (htab, mips_elf_sort_hash_table_f, &hsd);
3933
3934 /* There should have been enough room in the symbol table to
3935 accommodate both the GOT and non-GOT symbols. */
3936 BFD_ASSERT (hsd.max_local_dynindx <= htab->root.local_dynsymcount + 1);
3937 BFD_ASSERT (hsd.max_non_got_dynindx <= hsd.min_got_dynindx);
3938 BFD_ASSERT (hsd.max_unref_got_dynindx == htab->root.dynsymcount);
3939 BFD_ASSERT (htab->root.dynsymcount - hsd.min_got_dynindx == g->global_gotno);
3940
3941 /* Now we know which dynamic symbol has the lowest dynamic symbol
3942 table index in the GOT. */
3943 htab->global_gotsym = hsd.low;
3944
3945 return TRUE;
3946 }
3947
3948 /* If H needs a GOT entry, assign it the highest available dynamic
3949 index. Otherwise, assign it the lowest available dynamic
3950 index. */
3951
3952 static bfd_boolean
3953 mips_elf_sort_hash_table_f (struct mips_elf_link_hash_entry *h, void *data)
3954 {
3955 struct mips_elf_hash_sort_data *hsd = data;
3956
3957 /* Symbols without dynamic symbol table entries aren't interesting
3958 at all. */
3959 if (h->root.dynindx == -1)
3960 return TRUE;
3961
3962 switch (h->global_got_area)
3963 {
3964 case GGA_NONE:
3965 if (h->root.forced_local)
3966 h->root.dynindx = hsd->max_local_dynindx++;
3967 else
3968 h->root.dynindx = hsd->max_non_got_dynindx++;
3969 break;
3970
3971 case GGA_NORMAL:
3972 h->root.dynindx = --hsd->min_got_dynindx;
3973 hsd->low = (struct elf_link_hash_entry *) h;
3974 break;
3975
3976 case GGA_RELOC_ONLY:
3977 if (hsd->max_unref_got_dynindx == hsd->min_got_dynindx)
3978 hsd->low = (struct elf_link_hash_entry *) h;
3979 h->root.dynindx = hsd->max_unref_got_dynindx++;
3980 break;
3981 }
3982
3983 /* Populate the .MIPS.xhash translation table entry with
3984 the symbol dynindx. */
3985 if (h->mipsxhash_loc != 0 && hsd->mipsxhash != NULL)
3986 bfd_put_32 (hsd->output_bfd, h->root.dynindx,
3987 hsd->mipsxhash + h->mipsxhash_loc);
3988
3989 return TRUE;
3990 }
3991
3992 /* Record that input bfd ABFD requires a GOT entry like *LOOKUP
3993 (which is owned by the caller and shouldn't be added to the
3994 hash table directly). */
3995
3996 static bfd_boolean
3997 mips_elf_record_got_entry (struct bfd_link_info *info, bfd *abfd,
3998 struct mips_got_entry *lookup)
3999 {
4000 struct mips_elf_link_hash_table *htab;
4001 struct mips_got_entry *entry;
4002 struct mips_got_info *g;
4003 void **loc, **bfd_loc;
4004
4005 /* Make sure there's a slot for this entry in the master GOT. */
4006 htab = mips_elf_hash_table (info);
4007 g = htab->got_info;
4008 loc = htab_find_slot (g->got_entries, lookup, INSERT);
4009 if (!loc)
4010 return FALSE;
4011
4012 /* Populate the entry if it isn't already. */
4013 entry = (struct mips_got_entry *) *loc;
4014 if (!entry)
4015 {
4016 entry = (struct mips_got_entry *) bfd_alloc (abfd, sizeof (*entry));
4017 if (!entry)
4018 return FALSE;
4019
4020 lookup->tls_initialized = FALSE;
4021 lookup->gotidx = -1;
4022 *entry = *lookup;
4023 *loc = entry;
4024 }
4025
4026 /* Reuse the same GOT entry for the BFD's GOT. */
4027 g = mips_elf_bfd_got (abfd, TRUE);
4028 if (!g)
4029 return FALSE;
4030
4031 bfd_loc = htab_find_slot (g->got_entries, lookup, INSERT);
4032 if (!bfd_loc)
4033 return FALSE;
4034
4035 if (!*bfd_loc)
4036 *bfd_loc = entry;
4037 return TRUE;
4038 }
4039
4040 /* ABFD has a GOT relocation of type R_TYPE against H. Reserve a GOT
4041 entry for it. FOR_CALL is true if the caller is only interested in
4042 using the GOT entry for calls. */
4043
4044 static bfd_boolean
4045 mips_elf_record_global_got_symbol (struct elf_link_hash_entry *h,
4046 bfd *abfd, struct bfd_link_info *info,
4047 bfd_boolean for_call, int r_type)
4048 {
4049 struct mips_elf_link_hash_table *htab;
4050 struct mips_elf_link_hash_entry *hmips;
4051 struct mips_got_entry entry;
4052 unsigned char tls_type;
4053
4054 htab = mips_elf_hash_table (info);
4055 BFD_ASSERT (htab != NULL);
4056
4057 hmips = (struct mips_elf_link_hash_entry *) h;
4058 if (!for_call)
4059 hmips->got_only_for_calls = FALSE;
4060
4061 /* A global symbol in the GOT must also be in the dynamic symbol
4062 table. */
4063 if (h->dynindx == -1)
4064 {
4065 switch (ELF_ST_VISIBILITY (h->other))
4066 {
4067 case STV_INTERNAL:
4068 case STV_HIDDEN:
4069 _bfd_mips_elf_hide_symbol (info, h, TRUE);
4070 break;
4071 }
4072 if (!bfd_elf_link_record_dynamic_symbol (info, h))
4073 return FALSE;
4074 }
4075
4076 tls_type = mips_elf_reloc_tls_type (r_type);
4077 if (tls_type == GOT_TLS_NONE && hmips->global_got_area > GGA_NORMAL)
4078 hmips->global_got_area = GGA_NORMAL;
4079
4080 entry.abfd = abfd;
4081 entry.symndx = -1;
4082 entry.d.h = (struct mips_elf_link_hash_entry *) h;
4083 entry.tls_type = tls_type;
4084 return mips_elf_record_got_entry (info, abfd, &entry);
4085 }
4086
4087 /* ABFD has a GOT relocation of type R_TYPE against symbol SYMNDX + ADDEND,
4088 where SYMNDX is a local symbol. Reserve a GOT entry for it. */
4089
4090 static bfd_boolean
4091 mips_elf_record_local_got_symbol (bfd *abfd, long symndx, bfd_vma addend,
4092 struct bfd_link_info *info, int r_type)
4093 {
4094 struct mips_elf_link_hash_table *htab;
4095 struct mips_got_info *g;
4096 struct mips_got_entry entry;
4097
4098 htab = mips_elf_hash_table (info);
4099 BFD_ASSERT (htab != NULL);
4100
4101 g = htab->got_info;
4102 BFD_ASSERT (g != NULL);
4103
4104 entry.abfd = abfd;
4105 entry.symndx = symndx;
4106 entry.d.addend = addend;
4107 entry.tls_type = mips_elf_reloc_tls_type (r_type);
4108 return mips_elf_record_got_entry (info, abfd, &entry);
4109 }
4110
4111 /* Record that ABFD has a page relocation against SYMNDX + ADDEND.
4112 H is the symbol's hash table entry, or null if SYMNDX is local
4113 to ABFD. */
4114
4115 static bfd_boolean
4116 mips_elf_record_got_page_ref (struct bfd_link_info *info, bfd *abfd,
4117 long symndx, struct elf_link_hash_entry *h,
4118 bfd_signed_vma addend)
4119 {
4120 struct mips_elf_link_hash_table *htab;
4121 struct mips_got_info *g1, *g2;
4122 struct mips_got_page_ref lookup, *entry;
4123 void **loc, **bfd_loc;
4124
4125 htab = mips_elf_hash_table (info);
4126 BFD_ASSERT (htab != NULL);
4127
4128 g1 = htab->got_info;
4129 BFD_ASSERT (g1 != NULL);
4130
4131 if (h)
4132 {
4133 lookup.symndx = -1;
4134 lookup.u.h = (struct mips_elf_link_hash_entry *) h;
4135 }
4136 else
4137 {
4138 lookup.symndx = symndx;
4139 lookup.u.abfd = abfd;
4140 }
4141 lookup.addend = addend;
4142 loc = htab_find_slot (g1->got_page_refs, &lookup, INSERT);
4143 if (loc == NULL)
4144 return FALSE;
4145
4146 entry = (struct mips_got_page_ref *) *loc;
4147 if (!entry)
4148 {
4149 entry = bfd_alloc (abfd, sizeof (*entry));
4150 if (!entry)
4151 return FALSE;
4152
4153 *entry = lookup;
4154 *loc = entry;
4155 }
4156
4157 /* Add the same entry to the BFD's GOT. */
4158 g2 = mips_elf_bfd_got (abfd, TRUE);
4159 if (!g2)
4160 return FALSE;
4161
4162 bfd_loc = htab_find_slot (g2->got_page_refs, &lookup, INSERT);
4163 if (!bfd_loc)
4164 return FALSE;
4165
4166 if (!*bfd_loc)
4167 *bfd_loc = entry;
4168
4169 return TRUE;
4170 }
4171
4172 /* Add room for N relocations to the .rel(a).dyn section in ABFD. */
4173
4174 static void
4175 mips_elf_allocate_dynamic_relocations (bfd *abfd, struct bfd_link_info *info,
4176 unsigned int n)
4177 {
4178 asection *s;
4179 struct mips_elf_link_hash_table *htab;
4180
4181 htab = mips_elf_hash_table (info);
4182 BFD_ASSERT (htab != NULL);
4183
4184 s = mips_elf_rel_dyn_section (info, FALSE);
4185 BFD_ASSERT (s != NULL);
4186
4187 if (htab->is_vxworks)
4188 s->size += n * MIPS_ELF_RELA_SIZE (abfd);
4189 else
4190 {
4191 if (s->size == 0)
4192 {
4193 /* Make room for a null element. */
4194 s->size += MIPS_ELF_REL_SIZE (abfd);
4195 ++s->reloc_count;
4196 }
4197 s->size += n * MIPS_ELF_REL_SIZE (abfd);
4198 }
4199 }
4200 \f
4201 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4202 mips_elf_traverse_got_arg structure. Count the number of GOT
4203 entries and TLS relocs. Set DATA->value to true if we need
4204 to resolve indirect or warning symbols and then recreate the GOT. */
4205
4206 static int
4207 mips_elf_check_recreate_got (void **entryp, void *data)
4208 {
4209 struct mips_got_entry *entry;
4210 struct mips_elf_traverse_got_arg *arg;
4211
4212 entry = (struct mips_got_entry *) *entryp;
4213 arg = (struct mips_elf_traverse_got_arg *) data;
4214 if (entry->abfd != NULL && entry->symndx == -1)
4215 {
4216 struct mips_elf_link_hash_entry *h;
4217
4218 h = entry->d.h;
4219 if (h->root.root.type == bfd_link_hash_indirect
4220 || h->root.root.type == bfd_link_hash_warning)
4221 {
4222 arg->value = TRUE;
4223 return 0;
4224 }
4225 }
4226 mips_elf_count_got_entry (arg->info, arg->g, entry);
4227 return 1;
4228 }
4229
4230 /* A htab_traverse callback for GOT entries, with DATA pointing to a
4231 mips_elf_traverse_got_arg structure. Add all entries to DATA->g,
4232 converting entries for indirect and warning symbols into entries
4233 for the target symbol. Set DATA->g to null on error. */
4234
4235 static int
4236 mips_elf_recreate_got (void **entryp, void *data)
4237 {
4238 struct mips_got_entry new_entry, *entry;
4239 struct mips_elf_traverse_got_arg *arg;
4240 void **slot;
4241
4242 entry = (struct mips_got_entry *) *entryp;
4243 arg = (struct mips_elf_traverse_got_arg *) data;
4244 if (entry->abfd != NULL
4245 && entry->symndx == -1
4246 && (entry->d.h->root.root.type == bfd_link_hash_indirect
4247 || entry->d.h->root.root.type == bfd_link_hash_warning))
4248 {
4249 struct mips_elf_link_hash_entry *h;
4250
4251 new_entry = *entry;
4252 entry = &new_entry;
4253 h = entry->d.h;
4254 do
4255 {
4256 BFD_ASSERT (h->global_got_area == GGA_NONE);
4257 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
4258 }
4259 while (h->root.root.type == bfd_link_hash_indirect
4260 || h->root.root.type == bfd_link_hash_warning);
4261 entry->d.h = h;
4262 }
4263 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4264 if (slot == NULL)
4265 {
4266 arg->g = NULL;
4267 return 0;
4268 }
4269 if (*slot == NULL)
4270 {
4271 if (entry == &new_entry)
4272 {
4273 entry = bfd_alloc (entry->abfd, sizeof (*entry));
4274 if (!entry)
4275 {
4276 arg->g = NULL;
4277 return 0;
4278 }
4279 *entry = new_entry;
4280 }
4281 *slot = entry;
4282 mips_elf_count_got_entry (arg->info, arg->g, entry);
4283 }
4284 return 1;
4285 }
4286
4287 /* Return the maximum number of GOT page entries required for RANGE. */
4288
4289 static bfd_vma
4290 mips_elf_pages_for_range (const struct mips_got_page_range *range)
4291 {
4292 return (range->max_addend - range->min_addend + 0x1ffff) >> 16;
4293 }
4294
4295 /* Record that G requires a page entry that can reach SEC + ADDEND. */
4296
4297 static bfd_boolean
4298 mips_elf_record_got_page_entry (struct mips_elf_traverse_got_arg *arg,
4299 asection *sec, bfd_signed_vma addend)
4300 {
4301 struct mips_got_info *g = arg->g;
4302 struct mips_got_page_entry lookup, *entry;
4303 struct mips_got_page_range **range_ptr, *range;
4304 bfd_vma old_pages, new_pages;
4305 void **loc;
4306
4307 /* Find the mips_got_page_entry hash table entry for this section. */
4308 lookup.sec = sec;
4309 loc = htab_find_slot (g->got_page_entries, &lookup, INSERT);
4310 if (loc == NULL)
4311 return FALSE;
4312
4313 /* Create a mips_got_page_entry if this is the first time we've
4314 seen the section. */
4315 entry = (struct mips_got_page_entry *) *loc;
4316 if (!entry)
4317 {
4318 entry = bfd_zalloc (arg->info->output_bfd, sizeof (*entry));
4319 if (!entry)
4320 return FALSE;
4321
4322 entry->sec = sec;
4323 *loc = entry;
4324 }
4325
4326 /* Skip over ranges whose maximum extent cannot share a page entry
4327 with ADDEND. */
4328 range_ptr = &entry->ranges;
4329 while (*range_ptr && addend > (*range_ptr)->max_addend + 0xffff)
4330 range_ptr = &(*range_ptr)->next;
4331
4332 /* If we scanned to the end of the list, or found a range whose
4333 minimum extent cannot share a page entry with ADDEND, create
4334 a new singleton range. */
4335 range = *range_ptr;
4336 if (!range || addend < range->min_addend - 0xffff)
4337 {
4338 range = bfd_zalloc (arg->info->output_bfd, sizeof (*range));
4339 if (!range)
4340 return FALSE;
4341
4342 range->next = *range_ptr;
4343 range->min_addend = addend;
4344 range->max_addend = addend;
4345
4346 *range_ptr = range;
4347 entry->num_pages++;
4348 g->page_gotno++;
4349 return TRUE;
4350 }
4351
4352 /* Remember how many pages the old range contributed. */
4353 old_pages = mips_elf_pages_for_range (range);
4354
4355 /* Update the ranges. */
4356 if (addend < range->min_addend)
4357 range->min_addend = addend;
4358 else if (addend > range->max_addend)
4359 {
4360 if (range->next && addend >= range->next->min_addend - 0xffff)
4361 {
4362 old_pages += mips_elf_pages_for_range (range->next);
4363 range->max_addend = range->next->max_addend;
4364 range->next = range->next->next;
4365 }
4366 else
4367 range->max_addend = addend;
4368 }
4369
4370 /* Record any change in the total estimate. */
4371 new_pages = mips_elf_pages_for_range (range);
4372 if (old_pages != new_pages)
4373 {
4374 entry->num_pages += new_pages - old_pages;
4375 g->page_gotno += new_pages - old_pages;
4376 }
4377
4378 return TRUE;
4379 }
4380
4381 /* A htab_traverse callback for which *REFP points to a mips_got_page_ref
4382 and for which DATA points to a mips_elf_traverse_got_arg. Work out
4383 whether the page reference described by *REFP needs a GOT page entry,
4384 and record that entry in DATA->g if so. Set DATA->g to null on failure. */
4385
4386 static bfd_boolean
4387 mips_elf_resolve_got_page_ref (void **refp, void *data)
4388 {
4389 struct mips_got_page_ref *ref;
4390 struct mips_elf_traverse_got_arg *arg;
4391 struct mips_elf_link_hash_table *htab;
4392 asection *sec;
4393 bfd_vma addend;
4394
4395 ref = (struct mips_got_page_ref *) *refp;
4396 arg = (struct mips_elf_traverse_got_arg *) data;
4397 htab = mips_elf_hash_table (arg->info);
4398
4399 if (ref->symndx < 0)
4400 {
4401 struct mips_elf_link_hash_entry *h;
4402
4403 /* Global GOT_PAGEs decay to GOT_DISP and so don't need page entries. */
4404 h = ref->u.h;
4405 if (!SYMBOL_REFERENCES_LOCAL (arg->info, &h->root))
4406 return 1;
4407
4408 /* Ignore undefined symbols; we'll issue an error later if
4409 appropriate. */
4410 if (!((h->root.root.type == bfd_link_hash_defined
4411 || h->root.root.type == bfd_link_hash_defweak)
4412 && h->root.root.u.def.section))
4413 return 1;
4414
4415 sec = h->root.root.u.def.section;
4416 addend = h->root.root.u.def.value + ref->addend;
4417 }
4418 else
4419 {
4420 Elf_Internal_Sym *isym;
4421
4422 /* Read in the symbol. */
4423 isym = bfd_sym_from_r_symndx (&htab->sym_cache, ref->u.abfd,
4424 ref->symndx);
4425 if (isym == NULL)
4426 {
4427 arg->g = NULL;
4428 return 0;
4429 }
4430
4431 /* Get the associated input section. */
4432 sec = bfd_section_from_elf_index (ref->u.abfd, isym->st_shndx);
4433 if (sec == NULL)
4434 {
4435 arg->g = NULL;
4436 return 0;
4437 }
4438
4439 /* If this is a mergable section, work out the section and offset
4440 of the merged data. For section symbols, the addend specifies
4441 of the offset _of_ the first byte in the data, otherwise it
4442 specifies the offset _from_ the first byte. */
4443 if (sec->flags & SEC_MERGE)
4444 {
4445 void *secinfo;
4446
4447 secinfo = elf_section_data (sec)->sec_info;
4448 if (ELF_ST_TYPE (isym->st_info) == STT_SECTION)
4449 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4450 isym->st_value + ref->addend);
4451 else
4452 addend = _bfd_merged_section_offset (ref->u.abfd, &sec, secinfo,
4453 isym->st_value) + ref->addend;
4454 }
4455 else
4456 addend = isym->st_value + ref->addend;
4457 }
4458 if (!mips_elf_record_got_page_entry (arg, sec, addend))
4459 {
4460 arg->g = NULL;
4461 return 0;
4462 }
4463 return 1;
4464 }
4465
4466 /* If any entries in G->got_entries are for indirect or warning symbols,
4467 replace them with entries for the target symbol. Convert g->got_page_refs
4468 into got_page_entry structures and estimate the number of page entries
4469 that they require. */
4470
4471 static bfd_boolean
4472 mips_elf_resolve_final_got_entries (struct bfd_link_info *info,
4473 struct mips_got_info *g)
4474 {
4475 struct mips_elf_traverse_got_arg tga;
4476 struct mips_got_info oldg;
4477
4478 oldg = *g;
4479
4480 tga.info = info;
4481 tga.g = g;
4482 tga.value = FALSE;
4483 htab_traverse (g->got_entries, mips_elf_check_recreate_got, &tga);
4484 if (tga.value)
4485 {
4486 *g = oldg;
4487 g->got_entries = htab_create (htab_size (oldg.got_entries),
4488 mips_elf_got_entry_hash,
4489 mips_elf_got_entry_eq, NULL);
4490 if (!g->got_entries)
4491 return FALSE;
4492
4493 htab_traverse (oldg.got_entries, mips_elf_recreate_got, &tga);
4494 if (!tga.g)
4495 return FALSE;
4496
4497 htab_delete (oldg.got_entries);
4498 }
4499
4500 g->got_page_entries = htab_try_create (1, mips_got_page_entry_hash,
4501 mips_got_page_entry_eq, NULL);
4502 if (g->got_page_entries == NULL)
4503 return FALSE;
4504
4505 tga.info = info;
4506 tga.g = g;
4507 htab_traverse (g->got_page_refs, mips_elf_resolve_got_page_ref, &tga);
4508
4509 return TRUE;
4510 }
4511
4512 /* Return true if a GOT entry for H should live in the local rather than
4513 global GOT area. */
4514
4515 static bfd_boolean
4516 mips_use_local_got_p (struct bfd_link_info *info,
4517 struct mips_elf_link_hash_entry *h)
4518 {
4519 /* Symbols that aren't in the dynamic symbol table must live in the
4520 local GOT. This includes symbols that are completely undefined
4521 and which therefore don't bind locally. We'll report undefined
4522 symbols later if appropriate. */
4523 if (h->root.dynindx == -1)
4524 return TRUE;
4525
4526 /* Absolute symbols, if ever they need a GOT entry, cannot ever go
4527 to the local GOT, as they would be implicitly relocated by the
4528 base address by the dynamic loader. */
4529 if (bfd_is_abs_symbol (&h->root.root))
4530 return FALSE;
4531
4532 /* Symbols that bind locally can (and in the case of forced-local
4533 symbols, must) live in the local GOT. */
4534 if (h->got_only_for_calls
4535 ? SYMBOL_CALLS_LOCAL (info, &h->root)
4536 : SYMBOL_REFERENCES_LOCAL (info, &h->root))
4537 return TRUE;
4538
4539 /* If this is an executable that must provide a definition of the symbol,
4540 either though PLTs or copy relocations, then that address should go in
4541 the local rather than global GOT. */
4542 if (bfd_link_executable (info) && h->has_static_relocs)
4543 return TRUE;
4544
4545 return FALSE;
4546 }
4547
4548 /* A mips_elf_link_hash_traverse callback for which DATA points to the
4549 link_info structure. Decide whether the hash entry needs an entry in
4550 the global part of the primary GOT, setting global_got_area accordingly.
4551 Count the number of global symbols that are in the primary GOT only
4552 because they have relocations against them (reloc_only_gotno). */
4553
4554 static int
4555 mips_elf_count_got_symbols (struct mips_elf_link_hash_entry *h, void *data)
4556 {
4557 struct bfd_link_info *info;
4558 struct mips_elf_link_hash_table *htab;
4559 struct mips_got_info *g;
4560
4561 info = (struct bfd_link_info *) data;
4562 htab = mips_elf_hash_table (info);
4563 g = htab->got_info;
4564 if (h->global_got_area != GGA_NONE)
4565 {
4566 /* Make a final decision about whether the symbol belongs in the
4567 local or global GOT. */
4568 if (mips_use_local_got_p (info, h))
4569 /* The symbol belongs in the local GOT. We no longer need this
4570 entry if it was only used for relocations; those relocations
4571 will be against the null or section symbol instead of H. */
4572 h->global_got_area = GGA_NONE;
4573 else if (htab->is_vxworks
4574 && h->got_only_for_calls
4575 && h->root.plt.plist->mips_offset != MINUS_ONE)
4576 /* On VxWorks, calls can refer directly to the .got.plt entry;
4577 they don't need entries in the regular GOT. .got.plt entries
4578 will be allocated by _bfd_mips_elf_adjust_dynamic_symbol. */
4579 h->global_got_area = GGA_NONE;
4580 else if (h->global_got_area == GGA_RELOC_ONLY)
4581 {
4582 g->reloc_only_gotno++;
4583 g->global_gotno++;
4584 }
4585 }
4586 return 1;
4587 }
4588 \f
4589 /* A htab_traverse callback for GOT entries. Add each one to the GOT
4590 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4591
4592 static int
4593 mips_elf_add_got_entry (void **entryp, void *data)
4594 {
4595 struct mips_got_entry *entry;
4596 struct mips_elf_traverse_got_arg *arg;
4597 void **slot;
4598
4599 entry = (struct mips_got_entry *) *entryp;
4600 arg = (struct mips_elf_traverse_got_arg *) data;
4601 slot = htab_find_slot (arg->g->got_entries, entry, INSERT);
4602 if (!slot)
4603 {
4604 arg->g = NULL;
4605 return 0;
4606 }
4607 if (!*slot)
4608 {
4609 *slot = entry;
4610 mips_elf_count_got_entry (arg->info, arg->g, entry);
4611 }
4612 return 1;
4613 }
4614
4615 /* A htab_traverse callback for GOT page entries. Add each one to the GOT
4616 given in mips_elf_traverse_got_arg DATA. Clear DATA->G on error. */
4617
4618 static int
4619 mips_elf_add_got_page_entry (void **entryp, void *data)
4620 {
4621 struct mips_got_page_entry *entry;
4622 struct mips_elf_traverse_got_arg *arg;
4623 void **slot;
4624
4625 entry = (struct mips_got_page_entry *) *entryp;
4626 arg = (struct mips_elf_traverse_got_arg *) data;
4627 slot = htab_find_slot (arg->g->got_page_entries, entry, INSERT);
4628 if (!slot)
4629 {
4630 arg->g = NULL;
4631 return 0;
4632 }
4633 if (!*slot)
4634 {
4635 *slot = entry;
4636 arg->g->page_gotno += entry->num_pages;
4637 }
4638 return 1;
4639 }
4640
4641 /* Consider merging FROM, which is ABFD's GOT, into TO. Return -1 if
4642 this would lead to overflow, 1 if they were merged successfully,
4643 and 0 if a merge failed due to lack of memory. (These values are chosen
4644 so that nonnegative return values can be returned by a htab_traverse
4645 callback.) */
4646
4647 static int
4648 mips_elf_merge_got_with (bfd *abfd, struct mips_got_info *from,
4649 struct mips_got_info *to,
4650 struct mips_elf_got_per_bfd_arg *arg)
4651 {
4652 struct mips_elf_traverse_got_arg tga;
4653 unsigned int estimate;
4654
4655 /* Work out how many page entries we would need for the combined GOT. */
4656 estimate = arg->max_pages;
4657 if (estimate >= from->page_gotno + to->page_gotno)
4658 estimate = from->page_gotno + to->page_gotno;
4659
4660 /* And conservatively estimate how many local and TLS entries
4661 would be needed. */
4662 estimate += from->local_gotno + to->local_gotno;
4663 estimate += from->tls_gotno + to->tls_gotno;
4664
4665 /* If we're merging with the primary got, any TLS relocations will
4666 come after the full set of global entries. Otherwise estimate those
4667 conservatively as well. */
4668 if (to == arg->primary && from->tls_gotno + to->tls_gotno)
4669 estimate += arg->global_count;
4670 else
4671 estimate += from->global_gotno + to->global_gotno;
4672
4673 /* Bail out if the combined GOT might be too big. */
4674 if (estimate > arg->max_count)
4675 return -1;
4676
4677 /* Transfer the bfd's got information from FROM to TO. */
4678 tga.info = arg->info;
4679 tga.g = to;
4680 htab_traverse (from->got_entries, mips_elf_add_got_entry, &tga);
4681 if (!tga.g)
4682 return 0;
4683
4684 htab_traverse (from->got_page_entries, mips_elf_add_got_page_entry, &tga);
4685 if (!tga.g)
4686 return 0;
4687
4688 mips_elf_replace_bfd_got (abfd, to);
4689 return 1;
4690 }
4691
4692 /* Attempt to merge GOT G, which belongs to ABFD. Try to use as much
4693 as possible of the primary got, since it doesn't require explicit
4694 dynamic relocations, but don't use bfds that would reference global
4695 symbols out of the addressable range. Failing the primary got,
4696 attempt to merge with the current got, or finish the current got
4697 and then make make the new got current. */
4698
4699 static bfd_boolean
4700 mips_elf_merge_got (bfd *abfd, struct mips_got_info *g,
4701 struct mips_elf_got_per_bfd_arg *arg)
4702 {
4703 unsigned int estimate;
4704 int result;
4705
4706 if (!mips_elf_resolve_final_got_entries (arg->info, g))
4707 return FALSE;
4708
4709 /* Work out the number of page, local and TLS entries. */
4710 estimate = arg->max_pages;
4711 if (estimate > g->page_gotno)
4712 estimate = g->page_gotno;
4713 estimate += g->local_gotno + g->tls_gotno;
4714
4715 /* We place TLS GOT entries after both locals and globals. The globals
4716 for the primary GOT may overflow the normal GOT size limit, so be
4717 sure not to merge a GOT which requires TLS with the primary GOT in that
4718 case. This doesn't affect non-primary GOTs. */
4719 estimate += (g->tls_gotno > 0 ? arg->global_count : g->global_gotno);
4720
4721 if (estimate <= arg->max_count)
4722 {
4723 /* If we don't have a primary GOT, use it as
4724 a starting point for the primary GOT. */
4725 if (!arg->primary)
4726 {
4727 arg->primary = g;
4728 return TRUE;
4729 }
4730
4731 /* Try merging with the primary GOT. */
4732 result = mips_elf_merge_got_with (abfd, g, arg->primary, arg);
4733 if (result >= 0)
4734 return result;
4735 }
4736
4737 /* If we can merge with the last-created got, do it. */
4738 if (arg->current)
4739 {
4740 result = mips_elf_merge_got_with (abfd, g, arg->current, arg);
4741 if (result >= 0)
4742 return result;
4743 }
4744
4745 /* Well, we couldn't merge, so create a new GOT. Don't check if it
4746 fits; if it turns out that it doesn't, we'll get relocation
4747 overflows anyway. */
4748 g->next = arg->current;
4749 arg->current = g;
4750
4751 return TRUE;
4752 }
4753
4754 /* ENTRYP is a hash table entry for a mips_got_entry. Set its gotidx
4755 to GOTIDX, duplicating the entry if it has already been assigned
4756 an index in a different GOT. */
4757
4758 static bfd_boolean
4759 mips_elf_set_gotidx (void **entryp, long gotidx)
4760 {
4761 struct mips_got_entry *entry;
4762
4763 entry = (struct mips_got_entry *) *entryp;
4764 if (entry->gotidx > 0)
4765 {
4766 struct mips_got_entry *new_entry;
4767
4768 new_entry = bfd_alloc (entry->abfd, sizeof (*entry));
4769 if (!new_entry)
4770 return FALSE;
4771
4772 *new_entry = *entry;
4773 *entryp = new_entry;
4774 entry = new_entry;
4775 }
4776 entry->gotidx = gotidx;
4777 return TRUE;
4778 }
4779
4780 /* Set the TLS GOT index for the GOT entry in ENTRYP. DATA points to a
4781 mips_elf_traverse_got_arg in which DATA->value is the size of one
4782 GOT entry. Set DATA->g to null on failure. */
4783
4784 static int
4785 mips_elf_initialize_tls_index (void **entryp, void *data)
4786 {
4787 struct mips_got_entry *entry;
4788 struct mips_elf_traverse_got_arg *arg;
4789
4790 /* We're only interested in TLS symbols. */
4791 entry = (struct mips_got_entry *) *entryp;
4792 if (entry->tls_type == GOT_TLS_NONE)
4793 return 1;
4794
4795 arg = (struct mips_elf_traverse_got_arg *) data;
4796 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->tls_assigned_gotno))
4797 {
4798 arg->g = NULL;
4799 return 0;
4800 }
4801
4802 /* Account for the entries we've just allocated. */
4803 arg->g->tls_assigned_gotno += mips_tls_got_entries (entry->tls_type);
4804 return 1;
4805 }
4806
4807 /* A htab_traverse callback for GOT entries, where DATA points to a
4808 mips_elf_traverse_got_arg. Set the global_got_area of each global
4809 symbol to DATA->value. */
4810
4811 static int
4812 mips_elf_set_global_got_area (void **entryp, void *data)
4813 {
4814 struct mips_got_entry *entry;
4815 struct mips_elf_traverse_got_arg *arg;
4816
4817 entry = (struct mips_got_entry *) *entryp;
4818 arg = (struct mips_elf_traverse_got_arg *) data;
4819 if (entry->abfd != NULL
4820 && entry->symndx == -1
4821 && entry->d.h->global_got_area != GGA_NONE)
4822 entry->d.h->global_got_area = arg->value;
4823 return 1;
4824 }
4825
4826 /* A htab_traverse callback for secondary GOT entries, where DATA points
4827 to a mips_elf_traverse_got_arg. Assign GOT indices to global entries
4828 and record the number of relocations they require. DATA->value is
4829 the size of one GOT entry. Set DATA->g to null on failure. */
4830
4831 static int
4832 mips_elf_set_global_gotidx (void **entryp, void *data)
4833 {
4834 struct mips_got_entry *entry;
4835 struct mips_elf_traverse_got_arg *arg;
4836
4837 entry = (struct mips_got_entry *) *entryp;
4838 arg = (struct mips_elf_traverse_got_arg *) data;
4839 if (entry->abfd != NULL
4840 && entry->symndx == -1
4841 && entry->d.h->global_got_area != GGA_NONE)
4842 {
4843 if (!mips_elf_set_gotidx (entryp, arg->value * arg->g->assigned_low_gotno))
4844 {
4845 arg->g = NULL;
4846 return 0;
4847 }
4848 arg->g->assigned_low_gotno += 1;
4849
4850 if (bfd_link_pic (arg->info)
4851 || (elf_hash_table (arg->info)->dynamic_sections_created
4852 && entry->d.h->root.def_dynamic
4853 && !entry->d.h->root.def_regular))
4854 arg->g->relocs += 1;
4855 }
4856
4857 return 1;
4858 }
4859
4860 /* A htab_traverse callback for GOT entries for which DATA is the
4861 bfd_link_info. Forbid any global symbols from having traditional
4862 lazy-binding stubs. */
4863
4864 static int
4865 mips_elf_forbid_lazy_stubs (void **entryp, void *data)
4866 {
4867 struct bfd_link_info *info;
4868 struct mips_elf_link_hash_table *htab;
4869 struct mips_got_entry *entry;
4870
4871 entry = (struct mips_got_entry *) *entryp;
4872 info = (struct bfd_link_info *) data;
4873 htab = mips_elf_hash_table (info);
4874 BFD_ASSERT (htab != NULL);
4875
4876 if (entry->abfd != NULL
4877 && entry->symndx == -1
4878 && entry->d.h->needs_lazy_stub)
4879 {
4880 entry->d.h->needs_lazy_stub = FALSE;
4881 htab->lazy_stub_count--;
4882 }
4883
4884 return 1;
4885 }
4886
4887 /* Return the offset of an input bfd IBFD's GOT from the beginning of
4888 the primary GOT. */
4889 static bfd_vma
4890 mips_elf_adjust_gp (bfd *abfd, struct mips_got_info *g, bfd *ibfd)
4891 {
4892 if (!g->next)
4893 return 0;
4894
4895 g = mips_elf_bfd_got (ibfd, FALSE);
4896 if (! g)
4897 return 0;
4898
4899 BFD_ASSERT (g->next);
4900
4901 g = g->next;
4902
4903 return (g->local_gotno + g->global_gotno + g->tls_gotno)
4904 * MIPS_ELF_GOT_SIZE (abfd);
4905 }
4906
4907 /* Turn a single GOT that is too big for 16-bit addressing into
4908 a sequence of GOTs, each one 16-bit addressable. */
4909
4910 static bfd_boolean
4911 mips_elf_multi_got (bfd *abfd, struct bfd_link_info *info,
4912 asection *got, bfd_size_type pages)
4913 {
4914 struct mips_elf_link_hash_table *htab;
4915 struct mips_elf_got_per_bfd_arg got_per_bfd_arg;
4916 struct mips_elf_traverse_got_arg tga;
4917 struct mips_got_info *g, *gg;
4918 unsigned int assign, needed_relocs;
4919 bfd *dynobj, *ibfd;
4920
4921 dynobj = elf_hash_table (info)->dynobj;
4922 htab = mips_elf_hash_table (info);
4923 BFD_ASSERT (htab != NULL);
4924
4925 g = htab->got_info;
4926
4927 got_per_bfd_arg.obfd = abfd;
4928 got_per_bfd_arg.info = info;
4929 got_per_bfd_arg.current = NULL;
4930 got_per_bfd_arg.primary = NULL;
4931 got_per_bfd_arg.max_count = ((MIPS_ELF_GOT_MAX_SIZE (info)
4932 / MIPS_ELF_GOT_SIZE (abfd))
4933 - htab->reserved_gotno);
4934 got_per_bfd_arg.max_pages = pages;
4935 /* The number of globals that will be included in the primary GOT.
4936 See the calls to mips_elf_set_global_got_area below for more
4937 information. */
4938 got_per_bfd_arg.global_count = g->global_gotno;
4939
4940 /* Try to merge the GOTs of input bfds together, as long as they
4941 don't seem to exceed the maximum GOT size, choosing one of them
4942 to be the primary GOT. */
4943 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
4944 {
4945 gg = mips_elf_bfd_got (ibfd, FALSE);
4946 if (gg && !mips_elf_merge_got (ibfd, gg, &got_per_bfd_arg))
4947 return FALSE;
4948 }
4949
4950 /* If we do not find any suitable primary GOT, create an empty one. */
4951 if (got_per_bfd_arg.primary == NULL)
4952 g->next = mips_elf_create_got_info (abfd);
4953 else
4954 g->next = got_per_bfd_arg.primary;
4955 g->next->next = got_per_bfd_arg.current;
4956
4957 /* GG is now the master GOT, and G is the primary GOT. */
4958 gg = g;
4959 g = g->next;
4960
4961 /* Map the output bfd to the primary got. That's what we're going
4962 to use for bfds that use GOT16 or GOT_PAGE relocations that we
4963 didn't mark in check_relocs, and we want a quick way to find it.
4964 We can't just use gg->next because we're going to reverse the
4965 list. */
4966 mips_elf_replace_bfd_got (abfd, g);
4967
4968 /* Every symbol that is referenced in a dynamic relocation must be
4969 present in the primary GOT, so arrange for them to appear after
4970 those that are actually referenced. */
4971 gg->reloc_only_gotno = gg->global_gotno - g->global_gotno;
4972 g->global_gotno = gg->global_gotno;
4973
4974 tga.info = info;
4975 tga.value = GGA_RELOC_ONLY;
4976 htab_traverse (gg->got_entries, mips_elf_set_global_got_area, &tga);
4977 tga.value = GGA_NORMAL;
4978 htab_traverse (g->got_entries, mips_elf_set_global_got_area, &tga);
4979
4980 /* Now go through the GOTs assigning them offset ranges.
4981 [assigned_low_gotno, local_gotno[ will be set to the range of local
4982 entries in each GOT. We can then compute the end of a GOT by
4983 adding local_gotno to global_gotno. We reverse the list and make
4984 it circular since then we'll be able to quickly compute the
4985 beginning of a GOT, by computing the end of its predecessor. To
4986 avoid special cases for the primary GOT, while still preserving
4987 assertions that are valid for both single- and multi-got links,
4988 we arrange for the main got struct to have the right number of
4989 global entries, but set its local_gotno such that the initial
4990 offset of the primary GOT is zero. Remember that the primary GOT
4991 will become the last item in the circular linked list, so it
4992 points back to the master GOT. */
4993 gg->local_gotno = -g->global_gotno;
4994 gg->global_gotno = g->global_gotno;
4995 gg->tls_gotno = 0;
4996 assign = 0;
4997 gg->next = gg;
4998
4999 do
5000 {
5001 struct mips_got_info *gn;
5002
5003 assign += htab->reserved_gotno;
5004 g->assigned_low_gotno = assign;
5005 g->local_gotno += assign;
5006 g->local_gotno += (pages < g->page_gotno ? pages : g->page_gotno);
5007 g->assigned_high_gotno = g->local_gotno - 1;
5008 assign = g->local_gotno + g->global_gotno + g->tls_gotno;
5009
5010 /* Take g out of the direct list, and push it onto the reversed
5011 list that gg points to. g->next is guaranteed to be nonnull after
5012 this operation, as required by mips_elf_initialize_tls_index. */
5013 gn = g->next;
5014 g->next = gg->next;
5015 gg->next = g;
5016
5017 /* Set up any TLS entries. We always place the TLS entries after
5018 all non-TLS entries. */
5019 g->tls_assigned_gotno = g->local_gotno + g->global_gotno;
5020 tga.g = g;
5021 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5022 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
5023 if (!tga.g)
5024 return FALSE;
5025 BFD_ASSERT (g->tls_assigned_gotno == assign);
5026
5027 /* Move onto the next GOT. It will be a secondary GOT if nonull. */
5028 g = gn;
5029
5030 /* Forbid global symbols in every non-primary GOT from having
5031 lazy-binding stubs. */
5032 if (g)
5033 htab_traverse (g->got_entries, mips_elf_forbid_lazy_stubs, info);
5034 }
5035 while (g);
5036
5037 got->size = assign * MIPS_ELF_GOT_SIZE (abfd);
5038
5039 needed_relocs = 0;
5040 for (g = gg->next; g && g->next != gg; g = g->next)
5041 {
5042 unsigned int save_assign;
5043
5044 /* Assign offsets to global GOT entries and count how many
5045 relocations they need. */
5046 save_assign = g->assigned_low_gotno;
5047 g->assigned_low_gotno = g->local_gotno;
5048 tga.info = info;
5049 tga.value = MIPS_ELF_GOT_SIZE (abfd);
5050 tga.g = g;
5051 htab_traverse (g->got_entries, mips_elf_set_global_gotidx, &tga);
5052 if (!tga.g)
5053 return FALSE;
5054 BFD_ASSERT (g->assigned_low_gotno == g->local_gotno + g->global_gotno);
5055 g->assigned_low_gotno = save_assign;
5056
5057 if (bfd_link_pic (info))
5058 {
5059 g->relocs += g->local_gotno - g->assigned_low_gotno;
5060 BFD_ASSERT (g->assigned_low_gotno == g->next->local_gotno
5061 + g->next->global_gotno
5062 + g->next->tls_gotno
5063 + htab->reserved_gotno);
5064 }
5065 needed_relocs += g->relocs;
5066 }
5067 needed_relocs += g->relocs;
5068
5069 if (needed_relocs)
5070 mips_elf_allocate_dynamic_relocations (dynobj, info,
5071 needed_relocs);
5072
5073 return TRUE;
5074 }
5075
5076 \f
5077 /* Returns the first relocation of type r_type found, beginning with
5078 RELOCATION. RELEND is one-past-the-end of the relocation table. */
5079
5080 static const Elf_Internal_Rela *
5081 mips_elf_next_relocation (bfd *abfd ATTRIBUTE_UNUSED, unsigned int r_type,
5082 const Elf_Internal_Rela *relocation,
5083 const Elf_Internal_Rela *relend)
5084 {
5085 unsigned long r_symndx = ELF_R_SYM (abfd, relocation->r_info);
5086
5087 while (relocation < relend)
5088 {
5089 if (ELF_R_TYPE (abfd, relocation->r_info) == r_type
5090 && ELF_R_SYM (abfd, relocation->r_info) == r_symndx)
5091 return relocation;
5092
5093 ++relocation;
5094 }
5095
5096 /* We didn't find it. */
5097 return NULL;
5098 }
5099
5100 /* Return whether an input relocation is against a local symbol. */
5101
5102 static bfd_boolean
5103 mips_elf_local_relocation_p (bfd *input_bfd,
5104 const Elf_Internal_Rela *relocation,
5105 asection **local_sections)
5106 {
5107 unsigned long r_symndx;
5108 Elf_Internal_Shdr *symtab_hdr;
5109 size_t extsymoff;
5110
5111 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5112 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5113 extsymoff = (elf_bad_symtab (input_bfd)) ? 0 : symtab_hdr->sh_info;
5114
5115 if (r_symndx < extsymoff)
5116 return TRUE;
5117 if (elf_bad_symtab (input_bfd) && local_sections[r_symndx] != NULL)
5118 return TRUE;
5119
5120 return FALSE;
5121 }
5122 \f
5123 /* Sign-extend VALUE, which has the indicated number of BITS. */
5124
5125 bfd_vma
5126 _bfd_mips_elf_sign_extend (bfd_vma value, int bits)
5127 {
5128 if (value & ((bfd_vma) 1 << (bits - 1)))
5129 /* VALUE is negative. */
5130 value |= ((bfd_vma) - 1) << bits;
5131
5132 return value;
5133 }
5134
5135 /* Return non-zero if the indicated VALUE has overflowed the maximum
5136 range expressible by a signed number with the indicated number of
5137 BITS. */
5138
5139 static bfd_boolean
5140 mips_elf_overflow_p (bfd_vma value, int bits)
5141 {
5142 bfd_signed_vma svalue = (bfd_signed_vma) value;
5143
5144 if (svalue > (1 << (bits - 1)) - 1)
5145 /* The value is too big. */
5146 return TRUE;
5147 else if (svalue < -(1 << (bits - 1)))
5148 /* The value is too small. */
5149 return TRUE;
5150
5151 /* All is well. */
5152 return FALSE;
5153 }
5154
5155 /* Calculate the %high function. */
5156
5157 static bfd_vma
5158 mips_elf_high (bfd_vma value)
5159 {
5160 return ((value + (bfd_vma) 0x8000) >> 16) & 0xffff;
5161 }
5162
5163 /* Calculate the %higher function. */
5164
5165 static bfd_vma
5166 mips_elf_higher (bfd_vma value ATTRIBUTE_UNUSED)
5167 {
5168 #ifdef BFD64
5169 return ((value + (bfd_vma) 0x80008000) >> 32) & 0xffff;
5170 #else
5171 abort ();
5172 return MINUS_ONE;
5173 #endif
5174 }
5175
5176 /* Calculate the %highest function. */
5177
5178 static bfd_vma
5179 mips_elf_highest (bfd_vma value ATTRIBUTE_UNUSED)
5180 {
5181 #ifdef BFD64
5182 return ((value + (((bfd_vma) 0x8000 << 32) | 0x80008000)) >> 48) & 0xffff;
5183 #else
5184 abort ();
5185 return MINUS_ONE;
5186 #endif
5187 }
5188 \f
5189 /* Create the .compact_rel section. */
5190
5191 static bfd_boolean
5192 mips_elf_create_compact_rel_section
5193 (bfd *abfd, struct bfd_link_info *info ATTRIBUTE_UNUSED)
5194 {
5195 flagword flags;
5196 register asection *s;
5197
5198 if (bfd_get_linker_section (abfd, ".compact_rel") == NULL)
5199 {
5200 flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY | SEC_LINKER_CREATED
5201 | SEC_READONLY);
5202
5203 s = bfd_make_section_anyway_with_flags (abfd, ".compact_rel", flags);
5204 if (s == NULL
5205 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
5206 return FALSE;
5207
5208 s->size = sizeof (Elf32_External_compact_rel);
5209 }
5210
5211 return TRUE;
5212 }
5213
5214 /* Create the .got section to hold the global offset table. */
5215
5216 static bfd_boolean
5217 mips_elf_create_got_section (bfd *abfd, struct bfd_link_info *info)
5218 {
5219 flagword flags;
5220 register asection *s;
5221 struct elf_link_hash_entry *h;
5222 struct bfd_link_hash_entry *bh;
5223 struct mips_elf_link_hash_table *htab;
5224
5225 htab = mips_elf_hash_table (info);
5226 BFD_ASSERT (htab != NULL);
5227
5228 /* This function may be called more than once. */
5229 if (htab->root.sgot)
5230 return TRUE;
5231
5232 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
5233 | SEC_LINKER_CREATED);
5234
5235 /* We have to use an alignment of 2**4 here because this is hardcoded
5236 in the function stub generation and in the linker script. */
5237 s = bfd_make_section_anyway_with_flags (abfd, ".got", flags);
5238 if (s == NULL
5239 || !bfd_set_section_alignment (s, 4))
5240 return FALSE;
5241 htab->root.sgot = s;
5242
5243 /* Define the symbol _GLOBAL_OFFSET_TABLE_. We don't do this in the
5244 linker script because we don't want to define the symbol if we
5245 are not creating a global offset table. */
5246 bh = NULL;
5247 if (! (_bfd_generic_link_add_one_symbol
5248 (info, abfd, "_GLOBAL_OFFSET_TABLE_", BSF_GLOBAL, s,
5249 0, NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
5250 return FALSE;
5251
5252 h = (struct elf_link_hash_entry *) bh;
5253 h->non_elf = 0;
5254 h->def_regular = 1;
5255 h->type = STT_OBJECT;
5256 h->other = (h->other & ~ELF_ST_VISIBILITY (-1)) | STV_HIDDEN;
5257 elf_hash_table (info)->hgot = h;
5258
5259 if (bfd_link_pic (info)
5260 && ! bfd_elf_link_record_dynamic_symbol (info, h))
5261 return FALSE;
5262
5263 htab->got_info = mips_elf_create_got_info (abfd);
5264 mips_elf_section_data (s)->elf.this_hdr.sh_flags
5265 |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
5266
5267 /* We also need a .got.plt section when generating PLTs. */
5268 s = bfd_make_section_anyway_with_flags (abfd, ".got.plt",
5269 SEC_ALLOC | SEC_LOAD
5270 | SEC_HAS_CONTENTS
5271 | SEC_IN_MEMORY
5272 | SEC_LINKER_CREATED);
5273 if (s == NULL)
5274 return FALSE;
5275 htab->root.sgotplt = s;
5276
5277 return TRUE;
5278 }
5279 \f
5280 /* Return true if H refers to the special VxWorks __GOTT_BASE__ or
5281 __GOTT_INDEX__ symbols. These symbols are only special for
5282 shared objects; they are not used in executables. */
5283
5284 static bfd_boolean
5285 is_gott_symbol (struct bfd_link_info *info, struct elf_link_hash_entry *h)
5286 {
5287 return (mips_elf_hash_table (info)->is_vxworks
5288 && bfd_link_pic (info)
5289 && (strcmp (h->root.root.string, "__GOTT_BASE__") == 0
5290 || strcmp (h->root.root.string, "__GOTT_INDEX__") == 0));
5291 }
5292
5293 /* Return TRUE if a relocation of type R_TYPE from INPUT_BFD might
5294 require an la25 stub. See also mips_elf_local_pic_function_p,
5295 which determines whether the destination function ever requires a
5296 stub. */
5297
5298 static bfd_boolean
5299 mips_elf_relocation_needs_la25_stub (bfd *input_bfd, int r_type,
5300 bfd_boolean target_is_16_bit_code_p)
5301 {
5302 /* We specifically ignore branches and jumps from EF_PIC objects,
5303 where the onus is on the compiler or programmer to perform any
5304 necessary initialization of $25. Sometimes such initialization
5305 is unnecessary; for example, -mno-shared functions do not use
5306 the incoming value of $25, and may therefore be called directly. */
5307 if (PIC_OBJECT_P (input_bfd))
5308 return FALSE;
5309
5310 switch (r_type)
5311 {
5312 case R_MIPS_26:
5313 case R_MIPS_PC16:
5314 case R_MIPS_PC21_S2:
5315 case R_MIPS_PC26_S2:
5316 case R_MICROMIPS_26_S1:
5317 case R_MICROMIPS_PC7_S1:
5318 case R_MICROMIPS_PC10_S1:
5319 case R_MICROMIPS_PC16_S1:
5320 case R_MICROMIPS_PC23_S2:
5321 return TRUE;
5322
5323 case R_MIPS16_26:
5324 return !target_is_16_bit_code_p;
5325
5326 default:
5327 return FALSE;
5328 }
5329 }
5330 \f
5331 /* Obtain the field relocated by RELOCATION. */
5332
5333 static bfd_vma
5334 mips_elf_obtain_contents (reloc_howto_type *howto,
5335 const Elf_Internal_Rela *relocation,
5336 bfd *input_bfd, bfd_byte *contents)
5337 {
5338 bfd_vma x = 0;
5339 bfd_byte *location = contents + relocation->r_offset;
5340 unsigned int size = bfd_get_reloc_size (howto);
5341
5342 /* Obtain the bytes. */
5343 if (size != 0)
5344 x = bfd_get (8 * size, input_bfd, location);
5345
5346 return x;
5347 }
5348
5349 /* Store the field relocated by RELOCATION. */
5350
5351 static void
5352 mips_elf_store_contents (reloc_howto_type *howto,
5353 const Elf_Internal_Rela *relocation,
5354 bfd *input_bfd, bfd_byte *contents, bfd_vma x)
5355 {
5356 bfd_byte *location = contents + relocation->r_offset;
5357 unsigned int size = bfd_get_reloc_size (howto);
5358
5359 /* Put the value into the output. */
5360 if (size != 0)
5361 bfd_put (8 * size, input_bfd, x, location);
5362 }
5363
5364 /* Try to patch a load from GOT instruction in CONTENTS pointed to by
5365 RELOCATION described by HOWTO, with a move of 0 to the load target
5366 register, returning TRUE if that is successful and FALSE otherwise.
5367 If DOIT is FALSE, then only determine it patching is possible and
5368 return status without actually changing CONTENTS.
5369 */
5370
5371 static bfd_boolean
5372 mips_elf_nullify_got_load (bfd *input_bfd, bfd_byte *contents,
5373 const Elf_Internal_Rela *relocation,
5374 reloc_howto_type *howto, bfd_boolean doit)
5375 {
5376 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5377 bfd_byte *location = contents + relocation->r_offset;
5378 bfd_boolean nullified = TRUE;
5379 bfd_vma x;
5380
5381 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
5382
5383 /* Obtain the current value. */
5384 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
5385
5386 /* Note that in the unshuffled MIPS16 encoding RX is at bits [21:19]
5387 while RY is at bits [18:16] of the combined 32-bit instruction word. */
5388 if (mips16_reloc_p (r_type)
5389 && (((x >> 22) & 0x3ff) == 0x3d3 /* LW */
5390 || ((x >> 22) & 0x3ff) == 0x3c7)) /* LD */
5391 x = (0x3cd << 22) | (x & (7 << 16)) << 3; /* LI */
5392 else if (micromips_reloc_p (r_type)
5393 && ((x >> 26) & 0x37) == 0x37) /* LW/LD */
5394 x = (0xc << 26) | (x & (0x1f << 21)); /* ADDIU */
5395 else if (((x >> 26) & 0x3f) == 0x23 /* LW */
5396 || ((x >> 26) & 0x3f) == 0x37) /* LD */
5397 x = (0x9 << 26) | (x & (0x1f << 16)); /* ADDIU */
5398 else
5399 nullified = FALSE;
5400
5401 /* Put the value into the output. */
5402 if (doit && nullified)
5403 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
5404
5405 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, FALSE, location);
5406
5407 return nullified;
5408 }
5409
5410 /* Calculate the value produced by the RELOCATION (which comes from
5411 the INPUT_BFD). The ADDEND is the addend to use for this
5412 RELOCATION; RELOCATION->R_ADDEND is ignored.
5413
5414 The result of the relocation calculation is stored in VALUEP.
5415 On exit, set *CROSS_MODE_JUMP_P to true if the relocation field
5416 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
5417
5418 This function returns bfd_reloc_continue if the caller need take no
5419 further action regarding this relocation, bfd_reloc_notsupported if
5420 something goes dramatically wrong, bfd_reloc_overflow if an
5421 overflow occurs, and bfd_reloc_ok to indicate success. */
5422
5423 static bfd_reloc_status_type
5424 mips_elf_calculate_relocation (bfd *abfd, bfd *input_bfd,
5425 asection *input_section, bfd_byte *contents,
5426 struct bfd_link_info *info,
5427 const Elf_Internal_Rela *relocation,
5428 bfd_vma addend, reloc_howto_type *howto,
5429 Elf_Internal_Sym *local_syms,
5430 asection **local_sections, bfd_vma *valuep,
5431 const char **namep,
5432 bfd_boolean *cross_mode_jump_p,
5433 bfd_boolean save_addend)
5434 {
5435 /* The eventual value we will return. */
5436 bfd_vma value;
5437 /* The address of the symbol against which the relocation is
5438 occurring. */
5439 bfd_vma symbol = 0;
5440 /* The final GP value to be used for the relocatable, executable, or
5441 shared object file being produced. */
5442 bfd_vma gp;
5443 /* The place (section offset or address) of the storage unit being
5444 relocated. */
5445 bfd_vma p;
5446 /* The value of GP used to create the relocatable object. */
5447 bfd_vma gp0;
5448 /* The offset into the global offset table at which the address of
5449 the relocation entry symbol, adjusted by the addend, resides
5450 during execution. */
5451 bfd_vma g = MINUS_ONE;
5452 /* The section in which the symbol referenced by the relocation is
5453 located. */
5454 asection *sec = NULL;
5455 struct mips_elf_link_hash_entry *h = NULL;
5456 /* TRUE if the symbol referred to by this relocation is a local
5457 symbol. */
5458 bfd_boolean local_p, was_local_p;
5459 /* TRUE if the symbol referred to by this relocation is a section
5460 symbol. */
5461 bfd_boolean section_p = FALSE;
5462 /* TRUE if the symbol referred to by this relocation is "_gp_disp". */
5463 bfd_boolean gp_disp_p = FALSE;
5464 /* TRUE if the symbol referred to by this relocation is
5465 "__gnu_local_gp". */
5466 bfd_boolean gnu_local_gp_p = FALSE;
5467 Elf_Internal_Shdr *symtab_hdr;
5468 size_t extsymoff;
5469 unsigned long r_symndx;
5470 int r_type;
5471 /* TRUE if overflow occurred during the calculation of the
5472 relocation value. */
5473 bfd_boolean overflowed_p;
5474 /* TRUE if this relocation refers to a MIPS16 function. */
5475 bfd_boolean target_is_16_bit_code_p = FALSE;
5476 bfd_boolean target_is_micromips_code_p = FALSE;
5477 struct mips_elf_link_hash_table *htab;
5478 bfd *dynobj;
5479 bfd_boolean resolved_to_zero;
5480
5481 dynobj = elf_hash_table (info)->dynobj;
5482 htab = mips_elf_hash_table (info);
5483 BFD_ASSERT (htab != NULL);
5484
5485 /* Parse the relocation. */
5486 r_symndx = ELF_R_SYM (input_bfd, relocation->r_info);
5487 r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
5488 p = (input_section->output_section->vma
5489 + input_section->output_offset
5490 + relocation->r_offset);
5491
5492 /* Assume that there will be no overflow. */
5493 overflowed_p = FALSE;
5494
5495 /* Figure out whether or not the symbol is local, and get the offset
5496 used in the array of hash table entries. */
5497 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
5498 local_p = mips_elf_local_relocation_p (input_bfd, relocation,
5499 local_sections);
5500 was_local_p = local_p;
5501 if (! elf_bad_symtab (input_bfd))
5502 extsymoff = symtab_hdr->sh_info;
5503 else
5504 {
5505 /* The symbol table does not follow the rule that local symbols
5506 must come before globals. */
5507 extsymoff = 0;
5508 }
5509
5510 /* Figure out the value of the symbol. */
5511 if (local_p)
5512 {
5513 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5514 Elf_Internal_Sym *sym;
5515
5516 sym = local_syms + r_symndx;
5517 sec = local_sections[r_symndx];
5518
5519 section_p = ELF_ST_TYPE (sym->st_info) == STT_SECTION;
5520
5521 symbol = sec->output_section->vma + sec->output_offset;
5522 if (!section_p || (sec->flags & SEC_MERGE))
5523 symbol += sym->st_value;
5524 if ((sec->flags & SEC_MERGE) && section_p)
5525 {
5526 addend = _bfd_elf_rel_local_sym (abfd, sym, &sec, addend);
5527 addend -= symbol;
5528 addend += sec->output_section->vma + sec->output_offset;
5529 }
5530
5531 /* MIPS16/microMIPS text labels should be treated as odd. */
5532 if (ELF_ST_IS_COMPRESSED (sym->st_other))
5533 ++symbol;
5534
5535 /* Record the name of this symbol, for our caller. */
5536 *namep = bfd_elf_string_from_elf_section (input_bfd,
5537 symtab_hdr->sh_link,
5538 sym->st_name);
5539 if (*namep == NULL || **namep == '\0')
5540 *namep = bfd_section_name (sec);
5541
5542 /* For relocations against a section symbol and ones against no
5543 symbol (absolute relocations) infer the ISA mode from the addend. */
5544 if (section_p || r_symndx == STN_UNDEF)
5545 {
5546 target_is_16_bit_code_p = (addend & 1) && !micromips_p;
5547 target_is_micromips_code_p = (addend & 1) && micromips_p;
5548 }
5549 /* For relocations against an absolute symbol infer the ISA mode
5550 from the value of the symbol plus addend. */
5551 else if (bfd_is_abs_section (sec))
5552 {
5553 target_is_16_bit_code_p = ((symbol + addend) & 1) && !micromips_p;
5554 target_is_micromips_code_p = ((symbol + addend) & 1) && micromips_p;
5555 }
5556 /* Otherwise just use the regular symbol annotation available. */
5557 else
5558 {
5559 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (sym->st_other);
5560 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (sym->st_other);
5561 }
5562 }
5563 else
5564 {
5565 /* ??? Could we use RELOC_FOR_GLOBAL_SYMBOL here ? */
5566
5567 /* For global symbols we look up the symbol in the hash-table. */
5568 h = ((struct mips_elf_link_hash_entry *)
5569 elf_sym_hashes (input_bfd) [r_symndx - extsymoff]);
5570 /* Find the real hash-table entry for this symbol. */
5571 while (h->root.root.type == bfd_link_hash_indirect
5572 || h->root.root.type == bfd_link_hash_warning)
5573 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
5574
5575 /* Record the name of this symbol, for our caller. */
5576 *namep = h->root.root.root.string;
5577
5578 /* See if this is the special _gp_disp symbol. Note that such a
5579 symbol must always be a global symbol. */
5580 if (strcmp (*namep, "_gp_disp") == 0
5581 && ! NEWABI_P (input_bfd))
5582 {
5583 /* Relocations against _gp_disp are permitted only with
5584 R_MIPS_HI16 and R_MIPS_LO16 relocations. */
5585 if (!hi16_reloc_p (r_type) && !lo16_reloc_p (r_type))
5586 return bfd_reloc_notsupported;
5587
5588 gp_disp_p = TRUE;
5589 }
5590 /* See if this is the special _gp symbol. Note that such a
5591 symbol must always be a global symbol. */
5592 else if (strcmp (*namep, "__gnu_local_gp") == 0)
5593 gnu_local_gp_p = TRUE;
5594
5595
5596 /* If this symbol is defined, calculate its address. Note that
5597 _gp_disp is a magic symbol, always implicitly defined by the
5598 linker, so it's inappropriate to check to see whether or not
5599 its defined. */
5600 else if ((h->root.root.type == bfd_link_hash_defined
5601 || h->root.root.type == bfd_link_hash_defweak)
5602 && h->root.root.u.def.section)
5603 {
5604 sec = h->root.root.u.def.section;
5605 if (sec->output_section)
5606 symbol = (h->root.root.u.def.value
5607 + sec->output_section->vma
5608 + sec->output_offset);
5609 else
5610 symbol = h->root.root.u.def.value;
5611 }
5612 else if (h->root.root.type == bfd_link_hash_undefweak)
5613 /* We allow relocations against undefined weak symbols, giving
5614 it the value zero, so that you can undefined weak functions
5615 and check to see if they exist by looking at their
5616 addresses. */
5617 symbol = 0;
5618 else if (info->unresolved_syms_in_objects == RM_IGNORE
5619 && ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT)
5620 symbol = 0;
5621 else if (strcmp (*namep, SGI_COMPAT (input_bfd)
5622 ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING") == 0)
5623 {
5624 /* If this is a dynamic link, we should have created a
5625 _DYNAMIC_LINK symbol or _DYNAMIC_LINKING(for normal mips) symbol
5626 in _bfd_mips_elf_create_dynamic_sections.
5627 Otherwise, we should define the symbol with a value of 0.
5628 FIXME: It should probably get into the symbol table
5629 somehow as well. */
5630 BFD_ASSERT (! bfd_link_pic (info));
5631 BFD_ASSERT (bfd_get_section_by_name (abfd, ".dynamic") == NULL);
5632 symbol = 0;
5633 }
5634 else if (ELF_MIPS_IS_OPTIONAL (h->root.other))
5635 {
5636 /* This is an optional symbol - an Irix specific extension to the
5637 ELF spec. Ignore it for now.
5638 XXX - FIXME - there is more to the spec for OPTIONAL symbols
5639 than simply ignoring them, but we do not handle this for now.
5640 For information see the "64-bit ELF Object File Specification"
5641 which is available from here:
5642 http://techpubs.sgi.com/library/manuals/4000/007-4658-001/pdf/007-4658-001.pdf */
5643 symbol = 0;
5644 }
5645 else
5646 {
5647 bfd_boolean reject_undefined
5648 = (info->unresolved_syms_in_objects == RM_GENERATE_ERROR
5649 || ELF_ST_VISIBILITY (h->root.other) != STV_DEFAULT);
5650
5651 (*info->callbacks->undefined_symbol)
5652 (info, h->root.root.root.string, input_bfd,
5653 input_section, relocation->r_offset, reject_undefined);
5654
5655 if (reject_undefined)
5656 return bfd_reloc_undefined;
5657
5658 symbol = 0;
5659 }
5660
5661 target_is_16_bit_code_p = ELF_ST_IS_MIPS16 (h->root.other);
5662 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (h->root.other);
5663 }
5664
5665 /* If this is a reference to a 16-bit function with a stub, we need
5666 to redirect the relocation to the stub unless:
5667
5668 (a) the relocation is for a MIPS16 JAL;
5669
5670 (b) the relocation is for a MIPS16 PIC call, and there are no
5671 non-MIPS16 uses of the GOT slot; or
5672
5673 (c) the section allows direct references to MIPS16 functions. */
5674 if (r_type != R_MIPS16_26
5675 && !bfd_link_relocatable (info)
5676 && ((h != NULL
5677 && h->fn_stub != NULL
5678 && (r_type != R_MIPS16_CALL16 || h->need_fn_stub))
5679 || (local_p
5680 && mips_elf_tdata (input_bfd)->local_stubs != NULL
5681 && mips_elf_tdata (input_bfd)->local_stubs[r_symndx] != NULL))
5682 && !section_allows_mips16_refs_p (input_section))
5683 {
5684 /* This is a 32- or 64-bit call to a 16-bit function. We should
5685 have already noticed that we were going to need the
5686 stub. */
5687 if (local_p)
5688 {
5689 sec = mips_elf_tdata (input_bfd)->local_stubs[r_symndx];
5690 value = 0;
5691 }
5692 else
5693 {
5694 BFD_ASSERT (h->need_fn_stub);
5695 if (h->la25_stub)
5696 {
5697 /* If a LA25 header for the stub itself exists, point to the
5698 prepended LUI/ADDIU sequence. */
5699 sec = h->la25_stub->stub_section;
5700 value = h->la25_stub->offset;
5701 }
5702 else
5703 {
5704 sec = h->fn_stub;
5705 value = 0;
5706 }
5707 }
5708
5709 symbol = sec->output_section->vma + sec->output_offset + value;
5710 /* The target is 16-bit, but the stub isn't. */
5711 target_is_16_bit_code_p = FALSE;
5712 }
5713 /* If this is a MIPS16 call with a stub, that is made through the PLT or
5714 to a standard MIPS function, we need to redirect the call to the stub.
5715 Note that we specifically exclude R_MIPS16_CALL16 from this behavior;
5716 indirect calls should use an indirect stub instead. */
5717 else if (r_type == R_MIPS16_26 && !bfd_link_relocatable (info)
5718 && ((h != NULL && (h->call_stub != NULL || h->call_fp_stub != NULL))
5719 || (local_p
5720 && mips_elf_tdata (input_bfd)->local_call_stubs != NULL
5721 && mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx] != NULL))
5722 && ((h != NULL && h->use_plt_entry) || !target_is_16_bit_code_p))
5723 {
5724 if (local_p)
5725 sec = mips_elf_tdata (input_bfd)->local_call_stubs[r_symndx];
5726 else
5727 {
5728 /* If both call_stub and call_fp_stub are defined, we can figure
5729 out which one to use by checking which one appears in the input
5730 file. */
5731 if (h->call_stub != NULL && h->call_fp_stub != NULL)
5732 {
5733 asection *o;
5734
5735 sec = NULL;
5736 for (o = input_bfd->sections; o != NULL; o = o->next)
5737 {
5738 if (CALL_FP_STUB_P (bfd_section_name (o)))
5739 {
5740 sec = h->call_fp_stub;
5741 break;
5742 }
5743 }
5744 if (sec == NULL)
5745 sec = h->call_stub;
5746 }
5747 else if (h->call_stub != NULL)
5748 sec = h->call_stub;
5749 else
5750 sec = h->call_fp_stub;
5751 }
5752
5753 BFD_ASSERT (sec->size > 0);
5754 symbol = sec->output_section->vma + sec->output_offset;
5755 }
5756 /* If this is a direct call to a PIC function, redirect to the
5757 non-PIC stub. */
5758 else if (h != NULL && h->la25_stub
5759 && mips_elf_relocation_needs_la25_stub (input_bfd, r_type,
5760 target_is_16_bit_code_p))
5761 {
5762 symbol = (h->la25_stub->stub_section->output_section->vma
5763 + h->la25_stub->stub_section->output_offset
5764 + h->la25_stub->offset);
5765 if (ELF_ST_IS_MICROMIPS (h->root.other))
5766 symbol |= 1;
5767 }
5768 /* For direct MIPS16 and microMIPS calls make sure the compressed PLT
5769 entry is used if a standard PLT entry has also been made. In this
5770 case the symbol will have been set by mips_elf_set_plt_sym_value
5771 to point to the standard PLT entry, so redirect to the compressed
5772 one. */
5773 else if ((mips16_branch_reloc_p (r_type)
5774 || micromips_branch_reloc_p (r_type))
5775 && !bfd_link_relocatable (info)
5776 && h != NULL
5777 && h->use_plt_entry
5778 && h->root.plt.plist->comp_offset != MINUS_ONE
5779 && h->root.plt.plist->mips_offset != MINUS_ONE)
5780 {
5781 bfd_boolean micromips_p = MICROMIPS_P (abfd);
5782
5783 sec = htab->root.splt;
5784 symbol = (sec->output_section->vma
5785 + sec->output_offset
5786 + htab->plt_header_size
5787 + htab->plt_mips_offset
5788 + h->root.plt.plist->comp_offset
5789 + 1);
5790
5791 target_is_16_bit_code_p = !micromips_p;
5792 target_is_micromips_code_p = micromips_p;
5793 }
5794
5795 /* Make sure MIPS16 and microMIPS are not used together. */
5796 if ((mips16_branch_reloc_p (r_type) && target_is_micromips_code_p)
5797 || (micromips_branch_reloc_p (r_type) && target_is_16_bit_code_p))
5798 {
5799 _bfd_error_handler
5800 (_("MIPS16 and microMIPS functions cannot call each other"));
5801 return bfd_reloc_notsupported;
5802 }
5803
5804 /* Calls from 16-bit code to 32-bit code and vice versa require the
5805 mode change. However, we can ignore calls to undefined weak symbols,
5806 which should never be executed at runtime. This exception is important
5807 because the assembly writer may have "known" that any definition of the
5808 symbol would be 16-bit code, and that direct jumps were therefore
5809 acceptable. */
5810 *cross_mode_jump_p = (!bfd_link_relocatable (info)
5811 && !(h && h->root.root.type == bfd_link_hash_undefweak)
5812 && ((mips16_branch_reloc_p (r_type)
5813 && !target_is_16_bit_code_p)
5814 || (micromips_branch_reloc_p (r_type)
5815 && !target_is_micromips_code_p)
5816 || ((branch_reloc_p (r_type)
5817 || r_type == R_MIPS_JALR)
5818 && (target_is_16_bit_code_p
5819 || target_is_micromips_code_p))));
5820
5821 resolved_to_zero = (h != NULL
5822 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, &h->root));
5823
5824 switch (r_type)
5825 {
5826 case R_MIPS16_CALL16:
5827 case R_MIPS16_GOT16:
5828 case R_MIPS_CALL16:
5829 case R_MIPS_GOT16:
5830 case R_MIPS_GOT_PAGE:
5831 case R_MIPS_GOT_DISP:
5832 case R_MIPS_GOT_LO16:
5833 case R_MIPS_CALL_LO16:
5834 case R_MICROMIPS_CALL16:
5835 case R_MICROMIPS_GOT16:
5836 case R_MICROMIPS_GOT_PAGE:
5837 case R_MICROMIPS_GOT_DISP:
5838 case R_MICROMIPS_GOT_LO16:
5839 case R_MICROMIPS_CALL_LO16:
5840 if (resolved_to_zero
5841 && !bfd_link_relocatable (info)
5842 && mips_elf_nullify_got_load (input_bfd, contents,
5843 relocation, howto, TRUE))
5844 return bfd_reloc_continue;
5845
5846 /* Fall through. */
5847 case R_MIPS_GOT_HI16:
5848 case R_MIPS_CALL_HI16:
5849 case R_MICROMIPS_GOT_HI16:
5850 case R_MICROMIPS_CALL_HI16:
5851 if (resolved_to_zero
5852 && htab->use_absolute_zero
5853 && bfd_link_pic (info))
5854 {
5855 /* Redirect to the special `__gnu_absolute_zero' symbol. */
5856 h = mips_elf_link_hash_lookup (htab, "__gnu_absolute_zero",
5857 FALSE, FALSE, FALSE);
5858 BFD_ASSERT (h != NULL);
5859 }
5860 break;
5861 }
5862
5863 local_p = (h == NULL || mips_use_local_got_p (info, h));
5864
5865 gp0 = _bfd_get_gp_value (input_bfd);
5866 gp = _bfd_get_gp_value (abfd);
5867 if (htab->got_info)
5868 gp += mips_elf_adjust_gp (abfd, htab->got_info, input_bfd);
5869
5870 if (gnu_local_gp_p)
5871 symbol = gp;
5872
5873 /* Global R_MIPS_GOT_PAGE/R_MICROMIPS_GOT_PAGE relocations are equivalent
5874 to R_MIPS_GOT_DISP/R_MICROMIPS_GOT_DISP. The addend is applied by the
5875 corresponding R_MIPS_GOT_OFST/R_MICROMIPS_GOT_OFST. */
5876 if (got_page_reloc_p (r_type) && !local_p)
5877 {
5878 r_type = (micromips_reloc_p (r_type)
5879 ? R_MICROMIPS_GOT_DISP : R_MIPS_GOT_DISP);
5880 addend = 0;
5881 }
5882
5883 /* If we haven't already determined the GOT offset, and we're going
5884 to need it, get it now. */
5885 switch (r_type)
5886 {
5887 case R_MIPS16_CALL16:
5888 case R_MIPS16_GOT16:
5889 case R_MIPS_CALL16:
5890 case R_MIPS_GOT16:
5891 case R_MIPS_GOT_DISP:
5892 case R_MIPS_GOT_HI16:
5893 case R_MIPS_CALL_HI16:
5894 case R_MIPS_GOT_LO16:
5895 case R_MIPS_CALL_LO16:
5896 case R_MICROMIPS_CALL16:
5897 case R_MICROMIPS_GOT16:
5898 case R_MICROMIPS_GOT_DISP:
5899 case R_MICROMIPS_GOT_HI16:
5900 case R_MICROMIPS_CALL_HI16:
5901 case R_MICROMIPS_GOT_LO16:
5902 case R_MICROMIPS_CALL_LO16:
5903 case R_MIPS_TLS_GD:
5904 case R_MIPS_TLS_GOTTPREL:
5905 case R_MIPS_TLS_LDM:
5906 case R_MIPS16_TLS_GD:
5907 case R_MIPS16_TLS_GOTTPREL:
5908 case R_MIPS16_TLS_LDM:
5909 case R_MICROMIPS_TLS_GD:
5910 case R_MICROMIPS_TLS_GOTTPREL:
5911 case R_MICROMIPS_TLS_LDM:
5912 /* Find the index into the GOT where this value is located. */
5913 if (tls_ldm_reloc_p (r_type))
5914 {
5915 g = mips_elf_local_got_index (abfd, input_bfd, info,
5916 0, 0, NULL, r_type);
5917 if (g == MINUS_ONE)
5918 return bfd_reloc_outofrange;
5919 }
5920 else if (!local_p)
5921 {
5922 /* On VxWorks, CALL relocations should refer to the .got.plt
5923 entry, which is initialized to point at the PLT stub. */
5924 if (htab->is_vxworks
5925 && (call_hi16_reloc_p (r_type)
5926 || call_lo16_reloc_p (r_type)
5927 || call16_reloc_p (r_type)))
5928 {
5929 BFD_ASSERT (addend == 0);
5930 BFD_ASSERT (h->root.needs_plt);
5931 g = mips_elf_gotplt_index (info, &h->root);
5932 }
5933 else
5934 {
5935 BFD_ASSERT (addend == 0);
5936 g = mips_elf_global_got_index (abfd, info, input_bfd,
5937 &h->root, r_type);
5938 if (!TLS_RELOC_P (r_type)
5939 && !elf_hash_table (info)->dynamic_sections_created)
5940 /* This is a static link. We must initialize the GOT entry. */
5941 MIPS_ELF_PUT_WORD (dynobj, symbol, htab->root.sgot->contents + g);
5942 }
5943 }
5944 else if (!htab->is_vxworks
5945 && (call16_reloc_p (r_type) || got16_reloc_p (r_type)))
5946 /* The calculation below does not involve "g". */
5947 break;
5948 else
5949 {
5950 g = mips_elf_local_got_index (abfd, input_bfd, info,
5951 symbol + addend, r_symndx, h, r_type);
5952 if (g == MINUS_ONE)
5953 return bfd_reloc_outofrange;
5954 }
5955
5956 /* Convert GOT indices to actual offsets. */
5957 g = mips_elf_got_offset_from_index (info, abfd, input_bfd, g);
5958 break;
5959 }
5960
5961 /* Relocations against the VxWorks __GOTT_BASE__ and __GOTT_INDEX__
5962 symbols are resolved by the loader. Add them to .rela.dyn. */
5963 if (h != NULL && is_gott_symbol (info, &h->root))
5964 {
5965 Elf_Internal_Rela outrel;
5966 bfd_byte *loc;
5967 asection *s;
5968
5969 s = mips_elf_rel_dyn_section (info, FALSE);
5970 loc = s->contents + s->reloc_count++ * sizeof (Elf32_External_Rela);
5971
5972 outrel.r_offset = (input_section->output_section->vma
5973 + input_section->output_offset
5974 + relocation->r_offset);
5975 outrel.r_info = ELF32_R_INFO (h->root.dynindx, r_type);
5976 outrel.r_addend = addend;
5977 bfd_elf32_swap_reloca_out (abfd, &outrel, loc);
5978
5979 /* If we've written this relocation for a readonly section,
5980 we need to set DF_TEXTREL again, so that we do not delete the
5981 DT_TEXTREL tag. */
5982 if (MIPS_ELF_READONLY_SECTION (input_section))
5983 info->flags |= DF_TEXTREL;
5984
5985 *valuep = 0;
5986 return bfd_reloc_ok;
5987 }
5988
5989 /* Figure out what kind of relocation is being performed. */
5990 switch (r_type)
5991 {
5992 case R_MIPS_NONE:
5993 return bfd_reloc_continue;
5994
5995 case R_MIPS_16:
5996 if (howto->partial_inplace)
5997 addend = _bfd_mips_elf_sign_extend (addend, 16);
5998 value = symbol + addend;
5999 overflowed_p = mips_elf_overflow_p (value, 16);
6000 break;
6001
6002 case R_MIPS_32:
6003 case R_MIPS_REL32:
6004 case R_MIPS_64:
6005 if ((bfd_link_pic (info)
6006 || (htab->root.dynamic_sections_created
6007 && h != NULL
6008 && h->root.def_dynamic
6009 && !h->root.def_regular
6010 && !h->has_static_relocs))
6011 && r_symndx != STN_UNDEF
6012 && (h == NULL
6013 || h->root.root.type != bfd_link_hash_undefweak
6014 || (ELF_ST_VISIBILITY (h->root.other) == STV_DEFAULT
6015 && !resolved_to_zero))
6016 && (input_section->flags & SEC_ALLOC) != 0)
6017 {
6018 /* If we're creating a shared library, then we can't know
6019 where the symbol will end up. So, we create a relocation
6020 record in the output, and leave the job up to the dynamic
6021 linker. We must do the same for executable references to
6022 shared library symbols, unless we've decided to use copy
6023 relocs or PLTs instead. */
6024 value = addend;
6025 if (!mips_elf_create_dynamic_relocation (abfd,
6026 info,
6027 relocation,
6028 h,
6029 sec,
6030 symbol,
6031 &value,
6032 input_section))
6033 return bfd_reloc_undefined;
6034 }
6035 else
6036 {
6037 if (r_type != R_MIPS_REL32)
6038 value = symbol + addend;
6039 else
6040 value = addend;
6041 }
6042 value &= howto->dst_mask;
6043 break;
6044
6045 case R_MIPS_PC32:
6046 value = symbol + addend - p;
6047 value &= howto->dst_mask;
6048 break;
6049
6050 case R_MIPS16_26:
6051 /* The calculation for R_MIPS16_26 is just the same as for an
6052 R_MIPS_26. It's only the storage of the relocated field into
6053 the output file that's different. That's handled in
6054 mips_elf_perform_relocation. So, we just fall through to the
6055 R_MIPS_26 case here. */
6056 case R_MIPS_26:
6057 case R_MICROMIPS_26_S1:
6058 {
6059 unsigned int shift;
6060
6061 /* Shift is 2, unusually, for microMIPS JALX. */
6062 shift = (!*cross_mode_jump_p && r_type == R_MICROMIPS_26_S1) ? 1 : 2;
6063
6064 if (howto->partial_inplace && !section_p)
6065 value = _bfd_mips_elf_sign_extend (addend, 26 + shift);
6066 else
6067 value = addend;
6068 value += symbol;
6069
6070 /* Make sure the target of a jump is suitably aligned. Bit 0 must
6071 be the correct ISA mode selector except for weak undefined
6072 symbols. */
6073 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6074 && (*cross_mode_jump_p
6075 ? (value & 3) != (r_type == R_MIPS_26)
6076 : (value & ((1 << shift) - 1)) != (r_type != R_MIPS_26)))
6077 return bfd_reloc_outofrange;
6078
6079 value >>= shift;
6080 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6081 overflowed_p = (value >> 26) != ((p + 4) >> (26 + shift));
6082 value &= howto->dst_mask;
6083 }
6084 break;
6085
6086 case R_MIPS_TLS_DTPREL_HI16:
6087 case R_MIPS16_TLS_DTPREL_HI16:
6088 case R_MICROMIPS_TLS_DTPREL_HI16:
6089 value = (mips_elf_high (addend + symbol - dtprel_base (info))
6090 & howto->dst_mask);
6091 break;
6092
6093 case R_MIPS_TLS_DTPREL_LO16:
6094 case R_MIPS_TLS_DTPREL32:
6095 case R_MIPS_TLS_DTPREL64:
6096 case R_MIPS16_TLS_DTPREL_LO16:
6097 case R_MICROMIPS_TLS_DTPREL_LO16:
6098 value = (symbol + addend - dtprel_base (info)) & howto->dst_mask;
6099 break;
6100
6101 case R_MIPS_TLS_TPREL_HI16:
6102 case R_MIPS16_TLS_TPREL_HI16:
6103 case R_MICROMIPS_TLS_TPREL_HI16:
6104 value = (mips_elf_high (addend + symbol - tprel_base (info))
6105 & howto->dst_mask);
6106 break;
6107
6108 case R_MIPS_TLS_TPREL_LO16:
6109 case R_MIPS_TLS_TPREL32:
6110 case R_MIPS_TLS_TPREL64:
6111 case R_MIPS16_TLS_TPREL_LO16:
6112 case R_MICROMIPS_TLS_TPREL_LO16:
6113 value = (symbol + addend - tprel_base (info)) & howto->dst_mask;
6114 break;
6115
6116 case R_MIPS_HI16:
6117 case R_MIPS16_HI16:
6118 case R_MICROMIPS_HI16:
6119 if (!gp_disp_p)
6120 {
6121 value = mips_elf_high (addend + symbol);
6122 value &= howto->dst_mask;
6123 }
6124 else
6125 {
6126 /* For MIPS16 ABI code we generate this sequence
6127 0: li $v0,%hi(_gp_disp)
6128 4: addiupc $v1,%lo(_gp_disp)
6129 8: sll $v0,16
6130 12: addu $v0,$v1
6131 14: move $gp,$v0
6132 So the offsets of hi and lo relocs are the same, but the
6133 base $pc is that used by the ADDIUPC instruction at $t9 + 4.
6134 ADDIUPC clears the low two bits of the instruction address,
6135 so the base is ($t9 + 4) & ~3. */
6136 if (r_type == R_MIPS16_HI16)
6137 value = mips_elf_high (addend + gp - ((p + 4) & ~(bfd_vma) 0x3));
6138 /* The microMIPS .cpload sequence uses the same assembly
6139 instructions as the traditional psABI version, but the
6140 incoming $t9 has the low bit set. */
6141 else if (r_type == R_MICROMIPS_HI16)
6142 value = mips_elf_high (addend + gp - p - 1);
6143 else
6144 value = mips_elf_high (addend + gp - p);
6145 }
6146 break;
6147
6148 case R_MIPS_LO16:
6149 case R_MIPS16_LO16:
6150 case R_MICROMIPS_LO16:
6151 case R_MICROMIPS_HI0_LO16:
6152 if (!gp_disp_p)
6153 value = (symbol + addend) & howto->dst_mask;
6154 else
6155 {
6156 /* See the comment for R_MIPS16_HI16 above for the reason
6157 for this conditional. */
6158 if (r_type == R_MIPS16_LO16)
6159 value = addend + gp - (p & ~(bfd_vma) 0x3);
6160 else if (r_type == R_MICROMIPS_LO16
6161 || r_type == R_MICROMIPS_HI0_LO16)
6162 value = addend + gp - p + 3;
6163 else
6164 value = addend + gp - p + 4;
6165 /* The MIPS ABI requires checking the R_MIPS_LO16 relocation
6166 for overflow. But, on, say, IRIX5, relocations against
6167 _gp_disp are normally generated from the .cpload
6168 pseudo-op. It generates code that normally looks like
6169 this:
6170
6171 lui $gp,%hi(_gp_disp)
6172 addiu $gp,$gp,%lo(_gp_disp)
6173 addu $gp,$gp,$t9
6174
6175 Here $t9 holds the address of the function being called,
6176 as required by the MIPS ELF ABI. The R_MIPS_LO16
6177 relocation can easily overflow in this situation, but the
6178 R_MIPS_HI16 relocation will handle the overflow.
6179 Therefore, we consider this a bug in the MIPS ABI, and do
6180 not check for overflow here. */
6181 }
6182 break;
6183
6184 case R_MIPS_LITERAL:
6185 case R_MICROMIPS_LITERAL:
6186 /* Because we don't merge literal sections, we can handle this
6187 just like R_MIPS_GPREL16. In the long run, we should merge
6188 shared literals, and then we will need to additional work
6189 here. */
6190
6191 /* Fall through. */
6192
6193 case R_MIPS16_GPREL:
6194 /* The R_MIPS16_GPREL performs the same calculation as
6195 R_MIPS_GPREL16, but stores the relocated bits in a different
6196 order. We don't need to do anything special here; the
6197 differences are handled in mips_elf_perform_relocation. */
6198 case R_MIPS_GPREL16:
6199 case R_MICROMIPS_GPREL7_S2:
6200 case R_MICROMIPS_GPREL16:
6201 /* Only sign-extend the addend if it was extracted from the
6202 instruction. If the addend was separate, leave it alone,
6203 otherwise we may lose significant bits. */
6204 if (howto->partial_inplace)
6205 addend = _bfd_mips_elf_sign_extend (addend, 16);
6206 value = symbol + addend - gp;
6207 /* If the symbol was local, any earlier relocatable links will
6208 have adjusted its addend with the gp offset, so compensate
6209 for that now. Don't do it for symbols forced local in this
6210 link, though, since they won't have had the gp offset applied
6211 to them before. */
6212 if (was_local_p)
6213 value += gp0;
6214 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6215 overflowed_p = mips_elf_overflow_p (value, 16);
6216 break;
6217
6218 case R_MIPS16_GOT16:
6219 case R_MIPS16_CALL16:
6220 case R_MIPS_GOT16:
6221 case R_MIPS_CALL16:
6222 case R_MICROMIPS_GOT16:
6223 case R_MICROMIPS_CALL16:
6224 /* VxWorks does not have separate local and global semantics for
6225 R_MIPS*_GOT16; every relocation evaluates to "G". */
6226 if (!htab->is_vxworks && local_p)
6227 {
6228 value = mips_elf_got16_entry (abfd, input_bfd, info,
6229 symbol + addend, !was_local_p);
6230 if (value == MINUS_ONE)
6231 return bfd_reloc_outofrange;
6232 value
6233 = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6234 overflowed_p = mips_elf_overflow_p (value, 16);
6235 break;
6236 }
6237
6238 /* Fall through. */
6239
6240 case R_MIPS_TLS_GD:
6241 case R_MIPS_TLS_GOTTPREL:
6242 case R_MIPS_TLS_LDM:
6243 case R_MIPS_GOT_DISP:
6244 case R_MIPS16_TLS_GD:
6245 case R_MIPS16_TLS_GOTTPREL:
6246 case R_MIPS16_TLS_LDM:
6247 case R_MICROMIPS_TLS_GD:
6248 case R_MICROMIPS_TLS_GOTTPREL:
6249 case R_MICROMIPS_TLS_LDM:
6250 case R_MICROMIPS_GOT_DISP:
6251 value = g;
6252 overflowed_p = mips_elf_overflow_p (value, 16);
6253 break;
6254
6255 case R_MIPS_GPREL32:
6256 value = (addend + symbol + gp0 - gp);
6257 if (!save_addend)
6258 value &= howto->dst_mask;
6259 break;
6260
6261 case R_MIPS_PC16:
6262 case R_MIPS_GNU_REL16_S2:
6263 if (howto->partial_inplace)
6264 addend = _bfd_mips_elf_sign_extend (addend, 18);
6265
6266 /* No need to exclude weak undefined symbols here as they resolve
6267 to 0 and never set `*cross_mode_jump_p', so this alignment check
6268 will never trigger for them. */
6269 if (*cross_mode_jump_p
6270 ? ((symbol + addend) & 3) != 1
6271 : ((symbol + addend) & 3) != 0)
6272 return bfd_reloc_outofrange;
6273
6274 value = symbol + addend - p;
6275 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6276 overflowed_p = mips_elf_overflow_p (value, 18);
6277 value >>= howto->rightshift;
6278 value &= howto->dst_mask;
6279 break;
6280
6281 case R_MIPS16_PC16_S1:
6282 if (howto->partial_inplace)
6283 addend = _bfd_mips_elf_sign_extend (addend, 17);
6284
6285 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6286 && (*cross_mode_jump_p
6287 ? ((symbol + addend) & 3) != 0
6288 : ((symbol + addend) & 1) == 0))
6289 return bfd_reloc_outofrange;
6290
6291 value = symbol + addend - p;
6292 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6293 overflowed_p = mips_elf_overflow_p (value, 17);
6294 value >>= howto->rightshift;
6295 value &= howto->dst_mask;
6296 break;
6297
6298 case R_MIPS_PC21_S2:
6299 if (howto->partial_inplace)
6300 addend = _bfd_mips_elf_sign_extend (addend, 23);
6301
6302 if ((symbol + addend) & 3)
6303 return bfd_reloc_outofrange;
6304
6305 value = symbol + addend - p;
6306 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6307 overflowed_p = mips_elf_overflow_p (value, 23);
6308 value >>= howto->rightshift;
6309 value &= howto->dst_mask;
6310 break;
6311
6312 case R_MIPS_PC26_S2:
6313 if (howto->partial_inplace)
6314 addend = _bfd_mips_elf_sign_extend (addend, 28);
6315
6316 if ((symbol + addend) & 3)
6317 return bfd_reloc_outofrange;
6318
6319 value = symbol + addend - p;
6320 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6321 overflowed_p = mips_elf_overflow_p (value, 28);
6322 value >>= howto->rightshift;
6323 value &= howto->dst_mask;
6324 break;
6325
6326 case R_MIPS_PC18_S3:
6327 if (howto->partial_inplace)
6328 addend = _bfd_mips_elf_sign_extend (addend, 21);
6329
6330 if ((symbol + addend) & 7)
6331 return bfd_reloc_outofrange;
6332
6333 value = symbol + addend - ((p | 7) ^ 7);
6334 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6335 overflowed_p = mips_elf_overflow_p (value, 21);
6336 value >>= howto->rightshift;
6337 value &= howto->dst_mask;
6338 break;
6339
6340 case R_MIPS_PC19_S2:
6341 if (howto->partial_inplace)
6342 addend = _bfd_mips_elf_sign_extend (addend, 21);
6343
6344 if ((symbol + addend) & 3)
6345 return bfd_reloc_outofrange;
6346
6347 value = symbol + addend - p;
6348 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6349 overflowed_p = mips_elf_overflow_p (value, 21);
6350 value >>= howto->rightshift;
6351 value &= howto->dst_mask;
6352 break;
6353
6354 case R_MIPS_PCHI16:
6355 value = mips_elf_high (symbol + addend - p);
6356 value &= howto->dst_mask;
6357 break;
6358
6359 case R_MIPS_PCLO16:
6360 if (howto->partial_inplace)
6361 addend = _bfd_mips_elf_sign_extend (addend, 16);
6362 value = symbol + addend - p;
6363 value &= howto->dst_mask;
6364 break;
6365
6366 case R_MICROMIPS_PC7_S1:
6367 if (howto->partial_inplace)
6368 addend = _bfd_mips_elf_sign_extend (addend, 8);
6369
6370 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6371 && (*cross_mode_jump_p
6372 ? ((symbol + addend + 2) & 3) != 0
6373 : ((symbol + addend + 2) & 1) == 0))
6374 return bfd_reloc_outofrange;
6375
6376 value = symbol + addend - p;
6377 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6378 overflowed_p = mips_elf_overflow_p (value, 8);
6379 value >>= howto->rightshift;
6380 value &= howto->dst_mask;
6381 break;
6382
6383 case R_MICROMIPS_PC10_S1:
6384 if (howto->partial_inplace)
6385 addend = _bfd_mips_elf_sign_extend (addend, 11);
6386
6387 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6388 && (*cross_mode_jump_p
6389 ? ((symbol + addend + 2) & 3) != 0
6390 : ((symbol + addend + 2) & 1) == 0))
6391 return bfd_reloc_outofrange;
6392
6393 value = symbol + addend - p;
6394 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6395 overflowed_p = mips_elf_overflow_p (value, 11);
6396 value >>= howto->rightshift;
6397 value &= howto->dst_mask;
6398 break;
6399
6400 case R_MICROMIPS_PC16_S1:
6401 if (howto->partial_inplace)
6402 addend = _bfd_mips_elf_sign_extend (addend, 17);
6403
6404 if ((was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6405 && (*cross_mode_jump_p
6406 ? ((symbol + addend) & 3) != 0
6407 : ((symbol + addend) & 1) == 0))
6408 return bfd_reloc_outofrange;
6409
6410 value = symbol + addend - p;
6411 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6412 overflowed_p = mips_elf_overflow_p (value, 17);
6413 value >>= howto->rightshift;
6414 value &= howto->dst_mask;
6415 break;
6416
6417 case R_MICROMIPS_PC23_S2:
6418 if (howto->partial_inplace)
6419 addend = _bfd_mips_elf_sign_extend (addend, 25);
6420 value = symbol + addend - ((p | 3) ^ 3);
6421 if (was_local_p || h->root.root.type != bfd_link_hash_undefweak)
6422 overflowed_p = mips_elf_overflow_p (value, 25);
6423 value >>= howto->rightshift;
6424 value &= howto->dst_mask;
6425 break;
6426
6427 case R_MIPS_GOT_HI16:
6428 case R_MIPS_CALL_HI16:
6429 case R_MICROMIPS_GOT_HI16:
6430 case R_MICROMIPS_CALL_HI16:
6431 /* We're allowed to handle these two relocations identically.
6432 The dynamic linker is allowed to handle the CALL relocations
6433 differently by creating a lazy evaluation stub. */
6434 value = g;
6435 value = mips_elf_high (value);
6436 value &= howto->dst_mask;
6437 break;
6438
6439 case R_MIPS_GOT_LO16:
6440 case R_MIPS_CALL_LO16:
6441 case R_MICROMIPS_GOT_LO16:
6442 case R_MICROMIPS_CALL_LO16:
6443 value = g & howto->dst_mask;
6444 break;
6445
6446 case R_MIPS_GOT_PAGE:
6447 case R_MICROMIPS_GOT_PAGE:
6448 value = mips_elf_got_page (abfd, input_bfd, info, symbol + addend, NULL);
6449 if (value == MINUS_ONE)
6450 return bfd_reloc_outofrange;
6451 value = mips_elf_got_offset_from_index (info, abfd, input_bfd, value);
6452 overflowed_p = mips_elf_overflow_p (value, 16);
6453 break;
6454
6455 case R_MIPS_GOT_OFST:
6456 case R_MICROMIPS_GOT_OFST:
6457 if (local_p)
6458 mips_elf_got_page (abfd, input_bfd, info, symbol + addend, &value);
6459 else
6460 value = addend;
6461 overflowed_p = mips_elf_overflow_p (value, 16);
6462 break;
6463
6464 case R_MIPS_SUB:
6465 case R_MICROMIPS_SUB:
6466 value = symbol - addend;
6467 value &= howto->dst_mask;
6468 break;
6469
6470 case R_MIPS_HIGHER:
6471 case R_MICROMIPS_HIGHER:
6472 value = mips_elf_higher (addend + symbol);
6473 value &= howto->dst_mask;
6474 break;
6475
6476 case R_MIPS_HIGHEST:
6477 case R_MICROMIPS_HIGHEST:
6478 value = mips_elf_highest (addend + symbol);
6479 value &= howto->dst_mask;
6480 break;
6481
6482 case R_MIPS_SCN_DISP:
6483 case R_MICROMIPS_SCN_DISP:
6484 value = symbol + addend - sec->output_offset;
6485 value &= howto->dst_mask;
6486 break;
6487
6488 case R_MIPS_JALR:
6489 case R_MICROMIPS_JALR:
6490 /* This relocation is only a hint. In some cases, we optimize
6491 it into a bal instruction. But we don't try to optimize
6492 when the symbol does not resolve locally. */
6493 if (h != NULL && !SYMBOL_CALLS_LOCAL (info, &h->root))
6494 return bfd_reloc_continue;
6495 /* We can't optimize cross-mode jumps either. */
6496 if (*cross_mode_jump_p)
6497 return bfd_reloc_continue;
6498 value = symbol + addend;
6499 /* Neither we can non-instruction-aligned targets. */
6500 if (r_type == R_MIPS_JALR ? (value & 3) != 0 : (value & 1) == 0)
6501 return bfd_reloc_continue;
6502 break;
6503
6504 case R_MIPS_PJUMP:
6505 case R_MIPS_GNU_VTINHERIT:
6506 case R_MIPS_GNU_VTENTRY:
6507 /* We don't do anything with these at present. */
6508 return bfd_reloc_continue;
6509
6510 default:
6511 /* An unrecognized relocation type. */
6512 return bfd_reloc_notsupported;
6513 }
6514
6515 /* Store the VALUE for our caller. */
6516 *valuep = value;
6517 return overflowed_p ? bfd_reloc_overflow : bfd_reloc_ok;
6518 }
6519
6520 /* It has been determined that the result of the RELOCATION is the
6521 VALUE. Use HOWTO to place VALUE into the output file at the
6522 appropriate position. The SECTION is the section to which the
6523 relocation applies.
6524 CROSS_MODE_JUMP_P is true if the relocation field
6525 is a MIPS16 or microMIPS jump to standard MIPS code, or vice versa.
6526
6527 Returns FALSE if anything goes wrong. */
6528
6529 static bfd_boolean
6530 mips_elf_perform_relocation (struct bfd_link_info *info,
6531 reloc_howto_type *howto,
6532 const Elf_Internal_Rela *relocation,
6533 bfd_vma value, bfd *input_bfd,
6534 asection *input_section, bfd_byte *contents,
6535 bfd_boolean cross_mode_jump_p)
6536 {
6537 bfd_vma x;
6538 bfd_byte *location;
6539 int r_type = ELF_R_TYPE (input_bfd, relocation->r_info);
6540
6541 /* Figure out where the relocation is occurring. */
6542 location = contents + relocation->r_offset;
6543
6544 _bfd_mips_elf_reloc_unshuffle (input_bfd, r_type, FALSE, location);
6545
6546 /* Obtain the current value. */
6547 x = mips_elf_obtain_contents (howto, relocation, input_bfd, contents);
6548
6549 /* Clear the field we are setting. */
6550 x &= ~howto->dst_mask;
6551
6552 /* Set the field. */
6553 x |= (value & howto->dst_mask);
6554
6555 /* Detect incorrect JALX usage. If required, turn JAL or BAL into JALX. */
6556 if (!cross_mode_jump_p && jal_reloc_p (r_type))
6557 {
6558 bfd_vma opcode = x >> 26;
6559
6560 if (r_type == R_MIPS16_26 ? opcode == 0x7
6561 : r_type == R_MICROMIPS_26_S1 ? opcode == 0x3c
6562 : opcode == 0x1d)
6563 {
6564 info->callbacks->einfo
6565 (_("%X%H: unsupported JALX to the same ISA mode\n"),
6566 input_bfd, input_section, relocation->r_offset);
6567 return TRUE;
6568 }
6569 }
6570 if (cross_mode_jump_p && jal_reloc_p (r_type))
6571 {
6572 bfd_boolean ok;
6573 bfd_vma opcode = x >> 26;
6574 bfd_vma jalx_opcode;
6575
6576 /* Check to see if the opcode is already JAL or JALX. */
6577 if (r_type == R_MIPS16_26)
6578 {
6579 ok = ((opcode == 0x6) || (opcode == 0x7));
6580 jalx_opcode = 0x7;
6581 }
6582 else if (r_type == R_MICROMIPS_26_S1)
6583 {
6584 ok = ((opcode == 0x3d) || (opcode == 0x3c));
6585 jalx_opcode = 0x3c;
6586 }
6587 else
6588 {
6589 ok = ((opcode == 0x3) || (opcode == 0x1d));
6590 jalx_opcode = 0x1d;
6591 }
6592
6593 /* If the opcode is not JAL or JALX, there's a problem. We cannot
6594 convert J or JALS to JALX. */
6595 if (!ok)
6596 {
6597 info->callbacks->einfo
6598 (_("%X%H: unsupported jump between ISA modes; "
6599 "consider recompiling with interlinking enabled\n"),
6600 input_bfd, input_section, relocation->r_offset);
6601 return TRUE;
6602 }
6603
6604 /* Make this the JALX opcode. */
6605 x = (x & ~(0x3fu << 26)) | (jalx_opcode << 26);
6606 }
6607 else if (cross_mode_jump_p && b_reloc_p (r_type))
6608 {
6609 bfd_boolean ok = FALSE;
6610 bfd_vma opcode = x >> 16;
6611 bfd_vma jalx_opcode = 0;
6612 bfd_vma sign_bit = 0;
6613 bfd_vma addr;
6614 bfd_vma dest;
6615
6616 if (r_type == R_MICROMIPS_PC16_S1)
6617 {
6618 ok = opcode == 0x4060;
6619 jalx_opcode = 0x3c;
6620 sign_bit = 0x10000;
6621 value <<= 1;
6622 }
6623 else if (r_type == R_MIPS_PC16 || r_type == R_MIPS_GNU_REL16_S2)
6624 {
6625 ok = opcode == 0x411;
6626 jalx_opcode = 0x1d;
6627 sign_bit = 0x20000;
6628 value <<= 2;
6629 }
6630
6631 if (ok && !bfd_link_pic (info))
6632 {
6633 addr = (input_section->output_section->vma
6634 + input_section->output_offset
6635 + relocation->r_offset
6636 + 4);
6637 dest = (addr
6638 + (((value & ((sign_bit << 1) - 1)) ^ sign_bit) - sign_bit));
6639
6640 if ((addr >> 28) << 28 != (dest >> 28) << 28)
6641 {
6642 info->callbacks->einfo
6643 (_("%X%H: cannot convert branch between ISA modes "
6644 "to JALX: relocation out of range\n"),
6645 input_bfd, input_section, relocation->r_offset);
6646 return TRUE;
6647 }
6648
6649 /* Make this the JALX opcode. */
6650 x = ((dest >> 2) & 0x3ffffff) | jalx_opcode << 26;
6651 }
6652 else if (!mips_elf_hash_table (info)->ignore_branch_isa)
6653 {
6654 info->callbacks->einfo
6655 (_("%X%H: unsupported branch between ISA modes\n"),
6656 input_bfd, input_section, relocation->r_offset);
6657 return TRUE;
6658 }
6659 }
6660
6661 /* Try converting JAL to BAL and J(AL)R to B(AL), if the target is in
6662 range. */
6663 if (!bfd_link_relocatable (info)
6664 && !cross_mode_jump_p
6665 && ((JAL_TO_BAL_P (input_bfd)
6666 && r_type == R_MIPS_26
6667 && (x >> 26) == 0x3) /* jal addr */
6668 || (JALR_TO_BAL_P (input_bfd)
6669 && r_type == R_MIPS_JALR
6670 && x == 0x0320f809) /* jalr t9 */
6671 || (JR_TO_B_P (input_bfd)
6672 && r_type == R_MIPS_JALR
6673 && (x & ~1) == 0x03200008))) /* jr t9 / jalr zero, t9 */
6674 {
6675 bfd_vma addr;
6676 bfd_vma dest;
6677 bfd_signed_vma off;
6678
6679 addr = (input_section->output_section->vma
6680 + input_section->output_offset
6681 + relocation->r_offset
6682 + 4);
6683 if (r_type == R_MIPS_26)
6684 dest = (value << 2) | ((addr >> 28) << 28);
6685 else
6686 dest = value;
6687 off = dest - addr;
6688 if (off <= 0x1ffff && off >= -0x20000)
6689 {
6690 if ((x & ~1) == 0x03200008) /* jr t9 / jalr zero, t9 */
6691 x = 0x10000000 | (((bfd_vma) off >> 2) & 0xffff); /* b addr */
6692 else
6693 x = 0x04110000 | (((bfd_vma) off >> 2) & 0xffff); /* bal addr */
6694 }
6695 }
6696
6697 /* Put the value into the output. */
6698 mips_elf_store_contents (howto, relocation, input_bfd, contents, x);
6699
6700 _bfd_mips_elf_reloc_shuffle (input_bfd, r_type, !bfd_link_relocatable (info),
6701 location);
6702
6703 return TRUE;
6704 }
6705 \f
6706 /* Create a rel.dyn relocation for the dynamic linker to resolve. REL
6707 is the original relocation, which is now being transformed into a
6708 dynamic relocation. The ADDENDP is adjusted if necessary; the
6709 caller should store the result in place of the original addend. */
6710
6711 static bfd_boolean
6712 mips_elf_create_dynamic_relocation (bfd *output_bfd,
6713 struct bfd_link_info *info,
6714 const Elf_Internal_Rela *rel,
6715 struct mips_elf_link_hash_entry *h,
6716 asection *sec, bfd_vma symbol,
6717 bfd_vma *addendp, asection *input_section)
6718 {
6719 Elf_Internal_Rela outrel[3];
6720 asection *sreloc;
6721 bfd *dynobj;
6722 int r_type;
6723 long indx;
6724 bfd_boolean defined_p;
6725 struct mips_elf_link_hash_table *htab;
6726
6727 htab = mips_elf_hash_table (info);
6728 BFD_ASSERT (htab != NULL);
6729
6730 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
6731 dynobj = elf_hash_table (info)->dynobj;
6732 sreloc = mips_elf_rel_dyn_section (info, FALSE);
6733 BFD_ASSERT (sreloc != NULL);
6734 BFD_ASSERT (sreloc->contents != NULL);
6735 BFD_ASSERT (sreloc->reloc_count * MIPS_ELF_REL_SIZE (output_bfd)
6736 < sreloc->size);
6737
6738 outrel[0].r_offset =
6739 _bfd_elf_section_offset (output_bfd, info, input_section, rel[0].r_offset);
6740 if (ABI_64_P (output_bfd))
6741 {
6742 outrel[1].r_offset =
6743 _bfd_elf_section_offset (output_bfd, info, input_section, rel[1].r_offset);
6744 outrel[2].r_offset =
6745 _bfd_elf_section_offset (output_bfd, info, input_section, rel[2].r_offset);
6746 }
6747
6748 if (outrel[0].r_offset == MINUS_ONE)
6749 /* The relocation field has been deleted. */
6750 return TRUE;
6751
6752 if (outrel[0].r_offset == MINUS_TWO)
6753 {
6754 /* The relocation field has been converted into a relative value of
6755 some sort. Functions like _bfd_elf_write_section_eh_frame expect
6756 the field to be fully relocated, so add in the symbol's value. */
6757 *addendp += symbol;
6758 return TRUE;
6759 }
6760
6761 /* We must now calculate the dynamic symbol table index to use
6762 in the relocation. */
6763 if (h != NULL && ! SYMBOL_REFERENCES_LOCAL (info, &h->root))
6764 {
6765 BFD_ASSERT (htab->is_vxworks || h->global_got_area != GGA_NONE);
6766 indx = h->root.dynindx;
6767 if (SGI_COMPAT (output_bfd))
6768 defined_p = h->root.def_regular;
6769 else
6770 /* ??? glibc's ld.so just adds the final GOT entry to the
6771 relocation field. It therefore treats relocs against
6772 defined symbols in the same way as relocs against
6773 undefined symbols. */
6774 defined_p = FALSE;
6775 }
6776 else
6777 {
6778 if (sec != NULL && bfd_is_abs_section (sec))
6779 indx = 0;
6780 else if (sec == NULL || sec->owner == NULL)
6781 {
6782 bfd_set_error (bfd_error_bad_value);
6783 return FALSE;
6784 }
6785 else
6786 {
6787 indx = elf_section_data (sec->output_section)->dynindx;
6788 if (indx == 0)
6789 {
6790 asection *osec = htab->root.text_index_section;
6791 indx = elf_section_data (osec)->dynindx;
6792 }
6793 if (indx == 0)
6794 abort ();
6795 }
6796
6797 /* Instead of generating a relocation using the section
6798 symbol, we may as well make it a fully relative
6799 relocation. We want to avoid generating relocations to
6800 local symbols because we used to generate them
6801 incorrectly, without adding the original symbol value,
6802 which is mandated by the ABI for section symbols. In
6803 order to give dynamic loaders and applications time to
6804 phase out the incorrect use, we refrain from emitting
6805 section-relative relocations. It's not like they're
6806 useful, after all. This should be a bit more efficient
6807 as well. */
6808 /* ??? Although this behavior is compatible with glibc's ld.so,
6809 the ABI says that relocations against STN_UNDEF should have
6810 a symbol value of 0. Irix rld honors this, so relocations
6811 against STN_UNDEF have no effect. */
6812 if (!SGI_COMPAT (output_bfd))
6813 indx = 0;
6814 defined_p = TRUE;
6815 }
6816
6817 /* If the relocation was previously an absolute relocation and
6818 this symbol will not be referred to by the relocation, we must
6819 adjust it by the value we give it in the dynamic symbol table.
6820 Otherwise leave the job up to the dynamic linker. */
6821 if (defined_p && r_type != R_MIPS_REL32)
6822 *addendp += symbol;
6823
6824 if (htab->is_vxworks)
6825 /* VxWorks uses non-relative relocations for this. */
6826 outrel[0].r_info = ELF32_R_INFO (indx, R_MIPS_32);
6827 else
6828 /* The relocation is always an REL32 relocation because we don't
6829 know where the shared library will wind up at load-time. */
6830 outrel[0].r_info = ELF_R_INFO (output_bfd, (unsigned long) indx,
6831 R_MIPS_REL32);
6832
6833 /* For strict adherence to the ABI specification, we should
6834 generate a R_MIPS_64 relocation record by itself before the
6835 _REL32/_64 record as well, such that the addend is read in as
6836 a 64-bit value (REL32 is a 32-bit relocation, after all).
6837 However, since none of the existing ELF64 MIPS dynamic
6838 loaders seems to care, we don't waste space with these
6839 artificial relocations. If this turns out to not be true,
6840 mips_elf_allocate_dynamic_relocation() should be tweaked so
6841 as to make room for a pair of dynamic relocations per
6842 invocation if ABI_64_P, and here we should generate an
6843 additional relocation record with R_MIPS_64 by itself for a
6844 NULL symbol before this relocation record. */
6845 outrel[1].r_info = ELF_R_INFO (output_bfd, 0,
6846 ABI_64_P (output_bfd)
6847 ? R_MIPS_64
6848 : R_MIPS_NONE);
6849 outrel[2].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_NONE);
6850
6851 /* Adjust the output offset of the relocation to reference the
6852 correct location in the output file. */
6853 outrel[0].r_offset += (input_section->output_section->vma
6854 + input_section->output_offset);
6855 outrel[1].r_offset += (input_section->output_section->vma
6856 + input_section->output_offset);
6857 outrel[2].r_offset += (input_section->output_section->vma
6858 + input_section->output_offset);
6859
6860 /* Put the relocation back out. We have to use the special
6861 relocation outputter in the 64-bit case since the 64-bit
6862 relocation format is non-standard. */
6863 if (ABI_64_P (output_bfd))
6864 {
6865 (*get_elf_backend_data (output_bfd)->s->swap_reloc_out)
6866 (output_bfd, &outrel[0],
6867 (sreloc->contents
6868 + sreloc->reloc_count * sizeof (Elf64_Mips_External_Rel)));
6869 }
6870 else if (htab->is_vxworks)
6871 {
6872 /* VxWorks uses RELA rather than REL dynamic relocations. */
6873 outrel[0].r_addend = *addendp;
6874 bfd_elf32_swap_reloca_out
6875 (output_bfd, &outrel[0],
6876 (sreloc->contents
6877 + sreloc->reloc_count * sizeof (Elf32_External_Rela)));
6878 }
6879 else
6880 bfd_elf32_swap_reloc_out
6881 (output_bfd, &outrel[0],
6882 (sreloc->contents + sreloc->reloc_count * sizeof (Elf32_External_Rel)));
6883
6884 /* We've now added another relocation. */
6885 ++sreloc->reloc_count;
6886
6887 /* Make sure the output section is writable. The dynamic linker
6888 will be writing to it. */
6889 elf_section_data (input_section->output_section)->this_hdr.sh_flags
6890 |= SHF_WRITE;
6891
6892 /* On IRIX5, make an entry of compact relocation info. */
6893 if (IRIX_COMPAT (output_bfd) == ict_irix5)
6894 {
6895 asection *scpt = bfd_get_linker_section (dynobj, ".compact_rel");
6896 bfd_byte *cr;
6897
6898 if (scpt)
6899 {
6900 Elf32_crinfo cptrel;
6901
6902 mips_elf_set_cr_format (cptrel, CRF_MIPS_LONG);
6903 cptrel.vaddr = (rel->r_offset
6904 + input_section->output_section->vma
6905 + input_section->output_offset);
6906 if (r_type == R_MIPS_REL32)
6907 mips_elf_set_cr_type (cptrel, CRT_MIPS_REL32);
6908 else
6909 mips_elf_set_cr_type (cptrel, CRT_MIPS_WORD);
6910 mips_elf_set_cr_dist2to (cptrel, 0);
6911 cptrel.konst = *addendp;
6912
6913 cr = (scpt->contents
6914 + sizeof (Elf32_External_compact_rel));
6915 mips_elf_set_cr_relvaddr (cptrel, 0);
6916 bfd_elf32_swap_crinfo_out (output_bfd, &cptrel,
6917 ((Elf32_External_crinfo *) cr
6918 + scpt->reloc_count));
6919 ++scpt->reloc_count;
6920 }
6921 }
6922
6923 /* If we've written this relocation for a readonly section,
6924 we need to set DF_TEXTREL again, so that we do not delete the
6925 DT_TEXTREL tag. */
6926 if (MIPS_ELF_READONLY_SECTION (input_section))
6927 info->flags |= DF_TEXTREL;
6928
6929 return TRUE;
6930 }
6931 \f
6932 /* Return the MACH for a MIPS e_flags value. */
6933
6934 unsigned long
6935 _bfd_elf_mips_mach (flagword flags)
6936 {
6937 switch (flags & EF_MIPS_MACH)
6938 {
6939 case E_MIPS_MACH_3900:
6940 return bfd_mach_mips3900;
6941
6942 case E_MIPS_MACH_4010:
6943 return bfd_mach_mips4010;
6944
6945 case E_MIPS_MACH_4100:
6946 return bfd_mach_mips4100;
6947
6948 case E_MIPS_MACH_4111:
6949 return bfd_mach_mips4111;
6950
6951 case E_MIPS_MACH_4120:
6952 return bfd_mach_mips4120;
6953
6954 case E_MIPS_MACH_4650:
6955 return bfd_mach_mips4650;
6956
6957 case E_MIPS_MACH_5400:
6958 return bfd_mach_mips5400;
6959
6960 case E_MIPS_MACH_5500:
6961 return bfd_mach_mips5500;
6962
6963 case E_MIPS_MACH_5900:
6964 return bfd_mach_mips5900;
6965
6966 case E_MIPS_MACH_9000:
6967 return bfd_mach_mips9000;
6968
6969 case E_MIPS_MACH_SB1:
6970 return bfd_mach_mips_sb1;
6971
6972 case E_MIPS_MACH_LS2E:
6973 return bfd_mach_mips_loongson_2e;
6974
6975 case E_MIPS_MACH_LS2F:
6976 return bfd_mach_mips_loongson_2f;
6977
6978 case E_MIPS_MACH_GS464:
6979 return bfd_mach_mips_gs464;
6980
6981 case E_MIPS_MACH_GS464E:
6982 return bfd_mach_mips_gs464e;
6983
6984 case E_MIPS_MACH_GS264E:
6985 return bfd_mach_mips_gs264e;
6986
6987 case E_MIPS_MACH_OCTEON3:
6988 return bfd_mach_mips_octeon3;
6989
6990 case E_MIPS_MACH_OCTEON2:
6991 return bfd_mach_mips_octeon2;
6992
6993 case E_MIPS_MACH_OCTEON:
6994 return bfd_mach_mips_octeon;
6995
6996 case E_MIPS_MACH_XLR:
6997 return bfd_mach_mips_xlr;
6998
6999 case E_MIPS_MACH_IAMR2:
7000 return bfd_mach_mips_interaptiv_mr2;
7001
7002 default:
7003 switch (flags & EF_MIPS_ARCH)
7004 {
7005 default:
7006 case E_MIPS_ARCH_1:
7007 return bfd_mach_mips3000;
7008
7009 case E_MIPS_ARCH_2:
7010 return bfd_mach_mips6000;
7011
7012 case E_MIPS_ARCH_3:
7013 return bfd_mach_mips4000;
7014
7015 case E_MIPS_ARCH_4:
7016 return bfd_mach_mips8000;
7017
7018 case E_MIPS_ARCH_5:
7019 return bfd_mach_mips5;
7020
7021 case E_MIPS_ARCH_32:
7022 return bfd_mach_mipsisa32;
7023
7024 case E_MIPS_ARCH_64:
7025 return bfd_mach_mipsisa64;
7026
7027 case E_MIPS_ARCH_32R2:
7028 return bfd_mach_mipsisa32r2;
7029
7030 case E_MIPS_ARCH_64R2:
7031 return bfd_mach_mipsisa64r2;
7032
7033 case E_MIPS_ARCH_32R6:
7034 return bfd_mach_mipsisa32r6;
7035
7036 case E_MIPS_ARCH_64R6:
7037 return bfd_mach_mipsisa64r6;
7038 }
7039 }
7040
7041 return 0;
7042 }
7043
7044 /* Return printable name for ABI. */
7045
7046 static INLINE char *
7047 elf_mips_abi_name (bfd *abfd)
7048 {
7049 flagword flags;
7050
7051 flags = elf_elfheader (abfd)->e_flags;
7052 switch (flags & EF_MIPS_ABI)
7053 {
7054 case 0:
7055 if (ABI_N32_P (abfd))
7056 return "N32";
7057 else if (ABI_64_P (abfd))
7058 return "64";
7059 else
7060 return "none";
7061 case E_MIPS_ABI_O32:
7062 return "O32";
7063 case E_MIPS_ABI_O64:
7064 return "O64";
7065 case E_MIPS_ABI_EABI32:
7066 return "EABI32";
7067 case E_MIPS_ABI_EABI64:
7068 return "EABI64";
7069 default:
7070 return "unknown abi";
7071 }
7072 }
7073 \f
7074 /* MIPS ELF uses two common sections. One is the usual one, and the
7075 other is for small objects. All the small objects are kept
7076 together, and then referenced via the gp pointer, which yields
7077 faster assembler code. This is what we use for the small common
7078 section. This approach is copied from ecoff.c. */
7079 static asection mips_elf_scom_section;
7080 static asymbol mips_elf_scom_symbol;
7081 static asymbol *mips_elf_scom_symbol_ptr;
7082
7083 /* MIPS ELF also uses an acommon section, which represents an
7084 allocated common symbol which may be overridden by a
7085 definition in a shared library. */
7086 static asection mips_elf_acom_section;
7087 static asymbol mips_elf_acom_symbol;
7088 static asymbol *mips_elf_acom_symbol_ptr;
7089
7090 /* This is used for both the 32-bit and the 64-bit ABI. */
7091
7092 void
7093 _bfd_mips_elf_symbol_processing (bfd *abfd, asymbol *asym)
7094 {
7095 elf_symbol_type *elfsym;
7096
7097 /* Handle the special MIPS section numbers that a symbol may use. */
7098 elfsym = (elf_symbol_type *) asym;
7099 switch (elfsym->internal_elf_sym.st_shndx)
7100 {
7101 case SHN_MIPS_ACOMMON:
7102 /* This section is used in a dynamically linked executable file.
7103 It is an allocated common section. The dynamic linker can
7104 either resolve these symbols to something in a shared
7105 library, or it can just leave them here. For our purposes,
7106 we can consider these symbols to be in a new section. */
7107 if (mips_elf_acom_section.name == NULL)
7108 {
7109 /* Initialize the acommon section. */
7110 mips_elf_acom_section.name = ".acommon";
7111 mips_elf_acom_section.flags = SEC_ALLOC;
7112 mips_elf_acom_section.output_section = &mips_elf_acom_section;
7113 mips_elf_acom_section.symbol = &mips_elf_acom_symbol;
7114 mips_elf_acom_section.symbol_ptr_ptr = &mips_elf_acom_symbol_ptr;
7115 mips_elf_acom_symbol.name = ".acommon";
7116 mips_elf_acom_symbol.flags = BSF_SECTION_SYM;
7117 mips_elf_acom_symbol.section = &mips_elf_acom_section;
7118 mips_elf_acom_symbol_ptr = &mips_elf_acom_symbol;
7119 }
7120 asym->section = &mips_elf_acom_section;
7121 break;
7122
7123 case SHN_COMMON:
7124 /* Common symbols less than the GP size are automatically
7125 treated as SHN_MIPS_SCOMMON symbols on IRIX5. */
7126 if (asym->value > elf_gp_size (abfd)
7127 || ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_TLS
7128 || IRIX_COMPAT (abfd) == ict_irix6)
7129 break;
7130 /* Fall through. */
7131 case SHN_MIPS_SCOMMON:
7132 if (mips_elf_scom_section.name == NULL)
7133 {
7134 /* Initialize the small common section. */
7135 mips_elf_scom_section.name = ".scommon";
7136 mips_elf_scom_section.flags = SEC_IS_COMMON;
7137 mips_elf_scom_section.output_section = &mips_elf_scom_section;
7138 mips_elf_scom_section.symbol = &mips_elf_scom_symbol;
7139 mips_elf_scom_section.symbol_ptr_ptr = &mips_elf_scom_symbol_ptr;
7140 mips_elf_scom_symbol.name = ".scommon";
7141 mips_elf_scom_symbol.flags = BSF_SECTION_SYM;
7142 mips_elf_scom_symbol.section = &mips_elf_scom_section;
7143 mips_elf_scom_symbol_ptr = &mips_elf_scom_symbol;
7144 }
7145 asym->section = &mips_elf_scom_section;
7146 asym->value = elfsym->internal_elf_sym.st_size;
7147 break;
7148
7149 case SHN_MIPS_SUNDEFINED:
7150 asym->section = bfd_und_section_ptr;
7151 break;
7152
7153 case SHN_MIPS_TEXT:
7154 {
7155 asection *section = bfd_get_section_by_name (abfd, ".text");
7156
7157 if (section != NULL)
7158 {
7159 asym->section = section;
7160 /* MIPS_TEXT is a bit special, the address is not an offset
7161 to the base of the .text section. So subtract the section
7162 base address to make it an offset. */
7163 asym->value -= section->vma;
7164 }
7165 }
7166 break;
7167
7168 case SHN_MIPS_DATA:
7169 {
7170 asection *section = bfd_get_section_by_name (abfd, ".data");
7171
7172 if (section != NULL)
7173 {
7174 asym->section = section;
7175 /* MIPS_DATA is a bit special, the address is not an offset
7176 to the base of the .data section. So subtract the section
7177 base address to make it an offset. */
7178 asym->value -= section->vma;
7179 }
7180 }
7181 break;
7182 }
7183
7184 /* If this is an odd-valued function symbol, assume it's a MIPS16
7185 or microMIPS one. */
7186 if (ELF_ST_TYPE (elfsym->internal_elf_sym.st_info) == STT_FUNC
7187 && (asym->value & 1) != 0)
7188 {
7189 asym->value--;
7190 if (MICROMIPS_P (abfd))
7191 elfsym->internal_elf_sym.st_other
7192 = ELF_ST_SET_MICROMIPS (elfsym->internal_elf_sym.st_other);
7193 else
7194 elfsym->internal_elf_sym.st_other
7195 = ELF_ST_SET_MIPS16 (elfsym->internal_elf_sym.st_other);
7196 }
7197 }
7198 \f
7199 /* Implement elf_backend_eh_frame_address_size. This differs from
7200 the default in the way it handles EABI64.
7201
7202 EABI64 was originally specified as an LP64 ABI, and that is what
7203 -mabi=eabi normally gives on a 64-bit target. However, gcc has
7204 historically accepted the combination of -mabi=eabi and -mlong32,
7205 and this ILP32 variation has become semi-official over time.
7206 Both forms use elf32 and have pointer-sized FDE addresses.
7207
7208 If an EABI object was generated by GCC 4.0 or above, it will have
7209 an empty .gcc_compiled_longXX section, where XX is the size of longs
7210 in bits. Unfortunately, ILP32 objects generated by earlier compilers
7211 have no special marking to distinguish them from LP64 objects.
7212
7213 We don't want users of the official LP64 ABI to be punished for the
7214 existence of the ILP32 variant, but at the same time, we don't want
7215 to mistakenly interpret pre-4.0 ILP32 objects as being LP64 objects.
7216 We therefore take the following approach:
7217
7218 - If ABFD contains a .gcc_compiled_longXX section, use it to
7219 determine the pointer size.
7220
7221 - Otherwise check the type of the first relocation. Assume that
7222 the LP64 ABI is being used if the relocation is of type R_MIPS_64.
7223
7224 - Otherwise punt.
7225
7226 The second check is enough to detect LP64 objects generated by pre-4.0
7227 compilers because, in the kind of output generated by those compilers,
7228 the first relocation will be associated with either a CIE personality
7229 routine or an FDE start address. Furthermore, the compilers never
7230 used a special (non-pointer) encoding for this ABI.
7231
7232 Checking the relocation type should also be safe because there is no
7233 reason to use R_MIPS_64 in an ILP32 object. Pre-4.0 compilers never
7234 did so. */
7235
7236 unsigned int
7237 _bfd_mips_elf_eh_frame_address_size (bfd *abfd, const asection *sec)
7238 {
7239 if (elf_elfheader (abfd)->e_ident[EI_CLASS] == ELFCLASS64)
7240 return 8;
7241 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
7242 {
7243 bfd_boolean long32_p, long64_p;
7244
7245 long32_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long32") != 0;
7246 long64_p = bfd_get_section_by_name (abfd, ".gcc_compiled_long64") != 0;
7247 if (long32_p && long64_p)
7248 return 0;
7249 if (long32_p)
7250 return 4;
7251 if (long64_p)
7252 return 8;
7253
7254 if (sec->reloc_count > 0
7255 && elf_section_data (sec)->relocs != NULL
7256 && (ELF32_R_TYPE (elf_section_data (sec)->relocs[0].r_info)
7257 == R_MIPS_64))
7258 return 8;
7259
7260 return 0;
7261 }
7262 return 4;
7263 }
7264 \f
7265 /* There appears to be a bug in the MIPSpro linker that causes GOT_DISP
7266 relocations against two unnamed section symbols to resolve to the
7267 same address. For example, if we have code like:
7268
7269 lw $4,%got_disp(.data)($gp)
7270 lw $25,%got_disp(.text)($gp)
7271 jalr $25
7272
7273 then the linker will resolve both relocations to .data and the program
7274 will jump there rather than to .text.
7275
7276 We can work around this problem by giving names to local section symbols.
7277 This is also what the MIPSpro tools do. */
7278
7279 bfd_boolean
7280 _bfd_mips_elf_name_local_section_symbols (bfd *abfd)
7281 {
7282 return SGI_COMPAT (abfd);
7283 }
7284 \f
7285 /* Work over a section just before writing it out. This routine is
7286 used by both the 32-bit and the 64-bit ABI. FIXME: We recognize
7287 sections that need the SHF_MIPS_GPREL flag by name; there has to be
7288 a better way. */
7289
7290 bfd_boolean
7291 _bfd_mips_elf_section_processing (bfd *abfd, Elf_Internal_Shdr *hdr)
7292 {
7293 if (hdr->sh_type == SHT_MIPS_REGINFO
7294 && hdr->sh_size > 0)
7295 {
7296 bfd_byte buf[4];
7297
7298 BFD_ASSERT (hdr->contents == NULL);
7299
7300 if (hdr->sh_size != sizeof (Elf32_External_RegInfo))
7301 {
7302 _bfd_error_handler
7303 (_("%pB: incorrect `.reginfo' section size; "
7304 "expected %" PRIu64 ", got %" PRIu64),
7305 abfd, (uint64_t) sizeof (Elf32_External_RegInfo),
7306 (uint64_t) hdr->sh_size);
7307 bfd_set_error (bfd_error_bad_value);
7308 return FALSE;
7309 }
7310
7311 if (bfd_seek (abfd,
7312 hdr->sh_offset + sizeof (Elf32_External_RegInfo) - 4,
7313 SEEK_SET) != 0)
7314 return FALSE;
7315 H_PUT_32 (abfd, elf_gp (abfd), buf);
7316 if (bfd_bwrite (buf, 4, abfd) != 4)
7317 return FALSE;
7318 }
7319
7320 if (hdr->sh_type == SHT_MIPS_OPTIONS
7321 && hdr->bfd_section != NULL
7322 && mips_elf_section_data (hdr->bfd_section) != NULL
7323 && mips_elf_section_data (hdr->bfd_section)->u.tdata != NULL)
7324 {
7325 bfd_byte *contents, *l, *lend;
7326
7327 /* We stored the section contents in the tdata field in the
7328 set_section_contents routine. We save the section contents
7329 so that we don't have to read them again.
7330 At this point we know that elf_gp is set, so we can look
7331 through the section contents to see if there is an
7332 ODK_REGINFO structure. */
7333
7334 contents = mips_elf_section_data (hdr->bfd_section)->u.tdata;
7335 l = contents;
7336 lend = contents + hdr->sh_size;
7337 while (l + sizeof (Elf_External_Options) <= lend)
7338 {
7339 Elf_Internal_Options intopt;
7340
7341 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7342 &intopt);
7343 if (intopt.size < sizeof (Elf_External_Options))
7344 {
7345 _bfd_error_handler
7346 /* xgettext:c-format */
7347 (_("%pB: warning: bad `%s' option size %u smaller than"
7348 " its header"),
7349 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7350 break;
7351 }
7352 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7353 {
7354 bfd_byte buf[8];
7355
7356 if (bfd_seek (abfd,
7357 (hdr->sh_offset
7358 + (l - contents)
7359 + sizeof (Elf_External_Options)
7360 + (sizeof (Elf64_External_RegInfo) - 8)),
7361 SEEK_SET) != 0)
7362 return FALSE;
7363 H_PUT_64 (abfd, elf_gp (abfd), buf);
7364 if (bfd_bwrite (buf, 8, abfd) != 8)
7365 return FALSE;
7366 }
7367 else if (intopt.kind == ODK_REGINFO)
7368 {
7369 bfd_byte buf[4];
7370
7371 if (bfd_seek (abfd,
7372 (hdr->sh_offset
7373 + (l - contents)
7374 + sizeof (Elf_External_Options)
7375 + (sizeof (Elf32_External_RegInfo) - 4)),
7376 SEEK_SET) != 0)
7377 return FALSE;
7378 H_PUT_32 (abfd, elf_gp (abfd), buf);
7379 if (bfd_bwrite (buf, 4, abfd) != 4)
7380 return FALSE;
7381 }
7382 l += intopt.size;
7383 }
7384 }
7385
7386 if (hdr->bfd_section != NULL)
7387 {
7388 const char *name = bfd_section_name (hdr->bfd_section);
7389
7390 /* .sbss is not handled specially here because the GNU/Linux
7391 prelinker can convert .sbss from NOBITS to PROGBITS and
7392 changing it back to NOBITS breaks the binary. The entry in
7393 _bfd_mips_elf_special_sections will ensure the correct flags
7394 are set on .sbss if BFD creates it without reading it from an
7395 input file, and without special handling here the flags set
7396 on it in an input file will be followed. */
7397 if (strcmp (name, ".sdata") == 0
7398 || strcmp (name, ".lit8") == 0
7399 || strcmp (name, ".lit4") == 0)
7400 hdr->sh_flags |= SHF_ALLOC | SHF_WRITE | SHF_MIPS_GPREL;
7401 else if (strcmp (name, ".srdata") == 0)
7402 hdr->sh_flags |= SHF_ALLOC | SHF_MIPS_GPREL;
7403 else if (strcmp (name, ".compact_rel") == 0)
7404 hdr->sh_flags = 0;
7405 else if (strcmp (name, ".rtproc") == 0)
7406 {
7407 if (hdr->sh_addralign != 0 && hdr->sh_entsize == 0)
7408 {
7409 unsigned int adjust;
7410
7411 adjust = hdr->sh_size % hdr->sh_addralign;
7412 if (adjust != 0)
7413 hdr->sh_size += hdr->sh_addralign - adjust;
7414 }
7415 }
7416 }
7417
7418 return TRUE;
7419 }
7420
7421 /* Handle a MIPS specific section when reading an object file. This
7422 is called when elfcode.h finds a section with an unknown type.
7423 This routine supports both the 32-bit and 64-bit ELF ABI.
7424
7425 FIXME: We need to handle the SHF_MIPS_GPREL flag, but I'm not sure
7426 how to. */
7427
7428 bfd_boolean
7429 _bfd_mips_elf_section_from_shdr (bfd *abfd,
7430 Elf_Internal_Shdr *hdr,
7431 const char *name,
7432 int shindex)
7433 {
7434 flagword flags = 0;
7435
7436 /* There ought to be a place to keep ELF backend specific flags, but
7437 at the moment there isn't one. We just keep track of the
7438 sections by their name, instead. Fortunately, the ABI gives
7439 suggested names for all the MIPS specific sections, so we will
7440 probably get away with this. */
7441 switch (hdr->sh_type)
7442 {
7443 case SHT_MIPS_LIBLIST:
7444 if (strcmp (name, ".liblist") != 0)
7445 return FALSE;
7446 break;
7447 case SHT_MIPS_MSYM:
7448 if (strcmp (name, ".msym") != 0)
7449 return FALSE;
7450 break;
7451 case SHT_MIPS_CONFLICT:
7452 if (strcmp (name, ".conflict") != 0)
7453 return FALSE;
7454 break;
7455 case SHT_MIPS_GPTAB:
7456 if (! CONST_STRNEQ (name, ".gptab."))
7457 return FALSE;
7458 break;
7459 case SHT_MIPS_UCODE:
7460 if (strcmp (name, ".ucode") != 0)
7461 return FALSE;
7462 break;
7463 case SHT_MIPS_DEBUG:
7464 if (strcmp (name, ".mdebug") != 0)
7465 return FALSE;
7466 flags = SEC_DEBUGGING;
7467 break;
7468 case SHT_MIPS_REGINFO:
7469 if (strcmp (name, ".reginfo") != 0
7470 || hdr->sh_size != sizeof (Elf32_External_RegInfo))
7471 return FALSE;
7472 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7473 break;
7474 case SHT_MIPS_IFACE:
7475 if (strcmp (name, ".MIPS.interfaces") != 0)
7476 return FALSE;
7477 break;
7478 case SHT_MIPS_CONTENT:
7479 if (! CONST_STRNEQ (name, ".MIPS.content"))
7480 return FALSE;
7481 break;
7482 case SHT_MIPS_OPTIONS:
7483 if (!MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7484 return FALSE;
7485 break;
7486 case SHT_MIPS_ABIFLAGS:
7487 if (!MIPS_ELF_ABIFLAGS_SECTION_NAME_P (name))
7488 return FALSE;
7489 flags = (SEC_LINK_ONCE | SEC_LINK_DUPLICATES_SAME_SIZE);
7490 break;
7491 case SHT_MIPS_DWARF:
7492 if (! CONST_STRNEQ (name, ".debug_")
7493 && ! CONST_STRNEQ (name, ".zdebug_"))
7494 return FALSE;
7495 break;
7496 case SHT_MIPS_SYMBOL_LIB:
7497 if (strcmp (name, ".MIPS.symlib") != 0)
7498 return FALSE;
7499 break;
7500 case SHT_MIPS_EVENTS:
7501 if (! CONST_STRNEQ (name, ".MIPS.events")
7502 && ! CONST_STRNEQ (name, ".MIPS.post_rel"))
7503 return FALSE;
7504 break;
7505 case SHT_MIPS_XHASH:
7506 if (strcmp (name, ".MIPS.xhash") != 0)
7507 return FALSE;
7508 default:
7509 break;
7510 }
7511
7512 if (! _bfd_elf_make_section_from_shdr (abfd, hdr, name, shindex))
7513 return FALSE;
7514
7515 if (flags)
7516 {
7517 if (!bfd_set_section_flags (hdr->bfd_section,
7518 (bfd_section_flags (hdr->bfd_section)
7519 | flags)))
7520 return FALSE;
7521 }
7522
7523 if (hdr->sh_type == SHT_MIPS_ABIFLAGS)
7524 {
7525 Elf_External_ABIFlags_v0 ext;
7526
7527 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7528 &ext, 0, sizeof ext))
7529 return FALSE;
7530 bfd_mips_elf_swap_abiflags_v0_in (abfd, &ext,
7531 &mips_elf_tdata (abfd)->abiflags);
7532 if (mips_elf_tdata (abfd)->abiflags.version != 0)
7533 return FALSE;
7534 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
7535 }
7536
7537 /* FIXME: We should record sh_info for a .gptab section. */
7538
7539 /* For a .reginfo section, set the gp value in the tdata information
7540 from the contents of this section. We need the gp value while
7541 processing relocs, so we just get it now. The .reginfo section
7542 is not used in the 64-bit MIPS ELF ABI. */
7543 if (hdr->sh_type == SHT_MIPS_REGINFO)
7544 {
7545 Elf32_External_RegInfo ext;
7546 Elf32_RegInfo s;
7547
7548 if (! bfd_get_section_contents (abfd, hdr->bfd_section,
7549 &ext, 0, sizeof ext))
7550 return FALSE;
7551 bfd_mips_elf32_swap_reginfo_in (abfd, &ext, &s);
7552 elf_gp (abfd) = s.ri_gp_value;
7553 }
7554
7555 /* For a SHT_MIPS_OPTIONS section, look for a ODK_REGINFO entry, and
7556 set the gp value based on what we find. We may see both
7557 SHT_MIPS_REGINFO and SHT_MIPS_OPTIONS/ODK_REGINFO; in that case,
7558 they should agree. */
7559 if (hdr->sh_type == SHT_MIPS_OPTIONS)
7560 {
7561 bfd_byte *contents, *l, *lend;
7562
7563 contents = bfd_malloc (hdr->sh_size);
7564 if (contents == NULL)
7565 return FALSE;
7566 if (! bfd_get_section_contents (abfd, hdr->bfd_section, contents,
7567 0, hdr->sh_size))
7568 {
7569 free (contents);
7570 return FALSE;
7571 }
7572 l = contents;
7573 lend = contents + hdr->sh_size;
7574 while (l + sizeof (Elf_External_Options) <= lend)
7575 {
7576 Elf_Internal_Options intopt;
7577
7578 bfd_mips_elf_swap_options_in (abfd, (Elf_External_Options *) l,
7579 &intopt);
7580 if (intopt.size < sizeof (Elf_External_Options))
7581 {
7582 _bfd_error_handler
7583 /* xgettext:c-format */
7584 (_("%pB: warning: bad `%s' option size %u smaller than"
7585 " its header"),
7586 abfd, MIPS_ELF_OPTIONS_SECTION_NAME (abfd), intopt.size);
7587 break;
7588 }
7589 if (ABI_64_P (abfd) && intopt.kind == ODK_REGINFO)
7590 {
7591 Elf64_Internal_RegInfo intreg;
7592
7593 bfd_mips_elf64_swap_reginfo_in
7594 (abfd,
7595 ((Elf64_External_RegInfo *)
7596 (l + sizeof (Elf_External_Options))),
7597 &intreg);
7598 elf_gp (abfd) = intreg.ri_gp_value;
7599 }
7600 else if (intopt.kind == ODK_REGINFO)
7601 {
7602 Elf32_RegInfo intreg;
7603
7604 bfd_mips_elf32_swap_reginfo_in
7605 (abfd,
7606 ((Elf32_External_RegInfo *)
7607 (l + sizeof (Elf_External_Options))),
7608 &intreg);
7609 elf_gp (abfd) = intreg.ri_gp_value;
7610 }
7611 l += intopt.size;
7612 }
7613 free (contents);
7614 }
7615
7616 return TRUE;
7617 }
7618
7619 /* Set the correct type for a MIPS ELF section. We do this by the
7620 section name, which is a hack, but ought to work. This routine is
7621 used by both the 32-bit and the 64-bit ABI. */
7622
7623 bfd_boolean
7624 _bfd_mips_elf_fake_sections (bfd *abfd, Elf_Internal_Shdr *hdr, asection *sec)
7625 {
7626 const char *name = bfd_section_name (sec);
7627
7628 if (strcmp (name, ".liblist") == 0)
7629 {
7630 hdr->sh_type = SHT_MIPS_LIBLIST;
7631 hdr->sh_info = sec->size / sizeof (Elf32_Lib);
7632 /* The sh_link field is set in final_write_processing. */
7633 }
7634 else if (strcmp (name, ".conflict") == 0)
7635 hdr->sh_type = SHT_MIPS_CONFLICT;
7636 else if (CONST_STRNEQ (name, ".gptab."))
7637 {
7638 hdr->sh_type = SHT_MIPS_GPTAB;
7639 hdr->sh_entsize = sizeof (Elf32_External_gptab);
7640 /* The sh_info field is set in final_write_processing. */
7641 }
7642 else if (strcmp (name, ".ucode") == 0)
7643 hdr->sh_type = SHT_MIPS_UCODE;
7644 else if (strcmp (name, ".mdebug") == 0)
7645 {
7646 hdr->sh_type = SHT_MIPS_DEBUG;
7647 /* In a shared object on IRIX 5.3, the .mdebug section has an
7648 entsize of 0. FIXME: Does this matter? */
7649 if (SGI_COMPAT (abfd) && (abfd->flags & DYNAMIC) != 0)
7650 hdr->sh_entsize = 0;
7651 else
7652 hdr->sh_entsize = 1;
7653 }
7654 else if (strcmp (name, ".reginfo") == 0)
7655 {
7656 hdr->sh_type = SHT_MIPS_REGINFO;
7657 /* In a shared object on IRIX 5.3, the .reginfo section has an
7658 entsize of 0x18. FIXME: Does this matter? */
7659 if (SGI_COMPAT (abfd))
7660 {
7661 if ((abfd->flags & DYNAMIC) != 0)
7662 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7663 else
7664 hdr->sh_entsize = 1;
7665 }
7666 else
7667 hdr->sh_entsize = sizeof (Elf32_External_RegInfo);
7668 }
7669 else if (SGI_COMPAT (abfd)
7670 && (strcmp (name, ".hash") == 0
7671 || strcmp (name, ".dynamic") == 0
7672 || strcmp (name, ".dynstr") == 0))
7673 {
7674 if (SGI_COMPAT (abfd))
7675 hdr->sh_entsize = 0;
7676 #if 0
7677 /* This isn't how the IRIX6 linker behaves. */
7678 hdr->sh_info = SIZEOF_MIPS_DYNSYM_SECNAMES;
7679 #endif
7680 }
7681 else if (strcmp (name, ".got") == 0
7682 || strcmp (name, ".srdata") == 0
7683 || strcmp (name, ".sdata") == 0
7684 || strcmp (name, ".sbss") == 0
7685 || strcmp (name, ".lit4") == 0
7686 || strcmp (name, ".lit8") == 0)
7687 hdr->sh_flags |= SHF_MIPS_GPREL;
7688 else if (strcmp (name, ".MIPS.interfaces") == 0)
7689 {
7690 hdr->sh_type = SHT_MIPS_IFACE;
7691 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7692 }
7693 else if (CONST_STRNEQ (name, ".MIPS.content"))
7694 {
7695 hdr->sh_type = SHT_MIPS_CONTENT;
7696 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7697 /* The sh_info field is set in final_write_processing. */
7698 }
7699 else if (MIPS_ELF_OPTIONS_SECTION_NAME_P (name))
7700 {
7701 hdr->sh_type = SHT_MIPS_OPTIONS;
7702 hdr->sh_entsize = 1;
7703 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7704 }
7705 else if (CONST_STRNEQ (name, ".MIPS.abiflags"))
7706 {
7707 hdr->sh_type = SHT_MIPS_ABIFLAGS;
7708 hdr->sh_entsize = sizeof (Elf_External_ABIFlags_v0);
7709 }
7710 else if (CONST_STRNEQ (name, ".debug_")
7711 || CONST_STRNEQ (name, ".zdebug_"))
7712 {
7713 hdr->sh_type = SHT_MIPS_DWARF;
7714
7715 /* Irix facilities such as libexc expect a single .debug_frame
7716 per executable, the system ones have NOSTRIP set and the linker
7717 doesn't merge sections with different flags so ... */
7718 if (SGI_COMPAT (abfd) && CONST_STRNEQ (name, ".debug_frame"))
7719 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7720 }
7721 else if (strcmp (name, ".MIPS.symlib") == 0)
7722 {
7723 hdr->sh_type = SHT_MIPS_SYMBOL_LIB;
7724 /* The sh_link and sh_info fields are set in
7725 final_write_processing. */
7726 }
7727 else if (CONST_STRNEQ (name, ".MIPS.events")
7728 || CONST_STRNEQ (name, ".MIPS.post_rel"))
7729 {
7730 hdr->sh_type = SHT_MIPS_EVENTS;
7731 hdr->sh_flags |= SHF_MIPS_NOSTRIP;
7732 /* The sh_link field is set in final_write_processing. */
7733 }
7734 else if (strcmp (name, ".msym") == 0)
7735 {
7736 hdr->sh_type = SHT_MIPS_MSYM;
7737 hdr->sh_flags |= SHF_ALLOC;
7738 hdr->sh_entsize = 8;
7739 }
7740 else if (strcmp (name, ".MIPS.xhash") == 0)
7741 {
7742 hdr->sh_type = SHT_MIPS_XHASH;
7743 hdr->sh_flags |= SHF_ALLOC;
7744 hdr->sh_entsize = get_elf_backend_data(abfd)->s->arch_size == 64 ? 0 : 4;
7745 }
7746
7747 /* The generic elf_fake_sections will set up REL_HDR using the default
7748 kind of relocations. We used to set up a second header for the
7749 non-default kind of relocations here, but only NewABI would use
7750 these, and the IRIX ld doesn't like resulting empty RELA sections.
7751 Thus we create those header only on demand now. */
7752
7753 return TRUE;
7754 }
7755
7756 /* Given a BFD section, try to locate the corresponding ELF section
7757 index. This is used by both the 32-bit and the 64-bit ABI.
7758 Actually, it's not clear to me that the 64-bit ABI supports these,
7759 but for non-PIC objects we will certainly want support for at least
7760 the .scommon section. */
7761
7762 bfd_boolean
7763 _bfd_mips_elf_section_from_bfd_section (bfd *abfd ATTRIBUTE_UNUSED,
7764 asection *sec, int *retval)
7765 {
7766 if (strcmp (bfd_section_name (sec), ".scommon") == 0)
7767 {
7768 *retval = SHN_MIPS_SCOMMON;
7769 return TRUE;
7770 }
7771 if (strcmp (bfd_section_name (sec), ".acommon") == 0)
7772 {
7773 *retval = SHN_MIPS_ACOMMON;
7774 return TRUE;
7775 }
7776 return FALSE;
7777 }
7778 \f
7779 /* Hook called by the linker routine which adds symbols from an object
7780 file. We must handle the special MIPS section numbers here. */
7781
7782 bfd_boolean
7783 _bfd_mips_elf_add_symbol_hook (bfd *abfd, struct bfd_link_info *info,
7784 Elf_Internal_Sym *sym, const char **namep,
7785 flagword *flagsp ATTRIBUTE_UNUSED,
7786 asection **secp, bfd_vma *valp)
7787 {
7788 if (SGI_COMPAT (abfd)
7789 && (abfd->flags & DYNAMIC) != 0
7790 && strcmp (*namep, "_rld_new_interface") == 0)
7791 {
7792 /* Skip IRIX5 rld entry name. */
7793 *namep = NULL;
7794 return TRUE;
7795 }
7796
7797 /* Shared objects may have a dynamic symbol '_gp_disp' defined as
7798 a SECTION *ABS*. This causes ld to think it can resolve _gp_disp
7799 by setting a DT_NEEDED for the shared object. Since _gp_disp is
7800 a magic symbol resolved by the linker, we ignore this bogus definition
7801 of _gp_disp. New ABI objects do not suffer from this problem so this
7802 is not done for them. */
7803 if (!NEWABI_P(abfd)
7804 && (sym->st_shndx == SHN_ABS)
7805 && (strcmp (*namep, "_gp_disp") == 0))
7806 {
7807 *namep = NULL;
7808 return TRUE;
7809 }
7810
7811 switch (sym->st_shndx)
7812 {
7813 case SHN_COMMON:
7814 /* Common symbols less than the GP size are automatically
7815 treated as SHN_MIPS_SCOMMON symbols. */
7816 if (sym->st_size > elf_gp_size (abfd)
7817 || ELF_ST_TYPE (sym->st_info) == STT_TLS
7818 || IRIX_COMPAT (abfd) == ict_irix6)
7819 break;
7820 /* Fall through. */
7821 case SHN_MIPS_SCOMMON:
7822 *secp = bfd_make_section_old_way (abfd, ".scommon");
7823 (*secp)->flags |= SEC_IS_COMMON;
7824 *valp = sym->st_size;
7825 break;
7826
7827 case SHN_MIPS_TEXT:
7828 /* This section is used in a shared object. */
7829 if (mips_elf_tdata (abfd)->elf_text_section == NULL)
7830 {
7831 asymbol *elf_text_symbol;
7832 asection *elf_text_section;
7833 bfd_size_type amt = sizeof (asection);
7834
7835 elf_text_section = bfd_zalloc (abfd, amt);
7836 if (elf_text_section == NULL)
7837 return FALSE;
7838
7839 amt = sizeof (asymbol);
7840 elf_text_symbol = bfd_zalloc (abfd, amt);
7841 if (elf_text_symbol == NULL)
7842 return FALSE;
7843
7844 /* Initialize the section. */
7845
7846 mips_elf_tdata (abfd)->elf_text_section = elf_text_section;
7847 mips_elf_tdata (abfd)->elf_text_symbol = elf_text_symbol;
7848
7849 elf_text_section->symbol = elf_text_symbol;
7850 elf_text_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_text_symbol;
7851
7852 elf_text_section->name = ".text";
7853 elf_text_section->flags = SEC_NO_FLAGS;
7854 elf_text_section->output_section = NULL;
7855 elf_text_section->owner = abfd;
7856 elf_text_symbol->name = ".text";
7857 elf_text_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7858 elf_text_symbol->section = elf_text_section;
7859 }
7860 /* This code used to do *secp = bfd_und_section_ptr if
7861 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7862 so I took it out. */
7863 *secp = mips_elf_tdata (abfd)->elf_text_section;
7864 break;
7865
7866 case SHN_MIPS_ACOMMON:
7867 /* Fall through. XXX Can we treat this as allocated data? */
7868 case SHN_MIPS_DATA:
7869 /* This section is used in a shared object. */
7870 if (mips_elf_tdata (abfd)->elf_data_section == NULL)
7871 {
7872 asymbol *elf_data_symbol;
7873 asection *elf_data_section;
7874 bfd_size_type amt = sizeof (asection);
7875
7876 elf_data_section = bfd_zalloc (abfd, amt);
7877 if (elf_data_section == NULL)
7878 return FALSE;
7879
7880 amt = sizeof (asymbol);
7881 elf_data_symbol = bfd_zalloc (abfd, amt);
7882 if (elf_data_symbol == NULL)
7883 return FALSE;
7884
7885 /* Initialize the section. */
7886
7887 mips_elf_tdata (abfd)->elf_data_section = elf_data_section;
7888 mips_elf_tdata (abfd)->elf_data_symbol = elf_data_symbol;
7889
7890 elf_data_section->symbol = elf_data_symbol;
7891 elf_data_section->symbol_ptr_ptr = &mips_elf_tdata (abfd)->elf_data_symbol;
7892
7893 elf_data_section->name = ".data";
7894 elf_data_section->flags = SEC_NO_FLAGS;
7895 elf_data_section->output_section = NULL;
7896 elf_data_section->owner = abfd;
7897 elf_data_symbol->name = ".data";
7898 elf_data_symbol->flags = BSF_SECTION_SYM | BSF_DYNAMIC;
7899 elf_data_symbol->section = elf_data_section;
7900 }
7901 /* This code used to do *secp = bfd_und_section_ptr if
7902 bfd_link_pic (info). I don't know why, and that doesn't make sense,
7903 so I took it out. */
7904 *secp = mips_elf_tdata (abfd)->elf_data_section;
7905 break;
7906
7907 case SHN_MIPS_SUNDEFINED:
7908 *secp = bfd_und_section_ptr;
7909 break;
7910 }
7911
7912 if (SGI_COMPAT (abfd)
7913 && ! bfd_link_pic (info)
7914 && info->output_bfd->xvec == abfd->xvec
7915 && strcmp (*namep, "__rld_obj_head") == 0)
7916 {
7917 struct elf_link_hash_entry *h;
7918 struct bfd_link_hash_entry *bh;
7919
7920 /* Mark __rld_obj_head as dynamic. */
7921 bh = NULL;
7922 if (! (_bfd_generic_link_add_one_symbol
7923 (info, abfd, *namep, BSF_GLOBAL, *secp, *valp, NULL, FALSE,
7924 get_elf_backend_data (abfd)->collect, &bh)))
7925 return FALSE;
7926
7927 h = (struct elf_link_hash_entry *) bh;
7928 h->non_elf = 0;
7929 h->def_regular = 1;
7930 h->type = STT_OBJECT;
7931
7932 if (! bfd_elf_link_record_dynamic_symbol (info, h))
7933 return FALSE;
7934
7935 mips_elf_hash_table (info)->use_rld_obj_head = TRUE;
7936 mips_elf_hash_table (info)->rld_symbol = h;
7937 }
7938
7939 /* If this is a mips16 text symbol, add 1 to the value to make it
7940 odd. This will cause something like .word SYM to come up with
7941 the right value when it is loaded into the PC. */
7942 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7943 ++*valp;
7944
7945 return TRUE;
7946 }
7947
7948 /* This hook function is called before the linker writes out a global
7949 symbol. We mark symbols as small common if appropriate. This is
7950 also where we undo the increment of the value for a mips16 symbol. */
7951
7952 int
7953 _bfd_mips_elf_link_output_symbol_hook
7954 (struct bfd_link_info *info ATTRIBUTE_UNUSED,
7955 const char *name ATTRIBUTE_UNUSED, Elf_Internal_Sym *sym,
7956 asection *input_sec, struct elf_link_hash_entry *h ATTRIBUTE_UNUSED)
7957 {
7958 /* If we see a common symbol, which implies a relocatable link, then
7959 if a symbol was small common in an input file, mark it as small
7960 common in the output file. */
7961 if (sym->st_shndx == SHN_COMMON
7962 && strcmp (input_sec->name, ".scommon") == 0)
7963 sym->st_shndx = SHN_MIPS_SCOMMON;
7964
7965 if (ELF_ST_IS_COMPRESSED (sym->st_other))
7966 sym->st_value &= ~1;
7967
7968 return 1;
7969 }
7970 \f
7971 /* Functions for the dynamic linker. */
7972
7973 /* Create dynamic sections when linking against a dynamic object. */
7974
7975 bfd_boolean
7976 _bfd_mips_elf_create_dynamic_sections (bfd *abfd, struct bfd_link_info *info)
7977 {
7978 struct elf_link_hash_entry *h;
7979 struct bfd_link_hash_entry *bh;
7980 flagword flags;
7981 register asection *s;
7982 const char * const *namep;
7983 struct mips_elf_link_hash_table *htab;
7984
7985 htab = mips_elf_hash_table (info);
7986 BFD_ASSERT (htab != NULL);
7987
7988 flags = (SEC_ALLOC | SEC_LOAD | SEC_HAS_CONTENTS | SEC_IN_MEMORY
7989 | SEC_LINKER_CREATED | SEC_READONLY);
7990
7991 /* The psABI requires a read-only .dynamic section, but the VxWorks
7992 EABI doesn't. */
7993 if (!htab->is_vxworks)
7994 {
7995 s = bfd_get_linker_section (abfd, ".dynamic");
7996 if (s != NULL)
7997 {
7998 if (!bfd_set_section_flags (s, flags))
7999 return FALSE;
8000 }
8001 }
8002
8003 /* We need to create .got section. */
8004 if (!mips_elf_create_got_section (abfd, info))
8005 return FALSE;
8006
8007 if (! mips_elf_rel_dyn_section (info, TRUE))
8008 return FALSE;
8009
8010 /* Create .stub section. */
8011 s = bfd_make_section_anyway_with_flags (abfd,
8012 MIPS_ELF_STUB_SECTION_NAME (abfd),
8013 flags | SEC_CODE);
8014 if (s == NULL
8015 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
8016 return FALSE;
8017 htab->sstubs = s;
8018
8019 if (!mips_elf_hash_table (info)->use_rld_obj_head
8020 && bfd_link_executable (info)
8021 && bfd_get_linker_section (abfd, ".rld_map") == NULL)
8022 {
8023 s = bfd_make_section_anyway_with_flags (abfd, ".rld_map",
8024 flags &~ (flagword) SEC_READONLY);
8025 if (s == NULL
8026 || !bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd)))
8027 return FALSE;
8028 }
8029
8030 /* Create .MIPS.xhash section. */
8031 if (info->emit_gnu_hash)
8032 s = bfd_make_section_anyway_with_flags (abfd, ".MIPS.xhash",
8033 flags | SEC_READONLY);
8034
8035 /* On IRIX5, we adjust add some additional symbols and change the
8036 alignments of several sections. There is no ABI documentation
8037 indicating that this is necessary on IRIX6, nor any evidence that
8038 the linker takes such action. */
8039 if (IRIX_COMPAT (abfd) == ict_irix5)
8040 {
8041 for (namep = mips_elf_dynsym_rtproc_names; *namep != NULL; namep++)
8042 {
8043 bh = NULL;
8044 if (! (_bfd_generic_link_add_one_symbol
8045 (info, abfd, *namep, BSF_GLOBAL, bfd_und_section_ptr, 0,
8046 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8047 return FALSE;
8048
8049 h = (struct elf_link_hash_entry *) bh;
8050 h->mark = 1;
8051 h->non_elf = 0;
8052 h->def_regular = 1;
8053 h->type = STT_SECTION;
8054
8055 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8056 return FALSE;
8057 }
8058
8059 /* We need to create a .compact_rel section. */
8060 if (SGI_COMPAT (abfd))
8061 {
8062 if (!mips_elf_create_compact_rel_section (abfd, info))
8063 return FALSE;
8064 }
8065
8066 /* Change alignments of some sections. */
8067 s = bfd_get_linker_section (abfd, ".hash");
8068 if (s != NULL)
8069 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8070
8071 s = bfd_get_linker_section (abfd, ".dynsym");
8072 if (s != NULL)
8073 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8074
8075 s = bfd_get_linker_section (abfd, ".dynstr");
8076 if (s != NULL)
8077 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8078
8079 /* ??? */
8080 s = bfd_get_section_by_name (abfd, ".reginfo");
8081 if (s != NULL)
8082 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8083
8084 s = bfd_get_linker_section (abfd, ".dynamic");
8085 if (s != NULL)
8086 bfd_set_section_alignment (s, MIPS_ELF_LOG_FILE_ALIGN (abfd));
8087 }
8088
8089 if (bfd_link_executable (info))
8090 {
8091 const char *name;
8092
8093 name = SGI_COMPAT (abfd) ? "_DYNAMIC_LINK" : "_DYNAMIC_LINKING";
8094 bh = NULL;
8095 if (!(_bfd_generic_link_add_one_symbol
8096 (info, abfd, name, BSF_GLOBAL, bfd_abs_section_ptr, 0,
8097 NULL, FALSE, get_elf_backend_data (abfd)->collect, &bh)))
8098 return FALSE;
8099
8100 h = (struct elf_link_hash_entry *) bh;
8101 h->non_elf = 0;
8102 h->def_regular = 1;
8103 h->type = STT_SECTION;
8104
8105 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8106 return FALSE;
8107
8108 if (! mips_elf_hash_table (info)->use_rld_obj_head)
8109 {
8110 /* __rld_map is a four byte word located in the .data section
8111 and is filled in by the rtld to contain a pointer to
8112 the _r_debug structure. Its symbol value will be set in
8113 _bfd_mips_elf_finish_dynamic_symbol. */
8114 s = bfd_get_linker_section (abfd, ".rld_map");
8115 BFD_ASSERT (s != NULL);
8116
8117 name = SGI_COMPAT (abfd) ? "__rld_map" : "__RLD_MAP";
8118 bh = NULL;
8119 if (!(_bfd_generic_link_add_one_symbol
8120 (info, abfd, name, BSF_GLOBAL, s, 0, NULL, FALSE,
8121 get_elf_backend_data (abfd)->collect, &bh)))
8122 return FALSE;
8123
8124 h = (struct elf_link_hash_entry *) bh;
8125 h->non_elf = 0;
8126 h->def_regular = 1;
8127 h->type = STT_OBJECT;
8128
8129 if (! bfd_elf_link_record_dynamic_symbol (info, h))
8130 return FALSE;
8131 mips_elf_hash_table (info)->rld_symbol = h;
8132 }
8133 }
8134
8135 /* Create the .plt, .rel(a).plt, .dynbss and .rel(a).bss sections.
8136 Also, on VxWorks, create the _PROCEDURE_LINKAGE_TABLE_ symbol. */
8137 if (!_bfd_elf_create_dynamic_sections (abfd, info))
8138 return FALSE;
8139
8140 /* Do the usual VxWorks handling. */
8141 if (htab->is_vxworks
8142 && !elf_vxworks_create_dynamic_sections (abfd, info, &htab->srelplt2))
8143 return FALSE;
8144
8145 return TRUE;
8146 }
8147 \f
8148 /* Return true if relocation REL against section SEC is a REL rather than
8149 RELA relocation. RELOCS is the first relocation in the section and
8150 ABFD is the bfd that contains SEC. */
8151
8152 static bfd_boolean
8153 mips_elf_rel_relocation_p (bfd *abfd, asection *sec,
8154 const Elf_Internal_Rela *relocs,
8155 const Elf_Internal_Rela *rel)
8156 {
8157 Elf_Internal_Shdr *rel_hdr;
8158 const struct elf_backend_data *bed;
8159
8160 /* To determine which flavor of relocation this is, we depend on the
8161 fact that the INPUT_SECTION's REL_HDR is read before RELA_HDR. */
8162 rel_hdr = elf_section_data (sec)->rel.hdr;
8163 if (rel_hdr == NULL)
8164 return FALSE;
8165 bed = get_elf_backend_data (abfd);
8166 return ((size_t) (rel - relocs)
8167 < NUM_SHDR_ENTRIES (rel_hdr) * bed->s->int_rels_per_ext_rel);
8168 }
8169
8170 /* Read the addend for REL relocation REL, which belongs to bfd ABFD.
8171 HOWTO is the relocation's howto and CONTENTS points to the contents
8172 of the section that REL is against. */
8173
8174 static bfd_vma
8175 mips_elf_read_rel_addend (bfd *abfd, const Elf_Internal_Rela *rel,
8176 reloc_howto_type *howto, bfd_byte *contents)
8177 {
8178 bfd_byte *location;
8179 unsigned int r_type;
8180 bfd_vma addend;
8181 bfd_vma bytes;
8182
8183 r_type = ELF_R_TYPE (abfd, rel->r_info);
8184 location = contents + rel->r_offset;
8185
8186 /* Get the addend, which is stored in the input file. */
8187 _bfd_mips_elf_reloc_unshuffle (abfd, r_type, FALSE, location);
8188 bytes = mips_elf_obtain_contents (howto, rel, abfd, contents);
8189 _bfd_mips_elf_reloc_shuffle (abfd, r_type, FALSE, location);
8190
8191 addend = bytes & howto->src_mask;
8192
8193 /* Shift is 2, unusually, for microMIPS JALX. Adjust the addend
8194 accordingly. */
8195 if (r_type == R_MICROMIPS_26_S1 && (bytes >> 26) == 0x3c)
8196 addend <<= 1;
8197
8198 return addend;
8199 }
8200
8201 /* REL is a relocation in ABFD that needs a partnering LO16 relocation
8202 and *ADDEND is the addend for REL itself. Look for the LO16 relocation
8203 and update *ADDEND with the final addend. Return true on success
8204 or false if the LO16 could not be found. RELEND is the exclusive
8205 upper bound on the relocations for REL's section. */
8206
8207 static bfd_boolean
8208 mips_elf_add_lo16_rel_addend (bfd *abfd,
8209 const Elf_Internal_Rela *rel,
8210 const Elf_Internal_Rela *relend,
8211 bfd_byte *contents, bfd_vma *addend)
8212 {
8213 unsigned int r_type, lo16_type;
8214 const Elf_Internal_Rela *lo16_relocation;
8215 reloc_howto_type *lo16_howto;
8216 bfd_vma l;
8217
8218 r_type = ELF_R_TYPE (abfd, rel->r_info);
8219 if (mips16_reloc_p (r_type))
8220 lo16_type = R_MIPS16_LO16;
8221 else if (micromips_reloc_p (r_type))
8222 lo16_type = R_MICROMIPS_LO16;
8223 else if (r_type == R_MIPS_PCHI16)
8224 lo16_type = R_MIPS_PCLO16;
8225 else
8226 lo16_type = R_MIPS_LO16;
8227
8228 /* The combined value is the sum of the HI16 addend, left-shifted by
8229 sixteen bits, and the LO16 addend, sign extended. (Usually, the
8230 code does a `lui' of the HI16 value, and then an `addiu' of the
8231 LO16 value.)
8232
8233 Scan ahead to find a matching LO16 relocation.
8234
8235 According to the MIPS ELF ABI, the R_MIPS_LO16 relocation must
8236 be immediately following. However, for the IRIX6 ABI, the next
8237 relocation may be a composed relocation consisting of several
8238 relocations for the same address. In that case, the R_MIPS_LO16
8239 relocation may occur as one of these. We permit a similar
8240 extension in general, as that is useful for GCC.
8241
8242 In some cases GCC dead code elimination removes the LO16 but keeps
8243 the corresponding HI16. This is strictly speaking a violation of
8244 the ABI but not immediately harmful. */
8245 lo16_relocation = mips_elf_next_relocation (abfd, lo16_type, rel, relend);
8246 if (lo16_relocation == NULL)
8247 return FALSE;
8248
8249 /* Obtain the addend kept there. */
8250 lo16_howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, lo16_type, FALSE);
8251 l = mips_elf_read_rel_addend (abfd, lo16_relocation, lo16_howto, contents);
8252
8253 l <<= lo16_howto->rightshift;
8254 l = _bfd_mips_elf_sign_extend (l, 16);
8255
8256 *addend <<= 16;
8257 *addend += l;
8258 return TRUE;
8259 }
8260
8261 /* Try to read the contents of section SEC in bfd ABFD. Return true and
8262 store the contents in *CONTENTS on success. Assume that *CONTENTS
8263 already holds the contents if it is nonull on entry. */
8264
8265 static bfd_boolean
8266 mips_elf_get_section_contents (bfd *abfd, asection *sec, bfd_byte **contents)
8267 {
8268 if (*contents)
8269 return TRUE;
8270
8271 /* Get cached copy if it exists. */
8272 if (elf_section_data (sec)->this_hdr.contents != NULL)
8273 {
8274 *contents = elf_section_data (sec)->this_hdr.contents;
8275 return TRUE;
8276 }
8277
8278 return bfd_malloc_and_get_section (abfd, sec, contents);
8279 }
8280
8281 /* Make a new PLT record to keep internal data. */
8282
8283 static struct plt_entry *
8284 mips_elf_make_plt_record (bfd *abfd)
8285 {
8286 struct plt_entry *entry;
8287
8288 entry = bfd_zalloc (abfd, sizeof (*entry));
8289 if (entry == NULL)
8290 return NULL;
8291
8292 entry->stub_offset = MINUS_ONE;
8293 entry->mips_offset = MINUS_ONE;
8294 entry->comp_offset = MINUS_ONE;
8295 entry->gotplt_index = MINUS_ONE;
8296 return entry;
8297 }
8298
8299 /* Define the special `__gnu_absolute_zero' symbol. We only need this
8300 for PIC code, as otherwise there is no load-time relocation involved
8301 and local GOT entries whose value is zero at static link time will
8302 retain their value at load time. */
8303
8304 static bfd_boolean
8305 mips_elf_define_absolute_zero (bfd *abfd, struct bfd_link_info *info,
8306 struct mips_elf_link_hash_table *htab,
8307 unsigned int r_type)
8308 {
8309 union
8310 {
8311 struct elf_link_hash_entry *eh;
8312 struct bfd_link_hash_entry *bh;
8313 }
8314 hzero;
8315
8316 BFD_ASSERT (!htab->use_absolute_zero);
8317 BFD_ASSERT (bfd_link_pic (info));
8318
8319 hzero.bh = NULL;
8320 if (!_bfd_generic_link_add_one_symbol (info, abfd, "__gnu_absolute_zero",
8321 BSF_GLOBAL, bfd_abs_section_ptr, 0,
8322 NULL, FALSE, FALSE, &hzero.bh))
8323 return FALSE;
8324
8325 BFD_ASSERT (hzero.bh != NULL);
8326 hzero.eh->size = 0;
8327 hzero.eh->type = STT_NOTYPE;
8328 hzero.eh->other = STV_PROTECTED;
8329 hzero.eh->def_regular = 1;
8330 hzero.eh->non_elf = 0;
8331
8332 if (!mips_elf_record_global_got_symbol (hzero.eh, abfd, info, TRUE, r_type))
8333 return FALSE;
8334
8335 htab->use_absolute_zero = TRUE;
8336
8337 return TRUE;
8338 }
8339
8340 /* Look through the relocs for a section during the first phase, and
8341 allocate space in the global offset table and record the need for
8342 standard MIPS and compressed procedure linkage table entries. */
8343
8344 bfd_boolean
8345 _bfd_mips_elf_check_relocs (bfd *abfd, struct bfd_link_info *info,
8346 asection *sec, const Elf_Internal_Rela *relocs)
8347 {
8348 const char *name;
8349 bfd *dynobj;
8350 Elf_Internal_Shdr *symtab_hdr;
8351 struct elf_link_hash_entry **sym_hashes;
8352 size_t extsymoff;
8353 const Elf_Internal_Rela *rel;
8354 const Elf_Internal_Rela *rel_end;
8355 asection *sreloc;
8356 const struct elf_backend_data *bed;
8357 struct mips_elf_link_hash_table *htab;
8358 bfd_byte *contents;
8359 bfd_vma addend;
8360 reloc_howto_type *howto;
8361
8362 if (bfd_link_relocatable (info))
8363 return TRUE;
8364
8365 htab = mips_elf_hash_table (info);
8366 BFD_ASSERT (htab != NULL);
8367
8368 dynobj = elf_hash_table (info)->dynobj;
8369 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
8370 sym_hashes = elf_sym_hashes (abfd);
8371 extsymoff = (elf_bad_symtab (abfd)) ? 0 : symtab_hdr->sh_info;
8372
8373 bed = get_elf_backend_data (abfd);
8374 rel_end = relocs + sec->reloc_count;
8375
8376 /* Check for the mips16 stub sections. */
8377
8378 name = bfd_section_name (sec);
8379 if (FN_STUB_P (name))
8380 {
8381 unsigned long r_symndx;
8382
8383 /* Look at the relocation information to figure out which symbol
8384 this is for. */
8385
8386 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8387 if (r_symndx == 0)
8388 {
8389 _bfd_error_handler
8390 /* xgettext:c-format */
8391 (_("%pB: warning: cannot determine the target function for"
8392 " stub section `%s'"),
8393 abfd, name);
8394 bfd_set_error (bfd_error_bad_value);
8395 return FALSE;
8396 }
8397
8398 if (r_symndx < extsymoff
8399 || sym_hashes[r_symndx - extsymoff] == NULL)
8400 {
8401 asection *o;
8402
8403 /* This stub is for a local symbol. This stub will only be
8404 needed if there is some relocation in this BFD, other
8405 than a 16 bit function call, which refers to this symbol. */
8406 for (o = abfd->sections; o != NULL; o = o->next)
8407 {
8408 Elf_Internal_Rela *sec_relocs;
8409 const Elf_Internal_Rela *r, *rend;
8410
8411 /* We can ignore stub sections when looking for relocs. */
8412 if ((o->flags & SEC_RELOC) == 0
8413 || o->reloc_count == 0
8414 || section_allows_mips16_refs_p (o))
8415 continue;
8416
8417 sec_relocs
8418 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8419 info->keep_memory);
8420 if (sec_relocs == NULL)
8421 return FALSE;
8422
8423 rend = sec_relocs + o->reloc_count;
8424 for (r = sec_relocs; r < rend; r++)
8425 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8426 && !mips16_call_reloc_p (ELF_R_TYPE (abfd, r->r_info)))
8427 break;
8428
8429 if (elf_section_data (o)->relocs != sec_relocs)
8430 free (sec_relocs);
8431
8432 if (r < rend)
8433 break;
8434 }
8435
8436 if (o == NULL)
8437 {
8438 /* There is no non-call reloc for this stub, so we do
8439 not need it. Since this function is called before
8440 the linker maps input sections to output sections, we
8441 can easily discard it by setting the SEC_EXCLUDE
8442 flag. */
8443 sec->flags |= SEC_EXCLUDE;
8444 return TRUE;
8445 }
8446
8447 /* Record this stub in an array of local symbol stubs for
8448 this BFD. */
8449 if (mips_elf_tdata (abfd)->local_stubs == NULL)
8450 {
8451 unsigned long symcount;
8452 asection **n;
8453 bfd_size_type amt;
8454
8455 if (elf_bad_symtab (abfd))
8456 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8457 else
8458 symcount = symtab_hdr->sh_info;
8459 amt = symcount * sizeof (asection *);
8460 n = bfd_zalloc (abfd, amt);
8461 if (n == NULL)
8462 return FALSE;
8463 mips_elf_tdata (abfd)->local_stubs = n;
8464 }
8465
8466 sec->flags |= SEC_KEEP;
8467 mips_elf_tdata (abfd)->local_stubs[r_symndx] = sec;
8468
8469 /* We don't need to set mips16_stubs_seen in this case.
8470 That flag is used to see whether we need to look through
8471 the global symbol table for stubs. We don't need to set
8472 it here, because we just have a local stub. */
8473 }
8474 else
8475 {
8476 struct mips_elf_link_hash_entry *h;
8477
8478 h = ((struct mips_elf_link_hash_entry *)
8479 sym_hashes[r_symndx - extsymoff]);
8480
8481 while (h->root.root.type == bfd_link_hash_indirect
8482 || h->root.root.type == bfd_link_hash_warning)
8483 h = (struct mips_elf_link_hash_entry *) h->root.root.u.i.link;
8484
8485 /* H is the symbol this stub is for. */
8486
8487 /* If we already have an appropriate stub for this function, we
8488 don't need another one, so we can discard this one. Since
8489 this function is called before the linker maps input sections
8490 to output sections, we can easily discard it by setting the
8491 SEC_EXCLUDE flag. */
8492 if (h->fn_stub != NULL)
8493 {
8494 sec->flags |= SEC_EXCLUDE;
8495 return TRUE;
8496 }
8497
8498 sec->flags |= SEC_KEEP;
8499 h->fn_stub = sec;
8500 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8501 }
8502 }
8503 else if (CALL_STUB_P (name) || CALL_FP_STUB_P (name))
8504 {
8505 unsigned long r_symndx;
8506 struct mips_elf_link_hash_entry *h;
8507 asection **loc;
8508
8509 /* Look at the relocation information to figure out which symbol
8510 this is for. */
8511
8512 r_symndx = mips16_stub_symndx (bed, sec, relocs, rel_end);
8513 if (r_symndx == 0)
8514 {
8515 _bfd_error_handler
8516 /* xgettext:c-format */
8517 (_("%pB: warning: cannot determine the target function for"
8518 " stub section `%s'"),
8519 abfd, name);
8520 bfd_set_error (bfd_error_bad_value);
8521 return FALSE;
8522 }
8523
8524 if (r_symndx < extsymoff
8525 || sym_hashes[r_symndx - extsymoff] == NULL)
8526 {
8527 asection *o;
8528
8529 /* This stub is for a local symbol. This stub will only be
8530 needed if there is some relocation (R_MIPS16_26) in this BFD
8531 that refers to this symbol. */
8532 for (o = abfd->sections; o != NULL; o = o->next)
8533 {
8534 Elf_Internal_Rela *sec_relocs;
8535 const Elf_Internal_Rela *r, *rend;
8536
8537 /* We can ignore stub sections when looking for relocs. */
8538 if ((o->flags & SEC_RELOC) == 0
8539 || o->reloc_count == 0
8540 || section_allows_mips16_refs_p (o))
8541 continue;
8542
8543 sec_relocs
8544 = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
8545 info->keep_memory);
8546 if (sec_relocs == NULL)
8547 return FALSE;
8548
8549 rend = sec_relocs + o->reloc_count;
8550 for (r = sec_relocs; r < rend; r++)
8551 if (ELF_R_SYM (abfd, r->r_info) == r_symndx
8552 && ELF_R_TYPE (abfd, r->r_info) == R_MIPS16_26)
8553 break;
8554
8555 if (elf_section_data (o)->relocs != sec_relocs)
8556 free (sec_relocs);
8557
8558 if (r < rend)
8559 break;
8560 }
8561
8562 if (o == NULL)
8563 {
8564 /* There is no non-call reloc for this stub, so we do
8565 not need it. Since this function is called before
8566 the linker maps input sections to output sections, we
8567 can easily discard it by setting the SEC_EXCLUDE
8568 flag. */
8569 sec->flags |= SEC_EXCLUDE;
8570 return TRUE;
8571 }
8572
8573 /* Record this stub in an array of local symbol call_stubs for
8574 this BFD. */
8575 if (mips_elf_tdata (abfd)->local_call_stubs == NULL)
8576 {
8577 unsigned long symcount;
8578 asection **n;
8579 bfd_size_type amt;
8580
8581 if (elf_bad_symtab (abfd))
8582 symcount = NUM_SHDR_ENTRIES (symtab_hdr);
8583 else
8584 symcount = symtab_hdr->sh_info;
8585 amt = symcount * sizeof (asection *);
8586 n = bfd_zalloc (abfd, amt);
8587 if (n == NULL)
8588 return FALSE;
8589 mips_elf_tdata (abfd)->local_call_stubs = n;
8590 }
8591
8592 sec->flags |= SEC_KEEP;
8593 mips_elf_tdata (abfd)->local_call_stubs[r_symndx] = sec;
8594
8595 /* We don't need to set mips16_stubs_seen in this case.
8596 That flag is used to see whether we need to look through
8597 the global symbol table for stubs. We don't need to set
8598 it here, because we just have a local stub. */
8599 }
8600 else
8601 {
8602 h = ((struct mips_elf_link_hash_entry *)
8603 sym_hashes[r_symndx - extsymoff]);
8604
8605 /* H is the symbol this stub is for. */
8606
8607 if (CALL_FP_STUB_P (name))
8608 loc = &h->call_fp_stub;
8609 else
8610 loc = &h->call_stub;
8611
8612 /* If we already have an appropriate stub for this function, we
8613 don't need another one, so we can discard this one. Since
8614 this function is called before the linker maps input sections
8615 to output sections, we can easily discard it by setting the
8616 SEC_EXCLUDE flag. */
8617 if (*loc != NULL)
8618 {
8619 sec->flags |= SEC_EXCLUDE;
8620 return TRUE;
8621 }
8622
8623 sec->flags |= SEC_KEEP;
8624 *loc = sec;
8625 mips_elf_hash_table (info)->mips16_stubs_seen = TRUE;
8626 }
8627 }
8628
8629 sreloc = NULL;
8630 contents = NULL;
8631 for (rel = relocs; rel < rel_end; ++rel)
8632 {
8633 unsigned long r_symndx;
8634 unsigned int r_type;
8635 struct elf_link_hash_entry *h;
8636 bfd_boolean can_make_dynamic_p;
8637 bfd_boolean call_reloc_p;
8638 bfd_boolean constrain_symbol_p;
8639
8640 r_symndx = ELF_R_SYM (abfd, rel->r_info);
8641 r_type = ELF_R_TYPE (abfd, rel->r_info);
8642
8643 if (r_symndx < extsymoff)
8644 h = NULL;
8645 else if (r_symndx >= extsymoff + NUM_SHDR_ENTRIES (symtab_hdr))
8646 {
8647 _bfd_error_handler
8648 /* xgettext:c-format */
8649 (_("%pB: malformed reloc detected for section %s"),
8650 abfd, name);
8651 bfd_set_error (bfd_error_bad_value);
8652 return FALSE;
8653 }
8654 else
8655 {
8656 h = sym_hashes[r_symndx - extsymoff];
8657 if (h != NULL)
8658 {
8659 while (h->root.type == bfd_link_hash_indirect
8660 || h->root.type == bfd_link_hash_warning)
8661 h = (struct elf_link_hash_entry *) h->root.u.i.link;
8662 }
8663 }
8664
8665 /* Set CAN_MAKE_DYNAMIC_P to true if we can convert this
8666 relocation into a dynamic one. */
8667 can_make_dynamic_p = FALSE;
8668
8669 /* Set CALL_RELOC_P to true if the relocation is for a call,
8670 and if pointer equality therefore doesn't matter. */
8671 call_reloc_p = FALSE;
8672
8673 /* Set CONSTRAIN_SYMBOL_P if we need to take the relocation
8674 into account when deciding how to define the symbol.
8675 Relocations in nonallocatable sections such as .pdr and
8676 .debug* should have no effect. */
8677 constrain_symbol_p = ((sec->flags & SEC_ALLOC) != 0);
8678
8679 switch (r_type)
8680 {
8681 case R_MIPS_CALL16:
8682 case R_MIPS_CALL_HI16:
8683 case R_MIPS_CALL_LO16:
8684 case R_MIPS16_CALL16:
8685 case R_MICROMIPS_CALL16:
8686 case R_MICROMIPS_CALL_HI16:
8687 case R_MICROMIPS_CALL_LO16:
8688 call_reloc_p = TRUE;
8689 /* Fall through. */
8690
8691 case R_MIPS_GOT16:
8692 case R_MIPS_GOT_LO16:
8693 case R_MIPS_GOT_PAGE:
8694 case R_MIPS_GOT_DISP:
8695 case R_MIPS16_GOT16:
8696 case R_MICROMIPS_GOT16:
8697 case R_MICROMIPS_GOT_LO16:
8698 case R_MICROMIPS_GOT_PAGE:
8699 case R_MICROMIPS_GOT_DISP:
8700 /* If we have a symbol that will resolve to zero at static link
8701 time and it is used by a GOT relocation applied to code we
8702 cannot relax to an immediate zero load, then we will be using
8703 the special `__gnu_absolute_zero' symbol whose value is zero
8704 at dynamic load time. We ignore HI16-type GOT relocations at
8705 this stage, because their handling will depend entirely on
8706 the corresponding LO16-type GOT relocation. */
8707 if (!call_hi16_reloc_p (r_type)
8708 && h != NULL
8709 && bfd_link_pic (info)
8710 && !htab->use_absolute_zero
8711 && UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
8712 {
8713 bfd_boolean rel_reloc;
8714
8715 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8716 return FALSE;
8717
8718 rel_reloc = mips_elf_rel_relocation_p (abfd, sec, relocs, rel);
8719 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, !rel_reloc);
8720
8721 if (!mips_elf_nullify_got_load (abfd, contents, rel, howto,
8722 FALSE))
8723 if (!mips_elf_define_absolute_zero (abfd, info, htab, r_type))
8724 return FALSE;
8725 }
8726
8727 /* Fall through. */
8728 case R_MIPS_GOT_HI16:
8729 case R_MIPS_GOT_OFST:
8730 case R_MIPS_TLS_GOTTPREL:
8731 case R_MIPS_TLS_GD:
8732 case R_MIPS_TLS_LDM:
8733 case R_MIPS16_TLS_GOTTPREL:
8734 case R_MIPS16_TLS_GD:
8735 case R_MIPS16_TLS_LDM:
8736 case R_MICROMIPS_GOT_HI16:
8737 case R_MICROMIPS_GOT_OFST:
8738 case R_MICROMIPS_TLS_GOTTPREL:
8739 case R_MICROMIPS_TLS_GD:
8740 case R_MICROMIPS_TLS_LDM:
8741 if (dynobj == NULL)
8742 elf_hash_table (info)->dynobj = dynobj = abfd;
8743 if (!mips_elf_create_got_section (dynobj, info))
8744 return FALSE;
8745 if (htab->is_vxworks && !bfd_link_pic (info))
8746 {
8747 _bfd_error_handler
8748 /* xgettext:c-format */
8749 (_("%pB: GOT reloc at %#" PRIx64 " not expected in executables"),
8750 abfd, (uint64_t) rel->r_offset);
8751 bfd_set_error (bfd_error_bad_value);
8752 return FALSE;
8753 }
8754 can_make_dynamic_p = TRUE;
8755 break;
8756
8757 case R_MIPS_NONE:
8758 case R_MIPS_JALR:
8759 case R_MICROMIPS_JALR:
8760 /* These relocations have empty fields and are purely there to
8761 provide link information. The symbol value doesn't matter. */
8762 constrain_symbol_p = FALSE;
8763 break;
8764
8765 case R_MIPS_GPREL16:
8766 case R_MIPS_GPREL32:
8767 case R_MIPS16_GPREL:
8768 case R_MICROMIPS_GPREL16:
8769 /* GP-relative relocations always resolve to a definition in a
8770 regular input file, ignoring the one-definition rule. This is
8771 important for the GP setup sequence in NewABI code, which
8772 always resolves to a local function even if other relocations
8773 against the symbol wouldn't. */
8774 constrain_symbol_p = FALSE;
8775 break;
8776
8777 case R_MIPS_32:
8778 case R_MIPS_REL32:
8779 case R_MIPS_64:
8780 /* In VxWorks executables, references to external symbols
8781 must be handled using copy relocs or PLT entries; it is not
8782 possible to convert this relocation into a dynamic one.
8783
8784 For executables that use PLTs and copy-relocs, we have a
8785 choice between converting the relocation into a dynamic
8786 one or using copy relocations or PLT entries. It is
8787 usually better to do the former, unless the relocation is
8788 against a read-only section. */
8789 if ((bfd_link_pic (info)
8790 || (h != NULL
8791 && !htab->is_vxworks
8792 && strcmp (h->root.root.string, "__gnu_local_gp") != 0
8793 && !(!info->nocopyreloc
8794 && !PIC_OBJECT_P (abfd)
8795 && MIPS_ELF_READONLY_SECTION (sec))))
8796 && (sec->flags & SEC_ALLOC) != 0)
8797 {
8798 can_make_dynamic_p = TRUE;
8799 if (dynobj == NULL)
8800 elf_hash_table (info)->dynobj = dynobj = abfd;
8801 }
8802 break;
8803
8804 case R_MIPS_26:
8805 case R_MIPS_PC16:
8806 case R_MIPS_PC21_S2:
8807 case R_MIPS_PC26_S2:
8808 case R_MIPS16_26:
8809 case R_MIPS16_PC16_S1:
8810 case R_MICROMIPS_26_S1:
8811 case R_MICROMIPS_PC7_S1:
8812 case R_MICROMIPS_PC10_S1:
8813 case R_MICROMIPS_PC16_S1:
8814 case R_MICROMIPS_PC23_S2:
8815 call_reloc_p = TRUE;
8816 break;
8817 }
8818
8819 if (h)
8820 {
8821 if (constrain_symbol_p)
8822 {
8823 if (!can_make_dynamic_p)
8824 ((struct mips_elf_link_hash_entry *) h)->has_static_relocs = 1;
8825
8826 if (!call_reloc_p)
8827 h->pointer_equality_needed = 1;
8828
8829 /* We must not create a stub for a symbol that has
8830 relocations related to taking the function's address.
8831 This doesn't apply to VxWorks, where CALL relocs refer
8832 to a .got.plt entry instead of a normal .got entry. */
8833 if (!htab->is_vxworks && (!can_make_dynamic_p || !call_reloc_p))
8834 ((struct mips_elf_link_hash_entry *) h)->no_fn_stub = TRUE;
8835 }
8836
8837 /* Relocations against the special VxWorks __GOTT_BASE__ and
8838 __GOTT_INDEX__ symbols must be left to the loader. Allocate
8839 room for them in .rela.dyn. */
8840 if (is_gott_symbol (info, h))
8841 {
8842 if (sreloc == NULL)
8843 {
8844 sreloc = mips_elf_rel_dyn_section (info, TRUE);
8845 if (sreloc == NULL)
8846 return FALSE;
8847 }
8848 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
8849 if (MIPS_ELF_READONLY_SECTION (sec))
8850 /* We tell the dynamic linker that there are
8851 relocations against the text segment. */
8852 info->flags |= DF_TEXTREL;
8853 }
8854 }
8855 else if (call_lo16_reloc_p (r_type)
8856 || got_lo16_reloc_p (r_type)
8857 || got_disp_reloc_p (r_type)
8858 || (got16_reloc_p (r_type) && htab->is_vxworks))
8859 {
8860 /* We may need a local GOT entry for this relocation. We
8861 don't count R_MIPS_GOT_PAGE because we can estimate the
8862 maximum number of pages needed by looking at the size of
8863 the segment. Similar comments apply to R_MIPS*_GOT16 and
8864 R_MIPS*_CALL16, except on VxWorks, where GOT relocations
8865 always evaluate to "G". We don't count R_MIPS_GOT_HI16, or
8866 R_MIPS_CALL_HI16 because these are always followed by an
8867 R_MIPS_GOT_LO16 or R_MIPS_CALL_LO16. */
8868 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
8869 rel->r_addend, info, r_type))
8870 return FALSE;
8871 }
8872
8873 if (h != NULL
8874 && mips_elf_relocation_needs_la25_stub (abfd, r_type,
8875 ELF_ST_IS_MIPS16 (h->other)))
8876 ((struct mips_elf_link_hash_entry *) h)->has_nonpic_branches = TRUE;
8877
8878 switch (r_type)
8879 {
8880 case R_MIPS_CALL16:
8881 case R_MIPS16_CALL16:
8882 case R_MICROMIPS_CALL16:
8883 if (h == NULL)
8884 {
8885 _bfd_error_handler
8886 /* xgettext:c-format */
8887 (_("%pB: CALL16 reloc at %#" PRIx64 " not against global symbol"),
8888 abfd, (uint64_t) rel->r_offset);
8889 bfd_set_error (bfd_error_bad_value);
8890 return FALSE;
8891 }
8892 /* Fall through. */
8893
8894 case R_MIPS_CALL_HI16:
8895 case R_MIPS_CALL_LO16:
8896 case R_MICROMIPS_CALL_HI16:
8897 case R_MICROMIPS_CALL_LO16:
8898 if (h != NULL)
8899 {
8900 /* Make sure there is room in the regular GOT to hold the
8901 function's address. We may eliminate it in favour of
8902 a .got.plt entry later; see mips_elf_count_got_symbols. */
8903 if (!mips_elf_record_global_got_symbol (h, abfd, info, TRUE,
8904 r_type))
8905 return FALSE;
8906
8907 /* We need a stub, not a plt entry for the undefined
8908 function. But we record it as if it needs plt. See
8909 _bfd_elf_adjust_dynamic_symbol. */
8910 h->needs_plt = 1;
8911 h->type = STT_FUNC;
8912 }
8913 break;
8914
8915 case R_MIPS_GOT_PAGE:
8916 case R_MICROMIPS_GOT_PAGE:
8917 case R_MIPS16_GOT16:
8918 case R_MIPS_GOT16:
8919 case R_MIPS_GOT_HI16:
8920 case R_MIPS_GOT_LO16:
8921 case R_MICROMIPS_GOT16:
8922 case R_MICROMIPS_GOT_HI16:
8923 case R_MICROMIPS_GOT_LO16:
8924 if (!h || got_page_reloc_p (r_type))
8925 {
8926 /* This relocation needs (or may need, if h != NULL) a
8927 page entry in the GOT. For R_MIPS_GOT_PAGE we do not
8928 know for sure until we know whether the symbol is
8929 preemptible. */
8930 if (mips_elf_rel_relocation_p (abfd, sec, relocs, rel))
8931 {
8932 if (!mips_elf_get_section_contents (abfd, sec, &contents))
8933 return FALSE;
8934 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, FALSE);
8935 addend = mips_elf_read_rel_addend (abfd, rel,
8936 howto, contents);
8937 if (got16_reloc_p (r_type))
8938 mips_elf_add_lo16_rel_addend (abfd, rel, rel_end,
8939 contents, &addend);
8940 else
8941 addend <<= howto->rightshift;
8942 }
8943 else
8944 addend = rel->r_addend;
8945 if (!mips_elf_record_got_page_ref (info, abfd, r_symndx,
8946 h, addend))
8947 return FALSE;
8948
8949 if (h)
8950 {
8951 struct mips_elf_link_hash_entry *hmips =
8952 (struct mips_elf_link_hash_entry *) h;
8953
8954 /* This symbol is definitely not overridable. */
8955 if (hmips->root.def_regular
8956 && ! (bfd_link_pic (info) && ! info->symbolic
8957 && ! hmips->root.forced_local))
8958 h = NULL;
8959 }
8960 }
8961 /* If this is a global, overridable symbol, GOT_PAGE will
8962 decay to GOT_DISP, so we'll need a GOT entry for it. */
8963 /* Fall through. */
8964
8965 case R_MIPS_GOT_DISP:
8966 case R_MICROMIPS_GOT_DISP:
8967 if (h && !mips_elf_record_global_got_symbol (h, abfd, info,
8968 FALSE, r_type))
8969 return FALSE;
8970 break;
8971
8972 case R_MIPS_TLS_GOTTPREL:
8973 case R_MIPS16_TLS_GOTTPREL:
8974 case R_MICROMIPS_TLS_GOTTPREL:
8975 if (bfd_link_pic (info))
8976 info->flags |= DF_STATIC_TLS;
8977 /* Fall through */
8978
8979 case R_MIPS_TLS_LDM:
8980 case R_MIPS16_TLS_LDM:
8981 case R_MICROMIPS_TLS_LDM:
8982 if (tls_ldm_reloc_p (r_type))
8983 {
8984 r_symndx = STN_UNDEF;
8985 h = NULL;
8986 }
8987 /* Fall through */
8988
8989 case R_MIPS_TLS_GD:
8990 case R_MIPS16_TLS_GD:
8991 case R_MICROMIPS_TLS_GD:
8992 /* This symbol requires a global offset table entry, or two
8993 for TLS GD relocations. */
8994 if (h != NULL)
8995 {
8996 if (!mips_elf_record_global_got_symbol (h, abfd, info,
8997 FALSE, r_type))
8998 return FALSE;
8999 }
9000 else
9001 {
9002 if (!mips_elf_record_local_got_symbol (abfd, r_symndx,
9003 rel->r_addend,
9004 info, r_type))
9005 return FALSE;
9006 }
9007 break;
9008
9009 case R_MIPS_32:
9010 case R_MIPS_REL32:
9011 case R_MIPS_64:
9012 /* In VxWorks executables, references to external symbols
9013 are handled using copy relocs or PLT stubs, so there's
9014 no need to add a .rela.dyn entry for this relocation. */
9015 if (can_make_dynamic_p)
9016 {
9017 if (sreloc == NULL)
9018 {
9019 sreloc = mips_elf_rel_dyn_section (info, TRUE);
9020 if (sreloc == NULL)
9021 return FALSE;
9022 }
9023 if (bfd_link_pic (info) && h == NULL)
9024 {
9025 /* When creating a shared object, we must copy these
9026 reloc types into the output file as R_MIPS_REL32
9027 relocs. Make room for this reloc in .rel(a).dyn. */
9028 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9029 if (MIPS_ELF_READONLY_SECTION (sec))
9030 /* We tell the dynamic linker that there are
9031 relocations against the text segment. */
9032 info->flags |= DF_TEXTREL;
9033 }
9034 else
9035 {
9036 struct mips_elf_link_hash_entry *hmips;
9037
9038 /* For a shared object, we must copy this relocation
9039 unless the symbol turns out to be undefined and
9040 weak with non-default visibility, in which case
9041 it will be left as zero.
9042
9043 We could elide R_MIPS_REL32 for locally binding symbols
9044 in shared libraries, but do not yet do so.
9045
9046 For an executable, we only need to copy this
9047 reloc if the symbol is defined in a dynamic
9048 object. */
9049 hmips = (struct mips_elf_link_hash_entry *) h;
9050 ++hmips->possibly_dynamic_relocs;
9051 if (MIPS_ELF_READONLY_SECTION (sec))
9052 /* We need it to tell the dynamic linker if there
9053 are relocations against the text segment. */
9054 hmips->readonly_reloc = TRUE;
9055 }
9056 }
9057
9058 if (SGI_COMPAT (abfd))
9059 mips_elf_hash_table (info)->compact_rel_size +=
9060 sizeof (Elf32_External_crinfo);
9061 break;
9062
9063 case R_MIPS_26:
9064 case R_MIPS_GPREL16:
9065 case R_MIPS_LITERAL:
9066 case R_MIPS_GPREL32:
9067 case R_MICROMIPS_26_S1:
9068 case R_MICROMIPS_GPREL16:
9069 case R_MICROMIPS_LITERAL:
9070 case R_MICROMIPS_GPREL7_S2:
9071 if (SGI_COMPAT (abfd))
9072 mips_elf_hash_table (info)->compact_rel_size +=
9073 sizeof (Elf32_External_crinfo);
9074 break;
9075
9076 /* This relocation describes the C++ object vtable hierarchy.
9077 Reconstruct it for later use during GC. */
9078 case R_MIPS_GNU_VTINHERIT:
9079 if (!bfd_elf_gc_record_vtinherit (abfd, sec, h, rel->r_offset))
9080 return FALSE;
9081 break;
9082
9083 /* This relocation describes which C++ vtable entries are actually
9084 used. Record for later use during GC. */
9085 case R_MIPS_GNU_VTENTRY:
9086 if (!bfd_elf_gc_record_vtentry (abfd, sec, h, rel->r_offset))
9087 return FALSE;
9088 break;
9089
9090 default:
9091 break;
9092 }
9093
9094 /* Record the need for a PLT entry. At this point we don't know
9095 yet if we are going to create a PLT in the first place, but
9096 we only record whether the relocation requires a standard MIPS
9097 or a compressed code entry anyway. If we don't make a PLT after
9098 all, then we'll just ignore these arrangements. Likewise if
9099 a PLT entry is not created because the symbol is satisfied
9100 locally. */
9101 if (h != NULL
9102 && (branch_reloc_p (r_type)
9103 || mips16_branch_reloc_p (r_type)
9104 || micromips_branch_reloc_p (r_type))
9105 && !SYMBOL_CALLS_LOCAL (info, h))
9106 {
9107 if (h->plt.plist == NULL)
9108 h->plt.plist = mips_elf_make_plt_record (abfd);
9109 if (h->plt.plist == NULL)
9110 return FALSE;
9111
9112 if (branch_reloc_p (r_type))
9113 h->plt.plist->need_mips = TRUE;
9114 else
9115 h->plt.plist->need_comp = TRUE;
9116 }
9117
9118 /* See if this reloc would need to refer to a MIPS16 hard-float stub,
9119 if there is one. We only need to handle global symbols here;
9120 we decide whether to keep or delete stubs for local symbols
9121 when processing the stub's relocations. */
9122 if (h != NULL
9123 && !mips16_call_reloc_p (r_type)
9124 && !section_allows_mips16_refs_p (sec))
9125 {
9126 struct mips_elf_link_hash_entry *mh;
9127
9128 mh = (struct mips_elf_link_hash_entry *) h;
9129 mh->need_fn_stub = TRUE;
9130 }
9131
9132 /* Refuse some position-dependent relocations when creating a
9133 shared library. Do not refuse R_MIPS_32 / R_MIPS_64; they're
9134 not PIC, but we can create dynamic relocations and the result
9135 will be fine. Also do not refuse R_MIPS_LO16, which can be
9136 combined with R_MIPS_GOT16. */
9137 if (bfd_link_pic (info))
9138 {
9139 switch (r_type)
9140 {
9141 case R_MIPS_TLS_TPREL_HI16:
9142 case R_MIPS16_TLS_TPREL_HI16:
9143 case R_MICROMIPS_TLS_TPREL_HI16:
9144 case R_MIPS_TLS_TPREL_LO16:
9145 case R_MIPS16_TLS_TPREL_LO16:
9146 case R_MICROMIPS_TLS_TPREL_LO16:
9147 /* These are okay in PIE, but not in a shared library. */
9148 if (bfd_link_executable (info))
9149 break;
9150
9151 /* FALLTHROUGH */
9152
9153 case R_MIPS16_HI16:
9154 case R_MIPS_HI16:
9155 case R_MIPS_HIGHER:
9156 case R_MIPS_HIGHEST:
9157 case R_MICROMIPS_HI16:
9158 case R_MICROMIPS_HIGHER:
9159 case R_MICROMIPS_HIGHEST:
9160 /* Don't refuse a high part relocation if it's against
9161 no symbol (e.g. part of a compound relocation). */
9162 if (r_symndx == STN_UNDEF)
9163 break;
9164
9165 /* Likewise an absolute symbol. */
9166 if (h != NULL && bfd_is_abs_symbol (&h->root))
9167 break;
9168
9169 /* R_MIPS_HI16 against _gp_disp is used for $gp setup,
9170 and has a special meaning. */
9171 if (!NEWABI_P (abfd) && h != NULL
9172 && strcmp (h->root.root.string, "_gp_disp") == 0)
9173 break;
9174
9175 /* Likewise __GOTT_BASE__ and __GOTT_INDEX__ on VxWorks. */
9176 if (is_gott_symbol (info, h))
9177 break;
9178
9179 /* FALLTHROUGH */
9180
9181 case R_MIPS16_26:
9182 case R_MIPS_26:
9183 case R_MICROMIPS_26_S1:
9184 howto = MIPS_ELF_RTYPE_TO_HOWTO (abfd, r_type, NEWABI_P (abfd));
9185 /* An error for unsupported relocations is raised as part
9186 of the above search, so we can skip the following. */
9187 if (howto != NULL)
9188 info->callbacks->einfo
9189 /* xgettext:c-format */
9190 (_("%X%H: relocation %s against `%s' cannot be used"
9191 " when making a shared object; recompile with -fPIC\n"),
9192 abfd, sec, rel->r_offset, howto->name,
9193 (h) ? h->root.root.string : "a local symbol");
9194 break;
9195 default:
9196 break;
9197 }
9198 }
9199 }
9200
9201 return TRUE;
9202 }
9203 \f
9204 /* Allocate space for global sym dynamic relocs. */
9205
9206 static bfd_boolean
9207 allocate_dynrelocs (struct elf_link_hash_entry *h, void *inf)
9208 {
9209 struct bfd_link_info *info = inf;
9210 bfd *dynobj;
9211 struct mips_elf_link_hash_entry *hmips;
9212 struct mips_elf_link_hash_table *htab;
9213
9214 htab = mips_elf_hash_table (info);
9215 BFD_ASSERT (htab != NULL);
9216
9217 dynobj = elf_hash_table (info)->dynobj;
9218 hmips = (struct mips_elf_link_hash_entry *) h;
9219
9220 /* VxWorks executables are handled elsewhere; we only need to
9221 allocate relocations in shared objects. */
9222 if (htab->is_vxworks && !bfd_link_pic (info))
9223 return TRUE;
9224
9225 /* Ignore indirect symbols. All relocations against such symbols
9226 will be redirected to the target symbol. */
9227 if (h->root.type == bfd_link_hash_indirect)
9228 return TRUE;
9229
9230 /* If this symbol is defined in a dynamic object, or we are creating
9231 a shared library, we will need to copy any R_MIPS_32 or
9232 R_MIPS_REL32 relocs against it into the output file. */
9233 if (! bfd_link_relocatable (info)
9234 && hmips->possibly_dynamic_relocs != 0
9235 && (h->root.type == bfd_link_hash_defweak
9236 || (!h->def_regular && !ELF_COMMON_DEF_P (h))
9237 || bfd_link_pic (info)))
9238 {
9239 bfd_boolean do_copy = TRUE;
9240
9241 if (h->root.type == bfd_link_hash_undefweak)
9242 {
9243 /* Do not copy relocations for undefined weak symbols that
9244 we are not going to export. */
9245 if (UNDEFWEAK_NO_DYNAMIC_RELOC (info, h))
9246 do_copy = FALSE;
9247
9248 /* Make sure undefined weak symbols are output as a dynamic
9249 symbol in PIEs. */
9250 else if (h->dynindx == -1 && !h->forced_local)
9251 {
9252 if (! bfd_elf_link_record_dynamic_symbol (info, h))
9253 return FALSE;
9254 }
9255 }
9256
9257 if (do_copy)
9258 {
9259 /* Even though we don't directly need a GOT entry for this symbol,
9260 the SVR4 psABI requires it to have a dynamic symbol table
9261 index greater that DT_MIPS_GOTSYM if there are dynamic
9262 relocations against it.
9263
9264 VxWorks does not enforce the same mapping between the GOT
9265 and the symbol table, so the same requirement does not
9266 apply there. */
9267 if (!htab->is_vxworks)
9268 {
9269 if (hmips->global_got_area > GGA_RELOC_ONLY)
9270 hmips->global_got_area = GGA_RELOC_ONLY;
9271 hmips->got_only_for_calls = FALSE;
9272 }
9273
9274 mips_elf_allocate_dynamic_relocations
9275 (dynobj, info, hmips->possibly_dynamic_relocs);
9276 if (hmips->readonly_reloc)
9277 /* We tell the dynamic linker that there are relocations
9278 against the text segment. */
9279 info->flags |= DF_TEXTREL;
9280 }
9281 }
9282
9283 return TRUE;
9284 }
9285
9286 /* Adjust a symbol defined by a dynamic object and referenced by a
9287 regular object. The current definition is in some section of the
9288 dynamic object, but we're not including those sections. We have to
9289 change the definition to something the rest of the link can
9290 understand. */
9291
9292 bfd_boolean
9293 _bfd_mips_elf_adjust_dynamic_symbol (struct bfd_link_info *info,
9294 struct elf_link_hash_entry *h)
9295 {
9296 bfd *dynobj;
9297 struct mips_elf_link_hash_entry *hmips;
9298 struct mips_elf_link_hash_table *htab;
9299 asection *s, *srel;
9300
9301 htab = mips_elf_hash_table (info);
9302 BFD_ASSERT (htab != NULL);
9303
9304 dynobj = elf_hash_table (info)->dynobj;
9305 hmips = (struct mips_elf_link_hash_entry *) h;
9306
9307 /* Make sure we know what is going on here. */
9308 BFD_ASSERT (dynobj != NULL
9309 && (h->needs_plt
9310 || h->is_weakalias
9311 || (h->def_dynamic
9312 && h->ref_regular
9313 && !h->def_regular)));
9314
9315 hmips = (struct mips_elf_link_hash_entry *) h;
9316
9317 /* If there are call relocations against an externally-defined symbol,
9318 see whether we can create a MIPS lazy-binding stub for it. We can
9319 only do this if all references to the function are through call
9320 relocations, and in that case, the traditional lazy-binding stubs
9321 are much more efficient than PLT entries.
9322
9323 Traditional stubs are only available on SVR4 psABI-based systems;
9324 VxWorks always uses PLTs instead. */
9325 if (!htab->is_vxworks && h->needs_plt && !hmips->no_fn_stub)
9326 {
9327 if (! elf_hash_table (info)->dynamic_sections_created)
9328 return TRUE;
9329
9330 /* If this symbol is not defined in a regular file, then set
9331 the symbol to the stub location. This is required to make
9332 function pointers compare as equal between the normal
9333 executable and the shared library. */
9334 if (!h->def_regular
9335 && !bfd_is_abs_section (htab->sstubs->output_section))
9336 {
9337 hmips->needs_lazy_stub = TRUE;
9338 htab->lazy_stub_count++;
9339 return TRUE;
9340 }
9341 }
9342 /* As above, VxWorks requires PLT entries for externally-defined
9343 functions that are only accessed through call relocations.
9344
9345 Both VxWorks and non-VxWorks targets also need PLT entries if there
9346 are static-only relocations against an externally-defined function.
9347 This can technically occur for shared libraries if there are
9348 branches to the symbol, although it is unlikely that this will be
9349 used in practice due to the short ranges involved. It can occur
9350 for any relative or absolute relocation in executables; in that
9351 case, the PLT entry becomes the function's canonical address. */
9352 else if (((h->needs_plt && !hmips->no_fn_stub)
9353 || (h->type == STT_FUNC && hmips->has_static_relocs))
9354 && htab->use_plts_and_copy_relocs
9355 && !SYMBOL_CALLS_LOCAL (info, h)
9356 && !(ELF_ST_VISIBILITY (h->other) != STV_DEFAULT
9357 && h->root.type == bfd_link_hash_undefweak))
9358 {
9359 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9360 bfd_boolean newabi_p = NEWABI_P (info->output_bfd);
9361
9362 /* If this is the first symbol to need a PLT entry, then make some
9363 basic setup. Also work out PLT entry sizes. We'll need them
9364 for PLT offset calculations. */
9365 if (htab->plt_mips_offset + htab->plt_comp_offset == 0)
9366 {
9367 BFD_ASSERT (htab->root.sgotplt->size == 0);
9368 BFD_ASSERT (htab->plt_got_index == 0);
9369
9370 /* If we're using the PLT additions to the psABI, each PLT
9371 entry is 16 bytes and the PLT0 entry is 32 bytes.
9372 Encourage better cache usage by aligning. We do this
9373 lazily to avoid pessimizing traditional objects. */
9374 if (!htab->is_vxworks
9375 && !bfd_set_section_alignment (htab->root.splt, 5))
9376 return FALSE;
9377
9378 /* Make sure that .got.plt is word-aligned. We do this lazily
9379 for the same reason as above. */
9380 if (!bfd_set_section_alignment (htab->root.sgotplt,
9381 MIPS_ELF_LOG_FILE_ALIGN (dynobj)))
9382 return FALSE;
9383
9384 /* On non-VxWorks targets, the first two entries in .got.plt
9385 are reserved. */
9386 if (!htab->is_vxworks)
9387 htab->plt_got_index
9388 += (get_elf_backend_data (dynobj)->got_header_size
9389 / MIPS_ELF_GOT_SIZE (dynobj));
9390
9391 /* On VxWorks, also allocate room for the header's
9392 .rela.plt.unloaded entries. */
9393 if (htab->is_vxworks && !bfd_link_pic (info))
9394 htab->srelplt2->size += 2 * sizeof (Elf32_External_Rela);
9395
9396 /* Now work out the sizes of individual PLT entries. */
9397 if (htab->is_vxworks && bfd_link_pic (info))
9398 htab->plt_mips_entry_size
9399 = 4 * ARRAY_SIZE (mips_vxworks_shared_plt_entry);
9400 else if (htab->is_vxworks)
9401 htab->plt_mips_entry_size
9402 = 4 * ARRAY_SIZE (mips_vxworks_exec_plt_entry);
9403 else if (newabi_p)
9404 htab->plt_mips_entry_size
9405 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9406 else if (!micromips_p)
9407 {
9408 htab->plt_mips_entry_size
9409 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9410 htab->plt_comp_entry_size
9411 = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
9412 }
9413 else if (htab->insn32)
9414 {
9415 htab->plt_mips_entry_size
9416 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9417 htab->plt_comp_entry_size
9418 = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
9419 }
9420 else
9421 {
9422 htab->plt_mips_entry_size
9423 = 4 * ARRAY_SIZE (mips_exec_plt_entry);
9424 htab->plt_comp_entry_size
9425 = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
9426 }
9427 }
9428
9429 if (h->plt.plist == NULL)
9430 h->plt.plist = mips_elf_make_plt_record (dynobj);
9431 if (h->plt.plist == NULL)
9432 return FALSE;
9433
9434 /* There are no defined MIPS16 or microMIPS PLT entries for VxWorks,
9435 n32 or n64, so always use a standard entry there.
9436
9437 If the symbol has a MIPS16 call stub and gets a PLT entry, then
9438 all MIPS16 calls will go via that stub, and there is no benefit
9439 to having a MIPS16 entry. And in the case of call_stub a
9440 standard entry actually has to be used as the stub ends with a J
9441 instruction. */
9442 if (newabi_p
9443 || htab->is_vxworks
9444 || hmips->call_stub
9445 || hmips->call_fp_stub)
9446 {
9447 h->plt.plist->need_mips = TRUE;
9448 h->plt.plist->need_comp = FALSE;
9449 }
9450
9451 /* Otherwise, if there are no direct calls to the function, we
9452 have a free choice of whether to use standard or compressed
9453 entries. Prefer microMIPS entries if the object is known to
9454 contain microMIPS code, so that it becomes possible to create
9455 pure microMIPS binaries. Prefer standard entries otherwise,
9456 because MIPS16 ones are no smaller and are usually slower. */
9457 if (!h->plt.plist->need_mips && !h->plt.plist->need_comp)
9458 {
9459 if (micromips_p)
9460 h->plt.plist->need_comp = TRUE;
9461 else
9462 h->plt.plist->need_mips = TRUE;
9463 }
9464
9465 if (h->plt.plist->need_mips)
9466 {
9467 h->plt.plist->mips_offset = htab->plt_mips_offset;
9468 htab->plt_mips_offset += htab->plt_mips_entry_size;
9469 }
9470 if (h->plt.plist->need_comp)
9471 {
9472 h->plt.plist->comp_offset = htab->plt_comp_offset;
9473 htab->plt_comp_offset += htab->plt_comp_entry_size;
9474 }
9475
9476 /* Reserve the corresponding .got.plt entry now too. */
9477 h->plt.plist->gotplt_index = htab->plt_got_index++;
9478
9479 /* If the output file has no definition of the symbol, set the
9480 symbol's value to the address of the stub. */
9481 if (!bfd_link_pic (info) && !h->def_regular)
9482 hmips->use_plt_entry = TRUE;
9483
9484 /* Make room for the R_MIPS_JUMP_SLOT relocation. */
9485 htab->root.srelplt->size += (htab->is_vxworks
9486 ? MIPS_ELF_RELA_SIZE (dynobj)
9487 : MIPS_ELF_REL_SIZE (dynobj));
9488
9489 /* Make room for the .rela.plt.unloaded relocations. */
9490 if (htab->is_vxworks && !bfd_link_pic (info))
9491 htab->srelplt2->size += 3 * sizeof (Elf32_External_Rela);
9492
9493 /* All relocations against this symbol that could have been made
9494 dynamic will now refer to the PLT entry instead. */
9495 hmips->possibly_dynamic_relocs = 0;
9496
9497 return TRUE;
9498 }
9499
9500 /* If this is a weak symbol, and there is a real definition, the
9501 processor independent code will have arranged for us to see the
9502 real definition first, and we can just use the same value. */
9503 if (h->is_weakalias)
9504 {
9505 struct elf_link_hash_entry *def = weakdef (h);
9506 BFD_ASSERT (def->root.type == bfd_link_hash_defined);
9507 h->root.u.def.section = def->root.u.def.section;
9508 h->root.u.def.value = def->root.u.def.value;
9509 return TRUE;
9510 }
9511
9512 /* Otherwise, there is nothing further to do for symbols defined
9513 in regular objects. */
9514 if (h->def_regular)
9515 return TRUE;
9516
9517 /* There's also nothing more to do if we'll convert all relocations
9518 against this symbol into dynamic relocations. */
9519 if (!hmips->has_static_relocs)
9520 return TRUE;
9521
9522 /* We're now relying on copy relocations. Complain if we have
9523 some that we can't convert. */
9524 if (!htab->use_plts_and_copy_relocs || bfd_link_pic (info))
9525 {
9526 _bfd_error_handler (_("non-dynamic relocations refer to "
9527 "dynamic symbol %s"),
9528 h->root.root.string);
9529 bfd_set_error (bfd_error_bad_value);
9530 return FALSE;
9531 }
9532
9533 /* We must allocate the symbol in our .dynbss section, which will
9534 become part of the .bss section of the executable. There will be
9535 an entry for this symbol in the .dynsym section. The dynamic
9536 object will contain position independent code, so all references
9537 from the dynamic object to this symbol will go through the global
9538 offset table. The dynamic linker will use the .dynsym entry to
9539 determine the address it must put in the global offset table, so
9540 both the dynamic object and the regular object will refer to the
9541 same memory location for the variable. */
9542
9543 if ((h->root.u.def.section->flags & SEC_READONLY) != 0)
9544 {
9545 s = htab->root.sdynrelro;
9546 srel = htab->root.sreldynrelro;
9547 }
9548 else
9549 {
9550 s = htab->root.sdynbss;
9551 srel = htab->root.srelbss;
9552 }
9553 if ((h->root.u.def.section->flags & SEC_ALLOC) != 0)
9554 {
9555 if (htab->is_vxworks)
9556 srel->size += sizeof (Elf32_External_Rela);
9557 else
9558 mips_elf_allocate_dynamic_relocations (dynobj, info, 1);
9559 h->needs_copy = 1;
9560 }
9561
9562 /* All relocations against this symbol that could have been made
9563 dynamic will now refer to the local copy instead. */
9564 hmips->possibly_dynamic_relocs = 0;
9565
9566 return _bfd_elf_adjust_dynamic_copy (info, h, s);
9567 }
9568 \f
9569 /* This function is called after all the input files have been read,
9570 and the input sections have been assigned to output sections. We
9571 check for any mips16 stub sections that we can discard. */
9572
9573 bfd_boolean
9574 _bfd_mips_elf_always_size_sections (bfd *output_bfd,
9575 struct bfd_link_info *info)
9576 {
9577 asection *sect;
9578 struct mips_elf_link_hash_table *htab;
9579 struct mips_htab_traverse_info hti;
9580
9581 htab = mips_elf_hash_table (info);
9582 BFD_ASSERT (htab != NULL);
9583
9584 /* The .reginfo section has a fixed size. */
9585 sect = bfd_get_section_by_name (output_bfd, ".reginfo");
9586 if (sect != NULL)
9587 {
9588 bfd_set_section_size (sect, sizeof (Elf32_External_RegInfo));
9589 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9590 }
9591
9592 /* The .MIPS.abiflags section has a fixed size. */
9593 sect = bfd_get_section_by_name (output_bfd, ".MIPS.abiflags");
9594 if (sect != NULL)
9595 {
9596 bfd_set_section_size (sect, sizeof (Elf_External_ABIFlags_v0));
9597 sect->flags |= SEC_FIXED_SIZE | SEC_HAS_CONTENTS;
9598 }
9599
9600 hti.info = info;
9601 hti.output_bfd = output_bfd;
9602 hti.error = FALSE;
9603 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
9604 mips_elf_check_symbols, &hti);
9605 if (hti.error)
9606 return FALSE;
9607
9608 return TRUE;
9609 }
9610
9611 /* If the link uses a GOT, lay it out and work out its size. */
9612
9613 static bfd_boolean
9614 mips_elf_lay_out_got (bfd *output_bfd, struct bfd_link_info *info)
9615 {
9616 bfd *dynobj;
9617 asection *s;
9618 struct mips_got_info *g;
9619 bfd_size_type loadable_size = 0;
9620 bfd_size_type page_gotno;
9621 bfd *ibfd;
9622 struct mips_elf_traverse_got_arg tga;
9623 struct mips_elf_link_hash_table *htab;
9624
9625 htab = mips_elf_hash_table (info);
9626 BFD_ASSERT (htab != NULL);
9627
9628 s = htab->root.sgot;
9629 if (s == NULL)
9630 return TRUE;
9631
9632 dynobj = elf_hash_table (info)->dynobj;
9633 g = htab->got_info;
9634
9635 /* Allocate room for the reserved entries. VxWorks always reserves
9636 3 entries; other objects only reserve 2 entries. */
9637 BFD_ASSERT (g->assigned_low_gotno == 0);
9638 if (htab->is_vxworks)
9639 htab->reserved_gotno = 3;
9640 else
9641 htab->reserved_gotno = 2;
9642 g->local_gotno += htab->reserved_gotno;
9643 g->assigned_low_gotno = htab->reserved_gotno;
9644
9645 /* Decide which symbols need to go in the global part of the GOT and
9646 count the number of reloc-only GOT symbols. */
9647 mips_elf_link_hash_traverse (htab, mips_elf_count_got_symbols, info);
9648
9649 if (!mips_elf_resolve_final_got_entries (info, g))
9650 return FALSE;
9651
9652 /* Calculate the total loadable size of the output. That
9653 will give us the maximum number of GOT_PAGE entries
9654 required. */
9655 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9656 {
9657 asection *subsection;
9658
9659 for (subsection = ibfd->sections;
9660 subsection;
9661 subsection = subsection->next)
9662 {
9663 if ((subsection->flags & SEC_ALLOC) == 0)
9664 continue;
9665 loadable_size += ((subsection->size + 0xf)
9666 &~ (bfd_size_type) 0xf);
9667 }
9668 }
9669
9670 if (htab->is_vxworks)
9671 /* There's no need to allocate page entries for VxWorks; R_MIPS*_GOT16
9672 relocations against local symbols evaluate to "G", and the EABI does
9673 not include R_MIPS_GOT_PAGE. */
9674 page_gotno = 0;
9675 else
9676 /* Assume there are two loadable segments consisting of contiguous
9677 sections. Is 5 enough? */
9678 page_gotno = (loadable_size >> 16) + 5;
9679
9680 /* Choose the smaller of the two page estimates; both are intended to be
9681 conservative. */
9682 if (page_gotno > g->page_gotno)
9683 page_gotno = g->page_gotno;
9684
9685 g->local_gotno += page_gotno;
9686 g->assigned_high_gotno = g->local_gotno - 1;
9687
9688 s->size += g->local_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9689 s->size += g->global_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9690 s->size += g->tls_gotno * MIPS_ELF_GOT_SIZE (output_bfd);
9691
9692 /* VxWorks does not support multiple GOTs. It initializes $gp to
9693 __GOTT_BASE__[__GOTT_INDEX__], the value of which is set by the
9694 dynamic loader. */
9695 if (!htab->is_vxworks && s->size > MIPS_ELF_GOT_MAX_SIZE (info))
9696 {
9697 if (!mips_elf_multi_got (output_bfd, info, s, page_gotno))
9698 return FALSE;
9699 }
9700 else
9701 {
9702 /* Record that all bfds use G. This also has the effect of freeing
9703 the per-bfd GOTs, which we no longer need. */
9704 for (ibfd = info->input_bfds; ibfd; ibfd = ibfd->link.next)
9705 if (mips_elf_bfd_got (ibfd, FALSE))
9706 mips_elf_replace_bfd_got (ibfd, g);
9707 mips_elf_replace_bfd_got (output_bfd, g);
9708
9709 /* Set up TLS entries. */
9710 g->tls_assigned_gotno = g->global_gotno + g->local_gotno;
9711 tga.info = info;
9712 tga.g = g;
9713 tga.value = MIPS_ELF_GOT_SIZE (output_bfd);
9714 htab_traverse (g->got_entries, mips_elf_initialize_tls_index, &tga);
9715 if (!tga.g)
9716 return FALSE;
9717 BFD_ASSERT (g->tls_assigned_gotno
9718 == g->global_gotno + g->local_gotno + g->tls_gotno);
9719
9720 /* Each VxWorks GOT entry needs an explicit relocation. */
9721 if (htab->is_vxworks && bfd_link_pic (info))
9722 g->relocs += g->global_gotno + g->local_gotno - htab->reserved_gotno;
9723
9724 /* Allocate room for the TLS relocations. */
9725 if (g->relocs)
9726 mips_elf_allocate_dynamic_relocations (dynobj, info, g->relocs);
9727 }
9728
9729 return TRUE;
9730 }
9731
9732 /* Estimate the size of the .MIPS.stubs section. */
9733
9734 static void
9735 mips_elf_estimate_stub_size (bfd *output_bfd, struct bfd_link_info *info)
9736 {
9737 struct mips_elf_link_hash_table *htab;
9738 bfd_size_type dynsymcount;
9739
9740 htab = mips_elf_hash_table (info);
9741 BFD_ASSERT (htab != NULL);
9742
9743 if (htab->lazy_stub_count == 0)
9744 return;
9745
9746 /* IRIX rld assumes that a function stub isn't at the end of the .text
9747 section, so add a dummy entry to the end. */
9748 htab->lazy_stub_count++;
9749
9750 /* Get a worst-case estimate of the number of dynamic symbols needed.
9751 At this point, dynsymcount does not account for section symbols
9752 and count_section_dynsyms may overestimate the number that will
9753 be needed. */
9754 dynsymcount = (elf_hash_table (info)->dynsymcount
9755 + count_section_dynsyms (output_bfd, info));
9756
9757 /* Determine the size of one stub entry. There's no disadvantage
9758 from using microMIPS code here, so for the sake of pure-microMIPS
9759 binaries we prefer it whenever there's any microMIPS code in
9760 output produced at all. This has a benefit of stubs being
9761 shorter by 4 bytes each too, unless in the insn32 mode. */
9762 if (!MICROMIPS_P (output_bfd))
9763 htab->function_stub_size = (dynsymcount > 0x10000
9764 ? MIPS_FUNCTION_STUB_BIG_SIZE
9765 : MIPS_FUNCTION_STUB_NORMAL_SIZE);
9766 else if (htab->insn32)
9767 htab->function_stub_size = (dynsymcount > 0x10000
9768 ? MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE
9769 : MICROMIPS_INSN32_FUNCTION_STUB_NORMAL_SIZE);
9770 else
9771 htab->function_stub_size = (dynsymcount > 0x10000
9772 ? MICROMIPS_FUNCTION_STUB_BIG_SIZE
9773 : MICROMIPS_FUNCTION_STUB_NORMAL_SIZE);
9774
9775 htab->sstubs->size = htab->lazy_stub_count * htab->function_stub_size;
9776 }
9777
9778 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9779 mips_htab_traverse_info. If H needs a traditional MIPS lazy-binding
9780 stub, allocate an entry in the stubs section. */
9781
9782 static bfd_boolean
9783 mips_elf_allocate_lazy_stub (struct mips_elf_link_hash_entry *h, void *data)
9784 {
9785 struct mips_htab_traverse_info *hti = data;
9786 struct mips_elf_link_hash_table *htab;
9787 struct bfd_link_info *info;
9788 bfd *output_bfd;
9789
9790 info = hti->info;
9791 output_bfd = hti->output_bfd;
9792 htab = mips_elf_hash_table (info);
9793 BFD_ASSERT (htab != NULL);
9794
9795 if (h->needs_lazy_stub)
9796 {
9797 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9798 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9799 bfd_vma isa_bit = micromips_p;
9800
9801 BFD_ASSERT (htab->root.dynobj != NULL);
9802 if (h->root.plt.plist == NULL)
9803 h->root.plt.plist = mips_elf_make_plt_record (htab->sstubs->owner);
9804 if (h->root.plt.plist == NULL)
9805 {
9806 hti->error = TRUE;
9807 return FALSE;
9808 }
9809 h->root.root.u.def.section = htab->sstubs;
9810 h->root.root.u.def.value = htab->sstubs->size + isa_bit;
9811 h->root.plt.plist->stub_offset = htab->sstubs->size;
9812 h->root.other = other;
9813 htab->sstubs->size += htab->function_stub_size;
9814 }
9815 return TRUE;
9816 }
9817
9818 /* Allocate offsets in the stubs section to each symbol that needs one.
9819 Set the final size of the .MIPS.stub section. */
9820
9821 static bfd_boolean
9822 mips_elf_lay_out_lazy_stubs (struct bfd_link_info *info)
9823 {
9824 bfd *output_bfd = info->output_bfd;
9825 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
9826 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9827 bfd_vma isa_bit = micromips_p;
9828 struct mips_elf_link_hash_table *htab;
9829 struct mips_htab_traverse_info hti;
9830 struct elf_link_hash_entry *h;
9831 bfd *dynobj;
9832
9833 htab = mips_elf_hash_table (info);
9834 BFD_ASSERT (htab != NULL);
9835
9836 if (htab->lazy_stub_count == 0)
9837 return TRUE;
9838
9839 htab->sstubs->size = 0;
9840 hti.info = info;
9841 hti.output_bfd = output_bfd;
9842 hti.error = FALSE;
9843 mips_elf_link_hash_traverse (htab, mips_elf_allocate_lazy_stub, &hti);
9844 if (hti.error)
9845 return FALSE;
9846 htab->sstubs->size += htab->function_stub_size;
9847 BFD_ASSERT (htab->sstubs->size
9848 == htab->lazy_stub_count * htab->function_stub_size);
9849
9850 dynobj = elf_hash_table (info)->dynobj;
9851 BFD_ASSERT (dynobj != NULL);
9852 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->sstubs, "_MIPS_STUBS_");
9853 if (h == NULL)
9854 return FALSE;
9855 h->root.u.def.value = isa_bit;
9856 h->other = other;
9857 h->type = STT_FUNC;
9858
9859 return TRUE;
9860 }
9861
9862 /* A mips_elf_link_hash_traverse callback for which DATA points to a
9863 bfd_link_info. If H uses the address of a PLT entry as the value
9864 of the symbol, then set the entry in the symbol table now. Prefer
9865 a standard MIPS PLT entry. */
9866
9867 static bfd_boolean
9868 mips_elf_set_plt_sym_value (struct mips_elf_link_hash_entry *h, void *data)
9869 {
9870 struct bfd_link_info *info = data;
9871 bfd_boolean micromips_p = MICROMIPS_P (info->output_bfd);
9872 struct mips_elf_link_hash_table *htab;
9873 unsigned int other;
9874 bfd_vma isa_bit;
9875 bfd_vma val;
9876
9877 htab = mips_elf_hash_table (info);
9878 BFD_ASSERT (htab != NULL);
9879
9880 if (h->use_plt_entry)
9881 {
9882 BFD_ASSERT (h->root.plt.plist != NULL);
9883 BFD_ASSERT (h->root.plt.plist->mips_offset != MINUS_ONE
9884 || h->root.plt.plist->comp_offset != MINUS_ONE);
9885
9886 val = htab->plt_header_size;
9887 if (h->root.plt.plist->mips_offset != MINUS_ONE)
9888 {
9889 isa_bit = 0;
9890 val += h->root.plt.plist->mips_offset;
9891 other = 0;
9892 }
9893 else
9894 {
9895 isa_bit = 1;
9896 val += htab->plt_mips_offset + h->root.plt.plist->comp_offset;
9897 other = micromips_p ? STO_MICROMIPS : STO_MIPS16;
9898 }
9899 val += isa_bit;
9900 /* For VxWorks, point at the PLT load stub rather than the lazy
9901 resolution stub; this stub will become the canonical function
9902 address. */
9903 if (htab->is_vxworks)
9904 val += 8;
9905
9906 h->root.root.u.def.section = htab->root.splt;
9907 h->root.root.u.def.value = val;
9908 h->root.other = other;
9909 }
9910
9911 return TRUE;
9912 }
9913
9914 /* Set the sizes of the dynamic sections. */
9915
9916 bfd_boolean
9917 _bfd_mips_elf_size_dynamic_sections (bfd *output_bfd,
9918 struct bfd_link_info *info)
9919 {
9920 bfd *dynobj;
9921 asection *s, *sreldyn;
9922 bfd_boolean reltext;
9923 struct mips_elf_link_hash_table *htab;
9924
9925 htab = mips_elf_hash_table (info);
9926 BFD_ASSERT (htab != NULL);
9927 dynobj = elf_hash_table (info)->dynobj;
9928 BFD_ASSERT (dynobj != NULL);
9929
9930 if (elf_hash_table (info)->dynamic_sections_created)
9931 {
9932 /* Set the contents of the .interp section to the interpreter. */
9933 if (bfd_link_executable (info) && !info->nointerp)
9934 {
9935 s = bfd_get_linker_section (dynobj, ".interp");
9936 BFD_ASSERT (s != NULL);
9937 s->size
9938 = strlen (ELF_DYNAMIC_INTERPRETER (output_bfd)) + 1;
9939 s->contents
9940 = (bfd_byte *) ELF_DYNAMIC_INTERPRETER (output_bfd);
9941 }
9942
9943 /* Figure out the size of the PLT header if we know that we
9944 are using it. For the sake of cache alignment always use
9945 a standard header whenever any standard entries are present
9946 even if microMIPS entries are present as well. This also
9947 lets the microMIPS header rely on the value of $v0 only set
9948 by microMIPS entries, for a small size reduction.
9949
9950 Set symbol table entry values for symbols that use the
9951 address of their PLT entry now that we can calculate it.
9952
9953 Also create the _PROCEDURE_LINKAGE_TABLE_ symbol if we
9954 haven't already in _bfd_elf_create_dynamic_sections. */
9955 if (htab->root.splt && htab->plt_mips_offset + htab->plt_comp_offset != 0)
9956 {
9957 bfd_boolean micromips_p = (MICROMIPS_P (output_bfd)
9958 && !htab->plt_mips_offset);
9959 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
9960 bfd_vma isa_bit = micromips_p;
9961 struct elf_link_hash_entry *h;
9962 bfd_vma size;
9963
9964 BFD_ASSERT (htab->use_plts_and_copy_relocs);
9965 BFD_ASSERT (htab->root.sgotplt->size == 0);
9966 BFD_ASSERT (htab->root.splt->size == 0);
9967
9968 if (htab->is_vxworks && bfd_link_pic (info))
9969 size = 4 * ARRAY_SIZE (mips_vxworks_shared_plt0_entry);
9970 else if (htab->is_vxworks)
9971 size = 4 * ARRAY_SIZE (mips_vxworks_exec_plt0_entry);
9972 else if (ABI_64_P (output_bfd))
9973 size = 4 * ARRAY_SIZE (mips_n64_exec_plt0_entry);
9974 else if (ABI_N32_P (output_bfd))
9975 size = 4 * ARRAY_SIZE (mips_n32_exec_plt0_entry);
9976 else if (!micromips_p)
9977 size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
9978 else if (htab->insn32)
9979 size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
9980 else
9981 size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
9982
9983 htab->plt_header_is_comp = micromips_p;
9984 htab->plt_header_size = size;
9985 htab->root.splt->size = (size
9986 + htab->plt_mips_offset
9987 + htab->plt_comp_offset);
9988 htab->root.sgotplt->size = (htab->plt_got_index
9989 * MIPS_ELF_GOT_SIZE (dynobj));
9990
9991 mips_elf_link_hash_traverse (htab, mips_elf_set_plt_sym_value, info);
9992
9993 if (htab->root.hplt == NULL)
9994 {
9995 h = _bfd_elf_define_linkage_sym (dynobj, info, htab->root.splt,
9996 "_PROCEDURE_LINKAGE_TABLE_");
9997 htab->root.hplt = h;
9998 if (h == NULL)
9999 return FALSE;
10000 }
10001
10002 h = htab->root.hplt;
10003 h->root.u.def.value = isa_bit;
10004 h->other = other;
10005 h->type = STT_FUNC;
10006 }
10007 }
10008
10009 /* Allocate space for global sym dynamic relocs. */
10010 elf_link_hash_traverse (&htab->root, allocate_dynrelocs, info);
10011
10012 mips_elf_estimate_stub_size (output_bfd, info);
10013
10014 if (!mips_elf_lay_out_got (output_bfd, info))
10015 return FALSE;
10016
10017 mips_elf_lay_out_lazy_stubs (info);
10018
10019 /* The check_relocs and adjust_dynamic_symbol entry points have
10020 determined the sizes of the various dynamic sections. Allocate
10021 memory for them. */
10022 reltext = FALSE;
10023 for (s = dynobj->sections; s != NULL; s = s->next)
10024 {
10025 const char *name;
10026
10027 /* It's OK to base decisions on the section name, because none
10028 of the dynobj section names depend upon the input files. */
10029 name = bfd_section_name (s);
10030
10031 if ((s->flags & SEC_LINKER_CREATED) == 0)
10032 continue;
10033
10034 if (CONST_STRNEQ (name, ".rel"))
10035 {
10036 if (s->size != 0)
10037 {
10038 const char *outname;
10039 asection *target;
10040
10041 /* If this relocation section applies to a read only
10042 section, then we probably need a DT_TEXTREL entry.
10043 If the relocation section is .rel(a).dyn, we always
10044 assert a DT_TEXTREL entry rather than testing whether
10045 there exists a relocation to a read only section or
10046 not. */
10047 outname = bfd_section_name (s->output_section);
10048 target = bfd_get_section_by_name (output_bfd, outname + 4);
10049 if ((target != NULL
10050 && (target->flags & SEC_READONLY) != 0
10051 && (target->flags & SEC_ALLOC) != 0)
10052 || strcmp (outname, MIPS_ELF_REL_DYN_NAME (info)) == 0)
10053 reltext = TRUE;
10054
10055 /* We use the reloc_count field as a counter if we need
10056 to copy relocs into the output file. */
10057 if (strcmp (name, MIPS_ELF_REL_DYN_NAME (info)) != 0)
10058 s->reloc_count = 0;
10059
10060 /* If combreloc is enabled, elf_link_sort_relocs() will
10061 sort relocations, but in a different way than we do,
10062 and before we're done creating relocations. Also, it
10063 will move them around between input sections'
10064 relocation's contents, so our sorting would be
10065 broken, so don't let it run. */
10066 info->combreloc = 0;
10067 }
10068 }
10069 else if (bfd_link_executable (info)
10070 && ! mips_elf_hash_table (info)->use_rld_obj_head
10071 && CONST_STRNEQ (name, ".rld_map"))
10072 {
10073 /* We add a room for __rld_map. It will be filled in by the
10074 rtld to contain a pointer to the _r_debug structure. */
10075 s->size += MIPS_ELF_RLD_MAP_SIZE (output_bfd);
10076 }
10077 else if (SGI_COMPAT (output_bfd)
10078 && CONST_STRNEQ (name, ".compact_rel"))
10079 s->size += mips_elf_hash_table (info)->compact_rel_size;
10080 else if (s == htab->root.splt)
10081 {
10082 /* If the last PLT entry has a branch delay slot, allocate
10083 room for an extra nop to fill the delay slot. This is
10084 for CPUs without load interlocking. */
10085 if (! LOAD_INTERLOCKS_P (output_bfd)
10086 && ! htab->is_vxworks && s->size > 0)
10087 s->size += 4;
10088 }
10089 else if (! CONST_STRNEQ (name, ".init")
10090 && s != htab->root.sgot
10091 && s != htab->root.sgotplt
10092 && s != htab->sstubs
10093 && s != htab->root.sdynbss
10094 && s != htab->root.sdynrelro)
10095 {
10096 /* It's not one of our sections, so don't allocate space. */
10097 continue;
10098 }
10099
10100 if (s->size == 0)
10101 {
10102 s->flags |= SEC_EXCLUDE;
10103 continue;
10104 }
10105
10106 if ((s->flags & SEC_HAS_CONTENTS) == 0)
10107 continue;
10108
10109 /* Allocate memory for the section contents. */
10110 s->contents = bfd_zalloc (dynobj, s->size);
10111 if (s->contents == NULL)
10112 {
10113 bfd_set_error (bfd_error_no_memory);
10114 return FALSE;
10115 }
10116 }
10117
10118 if (elf_hash_table (info)->dynamic_sections_created)
10119 {
10120 /* Add some entries to the .dynamic section. We fill in the
10121 values later, in _bfd_mips_elf_finish_dynamic_sections, but we
10122 must add the entries now so that we get the correct size for
10123 the .dynamic section. */
10124
10125 /* SGI object has the equivalence of DT_DEBUG in the
10126 DT_MIPS_RLD_MAP entry. This must come first because glibc
10127 only fills in DT_MIPS_RLD_MAP (not DT_DEBUG) and some tools
10128 may only look at the first one they see. */
10129 if (!bfd_link_pic (info)
10130 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP, 0))
10131 return FALSE;
10132
10133 if (bfd_link_executable (info)
10134 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_MAP_REL, 0))
10135 return FALSE;
10136
10137 /* The DT_DEBUG entry may be filled in by the dynamic linker and
10138 used by the debugger. */
10139 if (bfd_link_executable (info)
10140 && !SGI_COMPAT (output_bfd)
10141 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_DEBUG, 0))
10142 return FALSE;
10143
10144 if (reltext && (SGI_COMPAT (output_bfd) || htab->is_vxworks))
10145 info->flags |= DF_TEXTREL;
10146
10147 if ((info->flags & DF_TEXTREL) != 0)
10148 {
10149 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_TEXTREL, 0))
10150 return FALSE;
10151
10152 /* Clear the DF_TEXTREL flag. It will be set again if we
10153 write out an actual text relocation; we may not, because
10154 at this point we do not know whether e.g. any .eh_frame
10155 absolute relocations have been converted to PC-relative. */
10156 info->flags &= ~DF_TEXTREL;
10157 }
10158
10159 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTGOT, 0))
10160 return FALSE;
10161
10162 sreldyn = mips_elf_rel_dyn_section (info, FALSE);
10163 if (htab->is_vxworks)
10164 {
10165 /* VxWorks uses .rela.dyn instead of .rel.dyn. It does not
10166 use any of the DT_MIPS_* tags. */
10167 if (sreldyn && sreldyn->size > 0)
10168 {
10169 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELA, 0))
10170 return FALSE;
10171
10172 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELASZ, 0))
10173 return FALSE;
10174
10175 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELAENT, 0))
10176 return FALSE;
10177 }
10178 }
10179 else
10180 {
10181 if (sreldyn && sreldyn->size > 0
10182 && !bfd_is_abs_section (sreldyn->output_section))
10183 {
10184 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_REL, 0))
10185 return FALSE;
10186
10187 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELSZ, 0))
10188 return FALSE;
10189
10190 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_RELENT, 0))
10191 return FALSE;
10192 }
10193
10194 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_RLD_VERSION, 0))
10195 return FALSE;
10196
10197 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_FLAGS, 0))
10198 return FALSE;
10199
10200 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_BASE_ADDRESS, 0))
10201 return FALSE;
10202
10203 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_LOCAL_GOTNO, 0))
10204 return FALSE;
10205
10206 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_SYMTABNO, 0))
10207 return FALSE;
10208
10209 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_UNREFEXTNO, 0))
10210 return FALSE;
10211
10212 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_GOTSYM, 0))
10213 return FALSE;
10214
10215 if (info->emit_gnu_hash
10216 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_XHASH, 0))
10217 return FALSE;
10218
10219 if (IRIX_COMPAT (dynobj) == ict_irix5
10220 && ! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_HIPAGENO, 0))
10221 return FALSE;
10222
10223 if (IRIX_COMPAT (dynobj) == ict_irix6
10224 && (bfd_get_section_by_name
10225 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (dynobj)))
10226 && !MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_OPTIONS, 0))
10227 return FALSE;
10228 }
10229 if (htab->root.splt->size > 0)
10230 {
10231 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTREL, 0))
10232 return FALSE;
10233
10234 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_JMPREL, 0))
10235 return FALSE;
10236
10237 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_PLTRELSZ, 0))
10238 return FALSE;
10239
10240 if (! MIPS_ELF_ADD_DYNAMIC_ENTRY (info, DT_MIPS_PLTGOT, 0))
10241 return FALSE;
10242 }
10243 if (htab->is_vxworks
10244 && !elf_vxworks_add_dynamic_entries (output_bfd, info))
10245 return FALSE;
10246 }
10247
10248 return TRUE;
10249 }
10250 \f
10251 /* REL is a relocation in INPUT_BFD that is being copied to OUTPUT_BFD.
10252 Adjust its R_ADDEND field so that it is correct for the output file.
10253 LOCAL_SYMS and LOCAL_SECTIONS are arrays of INPUT_BFD's local symbols
10254 and sections respectively; both use symbol indexes. */
10255
10256 static void
10257 mips_elf_adjust_addend (bfd *output_bfd, struct bfd_link_info *info,
10258 bfd *input_bfd, Elf_Internal_Sym *local_syms,
10259 asection **local_sections, Elf_Internal_Rela *rel)
10260 {
10261 unsigned int r_type, r_symndx;
10262 Elf_Internal_Sym *sym;
10263 asection *sec;
10264
10265 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10266 {
10267 r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10268 if (gprel16_reloc_p (r_type)
10269 || r_type == R_MIPS_GPREL32
10270 || literal_reloc_p (r_type))
10271 {
10272 rel->r_addend += _bfd_get_gp_value (input_bfd);
10273 rel->r_addend -= _bfd_get_gp_value (output_bfd);
10274 }
10275
10276 r_symndx = ELF_R_SYM (output_bfd, rel->r_info);
10277 sym = local_syms + r_symndx;
10278
10279 /* Adjust REL's addend to account for section merging. */
10280 if (!bfd_link_relocatable (info))
10281 {
10282 sec = local_sections[r_symndx];
10283 _bfd_elf_rela_local_sym (output_bfd, sym, &sec, rel);
10284 }
10285
10286 /* This would normally be done by the rela_normal code in elflink.c. */
10287 if (ELF_ST_TYPE (sym->st_info) == STT_SECTION)
10288 rel->r_addend += local_sections[r_symndx]->output_offset;
10289 }
10290 }
10291
10292 /* Handle relocations against symbols from removed linkonce sections,
10293 or sections discarded by a linker script. We use this wrapper around
10294 RELOC_AGAINST_DISCARDED_SECTION to handle triplets of compound relocs
10295 on 64-bit ELF targets. In this case for any relocation handled, which
10296 always be the first in a triplet, the remaining two have to be processed
10297 together with the first, even if they are R_MIPS_NONE. It is the symbol
10298 index referred by the first reloc that applies to all the three and the
10299 remaining two never refer to an object symbol. And it is the final
10300 relocation (the last non-null one) that determines the output field of
10301 the whole relocation so retrieve the corresponding howto structure for
10302 the relocatable field to be cleared by RELOC_AGAINST_DISCARDED_SECTION.
10303
10304 Note that RELOC_AGAINST_DISCARDED_SECTION is a macro that uses "continue"
10305 and therefore requires to be pasted in a loop. It also defines a block
10306 and does not protect any of its arguments, hence the extra brackets. */
10307
10308 static void
10309 mips_reloc_against_discarded_section (bfd *output_bfd,
10310 struct bfd_link_info *info,
10311 bfd *input_bfd, asection *input_section,
10312 Elf_Internal_Rela **rel,
10313 const Elf_Internal_Rela **relend,
10314 bfd_boolean rel_reloc,
10315 reloc_howto_type *howto,
10316 bfd_byte *contents)
10317 {
10318 const struct elf_backend_data *bed = get_elf_backend_data (output_bfd);
10319 int count = bed->s->int_rels_per_ext_rel;
10320 unsigned int r_type;
10321 int i;
10322
10323 for (i = count - 1; i > 0; i--)
10324 {
10325 r_type = ELF_R_TYPE (output_bfd, (*rel)[i].r_info);
10326 if (r_type != R_MIPS_NONE)
10327 {
10328 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10329 break;
10330 }
10331 }
10332 do
10333 {
10334 RELOC_AGAINST_DISCARDED_SECTION (info, input_bfd, input_section,
10335 (*rel), count, (*relend),
10336 howto, i, contents);
10337 }
10338 while (0);
10339 }
10340
10341 /* Relocate a MIPS ELF section. */
10342
10343 bfd_boolean
10344 _bfd_mips_elf_relocate_section (bfd *output_bfd, struct bfd_link_info *info,
10345 bfd *input_bfd, asection *input_section,
10346 bfd_byte *contents, Elf_Internal_Rela *relocs,
10347 Elf_Internal_Sym *local_syms,
10348 asection **local_sections)
10349 {
10350 Elf_Internal_Rela *rel;
10351 const Elf_Internal_Rela *relend;
10352 bfd_vma addend = 0;
10353 bfd_boolean use_saved_addend_p = FALSE;
10354
10355 relend = relocs + input_section->reloc_count;
10356 for (rel = relocs; rel < relend; ++rel)
10357 {
10358 const char *name;
10359 bfd_vma value = 0;
10360 reloc_howto_type *howto;
10361 bfd_boolean cross_mode_jump_p = FALSE;
10362 /* TRUE if the relocation is a RELA relocation, rather than a
10363 REL relocation. */
10364 bfd_boolean rela_relocation_p = TRUE;
10365 unsigned int r_type = ELF_R_TYPE (output_bfd, rel->r_info);
10366 const char *msg;
10367 unsigned long r_symndx;
10368 asection *sec;
10369 Elf_Internal_Shdr *symtab_hdr;
10370 struct elf_link_hash_entry *h;
10371 bfd_boolean rel_reloc;
10372
10373 rel_reloc = (NEWABI_P (input_bfd)
10374 && mips_elf_rel_relocation_p (input_bfd, input_section,
10375 relocs, rel));
10376 /* Find the relocation howto for this relocation. */
10377 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, r_type, !rel_reloc);
10378
10379 r_symndx = ELF_R_SYM (input_bfd, rel->r_info);
10380 symtab_hdr = &elf_tdata (input_bfd)->symtab_hdr;
10381 if (mips_elf_local_relocation_p (input_bfd, rel, local_sections))
10382 {
10383 sec = local_sections[r_symndx];
10384 h = NULL;
10385 }
10386 else
10387 {
10388 unsigned long extsymoff;
10389
10390 extsymoff = 0;
10391 if (!elf_bad_symtab (input_bfd))
10392 extsymoff = symtab_hdr->sh_info;
10393 h = elf_sym_hashes (input_bfd) [r_symndx - extsymoff];
10394 while (h->root.type == bfd_link_hash_indirect
10395 || h->root.type == bfd_link_hash_warning)
10396 h = (struct elf_link_hash_entry *) h->root.u.i.link;
10397
10398 sec = NULL;
10399 if (h->root.type == bfd_link_hash_defined
10400 || h->root.type == bfd_link_hash_defweak)
10401 sec = h->root.u.def.section;
10402 }
10403
10404 if (sec != NULL && discarded_section (sec))
10405 {
10406 mips_reloc_against_discarded_section (output_bfd, info, input_bfd,
10407 input_section, &rel, &relend,
10408 rel_reloc, howto, contents);
10409 continue;
10410 }
10411
10412 if (r_type == R_MIPS_64 && ! NEWABI_P (input_bfd))
10413 {
10414 /* Some 32-bit code uses R_MIPS_64. In particular, people use
10415 64-bit code, but make sure all their addresses are in the
10416 lowermost or uppermost 32-bit section of the 64-bit address
10417 space. Thus, when they use an R_MIPS_64 they mean what is
10418 usually meant by R_MIPS_32, with the exception that the
10419 stored value is sign-extended to 64 bits. */
10420 howto = MIPS_ELF_RTYPE_TO_HOWTO (input_bfd, R_MIPS_32, FALSE);
10421
10422 /* On big-endian systems, we need to lie about the position
10423 of the reloc. */
10424 if (bfd_big_endian (input_bfd))
10425 rel->r_offset += 4;
10426 }
10427
10428 if (!use_saved_addend_p)
10429 {
10430 /* If these relocations were originally of the REL variety,
10431 we must pull the addend out of the field that will be
10432 relocated. Otherwise, we simply use the contents of the
10433 RELA relocation. */
10434 if (mips_elf_rel_relocation_p (input_bfd, input_section,
10435 relocs, rel))
10436 {
10437 rela_relocation_p = FALSE;
10438 addend = mips_elf_read_rel_addend (input_bfd, rel,
10439 howto, contents);
10440 if (hi16_reloc_p (r_type)
10441 || (got16_reloc_p (r_type)
10442 && mips_elf_local_relocation_p (input_bfd, rel,
10443 local_sections)))
10444 {
10445 if (!mips_elf_add_lo16_rel_addend (input_bfd, rel, relend,
10446 contents, &addend))
10447 {
10448 if (h)
10449 name = h->root.root.string;
10450 else
10451 name = bfd_elf_sym_name (input_bfd, symtab_hdr,
10452 local_syms + r_symndx,
10453 sec);
10454 _bfd_error_handler
10455 /* xgettext:c-format */
10456 (_("%pB: can't find matching LO16 reloc against `%s'"
10457 " for %s at %#" PRIx64 " in section `%pA'"),
10458 input_bfd, name,
10459 howto->name, (uint64_t) rel->r_offset, input_section);
10460 }
10461 }
10462 else
10463 addend <<= howto->rightshift;
10464 }
10465 else
10466 addend = rel->r_addend;
10467 mips_elf_adjust_addend (output_bfd, info, input_bfd,
10468 local_syms, local_sections, rel);
10469 }
10470
10471 if (bfd_link_relocatable (info))
10472 {
10473 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd)
10474 && bfd_big_endian (input_bfd))
10475 rel->r_offset -= 4;
10476
10477 if (!rela_relocation_p && rel->r_addend)
10478 {
10479 addend += rel->r_addend;
10480 if (hi16_reloc_p (r_type) || got16_reloc_p (r_type))
10481 addend = mips_elf_high (addend);
10482 else if (r_type == R_MIPS_HIGHER)
10483 addend = mips_elf_higher (addend);
10484 else if (r_type == R_MIPS_HIGHEST)
10485 addend = mips_elf_highest (addend);
10486 else
10487 addend >>= howto->rightshift;
10488
10489 /* We use the source mask, rather than the destination
10490 mask because the place to which we are writing will be
10491 source of the addend in the final link. */
10492 addend &= howto->src_mask;
10493
10494 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10495 /* See the comment above about using R_MIPS_64 in the 32-bit
10496 ABI. Here, we need to update the addend. It would be
10497 possible to get away with just using the R_MIPS_32 reloc
10498 but for endianness. */
10499 {
10500 bfd_vma sign_bits;
10501 bfd_vma low_bits;
10502 bfd_vma high_bits;
10503
10504 if (addend & ((bfd_vma) 1 << 31))
10505 #ifdef BFD64
10506 sign_bits = ((bfd_vma) 1 << 32) - 1;
10507 #else
10508 sign_bits = -1;
10509 #endif
10510 else
10511 sign_bits = 0;
10512
10513 /* If we don't know that we have a 64-bit type,
10514 do two separate stores. */
10515 if (bfd_big_endian (input_bfd))
10516 {
10517 /* Store the sign-bits (which are most significant)
10518 first. */
10519 low_bits = sign_bits;
10520 high_bits = addend;
10521 }
10522 else
10523 {
10524 low_bits = addend;
10525 high_bits = sign_bits;
10526 }
10527 bfd_put_32 (input_bfd, low_bits,
10528 contents + rel->r_offset);
10529 bfd_put_32 (input_bfd, high_bits,
10530 contents + rel->r_offset + 4);
10531 continue;
10532 }
10533
10534 if (! mips_elf_perform_relocation (info, howto, rel, addend,
10535 input_bfd, input_section,
10536 contents, FALSE))
10537 return FALSE;
10538 }
10539
10540 /* Go on to the next relocation. */
10541 continue;
10542 }
10543
10544 /* In the N32 and 64-bit ABIs there may be multiple consecutive
10545 relocations for the same offset. In that case we are
10546 supposed to treat the output of each relocation as the addend
10547 for the next. */
10548 if (rel + 1 < relend
10549 && rel->r_offset == rel[1].r_offset
10550 && ELF_R_TYPE (input_bfd, rel[1].r_info) != R_MIPS_NONE)
10551 use_saved_addend_p = TRUE;
10552 else
10553 use_saved_addend_p = FALSE;
10554
10555 /* Figure out what value we are supposed to relocate. */
10556 switch (mips_elf_calculate_relocation (output_bfd, input_bfd,
10557 input_section, contents,
10558 info, rel, addend, howto,
10559 local_syms, local_sections,
10560 &value, &name, &cross_mode_jump_p,
10561 use_saved_addend_p))
10562 {
10563 case bfd_reloc_continue:
10564 /* There's nothing to do. */
10565 continue;
10566
10567 case bfd_reloc_undefined:
10568 /* mips_elf_calculate_relocation already called the
10569 undefined_symbol callback. There's no real point in
10570 trying to perform the relocation at this point, so we
10571 just skip ahead to the next relocation. */
10572 continue;
10573
10574 case bfd_reloc_notsupported:
10575 msg = _("internal error: unsupported relocation error");
10576 info->callbacks->warning
10577 (info, msg, name, input_bfd, input_section, rel->r_offset);
10578 return FALSE;
10579
10580 case bfd_reloc_overflow:
10581 if (use_saved_addend_p)
10582 /* Ignore overflow until we reach the last relocation for
10583 a given location. */
10584 ;
10585 else
10586 {
10587 struct mips_elf_link_hash_table *htab;
10588
10589 htab = mips_elf_hash_table (info);
10590 BFD_ASSERT (htab != NULL);
10591 BFD_ASSERT (name != NULL);
10592 if (!htab->small_data_overflow_reported
10593 && (gprel16_reloc_p (howto->type)
10594 || literal_reloc_p (howto->type)))
10595 {
10596 msg = _("small-data section exceeds 64KB;"
10597 " lower small-data size limit (see option -G)");
10598
10599 htab->small_data_overflow_reported = TRUE;
10600 (*info->callbacks->einfo) ("%P: %s\n", msg);
10601 }
10602 (*info->callbacks->reloc_overflow)
10603 (info, NULL, name, howto->name, (bfd_vma) 0,
10604 input_bfd, input_section, rel->r_offset);
10605 }
10606 break;
10607
10608 case bfd_reloc_ok:
10609 break;
10610
10611 case bfd_reloc_outofrange:
10612 msg = NULL;
10613 if (jal_reloc_p (howto->type))
10614 msg = (cross_mode_jump_p
10615 ? _("cannot convert a jump to JALX "
10616 "for a non-word-aligned address")
10617 : (howto->type == R_MIPS16_26
10618 ? _("jump to a non-word-aligned address")
10619 : _("jump to a non-instruction-aligned address")));
10620 else if (b_reloc_p (howto->type))
10621 msg = (cross_mode_jump_p
10622 ? _("cannot convert a branch to JALX "
10623 "for a non-word-aligned address")
10624 : _("branch to a non-instruction-aligned address"));
10625 else if (aligned_pcrel_reloc_p (howto->type))
10626 msg = _("PC-relative load from unaligned address");
10627 if (msg)
10628 {
10629 info->callbacks->einfo
10630 ("%X%H: %s\n", input_bfd, input_section, rel->r_offset, msg);
10631 break;
10632 }
10633 /* Fall through. */
10634
10635 default:
10636 abort ();
10637 break;
10638 }
10639
10640 /* If we've got another relocation for the address, keep going
10641 until we reach the last one. */
10642 if (use_saved_addend_p)
10643 {
10644 addend = value;
10645 continue;
10646 }
10647
10648 if (r_type == R_MIPS_64 && ! NEWABI_P (output_bfd))
10649 /* See the comment above about using R_MIPS_64 in the 32-bit
10650 ABI. Until now, we've been using the HOWTO for R_MIPS_32;
10651 that calculated the right value. Now, however, we
10652 sign-extend the 32-bit result to 64-bits, and store it as a
10653 64-bit value. We are especially generous here in that we
10654 go to extreme lengths to support this usage on systems with
10655 only a 32-bit VMA. */
10656 {
10657 bfd_vma sign_bits;
10658 bfd_vma low_bits;
10659 bfd_vma high_bits;
10660
10661 if (value & ((bfd_vma) 1 << 31))
10662 #ifdef BFD64
10663 sign_bits = ((bfd_vma) 1 << 32) - 1;
10664 #else
10665 sign_bits = -1;
10666 #endif
10667 else
10668 sign_bits = 0;
10669
10670 /* If we don't know that we have a 64-bit type,
10671 do two separate stores. */
10672 if (bfd_big_endian (input_bfd))
10673 {
10674 /* Undo what we did above. */
10675 rel->r_offset -= 4;
10676 /* Store the sign-bits (which are most significant)
10677 first. */
10678 low_bits = sign_bits;
10679 high_bits = value;
10680 }
10681 else
10682 {
10683 low_bits = value;
10684 high_bits = sign_bits;
10685 }
10686 bfd_put_32 (input_bfd, low_bits,
10687 contents + rel->r_offset);
10688 bfd_put_32 (input_bfd, high_bits,
10689 contents + rel->r_offset + 4);
10690 continue;
10691 }
10692
10693 /* Actually perform the relocation. */
10694 if (! mips_elf_perform_relocation (info, howto, rel, value,
10695 input_bfd, input_section,
10696 contents, cross_mode_jump_p))
10697 return FALSE;
10698 }
10699
10700 return TRUE;
10701 }
10702 \f
10703 /* A function that iterates over each entry in la25_stubs and fills
10704 in the code for each one. DATA points to a mips_htab_traverse_info. */
10705
10706 static int
10707 mips_elf_create_la25_stub (void **slot, void *data)
10708 {
10709 struct mips_htab_traverse_info *hti;
10710 struct mips_elf_link_hash_table *htab;
10711 struct mips_elf_la25_stub *stub;
10712 asection *s;
10713 bfd_byte *loc;
10714 bfd_vma offset, target, target_high, target_low;
10715 bfd_vma branch_pc;
10716 bfd_signed_vma pcrel_offset = 0;
10717
10718 stub = (struct mips_elf_la25_stub *) *slot;
10719 hti = (struct mips_htab_traverse_info *) data;
10720 htab = mips_elf_hash_table (hti->info);
10721 BFD_ASSERT (htab != NULL);
10722
10723 /* Create the section contents, if we haven't already. */
10724 s = stub->stub_section;
10725 loc = s->contents;
10726 if (loc == NULL)
10727 {
10728 loc = bfd_malloc (s->size);
10729 if (loc == NULL)
10730 {
10731 hti->error = TRUE;
10732 return FALSE;
10733 }
10734 s->contents = loc;
10735 }
10736
10737 /* Work out where in the section this stub should go. */
10738 offset = stub->offset;
10739
10740 /* We add 8 here to account for the LUI/ADDIU instructions
10741 before the branch instruction. This cannot be moved down to
10742 where pcrel_offset is calculated as 's' is updated in
10743 mips_elf_get_la25_target. */
10744 branch_pc = s->output_section->vma + s->output_offset + offset + 8;
10745
10746 /* Work out the target address. */
10747 target = mips_elf_get_la25_target (stub, &s);
10748 target += s->output_section->vma + s->output_offset;
10749
10750 target_high = ((target + 0x8000) >> 16) & 0xffff;
10751 target_low = (target & 0xffff);
10752
10753 /* Calculate the PC of the compact branch instruction (for the case where
10754 compact branches are used for either microMIPSR6 or MIPSR6 with
10755 compact branches. Add 4-bytes to account for BC using the PC of the
10756 next instruction as the base. */
10757 pcrel_offset = target - (branch_pc + 4);
10758
10759 if (stub->stub_section != htab->strampoline)
10760 {
10761 /* This is a simple LUI/ADDIU stub. Zero out the beginning
10762 of the section and write the two instructions at the end. */
10763 memset (loc, 0, offset);
10764 loc += offset;
10765 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10766 {
10767 bfd_put_micromips_32 (hti->output_bfd,
10768 LA25_LUI_MICROMIPS (target_high),
10769 loc);
10770 bfd_put_micromips_32 (hti->output_bfd,
10771 LA25_ADDIU_MICROMIPS (target_low),
10772 loc + 4);
10773 }
10774 else
10775 {
10776 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10777 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10778 }
10779 }
10780 else
10781 {
10782 /* This is trampoline. */
10783 loc += offset;
10784 if (ELF_ST_IS_MICROMIPS (stub->h->root.other))
10785 {
10786 bfd_put_micromips_32 (hti->output_bfd,
10787 LA25_LUI_MICROMIPS (target_high), loc);
10788 bfd_put_micromips_32 (hti->output_bfd,
10789 LA25_J_MICROMIPS (target), loc + 4);
10790 bfd_put_micromips_32 (hti->output_bfd,
10791 LA25_ADDIU_MICROMIPS (target_low), loc + 8);
10792 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10793 }
10794 else
10795 {
10796 bfd_put_32 (hti->output_bfd, LA25_LUI (target_high), loc);
10797 if (MIPSR6_P (hti->output_bfd) && htab->compact_branches)
10798 {
10799 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 4);
10800 bfd_put_32 (hti->output_bfd, LA25_BC (pcrel_offset), loc + 8);
10801 }
10802 else
10803 {
10804 bfd_put_32 (hti->output_bfd, LA25_J (target), loc + 4);
10805 bfd_put_32 (hti->output_bfd, LA25_ADDIU (target_low), loc + 8);
10806 }
10807 bfd_put_32 (hti->output_bfd, 0, loc + 12);
10808 }
10809 }
10810 return TRUE;
10811 }
10812
10813 /* If NAME is one of the special IRIX6 symbols defined by the linker,
10814 adjust it appropriately now. */
10815
10816 static void
10817 mips_elf_irix6_finish_dynamic_symbol (bfd *abfd ATTRIBUTE_UNUSED,
10818 const char *name, Elf_Internal_Sym *sym)
10819 {
10820 /* The linker script takes care of providing names and values for
10821 these, but we must place them into the right sections. */
10822 static const char* const text_section_symbols[] = {
10823 "_ftext",
10824 "_etext",
10825 "__dso_displacement",
10826 "__elf_header",
10827 "__program_header_table",
10828 NULL
10829 };
10830
10831 static const char* const data_section_symbols[] = {
10832 "_fdata",
10833 "_edata",
10834 "_end",
10835 "_fbss",
10836 NULL
10837 };
10838
10839 const char* const *p;
10840 int i;
10841
10842 for (i = 0; i < 2; ++i)
10843 for (p = (i == 0) ? text_section_symbols : data_section_symbols;
10844 *p;
10845 ++p)
10846 if (strcmp (*p, name) == 0)
10847 {
10848 /* All of these symbols are given type STT_SECTION by the
10849 IRIX6 linker. */
10850 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
10851 sym->st_other = STO_PROTECTED;
10852
10853 /* The IRIX linker puts these symbols in special sections. */
10854 if (i == 0)
10855 sym->st_shndx = SHN_MIPS_TEXT;
10856 else
10857 sym->st_shndx = SHN_MIPS_DATA;
10858
10859 break;
10860 }
10861 }
10862
10863 /* Finish up dynamic symbol handling. We set the contents of various
10864 dynamic sections here. */
10865
10866 bfd_boolean
10867 _bfd_mips_elf_finish_dynamic_symbol (bfd *output_bfd,
10868 struct bfd_link_info *info,
10869 struct elf_link_hash_entry *h,
10870 Elf_Internal_Sym *sym)
10871 {
10872 bfd *dynobj;
10873 asection *sgot;
10874 struct mips_got_info *g, *gg;
10875 const char *name;
10876 int idx;
10877 struct mips_elf_link_hash_table *htab;
10878 struct mips_elf_link_hash_entry *hmips;
10879
10880 htab = mips_elf_hash_table (info);
10881 BFD_ASSERT (htab != NULL);
10882 dynobj = elf_hash_table (info)->dynobj;
10883 hmips = (struct mips_elf_link_hash_entry *) h;
10884
10885 BFD_ASSERT (!htab->is_vxworks);
10886
10887 if (h->plt.plist != NULL
10888 && (h->plt.plist->mips_offset != MINUS_ONE
10889 || h->plt.plist->comp_offset != MINUS_ONE))
10890 {
10891 /* We've decided to create a PLT entry for this symbol. */
10892 bfd_byte *loc;
10893 bfd_vma header_address, got_address;
10894 bfd_vma got_address_high, got_address_low, load;
10895 bfd_vma got_index;
10896 bfd_vma isa_bit;
10897
10898 got_index = h->plt.plist->gotplt_index;
10899
10900 BFD_ASSERT (htab->use_plts_and_copy_relocs);
10901 BFD_ASSERT (h->dynindx != -1);
10902 BFD_ASSERT (htab->root.splt != NULL);
10903 BFD_ASSERT (got_index != MINUS_ONE);
10904 BFD_ASSERT (!h->def_regular);
10905
10906 /* Calculate the address of the PLT header. */
10907 isa_bit = htab->plt_header_is_comp;
10908 header_address = (htab->root.splt->output_section->vma
10909 + htab->root.splt->output_offset + isa_bit);
10910
10911 /* Calculate the address of the .got.plt entry. */
10912 got_address = (htab->root.sgotplt->output_section->vma
10913 + htab->root.sgotplt->output_offset
10914 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10915
10916 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
10917 got_address_low = got_address & 0xffff;
10918
10919 /* The PLT sequence is not safe for N64 if .got.plt entry's address
10920 cannot be loaded in two instructions. */
10921 if (ABI_64_P (output_bfd)
10922 && ((got_address + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
10923 {
10924 _bfd_error_handler
10925 /* xgettext:c-format */
10926 (_("%pB: `%pA' entry VMA of %#" PRIx64 " outside the 32-bit range "
10927 "supported; consider using `-Ttext-segment=...'"),
10928 output_bfd,
10929 htab->root.sgotplt->output_section,
10930 (int64_t) got_address);
10931 bfd_set_error (bfd_error_no_error);
10932 return FALSE;
10933 }
10934
10935 /* Initially point the .got.plt entry at the PLT header. */
10936 loc = (htab->root.sgotplt->contents
10937 + got_index * MIPS_ELF_GOT_SIZE (dynobj));
10938 if (ABI_64_P (output_bfd))
10939 bfd_put_64 (output_bfd, header_address, loc);
10940 else
10941 bfd_put_32 (output_bfd, header_address, loc);
10942
10943 /* Now handle the PLT itself. First the standard entry (the order
10944 does not matter, we just have to pick one). */
10945 if (h->plt.plist->mips_offset != MINUS_ONE)
10946 {
10947 const bfd_vma *plt_entry;
10948 bfd_vma plt_offset;
10949
10950 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
10951
10952 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10953
10954 /* Find out where the .plt entry should go. */
10955 loc = htab->root.splt->contents + plt_offset;
10956
10957 /* Pick the load opcode. */
10958 load = MIPS_ELF_LOAD_WORD (output_bfd);
10959
10960 /* Fill in the PLT entry itself. */
10961
10962 if (MIPSR6_P (output_bfd))
10963 plt_entry = htab->compact_branches ? mipsr6_exec_plt_entry_compact
10964 : mipsr6_exec_plt_entry;
10965 else
10966 plt_entry = mips_exec_plt_entry;
10967 bfd_put_32 (output_bfd, plt_entry[0] | got_address_high, loc);
10968 bfd_put_32 (output_bfd, plt_entry[1] | got_address_low | load,
10969 loc + 4);
10970
10971 if (! LOAD_INTERLOCKS_P (output_bfd)
10972 || (MIPSR6_P (output_bfd) && htab->compact_branches))
10973 {
10974 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low, loc + 8);
10975 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
10976 }
10977 else
10978 {
10979 bfd_put_32 (output_bfd, plt_entry[3], loc + 8);
10980 bfd_put_32 (output_bfd, plt_entry[2] | got_address_low,
10981 loc + 12);
10982 }
10983 }
10984
10985 /* Now the compressed entry. They come after any standard ones. */
10986 if (h->plt.plist->comp_offset != MINUS_ONE)
10987 {
10988 bfd_vma plt_offset;
10989
10990 plt_offset = (htab->plt_header_size + htab->plt_mips_offset
10991 + h->plt.plist->comp_offset);
10992
10993 BFD_ASSERT (plt_offset <= htab->root.splt->size);
10994
10995 /* Find out where the .plt entry should go. */
10996 loc = htab->root.splt->contents + plt_offset;
10997
10998 /* Fill in the PLT entry itself. */
10999 if (!MICROMIPS_P (output_bfd))
11000 {
11001 const bfd_vma *plt_entry = mips16_o32_exec_plt_entry;
11002
11003 bfd_put_16 (output_bfd, plt_entry[0], loc);
11004 bfd_put_16 (output_bfd, plt_entry[1], loc + 2);
11005 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11006 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11007 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11008 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11009 bfd_put_32 (output_bfd, got_address, loc + 12);
11010 }
11011 else if (htab->insn32)
11012 {
11013 const bfd_vma *plt_entry = micromips_insn32_o32_exec_plt_entry;
11014
11015 bfd_put_16 (output_bfd, plt_entry[0], loc);
11016 bfd_put_16 (output_bfd, got_address_high, loc + 2);
11017 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11018 bfd_put_16 (output_bfd, got_address_low, loc + 6);
11019 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11020 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11021 bfd_put_16 (output_bfd, plt_entry[6], loc + 12);
11022 bfd_put_16 (output_bfd, got_address_low, loc + 14);
11023 }
11024 else
11025 {
11026 const bfd_vma *plt_entry = micromips_o32_exec_plt_entry;
11027 bfd_signed_vma gotpc_offset;
11028 bfd_vma loc_address;
11029
11030 BFD_ASSERT (got_address % 4 == 0);
11031
11032 loc_address = (htab->root.splt->output_section->vma
11033 + htab->root.splt->output_offset + plt_offset);
11034 gotpc_offset = got_address - ((loc_address | 3) ^ 3);
11035
11036 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11037 if (gotpc_offset + 0x1000000 >= 0x2000000)
11038 {
11039 _bfd_error_handler
11040 /* xgettext:c-format */
11041 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11042 "beyond the range of ADDIUPC"),
11043 output_bfd,
11044 htab->root.sgotplt->output_section,
11045 (int64_t) gotpc_offset,
11046 htab->root.splt->output_section);
11047 bfd_set_error (bfd_error_no_error);
11048 return FALSE;
11049 }
11050 bfd_put_16 (output_bfd,
11051 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11052 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11053 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11054 bfd_put_16 (output_bfd, plt_entry[3], loc + 6);
11055 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11056 bfd_put_16 (output_bfd, plt_entry[5], loc + 10);
11057 }
11058 }
11059
11060 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11061 mips_elf_output_dynamic_relocation (output_bfd, htab->root.srelplt,
11062 got_index - 2, h->dynindx,
11063 R_MIPS_JUMP_SLOT, got_address);
11064
11065 /* We distinguish between PLT entries and lazy-binding stubs by
11066 giving the former an st_other value of STO_MIPS_PLT. Set the
11067 flag and leave the value if there are any relocations in the
11068 binary where pointer equality matters. */
11069 sym->st_shndx = SHN_UNDEF;
11070 if (h->pointer_equality_needed)
11071 sym->st_other = ELF_ST_SET_MIPS_PLT (sym->st_other);
11072 else
11073 {
11074 sym->st_value = 0;
11075 sym->st_other = 0;
11076 }
11077 }
11078
11079 if (h->plt.plist != NULL && h->plt.plist->stub_offset != MINUS_ONE)
11080 {
11081 /* We've decided to create a lazy-binding stub. */
11082 bfd_boolean micromips_p = MICROMIPS_P (output_bfd);
11083 unsigned int other = micromips_p ? STO_MICROMIPS : 0;
11084 bfd_vma stub_size = htab->function_stub_size;
11085 bfd_byte stub[MIPS_FUNCTION_STUB_BIG_SIZE];
11086 bfd_vma isa_bit = micromips_p;
11087 bfd_vma stub_big_size;
11088
11089 if (!micromips_p)
11090 stub_big_size = MIPS_FUNCTION_STUB_BIG_SIZE;
11091 else if (htab->insn32)
11092 stub_big_size = MICROMIPS_INSN32_FUNCTION_STUB_BIG_SIZE;
11093 else
11094 stub_big_size = MICROMIPS_FUNCTION_STUB_BIG_SIZE;
11095
11096 /* This symbol has a stub. Set it up. */
11097
11098 BFD_ASSERT (h->dynindx != -1);
11099
11100 BFD_ASSERT (stub_size == stub_big_size || h->dynindx <= 0xffff);
11101
11102 /* Values up to 2^31 - 1 are allowed. Larger values would cause
11103 sign extension at runtime in the stub, resulting in a negative
11104 index value. */
11105 if (h->dynindx & ~0x7fffffff)
11106 return FALSE;
11107
11108 /* Fill the stub. */
11109 if (micromips_p)
11110 {
11111 idx = 0;
11112 bfd_put_micromips_32 (output_bfd, STUB_LW_MICROMIPS (output_bfd),
11113 stub + idx);
11114 idx += 4;
11115 if (htab->insn32)
11116 {
11117 bfd_put_micromips_32 (output_bfd,
11118 STUB_MOVE32_MICROMIPS, stub + idx);
11119 idx += 4;
11120 }
11121 else
11122 {
11123 bfd_put_16 (output_bfd, STUB_MOVE_MICROMIPS, stub + idx);
11124 idx += 2;
11125 }
11126 if (stub_size == stub_big_size)
11127 {
11128 long dynindx_hi = (h->dynindx >> 16) & 0x7fff;
11129
11130 bfd_put_micromips_32 (output_bfd,
11131 STUB_LUI_MICROMIPS (dynindx_hi),
11132 stub + idx);
11133 idx += 4;
11134 }
11135 if (htab->insn32)
11136 {
11137 bfd_put_micromips_32 (output_bfd, STUB_JALR32_MICROMIPS,
11138 stub + idx);
11139 idx += 4;
11140 }
11141 else
11142 {
11143 bfd_put_16 (output_bfd, STUB_JALR_MICROMIPS, stub + idx);
11144 idx += 2;
11145 }
11146
11147 /* If a large stub is not required and sign extension is not a
11148 problem, then use legacy code in the stub. */
11149 if (stub_size == stub_big_size)
11150 bfd_put_micromips_32 (output_bfd,
11151 STUB_ORI_MICROMIPS (h->dynindx & 0xffff),
11152 stub + idx);
11153 else if (h->dynindx & ~0x7fff)
11154 bfd_put_micromips_32 (output_bfd,
11155 STUB_LI16U_MICROMIPS (h->dynindx & 0xffff),
11156 stub + idx);
11157 else
11158 bfd_put_micromips_32 (output_bfd,
11159 STUB_LI16S_MICROMIPS (output_bfd,
11160 h->dynindx),
11161 stub + idx);
11162 }
11163 else
11164 {
11165 idx = 0;
11166 bfd_put_32 (output_bfd, STUB_LW (output_bfd), stub + idx);
11167 idx += 4;
11168 bfd_put_32 (output_bfd, STUB_MOVE, stub + idx);
11169 idx += 4;
11170 if (stub_size == stub_big_size)
11171 {
11172 bfd_put_32 (output_bfd, STUB_LUI ((h->dynindx >> 16) & 0x7fff),
11173 stub + idx);
11174 idx += 4;
11175 }
11176
11177 if (!(MIPSR6_P (output_bfd) && htab->compact_branches))
11178 {
11179 bfd_put_32 (output_bfd, STUB_JALR, stub + idx);
11180 idx += 4;
11181 }
11182
11183 /* If a large stub is not required and sign extension is not a
11184 problem, then use legacy code in the stub. */
11185 if (stub_size == stub_big_size)
11186 bfd_put_32 (output_bfd, STUB_ORI (h->dynindx & 0xffff),
11187 stub + idx);
11188 else if (h->dynindx & ~0x7fff)
11189 bfd_put_32 (output_bfd, STUB_LI16U (h->dynindx & 0xffff),
11190 stub + idx);
11191 else
11192 bfd_put_32 (output_bfd, STUB_LI16S (output_bfd, h->dynindx),
11193 stub + idx);
11194 idx += 4;
11195
11196 if (MIPSR6_P (output_bfd) && htab->compact_branches)
11197 bfd_put_32 (output_bfd, STUB_JALRC, stub + idx);
11198 }
11199
11200 BFD_ASSERT (h->plt.plist->stub_offset <= htab->sstubs->size);
11201 memcpy (htab->sstubs->contents + h->plt.plist->stub_offset,
11202 stub, stub_size);
11203
11204 /* Mark the symbol as undefined. stub_offset != -1 occurs
11205 only for the referenced symbol. */
11206 sym->st_shndx = SHN_UNDEF;
11207
11208 /* The run-time linker uses the st_value field of the symbol
11209 to reset the global offset table entry for this external
11210 to its stub address when unlinking a shared object. */
11211 sym->st_value = (htab->sstubs->output_section->vma
11212 + htab->sstubs->output_offset
11213 + h->plt.plist->stub_offset
11214 + isa_bit);
11215 sym->st_other = other;
11216 }
11217
11218 /* If we have a MIPS16 function with a stub, the dynamic symbol must
11219 refer to the stub, since only the stub uses the standard calling
11220 conventions. */
11221 if (h->dynindx != -1 && hmips->fn_stub != NULL)
11222 {
11223 BFD_ASSERT (hmips->need_fn_stub);
11224 sym->st_value = (hmips->fn_stub->output_section->vma
11225 + hmips->fn_stub->output_offset);
11226 sym->st_size = hmips->fn_stub->size;
11227 sym->st_other = ELF_ST_VISIBILITY (sym->st_other);
11228 }
11229
11230 BFD_ASSERT (h->dynindx != -1
11231 || h->forced_local);
11232
11233 sgot = htab->root.sgot;
11234 g = htab->got_info;
11235 BFD_ASSERT (g != NULL);
11236
11237 /* Run through the global symbol table, creating GOT entries for all
11238 the symbols that need them. */
11239 if (hmips->global_got_area != GGA_NONE)
11240 {
11241 bfd_vma offset;
11242 bfd_vma value;
11243
11244 value = sym->st_value;
11245 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11246 MIPS_ELF_PUT_WORD (output_bfd, value, sgot->contents + offset);
11247 }
11248
11249 if (hmips->global_got_area != GGA_NONE && g->next)
11250 {
11251 struct mips_got_entry e, *p;
11252 bfd_vma entry;
11253 bfd_vma offset;
11254
11255 gg = g;
11256
11257 e.abfd = output_bfd;
11258 e.symndx = -1;
11259 e.d.h = hmips;
11260 e.tls_type = GOT_TLS_NONE;
11261
11262 for (g = g->next; g->next != gg; g = g->next)
11263 {
11264 if (g->got_entries
11265 && (p = (struct mips_got_entry *) htab_find (g->got_entries,
11266 &e)))
11267 {
11268 offset = p->gotidx;
11269 BFD_ASSERT (offset > 0 && offset < htab->root.sgot->size);
11270 if (bfd_link_pic (info)
11271 || (elf_hash_table (info)->dynamic_sections_created
11272 && p->d.h != NULL
11273 && p->d.h->root.def_dynamic
11274 && !p->d.h->root.def_regular))
11275 {
11276 /* Create an R_MIPS_REL32 relocation for this entry. Due to
11277 the various compatibility problems, it's easier to mock
11278 up an R_MIPS_32 or R_MIPS_64 relocation and leave
11279 mips_elf_create_dynamic_relocation to calculate the
11280 appropriate addend. */
11281 Elf_Internal_Rela rel[3];
11282
11283 memset (rel, 0, sizeof (rel));
11284 if (ABI_64_P (output_bfd))
11285 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_64);
11286 else
11287 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_32);
11288 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset = offset;
11289
11290 entry = 0;
11291 if (! (mips_elf_create_dynamic_relocation
11292 (output_bfd, info, rel,
11293 e.d.h, NULL, sym->st_value, &entry, sgot)))
11294 return FALSE;
11295 }
11296 else
11297 entry = sym->st_value;
11298 MIPS_ELF_PUT_WORD (output_bfd, entry, sgot->contents + offset);
11299 }
11300 }
11301 }
11302
11303 /* Mark _DYNAMIC and _GLOBAL_OFFSET_TABLE_ as absolute. */
11304 name = h->root.root.string;
11305 if (h == elf_hash_table (info)->hdynamic
11306 || h == elf_hash_table (info)->hgot)
11307 sym->st_shndx = SHN_ABS;
11308 else if (strcmp (name, "_DYNAMIC_LINK") == 0
11309 || strcmp (name, "_DYNAMIC_LINKING") == 0)
11310 {
11311 sym->st_shndx = SHN_ABS;
11312 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11313 sym->st_value = 1;
11314 }
11315 else if (SGI_COMPAT (output_bfd))
11316 {
11317 if (strcmp (name, mips_elf_dynsym_rtproc_names[0]) == 0
11318 || strcmp (name, mips_elf_dynsym_rtproc_names[1]) == 0)
11319 {
11320 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11321 sym->st_other = STO_PROTECTED;
11322 sym->st_value = 0;
11323 sym->st_shndx = SHN_MIPS_DATA;
11324 }
11325 else if (strcmp (name, mips_elf_dynsym_rtproc_names[2]) == 0)
11326 {
11327 sym->st_info = ELF_ST_INFO (STB_GLOBAL, STT_SECTION);
11328 sym->st_other = STO_PROTECTED;
11329 sym->st_value = mips_elf_hash_table (info)->procedure_count;
11330 sym->st_shndx = SHN_ABS;
11331 }
11332 else if (sym->st_shndx != SHN_UNDEF && sym->st_shndx != SHN_ABS)
11333 {
11334 if (h->type == STT_FUNC)
11335 sym->st_shndx = SHN_MIPS_TEXT;
11336 else if (h->type == STT_OBJECT)
11337 sym->st_shndx = SHN_MIPS_DATA;
11338 }
11339 }
11340
11341 /* Emit a copy reloc, if needed. */
11342 if (h->needs_copy)
11343 {
11344 asection *s;
11345 bfd_vma symval;
11346
11347 BFD_ASSERT (h->dynindx != -1);
11348 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11349
11350 s = mips_elf_rel_dyn_section (info, FALSE);
11351 symval = (h->root.u.def.section->output_section->vma
11352 + h->root.u.def.section->output_offset
11353 + h->root.u.def.value);
11354 mips_elf_output_dynamic_relocation (output_bfd, s, s->reloc_count++,
11355 h->dynindx, R_MIPS_COPY, symval);
11356 }
11357
11358 /* Handle the IRIX6-specific symbols. */
11359 if (IRIX_COMPAT (output_bfd) == ict_irix6)
11360 mips_elf_irix6_finish_dynamic_symbol (output_bfd, name, sym);
11361
11362 /* Keep dynamic compressed symbols odd. This allows the dynamic linker
11363 to treat compressed symbols like any other. */
11364 if (ELF_ST_IS_MIPS16 (sym->st_other))
11365 {
11366 BFD_ASSERT (sym->st_value & 1);
11367 sym->st_other -= STO_MIPS16;
11368 }
11369 else if (ELF_ST_IS_MICROMIPS (sym->st_other))
11370 {
11371 BFD_ASSERT (sym->st_value & 1);
11372 sym->st_other -= STO_MICROMIPS;
11373 }
11374
11375 return TRUE;
11376 }
11377
11378 /* Likewise, for VxWorks. */
11379
11380 bfd_boolean
11381 _bfd_mips_vxworks_finish_dynamic_symbol (bfd *output_bfd,
11382 struct bfd_link_info *info,
11383 struct elf_link_hash_entry *h,
11384 Elf_Internal_Sym *sym)
11385 {
11386 bfd *dynobj;
11387 asection *sgot;
11388 struct mips_got_info *g;
11389 struct mips_elf_link_hash_table *htab;
11390 struct mips_elf_link_hash_entry *hmips;
11391
11392 htab = mips_elf_hash_table (info);
11393 BFD_ASSERT (htab != NULL);
11394 dynobj = elf_hash_table (info)->dynobj;
11395 hmips = (struct mips_elf_link_hash_entry *) h;
11396
11397 if (h->plt.plist != NULL && h->plt.plist->mips_offset != MINUS_ONE)
11398 {
11399 bfd_byte *loc;
11400 bfd_vma plt_address, got_address, got_offset, branch_offset;
11401 Elf_Internal_Rela rel;
11402 static const bfd_vma *plt_entry;
11403 bfd_vma gotplt_index;
11404 bfd_vma plt_offset;
11405
11406 plt_offset = htab->plt_header_size + h->plt.plist->mips_offset;
11407 gotplt_index = h->plt.plist->gotplt_index;
11408
11409 BFD_ASSERT (h->dynindx != -1);
11410 BFD_ASSERT (htab->root.splt != NULL);
11411 BFD_ASSERT (gotplt_index != MINUS_ONE);
11412 BFD_ASSERT (plt_offset <= htab->root.splt->size);
11413
11414 /* Calculate the address of the .plt entry. */
11415 plt_address = (htab->root.splt->output_section->vma
11416 + htab->root.splt->output_offset
11417 + plt_offset);
11418
11419 /* Calculate the address of the .got.plt entry. */
11420 got_address = (htab->root.sgotplt->output_section->vma
11421 + htab->root.sgotplt->output_offset
11422 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd));
11423
11424 /* Calculate the offset of the .got.plt entry from
11425 _GLOBAL_OFFSET_TABLE_. */
11426 got_offset = mips_elf_gotplt_index (info, h);
11427
11428 /* Calculate the offset for the branch at the start of the PLT
11429 entry. The branch jumps to the beginning of .plt. */
11430 branch_offset = -(plt_offset / 4 + 1) & 0xffff;
11431
11432 /* Fill in the initial value of the .got.plt entry. */
11433 bfd_put_32 (output_bfd, plt_address,
11434 (htab->root.sgotplt->contents
11435 + gotplt_index * MIPS_ELF_GOT_SIZE (output_bfd)));
11436
11437 /* Find out where the .plt entry should go. */
11438 loc = htab->root.splt->contents + plt_offset;
11439
11440 if (bfd_link_pic (info))
11441 {
11442 plt_entry = mips_vxworks_shared_plt_entry;
11443 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11444 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11445 }
11446 else
11447 {
11448 bfd_vma got_address_high, got_address_low;
11449
11450 plt_entry = mips_vxworks_exec_plt_entry;
11451 got_address_high = ((got_address + 0x8000) >> 16) & 0xffff;
11452 got_address_low = got_address & 0xffff;
11453
11454 bfd_put_32 (output_bfd, plt_entry[0] | branch_offset, loc);
11455 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_index, loc + 4);
11456 bfd_put_32 (output_bfd, plt_entry[2] | got_address_high, loc + 8);
11457 bfd_put_32 (output_bfd, plt_entry[3] | got_address_low, loc + 12);
11458 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11459 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11460 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11461 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11462
11463 loc = (htab->srelplt2->contents
11464 + (gotplt_index * 3 + 2) * sizeof (Elf32_External_Rela));
11465
11466 /* Emit a relocation for the .got.plt entry. */
11467 rel.r_offset = got_address;
11468 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11469 rel.r_addend = plt_offset;
11470 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11471
11472 /* Emit a relocation for the lui of %hi(<.got.plt slot>). */
11473 loc += sizeof (Elf32_External_Rela);
11474 rel.r_offset = plt_address + 8;
11475 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11476 rel.r_addend = got_offset;
11477 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11478
11479 /* Emit a relocation for the addiu of %lo(<.got.plt slot>). */
11480 loc += sizeof (Elf32_External_Rela);
11481 rel.r_offset += 4;
11482 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11483 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11484 }
11485
11486 /* Emit an R_MIPS_JUMP_SLOT relocation against the .got.plt entry. */
11487 loc = (htab->root.srelplt->contents
11488 + gotplt_index * sizeof (Elf32_External_Rela));
11489 rel.r_offset = got_address;
11490 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_JUMP_SLOT);
11491 rel.r_addend = 0;
11492 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11493
11494 if (!h->def_regular)
11495 sym->st_shndx = SHN_UNDEF;
11496 }
11497
11498 BFD_ASSERT (h->dynindx != -1 || h->forced_local);
11499
11500 sgot = htab->root.sgot;
11501 g = htab->got_info;
11502 BFD_ASSERT (g != NULL);
11503
11504 /* See if this symbol has an entry in the GOT. */
11505 if (hmips->global_got_area != GGA_NONE)
11506 {
11507 bfd_vma offset;
11508 Elf_Internal_Rela outrel;
11509 bfd_byte *loc;
11510 asection *s;
11511
11512 /* Install the symbol value in the GOT. */
11513 offset = mips_elf_primary_global_got_index (output_bfd, info, h);
11514 MIPS_ELF_PUT_WORD (output_bfd, sym->st_value, sgot->contents + offset);
11515
11516 /* Add a dynamic relocation for it. */
11517 s = mips_elf_rel_dyn_section (info, FALSE);
11518 loc = s->contents + (s->reloc_count++ * sizeof (Elf32_External_Rela));
11519 outrel.r_offset = (sgot->output_section->vma
11520 + sgot->output_offset
11521 + offset);
11522 outrel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_32);
11523 outrel.r_addend = 0;
11524 bfd_elf32_swap_reloca_out (dynobj, &outrel, loc);
11525 }
11526
11527 /* Emit a copy reloc, if needed. */
11528 if (h->needs_copy)
11529 {
11530 Elf_Internal_Rela rel;
11531 asection *srel;
11532 bfd_byte *loc;
11533
11534 BFD_ASSERT (h->dynindx != -1);
11535
11536 rel.r_offset = (h->root.u.def.section->output_section->vma
11537 + h->root.u.def.section->output_offset
11538 + h->root.u.def.value);
11539 rel.r_info = ELF32_R_INFO (h->dynindx, R_MIPS_COPY);
11540 rel.r_addend = 0;
11541 if (h->root.u.def.section == htab->root.sdynrelro)
11542 srel = htab->root.sreldynrelro;
11543 else
11544 srel = htab->root.srelbss;
11545 loc = srel->contents + srel->reloc_count * sizeof (Elf32_External_Rela);
11546 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11547 ++srel->reloc_count;
11548 }
11549
11550 /* If this is a mips16/microMIPS symbol, force the value to be even. */
11551 if (ELF_ST_IS_COMPRESSED (sym->st_other))
11552 sym->st_value &= ~1;
11553
11554 return TRUE;
11555 }
11556
11557 /* Write out a plt0 entry to the beginning of .plt. */
11558
11559 static bfd_boolean
11560 mips_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11561 {
11562 bfd_byte *loc;
11563 bfd_vma gotplt_value, gotplt_value_high, gotplt_value_low;
11564 static const bfd_vma *plt_entry;
11565 struct mips_elf_link_hash_table *htab;
11566
11567 htab = mips_elf_hash_table (info);
11568 BFD_ASSERT (htab != NULL);
11569
11570 if (ABI_64_P (output_bfd))
11571 plt_entry = (htab->compact_branches
11572 ? mipsr6_n64_exec_plt0_entry_compact
11573 : mips_n64_exec_plt0_entry);
11574 else if (ABI_N32_P (output_bfd))
11575 plt_entry = (htab->compact_branches
11576 ? mipsr6_n32_exec_plt0_entry_compact
11577 : mips_n32_exec_plt0_entry);
11578 else if (!htab->plt_header_is_comp)
11579 plt_entry = (htab->compact_branches
11580 ? mipsr6_o32_exec_plt0_entry_compact
11581 : mips_o32_exec_plt0_entry);
11582 else if (htab->insn32)
11583 plt_entry = micromips_insn32_o32_exec_plt0_entry;
11584 else
11585 plt_entry = micromips_o32_exec_plt0_entry;
11586
11587 /* Calculate the value of .got.plt. */
11588 gotplt_value = (htab->root.sgotplt->output_section->vma
11589 + htab->root.sgotplt->output_offset);
11590 gotplt_value_high = ((gotplt_value + 0x8000) >> 16) & 0xffff;
11591 gotplt_value_low = gotplt_value & 0xffff;
11592
11593 /* The PLT sequence is not safe for N64 if .got.plt's address can
11594 not be loaded in two instructions. */
11595 if (ABI_64_P (output_bfd)
11596 && ((gotplt_value + 0x80008000) & ~(bfd_vma) 0xffffffff) != 0)
11597 {
11598 _bfd_error_handler
11599 /* xgettext:c-format */
11600 (_("%pB: `%pA' start VMA of %#" PRIx64 " outside the 32-bit range "
11601 "supported; consider using `-Ttext-segment=...'"),
11602 output_bfd,
11603 htab->root.sgotplt->output_section,
11604 (int64_t) gotplt_value);
11605 bfd_set_error (bfd_error_no_error);
11606 return FALSE;
11607 }
11608
11609 /* Install the PLT header. */
11610 loc = htab->root.splt->contents;
11611 if (plt_entry == micromips_o32_exec_plt0_entry)
11612 {
11613 bfd_vma gotpc_offset;
11614 bfd_vma loc_address;
11615 size_t i;
11616
11617 BFD_ASSERT (gotplt_value % 4 == 0);
11618
11619 loc_address = (htab->root.splt->output_section->vma
11620 + htab->root.splt->output_offset);
11621 gotpc_offset = gotplt_value - ((loc_address | 3) ^ 3);
11622
11623 /* ADDIUPC has a span of +/-16MB, check we're in range. */
11624 if (gotpc_offset + 0x1000000 >= 0x2000000)
11625 {
11626 _bfd_error_handler
11627 /* xgettext:c-format */
11628 (_("%pB: `%pA' offset of %" PRId64 " from `%pA' "
11629 "beyond the range of ADDIUPC"),
11630 output_bfd,
11631 htab->root.sgotplt->output_section,
11632 (int64_t) gotpc_offset,
11633 htab->root.splt->output_section);
11634 bfd_set_error (bfd_error_no_error);
11635 return FALSE;
11636 }
11637 bfd_put_16 (output_bfd,
11638 plt_entry[0] | ((gotpc_offset >> 18) & 0x7f), loc);
11639 bfd_put_16 (output_bfd, (gotpc_offset >> 2) & 0xffff, loc + 2);
11640 for (i = 2; i < ARRAY_SIZE (micromips_o32_exec_plt0_entry); i++)
11641 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11642 }
11643 else if (plt_entry == micromips_insn32_o32_exec_plt0_entry)
11644 {
11645 size_t i;
11646
11647 bfd_put_16 (output_bfd, plt_entry[0], loc);
11648 bfd_put_16 (output_bfd, gotplt_value_high, loc + 2);
11649 bfd_put_16 (output_bfd, plt_entry[2], loc + 4);
11650 bfd_put_16 (output_bfd, gotplt_value_low, loc + 6);
11651 bfd_put_16 (output_bfd, plt_entry[4], loc + 8);
11652 bfd_put_16 (output_bfd, gotplt_value_low, loc + 10);
11653 for (i = 6; i < ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry); i++)
11654 bfd_put_16 (output_bfd, plt_entry[i], loc + (i * 2));
11655 }
11656 else
11657 {
11658 bfd_put_32 (output_bfd, plt_entry[0] | gotplt_value_high, loc);
11659 bfd_put_32 (output_bfd, plt_entry[1] | gotplt_value_low, loc + 4);
11660 bfd_put_32 (output_bfd, plt_entry[2] | gotplt_value_low, loc + 8);
11661 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11662 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11663 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11664 bfd_put_32 (output_bfd, plt_entry[6], loc + 24);
11665 bfd_put_32 (output_bfd, plt_entry[7], loc + 28);
11666 }
11667
11668 return TRUE;
11669 }
11670
11671 /* Install the PLT header for a VxWorks executable and finalize the
11672 contents of .rela.plt.unloaded. */
11673
11674 static void
11675 mips_vxworks_finish_exec_plt (bfd *output_bfd, struct bfd_link_info *info)
11676 {
11677 Elf_Internal_Rela rela;
11678 bfd_byte *loc;
11679 bfd_vma got_value, got_value_high, got_value_low, plt_address;
11680 static const bfd_vma *plt_entry;
11681 struct mips_elf_link_hash_table *htab;
11682
11683 htab = mips_elf_hash_table (info);
11684 BFD_ASSERT (htab != NULL);
11685
11686 plt_entry = mips_vxworks_exec_plt0_entry;
11687
11688 /* Calculate the value of _GLOBAL_OFFSET_TABLE_. */
11689 got_value = (htab->root.hgot->root.u.def.section->output_section->vma
11690 + htab->root.hgot->root.u.def.section->output_offset
11691 + htab->root.hgot->root.u.def.value);
11692
11693 got_value_high = ((got_value + 0x8000) >> 16) & 0xffff;
11694 got_value_low = got_value & 0xffff;
11695
11696 /* Calculate the address of the PLT header. */
11697 plt_address = (htab->root.splt->output_section->vma
11698 + htab->root.splt->output_offset);
11699
11700 /* Install the PLT header. */
11701 loc = htab->root.splt->contents;
11702 bfd_put_32 (output_bfd, plt_entry[0] | got_value_high, loc);
11703 bfd_put_32 (output_bfd, plt_entry[1] | got_value_low, loc + 4);
11704 bfd_put_32 (output_bfd, plt_entry[2], loc + 8);
11705 bfd_put_32 (output_bfd, plt_entry[3], loc + 12);
11706 bfd_put_32 (output_bfd, plt_entry[4], loc + 16);
11707 bfd_put_32 (output_bfd, plt_entry[5], loc + 20);
11708
11709 /* Output the relocation for the lui of %hi(_GLOBAL_OFFSET_TABLE_). */
11710 loc = htab->srelplt2->contents;
11711 rela.r_offset = plt_address;
11712 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11713 rela.r_addend = 0;
11714 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11715 loc += sizeof (Elf32_External_Rela);
11716
11717 /* Output the relocation for the following addiu of
11718 %lo(_GLOBAL_OFFSET_TABLE_). */
11719 rela.r_offset += 4;
11720 rela.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11721 bfd_elf32_swap_reloca_out (output_bfd, &rela, loc);
11722 loc += sizeof (Elf32_External_Rela);
11723
11724 /* Fix up the remaining relocations. They may have the wrong
11725 symbol index for _G_O_T_ or _P_L_T_ depending on the order
11726 in which symbols were output. */
11727 while (loc < htab->srelplt2->contents + htab->srelplt2->size)
11728 {
11729 Elf_Internal_Rela rel;
11730
11731 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11732 rel.r_info = ELF32_R_INFO (htab->root.hplt->indx, R_MIPS_32);
11733 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11734 loc += sizeof (Elf32_External_Rela);
11735
11736 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11737 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_HI16);
11738 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11739 loc += sizeof (Elf32_External_Rela);
11740
11741 bfd_elf32_swap_reloca_in (output_bfd, loc, &rel);
11742 rel.r_info = ELF32_R_INFO (htab->root.hgot->indx, R_MIPS_LO16);
11743 bfd_elf32_swap_reloca_out (output_bfd, &rel, loc);
11744 loc += sizeof (Elf32_External_Rela);
11745 }
11746 }
11747
11748 /* Install the PLT header for a VxWorks shared library. */
11749
11750 static void
11751 mips_vxworks_finish_shared_plt (bfd *output_bfd, struct bfd_link_info *info)
11752 {
11753 unsigned int i;
11754 struct mips_elf_link_hash_table *htab;
11755
11756 htab = mips_elf_hash_table (info);
11757 BFD_ASSERT (htab != NULL);
11758
11759 /* We just need to copy the entry byte-by-byte. */
11760 for (i = 0; i < ARRAY_SIZE (mips_vxworks_shared_plt0_entry); i++)
11761 bfd_put_32 (output_bfd, mips_vxworks_shared_plt0_entry[i],
11762 htab->root.splt->contents + i * 4);
11763 }
11764
11765 /* Finish up the dynamic sections. */
11766
11767 bfd_boolean
11768 _bfd_mips_elf_finish_dynamic_sections (bfd *output_bfd,
11769 struct bfd_link_info *info)
11770 {
11771 bfd *dynobj;
11772 asection *sdyn;
11773 asection *sgot;
11774 struct mips_got_info *gg, *g;
11775 struct mips_elf_link_hash_table *htab;
11776
11777 htab = mips_elf_hash_table (info);
11778 BFD_ASSERT (htab != NULL);
11779
11780 dynobj = elf_hash_table (info)->dynobj;
11781
11782 sdyn = bfd_get_linker_section (dynobj, ".dynamic");
11783
11784 sgot = htab->root.sgot;
11785 gg = htab->got_info;
11786
11787 if (elf_hash_table (info)->dynamic_sections_created)
11788 {
11789 bfd_byte *b;
11790 int dyn_to_skip = 0, dyn_skipped = 0;
11791
11792 BFD_ASSERT (sdyn != NULL);
11793 BFD_ASSERT (gg != NULL);
11794
11795 g = mips_elf_bfd_got (output_bfd, FALSE);
11796 BFD_ASSERT (g != NULL);
11797
11798 for (b = sdyn->contents;
11799 b < sdyn->contents + sdyn->size;
11800 b += MIPS_ELF_DYN_SIZE (dynobj))
11801 {
11802 Elf_Internal_Dyn dyn;
11803 const char *name;
11804 size_t elemsize;
11805 asection *s;
11806 bfd_boolean swap_out_p;
11807
11808 /* Read in the current dynamic entry. */
11809 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
11810
11811 /* Assume that we're going to modify it and write it out. */
11812 swap_out_p = TRUE;
11813
11814 switch (dyn.d_tag)
11815 {
11816 case DT_RELENT:
11817 dyn.d_un.d_val = MIPS_ELF_REL_SIZE (dynobj);
11818 break;
11819
11820 case DT_RELAENT:
11821 BFD_ASSERT (htab->is_vxworks);
11822 dyn.d_un.d_val = MIPS_ELF_RELA_SIZE (dynobj);
11823 break;
11824
11825 case DT_STRSZ:
11826 /* Rewrite DT_STRSZ. */
11827 dyn.d_un.d_val =
11828 _bfd_elf_strtab_size (elf_hash_table (info)->dynstr);
11829 break;
11830
11831 case DT_PLTGOT:
11832 s = htab->root.sgot;
11833 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11834 break;
11835
11836 case DT_MIPS_PLTGOT:
11837 s = htab->root.sgotplt;
11838 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
11839 break;
11840
11841 case DT_MIPS_RLD_VERSION:
11842 dyn.d_un.d_val = 1; /* XXX */
11843 break;
11844
11845 case DT_MIPS_FLAGS:
11846 dyn.d_un.d_val = RHF_NOTPOT; /* XXX */
11847 break;
11848
11849 case DT_MIPS_TIME_STAMP:
11850 {
11851 time_t t;
11852 time (&t);
11853 dyn.d_un.d_val = t;
11854 }
11855 break;
11856
11857 case DT_MIPS_ICHECKSUM:
11858 /* XXX FIXME: */
11859 swap_out_p = FALSE;
11860 break;
11861
11862 case DT_MIPS_IVERSION:
11863 /* XXX FIXME: */
11864 swap_out_p = FALSE;
11865 break;
11866
11867 case DT_MIPS_BASE_ADDRESS:
11868 s = output_bfd->sections;
11869 BFD_ASSERT (s != NULL);
11870 dyn.d_un.d_ptr = s->vma & ~(bfd_vma) 0xffff;
11871 break;
11872
11873 case DT_MIPS_LOCAL_GOTNO:
11874 dyn.d_un.d_val = g->local_gotno;
11875 break;
11876
11877 case DT_MIPS_UNREFEXTNO:
11878 /* The index into the dynamic symbol table which is the
11879 entry of the first external symbol that is not
11880 referenced within the same object. */
11881 dyn.d_un.d_val = bfd_count_sections (output_bfd) + 1;
11882 break;
11883
11884 case DT_MIPS_GOTSYM:
11885 if (htab->global_gotsym)
11886 {
11887 dyn.d_un.d_val = htab->global_gotsym->dynindx;
11888 break;
11889 }
11890 /* In case if we don't have global got symbols we default
11891 to setting DT_MIPS_GOTSYM to the same value as
11892 DT_MIPS_SYMTABNO. */
11893 /* Fall through. */
11894
11895 case DT_MIPS_SYMTABNO:
11896 name = ".dynsym";
11897 elemsize = MIPS_ELF_SYM_SIZE (output_bfd);
11898 s = bfd_get_linker_section (dynobj, name);
11899
11900 if (s != NULL)
11901 dyn.d_un.d_val = s->size / elemsize;
11902 else
11903 dyn.d_un.d_val = 0;
11904 break;
11905
11906 case DT_MIPS_HIPAGENO:
11907 dyn.d_un.d_val = g->local_gotno - htab->reserved_gotno;
11908 break;
11909
11910 case DT_MIPS_RLD_MAP:
11911 {
11912 struct elf_link_hash_entry *h;
11913 h = mips_elf_hash_table (info)->rld_symbol;
11914 if (!h)
11915 {
11916 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11917 swap_out_p = FALSE;
11918 break;
11919 }
11920 s = h->root.u.def.section;
11921
11922 /* The MIPS_RLD_MAP tag stores the absolute address of the
11923 debug pointer. */
11924 dyn.d_un.d_ptr = (s->output_section->vma + s->output_offset
11925 + h->root.u.def.value);
11926 }
11927 break;
11928
11929 case DT_MIPS_RLD_MAP_REL:
11930 {
11931 struct elf_link_hash_entry *h;
11932 bfd_vma dt_addr, rld_addr;
11933 h = mips_elf_hash_table (info)->rld_symbol;
11934 if (!h)
11935 {
11936 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11937 swap_out_p = FALSE;
11938 break;
11939 }
11940 s = h->root.u.def.section;
11941
11942 /* The MIPS_RLD_MAP_REL tag stores the offset to the debug
11943 pointer, relative to the address of the tag. */
11944 dt_addr = (sdyn->output_section->vma + sdyn->output_offset
11945 + (b - sdyn->contents));
11946 rld_addr = (s->output_section->vma + s->output_offset
11947 + h->root.u.def.value);
11948 dyn.d_un.d_ptr = rld_addr - dt_addr;
11949 }
11950 break;
11951
11952 case DT_MIPS_OPTIONS:
11953 s = (bfd_get_section_by_name
11954 (output_bfd, MIPS_ELF_OPTIONS_SECTION_NAME (output_bfd)));
11955 dyn.d_un.d_ptr = s->vma;
11956 break;
11957
11958 case DT_PLTREL:
11959 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11960 if (htab->is_vxworks)
11961 dyn.d_un.d_val = DT_RELA;
11962 else
11963 dyn.d_un.d_val = DT_REL;
11964 break;
11965
11966 case DT_PLTRELSZ:
11967 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11968 dyn.d_un.d_val = htab->root.srelplt->size;
11969 break;
11970
11971 case DT_JMPREL:
11972 BFD_ASSERT (htab->use_plts_and_copy_relocs);
11973 dyn.d_un.d_ptr = (htab->root.srelplt->output_section->vma
11974 + htab->root.srelplt->output_offset);
11975 break;
11976
11977 case DT_TEXTREL:
11978 /* If we didn't need any text relocations after all, delete
11979 the dynamic tag. */
11980 if (!(info->flags & DF_TEXTREL))
11981 {
11982 dyn_to_skip = MIPS_ELF_DYN_SIZE (dynobj);
11983 swap_out_p = FALSE;
11984 }
11985 break;
11986
11987 case DT_FLAGS:
11988 /* If we didn't need any text relocations after all, clear
11989 DF_TEXTREL from DT_FLAGS. */
11990 if (!(info->flags & DF_TEXTREL))
11991 dyn.d_un.d_val &= ~DF_TEXTREL;
11992 else
11993 swap_out_p = FALSE;
11994 break;
11995
11996 case DT_MIPS_XHASH:
11997 name = ".MIPS.xhash";
11998 s = bfd_get_linker_section (dynobj, name);
11999 dyn.d_un.d_ptr = s->output_section->vma + s->output_offset;
12000 break;
12001
12002 default:
12003 swap_out_p = FALSE;
12004 if (htab->is_vxworks
12005 && elf_vxworks_finish_dynamic_entry (output_bfd, &dyn))
12006 swap_out_p = TRUE;
12007 break;
12008 }
12009
12010 if (swap_out_p || dyn_skipped)
12011 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12012 (dynobj, &dyn, b - dyn_skipped);
12013
12014 if (dyn_to_skip)
12015 {
12016 dyn_skipped += dyn_to_skip;
12017 dyn_to_skip = 0;
12018 }
12019 }
12020
12021 /* Wipe out any trailing entries if we shifted down a dynamic tag. */
12022 if (dyn_skipped > 0)
12023 memset (b - dyn_skipped, 0, dyn_skipped);
12024 }
12025
12026 if (sgot != NULL && sgot->size > 0
12027 && !bfd_is_abs_section (sgot->output_section))
12028 {
12029 if (htab->is_vxworks)
12030 {
12031 /* The first entry of the global offset table points to the
12032 ".dynamic" section. The second is initialized by the
12033 loader and contains the shared library identifier.
12034 The third is also initialized by the loader and points
12035 to the lazy resolution stub. */
12036 MIPS_ELF_PUT_WORD (output_bfd,
12037 sdyn->output_offset + sdyn->output_section->vma,
12038 sgot->contents);
12039 MIPS_ELF_PUT_WORD (output_bfd, 0,
12040 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12041 MIPS_ELF_PUT_WORD (output_bfd, 0,
12042 sgot->contents
12043 + 2 * MIPS_ELF_GOT_SIZE (output_bfd));
12044 }
12045 else
12046 {
12047 /* The first entry of the global offset table will be filled at
12048 runtime. The second entry will be used by some runtime loaders.
12049 This isn't the case of IRIX rld. */
12050 MIPS_ELF_PUT_WORD (output_bfd, (bfd_vma) 0, sgot->contents);
12051 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12052 sgot->contents + MIPS_ELF_GOT_SIZE (output_bfd));
12053 }
12054
12055 elf_section_data (sgot->output_section)->this_hdr.sh_entsize
12056 = MIPS_ELF_GOT_SIZE (output_bfd);
12057 }
12058
12059 /* Generate dynamic relocations for the non-primary gots. */
12060 if (gg != NULL && gg->next)
12061 {
12062 Elf_Internal_Rela rel[3];
12063 bfd_vma addend = 0;
12064
12065 memset (rel, 0, sizeof (rel));
12066 rel[0].r_info = ELF_R_INFO (output_bfd, 0, R_MIPS_REL32);
12067
12068 for (g = gg->next; g->next != gg; g = g->next)
12069 {
12070 bfd_vma got_index = g->next->local_gotno + g->next->global_gotno
12071 + g->next->tls_gotno;
12072
12073 MIPS_ELF_PUT_WORD (output_bfd, 0, sgot->contents
12074 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12075 MIPS_ELF_PUT_WORD (output_bfd, MIPS_ELF_GNU_GOT1_MASK (output_bfd),
12076 sgot->contents
12077 + got_index++ * MIPS_ELF_GOT_SIZE (output_bfd));
12078
12079 if (! bfd_link_pic (info))
12080 continue;
12081
12082 for (; got_index < g->local_gotno; got_index++)
12083 {
12084 if (got_index >= g->assigned_low_gotno
12085 && got_index <= g->assigned_high_gotno)
12086 continue;
12087
12088 rel[0].r_offset = rel[1].r_offset = rel[2].r_offset
12089 = got_index * MIPS_ELF_GOT_SIZE (output_bfd);
12090 if (!(mips_elf_create_dynamic_relocation
12091 (output_bfd, info, rel, NULL,
12092 bfd_abs_section_ptr,
12093 0, &addend, sgot)))
12094 return FALSE;
12095 BFD_ASSERT (addend == 0);
12096 }
12097 }
12098 }
12099
12100 /* The generation of dynamic relocations for the non-primary gots
12101 adds more dynamic relocations. We cannot count them until
12102 here. */
12103
12104 if (elf_hash_table (info)->dynamic_sections_created)
12105 {
12106 bfd_byte *b;
12107 bfd_boolean swap_out_p;
12108
12109 BFD_ASSERT (sdyn != NULL);
12110
12111 for (b = sdyn->contents;
12112 b < sdyn->contents + sdyn->size;
12113 b += MIPS_ELF_DYN_SIZE (dynobj))
12114 {
12115 Elf_Internal_Dyn dyn;
12116 asection *s;
12117
12118 /* Read in the current dynamic entry. */
12119 (*get_elf_backend_data (dynobj)->s->swap_dyn_in) (dynobj, b, &dyn);
12120
12121 /* Assume that we're going to modify it and write it out. */
12122 swap_out_p = TRUE;
12123
12124 switch (dyn.d_tag)
12125 {
12126 case DT_RELSZ:
12127 /* Reduce DT_RELSZ to account for any relocations we
12128 decided not to make. This is for the n64 irix rld,
12129 which doesn't seem to apply any relocations if there
12130 are trailing null entries. */
12131 s = mips_elf_rel_dyn_section (info, FALSE);
12132 dyn.d_un.d_val = (s->reloc_count
12133 * (ABI_64_P (output_bfd)
12134 ? sizeof (Elf64_Mips_External_Rel)
12135 : sizeof (Elf32_External_Rel)));
12136 /* Adjust the section size too. Tools like the prelinker
12137 can reasonably expect the values to the same. */
12138 BFD_ASSERT (!bfd_is_abs_section (s->output_section));
12139 elf_section_data (s->output_section)->this_hdr.sh_size
12140 = dyn.d_un.d_val;
12141 break;
12142
12143 default:
12144 swap_out_p = FALSE;
12145 break;
12146 }
12147
12148 if (swap_out_p)
12149 (*get_elf_backend_data (dynobj)->s->swap_dyn_out)
12150 (dynobj, &dyn, b);
12151 }
12152 }
12153
12154 {
12155 asection *s;
12156 Elf32_compact_rel cpt;
12157
12158 if (SGI_COMPAT (output_bfd))
12159 {
12160 /* Write .compact_rel section out. */
12161 s = bfd_get_linker_section (dynobj, ".compact_rel");
12162 if (s != NULL)
12163 {
12164 cpt.id1 = 1;
12165 cpt.num = s->reloc_count;
12166 cpt.id2 = 2;
12167 cpt.offset = (s->output_section->filepos
12168 + sizeof (Elf32_External_compact_rel));
12169 cpt.reserved0 = 0;
12170 cpt.reserved1 = 0;
12171 bfd_elf32_swap_compact_rel_out (output_bfd, &cpt,
12172 ((Elf32_External_compact_rel *)
12173 s->contents));
12174
12175 /* Clean up a dummy stub function entry in .text. */
12176 if (htab->sstubs != NULL)
12177 {
12178 file_ptr dummy_offset;
12179
12180 BFD_ASSERT (htab->sstubs->size >= htab->function_stub_size);
12181 dummy_offset = htab->sstubs->size - htab->function_stub_size;
12182 memset (htab->sstubs->contents + dummy_offset, 0,
12183 htab->function_stub_size);
12184 }
12185 }
12186 }
12187
12188 /* The psABI says that the dynamic relocations must be sorted in
12189 increasing order of r_symndx. The VxWorks EABI doesn't require
12190 this, and because the code below handles REL rather than RELA
12191 relocations, using it for VxWorks would be outright harmful. */
12192 if (!htab->is_vxworks)
12193 {
12194 s = mips_elf_rel_dyn_section (info, FALSE);
12195 if (s != NULL
12196 && s->size > (bfd_vma)2 * MIPS_ELF_REL_SIZE (output_bfd))
12197 {
12198 reldyn_sorting_bfd = output_bfd;
12199
12200 if (ABI_64_P (output_bfd))
12201 qsort ((Elf64_External_Rel *) s->contents + 1,
12202 s->reloc_count - 1, sizeof (Elf64_Mips_External_Rel),
12203 sort_dynamic_relocs_64);
12204 else
12205 qsort ((Elf32_External_Rel *) s->contents + 1,
12206 s->reloc_count - 1, sizeof (Elf32_External_Rel),
12207 sort_dynamic_relocs);
12208 }
12209 }
12210 }
12211
12212 if (htab->root.splt && htab->root.splt->size > 0)
12213 {
12214 if (htab->is_vxworks)
12215 {
12216 if (bfd_link_pic (info))
12217 mips_vxworks_finish_shared_plt (output_bfd, info);
12218 else
12219 mips_vxworks_finish_exec_plt (output_bfd, info);
12220 }
12221 else
12222 {
12223 BFD_ASSERT (!bfd_link_pic (info));
12224 if (!mips_finish_exec_plt (output_bfd, info))
12225 return FALSE;
12226 }
12227 }
12228 return TRUE;
12229 }
12230
12231
12232 /* Set ABFD's EF_MIPS_ARCH and EF_MIPS_MACH flags. */
12233
12234 static void
12235 mips_set_isa_flags (bfd *abfd)
12236 {
12237 flagword val;
12238
12239 switch (bfd_get_mach (abfd))
12240 {
12241 default:
12242 if (ABI_N32_P (abfd) || ABI_64_P (abfd))
12243 val = E_MIPS_ARCH_3;
12244 else
12245 val = E_MIPS_ARCH_1;
12246 break;
12247
12248 case bfd_mach_mips3000:
12249 val = E_MIPS_ARCH_1;
12250 break;
12251
12252 case bfd_mach_mips3900:
12253 val = E_MIPS_ARCH_1 | E_MIPS_MACH_3900;
12254 break;
12255
12256 case bfd_mach_mips6000:
12257 val = E_MIPS_ARCH_2;
12258 break;
12259
12260 case bfd_mach_mips4010:
12261 val = E_MIPS_ARCH_2 | E_MIPS_MACH_4010;
12262 break;
12263
12264 case bfd_mach_mips4000:
12265 case bfd_mach_mips4300:
12266 case bfd_mach_mips4400:
12267 case bfd_mach_mips4600:
12268 val = E_MIPS_ARCH_3;
12269 break;
12270
12271 case bfd_mach_mips4100:
12272 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4100;
12273 break;
12274
12275 case bfd_mach_mips4111:
12276 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4111;
12277 break;
12278
12279 case bfd_mach_mips4120:
12280 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4120;
12281 break;
12282
12283 case bfd_mach_mips4650:
12284 val = E_MIPS_ARCH_3 | E_MIPS_MACH_4650;
12285 break;
12286
12287 case bfd_mach_mips5400:
12288 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5400;
12289 break;
12290
12291 case bfd_mach_mips5500:
12292 val = E_MIPS_ARCH_4 | E_MIPS_MACH_5500;
12293 break;
12294
12295 case bfd_mach_mips5900:
12296 val = E_MIPS_ARCH_3 | E_MIPS_MACH_5900;
12297 break;
12298
12299 case bfd_mach_mips9000:
12300 val = E_MIPS_ARCH_4 | E_MIPS_MACH_9000;
12301 break;
12302
12303 case bfd_mach_mips5000:
12304 case bfd_mach_mips7000:
12305 case bfd_mach_mips8000:
12306 case bfd_mach_mips10000:
12307 case bfd_mach_mips12000:
12308 case bfd_mach_mips14000:
12309 case bfd_mach_mips16000:
12310 val = E_MIPS_ARCH_4;
12311 break;
12312
12313 case bfd_mach_mips5:
12314 val = E_MIPS_ARCH_5;
12315 break;
12316
12317 case bfd_mach_mips_loongson_2e:
12318 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2E;
12319 break;
12320
12321 case bfd_mach_mips_loongson_2f:
12322 val = E_MIPS_ARCH_3 | E_MIPS_MACH_LS2F;
12323 break;
12324
12325 case bfd_mach_mips_sb1:
12326 val = E_MIPS_ARCH_64 | E_MIPS_MACH_SB1;
12327 break;
12328
12329 case bfd_mach_mips_gs464:
12330 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464;
12331 break;
12332
12333 case bfd_mach_mips_gs464e:
12334 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS464E;
12335 break;
12336
12337 case bfd_mach_mips_gs264e:
12338 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_GS264E;
12339 break;
12340
12341 case bfd_mach_mips_octeon:
12342 case bfd_mach_mips_octeonp:
12343 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON;
12344 break;
12345
12346 case bfd_mach_mips_octeon3:
12347 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON3;
12348 break;
12349
12350 case bfd_mach_mips_xlr:
12351 val = E_MIPS_ARCH_64 | E_MIPS_MACH_XLR;
12352 break;
12353
12354 case bfd_mach_mips_octeon2:
12355 val = E_MIPS_ARCH_64R2 | E_MIPS_MACH_OCTEON2;
12356 break;
12357
12358 case bfd_mach_mipsisa32:
12359 val = E_MIPS_ARCH_32;
12360 break;
12361
12362 case bfd_mach_mipsisa64:
12363 val = E_MIPS_ARCH_64;
12364 break;
12365
12366 case bfd_mach_mipsisa32r2:
12367 case bfd_mach_mipsisa32r3:
12368 case bfd_mach_mipsisa32r5:
12369 val = E_MIPS_ARCH_32R2;
12370 break;
12371
12372 case bfd_mach_mips_interaptiv_mr2:
12373 val = E_MIPS_ARCH_32R2 | E_MIPS_MACH_IAMR2;
12374 break;
12375
12376 case bfd_mach_mipsisa64r2:
12377 case bfd_mach_mipsisa64r3:
12378 case bfd_mach_mipsisa64r5:
12379 val = E_MIPS_ARCH_64R2;
12380 break;
12381
12382 case bfd_mach_mipsisa32r6:
12383 val = E_MIPS_ARCH_32R6;
12384 break;
12385
12386 case bfd_mach_mipsisa64r6:
12387 val = E_MIPS_ARCH_64R6;
12388 break;
12389 }
12390 elf_elfheader (abfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
12391 elf_elfheader (abfd)->e_flags |= val;
12392
12393 }
12394
12395
12396 /* Whether to sort relocs output by ld -r or ld --emit-relocs, by r_offset.
12397 Don't do so for code sections. We want to keep ordering of HI16/LO16
12398 as is. On the other hand, elf-eh-frame.c processing requires .eh_frame
12399 relocs to be sorted. */
12400
12401 bfd_boolean
12402 _bfd_mips_elf_sort_relocs_p (asection *sec)
12403 {
12404 return (sec->flags & SEC_CODE) == 0;
12405 }
12406
12407
12408 /* The final processing done just before writing out a MIPS ELF object
12409 file. This gets the MIPS architecture right based on the machine
12410 number. This is used by both the 32-bit and the 64-bit ABI. */
12411
12412 void
12413 _bfd_mips_final_write_processing (bfd *abfd)
12414 {
12415 unsigned int i;
12416 Elf_Internal_Shdr **hdrpp;
12417 const char *name;
12418 asection *sec;
12419
12420 /* Keep the existing EF_MIPS_MACH and EF_MIPS_ARCH flags if the former
12421 is nonzero. This is for compatibility with old objects, which used
12422 a combination of a 32-bit EF_MIPS_ARCH and a 64-bit EF_MIPS_MACH. */
12423 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_MACH) == 0)
12424 mips_set_isa_flags (abfd);
12425
12426 /* Set the sh_info field for .gptab sections and other appropriate
12427 info for each special section. */
12428 for (i = 1, hdrpp = elf_elfsections (abfd) + 1;
12429 i < elf_numsections (abfd);
12430 i++, hdrpp++)
12431 {
12432 switch ((*hdrpp)->sh_type)
12433 {
12434 case SHT_MIPS_MSYM:
12435 case SHT_MIPS_LIBLIST:
12436 sec = bfd_get_section_by_name (abfd, ".dynstr");
12437 if (sec != NULL)
12438 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12439 break;
12440
12441 case SHT_MIPS_GPTAB:
12442 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12443 name = bfd_section_name ((*hdrpp)->bfd_section);
12444 BFD_ASSERT (name != NULL
12445 && CONST_STRNEQ (name, ".gptab."));
12446 sec = bfd_get_section_by_name (abfd, name + sizeof ".gptab" - 1);
12447 BFD_ASSERT (sec != NULL);
12448 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12449 break;
12450
12451 case SHT_MIPS_CONTENT:
12452 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12453 name = bfd_section_name ((*hdrpp)->bfd_section);
12454 BFD_ASSERT (name != NULL
12455 && CONST_STRNEQ (name, ".MIPS.content"));
12456 sec = bfd_get_section_by_name (abfd,
12457 name + sizeof ".MIPS.content" - 1);
12458 BFD_ASSERT (sec != NULL);
12459 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12460 break;
12461
12462 case SHT_MIPS_SYMBOL_LIB:
12463 sec = bfd_get_section_by_name (abfd, ".dynsym");
12464 if (sec != NULL)
12465 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12466 sec = bfd_get_section_by_name (abfd, ".liblist");
12467 if (sec != NULL)
12468 (*hdrpp)->sh_info = elf_section_data (sec)->this_idx;
12469 break;
12470
12471 case SHT_MIPS_EVENTS:
12472 BFD_ASSERT ((*hdrpp)->bfd_section != NULL);
12473 name = bfd_section_name ((*hdrpp)->bfd_section);
12474 BFD_ASSERT (name != NULL);
12475 if (CONST_STRNEQ (name, ".MIPS.events"))
12476 sec = bfd_get_section_by_name (abfd,
12477 name + sizeof ".MIPS.events" - 1);
12478 else
12479 {
12480 BFD_ASSERT (CONST_STRNEQ (name, ".MIPS.post_rel"));
12481 sec = bfd_get_section_by_name (abfd,
12482 (name
12483 + sizeof ".MIPS.post_rel" - 1));
12484 }
12485 BFD_ASSERT (sec != NULL);
12486 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12487 break;
12488
12489 case SHT_MIPS_XHASH:
12490 sec = bfd_get_section_by_name (abfd, ".dynsym");
12491 if (sec != NULL)
12492 (*hdrpp)->sh_link = elf_section_data (sec)->this_idx;
12493 }
12494 }
12495 }
12496
12497 bfd_boolean
12498 _bfd_mips_elf_final_write_processing (bfd *abfd)
12499 {
12500 _bfd_mips_final_write_processing (abfd);
12501 return _bfd_elf_final_write_processing (abfd);
12502 }
12503 \f
12504 /* When creating an IRIX5 executable, we need REGINFO and RTPROC
12505 segments. */
12506
12507 int
12508 _bfd_mips_elf_additional_program_headers (bfd *abfd,
12509 struct bfd_link_info *info ATTRIBUTE_UNUSED)
12510 {
12511 asection *s;
12512 int ret = 0;
12513
12514 /* See if we need a PT_MIPS_REGINFO segment. */
12515 s = bfd_get_section_by_name (abfd, ".reginfo");
12516 if (s && (s->flags & SEC_LOAD))
12517 ++ret;
12518
12519 /* See if we need a PT_MIPS_ABIFLAGS segment. */
12520 if (bfd_get_section_by_name (abfd, ".MIPS.abiflags"))
12521 ++ret;
12522
12523 /* See if we need a PT_MIPS_OPTIONS segment. */
12524 if (IRIX_COMPAT (abfd) == ict_irix6
12525 && bfd_get_section_by_name (abfd,
12526 MIPS_ELF_OPTIONS_SECTION_NAME (abfd)))
12527 ++ret;
12528
12529 /* See if we need a PT_MIPS_RTPROC segment. */
12530 if (IRIX_COMPAT (abfd) == ict_irix5
12531 && bfd_get_section_by_name (abfd, ".dynamic")
12532 && bfd_get_section_by_name (abfd, ".mdebug"))
12533 ++ret;
12534
12535 /* Allocate a PT_NULL header in dynamic objects. See
12536 _bfd_mips_elf_modify_segment_map for details. */
12537 if (!SGI_COMPAT (abfd)
12538 && bfd_get_section_by_name (abfd, ".dynamic"))
12539 ++ret;
12540
12541 return ret;
12542 }
12543
12544 /* Modify the segment map for an IRIX5 executable. */
12545
12546 bfd_boolean
12547 _bfd_mips_elf_modify_segment_map (bfd *abfd,
12548 struct bfd_link_info *info)
12549 {
12550 asection *s;
12551 struct elf_segment_map *m, **pm;
12552 bfd_size_type amt;
12553
12554 /* If there is a .reginfo section, we need a PT_MIPS_REGINFO
12555 segment. */
12556 s = bfd_get_section_by_name (abfd, ".reginfo");
12557 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12558 {
12559 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12560 if (m->p_type == PT_MIPS_REGINFO)
12561 break;
12562 if (m == NULL)
12563 {
12564 amt = sizeof *m;
12565 m = bfd_zalloc (abfd, amt);
12566 if (m == NULL)
12567 return FALSE;
12568
12569 m->p_type = PT_MIPS_REGINFO;
12570 m->count = 1;
12571 m->sections[0] = s;
12572
12573 /* We want to put it after the PHDR and INTERP segments. */
12574 pm = &elf_seg_map (abfd);
12575 while (*pm != NULL
12576 && ((*pm)->p_type == PT_PHDR
12577 || (*pm)->p_type == PT_INTERP))
12578 pm = &(*pm)->next;
12579
12580 m->next = *pm;
12581 *pm = m;
12582 }
12583 }
12584
12585 /* If there is a .MIPS.abiflags section, we need a PT_MIPS_ABIFLAGS
12586 segment. */
12587 s = bfd_get_section_by_name (abfd, ".MIPS.abiflags");
12588 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12589 {
12590 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12591 if (m->p_type == PT_MIPS_ABIFLAGS)
12592 break;
12593 if (m == NULL)
12594 {
12595 amt = sizeof *m;
12596 m = bfd_zalloc (abfd, amt);
12597 if (m == NULL)
12598 return FALSE;
12599
12600 m->p_type = PT_MIPS_ABIFLAGS;
12601 m->count = 1;
12602 m->sections[0] = s;
12603
12604 /* We want to put it after the PHDR and INTERP segments. */
12605 pm = &elf_seg_map (abfd);
12606 while (*pm != NULL
12607 && ((*pm)->p_type == PT_PHDR
12608 || (*pm)->p_type == PT_INTERP))
12609 pm = &(*pm)->next;
12610
12611 m->next = *pm;
12612 *pm = m;
12613 }
12614 }
12615
12616 /* For IRIX 6, we don't have .mdebug sections, nor does anything but
12617 .dynamic end up in PT_DYNAMIC. However, we do have to insert a
12618 PT_MIPS_OPTIONS segment immediately following the program header
12619 table. */
12620 if (NEWABI_P (abfd)
12621 /* On non-IRIX6 new abi, we'll have already created a segment
12622 for this section, so don't create another. I'm not sure this
12623 is not also the case for IRIX 6, but I can't test it right
12624 now. */
12625 && IRIX_COMPAT (abfd) == ict_irix6)
12626 {
12627 for (s = abfd->sections; s; s = s->next)
12628 if (elf_section_data (s)->this_hdr.sh_type == SHT_MIPS_OPTIONS)
12629 break;
12630
12631 if (s)
12632 {
12633 struct elf_segment_map *options_segment;
12634
12635 pm = &elf_seg_map (abfd);
12636 while (*pm != NULL
12637 && ((*pm)->p_type == PT_PHDR
12638 || (*pm)->p_type == PT_INTERP))
12639 pm = &(*pm)->next;
12640
12641 if (*pm == NULL || (*pm)->p_type != PT_MIPS_OPTIONS)
12642 {
12643 amt = sizeof (struct elf_segment_map);
12644 options_segment = bfd_zalloc (abfd, amt);
12645 options_segment->next = *pm;
12646 options_segment->p_type = PT_MIPS_OPTIONS;
12647 options_segment->p_flags = PF_R;
12648 options_segment->p_flags_valid = TRUE;
12649 options_segment->count = 1;
12650 options_segment->sections[0] = s;
12651 *pm = options_segment;
12652 }
12653 }
12654 }
12655 else
12656 {
12657 if (IRIX_COMPAT (abfd) == ict_irix5)
12658 {
12659 /* If there are .dynamic and .mdebug sections, we make a room
12660 for the RTPROC header. FIXME: Rewrite without section names. */
12661 if (bfd_get_section_by_name (abfd, ".interp") == NULL
12662 && bfd_get_section_by_name (abfd, ".dynamic") != NULL
12663 && bfd_get_section_by_name (abfd, ".mdebug") != NULL)
12664 {
12665 for (m = elf_seg_map (abfd); m != NULL; m = m->next)
12666 if (m->p_type == PT_MIPS_RTPROC)
12667 break;
12668 if (m == NULL)
12669 {
12670 amt = sizeof *m;
12671 m = bfd_zalloc (abfd, amt);
12672 if (m == NULL)
12673 return FALSE;
12674
12675 m->p_type = PT_MIPS_RTPROC;
12676
12677 s = bfd_get_section_by_name (abfd, ".rtproc");
12678 if (s == NULL)
12679 {
12680 m->count = 0;
12681 m->p_flags = 0;
12682 m->p_flags_valid = 1;
12683 }
12684 else
12685 {
12686 m->count = 1;
12687 m->sections[0] = s;
12688 }
12689
12690 /* We want to put it after the DYNAMIC segment. */
12691 pm = &elf_seg_map (abfd);
12692 while (*pm != NULL && (*pm)->p_type != PT_DYNAMIC)
12693 pm = &(*pm)->next;
12694 if (*pm != NULL)
12695 pm = &(*pm)->next;
12696
12697 m->next = *pm;
12698 *pm = m;
12699 }
12700 }
12701 }
12702 /* On IRIX5, the PT_DYNAMIC segment includes the .dynamic,
12703 .dynstr, .dynsym, and .hash sections, and everything in
12704 between. */
12705 for (pm = &elf_seg_map (abfd); *pm != NULL;
12706 pm = &(*pm)->next)
12707 if ((*pm)->p_type == PT_DYNAMIC)
12708 break;
12709 m = *pm;
12710 /* GNU/Linux binaries do not need the extended PT_DYNAMIC section.
12711 glibc's dynamic linker has traditionally derived the number of
12712 tags from the p_filesz field, and sometimes allocates stack
12713 arrays of that size. An overly-big PT_DYNAMIC segment can
12714 be actively harmful in such cases. Making PT_DYNAMIC contain
12715 other sections can also make life hard for the prelinker,
12716 which might move one of the other sections to a different
12717 PT_LOAD segment. */
12718 if (SGI_COMPAT (abfd)
12719 && m != NULL
12720 && m->count == 1
12721 && strcmp (m->sections[0]->name, ".dynamic") == 0)
12722 {
12723 static const char *sec_names[] =
12724 {
12725 ".dynamic", ".dynstr", ".dynsym", ".hash"
12726 };
12727 bfd_vma low, high;
12728 unsigned int i, c;
12729 struct elf_segment_map *n;
12730
12731 low = ~(bfd_vma) 0;
12732 high = 0;
12733 for (i = 0; i < sizeof sec_names / sizeof sec_names[0]; i++)
12734 {
12735 s = bfd_get_section_by_name (abfd, sec_names[i]);
12736 if (s != NULL && (s->flags & SEC_LOAD) != 0)
12737 {
12738 bfd_size_type sz;
12739
12740 if (low > s->vma)
12741 low = s->vma;
12742 sz = s->size;
12743 if (high < s->vma + sz)
12744 high = s->vma + sz;
12745 }
12746 }
12747
12748 c = 0;
12749 for (s = abfd->sections; s != NULL; s = s->next)
12750 if ((s->flags & SEC_LOAD) != 0
12751 && s->vma >= low
12752 && s->vma + s->size <= high)
12753 ++c;
12754
12755 amt = sizeof *n + (bfd_size_type) (c - 1) * sizeof (asection *);
12756 n = bfd_zalloc (abfd, amt);
12757 if (n == NULL)
12758 return FALSE;
12759 *n = *m;
12760 n->count = c;
12761
12762 i = 0;
12763 for (s = abfd->sections; s != NULL; s = s->next)
12764 {
12765 if ((s->flags & SEC_LOAD) != 0
12766 && s->vma >= low
12767 && s->vma + s->size <= high)
12768 {
12769 n->sections[i] = s;
12770 ++i;
12771 }
12772 }
12773
12774 *pm = n;
12775 }
12776 }
12777
12778 /* Allocate a spare program header in dynamic objects so that tools
12779 like the prelinker can add an extra PT_LOAD entry.
12780
12781 If the prelinker needs to make room for a new PT_LOAD entry, its
12782 standard procedure is to move the first (read-only) sections into
12783 the new (writable) segment. However, the MIPS ABI requires
12784 .dynamic to be in a read-only segment, and the section will often
12785 start within sizeof (ElfNN_Phdr) bytes of the last program header.
12786
12787 Although the prelinker could in principle move .dynamic to a
12788 writable segment, it seems better to allocate a spare program
12789 header instead, and avoid the need to move any sections.
12790 There is a long tradition of allocating spare dynamic tags,
12791 so allocating a spare program header seems like a natural
12792 extension.
12793
12794 If INFO is NULL, we may be copying an already prelinked binary
12795 with objcopy or strip, so do not add this header. */
12796 if (info != NULL
12797 && !SGI_COMPAT (abfd)
12798 && bfd_get_section_by_name (abfd, ".dynamic"))
12799 {
12800 for (pm = &elf_seg_map (abfd); *pm != NULL; pm = &(*pm)->next)
12801 if ((*pm)->p_type == PT_NULL)
12802 break;
12803 if (*pm == NULL)
12804 {
12805 m = bfd_zalloc (abfd, sizeof (*m));
12806 if (m == NULL)
12807 return FALSE;
12808
12809 m->p_type = PT_NULL;
12810 *pm = m;
12811 }
12812 }
12813
12814 return TRUE;
12815 }
12816 \f
12817 /* Return the section that should be marked against GC for a given
12818 relocation. */
12819
12820 asection *
12821 _bfd_mips_elf_gc_mark_hook (asection *sec,
12822 struct bfd_link_info *info,
12823 Elf_Internal_Rela *rel,
12824 struct elf_link_hash_entry *h,
12825 Elf_Internal_Sym *sym)
12826 {
12827 /* ??? Do mips16 stub sections need to be handled special? */
12828
12829 if (h != NULL)
12830 switch (ELF_R_TYPE (sec->owner, rel->r_info))
12831 {
12832 case R_MIPS_GNU_VTINHERIT:
12833 case R_MIPS_GNU_VTENTRY:
12834 return NULL;
12835 }
12836
12837 return _bfd_elf_gc_mark_hook (sec, info, rel, h, sym);
12838 }
12839
12840 /* Prevent .MIPS.abiflags from being discarded with --gc-sections. */
12841
12842 bfd_boolean
12843 _bfd_mips_elf_gc_mark_extra_sections (struct bfd_link_info *info,
12844 elf_gc_mark_hook_fn gc_mark_hook)
12845 {
12846 bfd *sub;
12847
12848 _bfd_elf_gc_mark_extra_sections (info, gc_mark_hook);
12849
12850 for (sub = info->input_bfds; sub != NULL; sub = sub->link.next)
12851 {
12852 asection *o;
12853
12854 if (! is_mips_elf (sub))
12855 continue;
12856
12857 for (o = sub->sections; o != NULL; o = o->next)
12858 if (!o->gc_mark
12859 && MIPS_ELF_ABIFLAGS_SECTION_NAME_P (bfd_section_name (o)))
12860 {
12861 if (!_bfd_elf_gc_mark (info, o, gc_mark_hook))
12862 return FALSE;
12863 }
12864 }
12865
12866 return TRUE;
12867 }
12868 \f
12869 /* Copy data from a MIPS ELF indirect symbol to its direct symbol,
12870 hiding the old indirect symbol. Process additional relocation
12871 information. Also called for weakdefs, in which case we just let
12872 _bfd_elf_link_hash_copy_indirect copy the flags for us. */
12873
12874 void
12875 _bfd_mips_elf_copy_indirect_symbol (struct bfd_link_info *info,
12876 struct elf_link_hash_entry *dir,
12877 struct elf_link_hash_entry *ind)
12878 {
12879 struct mips_elf_link_hash_entry *dirmips, *indmips;
12880
12881 _bfd_elf_link_hash_copy_indirect (info, dir, ind);
12882
12883 dirmips = (struct mips_elf_link_hash_entry *) dir;
12884 indmips = (struct mips_elf_link_hash_entry *) ind;
12885 /* Any absolute non-dynamic relocations against an indirect or weak
12886 definition will be against the target symbol. */
12887 if (indmips->has_static_relocs)
12888 dirmips->has_static_relocs = TRUE;
12889
12890 if (ind->root.type != bfd_link_hash_indirect)
12891 return;
12892
12893 dirmips->possibly_dynamic_relocs += indmips->possibly_dynamic_relocs;
12894 if (indmips->readonly_reloc)
12895 dirmips->readonly_reloc = TRUE;
12896 if (indmips->no_fn_stub)
12897 dirmips->no_fn_stub = TRUE;
12898 if (indmips->fn_stub)
12899 {
12900 dirmips->fn_stub = indmips->fn_stub;
12901 indmips->fn_stub = NULL;
12902 }
12903 if (indmips->need_fn_stub)
12904 {
12905 dirmips->need_fn_stub = TRUE;
12906 indmips->need_fn_stub = FALSE;
12907 }
12908 if (indmips->call_stub)
12909 {
12910 dirmips->call_stub = indmips->call_stub;
12911 indmips->call_stub = NULL;
12912 }
12913 if (indmips->call_fp_stub)
12914 {
12915 dirmips->call_fp_stub = indmips->call_fp_stub;
12916 indmips->call_fp_stub = NULL;
12917 }
12918 if (indmips->global_got_area < dirmips->global_got_area)
12919 dirmips->global_got_area = indmips->global_got_area;
12920 if (indmips->global_got_area < GGA_NONE)
12921 indmips->global_got_area = GGA_NONE;
12922 if (indmips->has_nonpic_branches)
12923 dirmips->has_nonpic_branches = TRUE;
12924 }
12925
12926 /* Take care of the special `__gnu_absolute_zero' symbol and ignore attempts
12927 to hide it. It has to remain global (it will also be protected) so as to
12928 be assigned a global GOT entry, which will then remain unchanged at load
12929 time. */
12930
12931 void
12932 _bfd_mips_elf_hide_symbol (struct bfd_link_info *info,
12933 struct elf_link_hash_entry *entry,
12934 bfd_boolean force_local)
12935 {
12936 struct mips_elf_link_hash_table *htab;
12937
12938 htab = mips_elf_hash_table (info);
12939 BFD_ASSERT (htab != NULL);
12940 if (htab->use_absolute_zero
12941 && strcmp (entry->root.root.string, "__gnu_absolute_zero") == 0)
12942 return;
12943
12944 _bfd_elf_link_hash_hide_symbol (info, entry, force_local);
12945 }
12946 \f
12947 #define PDR_SIZE 32
12948
12949 bfd_boolean
12950 _bfd_mips_elf_discard_info (bfd *abfd, struct elf_reloc_cookie *cookie,
12951 struct bfd_link_info *info)
12952 {
12953 asection *o;
12954 bfd_boolean ret = FALSE;
12955 unsigned char *tdata;
12956 size_t i, skip;
12957
12958 o = bfd_get_section_by_name (abfd, ".pdr");
12959 if (! o)
12960 return FALSE;
12961 if (o->size == 0)
12962 return FALSE;
12963 if (o->size % PDR_SIZE != 0)
12964 return FALSE;
12965 if (o->output_section != NULL
12966 && bfd_is_abs_section (o->output_section))
12967 return FALSE;
12968
12969 tdata = bfd_zmalloc (o->size / PDR_SIZE);
12970 if (! tdata)
12971 return FALSE;
12972
12973 cookie->rels = _bfd_elf_link_read_relocs (abfd, o, NULL, NULL,
12974 info->keep_memory);
12975 if (!cookie->rels)
12976 {
12977 free (tdata);
12978 return FALSE;
12979 }
12980
12981 cookie->rel = cookie->rels;
12982 cookie->relend = cookie->rels + o->reloc_count;
12983
12984 for (i = 0, skip = 0; i < o->size / PDR_SIZE; i ++)
12985 {
12986 if (bfd_elf_reloc_symbol_deleted_p (i * PDR_SIZE, cookie))
12987 {
12988 tdata[i] = 1;
12989 skip ++;
12990 }
12991 }
12992
12993 if (skip != 0)
12994 {
12995 mips_elf_section_data (o)->u.tdata = tdata;
12996 if (o->rawsize == 0)
12997 o->rawsize = o->size;
12998 o->size -= skip * PDR_SIZE;
12999 ret = TRUE;
13000 }
13001 else
13002 free (tdata);
13003
13004 if (! info->keep_memory)
13005 free (cookie->rels);
13006
13007 return ret;
13008 }
13009
13010 bfd_boolean
13011 _bfd_mips_elf_ignore_discarded_relocs (asection *sec)
13012 {
13013 if (strcmp (sec->name, ".pdr") == 0)
13014 return TRUE;
13015 return FALSE;
13016 }
13017
13018 bfd_boolean
13019 _bfd_mips_elf_write_section (bfd *output_bfd,
13020 struct bfd_link_info *link_info ATTRIBUTE_UNUSED,
13021 asection *sec, bfd_byte *contents)
13022 {
13023 bfd_byte *to, *from, *end;
13024 int i;
13025
13026 if (strcmp (sec->name, ".pdr") != 0)
13027 return FALSE;
13028
13029 if (mips_elf_section_data (sec)->u.tdata == NULL)
13030 return FALSE;
13031
13032 to = contents;
13033 end = contents + sec->size;
13034 for (from = contents, i = 0;
13035 from < end;
13036 from += PDR_SIZE, i++)
13037 {
13038 if ((mips_elf_section_data (sec)->u.tdata)[i] == 1)
13039 continue;
13040 if (to != from)
13041 memcpy (to, from, PDR_SIZE);
13042 to += PDR_SIZE;
13043 }
13044 bfd_set_section_contents (output_bfd, sec->output_section, contents,
13045 sec->output_offset, sec->size);
13046 return TRUE;
13047 }
13048 \f
13049 /* microMIPS code retains local labels for linker relaxation. Omit them
13050 from output by default for clarity. */
13051
13052 bfd_boolean
13053 _bfd_mips_elf_is_target_special_symbol (bfd *abfd, asymbol *sym)
13054 {
13055 return _bfd_elf_is_local_label_name (abfd, sym->name);
13056 }
13057
13058 /* MIPS ELF uses a special find_nearest_line routine in order the
13059 handle the ECOFF debugging information. */
13060
13061 struct mips_elf_find_line
13062 {
13063 struct ecoff_debug_info d;
13064 struct ecoff_find_line i;
13065 };
13066
13067 bfd_boolean
13068 _bfd_mips_elf_find_nearest_line (bfd *abfd, asymbol **symbols,
13069 asection *section, bfd_vma offset,
13070 const char **filename_ptr,
13071 const char **functionname_ptr,
13072 unsigned int *line_ptr,
13073 unsigned int *discriminator_ptr)
13074 {
13075 asection *msec;
13076
13077 if (_bfd_dwarf2_find_nearest_line (abfd, symbols, NULL, section, offset,
13078 filename_ptr, functionname_ptr,
13079 line_ptr, discriminator_ptr,
13080 dwarf_debug_sections,
13081 &elf_tdata (abfd)->dwarf2_find_line_info)
13082 == 1)
13083 return TRUE;
13084
13085 if (_bfd_dwarf1_find_nearest_line (abfd, symbols, section, offset,
13086 filename_ptr, functionname_ptr,
13087 line_ptr))
13088 {
13089 if (!*functionname_ptr)
13090 _bfd_elf_find_function (abfd, symbols, section, offset,
13091 *filename_ptr ? NULL : filename_ptr,
13092 functionname_ptr);
13093 return TRUE;
13094 }
13095
13096 msec = bfd_get_section_by_name (abfd, ".mdebug");
13097 if (msec != NULL)
13098 {
13099 flagword origflags;
13100 struct mips_elf_find_line *fi;
13101 const struct ecoff_debug_swap * const swap =
13102 get_elf_backend_data (abfd)->elf_backend_ecoff_debug_swap;
13103
13104 /* If we are called during a link, mips_elf_final_link may have
13105 cleared the SEC_HAS_CONTENTS field. We force it back on here
13106 if appropriate (which it normally will be). */
13107 origflags = msec->flags;
13108 if (elf_section_data (msec)->this_hdr.sh_type != SHT_NOBITS)
13109 msec->flags |= SEC_HAS_CONTENTS;
13110
13111 fi = mips_elf_tdata (abfd)->find_line_info;
13112 if (fi == NULL)
13113 {
13114 bfd_size_type external_fdr_size;
13115 char *fraw_src;
13116 char *fraw_end;
13117 struct fdr *fdr_ptr;
13118 bfd_size_type amt = sizeof (struct mips_elf_find_line);
13119
13120 fi = bfd_zalloc (abfd, amt);
13121 if (fi == NULL)
13122 {
13123 msec->flags = origflags;
13124 return FALSE;
13125 }
13126
13127 if (! _bfd_mips_elf_read_ecoff_info (abfd, msec, &fi->d))
13128 {
13129 msec->flags = origflags;
13130 return FALSE;
13131 }
13132
13133 /* Swap in the FDR information. */
13134 amt = fi->d.symbolic_header.ifdMax * sizeof (struct fdr);
13135 fi->d.fdr = bfd_alloc (abfd, amt);
13136 if (fi->d.fdr == NULL)
13137 {
13138 msec->flags = origflags;
13139 return FALSE;
13140 }
13141 external_fdr_size = swap->external_fdr_size;
13142 fdr_ptr = fi->d.fdr;
13143 fraw_src = (char *) fi->d.external_fdr;
13144 fraw_end = (fraw_src
13145 + fi->d.symbolic_header.ifdMax * external_fdr_size);
13146 for (; fraw_src < fraw_end; fraw_src += external_fdr_size, fdr_ptr++)
13147 (*swap->swap_fdr_in) (abfd, fraw_src, fdr_ptr);
13148
13149 mips_elf_tdata (abfd)->find_line_info = fi;
13150
13151 /* Note that we don't bother to ever free this information.
13152 find_nearest_line is either called all the time, as in
13153 objdump -l, so the information should be saved, or it is
13154 rarely called, as in ld error messages, so the memory
13155 wasted is unimportant. Still, it would probably be a
13156 good idea for free_cached_info to throw it away. */
13157 }
13158
13159 if (_bfd_ecoff_locate_line (abfd, section, offset, &fi->d, swap,
13160 &fi->i, filename_ptr, functionname_ptr,
13161 line_ptr))
13162 {
13163 msec->flags = origflags;
13164 return TRUE;
13165 }
13166
13167 msec->flags = origflags;
13168 }
13169
13170 /* Fall back on the generic ELF find_nearest_line routine. */
13171
13172 return _bfd_elf_find_nearest_line (abfd, symbols, section, offset,
13173 filename_ptr, functionname_ptr,
13174 line_ptr, discriminator_ptr);
13175 }
13176
13177 bfd_boolean
13178 _bfd_mips_elf_find_inliner_info (bfd *abfd,
13179 const char **filename_ptr,
13180 const char **functionname_ptr,
13181 unsigned int *line_ptr)
13182 {
13183 bfd_boolean found;
13184 found = _bfd_dwarf2_find_inliner_info (abfd, filename_ptr,
13185 functionname_ptr, line_ptr,
13186 & elf_tdata (abfd)->dwarf2_find_line_info);
13187 return found;
13188 }
13189
13190 \f
13191 /* When are writing out the .options or .MIPS.options section,
13192 remember the bytes we are writing out, so that we can install the
13193 GP value in the section_processing routine. */
13194
13195 bfd_boolean
13196 _bfd_mips_elf_set_section_contents (bfd *abfd, sec_ptr section,
13197 const void *location,
13198 file_ptr offset, bfd_size_type count)
13199 {
13200 if (MIPS_ELF_OPTIONS_SECTION_NAME_P (section->name))
13201 {
13202 bfd_byte *c;
13203
13204 if (elf_section_data (section) == NULL)
13205 {
13206 bfd_size_type amt = sizeof (struct bfd_elf_section_data);
13207 section->used_by_bfd = bfd_zalloc (abfd, amt);
13208 if (elf_section_data (section) == NULL)
13209 return FALSE;
13210 }
13211 c = mips_elf_section_data (section)->u.tdata;
13212 if (c == NULL)
13213 {
13214 c = bfd_zalloc (abfd, section->size);
13215 if (c == NULL)
13216 return FALSE;
13217 mips_elf_section_data (section)->u.tdata = c;
13218 }
13219
13220 memcpy (c + offset, location, count);
13221 }
13222
13223 return _bfd_elf_set_section_contents (abfd, section, location, offset,
13224 count);
13225 }
13226
13227 /* This is almost identical to bfd_generic_get_... except that some
13228 MIPS relocations need to be handled specially. Sigh. */
13229
13230 bfd_byte *
13231 _bfd_elf_mips_get_relocated_section_contents
13232 (bfd *abfd,
13233 struct bfd_link_info *link_info,
13234 struct bfd_link_order *link_order,
13235 bfd_byte *data,
13236 bfd_boolean relocatable,
13237 asymbol **symbols)
13238 {
13239 /* Get enough memory to hold the stuff */
13240 bfd *input_bfd = link_order->u.indirect.section->owner;
13241 asection *input_section = link_order->u.indirect.section;
13242 bfd_size_type sz;
13243
13244 long reloc_size = bfd_get_reloc_upper_bound (input_bfd, input_section);
13245 arelent **reloc_vector = NULL;
13246 long reloc_count;
13247
13248 if (reloc_size < 0)
13249 goto error_return;
13250
13251 reloc_vector = bfd_malloc (reloc_size);
13252 if (reloc_vector == NULL && reloc_size != 0)
13253 goto error_return;
13254
13255 /* read in the section */
13256 sz = input_section->rawsize ? input_section->rawsize : input_section->size;
13257 if (!bfd_get_section_contents (input_bfd, input_section, data, 0, sz))
13258 goto error_return;
13259
13260 reloc_count = bfd_canonicalize_reloc (input_bfd,
13261 input_section,
13262 reloc_vector,
13263 symbols);
13264 if (reloc_count < 0)
13265 goto error_return;
13266
13267 if (reloc_count > 0)
13268 {
13269 arelent **parent;
13270 /* for mips */
13271 int gp_found;
13272 bfd_vma gp = 0x12345678; /* initialize just to shut gcc up */
13273
13274 {
13275 struct bfd_hash_entry *h;
13276 struct bfd_link_hash_entry *lh;
13277 /* Skip all this stuff if we aren't mixing formats. */
13278 if (abfd && input_bfd
13279 && abfd->xvec == input_bfd->xvec)
13280 lh = 0;
13281 else
13282 {
13283 h = bfd_hash_lookup (&link_info->hash->table, "_gp", FALSE, FALSE);
13284 lh = (struct bfd_link_hash_entry *) h;
13285 }
13286 lookup:
13287 if (lh)
13288 {
13289 switch (lh->type)
13290 {
13291 case bfd_link_hash_undefined:
13292 case bfd_link_hash_undefweak:
13293 case bfd_link_hash_common:
13294 gp_found = 0;
13295 break;
13296 case bfd_link_hash_defined:
13297 case bfd_link_hash_defweak:
13298 gp_found = 1;
13299 gp = lh->u.def.value;
13300 break;
13301 case bfd_link_hash_indirect:
13302 case bfd_link_hash_warning:
13303 lh = lh->u.i.link;
13304 /* @@FIXME ignoring warning for now */
13305 goto lookup;
13306 case bfd_link_hash_new:
13307 default:
13308 abort ();
13309 }
13310 }
13311 else
13312 gp_found = 0;
13313 }
13314 /* end mips */
13315 for (parent = reloc_vector; *parent != NULL; parent++)
13316 {
13317 char *error_message = NULL;
13318 bfd_reloc_status_type r;
13319
13320 /* Specific to MIPS: Deal with relocation types that require
13321 knowing the gp of the output bfd. */
13322 asymbol *sym = *(*parent)->sym_ptr_ptr;
13323
13324 /* If we've managed to find the gp and have a special
13325 function for the relocation then go ahead, else default
13326 to the generic handling. */
13327 if (gp_found
13328 && (*parent)->howto->special_function
13329 == _bfd_mips_elf32_gprel16_reloc)
13330 r = _bfd_mips_elf_gprel16_with_gp (input_bfd, sym, *parent,
13331 input_section, relocatable,
13332 data, gp);
13333 else
13334 r = bfd_perform_relocation (input_bfd, *parent, data,
13335 input_section,
13336 relocatable ? abfd : NULL,
13337 &error_message);
13338
13339 if (relocatable)
13340 {
13341 asection *os = input_section->output_section;
13342
13343 /* A partial link, so keep the relocs */
13344 os->orelocation[os->reloc_count] = *parent;
13345 os->reloc_count++;
13346 }
13347
13348 if (r != bfd_reloc_ok)
13349 {
13350 switch (r)
13351 {
13352 case bfd_reloc_undefined:
13353 (*link_info->callbacks->undefined_symbol)
13354 (link_info, bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13355 input_bfd, input_section, (*parent)->address, TRUE);
13356 break;
13357 case bfd_reloc_dangerous:
13358 BFD_ASSERT (error_message != NULL);
13359 (*link_info->callbacks->reloc_dangerous)
13360 (link_info, error_message,
13361 input_bfd, input_section, (*parent)->address);
13362 break;
13363 case bfd_reloc_overflow:
13364 (*link_info->callbacks->reloc_overflow)
13365 (link_info, NULL,
13366 bfd_asymbol_name (*(*parent)->sym_ptr_ptr),
13367 (*parent)->howto->name, (*parent)->addend,
13368 input_bfd, input_section, (*parent)->address);
13369 break;
13370 case bfd_reloc_outofrange:
13371 default:
13372 abort ();
13373 break;
13374 }
13375
13376 }
13377 }
13378 }
13379 if (reloc_vector != NULL)
13380 free (reloc_vector);
13381 return data;
13382
13383 error_return:
13384 if (reloc_vector != NULL)
13385 free (reloc_vector);
13386 return NULL;
13387 }
13388 \f
13389 static bfd_boolean
13390 mips_elf_relax_delete_bytes (bfd *abfd,
13391 asection *sec, bfd_vma addr, int count)
13392 {
13393 Elf_Internal_Shdr *symtab_hdr;
13394 unsigned int sec_shndx;
13395 bfd_byte *contents;
13396 Elf_Internal_Rela *irel, *irelend;
13397 Elf_Internal_Sym *isym;
13398 Elf_Internal_Sym *isymend;
13399 struct elf_link_hash_entry **sym_hashes;
13400 struct elf_link_hash_entry **end_hashes;
13401 struct elf_link_hash_entry **start_hashes;
13402 unsigned int symcount;
13403
13404 sec_shndx = _bfd_elf_section_from_bfd_section (abfd, sec);
13405 contents = elf_section_data (sec)->this_hdr.contents;
13406
13407 irel = elf_section_data (sec)->relocs;
13408 irelend = irel + sec->reloc_count;
13409
13410 /* Actually delete the bytes. */
13411 memmove (contents + addr, contents + addr + count,
13412 (size_t) (sec->size - addr - count));
13413 sec->size -= count;
13414
13415 /* Adjust all the relocs. */
13416 for (irel = elf_section_data (sec)->relocs; irel < irelend; irel++)
13417 {
13418 /* Get the new reloc address. */
13419 if (irel->r_offset > addr)
13420 irel->r_offset -= count;
13421 }
13422
13423 BFD_ASSERT (addr % 2 == 0);
13424 BFD_ASSERT (count % 2 == 0);
13425
13426 /* Adjust the local symbols defined in this section. */
13427 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13428 isym = (Elf_Internal_Sym *) symtab_hdr->contents;
13429 for (isymend = isym + symtab_hdr->sh_info; isym < isymend; isym++)
13430 if (isym->st_shndx == sec_shndx && isym->st_value > addr)
13431 isym->st_value -= count;
13432
13433 /* Now adjust the global symbols defined in this section. */
13434 symcount = (symtab_hdr->sh_size / sizeof (Elf32_External_Sym)
13435 - symtab_hdr->sh_info);
13436 sym_hashes = start_hashes = elf_sym_hashes (abfd);
13437 end_hashes = sym_hashes + symcount;
13438
13439 for (; sym_hashes < end_hashes; sym_hashes++)
13440 {
13441 struct elf_link_hash_entry *sym_hash = *sym_hashes;
13442
13443 if ((sym_hash->root.type == bfd_link_hash_defined
13444 || sym_hash->root.type == bfd_link_hash_defweak)
13445 && sym_hash->root.u.def.section == sec)
13446 {
13447 bfd_vma value = sym_hash->root.u.def.value;
13448
13449 if (ELF_ST_IS_MICROMIPS (sym_hash->other))
13450 value &= MINUS_TWO;
13451 if (value > addr)
13452 sym_hash->root.u.def.value -= count;
13453 }
13454 }
13455
13456 return TRUE;
13457 }
13458
13459
13460 /* Opcodes needed for microMIPS relaxation as found in
13461 opcodes/micromips-opc.c. */
13462
13463 struct opcode_descriptor {
13464 unsigned long match;
13465 unsigned long mask;
13466 };
13467
13468 /* The $ra register aka $31. */
13469
13470 #define RA 31
13471
13472 /* 32-bit instruction format register fields. */
13473
13474 #define OP32_SREG(opcode) (((opcode) >> 16) & 0x1f)
13475 #define OP32_TREG(opcode) (((opcode) >> 21) & 0x1f)
13476
13477 /* Check if a 5-bit register index can be abbreviated to 3 bits. */
13478
13479 #define OP16_VALID_REG(r) \
13480 ((2 <= (r) && (r) <= 7) || (16 <= (r) && (r) <= 17))
13481
13482
13483 /* 32-bit and 16-bit branches. */
13484
13485 static const struct opcode_descriptor b_insns_32[] = {
13486 { /* "b", "p", */ 0x40400000, 0xffff0000 }, /* bgez 0 */
13487 { /* "b", "p", */ 0x94000000, 0xffff0000 }, /* beq 0, 0 */
13488 { 0, 0 } /* End marker for find_match(). */
13489 };
13490
13491 static const struct opcode_descriptor bc_insn_32 =
13492 { /* "bc(1|2)(ft)", "N,p", */ 0x42800000, 0xfec30000 };
13493
13494 static const struct opcode_descriptor bz_insn_32 =
13495 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 };
13496
13497 static const struct opcode_descriptor bzal_insn_32 =
13498 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 };
13499
13500 static const struct opcode_descriptor beq_insn_32 =
13501 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 };
13502
13503 static const struct opcode_descriptor b_insn_16 =
13504 { /* "b", "mD", */ 0xcc00, 0xfc00 };
13505
13506 static const struct opcode_descriptor bz_insn_16 =
13507 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 };
13508
13509
13510 /* 32-bit and 16-bit branch EQ and NE zero. */
13511
13512 /* NOTE: All opcode tables have BEQ/BNE in the same order: first the
13513 eq and second the ne. This convention is used when replacing a
13514 32-bit BEQ/BNE with the 16-bit version. */
13515
13516 #define BZC32_REG_FIELD(r) (((r) & 0x1f) << 16)
13517
13518 static const struct opcode_descriptor bz_rs_insns_32[] = {
13519 { /* "beqz", "s,p", */ 0x94000000, 0xffe00000 },
13520 { /* "bnez", "s,p", */ 0xb4000000, 0xffe00000 },
13521 { 0, 0 } /* End marker for find_match(). */
13522 };
13523
13524 static const struct opcode_descriptor bz_rt_insns_32[] = {
13525 { /* "beqz", "t,p", */ 0x94000000, 0xfc01f000 },
13526 { /* "bnez", "t,p", */ 0xb4000000, 0xfc01f000 },
13527 { 0, 0 } /* End marker for find_match(). */
13528 };
13529
13530 static const struct opcode_descriptor bzc_insns_32[] = {
13531 { /* "beqzc", "s,p", */ 0x40e00000, 0xffe00000 },
13532 { /* "bnezc", "s,p", */ 0x40a00000, 0xffe00000 },
13533 { 0, 0 } /* End marker for find_match(). */
13534 };
13535
13536 static const struct opcode_descriptor bz_insns_16[] = {
13537 { /* "beqz", "md,mE", */ 0x8c00, 0xfc00 },
13538 { /* "bnez", "md,mE", */ 0xac00, 0xfc00 },
13539 { 0, 0 } /* End marker for find_match(). */
13540 };
13541
13542 /* Switch between a 5-bit register index and its 3-bit shorthand. */
13543
13544 #define BZ16_REG(opcode) ((((((opcode) >> 7) & 7) + 0x1e) & 0xf) + 2)
13545 #define BZ16_REG_FIELD(r) (((r) & 7) << 7)
13546
13547
13548 /* 32-bit instructions with a delay slot. */
13549
13550 static const struct opcode_descriptor jal_insn_32_bd16 =
13551 { /* "jals", "a", */ 0x74000000, 0xfc000000 };
13552
13553 static const struct opcode_descriptor jal_insn_32_bd32 =
13554 { /* "jal", "a", */ 0xf4000000, 0xfc000000 };
13555
13556 static const struct opcode_descriptor jal_x_insn_32_bd32 =
13557 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 };
13558
13559 static const struct opcode_descriptor j_insn_32 =
13560 { /* "j", "a", */ 0xd4000000, 0xfc000000 };
13561
13562 static const struct opcode_descriptor jalr_insn_32 =
13563 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff };
13564
13565 /* This table can be compacted, because no opcode replacement is made. */
13566
13567 static const struct opcode_descriptor ds_insns_32_bd16[] = {
13568 { /* "jals", "a", */ 0x74000000, 0xfc000000 },
13569
13570 { /* "jalrs[.hb]", "t,s", */ 0x00004f3c, 0xfc00efff },
13571 { /* "b(ge|lt)zals", "s,p", */ 0x42200000, 0xffa00000 },
13572
13573 { /* "b(g|l)(e|t)z", "s,p", */ 0x40000000, 0xff200000 },
13574 { /* "b(eq|ne)", "s,t,p", */ 0x94000000, 0xdc000000 },
13575 { /* "j", "a", */ 0xd4000000, 0xfc000000 },
13576 { 0, 0 } /* End marker for find_match(). */
13577 };
13578
13579 /* This table can be compacted, because no opcode replacement is made. */
13580
13581 static const struct opcode_descriptor ds_insns_32_bd32[] = {
13582 { /* "jal[x]", "a", */ 0xf0000000, 0xf8000000 },
13583
13584 { /* "jalr[.hb]", "t,s", */ 0x00000f3c, 0xfc00efff },
13585 { /* "b(ge|lt)zal", "s,p", */ 0x40200000, 0xffa00000 },
13586 { 0, 0 } /* End marker for find_match(). */
13587 };
13588
13589
13590 /* 16-bit instructions with a delay slot. */
13591
13592 static const struct opcode_descriptor jalr_insn_16_bd16 =
13593 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 };
13594
13595 static const struct opcode_descriptor jalr_insn_16_bd32 =
13596 { /* "jalr", "my,mj", */ 0x45c0, 0xffe0 };
13597
13598 static const struct opcode_descriptor jr_insn_16 =
13599 { /* "jr", "mj", */ 0x4580, 0xffe0 };
13600
13601 #define JR16_REG(opcode) ((opcode) & 0x1f)
13602
13603 /* This table can be compacted, because no opcode replacement is made. */
13604
13605 static const struct opcode_descriptor ds_insns_16_bd16[] = {
13606 { /* "jalrs", "my,mj", */ 0x45e0, 0xffe0 },
13607
13608 { /* "b", "mD", */ 0xcc00, 0xfc00 },
13609 { /* "b(eq|ne)z", "md,mE", */ 0x8c00, 0xdc00 },
13610 { /* "jr", "mj", */ 0x4580, 0xffe0 },
13611 { 0, 0 } /* End marker for find_match(). */
13612 };
13613
13614
13615 /* LUI instruction. */
13616
13617 static const struct opcode_descriptor lui_insn =
13618 { /* "lui", "s,u", */ 0x41a00000, 0xffe00000 };
13619
13620
13621 /* ADDIU instruction. */
13622
13623 static const struct opcode_descriptor addiu_insn =
13624 { /* "addiu", "t,r,j", */ 0x30000000, 0xfc000000 };
13625
13626 static const struct opcode_descriptor addiupc_insn =
13627 { /* "addiu", "mb,$pc,mQ", */ 0x78000000, 0xfc000000 };
13628
13629 #define ADDIUPC_REG_FIELD(r) \
13630 (((2 <= (r) && (r) <= 7) ? (r) : ((r) - 16)) << 23)
13631
13632
13633 /* Relaxable instructions in a JAL delay slot: MOVE. */
13634
13635 /* The 16-bit move has rd in 9:5 and rs in 4:0. The 32-bit moves
13636 (ADDU, OR) have rd in 15:11 and rs in 10:16. */
13637 #define MOVE32_RD(opcode) (((opcode) >> 11) & 0x1f)
13638 #define MOVE32_RS(opcode) (((opcode) >> 16) & 0x1f)
13639
13640 #define MOVE16_RD_FIELD(r) (((r) & 0x1f) << 5)
13641 #define MOVE16_RS_FIELD(r) (((r) & 0x1f) )
13642
13643 static const struct opcode_descriptor move_insns_32[] = {
13644 { /* "move", "d,s", */ 0x00000290, 0xffe007ff }, /* or d,s,$0 */
13645 { /* "move", "d,s", */ 0x00000150, 0xffe007ff }, /* addu d,s,$0 */
13646 { 0, 0 } /* End marker for find_match(). */
13647 };
13648
13649 static const struct opcode_descriptor move_insn_16 =
13650 { /* "move", "mp,mj", */ 0x0c00, 0xfc00 };
13651
13652
13653 /* NOP instructions. */
13654
13655 static const struct opcode_descriptor nop_insn_32 =
13656 { /* "nop", "", */ 0x00000000, 0xffffffff };
13657
13658 static const struct opcode_descriptor nop_insn_16 =
13659 { /* "nop", "", */ 0x0c00, 0xffff };
13660
13661
13662 /* Instruction match support. */
13663
13664 #define MATCH(opcode, insn) ((opcode & insn.mask) == insn.match)
13665
13666 static int
13667 find_match (unsigned long opcode, const struct opcode_descriptor insn[])
13668 {
13669 unsigned long indx;
13670
13671 for (indx = 0; insn[indx].mask != 0; indx++)
13672 if (MATCH (opcode, insn[indx]))
13673 return indx;
13674
13675 return -1;
13676 }
13677
13678
13679 /* Branch and delay slot decoding support. */
13680
13681 /* If PTR points to what *might* be a 16-bit branch or jump, then
13682 return the minimum length of its delay slot, otherwise return 0.
13683 Non-zero results are not definitive as we might be checking against
13684 the second half of another instruction. */
13685
13686 static int
13687 check_br16_dslot (bfd *abfd, bfd_byte *ptr)
13688 {
13689 unsigned long opcode;
13690 int bdsize;
13691
13692 opcode = bfd_get_16 (abfd, ptr);
13693 if (MATCH (opcode, jalr_insn_16_bd32) != 0)
13694 /* 16-bit branch/jump with a 32-bit delay slot. */
13695 bdsize = 4;
13696 else if (MATCH (opcode, jalr_insn_16_bd16) != 0
13697 || find_match (opcode, ds_insns_16_bd16) >= 0)
13698 /* 16-bit branch/jump with a 16-bit delay slot. */
13699 bdsize = 2;
13700 else
13701 /* No delay slot. */
13702 bdsize = 0;
13703
13704 return bdsize;
13705 }
13706
13707 /* If PTR points to what *might* be a 32-bit branch or jump, then
13708 return the minimum length of its delay slot, otherwise return 0.
13709 Non-zero results are not definitive as we might be checking against
13710 the second half of another instruction. */
13711
13712 static int
13713 check_br32_dslot (bfd *abfd, bfd_byte *ptr)
13714 {
13715 unsigned long opcode;
13716 int bdsize;
13717
13718 opcode = bfd_get_micromips_32 (abfd, ptr);
13719 if (find_match (opcode, ds_insns_32_bd32) >= 0)
13720 /* 32-bit branch/jump with a 32-bit delay slot. */
13721 bdsize = 4;
13722 else if (find_match (opcode, ds_insns_32_bd16) >= 0)
13723 /* 32-bit branch/jump with a 16-bit delay slot. */
13724 bdsize = 2;
13725 else
13726 /* No delay slot. */
13727 bdsize = 0;
13728
13729 return bdsize;
13730 }
13731
13732 /* If PTR points to a 16-bit branch or jump with a 32-bit delay slot
13733 that doesn't fiddle with REG, then return TRUE, otherwise FALSE. */
13734
13735 static bfd_boolean
13736 check_br16 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13737 {
13738 unsigned long opcode;
13739
13740 opcode = bfd_get_16 (abfd, ptr);
13741 if (MATCH (opcode, b_insn_16)
13742 /* B16 */
13743 || (MATCH (opcode, jr_insn_16) && reg != JR16_REG (opcode))
13744 /* JR16 */
13745 || (MATCH (opcode, bz_insn_16) && reg != BZ16_REG (opcode))
13746 /* BEQZ16, BNEZ16 */
13747 || (MATCH (opcode, jalr_insn_16_bd32)
13748 /* JALR16 */
13749 && reg != JR16_REG (opcode) && reg != RA))
13750 return TRUE;
13751
13752 return FALSE;
13753 }
13754
13755 /* If PTR points to a 32-bit branch or jump that doesn't fiddle with REG,
13756 then return TRUE, otherwise FALSE. */
13757
13758 static bfd_boolean
13759 check_br32 (bfd *abfd, bfd_byte *ptr, unsigned long reg)
13760 {
13761 unsigned long opcode;
13762
13763 opcode = bfd_get_micromips_32 (abfd, ptr);
13764 if (MATCH (opcode, j_insn_32)
13765 /* J */
13766 || MATCH (opcode, bc_insn_32)
13767 /* BC1F, BC1T, BC2F, BC2T */
13768 || (MATCH (opcode, jal_x_insn_32_bd32) && reg != RA)
13769 /* JAL, JALX */
13770 || (MATCH (opcode, bz_insn_32) && reg != OP32_SREG (opcode))
13771 /* BGEZ, BGTZ, BLEZ, BLTZ */
13772 || (MATCH (opcode, bzal_insn_32)
13773 /* BGEZAL, BLTZAL */
13774 && reg != OP32_SREG (opcode) && reg != RA)
13775 || ((MATCH (opcode, jalr_insn_32) || MATCH (opcode, beq_insn_32))
13776 /* JALR, JALR.HB, BEQ, BNE */
13777 && reg != OP32_SREG (opcode) && reg != OP32_TREG (opcode)))
13778 return TRUE;
13779
13780 return FALSE;
13781 }
13782
13783 /* If the instruction encoding at PTR and relocations [INTERNAL_RELOCS,
13784 IRELEND) at OFFSET indicate that there must be a compact branch there,
13785 then return TRUE, otherwise FALSE. */
13786
13787 static bfd_boolean
13788 check_relocated_bzc (bfd *abfd, const bfd_byte *ptr, bfd_vma offset,
13789 const Elf_Internal_Rela *internal_relocs,
13790 const Elf_Internal_Rela *irelend)
13791 {
13792 const Elf_Internal_Rela *irel;
13793 unsigned long opcode;
13794
13795 opcode = bfd_get_micromips_32 (abfd, ptr);
13796 if (find_match (opcode, bzc_insns_32) < 0)
13797 return FALSE;
13798
13799 for (irel = internal_relocs; irel < irelend; irel++)
13800 if (irel->r_offset == offset
13801 && ELF32_R_TYPE (irel->r_info) == R_MICROMIPS_PC16_S1)
13802 return TRUE;
13803
13804 return FALSE;
13805 }
13806
13807 /* Bitsize checking. */
13808 #define IS_BITSIZE(val, N) \
13809 (((((val) & ((1ULL << (N)) - 1)) ^ (1ULL << ((N) - 1))) \
13810 - (1ULL << ((N) - 1))) == (val))
13811
13812 \f
13813 bfd_boolean
13814 _bfd_mips_elf_relax_section (bfd *abfd, asection *sec,
13815 struct bfd_link_info *link_info,
13816 bfd_boolean *again)
13817 {
13818 bfd_boolean insn32 = mips_elf_hash_table (link_info)->insn32;
13819 Elf_Internal_Shdr *symtab_hdr;
13820 Elf_Internal_Rela *internal_relocs;
13821 Elf_Internal_Rela *irel, *irelend;
13822 bfd_byte *contents = NULL;
13823 Elf_Internal_Sym *isymbuf = NULL;
13824
13825 /* Assume nothing changes. */
13826 *again = FALSE;
13827
13828 /* We don't have to do anything for a relocatable link, if
13829 this section does not have relocs, or if this is not a
13830 code section. */
13831
13832 if (bfd_link_relocatable (link_info)
13833 || (sec->flags & SEC_RELOC) == 0
13834 || sec->reloc_count == 0
13835 || (sec->flags & SEC_CODE) == 0)
13836 return TRUE;
13837
13838 symtab_hdr = &elf_tdata (abfd)->symtab_hdr;
13839
13840 /* Get a copy of the native relocations. */
13841 internal_relocs = (_bfd_elf_link_read_relocs
13842 (abfd, sec, NULL, (Elf_Internal_Rela *) NULL,
13843 link_info->keep_memory));
13844 if (internal_relocs == NULL)
13845 goto error_return;
13846
13847 /* Walk through them looking for relaxing opportunities. */
13848 irelend = internal_relocs + sec->reloc_count;
13849 for (irel = internal_relocs; irel < irelend; irel++)
13850 {
13851 unsigned long r_symndx = ELF32_R_SYM (irel->r_info);
13852 unsigned int r_type = ELF32_R_TYPE (irel->r_info);
13853 bfd_boolean target_is_micromips_code_p;
13854 unsigned long opcode;
13855 bfd_vma symval;
13856 bfd_vma pcrval;
13857 bfd_byte *ptr;
13858 int fndopc;
13859
13860 /* The number of bytes to delete for relaxation and from where
13861 to delete these bytes starting at irel->r_offset. */
13862 int delcnt = 0;
13863 int deloff = 0;
13864
13865 /* If this isn't something that can be relaxed, then ignore
13866 this reloc. */
13867 if (r_type != R_MICROMIPS_HI16
13868 && r_type != R_MICROMIPS_PC16_S1
13869 && r_type != R_MICROMIPS_26_S1)
13870 continue;
13871
13872 /* Get the section contents if we haven't done so already. */
13873 if (contents == NULL)
13874 {
13875 /* Get cached copy if it exists. */
13876 if (elf_section_data (sec)->this_hdr.contents != NULL)
13877 contents = elf_section_data (sec)->this_hdr.contents;
13878 /* Go get them off disk. */
13879 else if (!bfd_malloc_and_get_section (abfd, sec, &contents))
13880 goto error_return;
13881 }
13882 ptr = contents + irel->r_offset;
13883
13884 /* Read this BFD's local symbols if we haven't done so already. */
13885 if (isymbuf == NULL && symtab_hdr->sh_info != 0)
13886 {
13887 isymbuf = (Elf_Internal_Sym *) symtab_hdr->contents;
13888 if (isymbuf == NULL)
13889 isymbuf = bfd_elf_get_elf_syms (abfd, symtab_hdr,
13890 symtab_hdr->sh_info, 0,
13891 NULL, NULL, NULL);
13892 if (isymbuf == NULL)
13893 goto error_return;
13894 }
13895
13896 /* Get the value of the symbol referred to by the reloc. */
13897 if (r_symndx < symtab_hdr->sh_info)
13898 {
13899 /* A local symbol. */
13900 Elf_Internal_Sym *isym;
13901 asection *sym_sec;
13902
13903 isym = isymbuf + r_symndx;
13904 if (isym->st_shndx == SHN_UNDEF)
13905 sym_sec = bfd_und_section_ptr;
13906 else if (isym->st_shndx == SHN_ABS)
13907 sym_sec = bfd_abs_section_ptr;
13908 else if (isym->st_shndx == SHN_COMMON)
13909 sym_sec = bfd_com_section_ptr;
13910 else
13911 sym_sec = bfd_section_from_elf_index (abfd, isym->st_shndx);
13912 symval = (isym->st_value
13913 + sym_sec->output_section->vma
13914 + sym_sec->output_offset);
13915 target_is_micromips_code_p = ELF_ST_IS_MICROMIPS (isym->st_other);
13916 }
13917 else
13918 {
13919 unsigned long indx;
13920 struct elf_link_hash_entry *h;
13921
13922 /* An external symbol. */
13923 indx = r_symndx - symtab_hdr->sh_info;
13924 h = elf_sym_hashes (abfd)[indx];
13925 BFD_ASSERT (h != NULL);
13926
13927 if (h->root.type != bfd_link_hash_defined
13928 && h->root.type != bfd_link_hash_defweak)
13929 /* This appears to be a reference to an undefined
13930 symbol. Just ignore it -- it will be caught by the
13931 regular reloc processing. */
13932 continue;
13933
13934 symval = (h->root.u.def.value
13935 + h->root.u.def.section->output_section->vma
13936 + h->root.u.def.section->output_offset);
13937 target_is_micromips_code_p = (!h->needs_plt
13938 && ELF_ST_IS_MICROMIPS (h->other));
13939 }
13940
13941
13942 /* For simplicity of coding, we are going to modify the
13943 section contents, the section relocs, and the BFD symbol
13944 table. We must tell the rest of the code not to free up this
13945 information. It would be possible to instead create a table
13946 of changes which have to be made, as is done in coff-mips.c;
13947 that would be more work, but would require less memory when
13948 the linker is run. */
13949
13950 /* Only 32-bit instructions relaxed. */
13951 if (irel->r_offset + 4 > sec->size)
13952 continue;
13953
13954 opcode = bfd_get_micromips_32 (abfd, ptr);
13955
13956 /* This is the pc-relative distance from the instruction the
13957 relocation is applied to, to the symbol referred. */
13958 pcrval = (symval
13959 - (sec->output_section->vma + sec->output_offset)
13960 - irel->r_offset);
13961
13962 /* R_MICROMIPS_HI16 / LUI relaxation to nil, performing relaxation
13963 of corresponding R_MICROMIPS_LO16 to R_MICROMIPS_HI0_LO16 or
13964 R_MICROMIPS_PC23_S2. The R_MICROMIPS_PC23_S2 condition is
13965
13966 (symval % 4 == 0 && IS_BITSIZE (pcrval, 25))
13967
13968 where pcrval has first to be adjusted to apply against the LO16
13969 location (we make the adjustment later on, when we have figured
13970 out the offset). */
13971 if (r_type == R_MICROMIPS_HI16 && MATCH (opcode, lui_insn))
13972 {
13973 bfd_boolean bzc = FALSE;
13974 unsigned long nextopc;
13975 unsigned long reg;
13976 bfd_vma offset;
13977
13978 /* Give up if the previous reloc was a HI16 against this symbol
13979 too. */
13980 if (irel > internal_relocs
13981 && ELF32_R_TYPE (irel[-1].r_info) == R_MICROMIPS_HI16
13982 && ELF32_R_SYM (irel[-1].r_info) == r_symndx)
13983 continue;
13984
13985 /* Or if the next reloc is not a LO16 against this symbol. */
13986 if (irel + 1 >= irelend
13987 || ELF32_R_TYPE (irel[1].r_info) != R_MICROMIPS_LO16
13988 || ELF32_R_SYM (irel[1].r_info) != r_symndx)
13989 continue;
13990
13991 /* Or if the second next reloc is a LO16 against this symbol too. */
13992 if (irel + 2 >= irelend
13993 && ELF32_R_TYPE (irel[2].r_info) == R_MICROMIPS_LO16
13994 && ELF32_R_SYM (irel[2].r_info) == r_symndx)
13995 continue;
13996
13997 /* See if the LUI instruction *might* be in a branch delay slot.
13998 We check whether what looks like a 16-bit branch or jump is
13999 actually an immediate argument to a compact branch, and let
14000 it through if so. */
14001 if (irel->r_offset >= 2
14002 && check_br16_dslot (abfd, ptr - 2)
14003 && !(irel->r_offset >= 4
14004 && (bzc = check_relocated_bzc (abfd,
14005 ptr - 4, irel->r_offset - 4,
14006 internal_relocs, irelend))))
14007 continue;
14008 if (irel->r_offset >= 4
14009 && !bzc
14010 && check_br32_dslot (abfd, ptr - 4))
14011 continue;
14012
14013 reg = OP32_SREG (opcode);
14014
14015 /* We only relax adjacent instructions or ones separated with
14016 a branch or jump that has a delay slot. The branch or jump
14017 must not fiddle with the register used to hold the address.
14018 Subtract 4 for the LUI itself. */
14019 offset = irel[1].r_offset - irel[0].r_offset;
14020 switch (offset - 4)
14021 {
14022 case 0:
14023 break;
14024 case 2:
14025 if (check_br16 (abfd, ptr + 4, reg))
14026 break;
14027 continue;
14028 case 4:
14029 if (check_br32 (abfd, ptr + 4, reg))
14030 break;
14031 continue;
14032 default:
14033 continue;
14034 }
14035
14036 nextopc = bfd_get_micromips_32 (abfd, contents + irel[1].r_offset);
14037
14038 /* Give up unless the same register is used with both
14039 relocations. */
14040 if (OP32_SREG (nextopc) != reg)
14041 continue;
14042
14043 /* Now adjust pcrval, subtracting the offset to the LO16 reloc
14044 and rounding up to take masking of the two LSBs into account. */
14045 pcrval = ((pcrval - offset + 3) | 3) ^ 3;
14046
14047 /* R_MICROMIPS_LO16 relaxation to R_MICROMIPS_HI0_LO16. */
14048 if (IS_BITSIZE (symval, 16))
14049 {
14050 /* Fix the relocation's type. */
14051 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_HI0_LO16);
14052
14053 /* Instructions using R_MICROMIPS_LO16 have the base or
14054 source register in bits 20:16. This register becomes $0
14055 (zero) as the result of the R_MICROMIPS_HI16 being 0. */
14056 nextopc &= ~0x001f0000;
14057 bfd_put_16 (abfd, (nextopc >> 16) & 0xffff,
14058 contents + irel[1].r_offset);
14059 }
14060
14061 /* R_MICROMIPS_LO16 / ADDIU relaxation to R_MICROMIPS_PC23_S2.
14062 We add 4 to take LUI deletion into account while checking
14063 the PC-relative distance. */
14064 else if (symval % 4 == 0
14065 && IS_BITSIZE (pcrval + 4, 25)
14066 && MATCH (nextopc, addiu_insn)
14067 && OP32_TREG (nextopc) == OP32_SREG (nextopc)
14068 && OP16_VALID_REG (OP32_TREG (nextopc)))
14069 {
14070 /* Fix the relocation's type. */
14071 irel[1].r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC23_S2);
14072
14073 /* Replace ADDIU with the ADDIUPC version. */
14074 nextopc = (addiupc_insn.match
14075 | ADDIUPC_REG_FIELD (OP32_TREG (nextopc)));
14076
14077 bfd_put_micromips_32 (abfd, nextopc,
14078 contents + irel[1].r_offset);
14079 }
14080
14081 /* Can't do anything, give up, sigh... */
14082 else
14083 continue;
14084
14085 /* Fix the relocation's type. */
14086 irel->r_info = ELF32_R_INFO (r_symndx, R_MIPS_NONE);
14087
14088 /* Delete the LUI instruction: 4 bytes at irel->r_offset. */
14089 delcnt = 4;
14090 deloff = 0;
14091 }
14092
14093 /* Compact branch relaxation -- due to the multitude of macros
14094 employed by the compiler/assembler, compact branches are not
14095 always generated. Obviously, this can/will be fixed elsewhere,
14096 but there is no drawback in double checking it here. */
14097 else if (r_type == R_MICROMIPS_PC16_S1
14098 && irel->r_offset + 5 < sec->size
14099 && ((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14100 || (fndopc = find_match (opcode, bz_rt_insns_32)) >= 0)
14101 && ((!insn32
14102 && (delcnt = MATCH (bfd_get_16 (abfd, ptr + 4),
14103 nop_insn_16) ? 2 : 0))
14104 || (irel->r_offset + 7 < sec->size
14105 && (delcnt = MATCH (bfd_get_micromips_32 (abfd,
14106 ptr + 4),
14107 nop_insn_32) ? 4 : 0))))
14108 {
14109 unsigned long reg;
14110
14111 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14112
14113 /* Replace BEQZ/BNEZ with the compact version. */
14114 opcode = (bzc_insns_32[fndopc].match
14115 | BZC32_REG_FIELD (reg)
14116 | (opcode & 0xffff)); /* Addend value. */
14117
14118 bfd_put_micromips_32 (abfd, opcode, ptr);
14119
14120 /* Delete the delay slot NOP: two or four bytes from
14121 irel->offset + 4; delcnt has already been set above. */
14122 deloff = 4;
14123 }
14124
14125 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC10_S1. We need
14126 to check the distance from the next instruction, so subtract 2. */
14127 else if (!insn32
14128 && r_type == R_MICROMIPS_PC16_S1
14129 && IS_BITSIZE (pcrval - 2, 11)
14130 && find_match (opcode, b_insns_32) >= 0)
14131 {
14132 /* Fix the relocation's type. */
14133 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC10_S1);
14134
14135 /* Replace the 32-bit opcode with a 16-bit opcode. */
14136 bfd_put_16 (abfd,
14137 (b_insn_16.match
14138 | (opcode & 0x3ff)), /* Addend value. */
14139 ptr);
14140
14141 /* Delete 2 bytes from irel->r_offset + 2. */
14142 delcnt = 2;
14143 deloff = 2;
14144 }
14145
14146 /* R_MICROMIPS_PC16_S1 relaxation to R_MICROMIPS_PC7_S1. We need
14147 to check the distance from the next instruction, so subtract 2. */
14148 else if (!insn32
14149 && r_type == R_MICROMIPS_PC16_S1
14150 && IS_BITSIZE (pcrval - 2, 8)
14151 && (((fndopc = find_match (opcode, bz_rs_insns_32)) >= 0
14152 && OP16_VALID_REG (OP32_SREG (opcode)))
14153 || ((fndopc = find_match (opcode, bz_rt_insns_32)) >= 0
14154 && OP16_VALID_REG (OP32_TREG (opcode)))))
14155 {
14156 unsigned long reg;
14157
14158 reg = OP32_SREG (opcode) ? OP32_SREG (opcode) : OP32_TREG (opcode);
14159
14160 /* Fix the relocation's type. */
14161 irel->r_info = ELF32_R_INFO (r_symndx, R_MICROMIPS_PC7_S1);
14162
14163 /* Replace the 32-bit opcode with a 16-bit opcode. */
14164 bfd_put_16 (abfd,
14165 (bz_insns_16[fndopc].match
14166 | BZ16_REG_FIELD (reg)
14167 | (opcode & 0x7f)), /* Addend value. */
14168 ptr);
14169
14170 /* Delete 2 bytes from irel->r_offset + 2. */
14171 delcnt = 2;
14172 deloff = 2;
14173 }
14174
14175 /* R_MICROMIPS_26_S1 -- JAL to JALS relaxation for microMIPS targets. */
14176 else if (!insn32
14177 && r_type == R_MICROMIPS_26_S1
14178 && target_is_micromips_code_p
14179 && irel->r_offset + 7 < sec->size
14180 && MATCH (opcode, jal_insn_32_bd32))
14181 {
14182 unsigned long n32opc;
14183 bfd_boolean relaxed = FALSE;
14184
14185 n32opc = bfd_get_micromips_32 (abfd, ptr + 4);
14186
14187 if (MATCH (n32opc, nop_insn_32))
14188 {
14189 /* Replace delay slot 32-bit NOP with a 16-bit NOP. */
14190 bfd_put_16 (abfd, nop_insn_16.match, ptr + 4);
14191
14192 relaxed = TRUE;
14193 }
14194 else if (find_match (n32opc, move_insns_32) >= 0)
14195 {
14196 /* Replace delay slot 32-bit MOVE with 16-bit MOVE. */
14197 bfd_put_16 (abfd,
14198 (move_insn_16.match
14199 | MOVE16_RD_FIELD (MOVE32_RD (n32opc))
14200 | MOVE16_RS_FIELD (MOVE32_RS (n32opc))),
14201 ptr + 4);
14202
14203 relaxed = TRUE;
14204 }
14205 /* Other 32-bit instructions relaxable to 16-bit
14206 instructions will be handled here later. */
14207
14208 if (relaxed)
14209 {
14210 /* JAL with 32-bit delay slot that is changed to a JALS
14211 with 16-bit delay slot. */
14212 bfd_put_micromips_32 (abfd, jal_insn_32_bd16.match, ptr);
14213
14214 /* Delete 2 bytes from irel->r_offset + 6. */
14215 delcnt = 2;
14216 deloff = 6;
14217 }
14218 }
14219
14220 if (delcnt != 0)
14221 {
14222 /* Note that we've changed the relocs, section contents, etc. */
14223 elf_section_data (sec)->relocs = internal_relocs;
14224 elf_section_data (sec)->this_hdr.contents = contents;
14225 symtab_hdr->contents = (unsigned char *) isymbuf;
14226
14227 /* Delete bytes depending on the delcnt and deloff. */
14228 if (!mips_elf_relax_delete_bytes (abfd, sec,
14229 irel->r_offset + deloff, delcnt))
14230 goto error_return;
14231
14232 /* That will change things, so we should relax again.
14233 Note that this is not required, and it may be slow. */
14234 *again = TRUE;
14235 }
14236 }
14237
14238 if (isymbuf != NULL
14239 && symtab_hdr->contents != (unsigned char *) isymbuf)
14240 {
14241 if (! link_info->keep_memory)
14242 free (isymbuf);
14243 else
14244 {
14245 /* Cache the symbols for elf_link_input_bfd. */
14246 symtab_hdr->contents = (unsigned char *) isymbuf;
14247 }
14248 }
14249
14250 if (contents != NULL
14251 && elf_section_data (sec)->this_hdr.contents != contents)
14252 {
14253 if (! link_info->keep_memory)
14254 free (contents);
14255 else
14256 {
14257 /* Cache the section contents for elf_link_input_bfd. */
14258 elf_section_data (sec)->this_hdr.contents = contents;
14259 }
14260 }
14261
14262 if (internal_relocs != NULL
14263 && elf_section_data (sec)->relocs != internal_relocs)
14264 free (internal_relocs);
14265
14266 return TRUE;
14267
14268 error_return:
14269 if (isymbuf != NULL
14270 && symtab_hdr->contents != (unsigned char *) isymbuf)
14271 free (isymbuf);
14272 if (contents != NULL
14273 && elf_section_data (sec)->this_hdr.contents != contents)
14274 free (contents);
14275 if (internal_relocs != NULL
14276 && elf_section_data (sec)->relocs != internal_relocs)
14277 free (internal_relocs);
14278
14279 return FALSE;
14280 }
14281 \f
14282 /* Create a MIPS ELF linker hash table. */
14283
14284 struct bfd_link_hash_table *
14285 _bfd_mips_elf_link_hash_table_create (bfd *abfd)
14286 {
14287 struct mips_elf_link_hash_table *ret;
14288 bfd_size_type amt = sizeof (struct mips_elf_link_hash_table);
14289
14290 ret = bfd_zmalloc (amt);
14291 if (ret == NULL)
14292 return NULL;
14293
14294 if (!_bfd_elf_link_hash_table_init (&ret->root, abfd,
14295 mips_elf_link_hash_newfunc,
14296 sizeof (struct mips_elf_link_hash_entry),
14297 MIPS_ELF_DATA))
14298 {
14299 free (ret);
14300 return NULL;
14301 }
14302 ret->root.init_plt_refcount.plist = NULL;
14303 ret->root.init_plt_offset.plist = NULL;
14304
14305 return &ret->root.root;
14306 }
14307
14308 /* Likewise, but indicate that the target is VxWorks. */
14309
14310 struct bfd_link_hash_table *
14311 _bfd_mips_vxworks_link_hash_table_create (bfd *abfd)
14312 {
14313 struct bfd_link_hash_table *ret;
14314
14315 ret = _bfd_mips_elf_link_hash_table_create (abfd);
14316 if (ret)
14317 {
14318 struct mips_elf_link_hash_table *htab;
14319
14320 htab = (struct mips_elf_link_hash_table *) ret;
14321 htab->use_plts_and_copy_relocs = TRUE;
14322 htab->is_vxworks = TRUE;
14323 }
14324 return ret;
14325 }
14326
14327 /* A function that the linker calls if we are allowed to use PLTs
14328 and copy relocs. */
14329
14330 void
14331 _bfd_mips_elf_use_plts_and_copy_relocs (struct bfd_link_info *info)
14332 {
14333 mips_elf_hash_table (info)->use_plts_and_copy_relocs = TRUE;
14334 }
14335
14336 /* A function that the linker calls to select between all or only
14337 32-bit microMIPS instructions, and between making or ignoring
14338 branch relocation checks for invalid transitions between ISA modes.
14339 Also record whether we have been configured for a GNU target. */
14340
14341 void
14342 _bfd_mips_elf_linker_flags (struct bfd_link_info *info, bfd_boolean insn32,
14343 bfd_boolean ignore_branch_isa,
14344 bfd_boolean gnu_target)
14345 {
14346 mips_elf_hash_table (info)->insn32 = insn32;
14347 mips_elf_hash_table (info)->ignore_branch_isa = ignore_branch_isa;
14348 mips_elf_hash_table (info)->gnu_target = gnu_target;
14349 }
14350
14351 /* A function that the linker calls to enable use of compact branches in
14352 linker generated code for MIPSR6. */
14353
14354 void
14355 _bfd_mips_elf_compact_branches (struct bfd_link_info *info, bfd_boolean on)
14356 {
14357 mips_elf_hash_table (info)->compact_branches = on;
14358 }
14359
14360 \f
14361 /* Structure for saying that BFD machine EXTENSION extends BASE. */
14362
14363 struct mips_mach_extension
14364 {
14365 unsigned long extension, base;
14366 };
14367
14368
14369 /* An array describing how BFD machines relate to one another. The entries
14370 are ordered topologically with MIPS I extensions listed last. */
14371
14372 static const struct mips_mach_extension mips_mach_extensions[] =
14373 {
14374 /* MIPS64r2 extensions. */
14375 { bfd_mach_mips_octeon3, bfd_mach_mips_octeon2 },
14376 { bfd_mach_mips_octeon2, bfd_mach_mips_octeonp },
14377 { bfd_mach_mips_octeonp, bfd_mach_mips_octeon },
14378 { bfd_mach_mips_octeon, bfd_mach_mipsisa64r2 },
14379 { bfd_mach_mips_gs264e, bfd_mach_mips_gs464e },
14380 { bfd_mach_mips_gs464e, bfd_mach_mips_gs464 },
14381 { bfd_mach_mips_gs464, bfd_mach_mipsisa64r2 },
14382
14383 /* MIPS64 extensions. */
14384 { bfd_mach_mipsisa64r2, bfd_mach_mipsisa64 },
14385 { bfd_mach_mips_sb1, bfd_mach_mipsisa64 },
14386 { bfd_mach_mips_xlr, bfd_mach_mipsisa64 },
14387
14388 /* MIPS V extensions. */
14389 { bfd_mach_mipsisa64, bfd_mach_mips5 },
14390
14391 /* R10000 extensions. */
14392 { bfd_mach_mips12000, bfd_mach_mips10000 },
14393 { bfd_mach_mips14000, bfd_mach_mips10000 },
14394 { bfd_mach_mips16000, bfd_mach_mips10000 },
14395
14396 /* R5000 extensions. Note: the vr5500 ISA is an extension of the core
14397 vr5400 ISA, but doesn't include the multimedia stuff. It seems
14398 better to allow vr5400 and vr5500 code to be merged anyway, since
14399 many libraries will just use the core ISA. Perhaps we could add
14400 some sort of ASE flag if this ever proves a problem. */
14401 { bfd_mach_mips5500, bfd_mach_mips5400 },
14402 { bfd_mach_mips5400, bfd_mach_mips5000 },
14403
14404 /* MIPS IV extensions. */
14405 { bfd_mach_mips5, bfd_mach_mips8000 },
14406 { bfd_mach_mips10000, bfd_mach_mips8000 },
14407 { bfd_mach_mips5000, bfd_mach_mips8000 },
14408 { bfd_mach_mips7000, bfd_mach_mips8000 },
14409 { bfd_mach_mips9000, bfd_mach_mips8000 },
14410
14411 /* VR4100 extensions. */
14412 { bfd_mach_mips4120, bfd_mach_mips4100 },
14413 { bfd_mach_mips4111, bfd_mach_mips4100 },
14414
14415 /* MIPS III extensions. */
14416 { bfd_mach_mips_loongson_2e, bfd_mach_mips4000 },
14417 { bfd_mach_mips_loongson_2f, bfd_mach_mips4000 },
14418 { bfd_mach_mips8000, bfd_mach_mips4000 },
14419 { bfd_mach_mips4650, bfd_mach_mips4000 },
14420 { bfd_mach_mips4600, bfd_mach_mips4000 },
14421 { bfd_mach_mips4400, bfd_mach_mips4000 },
14422 { bfd_mach_mips4300, bfd_mach_mips4000 },
14423 { bfd_mach_mips4100, bfd_mach_mips4000 },
14424 { bfd_mach_mips5900, bfd_mach_mips4000 },
14425
14426 /* MIPS32r3 extensions. */
14427 { bfd_mach_mips_interaptiv_mr2, bfd_mach_mipsisa32r3 },
14428
14429 /* MIPS32r2 extensions. */
14430 { bfd_mach_mipsisa32r3, bfd_mach_mipsisa32r2 },
14431
14432 /* MIPS32 extensions. */
14433 { bfd_mach_mipsisa32r2, bfd_mach_mipsisa32 },
14434
14435 /* MIPS II extensions. */
14436 { bfd_mach_mips4000, bfd_mach_mips6000 },
14437 { bfd_mach_mipsisa32, bfd_mach_mips6000 },
14438 { bfd_mach_mips4010, bfd_mach_mips6000 },
14439
14440 /* MIPS I extensions. */
14441 { bfd_mach_mips6000, bfd_mach_mips3000 },
14442 { bfd_mach_mips3900, bfd_mach_mips3000 }
14443 };
14444
14445 /* Return true if bfd machine EXTENSION is an extension of machine BASE. */
14446
14447 static bfd_boolean
14448 mips_mach_extends_p (unsigned long base, unsigned long extension)
14449 {
14450 size_t i;
14451
14452 if (extension == base)
14453 return TRUE;
14454
14455 if (base == bfd_mach_mipsisa32
14456 && mips_mach_extends_p (bfd_mach_mipsisa64, extension))
14457 return TRUE;
14458
14459 if (base == bfd_mach_mipsisa32r2
14460 && mips_mach_extends_p (bfd_mach_mipsisa64r2, extension))
14461 return TRUE;
14462
14463 for (i = 0; i < ARRAY_SIZE (mips_mach_extensions); i++)
14464 if (extension == mips_mach_extensions[i].extension)
14465 {
14466 extension = mips_mach_extensions[i].base;
14467 if (extension == base)
14468 return TRUE;
14469 }
14470
14471 return FALSE;
14472 }
14473
14474 /* Return the BFD mach for each .MIPS.abiflags ISA Extension. */
14475
14476 static unsigned long
14477 bfd_mips_isa_ext_mach (unsigned int isa_ext)
14478 {
14479 switch (isa_ext)
14480 {
14481 case AFL_EXT_3900: return bfd_mach_mips3900;
14482 case AFL_EXT_4010: return bfd_mach_mips4010;
14483 case AFL_EXT_4100: return bfd_mach_mips4100;
14484 case AFL_EXT_4111: return bfd_mach_mips4111;
14485 case AFL_EXT_4120: return bfd_mach_mips4120;
14486 case AFL_EXT_4650: return bfd_mach_mips4650;
14487 case AFL_EXT_5400: return bfd_mach_mips5400;
14488 case AFL_EXT_5500: return bfd_mach_mips5500;
14489 case AFL_EXT_5900: return bfd_mach_mips5900;
14490 case AFL_EXT_10000: return bfd_mach_mips10000;
14491 case AFL_EXT_LOONGSON_2E: return bfd_mach_mips_loongson_2e;
14492 case AFL_EXT_LOONGSON_2F: return bfd_mach_mips_loongson_2f;
14493 case AFL_EXT_SB1: return bfd_mach_mips_sb1;
14494 case AFL_EXT_OCTEON: return bfd_mach_mips_octeon;
14495 case AFL_EXT_OCTEONP: return bfd_mach_mips_octeonp;
14496 case AFL_EXT_OCTEON2: return bfd_mach_mips_octeon2;
14497 case AFL_EXT_XLR: return bfd_mach_mips_xlr;
14498 default: return bfd_mach_mips3000;
14499 }
14500 }
14501
14502 /* Return the .MIPS.abiflags value representing each ISA Extension. */
14503
14504 unsigned int
14505 bfd_mips_isa_ext (bfd *abfd)
14506 {
14507 switch (bfd_get_mach (abfd))
14508 {
14509 case bfd_mach_mips3900: return AFL_EXT_3900;
14510 case bfd_mach_mips4010: return AFL_EXT_4010;
14511 case bfd_mach_mips4100: return AFL_EXT_4100;
14512 case bfd_mach_mips4111: return AFL_EXT_4111;
14513 case bfd_mach_mips4120: return AFL_EXT_4120;
14514 case bfd_mach_mips4650: return AFL_EXT_4650;
14515 case bfd_mach_mips5400: return AFL_EXT_5400;
14516 case bfd_mach_mips5500: return AFL_EXT_5500;
14517 case bfd_mach_mips5900: return AFL_EXT_5900;
14518 case bfd_mach_mips10000: return AFL_EXT_10000;
14519 case bfd_mach_mips_loongson_2e: return AFL_EXT_LOONGSON_2E;
14520 case bfd_mach_mips_loongson_2f: return AFL_EXT_LOONGSON_2F;
14521 case bfd_mach_mips_sb1: return AFL_EXT_SB1;
14522 case bfd_mach_mips_octeon: return AFL_EXT_OCTEON;
14523 case bfd_mach_mips_octeonp: return AFL_EXT_OCTEONP;
14524 case bfd_mach_mips_octeon3: return AFL_EXT_OCTEON3;
14525 case bfd_mach_mips_octeon2: return AFL_EXT_OCTEON2;
14526 case bfd_mach_mips_xlr: return AFL_EXT_XLR;
14527 case bfd_mach_mips_interaptiv_mr2:
14528 return AFL_EXT_INTERAPTIV_MR2;
14529 default: return 0;
14530 }
14531 }
14532
14533 /* Encode ISA level and revision as a single value. */
14534 #define LEVEL_REV(LEV,REV) ((LEV) << 3 | (REV))
14535
14536 /* Decode a single value into level and revision. */
14537 #define ISA_LEVEL(LEVREV) ((LEVREV) >> 3)
14538 #define ISA_REV(LEVREV) ((LEVREV) & 0x7)
14539
14540 /* Update the isa_level, isa_rev, isa_ext fields of abiflags. */
14541
14542 static void
14543 update_mips_abiflags_isa (bfd *abfd, Elf_Internal_ABIFlags_v0 *abiflags)
14544 {
14545 int new_isa = 0;
14546 switch (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH)
14547 {
14548 case E_MIPS_ARCH_1: new_isa = LEVEL_REV (1, 0); break;
14549 case E_MIPS_ARCH_2: new_isa = LEVEL_REV (2, 0); break;
14550 case E_MIPS_ARCH_3: new_isa = LEVEL_REV (3, 0); break;
14551 case E_MIPS_ARCH_4: new_isa = LEVEL_REV (4, 0); break;
14552 case E_MIPS_ARCH_5: new_isa = LEVEL_REV (5, 0); break;
14553 case E_MIPS_ARCH_32: new_isa = LEVEL_REV (32, 1); break;
14554 case E_MIPS_ARCH_32R2: new_isa = LEVEL_REV (32, 2); break;
14555 case E_MIPS_ARCH_32R6: new_isa = LEVEL_REV (32, 6); break;
14556 case E_MIPS_ARCH_64: new_isa = LEVEL_REV (64, 1); break;
14557 case E_MIPS_ARCH_64R2: new_isa = LEVEL_REV (64, 2); break;
14558 case E_MIPS_ARCH_64R6: new_isa = LEVEL_REV (64, 6); break;
14559 default:
14560 _bfd_error_handler
14561 /* xgettext:c-format */
14562 (_("%pB: unknown architecture %s"),
14563 abfd, bfd_printable_name (abfd));
14564 }
14565
14566 if (new_isa > LEVEL_REV (abiflags->isa_level, abiflags->isa_rev))
14567 {
14568 abiflags->isa_level = ISA_LEVEL (new_isa);
14569 abiflags->isa_rev = ISA_REV (new_isa);
14570 }
14571
14572 /* Update the isa_ext if ABFD describes a further extension. */
14573 if (mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags->isa_ext),
14574 bfd_get_mach (abfd)))
14575 abiflags->isa_ext = bfd_mips_isa_ext (abfd);
14576 }
14577
14578 /* Return true if the given ELF header flags describe a 32-bit binary. */
14579
14580 static bfd_boolean
14581 mips_32bit_flags_p (flagword flags)
14582 {
14583 return ((flags & EF_MIPS_32BITMODE) != 0
14584 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_O32
14585 || (flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32
14586 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1
14587 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2
14588 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32
14589 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2
14590 || (flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6);
14591 }
14592
14593 /* Infer the content of the ABI flags based on the elf header. */
14594
14595 static void
14596 infer_mips_abiflags (bfd *abfd, Elf_Internal_ABIFlags_v0* abiflags)
14597 {
14598 obj_attribute *in_attr;
14599
14600 memset (abiflags, 0, sizeof (Elf_Internal_ABIFlags_v0));
14601 update_mips_abiflags_isa (abfd, abiflags);
14602
14603 if (mips_32bit_flags_p (elf_elfheader (abfd)->e_flags))
14604 abiflags->gpr_size = AFL_REG_32;
14605 else
14606 abiflags->gpr_size = AFL_REG_64;
14607
14608 abiflags->cpr1_size = AFL_REG_NONE;
14609
14610 in_attr = elf_known_obj_attributes (abfd)[OBJ_ATTR_GNU];
14611 abiflags->fp_abi = in_attr[Tag_GNU_MIPS_ABI_FP].i;
14612
14613 if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_SINGLE
14614 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_XX
14615 || (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14616 && abiflags->gpr_size == AFL_REG_32))
14617 abiflags->cpr1_size = AFL_REG_32;
14618 else if (abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_DOUBLE
14619 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64
14620 || abiflags->fp_abi == Val_GNU_MIPS_ABI_FP_64A)
14621 abiflags->cpr1_size = AFL_REG_64;
14622
14623 abiflags->cpr2_size = AFL_REG_NONE;
14624
14625 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
14626 abiflags->ases |= AFL_ASE_MDMX;
14627 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
14628 abiflags->ases |= AFL_ASE_MIPS16;
14629 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
14630 abiflags->ases |= AFL_ASE_MICROMIPS;
14631
14632 if (abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_ANY
14633 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_SOFT
14634 && abiflags->fp_abi != Val_GNU_MIPS_ABI_FP_64A
14635 && abiflags->isa_level >= 32
14636 && abiflags->ases != AFL_ASE_LOONGSON_EXT)
14637 abiflags->flags1 |= AFL_FLAGS1_ODDSPREG;
14638 }
14639
14640 /* We need to use a special link routine to handle the .reginfo and
14641 the .mdebug sections. We need to merge all instances of these
14642 sections together, not write them all out sequentially. */
14643
14644 bfd_boolean
14645 _bfd_mips_elf_final_link (bfd *abfd, struct bfd_link_info *info)
14646 {
14647 asection *o;
14648 struct bfd_link_order *p;
14649 asection *reginfo_sec, *mdebug_sec, *gptab_data_sec, *gptab_bss_sec;
14650 asection *rtproc_sec, *abiflags_sec;
14651 Elf32_RegInfo reginfo;
14652 struct ecoff_debug_info debug;
14653 struct mips_htab_traverse_info hti;
14654 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
14655 const struct ecoff_debug_swap *swap = bed->elf_backend_ecoff_debug_swap;
14656 HDRR *symhdr = &debug.symbolic_header;
14657 void *mdebug_handle = NULL;
14658 asection *s;
14659 EXTR esym;
14660 unsigned int i;
14661 bfd_size_type amt;
14662 struct mips_elf_link_hash_table *htab;
14663
14664 static const char * const secname[] =
14665 {
14666 ".text", ".init", ".fini", ".data",
14667 ".rodata", ".sdata", ".sbss", ".bss"
14668 };
14669 static const int sc[] =
14670 {
14671 scText, scInit, scFini, scData,
14672 scRData, scSData, scSBss, scBss
14673 };
14674
14675 htab = mips_elf_hash_table (info);
14676 BFD_ASSERT (htab != NULL);
14677
14678 /* Sort the dynamic symbols so that those with GOT entries come after
14679 those without. */
14680 if (!mips_elf_sort_hash_table (abfd, info))
14681 return FALSE;
14682
14683 /* Create any scheduled LA25 stubs. */
14684 hti.info = info;
14685 hti.output_bfd = abfd;
14686 hti.error = FALSE;
14687 htab_traverse (htab->la25_stubs, mips_elf_create_la25_stub, &hti);
14688 if (hti.error)
14689 return FALSE;
14690
14691 /* Get a value for the GP register. */
14692 if (elf_gp (abfd) == 0)
14693 {
14694 struct bfd_link_hash_entry *h;
14695
14696 h = bfd_link_hash_lookup (info->hash, "_gp", FALSE, FALSE, TRUE);
14697 if (h != NULL && h->type == bfd_link_hash_defined)
14698 elf_gp (abfd) = (h->u.def.value
14699 + h->u.def.section->output_section->vma
14700 + h->u.def.section->output_offset);
14701 else if (htab->is_vxworks
14702 && (h = bfd_link_hash_lookup (info->hash,
14703 "_GLOBAL_OFFSET_TABLE_",
14704 FALSE, FALSE, TRUE))
14705 && h->type == bfd_link_hash_defined)
14706 elf_gp (abfd) = (h->u.def.section->output_section->vma
14707 + h->u.def.section->output_offset
14708 + h->u.def.value);
14709 else if (bfd_link_relocatable (info))
14710 {
14711 bfd_vma lo = MINUS_ONE;
14712
14713 /* Find the GP-relative section with the lowest offset. */
14714 for (o = abfd->sections; o != NULL; o = o->next)
14715 if (o->vma < lo
14716 && (elf_section_data (o)->this_hdr.sh_flags & SHF_MIPS_GPREL))
14717 lo = o->vma;
14718
14719 /* And calculate GP relative to that. */
14720 elf_gp (abfd) = lo + ELF_MIPS_GP_OFFSET (info);
14721 }
14722 else
14723 {
14724 /* If the relocate_section function needs to do a reloc
14725 involving the GP value, it should make a reloc_dangerous
14726 callback to warn that GP is not defined. */
14727 }
14728 }
14729
14730 /* Go through the sections and collect the .reginfo and .mdebug
14731 information. */
14732 abiflags_sec = NULL;
14733 reginfo_sec = NULL;
14734 mdebug_sec = NULL;
14735 gptab_data_sec = NULL;
14736 gptab_bss_sec = NULL;
14737 for (o = abfd->sections; o != NULL; o = o->next)
14738 {
14739 if (strcmp (o->name, ".MIPS.abiflags") == 0)
14740 {
14741 /* We have found the .MIPS.abiflags section in the output file.
14742 Look through all the link_orders comprising it and remove them.
14743 The data is merged in _bfd_mips_elf_merge_private_bfd_data. */
14744 for (p = o->map_head.link_order; p != NULL; p = p->next)
14745 {
14746 asection *input_section;
14747
14748 if (p->type != bfd_indirect_link_order)
14749 {
14750 if (p->type == bfd_data_link_order)
14751 continue;
14752 abort ();
14753 }
14754
14755 input_section = p->u.indirect.section;
14756
14757 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14758 elf_link_input_bfd ignores this section. */
14759 input_section->flags &= ~SEC_HAS_CONTENTS;
14760 }
14761
14762 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14763 BFD_ASSERT(o->size == sizeof (Elf_External_ABIFlags_v0));
14764
14765 /* Skip this section later on (I don't think this currently
14766 matters, but someday it might). */
14767 o->map_head.link_order = NULL;
14768
14769 abiflags_sec = o;
14770 }
14771
14772 if (strcmp (o->name, ".reginfo") == 0)
14773 {
14774 memset (&reginfo, 0, sizeof reginfo);
14775
14776 /* We have found the .reginfo section in the output file.
14777 Look through all the link_orders comprising it and merge
14778 the information together. */
14779 for (p = o->map_head.link_order; p != NULL; p = p->next)
14780 {
14781 asection *input_section;
14782 bfd *input_bfd;
14783 Elf32_External_RegInfo ext;
14784 Elf32_RegInfo sub;
14785 bfd_size_type sz;
14786
14787 if (p->type != bfd_indirect_link_order)
14788 {
14789 if (p->type == bfd_data_link_order)
14790 continue;
14791 abort ();
14792 }
14793
14794 input_section = p->u.indirect.section;
14795 input_bfd = input_section->owner;
14796
14797 sz = (input_section->size < sizeof (ext)
14798 ? input_section->size : sizeof (ext));
14799 memset (&ext, 0, sizeof (ext));
14800 if (! bfd_get_section_contents (input_bfd, input_section,
14801 &ext, 0, sz))
14802 return FALSE;
14803
14804 bfd_mips_elf32_swap_reginfo_in (input_bfd, &ext, &sub);
14805
14806 reginfo.ri_gprmask |= sub.ri_gprmask;
14807 reginfo.ri_cprmask[0] |= sub.ri_cprmask[0];
14808 reginfo.ri_cprmask[1] |= sub.ri_cprmask[1];
14809 reginfo.ri_cprmask[2] |= sub.ri_cprmask[2];
14810 reginfo.ri_cprmask[3] |= sub.ri_cprmask[3];
14811
14812 /* ri_gp_value is set by the function
14813 `_bfd_mips_elf_section_processing' when the section is
14814 finally written out. */
14815
14816 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14817 elf_link_input_bfd ignores this section. */
14818 input_section->flags &= ~SEC_HAS_CONTENTS;
14819 }
14820
14821 /* Size has been set in _bfd_mips_elf_always_size_sections. */
14822 BFD_ASSERT(o->size == sizeof (Elf32_External_RegInfo));
14823
14824 /* Skip this section later on (I don't think this currently
14825 matters, but someday it might). */
14826 o->map_head.link_order = NULL;
14827
14828 reginfo_sec = o;
14829 }
14830
14831 if (strcmp (o->name, ".mdebug") == 0)
14832 {
14833 struct extsym_info einfo;
14834 bfd_vma last;
14835
14836 /* We have found the .mdebug section in the output file.
14837 Look through all the link_orders comprising it and merge
14838 the information together. */
14839 symhdr->magic = swap->sym_magic;
14840 /* FIXME: What should the version stamp be? */
14841 symhdr->vstamp = 0;
14842 symhdr->ilineMax = 0;
14843 symhdr->cbLine = 0;
14844 symhdr->idnMax = 0;
14845 symhdr->ipdMax = 0;
14846 symhdr->isymMax = 0;
14847 symhdr->ioptMax = 0;
14848 symhdr->iauxMax = 0;
14849 symhdr->issMax = 0;
14850 symhdr->issExtMax = 0;
14851 symhdr->ifdMax = 0;
14852 symhdr->crfd = 0;
14853 symhdr->iextMax = 0;
14854
14855 /* We accumulate the debugging information itself in the
14856 debug_info structure. */
14857 debug.line = NULL;
14858 debug.external_dnr = NULL;
14859 debug.external_pdr = NULL;
14860 debug.external_sym = NULL;
14861 debug.external_opt = NULL;
14862 debug.external_aux = NULL;
14863 debug.ss = NULL;
14864 debug.ssext = debug.ssext_end = NULL;
14865 debug.external_fdr = NULL;
14866 debug.external_rfd = NULL;
14867 debug.external_ext = debug.external_ext_end = NULL;
14868
14869 mdebug_handle = bfd_ecoff_debug_init (abfd, &debug, swap, info);
14870 if (mdebug_handle == NULL)
14871 return FALSE;
14872
14873 esym.jmptbl = 0;
14874 esym.cobol_main = 0;
14875 esym.weakext = 0;
14876 esym.reserved = 0;
14877 esym.ifd = ifdNil;
14878 esym.asym.iss = issNil;
14879 esym.asym.st = stLocal;
14880 esym.asym.reserved = 0;
14881 esym.asym.index = indexNil;
14882 last = 0;
14883 for (i = 0; i < sizeof (secname) / sizeof (secname[0]); i++)
14884 {
14885 esym.asym.sc = sc[i];
14886 s = bfd_get_section_by_name (abfd, secname[i]);
14887 if (s != NULL)
14888 {
14889 esym.asym.value = s->vma;
14890 last = s->vma + s->size;
14891 }
14892 else
14893 esym.asym.value = last;
14894 if (!bfd_ecoff_debug_one_external (abfd, &debug, swap,
14895 secname[i], &esym))
14896 return FALSE;
14897 }
14898
14899 for (p = o->map_head.link_order; p != NULL; p = p->next)
14900 {
14901 asection *input_section;
14902 bfd *input_bfd;
14903 const struct ecoff_debug_swap *input_swap;
14904 struct ecoff_debug_info input_debug;
14905 char *eraw_src;
14906 char *eraw_end;
14907
14908 if (p->type != bfd_indirect_link_order)
14909 {
14910 if (p->type == bfd_data_link_order)
14911 continue;
14912 abort ();
14913 }
14914
14915 input_section = p->u.indirect.section;
14916 input_bfd = input_section->owner;
14917
14918 if (!is_mips_elf (input_bfd))
14919 {
14920 /* I don't know what a non MIPS ELF bfd would be
14921 doing with a .mdebug section, but I don't really
14922 want to deal with it. */
14923 continue;
14924 }
14925
14926 input_swap = (get_elf_backend_data (input_bfd)
14927 ->elf_backend_ecoff_debug_swap);
14928
14929 BFD_ASSERT (p->size == input_section->size);
14930
14931 /* The ECOFF linking code expects that we have already
14932 read in the debugging information and set up an
14933 ecoff_debug_info structure, so we do that now. */
14934 if (! _bfd_mips_elf_read_ecoff_info (input_bfd, input_section,
14935 &input_debug))
14936 return FALSE;
14937
14938 if (! (bfd_ecoff_debug_accumulate
14939 (mdebug_handle, abfd, &debug, swap, input_bfd,
14940 &input_debug, input_swap, info)))
14941 return FALSE;
14942
14943 /* Loop through the external symbols. For each one with
14944 interesting information, try to find the symbol in
14945 the linker global hash table and save the information
14946 for the output external symbols. */
14947 eraw_src = input_debug.external_ext;
14948 eraw_end = (eraw_src
14949 + (input_debug.symbolic_header.iextMax
14950 * input_swap->external_ext_size));
14951 for (;
14952 eraw_src < eraw_end;
14953 eraw_src += input_swap->external_ext_size)
14954 {
14955 EXTR ext;
14956 const char *name;
14957 struct mips_elf_link_hash_entry *h;
14958
14959 (*input_swap->swap_ext_in) (input_bfd, eraw_src, &ext);
14960 if (ext.asym.sc == scNil
14961 || ext.asym.sc == scUndefined
14962 || ext.asym.sc == scSUndefined)
14963 continue;
14964
14965 name = input_debug.ssext + ext.asym.iss;
14966 h = mips_elf_link_hash_lookup (mips_elf_hash_table (info),
14967 name, FALSE, FALSE, TRUE);
14968 if (h == NULL || h->esym.ifd != -2)
14969 continue;
14970
14971 if (ext.ifd != -1)
14972 {
14973 BFD_ASSERT (ext.ifd
14974 < input_debug.symbolic_header.ifdMax);
14975 ext.ifd = input_debug.ifdmap[ext.ifd];
14976 }
14977
14978 h->esym = ext;
14979 }
14980
14981 /* Free up the information we just read. */
14982 free (input_debug.line);
14983 free (input_debug.external_dnr);
14984 free (input_debug.external_pdr);
14985 free (input_debug.external_sym);
14986 free (input_debug.external_opt);
14987 free (input_debug.external_aux);
14988 free (input_debug.ss);
14989 free (input_debug.ssext);
14990 free (input_debug.external_fdr);
14991 free (input_debug.external_rfd);
14992 free (input_debug.external_ext);
14993
14994 /* Hack: reset the SEC_HAS_CONTENTS flag so that
14995 elf_link_input_bfd ignores this section. */
14996 input_section->flags &= ~SEC_HAS_CONTENTS;
14997 }
14998
14999 if (SGI_COMPAT (abfd) && bfd_link_pic (info))
15000 {
15001 /* Create .rtproc section. */
15002 rtproc_sec = bfd_get_linker_section (abfd, ".rtproc");
15003 if (rtproc_sec == NULL)
15004 {
15005 flagword flags = (SEC_HAS_CONTENTS | SEC_IN_MEMORY
15006 | SEC_LINKER_CREATED | SEC_READONLY);
15007
15008 rtproc_sec = bfd_make_section_anyway_with_flags (abfd,
15009 ".rtproc",
15010 flags);
15011 if (rtproc_sec == NULL
15012 || !bfd_set_section_alignment (rtproc_sec, 4))
15013 return FALSE;
15014 }
15015
15016 if (! mips_elf_create_procedure_table (mdebug_handle, abfd,
15017 info, rtproc_sec,
15018 &debug))
15019 return FALSE;
15020 }
15021
15022 /* Build the external symbol information. */
15023 einfo.abfd = abfd;
15024 einfo.info = info;
15025 einfo.debug = &debug;
15026 einfo.swap = swap;
15027 einfo.failed = FALSE;
15028 mips_elf_link_hash_traverse (mips_elf_hash_table (info),
15029 mips_elf_output_extsym, &einfo);
15030 if (einfo.failed)
15031 return FALSE;
15032
15033 /* Set the size of the .mdebug section. */
15034 o->size = bfd_ecoff_debug_size (abfd, &debug, swap);
15035
15036 /* Skip this section later on (I don't think this currently
15037 matters, but someday it might). */
15038 o->map_head.link_order = NULL;
15039
15040 mdebug_sec = o;
15041 }
15042
15043 if (CONST_STRNEQ (o->name, ".gptab."))
15044 {
15045 const char *subname;
15046 unsigned int c;
15047 Elf32_gptab *tab;
15048 Elf32_External_gptab *ext_tab;
15049 unsigned int j;
15050
15051 /* The .gptab.sdata and .gptab.sbss sections hold
15052 information describing how the small data area would
15053 change depending upon the -G switch. These sections
15054 not used in executables files. */
15055 if (! bfd_link_relocatable (info))
15056 {
15057 for (p = o->map_head.link_order; p != NULL; p = p->next)
15058 {
15059 asection *input_section;
15060
15061 if (p->type != bfd_indirect_link_order)
15062 {
15063 if (p->type == bfd_data_link_order)
15064 continue;
15065 abort ();
15066 }
15067
15068 input_section = p->u.indirect.section;
15069
15070 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15071 elf_link_input_bfd ignores this section. */
15072 input_section->flags &= ~SEC_HAS_CONTENTS;
15073 }
15074
15075 /* Skip this section later on (I don't think this
15076 currently matters, but someday it might). */
15077 o->map_head.link_order = NULL;
15078
15079 /* Really remove the section. */
15080 bfd_section_list_remove (abfd, o);
15081 --abfd->section_count;
15082
15083 continue;
15084 }
15085
15086 /* There is one gptab for initialized data, and one for
15087 uninitialized data. */
15088 if (strcmp (o->name, ".gptab.sdata") == 0)
15089 gptab_data_sec = o;
15090 else if (strcmp (o->name, ".gptab.sbss") == 0)
15091 gptab_bss_sec = o;
15092 else
15093 {
15094 _bfd_error_handler
15095 /* xgettext:c-format */
15096 (_("%pB: illegal section name `%pA'"), abfd, o);
15097 bfd_set_error (bfd_error_nonrepresentable_section);
15098 return FALSE;
15099 }
15100
15101 /* The linker script always combines .gptab.data and
15102 .gptab.sdata into .gptab.sdata, and likewise for
15103 .gptab.bss and .gptab.sbss. It is possible that there is
15104 no .sdata or .sbss section in the output file, in which
15105 case we must change the name of the output section. */
15106 subname = o->name + sizeof ".gptab" - 1;
15107 if (bfd_get_section_by_name (abfd, subname) == NULL)
15108 {
15109 if (o == gptab_data_sec)
15110 o->name = ".gptab.data";
15111 else
15112 o->name = ".gptab.bss";
15113 subname = o->name + sizeof ".gptab" - 1;
15114 BFD_ASSERT (bfd_get_section_by_name (abfd, subname) != NULL);
15115 }
15116
15117 /* Set up the first entry. */
15118 c = 1;
15119 amt = c * sizeof (Elf32_gptab);
15120 tab = bfd_malloc (amt);
15121 if (tab == NULL)
15122 return FALSE;
15123 tab[0].gt_header.gt_current_g_value = elf_gp_size (abfd);
15124 tab[0].gt_header.gt_unused = 0;
15125
15126 /* Combine the input sections. */
15127 for (p = o->map_head.link_order; p != NULL; p = p->next)
15128 {
15129 asection *input_section;
15130 bfd *input_bfd;
15131 bfd_size_type size;
15132 unsigned long last;
15133 bfd_size_type gpentry;
15134
15135 if (p->type != bfd_indirect_link_order)
15136 {
15137 if (p->type == bfd_data_link_order)
15138 continue;
15139 abort ();
15140 }
15141
15142 input_section = p->u.indirect.section;
15143 input_bfd = input_section->owner;
15144
15145 /* Combine the gptab entries for this input section one
15146 by one. We know that the input gptab entries are
15147 sorted by ascending -G value. */
15148 size = input_section->size;
15149 last = 0;
15150 for (gpentry = sizeof (Elf32_External_gptab);
15151 gpentry < size;
15152 gpentry += sizeof (Elf32_External_gptab))
15153 {
15154 Elf32_External_gptab ext_gptab;
15155 Elf32_gptab int_gptab;
15156 unsigned long val;
15157 unsigned long add;
15158 bfd_boolean exact;
15159 unsigned int look;
15160
15161 if (! (bfd_get_section_contents
15162 (input_bfd, input_section, &ext_gptab, gpentry,
15163 sizeof (Elf32_External_gptab))))
15164 {
15165 free (tab);
15166 return FALSE;
15167 }
15168
15169 bfd_mips_elf32_swap_gptab_in (input_bfd, &ext_gptab,
15170 &int_gptab);
15171 val = int_gptab.gt_entry.gt_g_value;
15172 add = int_gptab.gt_entry.gt_bytes - last;
15173
15174 exact = FALSE;
15175 for (look = 1; look < c; look++)
15176 {
15177 if (tab[look].gt_entry.gt_g_value >= val)
15178 tab[look].gt_entry.gt_bytes += add;
15179
15180 if (tab[look].gt_entry.gt_g_value == val)
15181 exact = TRUE;
15182 }
15183
15184 if (! exact)
15185 {
15186 Elf32_gptab *new_tab;
15187 unsigned int max;
15188
15189 /* We need a new table entry. */
15190 amt = (bfd_size_type) (c + 1) * sizeof (Elf32_gptab);
15191 new_tab = bfd_realloc (tab, amt);
15192 if (new_tab == NULL)
15193 {
15194 free (tab);
15195 return FALSE;
15196 }
15197 tab = new_tab;
15198 tab[c].gt_entry.gt_g_value = val;
15199 tab[c].gt_entry.gt_bytes = add;
15200
15201 /* Merge in the size for the next smallest -G
15202 value, since that will be implied by this new
15203 value. */
15204 max = 0;
15205 for (look = 1; look < c; look++)
15206 {
15207 if (tab[look].gt_entry.gt_g_value < val
15208 && (max == 0
15209 || (tab[look].gt_entry.gt_g_value
15210 > tab[max].gt_entry.gt_g_value)))
15211 max = look;
15212 }
15213 if (max != 0)
15214 tab[c].gt_entry.gt_bytes +=
15215 tab[max].gt_entry.gt_bytes;
15216
15217 ++c;
15218 }
15219
15220 last = int_gptab.gt_entry.gt_bytes;
15221 }
15222
15223 /* Hack: reset the SEC_HAS_CONTENTS flag so that
15224 elf_link_input_bfd ignores this section. */
15225 input_section->flags &= ~SEC_HAS_CONTENTS;
15226 }
15227
15228 /* The table must be sorted by -G value. */
15229 if (c > 2)
15230 qsort (tab + 1, c - 1, sizeof (tab[0]), gptab_compare);
15231
15232 /* Swap out the table. */
15233 amt = (bfd_size_type) c * sizeof (Elf32_External_gptab);
15234 ext_tab = bfd_alloc (abfd, amt);
15235 if (ext_tab == NULL)
15236 {
15237 free (tab);
15238 return FALSE;
15239 }
15240
15241 for (j = 0; j < c; j++)
15242 bfd_mips_elf32_swap_gptab_out (abfd, tab + j, ext_tab + j);
15243 free (tab);
15244
15245 o->size = c * sizeof (Elf32_External_gptab);
15246 o->contents = (bfd_byte *) ext_tab;
15247
15248 /* Skip this section later on (I don't think this currently
15249 matters, but someday it might). */
15250 o->map_head.link_order = NULL;
15251 }
15252 }
15253
15254 /* Invoke the regular ELF backend linker to do all the work. */
15255 if (!bfd_elf_final_link (abfd, info))
15256 return FALSE;
15257
15258 /* Now write out the computed sections. */
15259
15260 if (abiflags_sec != NULL)
15261 {
15262 Elf_External_ABIFlags_v0 ext;
15263 Elf_Internal_ABIFlags_v0 *abiflags;
15264
15265 abiflags = &mips_elf_tdata (abfd)->abiflags;
15266
15267 /* Set up the abiflags if no valid input sections were found. */
15268 if (!mips_elf_tdata (abfd)->abiflags_valid)
15269 {
15270 infer_mips_abiflags (abfd, abiflags);
15271 mips_elf_tdata (abfd)->abiflags_valid = TRUE;
15272 }
15273 bfd_mips_elf_swap_abiflags_v0_out (abfd, abiflags, &ext);
15274 if (! bfd_set_section_contents (abfd, abiflags_sec, &ext, 0, sizeof ext))
15275 return FALSE;
15276 }
15277
15278 if (reginfo_sec != NULL)
15279 {
15280 Elf32_External_RegInfo ext;
15281
15282 bfd_mips_elf32_swap_reginfo_out (abfd, &reginfo, &ext);
15283 if (! bfd_set_section_contents (abfd, reginfo_sec, &ext, 0, sizeof ext))
15284 return FALSE;
15285 }
15286
15287 if (mdebug_sec != NULL)
15288 {
15289 BFD_ASSERT (abfd->output_has_begun);
15290 if (! bfd_ecoff_write_accumulated_debug (mdebug_handle, abfd, &debug,
15291 swap, info,
15292 mdebug_sec->filepos))
15293 return FALSE;
15294
15295 bfd_ecoff_debug_free (mdebug_handle, abfd, &debug, swap, info);
15296 }
15297
15298 if (gptab_data_sec != NULL)
15299 {
15300 if (! bfd_set_section_contents (abfd, gptab_data_sec,
15301 gptab_data_sec->contents,
15302 0, gptab_data_sec->size))
15303 return FALSE;
15304 }
15305
15306 if (gptab_bss_sec != NULL)
15307 {
15308 if (! bfd_set_section_contents (abfd, gptab_bss_sec,
15309 gptab_bss_sec->contents,
15310 0, gptab_bss_sec->size))
15311 return FALSE;
15312 }
15313
15314 if (SGI_COMPAT (abfd))
15315 {
15316 rtproc_sec = bfd_get_section_by_name (abfd, ".rtproc");
15317 if (rtproc_sec != NULL)
15318 {
15319 if (! bfd_set_section_contents (abfd, rtproc_sec,
15320 rtproc_sec->contents,
15321 0, rtproc_sec->size))
15322 return FALSE;
15323 }
15324 }
15325
15326 return TRUE;
15327 }
15328 \f
15329 /* Merge object file header flags from IBFD into OBFD. Raise an error
15330 if there are conflicting settings. */
15331
15332 static bfd_boolean
15333 mips_elf_merge_obj_e_flags (bfd *ibfd, struct bfd_link_info *info)
15334 {
15335 bfd *obfd = info->output_bfd;
15336 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15337 flagword old_flags;
15338 flagword new_flags;
15339 bfd_boolean ok;
15340
15341 new_flags = elf_elfheader (ibfd)->e_flags;
15342 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_NOREORDER;
15343 old_flags = elf_elfheader (obfd)->e_flags;
15344
15345 /* Check flag compatibility. */
15346
15347 new_flags &= ~EF_MIPS_NOREORDER;
15348 old_flags &= ~EF_MIPS_NOREORDER;
15349
15350 /* Some IRIX 6 BSD-compatibility objects have this bit set. It
15351 doesn't seem to matter. */
15352 new_flags &= ~EF_MIPS_XGOT;
15353 old_flags &= ~EF_MIPS_XGOT;
15354
15355 /* MIPSpro generates ucode info in n64 objects. Again, we should
15356 just be able to ignore this. */
15357 new_flags &= ~EF_MIPS_UCODE;
15358 old_flags &= ~EF_MIPS_UCODE;
15359
15360 /* DSOs should only be linked with CPIC code. */
15361 if ((ibfd->flags & DYNAMIC) != 0)
15362 new_flags |= EF_MIPS_PIC | EF_MIPS_CPIC;
15363
15364 if (new_flags == old_flags)
15365 return TRUE;
15366
15367 ok = TRUE;
15368
15369 if (((new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0)
15370 != ((old_flags & (EF_MIPS_PIC | EF_MIPS_CPIC)) != 0))
15371 {
15372 _bfd_error_handler
15373 (_("%pB: warning: linking abicalls files with non-abicalls files"),
15374 ibfd);
15375 ok = TRUE;
15376 }
15377
15378 if (new_flags & (EF_MIPS_PIC | EF_MIPS_CPIC))
15379 elf_elfheader (obfd)->e_flags |= EF_MIPS_CPIC;
15380 if (! (new_flags & EF_MIPS_PIC))
15381 elf_elfheader (obfd)->e_flags &= ~EF_MIPS_PIC;
15382
15383 new_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15384 old_flags &= ~ (EF_MIPS_PIC | EF_MIPS_CPIC);
15385
15386 /* Compare the ISAs. */
15387 if (mips_32bit_flags_p (old_flags) != mips_32bit_flags_p (new_flags))
15388 {
15389 _bfd_error_handler
15390 (_("%pB: linking 32-bit code with 64-bit code"),
15391 ibfd);
15392 ok = FALSE;
15393 }
15394 else if (!mips_mach_extends_p (bfd_get_mach (ibfd), bfd_get_mach (obfd)))
15395 {
15396 /* OBFD's ISA isn't the same as, or an extension of, IBFD's. */
15397 if (mips_mach_extends_p (bfd_get_mach (obfd), bfd_get_mach (ibfd)))
15398 {
15399 /* Copy the architecture info from IBFD to OBFD. Also copy
15400 the 32-bit flag (if set) so that we continue to recognise
15401 OBFD as a 32-bit binary. */
15402 bfd_set_arch_info (obfd, bfd_get_arch_info (ibfd));
15403 elf_elfheader (obfd)->e_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH);
15404 elf_elfheader (obfd)->e_flags
15405 |= new_flags & (EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15406
15407 /* Update the ABI flags isa_level, isa_rev, isa_ext fields. */
15408 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15409
15410 /* Copy across the ABI flags if OBFD doesn't use them
15411 and if that was what caused us to treat IBFD as 32-bit. */
15412 if ((old_flags & EF_MIPS_ABI) == 0
15413 && mips_32bit_flags_p (new_flags)
15414 && !mips_32bit_flags_p (new_flags & ~EF_MIPS_ABI))
15415 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ABI;
15416 }
15417 else
15418 {
15419 /* The ISAs aren't compatible. */
15420 _bfd_error_handler
15421 /* xgettext:c-format */
15422 (_("%pB: linking %s module with previous %s modules"),
15423 ibfd,
15424 bfd_printable_name (ibfd),
15425 bfd_printable_name (obfd));
15426 ok = FALSE;
15427 }
15428 }
15429
15430 new_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15431 old_flags &= ~(EF_MIPS_ARCH | EF_MIPS_MACH | EF_MIPS_32BITMODE);
15432
15433 /* Compare ABIs. The 64-bit ABI does not use EF_MIPS_ABI. But, it
15434 does set EI_CLASS differently from any 32-bit ABI. */
15435 if ((new_flags & EF_MIPS_ABI) != (old_flags & EF_MIPS_ABI)
15436 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15437 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15438 {
15439 /* Only error if both are set (to different values). */
15440 if (((new_flags & EF_MIPS_ABI) && (old_flags & EF_MIPS_ABI))
15441 || (elf_elfheader (ibfd)->e_ident[EI_CLASS]
15442 != elf_elfheader (obfd)->e_ident[EI_CLASS]))
15443 {
15444 _bfd_error_handler
15445 /* xgettext:c-format */
15446 (_("%pB: ABI mismatch: linking %s module with previous %s modules"),
15447 ibfd,
15448 elf_mips_abi_name (ibfd),
15449 elf_mips_abi_name (obfd));
15450 ok = FALSE;
15451 }
15452 new_flags &= ~EF_MIPS_ABI;
15453 old_flags &= ~EF_MIPS_ABI;
15454 }
15455
15456 /* Compare ASEs. Forbid linking MIPS16 and microMIPS ASE modules together
15457 and allow arbitrary mixing of the remaining ASEs (retain the union). */
15458 if ((new_flags & EF_MIPS_ARCH_ASE) != (old_flags & EF_MIPS_ARCH_ASE))
15459 {
15460 int old_micro = old_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15461 int new_micro = new_flags & EF_MIPS_ARCH_ASE_MICROMIPS;
15462 int old_m16 = old_flags & EF_MIPS_ARCH_ASE_M16;
15463 int new_m16 = new_flags & EF_MIPS_ARCH_ASE_M16;
15464 int micro_mis = old_m16 && new_micro;
15465 int m16_mis = old_micro && new_m16;
15466
15467 if (m16_mis || micro_mis)
15468 {
15469 _bfd_error_handler
15470 /* xgettext:c-format */
15471 (_("%pB: ASE mismatch: linking %s module with previous %s modules"),
15472 ibfd,
15473 m16_mis ? "MIPS16" : "microMIPS",
15474 m16_mis ? "microMIPS" : "MIPS16");
15475 ok = FALSE;
15476 }
15477
15478 elf_elfheader (obfd)->e_flags |= new_flags & EF_MIPS_ARCH_ASE;
15479
15480 new_flags &= ~ EF_MIPS_ARCH_ASE;
15481 old_flags &= ~ EF_MIPS_ARCH_ASE;
15482 }
15483
15484 /* Compare NaN encodings. */
15485 if ((new_flags & EF_MIPS_NAN2008) != (old_flags & EF_MIPS_NAN2008))
15486 {
15487 /* xgettext:c-format */
15488 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15489 ibfd,
15490 (new_flags & EF_MIPS_NAN2008
15491 ? "-mnan=2008" : "-mnan=legacy"),
15492 (old_flags & EF_MIPS_NAN2008
15493 ? "-mnan=2008" : "-mnan=legacy"));
15494 ok = FALSE;
15495 new_flags &= ~EF_MIPS_NAN2008;
15496 old_flags &= ~EF_MIPS_NAN2008;
15497 }
15498
15499 /* Compare FP64 state. */
15500 if ((new_flags & EF_MIPS_FP64) != (old_flags & EF_MIPS_FP64))
15501 {
15502 /* xgettext:c-format */
15503 _bfd_error_handler (_("%pB: linking %s module with previous %s modules"),
15504 ibfd,
15505 (new_flags & EF_MIPS_FP64
15506 ? "-mfp64" : "-mfp32"),
15507 (old_flags & EF_MIPS_FP64
15508 ? "-mfp64" : "-mfp32"));
15509 ok = FALSE;
15510 new_flags &= ~EF_MIPS_FP64;
15511 old_flags &= ~EF_MIPS_FP64;
15512 }
15513
15514 /* Warn about any other mismatches */
15515 if (new_flags != old_flags)
15516 {
15517 /* xgettext:c-format */
15518 _bfd_error_handler
15519 (_("%pB: uses different e_flags (%#x) fields than previous modules "
15520 "(%#x)"),
15521 ibfd, new_flags, old_flags);
15522 ok = FALSE;
15523 }
15524
15525 return ok;
15526 }
15527
15528 /* Merge object attributes from IBFD into OBFD. Raise an error if
15529 there are conflicting attributes. */
15530 static bfd_boolean
15531 mips_elf_merge_obj_attributes (bfd *ibfd, struct bfd_link_info *info)
15532 {
15533 bfd *obfd = info->output_bfd;
15534 obj_attribute *in_attr;
15535 obj_attribute *out_attr;
15536 bfd *abi_fp_bfd;
15537 bfd *abi_msa_bfd;
15538
15539 abi_fp_bfd = mips_elf_tdata (obfd)->abi_fp_bfd;
15540 in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15541 if (!abi_fp_bfd && in_attr[Tag_GNU_MIPS_ABI_FP].i != Val_GNU_MIPS_ABI_FP_ANY)
15542 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15543
15544 abi_msa_bfd = mips_elf_tdata (obfd)->abi_msa_bfd;
15545 if (!abi_msa_bfd
15546 && in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15547 mips_elf_tdata (obfd)->abi_msa_bfd = ibfd;
15548
15549 if (!elf_known_obj_attributes_proc (obfd)[0].i)
15550 {
15551 /* This is the first object. Copy the attributes. */
15552 _bfd_elf_copy_obj_attributes (ibfd, obfd);
15553
15554 /* Use the Tag_null value to indicate the attributes have been
15555 initialized. */
15556 elf_known_obj_attributes_proc (obfd)[0].i = 1;
15557
15558 return TRUE;
15559 }
15560
15561 /* Check for conflicting Tag_GNU_MIPS_ABI_FP attributes and merge
15562 non-conflicting ones. */
15563 out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15564 if (in_attr[Tag_GNU_MIPS_ABI_FP].i != out_attr[Tag_GNU_MIPS_ABI_FP].i)
15565 {
15566 int out_fp, in_fp;
15567
15568 out_fp = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15569 in_fp = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15570 out_attr[Tag_GNU_MIPS_ABI_FP].type = 1;
15571 if (out_fp == Val_GNU_MIPS_ABI_FP_ANY)
15572 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_fp;
15573 else if (out_fp == Val_GNU_MIPS_ABI_FP_XX
15574 && (in_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15575 || in_fp == Val_GNU_MIPS_ABI_FP_64
15576 || in_fp == Val_GNU_MIPS_ABI_FP_64A))
15577 {
15578 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15579 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15580 }
15581 else if (in_fp == Val_GNU_MIPS_ABI_FP_XX
15582 && (out_fp == Val_GNU_MIPS_ABI_FP_DOUBLE
15583 || out_fp == Val_GNU_MIPS_ABI_FP_64
15584 || out_fp == Val_GNU_MIPS_ABI_FP_64A))
15585 /* Keep the current setting. */;
15586 else if (out_fp == Val_GNU_MIPS_ABI_FP_64A
15587 && in_fp == Val_GNU_MIPS_ABI_FP_64)
15588 {
15589 mips_elf_tdata (obfd)->abi_fp_bfd = ibfd;
15590 out_attr[Tag_GNU_MIPS_ABI_FP].i = in_attr[Tag_GNU_MIPS_ABI_FP].i;
15591 }
15592 else if (in_fp == Val_GNU_MIPS_ABI_FP_64A
15593 && out_fp == Val_GNU_MIPS_ABI_FP_64)
15594 /* Keep the current setting. */;
15595 else if (in_fp != Val_GNU_MIPS_ABI_FP_ANY)
15596 {
15597 const char *out_string, *in_string;
15598
15599 out_string = _bfd_mips_fp_abi_string (out_fp);
15600 in_string = _bfd_mips_fp_abi_string (in_fp);
15601 /* First warn about cases involving unrecognised ABIs. */
15602 if (!out_string && !in_string)
15603 /* xgettext:c-format */
15604 _bfd_error_handler
15605 (_("warning: %pB uses unknown floating point ABI %d "
15606 "(set by %pB), %pB uses unknown floating point ABI %d"),
15607 obfd, out_fp, abi_fp_bfd, ibfd, in_fp);
15608 else if (!out_string)
15609 _bfd_error_handler
15610 /* xgettext:c-format */
15611 (_("warning: %pB uses unknown floating point ABI %d "
15612 "(set by %pB), %pB uses %s"),
15613 obfd, out_fp, abi_fp_bfd, ibfd, in_string);
15614 else if (!in_string)
15615 _bfd_error_handler
15616 /* xgettext:c-format */
15617 (_("warning: %pB uses %s (set by %pB), "
15618 "%pB uses unknown floating point ABI %d"),
15619 obfd, out_string, abi_fp_bfd, ibfd, in_fp);
15620 else
15621 {
15622 /* If one of the bfds is soft-float, the other must be
15623 hard-float. The exact choice of hard-float ABI isn't
15624 really relevant to the error message. */
15625 if (in_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15626 out_string = "-mhard-float";
15627 else if (out_fp == Val_GNU_MIPS_ABI_FP_SOFT)
15628 in_string = "-mhard-float";
15629 _bfd_error_handler
15630 /* xgettext:c-format */
15631 (_("warning: %pB uses %s (set by %pB), %pB uses %s"),
15632 obfd, out_string, abi_fp_bfd, ibfd, in_string);
15633 }
15634 }
15635 }
15636
15637 /* Check for conflicting Tag_GNU_MIPS_ABI_MSA attributes and merge
15638 non-conflicting ones. */
15639 if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15640 {
15641 out_attr[Tag_GNU_MIPS_ABI_MSA].type = 1;
15642 if (out_attr[Tag_GNU_MIPS_ABI_MSA].i == Val_GNU_MIPS_ABI_MSA_ANY)
15643 out_attr[Tag_GNU_MIPS_ABI_MSA].i = in_attr[Tag_GNU_MIPS_ABI_MSA].i;
15644 else if (in_attr[Tag_GNU_MIPS_ABI_MSA].i != Val_GNU_MIPS_ABI_MSA_ANY)
15645 switch (out_attr[Tag_GNU_MIPS_ABI_MSA].i)
15646 {
15647 case Val_GNU_MIPS_ABI_MSA_128:
15648 _bfd_error_handler
15649 /* xgettext:c-format */
15650 (_("warning: %pB uses %s (set by %pB), "
15651 "%pB uses unknown MSA ABI %d"),
15652 obfd, "-mmsa", abi_msa_bfd,
15653 ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15654 break;
15655
15656 default:
15657 switch (in_attr[Tag_GNU_MIPS_ABI_MSA].i)
15658 {
15659 case Val_GNU_MIPS_ABI_MSA_128:
15660 _bfd_error_handler
15661 /* xgettext:c-format */
15662 (_("warning: %pB uses unknown MSA ABI %d "
15663 "(set by %pB), %pB uses %s"),
15664 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15665 abi_msa_bfd, ibfd, "-mmsa");
15666 break;
15667
15668 default:
15669 _bfd_error_handler
15670 /* xgettext:c-format */
15671 (_("warning: %pB uses unknown MSA ABI %d "
15672 "(set by %pB), %pB uses unknown MSA ABI %d"),
15673 obfd, out_attr[Tag_GNU_MIPS_ABI_MSA].i,
15674 abi_msa_bfd, ibfd, in_attr[Tag_GNU_MIPS_ABI_MSA].i);
15675 break;
15676 }
15677 }
15678 }
15679
15680 /* Merge Tag_compatibility attributes and any common GNU ones. */
15681 return _bfd_elf_merge_object_attributes (ibfd, info);
15682 }
15683
15684 /* Merge object ABI flags from IBFD into OBFD. Raise an error if
15685 there are conflicting settings. */
15686
15687 static bfd_boolean
15688 mips_elf_merge_obj_abiflags (bfd *ibfd, bfd *obfd)
15689 {
15690 obj_attribute *out_attr = elf_known_obj_attributes (obfd)[OBJ_ATTR_GNU];
15691 struct mips_elf_obj_tdata *out_tdata = mips_elf_tdata (obfd);
15692 struct mips_elf_obj_tdata *in_tdata = mips_elf_tdata (ibfd);
15693
15694 /* Update the output abiflags fp_abi using the computed fp_abi. */
15695 out_tdata->abiflags.fp_abi = out_attr[Tag_GNU_MIPS_ABI_FP].i;
15696
15697 #define max(a, b) ((a) > (b) ? (a) : (b))
15698 /* Merge abiflags. */
15699 out_tdata->abiflags.isa_level = max (out_tdata->abiflags.isa_level,
15700 in_tdata->abiflags.isa_level);
15701 out_tdata->abiflags.isa_rev = max (out_tdata->abiflags.isa_rev,
15702 in_tdata->abiflags.isa_rev);
15703 out_tdata->abiflags.gpr_size = max (out_tdata->abiflags.gpr_size,
15704 in_tdata->abiflags.gpr_size);
15705 out_tdata->abiflags.cpr1_size = max (out_tdata->abiflags.cpr1_size,
15706 in_tdata->abiflags.cpr1_size);
15707 out_tdata->abiflags.cpr2_size = max (out_tdata->abiflags.cpr2_size,
15708 in_tdata->abiflags.cpr2_size);
15709 #undef max
15710 out_tdata->abiflags.ases |= in_tdata->abiflags.ases;
15711 out_tdata->abiflags.flags1 |= in_tdata->abiflags.flags1;
15712
15713 return TRUE;
15714 }
15715
15716 /* Merge backend specific data from an object file to the output
15717 object file when linking. */
15718
15719 bfd_boolean
15720 _bfd_mips_elf_merge_private_bfd_data (bfd *ibfd, struct bfd_link_info *info)
15721 {
15722 bfd *obfd = info->output_bfd;
15723 struct mips_elf_obj_tdata *out_tdata;
15724 struct mips_elf_obj_tdata *in_tdata;
15725 bfd_boolean null_input_bfd = TRUE;
15726 asection *sec;
15727 bfd_boolean ok;
15728
15729 /* Check if we have the same endianness. */
15730 if (! _bfd_generic_verify_endian_match (ibfd, info))
15731 {
15732 _bfd_error_handler
15733 (_("%pB: endianness incompatible with that of the selected emulation"),
15734 ibfd);
15735 return FALSE;
15736 }
15737
15738 if (!is_mips_elf (ibfd) || !is_mips_elf (obfd))
15739 return TRUE;
15740
15741 in_tdata = mips_elf_tdata (ibfd);
15742 out_tdata = mips_elf_tdata (obfd);
15743
15744 if (strcmp (bfd_get_target (ibfd), bfd_get_target (obfd)) != 0)
15745 {
15746 _bfd_error_handler
15747 (_("%pB: ABI is incompatible with that of the selected emulation"),
15748 ibfd);
15749 return FALSE;
15750 }
15751
15752 /* Check to see if the input BFD actually contains any sections. If not,
15753 then it has no attributes, and its flags may not have been initialized
15754 either, but it cannot actually cause any incompatibility. */
15755 for (sec = ibfd->sections; sec != NULL; sec = sec->next)
15756 {
15757 /* Ignore synthetic sections and empty .text, .data and .bss sections
15758 which are automatically generated by gas. Also ignore fake
15759 (s)common sections, since merely defining a common symbol does
15760 not affect compatibility. */
15761 if ((sec->flags & SEC_IS_COMMON) == 0
15762 && strcmp (sec->name, ".reginfo")
15763 && strcmp (sec->name, ".mdebug")
15764 && (sec->size != 0
15765 || (strcmp (sec->name, ".text")
15766 && strcmp (sec->name, ".data")
15767 && strcmp (sec->name, ".bss"))))
15768 {
15769 null_input_bfd = FALSE;
15770 break;
15771 }
15772 }
15773 if (null_input_bfd)
15774 return TRUE;
15775
15776 /* Populate abiflags using existing information. */
15777 if (in_tdata->abiflags_valid)
15778 {
15779 obj_attribute *in_attr = elf_known_obj_attributes (ibfd)[OBJ_ATTR_GNU];
15780 Elf_Internal_ABIFlags_v0 in_abiflags;
15781 Elf_Internal_ABIFlags_v0 abiflags;
15782
15783 /* Set up the FP ABI attribute from the abiflags if it is not already
15784 set. */
15785 if (in_attr[Tag_GNU_MIPS_ABI_FP].i == Val_GNU_MIPS_ABI_FP_ANY)
15786 in_attr[Tag_GNU_MIPS_ABI_FP].i = in_tdata->abiflags.fp_abi;
15787
15788 infer_mips_abiflags (ibfd, &abiflags);
15789 in_abiflags = in_tdata->abiflags;
15790
15791 /* It is not possible to infer the correct ISA revision
15792 for R3 or R5 so drop down to R2 for the checks. */
15793 if (in_abiflags.isa_rev == 3 || in_abiflags.isa_rev == 5)
15794 in_abiflags.isa_rev = 2;
15795
15796 if (LEVEL_REV (in_abiflags.isa_level, in_abiflags.isa_rev)
15797 < LEVEL_REV (abiflags.isa_level, abiflags.isa_rev))
15798 _bfd_error_handler
15799 (_("%pB: warning: inconsistent ISA between e_flags and "
15800 ".MIPS.abiflags"), ibfd);
15801 if (abiflags.fp_abi != Val_GNU_MIPS_ABI_FP_ANY
15802 && in_abiflags.fp_abi != abiflags.fp_abi)
15803 _bfd_error_handler
15804 (_("%pB: warning: inconsistent FP ABI between .gnu.attributes and "
15805 ".MIPS.abiflags"), ibfd);
15806 if ((in_abiflags.ases & abiflags.ases) != abiflags.ases)
15807 _bfd_error_handler
15808 (_("%pB: warning: inconsistent ASEs between e_flags and "
15809 ".MIPS.abiflags"), ibfd);
15810 /* The isa_ext is allowed to be an extension of what can be inferred
15811 from e_flags. */
15812 if (!mips_mach_extends_p (bfd_mips_isa_ext_mach (abiflags.isa_ext),
15813 bfd_mips_isa_ext_mach (in_abiflags.isa_ext)))
15814 _bfd_error_handler
15815 (_("%pB: warning: inconsistent ISA extensions between e_flags and "
15816 ".MIPS.abiflags"), ibfd);
15817 if (in_abiflags.flags2 != 0)
15818 _bfd_error_handler
15819 (_("%pB: warning: unexpected flag in the flags2 field of "
15820 ".MIPS.abiflags (0x%lx)"), ibfd,
15821 in_abiflags.flags2);
15822 }
15823 else
15824 {
15825 infer_mips_abiflags (ibfd, &in_tdata->abiflags);
15826 in_tdata->abiflags_valid = TRUE;
15827 }
15828
15829 if (!out_tdata->abiflags_valid)
15830 {
15831 /* Copy input abiflags if output abiflags are not already valid. */
15832 out_tdata->abiflags = in_tdata->abiflags;
15833 out_tdata->abiflags_valid = TRUE;
15834 }
15835
15836 if (! elf_flags_init (obfd))
15837 {
15838 elf_flags_init (obfd) = TRUE;
15839 elf_elfheader (obfd)->e_flags = elf_elfheader (ibfd)->e_flags;
15840 elf_elfheader (obfd)->e_ident[EI_CLASS]
15841 = elf_elfheader (ibfd)->e_ident[EI_CLASS];
15842
15843 if (bfd_get_arch (obfd) == bfd_get_arch (ibfd)
15844 && (bfd_get_arch_info (obfd)->the_default
15845 || mips_mach_extends_p (bfd_get_mach (obfd),
15846 bfd_get_mach (ibfd))))
15847 {
15848 if (! bfd_set_arch_mach (obfd, bfd_get_arch (ibfd),
15849 bfd_get_mach (ibfd)))
15850 return FALSE;
15851
15852 /* Update the ABI flags isa_level, isa_rev and isa_ext fields. */
15853 update_mips_abiflags_isa (obfd, &out_tdata->abiflags);
15854 }
15855
15856 ok = TRUE;
15857 }
15858 else
15859 ok = mips_elf_merge_obj_e_flags (ibfd, info);
15860
15861 ok = mips_elf_merge_obj_attributes (ibfd, info) && ok;
15862
15863 ok = mips_elf_merge_obj_abiflags (ibfd, obfd) && ok;
15864
15865 if (!ok)
15866 {
15867 bfd_set_error (bfd_error_bad_value);
15868 return FALSE;
15869 }
15870
15871 return TRUE;
15872 }
15873
15874 /* Function to keep MIPS specific file flags like as EF_MIPS_PIC. */
15875
15876 bfd_boolean
15877 _bfd_mips_elf_set_private_flags (bfd *abfd, flagword flags)
15878 {
15879 BFD_ASSERT (!elf_flags_init (abfd)
15880 || elf_elfheader (abfd)->e_flags == flags);
15881
15882 elf_elfheader (abfd)->e_flags = flags;
15883 elf_flags_init (abfd) = TRUE;
15884 return TRUE;
15885 }
15886
15887 char *
15888 _bfd_mips_elf_get_target_dtag (bfd_vma dtag)
15889 {
15890 switch (dtag)
15891 {
15892 default: return "";
15893 case DT_MIPS_RLD_VERSION:
15894 return "MIPS_RLD_VERSION";
15895 case DT_MIPS_TIME_STAMP:
15896 return "MIPS_TIME_STAMP";
15897 case DT_MIPS_ICHECKSUM:
15898 return "MIPS_ICHECKSUM";
15899 case DT_MIPS_IVERSION:
15900 return "MIPS_IVERSION";
15901 case DT_MIPS_FLAGS:
15902 return "MIPS_FLAGS";
15903 case DT_MIPS_BASE_ADDRESS:
15904 return "MIPS_BASE_ADDRESS";
15905 case DT_MIPS_MSYM:
15906 return "MIPS_MSYM";
15907 case DT_MIPS_CONFLICT:
15908 return "MIPS_CONFLICT";
15909 case DT_MIPS_LIBLIST:
15910 return "MIPS_LIBLIST";
15911 case DT_MIPS_LOCAL_GOTNO:
15912 return "MIPS_LOCAL_GOTNO";
15913 case DT_MIPS_CONFLICTNO:
15914 return "MIPS_CONFLICTNO";
15915 case DT_MIPS_LIBLISTNO:
15916 return "MIPS_LIBLISTNO";
15917 case DT_MIPS_SYMTABNO:
15918 return "MIPS_SYMTABNO";
15919 case DT_MIPS_UNREFEXTNO:
15920 return "MIPS_UNREFEXTNO";
15921 case DT_MIPS_GOTSYM:
15922 return "MIPS_GOTSYM";
15923 case DT_MIPS_HIPAGENO:
15924 return "MIPS_HIPAGENO";
15925 case DT_MIPS_RLD_MAP:
15926 return "MIPS_RLD_MAP";
15927 case DT_MIPS_RLD_MAP_REL:
15928 return "MIPS_RLD_MAP_REL";
15929 case DT_MIPS_DELTA_CLASS:
15930 return "MIPS_DELTA_CLASS";
15931 case DT_MIPS_DELTA_CLASS_NO:
15932 return "MIPS_DELTA_CLASS_NO";
15933 case DT_MIPS_DELTA_INSTANCE:
15934 return "MIPS_DELTA_INSTANCE";
15935 case DT_MIPS_DELTA_INSTANCE_NO:
15936 return "MIPS_DELTA_INSTANCE_NO";
15937 case DT_MIPS_DELTA_RELOC:
15938 return "MIPS_DELTA_RELOC";
15939 case DT_MIPS_DELTA_RELOC_NO:
15940 return "MIPS_DELTA_RELOC_NO";
15941 case DT_MIPS_DELTA_SYM:
15942 return "MIPS_DELTA_SYM";
15943 case DT_MIPS_DELTA_SYM_NO:
15944 return "MIPS_DELTA_SYM_NO";
15945 case DT_MIPS_DELTA_CLASSSYM:
15946 return "MIPS_DELTA_CLASSSYM";
15947 case DT_MIPS_DELTA_CLASSSYM_NO:
15948 return "MIPS_DELTA_CLASSSYM_NO";
15949 case DT_MIPS_CXX_FLAGS:
15950 return "MIPS_CXX_FLAGS";
15951 case DT_MIPS_PIXIE_INIT:
15952 return "MIPS_PIXIE_INIT";
15953 case DT_MIPS_SYMBOL_LIB:
15954 return "MIPS_SYMBOL_LIB";
15955 case DT_MIPS_LOCALPAGE_GOTIDX:
15956 return "MIPS_LOCALPAGE_GOTIDX";
15957 case DT_MIPS_LOCAL_GOTIDX:
15958 return "MIPS_LOCAL_GOTIDX";
15959 case DT_MIPS_HIDDEN_GOTIDX:
15960 return "MIPS_HIDDEN_GOTIDX";
15961 case DT_MIPS_PROTECTED_GOTIDX:
15962 return "MIPS_PROTECTED_GOT_IDX";
15963 case DT_MIPS_OPTIONS:
15964 return "MIPS_OPTIONS";
15965 case DT_MIPS_INTERFACE:
15966 return "MIPS_INTERFACE";
15967 case DT_MIPS_DYNSTR_ALIGN:
15968 return "DT_MIPS_DYNSTR_ALIGN";
15969 case DT_MIPS_INTERFACE_SIZE:
15970 return "DT_MIPS_INTERFACE_SIZE";
15971 case DT_MIPS_RLD_TEXT_RESOLVE_ADDR:
15972 return "DT_MIPS_RLD_TEXT_RESOLVE_ADDR";
15973 case DT_MIPS_PERF_SUFFIX:
15974 return "DT_MIPS_PERF_SUFFIX";
15975 case DT_MIPS_COMPACT_SIZE:
15976 return "DT_MIPS_COMPACT_SIZE";
15977 case DT_MIPS_GP_VALUE:
15978 return "DT_MIPS_GP_VALUE";
15979 case DT_MIPS_AUX_DYNAMIC:
15980 return "DT_MIPS_AUX_DYNAMIC";
15981 case DT_MIPS_PLTGOT:
15982 return "DT_MIPS_PLTGOT";
15983 case DT_MIPS_RWPLT:
15984 return "DT_MIPS_RWPLT";
15985 case DT_MIPS_XHASH:
15986 return "DT_MIPS_XHASH";
15987 }
15988 }
15989
15990 /* Return the meaning of Tag_GNU_MIPS_ABI_FP value FP, or null if
15991 not known. */
15992
15993 const char *
15994 _bfd_mips_fp_abi_string (int fp)
15995 {
15996 switch (fp)
15997 {
15998 /* These strings aren't translated because they're simply
15999 option lists. */
16000 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16001 return "-mdouble-float";
16002
16003 case Val_GNU_MIPS_ABI_FP_SINGLE:
16004 return "-msingle-float";
16005
16006 case Val_GNU_MIPS_ABI_FP_SOFT:
16007 return "-msoft-float";
16008
16009 case Val_GNU_MIPS_ABI_FP_OLD_64:
16010 return _("-mips32r2 -mfp64 (12 callee-saved)");
16011
16012 case Val_GNU_MIPS_ABI_FP_XX:
16013 return "-mfpxx";
16014
16015 case Val_GNU_MIPS_ABI_FP_64:
16016 return "-mgp32 -mfp64";
16017
16018 case Val_GNU_MIPS_ABI_FP_64A:
16019 return "-mgp32 -mfp64 -mno-odd-spreg";
16020
16021 default:
16022 return 0;
16023 }
16024 }
16025
16026 static void
16027 print_mips_ases (FILE *file, unsigned int mask)
16028 {
16029 if (mask & AFL_ASE_DSP)
16030 fputs ("\n\tDSP ASE", file);
16031 if (mask & AFL_ASE_DSPR2)
16032 fputs ("\n\tDSP R2 ASE", file);
16033 if (mask & AFL_ASE_DSPR3)
16034 fputs ("\n\tDSP R3 ASE", file);
16035 if (mask & AFL_ASE_EVA)
16036 fputs ("\n\tEnhanced VA Scheme", file);
16037 if (mask & AFL_ASE_MCU)
16038 fputs ("\n\tMCU (MicroController) ASE", file);
16039 if (mask & AFL_ASE_MDMX)
16040 fputs ("\n\tMDMX ASE", file);
16041 if (mask & AFL_ASE_MIPS3D)
16042 fputs ("\n\tMIPS-3D ASE", file);
16043 if (mask & AFL_ASE_MT)
16044 fputs ("\n\tMT ASE", file);
16045 if (mask & AFL_ASE_SMARTMIPS)
16046 fputs ("\n\tSmartMIPS ASE", file);
16047 if (mask & AFL_ASE_VIRT)
16048 fputs ("\n\tVZ ASE", file);
16049 if (mask & AFL_ASE_MSA)
16050 fputs ("\n\tMSA ASE", file);
16051 if (mask & AFL_ASE_MIPS16)
16052 fputs ("\n\tMIPS16 ASE", file);
16053 if (mask & AFL_ASE_MICROMIPS)
16054 fputs ("\n\tMICROMIPS ASE", file);
16055 if (mask & AFL_ASE_XPA)
16056 fputs ("\n\tXPA ASE", file);
16057 if (mask & AFL_ASE_MIPS16E2)
16058 fputs ("\n\tMIPS16e2 ASE", file);
16059 if (mask & AFL_ASE_CRC)
16060 fputs ("\n\tCRC ASE", file);
16061 if (mask & AFL_ASE_GINV)
16062 fputs ("\n\tGINV ASE", file);
16063 if (mask & AFL_ASE_LOONGSON_MMI)
16064 fputs ("\n\tLoongson MMI ASE", file);
16065 if (mask & AFL_ASE_LOONGSON_CAM)
16066 fputs ("\n\tLoongson CAM ASE", file);
16067 if (mask & AFL_ASE_LOONGSON_EXT)
16068 fputs ("\n\tLoongson EXT ASE", file);
16069 if (mask & AFL_ASE_LOONGSON_EXT2)
16070 fputs ("\n\tLoongson EXT2 ASE", file);
16071 if (mask == 0)
16072 fprintf (file, "\n\t%s", _("None"));
16073 else if ((mask & ~AFL_ASE_MASK) != 0)
16074 fprintf (stdout, "\n\t%s (%x)", _("Unknown"), mask & ~AFL_ASE_MASK);
16075 }
16076
16077 static void
16078 print_mips_isa_ext (FILE *file, unsigned int isa_ext)
16079 {
16080 switch (isa_ext)
16081 {
16082 case 0:
16083 fputs (_("None"), file);
16084 break;
16085 case AFL_EXT_XLR:
16086 fputs ("RMI XLR", file);
16087 break;
16088 case AFL_EXT_OCTEON3:
16089 fputs ("Cavium Networks Octeon3", file);
16090 break;
16091 case AFL_EXT_OCTEON2:
16092 fputs ("Cavium Networks Octeon2", file);
16093 break;
16094 case AFL_EXT_OCTEONP:
16095 fputs ("Cavium Networks OcteonP", file);
16096 break;
16097 case AFL_EXT_OCTEON:
16098 fputs ("Cavium Networks Octeon", file);
16099 break;
16100 case AFL_EXT_5900:
16101 fputs ("Toshiba R5900", file);
16102 break;
16103 case AFL_EXT_4650:
16104 fputs ("MIPS R4650", file);
16105 break;
16106 case AFL_EXT_4010:
16107 fputs ("LSI R4010", file);
16108 break;
16109 case AFL_EXT_4100:
16110 fputs ("NEC VR4100", file);
16111 break;
16112 case AFL_EXT_3900:
16113 fputs ("Toshiba R3900", file);
16114 break;
16115 case AFL_EXT_10000:
16116 fputs ("MIPS R10000", file);
16117 break;
16118 case AFL_EXT_SB1:
16119 fputs ("Broadcom SB-1", file);
16120 break;
16121 case AFL_EXT_4111:
16122 fputs ("NEC VR4111/VR4181", file);
16123 break;
16124 case AFL_EXT_4120:
16125 fputs ("NEC VR4120", file);
16126 break;
16127 case AFL_EXT_5400:
16128 fputs ("NEC VR5400", file);
16129 break;
16130 case AFL_EXT_5500:
16131 fputs ("NEC VR5500", file);
16132 break;
16133 case AFL_EXT_LOONGSON_2E:
16134 fputs ("ST Microelectronics Loongson 2E", file);
16135 break;
16136 case AFL_EXT_LOONGSON_2F:
16137 fputs ("ST Microelectronics Loongson 2F", file);
16138 break;
16139 case AFL_EXT_INTERAPTIV_MR2:
16140 fputs ("Imagination interAptiv MR2", file);
16141 break;
16142 default:
16143 fprintf (file, "%s (%d)", _("Unknown"), isa_ext);
16144 break;
16145 }
16146 }
16147
16148 static void
16149 print_mips_fp_abi_value (FILE *file, int val)
16150 {
16151 switch (val)
16152 {
16153 case Val_GNU_MIPS_ABI_FP_ANY:
16154 fprintf (file, _("Hard or soft float\n"));
16155 break;
16156 case Val_GNU_MIPS_ABI_FP_DOUBLE:
16157 fprintf (file, _("Hard float (double precision)\n"));
16158 break;
16159 case Val_GNU_MIPS_ABI_FP_SINGLE:
16160 fprintf (file, _("Hard float (single precision)\n"));
16161 break;
16162 case Val_GNU_MIPS_ABI_FP_SOFT:
16163 fprintf (file, _("Soft float\n"));
16164 break;
16165 case Val_GNU_MIPS_ABI_FP_OLD_64:
16166 fprintf (file, _("Hard float (MIPS32r2 64-bit FPU 12 callee-saved)\n"));
16167 break;
16168 case Val_GNU_MIPS_ABI_FP_XX:
16169 fprintf (file, _("Hard float (32-bit CPU, Any FPU)\n"));
16170 break;
16171 case Val_GNU_MIPS_ABI_FP_64:
16172 fprintf (file, _("Hard float (32-bit CPU, 64-bit FPU)\n"));
16173 break;
16174 case Val_GNU_MIPS_ABI_FP_64A:
16175 fprintf (file, _("Hard float compat (32-bit CPU, 64-bit FPU)\n"));
16176 break;
16177 default:
16178 fprintf (file, "??? (%d)\n", val);
16179 break;
16180 }
16181 }
16182
16183 static int
16184 get_mips_reg_size (int reg_size)
16185 {
16186 return (reg_size == AFL_REG_NONE) ? 0
16187 : (reg_size == AFL_REG_32) ? 32
16188 : (reg_size == AFL_REG_64) ? 64
16189 : (reg_size == AFL_REG_128) ? 128
16190 : -1;
16191 }
16192
16193 bfd_boolean
16194 _bfd_mips_elf_print_private_bfd_data (bfd *abfd, void *ptr)
16195 {
16196 FILE *file = ptr;
16197
16198 BFD_ASSERT (abfd != NULL && ptr != NULL);
16199
16200 /* Print normal ELF private data. */
16201 _bfd_elf_print_private_bfd_data (abfd, ptr);
16202
16203 /* xgettext:c-format */
16204 fprintf (file, _("private flags = %lx:"), elf_elfheader (abfd)->e_flags);
16205
16206 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O32)
16207 fprintf (file, _(" [abi=O32]"));
16208 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_O64)
16209 fprintf (file, _(" [abi=O64]"));
16210 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI32)
16211 fprintf (file, _(" [abi=EABI32]"));
16212 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI) == E_MIPS_ABI_EABI64)
16213 fprintf (file, _(" [abi=EABI64]"));
16214 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ABI))
16215 fprintf (file, _(" [abi unknown]"));
16216 else if (ABI_N32_P (abfd))
16217 fprintf (file, _(" [abi=N32]"));
16218 else if (ABI_64_P (abfd))
16219 fprintf (file, _(" [abi=64]"));
16220 else
16221 fprintf (file, _(" [no abi set]"));
16222
16223 if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_1)
16224 fprintf (file, " [mips1]");
16225 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_2)
16226 fprintf (file, " [mips2]");
16227 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_3)
16228 fprintf (file, " [mips3]");
16229 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_4)
16230 fprintf (file, " [mips4]");
16231 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_5)
16232 fprintf (file, " [mips5]");
16233 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32)
16234 fprintf (file, " [mips32]");
16235 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64)
16236 fprintf (file, " [mips64]");
16237 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R2)
16238 fprintf (file, " [mips32r2]");
16239 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R2)
16240 fprintf (file, " [mips64r2]");
16241 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_32R6)
16242 fprintf (file, " [mips32r6]");
16243 else if ((elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH) == E_MIPS_ARCH_64R6)
16244 fprintf (file, " [mips64r6]");
16245 else
16246 fprintf (file, _(" [unknown ISA]"));
16247
16248 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MDMX)
16249 fprintf (file, " [mdmx]");
16250
16251 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_M16)
16252 fprintf (file, " [mips16]");
16253
16254 if (elf_elfheader (abfd)->e_flags & EF_MIPS_ARCH_ASE_MICROMIPS)
16255 fprintf (file, " [micromips]");
16256
16257 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NAN2008)
16258 fprintf (file, " [nan2008]");
16259
16260 if (elf_elfheader (abfd)->e_flags & EF_MIPS_FP64)
16261 fprintf (file, " [old fp64]");
16262
16263 if (elf_elfheader (abfd)->e_flags & EF_MIPS_32BITMODE)
16264 fprintf (file, " [32bitmode]");
16265 else
16266 fprintf (file, _(" [not 32bitmode]"));
16267
16268 if (elf_elfheader (abfd)->e_flags & EF_MIPS_NOREORDER)
16269 fprintf (file, " [noreorder]");
16270
16271 if (elf_elfheader (abfd)->e_flags & EF_MIPS_PIC)
16272 fprintf (file, " [PIC]");
16273
16274 if (elf_elfheader (abfd)->e_flags & EF_MIPS_CPIC)
16275 fprintf (file, " [CPIC]");
16276
16277 if (elf_elfheader (abfd)->e_flags & EF_MIPS_XGOT)
16278 fprintf (file, " [XGOT]");
16279
16280 if (elf_elfheader (abfd)->e_flags & EF_MIPS_UCODE)
16281 fprintf (file, " [UCODE]");
16282
16283 fputc ('\n', file);
16284
16285 if (mips_elf_tdata (abfd)->abiflags_valid)
16286 {
16287 Elf_Internal_ABIFlags_v0 *abiflags = &mips_elf_tdata (abfd)->abiflags;
16288 fprintf (file, "\nMIPS ABI Flags Version: %d\n", abiflags->version);
16289 fprintf (file, "\nISA: MIPS%d", abiflags->isa_level);
16290 if (abiflags->isa_rev > 1)
16291 fprintf (file, "r%d", abiflags->isa_rev);
16292 fprintf (file, "\nGPR size: %d",
16293 get_mips_reg_size (abiflags->gpr_size));
16294 fprintf (file, "\nCPR1 size: %d",
16295 get_mips_reg_size (abiflags->cpr1_size));
16296 fprintf (file, "\nCPR2 size: %d",
16297 get_mips_reg_size (abiflags->cpr2_size));
16298 fputs ("\nFP ABI: ", file);
16299 print_mips_fp_abi_value (file, abiflags->fp_abi);
16300 fputs ("ISA Extension: ", file);
16301 print_mips_isa_ext (file, abiflags->isa_ext);
16302 fputs ("\nASEs:", file);
16303 print_mips_ases (file, abiflags->ases);
16304 fprintf (file, "\nFLAGS 1: %8.8lx", abiflags->flags1);
16305 fprintf (file, "\nFLAGS 2: %8.8lx", abiflags->flags2);
16306 fputc ('\n', file);
16307 }
16308
16309 return TRUE;
16310 }
16311
16312 const struct bfd_elf_special_section _bfd_mips_elf_special_sections[] =
16313 {
16314 { STRING_COMMA_LEN (".lit4"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16315 { STRING_COMMA_LEN (".lit8"), 0, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16316 { STRING_COMMA_LEN (".mdebug"), 0, SHT_MIPS_DEBUG, 0 },
16317 { STRING_COMMA_LEN (".sbss"), -2, SHT_NOBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16318 { STRING_COMMA_LEN (".sdata"), -2, SHT_PROGBITS, SHF_ALLOC + SHF_WRITE + SHF_MIPS_GPREL },
16319 { STRING_COMMA_LEN (".ucode"), 0, SHT_MIPS_UCODE, 0 },
16320 { STRING_COMMA_LEN (".MIPS.xhash"), 0, SHT_MIPS_XHASH, SHF_ALLOC },
16321 { NULL, 0, 0, 0, 0 }
16322 };
16323
16324 /* Merge non visibility st_other attributes. Ensure that the
16325 STO_OPTIONAL flag is copied into h->other, even if this is not a
16326 definiton of the symbol. */
16327 void
16328 _bfd_mips_elf_merge_symbol_attribute (struct elf_link_hash_entry *h,
16329 const Elf_Internal_Sym *isym,
16330 bfd_boolean definition,
16331 bfd_boolean dynamic ATTRIBUTE_UNUSED)
16332 {
16333 if ((isym->st_other & ~ELF_ST_VISIBILITY (-1)) != 0)
16334 {
16335 unsigned char other;
16336
16337 other = (definition ? isym->st_other : h->other);
16338 other &= ~ELF_ST_VISIBILITY (-1);
16339 h->other = other | ELF_ST_VISIBILITY (h->other);
16340 }
16341
16342 if (!definition
16343 && ELF_MIPS_IS_OPTIONAL (isym->st_other))
16344 h->other |= STO_OPTIONAL;
16345 }
16346
16347 /* Decide whether an undefined symbol is special and can be ignored.
16348 This is the case for OPTIONAL symbols on IRIX. */
16349 bfd_boolean
16350 _bfd_mips_elf_ignore_undef_symbol (struct elf_link_hash_entry *h)
16351 {
16352 return ELF_MIPS_IS_OPTIONAL (h->other) ? TRUE : FALSE;
16353 }
16354
16355 bfd_boolean
16356 _bfd_mips_elf_common_definition (Elf_Internal_Sym *sym)
16357 {
16358 return (sym->st_shndx == SHN_COMMON
16359 || sym->st_shndx == SHN_MIPS_ACOMMON
16360 || sym->st_shndx == SHN_MIPS_SCOMMON);
16361 }
16362
16363 /* Return address for Ith PLT stub in section PLT, for relocation REL
16364 or (bfd_vma) -1 if it should not be included. */
16365
16366 bfd_vma
16367 _bfd_mips_elf_plt_sym_val (bfd_vma i, const asection *plt,
16368 const arelent *rel ATTRIBUTE_UNUSED)
16369 {
16370 return (plt->vma
16371 + 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry)
16372 + i * 4 * ARRAY_SIZE (mips_exec_plt_entry));
16373 }
16374
16375 /* Build a table of synthetic symbols to represent the PLT. As with MIPS16
16376 and microMIPS PLT slots we may have a many-to-one mapping between .plt
16377 and .got.plt and also the slots may be of a different size each we walk
16378 the PLT manually fetching instructions and matching them against known
16379 patterns. To make things easier standard MIPS slots, if any, always come
16380 first. As we don't create proper ELF symbols we use the UDATA.I member
16381 of ASYMBOL to carry ISA annotation. The encoding used is the same as
16382 with the ST_OTHER member of the ELF symbol. */
16383
16384 long
16385 _bfd_mips_elf_get_synthetic_symtab (bfd *abfd,
16386 long symcount ATTRIBUTE_UNUSED,
16387 asymbol **syms ATTRIBUTE_UNUSED,
16388 long dynsymcount, asymbol **dynsyms,
16389 asymbol **ret)
16390 {
16391 static const char pltname[] = "_PROCEDURE_LINKAGE_TABLE_";
16392 static const char microsuffix[] = "@micromipsplt";
16393 static const char m16suffix[] = "@mips16plt";
16394 static const char mipssuffix[] = "@plt";
16395
16396 bfd_boolean (*slurp_relocs) (bfd *, asection *, asymbol **, bfd_boolean);
16397 const struct elf_backend_data *bed = get_elf_backend_data (abfd);
16398 bfd_boolean micromips_p = MICROMIPS_P (abfd);
16399 Elf_Internal_Shdr *hdr;
16400 bfd_byte *plt_data;
16401 bfd_vma plt_offset;
16402 unsigned int other;
16403 bfd_vma entry_size;
16404 bfd_vma plt0_size;
16405 asection *relplt;
16406 bfd_vma opcode;
16407 asection *plt;
16408 asymbol *send;
16409 size_t size;
16410 char *names;
16411 long counti;
16412 arelent *p;
16413 asymbol *s;
16414 char *nend;
16415 long count;
16416 long pi;
16417 long i;
16418 long n;
16419
16420 *ret = NULL;
16421
16422 if ((abfd->flags & (DYNAMIC | EXEC_P)) == 0 || dynsymcount <= 0)
16423 return 0;
16424
16425 relplt = bfd_get_section_by_name (abfd, ".rel.plt");
16426 if (relplt == NULL)
16427 return 0;
16428
16429 hdr = &elf_section_data (relplt)->this_hdr;
16430 if (hdr->sh_link != elf_dynsymtab (abfd) || hdr->sh_type != SHT_REL)
16431 return 0;
16432
16433 plt = bfd_get_section_by_name (abfd, ".plt");
16434 if (plt == NULL)
16435 return 0;
16436
16437 slurp_relocs = get_elf_backend_data (abfd)->s->slurp_reloc_table;
16438 if (!(*slurp_relocs) (abfd, relplt, dynsyms, TRUE))
16439 return -1;
16440 p = relplt->relocation;
16441
16442 /* Calculating the exact amount of space required for symbols would
16443 require two passes over the PLT, so just pessimise assuming two
16444 PLT slots per relocation. */
16445 count = relplt->size / hdr->sh_entsize;
16446 counti = count * bed->s->int_rels_per_ext_rel;
16447 size = 2 * count * sizeof (asymbol);
16448 size += count * (sizeof (mipssuffix) +
16449 (micromips_p ? sizeof (microsuffix) : sizeof (m16suffix)));
16450 for (pi = 0; pi < counti; pi += bed->s->int_rels_per_ext_rel)
16451 size += 2 * strlen ((*p[pi].sym_ptr_ptr)->name);
16452
16453 /* Add the size of "_PROCEDURE_LINKAGE_TABLE_" too. */
16454 size += sizeof (asymbol) + sizeof (pltname);
16455
16456 if (!bfd_malloc_and_get_section (abfd, plt, &plt_data))
16457 return -1;
16458
16459 if (plt->size < 16)
16460 return -1;
16461
16462 s = *ret = bfd_malloc (size);
16463 if (s == NULL)
16464 return -1;
16465 send = s + 2 * count + 1;
16466
16467 names = (char *) send;
16468 nend = (char *) s + size;
16469 n = 0;
16470
16471 opcode = bfd_get_micromips_32 (abfd, plt_data + 12);
16472 if (opcode == 0x3302fffe)
16473 {
16474 if (!micromips_p)
16475 return -1;
16476 plt0_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt0_entry);
16477 other = STO_MICROMIPS;
16478 }
16479 else if (opcode == 0x0398c1d0)
16480 {
16481 if (!micromips_p)
16482 return -1;
16483 plt0_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt0_entry);
16484 other = STO_MICROMIPS;
16485 }
16486 else
16487 {
16488 plt0_size = 4 * ARRAY_SIZE (mips_o32_exec_plt0_entry);
16489 other = 0;
16490 }
16491
16492 s->the_bfd = abfd;
16493 s->flags = BSF_SYNTHETIC | BSF_FUNCTION | BSF_LOCAL;
16494 s->section = plt;
16495 s->value = 0;
16496 s->name = names;
16497 s->udata.i = other;
16498 memcpy (names, pltname, sizeof (pltname));
16499 names += sizeof (pltname);
16500 ++s, ++n;
16501
16502 pi = 0;
16503 for (plt_offset = plt0_size;
16504 plt_offset + 8 <= plt->size && s < send;
16505 plt_offset += entry_size)
16506 {
16507 bfd_vma gotplt_addr;
16508 const char *suffix;
16509 bfd_vma gotplt_hi;
16510 bfd_vma gotplt_lo;
16511 size_t suffixlen;
16512
16513 opcode = bfd_get_micromips_32 (abfd, plt_data + plt_offset + 4);
16514
16515 /* Check if the second word matches the expected MIPS16 instruction. */
16516 if (opcode == 0x651aeb00)
16517 {
16518 if (micromips_p)
16519 return -1;
16520 /* Truncated table??? */
16521 if (plt_offset + 16 > plt->size)
16522 break;
16523 gotplt_addr = bfd_get_32 (abfd, plt_data + plt_offset + 12);
16524 entry_size = 2 * ARRAY_SIZE (mips16_o32_exec_plt_entry);
16525 suffixlen = sizeof (m16suffix);
16526 suffix = m16suffix;
16527 other = STO_MIPS16;
16528 }
16529 /* Likewise the expected microMIPS instruction (no insn32 mode). */
16530 else if (opcode == 0xff220000)
16531 {
16532 if (!micromips_p)
16533 return -1;
16534 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset) & 0x7f;
16535 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16536 gotplt_hi = ((gotplt_hi ^ 0x40) - 0x40) << 18;
16537 gotplt_lo <<= 2;
16538 gotplt_addr = gotplt_hi + gotplt_lo;
16539 gotplt_addr += ((plt->vma + plt_offset) | 3) ^ 3;
16540 entry_size = 2 * ARRAY_SIZE (micromips_o32_exec_plt_entry);
16541 suffixlen = sizeof (microsuffix);
16542 suffix = microsuffix;
16543 other = STO_MICROMIPS;
16544 }
16545 /* Likewise the expected microMIPS instruction (insn32 mode). */
16546 else if ((opcode & 0xffff0000) == 0xff2f0000)
16547 {
16548 gotplt_hi = bfd_get_16 (abfd, plt_data + plt_offset + 2) & 0xffff;
16549 gotplt_lo = bfd_get_16 (abfd, plt_data + plt_offset + 6) & 0xffff;
16550 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16551 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16552 gotplt_addr = gotplt_hi + gotplt_lo;
16553 entry_size = 2 * ARRAY_SIZE (micromips_insn32_o32_exec_plt_entry);
16554 suffixlen = sizeof (microsuffix);
16555 suffix = microsuffix;
16556 other = STO_MICROMIPS;
16557 }
16558 /* Otherwise assume standard MIPS code. */
16559 else
16560 {
16561 gotplt_hi = bfd_get_32 (abfd, plt_data + plt_offset) & 0xffff;
16562 gotplt_lo = bfd_get_32 (abfd, plt_data + plt_offset + 4) & 0xffff;
16563 gotplt_hi = ((gotplt_hi ^ 0x8000) - 0x8000) << 16;
16564 gotplt_lo = (gotplt_lo ^ 0x8000) - 0x8000;
16565 gotplt_addr = gotplt_hi + gotplt_lo;
16566 entry_size = 4 * ARRAY_SIZE (mips_exec_plt_entry);
16567 suffixlen = sizeof (mipssuffix);
16568 suffix = mipssuffix;
16569 other = 0;
16570 }
16571 /* Truncated table??? */
16572 if (plt_offset + entry_size > plt->size)
16573 break;
16574
16575 for (i = 0;
16576 i < count && p[pi].address != gotplt_addr;
16577 i++, pi = (pi + bed->s->int_rels_per_ext_rel) % counti);
16578
16579 if (i < count)
16580 {
16581 size_t namelen;
16582 size_t len;
16583
16584 *s = **p[pi].sym_ptr_ptr;
16585 /* Undefined syms won't have BSF_LOCAL or BSF_GLOBAL set. Since
16586 we are defining a symbol, ensure one of them is set. */
16587 if ((s->flags & BSF_LOCAL) == 0)
16588 s->flags |= BSF_GLOBAL;
16589 s->flags |= BSF_SYNTHETIC;
16590 s->section = plt;
16591 s->value = plt_offset;
16592 s->name = names;
16593 s->udata.i = other;
16594
16595 len = strlen ((*p[pi].sym_ptr_ptr)->name);
16596 namelen = len + suffixlen;
16597 if (names + namelen > nend)
16598 break;
16599
16600 memcpy (names, (*p[pi].sym_ptr_ptr)->name, len);
16601 names += len;
16602 memcpy (names, suffix, suffixlen);
16603 names += suffixlen;
16604
16605 ++s, ++n;
16606 pi = (pi + bed->s->int_rels_per_ext_rel) % counti;
16607 }
16608 }
16609
16610 free (plt_data);
16611
16612 return n;
16613 }
16614
16615 /* Return the ABI flags associated with ABFD if available. */
16616
16617 Elf_Internal_ABIFlags_v0 *
16618 bfd_mips_elf_get_abiflags (bfd *abfd)
16619 {
16620 struct mips_elf_obj_tdata *tdata = mips_elf_tdata (abfd);
16621
16622 return tdata->abiflags_valid ? &tdata->abiflags : NULL;
16623 }
16624
16625 /* MIPS libc ABI versions, used with the EI_ABIVERSION ELF file header
16626 field. Taken from `libc-abis.h' generated at GNU libc build time.
16627 Using a MIPS_ prefix as other libc targets use different values. */
16628 enum
16629 {
16630 MIPS_LIBC_ABI_DEFAULT = 0,
16631 MIPS_LIBC_ABI_MIPS_PLT,
16632 MIPS_LIBC_ABI_UNIQUE,
16633 MIPS_LIBC_ABI_MIPS_O32_FP64,
16634 MIPS_LIBC_ABI_ABSOLUTE,
16635 MIPS_LIBC_ABI_XHASH,
16636 MIPS_LIBC_ABI_MAX
16637 };
16638
16639 bfd_boolean
16640 _bfd_mips_init_file_header (bfd *abfd, struct bfd_link_info *link_info)
16641 {
16642 struct mips_elf_link_hash_table *htab = NULL;
16643 Elf_Internal_Ehdr *i_ehdrp;
16644
16645 if (!_bfd_elf_init_file_header (abfd, link_info))
16646 return FALSE;
16647
16648 i_ehdrp = elf_elfheader (abfd);
16649 if (link_info)
16650 {
16651 htab = mips_elf_hash_table (link_info);
16652 BFD_ASSERT (htab != NULL);
16653 }
16654
16655 if (htab != NULL && htab->use_plts_and_copy_relocs && !htab->is_vxworks)
16656 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_PLT;
16657
16658 if (mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64
16659 || mips_elf_tdata (abfd)->abiflags.fp_abi == Val_GNU_MIPS_ABI_FP_64A)
16660 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_MIPS_O32_FP64;
16661
16662 /* Mark that we need support for absolute symbols in the dynamic loader. */
16663 if (htab != NULL && htab->use_absolute_zero && htab->gnu_target)
16664 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_ABSOLUTE;
16665
16666 /* Mark that we need support for .MIPS.xhash in the dynamic linker,
16667 if it is the only hash section that will be created. */
16668 if (link_info && link_info->emit_gnu_hash && !link_info->emit_hash)
16669 i_ehdrp->e_ident[EI_ABIVERSION] = MIPS_LIBC_ABI_XHASH;
16670 return TRUE;
16671 }
16672
16673 int
16674 _bfd_mips_elf_compact_eh_encoding
16675 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16676 {
16677 return DW_EH_PE_pcrel | DW_EH_PE_sdata4;
16678 }
16679
16680 /* Return the opcode for can't unwind. */
16681
16682 int
16683 _bfd_mips_elf_cant_unwind_opcode
16684 (struct bfd_link_info *link_info ATTRIBUTE_UNUSED)
16685 {
16686 return COMPACT_EH_CANT_UNWIND_OPCODE;
16687 }
16688
16689 /* Record a position XLAT_LOC in the xlat translation table, associated with
16690 the hash entry H. The entry in the translation table will later be
16691 populated with the real symbol dynindx. */
16692
16693 void
16694 _bfd_mips_elf_record_xhash_symbol (struct elf_link_hash_entry *h,
16695 bfd_vma xlat_loc)
16696 {
16697 struct mips_elf_link_hash_entry *hmips;
16698
16699 hmips = (struct mips_elf_link_hash_entry *) h;
16700 hmips->mipsxhash_loc = xlat_loc;
16701 }
This page took 0.452712 seconds and 4 git commands to generate.