b8d80210eb17232e18a9fffce2234745d0cdc266
[deliverable/binutils-gdb.git] / gdb / amd64-tdep.c
1 /* Target-dependent code for AMD64.
2
3 Copyright (C) 2001-2020 Free Software Foundation, Inc.
4
5 Contributed by Jiri Smid, SuSE Labs.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "opcode/i386.h"
24 #include "dis-asm.h"
25 #include "arch-utils.h"
26 #include "block.h"
27 #include "dummy-frame.h"
28 #include "frame.h"
29 #include "frame-base.h"
30 #include "frame-unwind.h"
31 #include "inferior.h"
32 #include "infrun.h"
33 #include "gdbcmd.h"
34 #include "gdbcore.h"
35 #include "objfiles.h"
36 #include "regcache.h"
37 #include "regset.h"
38 #include "symfile.h"
39 #include "disasm.h"
40 #include "amd64-tdep.h"
41 #include "i387-tdep.h"
42 #include "gdbsupport/x86-xstate.h"
43 #include <algorithm>
44 #include "target-descriptions.h"
45 #include "arch/amd64.h"
46 #include "producer.h"
47 #include "ax.h"
48 #include "ax-gdb.h"
49 #include "gdbsupport/byte-vector.h"
50 #include "osabi.h"
51 #include "x86-tdep.h"
52
53 /* Note that the AMD64 architecture was previously known as x86-64.
54 The latter is (forever) engraved into the canonical system name as
55 returned by config.guess, and used as the name for the AMD64 port
56 of GNU/Linux. The BSD's have renamed their ports to amd64; they
57 don't like to shout. For GDB we prefer the amd64_-prefix over the
58 x86_64_-prefix since it's so much easier to type. */
59
60 /* Register information. */
61
62 static const char *amd64_register_names[] =
63 {
64 "rax", "rbx", "rcx", "rdx", "rsi", "rdi", "rbp", "rsp",
65
66 /* %r8 is indeed register number 8. */
67 "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15",
68 "rip", "eflags", "cs", "ss", "ds", "es", "fs", "gs",
69
70 /* %st0 is register number 24. */
71 "st0", "st1", "st2", "st3", "st4", "st5", "st6", "st7",
72 "fctrl", "fstat", "ftag", "fiseg", "fioff", "foseg", "fooff", "fop",
73
74 /* %xmm0 is register number 40. */
75 "xmm0", "xmm1", "xmm2", "xmm3", "xmm4", "xmm5", "xmm6", "xmm7",
76 "xmm8", "xmm9", "xmm10", "xmm11", "xmm12", "xmm13", "xmm14", "xmm15",
77 "mxcsr",
78 };
79
80 static const char *amd64_ymm_names[] =
81 {
82 "ymm0", "ymm1", "ymm2", "ymm3",
83 "ymm4", "ymm5", "ymm6", "ymm7",
84 "ymm8", "ymm9", "ymm10", "ymm11",
85 "ymm12", "ymm13", "ymm14", "ymm15"
86 };
87
88 static const char *amd64_ymm_avx512_names[] =
89 {
90 "ymm16", "ymm17", "ymm18", "ymm19",
91 "ymm20", "ymm21", "ymm22", "ymm23",
92 "ymm24", "ymm25", "ymm26", "ymm27",
93 "ymm28", "ymm29", "ymm30", "ymm31"
94 };
95
96 static const char *amd64_ymmh_names[] =
97 {
98 "ymm0h", "ymm1h", "ymm2h", "ymm3h",
99 "ymm4h", "ymm5h", "ymm6h", "ymm7h",
100 "ymm8h", "ymm9h", "ymm10h", "ymm11h",
101 "ymm12h", "ymm13h", "ymm14h", "ymm15h"
102 };
103
104 static const char *amd64_ymmh_avx512_names[] =
105 {
106 "ymm16h", "ymm17h", "ymm18h", "ymm19h",
107 "ymm20h", "ymm21h", "ymm22h", "ymm23h",
108 "ymm24h", "ymm25h", "ymm26h", "ymm27h",
109 "ymm28h", "ymm29h", "ymm30h", "ymm31h"
110 };
111
112 static const char *amd64_mpx_names[] =
113 {
114 "bnd0raw", "bnd1raw", "bnd2raw", "bnd3raw", "bndcfgu", "bndstatus"
115 };
116
117 static const char *amd64_k_names[] =
118 {
119 "k0", "k1", "k2", "k3",
120 "k4", "k5", "k6", "k7"
121 };
122
123 static const char *amd64_zmmh_names[] =
124 {
125 "zmm0h", "zmm1h", "zmm2h", "zmm3h",
126 "zmm4h", "zmm5h", "zmm6h", "zmm7h",
127 "zmm8h", "zmm9h", "zmm10h", "zmm11h",
128 "zmm12h", "zmm13h", "zmm14h", "zmm15h",
129 "zmm16h", "zmm17h", "zmm18h", "zmm19h",
130 "zmm20h", "zmm21h", "zmm22h", "zmm23h",
131 "zmm24h", "zmm25h", "zmm26h", "zmm27h",
132 "zmm28h", "zmm29h", "zmm30h", "zmm31h"
133 };
134
135 static const char *amd64_zmm_names[] =
136 {
137 "zmm0", "zmm1", "zmm2", "zmm3",
138 "zmm4", "zmm5", "zmm6", "zmm7",
139 "zmm8", "zmm9", "zmm10", "zmm11",
140 "zmm12", "zmm13", "zmm14", "zmm15",
141 "zmm16", "zmm17", "zmm18", "zmm19",
142 "zmm20", "zmm21", "zmm22", "zmm23",
143 "zmm24", "zmm25", "zmm26", "zmm27",
144 "zmm28", "zmm29", "zmm30", "zmm31"
145 };
146
147 static const char *amd64_xmm_avx512_names[] = {
148 "xmm16", "xmm17", "xmm18", "xmm19",
149 "xmm20", "xmm21", "xmm22", "xmm23",
150 "xmm24", "xmm25", "xmm26", "xmm27",
151 "xmm28", "xmm29", "xmm30", "xmm31"
152 };
153
154 static const char *amd64_pkeys_names[] = {
155 "pkru"
156 };
157
158 /* DWARF Register Number Mapping as defined in the System V psABI,
159 section 3.6. */
160
161 static int amd64_dwarf_regmap[] =
162 {
163 /* General Purpose Registers RAX, RDX, RCX, RBX, RSI, RDI. */
164 AMD64_RAX_REGNUM, AMD64_RDX_REGNUM,
165 AMD64_RCX_REGNUM, AMD64_RBX_REGNUM,
166 AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
167
168 /* Frame Pointer Register RBP. */
169 AMD64_RBP_REGNUM,
170
171 /* Stack Pointer Register RSP. */
172 AMD64_RSP_REGNUM,
173
174 /* Extended Integer Registers 8 - 15. */
175 AMD64_R8_REGNUM, /* %r8 */
176 AMD64_R9_REGNUM, /* %r9 */
177 AMD64_R10_REGNUM, /* %r10 */
178 AMD64_R11_REGNUM, /* %r11 */
179 AMD64_R12_REGNUM, /* %r12 */
180 AMD64_R13_REGNUM, /* %r13 */
181 AMD64_R14_REGNUM, /* %r14 */
182 AMD64_R15_REGNUM, /* %r15 */
183
184 /* Return Address RA. Mapped to RIP. */
185 AMD64_RIP_REGNUM,
186
187 /* SSE Registers 0 - 7. */
188 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
189 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
190 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
191 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
192
193 /* Extended SSE Registers 8 - 15. */
194 AMD64_XMM0_REGNUM + 8, AMD64_XMM0_REGNUM + 9,
195 AMD64_XMM0_REGNUM + 10, AMD64_XMM0_REGNUM + 11,
196 AMD64_XMM0_REGNUM + 12, AMD64_XMM0_REGNUM + 13,
197 AMD64_XMM0_REGNUM + 14, AMD64_XMM0_REGNUM + 15,
198
199 /* Floating Point Registers 0-7. */
200 AMD64_ST0_REGNUM + 0, AMD64_ST0_REGNUM + 1,
201 AMD64_ST0_REGNUM + 2, AMD64_ST0_REGNUM + 3,
202 AMD64_ST0_REGNUM + 4, AMD64_ST0_REGNUM + 5,
203 AMD64_ST0_REGNUM + 6, AMD64_ST0_REGNUM + 7,
204
205 /* MMX Registers 0 - 7.
206 We have to handle those registers specifically, as their register
207 number within GDB depends on the target (or they may even not be
208 available at all). */
209 -1, -1, -1, -1, -1, -1, -1, -1,
210
211 /* Control and Status Flags Register. */
212 AMD64_EFLAGS_REGNUM,
213
214 /* Selector Registers. */
215 AMD64_ES_REGNUM,
216 AMD64_CS_REGNUM,
217 AMD64_SS_REGNUM,
218 AMD64_DS_REGNUM,
219 AMD64_FS_REGNUM,
220 AMD64_GS_REGNUM,
221 -1,
222 -1,
223
224 /* Segment Base Address Registers. */
225 -1,
226 -1,
227 -1,
228 -1,
229
230 /* Special Selector Registers. */
231 -1,
232 -1,
233
234 /* Floating Point Control Registers. */
235 AMD64_MXCSR_REGNUM,
236 AMD64_FCTRL_REGNUM,
237 AMD64_FSTAT_REGNUM
238 };
239
240 static const int amd64_dwarf_regmap_len =
241 (sizeof (amd64_dwarf_regmap) / sizeof (amd64_dwarf_regmap[0]));
242
243 /* Convert DWARF register number REG to the appropriate register
244 number used by GDB. */
245
246 static int
247 amd64_dwarf_reg_to_regnum (struct gdbarch *gdbarch, int reg)
248 {
249 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
250 int ymm0_regnum = tdep->ymm0_regnum;
251 int regnum = -1;
252
253 if (reg >= 0 && reg < amd64_dwarf_regmap_len)
254 regnum = amd64_dwarf_regmap[reg];
255
256 if (ymm0_regnum >= 0
257 && i386_xmm_regnum_p (gdbarch, regnum))
258 regnum += ymm0_regnum - I387_XMM0_REGNUM (tdep);
259
260 return regnum;
261 }
262
263 /* Map architectural register numbers to gdb register numbers. */
264
265 static const int amd64_arch_regmap[16] =
266 {
267 AMD64_RAX_REGNUM, /* %rax */
268 AMD64_RCX_REGNUM, /* %rcx */
269 AMD64_RDX_REGNUM, /* %rdx */
270 AMD64_RBX_REGNUM, /* %rbx */
271 AMD64_RSP_REGNUM, /* %rsp */
272 AMD64_RBP_REGNUM, /* %rbp */
273 AMD64_RSI_REGNUM, /* %rsi */
274 AMD64_RDI_REGNUM, /* %rdi */
275 AMD64_R8_REGNUM, /* %r8 */
276 AMD64_R9_REGNUM, /* %r9 */
277 AMD64_R10_REGNUM, /* %r10 */
278 AMD64_R11_REGNUM, /* %r11 */
279 AMD64_R12_REGNUM, /* %r12 */
280 AMD64_R13_REGNUM, /* %r13 */
281 AMD64_R14_REGNUM, /* %r14 */
282 AMD64_R15_REGNUM /* %r15 */
283 };
284
285 static const int amd64_arch_regmap_len =
286 (sizeof (amd64_arch_regmap) / sizeof (amd64_arch_regmap[0]));
287
288 /* Convert architectural register number REG to the appropriate register
289 number used by GDB. */
290
291 static int
292 amd64_arch_reg_to_regnum (int reg)
293 {
294 gdb_assert (reg >= 0 && reg < amd64_arch_regmap_len);
295
296 return amd64_arch_regmap[reg];
297 }
298
299 /* Register names for byte pseudo-registers. */
300
301 static const char *amd64_byte_names[] =
302 {
303 "al", "bl", "cl", "dl", "sil", "dil", "bpl", "spl",
304 "r8l", "r9l", "r10l", "r11l", "r12l", "r13l", "r14l", "r15l",
305 "ah", "bh", "ch", "dh"
306 };
307
308 /* Number of lower byte registers. */
309 #define AMD64_NUM_LOWER_BYTE_REGS 16
310
311 /* Register names for word pseudo-registers. */
312
313 static const char *amd64_word_names[] =
314 {
315 "ax", "bx", "cx", "dx", "si", "di", "bp", "",
316 "r8w", "r9w", "r10w", "r11w", "r12w", "r13w", "r14w", "r15w"
317 };
318
319 /* Register names for dword pseudo-registers. */
320
321 static const char *amd64_dword_names[] =
322 {
323 "eax", "ebx", "ecx", "edx", "esi", "edi", "ebp", "esp",
324 "r8d", "r9d", "r10d", "r11d", "r12d", "r13d", "r14d", "r15d",
325 "eip"
326 };
327
328 /* Return the name of register REGNUM. */
329
330 static const char *
331 amd64_pseudo_register_name (struct gdbarch *gdbarch, int regnum)
332 {
333 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
334 if (i386_byte_regnum_p (gdbarch, regnum))
335 return amd64_byte_names[regnum - tdep->al_regnum];
336 else if (i386_zmm_regnum_p (gdbarch, regnum))
337 return amd64_zmm_names[regnum - tdep->zmm0_regnum];
338 else if (i386_ymm_regnum_p (gdbarch, regnum))
339 return amd64_ymm_names[regnum - tdep->ymm0_regnum];
340 else if (i386_ymm_avx512_regnum_p (gdbarch, regnum))
341 return amd64_ymm_avx512_names[regnum - tdep->ymm16_regnum];
342 else if (i386_word_regnum_p (gdbarch, regnum))
343 return amd64_word_names[regnum - tdep->ax_regnum];
344 else if (i386_dword_regnum_p (gdbarch, regnum))
345 return amd64_dword_names[regnum - tdep->eax_regnum];
346 else
347 return i386_pseudo_register_name (gdbarch, regnum);
348 }
349
350 static struct value *
351 amd64_pseudo_register_read_value (struct gdbarch *gdbarch,
352 readable_regcache *regcache,
353 int regnum)
354 {
355 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
356
357 value *result_value = allocate_value (register_type (gdbarch, regnum));
358 VALUE_LVAL (result_value) = lval_register;
359 VALUE_REGNUM (result_value) = regnum;
360 gdb_byte *buf = value_contents_raw (result_value);
361
362 if (i386_byte_regnum_p (gdbarch, regnum))
363 {
364 int gpnum = regnum - tdep->al_regnum;
365
366 /* Extract (always little endian). */
367 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
368 {
369 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
370 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
371
372 /* Special handling for AH, BH, CH, DH. */
373 register_status status = regcache->raw_read (gpnum, raw_buf);
374 if (status == REG_VALID)
375 memcpy (buf, raw_buf + 1, 1);
376 else
377 mark_value_bytes_unavailable (result_value, 0,
378 TYPE_LENGTH (value_type (result_value)));
379 }
380 else
381 {
382 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
383 register_status status = regcache->raw_read (gpnum, raw_buf);
384 if (status == REG_VALID)
385 memcpy (buf, raw_buf, 1);
386 else
387 mark_value_bytes_unavailable (result_value, 0,
388 TYPE_LENGTH (value_type (result_value)));
389 }
390 }
391 else if (i386_dword_regnum_p (gdbarch, regnum))
392 {
393 int gpnum = regnum - tdep->eax_regnum;
394 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
395 /* Extract (always little endian). */
396 register_status status = regcache->raw_read (gpnum, raw_buf);
397 if (status == REG_VALID)
398 memcpy (buf, raw_buf, 4);
399 else
400 mark_value_bytes_unavailable (result_value, 0,
401 TYPE_LENGTH (value_type (result_value)));
402 }
403 else
404 i386_pseudo_register_read_into_value (gdbarch, regcache, regnum,
405 result_value);
406
407 return result_value;
408 }
409
410 static void
411 amd64_pseudo_register_write (struct gdbarch *gdbarch,
412 struct regcache *regcache,
413 int regnum, const gdb_byte *buf)
414 {
415 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
416
417 if (i386_byte_regnum_p (gdbarch, regnum))
418 {
419 int gpnum = regnum - tdep->al_regnum;
420
421 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
422 {
423 gpnum -= AMD64_NUM_LOWER_BYTE_REGS;
424 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
425
426 /* Read ... AH, BH, CH, DH. */
427 regcache->raw_read (gpnum, raw_buf);
428 /* ... Modify ... (always little endian). */
429 memcpy (raw_buf + 1, buf, 1);
430 /* ... Write. */
431 regcache->raw_write (gpnum, raw_buf);
432 }
433 else
434 {
435 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
436
437 /* Read ... */
438 regcache->raw_read (gpnum, raw_buf);
439 /* ... Modify ... (always little endian). */
440 memcpy (raw_buf, buf, 1);
441 /* ... Write. */
442 regcache->raw_write (gpnum, raw_buf);
443 }
444 }
445 else if (i386_dword_regnum_p (gdbarch, regnum))
446 {
447 int gpnum = regnum - tdep->eax_regnum;
448 gdb_byte raw_buf[register_size (gdbarch, gpnum)];
449
450 /* Read ... */
451 regcache->raw_read (gpnum, raw_buf);
452 /* ... Modify ... (always little endian). */
453 memcpy (raw_buf, buf, 4);
454 /* ... Write. */
455 regcache->raw_write (gpnum, raw_buf);
456 }
457 else
458 i386_pseudo_register_write (gdbarch, regcache, regnum, buf);
459 }
460
461 /* Implement the 'ax_pseudo_register_collect' gdbarch method. */
462
463 static int
464 amd64_ax_pseudo_register_collect (struct gdbarch *gdbarch,
465 struct agent_expr *ax, int regnum)
466 {
467 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
468
469 if (i386_byte_regnum_p (gdbarch, regnum))
470 {
471 int gpnum = regnum - tdep->al_regnum;
472
473 if (gpnum >= AMD64_NUM_LOWER_BYTE_REGS)
474 ax_reg_mask (ax, gpnum - AMD64_NUM_LOWER_BYTE_REGS);
475 else
476 ax_reg_mask (ax, gpnum);
477 return 0;
478 }
479 else if (i386_dword_regnum_p (gdbarch, regnum))
480 {
481 int gpnum = regnum - tdep->eax_regnum;
482
483 ax_reg_mask (ax, gpnum);
484 return 0;
485 }
486 else
487 return i386_ax_pseudo_register_collect (gdbarch, ax, regnum);
488 }
489
490 \f
491
492 /* Register classes as defined in the psABI. */
493
494 enum amd64_reg_class
495 {
496 AMD64_INTEGER,
497 AMD64_SSE,
498 AMD64_SSEUP,
499 AMD64_X87,
500 AMD64_X87UP,
501 AMD64_COMPLEX_X87,
502 AMD64_NO_CLASS,
503 AMD64_MEMORY
504 };
505
506 /* Return the union class of CLASS1 and CLASS2. See the psABI for
507 details. */
508
509 static enum amd64_reg_class
510 amd64_merge_classes (enum amd64_reg_class class1, enum amd64_reg_class class2)
511 {
512 /* Rule (a): If both classes are equal, this is the resulting class. */
513 if (class1 == class2)
514 return class1;
515
516 /* Rule (b): If one of the classes is NO_CLASS, the resulting class
517 is the other class. */
518 if (class1 == AMD64_NO_CLASS)
519 return class2;
520 if (class2 == AMD64_NO_CLASS)
521 return class1;
522
523 /* Rule (c): If one of the classes is MEMORY, the result is MEMORY. */
524 if (class1 == AMD64_MEMORY || class2 == AMD64_MEMORY)
525 return AMD64_MEMORY;
526
527 /* Rule (d): If one of the classes is INTEGER, the result is INTEGER. */
528 if (class1 == AMD64_INTEGER || class2 == AMD64_INTEGER)
529 return AMD64_INTEGER;
530
531 /* Rule (e): If one of the classes is X87, X87UP, COMPLEX_X87 class,
532 MEMORY is used as class. */
533 if (class1 == AMD64_X87 || class1 == AMD64_X87UP
534 || class1 == AMD64_COMPLEX_X87 || class2 == AMD64_X87
535 || class2 == AMD64_X87UP || class2 == AMD64_COMPLEX_X87)
536 return AMD64_MEMORY;
537
538 /* Rule (f): Otherwise class SSE is used. */
539 return AMD64_SSE;
540 }
541
542 static void amd64_classify (struct type *type, enum amd64_reg_class theclass[2]);
543
544 /* Return true if TYPE is a structure or union with unaligned fields. */
545
546 static bool
547 amd64_has_unaligned_fields (struct type *type)
548 {
549 if (TYPE_CODE (type) == TYPE_CODE_STRUCT
550 || TYPE_CODE (type) == TYPE_CODE_UNION)
551 {
552 for (int i = 0; i < TYPE_NFIELDS (type); i++)
553 {
554 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
555 int bitpos = TYPE_FIELD_BITPOS (type, i);
556 int align = type_align(subtype);
557
558 /* Ignore static fields, empty fields (for example nested
559 empty structures), and bitfields (these are handled by
560 the caller). */
561 if (field_is_static (&TYPE_FIELD (type, i))
562 || (TYPE_FIELD_BITSIZE (type, i) == 0
563 && TYPE_LENGTH (subtype) == 0)
564 || TYPE_FIELD_PACKED (type, i))
565 continue;
566
567 if (bitpos % 8 != 0)
568 return true;
569
570 int bytepos = bitpos / 8;
571 if (bytepos % align != 0)
572 return true;
573
574 if (amd64_has_unaligned_fields (subtype))
575 return true;
576 }
577 }
578
579 return false;
580 }
581
582 /* Classify field I of TYPE starting at BITOFFSET according to the rules for
583 structures and union types, and store the result in THECLASS. */
584
585 static void
586 amd64_classify_aggregate_field (struct type *type, int i,
587 enum amd64_reg_class theclass[2],
588 unsigned int bitoffset)
589 {
590 struct type *subtype = check_typedef (TYPE_FIELD_TYPE (type, i));
591 int bitpos = bitoffset + TYPE_FIELD_BITPOS (type, i);
592 int pos = bitpos / 64;
593 enum amd64_reg_class subclass[2];
594 int bitsize = TYPE_FIELD_BITSIZE (type, i);
595 int endpos;
596
597 if (bitsize == 0)
598 bitsize = TYPE_LENGTH (subtype) * 8;
599 endpos = (bitpos + bitsize - 1) / 64;
600
601 /* Ignore static fields, or empty fields, for example nested
602 empty structures.*/
603 if (field_is_static (&TYPE_FIELD (type, i)) || bitsize == 0)
604 return;
605
606 if (TYPE_CODE (subtype) == TYPE_CODE_STRUCT
607 || TYPE_CODE (subtype) == TYPE_CODE_UNION)
608 {
609 /* Each field of an object is classified recursively. */
610 int j;
611 for (j = 0; j < TYPE_NFIELDS (subtype); j++)
612 amd64_classify_aggregate_field (subtype, j, theclass, bitpos);
613 return;
614 }
615
616 gdb_assert (pos == 0 || pos == 1);
617
618 amd64_classify (subtype, subclass);
619 theclass[pos] = amd64_merge_classes (theclass[pos], subclass[0]);
620 if (bitsize <= 64 && pos == 0 && endpos == 1)
621 /* This is a bit of an odd case: We have a field that would
622 normally fit in one of the two eightbytes, except that
623 it is placed in a way that this field straddles them.
624 This has been seen with a structure containing an array.
625
626 The ABI is a bit unclear in this case, but we assume that
627 this field's class (stored in subclass[0]) must also be merged
628 into class[1]. In other words, our field has a piece stored
629 in the second eight-byte, and thus its class applies to
630 the second eight-byte as well.
631
632 In the case where the field length exceeds 8 bytes,
633 it should not be necessary to merge the field class
634 into class[1]. As LEN > 8, subclass[1] is necessarily
635 different from AMD64_NO_CLASS. If subclass[1] is equal
636 to subclass[0], then the normal class[1]/subclass[1]
637 merging will take care of everything. For subclass[1]
638 to be different from subclass[0], I can only see the case
639 where we have a SSE/SSEUP or X87/X87UP pair, which both
640 use up all 16 bytes of the aggregate, and are already
641 handled just fine (because each portion sits on its own
642 8-byte). */
643 theclass[1] = amd64_merge_classes (theclass[1], subclass[0]);
644 if (pos == 0)
645 theclass[1] = amd64_merge_classes (theclass[1], subclass[1]);
646 }
647
648 /* Classify TYPE according to the rules for aggregate (structures and
649 arrays) and union types, and store the result in CLASS. */
650
651 static void
652 amd64_classify_aggregate (struct type *type, enum amd64_reg_class theclass[2])
653 {
654 /* 1. If the size of an object is larger than two eightbytes, or it has
655 unaligned fields, it has class memory. */
656 if (TYPE_LENGTH (type) > 16 || amd64_has_unaligned_fields (type))
657 {
658 theclass[0] = theclass[1] = AMD64_MEMORY;
659 return;
660 }
661
662 /* 2. Both eightbytes get initialized to class NO_CLASS. */
663 theclass[0] = theclass[1] = AMD64_NO_CLASS;
664
665 /* 3. Each field of an object is classified recursively so that
666 always two fields are considered. The resulting class is
667 calculated according to the classes of the fields in the
668 eightbyte: */
669
670 if (TYPE_CODE (type) == TYPE_CODE_ARRAY)
671 {
672 struct type *subtype = check_typedef (TYPE_TARGET_TYPE (type));
673
674 /* All fields in an array have the same type. */
675 amd64_classify (subtype, theclass);
676 if (TYPE_LENGTH (type) > 8 && theclass[1] == AMD64_NO_CLASS)
677 theclass[1] = theclass[0];
678 }
679 else
680 {
681 int i;
682
683 /* Structure or union. */
684 gdb_assert (TYPE_CODE (type) == TYPE_CODE_STRUCT
685 || TYPE_CODE (type) == TYPE_CODE_UNION);
686
687 for (i = 0; i < TYPE_NFIELDS (type); i++)
688 amd64_classify_aggregate_field (type, i, theclass, 0);
689 }
690
691 /* 4. Then a post merger cleanup is done: */
692
693 /* Rule (a): If one of the classes is MEMORY, the whole argument is
694 passed in memory. */
695 if (theclass[0] == AMD64_MEMORY || theclass[1] == AMD64_MEMORY)
696 theclass[0] = theclass[1] = AMD64_MEMORY;
697
698 /* Rule (b): If SSEUP is not preceded by SSE, it is converted to
699 SSE. */
700 if (theclass[0] == AMD64_SSEUP)
701 theclass[0] = AMD64_SSE;
702 if (theclass[1] == AMD64_SSEUP && theclass[0] != AMD64_SSE)
703 theclass[1] = AMD64_SSE;
704 }
705
706 /* Classify TYPE, and store the result in CLASS. */
707
708 static void
709 amd64_classify (struct type *type, enum amd64_reg_class theclass[2])
710 {
711 enum type_code code = TYPE_CODE (type);
712 int len = TYPE_LENGTH (type);
713
714 theclass[0] = theclass[1] = AMD64_NO_CLASS;
715
716 /* Arguments of types (signed and unsigned) _Bool, char, short, int,
717 long, long long, and pointers are in the INTEGER class. Similarly,
718 range types, used by languages such as Ada, are also in the INTEGER
719 class. */
720 if ((code == TYPE_CODE_INT || code == TYPE_CODE_ENUM
721 || code == TYPE_CODE_BOOL || code == TYPE_CODE_RANGE
722 || code == TYPE_CODE_CHAR
723 || code == TYPE_CODE_PTR || TYPE_IS_REFERENCE (type))
724 && (len == 1 || len == 2 || len == 4 || len == 8))
725 theclass[0] = AMD64_INTEGER;
726
727 /* Arguments of types float, double, _Decimal32, _Decimal64 and __m64
728 are in class SSE. */
729 else if ((code == TYPE_CODE_FLT || code == TYPE_CODE_DECFLOAT)
730 && (len == 4 || len == 8))
731 /* FIXME: __m64 . */
732 theclass[0] = AMD64_SSE;
733
734 /* Arguments of types __float128, _Decimal128 and __m128 are split into
735 two halves. The least significant ones belong to class SSE, the most
736 significant one to class SSEUP. */
737 else if (code == TYPE_CODE_DECFLOAT && len == 16)
738 /* FIXME: __float128, __m128. */
739 theclass[0] = AMD64_SSE, theclass[1] = AMD64_SSEUP;
740
741 /* The 64-bit mantissa of arguments of type long double belongs to
742 class X87, the 16-bit exponent plus 6 bytes of padding belongs to
743 class X87UP. */
744 else if (code == TYPE_CODE_FLT && len == 16)
745 /* Class X87 and X87UP. */
746 theclass[0] = AMD64_X87, theclass[1] = AMD64_X87UP;
747
748 /* Arguments of complex T where T is one of the types float or
749 double get treated as if they are implemented as:
750
751 struct complexT {
752 T real;
753 T imag;
754 };
755
756 */
757 else if (code == TYPE_CODE_COMPLEX && len == 8)
758 theclass[0] = AMD64_SSE;
759 else if (code == TYPE_CODE_COMPLEX && len == 16)
760 theclass[0] = theclass[1] = AMD64_SSE;
761
762 /* A variable of type complex long double is classified as type
763 COMPLEX_X87. */
764 else if (code == TYPE_CODE_COMPLEX && len == 32)
765 theclass[0] = AMD64_COMPLEX_X87;
766
767 /* Aggregates. */
768 else if (code == TYPE_CODE_ARRAY || code == TYPE_CODE_STRUCT
769 || code == TYPE_CODE_UNION)
770 amd64_classify_aggregate (type, theclass);
771 }
772
773 static enum return_value_convention
774 amd64_return_value (struct gdbarch *gdbarch, struct value *function,
775 struct type *type, struct regcache *regcache,
776 gdb_byte *readbuf, const gdb_byte *writebuf)
777 {
778 enum amd64_reg_class theclass[2];
779 int len = TYPE_LENGTH (type);
780 static int integer_regnum[] = { AMD64_RAX_REGNUM, AMD64_RDX_REGNUM };
781 static int sse_regnum[] = { AMD64_XMM0_REGNUM, AMD64_XMM1_REGNUM };
782 int integer_reg = 0;
783 int sse_reg = 0;
784 int i;
785
786 gdb_assert (!(readbuf && writebuf));
787
788 /* 1. Classify the return type with the classification algorithm. */
789 amd64_classify (type, theclass);
790
791 /* 2. If the type has class MEMORY, then the caller provides space
792 for the return value and passes the address of this storage in
793 %rdi as if it were the first argument to the function. In effect,
794 this address becomes a hidden first argument.
795
796 On return %rax will contain the address that has been passed in
797 by the caller in %rdi. */
798 if (theclass[0] == AMD64_MEMORY)
799 {
800 /* As indicated by the comment above, the ABI guarantees that we
801 can always find the return value just after the function has
802 returned. */
803
804 if (readbuf)
805 {
806 ULONGEST addr;
807
808 regcache_raw_read_unsigned (regcache, AMD64_RAX_REGNUM, &addr);
809 read_memory (addr, readbuf, TYPE_LENGTH (type));
810 }
811
812 return RETURN_VALUE_ABI_RETURNS_ADDRESS;
813 }
814
815 /* 8. If the class is COMPLEX_X87, the real part of the value is
816 returned in %st0 and the imaginary part in %st1. */
817 if (theclass[0] == AMD64_COMPLEX_X87)
818 {
819 if (readbuf)
820 {
821 regcache->raw_read (AMD64_ST0_REGNUM, readbuf);
822 regcache->raw_read (AMD64_ST1_REGNUM, readbuf + 16);
823 }
824
825 if (writebuf)
826 {
827 i387_return_value (gdbarch, regcache);
828 regcache->raw_write (AMD64_ST0_REGNUM, writebuf);
829 regcache->raw_write (AMD64_ST1_REGNUM, writebuf + 16);
830
831 /* Fix up the tag word such that both %st(0) and %st(1) are
832 marked as valid. */
833 regcache_raw_write_unsigned (regcache, AMD64_FTAG_REGNUM, 0xfff);
834 }
835
836 return RETURN_VALUE_REGISTER_CONVENTION;
837 }
838
839 gdb_assert (theclass[1] != AMD64_MEMORY);
840 gdb_assert (len <= 16);
841
842 for (i = 0; len > 0; i++, len -= 8)
843 {
844 int regnum = -1;
845 int offset = 0;
846
847 switch (theclass[i])
848 {
849 case AMD64_INTEGER:
850 /* 3. If the class is INTEGER, the next available register
851 of the sequence %rax, %rdx is used. */
852 regnum = integer_regnum[integer_reg++];
853 break;
854
855 case AMD64_SSE:
856 /* 4. If the class is SSE, the next available SSE register
857 of the sequence %xmm0, %xmm1 is used. */
858 regnum = sse_regnum[sse_reg++];
859 break;
860
861 case AMD64_SSEUP:
862 /* 5. If the class is SSEUP, the eightbyte is passed in the
863 upper half of the last used SSE register. */
864 gdb_assert (sse_reg > 0);
865 regnum = sse_regnum[sse_reg - 1];
866 offset = 8;
867 break;
868
869 case AMD64_X87:
870 /* 6. If the class is X87, the value is returned on the X87
871 stack in %st0 as 80-bit x87 number. */
872 regnum = AMD64_ST0_REGNUM;
873 if (writebuf)
874 i387_return_value (gdbarch, regcache);
875 break;
876
877 case AMD64_X87UP:
878 /* 7. If the class is X87UP, the value is returned together
879 with the previous X87 value in %st0. */
880 gdb_assert (i > 0 && theclass[0] == AMD64_X87);
881 regnum = AMD64_ST0_REGNUM;
882 offset = 8;
883 len = 2;
884 break;
885
886 case AMD64_NO_CLASS:
887 continue;
888
889 default:
890 gdb_assert (!"Unexpected register class.");
891 }
892
893 gdb_assert (regnum != -1);
894
895 if (readbuf)
896 regcache->raw_read_part (regnum, offset, std::min (len, 8),
897 readbuf + i * 8);
898 if (writebuf)
899 regcache->raw_write_part (regnum, offset, std::min (len, 8),
900 writebuf + i * 8);
901 }
902
903 return RETURN_VALUE_REGISTER_CONVENTION;
904 }
905 \f
906
907 static CORE_ADDR
908 amd64_push_arguments (struct regcache *regcache, int nargs, struct value **args,
909 CORE_ADDR sp, function_call_return_method return_method)
910 {
911 static int integer_regnum[] =
912 {
913 AMD64_RDI_REGNUM, /* %rdi */
914 AMD64_RSI_REGNUM, /* %rsi */
915 AMD64_RDX_REGNUM, /* %rdx */
916 AMD64_RCX_REGNUM, /* %rcx */
917 AMD64_R8_REGNUM, /* %r8 */
918 AMD64_R9_REGNUM /* %r9 */
919 };
920 static int sse_regnum[] =
921 {
922 /* %xmm0 ... %xmm7 */
923 AMD64_XMM0_REGNUM + 0, AMD64_XMM1_REGNUM,
924 AMD64_XMM0_REGNUM + 2, AMD64_XMM0_REGNUM + 3,
925 AMD64_XMM0_REGNUM + 4, AMD64_XMM0_REGNUM + 5,
926 AMD64_XMM0_REGNUM + 6, AMD64_XMM0_REGNUM + 7,
927 };
928 struct value **stack_args = XALLOCAVEC (struct value *, nargs);
929 int num_stack_args = 0;
930 int num_elements = 0;
931 int element = 0;
932 int integer_reg = 0;
933 int sse_reg = 0;
934 int i;
935
936 /* Reserve a register for the "hidden" argument. */
937 if (return_method == return_method_struct)
938 integer_reg++;
939
940 for (i = 0; i < nargs; i++)
941 {
942 struct type *type = value_type (args[i]);
943 int len = TYPE_LENGTH (type);
944 enum amd64_reg_class theclass[2];
945 int needed_integer_regs = 0;
946 int needed_sse_regs = 0;
947 int j;
948
949 /* Classify argument. */
950 amd64_classify (type, theclass);
951
952 /* Calculate the number of integer and SSE registers needed for
953 this argument. */
954 for (j = 0; j < 2; j++)
955 {
956 if (theclass[j] == AMD64_INTEGER)
957 needed_integer_regs++;
958 else if (theclass[j] == AMD64_SSE)
959 needed_sse_regs++;
960 }
961
962 /* Check whether enough registers are available, and if the
963 argument should be passed in registers at all. */
964 if (integer_reg + needed_integer_regs > ARRAY_SIZE (integer_regnum)
965 || sse_reg + needed_sse_regs > ARRAY_SIZE (sse_regnum)
966 || (needed_integer_regs == 0 && needed_sse_regs == 0))
967 {
968 /* The argument will be passed on the stack. */
969 num_elements += ((len + 7) / 8);
970 stack_args[num_stack_args++] = args[i];
971 }
972 else
973 {
974 /* The argument will be passed in registers. */
975 const gdb_byte *valbuf = value_contents (args[i]);
976 gdb_byte buf[8];
977
978 gdb_assert (len <= 16);
979
980 for (j = 0; len > 0; j++, len -= 8)
981 {
982 int regnum = -1;
983 int offset = 0;
984
985 switch (theclass[j])
986 {
987 case AMD64_INTEGER:
988 regnum = integer_regnum[integer_reg++];
989 break;
990
991 case AMD64_SSE:
992 regnum = sse_regnum[sse_reg++];
993 break;
994
995 case AMD64_SSEUP:
996 gdb_assert (sse_reg > 0);
997 regnum = sse_regnum[sse_reg - 1];
998 offset = 8;
999 break;
1000
1001 case AMD64_NO_CLASS:
1002 continue;
1003
1004 default:
1005 gdb_assert (!"Unexpected register class.");
1006 }
1007
1008 gdb_assert (regnum != -1);
1009 memset (buf, 0, sizeof buf);
1010 memcpy (buf, valbuf + j * 8, std::min (len, 8));
1011 regcache->raw_write_part (regnum, offset, 8, buf);
1012 }
1013 }
1014 }
1015
1016 /* Allocate space for the arguments on the stack. */
1017 sp -= num_elements * 8;
1018
1019 /* The psABI says that "The end of the input argument area shall be
1020 aligned on a 16 byte boundary." */
1021 sp &= ~0xf;
1022
1023 /* Write out the arguments to the stack. */
1024 for (i = 0; i < num_stack_args; i++)
1025 {
1026 struct type *type = value_type (stack_args[i]);
1027 const gdb_byte *valbuf = value_contents (stack_args[i]);
1028 int len = TYPE_LENGTH (type);
1029
1030 write_memory (sp + element * 8, valbuf, len);
1031 element += ((len + 7) / 8);
1032 }
1033
1034 /* The psABI says that "For calls that may call functions that use
1035 varargs or stdargs (prototype-less calls or calls to functions
1036 containing ellipsis (...) in the declaration) %al is used as
1037 hidden argument to specify the number of SSE registers used. */
1038 regcache_raw_write_unsigned (regcache, AMD64_RAX_REGNUM, sse_reg);
1039 return sp;
1040 }
1041
1042 static CORE_ADDR
1043 amd64_push_dummy_call (struct gdbarch *gdbarch, struct value *function,
1044 struct regcache *regcache, CORE_ADDR bp_addr,
1045 int nargs, struct value **args, CORE_ADDR sp,
1046 function_call_return_method return_method,
1047 CORE_ADDR struct_addr)
1048 {
1049 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1050 gdb_byte buf[8];
1051
1052 /* BND registers can be in arbitrary values at the moment of the
1053 inferior call. This can cause boundary violations that are not
1054 due to a real bug or even desired by the user. The best to be done
1055 is set the BND registers to allow access to the whole memory, INIT
1056 state, before pushing the inferior call. */
1057 i387_reset_bnd_regs (gdbarch, regcache);
1058
1059 /* Pass arguments. */
1060 sp = amd64_push_arguments (regcache, nargs, args, sp, return_method);
1061
1062 /* Pass "hidden" argument". */
1063 if (return_method == return_method_struct)
1064 {
1065 store_unsigned_integer (buf, 8, byte_order, struct_addr);
1066 regcache->cooked_write (AMD64_RDI_REGNUM, buf);
1067 }
1068
1069 /* Store return address. */
1070 sp -= 8;
1071 store_unsigned_integer (buf, 8, byte_order, bp_addr);
1072 write_memory (sp, buf, 8);
1073
1074 /* Finally, update the stack pointer... */
1075 store_unsigned_integer (buf, 8, byte_order, sp);
1076 regcache->cooked_write (AMD64_RSP_REGNUM, buf);
1077
1078 /* ...and fake a frame pointer. */
1079 regcache->cooked_write (AMD64_RBP_REGNUM, buf);
1080
1081 return sp + 16;
1082 }
1083 \f
1084 /* Displaced instruction handling. */
1085
1086 /* A partially decoded instruction.
1087 This contains enough details for displaced stepping purposes. */
1088
1089 struct amd64_insn
1090 {
1091 /* The number of opcode bytes. */
1092 int opcode_len;
1093 /* The offset of the REX/VEX instruction encoding prefix or -1 if
1094 not present. */
1095 int enc_prefix_offset;
1096 /* The offset to the first opcode byte. */
1097 int opcode_offset;
1098 /* The offset to the modrm byte or -1 if not present. */
1099 int modrm_offset;
1100
1101 /* The raw instruction. */
1102 gdb_byte *raw_insn;
1103 };
1104
1105 struct amd64_displaced_step_copy_insn_closure : public displaced_step_copy_insn_closure
1106 {
1107 amd64_displaced_step_copy_insn_closure (int insn_buf_len)
1108 : insn_buf (insn_buf_len, 0)
1109 {}
1110
1111 /* For rip-relative insns, saved copy of the reg we use instead of %rip. */
1112 int tmp_used = 0;
1113 int tmp_regno;
1114 ULONGEST tmp_save;
1115
1116 /* Details of the instruction. */
1117 struct amd64_insn insn_details;
1118
1119 /* The possibly modified insn. */
1120 gdb::byte_vector insn_buf;
1121 };
1122
1123 /* WARNING: Keep onebyte_has_modrm, twobyte_has_modrm in sync with
1124 ../opcodes/i386-dis.c (until libopcodes exports them, or an alternative,
1125 at which point delete these in favor of libopcodes' versions). */
1126
1127 static const unsigned char onebyte_has_modrm[256] = {
1128 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1129 /* ------------------------------- */
1130 /* 00 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 00 */
1131 /* 10 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 10 */
1132 /* 20 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 20 */
1133 /* 30 */ 1,1,1,1,0,0,0,0,1,1,1,1,0,0,0,0, /* 30 */
1134 /* 40 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 40 */
1135 /* 50 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 50 */
1136 /* 60 */ 0,0,1,1,0,0,0,0,0,1,0,1,0,0,0,0, /* 60 */
1137 /* 70 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 70 */
1138 /* 80 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 80 */
1139 /* 90 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 90 */
1140 /* a0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* a0 */
1141 /* b0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* b0 */
1142 /* c0 */ 1,1,0,0,1,1,1,1,0,0,0,0,0,0,0,0, /* c0 */
1143 /* d0 */ 1,1,1,1,0,0,0,0,1,1,1,1,1,1,1,1, /* d0 */
1144 /* e0 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* e0 */
1145 /* f0 */ 0,0,0,0,0,0,1,1,0,0,0,0,0,0,1,1 /* f0 */
1146 /* ------------------------------- */
1147 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1148 };
1149
1150 static const unsigned char twobyte_has_modrm[256] = {
1151 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1152 /* ------------------------------- */
1153 /* 00 */ 1,1,1,1,0,0,0,0,0,0,0,0,0,1,0,1, /* 0f */
1154 /* 10 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 1f */
1155 /* 20 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 2f */
1156 /* 30 */ 0,0,0,0,0,0,0,0,1,0,1,0,0,0,0,0, /* 3f */
1157 /* 40 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 4f */
1158 /* 50 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 5f */
1159 /* 60 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 6f */
1160 /* 70 */ 1,1,1,1,1,1,1,0,1,1,1,1,1,1,1,1, /* 7f */
1161 /* 80 */ 0,0,0,0,0,0,0,0,0,0,0,0,0,0,0,0, /* 8f */
1162 /* 90 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* 9f */
1163 /* a0 */ 0,0,0,1,1,1,1,1,0,0,0,1,1,1,1,1, /* af */
1164 /* b0 */ 1,1,1,1,1,1,1,1,1,0,1,1,1,1,1,1, /* bf */
1165 /* c0 */ 1,1,1,1,1,1,1,1,0,0,0,0,0,0,0,0, /* cf */
1166 /* d0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* df */
1167 /* e0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1, /* ef */
1168 /* f0 */ 1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,0 /* ff */
1169 /* ------------------------------- */
1170 /* 0 1 2 3 4 5 6 7 8 9 a b c d e f */
1171 };
1172
1173 static int amd64_syscall_p (const struct amd64_insn *insn, int *lengthp);
1174
1175 static int
1176 rex_prefix_p (gdb_byte pfx)
1177 {
1178 return REX_PREFIX_P (pfx);
1179 }
1180
1181 /* True if PFX is the start of the 2-byte VEX prefix. */
1182
1183 static bool
1184 vex2_prefix_p (gdb_byte pfx)
1185 {
1186 return pfx == 0xc5;
1187 }
1188
1189 /* True if PFX is the start of the 3-byte VEX prefix. */
1190
1191 static bool
1192 vex3_prefix_p (gdb_byte pfx)
1193 {
1194 return pfx == 0xc4;
1195 }
1196
1197 /* Skip the legacy instruction prefixes in INSN.
1198 We assume INSN is properly sentineled so we don't have to worry
1199 about falling off the end of the buffer. */
1200
1201 static gdb_byte *
1202 amd64_skip_prefixes (gdb_byte *insn)
1203 {
1204 while (1)
1205 {
1206 switch (*insn)
1207 {
1208 case DATA_PREFIX_OPCODE:
1209 case ADDR_PREFIX_OPCODE:
1210 case CS_PREFIX_OPCODE:
1211 case DS_PREFIX_OPCODE:
1212 case ES_PREFIX_OPCODE:
1213 case FS_PREFIX_OPCODE:
1214 case GS_PREFIX_OPCODE:
1215 case SS_PREFIX_OPCODE:
1216 case LOCK_PREFIX_OPCODE:
1217 case REPE_PREFIX_OPCODE:
1218 case REPNE_PREFIX_OPCODE:
1219 ++insn;
1220 continue;
1221 default:
1222 break;
1223 }
1224 break;
1225 }
1226
1227 return insn;
1228 }
1229
1230 /* Return an integer register (other than RSP) that is unused as an input
1231 operand in INSN.
1232 In order to not require adding a rex prefix if the insn doesn't already
1233 have one, the result is restricted to RAX ... RDI, sans RSP.
1234 The register numbering of the result follows architecture ordering,
1235 e.g. RDI = 7. */
1236
1237 static int
1238 amd64_get_unused_input_int_reg (const struct amd64_insn *details)
1239 {
1240 /* 1 bit for each reg */
1241 int used_regs_mask = 0;
1242
1243 /* There can be at most 3 int regs used as inputs in an insn, and we have
1244 7 to choose from (RAX ... RDI, sans RSP).
1245 This allows us to take a conservative approach and keep things simple.
1246 E.g. By avoiding RAX, we don't have to specifically watch for opcodes
1247 that implicitly specify RAX. */
1248
1249 /* Avoid RAX. */
1250 used_regs_mask |= 1 << EAX_REG_NUM;
1251 /* Similarily avoid RDX, implicit operand in divides. */
1252 used_regs_mask |= 1 << EDX_REG_NUM;
1253 /* Avoid RSP. */
1254 used_regs_mask |= 1 << ESP_REG_NUM;
1255
1256 /* If the opcode is one byte long and there's no ModRM byte,
1257 assume the opcode specifies a register. */
1258 if (details->opcode_len == 1 && details->modrm_offset == -1)
1259 used_regs_mask |= 1 << (details->raw_insn[details->opcode_offset] & 7);
1260
1261 /* Mark used regs in the modrm/sib bytes. */
1262 if (details->modrm_offset != -1)
1263 {
1264 int modrm = details->raw_insn[details->modrm_offset];
1265 int mod = MODRM_MOD_FIELD (modrm);
1266 int reg = MODRM_REG_FIELD (modrm);
1267 int rm = MODRM_RM_FIELD (modrm);
1268 int have_sib = mod != 3 && rm == 4;
1269
1270 /* Assume the reg field of the modrm byte specifies a register. */
1271 used_regs_mask |= 1 << reg;
1272
1273 if (have_sib)
1274 {
1275 int base = SIB_BASE_FIELD (details->raw_insn[details->modrm_offset + 1]);
1276 int idx = SIB_INDEX_FIELD (details->raw_insn[details->modrm_offset + 1]);
1277 used_regs_mask |= 1 << base;
1278 used_regs_mask |= 1 << idx;
1279 }
1280 else
1281 {
1282 used_regs_mask |= 1 << rm;
1283 }
1284 }
1285
1286 gdb_assert (used_regs_mask < 256);
1287 gdb_assert (used_regs_mask != 255);
1288
1289 /* Finally, find a free reg. */
1290 {
1291 int i;
1292
1293 for (i = 0; i < 8; ++i)
1294 {
1295 if (! (used_regs_mask & (1 << i)))
1296 return i;
1297 }
1298
1299 /* We shouldn't get here. */
1300 internal_error (__FILE__, __LINE__, _("unable to find free reg"));
1301 }
1302 }
1303
1304 /* Extract the details of INSN that we need. */
1305
1306 static void
1307 amd64_get_insn_details (gdb_byte *insn, struct amd64_insn *details)
1308 {
1309 gdb_byte *start = insn;
1310 int need_modrm;
1311
1312 details->raw_insn = insn;
1313
1314 details->opcode_len = -1;
1315 details->enc_prefix_offset = -1;
1316 details->opcode_offset = -1;
1317 details->modrm_offset = -1;
1318
1319 /* Skip legacy instruction prefixes. */
1320 insn = amd64_skip_prefixes (insn);
1321
1322 /* Skip REX/VEX instruction encoding prefixes. */
1323 if (rex_prefix_p (*insn))
1324 {
1325 details->enc_prefix_offset = insn - start;
1326 ++insn;
1327 }
1328 else if (vex2_prefix_p (*insn))
1329 {
1330 /* Don't record the offset in this case because this prefix has
1331 no REX.B equivalent. */
1332 insn += 2;
1333 }
1334 else if (vex3_prefix_p (*insn))
1335 {
1336 details->enc_prefix_offset = insn - start;
1337 insn += 3;
1338 }
1339
1340 details->opcode_offset = insn - start;
1341
1342 if (*insn == TWO_BYTE_OPCODE_ESCAPE)
1343 {
1344 /* Two or three-byte opcode. */
1345 ++insn;
1346 need_modrm = twobyte_has_modrm[*insn];
1347
1348 /* Check for three-byte opcode. */
1349 switch (*insn)
1350 {
1351 case 0x24:
1352 case 0x25:
1353 case 0x38:
1354 case 0x3a:
1355 case 0x7a:
1356 case 0x7b:
1357 ++insn;
1358 details->opcode_len = 3;
1359 break;
1360 default:
1361 details->opcode_len = 2;
1362 break;
1363 }
1364 }
1365 else
1366 {
1367 /* One-byte opcode. */
1368 need_modrm = onebyte_has_modrm[*insn];
1369 details->opcode_len = 1;
1370 }
1371
1372 if (need_modrm)
1373 {
1374 ++insn;
1375 details->modrm_offset = insn - start;
1376 }
1377 }
1378
1379 /* Update %rip-relative addressing in INSN.
1380
1381 %rip-relative addressing only uses a 32-bit displacement.
1382 32 bits is not enough to be guaranteed to cover the distance between where
1383 the real instruction is and where its copy is.
1384 Convert the insn to use base+disp addressing.
1385 We set base = pc + insn_length so we can leave disp unchanged. */
1386
1387 static void
1388 fixup_riprel (struct gdbarch *gdbarch, amd64_displaced_step_copy_insn_closure *dsc,
1389 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1390 {
1391 const struct amd64_insn *insn_details = &dsc->insn_details;
1392 int modrm_offset = insn_details->modrm_offset;
1393 gdb_byte *insn = insn_details->raw_insn + modrm_offset;
1394 CORE_ADDR rip_base;
1395 int insn_length;
1396 int arch_tmp_regno, tmp_regno;
1397 ULONGEST orig_value;
1398
1399 /* %rip+disp32 addressing mode, displacement follows ModRM byte. */
1400 ++insn;
1401
1402 /* Compute the rip-relative address. */
1403 insn_length = gdb_buffered_insn_length (gdbarch, dsc->insn_buf.data (),
1404 dsc->insn_buf.size (), from);
1405 rip_base = from + insn_length;
1406
1407 /* We need a register to hold the address.
1408 Pick one not used in the insn.
1409 NOTE: arch_tmp_regno uses architecture ordering, e.g. RDI = 7. */
1410 arch_tmp_regno = amd64_get_unused_input_int_reg (insn_details);
1411 tmp_regno = amd64_arch_reg_to_regnum (arch_tmp_regno);
1412
1413 /* Position of the not-B bit in the 3-byte VEX prefix (in byte 1). */
1414 static constexpr gdb_byte VEX3_NOT_B = 0x20;
1415
1416 /* REX.B should be unset (VEX.!B set) as we were using rip-relative
1417 addressing, but ensure it's unset (set for VEX) anyway, tmp_regno
1418 is not r8-r15. */
1419 if (insn_details->enc_prefix_offset != -1)
1420 {
1421 gdb_byte *pfx = &dsc->insn_buf[insn_details->enc_prefix_offset];
1422 if (rex_prefix_p (pfx[0]))
1423 pfx[0] &= ~REX_B;
1424 else if (vex3_prefix_p (pfx[0]))
1425 pfx[1] |= VEX3_NOT_B;
1426 else
1427 gdb_assert_not_reached ("unhandled prefix");
1428 }
1429
1430 regcache_cooked_read_unsigned (regs, tmp_regno, &orig_value);
1431 dsc->tmp_regno = tmp_regno;
1432 dsc->tmp_save = orig_value;
1433 dsc->tmp_used = 1;
1434
1435 /* Convert the ModRM field to be base+disp. */
1436 dsc->insn_buf[modrm_offset] &= ~0xc7;
1437 dsc->insn_buf[modrm_offset] |= 0x80 + arch_tmp_regno;
1438
1439 regcache_cooked_write_unsigned (regs, tmp_regno, rip_base);
1440
1441 if (debug_displaced)
1442 fprintf_unfiltered (gdb_stdlog, "displaced: %%rip-relative addressing used.\n"
1443 "displaced: using temp reg %d, old value %s, new value %s\n",
1444 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save),
1445 paddress (gdbarch, rip_base));
1446 }
1447
1448 static void
1449 fixup_displaced_copy (struct gdbarch *gdbarch,
1450 amd64_displaced_step_copy_insn_closure *dsc,
1451 CORE_ADDR from, CORE_ADDR to, struct regcache *regs)
1452 {
1453 const struct amd64_insn *details = &dsc->insn_details;
1454
1455 if (details->modrm_offset != -1)
1456 {
1457 gdb_byte modrm = details->raw_insn[details->modrm_offset];
1458
1459 if ((modrm & 0xc7) == 0x05)
1460 {
1461 /* The insn uses rip-relative addressing.
1462 Deal with it. */
1463 fixup_riprel (gdbarch, dsc, from, to, regs);
1464 }
1465 }
1466 }
1467
1468 displaced_step_copy_insn_closure_up
1469 amd64_displaced_step_copy_insn (struct gdbarch *gdbarch,
1470 CORE_ADDR from, CORE_ADDR to,
1471 struct regcache *regs)
1472 {
1473 int len = gdbarch_max_insn_length (gdbarch);
1474 /* Extra space for sentinels so fixup_{riprel,displaced_copy} don't have to
1475 continually watch for running off the end of the buffer. */
1476 int fixup_sentinel_space = len;
1477 std::unique_ptr<amd64_displaced_step_copy_insn_closure> dsc
1478 (new amd64_displaced_step_copy_insn_closure (len + fixup_sentinel_space));
1479 gdb_byte *buf = &dsc->insn_buf[0];
1480 struct amd64_insn *details = &dsc->insn_details;
1481
1482 read_memory (from, buf, len);
1483
1484 /* Set up the sentinel space so we don't have to worry about running
1485 off the end of the buffer. An excessive number of leading prefixes
1486 could otherwise cause this. */
1487 memset (buf + len, 0, fixup_sentinel_space);
1488
1489 amd64_get_insn_details (buf, details);
1490
1491 /* GDB may get control back after the insn after the syscall.
1492 Presumably this is a kernel bug.
1493 If this is a syscall, make sure there's a nop afterwards. */
1494 {
1495 int syscall_length;
1496
1497 if (amd64_syscall_p (details, &syscall_length))
1498 buf[details->opcode_offset + syscall_length] = NOP_OPCODE;
1499 }
1500
1501 /* Modify the insn to cope with the address where it will be executed from.
1502 In particular, handle any rip-relative addressing. */
1503 fixup_displaced_copy (gdbarch, dsc.get (), from, to, regs);
1504
1505 write_memory (to, buf, len);
1506
1507 if (debug_displaced)
1508 {
1509 fprintf_unfiltered (gdb_stdlog, "displaced: copy %s->%s: ",
1510 paddress (gdbarch, from), paddress (gdbarch, to));
1511 displaced_step_dump_bytes (gdb_stdlog, buf, len);
1512 }
1513
1514 /* This is a work around for a problem with g++ 4.8. */
1515 return displaced_step_copy_insn_closure_up (dsc.release ());
1516 }
1517
1518 static int
1519 amd64_absolute_jmp_p (const struct amd64_insn *details)
1520 {
1521 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1522
1523 if (insn[0] == 0xff)
1524 {
1525 /* jump near, absolute indirect (/4) */
1526 if ((insn[1] & 0x38) == 0x20)
1527 return 1;
1528
1529 /* jump far, absolute indirect (/5) */
1530 if ((insn[1] & 0x38) == 0x28)
1531 return 1;
1532 }
1533
1534 return 0;
1535 }
1536
1537 /* Return non-zero if the instruction DETAILS is a jump, zero otherwise. */
1538
1539 static int
1540 amd64_jmp_p (const struct amd64_insn *details)
1541 {
1542 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1543
1544 /* jump short, relative. */
1545 if (insn[0] == 0xeb)
1546 return 1;
1547
1548 /* jump near, relative. */
1549 if (insn[0] == 0xe9)
1550 return 1;
1551
1552 return amd64_absolute_jmp_p (details);
1553 }
1554
1555 static int
1556 amd64_absolute_call_p (const struct amd64_insn *details)
1557 {
1558 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1559
1560 if (insn[0] == 0xff)
1561 {
1562 /* Call near, absolute indirect (/2) */
1563 if ((insn[1] & 0x38) == 0x10)
1564 return 1;
1565
1566 /* Call far, absolute indirect (/3) */
1567 if ((insn[1] & 0x38) == 0x18)
1568 return 1;
1569 }
1570
1571 return 0;
1572 }
1573
1574 static int
1575 amd64_ret_p (const struct amd64_insn *details)
1576 {
1577 /* NOTE: gcc can emit "repz ; ret". */
1578 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1579
1580 switch (insn[0])
1581 {
1582 case 0xc2: /* ret near, pop N bytes */
1583 case 0xc3: /* ret near */
1584 case 0xca: /* ret far, pop N bytes */
1585 case 0xcb: /* ret far */
1586 case 0xcf: /* iret */
1587 return 1;
1588
1589 default:
1590 return 0;
1591 }
1592 }
1593
1594 static int
1595 amd64_call_p (const struct amd64_insn *details)
1596 {
1597 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1598
1599 if (amd64_absolute_call_p (details))
1600 return 1;
1601
1602 /* call near, relative */
1603 if (insn[0] == 0xe8)
1604 return 1;
1605
1606 return 0;
1607 }
1608
1609 /* Return non-zero if INSN is a system call, and set *LENGTHP to its
1610 length in bytes. Otherwise, return zero. */
1611
1612 static int
1613 amd64_syscall_p (const struct amd64_insn *details, int *lengthp)
1614 {
1615 const gdb_byte *insn = &details->raw_insn[details->opcode_offset];
1616
1617 if (insn[0] == 0x0f && insn[1] == 0x05)
1618 {
1619 *lengthp = 2;
1620 return 1;
1621 }
1622
1623 return 0;
1624 }
1625
1626 /* Classify the instruction at ADDR using PRED.
1627 Throw an error if the memory can't be read. */
1628
1629 static int
1630 amd64_classify_insn_at (struct gdbarch *gdbarch, CORE_ADDR addr,
1631 int (*pred) (const struct amd64_insn *))
1632 {
1633 struct amd64_insn details;
1634 gdb_byte *buf;
1635 int len, classification;
1636
1637 len = gdbarch_max_insn_length (gdbarch);
1638 buf = (gdb_byte *) alloca (len);
1639
1640 read_code (addr, buf, len);
1641 amd64_get_insn_details (buf, &details);
1642
1643 classification = pred (&details);
1644
1645 return classification;
1646 }
1647
1648 /* The gdbarch insn_is_call method. */
1649
1650 static int
1651 amd64_insn_is_call (struct gdbarch *gdbarch, CORE_ADDR addr)
1652 {
1653 return amd64_classify_insn_at (gdbarch, addr, amd64_call_p);
1654 }
1655
1656 /* The gdbarch insn_is_ret method. */
1657
1658 static int
1659 amd64_insn_is_ret (struct gdbarch *gdbarch, CORE_ADDR addr)
1660 {
1661 return amd64_classify_insn_at (gdbarch, addr, amd64_ret_p);
1662 }
1663
1664 /* The gdbarch insn_is_jump method. */
1665
1666 static int
1667 amd64_insn_is_jump (struct gdbarch *gdbarch, CORE_ADDR addr)
1668 {
1669 return amd64_classify_insn_at (gdbarch, addr, amd64_jmp_p);
1670 }
1671
1672 /* Fix up the state of registers and memory after having single-stepped
1673 a displaced instruction. */
1674
1675 void
1676 amd64_displaced_step_fixup (struct gdbarch *gdbarch,
1677 struct displaced_step_copy_insn_closure *dsc_,
1678 CORE_ADDR from, CORE_ADDR to,
1679 struct regcache *regs)
1680 {
1681 amd64_displaced_step_copy_insn_closure *dsc = (amd64_displaced_step_copy_insn_closure *) dsc_;
1682 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1683 /* The offset we applied to the instruction's address. */
1684 ULONGEST insn_offset = to - from;
1685 gdb_byte *insn = dsc->insn_buf.data ();
1686 const struct amd64_insn *insn_details = &dsc->insn_details;
1687
1688 if (debug_displaced)
1689 fprintf_unfiltered (gdb_stdlog,
1690 "displaced: fixup (%s, %s), "
1691 "insn = 0x%02x 0x%02x ...\n",
1692 paddress (gdbarch, from), paddress (gdbarch, to),
1693 insn[0], insn[1]);
1694
1695 /* If we used a tmp reg, restore it. */
1696
1697 if (dsc->tmp_used)
1698 {
1699 if (debug_displaced)
1700 fprintf_unfiltered (gdb_stdlog, "displaced: restoring reg %d to %s\n",
1701 dsc->tmp_regno, paddress (gdbarch, dsc->tmp_save));
1702 regcache_cooked_write_unsigned (regs, dsc->tmp_regno, dsc->tmp_save);
1703 }
1704
1705 /* The list of issues to contend with here is taken from
1706 resume_execution in arch/x86/kernel/kprobes.c, Linux 2.6.28.
1707 Yay for Free Software! */
1708
1709 /* Relocate the %rip back to the program's instruction stream,
1710 if necessary. */
1711
1712 /* Except in the case of absolute or indirect jump or call
1713 instructions, or a return instruction, the new rip is relative to
1714 the displaced instruction; make it relative to the original insn.
1715 Well, signal handler returns don't need relocation either, but we use the
1716 value of %rip to recognize those; see below. */
1717 if (! amd64_absolute_jmp_p (insn_details)
1718 && ! amd64_absolute_call_p (insn_details)
1719 && ! amd64_ret_p (insn_details))
1720 {
1721 ULONGEST orig_rip;
1722 int insn_len;
1723
1724 regcache_cooked_read_unsigned (regs, AMD64_RIP_REGNUM, &orig_rip);
1725
1726 /* A signal trampoline system call changes the %rip, resuming
1727 execution of the main program after the signal handler has
1728 returned. That makes them like 'return' instructions; we
1729 shouldn't relocate %rip.
1730
1731 But most system calls don't, and we do need to relocate %rip.
1732
1733 Our heuristic for distinguishing these cases: if stepping
1734 over the system call instruction left control directly after
1735 the instruction, the we relocate --- control almost certainly
1736 doesn't belong in the displaced copy. Otherwise, we assume
1737 the instruction has put control where it belongs, and leave
1738 it unrelocated. Goodness help us if there are PC-relative
1739 system calls. */
1740 if (amd64_syscall_p (insn_details, &insn_len)
1741 && orig_rip != to + insn_len
1742 /* GDB can get control back after the insn after the syscall.
1743 Presumably this is a kernel bug.
1744 Fixup ensures its a nop, we add one to the length for it. */
1745 && orig_rip != to + insn_len + 1)
1746 {
1747 if (debug_displaced)
1748 fprintf_unfiltered (gdb_stdlog,
1749 "displaced: syscall changed %%rip; "
1750 "not relocating\n");
1751 }
1752 else
1753 {
1754 ULONGEST rip = orig_rip - insn_offset;
1755
1756 /* If we just stepped over a breakpoint insn, we don't backup
1757 the pc on purpose; this is to match behaviour without
1758 stepping. */
1759
1760 regcache_cooked_write_unsigned (regs, AMD64_RIP_REGNUM, rip);
1761
1762 if (debug_displaced)
1763 fprintf_unfiltered (gdb_stdlog,
1764 "displaced: "
1765 "relocated %%rip from %s to %s\n",
1766 paddress (gdbarch, orig_rip),
1767 paddress (gdbarch, rip));
1768 }
1769 }
1770
1771 /* If the instruction was PUSHFL, then the TF bit will be set in the
1772 pushed value, and should be cleared. We'll leave this for later,
1773 since GDB already messes up the TF flag when stepping over a
1774 pushfl. */
1775
1776 /* If the instruction was a call, the return address now atop the
1777 stack is the address following the copied instruction. We need
1778 to make it the address following the original instruction. */
1779 if (amd64_call_p (insn_details))
1780 {
1781 ULONGEST rsp;
1782 ULONGEST retaddr;
1783 const ULONGEST retaddr_len = 8;
1784
1785 regcache_cooked_read_unsigned (regs, AMD64_RSP_REGNUM, &rsp);
1786 retaddr = read_memory_unsigned_integer (rsp, retaddr_len, byte_order);
1787 retaddr = (retaddr - insn_offset) & 0xffffffffffffffffULL;
1788 write_memory_unsigned_integer (rsp, retaddr_len, byte_order, retaddr);
1789
1790 if (debug_displaced)
1791 fprintf_unfiltered (gdb_stdlog,
1792 "displaced: relocated return addr at %s "
1793 "to %s\n",
1794 paddress (gdbarch, rsp),
1795 paddress (gdbarch, retaddr));
1796 }
1797 }
1798
1799 /* If the instruction INSN uses RIP-relative addressing, return the
1800 offset into the raw INSN where the displacement to be adjusted is
1801 found. Returns 0 if the instruction doesn't use RIP-relative
1802 addressing. */
1803
1804 static int
1805 rip_relative_offset (struct amd64_insn *insn)
1806 {
1807 if (insn->modrm_offset != -1)
1808 {
1809 gdb_byte modrm = insn->raw_insn[insn->modrm_offset];
1810
1811 if ((modrm & 0xc7) == 0x05)
1812 {
1813 /* The displacement is found right after the ModRM byte. */
1814 return insn->modrm_offset + 1;
1815 }
1816 }
1817
1818 return 0;
1819 }
1820
1821 static void
1822 append_insns (CORE_ADDR *to, ULONGEST len, const gdb_byte *buf)
1823 {
1824 target_write_memory (*to, buf, len);
1825 *to += len;
1826 }
1827
1828 static void
1829 amd64_relocate_instruction (struct gdbarch *gdbarch,
1830 CORE_ADDR *to, CORE_ADDR oldloc)
1831 {
1832 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
1833 int len = gdbarch_max_insn_length (gdbarch);
1834 /* Extra space for sentinels. */
1835 int fixup_sentinel_space = len;
1836 gdb_byte *buf = (gdb_byte *) xmalloc (len + fixup_sentinel_space);
1837 struct amd64_insn insn_details;
1838 int offset = 0;
1839 LONGEST rel32, newrel;
1840 gdb_byte *insn;
1841 int insn_length;
1842
1843 read_memory (oldloc, buf, len);
1844
1845 /* Set up the sentinel space so we don't have to worry about running
1846 off the end of the buffer. An excessive number of leading prefixes
1847 could otherwise cause this. */
1848 memset (buf + len, 0, fixup_sentinel_space);
1849
1850 insn = buf;
1851 amd64_get_insn_details (insn, &insn_details);
1852
1853 insn_length = gdb_buffered_insn_length (gdbarch, insn, len, oldloc);
1854
1855 /* Skip legacy instruction prefixes. */
1856 insn = amd64_skip_prefixes (insn);
1857
1858 /* Adjust calls with 32-bit relative addresses as push/jump, with
1859 the address pushed being the location where the original call in
1860 the user program would return to. */
1861 if (insn[0] == 0xe8)
1862 {
1863 gdb_byte push_buf[32];
1864 CORE_ADDR ret_addr;
1865 int i = 0;
1866
1867 /* Where "ret" in the original code will return to. */
1868 ret_addr = oldloc + insn_length;
1869
1870 /* If pushing an address higher than or equal to 0x80000000,
1871 avoid 'pushq', as that sign extends its 32-bit operand, which
1872 would be incorrect. */
1873 if (ret_addr <= 0x7fffffff)
1874 {
1875 push_buf[0] = 0x68; /* pushq $... */
1876 store_unsigned_integer (&push_buf[1], 4, byte_order, ret_addr);
1877 i = 5;
1878 }
1879 else
1880 {
1881 push_buf[i++] = 0x48; /* sub $0x8,%rsp */
1882 push_buf[i++] = 0x83;
1883 push_buf[i++] = 0xec;
1884 push_buf[i++] = 0x08;
1885
1886 push_buf[i++] = 0xc7; /* movl $imm,(%rsp) */
1887 push_buf[i++] = 0x04;
1888 push_buf[i++] = 0x24;
1889 store_unsigned_integer (&push_buf[i], 4, byte_order,
1890 ret_addr & 0xffffffff);
1891 i += 4;
1892
1893 push_buf[i++] = 0xc7; /* movl $imm,4(%rsp) */
1894 push_buf[i++] = 0x44;
1895 push_buf[i++] = 0x24;
1896 push_buf[i++] = 0x04;
1897 store_unsigned_integer (&push_buf[i], 4, byte_order,
1898 ret_addr >> 32);
1899 i += 4;
1900 }
1901 gdb_assert (i <= sizeof (push_buf));
1902 /* Push the push. */
1903 append_insns (to, i, push_buf);
1904
1905 /* Convert the relative call to a relative jump. */
1906 insn[0] = 0xe9;
1907
1908 /* Adjust the destination offset. */
1909 rel32 = extract_signed_integer (insn + 1, 4, byte_order);
1910 newrel = (oldloc - *to) + rel32;
1911 store_signed_integer (insn + 1, 4, byte_order, newrel);
1912
1913 if (debug_displaced)
1914 fprintf_unfiltered (gdb_stdlog,
1915 "Adjusted insn rel32=%s at %s to"
1916 " rel32=%s at %s\n",
1917 hex_string (rel32), paddress (gdbarch, oldloc),
1918 hex_string (newrel), paddress (gdbarch, *to));
1919
1920 /* Write the adjusted jump into its displaced location. */
1921 append_insns (to, 5, insn);
1922 return;
1923 }
1924
1925 offset = rip_relative_offset (&insn_details);
1926 if (!offset)
1927 {
1928 /* Adjust jumps with 32-bit relative addresses. Calls are
1929 already handled above. */
1930 if (insn[0] == 0xe9)
1931 offset = 1;
1932 /* Adjust conditional jumps. */
1933 else if (insn[0] == 0x0f && (insn[1] & 0xf0) == 0x80)
1934 offset = 2;
1935 }
1936
1937 if (offset)
1938 {
1939 rel32 = extract_signed_integer (insn + offset, 4, byte_order);
1940 newrel = (oldloc - *to) + rel32;
1941 store_signed_integer (insn + offset, 4, byte_order, newrel);
1942 if (debug_displaced)
1943 fprintf_unfiltered (gdb_stdlog,
1944 "Adjusted insn rel32=%s at %s to"
1945 " rel32=%s at %s\n",
1946 hex_string (rel32), paddress (gdbarch, oldloc),
1947 hex_string (newrel), paddress (gdbarch, *to));
1948 }
1949
1950 /* Write the adjusted instruction into its displaced location. */
1951 append_insns (to, insn_length, buf);
1952 }
1953
1954 \f
1955 /* The maximum number of saved registers. This should include %rip. */
1956 #define AMD64_NUM_SAVED_REGS AMD64_NUM_GREGS
1957
1958 struct amd64_frame_cache
1959 {
1960 /* Base address. */
1961 CORE_ADDR base;
1962 int base_p;
1963 CORE_ADDR sp_offset;
1964 CORE_ADDR pc;
1965
1966 /* Saved registers. */
1967 CORE_ADDR saved_regs[AMD64_NUM_SAVED_REGS];
1968 CORE_ADDR saved_sp;
1969 int saved_sp_reg;
1970
1971 /* Do we have a frame? */
1972 int frameless_p;
1973 };
1974
1975 /* Initialize a frame cache. */
1976
1977 static void
1978 amd64_init_frame_cache (struct amd64_frame_cache *cache)
1979 {
1980 int i;
1981
1982 /* Base address. */
1983 cache->base = 0;
1984 cache->base_p = 0;
1985 cache->sp_offset = -8;
1986 cache->pc = 0;
1987
1988 /* Saved registers. We initialize these to -1 since zero is a valid
1989 offset (that's where %rbp is supposed to be stored).
1990 The values start out as being offsets, and are later converted to
1991 addresses (at which point -1 is interpreted as an address, still meaning
1992 "invalid"). */
1993 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
1994 cache->saved_regs[i] = -1;
1995 cache->saved_sp = 0;
1996 cache->saved_sp_reg = -1;
1997
1998 /* Frameless until proven otherwise. */
1999 cache->frameless_p = 1;
2000 }
2001
2002 /* Allocate and initialize a frame cache. */
2003
2004 static struct amd64_frame_cache *
2005 amd64_alloc_frame_cache (void)
2006 {
2007 struct amd64_frame_cache *cache;
2008
2009 cache = FRAME_OBSTACK_ZALLOC (struct amd64_frame_cache);
2010 amd64_init_frame_cache (cache);
2011 return cache;
2012 }
2013
2014 /* GCC 4.4 and later, can put code in the prologue to realign the
2015 stack pointer. Check whether PC points to such code, and update
2016 CACHE accordingly. Return the first instruction after the code
2017 sequence or CURRENT_PC, whichever is smaller. If we don't
2018 recognize the code, return PC. */
2019
2020 static CORE_ADDR
2021 amd64_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2022 struct amd64_frame_cache *cache)
2023 {
2024 /* There are 2 code sequences to re-align stack before the frame
2025 gets set up:
2026
2027 1. Use a caller-saved saved register:
2028
2029 leaq 8(%rsp), %reg
2030 andq $-XXX, %rsp
2031 pushq -8(%reg)
2032
2033 2. Use a callee-saved saved register:
2034
2035 pushq %reg
2036 leaq 16(%rsp), %reg
2037 andq $-XXX, %rsp
2038 pushq -8(%reg)
2039
2040 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2041
2042 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2043 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2044 */
2045
2046 gdb_byte buf[18];
2047 int reg, r;
2048 int offset, offset_and;
2049
2050 if (target_read_code (pc, buf, sizeof buf))
2051 return pc;
2052
2053 /* Check caller-saved saved register. The first instruction has
2054 to be "leaq 8(%rsp), %reg". */
2055 if ((buf[0] & 0xfb) == 0x48
2056 && buf[1] == 0x8d
2057 && buf[3] == 0x24
2058 && buf[4] == 0x8)
2059 {
2060 /* MOD must be binary 10 and R/M must be binary 100. */
2061 if ((buf[2] & 0xc7) != 0x44)
2062 return pc;
2063
2064 /* REG has register number. */
2065 reg = (buf[2] >> 3) & 7;
2066
2067 /* Check the REX.R bit. */
2068 if (buf[0] == 0x4c)
2069 reg += 8;
2070
2071 offset = 5;
2072 }
2073 else
2074 {
2075 /* Check callee-saved saved register. The first instruction
2076 has to be "pushq %reg". */
2077 reg = 0;
2078 if ((buf[0] & 0xf8) == 0x50)
2079 offset = 0;
2080 else if ((buf[0] & 0xf6) == 0x40
2081 && (buf[1] & 0xf8) == 0x50)
2082 {
2083 /* Check the REX.B bit. */
2084 if ((buf[0] & 1) != 0)
2085 reg = 8;
2086
2087 offset = 1;
2088 }
2089 else
2090 return pc;
2091
2092 /* Get register. */
2093 reg += buf[offset] & 0x7;
2094
2095 offset++;
2096
2097 /* The next instruction has to be "leaq 16(%rsp), %reg". */
2098 if ((buf[offset] & 0xfb) != 0x48
2099 || buf[offset + 1] != 0x8d
2100 || buf[offset + 3] != 0x24
2101 || buf[offset + 4] != 0x10)
2102 return pc;
2103
2104 /* MOD must be binary 10 and R/M must be binary 100. */
2105 if ((buf[offset + 2] & 0xc7) != 0x44)
2106 return pc;
2107
2108 /* REG has register number. */
2109 r = (buf[offset + 2] >> 3) & 7;
2110
2111 /* Check the REX.R bit. */
2112 if (buf[offset] == 0x4c)
2113 r += 8;
2114
2115 /* Registers in pushq and leaq have to be the same. */
2116 if (reg != r)
2117 return pc;
2118
2119 offset += 5;
2120 }
2121
2122 /* Rigister can't be %rsp nor %rbp. */
2123 if (reg == 4 || reg == 5)
2124 return pc;
2125
2126 /* The next instruction has to be "andq $-XXX, %rsp". */
2127 if (buf[offset] != 0x48
2128 || buf[offset + 2] != 0xe4
2129 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2130 return pc;
2131
2132 offset_and = offset;
2133 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2134
2135 /* The next instruction has to be "pushq -8(%reg)". */
2136 r = 0;
2137 if (buf[offset] == 0xff)
2138 offset++;
2139 else if ((buf[offset] & 0xf6) == 0x40
2140 && buf[offset + 1] == 0xff)
2141 {
2142 /* Check the REX.B bit. */
2143 if ((buf[offset] & 0x1) != 0)
2144 r = 8;
2145 offset += 2;
2146 }
2147 else
2148 return pc;
2149
2150 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2151 01. */
2152 if (buf[offset + 1] != 0xf8
2153 || (buf[offset] & 0xf8) != 0x70)
2154 return pc;
2155
2156 /* R/M has register. */
2157 r += buf[offset] & 7;
2158
2159 /* Registers in leaq and pushq have to be the same. */
2160 if (reg != r)
2161 return pc;
2162
2163 if (current_pc > pc + offset_and)
2164 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2165
2166 return std::min (pc + offset + 2, current_pc);
2167 }
2168
2169 /* Similar to amd64_analyze_stack_align for x32. */
2170
2171 static CORE_ADDR
2172 amd64_x32_analyze_stack_align (CORE_ADDR pc, CORE_ADDR current_pc,
2173 struct amd64_frame_cache *cache)
2174 {
2175 /* There are 2 code sequences to re-align stack before the frame
2176 gets set up:
2177
2178 1. Use a caller-saved saved register:
2179
2180 leaq 8(%rsp), %reg
2181 andq $-XXX, %rsp
2182 pushq -8(%reg)
2183
2184 or
2185
2186 [addr32] leal 8(%rsp), %reg
2187 andl $-XXX, %esp
2188 [addr32] pushq -8(%reg)
2189
2190 2. Use a callee-saved saved register:
2191
2192 pushq %reg
2193 leaq 16(%rsp), %reg
2194 andq $-XXX, %rsp
2195 pushq -8(%reg)
2196
2197 or
2198
2199 pushq %reg
2200 [addr32] leal 16(%rsp), %reg
2201 andl $-XXX, %esp
2202 [addr32] pushq -8(%reg)
2203
2204 "andq $-XXX, %rsp" can be either 4 bytes or 7 bytes:
2205
2206 0x48 0x83 0xe4 0xf0 andq $-16, %rsp
2207 0x48 0x81 0xe4 0x00 0xff 0xff 0xff andq $-256, %rsp
2208
2209 "andl $-XXX, %esp" can be either 3 bytes or 6 bytes:
2210
2211 0x83 0xe4 0xf0 andl $-16, %esp
2212 0x81 0xe4 0x00 0xff 0xff 0xff andl $-256, %esp
2213 */
2214
2215 gdb_byte buf[19];
2216 int reg, r;
2217 int offset, offset_and;
2218
2219 if (target_read_memory (pc, buf, sizeof buf))
2220 return pc;
2221
2222 /* Skip optional addr32 prefix. */
2223 offset = buf[0] == 0x67 ? 1 : 0;
2224
2225 /* Check caller-saved saved register. The first instruction has
2226 to be "leaq 8(%rsp), %reg" or "leal 8(%rsp), %reg". */
2227 if (((buf[offset] & 0xfb) == 0x48 || (buf[offset] & 0xfb) == 0x40)
2228 && buf[offset + 1] == 0x8d
2229 && buf[offset + 3] == 0x24
2230 && buf[offset + 4] == 0x8)
2231 {
2232 /* MOD must be binary 10 and R/M must be binary 100. */
2233 if ((buf[offset + 2] & 0xc7) != 0x44)
2234 return pc;
2235
2236 /* REG has register number. */
2237 reg = (buf[offset + 2] >> 3) & 7;
2238
2239 /* Check the REX.R bit. */
2240 if ((buf[offset] & 0x4) != 0)
2241 reg += 8;
2242
2243 offset += 5;
2244 }
2245 else
2246 {
2247 /* Check callee-saved saved register. The first instruction
2248 has to be "pushq %reg". */
2249 reg = 0;
2250 if ((buf[offset] & 0xf6) == 0x40
2251 && (buf[offset + 1] & 0xf8) == 0x50)
2252 {
2253 /* Check the REX.B bit. */
2254 if ((buf[offset] & 1) != 0)
2255 reg = 8;
2256
2257 offset += 1;
2258 }
2259 else if ((buf[offset] & 0xf8) != 0x50)
2260 return pc;
2261
2262 /* Get register. */
2263 reg += buf[offset] & 0x7;
2264
2265 offset++;
2266
2267 /* Skip optional addr32 prefix. */
2268 if (buf[offset] == 0x67)
2269 offset++;
2270
2271 /* The next instruction has to be "leaq 16(%rsp), %reg" or
2272 "leal 16(%rsp), %reg". */
2273 if (((buf[offset] & 0xfb) != 0x48 && (buf[offset] & 0xfb) != 0x40)
2274 || buf[offset + 1] != 0x8d
2275 || buf[offset + 3] != 0x24
2276 || buf[offset + 4] != 0x10)
2277 return pc;
2278
2279 /* MOD must be binary 10 and R/M must be binary 100. */
2280 if ((buf[offset + 2] & 0xc7) != 0x44)
2281 return pc;
2282
2283 /* REG has register number. */
2284 r = (buf[offset + 2] >> 3) & 7;
2285
2286 /* Check the REX.R bit. */
2287 if ((buf[offset] & 0x4) != 0)
2288 r += 8;
2289
2290 /* Registers in pushq and leaq have to be the same. */
2291 if (reg != r)
2292 return pc;
2293
2294 offset += 5;
2295 }
2296
2297 /* Rigister can't be %rsp nor %rbp. */
2298 if (reg == 4 || reg == 5)
2299 return pc;
2300
2301 /* The next instruction may be "andq $-XXX, %rsp" or
2302 "andl $-XXX, %esp". */
2303 if (buf[offset] != 0x48)
2304 offset--;
2305
2306 if (buf[offset + 2] != 0xe4
2307 || (buf[offset + 1] != 0x81 && buf[offset + 1] != 0x83))
2308 return pc;
2309
2310 offset_and = offset;
2311 offset += buf[offset + 1] == 0x81 ? 7 : 4;
2312
2313 /* Skip optional addr32 prefix. */
2314 if (buf[offset] == 0x67)
2315 offset++;
2316
2317 /* The next instruction has to be "pushq -8(%reg)". */
2318 r = 0;
2319 if (buf[offset] == 0xff)
2320 offset++;
2321 else if ((buf[offset] & 0xf6) == 0x40
2322 && buf[offset + 1] == 0xff)
2323 {
2324 /* Check the REX.B bit. */
2325 if ((buf[offset] & 0x1) != 0)
2326 r = 8;
2327 offset += 2;
2328 }
2329 else
2330 return pc;
2331
2332 /* 8bit -8 is 0xf8. REG must be binary 110 and MOD must be binary
2333 01. */
2334 if (buf[offset + 1] != 0xf8
2335 || (buf[offset] & 0xf8) != 0x70)
2336 return pc;
2337
2338 /* R/M has register. */
2339 r += buf[offset] & 7;
2340
2341 /* Registers in leaq and pushq have to be the same. */
2342 if (reg != r)
2343 return pc;
2344
2345 if (current_pc > pc + offset_and)
2346 cache->saved_sp_reg = amd64_arch_reg_to_regnum (reg);
2347
2348 return std::min (pc + offset + 2, current_pc);
2349 }
2350
2351 /* Do a limited analysis of the prologue at PC and update CACHE
2352 accordingly. Bail out early if CURRENT_PC is reached. Return the
2353 address where the analysis stopped.
2354
2355 We will handle only functions beginning with:
2356
2357 pushq %rbp 0x55
2358 movq %rsp, %rbp 0x48 0x89 0xe5 (or 0x48 0x8b 0xec)
2359
2360 or (for the X32 ABI):
2361
2362 pushq %rbp 0x55
2363 movl %esp, %ebp 0x89 0xe5 (or 0x8b 0xec)
2364
2365 Any function that doesn't start with one of these sequences will be
2366 assumed to have no prologue and thus no valid frame pointer in
2367 %rbp. */
2368
2369 static CORE_ADDR
2370 amd64_analyze_prologue (struct gdbarch *gdbarch,
2371 CORE_ADDR pc, CORE_ADDR current_pc,
2372 struct amd64_frame_cache *cache)
2373 {
2374 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2375 /* There are two variations of movq %rsp, %rbp. */
2376 static const gdb_byte mov_rsp_rbp_1[3] = { 0x48, 0x89, 0xe5 };
2377 static const gdb_byte mov_rsp_rbp_2[3] = { 0x48, 0x8b, 0xec };
2378 /* Ditto for movl %esp, %ebp. */
2379 static const gdb_byte mov_esp_ebp_1[2] = { 0x89, 0xe5 };
2380 static const gdb_byte mov_esp_ebp_2[2] = { 0x8b, 0xec };
2381
2382 gdb_byte buf[3];
2383 gdb_byte op;
2384
2385 if (current_pc <= pc)
2386 return current_pc;
2387
2388 if (gdbarch_ptr_bit (gdbarch) == 32)
2389 pc = amd64_x32_analyze_stack_align (pc, current_pc, cache);
2390 else
2391 pc = amd64_analyze_stack_align (pc, current_pc, cache);
2392
2393 op = read_code_unsigned_integer (pc, 1, byte_order);
2394
2395 if (op == 0x55) /* pushq %rbp */
2396 {
2397 /* Take into account that we've executed the `pushq %rbp' that
2398 starts this instruction sequence. */
2399 cache->saved_regs[AMD64_RBP_REGNUM] = 0;
2400 cache->sp_offset += 8;
2401
2402 /* If that's all, return now. */
2403 if (current_pc <= pc + 1)
2404 return current_pc;
2405
2406 read_code (pc + 1, buf, 3);
2407
2408 /* Check for `movq %rsp, %rbp'. */
2409 if (memcmp (buf, mov_rsp_rbp_1, 3) == 0
2410 || memcmp (buf, mov_rsp_rbp_2, 3) == 0)
2411 {
2412 /* OK, we actually have a frame. */
2413 cache->frameless_p = 0;
2414 return pc + 4;
2415 }
2416
2417 /* For X32, also check for `movq %esp, %ebp'. */
2418 if (gdbarch_ptr_bit (gdbarch) == 32)
2419 {
2420 if (memcmp (buf, mov_esp_ebp_1, 2) == 0
2421 || memcmp (buf, mov_esp_ebp_2, 2) == 0)
2422 {
2423 /* OK, we actually have a frame. */
2424 cache->frameless_p = 0;
2425 return pc + 3;
2426 }
2427 }
2428
2429 return pc + 1;
2430 }
2431
2432 return pc;
2433 }
2434
2435 /* Work around false termination of prologue - GCC PR debug/48827.
2436
2437 START_PC is the first instruction of a function, PC is its minimal already
2438 determined advanced address. Function returns PC if it has nothing to do.
2439
2440 84 c0 test %al,%al
2441 74 23 je after
2442 <-- here is 0 lines advance - the false prologue end marker.
2443 0f 29 85 70 ff ff ff movaps %xmm0,-0x90(%rbp)
2444 0f 29 4d 80 movaps %xmm1,-0x80(%rbp)
2445 0f 29 55 90 movaps %xmm2,-0x70(%rbp)
2446 0f 29 5d a0 movaps %xmm3,-0x60(%rbp)
2447 0f 29 65 b0 movaps %xmm4,-0x50(%rbp)
2448 0f 29 6d c0 movaps %xmm5,-0x40(%rbp)
2449 0f 29 75 d0 movaps %xmm6,-0x30(%rbp)
2450 0f 29 7d e0 movaps %xmm7,-0x20(%rbp)
2451 after: */
2452
2453 static CORE_ADDR
2454 amd64_skip_xmm_prologue (CORE_ADDR pc, CORE_ADDR start_pc)
2455 {
2456 struct symtab_and_line start_pc_sal, next_sal;
2457 gdb_byte buf[4 + 8 * 7];
2458 int offset, xmmreg;
2459
2460 if (pc == start_pc)
2461 return pc;
2462
2463 start_pc_sal = find_pc_sect_line (start_pc, NULL, 0);
2464 if (start_pc_sal.symtab == NULL
2465 || producer_is_gcc_ge_4 (COMPUNIT_PRODUCER
2466 (SYMTAB_COMPUNIT (start_pc_sal.symtab))) < 6
2467 || start_pc_sal.pc != start_pc || pc >= start_pc_sal.end)
2468 return pc;
2469
2470 next_sal = find_pc_sect_line (start_pc_sal.end, NULL, 0);
2471 if (next_sal.line != start_pc_sal.line)
2472 return pc;
2473
2474 /* START_PC can be from overlayed memory, ignored here. */
2475 if (target_read_code (next_sal.pc - 4, buf, sizeof (buf)) != 0)
2476 return pc;
2477
2478 /* test %al,%al */
2479 if (buf[0] != 0x84 || buf[1] != 0xc0)
2480 return pc;
2481 /* je AFTER */
2482 if (buf[2] != 0x74)
2483 return pc;
2484
2485 offset = 4;
2486 for (xmmreg = 0; xmmreg < 8; xmmreg++)
2487 {
2488 /* 0x0f 0x29 0b??000101 movaps %xmmreg?,-0x??(%rbp) */
2489 if (buf[offset] != 0x0f || buf[offset + 1] != 0x29
2490 || (buf[offset + 2] & 0x3f) != (xmmreg << 3 | 0x5))
2491 return pc;
2492
2493 /* 0b01?????? */
2494 if ((buf[offset + 2] & 0xc0) == 0x40)
2495 {
2496 /* 8-bit displacement. */
2497 offset += 4;
2498 }
2499 /* 0b10?????? */
2500 else if ((buf[offset + 2] & 0xc0) == 0x80)
2501 {
2502 /* 32-bit displacement. */
2503 offset += 7;
2504 }
2505 else
2506 return pc;
2507 }
2508
2509 /* je AFTER */
2510 if (offset - 4 != buf[3])
2511 return pc;
2512
2513 return next_sal.end;
2514 }
2515
2516 /* Return PC of first real instruction. */
2517
2518 static CORE_ADDR
2519 amd64_skip_prologue (struct gdbarch *gdbarch, CORE_ADDR start_pc)
2520 {
2521 struct amd64_frame_cache cache;
2522 CORE_ADDR pc;
2523 CORE_ADDR func_addr;
2524
2525 if (find_pc_partial_function (start_pc, NULL, &func_addr, NULL))
2526 {
2527 CORE_ADDR post_prologue_pc
2528 = skip_prologue_using_sal (gdbarch, func_addr);
2529 struct compunit_symtab *cust = find_pc_compunit_symtab (func_addr);
2530
2531 /* Clang always emits a line note before the prologue and another
2532 one after. We trust clang to emit usable line notes. */
2533 if (post_prologue_pc
2534 && (cust != NULL
2535 && COMPUNIT_PRODUCER (cust) != NULL
2536 && startswith (COMPUNIT_PRODUCER (cust), "clang ")))
2537 return std::max (start_pc, post_prologue_pc);
2538 }
2539
2540 amd64_init_frame_cache (&cache);
2541 pc = amd64_analyze_prologue (gdbarch, start_pc, 0xffffffffffffffffLL,
2542 &cache);
2543 if (cache.frameless_p)
2544 return start_pc;
2545
2546 return amd64_skip_xmm_prologue (pc, start_pc);
2547 }
2548 \f
2549
2550 /* Normal frames. */
2551
2552 static void
2553 amd64_frame_cache_1 (struct frame_info *this_frame,
2554 struct amd64_frame_cache *cache)
2555 {
2556 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2557 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2558 gdb_byte buf[8];
2559 int i;
2560
2561 cache->pc = get_frame_func (this_frame);
2562 if (cache->pc != 0)
2563 amd64_analyze_prologue (gdbarch, cache->pc, get_frame_pc (this_frame),
2564 cache);
2565
2566 if (cache->frameless_p)
2567 {
2568 /* We didn't find a valid frame. If we're at the start of a
2569 function, or somewhere half-way its prologue, the function's
2570 frame probably hasn't been fully setup yet. Try to
2571 reconstruct the base address for the stack frame by looking
2572 at the stack pointer. For truly "frameless" functions this
2573 might work too. */
2574
2575 if (cache->saved_sp_reg != -1)
2576 {
2577 /* Stack pointer has been saved. */
2578 get_frame_register (this_frame, cache->saved_sp_reg, buf);
2579 cache->saved_sp = extract_unsigned_integer (buf, 8, byte_order);
2580
2581 /* We're halfway aligning the stack. */
2582 cache->base = ((cache->saved_sp - 8) & 0xfffffffffffffff0LL) - 8;
2583 cache->saved_regs[AMD64_RIP_REGNUM] = cache->saved_sp - 8;
2584
2585 /* This will be added back below. */
2586 cache->saved_regs[AMD64_RIP_REGNUM] -= cache->base;
2587 }
2588 else
2589 {
2590 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2591 cache->base = extract_unsigned_integer (buf, 8, byte_order)
2592 + cache->sp_offset;
2593 }
2594 }
2595 else
2596 {
2597 get_frame_register (this_frame, AMD64_RBP_REGNUM, buf);
2598 cache->base = extract_unsigned_integer (buf, 8, byte_order);
2599 }
2600
2601 /* Now that we have the base address for the stack frame we can
2602 calculate the value of %rsp in the calling frame. */
2603 cache->saved_sp = cache->base + 16;
2604
2605 /* For normal frames, %rip is stored at 8(%rbp). If we don't have a
2606 frame we find it at the same offset from the reconstructed base
2607 address. If we're halfway aligning the stack, %rip is handled
2608 differently (see above). */
2609 if (!cache->frameless_p || cache->saved_sp_reg == -1)
2610 cache->saved_regs[AMD64_RIP_REGNUM] = 8;
2611
2612 /* Adjust all the saved registers such that they contain addresses
2613 instead of offsets. */
2614 for (i = 0; i < AMD64_NUM_SAVED_REGS; i++)
2615 if (cache->saved_regs[i] != -1)
2616 cache->saved_regs[i] += cache->base;
2617
2618 cache->base_p = 1;
2619 }
2620
2621 static struct amd64_frame_cache *
2622 amd64_frame_cache (struct frame_info *this_frame, void **this_cache)
2623 {
2624 struct amd64_frame_cache *cache;
2625
2626 if (*this_cache)
2627 return (struct amd64_frame_cache *) *this_cache;
2628
2629 cache = amd64_alloc_frame_cache ();
2630 *this_cache = cache;
2631
2632 try
2633 {
2634 amd64_frame_cache_1 (this_frame, cache);
2635 }
2636 catch (const gdb_exception_error &ex)
2637 {
2638 if (ex.error != NOT_AVAILABLE_ERROR)
2639 throw;
2640 }
2641
2642 return cache;
2643 }
2644
2645 static enum unwind_stop_reason
2646 amd64_frame_unwind_stop_reason (struct frame_info *this_frame,
2647 void **this_cache)
2648 {
2649 struct amd64_frame_cache *cache =
2650 amd64_frame_cache (this_frame, this_cache);
2651
2652 if (!cache->base_p)
2653 return UNWIND_UNAVAILABLE;
2654
2655 /* This marks the outermost frame. */
2656 if (cache->base == 0)
2657 return UNWIND_OUTERMOST;
2658
2659 return UNWIND_NO_REASON;
2660 }
2661
2662 static void
2663 amd64_frame_this_id (struct frame_info *this_frame, void **this_cache,
2664 struct frame_id *this_id)
2665 {
2666 struct amd64_frame_cache *cache =
2667 amd64_frame_cache (this_frame, this_cache);
2668
2669 if (!cache->base_p)
2670 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2671 else if (cache->base == 0)
2672 {
2673 /* This marks the outermost frame. */
2674 return;
2675 }
2676 else
2677 (*this_id) = frame_id_build (cache->base + 16, cache->pc);
2678 }
2679
2680 static struct value *
2681 amd64_frame_prev_register (struct frame_info *this_frame, void **this_cache,
2682 int regnum)
2683 {
2684 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2685 struct amd64_frame_cache *cache =
2686 amd64_frame_cache (this_frame, this_cache);
2687
2688 gdb_assert (regnum >= 0);
2689
2690 if (regnum == gdbarch_sp_regnum (gdbarch) && cache->saved_sp)
2691 return frame_unwind_got_constant (this_frame, regnum, cache->saved_sp);
2692
2693 if (regnum < AMD64_NUM_SAVED_REGS && cache->saved_regs[regnum] != -1)
2694 return frame_unwind_got_memory (this_frame, regnum,
2695 cache->saved_regs[regnum]);
2696
2697 return frame_unwind_got_register (this_frame, regnum, regnum);
2698 }
2699
2700 static const struct frame_unwind amd64_frame_unwind =
2701 {
2702 NORMAL_FRAME,
2703 amd64_frame_unwind_stop_reason,
2704 amd64_frame_this_id,
2705 amd64_frame_prev_register,
2706 NULL,
2707 default_frame_sniffer
2708 };
2709 \f
2710 /* Generate a bytecode expression to get the value of the saved PC. */
2711
2712 static void
2713 amd64_gen_return_address (struct gdbarch *gdbarch,
2714 struct agent_expr *ax, struct axs_value *value,
2715 CORE_ADDR scope)
2716 {
2717 /* The following sequence assumes the traditional use of the base
2718 register. */
2719 ax_reg (ax, AMD64_RBP_REGNUM);
2720 ax_const_l (ax, 8);
2721 ax_simple (ax, aop_add);
2722 value->type = register_type (gdbarch, AMD64_RIP_REGNUM);
2723 value->kind = axs_lvalue_memory;
2724 }
2725 \f
2726
2727 /* Signal trampolines. */
2728
2729 /* FIXME: kettenis/20030419: Perhaps, we can unify the 32-bit and
2730 64-bit variants. This would require using identical frame caches
2731 on both platforms. */
2732
2733 static struct amd64_frame_cache *
2734 amd64_sigtramp_frame_cache (struct frame_info *this_frame, void **this_cache)
2735 {
2736 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2737 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
2738 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2739 struct amd64_frame_cache *cache;
2740 CORE_ADDR addr;
2741 gdb_byte buf[8];
2742 int i;
2743
2744 if (*this_cache)
2745 return (struct amd64_frame_cache *) *this_cache;
2746
2747 cache = amd64_alloc_frame_cache ();
2748
2749 try
2750 {
2751 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2752 cache->base = extract_unsigned_integer (buf, 8, byte_order) - 8;
2753
2754 addr = tdep->sigcontext_addr (this_frame);
2755 gdb_assert (tdep->sc_reg_offset);
2756 gdb_assert (tdep->sc_num_regs <= AMD64_NUM_SAVED_REGS);
2757 for (i = 0; i < tdep->sc_num_regs; i++)
2758 if (tdep->sc_reg_offset[i] != -1)
2759 cache->saved_regs[i] = addr + tdep->sc_reg_offset[i];
2760
2761 cache->base_p = 1;
2762 }
2763 catch (const gdb_exception_error &ex)
2764 {
2765 if (ex.error != NOT_AVAILABLE_ERROR)
2766 throw;
2767 }
2768
2769 *this_cache = cache;
2770 return cache;
2771 }
2772
2773 static enum unwind_stop_reason
2774 amd64_sigtramp_frame_unwind_stop_reason (struct frame_info *this_frame,
2775 void **this_cache)
2776 {
2777 struct amd64_frame_cache *cache =
2778 amd64_sigtramp_frame_cache (this_frame, this_cache);
2779
2780 if (!cache->base_p)
2781 return UNWIND_UNAVAILABLE;
2782
2783 return UNWIND_NO_REASON;
2784 }
2785
2786 static void
2787 amd64_sigtramp_frame_this_id (struct frame_info *this_frame,
2788 void **this_cache, struct frame_id *this_id)
2789 {
2790 struct amd64_frame_cache *cache =
2791 amd64_sigtramp_frame_cache (this_frame, this_cache);
2792
2793 if (!cache->base_p)
2794 (*this_id) = frame_id_build_unavailable_stack (get_frame_pc (this_frame));
2795 else if (cache->base == 0)
2796 {
2797 /* This marks the outermost frame. */
2798 return;
2799 }
2800 else
2801 (*this_id) = frame_id_build (cache->base + 16, get_frame_pc (this_frame));
2802 }
2803
2804 static struct value *
2805 amd64_sigtramp_frame_prev_register (struct frame_info *this_frame,
2806 void **this_cache, int regnum)
2807 {
2808 /* Make sure we've initialized the cache. */
2809 amd64_sigtramp_frame_cache (this_frame, this_cache);
2810
2811 return amd64_frame_prev_register (this_frame, this_cache, regnum);
2812 }
2813
2814 static int
2815 amd64_sigtramp_frame_sniffer (const struct frame_unwind *self,
2816 struct frame_info *this_frame,
2817 void **this_cache)
2818 {
2819 struct gdbarch_tdep *tdep = gdbarch_tdep (get_frame_arch (this_frame));
2820
2821 /* We shouldn't even bother if we don't have a sigcontext_addr
2822 handler. */
2823 if (tdep->sigcontext_addr == NULL)
2824 return 0;
2825
2826 if (tdep->sigtramp_p != NULL)
2827 {
2828 if (tdep->sigtramp_p (this_frame))
2829 return 1;
2830 }
2831
2832 if (tdep->sigtramp_start != 0)
2833 {
2834 CORE_ADDR pc = get_frame_pc (this_frame);
2835
2836 gdb_assert (tdep->sigtramp_end != 0);
2837 if (pc >= tdep->sigtramp_start && pc < tdep->sigtramp_end)
2838 return 1;
2839 }
2840
2841 return 0;
2842 }
2843
2844 static const struct frame_unwind amd64_sigtramp_frame_unwind =
2845 {
2846 SIGTRAMP_FRAME,
2847 amd64_sigtramp_frame_unwind_stop_reason,
2848 amd64_sigtramp_frame_this_id,
2849 amd64_sigtramp_frame_prev_register,
2850 NULL,
2851 amd64_sigtramp_frame_sniffer
2852 };
2853 \f
2854
2855 static CORE_ADDR
2856 amd64_frame_base_address (struct frame_info *this_frame, void **this_cache)
2857 {
2858 struct amd64_frame_cache *cache =
2859 amd64_frame_cache (this_frame, this_cache);
2860
2861 return cache->base;
2862 }
2863
2864 static const struct frame_base amd64_frame_base =
2865 {
2866 &amd64_frame_unwind,
2867 amd64_frame_base_address,
2868 amd64_frame_base_address,
2869 amd64_frame_base_address
2870 };
2871
2872 /* Normal frames, but in a function epilogue. */
2873
2874 /* Implement the stack_frame_destroyed_p gdbarch method.
2875
2876 The epilogue is defined here as the 'ret' instruction, which will
2877 follow any instruction such as 'leave' or 'pop %ebp' that destroys
2878 the function's stack frame. */
2879
2880 static int
2881 amd64_stack_frame_destroyed_p (struct gdbarch *gdbarch, CORE_ADDR pc)
2882 {
2883 gdb_byte insn;
2884 struct compunit_symtab *cust;
2885
2886 cust = find_pc_compunit_symtab (pc);
2887 if (cust != NULL && COMPUNIT_EPILOGUE_UNWIND_VALID (cust))
2888 return 0;
2889
2890 if (target_read_memory (pc, &insn, 1))
2891 return 0; /* Can't read memory at pc. */
2892
2893 if (insn != 0xc3) /* 'ret' instruction. */
2894 return 0;
2895
2896 return 1;
2897 }
2898
2899 static int
2900 amd64_epilogue_frame_sniffer (const struct frame_unwind *self,
2901 struct frame_info *this_frame,
2902 void **this_prologue_cache)
2903 {
2904 if (frame_relative_level (this_frame) == 0)
2905 return amd64_stack_frame_destroyed_p (get_frame_arch (this_frame),
2906 get_frame_pc (this_frame));
2907 else
2908 return 0;
2909 }
2910
2911 static struct amd64_frame_cache *
2912 amd64_epilogue_frame_cache (struct frame_info *this_frame, void **this_cache)
2913 {
2914 struct gdbarch *gdbarch = get_frame_arch (this_frame);
2915 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
2916 struct amd64_frame_cache *cache;
2917 gdb_byte buf[8];
2918
2919 if (*this_cache)
2920 return (struct amd64_frame_cache *) *this_cache;
2921
2922 cache = amd64_alloc_frame_cache ();
2923 *this_cache = cache;
2924
2925 try
2926 {
2927 /* Cache base will be %esp plus cache->sp_offset (-8). */
2928 get_frame_register (this_frame, AMD64_RSP_REGNUM, buf);
2929 cache->base = extract_unsigned_integer (buf, 8,
2930 byte_order) + cache->sp_offset;
2931
2932 /* Cache pc will be the frame func. */
2933 cache->pc = get_frame_pc (this_frame);
2934
2935 /* The saved %esp will be at cache->base plus 16. */
2936 cache->saved_sp = cache->base + 16;
2937
2938 /* The saved %eip will be at cache->base plus 8. */
2939 cache->saved_regs[AMD64_RIP_REGNUM] = cache->base + 8;
2940
2941 cache->base_p = 1;
2942 }
2943 catch (const gdb_exception_error &ex)
2944 {
2945 if (ex.error != NOT_AVAILABLE_ERROR)
2946 throw;
2947 }
2948
2949 return cache;
2950 }
2951
2952 static enum unwind_stop_reason
2953 amd64_epilogue_frame_unwind_stop_reason (struct frame_info *this_frame,
2954 void **this_cache)
2955 {
2956 struct amd64_frame_cache *cache
2957 = amd64_epilogue_frame_cache (this_frame, this_cache);
2958
2959 if (!cache->base_p)
2960 return UNWIND_UNAVAILABLE;
2961
2962 return UNWIND_NO_REASON;
2963 }
2964
2965 static void
2966 amd64_epilogue_frame_this_id (struct frame_info *this_frame,
2967 void **this_cache,
2968 struct frame_id *this_id)
2969 {
2970 struct amd64_frame_cache *cache = amd64_epilogue_frame_cache (this_frame,
2971 this_cache);
2972
2973 if (!cache->base_p)
2974 (*this_id) = frame_id_build_unavailable_stack (cache->pc);
2975 else
2976 (*this_id) = frame_id_build (cache->base + 8, cache->pc);
2977 }
2978
2979 static const struct frame_unwind amd64_epilogue_frame_unwind =
2980 {
2981 NORMAL_FRAME,
2982 amd64_epilogue_frame_unwind_stop_reason,
2983 amd64_epilogue_frame_this_id,
2984 amd64_frame_prev_register,
2985 NULL,
2986 amd64_epilogue_frame_sniffer
2987 };
2988
2989 static struct frame_id
2990 amd64_dummy_id (struct gdbarch *gdbarch, struct frame_info *this_frame)
2991 {
2992 CORE_ADDR fp;
2993
2994 fp = get_frame_register_unsigned (this_frame, AMD64_RBP_REGNUM);
2995
2996 return frame_id_build (fp + 16, get_frame_pc (this_frame));
2997 }
2998
2999 /* 16 byte align the SP per frame requirements. */
3000
3001 static CORE_ADDR
3002 amd64_frame_align (struct gdbarch *gdbarch, CORE_ADDR sp)
3003 {
3004 return sp & -(CORE_ADDR)16;
3005 }
3006 \f
3007
3008 /* Supply register REGNUM from the buffer specified by FPREGS and LEN
3009 in the floating-point register set REGSET to register cache
3010 REGCACHE. If REGNUM is -1, do this for all registers in REGSET. */
3011
3012 static void
3013 amd64_supply_fpregset (const struct regset *regset, struct regcache *regcache,
3014 int regnum, const void *fpregs, size_t len)
3015 {
3016 struct gdbarch *gdbarch = regcache->arch ();
3017 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3018
3019 gdb_assert (len >= tdep->sizeof_fpregset);
3020 amd64_supply_fxsave (regcache, regnum, fpregs);
3021 }
3022
3023 /* Collect register REGNUM from the register cache REGCACHE and store
3024 it in the buffer specified by FPREGS and LEN as described by the
3025 floating-point register set REGSET. If REGNUM is -1, do this for
3026 all registers in REGSET. */
3027
3028 static void
3029 amd64_collect_fpregset (const struct regset *regset,
3030 const struct regcache *regcache,
3031 int regnum, void *fpregs, size_t len)
3032 {
3033 struct gdbarch *gdbarch = regcache->arch ();
3034 const struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3035
3036 gdb_assert (len >= tdep->sizeof_fpregset);
3037 amd64_collect_fxsave (regcache, regnum, fpregs);
3038 }
3039
3040 const struct regset amd64_fpregset =
3041 {
3042 NULL, amd64_supply_fpregset, amd64_collect_fpregset
3043 };
3044 \f
3045
3046 /* Figure out where the longjmp will land. Slurp the jmp_buf out of
3047 %rdi. We expect its value to be a pointer to the jmp_buf structure
3048 from which we extract the address that we will land at. This
3049 address is copied into PC. This routine returns non-zero on
3050 success. */
3051
3052 static int
3053 amd64_get_longjmp_target (struct frame_info *frame, CORE_ADDR *pc)
3054 {
3055 gdb_byte buf[8];
3056 CORE_ADDR jb_addr;
3057 struct gdbarch *gdbarch = get_frame_arch (frame);
3058 int jb_pc_offset = gdbarch_tdep (gdbarch)->jb_pc_offset;
3059 int len = TYPE_LENGTH (builtin_type (gdbarch)->builtin_func_ptr);
3060
3061 /* If JB_PC_OFFSET is -1, we have no way to find out where the
3062 longjmp will land. */
3063 if (jb_pc_offset == -1)
3064 return 0;
3065
3066 get_frame_register (frame, AMD64_RDI_REGNUM, buf);
3067 jb_addr= extract_typed_address
3068 (buf, builtin_type (gdbarch)->builtin_data_ptr);
3069 if (target_read_memory (jb_addr + jb_pc_offset, buf, len))
3070 return 0;
3071
3072 *pc = extract_typed_address (buf, builtin_type (gdbarch)->builtin_func_ptr);
3073
3074 return 1;
3075 }
3076
3077 static const int amd64_record_regmap[] =
3078 {
3079 AMD64_RAX_REGNUM, AMD64_RCX_REGNUM, AMD64_RDX_REGNUM, AMD64_RBX_REGNUM,
3080 AMD64_RSP_REGNUM, AMD64_RBP_REGNUM, AMD64_RSI_REGNUM, AMD64_RDI_REGNUM,
3081 AMD64_R8_REGNUM, AMD64_R9_REGNUM, AMD64_R10_REGNUM, AMD64_R11_REGNUM,
3082 AMD64_R12_REGNUM, AMD64_R13_REGNUM, AMD64_R14_REGNUM, AMD64_R15_REGNUM,
3083 AMD64_RIP_REGNUM, AMD64_EFLAGS_REGNUM, AMD64_CS_REGNUM, AMD64_SS_REGNUM,
3084 AMD64_DS_REGNUM, AMD64_ES_REGNUM, AMD64_FS_REGNUM, AMD64_GS_REGNUM
3085 };
3086
3087 /* Implement the "in_indirect_branch_thunk" gdbarch function. */
3088
3089 static bool
3090 amd64_in_indirect_branch_thunk (struct gdbarch *gdbarch, CORE_ADDR pc)
3091 {
3092 return x86_in_indirect_branch_thunk (pc, amd64_register_names,
3093 AMD64_RAX_REGNUM,
3094 AMD64_RIP_REGNUM);
3095 }
3096
3097 void
3098 amd64_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3099 const target_desc *default_tdesc)
3100 {
3101 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3102 const struct target_desc *tdesc = info.target_desc;
3103 static const char *const stap_integer_prefixes[] = { "$", NULL };
3104 static const char *const stap_register_prefixes[] = { "%", NULL };
3105 static const char *const stap_register_indirection_prefixes[] = { "(",
3106 NULL };
3107 static const char *const stap_register_indirection_suffixes[] = { ")",
3108 NULL };
3109
3110 /* AMD64 generally uses `fxsave' instead of `fsave' for saving its
3111 floating-point registers. */
3112 tdep->sizeof_fpregset = I387_SIZEOF_FXSAVE;
3113 tdep->fpregset = &amd64_fpregset;
3114
3115 if (! tdesc_has_registers (tdesc))
3116 tdesc = default_tdesc;
3117 tdep->tdesc = tdesc;
3118
3119 tdep->num_core_regs = AMD64_NUM_GREGS + I387_NUM_REGS;
3120 tdep->register_names = amd64_register_names;
3121
3122 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx512") != NULL)
3123 {
3124 tdep->zmmh_register_names = amd64_zmmh_names;
3125 tdep->k_register_names = amd64_k_names;
3126 tdep->xmm_avx512_register_names = amd64_xmm_avx512_names;
3127 tdep->ymm16h_register_names = amd64_ymmh_avx512_names;
3128
3129 tdep->num_zmm_regs = 32;
3130 tdep->num_xmm_avx512_regs = 16;
3131 tdep->num_ymm_avx512_regs = 16;
3132
3133 tdep->zmm0h_regnum = AMD64_ZMM0H_REGNUM;
3134 tdep->k0_regnum = AMD64_K0_REGNUM;
3135 tdep->xmm16_regnum = AMD64_XMM16_REGNUM;
3136 tdep->ymm16h_regnum = AMD64_YMM16H_REGNUM;
3137 }
3138
3139 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.avx") != NULL)
3140 {
3141 tdep->ymmh_register_names = amd64_ymmh_names;
3142 tdep->num_ymm_regs = 16;
3143 tdep->ymm0h_regnum = AMD64_YMM0H_REGNUM;
3144 }
3145
3146 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.mpx") != NULL)
3147 {
3148 tdep->mpx_register_names = amd64_mpx_names;
3149 tdep->bndcfgu_regnum = AMD64_BNDCFGU_REGNUM;
3150 tdep->bnd0r_regnum = AMD64_BND0R_REGNUM;
3151 }
3152
3153 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.segments") != NULL)
3154 {
3155 tdep->fsbase_regnum = AMD64_FSBASE_REGNUM;
3156 }
3157
3158 if (tdesc_find_feature (tdesc, "org.gnu.gdb.i386.pkeys") != NULL)
3159 {
3160 tdep->pkeys_register_names = amd64_pkeys_names;
3161 tdep->pkru_regnum = AMD64_PKRU_REGNUM;
3162 tdep->num_pkeys_regs = 1;
3163 }
3164
3165 tdep->num_byte_regs = 20;
3166 tdep->num_word_regs = 16;
3167 tdep->num_dword_regs = 16;
3168 /* Avoid wiring in the MMX registers for now. */
3169 tdep->num_mmx_regs = 0;
3170
3171 set_gdbarch_pseudo_register_read_value (gdbarch,
3172 amd64_pseudo_register_read_value);
3173 set_gdbarch_pseudo_register_write (gdbarch,
3174 amd64_pseudo_register_write);
3175 set_gdbarch_ax_pseudo_register_collect (gdbarch,
3176 amd64_ax_pseudo_register_collect);
3177
3178 set_tdesc_pseudo_register_name (gdbarch, amd64_pseudo_register_name);
3179
3180 /* AMD64 has an FPU and 16 SSE registers. */
3181 tdep->st0_regnum = AMD64_ST0_REGNUM;
3182 tdep->num_xmm_regs = 16;
3183
3184 /* This is what all the fuss is about. */
3185 set_gdbarch_long_bit (gdbarch, 64);
3186 set_gdbarch_long_long_bit (gdbarch, 64);
3187 set_gdbarch_ptr_bit (gdbarch, 64);
3188
3189 /* In contrast to the i386, on AMD64 a `long double' actually takes
3190 up 128 bits, even though it's still based on the i387 extended
3191 floating-point format which has only 80 significant bits. */
3192 set_gdbarch_long_double_bit (gdbarch, 128);
3193
3194 set_gdbarch_num_regs (gdbarch, AMD64_NUM_REGS);
3195
3196 /* Register numbers of various important registers. */
3197 set_gdbarch_sp_regnum (gdbarch, AMD64_RSP_REGNUM); /* %rsp */
3198 set_gdbarch_pc_regnum (gdbarch, AMD64_RIP_REGNUM); /* %rip */
3199 set_gdbarch_ps_regnum (gdbarch, AMD64_EFLAGS_REGNUM); /* %eflags */
3200 set_gdbarch_fp0_regnum (gdbarch, AMD64_ST0_REGNUM); /* %st(0) */
3201
3202 /* The "default" register numbering scheme for AMD64 is referred to
3203 as the "DWARF Register Number Mapping" in the System V psABI.
3204 The preferred debugging format for all known AMD64 targets is
3205 actually DWARF2, and GCC doesn't seem to support DWARF (that is
3206 DWARF-1), but we provide the same mapping just in case. This
3207 mapping is also used for stabs, which GCC does support. */
3208 set_gdbarch_stab_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3209 set_gdbarch_dwarf2_reg_to_regnum (gdbarch, amd64_dwarf_reg_to_regnum);
3210
3211 /* We don't override SDB_REG_RO_REGNUM, since COFF doesn't seem to
3212 be in use on any of the supported AMD64 targets. */
3213
3214 /* Call dummy code. */
3215 set_gdbarch_push_dummy_call (gdbarch, amd64_push_dummy_call);
3216 set_gdbarch_frame_align (gdbarch, amd64_frame_align);
3217 set_gdbarch_frame_red_zone_size (gdbarch, 128);
3218
3219 set_gdbarch_convert_register_p (gdbarch, i387_convert_register_p);
3220 set_gdbarch_register_to_value (gdbarch, i387_register_to_value);
3221 set_gdbarch_value_to_register (gdbarch, i387_value_to_register);
3222
3223 set_gdbarch_return_value (gdbarch, amd64_return_value);
3224
3225 set_gdbarch_skip_prologue (gdbarch, amd64_skip_prologue);
3226
3227 tdep->record_regmap = amd64_record_regmap;
3228
3229 set_gdbarch_dummy_id (gdbarch, amd64_dummy_id);
3230
3231 /* Hook the function epilogue frame unwinder. This unwinder is
3232 appended to the list first, so that it supercedes the other
3233 unwinders in function epilogues. */
3234 frame_unwind_prepend_unwinder (gdbarch, &amd64_epilogue_frame_unwind);
3235
3236 /* Hook the prologue-based frame unwinders. */
3237 frame_unwind_append_unwinder (gdbarch, &amd64_sigtramp_frame_unwind);
3238 frame_unwind_append_unwinder (gdbarch, &amd64_frame_unwind);
3239 frame_base_set_default (gdbarch, &amd64_frame_base);
3240
3241 set_gdbarch_get_longjmp_target (gdbarch, amd64_get_longjmp_target);
3242
3243 set_gdbarch_relocate_instruction (gdbarch, amd64_relocate_instruction);
3244
3245 set_gdbarch_gen_return_address (gdbarch, amd64_gen_return_address);
3246
3247 /* SystemTap variables and functions. */
3248 set_gdbarch_stap_integer_prefixes (gdbarch, stap_integer_prefixes);
3249 set_gdbarch_stap_register_prefixes (gdbarch, stap_register_prefixes);
3250 set_gdbarch_stap_register_indirection_prefixes (gdbarch,
3251 stap_register_indirection_prefixes);
3252 set_gdbarch_stap_register_indirection_suffixes (gdbarch,
3253 stap_register_indirection_suffixes);
3254 set_gdbarch_stap_is_single_operand (gdbarch,
3255 i386_stap_is_single_operand);
3256 set_gdbarch_stap_parse_special_token (gdbarch,
3257 i386_stap_parse_special_token);
3258 set_gdbarch_insn_is_call (gdbarch, amd64_insn_is_call);
3259 set_gdbarch_insn_is_ret (gdbarch, amd64_insn_is_ret);
3260 set_gdbarch_insn_is_jump (gdbarch, amd64_insn_is_jump);
3261
3262 set_gdbarch_in_indirect_branch_thunk (gdbarch,
3263 amd64_in_indirect_branch_thunk);
3264 }
3265
3266 /* Initialize ARCH for x86-64, no osabi. */
3267
3268 static void
3269 amd64_none_init_abi (gdbarch_info info, gdbarch *arch)
3270 {
3271 amd64_init_abi (info, arch, amd64_target_description (X86_XSTATE_SSE_MASK,
3272 true));
3273 }
3274
3275 static struct type *
3276 amd64_x32_pseudo_register_type (struct gdbarch *gdbarch, int regnum)
3277 {
3278 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3279
3280 switch (regnum - tdep->eax_regnum)
3281 {
3282 case AMD64_RBP_REGNUM: /* %ebp */
3283 case AMD64_RSP_REGNUM: /* %esp */
3284 return builtin_type (gdbarch)->builtin_data_ptr;
3285 case AMD64_RIP_REGNUM: /* %eip */
3286 return builtin_type (gdbarch)->builtin_func_ptr;
3287 }
3288
3289 return i386_pseudo_register_type (gdbarch, regnum);
3290 }
3291
3292 void
3293 amd64_x32_init_abi (struct gdbarch_info info, struct gdbarch *gdbarch,
3294 const target_desc *default_tdesc)
3295 {
3296 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3297
3298 amd64_init_abi (info, gdbarch, default_tdesc);
3299
3300 tdep->num_dword_regs = 17;
3301 set_tdesc_pseudo_register_type (gdbarch, amd64_x32_pseudo_register_type);
3302
3303 set_gdbarch_long_bit (gdbarch, 32);
3304 set_gdbarch_ptr_bit (gdbarch, 32);
3305 }
3306
3307 /* Initialize ARCH for x64-32, no osabi. */
3308
3309 static void
3310 amd64_x32_none_init_abi (gdbarch_info info, gdbarch *arch)
3311 {
3312 amd64_x32_init_abi (info, arch,
3313 amd64_target_description (X86_XSTATE_SSE_MASK, true));
3314 }
3315
3316 /* Return the target description for a specified XSAVE feature mask. */
3317
3318 const struct target_desc *
3319 amd64_target_description (uint64_t xcr0, bool segments)
3320 {
3321 static target_desc *amd64_tdescs \
3322 [2/*AVX*/][2/*MPX*/][2/*AVX512*/][2/*PKRU*/][2/*segments*/] = {};
3323 target_desc **tdesc;
3324
3325 tdesc = &amd64_tdescs[(xcr0 & X86_XSTATE_AVX) ? 1 : 0]
3326 [(xcr0 & X86_XSTATE_MPX) ? 1 : 0]
3327 [(xcr0 & X86_XSTATE_AVX512) ? 1 : 0]
3328 [(xcr0 & X86_XSTATE_PKRU) ? 1 : 0]
3329 [segments ? 1 : 0];
3330
3331 if (*tdesc == NULL)
3332 *tdesc = amd64_create_target_description (xcr0, false, false,
3333 segments);
3334
3335 return *tdesc;
3336 }
3337
3338 void
3339 _initialize_amd64_tdep (void)
3340 {
3341 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x86_64, GDB_OSABI_NONE,
3342 amd64_none_init_abi);
3343 gdbarch_register_osabi (bfd_arch_i386, bfd_mach_x64_32, GDB_OSABI_NONE,
3344 amd64_x32_none_init_abi);
3345 }
3346 \f
3347
3348 /* The 64-bit FXSAVE format differs from the 32-bit format in the
3349 sense that the instruction pointer and data pointer are simply
3350 64-bit offsets into the code segment and the data segment instead
3351 of a selector offset pair. The functions below store the upper 32
3352 bits of these pointers (instead of just the 16-bits of the segment
3353 selector). */
3354
3355 /* Fill register REGNUM in REGCACHE with the appropriate
3356 floating-point or SSE register value from *FXSAVE. If REGNUM is
3357 -1, do this for all registers. This function masks off any of the
3358 reserved bits in *FXSAVE. */
3359
3360 void
3361 amd64_supply_fxsave (struct regcache *regcache, int regnum,
3362 const void *fxsave)
3363 {
3364 struct gdbarch *gdbarch = regcache->arch ();
3365 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3366
3367 i387_supply_fxsave (regcache, regnum, fxsave);
3368
3369 if (fxsave
3370 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3371 {
3372 const gdb_byte *regs = (const gdb_byte *) fxsave;
3373
3374 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3375 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
3376 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3377 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
3378 }
3379 }
3380
3381 /* Similar to amd64_supply_fxsave, but use XSAVE extended state. */
3382
3383 void
3384 amd64_supply_xsave (struct regcache *regcache, int regnum,
3385 const void *xsave)
3386 {
3387 struct gdbarch *gdbarch = regcache->arch ();
3388 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3389
3390 i387_supply_xsave (regcache, regnum, xsave);
3391
3392 if (xsave
3393 && gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3394 {
3395 const gdb_byte *regs = (const gdb_byte *) xsave;
3396 ULONGEST clear_bv;
3397
3398 clear_bv = i387_xsave_get_clear_bv (gdbarch, xsave);
3399
3400 /* If the FISEG and FOSEG registers have not been initialised yet
3401 (their CLEAR_BV bit is set) then their default values of zero will
3402 have already been setup by I387_SUPPLY_XSAVE. */
3403 if (!(clear_bv & X86_XSTATE_X87))
3404 {
3405 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3406 regcache->raw_supply (I387_FISEG_REGNUM (tdep), regs + 12);
3407 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3408 regcache->raw_supply (I387_FOSEG_REGNUM (tdep), regs + 20);
3409 }
3410 }
3411 }
3412
3413 /* Fill register REGNUM (if it is a floating-point or SSE register) in
3414 *FXSAVE with the value from REGCACHE. If REGNUM is -1, do this for
3415 all registers. This function doesn't touch any of the reserved
3416 bits in *FXSAVE. */
3417
3418 void
3419 amd64_collect_fxsave (const struct regcache *regcache, int regnum,
3420 void *fxsave)
3421 {
3422 struct gdbarch *gdbarch = regcache->arch ();
3423 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3424 gdb_byte *regs = (gdb_byte *) fxsave;
3425
3426 i387_collect_fxsave (regcache, regnum, fxsave);
3427
3428 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3429 {
3430 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3431 regcache->raw_collect (I387_FISEG_REGNUM (tdep), regs + 12);
3432 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3433 regcache->raw_collect (I387_FOSEG_REGNUM (tdep), regs + 20);
3434 }
3435 }
3436
3437 /* Similar to amd64_collect_fxsave, but use XSAVE extended state. */
3438
3439 void
3440 amd64_collect_xsave (const struct regcache *regcache, int regnum,
3441 void *xsave, int gcore)
3442 {
3443 struct gdbarch *gdbarch = regcache->arch ();
3444 struct gdbarch_tdep *tdep = gdbarch_tdep (gdbarch);
3445 gdb_byte *regs = (gdb_byte *) xsave;
3446
3447 i387_collect_xsave (regcache, regnum, xsave, gcore);
3448
3449 if (gdbarch_bfd_arch_info (gdbarch)->bits_per_word == 64)
3450 {
3451 if (regnum == -1 || regnum == I387_FISEG_REGNUM (tdep))
3452 regcache->raw_collect (I387_FISEG_REGNUM (tdep),
3453 regs + 12);
3454 if (regnum == -1 || regnum == I387_FOSEG_REGNUM (tdep))
3455 regcache->raw_collect (I387_FOSEG_REGNUM (tdep),
3456 regs + 20);
3457 }
3458 }
This page took 0.094751 seconds and 3 git commands to generate.