gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / auxv.c
1 /* Auxiliary vector support for GDB, the GNU debugger.
2
3 Copyright (C) 2004-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "target.h"
22 #include "gdbtypes.h"
23 #include "command.h"
24 #include "inferior.h"
25 #include "valprint.h"
26 #include "gdbcore.h"
27 #include "observable.h"
28 #include "gdbsupport/filestuff.h"
29 #include "objfiles.h"
30
31 #include "auxv.h"
32 #include "elf/common.h"
33
34 #include <unistd.h>
35 #include <fcntl.h>
36
37
38 /* Implement the to_xfer_partial target_ops method. This function
39 handles access via /proc/PID/auxv, which is a common method for
40 native targets. */
41
42 static enum target_xfer_status
43 procfs_xfer_auxv (gdb_byte *readbuf,
44 const gdb_byte *writebuf,
45 ULONGEST offset,
46 ULONGEST len,
47 ULONGEST *xfered_len)
48 {
49 int fd;
50 ssize_t l;
51
52 std::string pathname = string_printf ("/proc/%d/auxv", inferior_ptid.pid ());
53 fd = gdb_open_cloexec (pathname, writebuf != NULL ? O_WRONLY : O_RDONLY, 0);
54 if (fd < 0)
55 return TARGET_XFER_E_IO;
56
57 if (offset != (ULONGEST) 0
58 && lseek (fd, (off_t) offset, SEEK_SET) != (off_t) offset)
59 l = -1;
60 else if (readbuf != NULL)
61 l = read (fd, readbuf, (size_t) len);
62 else
63 l = write (fd, writebuf, (size_t) len);
64
65 (void) close (fd);
66
67 if (l < 0)
68 return TARGET_XFER_E_IO;
69 else if (l == 0)
70 return TARGET_XFER_EOF;
71 else
72 {
73 *xfered_len = (ULONGEST) l;
74 return TARGET_XFER_OK;
75 }
76 }
77
78 /* This function handles access via ld.so's symbol `_dl_auxv'. */
79
80 static enum target_xfer_status
81 ld_so_xfer_auxv (gdb_byte *readbuf,
82 const gdb_byte *writebuf,
83 ULONGEST offset,
84 ULONGEST len, ULONGEST *xfered_len)
85 {
86 struct bound_minimal_symbol msym;
87 CORE_ADDR data_address, pointer_address;
88 struct type *ptr_type = builtin_type (target_gdbarch ())->builtin_data_ptr;
89 size_t ptr_size = TYPE_LENGTH (ptr_type);
90 size_t auxv_pair_size = 2 * ptr_size;
91 gdb_byte *ptr_buf = (gdb_byte *) alloca (ptr_size);
92 LONGEST retval;
93 size_t block;
94
95 msym = lookup_minimal_symbol ("_dl_auxv", NULL, NULL);
96 if (msym.minsym == NULL)
97 return TARGET_XFER_E_IO;
98
99 if (MSYMBOL_SIZE (msym.minsym) != ptr_size)
100 return TARGET_XFER_E_IO;
101
102 /* POINTER_ADDRESS is a location where the `_dl_auxv' variable
103 resides. DATA_ADDRESS is the inferior value present in
104 `_dl_auxv', therefore the real inferior AUXV address. */
105
106 pointer_address = BMSYMBOL_VALUE_ADDRESS (msym);
107
108 /* The location of the _dl_auxv symbol may no longer be correct if
109 ld.so runs at a different address than the one present in the
110 file. This is very common case - for unprelinked ld.so or with a
111 PIE executable. PIE executable forces random address even for
112 libraries already being prelinked to some address. PIE
113 executables themselves are never prelinked even on prelinked
114 systems. Prelinking of a PIE executable would block their
115 purpose of randomizing load of everything including the
116 executable.
117
118 If the memory read fails, return -1 to fallback on another
119 mechanism for retrieving the AUXV.
120
121 In most cases of a PIE running under valgrind there is no way to
122 find out the base addresses of any of ld.so, executable or AUXV
123 as everything is randomized and /proc information is not relevant
124 for the virtual executable running under valgrind. We think that
125 we might need a valgrind extension to make it work. This is PR
126 11440. */
127
128 if (target_read_memory (pointer_address, ptr_buf, ptr_size) != 0)
129 return TARGET_XFER_E_IO;
130
131 data_address = extract_typed_address (ptr_buf, ptr_type);
132
133 /* Possibly still not initialized such as during an inferior
134 startup. */
135 if (data_address == 0)
136 return TARGET_XFER_E_IO;
137
138 data_address += offset;
139
140 if (writebuf != NULL)
141 {
142 if (target_write_memory (data_address, writebuf, len) == 0)
143 {
144 *xfered_len = (ULONGEST) len;
145 return TARGET_XFER_OK;
146 }
147 else
148 return TARGET_XFER_E_IO;
149 }
150
151 /* Stop if trying to read past the existing AUXV block. The final
152 AT_NULL was already returned before. */
153
154 if (offset >= auxv_pair_size)
155 {
156 if (target_read_memory (data_address - auxv_pair_size, ptr_buf,
157 ptr_size) != 0)
158 return TARGET_XFER_E_IO;
159
160 if (extract_typed_address (ptr_buf, ptr_type) == AT_NULL)
161 return TARGET_XFER_EOF;
162 }
163
164 retval = 0;
165 block = 0x400;
166 gdb_assert (block % auxv_pair_size == 0);
167
168 while (len > 0)
169 {
170 if (block > len)
171 block = len;
172
173 /* Reading sizes smaller than AUXV_PAIR_SIZE is not supported.
174 Tails unaligned to AUXV_PAIR_SIZE will not be read during a
175 call (they should be completed during next read with
176 new/extended buffer). */
177
178 block &= -auxv_pair_size;
179 if (block == 0)
180 break;
181
182 if (target_read_memory (data_address, readbuf, block) != 0)
183 {
184 if (block <= auxv_pair_size)
185 break;
186
187 block = auxv_pair_size;
188 continue;
189 }
190
191 data_address += block;
192 len -= block;
193
194 /* Check terminal AT_NULL. This function is being called
195 indefinitely being extended its READBUF until it returns EOF
196 (0). */
197
198 while (block >= auxv_pair_size)
199 {
200 retval += auxv_pair_size;
201
202 if (extract_typed_address (readbuf, ptr_type) == AT_NULL)
203 {
204 *xfered_len = (ULONGEST) retval;
205 return TARGET_XFER_OK;
206 }
207
208 readbuf += auxv_pair_size;
209 block -= auxv_pair_size;
210 }
211 }
212
213 *xfered_len = (ULONGEST) retval;
214 return TARGET_XFER_OK;
215 }
216
217 /* Implement the to_xfer_partial target_ops method for
218 TARGET_OBJECT_AUXV. It handles access to AUXV. */
219
220 enum target_xfer_status
221 memory_xfer_auxv (struct target_ops *ops,
222 enum target_object object,
223 const char *annex,
224 gdb_byte *readbuf,
225 const gdb_byte *writebuf,
226 ULONGEST offset,
227 ULONGEST len, ULONGEST *xfered_len)
228 {
229 gdb_assert (object == TARGET_OBJECT_AUXV);
230 gdb_assert (readbuf || writebuf);
231
232 /* ld_so_xfer_auxv is the only function safe for virtual
233 executables being executed by valgrind's memcheck. Using
234 ld_so_xfer_auxv during inferior startup is problematic, because
235 ld.so symbol tables have not yet been relocated. So GDB uses
236 this function only when attaching to a process.
237 */
238
239 if (current_inferior ()->attach_flag != 0)
240 {
241 enum target_xfer_status ret;
242
243 ret = ld_so_xfer_auxv (readbuf, writebuf, offset, len, xfered_len);
244 if (ret != TARGET_XFER_E_IO)
245 return ret;
246 }
247
248 return procfs_xfer_auxv (readbuf, writebuf, offset, len, xfered_len);
249 }
250
251 /* This function compared to other auxv_parse functions: it takes the size of
252 the auxv type field as a parameter. */
253
254 static int
255 generic_auxv_parse (struct gdbarch *gdbarch, gdb_byte **readptr,
256 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp,
257 int sizeof_auxv_type)
258 {
259 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
260 const int sizeof_auxv_val = TYPE_LENGTH (ptr_type);
261 enum bfd_endian byte_order = gdbarch_byte_order (gdbarch);
262 gdb_byte *ptr = *readptr;
263
264 if (endptr == ptr)
265 return 0;
266
267 if (endptr - ptr < 2 * sizeof_auxv_val)
268 return -1;
269
270 *typep = extract_unsigned_integer (ptr, sizeof_auxv_type, byte_order);
271 /* Even if the auxv type takes less space than an auxv value, there is
272 padding after the type such that the value is aligned on a multiple of
273 its size (and this is why we advance by `sizeof_auxv_val` and not
274 `sizeof_auxv_type`). */
275 ptr += sizeof_auxv_val;
276 *valp = extract_unsigned_integer (ptr, sizeof_auxv_val, byte_order);
277 ptr += sizeof_auxv_val;
278
279 *readptr = ptr;
280 return 1;
281 }
282
283 /* See auxv.h. */
284
285 int
286 default_auxv_parse (struct target_ops *ops, gdb_byte **readptr,
287 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
288 {
289 struct gdbarch *gdbarch = target_gdbarch ();
290 struct type *ptr_type = builtin_type (gdbarch)->builtin_data_ptr;
291 const int sizeof_auxv_type = TYPE_LENGTH (ptr_type);
292
293 return generic_auxv_parse (gdbarch, readptr, endptr, typep, valp,
294 sizeof_auxv_type);
295 }
296
297 /* See auxv.h. */
298
299 int
300 svr4_auxv_parse (struct gdbarch *gdbarch, gdb_byte **readptr,
301 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
302 {
303 struct type *int_type = builtin_type (gdbarch)->builtin_int;
304 const int sizeof_auxv_type = TYPE_LENGTH (int_type);
305
306 return generic_auxv_parse (gdbarch, readptr, endptr, typep, valp,
307 sizeof_auxv_type);
308 }
309
310 /* Read one auxv entry from *READPTR, not reading locations >= ENDPTR.
311 Return 0 if *READPTR is already at the end of the buffer.
312 Return -1 if there is insufficient buffer for a whole entry.
313 Return 1 if an entry was read into *TYPEP and *VALP. */
314 int
315 target_auxv_parse (gdb_byte **readptr,
316 gdb_byte *endptr, CORE_ADDR *typep, CORE_ADDR *valp)
317 {
318 struct gdbarch *gdbarch = target_gdbarch();
319
320 if (gdbarch_auxv_parse_p (gdbarch))
321 return gdbarch_auxv_parse (gdbarch, readptr, endptr, typep, valp);
322
323 return current_top_target ()->auxv_parse (readptr, endptr, typep, valp);
324 }
325
326
327 /* Auxiliary Vector information structure. This is used by GDB
328 for caching purposes for each inferior. This helps reduce the
329 overhead of transfering data from a remote target to the local host. */
330 struct auxv_info
331 {
332 gdb::optional<gdb::byte_vector> data;
333 };
334
335 /* Per-inferior data key for auxv. */
336 static const struct inferior_key<auxv_info> auxv_inferior_data;
337
338 /* Invalidate INF's auxv cache. */
339
340 static void
341 invalidate_auxv_cache_inf (struct inferior *inf)
342 {
343 auxv_inferior_data.clear (inf);
344 }
345
346 /* Invalidate current inferior's auxv cache. */
347
348 static void
349 invalidate_auxv_cache (void)
350 {
351 invalidate_auxv_cache_inf (current_inferior ());
352 }
353
354 /* Fetch the auxv object from inferior INF. If auxv is cached already,
355 return a pointer to the cache. If not, fetch the auxv object from the
356 target and cache it. This function always returns a valid INFO pointer. */
357
358 static struct auxv_info *
359 get_auxv_inferior_data (struct target_ops *ops)
360 {
361 struct auxv_info *info;
362 struct inferior *inf = current_inferior ();
363
364 info = auxv_inferior_data.get (inf);
365 if (info == NULL)
366 {
367 info = auxv_inferior_data.emplace (inf);
368 info->data = target_read_alloc (ops, TARGET_OBJECT_AUXV, NULL);
369 }
370
371 return info;
372 }
373
374 /* Extract the auxiliary vector entry with a_type matching MATCH.
375 Return zero if no such entry was found, or -1 if there was
376 an error getting the information. On success, return 1 after
377 storing the entry's value field in *VALP. */
378 int
379 target_auxv_search (struct target_ops *ops, CORE_ADDR match, CORE_ADDR *valp)
380 {
381 CORE_ADDR type, val;
382 auxv_info *info = get_auxv_inferior_data (ops);
383
384 if (!info->data)
385 return -1;
386
387 gdb_byte *data = info->data->data ();
388 gdb_byte *ptr = data;
389 size_t len = info->data->size ();
390
391 while (1)
392 switch (target_auxv_parse (&ptr, data + len, &type, &val))
393 {
394 case 1: /* Here's an entry, check it. */
395 if (type == match)
396 {
397 *valp = val;
398 return 1;
399 }
400 break;
401 case 0: /* End of the vector. */
402 return 0;
403 default: /* Bogosity. */
404 return -1;
405 }
406
407 /*NOTREACHED*/
408 }
409
410
411 /* Print the description of a single AUXV entry on the specified file. */
412
413 void
414 fprint_auxv_entry (struct ui_file *file, const char *name,
415 const char *description, enum auxv_format format,
416 CORE_ADDR type, CORE_ADDR val)
417 {
418 fprintf_filtered (file, ("%-4s %-20s %-30s "),
419 plongest (type), name, description);
420 switch (format)
421 {
422 case AUXV_FORMAT_DEC:
423 fprintf_filtered (file, ("%s\n"), plongest (val));
424 break;
425 case AUXV_FORMAT_HEX:
426 fprintf_filtered (file, ("%s\n"), paddress (target_gdbarch (), val));
427 break;
428 case AUXV_FORMAT_STR:
429 {
430 struct value_print_options opts;
431
432 get_user_print_options (&opts);
433 if (opts.addressprint)
434 fprintf_filtered (file, ("%s "), paddress (target_gdbarch (), val));
435 val_print_string (builtin_type (target_gdbarch ())->builtin_char,
436 NULL, val, -1, file, &opts);
437 fprintf_filtered (file, ("\n"));
438 }
439 break;
440 }
441 }
442
443 /* The default implementation of gdbarch_print_auxv_entry. */
444
445 void
446 default_print_auxv_entry (struct gdbarch *gdbarch, struct ui_file *file,
447 CORE_ADDR type, CORE_ADDR val)
448 {
449 const char *name = "???";
450 const char *description = "";
451 enum auxv_format format = AUXV_FORMAT_HEX;
452
453 switch (type)
454 {
455 #define TAG(tag, text, kind) \
456 case tag: name = #tag; description = text; format = kind; break
457 TAG (AT_NULL, _("End of vector"), AUXV_FORMAT_HEX);
458 TAG (AT_IGNORE, _("Entry should be ignored"), AUXV_FORMAT_HEX);
459 TAG (AT_EXECFD, _("File descriptor of program"), AUXV_FORMAT_DEC);
460 TAG (AT_PHDR, _("Program headers for program"), AUXV_FORMAT_HEX);
461 TAG (AT_PHENT, _("Size of program header entry"), AUXV_FORMAT_DEC);
462 TAG (AT_PHNUM, _("Number of program headers"), AUXV_FORMAT_DEC);
463 TAG (AT_PAGESZ, _("System page size"), AUXV_FORMAT_DEC);
464 TAG (AT_BASE, _("Base address of interpreter"), AUXV_FORMAT_HEX);
465 TAG (AT_FLAGS, _("Flags"), AUXV_FORMAT_HEX);
466 TAG (AT_ENTRY, _("Entry point of program"), AUXV_FORMAT_HEX);
467 TAG (AT_NOTELF, _("Program is not ELF"), AUXV_FORMAT_DEC);
468 TAG (AT_UID, _("Real user ID"), AUXV_FORMAT_DEC);
469 TAG (AT_EUID, _("Effective user ID"), AUXV_FORMAT_DEC);
470 TAG (AT_GID, _("Real group ID"), AUXV_FORMAT_DEC);
471 TAG (AT_EGID, _("Effective group ID"), AUXV_FORMAT_DEC);
472 TAG (AT_CLKTCK, _("Frequency of times()"), AUXV_FORMAT_DEC);
473 TAG (AT_PLATFORM, _("String identifying platform"), AUXV_FORMAT_STR);
474 TAG (AT_HWCAP, _("Machine-dependent CPU capability hints"),
475 AUXV_FORMAT_HEX);
476 TAG (AT_FPUCW, _("Used FPU control word"), AUXV_FORMAT_DEC);
477 TAG (AT_DCACHEBSIZE, _("Data cache block size"), AUXV_FORMAT_DEC);
478 TAG (AT_ICACHEBSIZE, _("Instruction cache block size"), AUXV_FORMAT_DEC);
479 TAG (AT_UCACHEBSIZE, _("Unified cache block size"), AUXV_FORMAT_DEC);
480 TAG (AT_IGNOREPPC, _("Entry should be ignored"), AUXV_FORMAT_DEC);
481 TAG (AT_BASE_PLATFORM, _("String identifying base platform"),
482 AUXV_FORMAT_STR);
483 TAG (AT_RANDOM, _("Address of 16 random bytes"), AUXV_FORMAT_HEX);
484 TAG (AT_HWCAP2, _("Extension of AT_HWCAP"), AUXV_FORMAT_HEX);
485 TAG (AT_EXECFN, _("File name of executable"), AUXV_FORMAT_STR);
486 TAG (AT_SECURE, _("Boolean, was exec setuid-like?"), AUXV_FORMAT_DEC);
487 TAG (AT_SYSINFO, _("Special system info/entry points"), AUXV_FORMAT_HEX);
488 TAG (AT_SYSINFO_EHDR, _("System-supplied DSO's ELF header"),
489 AUXV_FORMAT_HEX);
490 TAG (AT_L1I_CACHESHAPE, _("L1 Instruction cache information"),
491 AUXV_FORMAT_HEX);
492 TAG (AT_L1I_CACHESIZE, _("L1 Instruction cache size"), AUXV_FORMAT_HEX);
493 TAG (AT_L1I_CACHEGEOMETRY, _("L1 Instruction cache geometry"),
494 AUXV_FORMAT_HEX);
495 TAG (AT_L1D_CACHESHAPE, _("L1 Data cache information"), AUXV_FORMAT_HEX);
496 TAG (AT_L1D_CACHESIZE, _("L1 Data cache size"), AUXV_FORMAT_HEX);
497 TAG (AT_L1D_CACHEGEOMETRY, _("L1 Data cache geometry"),
498 AUXV_FORMAT_HEX);
499 TAG (AT_L2_CACHESHAPE, _("L2 cache information"), AUXV_FORMAT_HEX);
500 TAG (AT_L2_CACHESIZE, _("L2 cache size"), AUXV_FORMAT_HEX);
501 TAG (AT_L2_CACHEGEOMETRY, _("L2 cache geometry"), AUXV_FORMAT_HEX);
502 TAG (AT_L3_CACHESHAPE, _("L3 cache information"), AUXV_FORMAT_HEX);
503 TAG (AT_L3_CACHESIZE, _("L3 cache size"), AUXV_FORMAT_HEX);
504 TAG (AT_L3_CACHEGEOMETRY, _("L3 cache geometry"), AUXV_FORMAT_HEX);
505 TAG (AT_MINSIGSTKSZ, _("Minimum stack size for signal delivery"),
506 AUXV_FORMAT_HEX);
507 TAG (AT_SUN_UID, _("Effective user ID"), AUXV_FORMAT_DEC);
508 TAG (AT_SUN_RUID, _("Real user ID"), AUXV_FORMAT_DEC);
509 TAG (AT_SUN_GID, _("Effective group ID"), AUXV_FORMAT_DEC);
510 TAG (AT_SUN_RGID, _("Real group ID"), AUXV_FORMAT_DEC);
511 TAG (AT_SUN_LDELF, _("Dynamic linker's ELF header"), AUXV_FORMAT_HEX);
512 TAG (AT_SUN_LDSHDR, _("Dynamic linker's section headers"),
513 AUXV_FORMAT_HEX);
514 TAG (AT_SUN_LDNAME, _("String giving name of dynamic linker"),
515 AUXV_FORMAT_STR);
516 TAG (AT_SUN_LPAGESZ, _("Large pagesize"), AUXV_FORMAT_DEC);
517 TAG (AT_SUN_PLATFORM, _("Platform name string"), AUXV_FORMAT_STR);
518 TAG (AT_SUN_CAP_HW1, _("Machine-dependent CPU capability hints"),
519 AUXV_FORMAT_HEX);
520 TAG (AT_SUN_IFLUSH, _("Should flush icache?"), AUXV_FORMAT_DEC);
521 TAG (AT_SUN_CPU, _("CPU name string"), AUXV_FORMAT_STR);
522 TAG (AT_SUN_EMUL_ENTRY, _("COFF entry point address"), AUXV_FORMAT_HEX);
523 TAG (AT_SUN_EMUL_EXECFD, _("COFF executable file descriptor"),
524 AUXV_FORMAT_DEC);
525 TAG (AT_SUN_EXECNAME,
526 _("Canonicalized file name given to execve"), AUXV_FORMAT_STR);
527 TAG (AT_SUN_MMU, _("String for name of MMU module"), AUXV_FORMAT_STR);
528 TAG (AT_SUN_LDDATA, _("Dynamic linker's data segment address"),
529 AUXV_FORMAT_HEX);
530 TAG (AT_SUN_AUXFLAGS,
531 _("AF_SUN_ flags passed from the kernel"), AUXV_FORMAT_HEX);
532 TAG (AT_SUN_EMULATOR, _("Name of emulation binary for runtime linker"),
533 AUXV_FORMAT_STR);
534 TAG (AT_SUN_BRANDNAME, _("Name of brand library"), AUXV_FORMAT_STR);
535 TAG (AT_SUN_BRAND_AUX1, _("Aux vector for brand modules 1"),
536 AUXV_FORMAT_HEX);
537 TAG (AT_SUN_BRAND_AUX2, _("Aux vector for brand modules 2"),
538 AUXV_FORMAT_HEX);
539 TAG (AT_SUN_BRAND_AUX3, _("Aux vector for brand modules 3"),
540 AUXV_FORMAT_HEX);
541 TAG (AT_SUN_CAP_HW2, _("Machine-dependent CPU capability hints 2"),
542 AUXV_FORMAT_HEX);
543 }
544
545 fprint_auxv_entry (file, name, description, format, type, val);
546 }
547
548 /* Print the contents of the target's AUXV on the specified file. */
549
550 int
551 fprint_target_auxv (struct ui_file *file, struct target_ops *ops)
552 {
553 struct gdbarch *gdbarch = target_gdbarch ();
554 CORE_ADDR type, val;
555 int ents = 0;
556 auxv_info *info = get_auxv_inferior_data (ops);
557
558 if (!info->data)
559 return -1;
560
561 gdb_byte *data = info->data->data ();
562 gdb_byte *ptr = data;
563 size_t len = info->data->size ();
564
565 while (target_auxv_parse (&ptr, data + len, &type, &val) > 0)
566 {
567 gdbarch_print_auxv_entry (gdbarch, file, type, val);
568 ++ents;
569 if (type == AT_NULL)
570 break;
571 }
572
573 return ents;
574 }
575
576 static void
577 info_auxv_command (const char *cmd, int from_tty)
578 {
579 if (! target_has_stack)
580 error (_("The program has no auxiliary information now."));
581 else
582 {
583 int ents = fprint_target_auxv (gdb_stdout, current_top_target ());
584
585 if (ents < 0)
586 error (_("No auxiliary vector found, or failed reading it."));
587 else if (ents == 0)
588 error (_("Auxiliary vector is empty."));
589 }
590 }
591
592 void _initialize_auxv ();
593 void
594 _initialize_auxv ()
595 {
596 add_info ("auxv", info_auxv_command,
597 _("Display the inferior's auxiliary vector.\n\
598 This is information provided by the operating system at program startup."));
599
600 /* Observers used to invalidate the auxv cache when needed. */
601 gdb::observers::inferior_exit.attach (invalidate_auxv_cache_inf);
602 gdb::observers::inferior_appeared.attach (invalidate_auxv_cache_inf);
603 gdb::observers::executable_changed.attach (invalidate_auxv_cache);
604 }
This page took 0.042578 seconds and 4 git commands to generate.