Use a member function to set a symbol's language
[deliverable/binutils-gdb.git] / gdb / dwarf2read.c
1 /* DWARF 2 debugging format support for GDB.
2
3 Copyright (C) 1994-2019 Free Software Foundation, Inc.
4
5 Adapted by Gary Funck (gary@intrepid.com), Intrepid Technology,
6 Inc. with support from Florida State University (under contract
7 with the Ada Joint Program Office), and Silicon Graphics, Inc.
8 Initial contribution by Brent Benson, Harris Computer Systems, Inc.,
9 based on Fred Fish's (Cygnus Support) implementation of DWARF 1
10 support.
11
12 This file is part of GDB.
13
14 This program is free software; you can redistribute it and/or modify
15 it under the terms of the GNU General Public License as published by
16 the Free Software Foundation; either version 3 of the License, or
17 (at your option) any later version.
18
19 This program is distributed in the hope that it will be useful,
20 but WITHOUT ANY WARRANTY; without even the implied warranty of
21 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
22 GNU General Public License for more details.
23
24 You should have received a copy of the GNU General Public License
25 along with this program. If not, see <http://www.gnu.org/licenses/>. */
26
27 /* FIXME: Various die-reading functions need to be more careful with
28 reading off the end of the section.
29 E.g., load_partial_dies, read_partial_die. */
30
31 #include "defs.h"
32 #include "dwarf2read.h"
33 #include "dwarf-index-cache.h"
34 #include "dwarf-index-common.h"
35 #include "bfd.h"
36 #include "elf-bfd.h"
37 #include "symtab.h"
38 #include "gdbtypes.h"
39 #include "objfiles.h"
40 #include "dwarf2.h"
41 #include "buildsym.h"
42 #include "demangle.h"
43 #include "gdb-demangle.h"
44 #include "filenames.h" /* for DOSish file names */
45 #include "macrotab.h"
46 #include "language.h"
47 #include "complaints.h"
48 #include "dwarf2expr.h"
49 #include "dwarf2loc.h"
50 #include "cp-support.h"
51 #include "hashtab.h"
52 #include "command.h"
53 #include "gdbcmd.h"
54 #include "block.h"
55 #include "addrmap.h"
56 #include "typeprint.h"
57 #include "psympriv.h"
58 #include "c-lang.h"
59 #include "go-lang.h"
60 #include "valprint.h"
61 #include "gdbcore.h" /* for gnutarget */
62 #include "gdb/gdb-index.h"
63 #include "gdb_bfd.h"
64 #include "f-lang.h"
65 #include "source.h"
66 #include "build-id.h"
67 #include "namespace.h"
68 #include "gdbsupport/function-view.h"
69 #include "gdbsupport/gdb_optional.h"
70 #include "gdbsupport/underlying.h"
71 #include "gdbsupport/hash_enum.h"
72 #include "filename-seen-cache.h"
73 #include "producer.h"
74 #include <fcntl.h>
75 #include <algorithm>
76 #include <unordered_map>
77 #include "gdbsupport/selftest.h"
78 #include "rust-lang.h"
79 #include "gdbsupport/pathstuff.h"
80
81 /* When == 1, print basic high level tracing messages.
82 When > 1, be more verbose.
83 This is in contrast to the low level DIE reading of dwarf_die_debug. */
84 static unsigned int dwarf_read_debug = 0;
85
86 /* When non-zero, dump DIEs after they are read in. */
87 static unsigned int dwarf_die_debug = 0;
88
89 /* When non-zero, dump line number entries as they are read in. */
90 static unsigned int dwarf_line_debug = 0;
91
92 /* When true, cross-check physname against demangler. */
93 static bool check_physname = false;
94
95 /* When true, do not reject deprecated .gdb_index sections. */
96 static bool use_deprecated_index_sections = false;
97
98 static const struct objfile_key<dwarf2_per_objfile> dwarf2_objfile_data_key;
99
100 /* The "aclass" indices for various kinds of computed DWARF symbols. */
101
102 static int dwarf2_locexpr_index;
103 static int dwarf2_loclist_index;
104 static int dwarf2_locexpr_block_index;
105 static int dwarf2_loclist_block_index;
106
107 /* An index into a (C++) symbol name component in a symbol name as
108 recorded in the mapped_index's symbol table. For each C++ symbol
109 in the symbol table, we record one entry for the start of each
110 component in the symbol in a table of name components, and then
111 sort the table, in order to be able to binary search symbol names,
112 ignoring leading namespaces, both completion and regular look up.
113 For example, for symbol "A::B::C", we'll have an entry that points
114 to "A::B::C", another that points to "B::C", and another for "C".
115 Note that function symbols in GDB index have no parameter
116 information, just the function/method names. You can convert a
117 name_component to a "const char *" using the
118 'mapped_index::symbol_name_at(offset_type)' method. */
119
120 struct name_component
121 {
122 /* Offset in the symbol name where the component starts. Stored as
123 a (32-bit) offset instead of a pointer to save memory and improve
124 locality on 64-bit architectures. */
125 offset_type name_offset;
126
127 /* The symbol's index in the symbol and constant pool tables of a
128 mapped_index. */
129 offset_type idx;
130 };
131
132 /* Base class containing bits shared by both .gdb_index and
133 .debug_name indexes. */
134
135 struct mapped_index_base
136 {
137 mapped_index_base () = default;
138 DISABLE_COPY_AND_ASSIGN (mapped_index_base);
139
140 /* The name_component table (a sorted vector). See name_component's
141 description above. */
142 std::vector<name_component> name_components;
143
144 /* How NAME_COMPONENTS is sorted. */
145 enum case_sensitivity name_components_casing;
146
147 /* Return the number of names in the symbol table. */
148 virtual size_t symbol_name_count () const = 0;
149
150 /* Get the name of the symbol at IDX in the symbol table. */
151 virtual const char *symbol_name_at (offset_type idx) const = 0;
152
153 /* Return whether the name at IDX in the symbol table should be
154 ignored. */
155 virtual bool symbol_name_slot_invalid (offset_type idx) const
156 {
157 return false;
158 }
159
160 /* Build the symbol name component sorted vector, if we haven't
161 yet. */
162 void build_name_components ();
163
164 /* Returns the lower (inclusive) and upper (exclusive) bounds of the
165 possible matches for LN_NO_PARAMS in the name component
166 vector. */
167 std::pair<std::vector<name_component>::const_iterator,
168 std::vector<name_component>::const_iterator>
169 find_name_components_bounds (const lookup_name_info &ln_no_params,
170 enum language lang) const;
171
172 /* Prevent deleting/destroying via a base class pointer. */
173 protected:
174 ~mapped_index_base() = default;
175 };
176
177 /* A description of the mapped index. The file format is described in
178 a comment by the code that writes the index. */
179 struct mapped_index final : public mapped_index_base
180 {
181 /* A slot/bucket in the symbol table hash. */
182 struct symbol_table_slot
183 {
184 const offset_type name;
185 const offset_type vec;
186 };
187
188 /* Index data format version. */
189 int version = 0;
190
191 /* The address table data. */
192 gdb::array_view<const gdb_byte> address_table;
193
194 /* The symbol table, implemented as a hash table. */
195 gdb::array_view<symbol_table_slot> symbol_table;
196
197 /* A pointer to the constant pool. */
198 const char *constant_pool = nullptr;
199
200 bool symbol_name_slot_invalid (offset_type idx) const override
201 {
202 const auto &bucket = this->symbol_table[idx];
203 return bucket.name == 0 && bucket.vec == 0;
204 }
205
206 /* Convenience method to get at the name of the symbol at IDX in the
207 symbol table. */
208 const char *symbol_name_at (offset_type idx) const override
209 { return this->constant_pool + MAYBE_SWAP (this->symbol_table[idx].name); }
210
211 size_t symbol_name_count () const override
212 { return this->symbol_table.size (); }
213 };
214
215 /* A description of the mapped .debug_names.
216 Uninitialized map has CU_COUNT 0. */
217 struct mapped_debug_names final : public mapped_index_base
218 {
219 mapped_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile_)
220 : dwarf2_per_objfile (dwarf2_per_objfile_)
221 {}
222
223 struct dwarf2_per_objfile *dwarf2_per_objfile;
224 bfd_endian dwarf5_byte_order;
225 bool dwarf5_is_dwarf64;
226 bool augmentation_is_gdb;
227 uint8_t offset_size;
228 uint32_t cu_count = 0;
229 uint32_t tu_count, bucket_count, name_count;
230 const gdb_byte *cu_table_reordered, *tu_table_reordered;
231 const uint32_t *bucket_table_reordered, *hash_table_reordered;
232 const gdb_byte *name_table_string_offs_reordered;
233 const gdb_byte *name_table_entry_offs_reordered;
234 const gdb_byte *entry_pool;
235
236 struct index_val
237 {
238 ULONGEST dwarf_tag;
239 struct attr
240 {
241 /* Attribute name DW_IDX_*. */
242 ULONGEST dw_idx;
243
244 /* Attribute form DW_FORM_*. */
245 ULONGEST form;
246
247 /* Value if FORM is DW_FORM_implicit_const. */
248 LONGEST implicit_const;
249 };
250 std::vector<attr> attr_vec;
251 };
252
253 std::unordered_map<ULONGEST, index_val> abbrev_map;
254
255 const char *namei_to_name (uint32_t namei) const;
256
257 /* Implementation of the mapped_index_base virtual interface, for
258 the name_components cache. */
259
260 const char *symbol_name_at (offset_type idx) const override
261 { return namei_to_name (idx); }
262
263 size_t symbol_name_count () const override
264 { return this->name_count; }
265 };
266
267 /* See dwarf2read.h. */
268
269 dwarf2_per_objfile *
270 get_dwarf2_per_objfile (struct objfile *objfile)
271 {
272 return dwarf2_objfile_data_key.get (objfile);
273 }
274
275 /* Default names of the debugging sections. */
276
277 /* Note that if the debugging section has been compressed, it might
278 have a name like .zdebug_info. */
279
280 static const struct dwarf2_debug_sections dwarf2_elf_names =
281 {
282 { ".debug_info", ".zdebug_info" },
283 { ".debug_abbrev", ".zdebug_abbrev" },
284 { ".debug_line", ".zdebug_line" },
285 { ".debug_loc", ".zdebug_loc" },
286 { ".debug_loclists", ".zdebug_loclists" },
287 { ".debug_macinfo", ".zdebug_macinfo" },
288 { ".debug_macro", ".zdebug_macro" },
289 { ".debug_str", ".zdebug_str" },
290 { ".debug_line_str", ".zdebug_line_str" },
291 { ".debug_ranges", ".zdebug_ranges" },
292 { ".debug_rnglists", ".zdebug_rnglists" },
293 { ".debug_types", ".zdebug_types" },
294 { ".debug_addr", ".zdebug_addr" },
295 { ".debug_frame", ".zdebug_frame" },
296 { ".eh_frame", NULL },
297 { ".gdb_index", ".zgdb_index" },
298 { ".debug_names", ".zdebug_names" },
299 { ".debug_aranges", ".zdebug_aranges" },
300 23
301 };
302
303 /* List of DWO/DWP sections. */
304
305 static const struct dwop_section_names
306 {
307 struct dwarf2_section_names abbrev_dwo;
308 struct dwarf2_section_names info_dwo;
309 struct dwarf2_section_names line_dwo;
310 struct dwarf2_section_names loc_dwo;
311 struct dwarf2_section_names loclists_dwo;
312 struct dwarf2_section_names macinfo_dwo;
313 struct dwarf2_section_names macro_dwo;
314 struct dwarf2_section_names str_dwo;
315 struct dwarf2_section_names str_offsets_dwo;
316 struct dwarf2_section_names types_dwo;
317 struct dwarf2_section_names cu_index;
318 struct dwarf2_section_names tu_index;
319 }
320 dwop_section_names =
321 {
322 { ".debug_abbrev.dwo", ".zdebug_abbrev.dwo" },
323 { ".debug_info.dwo", ".zdebug_info.dwo" },
324 { ".debug_line.dwo", ".zdebug_line.dwo" },
325 { ".debug_loc.dwo", ".zdebug_loc.dwo" },
326 { ".debug_loclists.dwo", ".zdebug_loclists.dwo" },
327 { ".debug_macinfo.dwo", ".zdebug_macinfo.dwo" },
328 { ".debug_macro.dwo", ".zdebug_macro.dwo" },
329 { ".debug_str.dwo", ".zdebug_str.dwo" },
330 { ".debug_str_offsets.dwo", ".zdebug_str_offsets.dwo" },
331 { ".debug_types.dwo", ".zdebug_types.dwo" },
332 { ".debug_cu_index", ".zdebug_cu_index" },
333 { ".debug_tu_index", ".zdebug_tu_index" },
334 };
335
336 /* local data types */
337
338 /* The data in a compilation unit header, after target2host
339 translation, looks like this. */
340 struct comp_unit_head
341 {
342 unsigned int length;
343 short version;
344 unsigned char addr_size;
345 unsigned char signed_addr_p;
346 sect_offset abbrev_sect_off;
347
348 /* Size of file offsets; either 4 or 8. */
349 unsigned int offset_size;
350
351 /* Size of the length field; either 4 or 12. */
352 unsigned int initial_length_size;
353
354 enum dwarf_unit_type unit_type;
355
356 /* Offset to the first byte of this compilation unit header in the
357 .debug_info section, for resolving relative reference dies. */
358 sect_offset sect_off;
359
360 /* Offset to first die in this cu from the start of the cu.
361 This will be the first byte following the compilation unit header. */
362 cu_offset first_die_cu_offset;
363
364
365 /* 64-bit signature of this unit. For type units, it denotes the signature of
366 the type (DW_UT_type in DWARF 4, additionally DW_UT_split_type in DWARF 5).
367 Also used in DWARF 5, to denote the dwo id when the unit type is
368 DW_UT_skeleton or DW_UT_split_compile. */
369 ULONGEST signature;
370
371 /* For types, offset in the type's DIE of the type defined by this TU. */
372 cu_offset type_cu_offset_in_tu;
373 };
374
375 /* Type used for delaying computation of method physnames.
376 See comments for compute_delayed_physnames. */
377 struct delayed_method_info
378 {
379 /* The type to which the method is attached, i.e., its parent class. */
380 struct type *type;
381
382 /* The index of the method in the type's function fieldlists. */
383 int fnfield_index;
384
385 /* The index of the method in the fieldlist. */
386 int index;
387
388 /* The name of the DIE. */
389 const char *name;
390
391 /* The DIE associated with this method. */
392 struct die_info *die;
393 };
394
395 /* Internal state when decoding a particular compilation unit. */
396 struct dwarf2_cu
397 {
398 explicit dwarf2_cu (struct dwarf2_per_cu_data *per_cu);
399 ~dwarf2_cu ();
400
401 DISABLE_COPY_AND_ASSIGN (dwarf2_cu);
402
403 /* TU version of handle_DW_AT_stmt_list for read_type_unit_scope.
404 Create the set of symtabs used by this TU, or if this TU is sharing
405 symtabs with another TU and the symtabs have already been created
406 then restore those symtabs in the line header.
407 We don't need the pc/line-number mapping for type units. */
408 void setup_type_unit_groups (struct die_info *die);
409
410 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
411 buildsym_compunit constructor. */
412 struct compunit_symtab *start_symtab (const char *name,
413 const char *comp_dir,
414 CORE_ADDR low_pc);
415
416 /* Reset the builder. */
417 void reset_builder () { m_builder.reset (); }
418
419 /* The header of the compilation unit. */
420 struct comp_unit_head header {};
421
422 /* Base address of this compilation unit. */
423 CORE_ADDR base_address = 0;
424
425 /* Non-zero if base_address has been set. */
426 int base_known = 0;
427
428 /* The language we are debugging. */
429 enum language language = language_unknown;
430 const struct language_defn *language_defn = nullptr;
431
432 const char *producer = nullptr;
433
434 private:
435 /* The symtab builder for this CU. This is only non-NULL when full
436 symbols are being read. */
437 std::unique_ptr<buildsym_compunit> m_builder;
438
439 public:
440 /* The generic symbol table building routines have separate lists for
441 file scope symbols and all all other scopes (local scopes). So
442 we need to select the right one to pass to add_symbol_to_list().
443 We do it by keeping a pointer to the correct list in list_in_scope.
444
445 FIXME: The original dwarf code just treated the file scope as the
446 first local scope, and all other local scopes as nested local
447 scopes, and worked fine. Check to see if we really need to
448 distinguish these in buildsym.c. */
449 struct pending **list_in_scope = nullptr;
450
451 /* Hash table holding all the loaded partial DIEs
452 with partial_die->offset.SECT_OFF as hash. */
453 htab_t partial_dies = nullptr;
454
455 /* Storage for things with the same lifetime as this read-in compilation
456 unit, including partial DIEs. */
457 auto_obstack comp_unit_obstack;
458
459 /* When multiple dwarf2_cu structures are living in memory, this field
460 chains them all together, so that they can be released efficiently.
461 We will probably also want a generation counter so that most-recently-used
462 compilation units are cached... */
463 struct dwarf2_per_cu_data *read_in_chain = nullptr;
464
465 /* Backlink to our per_cu entry. */
466 struct dwarf2_per_cu_data *per_cu;
467
468 /* How many compilation units ago was this CU last referenced? */
469 int last_used = 0;
470
471 /* A hash table of DIE cu_offset for following references with
472 die_info->offset.sect_off as hash. */
473 htab_t die_hash = nullptr;
474
475 /* Full DIEs if read in. */
476 struct die_info *dies = nullptr;
477
478 /* A set of pointers to dwarf2_per_cu_data objects for compilation
479 units referenced by this one. Only set during full symbol processing;
480 partial symbol tables do not have dependencies. */
481 htab_t dependencies = nullptr;
482
483 /* Header data from the line table, during full symbol processing. */
484 struct line_header *line_header = nullptr;
485 /* Non-NULL if LINE_HEADER is owned by this DWARF_CU. Otherwise,
486 it's owned by dwarf2_per_objfile::line_header_hash. If non-NULL,
487 this is the DW_TAG_compile_unit die for this CU. We'll hold on
488 to the line header as long as this DIE is being processed. See
489 process_die_scope. */
490 die_info *line_header_die_owner = nullptr;
491
492 /* A list of methods which need to have physnames computed
493 after all type information has been read. */
494 std::vector<delayed_method_info> method_list;
495
496 /* To be copied to symtab->call_site_htab. */
497 htab_t call_site_htab = nullptr;
498
499 /* Non-NULL if this CU came from a DWO file.
500 There is an invariant here that is important to remember:
501 Except for attributes copied from the top level DIE in the "main"
502 (or "stub") file in preparation for reading the DWO file
503 (e.g., DW_AT_GNU_addr_base), we KISS: there is only *one* CU.
504 Either there isn't a DWO file (in which case this is NULL and the point
505 is moot), or there is and either we're not going to read it (in which
506 case this is NULL) or there is and we are reading it (in which case this
507 is non-NULL). */
508 struct dwo_unit *dwo_unit = nullptr;
509
510 /* The DW_AT_addr_base attribute if present, zero otherwise
511 (zero is a valid value though).
512 Note this value comes from the Fission stub CU/TU's DIE. */
513 ULONGEST addr_base = 0;
514
515 /* The DW_AT_ranges_base attribute if present, zero otherwise
516 (zero is a valid value though).
517 Note this value comes from the Fission stub CU/TU's DIE.
518 Also note that the value is zero in the non-DWO case so this value can
519 be used without needing to know whether DWO files are in use or not.
520 N.B. This does not apply to DW_AT_ranges appearing in
521 DW_TAG_compile_unit dies. This is a bit of a wart, consider if ever
522 DW_AT_ranges appeared in the DW_TAG_compile_unit of DWO DIEs: then
523 DW_AT_ranges_base *would* have to be applied, and we'd have to care
524 whether the DW_AT_ranges attribute came from the skeleton or DWO. */
525 ULONGEST ranges_base = 0;
526
527 /* When reading debug info generated by older versions of rustc, we
528 have to rewrite some union types to be struct types with a
529 variant part. This rewriting must be done after the CU is fully
530 read in, because otherwise at the point of rewriting some struct
531 type might not have been fully processed. So, we keep a list of
532 all such types here and process them after expansion. */
533 std::vector<struct type *> rust_unions;
534
535 /* Mark used when releasing cached dies. */
536 bool mark : 1;
537
538 /* This CU references .debug_loc. See the symtab->locations_valid field.
539 This test is imperfect as there may exist optimized debug code not using
540 any location list and still facing inlining issues if handled as
541 unoptimized code. For a future better test see GCC PR other/32998. */
542 bool has_loclist : 1;
543
544 /* These cache the results for producer_is_* fields. CHECKED_PRODUCER is true
545 if all the producer_is_* fields are valid. This information is cached
546 because profiling CU expansion showed excessive time spent in
547 producer_is_gxx_lt_4_6. */
548 bool checked_producer : 1;
549 bool producer_is_gxx_lt_4_6 : 1;
550 bool producer_is_gcc_lt_4_3 : 1;
551 bool producer_is_icc : 1;
552 bool producer_is_icc_lt_14 : 1;
553 bool producer_is_codewarrior : 1;
554
555 /* When true, the file that we're processing is known to have
556 debugging info for C++ namespaces. GCC 3.3.x did not produce
557 this information, but later versions do. */
558
559 bool processing_has_namespace_info : 1;
560
561 struct partial_die_info *find_partial_die (sect_offset sect_off);
562
563 /* If this CU was inherited by another CU (via specification,
564 abstract_origin, etc), this is the ancestor CU. */
565 dwarf2_cu *ancestor;
566
567 /* Get the buildsym_compunit for this CU. */
568 buildsym_compunit *get_builder ()
569 {
570 /* If this CU has a builder associated with it, use that. */
571 if (m_builder != nullptr)
572 return m_builder.get ();
573
574 /* Otherwise, search ancestors for a valid builder. */
575 if (ancestor != nullptr)
576 return ancestor->get_builder ();
577
578 return nullptr;
579 }
580 };
581
582 /* A struct that can be used as a hash key for tables based on DW_AT_stmt_list.
583 This includes type_unit_group and quick_file_names. */
584
585 struct stmt_list_hash
586 {
587 /* The DWO unit this table is from or NULL if there is none. */
588 struct dwo_unit *dwo_unit;
589
590 /* Offset in .debug_line or .debug_line.dwo. */
591 sect_offset line_sect_off;
592 };
593
594 /* Each element of dwarf2_per_objfile->type_unit_groups is a pointer to
595 an object of this type. */
596
597 struct type_unit_group
598 {
599 /* dwarf2read.c's main "handle" on a TU symtab.
600 To simplify things we create an artificial CU that "includes" all the
601 type units using this stmt_list so that the rest of the code still has
602 a "per_cu" handle on the symtab.
603 This PER_CU is recognized by having no section. */
604 #define IS_TYPE_UNIT_GROUP(per_cu) ((per_cu)->section == NULL)
605 struct dwarf2_per_cu_data per_cu;
606
607 /* The TUs that share this DW_AT_stmt_list entry.
608 This is added to while parsing type units to build partial symtabs,
609 and is deleted afterwards and not used again. */
610 std::vector<signatured_type *> *tus;
611
612 /* The compunit symtab.
613 Type units in a group needn't all be defined in the same source file,
614 so we create an essentially anonymous symtab as the compunit symtab. */
615 struct compunit_symtab *compunit_symtab;
616
617 /* The data used to construct the hash key. */
618 struct stmt_list_hash hash;
619
620 /* The number of symtabs from the line header.
621 The value here must match line_header.num_file_names. */
622 unsigned int num_symtabs;
623
624 /* The symbol tables for this TU (obtained from the files listed in
625 DW_AT_stmt_list).
626 WARNING: The order of entries here must match the order of entries
627 in the line header. After the first TU using this type_unit_group, the
628 line header for the subsequent TUs is recreated from this. This is done
629 because we need to use the same symtabs for each TU using the same
630 DW_AT_stmt_list value. Also note that symtabs may be repeated here,
631 there's no guarantee the line header doesn't have duplicate entries. */
632 struct symtab **symtabs;
633 };
634
635 /* These sections are what may appear in a (real or virtual) DWO file. */
636
637 struct dwo_sections
638 {
639 struct dwarf2_section_info abbrev;
640 struct dwarf2_section_info line;
641 struct dwarf2_section_info loc;
642 struct dwarf2_section_info loclists;
643 struct dwarf2_section_info macinfo;
644 struct dwarf2_section_info macro;
645 struct dwarf2_section_info str;
646 struct dwarf2_section_info str_offsets;
647 /* In the case of a virtual DWO file, these two are unused. */
648 struct dwarf2_section_info info;
649 std::vector<dwarf2_section_info> types;
650 };
651
652 /* CUs/TUs in DWP/DWO files. */
653
654 struct dwo_unit
655 {
656 /* Backlink to the containing struct dwo_file. */
657 struct dwo_file *dwo_file;
658
659 /* The "id" that distinguishes this CU/TU.
660 .debug_info calls this "dwo_id", .debug_types calls this "signature".
661 Since signatures came first, we stick with it for consistency. */
662 ULONGEST signature;
663
664 /* The section this CU/TU lives in, in the DWO file. */
665 struct dwarf2_section_info *section;
666
667 /* Same as dwarf2_per_cu_data:{sect_off,length} but in the DWO section. */
668 sect_offset sect_off;
669 unsigned int length;
670
671 /* For types, offset in the type's DIE of the type defined by this TU. */
672 cu_offset type_offset_in_tu;
673 };
674
675 /* include/dwarf2.h defines the DWP section codes.
676 It defines a max value but it doesn't define a min value, which we
677 use for error checking, so provide one. */
678
679 enum dwp_v2_section_ids
680 {
681 DW_SECT_MIN = 1
682 };
683
684 /* Data for one DWO file.
685
686 This includes virtual DWO files (a virtual DWO file is a DWO file as it
687 appears in a DWP file). DWP files don't really have DWO files per se -
688 comdat folding of types "loses" the DWO file they came from, and from
689 a high level view DWP files appear to contain a mass of random types.
690 However, to maintain consistency with the non-DWP case we pretend DWP
691 files contain virtual DWO files, and we assign each TU with one virtual
692 DWO file (generally based on the line and abbrev section offsets -
693 a heuristic that seems to work in practice). */
694
695 struct dwo_file
696 {
697 dwo_file () = default;
698 DISABLE_COPY_AND_ASSIGN (dwo_file);
699
700 /* The DW_AT_GNU_dwo_name attribute.
701 For virtual DWO files the name is constructed from the section offsets
702 of abbrev,line,loc,str_offsets so that we combine virtual DWO files
703 from related CU+TUs. */
704 const char *dwo_name = nullptr;
705
706 /* The DW_AT_comp_dir attribute. */
707 const char *comp_dir = nullptr;
708
709 /* The bfd, when the file is open. Otherwise this is NULL.
710 This is unused(NULL) for virtual DWO files where we use dwp_file.dbfd. */
711 gdb_bfd_ref_ptr dbfd;
712
713 /* The sections that make up this DWO file.
714 Remember that for virtual DWO files in DWP V2, these are virtual
715 sections (for lack of a better name). */
716 struct dwo_sections sections {};
717
718 /* The CUs in the file.
719 Each element is a struct dwo_unit. Multiple CUs per DWO are supported as
720 an extension to handle LLVM's Link Time Optimization output (where
721 multiple source files may be compiled into a single object/dwo pair). */
722 htab_t cus {};
723
724 /* Table of TUs in the file.
725 Each element is a struct dwo_unit. */
726 htab_t tus {};
727 };
728
729 /* These sections are what may appear in a DWP file. */
730
731 struct dwp_sections
732 {
733 /* These are used by both DWP version 1 and 2. */
734 struct dwarf2_section_info str;
735 struct dwarf2_section_info cu_index;
736 struct dwarf2_section_info tu_index;
737
738 /* These are only used by DWP version 2 files.
739 In DWP version 1 the .debug_info.dwo, .debug_types.dwo, and other
740 sections are referenced by section number, and are not recorded here.
741 In DWP version 2 there is at most one copy of all these sections, each
742 section being (effectively) comprised of the concatenation of all of the
743 individual sections that exist in the version 1 format.
744 To keep the code simple we treat each of these concatenated pieces as a
745 section itself (a virtual section?). */
746 struct dwarf2_section_info abbrev;
747 struct dwarf2_section_info info;
748 struct dwarf2_section_info line;
749 struct dwarf2_section_info loc;
750 struct dwarf2_section_info macinfo;
751 struct dwarf2_section_info macro;
752 struct dwarf2_section_info str_offsets;
753 struct dwarf2_section_info types;
754 };
755
756 /* These sections are what may appear in a virtual DWO file in DWP version 1.
757 A virtual DWO file is a DWO file as it appears in a DWP file. */
758
759 struct virtual_v1_dwo_sections
760 {
761 struct dwarf2_section_info abbrev;
762 struct dwarf2_section_info line;
763 struct dwarf2_section_info loc;
764 struct dwarf2_section_info macinfo;
765 struct dwarf2_section_info macro;
766 struct dwarf2_section_info str_offsets;
767 /* Each DWP hash table entry records one CU or one TU.
768 That is recorded here, and copied to dwo_unit.section. */
769 struct dwarf2_section_info info_or_types;
770 };
771
772 /* Similar to virtual_v1_dwo_sections, but for DWP version 2.
773 In version 2, the sections of the DWO files are concatenated together
774 and stored in one section of that name. Thus each ELF section contains
775 several "virtual" sections. */
776
777 struct virtual_v2_dwo_sections
778 {
779 bfd_size_type abbrev_offset;
780 bfd_size_type abbrev_size;
781
782 bfd_size_type line_offset;
783 bfd_size_type line_size;
784
785 bfd_size_type loc_offset;
786 bfd_size_type loc_size;
787
788 bfd_size_type macinfo_offset;
789 bfd_size_type macinfo_size;
790
791 bfd_size_type macro_offset;
792 bfd_size_type macro_size;
793
794 bfd_size_type str_offsets_offset;
795 bfd_size_type str_offsets_size;
796
797 /* Each DWP hash table entry records one CU or one TU.
798 That is recorded here, and copied to dwo_unit.section. */
799 bfd_size_type info_or_types_offset;
800 bfd_size_type info_or_types_size;
801 };
802
803 /* Contents of DWP hash tables. */
804
805 struct dwp_hash_table
806 {
807 uint32_t version, nr_columns;
808 uint32_t nr_units, nr_slots;
809 const gdb_byte *hash_table, *unit_table;
810 union
811 {
812 struct
813 {
814 const gdb_byte *indices;
815 } v1;
816 struct
817 {
818 /* This is indexed by column number and gives the id of the section
819 in that column. */
820 #define MAX_NR_V2_DWO_SECTIONS \
821 (1 /* .debug_info or .debug_types */ \
822 + 1 /* .debug_abbrev */ \
823 + 1 /* .debug_line */ \
824 + 1 /* .debug_loc */ \
825 + 1 /* .debug_str_offsets */ \
826 + 1 /* .debug_macro or .debug_macinfo */)
827 int section_ids[MAX_NR_V2_DWO_SECTIONS];
828 const gdb_byte *offsets;
829 const gdb_byte *sizes;
830 } v2;
831 } section_pool;
832 };
833
834 /* Data for one DWP file. */
835
836 struct dwp_file
837 {
838 dwp_file (const char *name_, gdb_bfd_ref_ptr &&abfd)
839 : name (name_),
840 dbfd (std::move (abfd))
841 {
842 }
843
844 /* Name of the file. */
845 const char *name;
846
847 /* File format version. */
848 int version = 0;
849
850 /* The bfd. */
851 gdb_bfd_ref_ptr dbfd;
852
853 /* Section info for this file. */
854 struct dwp_sections sections {};
855
856 /* Table of CUs in the file. */
857 const struct dwp_hash_table *cus = nullptr;
858
859 /* Table of TUs in the file. */
860 const struct dwp_hash_table *tus = nullptr;
861
862 /* Tables of loaded CUs/TUs. Each entry is a struct dwo_unit *. */
863 htab_t loaded_cus {};
864 htab_t loaded_tus {};
865
866 /* Table to map ELF section numbers to their sections.
867 This is only needed for the DWP V1 file format. */
868 unsigned int num_sections = 0;
869 asection **elf_sections = nullptr;
870 };
871
872 /* Struct used to pass misc. parameters to read_die_and_children, et
873 al. which are used for both .debug_info and .debug_types dies.
874 All parameters here are unchanging for the life of the call. This
875 struct exists to abstract away the constant parameters of die reading. */
876
877 struct die_reader_specs
878 {
879 /* The bfd of die_section. */
880 bfd* abfd;
881
882 /* The CU of the DIE we are parsing. */
883 struct dwarf2_cu *cu;
884
885 /* Non-NULL if reading a DWO file (including one packaged into a DWP). */
886 struct dwo_file *dwo_file;
887
888 /* The section the die comes from.
889 This is either .debug_info or .debug_types, or the .dwo variants. */
890 struct dwarf2_section_info *die_section;
891
892 /* die_section->buffer. */
893 const gdb_byte *buffer;
894
895 /* The end of the buffer. */
896 const gdb_byte *buffer_end;
897
898 /* The value of the DW_AT_comp_dir attribute. */
899 const char *comp_dir;
900
901 /* The abbreviation table to use when reading the DIEs. */
902 struct abbrev_table *abbrev_table;
903 };
904
905 /* Type of function passed to init_cutu_and_read_dies, et.al. */
906 typedef void (die_reader_func_ftype) (const struct die_reader_specs *reader,
907 const gdb_byte *info_ptr,
908 struct die_info *comp_unit_die,
909 int has_children,
910 void *data);
911
912 /* dir_index is 1-based in DWARF 4 and before, and is 0-based in DWARF 5 and
913 later. */
914 typedef int dir_index;
915
916 /* file_name_index is 1-based in DWARF 4 and before, and is 0-based in DWARF 5
917 and later. */
918 typedef int file_name_index;
919
920 struct file_entry
921 {
922 file_entry () = default;
923
924 file_entry (const char *name_, dir_index d_index_,
925 unsigned int mod_time_, unsigned int length_)
926 : name (name_),
927 d_index (d_index_),
928 mod_time (mod_time_),
929 length (length_)
930 {}
931
932 /* Return the include directory at D_INDEX stored in LH. Returns
933 NULL if D_INDEX is out of bounds. */
934 const char *include_dir (const line_header *lh) const;
935
936 /* The file name. Note this is an observing pointer. The memory is
937 owned by debug_line_buffer. */
938 const char *name {};
939
940 /* The directory index (1-based). */
941 dir_index d_index {};
942
943 unsigned int mod_time {};
944
945 unsigned int length {};
946
947 /* True if referenced by the Line Number Program. */
948 bool included_p {};
949
950 /* The associated symbol table, if any. */
951 struct symtab *symtab {};
952 };
953
954 /* The line number information for a compilation unit (found in the
955 .debug_line section) begins with a "statement program header",
956 which contains the following information. */
957 struct line_header
958 {
959 line_header ()
960 : offset_in_dwz {}
961 {}
962
963 /* Add an entry to the include directory table. */
964 void add_include_dir (const char *include_dir);
965
966 /* Add an entry to the file name table. */
967 void add_file_name (const char *name, dir_index d_index,
968 unsigned int mod_time, unsigned int length);
969
970 /* Return the include dir at INDEX (0-based in DWARF 5 and 1-based before).
971 Returns NULL if INDEX is out of bounds. */
972 const char *include_dir_at (dir_index index) const
973 {
974 int vec_index;
975 if (version >= 5)
976 vec_index = index;
977 else
978 vec_index = index - 1;
979 if (vec_index < 0 || vec_index >= m_include_dirs.size ())
980 return NULL;
981 return m_include_dirs[vec_index];
982 }
983
984 bool is_valid_file_index (int file_index)
985 {
986 if (version >= 5)
987 return 0 <= file_index && file_index < file_names_size ();
988 return 1 <= file_index && file_index <= file_names_size ();
989 }
990
991 /* Return the file name at INDEX (0-based in DWARF 5 and 1-based before).
992 Returns NULL if INDEX is out of bounds. */
993 file_entry *file_name_at (file_name_index index)
994 {
995 int vec_index;
996 if (version >= 5)
997 vec_index = index;
998 else
999 vec_index = index - 1;
1000 if (vec_index < 0 || vec_index >= m_file_names.size ())
1001 return NULL;
1002 return &m_file_names[vec_index];
1003 }
1004
1005 /* The indexes are 0-based in DWARF 5 and 1-based in DWARF 4. Therefore,
1006 this method should only be used to iterate through all file entries in an
1007 index-agnostic manner. */
1008 std::vector<file_entry> &file_names ()
1009 { return m_file_names; }
1010
1011 /* Offset of line number information in .debug_line section. */
1012 sect_offset sect_off {};
1013
1014 /* OFFSET is for struct dwz_file associated with dwarf2_per_objfile. */
1015 unsigned offset_in_dwz : 1; /* Can't initialize bitfields in-class. */
1016
1017 unsigned int total_length {};
1018 unsigned short version {};
1019 unsigned int header_length {};
1020 unsigned char minimum_instruction_length {};
1021 unsigned char maximum_ops_per_instruction {};
1022 unsigned char default_is_stmt {};
1023 int line_base {};
1024 unsigned char line_range {};
1025 unsigned char opcode_base {};
1026
1027 /* standard_opcode_lengths[i] is the number of operands for the
1028 standard opcode whose value is i. This means that
1029 standard_opcode_lengths[0] is unused, and the last meaningful
1030 element is standard_opcode_lengths[opcode_base - 1]. */
1031 std::unique_ptr<unsigned char[]> standard_opcode_lengths;
1032
1033 int file_names_size ()
1034 { return m_file_names.size(); }
1035
1036 /* The start and end of the statement program following this
1037 header. These point into dwarf2_per_objfile->line_buffer. */
1038 const gdb_byte *statement_program_start {}, *statement_program_end {};
1039
1040 private:
1041 /* The include_directories table. Note these are observing
1042 pointers. The memory is owned by debug_line_buffer. */
1043 std::vector<const char *> m_include_dirs;
1044
1045 /* The file_names table. This is private because the meaning of indexes
1046 differs among DWARF versions (The first valid index is 1 in DWARF 4 and
1047 before, and is 0 in DWARF 5 and later). So the client should use
1048 file_name_at method for access. */
1049 std::vector<file_entry> m_file_names;
1050 };
1051
1052 typedef std::unique_ptr<line_header> line_header_up;
1053
1054 const char *
1055 file_entry::include_dir (const line_header *lh) const
1056 {
1057 return lh->include_dir_at (d_index);
1058 }
1059
1060 /* When we construct a partial symbol table entry we only
1061 need this much information. */
1062 struct partial_die_info : public allocate_on_obstack
1063 {
1064 partial_die_info (sect_offset sect_off, struct abbrev_info *abbrev);
1065
1066 /* Disable assign but still keep copy ctor, which is needed
1067 load_partial_dies. */
1068 partial_die_info& operator=(const partial_die_info& rhs) = delete;
1069
1070 /* Adjust the partial die before generating a symbol for it. This
1071 function may set the is_external flag or change the DIE's
1072 name. */
1073 void fixup (struct dwarf2_cu *cu);
1074
1075 /* Read a minimal amount of information into the minimal die
1076 structure. */
1077 const gdb_byte *read (const struct die_reader_specs *reader,
1078 const struct abbrev_info &abbrev,
1079 const gdb_byte *info_ptr);
1080
1081 /* Offset of this DIE. */
1082 const sect_offset sect_off;
1083
1084 /* DWARF-2 tag for this DIE. */
1085 const ENUM_BITFIELD(dwarf_tag) tag : 16;
1086
1087 /* Assorted flags describing the data found in this DIE. */
1088 const unsigned int has_children : 1;
1089
1090 unsigned int is_external : 1;
1091 unsigned int is_declaration : 1;
1092 unsigned int has_type : 1;
1093 unsigned int has_specification : 1;
1094 unsigned int has_pc_info : 1;
1095 unsigned int may_be_inlined : 1;
1096
1097 /* This DIE has been marked DW_AT_main_subprogram. */
1098 unsigned int main_subprogram : 1;
1099
1100 /* Flag set if the SCOPE field of this structure has been
1101 computed. */
1102 unsigned int scope_set : 1;
1103
1104 /* Flag set if the DIE has a byte_size attribute. */
1105 unsigned int has_byte_size : 1;
1106
1107 /* Flag set if the DIE has a DW_AT_const_value attribute. */
1108 unsigned int has_const_value : 1;
1109
1110 /* Flag set if any of the DIE's children are template arguments. */
1111 unsigned int has_template_arguments : 1;
1112
1113 /* Flag set if fixup has been called on this die. */
1114 unsigned int fixup_called : 1;
1115
1116 /* Flag set if DW_TAG_imported_unit uses DW_FORM_GNU_ref_alt. */
1117 unsigned int is_dwz : 1;
1118
1119 /* Flag set if spec_offset uses DW_FORM_GNU_ref_alt. */
1120 unsigned int spec_is_dwz : 1;
1121
1122 /* The name of this DIE. Normally the value of DW_AT_name, but
1123 sometimes a default name for unnamed DIEs. */
1124 const char *name = nullptr;
1125
1126 /* The linkage name, if present. */
1127 const char *linkage_name = nullptr;
1128
1129 /* The scope to prepend to our children. This is generally
1130 allocated on the comp_unit_obstack, so will disappear
1131 when this compilation unit leaves the cache. */
1132 const char *scope = nullptr;
1133
1134 /* Some data associated with the partial DIE. The tag determines
1135 which field is live. */
1136 union
1137 {
1138 /* The location description associated with this DIE, if any. */
1139 struct dwarf_block *locdesc;
1140 /* The offset of an import, for DW_TAG_imported_unit. */
1141 sect_offset sect_off;
1142 } d {};
1143
1144 /* If HAS_PC_INFO, the PC range associated with this DIE. */
1145 CORE_ADDR lowpc = 0;
1146 CORE_ADDR highpc = 0;
1147
1148 /* Pointer into the info_buffer (or types_buffer) pointing at the target of
1149 DW_AT_sibling, if any. */
1150 /* NOTE: This member isn't strictly necessary, partial_die_info::read
1151 could return DW_AT_sibling values to its caller load_partial_dies. */
1152 const gdb_byte *sibling = nullptr;
1153
1154 /* If HAS_SPECIFICATION, the offset of the DIE referred to by
1155 DW_AT_specification (or DW_AT_abstract_origin or
1156 DW_AT_extension). */
1157 sect_offset spec_offset {};
1158
1159 /* Pointers to this DIE's parent, first child, and next sibling,
1160 if any. */
1161 struct partial_die_info *die_parent = nullptr;
1162 struct partial_die_info *die_child = nullptr;
1163 struct partial_die_info *die_sibling = nullptr;
1164
1165 friend struct partial_die_info *
1166 dwarf2_cu::find_partial_die (sect_offset sect_off);
1167
1168 private:
1169 /* Only need to do look up in dwarf2_cu::find_partial_die. */
1170 partial_die_info (sect_offset sect_off)
1171 : partial_die_info (sect_off, DW_TAG_padding, 0)
1172 {
1173 }
1174
1175 partial_die_info (sect_offset sect_off_, enum dwarf_tag tag_,
1176 int has_children_)
1177 : sect_off (sect_off_), tag (tag_), has_children (has_children_)
1178 {
1179 is_external = 0;
1180 is_declaration = 0;
1181 has_type = 0;
1182 has_specification = 0;
1183 has_pc_info = 0;
1184 may_be_inlined = 0;
1185 main_subprogram = 0;
1186 scope_set = 0;
1187 has_byte_size = 0;
1188 has_const_value = 0;
1189 has_template_arguments = 0;
1190 fixup_called = 0;
1191 is_dwz = 0;
1192 spec_is_dwz = 0;
1193 }
1194 };
1195
1196 /* This data structure holds the information of an abbrev. */
1197 struct abbrev_info
1198 {
1199 unsigned int number; /* number identifying abbrev */
1200 enum dwarf_tag tag; /* dwarf tag */
1201 unsigned short has_children; /* boolean */
1202 unsigned short num_attrs; /* number of attributes */
1203 struct attr_abbrev *attrs; /* an array of attribute descriptions */
1204 struct abbrev_info *next; /* next in chain */
1205 };
1206
1207 struct attr_abbrev
1208 {
1209 ENUM_BITFIELD(dwarf_attribute) name : 16;
1210 ENUM_BITFIELD(dwarf_form) form : 16;
1211
1212 /* It is valid only if FORM is DW_FORM_implicit_const. */
1213 LONGEST implicit_const;
1214 };
1215
1216 /* Size of abbrev_table.abbrev_hash_table. */
1217 #define ABBREV_HASH_SIZE 121
1218
1219 /* Top level data structure to contain an abbreviation table. */
1220
1221 struct abbrev_table
1222 {
1223 explicit abbrev_table (sect_offset off)
1224 : sect_off (off)
1225 {
1226 m_abbrevs =
1227 XOBNEWVEC (&abbrev_obstack, struct abbrev_info *, ABBREV_HASH_SIZE);
1228 memset (m_abbrevs, 0, ABBREV_HASH_SIZE * sizeof (struct abbrev_info *));
1229 }
1230
1231 DISABLE_COPY_AND_ASSIGN (abbrev_table);
1232
1233 /* Allocate space for a struct abbrev_info object in
1234 ABBREV_TABLE. */
1235 struct abbrev_info *alloc_abbrev ();
1236
1237 /* Add an abbreviation to the table. */
1238 void add_abbrev (unsigned int abbrev_number, struct abbrev_info *abbrev);
1239
1240 /* Look up an abbrev in the table.
1241 Returns NULL if the abbrev is not found. */
1242
1243 struct abbrev_info *lookup_abbrev (unsigned int abbrev_number);
1244
1245
1246 /* Where the abbrev table came from.
1247 This is used as a sanity check when the table is used. */
1248 const sect_offset sect_off;
1249
1250 /* Storage for the abbrev table. */
1251 auto_obstack abbrev_obstack;
1252
1253 private:
1254
1255 /* Hash table of abbrevs.
1256 This is an array of size ABBREV_HASH_SIZE allocated in abbrev_obstack.
1257 It could be statically allocated, but the previous code didn't so we
1258 don't either. */
1259 struct abbrev_info **m_abbrevs;
1260 };
1261
1262 typedef std::unique_ptr<struct abbrev_table> abbrev_table_up;
1263
1264 /* Attributes have a name and a value. */
1265 struct attribute
1266 {
1267 ENUM_BITFIELD(dwarf_attribute) name : 16;
1268 ENUM_BITFIELD(dwarf_form) form : 15;
1269
1270 /* Has DW_STRING already been updated by dwarf2_canonicalize_name? This
1271 field should be in u.str (existing only for DW_STRING) but it is kept
1272 here for better struct attribute alignment. */
1273 unsigned int string_is_canonical : 1;
1274
1275 union
1276 {
1277 const char *str;
1278 struct dwarf_block *blk;
1279 ULONGEST unsnd;
1280 LONGEST snd;
1281 CORE_ADDR addr;
1282 ULONGEST signature;
1283 }
1284 u;
1285 };
1286
1287 /* This data structure holds a complete die structure. */
1288 struct die_info
1289 {
1290 /* DWARF-2 tag for this DIE. */
1291 ENUM_BITFIELD(dwarf_tag) tag : 16;
1292
1293 /* Number of attributes */
1294 unsigned char num_attrs;
1295
1296 /* True if we're presently building the full type name for the
1297 type derived from this DIE. */
1298 unsigned char building_fullname : 1;
1299
1300 /* True if this die is in process. PR 16581. */
1301 unsigned char in_process : 1;
1302
1303 /* Abbrev number */
1304 unsigned int abbrev;
1305
1306 /* Offset in .debug_info or .debug_types section. */
1307 sect_offset sect_off;
1308
1309 /* The dies in a compilation unit form an n-ary tree. PARENT
1310 points to this die's parent; CHILD points to the first child of
1311 this node; and all the children of a given node are chained
1312 together via their SIBLING fields. */
1313 struct die_info *child; /* Its first child, if any. */
1314 struct die_info *sibling; /* Its next sibling, if any. */
1315 struct die_info *parent; /* Its parent, if any. */
1316
1317 /* An array of attributes, with NUM_ATTRS elements. There may be
1318 zero, but it's not common and zero-sized arrays are not
1319 sufficiently portable C. */
1320 struct attribute attrs[1];
1321 };
1322
1323 /* Get at parts of an attribute structure. */
1324
1325 #define DW_STRING(attr) ((attr)->u.str)
1326 #define DW_STRING_IS_CANONICAL(attr) ((attr)->string_is_canonical)
1327 #define DW_UNSND(attr) ((attr)->u.unsnd)
1328 #define DW_BLOCK(attr) ((attr)->u.blk)
1329 #define DW_SND(attr) ((attr)->u.snd)
1330 #define DW_ADDR(attr) ((attr)->u.addr)
1331 #define DW_SIGNATURE(attr) ((attr)->u.signature)
1332
1333 /* Blocks are a bunch of untyped bytes. */
1334 struct dwarf_block
1335 {
1336 size_t size;
1337
1338 /* Valid only if SIZE is not zero. */
1339 const gdb_byte *data;
1340 };
1341
1342 #ifndef ATTR_ALLOC_CHUNK
1343 #define ATTR_ALLOC_CHUNK 4
1344 #endif
1345
1346 /* Allocate fields for structs, unions and enums in this size. */
1347 #ifndef DW_FIELD_ALLOC_CHUNK
1348 #define DW_FIELD_ALLOC_CHUNK 4
1349 #endif
1350
1351 /* FIXME: We might want to set this from BFD via bfd_arch_bits_per_byte,
1352 but this would require a corresponding change in unpack_field_as_long
1353 and friends. */
1354 static int bits_per_byte = 8;
1355
1356 /* When reading a variant or variant part, we track a bit more
1357 information about the field, and store it in an object of this
1358 type. */
1359
1360 struct variant_field
1361 {
1362 /* If we see a DW_TAG_variant, then this will be the discriminant
1363 value. */
1364 ULONGEST discriminant_value;
1365 /* If we see a DW_TAG_variant, then this will be set if this is the
1366 default branch. */
1367 bool default_branch;
1368 /* While reading a DW_TAG_variant_part, this will be set if this
1369 field is the discriminant. */
1370 bool is_discriminant;
1371 };
1372
1373 struct nextfield
1374 {
1375 int accessibility = 0;
1376 int virtuality = 0;
1377 /* Extra information to describe a variant or variant part. */
1378 struct variant_field variant {};
1379 struct field field {};
1380 };
1381
1382 struct fnfieldlist
1383 {
1384 const char *name = nullptr;
1385 std::vector<struct fn_field> fnfields;
1386 };
1387
1388 /* The routines that read and process dies for a C struct or C++ class
1389 pass lists of data member fields and lists of member function fields
1390 in an instance of a field_info structure, as defined below. */
1391 struct field_info
1392 {
1393 /* List of data member and baseclasses fields. */
1394 std::vector<struct nextfield> fields;
1395 std::vector<struct nextfield> baseclasses;
1396
1397 /* Number of fields (including baseclasses). */
1398 int nfields = 0;
1399
1400 /* Set if the accessibility of one of the fields is not public. */
1401 int non_public_fields = 0;
1402
1403 /* Member function fieldlist array, contains name of possibly overloaded
1404 member function, number of overloaded member functions and a pointer
1405 to the head of the member function field chain. */
1406 std::vector<struct fnfieldlist> fnfieldlists;
1407
1408 /* typedefs defined inside this class. TYPEDEF_FIELD_LIST contains head of
1409 a NULL terminated list of TYPEDEF_FIELD_LIST_COUNT elements. */
1410 std::vector<struct decl_field> typedef_field_list;
1411
1412 /* Nested types defined by this class and the number of elements in this
1413 list. */
1414 std::vector<struct decl_field> nested_types_list;
1415 };
1416
1417 /* One item on the queue of compilation units to read in full symbols
1418 for. */
1419 struct dwarf2_queue_item
1420 {
1421 struct dwarf2_per_cu_data *per_cu;
1422 enum language pretend_language;
1423 struct dwarf2_queue_item *next;
1424 };
1425
1426 /* The current queue. */
1427 static struct dwarf2_queue_item *dwarf2_queue, *dwarf2_queue_tail;
1428
1429 /* Loaded secondary compilation units are kept in memory until they
1430 have not been referenced for the processing of this many
1431 compilation units. Set this to zero to disable caching. Cache
1432 sizes of up to at least twenty will improve startup time for
1433 typical inter-CU-reference binaries, at an obvious memory cost. */
1434 static int dwarf_max_cache_age = 5;
1435 static void
1436 show_dwarf_max_cache_age (struct ui_file *file, int from_tty,
1437 struct cmd_list_element *c, const char *value)
1438 {
1439 fprintf_filtered (file, _("The upper bound on the age of cached "
1440 "DWARF compilation units is %s.\n"),
1441 value);
1442 }
1443 \f
1444 /* local function prototypes */
1445
1446 static const char *get_section_name (const struct dwarf2_section_info *);
1447
1448 static const char *get_section_file_name (const struct dwarf2_section_info *);
1449
1450 static void dwarf2_find_base_address (struct die_info *die,
1451 struct dwarf2_cu *cu);
1452
1453 static struct partial_symtab *create_partial_symtab
1454 (struct dwarf2_per_cu_data *per_cu, const char *name);
1455
1456 static void build_type_psymtabs_reader (const struct die_reader_specs *reader,
1457 const gdb_byte *info_ptr,
1458 struct die_info *type_unit_die,
1459 int has_children, void *data);
1460
1461 static void dwarf2_build_psymtabs_hard
1462 (struct dwarf2_per_objfile *dwarf2_per_objfile);
1463
1464 static void scan_partial_symbols (struct partial_die_info *,
1465 CORE_ADDR *, CORE_ADDR *,
1466 int, struct dwarf2_cu *);
1467
1468 static void add_partial_symbol (struct partial_die_info *,
1469 struct dwarf2_cu *);
1470
1471 static void add_partial_namespace (struct partial_die_info *pdi,
1472 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1473 int set_addrmap, struct dwarf2_cu *cu);
1474
1475 static void add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
1476 CORE_ADDR *highpc, int set_addrmap,
1477 struct dwarf2_cu *cu);
1478
1479 static void add_partial_enumeration (struct partial_die_info *enum_pdi,
1480 struct dwarf2_cu *cu);
1481
1482 static void add_partial_subprogram (struct partial_die_info *pdi,
1483 CORE_ADDR *lowpc, CORE_ADDR *highpc,
1484 int need_pc, struct dwarf2_cu *cu);
1485
1486 static void dwarf2_read_symtab (struct partial_symtab *,
1487 struct objfile *);
1488
1489 static void psymtab_to_symtab_1 (struct partial_symtab *);
1490
1491 static abbrev_table_up abbrev_table_read_table
1492 (struct dwarf2_per_objfile *dwarf2_per_objfile, struct dwarf2_section_info *,
1493 sect_offset);
1494
1495 static unsigned int peek_abbrev_code (bfd *, const gdb_byte *);
1496
1497 static struct partial_die_info *load_partial_dies
1498 (const struct die_reader_specs *, const gdb_byte *, int);
1499
1500 /* A pair of partial_die_info and compilation unit. */
1501 struct cu_partial_die_info
1502 {
1503 /* The compilation unit of the partial_die_info. */
1504 struct dwarf2_cu *cu;
1505 /* A partial_die_info. */
1506 struct partial_die_info *pdi;
1507
1508 cu_partial_die_info (struct dwarf2_cu *cu, struct partial_die_info *pdi)
1509 : cu (cu),
1510 pdi (pdi)
1511 { /* Nothing. */ }
1512
1513 private:
1514 cu_partial_die_info () = delete;
1515 };
1516
1517 static const struct cu_partial_die_info find_partial_die (sect_offset, int,
1518 struct dwarf2_cu *);
1519
1520 static const gdb_byte *read_attribute (const struct die_reader_specs *,
1521 struct attribute *, struct attr_abbrev *,
1522 const gdb_byte *);
1523
1524 static unsigned int read_1_byte (bfd *, const gdb_byte *);
1525
1526 static int read_1_signed_byte (bfd *, const gdb_byte *);
1527
1528 static unsigned int read_2_bytes (bfd *, const gdb_byte *);
1529
1530 /* Read the next three bytes (little-endian order) as an unsigned integer. */
1531 static unsigned int read_3_bytes (bfd *, const gdb_byte *);
1532
1533 static unsigned int read_4_bytes (bfd *, const gdb_byte *);
1534
1535 static ULONGEST read_8_bytes (bfd *, const gdb_byte *);
1536
1537 static CORE_ADDR read_address (bfd *, const gdb_byte *ptr, struct dwarf2_cu *,
1538 unsigned int *);
1539
1540 static LONGEST read_initial_length (bfd *, const gdb_byte *, unsigned int *);
1541
1542 static LONGEST read_checked_initial_length_and_offset
1543 (bfd *, const gdb_byte *, const struct comp_unit_head *,
1544 unsigned int *, unsigned int *);
1545
1546 static LONGEST read_offset (bfd *, const gdb_byte *,
1547 const struct comp_unit_head *,
1548 unsigned int *);
1549
1550 static LONGEST read_offset_1 (bfd *, const gdb_byte *, unsigned int);
1551
1552 static sect_offset read_abbrev_offset
1553 (struct dwarf2_per_objfile *dwarf2_per_objfile,
1554 struct dwarf2_section_info *, sect_offset);
1555
1556 static const gdb_byte *read_n_bytes (bfd *, const gdb_byte *, unsigned int);
1557
1558 static const char *read_direct_string (bfd *, const gdb_byte *, unsigned int *);
1559
1560 static const char *read_indirect_string
1561 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1562 const struct comp_unit_head *, unsigned int *);
1563
1564 static const char *read_indirect_line_string
1565 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *, const gdb_byte *,
1566 const struct comp_unit_head *, unsigned int *);
1567
1568 static const char *read_indirect_string_at_offset
1569 (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
1570 LONGEST str_offset);
1571
1572 static const char *read_indirect_string_from_dwz
1573 (struct objfile *objfile, struct dwz_file *, LONGEST);
1574
1575 static LONGEST read_signed_leb128 (bfd *, const gdb_byte *, unsigned int *);
1576
1577 static CORE_ADDR read_addr_index_from_leb128 (struct dwarf2_cu *,
1578 const gdb_byte *,
1579 unsigned int *);
1580
1581 static const char *read_str_index (const struct die_reader_specs *reader,
1582 ULONGEST str_index);
1583
1584 static void set_cu_language (unsigned int, struct dwarf2_cu *);
1585
1586 static struct attribute *dwarf2_attr (struct die_info *, unsigned int,
1587 struct dwarf2_cu *);
1588
1589 static struct attribute *dwarf2_attr_no_follow (struct die_info *,
1590 unsigned int);
1591
1592 static const char *dwarf2_string_attr (struct die_info *die, unsigned int name,
1593 struct dwarf2_cu *cu);
1594
1595 static const char *dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu);
1596
1597 static int dwarf2_flag_true_p (struct die_info *die, unsigned name,
1598 struct dwarf2_cu *cu);
1599
1600 static int die_is_declaration (struct die_info *, struct dwarf2_cu *cu);
1601
1602 static struct die_info *die_specification (struct die_info *die,
1603 struct dwarf2_cu **);
1604
1605 static line_header_up dwarf_decode_line_header (sect_offset sect_off,
1606 struct dwarf2_cu *cu);
1607
1608 static void dwarf_decode_lines (struct line_header *, const char *,
1609 struct dwarf2_cu *, struct partial_symtab *,
1610 CORE_ADDR, int decode_mapping);
1611
1612 static void dwarf2_start_subfile (struct dwarf2_cu *, const char *,
1613 const char *);
1614
1615 static struct symbol *new_symbol (struct die_info *, struct type *,
1616 struct dwarf2_cu *, struct symbol * = NULL);
1617
1618 static void dwarf2_const_value (const struct attribute *, struct symbol *,
1619 struct dwarf2_cu *);
1620
1621 static void dwarf2_const_value_attr (const struct attribute *attr,
1622 struct type *type,
1623 const char *name,
1624 struct obstack *obstack,
1625 struct dwarf2_cu *cu, LONGEST *value,
1626 const gdb_byte **bytes,
1627 struct dwarf2_locexpr_baton **baton);
1628
1629 static struct type *die_type (struct die_info *, struct dwarf2_cu *);
1630
1631 static int need_gnat_info (struct dwarf2_cu *);
1632
1633 static struct type *die_descriptive_type (struct die_info *,
1634 struct dwarf2_cu *);
1635
1636 static void set_descriptive_type (struct type *, struct die_info *,
1637 struct dwarf2_cu *);
1638
1639 static struct type *die_containing_type (struct die_info *,
1640 struct dwarf2_cu *);
1641
1642 static struct type *lookup_die_type (struct die_info *, const struct attribute *,
1643 struct dwarf2_cu *);
1644
1645 static struct type *read_type_die (struct die_info *, struct dwarf2_cu *);
1646
1647 static struct type *read_type_die_1 (struct die_info *, struct dwarf2_cu *);
1648
1649 static const char *determine_prefix (struct die_info *die, struct dwarf2_cu *);
1650
1651 static char *typename_concat (struct obstack *obs, const char *prefix,
1652 const char *suffix, int physname,
1653 struct dwarf2_cu *cu);
1654
1655 static void read_file_scope (struct die_info *, struct dwarf2_cu *);
1656
1657 static void read_type_unit_scope (struct die_info *, struct dwarf2_cu *);
1658
1659 static void read_func_scope (struct die_info *, struct dwarf2_cu *);
1660
1661 static void read_lexical_block_scope (struct die_info *, struct dwarf2_cu *);
1662
1663 static void read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu);
1664
1665 static void read_variable (struct die_info *die, struct dwarf2_cu *cu);
1666
1667 static int dwarf2_ranges_read (unsigned, CORE_ADDR *, CORE_ADDR *,
1668 struct dwarf2_cu *, struct partial_symtab *);
1669
1670 /* How dwarf2_get_pc_bounds constructed its *LOWPC and *HIGHPC return
1671 values. Keep the items ordered with increasing constraints compliance. */
1672 enum pc_bounds_kind
1673 {
1674 /* No attribute DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges was found. */
1675 PC_BOUNDS_NOT_PRESENT,
1676
1677 /* Some of the attributes DW_AT_low_pc, DW_AT_high_pc or DW_AT_ranges
1678 were present but they do not form a valid range of PC addresses. */
1679 PC_BOUNDS_INVALID,
1680
1681 /* Discontiguous range was found - that is DW_AT_ranges was found. */
1682 PC_BOUNDS_RANGES,
1683
1684 /* Contiguous range was found - DW_AT_low_pc and DW_AT_high_pc were found. */
1685 PC_BOUNDS_HIGH_LOW,
1686 };
1687
1688 static enum pc_bounds_kind dwarf2_get_pc_bounds (struct die_info *,
1689 CORE_ADDR *, CORE_ADDR *,
1690 struct dwarf2_cu *,
1691 struct partial_symtab *);
1692
1693 static void get_scope_pc_bounds (struct die_info *,
1694 CORE_ADDR *, CORE_ADDR *,
1695 struct dwarf2_cu *);
1696
1697 static void dwarf2_record_block_ranges (struct die_info *, struct block *,
1698 CORE_ADDR, struct dwarf2_cu *);
1699
1700 static void dwarf2_add_field (struct field_info *, struct die_info *,
1701 struct dwarf2_cu *);
1702
1703 static void dwarf2_attach_fields_to_type (struct field_info *,
1704 struct type *, struct dwarf2_cu *);
1705
1706 static void dwarf2_add_member_fn (struct field_info *,
1707 struct die_info *, struct type *,
1708 struct dwarf2_cu *);
1709
1710 static void dwarf2_attach_fn_fields_to_type (struct field_info *,
1711 struct type *,
1712 struct dwarf2_cu *);
1713
1714 static void process_structure_scope (struct die_info *, struct dwarf2_cu *);
1715
1716 static void read_common_block (struct die_info *, struct dwarf2_cu *);
1717
1718 static void read_namespace (struct die_info *die, struct dwarf2_cu *);
1719
1720 static void read_module (struct die_info *die, struct dwarf2_cu *cu);
1721
1722 static struct using_direct **using_directives (struct dwarf2_cu *cu);
1723
1724 static void read_import_statement (struct die_info *die, struct dwarf2_cu *);
1725
1726 static int read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu);
1727
1728 static struct type *read_module_type (struct die_info *die,
1729 struct dwarf2_cu *cu);
1730
1731 static const char *namespace_name (struct die_info *die,
1732 int *is_anonymous, struct dwarf2_cu *);
1733
1734 static void process_enumeration_scope (struct die_info *, struct dwarf2_cu *);
1735
1736 static CORE_ADDR decode_locdesc (struct dwarf_block *, struct dwarf2_cu *);
1737
1738 static enum dwarf_array_dim_ordering read_array_order (struct die_info *,
1739 struct dwarf2_cu *);
1740
1741 static struct die_info *read_die_and_siblings_1
1742 (const struct die_reader_specs *, const gdb_byte *, const gdb_byte **,
1743 struct die_info *);
1744
1745 static struct die_info *read_die_and_siblings (const struct die_reader_specs *,
1746 const gdb_byte *info_ptr,
1747 const gdb_byte **new_info_ptr,
1748 struct die_info *parent);
1749
1750 static const gdb_byte *read_full_die_1 (const struct die_reader_specs *,
1751 struct die_info **, const gdb_byte *,
1752 int *, int);
1753
1754 static const gdb_byte *read_full_die (const struct die_reader_specs *,
1755 struct die_info **, const gdb_byte *,
1756 int *);
1757
1758 static void process_die (struct die_info *, struct dwarf2_cu *);
1759
1760 static const char *dwarf2_canonicalize_name (const char *, struct dwarf2_cu *,
1761 struct obstack *);
1762
1763 static const char *dwarf2_name (struct die_info *die, struct dwarf2_cu *);
1764
1765 static const char *dwarf2_full_name (const char *name,
1766 struct die_info *die,
1767 struct dwarf2_cu *cu);
1768
1769 static const char *dwarf2_physname (const char *name, struct die_info *die,
1770 struct dwarf2_cu *cu);
1771
1772 static struct die_info *dwarf2_extension (struct die_info *die,
1773 struct dwarf2_cu **);
1774
1775 static const char *dwarf_tag_name (unsigned int);
1776
1777 static const char *dwarf_attr_name (unsigned int);
1778
1779 static const char *dwarf_unit_type_name (int unit_type);
1780
1781 static const char *dwarf_form_name (unsigned int);
1782
1783 static const char *dwarf_bool_name (unsigned int);
1784
1785 static const char *dwarf_type_encoding_name (unsigned int);
1786
1787 static struct die_info *sibling_die (struct die_info *);
1788
1789 static void dump_die_shallow (struct ui_file *, int indent, struct die_info *);
1790
1791 static void dump_die_for_error (struct die_info *);
1792
1793 static void dump_die_1 (struct ui_file *, int level, int max_level,
1794 struct die_info *);
1795
1796 /*static*/ void dump_die (struct die_info *, int max_level);
1797
1798 static void store_in_ref_table (struct die_info *,
1799 struct dwarf2_cu *);
1800
1801 static sect_offset dwarf2_get_ref_die_offset (const struct attribute *);
1802
1803 static LONGEST dwarf2_get_attr_constant_value (const struct attribute *, int);
1804
1805 static struct die_info *follow_die_ref_or_sig (struct die_info *,
1806 const struct attribute *,
1807 struct dwarf2_cu **);
1808
1809 static struct die_info *follow_die_ref (struct die_info *,
1810 const struct attribute *,
1811 struct dwarf2_cu **);
1812
1813 static struct die_info *follow_die_sig (struct die_info *,
1814 const struct attribute *,
1815 struct dwarf2_cu **);
1816
1817 static struct type *get_signatured_type (struct die_info *, ULONGEST,
1818 struct dwarf2_cu *);
1819
1820 static struct type *get_DW_AT_signature_type (struct die_info *,
1821 const struct attribute *,
1822 struct dwarf2_cu *);
1823
1824 static void load_full_type_unit (struct dwarf2_per_cu_data *per_cu);
1825
1826 static void read_signatured_type (struct signatured_type *);
1827
1828 static int attr_to_dynamic_prop (const struct attribute *attr,
1829 struct die_info *die, struct dwarf2_cu *cu,
1830 struct dynamic_prop *prop, struct type *type);
1831
1832 /* memory allocation interface */
1833
1834 static struct dwarf_block *dwarf_alloc_block (struct dwarf2_cu *);
1835
1836 static struct die_info *dwarf_alloc_die (struct dwarf2_cu *, int);
1837
1838 static void dwarf_decode_macros (struct dwarf2_cu *, unsigned int, int);
1839
1840 static int attr_form_is_block (const struct attribute *);
1841
1842 static int attr_form_is_section_offset (const struct attribute *);
1843
1844 static int attr_form_is_constant (const struct attribute *);
1845
1846 static int attr_form_is_ref (const struct attribute *);
1847
1848 static void fill_in_loclist_baton (struct dwarf2_cu *cu,
1849 struct dwarf2_loclist_baton *baton,
1850 const struct attribute *attr);
1851
1852 static void dwarf2_symbol_mark_computed (const struct attribute *attr,
1853 struct symbol *sym,
1854 struct dwarf2_cu *cu,
1855 int is_block);
1856
1857 static const gdb_byte *skip_one_die (const struct die_reader_specs *reader,
1858 const gdb_byte *info_ptr,
1859 struct abbrev_info *abbrev);
1860
1861 static hashval_t partial_die_hash (const void *item);
1862
1863 static int partial_die_eq (const void *item_lhs, const void *item_rhs);
1864
1865 static struct dwarf2_per_cu_data *dwarf2_find_containing_comp_unit
1866 (sect_offset sect_off, unsigned int offset_in_dwz,
1867 struct dwarf2_per_objfile *dwarf2_per_objfile);
1868
1869 static void prepare_one_comp_unit (struct dwarf2_cu *cu,
1870 struct die_info *comp_unit_die,
1871 enum language pretend_language);
1872
1873 static void age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1874
1875 static void free_one_cached_comp_unit (struct dwarf2_per_cu_data *);
1876
1877 static struct type *set_die_type (struct die_info *, struct type *,
1878 struct dwarf2_cu *);
1879
1880 static void create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1881
1882 static int create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile);
1883
1884 static void load_full_comp_unit (struct dwarf2_per_cu_data *, bool,
1885 enum language);
1886
1887 static void process_full_comp_unit (struct dwarf2_per_cu_data *,
1888 enum language);
1889
1890 static void process_full_type_unit (struct dwarf2_per_cu_data *,
1891 enum language);
1892
1893 static void dwarf2_add_dependence (struct dwarf2_cu *,
1894 struct dwarf2_per_cu_data *);
1895
1896 static void dwarf2_mark (struct dwarf2_cu *);
1897
1898 static void dwarf2_clear_marks (struct dwarf2_per_cu_data *);
1899
1900 static struct type *get_die_type_at_offset (sect_offset,
1901 struct dwarf2_per_cu_data *);
1902
1903 static struct type *get_die_type (struct die_info *die, struct dwarf2_cu *cu);
1904
1905 static void queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
1906 enum language pretend_language);
1907
1908 static void process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile);
1909
1910 static struct type *dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu);
1911 static struct type *dwarf2_per_cu_addr_sized_int_type
1912 (struct dwarf2_per_cu_data *per_cu, bool unsigned_p);
1913 static struct type *dwarf2_per_cu_int_type
1914 (struct dwarf2_per_cu_data *per_cu, int size_in_bytes,
1915 bool unsigned_p);
1916
1917 /* Class, the destructor of which frees all allocated queue entries. This
1918 will only have work to do if an error was thrown while processing the
1919 dwarf. If no error was thrown then the queue entries should have all
1920 been processed, and freed, as we went along. */
1921
1922 class dwarf2_queue_guard
1923 {
1924 public:
1925 dwarf2_queue_guard () = default;
1926
1927 /* Free any entries remaining on the queue. There should only be
1928 entries left if we hit an error while processing the dwarf. */
1929 ~dwarf2_queue_guard ()
1930 {
1931 struct dwarf2_queue_item *item, *last;
1932
1933 item = dwarf2_queue;
1934 while (item)
1935 {
1936 /* Anything still marked queued is likely to be in an
1937 inconsistent state, so discard it. */
1938 if (item->per_cu->queued)
1939 {
1940 if (item->per_cu->cu != NULL)
1941 free_one_cached_comp_unit (item->per_cu);
1942 item->per_cu->queued = 0;
1943 }
1944
1945 last = item;
1946 item = item->next;
1947 xfree (last);
1948 }
1949
1950 dwarf2_queue = dwarf2_queue_tail = NULL;
1951 }
1952 };
1953
1954 /* The return type of find_file_and_directory. Note, the enclosed
1955 string pointers are only valid while this object is valid. */
1956
1957 struct file_and_directory
1958 {
1959 /* The filename. This is never NULL. */
1960 const char *name;
1961
1962 /* The compilation directory. NULL if not known. If we needed to
1963 compute a new string, this points to COMP_DIR_STORAGE, otherwise,
1964 points directly to the DW_AT_comp_dir string attribute owned by
1965 the obstack that owns the DIE. */
1966 const char *comp_dir;
1967
1968 /* If we needed to build a new string for comp_dir, this is what
1969 owns the storage. */
1970 std::string comp_dir_storage;
1971 };
1972
1973 static file_and_directory find_file_and_directory (struct die_info *die,
1974 struct dwarf2_cu *cu);
1975
1976 static char *file_full_name (int file, struct line_header *lh,
1977 const char *comp_dir);
1978
1979 /* Expected enum dwarf_unit_type for read_comp_unit_head. */
1980 enum class rcuh_kind { COMPILE, TYPE };
1981
1982 static const gdb_byte *read_and_check_comp_unit_head
1983 (struct dwarf2_per_objfile* dwarf2_per_objfile,
1984 struct comp_unit_head *header,
1985 struct dwarf2_section_info *section,
1986 struct dwarf2_section_info *abbrev_section, const gdb_byte *info_ptr,
1987 rcuh_kind section_kind);
1988
1989 static void init_cutu_and_read_dies
1990 (struct dwarf2_per_cu_data *this_cu, struct abbrev_table *abbrev_table,
1991 int use_existing_cu, int keep, bool skip_partial,
1992 die_reader_func_ftype *die_reader_func, void *data);
1993
1994 static void init_cutu_and_read_dies_simple
1995 (struct dwarf2_per_cu_data *this_cu,
1996 die_reader_func_ftype *die_reader_func, void *data);
1997
1998 static htab_t allocate_signatured_type_table (struct objfile *objfile);
1999
2000 static htab_t allocate_dwo_unit_table (struct objfile *objfile);
2001
2002 static struct dwo_unit *lookup_dwo_unit_in_dwp
2003 (struct dwarf2_per_objfile *dwarf2_per_objfile,
2004 struct dwp_file *dwp_file, const char *comp_dir,
2005 ULONGEST signature, int is_debug_types);
2006
2007 static struct dwp_file *get_dwp_file
2008 (struct dwarf2_per_objfile *dwarf2_per_objfile);
2009
2010 static struct dwo_unit *lookup_dwo_comp_unit
2011 (struct dwarf2_per_cu_data *, const char *, const char *, ULONGEST);
2012
2013 static struct dwo_unit *lookup_dwo_type_unit
2014 (struct signatured_type *, const char *, const char *);
2015
2016 static void queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *);
2017
2018 /* A unique pointer to a dwo_file. */
2019
2020 typedef std::unique_ptr<struct dwo_file> dwo_file_up;
2021
2022 static void process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile);
2023
2024 static void check_producer (struct dwarf2_cu *cu);
2025
2026 static void free_line_header_voidp (void *arg);
2027 \f
2028 /* Various complaints about symbol reading that don't abort the process. */
2029
2030 static void
2031 dwarf2_statement_list_fits_in_line_number_section_complaint (void)
2032 {
2033 complaint (_("statement list doesn't fit in .debug_line section"));
2034 }
2035
2036 static void
2037 dwarf2_debug_line_missing_file_complaint (void)
2038 {
2039 complaint (_(".debug_line section has line data without a file"));
2040 }
2041
2042 static void
2043 dwarf2_debug_line_missing_end_sequence_complaint (void)
2044 {
2045 complaint (_(".debug_line section has line "
2046 "program sequence without an end"));
2047 }
2048
2049 static void
2050 dwarf2_complex_location_expr_complaint (void)
2051 {
2052 complaint (_("location expression too complex"));
2053 }
2054
2055 static void
2056 dwarf2_const_value_length_mismatch_complaint (const char *arg1, int arg2,
2057 int arg3)
2058 {
2059 complaint (_("const value length mismatch for '%s', got %d, expected %d"),
2060 arg1, arg2, arg3);
2061 }
2062
2063 static void
2064 dwarf2_section_buffer_overflow_complaint (struct dwarf2_section_info *section)
2065 {
2066 complaint (_("debug info runs off end of %s section"
2067 " [in module %s]"),
2068 get_section_name (section),
2069 get_section_file_name (section));
2070 }
2071
2072 static void
2073 dwarf2_macro_malformed_definition_complaint (const char *arg1)
2074 {
2075 complaint (_("macro debug info contains a "
2076 "malformed macro definition:\n`%s'"),
2077 arg1);
2078 }
2079
2080 static void
2081 dwarf2_invalid_attrib_class_complaint (const char *arg1, const char *arg2)
2082 {
2083 complaint (_("invalid attribute class or form for '%s' in '%s'"),
2084 arg1, arg2);
2085 }
2086
2087 /* Hash function for line_header_hash. */
2088
2089 static hashval_t
2090 line_header_hash (const struct line_header *ofs)
2091 {
2092 return to_underlying (ofs->sect_off) ^ ofs->offset_in_dwz;
2093 }
2094
2095 /* Hash function for htab_create_alloc_ex for line_header_hash. */
2096
2097 static hashval_t
2098 line_header_hash_voidp (const void *item)
2099 {
2100 const struct line_header *ofs = (const struct line_header *) item;
2101
2102 return line_header_hash (ofs);
2103 }
2104
2105 /* Equality function for line_header_hash. */
2106
2107 static int
2108 line_header_eq_voidp (const void *item_lhs, const void *item_rhs)
2109 {
2110 const struct line_header *ofs_lhs = (const struct line_header *) item_lhs;
2111 const struct line_header *ofs_rhs = (const struct line_header *) item_rhs;
2112
2113 return (ofs_lhs->sect_off == ofs_rhs->sect_off
2114 && ofs_lhs->offset_in_dwz == ofs_rhs->offset_in_dwz);
2115 }
2116
2117 \f
2118
2119 /* Read the given attribute value as an address, taking the attribute's
2120 form into account. */
2121
2122 static CORE_ADDR
2123 attr_value_as_address (struct attribute *attr)
2124 {
2125 CORE_ADDR addr;
2126
2127 if (attr->form != DW_FORM_addr && attr->form != DW_FORM_addrx
2128 && attr->form != DW_FORM_GNU_addr_index)
2129 {
2130 /* Aside from a few clearly defined exceptions, attributes that
2131 contain an address must always be in DW_FORM_addr form.
2132 Unfortunately, some compilers happen to be violating this
2133 requirement by encoding addresses using other forms, such
2134 as DW_FORM_data4 for example. For those broken compilers,
2135 we try to do our best, without any guarantee of success,
2136 to interpret the address correctly. It would also be nice
2137 to generate a complaint, but that would require us to maintain
2138 a list of legitimate cases where a non-address form is allowed,
2139 as well as update callers to pass in at least the CU's DWARF
2140 version. This is more overhead than what we're willing to
2141 expand for a pretty rare case. */
2142 addr = DW_UNSND (attr);
2143 }
2144 else
2145 addr = DW_ADDR (attr);
2146
2147 return addr;
2148 }
2149
2150 /* See declaration. */
2151
2152 dwarf2_per_objfile::dwarf2_per_objfile (struct objfile *objfile_,
2153 const dwarf2_debug_sections *names,
2154 bool can_copy_)
2155 : objfile (objfile_),
2156 can_copy (can_copy_)
2157 {
2158 if (names == NULL)
2159 names = &dwarf2_elf_names;
2160
2161 bfd *obfd = objfile->obfd;
2162
2163 for (asection *sec = obfd->sections; sec != NULL; sec = sec->next)
2164 locate_sections (obfd, sec, *names);
2165 }
2166
2167 dwarf2_per_objfile::~dwarf2_per_objfile ()
2168 {
2169 /* Cached DIE trees use xmalloc and the comp_unit_obstack. */
2170 free_cached_comp_units ();
2171
2172 if (quick_file_names_table)
2173 htab_delete (quick_file_names_table);
2174
2175 if (line_header_hash)
2176 htab_delete (line_header_hash);
2177
2178 for (dwarf2_per_cu_data *per_cu : all_comp_units)
2179 per_cu->imported_symtabs_free ();
2180
2181 for (signatured_type *sig_type : all_type_units)
2182 sig_type->per_cu.imported_symtabs_free ();
2183
2184 /* Everything else should be on the objfile obstack. */
2185 }
2186
2187 /* See declaration. */
2188
2189 void
2190 dwarf2_per_objfile::free_cached_comp_units ()
2191 {
2192 dwarf2_per_cu_data *per_cu = read_in_chain;
2193 dwarf2_per_cu_data **last_chain = &read_in_chain;
2194 while (per_cu != NULL)
2195 {
2196 dwarf2_per_cu_data *next_cu = per_cu->cu->read_in_chain;
2197
2198 delete per_cu->cu;
2199 *last_chain = next_cu;
2200 per_cu = next_cu;
2201 }
2202 }
2203
2204 /* A helper class that calls free_cached_comp_units on
2205 destruction. */
2206
2207 class free_cached_comp_units
2208 {
2209 public:
2210
2211 explicit free_cached_comp_units (dwarf2_per_objfile *per_objfile)
2212 : m_per_objfile (per_objfile)
2213 {
2214 }
2215
2216 ~free_cached_comp_units ()
2217 {
2218 m_per_objfile->free_cached_comp_units ();
2219 }
2220
2221 DISABLE_COPY_AND_ASSIGN (free_cached_comp_units);
2222
2223 private:
2224
2225 dwarf2_per_objfile *m_per_objfile;
2226 };
2227
2228 /* Try to locate the sections we need for DWARF 2 debugging
2229 information and return true if we have enough to do something.
2230 NAMES points to the dwarf2 section names, or is NULL if the standard
2231 ELF names are used. CAN_COPY is true for formats where symbol
2232 interposition is possible and so symbol values must follow copy
2233 relocation rules. */
2234
2235 int
2236 dwarf2_has_info (struct objfile *objfile,
2237 const struct dwarf2_debug_sections *names,
2238 bool can_copy)
2239 {
2240 if (objfile->flags & OBJF_READNEVER)
2241 return 0;
2242
2243 struct dwarf2_per_objfile *dwarf2_per_objfile
2244 = get_dwarf2_per_objfile (objfile);
2245
2246 if (dwarf2_per_objfile == NULL)
2247 dwarf2_per_objfile = dwarf2_objfile_data_key.emplace (objfile, objfile,
2248 names,
2249 can_copy);
2250
2251 return (!dwarf2_per_objfile->info.is_virtual
2252 && dwarf2_per_objfile->info.s.section != NULL
2253 && !dwarf2_per_objfile->abbrev.is_virtual
2254 && dwarf2_per_objfile->abbrev.s.section != NULL);
2255 }
2256
2257 /* Return the containing section of virtual section SECTION. */
2258
2259 static struct dwarf2_section_info *
2260 get_containing_section (const struct dwarf2_section_info *section)
2261 {
2262 gdb_assert (section->is_virtual);
2263 return section->s.containing_section;
2264 }
2265
2266 /* Return the bfd owner of SECTION. */
2267
2268 static struct bfd *
2269 get_section_bfd_owner (const struct dwarf2_section_info *section)
2270 {
2271 if (section->is_virtual)
2272 {
2273 section = get_containing_section (section);
2274 gdb_assert (!section->is_virtual);
2275 }
2276 return section->s.section->owner;
2277 }
2278
2279 /* Return the bfd section of SECTION.
2280 Returns NULL if the section is not present. */
2281
2282 static asection *
2283 get_section_bfd_section (const struct dwarf2_section_info *section)
2284 {
2285 if (section->is_virtual)
2286 {
2287 section = get_containing_section (section);
2288 gdb_assert (!section->is_virtual);
2289 }
2290 return section->s.section;
2291 }
2292
2293 /* Return the name of SECTION. */
2294
2295 static const char *
2296 get_section_name (const struct dwarf2_section_info *section)
2297 {
2298 asection *sectp = get_section_bfd_section (section);
2299
2300 gdb_assert (sectp != NULL);
2301 return bfd_section_name (sectp);
2302 }
2303
2304 /* Return the name of the file SECTION is in. */
2305
2306 static const char *
2307 get_section_file_name (const struct dwarf2_section_info *section)
2308 {
2309 bfd *abfd = get_section_bfd_owner (section);
2310
2311 return bfd_get_filename (abfd);
2312 }
2313
2314 /* Return the id of SECTION.
2315 Returns 0 if SECTION doesn't exist. */
2316
2317 static int
2318 get_section_id (const struct dwarf2_section_info *section)
2319 {
2320 asection *sectp = get_section_bfd_section (section);
2321
2322 if (sectp == NULL)
2323 return 0;
2324 return sectp->id;
2325 }
2326
2327 /* Return the flags of SECTION.
2328 SECTION (or containing section if this is a virtual section) must exist. */
2329
2330 static int
2331 get_section_flags (const struct dwarf2_section_info *section)
2332 {
2333 asection *sectp = get_section_bfd_section (section);
2334
2335 gdb_assert (sectp != NULL);
2336 return bfd_section_flags (sectp);
2337 }
2338
2339 /* When loading sections, we look either for uncompressed section or for
2340 compressed section names. */
2341
2342 static int
2343 section_is_p (const char *section_name,
2344 const struct dwarf2_section_names *names)
2345 {
2346 if (names->normal != NULL
2347 && strcmp (section_name, names->normal) == 0)
2348 return 1;
2349 if (names->compressed != NULL
2350 && strcmp (section_name, names->compressed) == 0)
2351 return 1;
2352 return 0;
2353 }
2354
2355 /* See declaration. */
2356
2357 void
2358 dwarf2_per_objfile::locate_sections (bfd *abfd, asection *sectp,
2359 const dwarf2_debug_sections &names)
2360 {
2361 flagword aflag = bfd_section_flags (sectp);
2362
2363 if ((aflag & SEC_HAS_CONTENTS) == 0)
2364 {
2365 }
2366 else if (elf_section_data (sectp)->this_hdr.sh_size
2367 > bfd_get_file_size (abfd))
2368 {
2369 bfd_size_type size = elf_section_data (sectp)->this_hdr.sh_size;
2370 warning (_("Discarding section %s which has a section size (%s"
2371 ") larger than the file size [in module %s]"),
2372 bfd_section_name (sectp), phex_nz (size, sizeof (size)),
2373 bfd_get_filename (abfd));
2374 }
2375 else if (section_is_p (sectp->name, &names.info))
2376 {
2377 this->info.s.section = sectp;
2378 this->info.size = bfd_section_size (sectp);
2379 }
2380 else if (section_is_p (sectp->name, &names.abbrev))
2381 {
2382 this->abbrev.s.section = sectp;
2383 this->abbrev.size = bfd_section_size (sectp);
2384 }
2385 else if (section_is_p (sectp->name, &names.line))
2386 {
2387 this->line.s.section = sectp;
2388 this->line.size = bfd_section_size (sectp);
2389 }
2390 else if (section_is_p (sectp->name, &names.loc))
2391 {
2392 this->loc.s.section = sectp;
2393 this->loc.size = bfd_section_size (sectp);
2394 }
2395 else if (section_is_p (sectp->name, &names.loclists))
2396 {
2397 this->loclists.s.section = sectp;
2398 this->loclists.size = bfd_section_size (sectp);
2399 }
2400 else if (section_is_p (sectp->name, &names.macinfo))
2401 {
2402 this->macinfo.s.section = sectp;
2403 this->macinfo.size = bfd_section_size (sectp);
2404 }
2405 else if (section_is_p (sectp->name, &names.macro))
2406 {
2407 this->macro.s.section = sectp;
2408 this->macro.size = bfd_section_size (sectp);
2409 }
2410 else if (section_is_p (sectp->name, &names.str))
2411 {
2412 this->str.s.section = sectp;
2413 this->str.size = bfd_section_size (sectp);
2414 }
2415 else if (section_is_p (sectp->name, &names.line_str))
2416 {
2417 this->line_str.s.section = sectp;
2418 this->line_str.size = bfd_section_size (sectp);
2419 }
2420 else if (section_is_p (sectp->name, &names.addr))
2421 {
2422 this->addr.s.section = sectp;
2423 this->addr.size = bfd_section_size (sectp);
2424 }
2425 else if (section_is_p (sectp->name, &names.frame))
2426 {
2427 this->frame.s.section = sectp;
2428 this->frame.size = bfd_section_size (sectp);
2429 }
2430 else if (section_is_p (sectp->name, &names.eh_frame))
2431 {
2432 this->eh_frame.s.section = sectp;
2433 this->eh_frame.size = bfd_section_size (sectp);
2434 }
2435 else if (section_is_p (sectp->name, &names.ranges))
2436 {
2437 this->ranges.s.section = sectp;
2438 this->ranges.size = bfd_section_size (sectp);
2439 }
2440 else if (section_is_p (sectp->name, &names.rnglists))
2441 {
2442 this->rnglists.s.section = sectp;
2443 this->rnglists.size = bfd_section_size (sectp);
2444 }
2445 else if (section_is_p (sectp->name, &names.types))
2446 {
2447 struct dwarf2_section_info type_section;
2448
2449 memset (&type_section, 0, sizeof (type_section));
2450 type_section.s.section = sectp;
2451 type_section.size = bfd_section_size (sectp);
2452
2453 this->types.push_back (type_section);
2454 }
2455 else if (section_is_p (sectp->name, &names.gdb_index))
2456 {
2457 this->gdb_index.s.section = sectp;
2458 this->gdb_index.size = bfd_section_size (sectp);
2459 }
2460 else if (section_is_p (sectp->name, &names.debug_names))
2461 {
2462 this->debug_names.s.section = sectp;
2463 this->debug_names.size = bfd_section_size (sectp);
2464 }
2465 else if (section_is_p (sectp->name, &names.debug_aranges))
2466 {
2467 this->debug_aranges.s.section = sectp;
2468 this->debug_aranges.size = bfd_section_size (sectp);
2469 }
2470
2471 if ((bfd_section_flags (sectp) & (SEC_LOAD | SEC_ALLOC))
2472 && bfd_section_vma (sectp) == 0)
2473 this->has_section_at_zero = true;
2474 }
2475
2476 /* A helper function that decides whether a section is empty,
2477 or not present. */
2478
2479 static int
2480 dwarf2_section_empty_p (const struct dwarf2_section_info *section)
2481 {
2482 if (section->is_virtual)
2483 return section->size == 0;
2484 return section->s.section == NULL || section->size == 0;
2485 }
2486
2487 /* See dwarf2read.h. */
2488
2489 void
2490 dwarf2_read_section (struct objfile *objfile, dwarf2_section_info *info)
2491 {
2492 asection *sectp;
2493 bfd *abfd;
2494 gdb_byte *buf, *retbuf;
2495
2496 if (info->readin)
2497 return;
2498 info->buffer = NULL;
2499 info->readin = true;
2500
2501 if (dwarf2_section_empty_p (info))
2502 return;
2503
2504 sectp = get_section_bfd_section (info);
2505
2506 /* If this is a virtual section we need to read in the real one first. */
2507 if (info->is_virtual)
2508 {
2509 struct dwarf2_section_info *containing_section =
2510 get_containing_section (info);
2511
2512 gdb_assert (sectp != NULL);
2513 if ((sectp->flags & SEC_RELOC) != 0)
2514 {
2515 error (_("Dwarf Error: DWP format V2 with relocations is not"
2516 " supported in section %s [in module %s]"),
2517 get_section_name (info), get_section_file_name (info));
2518 }
2519 dwarf2_read_section (objfile, containing_section);
2520 /* Other code should have already caught virtual sections that don't
2521 fit. */
2522 gdb_assert (info->virtual_offset + info->size
2523 <= containing_section->size);
2524 /* If the real section is empty or there was a problem reading the
2525 section we shouldn't get here. */
2526 gdb_assert (containing_section->buffer != NULL);
2527 info->buffer = containing_section->buffer + info->virtual_offset;
2528 return;
2529 }
2530
2531 /* If the section has relocations, we must read it ourselves.
2532 Otherwise we attach it to the BFD. */
2533 if ((sectp->flags & SEC_RELOC) == 0)
2534 {
2535 info->buffer = gdb_bfd_map_section (sectp, &info->size);
2536 return;
2537 }
2538
2539 buf = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, info->size);
2540 info->buffer = buf;
2541
2542 /* When debugging .o files, we may need to apply relocations; see
2543 http://sourceware.org/ml/gdb-patches/2002-04/msg00136.html .
2544 We never compress sections in .o files, so we only need to
2545 try this when the section is not compressed. */
2546 retbuf = symfile_relocate_debug_section (objfile, sectp, buf);
2547 if (retbuf != NULL)
2548 {
2549 info->buffer = retbuf;
2550 return;
2551 }
2552
2553 abfd = get_section_bfd_owner (info);
2554 gdb_assert (abfd != NULL);
2555
2556 if (bfd_seek (abfd, sectp->filepos, SEEK_SET) != 0
2557 || bfd_bread (buf, info->size, abfd) != info->size)
2558 {
2559 error (_("Dwarf Error: Can't read DWARF data"
2560 " in section %s [in module %s]"),
2561 bfd_section_name (sectp), bfd_get_filename (abfd));
2562 }
2563 }
2564
2565 /* A helper function that returns the size of a section in a safe way.
2566 If you are positive that the section has been read before using the
2567 size, then it is safe to refer to the dwarf2_section_info object's
2568 "size" field directly. In other cases, you must call this
2569 function, because for compressed sections the size field is not set
2570 correctly until the section has been read. */
2571
2572 static bfd_size_type
2573 dwarf2_section_size (struct objfile *objfile,
2574 struct dwarf2_section_info *info)
2575 {
2576 if (!info->readin)
2577 dwarf2_read_section (objfile, info);
2578 return info->size;
2579 }
2580
2581 /* Fill in SECTP, BUFP and SIZEP with section info, given OBJFILE and
2582 SECTION_NAME. */
2583
2584 void
2585 dwarf2_get_section_info (struct objfile *objfile,
2586 enum dwarf2_section_enum sect,
2587 asection **sectp, const gdb_byte **bufp,
2588 bfd_size_type *sizep)
2589 {
2590 struct dwarf2_per_objfile *data = dwarf2_objfile_data_key.get (objfile);
2591 struct dwarf2_section_info *info;
2592
2593 /* We may see an objfile without any DWARF, in which case we just
2594 return nothing. */
2595 if (data == NULL)
2596 {
2597 *sectp = NULL;
2598 *bufp = NULL;
2599 *sizep = 0;
2600 return;
2601 }
2602 switch (sect)
2603 {
2604 case DWARF2_DEBUG_FRAME:
2605 info = &data->frame;
2606 break;
2607 case DWARF2_EH_FRAME:
2608 info = &data->eh_frame;
2609 break;
2610 default:
2611 gdb_assert_not_reached ("unexpected section");
2612 }
2613
2614 dwarf2_read_section (objfile, info);
2615
2616 *sectp = get_section_bfd_section (info);
2617 *bufp = info->buffer;
2618 *sizep = info->size;
2619 }
2620
2621 /* A helper function to find the sections for a .dwz file. */
2622
2623 static void
2624 locate_dwz_sections (bfd *abfd, asection *sectp, void *arg)
2625 {
2626 struct dwz_file *dwz_file = (struct dwz_file *) arg;
2627
2628 /* Note that we only support the standard ELF names, because .dwz
2629 is ELF-only (at the time of writing). */
2630 if (section_is_p (sectp->name, &dwarf2_elf_names.abbrev))
2631 {
2632 dwz_file->abbrev.s.section = sectp;
2633 dwz_file->abbrev.size = bfd_section_size (sectp);
2634 }
2635 else if (section_is_p (sectp->name, &dwarf2_elf_names.info))
2636 {
2637 dwz_file->info.s.section = sectp;
2638 dwz_file->info.size = bfd_section_size (sectp);
2639 }
2640 else if (section_is_p (sectp->name, &dwarf2_elf_names.str))
2641 {
2642 dwz_file->str.s.section = sectp;
2643 dwz_file->str.size = bfd_section_size (sectp);
2644 }
2645 else if (section_is_p (sectp->name, &dwarf2_elf_names.line))
2646 {
2647 dwz_file->line.s.section = sectp;
2648 dwz_file->line.size = bfd_section_size (sectp);
2649 }
2650 else if (section_is_p (sectp->name, &dwarf2_elf_names.macro))
2651 {
2652 dwz_file->macro.s.section = sectp;
2653 dwz_file->macro.size = bfd_section_size (sectp);
2654 }
2655 else if (section_is_p (sectp->name, &dwarf2_elf_names.gdb_index))
2656 {
2657 dwz_file->gdb_index.s.section = sectp;
2658 dwz_file->gdb_index.size = bfd_section_size (sectp);
2659 }
2660 else if (section_is_p (sectp->name, &dwarf2_elf_names.debug_names))
2661 {
2662 dwz_file->debug_names.s.section = sectp;
2663 dwz_file->debug_names.size = bfd_section_size (sectp);
2664 }
2665 }
2666
2667 /* See dwarf2read.h. */
2668
2669 struct dwz_file *
2670 dwarf2_get_dwz_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
2671 {
2672 const char *filename;
2673 bfd_size_type buildid_len_arg;
2674 size_t buildid_len;
2675 bfd_byte *buildid;
2676
2677 if (dwarf2_per_objfile->dwz_file != NULL)
2678 return dwarf2_per_objfile->dwz_file.get ();
2679
2680 bfd_set_error (bfd_error_no_error);
2681 gdb::unique_xmalloc_ptr<char> data
2682 (bfd_get_alt_debug_link_info (dwarf2_per_objfile->objfile->obfd,
2683 &buildid_len_arg, &buildid));
2684 if (data == NULL)
2685 {
2686 if (bfd_get_error () == bfd_error_no_error)
2687 return NULL;
2688 error (_("could not read '.gnu_debugaltlink' section: %s"),
2689 bfd_errmsg (bfd_get_error ()));
2690 }
2691
2692 gdb::unique_xmalloc_ptr<bfd_byte> buildid_holder (buildid);
2693
2694 buildid_len = (size_t) buildid_len_arg;
2695
2696 filename = data.get ();
2697
2698 std::string abs_storage;
2699 if (!IS_ABSOLUTE_PATH (filename))
2700 {
2701 gdb::unique_xmalloc_ptr<char> abs
2702 = gdb_realpath (objfile_name (dwarf2_per_objfile->objfile));
2703
2704 abs_storage = ldirname (abs.get ()) + SLASH_STRING + filename;
2705 filename = abs_storage.c_str ();
2706 }
2707
2708 /* First try the file name given in the section. If that doesn't
2709 work, try to use the build-id instead. */
2710 gdb_bfd_ref_ptr dwz_bfd (gdb_bfd_open (filename, gnutarget, -1));
2711 if (dwz_bfd != NULL)
2712 {
2713 if (!build_id_verify (dwz_bfd.get (), buildid_len, buildid))
2714 dwz_bfd.reset (nullptr);
2715 }
2716
2717 if (dwz_bfd == NULL)
2718 dwz_bfd = build_id_to_debug_bfd (buildid_len, buildid);
2719
2720 if (dwz_bfd == NULL)
2721 error (_("could not find '.gnu_debugaltlink' file for %s"),
2722 objfile_name (dwarf2_per_objfile->objfile));
2723
2724 std::unique_ptr<struct dwz_file> result
2725 (new struct dwz_file (std::move (dwz_bfd)));
2726
2727 bfd_map_over_sections (result->dwz_bfd.get (), locate_dwz_sections,
2728 result.get ());
2729
2730 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd,
2731 result->dwz_bfd.get ());
2732 dwarf2_per_objfile->dwz_file = std::move (result);
2733 return dwarf2_per_objfile->dwz_file.get ();
2734 }
2735 \f
2736 /* DWARF quick_symbols_functions support. */
2737
2738 /* TUs can share .debug_line entries, and there can be a lot more TUs than
2739 unique line tables, so we maintain a separate table of all .debug_line
2740 derived entries to support the sharing.
2741 All the quick functions need is the list of file names. We discard the
2742 line_header when we're done and don't need to record it here. */
2743 struct quick_file_names
2744 {
2745 /* The data used to construct the hash key. */
2746 struct stmt_list_hash hash;
2747
2748 /* The number of entries in file_names, real_names. */
2749 unsigned int num_file_names;
2750
2751 /* The file names from the line table, after being run through
2752 file_full_name. */
2753 const char **file_names;
2754
2755 /* The file names from the line table after being run through
2756 gdb_realpath. These are computed lazily. */
2757 const char **real_names;
2758 };
2759
2760 /* When using the index (and thus not using psymtabs), each CU has an
2761 object of this type. This is used to hold information needed by
2762 the various "quick" methods. */
2763 struct dwarf2_per_cu_quick_data
2764 {
2765 /* The file table. This can be NULL if there was no file table
2766 or it's currently not read in.
2767 NOTE: This points into dwarf2_per_objfile->quick_file_names_table. */
2768 struct quick_file_names *file_names;
2769
2770 /* The corresponding symbol table. This is NULL if symbols for this
2771 CU have not yet been read. */
2772 struct compunit_symtab *compunit_symtab;
2773
2774 /* A temporary mark bit used when iterating over all CUs in
2775 expand_symtabs_matching. */
2776 unsigned int mark : 1;
2777
2778 /* True if we've tried to read the file table and found there isn't one.
2779 There will be no point in trying to read it again next time. */
2780 unsigned int no_file_data : 1;
2781 };
2782
2783 /* Utility hash function for a stmt_list_hash. */
2784
2785 static hashval_t
2786 hash_stmt_list_entry (const struct stmt_list_hash *stmt_list_hash)
2787 {
2788 hashval_t v = 0;
2789
2790 if (stmt_list_hash->dwo_unit != NULL)
2791 v += (uintptr_t) stmt_list_hash->dwo_unit->dwo_file;
2792 v += to_underlying (stmt_list_hash->line_sect_off);
2793 return v;
2794 }
2795
2796 /* Utility equality function for a stmt_list_hash. */
2797
2798 static int
2799 eq_stmt_list_entry (const struct stmt_list_hash *lhs,
2800 const struct stmt_list_hash *rhs)
2801 {
2802 if ((lhs->dwo_unit != NULL) != (rhs->dwo_unit != NULL))
2803 return 0;
2804 if (lhs->dwo_unit != NULL
2805 && lhs->dwo_unit->dwo_file != rhs->dwo_unit->dwo_file)
2806 return 0;
2807
2808 return lhs->line_sect_off == rhs->line_sect_off;
2809 }
2810
2811 /* Hash function for a quick_file_names. */
2812
2813 static hashval_t
2814 hash_file_name_entry (const void *e)
2815 {
2816 const struct quick_file_names *file_data
2817 = (const struct quick_file_names *) e;
2818
2819 return hash_stmt_list_entry (&file_data->hash);
2820 }
2821
2822 /* Equality function for a quick_file_names. */
2823
2824 static int
2825 eq_file_name_entry (const void *a, const void *b)
2826 {
2827 const struct quick_file_names *ea = (const struct quick_file_names *) a;
2828 const struct quick_file_names *eb = (const struct quick_file_names *) b;
2829
2830 return eq_stmt_list_entry (&ea->hash, &eb->hash);
2831 }
2832
2833 /* Delete function for a quick_file_names. */
2834
2835 static void
2836 delete_file_name_entry (void *e)
2837 {
2838 struct quick_file_names *file_data = (struct quick_file_names *) e;
2839 int i;
2840
2841 for (i = 0; i < file_data->num_file_names; ++i)
2842 {
2843 xfree ((void*) file_data->file_names[i]);
2844 if (file_data->real_names)
2845 xfree ((void*) file_data->real_names[i]);
2846 }
2847
2848 /* The space for the struct itself lives on objfile_obstack,
2849 so we don't free it here. */
2850 }
2851
2852 /* Create a quick_file_names hash table. */
2853
2854 static htab_t
2855 create_quick_file_names_table (unsigned int nr_initial_entries)
2856 {
2857 return htab_create_alloc (nr_initial_entries,
2858 hash_file_name_entry, eq_file_name_entry,
2859 delete_file_name_entry, xcalloc, xfree);
2860 }
2861
2862 /* Read in PER_CU->CU. This function is unrelated to symtabs, symtab would
2863 have to be created afterwards. You should call age_cached_comp_units after
2864 processing PER_CU->CU. dw2_setup must have been already called. */
2865
2866 static void
2867 load_cu (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2868 {
2869 if (per_cu->is_debug_types)
2870 load_full_type_unit (per_cu);
2871 else
2872 load_full_comp_unit (per_cu, skip_partial, language_minimal);
2873
2874 if (per_cu->cu == NULL)
2875 return; /* Dummy CU. */
2876
2877 dwarf2_find_base_address (per_cu->cu->dies, per_cu->cu);
2878 }
2879
2880 /* Read in the symbols for PER_CU. */
2881
2882 static void
2883 dw2_do_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2884 {
2885 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2886
2887 /* Skip type_unit_groups, reading the type units they contain
2888 is handled elsewhere. */
2889 if (IS_TYPE_UNIT_GROUP (per_cu))
2890 return;
2891
2892 /* The destructor of dwarf2_queue_guard frees any entries left on
2893 the queue. After this point we're guaranteed to leave this function
2894 with the dwarf queue empty. */
2895 dwarf2_queue_guard q_guard;
2896
2897 if (dwarf2_per_objfile->using_index
2898 ? per_cu->v.quick->compunit_symtab == NULL
2899 : (per_cu->v.psymtab == NULL || !per_cu->v.psymtab->readin))
2900 {
2901 queue_comp_unit (per_cu, language_minimal);
2902 load_cu (per_cu, skip_partial);
2903
2904 /* If we just loaded a CU from a DWO, and we're working with an index
2905 that may badly handle TUs, load all the TUs in that DWO as well.
2906 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
2907 if (!per_cu->is_debug_types
2908 && per_cu->cu != NULL
2909 && per_cu->cu->dwo_unit != NULL
2910 && dwarf2_per_objfile->index_table != NULL
2911 && dwarf2_per_objfile->index_table->version <= 7
2912 /* DWP files aren't supported yet. */
2913 && get_dwp_file (dwarf2_per_objfile) == NULL)
2914 queue_and_load_all_dwo_tus (per_cu);
2915 }
2916
2917 process_queue (dwarf2_per_objfile);
2918
2919 /* Age the cache, releasing compilation units that have not
2920 been used recently. */
2921 age_cached_comp_units (dwarf2_per_objfile);
2922 }
2923
2924 /* Ensure that the symbols for PER_CU have been read in. OBJFILE is
2925 the objfile from which this CU came. Returns the resulting symbol
2926 table. */
2927
2928 static struct compunit_symtab *
2929 dw2_instantiate_symtab (struct dwarf2_per_cu_data *per_cu, bool skip_partial)
2930 {
2931 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
2932
2933 gdb_assert (dwarf2_per_objfile->using_index);
2934 if (!per_cu->v.quick->compunit_symtab)
2935 {
2936 free_cached_comp_units freer (dwarf2_per_objfile);
2937 scoped_restore decrementer = increment_reading_symtab ();
2938 dw2_do_instantiate_symtab (per_cu, skip_partial);
2939 process_cu_includes (dwarf2_per_objfile);
2940 }
2941
2942 return per_cu->v.quick->compunit_symtab;
2943 }
2944
2945 /* See declaration. */
2946
2947 dwarf2_per_cu_data *
2948 dwarf2_per_objfile::get_cutu (int index)
2949 {
2950 if (index >= this->all_comp_units.size ())
2951 {
2952 index -= this->all_comp_units.size ();
2953 gdb_assert (index < this->all_type_units.size ());
2954 return &this->all_type_units[index]->per_cu;
2955 }
2956
2957 return this->all_comp_units[index];
2958 }
2959
2960 /* See declaration. */
2961
2962 dwarf2_per_cu_data *
2963 dwarf2_per_objfile::get_cu (int index)
2964 {
2965 gdb_assert (index >= 0 && index < this->all_comp_units.size ());
2966
2967 return this->all_comp_units[index];
2968 }
2969
2970 /* See declaration. */
2971
2972 signatured_type *
2973 dwarf2_per_objfile::get_tu (int index)
2974 {
2975 gdb_assert (index >= 0 && index < this->all_type_units.size ());
2976
2977 return this->all_type_units[index];
2978 }
2979
2980 /* Return a new dwarf2_per_cu_data allocated on OBJFILE's
2981 objfile_obstack, and constructed with the specified field
2982 values. */
2983
2984 static dwarf2_per_cu_data *
2985 create_cu_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
2986 struct dwarf2_section_info *section,
2987 int is_dwz,
2988 sect_offset sect_off, ULONGEST length)
2989 {
2990 struct objfile *objfile = dwarf2_per_objfile->objfile;
2991 dwarf2_per_cu_data *the_cu
2992 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2993 struct dwarf2_per_cu_data);
2994 the_cu->sect_off = sect_off;
2995 the_cu->length = length;
2996 the_cu->dwarf2_per_objfile = dwarf2_per_objfile;
2997 the_cu->section = section;
2998 the_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
2999 struct dwarf2_per_cu_quick_data);
3000 the_cu->is_dwz = is_dwz;
3001 return the_cu;
3002 }
3003
3004 /* A helper for create_cus_from_index that handles a given list of
3005 CUs. */
3006
3007 static void
3008 create_cus_from_index_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
3009 const gdb_byte *cu_list, offset_type n_elements,
3010 struct dwarf2_section_info *section,
3011 int is_dwz)
3012 {
3013 for (offset_type i = 0; i < n_elements; i += 2)
3014 {
3015 gdb_static_assert (sizeof (ULONGEST) >= 8);
3016
3017 sect_offset sect_off
3018 = (sect_offset) extract_unsigned_integer (cu_list, 8, BFD_ENDIAN_LITTLE);
3019 ULONGEST length = extract_unsigned_integer (cu_list + 8, 8, BFD_ENDIAN_LITTLE);
3020 cu_list += 2 * 8;
3021
3022 dwarf2_per_cu_data *per_cu
3023 = create_cu_from_index_list (dwarf2_per_objfile, section, is_dwz,
3024 sect_off, length);
3025 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
3026 }
3027 }
3028
3029 /* Read the CU list from the mapped index, and use it to create all
3030 the CU objects for this objfile. */
3031
3032 static void
3033 create_cus_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3034 const gdb_byte *cu_list, offset_type cu_list_elements,
3035 const gdb_byte *dwz_list, offset_type dwz_elements)
3036 {
3037 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
3038 dwarf2_per_objfile->all_comp_units.reserve
3039 ((cu_list_elements + dwz_elements) / 2);
3040
3041 create_cus_from_index_list (dwarf2_per_objfile, cu_list, cu_list_elements,
3042 &dwarf2_per_objfile->info, 0);
3043
3044 if (dwz_elements == 0)
3045 return;
3046
3047 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3048 create_cus_from_index_list (dwarf2_per_objfile, dwz_list, dwz_elements,
3049 &dwz->info, 1);
3050 }
3051
3052 /* Create the signatured type hash table from the index. */
3053
3054 static void
3055 create_signatured_type_table_from_index
3056 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3057 struct dwarf2_section_info *section,
3058 const gdb_byte *bytes,
3059 offset_type elements)
3060 {
3061 struct objfile *objfile = dwarf2_per_objfile->objfile;
3062
3063 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3064 dwarf2_per_objfile->all_type_units.reserve (elements / 3);
3065
3066 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3067
3068 for (offset_type i = 0; i < elements; i += 3)
3069 {
3070 struct signatured_type *sig_type;
3071 ULONGEST signature;
3072 void **slot;
3073 cu_offset type_offset_in_tu;
3074
3075 gdb_static_assert (sizeof (ULONGEST) >= 8);
3076 sect_offset sect_off
3077 = (sect_offset) extract_unsigned_integer (bytes, 8, BFD_ENDIAN_LITTLE);
3078 type_offset_in_tu
3079 = (cu_offset) extract_unsigned_integer (bytes + 8, 8,
3080 BFD_ENDIAN_LITTLE);
3081 signature = extract_unsigned_integer (bytes + 16, 8, BFD_ENDIAN_LITTLE);
3082 bytes += 3 * 8;
3083
3084 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3085 struct signatured_type);
3086 sig_type->signature = signature;
3087 sig_type->type_offset_in_tu = type_offset_in_tu;
3088 sig_type->per_cu.is_debug_types = 1;
3089 sig_type->per_cu.section = section;
3090 sig_type->per_cu.sect_off = sect_off;
3091 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3092 sig_type->per_cu.v.quick
3093 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3094 struct dwarf2_per_cu_quick_data);
3095
3096 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3097 *slot = sig_type;
3098
3099 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3100 }
3101
3102 dwarf2_per_objfile->signatured_types = sig_types_hash;
3103 }
3104
3105 /* Create the signatured type hash table from .debug_names. */
3106
3107 static void
3108 create_signatured_type_table_from_debug_names
3109 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3110 const mapped_debug_names &map,
3111 struct dwarf2_section_info *section,
3112 struct dwarf2_section_info *abbrev_section)
3113 {
3114 struct objfile *objfile = dwarf2_per_objfile->objfile;
3115
3116 dwarf2_read_section (objfile, section);
3117 dwarf2_read_section (objfile, abbrev_section);
3118
3119 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
3120 dwarf2_per_objfile->all_type_units.reserve (map.tu_count);
3121
3122 htab_t sig_types_hash = allocate_signatured_type_table (objfile);
3123
3124 for (uint32_t i = 0; i < map.tu_count; ++i)
3125 {
3126 struct signatured_type *sig_type;
3127 void **slot;
3128
3129 sect_offset sect_off
3130 = (sect_offset) (extract_unsigned_integer
3131 (map.tu_table_reordered + i * map.offset_size,
3132 map.offset_size,
3133 map.dwarf5_byte_order));
3134
3135 comp_unit_head cu_header;
3136 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
3137 abbrev_section,
3138 section->buffer + to_underlying (sect_off),
3139 rcuh_kind::TYPE);
3140
3141 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3142 struct signatured_type);
3143 sig_type->signature = cu_header.signature;
3144 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
3145 sig_type->per_cu.is_debug_types = 1;
3146 sig_type->per_cu.section = section;
3147 sig_type->per_cu.sect_off = sect_off;
3148 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
3149 sig_type->per_cu.v.quick
3150 = OBSTACK_ZALLOC (&objfile->objfile_obstack,
3151 struct dwarf2_per_cu_quick_data);
3152
3153 slot = htab_find_slot (sig_types_hash, sig_type, INSERT);
3154 *slot = sig_type;
3155
3156 dwarf2_per_objfile->all_type_units.push_back (sig_type);
3157 }
3158
3159 dwarf2_per_objfile->signatured_types = sig_types_hash;
3160 }
3161
3162 /* Read the address map data from the mapped index, and use it to
3163 populate the objfile's psymtabs_addrmap. */
3164
3165 static void
3166 create_addrmap_from_index (struct dwarf2_per_objfile *dwarf2_per_objfile,
3167 struct mapped_index *index)
3168 {
3169 struct objfile *objfile = dwarf2_per_objfile->objfile;
3170 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3171 const gdb_byte *iter, *end;
3172 struct addrmap *mutable_map;
3173 CORE_ADDR baseaddr;
3174
3175 auto_obstack temp_obstack;
3176
3177 mutable_map = addrmap_create_mutable (&temp_obstack);
3178
3179 iter = index->address_table.data ();
3180 end = iter + index->address_table.size ();
3181
3182 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
3183
3184 while (iter < end)
3185 {
3186 ULONGEST hi, lo, cu_index;
3187 lo = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3188 iter += 8;
3189 hi = extract_unsigned_integer (iter, 8, BFD_ENDIAN_LITTLE);
3190 iter += 8;
3191 cu_index = extract_unsigned_integer (iter, 4, BFD_ENDIAN_LITTLE);
3192 iter += 4;
3193
3194 if (lo > hi)
3195 {
3196 complaint (_(".gdb_index address table has invalid range (%s - %s)"),
3197 hex_string (lo), hex_string (hi));
3198 continue;
3199 }
3200
3201 if (cu_index >= dwarf2_per_objfile->all_comp_units.size ())
3202 {
3203 complaint (_(".gdb_index address table has invalid CU number %u"),
3204 (unsigned) cu_index);
3205 continue;
3206 }
3207
3208 lo = gdbarch_adjust_dwarf2_addr (gdbarch, lo + baseaddr) - baseaddr;
3209 hi = gdbarch_adjust_dwarf2_addr (gdbarch, hi + baseaddr) - baseaddr;
3210 addrmap_set_empty (mutable_map, lo, hi - 1,
3211 dwarf2_per_objfile->get_cu (cu_index));
3212 }
3213
3214 objfile->partial_symtabs->psymtabs_addrmap
3215 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3216 }
3217
3218 /* Read the address map data from DWARF-5 .debug_aranges, and use it to
3219 populate the objfile's psymtabs_addrmap. */
3220
3221 static void
3222 create_addrmap_from_aranges (struct dwarf2_per_objfile *dwarf2_per_objfile,
3223 struct dwarf2_section_info *section)
3224 {
3225 struct objfile *objfile = dwarf2_per_objfile->objfile;
3226 bfd *abfd = objfile->obfd;
3227 struct gdbarch *gdbarch = get_objfile_arch (objfile);
3228 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
3229 SECT_OFF_TEXT (objfile));
3230
3231 auto_obstack temp_obstack;
3232 addrmap *mutable_map = addrmap_create_mutable (&temp_obstack);
3233
3234 std::unordered_map<sect_offset,
3235 dwarf2_per_cu_data *,
3236 gdb::hash_enum<sect_offset>>
3237 debug_info_offset_to_per_cu;
3238 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3239 {
3240 const auto insertpair
3241 = debug_info_offset_to_per_cu.emplace (per_cu->sect_off, per_cu);
3242 if (!insertpair.second)
3243 {
3244 warning (_("Section .debug_aranges in %s has duplicate "
3245 "debug_info_offset %s, ignoring .debug_aranges."),
3246 objfile_name (objfile), sect_offset_str (per_cu->sect_off));
3247 return;
3248 }
3249 }
3250
3251 dwarf2_read_section (objfile, section);
3252
3253 const bfd_endian dwarf5_byte_order = gdbarch_byte_order (gdbarch);
3254
3255 const gdb_byte *addr = section->buffer;
3256
3257 while (addr < section->buffer + section->size)
3258 {
3259 const gdb_byte *const entry_addr = addr;
3260 unsigned int bytes_read;
3261
3262 const LONGEST entry_length = read_initial_length (abfd, addr,
3263 &bytes_read);
3264 addr += bytes_read;
3265
3266 const gdb_byte *const entry_end = addr + entry_length;
3267 const bool dwarf5_is_dwarf64 = bytes_read != 4;
3268 const uint8_t offset_size = dwarf5_is_dwarf64 ? 8 : 4;
3269 if (addr + entry_length > section->buffer + section->size)
3270 {
3271 warning (_("Section .debug_aranges in %s entry at offset %s "
3272 "length %s exceeds section length %s, "
3273 "ignoring .debug_aranges."),
3274 objfile_name (objfile),
3275 plongest (entry_addr - section->buffer),
3276 plongest (bytes_read + entry_length),
3277 pulongest (section->size));
3278 return;
3279 }
3280
3281 /* The version number. */
3282 const uint16_t version = read_2_bytes (abfd, addr);
3283 addr += 2;
3284 if (version != 2)
3285 {
3286 warning (_("Section .debug_aranges in %s entry at offset %s "
3287 "has unsupported version %d, ignoring .debug_aranges."),
3288 objfile_name (objfile),
3289 plongest (entry_addr - section->buffer), version);
3290 return;
3291 }
3292
3293 const uint64_t debug_info_offset
3294 = extract_unsigned_integer (addr, offset_size, dwarf5_byte_order);
3295 addr += offset_size;
3296 const auto per_cu_it
3297 = debug_info_offset_to_per_cu.find (sect_offset (debug_info_offset));
3298 if (per_cu_it == debug_info_offset_to_per_cu.cend ())
3299 {
3300 warning (_("Section .debug_aranges in %s entry at offset %s "
3301 "debug_info_offset %s does not exists, "
3302 "ignoring .debug_aranges."),
3303 objfile_name (objfile),
3304 plongest (entry_addr - section->buffer),
3305 pulongest (debug_info_offset));
3306 return;
3307 }
3308 dwarf2_per_cu_data *const per_cu = per_cu_it->second;
3309
3310 const uint8_t address_size = *addr++;
3311 if (address_size < 1 || address_size > 8)
3312 {
3313 warning (_("Section .debug_aranges in %s entry at offset %s "
3314 "address_size %u is invalid, ignoring .debug_aranges."),
3315 objfile_name (objfile),
3316 plongest (entry_addr - section->buffer), address_size);
3317 return;
3318 }
3319
3320 const uint8_t segment_selector_size = *addr++;
3321 if (segment_selector_size != 0)
3322 {
3323 warning (_("Section .debug_aranges in %s entry at offset %s "
3324 "segment_selector_size %u is not supported, "
3325 "ignoring .debug_aranges."),
3326 objfile_name (objfile),
3327 plongest (entry_addr - section->buffer),
3328 segment_selector_size);
3329 return;
3330 }
3331
3332 /* Must pad to an alignment boundary that is twice the address
3333 size. It is undocumented by the DWARF standard but GCC does
3334 use it. */
3335 for (size_t padding = ((-(addr - section->buffer))
3336 & (2 * address_size - 1));
3337 padding > 0; padding--)
3338 if (*addr++ != 0)
3339 {
3340 warning (_("Section .debug_aranges in %s entry at offset %s "
3341 "padding is not zero, ignoring .debug_aranges."),
3342 objfile_name (objfile),
3343 plongest (entry_addr - section->buffer));
3344 return;
3345 }
3346
3347 for (;;)
3348 {
3349 if (addr + 2 * address_size > entry_end)
3350 {
3351 warning (_("Section .debug_aranges in %s entry at offset %s "
3352 "address list is not properly terminated, "
3353 "ignoring .debug_aranges."),
3354 objfile_name (objfile),
3355 plongest (entry_addr - section->buffer));
3356 return;
3357 }
3358 ULONGEST start = extract_unsigned_integer (addr, address_size,
3359 dwarf5_byte_order);
3360 addr += address_size;
3361 ULONGEST length = extract_unsigned_integer (addr, address_size,
3362 dwarf5_byte_order);
3363 addr += address_size;
3364 if (start == 0 && length == 0)
3365 break;
3366 if (start == 0 && !dwarf2_per_objfile->has_section_at_zero)
3367 {
3368 /* Symbol was eliminated due to a COMDAT group. */
3369 continue;
3370 }
3371 ULONGEST end = start + length;
3372 start = (gdbarch_adjust_dwarf2_addr (gdbarch, start + baseaddr)
3373 - baseaddr);
3374 end = (gdbarch_adjust_dwarf2_addr (gdbarch, end + baseaddr)
3375 - baseaddr);
3376 addrmap_set_empty (mutable_map, start, end - 1, per_cu);
3377 }
3378 }
3379
3380 objfile->partial_symtabs->psymtabs_addrmap
3381 = addrmap_create_fixed (mutable_map, objfile->partial_symtabs->obstack ());
3382 }
3383
3384 /* Find a slot in the mapped index INDEX for the object named NAME.
3385 If NAME is found, set *VEC_OUT to point to the CU vector in the
3386 constant pool and return true. If NAME cannot be found, return
3387 false. */
3388
3389 static bool
3390 find_slot_in_mapped_hash (struct mapped_index *index, const char *name,
3391 offset_type **vec_out)
3392 {
3393 offset_type hash;
3394 offset_type slot, step;
3395 int (*cmp) (const char *, const char *);
3396
3397 gdb::unique_xmalloc_ptr<char> without_params;
3398 if (current_language->la_language == language_cplus
3399 || current_language->la_language == language_fortran
3400 || current_language->la_language == language_d)
3401 {
3402 /* NAME is already canonical. Drop any qualifiers as .gdb_index does
3403 not contain any. */
3404
3405 if (strchr (name, '(') != NULL)
3406 {
3407 without_params = cp_remove_params (name);
3408
3409 if (without_params != NULL)
3410 name = without_params.get ();
3411 }
3412 }
3413
3414 /* Index version 4 did not support case insensitive searches. But the
3415 indices for case insensitive languages are built in lowercase, therefore
3416 simulate our NAME being searched is also lowercased. */
3417 hash = mapped_index_string_hash ((index->version == 4
3418 && case_sensitivity == case_sensitive_off
3419 ? 5 : index->version),
3420 name);
3421
3422 slot = hash & (index->symbol_table.size () - 1);
3423 step = ((hash * 17) & (index->symbol_table.size () - 1)) | 1;
3424 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
3425
3426 for (;;)
3427 {
3428 const char *str;
3429
3430 const auto &bucket = index->symbol_table[slot];
3431 if (bucket.name == 0 && bucket.vec == 0)
3432 return false;
3433
3434 str = index->constant_pool + MAYBE_SWAP (bucket.name);
3435 if (!cmp (name, str))
3436 {
3437 *vec_out = (offset_type *) (index->constant_pool
3438 + MAYBE_SWAP (bucket.vec));
3439 return true;
3440 }
3441
3442 slot = (slot + step) & (index->symbol_table.size () - 1);
3443 }
3444 }
3445
3446 /* A helper function that reads the .gdb_index from BUFFER and fills
3447 in MAP. FILENAME is the name of the file containing the data;
3448 it is used for error reporting. DEPRECATED_OK is true if it is
3449 ok to use deprecated sections.
3450
3451 CU_LIST, CU_LIST_ELEMENTS, TYPES_LIST, and TYPES_LIST_ELEMENTS are
3452 out parameters that are filled in with information about the CU and
3453 TU lists in the section.
3454
3455 Returns true if all went well, false otherwise. */
3456
3457 static bool
3458 read_gdb_index_from_buffer (struct objfile *objfile,
3459 const char *filename,
3460 bool deprecated_ok,
3461 gdb::array_view<const gdb_byte> buffer,
3462 struct mapped_index *map,
3463 const gdb_byte **cu_list,
3464 offset_type *cu_list_elements,
3465 const gdb_byte **types_list,
3466 offset_type *types_list_elements)
3467 {
3468 const gdb_byte *addr = &buffer[0];
3469
3470 /* Version check. */
3471 offset_type version = MAYBE_SWAP (*(offset_type *) addr);
3472 /* Versions earlier than 3 emitted every copy of a psymbol. This
3473 causes the index to behave very poorly for certain requests. Version 3
3474 contained incomplete addrmap. So, it seems better to just ignore such
3475 indices. */
3476 if (version < 4)
3477 {
3478 static int warning_printed = 0;
3479 if (!warning_printed)
3480 {
3481 warning (_("Skipping obsolete .gdb_index section in %s."),
3482 filename);
3483 warning_printed = 1;
3484 }
3485 return 0;
3486 }
3487 /* Index version 4 uses a different hash function than index version
3488 5 and later.
3489
3490 Versions earlier than 6 did not emit psymbols for inlined
3491 functions. Using these files will cause GDB not to be able to
3492 set breakpoints on inlined functions by name, so we ignore these
3493 indices unless the user has done
3494 "set use-deprecated-index-sections on". */
3495 if (version < 6 && !deprecated_ok)
3496 {
3497 static int warning_printed = 0;
3498 if (!warning_printed)
3499 {
3500 warning (_("\
3501 Skipping deprecated .gdb_index section in %s.\n\
3502 Do \"set use-deprecated-index-sections on\" before the file is read\n\
3503 to use the section anyway."),
3504 filename);
3505 warning_printed = 1;
3506 }
3507 return 0;
3508 }
3509 /* Version 7 indices generated by gold refer to the CU for a symbol instead
3510 of the TU (for symbols coming from TUs),
3511 http://sourceware.org/bugzilla/show_bug.cgi?id=15021.
3512 Plus gold-generated indices can have duplicate entries for global symbols,
3513 http://sourceware.org/bugzilla/show_bug.cgi?id=15646.
3514 These are just performance bugs, and we can't distinguish gdb-generated
3515 indices from gold-generated ones, so issue no warning here. */
3516
3517 /* Indexes with higher version than the one supported by GDB may be no
3518 longer backward compatible. */
3519 if (version > 8)
3520 return 0;
3521
3522 map->version = version;
3523
3524 offset_type *metadata = (offset_type *) (addr + sizeof (offset_type));
3525
3526 int i = 0;
3527 *cu_list = addr + MAYBE_SWAP (metadata[i]);
3528 *cu_list_elements = ((MAYBE_SWAP (metadata[i + 1]) - MAYBE_SWAP (metadata[i]))
3529 / 8);
3530 ++i;
3531
3532 *types_list = addr + MAYBE_SWAP (metadata[i]);
3533 *types_list_elements = ((MAYBE_SWAP (metadata[i + 1])
3534 - MAYBE_SWAP (metadata[i]))
3535 / 8);
3536 ++i;
3537
3538 const gdb_byte *address_table = addr + MAYBE_SWAP (metadata[i]);
3539 const gdb_byte *address_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3540 map->address_table
3541 = gdb::array_view<const gdb_byte> (address_table, address_table_end);
3542 ++i;
3543
3544 const gdb_byte *symbol_table = addr + MAYBE_SWAP (metadata[i]);
3545 const gdb_byte *symbol_table_end = addr + MAYBE_SWAP (metadata[i + 1]);
3546 map->symbol_table
3547 = gdb::array_view<mapped_index::symbol_table_slot>
3548 ((mapped_index::symbol_table_slot *) symbol_table,
3549 (mapped_index::symbol_table_slot *) symbol_table_end);
3550
3551 ++i;
3552 map->constant_pool = (char *) (addr + MAYBE_SWAP (metadata[i]));
3553
3554 return 1;
3555 }
3556
3557 /* Callback types for dwarf2_read_gdb_index. */
3558
3559 typedef gdb::function_view
3560 <gdb::array_view<const gdb_byte>(objfile *, dwarf2_per_objfile *)>
3561 get_gdb_index_contents_ftype;
3562 typedef gdb::function_view
3563 <gdb::array_view<const gdb_byte>(objfile *, dwz_file *)>
3564 get_gdb_index_contents_dwz_ftype;
3565
3566 /* Read .gdb_index. If everything went ok, initialize the "quick"
3567 elements of all the CUs and return 1. Otherwise, return 0. */
3568
3569 static int
3570 dwarf2_read_gdb_index
3571 (struct dwarf2_per_objfile *dwarf2_per_objfile,
3572 get_gdb_index_contents_ftype get_gdb_index_contents,
3573 get_gdb_index_contents_dwz_ftype get_gdb_index_contents_dwz)
3574 {
3575 const gdb_byte *cu_list, *types_list, *dwz_list = NULL;
3576 offset_type cu_list_elements, types_list_elements, dwz_list_elements = 0;
3577 struct dwz_file *dwz;
3578 struct objfile *objfile = dwarf2_per_objfile->objfile;
3579
3580 gdb::array_view<const gdb_byte> main_index_contents
3581 = get_gdb_index_contents (objfile, dwarf2_per_objfile);
3582
3583 if (main_index_contents.empty ())
3584 return 0;
3585
3586 std::unique_ptr<struct mapped_index> map (new struct mapped_index);
3587 if (!read_gdb_index_from_buffer (objfile, objfile_name (objfile),
3588 use_deprecated_index_sections,
3589 main_index_contents, map.get (), &cu_list,
3590 &cu_list_elements, &types_list,
3591 &types_list_elements))
3592 return 0;
3593
3594 /* Don't use the index if it's empty. */
3595 if (map->symbol_table.empty ())
3596 return 0;
3597
3598 /* If there is a .dwz file, read it so we can get its CU list as
3599 well. */
3600 dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
3601 if (dwz != NULL)
3602 {
3603 struct mapped_index dwz_map;
3604 const gdb_byte *dwz_types_ignore;
3605 offset_type dwz_types_elements_ignore;
3606
3607 gdb::array_view<const gdb_byte> dwz_index_content
3608 = get_gdb_index_contents_dwz (objfile, dwz);
3609
3610 if (dwz_index_content.empty ())
3611 return 0;
3612
3613 if (!read_gdb_index_from_buffer (objfile,
3614 bfd_get_filename (dwz->dwz_bfd.get ()),
3615 1, dwz_index_content, &dwz_map,
3616 &dwz_list, &dwz_list_elements,
3617 &dwz_types_ignore,
3618 &dwz_types_elements_ignore))
3619 {
3620 warning (_("could not read '.gdb_index' section from %s; skipping"),
3621 bfd_get_filename (dwz->dwz_bfd.get ()));
3622 return 0;
3623 }
3624 }
3625
3626 create_cus_from_index (dwarf2_per_objfile, cu_list, cu_list_elements,
3627 dwz_list, dwz_list_elements);
3628
3629 if (types_list_elements)
3630 {
3631 /* We can only handle a single .debug_types when we have an
3632 index. */
3633 if (dwarf2_per_objfile->types.size () != 1)
3634 return 0;
3635
3636 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
3637
3638 create_signatured_type_table_from_index (dwarf2_per_objfile, section,
3639 types_list, types_list_elements);
3640 }
3641
3642 create_addrmap_from_index (dwarf2_per_objfile, map.get ());
3643
3644 dwarf2_per_objfile->index_table = std::move (map);
3645 dwarf2_per_objfile->using_index = 1;
3646 dwarf2_per_objfile->quick_file_names_table =
3647 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
3648
3649 return 1;
3650 }
3651
3652 /* die_reader_func for dw2_get_file_names. */
3653
3654 static void
3655 dw2_get_file_names_reader (const struct die_reader_specs *reader,
3656 const gdb_byte *info_ptr,
3657 struct die_info *comp_unit_die,
3658 int has_children,
3659 void *data)
3660 {
3661 struct dwarf2_cu *cu = reader->cu;
3662 struct dwarf2_per_cu_data *this_cu = cu->per_cu;
3663 struct dwarf2_per_objfile *dwarf2_per_objfile
3664 = cu->per_cu->dwarf2_per_objfile;
3665 struct objfile *objfile = dwarf2_per_objfile->objfile;
3666 struct dwarf2_per_cu_data *lh_cu;
3667 struct attribute *attr;
3668 void **slot;
3669 struct quick_file_names *qfn;
3670
3671 gdb_assert (! this_cu->is_debug_types);
3672
3673 /* Our callers never want to match partial units -- instead they
3674 will match the enclosing full CU. */
3675 if (comp_unit_die->tag == DW_TAG_partial_unit)
3676 {
3677 this_cu->v.quick->no_file_data = 1;
3678 return;
3679 }
3680
3681 lh_cu = this_cu;
3682 slot = NULL;
3683
3684 line_header_up lh;
3685 sect_offset line_offset {};
3686
3687 attr = dwarf2_attr (comp_unit_die, DW_AT_stmt_list, cu);
3688 if (attr != nullptr)
3689 {
3690 struct quick_file_names find_entry;
3691
3692 line_offset = (sect_offset) DW_UNSND (attr);
3693
3694 /* We may have already read in this line header (TU line header sharing).
3695 If we have we're done. */
3696 find_entry.hash.dwo_unit = cu->dwo_unit;
3697 find_entry.hash.line_sect_off = line_offset;
3698 slot = htab_find_slot (dwarf2_per_objfile->quick_file_names_table,
3699 &find_entry, INSERT);
3700 if (*slot != NULL)
3701 {
3702 lh_cu->v.quick->file_names = (struct quick_file_names *) *slot;
3703 return;
3704 }
3705
3706 lh = dwarf_decode_line_header (line_offset, cu);
3707 }
3708 if (lh == NULL)
3709 {
3710 lh_cu->v.quick->no_file_data = 1;
3711 return;
3712 }
3713
3714 qfn = XOBNEW (&objfile->objfile_obstack, struct quick_file_names);
3715 qfn->hash.dwo_unit = cu->dwo_unit;
3716 qfn->hash.line_sect_off = line_offset;
3717 gdb_assert (slot != NULL);
3718 *slot = qfn;
3719
3720 file_and_directory fnd = find_file_and_directory (comp_unit_die, cu);
3721
3722 int offset = 0;
3723 if (strcmp (fnd.name, "<unknown>") != 0)
3724 ++offset;
3725
3726 qfn->num_file_names = offset + lh->file_names_size ();
3727 qfn->file_names =
3728 XOBNEWVEC (&objfile->objfile_obstack, const char *, qfn->num_file_names);
3729 if (offset != 0)
3730 qfn->file_names[0] = xstrdup (fnd.name);
3731 for (int i = 0; i < lh->file_names_size (); ++i)
3732 qfn->file_names[i + offset] = file_full_name (i + 1, lh.get (), fnd.comp_dir);
3733 qfn->real_names = NULL;
3734
3735 lh_cu->v.quick->file_names = qfn;
3736 }
3737
3738 /* A helper for the "quick" functions which attempts to read the line
3739 table for THIS_CU. */
3740
3741 static struct quick_file_names *
3742 dw2_get_file_names (struct dwarf2_per_cu_data *this_cu)
3743 {
3744 /* This should never be called for TUs. */
3745 gdb_assert (! this_cu->is_debug_types);
3746 /* Nor type unit groups. */
3747 gdb_assert (! IS_TYPE_UNIT_GROUP (this_cu));
3748
3749 if (this_cu->v.quick->file_names != NULL)
3750 return this_cu->v.quick->file_names;
3751 /* If we know there is no line data, no point in looking again. */
3752 if (this_cu->v.quick->no_file_data)
3753 return NULL;
3754
3755 init_cutu_and_read_dies_simple (this_cu, dw2_get_file_names_reader, NULL);
3756
3757 if (this_cu->v.quick->no_file_data)
3758 return NULL;
3759 return this_cu->v.quick->file_names;
3760 }
3761
3762 /* A helper for the "quick" functions which computes and caches the
3763 real path for a given file name from the line table. */
3764
3765 static const char *
3766 dw2_get_real_path (struct objfile *objfile,
3767 struct quick_file_names *qfn, int index)
3768 {
3769 if (qfn->real_names == NULL)
3770 qfn->real_names = OBSTACK_CALLOC (&objfile->objfile_obstack,
3771 qfn->num_file_names, const char *);
3772
3773 if (qfn->real_names[index] == NULL)
3774 qfn->real_names[index] = gdb_realpath (qfn->file_names[index]).release ();
3775
3776 return qfn->real_names[index];
3777 }
3778
3779 static struct symtab *
3780 dw2_find_last_source_symtab (struct objfile *objfile)
3781 {
3782 struct dwarf2_per_objfile *dwarf2_per_objfile
3783 = get_dwarf2_per_objfile (objfile);
3784 dwarf2_per_cu_data *dwarf_cu = dwarf2_per_objfile->all_comp_units.back ();
3785 compunit_symtab *cust = dw2_instantiate_symtab (dwarf_cu, false);
3786
3787 if (cust == NULL)
3788 return NULL;
3789
3790 return compunit_primary_filetab (cust);
3791 }
3792
3793 /* Traversal function for dw2_forget_cached_source_info. */
3794
3795 static int
3796 dw2_free_cached_file_names (void **slot, void *info)
3797 {
3798 struct quick_file_names *file_data = (struct quick_file_names *) *slot;
3799
3800 if (file_data->real_names)
3801 {
3802 int i;
3803
3804 for (i = 0; i < file_data->num_file_names; ++i)
3805 {
3806 xfree ((void*) file_data->real_names[i]);
3807 file_data->real_names[i] = NULL;
3808 }
3809 }
3810
3811 return 1;
3812 }
3813
3814 static void
3815 dw2_forget_cached_source_info (struct objfile *objfile)
3816 {
3817 struct dwarf2_per_objfile *dwarf2_per_objfile
3818 = get_dwarf2_per_objfile (objfile);
3819
3820 htab_traverse_noresize (dwarf2_per_objfile->quick_file_names_table,
3821 dw2_free_cached_file_names, NULL);
3822 }
3823
3824 /* Helper function for dw2_map_symtabs_matching_filename that expands
3825 the symtabs and calls the iterator. */
3826
3827 static int
3828 dw2_map_expand_apply (struct objfile *objfile,
3829 struct dwarf2_per_cu_data *per_cu,
3830 const char *name, const char *real_path,
3831 gdb::function_view<bool (symtab *)> callback)
3832 {
3833 struct compunit_symtab *last_made = objfile->compunit_symtabs;
3834
3835 /* Don't visit already-expanded CUs. */
3836 if (per_cu->v.quick->compunit_symtab)
3837 return 0;
3838
3839 /* This may expand more than one symtab, and we want to iterate over
3840 all of them. */
3841 dw2_instantiate_symtab (per_cu, false);
3842
3843 return iterate_over_some_symtabs (name, real_path, objfile->compunit_symtabs,
3844 last_made, callback);
3845 }
3846
3847 /* Implementation of the map_symtabs_matching_filename method. */
3848
3849 static bool
3850 dw2_map_symtabs_matching_filename
3851 (struct objfile *objfile, const char *name, const char *real_path,
3852 gdb::function_view<bool (symtab *)> callback)
3853 {
3854 const char *name_basename = lbasename (name);
3855 struct dwarf2_per_objfile *dwarf2_per_objfile
3856 = get_dwarf2_per_objfile (objfile);
3857
3858 /* The rule is CUs specify all the files, including those used by
3859 any TU, so there's no need to scan TUs here. */
3860
3861 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
3862 {
3863 /* We only need to look at symtabs not already expanded. */
3864 if (per_cu->v.quick->compunit_symtab)
3865 continue;
3866
3867 quick_file_names *file_data = dw2_get_file_names (per_cu);
3868 if (file_data == NULL)
3869 continue;
3870
3871 for (int j = 0; j < file_data->num_file_names; ++j)
3872 {
3873 const char *this_name = file_data->file_names[j];
3874 const char *this_real_name;
3875
3876 if (compare_filenames_for_search (this_name, name))
3877 {
3878 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3879 callback))
3880 return true;
3881 continue;
3882 }
3883
3884 /* Before we invoke realpath, which can get expensive when many
3885 files are involved, do a quick comparison of the basenames. */
3886 if (! basenames_may_differ
3887 && FILENAME_CMP (lbasename (this_name), name_basename) != 0)
3888 continue;
3889
3890 this_real_name = dw2_get_real_path (objfile, file_data, j);
3891 if (compare_filenames_for_search (this_real_name, name))
3892 {
3893 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3894 callback))
3895 return true;
3896 continue;
3897 }
3898
3899 if (real_path != NULL)
3900 {
3901 gdb_assert (IS_ABSOLUTE_PATH (real_path));
3902 gdb_assert (IS_ABSOLUTE_PATH (name));
3903 if (this_real_name != NULL
3904 && FILENAME_CMP (real_path, this_real_name) == 0)
3905 {
3906 if (dw2_map_expand_apply (objfile, per_cu, name, real_path,
3907 callback))
3908 return true;
3909 continue;
3910 }
3911 }
3912 }
3913 }
3914
3915 return false;
3916 }
3917
3918 /* Struct used to manage iterating over all CUs looking for a symbol. */
3919
3920 struct dw2_symtab_iterator
3921 {
3922 /* The dwarf2_per_objfile owning the CUs we are iterating on. */
3923 struct dwarf2_per_objfile *dwarf2_per_objfile;
3924 /* If set, only look for symbols that match that block. Valid values are
3925 GLOBAL_BLOCK and STATIC_BLOCK. */
3926 gdb::optional<block_enum> block_index;
3927 /* The kind of symbol we're looking for. */
3928 domain_enum domain;
3929 /* The list of CUs from the index entry of the symbol,
3930 or NULL if not found. */
3931 offset_type *vec;
3932 /* The next element in VEC to look at. */
3933 int next;
3934 /* The number of elements in VEC, or zero if there is no match. */
3935 int length;
3936 /* Have we seen a global version of the symbol?
3937 If so we can ignore all further global instances.
3938 This is to work around gold/15646, inefficient gold-generated
3939 indices. */
3940 int global_seen;
3941 };
3942
3943 /* Initialize the index symtab iterator ITER. */
3944
3945 static void
3946 dw2_symtab_iter_init (struct dw2_symtab_iterator *iter,
3947 struct dwarf2_per_objfile *dwarf2_per_objfile,
3948 gdb::optional<block_enum> block_index,
3949 domain_enum domain,
3950 const char *name)
3951 {
3952 iter->dwarf2_per_objfile = dwarf2_per_objfile;
3953 iter->block_index = block_index;
3954 iter->domain = domain;
3955 iter->next = 0;
3956 iter->global_seen = 0;
3957
3958 mapped_index *index = dwarf2_per_objfile->index_table.get ();
3959
3960 /* index is NULL if OBJF_READNOW. */
3961 if (index != NULL && find_slot_in_mapped_hash (index, name, &iter->vec))
3962 iter->length = MAYBE_SWAP (*iter->vec);
3963 else
3964 {
3965 iter->vec = NULL;
3966 iter->length = 0;
3967 }
3968 }
3969
3970 /* Return the next matching CU or NULL if there are no more. */
3971
3972 static struct dwarf2_per_cu_data *
3973 dw2_symtab_iter_next (struct dw2_symtab_iterator *iter)
3974 {
3975 struct dwarf2_per_objfile *dwarf2_per_objfile = iter->dwarf2_per_objfile;
3976
3977 for ( ; iter->next < iter->length; ++iter->next)
3978 {
3979 offset_type cu_index_and_attrs =
3980 MAYBE_SWAP (iter->vec[iter->next + 1]);
3981 offset_type cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
3982 gdb_index_symbol_kind symbol_kind =
3983 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
3984 /* Only check the symbol attributes if they're present.
3985 Indices prior to version 7 don't record them,
3986 and indices >= 7 may elide them for certain symbols
3987 (gold does this). */
3988 int attrs_valid =
3989 (dwarf2_per_objfile->index_table->version >= 7
3990 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
3991
3992 /* Don't crash on bad data. */
3993 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
3994 + dwarf2_per_objfile->all_type_units.size ()))
3995 {
3996 complaint (_(".gdb_index entry has bad CU index"
3997 " [in module %s]"),
3998 objfile_name (dwarf2_per_objfile->objfile));
3999 continue;
4000 }
4001
4002 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
4003
4004 /* Skip if already read in. */
4005 if (per_cu->v.quick->compunit_symtab)
4006 continue;
4007
4008 /* Check static vs global. */
4009 if (attrs_valid)
4010 {
4011 bool is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
4012
4013 if (iter->block_index.has_value ())
4014 {
4015 bool want_static = *iter->block_index == STATIC_BLOCK;
4016
4017 if (is_static != want_static)
4018 continue;
4019 }
4020
4021 /* Work around gold/15646. */
4022 if (!is_static && iter->global_seen)
4023 continue;
4024 if (!is_static)
4025 iter->global_seen = 1;
4026 }
4027
4028 /* Only check the symbol's kind if it has one. */
4029 if (attrs_valid)
4030 {
4031 switch (iter->domain)
4032 {
4033 case VAR_DOMAIN:
4034 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE
4035 && symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION
4036 /* Some types are also in VAR_DOMAIN. */
4037 && symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4038 continue;
4039 break;
4040 case STRUCT_DOMAIN:
4041 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
4042 continue;
4043 break;
4044 case LABEL_DOMAIN:
4045 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4046 continue;
4047 break;
4048 case MODULE_DOMAIN:
4049 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
4050 continue;
4051 break;
4052 default:
4053 break;
4054 }
4055 }
4056
4057 ++iter->next;
4058 return per_cu;
4059 }
4060
4061 return NULL;
4062 }
4063
4064 static struct compunit_symtab *
4065 dw2_lookup_symbol (struct objfile *objfile, block_enum block_index,
4066 const char *name, domain_enum domain)
4067 {
4068 struct compunit_symtab *stab_best = NULL;
4069 struct dwarf2_per_objfile *dwarf2_per_objfile
4070 = get_dwarf2_per_objfile (objfile);
4071
4072 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
4073
4074 struct dw2_symtab_iterator iter;
4075 struct dwarf2_per_cu_data *per_cu;
4076
4077 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, block_index, domain, name);
4078
4079 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4080 {
4081 struct symbol *sym, *with_opaque = NULL;
4082 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
4083 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
4084 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
4085
4086 sym = block_find_symbol (block, name, domain,
4087 block_find_non_opaque_type_preferred,
4088 &with_opaque);
4089
4090 /* Some caution must be observed with overloaded functions
4091 and methods, since the index will not contain any overload
4092 information (but NAME might contain it). */
4093
4094 if (sym != NULL
4095 && SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
4096 return stab;
4097 if (with_opaque != NULL
4098 && SYMBOL_MATCHES_SEARCH_NAME (with_opaque, lookup_name))
4099 stab_best = stab;
4100
4101 /* Keep looking through other CUs. */
4102 }
4103
4104 return stab_best;
4105 }
4106
4107 static void
4108 dw2_print_stats (struct objfile *objfile)
4109 {
4110 struct dwarf2_per_objfile *dwarf2_per_objfile
4111 = get_dwarf2_per_objfile (objfile);
4112 int total = (dwarf2_per_objfile->all_comp_units.size ()
4113 + dwarf2_per_objfile->all_type_units.size ());
4114 int count = 0;
4115
4116 for (int i = 0; i < total; ++i)
4117 {
4118 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4119
4120 if (!per_cu->v.quick->compunit_symtab)
4121 ++count;
4122 }
4123 printf_filtered (_(" Number of read CUs: %d\n"), total - count);
4124 printf_filtered (_(" Number of unread CUs: %d\n"), count);
4125 }
4126
4127 /* This dumps minimal information about the index.
4128 It is called via "mt print objfiles".
4129 One use is to verify .gdb_index has been loaded by the
4130 gdb.dwarf2/gdb-index.exp testcase. */
4131
4132 static void
4133 dw2_dump (struct objfile *objfile)
4134 {
4135 struct dwarf2_per_objfile *dwarf2_per_objfile
4136 = get_dwarf2_per_objfile (objfile);
4137
4138 gdb_assert (dwarf2_per_objfile->using_index);
4139 printf_filtered (".gdb_index:");
4140 if (dwarf2_per_objfile->index_table != NULL)
4141 {
4142 printf_filtered (" version %d\n",
4143 dwarf2_per_objfile->index_table->version);
4144 }
4145 else
4146 printf_filtered (" faked for \"readnow\"\n");
4147 printf_filtered ("\n");
4148 }
4149
4150 static void
4151 dw2_expand_symtabs_for_function (struct objfile *objfile,
4152 const char *func_name)
4153 {
4154 struct dwarf2_per_objfile *dwarf2_per_objfile
4155 = get_dwarf2_per_objfile (objfile);
4156
4157 struct dw2_symtab_iterator iter;
4158 struct dwarf2_per_cu_data *per_cu;
4159
4160 dw2_symtab_iter_init (&iter, dwarf2_per_objfile, {}, VAR_DOMAIN, func_name);
4161
4162 while ((per_cu = dw2_symtab_iter_next (&iter)) != NULL)
4163 dw2_instantiate_symtab (per_cu, false);
4164
4165 }
4166
4167 static void
4168 dw2_expand_all_symtabs (struct objfile *objfile)
4169 {
4170 struct dwarf2_per_objfile *dwarf2_per_objfile
4171 = get_dwarf2_per_objfile (objfile);
4172 int total_units = (dwarf2_per_objfile->all_comp_units.size ()
4173 + dwarf2_per_objfile->all_type_units.size ());
4174
4175 for (int i = 0; i < total_units; ++i)
4176 {
4177 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
4178
4179 /* We don't want to directly expand a partial CU, because if we
4180 read it with the wrong language, then assertion failures can
4181 be triggered later on. See PR symtab/23010. So, tell
4182 dw2_instantiate_symtab to skip partial CUs -- any important
4183 partial CU will be read via DW_TAG_imported_unit anyway. */
4184 dw2_instantiate_symtab (per_cu, true);
4185 }
4186 }
4187
4188 static void
4189 dw2_expand_symtabs_with_fullname (struct objfile *objfile,
4190 const char *fullname)
4191 {
4192 struct dwarf2_per_objfile *dwarf2_per_objfile
4193 = get_dwarf2_per_objfile (objfile);
4194
4195 /* We don't need to consider type units here.
4196 This is only called for examining code, e.g. expand_line_sal.
4197 There can be an order of magnitude (or more) more type units
4198 than comp units, and we avoid them if we can. */
4199
4200 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
4201 {
4202 /* We only need to look at symtabs not already expanded. */
4203 if (per_cu->v.quick->compunit_symtab)
4204 continue;
4205
4206 quick_file_names *file_data = dw2_get_file_names (per_cu);
4207 if (file_data == NULL)
4208 continue;
4209
4210 for (int j = 0; j < file_data->num_file_names; ++j)
4211 {
4212 const char *this_fullname = file_data->file_names[j];
4213
4214 if (filename_cmp (this_fullname, fullname) == 0)
4215 {
4216 dw2_instantiate_symtab (per_cu, false);
4217 break;
4218 }
4219 }
4220 }
4221 }
4222
4223 static void
4224 dw2_map_matching_symbols
4225 (struct objfile *objfile,
4226 const lookup_name_info &name, domain_enum domain,
4227 int global,
4228 gdb::function_view<symbol_found_callback_ftype> callback,
4229 symbol_compare_ftype *ordered_compare)
4230 {
4231 /* Currently unimplemented; used for Ada. The function can be called if the
4232 current language is Ada for a non-Ada objfile using GNU index. As Ada
4233 does not look for non-Ada symbols this function should just return. */
4234 }
4235
4236 /* Starting from a search name, return the string that finds the upper
4237 bound of all strings that start with SEARCH_NAME in a sorted name
4238 list. Returns the empty string to indicate that the upper bound is
4239 the end of the list. */
4240
4241 static std::string
4242 make_sort_after_prefix_name (const char *search_name)
4243 {
4244 /* When looking to complete "func", we find the upper bound of all
4245 symbols that start with "func" by looking for where we'd insert
4246 the closest string that would follow "func" in lexicographical
4247 order. Usually, that's "func"-with-last-character-incremented,
4248 i.e. "fund". Mind non-ASCII characters, though. Usually those
4249 will be UTF-8 multi-byte sequences, but we can't be certain.
4250 Especially mind the 0xff character, which is a valid character in
4251 non-UTF-8 source character sets (e.g. Latin1 'ÿ'), and we can't
4252 rule out compilers allowing it in identifiers. Note that
4253 conveniently, strcmp/strcasecmp are specified to compare
4254 characters interpreted as unsigned char. So what we do is treat
4255 the whole string as a base 256 number composed of a sequence of
4256 base 256 "digits" and add 1 to it. I.e., adding 1 to 0xff wraps
4257 to 0, and carries 1 to the following more-significant position.
4258 If the very first character in SEARCH_NAME ends up incremented
4259 and carries/overflows, then the upper bound is the end of the
4260 list. The string after the empty string is also the empty
4261 string.
4262
4263 Some examples of this operation:
4264
4265 SEARCH_NAME => "+1" RESULT
4266
4267 "abc" => "abd"
4268 "ab\xff" => "ac"
4269 "\xff" "a" "\xff" => "\xff" "b"
4270 "\xff" => ""
4271 "\xff\xff" => ""
4272 "" => ""
4273
4274 Then, with these symbols for example:
4275
4276 func
4277 func1
4278 fund
4279
4280 completing "func" looks for symbols between "func" and
4281 "func"-with-last-character-incremented, i.e. "fund" (exclusive),
4282 which finds "func" and "func1", but not "fund".
4283
4284 And with:
4285
4286 funcÿ (Latin1 'ÿ' [0xff])
4287 funcÿ1
4288 fund
4289
4290 completing "funcÿ" looks for symbols between "funcÿ" and "fund"
4291 (exclusive), which finds "funcÿ" and "funcÿ1", but not "fund".
4292
4293 And with:
4294
4295 ÿÿ (Latin1 'ÿ' [0xff])
4296 ÿÿ1
4297
4298 completing "ÿ" or "ÿÿ" looks for symbols between between "ÿÿ" and
4299 the end of the list.
4300 */
4301 std::string after = search_name;
4302 while (!after.empty () && (unsigned char) after.back () == 0xff)
4303 after.pop_back ();
4304 if (!after.empty ())
4305 after.back () = (unsigned char) after.back () + 1;
4306 return after;
4307 }
4308
4309 /* See declaration. */
4310
4311 std::pair<std::vector<name_component>::const_iterator,
4312 std::vector<name_component>::const_iterator>
4313 mapped_index_base::find_name_components_bounds
4314 (const lookup_name_info &lookup_name_without_params, language lang) const
4315 {
4316 auto *name_cmp
4317 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4318
4319 const char *lang_name
4320 = lookup_name_without_params.language_lookup_name (lang).c_str ();
4321
4322 /* Comparison function object for lower_bound that matches against a
4323 given symbol name. */
4324 auto lookup_compare_lower = [&] (const name_component &elem,
4325 const char *name)
4326 {
4327 const char *elem_qualified = this->symbol_name_at (elem.idx);
4328 const char *elem_name = elem_qualified + elem.name_offset;
4329 return name_cmp (elem_name, name) < 0;
4330 };
4331
4332 /* Comparison function object for upper_bound that matches against a
4333 given symbol name. */
4334 auto lookup_compare_upper = [&] (const char *name,
4335 const name_component &elem)
4336 {
4337 const char *elem_qualified = this->symbol_name_at (elem.idx);
4338 const char *elem_name = elem_qualified + elem.name_offset;
4339 return name_cmp (name, elem_name) < 0;
4340 };
4341
4342 auto begin = this->name_components.begin ();
4343 auto end = this->name_components.end ();
4344
4345 /* Find the lower bound. */
4346 auto lower = [&] ()
4347 {
4348 if (lookup_name_without_params.completion_mode () && lang_name[0] == '\0')
4349 return begin;
4350 else
4351 return std::lower_bound (begin, end, lang_name, lookup_compare_lower);
4352 } ();
4353
4354 /* Find the upper bound. */
4355 auto upper = [&] ()
4356 {
4357 if (lookup_name_without_params.completion_mode ())
4358 {
4359 /* In completion mode, we want UPPER to point past all
4360 symbols names that have the same prefix. I.e., with
4361 these symbols, and completing "func":
4362
4363 function << lower bound
4364 function1
4365 other_function << upper bound
4366
4367 We find the upper bound by looking for the insertion
4368 point of "func"-with-last-character-incremented,
4369 i.e. "fund". */
4370 std::string after = make_sort_after_prefix_name (lang_name);
4371 if (after.empty ())
4372 return end;
4373 return std::lower_bound (lower, end, after.c_str (),
4374 lookup_compare_lower);
4375 }
4376 else
4377 return std::upper_bound (lower, end, lang_name, lookup_compare_upper);
4378 } ();
4379
4380 return {lower, upper};
4381 }
4382
4383 /* See declaration. */
4384
4385 void
4386 mapped_index_base::build_name_components ()
4387 {
4388 if (!this->name_components.empty ())
4389 return;
4390
4391 this->name_components_casing = case_sensitivity;
4392 auto *name_cmp
4393 = this->name_components_casing == case_sensitive_on ? strcmp : strcasecmp;
4394
4395 /* The code below only knows how to break apart components of C++
4396 symbol names (and other languages that use '::' as
4397 namespace/module separator) and Ada symbol names. */
4398 auto count = this->symbol_name_count ();
4399 for (offset_type idx = 0; idx < count; idx++)
4400 {
4401 if (this->symbol_name_slot_invalid (idx))
4402 continue;
4403
4404 const char *name = this->symbol_name_at (idx);
4405
4406 /* Add each name component to the name component table. */
4407 unsigned int previous_len = 0;
4408
4409 if (strstr (name, "::") != nullptr)
4410 {
4411 for (unsigned int current_len = cp_find_first_component (name);
4412 name[current_len] != '\0';
4413 current_len += cp_find_first_component (name + current_len))
4414 {
4415 gdb_assert (name[current_len] == ':');
4416 this->name_components.push_back ({previous_len, idx});
4417 /* Skip the '::'. */
4418 current_len += 2;
4419 previous_len = current_len;
4420 }
4421 }
4422 else
4423 {
4424 /* Handle the Ada encoded (aka mangled) form here. */
4425 for (const char *iter = strstr (name, "__");
4426 iter != nullptr;
4427 iter = strstr (iter, "__"))
4428 {
4429 this->name_components.push_back ({previous_len, idx});
4430 iter += 2;
4431 previous_len = iter - name;
4432 }
4433 }
4434
4435 this->name_components.push_back ({previous_len, idx});
4436 }
4437
4438 /* Sort name_components elements by name. */
4439 auto name_comp_compare = [&] (const name_component &left,
4440 const name_component &right)
4441 {
4442 const char *left_qualified = this->symbol_name_at (left.idx);
4443 const char *right_qualified = this->symbol_name_at (right.idx);
4444
4445 const char *left_name = left_qualified + left.name_offset;
4446 const char *right_name = right_qualified + right.name_offset;
4447
4448 return name_cmp (left_name, right_name) < 0;
4449 };
4450
4451 std::sort (this->name_components.begin (),
4452 this->name_components.end (),
4453 name_comp_compare);
4454 }
4455
4456 /* Helper for dw2_expand_symtabs_matching that works with a
4457 mapped_index_base instead of the containing objfile. This is split
4458 to a separate function in order to be able to unit test the
4459 name_components matching using a mock mapped_index_base. For each
4460 symbol name that matches, calls MATCH_CALLBACK, passing it the
4461 symbol's index in the mapped_index_base symbol table. */
4462
4463 static void
4464 dw2_expand_symtabs_matching_symbol
4465 (mapped_index_base &index,
4466 const lookup_name_info &lookup_name_in,
4467 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
4468 enum search_domain kind,
4469 gdb::function_view<bool (offset_type)> match_callback)
4470 {
4471 lookup_name_info lookup_name_without_params
4472 = lookup_name_in.make_ignore_params ();
4473
4474 /* Build the symbol name component sorted vector, if we haven't
4475 yet. */
4476 index.build_name_components ();
4477
4478 /* The same symbol may appear more than once in the range though.
4479 E.g., if we're looking for symbols that complete "w", and we have
4480 a symbol named "w1::w2", we'll find the two name components for
4481 that same symbol in the range. To be sure we only call the
4482 callback once per symbol, we first collect the symbol name
4483 indexes that matched in a temporary vector and ignore
4484 duplicates. */
4485 std::vector<offset_type> matches;
4486
4487 struct name_and_matcher
4488 {
4489 symbol_name_matcher_ftype *matcher;
4490 const std::string &name;
4491
4492 bool operator== (const name_and_matcher &other) const
4493 {
4494 return matcher == other.matcher && name == other.name;
4495 }
4496 };
4497
4498 /* A vector holding all the different symbol name matchers, for all
4499 languages. */
4500 std::vector<name_and_matcher> matchers;
4501
4502 for (int i = 0; i < nr_languages; i++)
4503 {
4504 enum language lang_e = (enum language) i;
4505
4506 const language_defn *lang = language_def (lang_e);
4507 symbol_name_matcher_ftype *name_matcher
4508 = get_symbol_name_matcher (lang, lookup_name_without_params);
4509
4510 name_and_matcher key {
4511 name_matcher,
4512 lookup_name_without_params.language_lookup_name (lang_e)
4513 };
4514
4515 /* Don't insert the same comparison routine more than once.
4516 Note that we do this linear walk. This is not a problem in
4517 practice because the number of supported languages is
4518 low. */
4519 if (std::find (matchers.begin (), matchers.end (), key)
4520 != matchers.end ())
4521 continue;
4522 matchers.push_back (std::move (key));
4523
4524 auto bounds
4525 = index.find_name_components_bounds (lookup_name_without_params,
4526 lang_e);
4527
4528 /* Now for each symbol name in range, check to see if we have a name
4529 match, and if so, call the MATCH_CALLBACK callback. */
4530
4531 for (; bounds.first != bounds.second; ++bounds.first)
4532 {
4533 const char *qualified = index.symbol_name_at (bounds.first->idx);
4534
4535 if (!name_matcher (qualified, lookup_name_without_params, NULL)
4536 || (symbol_matcher != NULL && !symbol_matcher (qualified)))
4537 continue;
4538
4539 matches.push_back (bounds.first->idx);
4540 }
4541 }
4542
4543 std::sort (matches.begin (), matches.end ());
4544
4545 /* Finally call the callback, once per match. */
4546 ULONGEST prev = -1;
4547 for (offset_type idx : matches)
4548 {
4549 if (prev != idx)
4550 {
4551 if (!match_callback (idx))
4552 break;
4553 prev = idx;
4554 }
4555 }
4556
4557 /* Above we use a type wider than idx's for 'prev', since 0 and
4558 (offset_type)-1 are both possible values. */
4559 static_assert (sizeof (prev) > sizeof (offset_type), "");
4560 }
4561
4562 #if GDB_SELF_TEST
4563
4564 namespace selftests { namespace dw2_expand_symtabs_matching {
4565
4566 /* A mock .gdb_index/.debug_names-like name index table, enough to
4567 exercise dw2_expand_symtabs_matching_symbol, which works with the
4568 mapped_index_base interface. Builds an index from the symbol list
4569 passed as parameter to the constructor. */
4570 class mock_mapped_index : public mapped_index_base
4571 {
4572 public:
4573 mock_mapped_index (gdb::array_view<const char *> symbols)
4574 : m_symbol_table (symbols)
4575 {}
4576
4577 DISABLE_COPY_AND_ASSIGN (mock_mapped_index);
4578
4579 /* Return the number of names in the symbol table. */
4580 size_t symbol_name_count () const override
4581 {
4582 return m_symbol_table.size ();
4583 }
4584
4585 /* Get the name of the symbol at IDX in the symbol table. */
4586 const char *symbol_name_at (offset_type idx) const override
4587 {
4588 return m_symbol_table[idx];
4589 }
4590
4591 private:
4592 gdb::array_view<const char *> m_symbol_table;
4593 };
4594
4595 /* Convenience function that converts a NULL pointer to a "<null>"
4596 string, to pass to print routines. */
4597
4598 static const char *
4599 string_or_null (const char *str)
4600 {
4601 return str != NULL ? str : "<null>";
4602 }
4603
4604 /* Check if a lookup_name_info built from
4605 NAME/MATCH_TYPE/COMPLETION_MODE matches the symbols in the mock
4606 index. EXPECTED_LIST is the list of expected matches, in expected
4607 matching order. If no match expected, then an empty list is
4608 specified. Returns true on success. On failure prints a warning
4609 indicating the file:line that failed, and returns false. */
4610
4611 static bool
4612 check_match (const char *file, int line,
4613 mock_mapped_index &mock_index,
4614 const char *name, symbol_name_match_type match_type,
4615 bool completion_mode,
4616 std::initializer_list<const char *> expected_list)
4617 {
4618 lookup_name_info lookup_name (name, match_type, completion_mode);
4619
4620 bool matched = true;
4621
4622 auto mismatch = [&] (const char *expected_str,
4623 const char *got)
4624 {
4625 warning (_("%s:%d: match_type=%s, looking-for=\"%s\", "
4626 "expected=\"%s\", got=\"%s\"\n"),
4627 file, line,
4628 (match_type == symbol_name_match_type::FULL
4629 ? "FULL" : "WILD"),
4630 name, string_or_null (expected_str), string_or_null (got));
4631 matched = false;
4632 };
4633
4634 auto expected_it = expected_list.begin ();
4635 auto expected_end = expected_list.end ();
4636
4637 dw2_expand_symtabs_matching_symbol (mock_index, lookup_name,
4638 NULL, ALL_DOMAIN,
4639 [&] (offset_type idx)
4640 {
4641 const char *matched_name = mock_index.symbol_name_at (idx);
4642 const char *expected_str
4643 = expected_it == expected_end ? NULL : *expected_it++;
4644
4645 if (expected_str == NULL || strcmp (expected_str, matched_name) != 0)
4646 mismatch (expected_str, matched_name);
4647 return true;
4648 });
4649
4650 const char *expected_str
4651 = expected_it == expected_end ? NULL : *expected_it++;
4652 if (expected_str != NULL)
4653 mismatch (expected_str, NULL);
4654
4655 return matched;
4656 }
4657
4658 /* The symbols added to the mock mapped_index for testing (in
4659 canonical form). */
4660 static const char *test_symbols[] = {
4661 "function",
4662 "std::bar",
4663 "std::zfunction",
4664 "std::zfunction2",
4665 "w1::w2",
4666 "ns::foo<char*>",
4667 "ns::foo<int>",
4668 "ns::foo<long>",
4669 "ns2::tmpl<int>::foo2",
4670 "(anonymous namespace)::A::B::C",
4671
4672 /* These are used to check that the increment-last-char in the
4673 matching algorithm for completion doesn't match "t1_fund" when
4674 completing "t1_func". */
4675 "t1_func",
4676 "t1_func1",
4677 "t1_fund",
4678 "t1_fund1",
4679
4680 /* A UTF-8 name with multi-byte sequences to make sure that
4681 cp-name-parser understands this as a single identifier ("função"
4682 is "function" in PT). */
4683 u8"u8função",
4684
4685 /* \377 (0xff) is Latin1 'ÿ'. */
4686 "yfunc\377",
4687
4688 /* \377 (0xff) is Latin1 'ÿ'. */
4689 "\377",
4690 "\377\377123",
4691
4692 /* A name with all sorts of complications. Starts with "z" to make
4693 it easier for the completion tests below. */
4694 #define Z_SYM_NAME \
4695 "z::std::tuple<(anonymous namespace)::ui*, std::bar<(anonymous namespace)::ui> >" \
4696 "::tuple<(anonymous namespace)::ui*, " \
4697 "std::default_delete<(anonymous namespace)::ui>, void>"
4698
4699 Z_SYM_NAME
4700 };
4701
4702 /* Returns true if the mapped_index_base::find_name_component_bounds
4703 method finds EXPECTED_SYMS in INDEX when looking for SEARCH_NAME,
4704 in completion mode. */
4705
4706 static bool
4707 check_find_bounds_finds (mapped_index_base &index,
4708 const char *search_name,
4709 gdb::array_view<const char *> expected_syms)
4710 {
4711 lookup_name_info lookup_name (search_name,
4712 symbol_name_match_type::FULL, true);
4713
4714 auto bounds = index.find_name_components_bounds (lookup_name,
4715 language_cplus);
4716
4717 size_t distance = std::distance (bounds.first, bounds.second);
4718 if (distance != expected_syms.size ())
4719 return false;
4720
4721 for (size_t exp_elem = 0; exp_elem < distance; exp_elem++)
4722 {
4723 auto nc_elem = bounds.first + exp_elem;
4724 const char *qualified = index.symbol_name_at (nc_elem->idx);
4725 if (strcmp (qualified, expected_syms[exp_elem]) != 0)
4726 return false;
4727 }
4728
4729 return true;
4730 }
4731
4732 /* Test the lower-level mapped_index::find_name_component_bounds
4733 method. */
4734
4735 static void
4736 test_mapped_index_find_name_component_bounds ()
4737 {
4738 mock_mapped_index mock_index (test_symbols);
4739
4740 mock_index.build_name_components ();
4741
4742 /* Test the lower-level mapped_index::find_name_component_bounds
4743 method in completion mode. */
4744 {
4745 static const char *expected_syms[] = {
4746 "t1_func",
4747 "t1_func1",
4748 };
4749
4750 SELF_CHECK (check_find_bounds_finds (mock_index,
4751 "t1_func", expected_syms));
4752 }
4753
4754 /* Check that the increment-last-char in the name matching algorithm
4755 for completion doesn't get confused with Ansi1 'ÿ' / 0xff. */
4756 {
4757 static const char *expected_syms1[] = {
4758 "\377",
4759 "\377\377123",
4760 };
4761 SELF_CHECK (check_find_bounds_finds (mock_index,
4762 "\377", expected_syms1));
4763
4764 static const char *expected_syms2[] = {
4765 "\377\377123",
4766 };
4767 SELF_CHECK (check_find_bounds_finds (mock_index,
4768 "\377\377", expected_syms2));
4769 }
4770 }
4771
4772 /* Test dw2_expand_symtabs_matching_symbol. */
4773
4774 static void
4775 test_dw2_expand_symtabs_matching_symbol ()
4776 {
4777 mock_mapped_index mock_index (test_symbols);
4778
4779 /* We let all tests run until the end even if some fails, for debug
4780 convenience. */
4781 bool any_mismatch = false;
4782
4783 /* Create the expected symbols list (an initializer_list). Needed
4784 because lists have commas, and we need to pass them to CHECK,
4785 which is a macro. */
4786 #define EXPECT(...) { __VA_ARGS__ }
4787
4788 /* Wrapper for check_match that passes down the current
4789 __FILE__/__LINE__. */
4790 #define CHECK_MATCH(NAME, MATCH_TYPE, COMPLETION_MODE, EXPECTED_LIST) \
4791 any_mismatch |= !check_match (__FILE__, __LINE__, \
4792 mock_index, \
4793 NAME, MATCH_TYPE, COMPLETION_MODE, \
4794 EXPECTED_LIST)
4795
4796 /* Identity checks. */
4797 for (const char *sym : test_symbols)
4798 {
4799 /* Should be able to match all existing symbols. */
4800 CHECK_MATCH (sym, symbol_name_match_type::FULL, false,
4801 EXPECT (sym));
4802
4803 /* Should be able to match all existing symbols with
4804 parameters. */
4805 std::string with_params = std::string (sym) + "(int)";
4806 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4807 EXPECT (sym));
4808
4809 /* Should be able to match all existing symbols with
4810 parameters and qualifiers. */
4811 with_params = std::string (sym) + " ( int ) const";
4812 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4813 EXPECT (sym));
4814
4815 /* This should really find sym, but cp-name-parser.y doesn't
4816 know about lvalue/rvalue qualifiers yet. */
4817 with_params = std::string (sym) + " ( int ) &&";
4818 CHECK_MATCH (with_params.c_str (), symbol_name_match_type::FULL, false,
4819 {});
4820 }
4821
4822 /* Check that the name matching algorithm for completion doesn't get
4823 confused with Latin1 'ÿ' / 0xff. */
4824 {
4825 static const char str[] = "\377";
4826 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4827 EXPECT ("\377", "\377\377123"));
4828 }
4829
4830 /* Check that the increment-last-char in the matching algorithm for
4831 completion doesn't match "t1_fund" when completing "t1_func". */
4832 {
4833 static const char str[] = "t1_func";
4834 CHECK_MATCH (str, symbol_name_match_type::FULL, true,
4835 EXPECT ("t1_func", "t1_func1"));
4836 }
4837
4838 /* Check that completion mode works at each prefix of the expected
4839 symbol name. */
4840 {
4841 static const char str[] = "function(int)";
4842 size_t len = strlen (str);
4843 std::string lookup;
4844
4845 for (size_t i = 1; i < len; i++)
4846 {
4847 lookup.assign (str, i);
4848 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4849 EXPECT ("function"));
4850 }
4851 }
4852
4853 /* While "w" is a prefix of both components, the match function
4854 should still only be called once. */
4855 {
4856 CHECK_MATCH ("w", symbol_name_match_type::FULL, true,
4857 EXPECT ("w1::w2"));
4858 CHECK_MATCH ("w", symbol_name_match_type::WILD, true,
4859 EXPECT ("w1::w2"));
4860 }
4861
4862 /* Same, with a "complicated" symbol. */
4863 {
4864 static const char str[] = Z_SYM_NAME;
4865 size_t len = strlen (str);
4866 std::string lookup;
4867
4868 for (size_t i = 1; i < len; i++)
4869 {
4870 lookup.assign (str, i);
4871 CHECK_MATCH (lookup.c_str (), symbol_name_match_type::FULL, true,
4872 EXPECT (Z_SYM_NAME));
4873 }
4874 }
4875
4876 /* In FULL mode, an incomplete symbol doesn't match. */
4877 {
4878 CHECK_MATCH ("std::zfunction(int", symbol_name_match_type::FULL, false,
4879 {});
4880 }
4881
4882 /* A complete symbol with parameters matches any overload, since the
4883 index has no overload info. */
4884 {
4885 CHECK_MATCH ("std::zfunction(int)", symbol_name_match_type::FULL, true,
4886 EXPECT ("std::zfunction", "std::zfunction2"));
4887 CHECK_MATCH ("zfunction(int)", symbol_name_match_type::WILD, true,
4888 EXPECT ("std::zfunction", "std::zfunction2"));
4889 CHECK_MATCH ("zfunc", symbol_name_match_type::WILD, true,
4890 EXPECT ("std::zfunction", "std::zfunction2"));
4891 }
4892
4893 /* Check that whitespace is ignored appropriately. A symbol with a
4894 template argument list. */
4895 {
4896 static const char expected[] = "ns::foo<int>";
4897 CHECK_MATCH ("ns :: foo < int > ", symbol_name_match_type::FULL, false,
4898 EXPECT (expected));
4899 CHECK_MATCH ("foo < int > ", symbol_name_match_type::WILD, false,
4900 EXPECT (expected));
4901 }
4902
4903 /* Check that whitespace is ignored appropriately. A symbol with a
4904 template argument list that includes a pointer. */
4905 {
4906 static const char expected[] = "ns::foo<char*>";
4907 /* Try both completion and non-completion modes. */
4908 static const bool completion_mode[2] = {false, true};
4909 for (size_t i = 0; i < 2; i++)
4910 {
4911 CHECK_MATCH ("ns :: foo < char * >", symbol_name_match_type::FULL,
4912 completion_mode[i], EXPECT (expected));
4913 CHECK_MATCH ("foo < char * >", symbol_name_match_type::WILD,
4914 completion_mode[i], EXPECT (expected));
4915
4916 CHECK_MATCH ("ns :: foo < char * > (int)", symbol_name_match_type::FULL,
4917 completion_mode[i], EXPECT (expected));
4918 CHECK_MATCH ("foo < char * > (int)", symbol_name_match_type::WILD,
4919 completion_mode[i], EXPECT (expected));
4920 }
4921 }
4922
4923 {
4924 /* Check method qualifiers are ignored. */
4925 static const char expected[] = "ns::foo<char*>";
4926 CHECK_MATCH ("ns :: foo < char * > ( int ) const",
4927 symbol_name_match_type::FULL, true, EXPECT (expected));
4928 CHECK_MATCH ("ns :: foo < char * > ( int ) &&",
4929 symbol_name_match_type::FULL, true, EXPECT (expected));
4930 CHECK_MATCH ("foo < char * > ( int ) const",
4931 symbol_name_match_type::WILD, true, EXPECT (expected));
4932 CHECK_MATCH ("foo < char * > ( int ) &&",
4933 symbol_name_match_type::WILD, true, EXPECT (expected));
4934 }
4935
4936 /* Test lookup names that don't match anything. */
4937 {
4938 CHECK_MATCH ("bar2", symbol_name_match_type::WILD, false,
4939 {});
4940
4941 CHECK_MATCH ("doesntexist", symbol_name_match_type::FULL, false,
4942 {});
4943 }
4944
4945 /* Some wild matching tests, exercising "(anonymous namespace)",
4946 which should not be confused with a parameter list. */
4947 {
4948 static const char *syms[] = {
4949 "A::B::C",
4950 "B::C",
4951 "C",
4952 "A :: B :: C ( int )",
4953 "B :: C ( int )",
4954 "C ( int )",
4955 };
4956
4957 for (const char *s : syms)
4958 {
4959 CHECK_MATCH (s, symbol_name_match_type::WILD, false,
4960 EXPECT ("(anonymous namespace)::A::B::C"));
4961 }
4962 }
4963
4964 {
4965 static const char expected[] = "ns2::tmpl<int>::foo2";
4966 CHECK_MATCH ("tmp", symbol_name_match_type::WILD, true,
4967 EXPECT (expected));
4968 CHECK_MATCH ("tmpl<", symbol_name_match_type::WILD, true,
4969 EXPECT (expected));
4970 }
4971
4972 SELF_CHECK (!any_mismatch);
4973
4974 #undef EXPECT
4975 #undef CHECK_MATCH
4976 }
4977
4978 static void
4979 run_test ()
4980 {
4981 test_mapped_index_find_name_component_bounds ();
4982 test_dw2_expand_symtabs_matching_symbol ();
4983 }
4984
4985 }} // namespace selftests::dw2_expand_symtabs_matching
4986
4987 #endif /* GDB_SELF_TEST */
4988
4989 /* If FILE_MATCHER is NULL or if PER_CU has
4990 dwarf2_per_cu_quick_data::MARK set (see
4991 dw_expand_symtabs_matching_file_matcher), expand the CU and call
4992 EXPANSION_NOTIFY on it. */
4993
4994 static void
4995 dw2_expand_symtabs_matching_one
4996 (struct dwarf2_per_cu_data *per_cu,
4997 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
4998 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify)
4999 {
5000 if (file_matcher == NULL || per_cu->v.quick->mark)
5001 {
5002 bool symtab_was_null
5003 = (per_cu->v.quick->compunit_symtab == NULL);
5004
5005 dw2_instantiate_symtab (per_cu, false);
5006
5007 if (expansion_notify != NULL
5008 && symtab_was_null
5009 && per_cu->v.quick->compunit_symtab != NULL)
5010 expansion_notify (per_cu->v.quick->compunit_symtab);
5011 }
5012 }
5013
5014 /* Helper for dw2_expand_matching symtabs. Called on each symbol
5015 matched, to expand corresponding CUs that were marked. IDX is the
5016 index of the symbol name that matched. */
5017
5018 static void
5019 dw2_expand_marked_cus
5020 (struct dwarf2_per_objfile *dwarf2_per_objfile, offset_type idx,
5021 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5022 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5023 search_domain kind)
5024 {
5025 offset_type *vec, vec_len, vec_idx;
5026 bool global_seen = false;
5027 mapped_index &index = *dwarf2_per_objfile->index_table;
5028
5029 vec = (offset_type *) (index.constant_pool
5030 + MAYBE_SWAP (index.symbol_table[idx].vec));
5031 vec_len = MAYBE_SWAP (vec[0]);
5032 for (vec_idx = 0; vec_idx < vec_len; ++vec_idx)
5033 {
5034 offset_type cu_index_and_attrs = MAYBE_SWAP (vec[vec_idx + 1]);
5035 /* This value is only valid for index versions >= 7. */
5036 int is_static = GDB_INDEX_SYMBOL_STATIC_VALUE (cu_index_and_attrs);
5037 gdb_index_symbol_kind symbol_kind =
5038 GDB_INDEX_SYMBOL_KIND_VALUE (cu_index_and_attrs);
5039 int cu_index = GDB_INDEX_CU_VALUE (cu_index_and_attrs);
5040 /* Only check the symbol attributes if they're present.
5041 Indices prior to version 7 don't record them,
5042 and indices >= 7 may elide them for certain symbols
5043 (gold does this). */
5044 int attrs_valid =
5045 (index.version >= 7
5046 && symbol_kind != GDB_INDEX_SYMBOL_KIND_NONE);
5047
5048 /* Work around gold/15646. */
5049 if (attrs_valid)
5050 {
5051 if (!is_static && global_seen)
5052 continue;
5053 if (!is_static)
5054 global_seen = true;
5055 }
5056
5057 /* Only check the symbol's kind if it has one. */
5058 if (attrs_valid)
5059 {
5060 switch (kind)
5061 {
5062 case VARIABLES_DOMAIN:
5063 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_VARIABLE)
5064 continue;
5065 break;
5066 case FUNCTIONS_DOMAIN:
5067 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_FUNCTION)
5068 continue;
5069 break;
5070 case TYPES_DOMAIN:
5071 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_TYPE)
5072 continue;
5073 break;
5074 case MODULES_DOMAIN:
5075 if (symbol_kind != GDB_INDEX_SYMBOL_KIND_OTHER)
5076 continue;
5077 break;
5078 default:
5079 break;
5080 }
5081 }
5082
5083 /* Don't crash on bad data. */
5084 if (cu_index >= (dwarf2_per_objfile->all_comp_units.size ()
5085 + dwarf2_per_objfile->all_type_units.size ()))
5086 {
5087 complaint (_(".gdb_index entry has bad CU index"
5088 " [in module %s]"),
5089 objfile_name (dwarf2_per_objfile->objfile));
5090 continue;
5091 }
5092
5093 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (cu_index);
5094 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
5095 expansion_notify);
5096 }
5097 }
5098
5099 /* If FILE_MATCHER is non-NULL, set all the
5100 dwarf2_per_cu_quick_data::MARK of the current DWARF2_PER_OBJFILE
5101 that match FILE_MATCHER. */
5102
5103 static void
5104 dw_expand_symtabs_matching_file_matcher
5105 (struct dwarf2_per_objfile *dwarf2_per_objfile,
5106 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher)
5107 {
5108 if (file_matcher == NULL)
5109 return;
5110
5111 objfile *const objfile = dwarf2_per_objfile->objfile;
5112
5113 htab_up visited_found (htab_create_alloc (10, htab_hash_pointer,
5114 htab_eq_pointer,
5115 NULL, xcalloc, xfree));
5116 htab_up visited_not_found (htab_create_alloc (10, htab_hash_pointer,
5117 htab_eq_pointer,
5118 NULL, xcalloc, xfree));
5119
5120 /* The rule is CUs specify all the files, including those used by
5121 any TU, so there's no need to scan TUs here. */
5122
5123 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5124 {
5125 QUIT;
5126
5127 per_cu->v.quick->mark = 0;
5128
5129 /* We only need to look at symtabs not already expanded. */
5130 if (per_cu->v.quick->compunit_symtab)
5131 continue;
5132
5133 quick_file_names *file_data = dw2_get_file_names (per_cu);
5134 if (file_data == NULL)
5135 continue;
5136
5137 if (htab_find (visited_not_found.get (), file_data) != NULL)
5138 continue;
5139 else if (htab_find (visited_found.get (), file_data) != NULL)
5140 {
5141 per_cu->v.quick->mark = 1;
5142 continue;
5143 }
5144
5145 for (int j = 0; j < file_data->num_file_names; ++j)
5146 {
5147 const char *this_real_name;
5148
5149 if (file_matcher (file_data->file_names[j], false))
5150 {
5151 per_cu->v.quick->mark = 1;
5152 break;
5153 }
5154
5155 /* Before we invoke realpath, which can get expensive when many
5156 files are involved, do a quick comparison of the basenames. */
5157 if (!basenames_may_differ
5158 && !file_matcher (lbasename (file_data->file_names[j]),
5159 true))
5160 continue;
5161
5162 this_real_name = dw2_get_real_path (objfile, file_data, j);
5163 if (file_matcher (this_real_name, false))
5164 {
5165 per_cu->v.quick->mark = 1;
5166 break;
5167 }
5168 }
5169
5170 void **slot = htab_find_slot (per_cu->v.quick->mark
5171 ? visited_found.get ()
5172 : visited_not_found.get (),
5173 file_data, INSERT);
5174 *slot = file_data;
5175 }
5176 }
5177
5178 static void
5179 dw2_expand_symtabs_matching
5180 (struct objfile *objfile,
5181 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
5182 const lookup_name_info &lookup_name,
5183 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
5184 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
5185 enum search_domain kind)
5186 {
5187 struct dwarf2_per_objfile *dwarf2_per_objfile
5188 = get_dwarf2_per_objfile (objfile);
5189
5190 /* index_table is NULL if OBJF_READNOW. */
5191 if (!dwarf2_per_objfile->index_table)
5192 return;
5193
5194 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
5195
5196 mapped_index &index = *dwarf2_per_objfile->index_table;
5197
5198 dw2_expand_symtabs_matching_symbol (index, lookup_name,
5199 symbol_matcher,
5200 kind, [&] (offset_type idx)
5201 {
5202 dw2_expand_marked_cus (dwarf2_per_objfile, idx, file_matcher,
5203 expansion_notify, kind);
5204 return true;
5205 });
5206 }
5207
5208 /* A helper for dw2_find_pc_sect_compunit_symtab which finds the most specific
5209 symtab. */
5210
5211 static struct compunit_symtab *
5212 recursively_find_pc_sect_compunit_symtab (struct compunit_symtab *cust,
5213 CORE_ADDR pc)
5214 {
5215 int i;
5216
5217 if (COMPUNIT_BLOCKVECTOR (cust) != NULL
5218 && blockvector_contains_pc (COMPUNIT_BLOCKVECTOR (cust), pc))
5219 return cust;
5220
5221 if (cust->includes == NULL)
5222 return NULL;
5223
5224 for (i = 0; cust->includes[i]; ++i)
5225 {
5226 struct compunit_symtab *s = cust->includes[i];
5227
5228 s = recursively_find_pc_sect_compunit_symtab (s, pc);
5229 if (s != NULL)
5230 return s;
5231 }
5232
5233 return NULL;
5234 }
5235
5236 static struct compunit_symtab *
5237 dw2_find_pc_sect_compunit_symtab (struct objfile *objfile,
5238 struct bound_minimal_symbol msymbol,
5239 CORE_ADDR pc,
5240 struct obj_section *section,
5241 int warn_if_readin)
5242 {
5243 struct dwarf2_per_cu_data *data;
5244 struct compunit_symtab *result;
5245
5246 if (!objfile->partial_symtabs->psymtabs_addrmap)
5247 return NULL;
5248
5249 CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
5250 SECT_OFF_TEXT (objfile));
5251 data = (struct dwarf2_per_cu_data *) addrmap_find
5252 (objfile->partial_symtabs->psymtabs_addrmap, pc - baseaddr);
5253 if (!data)
5254 return NULL;
5255
5256 if (warn_if_readin && data->v.quick->compunit_symtab)
5257 warning (_("(Internal error: pc %s in read in CU, but not in symtab.)"),
5258 paddress (get_objfile_arch (objfile), pc));
5259
5260 result
5261 = recursively_find_pc_sect_compunit_symtab (dw2_instantiate_symtab (data,
5262 false),
5263 pc);
5264 gdb_assert (result != NULL);
5265 return result;
5266 }
5267
5268 static void
5269 dw2_map_symbol_filenames (struct objfile *objfile, symbol_filename_ftype *fun,
5270 void *data, int need_fullname)
5271 {
5272 struct dwarf2_per_objfile *dwarf2_per_objfile
5273 = get_dwarf2_per_objfile (objfile);
5274
5275 if (!dwarf2_per_objfile->filenames_cache)
5276 {
5277 dwarf2_per_objfile->filenames_cache.emplace ();
5278
5279 htab_up visited (htab_create_alloc (10,
5280 htab_hash_pointer, htab_eq_pointer,
5281 NULL, xcalloc, xfree));
5282
5283 /* The rule is CUs specify all the files, including those used
5284 by any TU, so there's no need to scan TUs here. We can
5285 ignore file names coming from already-expanded CUs. */
5286
5287 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5288 {
5289 if (per_cu->v.quick->compunit_symtab)
5290 {
5291 void **slot = htab_find_slot (visited.get (),
5292 per_cu->v.quick->file_names,
5293 INSERT);
5294
5295 *slot = per_cu->v.quick->file_names;
5296 }
5297 }
5298
5299 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
5300 {
5301 /* We only need to look at symtabs not already expanded. */
5302 if (per_cu->v.quick->compunit_symtab)
5303 continue;
5304
5305 quick_file_names *file_data = dw2_get_file_names (per_cu);
5306 if (file_data == NULL)
5307 continue;
5308
5309 void **slot = htab_find_slot (visited.get (), file_data, INSERT);
5310 if (*slot)
5311 {
5312 /* Already visited. */
5313 continue;
5314 }
5315 *slot = file_data;
5316
5317 for (int j = 0; j < file_data->num_file_names; ++j)
5318 {
5319 const char *filename = file_data->file_names[j];
5320 dwarf2_per_objfile->filenames_cache->seen (filename);
5321 }
5322 }
5323 }
5324
5325 dwarf2_per_objfile->filenames_cache->traverse ([&] (const char *filename)
5326 {
5327 gdb::unique_xmalloc_ptr<char> this_real_name;
5328
5329 if (need_fullname)
5330 this_real_name = gdb_realpath (filename);
5331 (*fun) (filename, this_real_name.get (), data);
5332 });
5333 }
5334
5335 static int
5336 dw2_has_symbols (struct objfile *objfile)
5337 {
5338 return 1;
5339 }
5340
5341 const struct quick_symbol_functions dwarf2_gdb_index_functions =
5342 {
5343 dw2_has_symbols,
5344 dw2_find_last_source_symtab,
5345 dw2_forget_cached_source_info,
5346 dw2_map_symtabs_matching_filename,
5347 dw2_lookup_symbol,
5348 dw2_print_stats,
5349 dw2_dump,
5350 dw2_expand_symtabs_for_function,
5351 dw2_expand_all_symtabs,
5352 dw2_expand_symtabs_with_fullname,
5353 dw2_map_matching_symbols,
5354 dw2_expand_symtabs_matching,
5355 dw2_find_pc_sect_compunit_symtab,
5356 NULL,
5357 dw2_map_symbol_filenames
5358 };
5359
5360 /* DWARF-5 debug_names reader. */
5361
5362 /* DWARF-5 augmentation string for GDB's DW_IDX_GNU_* extension. */
5363 static const gdb_byte dwarf5_augmentation[] = { 'G', 'D', 'B', 0 };
5364
5365 /* A helper function that reads the .debug_names section in SECTION
5366 and fills in MAP. FILENAME is the name of the file containing the
5367 section; it is used for error reporting.
5368
5369 Returns true if all went well, false otherwise. */
5370
5371 static bool
5372 read_debug_names_from_section (struct objfile *objfile,
5373 const char *filename,
5374 struct dwarf2_section_info *section,
5375 mapped_debug_names &map)
5376 {
5377 if (dwarf2_section_empty_p (section))
5378 return false;
5379
5380 /* Older elfutils strip versions could keep the section in the main
5381 executable while splitting it for the separate debug info file. */
5382 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
5383 return false;
5384
5385 dwarf2_read_section (objfile, section);
5386
5387 map.dwarf5_byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
5388
5389 const gdb_byte *addr = section->buffer;
5390
5391 bfd *const abfd = get_section_bfd_owner (section);
5392
5393 unsigned int bytes_read;
5394 LONGEST length = read_initial_length (abfd, addr, &bytes_read);
5395 addr += bytes_read;
5396
5397 map.dwarf5_is_dwarf64 = bytes_read != 4;
5398 map.offset_size = map.dwarf5_is_dwarf64 ? 8 : 4;
5399 if (bytes_read + length != section->size)
5400 {
5401 /* There may be multiple per-CU indices. */
5402 warning (_("Section .debug_names in %s length %s does not match "
5403 "section length %s, ignoring .debug_names."),
5404 filename, plongest (bytes_read + length),
5405 pulongest (section->size));
5406 return false;
5407 }
5408
5409 /* The version number. */
5410 uint16_t version = read_2_bytes (abfd, addr);
5411 addr += 2;
5412 if (version != 5)
5413 {
5414 warning (_("Section .debug_names in %s has unsupported version %d, "
5415 "ignoring .debug_names."),
5416 filename, version);
5417 return false;
5418 }
5419
5420 /* Padding. */
5421 uint16_t padding = read_2_bytes (abfd, addr);
5422 addr += 2;
5423 if (padding != 0)
5424 {
5425 warning (_("Section .debug_names in %s has unsupported padding %d, "
5426 "ignoring .debug_names."),
5427 filename, padding);
5428 return false;
5429 }
5430
5431 /* comp_unit_count - The number of CUs in the CU list. */
5432 map.cu_count = read_4_bytes (abfd, addr);
5433 addr += 4;
5434
5435 /* local_type_unit_count - The number of TUs in the local TU
5436 list. */
5437 map.tu_count = read_4_bytes (abfd, addr);
5438 addr += 4;
5439
5440 /* foreign_type_unit_count - The number of TUs in the foreign TU
5441 list. */
5442 uint32_t foreign_tu_count = read_4_bytes (abfd, addr);
5443 addr += 4;
5444 if (foreign_tu_count != 0)
5445 {
5446 warning (_("Section .debug_names in %s has unsupported %lu foreign TUs, "
5447 "ignoring .debug_names."),
5448 filename, static_cast<unsigned long> (foreign_tu_count));
5449 return false;
5450 }
5451
5452 /* bucket_count - The number of hash buckets in the hash lookup
5453 table. */
5454 map.bucket_count = read_4_bytes (abfd, addr);
5455 addr += 4;
5456
5457 /* name_count - The number of unique names in the index. */
5458 map.name_count = read_4_bytes (abfd, addr);
5459 addr += 4;
5460
5461 /* abbrev_table_size - The size in bytes of the abbreviations
5462 table. */
5463 uint32_t abbrev_table_size = read_4_bytes (abfd, addr);
5464 addr += 4;
5465
5466 /* augmentation_string_size - The size in bytes of the augmentation
5467 string. This value is rounded up to a multiple of 4. */
5468 uint32_t augmentation_string_size = read_4_bytes (abfd, addr);
5469 addr += 4;
5470 map.augmentation_is_gdb = ((augmentation_string_size
5471 == sizeof (dwarf5_augmentation))
5472 && memcmp (addr, dwarf5_augmentation,
5473 sizeof (dwarf5_augmentation)) == 0);
5474 augmentation_string_size += (-augmentation_string_size) & 3;
5475 addr += augmentation_string_size;
5476
5477 /* List of CUs */
5478 map.cu_table_reordered = addr;
5479 addr += map.cu_count * map.offset_size;
5480
5481 /* List of Local TUs */
5482 map.tu_table_reordered = addr;
5483 addr += map.tu_count * map.offset_size;
5484
5485 /* Hash Lookup Table */
5486 map.bucket_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5487 addr += map.bucket_count * 4;
5488 map.hash_table_reordered = reinterpret_cast<const uint32_t *> (addr);
5489 addr += map.name_count * 4;
5490
5491 /* Name Table */
5492 map.name_table_string_offs_reordered = addr;
5493 addr += map.name_count * map.offset_size;
5494 map.name_table_entry_offs_reordered = addr;
5495 addr += map.name_count * map.offset_size;
5496
5497 const gdb_byte *abbrev_table_start = addr;
5498 for (;;)
5499 {
5500 const ULONGEST index_num = read_unsigned_leb128 (abfd, addr, &bytes_read);
5501 addr += bytes_read;
5502 if (index_num == 0)
5503 break;
5504
5505 const auto insertpair
5506 = map.abbrev_map.emplace (index_num, mapped_debug_names::index_val ());
5507 if (!insertpair.second)
5508 {
5509 warning (_("Section .debug_names in %s has duplicate index %s, "
5510 "ignoring .debug_names."),
5511 filename, pulongest (index_num));
5512 return false;
5513 }
5514 mapped_debug_names::index_val &indexval = insertpair.first->second;
5515 indexval.dwarf_tag = read_unsigned_leb128 (abfd, addr, &bytes_read);
5516 addr += bytes_read;
5517
5518 for (;;)
5519 {
5520 mapped_debug_names::index_val::attr attr;
5521 attr.dw_idx = read_unsigned_leb128 (abfd, addr, &bytes_read);
5522 addr += bytes_read;
5523 attr.form = read_unsigned_leb128 (abfd, addr, &bytes_read);
5524 addr += bytes_read;
5525 if (attr.form == DW_FORM_implicit_const)
5526 {
5527 attr.implicit_const = read_signed_leb128 (abfd, addr,
5528 &bytes_read);
5529 addr += bytes_read;
5530 }
5531 if (attr.dw_idx == 0 && attr.form == 0)
5532 break;
5533 indexval.attr_vec.push_back (std::move (attr));
5534 }
5535 }
5536 if (addr != abbrev_table_start + abbrev_table_size)
5537 {
5538 warning (_("Section .debug_names in %s has abbreviation_table "
5539 "of size %s vs. written as %u, ignoring .debug_names."),
5540 filename, plongest (addr - abbrev_table_start),
5541 abbrev_table_size);
5542 return false;
5543 }
5544 map.entry_pool = addr;
5545
5546 return true;
5547 }
5548
5549 /* A helper for create_cus_from_debug_names that handles the MAP's CU
5550 list. */
5551
5552 static void
5553 create_cus_from_debug_names_list (struct dwarf2_per_objfile *dwarf2_per_objfile,
5554 const mapped_debug_names &map,
5555 dwarf2_section_info &section,
5556 bool is_dwz)
5557 {
5558 sect_offset sect_off_prev;
5559 for (uint32_t i = 0; i <= map.cu_count; ++i)
5560 {
5561 sect_offset sect_off_next;
5562 if (i < map.cu_count)
5563 {
5564 sect_off_next
5565 = (sect_offset) (extract_unsigned_integer
5566 (map.cu_table_reordered + i * map.offset_size,
5567 map.offset_size,
5568 map.dwarf5_byte_order));
5569 }
5570 else
5571 sect_off_next = (sect_offset) section.size;
5572 if (i >= 1)
5573 {
5574 const ULONGEST length = sect_off_next - sect_off_prev;
5575 dwarf2_per_cu_data *per_cu
5576 = create_cu_from_index_list (dwarf2_per_objfile, &section, is_dwz,
5577 sect_off_prev, length);
5578 dwarf2_per_objfile->all_comp_units.push_back (per_cu);
5579 }
5580 sect_off_prev = sect_off_next;
5581 }
5582 }
5583
5584 /* Read the CU list from the mapped index, and use it to create all
5585 the CU objects for this dwarf2_per_objfile. */
5586
5587 static void
5588 create_cus_from_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile,
5589 const mapped_debug_names &map,
5590 const mapped_debug_names &dwz_map)
5591 {
5592 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
5593 dwarf2_per_objfile->all_comp_units.reserve (map.cu_count + dwz_map.cu_count);
5594
5595 create_cus_from_debug_names_list (dwarf2_per_objfile, map,
5596 dwarf2_per_objfile->info,
5597 false /* is_dwz */);
5598
5599 if (dwz_map.cu_count == 0)
5600 return;
5601
5602 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5603 create_cus_from_debug_names_list (dwarf2_per_objfile, dwz_map, dwz->info,
5604 true /* is_dwz */);
5605 }
5606
5607 /* Read .debug_names. If everything went ok, initialize the "quick"
5608 elements of all the CUs and return true. Otherwise, return false. */
5609
5610 static bool
5611 dwarf2_read_debug_names (struct dwarf2_per_objfile *dwarf2_per_objfile)
5612 {
5613 std::unique_ptr<mapped_debug_names> map
5614 (new mapped_debug_names (dwarf2_per_objfile));
5615 mapped_debug_names dwz_map (dwarf2_per_objfile);
5616 struct objfile *objfile = dwarf2_per_objfile->objfile;
5617
5618 if (!read_debug_names_from_section (objfile, objfile_name (objfile),
5619 &dwarf2_per_objfile->debug_names,
5620 *map))
5621 return false;
5622
5623 /* Don't use the index if it's empty. */
5624 if (map->name_count == 0)
5625 return false;
5626
5627 /* If there is a .dwz file, read it so we can get its CU list as
5628 well. */
5629 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
5630 if (dwz != NULL)
5631 {
5632 if (!read_debug_names_from_section (objfile,
5633 bfd_get_filename (dwz->dwz_bfd.get ()),
5634 &dwz->debug_names, dwz_map))
5635 {
5636 warning (_("could not read '.debug_names' section from %s; skipping"),
5637 bfd_get_filename (dwz->dwz_bfd.get ()));
5638 return false;
5639 }
5640 }
5641
5642 create_cus_from_debug_names (dwarf2_per_objfile, *map, dwz_map);
5643
5644 if (map->tu_count != 0)
5645 {
5646 /* We can only handle a single .debug_types when we have an
5647 index. */
5648 if (dwarf2_per_objfile->types.size () != 1)
5649 return false;
5650
5651 dwarf2_section_info *section = &dwarf2_per_objfile->types[0];
5652
5653 create_signatured_type_table_from_debug_names
5654 (dwarf2_per_objfile, *map, section, &dwarf2_per_objfile->abbrev);
5655 }
5656
5657 create_addrmap_from_aranges (dwarf2_per_objfile,
5658 &dwarf2_per_objfile->debug_aranges);
5659
5660 dwarf2_per_objfile->debug_names_table = std::move (map);
5661 dwarf2_per_objfile->using_index = 1;
5662 dwarf2_per_objfile->quick_file_names_table =
5663 create_quick_file_names_table (dwarf2_per_objfile->all_comp_units.size ());
5664
5665 return true;
5666 }
5667
5668 /* Type used to manage iterating over all CUs looking for a symbol for
5669 .debug_names. */
5670
5671 class dw2_debug_names_iterator
5672 {
5673 public:
5674 dw2_debug_names_iterator (const mapped_debug_names &map,
5675 gdb::optional<block_enum> block_index,
5676 domain_enum domain,
5677 const char *name)
5678 : m_map (map), m_block_index (block_index), m_domain (domain),
5679 m_addr (find_vec_in_debug_names (map, name))
5680 {}
5681
5682 dw2_debug_names_iterator (const mapped_debug_names &map,
5683 search_domain search, uint32_t namei)
5684 : m_map (map),
5685 m_search (search),
5686 m_addr (find_vec_in_debug_names (map, namei))
5687 {}
5688
5689 dw2_debug_names_iterator (const mapped_debug_names &map,
5690 block_enum block_index, domain_enum domain,
5691 uint32_t namei)
5692 : m_map (map), m_block_index (block_index), m_domain (domain),
5693 m_addr (find_vec_in_debug_names (map, namei))
5694 {}
5695
5696 /* Return the next matching CU or NULL if there are no more. */
5697 dwarf2_per_cu_data *next ();
5698
5699 private:
5700 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5701 const char *name);
5702 static const gdb_byte *find_vec_in_debug_names (const mapped_debug_names &map,
5703 uint32_t namei);
5704
5705 /* The internalized form of .debug_names. */
5706 const mapped_debug_names &m_map;
5707
5708 /* If set, only look for symbols that match that block. Valid values are
5709 GLOBAL_BLOCK and STATIC_BLOCK. */
5710 const gdb::optional<block_enum> m_block_index;
5711
5712 /* The kind of symbol we're looking for. */
5713 const domain_enum m_domain = UNDEF_DOMAIN;
5714 const search_domain m_search = ALL_DOMAIN;
5715
5716 /* The list of CUs from the index entry of the symbol, or NULL if
5717 not found. */
5718 const gdb_byte *m_addr;
5719 };
5720
5721 const char *
5722 mapped_debug_names::namei_to_name (uint32_t namei) const
5723 {
5724 const ULONGEST namei_string_offs
5725 = extract_unsigned_integer ((name_table_string_offs_reordered
5726 + namei * offset_size),
5727 offset_size,
5728 dwarf5_byte_order);
5729 return read_indirect_string_at_offset
5730 (dwarf2_per_objfile, dwarf2_per_objfile->objfile->obfd, namei_string_offs);
5731 }
5732
5733 /* Find a slot in .debug_names for the object named NAME. If NAME is
5734 found, return pointer to its pool data. If NAME cannot be found,
5735 return NULL. */
5736
5737 const gdb_byte *
5738 dw2_debug_names_iterator::find_vec_in_debug_names
5739 (const mapped_debug_names &map, const char *name)
5740 {
5741 int (*cmp) (const char *, const char *);
5742
5743 gdb::unique_xmalloc_ptr<char> without_params;
5744 if (current_language->la_language == language_cplus
5745 || current_language->la_language == language_fortran
5746 || current_language->la_language == language_d)
5747 {
5748 /* NAME is already canonical. Drop any qualifiers as
5749 .debug_names does not contain any. */
5750
5751 if (strchr (name, '(') != NULL)
5752 {
5753 without_params = cp_remove_params (name);
5754 if (without_params != NULL)
5755 name = without_params.get ();
5756 }
5757 }
5758
5759 cmp = (case_sensitivity == case_sensitive_on ? strcmp : strcasecmp);
5760
5761 const uint32_t full_hash = dwarf5_djb_hash (name);
5762 uint32_t namei
5763 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5764 (map.bucket_table_reordered
5765 + (full_hash % map.bucket_count)), 4,
5766 map.dwarf5_byte_order);
5767 if (namei == 0)
5768 return NULL;
5769 --namei;
5770 if (namei >= map.name_count)
5771 {
5772 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5773 "[in module %s]"),
5774 namei, map.name_count,
5775 objfile_name (map.dwarf2_per_objfile->objfile));
5776 return NULL;
5777 }
5778
5779 for (;;)
5780 {
5781 const uint32_t namei_full_hash
5782 = extract_unsigned_integer (reinterpret_cast<const gdb_byte *>
5783 (map.hash_table_reordered + namei), 4,
5784 map.dwarf5_byte_order);
5785 if (full_hash % map.bucket_count != namei_full_hash % map.bucket_count)
5786 return NULL;
5787
5788 if (full_hash == namei_full_hash)
5789 {
5790 const char *const namei_string = map.namei_to_name (namei);
5791
5792 #if 0 /* An expensive sanity check. */
5793 if (namei_full_hash != dwarf5_djb_hash (namei_string))
5794 {
5795 complaint (_("Wrong .debug_names hash for string at index %u "
5796 "[in module %s]"),
5797 namei, objfile_name (dwarf2_per_objfile->objfile));
5798 return NULL;
5799 }
5800 #endif
5801
5802 if (cmp (namei_string, name) == 0)
5803 {
5804 const ULONGEST namei_entry_offs
5805 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5806 + namei * map.offset_size),
5807 map.offset_size, map.dwarf5_byte_order);
5808 return map.entry_pool + namei_entry_offs;
5809 }
5810 }
5811
5812 ++namei;
5813 if (namei >= map.name_count)
5814 return NULL;
5815 }
5816 }
5817
5818 const gdb_byte *
5819 dw2_debug_names_iterator::find_vec_in_debug_names
5820 (const mapped_debug_names &map, uint32_t namei)
5821 {
5822 if (namei >= map.name_count)
5823 {
5824 complaint (_("Wrong .debug_names with name index %u but name_count=%u "
5825 "[in module %s]"),
5826 namei, map.name_count,
5827 objfile_name (map.dwarf2_per_objfile->objfile));
5828 return NULL;
5829 }
5830
5831 const ULONGEST namei_entry_offs
5832 = extract_unsigned_integer ((map.name_table_entry_offs_reordered
5833 + namei * map.offset_size),
5834 map.offset_size, map.dwarf5_byte_order);
5835 return map.entry_pool + namei_entry_offs;
5836 }
5837
5838 /* See dw2_debug_names_iterator. */
5839
5840 dwarf2_per_cu_data *
5841 dw2_debug_names_iterator::next ()
5842 {
5843 if (m_addr == NULL)
5844 return NULL;
5845
5846 struct dwarf2_per_objfile *dwarf2_per_objfile = m_map.dwarf2_per_objfile;
5847 struct objfile *objfile = dwarf2_per_objfile->objfile;
5848 bfd *const abfd = objfile->obfd;
5849
5850 again:
5851
5852 unsigned int bytes_read;
5853 const ULONGEST abbrev = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5854 m_addr += bytes_read;
5855 if (abbrev == 0)
5856 return NULL;
5857
5858 const auto indexval_it = m_map.abbrev_map.find (abbrev);
5859 if (indexval_it == m_map.abbrev_map.cend ())
5860 {
5861 complaint (_("Wrong .debug_names undefined abbrev code %s "
5862 "[in module %s]"),
5863 pulongest (abbrev), objfile_name (objfile));
5864 return NULL;
5865 }
5866 const mapped_debug_names::index_val &indexval = indexval_it->second;
5867 enum class symbol_linkage {
5868 unknown,
5869 static_,
5870 extern_,
5871 } symbol_linkage_ = symbol_linkage::unknown;
5872 dwarf2_per_cu_data *per_cu = NULL;
5873 for (const mapped_debug_names::index_val::attr &attr : indexval.attr_vec)
5874 {
5875 ULONGEST ull;
5876 switch (attr.form)
5877 {
5878 case DW_FORM_implicit_const:
5879 ull = attr.implicit_const;
5880 break;
5881 case DW_FORM_flag_present:
5882 ull = 1;
5883 break;
5884 case DW_FORM_udata:
5885 ull = read_unsigned_leb128 (abfd, m_addr, &bytes_read);
5886 m_addr += bytes_read;
5887 break;
5888 default:
5889 complaint (_("Unsupported .debug_names form %s [in module %s]"),
5890 dwarf_form_name (attr.form),
5891 objfile_name (objfile));
5892 return NULL;
5893 }
5894 switch (attr.dw_idx)
5895 {
5896 case DW_IDX_compile_unit:
5897 /* Don't crash on bad data. */
5898 if (ull >= dwarf2_per_objfile->all_comp_units.size ())
5899 {
5900 complaint (_(".debug_names entry has bad CU index %s"
5901 " [in module %s]"),
5902 pulongest (ull),
5903 objfile_name (dwarf2_per_objfile->objfile));
5904 continue;
5905 }
5906 per_cu = dwarf2_per_objfile->get_cutu (ull);
5907 break;
5908 case DW_IDX_type_unit:
5909 /* Don't crash on bad data. */
5910 if (ull >= dwarf2_per_objfile->all_type_units.size ())
5911 {
5912 complaint (_(".debug_names entry has bad TU index %s"
5913 " [in module %s]"),
5914 pulongest (ull),
5915 objfile_name (dwarf2_per_objfile->objfile));
5916 continue;
5917 }
5918 per_cu = &dwarf2_per_objfile->get_tu (ull)->per_cu;
5919 break;
5920 case DW_IDX_GNU_internal:
5921 if (!m_map.augmentation_is_gdb)
5922 break;
5923 symbol_linkage_ = symbol_linkage::static_;
5924 break;
5925 case DW_IDX_GNU_external:
5926 if (!m_map.augmentation_is_gdb)
5927 break;
5928 symbol_linkage_ = symbol_linkage::extern_;
5929 break;
5930 }
5931 }
5932
5933 /* Skip if already read in. */
5934 if (per_cu->v.quick->compunit_symtab)
5935 goto again;
5936
5937 /* Check static vs global. */
5938 if (symbol_linkage_ != symbol_linkage::unknown && m_block_index.has_value ())
5939 {
5940 const bool want_static = *m_block_index == STATIC_BLOCK;
5941 const bool symbol_is_static =
5942 symbol_linkage_ == symbol_linkage::static_;
5943 if (want_static != symbol_is_static)
5944 goto again;
5945 }
5946
5947 /* Match dw2_symtab_iter_next, symbol_kind
5948 and debug_names::psymbol_tag. */
5949 switch (m_domain)
5950 {
5951 case VAR_DOMAIN:
5952 switch (indexval.dwarf_tag)
5953 {
5954 case DW_TAG_variable:
5955 case DW_TAG_subprogram:
5956 /* Some types are also in VAR_DOMAIN. */
5957 case DW_TAG_typedef:
5958 case DW_TAG_structure_type:
5959 break;
5960 default:
5961 goto again;
5962 }
5963 break;
5964 case STRUCT_DOMAIN:
5965 switch (indexval.dwarf_tag)
5966 {
5967 case DW_TAG_typedef:
5968 case DW_TAG_structure_type:
5969 break;
5970 default:
5971 goto again;
5972 }
5973 break;
5974 case LABEL_DOMAIN:
5975 switch (indexval.dwarf_tag)
5976 {
5977 case 0:
5978 case DW_TAG_variable:
5979 break;
5980 default:
5981 goto again;
5982 }
5983 break;
5984 case MODULE_DOMAIN:
5985 switch (indexval.dwarf_tag)
5986 {
5987 case DW_TAG_module:
5988 break;
5989 default:
5990 goto again;
5991 }
5992 break;
5993 default:
5994 break;
5995 }
5996
5997 /* Match dw2_expand_symtabs_matching, symbol_kind and
5998 debug_names::psymbol_tag. */
5999 switch (m_search)
6000 {
6001 case VARIABLES_DOMAIN:
6002 switch (indexval.dwarf_tag)
6003 {
6004 case DW_TAG_variable:
6005 break;
6006 default:
6007 goto again;
6008 }
6009 break;
6010 case FUNCTIONS_DOMAIN:
6011 switch (indexval.dwarf_tag)
6012 {
6013 case DW_TAG_subprogram:
6014 break;
6015 default:
6016 goto again;
6017 }
6018 break;
6019 case TYPES_DOMAIN:
6020 switch (indexval.dwarf_tag)
6021 {
6022 case DW_TAG_typedef:
6023 case DW_TAG_structure_type:
6024 break;
6025 default:
6026 goto again;
6027 }
6028 break;
6029 case MODULES_DOMAIN:
6030 switch (indexval.dwarf_tag)
6031 {
6032 case DW_TAG_module:
6033 break;
6034 default:
6035 goto again;
6036 }
6037 default:
6038 break;
6039 }
6040
6041 return per_cu;
6042 }
6043
6044 static struct compunit_symtab *
6045 dw2_debug_names_lookup_symbol (struct objfile *objfile, block_enum block_index,
6046 const char *name, domain_enum domain)
6047 {
6048 struct dwarf2_per_objfile *dwarf2_per_objfile
6049 = get_dwarf2_per_objfile (objfile);
6050
6051 const auto &mapp = dwarf2_per_objfile->debug_names_table;
6052 if (!mapp)
6053 {
6054 /* index is NULL if OBJF_READNOW. */
6055 return NULL;
6056 }
6057 const auto &map = *mapp;
6058
6059 dw2_debug_names_iterator iter (map, block_index, domain, name);
6060
6061 struct compunit_symtab *stab_best = NULL;
6062 struct dwarf2_per_cu_data *per_cu;
6063 while ((per_cu = iter.next ()) != NULL)
6064 {
6065 struct symbol *sym, *with_opaque = NULL;
6066 struct compunit_symtab *stab = dw2_instantiate_symtab (per_cu, false);
6067 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (stab);
6068 const struct block *block = BLOCKVECTOR_BLOCK (bv, block_index);
6069
6070 sym = block_find_symbol (block, name, domain,
6071 block_find_non_opaque_type_preferred,
6072 &with_opaque);
6073
6074 /* Some caution must be observed with overloaded functions and
6075 methods, since the index will not contain any overload
6076 information (but NAME might contain it). */
6077
6078 if (sym != NULL
6079 && strcmp_iw (sym->search_name (), name) == 0)
6080 return stab;
6081 if (with_opaque != NULL
6082 && strcmp_iw (with_opaque->search_name (), name) == 0)
6083 stab_best = stab;
6084
6085 /* Keep looking through other CUs. */
6086 }
6087
6088 return stab_best;
6089 }
6090
6091 /* This dumps minimal information about .debug_names. It is called
6092 via "mt print objfiles". The gdb.dwarf2/gdb-index.exp testcase
6093 uses this to verify that .debug_names has been loaded. */
6094
6095 static void
6096 dw2_debug_names_dump (struct objfile *objfile)
6097 {
6098 struct dwarf2_per_objfile *dwarf2_per_objfile
6099 = get_dwarf2_per_objfile (objfile);
6100
6101 gdb_assert (dwarf2_per_objfile->using_index);
6102 printf_filtered (".debug_names:");
6103 if (dwarf2_per_objfile->debug_names_table)
6104 printf_filtered (" exists\n");
6105 else
6106 printf_filtered (" faked for \"readnow\"\n");
6107 printf_filtered ("\n");
6108 }
6109
6110 static void
6111 dw2_debug_names_expand_symtabs_for_function (struct objfile *objfile,
6112 const char *func_name)
6113 {
6114 struct dwarf2_per_objfile *dwarf2_per_objfile
6115 = get_dwarf2_per_objfile (objfile);
6116
6117 /* dwarf2_per_objfile->debug_names_table is NULL if OBJF_READNOW. */
6118 if (dwarf2_per_objfile->debug_names_table)
6119 {
6120 const mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6121
6122 dw2_debug_names_iterator iter (map, {}, VAR_DOMAIN, func_name);
6123
6124 struct dwarf2_per_cu_data *per_cu;
6125 while ((per_cu = iter.next ()) != NULL)
6126 dw2_instantiate_symtab (per_cu, false);
6127 }
6128 }
6129
6130 static void
6131 dw2_debug_names_map_matching_symbols
6132 (struct objfile *objfile,
6133 const lookup_name_info &name, domain_enum domain,
6134 int global,
6135 gdb::function_view<symbol_found_callback_ftype> callback,
6136 symbol_compare_ftype *ordered_compare)
6137 {
6138 struct dwarf2_per_objfile *dwarf2_per_objfile
6139 = get_dwarf2_per_objfile (objfile);
6140
6141 /* debug_names_table is NULL if OBJF_READNOW. */
6142 if (!dwarf2_per_objfile->debug_names_table)
6143 return;
6144
6145 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6146 const block_enum block_kind = global ? GLOBAL_BLOCK : STATIC_BLOCK;
6147
6148 const char *match_name = name.ada ().lookup_name ().c_str ();
6149 auto matcher = [&] (const char *symname)
6150 {
6151 if (ordered_compare == nullptr)
6152 return true;
6153 return ordered_compare (symname, match_name) == 0;
6154 };
6155
6156 dw2_expand_symtabs_matching_symbol (map, name, matcher, ALL_DOMAIN,
6157 [&] (offset_type namei)
6158 {
6159 /* The name was matched, now expand corresponding CUs that were
6160 marked. */
6161 dw2_debug_names_iterator iter (map, block_kind, domain, namei);
6162
6163 struct dwarf2_per_cu_data *per_cu;
6164 while ((per_cu = iter.next ()) != NULL)
6165 dw2_expand_symtabs_matching_one (per_cu, nullptr, nullptr);
6166 return true;
6167 });
6168
6169 /* It's a shame we couldn't do this inside the
6170 dw2_expand_symtabs_matching_symbol callback, but that skips CUs
6171 that have already been expanded. Instead, this loop matches what
6172 the psymtab code does. */
6173 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
6174 {
6175 struct compunit_symtab *cust = per_cu->v.quick->compunit_symtab;
6176 if (cust != nullptr)
6177 {
6178 const struct block *block
6179 = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), block_kind);
6180 if (!iterate_over_symbols_terminated (block, name,
6181 domain, callback))
6182 break;
6183 }
6184 }
6185 }
6186
6187 static void
6188 dw2_debug_names_expand_symtabs_matching
6189 (struct objfile *objfile,
6190 gdb::function_view<expand_symtabs_file_matcher_ftype> file_matcher,
6191 const lookup_name_info &lookup_name,
6192 gdb::function_view<expand_symtabs_symbol_matcher_ftype> symbol_matcher,
6193 gdb::function_view<expand_symtabs_exp_notify_ftype> expansion_notify,
6194 enum search_domain kind)
6195 {
6196 struct dwarf2_per_objfile *dwarf2_per_objfile
6197 = get_dwarf2_per_objfile (objfile);
6198
6199 /* debug_names_table is NULL if OBJF_READNOW. */
6200 if (!dwarf2_per_objfile->debug_names_table)
6201 return;
6202
6203 dw_expand_symtabs_matching_file_matcher (dwarf2_per_objfile, file_matcher);
6204
6205 mapped_debug_names &map = *dwarf2_per_objfile->debug_names_table;
6206
6207 dw2_expand_symtabs_matching_symbol (map, lookup_name,
6208 symbol_matcher,
6209 kind, [&] (offset_type namei)
6210 {
6211 /* The name was matched, now expand corresponding CUs that were
6212 marked. */
6213 dw2_debug_names_iterator iter (map, kind, namei);
6214
6215 struct dwarf2_per_cu_data *per_cu;
6216 while ((per_cu = iter.next ()) != NULL)
6217 dw2_expand_symtabs_matching_one (per_cu, file_matcher,
6218 expansion_notify);
6219 return true;
6220 });
6221 }
6222
6223 const struct quick_symbol_functions dwarf2_debug_names_functions =
6224 {
6225 dw2_has_symbols,
6226 dw2_find_last_source_symtab,
6227 dw2_forget_cached_source_info,
6228 dw2_map_symtabs_matching_filename,
6229 dw2_debug_names_lookup_symbol,
6230 dw2_print_stats,
6231 dw2_debug_names_dump,
6232 dw2_debug_names_expand_symtabs_for_function,
6233 dw2_expand_all_symtabs,
6234 dw2_expand_symtabs_with_fullname,
6235 dw2_debug_names_map_matching_symbols,
6236 dw2_debug_names_expand_symtabs_matching,
6237 dw2_find_pc_sect_compunit_symtab,
6238 NULL,
6239 dw2_map_symbol_filenames
6240 };
6241
6242 /* Get the content of the .gdb_index section of OBJ. SECTION_OWNER should point
6243 to either a dwarf2_per_objfile or dwz_file object. */
6244
6245 template <typename T>
6246 static gdb::array_view<const gdb_byte>
6247 get_gdb_index_contents_from_section (objfile *obj, T *section_owner)
6248 {
6249 dwarf2_section_info *section = &section_owner->gdb_index;
6250
6251 if (dwarf2_section_empty_p (section))
6252 return {};
6253
6254 /* Older elfutils strip versions could keep the section in the main
6255 executable while splitting it for the separate debug info file. */
6256 if ((get_section_flags (section) & SEC_HAS_CONTENTS) == 0)
6257 return {};
6258
6259 dwarf2_read_section (obj, section);
6260
6261 /* dwarf2_section_info::size is a bfd_size_type, while
6262 gdb::array_view works with size_t. On 32-bit hosts, with
6263 --enable-64-bit-bfd, bfd_size_type is a 64-bit type, while size_t
6264 is 32-bit. So we need an explicit narrowing conversion here.
6265 This is fine, because it's impossible to allocate or mmap an
6266 array/buffer larger than what size_t can represent. */
6267 return gdb::make_array_view (section->buffer, section->size);
6268 }
6269
6270 /* Lookup the index cache for the contents of the index associated to
6271 DWARF2_OBJ. */
6272
6273 static gdb::array_view<const gdb_byte>
6274 get_gdb_index_contents_from_cache (objfile *obj, dwarf2_per_objfile *dwarf2_obj)
6275 {
6276 const bfd_build_id *build_id = build_id_bfd_get (obj->obfd);
6277 if (build_id == nullptr)
6278 return {};
6279
6280 return global_index_cache.lookup_gdb_index (build_id,
6281 &dwarf2_obj->index_cache_res);
6282 }
6283
6284 /* Same as the above, but for DWZ. */
6285
6286 static gdb::array_view<const gdb_byte>
6287 get_gdb_index_contents_from_cache_dwz (objfile *obj, dwz_file *dwz)
6288 {
6289 const bfd_build_id *build_id = build_id_bfd_get (dwz->dwz_bfd.get ());
6290 if (build_id == nullptr)
6291 return {};
6292
6293 return global_index_cache.lookup_gdb_index (build_id, &dwz->index_cache_res);
6294 }
6295
6296 /* See symfile.h. */
6297
6298 bool
6299 dwarf2_initialize_objfile (struct objfile *objfile, dw_index_kind *index_kind)
6300 {
6301 struct dwarf2_per_objfile *dwarf2_per_objfile
6302 = get_dwarf2_per_objfile (objfile);
6303
6304 /* If we're about to read full symbols, don't bother with the
6305 indices. In this case we also don't care if some other debug
6306 format is making psymtabs, because they are all about to be
6307 expanded anyway. */
6308 if ((objfile->flags & OBJF_READNOW))
6309 {
6310 dwarf2_per_objfile->using_index = 1;
6311 create_all_comp_units (dwarf2_per_objfile);
6312 create_all_type_units (dwarf2_per_objfile);
6313 dwarf2_per_objfile->quick_file_names_table
6314 = create_quick_file_names_table
6315 (dwarf2_per_objfile->all_comp_units.size ());
6316
6317 for (int i = 0; i < (dwarf2_per_objfile->all_comp_units.size ()
6318 + dwarf2_per_objfile->all_type_units.size ()); ++i)
6319 {
6320 dwarf2_per_cu_data *per_cu = dwarf2_per_objfile->get_cutu (i);
6321
6322 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6323 struct dwarf2_per_cu_quick_data);
6324 }
6325
6326 /* Return 1 so that gdb sees the "quick" functions. However,
6327 these functions will be no-ops because we will have expanded
6328 all symtabs. */
6329 *index_kind = dw_index_kind::GDB_INDEX;
6330 return true;
6331 }
6332
6333 if (dwarf2_read_debug_names (dwarf2_per_objfile))
6334 {
6335 *index_kind = dw_index_kind::DEBUG_NAMES;
6336 return true;
6337 }
6338
6339 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6340 get_gdb_index_contents_from_section<struct dwarf2_per_objfile>,
6341 get_gdb_index_contents_from_section<dwz_file>))
6342 {
6343 *index_kind = dw_index_kind::GDB_INDEX;
6344 return true;
6345 }
6346
6347 /* ... otherwise, try to find the index in the index cache. */
6348 if (dwarf2_read_gdb_index (dwarf2_per_objfile,
6349 get_gdb_index_contents_from_cache,
6350 get_gdb_index_contents_from_cache_dwz))
6351 {
6352 global_index_cache.hit ();
6353 *index_kind = dw_index_kind::GDB_INDEX;
6354 return true;
6355 }
6356
6357 global_index_cache.miss ();
6358 return false;
6359 }
6360
6361 \f
6362
6363 /* Build a partial symbol table. */
6364
6365 void
6366 dwarf2_build_psymtabs (struct objfile *objfile)
6367 {
6368 struct dwarf2_per_objfile *dwarf2_per_objfile
6369 = get_dwarf2_per_objfile (objfile);
6370
6371 init_psymbol_list (objfile, 1024);
6372
6373 try
6374 {
6375 /* This isn't really ideal: all the data we allocate on the
6376 objfile's obstack is still uselessly kept around. However,
6377 freeing it seems unsafe. */
6378 psymtab_discarder psymtabs (objfile);
6379 dwarf2_build_psymtabs_hard (dwarf2_per_objfile);
6380 psymtabs.keep ();
6381
6382 /* (maybe) store an index in the cache. */
6383 global_index_cache.store (dwarf2_per_objfile);
6384 }
6385 catch (const gdb_exception_error &except)
6386 {
6387 exception_print (gdb_stderr, except);
6388 }
6389 }
6390
6391 /* Return the total length of the CU described by HEADER. */
6392
6393 static unsigned int
6394 get_cu_length (const struct comp_unit_head *header)
6395 {
6396 return header->initial_length_size + header->length;
6397 }
6398
6399 /* Return TRUE if SECT_OFF is within CU_HEADER. */
6400
6401 static inline bool
6402 offset_in_cu_p (const comp_unit_head *cu_header, sect_offset sect_off)
6403 {
6404 sect_offset bottom = cu_header->sect_off;
6405 sect_offset top = cu_header->sect_off + get_cu_length (cu_header);
6406
6407 return sect_off >= bottom && sect_off < top;
6408 }
6409
6410 /* Find the base address of the compilation unit for range lists and
6411 location lists. It will normally be specified by DW_AT_low_pc.
6412 In DWARF-3 draft 4, the base address could be overridden by
6413 DW_AT_entry_pc. It's been removed, but GCC still uses this for
6414 compilation units with discontinuous ranges. */
6415
6416 static void
6417 dwarf2_find_base_address (struct die_info *die, struct dwarf2_cu *cu)
6418 {
6419 struct attribute *attr;
6420
6421 cu->base_known = 0;
6422 cu->base_address = 0;
6423
6424 attr = dwarf2_attr (die, DW_AT_entry_pc, cu);
6425 if (attr != nullptr)
6426 {
6427 cu->base_address = attr_value_as_address (attr);
6428 cu->base_known = 1;
6429 }
6430 else
6431 {
6432 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
6433 if (attr != nullptr)
6434 {
6435 cu->base_address = attr_value_as_address (attr);
6436 cu->base_known = 1;
6437 }
6438 }
6439 }
6440
6441 /* Read in the comp unit header information from the debug_info at info_ptr.
6442 Use rcuh_kind::COMPILE as the default type if not known by the caller.
6443 NOTE: This leaves members offset, first_die_offset to be filled in
6444 by the caller. */
6445
6446 static const gdb_byte *
6447 read_comp_unit_head (struct comp_unit_head *cu_header,
6448 const gdb_byte *info_ptr,
6449 struct dwarf2_section_info *section,
6450 rcuh_kind section_kind)
6451 {
6452 int signed_addr;
6453 unsigned int bytes_read;
6454 const char *filename = get_section_file_name (section);
6455 bfd *abfd = get_section_bfd_owner (section);
6456
6457 cu_header->length = read_initial_length (abfd, info_ptr, &bytes_read);
6458 cu_header->initial_length_size = bytes_read;
6459 cu_header->offset_size = (bytes_read == 4) ? 4 : 8;
6460 info_ptr += bytes_read;
6461 cu_header->version = read_2_bytes (abfd, info_ptr);
6462 if (cu_header->version < 2 || cu_header->version > 5)
6463 error (_("Dwarf Error: wrong version in compilation unit header "
6464 "(is %d, should be 2, 3, 4 or 5) [in module %s]"),
6465 cu_header->version, filename);
6466 info_ptr += 2;
6467 if (cu_header->version < 5)
6468 switch (section_kind)
6469 {
6470 case rcuh_kind::COMPILE:
6471 cu_header->unit_type = DW_UT_compile;
6472 break;
6473 case rcuh_kind::TYPE:
6474 cu_header->unit_type = DW_UT_type;
6475 break;
6476 default:
6477 internal_error (__FILE__, __LINE__,
6478 _("read_comp_unit_head: invalid section_kind"));
6479 }
6480 else
6481 {
6482 cu_header->unit_type = static_cast<enum dwarf_unit_type>
6483 (read_1_byte (abfd, info_ptr));
6484 info_ptr += 1;
6485 switch (cu_header->unit_type)
6486 {
6487 case DW_UT_compile:
6488 case DW_UT_partial:
6489 case DW_UT_skeleton:
6490 case DW_UT_split_compile:
6491 if (section_kind != rcuh_kind::COMPILE)
6492 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6493 "(is %s, should be %s) [in module %s]"),
6494 dwarf_unit_type_name (cu_header->unit_type),
6495 dwarf_unit_type_name (DW_UT_type), filename);
6496 break;
6497 case DW_UT_type:
6498 case DW_UT_split_type:
6499 section_kind = rcuh_kind::TYPE;
6500 break;
6501 default:
6502 error (_("Dwarf Error: wrong unit_type in compilation unit header "
6503 "(is %#04x, should be one of: %s, %s, %s, %s or %s) "
6504 "[in module %s]"), cu_header->unit_type,
6505 dwarf_unit_type_name (DW_UT_compile),
6506 dwarf_unit_type_name (DW_UT_skeleton),
6507 dwarf_unit_type_name (DW_UT_split_compile),
6508 dwarf_unit_type_name (DW_UT_type),
6509 dwarf_unit_type_name (DW_UT_split_type), filename);
6510 }
6511
6512 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6513 info_ptr += 1;
6514 }
6515 cu_header->abbrev_sect_off = (sect_offset) read_offset (abfd, info_ptr,
6516 cu_header,
6517 &bytes_read);
6518 info_ptr += bytes_read;
6519 if (cu_header->version < 5)
6520 {
6521 cu_header->addr_size = read_1_byte (abfd, info_ptr);
6522 info_ptr += 1;
6523 }
6524 signed_addr = bfd_get_sign_extend_vma (abfd);
6525 if (signed_addr < 0)
6526 internal_error (__FILE__, __LINE__,
6527 _("read_comp_unit_head: dwarf from non elf file"));
6528 cu_header->signed_addr_p = signed_addr;
6529
6530 bool header_has_signature = section_kind == rcuh_kind::TYPE
6531 || cu_header->unit_type == DW_UT_skeleton
6532 || cu_header->unit_type == DW_UT_split_compile;
6533
6534 if (header_has_signature)
6535 {
6536 cu_header->signature = read_8_bytes (abfd, info_ptr);
6537 info_ptr += 8;
6538 }
6539
6540 if (section_kind == rcuh_kind::TYPE)
6541 {
6542 LONGEST type_offset;
6543 type_offset = read_offset (abfd, info_ptr, cu_header, &bytes_read);
6544 info_ptr += bytes_read;
6545 cu_header->type_cu_offset_in_tu = (cu_offset) type_offset;
6546 if (to_underlying (cu_header->type_cu_offset_in_tu) != type_offset)
6547 error (_("Dwarf Error: Too big type_offset in compilation unit "
6548 "header (is %s) [in module %s]"), plongest (type_offset),
6549 filename);
6550 }
6551
6552 return info_ptr;
6553 }
6554
6555 /* Helper function that returns the proper abbrev section for
6556 THIS_CU. */
6557
6558 static struct dwarf2_section_info *
6559 get_abbrev_section_for_cu (struct dwarf2_per_cu_data *this_cu)
6560 {
6561 struct dwarf2_section_info *abbrev;
6562 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
6563
6564 if (this_cu->is_dwz)
6565 abbrev = &dwarf2_get_dwz_file (dwarf2_per_objfile)->abbrev;
6566 else
6567 abbrev = &dwarf2_per_objfile->abbrev;
6568
6569 return abbrev;
6570 }
6571
6572 /* Subroutine of read_and_check_comp_unit_head and
6573 read_and_check_type_unit_head to simplify them.
6574 Perform various error checking on the header. */
6575
6576 static void
6577 error_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6578 struct comp_unit_head *header,
6579 struct dwarf2_section_info *section,
6580 struct dwarf2_section_info *abbrev_section)
6581 {
6582 const char *filename = get_section_file_name (section);
6583
6584 if (to_underlying (header->abbrev_sect_off)
6585 >= dwarf2_section_size (dwarf2_per_objfile->objfile, abbrev_section))
6586 error (_("Dwarf Error: bad offset (%s) in compilation unit header "
6587 "(offset %s + 6) [in module %s]"),
6588 sect_offset_str (header->abbrev_sect_off),
6589 sect_offset_str (header->sect_off),
6590 filename);
6591
6592 /* Cast to ULONGEST to use 64-bit arithmetic when possible to
6593 avoid potential 32-bit overflow. */
6594 if (((ULONGEST) header->sect_off + get_cu_length (header))
6595 > section->size)
6596 error (_("Dwarf Error: bad length (0x%x) in compilation unit header "
6597 "(offset %s + 0) [in module %s]"),
6598 header->length, sect_offset_str (header->sect_off),
6599 filename);
6600 }
6601
6602 /* Read in a CU/TU header and perform some basic error checking.
6603 The contents of the header are stored in HEADER.
6604 The result is a pointer to the start of the first DIE. */
6605
6606 static const gdb_byte *
6607 read_and_check_comp_unit_head (struct dwarf2_per_objfile *dwarf2_per_objfile,
6608 struct comp_unit_head *header,
6609 struct dwarf2_section_info *section,
6610 struct dwarf2_section_info *abbrev_section,
6611 const gdb_byte *info_ptr,
6612 rcuh_kind section_kind)
6613 {
6614 const gdb_byte *beg_of_comp_unit = info_ptr;
6615
6616 header->sect_off = (sect_offset) (beg_of_comp_unit - section->buffer);
6617
6618 info_ptr = read_comp_unit_head (header, info_ptr, section, section_kind);
6619
6620 header->first_die_cu_offset = (cu_offset) (info_ptr - beg_of_comp_unit);
6621
6622 error_check_comp_unit_head (dwarf2_per_objfile, header, section,
6623 abbrev_section);
6624
6625 return info_ptr;
6626 }
6627
6628 /* Fetch the abbreviation table offset from a comp or type unit header. */
6629
6630 static sect_offset
6631 read_abbrev_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
6632 struct dwarf2_section_info *section,
6633 sect_offset sect_off)
6634 {
6635 bfd *abfd = get_section_bfd_owner (section);
6636 const gdb_byte *info_ptr;
6637 unsigned int initial_length_size, offset_size;
6638 uint16_t version;
6639
6640 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
6641 info_ptr = section->buffer + to_underlying (sect_off);
6642 read_initial_length (abfd, info_ptr, &initial_length_size);
6643 offset_size = initial_length_size == 4 ? 4 : 8;
6644 info_ptr += initial_length_size;
6645
6646 version = read_2_bytes (abfd, info_ptr);
6647 info_ptr += 2;
6648 if (version >= 5)
6649 {
6650 /* Skip unit type and address size. */
6651 info_ptr += 2;
6652 }
6653
6654 return (sect_offset) read_offset_1 (abfd, info_ptr, offset_size);
6655 }
6656
6657 /* Allocate a new partial symtab for file named NAME and mark this new
6658 partial symtab as being an include of PST. */
6659
6660 static void
6661 dwarf2_create_include_psymtab (const char *name, struct partial_symtab *pst,
6662 struct objfile *objfile)
6663 {
6664 struct partial_symtab *subpst = allocate_psymtab (name, objfile);
6665
6666 if (!IS_ABSOLUTE_PATH (subpst->filename))
6667 {
6668 /* It shares objfile->objfile_obstack. */
6669 subpst->dirname = pst->dirname;
6670 }
6671
6672 subpst->dependencies = objfile->partial_symtabs->allocate_dependencies (1);
6673 subpst->dependencies[0] = pst;
6674 subpst->number_of_dependencies = 1;
6675
6676 subpst->read_symtab = pst->read_symtab;
6677
6678 /* No private part is necessary for include psymtabs. This property
6679 can be used to differentiate between such include psymtabs and
6680 the regular ones. */
6681 subpst->read_symtab_private = NULL;
6682 }
6683
6684 /* Read the Line Number Program data and extract the list of files
6685 included by the source file represented by PST. Build an include
6686 partial symtab for each of these included files. */
6687
6688 static void
6689 dwarf2_build_include_psymtabs (struct dwarf2_cu *cu,
6690 struct die_info *die,
6691 struct partial_symtab *pst)
6692 {
6693 line_header_up lh;
6694 struct attribute *attr;
6695
6696 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
6697 if (attr != nullptr)
6698 lh = dwarf_decode_line_header ((sect_offset) DW_UNSND (attr), cu);
6699 if (lh == NULL)
6700 return; /* No linetable, so no includes. */
6701
6702 /* NOTE: pst->dirname is DW_AT_comp_dir (if present). Also note
6703 that we pass in the raw text_low here; that is ok because we're
6704 only decoding the line table to make include partial symtabs, and
6705 so the addresses aren't really used. */
6706 dwarf_decode_lines (lh.get (), pst->dirname, cu, pst,
6707 pst->raw_text_low (), 1);
6708 }
6709
6710 static hashval_t
6711 hash_signatured_type (const void *item)
6712 {
6713 const struct signatured_type *sig_type
6714 = (const struct signatured_type *) item;
6715
6716 /* This drops the top 32 bits of the signature, but is ok for a hash. */
6717 return sig_type->signature;
6718 }
6719
6720 static int
6721 eq_signatured_type (const void *item_lhs, const void *item_rhs)
6722 {
6723 const struct signatured_type *lhs = (const struct signatured_type *) item_lhs;
6724 const struct signatured_type *rhs = (const struct signatured_type *) item_rhs;
6725
6726 return lhs->signature == rhs->signature;
6727 }
6728
6729 /* Allocate a hash table for signatured types. */
6730
6731 static htab_t
6732 allocate_signatured_type_table (struct objfile *objfile)
6733 {
6734 return htab_create_alloc_ex (41,
6735 hash_signatured_type,
6736 eq_signatured_type,
6737 NULL,
6738 &objfile->objfile_obstack,
6739 hashtab_obstack_allocate,
6740 dummy_obstack_deallocate);
6741 }
6742
6743 /* A helper function to add a signatured type CU to a table. */
6744
6745 static int
6746 add_signatured_type_cu_to_table (void **slot, void *datum)
6747 {
6748 struct signatured_type *sigt = (struct signatured_type *) *slot;
6749 std::vector<signatured_type *> *all_type_units
6750 = (std::vector<signatured_type *> *) datum;
6751
6752 all_type_units->push_back (sigt);
6753
6754 return 1;
6755 }
6756
6757 /* A helper for create_debug_types_hash_table. Read types from SECTION
6758 and fill them into TYPES_HTAB. It will process only type units,
6759 therefore DW_UT_type. */
6760
6761 static void
6762 create_debug_type_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6763 struct dwo_file *dwo_file,
6764 dwarf2_section_info *section, htab_t &types_htab,
6765 rcuh_kind section_kind)
6766 {
6767 struct objfile *objfile = dwarf2_per_objfile->objfile;
6768 struct dwarf2_section_info *abbrev_section;
6769 bfd *abfd;
6770 const gdb_byte *info_ptr, *end_ptr;
6771
6772 abbrev_section = (dwo_file != NULL
6773 ? &dwo_file->sections.abbrev
6774 : &dwarf2_per_objfile->abbrev);
6775
6776 if (dwarf_read_debug)
6777 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
6778 get_section_name (section),
6779 get_section_file_name (abbrev_section));
6780
6781 dwarf2_read_section (objfile, section);
6782 info_ptr = section->buffer;
6783
6784 if (info_ptr == NULL)
6785 return;
6786
6787 /* We can't set abfd until now because the section may be empty or
6788 not present, in which case the bfd is unknown. */
6789 abfd = get_section_bfd_owner (section);
6790
6791 /* We don't use init_cutu_and_read_dies_simple, or some such, here
6792 because we don't need to read any dies: the signature is in the
6793 header. */
6794
6795 end_ptr = info_ptr + section->size;
6796 while (info_ptr < end_ptr)
6797 {
6798 struct signatured_type *sig_type;
6799 struct dwo_unit *dwo_tu;
6800 void **slot;
6801 const gdb_byte *ptr = info_ptr;
6802 struct comp_unit_head header;
6803 unsigned int length;
6804
6805 sect_offset sect_off = (sect_offset) (ptr - section->buffer);
6806
6807 /* Initialize it due to a false compiler warning. */
6808 header.signature = -1;
6809 header.type_cu_offset_in_tu = (cu_offset) -1;
6810
6811 /* We need to read the type's signature in order to build the hash
6812 table, but we don't need anything else just yet. */
6813
6814 ptr = read_and_check_comp_unit_head (dwarf2_per_objfile, &header, section,
6815 abbrev_section, ptr, section_kind);
6816
6817 length = get_cu_length (&header);
6818
6819 /* Skip dummy type units. */
6820 if (ptr >= info_ptr + length
6821 || peek_abbrev_code (abfd, ptr) == 0
6822 || header.unit_type != DW_UT_type)
6823 {
6824 info_ptr += length;
6825 continue;
6826 }
6827
6828 if (types_htab == NULL)
6829 {
6830 if (dwo_file)
6831 types_htab = allocate_dwo_unit_table (objfile);
6832 else
6833 types_htab = allocate_signatured_type_table (objfile);
6834 }
6835
6836 if (dwo_file)
6837 {
6838 sig_type = NULL;
6839 dwo_tu = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6840 struct dwo_unit);
6841 dwo_tu->dwo_file = dwo_file;
6842 dwo_tu->signature = header.signature;
6843 dwo_tu->type_offset_in_tu = header.type_cu_offset_in_tu;
6844 dwo_tu->section = section;
6845 dwo_tu->sect_off = sect_off;
6846 dwo_tu->length = length;
6847 }
6848 else
6849 {
6850 /* N.B.: type_offset is not usable if this type uses a DWO file.
6851 The real type_offset is in the DWO file. */
6852 dwo_tu = NULL;
6853 sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6854 struct signatured_type);
6855 sig_type->signature = header.signature;
6856 sig_type->type_offset_in_tu = header.type_cu_offset_in_tu;
6857 sig_type->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
6858 sig_type->per_cu.is_debug_types = 1;
6859 sig_type->per_cu.section = section;
6860 sig_type->per_cu.sect_off = sect_off;
6861 sig_type->per_cu.length = length;
6862 }
6863
6864 slot = htab_find_slot (types_htab,
6865 dwo_file ? (void*) dwo_tu : (void *) sig_type,
6866 INSERT);
6867 gdb_assert (slot != NULL);
6868 if (*slot != NULL)
6869 {
6870 sect_offset dup_sect_off;
6871
6872 if (dwo_file)
6873 {
6874 const struct dwo_unit *dup_tu
6875 = (const struct dwo_unit *) *slot;
6876
6877 dup_sect_off = dup_tu->sect_off;
6878 }
6879 else
6880 {
6881 const struct signatured_type *dup_tu
6882 = (const struct signatured_type *) *slot;
6883
6884 dup_sect_off = dup_tu->per_cu.sect_off;
6885 }
6886
6887 complaint (_("debug type entry at offset %s is duplicate to"
6888 " the entry at offset %s, signature %s"),
6889 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
6890 hex_string (header.signature));
6891 }
6892 *slot = dwo_file ? (void *) dwo_tu : (void *) sig_type;
6893
6894 if (dwarf_read_debug > 1)
6895 fprintf_unfiltered (gdb_stdlog, " offset %s, signature %s\n",
6896 sect_offset_str (sect_off),
6897 hex_string (header.signature));
6898
6899 info_ptr += length;
6900 }
6901 }
6902
6903 /* Create the hash table of all entries in the .debug_types
6904 (or .debug_types.dwo) section(s).
6905 If reading a DWO file, then DWO_FILE is a pointer to the DWO file object,
6906 otherwise it is NULL.
6907
6908 The result is a pointer to the hash table or NULL if there are no types.
6909
6910 Note: This function processes DWO files only, not DWP files. */
6911
6912 static void
6913 create_debug_types_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
6914 struct dwo_file *dwo_file,
6915 gdb::array_view<dwarf2_section_info> type_sections,
6916 htab_t &types_htab)
6917 {
6918 for (dwarf2_section_info &section : type_sections)
6919 create_debug_type_hash_table (dwarf2_per_objfile, dwo_file, &section,
6920 types_htab, rcuh_kind::TYPE);
6921 }
6922
6923 /* Create the hash table of all entries in the .debug_types section,
6924 and initialize all_type_units.
6925 The result is zero if there is an error (e.g. missing .debug_types section),
6926 otherwise non-zero. */
6927
6928 static int
6929 create_all_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
6930 {
6931 htab_t types_htab = NULL;
6932
6933 create_debug_type_hash_table (dwarf2_per_objfile, NULL,
6934 &dwarf2_per_objfile->info, types_htab,
6935 rcuh_kind::COMPILE);
6936 create_debug_types_hash_table (dwarf2_per_objfile, NULL,
6937 dwarf2_per_objfile->types, types_htab);
6938 if (types_htab == NULL)
6939 {
6940 dwarf2_per_objfile->signatured_types = NULL;
6941 return 0;
6942 }
6943
6944 dwarf2_per_objfile->signatured_types = types_htab;
6945
6946 gdb_assert (dwarf2_per_objfile->all_type_units.empty ());
6947 dwarf2_per_objfile->all_type_units.reserve (htab_elements (types_htab));
6948
6949 htab_traverse_noresize (types_htab, add_signatured_type_cu_to_table,
6950 &dwarf2_per_objfile->all_type_units);
6951
6952 return 1;
6953 }
6954
6955 /* Add an entry for signature SIG to dwarf2_per_objfile->signatured_types.
6956 If SLOT is non-NULL, it is the entry to use in the hash table.
6957 Otherwise we find one. */
6958
6959 static struct signatured_type *
6960 add_type_unit (struct dwarf2_per_objfile *dwarf2_per_objfile, ULONGEST sig,
6961 void **slot)
6962 {
6963 struct objfile *objfile = dwarf2_per_objfile->objfile;
6964
6965 if (dwarf2_per_objfile->all_type_units.size ()
6966 == dwarf2_per_objfile->all_type_units.capacity ())
6967 ++dwarf2_per_objfile->tu_stats.nr_all_type_units_reallocs;
6968
6969 signatured_type *sig_type = OBSTACK_ZALLOC (&objfile->objfile_obstack,
6970 struct signatured_type);
6971
6972 dwarf2_per_objfile->all_type_units.push_back (sig_type);
6973 sig_type->signature = sig;
6974 sig_type->per_cu.is_debug_types = 1;
6975 if (dwarf2_per_objfile->using_index)
6976 {
6977 sig_type->per_cu.v.quick =
6978 OBSTACK_ZALLOC (&objfile->objfile_obstack,
6979 struct dwarf2_per_cu_quick_data);
6980 }
6981
6982 if (slot == NULL)
6983 {
6984 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
6985 sig_type, INSERT);
6986 }
6987 gdb_assert (*slot == NULL);
6988 *slot = sig_type;
6989 /* The rest of sig_type must be filled in by the caller. */
6990 return sig_type;
6991 }
6992
6993 /* Subroutine of lookup_dwo_signatured_type and lookup_dwp_signatured_type.
6994 Fill in SIG_ENTRY with DWO_ENTRY. */
6995
6996 static void
6997 fill_in_sig_entry_from_dwo_entry (struct dwarf2_per_objfile *dwarf2_per_objfile,
6998 struct signatured_type *sig_entry,
6999 struct dwo_unit *dwo_entry)
7000 {
7001 /* Make sure we're not clobbering something we don't expect to. */
7002 gdb_assert (! sig_entry->per_cu.queued);
7003 gdb_assert (sig_entry->per_cu.cu == NULL);
7004 if (dwarf2_per_objfile->using_index)
7005 {
7006 gdb_assert (sig_entry->per_cu.v.quick != NULL);
7007 gdb_assert (sig_entry->per_cu.v.quick->compunit_symtab == NULL);
7008 }
7009 else
7010 gdb_assert (sig_entry->per_cu.v.psymtab == NULL);
7011 gdb_assert (sig_entry->signature == dwo_entry->signature);
7012 gdb_assert (to_underlying (sig_entry->type_offset_in_section) == 0);
7013 gdb_assert (sig_entry->type_unit_group == NULL);
7014 gdb_assert (sig_entry->dwo_unit == NULL);
7015
7016 sig_entry->per_cu.section = dwo_entry->section;
7017 sig_entry->per_cu.sect_off = dwo_entry->sect_off;
7018 sig_entry->per_cu.length = dwo_entry->length;
7019 sig_entry->per_cu.reading_dwo_directly = 1;
7020 sig_entry->per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
7021 sig_entry->type_offset_in_tu = dwo_entry->type_offset_in_tu;
7022 sig_entry->dwo_unit = dwo_entry;
7023 }
7024
7025 /* Subroutine of lookup_signatured_type.
7026 If we haven't read the TU yet, create the signatured_type data structure
7027 for a TU to be read in directly from a DWO file, bypassing the stub.
7028 This is the "Stay in DWO Optimization": When there is no DWP file and we're
7029 using .gdb_index, then when reading a CU we want to stay in the DWO file
7030 containing that CU. Otherwise we could end up reading several other DWO
7031 files (due to comdat folding) to process the transitive closure of all the
7032 mentioned TUs, and that can be slow. The current DWO file will have every
7033 type signature that it needs.
7034 We only do this for .gdb_index because in the psymtab case we already have
7035 to read all the DWOs to build the type unit groups. */
7036
7037 static struct signatured_type *
7038 lookup_dwo_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7039 {
7040 struct dwarf2_per_objfile *dwarf2_per_objfile
7041 = cu->per_cu->dwarf2_per_objfile;
7042 struct objfile *objfile = dwarf2_per_objfile->objfile;
7043 struct dwo_file *dwo_file;
7044 struct dwo_unit find_dwo_entry, *dwo_entry;
7045 struct signatured_type find_sig_entry, *sig_entry;
7046 void **slot;
7047
7048 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7049
7050 /* If TU skeletons have been removed then we may not have read in any
7051 TUs yet. */
7052 if (dwarf2_per_objfile->signatured_types == NULL)
7053 {
7054 dwarf2_per_objfile->signatured_types
7055 = allocate_signatured_type_table (objfile);
7056 }
7057
7058 /* We only ever need to read in one copy of a signatured type.
7059 Use the global signatured_types array to do our own comdat-folding
7060 of types. If this is the first time we're reading this TU, and
7061 the TU has an entry in .gdb_index, replace the recorded data from
7062 .gdb_index with this TU. */
7063
7064 find_sig_entry.signature = sig;
7065 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7066 &find_sig_entry, INSERT);
7067 sig_entry = (struct signatured_type *) *slot;
7068
7069 /* We can get here with the TU already read, *or* in the process of being
7070 read. Don't reassign the global entry to point to this DWO if that's
7071 the case. Also note that if the TU is already being read, it may not
7072 have come from a DWO, the program may be a mix of Fission-compiled
7073 code and non-Fission-compiled code. */
7074
7075 /* Have we already tried to read this TU?
7076 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7077 needn't exist in the global table yet). */
7078 if (sig_entry != NULL && sig_entry->per_cu.tu_read)
7079 return sig_entry;
7080
7081 /* Note: cu->dwo_unit is the dwo_unit that references this TU, not the
7082 dwo_unit of the TU itself. */
7083 dwo_file = cu->dwo_unit->dwo_file;
7084
7085 /* Ok, this is the first time we're reading this TU. */
7086 if (dwo_file->tus == NULL)
7087 return NULL;
7088 find_dwo_entry.signature = sig;
7089 dwo_entry = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_entry);
7090 if (dwo_entry == NULL)
7091 return NULL;
7092
7093 /* If the global table doesn't have an entry for this TU, add one. */
7094 if (sig_entry == NULL)
7095 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7096
7097 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7098 sig_entry->per_cu.tu_read = 1;
7099 return sig_entry;
7100 }
7101
7102 /* Subroutine of lookup_signatured_type.
7103 Look up the type for signature SIG, and if we can't find SIG in .gdb_index
7104 then try the DWP file. If the TU stub (skeleton) has been removed then
7105 it won't be in .gdb_index. */
7106
7107 static struct signatured_type *
7108 lookup_dwp_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7109 {
7110 struct dwarf2_per_objfile *dwarf2_per_objfile
7111 = cu->per_cu->dwarf2_per_objfile;
7112 struct objfile *objfile = dwarf2_per_objfile->objfile;
7113 struct dwp_file *dwp_file = get_dwp_file (dwarf2_per_objfile);
7114 struct dwo_unit *dwo_entry;
7115 struct signatured_type find_sig_entry, *sig_entry;
7116 void **slot;
7117
7118 gdb_assert (cu->dwo_unit && dwarf2_per_objfile->using_index);
7119 gdb_assert (dwp_file != NULL);
7120
7121 /* If TU skeletons have been removed then we may not have read in any
7122 TUs yet. */
7123 if (dwarf2_per_objfile->signatured_types == NULL)
7124 {
7125 dwarf2_per_objfile->signatured_types
7126 = allocate_signatured_type_table (objfile);
7127 }
7128
7129 find_sig_entry.signature = sig;
7130 slot = htab_find_slot (dwarf2_per_objfile->signatured_types,
7131 &find_sig_entry, INSERT);
7132 sig_entry = (struct signatured_type *) *slot;
7133
7134 /* Have we already tried to read this TU?
7135 Note: sig_entry can be NULL if the skeleton TU was removed (thus it
7136 needn't exist in the global table yet). */
7137 if (sig_entry != NULL)
7138 return sig_entry;
7139
7140 if (dwp_file->tus == NULL)
7141 return NULL;
7142 dwo_entry = lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, NULL,
7143 sig, 1 /* is_debug_types */);
7144 if (dwo_entry == NULL)
7145 return NULL;
7146
7147 sig_entry = add_type_unit (dwarf2_per_objfile, sig, slot);
7148 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, sig_entry, dwo_entry);
7149
7150 return sig_entry;
7151 }
7152
7153 /* Lookup a signature based type for DW_FORM_ref_sig8.
7154 Returns NULL if signature SIG is not present in the table.
7155 It is up to the caller to complain about this. */
7156
7157 static struct signatured_type *
7158 lookup_signatured_type (struct dwarf2_cu *cu, ULONGEST sig)
7159 {
7160 struct dwarf2_per_objfile *dwarf2_per_objfile
7161 = cu->per_cu->dwarf2_per_objfile;
7162
7163 if (cu->dwo_unit
7164 && dwarf2_per_objfile->using_index)
7165 {
7166 /* We're in a DWO/DWP file, and we're using .gdb_index.
7167 These cases require special processing. */
7168 if (get_dwp_file (dwarf2_per_objfile) == NULL)
7169 return lookup_dwo_signatured_type (cu, sig);
7170 else
7171 return lookup_dwp_signatured_type (cu, sig);
7172 }
7173 else
7174 {
7175 struct signatured_type find_entry, *entry;
7176
7177 if (dwarf2_per_objfile->signatured_types == NULL)
7178 return NULL;
7179 find_entry.signature = sig;
7180 entry = ((struct signatured_type *)
7181 htab_find (dwarf2_per_objfile->signatured_types, &find_entry));
7182 return entry;
7183 }
7184 }
7185 \f
7186 /* Low level DIE reading support. */
7187
7188 /* Initialize a die_reader_specs struct from a dwarf2_cu struct. */
7189
7190 static void
7191 init_cu_die_reader (struct die_reader_specs *reader,
7192 struct dwarf2_cu *cu,
7193 struct dwarf2_section_info *section,
7194 struct dwo_file *dwo_file,
7195 struct abbrev_table *abbrev_table)
7196 {
7197 gdb_assert (section->readin && section->buffer != NULL);
7198 reader->abfd = get_section_bfd_owner (section);
7199 reader->cu = cu;
7200 reader->dwo_file = dwo_file;
7201 reader->die_section = section;
7202 reader->buffer = section->buffer;
7203 reader->buffer_end = section->buffer + section->size;
7204 reader->comp_dir = NULL;
7205 reader->abbrev_table = abbrev_table;
7206 }
7207
7208 /* Subroutine of init_cutu_and_read_dies to simplify it.
7209 Read in the rest of a CU/TU top level DIE from DWO_UNIT.
7210 There's just a lot of work to do, and init_cutu_and_read_dies is big enough
7211 already.
7212
7213 STUB_COMP_UNIT_DIE is for the stub DIE, we copy over certain attributes
7214 from it to the DIE in the DWO. If NULL we are skipping the stub.
7215 STUB_COMP_DIR is similar to STUB_COMP_UNIT_DIE: When reading a TU directly
7216 from the DWO file, bypassing the stub, it contains the DW_AT_comp_dir
7217 attribute of the referencing CU. At most one of STUB_COMP_UNIT_DIE and
7218 STUB_COMP_DIR may be non-NULL.
7219 *RESULT_READER,*RESULT_INFO_PTR,*RESULT_COMP_UNIT_DIE,*RESULT_HAS_CHILDREN
7220 are filled in with the info of the DIE from the DWO file.
7221 *RESULT_DWO_ABBREV_TABLE will be filled in with the abbrev table allocated
7222 from the dwo. Since *RESULT_READER references this abbrev table, it must be
7223 kept around for at least as long as *RESULT_READER.
7224
7225 The result is non-zero if a valid (non-dummy) DIE was found. */
7226
7227 static int
7228 read_cutu_die_from_dwo (struct dwarf2_per_cu_data *this_cu,
7229 struct dwo_unit *dwo_unit,
7230 struct die_info *stub_comp_unit_die,
7231 const char *stub_comp_dir,
7232 struct die_reader_specs *result_reader,
7233 const gdb_byte **result_info_ptr,
7234 struct die_info **result_comp_unit_die,
7235 int *result_has_children,
7236 abbrev_table_up *result_dwo_abbrev_table)
7237 {
7238 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7239 struct objfile *objfile = dwarf2_per_objfile->objfile;
7240 struct dwarf2_cu *cu = this_cu->cu;
7241 bfd *abfd;
7242 const gdb_byte *begin_info_ptr, *info_ptr;
7243 struct attribute *comp_dir, *stmt_list, *low_pc, *high_pc, *ranges;
7244 int i,num_extra_attrs;
7245 struct dwarf2_section_info *dwo_abbrev_section;
7246 struct attribute *attr;
7247 struct die_info *comp_unit_die;
7248
7249 /* At most one of these may be provided. */
7250 gdb_assert ((stub_comp_unit_die != NULL) + (stub_comp_dir != NULL) <= 1);
7251
7252 /* These attributes aren't processed until later:
7253 DW_AT_stmt_list, DW_AT_low_pc, DW_AT_high_pc, DW_AT_ranges.
7254 DW_AT_comp_dir is used now, to find the DWO file, but it is also
7255 referenced later. However, these attributes are found in the stub
7256 which we won't have later. In order to not impose this complication
7257 on the rest of the code, we read them here and copy them to the
7258 DWO CU/TU die. */
7259
7260 stmt_list = NULL;
7261 low_pc = NULL;
7262 high_pc = NULL;
7263 ranges = NULL;
7264 comp_dir = NULL;
7265
7266 if (stub_comp_unit_die != NULL)
7267 {
7268 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
7269 DWO file. */
7270 if (! this_cu->is_debug_types)
7271 stmt_list = dwarf2_attr (stub_comp_unit_die, DW_AT_stmt_list, cu);
7272 low_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_low_pc, cu);
7273 high_pc = dwarf2_attr (stub_comp_unit_die, DW_AT_high_pc, cu);
7274 ranges = dwarf2_attr (stub_comp_unit_die, DW_AT_ranges, cu);
7275 comp_dir = dwarf2_attr (stub_comp_unit_die, DW_AT_comp_dir, cu);
7276
7277 /* There should be a DW_AT_addr_base attribute here (if needed).
7278 We need the value before we can process DW_FORM_GNU_addr_index
7279 or DW_FORM_addrx. */
7280 cu->addr_base = 0;
7281 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_addr_base, cu);
7282 if (attr != nullptr)
7283 cu->addr_base = DW_UNSND (attr);
7284
7285 /* There should be a DW_AT_ranges_base attribute here (if needed).
7286 We need the value before we can process DW_AT_ranges. */
7287 cu->ranges_base = 0;
7288 attr = dwarf2_attr (stub_comp_unit_die, DW_AT_GNU_ranges_base, cu);
7289 if (attr != nullptr)
7290 cu->ranges_base = DW_UNSND (attr);
7291 }
7292 else if (stub_comp_dir != NULL)
7293 {
7294 /* Reconstruct the comp_dir attribute to simplify the code below. */
7295 comp_dir = XOBNEW (&cu->comp_unit_obstack, struct attribute);
7296 comp_dir->name = DW_AT_comp_dir;
7297 comp_dir->form = DW_FORM_string;
7298 DW_STRING_IS_CANONICAL (comp_dir) = 0;
7299 DW_STRING (comp_dir) = stub_comp_dir;
7300 }
7301
7302 /* Set up for reading the DWO CU/TU. */
7303 cu->dwo_unit = dwo_unit;
7304 dwarf2_section_info *section = dwo_unit->section;
7305 dwarf2_read_section (objfile, section);
7306 abfd = get_section_bfd_owner (section);
7307 begin_info_ptr = info_ptr = (section->buffer
7308 + to_underlying (dwo_unit->sect_off));
7309 dwo_abbrev_section = &dwo_unit->dwo_file->sections.abbrev;
7310
7311 if (this_cu->is_debug_types)
7312 {
7313 struct signatured_type *sig_type = (struct signatured_type *) this_cu;
7314
7315 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7316 &cu->header, section,
7317 dwo_abbrev_section,
7318 info_ptr, rcuh_kind::TYPE);
7319 /* This is not an assert because it can be caused by bad debug info. */
7320 if (sig_type->signature != cu->header.signature)
7321 {
7322 error (_("Dwarf Error: signature mismatch %s vs %s while reading"
7323 " TU at offset %s [in module %s]"),
7324 hex_string (sig_type->signature),
7325 hex_string (cu->header.signature),
7326 sect_offset_str (dwo_unit->sect_off),
7327 bfd_get_filename (abfd));
7328 }
7329 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7330 /* For DWOs coming from DWP files, we don't know the CU length
7331 nor the type's offset in the TU until now. */
7332 dwo_unit->length = get_cu_length (&cu->header);
7333 dwo_unit->type_offset_in_tu = cu->header.type_cu_offset_in_tu;
7334
7335 /* Establish the type offset that can be used to lookup the type.
7336 For DWO files, we don't know it until now. */
7337 sig_type->type_offset_in_section
7338 = dwo_unit->sect_off + to_underlying (dwo_unit->type_offset_in_tu);
7339 }
7340 else
7341 {
7342 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7343 &cu->header, section,
7344 dwo_abbrev_section,
7345 info_ptr, rcuh_kind::COMPILE);
7346 gdb_assert (dwo_unit->sect_off == cu->header.sect_off);
7347 /* For DWOs coming from DWP files, we don't know the CU length
7348 until now. */
7349 dwo_unit->length = get_cu_length (&cu->header);
7350 }
7351
7352 *result_dwo_abbrev_table
7353 = abbrev_table_read_table (dwarf2_per_objfile, dwo_abbrev_section,
7354 cu->header.abbrev_sect_off);
7355 init_cu_die_reader (result_reader, cu, section, dwo_unit->dwo_file,
7356 result_dwo_abbrev_table->get ());
7357
7358 /* Read in the die, but leave space to copy over the attributes
7359 from the stub. This has the benefit of simplifying the rest of
7360 the code - all the work to maintain the illusion of a single
7361 DW_TAG_{compile,type}_unit DIE is done here. */
7362 num_extra_attrs = ((stmt_list != NULL)
7363 + (low_pc != NULL)
7364 + (high_pc != NULL)
7365 + (ranges != NULL)
7366 + (comp_dir != NULL));
7367 info_ptr = read_full_die_1 (result_reader, result_comp_unit_die, info_ptr,
7368 result_has_children, num_extra_attrs);
7369
7370 /* Copy over the attributes from the stub to the DIE we just read in. */
7371 comp_unit_die = *result_comp_unit_die;
7372 i = comp_unit_die->num_attrs;
7373 if (stmt_list != NULL)
7374 comp_unit_die->attrs[i++] = *stmt_list;
7375 if (low_pc != NULL)
7376 comp_unit_die->attrs[i++] = *low_pc;
7377 if (high_pc != NULL)
7378 comp_unit_die->attrs[i++] = *high_pc;
7379 if (ranges != NULL)
7380 comp_unit_die->attrs[i++] = *ranges;
7381 if (comp_dir != NULL)
7382 comp_unit_die->attrs[i++] = *comp_dir;
7383 comp_unit_die->num_attrs += num_extra_attrs;
7384
7385 if (dwarf_die_debug)
7386 {
7387 fprintf_unfiltered (gdb_stdlog,
7388 "Read die from %s@0x%x of %s:\n",
7389 get_section_name (section),
7390 (unsigned) (begin_info_ptr - section->buffer),
7391 bfd_get_filename (abfd));
7392 dump_die (comp_unit_die, dwarf_die_debug);
7393 }
7394
7395 /* Save the comp_dir attribute. If there is no DWP file then we'll read
7396 TUs by skipping the stub and going directly to the entry in the DWO file.
7397 However, skipping the stub means we won't get DW_AT_comp_dir, so we have
7398 to get it via circuitous means. Blech. */
7399 if (comp_dir != NULL)
7400 result_reader->comp_dir = DW_STRING (comp_dir);
7401
7402 /* Skip dummy compilation units. */
7403 if (info_ptr >= begin_info_ptr + dwo_unit->length
7404 || peek_abbrev_code (abfd, info_ptr) == 0)
7405 return 0;
7406
7407 *result_info_ptr = info_ptr;
7408 return 1;
7409 }
7410
7411 /* Return the signature of the compile unit, if found. In DWARF 4 and before,
7412 the signature is in the DW_AT_GNU_dwo_id attribute. In DWARF 5 and later, the
7413 signature is part of the header. */
7414 static gdb::optional<ULONGEST>
7415 lookup_dwo_id (struct dwarf2_cu *cu, struct die_info* comp_unit_die)
7416 {
7417 if (cu->header.version >= 5)
7418 return cu->header.signature;
7419 struct attribute *attr;
7420 attr = dwarf2_attr (comp_unit_die, DW_AT_GNU_dwo_id, cu);
7421 if (attr == nullptr)
7422 return gdb::optional<ULONGEST> ();
7423 return DW_UNSND (attr);
7424 }
7425
7426 /* Subroutine of init_cutu_and_read_dies to simplify it.
7427 Look up the DWO unit specified by COMP_UNIT_DIE of THIS_CU.
7428 Returns NULL if the specified DWO unit cannot be found. */
7429
7430 static struct dwo_unit *
7431 lookup_dwo_unit (struct dwarf2_per_cu_data *this_cu,
7432 struct die_info *comp_unit_die)
7433 {
7434 struct dwarf2_cu *cu = this_cu->cu;
7435 struct dwo_unit *dwo_unit;
7436 const char *comp_dir, *dwo_name;
7437
7438 gdb_assert (cu != NULL);
7439
7440 /* Yeah, we look dwo_name up again, but it simplifies the code. */
7441 dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7442 comp_dir = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
7443
7444 if (this_cu->is_debug_types)
7445 {
7446 struct signatured_type *sig_type;
7447
7448 /* Since this_cu is the first member of struct signatured_type,
7449 we can go from a pointer to one to a pointer to the other. */
7450 sig_type = (struct signatured_type *) this_cu;
7451 dwo_unit = lookup_dwo_type_unit (sig_type, dwo_name, comp_dir);
7452 }
7453 else
7454 {
7455 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
7456 if (!signature.has_value ())
7457 error (_("Dwarf Error: missing dwo_id for dwo_name %s"
7458 " [in module %s]"),
7459 dwo_name, objfile_name (this_cu->dwarf2_per_objfile->objfile));
7460 dwo_unit = lookup_dwo_comp_unit (this_cu, dwo_name, comp_dir,
7461 *signature);
7462 }
7463
7464 return dwo_unit;
7465 }
7466
7467 /* Subroutine of init_cutu_and_read_dies to simplify it.
7468 See it for a description of the parameters.
7469 Read a TU directly from a DWO file, bypassing the stub. */
7470
7471 static void
7472 init_tu_and_read_dwo_dies (struct dwarf2_per_cu_data *this_cu,
7473 int use_existing_cu, int keep,
7474 die_reader_func_ftype *die_reader_func,
7475 void *data)
7476 {
7477 std::unique_ptr<dwarf2_cu> new_cu;
7478 struct signatured_type *sig_type;
7479 struct die_reader_specs reader;
7480 const gdb_byte *info_ptr;
7481 struct die_info *comp_unit_die;
7482 int has_children;
7483 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7484
7485 /* Verify we can do the following downcast, and that we have the
7486 data we need. */
7487 gdb_assert (this_cu->is_debug_types && this_cu->reading_dwo_directly);
7488 sig_type = (struct signatured_type *) this_cu;
7489 gdb_assert (sig_type->dwo_unit != NULL);
7490
7491 if (use_existing_cu && this_cu->cu != NULL)
7492 {
7493 gdb_assert (this_cu->cu->dwo_unit == sig_type->dwo_unit);
7494 /* There's no need to do the rereading_dwo_cu handling that
7495 init_cutu_and_read_dies does since we don't read the stub. */
7496 }
7497 else
7498 {
7499 /* If !use_existing_cu, this_cu->cu must be NULL. */
7500 gdb_assert (this_cu->cu == NULL);
7501 new_cu.reset (new dwarf2_cu (this_cu));
7502 }
7503
7504 /* A future optimization, if needed, would be to use an existing
7505 abbrev table. When reading DWOs with skeletonless TUs, all the TUs
7506 could share abbrev tables. */
7507
7508 /* The abbreviation table used by READER, this must live at least as long as
7509 READER. */
7510 abbrev_table_up dwo_abbrev_table;
7511
7512 if (read_cutu_die_from_dwo (this_cu, sig_type->dwo_unit,
7513 NULL /* stub_comp_unit_die */,
7514 sig_type->dwo_unit->dwo_file->comp_dir,
7515 &reader, &info_ptr,
7516 &comp_unit_die, &has_children,
7517 &dwo_abbrev_table) == 0)
7518 {
7519 /* Dummy die. */
7520 return;
7521 }
7522
7523 /* All the "real" work is done here. */
7524 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7525
7526 /* This duplicates the code in init_cutu_and_read_dies,
7527 but the alternative is making the latter more complex.
7528 This function is only for the special case of using DWO files directly:
7529 no point in overly complicating the general case just to handle this. */
7530 if (new_cu != NULL && keep)
7531 {
7532 /* Link this CU into read_in_chain. */
7533 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7534 dwarf2_per_objfile->read_in_chain = this_cu;
7535 /* The chain owns it now. */
7536 new_cu.release ();
7537 }
7538 }
7539
7540 /* Initialize a CU (or TU) and read its DIEs.
7541 If the CU defers to a DWO file, read the DWO file as well.
7542
7543 ABBREV_TABLE, if non-NULL, is the abbreviation table to use.
7544 Otherwise the table specified in the comp unit header is read in and used.
7545 This is an optimization for when we already have the abbrev table.
7546
7547 If USE_EXISTING_CU is non-zero, and THIS_CU->cu is non-NULL, then use it.
7548 Otherwise, a new CU is allocated with xmalloc.
7549
7550 If KEEP is non-zero, then if we allocated a dwarf2_cu we add it to
7551 read_in_chain. Otherwise the dwarf2_cu data is freed at the end.
7552
7553 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7554 linker) then DIE_READER_FUNC will not get called. */
7555
7556 static void
7557 init_cutu_and_read_dies (struct dwarf2_per_cu_data *this_cu,
7558 struct abbrev_table *abbrev_table,
7559 int use_existing_cu, int keep,
7560 bool skip_partial,
7561 die_reader_func_ftype *die_reader_func,
7562 void *data)
7563 {
7564 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7565 struct objfile *objfile = dwarf2_per_objfile->objfile;
7566 struct dwarf2_section_info *section = this_cu->section;
7567 bfd *abfd = get_section_bfd_owner (section);
7568 struct dwarf2_cu *cu;
7569 const gdb_byte *begin_info_ptr, *info_ptr;
7570 struct die_reader_specs reader;
7571 struct die_info *comp_unit_die;
7572 int has_children;
7573 struct signatured_type *sig_type = NULL;
7574 struct dwarf2_section_info *abbrev_section;
7575 /* Non-zero if CU currently points to a DWO file and we need to
7576 reread it. When this happens we need to reread the skeleton die
7577 before we can reread the DWO file (this only applies to CUs, not TUs). */
7578 int rereading_dwo_cu = 0;
7579
7580 if (dwarf_die_debug)
7581 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7582 this_cu->is_debug_types ? "type" : "comp",
7583 sect_offset_str (this_cu->sect_off));
7584
7585 if (use_existing_cu)
7586 gdb_assert (keep);
7587
7588 /* If we're reading a TU directly from a DWO file, including a virtual DWO
7589 file (instead of going through the stub), short-circuit all of this. */
7590 if (this_cu->reading_dwo_directly)
7591 {
7592 /* Narrow down the scope of possibilities to have to understand. */
7593 gdb_assert (this_cu->is_debug_types);
7594 gdb_assert (abbrev_table == NULL);
7595 init_tu_and_read_dwo_dies (this_cu, use_existing_cu, keep,
7596 die_reader_func, data);
7597 return;
7598 }
7599
7600 /* This is cheap if the section is already read in. */
7601 dwarf2_read_section (objfile, section);
7602
7603 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7604
7605 abbrev_section = get_abbrev_section_for_cu (this_cu);
7606
7607 std::unique_ptr<dwarf2_cu> new_cu;
7608 if (use_existing_cu && this_cu->cu != NULL)
7609 {
7610 cu = this_cu->cu;
7611 /* If this CU is from a DWO file we need to start over, we need to
7612 refetch the attributes from the skeleton CU.
7613 This could be optimized by retrieving those attributes from when we
7614 were here the first time: the previous comp_unit_die was stored in
7615 comp_unit_obstack. But there's no data yet that we need this
7616 optimization. */
7617 if (cu->dwo_unit != NULL)
7618 rereading_dwo_cu = 1;
7619 }
7620 else
7621 {
7622 /* If !use_existing_cu, this_cu->cu must be NULL. */
7623 gdb_assert (this_cu->cu == NULL);
7624 new_cu.reset (new dwarf2_cu (this_cu));
7625 cu = new_cu.get ();
7626 }
7627
7628 /* Get the header. */
7629 if (to_underlying (cu->header.first_die_cu_offset) != 0 && !rereading_dwo_cu)
7630 {
7631 /* We already have the header, there's no need to read it in again. */
7632 info_ptr += to_underlying (cu->header.first_die_cu_offset);
7633 }
7634 else
7635 {
7636 if (this_cu->is_debug_types)
7637 {
7638 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7639 &cu->header, section,
7640 abbrev_section, info_ptr,
7641 rcuh_kind::TYPE);
7642
7643 /* Since per_cu is the first member of struct signatured_type,
7644 we can go from a pointer to one to a pointer to the other. */
7645 sig_type = (struct signatured_type *) this_cu;
7646 gdb_assert (sig_type->signature == cu->header.signature);
7647 gdb_assert (sig_type->type_offset_in_tu
7648 == cu->header.type_cu_offset_in_tu);
7649 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7650
7651 /* LENGTH has not been set yet for type units if we're
7652 using .gdb_index. */
7653 this_cu->length = get_cu_length (&cu->header);
7654
7655 /* Establish the type offset that can be used to lookup the type. */
7656 sig_type->type_offset_in_section =
7657 this_cu->sect_off + to_underlying (sig_type->type_offset_in_tu);
7658
7659 this_cu->dwarf_version = cu->header.version;
7660 }
7661 else
7662 {
7663 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7664 &cu->header, section,
7665 abbrev_section,
7666 info_ptr,
7667 rcuh_kind::COMPILE);
7668
7669 gdb_assert (this_cu->sect_off == cu->header.sect_off);
7670 gdb_assert (this_cu->length == get_cu_length (&cu->header));
7671 this_cu->dwarf_version = cu->header.version;
7672 }
7673 }
7674
7675 /* Skip dummy compilation units. */
7676 if (info_ptr >= begin_info_ptr + this_cu->length
7677 || peek_abbrev_code (abfd, info_ptr) == 0)
7678 return;
7679
7680 /* If we don't have them yet, read the abbrevs for this compilation unit.
7681 And if we need to read them now, make sure they're freed when we're
7682 done (own the table through ABBREV_TABLE_HOLDER). */
7683 abbrev_table_up abbrev_table_holder;
7684 if (abbrev_table != NULL)
7685 gdb_assert (cu->header.abbrev_sect_off == abbrev_table->sect_off);
7686 else
7687 {
7688 abbrev_table_holder
7689 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7690 cu->header.abbrev_sect_off);
7691 abbrev_table = abbrev_table_holder.get ();
7692 }
7693
7694 /* Read the top level CU/TU die. */
7695 init_cu_die_reader (&reader, cu, section, NULL, abbrev_table);
7696 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7697
7698 if (skip_partial && comp_unit_die->tag == DW_TAG_partial_unit)
7699 return;
7700
7701 /* If we are in a DWO stub, process it and then read in the "real" CU/TU
7702 from the DWO file. read_cutu_die_from_dwo will allocate the abbreviation
7703 table from the DWO file and pass the ownership over to us. It will be
7704 referenced from READER, so we must make sure to free it after we're done
7705 with READER.
7706
7707 Note that if USE_EXISTING_OK != 0, and THIS_CU->cu already contains a
7708 DWO CU, that this test will fail (the attribute will not be present). */
7709 const char *dwo_name = dwarf2_dwo_name (comp_unit_die, cu);
7710 abbrev_table_up dwo_abbrev_table;
7711 if (dwo_name != nullptr)
7712 {
7713 struct dwo_unit *dwo_unit;
7714 struct die_info *dwo_comp_unit_die;
7715
7716 if (has_children)
7717 {
7718 complaint (_("compilation unit with DW_AT_GNU_dwo_name"
7719 " has children (offset %s) [in module %s]"),
7720 sect_offset_str (this_cu->sect_off),
7721 bfd_get_filename (abfd));
7722 }
7723 dwo_unit = lookup_dwo_unit (this_cu, comp_unit_die);
7724 if (dwo_unit != NULL)
7725 {
7726 if (read_cutu_die_from_dwo (this_cu, dwo_unit,
7727 comp_unit_die, NULL,
7728 &reader, &info_ptr,
7729 &dwo_comp_unit_die, &has_children,
7730 &dwo_abbrev_table) == 0)
7731 {
7732 /* Dummy die. */
7733 return;
7734 }
7735 comp_unit_die = dwo_comp_unit_die;
7736 }
7737 else
7738 {
7739 /* Yikes, we couldn't find the rest of the DIE, we only have
7740 the stub. A complaint has already been logged. There's
7741 not much more we can do except pass on the stub DIE to
7742 die_reader_func. We don't want to throw an error on bad
7743 debug info. */
7744 }
7745 }
7746
7747 /* All of the above is setup for this call. Yikes. */
7748 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7749
7750 /* Done, clean up. */
7751 if (new_cu != NULL && keep)
7752 {
7753 /* Link this CU into read_in_chain. */
7754 this_cu->cu->read_in_chain = dwarf2_per_objfile->read_in_chain;
7755 dwarf2_per_objfile->read_in_chain = this_cu;
7756 /* The chain owns it now. */
7757 new_cu.release ();
7758 }
7759 }
7760
7761 /* Read CU/TU THIS_CU but do not follow DW_AT_GNU_dwo_name if present.
7762 DWO_FILE, if non-NULL, is the DWO file to read (the caller is assumed
7763 to have already done the lookup to find the DWO file).
7764
7765 The caller is required to fill in THIS_CU->section, THIS_CU->offset, and
7766 THIS_CU->is_debug_types, but nothing else.
7767
7768 We fill in THIS_CU->length.
7769
7770 WARNING: If THIS_CU is a "dummy CU" (used as filler by the incremental
7771 linker) then DIE_READER_FUNC will not get called.
7772
7773 THIS_CU->cu is always freed when done.
7774 This is done in order to not leave THIS_CU->cu in a state where we have
7775 to care whether it refers to the "main" CU or the DWO CU. */
7776
7777 static void
7778 init_cutu_and_read_dies_no_follow (struct dwarf2_per_cu_data *this_cu,
7779 struct dwo_file *dwo_file,
7780 die_reader_func_ftype *die_reader_func,
7781 void *data)
7782 {
7783 struct dwarf2_per_objfile *dwarf2_per_objfile = this_cu->dwarf2_per_objfile;
7784 struct objfile *objfile = dwarf2_per_objfile->objfile;
7785 struct dwarf2_section_info *section = this_cu->section;
7786 bfd *abfd = get_section_bfd_owner (section);
7787 struct dwarf2_section_info *abbrev_section;
7788 const gdb_byte *begin_info_ptr, *info_ptr;
7789 struct die_reader_specs reader;
7790 struct die_info *comp_unit_die;
7791 int has_children;
7792
7793 if (dwarf_die_debug)
7794 fprintf_unfiltered (gdb_stdlog, "Reading %s unit at offset %s\n",
7795 this_cu->is_debug_types ? "type" : "comp",
7796 sect_offset_str (this_cu->sect_off));
7797
7798 gdb_assert (this_cu->cu == NULL);
7799
7800 abbrev_section = (dwo_file != NULL
7801 ? &dwo_file->sections.abbrev
7802 : get_abbrev_section_for_cu (this_cu));
7803
7804 /* This is cheap if the section is already read in. */
7805 dwarf2_read_section (objfile, section);
7806
7807 struct dwarf2_cu cu (this_cu);
7808
7809 begin_info_ptr = info_ptr = section->buffer + to_underlying (this_cu->sect_off);
7810 info_ptr = read_and_check_comp_unit_head (dwarf2_per_objfile,
7811 &cu.header, section,
7812 abbrev_section, info_ptr,
7813 (this_cu->is_debug_types
7814 ? rcuh_kind::TYPE
7815 : rcuh_kind::COMPILE));
7816
7817 this_cu->length = get_cu_length (&cu.header);
7818
7819 /* Skip dummy compilation units. */
7820 if (info_ptr >= begin_info_ptr + this_cu->length
7821 || peek_abbrev_code (abfd, info_ptr) == 0)
7822 return;
7823
7824 abbrev_table_up abbrev_table
7825 = abbrev_table_read_table (dwarf2_per_objfile, abbrev_section,
7826 cu.header.abbrev_sect_off);
7827
7828 init_cu_die_reader (&reader, &cu, section, dwo_file, abbrev_table.get ());
7829 info_ptr = read_full_die (&reader, &comp_unit_die, info_ptr, &has_children);
7830
7831 die_reader_func (&reader, info_ptr, comp_unit_die, has_children, data);
7832 }
7833
7834 /* Read a CU/TU, except that this does not look for DW_AT_GNU_dwo_name and
7835 does not lookup the specified DWO file.
7836 This cannot be used to read DWO files.
7837
7838 THIS_CU->cu is always freed when done.
7839 This is done in order to not leave THIS_CU->cu in a state where we have
7840 to care whether it refers to the "main" CU or the DWO CU.
7841 We can revisit this if the data shows there's a performance issue. */
7842
7843 static void
7844 init_cutu_and_read_dies_simple (struct dwarf2_per_cu_data *this_cu,
7845 die_reader_func_ftype *die_reader_func,
7846 void *data)
7847 {
7848 init_cutu_and_read_dies_no_follow (this_cu, NULL, die_reader_func, data);
7849 }
7850 \f
7851 /* Type Unit Groups.
7852
7853 Type Unit Groups are a way to collapse the set of all TUs (type units) into
7854 a more manageable set. The grouping is done by DW_AT_stmt_list entry
7855 so that all types coming from the same compilation (.o file) are grouped
7856 together. A future step could be to put the types in the same symtab as
7857 the CU the types ultimately came from. */
7858
7859 static hashval_t
7860 hash_type_unit_group (const void *item)
7861 {
7862 const struct type_unit_group *tu_group
7863 = (const struct type_unit_group *) item;
7864
7865 return hash_stmt_list_entry (&tu_group->hash);
7866 }
7867
7868 static int
7869 eq_type_unit_group (const void *item_lhs, const void *item_rhs)
7870 {
7871 const struct type_unit_group *lhs = (const struct type_unit_group *) item_lhs;
7872 const struct type_unit_group *rhs = (const struct type_unit_group *) item_rhs;
7873
7874 return eq_stmt_list_entry (&lhs->hash, &rhs->hash);
7875 }
7876
7877 /* Allocate a hash table for type unit groups. */
7878
7879 static htab_t
7880 allocate_type_unit_groups_table (struct objfile *objfile)
7881 {
7882 return htab_create_alloc_ex (3,
7883 hash_type_unit_group,
7884 eq_type_unit_group,
7885 NULL,
7886 &objfile->objfile_obstack,
7887 hashtab_obstack_allocate,
7888 dummy_obstack_deallocate);
7889 }
7890
7891 /* Type units that don't have DW_AT_stmt_list are grouped into their own
7892 partial symtabs. We combine several TUs per psymtab to not let the size
7893 of any one psymtab grow too big. */
7894 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB (1 << 31)
7895 #define NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE 10
7896
7897 /* Helper routine for get_type_unit_group.
7898 Create the type_unit_group object used to hold one or more TUs. */
7899
7900 static struct type_unit_group *
7901 create_type_unit_group (struct dwarf2_cu *cu, sect_offset line_offset_struct)
7902 {
7903 struct dwarf2_per_objfile *dwarf2_per_objfile
7904 = cu->per_cu->dwarf2_per_objfile;
7905 struct objfile *objfile = dwarf2_per_objfile->objfile;
7906 struct dwarf2_per_cu_data *per_cu;
7907 struct type_unit_group *tu_group;
7908
7909 tu_group = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7910 struct type_unit_group);
7911 per_cu = &tu_group->per_cu;
7912 per_cu->dwarf2_per_objfile = dwarf2_per_objfile;
7913
7914 if (dwarf2_per_objfile->using_index)
7915 {
7916 per_cu->v.quick = OBSTACK_ZALLOC (&objfile->objfile_obstack,
7917 struct dwarf2_per_cu_quick_data);
7918 }
7919 else
7920 {
7921 unsigned int line_offset = to_underlying (line_offset_struct);
7922 struct partial_symtab *pst;
7923 std::string name;
7924
7925 /* Give the symtab a useful name for debug purposes. */
7926 if ((line_offset & NO_STMT_LIST_TYPE_UNIT_PSYMTAB) != 0)
7927 name = string_printf ("<type_units_%d>",
7928 (line_offset & ~NO_STMT_LIST_TYPE_UNIT_PSYMTAB));
7929 else
7930 name = string_printf ("<type_units_at_0x%x>", line_offset);
7931
7932 pst = create_partial_symtab (per_cu, name.c_str ());
7933 pst->anonymous = 1;
7934 }
7935
7936 tu_group->hash.dwo_unit = cu->dwo_unit;
7937 tu_group->hash.line_sect_off = line_offset_struct;
7938
7939 return tu_group;
7940 }
7941
7942 /* Look up the type_unit_group for type unit CU, and create it if necessary.
7943 STMT_LIST is a DW_AT_stmt_list attribute. */
7944
7945 static struct type_unit_group *
7946 get_type_unit_group (struct dwarf2_cu *cu, const struct attribute *stmt_list)
7947 {
7948 struct dwarf2_per_objfile *dwarf2_per_objfile
7949 = cu->per_cu->dwarf2_per_objfile;
7950 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
7951 struct type_unit_group *tu_group;
7952 void **slot;
7953 unsigned int line_offset;
7954 struct type_unit_group type_unit_group_for_lookup;
7955
7956 if (dwarf2_per_objfile->type_unit_groups == NULL)
7957 {
7958 dwarf2_per_objfile->type_unit_groups =
7959 allocate_type_unit_groups_table (dwarf2_per_objfile->objfile);
7960 }
7961
7962 /* Do we need to create a new group, or can we use an existing one? */
7963
7964 if (stmt_list)
7965 {
7966 line_offset = DW_UNSND (stmt_list);
7967 ++tu_stats->nr_symtab_sharers;
7968 }
7969 else
7970 {
7971 /* Ugh, no stmt_list. Rare, but we have to handle it.
7972 We can do various things here like create one group per TU or
7973 spread them over multiple groups to split up the expansion work.
7974 To avoid worst case scenarios (too many groups or too large groups)
7975 we, umm, group them in bunches. */
7976 line_offset = (NO_STMT_LIST_TYPE_UNIT_PSYMTAB
7977 | (tu_stats->nr_stmt_less_type_units
7978 / NO_STMT_LIST_TYPE_UNIT_PSYMTAB_SIZE));
7979 ++tu_stats->nr_stmt_less_type_units;
7980 }
7981
7982 type_unit_group_for_lookup.hash.dwo_unit = cu->dwo_unit;
7983 type_unit_group_for_lookup.hash.line_sect_off = (sect_offset) line_offset;
7984 slot = htab_find_slot (dwarf2_per_objfile->type_unit_groups,
7985 &type_unit_group_for_lookup, INSERT);
7986 if (*slot != NULL)
7987 {
7988 tu_group = (struct type_unit_group *) *slot;
7989 gdb_assert (tu_group != NULL);
7990 }
7991 else
7992 {
7993 sect_offset line_offset_struct = (sect_offset) line_offset;
7994 tu_group = create_type_unit_group (cu, line_offset_struct);
7995 *slot = tu_group;
7996 ++tu_stats->nr_symtabs;
7997 }
7998
7999 return tu_group;
8000 }
8001 \f
8002 /* Partial symbol tables. */
8003
8004 /* Create a psymtab named NAME and assign it to PER_CU.
8005
8006 The caller must fill in the following details:
8007 dirname, textlow, texthigh. */
8008
8009 static struct partial_symtab *
8010 create_partial_symtab (struct dwarf2_per_cu_data *per_cu, const char *name)
8011 {
8012 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
8013 struct partial_symtab *pst;
8014
8015 pst = start_psymtab_common (objfile, name, 0);
8016
8017 pst->psymtabs_addrmap_supported = 1;
8018
8019 /* This is the glue that links PST into GDB's symbol API. */
8020 pst->read_symtab_private = per_cu;
8021 pst->read_symtab = dwarf2_read_symtab;
8022 per_cu->v.psymtab = pst;
8023
8024 return pst;
8025 }
8026
8027 /* The DATA object passed to process_psymtab_comp_unit_reader has this
8028 type. */
8029
8030 struct process_psymtab_comp_unit_data
8031 {
8032 /* True if we are reading a DW_TAG_partial_unit. */
8033
8034 int want_partial_unit;
8035
8036 /* The "pretend" language that is used if the CU doesn't declare a
8037 language. */
8038
8039 enum language pretend_language;
8040 };
8041
8042 /* die_reader_func for process_psymtab_comp_unit. */
8043
8044 static void
8045 process_psymtab_comp_unit_reader (const struct die_reader_specs *reader,
8046 const gdb_byte *info_ptr,
8047 struct die_info *comp_unit_die,
8048 int has_children,
8049 void *data)
8050 {
8051 struct dwarf2_cu *cu = reader->cu;
8052 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
8053 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8054 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8055 CORE_ADDR baseaddr;
8056 CORE_ADDR best_lowpc = 0, best_highpc = 0;
8057 struct partial_symtab *pst;
8058 enum pc_bounds_kind cu_bounds_kind;
8059 const char *filename;
8060 struct process_psymtab_comp_unit_data *info
8061 = (struct process_psymtab_comp_unit_data *) data;
8062
8063 if (comp_unit_die->tag == DW_TAG_partial_unit && !info->want_partial_unit)
8064 return;
8065
8066 gdb_assert (! per_cu->is_debug_types);
8067
8068 prepare_one_comp_unit (cu, comp_unit_die, info->pretend_language);
8069
8070 /* Allocate a new partial symbol table structure. */
8071 filename = dwarf2_string_attr (comp_unit_die, DW_AT_name, cu);
8072 if (filename == NULL)
8073 filename = "";
8074
8075 pst = create_partial_symtab (per_cu, filename);
8076
8077 /* This must be done before calling dwarf2_build_include_psymtabs. */
8078 pst->dirname = dwarf2_string_attr (comp_unit_die, DW_AT_comp_dir, cu);
8079
8080 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8081
8082 dwarf2_find_base_address (comp_unit_die, cu);
8083
8084 /* Possibly set the default values of LOWPC and HIGHPC from
8085 `DW_AT_ranges'. */
8086 cu_bounds_kind = dwarf2_get_pc_bounds (comp_unit_die, &best_lowpc,
8087 &best_highpc, cu, pst);
8088 if (cu_bounds_kind == PC_BOUNDS_HIGH_LOW && best_lowpc < best_highpc)
8089 {
8090 CORE_ADDR low
8091 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_lowpc + baseaddr)
8092 - baseaddr);
8093 CORE_ADDR high
8094 = (gdbarch_adjust_dwarf2_addr (gdbarch, best_highpc + baseaddr)
8095 - baseaddr - 1);
8096 /* Store the contiguous range if it is not empty; it can be
8097 empty for CUs with no code. */
8098 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
8099 low, high, pst);
8100 }
8101
8102 /* Check if comp unit has_children.
8103 If so, read the rest of the partial symbols from this comp unit.
8104 If not, there's no more debug_info for this comp unit. */
8105 if (has_children)
8106 {
8107 struct partial_die_info *first_die;
8108 CORE_ADDR lowpc, highpc;
8109
8110 lowpc = ((CORE_ADDR) -1);
8111 highpc = ((CORE_ADDR) 0);
8112
8113 first_die = load_partial_dies (reader, info_ptr, 1);
8114
8115 scan_partial_symbols (first_die, &lowpc, &highpc,
8116 cu_bounds_kind <= PC_BOUNDS_INVALID, cu);
8117
8118 /* If we didn't find a lowpc, set it to highpc to avoid
8119 complaints from `maint check'. */
8120 if (lowpc == ((CORE_ADDR) -1))
8121 lowpc = highpc;
8122
8123 /* If the compilation unit didn't have an explicit address range,
8124 then use the information extracted from its child dies. */
8125 if (cu_bounds_kind <= PC_BOUNDS_INVALID)
8126 {
8127 best_lowpc = lowpc;
8128 best_highpc = highpc;
8129 }
8130 }
8131 pst->set_text_low (gdbarch_adjust_dwarf2_addr (gdbarch,
8132 best_lowpc + baseaddr)
8133 - baseaddr);
8134 pst->set_text_high (gdbarch_adjust_dwarf2_addr (gdbarch,
8135 best_highpc + baseaddr)
8136 - baseaddr);
8137
8138 end_psymtab_common (objfile, pst);
8139
8140 if (!cu->per_cu->imported_symtabs_empty ())
8141 {
8142 int i;
8143 int len = cu->per_cu->imported_symtabs_size ();
8144
8145 /* Fill in 'dependencies' here; we fill in 'users' in a
8146 post-pass. */
8147 pst->number_of_dependencies = len;
8148 pst->dependencies
8149 = objfile->partial_symtabs->allocate_dependencies (len);
8150 for (i = 0; i < len; ++i)
8151 {
8152 pst->dependencies[i]
8153 = cu->per_cu->imported_symtabs->at (i)->v.psymtab;
8154 }
8155
8156 cu->per_cu->imported_symtabs_free ();
8157 }
8158
8159 /* Get the list of files included in the current compilation unit,
8160 and build a psymtab for each of them. */
8161 dwarf2_build_include_psymtabs (cu, comp_unit_die, pst);
8162
8163 if (dwarf_read_debug)
8164 fprintf_unfiltered (gdb_stdlog,
8165 "Psymtab for %s unit @%s: %s - %s"
8166 ", %d global, %d static syms\n",
8167 per_cu->is_debug_types ? "type" : "comp",
8168 sect_offset_str (per_cu->sect_off),
8169 paddress (gdbarch, pst->text_low (objfile)),
8170 paddress (gdbarch, pst->text_high (objfile)),
8171 pst->n_global_syms, pst->n_static_syms);
8172 }
8173
8174 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8175 Process compilation unit THIS_CU for a psymtab. */
8176
8177 static void
8178 process_psymtab_comp_unit (struct dwarf2_per_cu_data *this_cu,
8179 int want_partial_unit,
8180 enum language pretend_language)
8181 {
8182 /* If this compilation unit was already read in, free the
8183 cached copy in order to read it in again. This is
8184 necessary because we skipped some symbols when we first
8185 read in the compilation unit (see load_partial_dies).
8186 This problem could be avoided, but the benefit is unclear. */
8187 if (this_cu->cu != NULL)
8188 free_one_cached_comp_unit (this_cu);
8189
8190 if (this_cu->is_debug_types)
8191 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8192 build_type_psymtabs_reader, NULL);
8193 else
8194 {
8195 process_psymtab_comp_unit_data info;
8196 info.want_partial_unit = want_partial_unit;
8197 info.pretend_language = pretend_language;
8198 init_cutu_and_read_dies (this_cu, NULL, 0, 0, false,
8199 process_psymtab_comp_unit_reader, &info);
8200 }
8201
8202 /* Age out any secondary CUs. */
8203 age_cached_comp_units (this_cu->dwarf2_per_objfile);
8204 }
8205
8206 /* Reader function for build_type_psymtabs. */
8207
8208 static void
8209 build_type_psymtabs_reader (const struct die_reader_specs *reader,
8210 const gdb_byte *info_ptr,
8211 struct die_info *type_unit_die,
8212 int has_children,
8213 void *data)
8214 {
8215 struct dwarf2_per_objfile *dwarf2_per_objfile
8216 = reader->cu->per_cu->dwarf2_per_objfile;
8217 struct objfile *objfile = dwarf2_per_objfile->objfile;
8218 struct dwarf2_cu *cu = reader->cu;
8219 struct dwarf2_per_cu_data *per_cu = cu->per_cu;
8220 struct signatured_type *sig_type;
8221 struct type_unit_group *tu_group;
8222 struct attribute *attr;
8223 struct partial_die_info *first_die;
8224 CORE_ADDR lowpc, highpc;
8225 struct partial_symtab *pst;
8226
8227 gdb_assert (data == NULL);
8228 gdb_assert (per_cu->is_debug_types);
8229 sig_type = (struct signatured_type *) per_cu;
8230
8231 if (! has_children)
8232 return;
8233
8234 attr = dwarf2_attr_no_follow (type_unit_die, DW_AT_stmt_list);
8235 tu_group = get_type_unit_group (cu, attr);
8236
8237 if (tu_group->tus == nullptr)
8238 tu_group->tus = new std::vector<signatured_type *>;
8239 tu_group->tus->push_back (sig_type);
8240
8241 prepare_one_comp_unit (cu, type_unit_die, language_minimal);
8242 pst = create_partial_symtab (per_cu, "");
8243 pst->anonymous = 1;
8244
8245 first_die = load_partial_dies (reader, info_ptr, 1);
8246
8247 lowpc = (CORE_ADDR) -1;
8248 highpc = (CORE_ADDR) 0;
8249 scan_partial_symbols (first_die, &lowpc, &highpc, 0, cu);
8250
8251 end_psymtab_common (objfile, pst);
8252 }
8253
8254 /* Struct used to sort TUs by their abbreviation table offset. */
8255
8256 struct tu_abbrev_offset
8257 {
8258 tu_abbrev_offset (signatured_type *sig_type_, sect_offset abbrev_offset_)
8259 : sig_type (sig_type_), abbrev_offset (abbrev_offset_)
8260 {}
8261
8262 signatured_type *sig_type;
8263 sect_offset abbrev_offset;
8264 };
8265
8266 /* Helper routine for build_type_psymtabs_1, passed to std::sort. */
8267
8268 static bool
8269 sort_tu_by_abbrev_offset (const struct tu_abbrev_offset &a,
8270 const struct tu_abbrev_offset &b)
8271 {
8272 return a.abbrev_offset < b.abbrev_offset;
8273 }
8274
8275 /* Efficiently read all the type units.
8276 This does the bulk of the work for build_type_psymtabs.
8277
8278 The efficiency is because we sort TUs by the abbrev table they use and
8279 only read each abbrev table once. In one program there are 200K TUs
8280 sharing 8K abbrev tables.
8281
8282 The main purpose of this function is to support building the
8283 dwarf2_per_objfile->type_unit_groups table.
8284 TUs typically share the DW_AT_stmt_list of the CU they came from, so we
8285 can collapse the search space by grouping them by stmt_list.
8286 The savings can be significant, in the same program from above the 200K TUs
8287 share 8K stmt_list tables.
8288
8289 FUNC is expected to call get_type_unit_group, which will create the
8290 struct type_unit_group if necessary and add it to
8291 dwarf2_per_objfile->type_unit_groups. */
8292
8293 static void
8294 build_type_psymtabs_1 (struct dwarf2_per_objfile *dwarf2_per_objfile)
8295 {
8296 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8297 abbrev_table_up abbrev_table;
8298 sect_offset abbrev_offset;
8299
8300 /* It's up to the caller to not call us multiple times. */
8301 gdb_assert (dwarf2_per_objfile->type_unit_groups == NULL);
8302
8303 if (dwarf2_per_objfile->all_type_units.empty ())
8304 return;
8305
8306 /* TUs typically share abbrev tables, and there can be way more TUs than
8307 abbrev tables. Sort by abbrev table to reduce the number of times we
8308 read each abbrev table in.
8309 Alternatives are to punt or to maintain a cache of abbrev tables.
8310 This is simpler and efficient enough for now.
8311
8312 Later we group TUs by their DW_AT_stmt_list value (as this defines the
8313 symtab to use). Typically TUs with the same abbrev offset have the same
8314 stmt_list value too so in practice this should work well.
8315
8316 The basic algorithm here is:
8317
8318 sort TUs by abbrev table
8319 for each TU with same abbrev table:
8320 read abbrev table if first user
8321 read TU top level DIE
8322 [IWBN if DWO skeletons had DW_AT_stmt_list]
8323 call FUNC */
8324
8325 if (dwarf_read_debug)
8326 fprintf_unfiltered (gdb_stdlog, "Building type unit groups ...\n");
8327
8328 /* Sort in a separate table to maintain the order of all_type_units
8329 for .gdb_index: TU indices directly index all_type_units. */
8330 std::vector<tu_abbrev_offset> sorted_by_abbrev;
8331 sorted_by_abbrev.reserve (dwarf2_per_objfile->all_type_units.size ());
8332
8333 for (signatured_type *sig_type : dwarf2_per_objfile->all_type_units)
8334 sorted_by_abbrev.emplace_back
8335 (sig_type, read_abbrev_offset (dwarf2_per_objfile,
8336 sig_type->per_cu.section,
8337 sig_type->per_cu.sect_off));
8338
8339 std::sort (sorted_by_abbrev.begin (), sorted_by_abbrev.end (),
8340 sort_tu_by_abbrev_offset);
8341
8342 abbrev_offset = (sect_offset) ~(unsigned) 0;
8343
8344 for (const tu_abbrev_offset &tu : sorted_by_abbrev)
8345 {
8346 /* Switch to the next abbrev table if necessary. */
8347 if (abbrev_table == NULL
8348 || tu.abbrev_offset != abbrev_offset)
8349 {
8350 abbrev_offset = tu.abbrev_offset;
8351 abbrev_table =
8352 abbrev_table_read_table (dwarf2_per_objfile,
8353 &dwarf2_per_objfile->abbrev,
8354 abbrev_offset);
8355 ++tu_stats->nr_uniq_abbrev_tables;
8356 }
8357
8358 init_cutu_and_read_dies (&tu.sig_type->per_cu, abbrev_table.get (),
8359 0, 0, false, build_type_psymtabs_reader, NULL);
8360 }
8361 }
8362
8363 /* Print collected type unit statistics. */
8364
8365 static void
8366 print_tu_stats (struct dwarf2_per_objfile *dwarf2_per_objfile)
8367 {
8368 struct tu_stats *tu_stats = &dwarf2_per_objfile->tu_stats;
8369
8370 fprintf_unfiltered (gdb_stdlog, "Type unit statistics:\n");
8371 fprintf_unfiltered (gdb_stdlog, " %zu TUs\n",
8372 dwarf2_per_objfile->all_type_units.size ());
8373 fprintf_unfiltered (gdb_stdlog, " %d uniq abbrev tables\n",
8374 tu_stats->nr_uniq_abbrev_tables);
8375 fprintf_unfiltered (gdb_stdlog, " %d symtabs from stmt_list entries\n",
8376 tu_stats->nr_symtabs);
8377 fprintf_unfiltered (gdb_stdlog, " %d symtab sharers\n",
8378 tu_stats->nr_symtab_sharers);
8379 fprintf_unfiltered (gdb_stdlog, " %d type units without a stmt_list\n",
8380 tu_stats->nr_stmt_less_type_units);
8381 fprintf_unfiltered (gdb_stdlog, " %d all_type_units reallocs\n",
8382 tu_stats->nr_all_type_units_reallocs);
8383 }
8384
8385 /* Traversal function for build_type_psymtabs. */
8386
8387 static int
8388 build_type_psymtab_dependencies (void **slot, void *info)
8389 {
8390 struct dwarf2_per_objfile *dwarf2_per_objfile
8391 = (struct dwarf2_per_objfile *) info;
8392 struct objfile *objfile = dwarf2_per_objfile->objfile;
8393 struct type_unit_group *tu_group = (struct type_unit_group *) *slot;
8394 struct dwarf2_per_cu_data *per_cu = &tu_group->per_cu;
8395 struct partial_symtab *pst = per_cu->v.psymtab;
8396 int len = (tu_group->tus == nullptr) ? 0 : tu_group->tus->size ();
8397 int i;
8398
8399 gdb_assert (len > 0);
8400 gdb_assert (IS_TYPE_UNIT_GROUP (per_cu));
8401
8402 pst->number_of_dependencies = len;
8403 pst->dependencies = objfile->partial_symtabs->allocate_dependencies (len);
8404 for (i = 0; i < len; ++i)
8405 {
8406 struct signatured_type *iter = tu_group->tus->at (i);
8407 gdb_assert (iter->per_cu.is_debug_types);
8408 pst->dependencies[i] = iter->per_cu.v.psymtab;
8409 iter->type_unit_group = tu_group;
8410 }
8411
8412 delete tu_group->tus;
8413 tu_group->tus = nullptr;
8414
8415 return 1;
8416 }
8417
8418 /* Subroutine of dwarf2_build_psymtabs_hard to simplify it.
8419 Build partial symbol tables for the .debug_types comp-units. */
8420
8421 static void
8422 build_type_psymtabs (struct dwarf2_per_objfile *dwarf2_per_objfile)
8423 {
8424 if (! create_all_type_units (dwarf2_per_objfile))
8425 return;
8426
8427 build_type_psymtabs_1 (dwarf2_per_objfile);
8428 }
8429
8430 /* Traversal function for process_skeletonless_type_unit.
8431 Read a TU in a DWO file and build partial symbols for it. */
8432
8433 static int
8434 process_skeletonless_type_unit (void **slot, void *info)
8435 {
8436 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
8437 struct dwarf2_per_objfile *dwarf2_per_objfile
8438 = (struct dwarf2_per_objfile *) info;
8439 struct signatured_type find_entry, *entry;
8440
8441 /* If this TU doesn't exist in the global table, add it and read it in. */
8442
8443 if (dwarf2_per_objfile->signatured_types == NULL)
8444 {
8445 dwarf2_per_objfile->signatured_types
8446 = allocate_signatured_type_table (dwarf2_per_objfile->objfile);
8447 }
8448
8449 find_entry.signature = dwo_unit->signature;
8450 slot = htab_find_slot (dwarf2_per_objfile->signatured_types, &find_entry,
8451 INSERT);
8452 /* If we've already seen this type there's nothing to do. What's happening
8453 is we're doing our own version of comdat-folding here. */
8454 if (*slot != NULL)
8455 return 1;
8456
8457 /* This does the job that create_all_type_units would have done for
8458 this TU. */
8459 entry = add_type_unit (dwarf2_per_objfile, dwo_unit->signature, slot);
8460 fill_in_sig_entry_from_dwo_entry (dwarf2_per_objfile, entry, dwo_unit);
8461 *slot = entry;
8462
8463 /* This does the job that build_type_psymtabs_1 would have done. */
8464 init_cutu_and_read_dies (&entry->per_cu, NULL, 0, 0, false,
8465 build_type_psymtabs_reader, NULL);
8466
8467 return 1;
8468 }
8469
8470 /* Traversal function for process_skeletonless_type_units. */
8471
8472 static int
8473 process_dwo_file_for_skeletonless_type_units (void **slot, void *info)
8474 {
8475 struct dwo_file *dwo_file = (struct dwo_file *) *slot;
8476
8477 if (dwo_file->tus != NULL)
8478 {
8479 htab_traverse_noresize (dwo_file->tus,
8480 process_skeletonless_type_unit, info);
8481 }
8482
8483 return 1;
8484 }
8485
8486 /* Scan all TUs of DWO files, verifying we've processed them.
8487 This is needed in case a TU was emitted without its skeleton.
8488 Note: This can't be done until we know what all the DWO files are. */
8489
8490 static void
8491 process_skeletonless_type_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8492 {
8493 /* Skeletonless TUs in DWP files without .gdb_index is not supported yet. */
8494 if (get_dwp_file (dwarf2_per_objfile) == NULL
8495 && dwarf2_per_objfile->dwo_files != NULL)
8496 {
8497 htab_traverse_noresize (dwarf2_per_objfile->dwo_files.get (),
8498 process_dwo_file_for_skeletonless_type_units,
8499 dwarf2_per_objfile);
8500 }
8501 }
8502
8503 /* Compute the 'user' field for each psymtab in DWARF2_PER_OBJFILE. */
8504
8505 static void
8506 set_partial_user (struct dwarf2_per_objfile *dwarf2_per_objfile)
8507 {
8508 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8509 {
8510 struct partial_symtab *pst = per_cu->v.psymtab;
8511
8512 if (pst == NULL)
8513 continue;
8514
8515 for (int j = 0; j < pst->number_of_dependencies; ++j)
8516 {
8517 /* Set the 'user' field only if it is not already set. */
8518 if (pst->dependencies[j]->user == NULL)
8519 pst->dependencies[j]->user = pst;
8520 }
8521 }
8522 }
8523
8524 /* Build the partial symbol table by doing a quick pass through the
8525 .debug_info and .debug_abbrev sections. */
8526
8527 static void
8528 dwarf2_build_psymtabs_hard (struct dwarf2_per_objfile *dwarf2_per_objfile)
8529 {
8530 struct objfile *objfile = dwarf2_per_objfile->objfile;
8531
8532 if (dwarf_read_debug)
8533 {
8534 fprintf_unfiltered (gdb_stdlog, "Building psymtabs of objfile %s ...\n",
8535 objfile_name (objfile));
8536 }
8537
8538 dwarf2_per_objfile->reading_partial_symbols = 1;
8539
8540 dwarf2_read_section (objfile, &dwarf2_per_objfile->info);
8541
8542 /* Any cached compilation units will be linked by the per-objfile
8543 read_in_chain. Make sure to free them when we're done. */
8544 free_cached_comp_units freer (dwarf2_per_objfile);
8545
8546 build_type_psymtabs (dwarf2_per_objfile);
8547
8548 create_all_comp_units (dwarf2_per_objfile);
8549
8550 /* Create a temporary address map on a temporary obstack. We later
8551 copy this to the final obstack. */
8552 auto_obstack temp_obstack;
8553
8554 scoped_restore save_psymtabs_addrmap
8555 = make_scoped_restore (&objfile->partial_symtabs->psymtabs_addrmap,
8556 addrmap_create_mutable (&temp_obstack));
8557
8558 for (dwarf2_per_cu_data *per_cu : dwarf2_per_objfile->all_comp_units)
8559 process_psymtab_comp_unit (per_cu, 0, language_minimal);
8560
8561 /* This has to wait until we read the CUs, we need the list of DWOs. */
8562 process_skeletonless_type_units (dwarf2_per_objfile);
8563
8564 /* Now that all TUs have been processed we can fill in the dependencies. */
8565 if (dwarf2_per_objfile->type_unit_groups != NULL)
8566 {
8567 htab_traverse_noresize (dwarf2_per_objfile->type_unit_groups,
8568 build_type_psymtab_dependencies, dwarf2_per_objfile);
8569 }
8570
8571 if (dwarf_read_debug)
8572 print_tu_stats (dwarf2_per_objfile);
8573
8574 set_partial_user (dwarf2_per_objfile);
8575
8576 objfile->partial_symtabs->psymtabs_addrmap
8577 = addrmap_create_fixed (objfile->partial_symtabs->psymtabs_addrmap,
8578 objfile->partial_symtabs->obstack ());
8579 /* At this point we want to keep the address map. */
8580 save_psymtabs_addrmap.release ();
8581
8582 if (dwarf_read_debug)
8583 fprintf_unfiltered (gdb_stdlog, "Done building psymtabs of %s\n",
8584 objfile_name (objfile));
8585 }
8586
8587 /* die_reader_func for load_partial_comp_unit. */
8588
8589 static void
8590 load_partial_comp_unit_reader (const struct die_reader_specs *reader,
8591 const gdb_byte *info_ptr,
8592 struct die_info *comp_unit_die,
8593 int has_children,
8594 void *data)
8595 {
8596 struct dwarf2_cu *cu = reader->cu;
8597
8598 prepare_one_comp_unit (cu, comp_unit_die, language_minimal);
8599
8600 /* Check if comp unit has_children.
8601 If so, read the rest of the partial symbols from this comp unit.
8602 If not, there's no more debug_info for this comp unit. */
8603 if (has_children)
8604 load_partial_dies (reader, info_ptr, 0);
8605 }
8606
8607 /* Load the partial DIEs for a secondary CU into memory.
8608 This is also used when rereading a primary CU with load_all_dies. */
8609
8610 static void
8611 load_partial_comp_unit (struct dwarf2_per_cu_data *this_cu)
8612 {
8613 init_cutu_and_read_dies (this_cu, NULL, 1, 1, false,
8614 load_partial_comp_unit_reader, NULL);
8615 }
8616
8617 static void
8618 read_comp_units_from_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
8619 struct dwarf2_section_info *section,
8620 struct dwarf2_section_info *abbrev_section,
8621 unsigned int is_dwz)
8622 {
8623 const gdb_byte *info_ptr;
8624 struct objfile *objfile = dwarf2_per_objfile->objfile;
8625
8626 if (dwarf_read_debug)
8627 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s\n",
8628 get_section_name (section),
8629 get_section_file_name (section));
8630
8631 dwarf2_read_section (objfile, section);
8632
8633 info_ptr = section->buffer;
8634
8635 while (info_ptr < section->buffer + section->size)
8636 {
8637 struct dwarf2_per_cu_data *this_cu;
8638
8639 sect_offset sect_off = (sect_offset) (info_ptr - section->buffer);
8640
8641 comp_unit_head cu_header;
8642 read_and_check_comp_unit_head (dwarf2_per_objfile, &cu_header, section,
8643 abbrev_section, info_ptr,
8644 rcuh_kind::COMPILE);
8645
8646 /* Save the compilation unit for later lookup. */
8647 if (cu_header.unit_type != DW_UT_type)
8648 {
8649 this_cu = XOBNEW (&objfile->objfile_obstack,
8650 struct dwarf2_per_cu_data);
8651 memset (this_cu, 0, sizeof (*this_cu));
8652 }
8653 else
8654 {
8655 auto sig_type = XOBNEW (&objfile->objfile_obstack,
8656 struct signatured_type);
8657 memset (sig_type, 0, sizeof (*sig_type));
8658 sig_type->signature = cu_header.signature;
8659 sig_type->type_offset_in_tu = cu_header.type_cu_offset_in_tu;
8660 this_cu = &sig_type->per_cu;
8661 }
8662 this_cu->is_debug_types = (cu_header.unit_type == DW_UT_type);
8663 this_cu->sect_off = sect_off;
8664 this_cu->length = cu_header.length + cu_header.initial_length_size;
8665 this_cu->is_dwz = is_dwz;
8666 this_cu->dwarf2_per_objfile = dwarf2_per_objfile;
8667 this_cu->section = section;
8668
8669 dwarf2_per_objfile->all_comp_units.push_back (this_cu);
8670
8671 info_ptr = info_ptr + this_cu->length;
8672 }
8673 }
8674
8675 /* Create a list of all compilation units in OBJFILE.
8676 This is only done for -readnow and building partial symtabs. */
8677
8678 static void
8679 create_all_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
8680 {
8681 gdb_assert (dwarf2_per_objfile->all_comp_units.empty ());
8682 read_comp_units_from_section (dwarf2_per_objfile, &dwarf2_per_objfile->info,
8683 &dwarf2_per_objfile->abbrev, 0);
8684
8685 dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
8686 if (dwz != NULL)
8687 read_comp_units_from_section (dwarf2_per_objfile, &dwz->info, &dwz->abbrev,
8688 1);
8689 }
8690
8691 /* Process all loaded DIEs for compilation unit CU, starting at
8692 FIRST_DIE. The caller should pass SET_ADDRMAP == 1 if the compilation
8693 unit DIE did not have PC info (DW_AT_low_pc and DW_AT_high_pc, or
8694 DW_AT_ranges). See the comments of add_partial_subprogram on how
8695 SET_ADDRMAP is used and how *LOWPC and *HIGHPC are updated. */
8696
8697 static void
8698 scan_partial_symbols (struct partial_die_info *first_die, CORE_ADDR *lowpc,
8699 CORE_ADDR *highpc, int set_addrmap,
8700 struct dwarf2_cu *cu)
8701 {
8702 struct partial_die_info *pdi;
8703
8704 /* Now, march along the PDI's, descending into ones which have
8705 interesting children but skipping the children of the other ones,
8706 until we reach the end of the compilation unit. */
8707
8708 pdi = first_die;
8709
8710 while (pdi != NULL)
8711 {
8712 pdi->fixup (cu);
8713
8714 /* Anonymous namespaces or modules have no name but have interesting
8715 children, so we need to look at them. Ditto for anonymous
8716 enums. */
8717
8718 if (pdi->name != NULL || pdi->tag == DW_TAG_namespace
8719 || pdi->tag == DW_TAG_module || pdi->tag == DW_TAG_enumeration_type
8720 || pdi->tag == DW_TAG_imported_unit
8721 || pdi->tag == DW_TAG_inlined_subroutine)
8722 {
8723 switch (pdi->tag)
8724 {
8725 case DW_TAG_subprogram:
8726 case DW_TAG_inlined_subroutine:
8727 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
8728 break;
8729 case DW_TAG_constant:
8730 case DW_TAG_variable:
8731 case DW_TAG_typedef:
8732 case DW_TAG_union_type:
8733 if (!pdi->is_declaration)
8734 {
8735 add_partial_symbol (pdi, cu);
8736 }
8737 break;
8738 case DW_TAG_class_type:
8739 case DW_TAG_interface_type:
8740 case DW_TAG_structure_type:
8741 if (!pdi->is_declaration)
8742 {
8743 add_partial_symbol (pdi, cu);
8744 }
8745 if ((cu->language == language_rust
8746 || cu->language == language_cplus) && pdi->has_children)
8747 scan_partial_symbols (pdi->die_child, lowpc, highpc,
8748 set_addrmap, cu);
8749 break;
8750 case DW_TAG_enumeration_type:
8751 if (!pdi->is_declaration)
8752 add_partial_enumeration (pdi, cu);
8753 break;
8754 case DW_TAG_base_type:
8755 case DW_TAG_subrange_type:
8756 /* File scope base type definitions are added to the partial
8757 symbol table. */
8758 add_partial_symbol (pdi, cu);
8759 break;
8760 case DW_TAG_namespace:
8761 add_partial_namespace (pdi, lowpc, highpc, set_addrmap, cu);
8762 break;
8763 case DW_TAG_module:
8764 if (!pdi->is_declaration)
8765 add_partial_module (pdi, lowpc, highpc, set_addrmap, cu);
8766 break;
8767 case DW_TAG_imported_unit:
8768 {
8769 struct dwarf2_per_cu_data *per_cu;
8770
8771 /* For now we don't handle imported units in type units. */
8772 if (cu->per_cu->is_debug_types)
8773 {
8774 error (_("Dwarf Error: DW_TAG_imported_unit is not"
8775 " supported in type units [in module %s]"),
8776 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
8777 }
8778
8779 per_cu = dwarf2_find_containing_comp_unit
8780 (pdi->d.sect_off, pdi->is_dwz,
8781 cu->per_cu->dwarf2_per_objfile);
8782
8783 /* Go read the partial unit, if needed. */
8784 if (per_cu->v.psymtab == NULL)
8785 process_psymtab_comp_unit (per_cu, 1, cu->language);
8786
8787 cu->per_cu->imported_symtabs_push (per_cu);
8788 }
8789 break;
8790 case DW_TAG_imported_declaration:
8791 add_partial_symbol (pdi, cu);
8792 break;
8793 default:
8794 break;
8795 }
8796 }
8797
8798 /* If the die has a sibling, skip to the sibling. */
8799
8800 pdi = pdi->die_sibling;
8801 }
8802 }
8803
8804 /* Functions used to compute the fully scoped name of a partial DIE.
8805
8806 Normally, this is simple. For C++, the parent DIE's fully scoped
8807 name is concatenated with "::" and the partial DIE's name.
8808 Enumerators are an exception; they use the scope of their parent
8809 enumeration type, i.e. the name of the enumeration type is not
8810 prepended to the enumerator.
8811
8812 There are two complexities. One is DW_AT_specification; in this
8813 case "parent" means the parent of the target of the specification,
8814 instead of the direct parent of the DIE. The other is compilers
8815 which do not emit DW_TAG_namespace; in this case we try to guess
8816 the fully qualified name of structure types from their members'
8817 linkage names. This must be done using the DIE's children rather
8818 than the children of any DW_AT_specification target. We only need
8819 to do this for structures at the top level, i.e. if the target of
8820 any DW_AT_specification (if any; otherwise the DIE itself) does not
8821 have a parent. */
8822
8823 /* Compute the scope prefix associated with PDI's parent, in
8824 compilation unit CU. The result will be allocated on CU's
8825 comp_unit_obstack, or a copy of the already allocated PDI->NAME
8826 field. NULL is returned if no prefix is necessary. */
8827 static const char *
8828 partial_die_parent_scope (struct partial_die_info *pdi,
8829 struct dwarf2_cu *cu)
8830 {
8831 const char *grandparent_scope;
8832 struct partial_die_info *parent, *real_pdi;
8833
8834 /* We need to look at our parent DIE; if we have a DW_AT_specification,
8835 then this means the parent of the specification DIE. */
8836
8837 real_pdi = pdi;
8838 while (real_pdi->has_specification)
8839 {
8840 auto res = find_partial_die (real_pdi->spec_offset,
8841 real_pdi->spec_is_dwz, cu);
8842 real_pdi = res.pdi;
8843 cu = res.cu;
8844 }
8845
8846 parent = real_pdi->die_parent;
8847 if (parent == NULL)
8848 return NULL;
8849
8850 if (parent->scope_set)
8851 return parent->scope;
8852
8853 parent->fixup (cu);
8854
8855 grandparent_scope = partial_die_parent_scope (parent, cu);
8856
8857 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
8858 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
8859 Work around this problem here. */
8860 if (cu->language == language_cplus
8861 && parent->tag == DW_TAG_namespace
8862 && strcmp (parent->name, "::") == 0
8863 && grandparent_scope == NULL)
8864 {
8865 parent->scope = NULL;
8866 parent->scope_set = 1;
8867 return NULL;
8868 }
8869
8870 /* Nested subroutines in Fortran get a prefix. */
8871 if (pdi->tag == DW_TAG_enumerator)
8872 /* Enumerators should not get the name of the enumeration as a prefix. */
8873 parent->scope = grandparent_scope;
8874 else if (parent->tag == DW_TAG_namespace
8875 || parent->tag == DW_TAG_module
8876 || parent->tag == DW_TAG_structure_type
8877 || parent->tag == DW_TAG_class_type
8878 || parent->tag == DW_TAG_interface_type
8879 || parent->tag == DW_TAG_union_type
8880 || parent->tag == DW_TAG_enumeration_type
8881 || (cu->language == language_fortran
8882 && parent->tag == DW_TAG_subprogram
8883 && pdi->tag == DW_TAG_subprogram))
8884 {
8885 if (grandparent_scope == NULL)
8886 parent->scope = parent->name;
8887 else
8888 parent->scope = typename_concat (&cu->comp_unit_obstack,
8889 grandparent_scope,
8890 parent->name, 0, cu);
8891 }
8892 else
8893 {
8894 /* FIXME drow/2004-04-01: What should we be doing with
8895 function-local names? For partial symbols, we should probably be
8896 ignoring them. */
8897 complaint (_("unhandled containing DIE tag %s for DIE at %s"),
8898 dwarf_tag_name (parent->tag),
8899 sect_offset_str (pdi->sect_off));
8900 parent->scope = grandparent_scope;
8901 }
8902
8903 parent->scope_set = 1;
8904 return parent->scope;
8905 }
8906
8907 /* Return the fully scoped name associated with PDI, from compilation unit
8908 CU. The result will be allocated with malloc. */
8909
8910 static char *
8911 partial_die_full_name (struct partial_die_info *pdi,
8912 struct dwarf2_cu *cu)
8913 {
8914 const char *parent_scope;
8915
8916 /* If this is a template instantiation, we can not work out the
8917 template arguments from partial DIEs. So, unfortunately, we have
8918 to go through the full DIEs. At least any work we do building
8919 types here will be reused if full symbols are loaded later. */
8920 if (pdi->has_template_arguments)
8921 {
8922 pdi->fixup (cu);
8923
8924 if (pdi->name != NULL && strchr (pdi->name, '<') == NULL)
8925 {
8926 struct die_info *die;
8927 struct attribute attr;
8928 struct dwarf2_cu *ref_cu = cu;
8929
8930 /* DW_FORM_ref_addr is using section offset. */
8931 attr.name = (enum dwarf_attribute) 0;
8932 attr.form = DW_FORM_ref_addr;
8933 attr.u.unsnd = to_underlying (pdi->sect_off);
8934 die = follow_die_ref (NULL, &attr, &ref_cu);
8935
8936 return xstrdup (dwarf2_full_name (NULL, die, ref_cu));
8937 }
8938 }
8939
8940 parent_scope = partial_die_parent_scope (pdi, cu);
8941 if (parent_scope == NULL)
8942 return NULL;
8943 else
8944 return typename_concat (NULL, parent_scope, pdi->name, 0, cu);
8945 }
8946
8947 static void
8948 add_partial_symbol (struct partial_die_info *pdi, struct dwarf2_cu *cu)
8949 {
8950 struct dwarf2_per_objfile *dwarf2_per_objfile
8951 = cu->per_cu->dwarf2_per_objfile;
8952 struct objfile *objfile = dwarf2_per_objfile->objfile;
8953 struct gdbarch *gdbarch = get_objfile_arch (objfile);
8954 CORE_ADDR addr = 0;
8955 const char *actual_name = NULL;
8956 CORE_ADDR baseaddr;
8957 char *built_actual_name;
8958
8959 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
8960
8961 built_actual_name = partial_die_full_name (pdi, cu);
8962 if (built_actual_name != NULL)
8963 actual_name = built_actual_name;
8964
8965 if (actual_name == NULL)
8966 actual_name = pdi->name;
8967
8968 switch (pdi->tag)
8969 {
8970 case DW_TAG_inlined_subroutine:
8971 case DW_TAG_subprogram:
8972 addr = (gdbarch_adjust_dwarf2_addr (gdbarch, pdi->lowpc + baseaddr)
8973 - baseaddr);
8974 if (pdi->is_external
8975 || cu->language == language_ada
8976 || (cu->language == language_fortran
8977 && pdi->die_parent != NULL
8978 && pdi->die_parent->tag == DW_TAG_subprogram))
8979 {
8980 /* Normally, only "external" DIEs are part of the global scope.
8981 But in Ada and Fortran, we want to be able to access nested
8982 procedures globally. So all Ada and Fortran subprograms are
8983 stored in the global scope. */
8984 add_psymbol_to_list (actual_name,
8985 built_actual_name != NULL,
8986 VAR_DOMAIN, LOC_BLOCK,
8987 SECT_OFF_TEXT (objfile),
8988 psymbol_placement::GLOBAL,
8989 addr,
8990 cu->language, objfile);
8991 }
8992 else
8993 {
8994 add_psymbol_to_list (actual_name,
8995 built_actual_name != NULL,
8996 VAR_DOMAIN, LOC_BLOCK,
8997 SECT_OFF_TEXT (objfile),
8998 psymbol_placement::STATIC,
8999 addr, cu->language, objfile);
9000 }
9001
9002 if (pdi->main_subprogram && actual_name != NULL)
9003 set_objfile_main_name (objfile, actual_name, cu->language);
9004 break;
9005 case DW_TAG_constant:
9006 add_psymbol_to_list (actual_name,
9007 built_actual_name != NULL, VAR_DOMAIN, LOC_STATIC,
9008 -1, (pdi->is_external
9009 ? psymbol_placement::GLOBAL
9010 : psymbol_placement::STATIC),
9011 0, cu->language, objfile);
9012 break;
9013 case DW_TAG_variable:
9014 if (pdi->d.locdesc)
9015 addr = decode_locdesc (pdi->d.locdesc, cu);
9016
9017 if (pdi->d.locdesc
9018 && addr == 0
9019 && !dwarf2_per_objfile->has_section_at_zero)
9020 {
9021 /* A global or static variable may also have been stripped
9022 out by the linker if unused, in which case its address
9023 will be nullified; do not add such variables into partial
9024 symbol table then. */
9025 }
9026 else if (pdi->is_external)
9027 {
9028 /* Global Variable.
9029 Don't enter into the minimal symbol tables as there is
9030 a minimal symbol table entry from the ELF symbols already.
9031 Enter into partial symbol table if it has a location
9032 descriptor or a type.
9033 If the location descriptor is missing, new_symbol will create
9034 a LOC_UNRESOLVED symbol, the address of the variable will then
9035 be determined from the minimal symbol table whenever the variable
9036 is referenced.
9037 The address for the partial symbol table entry is not
9038 used by GDB, but it comes in handy for debugging partial symbol
9039 table building. */
9040
9041 if (pdi->d.locdesc || pdi->has_type)
9042 add_psymbol_to_list (actual_name,
9043 built_actual_name != NULL,
9044 VAR_DOMAIN, LOC_STATIC,
9045 SECT_OFF_TEXT (objfile),
9046 psymbol_placement::GLOBAL,
9047 addr, cu->language, objfile);
9048 }
9049 else
9050 {
9051 int has_loc = pdi->d.locdesc != NULL;
9052
9053 /* Static Variable. Skip symbols whose value we cannot know (those
9054 without location descriptors or constant values). */
9055 if (!has_loc && !pdi->has_const_value)
9056 {
9057 xfree (built_actual_name);
9058 return;
9059 }
9060
9061 add_psymbol_to_list (actual_name,
9062 built_actual_name != NULL,
9063 VAR_DOMAIN, LOC_STATIC,
9064 SECT_OFF_TEXT (objfile),
9065 psymbol_placement::STATIC,
9066 has_loc ? addr : 0,
9067 cu->language, objfile);
9068 }
9069 break;
9070 case DW_TAG_typedef:
9071 case DW_TAG_base_type:
9072 case DW_TAG_subrange_type:
9073 add_psymbol_to_list (actual_name,
9074 built_actual_name != NULL,
9075 VAR_DOMAIN, LOC_TYPEDEF, -1,
9076 psymbol_placement::STATIC,
9077 0, cu->language, objfile);
9078 break;
9079 case DW_TAG_imported_declaration:
9080 case DW_TAG_namespace:
9081 add_psymbol_to_list (actual_name,
9082 built_actual_name != NULL,
9083 VAR_DOMAIN, LOC_TYPEDEF, -1,
9084 psymbol_placement::GLOBAL,
9085 0, cu->language, objfile);
9086 break;
9087 case DW_TAG_module:
9088 /* With Fortran 77 there might be a "BLOCK DATA" module
9089 available without any name. If so, we skip the module as it
9090 doesn't bring any value. */
9091 if (actual_name != nullptr)
9092 add_psymbol_to_list (actual_name,
9093 built_actual_name != NULL,
9094 MODULE_DOMAIN, LOC_TYPEDEF, -1,
9095 psymbol_placement::GLOBAL,
9096 0, cu->language, objfile);
9097 break;
9098 case DW_TAG_class_type:
9099 case DW_TAG_interface_type:
9100 case DW_TAG_structure_type:
9101 case DW_TAG_union_type:
9102 case DW_TAG_enumeration_type:
9103 /* Skip external references. The DWARF standard says in the section
9104 about "Structure, Union, and Class Type Entries": "An incomplete
9105 structure, union or class type is represented by a structure,
9106 union or class entry that does not have a byte size attribute
9107 and that has a DW_AT_declaration attribute." */
9108 if (!pdi->has_byte_size && pdi->is_declaration)
9109 {
9110 xfree (built_actual_name);
9111 return;
9112 }
9113
9114 /* NOTE: carlton/2003-10-07: See comment in new_symbol about
9115 static vs. global. */
9116 add_psymbol_to_list (actual_name,
9117 built_actual_name != NULL,
9118 STRUCT_DOMAIN, LOC_TYPEDEF, -1,
9119 cu->language == language_cplus
9120 ? psymbol_placement::GLOBAL
9121 : psymbol_placement::STATIC,
9122 0, cu->language, objfile);
9123
9124 break;
9125 case DW_TAG_enumerator:
9126 add_psymbol_to_list (actual_name,
9127 built_actual_name != NULL,
9128 VAR_DOMAIN, LOC_CONST, -1,
9129 cu->language == language_cplus
9130 ? psymbol_placement::GLOBAL
9131 : psymbol_placement::STATIC,
9132 0, cu->language, objfile);
9133 break;
9134 default:
9135 break;
9136 }
9137
9138 xfree (built_actual_name);
9139 }
9140
9141 /* Read a partial die corresponding to a namespace; also, add a symbol
9142 corresponding to that namespace to the symbol table. NAMESPACE is
9143 the name of the enclosing namespace. */
9144
9145 static void
9146 add_partial_namespace (struct partial_die_info *pdi,
9147 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9148 int set_addrmap, struct dwarf2_cu *cu)
9149 {
9150 /* Add a symbol for the namespace. */
9151
9152 add_partial_symbol (pdi, cu);
9153
9154 /* Now scan partial symbols in that namespace. */
9155
9156 if (pdi->has_children)
9157 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9158 }
9159
9160 /* Read a partial die corresponding to a Fortran module. */
9161
9162 static void
9163 add_partial_module (struct partial_die_info *pdi, CORE_ADDR *lowpc,
9164 CORE_ADDR *highpc, int set_addrmap, struct dwarf2_cu *cu)
9165 {
9166 /* Add a symbol for the namespace. */
9167
9168 add_partial_symbol (pdi, cu);
9169
9170 /* Now scan partial symbols in that module. */
9171
9172 if (pdi->has_children)
9173 scan_partial_symbols (pdi->die_child, lowpc, highpc, set_addrmap, cu);
9174 }
9175
9176 /* Read a partial die corresponding to a subprogram or an inlined
9177 subprogram and create a partial symbol for that subprogram.
9178 When the CU language allows it, this routine also defines a partial
9179 symbol for each nested subprogram that this subprogram contains.
9180 If SET_ADDRMAP is true, record the covered ranges in the addrmap.
9181 Set *LOWPC and *HIGHPC to the lowest and highest PC values found in PDI.
9182
9183 PDI may also be a lexical block, in which case we simply search
9184 recursively for subprograms defined inside that lexical block.
9185 Again, this is only performed when the CU language allows this
9186 type of definitions. */
9187
9188 static void
9189 add_partial_subprogram (struct partial_die_info *pdi,
9190 CORE_ADDR *lowpc, CORE_ADDR *highpc,
9191 int set_addrmap, struct dwarf2_cu *cu)
9192 {
9193 if (pdi->tag == DW_TAG_subprogram || pdi->tag == DW_TAG_inlined_subroutine)
9194 {
9195 if (pdi->has_pc_info)
9196 {
9197 if (pdi->lowpc < *lowpc)
9198 *lowpc = pdi->lowpc;
9199 if (pdi->highpc > *highpc)
9200 *highpc = pdi->highpc;
9201 if (set_addrmap)
9202 {
9203 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9204 struct gdbarch *gdbarch = get_objfile_arch (objfile);
9205 CORE_ADDR baseaddr;
9206 CORE_ADDR this_highpc;
9207 CORE_ADDR this_lowpc;
9208
9209 baseaddr = ANOFFSET (objfile->section_offsets,
9210 SECT_OFF_TEXT (objfile));
9211 this_lowpc
9212 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9213 pdi->lowpc + baseaddr)
9214 - baseaddr);
9215 this_highpc
9216 = (gdbarch_adjust_dwarf2_addr (gdbarch,
9217 pdi->highpc + baseaddr)
9218 - baseaddr);
9219 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
9220 this_lowpc, this_highpc - 1,
9221 cu->per_cu->v.psymtab);
9222 }
9223 }
9224
9225 if (pdi->has_pc_info || (!pdi->is_external && pdi->may_be_inlined))
9226 {
9227 if (!pdi->is_declaration)
9228 /* Ignore subprogram DIEs that do not have a name, they are
9229 illegal. Do not emit a complaint at this point, we will
9230 do so when we convert this psymtab into a symtab. */
9231 if (pdi->name)
9232 add_partial_symbol (pdi, cu);
9233 }
9234 }
9235
9236 if (! pdi->has_children)
9237 return;
9238
9239 if (cu->language == language_ada || cu->language == language_fortran)
9240 {
9241 pdi = pdi->die_child;
9242 while (pdi != NULL)
9243 {
9244 pdi->fixup (cu);
9245 if (pdi->tag == DW_TAG_subprogram
9246 || pdi->tag == DW_TAG_inlined_subroutine
9247 || pdi->tag == DW_TAG_lexical_block)
9248 add_partial_subprogram (pdi, lowpc, highpc, set_addrmap, cu);
9249 pdi = pdi->die_sibling;
9250 }
9251 }
9252 }
9253
9254 /* Read a partial die corresponding to an enumeration type. */
9255
9256 static void
9257 add_partial_enumeration (struct partial_die_info *enum_pdi,
9258 struct dwarf2_cu *cu)
9259 {
9260 struct partial_die_info *pdi;
9261
9262 if (enum_pdi->name != NULL)
9263 add_partial_symbol (enum_pdi, cu);
9264
9265 pdi = enum_pdi->die_child;
9266 while (pdi)
9267 {
9268 if (pdi->tag != DW_TAG_enumerator || pdi->name == NULL)
9269 complaint (_("malformed enumerator DIE ignored"));
9270 else
9271 add_partial_symbol (pdi, cu);
9272 pdi = pdi->die_sibling;
9273 }
9274 }
9275
9276 /* Return the initial uleb128 in the die at INFO_PTR. */
9277
9278 static unsigned int
9279 peek_abbrev_code (bfd *abfd, const gdb_byte *info_ptr)
9280 {
9281 unsigned int bytes_read;
9282
9283 return read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9284 }
9285
9286 /* Read the initial uleb128 in the die at INFO_PTR in compilation unit
9287 READER::CU. Use READER::ABBREV_TABLE to lookup any abbreviation.
9288
9289 Return the corresponding abbrev, or NULL if the number is zero (indicating
9290 an empty DIE). In either case *BYTES_READ will be set to the length of
9291 the initial number. */
9292
9293 static struct abbrev_info *
9294 peek_die_abbrev (const die_reader_specs &reader,
9295 const gdb_byte *info_ptr, unsigned int *bytes_read)
9296 {
9297 dwarf2_cu *cu = reader.cu;
9298 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
9299 unsigned int abbrev_number
9300 = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
9301
9302 if (abbrev_number == 0)
9303 return NULL;
9304
9305 abbrev_info *abbrev = reader.abbrev_table->lookup_abbrev (abbrev_number);
9306 if (!abbrev)
9307 {
9308 error (_("Dwarf Error: Could not find abbrev number %d in %s"
9309 " at offset %s [in module %s]"),
9310 abbrev_number, cu->per_cu->is_debug_types ? "TU" : "CU",
9311 sect_offset_str (cu->header.sect_off), bfd_get_filename (abfd));
9312 }
9313
9314 return abbrev;
9315 }
9316
9317 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9318 Returns a pointer to the end of a series of DIEs, terminated by an empty
9319 DIE. Any children of the skipped DIEs will also be skipped. */
9320
9321 static const gdb_byte *
9322 skip_children (const struct die_reader_specs *reader, const gdb_byte *info_ptr)
9323 {
9324 while (1)
9325 {
9326 unsigned int bytes_read;
9327 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
9328
9329 if (abbrev == NULL)
9330 return info_ptr + bytes_read;
9331 else
9332 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
9333 }
9334 }
9335
9336 /* Scan the debug information for CU starting at INFO_PTR in buffer BUFFER.
9337 INFO_PTR should point just after the initial uleb128 of a DIE, and the
9338 abbrev corresponding to that skipped uleb128 should be passed in
9339 ABBREV. Returns a pointer to this DIE's sibling, skipping any
9340 children. */
9341
9342 static const gdb_byte *
9343 skip_one_die (const struct die_reader_specs *reader, const gdb_byte *info_ptr,
9344 struct abbrev_info *abbrev)
9345 {
9346 unsigned int bytes_read;
9347 struct attribute attr;
9348 bfd *abfd = reader->abfd;
9349 struct dwarf2_cu *cu = reader->cu;
9350 const gdb_byte *buffer = reader->buffer;
9351 const gdb_byte *buffer_end = reader->buffer_end;
9352 unsigned int form, i;
9353
9354 for (i = 0; i < abbrev->num_attrs; i++)
9355 {
9356 /* The only abbrev we care about is DW_AT_sibling. */
9357 if (abbrev->attrs[i].name == DW_AT_sibling)
9358 {
9359 read_attribute (reader, &attr, &abbrev->attrs[i], info_ptr);
9360 if (attr.form == DW_FORM_ref_addr)
9361 complaint (_("ignoring absolute DW_AT_sibling"));
9362 else
9363 {
9364 sect_offset off = dwarf2_get_ref_die_offset (&attr);
9365 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
9366
9367 if (sibling_ptr < info_ptr)
9368 complaint (_("DW_AT_sibling points backwards"));
9369 else if (sibling_ptr > reader->buffer_end)
9370 dwarf2_section_buffer_overflow_complaint (reader->die_section);
9371 else
9372 return sibling_ptr;
9373 }
9374 }
9375
9376 /* If it isn't DW_AT_sibling, skip this attribute. */
9377 form = abbrev->attrs[i].form;
9378 skip_attribute:
9379 switch (form)
9380 {
9381 case DW_FORM_ref_addr:
9382 /* In DWARF 2, DW_FORM_ref_addr is address sized; in DWARF 3
9383 and later it is offset sized. */
9384 if (cu->header.version == 2)
9385 info_ptr += cu->header.addr_size;
9386 else
9387 info_ptr += cu->header.offset_size;
9388 break;
9389 case DW_FORM_GNU_ref_alt:
9390 info_ptr += cu->header.offset_size;
9391 break;
9392 case DW_FORM_addr:
9393 info_ptr += cu->header.addr_size;
9394 break;
9395 case DW_FORM_data1:
9396 case DW_FORM_ref1:
9397 case DW_FORM_flag:
9398 case DW_FORM_strx1:
9399 info_ptr += 1;
9400 break;
9401 case DW_FORM_flag_present:
9402 case DW_FORM_implicit_const:
9403 break;
9404 case DW_FORM_data2:
9405 case DW_FORM_ref2:
9406 case DW_FORM_strx2:
9407 info_ptr += 2;
9408 break;
9409 case DW_FORM_strx3:
9410 info_ptr += 3;
9411 break;
9412 case DW_FORM_data4:
9413 case DW_FORM_ref4:
9414 case DW_FORM_strx4:
9415 info_ptr += 4;
9416 break;
9417 case DW_FORM_data8:
9418 case DW_FORM_ref8:
9419 case DW_FORM_ref_sig8:
9420 info_ptr += 8;
9421 break;
9422 case DW_FORM_data16:
9423 info_ptr += 16;
9424 break;
9425 case DW_FORM_string:
9426 read_direct_string (abfd, info_ptr, &bytes_read);
9427 info_ptr += bytes_read;
9428 break;
9429 case DW_FORM_sec_offset:
9430 case DW_FORM_strp:
9431 case DW_FORM_GNU_strp_alt:
9432 info_ptr += cu->header.offset_size;
9433 break;
9434 case DW_FORM_exprloc:
9435 case DW_FORM_block:
9436 info_ptr += read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9437 info_ptr += bytes_read;
9438 break;
9439 case DW_FORM_block1:
9440 info_ptr += 1 + read_1_byte (abfd, info_ptr);
9441 break;
9442 case DW_FORM_block2:
9443 info_ptr += 2 + read_2_bytes (abfd, info_ptr);
9444 break;
9445 case DW_FORM_block4:
9446 info_ptr += 4 + read_4_bytes (abfd, info_ptr);
9447 break;
9448 case DW_FORM_addrx:
9449 case DW_FORM_strx:
9450 case DW_FORM_sdata:
9451 case DW_FORM_udata:
9452 case DW_FORM_ref_udata:
9453 case DW_FORM_GNU_addr_index:
9454 case DW_FORM_GNU_str_index:
9455 info_ptr = safe_skip_leb128 (info_ptr, buffer_end);
9456 break;
9457 case DW_FORM_indirect:
9458 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
9459 info_ptr += bytes_read;
9460 /* We need to continue parsing from here, so just go back to
9461 the top. */
9462 goto skip_attribute;
9463
9464 default:
9465 error (_("Dwarf Error: Cannot handle %s "
9466 "in DWARF reader [in module %s]"),
9467 dwarf_form_name (form),
9468 bfd_get_filename (abfd));
9469 }
9470 }
9471
9472 if (abbrev->has_children)
9473 return skip_children (reader, info_ptr);
9474 else
9475 return info_ptr;
9476 }
9477
9478 /* Locate ORIG_PDI's sibling.
9479 INFO_PTR should point to the start of the next DIE after ORIG_PDI. */
9480
9481 static const gdb_byte *
9482 locate_pdi_sibling (const struct die_reader_specs *reader,
9483 struct partial_die_info *orig_pdi,
9484 const gdb_byte *info_ptr)
9485 {
9486 /* Do we know the sibling already? */
9487
9488 if (orig_pdi->sibling)
9489 return orig_pdi->sibling;
9490
9491 /* Are there any children to deal with? */
9492
9493 if (!orig_pdi->has_children)
9494 return info_ptr;
9495
9496 /* Skip the children the long way. */
9497
9498 return skip_children (reader, info_ptr);
9499 }
9500
9501 /* Expand this partial symbol table into a full symbol table. SELF is
9502 not NULL. */
9503
9504 static void
9505 dwarf2_read_symtab (struct partial_symtab *self,
9506 struct objfile *objfile)
9507 {
9508 struct dwarf2_per_objfile *dwarf2_per_objfile
9509 = get_dwarf2_per_objfile (objfile);
9510
9511 if (self->readin)
9512 {
9513 warning (_("bug: psymtab for %s is already read in."),
9514 self->filename);
9515 }
9516 else
9517 {
9518 if (info_verbose)
9519 {
9520 printf_filtered (_("Reading in symbols for %s..."),
9521 self->filename);
9522 gdb_flush (gdb_stdout);
9523 }
9524
9525 /* If this psymtab is constructed from a debug-only objfile, the
9526 has_section_at_zero flag will not necessarily be correct. We
9527 can get the correct value for this flag by looking at the data
9528 associated with the (presumably stripped) associated objfile. */
9529 if (objfile->separate_debug_objfile_backlink)
9530 {
9531 struct dwarf2_per_objfile *dpo_backlink
9532 = get_dwarf2_per_objfile (objfile->separate_debug_objfile_backlink);
9533
9534 dwarf2_per_objfile->has_section_at_zero
9535 = dpo_backlink->has_section_at_zero;
9536 }
9537
9538 dwarf2_per_objfile->reading_partial_symbols = 0;
9539
9540 psymtab_to_symtab_1 (self);
9541
9542 /* Finish up the debug error message. */
9543 if (info_verbose)
9544 printf_filtered (_("done.\n"));
9545 }
9546
9547 process_cu_includes (dwarf2_per_objfile);
9548 }
9549 \f
9550 /* Reading in full CUs. */
9551
9552 /* Add PER_CU to the queue. */
9553
9554 static void
9555 queue_comp_unit (struct dwarf2_per_cu_data *per_cu,
9556 enum language pretend_language)
9557 {
9558 struct dwarf2_queue_item *item;
9559
9560 per_cu->queued = 1;
9561 item = XNEW (struct dwarf2_queue_item);
9562 item->per_cu = per_cu;
9563 item->pretend_language = pretend_language;
9564 item->next = NULL;
9565
9566 if (dwarf2_queue == NULL)
9567 dwarf2_queue = item;
9568 else
9569 dwarf2_queue_tail->next = item;
9570
9571 dwarf2_queue_tail = item;
9572 }
9573
9574 /* If PER_CU is not yet queued, add it to the queue.
9575 If DEPENDENT_CU is non-NULL, it has a reference to PER_CU so add a
9576 dependency.
9577 The result is non-zero if PER_CU was queued, otherwise the result is zero
9578 meaning either PER_CU is already queued or it is already loaded.
9579
9580 N.B. There is an invariant here that if a CU is queued then it is loaded.
9581 The caller is required to load PER_CU if we return non-zero. */
9582
9583 static int
9584 maybe_queue_comp_unit (struct dwarf2_cu *dependent_cu,
9585 struct dwarf2_per_cu_data *per_cu,
9586 enum language pretend_language)
9587 {
9588 /* We may arrive here during partial symbol reading, if we need full
9589 DIEs to process an unusual case (e.g. template arguments). Do
9590 not queue PER_CU, just tell our caller to load its DIEs. */
9591 if (per_cu->dwarf2_per_objfile->reading_partial_symbols)
9592 {
9593 if (per_cu->cu == NULL || per_cu->cu->dies == NULL)
9594 return 1;
9595 return 0;
9596 }
9597
9598 /* Mark the dependence relation so that we don't flush PER_CU
9599 too early. */
9600 if (dependent_cu != NULL)
9601 dwarf2_add_dependence (dependent_cu, per_cu);
9602
9603 /* If it's already on the queue, we have nothing to do. */
9604 if (per_cu->queued)
9605 return 0;
9606
9607 /* If the compilation unit is already loaded, just mark it as
9608 used. */
9609 if (per_cu->cu != NULL)
9610 {
9611 per_cu->cu->last_used = 0;
9612 return 0;
9613 }
9614
9615 /* Add it to the queue. */
9616 queue_comp_unit (per_cu, pretend_language);
9617
9618 return 1;
9619 }
9620
9621 /* Process the queue. */
9622
9623 static void
9624 process_queue (struct dwarf2_per_objfile *dwarf2_per_objfile)
9625 {
9626 struct dwarf2_queue_item *item, *next_item;
9627
9628 if (dwarf_read_debug)
9629 {
9630 fprintf_unfiltered (gdb_stdlog,
9631 "Expanding one or more symtabs of objfile %s ...\n",
9632 objfile_name (dwarf2_per_objfile->objfile));
9633 }
9634
9635 /* The queue starts out with one item, but following a DIE reference
9636 may load a new CU, adding it to the end of the queue. */
9637 for (item = dwarf2_queue; item != NULL; dwarf2_queue = item = next_item)
9638 {
9639 if ((dwarf2_per_objfile->using_index
9640 ? !item->per_cu->v.quick->compunit_symtab
9641 : (item->per_cu->v.psymtab && !item->per_cu->v.psymtab->readin))
9642 /* Skip dummy CUs. */
9643 && item->per_cu->cu != NULL)
9644 {
9645 struct dwarf2_per_cu_data *per_cu = item->per_cu;
9646 unsigned int debug_print_threshold;
9647 char buf[100];
9648
9649 if (per_cu->is_debug_types)
9650 {
9651 struct signatured_type *sig_type =
9652 (struct signatured_type *) per_cu;
9653
9654 sprintf (buf, "TU %s at offset %s",
9655 hex_string (sig_type->signature),
9656 sect_offset_str (per_cu->sect_off));
9657 /* There can be 100s of TUs.
9658 Only print them in verbose mode. */
9659 debug_print_threshold = 2;
9660 }
9661 else
9662 {
9663 sprintf (buf, "CU at offset %s",
9664 sect_offset_str (per_cu->sect_off));
9665 debug_print_threshold = 1;
9666 }
9667
9668 if (dwarf_read_debug >= debug_print_threshold)
9669 fprintf_unfiltered (gdb_stdlog, "Expanding symtab of %s\n", buf);
9670
9671 if (per_cu->is_debug_types)
9672 process_full_type_unit (per_cu, item->pretend_language);
9673 else
9674 process_full_comp_unit (per_cu, item->pretend_language);
9675
9676 if (dwarf_read_debug >= debug_print_threshold)
9677 fprintf_unfiltered (gdb_stdlog, "Done expanding %s\n", buf);
9678 }
9679
9680 item->per_cu->queued = 0;
9681 next_item = item->next;
9682 xfree (item);
9683 }
9684
9685 dwarf2_queue_tail = NULL;
9686
9687 if (dwarf_read_debug)
9688 {
9689 fprintf_unfiltered (gdb_stdlog, "Done expanding symtabs of %s.\n",
9690 objfile_name (dwarf2_per_objfile->objfile));
9691 }
9692 }
9693
9694 /* Read in full symbols for PST, and anything it depends on. */
9695
9696 static void
9697 psymtab_to_symtab_1 (struct partial_symtab *pst)
9698 {
9699 struct dwarf2_per_cu_data *per_cu;
9700 int i;
9701
9702 if (pst->readin)
9703 return;
9704
9705 for (i = 0; i < pst->number_of_dependencies; i++)
9706 if (!pst->dependencies[i]->readin
9707 && pst->dependencies[i]->user == NULL)
9708 {
9709 /* Inform about additional files that need to be read in. */
9710 if (info_verbose)
9711 {
9712 /* FIXME: i18n: Need to make this a single string. */
9713 fputs_filtered (" ", gdb_stdout);
9714 wrap_here ("");
9715 fputs_filtered ("and ", gdb_stdout);
9716 wrap_here ("");
9717 printf_filtered ("%s...", pst->dependencies[i]->filename);
9718 wrap_here (""); /* Flush output. */
9719 gdb_flush (gdb_stdout);
9720 }
9721 psymtab_to_symtab_1 (pst->dependencies[i]);
9722 }
9723
9724 per_cu = (struct dwarf2_per_cu_data *) pst->read_symtab_private;
9725
9726 if (per_cu == NULL)
9727 {
9728 /* It's an include file, no symbols to read for it.
9729 Everything is in the parent symtab. */
9730 pst->readin = 1;
9731 return;
9732 }
9733
9734 dw2_do_instantiate_symtab (per_cu, false);
9735 }
9736
9737 /* Trivial hash function for die_info: the hash value of a DIE
9738 is its offset in .debug_info for this objfile. */
9739
9740 static hashval_t
9741 die_hash (const void *item)
9742 {
9743 const struct die_info *die = (const struct die_info *) item;
9744
9745 return to_underlying (die->sect_off);
9746 }
9747
9748 /* Trivial comparison function for die_info structures: two DIEs
9749 are equal if they have the same offset. */
9750
9751 static int
9752 die_eq (const void *item_lhs, const void *item_rhs)
9753 {
9754 const struct die_info *die_lhs = (const struct die_info *) item_lhs;
9755 const struct die_info *die_rhs = (const struct die_info *) item_rhs;
9756
9757 return die_lhs->sect_off == die_rhs->sect_off;
9758 }
9759
9760 /* die_reader_func for load_full_comp_unit.
9761 This is identical to read_signatured_type_reader,
9762 but is kept separate for now. */
9763
9764 static void
9765 load_full_comp_unit_reader (const struct die_reader_specs *reader,
9766 const gdb_byte *info_ptr,
9767 struct die_info *comp_unit_die,
9768 int has_children,
9769 void *data)
9770 {
9771 struct dwarf2_cu *cu = reader->cu;
9772 enum language *language_ptr = (enum language *) data;
9773
9774 gdb_assert (cu->die_hash == NULL);
9775 cu->die_hash =
9776 htab_create_alloc_ex (cu->header.length / 12,
9777 die_hash,
9778 die_eq,
9779 NULL,
9780 &cu->comp_unit_obstack,
9781 hashtab_obstack_allocate,
9782 dummy_obstack_deallocate);
9783
9784 if (has_children)
9785 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
9786 &info_ptr, comp_unit_die);
9787 cu->dies = comp_unit_die;
9788 /* comp_unit_die is not stored in die_hash, no need. */
9789
9790 /* We try not to read any attributes in this function, because not
9791 all CUs needed for references have been loaded yet, and symbol
9792 table processing isn't initialized. But we have to set the CU language,
9793 or we won't be able to build types correctly.
9794 Similarly, if we do not read the producer, we can not apply
9795 producer-specific interpretation. */
9796 prepare_one_comp_unit (cu, cu->dies, *language_ptr);
9797 }
9798
9799 /* Load the DIEs associated with PER_CU into memory. */
9800
9801 static void
9802 load_full_comp_unit (struct dwarf2_per_cu_data *this_cu,
9803 bool skip_partial,
9804 enum language pretend_language)
9805 {
9806 gdb_assert (! this_cu->is_debug_types);
9807
9808 init_cutu_and_read_dies (this_cu, NULL, 1, 1, skip_partial,
9809 load_full_comp_unit_reader, &pretend_language);
9810 }
9811
9812 /* Add a DIE to the delayed physname list. */
9813
9814 static void
9815 add_to_method_list (struct type *type, int fnfield_index, int index,
9816 const char *name, struct die_info *die,
9817 struct dwarf2_cu *cu)
9818 {
9819 struct delayed_method_info mi;
9820 mi.type = type;
9821 mi.fnfield_index = fnfield_index;
9822 mi.index = index;
9823 mi.name = name;
9824 mi.die = die;
9825 cu->method_list.push_back (mi);
9826 }
9827
9828 /* Check whether [PHYSNAME, PHYSNAME+LEN) ends with a modifier like
9829 "const" / "volatile". If so, decrements LEN by the length of the
9830 modifier and return true. Otherwise return false. */
9831
9832 template<size_t N>
9833 static bool
9834 check_modifier (const char *physname, size_t &len, const char (&mod)[N])
9835 {
9836 size_t mod_len = sizeof (mod) - 1;
9837 if (len > mod_len && startswith (physname + (len - mod_len), mod))
9838 {
9839 len -= mod_len;
9840 return true;
9841 }
9842 return false;
9843 }
9844
9845 /* Compute the physnames of any methods on the CU's method list.
9846
9847 The computation of method physnames is delayed in order to avoid the
9848 (bad) condition that one of the method's formal parameters is of an as yet
9849 incomplete type. */
9850
9851 static void
9852 compute_delayed_physnames (struct dwarf2_cu *cu)
9853 {
9854 /* Only C++ delays computing physnames. */
9855 if (cu->method_list.empty ())
9856 return;
9857 gdb_assert (cu->language == language_cplus);
9858
9859 for (const delayed_method_info &mi : cu->method_list)
9860 {
9861 const char *physname;
9862 struct fn_fieldlist *fn_flp
9863 = &TYPE_FN_FIELDLIST (mi.type, mi.fnfield_index);
9864 physname = dwarf2_physname (mi.name, mi.die, cu);
9865 TYPE_FN_FIELD_PHYSNAME (fn_flp->fn_fields, mi.index)
9866 = physname ? physname : "";
9867
9868 /* Since there's no tag to indicate whether a method is a
9869 const/volatile overload, extract that information out of the
9870 demangled name. */
9871 if (physname != NULL)
9872 {
9873 size_t len = strlen (physname);
9874
9875 while (1)
9876 {
9877 if (physname[len] == ')') /* shortcut */
9878 break;
9879 else if (check_modifier (physname, len, " const"))
9880 TYPE_FN_FIELD_CONST (fn_flp->fn_fields, mi.index) = 1;
9881 else if (check_modifier (physname, len, " volatile"))
9882 TYPE_FN_FIELD_VOLATILE (fn_flp->fn_fields, mi.index) = 1;
9883 else
9884 break;
9885 }
9886 }
9887 }
9888
9889 /* The list is no longer needed. */
9890 cu->method_list.clear ();
9891 }
9892
9893 /* Go objects should be embedded in a DW_TAG_module DIE,
9894 and it's not clear if/how imported objects will appear.
9895 To keep Go support simple until that's worked out,
9896 go back through what we've read and create something usable.
9897 We could do this while processing each DIE, and feels kinda cleaner,
9898 but that way is more invasive.
9899 This is to, for example, allow the user to type "p var" or "b main"
9900 without having to specify the package name, and allow lookups
9901 of module.object to work in contexts that use the expression
9902 parser. */
9903
9904 static void
9905 fixup_go_packaging (struct dwarf2_cu *cu)
9906 {
9907 char *package_name = NULL;
9908 struct pending *list;
9909 int i;
9910
9911 for (list = *cu->get_builder ()->get_global_symbols ();
9912 list != NULL;
9913 list = list->next)
9914 {
9915 for (i = 0; i < list->nsyms; ++i)
9916 {
9917 struct symbol *sym = list->symbol[i];
9918
9919 if (sym->language () == language_go
9920 && SYMBOL_CLASS (sym) == LOC_BLOCK)
9921 {
9922 char *this_package_name = go_symbol_package_name (sym);
9923
9924 if (this_package_name == NULL)
9925 continue;
9926 if (package_name == NULL)
9927 package_name = this_package_name;
9928 else
9929 {
9930 struct objfile *objfile
9931 = cu->per_cu->dwarf2_per_objfile->objfile;
9932 if (strcmp (package_name, this_package_name) != 0)
9933 complaint (_("Symtab %s has objects from two different Go packages: %s and %s"),
9934 (symbol_symtab (sym) != NULL
9935 ? symtab_to_filename_for_display
9936 (symbol_symtab (sym))
9937 : objfile_name (objfile)),
9938 this_package_name, package_name);
9939 xfree (this_package_name);
9940 }
9941 }
9942 }
9943 }
9944
9945 if (package_name != NULL)
9946 {
9947 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
9948 const char *saved_package_name
9949 = obstack_strdup (&objfile->per_bfd->storage_obstack, package_name);
9950 struct type *type = init_type (objfile, TYPE_CODE_MODULE, 0,
9951 saved_package_name);
9952 struct symbol *sym;
9953
9954 sym = allocate_symbol (objfile);
9955 sym->set_language (language_go, &objfile->objfile_obstack);
9956 SYMBOL_SET_NAMES (sym, saved_package_name, false, objfile);
9957 /* This is not VAR_DOMAIN because we want a way to ensure a lookup of,
9958 e.g., "main" finds the "main" module and not C's main(). */
9959 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
9960 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
9961 SYMBOL_TYPE (sym) = type;
9962
9963 add_symbol_to_list (sym, cu->get_builder ()->get_global_symbols ());
9964
9965 xfree (package_name);
9966 }
9967 }
9968
9969 /* Allocate a fully-qualified name consisting of the two parts on the
9970 obstack. */
9971
9972 static const char *
9973 rust_fully_qualify (struct obstack *obstack, const char *p1, const char *p2)
9974 {
9975 return obconcat (obstack, p1, "::", p2, (char *) NULL);
9976 }
9977
9978 /* A helper that allocates a struct discriminant_info to attach to a
9979 union type. */
9980
9981 static struct discriminant_info *
9982 alloc_discriminant_info (struct type *type, int discriminant_index,
9983 int default_index)
9984 {
9985 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
9986 gdb_assert (discriminant_index == -1
9987 || (discriminant_index >= 0
9988 && discriminant_index < TYPE_NFIELDS (type)));
9989 gdb_assert (default_index == -1
9990 || (default_index >= 0 && default_index < TYPE_NFIELDS (type)));
9991
9992 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
9993
9994 struct discriminant_info *disc
9995 = ((struct discriminant_info *)
9996 TYPE_ZALLOC (type,
9997 offsetof (struct discriminant_info, discriminants)
9998 + TYPE_NFIELDS (type) * sizeof (disc->discriminants[0])));
9999 disc->default_index = default_index;
10000 disc->discriminant_index = discriminant_index;
10001
10002 struct dynamic_prop prop;
10003 prop.kind = PROP_UNDEFINED;
10004 prop.data.baton = disc;
10005
10006 add_dyn_prop (DYN_PROP_DISCRIMINATED, prop, type);
10007
10008 return disc;
10009 }
10010
10011 /* Some versions of rustc emitted enums in an unusual way.
10012
10013 Ordinary enums were emitted as unions. The first element of each
10014 structure in the union was named "RUST$ENUM$DISR". This element
10015 held the discriminant.
10016
10017 These versions of Rust also implemented the "non-zero"
10018 optimization. When the enum had two values, and one is empty and
10019 the other holds a pointer that cannot be zero, the pointer is used
10020 as the discriminant, with a zero value meaning the empty variant.
10021 Here, the union's first member is of the form
10022 RUST$ENCODED$ENUM$<fieldno>$<fieldno>$...$<variantname>
10023 where the fieldnos are the indices of the fields that should be
10024 traversed in order to find the field (which may be several fields deep)
10025 and the variantname is the name of the variant of the case when the
10026 field is zero.
10027
10028 This function recognizes whether TYPE is of one of these forms,
10029 and, if so, smashes it to be a variant type. */
10030
10031 static void
10032 quirk_rust_enum (struct type *type, struct objfile *objfile)
10033 {
10034 gdb_assert (TYPE_CODE (type) == TYPE_CODE_UNION);
10035
10036 /* We don't need to deal with empty enums. */
10037 if (TYPE_NFIELDS (type) == 0)
10038 return;
10039
10040 #define RUST_ENUM_PREFIX "RUST$ENCODED$ENUM$"
10041 if (TYPE_NFIELDS (type) == 1
10042 && startswith (TYPE_FIELD_NAME (type, 0), RUST_ENUM_PREFIX))
10043 {
10044 const char *name = TYPE_FIELD_NAME (type, 0) + strlen (RUST_ENUM_PREFIX);
10045
10046 /* Decode the field name to find the offset of the
10047 discriminant. */
10048 ULONGEST bit_offset = 0;
10049 struct type *field_type = TYPE_FIELD_TYPE (type, 0);
10050 while (name[0] >= '0' && name[0] <= '9')
10051 {
10052 char *tail;
10053 unsigned long index = strtoul (name, &tail, 10);
10054 name = tail;
10055 if (*name != '$'
10056 || index >= TYPE_NFIELDS (field_type)
10057 || (TYPE_FIELD_LOC_KIND (field_type, index)
10058 != FIELD_LOC_KIND_BITPOS))
10059 {
10060 complaint (_("Could not parse Rust enum encoding string \"%s\""
10061 "[in module %s]"),
10062 TYPE_FIELD_NAME (type, 0),
10063 objfile_name (objfile));
10064 return;
10065 }
10066 ++name;
10067
10068 bit_offset += TYPE_FIELD_BITPOS (field_type, index);
10069 field_type = TYPE_FIELD_TYPE (field_type, index);
10070 }
10071
10072 /* Make a union to hold the variants. */
10073 struct type *union_type = alloc_type (objfile);
10074 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10075 TYPE_NFIELDS (union_type) = 3;
10076 TYPE_FIELDS (union_type)
10077 = (struct field *) TYPE_ZALLOC (type, 3 * sizeof (struct field));
10078 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10079 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10080
10081 /* Put the discriminant must at index 0. */
10082 TYPE_FIELD_TYPE (union_type, 0) = field_type;
10083 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10084 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10085 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 0), bit_offset);
10086
10087 /* The order of fields doesn't really matter, so put the real
10088 field at index 1 and the data-less field at index 2. */
10089 struct discriminant_info *disc
10090 = alloc_discriminant_info (union_type, 0, 1);
10091 TYPE_FIELD (union_type, 1) = TYPE_FIELD (type, 0);
10092 TYPE_FIELD_NAME (union_type, 1)
10093 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1)));
10094 TYPE_NAME (TYPE_FIELD_TYPE (union_type, 1))
10095 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10096 TYPE_FIELD_NAME (union_type, 1));
10097
10098 const char *dataless_name
10099 = rust_fully_qualify (&objfile->objfile_obstack, TYPE_NAME (type),
10100 name);
10101 struct type *dataless_type = init_type (objfile, TYPE_CODE_VOID, 0,
10102 dataless_name);
10103 TYPE_FIELD_TYPE (union_type, 2) = dataless_type;
10104 /* NAME points into the original discriminant name, which
10105 already has the correct lifetime. */
10106 TYPE_FIELD_NAME (union_type, 2) = name;
10107 SET_FIELD_BITPOS (TYPE_FIELD (union_type, 2), 0);
10108 disc->discriminants[2] = 0;
10109
10110 /* Smash this type to be a structure type. We have to do this
10111 because the type has already been recorded. */
10112 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10113 TYPE_NFIELDS (type) = 1;
10114 TYPE_FIELDS (type)
10115 = (struct field *) TYPE_ZALLOC (type, sizeof (struct field));
10116
10117 /* Install the variant part. */
10118 TYPE_FIELD_TYPE (type, 0) = union_type;
10119 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10120 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10121 }
10122 /* A union with a single anonymous field is probably an old-style
10123 univariant enum. */
10124 else if (TYPE_NFIELDS (type) == 1 && streq (TYPE_FIELD_NAME (type, 0), ""))
10125 {
10126 /* Smash this type to be a structure type. We have to do this
10127 because the type has already been recorded. */
10128 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10129
10130 /* Make a union to hold the variants. */
10131 struct type *union_type = alloc_type (objfile);
10132 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10133 TYPE_NFIELDS (union_type) = TYPE_NFIELDS (type);
10134 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10135 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10136 TYPE_FIELDS (union_type) = TYPE_FIELDS (type);
10137
10138 struct type *field_type = TYPE_FIELD_TYPE (union_type, 0);
10139 const char *variant_name
10140 = rust_last_path_segment (TYPE_NAME (field_type));
10141 TYPE_FIELD_NAME (union_type, 0) = variant_name;
10142 TYPE_NAME (field_type)
10143 = rust_fully_qualify (&objfile->objfile_obstack,
10144 TYPE_NAME (type), variant_name);
10145
10146 /* Install the union in the outer struct type. */
10147 TYPE_NFIELDS (type) = 1;
10148 TYPE_FIELDS (type)
10149 = (struct field *) TYPE_ZALLOC (union_type, sizeof (struct field));
10150 TYPE_FIELD_TYPE (type, 0) = union_type;
10151 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10152 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10153
10154 alloc_discriminant_info (union_type, -1, 0);
10155 }
10156 else
10157 {
10158 struct type *disr_type = nullptr;
10159 for (int i = 0; i < TYPE_NFIELDS (type); ++i)
10160 {
10161 disr_type = TYPE_FIELD_TYPE (type, i);
10162
10163 if (TYPE_CODE (disr_type) != TYPE_CODE_STRUCT)
10164 {
10165 /* All fields of a true enum will be structs. */
10166 return;
10167 }
10168 else if (TYPE_NFIELDS (disr_type) == 0)
10169 {
10170 /* Could be data-less variant, so keep going. */
10171 disr_type = nullptr;
10172 }
10173 else if (strcmp (TYPE_FIELD_NAME (disr_type, 0),
10174 "RUST$ENUM$DISR") != 0)
10175 {
10176 /* Not a Rust enum. */
10177 return;
10178 }
10179 else
10180 {
10181 /* Found one. */
10182 break;
10183 }
10184 }
10185
10186 /* If we got here without a discriminant, then it's probably
10187 just a union. */
10188 if (disr_type == nullptr)
10189 return;
10190
10191 /* Smash this type to be a structure type. We have to do this
10192 because the type has already been recorded. */
10193 TYPE_CODE (type) = TYPE_CODE_STRUCT;
10194
10195 /* Make a union to hold the variants. */
10196 struct field *disr_field = &TYPE_FIELD (disr_type, 0);
10197 struct type *union_type = alloc_type (objfile);
10198 TYPE_CODE (union_type) = TYPE_CODE_UNION;
10199 TYPE_NFIELDS (union_type) = 1 + TYPE_NFIELDS (type);
10200 TYPE_LENGTH (union_type) = TYPE_LENGTH (type);
10201 set_type_align (union_type, TYPE_RAW_ALIGN (type));
10202 TYPE_FIELDS (union_type)
10203 = (struct field *) TYPE_ZALLOC (union_type,
10204 (TYPE_NFIELDS (union_type)
10205 * sizeof (struct field)));
10206
10207 memcpy (TYPE_FIELDS (union_type) + 1, TYPE_FIELDS (type),
10208 TYPE_NFIELDS (type) * sizeof (struct field));
10209
10210 /* Install the discriminant at index 0 in the union. */
10211 TYPE_FIELD (union_type, 0) = *disr_field;
10212 TYPE_FIELD_ARTIFICIAL (union_type, 0) = 1;
10213 TYPE_FIELD_NAME (union_type, 0) = "<<discriminant>>";
10214
10215 /* Install the union in the outer struct type. */
10216 TYPE_FIELD_TYPE (type, 0) = union_type;
10217 TYPE_FIELD_NAME (type, 0) = "<<variants>>";
10218 TYPE_NFIELDS (type) = 1;
10219
10220 /* Set the size and offset of the union type. */
10221 SET_FIELD_BITPOS (TYPE_FIELD (type, 0), 0);
10222
10223 /* We need a way to find the correct discriminant given a
10224 variant name. For convenience we build a map here. */
10225 struct type *enum_type = FIELD_TYPE (*disr_field);
10226 std::unordered_map<std::string, ULONGEST> discriminant_map;
10227 for (int i = 0; i < TYPE_NFIELDS (enum_type); ++i)
10228 {
10229 if (TYPE_FIELD_LOC_KIND (enum_type, i) == FIELD_LOC_KIND_ENUMVAL)
10230 {
10231 const char *name
10232 = rust_last_path_segment (TYPE_FIELD_NAME (enum_type, i));
10233 discriminant_map[name] = TYPE_FIELD_ENUMVAL (enum_type, i);
10234 }
10235 }
10236
10237 int n_fields = TYPE_NFIELDS (union_type);
10238 struct discriminant_info *disc
10239 = alloc_discriminant_info (union_type, 0, -1);
10240 /* Skip the discriminant here. */
10241 for (int i = 1; i < n_fields; ++i)
10242 {
10243 /* Find the final word in the name of this variant's type.
10244 That name can be used to look up the correct
10245 discriminant. */
10246 const char *variant_name
10247 = rust_last_path_segment (TYPE_NAME (TYPE_FIELD_TYPE (union_type,
10248 i)));
10249
10250 auto iter = discriminant_map.find (variant_name);
10251 if (iter != discriminant_map.end ())
10252 disc->discriminants[i] = iter->second;
10253
10254 /* Remove the discriminant field, if it exists. */
10255 struct type *sub_type = TYPE_FIELD_TYPE (union_type, i);
10256 if (TYPE_NFIELDS (sub_type) > 0)
10257 {
10258 --TYPE_NFIELDS (sub_type);
10259 ++TYPE_FIELDS (sub_type);
10260 }
10261 TYPE_FIELD_NAME (union_type, i) = variant_name;
10262 TYPE_NAME (sub_type)
10263 = rust_fully_qualify (&objfile->objfile_obstack,
10264 TYPE_NAME (type), variant_name);
10265 }
10266 }
10267 }
10268
10269 /* Rewrite some Rust unions to be structures with variants parts. */
10270
10271 static void
10272 rust_union_quirks (struct dwarf2_cu *cu)
10273 {
10274 gdb_assert (cu->language == language_rust);
10275 for (type *type_ : cu->rust_unions)
10276 quirk_rust_enum (type_, cu->per_cu->dwarf2_per_objfile->objfile);
10277 /* We don't need this any more. */
10278 cu->rust_unions.clear ();
10279 }
10280
10281 /* Return the symtab for PER_CU. This works properly regardless of
10282 whether we're using the index or psymtabs. */
10283
10284 static struct compunit_symtab *
10285 get_compunit_symtab (struct dwarf2_per_cu_data *per_cu)
10286 {
10287 return (per_cu->dwarf2_per_objfile->using_index
10288 ? per_cu->v.quick->compunit_symtab
10289 : per_cu->v.psymtab->compunit_symtab);
10290 }
10291
10292 /* A helper function for computing the list of all symbol tables
10293 included by PER_CU. */
10294
10295 static void
10296 recursively_compute_inclusions (std::vector<compunit_symtab *> *result,
10297 htab_t all_children, htab_t all_type_symtabs,
10298 struct dwarf2_per_cu_data *per_cu,
10299 struct compunit_symtab *immediate_parent)
10300 {
10301 void **slot;
10302 struct compunit_symtab *cust;
10303
10304 slot = htab_find_slot (all_children, per_cu, INSERT);
10305 if (*slot != NULL)
10306 {
10307 /* This inclusion and its children have been processed. */
10308 return;
10309 }
10310
10311 *slot = per_cu;
10312 /* Only add a CU if it has a symbol table. */
10313 cust = get_compunit_symtab (per_cu);
10314 if (cust != NULL)
10315 {
10316 /* If this is a type unit only add its symbol table if we haven't
10317 seen it yet (type unit per_cu's can share symtabs). */
10318 if (per_cu->is_debug_types)
10319 {
10320 slot = htab_find_slot (all_type_symtabs, cust, INSERT);
10321 if (*slot == NULL)
10322 {
10323 *slot = cust;
10324 result->push_back (cust);
10325 if (cust->user == NULL)
10326 cust->user = immediate_parent;
10327 }
10328 }
10329 else
10330 {
10331 result->push_back (cust);
10332 if (cust->user == NULL)
10333 cust->user = immediate_parent;
10334 }
10335 }
10336
10337 if (!per_cu->imported_symtabs_empty ())
10338 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
10339 {
10340 recursively_compute_inclusions (result, all_children,
10341 all_type_symtabs, ptr, cust);
10342 }
10343 }
10344
10345 /* Compute the compunit_symtab 'includes' fields for the compunit_symtab of
10346 PER_CU. */
10347
10348 static void
10349 compute_compunit_symtab_includes (struct dwarf2_per_cu_data *per_cu)
10350 {
10351 gdb_assert (! per_cu->is_debug_types);
10352
10353 if (!per_cu->imported_symtabs_empty ())
10354 {
10355 int len;
10356 std::vector<compunit_symtab *> result_symtabs;
10357 htab_t all_children, all_type_symtabs;
10358 struct compunit_symtab *cust = get_compunit_symtab (per_cu);
10359
10360 /* If we don't have a symtab, we can just skip this case. */
10361 if (cust == NULL)
10362 return;
10363
10364 all_children = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10365 NULL, xcalloc, xfree);
10366 all_type_symtabs = htab_create_alloc (1, htab_hash_pointer, htab_eq_pointer,
10367 NULL, xcalloc, xfree);
10368
10369 for (dwarf2_per_cu_data *ptr : *per_cu->imported_symtabs)
10370 {
10371 recursively_compute_inclusions (&result_symtabs, all_children,
10372 all_type_symtabs, ptr, cust);
10373 }
10374
10375 /* Now we have a transitive closure of all the included symtabs. */
10376 len = result_symtabs.size ();
10377 cust->includes
10378 = XOBNEWVEC (&per_cu->dwarf2_per_objfile->objfile->objfile_obstack,
10379 struct compunit_symtab *, len + 1);
10380 memcpy (cust->includes, result_symtabs.data (),
10381 len * sizeof (compunit_symtab *));
10382 cust->includes[len] = NULL;
10383
10384 htab_delete (all_children);
10385 htab_delete (all_type_symtabs);
10386 }
10387 }
10388
10389 /* Compute the 'includes' field for the symtabs of all the CUs we just
10390 read. */
10391
10392 static void
10393 process_cu_includes (struct dwarf2_per_objfile *dwarf2_per_objfile)
10394 {
10395 for (dwarf2_per_cu_data *iter : dwarf2_per_objfile->just_read_cus)
10396 {
10397 if (! iter->is_debug_types)
10398 compute_compunit_symtab_includes (iter);
10399 }
10400
10401 dwarf2_per_objfile->just_read_cus.clear ();
10402 }
10403
10404 /* Generate full symbol information for PER_CU, whose DIEs have
10405 already been loaded into memory. */
10406
10407 static void
10408 process_full_comp_unit (struct dwarf2_per_cu_data *per_cu,
10409 enum language pretend_language)
10410 {
10411 struct dwarf2_cu *cu = per_cu->cu;
10412 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10413 struct objfile *objfile = dwarf2_per_objfile->objfile;
10414 struct gdbarch *gdbarch = get_objfile_arch (objfile);
10415 CORE_ADDR lowpc, highpc;
10416 struct compunit_symtab *cust;
10417 CORE_ADDR baseaddr;
10418 struct block *static_block;
10419 CORE_ADDR addr;
10420
10421 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
10422
10423 /* Clear the list here in case something was left over. */
10424 cu->method_list.clear ();
10425
10426 cu->language = pretend_language;
10427 cu->language_defn = language_def (cu->language);
10428
10429 /* Do line number decoding in read_file_scope () */
10430 process_die (cu->dies, cu);
10431
10432 /* For now fudge the Go package. */
10433 if (cu->language == language_go)
10434 fixup_go_packaging (cu);
10435
10436 /* Now that we have processed all the DIEs in the CU, all the types
10437 should be complete, and it should now be safe to compute all of the
10438 physnames. */
10439 compute_delayed_physnames (cu);
10440
10441 if (cu->language == language_rust)
10442 rust_union_quirks (cu);
10443
10444 /* Some compilers don't define a DW_AT_high_pc attribute for the
10445 compilation unit. If the DW_AT_high_pc is missing, synthesize
10446 it, by scanning the DIE's below the compilation unit. */
10447 get_scope_pc_bounds (cu->dies, &lowpc, &highpc, cu);
10448
10449 addr = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
10450 static_block = cu->get_builder ()->end_symtab_get_static_block (addr, 0, 1);
10451
10452 /* If the comp unit has DW_AT_ranges, it may have discontiguous ranges.
10453 Also, DW_AT_ranges may record ranges not belonging to any child DIEs
10454 (such as virtual method tables). Record the ranges in STATIC_BLOCK's
10455 addrmap to help ensure it has an accurate map of pc values belonging to
10456 this comp unit. */
10457 dwarf2_record_block_ranges (cu->dies, static_block, baseaddr, cu);
10458
10459 cust = cu->get_builder ()->end_symtab_from_static_block (static_block,
10460 SECT_OFF_TEXT (objfile),
10461 0);
10462
10463 if (cust != NULL)
10464 {
10465 int gcc_4_minor = producer_is_gcc_ge_4 (cu->producer);
10466
10467 /* Set symtab language to language from DW_AT_language. If the
10468 compilation is from a C file generated by language preprocessors, do
10469 not set the language if it was already deduced by start_subfile. */
10470 if (!(cu->language == language_c
10471 && COMPUNIT_FILETABS (cust)->language != language_unknown))
10472 COMPUNIT_FILETABS (cust)->language = cu->language;
10473
10474 /* GCC-4.0 has started to support -fvar-tracking. GCC-3.x still can
10475 produce DW_AT_location with location lists but it can be possibly
10476 invalid without -fvar-tracking. Still up to GCC-4.4.x incl. 4.4.0
10477 there were bugs in prologue debug info, fixed later in GCC-4.5
10478 by "unwind info for epilogues" patch (which is not directly related).
10479
10480 For -gdwarf-4 type units LOCATIONS_VALID indication is fortunately not
10481 needed, it would be wrong due to missing DW_AT_producer there.
10482
10483 Still one can confuse GDB by using non-standard GCC compilation
10484 options - this waits on GCC PR other/32998 (-frecord-gcc-switches).
10485 */
10486 if (cu->has_loclist && gcc_4_minor >= 5)
10487 cust->locations_valid = 1;
10488
10489 if (gcc_4_minor >= 5)
10490 cust->epilogue_unwind_valid = 1;
10491
10492 cust->call_site_htab = cu->call_site_htab;
10493 }
10494
10495 if (dwarf2_per_objfile->using_index)
10496 per_cu->v.quick->compunit_symtab = cust;
10497 else
10498 {
10499 struct partial_symtab *pst = per_cu->v.psymtab;
10500 pst->compunit_symtab = cust;
10501 pst->readin = 1;
10502 }
10503
10504 /* Push it for inclusion processing later. */
10505 dwarf2_per_objfile->just_read_cus.push_back (per_cu);
10506
10507 /* Not needed any more. */
10508 cu->reset_builder ();
10509 }
10510
10511 /* Generate full symbol information for type unit PER_CU, whose DIEs have
10512 already been loaded into memory. */
10513
10514 static void
10515 process_full_type_unit (struct dwarf2_per_cu_data *per_cu,
10516 enum language pretend_language)
10517 {
10518 struct dwarf2_cu *cu = per_cu->cu;
10519 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
10520 struct objfile *objfile = dwarf2_per_objfile->objfile;
10521 struct compunit_symtab *cust;
10522 struct signatured_type *sig_type;
10523
10524 gdb_assert (per_cu->is_debug_types);
10525 sig_type = (struct signatured_type *) per_cu;
10526
10527 /* Clear the list here in case something was left over. */
10528 cu->method_list.clear ();
10529
10530 cu->language = pretend_language;
10531 cu->language_defn = language_def (cu->language);
10532
10533 /* The symbol tables are set up in read_type_unit_scope. */
10534 process_die (cu->dies, cu);
10535
10536 /* For now fudge the Go package. */
10537 if (cu->language == language_go)
10538 fixup_go_packaging (cu);
10539
10540 /* Now that we have processed all the DIEs in the CU, all the types
10541 should be complete, and it should now be safe to compute all of the
10542 physnames. */
10543 compute_delayed_physnames (cu);
10544
10545 if (cu->language == language_rust)
10546 rust_union_quirks (cu);
10547
10548 /* TUs share symbol tables.
10549 If this is the first TU to use this symtab, complete the construction
10550 of it with end_expandable_symtab. Otherwise, complete the addition of
10551 this TU's symbols to the existing symtab. */
10552 if (sig_type->type_unit_group->compunit_symtab == NULL)
10553 {
10554 buildsym_compunit *builder = cu->get_builder ();
10555 cust = builder->end_expandable_symtab (0, SECT_OFF_TEXT (objfile));
10556 sig_type->type_unit_group->compunit_symtab = cust;
10557
10558 if (cust != NULL)
10559 {
10560 /* Set symtab language to language from DW_AT_language. If the
10561 compilation is from a C file generated by language preprocessors,
10562 do not set the language if it was already deduced by
10563 start_subfile. */
10564 if (!(cu->language == language_c
10565 && COMPUNIT_FILETABS (cust)->language != language_c))
10566 COMPUNIT_FILETABS (cust)->language = cu->language;
10567 }
10568 }
10569 else
10570 {
10571 cu->get_builder ()->augment_type_symtab ();
10572 cust = sig_type->type_unit_group->compunit_symtab;
10573 }
10574
10575 if (dwarf2_per_objfile->using_index)
10576 per_cu->v.quick->compunit_symtab = cust;
10577 else
10578 {
10579 struct partial_symtab *pst = per_cu->v.psymtab;
10580 pst->compunit_symtab = cust;
10581 pst->readin = 1;
10582 }
10583
10584 /* Not needed any more. */
10585 cu->reset_builder ();
10586 }
10587
10588 /* Process an imported unit DIE. */
10589
10590 static void
10591 process_imported_unit_die (struct die_info *die, struct dwarf2_cu *cu)
10592 {
10593 struct attribute *attr;
10594
10595 /* For now we don't handle imported units in type units. */
10596 if (cu->per_cu->is_debug_types)
10597 {
10598 error (_("Dwarf Error: DW_TAG_imported_unit is not"
10599 " supported in type units [in module %s]"),
10600 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
10601 }
10602
10603 attr = dwarf2_attr (die, DW_AT_import, cu);
10604 if (attr != NULL)
10605 {
10606 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
10607 bool is_dwz = (attr->form == DW_FORM_GNU_ref_alt || cu->per_cu->is_dwz);
10608 dwarf2_per_cu_data *per_cu
10609 = dwarf2_find_containing_comp_unit (sect_off, is_dwz,
10610 cu->per_cu->dwarf2_per_objfile);
10611
10612 /* If necessary, add it to the queue and load its DIEs. */
10613 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
10614 load_full_comp_unit (per_cu, false, cu->language);
10615
10616 cu->per_cu->imported_symtabs_push (per_cu);
10617 }
10618 }
10619
10620 /* RAII object that represents a process_die scope: i.e.,
10621 starts/finishes processing a DIE. */
10622 class process_die_scope
10623 {
10624 public:
10625 process_die_scope (die_info *die, dwarf2_cu *cu)
10626 : m_die (die), m_cu (cu)
10627 {
10628 /* We should only be processing DIEs not already in process. */
10629 gdb_assert (!m_die->in_process);
10630 m_die->in_process = true;
10631 }
10632
10633 ~process_die_scope ()
10634 {
10635 m_die->in_process = false;
10636
10637 /* If we're done processing the DIE for the CU that owns the line
10638 header, we don't need the line header anymore. */
10639 if (m_cu->line_header_die_owner == m_die)
10640 {
10641 delete m_cu->line_header;
10642 m_cu->line_header = NULL;
10643 m_cu->line_header_die_owner = NULL;
10644 }
10645 }
10646
10647 private:
10648 die_info *m_die;
10649 dwarf2_cu *m_cu;
10650 };
10651
10652 /* Process a die and its children. */
10653
10654 static void
10655 process_die (struct die_info *die, struct dwarf2_cu *cu)
10656 {
10657 process_die_scope scope (die, cu);
10658
10659 switch (die->tag)
10660 {
10661 case DW_TAG_padding:
10662 break;
10663 case DW_TAG_compile_unit:
10664 case DW_TAG_partial_unit:
10665 read_file_scope (die, cu);
10666 break;
10667 case DW_TAG_type_unit:
10668 read_type_unit_scope (die, cu);
10669 break;
10670 case DW_TAG_subprogram:
10671 /* Nested subprograms in Fortran get a prefix. */
10672 if (cu->language == language_fortran
10673 && die->parent != NULL
10674 && die->parent->tag == DW_TAG_subprogram)
10675 cu->processing_has_namespace_info = true;
10676 /* Fall through. */
10677 case DW_TAG_inlined_subroutine:
10678 read_func_scope (die, cu);
10679 break;
10680 case DW_TAG_lexical_block:
10681 case DW_TAG_try_block:
10682 case DW_TAG_catch_block:
10683 read_lexical_block_scope (die, cu);
10684 break;
10685 case DW_TAG_call_site:
10686 case DW_TAG_GNU_call_site:
10687 read_call_site_scope (die, cu);
10688 break;
10689 case DW_TAG_class_type:
10690 case DW_TAG_interface_type:
10691 case DW_TAG_structure_type:
10692 case DW_TAG_union_type:
10693 process_structure_scope (die, cu);
10694 break;
10695 case DW_TAG_enumeration_type:
10696 process_enumeration_scope (die, cu);
10697 break;
10698
10699 /* These dies have a type, but processing them does not create
10700 a symbol or recurse to process the children. Therefore we can
10701 read them on-demand through read_type_die. */
10702 case DW_TAG_subroutine_type:
10703 case DW_TAG_set_type:
10704 case DW_TAG_array_type:
10705 case DW_TAG_pointer_type:
10706 case DW_TAG_ptr_to_member_type:
10707 case DW_TAG_reference_type:
10708 case DW_TAG_rvalue_reference_type:
10709 case DW_TAG_string_type:
10710 break;
10711
10712 case DW_TAG_base_type:
10713 case DW_TAG_subrange_type:
10714 case DW_TAG_typedef:
10715 /* Add a typedef symbol for the type definition, if it has a
10716 DW_AT_name. */
10717 new_symbol (die, read_type_die (die, cu), cu);
10718 break;
10719 case DW_TAG_common_block:
10720 read_common_block (die, cu);
10721 break;
10722 case DW_TAG_common_inclusion:
10723 break;
10724 case DW_TAG_namespace:
10725 cu->processing_has_namespace_info = true;
10726 read_namespace (die, cu);
10727 break;
10728 case DW_TAG_module:
10729 cu->processing_has_namespace_info = true;
10730 read_module (die, cu);
10731 break;
10732 case DW_TAG_imported_declaration:
10733 cu->processing_has_namespace_info = true;
10734 if (read_namespace_alias (die, cu))
10735 break;
10736 /* The declaration is not a global namespace alias. */
10737 /* Fall through. */
10738 case DW_TAG_imported_module:
10739 cu->processing_has_namespace_info = true;
10740 if (die->child != NULL && (die->tag == DW_TAG_imported_declaration
10741 || cu->language != language_fortran))
10742 complaint (_("Tag '%s' has unexpected children"),
10743 dwarf_tag_name (die->tag));
10744 read_import_statement (die, cu);
10745 break;
10746
10747 case DW_TAG_imported_unit:
10748 process_imported_unit_die (die, cu);
10749 break;
10750
10751 case DW_TAG_variable:
10752 read_variable (die, cu);
10753 break;
10754
10755 default:
10756 new_symbol (die, NULL, cu);
10757 break;
10758 }
10759 }
10760 \f
10761 /* DWARF name computation. */
10762
10763 /* A helper function for dwarf2_compute_name which determines whether DIE
10764 needs to have the name of the scope prepended to the name listed in the
10765 die. */
10766
10767 static int
10768 die_needs_namespace (struct die_info *die, struct dwarf2_cu *cu)
10769 {
10770 struct attribute *attr;
10771
10772 switch (die->tag)
10773 {
10774 case DW_TAG_namespace:
10775 case DW_TAG_typedef:
10776 case DW_TAG_class_type:
10777 case DW_TAG_interface_type:
10778 case DW_TAG_structure_type:
10779 case DW_TAG_union_type:
10780 case DW_TAG_enumeration_type:
10781 case DW_TAG_enumerator:
10782 case DW_TAG_subprogram:
10783 case DW_TAG_inlined_subroutine:
10784 case DW_TAG_member:
10785 case DW_TAG_imported_declaration:
10786 return 1;
10787
10788 case DW_TAG_variable:
10789 case DW_TAG_constant:
10790 /* We only need to prefix "globally" visible variables. These include
10791 any variable marked with DW_AT_external or any variable that
10792 lives in a namespace. [Variables in anonymous namespaces
10793 require prefixing, but they are not DW_AT_external.] */
10794
10795 if (dwarf2_attr (die, DW_AT_specification, cu))
10796 {
10797 struct dwarf2_cu *spec_cu = cu;
10798
10799 return die_needs_namespace (die_specification (die, &spec_cu),
10800 spec_cu);
10801 }
10802
10803 attr = dwarf2_attr (die, DW_AT_external, cu);
10804 if (attr == NULL && die->parent->tag != DW_TAG_namespace
10805 && die->parent->tag != DW_TAG_module)
10806 return 0;
10807 /* A variable in a lexical block of some kind does not need a
10808 namespace, even though in C++ such variables may be external
10809 and have a mangled name. */
10810 if (die->parent->tag == DW_TAG_lexical_block
10811 || die->parent->tag == DW_TAG_try_block
10812 || die->parent->tag == DW_TAG_catch_block
10813 || die->parent->tag == DW_TAG_subprogram)
10814 return 0;
10815 return 1;
10816
10817 default:
10818 return 0;
10819 }
10820 }
10821
10822 /* Return the DIE's linkage name attribute, either DW_AT_linkage_name
10823 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10824 defined for the given DIE. */
10825
10826 static struct attribute *
10827 dw2_linkage_name_attr (struct die_info *die, struct dwarf2_cu *cu)
10828 {
10829 struct attribute *attr;
10830
10831 attr = dwarf2_attr (die, DW_AT_linkage_name, cu);
10832 if (attr == NULL)
10833 attr = dwarf2_attr (die, DW_AT_MIPS_linkage_name, cu);
10834
10835 return attr;
10836 }
10837
10838 /* Return the DIE's linkage name as a string, either DW_AT_linkage_name
10839 or DW_AT_MIPS_linkage_name. Returns NULL if the attribute is not
10840 defined for the given DIE. */
10841
10842 static const char *
10843 dw2_linkage_name (struct die_info *die, struct dwarf2_cu *cu)
10844 {
10845 const char *linkage_name;
10846
10847 linkage_name = dwarf2_string_attr (die, DW_AT_linkage_name, cu);
10848 if (linkage_name == NULL)
10849 linkage_name = dwarf2_string_attr (die, DW_AT_MIPS_linkage_name, cu);
10850
10851 return linkage_name;
10852 }
10853
10854 /* Compute the fully qualified name of DIE in CU. If PHYSNAME is nonzero,
10855 compute the physname for the object, which include a method's:
10856 - formal parameters (C++),
10857 - receiver type (Go),
10858
10859 The term "physname" is a bit confusing.
10860 For C++, for example, it is the demangled name.
10861 For Go, for example, it's the mangled name.
10862
10863 For Ada, return the DIE's linkage name rather than the fully qualified
10864 name. PHYSNAME is ignored..
10865
10866 The result is allocated on the objfile_obstack and canonicalized. */
10867
10868 static const char *
10869 dwarf2_compute_name (const char *name,
10870 struct die_info *die, struct dwarf2_cu *cu,
10871 int physname)
10872 {
10873 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
10874
10875 if (name == NULL)
10876 name = dwarf2_name (die, cu);
10877
10878 /* For Fortran GDB prefers DW_AT_*linkage_name for the physname if present
10879 but otherwise compute it by typename_concat inside GDB.
10880 FIXME: Actually this is not really true, or at least not always true.
10881 It's all very confusing. SYMBOL_SET_NAMES doesn't try to demangle
10882 Fortran names because there is no mangling standard. So new_symbol
10883 will set the demangled name to the result of dwarf2_full_name, and it is
10884 the demangled name that GDB uses if it exists. */
10885 if (cu->language == language_ada
10886 || (cu->language == language_fortran && physname))
10887 {
10888 /* For Ada unit, we prefer the linkage name over the name, as
10889 the former contains the exported name, which the user expects
10890 to be able to reference. Ideally, we want the user to be able
10891 to reference this entity using either natural or linkage name,
10892 but we haven't started looking at this enhancement yet. */
10893 const char *linkage_name = dw2_linkage_name (die, cu);
10894
10895 if (linkage_name != NULL)
10896 return linkage_name;
10897 }
10898
10899 /* These are the only languages we know how to qualify names in. */
10900 if (name != NULL
10901 && (cu->language == language_cplus
10902 || cu->language == language_fortran || cu->language == language_d
10903 || cu->language == language_rust))
10904 {
10905 if (die_needs_namespace (die, cu))
10906 {
10907 const char *prefix;
10908 const char *canonical_name = NULL;
10909
10910 string_file buf;
10911
10912 prefix = determine_prefix (die, cu);
10913 if (*prefix != '\0')
10914 {
10915 char *prefixed_name = typename_concat (NULL, prefix, name,
10916 physname, cu);
10917
10918 buf.puts (prefixed_name);
10919 xfree (prefixed_name);
10920 }
10921 else
10922 buf.puts (name);
10923
10924 /* Template parameters may be specified in the DIE's DW_AT_name, or
10925 as children with DW_TAG_template_type_param or
10926 DW_TAG_value_type_param. If the latter, add them to the name
10927 here. If the name already has template parameters, then
10928 skip this step; some versions of GCC emit both, and
10929 it is more efficient to use the pre-computed name.
10930
10931 Something to keep in mind about this process: it is very
10932 unlikely, or in some cases downright impossible, to produce
10933 something that will match the mangled name of a function.
10934 If the definition of the function has the same debug info,
10935 we should be able to match up with it anyway. But fallbacks
10936 using the minimal symbol, for instance to find a method
10937 implemented in a stripped copy of libstdc++, will not work.
10938 If we do not have debug info for the definition, we will have to
10939 match them up some other way.
10940
10941 When we do name matching there is a related problem with function
10942 templates; two instantiated function templates are allowed to
10943 differ only by their return types, which we do not add here. */
10944
10945 if (cu->language == language_cplus && strchr (name, '<') == NULL)
10946 {
10947 struct attribute *attr;
10948 struct die_info *child;
10949 int first = 1;
10950
10951 die->building_fullname = 1;
10952
10953 for (child = die->child; child != NULL; child = child->sibling)
10954 {
10955 struct type *type;
10956 LONGEST value;
10957 const gdb_byte *bytes;
10958 struct dwarf2_locexpr_baton *baton;
10959 struct value *v;
10960
10961 if (child->tag != DW_TAG_template_type_param
10962 && child->tag != DW_TAG_template_value_param)
10963 continue;
10964
10965 if (first)
10966 {
10967 buf.puts ("<");
10968 first = 0;
10969 }
10970 else
10971 buf.puts (", ");
10972
10973 attr = dwarf2_attr (child, DW_AT_type, cu);
10974 if (attr == NULL)
10975 {
10976 complaint (_("template parameter missing DW_AT_type"));
10977 buf.puts ("UNKNOWN_TYPE");
10978 continue;
10979 }
10980 type = die_type (child, cu);
10981
10982 if (child->tag == DW_TAG_template_type_param)
10983 {
10984 c_print_type (type, "", &buf, -1, 0, cu->language,
10985 &type_print_raw_options);
10986 continue;
10987 }
10988
10989 attr = dwarf2_attr (child, DW_AT_const_value, cu);
10990 if (attr == NULL)
10991 {
10992 complaint (_("template parameter missing "
10993 "DW_AT_const_value"));
10994 buf.puts ("UNKNOWN_VALUE");
10995 continue;
10996 }
10997
10998 dwarf2_const_value_attr (attr, type, name,
10999 &cu->comp_unit_obstack, cu,
11000 &value, &bytes, &baton);
11001
11002 if (TYPE_NOSIGN (type))
11003 /* GDB prints characters as NUMBER 'CHAR'. If that's
11004 changed, this can use value_print instead. */
11005 c_printchar (value, type, &buf);
11006 else
11007 {
11008 struct value_print_options opts;
11009
11010 if (baton != NULL)
11011 v = dwarf2_evaluate_loc_desc (type, NULL,
11012 baton->data,
11013 baton->size,
11014 baton->per_cu);
11015 else if (bytes != NULL)
11016 {
11017 v = allocate_value (type);
11018 memcpy (value_contents_writeable (v), bytes,
11019 TYPE_LENGTH (type));
11020 }
11021 else
11022 v = value_from_longest (type, value);
11023
11024 /* Specify decimal so that we do not depend on
11025 the radix. */
11026 get_formatted_print_options (&opts, 'd');
11027 opts.raw = 1;
11028 value_print (v, &buf, &opts);
11029 release_value (v);
11030 }
11031 }
11032
11033 die->building_fullname = 0;
11034
11035 if (!first)
11036 {
11037 /* Close the argument list, with a space if necessary
11038 (nested templates). */
11039 if (!buf.empty () && buf.string ().back () == '>')
11040 buf.puts (" >");
11041 else
11042 buf.puts (">");
11043 }
11044 }
11045
11046 /* For C++ methods, append formal parameter type
11047 information, if PHYSNAME. */
11048
11049 if (physname && die->tag == DW_TAG_subprogram
11050 && cu->language == language_cplus)
11051 {
11052 struct type *type = read_type_die (die, cu);
11053
11054 c_type_print_args (type, &buf, 1, cu->language,
11055 &type_print_raw_options);
11056
11057 if (cu->language == language_cplus)
11058 {
11059 /* Assume that an artificial first parameter is
11060 "this", but do not crash if it is not. RealView
11061 marks unnamed (and thus unused) parameters as
11062 artificial; there is no way to differentiate
11063 the two cases. */
11064 if (TYPE_NFIELDS (type) > 0
11065 && TYPE_FIELD_ARTIFICIAL (type, 0)
11066 && TYPE_CODE (TYPE_FIELD_TYPE (type, 0)) == TYPE_CODE_PTR
11067 && TYPE_CONST (TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (type,
11068 0))))
11069 buf.puts (" const");
11070 }
11071 }
11072
11073 const std::string &intermediate_name = buf.string ();
11074
11075 if (cu->language == language_cplus)
11076 canonical_name
11077 = dwarf2_canonicalize_name (intermediate_name.c_str (), cu,
11078 &objfile->per_bfd->storage_obstack);
11079
11080 /* If we only computed INTERMEDIATE_NAME, or if
11081 INTERMEDIATE_NAME is already canonical, then we need to
11082 copy it to the appropriate obstack. */
11083 if (canonical_name == NULL || canonical_name == intermediate_name.c_str ())
11084 name = obstack_strdup (&objfile->per_bfd->storage_obstack,
11085 intermediate_name);
11086 else
11087 name = canonical_name;
11088 }
11089 }
11090
11091 return name;
11092 }
11093
11094 /* Return the fully qualified name of DIE, based on its DW_AT_name.
11095 If scope qualifiers are appropriate they will be added. The result
11096 will be allocated on the storage_obstack, or NULL if the DIE does
11097 not have a name. NAME may either be from a previous call to
11098 dwarf2_name or NULL.
11099
11100 The output string will be canonicalized (if C++). */
11101
11102 static const char *
11103 dwarf2_full_name (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11104 {
11105 return dwarf2_compute_name (name, die, cu, 0);
11106 }
11107
11108 /* Construct a physname for the given DIE in CU. NAME may either be
11109 from a previous call to dwarf2_name or NULL. The result will be
11110 allocated on the objfile_objstack or NULL if the DIE does not have a
11111 name.
11112
11113 The output string will be canonicalized (if C++). */
11114
11115 static const char *
11116 dwarf2_physname (const char *name, struct die_info *die, struct dwarf2_cu *cu)
11117 {
11118 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11119 const char *retval, *mangled = NULL, *canon = NULL;
11120 int need_copy = 1;
11121
11122 /* In this case dwarf2_compute_name is just a shortcut not building anything
11123 on its own. */
11124 if (!die_needs_namespace (die, cu))
11125 return dwarf2_compute_name (name, die, cu, 1);
11126
11127 mangled = dw2_linkage_name (die, cu);
11128
11129 /* rustc emits invalid values for DW_AT_linkage_name. Ignore these.
11130 See https://github.com/rust-lang/rust/issues/32925. */
11131 if (cu->language == language_rust && mangled != NULL
11132 && strchr (mangled, '{') != NULL)
11133 mangled = NULL;
11134
11135 /* DW_AT_linkage_name is missing in some cases - depend on what GDB
11136 has computed. */
11137 gdb::unique_xmalloc_ptr<char> demangled;
11138 if (mangled != NULL)
11139 {
11140
11141 if (language_def (cu->language)->la_store_sym_names_in_linkage_form_p)
11142 {
11143 /* Do nothing (do not demangle the symbol name). */
11144 }
11145 else if (cu->language == language_go)
11146 {
11147 /* This is a lie, but we already lie to the caller new_symbol.
11148 new_symbol assumes we return the mangled name.
11149 This just undoes that lie until things are cleaned up. */
11150 }
11151 else
11152 {
11153 /* Use DMGL_RET_DROP for C++ template functions to suppress
11154 their return type. It is easier for GDB users to search
11155 for such functions as `name(params)' than `long name(params)'.
11156 In such case the minimal symbol names do not match the full
11157 symbol names but for template functions there is never a need
11158 to look up their definition from their declaration so
11159 the only disadvantage remains the minimal symbol variant
11160 `long name(params)' does not have the proper inferior type. */
11161 demangled.reset (gdb_demangle (mangled,
11162 (DMGL_PARAMS | DMGL_ANSI
11163 | DMGL_RET_DROP)));
11164 }
11165 if (demangled)
11166 canon = demangled.get ();
11167 else
11168 {
11169 canon = mangled;
11170 need_copy = 0;
11171 }
11172 }
11173
11174 if (canon == NULL || check_physname)
11175 {
11176 const char *physname = dwarf2_compute_name (name, die, cu, 1);
11177
11178 if (canon != NULL && strcmp (physname, canon) != 0)
11179 {
11180 /* It may not mean a bug in GDB. The compiler could also
11181 compute DW_AT_linkage_name incorrectly. But in such case
11182 GDB would need to be bug-to-bug compatible. */
11183
11184 complaint (_("Computed physname <%s> does not match demangled <%s> "
11185 "(from linkage <%s>) - DIE at %s [in module %s]"),
11186 physname, canon, mangled, sect_offset_str (die->sect_off),
11187 objfile_name (objfile));
11188
11189 /* Prefer DW_AT_linkage_name (in the CANON form) - when it
11190 is available here - over computed PHYSNAME. It is safer
11191 against both buggy GDB and buggy compilers. */
11192
11193 retval = canon;
11194 }
11195 else
11196 {
11197 retval = physname;
11198 need_copy = 0;
11199 }
11200 }
11201 else
11202 retval = canon;
11203
11204 if (need_copy)
11205 retval = obstack_strdup (&objfile->per_bfd->storage_obstack, retval);
11206
11207 return retval;
11208 }
11209
11210 /* Inspect DIE in CU for a namespace alias. If one exists, record
11211 a new symbol for it.
11212
11213 Returns 1 if a namespace alias was recorded, 0 otherwise. */
11214
11215 static int
11216 read_namespace_alias (struct die_info *die, struct dwarf2_cu *cu)
11217 {
11218 struct attribute *attr;
11219
11220 /* If the die does not have a name, this is not a namespace
11221 alias. */
11222 attr = dwarf2_attr (die, DW_AT_name, cu);
11223 if (attr != NULL)
11224 {
11225 int num;
11226 struct die_info *d = die;
11227 struct dwarf2_cu *imported_cu = cu;
11228
11229 /* If the compiler has nested DW_AT_imported_declaration DIEs,
11230 keep inspecting DIEs until we hit the underlying import. */
11231 #define MAX_NESTED_IMPORTED_DECLARATIONS 100
11232 for (num = 0; num < MAX_NESTED_IMPORTED_DECLARATIONS; ++num)
11233 {
11234 attr = dwarf2_attr (d, DW_AT_import, cu);
11235 if (attr == NULL)
11236 break;
11237
11238 d = follow_die_ref (d, attr, &imported_cu);
11239 if (d->tag != DW_TAG_imported_declaration)
11240 break;
11241 }
11242
11243 if (num == MAX_NESTED_IMPORTED_DECLARATIONS)
11244 {
11245 complaint (_("DIE at %s has too many recursively imported "
11246 "declarations"), sect_offset_str (d->sect_off));
11247 return 0;
11248 }
11249
11250 if (attr != NULL)
11251 {
11252 struct type *type;
11253 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
11254
11255 type = get_die_type_at_offset (sect_off, cu->per_cu);
11256 if (type != NULL && TYPE_CODE (type) == TYPE_CODE_NAMESPACE)
11257 {
11258 /* This declaration is a global namespace alias. Add
11259 a symbol for it whose type is the aliased namespace. */
11260 new_symbol (die, type, cu);
11261 return 1;
11262 }
11263 }
11264 }
11265
11266 return 0;
11267 }
11268
11269 /* Return the using directives repository (global or local?) to use in the
11270 current context for CU.
11271
11272 For Ada, imported declarations can materialize renamings, which *may* be
11273 global. However it is impossible (for now?) in DWARF to distinguish
11274 "external" imported declarations and "static" ones. As all imported
11275 declarations seem to be static in all other languages, make them all CU-wide
11276 global only in Ada. */
11277
11278 static struct using_direct **
11279 using_directives (struct dwarf2_cu *cu)
11280 {
11281 if (cu->language == language_ada
11282 && cu->get_builder ()->outermost_context_p ())
11283 return cu->get_builder ()->get_global_using_directives ();
11284 else
11285 return cu->get_builder ()->get_local_using_directives ();
11286 }
11287
11288 /* Read the import statement specified by the given die and record it. */
11289
11290 static void
11291 read_import_statement (struct die_info *die, struct dwarf2_cu *cu)
11292 {
11293 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
11294 struct attribute *import_attr;
11295 struct die_info *imported_die, *child_die;
11296 struct dwarf2_cu *imported_cu;
11297 const char *imported_name;
11298 const char *imported_name_prefix;
11299 const char *canonical_name;
11300 const char *import_alias;
11301 const char *imported_declaration = NULL;
11302 const char *import_prefix;
11303 std::vector<const char *> excludes;
11304
11305 import_attr = dwarf2_attr (die, DW_AT_import, cu);
11306 if (import_attr == NULL)
11307 {
11308 complaint (_("Tag '%s' has no DW_AT_import"),
11309 dwarf_tag_name (die->tag));
11310 return;
11311 }
11312
11313 imported_cu = cu;
11314 imported_die = follow_die_ref_or_sig (die, import_attr, &imported_cu);
11315 imported_name = dwarf2_name (imported_die, imported_cu);
11316 if (imported_name == NULL)
11317 {
11318 /* GCC bug: https://bugzilla.redhat.com/show_bug.cgi?id=506524
11319
11320 The import in the following code:
11321 namespace A
11322 {
11323 typedef int B;
11324 }
11325
11326 int main ()
11327 {
11328 using A::B;
11329 B b;
11330 return b;
11331 }
11332
11333 ...
11334 <2><51>: Abbrev Number: 3 (DW_TAG_imported_declaration)
11335 <52> DW_AT_decl_file : 1
11336 <53> DW_AT_decl_line : 6
11337 <54> DW_AT_import : <0x75>
11338 <2><58>: Abbrev Number: 4 (DW_TAG_typedef)
11339 <59> DW_AT_name : B
11340 <5b> DW_AT_decl_file : 1
11341 <5c> DW_AT_decl_line : 2
11342 <5d> DW_AT_type : <0x6e>
11343 ...
11344 <1><75>: Abbrev Number: 7 (DW_TAG_base_type)
11345 <76> DW_AT_byte_size : 4
11346 <77> DW_AT_encoding : 5 (signed)
11347
11348 imports the wrong die ( 0x75 instead of 0x58 ).
11349 This case will be ignored until the gcc bug is fixed. */
11350 return;
11351 }
11352
11353 /* Figure out the local name after import. */
11354 import_alias = dwarf2_name (die, cu);
11355
11356 /* Figure out where the statement is being imported to. */
11357 import_prefix = determine_prefix (die, cu);
11358
11359 /* Figure out what the scope of the imported die is and prepend it
11360 to the name of the imported die. */
11361 imported_name_prefix = determine_prefix (imported_die, imported_cu);
11362
11363 if (imported_die->tag != DW_TAG_namespace
11364 && imported_die->tag != DW_TAG_module)
11365 {
11366 imported_declaration = imported_name;
11367 canonical_name = imported_name_prefix;
11368 }
11369 else if (strlen (imported_name_prefix) > 0)
11370 canonical_name = obconcat (&objfile->objfile_obstack,
11371 imported_name_prefix,
11372 (cu->language == language_d ? "." : "::"),
11373 imported_name, (char *) NULL);
11374 else
11375 canonical_name = imported_name;
11376
11377 if (die->tag == DW_TAG_imported_module && cu->language == language_fortran)
11378 for (child_die = die->child; child_die && child_die->tag;
11379 child_die = sibling_die (child_die))
11380 {
11381 /* DWARF-4: A Fortran use statement with a “rename list” may be
11382 represented by an imported module entry with an import attribute
11383 referring to the module and owned entries corresponding to those
11384 entities that are renamed as part of being imported. */
11385
11386 if (child_die->tag != DW_TAG_imported_declaration)
11387 {
11388 complaint (_("child DW_TAG_imported_declaration expected "
11389 "- DIE at %s [in module %s]"),
11390 sect_offset_str (child_die->sect_off),
11391 objfile_name (objfile));
11392 continue;
11393 }
11394
11395 import_attr = dwarf2_attr (child_die, DW_AT_import, cu);
11396 if (import_attr == NULL)
11397 {
11398 complaint (_("Tag '%s' has no DW_AT_import"),
11399 dwarf_tag_name (child_die->tag));
11400 continue;
11401 }
11402
11403 imported_cu = cu;
11404 imported_die = follow_die_ref_or_sig (child_die, import_attr,
11405 &imported_cu);
11406 imported_name = dwarf2_name (imported_die, imported_cu);
11407 if (imported_name == NULL)
11408 {
11409 complaint (_("child DW_TAG_imported_declaration has unknown "
11410 "imported name - DIE at %s [in module %s]"),
11411 sect_offset_str (child_die->sect_off),
11412 objfile_name (objfile));
11413 continue;
11414 }
11415
11416 excludes.push_back (imported_name);
11417
11418 process_die (child_die, cu);
11419 }
11420
11421 add_using_directive (using_directives (cu),
11422 import_prefix,
11423 canonical_name,
11424 import_alias,
11425 imported_declaration,
11426 excludes,
11427 0,
11428 &objfile->objfile_obstack);
11429 }
11430
11431 /* ICC<14 does not output the required DW_AT_declaration on incomplete
11432 types, but gives them a size of zero. Starting with version 14,
11433 ICC is compatible with GCC. */
11434
11435 static bool
11436 producer_is_icc_lt_14 (struct dwarf2_cu *cu)
11437 {
11438 if (!cu->checked_producer)
11439 check_producer (cu);
11440
11441 return cu->producer_is_icc_lt_14;
11442 }
11443
11444 /* ICC generates a DW_AT_type for C void functions. This was observed on
11445 ICC 14.0.5.212, and appears to be against the DWARF spec (V5 3.3.2)
11446 which says that void functions should not have a DW_AT_type. */
11447
11448 static bool
11449 producer_is_icc (struct dwarf2_cu *cu)
11450 {
11451 if (!cu->checked_producer)
11452 check_producer (cu);
11453
11454 return cu->producer_is_icc;
11455 }
11456
11457 /* Check for possibly missing DW_AT_comp_dir with relative .debug_line
11458 directory paths. GCC SVN r127613 (new option -fdebug-prefix-map) fixed
11459 this, it was first present in GCC release 4.3.0. */
11460
11461 static bool
11462 producer_is_gcc_lt_4_3 (struct dwarf2_cu *cu)
11463 {
11464 if (!cu->checked_producer)
11465 check_producer (cu);
11466
11467 return cu->producer_is_gcc_lt_4_3;
11468 }
11469
11470 static file_and_directory
11471 find_file_and_directory (struct die_info *die, struct dwarf2_cu *cu)
11472 {
11473 file_and_directory res;
11474
11475 /* Find the filename. Do not use dwarf2_name here, since the filename
11476 is not a source language identifier. */
11477 res.name = dwarf2_string_attr (die, DW_AT_name, cu);
11478 res.comp_dir = dwarf2_string_attr (die, DW_AT_comp_dir, cu);
11479
11480 if (res.comp_dir == NULL
11481 && producer_is_gcc_lt_4_3 (cu) && res.name != NULL
11482 && IS_ABSOLUTE_PATH (res.name))
11483 {
11484 res.comp_dir_storage = ldirname (res.name);
11485 if (!res.comp_dir_storage.empty ())
11486 res.comp_dir = res.comp_dir_storage.c_str ();
11487 }
11488 if (res.comp_dir != NULL)
11489 {
11490 /* Irix 6.2 native cc prepends <machine>.: to the compilation
11491 directory, get rid of it. */
11492 const char *cp = strchr (res.comp_dir, ':');
11493
11494 if (cp && cp != res.comp_dir && cp[-1] == '.' && cp[1] == '/')
11495 res.comp_dir = cp + 1;
11496 }
11497
11498 if (res.name == NULL)
11499 res.name = "<unknown>";
11500
11501 return res;
11502 }
11503
11504 /* Handle DW_AT_stmt_list for a compilation unit.
11505 DIE is the DW_TAG_compile_unit die for CU.
11506 COMP_DIR is the compilation directory. LOWPC is passed to
11507 dwarf_decode_lines. See dwarf_decode_lines comments about it. */
11508
11509 static void
11510 handle_DW_AT_stmt_list (struct die_info *die, struct dwarf2_cu *cu,
11511 const char *comp_dir, CORE_ADDR lowpc) /* ARI: editCase function */
11512 {
11513 struct dwarf2_per_objfile *dwarf2_per_objfile
11514 = cu->per_cu->dwarf2_per_objfile;
11515 struct objfile *objfile = dwarf2_per_objfile->objfile;
11516 struct attribute *attr;
11517 struct line_header line_header_local;
11518 hashval_t line_header_local_hash;
11519 void **slot;
11520 int decode_mapping;
11521
11522 gdb_assert (! cu->per_cu->is_debug_types);
11523
11524 attr = dwarf2_attr (die, DW_AT_stmt_list, cu);
11525 if (attr == NULL)
11526 return;
11527
11528 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11529
11530 /* The line header hash table is only created if needed (it exists to
11531 prevent redundant reading of the line table for partial_units).
11532 If we're given a partial_unit, we'll need it. If we're given a
11533 compile_unit, then use the line header hash table if it's already
11534 created, but don't create one just yet. */
11535
11536 if (dwarf2_per_objfile->line_header_hash == NULL
11537 && die->tag == DW_TAG_partial_unit)
11538 {
11539 dwarf2_per_objfile->line_header_hash
11540 = htab_create_alloc_ex (127, line_header_hash_voidp,
11541 line_header_eq_voidp,
11542 free_line_header_voidp,
11543 &objfile->objfile_obstack,
11544 hashtab_obstack_allocate,
11545 dummy_obstack_deallocate);
11546 }
11547
11548 line_header_local.sect_off = line_offset;
11549 line_header_local.offset_in_dwz = cu->per_cu->is_dwz;
11550 line_header_local_hash = line_header_hash (&line_header_local);
11551 if (dwarf2_per_objfile->line_header_hash != NULL)
11552 {
11553 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11554 &line_header_local,
11555 line_header_local_hash, NO_INSERT);
11556
11557 /* For DW_TAG_compile_unit we need info like symtab::linetable which
11558 is not present in *SLOT (since if there is something in *SLOT then
11559 it will be for a partial_unit). */
11560 if (die->tag == DW_TAG_partial_unit && slot != NULL)
11561 {
11562 gdb_assert (*slot != NULL);
11563 cu->line_header = (struct line_header *) *slot;
11564 return;
11565 }
11566 }
11567
11568 /* dwarf_decode_line_header does not yet provide sufficient information.
11569 We always have to call also dwarf_decode_lines for it. */
11570 line_header_up lh = dwarf_decode_line_header (line_offset, cu);
11571 if (lh == NULL)
11572 return;
11573
11574 cu->line_header = lh.release ();
11575 cu->line_header_die_owner = die;
11576
11577 if (dwarf2_per_objfile->line_header_hash == NULL)
11578 slot = NULL;
11579 else
11580 {
11581 slot = htab_find_slot_with_hash (dwarf2_per_objfile->line_header_hash,
11582 &line_header_local,
11583 line_header_local_hash, INSERT);
11584 gdb_assert (slot != NULL);
11585 }
11586 if (slot != NULL && *slot == NULL)
11587 {
11588 /* This newly decoded line number information unit will be owned
11589 by line_header_hash hash table. */
11590 *slot = cu->line_header;
11591 cu->line_header_die_owner = NULL;
11592 }
11593 else
11594 {
11595 /* We cannot free any current entry in (*slot) as that struct line_header
11596 may be already used by multiple CUs. Create only temporary decoded
11597 line_header for this CU - it may happen at most once for each line
11598 number information unit. And if we're not using line_header_hash
11599 then this is what we want as well. */
11600 gdb_assert (die->tag != DW_TAG_partial_unit);
11601 }
11602 decode_mapping = (die->tag != DW_TAG_partial_unit);
11603 dwarf_decode_lines (cu->line_header, comp_dir, cu, NULL, lowpc,
11604 decode_mapping);
11605
11606 }
11607
11608 /* Process DW_TAG_compile_unit or DW_TAG_partial_unit. */
11609
11610 static void
11611 read_file_scope (struct die_info *die, struct dwarf2_cu *cu)
11612 {
11613 struct dwarf2_per_objfile *dwarf2_per_objfile
11614 = cu->per_cu->dwarf2_per_objfile;
11615 struct objfile *objfile = dwarf2_per_objfile->objfile;
11616 struct gdbarch *gdbarch = get_objfile_arch (objfile);
11617 CORE_ADDR lowpc = ((CORE_ADDR) -1);
11618 CORE_ADDR highpc = ((CORE_ADDR) 0);
11619 struct attribute *attr;
11620 struct die_info *child_die;
11621 CORE_ADDR baseaddr;
11622
11623 prepare_one_comp_unit (cu, die, cu->language);
11624 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
11625
11626 get_scope_pc_bounds (die, &lowpc, &highpc, cu);
11627
11628 /* If we didn't find a lowpc, set it to highpc to avoid complaints
11629 from finish_block. */
11630 if (lowpc == ((CORE_ADDR) -1))
11631 lowpc = highpc;
11632 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
11633
11634 file_and_directory fnd = find_file_and_directory (die, cu);
11635
11636 /* The XLCL doesn't generate DW_LANG_OpenCL because this attribute is not
11637 standardised yet. As a workaround for the language detection we fall
11638 back to the DW_AT_producer string. */
11639 if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL") != NULL)
11640 cu->language = language_opencl;
11641
11642 /* Similar hack for Go. */
11643 if (cu->producer && strstr (cu->producer, "GNU Go ") != NULL)
11644 set_cu_language (DW_LANG_Go, cu);
11645
11646 cu->start_symtab (fnd.name, fnd.comp_dir, lowpc);
11647
11648 /* Decode line number information if present. We do this before
11649 processing child DIEs, so that the line header table is available
11650 for DW_AT_decl_file. */
11651 handle_DW_AT_stmt_list (die, cu, fnd.comp_dir, lowpc);
11652
11653 /* Process all dies in compilation unit. */
11654 if (die->child != NULL)
11655 {
11656 child_die = die->child;
11657 while (child_die && child_die->tag)
11658 {
11659 process_die (child_die, cu);
11660 child_die = sibling_die (child_die);
11661 }
11662 }
11663
11664 /* Decode macro information, if present. Dwarf 2 macro information
11665 refers to information in the line number info statement program
11666 header, so we can only read it if we've read the header
11667 successfully. */
11668 attr = dwarf2_attr (die, DW_AT_macros, cu);
11669 if (attr == NULL)
11670 attr = dwarf2_attr (die, DW_AT_GNU_macros, cu);
11671 if (attr && cu->line_header)
11672 {
11673 if (dwarf2_attr (die, DW_AT_macro_info, cu))
11674 complaint (_("CU refers to both DW_AT_macros and DW_AT_macro_info"));
11675
11676 dwarf_decode_macros (cu, DW_UNSND (attr), 1);
11677 }
11678 else
11679 {
11680 attr = dwarf2_attr (die, DW_AT_macro_info, cu);
11681 if (attr && cu->line_header)
11682 {
11683 unsigned int macro_offset = DW_UNSND (attr);
11684
11685 dwarf_decode_macros (cu, macro_offset, 0);
11686 }
11687 }
11688 }
11689
11690 void
11691 dwarf2_cu::setup_type_unit_groups (struct die_info *die)
11692 {
11693 struct type_unit_group *tu_group;
11694 int first_time;
11695 struct attribute *attr;
11696 unsigned int i;
11697 struct signatured_type *sig_type;
11698
11699 gdb_assert (per_cu->is_debug_types);
11700 sig_type = (struct signatured_type *) per_cu;
11701
11702 attr = dwarf2_attr (die, DW_AT_stmt_list, this);
11703
11704 /* If we're using .gdb_index (includes -readnow) then
11705 per_cu->type_unit_group may not have been set up yet. */
11706 if (sig_type->type_unit_group == NULL)
11707 sig_type->type_unit_group = get_type_unit_group (this, attr);
11708 tu_group = sig_type->type_unit_group;
11709
11710 /* If we've already processed this stmt_list there's no real need to
11711 do it again, we could fake it and just recreate the part we need
11712 (file name,index -> symtab mapping). If data shows this optimization
11713 is useful we can do it then. */
11714 first_time = tu_group->compunit_symtab == NULL;
11715
11716 /* We have to handle the case of both a missing DW_AT_stmt_list or bad
11717 debug info. */
11718 line_header_up lh;
11719 if (attr != NULL)
11720 {
11721 sect_offset line_offset = (sect_offset) DW_UNSND (attr);
11722 lh = dwarf_decode_line_header (line_offset, this);
11723 }
11724 if (lh == NULL)
11725 {
11726 if (first_time)
11727 start_symtab ("", NULL, 0);
11728 else
11729 {
11730 gdb_assert (tu_group->symtabs == NULL);
11731 gdb_assert (m_builder == nullptr);
11732 struct compunit_symtab *cust = tu_group->compunit_symtab;
11733 m_builder.reset (new struct buildsym_compunit
11734 (COMPUNIT_OBJFILE (cust), "",
11735 COMPUNIT_DIRNAME (cust),
11736 compunit_language (cust),
11737 0, cust));
11738 }
11739 return;
11740 }
11741
11742 line_header = lh.release ();
11743 line_header_die_owner = die;
11744
11745 if (first_time)
11746 {
11747 struct compunit_symtab *cust = start_symtab ("", NULL, 0);
11748
11749 /* Note: We don't assign tu_group->compunit_symtab yet because we're
11750 still initializing it, and our caller (a few levels up)
11751 process_full_type_unit still needs to know if this is the first
11752 time. */
11753
11754 tu_group->num_symtabs = line_header->file_names_size ();
11755 tu_group->symtabs = XNEWVEC (struct symtab *,
11756 line_header->file_names_size ());
11757
11758 auto &file_names = line_header->file_names ();
11759 for (i = 0; i < file_names.size (); ++i)
11760 {
11761 file_entry &fe = file_names[i];
11762 dwarf2_start_subfile (this, fe.name,
11763 fe.include_dir (line_header));
11764 buildsym_compunit *b = get_builder ();
11765 if (b->get_current_subfile ()->symtab == NULL)
11766 {
11767 /* NOTE: start_subfile will recognize when it's been
11768 passed a file it has already seen. So we can't
11769 assume there's a simple mapping from
11770 cu->line_header->file_names to subfiles, plus
11771 cu->line_header->file_names may contain dups. */
11772 b->get_current_subfile ()->symtab
11773 = allocate_symtab (cust, b->get_current_subfile ()->name);
11774 }
11775
11776 fe.symtab = b->get_current_subfile ()->symtab;
11777 tu_group->symtabs[i] = fe.symtab;
11778 }
11779 }
11780 else
11781 {
11782 gdb_assert (m_builder == nullptr);
11783 struct compunit_symtab *cust = tu_group->compunit_symtab;
11784 m_builder.reset (new struct buildsym_compunit
11785 (COMPUNIT_OBJFILE (cust), "",
11786 COMPUNIT_DIRNAME (cust),
11787 compunit_language (cust),
11788 0, cust));
11789
11790 auto &file_names = line_header->file_names ();
11791 for (i = 0; i < file_names.size (); ++i)
11792 {
11793 file_entry &fe = file_names[i];
11794 fe.symtab = tu_group->symtabs[i];
11795 }
11796 }
11797
11798 /* The main symtab is allocated last. Type units don't have DW_AT_name
11799 so they don't have a "real" (so to speak) symtab anyway.
11800 There is later code that will assign the main symtab to all symbols
11801 that don't have one. We need to handle the case of a symbol with a
11802 missing symtab (DW_AT_decl_file) anyway. */
11803 }
11804
11805 /* Process DW_TAG_type_unit.
11806 For TUs we want to skip the first top level sibling if it's not the
11807 actual type being defined by this TU. In this case the first top
11808 level sibling is there to provide context only. */
11809
11810 static void
11811 read_type_unit_scope (struct die_info *die, struct dwarf2_cu *cu)
11812 {
11813 struct die_info *child_die;
11814
11815 prepare_one_comp_unit (cu, die, language_minimal);
11816
11817 /* Initialize (or reinitialize) the machinery for building symtabs.
11818 We do this before processing child DIEs, so that the line header table
11819 is available for DW_AT_decl_file. */
11820 cu->setup_type_unit_groups (die);
11821
11822 if (die->child != NULL)
11823 {
11824 child_die = die->child;
11825 while (child_die && child_die->tag)
11826 {
11827 process_die (child_die, cu);
11828 child_die = sibling_die (child_die);
11829 }
11830 }
11831 }
11832 \f
11833 /* DWO/DWP files.
11834
11835 http://gcc.gnu.org/wiki/DebugFission
11836 http://gcc.gnu.org/wiki/DebugFissionDWP
11837
11838 To simplify handling of both DWO files ("object" files with the DWARF info)
11839 and DWP files (a file with the DWOs packaged up into one file), we treat
11840 DWP files as having a collection of virtual DWO files. */
11841
11842 static hashval_t
11843 hash_dwo_file (const void *item)
11844 {
11845 const struct dwo_file *dwo_file = (const struct dwo_file *) item;
11846 hashval_t hash;
11847
11848 hash = htab_hash_string (dwo_file->dwo_name);
11849 if (dwo_file->comp_dir != NULL)
11850 hash += htab_hash_string (dwo_file->comp_dir);
11851 return hash;
11852 }
11853
11854 static int
11855 eq_dwo_file (const void *item_lhs, const void *item_rhs)
11856 {
11857 const struct dwo_file *lhs = (const struct dwo_file *) item_lhs;
11858 const struct dwo_file *rhs = (const struct dwo_file *) item_rhs;
11859
11860 if (strcmp (lhs->dwo_name, rhs->dwo_name) != 0)
11861 return 0;
11862 if (lhs->comp_dir == NULL || rhs->comp_dir == NULL)
11863 return lhs->comp_dir == rhs->comp_dir;
11864 return strcmp (lhs->comp_dir, rhs->comp_dir) == 0;
11865 }
11866
11867 /* Allocate a hash table for DWO files. */
11868
11869 static htab_up
11870 allocate_dwo_file_hash_table (struct objfile *objfile)
11871 {
11872 auto delete_dwo_file = [] (void *item)
11873 {
11874 struct dwo_file *dwo_file = (struct dwo_file *) item;
11875
11876 delete dwo_file;
11877 };
11878
11879 return htab_up (htab_create_alloc_ex (41,
11880 hash_dwo_file,
11881 eq_dwo_file,
11882 delete_dwo_file,
11883 &objfile->objfile_obstack,
11884 hashtab_obstack_allocate,
11885 dummy_obstack_deallocate));
11886 }
11887
11888 /* Lookup DWO file DWO_NAME. */
11889
11890 static void **
11891 lookup_dwo_file_slot (struct dwarf2_per_objfile *dwarf2_per_objfile,
11892 const char *dwo_name,
11893 const char *comp_dir)
11894 {
11895 struct dwo_file find_entry;
11896 void **slot;
11897
11898 if (dwarf2_per_objfile->dwo_files == NULL)
11899 dwarf2_per_objfile->dwo_files
11900 = allocate_dwo_file_hash_table (dwarf2_per_objfile->objfile);
11901
11902 find_entry.dwo_name = dwo_name;
11903 find_entry.comp_dir = comp_dir;
11904 slot = htab_find_slot (dwarf2_per_objfile->dwo_files.get (), &find_entry,
11905 INSERT);
11906
11907 return slot;
11908 }
11909
11910 static hashval_t
11911 hash_dwo_unit (const void *item)
11912 {
11913 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
11914
11915 /* This drops the top 32 bits of the id, but is ok for a hash. */
11916 return dwo_unit->signature;
11917 }
11918
11919 static int
11920 eq_dwo_unit (const void *item_lhs, const void *item_rhs)
11921 {
11922 const struct dwo_unit *lhs = (const struct dwo_unit *) item_lhs;
11923 const struct dwo_unit *rhs = (const struct dwo_unit *) item_rhs;
11924
11925 /* The signature is assumed to be unique within the DWO file.
11926 So while object file CU dwo_id's always have the value zero,
11927 that's OK, assuming each object file DWO file has only one CU,
11928 and that's the rule for now. */
11929 return lhs->signature == rhs->signature;
11930 }
11931
11932 /* Allocate a hash table for DWO CUs,TUs.
11933 There is one of these tables for each of CUs,TUs for each DWO file. */
11934
11935 static htab_t
11936 allocate_dwo_unit_table (struct objfile *objfile)
11937 {
11938 /* Start out with a pretty small number.
11939 Generally DWO files contain only one CU and maybe some TUs. */
11940 return htab_create_alloc_ex (3,
11941 hash_dwo_unit,
11942 eq_dwo_unit,
11943 NULL,
11944 &objfile->objfile_obstack,
11945 hashtab_obstack_allocate,
11946 dummy_obstack_deallocate);
11947 }
11948
11949 /* Structure used to pass data to create_dwo_debug_info_hash_table_reader. */
11950
11951 struct create_dwo_cu_data
11952 {
11953 struct dwo_file *dwo_file;
11954 struct dwo_unit dwo_unit;
11955 };
11956
11957 /* die_reader_func for create_dwo_cu. */
11958
11959 static void
11960 create_dwo_cu_reader (const struct die_reader_specs *reader,
11961 const gdb_byte *info_ptr,
11962 struct die_info *comp_unit_die,
11963 int has_children,
11964 void *datap)
11965 {
11966 struct dwarf2_cu *cu = reader->cu;
11967 sect_offset sect_off = cu->per_cu->sect_off;
11968 struct dwarf2_section_info *section = cu->per_cu->section;
11969 struct create_dwo_cu_data *data = (struct create_dwo_cu_data *) datap;
11970 struct dwo_file *dwo_file = data->dwo_file;
11971 struct dwo_unit *dwo_unit = &data->dwo_unit;
11972
11973 gdb::optional<ULONGEST> signature = lookup_dwo_id (cu, comp_unit_die);
11974 if (!signature.has_value ())
11975 {
11976 complaint (_("Dwarf Error: debug entry at offset %s is missing"
11977 " its dwo_id [in module %s]"),
11978 sect_offset_str (sect_off), dwo_file->dwo_name);
11979 return;
11980 }
11981
11982 dwo_unit->dwo_file = dwo_file;
11983 dwo_unit->signature = *signature;
11984 dwo_unit->section = section;
11985 dwo_unit->sect_off = sect_off;
11986 dwo_unit->length = cu->per_cu->length;
11987
11988 if (dwarf_read_debug)
11989 fprintf_unfiltered (gdb_stdlog, " offset %s, dwo_id %s\n",
11990 sect_offset_str (sect_off),
11991 hex_string (dwo_unit->signature));
11992 }
11993
11994 /* Create the dwo_units for the CUs in a DWO_FILE.
11995 Note: This function processes DWO files only, not DWP files. */
11996
11997 static void
11998 create_cus_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
11999 struct dwo_file &dwo_file, dwarf2_section_info &section,
12000 htab_t &cus_htab)
12001 {
12002 struct objfile *objfile = dwarf2_per_objfile->objfile;
12003 const gdb_byte *info_ptr, *end_ptr;
12004
12005 dwarf2_read_section (objfile, &section);
12006 info_ptr = section.buffer;
12007
12008 if (info_ptr == NULL)
12009 return;
12010
12011 if (dwarf_read_debug)
12012 {
12013 fprintf_unfiltered (gdb_stdlog, "Reading %s for %s:\n",
12014 get_section_name (&section),
12015 get_section_file_name (&section));
12016 }
12017
12018 end_ptr = info_ptr + section.size;
12019 while (info_ptr < end_ptr)
12020 {
12021 struct dwarf2_per_cu_data per_cu;
12022 struct create_dwo_cu_data create_dwo_cu_data;
12023 struct dwo_unit *dwo_unit;
12024 void **slot;
12025 sect_offset sect_off = (sect_offset) (info_ptr - section.buffer);
12026
12027 memset (&create_dwo_cu_data.dwo_unit, 0,
12028 sizeof (create_dwo_cu_data.dwo_unit));
12029 memset (&per_cu, 0, sizeof (per_cu));
12030 per_cu.dwarf2_per_objfile = dwarf2_per_objfile;
12031 per_cu.is_debug_types = 0;
12032 per_cu.sect_off = sect_offset (info_ptr - section.buffer);
12033 per_cu.section = &section;
12034 create_dwo_cu_data.dwo_file = &dwo_file;
12035
12036 init_cutu_and_read_dies_no_follow (
12037 &per_cu, &dwo_file, create_dwo_cu_reader, &create_dwo_cu_data);
12038 info_ptr += per_cu.length;
12039
12040 // If the unit could not be parsed, skip it.
12041 if (create_dwo_cu_data.dwo_unit.dwo_file == NULL)
12042 continue;
12043
12044 if (cus_htab == NULL)
12045 cus_htab = allocate_dwo_unit_table (objfile);
12046
12047 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12048 *dwo_unit = create_dwo_cu_data.dwo_unit;
12049 slot = htab_find_slot (cus_htab, dwo_unit, INSERT);
12050 gdb_assert (slot != NULL);
12051 if (*slot != NULL)
12052 {
12053 const struct dwo_unit *dup_cu = (const struct dwo_unit *)*slot;
12054 sect_offset dup_sect_off = dup_cu->sect_off;
12055
12056 complaint (_("debug cu entry at offset %s is duplicate to"
12057 " the entry at offset %s, signature %s"),
12058 sect_offset_str (sect_off), sect_offset_str (dup_sect_off),
12059 hex_string (dwo_unit->signature));
12060 }
12061 *slot = (void *)dwo_unit;
12062 }
12063 }
12064
12065 /* DWP file .debug_{cu,tu}_index section format:
12066 [ref: http://gcc.gnu.org/wiki/DebugFissionDWP]
12067
12068 DWP Version 1:
12069
12070 Both index sections have the same format, and serve to map a 64-bit
12071 signature to a set of section numbers. Each section begins with a header,
12072 followed by a hash table of 64-bit signatures, a parallel table of 32-bit
12073 indexes, and a pool of 32-bit section numbers. The index sections will be
12074 aligned at 8-byte boundaries in the file.
12075
12076 The index section header consists of:
12077
12078 V, 32 bit version number
12079 -, 32 bits unused
12080 N, 32 bit number of compilation units or type units in the index
12081 M, 32 bit number of slots in the hash table
12082
12083 Numbers are recorded using the byte order of the application binary.
12084
12085 The hash table begins at offset 16 in the section, and consists of an array
12086 of M 64-bit slots. Each slot contains a 64-bit signature (using the byte
12087 order of the application binary). Unused slots in the hash table are 0.
12088 (We rely on the extreme unlikeliness of a signature being exactly 0.)
12089
12090 The parallel table begins immediately after the hash table
12091 (at offset 16 + 8 * M from the beginning of the section), and consists of an
12092 array of 32-bit indexes (using the byte order of the application binary),
12093 corresponding 1-1 with slots in the hash table. Each entry in the parallel
12094 table contains a 32-bit index into the pool of section numbers. For unused
12095 hash table slots, the corresponding entry in the parallel table will be 0.
12096
12097 The pool of section numbers begins immediately following the hash table
12098 (at offset 16 + 12 * M from the beginning of the section). The pool of
12099 section numbers consists of an array of 32-bit words (using the byte order
12100 of the application binary). Each item in the array is indexed starting
12101 from 0. The hash table entry provides the index of the first section
12102 number in the set. Additional section numbers in the set follow, and the
12103 set is terminated by a 0 entry (section number 0 is not used in ELF).
12104
12105 In each set of section numbers, the .debug_info.dwo or .debug_types.dwo
12106 section must be the first entry in the set, and the .debug_abbrev.dwo must
12107 be the second entry. Other members of the set may follow in any order.
12108
12109 ---
12110
12111 DWP Version 2:
12112
12113 DWP Version 2 combines all the .debug_info, etc. sections into one,
12114 and the entries in the index tables are now offsets into these sections.
12115 CU offsets begin at 0. TU offsets begin at the size of the .debug_info
12116 section.
12117
12118 Index Section Contents:
12119 Header
12120 Hash Table of Signatures dwp_hash_table.hash_table
12121 Parallel Table of Indices dwp_hash_table.unit_table
12122 Table of Section Offsets dwp_hash_table.v2.{section_ids,offsets}
12123 Table of Section Sizes dwp_hash_table.v2.sizes
12124
12125 The index section header consists of:
12126
12127 V, 32 bit version number
12128 L, 32 bit number of columns in the table of section offsets
12129 N, 32 bit number of compilation units or type units in the index
12130 M, 32 bit number of slots in the hash table
12131
12132 Numbers are recorded using the byte order of the application binary.
12133
12134 The hash table has the same format as version 1.
12135 The parallel table of indices has the same format as version 1,
12136 except that the entries are origin-1 indices into the table of sections
12137 offsets and the table of section sizes.
12138
12139 The table of offsets begins immediately following the parallel table
12140 (at offset 16 + 12 * M from the beginning of the section). The table is
12141 a two-dimensional array of 32-bit words (using the byte order of the
12142 application binary), with L columns and N+1 rows, in row-major order.
12143 Each row in the array is indexed starting from 0. The first row provides
12144 a key to the remaining rows: each column in this row provides an identifier
12145 for a debug section, and the offsets in the same column of subsequent rows
12146 refer to that section. The section identifiers are:
12147
12148 DW_SECT_INFO 1 .debug_info.dwo
12149 DW_SECT_TYPES 2 .debug_types.dwo
12150 DW_SECT_ABBREV 3 .debug_abbrev.dwo
12151 DW_SECT_LINE 4 .debug_line.dwo
12152 DW_SECT_LOC 5 .debug_loc.dwo
12153 DW_SECT_STR_OFFSETS 6 .debug_str_offsets.dwo
12154 DW_SECT_MACINFO 7 .debug_macinfo.dwo
12155 DW_SECT_MACRO 8 .debug_macro.dwo
12156
12157 The offsets provided by the CU and TU index sections are the base offsets
12158 for the contributions made by each CU or TU to the corresponding section
12159 in the package file. Each CU and TU header contains an abbrev_offset
12160 field, used to find the abbreviations table for that CU or TU within the
12161 contribution to the .debug_abbrev.dwo section for that CU or TU, and should
12162 be interpreted as relative to the base offset given in the index section.
12163 Likewise, offsets into .debug_line.dwo from DW_AT_stmt_list attributes
12164 should be interpreted as relative to the base offset for .debug_line.dwo,
12165 and offsets into other debug sections obtained from DWARF attributes should
12166 also be interpreted as relative to the corresponding base offset.
12167
12168 The table of sizes begins immediately following the table of offsets.
12169 Like the table of offsets, it is a two-dimensional array of 32-bit words,
12170 with L columns and N rows, in row-major order. Each row in the array is
12171 indexed starting from 1 (row 0 is shared by the two tables).
12172
12173 ---
12174
12175 Hash table lookup is handled the same in version 1 and 2:
12176
12177 We assume that N and M will not exceed 2^32 - 1.
12178 The size of the hash table, M, must be 2^k such that 2^k > 3*N/2.
12179
12180 Given a 64-bit compilation unit signature or a type signature S, an entry
12181 in the hash table is located as follows:
12182
12183 1) Calculate a primary hash H = S & MASK(k), where MASK(k) is a mask with
12184 the low-order k bits all set to 1.
12185
12186 2) Calculate a secondary hash H' = (((S >> 32) & MASK(k)) | 1).
12187
12188 3) If the hash table entry at index H matches the signature, use that
12189 entry. If the hash table entry at index H is unused (all zeroes),
12190 terminate the search: the signature is not present in the table.
12191
12192 4) Let H = (H + H') modulo M. Repeat at Step 3.
12193
12194 Because M > N and H' and M are relatively prime, the search is guaranteed
12195 to stop at an unused slot or find the match. */
12196
12197 /* Create a hash table to map DWO IDs to their CU/TU entry in
12198 .debug_{info,types}.dwo in DWP_FILE.
12199 Returns NULL if there isn't one.
12200 Note: This function processes DWP files only, not DWO files. */
12201
12202 static struct dwp_hash_table *
12203 create_dwp_hash_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
12204 struct dwp_file *dwp_file, int is_debug_types)
12205 {
12206 struct objfile *objfile = dwarf2_per_objfile->objfile;
12207 bfd *dbfd = dwp_file->dbfd.get ();
12208 const gdb_byte *index_ptr, *index_end;
12209 struct dwarf2_section_info *index;
12210 uint32_t version, nr_columns, nr_units, nr_slots;
12211 struct dwp_hash_table *htab;
12212
12213 if (is_debug_types)
12214 index = &dwp_file->sections.tu_index;
12215 else
12216 index = &dwp_file->sections.cu_index;
12217
12218 if (dwarf2_section_empty_p (index))
12219 return NULL;
12220 dwarf2_read_section (objfile, index);
12221
12222 index_ptr = index->buffer;
12223 index_end = index_ptr + index->size;
12224
12225 version = read_4_bytes (dbfd, index_ptr);
12226 index_ptr += 4;
12227 if (version == 2)
12228 nr_columns = read_4_bytes (dbfd, index_ptr);
12229 else
12230 nr_columns = 0;
12231 index_ptr += 4;
12232 nr_units = read_4_bytes (dbfd, index_ptr);
12233 index_ptr += 4;
12234 nr_slots = read_4_bytes (dbfd, index_ptr);
12235 index_ptr += 4;
12236
12237 if (version != 1 && version != 2)
12238 {
12239 error (_("Dwarf Error: unsupported DWP file version (%s)"
12240 " [in module %s]"),
12241 pulongest (version), dwp_file->name);
12242 }
12243 if (nr_slots != (nr_slots & -nr_slots))
12244 {
12245 error (_("Dwarf Error: number of slots in DWP hash table (%s)"
12246 " is not power of 2 [in module %s]"),
12247 pulongest (nr_slots), dwp_file->name);
12248 }
12249
12250 htab = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwp_hash_table);
12251 htab->version = version;
12252 htab->nr_columns = nr_columns;
12253 htab->nr_units = nr_units;
12254 htab->nr_slots = nr_slots;
12255 htab->hash_table = index_ptr;
12256 htab->unit_table = htab->hash_table + sizeof (uint64_t) * nr_slots;
12257
12258 /* Exit early if the table is empty. */
12259 if (nr_slots == 0 || nr_units == 0
12260 || (version == 2 && nr_columns == 0))
12261 {
12262 /* All must be zero. */
12263 if (nr_slots != 0 || nr_units != 0
12264 || (version == 2 && nr_columns != 0))
12265 {
12266 complaint (_("Empty DWP but nr_slots,nr_units,nr_columns not"
12267 " all zero [in modules %s]"),
12268 dwp_file->name);
12269 }
12270 return htab;
12271 }
12272
12273 if (version == 1)
12274 {
12275 htab->section_pool.v1.indices =
12276 htab->unit_table + sizeof (uint32_t) * nr_slots;
12277 /* It's harder to decide whether the section is too small in v1.
12278 V1 is deprecated anyway so we punt. */
12279 }
12280 else
12281 {
12282 const gdb_byte *ids_ptr = htab->unit_table + sizeof (uint32_t) * nr_slots;
12283 int *ids = htab->section_pool.v2.section_ids;
12284 size_t sizeof_ids = sizeof (htab->section_pool.v2.section_ids);
12285 /* Reverse map for error checking. */
12286 int ids_seen[DW_SECT_MAX + 1];
12287 int i;
12288
12289 if (nr_columns < 2)
12290 {
12291 error (_("Dwarf Error: bad DWP hash table, too few columns"
12292 " in section table [in module %s]"),
12293 dwp_file->name);
12294 }
12295 if (nr_columns > MAX_NR_V2_DWO_SECTIONS)
12296 {
12297 error (_("Dwarf Error: bad DWP hash table, too many columns"
12298 " in section table [in module %s]"),
12299 dwp_file->name);
12300 }
12301 memset (ids, 255, sizeof_ids);
12302 memset (ids_seen, 255, sizeof (ids_seen));
12303 for (i = 0; i < nr_columns; ++i)
12304 {
12305 int id = read_4_bytes (dbfd, ids_ptr + i * sizeof (uint32_t));
12306
12307 if (id < DW_SECT_MIN || id > DW_SECT_MAX)
12308 {
12309 error (_("Dwarf Error: bad DWP hash table, bad section id %d"
12310 " in section table [in module %s]"),
12311 id, dwp_file->name);
12312 }
12313 if (ids_seen[id] != -1)
12314 {
12315 error (_("Dwarf Error: bad DWP hash table, duplicate section"
12316 " id %d in section table [in module %s]"),
12317 id, dwp_file->name);
12318 }
12319 ids_seen[id] = i;
12320 ids[i] = id;
12321 }
12322 /* Must have exactly one info or types section. */
12323 if (((ids_seen[DW_SECT_INFO] != -1)
12324 + (ids_seen[DW_SECT_TYPES] != -1))
12325 != 1)
12326 {
12327 error (_("Dwarf Error: bad DWP hash table, missing/duplicate"
12328 " DWO info/types section [in module %s]"),
12329 dwp_file->name);
12330 }
12331 /* Must have an abbrev section. */
12332 if (ids_seen[DW_SECT_ABBREV] == -1)
12333 {
12334 error (_("Dwarf Error: bad DWP hash table, missing DWO abbrev"
12335 " section [in module %s]"),
12336 dwp_file->name);
12337 }
12338 htab->section_pool.v2.offsets = ids_ptr + sizeof (uint32_t) * nr_columns;
12339 htab->section_pool.v2.sizes =
12340 htab->section_pool.v2.offsets + (sizeof (uint32_t)
12341 * nr_units * nr_columns);
12342 if ((htab->section_pool.v2.sizes + (sizeof (uint32_t)
12343 * nr_units * nr_columns))
12344 > index_end)
12345 {
12346 error (_("Dwarf Error: DWP index section is corrupt (too small)"
12347 " [in module %s]"),
12348 dwp_file->name);
12349 }
12350 }
12351
12352 return htab;
12353 }
12354
12355 /* Update SECTIONS with the data from SECTP.
12356
12357 This function is like the other "locate" section routines that are
12358 passed to bfd_map_over_sections, but in this context the sections to
12359 read comes from the DWP V1 hash table, not the full ELF section table.
12360
12361 The result is non-zero for success, or zero if an error was found. */
12362
12363 static int
12364 locate_v1_virtual_dwo_sections (asection *sectp,
12365 struct virtual_v1_dwo_sections *sections)
12366 {
12367 const struct dwop_section_names *names = &dwop_section_names;
12368
12369 if (section_is_p (sectp->name, &names->abbrev_dwo))
12370 {
12371 /* There can be only one. */
12372 if (sections->abbrev.s.section != NULL)
12373 return 0;
12374 sections->abbrev.s.section = sectp;
12375 sections->abbrev.size = bfd_section_size (sectp);
12376 }
12377 else if (section_is_p (sectp->name, &names->info_dwo)
12378 || section_is_p (sectp->name, &names->types_dwo))
12379 {
12380 /* There can be only one. */
12381 if (sections->info_or_types.s.section != NULL)
12382 return 0;
12383 sections->info_or_types.s.section = sectp;
12384 sections->info_or_types.size = bfd_section_size (sectp);
12385 }
12386 else if (section_is_p (sectp->name, &names->line_dwo))
12387 {
12388 /* There can be only one. */
12389 if (sections->line.s.section != NULL)
12390 return 0;
12391 sections->line.s.section = sectp;
12392 sections->line.size = bfd_section_size (sectp);
12393 }
12394 else if (section_is_p (sectp->name, &names->loc_dwo))
12395 {
12396 /* There can be only one. */
12397 if (sections->loc.s.section != NULL)
12398 return 0;
12399 sections->loc.s.section = sectp;
12400 sections->loc.size = bfd_section_size (sectp);
12401 }
12402 else if (section_is_p (sectp->name, &names->macinfo_dwo))
12403 {
12404 /* There can be only one. */
12405 if (sections->macinfo.s.section != NULL)
12406 return 0;
12407 sections->macinfo.s.section = sectp;
12408 sections->macinfo.size = bfd_section_size (sectp);
12409 }
12410 else if (section_is_p (sectp->name, &names->macro_dwo))
12411 {
12412 /* There can be only one. */
12413 if (sections->macro.s.section != NULL)
12414 return 0;
12415 sections->macro.s.section = sectp;
12416 sections->macro.size = bfd_section_size (sectp);
12417 }
12418 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
12419 {
12420 /* There can be only one. */
12421 if (sections->str_offsets.s.section != NULL)
12422 return 0;
12423 sections->str_offsets.s.section = sectp;
12424 sections->str_offsets.size = bfd_section_size (sectp);
12425 }
12426 else
12427 {
12428 /* No other kind of section is valid. */
12429 return 0;
12430 }
12431
12432 return 1;
12433 }
12434
12435 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12436 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12437 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12438 This is for DWP version 1 files. */
12439
12440 static struct dwo_unit *
12441 create_dwo_unit_in_dwp_v1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12442 struct dwp_file *dwp_file,
12443 uint32_t unit_index,
12444 const char *comp_dir,
12445 ULONGEST signature, int is_debug_types)
12446 {
12447 struct objfile *objfile = dwarf2_per_objfile->objfile;
12448 const struct dwp_hash_table *dwp_htab =
12449 is_debug_types ? dwp_file->tus : dwp_file->cus;
12450 bfd *dbfd = dwp_file->dbfd.get ();
12451 const char *kind = is_debug_types ? "TU" : "CU";
12452 struct dwo_file *dwo_file;
12453 struct dwo_unit *dwo_unit;
12454 struct virtual_v1_dwo_sections sections;
12455 void **dwo_file_slot;
12456 int i;
12457
12458 gdb_assert (dwp_file->version == 1);
12459
12460 if (dwarf_read_debug)
12461 {
12462 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V1 file: %s\n",
12463 kind,
12464 pulongest (unit_index), hex_string (signature),
12465 dwp_file->name);
12466 }
12467
12468 /* Fetch the sections of this DWO unit.
12469 Put a limit on the number of sections we look for so that bad data
12470 doesn't cause us to loop forever. */
12471
12472 #define MAX_NR_V1_DWO_SECTIONS \
12473 (1 /* .debug_info or .debug_types */ \
12474 + 1 /* .debug_abbrev */ \
12475 + 1 /* .debug_line */ \
12476 + 1 /* .debug_loc */ \
12477 + 1 /* .debug_str_offsets */ \
12478 + 1 /* .debug_macro or .debug_macinfo */ \
12479 + 1 /* trailing zero */)
12480
12481 memset (&sections, 0, sizeof (sections));
12482
12483 for (i = 0; i < MAX_NR_V1_DWO_SECTIONS; ++i)
12484 {
12485 asection *sectp;
12486 uint32_t section_nr =
12487 read_4_bytes (dbfd,
12488 dwp_htab->section_pool.v1.indices
12489 + (unit_index + i) * sizeof (uint32_t));
12490
12491 if (section_nr == 0)
12492 break;
12493 if (section_nr >= dwp_file->num_sections)
12494 {
12495 error (_("Dwarf Error: bad DWP hash table, section number too large"
12496 " [in module %s]"),
12497 dwp_file->name);
12498 }
12499
12500 sectp = dwp_file->elf_sections[section_nr];
12501 if (! locate_v1_virtual_dwo_sections (sectp, &sections))
12502 {
12503 error (_("Dwarf Error: bad DWP hash table, invalid section found"
12504 " [in module %s]"),
12505 dwp_file->name);
12506 }
12507 }
12508
12509 if (i < 2
12510 || dwarf2_section_empty_p (&sections.info_or_types)
12511 || dwarf2_section_empty_p (&sections.abbrev))
12512 {
12513 error (_("Dwarf Error: bad DWP hash table, missing DWO sections"
12514 " [in module %s]"),
12515 dwp_file->name);
12516 }
12517 if (i == MAX_NR_V1_DWO_SECTIONS)
12518 {
12519 error (_("Dwarf Error: bad DWP hash table, too many DWO sections"
12520 " [in module %s]"),
12521 dwp_file->name);
12522 }
12523
12524 /* It's easier for the rest of the code if we fake a struct dwo_file and
12525 have dwo_unit "live" in that. At least for now.
12526
12527 The DWP file can be made up of a random collection of CUs and TUs.
12528 However, for each CU + set of TUs that came from the same original DWO
12529 file, we can combine them back into a virtual DWO file to save space
12530 (fewer struct dwo_file objects to allocate). Remember that for really
12531 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12532
12533 std::string virtual_dwo_name =
12534 string_printf ("virtual-dwo/%d-%d-%d-%d",
12535 get_section_id (&sections.abbrev),
12536 get_section_id (&sections.line),
12537 get_section_id (&sections.loc),
12538 get_section_id (&sections.str_offsets));
12539 /* Can we use an existing virtual DWO file? */
12540 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12541 virtual_dwo_name.c_str (),
12542 comp_dir);
12543 /* Create one if necessary. */
12544 if (*dwo_file_slot == NULL)
12545 {
12546 if (dwarf_read_debug)
12547 {
12548 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12549 virtual_dwo_name.c_str ());
12550 }
12551 dwo_file = new struct dwo_file;
12552 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12553 virtual_dwo_name);
12554 dwo_file->comp_dir = comp_dir;
12555 dwo_file->sections.abbrev = sections.abbrev;
12556 dwo_file->sections.line = sections.line;
12557 dwo_file->sections.loc = sections.loc;
12558 dwo_file->sections.macinfo = sections.macinfo;
12559 dwo_file->sections.macro = sections.macro;
12560 dwo_file->sections.str_offsets = sections.str_offsets;
12561 /* The "str" section is global to the entire DWP file. */
12562 dwo_file->sections.str = dwp_file->sections.str;
12563 /* The info or types section is assigned below to dwo_unit,
12564 there's no need to record it in dwo_file.
12565 Also, we can't simply record type sections in dwo_file because
12566 we record a pointer into the vector in dwo_unit. As we collect more
12567 types we'll grow the vector and eventually have to reallocate space
12568 for it, invalidating all copies of pointers into the previous
12569 contents. */
12570 *dwo_file_slot = dwo_file;
12571 }
12572 else
12573 {
12574 if (dwarf_read_debug)
12575 {
12576 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12577 virtual_dwo_name.c_str ());
12578 }
12579 dwo_file = (struct dwo_file *) *dwo_file_slot;
12580 }
12581
12582 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12583 dwo_unit->dwo_file = dwo_file;
12584 dwo_unit->signature = signature;
12585 dwo_unit->section =
12586 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12587 *dwo_unit->section = sections.info_or_types;
12588 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12589
12590 return dwo_unit;
12591 }
12592
12593 /* Subroutine of create_dwo_unit_in_dwp_v2 to simplify it.
12594 Given a pointer to the containing section SECTION, and OFFSET,SIZE of the
12595 piece within that section used by a TU/CU, return a virtual section
12596 of just that piece. */
12597
12598 static struct dwarf2_section_info
12599 create_dwp_v2_section (struct dwarf2_per_objfile *dwarf2_per_objfile,
12600 struct dwarf2_section_info *section,
12601 bfd_size_type offset, bfd_size_type size)
12602 {
12603 struct dwarf2_section_info result;
12604 asection *sectp;
12605
12606 gdb_assert (section != NULL);
12607 gdb_assert (!section->is_virtual);
12608
12609 memset (&result, 0, sizeof (result));
12610 result.s.containing_section = section;
12611 result.is_virtual = true;
12612
12613 if (size == 0)
12614 return result;
12615
12616 sectp = get_section_bfd_section (section);
12617
12618 /* Flag an error if the piece denoted by OFFSET,SIZE is outside the
12619 bounds of the real section. This is a pretty-rare event, so just
12620 flag an error (easier) instead of a warning and trying to cope. */
12621 if (sectp == NULL
12622 || offset + size > bfd_section_size (sectp))
12623 {
12624 error (_("Dwarf Error: Bad DWP V2 section info, doesn't fit"
12625 " in section %s [in module %s]"),
12626 sectp ? bfd_section_name (sectp) : "<unknown>",
12627 objfile_name (dwarf2_per_objfile->objfile));
12628 }
12629
12630 result.virtual_offset = offset;
12631 result.size = size;
12632 return result;
12633 }
12634
12635 /* Create a dwo_unit object for the DWO unit with signature SIGNATURE.
12636 UNIT_INDEX is the index of the DWO unit in the DWP hash table.
12637 COMP_DIR is the DW_AT_comp_dir attribute of the referencing CU.
12638 This is for DWP version 2 files. */
12639
12640 static struct dwo_unit *
12641 create_dwo_unit_in_dwp_v2 (struct dwarf2_per_objfile *dwarf2_per_objfile,
12642 struct dwp_file *dwp_file,
12643 uint32_t unit_index,
12644 const char *comp_dir,
12645 ULONGEST signature, int is_debug_types)
12646 {
12647 struct objfile *objfile = dwarf2_per_objfile->objfile;
12648 const struct dwp_hash_table *dwp_htab =
12649 is_debug_types ? dwp_file->tus : dwp_file->cus;
12650 bfd *dbfd = dwp_file->dbfd.get ();
12651 const char *kind = is_debug_types ? "TU" : "CU";
12652 struct dwo_file *dwo_file;
12653 struct dwo_unit *dwo_unit;
12654 struct virtual_v2_dwo_sections sections;
12655 void **dwo_file_slot;
12656 int i;
12657
12658 gdb_assert (dwp_file->version == 2);
12659
12660 if (dwarf_read_debug)
12661 {
12662 fprintf_unfiltered (gdb_stdlog, "Reading %s %s/%s in DWP V2 file: %s\n",
12663 kind,
12664 pulongest (unit_index), hex_string (signature),
12665 dwp_file->name);
12666 }
12667
12668 /* Fetch the section offsets of this DWO unit. */
12669
12670 memset (&sections, 0, sizeof (sections));
12671
12672 for (i = 0; i < dwp_htab->nr_columns; ++i)
12673 {
12674 uint32_t offset = read_4_bytes (dbfd,
12675 dwp_htab->section_pool.v2.offsets
12676 + (((unit_index - 1) * dwp_htab->nr_columns
12677 + i)
12678 * sizeof (uint32_t)));
12679 uint32_t size = read_4_bytes (dbfd,
12680 dwp_htab->section_pool.v2.sizes
12681 + (((unit_index - 1) * dwp_htab->nr_columns
12682 + i)
12683 * sizeof (uint32_t)));
12684
12685 switch (dwp_htab->section_pool.v2.section_ids[i])
12686 {
12687 case DW_SECT_INFO:
12688 case DW_SECT_TYPES:
12689 sections.info_or_types_offset = offset;
12690 sections.info_or_types_size = size;
12691 break;
12692 case DW_SECT_ABBREV:
12693 sections.abbrev_offset = offset;
12694 sections.abbrev_size = size;
12695 break;
12696 case DW_SECT_LINE:
12697 sections.line_offset = offset;
12698 sections.line_size = size;
12699 break;
12700 case DW_SECT_LOC:
12701 sections.loc_offset = offset;
12702 sections.loc_size = size;
12703 break;
12704 case DW_SECT_STR_OFFSETS:
12705 sections.str_offsets_offset = offset;
12706 sections.str_offsets_size = size;
12707 break;
12708 case DW_SECT_MACINFO:
12709 sections.macinfo_offset = offset;
12710 sections.macinfo_size = size;
12711 break;
12712 case DW_SECT_MACRO:
12713 sections.macro_offset = offset;
12714 sections.macro_size = size;
12715 break;
12716 }
12717 }
12718
12719 /* It's easier for the rest of the code if we fake a struct dwo_file and
12720 have dwo_unit "live" in that. At least for now.
12721
12722 The DWP file can be made up of a random collection of CUs and TUs.
12723 However, for each CU + set of TUs that came from the same original DWO
12724 file, we can combine them back into a virtual DWO file to save space
12725 (fewer struct dwo_file objects to allocate). Remember that for really
12726 large apps there can be on the order of 8K CUs and 200K TUs, or more. */
12727
12728 std::string virtual_dwo_name =
12729 string_printf ("virtual-dwo/%ld-%ld-%ld-%ld",
12730 (long) (sections.abbrev_size ? sections.abbrev_offset : 0),
12731 (long) (sections.line_size ? sections.line_offset : 0),
12732 (long) (sections.loc_size ? sections.loc_offset : 0),
12733 (long) (sections.str_offsets_size
12734 ? sections.str_offsets_offset : 0));
12735 /* Can we use an existing virtual DWO file? */
12736 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
12737 virtual_dwo_name.c_str (),
12738 comp_dir);
12739 /* Create one if necessary. */
12740 if (*dwo_file_slot == NULL)
12741 {
12742 if (dwarf_read_debug)
12743 {
12744 fprintf_unfiltered (gdb_stdlog, "Creating virtual DWO: %s\n",
12745 virtual_dwo_name.c_str ());
12746 }
12747 dwo_file = new struct dwo_file;
12748 dwo_file->dwo_name = obstack_strdup (&objfile->objfile_obstack,
12749 virtual_dwo_name);
12750 dwo_file->comp_dir = comp_dir;
12751 dwo_file->sections.abbrev =
12752 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.abbrev,
12753 sections.abbrev_offset, sections.abbrev_size);
12754 dwo_file->sections.line =
12755 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.line,
12756 sections.line_offset, sections.line_size);
12757 dwo_file->sections.loc =
12758 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.loc,
12759 sections.loc_offset, sections.loc_size);
12760 dwo_file->sections.macinfo =
12761 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macinfo,
12762 sections.macinfo_offset, sections.macinfo_size);
12763 dwo_file->sections.macro =
12764 create_dwp_v2_section (dwarf2_per_objfile, &dwp_file->sections.macro,
12765 sections.macro_offset, sections.macro_size);
12766 dwo_file->sections.str_offsets =
12767 create_dwp_v2_section (dwarf2_per_objfile,
12768 &dwp_file->sections.str_offsets,
12769 sections.str_offsets_offset,
12770 sections.str_offsets_size);
12771 /* The "str" section is global to the entire DWP file. */
12772 dwo_file->sections.str = dwp_file->sections.str;
12773 /* The info or types section is assigned below to dwo_unit,
12774 there's no need to record it in dwo_file.
12775 Also, we can't simply record type sections in dwo_file because
12776 we record a pointer into the vector in dwo_unit. As we collect more
12777 types we'll grow the vector and eventually have to reallocate space
12778 for it, invalidating all copies of pointers into the previous
12779 contents. */
12780 *dwo_file_slot = dwo_file;
12781 }
12782 else
12783 {
12784 if (dwarf_read_debug)
12785 {
12786 fprintf_unfiltered (gdb_stdlog, "Using existing virtual DWO: %s\n",
12787 virtual_dwo_name.c_str ());
12788 }
12789 dwo_file = (struct dwo_file *) *dwo_file_slot;
12790 }
12791
12792 dwo_unit = OBSTACK_ZALLOC (&objfile->objfile_obstack, struct dwo_unit);
12793 dwo_unit->dwo_file = dwo_file;
12794 dwo_unit->signature = signature;
12795 dwo_unit->section =
12796 XOBNEW (&objfile->objfile_obstack, struct dwarf2_section_info);
12797 *dwo_unit->section = create_dwp_v2_section (dwarf2_per_objfile,
12798 is_debug_types
12799 ? &dwp_file->sections.types
12800 : &dwp_file->sections.info,
12801 sections.info_or_types_offset,
12802 sections.info_or_types_size);
12803 /* dwo_unit->{offset,length,type_offset_in_tu} are set later. */
12804
12805 return dwo_unit;
12806 }
12807
12808 /* Lookup the DWO unit with SIGNATURE in DWP_FILE.
12809 Returns NULL if the signature isn't found. */
12810
12811 static struct dwo_unit *
12812 lookup_dwo_unit_in_dwp (struct dwarf2_per_objfile *dwarf2_per_objfile,
12813 struct dwp_file *dwp_file, const char *comp_dir,
12814 ULONGEST signature, int is_debug_types)
12815 {
12816 const struct dwp_hash_table *dwp_htab =
12817 is_debug_types ? dwp_file->tus : dwp_file->cus;
12818 bfd *dbfd = dwp_file->dbfd.get ();
12819 uint32_t mask = dwp_htab->nr_slots - 1;
12820 uint32_t hash = signature & mask;
12821 uint32_t hash2 = ((signature >> 32) & mask) | 1;
12822 unsigned int i;
12823 void **slot;
12824 struct dwo_unit find_dwo_cu;
12825
12826 memset (&find_dwo_cu, 0, sizeof (find_dwo_cu));
12827 find_dwo_cu.signature = signature;
12828 slot = htab_find_slot (is_debug_types
12829 ? dwp_file->loaded_tus
12830 : dwp_file->loaded_cus,
12831 &find_dwo_cu, INSERT);
12832
12833 if (*slot != NULL)
12834 return (struct dwo_unit *) *slot;
12835
12836 /* Use a for loop so that we don't loop forever on bad debug info. */
12837 for (i = 0; i < dwp_htab->nr_slots; ++i)
12838 {
12839 ULONGEST signature_in_table;
12840
12841 signature_in_table =
12842 read_8_bytes (dbfd, dwp_htab->hash_table + hash * sizeof (uint64_t));
12843 if (signature_in_table == signature)
12844 {
12845 uint32_t unit_index =
12846 read_4_bytes (dbfd,
12847 dwp_htab->unit_table + hash * sizeof (uint32_t));
12848
12849 if (dwp_file->version == 1)
12850 {
12851 *slot = create_dwo_unit_in_dwp_v1 (dwarf2_per_objfile,
12852 dwp_file, unit_index,
12853 comp_dir, signature,
12854 is_debug_types);
12855 }
12856 else
12857 {
12858 *slot = create_dwo_unit_in_dwp_v2 (dwarf2_per_objfile,
12859 dwp_file, unit_index,
12860 comp_dir, signature,
12861 is_debug_types);
12862 }
12863 return (struct dwo_unit *) *slot;
12864 }
12865 if (signature_in_table == 0)
12866 return NULL;
12867 hash = (hash + hash2) & mask;
12868 }
12869
12870 error (_("Dwarf Error: bad DWP hash table, lookup didn't terminate"
12871 " [in module %s]"),
12872 dwp_file->name);
12873 }
12874
12875 /* Subroutine of open_dwo_file,open_dwp_file to simplify them.
12876 Open the file specified by FILE_NAME and hand it off to BFD for
12877 preliminary analysis. Return a newly initialized bfd *, which
12878 includes a canonicalized copy of FILE_NAME.
12879 If IS_DWP is TRUE, we're opening a DWP file, otherwise a DWO file.
12880 SEARCH_CWD is true if the current directory is to be searched.
12881 It will be searched before debug-file-directory.
12882 If successful, the file is added to the bfd include table of the
12883 objfile's bfd (see gdb_bfd_record_inclusion).
12884 If unable to find/open the file, return NULL.
12885 NOTE: This function is derived from symfile_bfd_open. */
12886
12887 static gdb_bfd_ref_ptr
12888 try_open_dwop_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12889 const char *file_name, int is_dwp, int search_cwd)
12890 {
12891 int desc;
12892 /* Blech. OPF_TRY_CWD_FIRST also disables searching the path list if
12893 FILE_NAME contains a '/'. So we can't use it. Instead prepend "."
12894 to debug_file_directory. */
12895 const char *search_path;
12896 static const char dirname_separator_string[] = { DIRNAME_SEPARATOR, '\0' };
12897
12898 gdb::unique_xmalloc_ptr<char> search_path_holder;
12899 if (search_cwd)
12900 {
12901 if (*debug_file_directory != '\0')
12902 {
12903 search_path_holder.reset (concat (".", dirname_separator_string,
12904 debug_file_directory,
12905 (char *) NULL));
12906 search_path = search_path_holder.get ();
12907 }
12908 else
12909 search_path = ".";
12910 }
12911 else
12912 search_path = debug_file_directory;
12913
12914 openp_flags flags = OPF_RETURN_REALPATH;
12915 if (is_dwp)
12916 flags |= OPF_SEARCH_IN_PATH;
12917
12918 gdb::unique_xmalloc_ptr<char> absolute_name;
12919 desc = openp (search_path, flags, file_name,
12920 O_RDONLY | O_BINARY, &absolute_name);
12921 if (desc < 0)
12922 return NULL;
12923
12924 gdb_bfd_ref_ptr sym_bfd (gdb_bfd_open (absolute_name.get (),
12925 gnutarget, desc));
12926 if (sym_bfd == NULL)
12927 return NULL;
12928 bfd_set_cacheable (sym_bfd.get (), 1);
12929
12930 if (!bfd_check_format (sym_bfd.get (), bfd_object))
12931 return NULL;
12932
12933 /* Success. Record the bfd as having been included by the objfile's bfd.
12934 This is important because things like demangled_names_hash lives in the
12935 objfile's per_bfd space and may have references to things like symbol
12936 names that live in the DWO/DWP file's per_bfd space. PR 16426. */
12937 gdb_bfd_record_inclusion (dwarf2_per_objfile->objfile->obfd, sym_bfd.get ());
12938
12939 return sym_bfd;
12940 }
12941
12942 /* Try to open DWO file FILE_NAME.
12943 COMP_DIR is the DW_AT_comp_dir attribute.
12944 The result is the bfd handle of the file.
12945 If there is a problem finding or opening the file, return NULL.
12946 Upon success, the canonicalized path of the file is stored in the bfd,
12947 same as symfile_bfd_open. */
12948
12949 static gdb_bfd_ref_ptr
12950 open_dwo_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
12951 const char *file_name, const char *comp_dir)
12952 {
12953 if (IS_ABSOLUTE_PATH (file_name))
12954 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12955 0 /*is_dwp*/, 0 /*search_cwd*/);
12956
12957 /* Before trying the search path, try DWO_NAME in COMP_DIR. */
12958
12959 if (comp_dir != NULL)
12960 {
12961 char *path_to_try = concat (comp_dir, SLASH_STRING,
12962 file_name, (char *) NULL);
12963
12964 /* NOTE: If comp_dir is a relative path, this will also try the
12965 search path, which seems useful. */
12966 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile,
12967 path_to_try,
12968 0 /*is_dwp*/,
12969 1 /*search_cwd*/));
12970 xfree (path_to_try);
12971 if (abfd != NULL)
12972 return abfd;
12973 }
12974
12975 /* That didn't work, try debug-file-directory, which, despite its name,
12976 is a list of paths. */
12977
12978 if (*debug_file_directory == '\0')
12979 return NULL;
12980
12981 return try_open_dwop_file (dwarf2_per_objfile, file_name,
12982 0 /*is_dwp*/, 1 /*search_cwd*/);
12983 }
12984
12985 /* This function is mapped across the sections and remembers the offset and
12986 size of each of the DWO debugging sections we are interested in. */
12987
12988 static void
12989 dwarf2_locate_dwo_sections (bfd *abfd, asection *sectp, void *dwo_sections_ptr)
12990 {
12991 struct dwo_sections *dwo_sections = (struct dwo_sections *) dwo_sections_ptr;
12992 const struct dwop_section_names *names = &dwop_section_names;
12993
12994 if (section_is_p (sectp->name, &names->abbrev_dwo))
12995 {
12996 dwo_sections->abbrev.s.section = sectp;
12997 dwo_sections->abbrev.size = bfd_section_size (sectp);
12998 }
12999 else if (section_is_p (sectp->name, &names->info_dwo))
13000 {
13001 dwo_sections->info.s.section = sectp;
13002 dwo_sections->info.size = bfd_section_size (sectp);
13003 }
13004 else if (section_is_p (sectp->name, &names->line_dwo))
13005 {
13006 dwo_sections->line.s.section = sectp;
13007 dwo_sections->line.size = bfd_section_size (sectp);
13008 }
13009 else if (section_is_p (sectp->name, &names->loc_dwo))
13010 {
13011 dwo_sections->loc.s.section = sectp;
13012 dwo_sections->loc.size = bfd_section_size (sectp);
13013 }
13014 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13015 {
13016 dwo_sections->macinfo.s.section = sectp;
13017 dwo_sections->macinfo.size = bfd_section_size (sectp);
13018 }
13019 else if (section_is_p (sectp->name, &names->macro_dwo))
13020 {
13021 dwo_sections->macro.s.section = sectp;
13022 dwo_sections->macro.size = bfd_section_size (sectp);
13023 }
13024 else if (section_is_p (sectp->name, &names->str_dwo))
13025 {
13026 dwo_sections->str.s.section = sectp;
13027 dwo_sections->str.size = bfd_section_size (sectp);
13028 }
13029 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13030 {
13031 dwo_sections->str_offsets.s.section = sectp;
13032 dwo_sections->str_offsets.size = bfd_section_size (sectp);
13033 }
13034 else if (section_is_p (sectp->name, &names->types_dwo))
13035 {
13036 struct dwarf2_section_info type_section;
13037
13038 memset (&type_section, 0, sizeof (type_section));
13039 type_section.s.section = sectp;
13040 type_section.size = bfd_section_size (sectp);
13041 dwo_sections->types.push_back (type_section);
13042 }
13043 }
13044
13045 /* Initialize the use of the DWO file specified by DWO_NAME and referenced
13046 by PER_CU. This is for the non-DWP case.
13047 The result is NULL if DWO_NAME can't be found. */
13048
13049 static struct dwo_file *
13050 open_and_init_dwo_file (struct dwarf2_per_cu_data *per_cu,
13051 const char *dwo_name, const char *comp_dir)
13052 {
13053 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
13054
13055 gdb_bfd_ref_ptr dbfd = open_dwo_file (dwarf2_per_objfile, dwo_name, comp_dir);
13056 if (dbfd == NULL)
13057 {
13058 if (dwarf_read_debug)
13059 fprintf_unfiltered (gdb_stdlog, "DWO file not found: %s\n", dwo_name);
13060 return NULL;
13061 }
13062
13063 dwo_file_up dwo_file (new struct dwo_file);
13064 dwo_file->dwo_name = dwo_name;
13065 dwo_file->comp_dir = comp_dir;
13066 dwo_file->dbfd = std::move (dbfd);
13067
13068 bfd_map_over_sections (dwo_file->dbfd.get (), dwarf2_locate_dwo_sections,
13069 &dwo_file->sections);
13070
13071 create_cus_hash_table (dwarf2_per_objfile, *dwo_file, dwo_file->sections.info,
13072 dwo_file->cus);
13073
13074 create_debug_types_hash_table (dwarf2_per_objfile, dwo_file.get (),
13075 dwo_file->sections.types, dwo_file->tus);
13076
13077 if (dwarf_read_debug)
13078 fprintf_unfiltered (gdb_stdlog, "DWO file found: %s\n", dwo_name);
13079
13080 return dwo_file.release ();
13081 }
13082
13083 /* This function is mapped across the sections and remembers the offset and
13084 size of each of the DWP debugging sections common to version 1 and 2 that
13085 we are interested in. */
13086
13087 static void
13088 dwarf2_locate_common_dwp_sections (bfd *abfd, asection *sectp,
13089 void *dwp_file_ptr)
13090 {
13091 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13092 const struct dwop_section_names *names = &dwop_section_names;
13093 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13094
13095 /* Record the ELF section number for later lookup: this is what the
13096 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13097 gdb_assert (elf_section_nr < dwp_file->num_sections);
13098 dwp_file->elf_sections[elf_section_nr] = sectp;
13099
13100 /* Look for specific sections that we need. */
13101 if (section_is_p (sectp->name, &names->str_dwo))
13102 {
13103 dwp_file->sections.str.s.section = sectp;
13104 dwp_file->sections.str.size = bfd_section_size (sectp);
13105 }
13106 else if (section_is_p (sectp->name, &names->cu_index))
13107 {
13108 dwp_file->sections.cu_index.s.section = sectp;
13109 dwp_file->sections.cu_index.size = bfd_section_size (sectp);
13110 }
13111 else if (section_is_p (sectp->name, &names->tu_index))
13112 {
13113 dwp_file->sections.tu_index.s.section = sectp;
13114 dwp_file->sections.tu_index.size = bfd_section_size (sectp);
13115 }
13116 }
13117
13118 /* This function is mapped across the sections and remembers the offset and
13119 size of each of the DWP version 2 debugging sections that we are interested
13120 in. This is split into a separate function because we don't know if we
13121 have version 1 or 2 until we parse the cu_index/tu_index sections. */
13122
13123 static void
13124 dwarf2_locate_v2_dwp_sections (bfd *abfd, asection *sectp, void *dwp_file_ptr)
13125 {
13126 struct dwp_file *dwp_file = (struct dwp_file *) dwp_file_ptr;
13127 const struct dwop_section_names *names = &dwop_section_names;
13128 unsigned int elf_section_nr = elf_section_data (sectp)->this_idx;
13129
13130 /* Record the ELF section number for later lookup: this is what the
13131 .debug_cu_index,.debug_tu_index tables use in DWP V1. */
13132 gdb_assert (elf_section_nr < dwp_file->num_sections);
13133 dwp_file->elf_sections[elf_section_nr] = sectp;
13134
13135 /* Look for specific sections that we need. */
13136 if (section_is_p (sectp->name, &names->abbrev_dwo))
13137 {
13138 dwp_file->sections.abbrev.s.section = sectp;
13139 dwp_file->sections.abbrev.size = bfd_section_size (sectp);
13140 }
13141 else if (section_is_p (sectp->name, &names->info_dwo))
13142 {
13143 dwp_file->sections.info.s.section = sectp;
13144 dwp_file->sections.info.size = bfd_section_size (sectp);
13145 }
13146 else if (section_is_p (sectp->name, &names->line_dwo))
13147 {
13148 dwp_file->sections.line.s.section = sectp;
13149 dwp_file->sections.line.size = bfd_section_size (sectp);
13150 }
13151 else if (section_is_p (sectp->name, &names->loc_dwo))
13152 {
13153 dwp_file->sections.loc.s.section = sectp;
13154 dwp_file->sections.loc.size = bfd_section_size (sectp);
13155 }
13156 else if (section_is_p (sectp->name, &names->macinfo_dwo))
13157 {
13158 dwp_file->sections.macinfo.s.section = sectp;
13159 dwp_file->sections.macinfo.size = bfd_section_size (sectp);
13160 }
13161 else if (section_is_p (sectp->name, &names->macro_dwo))
13162 {
13163 dwp_file->sections.macro.s.section = sectp;
13164 dwp_file->sections.macro.size = bfd_section_size (sectp);
13165 }
13166 else if (section_is_p (sectp->name, &names->str_offsets_dwo))
13167 {
13168 dwp_file->sections.str_offsets.s.section = sectp;
13169 dwp_file->sections.str_offsets.size = bfd_section_size (sectp);
13170 }
13171 else if (section_is_p (sectp->name, &names->types_dwo))
13172 {
13173 dwp_file->sections.types.s.section = sectp;
13174 dwp_file->sections.types.size = bfd_section_size (sectp);
13175 }
13176 }
13177
13178 /* Hash function for dwp_file loaded CUs/TUs. */
13179
13180 static hashval_t
13181 hash_dwp_loaded_cutus (const void *item)
13182 {
13183 const struct dwo_unit *dwo_unit = (const struct dwo_unit *) item;
13184
13185 /* This drops the top 32 bits of the signature, but is ok for a hash. */
13186 return dwo_unit->signature;
13187 }
13188
13189 /* Equality function for dwp_file loaded CUs/TUs. */
13190
13191 static int
13192 eq_dwp_loaded_cutus (const void *a, const void *b)
13193 {
13194 const struct dwo_unit *dua = (const struct dwo_unit *) a;
13195 const struct dwo_unit *dub = (const struct dwo_unit *) b;
13196
13197 return dua->signature == dub->signature;
13198 }
13199
13200 /* Allocate a hash table for dwp_file loaded CUs/TUs. */
13201
13202 static htab_t
13203 allocate_dwp_loaded_cutus_table (struct objfile *objfile)
13204 {
13205 return htab_create_alloc_ex (3,
13206 hash_dwp_loaded_cutus,
13207 eq_dwp_loaded_cutus,
13208 NULL,
13209 &objfile->objfile_obstack,
13210 hashtab_obstack_allocate,
13211 dummy_obstack_deallocate);
13212 }
13213
13214 /* Try to open DWP file FILE_NAME.
13215 The result is the bfd handle of the file.
13216 If there is a problem finding or opening the file, return NULL.
13217 Upon success, the canonicalized path of the file is stored in the bfd,
13218 same as symfile_bfd_open. */
13219
13220 static gdb_bfd_ref_ptr
13221 open_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile,
13222 const char *file_name)
13223 {
13224 gdb_bfd_ref_ptr abfd (try_open_dwop_file (dwarf2_per_objfile, file_name,
13225 1 /*is_dwp*/,
13226 1 /*search_cwd*/));
13227 if (abfd != NULL)
13228 return abfd;
13229
13230 /* Work around upstream bug 15652.
13231 http://sourceware.org/bugzilla/show_bug.cgi?id=15652
13232 [Whether that's a "bug" is debatable, but it is getting in our way.]
13233 We have no real idea where the dwp file is, because gdb's realpath-ing
13234 of the executable's path may have discarded the needed info.
13235 [IWBN if the dwp file name was recorded in the executable, akin to
13236 .gnu_debuglink, but that doesn't exist yet.]
13237 Strip the directory from FILE_NAME and search again. */
13238 if (*debug_file_directory != '\0')
13239 {
13240 /* Don't implicitly search the current directory here.
13241 If the user wants to search "." to handle this case,
13242 it must be added to debug-file-directory. */
13243 return try_open_dwop_file (dwarf2_per_objfile,
13244 lbasename (file_name), 1 /*is_dwp*/,
13245 0 /*search_cwd*/);
13246 }
13247
13248 return NULL;
13249 }
13250
13251 /* Initialize the use of the DWP file for the current objfile.
13252 By convention the name of the DWP file is ${objfile}.dwp.
13253 The result is NULL if it can't be found. */
13254
13255 static std::unique_ptr<struct dwp_file>
13256 open_and_init_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13257 {
13258 struct objfile *objfile = dwarf2_per_objfile->objfile;
13259
13260 /* Try to find first .dwp for the binary file before any symbolic links
13261 resolving. */
13262
13263 /* If the objfile is a debug file, find the name of the real binary
13264 file and get the name of dwp file from there. */
13265 std::string dwp_name;
13266 if (objfile->separate_debug_objfile_backlink != NULL)
13267 {
13268 struct objfile *backlink = objfile->separate_debug_objfile_backlink;
13269 const char *backlink_basename = lbasename (backlink->original_name);
13270
13271 dwp_name = ldirname (objfile->original_name) + SLASH_STRING + backlink_basename;
13272 }
13273 else
13274 dwp_name = objfile->original_name;
13275
13276 dwp_name += ".dwp";
13277
13278 gdb_bfd_ref_ptr dbfd (open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ()));
13279 if (dbfd == NULL
13280 && strcmp (objfile->original_name, objfile_name (objfile)) != 0)
13281 {
13282 /* Try to find .dwp for the binary file after gdb_realpath resolving. */
13283 dwp_name = objfile_name (objfile);
13284 dwp_name += ".dwp";
13285 dbfd = open_dwp_file (dwarf2_per_objfile, dwp_name.c_str ());
13286 }
13287
13288 if (dbfd == NULL)
13289 {
13290 if (dwarf_read_debug)
13291 fprintf_unfiltered (gdb_stdlog, "DWP file not found: %s\n", dwp_name.c_str ());
13292 return std::unique_ptr<dwp_file> ();
13293 }
13294
13295 const char *name = bfd_get_filename (dbfd.get ());
13296 std::unique_ptr<struct dwp_file> dwp_file
13297 (new struct dwp_file (name, std::move (dbfd)));
13298
13299 dwp_file->num_sections = elf_numsections (dwp_file->dbfd);
13300 dwp_file->elf_sections =
13301 OBSTACK_CALLOC (&objfile->objfile_obstack,
13302 dwp_file->num_sections, asection *);
13303
13304 bfd_map_over_sections (dwp_file->dbfd.get (),
13305 dwarf2_locate_common_dwp_sections,
13306 dwp_file.get ());
13307
13308 dwp_file->cus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13309 0);
13310
13311 dwp_file->tus = create_dwp_hash_table (dwarf2_per_objfile, dwp_file.get (),
13312 1);
13313
13314 /* The DWP file version is stored in the hash table. Oh well. */
13315 if (dwp_file->cus && dwp_file->tus
13316 && dwp_file->cus->version != dwp_file->tus->version)
13317 {
13318 /* Technically speaking, we should try to limp along, but this is
13319 pretty bizarre. We use pulongest here because that's the established
13320 portability solution (e.g, we cannot use %u for uint32_t). */
13321 error (_("Dwarf Error: DWP file CU version %s doesn't match"
13322 " TU version %s [in DWP file %s]"),
13323 pulongest (dwp_file->cus->version),
13324 pulongest (dwp_file->tus->version), dwp_name.c_str ());
13325 }
13326
13327 if (dwp_file->cus)
13328 dwp_file->version = dwp_file->cus->version;
13329 else if (dwp_file->tus)
13330 dwp_file->version = dwp_file->tus->version;
13331 else
13332 dwp_file->version = 2;
13333
13334 if (dwp_file->version == 2)
13335 bfd_map_over_sections (dwp_file->dbfd.get (),
13336 dwarf2_locate_v2_dwp_sections,
13337 dwp_file.get ());
13338
13339 dwp_file->loaded_cus = allocate_dwp_loaded_cutus_table (objfile);
13340 dwp_file->loaded_tus = allocate_dwp_loaded_cutus_table (objfile);
13341
13342 if (dwarf_read_debug)
13343 {
13344 fprintf_unfiltered (gdb_stdlog, "DWP file found: %s\n", dwp_file->name);
13345 fprintf_unfiltered (gdb_stdlog,
13346 " %s CUs, %s TUs\n",
13347 pulongest (dwp_file->cus ? dwp_file->cus->nr_units : 0),
13348 pulongest (dwp_file->tus ? dwp_file->tus->nr_units : 0));
13349 }
13350
13351 return dwp_file;
13352 }
13353
13354 /* Wrapper around open_and_init_dwp_file, only open it once. */
13355
13356 static struct dwp_file *
13357 get_dwp_file (struct dwarf2_per_objfile *dwarf2_per_objfile)
13358 {
13359 if (! dwarf2_per_objfile->dwp_checked)
13360 {
13361 dwarf2_per_objfile->dwp_file
13362 = open_and_init_dwp_file (dwarf2_per_objfile);
13363 dwarf2_per_objfile->dwp_checked = 1;
13364 }
13365 return dwarf2_per_objfile->dwp_file.get ();
13366 }
13367
13368 /* Subroutine of lookup_dwo_comp_unit, lookup_dwo_type_unit.
13369 Look up the CU/TU with signature SIGNATURE, either in DWO file DWO_NAME
13370 or in the DWP file for the objfile, referenced by THIS_UNIT.
13371 If non-NULL, comp_dir is the DW_AT_comp_dir attribute.
13372 IS_DEBUG_TYPES is non-zero if reading a TU, otherwise read a CU.
13373
13374 This is called, for example, when wanting to read a variable with a
13375 complex location. Therefore we don't want to do file i/o for every call.
13376 Therefore we don't want to look for a DWO file on every call.
13377 Therefore we first see if we've already seen SIGNATURE in a DWP file,
13378 then we check if we've already seen DWO_NAME, and only THEN do we check
13379 for a DWO file.
13380
13381 The result is a pointer to the dwo_unit object or NULL if we didn't find it
13382 (dwo_id mismatch or couldn't find the DWO/DWP file). */
13383
13384 static struct dwo_unit *
13385 lookup_dwo_cutu (struct dwarf2_per_cu_data *this_unit,
13386 const char *dwo_name, const char *comp_dir,
13387 ULONGEST signature, int is_debug_types)
13388 {
13389 struct dwarf2_per_objfile *dwarf2_per_objfile = this_unit->dwarf2_per_objfile;
13390 struct objfile *objfile = dwarf2_per_objfile->objfile;
13391 const char *kind = is_debug_types ? "TU" : "CU";
13392 void **dwo_file_slot;
13393 struct dwo_file *dwo_file;
13394 struct dwp_file *dwp_file;
13395
13396 /* First see if there's a DWP file.
13397 If we have a DWP file but didn't find the DWO inside it, don't
13398 look for the original DWO file. It makes gdb behave differently
13399 depending on whether one is debugging in the build tree. */
13400
13401 dwp_file = get_dwp_file (dwarf2_per_objfile);
13402 if (dwp_file != NULL)
13403 {
13404 const struct dwp_hash_table *dwp_htab =
13405 is_debug_types ? dwp_file->tus : dwp_file->cus;
13406
13407 if (dwp_htab != NULL)
13408 {
13409 struct dwo_unit *dwo_cutu =
13410 lookup_dwo_unit_in_dwp (dwarf2_per_objfile, dwp_file, comp_dir,
13411 signature, is_debug_types);
13412
13413 if (dwo_cutu != NULL)
13414 {
13415 if (dwarf_read_debug)
13416 {
13417 fprintf_unfiltered (gdb_stdlog,
13418 "Virtual DWO %s %s found: @%s\n",
13419 kind, hex_string (signature),
13420 host_address_to_string (dwo_cutu));
13421 }
13422 return dwo_cutu;
13423 }
13424 }
13425 }
13426 else
13427 {
13428 /* No DWP file, look for the DWO file. */
13429
13430 dwo_file_slot = lookup_dwo_file_slot (dwarf2_per_objfile,
13431 dwo_name, comp_dir);
13432 if (*dwo_file_slot == NULL)
13433 {
13434 /* Read in the file and build a table of the CUs/TUs it contains. */
13435 *dwo_file_slot = open_and_init_dwo_file (this_unit, dwo_name, comp_dir);
13436 }
13437 /* NOTE: This will be NULL if unable to open the file. */
13438 dwo_file = (struct dwo_file *) *dwo_file_slot;
13439
13440 if (dwo_file != NULL)
13441 {
13442 struct dwo_unit *dwo_cutu = NULL;
13443
13444 if (is_debug_types && dwo_file->tus)
13445 {
13446 struct dwo_unit find_dwo_cutu;
13447
13448 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13449 find_dwo_cutu.signature = signature;
13450 dwo_cutu
13451 = (struct dwo_unit *) htab_find (dwo_file->tus, &find_dwo_cutu);
13452 }
13453 else if (!is_debug_types && dwo_file->cus)
13454 {
13455 struct dwo_unit find_dwo_cutu;
13456
13457 memset (&find_dwo_cutu, 0, sizeof (find_dwo_cutu));
13458 find_dwo_cutu.signature = signature;
13459 dwo_cutu = (struct dwo_unit *)htab_find (dwo_file->cus,
13460 &find_dwo_cutu);
13461 }
13462
13463 if (dwo_cutu != NULL)
13464 {
13465 if (dwarf_read_debug)
13466 {
13467 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) found: @%s\n",
13468 kind, dwo_name, hex_string (signature),
13469 host_address_to_string (dwo_cutu));
13470 }
13471 return dwo_cutu;
13472 }
13473 }
13474 }
13475
13476 /* We didn't find it. This could mean a dwo_id mismatch, or
13477 someone deleted the DWO/DWP file, or the search path isn't set up
13478 correctly to find the file. */
13479
13480 if (dwarf_read_debug)
13481 {
13482 fprintf_unfiltered (gdb_stdlog, "DWO %s %s(%s) not found\n",
13483 kind, dwo_name, hex_string (signature));
13484 }
13485
13486 /* This is a warning and not a complaint because it can be caused by
13487 pilot error (e.g., user accidentally deleting the DWO). */
13488 {
13489 /* Print the name of the DWP file if we looked there, helps the user
13490 better diagnose the problem. */
13491 std::string dwp_text;
13492
13493 if (dwp_file != NULL)
13494 dwp_text = string_printf (" [in DWP file %s]",
13495 lbasename (dwp_file->name));
13496
13497 warning (_("Could not find DWO %s %s(%s)%s referenced by %s at offset %s"
13498 " [in module %s]"),
13499 kind, dwo_name, hex_string (signature),
13500 dwp_text.c_str (),
13501 this_unit->is_debug_types ? "TU" : "CU",
13502 sect_offset_str (this_unit->sect_off), objfile_name (objfile));
13503 }
13504 return NULL;
13505 }
13506
13507 /* Lookup the DWO CU DWO_NAME/SIGNATURE referenced from THIS_CU.
13508 See lookup_dwo_cutu_unit for details. */
13509
13510 static struct dwo_unit *
13511 lookup_dwo_comp_unit (struct dwarf2_per_cu_data *this_cu,
13512 const char *dwo_name, const char *comp_dir,
13513 ULONGEST signature)
13514 {
13515 return lookup_dwo_cutu (this_cu, dwo_name, comp_dir, signature, 0);
13516 }
13517
13518 /* Lookup the DWO TU DWO_NAME/SIGNATURE referenced from THIS_TU.
13519 See lookup_dwo_cutu_unit for details. */
13520
13521 static struct dwo_unit *
13522 lookup_dwo_type_unit (struct signatured_type *this_tu,
13523 const char *dwo_name, const char *comp_dir)
13524 {
13525 return lookup_dwo_cutu (&this_tu->per_cu, dwo_name, comp_dir, this_tu->signature, 1);
13526 }
13527
13528 /* Traversal function for queue_and_load_all_dwo_tus. */
13529
13530 static int
13531 queue_and_load_dwo_tu (void **slot, void *info)
13532 {
13533 struct dwo_unit *dwo_unit = (struct dwo_unit *) *slot;
13534 struct dwarf2_per_cu_data *per_cu = (struct dwarf2_per_cu_data *) info;
13535 ULONGEST signature = dwo_unit->signature;
13536 struct signatured_type *sig_type =
13537 lookup_dwo_signatured_type (per_cu->cu, signature);
13538
13539 if (sig_type != NULL)
13540 {
13541 struct dwarf2_per_cu_data *sig_cu = &sig_type->per_cu;
13542
13543 /* We pass NULL for DEPENDENT_CU because we don't yet know if there's
13544 a real dependency of PER_CU on SIG_TYPE. That is detected later
13545 while processing PER_CU. */
13546 if (maybe_queue_comp_unit (NULL, sig_cu, per_cu->cu->language))
13547 load_full_type_unit (sig_cu);
13548 per_cu->imported_symtabs_push (sig_cu);
13549 }
13550
13551 return 1;
13552 }
13553
13554 /* Queue all TUs contained in the DWO of PER_CU to be read in.
13555 The DWO may have the only definition of the type, though it may not be
13556 referenced anywhere in PER_CU. Thus we have to load *all* its TUs.
13557 http://sourceware.org/bugzilla/show_bug.cgi?id=15021 */
13558
13559 static void
13560 queue_and_load_all_dwo_tus (struct dwarf2_per_cu_data *per_cu)
13561 {
13562 struct dwo_unit *dwo_unit;
13563 struct dwo_file *dwo_file;
13564
13565 gdb_assert (!per_cu->is_debug_types);
13566 gdb_assert (get_dwp_file (per_cu->dwarf2_per_objfile) == NULL);
13567 gdb_assert (per_cu->cu != NULL);
13568
13569 dwo_unit = per_cu->cu->dwo_unit;
13570 gdb_assert (dwo_unit != NULL);
13571
13572 dwo_file = dwo_unit->dwo_file;
13573 if (dwo_file->tus != NULL)
13574 htab_traverse_noresize (dwo_file->tus, queue_and_load_dwo_tu, per_cu);
13575 }
13576
13577 /* Read in various DIEs. */
13578
13579 /* DW_AT_abstract_origin inherits whole DIEs (not just their attributes).
13580 Inherit only the children of the DW_AT_abstract_origin DIE not being
13581 already referenced by DW_AT_abstract_origin from the children of the
13582 current DIE. */
13583
13584 static void
13585 inherit_abstract_dies (struct die_info *die, struct dwarf2_cu *cu)
13586 {
13587 struct die_info *child_die;
13588 sect_offset *offsetp;
13589 /* Parent of DIE - referenced by DW_AT_abstract_origin. */
13590 struct die_info *origin_die;
13591 /* Iterator of the ORIGIN_DIE children. */
13592 struct die_info *origin_child_die;
13593 struct attribute *attr;
13594 struct dwarf2_cu *origin_cu;
13595 struct pending **origin_previous_list_in_scope;
13596
13597 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
13598 if (!attr)
13599 return;
13600
13601 /* Note that following die references may follow to a die in a
13602 different cu. */
13603
13604 origin_cu = cu;
13605 origin_die = follow_die_ref (die, attr, &origin_cu);
13606
13607 /* We're inheriting ORIGIN's children into the scope we'd put DIE's
13608 symbols in. */
13609 origin_previous_list_in_scope = origin_cu->list_in_scope;
13610 origin_cu->list_in_scope = cu->list_in_scope;
13611
13612 if (die->tag != origin_die->tag
13613 && !(die->tag == DW_TAG_inlined_subroutine
13614 && origin_die->tag == DW_TAG_subprogram))
13615 complaint (_("DIE %s and its abstract origin %s have different tags"),
13616 sect_offset_str (die->sect_off),
13617 sect_offset_str (origin_die->sect_off));
13618
13619 std::vector<sect_offset> offsets;
13620
13621 for (child_die = die->child;
13622 child_die && child_die->tag;
13623 child_die = sibling_die (child_die))
13624 {
13625 struct die_info *child_origin_die;
13626 struct dwarf2_cu *child_origin_cu;
13627
13628 /* We are trying to process concrete instance entries:
13629 DW_TAG_call_site DIEs indeed have a DW_AT_abstract_origin tag, but
13630 it's not relevant to our analysis here. i.e. detecting DIEs that are
13631 present in the abstract instance but not referenced in the concrete
13632 one. */
13633 if (child_die->tag == DW_TAG_call_site
13634 || child_die->tag == DW_TAG_GNU_call_site)
13635 continue;
13636
13637 /* For each CHILD_DIE, find the corresponding child of
13638 ORIGIN_DIE. If there is more than one layer of
13639 DW_AT_abstract_origin, follow them all; there shouldn't be,
13640 but GCC versions at least through 4.4 generate this (GCC PR
13641 40573). */
13642 child_origin_die = child_die;
13643 child_origin_cu = cu;
13644 while (1)
13645 {
13646 attr = dwarf2_attr (child_origin_die, DW_AT_abstract_origin,
13647 child_origin_cu);
13648 if (attr == NULL)
13649 break;
13650 child_origin_die = follow_die_ref (child_origin_die, attr,
13651 &child_origin_cu);
13652 }
13653
13654 /* According to DWARF3 3.3.8.2 #3 new entries without their abstract
13655 counterpart may exist. */
13656 if (child_origin_die != child_die)
13657 {
13658 if (child_die->tag != child_origin_die->tag
13659 && !(child_die->tag == DW_TAG_inlined_subroutine
13660 && child_origin_die->tag == DW_TAG_subprogram))
13661 complaint (_("Child DIE %s and its abstract origin %s have "
13662 "different tags"),
13663 sect_offset_str (child_die->sect_off),
13664 sect_offset_str (child_origin_die->sect_off));
13665 if (child_origin_die->parent != origin_die)
13666 complaint (_("Child DIE %s and its abstract origin %s have "
13667 "different parents"),
13668 sect_offset_str (child_die->sect_off),
13669 sect_offset_str (child_origin_die->sect_off));
13670 else
13671 offsets.push_back (child_origin_die->sect_off);
13672 }
13673 }
13674 std::sort (offsets.begin (), offsets.end ());
13675 sect_offset *offsets_end = offsets.data () + offsets.size ();
13676 for (offsetp = offsets.data () + 1; offsetp < offsets_end; offsetp++)
13677 if (offsetp[-1] == *offsetp)
13678 complaint (_("Multiple children of DIE %s refer "
13679 "to DIE %s as their abstract origin"),
13680 sect_offset_str (die->sect_off), sect_offset_str (*offsetp));
13681
13682 offsetp = offsets.data ();
13683 origin_child_die = origin_die->child;
13684 while (origin_child_die && origin_child_die->tag)
13685 {
13686 /* Is ORIGIN_CHILD_DIE referenced by any of the DIE children? */
13687 while (offsetp < offsets_end
13688 && *offsetp < origin_child_die->sect_off)
13689 offsetp++;
13690 if (offsetp >= offsets_end
13691 || *offsetp > origin_child_die->sect_off)
13692 {
13693 /* Found that ORIGIN_CHILD_DIE is really not referenced.
13694 Check whether we're already processing ORIGIN_CHILD_DIE.
13695 This can happen with mutually referenced abstract_origins.
13696 PR 16581. */
13697 if (!origin_child_die->in_process)
13698 process_die (origin_child_die, origin_cu);
13699 }
13700 origin_child_die = sibling_die (origin_child_die);
13701 }
13702 origin_cu->list_in_scope = origin_previous_list_in_scope;
13703
13704 if (cu != origin_cu)
13705 compute_delayed_physnames (origin_cu);
13706 }
13707
13708 static void
13709 read_func_scope (struct die_info *die, struct dwarf2_cu *cu)
13710 {
13711 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13712 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13713 struct context_stack *newobj;
13714 CORE_ADDR lowpc;
13715 CORE_ADDR highpc;
13716 struct die_info *child_die;
13717 struct attribute *attr, *call_line, *call_file;
13718 const char *name;
13719 CORE_ADDR baseaddr;
13720 struct block *block;
13721 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
13722 std::vector<struct symbol *> template_args;
13723 struct template_symbol *templ_func = NULL;
13724
13725 if (inlined_func)
13726 {
13727 /* If we do not have call site information, we can't show the
13728 caller of this inlined function. That's too confusing, so
13729 only use the scope for local variables. */
13730 call_line = dwarf2_attr (die, DW_AT_call_line, cu);
13731 call_file = dwarf2_attr (die, DW_AT_call_file, cu);
13732 if (call_line == NULL || call_file == NULL)
13733 {
13734 read_lexical_block_scope (die, cu);
13735 return;
13736 }
13737 }
13738
13739 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13740
13741 name = dwarf2_name (die, cu);
13742
13743 /* Ignore functions with missing or empty names. These are actually
13744 illegal according to the DWARF standard. */
13745 if (name == NULL)
13746 {
13747 complaint (_("missing name for subprogram DIE at %s"),
13748 sect_offset_str (die->sect_off));
13749 return;
13750 }
13751
13752 /* Ignore functions with missing or invalid low and high pc attributes. */
13753 if (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL)
13754 <= PC_BOUNDS_INVALID)
13755 {
13756 attr = dwarf2_attr (die, DW_AT_external, cu);
13757 if (!attr || !DW_UNSND (attr))
13758 complaint (_("cannot get low and high bounds "
13759 "for subprogram DIE at %s"),
13760 sect_offset_str (die->sect_off));
13761 return;
13762 }
13763
13764 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13765 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13766
13767 /* If we have any template arguments, then we must allocate a
13768 different sort of symbol. */
13769 for (child_die = die->child; child_die; child_die = sibling_die (child_die))
13770 {
13771 if (child_die->tag == DW_TAG_template_type_param
13772 || child_die->tag == DW_TAG_template_value_param)
13773 {
13774 templ_func = allocate_template_symbol (objfile);
13775 templ_func->subclass = SYMBOL_TEMPLATE;
13776 break;
13777 }
13778 }
13779
13780 newobj = cu->get_builder ()->push_context (0, lowpc);
13781 newobj->name = new_symbol (die, read_type_die (die, cu), cu,
13782 (struct symbol *) templ_func);
13783
13784 if (dwarf2_flag_true_p (die, DW_AT_main_subprogram, cu))
13785 set_objfile_main_name (objfile, newobj->name->linkage_name (),
13786 cu->language);
13787
13788 /* If there is a location expression for DW_AT_frame_base, record
13789 it. */
13790 attr = dwarf2_attr (die, DW_AT_frame_base, cu);
13791 if (attr != nullptr)
13792 dwarf2_symbol_mark_computed (attr, newobj->name, cu, 1);
13793
13794 /* If there is a location for the static link, record it. */
13795 newobj->static_link = NULL;
13796 attr = dwarf2_attr (die, DW_AT_static_link, cu);
13797 if (attr != nullptr)
13798 {
13799 newobj->static_link
13800 = XOBNEW (&objfile->objfile_obstack, struct dynamic_prop);
13801 attr_to_dynamic_prop (attr, die, cu, newobj->static_link,
13802 dwarf2_per_cu_addr_type (cu->per_cu));
13803 }
13804
13805 cu->list_in_scope = cu->get_builder ()->get_local_symbols ();
13806
13807 if (die->child != NULL)
13808 {
13809 child_die = die->child;
13810 while (child_die && child_die->tag)
13811 {
13812 if (child_die->tag == DW_TAG_template_type_param
13813 || child_die->tag == DW_TAG_template_value_param)
13814 {
13815 struct symbol *arg = new_symbol (child_die, NULL, cu);
13816
13817 if (arg != NULL)
13818 template_args.push_back (arg);
13819 }
13820 else
13821 process_die (child_die, cu);
13822 child_die = sibling_die (child_die);
13823 }
13824 }
13825
13826 inherit_abstract_dies (die, cu);
13827
13828 /* If we have a DW_AT_specification, we might need to import using
13829 directives from the context of the specification DIE. See the
13830 comment in determine_prefix. */
13831 if (cu->language == language_cplus
13832 && dwarf2_attr (die, DW_AT_specification, cu))
13833 {
13834 struct dwarf2_cu *spec_cu = cu;
13835 struct die_info *spec_die = die_specification (die, &spec_cu);
13836
13837 while (spec_die)
13838 {
13839 child_die = spec_die->child;
13840 while (child_die && child_die->tag)
13841 {
13842 if (child_die->tag == DW_TAG_imported_module)
13843 process_die (child_die, spec_cu);
13844 child_die = sibling_die (child_die);
13845 }
13846
13847 /* In some cases, GCC generates specification DIEs that
13848 themselves contain DW_AT_specification attributes. */
13849 spec_die = die_specification (spec_die, &spec_cu);
13850 }
13851 }
13852
13853 struct context_stack cstk = cu->get_builder ()->pop_context ();
13854 /* Make a block for the local symbols within. */
13855 block = cu->get_builder ()->finish_block (cstk.name, cstk.old_blocks,
13856 cstk.static_link, lowpc, highpc);
13857
13858 /* For C++, set the block's scope. */
13859 if ((cu->language == language_cplus
13860 || cu->language == language_fortran
13861 || cu->language == language_d
13862 || cu->language == language_rust)
13863 && cu->processing_has_namespace_info)
13864 block_set_scope (block, determine_prefix (die, cu),
13865 &objfile->objfile_obstack);
13866
13867 /* If we have address ranges, record them. */
13868 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13869
13870 gdbarch_make_symbol_special (gdbarch, cstk.name, objfile);
13871
13872 /* Attach template arguments to function. */
13873 if (!template_args.empty ())
13874 {
13875 gdb_assert (templ_func != NULL);
13876
13877 templ_func->n_template_arguments = template_args.size ();
13878 templ_func->template_arguments
13879 = XOBNEWVEC (&objfile->objfile_obstack, struct symbol *,
13880 templ_func->n_template_arguments);
13881 memcpy (templ_func->template_arguments,
13882 template_args.data (),
13883 (templ_func->n_template_arguments * sizeof (struct symbol *)));
13884
13885 /* Make sure that the symtab is set on the new symbols. Even
13886 though they don't appear in this symtab directly, other parts
13887 of gdb assume that symbols do, and this is reasonably
13888 true. */
13889 for (symbol *sym : template_args)
13890 symbol_set_symtab (sym, symbol_symtab (templ_func));
13891 }
13892
13893 /* In C++, we can have functions nested inside functions (e.g., when
13894 a function declares a class that has methods). This means that
13895 when we finish processing a function scope, we may need to go
13896 back to building a containing block's symbol lists. */
13897 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13898 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13899
13900 /* If we've finished processing a top-level function, subsequent
13901 symbols go in the file symbol list. */
13902 if (cu->get_builder ()->outermost_context_p ())
13903 cu->list_in_scope = cu->get_builder ()->get_file_symbols ();
13904 }
13905
13906 /* Process all the DIES contained within a lexical block scope. Start
13907 a new scope, process the dies, and then close the scope. */
13908
13909 static void
13910 read_lexical_block_scope (struct die_info *die, struct dwarf2_cu *cu)
13911 {
13912 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13913 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13914 CORE_ADDR lowpc, highpc;
13915 struct die_info *child_die;
13916 CORE_ADDR baseaddr;
13917
13918 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13919
13920 /* Ignore blocks with missing or invalid low and high pc attributes. */
13921 /* ??? Perhaps consider discontiguous blocks defined by DW_AT_ranges
13922 as multiple lexical blocks? Handling children in a sane way would
13923 be nasty. Might be easier to properly extend generic blocks to
13924 describe ranges. */
13925 switch (dwarf2_get_pc_bounds (die, &lowpc, &highpc, cu, NULL))
13926 {
13927 case PC_BOUNDS_NOT_PRESENT:
13928 /* DW_TAG_lexical_block has no attributes, process its children as if
13929 there was no wrapping by that DW_TAG_lexical_block.
13930 GCC does no longer produces such DWARF since GCC r224161. */
13931 for (child_die = die->child;
13932 child_die != NULL && child_die->tag;
13933 child_die = sibling_die (child_die))
13934 process_die (child_die, cu);
13935 return;
13936 case PC_BOUNDS_INVALID:
13937 return;
13938 }
13939 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
13940 highpc = gdbarch_adjust_dwarf2_addr (gdbarch, highpc + baseaddr);
13941
13942 cu->get_builder ()->push_context (0, lowpc);
13943 if (die->child != NULL)
13944 {
13945 child_die = die->child;
13946 while (child_die && child_die->tag)
13947 {
13948 process_die (child_die, cu);
13949 child_die = sibling_die (child_die);
13950 }
13951 }
13952 inherit_abstract_dies (die, cu);
13953 struct context_stack cstk = cu->get_builder ()->pop_context ();
13954
13955 if (*cu->get_builder ()->get_local_symbols () != NULL
13956 || (*cu->get_builder ()->get_local_using_directives ()) != NULL)
13957 {
13958 struct block *block
13959 = cu->get_builder ()->finish_block (0, cstk.old_blocks, NULL,
13960 cstk.start_addr, highpc);
13961
13962 /* Note that recording ranges after traversing children, as we
13963 do here, means that recording a parent's ranges entails
13964 walking across all its children's ranges as they appear in
13965 the address map, which is quadratic behavior.
13966
13967 It would be nicer to record the parent's ranges before
13968 traversing its children, simply overriding whatever you find
13969 there. But since we don't even decide whether to create a
13970 block until after we've traversed its children, that's hard
13971 to do. */
13972 dwarf2_record_block_ranges (die, block, baseaddr, cu);
13973 }
13974 *cu->get_builder ()->get_local_symbols () = cstk.locals;
13975 cu->get_builder ()->set_local_using_directives (cstk.local_using_directives);
13976 }
13977
13978 /* Read in DW_TAG_call_site and insert it to CU->call_site_htab. */
13979
13980 static void
13981 read_call_site_scope (struct die_info *die, struct dwarf2_cu *cu)
13982 {
13983 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
13984 struct gdbarch *gdbarch = get_objfile_arch (objfile);
13985 CORE_ADDR pc, baseaddr;
13986 struct attribute *attr;
13987 struct call_site *call_site, call_site_local;
13988 void **slot;
13989 int nparams;
13990 struct die_info *child_die;
13991
13992 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
13993
13994 attr = dwarf2_attr (die, DW_AT_call_return_pc, cu);
13995 if (attr == NULL)
13996 {
13997 /* This was a pre-DWARF-5 GNU extension alias
13998 for DW_AT_call_return_pc. */
13999 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14000 }
14001 if (!attr)
14002 {
14003 complaint (_("missing DW_AT_call_return_pc for DW_TAG_call_site "
14004 "DIE %s [in module %s]"),
14005 sect_offset_str (die->sect_off), objfile_name (objfile));
14006 return;
14007 }
14008 pc = attr_value_as_address (attr) + baseaddr;
14009 pc = gdbarch_adjust_dwarf2_addr (gdbarch, pc);
14010
14011 if (cu->call_site_htab == NULL)
14012 cu->call_site_htab = htab_create_alloc_ex (16, core_addr_hash, core_addr_eq,
14013 NULL, &objfile->objfile_obstack,
14014 hashtab_obstack_allocate, NULL);
14015 call_site_local.pc = pc;
14016 slot = htab_find_slot (cu->call_site_htab, &call_site_local, INSERT);
14017 if (*slot != NULL)
14018 {
14019 complaint (_("Duplicate PC %s for DW_TAG_call_site "
14020 "DIE %s [in module %s]"),
14021 paddress (gdbarch, pc), sect_offset_str (die->sect_off),
14022 objfile_name (objfile));
14023 return;
14024 }
14025
14026 /* Count parameters at the caller. */
14027
14028 nparams = 0;
14029 for (child_die = die->child; child_die && child_die->tag;
14030 child_die = sibling_die (child_die))
14031 {
14032 if (child_die->tag != DW_TAG_call_site_parameter
14033 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14034 {
14035 complaint (_("Tag %d is not DW_TAG_call_site_parameter in "
14036 "DW_TAG_call_site child DIE %s [in module %s]"),
14037 child_die->tag, sect_offset_str (child_die->sect_off),
14038 objfile_name (objfile));
14039 continue;
14040 }
14041
14042 nparams++;
14043 }
14044
14045 call_site
14046 = ((struct call_site *)
14047 obstack_alloc (&objfile->objfile_obstack,
14048 sizeof (*call_site)
14049 + (sizeof (*call_site->parameter) * (nparams - 1))));
14050 *slot = call_site;
14051 memset (call_site, 0, sizeof (*call_site) - sizeof (*call_site->parameter));
14052 call_site->pc = pc;
14053
14054 if (dwarf2_flag_true_p (die, DW_AT_call_tail_call, cu)
14055 || dwarf2_flag_true_p (die, DW_AT_GNU_tail_call, cu))
14056 {
14057 struct die_info *func_die;
14058
14059 /* Skip also over DW_TAG_inlined_subroutine. */
14060 for (func_die = die->parent;
14061 func_die && func_die->tag != DW_TAG_subprogram
14062 && func_die->tag != DW_TAG_subroutine_type;
14063 func_die = func_die->parent);
14064
14065 /* DW_AT_call_all_calls is a superset
14066 of DW_AT_call_all_tail_calls. */
14067 if (func_die
14068 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_calls, cu)
14069 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_call_sites, cu)
14070 && !dwarf2_flag_true_p (func_die, DW_AT_call_all_tail_calls, cu)
14071 && !dwarf2_flag_true_p (func_die, DW_AT_GNU_all_tail_call_sites, cu))
14072 {
14073 /* TYPE_TAIL_CALL_LIST is not interesting in functions where it is
14074 not complete. But keep CALL_SITE for look ups via call_site_htab,
14075 both the initial caller containing the real return address PC and
14076 the final callee containing the current PC of a chain of tail
14077 calls do not need to have the tail call list complete. But any
14078 function candidate for a virtual tail call frame searched via
14079 TYPE_TAIL_CALL_LIST must have the tail call list complete to be
14080 determined unambiguously. */
14081 }
14082 else
14083 {
14084 struct type *func_type = NULL;
14085
14086 if (func_die)
14087 func_type = get_die_type (func_die, cu);
14088 if (func_type != NULL)
14089 {
14090 gdb_assert (TYPE_CODE (func_type) == TYPE_CODE_FUNC);
14091
14092 /* Enlist this call site to the function. */
14093 call_site->tail_call_next = TYPE_TAIL_CALL_LIST (func_type);
14094 TYPE_TAIL_CALL_LIST (func_type) = call_site;
14095 }
14096 else
14097 complaint (_("Cannot find function owning DW_TAG_call_site "
14098 "DIE %s [in module %s]"),
14099 sect_offset_str (die->sect_off), objfile_name (objfile));
14100 }
14101 }
14102
14103 attr = dwarf2_attr (die, DW_AT_call_target, cu);
14104 if (attr == NULL)
14105 attr = dwarf2_attr (die, DW_AT_GNU_call_site_target, cu);
14106 if (attr == NULL)
14107 attr = dwarf2_attr (die, DW_AT_call_origin, cu);
14108 if (attr == NULL)
14109 {
14110 /* This was a pre-DWARF-5 GNU extension alias for DW_AT_call_origin. */
14111 attr = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14112 }
14113 SET_FIELD_DWARF_BLOCK (call_site->target, NULL);
14114 if (!attr || (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0))
14115 /* Keep NULL DWARF_BLOCK. */;
14116 else if (attr_form_is_block (attr))
14117 {
14118 struct dwarf2_locexpr_baton *dlbaton;
14119
14120 dlbaton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
14121 dlbaton->data = DW_BLOCK (attr)->data;
14122 dlbaton->size = DW_BLOCK (attr)->size;
14123 dlbaton->per_cu = cu->per_cu;
14124
14125 SET_FIELD_DWARF_BLOCK (call_site->target, dlbaton);
14126 }
14127 else if (attr_form_is_ref (attr))
14128 {
14129 struct dwarf2_cu *target_cu = cu;
14130 struct die_info *target_die;
14131
14132 target_die = follow_die_ref (die, attr, &target_cu);
14133 gdb_assert (target_cu->per_cu->dwarf2_per_objfile->objfile == objfile);
14134 if (die_is_declaration (target_die, target_cu))
14135 {
14136 const char *target_physname;
14137
14138 /* Prefer the mangled name; otherwise compute the demangled one. */
14139 target_physname = dw2_linkage_name (target_die, target_cu);
14140 if (target_physname == NULL)
14141 target_physname = dwarf2_physname (NULL, target_die, target_cu);
14142 if (target_physname == NULL)
14143 complaint (_("DW_AT_call_target target DIE has invalid "
14144 "physname, for referencing DIE %s [in module %s]"),
14145 sect_offset_str (die->sect_off), objfile_name (objfile));
14146 else
14147 SET_FIELD_PHYSNAME (call_site->target, target_physname);
14148 }
14149 else
14150 {
14151 CORE_ADDR lowpc;
14152
14153 /* DW_AT_entry_pc should be preferred. */
14154 if (dwarf2_get_pc_bounds (target_die, &lowpc, NULL, target_cu, NULL)
14155 <= PC_BOUNDS_INVALID)
14156 complaint (_("DW_AT_call_target target DIE has invalid "
14157 "low pc, for referencing DIE %s [in module %s]"),
14158 sect_offset_str (die->sect_off), objfile_name (objfile));
14159 else
14160 {
14161 lowpc = gdbarch_adjust_dwarf2_addr (gdbarch, lowpc + baseaddr);
14162 SET_FIELD_PHYSADDR (call_site->target, lowpc);
14163 }
14164 }
14165 }
14166 else
14167 complaint (_("DW_TAG_call_site DW_AT_call_target is neither "
14168 "block nor reference, for DIE %s [in module %s]"),
14169 sect_offset_str (die->sect_off), objfile_name (objfile));
14170
14171 call_site->per_cu = cu->per_cu;
14172
14173 for (child_die = die->child;
14174 child_die && child_die->tag;
14175 child_die = sibling_die (child_die))
14176 {
14177 struct call_site_parameter *parameter;
14178 struct attribute *loc, *origin;
14179
14180 if (child_die->tag != DW_TAG_call_site_parameter
14181 && child_die->tag != DW_TAG_GNU_call_site_parameter)
14182 {
14183 /* Already printed the complaint above. */
14184 continue;
14185 }
14186
14187 gdb_assert (call_site->parameter_count < nparams);
14188 parameter = &call_site->parameter[call_site->parameter_count];
14189
14190 /* DW_AT_location specifies the register number or DW_AT_abstract_origin
14191 specifies DW_TAG_formal_parameter. Value of the data assumed for the
14192 register is contained in DW_AT_call_value. */
14193
14194 loc = dwarf2_attr (child_die, DW_AT_location, cu);
14195 origin = dwarf2_attr (child_die, DW_AT_call_parameter, cu);
14196 if (origin == NULL)
14197 {
14198 /* This was a pre-DWARF-5 GNU extension alias
14199 for DW_AT_call_parameter. */
14200 origin = dwarf2_attr (child_die, DW_AT_abstract_origin, cu);
14201 }
14202 if (loc == NULL && origin != NULL && attr_form_is_ref (origin))
14203 {
14204 parameter->kind = CALL_SITE_PARAMETER_PARAM_OFFSET;
14205
14206 sect_offset sect_off
14207 = (sect_offset) dwarf2_get_ref_die_offset (origin);
14208 if (!offset_in_cu_p (&cu->header, sect_off))
14209 {
14210 /* As DW_OP_GNU_parameter_ref uses CU-relative offset this
14211 binding can be done only inside one CU. Such referenced DIE
14212 therefore cannot be even moved to DW_TAG_partial_unit. */
14213 complaint (_("DW_AT_call_parameter offset is not in CU for "
14214 "DW_TAG_call_site child DIE %s [in module %s]"),
14215 sect_offset_str (child_die->sect_off),
14216 objfile_name (objfile));
14217 continue;
14218 }
14219 parameter->u.param_cu_off
14220 = (cu_offset) (sect_off - cu->header.sect_off);
14221 }
14222 else if (loc == NULL || origin != NULL || !attr_form_is_block (loc))
14223 {
14224 complaint (_("No DW_FORM_block* DW_AT_location for "
14225 "DW_TAG_call_site child DIE %s [in module %s]"),
14226 sect_offset_str (child_die->sect_off), objfile_name (objfile));
14227 continue;
14228 }
14229 else
14230 {
14231 parameter->u.dwarf_reg = dwarf_block_to_dwarf_reg
14232 (DW_BLOCK (loc)->data, &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size]);
14233 if (parameter->u.dwarf_reg != -1)
14234 parameter->kind = CALL_SITE_PARAMETER_DWARF_REG;
14235 else if (dwarf_block_to_sp_offset (gdbarch, DW_BLOCK (loc)->data,
14236 &DW_BLOCK (loc)->data[DW_BLOCK (loc)->size],
14237 &parameter->u.fb_offset))
14238 parameter->kind = CALL_SITE_PARAMETER_FB_OFFSET;
14239 else
14240 {
14241 complaint (_("Only single DW_OP_reg or DW_OP_fbreg is supported "
14242 "for DW_FORM_block* DW_AT_location is supported for "
14243 "DW_TAG_call_site child DIE %s "
14244 "[in module %s]"),
14245 sect_offset_str (child_die->sect_off),
14246 objfile_name (objfile));
14247 continue;
14248 }
14249 }
14250
14251 attr = dwarf2_attr (child_die, DW_AT_call_value, cu);
14252 if (attr == NULL)
14253 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_value, cu);
14254 if (!attr_form_is_block (attr))
14255 {
14256 complaint (_("No DW_FORM_block* DW_AT_call_value for "
14257 "DW_TAG_call_site child DIE %s [in module %s]"),
14258 sect_offset_str (child_die->sect_off),
14259 objfile_name (objfile));
14260 continue;
14261 }
14262 parameter->value = DW_BLOCK (attr)->data;
14263 parameter->value_size = DW_BLOCK (attr)->size;
14264
14265 /* Parameters are not pre-cleared by memset above. */
14266 parameter->data_value = NULL;
14267 parameter->data_value_size = 0;
14268 call_site->parameter_count++;
14269
14270 attr = dwarf2_attr (child_die, DW_AT_call_data_value, cu);
14271 if (attr == NULL)
14272 attr = dwarf2_attr (child_die, DW_AT_GNU_call_site_data_value, cu);
14273 if (attr != nullptr)
14274 {
14275 if (!attr_form_is_block (attr))
14276 complaint (_("No DW_FORM_block* DW_AT_call_data_value for "
14277 "DW_TAG_call_site child DIE %s [in module %s]"),
14278 sect_offset_str (child_die->sect_off),
14279 objfile_name (objfile));
14280 else
14281 {
14282 parameter->data_value = DW_BLOCK (attr)->data;
14283 parameter->data_value_size = DW_BLOCK (attr)->size;
14284 }
14285 }
14286 }
14287 }
14288
14289 /* Helper function for read_variable. If DIE represents a virtual
14290 table, then return the type of the concrete object that is
14291 associated with the virtual table. Otherwise, return NULL. */
14292
14293 static struct type *
14294 rust_containing_type (struct die_info *die, struct dwarf2_cu *cu)
14295 {
14296 struct attribute *attr = dwarf2_attr (die, DW_AT_type, cu);
14297 if (attr == NULL)
14298 return NULL;
14299
14300 /* Find the type DIE. */
14301 struct die_info *type_die = NULL;
14302 struct dwarf2_cu *type_cu = cu;
14303
14304 if (attr_form_is_ref (attr))
14305 type_die = follow_die_ref (die, attr, &type_cu);
14306 if (type_die == NULL)
14307 return NULL;
14308
14309 if (dwarf2_attr (type_die, DW_AT_containing_type, type_cu) == NULL)
14310 return NULL;
14311 return die_containing_type (type_die, type_cu);
14312 }
14313
14314 /* Read a variable (DW_TAG_variable) DIE and create a new symbol. */
14315
14316 static void
14317 read_variable (struct die_info *die, struct dwarf2_cu *cu)
14318 {
14319 struct rust_vtable_symbol *storage = NULL;
14320
14321 if (cu->language == language_rust)
14322 {
14323 struct type *containing_type = rust_containing_type (die, cu);
14324
14325 if (containing_type != NULL)
14326 {
14327 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14328
14329 storage = new (&objfile->objfile_obstack) rust_vtable_symbol ();
14330 initialize_objfile_symbol (storage);
14331 storage->concrete_type = containing_type;
14332 storage->subclass = SYMBOL_RUST_VTABLE;
14333 }
14334 }
14335
14336 struct symbol *res = new_symbol (die, NULL, cu, storage);
14337 struct attribute *abstract_origin
14338 = dwarf2_attr (die, DW_AT_abstract_origin, cu);
14339 struct attribute *loc = dwarf2_attr (die, DW_AT_location, cu);
14340 if (res == NULL && loc && abstract_origin)
14341 {
14342 /* We have a variable without a name, but with a location and an abstract
14343 origin. This may be a concrete instance of an abstract variable
14344 referenced from an DW_OP_GNU_variable_value, so save it to find it back
14345 later. */
14346 struct dwarf2_cu *origin_cu = cu;
14347 struct die_info *origin_die
14348 = follow_die_ref (die, abstract_origin, &origin_cu);
14349 dwarf2_per_objfile *dpo = cu->per_cu->dwarf2_per_objfile;
14350 dpo->abstract_to_concrete[origin_die->sect_off].push_back (die->sect_off);
14351 }
14352 }
14353
14354 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET
14355 reading .debug_rnglists.
14356 Callback's type should be:
14357 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14358 Return true if the attributes are present and valid, otherwise,
14359 return false. */
14360
14361 template <typename Callback>
14362 static bool
14363 dwarf2_rnglists_process (unsigned offset, struct dwarf2_cu *cu,
14364 Callback &&callback)
14365 {
14366 struct dwarf2_per_objfile *dwarf2_per_objfile
14367 = cu->per_cu->dwarf2_per_objfile;
14368 struct objfile *objfile = dwarf2_per_objfile->objfile;
14369 bfd *obfd = objfile->obfd;
14370 /* Base address selection entry. */
14371 CORE_ADDR base;
14372 int found_base;
14373 const gdb_byte *buffer;
14374 CORE_ADDR baseaddr;
14375 bool overflow = false;
14376
14377 found_base = cu->base_known;
14378 base = cu->base_address;
14379
14380 dwarf2_read_section (objfile, &dwarf2_per_objfile->rnglists);
14381 if (offset >= dwarf2_per_objfile->rnglists.size)
14382 {
14383 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14384 offset);
14385 return false;
14386 }
14387 buffer = dwarf2_per_objfile->rnglists.buffer + offset;
14388
14389 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14390
14391 while (1)
14392 {
14393 /* Initialize it due to a false compiler warning. */
14394 CORE_ADDR range_beginning = 0, range_end = 0;
14395 const gdb_byte *buf_end = (dwarf2_per_objfile->rnglists.buffer
14396 + dwarf2_per_objfile->rnglists.size);
14397 unsigned int bytes_read;
14398
14399 if (buffer == buf_end)
14400 {
14401 overflow = true;
14402 break;
14403 }
14404 const auto rlet = static_cast<enum dwarf_range_list_entry>(*buffer++);
14405 switch (rlet)
14406 {
14407 case DW_RLE_end_of_list:
14408 break;
14409 case DW_RLE_base_address:
14410 if (buffer + cu->header.addr_size > buf_end)
14411 {
14412 overflow = true;
14413 break;
14414 }
14415 base = read_address (obfd, buffer, cu, &bytes_read);
14416 found_base = 1;
14417 buffer += bytes_read;
14418 break;
14419 case DW_RLE_start_length:
14420 if (buffer + cu->header.addr_size > buf_end)
14421 {
14422 overflow = true;
14423 break;
14424 }
14425 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14426 buffer += bytes_read;
14427 range_end = (range_beginning
14428 + read_unsigned_leb128 (obfd, buffer, &bytes_read));
14429 buffer += bytes_read;
14430 if (buffer > buf_end)
14431 {
14432 overflow = true;
14433 break;
14434 }
14435 break;
14436 case DW_RLE_offset_pair:
14437 range_beginning = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14438 buffer += bytes_read;
14439 if (buffer > buf_end)
14440 {
14441 overflow = true;
14442 break;
14443 }
14444 range_end = read_unsigned_leb128 (obfd, buffer, &bytes_read);
14445 buffer += bytes_read;
14446 if (buffer > buf_end)
14447 {
14448 overflow = true;
14449 break;
14450 }
14451 break;
14452 case DW_RLE_start_end:
14453 if (buffer + 2 * cu->header.addr_size > buf_end)
14454 {
14455 overflow = true;
14456 break;
14457 }
14458 range_beginning = read_address (obfd, buffer, cu, &bytes_read);
14459 buffer += bytes_read;
14460 range_end = read_address (obfd, buffer, cu, &bytes_read);
14461 buffer += bytes_read;
14462 break;
14463 default:
14464 complaint (_("Invalid .debug_rnglists data (no base address)"));
14465 return false;
14466 }
14467 if (rlet == DW_RLE_end_of_list || overflow)
14468 break;
14469 if (rlet == DW_RLE_base_address)
14470 continue;
14471
14472 if (!found_base)
14473 {
14474 /* We have no valid base address for the ranges
14475 data. */
14476 complaint (_("Invalid .debug_rnglists data (no base address)"));
14477 return false;
14478 }
14479
14480 if (range_beginning > range_end)
14481 {
14482 /* Inverted range entries are invalid. */
14483 complaint (_("Invalid .debug_rnglists data (inverted range)"));
14484 return false;
14485 }
14486
14487 /* Empty range entries have no effect. */
14488 if (range_beginning == range_end)
14489 continue;
14490
14491 range_beginning += base;
14492 range_end += base;
14493
14494 /* A not-uncommon case of bad debug info.
14495 Don't pollute the addrmap with bad data. */
14496 if (range_beginning + baseaddr == 0
14497 && !dwarf2_per_objfile->has_section_at_zero)
14498 {
14499 complaint (_(".debug_rnglists entry has start address of zero"
14500 " [in module %s]"), objfile_name (objfile));
14501 continue;
14502 }
14503
14504 callback (range_beginning, range_end);
14505 }
14506
14507 if (overflow)
14508 {
14509 complaint (_("Offset %d is not terminated "
14510 "for DW_AT_ranges attribute"),
14511 offset);
14512 return false;
14513 }
14514
14515 return true;
14516 }
14517
14518 /* Call CALLBACK from DW_AT_ranges attribute value OFFSET reading .debug_ranges.
14519 Callback's type should be:
14520 void (CORE_ADDR range_beginning, CORE_ADDR range_end)
14521 Return 1 if the attributes are present and valid, otherwise, return 0. */
14522
14523 template <typename Callback>
14524 static int
14525 dwarf2_ranges_process (unsigned offset, struct dwarf2_cu *cu,
14526 Callback &&callback)
14527 {
14528 struct dwarf2_per_objfile *dwarf2_per_objfile
14529 = cu->per_cu->dwarf2_per_objfile;
14530 struct objfile *objfile = dwarf2_per_objfile->objfile;
14531 struct comp_unit_head *cu_header = &cu->header;
14532 bfd *obfd = objfile->obfd;
14533 unsigned int addr_size = cu_header->addr_size;
14534 CORE_ADDR mask = ~(~(CORE_ADDR)1 << (addr_size * 8 - 1));
14535 /* Base address selection entry. */
14536 CORE_ADDR base;
14537 int found_base;
14538 unsigned int dummy;
14539 const gdb_byte *buffer;
14540 CORE_ADDR baseaddr;
14541
14542 if (cu_header->version >= 5)
14543 return dwarf2_rnglists_process (offset, cu, callback);
14544
14545 found_base = cu->base_known;
14546 base = cu->base_address;
14547
14548 dwarf2_read_section (objfile, &dwarf2_per_objfile->ranges);
14549 if (offset >= dwarf2_per_objfile->ranges.size)
14550 {
14551 complaint (_("Offset %d out of bounds for DW_AT_ranges attribute"),
14552 offset);
14553 return 0;
14554 }
14555 buffer = dwarf2_per_objfile->ranges.buffer + offset;
14556
14557 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
14558
14559 while (1)
14560 {
14561 CORE_ADDR range_beginning, range_end;
14562
14563 range_beginning = read_address (obfd, buffer, cu, &dummy);
14564 buffer += addr_size;
14565 range_end = read_address (obfd, buffer, cu, &dummy);
14566 buffer += addr_size;
14567 offset += 2 * addr_size;
14568
14569 /* An end of list marker is a pair of zero addresses. */
14570 if (range_beginning == 0 && range_end == 0)
14571 /* Found the end of list entry. */
14572 break;
14573
14574 /* Each base address selection entry is a pair of 2 values.
14575 The first is the largest possible address, the second is
14576 the base address. Check for a base address here. */
14577 if ((range_beginning & mask) == mask)
14578 {
14579 /* If we found the largest possible address, then we already
14580 have the base address in range_end. */
14581 base = range_end;
14582 found_base = 1;
14583 continue;
14584 }
14585
14586 if (!found_base)
14587 {
14588 /* We have no valid base address for the ranges
14589 data. */
14590 complaint (_("Invalid .debug_ranges data (no base address)"));
14591 return 0;
14592 }
14593
14594 if (range_beginning > range_end)
14595 {
14596 /* Inverted range entries are invalid. */
14597 complaint (_("Invalid .debug_ranges data (inverted range)"));
14598 return 0;
14599 }
14600
14601 /* Empty range entries have no effect. */
14602 if (range_beginning == range_end)
14603 continue;
14604
14605 range_beginning += base;
14606 range_end += base;
14607
14608 /* A not-uncommon case of bad debug info.
14609 Don't pollute the addrmap with bad data. */
14610 if (range_beginning + baseaddr == 0
14611 && !dwarf2_per_objfile->has_section_at_zero)
14612 {
14613 complaint (_(".debug_ranges entry has start address of zero"
14614 " [in module %s]"), objfile_name (objfile));
14615 continue;
14616 }
14617
14618 callback (range_beginning, range_end);
14619 }
14620
14621 return 1;
14622 }
14623
14624 /* Get low and high pc attributes from DW_AT_ranges attribute value OFFSET.
14625 Return 1 if the attributes are present and valid, otherwise, return 0.
14626 If RANGES_PST is not NULL we should setup `objfile->psymtabs_addrmap'. */
14627
14628 static int
14629 dwarf2_ranges_read (unsigned offset, CORE_ADDR *low_return,
14630 CORE_ADDR *high_return, struct dwarf2_cu *cu,
14631 struct partial_symtab *ranges_pst)
14632 {
14633 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14634 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14635 const CORE_ADDR baseaddr = ANOFFSET (objfile->section_offsets,
14636 SECT_OFF_TEXT (objfile));
14637 int low_set = 0;
14638 CORE_ADDR low = 0;
14639 CORE_ADDR high = 0;
14640 int retval;
14641
14642 retval = dwarf2_ranges_process (offset, cu,
14643 [&] (CORE_ADDR range_beginning, CORE_ADDR range_end)
14644 {
14645 if (ranges_pst != NULL)
14646 {
14647 CORE_ADDR lowpc;
14648 CORE_ADDR highpc;
14649
14650 lowpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14651 range_beginning + baseaddr)
14652 - baseaddr);
14653 highpc = (gdbarch_adjust_dwarf2_addr (gdbarch,
14654 range_end + baseaddr)
14655 - baseaddr);
14656 addrmap_set_empty (objfile->partial_symtabs->psymtabs_addrmap,
14657 lowpc, highpc - 1, ranges_pst);
14658 }
14659
14660 /* FIXME: This is recording everything as a low-high
14661 segment of consecutive addresses. We should have a
14662 data structure for discontiguous block ranges
14663 instead. */
14664 if (! low_set)
14665 {
14666 low = range_beginning;
14667 high = range_end;
14668 low_set = 1;
14669 }
14670 else
14671 {
14672 if (range_beginning < low)
14673 low = range_beginning;
14674 if (range_end > high)
14675 high = range_end;
14676 }
14677 });
14678 if (!retval)
14679 return 0;
14680
14681 if (! low_set)
14682 /* If the first entry is an end-of-list marker, the range
14683 describes an empty scope, i.e. no instructions. */
14684 return 0;
14685
14686 if (low_return)
14687 *low_return = low;
14688 if (high_return)
14689 *high_return = high;
14690 return 1;
14691 }
14692
14693 /* Get low and high pc attributes from a die. See enum pc_bounds_kind
14694 definition for the return value. *LOWPC and *HIGHPC are set iff
14695 neither PC_BOUNDS_NOT_PRESENT nor PC_BOUNDS_INVALID are returned. */
14696
14697 static enum pc_bounds_kind
14698 dwarf2_get_pc_bounds (struct die_info *die, CORE_ADDR *lowpc,
14699 CORE_ADDR *highpc, struct dwarf2_cu *cu,
14700 struct partial_symtab *pst)
14701 {
14702 struct dwarf2_per_objfile *dwarf2_per_objfile
14703 = cu->per_cu->dwarf2_per_objfile;
14704 struct attribute *attr;
14705 struct attribute *attr_high;
14706 CORE_ADDR low = 0;
14707 CORE_ADDR high = 0;
14708 enum pc_bounds_kind ret;
14709
14710 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14711 if (attr_high)
14712 {
14713 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14714 if (attr != nullptr)
14715 {
14716 low = attr_value_as_address (attr);
14717 high = attr_value_as_address (attr_high);
14718 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14719 high += low;
14720 }
14721 else
14722 /* Found high w/o low attribute. */
14723 return PC_BOUNDS_INVALID;
14724
14725 /* Found consecutive range of addresses. */
14726 ret = PC_BOUNDS_HIGH_LOW;
14727 }
14728 else
14729 {
14730 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14731 if (attr != NULL)
14732 {
14733 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14734 We take advantage of the fact that DW_AT_ranges does not appear
14735 in DW_TAG_compile_unit of DWO files. */
14736 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14737 unsigned int ranges_offset = (DW_UNSND (attr)
14738 + (need_ranges_base
14739 ? cu->ranges_base
14740 : 0));
14741
14742 /* Value of the DW_AT_ranges attribute is the offset in the
14743 .debug_ranges section. */
14744 if (!dwarf2_ranges_read (ranges_offset, &low, &high, cu, pst))
14745 return PC_BOUNDS_INVALID;
14746 /* Found discontinuous range of addresses. */
14747 ret = PC_BOUNDS_RANGES;
14748 }
14749 else
14750 return PC_BOUNDS_NOT_PRESENT;
14751 }
14752
14753 /* partial_die_info::read has also the strict LOW < HIGH requirement. */
14754 if (high <= low)
14755 return PC_BOUNDS_INVALID;
14756
14757 /* When using the GNU linker, .gnu.linkonce. sections are used to
14758 eliminate duplicate copies of functions and vtables and such.
14759 The linker will arbitrarily choose one and discard the others.
14760 The AT_*_pc values for such functions refer to local labels in
14761 these sections. If the section from that file was discarded, the
14762 labels are not in the output, so the relocs get a value of 0.
14763 If this is a discarded function, mark the pc bounds as invalid,
14764 so that GDB will ignore it. */
14765 if (low == 0 && !dwarf2_per_objfile->has_section_at_zero)
14766 return PC_BOUNDS_INVALID;
14767
14768 *lowpc = low;
14769 if (highpc)
14770 *highpc = high;
14771 return ret;
14772 }
14773
14774 /* Assuming that DIE represents a subprogram DIE or a lexical block, get
14775 its low and high PC addresses. Do nothing if these addresses could not
14776 be determined. Otherwise, set LOWPC to the low address if it is smaller,
14777 and HIGHPC to the high address if greater than HIGHPC. */
14778
14779 static void
14780 dwarf2_get_subprogram_pc_bounds (struct die_info *die,
14781 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14782 struct dwarf2_cu *cu)
14783 {
14784 CORE_ADDR low, high;
14785 struct die_info *child = die->child;
14786
14787 if (dwarf2_get_pc_bounds (die, &low, &high, cu, NULL) >= PC_BOUNDS_RANGES)
14788 {
14789 *lowpc = std::min (*lowpc, low);
14790 *highpc = std::max (*highpc, high);
14791 }
14792
14793 /* If the language does not allow nested subprograms (either inside
14794 subprograms or lexical blocks), we're done. */
14795 if (cu->language != language_ada)
14796 return;
14797
14798 /* Check all the children of the given DIE. If it contains nested
14799 subprograms, then check their pc bounds. Likewise, we need to
14800 check lexical blocks as well, as they may also contain subprogram
14801 definitions. */
14802 while (child && child->tag)
14803 {
14804 if (child->tag == DW_TAG_subprogram
14805 || child->tag == DW_TAG_lexical_block)
14806 dwarf2_get_subprogram_pc_bounds (child, lowpc, highpc, cu);
14807 child = sibling_die (child);
14808 }
14809 }
14810
14811 /* Get the low and high pc's represented by the scope DIE, and store
14812 them in *LOWPC and *HIGHPC. If the correct values can't be
14813 determined, set *LOWPC to -1 and *HIGHPC to 0. */
14814
14815 static void
14816 get_scope_pc_bounds (struct die_info *die,
14817 CORE_ADDR *lowpc, CORE_ADDR *highpc,
14818 struct dwarf2_cu *cu)
14819 {
14820 CORE_ADDR best_low = (CORE_ADDR) -1;
14821 CORE_ADDR best_high = (CORE_ADDR) 0;
14822 CORE_ADDR current_low, current_high;
14823
14824 if (dwarf2_get_pc_bounds (die, &current_low, &current_high, cu, NULL)
14825 >= PC_BOUNDS_RANGES)
14826 {
14827 best_low = current_low;
14828 best_high = current_high;
14829 }
14830 else
14831 {
14832 struct die_info *child = die->child;
14833
14834 while (child && child->tag)
14835 {
14836 switch (child->tag) {
14837 case DW_TAG_subprogram:
14838 dwarf2_get_subprogram_pc_bounds (child, &best_low, &best_high, cu);
14839 break;
14840 case DW_TAG_namespace:
14841 case DW_TAG_module:
14842 /* FIXME: carlton/2004-01-16: Should we do this for
14843 DW_TAG_class_type/DW_TAG_structure_type, too? I think
14844 that current GCC's always emit the DIEs corresponding
14845 to definitions of methods of classes as children of a
14846 DW_TAG_compile_unit or DW_TAG_namespace (as opposed to
14847 the DIEs giving the declarations, which could be
14848 anywhere). But I don't see any reason why the
14849 standards says that they have to be there. */
14850 get_scope_pc_bounds (child, &current_low, &current_high, cu);
14851
14852 if (current_low != ((CORE_ADDR) -1))
14853 {
14854 best_low = std::min (best_low, current_low);
14855 best_high = std::max (best_high, current_high);
14856 }
14857 break;
14858 default:
14859 /* Ignore. */
14860 break;
14861 }
14862
14863 child = sibling_die (child);
14864 }
14865 }
14866
14867 *lowpc = best_low;
14868 *highpc = best_high;
14869 }
14870
14871 /* Record the address ranges for BLOCK, offset by BASEADDR, as given
14872 in DIE. */
14873
14874 static void
14875 dwarf2_record_block_ranges (struct die_info *die, struct block *block,
14876 CORE_ADDR baseaddr, struct dwarf2_cu *cu)
14877 {
14878 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
14879 struct gdbarch *gdbarch = get_objfile_arch (objfile);
14880 struct attribute *attr;
14881 struct attribute *attr_high;
14882
14883 attr_high = dwarf2_attr (die, DW_AT_high_pc, cu);
14884 if (attr_high)
14885 {
14886 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
14887 if (attr != nullptr)
14888 {
14889 CORE_ADDR low = attr_value_as_address (attr);
14890 CORE_ADDR high = attr_value_as_address (attr_high);
14891
14892 if (cu->header.version >= 4 && attr_form_is_constant (attr_high))
14893 high += low;
14894
14895 low = gdbarch_adjust_dwarf2_addr (gdbarch, low + baseaddr);
14896 high = gdbarch_adjust_dwarf2_addr (gdbarch, high + baseaddr);
14897 cu->get_builder ()->record_block_range (block, low, high - 1);
14898 }
14899 }
14900
14901 attr = dwarf2_attr (die, DW_AT_ranges, cu);
14902 if (attr != nullptr)
14903 {
14904 /* DW_AT_ranges_base does not apply to DIEs from the DWO skeleton.
14905 We take advantage of the fact that DW_AT_ranges does not appear
14906 in DW_TAG_compile_unit of DWO files. */
14907 int need_ranges_base = die->tag != DW_TAG_compile_unit;
14908
14909 /* The value of the DW_AT_ranges attribute is the offset of the
14910 address range list in the .debug_ranges section. */
14911 unsigned long offset = (DW_UNSND (attr)
14912 + (need_ranges_base ? cu->ranges_base : 0));
14913
14914 std::vector<blockrange> blockvec;
14915 dwarf2_ranges_process (offset, cu,
14916 [&] (CORE_ADDR start, CORE_ADDR end)
14917 {
14918 start += baseaddr;
14919 end += baseaddr;
14920 start = gdbarch_adjust_dwarf2_addr (gdbarch, start);
14921 end = gdbarch_adjust_dwarf2_addr (gdbarch, end);
14922 cu->get_builder ()->record_block_range (block, start, end - 1);
14923 blockvec.emplace_back (start, end);
14924 });
14925
14926 BLOCK_RANGES(block) = make_blockranges (objfile, blockvec);
14927 }
14928 }
14929
14930 /* Check whether the producer field indicates either of GCC < 4.6, or the
14931 Intel C/C++ compiler, and cache the result in CU. */
14932
14933 static void
14934 check_producer (struct dwarf2_cu *cu)
14935 {
14936 int major, minor;
14937
14938 if (cu->producer == NULL)
14939 {
14940 /* For unknown compilers expect their behavior is DWARF version
14941 compliant.
14942
14943 GCC started to support .debug_types sections by -gdwarf-4 since
14944 gcc-4.5.x. As the .debug_types sections are missing DW_AT_producer
14945 for their space efficiency GDB cannot workaround gcc-4.5.x -gdwarf-4
14946 combination. gcc-4.5.x -gdwarf-4 binaries have DW_AT_accessibility
14947 interpreted incorrectly by GDB now - GCC PR debug/48229. */
14948 }
14949 else if (producer_is_gcc (cu->producer, &major, &minor))
14950 {
14951 cu->producer_is_gxx_lt_4_6 = major < 4 || (major == 4 && minor < 6);
14952 cu->producer_is_gcc_lt_4_3 = major < 4 || (major == 4 && minor < 3);
14953 }
14954 else if (producer_is_icc (cu->producer, &major, &minor))
14955 {
14956 cu->producer_is_icc = true;
14957 cu->producer_is_icc_lt_14 = major < 14;
14958 }
14959 else if (startswith (cu->producer, "CodeWarrior S12/L-ISA"))
14960 cu->producer_is_codewarrior = true;
14961 else
14962 {
14963 /* For other non-GCC compilers, expect their behavior is DWARF version
14964 compliant. */
14965 }
14966
14967 cu->checked_producer = true;
14968 }
14969
14970 /* Check for GCC PR debug/45124 fix which is not present in any G++ version up
14971 to 4.5.any while it is present already in G++ 4.6.0 - the PR has been fixed
14972 during 4.6.0 experimental. */
14973
14974 static bool
14975 producer_is_gxx_lt_4_6 (struct dwarf2_cu *cu)
14976 {
14977 if (!cu->checked_producer)
14978 check_producer (cu);
14979
14980 return cu->producer_is_gxx_lt_4_6;
14981 }
14982
14983
14984 /* Codewarrior (at least as of version 5.0.40) generates dwarf line information
14985 with incorrect is_stmt attributes. */
14986
14987 static bool
14988 producer_is_codewarrior (struct dwarf2_cu *cu)
14989 {
14990 if (!cu->checked_producer)
14991 check_producer (cu);
14992
14993 return cu->producer_is_codewarrior;
14994 }
14995
14996 /* Return the default accessibility type if it is not overridden by
14997 DW_AT_accessibility. */
14998
14999 static enum dwarf_access_attribute
15000 dwarf2_default_access_attribute (struct die_info *die, struct dwarf2_cu *cu)
15001 {
15002 if (cu->header.version < 3 || producer_is_gxx_lt_4_6 (cu))
15003 {
15004 /* The default DWARF 2 accessibility for members is public, the default
15005 accessibility for inheritance is private. */
15006
15007 if (die->tag != DW_TAG_inheritance)
15008 return DW_ACCESS_public;
15009 else
15010 return DW_ACCESS_private;
15011 }
15012 else
15013 {
15014 /* DWARF 3+ defines the default accessibility a different way. The same
15015 rules apply now for DW_TAG_inheritance as for the members and it only
15016 depends on the container kind. */
15017
15018 if (die->parent->tag == DW_TAG_class_type)
15019 return DW_ACCESS_private;
15020 else
15021 return DW_ACCESS_public;
15022 }
15023 }
15024
15025 /* Look for DW_AT_data_member_location. Set *OFFSET to the byte
15026 offset. If the attribute was not found return 0, otherwise return
15027 1. If it was found but could not properly be handled, set *OFFSET
15028 to 0. */
15029
15030 static int
15031 handle_data_member_location (struct die_info *die, struct dwarf2_cu *cu,
15032 LONGEST *offset)
15033 {
15034 struct attribute *attr;
15035
15036 attr = dwarf2_attr (die, DW_AT_data_member_location, cu);
15037 if (attr != NULL)
15038 {
15039 *offset = 0;
15040
15041 /* Note that we do not check for a section offset first here.
15042 This is because DW_AT_data_member_location is new in DWARF 4,
15043 so if we see it, we can assume that a constant form is really
15044 a constant and not a section offset. */
15045 if (attr_form_is_constant (attr))
15046 *offset = dwarf2_get_attr_constant_value (attr, 0);
15047 else if (attr_form_is_section_offset (attr))
15048 dwarf2_complex_location_expr_complaint ();
15049 else if (attr_form_is_block (attr))
15050 *offset = decode_locdesc (DW_BLOCK (attr), cu);
15051 else
15052 dwarf2_complex_location_expr_complaint ();
15053
15054 return 1;
15055 }
15056
15057 return 0;
15058 }
15059
15060 /* Add an aggregate field to the field list. */
15061
15062 static void
15063 dwarf2_add_field (struct field_info *fip, struct die_info *die,
15064 struct dwarf2_cu *cu)
15065 {
15066 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15067 struct gdbarch *gdbarch = get_objfile_arch (objfile);
15068 struct nextfield *new_field;
15069 struct attribute *attr;
15070 struct field *fp;
15071 const char *fieldname = "";
15072
15073 if (die->tag == DW_TAG_inheritance)
15074 {
15075 fip->baseclasses.emplace_back ();
15076 new_field = &fip->baseclasses.back ();
15077 }
15078 else
15079 {
15080 fip->fields.emplace_back ();
15081 new_field = &fip->fields.back ();
15082 }
15083
15084 fip->nfields++;
15085
15086 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15087 if (attr != nullptr)
15088 new_field->accessibility = DW_UNSND (attr);
15089 else
15090 new_field->accessibility = dwarf2_default_access_attribute (die, cu);
15091 if (new_field->accessibility != DW_ACCESS_public)
15092 fip->non_public_fields = 1;
15093
15094 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15095 if (attr != nullptr)
15096 new_field->virtuality = DW_UNSND (attr);
15097 else
15098 new_field->virtuality = DW_VIRTUALITY_none;
15099
15100 fp = &new_field->field;
15101
15102 if (die->tag == DW_TAG_member && ! die_is_declaration (die, cu))
15103 {
15104 LONGEST offset;
15105
15106 /* Data member other than a C++ static data member. */
15107
15108 /* Get type of field. */
15109 fp->type = die_type (die, cu);
15110
15111 SET_FIELD_BITPOS (*fp, 0);
15112
15113 /* Get bit size of field (zero if none). */
15114 attr = dwarf2_attr (die, DW_AT_bit_size, cu);
15115 if (attr != nullptr)
15116 {
15117 FIELD_BITSIZE (*fp) = DW_UNSND (attr);
15118 }
15119 else
15120 {
15121 FIELD_BITSIZE (*fp) = 0;
15122 }
15123
15124 /* Get bit offset of field. */
15125 if (handle_data_member_location (die, cu, &offset))
15126 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15127 attr = dwarf2_attr (die, DW_AT_bit_offset, cu);
15128 if (attr != nullptr)
15129 {
15130 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
15131 {
15132 /* For big endian bits, the DW_AT_bit_offset gives the
15133 additional bit offset from the MSB of the containing
15134 anonymous object to the MSB of the field. We don't
15135 have to do anything special since we don't need to
15136 know the size of the anonymous object. */
15137 SET_FIELD_BITPOS (*fp, FIELD_BITPOS (*fp) + DW_UNSND (attr));
15138 }
15139 else
15140 {
15141 /* For little endian bits, compute the bit offset to the
15142 MSB of the anonymous object, subtract off the number of
15143 bits from the MSB of the field to the MSB of the
15144 object, and then subtract off the number of bits of
15145 the field itself. The result is the bit offset of
15146 the LSB of the field. */
15147 int anonymous_size;
15148 int bit_offset = DW_UNSND (attr);
15149
15150 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15151 if (attr != nullptr)
15152 {
15153 /* The size of the anonymous object containing
15154 the bit field is explicit, so use the
15155 indicated size (in bytes). */
15156 anonymous_size = DW_UNSND (attr);
15157 }
15158 else
15159 {
15160 /* The size of the anonymous object containing
15161 the bit field must be inferred from the type
15162 attribute of the data member containing the
15163 bit field. */
15164 anonymous_size = TYPE_LENGTH (fp->type);
15165 }
15166 SET_FIELD_BITPOS (*fp,
15167 (FIELD_BITPOS (*fp)
15168 + anonymous_size * bits_per_byte
15169 - bit_offset - FIELD_BITSIZE (*fp)));
15170 }
15171 }
15172 attr = dwarf2_attr (die, DW_AT_data_bit_offset, cu);
15173 if (attr != NULL)
15174 SET_FIELD_BITPOS (*fp, (FIELD_BITPOS (*fp)
15175 + dwarf2_get_attr_constant_value (attr, 0)));
15176
15177 /* Get name of field. */
15178 fieldname = dwarf2_name (die, cu);
15179 if (fieldname == NULL)
15180 fieldname = "";
15181
15182 /* The name is already allocated along with this objfile, so we don't
15183 need to duplicate it for the type. */
15184 fp->name = fieldname;
15185
15186 /* Change accessibility for artificial fields (e.g. virtual table
15187 pointer or virtual base class pointer) to private. */
15188 if (dwarf2_attr (die, DW_AT_artificial, cu))
15189 {
15190 FIELD_ARTIFICIAL (*fp) = 1;
15191 new_field->accessibility = DW_ACCESS_private;
15192 fip->non_public_fields = 1;
15193 }
15194 }
15195 else if (die->tag == DW_TAG_member || die->tag == DW_TAG_variable)
15196 {
15197 /* C++ static member. */
15198
15199 /* NOTE: carlton/2002-11-05: It should be a DW_TAG_member that
15200 is a declaration, but all versions of G++ as of this writing
15201 (so through at least 3.2.1) incorrectly generate
15202 DW_TAG_variable tags. */
15203
15204 const char *physname;
15205
15206 /* Get name of field. */
15207 fieldname = dwarf2_name (die, cu);
15208 if (fieldname == NULL)
15209 return;
15210
15211 attr = dwarf2_attr (die, DW_AT_const_value, cu);
15212 if (attr
15213 /* Only create a symbol if this is an external value.
15214 new_symbol checks this and puts the value in the global symbol
15215 table, which we want. If it is not external, new_symbol
15216 will try to put the value in cu->list_in_scope which is wrong. */
15217 && dwarf2_flag_true_p (die, DW_AT_external, cu))
15218 {
15219 /* A static const member, not much different than an enum as far as
15220 we're concerned, except that we can support more types. */
15221 new_symbol (die, NULL, cu);
15222 }
15223
15224 /* Get physical name. */
15225 physname = dwarf2_physname (fieldname, die, cu);
15226
15227 /* The name is already allocated along with this objfile, so we don't
15228 need to duplicate it for the type. */
15229 SET_FIELD_PHYSNAME (*fp, physname ? physname : "");
15230 FIELD_TYPE (*fp) = die_type (die, cu);
15231 FIELD_NAME (*fp) = fieldname;
15232 }
15233 else if (die->tag == DW_TAG_inheritance)
15234 {
15235 LONGEST offset;
15236
15237 /* C++ base class field. */
15238 if (handle_data_member_location (die, cu, &offset))
15239 SET_FIELD_BITPOS (*fp, offset * bits_per_byte);
15240 FIELD_BITSIZE (*fp) = 0;
15241 FIELD_TYPE (*fp) = die_type (die, cu);
15242 FIELD_NAME (*fp) = TYPE_NAME (fp->type);
15243 }
15244 else if (die->tag == DW_TAG_variant_part)
15245 {
15246 /* process_structure_scope will treat this DIE as a union. */
15247 process_structure_scope (die, cu);
15248
15249 /* The variant part is relative to the start of the enclosing
15250 structure. */
15251 SET_FIELD_BITPOS (*fp, 0);
15252 fp->type = get_die_type (die, cu);
15253 fp->artificial = 1;
15254 fp->name = "<<variant>>";
15255
15256 /* Normally a DW_TAG_variant_part won't have a size, but our
15257 representation requires one, so set it to the maximum of the
15258 child sizes, being sure to account for the offset at which
15259 each child is seen. */
15260 if (TYPE_LENGTH (fp->type) == 0)
15261 {
15262 unsigned max = 0;
15263 for (int i = 0; i < TYPE_NFIELDS (fp->type); ++i)
15264 {
15265 unsigned len = ((TYPE_FIELD_BITPOS (fp->type, i) + 7) / 8
15266 + TYPE_LENGTH (TYPE_FIELD_TYPE (fp->type, i)));
15267 if (len > max)
15268 max = len;
15269 }
15270 TYPE_LENGTH (fp->type) = max;
15271 }
15272 }
15273 else
15274 gdb_assert_not_reached ("missing case in dwarf2_add_field");
15275 }
15276
15277 /* Can the type given by DIE define another type? */
15278
15279 static bool
15280 type_can_define_types (const struct die_info *die)
15281 {
15282 switch (die->tag)
15283 {
15284 case DW_TAG_typedef:
15285 case DW_TAG_class_type:
15286 case DW_TAG_structure_type:
15287 case DW_TAG_union_type:
15288 case DW_TAG_enumeration_type:
15289 return true;
15290
15291 default:
15292 return false;
15293 }
15294 }
15295
15296 /* Add a type definition defined in the scope of the FIP's class. */
15297
15298 static void
15299 dwarf2_add_type_defn (struct field_info *fip, struct die_info *die,
15300 struct dwarf2_cu *cu)
15301 {
15302 struct decl_field fp;
15303 memset (&fp, 0, sizeof (fp));
15304
15305 gdb_assert (type_can_define_types (die));
15306
15307 /* Get name of field. NULL is okay here, meaning an anonymous type. */
15308 fp.name = dwarf2_name (die, cu);
15309 fp.type = read_type_die (die, cu);
15310
15311 /* Save accessibility. */
15312 enum dwarf_access_attribute accessibility;
15313 struct attribute *attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15314 if (attr != NULL)
15315 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15316 else
15317 accessibility = dwarf2_default_access_attribute (die, cu);
15318 switch (accessibility)
15319 {
15320 case DW_ACCESS_public:
15321 /* The assumed value if neither private nor protected. */
15322 break;
15323 case DW_ACCESS_private:
15324 fp.is_private = 1;
15325 break;
15326 case DW_ACCESS_protected:
15327 fp.is_protected = 1;
15328 break;
15329 default:
15330 complaint (_("Unhandled DW_AT_accessibility value (%x)"), accessibility);
15331 }
15332
15333 if (die->tag == DW_TAG_typedef)
15334 fip->typedef_field_list.push_back (fp);
15335 else
15336 fip->nested_types_list.push_back (fp);
15337 }
15338
15339 /* Create the vector of fields, and attach it to the type. */
15340
15341 static void
15342 dwarf2_attach_fields_to_type (struct field_info *fip, struct type *type,
15343 struct dwarf2_cu *cu)
15344 {
15345 int nfields = fip->nfields;
15346
15347 /* Record the field count, allocate space for the array of fields,
15348 and create blank accessibility bitfields if necessary. */
15349 TYPE_NFIELDS (type) = nfields;
15350 TYPE_FIELDS (type) = (struct field *)
15351 TYPE_ZALLOC (type, sizeof (struct field) * nfields);
15352
15353 if (fip->non_public_fields && cu->language != language_ada)
15354 {
15355 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15356
15357 TYPE_FIELD_PRIVATE_BITS (type) =
15358 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15359 B_CLRALL (TYPE_FIELD_PRIVATE_BITS (type), nfields);
15360
15361 TYPE_FIELD_PROTECTED_BITS (type) =
15362 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15363 B_CLRALL (TYPE_FIELD_PROTECTED_BITS (type), nfields);
15364
15365 TYPE_FIELD_IGNORE_BITS (type) =
15366 (B_TYPE *) TYPE_ALLOC (type, B_BYTES (nfields));
15367 B_CLRALL (TYPE_FIELD_IGNORE_BITS (type), nfields);
15368 }
15369
15370 /* If the type has baseclasses, allocate and clear a bit vector for
15371 TYPE_FIELD_VIRTUAL_BITS. */
15372 if (!fip->baseclasses.empty () && cu->language != language_ada)
15373 {
15374 int num_bytes = B_BYTES (fip->baseclasses.size ());
15375 unsigned char *pointer;
15376
15377 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15378 pointer = (unsigned char *) TYPE_ALLOC (type, num_bytes);
15379 TYPE_FIELD_VIRTUAL_BITS (type) = pointer;
15380 B_CLRALL (TYPE_FIELD_VIRTUAL_BITS (type), fip->baseclasses.size ());
15381 TYPE_N_BASECLASSES (type) = fip->baseclasses.size ();
15382 }
15383
15384 if (TYPE_FLAG_DISCRIMINATED_UNION (type))
15385 {
15386 struct discriminant_info *di = alloc_discriminant_info (type, -1, -1);
15387
15388 for (int index = 0; index < nfields; ++index)
15389 {
15390 struct nextfield &field = fip->fields[index];
15391
15392 if (field.variant.is_discriminant)
15393 di->discriminant_index = index;
15394 else if (field.variant.default_branch)
15395 di->default_index = index;
15396 else
15397 di->discriminants[index] = field.variant.discriminant_value;
15398 }
15399 }
15400
15401 /* Copy the saved-up fields into the field vector. */
15402 for (int i = 0; i < nfields; ++i)
15403 {
15404 struct nextfield &field
15405 = ((i < fip->baseclasses.size ()) ? fip->baseclasses[i]
15406 : fip->fields[i - fip->baseclasses.size ()]);
15407
15408 TYPE_FIELD (type, i) = field.field;
15409 switch (field.accessibility)
15410 {
15411 case DW_ACCESS_private:
15412 if (cu->language != language_ada)
15413 SET_TYPE_FIELD_PRIVATE (type, i);
15414 break;
15415
15416 case DW_ACCESS_protected:
15417 if (cu->language != language_ada)
15418 SET_TYPE_FIELD_PROTECTED (type, i);
15419 break;
15420
15421 case DW_ACCESS_public:
15422 break;
15423
15424 default:
15425 /* Unknown accessibility. Complain and treat it as public. */
15426 {
15427 complaint (_("unsupported accessibility %d"),
15428 field.accessibility);
15429 }
15430 break;
15431 }
15432 if (i < fip->baseclasses.size ())
15433 {
15434 switch (field.virtuality)
15435 {
15436 case DW_VIRTUALITY_virtual:
15437 case DW_VIRTUALITY_pure_virtual:
15438 if (cu->language == language_ada)
15439 error (_("unexpected virtuality in component of Ada type"));
15440 SET_TYPE_FIELD_VIRTUAL (type, i);
15441 break;
15442 }
15443 }
15444 }
15445 }
15446
15447 /* Return true if this member function is a constructor, false
15448 otherwise. */
15449
15450 static int
15451 dwarf2_is_constructor (struct die_info *die, struct dwarf2_cu *cu)
15452 {
15453 const char *fieldname;
15454 const char *type_name;
15455 int len;
15456
15457 if (die->parent == NULL)
15458 return 0;
15459
15460 if (die->parent->tag != DW_TAG_structure_type
15461 && die->parent->tag != DW_TAG_union_type
15462 && die->parent->tag != DW_TAG_class_type)
15463 return 0;
15464
15465 fieldname = dwarf2_name (die, cu);
15466 type_name = dwarf2_name (die->parent, cu);
15467 if (fieldname == NULL || type_name == NULL)
15468 return 0;
15469
15470 len = strlen (fieldname);
15471 return (strncmp (fieldname, type_name, len) == 0
15472 && (type_name[len] == '\0' || type_name[len] == '<'));
15473 }
15474
15475 /* Add a member function to the proper fieldlist. */
15476
15477 static void
15478 dwarf2_add_member_fn (struct field_info *fip, struct die_info *die,
15479 struct type *type, struct dwarf2_cu *cu)
15480 {
15481 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15482 struct attribute *attr;
15483 int i;
15484 struct fnfieldlist *flp = nullptr;
15485 struct fn_field *fnp;
15486 const char *fieldname;
15487 struct type *this_type;
15488 enum dwarf_access_attribute accessibility;
15489
15490 if (cu->language == language_ada)
15491 error (_("unexpected member function in Ada type"));
15492
15493 /* Get name of member function. */
15494 fieldname = dwarf2_name (die, cu);
15495 if (fieldname == NULL)
15496 return;
15497
15498 /* Look up member function name in fieldlist. */
15499 for (i = 0; i < fip->fnfieldlists.size (); i++)
15500 {
15501 if (strcmp (fip->fnfieldlists[i].name, fieldname) == 0)
15502 {
15503 flp = &fip->fnfieldlists[i];
15504 break;
15505 }
15506 }
15507
15508 /* Create a new fnfieldlist if necessary. */
15509 if (flp == nullptr)
15510 {
15511 fip->fnfieldlists.emplace_back ();
15512 flp = &fip->fnfieldlists.back ();
15513 flp->name = fieldname;
15514 i = fip->fnfieldlists.size () - 1;
15515 }
15516
15517 /* Create a new member function field and add it to the vector of
15518 fnfieldlists. */
15519 flp->fnfields.emplace_back ();
15520 fnp = &flp->fnfields.back ();
15521
15522 /* Delay processing of the physname until later. */
15523 if (cu->language == language_cplus)
15524 add_to_method_list (type, i, flp->fnfields.size () - 1, fieldname,
15525 die, cu);
15526 else
15527 {
15528 const char *physname = dwarf2_physname (fieldname, die, cu);
15529 fnp->physname = physname ? physname : "";
15530 }
15531
15532 fnp->type = alloc_type (objfile);
15533 this_type = read_type_die (die, cu);
15534 if (this_type && TYPE_CODE (this_type) == TYPE_CODE_FUNC)
15535 {
15536 int nparams = TYPE_NFIELDS (this_type);
15537
15538 /* TYPE is the domain of this method, and THIS_TYPE is the type
15539 of the method itself (TYPE_CODE_METHOD). */
15540 smash_to_method_type (fnp->type, type,
15541 TYPE_TARGET_TYPE (this_type),
15542 TYPE_FIELDS (this_type),
15543 TYPE_NFIELDS (this_type),
15544 TYPE_VARARGS (this_type));
15545
15546 /* Handle static member functions.
15547 Dwarf2 has no clean way to discern C++ static and non-static
15548 member functions. G++ helps GDB by marking the first
15549 parameter for non-static member functions (which is the this
15550 pointer) as artificial. We obtain this information from
15551 read_subroutine_type via TYPE_FIELD_ARTIFICIAL. */
15552 if (nparams == 0 || TYPE_FIELD_ARTIFICIAL (this_type, 0) == 0)
15553 fnp->voffset = VOFFSET_STATIC;
15554 }
15555 else
15556 complaint (_("member function type missing for '%s'"),
15557 dwarf2_full_name (fieldname, die, cu));
15558
15559 /* Get fcontext from DW_AT_containing_type if present. */
15560 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
15561 fnp->fcontext = die_containing_type (die, cu);
15562
15563 /* dwarf2 doesn't have stubbed physical names, so the setting of is_const and
15564 is_volatile is irrelevant, as it is needed by gdb_mangle_name only. */
15565
15566 /* Get accessibility. */
15567 attr = dwarf2_attr (die, DW_AT_accessibility, cu);
15568 if (attr != nullptr)
15569 accessibility = (enum dwarf_access_attribute) DW_UNSND (attr);
15570 else
15571 accessibility = dwarf2_default_access_attribute (die, cu);
15572 switch (accessibility)
15573 {
15574 case DW_ACCESS_private:
15575 fnp->is_private = 1;
15576 break;
15577 case DW_ACCESS_protected:
15578 fnp->is_protected = 1;
15579 break;
15580 }
15581
15582 /* Check for artificial methods. */
15583 attr = dwarf2_attr (die, DW_AT_artificial, cu);
15584 if (attr && DW_UNSND (attr) != 0)
15585 fnp->is_artificial = 1;
15586
15587 fnp->is_constructor = dwarf2_is_constructor (die, cu);
15588
15589 /* Get index in virtual function table if it is a virtual member
15590 function. For older versions of GCC, this is an offset in the
15591 appropriate virtual table, as specified by DW_AT_containing_type.
15592 For everyone else, it is an expression to be evaluated relative
15593 to the object address. */
15594
15595 attr = dwarf2_attr (die, DW_AT_vtable_elem_location, cu);
15596 if (attr != nullptr)
15597 {
15598 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size > 0)
15599 {
15600 if (DW_BLOCK (attr)->data[0] == DW_OP_constu)
15601 {
15602 /* Old-style GCC. */
15603 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu) + 2;
15604 }
15605 else if (DW_BLOCK (attr)->data[0] == DW_OP_deref
15606 || (DW_BLOCK (attr)->size > 1
15607 && DW_BLOCK (attr)->data[0] == DW_OP_deref_size
15608 && DW_BLOCK (attr)->data[1] == cu->header.addr_size))
15609 {
15610 fnp->voffset = decode_locdesc (DW_BLOCK (attr), cu);
15611 if ((fnp->voffset % cu->header.addr_size) != 0)
15612 dwarf2_complex_location_expr_complaint ();
15613 else
15614 fnp->voffset /= cu->header.addr_size;
15615 fnp->voffset += 2;
15616 }
15617 else
15618 dwarf2_complex_location_expr_complaint ();
15619
15620 if (!fnp->fcontext)
15621 {
15622 /* If there is no `this' field and no DW_AT_containing_type,
15623 we cannot actually find a base class context for the
15624 vtable! */
15625 if (TYPE_NFIELDS (this_type) == 0
15626 || !TYPE_FIELD_ARTIFICIAL (this_type, 0))
15627 {
15628 complaint (_("cannot determine context for virtual member "
15629 "function \"%s\" (offset %s)"),
15630 fieldname, sect_offset_str (die->sect_off));
15631 }
15632 else
15633 {
15634 fnp->fcontext
15635 = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (this_type, 0));
15636 }
15637 }
15638 }
15639 else if (attr_form_is_section_offset (attr))
15640 {
15641 dwarf2_complex_location_expr_complaint ();
15642 }
15643 else
15644 {
15645 dwarf2_invalid_attrib_class_complaint ("DW_AT_vtable_elem_location",
15646 fieldname);
15647 }
15648 }
15649 else
15650 {
15651 attr = dwarf2_attr (die, DW_AT_virtuality, cu);
15652 if (attr && DW_UNSND (attr))
15653 {
15654 /* GCC does this, as of 2008-08-25; PR debug/37237. */
15655 complaint (_("Member function \"%s\" (offset %s) is virtual "
15656 "but the vtable offset is not specified"),
15657 fieldname, sect_offset_str (die->sect_off));
15658 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15659 TYPE_CPLUS_DYNAMIC (type) = 1;
15660 }
15661 }
15662 }
15663
15664 /* Create the vector of member function fields, and attach it to the type. */
15665
15666 static void
15667 dwarf2_attach_fn_fields_to_type (struct field_info *fip, struct type *type,
15668 struct dwarf2_cu *cu)
15669 {
15670 if (cu->language == language_ada)
15671 error (_("unexpected member functions in Ada type"));
15672
15673 ALLOCATE_CPLUS_STRUCT_TYPE (type);
15674 TYPE_FN_FIELDLISTS (type) = (struct fn_fieldlist *)
15675 TYPE_ALLOC (type,
15676 sizeof (struct fn_fieldlist) * fip->fnfieldlists.size ());
15677
15678 for (int i = 0; i < fip->fnfieldlists.size (); i++)
15679 {
15680 struct fnfieldlist &nf = fip->fnfieldlists[i];
15681 struct fn_fieldlist *fn_flp = &TYPE_FN_FIELDLIST (type, i);
15682
15683 TYPE_FN_FIELDLIST_NAME (type, i) = nf.name;
15684 TYPE_FN_FIELDLIST_LENGTH (type, i) = nf.fnfields.size ();
15685 fn_flp->fn_fields = (struct fn_field *)
15686 TYPE_ALLOC (type, sizeof (struct fn_field) * nf.fnfields.size ());
15687
15688 for (int k = 0; k < nf.fnfields.size (); ++k)
15689 fn_flp->fn_fields[k] = nf.fnfields[k];
15690 }
15691
15692 TYPE_NFN_FIELDS (type) = fip->fnfieldlists.size ();
15693 }
15694
15695 /* Returns non-zero if NAME is the name of a vtable member in CU's
15696 language, zero otherwise. */
15697 static int
15698 is_vtable_name (const char *name, struct dwarf2_cu *cu)
15699 {
15700 static const char vptr[] = "_vptr";
15701
15702 /* Look for the C++ form of the vtable. */
15703 if (startswith (name, vptr) && is_cplus_marker (name[sizeof (vptr) - 1]))
15704 return 1;
15705
15706 return 0;
15707 }
15708
15709 /* GCC outputs unnamed structures that are really pointers to member
15710 functions, with the ABI-specified layout. If TYPE describes
15711 such a structure, smash it into a member function type.
15712
15713 GCC shouldn't do this; it should just output pointer to member DIEs.
15714 This is GCC PR debug/28767. */
15715
15716 static void
15717 quirk_gcc_member_function_pointer (struct type *type, struct objfile *objfile)
15718 {
15719 struct type *pfn_type, *self_type, *new_type;
15720
15721 /* Check for a structure with no name and two children. */
15722 if (TYPE_CODE (type) != TYPE_CODE_STRUCT || TYPE_NFIELDS (type) != 2)
15723 return;
15724
15725 /* Check for __pfn and __delta members. */
15726 if (TYPE_FIELD_NAME (type, 0) == NULL
15727 || strcmp (TYPE_FIELD_NAME (type, 0), "__pfn") != 0
15728 || TYPE_FIELD_NAME (type, 1) == NULL
15729 || strcmp (TYPE_FIELD_NAME (type, 1), "__delta") != 0)
15730 return;
15731
15732 /* Find the type of the method. */
15733 pfn_type = TYPE_FIELD_TYPE (type, 0);
15734 if (pfn_type == NULL
15735 || TYPE_CODE (pfn_type) != TYPE_CODE_PTR
15736 || TYPE_CODE (TYPE_TARGET_TYPE (pfn_type)) != TYPE_CODE_FUNC)
15737 return;
15738
15739 /* Look for the "this" argument. */
15740 pfn_type = TYPE_TARGET_TYPE (pfn_type);
15741 if (TYPE_NFIELDS (pfn_type) == 0
15742 /* || TYPE_FIELD_TYPE (pfn_type, 0) == NULL */
15743 || TYPE_CODE (TYPE_FIELD_TYPE (pfn_type, 0)) != TYPE_CODE_PTR)
15744 return;
15745
15746 self_type = TYPE_TARGET_TYPE (TYPE_FIELD_TYPE (pfn_type, 0));
15747 new_type = alloc_type (objfile);
15748 smash_to_method_type (new_type, self_type, TYPE_TARGET_TYPE (pfn_type),
15749 TYPE_FIELDS (pfn_type), TYPE_NFIELDS (pfn_type),
15750 TYPE_VARARGS (pfn_type));
15751 smash_to_methodptr_type (type, new_type);
15752 }
15753
15754 /* If the DIE has a DW_AT_alignment attribute, return its value, doing
15755 appropriate error checking and issuing complaints if there is a
15756 problem. */
15757
15758 static ULONGEST
15759 get_alignment (struct dwarf2_cu *cu, struct die_info *die)
15760 {
15761 struct attribute *attr = dwarf2_attr (die, DW_AT_alignment, cu);
15762
15763 if (attr == nullptr)
15764 return 0;
15765
15766 if (!attr_form_is_constant (attr))
15767 {
15768 complaint (_("DW_AT_alignment must have constant form"
15769 " - DIE at %s [in module %s]"),
15770 sect_offset_str (die->sect_off),
15771 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15772 return 0;
15773 }
15774
15775 ULONGEST align;
15776 if (attr->form == DW_FORM_sdata)
15777 {
15778 LONGEST val = DW_SND (attr);
15779 if (val < 0)
15780 {
15781 complaint (_("DW_AT_alignment value must not be negative"
15782 " - DIE at %s [in module %s]"),
15783 sect_offset_str (die->sect_off),
15784 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15785 return 0;
15786 }
15787 align = val;
15788 }
15789 else
15790 align = DW_UNSND (attr);
15791
15792 if (align == 0)
15793 {
15794 complaint (_("DW_AT_alignment value must not be zero"
15795 " - DIE at %s [in module %s]"),
15796 sect_offset_str (die->sect_off),
15797 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15798 return 0;
15799 }
15800 if ((align & (align - 1)) != 0)
15801 {
15802 complaint (_("DW_AT_alignment value must be a power of 2"
15803 " - DIE at %s [in module %s]"),
15804 sect_offset_str (die->sect_off),
15805 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15806 return 0;
15807 }
15808
15809 return align;
15810 }
15811
15812 /* If the DIE has a DW_AT_alignment attribute, use its value to set
15813 the alignment for TYPE. */
15814
15815 static void
15816 maybe_set_alignment (struct dwarf2_cu *cu, struct die_info *die,
15817 struct type *type)
15818 {
15819 if (!set_type_align (type, get_alignment (cu, die)))
15820 complaint (_("DW_AT_alignment value too large"
15821 " - DIE at %s [in module %s]"),
15822 sect_offset_str (die->sect_off),
15823 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
15824 }
15825
15826 /* Called when we find the DIE that starts a structure or union scope
15827 (definition) to create a type for the structure or union. Fill in
15828 the type's name and general properties; the members will not be
15829 processed until process_structure_scope. A symbol table entry for
15830 the type will also not be done until process_structure_scope (assuming
15831 the type has a name).
15832
15833 NOTE: we need to call these functions regardless of whether or not the
15834 DIE has a DW_AT_name attribute, since it might be an anonymous
15835 structure or union. This gets the type entered into our set of
15836 user defined types. */
15837
15838 static struct type *
15839 read_structure_type (struct die_info *die, struct dwarf2_cu *cu)
15840 {
15841 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
15842 struct type *type;
15843 struct attribute *attr;
15844 const char *name;
15845
15846 /* If the definition of this type lives in .debug_types, read that type.
15847 Don't follow DW_AT_specification though, that will take us back up
15848 the chain and we want to go down. */
15849 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
15850 if (attr != nullptr)
15851 {
15852 type = get_DW_AT_signature_type (die, attr, cu);
15853
15854 /* The type's CU may not be the same as CU.
15855 Ensure TYPE is recorded with CU in die_type_hash. */
15856 return set_die_type (die, type, cu);
15857 }
15858
15859 type = alloc_type (objfile);
15860 INIT_CPLUS_SPECIFIC (type);
15861
15862 name = dwarf2_name (die, cu);
15863 if (name != NULL)
15864 {
15865 if (cu->language == language_cplus
15866 || cu->language == language_d
15867 || cu->language == language_rust)
15868 {
15869 const char *full_name = dwarf2_full_name (name, die, cu);
15870
15871 /* dwarf2_full_name might have already finished building the DIE's
15872 type. If so, there is no need to continue. */
15873 if (get_die_type (die, cu) != NULL)
15874 return get_die_type (die, cu);
15875
15876 TYPE_NAME (type) = full_name;
15877 }
15878 else
15879 {
15880 /* The name is already allocated along with this objfile, so
15881 we don't need to duplicate it for the type. */
15882 TYPE_NAME (type) = name;
15883 }
15884 }
15885
15886 if (die->tag == DW_TAG_structure_type)
15887 {
15888 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15889 }
15890 else if (die->tag == DW_TAG_union_type)
15891 {
15892 TYPE_CODE (type) = TYPE_CODE_UNION;
15893 }
15894 else if (die->tag == DW_TAG_variant_part)
15895 {
15896 TYPE_CODE (type) = TYPE_CODE_UNION;
15897 TYPE_FLAG_DISCRIMINATED_UNION (type) = 1;
15898 }
15899 else
15900 {
15901 TYPE_CODE (type) = TYPE_CODE_STRUCT;
15902 }
15903
15904 if (cu->language == language_cplus && die->tag == DW_TAG_class_type)
15905 TYPE_DECLARED_CLASS (type) = 1;
15906
15907 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
15908 if (attr != nullptr)
15909 {
15910 if (attr_form_is_constant (attr))
15911 TYPE_LENGTH (type) = DW_UNSND (attr);
15912 else
15913 {
15914 /* For the moment, dynamic type sizes are not supported
15915 by GDB's struct type. The actual size is determined
15916 on-demand when resolving the type of a given object,
15917 so set the type's length to zero for now. Otherwise,
15918 we record an expression as the length, and that expression
15919 could lead to a very large value, which could eventually
15920 lead to us trying to allocate that much memory when creating
15921 a value of that type. */
15922 TYPE_LENGTH (type) = 0;
15923 }
15924 }
15925 else
15926 {
15927 TYPE_LENGTH (type) = 0;
15928 }
15929
15930 maybe_set_alignment (cu, die, type);
15931
15932 if (producer_is_icc_lt_14 (cu) && (TYPE_LENGTH (type) == 0))
15933 {
15934 /* ICC<14 does not output the required DW_AT_declaration on
15935 incomplete types, but gives them a size of zero. */
15936 TYPE_STUB (type) = 1;
15937 }
15938 else
15939 TYPE_STUB_SUPPORTED (type) = 1;
15940
15941 if (die_is_declaration (die, cu))
15942 TYPE_STUB (type) = 1;
15943 else if (attr == NULL && die->child == NULL
15944 && producer_is_realview (cu->producer))
15945 /* RealView does not output the required DW_AT_declaration
15946 on incomplete types. */
15947 TYPE_STUB (type) = 1;
15948
15949 /* We need to add the type field to the die immediately so we don't
15950 infinitely recurse when dealing with pointers to the structure
15951 type within the structure itself. */
15952 set_die_type (die, type, cu);
15953
15954 /* set_die_type should be already done. */
15955 set_descriptive_type (type, die, cu);
15956
15957 return type;
15958 }
15959
15960 /* A helper for process_structure_scope that handles a single member
15961 DIE. */
15962
15963 static void
15964 handle_struct_member_die (struct die_info *child_die, struct type *type,
15965 struct field_info *fi,
15966 std::vector<struct symbol *> *template_args,
15967 struct dwarf2_cu *cu)
15968 {
15969 if (child_die->tag == DW_TAG_member
15970 || child_die->tag == DW_TAG_variable
15971 || child_die->tag == DW_TAG_variant_part)
15972 {
15973 /* NOTE: carlton/2002-11-05: A C++ static data member
15974 should be a DW_TAG_member that is a declaration, but
15975 all versions of G++ as of this writing (so through at
15976 least 3.2.1) incorrectly generate DW_TAG_variable
15977 tags for them instead. */
15978 dwarf2_add_field (fi, child_die, cu);
15979 }
15980 else if (child_die->tag == DW_TAG_subprogram)
15981 {
15982 /* Rust doesn't have member functions in the C++ sense.
15983 However, it does emit ordinary functions as children
15984 of a struct DIE. */
15985 if (cu->language == language_rust)
15986 read_func_scope (child_die, cu);
15987 else
15988 {
15989 /* C++ member function. */
15990 dwarf2_add_member_fn (fi, child_die, type, cu);
15991 }
15992 }
15993 else if (child_die->tag == DW_TAG_inheritance)
15994 {
15995 /* C++ base class field. */
15996 dwarf2_add_field (fi, child_die, cu);
15997 }
15998 else if (type_can_define_types (child_die))
15999 dwarf2_add_type_defn (fi, child_die, cu);
16000 else if (child_die->tag == DW_TAG_template_type_param
16001 || child_die->tag == DW_TAG_template_value_param)
16002 {
16003 struct symbol *arg = new_symbol (child_die, NULL, cu);
16004
16005 if (arg != NULL)
16006 template_args->push_back (arg);
16007 }
16008 else if (child_die->tag == DW_TAG_variant)
16009 {
16010 /* In a variant we want to get the discriminant and also add a
16011 field for our sole member child. */
16012 struct attribute *discr = dwarf2_attr (child_die, DW_AT_discr_value, cu);
16013
16014 for (die_info *variant_child = child_die->child;
16015 variant_child != NULL;
16016 variant_child = sibling_die (variant_child))
16017 {
16018 if (variant_child->tag == DW_TAG_member)
16019 {
16020 handle_struct_member_die (variant_child, type, fi,
16021 template_args, cu);
16022 /* Only handle the one. */
16023 break;
16024 }
16025 }
16026
16027 /* We don't handle this but we might as well report it if we see
16028 it. */
16029 if (dwarf2_attr (child_die, DW_AT_discr_list, cu) != nullptr)
16030 complaint (_("DW_AT_discr_list is not supported yet"
16031 " - DIE at %s [in module %s]"),
16032 sect_offset_str (child_die->sect_off),
16033 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16034
16035 /* The first field was just added, so we can stash the
16036 discriminant there. */
16037 gdb_assert (!fi->fields.empty ());
16038 if (discr == NULL)
16039 fi->fields.back ().variant.default_branch = true;
16040 else
16041 fi->fields.back ().variant.discriminant_value = DW_UNSND (discr);
16042 }
16043 }
16044
16045 /* Finish creating a structure or union type, including filling in
16046 its members and creating a symbol for it. */
16047
16048 static void
16049 process_structure_scope (struct die_info *die, struct dwarf2_cu *cu)
16050 {
16051 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16052 struct die_info *child_die;
16053 struct type *type;
16054
16055 type = get_die_type (die, cu);
16056 if (type == NULL)
16057 type = read_structure_type (die, cu);
16058
16059 /* When reading a DW_TAG_variant_part, we need to notice when we
16060 read the discriminant member, so we can record it later in the
16061 discriminant_info. */
16062 bool is_variant_part = TYPE_FLAG_DISCRIMINATED_UNION (type);
16063 sect_offset discr_offset {};
16064 bool has_template_parameters = false;
16065
16066 if (is_variant_part)
16067 {
16068 struct attribute *discr = dwarf2_attr (die, DW_AT_discr, cu);
16069 if (discr == NULL)
16070 {
16071 /* Maybe it's a univariant form, an extension we support.
16072 In this case arrange not to check the offset. */
16073 is_variant_part = false;
16074 }
16075 else if (attr_form_is_ref (discr))
16076 {
16077 struct dwarf2_cu *target_cu = cu;
16078 struct die_info *target_die = follow_die_ref (die, discr, &target_cu);
16079
16080 discr_offset = target_die->sect_off;
16081 }
16082 else
16083 {
16084 complaint (_("DW_AT_discr does not have DIE reference form"
16085 " - DIE at %s [in module %s]"),
16086 sect_offset_str (die->sect_off),
16087 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16088 is_variant_part = false;
16089 }
16090 }
16091
16092 if (die->child != NULL && ! die_is_declaration (die, cu))
16093 {
16094 struct field_info fi;
16095 std::vector<struct symbol *> template_args;
16096
16097 child_die = die->child;
16098
16099 while (child_die && child_die->tag)
16100 {
16101 handle_struct_member_die (child_die, type, &fi, &template_args, cu);
16102
16103 if (is_variant_part && discr_offset == child_die->sect_off)
16104 fi.fields.back ().variant.is_discriminant = true;
16105
16106 child_die = sibling_die (child_die);
16107 }
16108
16109 /* Attach template arguments to type. */
16110 if (!template_args.empty ())
16111 {
16112 has_template_parameters = true;
16113 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16114 TYPE_N_TEMPLATE_ARGUMENTS (type) = template_args.size ();
16115 TYPE_TEMPLATE_ARGUMENTS (type)
16116 = XOBNEWVEC (&objfile->objfile_obstack,
16117 struct symbol *,
16118 TYPE_N_TEMPLATE_ARGUMENTS (type));
16119 memcpy (TYPE_TEMPLATE_ARGUMENTS (type),
16120 template_args.data (),
16121 (TYPE_N_TEMPLATE_ARGUMENTS (type)
16122 * sizeof (struct symbol *)));
16123 }
16124
16125 /* Attach fields and member functions to the type. */
16126 if (fi.nfields)
16127 dwarf2_attach_fields_to_type (&fi, type, cu);
16128 if (!fi.fnfieldlists.empty ())
16129 {
16130 dwarf2_attach_fn_fields_to_type (&fi, type, cu);
16131
16132 /* Get the type which refers to the base class (possibly this
16133 class itself) which contains the vtable pointer for the current
16134 class from the DW_AT_containing_type attribute. This use of
16135 DW_AT_containing_type is a GNU extension. */
16136
16137 if (dwarf2_attr (die, DW_AT_containing_type, cu) != NULL)
16138 {
16139 struct type *t = die_containing_type (die, cu);
16140
16141 set_type_vptr_basetype (type, t);
16142 if (type == t)
16143 {
16144 int i;
16145
16146 /* Our own class provides vtbl ptr. */
16147 for (i = TYPE_NFIELDS (t) - 1;
16148 i >= TYPE_N_BASECLASSES (t);
16149 --i)
16150 {
16151 const char *fieldname = TYPE_FIELD_NAME (t, i);
16152
16153 if (is_vtable_name (fieldname, cu))
16154 {
16155 set_type_vptr_fieldno (type, i);
16156 break;
16157 }
16158 }
16159
16160 /* Complain if virtual function table field not found. */
16161 if (i < TYPE_N_BASECLASSES (t))
16162 complaint (_("virtual function table pointer "
16163 "not found when defining class '%s'"),
16164 TYPE_NAME (type) ? TYPE_NAME (type) : "");
16165 }
16166 else
16167 {
16168 set_type_vptr_fieldno (type, TYPE_VPTR_FIELDNO (t));
16169 }
16170 }
16171 else if (cu->producer
16172 && startswith (cu->producer, "IBM(R) XL C/C++ Advanced Edition"))
16173 {
16174 /* The IBM XLC compiler does not provide direct indication
16175 of the containing type, but the vtable pointer is
16176 always named __vfp. */
16177
16178 int i;
16179
16180 for (i = TYPE_NFIELDS (type) - 1;
16181 i >= TYPE_N_BASECLASSES (type);
16182 --i)
16183 {
16184 if (strcmp (TYPE_FIELD_NAME (type, i), "__vfp") == 0)
16185 {
16186 set_type_vptr_fieldno (type, i);
16187 set_type_vptr_basetype (type, type);
16188 break;
16189 }
16190 }
16191 }
16192 }
16193
16194 /* Copy fi.typedef_field_list linked list elements content into the
16195 allocated array TYPE_TYPEDEF_FIELD_ARRAY (type). */
16196 if (!fi.typedef_field_list.empty ())
16197 {
16198 int count = fi.typedef_field_list.size ();
16199
16200 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16201 TYPE_TYPEDEF_FIELD_ARRAY (type)
16202 = ((struct decl_field *)
16203 TYPE_ALLOC (type,
16204 sizeof (TYPE_TYPEDEF_FIELD (type, 0)) * count));
16205 TYPE_TYPEDEF_FIELD_COUNT (type) = count;
16206
16207 for (int i = 0; i < fi.typedef_field_list.size (); ++i)
16208 TYPE_TYPEDEF_FIELD (type, i) = fi.typedef_field_list[i];
16209 }
16210
16211 /* Copy fi.nested_types_list linked list elements content into the
16212 allocated array TYPE_NESTED_TYPES_ARRAY (type). */
16213 if (!fi.nested_types_list.empty () && cu->language != language_ada)
16214 {
16215 int count = fi.nested_types_list.size ();
16216
16217 ALLOCATE_CPLUS_STRUCT_TYPE (type);
16218 TYPE_NESTED_TYPES_ARRAY (type)
16219 = ((struct decl_field *)
16220 TYPE_ALLOC (type, sizeof (struct decl_field) * count));
16221 TYPE_NESTED_TYPES_COUNT (type) = count;
16222
16223 for (int i = 0; i < fi.nested_types_list.size (); ++i)
16224 TYPE_NESTED_TYPES_FIELD (type, i) = fi.nested_types_list[i];
16225 }
16226 }
16227
16228 quirk_gcc_member_function_pointer (type, objfile);
16229 if (cu->language == language_rust && die->tag == DW_TAG_union_type)
16230 cu->rust_unions.push_back (type);
16231
16232 /* NOTE: carlton/2004-03-16: GCC 3.4 (or at least one of its
16233 snapshots) has been known to create a die giving a declaration
16234 for a class that has, as a child, a die giving a definition for a
16235 nested class. So we have to process our children even if the
16236 current die is a declaration. Normally, of course, a declaration
16237 won't have any children at all. */
16238
16239 child_die = die->child;
16240
16241 while (child_die != NULL && child_die->tag)
16242 {
16243 if (child_die->tag == DW_TAG_member
16244 || child_die->tag == DW_TAG_variable
16245 || child_die->tag == DW_TAG_inheritance
16246 || child_die->tag == DW_TAG_template_value_param
16247 || child_die->tag == DW_TAG_template_type_param)
16248 {
16249 /* Do nothing. */
16250 }
16251 else
16252 process_die (child_die, cu);
16253
16254 child_die = sibling_die (child_die);
16255 }
16256
16257 /* Do not consider external references. According to the DWARF standard,
16258 these DIEs are identified by the fact that they have no byte_size
16259 attribute, and a declaration attribute. */
16260 if (dwarf2_attr (die, DW_AT_byte_size, cu) != NULL
16261 || !die_is_declaration (die, cu))
16262 {
16263 struct symbol *sym = new_symbol (die, type, cu);
16264
16265 if (has_template_parameters)
16266 {
16267 struct symtab *symtab;
16268 if (sym != nullptr)
16269 symtab = symbol_symtab (sym);
16270 else if (cu->line_header != nullptr)
16271 {
16272 /* Any related symtab will do. */
16273 symtab
16274 = cu->line_header->file_names ()[0].symtab;
16275 }
16276 else
16277 {
16278 symtab = nullptr;
16279 complaint (_("could not find suitable "
16280 "symtab for template parameter"
16281 " - DIE at %s [in module %s]"),
16282 sect_offset_str (die->sect_off),
16283 objfile_name (objfile));
16284 }
16285
16286 if (symtab != nullptr)
16287 {
16288 /* Make sure that the symtab is set on the new symbols.
16289 Even though they don't appear in this symtab directly,
16290 other parts of gdb assume that symbols do, and this is
16291 reasonably true. */
16292 for (int i = 0; i < TYPE_N_TEMPLATE_ARGUMENTS (type); ++i)
16293 symbol_set_symtab (TYPE_TEMPLATE_ARGUMENT (type, i), symtab);
16294 }
16295 }
16296 }
16297 }
16298
16299 /* Assuming DIE is an enumeration type, and TYPE is its associated type,
16300 update TYPE using some information only available in DIE's children. */
16301
16302 static void
16303 update_enumeration_type_from_children (struct die_info *die,
16304 struct type *type,
16305 struct dwarf2_cu *cu)
16306 {
16307 struct die_info *child_die;
16308 int unsigned_enum = 1;
16309 int flag_enum = 1;
16310 ULONGEST mask = 0;
16311
16312 auto_obstack obstack;
16313
16314 for (child_die = die->child;
16315 child_die != NULL && child_die->tag;
16316 child_die = sibling_die (child_die))
16317 {
16318 struct attribute *attr;
16319 LONGEST value;
16320 const gdb_byte *bytes;
16321 struct dwarf2_locexpr_baton *baton;
16322 const char *name;
16323
16324 if (child_die->tag != DW_TAG_enumerator)
16325 continue;
16326
16327 attr = dwarf2_attr (child_die, DW_AT_const_value, cu);
16328 if (attr == NULL)
16329 continue;
16330
16331 name = dwarf2_name (child_die, cu);
16332 if (name == NULL)
16333 name = "<anonymous enumerator>";
16334
16335 dwarf2_const_value_attr (attr, type, name, &obstack, cu,
16336 &value, &bytes, &baton);
16337 if (value < 0)
16338 {
16339 unsigned_enum = 0;
16340 flag_enum = 0;
16341 }
16342 else if ((mask & value) != 0)
16343 flag_enum = 0;
16344 else
16345 mask |= value;
16346
16347 /* If we already know that the enum type is neither unsigned, nor
16348 a flag type, no need to look at the rest of the enumerates. */
16349 if (!unsigned_enum && !flag_enum)
16350 break;
16351 }
16352
16353 if (unsigned_enum)
16354 TYPE_UNSIGNED (type) = 1;
16355 if (flag_enum)
16356 TYPE_FLAG_ENUM (type) = 1;
16357 }
16358
16359 /* Given a DW_AT_enumeration_type die, set its type. We do not
16360 complete the type's fields yet, or create any symbols. */
16361
16362 static struct type *
16363 read_enumeration_type (struct die_info *die, struct dwarf2_cu *cu)
16364 {
16365 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16366 struct type *type;
16367 struct attribute *attr;
16368 const char *name;
16369
16370 /* If the definition of this type lives in .debug_types, read that type.
16371 Don't follow DW_AT_specification though, that will take us back up
16372 the chain and we want to go down. */
16373 attr = dwarf2_attr_no_follow (die, DW_AT_signature);
16374 if (attr != nullptr)
16375 {
16376 type = get_DW_AT_signature_type (die, attr, cu);
16377
16378 /* The type's CU may not be the same as CU.
16379 Ensure TYPE is recorded with CU in die_type_hash. */
16380 return set_die_type (die, type, cu);
16381 }
16382
16383 type = alloc_type (objfile);
16384
16385 TYPE_CODE (type) = TYPE_CODE_ENUM;
16386 name = dwarf2_full_name (NULL, die, cu);
16387 if (name != NULL)
16388 TYPE_NAME (type) = name;
16389
16390 attr = dwarf2_attr (die, DW_AT_type, cu);
16391 if (attr != NULL)
16392 {
16393 struct type *underlying_type = die_type (die, cu);
16394
16395 TYPE_TARGET_TYPE (type) = underlying_type;
16396 }
16397
16398 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16399 if (attr != nullptr)
16400 {
16401 TYPE_LENGTH (type) = DW_UNSND (attr);
16402 }
16403 else
16404 {
16405 TYPE_LENGTH (type) = 0;
16406 }
16407
16408 maybe_set_alignment (cu, die, type);
16409
16410 /* The enumeration DIE can be incomplete. In Ada, any type can be
16411 declared as private in the package spec, and then defined only
16412 inside the package body. Such types are known as Taft Amendment
16413 Types. When another package uses such a type, an incomplete DIE
16414 may be generated by the compiler. */
16415 if (die_is_declaration (die, cu))
16416 TYPE_STUB (type) = 1;
16417
16418 /* Finish the creation of this type by using the enum's children.
16419 We must call this even when the underlying type has been provided
16420 so that we can determine if we're looking at a "flag" enum. */
16421 update_enumeration_type_from_children (die, type, cu);
16422
16423 /* If this type has an underlying type that is not a stub, then we
16424 may use its attributes. We always use the "unsigned" attribute
16425 in this situation, because ordinarily we guess whether the type
16426 is unsigned -- but the guess can be wrong and the underlying type
16427 can tell us the reality. However, we defer to a local size
16428 attribute if one exists, because this lets the compiler override
16429 the underlying type if needed. */
16430 if (TYPE_TARGET_TYPE (type) != NULL && !TYPE_STUB (TYPE_TARGET_TYPE (type)))
16431 {
16432 TYPE_UNSIGNED (type) = TYPE_UNSIGNED (TYPE_TARGET_TYPE (type));
16433 if (TYPE_LENGTH (type) == 0)
16434 TYPE_LENGTH (type) = TYPE_LENGTH (TYPE_TARGET_TYPE (type));
16435 if (TYPE_RAW_ALIGN (type) == 0
16436 && TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)) != 0)
16437 set_type_align (type, TYPE_RAW_ALIGN (TYPE_TARGET_TYPE (type)));
16438 }
16439
16440 TYPE_DECLARED_CLASS (type) = dwarf2_flag_true_p (die, DW_AT_enum_class, cu);
16441
16442 return set_die_type (die, type, cu);
16443 }
16444
16445 /* Given a pointer to a die which begins an enumeration, process all
16446 the dies that define the members of the enumeration, and create the
16447 symbol for the enumeration type.
16448
16449 NOTE: We reverse the order of the element list. */
16450
16451 static void
16452 process_enumeration_scope (struct die_info *die, struct dwarf2_cu *cu)
16453 {
16454 struct type *this_type;
16455
16456 this_type = get_die_type (die, cu);
16457 if (this_type == NULL)
16458 this_type = read_enumeration_type (die, cu);
16459
16460 if (die->child != NULL)
16461 {
16462 struct die_info *child_die;
16463 struct symbol *sym;
16464 struct field *fields = NULL;
16465 int num_fields = 0;
16466 const char *name;
16467
16468 child_die = die->child;
16469 while (child_die && child_die->tag)
16470 {
16471 if (child_die->tag != DW_TAG_enumerator)
16472 {
16473 process_die (child_die, cu);
16474 }
16475 else
16476 {
16477 name = dwarf2_name (child_die, cu);
16478 if (name)
16479 {
16480 sym = new_symbol (child_die, this_type, cu);
16481
16482 if ((num_fields % DW_FIELD_ALLOC_CHUNK) == 0)
16483 {
16484 fields = (struct field *)
16485 xrealloc (fields,
16486 (num_fields + DW_FIELD_ALLOC_CHUNK)
16487 * sizeof (struct field));
16488 }
16489
16490 FIELD_NAME (fields[num_fields]) = sym->linkage_name ();
16491 FIELD_TYPE (fields[num_fields]) = NULL;
16492 SET_FIELD_ENUMVAL (fields[num_fields], SYMBOL_VALUE (sym));
16493 FIELD_BITSIZE (fields[num_fields]) = 0;
16494
16495 num_fields++;
16496 }
16497 }
16498
16499 child_die = sibling_die (child_die);
16500 }
16501
16502 if (num_fields)
16503 {
16504 TYPE_NFIELDS (this_type) = num_fields;
16505 TYPE_FIELDS (this_type) = (struct field *)
16506 TYPE_ALLOC (this_type, sizeof (struct field) * num_fields);
16507 memcpy (TYPE_FIELDS (this_type), fields,
16508 sizeof (struct field) * num_fields);
16509 xfree (fields);
16510 }
16511 }
16512
16513 /* If we are reading an enum from a .debug_types unit, and the enum
16514 is a declaration, and the enum is not the signatured type in the
16515 unit, then we do not want to add a symbol for it. Adding a
16516 symbol would in some cases obscure the true definition of the
16517 enum, giving users an incomplete type when the definition is
16518 actually available. Note that we do not want to do this for all
16519 enums which are just declarations, because C++0x allows forward
16520 enum declarations. */
16521 if (cu->per_cu->is_debug_types
16522 && die_is_declaration (die, cu))
16523 {
16524 struct signatured_type *sig_type;
16525
16526 sig_type = (struct signatured_type *) cu->per_cu;
16527 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
16528 if (sig_type->type_offset_in_section != die->sect_off)
16529 return;
16530 }
16531
16532 new_symbol (die, this_type, cu);
16533 }
16534
16535 /* Extract all information from a DW_TAG_array_type DIE and put it in
16536 the DIE's type field. For now, this only handles one dimensional
16537 arrays. */
16538
16539 static struct type *
16540 read_array_type (struct die_info *die, struct dwarf2_cu *cu)
16541 {
16542 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16543 struct die_info *child_die;
16544 struct type *type;
16545 struct type *element_type, *range_type, *index_type;
16546 struct attribute *attr;
16547 const char *name;
16548 struct dynamic_prop *byte_stride_prop = NULL;
16549 unsigned int bit_stride = 0;
16550
16551 element_type = die_type (die, cu);
16552
16553 /* The die_type call above may have already set the type for this DIE. */
16554 type = get_die_type (die, cu);
16555 if (type)
16556 return type;
16557
16558 attr = dwarf2_attr (die, DW_AT_byte_stride, cu);
16559 if (attr != NULL)
16560 {
16561 int stride_ok;
16562 struct type *prop_type
16563 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
16564
16565 byte_stride_prop
16566 = (struct dynamic_prop *) alloca (sizeof (struct dynamic_prop));
16567 stride_ok = attr_to_dynamic_prop (attr, die, cu, byte_stride_prop,
16568 prop_type);
16569 if (!stride_ok)
16570 {
16571 complaint (_("unable to read array DW_AT_byte_stride "
16572 " - DIE at %s [in module %s]"),
16573 sect_offset_str (die->sect_off),
16574 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
16575 /* Ignore this attribute. We will likely not be able to print
16576 arrays of this type correctly, but there is little we can do
16577 to help if we cannot read the attribute's value. */
16578 byte_stride_prop = NULL;
16579 }
16580 }
16581
16582 attr = dwarf2_attr (die, DW_AT_bit_stride, cu);
16583 if (attr != NULL)
16584 bit_stride = DW_UNSND (attr);
16585
16586 /* Irix 6.2 native cc creates array types without children for
16587 arrays with unspecified length. */
16588 if (die->child == NULL)
16589 {
16590 index_type = objfile_type (objfile)->builtin_int;
16591 range_type = create_static_range_type (NULL, index_type, 0, -1);
16592 type = create_array_type_with_stride (NULL, element_type, range_type,
16593 byte_stride_prop, bit_stride);
16594 return set_die_type (die, type, cu);
16595 }
16596
16597 std::vector<struct type *> range_types;
16598 child_die = die->child;
16599 while (child_die && child_die->tag)
16600 {
16601 if (child_die->tag == DW_TAG_subrange_type)
16602 {
16603 struct type *child_type = read_type_die (child_die, cu);
16604
16605 if (child_type != NULL)
16606 {
16607 /* The range type was succesfully read. Save it for the
16608 array type creation. */
16609 range_types.push_back (child_type);
16610 }
16611 }
16612 child_die = sibling_die (child_die);
16613 }
16614
16615 /* Dwarf2 dimensions are output from left to right, create the
16616 necessary array types in backwards order. */
16617
16618 type = element_type;
16619
16620 if (read_array_order (die, cu) == DW_ORD_col_major)
16621 {
16622 int i = 0;
16623
16624 while (i < range_types.size ())
16625 type = create_array_type_with_stride (NULL, type, range_types[i++],
16626 byte_stride_prop, bit_stride);
16627 }
16628 else
16629 {
16630 size_t ndim = range_types.size ();
16631 while (ndim-- > 0)
16632 type = create_array_type_with_stride (NULL, type, range_types[ndim],
16633 byte_stride_prop, bit_stride);
16634 }
16635
16636 /* Understand Dwarf2 support for vector types (like they occur on
16637 the PowerPC w/ AltiVec). Gcc just adds another attribute to the
16638 array type. This is not part of the Dwarf2/3 standard yet, but a
16639 custom vendor extension. The main difference between a regular
16640 array and the vector variant is that vectors are passed by value
16641 to functions. */
16642 attr = dwarf2_attr (die, DW_AT_GNU_vector, cu);
16643 if (attr != nullptr)
16644 make_vector_type (type);
16645
16646 /* The DIE may have DW_AT_byte_size set. For example an OpenCL
16647 implementation may choose to implement triple vectors using this
16648 attribute. */
16649 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16650 if (attr != nullptr)
16651 {
16652 if (DW_UNSND (attr) >= TYPE_LENGTH (type))
16653 TYPE_LENGTH (type) = DW_UNSND (attr);
16654 else
16655 complaint (_("DW_AT_byte_size for array type smaller "
16656 "than the total size of elements"));
16657 }
16658
16659 name = dwarf2_name (die, cu);
16660 if (name)
16661 TYPE_NAME (type) = name;
16662
16663 maybe_set_alignment (cu, die, type);
16664
16665 /* Install the type in the die. */
16666 set_die_type (die, type, cu);
16667
16668 /* set_die_type should be already done. */
16669 set_descriptive_type (type, die, cu);
16670
16671 return type;
16672 }
16673
16674 static enum dwarf_array_dim_ordering
16675 read_array_order (struct die_info *die, struct dwarf2_cu *cu)
16676 {
16677 struct attribute *attr;
16678
16679 attr = dwarf2_attr (die, DW_AT_ordering, cu);
16680
16681 if (attr != nullptr)
16682 return (enum dwarf_array_dim_ordering) DW_SND (attr);
16683
16684 /* GNU F77 is a special case, as at 08/2004 array type info is the
16685 opposite order to the dwarf2 specification, but data is still
16686 laid out as per normal fortran.
16687
16688 FIXME: dsl/2004-8-20: If G77 is ever fixed, this will also need
16689 version checking. */
16690
16691 if (cu->language == language_fortran
16692 && cu->producer && strstr (cu->producer, "GNU F77"))
16693 {
16694 return DW_ORD_row_major;
16695 }
16696
16697 switch (cu->language_defn->la_array_ordering)
16698 {
16699 case array_column_major:
16700 return DW_ORD_col_major;
16701 case array_row_major:
16702 default:
16703 return DW_ORD_row_major;
16704 };
16705 }
16706
16707 /* Extract all information from a DW_TAG_set_type DIE and put it in
16708 the DIE's type field. */
16709
16710 static struct type *
16711 read_set_type (struct die_info *die, struct dwarf2_cu *cu)
16712 {
16713 struct type *domain_type, *set_type;
16714 struct attribute *attr;
16715
16716 domain_type = die_type (die, cu);
16717
16718 /* The die_type call above may have already set the type for this DIE. */
16719 set_type = get_die_type (die, cu);
16720 if (set_type)
16721 return set_type;
16722
16723 set_type = create_set_type (NULL, domain_type);
16724
16725 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
16726 if (attr != nullptr)
16727 TYPE_LENGTH (set_type) = DW_UNSND (attr);
16728
16729 maybe_set_alignment (cu, die, set_type);
16730
16731 return set_die_type (die, set_type, cu);
16732 }
16733
16734 /* A helper for read_common_block that creates a locexpr baton.
16735 SYM is the symbol which we are marking as computed.
16736 COMMON_DIE is the DIE for the common block.
16737 COMMON_LOC is the location expression attribute for the common
16738 block itself.
16739 MEMBER_LOC is the location expression attribute for the particular
16740 member of the common block that we are processing.
16741 CU is the CU from which the above come. */
16742
16743 static void
16744 mark_common_block_symbol_computed (struct symbol *sym,
16745 struct die_info *common_die,
16746 struct attribute *common_loc,
16747 struct attribute *member_loc,
16748 struct dwarf2_cu *cu)
16749 {
16750 struct dwarf2_per_objfile *dwarf2_per_objfile
16751 = cu->per_cu->dwarf2_per_objfile;
16752 struct objfile *objfile = dwarf2_per_objfile->objfile;
16753 struct dwarf2_locexpr_baton *baton;
16754 gdb_byte *ptr;
16755 unsigned int cu_off;
16756 enum bfd_endian byte_order = gdbarch_byte_order (get_objfile_arch (objfile));
16757 LONGEST offset = 0;
16758
16759 gdb_assert (common_loc && member_loc);
16760 gdb_assert (attr_form_is_block (common_loc));
16761 gdb_assert (attr_form_is_block (member_loc)
16762 || attr_form_is_constant (member_loc));
16763
16764 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
16765 baton->per_cu = cu->per_cu;
16766 gdb_assert (baton->per_cu);
16767
16768 baton->size = 5 /* DW_OP_call4 */ + 1 /* DW_OP_plus */;
16769
16770 if (attr_form_is_constant (member_loc))
16771 {
16772 offset = dwarf2_get_attr_constant_value (member_loc, 0);
16773 baton->size += 1 /* DW_OP_addr */ + cu->header.addr_size;
16774 }
16775 else
16776 baton->size += DW_BLOCK (member_loc)->size;
16777
16778 ptr = (gdb_byte *) obstack_alloc (&objfile->objfile_obstack, baton->size);
16779 baton->data = ptr;
16780
16781 *ptr++ = DW_OP_call4;
16782 cu_off = common_die->sect_off - cu->per_cu->sect_off;
16783 store_unsigned_integer (ptr, 4, byte_order, cu_off);
16784 ptr += 4;
16785
16786 if (attr_form_is_constant (member_loc))
16787 {
16788 *ptr++ = DW_OP_addr;
16789 store_unsigned_integer (ptr, cu->header.addr_size, byte_order, offset);
16790 ptr += cu->header.addr_size;
16791 }
16792 else
16793 {
16794 /* We have to copy the data here, because DW_OP_call4 will only
16795 use a DW_AT_location attribute. */
16796 memcpy (ptr, DW_BLOCK (member_loc)->data, DW_BLOCK (member_loc)->size);
16797 ptr += DW_BLOCK (member_loc)->size;
16798 }
16799
16800 *ptr++ = DW_OP_plus;
16801 gdb_assert (ptr - baton->data == baton->size);
16802
16803 SYMBOL_LOCATION_BATON (sym) = baton;
16804 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
16805 }
16806
16807 /* Create appropriate locally-scoped variables for all the
16808 DW_TAG_common_block entries. Also create a struct common_block
16809 listing all such variables for `info common'. COMMON_BLOCK_DOMAIN
16810 is used to separate the common blocks name namespace from regular
16811 variable names. */
16812
16813 static void
16814 read_common_block (struct die_info *die, struct dwarf2_cu *cu)
16815 {
16816 struct attribute *attr;
16817
16818 attr = dwarf2_attr (die, DW_AT_location, cu);
16819 if (attr != nullptr)
16820 {
16821 /* Support the .debug_loc offsets. */
16822 if (attr_form_is_block (attr))
16823 {
16824 /* Ok. */
16825 }
16826 else if (attr_form_is_section_offset (attr))
16827 {
16828 dwarf2_complex_location_expr_complaint ();
16829 attr = NULL;
16830 }
16831 else
16832 {
16833 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
16834 "common block member");
16835 attr = NULL;
16836 }
16837 }
16838
16839 if (die->child != NULL)
16840 {
16841 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16842 struct die_info *child_die;
16843 size_t n_entries = 0, size;
16844 struct common_block *common_block;
16845 struct symbol *sym;
16846
16847 for (child_die = die->child;
16848 child_die && child_die->tag;
16849 child_die = sibling_die (child_die))
16850 ++n_entries;
16851
16852 size = (sizeof (struct common_block)
16853 + (n_entries - 1) * sizeof (struct symbol *));
16854 common_block
16855 = (struct common_block *) obstack_alloc (&objfile->objfile_obstack,
16856 size);
16857 memset (common_block->contents, 0, n_entries * sizeof (struct symbol *));
16858 common_block->n_entries = 0;
16859
16860 for (child_die = die->child;
16861 child_die && child_die->tag;
16862 child_die = sibling_die (child_die))
16863 {
16864 /* Create the symbol in the DW_TAG_common_block block in the current
16865 symbol scope. */
16866 sym = new_symbol (child_die, NULL, cu);
16867 if (sym != NULL)
16868 {
16869 struct attribute *member_loc;
16870
16871 common_block->contents[common_block->n_entries++] = sym;
16872
16873 member_loc = dwarf2_attr (child_die, DW_AT_data_member_location,
16874 cu);
16875 if (member_loc)
16876 {
16877 /* GDB has handled this for a long time, but it is
16878 not specified by DWARF. It seems to have been
16879 emitted by gfortran at least as recently as:
16880 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=23057. */
16881 complaint (_("Variable in common block has "
16882 "DW_AT_data_member_location "
16883 "- DIE at %s [in module %s]"),
16884 sect_offset_str (child_die->sect_off),
16885 objfile_name (objfile));
16886
16887 if (attr_form_is_section_offset (member_loc))
16888 dwarf2_complex_location_expr_complaint ();
16889 else if (attr_form_is_constant (member_loc)
16890 || attr_form_is_block (member_loc))
16891 {
16892 if (attr != nullptr)
16893 mark_common_block_symbol_computed (sym, die, attr,
16894 member_loc, cu);
16895 }
16896 else
16897 dwarf2_complex_location_expr_complaint ();
16898 }
16899 }
16900 }
16901
16902 sym = new_symbol (die, objfile_type (objfile)->builtin_void, cu);
16903 SYMBOL_VALUE_COMMON_BLOCK (sym) = common_block;
16904 }
16905 }
16906
16907 /* Create a type for a C++ namespace. */
16908
16909 static struct type *
16910 read_namespace_type (struct die_info *die, struct dwarf2_cu *cu)
16911 {
16912 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16913 const char *previous_prefix, *name;
16914 int is_anonymous;
16915 struct type *type;
16916
16917 /* For extensions, reuse the type of the original namespace. */
16918 if (dwarf2_attr (die, DW_AT_extension, cu) != NULL)
16919 {
16920 struct die_info *ext_die;
16921 struct dwarf2_cu *ext_cu = cu;
16922
16923 ext_die = dwarf2_extension (die, &ext_cu);
16924 type = read_type_die (ext_die, ext_cu);
16925
16926 /* EXT_CU may not be the same as CU.
16927 Ensure TYPE is recorded with CU in die_type_hash. */
16928 return set_die_type (die, type, cu);
16929 }
16930
16931 name = namespace_name (die, &is_anonymous, cu);
16932
16933 /* Now build the name of the current namespace. */
16934
16935 previous_prefix = determine_prefix (die, cu);
16936 if (previous_prefix[0] != '\0')
16937 name = typename_concat (&objfile->objfile_obstack,
16938 previous_prefix, name, 0, cu);
16939
16940 /* Create the type. */
16941 type = init_type (objfile, TYPE_CODE_NAMESPACE, 0, name);
16942
16943 return set_die_type (die, type, cu);
16944 }
16945
16946 /* Read a namespace scope. */
16947
16948 static void
16949 read_namespace (struct die_info *die, struct dwarf2_cu *cu)
16950 {
16951 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16952 int is_anonymous;
16953
16954 /* Add a symbol associated to this if we haven't seen the namespace
16955 before. Also, add a using directive if it's an anonymous
16956 namespace. */
16957
16958 if (dwarf2_attr (die, DW_AT_extension, cu) == NULL)
16959 {
16960 struct type *type;
16961
16962 type = read_type_die (die, cu);
16963 new_symbol (die, type, cu);
16964
16965 namespace_name (die, &is_anonymous, cu);
16966 if (is_anonymous)
16967 {
16968 const char *previous_prefix = determine_prefix (die, cu);
16969
16970 std::vector<const char *> excludes;
16971 add_using_directive (using_directives (cu),
16972 previous_prefix, TYPE_NAME (type), NULL,
16973 NULL, excludes, 0, &objfile->objfile_obstack);
16974 }
16975 }
16976
16977 if (die->child != NULL)
16978 {
16979 struct die_info *child_die = die->child;
16980
16981 while (child_die && child_die->tag)
16982 {
16983 process_die (child_die, cu);
16984 child_die = sibling_die (child_die);
16985 }
16986 }
16987 }
16988
16989 /* Read a Fortran module as type. This DIE can be only a declaration used for
16990 imported module. Still we need that type as local Fortran "use ... only"
16991 declaration imports depend on the created type in determine_prefix. */
16992
16993 static struct type *
16994 read_module_type (struct die_info *die, struct dwarf2_cu *cu)
16995 {
16996 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
16997 const char *module_name;
16998 struct type *type;
16999
17000 module_name = dwarf2_name (die, cu);
17001 type = init_type (objfile, TYPE_CODE_MODULE, 0, module_name);
17002
17003 return set_die_type (die, type, cu);
17004 }
17005
17006 /* Read a Fortran module. */
17007
17008 static void
17009 read_module (struct die_info *die, struct dwarf2_cu *cu)
17010 {
17011 struct die_info *child_die = die->child;
17012 struct type *type;
17013
17014 type = read_type_die (die, cu);
17015 new_symbol (die, type, cu);
17016
17017 while (child_die && child_die->tag)
17018 {
17019 process_die (child_die, cu);
17020 child_die = sibling_die (child_die);
17021 }
17022 }
17023
17024 /* Return the name of the namespace represented by DIE. Set
17025 *IS_ANONYMOUS to tell whether or not the namespace is an anonymous
17026 namespace. */
17027
17028 static const char *
17029 namespace_name (struct die_info *die, int *is_anonymous, struct dwarf2_cu *cu)
17030 {
17031 struct die_info *current_die;
17032 const char *name = NULL;
17033
17034 /* Loop through the extensions until we find a name. */
17035
17036 for (current_die = die;
17037 current_die != NULL;
17038 current_die = dwarf2_extension (die, &cu))
17039 {
17040 /* We don't use dwarf2_name here so that we can detect the absence
17041 of a name -> anonymous namespace. */
17042 name = dwarf2_string_attr (die, DW_AT_name, cu);
17043
17044 if (name != NULL)
17045 break;
17046 }
17047
17048 /* Is it an anonymous namespace? */
17049
17050 *is_anonymous = (name == NULL);
17051 if (*is_anonymous)
17052 name = CP_ANONYMOUS_NAMESPACE_STR;
17053
17054 return name;
17055 }
17056
17057 /* Extract all information from a DW_TAG_pointer_type DIE and add to
17058 the user defined type vector. */
17059
17060 static struct type *
17061 read_tag_pointer_type (struct die_info *die, struct dwarf2_cu *cu)
17062 {
17063 struct gdbarch *gdbarch
17064 = get_objfile_arch (cu->per_cu->dwarf2_per_objfile->objfile);
17065 struct comp_unit_head *cu_header = &cu->header;
17066 struct type *type;
17067 struct attribute *attr_byte_size;
17068 struct attribute *attr_address_class;
17069 int byte_size, addr_class;
17070 struct type *target_type;
17071
17072 target_type = die_type (die, cu);
17073
17074 /* The die_type call above may have already set the type for this DIE. */
17075 type = get_die_type (die, cu);
17076 if (type)
17077 return type;
17078
17079 type = lookup_pointer_type (target_type);
17080
17081 attr_byte_size = dwarf2_attr (die, DW_AT_byte_size, cu);
17082 if (attr_byte_size)
17083 byte_size = DW_UNSND (attr_byte_size);
17084 else
17085 byte_size = cu_header->addr_size;
17086
17087 attr_address_class = dwarf2_attr (die, DW_AT_address_class, cu);
17088 if (attr_address_class)
17089 addr_class = DW_UNSND (attr_address_class);
17090 else
17091 addr_class = DW_ADDR_none;
17092
17093 ULONGEST alignment = get_alignment (cu, die);
17094
17095 /* If the pointer size, alignment, or address class is different
17096 than the default, create a type variant marked as such and set
17097 the length accordingly. */
17098 if (TYPE_LENGTH (type) != byte_size
17099 || (alignment != 0 && TYPE_RAW_ALIGN (type) != 0
17100 && alignment != TYPE_RAW_ALIGN (type))
17101 || addr_class != DW_ADDR_none)
17102 {
17103 if (gdbarch_address_class_type_flags_p (gdbarch))
17104 {
17105 int type_flags;
17106
17107 type_flags = gdbarch_address_class_type_flags
17108 (gdbarch, byte_size, addr_class);
17109 gdb_assert ((type_flags & ~TYPE_INSTANCE_FLAG_ADDRESS_CLASS_ALL)
17110 == 0);
17111 type = make_type_with_address_space (type, type_flags);
17112 }
17113 else if (TYPE_LENGTH (type) != byte_size)
17114 {
17115 complaint (_("invalid pointer size %d"), byte_size);
17116 }
17117 else if (TYPE_RAW_ALIGN (type) != alignment)
17118 {
17119 complaint (_("Invalid DW_AT_alignment"
17120 " - DIE at %s [in module %s]"),
17121 sect_offset_str (die->sect_off),
17122 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
17123 }
17124 else
17125 {
17126 /* Should we also complain about unhandled address classes? */
17127 }
17128 }
17129
17130 TYPE_LENGTH (type) = byte_size;
17131 set_type_align (type, alignment);
17132 return set_die_type (die, type, cu);
17133 }
17134
17135 /* Extract all information from a DW_TAG_ptr_to_member_type DIE and add to
17136 the user defined type vector. */
17137
17138 static struct type *
17139 read_tag_ptr_to_member_type (struct die_info *die, struct dwarf2_cu *cu)
17140 {
17141 struct type *type;
17142 struct type *to_type;
17143 struct type *domain;
17144
17145 to_type = die_type (die, cu);
17146 domain = die_containing_type (die, cu);
17147
17148 /* The calls above may have already set the type for this DIE. */
17149 type = get_die_type (die, cu);
17150 if (type)
17151 return type;
17152
17153 if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_METHOD)
17154 type = lookup_methodptr_type (to_type);
17155 else if (TYPE_CODE (check_typedef (to_type)) == TYPE_CODE_FUNC)
17156 {
17157 struct type *new_type
17158 = alloc_type (cu->per_cu->dwarf2_per_objfile->objfile);
17159
17160 smash_to_method_type (new_type, domain, TYPE_TARGET_TYPE (to_type),
17161 TYPE_FIELDS (to_type), TYPE_NFIELDS (to_type),
17162 TYPE_VARARGS (to_type));
17163 type = lookup_methodptr_type (new_type);
17164 }
17165 else
17166 type = lookup_memberptr_type (to_type, domain);
17167
17168 return set_die_type (die, type, cu);
17169 }
17170
17171 /* Extract all information from a DW_TAG_{rvalue_,}reference_type DIE and add to
17172 the user defined type vector. */
17173
17174 static struct type *
17175 read_tag_reference_type (struct die_info *die, struct dwarf2_cu *cu,
17176 enum type_code refcode)
17177 {
17178 struct comp_unit_head *cu_header = &cu->header;
17179 struct type *type, *target_type;
17180 struct attribute *attr;
17181
17182 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
17183
17184 target_type = die_type (die, cu);
17185
17186 /* The die_type call above may have already set the type for this DIE. */
17187 type = get_die_type (die, cu);
17188 if (type)
17189 return type;
17190
17191 type = lookup_reference_type (target_type, refcode);
17192 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17193 if (attr != nullptr)
17194 {
17195 TYPE_LENGTH (type) = DW_UNSND (attr);
17196 }
17197 else
17198 {
17199 TYPE_LENGTH (type) = cu_header->addr_size;
17200 }
17201 maybe_set_alignment (cu, die, type);
17202 return set_die_type (die, type, cu);
17203 }
17204
17205 /* Add the given cv-qualifiers to the element type of the array. GCC
17206 outputs DWARF type qualifiers that apply to an array, not the
17207 element type. But GDB relies on the array element type to carry
17208 the cv-qualifiers. This mimics section 6.7.3 of the C99
17209 specification. */
17210
17211 static struct type *
17212 add_array_cv_type (struct die_info *die, struct dwarf2_cu *cu,
17213 struct type *base_type, int cnst, int voltl)
17214 {
17215 struct type *el_type, *inner_array;
17216
17217 base_type = copy_type (base_type);
17218 inner_array = base_type;
17219
17220 while (TYPE_CODE (TYPE_TARGET_TYPE (inner_array)) == TYPE_CODE_ARRAY)
17221 {
17222 TYPE_TARGET_TYPE (inner_array) =
17223 copy_type (TYPE_TARGET_TYPE (inner_array));
17224 inner_array = TYPE_TARGET_TYPE (inner_array);
17225 }
17226
17227 el_type = TYPE_TARGET_TYPE (inner_array);
17228 cnst |= TYPE_CONST (el_type);
17229 voltl |= TYPE_VOLATILE (el_type);
17230 TYPE_TARGET_TYPE (inner_array) = make_cv_type (cnst, voltl, el_type, NULL);
17231
17232 return set_die_type (die, base_type, cu);
17233 }
17234
17235 static struct type *
17236 read_tag_const_type (struct die_info *die, struct dwarf2_cu *cu)
17237 {
17238 struct type *base_type, *cv_type;
17239
17240 base_type = die_type (die, cu);
17241
17242 /* The die_type call above may have already set the type for this DIE. */
17243 cv_type = get_die_type (die, cu);
17244 if (cv_type)
17245 return cv_type;
17246
17247 /* In case the const qualifier is applied to an array type, the element type
17248 is so qualified, not the array type (section 6.7.3 of C99). */
17249 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17250 return add_array_cv_type (die, cu, base_type, 1, 0);
17251
17252 cv_type = make_cv_type (1, TYPE_VOLATILE (base_type), base_type, 0);
17253 return set_die_type (die, cv_type, cu);
17254 }
17255
17256 static struct type *
17257 read_tag_volatile_type (struct die_info *die, struct dwarf2_cu *cu)
17258 {
17259 struct type *base_type, *cv_type;
17260
17261 base_type = die_type (die, cu);
17262
17263 /* The die_type call above may have already set the type for this DIE. */
17264 cv_type = get_die_type (die, cu);
17265 if (cv_type)
17266 return cv_type;
17267
17268 /* In case the volatile qualifier is applied to an array type, the
17269 element type is so qualified, not the array type (section 6.7.3
17270 of C99). */
17271 if (TYPE_CODE (base_type) == TYPE_CODE_ARRAY)
17272 return add_array_cv_type (die, cu, base_type, 0, 1);
17273
17274 cv_type = make_cv_type (TYPE_CONST (base_type), 1, base_type, 0);
17275 return set_die_type (die, cv_type, cu);
17276 }
17277
17278 /* Handle DW_TAG_restrict_type. */
17279
17280 static struct type *
17281 read_tag_restrict_type (struct die_info *die, struct dwarf2_cu *cu)
17282 {
17283 struct type *base_type, *cv_type;
17284
17285 base_type = die_type (die, cu);
17286
17287 /* The die_type call above may have already set the type for this DIE. */
17288 cv_type = get_die_type (die, cu);
17289 if (cv_type)
17290 return cv_type;
17291
17292 cv_type = make_restrict_type (base_type);
17293 return set_die_type (die, cv_type, cu);
17294 }
17295
17296 /* Handle DW_TAG_atomic_type. */
17297
17298 static struct type *
17299 read_tag_atomic_type (struct die_info *die, struct dwarf2_cu *cu)
17300 {
17301 struct type *base_type, *cv_type;
17302
17303 base_type = die_type (die, cu);
17304
17305 /* The die_type call above may have already set the type for this DIE. */
17306 cv_type = get_die_type (die, cu);
17307 if (cv_type)
17308 return cv_type;
17309
17310 cv_type = make_atomic_type (base_type);
17311 return set_die_type (die, cv_type, cu);
17312 }
17313
17314 /* Extract all information from a DW_TAG_string_type DIE and add to
17315 the user defined type vector. It isn't really a user defined type,
17316 but it behaves like one, with other DIE's using an AT_user_def_type
17317 attribute to reference it. */
17318
17319 static struct type *
17320 read_tag_string_type (struct die_info *die, struct dwarf2_cu *cu)
17321 {
17322 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17323 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17324 struct type *type, *range_type, *index_type, *char_type;
17325 struct attribute *attr;
17326 struct dynamic_prop prop;
17327 bool length_is_constant = true;
17328 LONGEST length;
17329
17330 /* There are a couple of places where bit sizes might be made use of
17331 when parsing a DW_TAG_string_type, however, no producer that we know
17332 of make use of these. Handling bit sizes that are a multiple of the
17333 byte size is easy enough, but what about other bit sizes? Lets deal
17334 with that problem when we have to. Warn about these attributes being
17335 unsupported, then parse the type and ignore them like we always
17336 have. */
17337 if (dwarf2_attr (die, DW_AT_bit_size, cu) != nullptr
17338 || dwarf2_attr (die, DW_AT_string_length_bit_size, cu) != nullptr)
17339 {
17340 static bool warning_printed = false;
17341 if (!warning_printed)
17342 {
17343 warning (_("DW_AT_bit_size and DW_AT_string_length_bit_size not "
17344 "currently supported on DW_TAG_string_type."));
17345 warning_printed = true;
17346 }
17347 }
17348
17349 attr = dwarf2_attr (die, DW_AT_string_length, cu);
17350 if (attr != nullptr && !attr_form_is_constant (attr))
17351 {
17352 /* The string length describes the location at which the length of
17353 the string can be found. The size of the length field can be
17354 specified with one of the attributes below. */
17355 struct type *prop_type;
17356 struct attribute *len
17357 = dwarf2_attr (die, DW_AT_string_length_byte_size, cu);
17358 if (len == nullptr)
17359 len = dwarf2_attr (die, DW_AT_byte_size, cu);
17360 if (len != nullptr && attr_form_is_constant (len))
17361 {
17362 /* Pass 0 as the default as we know this attribute is constant
17363 and the default value will not be returned. */
17364 LONGEST sz = dwarf2_get_attr_constant_value (len, 0);
17365 prop_type = dwarf2_per_cu_int_type (cu->per_cu, sz, true);
17366 }
17367 else
17368 {
17369 /* If the size is not specified then we assume it is the size of
17370 an address on this target. */
17371 prop_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, true);
17372 }
17373
17374 /* Convert the attribute into a dynamic property. */
17375 if (!attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
17376 length = 1;
17377 else
17378 length_is_constant = false;
17379 }
17380 else if (attr != nullptr)
17381 {
17382 /* This DW_AT_string_length just contains the length with no
17383 indirection. There's no need to create a dynamic property in this
17384 case. Pass 0 for the default value as we know it will not be
17385 returned in this case. */
17386 length = dwarf2_get_attr_constant_value (attr, 0);
17387 }
17388 else if ((attr = dwarf2_attr (die, DW_AT_byte_size, cu)) != nullptr)
17389 {
17390 /* We don't currently support non-constant byte sizes for strings. */
17391 length = dwarf2_get_attr_constant_value (attr, 1);
17392 }
17393 else
17394 {
17395 /* Use 1 as a fallback length if we have nothing else. */
17396 length = 1;
17397 }
17398
17399 index_type = objfile_type (objfile)->builtin_int;
17400 if (length_is_constant)
17401 range_type = create_static_range_type (NULL, index_type, 1, length);
17402 else
17403 {
17404 struct dynamic_prop low_bound;
17405
17406 low_bound.kind = PROP_CONST;
17407 low_bound.data.const_val = 1;
17408 range_type = create_range_type (NULL, index_type, &low_bound, &prop, 0);
17409 }
17410 char_type = language_string_char_type (cu->language_defn, gdbarch);
17411 type = create_string_type (NULL, char_type, range_type);
17412
17413 return set_die_type (die, type, cu);
17414 }
17415
17416 /* Assuming that DIE corresponds to a function, returns nonzero
17417 if the function is prototyped. */
17418
17419 static int
17420 prototyped_function_p (struct die_info *die, struct dwarf2_cu *cu)
17421 {
17422 struct attribute *attr;
17423
17424 attr = dwarf2_attr (die, DW_AT_prototyped, cu);
17425 if (attr && (DW_UNSND (attr) != 0))
17426 return 1;
17427
17428 /* The DWARF standard implies that the DW_AT_prototyped attribute
17429 is only meaningful for C, but the concept also extends to other
17430 languages that allow unprototyped functions (Eg: Objective C).
17431 For all other languages, assume that functions are always
17432 prototyped. */
17433 if (cu->language != language_c
17434 && cu->language != language_objc
17435 && cu->language != language_opencl)
17436 return 1;
17437
17438 /* RealView does not emit DW_AT_prototyped. We can not distinguish
17439 prototyped and unprototyped functions; default to prototyped,
17440 since that is more common in modern code (and RealView warns
17441 about unprototyped functions). */
17442 if (producer_is_realview (cu->producer))
17443 return 1;
17444
17445 return 0;
17446 }
17447
17448 /* Handle DIES due to C code like:
17449
17450 struct foo
17451 {
17452 int (*funcp)(int a, long l);
17453 int b;
17454 };
17455
17456 ('funcp' generates a DW_TAG_subroutine_type DIE). */
17457
17458 static struct type *
17459 read_subroutine_type (struct die_info *die, struct dwarf2_cu *cu)
17460 {
17461 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17462 struct type *type; /* Type that this function returns. */
17463 struct type *ftype; /* Function that returns above type. */
17464 struct attribute *attr;
17465
17466 type = die_type (die, cu);
17467
17468 /* The die_type call above may have already set the type for this DIE. */
17469 ftype = get_die_type (die, cu);
17470 if (ftype)
17471 return ftype;
17472
17473 ftype = lookup_function_type (type);
17474
17475 if (prototyped_function_p (die, cu))
17476 TYPE_PROTOTYPED (ftype) = 1;
17477
17478 /* Store the calling convention in the type if it's available in
17479 the subroutine die. Otherwise set the calling convention to
17480 the default value DW_CC_normal. */
17481 attr = dwarf2_attr (die, DW_AT_calling_convention, cu);
17482 if (attr != nullptr)
17483 TYPE_CALLING_CONVENTION (ftype) = DW_UNSND (attr);
17484 else if (cu->producer && strstr (cu->producer, "IBM XL C for OpenCL"))
17485 TYPE_CALLING_CONVENTION (ftype) = DW_CC_GDB_IBM_OpenCL;
17486 else
17487 TYPE_CALLING_CONVENTION (ftype) = DW_CC_normal;
17488
17489 /* Record whether the function returns normally to its caller or not
17490 if the DWARF producer set that information. */
17491 attr = dwarf2_attr (die, DW_AT_noreturn, cu);
17492 if (attr && (DW_UNSND (attr) != 0))
17493 TYPE_NO_RETURN (ftype) = 1;
17494
17495 /* We need to add the subroutine type to the die immediately so
17496 we don't infinitely recurse when dealing with parameters
17497 declared as the same subroutine type. */
17498 set_die_type (die, ftype, cu);
17499
17500 if (die->child != NULL)
17501 {
17502 struct type *void_type = objfile_type (objfile)->builtin_void;
17503 struct die_info *child_die;
17504 int nparams, iparams;
17505
17506 /* Count the number of parameters.
17507 FIXME: GDB currently ignores vararg functions, but knows about
17508 vararg member functions. */
17509 nparams = 0;
17510 child_die = die->child;
17511 while (child_die && child_die->tag)
17512 {
17513 if (child_die->tag == DW_TAG_formal_parameter)
17514 nparams++;
17515 else if (child_die->tag == DW_TAG_unspecified_parameters)
17516 TYPE_VARARGS (ftype) = 1;
17517 child_die = sibling_die (child_die);
17518 }
17519
17520 /* Allocate storage for parameters and fill them in. */
17521 TYPE_NFIELDS (ftype) = nparams;
17522 TYPE_FIELDS (ftype) = (struct field *)
17523 TYPE_ZALLOC (ftype, nparams * sizeof (struct field));
17524
17525 /* TYPE_FIELD_TYPE must never be NULL. Pre-fill the array to ensure it
17526 even if we error out during the parameters reading below. */
17527 for (iparams = 0; iparams < nparams; iparams++)
17528 TYPE_FIELD_TYPE (ftype, iparams) = void_type;
17529
17530 iparams = 0;
17531 child_die = die->child;
17532 while (child_die && child_die->tag)
17533 {
17534 if (child_die->tag == DW_TAG_formal_parameter)
17535 {
17536 struct type *arg_type;
17537
17538 /* DWARF version 2 has no clean way to discern C++
17539 static and non-static member functions. G++ helps
17540 GDB by marking the first parameter for non-static
17541 member functions (which is the this pointer) as
17542 artificial. We pass this information to
17543 dwarf2_add_member_fn via TYPE_FIELD_ARTIFICIAL.
17544
17545 DWARF version 3 added DW_AT_object_pointer, which GCC
17546 4.5 does not yet generate. */
17547 attr = dwarf2_attr (child_die, DW_AT_artificial, cu);
17548 if (attr != nullptr)
17549 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = DW_UNSND (attr);
17550 else
17551 TYPE_FIELD_ARTIFICIAL (ftype, iparams) = 0;
17552 arg_type = die_type (child_die, cu);
17553
17554 /* RealView does not mark THIS as const, which the testsuite
17555 expects. GCC marks THIS as const in method definitions,
17556 but not in the class specifications (GCC PR 43053). */
17557 if (cu->language == language_cplus && !TYPE_CONST (arg_type)
17558 && TYPE_FIELD_ARTIFICIAL (ftype, iparams))
17559 {
17560 int is_this = 0;
17561 struct dwarf2_cu *arg_cu = cu;
17562 const char *name = dwarf2_name (child_die, cu);
17563
17564 attr = dwarf2_attr (die, DW_AT_object_pointer, cu);
17565 if (attr != nullptr)
17566 {
17567 /* If the compiler emits this, use it. */
17568 if (follow_die_ref (die, attr, &arg_cu) == child_die)
17569 is_this = 1;
17570 }
17571 else if (name && strcmp (name, "this") == 0)
17572 /* Function definitions will have the argument names. */
17573 is_this = 1;
17574 else if (name == NULL && iparams == 0)
17575 /* Declarations may not have the names, so like
17576 elsewhere in GDB, assume an artificial first
17577 argument is "this". */
17578 is_this = 1;
17579
17580 if (is_this)
17581 arg_type = make_cv_type (1, TYPE_VOLATILE (arg_type),
17582 arg_type, 0);
17583 }
17584
17585 TYPE_FIELD_TYPE (ftype, iparams) = arg_type;
17586 iparams++;
17587 }
17588 child_die = sibling_die (child_die);
17589 }
17590 }
17591
17592 return ftype;
17593 }
17594
17595 static struct type *
17596 read_typedef (struct die_info *die, struct dwarf2_cu *cu)
17597 {
17598 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17599 const char *name = NULL;
17600 struct type *this_type, *target_type;
17601
17602 name = dwarf2_full_name (NULL, die, cu);
17603 this_type = init_type (objfile, TYPE_CODE_TYPEDEF, 0, name);
17604 TYPE_TARGET_STUB (this_type) = 1;
17605 set_die_type (die, this_type, cu);
17606 target_type = die_type (die, cu);
17607 if (target_type != this_type)
17608 TYPE_TARGET_TYPE (this_type) = target_type;
17609 else
17610 {
17611 /* Self-referential typedefs are, it seems, not allowed by the DWARF
17612 spec and cause infinite loops in GDB. */
17613 complaint (_("Self-referential DW_TAG_typedef "
17614 "- DIE at %s [in module %s]"),
17615 sect_offset_str (die->sect_off), objfile_name (objfile));
17616 TYPE_TARGET_TYPE (this_type) = NULL;
17617 }
17618 return this_type;
17619 }
17620
17621 /* Allocate a floating-point type of size BITS and name NAME. Pass NAME_HINT
17622 (which may be different from NAME) to the architecture back-end to allow
17623 it to guess the correct format if necessary. */
17624
17625 static struct type *
17626 dwarf2_init_float_type (struct objfile *objfile, int bits, const char *name,
17627 const char *name_hint, enum bfd_endian byte_order)
17628 {
17629 struct gdbarch *gdbarch = get_objfile_arch (objfile);
17630 const struct floatformat **format;
17631 struct type *type;
17632
17633 format = gdbarch_floatformat_for_type (gdbarch, name_hint, bits);
17634 if (format)
17635 type = init_float_type (objfile, bits, name, format, byte_order);
17636 else
17637 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17638
17639 return type;
17640 }
17641
17642 /* Allocate an integer type of size BITS and name NAME. */
17643
17644 static struct type *
17645 dwarf2_init_integer_type (struct dwarf2_cu *cu, struct objfile *objfile,
17646 int bits, int unsigned_p, const char *name)
17647 {
17648 struct type *type;
17649
17650 /* Versions of Intel's C Compiler generate an integer type called "void"
17651 instead of using DW_TAG_unspecified_type. This has been seen on
17652 at least versions 14, 17, and 18. */
17653 if (bits == 0 && producer_is_icc (cu) && name != nullptr
17654 && strcmp (name, "void") == 0)
17655 type = objfile_type (objfile)->builtin_void;
17656 else
17657 type = init_integer_type (objfile, bits, unsigned_p, name);
17658
17659 return type;
17660 }
17661
17662 /* Initialise and return a floating point type of size BITS suitable for
17663 use as a component of a complex number. The NAME_HINT is passed through
17664 when initialising the floating point type and is the name of the complex
17665 type.
17666
17667 As DWARF doesn't currently provide an explicit name for the components
17668 of a complex number, but it can be helpful to have these components
17669 named, we try to select a suitable name based on the size of the
17670 component. */
17671 static struct type *
17672 dwarf2_init_complex_target_type (struct dwarf2_cu *cu,
17673 struct objfile *objfile,
17674 int bits, const char *name_hint,
17675 enum bfd_endian byte_order)
17676 {
17677 gdbarch *gdbarch = get_objfile_arch (objfile);
17678 struct type *tt = nullptr;
17679
17680 /* Try to find a suitable floating point builtin type of size BITS.
17681 We're going to use the name of this type as the name for the complex
17682 target type that we are about to create. */
17683 switch (cu->language)
17684 {
17685 case language_fortran:
17686 switch (bits)
17687 {
17688 case 32:
17689 tt = builtin_f_type (gdbarch)->builtin_real;
17690 break;
17691 case 64:
17692 tt = builtin_f_type (gdbarch)->builtin_real_s8;
17693 break;
17694 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17695 case 128:
17696 tt = builtin_f_type (gdbarch)->builtin_real_s16;
17697 break;
17698 }
17699 break;
17700 default:
17701 switch (bits)
17702 {
17703 case 32:
17704 tt = builtin_type (gdbarch)->builtin_float;
17705 break;
17706 case 64:
17707 tt = builtin_type (gdbarch)->builtin_double;
17708 break;
17709 case 96: /* The x86-32 ABI specifies 96-bit long double. */
17710 case 128:
17711 tt = builtin_type (gdbarch)->builtin_long_double;
17712 break;
17713 }
17714 break;
17715 }
17716
17717 /* If the type we found doesn't match the size we were looking for, then
17718 pretend we didn't find a type at all, the complex target type we
17719 create will then be nameless. */
17720 if (tt != nullptr && TYPE_LENGTH (tt) * TARGET_CHAR_BIT != bits)
17721 tt = nullptr;
17722
17723 const char *name = (tt == nullptr) ? nullptr : TYPE_NAME (tt);
17724 return dwarf2_init_float_type (objfile, bits, name, name_hint, byte_order);
17725 }
17726
17727 /* Find a representation of a given base type and install
17728 it in the TYPE field of the die. */
17729
17730 static struct type *
17731 read_base_type (struct die_info *die, struct dwarf2_cu *cu)
17732 {
17733 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
17734 struct type *type;
17735 struct attribute *attr;
17736 int encoding = 0, bits = 0;
17737 const char *name;
17738 gdbarch *arch;
17739
17740 attr = dwarf2_attr (die, DW_AT_encoding, cu);
17741 if (attr != nullptr)
17742 encoding = DW_UNSND (attr);
17743 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
17744 if (attr != nullptr)
17745 bits = DW_UNSND (attr) * TARGET_CHAR_BIT;
17746 name = dwarf2_name (die, cu);
17747 if (!name)
17748 complaint (_("DW_AT_name missing from DW_TAG_base_type"));
17749
17750 arch = get_objfile_arch (objfile);
17751 enum bfd_endian byte_order = gdbarch_byte_order (arch);
17752
17753 attr = dwarf2_attr (die, DW_AT_endianity, cu);
17754 if (attr)
17755 {
17756 int endianity = DW_UNSND (attr);
17757
17758 switch (endianity)
17759 {
17760 case DW_END_big:
17761 byte_order = BFD_ENDIAN_BIG;
17762 break;
17763 case DW_END_little:
17764 byte_order = BFD_ENDIAN_LITTLE;
17765 break;
17766 default:
17767 complaint (_("DW_AT_endianity has unrecognized value %d"), endianity);
17768 break;
17769 }
17770 }
17771
17772 switch (encoding)
17773 {
17774 case DW_ATE_address:
17775 /* Turn DW_ATE_address into a void * pointer. */
17776 type = init_type (objfile, TYPE_CODE_VOID, TARGET_CHAR_BIT, NULL);
17777 type = init_pointer_type (objfile, bits, name, type);
17778 break;
17779 case DW_ATE_boolean:
17780 type = init_boolean_type (objfile, bits, 1, name);
17781 break;
17782 case DW_ATE_complex_float:
17783 type = dwarf2_init_complex_target_type (cu, objfile, bits / 2, name,
17784 byte_order);
17785 type = init_complex_type (objfile, name, type);
17786 break;
17787 case DW_ATE_decimal_float:
17788 type = init_decfloat_type (objfile, bits, name);
17789 break;
17790 case DW_ATE_float:
17791 type = dwarf2_init_float_type (objfile, bits, name, name, byte_order);
17792 break;
17793 case DW_ATE_signed:
17794 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17795 break;
17796 case DW_ATE_unsigned:
17797 if (cu->language == language_fortran
17798 && name
17799 && startswith (name, "character("))
17800 type = init_character_type (objfile, bits, 1, name);
17801 else
17802 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17803 break;
17804 case DW_ATE_signed_char:
17805 if (cu->language == language_ada || cu->language == language_m2
17806 || cu->language == language_pascal
17807 || cu->language == language_fortran)
17808 type = init_character_type (objfile, bits, 0, name);
17809 else
17810 type = dwarf2_init_integer_type (cu, objfile, bits, 0, name);
17811 break;
17812 case DW_ATE_unsigned_char:
17813 if (cu->language == language_ada || cu->language == language_m2
17814 || cu->language == language_pascal
17815 || cu->language == language_fortran
17816 || cu->language == language_rust)
17817 type = init_character_type (objfile, bits, 1, name);
17818 else
17819 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17820 break;
17821 case DW_ATE_UTF:
17822 {
17823 if (bits == 16)
17824 type = builtin_type (arch)->builtin_char16;
17825 else if (bits == 32)
17826 type = builtin_type (arch)->builtin_char32;
17827 else
17828 {
17829 complaint (_("unsupported DW_ATE_UTF bit size: '%d'"),
17830 bits);
17831 type = dwarf2_init_integer_type (cu, objfile, bits, 1, name);
17832 }
17833 return set_die_type (die, type, cu);
17834 }
17835 break;
17836
17837 default:
17838 complaint (_("unsupported DW_AT_encoding: '%s'"),
17839 dwarf_type_encoding_name (encoding));
17840 type = init_type (objfile, TYPE_CODE_ERROR, bits, name);
17841 break;
17842 }
17843
17844 if (name && strcmp (name, "char") == 0)
17845 TYPE_NOSIGN (type) = 1;
17846
17847 maybe_set_alignment (cu, die, type);
17848
17849 TYPE_ENDIANITY_NOT_DEFAULT (type) = gdbarch_byte_order (arch) != byte_order;
17850
17851 return set_die_type (die, type, cu);
17852 }
17853
17854 /* Parse dwarf attribute if it's a block, reference or constant and put the
17855 resulting value of the attribute into struct bound_prop.
17856 Returns 1 if ATTR could be resolved into PROP, 0 otherwise. */
17857
17858 static int
17859 attr_to_dynamic_prop (const struct attribute *attr, struct die_info *die,
17860 struct dwarf2_cu *cu, struct dynamic_prop *prop,
17861 struct type *default_type)
17862 {
17863 struct dwarf2_property_baton *baton;
17864 struct obstack *obstack
17865 = &cu->per_cu->dwarf2_per_objfile->objfile->objfile_obstack;
17866
17867 gdb_assert (default_type != NULL);
17868
17869 if (attr == NULL || prop == NULL)
17870 return 0;
17871
17872 if (attr_form_is_block (attr))
17873 {
17874 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17875 baton->property_type = default_type;
17876 baton->locexpr.per_cu = cu->per_cu;
17877 baton->locexpr.size = DW_BLOCK (attr)->size;
17878 baton->locexpr.data = DW_BLOCK (attr)->data;
17879 switch (attr->name)
17880 {
17881 case DW_AT_string_length:
17882 baton->locexpr.is_reference = true;
17883 break;
17884 default:
17885 baton->locexpr.is_reference = false;
17886 break;
17887 }
17888 prop->data.baton = baton;
17889 prop->kind = PROP_LOCEXPR;
17890 gdb_assert (prop->data.baton != NULL);
17891 }
17892 else if (attr_form_is_ref (attr))
17893 {
17894 struct dwarf2_cu *target_cu = cu;
17895 struct die_info *target_die;
17896 struct attribute *target_attr;
17897
17898 target_die = follow_die_ref (die, attr, &target_cu);
17899 target_attr = dwarf2_attr (target_die, DW_AT_location, target_cu);
17900 if (target_attr == NULL)
17901 target_attr = dwarf2_attr (target_die, DW_AT_data_member_location,
17902 target_cu);
17903 if (target_attr == NULL)
17904 return 0;
17905
17906 switch (target_attr->name)
17907 {
17908 case DW_AT_location:
17909 if (attr_form_is_section_offset (target_attr))
17910 {
17911 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17912 baton->property_type = die_type (target_die, target_cu);
17913 fill_in_loclist_baton (cu, &baton->loclist, target_attr);
17914 prop->data.baton = baton;
17915 prop->kind = PROP_LOCLIST;
17916 gdb_assert (prop->data.baton != NULL);
17917 }
17918 else if (attr_form_is_block (target_attr))
17919 {
17920 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17921 baton->property_type = die_type (target_die, target_cu);
17922 baton->locexpr.per_cu = cu->per_cu;
17923 baton->locexpr.size = DW_BLOCK (target_attr)->size;
17924 baton->locexpr.data = DW_BLOCK (target_attr)->data;
17925 baton->locexpr.is_reference = true;
17926 prop->data.baton = baton;
17927 prop->kind = PROP_LOCEXPR;
17928 gdb_assert (prop->data.baton != NULL);
17929 }
17930 else
17931 {
17932 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
17933 "dynamic property");
17934 return 0;
17935 }
17936 break;
17937 case DW_AT_data_member_location:
17938 {
17939 LONGEST offset;
17940
17941 if (!handle_data_member_location (target_die, target_cu,
17942 &offset))
17943 return 0;
17944
17945 baton = XOBNEW (obstack, struct dwarf2_property_baton);
17946 baton->property_type = read_type_die (target_die->parent,
17947 target_cu);
17948 baton->offset_info.offset = offset;
17949 baton->offset_info.type = die_type (target_die, target_cu);
17950 prop->data.baton = baton;
17951 prop->kind = PROP_ADDR_OFFSET;
17952 break;
17953 }
17954 }
17955 }
17956 else if (attr_form_is_constant (attr))
17957 {
17958 prop->data.const_val = dwarf2_get_attr_constant_value (attr, 0);
17959 prop->kind = PROP_CONST;
17960 }
17961 else
17962 {
17963 dwarf2_invalid_attrib_class_complaint (dwarf_form_name (attr->form),
17964 dwarf2_name (die, cu));
17965 return 0;
17966 }
17967
17968 return 1;
17969 }
17970
17971 /* Find an integer type SIZE_IN_BYTES bytes in size and return it.
17972 UNSIGNED_P controls if the integer is unsigned or not. */
17973
17974 static struct type *
17975 dwarf2_per_cu_int_type (struct dwarf2_per_cu_data *per_cu,
17976 int size_in_bytes, bool unsigned_p)
17977 {
17978 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
17979 struct type *int_type;
17980
17981 /* Helper macro to examine the various builtin types. */
17982 #define TRY_TYPE(F) \
17983 int_type = (unsigned_p \
17984 ? objfile_type (objfile)->builtin_unsigned_ ## F \
17985 : objfile_type (objfile)->builtin_ ## F); \
17986 if (int_type != NULL && TYPE_LENGTH (int_type) == size_in_bytes) \
17987 return int_type
17988
17989 TRY_TYPE (char);
17990 TRY_TYPE (short);
17991 TRY_TYPE (int);
17992 TRY_TYPE (long);
17993 TRY_TYPE (long_long);
17994
17995 #undef TRY_TYPE
17996
17997 gdb_assert_not_reached ("unable to find suitable integer type");
17998 }
17999
18000 /* Find an integer type the same size as the address size given in the
18001 compilation unit header for PER_CU. UNSIGNED_P controls if the integer
18002 is unsigned or not. */
18003
18004 static struct type *
18005 dwarf2_per_cu_addr_sized_int_type (struct dwarf2_per_cu_data *per_cu,
18006 bool unsigned_p)
18007 {
18008 int addr_size = dwarf2_per_cu_addr_size (per_cu);
18009 return dwarf2_per_cu_int_type (per_cu, addr_size, unsigned_p);
18010 }
18011
18012 /* Read the DW_AT_type attribute for a sub-range. If this attribute is not
18013 present (which is valid) then compute the default type based on the
18014 compilation units address size. */
18015
18016 static struct type *
18017 read_subrange_index_type (struct die_info *die, struct dwarf2_cu *cu)
18018 {
18019 struct type *index_type = die_type (die, cu);
18020
18021 /* Dwarf-2 specifications explicitly allows to create subrange types
18022 without specifying a base type.
18023 In that case, the base type must be set to the type of
18024 the lower bound, upper bound or count, in that order, if any of these
18025 three attributes references an object that has a type.
18026 If no base type is found, the Dwarf-2 specifications say that
18027 a signed integer type of size equal to the size of an address should
18028 be used.
18029 For the following C code: `extern char gdb_int [];'
18030 GCC produces an empty range DIE.
18031 FIXME: muller/2010-05-28: Possible references to object for low bound,
18032 high bound or count are not yet handled by this code. */
18033 if (TYPE_CODE (index_type) == TYPE_CODE_VOID)
18034 index_type = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
18035
18036 return index_type;
18037 }
18038
18039 /* Read the given DW_AT_subrange DIE. */
18040
18041 static struct type *
18042 read_subrange_type (struct die_info *die, struct dwarf2_cu *cu)
18043 {
18044 struct type *base_type, *orig_base_type;
18045 struct type *range_type;
18046 struct attribute *attr;
18047 struct dynamic_prop low, high;
18048 int low_default_is_valid;
18049 int high_bound_is_count = 0;
18050 const char *name;
18051 ULONGEST negative_mask;
18052
18053 orig_base_type = read_subrange_index_type (die, cu);
18054
18055 /* If ORIG_BASE_TYPE is a typedef, it will not be TYPE_UNSIGNED,
18056 whereas the real type might be. So, we use ORIG_BASE_TYPE when
18057 creating the range type, but we use the result of check_typedef
18058 when examining properties of the type. */
18059 base_type = check_typedef (orig_base_type);
18060
18061 /* The die_type call above may have already set the type for this DIE. */
18062 range_type = get_die_type (die, cu);
18063 if (range_type)
18064 return range_type;
18065
18066 low.kind = PROP_CONST;
18067 high.kind = PROP_CONST;
18068 high.data.const_val = 0;
18069
18070 /* Set LOW_DEFAULT_IS_VALID if current language and DWARF version allow
18071 omitting DW_AT_lower_bound. */
18072 switch (cu->language)
18073 {
18074 case language_c:
18075 case language_cplus:
18076 low.data.const_val = 0;
18077 low_default_is_valid = 1;
18078 break;
18079 case language_fortran:
18080 low.data.const_val = 1;
18081 low_default_is_valid = 1;
18082 break;
18083 case language_d:
18084 case language_objc:
18085 case language_rust:
18086 low.data.const_val = 0;
18087 low_default_is_valid = (cu->header.version >= 4);
18088 break;
18089 case language_ada:
18090 case language_m2:
18091 case language_pascal:
18092 low.data.const_val = 1;
18093 low_default_is_valid = (cu->header.version >= 4);
18094 break;
18095 default:
18096 low.data.const_val = 0;
18097 low_default_is_valid = 0;
18098 break;
18099 }
18100
18101 attr = dwarf2_attr (die, DW_AT_lower_bound, cu);
18102 if (attr != nullptr)
18103 attr_to_dynamic_prop (attr, die, cu, &low, base_type);
18104 else if (!low_default_is_valid)
18105 complaint (_("Missing DW_AT_lower_bound "
18106 "- DIE at %s [in module %s]"),
18107 sect_offset_str (die->sect_off),
18108 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
18109
18110 struct attribute *attr_ub, *attr_count;
18111 attr = attr_ub = dwarf2_attr (die, DW_AT_upper_bound, cu);
18112 if (!attr_to_dynamic_prop (attr, die, cu, &high, base_type))
18113 {
18114 attr = attr_count = dwarf2_attr (die, DW_AT_count, cu);
18115 if (attr_to_dynamic_prop (attr, die, cu, &high, base_type))
18116 {
18117 /* If bounds are constant do the final calculation here. */
18118 if (low.kind == PROP_CONST && high.kind == PROP_CONST)
18119 high.data.const_val = low.data.const_val + high.data.const_val - 1;
18120 else
18121 high_bound_is_count = 1;
18122 }
18123 else
18124 {
18125 if (attr_ub != NULL)
18126 complaint (_("Unresolved DW_AT_upper_bound "
18127 "- DIE at %s [in module %s]"),
18128 sect_offset_str (die->sect_off),
18129 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
18130 if (attr_count != NULL)
18131 complaint (_("Unresolved DW_AT_count "
18132 "- DIE at %s [in module %s]"),
18133 sect_offset_str (die->sect_off),
18134 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
18135 }
18136 }
18137
18138 LONGEST bias = 0;
18139 struct attribute *bias_attr = dwarf2_attr (die, DW_AT_GNU_bias, cu);
18140 if (bias_attr != nullptr && attr_form_is_constant (bias_attr))
18141 bias = dwarf2_get_attr_constant_value (bias_attr, 0);
18142
18143 /* Normally, the DWARF producers are expected to use a signed
18144 constant form (Eg. DW_FORM_sdata) to express negative bounds.
18145 But this is unfortunately not always the case, as witnessed
18146 with GCC, for instance, where the ambiguous DW_FORM_dataN form
18147 is used instead. To work around that ambiguity, we treat
18148 the bounds as signed, and thus sign-extend their values, when
18149 the base type is signed. */
18150 negative_mask =
18151 -((ULONGEST) 1 << (TYPE_LENGTH (base_type) * TARGET_CHAR_BIT - 1));
18152 if (low.kind == PROP_CONST
18153 && !TYPE_UNSIGNED (base_type) && (low.data.const_val & negative_mask))
18154 low.data.const_val |= negative_mask;
18155 if (high.kind == PROP_CONST
18156 && !TYPE_UNSIGNED (base_type) && (high.data.const_val & negative_mask))
18157 high.data.const_val |= negative_mask;
18158
18159 /* Check for bit and byte strides. */
18160 struct dynamic_prop byte_stride_prop;
18161 attribute *attr_byte_stride = dwarf2_attr (die, DW_AT_byte_stride, cu);
18162 if (attr_byte_stride != nullptr)
18163 {
18164 struct type *prop_type
18165 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
18166 attr_to_dynamic_prop (attr_byte_stride, die, cu, &byte_stride_prop,
18167 prop_type);
18168 }
18169
18170 struct dynamic_prop bit_stride_prop;
18171 attribute *attr_bit_stride = dwarf2_attr (die, DW_AT_bit_stride, cu);
18172 if (attr_bit_stride != nullptr)
18173 {
18174 /* It only makes sense to have either a bit or byte stride. */
18175 if (attr_byte_stride != nullptr)
18176 {
18177 complaint (_("Found DW_AT_bit_stride and DW_AT_byte_stride "
18178 "- DIE at %s [in module %s]"),
18179 sect_offset_str (die->sect_off),
18180 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
18181 attr_bit_stride = nullptr;
18182 }
18183 else
18184 {
18185 struct type *prop_type
18186 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
18187 attr_to_dynamic_prop (attr_bit_stride, die, cu, &bit_stride_prop,
18188 prop_type);
18189 }
18190 }
18191
18192 if (attr_byte_stride != nullptr
18193 || attr_bit_stride != nullptr)
18194 {
18195 bool byte_stride_p = (attr_byte_stride != nullptr);
18196 struct dynamic_prop *stride
18197 = byte_stride_p ? &byte_stride_prop : &bit_stride_prop;
18198
18199 range_type
18200 = create_range_type_with_stride (NULL, orig_base_type, &low,
18201 &high, bias, stride, byte_stride_p);
18202 }
18203 else
18204 range_type = create_range_type (NULL, orig_base_type, &low, &high, bias);
18205
18206 if (high_bound_is_count)
18207 TYPE_RANGE_DATA (range_type)->flag_upper_bound_is_count = 1;
18208
18209 /* Ada expects an empty array on no boundary attributes. */
18210 if (attr == NULL && cu->language != language_ada)
18211 TYPE_HIGH_BOUND_KIND (range_type) = PROP_UNDEFINED;
18212
18213 name = dwarf2_name (die, cu);
18214 if (name)
18215 TYPE_NAME (range_type) = name;
18216
18217 attr = dwarf2_attr (die, DW_AT_byte_size, cu);
18218 if (attr != nullptr)
18219 TYPE_LENGTH (range_type) = DW_UNSND (attr);
18220
18221 maybe_set_alignment (cu, die, range_type);
18222
18223 set_die_type (die, range_type, cu);
18224
18225 /* set_die_type should be already done. */
18226 set_descriptive_type (range_type, die, cu);
18227
18228 return range_type;
18229 }
18230
18231 static struct type *
18232 read_unspecified_type (struct die_info *die, struct dwarf2_cu *cu)
18233 {
18234 struct type *type;
18235
18236 type = init_type (cu->per_cu->dwarf2_per_objfile->objfile, TYPE_CODE_VOID,0,
18237 NULL);
18238 TYPE_NAME (type) = dwarf2_name (die, cu);
18239
18240 /* In Ada, an unspecified type is typically used when the description
18241 of the type is deferred to a different unit. When encountering
18242 such a type, we treat it as a stub, and try to resolve it later on,
18243 when needed. */
18244 if (cu->language == language_ada)
18245 TYPE_STUB (type) = 1;
18246
18247 return set_die_type (die, type, cu);
18248 }
18249
18250 /* Read a single die and all its descendents. Set the die's sibling
18251 field to NULL; set other fields in the die correctly, and set all
18252 of the descendents' fields correctly. Set *NEW_INFO_PTR to the
18253 location of the info_ptr after reading all of those dies. PARENT
18254 is the parent of the die in question. */
18255
18256 static struct die_info *
18257 read_die_and_children (const struct die_reader_specs *reader,
18258 const gdb_byte *info_ptr,
18259 const gdb_byte **new_info_ptr,
18260 struct die_info *parent)
18261 {
18262 struct die_info *die;
18263 const gdb_byte *cur_ptr;
18264 int has_children;
18265
18266 cur_ptr = read_full_die_1 (reader, &die, info_ptr, &has_children, 0);
18267 if (die == NULL)
18268 {
18269 *new_info_ptr = cur_ptr;
18270 return NULL;
18271 }
18272 store_in_ref_table (die, reader->cu);
18273
18274 if (has_children)
18275 die->child = read_die_and_siblings_1 (reader, cur_ptr, new_info_ptr, die);
18276 else
18277 {
18278 die->child = NULL;
18279 *new_info_ptr = cur_ptr;
18280 }
18281
18282 die->sibling = NULL;
18283 die->parent = parent;
18284 return die;
18285 }
18286
18287 /* Read a die, all of its descendents, and all of its siblings; set
18288 all of the fields of all of the dies correctly. Arguments are as
18289 in read_die_and_children. */
18290
18291 static struct die_info *
18292 read_die_and_siblings_1 (const struct die_reader_specs *reader,
18293 const gdb_byte *info_ptr,
18294 const gdb_byte **new_info_ptr,
18295 struct die_info *parent)
18296 {
18297 struct die_info *first_die, *last_sibling;
18298 const gdb_byte *cur_ptr;
18299
18300 cur_ptr = info_ptr;
18301 first_die = last_sibling = NULL;
18302
18303 while (1)
18304 {
18305 struct die_info *die
18306 = read_die_and_children (reader, cur_ptr, &cur_ptr, parent);
18307
18308 if (die == NULL)
18309 {
18310 *new_info_ptr = cur_ptr;
18311 return first_die;
18312 }
18313
18314 if (!first_die)
18315 first_die = die;
18316 else
18317 last_sibling->sibling = die;
18318
18319 last_sibling = die;
18320 }
18321 }
18322
18323 /* Read a die, all of its descendents, and all of its siblings; set
18324 all of the fields of all of the dies correctly. Arguments are as
18325 in read_die_and_children.
18326 This the main entry point for reading a DIE and all its children. */
18327
18328 static struct die_info *
18329 read_die_and_siblings (const struct die_reader_specs *reader,
18330 const gdb_byte *info_ptr,
18331 const gdb_byte **new_info_ptr,
18332 struct die_info *parent)
18333 {
18334 struct die_info *die = read_die_and_siblings_1 (reader, info_ptr,
18335 new_info_ptr, parent);
18336
18337 if (dwarf_die_debug)
18338 {
18339 fprintf_unfiltered (gdb_stdlog,
18340 "Read die from %s@0x%x of %s:\n",
18341 get_section_name (reader->die_section),
18342 (unsigned) (info_ptr - reader->die_section->buffer),
18343 bfd_get_filename (reader->abfd));
18344 dump_die (die, dwarf_die_debug);
18345 }
18346
18347 return die;
18348 }
18349
18350 /* Read a die and all its attributes, leave space for NUM_EXTRA_ATTRS
18351 attributes.
18352 The caller is responsible for filling in the extra attributes
18353 and updating (*DIEP)->num_attrs.
18354 Set DIEP to point to a newly allocated die with its information,
18355 except for its child, sibling, and parent fields.
18356 Set HAS_CHILDREN to tell whether the die has children or not. */
18357
18358 static const gdb_byte *
18359 read_full_die_1 (const struct die_reader_specs *reader,
18360 struct die_info **diep, const gdb_byte *info_ptr,
18361 int *has_children, int num_extra_attrs)
18362 {
18363 unsigned int abbrev_number, bytes_read, i;
18364 struct abbrev_info *abbrev;
18365 struct die_info *die;
18366 struct dwarf2_cu *cu = reader->cu;
18367 bfd *abfd = reader->abfd;
18368
18369 sect_offset sect_off = (sect_offset) (info_ptr - reader->buffer);
18370 abbrev_number = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
18371 info_ptr += bytes_read;
18372 if (!abbrev_number)
18373 {
18374 *diep = NULL;
18375 *has_children = 0;
18376 return info_ptr;
18377 }
18378
18379 abbrev = reader->abbrev_table->lookup_abbrev (abbrev_number);
18380 if (!abbrev)
18381 error (_("Dwarf Error: could not find abbrev number %d [in module %s]"),
18382 abbrev_number,
18383 bfd_get_filename (abfd));
18384
18385 die = dwarf_alloc_die (cu, abbrev->num_attrs + num_extra_attrs);
18386 die->sect_off = sect_off;
18387 die->tag = abbrev->tag;
18388 die->abbrev = abbrev_number;
18389
18390 /* Make the result usable.
18391 The caller needs to update num_attrs after adding the extra
18392 attributes. */
18393 die->num_attrs = abbrev->num_attrs;
18394
18395 for (i = 0; i < abbrev->num_attrs; ++i)
18396 info_ptr = read_attribute (reader, &die->attrs[i], &abbrev->attrs[i],
18397 info_ptr);
18398
18399 *diep = die;
18400 *has_children = abbrev->has_children;
18401 return info_ptr;
18402 }
18403
18404 /* Read a die and all its attributes.
18405 Set DIEP to point to a newly allocated die with its information,
18406 except for its child, sibling, and parent fields.
18407 Set HAS_CHILDREN to tell whether the die has children or not. */
18408
18409 static const gdb_byte *
18410 read_full_die (const struct die_reader_specs *reader,
18411 struct die_info **diep, const gdb_byte *info_ptr,
18412 int *has_children)
18413 {
18414 const gdb_byte *result;
18415
18416 result = read_full_die_1 (reader, diep, info_ptr, has_children, 0);
18417
18418 if (dwarf_die_debug)
18419 {
18420 fprintf_unfiltered (gdb_stdlog,
18421 "Read die from %s@0x%x of %s:\n",
18422 get_section_name (reader->die_section),
18423 (unsigned) (info_ptr - reader->die_section->buffer),
18424 bfd_get_filename (reader->abfd));
18425 dump_die (*diep, dwarf_die_debug);
18426 }
18427
18428 return result;
18429 }
18430 \f
18431 /* Abbreviation tables.
18432
18433 In DWARF version 2, the description of the debugging information is
18434 stored in a separate .debug_abbrev section. Before we read any
18435 dies from a section we read in all abbreviations and install them
18436 in a hash table. */
18437
18438 /* Allocate space for a struct abbrev_info object in ABBREV_TABLE. */
18439
18440 struct abbrev_info *
18441 abbrev_table::alloc_abbrev ()
18442 {
18443 struct abbrev_info *abbrev;
18444
18445 abbrev = XOBNEW (&abbrev_obstack, struct abbrev_info);
18446 memset (abbrev, 0, sizeof (struct abbrev_info));
18447
18448 return abbrev;
18449 }
18450
18451 /* Add an abbreviation to the table. */
18452
18453 void
18454 abbrev_table::add_abbrev (unsigned int abbrev_number,
18455 struct abbrev_info *abbrev)
18456 {
18457 unsigned int hash_number;
18458
18459 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18460 abbrev->next = m_abbrevs[hash_number];
18461 m_abbrevs[hash_number] = abbrev;
18462 }
18463
18464 /* Look up an abbrev in the table.
18465 Returns NULL if the abbrev is not found. */
18466
18467 struct abbrev_info *
18468 abbrev_table::lookup_abbrev (unsigned int abbrev_number)
18469 {
18470 unsigned int hash_number;
18471 struct abbrev_info *abbrev;
18472
18473 hash_number = abbrev_number % ABBREV_HASH_SIZE;
18474 abbrev = m_abbrevs[hash_number];
18475
18476 while (abbrev)
18477 {
18478 if (abbrev->number == abbrev_number)
18479 return abbrev;
18480 abbrev = abbrev->next;
18481 }
18482 return NULL;
18483 }
18484
18485 /* Read in an abbrev table. */
18486
18487 static abbrev_table_up
18488 abbrev_table_read_table (struct dwarf2_per_objfile *dwarf2_per_objfile,
18489 struct dwarf2_section_info *section,
18490 sect_offset sect_off)
18491 {
18492 struct objfile *objfile = dwarf2_per_objfile->objfile;
18493 bfd *abfd = get_section_bfd_owner (section);
18494 const gdb_byte *abbrev_ptr;
18495 struct abbrev_info *cur_abbrev;
18496 unsigned int abbrev_number, bytes_read, abbrev_name;
18497 unsigned int abbrev_form;
18498 struct attr_abbrev *cur_attrs;
18499 unsigned int allocated_attrs;
18500
18501 abbrev_table_up abbrev_table (new struct abbrev_table (sect_off));
18502
18503 dwarf2_read_section (objfile, section);
18504 abbrev_ptr = section->buffer + to_underlying (sect_off);
18505 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18506 abbrev_ptr += bytes_read;
18507
18508 allocated_attrs = ATTR_ALLOC_CHUNK;
18509 cur_attrs = XNEWVEC (struct attr_abbrev, allocated_attrs);
18510
18511 /* Loop until we reach an abbrev number of 0. */
18512 while (abbrev_number)
18513 {
18514 cur_abbrev = abbrev_table->alloc_abbrev ();
18515
18516 /* read in abbrev header */
18517 cur_abbrev->number = abbrev_number;
18518 cur_abbrev->tag
18519 = (enum dwarf_tag) read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18520 abbrev_ptr += bytes_read;
18521 cur_abbrev->has_children = read_1_byte (abfd, abbrev_ptr);
18522 abbrev_ptr += 1;
18523
18524 /* now read in declarations */
18525 for (;;)
18526 {
18527 LONGEST implicit_const;
18528
18529 abbrev_name = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18530 abbrev_ptr += bytes_read;
18531 abbrev_form = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18532 abbrev_ptr += bytes_read;
18533 if (abbrev_form == DW_FORM_implicit_const)
18534 {
18535 implicit_const = read_signed_leb128 (abfd, abbrev_ptr,
18536 &bytes_read);
18537 abbrev_ptr += bytes_read;
18538 }
18539 else
18540 {
18541 /* Initialize it due to a false compiler warning. */
18542 implicit_const = -1;
18543 }
18544
18545 if (abbrev_name == 0)
18546 break;
18547
18548 if (cur_abbrev->num_attrs == allocated_attrs)
18549 {
18550 allocated_attrs += ATTR_ALLOC_CHUNK;
18551 cur_attrs
18552 = XRESIZEVEC (struct attr_abbrev, cur_attrs, allocated_attrs);
18553 }
18554
18555 cur_attrs[cur_abbrev->num_attrs].name
18556 = (enum dwarf_attribute) abbrev_name;
18557 cur_attrs[cur_abbrev->num_attrs].form
18558 = (enum dwarf_form) abbrev_form;
18559 cur_attrs[cur_abbrev->num_attrs].implicit_const = implicit_const;
18560 ++cur_abbrev->num_attrs;
18561 }
18562
18563 cur_abbrev->attrs =
18564 XOBNEWVEC (&abbrev_table->abbrev_obstack, struct attr_abbrev,
18565 cur_abbrev->num_attrs);
18566 memcpy (cur_abbrev->attrs, cur_attrs,
18567 cur_abbrev->num_attrs * sizeof (struct attr_abbrev));
18568
18569 abbrev_table->add_abbrev (abbrev_number, cur_abbrev);
18570
18571 /* Get next abbreviation.
18572 Under Irix6 the abbreviations for a compilation unit are not
18573 always properly terminated with an abbrev number of 0.
18574 Exit loop if we encounter an abbreviation which we have
18575 already read (which means we are about to read the abbreviations
18576 for the next compile unit) or if the end of the abbreviation
18577 table is reached. */
18578 if ((unsigned int) (abbrev_ptr - section->buffer) >= section->size)
18579 break;
18580 abbrev_number = read_unsigned_leb128 (abfd, abbrev_ptr, &bytes_read);
18581 abbrev_ptr += bytes_read;
18582 if (abbrev_table->lookup_abbrev (abbrev_number) != NULL)
18583 break;
18584 }
18585
18586 xfree (cur_attrs);
18587 return abbrev_table;
18588 }
18589
18590 /* Returns nonzero if TAG represents a type that we might generate a partial
18591 symbol for. */
18592
18593 static int
18594 is_type_tag_for_partial (int tag)
18595 {
18596 switch (tag)
18597 {
18598 #if 0
18599 /* Some types that would be reasonable to generate partial symbols for,
18600 that we don't at present. */
18601 case DW_TAG_array_type:
18602 case DW_TAG_file_type:
18603 case DW_TAG_ptr_to_member_type:
18604 case DW_TAG_set_type:
18605 case DW_TAG_string_type:
18606 case DW_TAG_subroutine_type:
18607 #endif
18608 case DW_TAG_base_type:
18609 case DW_TAG_class_type:
18610 case DW_TAG_interface_type:
18611 case DW_TAG_enumeration_type:
18612 case DW_TAG_structure_type:
18613 case DW_TAG_subrange_type:
18614 case DW_TAG_typedef:
18615 case DW_TAG_union_type:
18616 return 1;
18617 default:
18618 return 0;
18619 }
18620 }
18621
18622 /* Load all DIEs that are interesting for partial symbols into memory. */
18623
18624 static struct partial_die_info *
18625 load_partial_dies (const struct die_reader_specs *reader,
18626 const gdb_byte *info_ptr, int building_psymtab)
18627 {
18628 struct dwarf2_cu *cu = reader->cu;
18629 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
18630 struct partial_die_info *parent_die, *last_die, *first_die = NULL;
18631 unsigned int bytes_read;
18632 unsigned int load_all = 0;
18633 int nesting_level = 1;
18634
18635 parent_die = NULL;
18636 last_die = NULL;
18637
18638 gdb_assert (cu->per_cu != NULL);
18639 if (cu->per_cu->load_all_dies)
18640 load_all = 1;
18641
18642 cu->partial_dies
18643 = htab_create_alloc_ex (cu->header.length / 12,
18644 partial_die_hash,
18645 partial_die_eq,
18646 NULL,
18647 &cu->comp_unit_obstack,
18648 hashtab_obstack_allocate,
18649 dummy_obstack_deallocate);
18650
18651 while (1)
18652 {
18653 abbrev_info *abbrev = peek_die_abbrev (*reader, info_ptr, &bytes_read);
18654
18655 /* A NULL abbrev means the end of a series of children. */
18656 if (abbrev == NULL)
18657 {
18658 if (--nesting_level == 0)
18659 return first_die;
18660
18661 info_ptr += bytes_read;
18662 last_die = parent_die;
18663 parent_die = parent_die->die_parent;
18664 continue;
18665 }
18666
18667 /* Check for template arguments. We never save these; if
18668 they're seen, we just mark the parent, and go on our way. */
18669 if (parent_die != NULL
18670 && cu->language == language_cplus
18671 && (abbrev->tag == DW_TAG_template_type_param
18672 || abbrev->tag == DW_TAG_template_value_param))
18673 {
18674 parent_die->has_template_arguments = 1;
18675
18676 if (!load_all)
18677 {
18678 /* We don't need a partial DIE for the template argument. */
18679 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18680 continue;
18681 }
18682 }
18683
18684 /* We only recurse into c++ subprograms looking for template arguments.
18685 Skip their other children. */
18686 if (!load_all
18687 && cu->language == language_cplus
18688 && parent_die != NULL
18689 && parent_die->tag == DW_TAG_subprogram)
18690 {
18691 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18692 continue;
18693 }
18694
18695 /* Check whether this DIE is interesting enough to save. Normally
18696 we would not be interested in members here, but there may be
18697 later variables referencing them via DW_AT_specification (for
18698 static members). */
18699 if (!load_all
18700 && !is_type_tag_for_partial (abbrev->tag)
18701 && abbrev->tag != DW_TAG_constant
18702 && abbrev->tag != DW_TAG_enumerator
18703 && abbrev->tag != DW_TAG_subprogram
18704 && abbrev->tag != DW_TAG_inlined_subroutine
18705 && abbrev->tag != DW_TAG_lexical_block
18706 && abbrev->tag != DW_TAG_variable
18707 && abbrev->tag != DW_TAG_namespace
18708 && abbrev->tag != DW_TAG_module
18709 && abbrev->tag != DW_TAG_member
18710 && abbrev->tag != DW_TAG_imported_unit
18711 && abbrev->tag != DW_TAG_imported_declaration)
18712 {
18713 /* Otherwise we skip to the next sibling, if any. */
18714 info_ptr = skip_one_die (reader, info_ptr + bytes_read, abbrev);
18715 continue;
18716 }
18717
18718 struct partial_die_info pdi ((sect_offset) (info_ptr - reader->buffer),
18719 abbrev);
18720
18721 info_ptr = pdi.read (reader, *abbrev, info_ptr + bytes_read);
18722
18723 /* This two-pass algorithm for processing partial symbols has a
18724 high cost in cache pressure. Thus, handle some simple cases
18725 here which cover the majority of C partial symbols. DIEs
18726 which neither have specification tags in them, nor could have
18727 specification tags elsewhere pointing at them, can simply be
18728 processed and discarded.
18729
18730 This segment is also optional; scan_partial_symbols and
18731 add_partial_symbol will handle these DIEs if we chain
18732 them in normally. When compilers which do not emit large
18733 quantities of duplicate debug information are more common,
18734 this code can probably be removed. */
18735
18736 /* Any complete simple types at the top level (pretty much all
18737 of them, for a language without namespaces), can be processed
18738 directly. */
18739 if (parent_die == NULL
18740 && pdi.has_specification == 0
18741 && pdi.is_declaration == 0
18742 && ((pdi.tag == DW_TAG_typedef && !pdi.has_children)
18743 || pdi.tag == DW_TAG_base_type
18744 || pdi.tag == DW_TAG_subrange_type))
18745 {
18746 if (building_psymtab && pdi.name != NULL)
18747 add_psymbol_to_list (pdi.name, false,
18748 VAR_DOMAIN, LOC_TYPEDEF, -1,
18749 psymbol_placement::STATIC,
18750 0, cu->language, objfile);
18751 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18752 continue;
18753 }
18754
18755 /* The exception for DW_TAG_typedef with has_children above is
18756 a workaround of GCC PR debug/47510. In the case of this complaint
18757 type_name_or_error will error on such types later.
18758
18759 GDB skipped children of DW_TAG_typedef by the shortcut above and then
18760 it could not find the child DIEs referenced later, this is checked
18761 above. In correct DWARF DW_TAG_typedef should have no children. */
18762
18763 if (pdi.tag == DW_TAG_typedef && pdi.has_children)
18764 complaint (_("DW_TAG_typedef has childen - GCC PR debug/47510 bug "
18765 "- DIE at %s [in module %s]"),
18766 sect_offset_str (pdi.sect_off), objfile_name (objfile));
18767
18768 /* If we're at the second level, and we're an enumerator, and
18769 our parent has no specification (meaning possibly lives in a
18770 namespace elsewhere), then we can add the partial symbol now
18771 instead of queueing it. */
18772 if (pdi.tag == DW_TAG_enumerator
18773 && parent_die != NULL
18774 && parent_die->die_parent == NULL
18775 && parent_die->tag == DW_TAG_enumeration_type
18776 && parent_die->has_specification == 0)
18777 {
18778 if (pdi.name == NULL)
18779 complaint (_("malformed enumerator DIE ignored"));
18780 else if (building_psymtab)
18781 add_psymbol_to_list (pdi.name, false,
18782 VAR_DOMAIN, LOC_CONST, -1,
18783 cu->language == language_cplus
18784 ? psymbol_placement::GLOBAL
18785 : psymbol_placement::STATIC,
18786 0, cu->language, objfile);
18787
18788 info_ptr = locate_pdi_sibling (reader, &pdi, info_ptr);
18789 continue;
18790 }
18791
18792 struct partial_die_info *part_die
18793 = new (&cu->comp_unit_obstack) partial_die_info (pdi);
18794
18795 /* We'll save this DIE so link it in. */
18796 part_die->die_parent = parent_die;
18797 part_die->die_sibling = NULL;
18798 part_die->die_child = NULL;
18799
18800 if (last_die && last_die == parent_die)
18801 last_die->die_child = part_die;
18802 else if (last_die)
18803 last_die->die_sibling = part_die;
18804
18805 last_die = part_die;
18806
18807 if (first_die == NULL)
18808 first_die = part_die;
18809
18810 /* Maybe add the DIE to the hash table. Not all DIEs that we
18811 find interesting need to be in the hash table, because we
18812 also have the parent/sibling/child chains; only those that we
18813 might refer to by offset later during partial symbol reading.
18814
18815 For now this means things that might have be the target of a
18816 DW_AT_specification, DW_AT_abstract_origin, or
18817 DW_AT_extension. DW_AT_extension will refer only to
18818 namespaces; DW_AT_abstract_origin refers to functions (and
18819 many things under the function DIE, but we do not recurse
18820 into function DIEs during partial symbol reading) and
18821 possibly variables as well; DW_AT_specification refers to
18822 declarations. Declarations ought to have the DW_AT_declaration
18823 flag. It happens that GCC forgets to put it in sometimes, but
18824 only for functions, not for types.
18825
18826 Adding more things than necessary to the hash table is harmless
18827 except for the performance cost. Adding too few will result in
18828 wasted time in find_partial_die, when we reread the compilation
18829 unit with load_all_dies set. */
18830
18831 if (load_all
18832 || abbrev->tag == DW_TAG_constant
18833 || abbrev->tag == DW_TAG_subprogram
18834 || abbrev->tag == DW_TAG_variable
18835 || abbrev->tag == DW_TAG_namespace
18836 || part_die->is_declaration)
18837 {
18838 void **slot;
18839
18840 slot = htab_find_slot_with_hash (cu->partial_dies, part_die,
18841 to_underlying (part_die->sect_off),
18842 INSERT);
18843 *slot = part_die;
18844 }
18845
18846 /* For some DIEs we want to follow their children (if any). For C
18847 we have no reason to follow the children of structures; for other
18848 languages we have to, so that we can get at method physnames
18849 to infer fully qualified class names, for DW_AT_specification,
18850 and for C++ template arguments. For C++, we also look one level
18851 inside functions to find template arguments (if the name of the
18852 function does not already contain the template arguments).
18853
18854 For Ada and Fortran, we need to scan the children of subprograms
18855 and lexical blocks as well because these languages allow the
18856 definition of nested entities that could be interesting for the
18857 debugger, such as nested subprograms for instance. */
18858 if (last_die->has_children
18859 && (load_all
18860 || last_die->tag == DW_TAG_namespace
18861 || last_die->tag == DW_TAG_module
18862 || last_die->tag == DW_TAG_enumeration_type
18863 || (cu->language == language_cplus
18864 && last_die->tag == DW_TAG_subprogram
18865 && (last_die->name == NULL
18866 || strchr (last_die->name, '<') == NULL))
18867 || (cu->language != language_c
18868 && (last_die->tag == DW_TAG_class_type
18869 || last_die->tag == DW_TAG_interface_type
18870 || last_die->tag == DW_TAG_structure_type
18871 || last_die->tag == DW_TAG_union_type))
18872 || ((cu->language == language_ada
18873 || cu->language == language_fortran)
18874 && (last_die->tag == DW_TAG_subprogram
18875 || last_die->tag == DW_TAG_lexical_block))))
18876 {
18877 nesting_level++;
18878 parent_die = last_die;
18879 continue;
18880 }
18881
18882 /* Otherwise we skip to the next sibling, if any. */
18883 info_ptr = locate_pdi_sibling (reader, last_die, info_ptr);
18884
18885 /* Back to the top, do it again. */
18886 }
18887 }
18888
18889 partial_die_info::partial_die_info (sect_offset sect_off_,
18890 struct abbrev_info *abbrev)
18891 : partial_die_info (sect_off_, abbrev->tag, abbrev->has_children)
18892 {
18893 }
18894
18895 /* Read a minimal amount of information into the minimal die structure.
18896 INFO_PTR should point just after the initial uleb128 of a DIE. */
18897
18898 const gdb_byte *
18899 partial_die_info::read (const struct die_reader_specs *reader,
18900 const struct abbrev_info &abbrev, const gdb_byte *info_ptr)
18901 {
18902 struct dwarf2_cu *cu = reader->cu;
18903 struct dwarf2_per_objfile *dwarf2_per_objfile
18904 = cu->per_cu->dwarf2_per_objfile;
18905 unsigned int i;
18906 int has_low_pc_attr = 0;
18907 int has_high_pc_attr = 0;
18908 int high_pc_relative = 0;
18909
18910 for (i = 0; i < abbrev.num_attrs; ++i)
18911 {
18912 struct attribute attr;
18913
18914 info_ptr = read_attribute (reader, &attr, &abbrev.attrs[i], info_ptr);
18915
18916 /* Store the data if it is of an attribute we want to keep in a
18917 partial symbol table. */
18918 switch (attr.name)
18919 {
18920 case DW_AT_name:
18921 switch (tag)
18922 {
18923 case DW_TAG_compile_unit:
18924 case DW_TAG_partial_unit:
18925 case DW_TAG_type_unit:
18926 /* Compilation units have a DW_AT_name that is a filename, not
18927 a source language identifier. */
18928 case DW_TAG_enumeration_type:
18929 case DW_TAG_enumerator:
18930 /* These tags always have simple identifiers already; no need
18931 to canonicalize them. */
18932 name = DW_STRING (&attr);
18933 break;
18934 default:
18935 {
18936 struct objfile *objfile = dwarf2_per_objfile->objfile;
18937
18938 name
18939 = dwarf2_canonicalize_name (DW_STRING (&attr), cu,
18940 &objfile->per_bfd->storage_obstack);
18941 }
18942 break;
18943 }
18944 break;
18945 case DW_AT_linkage_name:
18946 case DW_AT_MIPS_linkage_name:
18947 /* Note that both forms of linkage name might appear. We
18948 assume they will be the same, and we only store the last
18949 one we see. */
18950 linkage_name = DW_STRING (&attr);
18951 break;
18952 case DW_AT_low_pc:
18953 has_low_pc_attr = 1;
18954 lowpc = attr_value_as_address (&attr);
18955 break;
18956 case DW_AT_high_pc:
18957 has_high_pc_attr = 1;
18958 highpc = attr_value_as_address (&attr);
18959 if (cu->header.version >= 4 && attr_form_is_constant (&attr))
18960 high_pc_relative = 1;
18961 break;
18962 case DW_AT_location:
18963 /* Support the .debug_loc offsets. */
18964 if (attr_form_is_block (&attr))
18965 {
18966 d.locdesc = DW_BLOCK (&attr);
18967 }
18968 else if (attr_form_is_section_offset (&attr))
18969 {
18970 dwarf2_complex_location_expr_complaint ();
18971 }
18972 else
18973 {
18974 dwarf2_invalid_attrib_class_complaint ("DW_AT_location",
18975 "partial symbol information");
18976 }
18977 break;
18978 case DW_AT_external:
18979 is_external = DW_UNSND (&attr);
18980 break;
18981 case DW_AT_declaration:
18982 is_declaration = DW_UNSND (&attr);
18983 break;
18984 case DW_AT_type:
18985 has_type = 1;
18986 break;
18987 case DW_AT_abstract_origin:
18988 case DW_AT_specification:
18989 case DW_AT_extension:
18990 has_specification = 1;
18991 spec_offset = dwarf2_get_ref_die_offset (&attr);
18992 spec_is_dwz = (attr.form == DW_FORM_GNU_ref_alt
18993 || cu->per_cu->is_dwz);
18994 break;
18995 case DW_AT_sibling:
18996 /* Ignore absolute siblings, they might point outside of
18997 the current compile unit. */
18998 if (attr.form == DW_FORM_ref_addr)
18999 complaint (_("ignoring absolute DW_AT_sibling"));
19000 else
19001 {
19002 const gdb_byte *buffer = reader->buffer;
19003 sect_offset off = dwarf2_get_ref_die_offset (&attr);
19004 const gdb_byte *sibling_ptr = buffer + to_underlying (off);
19005
19006 if (sibling_ptr < info_ptr)
19007 complaint (_("DW_AT_sibling points backwards"));
19008 else if (sibling_ptr > reader->buffer_end)
19009 dwarf2_section_buffer_overflow_complaint (reader->die_section);
19010 else
19011 sibling = sibling_ptr;
19012 }
19013 break;
19014 case DW_AT_byte_size:
19015 has_byte_size = 1;
19016 break;
19017 case DW_AT_const_value:
19018 has_const_value = 1;
19019 break;
19020 case DW_AT_calling_convention:
19021 /* DWARF doesn't provide a way to identify a program's source-level
19022 entry point. DW_AT_calling_convention attributes are only meant
19023 to describe functions' calling conventions.
19024
19025 However, because it's a necessary piece of information in
19026 Fortran, and before DWARF 4 DW_CC_program was the only
19027 piece of debugging information whose definition refers to
19028 a 'main program' at all, several compilers marked Fortran
19029 main programs with DW_CC_program --- even when those
19030 functions use the standard calling conventions.
19031
19032 Although DWARF now specifies a way to provide this
19033 information, we support this practice for backward
19034 compatibility. */
19035 if (DW_UNSND (&attr) == DW_CC_program
19036 && cu->language == language_fortran)
19037 main_subprogram = 1;
19038 break;
19039 case DW_AT_inline:
19040 if (DW_UNSND (&attr) == DW_INL_inlined
19041 || DW_UNSND (&attr) == DW_INL_declared_inlined)
19042 may_be_inlined = 1;
19043 break;
19044
19045 case DW_AT_import:
19046 if (tag == DW_TAG_imported_unit)
19047 {
19048 d.sect_off = dwarf2_get_ref_die_offset (&attr);
19049 is_dwz = (attr.form == DW_FORM_GNU_ref_alt
19050 || cu->per_cu->is_dwz);
19051 }
19052 break;
19053
19054 case DW_AT_main_subprogram:
19055 main_subprogram = DW_UNSND (&attr);
19056 break;
19057
19058 case DW_AT_ranges:
19059 {
19060 /* It would be nice to reuse dwarf2_get_pc_bounds here,
19061 but that requires a full DIE, so instead we just
19062 reimplement it. */
19063 int need_ranges_base = tag != DW_TAG_compile_unit;
19064 unsigned int ranges_offset = (DW_UNSND (&attr)
19065 + (need_ranges_base
19066 ? cu->ranges_base
19067 : 0));
19068
19069 /* Value of the DW_AT_ranges attribute is the offset in the
19070 .debug_ranges section. */
19071 if (dwarf2_ranges_read (ranges_offset, &lowpc, &highpc, cu,
19072 nullptr))
19073 has_pc_info = 1;
19074 }
19075 break;
19076
19077 default:
19078 break;
19079 }
19080 }
19081
19082 /* For Ada, if both the name and the linkage name appear, we prefer
19083 the latter. This lets "catch exception" work better, regardless
19084 of the order in which the name and linkage name were emitted.
19085 Really, though, this is just a workaround for the fact that gdb
19086 doesn't store both the name and the linkage name. */
19087 if (cu->language == language_ada && linkage_name != nullptr)
19088 name = linkage_name;
19089
19090 if (high_pc_relative)
19091 highpc += lowpc;
19092
19093 if (has_low_pc_attr && has_high_pc_attr)
19094 {
19095 /* When using the GNU linker, .gnu.linkonce. sections are used to
19096 eliminate duplicate copies of functions and vtables and such.
19097 The linker will arbitrarily choose one and discard the others.
19098 The AT_*_pc values for such functions refer to local labels in
19099 these sections. If the section from that file was discarded, the
19100 labels are not in the output, so the relocs get a value of 0.
19101 If this is a discarded function, mark the pc bounds as invalid,
19102 so that GDB will ignore it. */
19103 if (lowpc == 0 && !dwarf2_per_objfile->has_section_at_zero)
19104 {
19105 struct objfile *objfile = dwarf2_per_objfile->objfile;
19106 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19107
19108 complaint (_("DW_AT_low_pc %s is zero "
19109 "for DIE at %s [in module %s]"),
19110 paddress (gdbarch, lowpc),
19111 sect_offset_str (sect_off),
19112 objfile_name (objfile));
19113 }
19114 /* dwarf2_get_pc_bounds has also the strict low < high requirement. */
19115 else if (lowpc >= highpc)
19116 {
19117 struct objfile *objfile = dwarf2_per_objfile->objfile;
19118 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19119
19120 complaint (_("DW_AT_low_pc %s is not < DW_AT_high_pc %s "
19121 "for DIE at %s [in module %s]"),
19122 paddress (gdbarch, lowpc),
19123 paddress (gdbarch, highpc),
19124 sect_offset_str (sect_off),
19125 objfile_name (objfile));
19126 }
19127 else
19128 has_pc_info = 1;
19129 }
19130
19131 return info_ptr;
19132 }
19133
19134 /* Find a cached partial DIE at OFFSET in CU. */
19135
19136 struct partial_die_info *
19137 dwarf2_cu::find_partial_die (sect_offset sect_off)
19138 {
19139 struct partial_die_info *lookup_die = NULL;
19140 struct partial_die_info part_die (sect_off);
19141
19142 lookup_die = ((struct partial_die_info *)
19143 htab_find_with_hash (partial_dies, &part_die,
19144 to_underlying (sect_off)));
19145
19146 return lookup_die;
19147 }
19148
19149 /* Find a partial DIE at OFFSET, which may or may not be in CU,
19150 except in the case of .debug_types DIEs which do not reference
19151 outside their CU (they do however referencing other types via
19152 DW_FORM_ref_sig8). */
19153
19154 static const struct cu_partial_die_info
19155 find_partial_die (sect_offset sect_off, int offset_in_dwz, struct dwarf2_cu *cu)
19156 {
19157 struct dwarf2_per_objfile *dwarf2_per_objfile
19158 = cu->per_cu->dwarf2_per_objfile;
19159 struct objfile *objfile = dwarf2_per_objfile->objfile;
19160 struct dwarf2_per_cu_data *per_cu = NULL;
19161 struct partial_die_info *pd = NULL;
19162
19163 if (offset_in_dwz == cu->per_cu->is_dwz
19164 && offset_in_cu_p (&cu->header, sect_off))
19165 {
19166 pd = cu->find_partial_die (sect_off);
19167 if (pd != NULL)
19168 return { cu, pd };
19169 /* We missed recording what we needed.
19170 Load all dies and try again. */
19171 per_cu = cu->per_cu;
19172 }
19173 else
19174 {
19175 /* TUs don't reference other CUs/TUs (except via type signatures). */
19176 if (cu->per_cu->is_debug_types)
19177 {
19178 error (_("Dwarf Error: Type Unit at offset %s contains"
19179 " external reference to offset %s [in module %s].\n"),
19180 sect_offset_str (cu->header.sect_off), sect_offset_str (sect_off),
19181 bfd_get_filename (objfile->obfd));
19182 }
19183 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
19184 dwarf2_per_objfile);
19185
19186 if (per_cu->cu == NULL || per_cu->cu->partial_dies == NULL)
19187 load_partial_comp_unit (per_cu);
19188
19189 per_cu->cu->last_used = 0;
19190 pd = per_cu->cu->find_partial_die (sect_off);
19191 }
19192
19193 /* If we didn't find it, and not all dies have been loaded,
19194 load them all and try again. */
19195
19196 if (pd == NULL && per_cu->load_all_dies == 0)
19197 {
19198 per_cu->load_all_dies = 1;
19199
19200 /* This is nasty. When we reread the DIEs, somewhere up the call chain
19201 THIS_CU->cu may already be in use. So we can't just free it and
19202 replace its DIEs with the ones we read in. Instead, we leave those
19203 DIEs alone (which can still be in use, e.g. in scan_partial_symbols),
19204 and clobber THIS_CU->cu->partial_dies with the hash table for the new
19205 set. */
19206 load_partial_comp_unit (per_cu);
19207
19208 pd = per_cu->cu->find_partial_die (sect_off);
19209 }
19210
19211 if (pd == NULL)
19212 internal_error (__FILE__, __LINE__,
19213 _("could not find partial DIE %s "
19214 "in cache [from module %s]\n"),
19215 sect_offset_str (sect_off), bfd_get_filename (objfile->obfd));
19216 return { per_cu->cu, pd };
19217 }
19218
19219 /* See if we can figure out if the class lives in a namespace. We do
19220 this by looking for a member function; its demangled name will
19221 contain namespace info, if there is any. */
19222
19223 static void
19224 guess_partial_die_structure_name (struct partial_die_info *struct_pdi,
19225 struct dwarf2_cu *cu)
19226 {
19227 /* NOTE: carlton/2003-10-07: Getting the info this way changes
19228 what template types look like, because the demangler
19229 frequently doesn't give the same name as the debug info. We
19230 could fix this by only using the demangled name to get the
19231 prefix (but see comment in read_structure_type). */
19232
19233 struct partial_die_info *real_pdi;
19234 struct partial_die_info *child_pdi;
19235
19236 /* If this DIE (this DIE's specification, if any) has a parent, then
19237 we should not do this. We'll prepend the parent's fully qualified
19238 name when we create the partial symbol. */
19239
19240 real_pdi = struct_pdi;
19241 while (real_pdi->has_specification)
19242 {
19243 auto res = find_partial_die (real_pdi->spec_offset,
19244 real_pdi->spec_is_dwz, cu);
19245 real_pdi = res.pdi;
19246 cu = res.cu;
19247 }
19248
19249 if (real_pdi->die_parent != NULL)
19250 return;
19251
19252 for (child_pdi = struct_pdi->die_child;
19253 child_pdi != NULL;
19254 child_pdi = child_pdi->die_sibling)
19255 {
19256 if (child_pdi->tag == DW_TAG_subprogram
19257 && child_pdi->linkage_name != NULL)
19258 {
19259 char *actual_class_name
19260 = language_class_name_from_physname (cu->language_defn,
19261 child_pdi->linkage_name);
19262 if (actual_class_name != NULL)
19263 {
19264 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19265 struct_pdi->name
19266 = obstack_strdup (&objfile->per_bfd->storage_obstack,
19267 actual_class_name);
19268 xfree (actual_class_name);
19269 }
19270 break;
19271 }
19272 }
19273 }
19274
19275 void
19276 partial_die_info::fixup (struct dwarf2_cu *cu)
19277 {
19278 /* Once we've fixed up a die, there's no point in doing so again.
19279 This also avoids a memory leak if we were to call
19280 guess_partial_die_structure_name multiple times. */
19281 if (fixup_called)
19282 return;
19283
19284 /* If we found a reference attribute and the DIE has no name, try
19285 to find a name in the referred to DIE. */
19286
19287 if (name == NULL && has_specification)
19288 {
19289 struct partial_die_info *spec_die;
19290
19291 auto res = find_partial_die (spec_offset, spec_is_dwz, cu);
19292 spec_die = res.pdi;
19293 cu = res.cu;
19294
19295 spec_die->fixup (cu);
19296
19297 if (spec_die->name)
19298 {
19299 name = spec_die->name;
19300
19301 /* Copy DW_AT_external attribute if it is set. */
19302 if (spec_die->is_external)
19303 is_external = spec_die->is_external;
19304 }
19305 }
19306
19307 /* Set default names for some unnamed DIEs. */
19308
19309 if (name == NULL && tag == DW_TAG_namespace)
19310 name = CP_ANONYMOUS_NAMESPACE_STR;
19311
19312 /* If there is no parent die to provide a namespace, and there are
19313 children, see if we can determine the namespace from their linkage
19314 name. */
19315 if (cu->language == language_cplus
19316 && !cu->per_cu->dwarf2_per_objfile->types.empty ()
19317 && die_parent == NULL
19318 && has_children
19319 && (tag == DW_TAG_class_type
19320 || tag == DW_TAG_structure_type
19321 || tag == DW_TAG_union_type))
19322 guess_partial_die_structure_name (this, cu);
19323
19324 /* GCC might emit a nameless struct or union that has a linkage
19325 name. See http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
19326 if (name == NULL
19327 && (tag == DW_TAG_class_type
19328 || tag == DW_TAG_interface_type
19329 || tag == DW_TAG_structure_type
19330 || tag == DW_TAG_union_type)
19331 && linkage_name != NULL)
19332 {
19333 char *demangled;
19334
19335 demangled = gdb_demangle (linkage_name, DMGL_TYPES);
19336 if (demangled)
19337 {
19338 const char *base;
19339
19340 /* Strip any leading namespaces/classes, keep only the base name.
19341 DW_AT_name for named DIEs does not contain the prefixes. */
19342 base = strrchr (demangled, ':');
19343 if (base && base > demangled && base[-1] == ':')
19344 base++;
19345 else
19346 base = demangled;
19347
19348 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
19349 name = obstack_strdup (&objfile->per_bfd->storage_obstack, base);
19350 xfree (demangled);
19351 }
19352 }
19353
19354 fixup_called = 1;
19355 }
19356
19357 /* Read an attribute value described by an attribute form. */
19358
19359 static const gdb_byte *
19360 read_attribute_value (const struct die_reader_specs *reader,
19361 struct attribute *attr, unsigned form,
19362 LONGEST implicit_const, const gdb_byte *info_ptr)
19363 {
19364 struct dwarf2_cu *cu = reader->cu;
19365 struct dwarf2_per_objfile *dwarf2_per_objfile
19366 = cu->per_cu->dwarf2_per_objfile;
19367 struct objfile *objfile = dwarf2_per_objfile->objfile;
19368 struct gdbarch *gdbarch = get_objfile_arch (objfile);
19369 bfd *abfd = reader->abfd;
19370 struct comp_unit_head *cu_header = &cu->header;
19371 unsigned int bytes_read;
19372 struct dwarf_block *blk;
19373
19374 attr->form = (enum dwarf_form) form;
19375 switch (form)
19376 {
19377 case DW_FORM_ref_addr:
19378 if (cu->header.version == 2)
19379 DW_UNSND (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19380 else
19381 DW_UNSND (attr) = read_offset (abfd, info_ptr,
19382 &cu->header, &bytes_read);
19383 info_ptr += bytes_read;
19384 break;
19385 case DW_FORM_GNU_ref_alt:
19386 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19387 info_ptr += bytes_read;
19388 break;
19389 case DW_FORM_addr:
19390 DW_ADDR (attr) = read_address (abfd, info_ptr, cu, &bytes_read);
19391 DW_ADDR (attr) = gdbarch_adjust_dwarf2_addr (gdbarch, DW_ADDR (attr));
19392 info_ptr += bytes_read;
19393 break;
19394 case DW_FORM_block2:
19395 blk = dwarf_alloc_block (cu);
19396 blk->size = read_2_bytes (abfd, info_ptr);
19397 info_ptr += 2;
19398 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19399 info_ptr += blk->size;
19400 DW_BLOCK (attr) = blk;
19401 break;
19402 case DW_FORM_block4:
19403 blk = dwarf_alloc_block (cu);
19404 blk->size = read_4_bytes (abfd, info_ptr);
19405 info_ptr += 4;
19406 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19407 info_ptr += blk->size;
19408 DW_BLOCK (attr) = blk;
19409 break;
19410 case DW_FORM_data2:
19411 DW_UNSND (attr) = read_2_bytes (abfd, info_ptr);
19412 info_ptr += 2;
19413 break;
19414 case DW_FORM_data4:
19415 DW_UNSND (attr) = read_4_bytes (abfd, info_ptr);
19416 info_ptr += 4;
19417 break;
19418 case DW_FORM_data8:
19419 DW_UNSND (attr) = read_8_bytes (abfd, info_ptr);
19420 info_ptr += 8;
19421 break;
19422 case DW_FORM_data16:
19423 blk = dwarf_alloc_block (cu);
19424 blk->size = 16;
19425 blk->data = read_n_bytes (abfd, info_ptr, 16);
19426 info_ptr += 16;
19427 DW_BLOCK (attr) = blk;
19428 break;
19429 case DW_FORM_sec_offset:
19430 DW_UNSND (attr) = read_offset (abfd, info_ptr, &cu->header, &bytes_read);
19431 info_ptr += bytes_read;
19432 break;
19433 case DW_FORM_string:
19434 DW_STRING (attr) = read_direct_string (abfd, info_ptr, &bytes_read);
19435 DW_STRING_IS_CANONICAL (attr) = 0;
19436 info_ptr += bytes_read;
19437 break;
19438 case DW_FORM_strp:
19439 if (!cu->per_cu->is_dwz)
19440 {
19441 DW_STRING (attr) = read_indirect_string (dwarf2_per_objfile,
19442 abfd, info_ptr, cu_header,
19443 &bytes_read);
19444 DW_STRING_IS_CANONICAL (attr) = 0;
19445 info_ptr += bytes_read;
19446 break;
19447 }
19448 /* FALLTHROUGH */
19449 case DW_FORM_line_strp:
19450 if (!cu->per_cu->is_dwz)
19451 {
19452 DW_STRING (attr) = read_indirect_line_string (dwarf2_per_objfile,
19453 abfd, info_ptr,
19454 cu_header, &bytes_read);
19455 DW_STRING_IS_CANONICAL (attr) = 0;
19456 info_ptr += bytes_read;
19457 break;
19458 }
19459 /* FALLTHROUGH */
19460 case DW_FORM_GNU_strp_alt:
19461 {
19462 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
19463 LONGEST str_offset = read_offset (abfd, info_ptr, cu_header,
19464 &bytes_read);
19465
19466 DW_STRING (attr) = read_indirect_string_from_dwz (objfile,
19467 dwz, str_offset);
19468 DW_STRING_IS_CANONICAL (attr) = 0;
19469 info_ptr += bytes_read;
19470 }
19471 break;
19472 case DW_FORM_exprloc:
19473 case DW_FORM_block:
19474 blk = dwarf_alloc_block (cu);
19475 blk->size = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19476 info_ptr += bytes_read;
19477 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19478 info_ptr += blk->size;
19479 DW_BLOCK (attr) = blk;
19480 break;
19481 case DW_FORM_block1:
19482 blk = dwarf_alloc_block (cu);
19483 blk->size = read_1_byte (abfd, info_ptr);
19484 info_ptr += 1;
19485 blk->data = read_n_bytes (abfd, info_ptr, blk->size);
19486 info_ptr += blk->size;
19487 DW_BLOCK (attr) = blk;
19488 break;
19489 case DW_FORM_data1:
19490 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19491 info_ptr += 1;
19492 break;
19493 case DW_FORM_flag:
19494 DW_UNSND (attr) = read_1_byte (abfd, info_ptr);
19495 info_ptr += 1;
19496 break;
19497 case DW_FORM_flag_present:
19498 DW_UNSND (attr) = 1;
19499 break;
19500 case DW_FORM_sdata:
19501 DW_SND (attr) = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19502 info_ptr += bytes_read;
19503 break;
19504 case DW_FORM_udata:
19505 DW_UNSND (attr) = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19506 info_ptr += bytes_read;
19507 break;
19508 case DW_FORM_ref1:
19509 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19510 + read_1_byte (abfd, info_ptr));
19511 info_ptr += 1;
19512 break;
19513 case DW_FORM_ref2:
19514 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19515 + read_2_bytes (abfd, info_ptr));
19516 info_ptr += 2;
19517 break;
19518 case DW_FORM_ref4:
19519 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19520 + read_4_bytes (abfd, info_ptr));
19521 info_ptr += 4;
19522 break;
19523 case DW_FORM_ref8:
19524 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19525 + read_8_bytes (abfd, info_ptr));
19526 info_ptr += 8;
19527 break;
19528 case DW_FORM_ref_sig8:
19529 DW_SIGNATURE (attr) = read_8_bytes (abfd, info_ptr);
19530 info_ptr += 8;
19531 break;
19532 case DW_FORM_ref_udata:
19533 DW_UNSND (attr) = (to_underlying (cu->header.sect_off)
19534 + read_unsigned_leb128 (abfd, info_ptr, &bytes_read));
19535 info_ptr += bytes_read;
19536 break;
19537 case DW_FORM_indirect:
19538 form = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19539 info_ptr += bytes_read;
19540 if (form == DW_FORM_implicit_const)
19541 {
19542 implicit_const = read_signed_leb128 (abfd, info_ptr, &bytes_read);
19543 info_ptr += bytes_read;
19544 }
19545 info_ptr = read_attribute_value (reader, attr, form, implicit_const,
19546 info_ptr);
19547 break;
19548 case DW_FORM_implicit_const:
19549 DW_SND (attr) = implicit_const;
19550 break;
19551 case DW_FORM_addrx:
19552 case DW_FORM_GNU_addr_index:
19553 if (reader->dwo_file == NULL)
19554 {
19555 /* For now flag a hard error.
19556 Later we can turn this into a complaint. */
19557 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19558 dwarf_form_name (form),
19559 bfd_get_filename (abfd));
19560 }
19561 DW_ADDR (attr) = read_addr_index_from_leb128 (cu, info_ptr, &bytes_read);
19562 info_ptr += bytes_read;
19563 break;
19564 case DW_FORM_strx:
19565 case DW_FORM_strx1:
19566 case DW_FORM_strx2:
19567 case DW_FORM_strx3:
19568 case DW_FORM_strx4:
19569 case DW_FORM_GNU_str_index:
19570 if (reader->dwo_file == NULL)
19571 {
19572 /* For now flag a hard error.
19573 Later we can turn this into a complaint if warranted. */
19574 error (_("Dwarf Error: %s found in non-DWO CU [in module %s]"),
19575 dwarf_form_name (form),
19576 bfd_get_filename (abfd));
19577 }
19578 {
19579 ULONGEST str_index;
19580 if (form == DW_FORM_strx1)
19581 {
19582 str_index = read_1_byte (abfd, info_ptr);
19583 info_ptr += 1;
19584 }
19585 else if (form == DW_FORM_strx2)
19586 {
19587 str_index = read_2_bytes (abfd, info_ptr);
19588 info_ptr += 2;
19589 }
19590 else if (form == DW_FORM_strx3)
19591 {
19592 str_index = read_3_bytes (abfd, info_ptr);
19593 info_ptr += 3;
19594 }
19595 else if (form == DW_FORM_strx4)
19596 {
19597 str_index = read_4_bytes (abfd, info_ptr);
19598 info_ptr += 4;
19599 }
19600 else
19601 {
19602 str_index = read_unsigned_leb128 (abfd, info_ptr, &bytes_read);
19603 info_ptr += bytes_read;
19604 }
19605 DW_STRING (attr) = read_str_index (reader, str_index);
19606 DW_STRING_IS_CANONICAL (attr) = 0;
19607 }
19608 break;
19609 default:
19610 error (_("Dwarf Error: Cannot handle %s in DWARF reader [in module %s]"),
19611 dwarf_form_name (form),
19612 bfd_get_filename (abfd));
19613 }
19614
19615 /* Super hack. */
19616 if (cu->per_cu->is_dwz && attr_form_is_ref (attr))
19617 attr->form = DW_FORM_GNU_ref_alt;
19618
19619 /* We have seen instances where the compiler tried to emit a byte
19620 size attribute of -1 which ended up being encoded as an unsigned
19621 0xffffffff. Although 0xffffffff is technically a valid size value,
19622 an object of this size seems pretty unlikely so we can relatively
19623 safely treat these cases as if the size attribute was invalid and
19624 treat them as zero by default. */
19625 if (attr->name == DW_AT_byte_size
19626 && form == DW_FORM_data4
19627 && DW_UNSND (attr) >= 0xffffffff)
19628 {
19629 complaint
19630 (_("Suspicious DW_AT_byte_size value treated as zero instead of %s"),
19631 hex_string (DW_UNSND (attr)));
19632 DW_UNSND (attr) = 0;
19633 }
19634
19635 return info_ptr;
19636 }
19637
19638 /* Read an attribute described by an abbreviated attribute. */
19639
19640 static const gdb_byte *
19641 read_attribute (const struct die_reader_specs *reader,
19642 struct attribute *attr, struct attr_abbrev *abbrev,
19643 const gdb_byte *info_ptr)
19644 {
19645 attr->name = abbrev->name;
19646 return read_attribute_value (reader, attr, abbrev->form,
19647 abbrev->implicit_const, info_ptr);
19648 }
19649
19650 /* Read dwarf information from a buffer. */
19651
19652 static unsigned int
19653 read_1_byte (bfd *abfd, const gdb_byte *buf)
19654 {
19655 return bfd_get_8 (abfd, buf);
19656 }
19657
19658 static int
19659 read_1_signed_byte (bfd *abfd, const gdb_byte *buf)
19660 {
19661 return bfd_get_signed_8 (abfd, buf);
19662 }
19663
19664 static unsigned int
19665 read_2_bytes (bfd *abfd, const gdb_byte *buf)
19666 {
19667 return bfd_get_16 (abfd, buf);
19668 }
19669
19670 static int
19671 read_2_signed_bytes (bfd *abfd, const gdb_byte *buf)
19672 {
19673 return bfd_get_signed_16 (abfd, buf);
19674 }
19675
19676 static unsigned int
19677 read_3_bytes (bfd *abfd, const gdb_byte *buf)
19678 {
19679 unsigned int result = 0;
19680 for (int i = 0; i < 3; ++i)
19681 {
19682 unsigned char byte = bfd_get_8 (abfd, buf);
19683 buf++;
19684 result |= ((unsigned int) byte << (i * 8));
19685 }
19686 return result;
19687 }
19688
19689 static unsigned int
19690 read_4_bytes (bfd *abfd, const gdb_byte *buf)
19691 {
19692 return bfd_get_32 (abfd, buf);
19693 }
19694
19695 static int
19696 read_4_signed_bytes (bfd *abfd, const gdb_byte *buf)
19697 {
19698 return bfd_get_signed_32 (abfd, buf);
19699 }
19700
19701 static ULONGEST
19702 read_8_bytes (bfd *abfd, const gdb_byte *buf)
19703 {
19704 return bfd_get_64 (abfd, buf);
19705 }
19706
19707 static CORE_ADDR
19708 read_address (bfd *abfd, const gdb_byte *buf, struct dwarf2_cu *cu,
19709 unsigned int *bytes_read)
19710 {
19711 struct comp_unit_head *cu_header = &cu->header;
19712 CORE_ADDR retval = 0;
19713
19714 if (cu_header->signed_addr_p)
19715 {
19716 switch (cu_header->addr_size)
19717 {
19718 case 2:
19719 retval = bfd_get_signed_16 (abfd, buf);
19720 break;
19721 case 4:
19722 retval = bfd_get_signed_32 (abfd, buf);
19723 break;
19724 case 8:
19725 retval = bfd_get_signed_64 (abfd, buf);
19726 break;
19727 default:
19728 internal_error (__FILE__, __LINE__,
19729 _("read_address: bad switch, signed [in module %s]"),
19730 bfd_get_filename (abfd));
19731 }
19732 }
19733 else
19734 {
19735 switch (cu_header->addr_size)
19736 {
19737 case 2:
19738 retval = bfd_get_16 (abfd, buf);
19739 break;
19740 case 4:
19741 retval = bfd_get_32 (abfd, buf);
19742 break;
19743 case 8:
19744 retval = bfd_get_64 (abfd, buf);
19745 break;
19746 default:
19747 internal_error (__FILE__, __LINE__,
19748 _("read_address: bad switch, "
19749 "unsigned [in module %s]"),
19750 bfd_get_filename (abfd));
19751 }
19752 }
19753
19754 *bytes_read = cu_header->addr_size;
19755 return retval;
19756 }
19757
19758 /* Read the initial length from a section. The (draft) DWARF 3
19759 specification allows the initial length to take up either 4 bytes
19760 or 12 bytes. If the first 4 bytes are 0xffffffff, then the next 8
19761 bytes describe the length and all offsets will be 8 bytes in length
19762 instead of 4.
19763
19764 An older, non-standard 64-bit format is also handled by this
19765 function. The older format in question stores the initial length
19766 as an 8-byte quantity without an escape value. Lengths greater
19767 than 2^32 aren't very common which means that the initial 4 bytes
19768 is almost always zero. Since a length value of zero doesn't make
19769 sense for the 32-bit format, this initial zero can be considered to
19770 be an escape value which indicates the presence of the older 64-bit
19771 format. As written, the code can't detect (old format) lengths
19772 greater than 4GB. If it becomes necessary to handle lengths
19773 somewhat larger than 4GB, we could allow other small values (such
19774 as the non-sensical values of 1, 2, and 3) to also be used as
19775 escape values indicating the presence of the old format.
19776
19777 The value returned via bytes_read should be used to increment the
19778 relevant pointer after calling read_initial_length().
19779
19780 [ Note: read_initial_length() and read_offset() are based on the
19781 document entitled "DWARF Debugging Information Format", revision
19782 3, draft 8, dated November 19, 2001. This document was obtained
19783 from:
19784
19785 http://reality.sgiweb.org/davea/dwarf3-draft8-011125.pdf
19786
19787 This document is only a draft and is subject to change. (So beware.)
19788
19789 Details regarding the older, non-standard 64-bit format were
19790 determined empirically by examining 64-bit ELF files produced by
19791 the SGI toolchain on an IRIX 6.5 machine.
19792
19793 - Kevin, July 16, 2002
19794 ] */
19795
19796 static LONGEST
19797 read_initial_length (bfd *abfd, const gdb_byte *buf, unsigned int *bytes_read)
19798 {
19799 LONGEST length = bfd_get_32 (abfd, buf);
19800
19801 if (length == 0xffffffff)
19802 {
19803 length = bfd_get_64 (abfd, buf + 4);
19804 *bytes_read = 12;
19805 }
19806 else if (length == 0)
19807 {
19808 /* Handle the (non-standard) 64-bit DWARF2 format used by IRIX. */
19809 length = bfd_get_64 (abfd, buf);
19810 *bytes_read = 8;
19811 }
19812 else
19813 {
19814 *bytes_read = 4;
19815 }
19816
19817 return length;
19818 }
19819
19820 /* Cover function for read_initial_length.
19821 Returns the length of the object at BUF, and stores the size of the
19822 initial length in *BYTES_READ and stores the size that offsets will be in
19823 *OFFSET_SIZE.
19824 If the initial length size is not equivalent to that specified in
19825 CU_HEADER then issue a complaint.
19826 This is useful when reading non-comp-unit headers. */
19827
19828 static LONGEST
19829 read_checked_initial_length_and_offset (bfd *abfd, const gdb_byte *buf,
19830 const struct comp_unit_head *cu_header,
19831 unsigned int *bytes_read,
19832 unsigned int *offset_size)
19833 {
19834 LONGEST length = read_initial_length (abfd, buf, bytes_read);
19835
19836 gdb_assert (cu_header->initial_length_size == 4
19837 || cu_header->initial_length_size == 8
19838 || cu_header->initial_length_size == 12);
19839
19840 if (cu_header->initial_length_size != *bytes_read)
19841 complaint (_("intermixed 32-bit and 64-bit DWARF sections"));
19842
19843 *offset_size = (*bytes_read == 4) ? 4 : 8;
19844 return length;
19845 }
19846
19847 /* Read an offset from the data stream. The size of the offset is
19848 given by cu_header->offset_size. */
19849
19850 static LONGEST
19851 read_offset (bfd *abfd, const gdb_byte *buf,
19852 const struct comp_unit_head *cu_header,
19853 unsigned int *bytes_read)
19854 {
19855 LONGEST offset = read_offset_1 (abfd, buf, cu_header->offset_size);
19856
19857 *bytes_read = cu_header->offset_size;
19858 return offset;
19859 }
19860
19861 /* Read an offset from the data stream. */
19862
19863 static LONGEST
19864 read_offset_1 (bfd *abfd, const gdb_byte *buf, unsigned int offset_size)
19865 {
19866 LONGEST retval = 0;
19867
19868 switch (offset_size)
19869 {
19870 case 4:
19871 retval = bfd_get_32 (abfd, buf);
19872 break;
19873 case 8:
19874 retval = bfd_get_64 (abfd, buf);
19875 break;
19876 default:
19877 internal_error (__FILE__, __LINE__,
19878 _("read_offset_1: bad switch [in module %s]"),
19879 bfd_get_filename (abfd));
19880 }
19881
19882 return retval;
19883 }
19884
19885 static const gdb_byte *
19886 read_n_bytes (bfd *abfd, const gdb_byte *buf, unsigned int size)
19887 {
19888 /* If the size of a host char is 8 bits, we can return a pointer
19889 to the buffer, otherwise we have to copy the data to a buffer
19890 allocated on the temporary obstack. */
19891 gdb_assert (HOST_CHAR_BIT == 8);
19892 return buf;
19893 }
19894
19895 static const char *
19896 read_direct_string (bfd *abfd, const gdb_byte *buf,
19897 unsigned int *bytes_read_ptr)
19898 {
19899 /* If the size of a host char is 8 bits, we can return a pointer
19900 to the string, otherwise we have to copy the string to a buffer
19901 allocated on the temporary obstack. */
19902 gdb_assert (HOST_CHAR_BIT == 8);
19903 if (*buf == '\0')
19904 {
19905 *bytes_read_ptr = 1;
19906 return NULL;
19907 }
19908 *bytes_read_ptr = strlen ((const char *) buf) + 1;
19909 return (const char *) buf;
19910 }
19911
19912 /* Return pointer to string at section SECT offset STR_OFFSET with error
19913 reporting strings FORM_NAME and SECT_NAME. */
19914
19915 static const char *
19916 read_indirect_string_at_offset_from (struct objfile *objfile,
19917 bfd *abfd, LONGEST str_offset,
19918 struct dwarf2_section_info *sect,
19919 const char *form_name,
19920 const char *sect_name)
19921 {
19922 dwarf2_read_section (objfile, sect);
19923 if (sect->buffer == NULL)
19924 error (_("%s used without %s section [in module %s]"),
19925 form_name, sect_name, bfd_get_filename (abfd));
19926 if (str_offset >= sect->size)
19927 error (_("%s pointing outside of %s section [in module %s]"),
19928 form_name, sect_name, bfd_get_filename (abfd));
19929 gdb_assert (HOST_CHAR_BIT == 8);
19930 if (sect->buffer[str_offset] == '\0')
19931 return NULL;
19932 return (const char *) (sect->buffer + str_offset);
19933 }
19934
19935 /* Return pointer to string at .debug_str offset STR_OFFSET. */
19936
19937 static const char *
19938 read_indirect_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19939 bfd *abfd, LONGEST str_offset)
19940 {
19941 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19942 abfd, str_offset,
19943 &dwarf2_per_objfile->str,
19944 "DW_FORM_strp", ".debug_str");
19945 }
19946
19947 /* Return pointer to string at .debug_line_str offset STR_OFFSET. */
19948
19949 static const char *
19950 read_indirect_line_string_at_offset (struct dwarf2_per_objfile *dwarf2_per_objfile,
19951 bfd *abfd, LONGEST str_offset)
19952 {
19953 return read_indirect_string_at_offset_from (dwarf2_per_objfile->objfile,
19954 abfd, str_offset,
19955 &dwarf2_per_objfile->line_str,
19956 "DW_FORM_line_strp",
19957 ".debug_line_str");
19958 }
19959
19960 /* Read a string at offset STR_OFFSET in the .debug_str section from
19961 the .dwz file DWZ. Throw an error if the offset is too large. If
19962 the string consists of a single NUL byte, return NULL; otherwise
19963 return a pointer to the string. */
19964
19965 static const char *
19966 read_indirect_string_from_dwz (struct objfile *objfile, struct dwz_file *dwz,
19967 LONGEST str_offset)
19968 {
19969 dwarf2_read_section (objfile, &dwz->str);
19970
19971 if (dwz->str.buffer == NULL)
19972 error (_("DW_FORM_GNU_strp_alt used without .debug_str "
19973 "section [in module %s]"),
19974 bfd_get_filename (dwz->dwz_bfd.get ()));
19975 if (str_offset >= dwz->str.size)
19976 error (_("DW_FORM_GNU_strp_alt pointing outside of "
19977 ".debug_str section [in module %s]"),
19978 bfd_get_filename (dwz->dwz_bfd.get ()));
19979 gdb_assert (HOST_CHAR_BIT == 8);
19980 if (dwz->str.buffer[str_offset] == '\0')
19981 return NULL;
19982 return (const char *) (dwz->str.buffer + str_offset);
19983 }
19984
19985 /* Return pointer to string at .debug_str offset as read from BUF.
19986 BUF is assumed to be in a compilation unit described by CU_HEADER.
19987 Return *BYTES_READ_PTR count of bytes read from BUF. */
19988
19989 static const char *
19990 read_indirect_string (struct dwarf2_per_objfile *dwarf2_per_objfile, bfd *abfd,
19991 const gdb_byte *buf,
19992 const struct comp_unit_head *cu_header,
19993 unsigned int *bytes_read_ptr)
19994 {
19995 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
19996
19997 return read_indirect_string_at_offset (dwarf2_per_objfile, abfd, str_offset);
19998 }
19999
20000 /* Return pointer to string at .debug_line_str offset as read from BUF.
20001 BUF is assumed to be in a compilation unit described by CU_HEADER.
20002 Return *BYTES_READ_PTR count of bytes read from BUF. */
20003
20004 static const char *
20005 read_indirect_line_string (struct dwarf2_per_objfile *dwarf2_per_objfile,
20006 bfd *abfd, const gdb_byte *buf,
20007 const struct comp_unit_head *cu_header,
20008 unsigned int *bytes_read_ptr)
20009 {
20010 LONGEST str_offset = read_offset (abfd, buf, cu_header, bytes_read_ptr);
20011
20012 return read_indirect_line_string_at_offset (dwarf2_per_objfile, abfd,
20013 str_offset);
20014 }
20015
20016 ULONGEST
20017 read_unsigned_leb128 (bfd *abfd, const gdb_byte *buf,
20018 unsigned int *bytes_read_ptr)
20019 {
20020 ULONGEST result;
20021 unsigned int num_read;
20022 int shift;
20023 unsigned char byte;
20024
20025 result = 0;
20026 shift = 0;
20027 num_read = 0;
20028 while (1)
20029 {
20030 byte = bfd_get_8 (abfd, buf);
20031 buf++;
20032 num_read++;
20033 result |= ((ULONGEST) (byte & 127) << shift);
20034 if ((byte & 128) == 0)
20035 {
20036 break;
20037 }
20038 shift += 7;
20039 }
20040 *bytes_read_ptr = num_read;
20041 return result;
20042 }
20043
20044 static LONGEST
20045 read_signed_leb128 (bfd *abfd, const gdb_byte *buf,
20046 unsigned int *bytes_read_ptr)
20047 {
20048 ULONGEST result;
20049 int shift, num_read;
20050 unsigned char byte;
20051
20052 result = 0;
20053 shift = 0;
20054 num_read = 0;
20055 while (1)
20056 {
20057 byte = bfd_get_8 (abfd, buf);
20058 buf++;
20059 num_read++;
20060 result |= ((ULONGEST) (byte & 127) << shift);
20061 shift += 7;
20062 if ((byte & 128) == 0)
20063 {
20064 break;
20065 }
20066 }
20067 if ((shift < 8 * sizeof (result)) && (byte & 0x40))
20068 result |= -(((ULONGEST) 1) << shift);
20069 *bytes_read_ptr = num_read;
20070 return result;
20071 }
20072
20073 /* Given index ADDR_INDEX in .debug_addr, fetch the value.
20074 ADDR_BASE is the DW_AT_GNU_addr_base attribute or zero.
20075 ADDR_SIZE is the size of addresses from the CU header. */
20076
20077 static CORE_ADDR
20078 read_addr_index_1 (struct dwarf2_per_objfile *dwarf2_per_objfile,
20079 unsigned int addr_index, ULONGEST addr_base, int addr_size)
20080 {
20081 struct objfile *objfile = dwarf2_per_objfile->objfile;
20082 bfd *abfd = objfile->obfd;
20083 const gdb_byte *info_ptr;
20084
20085 dwarf2_read_section (objfile, &dwarf2_per_objfile->addr);
20086 if (dwarf2_per_objfile->addr.buffer == NULL)
20087 error (_("DW_FORM_addr_index used without .debug_addr section [in module %s]"),
20088 objfile_name (objfile));
20089 if (addr_base + addr_index * addr_size >= dwarf2_per_objfile->addr.size)
20090 error (_("DW_FORM_addr_index pointing outside of "
20091 ".debug_addr section [in module %s]"),
20092 objfile_name (objfile));
20093 info_ptr = (dwarf2_per_objfile->addr.buffer
20094 + addr_base + addr_index * addr_size);
20095 if (addr_size == 4)
20096 return bfd_get_32 (abfd, info_ptr);
20097 else
20098 return bfd_get_64 (abfd, info_ptr);
20099 }
20100
20101 /* Given index ADDR_INDEX in .debug_addr, fetch the value. */
20102
20103 static CORE_ADDR
20104 read_addr_index (struct dwarf2_cu *cu, unsigned int addr_index)
20105 {
20106 return read_addr_index_1 (cu->per_cu->dwarf2_per_objfile, addr_index,
20107 cu->addr_base, cu->header.addr_size);
20108 }
20109
20110 /* Given a pointer to an leb128 value, fetch the value from .debug_addr. */
20111
20112 static CORE_ADDR
20113 read_addr_index_from_leb128 (struct dwarf2_cu *cu, const gdb_byte *info_ptr,
20114 unsigned int *bytes_read)
20115 {
20116 bfd *abfd = cu->per_cu->dwarf2_per_objfile->objfile->obfd;
20117 unsigned int addr_index = read_unsigned_leb128 (abfd, info_ptr, bytes_read);
20118
20119 return read_addr_index (cu, addr_index);
20120 }
20121
20122 /* Data structure to pass results from dwarf2_read_addr_index_reader
20123 back to dwarf2_read_addr_index. */
20124
20125 struct dwarf2_read_addr_index_data
20126 {
20127 ULONGEST addr_base;
20128 int addr_size;
20129 };
20130
20131 /* die_reader_func for dwarf2_read_addr_index. */
20132
20133 static void
20134 dwarf2_read_addr_index_reader (const struct die_reader_specs *reader,
20135 const gdb_byte *info_ptr,
20136 struct die_info *comp_unit_die,
20137 int has_children,
20138 void *data)
20139 {
20140 struct dwarf2_cu *cu = reader->cu;
20141 struct dwarf2_read_addr_index_data *aidata =
20142 (struct dwarf2_read_addr_index_data *) data;
20143
20144 aidata->addr_base = cu->addr_base;
20145 aidata->addr_size = cu->header.addr_size;
20146 }
20147
20148 /* Given an index in .debug_addr, fetch the value.
20149 NOTE: This can be called during dwarf expression evaluation,
20150 long after the debug information has been read, and thus per_cu->cu
20151 may no longer exist. */
20152
20153 CORE_ADDR
20154 dwarf2_read_addr_index (struct dwarf2_per_cu_data *per_cu,
20155 unsigned int addr_index)
20156 {
20157 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
20158 struct dwarf2_cu *cu = per_cu->cu;
20159 ULONGEST addr_base;
20160 int addr_size;
20161
20162 /* We need addr_base and addr_size.
20163 If we don't have PER_CU->cu, we have to get it.
20164 Nasty, but the alternative is storing the needed info in PER_CU,
20165 which at this point doesn't seem justified: it's not clear how frequently
20166 it would get used and it would increase the size of every PER_CU.
20167 Entry points like dwarf2_per_cu_addr_size do a similar thing
20168 so we're not in uncharted territory here.
20169 Alas we need to be a bit more complicated as addr_base is contained
20170 in the DIE.
20171
20172 We don't need to read the entire CU(/TU).
20173 We just need the header and top level die.
20174
20175 IWBN to use the aging mechanism to let us lazily later discard the CU.
20176 For now we skip this optimization. */
20177
20178 if (cu != NULL)
20179 {
20180 addr_base = cu->addr_base;
20181 addr_size = cu->header.addr_size;
20182 }
20183 else
20184 {
20185 struct dwarf2_read_addr_index_data aidata;
20186
20187 /* Note: We can't use init_cutu_and_read_dies_simple here,
20188 we need addr_base. */
20189 init_cutu_and_read_dies (per_cu, NULL, 0, 0, false,
20190 dwarf2_read_addr_index_reader, &aidata);
20191 addr_base = aidata.addr_base;
20192 addr_size = aidata.addr_size;
20193 }
20194
20195 return read_addr_index_1 (dwarf2_per_objfile, addr_index, addr_base,
20196 addr_size);
20197 }
20198
20199 /* Given a DW_FORM_GNU_str_index or DW_FORM_strx, fetch the string.
20200 This is only used by the Fission support. */
20201
20202 static const char *
20203 read_str_index (const struct die_reader_specs *reader, ULONGEST str_index)
20204 {
20205 struct dwarf2_cu *cu = reader->cu;
20206 struct dwarf2_per_objfile *dwarf2_per_objfile
20207 = cu->per_cu->dwarf2_per_objfile;
20208 struct objfile *objfile = dwarf2_per_objfile->objfile;
20209 const char *objf_name = objfile_name (objfile);
20210 bfd *abfd = objfile->obfd;
20211 struct dwarf2_section_info *str_section = &reader->dwo_file->sections.str;
20212 struct dwarf2_section_info *str_offsets_section =
20213 &reader->dwo_file->sections.str_offsets;
20214 const gdb_byte *info_ptr;
20215 ULONGEST str_offset;
20216 static const char form_name[] = "DW_FORM_GNU_str_index or DW_FORM_strx";
20217
20218 dwarf2_read_section (objfile, str_section);
20219 dwarf2_read_section (objfile, str_offsets_section);
20220 if (str_section->buffer == NULL)
20221 error (_("%s used without .debug_str.dwo section"
20222 " in CU at offset %s [in module %s]"),
20223 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20224 if (str_offsets_section->buffer == NULL)
20225 error (_("%s used without .debug_str_offsets.dwo section"
20226 " in CU at offset %s [in module %s]"),
20227 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20228 if (str_index * cu->header.offset_size >= str_offsets_section->size)
20229 error (_("%s pointing outside of .debug_str_offsets.dwo"
20230 " section in CU at offset %s [in module %s]"),
20231 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20232 info_ptr = (str_offsets_section->buffer
20233 + str_index * cu->header.offset_size);
20234 if (cu->header.offset_size == 4)
20235 str_offset = bfd_get_32 (abfd, info_ptr);
20236 else
20237 str_offset = bfd_get_64 (abfd, info_ptr);
20238 if (str_offset >= str_section->size)
20239 error (_("Offset from %s pointing outside of"
20240 " .debug_str.dwo section in CU at offset %s [in module %s]"),
20241 form_name, sect_offset_str (cu->header.sect_off), objf_name);
20242 return (const char *) (str_section->buffer + str_offset);
20243 }
20244
20245 /* Return the length of an LEB128 number in BUF. */
20246
20247 static int
20248 leb128_size (const gdb_byte *buf)
20249 {
20250 const gdb_byte *begin = buf;
20251 gdb_byte byte;
20252
20253 while (1)
20254 {
20255 byte = *buf++;
20256 if ((byte & 128) == 0)
20257 return buf - begin;
20258 }
20259 }
20260
20261 static void
20262 set_cu_language (unsigned int lang, struct dwarf2_cu *cu)
20263 {
20264 switch (lang)
20265 {
20266 case DW_LANG_C89:
20267 case DW_LANG_C99:
20268 case DW_LANG_C11:
20269 case DW_LANG_C:
20270 case DW_LANG_UPC:
20271 cu->language = language_c;
20272 break;
20273 case DW_LANG_Java:
20274 case DW_LANG_C_plus_plus:
20275 case DW_LANG_C_plus_plus_11:
20276 case DW_LANG_C_plus_plus_14:
20277 cu->language = language_cplus;
20278 break;
20279 case DW_LANG_D:
20280 cu->language = language_d;
20281 break;
20282 case DW_LANG_Fortran77:
20283 case DW_LANG_Fortran90:
20284 case DW_LANG_Fortran95:
20285 case DW_LANG_Fortran03:
20286 case DW_LANG_Fortran08:
20287 cu->language = language_fortran;
20288 break;
20289 case DW_LANG_Go:
20290 cu->language = language_go;
20291 break;
20292 case DW_LANG_Mips_Assembler:
20293 cu->language = language_asm;
20294 break;
20295 case DW_LANG_Ada83:
20296 case DW_LANG_Ada95:
20297 cu->language = language_ada;
20298 break;
20299 case DW_LANG_Modula2:
20300 cu->language = language_m2;
20301 break;
20302 case DW_LANG_Pascal83:
20303 cu->language = language_pascal;
20304 break;
20305 case DW_LANG_ObjC:
20306 cu->language = language_objc;
20307 break;
20308 case DW_LANG_Rust:
20309 case DW_LANG_Rust_old:
20310 cu->language = language_rust;
20311 break;
20312 case DW_LANG_Cobol74:
20313 case DW_LANG_Cobol85:
20314 default:
20315 cu->language = language_minimal;
20316 break;
20317 }
20318 cu->language_defn = language_def (cu->language);
20319 }
20320
20321 /* Return the named attribute or NULL if not there. */
20322
20323 static struct attribute *
20324 dwarf2_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20325 {
20326 for (;;)
20327 {
20328 unsigned int i;
20329 struct attribute *spec = NULL;
20330
20331 for (i = 0; i < die->num_attrs; ++i)
20332 {
20333 if (die->attrs[i].name == name)
20334 return &die->attrs[i];
20335 if (die->attrs[i].name == DW_AT_specification
20336 || die->attrs[i].name == DW_AT_abstract_origin)
20337 spec = &die->attrs[i];
20338 }
20339
20340 if (!spec)
20341 break;
20342
20343 die = follow_die_ref (die, spec, &cu);
20344 }
20345
20346 return NULL;
20347 }
20348
20349 /* Return the named attribute or NULL if not there,
20350 but do not follow DW_AT_specification, etc.
20351 This is for use in contexts where we're reading .debug_types dies.
20352 Following DW_AT_specification, DW_AT_abstract_origin will take us
20353 back up the chain, and we want to go down. */
20354
20355 static struct attribute *
20356 dwarf2_attr_no_follow (struct die_info *die, unsigned int name)
20357 {
20358 unsigned int i;
20359
20360 for (i = 0; i < die->num_attrs; ++i)
20361 if (die->attrs[i].name == name)
20362 return &die->attrs[i];
20363
20364 return NULL;
20365 }
20366
20367 /* Return the string associated with a string-typed attribute, or NULL if it
20368 is either not found or is of an incorrect type. */
20369
20370 static const char *
20371 dwarf2_string_attr (struct die_info *die, unsigned int name, struct dwarf2_cu *cu)
20372 {
20373 struct attribute *attr;
20374 const char *str = NULL;
20375
20376 attr = dwarf2_attr (die, name, cu);
20377
20378 if (attr != NULL)
20379 {
20380 if (attr->form == DW_FORM_strp || attr->form == DW_FORM_line_strp
20381 || attr->form == DW_FORM_string
20382 || attr->form == DW_FORM_strx
20383 || attr->form == DW_FORM_strx1
20384 || attr->form == DW_FORM_strx2
20385 || attr->form == DW_FORM_strx3
20386 || attr->form == DW_FORM_strx4
20387 || attr->form == DW_FORM_GNU_str_index
20388 || attr->form == DW_FORM_GNU_strp_alt)
20389 str = DW_STRING (attr);
20390 else
20391 complaint (_("string type expected for attribute %s for "
20392 "DIE at %s in module %s"),
20393 dwarf_attr_name (name), sect_offset_str (die->sect_off),
20394 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
20395 }
20396
20397 return str;
20398 }
20399
20400 /* Return the dwo name or NULL if not present. If present, it is in either
20401 DW_AT_GNU_dwo_name or DW_AT_dwo_name attribute. */
20402 static const char *
20403 dwarf2_dwo_name (struct die_info *die, struct dwarf2_cu *cu)
20404 {
20405 const char *dwo_name = dwarf2_string_attr (die, DW_AT_GNU_dwo_name, cu);
20406 if (dwo_name == nullptr)
20407 dwo_name = dwarf2_string_attr (die, DW_AT_dwo_name, cu);
20408 return dwo_name;
20409 }
20410
20411 /* Return non-zero iff the attribute NAME is defined for the given DIE,
20412 and holds a non-zero value. This function should only be used for
20413 DW_FORM_flag or DW_FORM_flag_present attributes. */
20414
20415 static int
20416 dwarf2_flag_true_p (struct die_info *die, unsigned name, struct dwarf2_cu *cu)
20417 {
20418 struct attribute *attr = dwarf2_attr (die, name, cu);
20419
20420 return (attr && DW_UNSND (attr));
20421 }
20422
20423 static int
20424 die_is_declaration (struct die_info *die, struct dwarf2_cu *cu)
20425 {
20426 /* A DIE is a declaration if it has a DW_AT_declaration attribute
20427 which value is non-zero. However, we have to be careful with
20428 DIEs having a DW_AT_specification attribute, because dwarf2_attr()
20429 (via dwarf2_flag_true_p) follows this attribute. So we may
20430 end up accidently finding a declaration attribute that belongs
20431 to a different DIE referenced by the specification attribute,
20432 even though the given DIE does not have a declaration attribute. */
20433 return (dwarf2_flag_true_p (die, DW_AT_declaration, cu)
20434 && dwarf2_attr (die, DW_AT_specification, cu) == NULL);
20435 }
20436
20437 /* Return the die giving the specification for DIE, if there is
20438 one. *SPEC_CU is the CU containing DIE on input, and the CU
20439 containing the return value on output. If there is no
20440 specification, but there is an abstract origin, that is
20441 returned. */
20442
20443 static struct die_info *
20444 die_specification (struct die_info *die, struct dwarf2_cu **spec_cu)
20445 {
20446 struct attribute *spec_attr = dwarf2_attr (die, DW_AT_specification,
20447 *spec_cu);
20448
20449 if (spec_attr == NULL)
20450 spec_attr = dwarf2_attr (die, DW_AT_abstract_origin, *spec_cu);
20451
20452 if (spec_attr == NULL)
20453 return NULL;
20454 else
20455 return follow_die_ref (die, spec_attr, spec_cu);
20456 }
20457
20458 /* Stub for free_line_header to match void * callback types. */
20459
20460 static void
20461 free_line_header_voidp (void *arg)
20462 {
20463 struct line_header *lh = (struct line_header *) arg;
20464
20465 delete lh;
20466 }
20467
20468 void
20469 line_header::add_include_dir (const char *include_dir)
20470 {
20471 if (dwarf_line_debug >= 2)
20472 {
20473 size_t new_size;
20474 if (version >= 5)
20475 new_size = m_include_dirs.size ();
20476 else
20477 new_size = m_include_dirs.size () + 1;
20478 fprintf_unfiltered (gdb_stdlog, "Adding dir %zu: %s\n",
20479 new_size, include_dir);
20480 }
20481 m_include_dirs.push_back (include_dir);
20482 }
20483
20484 void
20485 line_header::add_file_name (const char *name,
20486 dir_index d_index,
20487 unsigned int mod_time,
20488 unsigned int length)
20489 {
20490 if (dwarf_line_debug >= 2)
20491 {
20492 size_t new_size;
20493 if (version >= 5)
20494 new_size = file_names_size ();
20495 else
20496 new_size = file_names_size () + 1;
20497 fprintf_unfiltered (gdb_stdlog, "Adding file %zu: %s\n",
20498 new_size, name);
20499 }
20500 m_file_names.emplace_back (name, d_index, mod_time, length);
20501 }
20502
20503 /* A convenience function to find the proper .debug_line section for a CU. */
20504
20505 static struct dwarf2_section_info *
20506 get_debug_line_section (struct dwarf2_cu *cu)
20507 {
20508 struct dwarf2_section_info *section;
20509 struct dwarf2_per_objfile *dwarf2_per_objfile
20510 = cu->per_cu->dwarf2_per_objfile;
20511
20512 /* For TUs in DWO files, the DW_AT_stmt_list attribute lives in the
20513 DWO file. */
20514 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20515 section = &cu->dwo_unit->dwo_file->sections.line;
20516 else if (cu->per_cu->is_dwz)
20517 {
20518 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
20519
20520 section = &dwz->line;
20521 }
20522 else
20523 section = &dwarf2_per_objfile->line;
20524
20525 return section;
20526 }
20527
20528 /* Read directory or file name entry format, starting with byte of
20529 format count entries, ULEB128 pairs of entry formats, ULEB128 of
20530 entries count and the entries themselves in the described entry
20531 format. */
20532
20533 static void
20534 read_formatted_entries (struct dwarf2_per_objfile *dwarf2_per_objfile,
20535 bfd *abfd, const gdb_byte **bufp,
20536 struct line_header *lh,
20537 const struct comp_unit_head *cu_header,
20538 void (*callback) (struct line_header *lh,
20539 const char *name,
20540 dir_index d_index,
20541 unsigned int mod_time,
20542 unsigned int length))
20543 {
20544 gdb_byte format_count, formati;
20545 ULONGEST data_count, datai;
20546 const gdb_byte *buf = *bufp;
20547 const gdb_byte *format_header_data;
20548 unsigned int bytes_read;
20549
20550 format_count = read_1_byte (abfd, buf);
20551 buf += 1;
20552 format_header_data = buf;
20553 for (formati = 0; formati < format_count; formati++)
20554 {
20555 read_unsigned_leb128 (abfd, buf, &bytes_read);
20556 buf += bytes_read;
20557 read_unsigned_leb128 (abfd, buf, &bytes_read);
20558 buf += bytes_read;
20559 }
20560
20561 data_count = read_unsigned_leb128 (abfd, buf, &bytes_read);
20562 buf += bytes_read;
20563 for (datai = 0; datai < data_count; datai++)
20564 {
20565 const gdb_byte *format = format_header_data;
20566 struct file_entry fe;
20567
20568 for (formati = 0; formati < format_count; formati++)
20569 {
20570 ULONGEST content_type = read_unsigned_leb128 (abfd, format, &bytes_read);
20571 format += bytes_read;
20572
20573 ULONGEST form = read_unsigned_leb128 (abfd, format, &bytes_read);
20574 format += bytes_read;
20575
20576 gdb::optional<const char *> string;
20577 gdb::optional<unsigned int> uint;
20578
20579 switch (form)
20580 {
20581 case DW_FORM_string:
20582 string.emplace (read_direct_string (abfd, buf, &bytes_read));
20583 buf += bytes_read;
20584 break;
20585
20586 case DW_FORM_line_strp:
20587 string.emplace (read_indirect_line_string (dwarf2_per_objfile,
20588 abfd, buf,
20589 cu_header,
20590 &bytes_read));
20591 buf += bytes_read;
20592 break;
20593
20594 case DW_FORM_data1:
20595 uint.emplace (read_1_byte (abfd, buf));
20596 buf += 1;
20597 break;
20598
20599 case DW_FORM_data2:
20600 uint.emplace (read_2_bytes (abfd, buf));
20601 buf += 2;
20602 break;
20603
20604 case DW_FORM_data4:
20605 uint.emplace (read_4_bytes (abfd, buf));
20606 buf += 4;
20607 break;
20608
20609 case DW_FORM_data8:
20610 uint.emplace (read_8_bytes (abfd, buf));
20611 buf += 8;
20612 break;
20613
20614 case DW_FORM_data16:
20615 /* This is used for MD5, but file_entry does not record MD5s. */
20616 buf += 16;
20617 break;
20618
20619 case DW_FORM_udata:
20620 uint.emplace (read_unsigned_leb128 (abfd, buf, &bytes_read));
20621 buf += bytes_read;
20622 break;
20623
20624 case DW_FORM_block:
20625 /* It is valid only for DW_LNCT_timestamp which is ignored by
20626 current GDB. */
20627 break;
20628 }
20629
20630 switch (content_type)
20631 {
20632 case DW_LNCT_path:
20633 if (string.has_value ())
20634 fe.name = *string;
20635 break;
20636 case DW_LNCT_directory_index:
20637 if (uint.has_value ())
20638 fe.d_index = (dir_index) *uint;
20639 break;
20640 case DW_LNCT_timestamp:
20641 if (uint.has_value ())
20642 fe.mod_time = *uint;
20643 break;
20644 case DW_LNCT_size:
20645 if (uint.has_value ())
20646 fe.length = *uint;
20647 break;
20648 case DW_LNCT_MD5:
20649 break;
20650 default:
20651 complaint (_("Unknown format content type %s"),
20652 pulongest (content_type));
20653 }
20654 }
20655
20656 callback (lh, fe.name, fe.d_index, fe.mod_time, fe.length);
20657 }
20658
20659 *bufp = buf;
20660 }
20661
20662 /* Read the statement program header starting at OFFSET in
20663 .debug_line, or .debug_line.dwo. Return a pointer
20664 to a struct line_header, allocated using xmalloc.
20665 Returns NULL if there is a problem reading the header, e.g., if it
20666 has a version we don't understand.
20667
20668 NOTE: the strings in the include directory and file name tables of
20669 the returned object point into the dwarf line section buffer,
20670 and must not be freed. */
20671
20672 static line_header_up
20673 dwarf_decode_line_header (sect_offset sect_off, struct dwarf2_cu *cu)
20674 {
20675 const gdb_byte *line_ptr;
20676 unsigned int bytes_read, offset_size;
20677 int i;
20678 const char *cur_dir, *cur_file;
20679 struct dwarf2_section_info *section;
20680 bfd *abfd;
20681 struct dwarf2_per_objfile *dwarf2_per_objfile
20682 = cu->per_cu->dwarf2_per_objfile;
20683
20684 section = get_debug_line_section (cu);
20685 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
20686 if (section->buffer == NULL)
20687 {
20688 if (cu->dwo_unit && cu->per_cu->is_debug_types)
20689 complaint (_("missing .debug_line.dwo section"));
20690 else
20691 complaint (_("missing .debug_line section"));
20692 return 0;
20693 }
20694
20695 /* We can't do this until we know the section is non-empty.
20696 Only then do we know we have such a section. */
20697 abfd = get_section_bfd_owner (section);
20698
20699 /* Make sure that at least there's room for the total_length field.
20700 That could be 12 bytes long, but we're just going to fudge that. */
20701 if (to_underlying (sect_off) + 4 >= section->size)
20702 {
20703 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20704 return 0;
20705 }
20706
20707 line_header_up lh (new line_header ());
20708
20709 lh->sect_off = sect_off;
20710 lh->offset_in_dwz = cu->per_cu->is_dwz;
20711
20712 line_ptr = section->buffer + to_underlying (sect_off);
20713
20714 /* Read in the header. */
20715 lh->total_length =
20716 read_checked_initial_length_and_offset (abfd, line_ptr, &cu->header,
20717 &bytes_read, &offset_size);
20718 line_ptr += bytes_read;
20719
20720 const gdb_byte *start_here = line_ptr;
20721
20722 if (line_ptr + lh->total_length > (section->buffer + section->size))
20723 {
20724 dwarf2_statement_list_fits_in_line_number_section_complaint ();
20725 return 0;
20726 }
20727 lh->statement_program_end = start_here + lh->total_length;
20728 lh->version = read_2_bytes (abfd, line_ptr);
20729 line_ptr += 2;
20730 if (lh->version > 5)
20731 {
20732 /* This is a version we don't understand. The format could have
20733 changed in ways we don't handle properly so just punt. */
20734 complaint (_("unsupported version in .debug_line section"));
20735 return NULL;
20736 }
20737 if (lh->version >= 5)
20738 {
20739 gdb_byte segment_selector_size;
20740
20741 /* Skip address size. */
20742 read_1_byte (abfd, line_ptr);
20743 line_ptr += 1;
20744
20745 segment_selector_size = read_1_byte (abfd, line_ptr);
20746 line_ptr += 1;
20747 if (segment_selector_size != 0)
20748 {
20749 complaint (_("unsupported segment selector size %u "
20750 "in .debug_line section"),
20751 segment_selector_size);
20752 return NULL;
20753 }
20754 }
20755 lh->header_length = read_offset_1 (abfd, line_ptr, offset_size);
20756 line_ptr += offset_size;
20757 lh->statement_program_start = line_ptr + lh->header_length;
20758 lh->minimum_instruction_length = read_1_byte (abfd, line_ptr);
20759 line_ptr += 1;
20760 if (lh->version >= 4)
20761 {
20762 lh->maximum_ops_per_instruction = read_1_byte (abfd, line_ptr);
20763 line_ptr += 1;
20764 }
20765 else
20766 lh->maximum_ops_per_instruction = 1;
20767
20768 if (lh->maximum_ops_per_instruction == 0)
20769 {
20770 lh->maximum_ops_per_instruction = 1;
20771 complaint (_("invalid maximum_ops_per_instruction "
20772 "in `.debug_line' section"));
20773 }
20774
20775 lh->default_is_stmt = read_1_byte (abfd, line_ptr);
20776 line_ptr += 1;
20777 lh->line_base = read_1_signed_byte (abfd, line_ptr);
20778 line_ptr += 1;
20779 lh->line_range = read_1_byte (abfd, line_ptr);
20780 line_ptr += 1;
20781 lh->opcode_base = read_1_byte (abfd, line_ptr);
20782 line_ptr += 1;
20783 lh->standard_opcode_lengths.reset (new unsigned char[lh->opcode_base]);
20784
20785 lh->standard_opcode_lengths[0] = 1; /* This should never be used anyway. */
20786 for (i = 1; i < lh->opcode_base; ++i)
20787 {
20788 lh->standard_opcode_lengths[i] = read_1_byte (abfd, line_ptr);
20789 line_ptr += 1;
20790 }
20791
20792 if (lh->version >= 5)
20793 {
20794 /* Read directory table. */
20795 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20796 &cu->header,
20797 [] (struct line_header *header, const char *name,
20798 dir_index d_index, unsigned int mod_time,
20799 unsigned int length)
20800 {
20801 header->add_include_dir (name);
20802 });
20803
20804 /* Read file name table. */
20805 read_formatted_entries (dwarf2_per_objfile, abfd, &line_ptr, lh.get (),
20806 &cu->header,
20807 [] (struct line_header *header, const char *name,
20808 dir_index d_index, unsigned int mod_time,
20809 unsigned int length)
20810 {
20811 header->add_file_name (name, d_index, mod_time, length);
20812 });
20813 }
20814 else
20815 {
20816 /* Read directory table. */
20817 while ((cur_dir = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20818 {
20819 line_ptr += bytes_read;
20820 lh->add_include_dir (cur_dir);
20821 }
20822 line_ptr += bytes_read;
20823
20824 /* Read file name table. */
20825 while ((cur_file = read_direct_string (abfd, line_ptr, &bytes_read)) != NULL)
20826 {
20827 unsigned int mod_time, length;
20828 dir_index d_index;
20829
20830 line_ptr += bytes_read;
20831 d_index = (dir_index) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20832 line_ptr += bytes_read;
20833 mod_time = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20834 line_ptr += bytes_read;
20835 length = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
20836 line_ptr += bytes_read;
20837
20838 lh->add_file_name (cur_file, d_index, mod_time, length);
20839 }
20840 line_ptr += bytes_read;
20841 }
20842
20843 if (line_ptr > (section->buffer + section->size))
20844 complaint (_("line number info header doesn't "
20845 "fit in `.debug_line' section"));
20846
20847 return lh;
20848 }
20849
20850 /* Subroutine of dwarf_decode_lines to simplify it.
20851 Return the file name of the psymtab for the given file_entry.
20852 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
20853 If space for the result is malloc'd, *NAME_HOLDER will be set.
20854 Returns NULL if FILE_INDEX should be ignored, i.e., it is pst->filename. */
20855
20856 static const char *
20857 psymtab_include_file_name (const struct line_header *lh, const file_entry &fe,
20858 const struct partial_symtab *pst,
20859 const char *comp_dir,
20860 gdb::unique_xmalloc_ptr<char> *name_holder)
20861 {
20862 const char *include_name = fe.name;
20863 const char *include_name_to_compare = include_name;
20864 const char *pst_filename;
20865 int file_is_pst;
20866
20867 const char *dir_name = fe.include_dir (lh);
20868
20869 gdb::unique_xmalloc_ptr<char> hold_compare;
20870 if (!IS_ABSOLUTE_PATH (include_name)
20871 && (dir_name != NULL || comp_dir != NULL))
20872 {
20873 /* Avoid creating a duplicate psymtab for PST.
20874 We do this by comparing INCLUDE_NAME and PST_FILENAME.
20875 Before we do the comparison, however, we need to account
20876 for DIR_NAME and COMP_DIR.
20877 First prepend dir_name (if non-NULL). If we still don't
20878 have an absolute path prepend comp_dir (if non-NULL).
20879 However, the directory we record in the include-file's
20880 psymtab does not contain COMP_DIR (to match the
20881 corresponding symtab(s)).
20882
20883 Example:
20884
20885 bash$ cd /tmp
20886 bash$ gcc -g ./hello.c
20887 include_name = "hello.c"
20888 dir_name = "."
20889 DW_AT_comp_dir = comp_dir = "/tmp"
20890 DW_AT_name = "./hello.c"
20891
20892 */
20893
20894 if (dir_name != NULL)
20895 {
20896 name_holder->reset (concat (dir_name, SLASH_STRING,
20897 include_name, (char *) NULL));
20898 include_name = name_holder->get ();
20899 include_name_to_compare = include_name;
20900 }
20901 if (!IS_ABSOLUTE_PATH (include_name) && comp_dir != NULL)
20902 {
20903 hold_compare.reset (concat (comp_dir, SLASH_STRING,
20904 include_name, (char *) NULL));
20905 include_name_to_compare = hold_compare.get ();
20906 }
20907 }
20908
20909 pst_filename = pst->filename;
20910 gdb::unique_xmalloc_ptr<char> copied_name;
20911 if (!IS_ABSOLUTE_PATH (pst_filename) && pst->dirname != NULL)
20912 {
20913 copied_name.reset (concat (pst->dirname, SLASH_STRING,
20914 pst_filename, (char *) NULL));
20915 pst_filename = copied_name.get ();
20916 }
20917
20918 file_is_pst = FILENAME_CMP (include_name_to_compare, pst_filename) == 0;
20919
20920 if (file_is_pst)
20921 return NULL;
20922 return include_name;
20923 }
20924
20925 /* State machine to track the state of the line number program. */
20926
20927 class lnp_state_machine
20928 {
20929 public:
20930 /* Initialize a machine state for the start of a line number
20931 program. */
20932 lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch, line_header *lh,
20933 bool record_lines_p);
20934
20935 file_entry *current_file ()
20936 {
20937 /* lh->file_names is 0-based, but the file name numbers in the
20938 statement program are 1-based. */
20939 return m_line_header->file_name_at (m_file);
20940 }
20941
20942 /* Record the line in the state machine. END_SEQUENCE is true if
20943 we're processing the end of a sequence. */
20944 void record_line (bool end_sequence);
20945
20946 /* Check ADDRESS is zero and less than UNRELOCATED_LOWPC and if true
20947 nop-out rest of the lines in this sequence. */
20948 void check_line_address (struct dwarf2_cu *cu,
20949 const gdb_byte *line_ptr,
20950 CORE_ADDR unrelocated_lowpc, CORE_ADDR address);
20951
20952 void handle_set_discriminator (unsigned int discriminator)
20953 {
20954 m_discriminator = discriminator;
20955 m_line_has_non_zero_discriminator |= discriminator != 0;
20956 }
20957
20958 /* Handle DW_LNE_set_address. */
20959 void handle_set_address (CORE_ADDR baseaddr, CORE_ADDR address)
20960 {
20961 m_op_index = 0;
20962 address += baseaddr;
20963 m_address = gdbarch_adjust_dwarf2_line (m_gdbarch, address, false);
20964 }
20965
20966 /* Handle DW_LNS_advance_pc. */
20967 void handle_advance_pc (CORE_ADDR adjust);
20968
20969 /* Handle a special opcode. */
20970 void handle_special_opcode (unsigned char op_code);
20971
20972 /* Handle DW_LNS_advance_line. */
20973 void handle_advance_line (int line_delta)
20974 {
20975 advance_line (line_delta);
20976 }
20977
20978 /* Handle DW_LNS_set_file. */
20979 void handle_set_file (file_name_index file);
20980
20981 /* Handle DW_LNS_negate_stmt. */
20982 void handle_negate_stmt ()
20983 {
20984 m_is_stmt = !m_is_stmt;
20985 }
20986
20987 /* Handle DW_LNS_const_add_pc. */
20988 void handle_const_add_pc ();
20989
20990 /* Handle DW_LNS_fixed_advance_pc. */
20991 void handle_fixed_advance_pc (CORE_ADDR addr_adj)
20992 {
20993 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
20994 m_op_index = 0;
20995 }
20996
20997 /* Handle DW_LNS_copy. */
20998 void handle_copy ()
20999 {
21000 record_line (false);
21001 m_discriminator = 0;
21002 }
21003
21004 /* Handle DW_LNE_end_sequence. */
21005 void handle_end_sequence ()
21006 {
21007 m_currently_recording_lines = true;
21008 }
21009
21010 private:
21011 /* Advance the line by LINE_DELTA. */
21012 void advance_line (int line_delta)
21013 {
21014 m_line += line_delta;
21015
21016 if (line_delta != 0)
21017 m_line_has_non_zero_discriminator = m_discriminator != 0;
21018 }
21019
21020 struct dwarf2_cu *m_cu;
21021
21022 gdbarch *m_gdbarch;
21023
21024 /* True if we're recording lines.
21025 Otherwise we're building partial symtabs and are just interested in
21026 finding include files mentioned by the line number program. */
21027 bool m_record_lines_p;
21028
21029 /* The line number header. */
21030 line_header *m_line_header;
21031
21032 /* These are part of the standard DWARF line number state machine,
21033 and initialized according to the DWARF spec. */
21034
21035 unsigned char m_op_index = 0;
21036 /* The line table index of the current file. */
21037 file_name_index m_file = 1;
21038 unsigned int m_line = 1;
21039
21040 /* These are initialized in the constructor. */
21041
21042 CORE_ADDR m_address;
21043 bool m_is_stmt;
21044 unsigned int m_discriminator;
21045
21046 /* Additional bits of state we need to track. */
21047
21048 /* The last file that we called dwarf2_start_subfile for.
21049 This is only used for TLLs. */
21050 unsigned int m_last_file = 0;
21051 /* The last file a line number was recorded for. */
21052 struct subfile *m_last_subfile = NULL;
21053
21054 /* When true, record the lines we decode. */
21055 bool m_currently_recording_lines = false;
21056
21057 /* The last line number that was recorded, used to coalesce
21058 consecutive entries for the same line. This can happen, for
21059 example, when discriminators are present. PR 17276. */
21060 unsigned int m_last_line = 0;
21061 bool m_line_has_non_zero_discriminator = false;
21062 };
21063
21064 void
21065 lnp_state_machine::handle_advance_pc (CORE_ADDR adjust)
21066 {
21067 CORE_ADDR addr_adj = (((m_op_index + adjust)
21068 / m_line_header->maximum_ops_per_instruction)
21069 * m_line_header->minimum_instruction_length);
21070 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
21071 m_op_index = ((m_op_index + adjust)
21072 % m_line_header->maximum_ops_per_instruction);
21073 }
21074
21075 void
21076 lnp_state_machine::handle_special_opcode (unsigned char op_code)
21077 {
21078 unsigned char adj_opcode = op_code - m_line_header->opcode_base;
21079 CORE_ADDR addr_adj = (((m_op_index
21080 + (adj_opcode / m_line_header->line_range))
21081 / m_line_header->maximum_ops_per_instruction)
21082 * m_line_header->minimum_instruction_length);
21083 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
21084 m_op_index = ((m_op_index + (adj_opcode / m_line_header->line_range))
21085 % m_line_header->maximum_ops_per_instruction);
21086
21087 int line_delta = (m_line_header->line_base
21088 + (adj_opcode % m_line_header->line_range));
21089 advance_line (line_delta);
21090 record_line (false);
21091 m_discriminator = 0;
21092 }
21093
21094 void
21095 lnp_state_machine::handle_set_file (file_name_index file)
21096 {
21097 m_file = file;
21098
21099 const file_entry *fe = current_file ();
21100 if (fe == NULL)
21101 dwarf2_debug_line_missing_file_complaint ();
21102 else if (m_record_lines_p)
21103 {
21104 const char *dir = fe->include_dir (m_line_header);
21105
21106 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
21107 m_line_has_non_zero_discriminator = m_discriminator != 0;
21108 dwarf2_start_subfile (m_cu, fe->name, dir);
21109 }
21110 }
21111
21112 void
21113 lnp_state_machine::handle_const_add_pc ()
21114 {
21115 CORE_ADDR adjust
21116 = (255 - m_line_header->opcode_base) / m_line_header->line_range;
21117
21118 CORE_ADDR addr_adj
21119 = (((m_op_index + adjust)
21120 / m_line_header->maximum_ops_per_instruction)
21121 * m_line_header->minimum_instruction_length);
21122
21123 m_address += gdbarch_adjust_dwarf2_line (m_gdbarch, addr_adj, true);
21124 m_op_index = ((m_op_index + adjust)
21125 % m_line_header->maximum_ops_per_instruction);
21126 }
21127
21128 /* Return non-zero if we should add LINE to the line number table.
21129 LINE is the line to add, LAST_LINE is the last line that was added,
21130 LAST_SUBFILE is the subfile for LAST_LINE.
21131 LINE_HAS_NON_ZERO_DISCRIMINATOR is non-zero if LINE has ever
21132 had a non-zero discriminator.
21133
21134 We have to be careful in the presence of discriminators.
21135 E.g., for this line:
21136
21137 for (i = 0; i < 100000; i++);
21138
21139 clang can emit four line number entries for that one line,
21140 each with a different discriminator.
21141 See gdb.dwarf2/dw2-single-line-discriminators.exp for an example.
21142
21143 However, we want gdb to coalesce all four entries into one.
21144 Otherwise the user could stepi into the middle of the line and
21145 gdb would get confused about whether the pc really was in the
21146 middle of the line.
21147
21148 Things are further complicated by the fact that two consecutive
21149 line number entries for the same line is a heuristic used by gcc
21150 to denote the end of the prologue. So we can't just discard duplicate
21151 entries, we have to be selective about it. The heuristic we use is
21152 that we only collapse consecutive entries for the same line if at least
21153 one of those entries has a non-zero discriminator. PR 17276.
21154
21155 Note: Addresses in the line number state machine can never go backwards
21156 within one sequence, thus this coalescing is ok. */
21157
21158 static int
21159 dwarf_record_line_p (struct dwarf2_cu *cu,
21160 unsigned int line, unsigned int last_line,
21161 int line_has_non_zero_discriminator,
21162 struct subfile *last_subfile)
21163 {
21164 if (cu->get_builder ()->get_current_subfile () != last_subfile)
21165 return 1;
21166 if (line != last_line)
21167 return 1;
21168 /* Same line for the same file that we've seen already.
21169 As a last check, for pr 17276, only record the line if the line
21170 has never had a non-zero discriminator. */
21171 if (!line_has_non_zero_discriminator)
21172 return 1;
21173 return 0;
21174 }
21175
21176 /* Use the CU's builder to record line number LINE beginning at
21177 address ADDRESS in the line table of subfile SUBFILE. */
21178
21179 static void
21180 dwarf_record_line_1 (struct gdbarch *gdbarch, struct subfile *subfile,
21181 unsigned int line, CORE_ADDR address,
21182 struct dwarf2_cu *cu)
21183 {
21184 CORE_ADDR addr = gdbarch_addr_bits_remove (gdbarch, address);
21185
21186 if (dwarf_line_debug)
21187 {
21188 fprintf_unfiltered (gdb_stdlog,
21189 "Recording line %u, file %s, address %s\n",
21190 line, lbasename (subfile->name),
21191 paddress (gdbarch, address));
21192 }
21193
21194 if (cu != nullptr)
21195 cu->get_builder ()->record_line (subfile, line, addr);
21196 }
21197
21198 /* Subroutine of dwarf_decode_lines_1 to simplify it.
21199 Mark the end of a set of line number records.
21200 The arguments are the same as for dwarf_record_line_1.
21201 If SUBFILE is NULL the request is ignored. */
21202
21203 static void
21204 dwarf_finish_line (struct gdbarch *gdbarch, struct subfile *subfile,
21205 CORE_ADDR address, struct dwarf2_cu *cu)
21206 {
21207 if (subfile == NULL)
21208 return;
21209
21210 if (dwarf_line_debug)
21211 {
21212 fprintf_unfiltered (gdb_stdlog,
21213 "Finishing current line, file %s, address %s\n",
21214 lbasename (subfile->name),
21215 paddress (gdbarch, address));
21216 }
21217
21218 dwarf_record_line_1 (gdbarch, subfile, 0, address, cu);
21219 }
21220
21221 void
21222 lnp_state_machine::record_line (bool end_sequence)
21223 {
21224 if (dwarf_line_debug)
21225 {
21226 fprintf_unfiltered (gdb_stdlog,
21227 "Processing actual line %u: file %u,"
21228 " address %s, is_stmt %u, discrim %u\n",
21229 m_line, m_file,
21230 paddress (m_gdbarch, m_address),
21231 m_is_stmt, m_discriminator);
21232 }
21233
21234 file_entry *fe = current_file ();
21235
21236 if (fe == NULL)
21237 dwarf2_debug_line_missing_file_complaint ();
21238 /* For now we ignore lines not starting on an instruction boundary.
21239 But not when processing end_sequence for compatibility with the
21240 previous version of the code. */
21241 else if (m_op_index == 0 || end_sequence)
21242 {
21243 fe->included_p = 1;
21244 if (m_record_lines_p && (producer_is_codewarrior (m_cu) || m_is_stmt))
21245 {
21246 if (m_last_subfile != m_cu->get_builder ()->get_current_subfile ()
21247 || end_sequence)
21248 {
21249 dwarf_finish_line (m_gdbarch, m_last_subfile, m_address,
21250 m_currently_recording_lines ? m_cu : nullptr);
21251 }
21252
21253 if (!end_sequence)
21254 {
21255 if (dwarf_record_line_p (m_cu, m_line, m_last_line,
21256 m_line_has_non_zero_discriminator,
21257 m_last_subfile))
21258 {
21259 buildsym_compunit *builder = m_cu->get_builder ();
21260 dwarf_record_line_1 (m_gdbarch,
21261 builder->get_current_subfile (),
21262 m_line, m_address,
21263 m_currently_recording_lines ? m_cu : nullptr);
21264 }
21265 m_last_subfile = m_cu->get_builder ()->get_current_subfile ();
21266 m_last_line = m_line;
21267 }
21268 }
21269 }
21270 }
21271
21272 lnp_state_machine::lnp_state_machine (struct dwarf2_cu *cu, gdbarch *arch,
21273 line_header *lh, bool record_lines_p)
21274 {
21275 m_cu = cu;
21276 m_gdbarch = arch;
21277 m_record_lines_p = record_lines_p;
21278 m_line_header = lh;
21279
21280 m_currently_recording_lines = true;
21281
21282 /* Call `gdbarch_adjust_dwarf2_line' on the initial 0 address as if there
21283 was a line entry for it so that the backend has a chance to adjust it
21284 and also record it in case it needs it. This is currently used by MIPS
21285 code, cf. `mips_adjust_dwarf2_line'. */
21286 m_address = gdbarch_adjust_dwarf2_line (arch, 0, 0);
21287 m_is_stmt = lh->default_is_stmt;
21288 m_discriminator = 0;
21289 }
21290
21291 void
21292 lnp_state_machine::check_line_address (struct dwarf2_cu *cu,
21293 const gdb_byte *line_ptr,
21294 CORE_ADDR unrelocated_lowpc, CORE_ADDR address)
21295 {
21296 /* If ADDRESS < UNRELOCATED_LOWPC then it's not a usable value, it's outside
21297 the pc range of the CU. However, we restrict the test to only ADDRESS
21298 values of zero to preserve GDB's previous behaviour which is to handle
21299 the specific case of a function being GC'd by the linker. */
21300
21301 if (address == 0 && address < unrelocated_lowpc)
21302 {
21303 /* This line table is for a function which has been
21304 GCd by the linker. Ignore it. PR gdb/12528 */
21305
21306 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21307 long line_offset = line_ptr - get_debug_line_section (cu)->buffer;
21308
21309 complaint (_(".debug_line address at offset 0x%lx is 0 [in module %s]"),
21310 line_offset, objfile_name (objfile));
21311 m_currently_recording_lines = false;
21312 /* Note: m_currently_recording_lines is left as false until we see
21313 DW_LNE_end_sequence. */
21314 }
21315 }
21316
21317 /* Subroutine of dwarf_decode_lines to simplify it.
21318 Process the line number information in LH.
21319 If DECODE_FOR_PST_P is non-zero, all we do is process the line number
21320 program in order to set included_p for every referenced header. */
21321
21322 static void
21323 dwarf_decode_lines_1 (struct line_header *lh, struct dwarf2_cu *cu,
21324 const int decode_for_pst_p, CORE_ADDR lowpc)
21325 {
21326 const gdb_byte *line_ptr, *extended_end;
21327 const gdb_byte *line_end;
21328 unsigned int bytes_read, extended_len;
21329 unsigned char op_code, extended_op;
21330 CORE_ADDR baseaddr;
21331 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21332 bfd *abfd = objfile->obfd;
21333 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21334 /* True if we're recording line info (as opposed to building partial
21335 symtabs and just interested in finding include files mentioned by
21336 the line number program). */
21337 bool record_lines_p = !decode_for_pst_p;
21338
21339 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21340
21341 line_ptr = lh->statement_program_start;
21342 line_end = lh->statement_program_end;
21343
21344 /* Read the statement sequences until there's nothing left. */
21345 while (line_ptr < line_end)
21346 {
21347 /* The DWARF line number program state machine. Reset the state
21348 machine at the start of each sequence. */
21349 lnp_state_machine state_machine (cu, gdbarch, lh, record_lines_p);
21350 bool end_sequence = false;
21351
21352 if (record_lines_p)
21353 {
21354 /* Start a subfile for the current file of the state
21355 machine. */
21356 const file_entry *fe = state_machine.current_file ();
21357
21358 if (fe != NULL)
21359 dwarf2_start_subfile (cu, fe->name, fe->include_dir (lh));
21360 }
21361
21362 /* Decode the table. */
21363 while (line_ptr < line_end && !end_sequence)
21364 {
21365 op_code = read_1_byte (abfd, line_ptr);
21366 line_ptr += 1;
21367
21368 if (op_code >= lh->opcode_base)
21369 {
21370 /* Special opcode. */
21371 state_machine.handle_special_opcode (op_code);
21372 }
21373 else switch (op_code)
21374 {
21375 case DW_LNS_extended_op:
21376 extended_len = read_unsigned_leb128 (abfd, line_ptr,
21377 &bytes_read);
21378 line_ptr += bytes_read;
21379 extended_end = line_ptr + extended_len;
21380 extended_op = read_1_byte (abfd, line_ptr);
21381 line_ptr += 1;
21382 switch (extended_op)
21383 {
21384 case DW_LNE_end_sequence:
21385 state_machine.handle_end_sequence ();
21386 end_sequence = true;
21387 break;
21388 case DW_LNE_set_address:
21389 {
21390 CORE_ADDR address
21391 = read_address (abfd, line_ptr, cu, &bytes_read);
21392 line_ptr += bytes_read;
21393
21394 state_machine.check_line_address (cu, line_ptr,
21395 lowpc - baseaddr, address);
21396 state_machine.handle_set_address (baseaddr, address);
21397 }
21398 break;
21399 case DW_LNE_define_file:
21400 {
21401 const char *cur_file;
21402 unsigned int mod_time, length;
21403 dir_index dindex;
21404
21405 cur_file = read_direct_string (abfd, line_ptr,
21406 &bytes_read);
21407 line_ptr += bytes_read;
21408 dindex = (dir_index)
21409 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21410 line_ptr += bytes_read;
21411 mod_time =
21412 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21413 line_ptr += bytes_read;
21414 length =
21415 read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21416 line_ptr += bytes_read;
21417 lh->add_file_name (cur_file, dindex, mod_time, length);
21418 }
21419 break;
21420 case DW_LNE_set_discriminator:
21421 {
21422 /* The discriminator is not interesting to the
21423 debugger; just ignore it. We still need to
21424 check its value though:
21425 if there are consecutive entries for the same
21426 (non-prologue) line we want to coalesce them.
21427 PR 17276. */
21428 unsigned int discr
21429 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21430 line_ptr += bytes_read;
21431
21432 state_machine.handle_set_discriminator (discr);
21433 }
21434 break;
21435 default:
21436 complaint (_("mangled .debug_line section"));
21437 return;
21438 }
21439 /* Make sure that we parsed the extended op correctly. If e.g.
21440 we expected a different address size than the producer used,
21441 we may have read the wrong number of bytes. */
21442 if (line_ptr != extended_end)
21443 {
21444 complaint (_("mangled .debug_line section"));
21445 return;
21446 }
21447 break;
21448 case DW_LNS_copy:
21449 state_machine.handle_copy ();
21450 break;
21451 case DW_LNS_advance_pc:
21452 {
21453 CORE_ADDR adjust
21454 = read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21455 line_ptr += bytes_read;
21456
21457 state_machine.handle_advance_pc (adjust);
21458 }
21459 break;
21460 case DW_LNS_advance_line:
21461 {
21462 int line_delta
21463 = read_signed_leb128 (abfd, line_ptr, &bytes_read);
21464 line_ptr += bytes_read;
21465
21466 state_machine.handle_advance_line (line_delta);
21467 }
21468 break;
21469 case DW_LNS_set_file:
21470 {
21471 file_name_index file
21472 = (file_name_index) read_unsigned_leb128 (abfd, line_ptr,
21473 &bytes_read);
21474 line_ptr += bytes_read;
21475
21476 state_machine.handle_set_file (file);
21477 }
21478 break;
21479 case DW_LNS_set_column:
21480 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21481 line_ptr += bytes_read;
21482 break;
21483 case DW_LNS_negate_stmt:
21484 state_machine.handle_negate_stmt ();
21485 break;
21486 case DW_LNS_set_basic_block:
21487 break;
21488 /* Add to the address register of the state machine the
21489 address increment value corresponding to special opcode
21490 255. I.e., this value is scaled by the minimum
21491 instruction length since special opcode 255 would have
21492 scaled the increment. */
21493 case DW_LNS_const_add_pc:
21494 state_machine.handle_const_add_pc ();
21495 break;
21496 case DW_LNS_fixed_advance_pc:
21497 {
21498 CORE_ADDR addr_adj = read_2_bytes (abfd, line_ptr);
21499 line_ptr += 2;
21500
21501 state_machine.handle_fixed_advance_pc (addr_adj);
21502 }
21503 break;
21504 default:
21505 {
21506 /* Unknown standard opcode, ignore it. */
21507 int i;
21508
21509 for (i = 0; i < lh->standard_opcode_lengths[op_code]; i++)
21510 {
21511 (void) read_unsigned_leb128 (abfd, line_ptr, &bytes_read);
21512 line_ptr += bytes_read;
21513 }
21514 }
21515 }
21516 }
21517
21518 if (!end_sequence)
21519 dwarf2_debug_line_missing_end_sequence_complaint ();
21520
21521 /* We got a DW_LNE_end_sequence (or we ran off the end of the buffer,
21522 in which case we still finish recording the last line). */
21523 state_machine.record_line (true);
21524 }
21525 }
21526
21527 /* Decode the Line Number Program (LNP) for the given line_header
21528 structure and CU. The actual information extracted and the type
21529 of structures created from the LNP depends on the value of PST.
21530
21531 1. If PST is NULL, then this procedure uses the data from the program
21532 to create all necessary symbol tables, and their linetables.
21533
21534 2. If PST is not NULL, this procedure reads the program to determine
21535 the list of files included by the unit represented by PST, and
21536 builds all the associated partial symbol tables.
21537
21538 COMP_DIR is the compilation directory (DW_AT_comp_dir) or NULL if unknown.
21539 It is used for relative paths in the line table.
21540 NOTE: When processing partial symtabs (pst != NULL),
21541 comp_dir == pst->dirname.
21542
21543 NOTE: It is important that psymtabs have the same file name (via strcmp)
21544 as the corresponding symtab. Since COMP_DIR is not used in the name of the
21545 symtab we don't use it in the name of the psymtabs we create.
21546 E.g. expand_line_sal requires this when finding psymtabs to expand.
21547 A good testcase for this is mb-inline.exp.
21548
21549 LOWPC is the lowest address in CU (or 0 if not known).
21550
21551 Boolean DECODE_MAPPING specifies we need to fully decode .debug_line
21552 for its PC<->lines mapping information. Otherwise only the filename
21553 table is read in. */
21554
21555 static void
21556 dwarf_decode_lines (struct line_header *lh, const char *comp_dir,
21557 struct dwarf2_cu *cu, struct partial_symtab *pst,
21558 CORE_ADDR lowpc, int decode_mapping)
21559 {
21560 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21561 const int decode_for_pst_p = (pst != NULL);
21562
21563 if (decode_mapping)
21564 dwarf_decode_lines_1 (lh, cu, decode_for_pst_p, lowpc);
21565
21566 if (decode_for_pst_p)
21567 {
21568 /* Now that we're done scanning the Line Header Program, we can
21569 create the psymtab of each included file. */
21570 for (auto &file_entry : lh->file_names ())
21571 if (file_entry.included_p == 1)
21572 {
21573 gdb::unique_xmalloc_ptr<char> name_holder;
21574 const char *include_name =
21575 psymtab_include_file_name (lh, file_entry, pst,
21576 comp_dir, &name_holder);
21577 if (include_name != NULL)
21578 dwarf2_create_include_psymtab (include_name, pst, objfile);
21579 }
21580 }
21581 else
21582 {
21583 /* Make sure a symtab is created for every file, even files
21584 which contain only variables (i.e. no code with associated
21585 line numbers). */
21586 buildsym_compunit *builder = cu->get_builder ();
21587 struct compunit_symtab *cust = builder->get_compunit_symtab ();
21588
21589 for (auto &fe : lh->file_names ())
21590 {
21591 dwarf2_start_subfile (cu, fe.name, fe.include_dir (lh));
21592 if (builder->get_current_subfile ()->symtab == NULL)
21593 {
21594 builder->get_current_subfile ()->symtab
21595 = allocate_symtab (cust,
21596 builder->get_current_subfile ()->name);
21597 }
21598 fe.symtab = builder->get_current_subfile ()->symtab;
21599 }
21600 }
21601 }
21602
21603 /* Start a subfile for DWARF. FILENAME is the name of the file and
21604 DIRNAME the name of the source directory which contains FILENAME
21605 or NULL if not known.
21606 This routine tries to keep line numbers from identical absolute and
21607 relative file names in a common subfile.
21608
21609 Using the `list' example from the GDB testsuite, which resides in
21610 /srcdir and compiling it with Irix6.2 cc in /compdir using a filename
21611 of /srcdir/list0.c yields the following debugging information for list0.c:
21612
21613 DW_AT_name: /srcdir/list0.c
21614 DW_AT_comp_dir: /compdir
21615 files.files[0].name: list0.h
21616 files.files[0].dir: /srcdir
21617 files.files[1].name: list0.c
21618 files.files[1].dir: /srcdir
21619
21620 The line number information for list0.c has to end up in a single
21621 subfile, so that `break /srcdir/list0.c:1' works as expected.
21622 start_subfile will ensure that this happens provided that we pass the
21623 concatenation of files.files[1].dir and files.files[1].name as the
21624 subfile's name. */
21625
21626 static void
21627 dwarf2_start_subfile (struct dwarf2_cu *cu, const char *filename,
21628 const char *dirname)
21629 {
21630 char *copy = NULL;
21631
21632 /* In order not to lose the line information directory,
21633 we concatenate it to the filename when it makes sense.
21634 Note that the Dwarf3 standard says (speaking of filenames in line
21635 information): ``The directory index is ignored for file names
21636 that represent full path names''. Thus ignoring dirname in the
21637 `else' branch below isn't an issue. */
21638
21639 if (!IS_ABSOLUTE_PATH (filename) && dirname != NULL)
21640 {
21641 copy = concat (dirname, SLASH_STRING, filename, (char *)NULL);
21642 filename = copy;
21643 }
21644
21645 cu->get_builder ()->start_subfile (filename);
21646
21647 if (copy != NULL)
21648 xfree (copy);
21649 }
21650
21651 /* Start a symtab for DWARF. NAME, COMP_DIR, LOW_PC are passed to the
21652 buildsym_compunit constructor. */
21653
21654 struct compunit_symtab *
21655 dwarf2_cu::start_symtab (const char *name, const char *comp_dir,
21656 CORE_ADDR low_pc)
21657 {
21658 gdb_assert (m_builder == nullptr);
21659
21660 m_builder.reset (new struct buildsym_compunit
21661 (per_cu->dwarf2_per_objfile->objfile,
21662 name, comp_dir, language, low_pc));
21663
21664 list_in_scope = get_builder ()->get_file_symbols ();
21665
21666 get_builder ()->record_debugformat ("DWARF 2");
21667 get_builder ()->record_producer (producer);
21668
21669 processing_has_namespace_info = false;
21670
21671 return get_builder ()->get_compunit_symtab ();
21672 }
21673
21674 static void
21675 var_decode_location (struct attribute *attr, struct symbol *sym,
21676 struct dwarf2_cu *cu)
21677 {
21678 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
21679 struct comp_unit_head *cu_header = &cu->header;
21680
21681 /* NOTE drow/2003-01-30: There used to be a comment and some special
21682 code here to turn a symbol with DW_AT_external and a
21683 SYMBOL_VALUE_ADDRESS of 0 into a LOC_UNRESOLVED symbol. This was
21684 necessary for platforms (maybe Alpha, certainly PowerPC GNU/Linux
21685 with some versions of binutils) where shared libraries could have
21686 relocations against symbols in their debug information - the
21687 minimal symbol would have the right address, but the debug info
21688 would not. It's no longer necessary, because we will explicitly
21689 apply relocations when we read in the debug information now. */
21690
21691 /* A DW_AT_location attribute with no contents indicates that a
21692 variable has been optimized away. */
21693 if (attr_form_is_block (attr) && DW_BLOCK (attr)->size == 0)
21694 {
21695 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21696 return;
21697 }
21698
21699 /* Handle one degenerate form of location expression specially, to
21700 preserve GDB's previous behavior when section offsets are
21701 specified. If this is just a DW_OP_addr, DW_OP_addrx, or
21702 DW_OP_GNU_addr_index then mark this symbol as LOC_STATIC. */
21703
21704 if (attr_form_is_block (attr)
21705 && ((DW_BLOCK (attr)->data[0] == DW_OP_addr
21706 && DW_BLOCK (attr)->size == 1 + cu_header->addr_size)
21707 || ((DW_BLOCK (attr)->data[0] == DW_OP_GNU_addr_index
21708 || DW_BLOCK (attr)->data[0] == DW_OP_addrx)
21709 && (DW_BLOCK (attr)->size
21710 == 1 + leb128_size (&DW_BLOCK (attr)->data[1])))))
21711 {
21712 unsigned int dummy;
21713
21714 if (DW_BLOCK (attr)->data[0] == DW_OP_addr)
21715 SET_SYMBOL_VALUE_ADDRESS (sym,
21716 read_address (objfile->obfd,
21717 DW_BLOCK (attr)->data + 1,
21718 cu, &dummy));
21719 else
21720 SET_SYMBOL_VALUE_ADDRESS
21721 (sym, read_addr_index_from_leb128 (cu, DW_BLOCK (attr)->data + 1,
21722 &dummy));
21723 SYMBOL_ACLASS_INDEX (sym) = LOC_STATIC;
21724 fixup_symbol_section (sym, objfile);
21725 SET_SYMBOL_VALUE_ADDRESS (sym,
21726 SYMBOL_VALUE_ADDRESS (sym)
21727 + ANOFFSET (objfile->section_offsets,
21728 SYMBOL_SECTION (sym)));
21729 return;
21730 }
21731
21732 /* NOTE drow/2002-01-30: It might be worthwhile to have a static
21733 expression evaluator, and use LOC_COMPUTED only when necessary
21734 (i.e. when the value of a register or memory location is
21735 referenced, or a thread-local block, etc.). Then again, it might
21736 not be worthwhile. I'm assuming that it isn't unless performance
21737 or memory numbers show me otherwise. */
21738
21739 dwarf2_symbol_mark_computed (attr, sym, cu, 0);
21740
21741 if (SYMBOL_COMPUTED_OPS (sym)->location_has_loclist)
21742 cu->has_loclist = true;
21743 }
21744
21745 /* Given a pointer to a DWARF information entry, figure out if we need
21746 to make a symbol table entry for it, and if so, create a new entry
21747 and return a pointer to it.
21748 If TYPE is NULL, determine symbol type from the die, otherwise
21749 used the passed type.
21750 If SPACE is not NULL, use it to hold the new symbol. If it is
21751 NULL, allocate a new symbol on the objfile's obstack. */
21752
21753 static struct symbol *
21754 new_symbol (struct die_info *die, struct type *type, struct dwarf2_cu *cu,
21755 struct symbol *space)
21756 {
21757 struct dwarf2_per_objfile *dwarf2_per_objfile
21758 = cu->per_cu->dwarf2_per_objfile;
21759 struct objfile *objfile = dwarf2_per_objfile->objfile;
21760 struct gdbarch *gdbarch = get_objfile_arch (objfile);
21761 struct symbol *sym = NULL;
21762 const char *name;
21763 struct attribute *attr = NULL;
21764 struct attribute *attr2 = NULL;
21765 CORE_ADDR baseaddr;
21766 struct pending **list_to_add = NULL;
21767
21768 int inlined_func = (die->tag == DW_TAG_inlined_subroutine);
21769
21770 baseaddr = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
21771
21772 name = dwarf2_name (die, cu);
21773 if (name)
21774 {
21775 const char *linkagename;
21776 int suppress_add = 0;
21777
21778 if (space)
21779 sym = space;
21780 else
21781 sym = allocate_symbol (objfile);
21782 OBJSTAT (objfile, n_syms++);
21783
21784 /* Cache this symbol's name and the name's demangled form (if any). */
21785 sym->set_language (cu->language, &objfile->objfile_obstack);
21786 linkagename = dwarf2_physname (name, die, cu);
21787 SYMBOL_SET_NAMES (sym, linkagename, false, objfile);
21788
21789 /* Fortran does not have mangling standard and the mangling does differ
21790 between gfortran, iFort etc. */
21791 if (cu->language == language_fortran
21792 && symbol_get_demangled_name (sym) == NULL)
21793 symbol_set_demangled_name (sym,
21794 dwarf2_full_name (name, die, cu),
21795 NULL);
21796
21797 /* Default assumptions.
21798 Use the passed type or decode it from the die. */
21799 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
21800 SYMBOL_ACLASS_INDEX (sym) = LOC_OPTIMIZED_OUT;
21801 if (type != NULL)
21802 SYMBOL_TYPE (sym) = type;
21803 else
21804 SYMBOL_TYPE (sym) = die_type (die, cu);
21805 attr = dwarf2_attr (die,
21806 inlined_func ? DW_AT_call_line : DW_AT_decl_line,
21807 cu);
21808 if (attr != nullptr)
21809 {
21810 SYMBOL_LINE (sym) = DW_UNSND (attr);
21811 }
21812
21813 attr = dwarf2_attr (die,
21814 inlined_func ? DW_AT_call_file : DW_AT_decl_file,
21815 cu);
21816 if (attr != nullptr)
21817 {
21818 file_name_index file_index = (file_name_index) DW_UNSND (attr);
21819 struct file_entry *fe;
21820
21821 if (cu->line_header != NULL)
21822 fe = cu->line_header->file_name_at (file_index);
21823 else
21824 fe = NULL;
21825
21826 if (fe == NULL)
21827 complaint (_("file index out of range"));
21828 else
21829 symbol_set_symtab (sym, fe->symtab);
21830 }
21831
21832 switch (die->tag)
21833 {
21834 case DW_TAG_label:
21835 attr = dwarf2_attr (die, DW_AT_low_pc, cu);
21836 if (attr != nullptr)
21837 {
21838 CORE_ADDR addr;
21839
21840 addr = attr_value_as_address (attr);
21841 addr = gdbarch_adjust_dwarf2_addr (gdbarch, addr + baseaddr);
21842 SET_SYMBOL_VALUE_ADDRESS (sym, addr);
21843 }
21844 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_core_addr;
21845 SYMBOL_DOMAIN (sym) = LABEL_DOMAIN;
21846 SYMBOL_ACLASS_INDEX (sym) = LOC_LABEL;
21847 add_symbol_to_list (sym, cu->list_in_scope);
21848 break;
21849 case DW_TAG_subprogram:
21850 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21851 finish_block. */
21852 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21853 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21854 if ((attr2 && (DW_UNSND (attr2) != 0))
21855 || cu->language == language_ada
21856 || cu->language == language_fortran)
21857 {
21858 /* Subprograms marked external are stored as a global symbol.
21859 Ada and Fortran subprograms, whether marked external or
21860 not, are always stored as a global symbol, because we want
21861 to be able to access them globally. For instance, we want
21862 to be able to break on a nested subprogram without having
21863 to specify the context. */
21864 list_to_add = cu->get_builder ()->get_global_symbols ();
21865 }
21866 else
21867 {
21868 list_to_add = cu->list_in_scope;
21869 }
21870 break;
21871 case DW_TAG_inlined_subroutine:
21872 /* SYMBOL_BLOCK_VALUE (sym) will be filled in later by
21873 finish_block. */
21874 SYMBOL_ACLASS_INDEX (sym) = LOC_BLOCK;
21875 SYMBOL_INLINED (sym) = 1;
21876 list_to_add = cu->list_in_scope;
21877 break;
21878 case DW_TAG_template_value_param:
21879 suppress_add = 1;
21880 /* Fall through. */
21881 case DW_TAG_constant:
21882 case DW_TAG_variable:
21883 case DW_TAG_member:
21884 /* Compilation with minimal debug info may result in
21885 variables with missing type entries. Change the
21886 misleading `void' type to something sensible. */
21887 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_VOID)
21888 SYMBOL_TYPE (sym) = objfile_type (objfile)->builtin_int;
21889
21890 attr = dwarf2_attr (die, DW_AT_const_value, cu);
21891 /* In the case of DW_TAG_member, we should only be called for
21892 static const members. */
21893 if (die->tag == DW_TAG_member)
21894 {
21895 /* dwarf2_add_field uses die_is_declaration,
21896 so we do the same. */
21897 gdb_assert (die_is_declaration (die, cu));
21898 gdb_assert (attr);
21899 }
21900 if (attr != nullptr)
21901 {
21902 dwarf2_const_value (attr, sym, cu);
21903 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21904 if (!suppress_add)
21905 {
21906 if (attr2 && (DW_UNSND (attr2) != 0))
21907 list_to_add = cu->get_builder ()->get_global_symbols ();
21908 else
21909 list_to_add = cu->list_in_scope;
21910 }
21911 break;
21912 }
21913 attr = dwarf2_attr (die, DW_AT_location, cu);
21914 if (attr != nullptr)
21915 {
21916 var_decode_location (attr, sym, cu);
21917 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21918
21919 /* Fortran explicitly imports any global symbols to the local
21920 scope by DW_TAG_common_block. */
21921 if (cu->language == language_fortran && die->parent
21922 && die->parent->tag == DW_TAG_common_block)
21923 attr2 = NULL;
21924
21925 if (SYMBOL_CLASS (sym) == LOC_STATIC
21926 && SYMBOL_VALUE_ADDRESS (sym) == 0
21927 && !dwarf2_per_objfile->has_section_at_zero)
21928 {
21929 /* When a static variable is eliminated by the linker,
21930 the corresponding debug information is not stripped
21931 out, but the variable address is set to null;
21932 do not add such variables into symbol table. */
21933 }
21934 else if (attr2 && (DW_UNSND (attr2) != 0))
21935 {
21936 if (SYMBOL_CLASS (sym) == LOC_STATIC
21937 && (objfile->flags & OBJF_MAINLINE) == 0
21938 && dwarf2_per_objfile->can_copy)
21939 {
21940 /* A global static variable might be subject to
21941 copy relocation. We first check for a local
21942 minsym, though, because maybe the symbol was
21943 marked hidden, in which case this would not
21944 apply. */
21945 bound_minimal_symbol found
21946 = (lookup_minimal_symbol_linkage
21947 (sym->linkage_name (), objfile));
21948 if (found.minsym != nullptr)
21949 sym->maybe_copied = 1;
21950 }
21951
21952 /* A variable with DW_AT_external is never static,
21953 but it may be block-scoped. */
21954 list_to_add
21955 = ((cu->list_in_scope
21956 == cu->get_builder ()->get_file_symbols ())
21957 ? cu->get_builder ()->get_global_symbols ()
21958 : cu->list_in_scope);
21959 }
21960 else
21961 list_to_add = cu->list_in_scope;
21962 }
21963 else
21964 {
21965 /* We do not know the address of this symbol.
21966 If it is an external symbol and we have type information
21967 for it, enter the symbol as a LOC_UNRESOLVED symbol.
21968 The address of the variable will then be determined from
21969 the minimal symbol table whenever the variable is
21970 referenced. */
21971 attr2 = dwarf2_attr (die, DW_AT_external, cu);
21972
21973 /* Fortran explicitly imports any global symbols to the local
21974 scope by DW_TAG_common_block. */
21975 if (cu->language == language_fortran && die->parent
21976 && die->parent->tag == DW_TAG_common_block)
21977 {
21978 /* SYMBOL_CLASS doesn't matter here because
21979 read_common_block is going to reset it. */
21980 if (!suppress_add)
21981 list_to_add = cu->list_in_scope;
21982 }
21983 else if (attr2 && (DW_UNSND (attr2) != 0)
21984 && dwarf2_attr (die, DW_AT_type, cu) != NULL)
21985 {
21986 /* A variable with DW_AT_external is never static, but it
21987 may be block-scoped. */
21988 list_to_add
21989 = ((cu->list_in_scope
21990 == cu->get_builder ()->get_file_symbols ())
21991 ? cu->get_builder ()->get_global_symbols ()
21992 : cu->list_in_scope);
21993
21994 SYMBOL_ACLASS_INDEX (sym) = LOC_UNRESOLVED;
21995 }
21996 else if (!die_is_declaration (die, cu))
21997 {
21998 /* Use the default LOC_OPTIMIZED_OUT class. */
21999 gdb_assert (SYMBOL_CLASS (sym) == LOC_OPTIMIZED_OUT);
22000 if (!suppress_add)
22001 list_to_add = cu->list_in_scope;
22002 }
22003 }
22004 break;
22005 case DW_TAG_formal_parameter:
22006 {
22007 /* If we are inside a function, mark this as an argument. If
22008 not, we might be looking at an argument to an inlined function
22009 when we do not have enough information to show inlined frames;
22010 pretend it's a local variable in that case so that the user can
22011 still see it. */
22012 struct context_stack *curr
22013 = cu->get_builder ()->get_current_context_stack ();
22014 if (curr != nullptr && curr->name != nullptr)
22015 SYMBOL_IS_ARGUMENT (sym) = 1;
22016 attr = dwarf2_attr (die, DW_AT_location, cu);
22017 if (attr != nullptr)
22018 {
22019 var_decode_location (attr, sym, cu);
22020 }
22021 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22022 if (attr != nullptr)
22023 {
22024 dwarf2_const_value (attr, sym, cu);
22025 }
22026
22027 list_to_add = cu->list_in_scope;
22028 }
22029 break;
22030 case DW_TAG_unspecified_parameters:
22031 /* From varargs functions; gdb doesn't seem to have any
22032 interest in this information, so just ignore it for now.
22033 (FIXME?) */
22034 break;
22035 case DW_TAG_template_type_param:
22036 suppress_add = 1;
22037 /* Fall through. */
22038 case DW_TAG_class_type:
22039 case DW_TAG_interface_type:
22040 case DW_TAG_structure_type:
22041 case DW_TAG_union_type:
22042 case DW_TAG_set_type:
22043 case DW_TAG_enumeration_type:
22044 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22045 SYMBOL_DOMAIN (sym) = STRUCT_DOMAIN;
22046
22047 {
22048 /* NOTE: carlton/2003-11-10: C++ class symbols shouldn't
22049 really ever be static objects: otherwise, if you try
22050 to, say, break of a class's method and you're in a file
22051 which doesn't mention that class, it won't work unless
22052 the check for all static symbols in lookup_symbol_aux
22053 saves you. See the OtherFileClass tests in
22054 gdb.c++/namespace.exp. */
22055
22056 if (!suppress_add)
22057 {
22058 buildsym_compunit *builder = cu->get_builder ();
22059 list_to_add
22060 = (cu->list_in_scope == builder->get_file_symbols ()
22061 && cu->language == language_cplus
22062 ? builder->get_global_symbols ()
22063 : cu->list_in_scope);
22064
22065 /* The semantics of C++ state that "struct foo {
22066 ... }" also defines a typedef for "foo". */
22067 if (cu->language == language_cplus
22068 || cu->language == language_ada
22069 || cu->language == language_d
22070 || cu->language == language_rust)
22071 {
22072 /* The symbol's name is already allocated along
22073 with this objfile, so we don't need to
22074 duplicate it for the type. */
22075 if (TYPE_NAME (SYMBOL_TYPE (sym)) == 0)
22076 TYPE_NAME (SYMBOL_TYPE (sym)) = sym->search_name ();
22077 }
22078 }
22079 }
22080 break;
22081 case DW_TAG_typedef:
22082 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22083 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
22084 list_to_add = cu->list_in_scope;
22085 break;
22086 case DW_TAG_base_type:
22087 case DW_TAG_subrange_type:
22088 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22089 SYMBOL_DOMAIN (sym) = VAR_DOMAIN;
22090 list_to_add = cu->list_in_scope;
22091 break;
22092 case DW_TAG_enumerator:
22093 attr = dwarf2_attr (die, DW_AT_const_value, cu);
22094 if (attr != nullptr)
22095 {
22096 dwarf2_const_value (attr, sym, cu);
22097 }
22098 {
22099 /* NOTE: carlton/2003-11-10: See comment above in the
22100 DW_TAG_class_type, etc. block. */
22101
22102 list_to_add
22103 = (cu->list_in_scope == cu->get_builder ()->get_file_symbols ()
22104 && cu->language == language_cplus
22105 ? cu->get_builder ()->get_global_symbols ()
22106 : cu->list_in_scope);
22107 }
22108 break;
22109 case DW_TAG_imported_declaration:
22110 case DW_TAG_namespace:
22111 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22112 list_to_add = cu->get_builder ()->get_global_symbols ();
22113 break;
22114 case DW_TAG_module:
22115 SYMBOL_ACLASS_INDEX (sym) = LOC_TYPEDEF;
22116 SYMBOL_DOMAIN (sym) = MODULE_DOMAIN;
22117 list_to_add = cu->get_builder ()->get_global_symbols ();
22118 break;
22119 case DW_TAG_common_block:
22120 SYMBOL_ACLASS_INDEX (sym) = LOC_COMMON_BLOCK;
22121 SYMBOL_DOMAIN (sym) = COMMON_BLOCK_DOMAIN;
22122 add_symbol_to_list (sym, cu->list_in_scope);
22123 break;
22124 default:
22125 /* Not a tag we recognize. Hopefully we aren't processing
22126 trash data, but since we must specifically ignore things
22127 we don't recognize, there is nothing else we should do at
22128 this point. */
22129 complaint (_("unsupported tag: '%s'"),
22130 dwarf_tag_name (die->tag));
22131 break;
22132 }
22133
22134 if (suppress_add)
22135 {
22136 sym->hash_next = objfile->template_symbols;
22137 objfile->template_symbols = sym;
22138 list_to_add = NULL;
22139 }
22140
22141 if (list_to_add != NULL)
22142 add_symbol_to_list (sym, list_to_add);
22143
22144 /* For the benefit of old versions of GCC, check for anonymous
22145 namespaces based on the demangled name. */
22146 if (!cu->processing_has_namespace_info
22147 && cu->language == language_cplus)
22148 cp_scan_for_anonymous_namespaces (cu->get_builder (), sym, objfile);
22149 }
22150 return (sym);
22151 }
22152
22153 /* Given an attr with a DW_FORM_dataN value in host byte order,
22154 zero-extend it as appropriate for the symbol's type. The DWARF
22155 standard (v4) is not entirely clear about the meaning of using
22156 DW_FORM_dataN for a constant with a signed type, where the type is
22157 wider than the data. The conclusion of a discussion on the DWARF
22158 list was that this is unspecified. We choose to always zero-extend
22159 because that is the interpretation long in use by GCC. */
22160
22161 static gdb_byte *
22162 dwarf2_const_value_data (const struct attribute *attr, struct obstack *obstack,
22163 struct dwarf2_cu *cu, LONGEST *value, int bits)
22164 {
22165 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22166 enum bfd_endian byte_order = bfd_big_endian (objfile->obfd) ?
22167 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE;
22168 LONGEST l = DW_UNSND (attr);
22169
22170 if (bits < sizeof (*value) * 8)
22171 {
22172 l &= ((LONGEST) 1 << bits) - 1;
22173 *value = l;
22174 }
22175 else if (bits == sizeof (*value) * 8)
22176 *value = l;
22177 else
22178 {
22179 gdb_byte *bytes = (gdb_byte *) obstack_alloc (obstack, bits / 8);
22180 store_unsigned_integer (bytes, bits / 8, byte_order, l);
22181 return bytes;
22182 }
22183
22184 return NULL;
22185 }
22186
22187 /* Read a constant value from an attribute. Either set *VALUE, or if
22188 the value does not fit in *VALUE, set *BYTES - either already
22189 allocated on the objfile obstack, or newly allocated on OBSTACK,
22190 or, set *BATON, if we translated the constant to a location
22191 expression. */
22192
22193 static void
22194 dwarf2_const_value_attr (const struct attribute *attr, struct type *type,
22195 const char *name, struct obstack *obstack,
22196 struct dwarf2_cu *cu,
22197 LONGEST *value, const gdb_byte **bytes,
22198 struct dwarf2_locexpr_baton **baton)
22199 {
22200 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22201 struct comp_unit_head *cu_header = &cu->header;
22202 struct dwarf_block *blk;
22203 enum bfd_endian byte_order = (bfd_big_endian (objfile->obfd) ?
22204 BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
22205
22206 *value = 0;
22207 *bytes = NULL;
22208 *baton = NULL;
22209
22210 switch (attr->form)
22211 {
22212 case DW_FORM_addr:
22213 case DW_FORM_addrx:
22214 case DW_FORM_GNU_addr_index:
22215 {
22216 gdb_byte *data;
22217
22218 if (TYPE_LENGTH (type) != cu_header->addr_size)
22219 dwarf2_const_value_length_mismatch_complaint (name,
22220 cu_header->addr_size,
22221 TYPE_LENGTH (type));
22222 /* Symbols of this form are reasonably rare, so we just
22223 piggyback on the existing location code rather than writing
22224 a new implementation of symbol_computed_ops. */
22225 *baton = XOBNEW (obstack, struct dwarf2_locexpr_baton);
22226 (*baton)->per_cu = cu->per_cu;
22227 gdb_assert ((*baton)->per_cu);
22228
22229 (*baton)->size = 2 + cu_header->addr_size;
22230 data = (gdb_byte *) obstack_alloc (obstack, (*baton)->size);
22231 (*baton)->data = data;
22232
22233 data[0] = DW_OP_addr;
22234 store_unsigned_integer (&data[1], cu_header->addr_size,
22235 byte_order, DW_ADDR (attr));
22236 data[cu_header->addr_size + 1] = DW_OP_stack_value;
22237 }
22238 break;
22239 case DW_FORM_string:
22240 case DW_FORM_strp:
22241 case DW_FORM_strx:
22242 case DW_FORM_GNU_str_index:
22243 case DW_FORM_GNU_strp_alt:
22244 /* DW_STRING is already allocated on the objfile obstack, point
22245 directly to it. */
22246 *bytes = (const gdb_byte *) DW_STRING (attr);
22247 break;
22248 case DW_FORM_block1:
22249 case DW_FORM_block2:
22250 case DW_FORM_block4:
22251 case DW_FORM_block:
22252 case DW_FORM_exprloc:
22253 case DW_FORM_data16:
22254 blk = DW_BLOCK (attr);
22255 if (TYPE_LENGTH (type) != blk->size)
22256 dwarf2_const_value_length_mismatch_complaint (name, blk->size,
22257 TYPE_LENGTH (type));
22258 *bytes = blk->data;
22259 break;
22260
22261 /* The DW_AT_const_value attributes are supposed to carry the
22262 symbol's value "represented as it would be on the target
22263 architecture." By the time we get here, it's already been
22264 converted to host endianness, so we just need to sign- or
22265 zero-extend it as appropriate. */
22266 case DW_FORM_data1:
22267 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 8);
22268 break;
22269 case DW_FORM_data2:
22270 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 16);
22271 break;
22272 case DW_FORM_data4:
22273 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 32);
22274 break;
22275 case DW_FORM_data8:
22276 *bytes = dwarf2_const_value_data (attr, obstack, cu, value, 64);
22277 break;
22278
22279 case DW_FORM_sdata:
22280 case DW_FORM_implicit_const:
22281 *value = DW_SND (attr);
22282 break;
22283
22284 case DW_FORM_udata:
22285 *value = DW_UNSND (attr);
22286 break;
22287
22288 default:
22289 complaint (_("unsupported const value attribute form: '%s'"),
22290 dwarf_form_name (attr->form));
22291 *value = 0;
22292 break;
22293 }
22294 }
22295
22296
22297 /* Copy constant value from an attribute to a symbol. */
22298
22299 static void
22300 dwarf2_const_value (const struct attribute *attr, struct symbol *sym,
22301 struct dwarf2_cu *cu)
22302 {
22303 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22304 LONGEST value;
22305 const gdb_byte *bytes;
22306 struct dwarf2_locexpr_baton *baton;
22307
22308 dwarf2_const_value_attr (attr, SYMBOL_TYPE (sym),
22309 sym->print_name (),
22310 &objfile->objfile_obstack, cu,
22311 &value, &bytes, &baton);
22312
22313 if (baton != NULL)
22314 {
22315 SYMBOL_LOCATION_BATON (sym) = baton;
22316 SYMBOL_ACLASS_INDEX (sym) = dwarf2_locexpr_index;
22317 }
22318 else if (bytes != NULL)
22319 {
22320 SYMBOL_VALUE_BYTES (sym) = bytes;
22321 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST_BYTES;
22322 }
22323 else
22324 {
22325 SYMBOL_VALUE (sym) = value;
22326 SYMBOL_ACLASS_INDEX (sym) = LOC_CONST;
22327 }
22328 }
22329
22330 /* Return the type of the die in question using its DW_AT_type attribute. */
22331
22332 static struct type *
22333 die_type (struct die_info *die, struct dwarf2_cu *cu)
22334 {
22335 struct attribute *type_attr;
22336
22337 type_attr = dwarf2_attr (die, DW_AT_type, cu);
22338 if (!type_attr)
22339 {
22340 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22341 /* A missing DW_AT_type represents a void type. */
22342 return objfile_type (objfile)->builtin_void;
22343 }
22344
22345 return lookup_die_type (die, type_attr, cu);
22346 }
22347
22348 /* True iff CU's producer generates GNAT Ada auxiliary information
22349 that allows to find parallel types through that information instead
22350 of having to do expensive parallel lookups by type name. */
22351
22352 static int
22353 need_gnat_info (struct dwarf2_cu *cu)
22354 {
22355 /* Assume that the Ada compiler was GNAT, which always produces
22356 the auxiliary information. */
22357 return (cu->language == language_ada);
22358 }
22359
22360 /* Return the auxiliary type of the die in question using its
22361 DW_AT_GNAT_descriptive_type attribute. Returns NULL if the
22362 attribute is not present. */
22363
22364 static struct type *
22365 die_descriptive_type (struct die_info *die, struct dwarf2_cu *cu)
22366 {
22367 struct attribute *type_attr;
22368
22369 type_attr = dwarf2_attr (die, DW_AT_GNAT_descriptive_type, cu);
22370 if (!type_attr)
22371 return NULL;
22372
22373 return lookup_die_type (die, type_attr, cu);
22374 }
22375
22376 /* If DIE has a descriptive_type attribute, then set the TYPE's
22377 descriptive type accordingly. */
22378
22379 static void
22380 set_descriptive_type (struct type *type, struct die_info *die,
22381 struct dwarf2_cu *cu)
22382 {
22383 struct type *descriptive_type = die_descriptive_type (die, cu);
22384
22385 if (descriptive_type)
22386 {
22387 ALLOCATE_GNAT_AUX_TYPE (type);
22388 TYPE_DESCRIPTIVE_TYPE (type) = descriptive_type;
22389 }
22390 }
22391
22392 /* Return the containing type of the die in question using its
22393 DW_AT_containing_type attribute. */
22394
22395 static struct type *
22396 die_containing_type (struct die_info *die, struct dwarf2_cu *cu)
22397 {
22398 struct attribute *type_attr;
22399 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22400
22401 type_attr = dwarf2_attr (die, DW_AT_containing_type, cu);
22402 if (!type_attr)
22403 error (_("Dwarf Error: Problem turning containing type into gdb type "
22404 "[in module %s]"), objfile_name (objfile));
22405
22406 return lookup_die_type (die, type_attr, cu);
22407 }
22408
22409 /* Return an error marker type to use for the ill formed type in DIE/CU. */
22410
22411 static struct type *
22412 build_error_marker_type (struct dwarf2_cu *cu, struct die_info *die)
22413 {
22414 struct dwarf2_per_objfile *dwarf2_per_objfile
22415 = cu->per_cu->dwarf2_per_objfile;
22416 struct objfile *objfile = dwarf2_per_objfile->objfile;
22417 char *saved;
22418
22419 std::string message
22420 = string_printf (_("<unknown type in %s, CU %s, DIE %s>"),
22421 objfile_name (objfile),
22422 sect_offset_str (cu->header.sect_off),
22423 sect_offset_str (die->sect_off));
22424 saved = obstack_strdup (&objfile->objfile_obstack, message);
22425
22426 return init_type (objfile, TYPE_CODE_ERROR, 0, saved);
22427 }
22428
22429 /* Look up the type of DIE in CU using its type attribute ATTR.
22430 ATTR must be one of: DW_AT_type, DW_AT_GNAT_descriptive_type,
22431 DW_AT_containing_type.
22432 If there is no type substitute an error marker. */
22433
22434 static struct type *
22435 lookup_die_type (struct die_info *die, const struct attribute *attr,
22436 struct dwarf2_cu *cu)
22437 {
22438 struct dwarf2_per_objfile *dwarf2_per_objfile
22439 = cu->per_cu->dwarf2_per_objfile;
22440 struct objfile *objfile = dwarf2_per_objfile->objfile;
22441 struct type *this_type;
22442
22443 gdb_assert (attr->name == DW_AT_type
22444 || attr->name == DW_AT_GNAT_descriptive_type
22445 || attr->name == DW_AT_containing_type);
22446
22447 /* First see if we have it cached. */
22448
22449 if (attr->form == DW_FORM_GNU_ref_alt)
22450 {
22451 struct dwarf2_per_cu_data *per_cu;
22452 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22453
22454 per_cu = dwarf2_find_containing_comp_unit (sect_off, 1,
22455 dwarf2_per_objfile);
22456 this_type = get_die_type_at_offset (sect_off, per_cu);
22457 }
22458 else if (attr_form_is_ref (attr))
22459 {
22460 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
22461
22462 this_type = get_die_type_at_offset (sect_off, cu->per_cu);
22463 }
22464 else if (attr->form == DW_FORM_ref_sig8)
22465 {
22466 ULONGEST signature = DW_SIGNATURE (attr);
22467
22468 return get_signatured_type (die, signature, cu);
22469 }
22470 else
22471 {
22472 complaint (_("Dwarf Error: Bad type attribute %s in DIE"
22473 " at %s [in module %s]"),
22474 dwarf_attr_name (attr->name), sect_offset_str (die->sect_off),
22475 objfile_name (objfile));
22476 return build_error_marker_type (cu, die);
22477 }
22478
22479 /* If not cached we need to read it in. */
22480
22481 if (this_type == NULL)
22482 {
22483 struct die_info *type_die = NULL;
22484 struct dwarf2_cu *type_cu = cu;
22485
22486 if (attr_form_is_ref (attr))
22487 type_die = follow_die_ref (die, attr, &type_cu);
22488 if (type_die == NULL)
22489 return build_error_marker_type (cu, die);
22490 /* If we find the type now, it's probably because the type came
22491 from an inter-CU reference and the type's CU got expanded before
22492 ours. */
22493 this_type = read_type_die (type_die, type_cu);
22494 }
22495
22496 /* If we still don't have a type use an error marker. */
22497
22498 if (this_type == NULL)
22499 return build_error_marker_type (cu, die);
22500
22501 return this_type;
22502 }
22503
22504 /* Return the type in DIE, CU.
22505 Returns NULL for invalid types.
22506
22507 This first does a lookup in die_type_hash,
22508 and only reads the die in if necessary.
22509
22510 NOTE: This can be called when reading in partial or full symbols. */
22511
22512 static struct type *
22513 read_type_die (struct die_info *die, struct dwarf2_cu *cu)
22514 {
22515 struct type *this_type;
22516
22517 this_type = get_die_type (die, cu);
22518 if (this_type)
22519 return this_type;
22520
22521 return read_type_die_1 (die, cu);
22522 }
22523
22524 /* Read the type in DIE, CU.
22525 Returns NULL for invalid types. */
22526
22527 static struct type *
22528 read_type_die_1 (struct die_info *die, struct dwarf2_cu *cu)
22529 {
22530 struct type *this_type = NULL;
22531
22532 switch (die->tag)
22533 {
22534 case DW_TAG_class_type:
22535 case DW_TAG_interface_type:
22536 case DW_TAG_structure_type:
22537 case DW_TAG_union_type:
22538 this_type = read_structure_type (die, cu);
22539 break;
22540 case DW_TAG_enumeration_type:
22541 this_type = read_enumeration_type (die, cu);
22542 break;
22543 case DW_TAG_subprogram:
22544 case DW_TAG_subroutine_type:
22545 case DW_TAG_inlined_subroutine:
22546 this_type = read_subroutine_type (die, cu);
22547 break;
22548 case DW_TAG_array_type:
22549 this_type = read_array_type (die, cu);
22550 break;
22551 case DW_TAG_set_type:
22552 this_type = read_set_type (die, cu);
22553 break;
22554 case DW_TAG_pointer_type:
22555 this_type = read_tag_pointer_type (die, cu);
22556 break;
22557 case DW_TAG_ptr_to_member_type:
22558 this_type = read_tag_ptr_to_member_type (die, cu);
22559 break;
22560 case DW_TAG_reference_type:
22561 this_type = read_tag_reference_type (die, cu, TYPE_CODE_REF);
22562 break;
22563 case DW_TAG_rvalue_reference_type:
22564 this_type = read_tag_reference_type (die, cu, TYPE_CODE_RVALUE_REF);
22565 break;
22566 case DW_TAG_const_type:
22567 this_type = read_tag_const_type (die, cu);
22568 break;
22569 case DW_TAG_volatile_type:
22570 this_type = read_tag_volatile_type (die, cu);
22571 break;
22572 case DW_TAG_restrict_type:
22573 this_type = read_tag_restrict_type (die, cu);
22574 break;
22575 case DW_TAG_string_type:
22576 this_type = read_tag_string_type (die, cu);
22577 break;
22578 case DW_TAG_typedef:
22579 this_type = read_typedef (die, cu);
22580 break;
22581 case DW_TAG_subrange_type:
22582 this_type = read_subrange_type (die, cu);
22583 break;
22584 case DW_TAG_base_type:
22585 this_type = read_base_type (die, cu);
22586 break;
22587 case DW_TAG_unspecified_type:
22588 this_type = read_unspecified_type (die, cu);
22589 break;
22590 case DW_TAG_namespace:
22591 this_type = read_namespace_type (die, cu);
22592 break;
22593 case DW_TAG_module:
22594 this_type = read_module_type (die, cu);
22595 break;
22596 case DW_TAG_atomic_type:
22597 this_type = read_tag_atomic_type (die, cu);
22598 break;
22599 default:
22600 complaint (_("unexpected tag in read_type_die: '%s'"),
22601 dwarf_tag_name (die->tag));
22602 break;
22603 }
22604
22605 return this_type;
22606 }
22607
22608 /* See if we can figure out if the class lives in a namespace. We do
22609 this by looking for a member function; its demangled name will
22610 contain namespace info, if there is any.
22611 Return the computed name or NULL.
22612 Space for the result is allocated on the objfile's obstack.
22613 This is the full-die version of guess_partial_die_structure_name.
22614 In this case we know DIE has no useful parent. */
22615
22616 static char *
22617 guess_full_die_structure_name (struct die_info *die, struct dwarf2_cu *cu)
22618 {
22619 struct die_info *spec_die;
22620 struct dwarf2_cu *spec_cu;
22621 struct die_info *child;
22622 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22623
22624 spec_cu = cu;
22625 spec_die = die_specification (die, &spec_cu);
22626 if (spec_die != NULL)
22627 {
22628 die = spec_die;
22629 cu = spec_cu;
22630 }
22631
22632 for (child = die->child;
22633 child != NULL;
22634 child = child->sibling)
22635 {
22636 if (child->tag == DW_TAG_subprogram)
22637 {
22638 const char *linkage_name = dw2_linkage_name (child, cu);
22639
22640 if (linkage_name != NULL)
22641 {
22642 char *actual_name
22643 = language_class_name_from_physname (cu->language_defn,
22644 linkage_name);
22645 char *name = NULL;
22646
22647 if (actual_name != NULL)
22648 {
22649 const char *die_name = dwarf2_name (die, cu);
22650
22651 if (die_name != NULL
22652 && strcmp (die_name, actual_name) != 0)
22653 {
22654 /* Strip off the class name from the full name.
22655 We want the prefix. */
22656 int die_name_len = strlen (die_name);
22657 int actual_name_len = strlen (actual_name);
22658
22659 /* Test for '::' as a sanity check. */
22660 if (actual_name_len > die_name_len + 2
22661 && actual_name[actual_name_len
22662 - die_name_len - 1] == ':')
22663 name = obstack_strndup (
22664 &objfile->per_bfd->storage_obstack,
22665 actual_name, actual_name_len - die_name_len - 2);
22666 }
22667 }
22668 xfree (actual_name);
22669 return name;
22670 }
22671 }
22672 }
22673
22674 return NULL;
22675 }
22676
22677 /* GCC might emit a nameless typedef that has a linkage name. Determine the
22678 prefix part in such case. See
22679 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
22680
22681 static const char *
22682 anonymous_struct_prefix (struct die_info *die, struct dwarf2_cu *cu)
22683 {
22684 struct attribute *attr;
22685 const char *base;
22686
22687 if (die->tag != DW_TAG_class_type && die->tag != DW_TAG_interface_type
22688 && die->tag != DW_TAG_structure_type && die->tag != DW_TAG_union_type)
22689 return NULL;
22690
22691 if (dwarf2_string_attr (die, DW_AT_name, cu) != NULL)
22692 return NULL;
22693
22694 attr = dw2_linkage_name_attr (die, cu);
22695 if (attr == NULL || DW_STRING (attr) == NULL)
22696 return NULL;
22697
22698 /* dwarf2_name had to be already called. */
22699 gdb_assert (DW_STRING_IS_CANONICAL (attr));
22700
22701 /* Strip the base name, keep any leading namespaces/classes. */
22702 base = strrchr (DW_STRING (attr), ':');
22703 if (base == NULL || base == DW_STRING (attr) || base[-1] != ':')
22704 return "";
22705
22706 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22707 return obstack_strndup (&objfile->per_bfd->storage_obstack,
22708 DW_STRING (attr),
22709 &base[-1] - DW_STRING (attr));
22710 }
22711
22712 /* Return the name of the namespace/class that DIE is defined within,
22713 or "" if we can't tell. The caller should not xfree the result.
22714
22715 For example, if we're within the method foo() in the following
22716 code:
22717
22718 namespace N {
22719 class C {
22720 void foo () {
22721 }
22722 };
22723 }
22724
22725 then determine_prefix on foo's die will return "N::C". */
22726
22727 static const char *
22728 determine_prefix (struct die_info *die, struct dwarf2_cu *cu)
22729 {
22730 struct dwarf2_per_objfile *dwarf2_per_objfile
22731 = cu->per_cu->dwarf2_per_objfile;
22732 struct die_info *parent, *spec_die;
22733 struct dwarf2_cu *spec_cu;
22734 struct type *parent_type;
22735 const char *retval;
22736
22737 if (cu->language != language_cplus
22738 && cu->language != language_fortran && cu->language != language_d
22739 && cu->language != language_rust)
22740 return "";
22741
22742 retval = anonymous_struct_prefix (die, cu);
22743 if (retval)
22744 return retval;
22745
22746 /* We have to be careful in the presence of DW_AT_specification.
22747 For example, with GCC 3.4, given the code
22748
22749 namespace N {
22750 void foo() {
22751 // Definition of N::foo.
22752 }
22753 }
22754
22755 then we'll have a tree of DIEs like this:
22756
22757 1: DW_TAG_compile_unit
22758 2: DW_TAG_namespace // N
22759 3: DW_TAG_subprogram // declaration of N::foo
22760 4: DW_TAG_subprogram // definition of N::foo
22761 DW_AT_specification // refers to die #3
22762
22763 Thus, when processing die #4, we have to pretend that we're in
22764 the context of its DW_AT_specification, namely the contex of die
22765 #3. */
22766 spec_cu = cu;
22767 spec_die = die_specification (die, &spec_cu);
22768 if (spec_die == NULL)
22769 parent = die->parent;
22770 else
22771 {
22772 parent = spec_die->parent;
22773 cu = spec_cu;
22774 }
22775
22776 if (parent == NULL)
22777 return "";
22778 else if (parent->building_fullname)
22779 {
22780 const char *name;
22781 const char *parent_name;
22782
22783 /* It has been seen on RealView 2.2 built binaries,
22784 DW_TAG_template_type_param types actually _defined_ as
22785 children of the parent class:
22786
22787 enum E {};
22788 template class <class Enum> Class{};
22789 Class<enum E> class_e;
22790
22791 1: DW_TAG_class_type (Class)
22792 2: DW_TAG_enumeration_type (E)
22793 3: DW_TAG_enumerator (enum1:0)
22794 3: DW_TAG_enumerator (enum2:1)
22795 ...
22796 2: DW_TAG_template_type_param
22797 DW_AT_type DW_FORM_ref_udata (E)
22798
22799 Besides being broken debug info, it can put GDB into an
22800 infinite loop. Consider:
22801
22802 When we're building the full name for Class<E>, we'll start
22803 at Class, and go look over its template type parameters,
22804 finding E. We'll then try to build the full name of E, and
22805 reach here. We're now trying to build the full name of E,
22806 and look over the parent DIE for containing scope. In the
22807 broken case, if we followed the parent DIE of E, we'd again
22808 find Class, and once again go look at its template type
22809 arguments, etc., etc. Simply don't consider such parent die
22810 as source-level parent of this die (it can't be, the language
22811 doesn't allow it), and break the loop here. */
22812 name = dwarf2_name (die, cu);
22813 parent_name = dwarf2_name (parent, cu);
22814 complaint (_("template param type '%s' defined within parent '%s'"),
22815 name ? name : "<unknown>",
22816 parent_name ? parent_name : "<unknown>");
22817 return "";
22818 }
22819 else
22820 switch (parent->tag)
22821 {
22822 case DW_TAG_namespace:
22823 parent_type = read_type_die (parent, cu);
22824 /* GCC 4.0 and 4.1 had a bug (PR c++/28460) where they generated bogus
22825 DW_TAG_namespace DIEs with a name of "::" for the global namespace.
22826 Work around this problem here. */
22827 if (cu->language == language_cplus
22828 && strcmp (TYPE_NAME (parent_type), "::") == 0)
22829 return "";
22830 /* We give a name to even anonymous namespaces. */
22831 return TYPE_NAME (parent_type);
22832 case DW_TAG_class_type:
22833 case DW_TAG_interface_type:
22834 case DW_TAG_structure_type:
22835 case DW_TAG_union_type:
22836 case DW_TAG_module:
22837 parent_type = read_type_die (parent, cu);
22838 if (TYPE_NAME (parent_type) != NULL)
22839 return TYPE_NAME (parent_type);
22840 else
22841 /* An anonymous structure is only allowed non-static data
22842 members; no typedefs, no member functions, et cetera.
22843 So it does not need a prefix. */
22844 return "";
22845 case DW_TAG_compile_unit:
22846 case DW_TAG_partial_unit:
22847 /* gcc-4.5 -gdwarf-4 can drop the enclosing namespace. Cope. */
22848 if (cu->language == language_cplus
22849 && !dwarf2_per_objfile->types.empty ()
22850 && die->child != NULL
22851 && (die->tag == DW_TAG_class_type
22852 || die->tag == DW_TAG_structure_type
22853 || die->tag == DW_TAG_union_type))
22854 {
22855 char *name = guess_full_die_structure_name (die, cu);
22856 if (name != NULL)
22857 return name;
22858 }
22859 return "";
22860 case DW_TAG_subprogram:
22861 /* Nested subroutines in Fortran get a prefix with the name
22862 of the parent's subroutine. */
22863 if (cu->language == language_fortran)
22864 {
22865 if ((die->tag == DW_TAG_subprogram)
22866 && (dwarf2_name (parent, cu) != NULL))
22867 return dwarf2_name (parent, cu);
22868 }
22869 return determine_prefix (parent, cu);
22870 case DW_TAG_enumeration_type:
22871 parent_type = read_type_die (parent, cu);
22872 if (TYPE_DECLARED_CLASS (parent_type))
22873 {
22874 if (TYPE_NAME (parent_type) != NULL)
22875 return TYPE_NAME (parent_type);
22876 return "";
22877 }
22878 /* Fall through. */
22879 default:
22880 return determine_prefix (parent, cu);
22881 }
22882 }
22883
22884 /* Return a newly-allocated string formed by concatenating PREFIX and SUFFIX
22885 with appropriate separator. If PREFIX or SUFFIX is NULL or empty, then
22886 simply copy the SUFFIX or PREFIX, respectively. If OBS is non-null, perform
22887 an obconcat, otherwise allocate storage for the result. The CU argument is
22888 used to determine the language and hence, the appropriate separator. */
22889
22890 #define MAX_SEP_LEN 7 /* strlen ("__") + strlen ("_MOD_") */
22891
22892 static char *
22893 typename_concat (struct obstack *obs, const char *prefix, const char *suffix,
22894 int physname, struct dwarf2_cu *cu)
22895 {
22896 const char *lead = "";
22897 const char *sep;
22898
22899 if (suffix == NULL || suffix[0] == '\0'
22900 || prefix == NULL || prefix[0] == '\0')
22901 sep = "";
22902 else if (cu->language == language_d)
22903 {
22904 /* For D, the 'main' function could be defined in any module, but it
22905 should never be prefixed. */
22906 if (strcmp (suffix, "D main") == 0)
22907 {
22908 prefix = "";
22909 sep = "";
22910 }
22911 else
22912 sep = ".";
22913 }
22914 else if (cu->language == language_fortran && physname)
22915 {
22916 /* This is gfortran specific mangling. Normally DW_AT_linkage_name or
22917 DW_AT_MIPS_linkage_name is preferred and used instead. */
22918
22919 lead = "__";
22920 sep = "_MOD_";
22921 }
22922 else
22923 sep = "::";
22924
22925 if (prefix == NULL)
22926 prefix = "";
22927 if (suffix == NULL)
22928 suffix = "";
22929
22930 if (obs == NULL)
22931 {
22932 char *retval
22933 = ((char *)
22934 xmalloc (strlen (prefix) + MAX_SEP_LEN + strlen (suffix) + 1));
22935
22936 strcpy (retval, lead);
22937 strcat (retval, prefix);
22938 strcat (retval, sep);
22939 strcat (retval, suffix);
22940 return retval;
22941 }
22942 else
22943 {
22944 /* We have an obstack. */
22945 return obconcat (obs, lead, prefix, sep, suffix, (char *) NULL);
22946 }
22947 }
22948
22949 /* Return sibling of die, NULL if no sibling. */
22950
22951 static struct die_info *
22952 sibling_die (struct die_info *die)
22953 {
22954 return die->sibling;
22955 }
22956
22957 /* Get name of a die, return NULL if not found. */
22958
22959 static const char *
22960 dwarf2_canonicalize_name (const char *name, struct dwarf2_cu *cu,
22961 struct obstack *obstack)
22962 {
22963 if (name && cu->language == language_cplus)
22964 {
22965 std::string canon_name = cp_canonicalize_string (name);
22966
22967 if (!canon_name.empty ())
22968 {
22969 if (canon_name != name)
22970 name = obstack_strdup (obstack, canon_name);
22971 }
22972 }
22973
22974 return name;
22975 }
22976
22977 /* Get name of a die, return NULL if not found.
22978 Anonymous namespaces are converted to their magic string. */
22979
22980 static const char *
22981 dwarf2_name (struct die_info *die, struct dwarf2_cu *cu)
22982 {
22983 struct attribute *attr;
22984 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
22985
22986 attr = dwarf2_attr (die, DW_AT_name, cu);
22987 if ((!attr || !DW_STRING (attr))
22988 && die->tag != DW_TAG_namespace
22989 && die->tag != DW_TAG_class_type
22990 && die->tag != DW_TAG_interface_type
22991 && die->tag != DW_TAG_structure_type
22992 && die->tag != DW_TAG_union_type)
22993 return NULL;
22994
22995 switch (die->tag)
22996 {
22997 case DW_TAG_compile_unit:
22998 case DW_TAG_partial_unit:
22999 /* Compilation units have a DW_AT_name that is a filename, not
23000 a source language identifier. */
23001 case DW_TAG_enumeration_type:
23002 case DW_TAG_enumerator:
23003 /* These tags always have simple identifiers already; no need
23004 to canonicalize them. */
23005 return DW_STRING (attr);
23006
23007 case DW_TAG_namespace:
23008 if (attr != NULL && DW_STRING (attr) != NULL)
23009 return DW_STRING (attr);
23010 return CP_ANONYMOUS_NAMESPACE_STR;
23011
23012 case DW_TAG_class_type:
23013 case DW_TAG_interface_type:
23014 case DW_TAG_structure_type:
23015 case DW_TAG_union_type:
23016 /* Some GCC versions emit spurious DW_AT_name attributes for unnamed
23017 structures or unions. These were of the form "._%d" in GCC 4.1,
23018 or simply "<anonymous struct>" or "<anonymous union>" in GCC 4.3
23019 and GCC 4.4. We work around this problem by ignoring these. */
23020 if (attr && DW_STRING (attr)
23021 && (startswith (DW_STRING (attr), "._")
23022 || startswith (DW_STRING (attr), "<anonymous")))
23023 return NULL;
23024
23025 /* GCC might emit a nameless typedef that has a linkage name. See
23026 http://gcc.gnu.org/bugzilla/show_bug.cgi?id=47510. */
23027 if (!attr || DW_STRING (attr) == NULL)
23028 {
23029 char *demangled = NULL;
23030
23031 attr = dw2_linkage_name_attr (die, cu);
23032 if (attr == NULL || DW_STRING (attr) == NULL)
23033 return NULL;
23034
23035 /* Avoid demangling DW_STRING (attr) the second time on a second
23036 call for the same DIE. */
23037 if (!DW_STRING_IS_CANONICAL (attr))
23038 demangled = gdb_demangle (DW_STRING (attr), DMGL_TYPES);
23039
23040 if (demangled)
23041 {
23042 const char *base;
23043
23044 /* FIXME: we already did this for the partial symbol... */
23045 DW_STRING (attr)
23046 = obstack_strdup (&objfile->per_bfd->storage_obstack,
23047 demangled);
23048 DW_STRING_IS_CANONICAL (attr) = 1;
23049 xfree (demangled);
23050
23051 /* Strip any leading namespaces/classes, keep only the base name.
23052 DW_AT_name for named DIEs does not contain the prefixes. */
23053 base = strrchr (DW_STRING (attr), ':');
23054 if (base && base > DW_STRING (attr) && base[-1] == ':')
23055 return &base[1];
23056 else
23057 return DW_STRING (attr);
23058 }
23059 }
23060 break;
23061
23062 default:
23063 break;
23064 }
23065
23066 if (!DW_STRING_IS_CANONICAL (attr))
23067 {
23068 DW_STRING (attr)
23069 = dwarf2_canonicalize_name (DW_STRING (attr), cu,
23070 &objfile->per_bfd->storage_obstack);
23071 DW_STRING_IS_CANONICAL (attr) = 1;
23072 }
23073 return DW_STRING (attr);
23074 }
23075
23076 /* Return the die that this die in an extension of, or NULL if there
23077 is none. *EXT_CU is the CU containing DIE on input, and the CU
23078 containing the return value on output. */
23079
23080 static struct die_info *
23081 dwarf2_extension (struct die_info *die, struct dwarf2_cu **ext_cu)
23082 {
23083 struct attribute *attr;
23084
23085 attr = dwarf2_attr (die, DW_AT_extension, *ext_cu);
23086 if (attr == NULL)
23087 return NULL;
23088
23089 return follow_die_ref (die, attr, ext_cu);
23090 }
23091
23092 /* A convenience function that returns an "unknown" DWARF name,
23093 including the value of V. STR is the name of the entity being
23094 printed, e.g., "TAG". */
23095
23096 static const char *
23097 dwarf_unknown (const char *str, unsigned v)
23098 {
23099 char *cell = get_print_cell ();
23100 xsnprintf (cell, PRINT_CELL_SIZE, "DW_%s_<unknown: %u>", str, v);
23101 return cell;
23102 }
23103
23104 /* Convert a DIE tag into its string name. */
23105
23106 static const char *
23107 dwarf_tag_name (unsigned tag)
23108 {
23109 const char *name = get_DW_TAG_name (tag);
23110
23111 if (name == NULL)
23112 return dwarf_unknown ("TAG", tag);
23113
23114 return name;
23115 }
23116
23117 /* Convert a DWARF attribute code into its string name. */
23118
23119 static const char *
23120 dwarf_attr_name (unsigned attr)
23121 {
23122 const char *name;
23123
23124 #ifdef MIPS /* collides with DW_AT_HP_block_index */
23125 if (attr == DW_AT_MIPS_fde)
23126 return "DW_AT_MIPS_fde";
23127 #else
23128 if (attr == DW_AT_HP_block_index)
23129 return "DW_AT_HP_block_index";
23130 #endif
23131
23132 name = get_DW_AT_name (attr);
23133
23134 if (name == NULL)
23135 return dwarf_unknown ("AT", attr);
23136
23137 return name;
23138 }
23139
23140 /* Convert a unit type to corresponding DW_UT name. */
23141
23142 static const char *
23143 dwarf_unit_type_name (int unit_type) {
23144 switch (unit_type)
23145 {
23146 case 0x01:
23147 return "DW_UT_compile (0x01)";
23148 case 0x02:
23149 return "DW_UT_type (0x02)";
23150 case 0x03:
23151 return "DW_UT_partial (0x03)";
23152 case 0x04:
23153 return "DW_UT_skeleton (0x04)";
23154 case 0x05:
23155 return "DW_UT_split_compile (0x05)";
23156 case 0x06:
23157 return "DW_UT_split_type (0x06)";
23158 case 0x80:
23159 return "DW_UT_lo_user (0x80)";
23160 case 0xff:
23161 return "DW_UT_hi_user (0xff)";
23162 default:
23163 return nullptr;
23164 }
23165 }
23166
23167 /* Convert a DWARF value form code into its string name. */
23168
23169 static const char *
23170 dwarf_form_name (unsigned form)
23171 {
23172 const char *name = get_DW_FORM_name (form);
23173
23174 if (name == NULL)
23175 return dwarf_unknown ("FORM", form);
23176
23177 return name;
23178 }
23179
23180 static const char *
23181 dwarf_bool_name (unsigned mybool)
23182 {
23183 if (mybool)
23184 return "TRUE";
23185 else
23186 return "FALSE";
23187 }
23188
23189 /* Convert a DWARF type code into its string name. */
23190
23191 static const char *
23192 dwarf_type_encoding_name (unsigned enc)
23193 {
23194 const char *name = get_DW_ATE_name (enc);
23195
23196 if (name == NULL)
23197 return dwarf_unknown ("ATE", enc);
23198
23199 return name;
23200 }
23201
23202 static void
23203 dump_die_shallow (struct ui_file *f, int indent, struct die_info *die)
23204 {
23205 unsigned int i;
23206
23207 print_spaces (indent, f);
23208 fprintf_unfiltered (f, "Die: %s (abbrev %d, offset %s)\n",
23209 dwarf_tag_name (die->tag), die->abbrev,
23210 sect_offset_str (die->sect_off));
23211
23212 if (die->parent != NULL)
23213 {
23214 print_spaces (indent, f);
23215 fprintf_unfiltered (f, " parent at offset: %s\n",
23216 sect_offset_str (die->parent->sect_off));
23217 }
23218
23219 print_spaces (indent, f);
23220 fprintf_unfiltered (f, " has children: %s\n",
23221 dwarf_bool_name (die->child != NULL));
23222
23223 print_spaces (indent, f);
23224 fprintf_unfiltered (f, " attributes:\n");
23225
23226 for (i = 0; i < die->num_attrs; ++i)
23227 {
23228 print_spaces (indent, f);
23229 fprintf_unfiltered (f, " %s (%s) ",
23230 dwarf_attr_name (die->attrs[i].name),
23231 dwarf_form_name (die->attrs[i].form));
23232
23233 switch (die->attrs[i].form)
23234 {
23235 case DW_FORM_addr:
23236 case DW_FORM_addrx:
23237 case DW_FORM_GNU_addr_index:
23238 fprintf_unfiltered (f, "address: ");
23239 fputs_filtered (hex_string (DW_ADDR (&die->attrs[i])), f);
23240 break;
23241 case DW_FORM_block2:
23242 case DW_FORM_block4:
23243 case DW_FORM_block:
23244 case DW_FORM_block1:
23245 fprintf_unfiltered (f, "block: size %s",
23246 pulongest (DW_BLOCK (&die->attrs[i])->size));
23247 break;
23248 case DW_FORM_exprloc:
23249 fprintf_unfiltered (f, "expression: size %s",
23250 pulongest (DW_BLOCK (&die->attrs[i])->size));
23251 break;
23252 case DW_FORM_data16:
23253 fprintf_unfiltered (f, "constant of 16 bytes");
23254 break;
23255 case DW_FORM_ref_addr:
23256 fprintf_unfiltered (f, "ref address: ");
23257 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23258 break;
23259 case DW_FORM_GNU_ref_alt:
23260 fprintf_unfiltered (f, "alt ref address: ");
23261 fputs_filtered (hex_string (DW_UNSND (&die->attrs[i])), f);
23262 break;
23263 case DW_FORM_ref1:
23264 case DW_FORM_ref2:
23265 case DW_FORM_ref4:
23266 case DW_FORM_ref8:
23267 case DW_FORM_ref_udata:
23268 fprintf_unfiltered (f, "constant ref: 0x%lx (adjusted)",
23269 (long) (DW_UNSND (&die->attrs[i])));
23270 break;
23271 case DW_FORM_data1:
23272 case DW_FORM_data2:
23273 case DW_FORM_data4:
23274 case DW_FORM_data8:
23275 case DW_FORM_udata:
23276 case DW_FORM_sdata:
23277 fprintf_unfiltered (f, "constant: %s",
23278 pulongest (DW_UNSND (&die->attrs[i])));
23279 break;
23280 case DW_FORM_sec_offset:
23281 fprintf_unfiltered (f, "section offset: %s",
23282 pulongest (DW_UNSND (&die->attrs[i])));
23283 break;
23284 case DW_FORM_ref_sig8:
23285 fprintf_unfiltered (f, "signature: %s",
23286 hex_string (DW_SIGNATURE (&die->attrs[i])));
23287 break;
23288 case DW_FORM_string:
23289 case DW_FORM_strp:
23290 case DW_FORM_line_strp:
23291 case DW_FORM_strx:
23292 case DW_FORM_GNU_str_index:
23293 case DW_FORM_GNU_strp_alt:
23294 fprintf_unfiltered (f, "string: \"%s\" (%s canonicalized)",
23295 DW_STRING (&die->attrs[i])
23296 ? DW_STRING (&die->attrs[i]) : "",
23297 DW_STRING_IS_CANONICAL (&die->attrs[i]) ? "is" : "not");
23298 break;
23299 case DW_FORM_flag:
23300 if (DW_UNSND (&die->attrs[i]))
23301 fprintf_unfiltered (f, "flag: TRUE");
23302 else
23303 fprintf_unfiltered (f, "flag: FALSE");
23304 break;
23305 case DW_FORM_flag_present:
23306 fprintf_unfiltered (f, "flag: TRUE");
23307 break;
23308 case DW_FORM_indirect:
23309 /* The reader will have reduced the indirect form to
23310 the "base form" so this form should not occur. */
23311 fprintf_unfiltered (f,
23312 "unexpected attribute form: DW_FORM_indirect");
23313 break;
23314 case DW_FORM_implicit_const:
23315 fprintf_unfiltered (f, "constant: %s",
23316 plongest (DW_SND (&die->attrs[i])));
23317 break;
23318 default:
23319 fprintf_unfiltered (f, "unsupported attribute form: %d.",
23320 die->attrs[i].form);
23321 break;
23322 }
23323 fprintf_unfiltered (f, "\n");
23324 }
23325 }
23326
23327 static void
23328 dump_die_for_error (struct die_info *die)
23329 {
23330 dump_die_shallow (gdb_stderr, 0, die);
23331 }
23332
23333 static void
23334 dump_die_1 (struct ui_file *f, int level, int max_level, struct die_info *die)
23335 {
23336 int indent = level * 4;
23337
23338 gdb_assert (die != NULL);
23339
23340 if (level >= max_level)
23341 return;
23342
23343 dump_die_shallow (f, indent, die);
23344
23345 if (die->child != NULL)
23346 {
23347 print_spaces (indent, f);
23348 fprintf_unfiltered (f, " Children:");
23349 if (level + 1 < max_level)
23350 {
23351 fprintf_unfiltered (f, "\n");
23352 dump_die_1 (f, level + 1, max_level, die->child);
23353 }
23354 else
23355 {
23356 fprintf_unfiltered (f,
23357 " [not printed, max nesting level reached]\n");
23358 }
23359 }
23360
23361 if (die->sibling != NULL && level > 0)
23362 {
23363 dump_die_1 (f, level, max_level, die->sibling);
23364 }
23365 }
23366
23367 /* This is called from the pdie macro in gdbinit.in.
23368 It's not static so gcc will keep a copy callable from gdb. */
23369
23370 void
23371 dump_die (struct die_info *die, int max_level)
23372 {
23373 dump_die_1 (gdb_stdlog, 0, max_level, die);
23374 }
23375
23376 static void
23377 store_in_ref_table (struct die_info *die, struct dwarf2_cu *cu)
23378 {
23379 void **slot;
23380
23381 slot = htab_find_slot_with_hash (cu->die_hash, die,
23382 to_underlying (die->sect_off),
23383 INSERT);
23384
23385 *slot = die;
23386 }
23387
23388 /* Return DIE offset of ATTR. Return 0 with complaint if ATTR is not of the
23389 required kind. */
23390
23391 static sect_offset
23392 dwarf2_get_ref_die_offset (const struct attribute *attr)
23393 {
23394 if (attr_form_is_ref (attr))
23395 return (sect_offset) DW_UNSND (attr);
23396
23397 complaint (_("unsupported die ref attribute form: '%s'"),
23398 dwarf_form_name (attr->form));
23399 return {};
23400 }
23401
23402 /* Return the constant value held by ATTR. Return DEFAULT_VALUE if
23403 * the value held by the attribute is not constant. */
23404
23405 static LONGEST
23406 dwarf2_get_attr_constant_value (const struct attribute *attr, int default_value)
23407 {
23408 if (attr->form == DW_FORM_sdata || attr->form == DW_FORM_implicit_const)
23409 return DW_SND (attr);
23410 else if (attr->form == DW_FORM_udata
23411 || attr->form == DW_FORM_data1
23412 || attr->form == DW_FORM_data2
23413 || attr->form == DW_FORM_data4
23414 || attr->form == DW_FORM_data8)
23415 return DW_UNSND (attr);
23416 else
23417 {
23418 /* For DW_FORM_data16 see attr_form_is_constant. */
23419 complaint (_("Attribute value is not a constant (%s)"),
23420 dwarf_form_name (attr->form));
23421 return default_value;
23422 }
23423 }
23424
23425 /* Follow reference or signature attribute ATTR of SRC_DIE.
23426 On entry *REF_CU is the CU of SRC_DIE.
23427 On exit *REF_CU is the CU of the result. */
23428
23429 static struct die_info *
23430 follow_die_ref_or_sig (struct die_info *src_die, const struct attribute *attr,
23431 struct dwarf2_cu **ref_cu)
23432 {
23433 struct die_info *die;
23434
23435 if (attr_form_is_ref (attr))
23436 die = follow_die_ref (src_die, attr, ref_cu);
23437 else if (attr->form == DW_FORM_ref_sig8)
23438 die = follow_die_sig (src_die, attr, ref_cu);
23439 else
23440 {
23441 dump_die_for_error (src_die);
23442 error (_("Dwarf Error: Expected reference attribute [in module %s]"),
23443 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23444 }
23445
23446 return die;
23447 }
23448
23449 /* Follow reference OFFSET.
23450 On entry *REF_CU is the CU of the source die referencing OFFSET.
23451 On exit *REF_CU is the CU of the result.
23452 Returns NULL if OFFSET is invalid. */
23453
23454 static struct die_info *
23455 follow_die_offset (sect_offset sect_off, int offset_in_dwz,
23456 struct dwarf2_cu **ref_cu)
23457 {
23458 struct die_info temp_die;
23459 struct dwarf2_cu *target_cu, *cu = *ref_cu;
23460 struct dwarf2_per_objfile *dwarf2_per_objfile
23461 = cu->per_cu->dwarf2_per_objfile;
23462
23463 gdb_assert (cu->per_cu != NULL);
23464
23465 target_cu = cu;
23466
23467 if (cu->per_cu->is_debug_types)
23468 {
23469 /* .debug_types CUs cannot reference anything outside their CU.
23470 If they need to, they have to reference a signatured type via
23471 DW_FORM_ref_sig8. */
23472 if (!offset_in_cu_p (&cu->header, sect_off))
23473 return NULL;
23474 }
23475 else if (offset_in_dwz != cu->per_cu->is_dwz
23476 || !offset_in_cu_p (&cu->header, sect_off))
23477 {
23478 struct dwarf2_per_cu_data *per_cu;
23479
23480 per_cu = dwarf2_find_containing_comp_unit (sect_off, offset_in_dwz,
23481 dwarf2_per_objfile);
23482
23483 /* If necessary, add it to the queue and load its DIEs. */
23484 if (maybe_queue_comp_unit (cu, per_cu, cu->language))
23485 load_full_comp_unit (per_cu, false, cu->language);
23486
23487 target_cu = per_cu->cu;
23488 }
23489 else if (cu->dies == NULL)
23490 {
23491 /* We're loading full DIEs during partial symbol reading. */
23492 gdb_assert (dwarf2_per_objfile->reading_partial_symbols);
23493 load_full_comp_unit (cu->per_cu, false, language_minimal);
23494 }
23495
23496 *ref_cu = target_cu;
23497 temp_die.sect_off = sect_off;
23498
23499 if (target_cu != cu)
23500 target_cu->ancestor = cu;
23501
23502 return (struct die_info *) htab_find_with_hash (target_cu->die_hash,
23503 &temp_die,
23504 to_underlying (sect_off));
23505 }
23506
23507 /* Follow reference attribute ATTR of SRC_DIE.
23508 On entry *REF_CU is the CU of SRC_DIE.
23509 On exit *REF_CU is the CU of the result. */
23510
23511 static struct die_info *
23512 follow_die_ref (struct die_info *src_die, const struct attribute *attr,
23513 struct dwarf2_cu **ref_cu)
23514 {
23515 sect_offset sect_off = dwarf2_get_ref_die_offset (attr);
23516 struct dwarf2_cu *cu = *ref_cu;
23517 struct die_info *die;
23518
23519 die = follow_die_offset (sect_off,
23520 (attr->form == DW_FORM_GNU_ref_alt
23521 || cu->per_cu->is_dwz),
23522 ref_cu);
23523 if (!die)
23524 error (_("Dwarf Error: Cannot find DIE at %s referenced from DIE "
23525 "at %s [in module %s]"),
23526 sect_offset_str (sect_off), sect_offset_str (src_die->sect_off),
23527 objfile_name (cu->per_cu->dwarf2_per_objfile->objfile));
23528
23529 return die;
23530 }
23531
23532 /* Return DWARF block referenced by DW_AT_location of DIE at SECT_OFF at PER_CU.
23533 Returned value is intended for DW_OP_call*. Returned
23534 dwarf2_locexpr_baton->data has lifetime of
23535 PER_CU->DWARF2_PER_OBJFILE->OBJFILE. */
23536
23537 struct dwarf2_locexpr_baton
23538 dwarf2_fetch_die_loc_sect_off (sect_offset sect_off,
23539 struct dwarf2_per_cu_data *per_cu,
23540 CORE_ADDR (*get_frame_pc) (void *baton),
23541 void *baton, bool resolve_abstract_p)
23542 {
23543 struct dwarf2_cu *cu;
23544 struct die_info *die;
23545 struct attribute *attr;
23546 struct dwarf2_locexpr_baton retval;
23547 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
23548 struct objfile *objfile = dwarf2_per_objfile->objfile;
23549
23550 if (per_cu->cu == NULL)
23551 load_cu (per_cu, false);
23552 cu = per_cu->cu;
23553 if (cu == NULL)
23554 {
23555 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23556 Instead just throw an error, not much else we can do. */
23557 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23558 sect_offset_str (sect_off), objfile_name (objfile));
23559 }
23560
23561 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23562 if (!die)
23563 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23564 sect_offset_str (sect_off), objfile_name (objfile));
23565
23566 attr = dwarf2_attr (die, DW_AT_location, cu);
23567 if (!attr && resolve_abstract_p
23568 && (dwarf2_per_objfile->abstract_to_concrete.find (die->sect_off)
23569 != dwarf2_per_objfile->abstract_to_concrete.end ()))
23570 {
23571 CORE_ADDR pc = (*get_frame_pc) (baton);
23572 CORE_ADDR baseaddr
23573 = ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
23574 struct gdbarch *gdbarch = get_objfile_arch (objfile);
23575
23576 for (const auto &cand_off
23577 : dwarf2_per_objfile->abstract_to_concrete[die->sect_off])
23578 {
23579 struct dwarf2_cu *cand_cu = cu;
23580 struct die_info *cand
23581 = follow_die_offset (cand_off, per_cu->is_dwz, &cand_cu);
23582 if (!cand
23583 || !cand->parent
23584 || cand->parent->tag != DW_TAG_subprogram)
23585 continue;
23586
23587 CORE_ADDR pc_low, pc_high;
23588 get_scope_pc_bounds (cand->parent, &pc_low, &pc_high, cu);
23589 if (pc_low == ((CORE_ADDR) -1))
23590 continue;
23591 pc_low = gdbarch_adjust_dwarf2_addr (gdbarch, pc_low + baseaddr);
23592 pc_high = gdbarch_adjust_dwarf2_addr (gdbarch, pc_high + baseaddr);
23593 if (!(pc_low <= pc && pc < pc_high))
23594 continue;
23595
23596 die = cand;
23597 attr = dwarf2_attr (die, DW_AT_location, cu);
23598 break;
23599 }
23600 }
23601
23602 if (!attr)
23603 {
23604 /* DWARF: "If there is no such attribute, then there is no effect.".
23605 DATA is ignored if SIZE is 0. */
23606
23607 retval.data = NULL;
23608 retval.size = 0;
23609 }
23610 else if (attr_form_is_section_offset (attr))
23611 {
23612 struct dwarf2_loclist_baton loclist_baton;
23613 CORE_ADDR pc = (*get_frame_pc) (baton);
23614 size_t size;
23615
23616 fill_in_loclist_baton (cu, &loclist_baton, attr);
23617
23618 retval.data = dwarf2_find_location_expression (&loclist_baton,
23619 &size, pc);
23620 retval.size = size;
23621 }
23622 else
23623 {
23624 if (!attr_form_is_block (attr))
23625 error (_("Dwarf Error: DIE at %s referenced in module %s "
23626 "is neither DW_FORM_block* nor DW_FORM_exprloc"),
23627 sect_offset_str (sect_off), objfile_name (objfile));
23628
23629 retval.data = DW_BLOCK (attr)->data;
23630 retval.size = DW_BLOCK (attr)->size;
23631 }
23632 retval.per_cu = cu->per_cu;
23633
23634 age_cached_comp_units (dwarf2_per_objfile);
23635
23636 return retval;
23637 }
23638
23639 /* Like dwarf2_fetch_die_loc_sect_off, but take a CU
23640 offset. */
23641
23642 struct dwarf2_locexpr_baton
23643 dwarf2_fetch_die_loc_cu_off (cu_offset offset_in_cu,
23644 struct dwarf2_per_cu_data *per_cu,
23645 CORE_ADDR (*get_frame_pc) (void *baton),
23646 void *baton)
23647 {
23648 sect_offset sect_off = per_cu->sect_off + to_underlying (offset_in_cu);
23649
23650 return dwarf2_fetch_die_loc_sect_off (sect_off, per_cu, get_frame_pc, baton);
23651 }
23652
23653 /* Write a constant of a given type as target-ordered bytes into
23654 OBSTACK. */
23655
23656 static const gdb_byte *
23657 write_constant_as_bytes (struct obstack *obstack,
23658 enum bfd_endian byte_order,
23659 struct type *type,
23660 ULONGEST value,
23661 LONGEST *len)
23662 {
23663 gdb_byte *result;
23664
23665 *len = TYPE_LENGTH (type);
23666 result = (gdb_byte *) obstack_alloc (obstack, *len);
23667 store_unsigned_integer (result, *len, byte_order, value);
23668
23669 return result;
23670 }
23671
23672 /* If the DIE at OFFSET in PER_CU has a DW_AT_const_value, return a
23673 pointer to the constant bytes and set LEN to the length of the
23674 data. If memory is needed, allocate it on OBSTACK. If the DIE
23675 does not have a DW_AT_const_value, return NULL. */
23676
23677 const gdb_byte *
23678 dwarf2_fetch_constant_bytes (sect_offset sect_off,
23679 struct dwarf2_per_cu_data *per_cu,
23680 struct obstack *obstack,
23681 LONGEST *len)
23682 {
23683 struct dwarf2_cu *cu;
23684 struct die_info *die;
23685 struct attribute *attr;
23686 const gdb_byte *result = NULL;
23687 struct type *type;
23688 LONGEST value;
23689 enum bfd_endian byte_order;
23690 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
23691
23692 if (per_cu->cu == NULL)
23693 load_cu (per_cu, false);
23694 cu = per_cu->cu;
23695 if (cu == NULL)
23696 {
23697 /* We shouldn't get here for a dummy CU, but don't crash on the user.
23698 Instead just throw an error, not much else we can do. */
23699 error (_("Dwarf Error: Dummy CU at %s referenced in module %s"),
23700 sect_offset_str (sect_off), objfile_name (objfile));
23701 }
23702
23703 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23704 if (!die)
23705 error (_("Dwarf Error: Cannot find DIE at %s referenced in module %s"),
23706 sect_offset_str (sect_off), objfile_name (objfile));
23707
23708 attr = dwarf2_attr (die, DW_AT_const_value, cu);
23709 if (attr == NULL)
23710 return NULL;
23711
23712 byte_order = (bfd_big_endian (objfile->obfd)
23713 ? BFD_ENDIAN_BIG : BFD_ENDIAN_LITTLE);
23714
23715 switch (attr->form)
23716 {
23717 case DW_FORM_addr:
23718 case DW_FORM_addrx:
23719 case DW_FORM_GNU_addr_index:
23720 {
23721 gdb_byte *tem;
23722
23723 *len = cu->header.addr_size;
23724 tem = (gdb_byte *) obstack_alloc (obstack, *len);
23725 store_unsigned_integer (tem, *len, byte_order, DW_ADDR (attr));
23726 result = tem;
23727 }
23728 break;
23729 case DW_FORM_string:
23730 case DW_FORM_strp:
23731 case DW_FORM_strx:
23732 case DW_FORM_GNU_str_index:
23733 case DW_FORM_GNU_strp_alt:
23734 /* DW_STRING is already allocated on the objfile obstack, point
23735 directly to it. */
23736 result = (const gdb_byte *) DW_STRING (attr);
23737 *len = strlen (DW_STRING (attr));
23738 break;
23739 case DW_FORM_block1:
23740 case DW_FORM_block2:
23741 case DW_FORM_block4:
23742 case DW_FORM_block:
23743 case DW_FORM_exprloc:
23744 case DW_FORM_data16:
23745 result = DW_BLOCK (attr)->data;
23746 *len = DW_BLOCK (attr)->size;
23747 break;
23748
23749 /* The DW_AT_const_value attributes are supposed to carry the
23750 symbol's value "represented as it would be on the target
23751 architecture." By the time we get here, it's already been
23752 converted to host endianness, so we just need to sign- or
23753 zero-extend it as appropriate. */
23754 case DW_FORM_data1:
23755 type = die_type (die, cu);
23756 result = dwarf2_const_value_data (attr, obstack, cu, &value, 8);
23757 if (result == NULL)
23758 result = write_constant_as_bytes (obstack, byte_order,
23759 type, value, len);
23760 break;
23761 case DW_FORM_data2:
23762 type = die_type (die, cu);
23763 result = dwarf2_const_value_data (attr, obstack, cu, &value, 16);
23764 if (result == NULL)
23765 result = write_constant_as_bytes (obstack, byte_order,
23766 type, value, len);
23767 break;
23768 case DW_FORM_data4:
23769 type = die_type (die, cu);
23770 result = dwarf2_const_value_data (attr, obstack, cu, &value, 32);
23771 if (result == NULL)
23772 result = write_constant_as_bytes (obstack, byte_order,
23773 type, value, len);
23774 break;
23775 case DW_FORM_data8:
23776 type = die_type (die, cu);
23777 result = dwarf2_const_value_data (attr, obstack, cu, &value, 64);
23778 if (result == NULL)
23779 result = write_constant_as_bytes (obstack, byte_order,
23780 type, value, len);
23781 break;
23782
23783 case DW_FORM_sdata:
23784 case DW_FORM_implicit_const:
23785 type = die_type (die, cu);
23786 result = write_constant_as_bytes (obstack, byte_order,
23787 type, DW_SND (attr), len);
23788 break;
23789
23790 case DW_FORM_udata:
23791 type = die_type (die, cu);
23792 result = write_constant_as_bytes (obstack, byte_order,
23793 type, DW_UNSND (attr), len);
23794 break;
23795
23796 default:
23797 complaint (_("unsupported const value attribute form: '%s'"),
23798 dwarf_form_name (attr->form));
23799 break;
23800 }
23801
23802 return result;
23803 }
23804
23805 /* Return the type of the die at OFFSET in PER_CU. Return NULL if no
23806 valid type for this die is found. */
23807
23808 struct type *
23809 dwarf2_fetch_die_type_sect_off (sect_offset sect_off,
23810 struct dwarf2_per_cu_data *per_cu)
23811 {
23812 struct dwarf2_cu *cu;
23813 struct die_info *die;
23814
23815 if (per_cu->cu == NULL)
23816 load_cu (per_cu, false);
23817 cu = per_cu->cu;
23818 if (!cu)
23819 return NULL;
23820
23821 die = follow_die_offset (sect_off, per_cu->is_dwz, &cu);
23822 if (!die)
23823 return NULL;
23824
23825 return die_type (die, cu);
23826 }
23827
23828 /* Return the type of the DIE at DIE_OFFSET in the CU named by
23829 PER_CU. */
23830
23831 struct type *
23832 dwarf2_get_die_type (cu_offset die_offset,
23833 struct dwarf2_per_cu_data *per_cu)
23834 {
23835 sect_offset die_offset_sect = per_cu->sect_off + to_underlying (die_offset);
23836 return get_die_type_at_offset (die_offset_sect, per_cu);
23837 }
23838
23839 /* Follow type unit SIG_TYPE referenced by SRC_DIE.
23840 On entry *REF_CU is the CU of SRC_DIE.
23841 On exit *REF_CU is the CU of the result.
23842 Returns NULL if the referenced DIE isn't found. */
23843
23844 static struct die_info *
23845 follow_die_sig_1 (struct die_info *src_die, struct signatured_type *sig_type,
23846 struct dwarf2_cu **ref_cu)
23847 {
23848 struct die_info temp_die;
23849 struct dwarf2_cu *sig_cu, *cu = *ref_cu;
23850 struct die_info *die;
23851
23852 /* While it might be nice to assert sig_type->type == NULL here,
23853 we can get here for DW_AT_imported_declaration where we need
23854 the DIE not the type. */
23855
23856 /* If necessary, add it to the queue and load its DIEs. */
23857
23858 if (maybe_queue_comp_unit (*ref_cu, &sig_type->per_cu, language_minimal))
23859 read_signatured_type (sig_type);
23860
23861 sig_cu = sig_type->per_cu.cu;
23862 gdb_assert (sig_cu != NULL);
23863 gdb_assert (to_underlying (sig_type->type_offset_in_section) != 0);
23864 temp_die.sect_off = sig_type->type_offset_in_section;
23865 die = (struct die_info *) htab_find_with_hash (sig_cu->die_hash, &temp_die,
23866 to_underlying (temp_die.sect_off));
23867 if (die)
23868 {
23869 struct dwarf2_per_objfile *dwarf2_per_objfile
23870 = (*ref_cu)->per_cu->dwarf2_per_objfile;
23871
23872 /* For .gdb_index version 7 keep track of included TUs.
23873 http://sourceware.org/bugzilla/show_bug.cgi?id=15021. */
23874 if (dwarf2_per_objfile->index_table != NULL
23875 && dwarf2_per_objfile->index_table->version <= 7)
23876 {
23877 (*ref_cu)->per_cu->imported_symtabs_push (sig_cu->per_cu);
23878 }
23879
23880 *ref_cu = sig_cu;
23881 if (sig_cu != cu)
23882 sig_cu->ancestor = cu;
23883
23884 return die;
23885 }
23886
23887 return NULL;
23888 }
23889
23890 /* Follow signatured type referenced by ATTR in SRC_DIE.
23891 On entry *REF_CU is the CU of SRC_DIE.
23892 On exit *REF_CU is the CU of the result.
23893 The result is the DIE of the type.
23894 If the referenced type cannot be found an error is thrown. */
23895
23896 static struct die_info *
23897 follow_die_sig (struct die_info *src_die, const struct attribute *attr,
23898 struct dwarf2_cu **ref_cu)
23899 {
23900 ULONGEST signature = DW_SIGNATURE (attr);
23901 struct signatured_type *sig_type;
23902 struct die_info *die;
23903
23904 gdb_assert (attr->form == DW_FORM_ref_sig8);
23905
23906 sig_type = lookup_signatured_type (*ref_cu, signature);
23907 /* sig_type will be NULL if the signatured type is missing from
23908 the debug info. */
23909 if (sig_type == NULL)
23910 {
23911 error (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23912 " from DIE at %s [in module %s]"),
23913 hex_string (signature), sect_offset_str (src_die->sect_off),
23914 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23915 }
23916
23917 die = follow_die_sig_1 (src_die, sig_type, ref_cu);
23918 if (die == NULL)
23919 {
23920 dump_die_for_error (src_die);
23921 error (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23922 " from DIE at %s [in module %s]"),
23923 hex_string (signature), sect_offset_str (src_die->sect_off),
23924 objfile_name ((*ref_cu)->per_cu->dwarf2_per_objfile->objfile));
23925 }
23926
23927 return die;
23928 }
23929
23930 /* Get the type specified by SIGNATURE referenced in DIE/CU,
23931 reading in and processing the type unit if necessary. */
23932
23933 static struct type *
23934 get_signatured_type (struct die_info *die, ULONGEST signature,
23935 struct dwarf2_cu *cu)
23936 {
23937 struct dwarf2_per_objfile *dwarf2_per_objfile
23938 = cu->per_cu->dwarf2_per_objfile;
23939 struct signatured_type *sig_type;
23940 struct dwarf2_cu *type_cu;
23941 struct die_info *type_die;
23942 struct type *type;
23943
23944 sig_type = lookup_signatured_type (cu, signature);
23945 /* sig_type will be NULL if the signatured type is missing from
23946 the debug info. */
23947 if (sig_type == NULL)
23948 {
23949 complaint (_("Dwarf Error: Cannot find signatured DIE %s referenced"
23950 " from DIE at %s [in module %s]"),
23951 hex_string (signature), sect_offset_str (die->sect_off),
23952 objfile_name (dwarf2_per_objfile->objfile));
23953 return build_error_marker_type (cu, die);
23954 }
23955
23956 /* If we already know the type we're done. */
23957 if (sig_type->type != NULL)
23958 return sig_type->type;
23959
23960 type_cu = cu;
23961 type_die = follow_die_sig_1 (die, sig_type, &type_cu);
23962 if (type_die != NULL)
23963 {
23964 /* N.B. We need to call get_die_type to ensure only one type for this DIE
23965 is created. This is important, for example, because for c++ classes
23966 we need TYPE_NAME set which is only done by new_symbol. Blech. */
23967 type = read_type_die (type_die, type_cu);
23968 if (type == NULL)
23969 {
23970 complaint (_("Dwarf Error: Cannot build signatured type %s"
23971 " referenced from DIE at %s [in module %s]"),
23972 hex_string (signature), sect_offset_str (die->sect_off),
23973 objfile_name (dwarf2_per_objfile->objfile));
23974 type = build_error_marker_type (cu, die);
23975 }
23976 }
23977 else
23978 {
23979 complaint (_("Dwarf Error: Problem reading signatured DIE %s referenced"
23980 " from DIE at %s [in module %s]"),
23981 hex_string (signature), sect_offset_str (die->sect_off),
23982 objfile_name (dwarf2_per_objfile->objfile));
23983 type = build_error_marker_type (cu, die);
23984 }
23985 sig_type->type = type;
23986
23987 return type;
23988 }
23989
23990 /* Get the type specified by the DW_AT_signature ATTR in DIE/CU,
23991 reading in and processing the type unit if necessary. */
23992
23993 static struct type *
23994 get_DW_AT_signature_type (struct die_info *die, const struct attribute *attr,
23995 struct dwarf2_cu *cu) /* ARI: editCase function */
23996 {
23997 /* Yes, DW_AT_signature can use a non-ref_sig8 reference. */
23998 if (attr_form_is_ref (attr))
23999 {
24000 struct dwarf2_cu *type_cu = cu;
24001 struct die_info *type_die = follow_die_ref (die, attr, &type_cu);
24002
24003 return read_type_die (type_die, type_cu);
24004 }
24005 else if (attr->form == DW_FORM_ref_sig8)
24006 {
24007 return get_signatured_type (die, DW_SIGNATURE (attr), cu);
24008 }
24009 else
24010 {
24011 struct dwarf2_per_objfile *dwarf2_per_objfile
24012 = cu->per_cu->dwarf2_per_objfile;
24013
24014 complaint (_("Dwarf Error: DW_AT_signature has bad form %s in DIE"
24015 " at %s [in module %s]"),
24016 dwarf_form_name (attr->form), sect_offset_str (die->sect_off),
24017 objfile_name (dwarf2_per_objfile->objfile));
24018 return build_error_marker_type (cu, die);
24019 }
24020 }
24021
24022 /* Load the DIEs associated with type unit PER_CU into memory. */
24023
24024 static void
24025 load_full_type_unit (struct dwarf2_per_cu_data *per_cu)
24026 {
24027 struct signatured_type *sig_type;
24028
24029 /* Caller is responsible for ensuring type_unit_groups don't get here. */
24030 gdb_assert (! IS_TYPE_UNIT_GROUP (per_cu));
24031
24032 /* We have the per_cu, but we need the signatured_type.
24033 Fortunately this is an easy translation. */
24034 gdb_assert (per_cu->is_debug_types);
24035 sig_type = (struct signatured_type *) per_cu;
24036
24037 gdb_assert (per_cu->cu == NULL);
24038
24039 read_signatured_type (sig_type);
24040
24041 gdb_assert (per_cu->cu != NULL);
24042 }
24043
24044 /* die_reader_func for read_signatured_type.
24045 This is identical to load_full_comp_unit_reader,
24046 but is kept separate for now. */
24047
24048 static void
24049 read_signatured_type_reader (const struct die_reader_specs *reader,
24050 const gdb_byte *info_ptr,
24051 struct die_info *comp_unit_die,
24052 int has_children,
24053 void *data)
24054 {
24055 struct dwarf2_cu *cu = reader->cu;
24056
24057 gdb_assert (cu->die_hash == NULL);
24058 cu->die_hash =
24059 htab_create_alloc_ex (cu->header.length / 12,
24060 die_hash,
24061 die_eq,
24062 NULL,
24063 &cu->comp_unit_obstack,
24064 hashtab_obstack_allocate,
24065 dummy_obstack_deallocate);
24066
24067 if (has_children)
24068 comp_unit_die->child = read_die_and_siblings (reader, info_ptr,
24069 &info_ptr, comp_unit_die);
24070 cu->dies = comp_unit_die;
24071 /* comp_unit_die is not stored in die_hash, no need. */
24072
24073 /* We try not to read any attributes in this function, because not
24074 all CUs needed for references have been loaded yet, and symbol
24075 table processing isn't initialized. But we have to set the CU language,
24076 or we won't be able to build types correctly.
24077 Similarly, if we do not read the producer, we can not apply
24078 producer-specific interpretation. */
24079 prepare_one_comp_unit (cu, cu->dies, language_minimal);
24080 }
24081
24082 /* Read in a signatured type and build its CU and DIEs.
24083 If the type is a stub for the real type in a DWO file,
24084 read in the real type from the DWO file as well. */
24085
24086 static void
24087 read_signatured_type (struct signatured_type *sig_type)
24088 {
24089 struct dwarf2_per_cu_data *per_cu = &sig_type->per_cu;
24090
24091 gdb_assert (per_cu->is_debug_types);
24092 gdb_assert (per_cu->cu == NULL);
24093
24094 init_cutu_and_read_dies (per_cu, NULL, 0, 1, false,
24095 read_signatured_type_reader, NULL);
24096 sig_type->per_cu.tu_read = 1;
24097 }
24098
24099 /* Decode simple location descriptions.
24100 Given a pointer to a dwarf block that defines a location, compute
24101 the location and return the value.
24102
24103 NOTE drow/2003-11-18: This function is called in two situations
24104 now: for the address of static or global variables (partial symbols
24105 only) and for offsets into structures which are expected to be
24106 (more or less) constant. The partial symbol case should go away,
24107 and only the constant case should remain. That will let this
24108 function complain more accurately. A few special modes are allowed
24109 without complaint for global variables (for instance, global
24110 register values and thread-local values).
24111
24112 A location description containing no operations indicates that the
24113 object is optimized out. The return value is 0 for that case.
24114 FIXME drow/2003-11-16: No callers check for this case any more; soon all
24115 callers will only want a very basic result and this can become a
24116 complaint.
24117
24118 Note that stack[0] is unused except as a default error return. */
24119
24120 static CORE_ADDR
24121 decode_locdesc (struct dwarf_block *blk, struct dwarf2_cu *cu)
24122 {
24123 struct objfile *objfile = cu->per_cu->dwarf2_per_objfile->objfile;
24124 size_t i;
24125 size_t size = blk->size;
24126 const gdb_byte *data = blk->data;
24127 CORE_ADDR stack[64];
24128 int stacki;
24129 unsigned int bytes_read, unsnd;
24130 gdb_byte op;
24131
24132 i = 0;
24133 stacki = 0;
24134 stack[stacki] = 0;
24135 stack[++stacki] = 0;
24136
24137 while (i < size)
24138 {
24139 op = data[i++];
24140 switch (op)
24141 {
24142 case DW_OP_lit0:
24143 case DW_OP_lit1:
24144 case DW_OP_lit2:
24145 case DW_OP_lit3:
24146 case DW_OP_lit4:
24147 case DW_OP_lit5:
24148 case DW_OP_lit6:
24149 case DW_OP_lit7:
24150 case DW_OP_lit8:
24151 case DW_OP_lit9:
24152 case DW_OP_lit10:
24153 case DW_OP_lit11:
24154 case DW_OP_lit12:
24155 case DW_OP_lit13:
24156 case DW_OP_lit14:
24157 case DW_OP_lit15:
24158 case DW_OP_lit16:
24159 case DW_OP_lit17:
24160 case DW_OP_lit18:
24161 case DW_OP_lit19:
24162 case DW_OP_lit20:
24163 case DW_OP_lit21:
24164 case DW_OP_lit22:
24165 case DW_OP_lit23:
24166 case DW_OP_lit24:
24167 case DW_OP_lit25:
24168 case DW_OP_lit26:
24169 case DW_OP_lit27:
24170 case DW_OP_lit28:
24171 case DW_OP_lit29:
24172 case DW_OP_lit30:
24173 case DW_OP_lit31:
24174 stack[++stacki] = op - DW_OP_lit0;
24175 break;
24176
24177 case DW_OP_reg0:
24178 case DW_OP_reg1:
24179 case DW_OP_reg2:
24180 case DW_OP_reg3:
24181 case DW_OP_reg4:
24182 case DW_OP_reg5:
24183 case DW_OP_reg6:
24184 case DW_OP_reg7:
24185 case DW_OP_reg8:
24186 case DW_OP_reg9:
24187 case DW_OP_reg10:
24188 case DW_OP_reg11:
24189 case DW_OP_reg12:
24190 case DW_OP_reg13:
24191 case DW_OP_reg14:
24192 case DW_OP_reg15:
24193 case DW_OP_reg16:
24194 case DW_OP_reg17:
24195 case DW_OP_reg18:
24196 case DW_OP_reg19:
24197 case DW_OP_reg20:
24198 case DW_OP_reg21:
24199 case DW_OP_reg22:
24200 case DW_OP_reg23:
24201 case DW_OP_reg24:
24202 case DW_OP_reg25:
24203 case DW_OP_reg26:
24204 case DW_OP_reg27:
24205 case DW_OP_reg28:
24206 case DW_OP_reg29:
24207 case DW_OP_reg30:
24208 case DW_OP_reg31:
24209 stack[++stacki] = op - DW_OP_reg0;
24210 if (i < size)
24211 dwarf2_complex_location_expr_complaint ();
24212 break;
24213
24214 case DW_OP_regx:
24215 unsnd = read_unsigned_leb128 (NULL, (data + i), &bytes_read);
24216 i += bytes_read;
24217 stack[++stacki] = unsnd;
24218 if (i < size)
24219 dwarf2_complex_location_expr_complaint ();
24220 break;
24221
24222 case DW_OP_addr:
24223 stack[++stacki] = read_address (objfile->obfd, &data[i],
24224 cu, &bytes_read);
24225 i += bytes_read;
24226 break;
24227
24228 case DW_OP_const1u:
24229 stack[++stacki] = read_1_byte (objfile->obfd, &data[i]);
24230 i += 1;
24231 break;
24232
24233 case DW_OP_const1s:
24234 stack[++stacki] = read_1_signed_byte (objfile->obfd, &data[i]);
24235 i += 1;
24236 break;
24237
24238 case DW_OP_const2u:
24239 stack[++stacki] = read_2_bytes (objfile->obfd, &data[i]);
24240 i += 2;
24241 break;
24242
24243 case DW_OP_const2s:
24244 stack[++stacki] = read_2_signed_bytes (objfile->obfd, &data[i]);
24245 i += 2;
24246 break;
24247
24248 case DW_OP_const4u:
24249 stack[++stacki] = read_4_bytes (objfile->obfd, &data[i]);
24250 i += 4;
24251 break;
24252
24253 case DW_OP_const4s:
24254 stack[++stacki] = read_4_signed_bytes (objfile->obfd, &data[i]);
24255 i += 4;
24256 break;
24257
24258 case DW_OP_const8u:
24259 stack[++stacki] = read_8_bytes (objfile->obfd, &data[i]);
24260 i += 8;
24261 break;
24262
24263 case DW_OP_constu:
24264 stack[++stacki] = read_unsigned_leb128 (NULL, (data + i),
24265 &bytes_read);
24266 i += bytes_read;
24267 break;
24268
24269 case DW_OP_consts:
24270 stack[++stacki] = read_signed_leb128 (NULL, (data + i), &bytes_read);
24271 i += bytes_read;
24272 break;
24273
24274 case DW_OP_dup:
24275 stack[stacki + 1] = stack[stacki];
24276 stacki++;
24277 break;
24278
24279 case DW_OP_plus:
24280 stack[stacki - 1] += stack[stacki];
24281 stacki--;
24282 break;
24283
24284 case DW_OP_plus_uconst:
24285 stack[stacki] += read_unsigned_leb128 (NULL, (data + i),
24286 &bytes_read);
24287 i += bytes_read;
24288 break;
24289
24290 case DW_OP_minus:
24291 stack[stacki - 1] -= stack[stacki];
24292 stacki--;
24293 break;
24294
24295 case DW_OP_deref:
24296 /* If we're not the last op, then we definitely can't encode
24297 this using GDB's address_class enum. This is valid for partial
24298 global symbols, although the variable's address will be bogus
24299 in the psymtab. */
24300 if (i < size)
24301 dwarf2_complex_location_expr_complaint ();
24302 break;
24303
24304 case DW_OP_GNU_push_tls_address:
24305 case DW_OP_form_tls_address:
24306 /* The top of the stack has the offset from the beginning
24307 of the thread control block at which the variable is located. */
24308 /* Nothing should follow this operator, so the top of stack would
24309 be returned. */
24310 /* This is valid for partial global symbols, but the variable's
24311 address will be bogus in the psymtab. Make it always at least
24312 non-zero to not look as a variable garbage collected by linker
24313 which have DW_OP_addr 0. */
24314 if (i < size)
24315 dwarf2_complex_location_expr_complaint ();
24316 stack[stacki]++;
24317 break;
24318
24319 case DW_OP_GNU_uninit:
24320 break;
24321
24322 case DW_OP_addrx:
24323 case DW_OP_GNU_addr_index:
24324 case DW_OP_GNU_const_index:
24325 stack[++stacki] = read_addr_index_from_leb128 (cu, &data[i],
24326 &bytes_read);
24327 i += bytes_read;
24328 break;
24329
24330 default:
24331 {
24332 const char *name = get_DW_OP_name (op);
24333
24334 if (name)
24335 complaint (_("unsupported stack op: '%s'"),
24336 name);
24337 else
24338 complaint (_("unsupported stack op: '%02x'"),
24339 op);
24340 }
24341
24342 return (stack[stacki]);
24343 }
24344
24345 /* Enforce maximum stack depth of SIZE-1 to avoid writing
24346 outside of the allocated space. Also enforce minimum>0. */
24347 if (stacki >= ARRAY_SIZE (stack) - 1)
24348 {
24349 complaint (_("location description stack overflow"));
24350 return 0;
24351 }
24352
24353 if (stacki <= 0)
24354 {
24355 complaint (_("location description stack underflow"));
24356 return 0;
24357 }
24358 }
24359 return (stack[stacki]);
24360 }
24361
24362 /* memory allocation interface */
24363
24364 static struct dwarf_block *
24365 dwarf_alloc_block (struct dwarf2_cu *cu)
24366 {
24367 return XOBNEW (&cu->comp_unit_obstack, struct dwarf_block);
24368 }
24369
24370 static struct die_info *
24371 dwarf_alloc_die (struct dwarf2_cu *cu, int num_attrs)
24372 {
24373 struct die_info *die;
24374 size_t size = sizeof (struct die_info);
24375
24376 if (num_attrs > 1)
24377 size += (num_attrs - 1) * sizeof (struct attribute);
24378
24379 die = (struct die_info *) obstack_alloc (&cu->comp_unit_obstack, size);
24380 memset (die, 0, sizeof (struct die_info));
24381 return (die);
24382 }
24383
24384 \f
24385 /* Macro support. */
24386
24387 /* Return file name relative to the compilation directory of file number I in
24388 *LH's file name table. The result is allocated using xmalloc; the caller is
24389 responsible for freeing it. */
24390
24391 static char *
24392 file_file_name (int file, struct line_header *lh)
24393 {
24394 /* Is the file number a valid index into the line header's file name
24395 table? Remember that file numbers start with one, not zero. */
24396 if (lh->is_valid_file_index (file))
24397 {
24398 const file_entry *fe = lh->file_name_at (file);
24399
24400 if (!IS_ABSOLUTE_PATH (fe->name))
24401 {
24402 const char *dir = fe->include_dir (lh);
24403 if (dir != NULL)
24404 return concat (dir, SLASH_STRING, fe->name, (char *) NULL);
24405 }
24406 return xstrdup (fe->name);
24407 }
24408 else
24409 {
24410 /* The compiler produced a bogus file number. We can at least
24411 record the macro definitions made in the file, even if we
24412 won't be able to find the file by name. */
24413 char fake_name[80];
24414
24415 xsnprintf (fake_name, sizeof (fake_name),
24416 "<bad macro file number %d>", file);
24417
24418 complaint (_("bad file number in macro information (%d)"),
24419 file);
24420
24421 return xstrdup (fake_name);
24422 }
24423 }
24424
24425 /* Return the full name of file number I in *LH's file name table.
24426 Use COMP_DIR as the name of the current directory of the
24427 compilation. The result is allocated using xmalloc; the caller is
24428 responsible for freeing it. */
24429 static char *
24430 file_full_name (int file, struct line_header *lh, const char *comp_dir)
24431 {
24432 /* Is the file number a valid index into the line header's file name
24433 table? Remember that file numbers start with one, not zero. */
24434 if (lh->is_valid_file_index (file))
24435 {
24436 char *relative = file_file_name (file, lh);
24437
24438 if (IS_ABSOLUTE_PATH (relative) || comp_dir == NULL)
24439 return relative;
24440 return reconcat (relative, comp_dir, SLASH_STRING,
24441 relative, (char *) NULL);
24442 }
24443 else
24444 return file_file_name (file, lh);
24445 }
24446
24447
24448 static struct macro_source_file *
24449 macro_start_file (struct dwarf2_cu *cu,
24450 int file, int line,
24451 struct macro_source_file *current_file,
24452 struct line_header *lh)
24453 {
24454 /* File name relative to the compilation directory of this source file. */
24455 char *file_name = file_file_name (file, lh);
24456
24457 if (! current_file)
24458 {
24459 /* Note: We don't create a macro table for this compilation unit
24460 at all until we actually get a filename. */
24461 struct macro_table *macro_table = cu->get_builder ()->get_macro_table ();
24462
24463 /* If we have no current file, then this must be the start_file
24464 directive for the compilation unit's main source file. */
24465 current_file = macro_set_main (macro_table, file_name);
24466 macro_define_special (macro_table);
24467 }
24468 else
24469 current_file = macro_include (current_file, line, file_name);
24470
24471 xfree (file_name);
24472
24473 return current_file;
24474 }
24475
24476 static const char *
24477 consume_improper_spaces (const char *p, const char *body)
24478 {
24479 if (*p == ' ')
24480 {
24481 complaint (_("macro definition contains spaces "
24482 "in formal argument list:\n`%s'"),
24483 body);
24484
24485 while (*p == ' ')
24486 p++;
24487 }
24488
24489 return p;
24490 }
24491
24492
24493 static void
24494 parse_macro_definition (struct macro_source_file *file, int line,
24495 const char *body)
24496 {
24497 const char *p;
24498
24499 /* The body string takes one of two forms. For object-like macro
24500 definitions, it should be:
24501
24502 <macro name> " " <definition>
24503
24504 For function-like macro definitions, it should be:
24505
24506 <macro name> "() " <definition>
24507 or
24508 <macro name> "(" <arg name> ( "," <arg name> ) * ") " <definition>
24509
24510 Spaces may appear only where explicitly indicated, and in the
24511 <definition>.
24512
24513 The Dwarf 2 spec says that an object-like macro's name is always
24514 followed by a space, but versions of GCC around March 2002 omit
24515 the space when the macro's definition is the empty string.
24516
24517 The Dwarf 2 spec says that there should be no spaces between the
24518 formal arguments in a function-like macro's formal argument list,
24519 but versions of GCC around March 2002 include spaces after the
24520 commas. */
24521
24522
24523 /* Find the extent of the macro name. The macro name is terminated
24524 by either a space or null character (for an object-like macro) or
24525 an opening paren (for a function-like macro). */
24526 for (p = body; *p; p++)
24527 if (*p == ' ' || *p == '(')
24528 break;
24529
24530 if (*p == ' ' || *p == '\0')
24531 {
24532 /* It's an object-like macro. */
24533 int name_len = p - body;
24534 char *name = savestring (body, name_len);
24535 const char *replacement;
24536
24537 if (*p == ' ')
24538 replacement = body + name_len + 1;
24539 else
24540 {
24541 dwarf2_macro_malformed_definition_complaint (body);
24542 replacement = body + name_len;
24543 }
24544
24545 macro_define_object (file, line, name, replacement);
24546
24547 xfree (name);
24548 }
24549 else if (*p == '(')
24550 {
24551 /* It's a function-like macro. */
24552 char *name = savestring (body, p - body);
24553 int argc = 0;
24554 int argv_size = 1;
24555 char **argv = XNEWVEC (char *, argv_size);
24556
24557 p++;
24558
24559 p = consume_improper_spaces (p, body);
24560
24561 /* Parse the formal argument list. */
24562 while (*p && *p != ')')
24563 {
24564 /* Find the extent of the current argument name. */
24565 const char *arg_start = p;
24566
24567 while (*p && *p != ',' && *p != ')' && *p != ' ')
24568 p++;
24569
24570 if (! *p || p == arg_start)
24571 dwarf2_macro_malformed_definition_complaint (body);
24572 else
24573 {
24574 /* Make sure argv has room for the new argument. */
24575 if (argc >= argv_size)
24576 {
24577 argv_size *= 2;
24578 argv = XRESIZEVEC (char *, argv, argv_size);
24579 }
24580
24581 argv[argc++] = savestring (arg_start, p - arg_start);
24582 }
24583
24584 p = consume_improper_spaces (p, body);
24585
24586 /* Consume the comma, if present. */
24587 if (*p == ',')
24588 {
24589 p++;
24590
24591 p = consume_improper_spaces (p, body);
24592 }
24593 }
24594
24595 if (*p == ')')
24596 {
24597 p++;
24598
24599 if (*p == ' ')
24600 /* Perfectly formed definition, no complaints. */
24601 macro_define_function (file, line, name,
24602 argc, (const char **) argv,
24603 p + 1);
24604 else if (*p == '\0')
24605 {
24606 /* Complain, but do define it. */
24607 dwarf2_macro_malformed_definition_complaint (body);
24608 macro_define_function (file, line, name,
24609 argc, (const char **) argv,
24610 p);
24611 }
24612 else
24613 /* Just complain. */
24614 dwarf2_macro_malformed_definition_complaint (body);
24615 }
24616 else
24617 /* Just complain. */
24618 dwarf2_macro_malformed_definition_complaint (body);
24619
24620 xfree (name);
24621 {
24622 int i;
24623
24624 for (i = 0; i < argc; i++)
24625 xfree (argv[i]);
24626 }
24627 xfree (argv);
24628 }
24629 else
24630 dwarf2_macro_malformed_definition_complaint (body);
24631 }
24632
24633 /* Skip some bytes from BYTES according to the form given in FORM.
24634 Returns the new pointer. */
24635
24636 static const gdb_byte *
24637 skip_form_bytes (bfd *abfd, const gdb_byte *bytes, const gdb_byte *buffer_end,
24638 enum dwarf_form form,
24639 unsigned int offset_size,
24640 struct dwarf2_section_info *section)
24641 {
24642 unsigned int bytes_read;
24643
24644 switch (form)
24645 {
24646 case DW_FORM_data1:
24647 case DW_FORM_flag:
24648 ++bytes;
24649 break;
24650
24651 case DW_FORM_data2:
24652 bytes += 2;
24653 break;
24654
24655 case DW_FORM_data4:
24656 bytes += 4;
24657 break;
24658
24659 case DW_FORM_data8:
24660 bytes += 8;
24661 break;
24662
24663 case DW_FORM_data16:
24664 bytes += 16;
24665 break;
24666
24667 case DW_FORM_string:
24668 read_direct_string (abfd, bytes, &bytes_read);
24669 bytes += bytes_read;
24670 break;
24671
24672 case DW_FORM_sec_offset:
24673 case DW_FORM_strp:
24674 case DW_FORM_GNU_strp_alt:
24675 bytes += offset_size;
24676 break;
24677
24678 case DW_FORM_block:
24679 bytes += read_unsigned_leb128 (abfd, bytes, &bytes_read);
24680 bytes += bytes_read;
24681 break;
24682
24683 case DW_FORM_block1:
24684 bytes += 1 + read_1_byte (abfd, bytes);
24685 break;
24686 case DW_FORM_block2:
24687 bytes += 2 + read_2_bytes (abfd, bytes);
24688 break;
24689 case DW_FORM_block4:
24690 bytes += 4 + read_4_bytes (abfd, bytes);
24691 break;
24692
24693 case DW_FORM_addrx:
24694 case DW_FORM_sdata:
24695 case DW_FORM_strx:
24696 case DW_FORM_udata:
24697 case DW_FORM_GNU_addr_index:
24698 case DW_FORM_GNU_str_index:
24699 bytes = gdb_skip_leb128 (bytes, buffer_end);
24700 if (bytes == NULL)
24701 {
24702 dwarf2_section_buffer_overflow_complaint (section);
24703 return NULL;
24704 }
24705 break;
24706
24707 case DW_FORM_implicit_const:
24708 break;
24709
24710 default:
24711 {
24712 complaint (_("invalid form 0x%x in `%s'"),
24713 form, get_section_name (section));
24714 return NULL;
24715 }
24716 }
24717
24718 return bytes;
24719 }
24720
24721 /* A helper for dwarf_decode_macros that handles skipping an unknown
24722 opcode. Returns an updated pointer to the macro data buffer; or,
24723 on error, issues a complaint and returns NULL. */
24724
24725 static const gdb_byte *
24726 skip_unknown_opcode (unsigned int opcode,
24727 const gdb_byte **opcode_definitions,
24728 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24729 bfd *abfd,
24730 unsigned int offset_size,
24731 struct dwarf2_section_info *section)
24732 {
24733 unsigned int bytes_read, i;
24734 unsigned long arg;
24735 const gdb_byte *defn;
24736
24737 if (opcode_definitions[opcode] == NULL)
24738 {
24739 complaint (_("unrecognized DW_MACFINO opcode 0x%x"),
24740 opcode);
24741 return NULL;
24742 }
24743
24744 defn = opcode_definitions[opcode];
24745 arg = read_unsigned_leb128 (abfd, defn, &bytes_read);
24746 defn += bytes_read;
24747
24748 for (i = 0; i < arg; ++i)
24749 {
24750 mac_ptr = skip_form_bytes (abfd, mac_ptr, mac_end,
24751 (enum dwarf_form) defn[i], offset_size,
24752 section);
24753 if (mac_ptr == NULL)
24754 {
24755 /* skip_form_bytes already issued the complaint. */
24756 return NULL;
24757 }
24758 }
24759
24760 return mac_ptr;
24761 }
24762
24763 /* A helper function which parses the header of a macro section.
24764 If the macro section is the extended (for now called "GNU") type,
24765 then this updates *OFFSET_SIZE. Returns a pointer to just after
24766 the header, or issues a complaint and returns NULL on error. */
24767
24768 static const gdb_byte *
24769 dwarf_parse_macro_header (const gdb_byte **opcode_definitions,
24770 bfd *abfd,
24771 const gdb_byte *mac_ptr,
24772 unsigned int *offset_size,
24773 int section_is_gnu)
24774 {
24775 memset (opcode_definitions, 0, 256 * sizeof (gdb_byte *));
24776
24777 if (section_is_gnu)
24778 {
24779 unsigned int version, flags;
24780
24781 version = read_2_bytes (abfd, mac_ptr);
24782 if (version != 4 && version != 5)
24783 {
24784 complaint (_("unrecognized version `%d' in .debug_macro section"),
24785 version);
24786 return NULL;
24787 }
24788 mac_ptr += 2;
24789
24790 flags = read_1_byte (abfd, mac_ptr);
24791 ++mac_ptr;
24792 *offset_size = (flags & 1) ? 8 : 4;
24793
24794 if ((flags & 2) != 0)
24795 /* We don't need the line table offset. */
24796 mac_ptr += *offset_size;
24797
24798 /* Vendor opcode descriptions. */
24799 if ((flags & 4) != 0)
24800 {
24801 unsigned int i, count;
24802
24803 count = read_1_byte (abfd, mac_ptr);
24804 ++mac_ptr;
24805 for (i = 0; i < count; ++i)
24806 {
24807 unsigned int opcode, bytes_read;
24808 unsigned long arg;
24809
24810 opcode = read_1_byte (abfd, mac_ptr);
24811 ++mac_ptr;
24812 opcode_definitions[opcode] = mac_ptr;
24813 arg = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24814 mac_ptr += bytes_read;
24815 mac_ptr += arg;
24816 }
24817 }
24818 }
24819
24820 return mac_ptr;
24821 }
24822
24823 /* A helper for dwarf_decode_macros that handles the GNU extensions,
24824 including DW_MACRO_import. */
24825
24826 static void
24827 dwarf_decode_macro_bytes (struct dwarf2_cu *cu,
24828 bfd *abfd,
24829 const gdb_byte *mac_ptr, const gdb_byte *mac_end,
24830 struct macro_source_file *current_file,
24831 struct line_header *lh,
24832 struct dwarf2_section_info *section,
24833 int section_is_gnu, int section_is_dwz,
24834 unsigned int offset_size,
24835 htab_t include_hash)
24836 {
24837 struct dwarf2_per_objfile *dwarf2_per_objfile
24838 = cu->per_cu->dwarf2_per_objfile;
24839 struct objfile *objfile = dwarf2_per_objfile->objfile;
24840 enum dwarf_macro_record_type macinfo_type;
24841 int at_commandline;
24842 const gdb_byte *opcode_definitions[256];
24843
24844 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
24845 &offset_size, section_is_gnu);
24846 if (mac_ptr == NULL)
24847 {
24848 /* We already issued a complaint. */
24849 return;
24850 }
24851
24852 /* Determines if GDB is still before first DW_MACINFO_start_file. If true
24853 GDB is still reading the definitions from command line. First
24854 DW_MACINFO_start_file will need to be ignored as it was already executed
24855 to create CURRENT_FILE for the main source holding also the command line
24856 definitions. On first met DW_MACINFO_start_file this flag is reset to
24857 normally execute all the remaining DW_MACINFO_start_file macinfos. */
24858
24859 at_commandline = 1;
24860
24861 do
24862 {
24863 /* Do we at least have room for a macinfo type byte? */
24864 if (mac_ptr >= mac_end)
24865 {
24866 dwarf2_section_buffer_overflow_complaint (section);
24867 break;
24868 }
24869
24870 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
24871 mac_ptr++;
24872
24873 /* Note that we rely on the fact that the corresponding GNU and
24874 DWARF constants are the same. */
24875 DIAGNOSTIC_PUSH
24876 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
24877 switch (macinfo_type)
24878 {
24879 /* A zero macinfo type indicates the end of the macro
24880 information. */
24881 case 0:
24882 break;
24883
24884 case DW_MACRO_define:
24885 case DW_MACRO_undef:
24886 case DW_MACRO_define_strp:
24887 case DW_MACRO_undef_strp:
24888 case DW_MACRO_define_sup:
24889 case DW_MACRO_undef_sup:
24890 {
24891 unsigned int bytes_read;
24892 int line;
24893 const char *body;
24894 int is_define;
24895
24896 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24897 mac_ptr += bytes_read;
24898
24899 if (macinfo_type == DW_MACRO_define
24900 || macinfo_type == DW_MACRO_undef)
24901 {
24902 body = read_direct_string (abfd, mac_ptr, &bytes_read);
24903 mac_ptr += bytes_read;
24904 }
24905 else
24906 {
24907 LONGEST str_offset;
24908
24909 str_offset = read_offset_1 (abfd, mac_ptr, offset_size);
24910 mac_ptr += offset_size;
24911
24912 if (macinfo_type == DW_MACRO_define_sup
24913 || macinfo_type == DW_MACRO_undef_sup
24914 || section_is_dwz)
24915 {
24916 struct dwz_file *dwz
24917 = dwarf2_get_dwz_file (dwarf2_per_objfile);
24918
24919 body = read_indirect_string_from_dwz (objfile,
24920 dwz, str_offset);
24921 }
24922 else
24923 body = read_indirect_string_at_offset (dwarf2_per_objfile,
24924 abfd, str_offset);
24925 }
24926
24927 is_define = (macinfo_type == DW_MACRO_define
24928 || macinfo_type == DW_MACRO_define_strp
24929 || macinfo_type == DW_MACRO_define_sup);
24930 if (! current_file)
24931 {
24932 /* DWARF violation as no main source is present. */
24933 complaint (_("debug info with no main source gives macro %s "
24934 "on line %d: %s"),
24935 is_define ? _("definition") : _("undefinition"),
24936 line, body);
24937 break;
24938 }
24939 if ((line == 0 && !at_commandline)
24940 || (line != 0 && at_commandline))
24941 complaint (_("debug info gives %s macro %s with %s line %d: %s"),
24942 at_commandline ? _("command-line") : _("in-file"),
24943 is_define ? _("definition") : _("undefinition"),
24944 line == 0 ? _("zero") : _("non-zero"), line, body);
24945
24946 if (body == NULL)
24947 {
24948 /* Fedora's rpm-build's "debugedit" binary
24949 corrupted .debug_macro sections.
24950
24951 For more info, see
24952 https://bugzilla.redhat.com/show_bug.cgi?id=1708786 */
24953 complaint (_("debug info gives %s invalid macro %s "
24954 "without body (corrupted?) at line %d "
24955 "on file %s"),
24956 at_commandline ? _("command-line") : _("in-file"),
24957 is_define ? _("definition") : _("undefinition"),
24958 line, current_file->filename);
24959 }
24960 else if (is_define)
24961 parse_macro_definition (current_file, line, body);
24962 else
24963 {
24964 gdb_assert (macinfo_type == DW_MACRO_undef
24965 || macinfo_type == DW_MACRO_undef_strp
24966 || macinfo_type == DW_MACRO_undef_sup);
24967 macro_undef (current_file, line, body);
24968 }
24969 }
24970 break;
24971
24972 case DW_MACRO_start_file:
24973 {
24974 unsigned int bytes_read;
24975 int line, file;
24976
24977 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24978 mac_ptr += bytes_read;
24979 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
24980 mac_ptr += bytes_read;
24981
24982 if ((line == 0 && !at_commandline)
24983 || (line != 0 && at_commandline))
24984 complaint (_("debug info gives source %d included "
24985 "from %s at %s line %d"),
24986 file, at_commandline ? _("command-line") : _("file"),
24987 line == 0 ? _("zero") : _("non-zero"), line);
24988
24989 if (at_commandline)
24990 {
24991 /* This DW_MACRO_start_file was executed in the
24992 pass one. */
24993 at_commandline = 0;
24994 }
24995 else
24996 current_file = macro_start_file (cu, file, line, current_file,
24997 lh);
24998 }
24999 break;
25000
25001 case DW_MACRO_end_file:
25002 if (! current_file)
25003 complaint (_("macro debug info has an unmatched "
25004 "`close_file' directive"));
25005 else
25006 {
25007 current_file = current_file->included_by;
25008 if (! current_file)
25009 {
25010 enum dwarf_macro_record_type next_type;
25011
25012 /* GCC circa March 2002 doesn't produce the zero
25013 type byte marking the end of the compilation
25014 unit. Complain if it's not there, but exit no
25015 matter what. */
25016
25017 /* Do we at least have room for a macinfo type byte? */
25018 if (mac_ptr >= mac_end)
25019 {
25020 dwarf2_section_buffer_overflow_complaint (section);
25021 return;
25022 }
25023
25024 /* We don't increment mac_ptr here, so this is just
25025 a look-ahead. */
25026 next_type
25027 = (enum dwarf_macro_record_type) read_1_byte (abfd,
25028 mac_ptr);
25029 if (next_type != 0)
25030 complaint (_("no terminating 0-type entry for "
25031 "macros in `.debug_macinfo' section"));
25032
25033 return;
25034 }
25035 }
25036 break;
25037
25038 case DW_MACRO_import:
25039 case DW_MACRO_import_sup:
25040 {
25041 LONGEST offset;
25042 void **slot;
25043 bfd *include_bfd = abfd;
25044 struct dwarf2_section_info *include_section = section;
25045 const gdb_byte *include_mac_end = mac_end;
25046 int is_dwz = section_is_dwz;
25047 const gdb_byte *new_mac_ptr;
25048
25049 offset = read_offset_1 (abfd, mac_ptr, offset_size);
25050 mac_ptr += offset_size;
25051
25052 if (macinfo_type == DW_MACRO_import_sup)
25053 {
25054 struct dwz_file *dwz = dwarf2_get_dwz_file (dwarf2_per_objfile);
25055
25056 dwarf2_read_section (objfile, &dwz->macro);
25057
25058 include_section = &dwz->macro;
25059 include_bfd = get_section_bfd_owner (include_section);
25060 include_mac_end = dwz->macro.buffer + dwz->macro.size;
25061 is_dwz = 1;
25062 }
25063
25064 new_mac_ptr = include_section->buffer + offset;
25065 slot = htab_find_slot (include_hash, new_mac_ptr, INSERT);
25066
25067 if (*slot != NULL)
25068 {
25069 /* This has actually happened; see
25070 http://sourceware.org/bugzilla/show_bug.cgi?id=13568. */
25071 complaint (_("recursive DW_MACRO_import in "
25072 ".debug_macro section"));
25073 }
25074 else
25075 {
25076 *slot = (void *) new_mac_ptr;
25077
25078 dwarf_decode_macro_bytes (cu, include_bfd, new_mac_ptr,
25079 include_mac_end, current_file, lh,
25080 section, section_is_gnu, is_dwz,
25081 offset_size, include_hash);
25082
25083 htab_remove_elt (include_hash, (void *) new_mac_ptr);
25084 }
25085 }
25086 break;
25087
25088 case DW_MACINFO_vendor_ext:
25089 if (!section_is_gnu)
25090 {
25091 unsigned int bytes_read;
25092
25093 /* This reads the constant, but since we don't recognize
25094 any vendor extensions, we ignore it. */
25095 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25096 mac_ptr += bytes_read;
25097 read_direct_string (abfd, mac_ptr, &bytes_read);
25098 mac_ptr += bytes_read;
25099
25100 /* We don't recognize any vendor extensions. */
25101 break;
25102 }
25103 /* FALLTHROUGH */
25104
25105 default:
25106 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
25107 mac_ptr, mac_end, abfd, offset_size,
25108 section);
25109 if (mac_ptr == NULL)
25110 return;
25111 break;
25112 }
25113 DIAGNOSTIC_POP
25114 } while (macinfo_type != 0);
25115 }
25116
25117 static void
25118 dwarf_decode_macros (struct dwarf2_cu *cu, unsigned int offset,
25119 int section_is_gnu)
25120 {
25121 struct dwarf2_per_objfile *dwarf2_per_objfile
25122 = cu->per_cu->dwarf2_per_objfile;
25123 struct objfile *objfile = dwarf2_per_objfile->objfile;
25124 struct line_header *lh = cu->line_header;
25125 bfd *abfd;
25126 const gdb_byte *mac_ptr, *mac_end;
25127 struct macro_source_file *current_file = 0;
25128 enum dwarf_macro_record_type macinfo_type;
25129 unsigned int offset_size = cu->header.offset_size;
25130 const gdb_byte *opcode_definitions[256];
25131 void **slot;
25132 struct dwarf2_section_info *section;
25133 const char *section_name;
25134
25135 if (cu->dwo_unit != NULL)
25136 {
25137 if (section_is_gnu)
25138 {
25139 section = &cu->dwo_unit->dwo_file->sections.macro;
25140 section_name = ".debug_macro.dwo";
25141 }
25142 else
25143 {
25144 section = &cu->dwo_unit->dwo_file->sections.macinfo;
25145 section_name = ".debug_macinfo.dwo";
25146 }
25147 }
25148 else
25149 {
25150 if (section_is_gnu)
25151 {
25152 section = &dwarf2_per_objfile->macro;
25153 section_name = ".debug_macro";
25154 }
25155 else
25156 {
25157 section = &dwarf2_per_objfile->macinfo;
25158 section_name = ".debug_macinfo";
25159 }
25160 }
25161
25162 dwarf2_read_section (objfile, section);
25163 if (section->buffer == NULL)
25164 {
25165 complaint (_("missing %s section"), section_name);
25166 return;
25167 }
25168 abfd = get_section_bfd_owner (section);
25169
25170 /* First pass: Find the name of the base filename.
25171 This filename is needed in order to process all macros whose definition
25172 (or undefinition) comes from the command line. These macros are defined
25173 before the first DW_MACINFO_start_file entry, and yet still need to be
25174 associated to the base file.
25175
25176 To determine the base file name, we scan the macro definitions until we
25177 reach the first DW_MACINFO_start_file entry. We then initialize
25178 CURRENT_FILE accordingly so that any macro definition found before the
25179 first DW_MACINFO_start_file can still be associated to the base file. */
25180
25181 mac_ptr = section->buffer + offset;
25182 mac_end = section->buffer + section->size;
25183
25184 mac_ptr = dwarf_parse_macro_header (opcode_definitions, abfd, mac_ptr,
25185 &offset_size, section_is_gnu);
25186 if (mac_ptr == NULL)
25187 {
25188 /* We already issued a complaint. */
25189 return;
25190 }
25191
25192 do
25193 {
25194 /* Do we at least have room for a macinfo type byte? */
25195 if (mac_ptr >= mac_end)
25196 {
25197 /* Complaint is printed during the second pass as GDB will probably
25198 stop the first pass earlier upon finding
25199 DW_MACINFO_start_file. */
25200 break;
25201 }
25202
25203 macinfo_type = (enum dwarf_macro_record_type) read_1_byte (abfd, mac_ptr);
25204 mac_ptr++;
25205
25206 /* Note that we rely on the fact that the corresponding GNU and
25207 DWARF constants are the same. */
25208 DIAGNOSTIC_PUSH
25209 DIAGNOSTIC_IGNORE_SWITCH_DIFFERENT_ENUM_TYPES
25210 switch (macinfo_type)
25211 {
25212 /* A zero macinfo type indicates the end of the macro
25213 information. */
25214 case 0:
25215 break;
25216
25217 case DW_MACRO_define:
25218 case DW_MACRO_undef:
25219 /* Only skip the data by MAC_PTR. */
25220 {
25221 unsigned int bytes_read;
25222
25223 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25224 mac_ptr += bytes_read;
25225 read_direct_string (abfd, mac_ptr, &bytes_read);
25226 mac_ptr += bytes_read;
25227 }
25228 break;
25229
25230 case DW_MACRO_start_file:
25231 {
25232 unsigned int bytes_read;
25233 int line, file;
25234
25235 line = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25236 mac_ptr += bytes_read;
25237 file = read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25238 mac_ptr += bytes_read;
25239
25240 current_file = macro_start_file (cu, file, line, current_file, lh);
25241 }
25242 break;
25243
25244 case DW_MACRO_end_file:
25245 /* No data to skip by MAC_PTR. */
25246 break;
25247
25248 case DW_MACRO_define_strp:
25249 case DW_MACRO_undef_strp:
25250 case DW_MACRO_define_sup:
25251 case DW_MACRO_undef_sup:
25252 {
25253 unsigned int bytes_read;
25254
25255 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25256 mac_ptr += bytes_read;
25257 mac_ptr += offset_size;
25258 }
25259 break;
25260
25261 case DW_MACRO_import:
25262 case DW_MACRO_import_sup:
25263 /* Note that, according to the spec, a transparent include
25264 chain cannot call DW_MACRO_start_file. So, we can just
25265 skip this opcode. */
25266 mac_ptr += offset_size;
25267 break;
25268
25269 case DW_MACINFO_vendor_ext:
25270 /* Only skip the data by MAC_PTR. */
25271 if (!section_is_gnu)
25272 {
25273 unsigned int bytes_read;
25274
25275 read_unsigned_leb128 (abfd, mac_ptr, &bytes_read);
25276 mac_ptr += bytes_read;
25277 read_direct_string (abfd, mac_ptr, &bytes_read);
25278 mac_ptr += bytes_read;
25279 }
25280 /* FALLTHROUGH */
25281
25282 default:
25283 mac_ptr = skip_unknown_opcode (macinfo_type, opcode_definitions,
25284 mac_ptr, mac_end, abfd, offset_size,
25285 section);
25286 if (mac_ptr == NULL)
25287 return;
25288 break;
25289 }
25290 DIAGNOSTIC_POP
25291 } while (macinfo_type != 0 && current_file == NULL);
25292
25293 /* Second pass: Process all entries.
25294
25295 Use the AT_COMMAND_LINE flag to determine whether we are still processing
25296 command-line macro definitions/undefinitions. This flag is unset when we
25297 reach the first DW_MACINFO_start_file entry. */
25298
25299 htab_up include_hash (htab_create_alloc (1, htab_hash_pointer,
25300 htab_eq_pointer,
25301 NULL, xcalloc, xfree));
25302 mac_ptr = section->buffer + offset;
25303 slot = htab_find_slot (include_hash.get (), mac_ptr, INSERT);
25304 *slot = (void *) mac_ptr;
25305 dwarf_decode_macro_bytes (cu, abfd, mac_ptr, mac_end,
25306 current_file, lh, section,
25307 section_is_gnu, 0, offset_size,
25308 include_hash.get ());
25309 }
25310
25311 /* Check if the attribute's form is a DW_FORM_block*
25312 if so return true else false. */
25313
25314 static int
25315 attr_form_is_block (const struct attribute *attr)
25316 {
25317 return (attr == NULL ? 0 :
25318 attr->form == DW_FORM_block1
25319 || attr->form == DW_FORM_block2
25320 || attr->form == DW_FORM_block4
25321 || attr->form == DW_FORM_block
25322 || attr->form == DW_FORM_exprloc);
25323 }
25324
25325 /* Return non-zero if ATTR's value is a section offset --- classes
25326 lineptr, loclistptr, macptr or rangelistptr --- or zero, otherwise.
25327 You may use DW_UNSND (attr) to retrieve such offsets.
25328
25329 Section 7.5.4, "Attribute Encodings", explains that no attribute
25330 may have a value that belongs to more than one of these classes; it
25331 would be ambiguous if we did, because we use the same forms for all
25332 of them. */
25333
25334 static int
25335 attr_form_is_section_offset (const struct attribute *attr)
25336 {
25337 return (attr->form == DW_FORM_data4
25338 || attr->form == DW_FORM_data8
25339 || attr->form == DW_FORM_sec_offset);
25340 }
25341
25342 /* Return non-zero if ATTR's value falls in the 'constant' class, or
25343 zero otherwise. When this function returns true, you can apply
25344 dwarf2_get_attr_constant_value to it.
25345
25346 However, note that for some attributes you must check
25347 attr_form_is_section_offset before using this test. DW_FORM_data4
25348 and DW_FORM_data8 are members of both the constant class, and of
25349 the classes that contain offsets into other debug sections
25350 (lineptr, loclistptr, macptr or rangelistptr). The DWARF spec says
25351 that, if an attribute's can be either a constant or one of the
25352 section offset classes, DW_FORM_data4 and DW_FORM_data8 should be
25353 taken as section offsets, not constants.
25354
25355 DW_FORM_data16 is not considered as dwarf2_get_attr_constant_value
25356 cannot handle that. */
25357
25358 static int
25359 attr_form_is_constant (const struct attribute *attr)
25360 {
25361 switch (attr->form)
25362 {
25363 case DW_FORM_sdata:
25364 case DW_FORM_udata:
25365 case DW_FORM_data1:
25366 case DW_FORM_data2:
25367 case DW_FORM_data4:
25368 case DW_FORM_data8:
25369 case DW_FORM_implicit_const:
25370 return 1;
25371 default:
25372 return 0;
25373 }
25374 }
25375
25376
25377 /* DW_ADDR is always stored already as sect_offset; despite for the forms
25378 besides DW_FORM_ref_addr it is stored as cu_offset in the DWARF file. */
25379
25380 static int
25381 attr_form_is_ref (const struct attribute *attr)
25382 {
25383 switch (attr->form)
25384 {
25385 case DW_FORM_ref_addr:
25386 case DW_FORM_ref1:
25387 case DW_FORM_ref2:
25388 case DW_FORM_ref4:
25389 case DW_FORM_ref8:
25390 case DW_FORM_ref_udata:
25391 case DW_FORM_GNU_ref_alt:
25392 return 1;
25393 default:
25394 return 0;
25395 }
25396 }
25397
25398 /* Return the .debug_loc section to use for CU.
25399 For DWO files use .debug_loc.dwo. */
25400
25401 static struct dwarf2_section_info *
25402 cu_debug_loc_section (struct dwarf2_cu *cu)
25403 {
25404 struct dwarf2_per_objfile *dwarf2_per_objfile
25405 = cu->per_cu->dwarf2_per_objfile;
25406
25407 if (cu->dwo_unit)
25408 {
25409 struct dwo_sections *sections = &cu->dwo_unit->dwo_file->sections;
25410
25411 return cu->header.version >= 5 ? &sections->loclists : &sections->loc;
25412 }
25413 return (cu->header.version >= 5 ? &dwarf2_per_objfile->loclists
25414 : &dwarf2_per_objfile->loc);
25415 }
25416
25417 /* A helper function that fills in a dwarf2_loclist_baton. */
25418
25419 static void
25420 fill_in_loclist_baton (struct dwarf2_cu *cu,
25421 struct dwarf2_loclist_baton *baton,
25422 const struct attribute *attr)
25423 {
25424 struct dwarf2_per_objfile *dwarf2_per_objfile
25425 = cu->per_cu->dwarf2_per_objfile;
25426 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25427
25428 dwarf2_read_section (dwarf2_per_objfile->objfile, section);
25429
25430 baton->per_cu = cu->per_cu;
25431 gdb_assert (baton->per_cu);
25432 /* We don't know how long the location list is, but make sure we
25433 don't run off the edge of the section. */
25434 baton->size = section->size - DW_UNSND (attr);
25435 baton->data = section->buffer + DW_UNSND (attr);
25436 baton->base_address = cu->base_address;
25437 baton->from_dwo = cu->dwo_unit != NULL;
25438 }
25439
25440 static void
25441 dwarf2_symbol_mark_computed (const struct attribute *attr, struct symbol *sym,
25442 struct dwarf2_cu *cu, int is_block)
25443 {
25444 struct dwarf2_per_objfile *dwarf2_per_objfile
25445 = cu->per_cu->dwarf2_per_objfile;
25446 struct objfile *objfile = dwarf2_per_objfile->objfile;
25447 struct dwarf2_section_info *section = cu_debug_loc_section (cu);
25448
25449 if (attr_form_is_section_offset (attr)
25450 /* .debug_loc{,.dwo} may not exist at all, or the offset may be outside
25451 the section. If so, fall through to the complaint in the
25452 other branch. */
25453 && DW_UNSND (attr) < dwarf2_section_size (objfile, section))
25454 {
25455 struct dwarf2_loclist_baton *baton;
25456
25457 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_loclist_baton);
25458
25459 fill_in_loclist_baton (cu, baton, attr);
25460
25461 if (cu->base_known == 0)
25462 complaint (_("Location list used without "
25463 "specifying the CU base address."));
25464
25465 SYMBOL_ACLASS_INDEX (sym) = (is_block
25466 ? dwarf2_loclist_block_index
25467 : dwarf2_loclist_index);
25468 SYMBOL_LOCATION_BATON (sym) = baton;
25469 }
25470 else
25471 {
25472 struct dwarf2_locexpr_baton *baton;
25473
25474 baton = XOBNEW (&objfile->objfile_obstack, struct dwarf2_locexpr_baton);
25475 baton->per_cu = cu->per_cu;
25476 gdb_assert (baton->per_cu);
25477
25478 if (attr_form_is_block (attr))
25479 {
25480 /* Note that we're just copying the block's data pointer
25481 here, not the actual data. We're still pointing into the
25482 info_buffer for SYM's objfile; right now we never release
25483 that buffer, but when we do clean up properly this may
25484 need to change. */
25485 baton->size = DW_BLOCK (attr)->size;
25486 baton->data = DW_BLOCK (attr)->data;
25487 }
25488 else
25489 {
25490 dwarf2_invalid_attrib_class_complaint ("location description",
25491 sym->natural_name ());
25492 baton->size = 0;
25493 }
25494
25495 SYMBOL_ACLASS_INDEX (sym) = (is_block
25496 ? dwarf2_locexpr_block_index
25497 : dwarf2_locexpr_index);
25498 SYMBOL_LOCATION_BATON (sym) = baton;
25499 }
25500 }
25501
25502 /* Return the OBJFILE associated with the compilation unit CU. If CU
25503 came from a separate debuginfo file, then the master objfile is
25504 returned. */
25505
25506 struct objfile *
25507 dwarf2_per_cu_objfile (struct dwarf2_per_cu_data *per_cu)
25508 {
25509 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25510
25511 /* Return the master objfile, so that we can report and look up the
25512 correct file containing this variable. */
25513 if (objfile->separate_debug_objfile_backlink)
25514 objfile = objfile->separate_debug_objfile_backlink;
25515
25516 return objfile;
25517 }
25518
25519 /* Return comp_unit_head for PER_CU, either already available in PER_CU->CU
25520 (CU_HEADERP is unused in such case) or prepare a temporary copy at
25521 CU_HEADERP first. */
25522
25523 static const struct comp_unit_head *
25524 per_cu_header_read_in (struct comp_unit_head *cu_headerp,
25525 struct dwarf2_per_cu_data *per_cu)
25526 {
25527 const gdb_byte *info_ptr;
25528
25529 if (per_cu->cu)
25530 return &per_cu->cu->header;
25531
25532 info_ptr = per_cu->section->buffer + to_underlying (per_cu->sect_off);
25533
25534 memset (cu_headerp, 0, sizeof (*cu_headerp));
25535 read_comp_unit_head (cu_headerp, info_ptr, per_cu->section,
25536 rcuh_kind::COMPILE);
25537
25538 return cu_headerp;
25539 }
25540
25541 /* Return the address size given in the compilation unit header for CU. */
25542
25543 int
25544 dwarf2_per_cu_addr_size (struct dwarf2_per_cu_data *per_cu)
25545 {
25546 struct comp_unit_head cu_header_local;
25547 const struct comp_unit_head *cu_headerp;
25548
25549 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25550
25551 return cu_headerp->addr_size;
25552 }
25553
25554 /* Return the offset size given in the compilation unit header for CU. */
25555
25556 int
25557 dwarf2_per_cu_offset_size (struct dwarf2_per_cu_data *per_cu)
25558 {
25559 struct comp_unit_head cu_header_local;
25560 const struct comp_unit_head *cu_headerp;
25561
25562 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25563
25564 return cu_headerp->offset_size;
25565 }
25566
25567 /* See its dwarf2loc.h declaration. */
25568
25569 int
25570 dwarf2_per_cu_ref_addr_size (struct dwarf2_per_cu_data *per_cu)
25571 {
25572 struct comp_unit_head cu_header_local;
25573 const struct comp_unit_head *cu_headerp;
25574
25575 cu_headerp = per_cu_header_read_in (&cu_header_local, per_cu);
25576
25577 if (cu_headerp->version == 2)
25578 return cu_headerp->addr_size;
25579 else
25580 return cu_headerp->offset_size;
25581 }
25582
25583 /* Return the text offset of the CU. The returned offset comes from
25584 this CU's objfile. If this objfile came from a separate debuginfo
25585 file, then the offset may be different from the corresponding
25586 offset in the parent objfile. */
25587
25588 CORE_ADDR
25589 dwarf2_per_cu_text_offset (struct dwarf2_per_cu_data *per_cu)
25590 {
25591 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25592
25593 return ANOFFSET (objfile->section_offsets, SECT_OFF_TEXT (objfile));
25594 }
25595
25596 /* Return a type that is a generic pointer type, the size of which matches
25597 the address size given in the compilation unit header for PER_CU. */
25598 static struct type *
25599 dwarf2_per_cu_addr_type (struct dwarf2_per_cu_data *per_cu)
25600 {
25601 struct objfile *objfile = per_cu->dwarf2_per_objfile->objfile;
25602 struct type *void_type = objfile_type (objfile)->builtin_void;
25603 struct type *addr_type = lookup_pointer_type (void_type);
25604 int addr_size = dwarf2_per_cu_addr_size (per_cu);
25605
25606 if (TYPE_LENGTH (addr_type) == addr_size)
25607 return addr_type;
25608
25609 addr_type
25610 = dwarf2_per_cu_addr_sized_int_type (per_cu, TYPE_UNSIGNED (addr_type));
25611 return addr_type;
25612 }
25613
25614 /* Return DWARF version number of PER_CU. */
25615
25616 short
25617 dwarf2_version (struct dwarf2_per_cu_data *per_cu)
25618 {
25619 return per_cu->dwarf_version;
25620 }
25621
25622 /* Locate the .debug_info compilation unit from CU's objfile which contains
25623 the DIE at OFFSET. Raises an error on failure. */
25624
25625 static struct dwarf2_per_cu_data *
25626 dwarf2_find_containing_comp_unit (sect_offset sect_off,
25627 unsigned int offset_in_dwz,
25628 struct dwarf2_per_objfile *dwarf2_per_objfile)
25629 {
25630 struct dwarf2_per_cu_data *this_cu;
25631 int low, high;
25632
25633 low = 0;
25634 high = dwarf2_per_objfile->all_comp_units.size () - 1;
25635 while (high > low)
25636 {
25637 struct dwarf2_per_cu_data *mid_cu;
25638 int mid = low + (high - low) / 2;
25639
25640 mid_cu = dwarf2_per_objfile->all_comp_units[mid];
25641 if (mid_cu->is_dwz > offset_in_dwz
25642 || (mid_cu->is_dwz == offset_in_dwz
25643 && mid_cu->sect_off + mid_cu->length >= sect_off))
25644 high = mid;
25645 else
25646 low = mid + 1;
25647 }
25648 gdb_assert (low == high);
25649 this_cu = dwarf2_per_objfile->all_comp_units[low];
25650 if (this_cu->is_dwz != offset_in_dwz || this_cu->sect_off > sect_off)
25651 {
25652 if (low == 0 || this_cu->is_dwz != offset_in_dwz)
25653 error (_("Dwarf Error: could not find partial DIE containing "
25654 "offset %s [in module %s]"),
25655 sect_offset_str (sect_off),
25656 bfd_get_filename (dwarf2_per_objfile->objfile->obfd));
25657
25658 gdb_assert (dwarf2_per_objfile->all_comp_units[low-1]->sect_off
25659 <= sect_off);
25660 return dwarf2_per_objfile->all_comp_units[low-1];
25661 }
25662 else
25663 {
25664 if (low == dwarf2_per_objfile->all_comp_units.size () - 1
25665 && sect_off >= this_cu->sect_off + this_cu->length)
25666 error (_("invalid dwarf2 offset %s"), sect_offset_str (sect_off));
25667 gdb_assert (sect_off < this_cu->sect_off + this_cu->length);
25668 return this_cu;
25669 }
25670 }
25671
25672 /* Initialize dwarf2_cu CU, owned by PER_CU. */
25673
25674 dwarf2_cu::dwarf2_cu (struct dwarf2_per_cu_data *per_cu_)
25675 : per_cu (per_cu_),
25676 mark (false),
25677 has_loclist (false),
25678 checked_producer (false),
25679 producer_is_gxx_lt_4_6 (false),
25680 producer_is_gcc_lt_4_3 (false),
25681 producer_is_icc (false),
25682 producer_is_icc_lt_14 (false),
25683 producer_is_codewarrior (false),
25684 processing_has_namespace_info (false)
25685 {
25686 per_cu->cu = this;
25687 }
25688
25689 /* Destroy a dwarf2_cu. */
25690
25691 dwarf2_cu::~dwarf2_cu ()
25692 {
25693 per_cu->cu = NULL;
25694 }
25695
25696 /* Initialize basic fields of dwarf_cu CU according to DIE COMP_UNIT_DIE. */
25697
25698 static void
25699 prepare_one_comp_unit (struct dwarf2_cu *cu, struct die_info *comp_unit_die,
25700 enum language pretend_language)
25701 {
25702 struct attribute *attr;
25703
25704 /* Set the language we're debugging. */
25705 attr = dwarf2_attr (comp_unit_die, DW_AT_language, cu);
25706 if (attr != nullptr)
25707 set_cu_language (DW_UNSND (attr), cu);
25708 else
25709 {
25710 cu->language = pretend_language;
25711 cu->language_defn = language_def (cu->language);
25712 }
25713
25714 cu->producer = dwarf2_string_attr (comp_unit_die, DW_AT_producer, cu);
25715 }
25716
25717 /* Increase the age counter on each cached compilation unit, and free
25718 any that are too old. */
25719
25720 static void
25721 age_cached_comp_units (struct dwarf2_per_objfile *dwarf2_per_objfile)
25722 {
25723 struct dwarf2_per_cu_data *per_cu, **last_chain;
25724
25725 dwarf2_clear_marks (dwarf2_per_objfile->read_in_chain);
25726 per_cu = dwarf2_per_objfile->read_in_chain;
25727 while (per_cu != NULL)
25728 {
25729 per_cu->cu->last_used ++;
25730 if (per_cu->cu->last_used <= dwarf_max_cache_age)
25731 dwarf2_mark (per_cu->cu);
25732 per_cu = per_cu->cu->read_in_chain;
25733 }
25734
25735 per_cu = dwarf2_per_objfile->read_in_chain;
25736 last_chain = &dwarf2_per_objfile->read_in_chain;
25737 while (per_cu != NULL)
25738 {
25739 struct dwarf2_per_cu_data *next_cu;
25740
25741 next_cu = per_cu->cu->read_in_chain;
25742
25743 if (!per_cu->cu->mark)
25744 {
25745 delete per_cu->cu;
25746 *last_chain = next_cu;
25747 }
25748 else
25749 last_chain = &per_cu->cu->read_in_chain;
25750
25751 per_cu = next_cu;
25752 }
25753 }
25754
25755 /* Remove a single compilation unit from the cache. */
25756
25757 static void
25758 free_one_cached_comp_unit (struct dwarf2_per_cu_data *target_per_cu)
25759 {
25760 struct dwarf2_per_cu_data *per_cu, **last_chain;
25761 struct dwarf2_per_objfile *dwarf2_per_objfile
25762 = target_per_cu->dwarf2_per_objfile;
25763
25764 per_cu = dwarf2_per_objfile->read_in_chain;
25765 last_chain = &dwarf2_per_objfile->read_in_chain;
25766 while (per_cu != NULL)
25767 {
25768 struct dwarf2_per_cu_data *next_cu;
25769
25770 next_cu = per_cu->cu->read_in_chain;
25771
25772 if (per_cu == target_per_cu)
25773 {
25774 delete per_cu->cu;
25775 per_cu->cu = NULL;
25776 *last_chain = next_cu;
25777 break;
25778 }
25779 else
25780 last_chain = &per_cu->cu->read_in_chain;
25781
25782 per_cu = next_cu;
25783 }
25784 }
25785
25786 /* A set of CU "per_cu" pointer, DIE offset, and GDB type pointer.
25787 We store these in a hash table separate from the DIEs, and preserve them
25788 when the DIEs are flushed out of cache.
25789
25790 The CU "per_cu" pointer is needed because offset alone is not enough to
25791 uniquely identify the type. A file may have multiple .debug_types sections,
25792 or the type may come from a DWO file. Furthermore, while it's more logical
25793 to use per_cu->section+offset, with Fission the section with the data is in
25794 the DWO file but we don't know that section at the point we need it.
25795 We have to use something in dwarf2_per_cu_data (or the pointer to it)
25796 because we can enter the lookup routine, get_die_type_at_offset, from
25797 outside this file, and thus won't necessarily have PER_CU->cu.
25798 Fortunately, PER_CU is stable for the life of the objfile. */
25799
25800 struct dwarf2_per_cu_offset_and_type
25801 {
25802 const struct dwarf2_per_cu_data *per_cu;
25803 sect_offset sect_off;
25804 struct type *type;
25805 };
25806
25807 /* Hash function for a dwarf2_per_cu_offset_and_type. */
25808
25809 static hashval_t
25810 per_cu_offset_and_type_hash (const void *item)
25811 {
25812 const struct dwarf2_per_cu_offset_and_type *ofs
25813 = (const struct dwarf2_per_cu_offset_and_type *) item;
25814
25815 return (uintptr_t) ofs->per_cu + to_underlying (ofs->sect_off);
25816 }
25817
25818 /* Equality function for a dwarf2_per_cu_offset_and_type. */
25819
25820 static int
25821 per_cu_offset_and_type_eq (const void *item_lhs, const void *item_rhs)
25822 {
25823 const struct dwarf2_per_cu_offset_and_type *ofs_lhs
25824 = (const struct dwarf2_per_cu_offset_and_type *) item_lhs;
25825 const struct dwarf2_per_cu_offset_and_type *ofs_rhs
25826 = (const struct dwarf2_per_cu_offset_and_type *) item_rhs;
25827
25828 return (ofs_lhs->per_cu == ofs_rhs->per_cu
25829 && ofs_lhs->sect_off == ofs_rhs->sect_off);
25830 }
25831
25832 /* Set the type associated with DIE to TYPE. Save it in CU's hash
25833 table if necessary. For convenience, return TYPE.
25834
25835 The DIEs reading must have careful ordering to:
25836 * Not cause infinite loops trying to read in DIEs as a prerequisite for
25837 reading current DIE.
25838 * Not trying to dereference contents of still incompletely read in types
25839 while reading in other DIEs.
25840 * Enable referencing still incompletely read in types just by a pointer to
25841 the type without accessing its fields.
25842
25843 Therefore caller should follow these rules:
25844 * Try to fetch any prerequisite types we may need to build this DIE type
25845 before building the type and calling set_die_type.
25846 * After building type call set_die_type for current DIE as soon as
25847 possible before fetching more types to complete the current type.
25848 * Make the type as complete as possible before fetching more types. */
25849
25850 static struct type *
25851 set_die_type (struct die_info *die, struct type *type, struct dwarf2_cu *cu)
25852 {
25853 struct dwarf2_per_objfile *dwarf2_per_objfile
25854 = cu->per_cu->dwarf2_per_objfile;
25855 struct dwarf2_per_cu_offset_and_type **slot, ofs;
25856 struct objfile *objfile = dwarf2_per_objfile->objfile;
25857 struct attribute *attr;
25858 struct dynamic_prop prop;
25859
25860 /* For Ada types, make sure that the gnat-specific data is always
25861 initialized (if not already set). There are a few types where
25862 we should not be doing so, because the type-specific area is
25863 already used to hold some other piece of info (eg: TYPE_CODE_FLT
25864 where the type-specific area is used to store the floatformat).
25865 But this is not a problem, because the gnat-specific information
25866 is actually not needed for these types. */
25867 if (need_gnat_info (cu)
25868 && TYPE_CODE (type) != TYPE_CODE_FUNC
25869 && TYPE_CODE (type) != TYPE_CODE_FLT
25870 && TYPE_CODE (type) != TYPE_CODE_METHODPTR
25871 && TYPE_CODE (type) != TYPE_CODE_MEMBERPTR
25872 && TYPE_CODE (type) != TYPE_CODE_METHOD
25873 && !HAVE_GNAT_AUX_INFO (type))
25874 INIT_GNAT_SPECIFIC (type);
25875
25876 /* Read DW_AT_allocated and set in type. */
25877 attr = dwarf2_attr (die, DW_AT_allocated, cu);
25878 if (attr_form_is_block (attr))
25879 {
25880 struct type *prop_type
25881 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25882 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25883 add_dyn_prop (DYN_PROP_ALLOCATED, prop, type);
25884 }
25885 else if (attr != NULL)
25886 {
25887 complaint (_("DW_AT_allocated has the wrong form (%s) at DIE %s"),
25888 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25889 sect_offset_str (die->sect_off));
25890 }
25891
25892 /* Read DW_AT_associated and set in type. */
25893 attr = dwarf2_attr (die, DW_AT_associated, cu);
25894 if (attr_form_is_block (attr))
25895 {
25896 struct type *prop_type
25897 = dwarf2_per_cu_addr_sized_int_type (cu->per_cu, false);
25898 if (attr_to_dynamic_prop (attr, die, cu, &prop, prop_type))
25899 add_dyn_prop (DYN_PROP_ASSOCIATED, prop, type);
25900 }
25901 else if (attr != NULL)
25902 {
25903 complaint (_("DW_AT_associated has the wrong form (%s) at DIE %s"),
25904 (attr != NULL ? dwarf_form_name (attr->form) : "n/a"),
25905 sect_offset_str (die->sect_off));
25906 }
25907
25908 /* Read DW_AT_data_location and set in type. */
25909 attr = dwarf2_attr (die, DW_AT_data_location, cu);
25910 if (attr_to_dynamic_prop (attr, die, cu, &prop,
25911 dwarf2_per_cu_addr_type (cu->per_cu)))
25912 add_dyn_prop (DYN_PROP_DATA_LOCATION, prop, type);
25913
25914 if (dwarf2_per_objfile->die_type_hash == NULL)
25915 {
25916 dwarf2_per_objfile->die_type_hash =
25917 htab_create_alloc_ex (127,
25918 per_cu_offset_and_type_hash,
25919 per_cu_offset_and_type_eq,
25920 NULL,
25921 &objfile->objfile_obstack,
25922 hashtab_obstack_allocate,
25923 dummy_obstack_deallocate);
25924 }
25925
25926 ofs.per_cu = cu->per_cu;
25927 ofs.sect_off = die->sect_off;
25928 ofs.type = type;
25929 slot = (struct dwarf2_per_cu_offset_and_type **)
25930 htab_find_slot (dwarf2_per_objfile->die_type_hash, &ofs, INSERT);
25931 if (*slot)
25932 complaint (_("A problem internal to GDB: DIE %s has type already set"),
25933 sect_offset_str (die->sect_off));
25934 *slot = XOBNEW (&objfile->objfile_obstack,
25935 struct dwarf2_per_cu_offset_and_type);
25936 **slot = ofs;
25937 return type;
25938 }
25939
25940 /* Look up the type for the die at SECT_OFF in PER_CU in die_type_hash,
25941 or return NULL if the die does not have a saved type. */
25942
25943 static struct type *
25944 get_die_type_at_offset (sect_offset sect_off,
25945 struct dwarf2_per_cu_data *per_cu)
25946 {
25947 struct dwarf2_per_cu_offset_and_type *slot, ofs;
25948 struct dwarf2_per_objfile *dwarf2_per_objfile = per_cu->dwarf2_per_objfile;
25949
25950 if (dwarf2_per_objfile->die_type_hash == NULL)
25951 return NULL;
25952
25953 ofs.per_cu = per_cu;
25954 ofs.sect_off = sect_off;
25955 slot = ((struct dwarf2_per_cu_offset_and_type *)
25956 htab_find (dwarf2_per_objfile->die_type_hash, &ofs));
25957 if (slot)
25958 return slot->type;
25959 else
25960 return NULL;
25961 }
25962
25963 /* Look up the type for DIE in CU in die_type_hash,
25964 or return NULL if DIE does not have a saved type. */
25965
25966 static struct type *
25967 get_die_type (struct die_info *die, struct dwarf2_cu *cu)
25968 {
25969 return get_die_type_at_offset (die->sect_off, cu->per_cu);
25970 }
25971
25972 /* Add a dependence relationship from CU to REF_PER_CU. */
25973
25974 static void
25975 dwarf2_add_dependence (struct dwarf2_cu *cu,
25976 struct dwarf2_per_cu_data *ref_per_cu)
25977 {
25978 void **slot;
25979
25980 if (cu->dependencies == NULL)
25981 cu->dependencies
25982 = htab_create_alloc_ex (5, htab_hash_pointer, htab_eq_pointer,
25983 NULL, &cu->comp_unit_obstack,
25984 hashtab_obstack_allocate,
25985 dummy_obstack_deallocate);
25986
25987 slot = htab_find_slot (cu->dependencies, ref_per_cu, INSERT);
25988 if (*slot == NULL)
25989 *slot = ref_per_cu;
25990 }
25991
25992 /* Subroutine of dwarf2_mark to pass to htab_traverse.
25993 Set the mark field in every compilation unit in the
25994 cache that we must keep because we are keeping CU. */
25995
25996 static int
25997 dwarf2_mark_helper (void **slot, void *data)
25998 {
25999 struct dwarf2_per_cu_data *per_cu;
26000
26001 per_cu = (struct dwarf2_per_cu_data *) *slot;
26002
26003 /* cu->dependencies references may not yet have been ever read if QUIT aborts
26004 reading of the chain. As such dependencies remain valid it is not much
26005 useful to track and undo them during QUIT cleanups. */
26006 if (per_cu->cu == NULL)
26007 return 1;
26008
26009 if (per_cu->cu->mark)
26010 return 1;
26011 per_cu->cu->mark = true;
26012
26013 if (per_cu->cu->dependencies != NULL)
26014 htab_traverse (per_cu->cu->dependencies, dwarf2_mark_helper, NULL);
26015
26016 return 1;
26017 }
26018
26019 /* Set the mark field in CU and in every other compilation unit in the
26020 cache that we must keep because we are keeping CU. */
26021
26022 static void
26023 dwarf2_mark (struct dwarf2_cu *cu)
26024 {
26025 if (cu->mark)
26026 return;
26027 cu->mark = true;
26028 if (cu->dependencies != NULL)
26029 htab_traverse (cu->dependencies, dwarf2_mark_helper, NULL);
26030 }
26031
26032 static void
26033 dwarf2_clear_marks (struct dwarf2_per_cu_data *per_cu)
26034 {
26035 while (per_cu)
26036 {
26037 per_cu->cu->mark = false;
26038 per_cu = per_cu->cu->read_in_chain;
26039 }
26040 }
26041
26042 /* Trivial hash function for partial_die_info: the hash value of a DIE
26043 is its offset in .debug_info for this objfile. */
26044
26045 static hashval_t
26046 partial_die_hash (const void *item)
26047 {
26048 const struct partial_die_info *part_die
26049 = (const struct partial_die_info *) item;
26050
26051 return to_underlying (part_die->sect_off);
26052 }
26053
26054 /* Trivial comparison function for partial_die_info structures: two DIEs
26055 are equal if they have the same offset. */
26056
26057 static int
26058 partial_die_eq (const void *item_lhs, const void *item_rhs)
26059 {
26060 const struct partial_die_info *part_die_lhs
26061 = (const struct partial_die_info *) item_lhs;
26062 const struct partial_die_info *part_die_rhs
26063 = (const struct partial_die_info *) item_rhs;
26064
26065 return part_die_lhs->sect_off == part_die_rhs->sect_off;
26066 }
26067
26068 struct cmd_list_element *set_dwarf_cmdlist;
26069 struct cmd_list_element *show_dwarf_cmdlist;
26070
26071 static void
26072 set_dwarf_cmd (const char *args, int from_tty)
26073 {
26074 help_list (set_dwarf_cmdlist, "maintenance set dwarf ", all_commands,
26075 gdb_stdout);
26076 }
26077
26078 static void
26079 show_dwarf_cmd (const char *args, int from_tty)
26080 {
26081 cmd_show_list (show_dwarf_cmdlist, from_tty, "");
26082 }
26083
26084 bool dwarf_always_disassemble;
26085
26086 static void
26087 show_dwarf_always_disassemble (struct ui_file *file, int from_tty,
26088 struct cmd_list_element *c, const char *value)
26089 {
26090 fprintf_filtered (file,
26091 _("Whether to always disassemble "
26092 "DWARF expressions is %s.\n"),
26093 value);
26094 }
26095
26096 static void
26097 show_check_physname (struct ui_file *file, int from_tty,
26098 struct cmd_list_element *c, const char *value)
26099 {
26100 fprintf_filtered (file,
26101 _("Whether to check \"physname\" is %s.\n"),
26102 value);
26103 }
26104
26105 void
26106 _initialize_dwarf2_read (void)
26107 {
26108 add_prefix_cmd ("dwarf", class_maintenance, set_dwarf_cmd, _("\
26109 Set DWARF specific variables.\n\
26110 Configure DWARF variables such as the cache size."),
26111 &set_dwarf_cmdlist, "maintenance set dwarf ",
26112 0/*allow-unknown*/, &maintenance_set_cmdlist);
26113
26114 add_prefix_cmd ("dwarf", class_maintenance, show_dwarf_cmd, _("\
26115 Show DWARF specific variables.\n\
26116 Show DWARF variables such as the cache size."),
26117 &show_dwarf_cmdlist, "maintenance show dwarf ",
26118 0/*allow-unknown*/, &maintenance_show_cmdlist);
26119
26120 add_setshow_zinteger_cmd ("max-cache-age", class_obscure,
26121 &dwarf_max_cache_age, _("\
26122 Set the upper bound on the age of cached DWARF compilation units."), _("\
26123 Show the upper bound on the age of cached DWARF compilation units."), _("\
26124 A higher limit means that cached compilation units will be stored\n\
26125 in memory longer, and more total memory will be used. Zero disables\n\
26126 caching, which can slow down startup."),
26127 NULL,
26128 show_dwarf_max_cache_age,
26129 &set_dwarf_cmdlist,
26130 &show_dwarf_cmdlist);
26131
26132 add_setshow_boolean_cmd ("always-disassemble", class_obscure,
26133 &dwarf_always_disassemble, _("\
26134 Set whether `info address' always disassembles DWARF expressions."), _("\
26135 Show whether `info address' always disassembles DWARF expressions."), _("\
26136 When enabled, DWARF expressions are always printed in an assembly-like\n\
26137 syntax. When disabled, expressions will be printed in a more\n\
26138 conversational style, when possible."),
26139 NULL,
26140 show_dwarf_always_disassemble,
26141 &set_dwarf_cmdlist,
26142 &show_dwarf_cmdlist);
26143
26144 add_setshow_zuinteger_cmd ("dwarf-read", no_class, &dwarf_read_debug, _("\
26145 Set debugging of the DWARF reader."), _("\
26146 Show debugging of the DWARF reader."), _("\
26147 When enabled (non-zero), debugging messages are printed during DWARF\n\
26148 reading and symtab expansion. A value of 1 (one) provides basic\n\
26149 information. A value greater than 1 provides more verbose information."),
26150 NULL,
26151 NULL,
26152 &setdebuglist, &showdebuglist);
26153
26154 add_setshow_zuinteger_cmd ("dwarf-die", no_class, &dwarf_die_debug, _("\
26155 Set debugging of the DWARF DIE reader."), _("\
26156 Show debugging of the DWARF DIE reader."), _("\
26157 When enabled (non-zero), DIEs are dumped after they are read in.\n\
26158 The value is the maximum depth to print."),
26159 NULL,
26160 NULL,
26161 &setdebuglist, &showdebuglist);
26162
26163 add_setshow_zuinteger_cmd ("dwarf-line", no_class, &dwarf_line_debug, _("\
26164 Set debugging of the dwarf line reader."), _("\
26165 Show debugging of the dwarf line reader."), _("\
26166 When enabled (non-zero), line number entries are dumped as they are read in.\n\
26167 A value of 1 (one) provides basic information.\n\
26168 A value greater than 1 provides more verbose information."),
26169 NULL,
26170 NULL,
26171 &setdebuglist, &showdebuglist);
26172
26173 add_setshow_boolean_cmd ("check-physname", no_class, &check_physname, _("\
26174 Set cross-checking of \"physname\" code against demangler."), _("\
26175 Show cross-checking of \"physname\" code against demangler."), _("\
26176 When enabled, GDB's internal \"physname\" code is checked against\n\
26177 the demangler."),
26178 NULL, show_check_physname,
26179 &setdebuglist, &showdebuglist);
26180
26181 add_setshow_boolean_cmd ("use-deprecated-index-sections",
26182 no_class, &use_deprecated_index_sections, _("\
26183 Set whether to use deprecated gdb_index sections."), _("\
26184 Show whether to use deprecated gdb_index sections."), _("\
26185 When enabled, deprecated .gdb_index sections are used anyway.\n\
26186 Normally they are ignored either because of a missing feature or\n\
26187 performance issue.\n\
26188 Warning: This option must be enabled before gdb reads the file."),
26189 NULL,
26190 NULL,
26191 &setlist, &showlist);
26192
26193 dwarf2_locexpr_index = register_symbol_computed_impl (LOC_COMPUTED,
26194 &dwarf2_locexpr_funcs);
26195 dwarf2_loclist_index = register_symbol_computed_impl (LOC_COMPUTED,
26196 &dwarf2_loclist_funcs);
26197
26198 dwarf2_locexpr_block_index = register_symbol_block_impl (LOC_BLOCK,
26199 &dwarf2_block_frame_base_locexpr_funcs);
26200 dwarf2_loclist_block_index = register_symbol_block_impl (LOC_BLOCK,
26201 &dwarf2_block_frame_base_loclist_funcs);
26202
26203 #if GDB_SELF_TEST
26204 selftests::register_test ("dw2_expand_symtabs_matching",
26205 selftests::dw2_expand_symtabs_matching::run_test);
26206 #endif
26207 }
This page took 0.641017 seconds and 4 git commands to generate.