gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / eval.c
1 /* Evaluate expressions for GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "frame.h"
27 #include "gdbthread.h"
28 #include "language.h" /* For CAST_IS_CONVERSION. */
29 #include "f-lang.h" /* For array bound stuff. */
30 #include "cp-abi.h"
31 #include "infcall.h"
32 #include "objc-lang.h"
33 #include "block.h"
34 #include "parser-defs.h"
35 #include "cp-support.h"
36 #include "ui-out.h"
37 #include "regcache.h"
38 #include "user-regs.h"
39 #include "valprint.h"
40 #include "gdb_obstack.h"
41 #include "objfiles.h"
42 #include "typeprint.h"
43 #include <ctype.h>
44
45 /* Prototypes for local functions. */
46
47 static struct value *evaluate_subexp_for_sizeof (struct expression *, int *,
48 enum noside);
49
50 static struct value *evaluate_subexp_for_address (struct expression *,
51 int *, enum noside);
52
53 static value *evaluate_subexp_for_cast (expression *exp, int *pos,
54 enum noside noside,
55 struct type *type);
56
57 static struct value *evaluate_struct_tuple (struct value *,
58 struct expression *, int *,
59 enum noside, int);
60
61 static LONGEST init_array_element (struct value *, struct value *,
62 struct expression *, int *, enum noside,
63 LONGEST, LONGEST);
64
65 struct value *
66 evaluate_subexp (struct type *expect_type, struct expression *exp,
67 int *pos, enum noside noside)
68 {
69 struct value *retval;
70
71 gdb::optional<enable_thread_stack_temporaries> stack_temporaries;
72 if (*pos == 0 && target_has_execution
73 && exp->language_defn->la_language == language_cplus
74 && !thread_stack_temporaries_enabled_p (inferior_thread ()))
75 stack_temporaries.emplace (inferior_thread ());
76
77 retval = (*exp->language_defn->la_exp_desc->evaluate_exp)
78 (expect_type, exp, pos, noside);
79
80 if (stack_temporaries.has_value ()
81 && value_in_thread_stack_temporaries (retval, inferior_thread ()))
82 retval = value_non_lval (retval);
83
84 return retval;
85 }
86 \f
87 /* Parse the string EXP as a C expression, evaluate it,
88 and return the result as a number. */
89
90 CORE_ADDR
91 parse_and_eval_address (const char *exp)
92 {
93 expression_up expr = parse_expression (exp);
94
95 return value_as_address (evaluate_expression (expr.get ()));
96 }
97
98 /* Like parse_and_eval_address, but treats the value of the expression
99 as an integer, not an address, returns a LONGEST, not a CORE_ADDR. */
100 LONGEST
101 parse_and_eval_long (const char *exp)
102 {
103 expression_up expr = parse_expression (exp);
104
105 return value_as_long (evaluate_expression (expr.get ()));
106 }
107
108 struct value *
109 parse_and_eval (const char *exp)
110 {
111 expression_up expr = parse_expression (exp);
112
113 return evaluate_expression (expr.get ());
114 }
115
116 /* Parse up to a comma (or to a closeparen)
117 in the string EXPP as an expression, evaluate it, and return the value.
118 EXPP is advanced to point to the comma. */
119
120 struct value *
121 parse_to_comma_and_eval (const char **expp)
122 {
123 expression_up expr = parse_exp_1 (expp, 0, nullptr, 1);
124
125 return evaluate_expression (expr.get ());
126 }
127 \f
128 /* Evaluate an expression in internal prefix form
129 such as is constructed by parse.y.
130
131 See expression.h for info on the format of an expression. */
132
133 struct value *
134 evaluate_expression (struct expression *exp)
135 {
136 int pc = 0;
137
138 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_NORMAL);
139 }
140
141 /* Evaluate an expression, avoiding all memory references
142 and getting a value whose type alone is correct. */
143
144 struct value *
145 evaluate_type (struct expression *exp)
146 {
147 int pc = 0;
148
149 return evaluate_subexp (NULL_TYPE, exp, &pc, EVAL_AVOID_SIDE_EFFECTS);
150 }
151
152 /* Evaluate a subexpression, avoiding all memory references and
153 getting a value whose type alone is correct. */
154
155 struct value *
156 evaluate_subexpression_type (struct expression *exp, int subexp)
157 {
158 return evaluate_subexp (NULL_TYPE, exp, &subexp, EVAL_AVOID_SIDE_EFFECTS);
159 }
160
161 /* Find the current value of a watchpoint on EXP. Return the value in
162 *VALP and *RESULTP and the chain of intermediate and final values
163 in *VAL_CHAIN. RESULTP and VAL_CHAIN may be NULL if the caller does
164 not need them.
165
166 If PRESERVE_ERRORS is true, then exceptions are passed through.
167 Otherwise, if PRESERVE_ERRORS is false, then if a memory error
168 occurs while evaluating the expression, *RESULTP will be set to
169 NULL. *RESULTP may be a lazy value, if the result could not be
170 read from memory. It is used to determine whether a value is
171 user-specified (we should watch the whole value) or intermediate
172 (we should watch only the bit used to locate the final value).
173
174 If the final value, or any intermediate value, could not be read
175 from memory, *VALP will be set to NULL. *VAL_CHAIN will still be
176 set to any referenced values. *VALP will never be a lazy value.
177 This is the value which we store in struct breakpoint.
178
179 If VAL_CHAIN is non-NULL, the values put into *VAL_CHAIN will be
180 released from the value chain. If VAL_CHAIN is NULL, all generated
181 values will be left on the value chain. */
182
183 void
184 fetch_subexp_value (struct expression *exp, int *pc, struct value **valp,
185 struct value **resultp,
186 std::vector<value_ref_ptr> *val_chain,
187 int preserve_errors)
188 {
189 struct value *mark, *new_mark, *result;
190
191 *valp = NULL;
192 if (resultp)
193 *resultp = NULL;
194 if (val_chain)
195 val_chain->clear ();
196
197 /* Evaluate the expression. */
198 mark = value_mark ();
199 result = NULL;
200
201 try
202 {
203 result = evaluate_subexp (NULL_TYPE, exp, pc, EVAL_NORMAL);
204 }
205 catch (const gdb_exception &ex)
206 {
207 /* Ignore memory errors if we want watchpoints pointing at
208 inaccessible memory to still be created; otherwise, throw the
209 error to some higher catcher. */
210 switch (ex.error)
211 {
212 case MEMORY_ERROR:
213 if (!preserve_errors)
214 break;
215 /* Fall through. */
216 default:
217 throw;
218 break;
219 }
220 }
221
222 new_mark = value_mark ();
223 if (mark == new_mark)
224 return;
225 if (resultp)
226 *resultp = result;
227
228 /* Make sure it's not lazy, so that after the target stops again we
229 have a non-lazy previous value to compare with. */
230 if (result != NULL)
231 {
232 if (!value_lazy (result))
233 *valp = result;
234 else
235 {
236
237 try
238 {
239 value_fetch_lazy (result);
240 *valp = result;
241 }
242 catch (const gdb_exception_error &except)
243 {
244 }
245 }
246 }
247
248 if (val_chain)
249 {
250 /* Return the chain of intermediate values. We use this to
251 decide which addresses to watch. */
252 *val_chain = value_release_to_mark (mark);
253 }
254 }
255
256 /* Extract a field operation from an expression. If the subexpression
257 of EXP starting at *SUBEXP is not a structure dereference
258 operation, return NULL. Otherwise, return the name of the
259 dereferenced field, and advance *SUBEXP to point to the
260 subexpression of the left-hand-side of the dereference. This is
261 used when completing field names. */
262
263 const char *
264 extract_field_op (struct expression *exp, int *subexp)
265 {
266 int tem;
267 char *result;
268
269 if (exp->elts[*subexp].opcode != STRUCTOP_STRUCT
270 && exp->elts[*subexp].opcode != STRUCTOP_PTR)
271 return NULL;
272 tem = longest_to_int (exp->elts[*subexp + 1].longconst);
273 result = &exp->elts[*subexp + 2].string;
274 (*subexp) += 1 + 3 + BYTES_TO_EXP_ELEM (tem + 1);
275 return result;
276 }
277
278 /* This function evaluates brace-initializers (in C/C++) for
279 structure types. */
280
281 static struct value *
282 evaluate_struct_tuple (struct value *struct_val,
283 struct expression *exp,
284 int *pos, enum noside noside, int nargs)
285 {
286 struct type *struct_type = check_typedef (value_type (struct_val));
287 struct type *field_type;
288 int fieldno = -1;
289
290 while (--nargs >= 0)
291 {
292 struct value *val = NULL;
293 int bitpos, bitsize;
294 bfd_byte *addr;
295
296 fieldno++;
297 /* Skip static fields. */
298 while (fieldno < struct_type->num_fields ()
299 && field_is_static (&struct_type->field (fieldno)))
300 fieldno++;
301 if (fieldno >= struct_type->num_fields ())
302 error (_("too many initializers"));
303 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
304 if (field_type->code () == TYPE_CODE_UNION
305 && TYPE_FIELD_NAME (struct_type, fieldno)[0] == '0')
306 error (_("don't know which variant you want to set"));
307
308 /* Here, struct_type is the type of the inner struct,
309 while substruct_type is the type of the inner struct.
310 These are the same for normal structures, but a variant struct
311 contains anonymous union fields that contain substruct fields.
312 The value fieldno is the index of the top-level (normal or
313 anonymous union) field in struct_field, while the value
314 subfieldno is the index of the actual real (named inner) field
315 in substruct_type. */
316
317 field_type = TYPE_FIELD_TYPE (struct_type, fieldno);
318 if (val == 0)
319 val = evaluate_subexp (field_type, exp, pos, noside);
320
321 /* Now actually set the field in struct_val. */
322
323 /* Assign val to field fieldno. */
324 if (value_type (val) != field_type)
325 val = value_cast (field_type, val);
326
327 bitsize = TYPE_FIELD_BITSIZE (struct_type, fieldno);
328 bitpos = TYPE_FIELD_BITPOS (struct_type, fieldno);
329 addr = value_contents_writeable (struct_val) + bitpos / 8;
330 if (bitsize)
331 modify_field (struct_type, addr,
332 value_as_long (val), bitpos % 8, bitsize);
333 else
334 memcpy (addr, value_contents (val),
335 TYPE_LENGTH (value_type (val)));
336
337 }
338 return struct_val;
339 }
340
341 /* Recursive helper function for setting elements of array tuples.
342 The target is ARRAY (which has bounds LOW_BOUND to HIGH_BOUND); the
343 element value is ELEMENT; EXP, POS and NOSIDE are as usual.
344 Evaluates index expressions and sets the specified element(s) of
345 ARRAY to ELEMENT. Returns last index value. */
346
347 static LONGEST
348 init_array_element (struct value *array, struct value *element,
349 struct expression *exp, int *pos,
350 enum noside noside, LONGEST low_bound, LONGEST high_bound)
351 {
352 LONGEST index;
353 int element_size = TYPE_LENGTH (value_type (element));
354
355 if (exp->elts[*pos].opcode == BINOP_COMMA)
356 {
357 (*pos)++;
358 init_array_element (array, element, exp, pos, noside,
359 low_bound, high_bound);
360 return init_array_element (array, element,
361 exp, pos, noside, low_bound, high_bound);
362 }
363 else
364 {
365 index = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
366 if (index < low_bound || index > high_bound)
367 error (_("tuple index out of range"));
368 memcpy (value_contents_raw (array) + (index - low_bound) * element_size,
369 value_contents (element), element_size);
370 }
371 return index;
372 }
373
374 static struct value *
375 value_f90_subarray (struct value *array,
376 struct expression *exp, int *pos, enum noside noside)
377 {
378 int pc = (*pos) + 1;
379 LONGEST low_bound, high_bound;
380 struct type *range = check_typedef (TYPE_INDEX_TYPE (value_type (array)));
381 enum range_type range_type
382 = (enum range_type) longest_to_int (exp->elts[pc].longconst);
383
384 *pos += 3;
385
386 if (range_type == LOW_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
387 low_bound = TYPE_LOW_BOUND (range);
388 else
389 low_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
390
391 if (range_type == HIGH_BOUND_DEFAULT || range_type == BOTH_BOUND_DEFAULT)
392 high_bound = TYPE_HIGH_BOUND (range);
393 else
394 high_bound = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
395
396 return value_slice (array, low_bound, high_bound - low_bound + 1);
397 }
398
399
400 /* Promote value ARG1 as appropriate before performing a unary operation
401 on this argument.
402 If the result is not appropriate for any particular language then it
403 needs to patch this function. */
404
405 void
406 unop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
407 struct value **arg1)
408 {
409 struct type *type1;
410
411 *arg1 = coerce_ref (*arg1);
412 type1 = check_typedef (value_type (*arg1));
413
414 if (is_integral_type (type1))
415 {
416 switch (language->la_language)
417 {
418 default:
419 /* Perform integral promotion for ANSI C/C++.
420 If not appropriate for any particular language
421 it needs to modify this function. */
422 {
423 struct type *builtin_int = builtin_type (gdbarch)->builtin_int;
424
425 if (TYPE_LENGTH (type1) < TYPE_LENGTH (builtin_int))
426 *arg1 = value_cast (builtin_int, *arg1);
427 }
428 break;
429 }
430 }
431 }
432
433 /* Promote values ARG1 and ARG2 as appropriate before performing a binary
434 operation on those two operands.
435 If the result is not appropriate for any particular language then it
436 needs to patch this function. */
437
438 void
439 binop_promote (const struct language_defn *language, struct gdbarch *gdbarch,
440 struct value **arg1, struct value **arg2)
441 {
442 struct type *promoted_type = NULL;
443 struct type *type1;
444 struct type *type2;
445
446 *arg1 = coerce_ref (*arg1);
447 *arg2 = coerce_ref (*arg2);
448
449 type1 = check_typedef (value_type (*arg1));
450 type2 = check_typedef (value_type (*arg2));
451
452 if ((type1->code () != TYPE_CODE_FLT
453 && type1->code () != TYPE_CODE_DECFLOAT
454 && !is_integral_type (type1))
455 || (type2->code () != TYPE_CODE_FLT
456 && type2->code () != TYPE_CODE_DECFLOAT
457 && !is_integral_type (type2)))
458 return;
459
460 if (type1->code () == TYPE_CODE_DECFLOAT
461 || type2->code () == TYPE_CODE_DECFLOAT)
462 {
463 /* No promotion required. */
464 }
465 else if (type1->code () == TYPE_CODE_FLT
466 || type2->code () == TYPE_CODE_FLT)
467 {
468 switch (language->la_language)
469 {
470 case language_c:
471 case language_cplus:
472 case language_asm:
473 case language_objc:
474 case language_opencl:
475 /* No promotion required. */
476 break;
477
478 default:
479 /* For other languages the result type is unchanged from gdb
480 version 6.7 for backward compatibility.
481 If either arg was long double, make sure that value is also long
482 double. Otherwise use double. */
483 if (TYPE_LENGTH (type1) * 8 > gdbarch_double_bit (gdbarch)
484 || TYPE_LENGTH (type2) * 8 > gdbarch_double_bit (gdbarch))
485 promoted_type = builtin_type (gdbarch)->builtin_long_double;
486 else
487 promoted_type = builtin_type (gdbarch)->builtin_double;
488 break;
489 }
490 }
491 else if (type1->code () == TYPE_CODE_BOOL
492 && type2->code () == TYPE_CODE_BOOL)
493 {
494 /* No promotion required. */
495 }
496 else
497 /* Integral operations here. */
498 /* FIXME: Also mixed integral/booleans, with result an integer. */
499 {
500 const struct builtin_type *builtin = builtin_type (gdbarch);
501 unsigned int promoted_len1 = TYPE_LENGTH (type1);
502 unsigned int promoted_len2 = TYPE_LENGTH (type2);
503 int is_unsigned1 = TYPE_UNSIGNED (type1);
504 int is_unsigned2 = TYPE_UNSIGNED (type2);
505 unsigned int result_len;
506 int unsigned_operation;
507
508 /* Determine type length and signedness after promotion for
509 both operands. */
510 if (promoted_len1 < TYPE_LENGTH (builtin->builtin_int))
511 {
512 is_unsigned1 = 0;
513 promoted_len1 = TYPE_LENGTH (builtin->builtin_int);
514 }
515 if (promoted_len2 < TYPE_LENGTH (builtin->builtin_int))
516 {
517 is_unsigned2 = 0;
518 promoted_len2 = TYPE_LENGTH (builtin->builtin_int);
519 }
520
521 if (promoted_len1 > promoted_len2)
522 {
523 unsigned_operation = is_unsigned1;
524 result_len = promoted_len1;
525 }
526 else if (promoted_len2 > promoted_len1)
527 {
528 unsigned_operation = is_unsigned2;
529 result_len = promoted_len2;
530 }
531 else
532 {
533 unsigned_operation = is_unsigned1 || is_unsigned2;
534 result_len = promoted_len1;
535 }
536
537 switch (language->la_language)
538 {
539 case language_c:
540 case language_cplus:
541 case language_asm:
542 case language_objc:
543 if (result_len <= TYPE_LENGTH (builtin->builtin_int))
544 {
545 promoted_type = (unsigned_operation
546 ? builtin->builtin_unsigned_int
547 : builtin->builtin_int);
548 }
549 else if (result_len <= TYPE_LENGTH (builtin->builtin_long))
550 {
551 promoted_type = (unsigned_operation
552 ? builtin->builtin_unsigned_long
553 : builtin->builtin_long);
554 }
555 else
556 {
557 promoted_type = (unsigned_operation
558 ? builtin->builtin_unsigned_long_long
559 : builtin->builtin_long_long);
560 }
561 break;
562 case language_opencl:
563 if (result_len <= TYPE_LENGTH (lookup_signed_typename
564 (language, "int")))
565 {
566 promoted_type =
567 (unsigned_operation
568 ? lookup_unsigned_typename (language, "int")
569 : lookup_signed_typename (language, "int"));
570 }
571 else if (result_len <= TYPE_LENGTH (lookup_signed_typename
572 (language, "long")))
573 {
574 promoted_type =
575 (unsigned_operation
576 ? lookup_unsigned_typename (language, "long")
577 : lookup_signed_typename (language,"long"));
578 }
579 break;
580 default:
581 /* For other languages the result type is unchanged from gdb
582 version 6.7 for backward compatibility.
583 If either arg was long long, make sure that value is also long
584 long. Otherwise use long. */
585 if (unsigned_operation)
586 {
587 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
588 promoted_type = builtin->builtin_unsigned_long_long;
589 else
590 promoted_type = builtin->builtin_unsigned_long;
591 }
592 else
593 {
594 if (result_len > gdbarch_long_bit (gdbarch) / HOST_CHAR_BIT)
595 promoted_type = builtin->builtin_long_long;
596 else
597 promoted_type = builtin->builtin_long;
598 }
599 break;
600 }
601 }
602
603 if (promoted_type)
604 {
605 /* Promote both operands to common type. */
606 *arg1 = value_cast (promoted_type, *arg1);
607 *arg2 = value_cast (promoted_type, *arg2);
608 }
609 }
610
611 static int
612 ptrmath_type_p (const struct language_defn *lang, struct type *type)
613 {
614 type = check_typedef (type);
615 if (TYPE_IS_REFERENCE (type))
616 type = TYPE_TARGET_TYPE (type);
617
618 switch (type->code ())
619 {
620 case TYPE_CODE_PTR:
621 case TYPE_CODE_FUNC:
622 return 1;
623
624 case TYPE_CODE_ARRAY:
625 return TYPE_VECTOR (type) ? 0 : lang->c_style_arrays;
626
627 default:
628 return 0;
629 }
630 }
631
632 /* Represents a fake method with the given parameter types. This is
633 used by the parser to construct a temporary "expected" type for
634 method overload resolution. FLAGS is used as instance flags of the
635 new type, in order to be able to make the new type represent a
636 const/volatile overload. */
637
638 class fake_method
639 {
640 public:
641 fake_method (type_instance_flags flags,
642 int num_types, struct type **param_types);
643 ~fake_method ();
644
645 /* The constructed type. */
646 struct type *type () { return &m_type; }
647
648 private:
649 struct type m_type {};
650 main_type m_main_type {};
651 };
652
653 fake_method::fake_method (type_instance_flags flags,
654 int num_types, struct type **param_types)
655 {
656 struct type *type = &m_type;
657
658 TYPE_MAIN_TYPE (type) = &m_main_type;
659 TYPE_LENGTH (type) = 1;
660 type->set_code (TYPE_CODE_METHOD);
661 TYPE_CHAIN (type) = type;
662 TYPE_INSTANCE_FLAGS (type) = flags;
663 if (num_types > 0)
664 {
665 if (param_types[num_types - 1] == NULL)
666 {
667 --num_types;
668 TYPE_VARARGS (type) = 1;
669 }
670 else if (check_typedef (param_types[num_types - 1])->code ()
671 == TYPE_CODE_VOID)
672 {
673 --num_types;
674 /* Caller should have ensured this. */
675 gdb_assert (num_types == 0);
676 TYPE_PROTOTYPED (type) = 1;
677 }
678 }
679
680 /* We don't use TYPE_ZALLOC here to allocate space as TYPE is owned by
681 neither an objfile nor a gdbarch. As a result we must manually
682 allocate memory for auxiliary fields, and free the memory ourselves
683 when we are done with it. */
684 type->set_num_fields (num_types);
685 type->set_fields
686 ((struct field *) xzalloc (sizeof (struct field) * num_types));
687
688 while (num_types-- > 0)
689 TYPE_FIELD_TYPE (type, num_types) = param_types[num_types];
690 }
691
692 fake_method::~fake_method ()
693 {
694 xfree (m_type.fields ());
695 }
696
697 /* Helper for evaluating an OP_VAR_VALUE. */
698
699 value *
700 evaluate_var_value (enum noside noside, const block *blk, symbol *var)
701 {
702 /* JYG: We used to just return value_zero of the symbol type if
703 we're asked to avoid side effects. Otherwise we return
704 value_of_variable (...). However I'm not sure if
705 value_of_variable () has any side effect. We need a full value
706 object returned here for whatis_exp () to call evaluate_type ()
707 and then pass the full value to value_rtti_target_type () if we
708 are dealing with a pointer or reference to a base class and print
709 object is on. */
710
711 struct value *ret = NULL;
712
713 try
714 {
715 ret = value_of_variable (var, blk);
716 }
717
718 catch (const gdb_exception_error &except)
719 {
720 if (noside != EVAL_AVOID_SIDE_EFFECTS)
721 throw;
722
723 ret = value_zero (SYMBOL_TYPE (var), not_lval);
724 }
725
726 return ret;
727 }
728
729 /* Helper for evaluating an OP_VAR_MSYM_VALUE. */
730
731 value *
732 evaluate_var_msym_value (enum noside noside,
733 struct objfile *objfile, minimal_symbol *msymbol)
734 {
735 CORE_ADDR address;
736 type *the_type = find_minsym_type_and_address (msymbol, objfile, &address);
737
738 if (noside == EVAL_AVOID_SIDE_EFFECTS && !TYPE_GNU_IFUNC (the_type))
739 return value_zero (the_type, not_lval);
740 else
741 return value_at_lazy (the_type, address);
742 }
743
744 /* Helper for returning a value when handling EVAL_SKIP. */
745
746 value *
747 eval_skip_value (expression *exp)
748 {
749 return value_from_longest (builtin_type (exp->gdbarch)->builtin_int, 1);
750 }
751
752 /* Evaluate a function call. The function to be called is in
753 ARGVEC[0] and the arguments passed to the function are in
754 ARGVEC[1..NARGS]. FUNCTION_NAME is the name of the function, if
755 known. DEFAULT_RETURN_TYPE is used as the function's return type
756 if the return type is unknown. */
757
758 static value *
759 eval_call (expression *exp, enum noside noside,
760 int nargs, value **argvec,
761 const char *function_name,
762 type *default_return_type)
763 {
764 if (argvec[0] == NULL)
765 error (_("Cannot evaluate function -- may be inlined"));
766 if (noside == EVAL_AVOID_SIDE_EFFECTS)
767 {
768 /* If the return type doesn't look like a function type,
769 call an error. This can happen if somebody tries to turn
770 a variable into a function call. */
771
772 type *ftype = value_type (argvec[0]);
773
774 if (ftype->code () == TYPE_CODE_INTERNAL_FUNCTION)
775 {
776 /* We don't know anything about what the internal
777 function might return, but we have to return
778 something. */
779 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
780 not_lval);
781 }
782 else if (ftype->code () == TYPE_CODE_XMETHOD)
783 {
784 type *return_type
785 = result_type_of_xmethod (argvec[0],
786 gdb::make_array_view (argvec + 1,
787 nargs));
788
789 if (return_type == NULL)
790 error (_("Xmethod is missing return type."));
791 return value_zero (return_type, not_lval);
792 }
793 else if (ftype->code () == TYPE_CODE_FUNC
794 || ftype->code () == TYPE_CODE_METHOD)
795 {
796 if (TYPE_GNU_IFUNC (ftype))
797 {
798 CORE_ADDR address = value_address (argvec[0]);
799 type *resolved_type = find_gnu_ifunc_target_type (address);
800
801 if (resolved_type != NULL)
802 ftype = resolved_type;
803 }
804
805 type *return_type = TYPE_TARGET_TYPE (ftype);
806
807 if (return_type == NULL)
808 return_type = default_return_type;
809
810 if (return_type == NULL)
811 error_call_unknown_return_type (function_name);
812
813 return allocate_value (return_type);
814 }
815 else
816 error (_("Expression of type other than "
817 "\"Function returning ...\" used as function"));
818 }
819 switch (value_type (argvec[0])->code ())
820 {
821 case TYPE_CODE_INTERNAL_FUNCTION:
822 return call_internal_function (exp->gdbarch, exp->language_defn,
823 argvec[0], nargs, argvec + 1);
824 case TYPE_CODE_XMETHOD:
825 return call_xmethod (argvec[0], gdb::make_array_view (argvec + 1, nargs));
826 default:
827 return call_function_by_hand (argvec[0], default_return_type,
828 gdb::make_array_view (argvec + 1, nargs));
829 }
830 }
831
832 /* Helper for evaluating an OP_FUNCALL. */
833
834 static value *
835 evaluate_funcall (type *expect_type, expression *exp, int *pos,
836 enum noside noside)
837 {
838 int tem;
839 int pc2 = 0;
840 value *arg1 = NULL;
841 value *arg2 = NULL;
842 int save_pos1;
843 symbol *function = NULL;
844 char *function_name = NULL;
845 const char *var_func_name = NULL;
846
847 int pc = (*pos);
848 (*pos) += 2;
849
850 exp_opcode op = exp->elts[*pos].opcode;
851 int nargs = longest_to_int (exp->elts[pc].longconst);
852 /* Allocate arg vector, including space for the function to be
853 called in argvec[0], a potential `this', and a terminating
854 NULL. */
855 value **argvec = (value **) alloca (sizeof (value *) * (nargs + 3));
856 if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
857 {
858 /* First, evaluate the structure into arg2. */
859 pc2 = (*pos)++;
860
861 if (op == STRUCTOP_MEMBER)
862 {
863 arg2 = evaluate_subexp_for_address (exp, pos, noside);
864 }
865 else
866 {
867 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
868 }
869
870 /* If the function is a virtual function, then the aggregate
871 value (providing the structure) plays its part by providing
872 the vtable. Otherwise, it is just along for the ride: call
873 the function directly. */
874
875 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
876
877 type *a1_type = check_typedef (value_type (arg1));
878 if (noside == EVAL_SKIP)
879 tem = 1; /* Set it to the right arg index so that all
880 arguments can also be skipped. */
881 else if (a1_type->code () == TYPE_CODE_METHODPTR)
882 {
883 if (noside == EVAL_AVOID_SIDE_EFFECTS)
884 arg1 = value_zero (TYPE_TARGET_TYPE (a1_type), not_lval);
885 else
886 arg1 = cplus_method_ptr_to_value (&arg2, arg1);
887
888 /* Now, say which argument to start evaluating from. */
889 nargs++;
890 tem = 2;
891 argvec[1] = arg2;
892 }
893 else if (a1_type->code () == TYPE_CODE_MEMBERPTR)
894 {
895 struct type *type_ptr
896 = lookup_pointer_type (TYPE_SELF_TYPE (a1_type));
897 struct type *target_type_ptr
898 = lookup_pointer_type (TYPE_TARGET_TYPE (a1_type));
899
900 /* Now, convert these values to an address. */
901 arg2 = value_cast (type_ptr, arg2);
902
903 long mem_offset = value_as_long (arg1);
904
905 arg1 = value_from_pointer (target_type_ptr,
906 value_as_long (arg2) + mem_offset);
907 arg1 = value_ind (arg1);
908 tem = 1;
909 }
910 else
911 error (_("Non-pointer-to-member value used in pointer-to-member "
912 "construct"));
913 }
914 else if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR)
915 {
916 /* Hair for method invocations. */
917 int tem2;
918
919 nargs++;
920 /* First, evaluate the structure into arg2. */
921 pc2 = (*pos)++;
922 tem2 = longest_to_int (exp->elts[pc2 + 1].longconst);
923 *pos += 3 + BYTES_TO_EXP_ELEM (tem2 + 1);
924
925 if (op == STRUCTOP_STRUCT)
926 {
927 /* If v is a variable in a register, and the user types
928 v.method (), this will produce an error, because v has no
929 address.
930
931 A possible way around this would be to allocate a copy of
932 the variable on the stack, copy in the contents, call the
933 function, and copy out the contents. I.e. convert this
934 from call by reference to call by copy-return (or
935 whatever it's called). However, this does not work
936 because it is not the same: the method being called could
937 stash a copy of the address, and then future uses through
938 that address (after the method returns) would be expected
939 to use the variable itself, not some copy of it. */
940 arg2 = evaluate_subexp_for_address (exp, pos, noside);
941 }
942 else
943 {
944 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
945
946 /* Check to see if the operator '->' has been overloaded.
947 If the operator has been overloaded replace arg2 with the
948 value returned by the custom operator and continue
949 evaluation. */
950 while (unop_user_defined_p (op, arg2))
951 {
952 struct value *value = NULL;
953 try
954 {
955 value = value_x_unop (arg2, op, noside);
956 }
957
958 catch (const gdb_exception_error &except)
959 {
960 if (except.error == NOT_FOUND_ERROR)
961 break;
962 else
963 throw;
964 }
965
966 arg2 = value;
967 }
968 }
969 /* Now, say which argument to start evaluating from. */
970 tem = 2;
971 }
972 else if (op == OP_SCOPE
973 && overload_resolution
974 && (exp->language_defn->la_language == language_cplus))
975 {
976 /* Unpack it locally so we can properly handle overload
977 resolution. */
978 char *name;
979 int local_tem;
980
981 pc2 = (*pos)++;
982 local_tem = longest_to_int (exp->elts[pc2 + 2].longconst);
983 (*pos) += 4 + BYTES_TO_EXP_ELEM (local_tem + 1);
984 struct type *type = exp->elts[pc2 + 1].type;
985 name = &exp->elts[pc2 + 3].string;
986
987 function = NULL;
988 function_name = NULL;
989 if (type->code () == TYPE_CODE_NAMESPACE)
990 {
991 function = cp_lookup_symbol_namespace (type->name (),
992 name,
993 get_selected_block (0),
994 VAR_DOMAIN).symbol;
995 if (function == NULL)
996 error (_("No symbol \"%s\" in namespace \"%s\"."),
997 name, type->name ());
998
999 tem = 1;
1000 /* arg2 is left as NULL on purpose. */
1001 }
1002 else
1003 {
1004 gdb_assert (type->code () == TYPE_CODE_STRUCT
1005 || type->code () == TYPE_CODE_UNION);
1006 function_name = name;
1007
1008 /* We need a properly typed value for method lookup. For
1009 static methods arg2 is otherwise unused. */
1010 arg2 = value_zero (type, lval_memory);
1011 ++nargs;
1012 tem = 2;
1013 }
1014 }
1015 else if (op == OP_ADL_FUNC)
1016 {
1017 /* Save the function position and move pos so that the arguments
1018 can be evaluated. */
1019 int func_name_len;
1020
1021 save_pos1 = *pos;
1022 tem = 1;
1023
1024 func_name_len = longest_to_int (exp->elts[save_pos1 + 3].longconst);
1025 (*pos) += 6 + BYTES_TO_EXP_ELEM (func_name_len + 1);
1026 }
1027 else
1028 {
1029 /* Non-method function call. */
1030 save_pos1 = *pos;
1031 tem = 1;
1032
1033 /* If this is a C++ function wait until overload resolution. */
1034 if (op == OP_VAR_VALUE
1035 && overload_resolution
1036 && (exp->language_defn->la_language == language_cplus))
1037 {
1038 (*pos) += 4; /* Skip the evaluation of the symbol. */
1039 argvec[0] = NULL;
1040 }
1041 else
1042 {
1043 if (op == OP_VAR_MSYM_VALUE)
1044 {
1045 minimal_symbol *msym = exp->elts[*pos + 2].msymbol;
1046 var_func_name = msym->print_name ();
1047 }
1048 else if (op == OP_VAR_VALUE)
1049 {
1050 symbol *sym = exp->elts[*pos + 2].symbol;
1051 var_func_name = sym->print_name ();
1052 }
1053
1054 argvec[0] = evaluate_subexp_with_coercion (exp, pos, noside);
1055 type *type = value_type (argvec[0]);
1056 if (type && type->code () == TYPE_CODE_PTR)
1057 type = TYPE_TARGET_TYPE (type);
1058 if (type && type->code () == TYPE_CODE_FUNC)
1059 {
1060 for (; tem <= nargs && tem <= type->num_fields (); tem++)
1061 {
1062 argvec[tem] = evaluate_subexp (TYPE_FIELD_TYPE (type,
1063 tem - 1),
1064 exp, pos, noside);
1065 }
1066 }
1067 }
1068 }
1069
1070 /* Evaluate arguments (if not already done, e.g., namespace::func()
1071 and overload-resolution is off). */
1072 for (; tem <= nargs; tem++)
1073 {
1074 /* Ensure that array expressions are coerced into pointer
1075 objects. */
1076 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1077 }
1078
1079 /* Signal end of arglist. */
1080 argvec[tem] = 0;
1081
1082 if (noside == EVAL_SKIP)
1083 return eval_skip_value (exp);
1084
1085 if (op == OP_ADL_FUNC)
1086 {
1087 struct symbol *symp;
1088 char *func_name;
1089 int name_len;
1090 int string_pc = save_pos1 + 3;
1091
1092 /* Extract the function name. */
1093 name_len = longest_to_int (exp->elts[string_pc].longconst);
1094 func_name = (char *) alloca (name_len + 1);
1095 strcpy (func_name, &exp->elts[string_pc + 1].string);
1096
1097 find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1098 func_name,
1099 NON_METHOD, /* not method */
1100 NULL, NULL, /* pass NULL symbol since
1101 symbol is unknown */
1102 NULL, &symp, NULL, 0, noside);
1103
1104 /* Now fix the expression being evaluated. */
1105 exp->elts[save_pos1 + 2].symbol = symp;
1106 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1, noside);
1107 }
1108
1109 if (op == STRUCTOP_STRUCT || op == STRUCTOP_PTR
1110 || (op == OP_SCOPE && function_name != NULL))
1111 {
1112 int static_memfuncp;
1113 char *tstr;
1114
1115 /* Method invocation: stuff "this" as first parameter. If the
1116 method turns out to be static we undo this below. */
1117 argvec[1] = arg2;
1118
1119 if (op != OP_SCOPE)
1120 {
1121 /* Name of method from expression. */
1122 tstr = &exp->elts[pc2 + 2].string;
1123 }
1124 else
1125 tstr = function_name;
1126
1127 if (overload_resolution && (exp->language_defn->la_language
1128 == language_cplus))
1129 {
1130 /* Language is C++, do some overload resolution before
1131 evaluation. */
1132 struct value *valp = NULL;
1133
1134 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1135 tstr,
1136 METHOD, /* method */
1137 &arg2, /* the object */
1138 NULL, &valp, NULL,
1139 &static_memfuncp, 0, noside);
1140
1141 if (op == OP_SCOPE && !static_memfuncp)
1142 {
1143 /* For the time being, we don't handle this. */
1144 error (_("Call to overloaded function %s requires "
1145 "`this' pointer"),
1146 function_name);
1147 }
1148 argvec[1] = arg2; /* the ``this'' pointer */
1149 argvec[0] = valp; /* Use the method found after overload
1150 resolution. */
1151 }
1152 else
1153 /* Non-C++ case -- or no overload resolution. */
1154 {
1155 struct value *temp = arg2;
1156
1157 argvec[0] = value_struct_elt (&temp, argvec + 1, tstr,
1158 &static_memfuncp,
1159 op == STRUCTOP_STRUCT
1160 ? "structure" : "structure pointer");
1161 /* value_struct_elt updates temp with the correct value of
1162 the ``this'' pointer if necessary, so modify argvec[1] to
1163 reflect any ``this'' changes. */
1164 arg2
1165 = value_from_longest (lookup_pointer_type(value_type (temp)),
1166 value_address (temp)
1167 + value_embedded_offset (temp));
1168 argvec[1] = arg2; /* the ``this'' pointer */
1169 }
1170
1171 /* Take out `this' if needed. */
1172 if (static_memfuncp)
1173 {
1174 argvec[1] = argvec[0];
1175 nargs--;
1176 argvec++;
1177 }
1178 }
1179 else if (op == STRUCTOP_MEMBER || op == STRUCTOP_MPTR)
1180 {
1181 /* Pointer to member. argvec[1] is already set up. */
1182 argvec[0] = arg1;
1183 }
1184 else if (op == OP_VAR_VALUE || (op == OP_SCOPE && function != NULL))
1185 {
1186 /* Non-member function being called. */
1187 /* fn: This can only be done for C++ functions. A C-style
1188 function in a C++ program, for instance, does not have the
1189 fields that are expected here. */
1190
1191 if (overload_resolution && (exp->language_defn->la_language
1192 == language_cplus))
1193 {
1194 /* Language is C++, do some overload resolution before
1195 evaluation. */
1196 struct symbol *symp;
1197 int no_adl = 0;
1198
1199 /* If a scope has been specified disable ADL. */
1200 if (op == OP_SCOPE)
1201 no_adl = 1;
1202
1203 if (op == OP_VAR_VALUE)
1204 function = exp->elts[save_pos1+2].symbol;
1205
1206 (void) find_overload_match (gdb::make_array_view (&argvec[1], nargs),
1207 NULL, /* no need for name */
1208 NON_METHOD, /* not method */
1209 NULL, function, /* the function */
1210 NULL, &symp, NULL, no_adl, noside);
1211
1212 if (op == OP_VAR_VALUE)
1213 {
1214 /* Now fix the expression being evaluated. */
1215 exp->elts[save_pos1+2].symbol = symp;
1216 argvec[0] = evaluate_subexp_with_coercion (exp, &save_pos1,
1217 noside);
1218 }
1219 else
1220 argvec[0] = value_of_variable (symp, get_selected_block (0));
1221 }
1222 else
1223 {
1224 /* Not C++, or no overload resolution allowed. */
1225 /* Nothing to be done; argvec already correctly set up. */
1226 }
1227 }
1228 else
1229 {
1230 /* It is probably a C-style function. */
1231 /* Nothing to be done; argvec already correctly set up. */
1232 }
1233
1234 return eval_call (exp, noside, nargs, argvec, var_func_name, expect_type);
1235 }
1236
1237 /* Helper for skipping all the arguments in an undetermined argument list.
1238 This function was designed for use in the OP_F77_UNDETERMINED_ARGLIST
1239 case of evaluate_subexp_standard as multiple, but not all, code paths
1240 require a generic skip. */
1241
1242 static void
1243 skip_undetermined_arglist (int nargs, struct expression *exp, int *pos,
1244 enum noside noside)
1245 {
1246 for (int i = 0; i < nargs; ++i)
1247 evaluate_subexp (NULL_TYPE, exp, pos, noside);
1248 }
1249
1250 /* Return true if type is integral or reference to integral */
1251
1252 static bool
1253 is_integral_or_integral_reference (struct type *type)
1254 {
1255 if (is_integral_type (type))
1256 return true;
1257
1258 type = check_typedef (type);
1259 return (type != nullptr
1260 && TYPE_IS_REFERENCE (type)
1261 && is_integral_type (TYPE_TARGET_TYPE (type)));
1262 }
1263
1264 struct value *
1265 evaluate_subexp_standard (struct type *expect_type,
1266 struct expression *exp, int *pos,
1267 enum noside noside)
1268 {
1269 enum exp_opcode op;
1270 int tem, tem2, tem3;
1271 int pc, oldpos;
1272 struct value *arg1 = NULL;
1273 struct value *arg2 = NULL;
1274 struct value *arg3;
1275 struct type *type;
1276 int nargs;
1277 struct value **argvec;
1278 int code;
1279 int ix;
1280 long mem_offset;
1281 struct type **arg_types;
1282
1283 pc = (*pos)++;
1284 op = exp->elts[pc].opcode;
1285
1286 switch (op)
1287 {
1288 case OP_SCOPE:
1289 tem = longest_to_int (exp->elts[pc + 2].longconst);
1290 (*pos) += 4 + BYTES_TO_EXP_ELEM (tem + 1);
1291 if (noside == EVAL_SKIP)
1292 return eval_skip_value (exp);
1293 arg1 = value_aggregate_elt (exp->elts[pc + 1].type,
1294 &exp->elts[pc + 3].string,
1295 expect_type, 0, noside);
1296 if (arg1 == NULL)
1297 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
1298 return arg1;
1299
1300 case OP_LONG:
1301 (*pos) += 3;
1302 return value_from_longest (exp->elts[pc + 1].type,
1303 exp->elts[pc + 2].longconst);
1304
1305 case OP_FLOAT:
1306 (*pos) += 3;
1307 return value_from_contents (exp->elts[pc + 1].type,
1308 exp->elts[pc + 2].floatconst);
1309
1310 case OP_ADL_FUNC:
1311 case OP_VAR_VALUE:
1312 {
1313 (*pos) += 3;
1314 symbol *var = exp->elts[pc + 2].symbol;
1315 if (SYMBOL_TYPE (var)->code () == TYPE_CODE_ERROR)
1316 error_unknown_type (var->print_name ());
1317 if (noside != EVAL_SKIP)
1318 return evaluate_var_value (noside, exp->elts[pc + 1].block, var);
1319 else
1320 {
1321 /* Return a dummy value of the correct type when skipping, so
1322 that parent functions know what is to be skipped. */
1323 return allocate_value (SYMBOL_TYPE (var));
1324 }
1325 }
1326
1327 case OP_VAR_MSYM_VALUE:
1328 {
1329 (*pos) += 3;
1330
1331 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
1332 value *val = evaluate_var_msym_value (noside,
1333 exp->elts[pc + 1].objfile,
1334 msymbol);
1335
1336 type = value_type (val);
1337 if (type->code () == TYPE_CODE_ERROR
1338 && (noside != EVAL_AVOID_SIDE_EFFECTS || pc != 0))
1339 error_unknown_type (msymbol->print_name ());
1340 return val;
1341 }
1342
1343 case OP_VAR_ENTRY_VALUE:
1344 (*pos) += 2;
1345 if (noside == EVAL_SKIP)
1346 return eval_skip_value (exp);
1347
1348 {
1349 struct symbol *sym = exp->elts[pc + 1].symbol;
1350 struct frame_info *frame;
1351
1352 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1353 return value_zero (SYMBOL_TYPE (sym), not_lval);
1354
1355 if (SYMBOL_COMPUTED_OPS (sym) == NULL
1356 || SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry == NULL)
1357 error (_("Symbol \"%s\" does not have any specific entry value"),
1358 sym->print_name ());
1359
1360 frame = get_selected_frame (NULL);
1361 return SYMBOL_COMPUTED_OPS (sym)->read_variable_at_entry (sym, frame);
1362 }
1363
1364 case OP_FUNC_STATIC_VAR:
1365 tem = longest_to_int (exp->elts[pc + 1].longconst);
1366 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1367 if (noside == EVAL_SKIP)
1368 return eval_skip_value (exp);
1369
1370 {
1371 value *func = evaluate_subexp_standard (NULL, exp, pos, noside);
1372 CORE_ADDR addr = value_address (func);
1373
1374 const block *blk = block_for_pc (addr);
1375 const char *var = &exp->elts[pc + 2].string;
1376
1377 struct block_symbol sym = lookup_symbol (var, blk, VAR_DOMAIN, NULL);
1378
1379 if (sym.symbol == NULL)
1380 error (_("No symbol \"%s\" in specified context."), var);
1381
1382 return evaluate_var_value (noside, sym.block, sym.symbol);
1383 }
1384
1385 case OP_LAST:
1386 (*pos) += 2;
1387 return
1388 access_value_history (longest_to_int (exp->elts[pc + 1].longconst));
1389
1390 case OP_REGISTER:
1391 {
1392 const char *name = &exp->elts[pc + 2].string;
1393 int regno;
1394 struct value *val;
1395
1396 (*pos) += 3 + BYTES_TO_EXP_ELEM (exp->elts[pc + 1].longconst + 1);
1397 regno = user_reg_map_name_to_regnum (exp->gdbarch,
1398 name, strlen (name));
1399 if (regno == -1)
1400 error (_("Register $%s not available."), name);
1401
1402 /* In EVAL_AVOID_SIDE_EFFECTS mode, we only need to return
1403 a value with the appropriate register type. Unfortunately,
1404 we don't have easy access to the type of user registers.
1405 So for these registers, we fetch the register value regardless
1406 of the evaluation mode. */
1407 if (noside == EVAL_AVOID_SIDE_EFFECTS
1408 && regno < gdbarch_num_cooked_regs (exp->gdbarch))
1409 val = value_zero (register_type (exp->gdbarch, regno), not_lval);
1410 else
1411 val = value_of_register (regno, get_selected_frame (NULL));
1412 if (val == NULL)
1413 error (_("Value of register %s not available."), name);
1414 else
1415 return val;
1416 }
1417 case OP_BOOL:
1418 (*pos) += 2;
1419 type = language_bool_type (exp->language_defn, exp->gdbarch);
1420 return value_from_longest (type, exp->elts[pc + 1].longconst);
1421
1422 case OP_INTERNALVAR:
1423 (*pos) += 2;
1424 return value_of_internalvar (exp->gdbarch,
1425 exp->elts[pc + 1].internalvar);
1426
1427 case OP_STRING:
1428 tem = longest_to_int (exp->elts[pc + 1].longconst);
1429 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1430 if (noside == EVAL_SKIP)
1431 return eval_skip_value (exp);
1432 type = language_string_char_type (exp->language_defn, exp->gdbarch);
1433 return value_string (&exp->elts[pc + 2].string, tem, type);
1434
1435 case OP_OBJC_NSSTRING: /* Objective C Foundation Class
1436 NSString constant. */
1437 tem = longest_to_int (exp->elts[pc + 1].longconst);
1438 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
1439 if (noside == EVAL_SKIP)
1440 return eval_skip_value (exp);
1441 return value_nsstring (exp->gdbarch, &exp->elts[pc + 2].string, tem + 1);
1442
1443 case OP_ARRAY:
1444 (*pos) += 3;
1445 tem2 = longest_to_int (exp->elts[pc + 1].longconst);
1446 tem3 = longest_to_int (exp->elts[pc + 2].longconst);
1447 nargs = tem3 - tem2 + 1;
1448 type = expect_type ? check_typedef (expect_type) : NULL_TYPE;
1449
1450 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1451 && type->code () == TYPE_CODE_STRUCT)
1452 {
1453 struct value *rec = allocate_value (expect_type);
1454
1455 memset (value_contents_raw (rec), '\0', TYPE_LENGTH (type));
1456 return evaluate_struct_tuple (rec, exp, pos, noside, nargs);
1457 }
1458
1459 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1460 && type->code () == TYPE_CODE_ARRAY)
1461 {
1462 struct type *range_type = TYPE_INDEX_TYPE (type);
1463 struct type *element_type = TYPE_TARGET_TYPE (type);
1464 struct value *array = allocate_value (expect_type);
1465 int element_size = TYPE_LENGTH (check_typedef (element_type));
1466 LONGEST low_bound, high_bound, index;
1467
1468 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
1469 {
1470 low_bound = 0;
1471 high_bound = (TYPE_LENGTH (type) / element_size) - 1;
1472 }
1473 index = low_bound;
1474 memset (value_contents_raw (array), 0, TYPE_LENGTH (expect_type));
1475 for (tem = nargs; --nargs >= 0;)
1476 {
1477 struct value *element;
1478 int index_pc = 0;
1479
1480 element = evaluate_subexp (element_type, exp, pos, noside);
1481 if (value_type (element) != element_type)
1482 element = value_cast (element_type, element);
1483 if (index_pc)
1484 {
1485 int continue_pc = *pos;
1486
1487 *pos = index_pc;
1488 index = init_array_element (array, element, exp, pos, noside,
1489 low_bound, high_bound);
1490 *pos = continue_pc;
1491 }
1492 else
1493 {
1494 if (index > high_bound)
1495 /* To avoid memory corruption. */
1496 error (_("Too many array elements"));
1497 memcpy (value_contents_raw (array)
1498 + (index - low_bound) * element_size,
1499 value_contents (element),
1500 element_size);
1501 }
1502 index++;
1503 }
1504 return array;
1505 }
1506
1507 if (expect_type != NULL_TYPE && noside != EVAL_SKIP
1508 && type->code () == TYPE_CODE_SET)
1509 {
1510 struct value *set = allocate_value (expect_type);
1511 gdb_byte *valaddr = value_contents_raw (set);
1512 struct type *element_type = TYPE_INDEX_TYPE (type);
1513 struct type *check_type = element_type;
1514 LONGEST low_bound, high_bound;
1515
1516 /* Get targettype of elementtype. */
1517 while (check_type->code () == TYPE_CODE_RANGE
1518 || check_type->code () == TYPE_CODE_TYPEDEF)
1519 check_type = TYPE_TARGET_TYPE (check_type);
1520
1521 if (get_discrete_bounds (element_type, &low_bound, &high_bound) < 0)
1522 error (_("(power)set type with unknown size"));
1523 memset (valaddr, '\0', TYPE_LENGTH (type));
1524 for (tem = 0; tem < nargs; tem++)
1525 {
1526 LONGEST range_low, range_high;
1527 struct type *range_low_type, *range_high_type;
1528 struct value *elem_val;
1529
1530 elem_val = evaluate_subexp (element_type, exp, pos, noside);
1531 range_low_type = range_high_type = value_type (elem_val);
1532 range_low = range_high = value_as_long (elem_val);
1533
1534 /* Check types of elements to avoid mixture of elements from
1535 different types. Also check if type of element is "compatible"
1536 with element type of powerset. */
1537 if (range_low_type->code () == TYPE_CODE_RANGE)
1538 range_low_type = TYPE_TARGET_TYPE (range_low_type);
1539 if (range_high_type->code () == TYPE_CODE_RANGE)
1540 range_high_type = TYPE_TARGET_TYPE (range_high_type);
1541 if ((range_low_type->code () != range_high_type->code ())
1542 || (range_low_type->code () == TYPE_CODE_ENUM
1543 && (range_low_type != range_high_type)))
1544 /* different element modes. */
1545 error (_("POWERSET tuple elements of different mode"));
1546 if ((check_type->code () != range_low_type->code ())
1547 || (check_type->code () == TYPE_CODE_ENUM
1548 && range_low_type != check_type))
1549 error (_("incompatible POWERSET tuple elements"));
1550 if (range_low > range_high)
1551 {
1552 warning (_("empty POWERSET tuple range"));
1553 continue;
1554 }
1555 if (range_low < low_bound || range_high > high_bound)
1556 error (_("POWERSET tuple element out of range"));
1557 range_low -= low_bound;
1558 range_high -= low_bound;
1559 for (; range_low <= range_high; range_low++)
1560 {
1561 int bit_index = (unsigned) range_low % TARGET_CHAR_BIT;
1562
1563 if (gdbarch_byte_order (exp->gdbarch) == BFD_ENDIAN_BIG)
1564 bit_index = TARGET_CHAR_BIT - 1 - bit_index;
1565 valaddr[(unsigned) range_low / TARGET_CHAR_BIT]
1566 |= 1 << bit_index;
1567 }
1568 }
1569 return set;
1570 }
1571
1572 argvec = XALLOCAVEC (struct value *, nargs);
1573 for (tem = 0; tem < nargs; tem++)
1574 {
1575 /* Ensure that array expressions are coerced into pointer
1576 objects. */
1577 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1578 }
1579 if (noside == EVAL_SKIP)
1580 return eval_skip_value (exp);
1581 return value_array (tem2, tem3, argvec);
1582
1583 case TERNOP_SLICE:
1584 {
1585 struct value *array = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1586 int lowbound
1587 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1588 int upper
1589 = value_as_long (evaluate_subexp (NULL_TYPE, exp, pos, noside));
1590
1591 if (noside == EVAL_SKIP)
1592 return eval_skip_value (exp);
1593 return value_slice (array, lowbound, upper - lowbound + 1);
1594 }
1595
1596 case TERNOP_COND:
1597 /* Skip third and second args to evaluate the first one. */
1598 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1599 if (value_logical_not (arg1))
1600 {
1601 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1602 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
1603 }
1604 else
1605 {
1606 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1607 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
1608 return arg2;
1609 }
1610
1611 case OP_OBJC_SELECTOR:
1612 { /* Objective C @selector operator. */
1613 char *sel = &exp->elts[pc + 2].string;
1614 int len = longest_to_int (exp->elts[pc + 1].longconst);
1615 struct type *selector_type;
1616
1617 (*pos) += 3 + BYTES_TO_EXP_ELEM (len + 1);
1618 if (noside == EVAL_SKIP)
1619 return eval_skip_value (exp);
1620
1621 if (sel[len] != 0)
1622 sel[len] = 0; /* Make sure it's terminated. */
1623
1624 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1625 return value_from_longest (selector_type,
1626 lookup_child_selector (exp->gdbarch, sel));
1627 }
1628
1629 case OP_OBJC_MSGCALL:
1630 { /* Objective C message (method) call. */
1631
1632 CORE_ADDR responds_selector = 0;
1633 CORE_ADDR method_selector = 0;
1634
1635 CORE_ADDR selector = 0;
1636
1637 int struct_return = 0;
1638 enum noside sub_no_side = EVAL_NORMAL;
1639
1640 struct value *msg_send = NULL;
1641 struct value *msg_send_stret = NULL;
1642 int gnu_runtime = 0;
1643
1644 struct value *target = NULL;
1645 struct value *method = NULL;
1646 struct value *called_method = NULL;
1647
1648 struct type *selector_type = NULL;
1649 struct type *long_type;
1650
1651 struct value *ret = NULL;
1652 CORE_ADDR addr = 0;
1653
1654 selector = exp->elts[pc + 1].longconst;
1655 nargs = exp->elts[pc + 2].longconst;
1656 argvec = XALLOCAVEC (struct value *, nargs + 5);
1657
1658 (*pos) += 3;
1659
1660 long_type = builtin_type (exp->gdbarch)->builtin_long;
1661 selector_type = builtin_type (exp->gdbarch)->builtin_data_ptr;
1662
1663 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1664 sub_no_side = EVAL_NORMAL;
1665 else
1666 sub_no_side = noside;
1667
1668 target = evaluate_subexp (selector_type, exp, pos, sub_no_side);
1669
1670 if (value_as_long (target) == 0)
1671 return value_from_longest (long_type, 0);
1672
1673 if (lookup_minimal_symbol ("objc_msg_lookup", 0, 0).minsym)
1674 gnu_runtime = 1;
1675
1676 /* Find the method dispatch (Apple runtime) or method lookup
1677 (GNU runtime) function for Objective-C. These will be used
1678 to lookup the symbol information for the method. If we
1679 can't find any symbol information, then we'll use these to
1680 call the method, otherwise we can call the method
1681 directly. The msg_send_stret function is used in the special
1682 case of a method that returns a structure (Apple runtime
1683 only). */
1684 if (gnu_runtime)
1685 {
1686 type = selector_type;
1687
1688 type = lookup_function_type (type);
1689 type = lookup_pointer_type (type);
1690 type = lookup_function_type (type);
1691 type = lookup_pointer_type (type);
1692
1693 msg_send = find_function_in_inferior ("objc_msg_lookup", NULL);
1694 msg_send_stret
1695 = find_function_in_inferior ("objc_msg_lookup", NULL);
1696
1697 msg_send = value_from_pointer (type, value_as_address (msg_send));
1698 msg_send_stret = value_from_pointer (type,
1699 value_as_address (msg_send_stret));
1700 }
1701 else
1702 {
1703 msg_send = find_function_in_inferior ("objc_msgSend", NULL);
1704 /* Special dispatcher for methods returning structs. */
1705 msg_send_stret
1706 = find_function_in_inferior ("objc_msgSend_stret", NULL);
1707 }
1708
1709 /* Verify the target object responds to this method. The
1710 standard top-level 'Object' class uses a different name for
1711 the verification method than the non-standard, but more
1712 often used, 'NSObject' class. Make sure we check for both. */
1713
1714 responds_selector
1715 = lookup_child_selector (exp->gdbarch, "respondsToSelector:");
1716 if (responds_selector == 0)
1717 responds_selector
1718 = lookup_child_selector (exp->gdbarch, "respondsTo:");
1719
1720 if (responds_selector == 0)
1721 error (_("no 'respondsTo:' or 'respondsToSelector:' method"));
1722
1723 method_selector
1724 = lookup_child_selector (exp->gdbarch, "methodForSelector:");
1725 if (method_selector == 0)
1726 method_selector
1727 = lookup_child_selector (exp->gdbarch, "methodFor:");
1728
1729 if (method_selector == 0)
1730 error (_("no 'methodFor:' or 'methodForSelector:' method"));
1731
1732 /* Call the verification method, to make sure that the target
1733 class implements the desired method. */
1734
1735 argvec[0] = msg_send;
1736 argvec[1] = target;
1737 argvec[2] = value_from_longest (long_type, responds_selector);
1738 argvec[3] = value_from_longest (long_type, selector);
1739 argvec[4] = 0;
1740
1741 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
1742 if (gnu_runtime)
1743 {
1744 /* Function objc_msg_lookup returns a pointer. */
1745 argvec[0] = ret;
1746 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
1747 }
1748 if (value_as_long (ret) == 0)
1749 error (_("Target does not respond to this message selector."));
1750
1751 /* Call "methodForSelector:" method, to get the address of a
1752 function method that implements this selector for this
1753 class. If we can find a symbol at that address, then we
1754 know the return type, parameter types etc. (that's a good
1755 thing). */
1756
1757 argvec[0] = msg_send;
1758 argvec[1] = target;
1759 argvec[2] = value_from_longest (long_type, method_selector);
1760 argvec[3] = value_from_longest (long_type, selector);
1761 argvec[4] = 0;
1762
1763 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
1764 if (gnu_runtime)
1765 {
1766 argvec[0] = ret;
1767 ret = call_function_by_hand (argvec[0], NULL, {argvec + 1, 3});
1768 }
1769
1770 /* ret should now be the selector. */
1771
1772 addr = value_as_long (ret);
1773 if (addr)
1774 {
1775 struct symbol *sym = NULL;
1776
1777 /* The address might point to a function descriptor;
1778 resolve it to the actual code address instead. */
1779 addr = gdbarch_convert_from_func_ptr_addr (exp->gdbarch, addr,
1780 current_top_target ());
1781
1782 /* Is it a high_level symbol? */
1783 sym = find_pc_function (addr);
1784 if (sym != NULL)
1785 method = value_of_variable (sym, 0);
1786 }
1787
1788 /* If we found a method with symbol information, check to see
1789 if it returns a struct. Otherwise assume it doesn't. */
1790
1791 if (method)
1792 {
1793 CORE_ADDR funaddr;
1794 struct type *val_type;
1795
1796 funaddr = find_function_addr (method, &val_type);
1797
1798 block_for_pc (funaddr);
1799
1800 val_type = check_typedef (val_type);
1801
1802 if ((val_type == NULL)
1803 || (val_type->code () == TYPE_CODE_ERROR))
1804 {
1805 if (expect_type != NULL)
1806 val_type = expect_type;
1807 }
1808
1809 struct_return = using_struct_return (exp->gdbarch, method,
1810 val_type);
1811 }
1812 else if (expect_type != NULL)
1813 {
1814 struct_return = using_struct_return (exp->gdbarch, NULL,
1815 check_typedef (expect_type));
1816 }
1817
1818 /* Found a function symbol. Now we will substitute its
1819 value in place of the message dispatcher (obj_msgSend),
1820 so that we call the method directly instead of thru
1821 the dispatcher. The main reason for doing this is that
1822 we can now evaluate the return value and parameter values
1823 according to their known data types, in case we need to
1824 do things like promotion, dereferencing, special handling
1825 of structs and doubles, etc.
1826
1827 We want to use the type signature of 'method', but still
1828 jump to objc_msgSend() or objc_msgSend_stret() to better
1829 mimic the behavior of the runtime. */
1830
1831 if (method)
1832 {
1833 if (value_type (method)->code () != TYPE_CODE_FUNC)
1834 error (_("method address has symbol information "
1835 "with non-function type; skipping"));
1836
1837 /* Create a function pointer of the appropriate type, and
1838 replace its value with the value of msg_send or
1839 msg_send_stret. We must use a pointer here, as
1840 msg_send and msg_send_stret are of pointer type, and
1841 the representation may be different on systems that use
1842 function descriptors. */
1843 if (struct_return)
1844 called_method
1845 = value_from_pointer (lookup_pointer_type (value_type (method)),
1846 value_as_address (msg_send_stret));
1847 else
1848 called_method
1849 = value_from_pointer (lookup_pointer_type (value_type (method)),
1850 value_as_address (msg_send));
1851 }
1852 else
1853 {
1854 if (struct_return)
1855 called_method = msg_send_stret;
1856 else
1857 called_method = msg_send;
1858 }
1859
1860 if (noside == EVAL_SKIP)
1861 return eval_skip_value (exp);
1862
1863 if (noside == EVAL_AVOID_SIDE_EFFECTS)
1864 {
1865 /* If the return type doesn't look like a function type,
1866 call an error. This can happen if somebody tries to
1867 turn a variable into a function call. This is here
1868 because people often want to call, eg, strcmp, which
1869 gdb doesn't know is a function. If gdb isn't asked for
1870 it's opinion (ie. through "whatis"), it won't offer
1871 it. */
1872
1873 struct type *callee_type = value_type (called_method);
1874
1875 if (callee_type && callee_type->code () == TYPE_CODE_PTR)
1876 callee_type = TYPE_TARGET_TYPE (callee_type);
1877 callee_type = TYPE_TARGET_TYPE (callee_type);
1878
1879 if (callee_type)
1880 {
1881 if ((callee_type->code () == TYPE_CODE_ERROR) && expect_type)
1882 return allocate_value (expect_type);
1883 else
1884 return allocate_value (callee_type);
1885 }
1886 else
1887 error (_("Expression of type other than "
1888 "\"method returning ...\" used as a method"));
1889 }
1890
1891 /* Now depending on whether we found a symbol for the method,
1892 we will either call the runtime dispatcher or the method
1893 directly. */
1894
1895 argvec[0] = called_method;
1896 argvec[1] = target;
1897 argvec[2] = value_from_longest (long_type, selector);
1898 /* User-supplied arguments. */
1899 for (tem = 0; tem < nargs; tem++)
1900 argvec[tem + 3] = evaluate_subexp_with_coercion (exp, pos, noside);
1901 argvec[tem + 3] = 0;
1902
1903 auto call_args = gdb::make_array_view (argvec + 1, nargs + 2);
1904
1905 if (gnu_runtime && (method != NULL))
1906 {
1907 /* Function objc_msg_lookup returns a pointer. */
1908 deprecated_set_value_type (argvec[0],
1909 lookup_pointer_type (lookup_function_type (value_type (argvec[0]))));
1910 argvec[0] = call_function_by_hand (argvec[0], NULL, call_args);
1911 }
1912
1913 return call_function_by_hand (argvec[0], NULL, call_args);
1914 }
1915 break;
1916
1917 case OP_FUNCALL:
1918 return evaluate_funcall (expect_type, exp, pos, noside);
1919
1920 case OP_F77_UNDETERMINED_ARGLIST:
1921
1922 /* Remember that in F77, functions, substring ops and
1923 array subscript operations cannot be disambiguated
1924 at parse time. We have made all array subscript operations,
1925 substring operations as well as function calls come here
1926 and we now have to discover what the heck this thing actually was.
1927 If it is a function, we process just as if we got an OP_FUNCALL. */
1928
1929 nargs = longest_to_int (exp->elts[pc + 1].longconst);
1930 (*pos) += 2;
1931
1932 /* First determine the type code we are dealing with. */
1933 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
1934 type = check_typedef (value_type (arg1));
1935 code = type->code ();
1936
1937 if (code == TYPE_CODE_PTR)
1938 {
1939 /* Fortran always passes variable to subroutines as pointer.
1940 So we need to look into its target type to see if it is
1941 array, string or function. If it is, we need to switch
1942 to the target value the original one points to. */
1943 struct type *target_type = check_typedef (TYPE_TARGET_TYPE (type));
1944
1945 if (target_type->code () == TYPE_CODE_ARRAY
1946 || target_type->code () == TYPE_CODE_STRING
1947 || target_type->code () == TYPE_CODE_FUNC)
1948 {
1949 arg1 = value_ind (arg1);
1950 type = check_typedef (value_type (arg1));
1951 code = type->code ();
1952 }
1953 }
1954
1955 switch (code)
1956 {
1957 case TYPE_CODE_ARRAY:
1958 if (exp->elts[*pos].opcode == OP_RANGE)
1959 return value_f90_subarray (arg1, exp, pos, noside);
1960 else
1961 {
1962 if (noside == EVAL_SKIP)
1963 {
1964 skip_undetermined_arglist (nargs, exp, pos, noside);
1965 /* Return the dummy value with the correct type. */
1966 return arg1;
1967 }
1968 goto multi_f77_subscript;
1969 }
1970
1971 case TYPE_CODE_STRING:
1972 if (exp->elts[*pos].opcode == OP_RANGE)
1973 return value_f90_subarray (arg1, exp, pos, noside);
1974 else
1975 {
1976 if (noside == EVAL_SKIP)
1977 {
1978 skip_undetermined_arglist (nargs, exp, pos, noside);
1979 /* Return the dummy value with the correct type. */
1980 return arg1;
1981 }
1982 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
1983 return value_subscript (arg1, value_as_long (arg2));
1984 }
1985
1986 case TYPE_CODE_PTR:
1987 case TYPE_CODE_FUNC:
1988 case TYPE_CODE_INTERNAL_FUNCTION:
1989 /* It's a function call. */
1990 /* Allocate arg vector, including space for the function to be
1991 called in argvec[0] and a terminating NULL. */
1992 argvec = (struct value **)
1993 alloca (sizeof (struct value *) * (nargs + 2));
1994 argvec[0] = arg1;
1995 tem = 1;
1996 for (; tem <= nargs; tem++)
1997 {
1998 argvec[tem] = evaluate_subexp_with_coercion (exp, pos, noside);
1999 /* Arguments in Fortran are passed by address. Coerce the
2000 arguments here rather than in value_arg_coerce as otherwise
2001 the call to malloc to place the non-lvalue parameters in
2002 target memory is hit by this Fortran specific logic. This
2003 results in malloc being called with a pointer to an integer
2004 followed by an attempt to malloc the arguments to malloc in
2005 target memory. Infinite recursion ensues. */
2006 if (code == TYPE_CODE_PTR || code == TYPE_CODE_FUNC)
2007 {
2008 bool is_artificial
2009 = TYPE_FIELD_ARTIFICIAL (value_type (arg1), tem - 1);
2010 argvec[tem] = fortran_argument_convert (argvec[tem],
2011 is_artificial);
2012 }
2013 }
2014 argvec[tem] = 0; /* signal end of arglist */
2015 if (noside == EVAL_SKIP)
2016 return eval_skip_value (exp);
2017 return eval_call (exp, noside, nargs, argvec, NULL, expect_type);
2018
2019 default:
2020 error (_("Cannot perform substring on this type"));
2021 }
2022
2023 case OP_COMPLEX:
2024 /* We have a complex number, There should be 2 floating
2025 point numbers that compose it. */
2026 (*pos) += 2;
2027 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2028 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2029
2030 return value_literal_complex (arg1, arg2, exp->elts[pc + 1].type);
2031
2032 case STRUCTOP_STRUCT:
2033 tem = longest_to_int (exp->elts[pc + 1].longconst);
2034 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2035 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2036 if (noside == EVAL_SKIP)
2037 return eval_skip_value (exp);
2038 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
2039 NULL, "structure");
2040 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2041 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
2042 return arg3;
2043
2044 case STRUCTOP_PTR:
2045 tem = longest_to_int (exp->elts[pc + 1].longconst);
2046 (*pos) += 3 + BYTES_TO_EXP_ELEM (tem + 1);
2047 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2048 if (noside == EVAL_SKIP)
2049 return eval_skip_value (exp);
2050
2051 /* Check to see if operator '->' has been overloaded. If so replace
2052 arg1 with the value returned by evaluating operator->(). */
2053 while (unop_user_defined_p (op, arg1))
2054 {
2055 struct value *value = NULL;
2056 try
2057 {
2058 value = value_x_unop (arg1, op, noside);
2059 }
2060
2061 catch (const gdb_exception_error &except)
2062 {
2063 if (except.error == NOT_FOUND_ERROR)
2064 break;
2065 else
2066 throw;
2067 }
2068
2069 arg1 = value;
2070 }
2071
2072 /* JYG: if print object is on we need to replace the base type
2073 with rtti type in order to continue on with successful
2074 lookup of member / method only available in the rtti type. */
2075 {
2076 struct type *arg_type = value_type (arg1);
2077 struct type *real_type;
2078 int full, using_enc;
2079 LONGEST top;
2080 struct value_print_options opts;
2081
2082 get_user_print_options (&opts);
2083 if (opts.objectprint && TYPE_TARGET_TYPE (arg_type)
2084 && (TYPE_TARGET_TYPE (arg_type)->code () == TYPE_CODE_STRUCT))
2085 {
2086 real_type = value_rtti_indirect_type (arg1, &full, &top,
2087 &using_enc);
2088 if (real_type)
2089 arg1 = value_cast (real_type, arg1);
2090 }
2091 }
2092
2093 arg3 = value_struct_elt (&arg1, NULL, &exp->elts[pc + 2].string,
2094 NULL, "structure pointer");
2095 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2096 arg3 = value_zero (value_type (arg3), VALUE_LVAL (arg3));
2097 return arg3;
2098
2099 case STRUCTOP_MEMBER:
2100 case STRUCTOP_MPTR:
2101 if (op == STRUCTOP_MEMBER)
2102 arg1 = evaluate_subexp_for_address (exp, pos, noside);
2103 else
2104 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2105
2106 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2107
2108 if (noside == EVAL_SKIP)
2109 return eval_skip_value (exp);
2110
2111 type = check_typedef (value_type (arg2));
2112 switch (type->code ())
2113 {
2114 case TYPE_CODE_METHODPTR:
2115 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2116 return value_zero (TYPE_TARGET_TYPE (type), not_lval);
2117 else
2118 {
2119 arg2 = cplus_method_ptr_to_value (&arg1, arg2);
2120 gdb_assert (value_type (arg2)->code () == TYPE_CODE_PTR);
2121 return value_ind (arg2);
2122 }
2123
2124 case TYPE_CODE_MEMBERPTR:
2125 /* Now, convert these values to an address. */
2126 arg1 = value_cast_pointers (lookup_pointer_type (TYPE_SELF_TYPE (type)),
2127 arg1, 1);
2128
2129 mem_offset = value_as_long (arg2);
2130
2131 arg3 = value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
2132 value_as_long (arg1) + mem_offset);
2133 return value_ind (arg3);
2134
2135 default:
2136 error (_("non-pointer-to-member value used "
2137 "in pointer-to-member construct"));
2138 }
2139
2140 case TYPE_INSTANCE:
2141 {
2142 type_instance_flags flags
2143 = (type_instance_flag_value) longest_to_int (exp->elts[pc + 1].longconst);
2144 nargs = longest_to_int (exp->elts[pc + 2].longconst);
2145 arg_types = (struct type **) alloca (nargs * sizeof (struct type *));
2146 for (ix = 0; ix < nargs; ++ix)
2147 arg_types[ix] = exp->elts[pc + 2 + ix + 1].type;
2148
2149 fake_method fake_expect_type (flags, nargs, arg_types);
2150 *(pos) += 4 + nargs;
2151 return evaluate_subexp_standard (fake_expect_type.type (), exp, pos,
2152 noside);
2153 }
2154
2155 case BINOP_CONCAT:
2156 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2157 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2158 if (noside == EVAL_SKIP)
2159 return eval_skip_value (exp);
2160 if (binop_user_defined_p (op, arg1, arg2))
2161 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2162 else
2163 return value_concat (arg1, arg2);
2164
2165 case BINOP_ASSIGN:
2166 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2167 /* Special-case assignments where the left-hand-side is a
2168 convenience variable -- in these, don't bother setting an
2169 expected type. This avoids a weird case where re-assigning a
2170 string or array to an internal variable could error with "Too
2171 many array elements". */
2172 arg2 = evaluate_subexp (VALUE_LVAL (arg1) == lval_internalvar
2173 ? NULL_TYPE : value_type (arg1),
2174 exp, pos, noside);
2175
2176 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2177 return arg1;
2178 if (binop_user_defined_p (op, arg1, arg2))
2179 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2180 else
2181 return value_assign (arg1, arg2);
2182
2183 case BINOP_ASSIGN_MODIFY:
2184 (*pos) += 2;
2185 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2186 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2187 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2188 return arg1;
2189 op = exp->elts[pc + 1].opcode;
2190 if (binop_user_defined_p (op, arg1, arg2))
2191 return value_x_binop (arg1, arg2, BINOP_ASSIGN_MODIFY, op, noside);
2192 else if (op == BINOP_ADD && ptrmath_type_p (exp->language_defn,
2193 value_type (arg1))
2194 && is_integral_type (value_type (arg2)))
2195 arg2 = value_ptradd (arg1, value_as_long (arg2));
2196 else if (op == BINOP_SUB && ptrmath_type_p (exp->language_defn,
2197 value_type (arg1))
2198 && is_integral_type (value_type (arg2)))
2199 arg2 = value_ptradd (arg1, - value_as_long (arg2));
2200 else
2201 {
2202 struct value *tmp = arg1;
2203
2204 /* For shift and integer exponentiation operations,
2205 only promote the first argument. */
2206 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2207 && is_integral_type (value_type (arg2)))
2208 unop_promote (exp->language_defn, exp->gdbarch, &tmp);
2209 else
2210 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2211
2212 arg2 = value_binop (tmp, arg2, op);
2213 }
2214 return value_assign (arg1, arg2);
2215
2216 case BINOP_ADD:
2217 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2218 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2219 if (noside == EVAL_SKIP)
2220 return eval_skip_value (exp);
2221 if (binop_user_defined_p (op, arg1, arg2))
2222 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2223 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2224 && is_integral_or_integral_reference (value_type (arg2)))
2225 return value_ptradd (arg1, value_as_long (arg2));
2226 else if (ptrmath_type_p (exp->language_defn, value_type (arg2))
2227 && is_integral_or_integral_reference (value_type (arg1)))
2228 return value_ptradd (arg2, value_as_long (arg1));
2229 else
2230 {
2231 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2232 return value_binop (arg1, arg2, BINOP_ADD);
2233 }
2234
2235 case BINOP_SUB:
2236 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2237 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2238 if (noside == EVAL_SKIP)
2239 return eval_skip_value (exp);
2240 if (binop_user_defined_p (op, arg1, arg2))
2241 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2242 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2243 && ptrmath_type_p (exp->language_defn, value_type (arg2)))
2244 {
2245 /* FIXME -- should be ptrdiff_t */
2246 type = builtin_type (exp->gdbarch)->builtin_long;
2247 return value_from_longest (type, value_ptrdiff (arg1, arg2));
2248 }
2249 else if (ptrmath_type_p (exp->language_defn, value_type (arg1))
2250 && is_integral_or_integral_reference (value_type (arg2)))
2251 return value_ptradd (arg1, - value_as_long (arg2));
2252 else
2253 {
2254 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2255 return value_binop (arg1, arg2, BINOP_SUB);
2256 }
2257
2258 case BINOP_EXP:
2259 case BINOP_MUL:
2260 case BINOP_DIV:
2261 case BINOP_INTDIV:
2262 case BINOP_REM:
2263 case BINOP_MOD:
2264 case BINOP_LSH:
2265 case BINOP_RSH:
2266 case BINOP_BITWISE_AND:
2267 case BINOP_BITWISE_IOR:
2268 case BINOP_BITWISE_XOR:
2269 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2270 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2271 if (noside == EVAL_SKIP)
2272 return eval_skip_value (exp);
2273 if (binop_user_defined_p (op, arg1, arg2))
2274 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2275 else
2276 {
2277 /* If EVAL_AVOID_SIDE_EFFECTS and we're dividing by zero,
2278 fudge arg2 to avoid division-by-zero, the caller is
2279 (theoretically) only looking for the type of the result. */
2280 if (noside == EVAL_AVOID_SIDE_EFFECTS
2281 /* ??? Do we really want to test for BINOP_MOD here?
2282 The implementation of value_binop gives it a well-defined
2283 value. */
2284 && (op == BINOP_DIV
2285 || op == BINOP_INTDIV
2286 || op == BINOP_REM
2287 || op == BINOP_MOD)
2288 && value_logical_not (arg2))
2289 {
2290 struct value *v_one, *retval;
2291
2292 v_one = value_one (value_type (arg2));
2293 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &v_one);
2294 retval = value_binop (arg1, v_one, op);
2295 return retval;
2296 }
2297 else
2298 {
2299 /* For shift and integer exponentiation operations,
2300 only promote the first argument. */
2301 if ((op == BINOP_LSH || op == BINOP_RSH || op == BINOP_EXP)
2302 && is_integral_type (value_type (arg2)))
2303 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2304 else
2305 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2306
2307 return value_binop (arg1, arg2, op);
2308 }
2309 }
2310
2311 case BINOP_SUBSCRIPT:
2312 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2313 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2314 if (noside == EVAL_SKIP)
2315 return eval_skip_value (exp);
2316 if (binop_user_defined_p (op, arg1, arg2))
2317 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2318 else
2319 {
2320 /* If the user attempts to subscript something that is not an
2321 array or pointer type (like a plain int variable for example),
2322 then report this as an error. */
2323
2324 arg1 = coerce_ref (arg1);
2325 type = check_typedef (value_type (arg1));
2326 if (type->code () != TYPE_CODE_ARRAY
2327 && type->code () != TYPE_CODE_PTR)
2328 {
2329 if (type->name ())
2330 error (_("cannot subscript something of type `%s'"),
2331 type->name ());
2332 else
2333 error (_("cannot subscript requested type"));
2334 }
2335
2336 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2337 return value_zero (TYPE_TARGET_TYPE (type), VALUE_LVAL (arg1));
2338 else
2339 return value_subscript (arg1, value_as_long (arg2));
2340 }
2341 case MULTI_SUBSCRIPT:
2342 (*pos) += 2;
2343 nargs = longest_to_int (exp->elts[pc + 1].longconst);
2344 arg1 = evaluate_subexp_with_coercion (exp, pos, noside);
2345 while (nargs-- > 0)
2346 {
2347 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2348 /* FIXME: EVAL_SKIP handling may not be correct. */
2349 if (noside == EVAL_SKIP)
2350 {
2351 if (nargs > 0)
2352 continue;
2353 return eval_skip_value (exp);
2354 }
2355 /* FIXME: EVAL_AVOID_SIDE_EFFECTS handling may not be correct. */
2356 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2357 {
2358 /* If the user attempts to subscript something that has no target
2359 type (like a plain int variable for example), then report this
2360 as an error. */
2361
2362 type = TYPE_TARGET_TYPE (check_typedef (value_type (arg1)));
2363 if (type != NULL)
2364 {
2365 arg1 = value_zero (type, VALUE_LVAL (arg1));
2366 noside = EVAL_SKIP;
2367 continue;
2368 }
2369 else
2370 {
2371 error (_("cannot subscript something of type `%s'"),
2372 value_type (arg1)->name ());
2373 }
2374 }
2375
2376 if (binop_user_defined_p (op, arg1, arg2))
2377 {
2378 arg1 = value_x_binop (arg1, arg2, op, OP_NULL, noside);
2379 }
2380 else
2381 {
2382 arg1 = coerce_ref (arg1);
2383 type = check_typedef (value_type (arg1));
2384
2385 switch (type->code ())
2386 {
2387 case TYPE_CODE_PTR:
2388 case TYPE_CODE_ARRAY:
2389 case TYPE_CODE_STRING:
2390 arg1 = value_subscript (arg1, value_as_long (arg2));
2391 break;
2392
2393 default:
2394 if (type->name ())
2395 error (_("cannot subscript something of type `%s'"),
2396 type->name ());
2397 else
2398 error (_("cannot subscript requested type"));
2399 }
2400 }
2401 }
2402 return (arg1);
2403
2404 multi_f77_subscript:
2405 {
2406 LONGEST subscript_array[MAX_FORTRAN_DIMS];
2407 int ndimensions = 1, i;
2408 struct value *array = arg1;
2409
2410 if (nargs > MAX_FORTRAN_DIMS)
2411 error (_("Too many subscripts for F77 (%d Max)"), MAX_FORTRAN_DIMS);
2412
2413 ndimensions = calc_f77_array_dims (type);
2414
2415 if (nargs != ndimensions)
2416 error (_("Wrong number of subscripts"));
2417
2418 gdb_assert (nargs > 0);
2419
2420 /* Now that we know we have a legal array subscript expression
2421 let us actually find out where this element exists in the array. */
2422
2423 /* Take array indices left to right. */
2424 for (i = 0; i < nargs; i++)
2425 {
2426 /* Evaluate each subscript; it must be a legal integer in F77. */
2427 arg2 = evaluate_subexp_with_coercion (exp, pos, noside);
2428
2429 /* Fill in the subscript array. */
2430
2431 subscript_array[i] = value_as_long (arg2);
2432 }
2433
2434 /* Internal type of array is arranged right to left. */
2435 for (i = nargs; i > 0; i--)
2436 {
2437 struct type *array_type = check_typedef (value_type (array));
2438 LONGEST index = subscript_array[i - 1];
2439
2440 array = value_subscripted_rvalue (array, index,
2441 f77_get_lowerbound (array_type));
2442 }
2443
2444 return array;
2445 }
2446
2447 case BINOP_LOGICAL_AND:
2448 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2449 if (noside == EVAL_SKIP)
2450 {
2451 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2452 return eval_skip_value (exp);
2453 }
2454
2455 oldpos = *pos;
2456 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2457 *pos = oldpos;
2458
2459 if (binop_user_defined_p (op, arg1, arg2))
2460 {
2461 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2462 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2463 }
2464 else
2465 {
2466 tem = value_logical_not (arg1);
2467 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2468 (tem ? EVAL_SKIP : noside));
2469 type = language_bool_type (exp->language_defn, exp->gdbarch);
2470 return value_from_longest (type,
2471 (LONGEST) (!tem && !value_logical_not (arg2)));
2472 }
2473
2474 case BINOP_LOGICAL_OR:
2475 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2476 if (noside == EVAL_SKIP)
2477 {
2478 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2479 return eval_skip_value (exp);
2480 }
2481
2482 oldpos = *pos;
2483 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2484 *pos = oldpos;
2485
2486 if (binop_user_defined_p (op, arg1, arg2))
2487 {
2488 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2489 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2490 }
2491 else
2492 {
2493 tem = value_logical_not (arg1);
2494 arg2 = evaluate_subexp (NULL_TYPE, exp, pos,
2495 (!tem ? EVAL_SKIP : noside));
2496 type = language_bool_type (exp->language_defn, exp->gdbarch);
2497 return value_from_longest (type,
2498 (LONGEST) (!tem || !value_logical_not (arg2)));
2499 }
2500
2501 case BINOP_EQUAL:
2502 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2503 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2504 if (noside == EVAL_SKIP)
2505 return eval_skip_value (exp);
2506 if (binop_user_defined_p (op, arg1, arg2))
2507 {
2508 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2509 }
2510 else
2511 {
2512 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2513 tem = value_equal (arg1, arg2);
2514 type = language_bool_type (exp->language_defn, exp->gdbarch);
2515 return value_from_longest (type, (LONGEST) tem);
2516 }
2517
2518 case BINOP_NOTEQUAL:
2519 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2520 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2521 if (noside == EVAL_SKIP)
2522 return eval_skip_value (exp);
2523 if (binop_user_defined_p (op, arg1, arg2))
2524 {
2525 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2526 }
2527 else
2528 {
2529 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2530 tem = value_equal (arg1, arg2);
2531 type = language_bool_type (exp->language_defn, exp->gdbarch);
2532 return value_from_longest (type, (LONGEST) ! tem);
2533 }
2534
2535 case BINOP_LESS:
2536 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2537 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2538 if (noside == EVAL_SKIP)
2539 return eval_skip_value (exp);
2540 if (binop_user_defined_p (op, arg1, arg2))
2541 {
2542 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2543 }
2544 else
2545 {
2546 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2547 tem = value_less (arg1, arg2);
2548 type = language_bool_type (exp->language_defn, exp->gdbarch);
2549 return value_from_longest (type, (LONGEST) tem);
2550 }
2551
2552 case BINOP_GTR:
2553 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2554 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2555 if (noside == EVAL_SKIP)
2556 return eval_skip_value (exp);
2557 if (binop_user_defined_p (op, arg1, arg2))
2558 {
2559 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2560 }
2561 else
2562 {
2563 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2564 tem = value_less (arg2, arg1);
2565 type = language_bool_type (exp->language_defn, exp->gdbarch);
2566 return value_from_longest (type, (LONGEST) tem);
2567 }
2568
2569 case BINOP_GEQ:
2570 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2571 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2572 if (noside == EVAL_SKIP)
2573 return eval_skip_value (exp);
2574 if (binop_user_defined_p (op, arg1, arg2))
2575 {
2576 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2577 }
2578 else
2579 {
2580 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2581 tem = value_less (arg2, arg1) || value_equal (arg1, arg2);
2582 type = language_bool_type (exp->language_defn, exp->gdbarch);
2583 return value_from_longest (type, (LONGEST) tem);
2584 }
2585
2586 case BINOP_LEQ:
2587 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2588 arg2 = evaluate_subexp (value_type (arg1), exp, pos, noside);
2589 if (noside == EVAL_SKIP)
2590 return eval_skip_value (exp);
2591 if (binop_user_defined_p (op, arg1, arg2))
2592 {
2593 return value_x_binop (arg1, arg2, op, OP_NULL, noside);
2594 }
2595 else
2596 {
2597 binop_promote (exp->language_defn, exp->gdbarch, &arg1, &arg2);
2598 tem = value_less (arg1, arg2) || value_equal (arg1, arg2);
2599 type = language_bool_type (exp->language_defn, exp->gdbarch);
2600 return value_from_longest (type, (LONGEST) tem);
2601 }
2602
2603 case BINOP_REPEAT:
2604 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2605 arg2 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2606 if (noside == EVAL_SKIP)
2607 return eval_skip_value (exp);
2608 type = check_typedef (value_type (arg2));
2609 if (type->code () != TYPE_CODE_INT
2610 && type->code () != TYPE_CODE_ENUM)
2611 error (_("Non-integral right operand for \"@\" operator."));
2612 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2613 {
2614 return allocate_repeat_value (value_type (arg1),
2615 longest_to_int (value_as_long (arg2)));
2616 }
2617 else
2618 return value_repeat (arg1, longest_to_int (value_as_long (arg2)));
2619
2620 case BINOP_COMMA:
2621 evaluate_subexp (NULL_TYPE, exp, pos, noside);
2622 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
2623
2624 case UNOP_PLUS:
2625 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2626 if (noside == EVAL_SKIP)
2627 return eval_skip_value (exp);
2628 if (unop_user_defined_p (op, arg1))
2629 return value_x_unop (arg1, op, noside);
2630 else
2631 {
2632 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2633 return value_pos (arg1);
2634 }
2635
2636 case UNOP_NEG:
2637 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2638 if (noside == EVAL_SKIP)
2639 return eval_skip_value (exp);
2640 if (unop_user_defined_p (op, arg1))
2641 return value_x_unop (arg1, op, noside);
2642 else
2643 {
2644 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2645 return value_neg (arg1);
2646 }
2647
2648 case UNOP_COMPLEMENT:
2649 /* C++: check for and handle destructor names. */
2650
2651 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2652 if (noside == EVAL_SKIP)
2653 return eval_skip_value (exp);
2654 if (unop_user_defined_p (UNOP_COMPLEMENT, arg1))
2655 return value_x_unop (arg1, UNOP_COMPLEMENT, noside);
2656 else
2657 {
2658 unop_promote (exp->language_defn, exp->gdbarch, &arg1);
2659 return value_complement (arg1);
2660 }
2661
2662 case UNOP_LOGICAL_NOT:
2663 arg1 = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2664 if (noside == EVAL_SKIP)
2665 return eval_skip_value (exp);
2666 if (unop_user_defined_p (op, arg1))
2667 return value_x_unop (arg1, op, noside);
2668 else
2669 {
2670 type = language_bool_type (exp->language_defn, exp->gdbarch);
2671 return value_from_longest (type, (LONGEST) value_logical_not (arg1));
2672 }
2673
2674 case UNOP_IND:
2675 if (expect_type && expect_type->code () == TYPE_CODE_PTR)
2676 expect_type = TYPE_TARGET_TYPE (check_typedef (expect_type));
2677 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2678 type = check_typedef (value_type (arg1));
2679 if (type->code () == TYPE_CODE_METHODPTR
2680 || type->code () == TYPE_CODE_MEMBERPTR)
2681 error (_("Attempt to dereference pointer "
2682 "to member without an object"));
2683 if (noside == EVAL_SKIP)
2684 return eval_skip_value (exp);
2685 if (unop_user_defined_p (op, arg1))
2686 return value_x_unop (arg1, op, noside);
2687 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2688 {
2689 type = check_typedef (value_type (arg1));
2690 if (type->code () == TYPE_CODE_PTR
2691 || TYPE_IS_REFERENCE (type)
2692 /* In C you can dereference an array to get the 1st elt. */
2693 || type->code () == TYPE_CODE_ARRAY
2694 )
2695 return value_zero (TYPE_TARGET_TYPE (type),
2696 lval_memory);
2697 else if (type->code () == TYPE_CODE_INT)
2698 /* GDB allows dereferencing an int. */
2699 return value_zero (builtin_type (exp->gdbarch)->builtin_int,
2700 lval_memory);
2701 else
2702 error (_("Attempt to take contents of a non-pointer value."));
2703 }
2704
2705 /* Allow * on an integer so we can cast it to whatever we want.
2706 This returns an int, which seems like the most C-like thing to
2707 do. "long long" variables are rare enough that
2708 BUILTIN_TYPE_LONGEST would seem to be a mistake. */
2709 if (type->code () == TYPE_CODE_INT)
2710 return value_at_lazy (builtin_type (exp->gdbarch)->builtin_int,
2711 (CORE_ADDR) value_as_address (arg1));
2712 return value_ind (arg1);
2713
2714 case UNOP_ADDR:
2715 /* C++: check for and handle pointer to members. */
2716
2717 if (noside == EVAL_SKIP)
2718 {
2719 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2720 return eval_skip_value (exp);
2721 }
2722 else
2723 {
2724 struct value *retvalp = evaluate_subexp_for_address (exp, pos,
2725 noside);
2726
2727 return retvalp;
2728 }
2729
2730 case UNOP_SIZEOF:
2731 if (noside == EVAL_SKIP)
2732 {
2733 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2734 return eval_skip_value (exp);
2735 }
2736 return evaluate_subexp_for_sizeof (exp, pos, noside);
2737
2738 case UNOP_ALIGNOF:
2739 {
2740 type = value_type (evaluate_subexp (NULL_TYPE, exp, pos,
2741 EVAL_AVOID_SIDE_EFFECTS));
2742 /* FIXME: This should be size_t. */
2743 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
2744 ULONGEST align = type_align (type);
2745 if (align == 0)
2746 error (_("could not determine alignment of type"));
2747 return value_from_longest (size_type, align);
2748 }
2749
2750 case UNOP_CAST:
2751 (*pos) += 2;
2752 type = exp->elts[pc + 1].type;
2753 return evaluate_subexp_for_cast (exp, pos, noside, type);
2754
2755 case UNOP_CAST_TYPE:
2756 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2757 type = value_type (arg1);
2758 return evaluate_subexp_for_cast (exp, pos, noside, type);
2759
2760 case UNOP_DYNAMIC_CAST:
2761 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2762 type = value_type (arg1);
2763 arg1 = evaluate_subexp (type, exp, pos, noside);
2764 if (noside == EVAL_SKIP)
2765 return eval_skip_value (exp);
2766 return value_dynamic_cast (type, arg1);
2767
2768 case UNOP_REINTERPRET_CAST:
2769 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2770 type = value_type (arg1);
2771 arg1 = evaluate_subexp (type, exp, pos, noside);
2772 if (noside == EVAL_SKIP)
2773 return eval_skip_value (exp);
2774 return value_reinterpret_cast (type, arg1);
2775
2776 case UNOP_MEMVAL:
2777 (*pos) += 2;
2778 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2779 if (noside == EVAL_SKIP)
2780 return eval_skip_value (exp);
2781 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2782 return value_zero (exp->elts[pc + 1].type, lval_memory);
2783 else
2784 return value_at_lazy (exp->elts[pc + 1].type,
2785 value_as_address (arg1));
2786
2787 case UNOP_MEMVAL_TYPE:
2788 arg1 = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
2789 type = value_type (arg1);
2790 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2791 if (noside == EVAL_SKIP)
2792 return eval_skip_value (exp);
2793 if (noside == EVAL_AVOID_SIDE_EFFECTS)
2794 return value_zero (type, lval_memory);
2795 else
2796 return value_at_lazy (type, value_as_address (arg1));
2797
2798 case UNOP_PREINCREMENT:
2799 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2800 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2801 return arg1;
2802 else if (unop_user_defined_p (op, arg1))
2803 {
2804 return value_x_unop (arg1, op, noside);
2805 }
2806 else
2807 {
2808 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2809 arg2 = value_ptradd (arg1, 1);
2810 else
2811 {
2812 struct value *tmp = arg1;
2813
2814 arg2 = value_one (value_type (arg1));
2815 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2816 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2817 }
2818
2819 return value_assign (arg1, arg2);
2820 }
2821
2822 case UNOP_PREDECREMENT:
2823 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2824 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2825 return arg1;
2826 else if (unop_user_defined_p (op, arg1))
2827 {
2828 return value_x_unop (arg1, op, noside);
2829 }
2830 else
2831 {
2832 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2833 arg2 = value_ptradd (arg1, -1);
2834 else
2835 {
2836 struct value *tmp = arg1;
2837
2838 arg2 = value_one (value_type (arg1));
2839 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2840 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2841 }
2842
2843 return value_assign (arg1, arg2);
2844 }
2845
2846 case UNOP_POSTINCREMENT:
2847 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2848 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2849 return arg1;
2850 else if (unop_user_defined_p (op, arg1))
2851 {
2852 return value_x_unop (arg1, op, noside);
2853 }
2854 else
2855 {
2856 arg3 = value_non_lval (arg1);
2857
2858 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2859 arg2 = value_ptradd (arg1, 1);
2860 else
2861 {
2862 struct value *tmp = arg1;
2863
2864 arg2 = value_one (value_type (arg1));
2865 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2866 arg2 = value_binop (tmp, arg2, BINOP_ADD);
2867 }
2868
2869 value_assign (arg1, arg2);
2870 return arg3;
2871 }
2872
2873 case UNOP_POSTDECREMENT:
2874 arg1 = evaluate_subexp (expect_type, exp, pos, noside);
2875 if (noside == EVAL_SKIP || noside == EVAL_AVOID_SIDE_EFFECTS)
2876 return arg1;
2877 else if (unop_user_defined_p (op, arg1))
2878 {
2879 return value_x_unop (arg1, op, noside);
2880 }
2881 else
2882 {
2883 arg3 = value_non_lval (arg1);
2884
2885 if (ptrmath_type_p (exp->language_defn, value_type (arg1)))
2886 arg2 = value_ptradd (arg1, -1);
2887 else
2888 {
2889 struct value *tmp = arg1;
2890
2891 arg2 = value_one (value_type (arg1));
2892 binop_promote (exp->language_defn, exp->gdbarch, &tmp, &arg2);
2893 arg2 = value_binop (tmp, arg2, BINOP_SUB);
2894 }
2895
2896 value_assign (arg1, arg2);
2897 return arg3;
2898 }
2899
2900 case OP_THIS:
2901 (*pos) += 1;
2902 return value_of_this (exp->language_defn);
2903
2904 case OP_TYPE:
2905 /* The value is not supposed to be used. This is here to make it
2906 easier to accommodate expressions that contain types. */
2907 (*pos) += 2;
2908 if (noside == EVAL_SKIP)
2909 return eval_skip_value (exp);
2910 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2911 return allocate_value (exp->elts[pc + 1].type);
2912 else
2913 error (_("Attempt to use a type name as an expression"));
2914
2915 case OP_TYPEOF:
2916 case OP_DECLTYPE:
2917 if (noside == EVAL_SKIP)
2918 {
2919 evaluate_subexp (NULL_TYPE, exp, pos, EVAL_SKIP);
2920 return eval_skip_value (exp);
2921 }
2922 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
2923 {
2924 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2925 struct value *result;
2926
2927 result = evaluate_subexp (NULL_TYPE, exp, pos,
2928 EVAL_AVOID_SIDE_EFFECTS);
2929
2930 /* 'decltype' has special semantics for lvalues. */
2931 if (op == OP_DECLTYPE
2932 && (sub_op == BINOP_SUBSCRIPT
2933 || sub_op == STRUCTOP_MEMBER
2934 || sub_op == STRUCTOP_MPTR
2935 || sub_op == UNOP_IND
2936 || sub_op == STRUCTOP_STRUCT
2937 || sub_op == STRUCTOP_PTR
2938 || sub_op == OP_SCOPE))
2939 {
2940 type = value_type (result);
2941
2942 if (!TYPE_IS_REFERENCE (type))
2943 {
2944 type = lookup_lvalue_reference_type (type);
2945 result = allocate_value (type);
2946 }
2947 }
2948
2949 return result;
2950 }
2951 else
2952 error (_("Attempt to use a type as an expression"));
2953
2954 case OP_TYPEID:
2955 {
2956 struct value *result;
2957 enum exp_opcode sub_op = exp->elts[*pos].opcode;
2958
2959 if (sub_op == OP_TYPE || sub_op == OP_DECLTYPE || sub_op == OP_TYPEOF)
2960 result = evaluate_subexp (NULL_TYPE, exp, pos,
2961 EVAL_AVOID_SIDE_EFFECTS);
2962 else
2963 result = evaluate_subexp (NULL_TYPE, exp, pos, noside);
2964
2965 if (noside != EVAL_NORMAL)
2966 return allocate_value (cplus_typeid_type (exp->gdbarch));
2967
2968 return cplus_typeid (result);
2969 }
2970
2971 default:
2972 /* Removing this case and compiling with gcc -Wall reveals that
2973 a lot of cases are hitting this case. Some of these should
2974 probably be removed from expression.h; others are legitimate
2975 expressions which are (apparently) not fully implemented.
2976
2977 If there are any cases landing here which mean a user error,
2978 then they should be separate cases, with more descriptive
2979 error messages. */
2980
2981 error (_("GDB does not (yet) know how to "
2982 "evaluate that kind of expression"));
2983 }
2984
2985 gdb_assert_not_reached ("missed return?");
2986 }
2987 \f
2988 /* Evaluate a subexpression of EXP, at index *POS,
2989 and return the address of that subexpression.
2990 Advance *POS over the subexpression.
2991 If the subexpression isn't an lvalue, get an error.
2992 NOSIDE may be EVAL_AVOID_SIDE_EFFECTS;
2993 then only the type of the result need be correct. */
2994
2995 static struct value *
2996 evaluate_subexp_for_address (struct expression *exp, int *pos,
2997 enum noside noside)
2998 {
2999 enum exp_opcode op;
3000 int pc;
3001 struct symbol *var;
3002 struct value *x;
3003 int tem;
3004
3005 pc = (*pos);
3006 op = exp->elts[pc].opcode;
3007
3008 switch (op)
3009 {
3010 case UNOP_IND:
3011 (*pos)++;
3012 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
3013
3014 /* We can't optimize out "&*" if there's a user-defined operator*. */
3015 if (unop_user_defined_p (op, x))
3016 {
3017 x = value_x_unop (x, op, noside);
3018 goto default_case_after_eval;
3019 }
3020
3021 return coerce_array (x);
3022
3023 case UNOP_MEMVAL:
3024 (*pos) += 3;
3025 return value_cast (lookup_pointer_type (exp->elts[pc + 1].type),
3026 evaluate_subexp (NULL_TYPE, exp, pos, noside));
3027
3028 case UNOP_MEMVAL_TYPE:
3029 {
3030 struct type *type;
3031
3032 (*pos) += 1;
3033 x = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3034 type = value_type (x);
3035 return value_cast (lookup_pointer_type (type),
3036 evaluate_subexp (NULL_TYPE, exp, pos, noside));
3037 }
3038
3039 case OP_VAR_VALUE:
3040 var = exp->elts[pc + 2].symbol;
3041
3042 /* C++: The "address" of a reference should yield the address
3043 * of the object pointed to. Let value_addr() deal with it. */
3044 if (TYPE_IS_REFERENCE (SYMBOL_TYPE (var)))
3045 goto default_case;
3046
3047 (*pos) += 4;
3048 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3049 {
3050 struct type *type =
3051 lookup_pointer_type (SYMBOL_TYPE (var));
3052 enum address_class sym_class = SYMBOL_CLASS (var);
3053
3054 if (sym_class == LOC_CONST
3055 || sym_class == LOC_CONST_BYTES
3056 || sym_class == LOC_REGISTER)
3057 error (_("Attempt to take address of register or constant."));
3058
3059 return
3060 value_zero (type, not_lval);
3061 }
3062 else
3063 return address_of_variable (var, exp->elts[pc + 1].block);
3064
3065 case OP_VAR_MSYM_VALUE:
3066 {
3067 (*pos) += 4;
3068
3069 value *val = evaluate_var_msym_value (noside,
3070 exp->elts[pc + 1].objfile,
3071 exp->elts[pc + 2].msymbol);
3072 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3073 {
3074 struct type *type = lookup_pointer_type (value_type (val));
3075 return value_zero (type, not_lval);
3076 }
3077 else
3078 return value_addr (val);
3079 }
3080
3081 case OP_SCOPE:
3082 tem = longest_to_int (exp->elts[pc + 2].longconst);
3083 (*pos) += 5 + BYTES_TO_EXP_ELEM (tem + 1);
3084 x = value_aggregate_elt (exp->elts[pc + 1].type,
3085 &exp->elts[pc + 3].string,
3086 NULL, 1, noside);
3087 if (x == NULL)
3088 error (_("There is no field named %s"), &exp->elts[pc + 3].string);
3089 return x;
3090
3091 default:
3092 default_case:
3093 x = evaluate_subexp (NULL_TYPE, exp, pos, noside);
3094 default_case_after_eval:
3095 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3096 {
3097 struct type *type = check_typedef (value_type (x));
3098
3099 if (TYPE_IS_REFERENCE (type))
3100 return value_zero (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3101 not_lval);
3102 else if (VALUE_LVAL (x) == lval_memory || value_must_coerce_to_target (x))
3103 return value_zero (lookup_pointer_type (value_type (x)),
3104 not_lval);
3105 else
3106 error (_("Attempt to take address of "
3107 "value not located in memory."));
3108 }
3109 return value_addr (x);
3110 }
3111 }
3112
3113 /* Evaluate like `evaluate_subexp' except coercing arrays to pointers.
3114 When used in contexts where arrays will be coerced anyway, this is
3115 equivalent to `evaluate_subexp' but much faster because it avoids
3116 actually fetching array contents (perhaps obsolete now that we have
3117 value_lazy()).
3118
3119 Note that we currently only do the coercion for C expressions, where
3120 arrays are zero based and the coercion is correct. For other languages,
3121 with nonzero based arrays, coercion loses. Use CAST_IS_CONVERSION
3122 to decide if coercion is appropriate. */
3123
3124 struct value *
3125 evaluate_subexp_with_coercion (struct expression *exp,
3126 int *pos, enum noside noside)
3127 {
3128 enum exp_opcode op;
3129 int pc;
3130 struct value *val;
3131 struct symbol *var;
3132 struct type *type;
3133
3134 pc = (*pos);
3135 op = exp->elts[pc].opcode;
3136
3137 switch (op)
3138 {
3139 case OP_VAR_VALUE:
3140 var = exp->elts[pc + 2].symbol;
3141 type = check_typedef (SYMBOL_TYPE (var));
3142 if (type->code () == TYPE_CODE_ARRAY
3143 && !TYPE_VECTOR (type)
3144 && CAST_IS_CONVERSION (exp->language_defn))
3145 {
3146 (*pos) += 4;
3147 val = address_of_variable (var, exp->elts[pc + 1].block);
3148 return value_cast (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
3149 val);
3150 }
3151 /* FALLTHROUGH */
3152
3153 default:
3154 return evaluate_subexp (NULL_TYPE, exp, pos, noside);
3155 }
3156 }
3157
3158 /* Evaluate a subexpression of EXP, at index *POS,
3159 and return a value for the size of that subexpression.
3160 Advance *POS over the subexpression. If NOSIDE is EVAL_NORMAL
3161 we allow side-effects on the operand if its type is a variable
3162 length array. */
3163
3164 static struct value *
3165 evaluate_subexp_for_sizeof (struct expression *exp, int *pos,
3166 enum noside noside)
3167 {
3168 /* FIXME: This should be size_t. */
3169 struct type *size_type = builtin_type (exp->gdbarch)->builtin_int;
3170 enum exp_opcode op;
3171 int pc;
3172 struct type *type;
3173 struct value *val;
3174
3175 pc = (*pos);
3176 op = exp->elts[pc].opcode;
3177
3178 switch (op)
3179 {
3180 /* This case is handled specially
3181 so that we avoid creating a value for the result type.
3182 If the result type is very big, it's desirable not to
3183 create a value unnecessarily. */
3184 case UNOP_IND:
3185 (*pos)++;
3186 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3187 type = check_typedef (value_type (val));
3188 if (type->code () != TYPE_CODE_PTR
3189 && !TYPE_IS_REFERENCE (type)
3190 && type->code () != TYPE_CODE_ARRAY)
3191 error (_("Attempt to take contents of a non-pointer value."));
3192 type = TYPE_TARGET_TYPE (type);
3193 if (is_dynamic_type (type))
3194 type = value_type (value_ind (val));
3195 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3196
3197 case UNOP_MEMVAL:
3198 (*pos) += 3;
3199 type = exp->elts[pc + 1].type;
3200 break;
3201
3202 case UNOP_MEMVAL_TYPE:
3203 (*pos) += 1;
3204 val = evaluate_subexp (NULL, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3205 type = value_type (val);
3206 break;
3207
3208 case OP_VAR_VALUE:
3209 type = SYMBOL_TYPE (exp->elts[pc + 2].symbol);
3210 if (is_dynamic_type (type))
3211 {
3212 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
3213 type = value_type (val);
3214 if (type->code () == TYPE_CODE_ARRAY
3215 && is_dynamic_type (TYPE_INDEX_TYPE (type))
3216 && TYPE_HIGH_BOUND_UNDEFINED (TYPE_INDEX_TYPE (type)))
3217 return allocate_optimized_out_value (size_type);
3218 }
3219 else
3220 (*pos) += 4;
3221 break;
3222
3223 case OP_VAR_MSYM_VALUE:
3224 {
3225 (*pos) += 4;
3226
3227 minimal_symbol *msymbol = exp->elts[pc + 2].msymbol;
3228 value *mval = evaluate_var_msym_value (noside,
3229 exp->elts[pc + 1].objfile,
3230 msymbol);
3231
3232 type = value_type (mval);
3233 if (type->code () == TYPE_CODE_ERROR)
3234 error_unknown_type (msymbol->print_name ());
3235
3236 return value_from_longest (size_type, TYPE_LENGTH (type));
3237 }
3238 break;
3239
3240 /* Deal with the special case if NOSIDE is EVAL_NORMAL and the resulting
3241 type of the subscript is a variable length array type. In this case we
3242 must re-evaluate the right hand side of the subscription to allow
3243 side-effects. */
3244 case BINOP_SUBSCRIPT:
3245 if (noside == EVAL_NORMAL)
3246 {
3247 int npc = (*pos) + 1;
3248
3249 val = evaluate_subexp (NULL_TYPE, exp, &npc, EVAL_AVOID_SIDE_EFFECTS);
3250 type = check_typedef (value_type (val));
3251 if (type->code () == TYPE_CODE_ARRAY)
3252 {
3253 type = check_typedef (TYPE_TARGET_TYPE (type));
3254 if (type->code () == TYPE_CODE_ARRAY)
3255 {
3256 type = TYPE_INDEX_TYPE (type);
3257 /* Only re-evaluate the right hand side if the resulting type
3258 is a variable length type. */
3259 if (TYPE_RANGE_DATA (type)->flag_bound_evaluated)
3260 {
3261 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_NORMAL);
3262 return value_from_longest
3263 (size_type, (LONGEST) TYPE_LENGTH (value_type (val)));
3264 }
3265 }
3266 }
3267 }
3268
3269 /* Fall through. */
3270
3271 default:
3272 val = evaluate_subexp (NULL_TYPE, exp, pos, EVAL_AVOID_SIDE_EFFECTS);
3273 type = value_type (val);
3274 break;
3275 }
3276
3277 /* $5.3.3/2 of the C++ Standard (n3290 draft) says of sizeof:
3278 "When applied to a reference or a reference type, the result is
3279 the size of the referenced type." */
3280 type = check_typedef (type);
3281 if (exp->language_defn->la_language == language_cplus
3282 && (TYPE_IS_REFERENCE (type)))
3283 type = check_typedef (TYPE_TARGET_TYPE (type));
3284 return value_from_longest (size_type, (LONGEST) TYPE_LENGTH (type));
3285 }
3286
3287 /* Evaluate a subexpression of EXP, at index *POS, and return a value
3288 for that subexpression cast to TO_TYPE. Advance *POS over the
3289 subexpression. */
3290
3291 static value *
3292 evaluate_subexp_for_cast (expression *exp, int *pos,
3293 enum noside noside,
3294 struct type *to_type)
3295 {
3296 int pc = *pos;
3297
3298 /* Don't let symbols be evaluated with evaluate_subexp because that
3299 throws an "unknown type" error for no-debug data symbols.
3300 Instead, we want the cast to reinterpret the symbol. */
3301 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE
3302 || exp->elts[pc].opcode == OP_VAR_VALUE)
3303 {
3304 (*pos) += 4;
3305
3306 value *val;
3307 if (exp->elts[pc].opcode == OP_VAR_MSYM_VALUE)
3308 {
3309 if (noside == EVAL_AVOID_SIDE_EFFECTS)
3310 return value_zero (to_type, not_lval);
3311
3312 val = evaluate_var_msym_value (noside,
3313 exp->elts[pc + 1].objfile,
3314 exp->elts[pc + 2].msymbol);
3315 }
3316 else
3317 val = evaluate_var_value (noside,
3318 exp->elts[pc + 1].block,
3319 exp->elts[pc + 2].symbol);
3320
3321 if (noside == EVAL_SKIP)
3322 return eval_skip_value (exp);
3323
3324 val = value_cast (to_type, val);
3325
3326 /* Don't allow e.g. '&(int)var_with_no_debug_info'. */
3327 if (VALUE_LVAL (val) == lval_memory)
3328 {
3329 if (value_lazy (val))
3330 value_fetch_lazy (val);
3331 VALUE_LVAL (val) = not_lval;
3332 }
3333 return val;
3334 }
3335
3336 value *val = evaluate_subexp (to_type, exp, pos, noside);
3337 if (noside == EVAL_SKIP)
3338 return eval_skip_value (exp);
3339 return value_cast (to_type, val);
3340 }
3341
3342 /* Parse a type expression in the string [P..P+LENGTH). */
3343
3344 struct type *
3345 parse_and_eval_type (char *p, int length)
3346 {
3347 char *tmp = (char *) alloca (length + 4);
3348
3349 tmp[0] = '(';
3350 memcpy (tmp + 1, p, length);
3351 tmp[length + 1] = ')';
3352 tmp[length + 2] = '0';
3353 tmp[length + 3] = '\0';
3354 expression_up expr = parse_expression (tmp);
3355 if (expr->elts[0].opcode != UNOP_CAST)
3356 error (_("Internal error in eval_type."));
3357 return expr->elts[1].type;
3358 }
3359
3360 int
3361 calc_f77_array_dims (struct type *array_type)
3362 {
3363 int ndimen = 1;
3364 struct type *tmp_type;
3365
3366 if ((array_type->code () != TYPE_CODE_ARRAY))
3367 error (_("Can't get dimensions for a non-array type"));
3368
3369 tmp_type = array_type;
3370
3371 while ((tmp_type = TYPE_TARGET_TYPE (tmp_type)))
3372 {
3373 if (tmp_type->code () == TYPE_CODE_ARRAY)
3374 ++ndimen;
3375 }
3376 return ndimen;
3377 }
This page took 0.098784 seconds and 4 git commands to generate.