C++-ify bcache
[deliverable/binutils-gdb.git] / gdb / objfiles.c
1 /* GDB routines for manipulating objfiles.
2
3 Copyright (C) 1992-2019 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support, using pieces from other GDB modules.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 /* This file contains support routines for creating, manipulating, and
23 destroying objfile structures. */
24
25 #include "defs.h"
26 #include "bfd.h" /* Binary File Description */
27 #include "symtab.h"
28 #include "symfile.h"
29 #include "objfiles.h"
30 #include "gdb-stabs.h"
31 #include "target.h"
32 #include "bcache.h"
33 #include "expression.h"
34 #include "parser-defs.h"
35
36 #include <sys/types.h>
37 #include <sys/stat.h>
38 #include <fcntl.h>
39 #include "gdb_obstack.h"
40 #include "hashtab.h"
41
42 #include "breakpoint.h"
43 #include "block.h"
44 #include "dictionary.h"
45 #include "source.h"
46 #include "addrmap.h"
47 #include "arch-utils.h"
48 #include "exec.h"
49 #include "observable.h"
50 #include "complaints.h"
51 #include "psymtab.h"
52 #include "solist.h"
53 #include "gdb_bfd.h"
54 #include "btrace.h"
55 #include "common/pathstuff.h"
56
57 #include <vector>
58
59 /* Keep a registry of per-objfile data-pointers required by other GDB
60 modules. */
61
62 DEFINE_REGISTRY (objfile, REGISTRY_ACCESS_FIELD)
63
64 /* Externally visible variables that are owned by this module.
65 See declarations in objfile.h for more info. */
66
67 struct objfile_pspace_info
68 {
69 struct obj_section **sections;
70 int num_sections;
71
72 /* Nonzero if object files have been added since the section map
73 was last updated. */
74 int new_objfiles_available;
75
76 /* Nonzero if the section map MUST be updated before use. */
77 int section_map_dirty;
78
79 /* Nonzero if section map updates should be inhibited if possible. */
80 int inhibit_updates;
81 };
82
83 /* Per-program-space data key. */
84 static const struct program_space_data *objfiles_pspace_data;
85
86 static void
87 objfiles_pspace_data_cleanup (struct program_space *pspace, void *arg)
88 {
89 struct objfile_pspace_info *info = (struct objfile_pspace_info *) arg;
90
91 xfree (info->sections);
92 xfree (info);
93 }
94
95 /* Get the current svr4 data. If none is found yet, add it now. This
96 function always returns a valid object. */
97
98 static struct objfile_pspace_info *
99 get_objfile_pspace_data (struct program_space *pspace)
100 {
101 struct objfile_pspace_info *info;
102
103 info = ((struct objfile_pspace_info *)
104 program_space_data (pspace, objfiles_pspace_data));
105 if (info == NULL)
106 {
107 info = XCNEW (struct objfile_pspace_info);
108 set_program_space_data (pspace, objfiles_pspace_data, info);
109 }
110
111 return info;
112 }
113
114 \f
115
116 /* Per-BFD data key. */
117
118 static const struct bfd_data *objfiles_bfd_data;
119
120 /* Create the per-BFD storage object for OBJFILE. If ABFD is not
121 NULL, and it already has a per-BFD storage object, use that.
122 Otherwise, allocate a new per-BFD storage object. If ABFD is not
123 NULL, the object is allocated on the BFD; otherwise it is allocated
124 on OBJFILE's obstack. Note that it is not safe to call this
125 multiple times for a given OBJFILE -- it can only be called when
126 allocating or re-initializing OBJFILE. */
127
128 static struct objfile_per_bfd_storage *
129 get_objfile_bfd_data (struct objfile *objfile, struct bfd *abfd)
130 {
131 struct objfile_per_bfd_storage *storage = NULL;
132
133 if (abfd != NULL)
134 storage = ((struct objfile_per_bfd_storage *)
135 bfd_data (abfd, objfiles_bfd_data));
136
137 if (storage == NULL)
138 {
139 /* If the object requires gdb to do relocations, we simply fall
140 back to not sharing data across users. These cases are rare
141 enough that this seems reasonable. */
142 if (abfd != NULL && !gdb_bfd_requires_relocations (abfd))
143 {
144 storage
145 = ((struct objfile_per_bfd_storage *)
146 bfd_alloc (abfd, sizeof (struct objfile_per_bfd_storage)));
147 /* objfile_per_bfd_storage is not trivially constructible, must
148 call the ctor manually. */
149 storage = new (storage) objfile_per_bfd_storage ();
150 set_bfd_data (abfd, objfiles_bfd_data, storage);
151 }
152 else
153 storage
154 = obstack_new<objfile_per_bfd_storage> (&objfile->objfile_obstack);
155
156 /* Look up the gdbarch associated with the BFD. */
157 if (abfd != NULL)
158 storage->gdbarch = gdbarch_from_bfd (abfd);
159
160 storage->language_of_main = language_unknown;
161 }
162
163 return storage;
164 }
165
166 /* Free STORAGE. */
167
168 static void
169 free_objfile_per_bfd_storage (struct objfile_per_bfd_storage *storage)
170 {
171 if (storage->demangled_names_hash)
172 htab_delete (storage->demangled_names_hash);
173 storage->~objfile_per_bfd_storage ();
174 }
175
176 /* A wrapper for free_objfile_per_bfd_storage that can be passed as a
177 cleanup function to the BFD registry. */
178
179 static void
180 objfile_bfd_data_free (struct bfd *unused, void *d)
181 {
182 free_objfile_per_bfd_storage ((struct objfile_per_bfd_storage *) d);
183 }
184
185 /* See objfiles.h. */
186
187 void
188 set_objfile_per_bfd (struct objfile *objfile)
189 {
190 objfile->per_bfd = get_objfile_bfd_data (objfile, objfile->obfd);
191 }
192
193 /* Set the objfile's per-BFD notion of the "main" name and
194 language. */
195
196 void
197 set_objfile_main_name (struct objfile *objfile,
198 const char *name, enum language lang)
199 {
200 if (objfile->per_bfd->name_of_main == NULL
201 || strcmp (objfile->per_bfd->name_of_main, name) != 0)
202 objfile->per_bfd->name_of_main
203 = (const char *) obstack_copy0 (&objfile->per_bfd->storage_obstack, name,
204 strlen (name));
205 objfile->per_bfd->language_of_main = lang;
206 }
207
208 /* Helper structure to map blocks to static link properties in hash tables. */
209
210 struct static_link_htab_entry
211 {
212 const struct block *block;
213 const struct dynamic_prop *static_link;
214 };
215
216 /* Return a hash code for struct static_link_htab_entry *P. */
217
218 static hashval_t
219 static_link_htab_entry_hash (const void *p)
220 {
221 const struct static_link_htab_entry *e
222 = (const struct static_link_htab_entry *) p;
223
224 return htab_hash_pointer (e->block);
225 }
226
227 /* Return whether P1 an P2 (pointers to struct static_link_htab_entry) are
228 mappings for the same block. */
229
230 static int
231 static_link_htab_entry_eq (const void *p1, const void *p2)
232 {
233 const struct static_link_htab_entry *e1
234 = (const struct static_link_htab_entry *) p1;
235 const struct static_link_htab_entry *e2
236 = (const struct static_link_htab_entry *) p2;
237
238 return e1->block == e2->block;
239 }
240
241 /* Register STATIC_LINK as the static link for BLOCK, which is part of OBJFILE.
242 Must not be called more than once for each BLOCK. */
243
244 void
245 objfile_register_static_link (struct objfile *objfile,
246 const struct block *block,
247 const struct dynamic_prop *static_link)
248 {
249 void **slot;
250 struct static_link_htab_entry lookup_entry;
251 struct static_link_htab_entry *entry;
252
253 if (objfile->static_links == NULL)
254 objfile->static_links = htab_create_alloc
255 (1, &static_link_htab_entry_hash, static_link_htab_entry_eq, NULL,
256 xcalloc, xfree);
257
258 /* Create a slot for the mapping, make sure it's the first mapping for this
259 block and then create the mapping itself. */
260 lookup_entry.block = block;
261 slot = htab_find_slot (objfile->static_links, &lookup_entry, INSERT);
262 gdb_assert (*slot == NULL);
263
264 entry = XOBNEW (&objfile->objfile_obstack, static_link_htab_entry);
265 entry->block = block;
266 entry->static_link = static_link;
267 *slot = (void *) entry;
268 }
269
270 /* Look for a static link for BLOCK, which is part of OBJFILE. Return NULL if
271 none was found. */
272
273 const struct dynamic_prop *
274 objfile_lookup_static_link (struct objfile *objfile,
275 const struct block *block)
276 {
277 struct static_link_htab_entry *entry;
278 struct static_link_htab_entry lookup_entry;
279
280 if (objfile->static_links == NULL)
281 return NULL;
282 lookup_entry.block = block;
283 entry
284 = (struct static_link_htab_entry *) htab_find (objfile->static_links,
285 &lookup_entry);
286 if (entry == NULL)
287 return NULL;
288
289 gdb_assert (entry->block == block);
290 return entry->static_link;
291 }
292
293 \f
294
295 /* Called via bfd_map_over_sections to build up the section table that
296 the objfile references. The objfile contains pointers to the start
297 of the table (objfile->sections) and to the first location after
298 the end of the table (objfile->sections_end). */
299
300 static void
301 add_to_objfile_sections_full (struct bfd *abfd, struct bfd_section *asect,
302 struct objfile *objfile, int force)
303 {
304 struct obj_section *section;
305
306 if (!force)
307 {
308 flagword aflag;
309
310 aflag = bfd_get_section_flags (abfd, asect);
311 if (!(aflag & SEC_ALLOC))
312 return;
313 }
314
315 section = &objfile->sections[gdb_bfd_section_index (abfd, asect)];
316 section->objfile = objfile;
317 section->the_bfd_section = asect;
318 section->ovly_mapped = 0;
319 }
320
321 static void
322 add_to_objfile_sections (struct bfd *abfd, struct bfd_section *asect,
323 void *objfilep)
324 {
325 add_to_objfile_sections_full (abfd, asect, (struct objfile *) objfilep, 0);
326 }
327
328 /* Builds a section table for OBJFILE.
329
330 Note that the OFFSET and OVLY_MAPPED in each table entry are
331 initialized to zero. */
332
333 void
334 build_objfile_section_table (struct objfile *objfile)
335 {
336 int count = gdb_bfd_count_sections (objfile->obfd);
337
338 objfile->sections = OBSTACK_CALLOC (&objfile->objfile_obstack,
339 count,
340 struct obj_section);
341 objfile->sections_end = (objfile->sections + count);
342 bfd_map_over_sections (objfile->obfd,
343 add_to_objfile_sections, (void *) objfile);
344
345 /* See gdb_bfd_section_index. */
346 add_to_objfile_sections_full (objfile->obfd, bfd_com_section_ptr, objfile, 1);
347 add_to_objfile_sections_full (objfile->obfd, bfd_und_section_ptr, objfile, 1);
348 add_to_objfile_sections_full (objfile->obfd, bfd_abs_section_ptr, objfile, 1);
349 add_to_objfile_sections_full (objfile->obfd, bfd_ind_section_ptr, objfile, 1);
350 }
351
352 /* Given a pointer to an initialized bfd (ABFD) and some flag bits,
353 initialize the new objfile as best we can and link it into the list
354 of all known objfiles.
355
356 NAME should contain original non-canonicalized filename or other
357 identifier as entered by user. If there is no better source use
358 bfd_get_filename (ABFD). NAME may be NULL only if ABFD is NULL.
359 NAME content is copied into returned objfile.
360
361 The FLAGS word contains various bits (OBJF_*) that can be taken as
362 requests for specific operations. Other bits like OBJF_SHARED are
363 simply copied through to the new objfile flags member. */
364
365 objfile::objfile (bfd *abfd, const char *name, objfile_flags flags_)
366 : flags (flags_),
367 pspace (current_program_space),
368 partial_symtabs (new psymtab_storage ()),
369 obfd (abfd)
370 {
371 const char *expanded_name;
372
373 /* We could use obstack_specify_allocation here instead, but
374 gdb_obstack.h specifies the alloc/dealloc functions. */
375 obstack_init (&objfile_obstack);
376
377 objfile_alloc_data (this);
378
379 gdb::unique_xmalloc_ptr<char> name_holder;
380 if (name == NULL)
381 {
382 gdb_assert (abfd == NULL);
383 gdb_assert ((flags & OBJF_NOT_FILENAME) != 0);
384 expanded_name = "<<anonymous objfile>>";
385 }
386 else if ((flags & OBJF_NOT_FILENAME) != 0
387 || is_target_filename (name))
388 expanded_name = name;
389 else
390 {
391 name_holder = gdb_abspath (name);
392 expanded_name = name_holder.get ();
393 }
394 original_name
395 = (char *) obstack_copy0 (&objfile_obstack,
396 expanded_name,
397 strlen (expanded_name));
398
399 /* Update the per-objfile information that comes from the bfd, ensuring
400 that any data that is reference is saved in the per-objfile data
401 region. */
402
403 gdb_bfd_ref (abfd);
404 if (abfd != NULL)
405 {
406 mtime = bfd_get_mtime (abfd);
407
408 /* Build section table. */
409 build_objfile_section_table (this);
410 }
411
412 per_bfd = get_objfile_bfd_data (this, abfd);
413
414 terminate_minimal_symbol_table (this);
415
416 /* Add this file onto the tail of the linked list of other such files. */
417
418 if (object_files == NULL)
419 object_files = this;
420 else
421 {
422 struct objfile *last_one;
423
424 for (last_one = object_files;
425 last_one->next;
426 last_one = last_one->next);
427 last_one->next = this;
428 }
429
430 /* Rebuild section map next time we need it. */
431 get_objfile_pspace_data (pspace)->new_objfiles_available = 1;
432 }
433
434 /* Retrieve the gdbarch associated with OBJFILE. */
435
436 struct gdbarch *
437 get_objfile_arch (const struct objfile *objfile)
438 {
439 return objfile->per_bfd->gdbarch;
440 }
441
442 /* If there is a valid and known entry point, function fills *ENTRY_P with it
443 and returns non-zero; otherwise it returns zero. */
444
445 int
446 entry_point_address_query (CORE_ADDR *entry_p)
447 {
448 if (symfile_objfile == NULL || !symfile_objfile->per_bfd->ei.entry_point_p)
449 return 0;
450
451 *entry_p = (symfile_objfile->per_bfd->ei.entry_point
452 + ANOFFSET (symfile_objfile->section_offsets,
453 symfile_objfile->per_bfd->ei.the_bfd_section_index));
454
455 return 1;
456 }
457
458 /* Get current entry point address. Call error if it is not known. */
459
460 CORE_ADDR
461 entry_point_address (void)
462 {
463 CORE_ADDR retval;
464
465 if (!entry_point_address_query (&retval))
466 error (_("Entry point address is not known."));
467
468 return retval;
469 }
470
471 /* Iterator on PARENT and every separate debug objfile of PARENT.
472 The usage pattern is:
473 for (objfile = parent;
474 objfile;
475 objfile = objfile_separate_debug_iterate (parent, objfile))
476 ...
477 */
478
479 struct objfile *
480 objfile_separate_debug_iterate (const struct objfile *parent,
481 const struct objfile *objfile)
482 {
483 struct objfile *res;
484
485 /* If any, return the first child. */
486 res = objfile->separate_debug_objfile;
487 if (res)
488 return res;
489
490 /* Common case where there is no separate debug objfile. */
491 if (objfile == parent)
492 return NULL;
493
494 /* Return the brother if any. Note that we don't iterate on brothers of
495 the parents. */
496 res = objfile->separate_debug_objfile_link;
497 if (res)
498 return res;
499
500 for (res = objfile->separate_debug_objfile_backlink;
501 res != parent;
502 res = res->separate_debug_objfile_backlink)
503 {
504 gdb_assert (res != NULL);
505 if (res->separate_debug_objfile_link)
506 return res->separate_debug_objfile_link;
507 }
508 return NULL;
509 }
510
511 /* Put one object file before a specified on in the global list.
512 This can be used to make sure an object file is destroyed before
513 another when using objfiles_safe to free all objfiles. */
514 void
515 put_objfile_before (struct objfile *objfile, struct objfile *before_this)
516 {
517 struct objfile **objp;
518
519 unlink_objfile (objfile);
520
521 for (objp = &object_files; *objp != NULL; objp = &((*objp)->next))
522 {
523 if (*objp == before_this)
524 {
525 objfile->next = *objp;
526 *objp = objfile;
527 return;
528 }
529 }
530
531 internal_error (__FILE__, __LINE__,
532 _("put_objfile_before: before objfile not in list"));
533 }
534
535 /* Unlink OBJFILE from the list of known objfiles, if it is found in the
536 list.
537
538 It is not a bug, or error, to call this function if OBJFILE is not known
539 to be in the current list. This is done in the case of mapped objfiles,
540 for example, just to ensure that the mapped objfile doesn't appear twice
541 in the list. Since the list is threaded, linking in a mapped objfile
542 twice would create a circular list.
543
544 If OBJFILE turns out to be in the list, we zap it's NEXT pointer after
545 unlinking it, just to ensure that we have completely severed any linkages
546 between the OBJFILE and the list. */
547
548 void
549 unlink_objfile (struct objfile *objfile)
550 {
551 struct objfile **objpp;
552
553 for (objpp = &object_files; *objpp != NULL; objpp = &((*objpp)->next))
554 {
555 if (*objpp == objfile)
556 {
557 *objpp = (*objpp)->next;
558 objfile->next = NULL;
559 return;
560 }
561 }
562
563 internal_error (__FILE__, __LINE__,
564 _("unlink_objfile: objfile already unlinked"));
565 }
566
567 /* Add OBJFILE as a separate debug objfile of PARENT. */
568
569 void
570 add_separate_debug_objfile (struct objfile *objfile, struct objfile *parent)
571 {
572 gdb_assert (objfile && parent);
573
574 /* Must not be already in a list. */
575 gdb_assert (objfile->separate_debug_objfile_backlink == NULL);
576 gdb_assert (objfile->separate_debug_objfile_link == NULL);
577 gdb_assert (objfile->separate_debug_objfile == NULL);
578 gdb_assert (parent->separate_debug_objfile_backlink == NULL);
579 gdb_assert (parent->separate_debug_objfile_link == NULL);
580
581 objfile->separate_debug_objfile_backlink = parent;
582 objfile->separate_debug_objfile_link = parent->separate_debug_objfile;
583 parent->separate_debug_objfile = objfile;
584
585 /* Put the separate debug object before the normal one, this is so that
586 usage of objfiles_safe will stay safe. */
587 put_objfile_before (objfile, parent);
588 }
589
590 /* Free all separate debug objfile of OBJFILE, but don't free OBJFILE
591 itself. */
592
593 void
594 free_objfile_separate_debug (struct objfile *objfile)
595 {
596 struct objfile *child;
597
598 for (child = objfile->separate_debug_objfile; child;)
599 {
600 struct objfile *next_child = child->separate_debug_objfile_link;
601 delete child;
602 child = next_child;
603 }
604 }
605
606 /* Destroy an objfile and all the symtabs and psymtabs under it. */
607
608 objfile::~objfile ()
609 {
610 /* First notify observers that this objfile is about to be freed. */
611 gdb::observers::free_objfile.notify (this);
612
613 /* Free all separate debug objfiles. */
614 free_objfile_separate_debug (this);
615
616 if (separate_debug_objfile_backlink)
617 {
618 /* We freed the separate debug file, make sure the base objfile
619 doesn't reference it. */
620 struct objfile *child;
621
622 child = separate_debug_objfile_backlink->separate_debug_objfile;
623
624 if (child == this)
625 {
626 /* THIS is the first child. */
627 separate_debug_objfile_backlink->separate_debug_objfile =
628 separate_debug_objfile_link;
629 }
630 else
631 {
632 /* Find THIS in the list. */
633 while (1)
634 {
635 if (child->separate_debug_objfile_link == this)
636 {
637 child->separate_debug_objfile_link =
638 separate_debug_objfile_link;
639 break;
640 }
641 child = child->separate_debug_objfile_link;
642 gdb_assert (child);
643 }
644 }
645 }
646
647 /* Remove any references to this objfile in the global value
648 lists. */
649 preserve_values (this);
650
651 /* It still may reference data modules have associated with the objfile and
652 the symbol file data. */
653 forget_cached_source_info_for_objfile (this);
654
655 breakpoint_free_objfile (this);
656 btrace_free_objfile (this);
657
658 /* First do any symbol file specific actions required when we are
659 finished with a particular symbol file. Note that if the objfile
660 is using reusable symbol information (via mmalloc) then each of
661 these routines is responsible for doing the correct thing, either
662 freeing things which are valid only during this particular gdb
663 execution, or leaving them to be reused during the next one. */
664
665 if (sf != NULL)
666 (*sf->sym_finish) (this);
667
668 /* Discard any data modules have associated with the objfile. The function
669 still may reference obfd. */
670 objfile_free_data (this);
671
672 if (obfd)
673 gdb_bfd_unref (obfd);
674 else
675 free_objfile_per_bfd_storage (per_bfd);
676
677 /* Remove it from the chain of all objfiles. */
678
679 unlink_objfile (this);
680
681 if (this == symfile_objfile)
682 symfile_objfile = NULL;
683
684 /* Before the symbol table code was redone to make it easier to
685 selectively load and remove information particular to a specific
686 linkage unit, gdb used to do these things whenever the monolithic
687 symbol table was blown away. How much still needs to be done
688 is unknown, but we play it safe for now and keep each action until
689 it is shown to be no longer needed. */
690
691 /* Not all our callers call clear_symtab_users (objfile_purge_solibs,
692 for example), so we need to call this here. */
693 clear_pc_function_cache ();
694
695 /* Clear globals which might have pointed into a removed objfile.
696 FIXME: It's not clear which of these are supposed to persist
697 between expressions and which ought to be reset each time. */
698 expression_context_block = NULL;
699 innermost_block.reset ();
700
701 /* Check to see if the current_source_symtab belongs to this objfile,
702 and if so, call clear_current_source_symtab_and_line. */
703
704 {
705 struct symtab_and_line cursal = get_current_source_symtab_and_line ();
706
707 if (cursal.symtab && SYMTAB_OBJFILE (cursal.symtab) == this)
708 clear_current_source_symtab_and_line ();
709 }
710
711 /* Free the obstacks for non-reusable objfiles. */
712 obstack_free (&objfile_obstack, 0);
713
714 /* Rebuild section map next time we need it. */
715 get_objfile_pspace_data (pspace)->section_map_dirty = 1;
716
717 /* Free the map for static links. There's no need to free static link
718 themselves since they were allocated on the objstack. */
719 if (static_links != NULL)
720 htab_delete (static_links);
721 }
722
723 /* Free all the object files at once and clean up their users. */
724
725 void
726 free_all_objfiles (void)
727 {
728 struct so_list *so;
729
730 /* Any objfile referencewould become stale. */
731 for (so = master_so_list (); so; so = so->next)
732 gdb_assert (so->objfile == NULL);
733
734 for (objfile *objfile : current_program_space->objfiles_safe ())
735 delete objfile;
736 clear_symtab_users (0);
737 }
738 \f
739 /* A helper function for objfile_relocate1 that relocates a single
740 symbol. */
741
742 static void
743 relocate_one_symbol (struct symbol *sym, struct objfile *objfile,
744 struct section_offsets *delta)
745 {
746 fixup_symbol_section (sym, objfile);
747
748 /* The RS6000 code from which this was taken skipped
749 any symbols in STRUCT_DOMAIN or UNDEF_DOMAIN.
750 But I'm leaving out that test, on the theory that
751 they can't possibly pass the tests below. */
752 if ((SYMBOL_CLASS (sym) == LOC_LABEL
753 || SYMBOL_CLASS (sym) == LOC_STATIC)
754 && SYMBOL_SECTION (sym) >= 0)
755 {
756 SYMBOL_VALUE_ADDRESS (sym) += ANOFFSET (delta, SYMBOL_SECTION (sym));
757 }
758 }
759
760 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
761 entries in new_offsets. SEPARATE_DEBUG_OBJFILE is not touched here.
762 Return non-zero iff any change happened. */
763
764 static int
765 objfile_relocate1 (struct objfile *objfile,
766 const struct section_offsets *new_offsets)
767 {
768 struct section_offsets *delta =
769 ((struct section_offsets *)
770 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
771
772 int something_changed = 0;
773
774 for (int i = 0; i < objfile->num_sections; ++i)
775 {
776 delta->offsets[i] =
777 ANOFFSET (new_offsets, i) - ANOFFSET (objfile->section_offsets, i);
778 if (ANOFFSET (delta, i) != 0)
779 something_changed = 1;
780 }
781 if (!something_changed)
782 return 0;
783
784 /* OK, get all the symtabs. */
785 {
786 for (compunit_symtab *cust : objfile->compunits ())
787 {
788 for (symtab *s : compunit_filetabs (cust))
789 {
790 struct linetable *l;
791
792 /* First the line table. */
793 l = SYMTAB_LINETABLE (s);
794 if (l)
795 {
796 for (int i = 0; i < l->nitems; ++i)
797 l->item[i].pc += ANOFFSET (delta,
798 COMPUNIT_BLOCK_LINE_SECTION
799 (cust));
800 }
801 }
802 }
803
804 for (compunit_symtab *cust : objfile->compunits ())
805 {
806 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
807 int block_line_section = COMPUNIT_BLOCK_LINE_SECTION (cust);
808
809 if (BLOCKVECTOR_MAP (bv))
810 addrmap_relocate (BLOCKVECTOR_MAP (bv),
811 ANOFFSET (delta, block_line_section));
812
813 for (int i = 0; i < BLOCKVECTOR_NBLOCKS (bv); ++i)
814 {
815 struct block *b;
816 struct symbol *sym;
817 struct mdict_iterator miter;
818
819 b = BLOCKVECTOR_BLOCK (bv, i);
820 BLOCK_START (b) += ANOFFSET (delta, block_line_section);
821 BLOCK_END (b) += ANOFFSET (delta, block_line_section);
822
823 if (BLOCK_RANGES (b) != nullptr)
824 for (int j = 0; j < BLOCK_NRANGES (b); j++)
825 {
826 BLOCK_RANGE_START (b, j)
827 += ANOFFSET (delta, block_line_section);
828 BLOCK_RANGE_END (b, j) += ANOFFSET (delta,
829 block_line_section);
830 }
831
832 /* We only want to iterate over the local symbols, not any
833 symbols in included symtabs. */
834 ALL_DICT_SYMBOLS (BLOCK_MULTIDICT (b), miter, sym)
835 {
836 relocate_one_symbol (sym, objfile, delta);
837 }
838 }
839 }
840 }
841
842 /* This stores relocated addresses and so must be cleared. This
843 will cause it to be recreated on demand. */
844 objfile->psymbol_map.clear ();
845
846 /* Relocate isolated symbols. */
847 {
848 struct symbol *iter;
849
850 for (iter = objfile->template_symbols; iter; iter = iter->hash_next)
851 relocate_one_symbol (iter, objfile, delta);
852 }
853
854 {
855 int i;
856
857 for (i = 0; i < objfile->num_sections; ++i)
858 (objfile->section_offsets)->offsets[i] = ANOFFSET (new_offsets, i);
859 }
860
861 /* Rebuild section map next time we need it. */
862 get_objfile_pspace_data (objfile->pspace)->section_map_dirty = 1;
863
864 /* Update the table in exec_ops, used to read memory. */
865 struct obj_section *s;
866 ALL_OBJFILE_OSECTIONS (objfile, s)
867 {
868 int idx = s - objfile->sections;
869
870 exec_set_section_address (bfd_get_filename (objfile->obfd), idx,
871 obj_section_addr (s));
872 }
873
874 /* Data changed. */
875 return 1;
876 }
877
878 /* Relocate OBJFILE to NEW_OFFSETS. There should be OBJFILE->NUM_SECTIONS
879 entries in new_offsets. Process also OBJFILE's SEPARATE_DEBUG_OBJFILEs.
880
881 The number and ordering of sections does differ between the two objfiles.
882 Only their names match. Also the file offsets will differ (objfile being
883 possibly prelinked but separate_debug_objfile is probably not prelinked) but
884 the in-memory absolute address as specified by NEW_OFFSETS must match both
885 files. */
886
887 void
888 objfile_relocate (struct objfile *objfile,
889 const struct section_offsets *new_offsets)
890 {
891 struct objfile *debug_objfile;
892 int changed = 0;
893
894 changed |= objfile_relocate1 (objfile, new_offsets);
895
896 for (debug_objfile = objfile->separate_debug_objfile;
897 debug_objfile;
898 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
899 {
900 section_addr_info objfile_addrs
901 = build_section_addr_info_from_objfile (objfile);
902
903 /* Here OBJFILE_ADDRS contain the correct absolute addresses, the
904 relative ones must be already created according to debug_objfile. */
905
906 addr_info_make_relative (&objfile_addrs, debug_objfile->obfd);
907
908 gdb_assert (debug_objfile->num_sections
909 == gdb_bfd_count_sections (debug_objfile->obfd));
910 std::vector<struct section_offsets>
911 new_debug_offsets (SIZEOF_N_SECTION_OFFSETS (debug_objfile->num_sections));
912 relative_addr_info_to_section_offsets (new_debug_offsets.data (),
913 debug_objfile->num_sections,
914 objfile_addrs);
915
916 changed |= objfile_relocate1 (debug_objfile, new_debug_offsets.data ());
917 }
918
919 /* Relocate breakpoints as necessary, after things are relocated. */
920 if (changed)
921 breakpoint_re_set ();
922 }
923
924 /* Rebase (add to the offsets) OBJFILE by SLIDE. SEPARATE_DEBUG_OBJFILE is
925 not touched here.
926 Return non-zero iff any change happened. */
927
928 static int
929 objfile_rebase1 (struct objfile *objfile, CORE_ADDR slide)
930 {
931 struct section_offsets *new_offsets =
932 ((struct section_offsets *)
933 alloca (SIZEOF_N_SECTION_OFFSETS (objfile->num_sections)));
934 int i;
935
936 for (i = 0; i < objfile->num_sections; ++i)
937 new_offsets->offsets[i] = slide;
938
939 return objfile_relocate1 (objfile, new_offsets);
940 }
941
942 /* Rebase (add to the offsets) OBJFILE by SLIDE. Process also OBJFILE's
943 SEPARATE_DEBUG_OBJFILEs. */
944
945 void
946 objfile_rebase (struct objfile *objfile, CORE_ADDR slide)
947 {
948 struct objfile *debug_objfile;
949 int changed = 0;
950
951 changed |= objfile_rebase1 (objfile, slide);
952
953 for (debug_objfile = objfile->separate_debug_objfile;
954 debug_objfile;
955 debug_objfile = objfile_separate_debug_iterate (objfile, debug_objfile))
956 changed |= objfile_rebase1 (debug_objfile, slide);
957
958 /* Relocate breakpoints as necessary, after things are relocated. */
959 if (changed)
960 breakpoint_re_set ();
961 }
962 \f
963 /* Return non-zero if OBJFILE has partial symbols. */
964
965 int
966 objfile_has_partial_symbols (struct objfile *objfile)
967 {
968 if (!objfile->sf)
969 return 0;
970
971 /* If we have not read psymbols, but we have a function capable of reading
972 them, then that is an indication that they are in fact available. Without
973 this function the symbols may have been already read in but they also may
974 not be present in this objfile. */
975 if ((objfile->flags & OBJF_PSYMTABS_READ) == 0
976 && objfile->sf->sym_read_psymbols != NULL)
977 return 1;
978
979 return objfile->sf->qf->has_symbols (objfile);
980 }
981
982 /* Return non-zero if OBJFILE has full symbols. */
983
984 int
985 objfile_has_full_symbols (struct objfile *objfile)
986 {
987 return objfile->compunit_symtabs != NULL;
988 }
989
990 /* Return non-zero if OBJFILE has full or partial symbols, either directly
991 or through a separate debug file. */
992
993 int
994 objfile_has_symbols (struct objfile *objfile)
995 {
996 struct objfile *o;
997
998 for (o = objfile; o; o = objfile_separate_debug_iterate (objfile, o))
999 if (objfile_has_partial_symbols (o) || objfile_has_full_symbols (o))
1000 return 1;
1001 return 0;
1002 }
1003
1004
1005 /* Many places in gdb want to test just to see if we have any partial
1006 symbols available. This function returns zero if none are currently
1007 available, nonzero otherwise. */
1008
1009 int
1010 have_partial_symbols (void)
1011 {
1012 for (objfile *ofp : current_program_space->objfiles ())
1013 {
1014 if (objfile_has_partial_symbols (ofp))
1015 return 1;
1016 }
1017 return 0;
1018 }
1019
1020 /* Many places in gdb want to test just to see if we have any full
1021 symbols available. This function returns zero if none are currently
1022 available, nonzero otherwise. */
1023
1024 int
1025 have_full_symbols (void)
1026 {
1027 for (objfile *ofp : current_program_space->objfiles ())
1028 {
1029 if (objfile_has_full_symbols (ofp))
1030 return 1;
1031 }
1032 return 0;
1033 }
1034
1035
1036 /* This operations deletes all objfile entries that represent solibs that
1037 weren't explicitly loaded by the user, via e.g., the add-symbol-file
1038 command. */
1039
1040 void
1041 objfile_purge_solibs (void)
1042 {
1043 for (objfile *objf : current_program_space->objfiles_safe ())
1044 {
1045 /* We assume that the solib package has been purged already, or will
1046 be soon. */
1047
1048 if (!(objf->flags & OBJF_USERLOADED) && (objf->flags & OBJF_SHARED))
1049 delete objf;
1050 }
1051 }
1052
1053
1054 /* Many places in gdb want to test just to see if we have any minimal
1055 symbols available. This function returns zero if none are currently
1056 available, nonzero otherwise. */
1057
1058 int
1059 have_minimal_symbols (void)
1060 {
1061 for (objfile *ofp : current_program_space->objfiles ())
1062 {
1063 if (ofp->per_bfd->minimal_symbol_count > 0)
1064 {
1065 return 1;
1066 }
1067 }
1068 return 0;
1069 }
1070
1071 /* Qsort comparison function. */
1072
1073 static int
1074 qsort_cmp (const void *a, const void *b)
1075 {
1076 const struct obj_section *sect1 = *(const struct obj_section **) a;
1077 const struct obj_section *sect2 = *(const struct obj_section **) b;
1078 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1079 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1080
1081 if (sect1_addr < sect2_addr)
1082 return -1;
1083 else if (sect1_addr > sect2_addr)
1084 return 1;
1085 else
1086 {
1087 /* Sections are at the same address. This could happen if
1088 A) we have an objfile and a separate debuginfo.
1089 B) we are confused, and have added sections without proper relocation,
1090 or something like that. */
1091
1092 const struct objfile *const objfile1 = sect1->objfile;
1093 const struct objfile *const objfile2 = sect2->objfile;
1094
1095 if (objfile1->separate_debug_objfile == objfile2
1096 || objfile2->separate_debug_objfile == objfile1)
1097 {
1098 /* Case A. The ordering doesn't matter: separate debuginfo files
1099 will be filtered out later. */
1100
1101 return 0;
1102 }
1103
1104 /* Case B. Maintain stable sort order, so bugs in GDB are easier to
1105 triage. This section could be slow (since we iterate over all
1106 objfiles in each call to qsort_cmp), but this shouldn't happen
1107 very often (GDB is already in a confused state; one hopes this
1108 doesn't happen at all). If you discover that significant time is
1109 spent in the loops below, do 'set complaints 100' and examine the
1110 resulting complaints. */
1111
1112 if (objfile1 == objfile2)
1113 {
1114 /* Both sections came from the same objfile. We are really confused.
1115 Sort on sequence order of sections within the objfile. */
1116
1117 const struct obj_section *osect;
1118
1119 ALL_OBJFILE_OSECTIONS (objfile1, osect)
1120 if (osect == sect1)
1121 return -1;
1122 else if (osect == sect2)
1123 return 1;
1124
1125 /* We should have found one of the sections before getting here. */
1126 gdb_assert_not_reached ("section not found");
1127 }
1128 else
1129 {
1130 /* Sort on sequence number of the objfile in the chain. */
1131
1132 for (objfile *objfile : current_program_space->objfiles ())
1133 if (objfile == objfile1)
1134 return -1;
1135 else if (objfile == objfile2)
1136 return 1;
1137
1138 /* We should have found one of the objfiles before getting here. */
1139 gdb_assert_not_reached ("objfile not found");
1140 }
1141 }
1142
1143 /* Unreachable. */
1144 gdb_assert_not_reached ("unexpected code path");
1145 return 0;
1146 }
1147
1148 /* Select "better" obj_section to keep. We prefer the one that came from
1149 the real object, rather than the one from separate debuginfo.
1150 Most of the time the two sections are exactly identical, but with
1151 prelinking the .rel.dyn section in the real object may have different
1152 size. */
1153
1154 static struct obj_section *
1155 preferred_obj_section (struct obj_section *a, struct obj_section *b)
1156 {
1157 gdb_assert (obj_section_addr (a) == obj_section_addr (b));
1158 gdb_assert ((a->objfile->separate_debug_objfile == b->objfile)
1159 || (b->objfile->separate_debug_objfile == a->objfile));
1160 gdb_assert ((a->objfile->separate_debug_objfile_backlink == b->objfile)
1161 || (b->objfile->separate_debug_objfile_backlink == a->objfile));
1162
1163 if (a->objfile->separate_debug_objfile != NULL)
1164 return a;
1165 return b;
1166 }
1167
1168 /* Return 1 if SECTION should be inserted into the section map.
1169 We want to insert only non-overlay and non-TLS section. */
1170
1171 static int
1172 insert_section_p (const struct bfd *abfd,
1173 const struct bfd_section *section)
1174 {
1175 const bfd_vma lma = bfd_section_lma (abfd, section);
1176
1177 if (overlay_debugging && lma != 0 && lma != bfd_section_vma (abfd, section)
1178 && (bfd_get_file_flags (abfd) & BFD_IN_MEMORY) == 0)
1179 /* This is an overlay section. IN_MEMORY check is needed to avoid
1180 discarding sections from the "system supplied DSO" (aka vdso)
1181 on some Linux systems (e.g. Fedora 11). */
1182 return 0;
1183 if ((bfd_get_section_flags (abfd, section) & SEC_THREAD_LOCAL) != 0)
1184 /* This is a TLS section. */
1185 return 0;
1186
1187 return 1;
1188 }
1189
1190 /* Filter out overlapping sections where one section came from the real
1191 objfile, and the other from a separate debuginfo file.
1192 Return the size of table after redundant sections have been eliminated. */
1193
1194 static int
1195 filter_debuginfo_sections (struct obj_section **map, int map_size)
1196 {
1197 int i, j;
1198
1199 for (i = 0, j = 0; i < map_size - 1; i++)
1200 {
1201 struct obj_section *const sect1 = map[i];
1202 struct obj_section *const sect2 = map[i + 1];
1203 const struct objfile *const objfile1 = sect1->objfile;
1204 const struct objfile *const objfile2 = sect2->objfile;
1205 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1206 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1207
1208 if (sect1_addr == sect2_addr
1209 && (objfile1->separate_debug_objfile == objfile2
1210 || objfile2->separate_debug_objfile == objfile1))
1211 {
1212 map[j++] = preferred_obj_section (sect1, sect2);
1213 ++i;
1214 }
1215 else
1216 map[j++] = sect1;
1217 }
1218
1219 if (i < map_size)
1220 {
1221 gdb_assert (i == map_size - 1);
1222 map[j++] = map[i];
1223 }
1224
1225 /* The map should not have shrunk to less than half the original size. */
1226 gdb_assert (map_size / 2 <= j);
1227
1228 return j;
1229 }
1230
1231 /* Filter out overlapping sections, issuing a warning if any are found.
1232 Overlapping sections could really be overlay sections which we didn't
1233 classify as such in insert_section_p, or we could be dealing with a
1234 corrupt binary. */
1235
1236 static int
1237 filter_overlapping_sections (struct obj_section **map, int map_size)
1238 {
1239 int i, j;
1240
1241 for (i = 0, j = 0; i < map_size - 1; )
1242 {
1243 int k;
1244
1245 map[j++] = map[i];
1246 for (k = i + 1; k < map_size; k++)
1247 {
1248 struct obj_section *const sect1 = map[i];
1249 struct obj_section *const sect2 = map[k];
1250 const CORE_ADDR sect1_addr = obj_section_addr (sect1);
1251 const CORE_ADDR sect2_addr = obj_section_addr (sect2);
1252 const CORE_ADDR sect1_endaddr = obj_section_endaddr (sect1);
1253
1254 gdb_assert (sect1_addr <= sect2_addr);
1255
1256 if (sect1_endaddr <= sect2_addr)
1257 break;
1258 else
1259 {
1260 /* We have an overlap. Report it. */
1261
1262 struct objfile *const objf1 = sect1->objfile;
1263 struct objfile *const objf2 = sect2->objfile;
1264
1265 const struct bfd_section *const bfds1 = sect1->the_bfd_section;
1266 const struct bfd_section *const bfds2 = sect2->the_bfd_section;
1267
1268 const CORE_ADDR sect2_endaddr = obj_section_endaddr (sect2);
1269
1270 struct gdbarch *const gdbarch = get_objfile_arch (objf1);
1271
1272 complaint (_("unexpected overlap between:\n"
1273 " (A) section `%s' from `%s' [%s, %s)\n"
1274 " (B) section `%s' from `%s' [%s, %s).\n"
1275 "Will ignore section B"),
1276 bfd_section_name (abfd1, bfds1), objfile_name (objf1),
1277 paddress (gdbarch, sect1_addr),
1278 paddress (gdbarch, sect1_endaddr),
1279 bfd_section_name (abfd2, bfds2), objfile_name (objf2),
1280 paddress (gdbarch, sect2_addr),
1281 paddress (gdbarch, sect2_endaddr));
1282 }
1283 }
1284 i = k;
1285 }
1286
1287 if (i < map_size)
1288 {
1289 gdb_assert (i == map_size - 1);
1290 map[j++] = map[i];
1291 }
1292
1293 return j;
1294 }
1295
1296
1297 /* Update PMAP, PMAP_SIZE with sections from all objfiles, excluding any
1298 TLS, overlay and overlapping sections. */
1299
1300 static void
1301 update_section_map (struct program_space *pspace,
1302 struct obj_section ***pmap, int *pmap_size)
1303 {
1304 struct objfile_pspace_info *pspace_info;
1305 int alloc_size, map_size, i;
1306 struct obj_section *s, **map;
1307
1308 pspace_info = get_objfile_pspace_data (pspace);
1309 gdb_assert (pspace_info->section_map_dirty != 0
1310 || pspace_info->new_objfiles_available != 0);
1311
1312 map = *pmap;
1313 xfree (map);
1314
1315 alloc_size = 0;
1316 for (objfile *objfile : pspace->objfiles ())
1317 ALL_OBJFILE_OSECTIONS (objfile, s)
1318 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1319 alloc_size += 1;
1320
1321 /* This happens on detach/attach (e.g. in gdb.base/attach.exp). */
1322 if (alloc_size == 0)
1323 {
1324 *pmap = NULL;
1325 *pmap_size = 0;
1326 return;
1327 }
1328
1329 map = XNEWVEC (struct obj_section *, alloc_size);
1330
1331 i = 0;
1332 for (objfile *objfile : pspace->objfiles ())
1333 ALL_OBJFILE_OSECTIONS (objfile, s)
1334 if (insert_section_p (objfile->obfd, s->the_bfd_section))
1335 map[i++] = s;
1336
1337 qsort (map, alloc_size, sizeof (*map), qsort_cmp);
1338 map_size = filter_debuginfo_sections(map, alloc_size);
1339 map_size = filter_overlapping_sections(map, map_size);
1340
1341 if (map_size < alloc_size)
1342 /* Some sections were eliminated. Trim excess space. */
1343 map = XRESIZEVEC (struct obj_section *, map, map_size);
1344 else
1345 gdb_assert (alloc_size == map_size);
1346
1347 *pmap = map;
1348 *pmap_size = map_size;
1349 }
1350
1351 /* Bsearch comparison function. */
1352
1353 static int
1354 bsearch_cmp (const void *key, const void *elt)
1355 {
1356 const CORE_ADDR pc = *(CORE_ADDR *) key;
1357 const struct obj_section *section = *(const struct obj_section **) elt;
1358
1359 if (pc < obj_section_addr (section))
1360 return -1;
1361 if (pc < obj_section_endaddr (section))
1362 return 0;
1363 return 1;
1364 }
1365
1366 /* Returns a section whose range includes PC or NULL if none found. */
1367
1368 struct obj_section *
1369 find_pc_section (CORE_ADDR pc)
1370 {
1371 struct objfile_pspace_info *pspace_info;
1372 struct obj_section *s, **sp;
1373
1374 /* Check for mapped overlay section first. */
1375 s = find_pc_mapped_section (pc);
1376 if (s)
1377 return s;
1378
1379 pspace_info = get_objfile_pspace_data (current_program_space);
1380 if (pspace_info->section_map_dirty
1381 || (pspace_info->new_objfiles_available
1382 && !pspace_info->inhibit_updates))
1383 {
1384 update_section_map (current_program_space,
1385 &pspace_info->sections,
1386 &pspace_info->num_sections);
1387
1388 /* Don't need updates to section map until objfiles are added,
1389 removed or relocated. */
1390 pspace_info->new_objfiles_available = 0;
1391 pspace_info->section_map_dirty = 0;
1392 }
1393
1394 /* The C standard (ISO/IEC 9899:TC2) requires the BASE argument to
1395 bsearch be non-NULL. */
1396 if (pspace_info->sections == NULL)
1397 {
1398 gdb_assert (pspace_info->num_sections == 0);
1399 return NULL;
1400 }
1401
1402 sp = (struct obj_section **) bsearch (&pc,
1403 pspace_info->sections,
1404 pspace_info->num_sections,
1405 sizeof (*pspace_info->sections),
1406 bsearch_cmp);
1407 if (sp != NULL)
1408 return *sp;
1409 return NULL;
1410 }
1411
1412
1413 /* Return non-zero if PC is in a section called NAME. */
1414
1415 int
1416 pc_in_section (CORE_ADDR pc, const char *name)
1417 {
1418 struct obj_section *s;
1419 int retval = 0;
1420
1421 s = find_pc_section (pc);
1422
1423 retval = (s != NULL
1424 && s->the_bfd_section->name != NULL
1425 && strcmp (s->the_bfd_section->name, name) == 0);
1426 return (retval);
1427 }
1428 \f
1429
1430 /* Set section_map_dirty so section map will be rebuilt next time it
1431 is used. Called by reread_symbols. */
1432
1433 void
1434 objfiles_changed (void)
1435 {
1436 /* Rebuild section map next time we need it. */
1437 get_objfile_pspace_data (current_program_space)->section_map_dirty = 1;
1438 }
1439
1440 /* See comments in objfiles.h. */
1441
1442 scoped_restore_tmpl<int>
1443 inhibit_section_map_updates (struct program_space *pspace)
1444 {
1445 return scoped_restore_tmpl<int>
1446 (&get_objfile_pspace_data (pspace)->inhibit_updates, 1);
1447 }
1448
1449 /* Return 1 if ADDR maps into one of the sections of OBJFILE and 0
1450 otherwise. */
1451
1452 int
1453 is_addr_in_objfile (CORE_ADDR addr, const struct objfile *objfile)
1454 {
1455 struct obj_section *osect;
1456
1457 if (objfile == NULL)
1458 return 0;
1459
1460 ALL_OBJFILE_OSECTIONS (objfile, osect)
1461 {
1462 if (section_is_overlay (osect) && !section_is_mapped (osect))
1463 continue;
1464
1465 if (obj_section_addr (osect) <= addr
1466 && addr < obj_section_endaddr (osect))
1467 return 1;
1468 }
1469 return 0;
1470 }
1471
1472 int
1473 shared_objfile_contains_address_p (struct program_space *pspace,
1474 CORE_ADDR address)
1475 {
1476 for (objfile *objfile : pspace->objfiles ())
1477 {
1478 if ((objfile->flags & OBJF_SHARED) != 0
1479 && is_addr_in_objfile (address, objfile))
1480 return 1;
1481 }
1482
1483 return 0;
1484 }
1485
1486 /* The default implementation for the "iterate_over_objfiles_in_search_order"
1487 gdbarch method. It is equivalent to use the objfiles iterable,
1488 searching the objfiles in the order they are stored internally,
1489 ignoring CURRENT_OBJFILE.
1490
1491 On most platorms, it should be close enough to doing the best
1492 we can without some knowledge specific to the architecture. */
1493
1494 void
1495 default_iterate_over_objfiles_in_search_order
1496 (struct gdbarch *gdbarch,
1497 iterate_over_objfiles_in_search_order_cb_ftype *cb,
1498 void *cb_data, struct objfile *current_objfile)
1499 {
1500 int stop = 0;
1501
1502 for (objfile *objfile : current_program_space->objfiles ())
1503 {
1504 stop = cb (objfile, cb_data);
1505 if (stop)
1506 return;
1507 }
1508 }
1509
1510 /* See objfiles.h. */
1511
1512 const char *
1513 objfile_name (const struct objfile *objfile)
1514 {
1515 if (objfile->obfd != NULL)
1516 return bfd_get_filename (objfile->obfd);
1517
1518 return objfile->original_name;
1519 }
1520
1521 /* See objfiles.h. */
1522
1523 const char *
1524 objfile_filename (const struct objfile *objfile)
1525 {
1526 if (objfile->obfd != NULL)
1527 return bfd_get_filename (objfile->obfd);
1528
1529 return NULL;
1530 }
1531
1532 /* See objfiles.h. */
1533
1534 const char *
1535 objfile_debug_name (const struct objfile *objfile)
1536 {
1537 return lbasename (objfile->original_name);
1538 }
1539
1540 /* See objfiles.h. */
1541
1542 const char *
1543 objfile_flavour_name (struct objfile *objfile)
1544 {
1545 if (objfile->obfd != NULL)
1546 return bfd_flavour_name (bfd_get_flavour (objfile->obfd));
1547 return NULL;
1548 }
1549
1550 void
1551 _initialize_objfiles (void)
1552 {
1553 objfiles_pspace_data
1554 = register_program_space_data_with_cleanup (NULL,
1555 objfiles_pspace_data_cleanup);
1556
1557 objfiles_bfd_data = register_bfd_data_with_cleanup (NULL,
1558 objfile_bfd_data_free);
1559 }
This page took 0.059567 seconds and 5 git commands to generate.