Add "info connections" command, "info inferiors" connection number/string
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include <algorithm>
79 #include <unordered_map>
80
81 /* The remote target. */
82
83 static const char remote_doc[] = N_("\
84 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
85 Specify the serial device it is connected to\n\
86 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
87
88 #define OPAQUETHREADBYTES 8
89
90 /* a 64 bit opaque identifier */
91 typedef unsigned char threadref[OPAQUETHREADBYTES];
92
93 struct gdb_ext_thread_info;
94 struct threads_listing_context;
95 typedef int (*rmt_thread_action) (threadref *ref, void *context);
96 struct protocol_feature;
97 struct packet_reg;
98
99 struct stop_reply;
100 typedef std::unique_ptr<stop_reply> stop_reply_up;
101
102 /* Generic configuration support for packets the stub optionally
103 supports. Allows the user to specify the use of the packet as well
104 as allowing GDB to auto-detect support in the remote stub. */
105
106 enum packet_support
107 {
108 PACKET_SUPPORT_UNKNOWN = 0,
109 PACKET_ENABLE,
110 PACKET_DISABLE
111 };
112
113 /* Analyze a packet's return value and update the packet config
114 accordingly. */
115
116 enum packet_result
117 {
118 PACKET_ERROR,
119 PACKET_OK,
120 PACKET_UNKNOWN
121 };
122
123 struct threads_listing_context;
124
125 /* Stub vCont actions support.
126
127 Each field is a boolean flag indicating whether the stub reports
128 support for the corresponding action. */
129
130 struct vCont_action_support
131 {
132 /* vCont;t */
133 bool t = false;
134
135 /* vCont;r */
136 bool r = false;
137
138 /* vCont;s */
139 bool s = false;
140
141 /* vCont;S */
142 bool S = false;
143 };
144
145 /* About this many threadids fit in a packet. */
146
147 #define MAXTHREADLISTRESULTS 32
148
149 /* Data for the vFile:pread readahead cache. */
150
151 struct readahead_cache
152 {
153 /* Invalidate the readahead cache. */
154 void invalidate ();
155
156 /* Invalidate the readahead cache if it is holding data for FD. */
157 void invalidate_fd (int fd);
158
159 /* Serve pread from the readahead cache. Returns number of bytes
160 read, or 0 if the request can't be served from the cache. */
161 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
162
163 /* The file descriptor for the file that is being cached. -1 if the
164 cache is invalid. */
165 int fd = -1;
166
167 /* The offset into the file that the cache buffer corresponds
168 to. */
169 ULONGEST offset = 0;
170
171 /* The buffer holding the cache contents. */
172 gdb_byte *buf = nullptr;
173 /* The buffer's size. We try to read as much as fits into a packet
174 at a time. */
175 size_t bufsize = 0;
176
177 /* Cache hit and miss counters. */
178 ULONGEST hit_count = 0;
179 ULONGEST miss_count = 0;
180 };
181
182 /* Description of the remote protocol for a given architecture. */
183
184 struct packet_reg
185 {
186 long offset; /* Offset into G packet. */
187 long regnum; /* GDB's internal register number. */
188 LONGEST pnum; /* Remote protocol register number. */
189 int in_g_packet; /* Always part of G packet. */
190 /* long size in bytes; == register_size (target_gdbarch (), regnum);
191 at present. */
192 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
193 at present. */
194 };
195
196 struct remote_arch_state
197 {
198 explicit remote_arch_state (struct gdbarch *gdbarch);
199
200 /* Description of the remote protocol registers. */
201 long sizeof_g_packet;
202
203 /* Description of the remote protocol registers indexed by REGNUM
204 (making an array gdbarch_num_regs in size). */
205 std::unique_ptr<packet_reg[]> regs;
206
207 /* This is the size (in chars) of the first response to the ``g''
208 packet. It is used as a heuristic when determining the maximum
209 size of memory-read and memory-write packets. A target will
210 typically only reserve a buffer large enough to hold the ``g''
211 packet. The size does not include packet overhead (headers and
212 trailers). */
213 long actual_register_packet_size;
214
215 /* This is the maximum size (in chars) of a non read/write packet.
216 It is also used as a cap on the size of read/write packets. */
217 long remote_packet_size;
218 };
219
220 /* Description of the remote protocol state for the currently
221 connected target. This is per-target state, and independent of the
222 selected architecture. */
223
224 class remote_state
225 {
226 public:
227
228 remote_state ();
229 ~remote_state ();
230
231 /* Get the remote arch state for GDBARCH. */
232 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
233
234 public: /* data */
235
236 /* A buffer to use for incoming packets, and its current size. The
237 buffer is grown dynamically for larger incoming packets.
238 Outgoing packets may also be constructed in this buffer.
239 The size of the buffer is always at least REMOTE_PACKET_SIZE;
240 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
241 packets. */
242 gdb::char_vector buf;
243
244 /* True if we're going through initial connection setup (finding out
245 about the remote side's threads, relocating symbols, etc.). */
246 bool starting_up = false;
247
248 /* If we negotiated packet size explicitly (and thus can bypass
249 heuristics for the largest packet size that will not overflow
250 a buffer in the stub), this will be set to that packet size.
251 Otherwise zero, meaning to use the guessed size. */
252 long explicit_packet_size = 0;
253
254 /* remote_wait is normally called when the target is running and
255 waits for a stop reply packet. But sometimes we need to call it
256 when the target is already stopped. We can send a "?" packet
257 and have remote_wait read the response. Or, if we already have
258 the response, we can stash it in BUF and tell remote_wait to
259 skip calling getpkt. This flag is set when BUF contains a
260 stop reply packet and the target is not waiting. */
261 int cached_wait_status = 0;
262
263 /* True, if in no ack mode. That is, neither GDB nor the stub will
264 expect acks from each other. The connection is assumed to be
265 reliable. */
266 bool noack_mode = false;
267
268 /* True if we're connected in extended remote mode. */
269 bool extended = false;
270
271 /* True if we resumed the target and we're waiting for the target to
272 stop. In the mean time, we can't start another command/query.
273 The remote server wouldn't be ready to process it, so we'd
274 timeout waiting for a reply that would never come and eventually
275 we'd close the connection. This can happen in asynchronous mode
276 because we allow GDB commands while the target is running. */
277 bool waiting_for_stop_reply = false;
278
279 /* The status of the stub support for the various vCont actions. */
280 vCont_action_support supports_vCont;
281 /* Whether vCont support was probed already. This is a workaround
282 until packet_support is per-connection. */
283 bool supports_vCont_probed;
284
285 /* True if the user has pressed Ctrl-C, but the target hasn't
286 responded to that. */
287 bool ctrlc_pending_p = false;
288
289 /* True if we saw a Ctrl-C while reading or writing from/to the
290 remote descriptor. At that point it is not safe to send a remote
291 interrupt packet, so we instead remember we saw the Ctrl-C and
292 process it once we're done with sending/receiving the current
293 packet, which should be shortly. If however that takes too long,
294 and the user presses Ctrl-C again, we offer to disconnect. */
295 bool got_ctrlc_during_io = false;
296
297 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
298 remote_open knows that we don't have a file open when the program
299 starts. */
300 struct serial *remote_desc = nullptr;
301
302 /* These are the threads which we last sent to the remote system. The
303 TID member will be -1 for all or -2 for not sent yet. */
304 ptid_t general_thread = null_ptid;
305 ptid_t continue_thread = null_ptid;
306
307 /* This is the traceframe which we last selected on the remote system.
308 It will be -1 if no traceframe is selected. */
309 int remote_traceframe_number = -1;
310
311 char *last_pass_packet = nullptr;
312
313 /* The last QProgramSignals packet sent to the target. We bypass
314 sending a new program signals list down to the target if the new
315 packet is exactly the same as the last we sent. IOW, we only let
316 the target know about program signals list changes. */
317 char *last_program_signals_packet = nullptr;
318
319 gdb_signal last_sent_signal = GDB_SIGNAL_0;
320
321 bool last_sent_step = false;
322
323 /* The execution direction of the last resume we got. */
324 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
325
326 char *finished_object = nullptr;
327 char *finished_annex = nullptr;
328 ULONGEST finished_offset = 0;
329
330 /* Should we try the 'ThreadInfo' query packet?
331
332 This variable (NOT available to the user: auto-detect only!)
333 determines whether GDB will use the new, simpler "ThreadInfo"
334 query or the older, more complex syntax for thread queries.
335 This is an auto-detect variable (set to true at each connect,
336 and set to false when the target fails to recognize it). */
337 bool use_threadinfo_query = false;
338 bool use_threadextra_query = false;
339
340 threadref echo_nextthread {};
341 threadref nextthread {};
342 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
343
344 /* The state of remote notification. */
345 struct remote_notif_state *notif_state = nullptr;
346
347 /* The branch trace configuration. */
348 struct btrace_config btrace_config {};
349
350 /* The argument to the last "vFile:setfs:" packet we sent, used
351 to avoid sending repeated unnecessary "vFile:setfs:" packets.
352 Initialized to -1 to indicate that no "vFile:setfs:" packet
353 has yet been sent. */
354 int fs_pid = -1;
355
356 /* A readahead cache for vFile:pread. Often, reading a binary
357 involves a sequence of small reads. E.g., when parsing an ELF
358 file. A readahead cache helps mostly the case of remote
359 debugging on a connection with higher latency, due to the
360 request/reply nature of the RSP. We only cache data for a single
361 file descriptor at a time. */
362 struct readahead_cache readahead_cache;
363
364 /* The list of already fetched and acknowledged stop events. This
365 queue is used for notification Stop, and other notifications
366 don't need queue for their events, because the notification
367 events of Stop can't be consumed immediately, so that events
368 should be queued first, and be consumed by remote_wait_{ns,as}
369 one per time. Other notifications can consume their events
370 immediately, so queue is not needed for them. */
371 std::vector<stop_reply_up> stop_reply_queue;
372
373 /* Asynchronous signal handle registered as event loop source for
374 when we have pending events ready to be passed to the core. */
375 struct async_event_handler *remote_async_inferior_event_token = nullptr;
376
377 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
378 ``forever'' still use the normal timeout mechanism. This is
379 currently used by the ASYNC code to guarentee that target reads
380 during the initial connect always time-out. Once getpkt has been
381 modified to return a timeout indication and, in turn
382 remote_wait()/wait_for_inferior() have gained a timeout parameter
383 this can go away. */
384 int wait_forever_enabled_p = 1;
385
386 private:
387 /* Mapping of remote protocol data for each gdbarch. Usually there
388 is only one entry here, though we may see more with stubs that
389 support multi-process. */
390 std::unordered_map<struct gdbarch *, remote_arch_state>
391 m_arch_states;
392 };
393
394 static const target_info remote_target_info = {
395 "remote",
396 N_("Remote serial target in gdb-specific protocol"),
397 remote_doc
398 };
399
400 class remote_target : public process_stratum_target
401 {
402 public:
403 remote_target () = default;
404 ~remote_target () override;
405
406 const target_info &info () const override
407 { return remote_target_info; }
408
409 const char *connection_string () override;
410
411 thread_control_capabilities get_thread_control_capabilities () override
412 { return tc_schedlock; }
413
414 /* Open a remote connection. */
415 static void open (const char *, int);
416
417 void close () override;
418
419 void detach (inferior *, int) override;
420 void disconnect (const char *, int) override;
421
422 void commit_resume () override;
423 void resume (ptid_t, int, enum gdb_signal) override;
424 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
425
426 void fetch_registers (struct regcache *, int) override;
427 void store_registers (struct regcache *, int) override;
428 void prepare_to_store (struct regcache *) override;
429
430 void files_info () override;
431
432 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
433
434 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
435 enum remove_bp_reason) override;
436
437
438 bool stopped_by_sw_breakpoint () override;
439 bool supports_stopped_by_sw_breakpoint () override;
440
441 bool stopped_by_hw_breakpoint () override;
442
443 bool supports_stopped_by_hw_breakpoint () override;
444
445 bool stopped_by_watchpoint () override;
446
447 bool stopped_data_address (CORE_ADDR *) override;
448
449 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
450
451 int can_use_hw_breakpoint (enum bptype, int, int) override;
452
453 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
454
455 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
456
457 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
458
459 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
460 struct expression *) override;
461
462 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
463 struct expression *) override;
464
465 void kill () override;
466
467 void load (const char *, int) override;
468
469 void mourn_inferior () override;
470
471 void pass_signals (gdb::array_view<const unsigned char>) override;
472
473 int set_syscall_catchpoint (int, bool, int,
474 gdb::array_view<const int>) override;
475
476 void program_signals (gdb::array_view<const unsigned char>) override;
477
478 bool thread_alive (ptid_t ptid) override;
479
480 const char *thread_name (struct thread_info *) override;
481
482 void update_thread_list () override;
483
484 std::string pid_to_str (ptid_t) override;
485
486 const char *extra_thread_info (struct thread_info *) override;
487
488 ptid_t get_ada_task_ptid (long lwp, long thread) override;
489
490 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
491 int handle_len,
492 inferior *inf) override;
493
494 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
495 override;
496
497 void stop (ptid_t) override;
498
499 void interrupt () override;
500
501 void pass_ctrlc () override;
502
503 enum target_xfer_status xfer_partial (enum target_object object,
504 const char *annex,
505 gdb_byte *readbuf,
506 const gdb_byte *writebuf,
507 ULONGEST offset, ULONGEST len,
508 ULONGEST *xfered_len) override;
509
510 ULONGEST get_memory_xfer_limit () override;
511
512 void rcmd (const char *command, struct ui_file *output) override;
513
514 char *pid_to_exec_file (int pid) override;
515
516 void log_command (const char *cmd) override
517 {
518 serial_log_command (this, cmd);
519 }
520
521 CORE_ADDR get_thread_local_address (ptid_t ptid,
522 CORE_ADDR load_module_addr,
523 CORE_ADDR offset) override;
524
525 bool can_execute_reverse () override;
526
527 std::vector<mem_region> memory_map () override;
528
529 void flash_erase (ULONGEST address, LONGEST length) override;
530
531 void flash_done () override;
532
533 const struct target_desc *read_description () override;
534
535 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
536 const gdb_byte *pattern, ULONGEST pattern_len,
537 CORE_ADDR *found_addrp) override;
538
539 bool can_async_p () override;
540
541 bool is_async_p () override;
542
543 void async (int) override;
544
545 int async_wait_fd () override;
546
547 void thread_events (int) override;
548
549 int can_do_single_step () override;
550
551 void terminal_inferior () override;
552
553 void terminal_ours () override;
554
555 bool supports_non_stop () override;
556
557 bool supports_multi_process () override;
558
559 bool supports_disable_randomization () override;
560
561 bool filesystem_is_local () override;
562
563
564 int fileio_open (struct inferior *inf, const char *filename,
565 int flags, int mode, int warn_if_slow,
566 int *target_errno) override;
567
568 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
569 ULONGEST offset, int *target_errno) override;
570
571 int fileio_pread (int fd, gdb_byte *read_buf, int len,
572 ULONGEST offset, int *target_errno) override;
573
574 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
575
576 int fileio_close (int fd, int *target_errno) override;
577
578 int fileio_unlink (struct inferior *inf,
579 const char *filename,
580 int *target_errno) override;
581
582 gdb::optional<std::string>
583 fileio_readlink (struct inferior *inf,
584 const char *filename,
585 int *target_errno) override;
586
587 bool supports_enable_disable_tracepoint () override;
588
589 bool supports_string_tracing () override;
590
591 bool supports_evaluation_of_breakpoint_conditions () override;
592
593 bool can_run_breakpoint_commands () override;
594
595 void trace_init () override;
596
597 void download_tracepoint (struct bp_location *location) override;
598
599 bool can_download_tracepoint () override;
600
601 void download_trace_state_variable (const trace_state_variable &tsv) override;
602
603 void enable_tracepoint (struct bp_location *location) override;
604
605 void disable_tracepoint (struct bp_location *location) override;
606
607 void trace_set_readonly_regions () override;
608
609 void trace_start () override;
610
611 int get_trace_status (struct trace_status *ts) override;
612
613 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
614 override;
615
616 void trace_stop () override;
617
618 int trace_find (enum trace_find_type type, int num,
619 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
620
621 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
622
623 int save_trace_data (const char *filename) override;
624
625 int upload_tracepoints (struct uploaded_tp **utpp) override;
626
627 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
628
629 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
630
631 int get_min_fast_tracepoint_insn_len () override;
632
633 void set_disconnected_tracing (int val) override;
634
635 void set_circular_trace_buffer (int val) override;
636
637 void set_trace_buffer_size (LONGEST val) override;
638
639 bool set_trace_notes (const char *user, const char *notes,
640 const char *stopnotes) override;
641
642 int core_of_thread (ptid_t ptid) override;
643
644 int verify_memory (const gdb_byte *data,
645 CORE_ADDR memaddr, ULONGEST size) override;
646
647
648 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
649
650 void set_permissions () override;
651
652 bool static_tracepoint_marker_at (CORE_ADDR,
653 struct static_tracepoint_marker *marker)
654 override;
655
656 std::vector<static_tracepoint_marker>
657 static_tracepoint_markers_by_strid (const char *id) override;
658
659 traceframe_info_up traceframe_info () override;
660
661 bool use_agent (bool use) override;
662 bool can_use_agent () override;
663
664 struct btrace_target_info *enable_btrace (ptid_t ptid,
665 const struct btrace_config *conf) override;
666
667 void disable_btrace (struct btrace_target_info *tinfo) override;
668
669 void teardown_btrace (struct btrace_target_info *tinfo) override;
670
671 enum btrace_error read_btrace (struct btrace_data *data,
672 struct btrace_target_info *btinfo,
673 enum btrace_read_type type) override;
674
675 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
676 bool augmented_libraries_svr4_read () override;
677 int follow_fork (int, int) override;
678 void follow_exec (struct inferior *, const char *) override;
679 int insert_fork_catchpoint (int) override;
680 int remove_fork_catchpoint (int) override;
681 int insert_vfork_catchpoint (int) override;
682 int remove_vfork_catchpoint (int) override;
683 int insert_exec_catchpoint (int) override;
684 int remove_exec_catchpoint (int) override;
685 enum exec_direction_kind execution_direction () override;
686
687 public: /* Remote specific methods. */
688
689 void remote_download_command_source (int num, ULONGEST addr,
690 struct command_line *cmds);
691
692 void remote_file_put (const char *local_file, const char *remote_file,
693 int from_tty);
694 void remote_file_get (const char *remote_file, const char *local_file,
695 int from_tty);
696 void remote_file_delete (const char *remote_file, int from_tty);
697
698 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
699 ULONGEST offset, int *remote_errno);
700 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
701 ULONGEST offset, int *remote_errno);
702 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
703 ULONGEST offset, int *remote_errno);
704
705 int remote_hostio_send_command (int command_bytes, int which_packet,
706 int *remote_errno, char **attachment,
707 int *attachment_len);
708 int remote_hostio_set_filesystem (struct inferior *inf,
709 int *remote_errno);
710 /* We should get rid of this and use fileio_open directly. */
711 int remote_hostio_open (struct inferior *inf, const char *filename,
712 int flags, int mode, int warn_if_slow,
713 int *remote_errno);
714 int remote_hostio_close (int fd, int *remote_errno);
715
716 int remote_hostio_unlink (inferior *inf, const char *filename,
717 int *remote_errno);
718
719 struct remote_state *get_remote_state ();
720
721 long get_remote_packet_size (void);
722 long get_memory_packet_size (struct memory_packet_config *config);
723
724 long get_memory_write_packet_size ();
725 long get_memory_read_packet_size ();
726
727 char *append_pending_thread_resumptions (char *p, char *endp,
728 ptid_t ptid);
729 static void open_1 (const char *name, int from_tty, int extended_p);
730 void start_remote (int from_tty, int extended_p);
731 void remote_detach_1 (struct inferior *inf, int from_tty);
732
733 char *append_resumption (char *p, char *endp,
734 ptid_t ptid, int step, gdb_signal siggnal);
735 int remote_resume_with_vcont (ptid_t ptid, int step,
736 gdb_signal siggnal);
737
738 void add_current_inferior_and_thread (char *wait_status);
739
740 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
741 int options);
742 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
743 int options);
744
745 ptid_t process_stop_reply (struct stop_reply *stop_reply,
746 target_waitstatus *status);
747
748 void remote_notice_new_inferior (ptid_t currthread, int executing);
749
750 void process_initial_stop_replies (int from_tty);
751
752 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
753
754 void btrace_sync_conf (const btrace_config *conf);
755
756 void remote_btrace_maybe_reopen ();
757
758 void remove_new_fork_children (threads_listing_context *context);
759 void kill_new_fork_children (int pid);
760 void discard_pending_stop_replies (struct inferior *inf);
761 int stop_reply_queue_length ();
762
763 void check_pending_events_prevent_wildcard_vcont
764 (int *may_global_wildcard_vcont);
765
766 void discard_pending_stop_replies_in_queue ();
767 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
768 struct stop_reply *queued_stop_reply (ptid_t ptid);
769 int peek_stop_reply (ptid_t ptid);
770 void remote_parse_stop_reply (const char *buf, stop_reply *event);
771
772 void remote_stop_ns (ptid_t ptid);
773 void remote_interrupt_as ();
774 void remote_interrupt_ns ();
775
776 char *remote_get_noisy_reply ();
777 int remote_query_attached (int pid);
778 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
779 int try_open_exec);
780
781 ptid_t remote_current_thread (ptid_t oldpid);
782 ptid_t get_current_thread (char *wait_status);
783
784 void set_thread (ptid_t ptid, int gen);
785 void set_general_thread (ptid_t ptid);
786 void set_continue_thread (ptid_t ptid);
787 void set_general_process ();
788
789 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
790
791 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
792 gdb_ext_thread_info *info);
793 int remote_get_threadinfo (threadref *threadid, int fieldset,
794 gdb_ext_thread_info *info);
795
796 int parse_threadlist_response (char *pkt, int result_limit,
797 threadref *original_echo,
798 threadref *resultlist,
799 int *doneflag);
800 int remote_get_threadlist (int startflag, threadref *nextthread,
801 int result_limit, int *done, int *result_count,
802 threadref *threadlist);
803
804 int remote_threadlist_iterator (rmt_thread_action stepfunction,
805 void *context, int looplimit);
806
807 int remote_get_threads_with_ql (threads_listing_context *context);
808 int remote_get_threads_with_qxfer (threads_listing_context *context);
809 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
810
811 void extended_remote_restart ();
812
813 void get_offsets ();
814
815 void remote_check_symbols ();
816
817 void remote_supported_packet (const struct protocol_feature *feature,
818 enum packet_support support,
819 const char *argument);
820
821 void remote_query_supported ();
822
823 void remote_packet_size (const protocol_feature *feature,
824 packet_support support, const char *value);
825
826 void remote_serial_quit_handler ();
827
828 void remote_detach_pid (int pid);
829
830 void remote_vcont_probe ();
831
832 void remote_resume_with_hc (ptid_t ptid, int step,
833 gdb_signal siggnal);
834
835 void send_interrupt_sequence ();
836 void interrupt_query ();
837
838 void remote_notif_get_pending_events (notif_client *nc);
839
840 int fetch_register_using_p (struct regcache *regcache,
841 packet_reg *reg);
842 int send_g_packet ();
843 void process_g_packet (struct regcache *regcache);
844 void fetch_registers_using_g (struct regcache *regcache);
845 int store_register_using_P (const struct regcache *regcache,
846 packet_reg *reg);
847 void store_registers_using_G (const struct regcache *regcache);
848
849 void set_remote_traceframe ();
850
851 void check_binary_download (CORE_ADDR addr);
852
853 target_xfer_status remote_write_bytes_aux (const char *header,
854 CORE_ADDR memaddr,
855 const gdb_byte *myaddr,
856 ULONGEST len_units,
857 int unit_size,
858 ULONGEST *xfered_len_units,
859 char packet_format,
860 int use_length);
861
862 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
863 const gdb_byte *myaddr, ULONGEST len,
864 int unit_size, ULONGEST *xfered_len);
865
866 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
867 ULONGEST len_units,
868 int unit_size, ULONGEST *xfered_len_units);
869
870 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
871 ULONGEST memaddr,
872 ULONGEST len,
873 int unit_size,
874 ULONGEST *xfered_len);
875
876 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
877 gdb_byte *myaddr, ULONGEST len,
878 int unit_size,
879 ULONGEST *xfered_len);
880
881 packet_result remote_send_printf (const char *format, ...)
882 ATTRIBUTE_PRINTF (2, 3);
883
884 target_xfer_status remote_flash_write (ULONGEST address,
885 ULONGEST length, ULONGEST *xfered_len,
886 const gdb_byte *data);
887
888 int readchar (int timeout);
889
890 void remote_serial_write (const char *str, int len);
891
892 int putpkt (const char *buf);
893 int putpkt_binary (const char *buf, int cnt);
894
895 int putpkt (const gdb::char_vector &buf)
896 {
897 return putpkt (buf.data ());
898 }
899
900 void skip_frame ();
901 long read_frame (gdb::char_vector *buf_p);
902 void getpkt (gdb::char_vector *buf, int forever);
903 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
904 int expecting_notif, int *is_notif);
905 int getpkt_sane (gdb::char_vector *buf, int forever);
906 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
907 int *is_notif);
908 int remote_vkill (int pid);
909 void remote_kill_k ();
910
911 void extended_remote_disable_randomization (int val);
912 int extended_remote_run (const std::string &args);
913
914 void send_environment_packet (const char *action,
915 const char *packet,
916 const char *value);
917
918 void extended_remote_environment_support ();
919 void extended_remote_set_inferior_cwd ();
920
921 target_xfer_status remote_write_qxfer (const char *object_name,
922 const char *annex,
923 const gdb_byte *writebuf,
924 ULONGEST offset, LONGEST len,
925 ULONGEST *xfered_len,
926 struct packet_config *packet);
927
928 target_xfer_status remote_read_qxfer (const char *object_name,
929 const char *annex,
930 gdb_byte *readbuf, ULONGEST offset,
931 LONGEST len,
932 ULONGEST *xfered_len,
933 struct packet_config *packet);
934
935 void push_stop_reply (struct stop_reply *new_event);
936
937 bool vcont_r_supported ();
938
939 void packet_command (const char *args, int from_tty);
940
941 private: /* data fields */
942
943 /* The remote state. Don't reference this directly. Use the
944 get_remote_state method instead. */
945 remote_state m_remote_state;
946 };
947
948 static const target_info extended_remote_target_info = {
949 "extended-remote",
950 N_("Extended remote serial target in gdb-specific protocol"),
951 remote_doc
952 };
953
954 /* Set up the extended remote target by extending the standard remote
955 target and adding to it. */
956
957 class extended_remote_target final : public remote_target
958 {
959 public:
960 const target_info &info () const override
961 { return extended_remote_target_info; }
962
963 /* Open an extended-remote connection. */
964 static void open (const char *, int);
965
966 bool can_create_inferior () override { return true; }
967 void create_inferior (const char *, const std::string &,
968 char **, int) override;
969
970 void detach (inferior *, int) override;
971
972 bool can_attach () override { return true; }
973 void attach (const char *, int) override;
974
975 void post_attach (int) override;
976 bool supports_disable_randomization () override;
977 };
978
979 /* Per-program-space data key. */
980 static const struct program_space_key<char, gdb::xfree_deleter<char>>
981 remote_pspace_data;
982
983 /* The variable registered as the control variable used by the
984 remote exec-file commands. While the remote exec-file setting is
985 per-program-space, the set/show machinery uses this as the
986 location of the remote exec-file value. */
987 static char *remote_exec_file_var;
988
989 /* The size to align memory write packets, when practical. The protocol
990 does not guarantee any alignment, and gdb will generate short
991 writes and unaligned writes, but even as a best-effort attempt this
992 can improve bulk transfers. For instance, if a write is misaligned
993 relative to the target's data bus, the stub may need to make an extra
994 round trip fetching data from the target. This doesn't make a
995 huge difference, but it's easy to do, so we try to be helpful.
996
997 The alignment chosen is arbitrary; usually data bus width is
998 important here, not the possibly larger cache line size. */
999 enum { REMOTE_ALIGN_WRITES = 16 };
1000
1001 /* Prototypes for local functions. */
1002
1003 static int hexnumlen (ULONGEST num);
1004
1005 static int stubhex (int ch);
1006
1007 static int hexnumstr (char *, ULONGEST);
1008
1009 static int hexnumnstr (char *, ULONGEST, int);
1010
1011 static CORE_ADDR remote_address_masked (CORE_ADDR);
1012
1013 static void print_packet (const char *);
1014
1015 static int stub_unpack_int (char *buff, int fieldlength);
1016
1017 struct packet_config;
1018
1019 static void show_packet_config_cmd (struct packet_config *config);
1020
1021 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1022 int from_tty,
1023 struct cmd_list_element *c,
1024 const char *value);
1025
1026 static ptid_t read_ptid (const char *buf, const char **obuf);
1027
1028 static void remote_async_inferior_event_handler (gdb_client_data);
1029
1030 static bool remote_read_description_p (struct target_ops *target);
1031
1032 static void remote_console_output (const char *msg);
1033
1034 static void remote_btrace_reset (remote_state *rs);
1035
1036 static void remote_unpush_and_throw (remote_target *target);
1037
1038 /* For "remote". */
1039
1040 static struct cmd_list_element *remote_cmdlist;
1041
1042 /* For "set remote" and "show remote". */
1043
1044 static struct cmd_list_element *remote_set_cmdlist;
1045 static struct cmd_list_element *remote_show_cmdlist;
1046
1047 /* Controls whether GDB is willing to use range stepping. */
1048
1049 static bool use_range_stepping = true;
1050
1051 /* Private data that we'll store in (struct thread_info)->priv. */
1052 struct remote_thread_info : public private_thread_info
1053 {
1054 std::string extra;
1055 std::string name;
1056 int core = -1;
1057
1058 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1059 sequence of bytes. */
1060 gdb::byte_vector thread_handle;
1061
1062 /* Whether the target stopped for a breakpoint/watchpoint. */
1063 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1064
1065 /* This is set to the data address of the access causing the target
1066 to stop for a watchpoint. */
1067 CORE_ADDR watch_data_address = 0;
1068
1069 /* Fields used by the vCont action coalescing implemented in
1070 remote_resume / remote_commit_resume. remote_resume stores each
1071 thread's last resume request in these fields, so that a later
1072 remote_commit_resume knows which is the proper action for this
1073 thread to include in the vCont packet. */
1074
1075 /* True if the last target_resume call for this thread was a step
1076 request, false if a continue request. */
1077 int last_resume_step = 0;
1078
1079 /* The signal specified in the last target_resume call for this
1080 thread. */
1081 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1082
1083 /* Whether this thread was already vCont-resumed on the remote
1084 side. */
1085 int vcont_resumed = 0;
1086 };
1087
1088 remote_state::remote_state ()
1089 : buf (400)
1090 {
1091 }
1092
1093 remote_state::~remote_state ()
1094 {
1095 xfree (this->last_pass_packet);
1096 xfree (this->last_program_signals_packet);
1097 xfree (this->finished_object);
1098 xfree (this->finished_annex);
1099 }
1100
1101 /* Utility: generate error from an incoming stub packet. */
1102 static void
1103 trace_error (char *buf)
1104 {
1105 if (*buf++ != 'E')
1106 return; /* not an error msg */
1107 switch (*buf)
1108 {
1109 case '1': /* malformed packet error */
1110 if (*++buf == '0') /* general case: */
1111 error (_("remote.c: error in outgoing packet."));
1112 else
1113 error (_("remote.c: error in outgoing packet at field #%ld."),
1114 strtol (buf, NULL, 16));
1115 default:
1116 error (_("Target returns error code '%s'."), buf);
1117 }
1118 }
1119
1120 /* Utility: wait for reply from stub, while accepting "O" packets. */
1121
1122 char *
1123 remote_target::remote_get_noisy_reply ()
1124 {
1125 struct remote_state *rs = get_remote_state ();
1126
1127 do /* Loop on reply from remote stub. */
1128 {
1129 char *buf;
1130
1131 QUIT; /* Allow user to bail out with ^C. */
1132 getpkt (&rs->buf, 0);
1133 buf = rs->buf.data ();
1134 if (buf[0] == 'E')
1135 trace_error (buf);
1136 else if (startswith (buf, "qRelocInsn:"))
1137 {
1138 ULONGEST ul;
1139 CORE_ADDR from, to, org_to;
1140 const char *p, *pp;
1141 int adjusted_size = 0;
1142 int relocated = 0;
1143
1144 p = buf + strlen ("qRelocInsn:");
1145 pp = unpack_varlen_hex (p, &ul);
1146 if (*pp != ';')
1147 error (_("invalid qRelocInsn packet: %s"), buf);
1148 from = ul;
1149
1150 p = pp + 1;
1151 unpack_varlen_hex (p, &ul);
1152 to = ul;
1153
1154 org_to = to;
1155
1156 try
1157 {
1158 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1159 relocated = 1;
1160 }
1161 catch (const gdb_exception &ex)
1162 {
1163 if (ex.error == MEMORY_ERROR)
1164 {
1165 /* Propagate memory errors silently back to the
1166 target. The stub may have limited the range of
1167 addresses we can write to, for example. */
1168 }
1169 else
1170 {
1171 /* Something unexpectedly bad happened. Be verbose
1172 so we can tell what, and propagate the error back
1173 to the stub, so it doesn't get stuck waiting for
1174 a response. */
1175 exception_fprintf (gdb_stderr, ex,
1176 _("warning: relocating instruction: "));
1177 }
1178 putpkt ("E01");
1179 }
1180
1181 if (relocated)
1182 {
1183 adjusted_size = to - org_to;
1184
1185 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1186 putpkt (buf);
1187 }
1188 }
1189 else if (buf[0] == 'O' && buf[1] != 'K')
1190 remote_console_output (buf + 1); /* 'O' message from stub */
1191 else
1192 return buf; /* Here's the actual reply. */
1193 }
1194 while (1);
1195 }
1196
1197 struct remote_arch_state *
1198 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1199 {
1200 remote_arch_state *rsa;
1201
1202 auto it = this->m_arch_states.find (gdbarch);
1203 if (it == this->m_arch_states.end ())
1204 {
1205 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1206 std::forward_as_tuple (gdbarch),
1207 std::forward_as_tuple (gdbarch));
1208 rsa = &p.first->second;
1209
1210 /* Make sure that the packet buffer is plenty big enough for
1211 this architecture. */
1212 if (this->buf.size () < rsa->remote_packet_size)
1213 this->buf.resize (2 * rsa->remote_packet_size);
1214 }
1215 else
1216 rsa = &it->second;
1217
1218 return rsa;
1219 }
1220
1221 /* Fetch the global remote target state. */
1222
1223 remote_state *
1224 remote_target::get_remote_state ()
1225 {
1226 /* Make sure that the remote architecture state has been
1227 initialized, because doing so might reallocate rs->buf. Any
1228 function which calls getpkt also needs to be mindful of changes
1229 to rs->buf, but this call limits the number of places which run
1230 into trouble. */
1231 m_remote_state.get_remote_arch_state (target_gdbarch ());
1232
1233 return &m_remote_state;
1234 }
1235
1236 /* Fetch the remote exec-file from the current program space. */
1237
1238 static const char *
1239 get_remote_exec_file (void)
1240 {
1241 char *remote_exec_file;
1242
1243 remote_exec_file = remote_pspace_data.get (current_program_space);
1244 if (remote_exec_file == NULL)
1245 return "";
1246
1247 return remote_exec_file;
1248 }
1249
1250 /* Set the remote exec file for PSPACE. */
1251
1252 static void
1253 set_pspace_remote_exec_file (struct program_space *pspace,
1254 const char *remote_exec_file)
1255 {
1256 char *old_file = remote_pspace_data.get (pspace);
1257
1258 xfree (old_file);
1259 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1260 }
1261
1262 /* The "set/show remote exec-file" set command hook. */
1263
1264 static void
1265 set_remote_exec_file (const char *ignored, int from_tty,
1266 struct cmd_list_element *c)
1267 {
1268 gdb_assert (remote_exec_file_var != NULL);
1269 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1270 }
1271
1272 /* The "set/show remote exec-file" show command hook. */
1273
1274 static void
1275 show_remote_exec_file (struct ui_file *file, int from_tty,
1276 struct cmd_list_element *cmd, const char *value)
1277 {
1278 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1279 }
1280
1281 static int
1282 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1283 {
1284 int regnum, num_remote_regs, offset;
1285 struct packet_reg **remote_regs;
1286
1287 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1288 {
1289 struct packet_reg *r = &regs[regnum];
1290
1291 if (register_size (gdbarch, regnum) == 0)
1292 /* Do not try to fetch zero-sized (placeholder) registers. */
1293 r->pnum = -1;
1294 else
1295 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1296
1297 r->regnum = regnum;
1298 }
1299
1300 /* Define the g/G packet format as the contents of each register
1301 with a remote protocol number, in order of ascending protocol
1302 number. */
1303
1304 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1305 for (num_remote_regs = 0, regnum = 0;
1306 regnum < gdbarch_num_regs (gdbarch);
1307 regnum++)
1308 if (regs[regnum].pnum != -1)
1309 remote_regs[num_remote_regs++] = &regs[regnum];
1310
1311 std::sort (remote_regs, remote_regs + num_remote_regs,
1312 [] (const packet_reg *a, const packet_reg *b)
1313 { return a->pnum < b->pnum; });
1314
1315 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1316 {
1317 remote_regs[regnum]->in_g_packet = 1;
1318 remote_regs[regnum]->offset = offset;
1319 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1320 }
1321
1322 return offset;
1323 }
1324
1325 /* Given the architecture described by GDBARCH, return the remote
1326 protocol register's number and the register's offset in the g/G
1327 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1328 If the target does not have a mapping for REGNUM, return false,
1329 otherwise, return true. */
1330
1331 int
1332 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1333 int *pnum, int *poffset)
1334 {
1335 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1336
1337 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1338
1339 map_regcache_remote_table (gdbarch, regs.data ());
1340
1341 *pnum = regs[regnum].pnum;
1342 *poffset = regs[regnum].offset;
1343
1344 return *pnum != -1;
1345 }
1346
1347 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1348 {
1349 /* Use the architecture to build a regnum<->pnum table, which will be
1350 1:1 unless a feature set specifies otherwise. */
1351 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1352
1353 /* Record the maximum possible size of the g packet - it may turn out
1354 to be smaller. */
1355 this->sizeof_g_packet
1356 = map_regcache_remote_table (gdbarch, this->regs.get ());
1357
1358 /* Default maximum number of characters in a packet body. Many
1359 remote stubs have a hardwired buffer size of 400 bytes
1360 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1361 as the maximum packet-size to ensure that the packet and an extra
1362 NUL character can always fit in the buffer. This stops GDB
1363 trashing stubs that try to squeeze an extra NUL into what is
1364 already a full buffer (As of 1999-12-04 that was most stubs). */
1365 this->remote_packet_size = 400 - 1;
1366
1367 /* This one is filled in when a ``g'' packet is received. */
1368 this->actual_register_packet_size = 0;
1369
1370 /* Should rsa->sizeof_g_packet needs more space than the
1371 default, adjust the size accordingly. Remember that each byte is
1372 encoded as two characters. 32 is the overhead for the packet
1373 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1374 (``$NN:G...#NN'') is a better guess, the below has been padded a
1375 little. */
1376 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1377 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1378 }
1379
1380 /* Get a pointer to the current remote target. If not connected to a
1381 remote target, return NULL. */
1382
1383 static remote_target *
1384 get_current_remote_target ()
1385 {
1386 target_ops *proc_target = current_inferior ()->process_target ();
1387 return dynamic_cast<remote_target *> (proc_target);
1388 }
1389
1390 /* Return the current allowed size of a remote packet. This is
1391 inferred from the current architecture, and should be used to
1392 limit the length of outgoing packets. */
1393 long
1394 remote_target::get_remote_packet_size ()
1395 {
1396 struct remote_state *rs = get_remote_state ();
1397 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1398
1399 if (rs->explicit_packet_size)
1400 return rs->explicit_packet_size;
1401
1402 return rsa->remote_packet_size;
1403 }
1404
1405 static struct packet_reg *
1406 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1407 long regnum)
1408 {
1409 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1410 return NULL;
1411 else
1412 {
1413 struct packet_reg *r = &rsa->regs[regnum];
1414
1415 gdb_assert (r->regnum == regnum);
1416 return r;
1417 }
1418 }
1419
1420 static struct packet_reg *
1421 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1422 LONGEST pnum)
1423 {
1424 int i;
1425
1426 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1427 {
1428 struct packet_reg *r = &rsa->regs[i];
1429
1430 if (r->pnum == pnum)
1431 return r;
1432 }
1433 return NULL;
1434 }
1435
1436 /* Allow the user to specify what sequence to send to the remote
1437 when he requests a program interruption: Although ^C is usually
1438 what remote systems expect (this is the default, here), it is
1439 sometimes preferable to send a break. On other systems such
1440 as the Linux kernel, a break followed by g, which is Magic SysRq g
1441 is required in order to interrupt the execution. */
1442 const char interrupt_sequence_control_c[] = "Ctrl-C";
1443 const char interrupt_sequence_break[] = "BREAK";
1444 const char interrupt_sequence_break_g[] = "BREAK-g";
1445 static const char *const interrupt_sequence_modes[] =
1446 {
1447 interrupt_sequence_control_c,
1448 interrupt_sequence_break,
1449 interrupt_sequence_break_g,
1450 NULL
1451 };
1452 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1453
1454 static void
1455 show_interrupt_sequence (struct ui_file *file, int from_tty,
1456 struct cmd_list_element *c,
1457 const char *value)
1458 {
1459 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1460 fprintf_filtered (file,
1461 _("Send the ASCII ETX character (Ctrl-c) "
1462 "to the remote target to interrupt the "
1463 "execution of the program.\n"));
1464 else if (interrupt_sequence_mode == interrupt_sequence_break)
1465 fprintf_filtered (file,
1466 _("send a break signal to the remote target "
1467 "to interrupt the execution of the program.\n"));
1468 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1469 fprintf_filtered (file,
1470 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1471 "the remote target to interrupt the execution "
1472 "of Linux kernel.\n"));
1473 else
1474 internal_error (__FILE__, __LINE__,
1475 _("Invalid value for interrupt_sequence_mode: %s."),
1476 interrupt_sequence_mode);
1477 }
1478
1479 /* This boolean variable specifies whether interrupt_sequence is sent
1480 to the remote target when gdb connects to it.
1481 This is mostly needed when you debug the Linux kernel: The Linux kernel
1482 expects BREAK g which is Magic SysRq g for connecting gdb. */
1483 static bool interrupt_on_connect = false;
1484
1485 /* This variable is used to implement the "set/show remotebreak" commands.
1486 Since these commands are now deprecated in favor of "set/show remote
1487 interrupt-sequence", it no longer has any effect on the code. */
1488 static bool remote_break;
1489
1490 static void
1491 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1492 {
1493 if (remote_break)
1494 interrupt_sequence_mode = interrupt_sequence_break;
1495 else
1496 interrupt_sequence_mode = interrupt_sequence_control_c;
1497 }
1498
1499 static void
1500 show_remotebreak (struct ui_file *file, int from_tty,
1501 struct cmd_list_element *c,
1502 const char *value)
1503 {
1504 }
1505
1506 /* This variable sets the number of bits in an address that are to be
1507 sent in a memory ("M" or "m") packet. Normally, after stripping
1508 leading zeros, the entire address would be sent. This variable
1509 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1510 initial implementation of remote.c restricted the address sent in
1511 memory packets to ``host::sizeof long'' bytes - (typically 32
1512 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1513 address was never sent. Since fixing this bug may cause a break in
1514 some remote targets this variable is principally provided to
1515 facilitate backward compatibility. */
1516
1517 static unsigned int remote_address_size;
1518
1519 \f
1520 /* User configurable variables for the number of characters in a
1521 memory read/write packet. MIN (rsa->remote_packet_size,
1522 rsa->sizeof_g_packet) is the default. Some targets need smaller
1523 values (fifo overruns, et.al.) and some users need larger values
1524 (speed up transfers). The variables ``preferred_*'' (the user
1525 request), ``current_*'' (what was actually set) and ``forced_*''
1526 (Positive - a soft limit, negative - a hard limit). */
1527
1528 struct memory_packet_config
1529 {
1530 const char *name;
1531 long size;
1532 int fixed_p;
1533 };
1534
1535 /* The default max memory-write-packet-size, when the setting is
1536 "fixed". The 16k is historical. (It came from older GDB's using
1537 alloca for buffers and the knowledge (folklore?) that some hosts
1538 don't cope very well with large alloca calls.) */
1539 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1540
1541 /* The minimum remote packet size for memory transfers. Ensures we
1542 can write at least one byte. */
1543 #define MIN_MEMORY_PACKET_SIZE 20
1544
1545 /* Get the memory packet size, assuming it is fixed. */
1546
1547 static long
1548 get_fixed_memory_packet_size (struct memory_packet_config *config)
1549 {
1550 gdb_assert (config->fixed_p);
1551
1552 if (config->size <= 0)
1553 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1554 else
1555 return config->size;
1556 }
1557
1558 /* Compute the current size of a read/write packet. Since this makes
1559 use of ``actual_register_packet_size'' the computation is dynamic. */
1560
1561 long
1562 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1563 {
1564 struct remote_state *rs = get_remote_state ();
1565 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1566
1567 long what_they_get;
1568 if (config->fixed_p)
1569 what_they_get = get_fixed_memory_packet_size (config);
1570 else
1571 {
1572 what_they_get = get_remote_packet_size ();
1573 /* Limit the packet to the size specified by the user. */
1574 if (config->size > 0
1575 && what_they_get > config->size)
1576 what_they_get = config->size;
1577
1578 /* Limit it to the size of the targets ``g'' response unless we have
1579 permission from the stub to use a larger packet size. */
1580 if (rs->explicit_packet_size == 0
1581 && rsa->actual_register_packet_size > 0
1582 && what_they_get > rsa->actual_register_packet_size)
1583 what_they_get = rsa->actual_register_packet_size;
1584 }
1585 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1586 what_they_get = MIN_MEMORY_PACKET_SIZE;
1587
1588 /* Make sure there is room in the global buffer for this packet
1589 (including its trailing NUL byte). */
1590 if (rs->buf.size () < what_they_get + 1)
1591 rs->buf.resize (2 * what_they_get);
1592
1593 return what_they_get;
1594 }
1595
1596 /* Update the size of a read/write packet. If they user wants
1597 something really big then do a sanity check. */
1598
1599 static void
1600 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1601 {
1602 int fixed_p = config->fixed_p;
1603 long size = config->size;
1604
1605 if (args == NULL)
1606 error (_("Argument required (integer, `fixed' or `limited')."));
1607 else if (strcmp (args, "hard") == 0
1608 || strcmp (args, "fixed") == 0)
1609 fixed_p = 1;
1610 else if (strcmp (args, "soft") == 0
1611 || strcmp (args, "limit") == 0)
1612 fixed_p = 0;
1613 else
1614 {
1615 char *end;
1616
1617 size = strtoul (args, &end, 0);
1618 if (args == end)
1619 error (_("Invalid %s (bad syntax)."), config->name);
1620
1621 /* Instead of explicitly capping the size of a packet to or
1622 disallowing it, the user is allowed to set the size to
1623 something arbitrarily large. */
1624 }
1625
1626 /* Extra checks? */
1627 if (fixed_p && !config->fixed_p)
1628 {
1629 /* So that the query shows the correct value. */
1630 long query_size = (size <= 0
1631 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1632 : size);
1633
1634 if (! query (_("The target may not be able to correctly handle a %s\n"
1635 "of %ld bytes. Change the packet size? "),
1636 config->name, query_size))
1637 error (_("Packet size not changed."));
1638 }
1639 /* Update the config. */
1640 config->fixed_p = fixed_p;
1641 config->size = size;
1642 }
1643
1644 static void
1645 show_memory_packet_size (struct memory_packet_config *config)
1646 {
1647 if (config->size == 0)
1648 printf_filtered (_("The %s is 0 (default). "), config->name);
1649 else
1650 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1651 if (config->fixed_p)
1652 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1653 get_fixed_memory_packet_size (config));
1654 else
1655 {
1656 remote_target *remote = get_current_remote_target ();
1657
1658 if (remote != NULL)
1659 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1660 remote->get_memory_packet_size (config));
1661 else
1662 puts_filtered ("The actual limit will be further reduced "
1663 "dependent on the target.\n");
1664 }
1665 }
1666
1667 /* FIXME: needs to be per-remote-target. */
1668 static struct memory_packet_config memory_write_packet_config =
1669 {
1670 "memory-write-packet-size",
1671 };
1672
1673 static void
1674 set_memory_write_packet_size (const char *args, int from_tty)
1675 {
1676 set_memory_packet_size (args, &memory_write_packet_config);
1677 }
1678
1679 static void
1680 show_memory_write_packet_size (const char *args, int from_tty)
1681 {
1682 show_memory_packet_size (&memory_write_packet_config);
1683 }
1684
1685 /* Show the number of hardware watchpoints that can be used. */
1686
1687 static void
1688 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1689 struct cmd_list_element *c,
1690 const char *value)
1691 {
1692 fprintf_filtered (file, _("The maximum number of target hardware "
1693 "watchpoints is %s.\n"), value);
1694 }
1695
1696 /* Show the length limit (in bytes) for hardware watchpoints. */
1697
1698 static void
1699 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1700 struct cmd_list_element *c,
1701 const char *value)
1702 {
1703 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1704 "hardware watchpoint is %s.\n"), value);
1705 }
1706
1707 /* Show the number of hardware breakpoints that can be used. */
1708
1709 static void
1710 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1711 struct cmd_list_element *c,
1712 const char *value)
1713 {
1714 fprintf_filtered (file, _("The maximum number of target hardware "
1715 "breakpoints is %s.\n"), value);
1716 }
1717
1718 /* Controls the maximum number of characters to display in the debug output
1719 for each remote packet. The remaining characters are omitted. */
1720
1721 static int remote_packet_max_chars = 512;
1722
1723 /* Show the maximum number of characters to display for each remote packet
1724 when remote debugging is enabled. */
1725
1726 static void
1727 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1728 struct cmd_list_element *c,
1729 const char *value)
1730 {
1731 fprintf_filtered (file, _("Number of remote packet characters to "
1732 "display is %s.\n"), value);
1733 }
1734
1735 long
1736 remote_target::get_memory_write_packet_size ()
1737 {
1738 return get_memory_packet_size (&memory_write_packet_config);
1739 }
1740
1741 /* FIXME: needs to be per-remote-target. */
1742 static struct memory_packet_config memory_read_packet_config =
1743 {
1744 "memory-read-packet-size",
1745 };
1746
1747 static void
1748 set_memory_read_packet_size (const char *args, int from_tty)
1749 {
1750 set_memory_packet_size (args, &memory_read_packet_config);
1751 }
1752
1753 static void
1754 show_memory_read_packet_size (const char *args, int from_tty)
1755 {
1756 show_memory_packet_size (&memory_read_packet_config);
1757 }
1758
1759 long
1760 remote_target::get_memory_read_packet_size ()
1761 {
1762 long size = get_memory_packet_size (&memory_read_packet_config);
1763
1764 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1765 extra buffer size argument before the memory read size can be
1766 increased beyond this. */
1767 if (size > get_remote_packet_size ())
1768 size = get_remote_packet_size ();
1769 return size;
1770 }
1771
1772 \f
1773
1774 struct packet_config
1775 {
1776 const char *name;
1777 const char *title;
1778
1779 /* If auto, GDB auto-detects support for this packet or feature,
1780 either through qSupported, or by trying the packet and looking
1781 at the response. If true, GDB assumes the target supports this
1782 packet. If false, the packet is disabled. Configs that don't
1783 have an associated command always have this set to auto. */
1784 enum auto_boolean detect;
1785
1786 /* Does the target support this packet? */
1787 enum packet_support support;
1788 };
1789
1790 static enum packet_support packet_config_support (struct packet_config *config);
1791 static enum packet_support packet_support (int packet);
1792
1793 static void
1794 show_packet_config_cmd (struct packet_config *config)
1795 {
1796 const char *support = "internal-error";
1797
1798 switch (packet_config_support (config))
1799 {
1800 case PACKET_ENABLE:
1801 support = "enabled";
1802 break;
1803 case PACKET_DISABLE:
1804 support = "disabled";
1805 break;
1806 case PACKET_SUPPORT_UNKNOWN:
1807 support = "unknown";
1808 break;
1809 }
1810 switch (config->detect)
1811 {
1812 case AUTO_BOOLEAN_AUTO:
1813 printf_filtered (_("Support for the `%s' packet "
1814 "is auto-detected, currently %s.\n"),
1815 config->name, support);
1816 break;
1817 case AUTO_BOOLEAN_TRUE:
1818 case AUTO_BOOLEAN_FALSE:
1819 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1820 config->name, support);
1821 break;
1822 }
1823 }
1824
1825 static void
1826 add_packet_config_cmd (struct packet_config *config, const char *name,
1827 const char *title, int legacy)
1828 {
1829 char *set_doc;
1830 char *show_doc;
1831 char *cmd_name;
1832
1833 config->name = name;
1834 config->title = title;
1835 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1836 name, title);
1837 show_doc = xstrprintf ("Show current use of remote "
1838 "protocol `%s' (%s) packet.",
1839 name, title);
1840 /* set/show TITLE-packet {auto,on,off} */
1841 cmd_name = xstrprintf ("%s-packet", title);
1842 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1843 &config->detect, set_doc,
1844 show_doc, NULL, /* help_doc */
1845 NULL,
1846 show_remote_protocol_packet_cmd,
1847 &remote_set_cmdlist, &remote_show_cmdlist);
1848 /* The command code copies the documentation strings. */
1849 xfree (set_doc);
1850 xfree (show_doc);
1851 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1852 if (legacy)
1853 {
1854 char *legacy_name;
1855
1856 legacy_name = xstrprintf ("%s-packet", name);
1857 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1858 &remote_set_cmdlist);
1859 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1860 &remote_show_cmdlist);
1861 }
1862 }
1863
1864 static enum packet_result
1865 packet_check_result (const char *buf)
1866 {
1867 if (buf[0] != '\0')
1868 {
1869 /* The stub recognized the packet request. Check that the
1870 operation succeeded. */
1871 if (buf[0] == 'E'
1872 && isxdigit (buf[1]) && isxdigit (buf[2])
1873 && buf[3] == '\0')
1874 /* "Enn" - definitely an error. */
1875 return PACKET_ERROR;
1876
1877 /* Always treat "E." as an error. This will be used for
1878 more verbose error messages, such as E.memtypes. */
1879 if (buf[0] == 'E' && buf[1] == '.')
1880 return PACKET_ERROR;
1881
1882 /* The packet may or may not be OK. Just assume it is. */
1883 return PACKET_OK;
1884 }
1885 else
1886 /* The stub does not support the packet. */
1887 return PACKET_UNKNOWN;
1888 }
1889
1890 static enum packet_result
1891 packet_check_result (const gdb::char_vector &buf)
1892 {
1893 return packet_check_result (buf.data ());
1894 }
1895
1896 static enum packet_result
1897 packet_ok (const char *buf, struct packet_config *config)
1898 {
1899 enum packet_result result;
1900
1901 if (config->detect != AUTO_BOOLEAN_TRUE
1902 && config->support == PACKET_DISABLE)
1903 internal_error (__FILE__, __LINE__,
1904 _("packet_ok: attempt to use a disabled packet"));
1905
1906 result = packet_check_result (buf);
1907 switch (result)
1908 {
1909 case PACKET_OK:
1910 case PACKET_ERROR:
1911 /* The stub recognized the packet request. */
1912 if (config->support == PACKET_SUPPORT_UNKNOWN)
1913 {
1914 if (remote_debug)
1915 fprintf_unfiltered (gdb_stdlog,
1916 "Packet %s (%s) is supported\n",
1917 config->name, config->title);
1918 config->support = PACKET_ENABLE;
1919 }
1920 break;
1921 case PACKET_UNKNOWN:
1922 /* The stub does not support the packet. */
1923 if (config->detect == AUTO_BOOLEAN_AUTO
1924 && config->support == PACKET_ENABLE)
1925 {
1926 /* If the stub previously indicated that the packet was
1927 supported then there is a protocol error. */
1928 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1929 config->name, config->title);
1930 }
1931 else if (config->detect == AUTO_BOOLEAN_TRUE)
1932 {
1933 /* The user set it wrong. */
1934 error (_("Enabled packet %s (%s) not recognized by stub"),
1935 config->name, config->title);
1936 }
1937
1938 if (remote_debug)
1939 fprintf_unfiltered (gdb_stdlog,
1940 "Packet %s (%s) is NOT supported\n",
1941 config->name, config->title);
1942 config->support = PACKET_DISABLE;
1943 break;
1944 }
1945
1946 return result;
1947 }
1948
1949 static enum packet_result
1950 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1951 {
1952 return packet_ok (buf.data (), config);
1953 }
1954
1955 enum {
1956 PACKET_vCont = 0,
1957 PACKET_X,
1958 PACKET_qSymbol,
1959 PACKET_P,
1960 PACKET_p,
1961 PACKET_Z0,
1962 PACKET_Z1,
1963 PACKET_Z2,
1964 PACKET_Z3,
1965 PACKET_Z4,
1966 PACKET_vFile_setfs,
1967 PACKET_vFile_open,
1968 PACKET_vFile_pread,
1969 PACKET_vFile_pwrite,
1970 PACKET_vFile_close,
1971 PACKET_vFile_unlink,
1972 PACKET_vFile_readlink,
1973 PACKET_vFile_fstat,
1974 PACKET_qXfer_auxv,
1975 PACKET_qXfer_features,
1976 PACKET_qXfer_exec_file,
1977 PACKET_qXfer_libraries,
1978 PACKET_qXfer_libraries_svr4,
1979 PACKET_qXfer_memory_map,
1980 PACKET_qXfer_osdata,
1981 PACKET_qXfer_threads,
1982 PACKET_qXfer_statictrace_read,
1983 PACKET_qXfer_traceframe_info,
1984 PACKET_qXfer_uib,
1985 PACKET_qGetTIBAddr,
1986 PACKET_qGetTLSAddr,
1987 PACKET_qSupported,
1988 PACKET_qTStatus,
1989 PACKET_QPassSignals,
1990 PACKET_QCatchSyscalls,
1991 PACKET_QProgramSignals,
1992 PACKET_QSetWorkingDir,
1993 PACKET_QStartupWithShell,
1994 PACKET_QEnvironmentHexEncoded,
1995 PACKET_QEnvironmentReset,
1996 PACKET_QEnvironmentUnset,
1997 PACKET_qCRC,
1998 PACKET_qSearch_memory,
1999 PACKET_vAttach,
2000 PACKET_vRun,
2001 PACKET_QStartNoAckMode,
2002 PACKET_vKill,
2003 PACKET_qXfer_siginfo_read,
2004 PACKET_qXfer_siginfo_write,
2005 PACKET_qAttached,
2006
2007 /* Support for conditional tracepoints. */
2008 PACKET_ConditionalTracepoints,
2009
2010 /* Support for target-side breakpoint conditions. */
2011 PACKET_ConditionalBreakpoints,
2012
2013 /* Support for target-side breakpoint commands. */
2014 PACKET_BreakpointCommands,
2015
2016 /* Support for fast tracepoints. */
2017 PACKET_FastTracepoints,
2018
2019 /* Support for static tracepoints. */
2020 PACKET_StaticTracepoints,
2021
2022 /* Support for installing tracepoints while a trace experiment is
2023 running. */
2024 PACKET_InstallInTrace,
2025
2026 PACKET_bc,
2027 PACKET_bs,
2028 PACKET_TracepointSource,
2029 PACKET_QAllow,
2030 PACKET_qXfer_fdpic,
2031 PACKET_QDisableRandomization,
2032 PACKET_QAgent,
2033 PACKET_QTBuffer_size,
2034 PACKET_Qbtrace_off,
2035 PACKET_Qbtrace_bts,
2036 PACKET_Qbtrace_pt,
2037 PACKET_qXfer_btrace,
2038
2039 /* Support for the QNonStop packet. */
2040 PACKET_QNonStop,
2041
2042 /* Support for the QThreadEvents packet. */
2043 PACKET_QThreadEvents,
2044
2045 /* Support for multi-process extensions. */
2046 PACKET_multiprocess_feature,
2047
2048 /* Support for enabling and disabling tracepoints while a trace
2049 experiment is running. */
2050 PACKET_EnableDisableTracepoints_feature,
2051
2052 /* Support for collecting strings using the tracenz bytecode. */
2053 PACKET_tracenz_feature,
2054
2055 /* Support for continuing to run a trace experiment while GDB is
2056 disconnected. */
2057 PACKET_DisconnectedTracing_feature,
2058
2059 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2060 PACKET_augmented_libraries_svr4_read_feature,
2061
2062 /* Support for the qXfer:btrace-conf:read packet. */
2063 PACKET_qXfer_btrace_conf,
2064
2065 /* Support for the Qbtrace-conf:bts:size packet. */
2066 PACKET_Qbtrace_conf_bts_size,
2067
2068 /* Support for swbreak+ feature. */
2069 PACKET_swbreak_feature,
2070
2071 /* Support for hwbreak+ feature. */
2072 PACKET_hwbreak_feature,
2073
2074 /* Support for fork events. */
2075 PACKET_fork_event_feature,
2076
2077 /* Support for vfork events. */
2078 PACKET_vfork_event_feature,
2079
2080 /* Support for the Qbtrace-conf:pt:size packet. */
2081 PACKET_Qbtrace_conf_pt_size,
2082
2083 /* Support for exec events. */
2084 PACKET_exec_event_feature,
2085
2086 /* Support for query supported vCont actions. */
2087 PACKET_vContSupported,
2088
2089 /* Support remote CTRL-C. */
2090 PACKET_vCtrlC,
2091
2092 /* Support TARGET_WAITKIND_NO_RESUMED. */
2093 PACKET_no_resumed,
2094
2095 PACKET_MAX
2096 };
2097
2098 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2099 assuming all remote targets are the same server (thus all support
2100 the same packets). */
2101 static struct packet_config remote_protocol_packets[PACKET_MAX];
2102
2103 /* Returns the packet's corresponding "set remote foo-packet" command
2104 state. See struct packet_config for more details. */
2105
2106 static enum auto_boolean
2107 packet_set_cmd_state (int packet)
2108 {
2109 return remote_protocol_packets[packet].detect;
2110 }
2111
2112 /* Returns whether a given packet or feature is supported. This takes
2113 into account the state of the corresponding "set remote foo-packet"
2114 command, which may be used to bypass auto-detection. */
2115
2116 static enum packet_support
2117 packet_config_support (struct packet_config *config)
2118 {
2119 switch (config->detect)
2120 {
2121 case AUTO_BOOLEAN_TRUE:
2122 return PACKET_ENABLE;
2123 case AUTO_BOOLEAN_FALSE:
2124 return PACKET_DISABLE;
2125 case AUTO_BOOLEAN_AUTO:
2126 return config->support;
2127 default:
2128 gdb_assert_not_reached (_("bad switch"));
2129 }
2130 }
2131
2132 /* Same as packet_config_support, but takes the packet's enum value as
2133 argument. */
2134
2135 static enum packet_support
2136 packet_support (int packet)
2137 {
2138 struct packet_config *config = &remote_protocol_packets[packet];
2139
2140 return packet_config_support (config);
2141 }
2142
2143 static void
2144 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2145 struct cmd_list_element *c,
2146 const char *value)
2147 {
2148 struct packet_config *packet;
2149
2150 for (packet = remote_protocol_packets;
2151 packet < &remote_protocol_packets[PACKET_MAX];
2152 packet++)
2153 {
2154 if (&packet->detect == c->var)
2155 {
2156 show_packet_config_cmd (packet);
2157 return;
2158 }
2159 }
2160 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2161 c->name);
2162 }
2163
2164 /* Should we try one of the 'Z' requests? */
2165
2166 enum Z_packet_type
2167 {
2168 Z_PACKET_SOFTWARE_BP,
2169 Z_PACKET_HARDWARE_BP,
2170 Z_PACKET_WRITE_WP,
2171 Z_PACKET_READ_WP,
2172 Z_PACKET_ACCESS_WP,
2173 NR_Z_PACKET_TYPES
2174 };
2175
2176 /* For compatibility with older distributions. Provide a ``set remote
2177 Z-packet ...'' command that updates all the Z packet types. */
2178
2179 static enum auto_boolean remote_Z_packet_detect;
2180
2181 static void
2182 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2183 struct cmd_list_element *c)
2184 {
2185 int i;
2186
2187 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2188 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2189 }
2190
2191 static void
2192 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2193 struct cmd_list_element *c,
2194 const char *value)
2195 {
2196 int i;
2197
2198 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2199 {
2200 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2201 }
2202 }
2203
2204 /* Returns true if the multi-process extensions are in effect. */
2205
2206 static int
2207 remote_multi_process_p (struct remote_state *rs)
2208 {
2209 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2210 }
2211
2212 /* Returns true if fork events are supported. */
2213
2214 static int
2215 remote_fork_event_p (struct remote_state *rs)
2216 {
2217 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2218 }
2219
2220 /* Returns true if vfork events are supported. */
2221
2222 static int
2223 remote_vfork_event_p (struct remote_state *rs)
2224 {
2225 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2226 }
2227
2228 /* Returns true if exec events are supported. */
2229
2230 static int
2231 remote_exec_event_p (struct remote_state *rs)
2232 {
2233 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2234 }
2235
2236 /* Insert fork catchpoint target routine. If fork events are enabled
2237 then return success, nothing more to do. */
2238
2239 int
2240 remote_target::insert_fork_catchpoint (int pid)
2241 {
2242 struct remote_state *rs = get_remote_state ();
2243
2244 return !remote_fork_event_p (rs);
2245 }
2246
2247 /* Remove fork catchpoint target routine. Nothing to do, just
2248 return success. */
2249
2250 int
2251 remote_target::remove_fork_catchpoint (int pid)
2252 {
2253 return 0;
2254 }
2255
2256 /* Insert vfork catchpoint target routine. If vfork events are enabled
2257 then return success, nothing more to do. */
2258
2259 int
2260 remote_target::insert_vfork_catchpoint (int pid)
2261 {
2262 struct remote_state *rs = get_remote_state ();
2263
2264 return !remote_vfork_event_p (rs);
2265 }
2266
2267 /* Remove vfork catchpoint target routine. Nothing to do, just
2268 return success. */
2269
2270 int
2271 remote_target::remove_vfork_catchpoint (int pid)
2272 {
2273 return 0;
2274 }
2275
2276 /* Insert exec catchpoint target routine. If exec events are
2277 enabled, just return success. */
2278
2279 int
2280 remote_target::insert_exec_catchpoint (int pid)
2281 {
2282 struct remote_state *rs = get_remote_state ();
2283
2284 return !remote_exec_event_p (rs);
2285 }
2286
2287 /* Remove exec catchpoint target routine. Nothing to do, just
2288 return success. */
2289
2290 int
2291 remote_target::remove_exec_catchpoint (int pid)
2292 {
2293 return 0;
2294 }
2295
2296 \f
2297
2298 /* Take advantage of the fact that the TID field is not used, to tag
2299 special ptids with it set to != 0. */
2300 static const ptid_t magic_null_ptid (42000, -1, 1);
2301 static const ptid_t not_sent_ptid (42000, -2, 1);
2302 static const ptid_t any_thread_ptid (42000, 0, 1);
2303
2304 /* Find out if the stub attached to PID (and hence GDB should offer to
2305 detach instead of killing it when bailing out). */
2306
2307 int
2308 remote_target::remote_query_attached (int pid)
2309 {
2310 struct remote_state *rs = get_remote_state ();
2311 size_t size = get_remote_packet_size ();
2312
2313 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2314 return 0;
2315
2316 if (remote_multi_process_p (rs))
2317 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2318 else
2319 xsnprintf (rs->buf.data (), size, "qAttached");
2320
2321 putpkt (rs->buf);
2322 getpkt (&rs->buf, 0);
2323
2324 switch (packet_ok (rs->buf,
2325 &remote_protocol_packets[PACKET_qAttached]))
2326 {
2327 case PACKET_OK:
2328 if (strcmp (rs->buf.data (), "1") == 0)
2329 return 1;
2330 break;
2331 case PACKET_ERROR:
2332 warning (_("Remote failure reply: %s"), rs->buf.data ());
2333 break;
2334 case PACKET_UNKNOWN:
2335 break;
2336 }
2337
2338 return 0;
2339 }
2340
2341 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2342 has been invented by GDB, instead of reported by the target. Since
2343 we can be connected to a remote system before before knowing about
2344 any inferior, mark the target with execution when we find the first
2345 inferior. If ATTACHED is 1, then we had just attached to this
2346 inferior. If it is 0, then we just created this inferior. If it
2347 is -1, then try querying the remote stub to find out if it had
2348 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2349 attempt to open this inferior's executable as the main executable
2350 if no main executable is open already. */
2351
2352 inferior *
2353 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2354 int try_open_exec)
2355 {
2356 struct inferior *inf;
2357
2358 /* Check whether this process we're learning about is to be
2359 considered attached, or if is to be considered to have been
2360 spawned by the stub. */
2361 if (attached == -1)
2362 attached = remote_query_attached (pid);
2363
2364 if (gdbarch_has_global_solist (target_gdbarch ()))
2365 {
2366 /* If the target shares code across all inferiors, then every
2367 attach adds a new inferior. */
2368 inf = add_inferior (pid);
2369
2370 /* ... and every inferior is bound to the same program space.
2371 However, each inferior may still have its own address
2372 space. */
2373 inf->aspace = maybe_new_address_space ();
2374 inf->pspace = current_program_space;
2375 }
2376 else
2377 {
2378 /* In the traditional debugging scenario, there's a 1-1 match
2379 between program/address spaces. We simply bind the inferior
2380 to the program space's address space. */
2381 inf = current_inferior ();
2382
2383 /* However, if the current inferior is already bound to a
2384 process, find some other empty inferior. */
2385 if (inf->pid != 0)
2386 {
2387 inf = nullptr;
2388 for (inferior *it : all_inferiors ())
2389 if (it->pid == 0)
2390 {
2391 inf = it;
2392 break;
2393 }
2394 }
2395 if (inf == nullptr)
2396 {
2397 /* Since all inferiors were already bound to a process, add
2398 a new inferior. */
2399 inf = add_inferior_with_spaces ();
2400 }
2401 switch_to_inferior_no_thread (inf);
2402 push_target (this);
2403 inferior_appeared (inf, pid);
2404 }
2405
2406 inf->attach_flag = attached;
2407 inf->fake_pid_p = fake_pid_p;
2408
2409 /* If no main executable is currently open then attempt to
2410 open the file that was executed to create this inferior. */
2411 if (try_open_exec && get_exec_file (0) == NULL)
2412 exec_file_locate_attach (pid, 0, 1);
2413
2414 return inf;
2415 }
2416
2417 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2418 static remote_thread_info *get_remote_thread_info (remote_target *target,
2419 ptid_t ptid);
2420
2421 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2422 according to RUNNING. */
2423
2424 thread_info *
2425 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2426 {
2427 struct remote_state *rs = get_remote_state ();
2428 struct thread_info *thread;
2429
2430 /* GDB historically didn't pull threads in the initial connection
2431 setup. If the remote target doesn't even have a concept of
2432 threads (e.g., a bare-metal target), even if internally we
2433 consider that a single-threaded target, mentioning a new thread
2434 might be confusing to the user. Be silent then, preserving the
2435 age old behavior. */
2436 if (rs->starting_up)
2437 thread = add_thread_silent (this, ptid);
2438 else
2439 thread = add_thread (this, ptid);
2440
2441 get_remote_thread_info (thread)->vcont_resumed = executing;
2442 set_executing (this, ptid, executing);
2443 set_running (this, ptid, running);
2444
2445 return thread;
2446 }
2447
2448 /* Come here when we learn about a thread id from the remote target.
2449 It may be the first time we hear about such thread, so take the
2450 opportunity to add it to GDB's thread list. In case this is the
2451 first time we're noticing its corresponding inferior, add it to
2452 GDB's inferior list as well. EXECUTING indicates whether the
2453 thread is (internally) executing or stopped. */
2454
2455 void
2456 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2457 {
2458 /* In non-stop mode, we assume new found threads are (externally)
2459 running until proven otherwise with a stop reply. In all-stop,
2460 we can only get here if all threads are stopped. */
2461 int running = target_is_non_stop_p () ? 1 : 0;
2462
2463 /* If this is a new thread, add it to GDB's thread list.
2464 If we leave it up to WFI to do this, bad things will happen. */
2465
2466 thread_info *tp = find_thread_ptid (this, currthread);
2467 if (tp != NULL && tp->state == THREAD_EXITED)
2468 {
2469 /* We're seeing an event on a thread id we knew had exited.
2470 This has to be a new thread reusing the old id. Add it. */
2471 remote_add_thread (currthread, running, executing);
2472 return;
2473 }
2474
2475 if (!in_thread_list (this, currthread))
2476 {
2477 struct inferior *inf = NULL;
2478 int pid = currthread.pid ();
2479
2480 if (inferior_ptid.is_pid ()
2481 && pid == inferior_ptid.pid ())
2482 {
2483 /* inferior_ptid has no thread member yet. This can happen
2484 with the vAttach -> remote_wait,"TAAthread:" path if the
2485 stub doesn't support qC. This is the first stop reported
2486 after an attach, so this is the main thread. Update the
2487 ptid in the thread list. */
2488 if (in_thread_list (this, ptid_t (pid)))
2489 thread_change_ptid (this, inferior_ptid, currthread);
2490 else
2491 {
2492 remote_add_thread (currthread, running, executing);
2493 inferior_ptid = currthread;
2494 }
2495 return;
2496 }
2497
2498 if (magic_null_ptid == inferior_ptid)
2499 {
2500 /* inferior_ptid is not set yet. This can happen with the
2501 vRun -> remote_wait,"TAAthread:" path if the stub
2502 doesn't support qC. This is the first stop reported
2503 after an attach, so this is the main thread. Update the
2504 ptid in the thread list. */
2505 thread_change_ptid (this, inferior_ptid, currthread);
2506 return;
2507 }
2508
2509 /* When connecting to a target remote, or to a target
2510 extended-remote which already was debugging an inferior, we
2511 may not know about it yet. Add it before adding its child
2512 thread, so notifications are emitted in a sensible order. */
2513 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2514 {
2515 struct remote_state *rs = get_remote_state ();
2516 bool fake_pid_p = !remote_multi_process_p (rs);
2517
2518 inf = remote_add_inferior (fake_pid_p,
2519 currthread.pid (), -1, 1);
2520 }
2521
2522 /* This is really a new thread. Add it. */
2523 thread_info *new_thr
2524 = remote_add_thread (currthread, running, executing);
2525
2526 /* If we found a new inferior, let the common code do whatever
2527 it needs to with it (e.g., read shared libraries, insert
2528 breakpoints), unless we're just setting up an all-stop
2529 connection. */
2530 if (inf != NULL)
2531 {
2532 struct remote_state *rs = get_remote_state ();
2533
2534 if (!rs->starting_up)
2535 notice_new_inferior (new_thr, executing, 0);
2536 }
2537 }
2538 }
2539
2540 /* Return THREAD's private thread data, creating it if necessary. */
2541
2542 static remote_thread_info *
2543 get_remote_thread_info (thread_info *thread)
2544 {
2545 gdb_assert (thread != NULL);
2546
2547 if (thread->priv == NULL)
2548 thread->priv.reset (new remote_thread_info);
2549
2550 return static_cast<remote_thread_info *> (thread->priv.get ());
2551 }
2552
2553 /* Return PTID's private thread data, creating it if necessary. */
2554
2555 static remote_thread_info *
2556 get_remote_thread_info (remote_target *target, ptid_t ptid)
2557 {
2558 thread_info *thr = find_thread_ptid (target, ptid);
2559 return get_remote_thread_info (thr);
2560 }
2561
2562 /* Call this function as a result of
2563 1) A halt indication (T packet) containing a thread id
2564 2) A direct query of currthread
2565 3) Successful execution of set thread */
2566
2567 static void
2568 record_currthread (struct remote_state *rs, ptid_t currthread)
2569 {
2570 rs->general_thread = currthread;
2571 }
2572
2573 /* If 'QPassSignals' is supported, tell the remote stub what signals
2574 it can simply pass through to the inferior without reporting. */
2575
2576 void
2577 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2578 {
2579 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2580 {
2581 char *pass_packet, *p;
2582 int count = 0;
2583 struct remote_state *rs = get_remote_state ();
2584
2585 gdb_assert (pass_signals.size () < 256);
2586 for (size_t i = 0; i < pass_signals.size (); i++)
2587 {
2588 if (pass_signals[i])
2589 count++;
2590 }
2591 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2592 strcpy (pass_packet, "QPassSignals:");
2593 p = pass_packet + strlen (pass_packet);
2594 for (size_t i = 0; i < pass_signals.size (); i++)
2595 {
2596 if (pass_signals[i])
2597 {
2598 if (i >= 16)
2599 *p++ = tohex (i >> 4);
2600 *p++ = tohex (i & 15);
2601 if (count)
2602 *p++ = ';';
2603 else
2604 break;
2605 count--;
2606 }
2607 }
2608 *p = 0;
2609 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2610 {
2611 putpkt (pass_packet);
2612 getpkt (&rs->buf, 0);
2613 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2614 if (rs->last_pass_packet)
2615 xfree (rs->last_pass_packet);
2616 rs->last_pass_packet = pass_packet;
2617 }
2618 else
2619 xfree (pass_packet);
2620 }
2621 }
2622
2623 /* If 'QCatchSyscalls' is supported, tell the remote stub
2624 to report syscalls to GDB. */
2625
2626 int
2627 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2628 gdb::array_view<const int> syscall_counts)
2629 {
2630 const char *catch_packet;
2631 enum packet_result result;
2632 int n_sysno = 0;
2633
2634 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2635 {
2636 /* Not supported. */
2637 return 1;
2638 }
2639
2640 if (needed && any_count == 0)
2641 {
2642 /* Count how many syscalls are to be caught. */
2643 for (size_t i = 0; i < syscall_counts.size (); i++)
2644 {
2645 if (syscall_counts[i] != 0)
2646 n_sysno++;
2647 }
2648 }
2649
2650 if (remote_debug)
2651 {
2652 fprintf_unfiltered (gdb_stdlog,
2653 "remote_set_syscall_catchpoint "
2654 "pid %d needed %d any_count %d n_sysno %d\n",
2655 pid, needed, any_count, n_sysno);
2656 }
2657
2658 std::string built_packet;
2659 if (needed)
2660 {
2661 /* Prepare a packet with the sysno list, assuming max 8+1
2662 characters for a sysno. If the resulting packet size is too
2663 big, fallback on the non-selective packet. */
2664 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2665 built_packet.reserve (maxpktsz);
2666 built_packet = "QCatchSyscalls:1";
2667 if (any_count == 0)
2668 {
2669 /* Add in each syscall to be caught. */
2670 for (size_t i = 0; i < syscall_counts.size (); i++)
2671 {
2672 if (syscall_counts[i] != 0)
2673 string_appendf (built_packet, ";%zx", i);
2674 }
2675 }
2676 if (built_packet.size () > get_remote_packet_size ())
2677 {
2678 /* catch_packet too big. Fallback to less efficient
2679 non selective mode, with GDB doing the filtering. */
2680 catch_packet = "QCatchSyscalls:1";
2681 }
2682 else
2683 catch_packet = built_packet.c_str ();
2684 }
2685 else
2686 catch_packet = "QCatchSyscalls:0";
2687
2688 struct remote_state *rs = get_remote_state ();
2689
2690 putpkt (catch_packet);
2691 getpkt (&rs->buf, 0);
2692 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2693 if (result == PACKET_OK)
2694 return 0;
2695 else
2696 return -1;
2697 }
2698
2699 /* If 'QProgramSignals' is supported, tell the remote stub what
2700 signals it should pass through to the inferior when detaching. */
2701
2702 void
2703 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2704 {
2705 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2706 {
2707 char *packet, *p;
2708 int count = 0;
2709 struct remote_state *rs = get_remote_state ();
2710
2711 gdb_assert (signals.size () < 256);
2712 for (size_t i = 0; i < signals.size (); i++)
2713 {
2714 if (signals[i])
2715 count++;
2716 }
2717 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2718 strcpy (packet, "QProgramSignals:");
2719 p = packet + strlen (packet);
2720 for (size_t i = 0; i < signals.size (); i++)
2721 {
2722 if (signal_pass_state (i))
2723 {
2724 if (i >= 16)
2725 *p++ = tohex (i >> 4);
2726 *p++ = tohex (i & 15);
2727 if (count)
2728 *p++ = ';';
2729 else
2730 break;
2731 count--;
2732 }
2733 }
2734 *p = 0;
2735 if (!rs->last_program_signals_packet
2736 || strcmp (rs->last_program_signals_packet, packet) != 0)
2737 {
2738 putpkt (packet);
2739 getpkt (&rs->buf, 0);
2740 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2741 xfree (rs->last_program_signals_packet);
2742 rs->last_program_signals_packet = packet;
2743 }
2744 else
2745 xfree (packet);
2746 }
2747 }
2748
2749 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2750 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2751 thread. If GEN is set, set the general thread, if not, then set
2752 the step/continue thread. */
2753 void
2754 remote_target::set_thread (ptid_t ptid, int gen)
2755 {
2756 struct remote_state *rs = get_remote_state ();
2757 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2758 char *buf = rs->buf.data ();
2759 char *endbuf = buf + get_remote_packet_size ();
2760
2761 if (state == ptid)
2762 return;
2763
2764 *buf++ = 'H';
2765 *buf++ = gen ? 'g' : 'c';
2766 if (ptid == magic_null_ptid)
2767 xsnprintf (buf, endbuf - buf, "0");
2768 else if (ptid == any_thread_ptid)
2769 xsnprintf (buf, endbuf - buf, "0");
2770 else if (ptid == minus_one_ptid)
2771 xsnprintf (buf, endbuf - buf, "-1");
2772 else
2773 write_ptid (buf, endbuf, ptid);
2774 putpkt (rs->buf);
2775 getpkt (&rs->buf, 0);
2776 if (gen)
2777 rs->general_thread = ptid;
2778 else
2779 rs->continue_thread = ptid;
2780 }
2781
2782 void
2783 remote_target::set_general_thread (ptid_t ptid)
2784 {
2785 set_thread (ptid, 1);
2786 }
2787
2788 void
2789 remote_target::set_continue_thread (ptid_t ptid)
2790 {
2791 set_thread (ptid, 0);
2792 }
2793
2794 /* Change the remote current process. Which thread within the process
2795 ends up selected isn't important, as long as it is the same process
2796 as what INFERIOR_PTID points to.
2797
2798 This comes from that fact that there is no explicit notion of
2799 "selected process" in the protocol. The selected process for
2800 general operations is the process the selected general thread
2801 belongs to. */
2802
2803 void
2804 remote_target::set_general_process ()
2805 {
2806 struct remote_state *rs = get_remote_state ();
2807
2808 /* If the remote can't handle multiple processes, don't bother. */
2809 if (!remote_multi_process_p (rs))
2810 return;
2811
2812 /* We only need to change the remote current thread if it's pointing
2813 at some other process. */
2814 if (rs->general_thread.pid () != inferior_ptid.pid ())
2815 set_general_thread (inferior_ptid);
2816 }
2817
2818 \f
2819 /* Return nonzero if this is the main thread that we made up ourselves
2820 to model non-threaded targets as single-threaded. */
2821
2822 static int
2823 remote_thread_always_alive (ptid_t ptid)
2824 {
2825 if (ptid == magic_null_ptid)
2826 /* The main thread is always alive. */
2827 return 1;
2828
2829 if (ptid.pid () != 0 && ptid.lwp () == 0)
2830 /* The main thread is always alive. This can happen after a
2831 vAttach, if the remote side doesn't support
2832 multi-threading. */
2833 return 1;
2834
2835 return 0;
2836 }
2837
2838 /* Return nonzero if the thread PTID is still alive on the remote
2839 system. */
2840
2841 bool
2842 remote_target::thread_alive (ptid_t ptid)
2843 {
2844 struct remote_state *rs = get_remote_state ();
2845 char *p, *endp;
2846
2847 /* Check if this is a thread that we made up ourselves to model
2848 non-threaded targets as single-threaded. */
2849 if (remote_thread_always_alive (ptid))
2850 return 1;
2851
2852 p = rs->buf.data ();
2853 endp = p + get_remote_packet_size ();
2854
2855 *p++ = 'T';
2856 write_ptid (p, endp, ptid);
2857
2858 putpkt (rs->buf);
2859 getpkt (&rs->buf, 0);
2860 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2861 }
2862
2863 /* Return a pointer to a thread name if we know it and NULL otherwise.
2864 The thread_info object owns the memory for the name. */
2865
2866 const char *
2867 remote_target::thread_name (struct thread_info *info)
2868 {
2869 if (info->priv != NULL)
2870 {
2871 const std::string &name = get_remote_thread_info (info)->name;
2872 return !name.empty () ? name.c_str () : NULL;
2873 }
2874
2875 return NULL;
2876 }
2877
2878 /* About these extended threadlist and threadinfo packets. They are
2879 variable length packets but, the fields within them are often fixed
2880 length. They are redundant enough to send over UDP as is the
2881 remote protocol in general. There is a matching unit test module
2882 in libstub. */
2883
2884 /* WARNING: This threadref data structure comes from the remote O.S.,
2885 libstub protocol encoding, and remote.c. It is not particularly
2886 changable. */
2887
2888 /* Right now, the internal structure is int. We want it to be bigger.
2889 Plan to fix this. */
2890
2891 typedef int gdb_threadref; /* Internal GDB thread reference. */
2892
2893 /* gdb_ext_thread_info is an internal GDB data structure which is
2894 equivalent to the reply of the remote threadinfo packet. */
2895
2896 struct gdb_ext_thread_info
2897 {
2898 threadref threadid; /* External form of thread reference. */
2899 int active; /* Has state interesting to GDB?
2900 regs, stack. */
2901 char display[256]; /* Brief state display, name,
2902 blocked/suspended. */
2903 char shortname[32]; /* To be used to name threads. */
2904 char more_display[256]; /* Long info, statistics, queue depth,
2905 whatever. */
2906 };
2907
2908 /* The volume of remote transfers can be limited by submitting
2909 a mask containing bits specifying the desired information.
2910 Use a union of these values as the 'selection' parameter to
2911 get_thread_info. FIXME: Make these TAG names more thread specific. */
2912
2913 #define TAG_THREADID 1
2914 #define TAG_EXISTS 2
2915 #define TAG_DISPLAY 4
2916 #define TAG_THREADNAME 8
2917 #define TAG_MOREDISPLAY 16
2918
2919 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2920
2921 static char *unpack_nibble (char *buf, int *val);
2922
2923 static char *unpack_byte (char *buf, int *value);
2924
2925 static char *pack_int (char *buf, int value);
2926
2927 static char *unpack_int (char *buf, int *value);
2928
2929 static char *unpack_string (char *src, char *dest, int length);
2930
2931 static char *pack_threadid (char *pkt, threadref *id);
2932
2933 static char *unpack_threadid (char *inbuf, threadref *id);
2934
2935 void int_to_threadref (threadref *id, int value);
2936
2937 static int threadref_to_int (threadref *ref);
2938
2939 static void copy_threadref (threadref *dest, threadref *src);
2940
2941 static int threadmatch (threadref *dest, threadref *src);
2942
2943 static char *pack_threadinfo_request (char *pkt, int mode,
2944 threadref *id);
2945
2946 static char *pack_threadlist_request (char *pkt, int startflag,
2947 int threadcount,
2948 threadref *nextthread);
2949
2950 static int remote_newthread_step (threadref *ref, void *context);
2951
2952
2953 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2954 buffer we're allowed to write to. Returns
2955 BUF+CHARACTERS_WRITTEN. */
2956
2957 char *
2958 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2959 {
2960 int pid, tid;
2961 struct remote_state *rs = get_remote_state ();
2962
2963 if (remote_multi_process_p (rs))
2964 {
2965 pid = ptid.pid ();
2966 if (pid < 0)
2967 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2968 else
2969 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2970 }
2971 tid = ptid.lwp ();
2972 if (tid < 0)
2973 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2974 else
2975 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2976
2977 return buf;
2978 }
2979
2980 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2981 last parsed char. Returns null_ptid if no thread id is found, and
2982 throws an error if the thread id has an invalid format. */
2983
2984 static ptid_t
2985 read_ptid (const char *buf, const char **obuf)
2986 {
2987 const char *p = buf;
2988 const char *pp;
2989 ULONGEST pid = 0, tid = 0;
2990
2991 if (*p == 'p')
2992 {
2993 /* Multi-process ptid. */
2994 pp = unpack_varlen_hex (p + 1, &pid);
2995 if (*pp != '.')
2996 error (_("invalid remote ptid: %s"), p);
2997
2998 p = pp;
2999 pp = unpack_varlen_hex (p + 1, &tid);
3000 if (obuf)
3001 *obuf = pp;
3002 return ptid_t (pid, tid, 0);
3003 }
3004
3005 /* No multi-process. Just a tid. */
3006 pp = unpack_varlen_hex (p, &tid);
3007
3008 /* Return null_ptid when no thread id is found. */
3009 if (p == pp)
3010 {
3011 if (obuf)
3012 *obuf = pp;
3013 return null_ptid;
3014 }
3015
3016 /* Since the stub is not sending a process id, then default to
3017 what's in inferior_ptid, unless it's null at this point. If so,
3018 then since there's no way to know the pid of the reported
3019 threads, use the magic number. */
3020 if (inferior_ptid == null_ptid)
3021 pid = magic_null_ptid.pid ();
3022 else
3023 pid = inferior_ptid.pid ();
3024
3025 if (obuf)
3026 *obuf = pp;
3027 return ptid_t (pid, tid, 0);
3028 }
3029
3030 static int
3031 stubhex (int ch)
3032 {
3033 if (ch >= 'a' && ch <= 'f')
3034 return ch - 'a' + 10;
3035 if (ch >= '0' && ch <= '9')
3036 return ch - '0';
3037 if (ch >= 'A' && ch <= 'F')
3038 return ch - 'A' + 10;
3039 return -1;
3040 }
3041
3042 static int
3043 stub_unpack_int (char *buff, int fieldlength)
3044 {
3045 int nibble;
3046 int retval = 0;
3047
3048 while (fieldlength)
3049 {
3050 nibble = stubhex (*buff++);
3051 retval |= nibble;
3052 fieldlength--;
3053 if (fieldlength)
3054 retval = retval << 4;
3055 }
3056 return retval;
3057 }
3058
3059 static char *
3060 unpack_nibble (char *buf, int *val)
3061 {
3062 *val = fromhex (*buf++);
3063 return buf;
3064 }
3065
3066 static char *
3067 unpack_byte (char *buf, int *value)
3068 {
3069 *value = stub_unpack_int (buf, 2);
3070 return buf + 2;
3071 }
3072
3073 static char *
3074 pack_int (char *buf, int value)
3075 {
3076 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3077 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3078 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3079 buf = pack_hex_byte (buf, (value & 0xff));
3080 return buf;
3081 }
3082
3083 static char *
3084 unpack_int (char *buf, int *value)
3085 {
3086 *value = stub_unpack_int (buf, 8);
3087 return buf + 8;
3088 }
3089
3090 #if 0 /* Currently unused, uncomment when needed. */
3091 static char *pack_string (char *pkt, char *string);
3092
3093 static char *
3094 pack_string (char *pkt, char *string)
3095 {
3096 char ch;
3097 int len;
3098
3099 len = strlen (string);
3100 if (len > 200)
3101 len = 200; /* Bigger than most GDB packets, junk??? */
3102 pkt = pack_hex_byte (pkt, len);
3103 while (len-- > 0)
3104 {
3105 ch = *string++;
3106 if ((ch == '\0') || (ch == '#'))
3107 ch = '*'; /* Protect encapsulation. */
3108 *pkt++ = ch;
3109 }
3110 return pkt;
3111 }
3112 #endif /* 0 (unused) */
3113
3114 static char *
3115 unpack_string (char *src, char *dest, int length)
3116 {
3117 while (length--)
3118 *dest++ = *src++;
3119 *dest = '\0';
3120 return src;
3121 }
3122
3123 static char *
3124 pack_threadid (char *pkt, threadref *id)
3125 {
3126 char *limit;
3127 unsigned char *altid;
3128
3129 altid = (unsigned char *) id;
3130 limit = pkt + BUF_THREAD_ID_SIZE;
3131 while (pkt < limit)
3132 pkt = pack_hex_byte (pkt, *altid++);
3133 return pkt;
3134 }
3135
3136
3137 static char *
3138 unpack_threadid (char *inbuf, threadref *id)
3139 {
3140 char *altref;
3141 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3142 int x, y;
3143
3144 altref = (char *) id;
3145
3146 while (inbuf < limit)
3147 {
3148 x = stubhex (*inbuf++);
3149 y = stubhex (*inbuf++);
3150 *altref++ = (x << 4) | y;
3151 }
3152 return inbuf;
3153 }
3154
3155 /* Externally, threadrefs are 64 bits but internally, they are still
3156 ints. This is due to a mismatch of specifications. We would like
3157 to use 64bit thread references internally. This is an adapter
3158 function. */
3159
3160 void
3161 int_to_threadref (threadref *id, int value)
3162 {
3163 unsigned char *scan;
3164
3165 scan = (unsigned char *) id;
3166 {
3167 int i = 4;
3168 while (i--)
3169 *scan++ = 0;
3170 }
3171 *scan++ = (value >> 24) & 0xff;
3172 *scan++ = (value >> 16) & 0xff;
3173 *scan++ = (value >> 8) & 0xff;
3174 *scan++ = (value & 0xff);
3175 }
3176
3177 static int
3178 threadref_to_int (threadref *ref)
3179 {
3180 int i, value = 0;
3181 unsigned char *scan;
3182
3183 scan = *ref;
3184 scan += 4;
3185 i = 4;
3186 while (i-- > 0)
3187 value = (value << 8) | ((*scan++) & 0xff);
3188 return value;
3189 }
3190
3191 static void
3192 copy_threadref (threadref *dest, threadref *src)
3193 {
3194 int i;
3195 unsigned char *csrc, *cdest;
3196
3197 csrc = (unsigned char *) src;
3198 cdest = (unsigned char *) dest;
3199 i = 8;
3200 while (i--)
3201 *cdest++ = *csrc++;
3202 }
3203
3204 static int
3205 threadmatch (threadref *dest, threadref *src)
3206 {
3207 /* Things are broken right now, so just assume we got a match. */
3208 #if 0
3209 unsigned char *srcp, *destp;
3210 int i, result;
3211 srcp = (char *) src;
3212 destp = (char *) dest;
3213
3214 result = 1;
3215 while (i-- > 0)
3216 result &= (*srcp++ == *destp++) ? 1 : 0;
3217 return result;
3218 #endif
3219 return 1;
3220 }
3221
3222 /*
3223 threadid:1, # always request threadid
3224 context_exists:2,
3225 display:4,
3226 unique_name:8,
3227 more_display:16
3228 */
3229
3230 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3231
3232 static char *
3233 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3234 {
3235 *pkt++ = 'q'; /* Info Query */
3236 *pkt++ = 'P'; /* process or thread info */
3237 pkt = pack_int (pkt, mode); /* mode */
3238 pkt = pack_threadid (pkt, id); /* threadid */
3239 *pkt = '\0'; /* terminate */
3240 return pkt;
3241 }
3242
3243 /* These values tag the fields in a thread info response packet. */
3244 /* Tagging the fields allows us to request specific fields and to
3245 add more fields as time goes by. */
3246
3247 #define TAG_THREADID 1 /* Echo the thread identifier. */
3248 #define TAG_EXISTS 2 /* Is this process defined enough to
3249 fetch registers and its stack? */
3250 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3251 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3252 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3253 the process. */
3254
3255 int
3256 remote_target::remote_unpack_thread_info_response (char *pkt,
3257 threadref *expectedref,
3258 gdb_ext_thread_info *info)
3259 {
3260 struct remote_state *rs = get_remote_state ();
3261 int mask, length;
3262 int tag;
3263 threadref ref;
3264 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3265 int retval = 1;
3266
3267 /* info->threadid = 0; FIXME: implement zero_threadref. */
3268 info->active = 0;
3269 info->display[0] = '\0';
3270 info->shortname[0] = '\0';
3271 info->more_display[0] = '\0';
3272
3273 /* Assume the characters indicating the packet type have been
3274 stripped. */
3275 pkt = unpack_int (pkt, &mask); /* arg mask */
3276 pkt = unpack_threadid (pkt, &ref);
3277
3278 if (mask == 0)
3279 warning (_("Incomplete response to threadinfo request."));
3280 if (!threadmatch (&ref, expectedref))
3281 { /* This is an answer to a different request. */
3282 warning (_("ERROR RMT Thread info mismatch."));
3283 return 0;
3284 }
3285 copy_threadref (&info->threadid, &ref);
3286
3287 /* Loop on tagged fields , try to bail if something goes wrong. */
3288
3289 /* Packets are terminated with nulls. */
3290 while ((pkt < limit) && mask && *pkt)
3291 {
3292 pkt = unpack_int (pkt, &tag); /* tag */
3293 pkt = unpack_byte (pkt, &length); /* length */
3294 if (!(tag & mask)) /* Tags out of synch with mask. */
3295 {
3296 warning (_("ERROR RMT: threadinfo tag mismatch."));
3297 retval = 0;
3298 break;
3299 }
3300 if (tag == TAG_THREADID)
3301 {
3302 if (length != 16)
3303 {
3304 warning (_("ERROR RMT: length of threadid is not 16."));
3305 retval = 0;
3306 break;
3307 }
3308 pkt = unpack_threadid (pkt, &ref);
3309 mask = mask & ~TAG_THREADID;
3310 continue;
3311 }
3312 if (tag == TAG_EXISTS)
3313 {
3314 info->active = stub_unpack_int (pkt, length);
3315 pkt += length;
3316 mask = mask & ~(TAG_EXISTS);
3317 if (length > 8)
3318 {
3319 warning (_("ERROR RMT: 'exists' length too long."));
3320 retval = 0;
3321 break;
3322 }
3323 continue;
3324 }
3325 if (tag == TAG_THREADNAME)
3326 {
3327 pkt = unpack_string (pkt, &info->shortname[0], length);
3328 mask = mask & ~TAG_THREADNAME;
3329 continue;
3330 }
3331 if (tag == TAG_DISPLAY)
3332 {
3333 pkt = unpack_string (pkt, &info->display[0], length);
3334 mask = mask & ~TAG_DISPLAY;
3335 continue;
3336 }
3337 if (tag == TAG_MOREDISPLAY)
3338 {
3339 pkt = unpack_string (pkt, &info->more_display[0], length);
3340 mask = mask & ~TAG_MOREDISPLAY;
3341 continue;
3342 }
3343 warning (_("ERROR RMT: unknown thread info tag."));
3344 break; /* Not a tag we know about. */
3345 }
3346 return retval;
3347 }
3348
3349 int
3350 remote_target::remote_get_threadinfo (threadref *threadid,
3351 int fieldset,
3352 gdb_ext_thread_info *info)
3353 {
3354 struct remote_state *rs = get_remote_state ();
3355 int result;
3356
3357 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3358 putpkt (rs->buf);
3359 getpkt (&rs->buf, 0);
3360
3361 if (rs->buf[0] == '\0')
3362 return 0;
3363
3364 result = remote_unpack_thread_info_response (&rs->buf[2],
3365 threadid, info);
3366 return result;
3367 }
3368
3369 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3370
3371 static char *
3372 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3373 threadref *nextthread)
3374 {
3375 *pkt++ = 'q'; /* info query packet */
3376 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3377 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3378 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3379 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3380 *pkt = '\0';
3381 return pkt;
3382 }
3383
3384 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3385
3386 int
3387 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3388 threadref *original_echo,
3389 threadref *resultlist,
3390 int *doneflag)
3391 {
3392 struct remote_state *rs = get_remote_state ();
3393 char *limit;
3394 int count, resultcount, done;
3395
3396 resultcount = 0;
3397 /* Assume the 'q' and 'M chars have been stripped. */
3398 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3399 /* done parse past here */
3400 pkt = unpack_byte (pkt, &count); /* count field */
3401 pkt = unpack_nibble (pkt, &done);
3402 /* The first threadid is the argument threadid. */
3403 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3404 while ((count-- > 0) && (pkt < limit))
3405 {
3406 pkt = unpack_threadid (pkt, resultlist++);
3407 if (resultcount++ >= result_limit)
3408 break;
3409 }
3410 if (doneflag)
3411 *doneflag = done;
3412 return resultcount;
3413 }
3414
3415 /* Fetch the next batch of threads from the remote. Returns -1 if the
3416 qL packet is not supported, 0 on error and 1 on success. */
3417
3418 int
3419 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3420 int result_limit, int *done, int *result_count,
3421 threadref *threadlist)
3422 {
3423 struct remote_state *rs = get_remote_state ();
3424 int result = 1;
3425
3426 /* Truncate result limit to be smaller than the packet size. */
3427 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3428 >= get_remote_packet_size ())
3429 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3430
3431 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3432 nextthread);
3433 putpkt (rs->buf);
3434 getpkt (&rs->buf, 0);
3435 if (rs->buf[0] == '\0')
3436 {
3437 /* Packet not supported. */
3438 return -1;
3439 }
3440
3441 *result_count =
3442 parse_threadlist_response (&rs->buf[2], result_limit,
3443 &rs->echo_nextthread, threadlist, done);
3444
3445 if (!threadmatch (&rs->echo_nextthread, nextthread))
3446 {
3447 /* FIXME: This is a good reason to drop the packet. */
3448 /* Possibly, there is a duplicate response. */
3449 /* Possibilities :
3450 retransmit immediatly - race conditions
3451 retransmit after timeout - yes
3452 exit
3453 wait for packet, then exit
3454 */
3455 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3456 return 0; /* I choose simply exiting. */
3457 }
3458 if (*result_count <= 0)
3459 {
3460 if (*done != 1)
3461 {
3462 warning (_("RMT ERROR : failed to get remote thread list."));
3463 result = 0;
3464 }
3465 return result; /* break; */
3466 }
3467 if (*result_count > result_limit)
3468 {
3469 *result_count = 0;
3470 warning (_("RMT ERROR: threadlist response longer than requested."));
3471 return 0;
3472 }
3473 return result;
3474 }
3475
3476 /* Fetch the list of remote threads, with the qL packet, and call
3477 STEPFUNCTION for each thread found. Stops iterating and returns 1
3478 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3479 STEPFUNCTION returns false. If the packet is not supported,
3480 returns -1. */
3481
3482 int
3483 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3484 void *context, int looplimit)
3485 {
3486 struct remote_state *rs = get_remote_state ();
3487 int done, i, result_count;
3488 int startflag = 1;
3489 int result = 1;
3490 int loopcount = 0;
3491
3492 done = 0;
3493 while (!done)
3494 {
3495 if (loopcount++ > looplimit)
3496 {
3497 result = 0;
3498 warning (_("Remote fetch threadlist -infinite loop-."));
3499 break;
3500 }
3501 result = remote_get_threadlist (startflag, &rs->nextthread,
3502 MAXTHREADLISTRESULTS,
3503 &done, &result_count,
3504 rs->resultthreadlist);
3505 if (result <= 0)
3506 break;
3507 /* Clear for later iterations. */
3508 startflag = 0;
3509 /* Setup to resume next batch of thread references, set nextthread. */
3510 if (result_count >= 1)
3511 copy_threadref (&rs->nextthread,
3512 &rs->resultthreadlist[result_count - 1]);
3513 i = 0;
3514 while (result_count--)
3515 {
3516 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3517 {
3518 result = 0;
3519 break;
3520 }
3521 }
3522 }
3523 return result;
3524 }
3525
3526 /* A thread found on the remote target. */
3527
3528 struct thread_item
3529 {
3530 explicit thread_item (ptid_t ptid_)
3531 : ptid (ptid_)
3532 {}
3533
3534 thread_item (thread_item &&other) = default;
3535 thread_item &operator= (thread_item &&other) = default;
3536
3537 DISABLE_COPY_AND_ASSIGN (thread_item);
3538
3539 /* The thread's PTID. */
3540 ptid_t ptid;
3541
3542 /* The thread's extra info. */
3543 std::string extra;
3544
3545 /* The thread's name. */
3546 std::string name;
3547
3548 /* The core the thread was running on. -1 if not known. */
3549 int core = -1;
3550
3551 /* The thread handle associated with the thread. */
3552 gdb::byte_vector thread_handle;
3553 };
3554
3555 /* Context passed around to the various methods listing remote
3556 threads. As new threads are found, they're added to the ITEMS
3557 vector. */
3558
3559 struct threads_listing_context
3560 {
3561 /* Return true if this object contains an entry for a thread with ptid
3562 PTID. */
3563
3564 bool contains_thread (ptid_t ptid) const
3565 {
3566 auto match_ptid = [&] (const thread_item &item)
3567 {
3568 return item.ptid == ptid;
3569 };
3570
3571 auto it = std::find_if (this->items.begin (),
3572 this->items.end (),
3573 match_ptid);
3574
3575 return it != this->items.end ();
3576 }
3577
3578 /* Remove the thread with ptid PTID. */
3579
3580 void remove_thread (ptid_t ptid)
3581 {
3582 auto match_ptid = [&] (const thread_item &item)
3583 {
3584 return item.ptid == ptid;
3585 };
3586
3587 auto it = std::remove_if (this->items.begin (),
3588 this->items.end (),
3589 match_ptid);
3590
3591 if (it != this->items.end ())
3592 this->items.erase (it);
3593 }
3594
3595 /* The threads found on the remote target. */
3596 std::vector<thread_item> items;
3597 };
3598
3599 static int
3600 remote_newthread_step (threadref *ref, void *data)
3601 {
3602 struct threads_listing_context *context
3603 = (struct threads_listing_context *) data;
3604 int pid = inferior_ptid.pid ();
3605 int lwp = threadref_to_int (ref);
3606 ptid_t ptid (pid, lwp);
3607
3608 context->items.emplace_back (ptid);
3609
3610 return 1; /* continue iterator */
3611 }
3612
3613 #define CRAZY_MAX_THREADS 1000
3614
3615 ptid_t
3616 remote_target::remote_current_thread (ptid_t oldpid)
3617 {
3618 struct remote_state *rs = get_remote_state ();
3619
3620 putpkt ("qC");
3621 getpkt (&rs->buf, 0);
3622 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3623 {
3624 const char *obuf;
3625 ptid_t result;
3626
3627 result = read_ptid (&rs->buf[2], &obuf);
3628 if (*obuf != '\0' && remote_debug)
3629 fprintf_unfiltered (gdb_stdlog,
3630 "warning: garbage in qC reply\n");
3631
3632 return result;
3633 }
3634 else
3635 return oldpid;
3636 }
3637
3638 /* List remote threads using the deprecated qL packet. */
3639
3640 int
3641 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3642 {
3643 if (remote_threadlist_iterator (remote_newthread_step, context,
3644 CRAZY_MAX_THREADS) >= 0)
3645 return 1;
3646
3647 return 0;
3648 }
3649
3650 #if defined(HAVE_LIBEXPAT)
3651
3652 static void
3653 start_thread (struct gdb_xml_parser *parser,
3654 const struct gdb_xml_element *element,
3655 void *user_data,
3656 std::vector<gdb_xml_value> &attributes)
3657 {
3658 struct threads_listing_context *data
3659 = (struct threads_listing_context *) user_data;
3660 struct gdb_xml_value *attr;
3661
3662 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3663 ptid_t ptid = read_ptid (id, NULL);
3664
3665 data->items.emplace_back (ptid);
3666 thread_item &item = data->items.back ();
3667
3668 attr = xml_find_attribute (attributes, "core");
3669 if (attr != NULL)
3670 item.core = *(ULONGEST *) attr->value.get ();
3671
3672 attr = xml_find_attribute (attributes, "name");
3673 if (attr != NULL)
3674 item.name = (const char *) attr->value.get ();
3675
3676 attr = xml_find_attribute (attributes, "handle");
3677 if (attr != NULL)
3678 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3679 }
3680
3681 static void
3682 end_thread (struct gdb_xml_parser *parser,
3683 const struct gdb_xml_element *element,
3684 void *user_data, const char *body_text)
3685 {
3686 struct threads_listing_context *data
3687 = (struct threads_listing_context *) user_data;
3688
3689 if (body_text != NULL && *body_text != '\0')
3690 data->items.back ().extra = body_text;
3691 }
3692
3693 const struct gdb_xml_attribute thread_attributes[] = {
3694 { "id", GDB_XML_AF_NONE, NULL, NULL },
3695 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3696 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3697 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3698 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3699 };
3700
3701 const struct gdb_xml_element thread_children[] = {
3702 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3703 };
3704
3705 const struct gdb_xml_element threads_children[] = {
3706 { "thread", thread_attributes, thread_children,
3707 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3708 start_thread, end_thread },
3709 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3710 };
3711
3712 const struct gdb_xml_element threads_elements[] = {
3713 { "threads", NULL, threads_children,
3714 GDB_XML_EF_NONE, NULL, NULL },
3715 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3716 };
3717
3718 #endif
3719
3720 /* List remote threads using qXfer:threads:read. */
3721
3722 int
3723 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3724 {
3725 #if defined(HAVE_LIBEXPAT)
3726 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3727 {
3728 gdb::optional<gdb::char_vector> xml
3729 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3730
3731 if (xml && (*xml)[0] != '\0')
3732 {
3733 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3734 threads_elements, xml->data (), context);
3735 }
3736
3737 return 1;
3738 }
3739 #endif
3740
3741 return 0;
3742 }
3743
3744 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3745
3746 int
3747 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3748 {
3749 struct remote_state *rs = get_remote_state ();
3750
3751 if (rs->use_threadinfo_query)
3752 {
3753 const char *bufp;
3754
3755 putpkt ("qfThreadInfo");
3756 getpkt (&rs->buf, 0);
3757 bufp = rs->buf.data ();
3758 if (bufp[0] != '\0') /* q packet recognized */
3759 {
3760 while (*bufp++ == 'm') /* reply contains one or more TID */
3761 {
3762 do
3763 {
3764 ptid_t ptid = read_ptid (bufp, &bufp);
3765 context->items.emplace_back (ptid);
3766 }
3767 while (*bufp++ == ','); /* comma-separated list */
3768 putpkt ("qsThreadInfo");
3769 getpkt (&rs->buf, 0);
3770 bufp = rs->buf.data ();
3771 }
3772 return 1;
3773 }
3774 else
3775 {
3776 /* Packet not recognized. */
3777 rs->use_threadinfo_query = 0;
3778 }
3779 }
3780
3781 return 0;
3782 }
3783
3784 /* Implement the to_update_thread_list function for the remote
3785 targets. */
3786
3787 void
3788 remote_target::update_thread_list ()
3789 {
3790 struct threads_listing_context context;
3791 int got_list = 0;
3792
3793 /* We have a few different mechanisms to fetch the thread list. Try
3794 them all, starting with the most preferred one first, falling
3795 back to older methods. */
3796 if (remote_get_threads_with_qxfer (&context)
3797 || remote_get_threads_with_qthreadinfo (&context)
3798 || remote_get_threads_with_ql (&context))
3799 {
3800 got_list = 1;
3801
3802 if (context.items.empty ()
3803 && remote_thread_always_alive (inferior_ptid))
3804 {
3805 /* Some targets don't really support threads, but still
3806 reply an (empty) thread list in response to the thread
3807 listing packets, instead of replying "packet not
3808 supported". Exit early so we don't delete the main
3809 thread. */
3810 return;
3811 }
3812
3813 /* CONTEXT now holds the current thread list on the remote
3814 target end. Delete GDB-side threads no longer found on the
3815 target. */
3816 for (thread_info *tp : all_threads_safe ())
3817 {
3818 if (tp->inf->process_target () != this)
3819 continue;
3820
3821 if (!context.contains_thread (tp->ptid))
3822 {
3823 /* Not found. */
3824 delete_thread (tp);
3825 }
3826 }
3827
3828 /* Remove any unreported fork child threads from CONTEXT so
3829 that we don't interfere with follow fork, which is where
3830 creation of such threads is handled. */
3831 remove_new_fork_children (&context);
3832
3833 /* And now add threads we don't know about yet to our list. */
3834 for (thread_item &item : context.items)
3835 {
3836 if (item.ptid != null_ptid)
3837 {
3838 /* In non-stop mode, we assume new found threads are
3839 executing until proven otherwise with a stop reply.
3840 In all-stop, we can only get here if all threads are
3841 stopped. */
3842 int executing = target_is_non_stop_p () ? 1 : 0;
3843
3844 remote_notice_new_inferior (item.ptid, executing);
3845
3846 thread_info *tp = find_thread_ptid (this, item.ptid);
3847 remote_thread_info *info = get_remote_thread_info (tp);
3848 info->core = item.core;
3849 info->extra = std::move (item.extra);
3850 info->name = std::move (item.name);
3851 info->thread_handle = std::move (item.thread_handle);
3852 }
3853 }
3854 }
3855
3856 if (!got_list)
3857 {
3858 /* If no thread listing method is supported, then query whether
3859 each known thread is alive, one by one, with the T packet.
3860 If the target doesn't support threads at all, then this is a
3861 no-op. See remote_thread_alive. */
3862 prune_threads ();
3863 }
3864 }
3865
3866 /*
3867 * Collect a descriptive string about the given thread.
3868 * The target may say anything it wants to about the thread
3869 * (typically info about its blocked / runnable state, name, etc.).
3870 * This string will appear in the info threads display.
3871 *
3872 * Optional: targets are not required to implement this function.
3873 */
3874
3875 const char *
3876 remote_target::extra_thread_info (thread_info *tp)
3877 {
3878 struct remote_state *rs = get_remote_state ();
3879 int set;
3880 threadref id;
3881 struct gdb_ext_thread_info threadinfo;
3882
3883 if (rs->remote_desc == 0) /* paranoia */
3884 internal_error (__FILE__, __LINE__,
3885 _("remote_threads_extra_info"));
3886
3887 if (tp->ptid == magic_null_ptid
3888 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3889 /* This is the main thread which was added by GDB. The remote
3890 server doesn't know about it. */
3891 return NULL;
3892
3893 std::string &extra = get_remote_thread_info (tp)->extra;
3894
3895 /* If already have cached info, use it. */
3896 if (!extra.empty ())
3897 return extra.c_str ();
3898
3899 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3900 {
3901 /* If we're using qXfer:threads:read, then the extra info is
3902 included in the XML. So if we didn't have anything cached,
3903 it's because there's really no extra info. */
3904 return NULL;
3905 }
3906
3907 if (rs->use_threadextra_query)
3908 {
3909 char *b = rs->buf.data ();
3910 char *endb = b + get_remote_packet_size ();
3911
3912 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3913 b += strlen (b);
3914 write_ptid (b, endb, tp->ptid);
3915
3916 putpkt (rs->buf);
3917 getpkt (&rs->buf, 0);
3918 if (rs->buf[0] != 0)
3919 {
3920 extra.resize (strlen (rs->buf.data ()) / 2);
3921 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3922 return extra.c_str ();
3923 }
3924 }
3925
3926 /* If the above query fails, fall back to the old method. */
3927 rs->use_threadextra_query = 0;
3928 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3929 | TAG_MOREDISPLAY | TAG_DISPLAY;
3930 int_to_threadref (&id, tp->ptid.lwp ());
3931 if (remote_get_threadinfo (&id, set, &threadinfo))
3932 if (threadinfo.active)
3933 {
3934 if (*threadinfo.shortname)
3935 string_appendf (extra, " Name: %s", threadinfo.shortname);
3936 if (*threadinfo.display)
3937 {
3938 if (!extra.empty ())
3939 extra += ',';
3940 string_appendf (extra, " State: %s", threadinfo.display);
3941 }
3942 if (*threadinfo.more_display)
3943 {
3944 if (!extra.empty ())
3945 extra += ',';
3946 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3947 }
3948 return extra.c_str ();
3949 }
3950 return NULL;
3951 }
3952 \f
3953
3954 bool
3955 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3956 struct static_tracepoint_marker *marker)
3957 {
3958 struct remote_state *rs = get_remote_state ();
3959 char *p = rs->buf.data ();
3960
3961 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3962 p += strlen (p);
3963 p += hexnumstr (p, addr);
3964 putpkt (rs->buf);
3965 getpkt (&rs->buf, 0);
3966 p = rs->buf.data ();
3967
3968 if (*p == 'E')
3969 error (_("Remote failure reply: %s"), p);
3970
3971 if (*p++ == 'm')
3972 {
3973 parse_static_tracepoint_marker_definition (p, NULL, marker);
3974 return true;
3975 }
3976
3977 return false;
3978 }
3979
3980 std::vector<static_tracepoint_marker>
3981 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3982 {
3983 struct remote_state *rs = get_remote_state ();
3984 std::vector<static_tracepoint_marker> markers;
3985 const char *p;
3986 static_tracepoint_marker marker;
3987
3988 /* Ask for a first packet of static tracepoint marker
3989 definition. */
3990 putpkt ("qTfSTM");
3991 getpkt (&rs->buf, 0);
3992 p = rs->buf.data ();
3993 if (*p == 'E')
3994 error (_("Remote failure reply: %s"), p);
3995
3996 while (*p++ == 'm')
3997 {
3998 do
3999 {
4000 parse_static_tracepoint_marker_definition (p, &p, &marker);
4001
4002 if (strid == NULL || marker.str_id == strid)
4003 markers.push_back (std::move (marker));
4004 }
4005 while (*p++ == ','); /* comma-separated list */
4006 /* Ask for another packet of static tracepoint definition. */
4007 putpkt ("qTsSTM");
4008 getpkt (&rs->buf, 0);
4009 p = rs->buf.data ();
4010 }
4011
4012 return markers;
4013 }
4014
4015 \f
4016 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4017
4018 ptid_t
4019 remote_target::get_ada_task_ptid (long lwp, long thread)
4020 {
4021 return ptid_t (inferior_ptid.pid (), lwp, 0);
4022 }
4023 \f
4024
4025 /* Restart the remote side; this is an extended protocol operation. */
4026
4027 void
4028 remote_target::extended_remote_restart ()
4029 {
4030 struct remote_state *rs = get_remote_state ();
4031
4032 /* Send the restart command; for reasons I don't understand the
4033 remote side really expects a number after the "R". */
4034 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4035 putpkt (rs->buf);
4036
4037 remote_fileio_reset ();
4038 }
4039 \f
4040 /* Clean up connection to a remote debugger. */
4041
4042 void
4043 remote_target::close ()
4044 {
4045 /* Make sure we leave stdin registered in the event loop. */
4046 terminal_ours ();
4047
4048 trace_reset_local_state ();
4049
4050 delete this;
4051 }
4052
4053 remote_target::~remote_target ()
4054 {
4055 struct remote_state *rs = get_remote_state ();
4056
4057 /* Check for NULL because we may get here with a partially
4058 constructed target/connection. */
4059 if (rs->remote_desc == nullptr)
4060 return;
4061
4062 serial_close (rs->remote_desc);
4063
4064 /* We are destroying the remote target, so we should discard
4065 everything of this target. */
4066 discard_pending_stop_replies_in_queue ();
4067
4068 if (rs->remote_async_inferior_event_token)
4069 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4070
4071 delete rs->notif_state;
4072 }
4073
4074 /* Query the remote side for the text, data and bss offsets. */
4075
4076 void
4077 remote_target::get_offsets ()
4078 {
4079 struct remote_state *rs = get_remote_state ();
4080 char *buf;
4081 char *ptr;
4082 int lose, num_segments = 0, do_sections, do_segments;
4083 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4084 struct symfile_segment_data *data;
4085
4086 if (symfile_objfile == NULL)
4087 return;
4088
4089 putpkt ("qOffsets");
4090 getpkt (&rs->buf, 0);
4091 buf = rs->buf.data ();
4092
4093 if (buf[0] == '\000')
4094 return; /* Return silently. Stub doesn't support
4095 this command. */
4096 if (buf[0] == 'E')
4097 {
4098 warning (_("Remote failure reply: %s"), buf);
4099 return;
4100 }
4101
4102 /* Pick up each field in turn. This used to be done with scanf, but
4103 scanf will make trouble if CORE_ADDR size doesn't match
4104 conversion directives correctly. The following code will work
4105 with any size of CORE_ADDR. */
4106 text_addr = data_addr = bss_addr = 0;
4107 ptr = buf;
4108 lose = 0;
4109
4110 if (startswith (ptr, "Text="))
4111 {
4112 ptr += 5;
4113 /* Don't use strtol, could lose on big values. */
4114 while (*ptr && *ptr != ';')
4115 text_addr = (text_addr << 4) + fromhex (*ptr++);
4116
4117 if (startswith (ptr, ";Data="))
4118 {
4119 ptr += 6;
4120 while (*ptr && *ptr != ';')
4121 data_addr = (data_addr << 4) + fromhex (*ptr++);
4122 }
4123 else
4124 lose = 1;
4125
4126 if (!lose && startswith (ptr, ";Bss="))
4127 {
4128 ptr += 5;
4129 while (*ptr && *ptr != ';')
4130 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4131
4132 if (bss_addr != data_addr)
4133 warning (_("Target reported unsupported offsets: %s"), buf);
4134 }
4135 else
4136 lose = 1;
4137 }
4138 else if (startswith (ptr, "TextSeg="))
4139 {
4140 ptr += 8;
4141 /* Don't use strtol, could lose on big values. */
4142 while (*ptr && *ptr != ';')
4143 text_addr = (text_addr << 4) + fromhex (*ptr++);
4144 num_segments = 1;
4145
4146 if (startswith (ptr, ";DataSeg="))
4147 {
4148 ptr += 9;
4149 while (*ptr && *ptr != ';')
4150 data_addr = (data_addr << 4) + fromhex (*ptr++);
4151 num_segments++;
4152 }
4153 }
4154 else
4155 lose = 1;
4156
4157 if (lose)
4158 error (_("Malformed response to offset query, %s"), buf);
4159 else if (*ptr != '\0')
4160 warning (_("Target reported unsupported offsets: %s"), buf);
4161
4162 section_offsets offs = symfile_objfile->section_offsets;
4163
4164 data = get_symfile_segment_data (symfile_objfile->obfd);
4165 do_segments = (data != NULL);
4166 do_sections = num_segments == 0;
4167
4168 if (num_segments > 0)
4169 {
4170 segments[0] = text_addr;
4171 segments[1] = data_addr;
4172 }
4173 /* If we have two segments, we can still try to relocate everything
4174 by assuming that the .text and .data offsets apply to the whole
4175 text and data segments. Convert the offsets given in the packet
4176 to base addresses for symfile_map_offsets_to_segments. */
4177 else if (data && data->num_segments == 2)
4178 {
4179 segments[0] = data->segment_bases[0] + text_addr;
4180 segments[1] = data->segment_bases[1] + data_addr;
4181 num_segments = 2;
4182 }
4183 /* If the object file has only one segment, assume that it is text
4184 rather than data; main programs with no writable data are rare,
4185 but programs with no code are useless. Of course the code might
4186 have ended up in the data segment... to detect that we would need
4187 the permissions here. */
4188 else if (data && data->num_segments == 1)
4189 {
4190 segments[0] = data->segment_bases[0] + text_addr;
4191 num_segments = 1;
4192 }
4193 /* There's no way to relocate by segment. */
4194 else
4195 do_segments = 0;
4196
4197 if (do_segments)
4198 {
4199 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4200 offs, num_segments, segments);
4201
4202 if (ret == 0 && !do_sections)
4203 error (_("Can not handle qOffsets TextSeg "
4204 "response with this symbol file"));
4205
4206 if (ret > 0)
4207 do_sections = 0;
4208 }
4209
4210 if (data)
4211 free_symfile_segment_data (data);
4212
4213 if (do_sections)
4214 {
4215 offs[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4216
4217 /* This is a temporary kludge to force data and bss to use the
4218 same offsets because that's what nlmconv does now. The real
4219 solution requires changes to the stub and remote.c that I
4220 don't have time to do right now. */
4221
4222 offs[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4223 offs[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4224 }
4225
4226 objfile_relocate (symfile_objfile, offs);
4227 }
4228
4229 /* Send interrupt_sequence to remote target. */
4230
4231 void
4232 remote_target::send_interrupt_sequence ()
4233 {
4234 struct remote_state *rs = get_remote_state ();
4235
4236 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4237 remote_serial_write ("\x03", 1);
4238 else if (interrupt_sequence_mode == interrupt_sequence_break)
4239 serial_send_break (rs->remote_desc);
4240 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4241 {
4242 serial_send_break (rs->remote_desc);
4243 remote_serial_write ("g", 1);
4244 }
4245 else
4246 internal_error (__FILE__, __LINE__,
4247 _("Invalid value for interrupt_sequence_mode: %s."),
4248 interrupt_sequence_mode);
4249 }
4250
4251
4252 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4253 and extract the PTID. Returns NULL_PTID if not found. */
4254
4255 static ptid_t
4256 stop_reply_extract_thread (char *stop_reply)
4257 {
4258 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4259 {
4260 const char *p;
4261
4262 /* Txx r:val ; r:val (...) */
4263 p = &stop_reply[3];
4264
4265 /* Look for "register" named "thread". */
4266 while (*p != '\0')
4267 {
4268 const char *p1;
4269
4270 p1 = strchr (p, ':');
4271 if (p1 == NULL)
4272 return null_ptid;
4273
4274 if (strncmp (p, "thread", p1 - p) == 0)
4275 return read_ptid (++p1, &p);
4276
4277 p1 = strchr (p, ';');
4278 if (p1 == NULL)
4279 return null_ptid;
4280 p1++;
4281
4282 p = p1;
4283 }
4284 }
4285
4286 return null_ptid;
4287 }
4288
4289 /* Determine the remote side's current thread. If we have a stop
4290 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4291 "thread" register we can extract the current thread from. If not,
4292 ask the remote which is the current thread with qC. The former
4293 method avoids a roundtrip. */
4294
4295 ptid_t
4296 remote_target::get_current_thread (char *wait_status)
4297 {
4298 ptid_t ptid = null_ptid;
4299
4300 /* Note we don't use remote_parse_stop_reply as that makes use of
4301 the target architecture, which we haven't yet fully determined at
4302 this point. */
4303 if (wait_status != NULL)
4304 ptid = stop_reply_extract_thread (wait_status);
4305 if (ptid == null_ptid)
4306 ptid = remote_current_thread (inferior_ptid);
4307
4308 return ptid;
4309 }
4310
4311 /* Query the remote target for which is the current thread/process,
4312 add it to our tables, and update INFERIOR_PTID. The caller is
4313 responsible for setting the state such that the remote end is ready
4314 to return the current thread.
4315
4316 This function is called after handling the '?' or 'vRun' packets,
4317 whose response is a stop reply from which we can also try
4318 extracting the thread. If the target doesn't support the explicit
4319 qC query, we infer the current thread from that stop reply, passed
4320 in in WAIT_STATUS, which may be NULL. */
4321
4322 void
4323 remote_target::add_current_inferior_and_thread (char *wait_status)
4324 {
4325 struct remote_state *rs = get_remote_state ();
4326 bool fake_pid_p = false;
4327
4328 inferior_ptid = null_ptid;
4329
4330 /* Now, if we have thread information, update inferior_ptid. */
4331 ptid_t curr_ptid = get_current_thread (wait_status);
4332
4333 if (curr_ptid != null_ptid)
4334 {
4335 if (!remote_multi_process_p (rs))
4336 fake_pid_p = true;
4337 }
4338 else
4339 {
4340 /* Without this, some commands which require an active target
4341 (such as kill) won't work. This variable serves (at least)
4342 double duty as both the pid of the target process (if it has
4343 such), and as a flag indicating that a target is active. */
4344 curr_ptid = magic_null_ptid;
4345 fake_pid_p = true;
4346 }
4347
4348 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4349
4350 /* Add the main thread and switch to it. Don't try reading
4351 registers yet, since we haven't fetched the target description
4352 yet. */
4353 thread_info *tp = add_thread_silent (this, curr_ptid);
4354 switch_to_thread_no_regs (tp);
4355 }
4356
4357 /* Print info about a thread that was found already stopped on
4358 connection. */
4359
4360 static void
4361 print_one_stopped_thread (struct thread_info *thread)
4362 {
4363 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4364
4365 switch_to_thread (thread);
4366 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4367 set_current_sal_from_frame (get_current_frame ());
4368
4369 thread->suspend.waitstatus_pending_p = 0;
4370
4371 if (ws->kind == TARGET_WAITKIND_STOPPED)
4372 {
4373 enum gdb_signal sig = ws->value.sig;
4374
4375 if (signal_print_state (sig))
4376 gdb::observers::signal_received.notify (sig);
4377 }
4378 gdb::observers::normal_stop.notify (NULL, 1);
4379 }
4380
4381 /* Process all initial stop replies the remote side sent in response
4382 to the ? packet. These indicate threads that were already stopped
4383 on initial connection. We mark these threads as stopped and print
4384 their current frame before giving the user the prompt. */
4385
4386 void
4387 remote_target::process_initial_stop_replies (int from_tty)
4388 {
4389 int pending_stop_replies = stop_reply_queue_length ();
4390 struct thread_info *selected = NULL;
4391 struct thread_info *lowest_stopped = NULL;
4392 struct thread_info *first = NULL;
4393
4394 /* Consume the initial pending events. */
4395 while (pending_stop_replies-- > 0)
4396 {
4397 ptid_t waiton_ptid = minus_one_ptid;
4398 ptid_t event_ptid;
4399 struct target_waitstatus ws;
4400 int ignore_event = 0;
4401
4402 memset (&ws, 0, sizeof (ws));
4403 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4404 if (remote_debug)
4405 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4406
4407 switch (ws.kind)
4408 {
4409 case TARGET_WAITKIND_IGNORE:
4410 case TARGET_WAITKIND_NO_RESUMED:
4411 case TARGET_WAITKIND_SIGNALLED:
4412 case TARGET_WAITKIND_EXITED:
4413 /* We shouldn't see these, but if we do, just ignore. */
4414 if (remote_debug)
4415 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4416 ignore_event = 1;
4417 break;
4418
4419 case TARGET_WAITKIND_EXECD:
4420 xfree (ws.value.execd_pathname);
4421 break;
4422 default:
4423 break;
4424 }
4425
4426 if (ignore_event)
4427 continue;
4428
4429 thread_info *evthread = find_thread_ptid (this, event_ptid);
4430
4431 if (ws.kind == TARGET_WAITKIND_STOPPED)
4432 {
4433 enum gdb_signal sig = ws.value.sig;
4434
4435 /* Stubs traditionally report SIGTRAP as initial signal,
4436 instead of signal 0. Suppress it. */
4437 if (sig == GDB_SIGNAL_TRAP)
4438 sig = GDB_SIGNAL_0;
4439 evthread->suspend.stop_signal = sig;
4440 ws.value.sig = sig;
4441 }
4442
4443 evthread->suspend.waitstatus = ws;
4444
4445 if (ws.kind != TARGET_WAITKIND_STOPPED
4446 || ws.value.sig != GDB_SIGNAL_0)
4447 evthread->suspend.waitstatus_pending_p = 1;
4448
4449 set_executing (this, event_ptid, 0);
4450 set_running (this, event_ptid, 0);
4451 get_remote_thread_info (evthread)->vcont_resumed = 0;
4452 }
4453
4454 /* "Notice" the new inferiors before anything related to
4455 registers/memory. */
4456 for (inferior *inf : all_non_exited_inferiors (this))
4457 {
4458 inf->needs_setup = 1;
4459
4460 if (non_stop)
4461 {
4462 thread_info *thread = any_live_thread_of_inferior (inf);
4463 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4464 from_tty);
4465 }
4466 }
4467
4468 /* If all-stop on top of non-stop, pause all threads. Note this
4469 records the threads' stop pc, so must be done after "noticing"
4470 the inferiors. */
4471 if (!non_stop)
4472 {
4473 stop_all_threads ();
4474
4475 /* If all threads of an inferior were already stopped, we
4476 haven't setup the inferior yet. */
4477 for (inferior *inf : all_non_exited_inferiors (this))
4478 {
4479 if (inf->needs_setup)
4480 {
4481 thread_info *thread = any_live_thread_of_inferior (inf);
4482 switch_to_thread_no_regs (thread);
4483 setup_inferior (0);
4484 }
4485 }
4486 }
4487
4488 /* Now go over all threads that are stopped, and print their current
4489 frame. If all-stop, then if there's a signalled thread, pick
4490 that as current. */
4491 for (thread_info *thread : all_non_exited_threads (this))
4492 {
4493 if (first == NULL)
4494 first = thread;
4495
4496 if (!non_stop)
4497 thread->set_running (false);
4498 else if (thread->state != THREAD_STOPPED)
4499 continue;
4500
4501 if (selected == NULL
4502 && thread->suspend.waitstatus_pending_p)
4503 selected = thread;
4504
4505 if (lowest_stopped == NULL
4506 || thread->inf->num < lowest_stopped->inf->num
4507 || thread->per_inf_num < lowest_stopped->per_inf_num)
4508 lowest_stopped = thread;
4509
4510 if (non_stop)
4511 print_one_stopped_thread (thread);
4512 }
4513
4514 /* In all-stop, we only print the status of one thread, and leave
4515 others with their status pending. */
4516 if (!non_stop)
4517 {
4518 thread_info *thread = selected;
4519 if (thread == NULL)
4520 thread = lowest_stopped;
4521 if (thread == NULL)
4522 thread = first;
4523
4524 print_one_stopped_thread (thread);
4525 }
4526
4527 /* For "info program". */
4528 thread_info *thread = inferior_thread ();
4529 if (thread->state == THREAD_STOPPED)
4530 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4531 }
4532
4533 /* Start the remote connection and sync state. */
4534
4535 void
4536 remote_target::start_remote (int from_tty, int extended_p)
4537 {
4538 struct remote_state *rs = get_remote_state ();
4539 struct packet_config *noack_config;
4540 char *wait_status = NULL;
4541
4542 /* Signal other parts that we're going through the initial setup,
4543 and so things may not be stable yet. E.g., we don't try to
4544 install tracepoints until we've relocated symbols. Also, a
4545 Ctrl-C before we're connected and synced up can't interrupt the
4546 target. Instead, it offers to drop the (potentially wedged)
4547 connection. */
4548 rs->starting_up = 1;
4549
4550 QUIT;
4551
4552 if (interrupt_on_connect)
4553 send_interrupt_sequence ();
4554
4555 /* Ack any packet which the remote side has already sent. */
4556 remote_serial_write ("+", 1);
4557
4558 /* The first packet we send to the target is the optional "supported
4559 packets" request. If the target can answer this, it will tell us
4560 which later probes to skip. */
4561 remote_query_supported ();
4562
4563 /* If the stub wants to get a QAllow, compose one and send it. */
4564 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4565 set_permissions ();
4566
4567 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4568 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4569 as a reply to known packet. For packet "vFile:setfs:" it is an
4570 invalid reply and GDB would return error in
4571 remote_hostio_set_filesystem, making remote files access impossible.
4572 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4573 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4574 {
4575 const char v_mustreplyempty[] = "vMustReplyEmpty";
4576
4577 putpkt (v_mustreplyempty);
4578 getpkt (&rs->buf, 0);
4579 if (strcmp (rs->buf.data (), "OK") == 0)
4580 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4581 else if (strcmp (rs->buf.data (), "") != 0)
4582 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4583 rs->buf.data ());
4584 }
4585
4586 /* Next, we possibly activate noack mode.
4587
4588 If the QStartNoAckMode packet configuration is set to AUTO,
4589 enable noack mode if the stub reported a wish for it with
4590 qSupported.
4591
4592 If set to TRUE, then enable noack mode even if the stub didn't
4593 report it in qSupported. If the stub doesn't reply OK, the
4594 session ends with an error.
4595
4596 If FALSE, then don't activate noack mode, regardless of what the
4597 stub claimed should be the default with qSupported. */
4598
4599 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4600 if (packet_config_support (noack_config) != PACKET_DISABLE)
4601 {
4602 putpkt ("QStartNoAckMode");
4603 getpkt (&rs->buf, 0);
4604 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4605 rs->noack_mode = 1;
4606 }
4607
4608 if (extended_p)
4609 {
4610 /* Tell the remote that we are using the extended protocol. */
4611 putpkt ("!");
4612 getpkt (&rs->buf, 0);
4613 }
4614
4615 /* Let the target know which signals it is allowed to pass down to
4616 the program. */
4617 update_signals_program_target ();
4618
4619 /* Next, if the target can specify a description, read it. We do
4620 this before anything involving memory or registers. */
4621 target_find_description ();
4622
4623 /* Next, now that we know something about the target, update the
4624 address spaces in the program spaces. */
4625 update_address_spaces ();
4626
4627 /* On OSs where the list of libraries is global to all
4628 processes, we fetch them early. */
4629 if (gdbarch_has_global_solist (target_gdbarch ()))
4630 solib_add (NULL, from_tty, auto_solib_add);
4631
4632 if (target_is_non_stop_p ())
4633 {
4634 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4635 error (_("Non-stop mode requested, but remote "
4636 "does not support non-stop"));
4637
4638 putpkt ("QNonStop:1");
4639 getpkt (&rs->buf, 0);
4640
4641 if (strcmp (rs->buf.data (), "OK") != 0)
4642 error (_("Remote refused setting non-stop mode with: %s"),
4643 rs->buf.data ());
4644
4645 /* Find about threads and processes the stub is already
4646 controlling. We default to adding them in the running state.
4647 The '?' query below will then tell us about which threads are
4648 stopped. */
4649 this->update_thread_list ();
4650 }
4651 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4652 {
4653 /* Don't assume that the stub can operate in all-stop mode.
4654 Request it explicitly. */
4655 putpkt ("QNonStop:0");
4656 getpkt (&rs->buf, 0);
4657
4658 if (strcmp (rs->buf.data (), "OK") != 0)
4659 error (_("Remote refused setting all-stop mode with: %s"),
4660 rs->buf.data ());
4661 }
4662
4663 /* Upload TSVs regardless of whether the target is running or not. The
4664 remote stub, such as GDBserver, may have some predefined or builtin
4665 TSVs, even if the target is not running. */
4666 if (get_trace_status (current_trace_status ()) != -1)
4667 {
4668 struct uploaded_tsv *uploaded_tsvs = NULL;
4669
4670 upload_trace_state_variables (&uploaded_tsvs);
4671 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4672 }
4673
4674 /* Check whether the target is running now. */
4675 putpkt ("?");
4676 getpkt (&rs->buf, 0);
4677
4678 if (!target_is_non_stop_p ())
4679 {
4680 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4681 {
4682 if (!extended_p)
4683 error (_("The target is not running (try extended-remote?)"));
4684
4685 /* We're connected, but not running. Drop out before we
4686 call start_remote. */
4687 rs->starting_up = 0;
4688 return;
4689 }
4690 else
4691 {
4692 /* Save the reply for later. */
4693 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4694 strcpy (wait_status, rs->buf.data ());
4695 }
4696
4697 /* Fetch thread list. */
4698 target_update_thread_list ();
4699
4700 /* Let the stub know that we want it to return the thread. */
4701 set_continue_thread (minus_one_ptid);
4702
4703 if (thread_count (this) == 0)
4704 {
4705 /* Target has no concept of threads at all. GDB treats
4706 non-threaded target as single-threaded; add a main
4707 thread. */
4708 add_current_inferior_and_thread (wait_status);
4709 }
4710 else
4711 {
4712 /* We have thread information; select the thread the target
4713 says should be current. If we're reconnecting to a
4714 multi-threaded program, this will ideally be the thread
4715 that last reported an event before GDB disconnected. */
4716 ptid_t curr_thread = get_current_thread (wait_status);
4717 if (curr_thread == null_ptid)
4718 {
4719 /* Odd... The target was able to list threads, but not
4720 tell us which thread was current (no "thread"
4721 register in T stop reply?). Just pick the first
4722 thread in the thread list then. */
4723
4724 if (remote_debug)
4725 fprintf_unfiltered (gdb_stdlog,
4726 "warning: couldn't determine remote "
4727 "current thread; picking first in list.\n");
4728
4729 for (thread_info *tp : all_non_exited_threads (this,
4730 minus_one_ptid))
4731 {
4732 switch_to_thread (tp);
4733 break;
4734 }
4735 }
4736 else
4737 switch_to_thread (find_thread_ptid (this, curr_thread));
4738 }
4739
4740 /* init_wait_for_inferior should be called before get_offsets in order
4741 to manage `inserted' flag in bp loc in a correct state.
4742 breakpoint_init_inferior, called from init_wait_for_inferior, set
4743 `inserted' flag to 0, while before breakpoint_re_set, called from
4744 start_remote, set `inserted' flag to 1. In the initialization of
4745 inferior, breakpoint_init_inferior should be called first, and then
4746 breakpoint_re_set can be called. If this order is broken, state of
4747 `inserted' flag is wrong, and cause some problems on breakpoint
4748 manipulation. */
4749 init_wait_for_inferior ();
4750
4751 get_offsets (); /* Get text, data & bss offsets. */
4752
4753 /* If we could not find a description using qXfer, and we know
4754 how to do it some other way, try again. This is not
4755 supported for non-stop; it could be, but it is tricky if
4756 there are no stopped threads when we connect. */
4757 if (remote_read_description_p (this)
4758 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4759 {
4760 target_clear_description ();
4761 target_find_description ();
4762 }
4763
4764 /* Use the previously fetched status. */
4765 gdb_assert (wait_status != NULL);
4766 strcpy (rs->buf.data (), wait_status);
4767 rs->cached_wait_status = 1;
4768
4769 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4770 }
4771 else
4772 {
4773 /* Clear WFI global state. Do this before finding about new
4774 threads and inferiors, and setting the current inferior.
4775 Otherwise we would clear the proceed status of the current
4776 inferior when we want its stop_soon state to be preserved
4777 (see notice_new_inferior). */
4778 init_wait_for_inferior ();
4779
4780 /* In non-stop, we will either get an "OK", meaning that there
4781 are no stopped threads at this time; or, a regular stop
4782 reply. In the latter case, there may be more than one thread
4783 stopped --- we pull them all out using the vStopped
4784 mechanism. */
4785 if (strcmp (rs->buf.data (), "OK") != 0)
4786 {
4787 struct notif_client *notif = &notif_client_stop;
4788
4789 /* remote_notif_get_pending_replies acks this one, and gets
4790 the rest out. */
4791 rs->notif_state->pending_event[notif_client_stop.id]
4792 = remote_notif_parse (this, notif, rs->buf.data ());
4793 remote_notif_get_pending_events (notif);
4794 }
4795
4796 if (thread_count (this) == 0)
4797 {
4798 if (!extended_p)
4799 error (_("The target is not running (try extended-remote?)"));
4800
4801 /* We're connected, but not running. Drop out before we
4802 call start_remote. */
4803 rs->starting_up = 0;
4804 return;
4805 }
4806
4807 /* In non-stop mode, any cached wait status will be stored in
4808 the stop reply queue. */
4809 gdb_assert (wait_status == NULL);
4810
4811 /* Report all signals during attach/startup. */
4812 pass_signals ({});
4813
4814 /* If there are already stopped threads, mark them stopped and
4815 report their stops before giving the prompt to the user. */
4816 process_initial_stop_replies (from_tty);
4817
4818 if (target_can_async_p ())
4819 target_async (1);
4820 }
4821
4822 /* If we connected to a live target, do some additional setup. */
4823 if (target_has_execution)
4824 {
4825 if (symfile_objfile) /* No use without a symbol-file. */
4826 remote_check_symbols ();
4827 }
4828
4829 /* Possibly the target has been engaged in a trace run started
4830 previously; find out where things are at. */
4831 if (get_trace_status (current_trace_status ()) != -1)
4832 {
4833 struct uploaded_tp *uploaded_tps = NULL;
4834
4835 if (current_trace_status ()->running)
4836 printf_filtered (_("Trace is already running on the target.\n"));
4837
4838 upload_tracepoints (&uploaded_tps);
4839
4840 merge_uploaded_tracepoints (&uploaded_tps);
4841 }
4842
4843 /* Possibly the target has been engaged in a btrace record started
4844 previously; find out where things are at. */
4845 remote_btrace_maybe_reopen ();
4846
4847 /* The thread and inferior lists are now synchronized with the
4848 target, our symbols have been relocated, and we're merged the
4849 target's tracepoints with ours. We're done with basic start
4850 up. */
4851 rs->starting_up = 0;
4852
4853 /* Maybe breakpoints are global and need to be inserted now. */
4854 if (breakpoints_should_be_inserted_now ())
4855 insert_breakpoints ();
4856 }
4857
4858 const char *
4859 remote_target::connection_string ()
4860 {
4861 remote_state *rs = get_remote_state ();
4862
4863 if (rs->remote_desc->name != NULL)
4864 return rs->remote_desc->name;
4865 else
4866 return NULL;
4867 }
4868
4869 /* Open a connection to a remote debugger.
4870 NAME is the filename used for communication. */
4871
4872 void
4873 remote_target::open (const char *name, int from_tty)
4874 {
4875 open_1 (name, from_tty, 0);
4876 }
4877
4878 /* Open a connection to a remote debugger using the extended
4879 remote gdb protocol. NAME is the filename used for communication. */
4880
4881 void
4882 extended_remote_target::open (const char *name, int from_tty)
4883 {
4884 open_1 (name, from_tty, 1 /*extended_p */);
4885 }
4886
4887 /* Reset all packets back to "unknown support". Called when opening a
4888 new connection to a remote target. */
4889
4890 static void
4891 reset_all_packet_configs_support (void)
4892 {
4893 int i;
4894
4895 for (i = 0; i < PACKET_MAX; i++)
4896 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4897 }
4898
4899 /* Initialize all packet configs. */
4900
4901 static void
4902 init_all_packet_configs (void)
4903 {
4904 int i;
4905
4906 for (i = 0; i < PACKET_MAX; i++)
4907 {
4908 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4909 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4910 }
4911 }
4912
4913 /* Symbol look-up. */
4914
4915 void
4916 remote_target::remote_check_symbols ()
4917 {
4918 char *tmp;
4919 int end;
4920
4921 /* The remote side has no concept of inferiors that aren't running
4922 yet, it only knows about running processes. If we're connected
4923 but our current inferior is not running, we should not invite the
4924 remote target to request symbol lookups related to its
4925 (unrelated) current process. */
4926 if (!target_has_execution)
4927 return;
4928
4929 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4930 return;
4931
4932 /* Make sure the remote is pointing at the right process. Note
4933 there's no way to select "no process". */
4934 set_general_process ();
4935
4936 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4937 because we need both at the same time. */
4938 gdb::char_vector msg (get_remote_packet_size ());
4939 gdb::char_vector reply (get_remote_packet_size ());
4940
4941 /* Invite target to request symbol lookups. */
4942
4943 putpkt ("qSymbol::");
4944 getpkt (&reply, 0);
4945 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4946
4947 while (startswith (reply.data (), "qSymbol:"))
4948 {
4949 struct bound_minimal_symbol sym;
4950
4951 tmp = &reply[8];
4952 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4953 strlen (tmp) / 2);
4954 msg[end] = '\0';
4955 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4956 if (sym.minsym == NULL)
4957 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4958 &reply[8]);
4959 else
4960 {
4961 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4962 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4963
4964 /* If this is a function address, return the start of code
4965 instead of any data function descriptor. */
4966 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4967 sym_addr,
4968 current_top_target ());
4969
4970 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4971 phex_nz (sym_addr, addr_size), &reply[8]);
4972 }
4973
4974 putpkt (msg.data ());
4975 getpkt (&reply, 0);
4976 }
4977 }
4978
4979 static struct serial *
4980 remote_serial_open (const char *name)
4981 {
4982 static int udp_warning = 0;
4983
4984 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4985 of in ser-tcp.c, because it is the remote protocol assuming that the
4986 serial connection is reliable and not the serial connection promising
4987 to be. */
4988 if (!udp_warning && startswith (name, "udp:"))
4989 {
4990 warning (_("The remote protocol may be unreliable over UDP.\n"
4991 "Some events may be lost, rendering further debugging "
4992 "impossible."));
4993 udp_warning = 1;
4994 }
4995
4996 return serial_open (name);
4997 }
4998
4999 /* Inform the target of our permission settings. The permission flags
5000 work without this, but if the target knows the settings, it can do
5001 a couple things. First, it can add its own check, to catch cases
5002 that somehow manage to get by the permissions checks in target
5003 methods. Second, if the target is wired to disallow particular
5004 settings (for instance, a system in the field that is not set up to
5005 be able to stop at a breakpoint), it can object to any unavailable
5006 permissions. */
5007
5008 void
5009 remote_target::set_permissions ()
5010 {
5011 struct remote_state *rs = get_remote_state ();
5012
5013 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5014 "WriteReg:%x;WriteMem:%x;"
5015 "InsertBreak:%x;InsertTrace:%x;"
5016 "InsertFastTrace:%x;Stop:%x",
5017 may_write_registers, may_write_memory,
5018 may_insert_breakpoints, may_insert_tracepoints,
5019 may_insert_fast_tracepoints, may_stop);
5020 putpkt (rs->buf);
5021 getpkt (&rs->buf, 0);
5022
5023 /* If the target didn't like the packet, warn the user. Do not try
5024 to undo the user's settings, that would just be maddening. */
5025 if (strcmp (rs->buf.data (), "OK") != 0)
5026 warning (_("Remote refused setting permissions with: %s"),
5027 rs->buf.data ());
5028 }
5029
5030 /* This type describes each known response to the qSupported
5031 packet. */
5032 struct protocol_feature
5033 {
5034 /* The name of this protocol feature. */
5035 const char *name;
5036
5037 /* The default for this protocol feature. */
5038 enum packet_support default_support;
5039
5040 /* The function to call when this feature is reported, or after
5041 qSupported processing if the feature is not supported.
5042 The first argument points to this structure. The second
5043 argument indicates whether the packet requested support be
5044 enabled, disabled, or probed (or the default, if this function
5045 is being called at the end of processing and this feature was
5046 not reported). The third argument may be NULL; if not NULL, it
5047 is a NUL-terminated string taken from the packet following
5048 this feature's name and an equals sign. */
5049 void (*func) (remote_target *remote, const struct protocol_feature *,
5050 enum packet_support, const char *);
5051
5052 /* The corresponding packet for this feature. Only used if
5053 FUNC is remote_supported_packet. */
5054 int packet;
5055 };
5056
5057 static void
5058 remote_supported_packet (remote_target *remote,
5059 const struct protocol_feature *feature,
5060 enum packet_support support,
5061 const char *argument)
5062 {
5063 if (argument)
5064 {
5065 warning (_("Remote qSupported response supplied an unexpected value for"
5066 " \"%s\"."), feature->name);
5067 return;
5068 }
5069
5070 remote_protocol_packets[feature->packet].support = support;
5071 }
5072
5073 void
5074 remote_target::remote_packet_size (const protocol_feature *feature,
5075 enum packet_support support, const char *value)
5076 {
5077 struct remote_state *rs = get_remote_state ();
5078
5079 int packet_size;
5080 char *value_end;
5081
5082 if (support != PACKET_ENABLE)
5083 return;
5084
5085 if (value == NULL || *value == '\0')
5086 {
5087 warning (_("Remote target reported \"%s\" without a size."),
5088 feature->name);
5089 return;
5090 }
5091
5092 errno = 0;
5093 packet_size = strtol (value, &value_end, 16);
5094 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5095 {
5096 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5097 feature->name, value);
5098 return;
5099 }
5100
5101 /* Record the new maximum packet size. */
5102 rs->explicit_packet_size = packet_size;
5103 }
5104
5105 static void
5106 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5107 enum packet_support support, const char *value)
5108 {
5109 remote->remote_packet_size (feature, support, value);
5110 }
5111
5112 static const struct protocol_feature remote_protocol_features[] = {
5113 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5114 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5115 PACKET_qXfer_auxv },
5116 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5117 PACKET_qXfer_exec_file },
5118 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5119 PACKET_qXfer_features },
5120 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5121 PACKET_qXfer_libraries },
5122 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5123 PACKET_qXfer_libraries_svr4 },
5124 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5125 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5126 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5127 PACKET_qXfer_memory_map },
5128 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5129 PACKET_qXfer_osdata },
5130 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5131 PACKET_qXfer_threads },
5132 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5133 PACKET_qXfer_traceframe_info },
5134 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5135 PACKET_QPassSignals },
5136 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5137 PACKET_QCatchSyscalls },
5138 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5139 PACKET_QProgramSignals },
5140 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5141 PACKET_QSetWorkingDir },
5142 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5143 PACKET_QStartupWithShell },
5144 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5145 PACKET_QEnvironmentHexEncoded },
5146 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5147 PACKET_QEnvironmentReset },
5148 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5149 PACKET_QEnvironmentUnset },
5150 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5151 PACKET_QStartNoAckMode },
5152 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5153 PACKET_multiprocess_feature },
5154 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5155 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5156 PACKET_qXfer_siginfo_read },
5157 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5158 PACKET_qXfer_siginfo_write },
5159 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5160 PACKET_ConditionalTracepoints },
5161 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5162 PACKET_ConditionalBreakpoints },
5163 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5164 PACKET_BreakpointCommands },
5165 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5166 PACKET_FastTracepoints },
5167 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5168 PACKET_StaticTracepoints },
5169 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5170 PACKET_InstallInTrace},
5171 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5172 PACKET_DisconnectedTracing_feature },
5173 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5174 PACKET_bc },
5175 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5176 PACKET_bs },
5177 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5178 PACKET_TracepointSource },
5179 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5180 PACKET_QAllow },
5181 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5182 PACKET_EnableDisableTracepoints_feature },
5183 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5184 PACKET_qXfer_fdpic },
5185 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5186 PACKET_qXfer_uib },
5187 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5188 PACKET_QDisableRandomization },
5189 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5190 { "QTBuffer:size", PACKET_DISABLE,
5191 remote_supported_packet, PACKET_QTBuffer_size},
5192 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5193 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5194 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5195 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5196 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5197 PACKET_qXfer_btrace },
5198 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5199 PACKET_qXfer_btrace_conf },
5200 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5201 PACKET_Qbtrace_conf_bts_size },
5202 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5203 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5204 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5205 PACKET_fork_event_feature },
5206 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5207 PACKET_vfork_event_feature },
5208 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5209 PACKET_exec_event_feature },
5210 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5211 PACKET_Qbtrace_conf_pt_size },
5212 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5213 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5214 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5215 };
5216
5217 static char *remote_support_xml;
5218
5219 /* Register string appended to "xmlRegisters=" in qSupported query. */
5220
5221 void
5222 register_remote_support_xml (const char *xml)
5223 {
5224 #if defined(HAVE_LIBEXPAT)
5225 if (remote_support_xml == NULL)
5226 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5227 else
5228 {
5229 char *copy = xstrdup (remote_support_xml + 13);
5230 char *saveptr;
5231 char *p = strtok_r (copy, ",", &saveptr);
5232
5233 do
5234 {
5235 if (strcmp (p, xml) == 0)
5236 {
5237 /* already there */
5238 xfree (copy);
5239 return;
5240 }
5241 }
5242 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5243 xfree (copy);
5244
5245 remote_support_xml = reconcat (remote_support_xml,
5246 remote_support_xml, ",", xml,
5247 (char *) NULL);
5248 }
5249 #endif
5250 }
5251
5252 static void
5253 remote_query_supported_append (std::string *msg, const char *append)
5254 {
5255 if (!msg->empty ())
5256 msg->append (";");
5257 msg->append (append);
5258 }
5259
5260 void
5261 remote_target::remote_query_supported ()
5262 {
5263 struct remote_state *rs = get_remote_state ();
5264 char *next;
5265 int i;
5266 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5267
5268 /* The packet support flags are handled differently for this packet
5269 than for most others. We treat an error, a disabled packet, and
5270 an empty response identically: any features which must be reported
5271 to be used will be automatically disabled. An empty buffer
5272 accomplishes this, since that is also the representation for a list
5273 containing no features. */
5274
5275 rs->buf[0] = 0;
5276 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5277 {
5278 std::string q;
5279
5280 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5281 remote_query_supported_append (&q, "multiprocess+");
5282
5283 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5284 remote_query_supported_append (&q, "swbreak+");
5285 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5286 remote_query_supported_append (&q, "hwbreak+");
5287
5288 remote_query_supported_append (&q, "qRelocInsn+");
5289
5290 if (packet_set_cmd_state (PACKET_fork_event_feature)
5291 != AUTO_BOOLEAN_FALSE)
5292 remote_query_supported_append (&q, "fork-events+");
5293 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5294 != AUTO_BOOLEAN_FALSE)
5295 remote_query_supported_append (&q, "vfork-events+");
5296 if (packet_set_cmd_state (PACKET_exec_event_feature)
5297 != AUTO_BOOLEAN_FALSE)
5298 remote_query_supported_append (&q, "exec-events+");
5299
5300 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5301 remote_query_supported_append (&q, "vContSupported+");
5302
5303 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5304 remote_query_supported_append (&q, "QThreadEvents+");
5305
5306 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5307 remote_query_supported_append (&q, "no-resumed+");
5308
5309 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5310 the qSupported:xmlRegisters=i386 handling. */
5311 if (remote_support_xml != NULL
5312 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5313 remote_query_supported_append (&q, remote_support_xml);
5314
5315 q = "qSupported:" + q;
5316 putpkt (q.c_str ());
5317
5318 getpkt (&rs->buf, 0);
5319
5320 /* If an error occured, warn, but do not return - just reset the
5321 buffer to empty and go on to disable features. */
5322 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5323 == PACKET_ERROR)
5324 {
5325 warning (_("Remote failure reply: %s"), rs->buf.data ());
5326 rs->buf[0] = 0;
5327 }
5328 }
5329
5330 memset (seen, 0, sizeof (seen));
5331
5332 next = rs->buf.data ();
5333 while (*next)
5334 {
5335 enum packet_support is_supported;
5336 char *p, *end, *name_end, *value;
5337
5338 /* First separate out this item from the rest of the packet. If
5339 there's another item after this, we overwrite the separator
5340 (terminated strings are much easier to work with). */
5341 p = next;
5342 end = strchr (p, ';');
5343 if (end == NULL)
5344 {
5345 end = p + strlen (p);
5346 next = end;
5347 }
5348 else
5349 {
5350 *end = '\0';
5351 next = end + 1;
5352
5353 if (end == p)
5354 {
5355 warning (_("empty item in \"qSupported\" response"));
5356 continue;
5357 }
5358 }
5359
5360 name_end = strchr (p, '=');
5361 if (name_end)
5362 {
5363 /* This is a name=value entry. */
5364 is_supported = PACKET_ENABLE;
5365 value = name_end + 1;
5366 *name_end = '\0';
5367 }
5368 else
5369 {
5370 value = NULL;
5371 switch (end[-1])
5372 {
5373 case '+':
5374 is_supported = PACKET_ENABLE;
5375 break;
5376
5377 case '-':
5378 is_supported = PACKET_DISABLE;
5379 break;
5380
5381 case '?':
5382 is_supported = PACKET_SUPPORT_UNKNOWN;
5383 break;
5384
5385 default:
5386 warning (_("unrecognized item \"%s\" "
5387 "in \"qSupported\" response"), p);
5388 continue;
5389 }
5390 end[-1] = '\0';
5391 }
5392
5393 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5394 if (strcmp (remote_protocol_features[i].name, p) == 0)
5395 {
5396 const struct protocol_feature *feature;
5397
5398 seen[i] = 1;
5399 feature = &remote_protocol_features[i];
5400 feature->func (this, feature, is_supported, value);
5401 break;
5402 }
5403 }
5404
5405 /* If we increased the packet size, make sure to increase the global
5406 buffer size also. We delay this until after parsing the entire
5407 qSupported packet, because this is the same buffer we were
5408 parsing. */
5409 if (rs->buf.size () < rs->explicit_packet_size)
5410 rs->buf.resize (rs->explicit_packet_size);
5411
5412 /* Handle the defaults for unmentioned features. */
5413 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5414 if (!seen[i])
5415 {
5416 const struct protocol_feature *feature;
5417
5418 feature = &remote_protocol_features[i];
5419 feature->func (this, feature, feature->default_support, NULL);
5420 }
5421 }
5422
5423 /* Serial QUIT handler for the remote serial descriptor.
5424
5425 Defers handling a Ctrl-C until we're done with the current
5426 command/response packet sequence, unless:
5427
5428 - We're setting up the connection. Don't send a remote interrupt
5429 request, as we're not fully synced yet. Quit immediately
5430 instead.
5431
5432 - The target has been resumed in the foreground
5433 (target_terminal::is_ours is false) with a synchronous resume
5434 packet, and we're blocked waiting for the stop reply, thus a
5435 Ctrl-C should be immediately sent to the target.
5436
5437 - We get a second Ctrl-C while still within the same serial read or
5438 write. In that case the serial is seemingly wedged --- offer to
5439 quit/disconnect.
5440
5441 - We see a second Ctrl-C without target response, after having
5442 previously interrupted the target. In that case the target/stub
5443 is probably wedged --- offer to quit/disconnect.
5444 */
5445
5446 void
5447 remote_target::remote_serial_quit_handler ()
5448 {
5449 struct remote_state *rs = get_remote_state ();
5450
5451 if (check_quit_flag ())
5452 {
5453 /* If we're starting up, we're not fully synced yet. Quit
5454 immediately. */
5455 if (rs->starting_up)
5456 quit ();
5457 else if (rs->got_ctrlc_during_io)
5458 {
5459 if (query (_("The target is not responding to GDB commands.\n"
5460 "Stop debugging it? ")))
5461 remote_unpush_and_throw (this);
5462 }
5463 /* If ^C has already been sent once, offer to disconnect. */
5464 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5465 interrupt_query ();
5466 /* All-stop protocol, and blocked waiting for stop reply. Send
5467 an interrupt request. */
5468 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5469 target_interrupt ();
5470 else
5471 rs->got_ctrlc_during_io = 1;
5472 }
5473 }
5474
5475 /* The remote_target that is current while the quit handler is
5476 overridden with remote_serial_quit_handler. */
5477 static remote_target *curr_quit_handler_target;
5478
5479 static void
5480 remote_serial_quit_handler ()
5481 {
5482 curr_quit_handler_target->remote_serial_quit_handler ();
5483 }
5484
5485 /* Remove the remote target from the target stack of each inferior
5486 that is using it. Upper targets depend on it so remove them
5487 first. */
5488
5489 static void
5490 remote_unpush_target (remote_target *target)
5491 {
5492 /* We have to unpush the target from all inferiors, even those that
5493 aren't running. */
5494 scoped_restore_current_inferior restore_current_inferior;
5495
5496 for (inferior *inf : all_inferiors (target))
5497 {
5498 switch_to_inferior_no_thread (inf);
5499 pop_all_targets_at_and_above (process_stratum);
5500 generic_mourn_inferior ();
5501 }
5502 }
5503
5504 static void
5505 remote_unpush_and_throw (remote_target *target)
5506 {
5507 remote_unpush_target (target);
5508 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5509 }
5510
5511 void
5512 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5513 {
5514 remote_target *curr_remote = get_current_remote_target ();
5515
5516 if (name == 0)
5517 error (_("To open a remote debug connection, you need to specify what\n"
5518 "serial device is attached to the remote system\n"
5519 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5520
5521 /* If we're connected to a running target, target_preopen will kill it.
5522 Ask this question first, before target_preopen has a chance to kill
5523 anything. */
5524 if (curr_remote != NULL && !target_has_execution)
5525 {
5526 if (from_tty
5527 && !query (_("Already connected to a remote target. Disconnect? ")))
5528 error (_("Still connected."));
5529 }
5530
5531 /* Here the possibly existing remote target gets unpushed. */
5532 target_preopen (from_tty);
5533
5534 remote_fileio_reset ();
5535 reopen_exec_file ();
5536 reread_symbols ();
5537
5538 remote_target *remote
5539 = (extended_p ? new extended_remote_target () : new remote_target ());
5540 target_ops_up target_holder (remote);
5541
5542 remote_state *rs = remote->get_remote_state ();
5543
5544 /* See FIXME above. */
5545 if (!target_async_permitted)
5546 rs->wait_forever_enabled_p = 1;
5547
5548 rs->remote_desc = remote_serial_open (name);
5549 if (!rs->remote_desc)
5550 perror_with_name (name);
5551
5552 if (baud_rate != -1)
5553 {
5554 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5555 {
5556 /* The requested speed could not be set. Error out to
5557 top level after closing remote_desc. Take care to
5558 set remote_desc to NULL to avoid closing remote_desc
5559 more than once. */
5560 serial_close (rs->remote_desc);
5561 rs->remote_desc = NULL;
5562 perror_with_name (name);
5563 }
5564 }
5565
5566 serial_setparity (rs->remote_desc, serial_parity);
5567 serial_raw (rs->remote_desc);
5568
5569 /* If there is something sitting in the buffer we might take it as a
5570 response to a command, which would be bad. */
5571 serial_flush_input (rs->remote_desc);
5572
5573 if (from_tty)
5574 {
5575 puts_filtered ("Remote debugging using ");
5576 puts_filtered (name);
5577 puts_filtered ("\n");
5578 }
5579
5580 /* Switch to using the remote target now. */
5581 push_target (std::move (target_holder));
5582
5583 /* Register extra event sources in the event loop. */
5584 rs->remote_async_inferior_event_token
5585 = create_async_event_handler (remote_async_inferior_event_handler,
5586 remote);
5587 rs->notif_state = remote_notif_state_allocate (remote);
5588
5589 /* Reset the target state; these things will be queried either by
5590 remote_query_supported or as they are needed. */
5591 reset_all_packet_configs_support ();
5592 rs->cached_wait_status = 0;
5593 rs->explicit_packet_size = 0;
5594 rs->noack_mode = 0;
5595 rs->extended = extended_p;
5596 rs->waiting_for_stop_reply = 0;
5597 rs->ctrlc_pending_p = 0;
5598 rs->got_ctrlc_during_io = 0;
5599
5600 rs->general_thread = not_sent_ptid;
5601 rs->continue_thread = not_sent_ptid;
5602 rs->remote_traceframe_number = -1;
5603
5604 rs->last_resume_exec_dir = EXEC_FORWARD;
5605
5606 /* Probe for ability to use "ThreadInfo" query, as required. */
5607 rs->use_threadinfo_query = 1;
5608 rs->use_threadextra_query = 1;
5609
5610 rs->readahead_cache.invalidate ();
5611
5612 if (target_async_permitted)
5613 {
5614 /* FIXME: cagney/1999-09-23: During the initial connection it is
5615 assumed that the target is already ready and able to respond to
5616 requests. Unfortunately remote_start_remote() eventually calls
5617 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5618 around this. Eventually a mechanism that allows
5619 wait_for_inferior() to expect/get timeouts will be
5620 implemented. */
5621 rs->wait_forever_enabled_p = 0;
5622 }
5623
5624 /* First delete any symbols previously loaded from shared libraries. */
5625 no_shared_libraries (NULL, 0);
5626
5627 /* Start the remote connection. If error() or QUIT, discard this
5628 target (we'd otherwise be in an inconsistent state) and then
5629 propogate the error on up the exception chain. This ensures that
5630 the caller doesn't stumble along blindly assuming that the
5631 function succeeded. The CLI doesn't have this problem but other
5632 UI's, such as MI do.
5633
5634 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5635 this function should return an error indication letting the
5636 caller restore the previous state. Unfortunately the command
5637 ``target remote'' is directly wired to this function making that
5638 impossible. On a positive note, the CLI side of this problem has
5639 been fixed - the function set_cmd_context() makes it possible for
5640 all the ``target ....'' commands to share a common callback
5641 function. See cli-dump.c. */
5642 {
5643
5644 try
5645 {
5646 remote->start_remote (from_tty, extended_p);
5647 }
5648 catch (const gdb_exception &ex)
5649 {
5650 /* Pop the partially set up target - unless something else did
5651 already before throwing the exception. */
5652 if (ex.error != TARGET_CLOSE_ERROR)
5653 remote_unpush_target (remote);
5654 throw;
5655 }
5656 }
5657
5658 remote_btrace_reset (rs);
5659
5660 if (target_async_permitted)
5661 rs->wait_forever_enabled_p = 1;
5662 }
5663
5664 /* Detach the specified process. */
5665
5666 void
5667 remote_target::remote_detach_pid (int pid)
5668 {
5669 struct remote_state *rs = get_remote_state ();
5670
5671 /* This should not be necessary, but the handling for D;PID in
5672 GDBserver versions prior to 8.2 incorrectly assumes that the
5673 selected process points to the same process we're detaching,
5674 leading to misbehavior (and possibly GDBserver crashing) when it
5675 does not. Since it's easy and cheap, work around it by forcing
5676 GDBserver to select GDB's current process. */
5677 set_general_process ();
5678
5679 if (remote_multi_process_p (rs))
5680 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5681 else
5682 strcpy (rs->buf.data (), "D");
5683
5684 putpkt (rs->buf);
5685 getpkt (&rs->buf, 0);
5686
5687 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5688 ;
5689 else if (rs->buf[0] == '\0')
5690 error (_("Remote doesn't know how to detach"));
5691 else
5692 error (_("Can't detach process."));
5693 }
5694
5695 /* This detaches a program to which we previously attached, using
5696 inferior_ptid to identify the process. After this is done, GDB
5697 can be used to debug some other program. We better not have left
5698 any breakpoints in the target program or it'll die when it hits
5699 one. */
5700
5701 void
5702 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5703 {
5704 int pid = inferior_ptid.pid ();
5705 struct remote_state *rs = get_remote_state ();
5706 int is_fork_parent;
5707
5708 if (!target_has_execution)
5709 error (_("No process to detach from."));
5710
5711 target_announce_detach (from_tty);
5712
5713 /* Tell the remote target to detach. */
5714 remote_detach_pid (pid);
5715
5716 /* Exit only if this is the only active inferior. */
5717 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5718 puts_filtered (_("Ending remote debugging.\n"));
5719
5720 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5721
5722 /* Check to see if we are detaching a fork parent. Note that if we
5723 are detaching a fork child, tp == NULL. */
5724 is_fork_parent = (tp != NULL
5725 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5726
5727 /* If doing detach-on-fork, we don't mourn, because that will delete
5728 breakpoints that should be available for the followed inferior. */
5729 if (!is_fork_parent)
5730 {
5731 /* Save the pid as a string before mourning, since that will
5732 unpush the remote target, and we need the string after. */
5733 std::string infpid = target_pid_to_str (ptid_t (pid));
5734
5735 target_mourn_inferior (inferior_ptid);
5736 if (print_inferior_events)
5737 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5738 inf->num, infpid.c_str ());
5739 }
5740 else
5741 {
5742 inferior_ptid = null_ptid;
5743 detach_inferior (current_inferior ());
5744 }
5745 }
5746
5747 void
5748 remote_target::detach (inferior *inf, int from_tty)
5749 {
5750 remote_detach_1 (inf, from_tty);
5751 }
5752
5753 void
5754 extended_remote_target::detach (inferior *inf, int from_tty)
5755 {
5756 remote_detach_1 (inf, from_tty);
5757 }
5758
5759 /* Target follow-fork function for remote targets. On entry, and
5760 at return, the current inferior is the fork parent.
5761
5762 Note that although this is currently only used for extended-remote,
5763 it is named remote_follow_fork in anticipation of using it for the
5764 remote target as well. */
5765
5766 int
5767 remote_target::follow_fork (int follow_child, int detach_fork)
5768 {
5769 struct remote_state *rs = get_remote_state ();
5770 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5771
5772 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5773 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5774 {
5775 /* When following the parent and detaching the child, we detach
5776 the child here. For the case of following the child and
5777 detaching the parent, the detach is done in the target-
5778 independent follow fork code in infrun.c. We can't use
5779 target_detach when detaching an unfollowed child because
5780 the client side doesn't know anything about the child. */
5781 if (detach_fork && !follow_child)
5782 {
5783 /* Detach the fork child. */
5784 ptid_t child_ptid;
5785 pid_t child_pid;
5786
5787 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5788 child_pid = child_ptid.pid ();
5789
5790 remote_detach_pid (child_pid);
5791 }
5792 }
5793 return 0;
5794 }
5795
5796 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5797 in the program space of the new inferior. On entry and at return the
5798 current inferior is the exec'ing inferior. INF is the new exec'd
5799 inferior, which may be the same as the exec'ing inferior unless
5800 follow-exec-mode is "new". */
5801
5802 void
5803 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5804 {
5805 /* We know that this is a target file name, so if it has the "target:"
5806 prefix we strip it off before saving it in the program space. */
5807 if (is_target_filename (execd_pathname))
5808 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5809
5810 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5811 }
5812
5813 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5814
5815 void
5816 remote_target::disconnect (const char *args, int from_tty)
5817 {
5818 if (args)
5819 error (_("Argument given to \"disconnect\" when remotely debugging."));
5820
5821 /* Make sure we unpush even the extended remote targets. Calling
5822 target_mourn_inferior won't unpush, and
5823 remote_target::mourn_inferior won't unpush if there is more than
5824 one inferior left. */
5825 remote_unpush_target (this);
5826
5827 if (from_tty)
5828 puts_filtered ("Ending remote debugging.\n");
5829 }
5830
5831 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5832 be chatty about it. */
5833
5834 void
5835 extended_remote_target::attach (const char *args, int from_tty)
5836 {
5837 struct remote_state *rs = get_remote_state ();
5838 int pid;
5839 char *wait_status = NULL;
5840
5841 pid = parse_pid_to_attach (args);
5842
5843 /* Remote PID can be freely equal to getpid, do not check it here the same
5844 way as in other targets. */
5845
5846 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5847 error (_("This target does not support attaching to a process"));
5848
5849 if (from_tty)
5850 {
5851 const char *exec_file = get_exec_file (0);
5852
5853 if (exec_file)
5854 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5855 target_pid_to_str (ptid_t (pid)).c_str ());
5856 else
5857 printf_unfiltered (_("Attaching to %s\n"),
5858 target_pid_to_str (ptid_t (pid)).c_str ());
5859 }
5860
5861 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5862 putpkt (rs->buf);
5863 getpkt (&rs->buf, 0);
5864
5865 switch (packet_ok (rs->buf,
5866 &remote_protocol_packets[PACKET_vAttach]))
5867 {
5868 case PACKET_OK:
5869 if (!target_is_non_stop_p ())
5870 {
5871 /* Save the reply for later. */
5872 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5873 strcpy (wait_status, rs->buf.data ());
5874 }
5875 else if (strcmp (rs->buf.data (), "OK") != 0)
5876 error (_("Attaching to %s failed with: %s"),
5877 target_pid_to_str (ptid_t (pid)).c_str (),
5878 rs->buf.data ());
5879 break;
5880 case PACKET_UNKNOWN:
5881 error (_("This target does not support attaching to a process"));
5882 default:
5883 error (_("Attaching to %s failed"),
5884 target_pid_to_str (ptid_t (pid)).c_str ());
5885 }
5886
5887 set_current_inferior (remote_add_inferior (false, pid, 1, 0));
5888
5889 inferior_ptid = ptid_t (pid);
5890
5891 if (target_is_non_stop_p ())
5892 {
5893 struct thread_info *thread;
5894
5895 /* Get list of threads. */
5896 update_thread_list ();
5897
5898 thread = first_thread_of_inferior (current_inferior ());
5899 if (thread)
5900 inferior_ptid = thread->ptid;
5901 else
5902 inferior_ptid = ptid_t (pid);
5903
5904 /* Invalidate our notion of the remote current thread. */
5905 record_currthread (rs, minus_one_ptid);
5906 }
5907 else
5908 {
5909 /* Now, if we have thread information, update inferior_ptid. */
5910 inferior_ptid = remote_current_thread (inferior_ptid);
5911
5912 /* Add the main thread to the thread list. */
5913 thread_info *thr = add_thread_silent (this, inferior_ptid);
5914 /* Don't consider the thread stopped until we've processed the
5915 saved stop reply. */
5916 set_executing (this, thr->ptid, true);
5917 }
5918
5919 /* Next, if the target can specify a description, read it. We do
5920 this before anything involving memory or registers. */
5921 target_find_description ();
5922
5923 if (!target_is_non_stop_p ())
5924 {
5925 /* Use the previously fetched status. */
5926 gdb_assert (wait_status != NULL);
5927
5928 if (target_can_async_p ())
5929 {
5930 struct notif_event *reply
5931 = remote_notif_parse (this, &notif_client_stop, wait_status);
5932
5933 push_stop_reply ((struct stop_reply *) reply);
5934
5935 target_async (1);
5936 }
5937 else
5938 {
5939 gdb_assert (wait_status != NULL);
5940 strcpy (rs->buf.data (), wait_status);
5941 rs->cached_wait_status = 1;
5942 }
5943 }
5944 else
5945 gdb_assert (wait_status == NULL);
5946 }
5947
5948 /* Implementation of the to_post_attach method. */
5949
5950 void
5951 extended_remote_target::post_attach (int pid)
5952 {
5953 /* Get text, data & bss offsets. */
5954 get_offsets ();
5955
5956 /* In certain cases GDB might not have had the chance to start
5957 symbol lookup up until now. This could happen if the debugged
5958 binary is not using shared libraries, the vsyscall page is not
5959 present (on Linux) and the binary itself hadn't changed since the
5960 debugging process was started. */
5961 if (symfile_objfile != NULL)
5962 remote_check_symbols();
5963 }
5964
5965 \f
5966 /* Check for the availability of vCont. This function should also check
5967 the response. */
5968
5969 void
5970 remote_target::remote_vcont_probe ()
5971 {
5972 remote_state *rs = get_remote_state ();
5973 char *buf;
5974
5975 strcpy (rs->buf.data (), "vCont?");
5976 putpkt (rs->buf);
5977 getpkt (&rs->buf, 0);
5978 buf = rs->buf.data ();
5979
5980 /* Make sure that the features we assume are supported. */
5981 if (startswith (buf, "vCont"))
5982 {
5983 char *p = &buf[5];
5984 int support_c, support_C;
5985
5986 rs->supports_vCont.s = 0;
5987 rs->supports_vCont.S = 0;
5988 support_c = 0;
5989 support_C = 0;
5990 rs->supports_vCont.t = 0;
5991 rs->supports_vCont.r = 0;
5992 while (p && *p == ';')
5993 {
5994 p++;
5995 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5996 rs->supports_vCont.s = 1;
5997 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5998 rs->supports_vCont.S = 1;
5999 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
6000 support_c = 1;
6001 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
6002 support_C = 1;
6003 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
6004 rs->supports_vCont.t = 1;
6005 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
6006 rs->supports_vCont.r = 1;
6007
6008 p = strchr (p, ';');
6009 }
6010
6011 /* If c, and C are not all supported, we can't use vCont. Clearing
6012 BUF will make packet_ok disable the packet. */
6013 if (!support_c || !support_C)
6014 buf[0] = 0;
6015 }
6016
6017 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6018 rs->supports_vCont_probed = true;
6019 }
6020
6021 /* Helper function for building "vCont" resumptions. Write a
6022 resumption to P. ENDP points to one-passed-the-end of the buffer
6023 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6024 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6025 resumed thread should be single-stepped and/or signalled. If PTID
6026 equals minus_one_ptid, then all threads are resumed; if PTID
6027 represents a process, then all threads of the process are resumed;
6028 the thread to be stepped and/or signalled is given in the global
6029 INFERIOR_PTID. */
6030
6031 char *
6032 remote_target::append_resumption (char *p, char *endp,
6033 ptid_t ptid, int step, gdb_signal siggnal)
6034 {
6035 struct remote_state *rs = get_remote_state ();
6036
6037 if (step && siggnal != GDB_SIGNAL_0)
6038 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6039 else if (step
6040 /* GDB is willing to range step. */
6041 && use_range_stepping
6042 /* Target supports range stepping. */
6043 && rs->supports_vCont.r
6044 /* We don't currently support range stepping multiple
6045 threads with a wildcard (though the protocol allows it,
6046 so stubs shouldn't make an active effort to forbid
6047 it). */
6048 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6049 {
6050 struct thread_info *tp;
6051
6052 if (ptid == minus_one_ptid)
6053 {
6054 /* If we don't know about the target thread's tid, then
6055 we're resuming magic_null_ptid (see caller). */
6056 tp = find_thread_ptid (this, magic_null_ptid);
6057 }
6058 else
6059 tp = find_thread_ptid (this, ptid);
6060 gdb_assert (tp != NULL);
6061
6062 if (tp->control.may_range_step)
6063 {
6064 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6065
6066 p += xsnprintf (p, endp - p, ";r%s,%s",
6067 phex_nz (tp->control.step_range_start,
6068 addr_size),
6069 phex_nz (tp->control.step_range_end,
6070 addr_size));
6071 }
6072 else
6073 p += xsnprintf (p, endp - p, ";s");
6074 }
6075 else if (step)
6076 p += xsnprintf (p, endp - p, ";s");
6077 else if (siggnal != GDB_SIGNAL_0)
6078 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6079 else
6080 p += xsnprintf (p, endp - p, ";c");
6081
6082 if (remote_multi_process_p (rs) && ptid.is_pid ())
6083 {
6084 ptid_t nptid;
6085
6086 /* All (-1) threads of process. */
6087 nptid = ptid_t (ptid.pid (), -1, 0);
6088
6089 p += xsnprintf (p, endp - p, ":");
6090 p = write_ptid (p, endp, nptid);
6091 }
6092 else if (ptid != minus_one_ptid)
6093 {
6094 p += xsnprintf (p, endp - p, ":");
6095 p = write_ptid (p, endp, ptid);
6096 }
6097
6098 return p;
6099 }
6100
6101 /* Clear the thread's private info on resume. */
6102
6103 static void
6104 resume_clear_thread_private_info (struct thread_info *thread)
6105 {
6106 if (thread->priv != NULL)
6107 {
6108 remote_thread_info *priv = get_remote_thread_info (thread);
6109
6110 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6111 priv->watch_data_address = 0;
6112 }
6113 }
6114
6115 /* Append a vCont continue-with-signal action for threads that have a
6116 non-zero stop signal. */
6117
6118 char *
6119 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6120 ptid_t ptid)
6121 {
6122 for (thread_info *thread : all_non_exited_threads (this, ptid))
6123 if (inferior_ptid != thread->ptid
6124 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6125 {
6126 p = append_resumption (p, endp, thread->ptid,
6127 0, thread->suspend.stop_signal);
6128 thread->suspend.stop_signal = GDB_SIGNAL_0;
6129 resume_clear_thread_private_info (thread);
6130 }
6131
6132 return p;
6133 }
6134
6135 /* Set the target running, using the packets that use Hc
6136 (c/s/C/S). */
6137
6138 void
6139 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6140 gdb_signal siggnal)
6141 {
6142 struct remote_state *rs = get_remote_state ();
6143 char *buf;
6144
6145 rs->last_sent_signal = siggnal;
6146 rs->last_sent_step = step;
6147
6148 /* The c/s/C/S resume packets use Hc, so set the continue
6149 thread. */
6150 if (ptid == minus_one_ptid)
6151 set_continue_thread (any_thread_ptid);
6152 else
6153 set_continue_thread (ptid);
6154
6155 for (thread_info *thread : all_non_exited_threads (this))
6156 resume_clear_thread_private_info (thread);
6157
6158 buf = rs->buf.data ();
6159 if (::execution_direction == EXEC_REVERSE)
6160 {
6161 /* We don't pass signals to the target in reverse exec mode. */
6162 if (info_verbose && siggnal != GDB_SIGNAL_0)
6163 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6164 siggnal);
6165
6166 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6167 error (_("Remote reverse-step not supported."));
6168 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6169 error (_("Remote reverse-continue not supported."));
6170
6171 strcpy (buf, step ? "bs" : "bc");
6172 }
6173 else if (siggnal != GDB_SIGNAL_0)
6174 {
6175 buf[0] = step ? 'S' : 'C';
6176 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6177 buf[2] = tohex (((int) siggnal) & 0xf);
6178 buf[3] = '\0';
6179 }
6180 else
6181 strcpy (buf, step ? "s" : "c");
6182
6183 putpkt (buf);
6184 }
6185
6186 /* Resume the remote inferior by using a "vCont" packet. The thread
6187 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6188 resumed thread should be single-stepped and/or signalled. If PTID
6189 equals minus_one_ptid, then all threads are resumed; the thread to
6190 be stepped and/or signalled is given in the global INFERIOR_PTID.
6191 This function returns non-zero iff it resumes the inferior.
6192
6193 This function issues a strict subset of all possible vCont commands
6194 at the moment. */
6195
6196 int
6197 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6198 enum gdb_signal siggnal)
6199 {
6200 struct remote_state *rs = get_remote_state ();
6201 char *p;
6202 char *endp;
6203
6204 /* No reverse execution actions defined for vCont. */
6205 if (::execution_direction == EXEC_REVERSE)
6206 return 0;
6207
6208 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6209 remote_vcont_probe ();
6210
6211 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6212 return 0;
6213
6214 p = rs->buf.data ();
6215 endp = p + get_remote_packet_size ();
6216
6217 /* If we could generate a wider range of packets, we'd have to worry
6218 about overflowing BUF. Should there be a generic
6219 "multi-part-packet" packet? */
6220
6221 p += xsnprintf (p, endp - p, "vCont");
6222
6223 if (ptid == magic_null_ptid)
6224 {
6225 /* MAGIC_NULL_PTID means that we don't have any active threads,
6226 so we don't have any TID numbers the inferior will
6227 understand. Make sure to only send forms that do not specify
6228 a TID. */
6229 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6230 }
6231 else if (ptid == minus_one_ptid || ptid.is_pid ())
6232 {
6233 /* Resume all threads (of all processes, or of a single
6234 process), with preference for INFERIOR_PTID. This assumes
6235 inferior_ptid belongs to the set of all threads we are about
6236 to resume. */
6237 if (step || siggnal != GDB_SIGNAL_0)
6238 {
6239 /* Step inferior_ptid, with or without signal. */
6240 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6241 }
6242
6243 /* Also pass down any pending signaled resumption for other
6244 threads not the current. */
6245 p = append_pending_thread_resumptions (p, endp, ptid);
6246
6247 /* And continue others without a signal. */
6248 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6249 }
6250 else
6251 {
6252 /* Scheduler locking; resume only PTID. */
6253 append_resumption (p, endp, ptid, step, siggnal);
6254 }
6255
6256 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6257 putpkt (rs->buf);
6258
6259 if (target_is_non_stop_p ())
6260 {
6261 /* In non-stop, the stub replies to vCont with "OK". The stop
6262 reply will be reported asynchronously by means of a `%Stop'
6263 notification. */
6264 getpkt (&rs->buf, 0);
6265 if (strcmp (rs->buf.data (), "OK") != 0)
6266 error (_("Unexpected vCont reply in non-stop mode: %s"),
6267 rs->buf.data ());
6268 }
6269
6270 return 1;
6271 }
6272
6273 /* Tell the remote machine to resume. */
6274
6275 void
6276 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6277 {
6278 struct remote_state *rs = get_remote_state ();
6279
6280 /* When connected in non-stop mode, the core resumes threads
6281 individually. Resuming remote threads directly in target_resume
6282 would thus result in sending one packet per thread. Instead, to
6283 minimize roundtrip latency, here we just store the resume
6284 request; the actual remote resumption will be done in
6285 target_commit_resume / remote_commit_resume, where we'll be able
6286 to do vCont action coalescing. */
6287 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6288 {
6289 remote_thread_info *remote_thr;
6290
6291 if (minus_one_ptid == ptid || ptid.is_pid ())
6292 remote_thr = get_remote_thread_info (this, inferior_ptid);
6293 else
6294 remote_thr = get_remote_thread_info (this, ptid);
6295
6296 remote_thr->last_resume_step = step;
6297 remote_thr->last_resume_sig = siggnal;
6298 return;
6299 }
6300
6301 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6302 (explained in remote-notif.c:handle_notification) so
6303 remote_notif_process is not called. We need find a place where
6304 it is safe to start a 'vNotif' sequence. It is good to do it
6305 before resuming inferior, because inferior was stopped and no RSP
6306 traffic at that moment. */
6307 if (!target_is_non_stop_p ())
6308 remote_notif_process (rs->notif_state, &notif_client_stop);
6309
6310 rs->last_resume_exec_dir = ::execution_direction;
6311
6312 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6313 if (!remote_resume_with_vcont (ptid, step, siggnal))
6314 remote_resume_with_hc (ptid, step, siggnal);
6315
6316 /* We are about to start executing the inferior, let's register it
6317 with the event loop. NOTE: this is the one place where all the
6318 execution commands end up. We could alternatively do this in each
6319 of the execution commands in infcmd.c. */
6320 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6321 into infcmd.c in order to allow inferior function calls to work
6322 NOT asynchronously. */
6323 if (target_can_async_p ())
6324 target_async (1);
6325
6326 /* We've just told the target to resume. The remote server will
6327 wait for the inferior to stop, and then send a stop reply. In
6328 the mean time, we can't start another command/query ourselves
6329 because the stub wouldn't be ready to process it. This applies
6330 only to the base all-stop protocol, however. In non-stop (which
6331 only supports vCont), the stub replies with an "OK", and is
6332 immediate able to process further serial input. */
6333 if (!target_is_non_stop_p ())
6334 rs->waiting_for_stop_reply = 1;
6335 }
6336
6337 static int is_pending_fork_parent_thread (struct thread_info *thread);
6338
6339 /* Private per-inferior info for target remote processes. */
6340
6341 struct remote_inferior : public private_inferior
6342 {
6343 /* Whether we can send a wildcard vCont for this process. */
6344 bool may_wildcard_vcont = true;
6345 };
6346
6347 /* Get the remote private inferior data associated to INF. */
6348
6349 static remote_inferior *
6350 get_remote_inferior (inferior *inf)
6351 {
6352 if (inf->priv == NULL)
6353 inf->priv.reset (new remote_inferior);
6354
6355 return static_cast<remote_inferior *> (inf->priv.get ());
6356 }
6357
6358 /* Class used to track the construction of a vCont packet in the
6359 outgoing packet buffer. This is used to send multiple vCont
6360 packets if we have more actions than would fit a single packet. */
6361
6362 class vcont_builder
6363 {
6364 public:
6365 explicit vcont_builder (remote_target *remote)
6366 : m_remote (remote)
6367 {
6368 restart ();
6369 }
6370
6371 void flush ();
6372 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6373
6374 private:
6375 void restart ();
6376
6377 /* The remote target. */
6378 remote_target *m_remote;
6379
6380 /* Pointer to the first action. P points here if no action has been
6381 appended yet. */
6382 char *m_first_action;
6383
6384 /* Where the next action will be appended. */
6385 char *m_p;
6386
6387 /* The end of the buffer. Must never write past this. */
6388 char *m_endp;
6389 };
6390
6391 /* Prepare the outgoing buffer for a new vCont packet. */
6392
6393 void
6394 vcont_builder::restart ()
6395 {
6396 struct remote_state *rs = m_remote->get_remote_state ();
6397
6398 m_p = rs->buf.data ();
6399 m_endp = m_p + m_remote->get_remote_packet_size ();
6400 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6401 m_first_action = m_p;
6402 }
6403
6404 /* If the vCont packet being built has any action, send it to the
6405 remote end. */
6406
6407 void
6408 vcont_builder::flush ()
6409 {
6410 struct remote_state *rs;
6411
6412 if (m_p == m_first_action)
6413 return;
6414
6415 rs = m_remote->get_remote_state ();
6416 m_remote->putpkt (rs->buf);
6417 m_remote->getpkt (&rs->buf, 0);
6418 if (strcmp (rs->buf.data (), "OK") != 0)
6419 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6420 }
6421
6422 /* The largest action is range-stepping, with its two addresses. This
6423 is more than sufficient. If a new, bigger action is created, it'll
6424 quickly trigger a failed assertion in append_resumption (and we'll
6425 just bump this). */
6426 #define MAX_ACTION_SIZE 200
6427
6428 /* Append a new vCont action in the outgoing packet being built. If
6429 the action doesn't fit the packet along with previous actions, push
6430 what we've got so far to the remote end and start over a new vCont
6431 packet (with the new action). */
6432
6433 void
6434 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6435 {
6436 char buf[MAX_ACTION_SIZE + 1];
6437
6438 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6439 ptid, step, siggnal);
6440
6441 /* Check whether this new action would fit in the vCont packet along
6442 with previous actions. If not, send what we've got so far and
6443 start a new vCont packet. */
6444 size_t rsize = endp - buf;
6445 if (rsize > m_endp - m_p)
6446 {
6447 flush ();
6448 restart ();
6449
6450 /* Should now fit. */
6451 gdb_assert (rsize <= m_endp - m_p);
6452 }
6453
6454 memcpy (m_p, buf, rsize);
6455 m_p += rsize;
6456 *m_p = '\0';
6457 }
6458
6459 /* to_commit_resume implementation. */
6460
6461 void
6462 remote_target::commit_resume ()
6463 {
6464 int any_process_wildcard;
6465 int may_global_wildcard_vcont;
6466
6467 /* If connected in all-stop mode, we'd send the remote resume
6468 request directly from remote_resume. Likewise if
6469 reverse-debugging, as there are no defined vCont actions for
6470 reverse execution. */
6471 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6472 return;
6473
6474 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6475 instead of resuming all threads of each process individually.
6476 However, if any thread of a process must remain halted, we can't
6477 send wildcard resumes and must send one action per thread.
6478
6479 Care must be taken to not resume threads/processes the server
6480 side already told us are stopped, but the core doesn't know about
6481 yet, because the events are still in the vStopped notification
6482 queue. For example:
6483
6484 #1 => vCont s:p1.1;c
6485 #2 <= OK
6486 #3 <= %Stopped T05 p1.1
6487 #4 => vStopped
6488 #5 <= T05 p1.2
6489 #6 => vStopped
6490 #7 <= OK
6491 #8 (infrun handles the stop for p1.1 and continues stepping)
6492 #9 => vCont s:p1.1;c
6493
6494 The last vCont above would resume thread p1.2 by mistake, because
6495 the server has no idea that the event for p1.2 had not been
6496 handled yet.
6497
6498 The server side must similarly ignore resume actions for the
6499 thread that has a pending %Stopped notification (and any other
6500 threads with events pending), until GDB acks the notification
6501 with vStopped. Otherwise, e.g., the following case is
6502 mishandled:
6503
6504 #1 => g (or any other packet)
6505 #2 <= [registers]
6506 #3 <= %Stopped T05 p1.2
6507 #4 => vCont s:p1.1;c
6508 #5 <= OK
6509
6510 Above, the server must not resume thread p1.2. GDB can't know
6511 that p1.2 stopped until it acks the %Stopped notification, and
6512 since from GDB's perspective all threads should be running, it
6513 sends a "c" action.
6514
6515 Finally, special care must also be given to handling fork/vfork
6516 events. A (v)fork event actually tells us that two processes
6517 stopped -- the parent and the child. Until we follow the fork,
6518 we must not resume the child. Therefore, if we have a pending
6519 fork follow, we must not send a global wildcard resume action
6520 (vCont;c). We can still send process-wide wildcards though. */
6521
6522 /* Start by assuming a global wildcard (vCont;c) is possible. */
6523 may_global_wildcard_vcont = 1;
6524
6525 /* And assume every process is individually wildcard-able too. */
6526 for (inferior *inf : all_non_exited_inferiors (this))
6527 {
6528 remote_inferior *priv = get_remote_inferior (inf);
6529
6530 priv->may_wildcard_vcont = true;
6531 }
6532
6533 /* Check for any pending events (not reported or processed yet) and
6534 disable process and global wildcard resumes appropriately. */
6535 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6536
6537 for (thread_info *tp : all_non_exited_threads (this))
6538 {
6539 /* If a thread of a process is not meant to be resumed, then we
6540 can't wildcard that process. */
6541 if (!tp->executing)
6542 {
6543 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6544
6545 /* And if we can't wildcard a process, we can't wildcard
6546 everything either. */
6547 may_global_wildcard_vcont = 0;
6548 continue;
6549 }
6550
6551 /* If a thread is the parent of an unfollowed fork, then we
6552 can't do a global wildcard, as that would resume the fork
6553 child. */
6554 if (is_pending_fork_parent_thread (tp))
6555 may_global_wildcard_vcont = 0;
6556 }
6557
6558 /* Now let's build the vCont packet(s). Actions must be appended
6559 from narrower to wider scopes (thread -> process -> global). If
6560 we end up with too many actions for a single packet vcont_builder
6561 flushes the current vCont packet to the remote side and starts a
6562 new one. */
6563 struct vcont_builder vcont_builder (this);
6564
6565 /* Threads first. */
6566 for (thread_info *tp : all_non_exited_threads (this))
6567 {
6568 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6569
6570 if (!tp->executing || remote_thr->vcont_resumed)
6571 continue;
6572
6573 gdb_assert (!thread_is_in_step_over_chain (tp));
6574
6575 if (!remote_thr->last_resume_step
6576 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6577 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6578 {
6579 /* We'll send a wildcard resume instead. */
6580 remote_thr->vcont_resumed = 1;
6581 continue;
6582 }
6583
6584 vcont_builder.push_action (tp->ptid,
6585 remote_thr->last_resume_step,
6586 remote_thr->last_resume_sig);
6587 remote_thr->vcont_resumed = 1;
6588 }
6589
6590 /* Now check whether we can send any process-wide wildcard. This is
6591 to avoid sending a global wildcard in the case nothing is
6592 supposed to be resumed. */
6593 any_process_wildcard = 0;
6594
6595 for (inferior *inf : all_non_exited_inferiors (this))
6596 {
6597 if (get_remote_inferior (inf)->may_wildcard_vcont)
6598 {
6599 any_process_wildcard = 1;
6600 break;
6601 }
6602 }
6603
6604 if (any_process_wildcard)
6605 {
6606 /* If all processes are wildcard-able, then send a single "c"
6607 action, otherwise, send an "all (-1) threads of process"
6608 continue action for each running process, if any. */
6609 if (may_global_wildcard_vcont)
6610 {
6611 vcont_builder.push_action (minus_one_ptid,
6612 false, GDB_SIGNAL_0);
6613 }
6614 else
6615 {
6616 for (inferior *inf : all_non_exited_inferiors (this))
6617 {
6618 if (get_remote_inferior (inf)->may_wildcard_vcont)
6619 {
6620 vcont_builder.push_action (ptid_t (inf->pid),
6621 false, GDB_SIGNAL_0);
6622 }
6623 }
6624 }
6625 }
6626
6627 vcont_builder.flush ();
6628 }
6629
6630 \f
6631
6632 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6633 thread, all threads of a remote process, or all threads of all
6634 processes. */
6635
6636 void
6637 remote_target::remote_stop_ns (ptid_t ptid)
6638 {
6639 struct remote_state *rs = get_remote_state ();
6640 char *p = rs->buf.data ();
6641 char *endp = p + get_remote_packet_size ();
6642
6643 /* FIXME: This supports_vCont_probed check is a workaround until
6644 packet_support is per-connection. */
6645 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6646 || !rs->supports_vCont_probed)
6647 remote_vcont_probe ();
6648
6649 if (!rs->supports_vCont.t)
6650 error (_("Remote server does not support stopping threads"));
6651
6652 if (ptid == minus_one_ptid
6653 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6654 p += xsnprintf (p, endp - p, "vCont;t");
6655 else
6656 {
6657 ptid_t nptid;
6658
6659 p += xsnprintf (p, endp - p, "vCont;t:");
6660
6661 if (ptid.is_pid ())
6662 /* All (-1) threads of process. */
6663 nptid = ptid_t (ptid.pid (), -1, 0);
6664 else
6665 {
6666 /* Small optimization: if we already have a stop reply for
6667 this thread, no use in telling the stub we want this
6668 stopped. */
6669 if (peek_stop_reply (ptid))
6670 return;
6671
6672 nptid = ptid;
6673 }
6674
6675 write_ptid (p, endp, nptid);
6676 }
6677
6678 /* In non-stop, we get an immediate OK reply. The stop reply will
6679 come in asynchronously by notification. */
6680 putpkt (rs->buf);
6681 getpkt (&rs->buf, 0);
6682 if (strcmp (rs->buf.data (), "OK") != 0)
6683 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6684 rs->buf.data ());
6685 }
6686
6687 /* All-stop version of target_interrupt. Sends a break or a ^C to
6688 interrupt the remote target. It is undefined which thread of which
6689 process reports the interrupt. */
6690
6691 void
6692 remote_target::remote_interrupt_as ()
6693 {
6694 struct remote_state *rs = get_remote_state ();
6695
6696 rs->ctrlc_pending_p = 1;
6697
6698 /* If the inferior is stopped already, but the core didn't know
6699 about it yet, just ignore the request. The cached wait status
6700 will be collected in remote_wait. */
6701 if (rs->cached_wait_status)
6702 return;
6703
6704 /* Send interrupt_sequence to remote target. */
6705 send_interrupt_sequence ();
6706 }
6707
6708 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6709 the remote target. It is undefined which thread of which process
6710 reports the interrupt. Throws an error if the packet is not
6711 supported by the server. */
6712
6713 void
6714 remote_target::remote_interrupt_ns ()
6715 {
6716 struct remote_state *rs = get_remote_state ();
6717 char *p = rs->buf.data ();
6718 char *endp = p + get_remote_packet_size ();
6719
6720 xsnprintf (p, endp - p, "vCtrlC");
6721
6722 /* In non-stop, we get an immediate OK reply. The stop reply will
6723 come in asynchronously by notification. */
6724 putpkt (rs->buf);
6725 getpkt (&rs->buf, 0);
6726
6727 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6728 {
6729 case PACKET_OK:
6730 break;
6731 case PACKET_UNKNOWN:
6732 error (_("No support for interrupting the remote target."));
6733 case PACKET_ERROR:
6734 error (_("Interrupting target failed: %s"), rs->buf.data ());
6735 }
6736 }
6737
6738 /* Implement the to_stop function for the remote targets. */
6739
6740 void
6741 remote_target::stop (ptid_t ptid)
6742 {
6743 if (remote_debug)
6744 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6745
6746 if (target_is_non_stop_p ())
6747 remote_stop_ns (ptid);
6748 else
6749 {
6750 /* We don't currently have a way to transparently pause the
6751 remote target in all-stop mode. Interrupt it instead. */
6752 remote_interrupt_as ();
6753 }
6754 }
6755
6756 /* Implement the to_interrupt function for the remote targets. */
6757
6758 void
6759 remote_target::interrupt ()
6760 {
6761 if (remote_debug)
6762 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6763
6764 if (target_is_non_stop_p ())
6765 remote_interrupt_ns ();
6766 else
6767 remote_interrupt_as ();
6768 }
6769
6770 /* Implement the to_pass_ctrlc function for the remote targets. */
6771
6772 void
6773 remote_target::pass_ctrlc ()
6774 {
6775 struct remote_state *rs = get_remote_state ();
6776
6777 if (remote_debug)
6778 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6779
6780 /* If we're starting up, we're not fully synced yet. Quit
6781 immediately. */
6782 if (rs->starting_up)
6783 quit ();
6784 /* If ^C has already been sent once, offer to disconnect. */
6785 else if (rs->ctrlc_pending_p)
6786 interrupt_query ();
6787 else
6788 target_interrupt ();
6789 }
6790
6791 /* Ask the user what to do when an interrupt is received. */
6792
6793 void
6794 remote_target::interrupt_query ()
6795 {
6796 struct remote_state *rs = get_remote_state ();
6797
6798 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6799 {
6800 if (query (_("The target is not responding to interrupt requests.\n"
6801 "Stop debugging it? ")))
6802 {
6803 remote_unpush_target (this);
6804 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6805 }
6806 }
6807 else
6808 {
6809 if (query (_("Interrupted while waiting for the program.\n"
6810 "Give up waiting? ")))
6811 quit ();
6812 }
6813 }
6814
6815 /* Enable/disable target terminal ownership. Most targets can use
6816 terminal groups to control terminal ownership. Remote targets are
6817 different in that explicit transfer of ownership to/from GDB/target
6818 is required. */
6819
6820 void
6821 remote_target::terminal_inferior ()
6822 {
6823 /* NOTE: At this point we could also register our selves as the
6824 recipient of all input. Any characters typed could then be
6825 passed on down to the target. */
6826 }
6827
6828 void
6829 remote_target::terminal_ours ()
6830 {
6831 }
6832
6833 static void
6834 remote_console_output (const char *msg)
6835 {
6836 const char *p;
6837
6838 for (p = msg; p[0] && p[1]; p += 2)
6839 {
6840 char tb[2];
6841 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6842
6843 tb[0] = c;
6844 tb[1] = 0;
6845 fputs_unfiltered (tb, gdb_stdtarg);
6846 }
6847 gdb_flush (gdb_stdtarg);
6848 }
6849
6850 struct stop_reply : public notif_event
6851 {
6852 ~stop_reply ();
6853
6854 /* The identifier of the thread about this event */
6855 ptid_t ptid;
6856
6857 /* The remote state this event is associated with. When the remote
6858 connection, represented by a remote_state object, is closed,
6859 all the associated stop_reply events should be released. */
6860 struct remote_state *rs;
6861
6862 struct target_waitstatus ws;
6863
6864 /* The architecture associated with the expedited registers. */
6865 gdbarch *arch;
6866
6867 /* Expedited registers. This makes remote debugging a bit more
6868 efficient for those targets that provide critical registers as
6869 part of their normal status mechanism (as another roundtrip to
6870 fetch them is avoided). */
6871 std::vector<cached_reg_t> regcache;
6872
6873 enum target_stop_reason stop_reason;
6874
6875 CORE_ADDR watch_data_address;
6876
6877 int core;
6878 };
6879
6880 /* Return the length of the stop reply queue. */
6881
6882 int
6883 remote_target::stop_reply_queue_length ()
6884 {
6885 remote_state *rs = get_remote_state ();
6886 return rs->stop_reply_queue.size ();
6887 }
6888
6889 static void
6890 remote_notif_stop_parse (remote_target *remote,
6891 struct notif_client *self, const char *buf,
6892 struct notif_event *event)
6893 {
6894 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6895 }
6896
6897 static void
6898 remote_notif_stop_ack (remote_target *remote,
6899 struct notif_client *self, const char *buf,
6900 struct notif_event *event)
6901 {
6902 struct stop_reply *stop_reply = (struct stop_reply *) event;
6903
6904 /* acknowledge */
6905 putpkt (remote, self->ack_command);
6906
6907 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6908 {
6909 /* We got an unknown stop reply. */
6910 error (_("Unknown stop reply"));
6911 }
6912
6913 remote->push_stop_reply (stop_reply);
6914 }
6915
6916 static int
6917 remote_notif_stop_can_get_pending_events (remote_target *remote,
6918 struct notif_client *self)
6919 {
6920 /* We can't get pending events in remote_notif_process for
6921 notification stop, and we have to do this in remote_wait_ns
6922 instead. If we fetch all queued events from stub, remote stub
6923 may exit and we have no chance to process them back in
6924 remote_wait_ns. */
6925 remote_state *rs = remote->get_remote_state ();
6926 mark_async_event_handler (rs->remote_async_inferior_event_token);
6927 return 0;
6928 }
6929
6930 stop_reply::~stop_reply ()
6931 {
6932 for (cached_reg_t &reg : regcache)
6933 xfree (reg.data);
6934 }
6935
6936 static notif_event_up
6937 remote_notif_stop_alloc_reply ()
6938 {
6939 return notif_event_up (new struct stop_reply ());
6940 }
6941
6942 /* A client of notification Stop. */
6943
6944 struct notif_client notif_client_stop =
6945 {
6946 "Stop",
6947 "vStopped",
6948 remote_notif_stop_parse,
6949 remote_notif_stop_ack,
6950 remote_notif_stop_can_get_pending_events,
6951 remote_notif_stop_alloc_reply,
6952 REMOTE_NOTIF_STOP,
6953 };
6954
6955 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6956 the pid of the process that owns the threads we want to check, or
6957 -1 if we want to check all threads. */
6958
6959 static int
6960 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6961 ptid_t thread_ptid)
6962 {
6963 if (ws->kind == TARGET_WAITKIND_FORKED
6964 || ws->kind == TARGET_WAITKIND_VFORKED)
6965 {
6966 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6967 return 1;
6968 }
6969
6970 return 0;
6971 }
6972
6973 /* Return the thread's pending status used to determine whether the
6974 thread is a fork parent stopped at a fork event. */
6975
6976 static struct target_waitstatus *
6977 thread_pending_fork_status (struct thread_info *thread)
6978 {
6979 if (thread->suspend.waitstatus_pending_p)
6980 return &thread->suspend.waitstatus;
6981 else
6982 return &thread->pending_follow;
6983 }
6984
6985 /* Determine if THREAD is a pending fork parent thread. */
6986
6987 static int
6988 is_pending_fork_parent_thread (struct thread_info *thread)
6989 {
6990 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6991 int pid = -1;
6992
6993 return is_pending_fork_parent (ws, pid, thread->ptid);
6994 }
6995
6996 /* If CONTEXT contains any fork child threads that have not been
6997 reported yet, remove them from the CONTEXT list. If such a
6998 thread exists it is because we are stopped at a fork catchpoint
6999 and have not yet called follow_fork, which will set up the
7000 host-side data structures for the new process. */
7001
7002 void
7003 remote_target::remove_new_fork_children (threads_listing_context *context)
7004 {
7005 int pid = -1;
7006 struct notif_client *notif = &notif_client_stop;
7007
7008 /* For any threads stopped at a fork event, remove the corresponding
7009 fork child threads from the CONTEXT list. */
7010 for (thread_info *thread : all_non_exited_threads (this))
7011 {
7012 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7013
7014 if (is_pending_fork_parent (ws, pid, thread->ptid))
7015 context->remove_thread (ws->value.related_pid);
7016 }
7017
7018 /* Check for any pending fork events (not reported or processed yet)
7019 in process PID and remove those fork child threads from the
7020 CONTEXT list as well. */
7021 remote_notif_get_pending_events (notif);
7022 for (auto &event : get_remote_state ()->stop_reply_queue)
7023 if (event->ws.kind == TARGET_WAITKIND_FORKED
7024 || event->ws.kind == TARGET_WAITKIND_VFORKED
7025 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7026 context->remove_thread (event->ws.value.related_pid);
7027 }
7028
7029 /* Check whether any event pending in the vStopped queue would prevent
7030 a global or process wildcard vCont action. Clear
7031 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7032 and clear the event inferior's may_wildcard_vcont flag if we can't
7033 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7034
7035 void
7036 remote_target::check_pending_events_prevent_wildcard_vcont
7037 (int *may_global_wildcard)
7038 {
7039 struct notif_client *notif = &notif_client_stop;
7040
7041 remote_notif_get_pending_events (notif);
7042 for (auto &event : get_remote_state ()->stop_reply_queue)
7043 {
7044 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7045 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7046 continue;
7047
7048 if (event->ws.kind == TARGET_WAITKIND_FORKED
7049 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7050 *may_global_wildcard = 0;
7051
7052 struct inferior *inf = find_inferior_ptid (this, event->ptid);
7053
7054 /* This may be the first time we heard about this process.
7055 Regardless, we must not do a global wildcard resume, otherwise
7056 we'd resume this process too. */
7057 *may_global_wildcard = 0;
7058 if (inf != NULL)
7059 get_remote_inferior (inf)->may_wildcard_vcont = false;
7060 }
7061 }
7062
7063 /* Discard all pending stop replies of inferior INF. */
7064
7065 void
7066 remote_target::discard_pending_stop_replies (struct inferior *inf)
7067 {
7068 struct stop_reply *reply;
7069 struct remote_state *rs = get_remote_state ();
7070 struct remote_notif_state *rns = rs->notif_state;
7071
7072 /* This function can be notified when an inferior exists. When the
7073 target is not remote, the notification state is NULL. */
7074 if (rs->remote_desc == NULL)
7075 return;
7076
7077 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7078
7079 /* Discard the in-flight notification. */
7080 if (reply != NULL && reply->ptid.pid () == inf->pid)
7081 {
7082 delete reply;
7083 rns->pending_event[notif_client_stop.id] = NULL;
7084 }
7085
7086 /* Discard the stop replies we have already pulled with
7087 vStopped. */
7088 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7089 rs->stop_reply_queue.end (),
7090 [=] (const stop_reply_up &event)
7091 {
7092 return event->ptid.pid () == inf->pid;
7093 });
7094 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7095 }
7096
7097 /* Discard the stop replies for RS in stop_reply_queue. */
7098
7099 void
7100 remote_target::discard_pending_stop_replies_in_queue ()
7101 {
7102 remote_state *rs = get_remote_state ();
7103
7104 /* Discard the stop replies we have already pulled with
7105 vStopped. */
7106 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7107 rs->stop_reply_queue.end (),
7108 [=] (const stop_reply_up &event)
7109 {
7110 return event->rs == rs;
7111 });
7112 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7113 }
7114
7115 /* Remove the first reply in 'stop_reply_queue' which matches
7116 PTID. */
7117
7118 struct stop_reply *
7119 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7120 {
7121 remote_state *rs = get_remote_state ();
7122
7123 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7124 rs->stop_reply_queue.end (),
7125 [=] (const stop_reply_up &event)
7126 {
7127 return event->ptid.matches (ptid);
7128 });
7129 struct stop_reply *result;
7130 if (iter == rs->stop_reply_queue.end ())
7131 result = nullptr;
7132 else
7133 {
7134 result = iter->release ();
7135 rs->stop_reply_queue.erase (iter);
7136 }
7137
7138 if (notif_debug)
7139 fprintf_unfiltered (gdb_stdlog,
7140 "notif: discard queued event: 'Stop' in %s\n",
7141 target_pid_to_str (ptid).c_str ());
7142
7143 return result;
7144 }
7145
7146 /* Look for a queued stop reply belonging to PTID. If one is found,
7147 remove it from the queue, and return it. Returns NULL if none is
7148 found. If there are still queued events left to process, tell the
7149 event loop to get back to target_wait soon. */
7150
7151 struct stop_reply *
7152 remote_target::queued_stop_reply (ptid_t ptid)
7153 {
7154 remote_state *rs = get_remote_state ();
7155 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7156
7157 if (!rs->stop_reply_queue.empty ())
7158 {
7159 /* There's still at least an event left. */
7160 mark_async_event_handler (rs->remote_async_inferior_event_token);
7161 }
7162
7163 return r;
7164 }
7165
7166 /* Push a fully parsed stop reply in the stop reply queue. Since we
7167 know that we now have at least one queued event left to pass to the
7168 core side, tell the event loop to get back to target_wait soon. */
7169
7170 void
7171 remote_target::push_stop_reply (struct stop_reply *new_event)
7172 {
7173 remote_state *rs = get_remote_state ();
7174 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7175
7176 if (notif_debug)
7177 fprintf_unfiltered (gdb_stdlog,
7178 "notif: push 'Stop' %s to queue %d\n",
7179 target_pid_to_str (new_event->ptid).c_str (),
7180 int (rs->stop_reply_queue.size ()));
7181
7182 mark_async_event_handler (rs->remote_async_inferior_event_token);
7183 }
7184
7185 /* Returns true if we have a stop reply for PTID. */
7186
7187 int
7188 remote_target::peek_stop_reply (ptid_t ptid)
7189 {
7190 remote_state *rs = get_remote_state ();
7191 for (auto &event : rs->stop_reply_queue)
7192 if (ptid == event->ptid
7193 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7194 return 1;
7195 return 0;
7196 }
7197
7198 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7199 starting with P and ending with PEND matches PREFIX. */
7200
7201 static int
7202 strprefix (const char *p, const char *pend, const char *prefix)
7203 {
7204 for ( ; p < pend; p++, prefix++)
7205 if (*p != *prefix)
7206 return 0;
7207 return *prefix == '\0';
7208 }
7209
7210 /* Parse the stop reply in BUF. Either the function succeeds, and the
7211 result is stored in EVENT, or throws an error. */
7212
7213 void
7214 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7215 {
7216 remote_arch_state *rsa = NULL;
7217 ULONGEST addr;
7218 const char *p;
7219 int skipregs = 0;
7220
7221 event->ptid = null_ptid;
7222 event->rs = get_remote_state ();
7223 event->ws.kind = TARGET_WAITKIND_IGNORE;
7224 event->ws.value.integer = 0;
7225 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7226 event->regcache.clear ();
7227 event->core = -1;
7228
7229 switch (buf[0])
7230 {
7231 case 'T': /* Status with PC, SP, FP, ... */
7232 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7233 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7234 ss = signal number
7235 n... = register number
7236 r... = register contents
7237 */
7238
7239 p = &buf[3]; /* after Txx */
7240 while (*p)
7241 {
7242 const char *p1;
7243 int fieldsize;
7244
7245 p1 = strchr (p, ':');
7246 if (p1 == NULL)
7247 error (_("Malformed packet(a) (missing colon): %s\n\
7248 Packet: '%s'\n"),
7249 p, buf);
7250 if (p == p1)
7251 error (_("Malformed packet(a) (missing register number): %s\n\
7252 Packet: '%s'\n"),
7253 p, buf);
7254
7255 /* Some "registers" are actually extended stop information.
7256 Note if you're adding a new entry here: GDB 7.9 and
7257 earlier assume that all register "numbers" that start
7258 with an hex digit are real register numbers. Make sure
7259 the server only sends such a packet if it knows the
7260 client understands it. */
7261
7262 if (strprefix (p, p1, "thread"))
7263 event->ptid = read_ptid (++p1, &p);
7264 else if (strprefix (p, p1, "syscall_entry"))
7265 {
7266 ULONGEST sysno;
7267
7268 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7269 p = unpack_varlen_hex (++p1, &sysno);
7270 event->ws.value.syscall_number = (int) sysno;
7271 }
7272 else if (strprefix (p, p1, "syscall_return"))
7273 {
7274 ULONGEST sysno;
7275
7276 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7277 p = unpack_varlen_hex (++p1, &sysno);
7278 event->ws.value.syscall_number = (int) sysno;
7279 }
7280 else if (strprefix (p, p1, "watch")
7281 || strprefix (p, p1, "rwatch")
7282 || strprefix (p, p1, "awatch"))
7283 {
7284 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7285 p = unpack_varlen_hex (++p1, &addr);
7286 event->watch_data_address = (CORE_ADDR) addr;
7287 }
7288 else if (strprefix (p, p1, "swbreak"))
7289 {
7290 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7291
7292 /* Make sure the stub doesn't forget to indicate support
7293 with qSupported. */
7294 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7295 error (_("Unexpected swbreak stop reason"));
7296
7297 /* The value part is documented as "must be empty",
7298 though we ignore it, in case we ever decide to make
7299 use of it in a backward compatible way. */
7300 p = strchrnul (p1 + 1, ';');
7301 }
7302 else if (strprefix (p, p1, "hwbreak"))
7303 {
7304 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7305
7306 /* Make sure the stub doesn't forget to indicate support
7307 with qSupported. */
7308 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7309 error (_("Unexpected hwbreak stop reason"));
7310
7311 /* See above. */
7312 p = strchrnul (p1 + 1, ';');
7313 }
7314 else if (strprefix (p, p1, "library"))
7315 {
7316 event->ws.kind = TARGET_WAITKIND_LOADED;
7317 p = strchrnul (p1 + 1, ';');
7318 }
7319 else if (strprefix (p, p1, "replaylog"))
7320 {
7321 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7322 /* p1 will indicate "begin" or "end", but it makes
7323 no difference for now, so ignore it. */
7324 p = strchrnul (p1 + 1, ';');
7325 }
7326 else if (strprefix (p, p1, "core"))
7327 {
7328 ULONGEST c;
7329
7330 p = unpack_varlen_hex (++p1, &c);
7331 event->core = c;
7332 }
7333 else if (strprefix (p, p1, "fork"))
7334 {
7335 event->ws.value.related_pid = read_ptid (++p1, &p);
7336 event->ws.kind = TARGET_WAITKIND_FORKED;
7337 }
7338 else if (strprefix (p, p1, "vfork"))
7339 {
7340 event->ws.value.related_pid = read_ptid (++p1, &p);
7341 event->ws.kind = TARGET_WAITKIND_VFORKED;
7342 }
7343 else if (strprefix (p, p1, "vforkdone"))
7344 {
7345 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7346 p = strchrnul (p1 + 1, ';');
7347 }
7348 else if (strprefix (p, p1, "exec"))
7349 {
7350 ULONGEST ignored;
7351 int pathlen;
7352
7353 /* Determine the length of the execd pathname. */
7354 p = unpack_varlen_hex (++p1, &ignored);
7355 pathlen = (p - p1) / 2;
7356
7357 /* Save the pathname for event reporting and for
7358 the next run command. */
7359 gdb::unique_xmalloc_ptr<char[]> pathname
7360 ((char *) xmalloc (pathlen + 1));
7361 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7362 pathname[pathlen] = '\0';
7363
7364 /* This is freed during event handling. */
7365 event->ws.value.execd_pathname = pathname.release ();
7366 event->ws.kind = TARGET_WAITKIND_EXECD;
7367
7368 /* Skip the registers included in this packet, since
7369 they may be for an architecture different from the
7370 one used by the original program. */
7371 skipregs = 1;
7372 }
7373 else if (strprefix (p, p1, "create"))
7374 {
7375 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7376 p = strchrnul (p1 + 1, ';');
7377 }
7378 else
7379 {
7380 ULONGEST pnum;
7381 const char *p_temp;
7382
7383 if (skipregs)
7384 {
7385 p = strchrnul (p1 + 1, ';');
7386 p++;
7387 continue;
7388 }
7389
7390 /* Maybe a real ``P'' register number. */
7391 p_temp = unpack_varlen_hex (p, &pnum);
7392 /* If the first invalid character is the colon, we got a
7393 register number. Otherwise, it's an unknown stop
7394 reason. */
7395 if (p_temp == p1)
7396 {
7397 /* If we haven't parsed the event's thread yet, find
7398 it now, in order to find the architecture of the
7399 reported expedited registers. */
7400 if (event->ptid == null_ptid)
7401 {
7402 const char *thr = strstr (p1 + 1, ";thread:");
7403 if (thr != NULL)
7404 event->ptid = read_ptid (thr + strlen (";thread:"),
7405 NULL);
7406 else
7407 {
7408 /* Either the current thread hasn't changed,
7409 or the inferior is not multi-threaded.
7410 The event must be for the thread we last
7411 set as (or learned as being) current. */
7412 event->ptid = event->rs->general_thread;
7413 }
7414 }
7415
7416 if (rsa == NULL)
7417 {
7418 inferior *inf
7419 = (event->ptid == null_ptid
7420 ? NULL
7421 : find_inferior_ptid (this, event->ptid));
7422 /* If this is the first time we learn anything
7423 about this process, skip the registers
7424 included in this packet, since we don't yet
7425 know which architecture to use to parse them.
7426 We'll determine the architecture later when
7427 we process the stop reply and retrieve the
7428 target description, via
7429 remote_notice_new_inferior ->
7430 post_create_inferior. */
7431 if (inf == NULL)
7432 {
7433 p = strchrnul (p1 + 1, ';');
7434 p++;
7435 continue;
7436 }
7437
7438 event->arch = inf->gdbarch;
7439 rsa = event->rs->get_remote_arch_state (event->arch);
7440 }
7441
7442 packet_reg *reg
7443 = packet_reg_from_pnum (event->arch, rsa, pnum);
7444 cached_reg_t cached_reg;
7445
7446 if (reg == NULL)
7447 error (_("Remote sent bad register number %s: %s\n\
7448 Packet: '%s'\n"),
7449 hex_string (pnum), p, buf);
7450
7451 cached_reg.num = reg->regnum;
7452 cached_reg.data = (gdb_byte *)
7453 xmalloc (register_size (event->arch, reg->regnum));
7454
7455 p = p1 + 1;
7456 fieldsize = hex2bin (p, cached_reg.data,
7457 register_size (event->arch, reg->regnum));
7458 p += 2 * fieldsize;
7459 if (fieldsize < register_size (event->arch, reg->regnum))
7460 warning (_("Remote reply is too short: %s"), buf);
7461
7462 event->regcache.push_back (cached_reg);
7463 }
7464 else
7465 {
7466 /* Not a number. Silently skip unknown optional
7467 info. */
7468 p = strchrnul (p1 + 1, ';');
7469 }
7470 }
7471
7472 if (*p != ';')
7473 error (_("Remote register badly formatted: %s\nhere: %s"),
7474 buf, p);
7475 ++p;
7476 }
7477
7478 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7479 break;
7480
7481 /* fall through */
7482 case 'S': /* Old style status, just signal only. */
7483 {
7484 int sig;
7485
7486 event->ws.kind = TARGET_WAITKIND_STOPPED;
7487 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7488 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7489 event->ws.value.sig = (enum gdb_signal) sig;
7490 else
7491 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7492 }
7493 break;
7494 case 'w': /* Thread exited. */
7495 {
7496 ULONGEST value;
7497
7498 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7499 p = unpack_varlen_hex (&buf[1], &value);
7500 event->ws.value.integer = value;
7501 if (*p != ';')
7502 error (_("stop reply packet badly formatted: %s"), buf);
7503 event->ptid = read_ptid (++p, NULL);
7504 break;
7505 }
7506 case 'W': /* Target exited. */
7507 case 'X':
7508 {
7509 ULONGEST value;
7510
7511 /* GDB used to accept only 2 hex chars here. Stubs should
7512 only send more if they detect GDB supports multi-process
7513 support. */
7514 p = unpack_varlen_hex (&buf[1], &value);
7515
7516 if (buf[0] == 'W')
7517 {
7518 /* The remote process exited. */
7519 event->ws.kind = TARGET_WAITKIND_EXITED;
7520 event->ws.value.integer = value;
7521 }
7522 else
7523 {
7524 /* The remote process exited with a signal. */
7525 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7526 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7527 event->ws.value.sig = (enum gdb_signal) value;
7528 else
7529 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7530 }
7531
7532 /* If no process is specified, return null_ptid, and let the
7533 caller figure out the right process to use. */
7534 int pid = 0;
7535 if (*p == '\0')
7536 ;
7537 else if (*p == ';')
7538 {
7539 p++;
7540
7541 if (*p == '\0')
7542 ;
7543 else if (startswith (p, "process:"))
7544 {
7545 ULONGEST upid;
7546
7547 p += sizeof ("process:") - 1;
7548 unpack_varlen_hex (p, &upid);
7549 pid = upid;
7550 }
7551 else
7552 error (_("unknown stop reply packet: %s"), buf);
7553 }
7554 else
7555 error (_("unknown stop reply packet: %s"), buf);
7556 event->ptid = ptid_t (pid);
7557 }
7558 break;
7559 case 'N':
7560 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7561 event->ptid = minus_one_ptid;
7562 break;
7563 }
7564
7565 if (target_is_non_stop_p () && event->ptid == null_ptid)
7566 error (_("No process or thread specified in stop reply: %s"), buf);
7567 }
7568
7569 /* When the stub wants to tell GDB about a new notification reply, it
7570 sends a notification (%Stop, for example). Those can come it at
7571 any time, hence, we have to make sure that any pending
7572 putpkt/getpkt sequence we're making is finished, before querying
7573 the stub for more events with the corresponding ack command
7574 (vStopped, for example). E.g., if we started a vStopped sequence
7575 immediately upon receiving the notification, something like this
7576 could happen:
7577
7578 1.1) --> Hg 1
7579 1.2) <-- OK
7580 1.3) --> g
7581 1.4) <-- %Stop
7582 1.5) --> vStopped
7583 1.6) <-- (registers reply to step #1.3)
7584
7585 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7586 query.
7587
7588 To solve this, whenever we parse a %Stop notification successfully,
7589 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7590 doing whatever we were doing:
7591
7592 2.1) --> Hg 1
7593 2.2) <-- OK
7594 2.3) --> g
7595 2.4) <-- %Stop
7596 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7597 2.5) <-- (registers reply to step #2.3)
7598
7599 Eventually after step #2.5, we return to the event loop, which
7600 notices there's an event on the
7601 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7602 associated callback --- the function below. At this point, we're
7603 always safe to start a vStopped sequence. :
7604
7605 2.6) --> vStopped
7606 2.7) <-- T05 thread:2
7607 2.8) --> vStopped
7608 2.9) --> OK
7609 */
7610
7611 void
7612 remote_target::remote_notif_get_pending_events (notif_client *nc)
7613 {
7614 struct remote_state *rs = get_remote_state ();
7615
7616 if (rs->notif_state->pending_event[nc->id] != NULL)
7617 {
7618 if (notif_debug)
7619 fprintf_unfiltered (gdb_stdlog,
7620 "notif: process: '%s' ack pending event\n",
7621 nc->name);
7622
7623 /* acknowledge */
7624 nc->ack (this, nc, rs->buf.data (),
7625 rs->notif_state->pending_event[nc->id]);
7626 rs->notif_state->pending_event[nc->id] = NULL;
7627
7628 while (1)
7629 {
7630 getpkt (&rs->buf, 0);
7631 if (strcmp (rs->buf.data (), "OK") == 0)
7632 break;
7633 else
7634 remote_notif_ack (this, nc, rs->buf.data ());
7635 }
7636 }
7637 else
7638 {
7639 if (notif_debug)
7640 fprintf_unfiltered (gdb_stdlog,
7641 "notif: process: '%s' no pending reply\n",
7642 nc->name);
7643 }
7644 }
7645
7646 /* Wrapper around remote_target::remote_notif_get_pending_events to
7647 avoid having to export the whole remote_target class. */
7648
7649 void
7650 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7651 {
7652 remote->remote_notif_get_pending_events (nc);
7653 }
7654
7655 /* Called when it is decided that STOP_REPLY holds the info of the
7656 event that is to be returned to the core. This function always
7657 destroys STOP_REPLY. */
7658
7659 ptid_t
7660 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7661 struct target_waitstatus *status)
7662 {
7663 ptid_t ptid;
7664
7665 *status = stop_reply->ws;
7666 ptid = stop_reply->ptid;
7667
7668 /* If no thread/process was reported by the stub, assume the current
7669 inferior. */
7670 if (ptid == null_ptid)
7671 ptid = inferior_ptid;
7672
7673 if (status->kind != TARGET_WAITKIND_EXITED
7674 && status->kind != TARGET_WAITKIND_SIGNALLED
7675 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7676 {
7677 /* Expedited registers. */
7678 if (!stop_reply->regcache.empty ())
7679 {
7680 struct regcache *regcache
7681 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
7682
7683 for (cached_reg_t &reg : stop_reply->regcache)
7684 {
7685 regcache->raw_supply (reg.num, reg.data);
7686 xfree (reg.data);
7687 }
7688
7689 stop_reply->regcache.clear ();
7690 }
7691
7692 remote_notice_new_inferior (ptid, 0);
7693 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
7694 remote_thr->core = stop_reply->core;
7695 remote_thr->stop_reason = stop_reply->stop_reason;
7696 remote_thr->watch_data_address = stop_reply->watch_data_address;
7697 remote_thr->vcont_resumed = 0;
7698 }
7699
7700 delete stop_reply;
7701 return ptid;
7702 }
7703
7704 /* The non-stop mode version of target_wait. */
7705
7706 ptid_t
7707 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7708 {
7709 struct remote_state *rs = get_remote_state ();
7710 struct stop_reply *stop_reply;
7711 int ret;
7712 int is_notif = 0;
7713
7714 /* If in non-stop mode, get out of getpkt even if a
7715 notification is received. */
7716
7717 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7718 while (1)
7719 {
7720 if (ret != -1 && !is_notif)
7721 switch (rs->buf[0])
7722 {
7723 case 'E': /* Error of some sort. */
7724 /* We're out of sync with the target now. Did it continue
7725 or not? We can't tell which thread it was in non-stop,
7726 so just ignore this. */
7727 warning (_("Remote failure reply: %s"), rs->buf.data ());
7728 break;
7729 case 'O': /* Console output. */
7730 remote_console_output (&rs->buf[1]);
7731 break;
7732 default:
7733 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7734 break;
7735 }
7736
7737 /* Acknowledge a pending stop reply that may have arrived in the
7738 mean time. */
7739 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7740 remote_notif_get_pending_events (&notif_client_stop);
7741
7742 /* If indeed we noticed a stop reply, we're done. */
7743 stop_reply = queued_stop_reply (ptid);
7744 if (stop_reply != NULL)
7745 return process_stop_reply (stop_reply, status);
7746
7747 /* Still no event. If we're just polling for an event, then
7748 return to the event loop. */
7749 if (options & TARGET_WNOHANG)
7750 {
7751 status->kind = TARGET_WAITKIND_IGNORE;
7752 return minus_one_ptid;
7753 }
7754
7755 /* Otherwise do a blocking wait. */
7756 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7757 }
7758 }
7759
7760 /* Return the first resumed thread. */
7761
7762 static ptid_t
7763 first_remote_resumed_thread (remote_target *target)
7764 {
7765 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
7766 if (tp->resumed)
7767 return tp->ptid;
7768 return null_ptid;
7769 }
7770
7771 /* Wait until the remote machine stops, then return, storing status in
7772 STATUS just as `wait' would. */
7773
7774 ptid_t
7775 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7776 {
7777 struct remote_state *rs = get_remote_state ();
7778 ptid_t event_ptid = null_ptid;
7779 char *buf;
7780 struct stop_reply *stop_reply;
7781
7782 again:
7783
7784 status->kind = TARGET_WAITKIND_IGNORE;
7785 status->value.integer = 0;
7786
7787 stop_reply = queued_stop_reply (ptid);
7788 if (stop_reply != NULL)
7789 return process_stop_reply (stop_reply, status);
7790
7791 if (rs->cached_wait_status)
7792 /* Use the cached wait status, but only once. */
7793 rs->cached_wait_status = 0;
7794 else
7795 {
7796 int ret;
7797 int is_notif;
7798 int forever = ((options & TARGET_WNOHANG) == 0
7799 && rs->wait_forever_enabled_p);
7800
7801 if (!rs->waiting_for_stop_reply)
7802 {
7803 status->kind = TARGET_WAITKIND_NO_RESUMED;
7804 return minus_one_ptid;
7805 }
7806
7807 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7808 _never_ wait for ever -> test on target_is_async_p().
7809 However, before we do that we need to ensure that the caller
7810 knows how to take the target into/out of async mode. */
7811 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7812
7813 /* GDB gets a notification. Return to core as this event is
7814 not interesting. */
7815 if (ret != -1 && is_notif)
7816 return minus_one_ptid;
7817
7818 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7819 return minus_one_ptid;
7820 }
7821
7822 buf = rs->buf.data ();
7823
7824 /* Assume that the target has acknowledged Ctrl-C unless we receive
7825 an 'F' or 'O' packet. */
7826 if (buf[0] != 'F' && buf[0] != 'O')
7827 rs->ctrlc_pending_p = 0;
7828
7829 switch (buf[0])
7830 {
7831 case 'E': /* Error of some sort. */
7832 /* We're out of sync with the target now. Did it continue or
7833 not? Not is more likely, so report a stop. */
7834 rs->waiting_for_stop_reply = 0;
7835
7836 warning (_("Remote failure reply: %s"), buf);
7837 status->kind = TARGET_WAITKIND_STOPPED;
7838 status->value.sig = GDB_SIGNAL_0;
7839 break;
7840 case 'F': /* File-I/O request. */
7841 /* GDB may access the inferior memory while handling the File-I/O
7842 request, but we don't want GDB accessing memory while waiting
7843 for a stop reply. See the comments in putpkt_binary. Set
7844 waiting_for_stop_reply to 0 temporarily. */
7845 rs->waiting_for_stop_reply = 0;
7846 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7847 rs->ctrlc_pending_p = 0;
7848 /* GDB handled the File-I/O request, and the target is running
7849 again. Keep waiting for events. */
7850 rs->waiting_for_stop_reply = 1;
7851 break;
7852 case 'N': case 'T': case 'S': case 'X': case 'W':
7853 {
7854 /* There is a stop reply to handle. */
7855 rs->waiting_for_stop_reply = 0;
7856
7857 stop_reply
7858 = (struct stop_reply *) remote_notif_parse (this,
7859 &notif_client_stop,
7860 rs->buf.data ());
7861
7862 event_ptid = process_stop_reply (stop_reply, status);
7863 break;
7864 }
7865 case 'O': /* Console output. */
7866 remote_console_output (buf + 1);
7867 break;
7868 case '\0':
7869 if (rs->last_sent_signal != GDB_SIGNAL_0)
7870 {
7871 /* Zero length reply means that we tried 'S' or 'C' and the
7872 remote system doesn't support it. */
7873 target_terminal::ours_for_output ();
7874 printf_filtered
7875 ("Can't send signals to this remote system. %s not sent.\n",
7876 gdb_signal_to_name (rs->last_sent_signal));
7877 rs->last_sent_signal = GDB_SIGNAL_0;
7878 target_terminal::inferior ();
7879
7880 strcpy (buf, rs->last_sent_step ? "s" : "c");
7881 putpkt (buf);
7882 break;
7883 }
7884 /* fallthrough */
7885 default:
7886 warning (_("Invalid remote reply: %s"), buf);
7887 break;
7888 }
7889
7890 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7891 return minus_one_ptid;
7892 else if (status->kind == TARGET_WAITKIND_IGNORE)
7893 {
7894 /* Nothing interesting happened. If we're doing a non-blocking
7895 poll, we're done. Otherwise, go back to waiting. */
7896 if (options & TARGET_WNOHANG)
7897 return minus_one_ptid;
7898 else
7899 goto again;
7900 }
7901 else if (status->kind != TARGET_WAITKIND_EXITED
7902 && status->kind != TARGET_WAITKIND_SIGNALLED)
7903 {
7904 if (event_ptid != null_ptid)
7905 record_currthread (rs, event_ptid);
7906 else
7907 event_ptid = first_remote_resumed_thread (this);
7908 }
7909 else
7910 {
7911 /* A process exit. Invalidate our notion of current thread. */
7912 record_currthread (rs, minus_one_ptid);
7913 /* It's possible that the packet did not include a pid. */
7914 if (event_ptid == null_ptid)
7915 event_ptid = first_remote_resumed_thread (this);
7916 /* EVENT_PTID could still be NULL_PTID. Double-check. */
7917 if (event_ptid == null_ptid)
7918 event_ptid = magic_null_ptid;
7919 }
7920
7921 return event_ptid;
7922 }
7923
7924 /* Wait until the remote machine stops, then return, storing status in
7925 STATUS just as `wait' would. */
7926
7927 ptid_t
7928 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7929 {
7930 ptid_t event_ptid;
7931
7932 if (target_is_non_stop_p ())
7933 event_ptid = wait_ns (ptid, status, options);
7934 else
7935 event_ptid = wait_as (ptid, status, options);
7936
7937 if (target_is_async_p ())
7938 {
7939 remote_state *rs = get_remote_state ();
7940
7941 /* If there are are events left in the queue tell the event loop
7942 to return here. */
7943 if (!rs->stop_reply_queue.empty ())
7944 mark_async_event_handler (rs->remote_async_inferior_event_token);
7945 }
7946
7947 return event_ptid;
7948 }
7949
7950 /* Fetch a single register using a 'p' packet. */
7951
7952 int
7953 remote_target::fetch_register_using_p (struct regcache *regcache,
7954 packet_reg *reg)
7955 {
7956 struct gdbarch *gdbarch = regcache->arch ();
7957 struct remote_state *rs = get_remote_state ();
7958 char *buf, *p;
7959 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7960 int i;
7961
7962 if (packet_support (PACKET_p) == PACKET_DISABLE)
7963 return 0;
7964
7965 if (reg->pnum == -1)
7966 return 0;
7967
7968 p = rs->buf.data ();
7969 *p++ = 'p';
7970 p += hexnumstr (p, reg->pnum);
7971 *p++ = '\0';
7972 putpkt (rs->buf);
7973 getpkt (&rs->buf, 0);
7974
7975 buf = rs->buf.data ();
7976
7977 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
7978 {
7979 case PACKET_OK:
7980 break;
7981 case PACKET_UNKNOWN:
7982 return 0;
7983 case PACKET_ERROR:
7984 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7985 gdbarch_register_name (regcache->arch (),
7986 reg->regnum),
7987 buf);
7988 }
7989
7990 /* If this register is unfetchable, tell the regcache. */
7991 if (buf[0] == 'x')
7992 {
7993 regcache->raw_supply (reg->regnum, NULL);
7994 return 1;
7995 }
7996
7997 /* Otherwise, parse and supply the value. */
7998 p = buf;
7999 i = 0;
8000 while (p[0] != 0)
8001 {
8002 if (p[1] == 0)
8003 error (_("fetch_register_using_p: early buf termination"));
8004
8005 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
8006 p += 2;
8007 }
8008 regcache->raw_supply (reg->regnum, regp);
8009 return 1;
8010 }
8011
8012 /* Fetch the registers included in the target's 'g' packet. */
8013
8014 int
8015 remote_target::send_g_packet ()
8016 {
8017 struct remote_state *rs = get_remote_state ();
8018 int buf_len;
8019
8020 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8021 putpkt (rs->buf);
8022 getpkt (&rs->buf, 0);
8023 if (packet_check_result (rs->buf) == PACKET_ERROR)
8024 error (_("Could not read registers; remote failure reply '%s'"),
8025 rs->buf.data ());
8026
8027 /* We can get out of synch in various cases. If the first character
8028 in the buffer is not a hex character, assume that has happened
8029 and try to fetch another packet to read. */
8030 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8031 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8032 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8033 && rs->buf[0] != 'x') /* New: unavailable register value. */
8034 {
8035 if (remote_debug)
8036 fprintf_unfiltered (gdb_stdlog,
8037 "Bad register packet; fetching a new packet\n");
8038 getpkt (&rs->buf, 0);
8039 }
8040
8041 buf_len = strlen (rs->buf.data ());
8042
8043 /* Sanity check the received packet. */
8044 if (buf_len % 2 != 0)
8045 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8046
8047 return buf_len / 2;
8048 }
8049
8050 void
8051 remote_target::process_g_packet (struct regcache *regcache)
8052 {
8053 struct gdbarch *gdbarch = regcache->arch ();
8054 struct remote_state *rs = get_remote_state ();
8055 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8056 int i, buf_len;
8057 char *p;
8058 char *regs;
8059
8060 buf_len = strlen (rs->buf.data ());
8061
8062 /* Further sanity checks, with knowledge of the architecture. */
8063 if (buf_len > 2 * rsa->sizeof_g_packet)
8064 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8065 "bytes): %s"),
8066 rsa->sizeof_g_packet, buf_len / 2,
8067 rs->buf.data ());
8068
8069 /* Save the size of the packet sent to us by the target. It is used
8070 as a heuristic when determining the max size of packets that the
8071 target can safely receive. */
8072 if (rsa->actual_register_packet_size == 0)
8073 rsa->actual_register_packet_size = buf_len;
8074
8075 /* If this is smaller than we guessed the 'g' packet would be,
8076 update our records. A 'g' reply that doesn't include a register's
8077 value implies either that the register is not available, or that
8078 the 'p' packet must be used. */
8079 if (buf_len < 2 * rsa->sizeof_g_packet)
8080 {
8081 long sizeof_g_packet = buf_len / 2;
8082
8083 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8084 {
8085 long offset = rsa->regs[i].offset;
8086 long reg_size = register_size (gdbarch, i);
8087
8088 if (rsa->regs[i].pnum == -1)
8089 continue;
8090
8091 if (offset >= sizeof_g_packet)
8092 rsa->regs[i].in_g_packet = 0;
8093 else if (offset + reg_size > sizeof_g_packet)
8094 error (_("Truncated register %d in remote 'g' packet"), i);
8095 else
8096 rsa->regs[i].in_g_packet = 1;
8097 }
8098
8099 /* Looks valid enough, we can assume this is the correct length
8100 for a 'g' packet. It's important not to adjust
8101 rsa->sizeof_g_packet if we have truncated registers otherwise
8102 this "if" won't be run the next time the method is called
8103 with a packet of the same size and one of the internal errors
8104 below will trigger instead. */
8105 rsa->sizeof_g_packet = sizeof_g_packet;
8106 }
8107
8108 regs = (char *) alloca (rsa->sizeof_g_packet);
8109
8110 /* Unimplemented registers read as all bits zero. */
8111 memset (regs, 0, rsa->sizeof_g_packet);
8112
8113 /* Reply describes registers byte by byte, each byte encoded as two
8114 hex characters. Suck them all up, then supply them to the
8115 register cacheing/storage mechanism. */
8116
8117 p = rs->buf.data ();
8118 for (i = 0; i < rsa->sizeof_g_packet; i++)
8119 {
8120 if (p[0] == 0 || p[1] == 0)
8121 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8122 internal_error (__FILE__, __LINE__,
8123 _("unexpected end of 'g' packet reply"));
8124
8125 if (p[0] == 'x' && p[1] == 'x')
8126 regs[i] = 0; /* 'x' */
8127 else
8128 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8129 p += 2;
8130 }
8131
8132 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8133 {
8134 struct packet_reg *r = &rsa->regs[i];
8135 long reg_size = register_size (gdbarch, i);
8136
8137 if (r->in_g_packet)
8138 {
8139 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8140 /* This shouldn't happen - we adjusted in_g_packet above. */
8141 internal_error (__FILE__, __LINE__,
8142 _("unexpected end of 'g' packet reply"));
8143 else if (rs->buf[r->offset * 2] == 'x')
8144 {
8145 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8146 /* The register isn't available, mark it as such (at
8147 the same time setting the value to zero). */
8148 regcache->raw_supply (r->regnum, NULL);
8149 }
8150 else
8151 regcache->raw_supply (r->regnum, regs + r->offset);
8152 }
8153 }
8154 }
8155
8156 void
8157 remote_target::fetch_registers_using_g (struct regcache *regcache)
8158 {
8159 send_g_packet ();
8160 process_g_packet (regcache);
8161 }
8162
8163 /* Make the remote selected traceframe match GDB's selected
8164 traceframe. */
8165
8166 void
8167 remote_target::set_remote_traceframe ()
8168 {
8169 int newnum;
8170 struct remote_state *rs = get_remote_state ();
8171
8172 if (rs->remote_traceframe_number == get_traceframe_number ())
8173 return;
8174
8175 /* Avoid recursion, remote_trace_find calls us again. */
8176 rs->remote_traceframe_number = get_traceframe_number ();
8177
8178 newnum = target_trace_find (tfind_number,
8179 get_traceframe_number (), 0, 0, NULL);
8180
8181 /* Should not happen. If it does, all bets are off. */
8182 if (newnum != get_traceframe_number ())
8183 warning (_("could not set remote traceframe"));
8184 }
8185
8186 void
8187 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8188 {
8189 struct gdbarch *gdbarch = regcache->arch ();
8190 struct remote_state *rs = get_remote_state ();
8191 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8192 int i;
8193
8194 set_remote_traceframe ();
8195 set_general_thread (regcache->ptid ());
8196
8197 if (regnum >= 0)
8198 {
8199 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8200
8201 gdb_assert (reg != NULL);
8202
8203 /* If this register might be in the 'g' packet, try that first -
8204 we are likely to read more than one register. If this is the
8205 first 'g' packet, we might be overly optimistic about its
8206 contents, so fall back to 'p'. */
8207 if (reg->in_g_packet)
8208 {
8209 fetch_registers_using_g (regcache);
8210 if (reg->in_g_packet)
8211 return;
8212 }
8213
8214 if (fetch_register_using_p (regcache, reg))
8215 return;
8216
8217 /* This register is not available. */
8218 regcache->raw_supply (reg->regnum, NULL);
8219
8220 return;
8221 }
8222
8223 fetch_registers_using_g (regcache);
8224
8225 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8226 if (!rsa->regs[i].in_g_packet)
8227 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8228 {
8229 /* This register is not available. */
8230 regcache->raw_supply (i, NULL);
8231 }
8232 }
8233
8234 /* Prepare to store registers. Since we may send them all (using a
8235 'G' request), we have to read out the ones we don't want to change
8236 first. */
8237
8238 void
8239 remote_target::prepare_to_store (struct regcache *regcache)
8240 {
8241 struct remote_state *rs = get_remote_state ();
8242 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8243 int i;
8244
8245 /* Make sure the entire registers array is valid. */
8246 switch (packet_support (PACKET_P))
8247 {
8248 case PACKET_DISABLE:
8249 case PACKET_SUPPORT_UNKNOWN:
8250 /* Make sure all the necessary registers are cached. */
8251 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8252 if (rsa->regs[i].in_g_packet)
8253 regcache->raw_update (rsa->regs[i].regnum);
8254 break;
8255 case PACKET_ENABLE:
8256 break;
8257 }
8258 }
8259
8260 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8261 packet was not recognized. */
8262
8263 int
8264 remote_target::store_register_using_P (const struct regcache *regcache,
8265 packet_reg *reg)
8266 {
8267 struct gdbarch *gdbarch = regcache->arch ();
8268 struct remote_state *rs = get_remote_state ();
8269 /* Try storing a single register. */
8270 char *buf = rs->buf.data ();
8271 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8272 char *p;
8273
8274 if (packet_support (PACKET_P) == PACKET_DISABLE)
8275 return 0;
8276
8277 if (reg->pnum == -1)
8278 return 0;
8279
8280 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8281 p = buf + strlen (buf);
8282 regcache->raw_collect (reg->regnum, regp);
8283 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8284 putpkt (rs->buf);
8285 getpkt (&rs->buf, 0);
8286
8287 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8288 {
8289 case PACKET_OK:
8290 return 1;
8291 case PACKET_ERROR:
8292 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8293 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8294 case PACKET_UNKNOWN:
8295 return 0;
8296 default:
8297 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8298 }
8299 }
8300
8301 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8302 contents of the register cache buffer. FIXME: ignores errors. */
8303
8304 void
8305 remote_target::store_registers_using_G (const struct regcache *regcache)
8306 {
8307 struct remote_state *rs = get_remote_state ();
8308 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8309 gdb_byte *regs;
8310 char *p;
8311
8312 /* Extract all the registers in the regcache copying them into a
8313 local buffer. */
8314 {
8315 int i;
8316
8317 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8318 memset (regs, 0, rsa->sizeof_g_packet);
8319 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8320 {
8321 struct packet_reg *r = &rsa->regs[i];
8322
8323 if (r->in_g_packet)
8324 regcache->raw_collect (r->regnum, regs + r->offset);
8325 }
8326 }
8327
8328 /* Command describes registers byte by byte,
8329 each byte encoded as two hex characters. */
8330 p = rs->buf.data ();
8331 *p++ = 'G';
8332 bin2hex (regs, p, rsa->sizeof_g_packet);
8333 putpkt (rs->buf);
8334 getpkt (&rs->buf, 0);
8335 if (packet_check_result (rs->buf) == PACKET_ERROR)
8336 error (_("Could not write registers; remote failure reply '%s'"),
8337 rs->buf.data ());
8338 }
8339
8340 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8341 of the register cache buffer. FIXME: ignores errors. */
8342
8343 void
8344 remote_target::store_registers (struct regcache *regcache, int regnum)
8345 {
8346 struct gdbarch *gdbarch = regcache->arch ();
8347 struct remote_state *rs = get_remote_state ();
8348 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8349 int i;
8350
8351 set_remote_traceframe ();
8352 set_general_thread (regcache->ptid ());
8353
8354 if (regnum >= 0)
8355 {
8356 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8357
8358 gdb_assert (reg != NULL);
8359
8360 /* Always prefer to store registers using the 'P' packet if
8361 possible; we often change only a small number of registers.
8362 Sometimes we change a larger number; we'd need help from a
8363 higher layer to know to use 'G'. */
8364 if (store_register_using_P (regcache, reg))
8365 return;
8366
8367 /* For now, don't complain if we have no way to write the
8368 register. GDB loses track of unavailable registers too
8369 easily. Some day, this may be an error. We don't have
8370 any way to read the register, either... */
8371 if (!reg->in_g_packet)
8372 return;
8373
8374 store_registers_using_G (regcache);
8375 return;
8376 }
8377
8378 store_registers_using_G (regcache);
8379
8380 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8381 if (!rsa->regs[i].in_g_packet)
8382 if (!store_register_using_P (regcache, &rsa->regs[i]))
8383 /* See above for why we do not issue an error here. */
8384 continue;
8385 }
8386 \f
8387
8388 /* Return the number of hex digits in num. */
8389
8390 static int
8391 hexnumlen (ULONGEST num)
8392 {
8393 int i;
8394
8395 for (i = 0; num != 0; i++)
8396 num >>= 4;
8397
8398 return std::max (i, 1);
8399 }
8400
8401 /* Set BUF to the minimum number of hex digits representing NUM. */
8402
8403 static int
8404 hexnumstr (char *buf, ULONGEST num)
8405 {
8406 int len = hexnumlen (num);
8407
8408 return hexnumnstr (buf, num, len);
8409 }
8410
8411
8412 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8413
8414 static int
8415 hexnumnstr (char *buf, ULONGEST num, int width)
8416 {
8417 int i;
8418
8419 buf[width] = '\0';
8420
8421 for (i = width - 1; i >= 0; i--)
8422 {
8423 buf[i] = "0123456789abcdef"[(num & 0xf)];
8424 num >>= 4;
8425 }
8426
8427 return width;
8428 }
8429
8430 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8431
8432 static CORE_ADDR
8433 remote_address_masked (CORE_ADDR addr)
8434 {
8435 unsigned int address_size = remote_address_size;
8436
8437 /* If "remoteaddresssize" was not set, default to target address size. */
8438 if (!address_size)
8439 address_size = gdbarch_addr_bit (target_gdbarch ());
8440
8441 if (address_size > 0
8442 && address_size < (sizeof (ULONGEST) * 8))
8443 {
8444 /* Only create a mask when that mask can safely be constructed
8445 in a ULONGEST variable. */
8446 ULONGEST mask = 1;
8447
8448 mask = (mask << address_size) - 1;
8449 addr &= mask;
8450 }
8451 return addr;
8452 }
8453
8454 /* Determine whether the remote target supports binary downloading.
8455 This is accomplished by sending a no-op memory write of zero length
8456 to the target at the specified address. It does not suffice to send
8457 the whole packet, since many stubs strip the eighth bit and
8458 subsequently compute a wrong checksum, which causes real havoc with
8459 remote_write_bytes.
8460
8461 NOTE: This can still lose if the serial line is not eight-bit
8462 clean. In cases like this, the user should clear "remote
8463 X-packet". */
8464
8465 void
8466 remote_target::check_binary_download (CORE_ADDR addr)
8467 {
8468 struct remote_state *rs = get_remote_state ();
8469
8470 switch (packet_support (PACKET_X))
8471 {
8472 case PACKET_DISABLE:
8473 break;
8474 case PACKET_ENABLE:
8475 break;
8476 case PACKET_SUPPORT_UNKNOWN:
8477 {
8478 char *p;
8479
8480 p = rs->buf.data ();
8481 *p++ = 'X';
8482 p += hexnumstr (p, (ULONGEST) addr);
8483 *p++ = ',';
8484 p += hexnumstr (p, (ULONGEST) 0);
8485 *p++ = ':';
8486 *p = '\0';
8487
8488 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8489 getpkt (&rs->buf, 0);
8490
8491 if (rs->buf[0] == '\0')
8492 {
8493 if (remote_debug)
8494 fprintf_unfiltered (gdb_stdlog,
8495 "binary downloading NOT "
8496 "supported by target\n");
8497 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8498 }
8499 else
8500 {
8501 if (remote_debug)
8502 fprintf_unfiltered (gdb_stdlog,
8503 "binary downloading supported by target\n");
8504 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8505 }
8506 break;
8507 }
8508 }
8509 }
8510
8511 /* Helper function to resize the payload in order to try to get a good
8512 alignment. We try to write an amount of data such that the next write will
8513 start on an address aligned on REMOTE_ALIGN_WRITES. */
8514
8515 static int
8516 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8517 {
8518 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8519 }
8520
8521 /* Write memory data directly to the remote machine.
8522 This does not inform the data cache; the data cache uses this.
8523 HEADER is the starting part of the packet.
8524 MEMADDR is the address in the remote memory space.
8525 MYADDR is the address of the buffer in our space.
8526 LEN_UNITS is the number of addressable units to write.
8527 UNIT_SIZE is the length in bytes of an addressable unit.
8528 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8529 should send data as binary ('X'), or hex-encoded ('M').
8530
8531 The function creates packet of the form
8532 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8533
8534 where encoding of <DATA> is terminated by PACKET_FORMAT.
8535
8536 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8537 are omitted.
8538
8539 Return the transferred status, error or OK (an
8540 'enum target_xfer_status' value). Save the number of addressable units
8541 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8542
8543 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8544 exchange between gdb and the stub could look like (?? in place of the
8545 checksum):
8546
8547 -> $m1000,4#??
8548 <- aaaabbbbccccdddd
8549
8550 -> $M1000,3:eeeeffffeeee#??
8551 <- OK
8552
8553 -> $m1000,4#??
8554 <- eeeeffffeeeedddd */
8555
8556 target_xfer_status
8557 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8558 const gdb_byte *myaddr,
8559 ULONGEST len_units,
8560 int unit_size,
8561 ULONGEST *xfered_len_units,
8562 char packet_format, int use_length)
8563 {
8564 struct remote_state *rs = get_remote_state ();
8565 char *p;
8566 char *plen = NULL;
8567 int plenlen = 0;
8568 int todo_units;
8569 int units_written;
8570 int payload_capacity_bytes;
8571 int payload_length_bytes;
8572
8573 if (packet_format != 'X' && packet_format != 'M')
8574 internal_error (__FILE__, __LINE__,
8575 _("remote_write_bytes_aux: bad packet format"));
8576
8577 if (len_units == 0)
8578 return TARGET_XFER_EOF;
8579
8580 payload_capacity_bytes = get_memory_write_packet_size ();
8581
8582 /* The packet buffer will be large enough for the payload;
8583 get_memory_packet_size ensures this. */
8584 rs->buf[0] = '\0';
8585
8586 /* Compute the size of the actual payload by subtracting out the
8587 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8588
8589 payload_capacity_bytes -= strlen ("$,:#NN");
8590 if (!use_length)
8591 /* The comma won't be used. */
8592 payload_capacity_bytes += 1;
8593 payload_capacity_bytes -= strlen (header);
8594 payload_capacity_bytes -= hexnumlen (memaddr);
8595
8596 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8597
8598 strcat (rs->buf.data (), header);
8599 p = rs->buf.data () + strlen (header);
8600
8601 /* Compute a best guess of the number of bytes actually transfered. */
8602 if (packet_format == 'X')
8603 {
8604 /* Best guess at number of bytes that will fit. */
8605 todo_units = std::min (len_units,
8606 (ULONGEST) payload_capacity_bytes / unit_size);
8607 if (use_length)
8608 payload_capacity_bytes -= hexnumlen (todo_units);
8609 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8610 }
8611 else
8612 {
8613 /* Number of bytes that will fit. */
8614 todo_units
8615 = std::min (len_units,
8616 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8617 if (use_length)
8618 payload_capacity_bytes -= hexnumlen (todo_units);
8619 todo_units = std::min (todo_units,
8620 (payload_capacity_bytes / unit_size) / 2);
8621 }
8622
8623 if (todo_units <= 0)
8624 internal_error (__FILE__, __LINE__,
8625 _("minimum packet size too small to write data"));
8626
8627 /* If we already need another packet, then try to align the end
8628 of this packet to a useful boundary. */
8629 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8630 todo_units = align_for_efficient_write (todo_units, memaddr);
8631
8632 /* Append "<memaddr>". */
8633 memaddr = remote_address_masked (memaddr);
8634 p += hexnumstr (p, (ULONGEST) memaddr);
8635
8636 if (use_length)
8637 {
8638 /* Append ",". */
8639 *p++ = ',';
8640
8641 /* Append the length and retain its location and size. It may need to be
8642 adjusted once the packet body has been created. */
8643 plen = p;
8644 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8645 p += plenlen;
8646 }
8647
8648 /* Append ":". */
8649 *p++ = ':';
8650 *p = '\0';
8651
8652 /* Append the packet body. */
8653 if (packet_format == 'X')
8654 {
8655 /* Binary mode. Send target system values byte by byte, in
8656 increasing byte addresses. Only escape certain critical
8657 characters. */
8658 payload_length_bytes =
8659 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8660 &units_written, payload_capacity_bytes);
8661
8662 /* If not all TODO units fit, then we'll need another packet. Make
8663 a second try to keep the end of the packet aligned. Don't do
8664 this if the packet is tiny. */
8665 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8666 {
8667 int new_todo_units;
8668
8669 new_todo_units = align_for_efficient_write (units_written, memaddr);
8670
8671 if (new_todo_units != units_written)
8672 payload_length_bytes =
8673 remote_escape_output (myaddr, new_todo_units, unit_size,
8674 (gdb_byte *) p, &units_written,
8675 payload_capacity_bytes);
8676 }
8677
8678 p += payload_length_bytes;
8679 if (use_length && units_written < todo_units)
8680 {
8681 /* Escape chars have filled up the buffer prematurely,
8682 and we have actually sent fewer units than planned.
8683 Fix-up the length field of the packet. Use the same
8684 number of characters as before. */
8685 plen += hexnumnstr (plen, (ULONGEST) units_written,
8686 plenlen);
8687 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8688 }
8689 }
8690 else
8691 {
8692 /* Normal mode: Send target system values byte by byte, in
8693 increasing byte addresses. Each byte is encoded as a two hex
8694 value. */
8695 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8696 units_written = todo_units;
8697 }
8698
8699 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8700 getpkt (&rs->buf, 0);
8701
8702 if (rs->buf[0] == 'E')
8703 return TARGET_XFER_E_IO;
8704
8705 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8706 send fewer units than we'd planned. */
8707 *xfered_len_units = (ULONGEST) units_written;
8708 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8709 }
8710
8711 /* Write memory data directly to the remote machine.
8712 This does not inform the data cache; the data cache uses this.
8713 MEMADDR is the address in the remote memory space.
8714 MYADDR is the address of the buffer in our space.
8715 LEN is the number of bytes.
8716
8717 Return the transferred status, error or OK (an
8718 'enum target_xfer_status' value). Save the number of bytes
8719 transferred in *XFERED_LEN. Only transfer a single packet. */
8720
8721 target_xfer_status
8722 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8723 ULONGEST len, int unit_size,
8724 ULONGEST *xfered_len)
8725 {
8726 const char *packet_format = NULL;
8727
8728 /* Check whether the target supports binary download. */
8729 check_binary_download (memaddr);
8730
8731 switch (packet_support (PACKET_X))
8732 {
8733 case PACKET_ENABLE:
8734 packet_format = "X";
8735 break;
8736 case PACKET_DISABLE:
8737 packet_format = "M";
8738 break;
8739 case PACKET_SUPPORT_UNKNOWN:
8740 internal_error (__FILE__, __LINE__,
8741 _("remote_write_bytes: bad internal state"));
8742 default:
8743 internal_error (__FILE__, __LINE__, _("bad switch"));
8744 }
8745
8746 return remote_write_bytes_aux (packet_format,
8747 memaddr, myaddr, len, unit_size, xfered_len,
8748 packet_format[0], 1);
8749 }
8750
8751 /* Read memory data directly from the remote machine.
8752 This does not use the data cache; the data cache uses this.
8753 MEMADDR is the address in the remote memory space.
8754 MYADDR is the address of the buffer in our space.
8755 LEN_UNITS is the number of addressable memory units to read..
8756 UNIT_SIZE is the length in bytes of an addressable unit.
8757
8758 Return the transferred status, error or OK (an
8759 'enum target_xfer_status' value). Save the number of bytes
8760 transferred in *XFERED_LEN_UNITS.
8761
8762 See the comment of remote_write_bytes_aux for an example of
8763 memory read/write exchange between gdb and the stub. */
8764
8765 target_xfer_status
8766 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8767 ULONGEST len_units,
8768 int unit_size, ULONGEST *xfered_len_units)
8769 {
8770 struct remote_state *rs = get_remote_state ();
8771 int buf_size_bytes; /* Max size of packet output buffer. */
8772 char *p;
8773 int todo_units;
8774 int decoded_bytes;
8775
8776 buf_size_bytes = get_memory_read_packet_size ();
8777 /* The packet buffer will be large enough for the payload;
8778 get_memory_packet_size ensures this. */
8779
8780 /* Number of units that will fit. */
8781 todo_units = std::min (len_units,
8782 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8783
8784 /* Construct "m"<memaddr>","<len>". */
8785 memaddr = remote_address_masked (memaddr);
8786 p = rs->buf.data ();
8787 *p++ = 'm';
8788 p += hexnumstr (p, (ULONGEST) memaddr);
8789 *p++ = ',';
8790 p += hexnumstr (p, (ULONGEST) todo_units);
8791 *p = '\0';
8792 putpkt (rs->buf);
8793 getpkt (&rs->buf, 0);
8794 if (rs->buf[0] == 'E'
8795 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8796 && rs->buf[3] == '\0')
8797 return TARGET_XFER_E_IO;
8798 /* Reply describes memory byte by byte, each byte encoded as two hex
8799 characters. */
8800 p = rs->buf.data ();
8801 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8802 /* Return what we have. Let higher layers handle partial reads. */
8803 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8804 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8805 }
8806
8807 /* Using the set of read-only target sections of remote, read live
8808 read-only memory.
8809
8810 For interface/parameters/return description see target.h,
8811 to_xfer_partial. */
8812
8813 target_xfer_status
8814 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8815 ULONGEST memaddr,
8816 ULONGEST len,
8817 int unit_size,
8818 ULONGEST *xfered_len)
8819 {
8820 struct target_section *secp;
8821 struct target_section_table *table;
8822
8823 secp = target_section_by_addr (this, memaddr);
8824 if (secp != NULL
8825 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
8826 {
8827 struct target_section *p;
8828 ULONGEST memend = memaddr + len;
8829
8830 table = target_get_section_table (this);
8831
8832 for (p = table->sections; p < table->sections_end; p++)
8833 {
8834 if (memaddr >= p->addr)
8835 {
8836 if (memend <= p->endaddr)
8837 {
8838 /* Entire transfer is within this section. */
8839 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8840 xfered_len);
8841 }
8842 else if (memaddr >= p->endaddr)
8843 {
8844 /* This section ends before the transfer starts. */
8845 continue;
8846 }
8847 else
8848 {
8849 /* This section overlaps the transfer. Just do half. */
8850 len = p->endaddr - memaddr;
8851 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8852 xfered_len);
8853 }
8854 }
8855 }
8856 }
8857
8858 return TARGET_XFER_EOF;
8859 }
8860
8861 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8862 first if the requested memory is unavailable in traceframe.
8863 Otherwise, fall back to remote_read_bytes_1. */
8864
8865 target_xfer_status
8866 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8867 gdb_byte *myaddr, ULONGEST len, int unit_size,
8868 ULONGEST *xfered_len)
8869 {
8870 if (len == 0)
8871 return TARGET_XFER_EOF;
8872
8873 if (get_traceframe_number () != -1)
8874 {
8875 std::vector<mem_range> available;
8876
8877 /* If we fail to get the set of available memory, then the
8878 target does not support querying traceframe info, and so we
8879 attempt reading from the traceframe anyway (assuming the
8880 target implements the old QTro packet then). */
8881 if (traceframe_available_memory (&available, memaddr, len))
8882 {
8883 if (available.empty () || available[0].start != memaddr)
8884 {
8885 enum target_xfer_status res;
8886
8887 /* Don't read into the traceframe's available
8888 memory. */
8889 if (!available.empty ())
8890 {
8891 LONGEST oldlen = len;
8892
8893 len = available[0].start - memaddr;
8894 gdb_assert (len <= oldlen);
8895 }
8896
8897 /* This goes through the topmost target again. */
8898 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8899 len, unit_size, xfered_len);
8900 if (res == TARGET_XFER_OK)
8901 return TARGET_XFER_OK;
8902 else
8903 {
8904 /* No use trying further, we know some memory starting
8905 at MEMADDR isn't available. */
8906 *xfered_len = len;
8907 return (*xfered_len != 0) ?
8908 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8909 }
8910 }
8911
8912 /* Don't try to read more than how much is available, in
8913 case the target implements the deprecated QTro packet to
8914 cater for older GDBs (the target's knowledge of read-only
8915 sections may be outdated by now). */
8916 len = available[0].length;
8917 }
8918 }
8919
8920 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8921 }
8922
8923 \f
8924
8925 /* Sends a packet with content determined by the printf format string
8926 FORMAT and the remaining arguments, then gets the reply. Returns
8927 whether the packet was a success, a failure, or unknown. */
8928
8929 packet_result
8930 remote_target::remote_send_printf (const char *format, ...)
8931 {
8932 struct remote_state *rs = get_remote_state ();
8933 int max_size = get_remote_packet_size ();
8934 va_list ap;
8935
8936 va_start (ap, format);
8937
8938 rs->buf[0] = '\0';
8939 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8940
8941 va_end (ap);
8942
8943 if (size >= max_size)
8944 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8945
8946 if (putpkt (rs->buf) < 0)
8947 error (_("Communication problem with target."));
8948
8949 rs->buf[0] = '\0';
8950 getpkt (&rs->buf, 0);
8951
8952 return packet_check_result (rs->buf);
8953 }
8954
8955 /* Flash writing can take quite some time. We'll set
8956 effectively infinite timeout for flash operations.
8957 In future, we'll need to decide on a better approach. */
8958 static const int remote_flash_timeout = 1000;
8959
8960 void
8961 remote_target::flash_erase (ULONGEST address, LONGEST length)
8962 {
8963 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8964 enum packet_result ret;
8965 scoped_restore restore_timeout
8966 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8967
8968 ret = remote_send_printf ("vFlashErase:%s,%s",
8969 phex (address, addr_size),
8970 phex (length, 4));
8971 switch (ret)
8972 {
8973 case PACKET_UNKNOWN:
8974 error (_("Remote target does not support flash erase"));
8975 case PACKET_ERROR:
8976 error (_("Error erasing flash with vFlashErase packet"));
8977 default:
8978 break;
8979 }
8980 }
8981
8982 target_xfer_status
8983 remote_target::remote_flash_write (ULONGEST address,
8984 ULONGEST length, ULONGEST *xfered_len,
8985 const gdb_byte *data)
8986 {
8987 scoped_restore restore_timeout
8988 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8989 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8990 xfered_len,'X', 0);
8991 }
8992
8993 void
8994 remote_target::flash_done ()
8995 {
8996 int ret;
8997
8998 scoped_restore restore_timeout
8999 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
9000
9001 ret = remote_send_printf ("vFlashDone");
9002
9003 switch (ret)
9004 {
9005 case PACKET_UNKNOWN:
9006 error (_("Remote target does not support vFlashDone"));
9007 case PACKET_ERROR:
9008 error (_("Error finishing flash operation"));
9009 default:
9010 break;
9011 }
9012 }
9013
9014 void
9015 remote_target::files_info ()
9016 {
9017 puts_filtered ("Debugging a target over a serial line.\n");
9018 }
9019 \f
9020 /* Stuff for dealing with the packets which are part of this protocol.
9021 See comment at top of file for details. */
9022
9023 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9024 error to higher layers. Called when a serial error is detected.
9025 The exception message is STRING, followed by a colon and a blank,
9026 the system error message for errno at function entry and final dot
9027 for output compatibility with throw_perror_with_name. */
9028
9029 static void
9030 unpush_and_perror (remote_target *target, const char *string)
9031 {
9032 int saved_errno = errno;
9033
9034 remote_unpush_target (target);
9035 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9036 safe_strerror (saved_errno));
9037 }
9038
9039 /* Read a single character from the remote end. The current quit
9040 handler is overridden to avoid quitting in the middle of packet
9041 sequence, as that would break communication with the remote server.
9042 See remote_serial_quit_handler for more detail. */
9043
9044 int
9045 remote_target::readchar (int timeout)
9046 {
9047 int ch;
9048 struct remote_state *rs = get_remote_state ();
9049
9050 {
9051 scoped_restore restore_quit_target
9052 = make_scoped_restore (&curr_quit_handler_target, this);
9053 scoped_restore restore_quit
9054 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9055
9056 rs->got_ctrlc_during_io = 0;
9057
9058 ch = serial_readchar (rs->remote_desc, timeout);
9059
9060 if (rs->got_ctrlc_during_io)
9061 set_quit_flag ();
9062 }
9063
9064 if (ch >= 0)
9065 return ch;
9066
9067 switch ((enum serial_rc) ch)
9068 {
9069 case SERIAL_EOF:
9070 remote_unpush_target (this);
9071 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9072 /* no return */
9073 case SERIAL_ERROR:
9074 unpush_and_perror (this, _("Remote communication error. "
9075 "Target disconnected."));
9076 /* no return */
9077 case SERIAL_TIMEOUT:
9078 break;
9079 }
9080 return ch;
9081 }
9082
9083 /* Wrapper for serial_write that closes the target and throws if
9084 writing fails. The current quit handler is overridden to avoid
9085 quitting in the middle of packet sequence, as that would break
9086 communication with the remote server. See
9087 remote_serial_quit_handler for more detail. */
9088
9089 void
9090 remote_target::remote_serial_write (const char *str, int len)
9091 {
9092 struct remote_state *rs = get_remote_state ();
9093
9094 scoped_restore restore_quit_target
9095 = make_scoped_restore (&curr_quit_handler_target, this);
9096 scoped_restore restore_quit
9097 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9098
9099 rs->got_ctrlc_during_io = 0;
9100
9101 if (serial_write (rs->remote_desc, str, len))
9102 {
9103 unpush_and_perror (this, _("Remote communication error. "
9104 "Target disconnected."));
9105 }
9106
9107 if (rs->got_ctrlc_during_io)
9108 set_quit_flag ();
9109 }
9110
9111 /* Return a string representing an escaped version of BUF, of len N.
9112 E.g. \n is converted to \\n, \t to \\t, etc. */
9113
9114 static std::string
9115 escape_buffer (const char *buf, int n)
9116 {
9117 string_file stb;
9118
9119 stb.putstrn (buf, n, '\\');
9120 return std::move (stb.string ());
9121 }
9122
9123 /* Display a null-terminated packet on stdout, for debugging, using C
9124 string notation. */
9125
9126 static void
9127 print_packet (const char *buf)
9128 {
9129 puts_filtered ("\"");
9130 fputstr_filtered (buf, '"', gdb_stdout);
9131 puts_filtered ("\"");
9132 }
9133
9134 int
9135 remote_target::putpkt (const char *buf)
9136 {
9137 return putpkt_binary (buf, strlen (buf));
9138 }
9139
9140 /* Wrapper around remote_target::putpkt to avoid exporting
9141 remote_target. */
9142
9143 int
9144 putpkt (remote_target *remote, const char *buf)
9145 {
9146 return remote->putpkt (buf);
9147 }
9148
9149 /* Send a packet to the remote machine, with error checking. The data
9150 of the packet is in BUF. The string in BUF can be at most
9151 get_remote_packet_size () - 5 to account for the $, # and checksum,
9152 and for a possible /0 if we are debugging (remote_debug) and want
9153 to print the sent packet as a string. */
9154
9155 int
9156 remote_target::putpkt_binary (const char *buf, int cnt)
9157 {
9158 struct remote_state *rs = get_remote_state ();
9159 int i;
9160 unsigned char csum = 0;
9161 gdb::def_vector<char> data (cnt + 6);
9162 char *buf2 = data.data ();
9163
9164 int ch;
9165 int tcount = 0;
9166 char *p;
9167
9168 /* Catch cases like trying to read memory or listing threads while
9169 we're waiting for a stop reply. The remote server wouldn't be
9170 ready to handle this request, so we'd hang and timeout. We don't
9171 have to worry about this in synchronous mode, because in that
9172 case it's not possible to issue a command while the target is
9173 running. This is not a problem in non-stop mode, because in that
9174 case, the stub is always ready to process serial input. */
9175 if (!target_is_non_stop_p ()
9176 && target_is_async_p ()
9177 && rs->waiting_for_stop_reply)
9178 {
9179 error (_("Cannot execute this command while the target is running.\n"
9180 "Use the \"interrupt\" command to stop the target\n"
9181 "and then try again."));
9182 }
9183
9184 /* We're sending out a new packet. Make sure we don't look at a
9185 stale cached response. */
9186 rs->cached_wait_status = 0;
9187
9188 /* Copy the packet into buffer BUF2, encapsulating it
9189 and giving it a checksum. */
9190
9191 p = buf2;
9192 *p++ = '$';
9193
9194 for (i = 0; i < cnt; i++)
9195 {
9196 csum += buf[i];
9197 *p++ = buf[i];
9198 }
9199 *p++ = '#';
9200 *p++ = tohex ((csum >> 4) & 0xf);
9201 *p++ = tohex (csum & 0xf);
9202
9203 /* Send it over and over until we get a positive ack. */
9204
9205 while (1)
9206 {
9207 int started_error_output = 0;
9208
9209 if (remote_debug)
9210 {
9211 *p = '\0';
9212
9213 int len = (int) (p - buf2);
9214 int max_chars;
9215
9216 if (remote_packet_max_chars < 0)
9217 max_chars = len;
9218 else
9219 max_chars = remote_packet_max_chars;
9220
9221 std::string str
9222 = escape_buffer (buf2, std::min (len, max_chars));
9223
9224 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9225
9226 if (len > max_chars)
9227 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9228 len - max_chars);
9229
9230 fprintf_unfiltered (gdb_stdlog, "...");
9231
9232 gdb_flush (gdb_stdlog);
9233 }
9234 remote_serial_write (buf2, p - buf2);
9235
9236 /* If this is a no acks version of the remote protocol, send the
9237 packet and move on. */
9238 if (rs->noack_mode)
9239 break;
9240
9241 /* Read until either a timeout occurs (-2) or '+' is read.
9242 Handle any notification that arrives in the mean time. */
9243 while (1)
9244 {
9245 ch = readchar (remote_timeout);
9246
9247 if (remote_debug)
9248 {
9249 switch (ch)
9250 {
9251 case '+':
9252 case '-':
9253 case SERIAL_TIMEOUT:
9254 case '$':
9255 case '%':
9256 if (started_error_output)
9257 {
9258 putchar_unfiltered ('\n');
9259 started_error_output = 0;
9260 }
9261 }
9262 }
9263
9264 switch (ch)
9265 {
9266 case '+':
9267 if (remote_debug)
9268 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9269 return 1;
9270 case '-':
9271 if (remote_debug)
9272 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9273 /* FALLTHROUGH */
9274 case SERIAL_TIMEOUT:
9275 tcount++;
9276 if (tcount > 3)
9277 return 0;
9278 break; /* Retransmit buffer. */
9279 case '$':
9280 {
9281 if (remote_debug)
9282 fprintf_unfiltered (gdb_stdlog,
9283 "Packet instead of Ack, ignoring it\n");
9284 /* It's probably an old response sent because an ACK
9285 was lost. Gobble up the packet and ack it so it
9286 doesn't get retransmitted when we resend this
9287 packet. */
9288 skip_frame ();
9289 remote_serial_write ("+", 1);
9290 continue; /* Now, go look for +. */
9291 }
9292
9293 case '%':
9294 {
9295 int val;
9296
9297 /* If we got a notification, handle it, and go back to looking
9298 for an ack. */
9299 /* We've found the start of a notification. Now
9300 collect the data. */
9301 val = read_frame (&rs->buf);
9302 if (val >= 0)
9303 {
9304 if (remote_debug)
9305 {
9306 std::string str = escape_buffer (rs->buf.data (), val);
9307
9308 fprintf_unfiltered (gdb_stdlog,
9309 " Notification received: %s\n",
9310 str.c_str ());
9311 }
9312 handle_notification (rs->notif_state, rs->buf.data ());
9313 /* We're in sync now, rewait for the ack. */
9314 tcount = 0;
9315 }
9316 else
9317 {
9318 if (remote_debug)
9319 {
9320 if (!started_error_output)
9321 {
9322 started_error_output = 1;
9323 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9324 }
9325 fputc_unfiltered (ch & 0177, gdb_stdlog);
9326 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9327 }
9328 }
9329 continue;
9330 }
9331 /* fall-through */
9332 default:
9333 if (remote_debug)
9334 {
9335 if (!started_error_output)
9336 {
9337 started_error_output = 1;
9338 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9339 }
9340 fputc_unfiltered (ch & 0177, gdb_stdlog);
9341 }
9342 continue;
9343 }
9344 break; /* Here to retransmit. */
9345 }
9346
9347 #if 0
9348 /* This is wrong. If doing a long backtrace, the user should be
9349 able to get out next time we call QUIT, without anything as
9350 violent as interrupt_query. If we want to provide a way out of
9351 here without getting to the next QUIT, it should be based on
9352 hitting ^C twice as in remote_wait. */
9353 if (quit_flag)
9354 {
9355 quit_flag = 0;
9356 interrupt_query ();
9357 }
9358 #endif
9359 }
9360
9361 return 0;
9362 }
9363
9364 /* Come here after finding the start of a frame when we expected an
9365 ack. Do our best to discard the rest of this packet. */
9366
9367 void
9368 remote_target::skip_frame ()
9369 {
9370 int c;
9371
9372 while (1)
9373 {
9374 c = readchar (remote_timeout);
9375 switch (c)
9376 {
9377 case SERIAL_TIMEOUT:
9378 /* Nothing we can do. */
9379 return;
9380 case '#':
9381 /* Discard the two bytes of checksum and stop. */
9382 c = readchar (remote_timeout);
9383 if (c >= 0)
9384 c = readchar (remote_timeout);
9385
9386 return;
9387 case '*': /* Run length encoding. */
9388 /* Discard the repeat count. */
9389 c = readchar (remote_timeout);
9390 if (c < 0)
9391 return;
9392 break;
9393 default:
9394 /* A regular character. */
9395 break;
9396 }
9397 }
9398 }
9399
9400 /* Come here after finding the start of the frame. Collect the rest
9401 into *BUF, verifying the checksum, length, and handling run-length
9402 compression. NUL terminate the buffer. If there is not enough room,
9403 expand *BUF.
9404
9405 Returns -1 on error, number of characters in buffer (ignoring the
9406 trailing NULL) on success. (could be extended to return one of the
9407 SERIAL status indications). */
9408
9409 long
9410 remote_target::read_frame (gdb::char_vector *buf_p)
9411 {
9412 unsigned char csum;
9413 long bc;
9414 int c;
9415 char *buf = buf_p->data ();
9416 struct remote_state *rs = get_remote_state ();
9417
9418 csum = 0;
9419 bc = 0;
9420
9421 while (1)
9422 {
9423 c = readchar (remote_timeout);
9424 switch (c)
9425 {
9426 case SERIAL_TIMEOUT:
9427 if (remote_debug)
9428 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9429 return -1;
9430 case '$':
9431 if (remote_debug)
9432 fputs_filtered ("Saw new packet start in middle of old one\n",
9433 gdb_stdlog);
9434 return -1; /* Start a new packet, count retries. */
9435 case '#':
9436 {
9437 unsigned char pktcsum;
9438 int check_0 = 0;
9439 int check_1 = 0;
9440
9441 buf[bc] = '\0';
9442
9443 check_0 = readchar (remote_timeout);
9444 if (check_0 >= 0)
9445 check_1 = readchar (remote_timeout);
9446
9447 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9448 {
9449 if (remote_debug)
9450 fputs_filtered ("Timeout in checksum, retrying\n",
9451 gdb_stdlog);
9452 return -1;
9453 }
9454 else if (check_0 < 0 || check_1 < 0)
9455 {
9456 if (remote_debug)
9457 fputs_filtered ("Communication error in checksum\n",
9458 gdb_stdlog);
9459 return -1;
9460 }
9461
9462 /* Don't recompute the checksum; with no ack packets we
9463 don't have any way to indicate a packet retransmission
9464 is necessary. */
9465 if (rs->noack_mode)
9466 return bc;
9467
9468 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9469 if (csum == pktcsum)
9470 return bc;
9471
9472 if (remote_debug)
9473 {
9474 std::string str = escape_buffer (buf, bc);
9475
9476 fprintf_unfiltered (gdb_stdlog,
9477 "Bad checksum, sentsum=0x%x, "
9478 "csum=0x%x, buf=%s\n",
9479 pktcsum, csum, str.c_str ());
9480 }
9481 /* Number of characters in buffer ignoring trailing
9482 NULL. */
9483 return -1;
9484 }
9485 case '*': /* Run length encoding. */
9486 {
9487 int repeat;
9488
9489 csum += c;
9490 c = readchar (remote_timeout);
9491 csum += c;
9492 repeat = c - ' ' + 3; /* Compute repeat count. */
9493
9494 /* The character before ``*'' is repeated. */
9495
9496 if (repeat > 0 && repeat <= 255 && bc > 0)
9497 {
9498 if (bc + repeat - 1 >= buf_p->size () - 1)
9499 {
9500 /* Make some more room in the buffer. */
9501 buf_p->resize (buf_p->size () + repeat);
9502 buf = buf_p->data ();
9503 }
9504
9505 memset (&buf[bc], buf[bc - 1], repeat);
9506 bc += repeat;
9507 continue;
9508 }
9509
9510 buf[bc] = '\0';
9511 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9512 return -1;
9513 }
9514 default:
9515 if (bc >= buf_p->size () - 1)
9516 {
9517 /* Make some more room in the buffer. */
9518 buf_p->resize (buf_p->size () * 2);
9519 buf = buf_p->data ();
9520 }
9521
9522 buf[bc++] = c;
9523 csum += c;
9524 continue;
9525 }
9526 }
9527 }
9528
9529 /* Set this to the maximum number of seconds to wait instead of waiting forever
9530 in target_wait(). If this timer times out, then it generates an error and
9531 the command is aborted. This replaces most of the need for timeouts in the
9532 GDB test suite, and makes it possible to distinguish between a hung target
9533 and one with slow communications. */
9534
9535 static int watchdog = 0;
9536 static void
9537 show_watchdog (struct ui_file *file, int from_tty,
9538 struct cmd_list_element *c, const char *value)
9539 {
9540 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9541 }
9542
9543 /* Read a packet from the remote machine, with error checking, and
9544 store it in *BUF. Resize *BUF if necessary to hold the result. If
9545 FOREVER, wait forever rather than timing out; this is used (in
9546 synchronous mode) to wait for a target that is is executing user
9547 code to stop. */
9548 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9549 don't have to change all the calls to getpkt to deal with the
9550 return value, because at the moment I don't know what the right
9551 thing to do it for those. */
9552
9553 void
9554 remote_target::getpkt (gdb::char_vector *buf, int forever)
9555 {
9556 getpkt_sane (buf, forever);
9557 }
9558
9559
9560 /* Read a packet from the remote machine, with error checking, and
9561 store it in *BUF. Resize *BUF if necessary to hold the result. If
9562 FOREVER, wait forever rather than timing out; this is used (in
9563 synchronous mode) to wait for a target that is is executing user
9564 code to stop. If FOREVER == 0, this function is allowed to time
9565 out gracefully and return an indication of this to the caller.
9566 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9567 consider receiving a notification enough reason to return to the
9568 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9569 holds a notification or not (a regular packet). */
9570
9571 int
9572 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9573 int forever, int expecting_notif,
9574 int *is_notif)
9575 {
9576 struct remote_state *rs = get_remote_state ();
9577 int c;
9578 int tries;
9579 int timeout;
9580 int val = -1;
9581
9582 /* We're reading a new response. Make sure we don't look at a
9583 previously cached response. */
9584 rs->cached_wait_status = 0;
9585
9586 strcpy (buf->data (), "timeout");
9587
9588 if (forever)
9589 timeout = watchdog > 0 ? watchdog : -1;
9590 else if (expecting_notif)
9591 timeout = 0; /* There should already be a char in the buffer. If
9592 not, bail out. */
9593 else
9594 timeout = remote_timeout;
9595
9596 #define MAX_TRIES 3
9597
9598 /* Process any number of notifications, and then return when
9599 we get a packet. */
9600 for (;;)
9601 {
9602 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9603 times. */
9604 for (tries = 1; tries <= MAX_TRIES; tries++)
9605 {
9606 /* This can loop forever if the remote side sends us
9607 characters continuously, but if it pauses, we'll get
9608 SERIAL_TIMEOUT from readchar because of timeout. Then
9609 we'll count that as a retry.
9610
9611 Note that even when forever is set, we will only wait
9612 forever prior to the start of a packet. After that, we
9613 expect characters to arrive at a brisk pace. They should
9614 show up within remote_timeout intervals. */
9615 do
9616 c = readchar (timeout);
9617 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9618
9619 if (c == SERIAL_TIMEOUT)
9620 {
9621 if (expecting_notif)
9622 return -1; /* Don't complain, it's normal to not get
9623 anything in this case. */
9624
9625 if (forever) /* Watchdog went off? Kill the target. */
9626 {
9627 remote_unpush_target (this);
9628 throw_error (TARGET_CLOSE_ERROR,
9629 _("Watchdog timeout has expired. "
9630 "Target detached."));
9631 }
9632 if (remote_debug)
9633 fputs_filtered ("Timed out.\n", gdb_stdlog);
9634 }
9635 else
9636 {
9637 /* We've found the start of a packet or notification.
9638 Now collect the data. */
9639 val = read_frame (buf);
9640 if (val >= 0)
9641 break;
9642 }
9643
9644 remote_serial_write ("-", 1);
9645 }
9646
9647 if (tries > MAX_TRIES)
9648 {
9649 /* We have tried hard enough, and just can't receive the
9650 packet/notification. Give up. */
9651 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9652
9653 /* Skip the ack char if we're in no-ack mode. */
9654 if (!rs->noack_mode)
9655 remote_serial_write ("+", 1);
9656 return -1;
9657 }
9658
9659 /* If we got an ordinary packet, return that to our caller. */
9660 if (c == '$')
9661 {
9662 if (remote_debug)
9663 {
9664 int max_chars;
9665
9666 if (remote_packet_max_chars < 0)
9667 max_chars = val;
9668 else
9669 max_chars = remote_packet_max_chars;
9670
9671 std::string str
9672 = escape_buffer (buf->data (),
9673 std::min (val, max_chars));
9674
9675 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9676 str.c_str ());
9677
9678 if (val > max_chars)
9679 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9680 val - max_chars);
9681
9682 fprintf_unfiltered (gdb_stdlog, "\n");
9683 }
9684
9685 /* Skip the ack char if we're in no-ack mode. */
9686 if (!rs->noack_mode)
9687 remote_serial_write ("+", 1);
9688 if (is_notif != NULL)
9689 *is_notif = 0;
9690 return val;
9691 }
9692
9693 /* If we got a notification, handle it, and go back to looking
9694 for a packet. */
9695 else
9696 {
9697 gdb_assert (c == '%');
9698
9699 if (remote_debug)
9700 {
9701 std::string str = escape_buffer (buf->data (), val);
9702
9703 fprintf_unfiltered (gdb_stdlog,
9704 " Notification received: %s\n",
9705 str.c_str ());
9706 }
9707 if (is_notif != NULL)
9708 *is_notif = 1;
9709
9710 handle_notification (rs->notif_state, buf->data ());
9711
9712 /* Notifications require no acknowledgement. */
9713
9714 if (expecting_notif)
9715 return val;
9716 }
9717 }
9718 }
9719
9720 int
9721 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9722 {
9723 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9724 }
9725
9726 int
9727 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9728 int *is_notif)
9729 {
9730 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9731 }
9732
9733 /* Kill any new fork children of process PID that haven't been
9734 processed by follow_fork. */
9735
9736 void
9737 remote_target::kill_new_fork_children (int pid)
9738 {
9739 remote_state *rs = get_remote_state ();
9740 struct notif_client *notif = &notif_client_stop;
9741
9742 /* Kill the fork child threads of any threads in process PID
9743 that are stopped at a fork event. */
9744 for (thread_info *thread : all_non_exited_threads (this))
9745 {
9746 struct target_waitstatus *ws = &thread->pending_follow;
9747
9748 if (is_pending_fork_parent (ws, pid, thread->ptid))
9749 {
9750 int child_pid = ws->value.related_pid.pid ();
9751 int res;
9752
9753 res = remote_vkill (child_pid);
9754 if (res != 0)
9755 error (_("Can't kill fork child process %d"), child_pid);
9756 }
9757 }
9758
9759 /* Check for any pending fork events (not reported or processed yet)
9760 in process PID and kill those fork child threads as well. */
9761 remote_notif_get_pending_events (notif);
9762 for (auto &event : rs->stop_reply_queue)
9763 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9764 {
9765 int child_pid = event->ws.value.related_pid.pid ();
9766 int res;
9767
9768 res = remote_vkill (child_pid);
9769 if (res != 0)
9770 error (_("Can't kill fork child process %d"), child_pid);
9771 }
9772 }
9773
9774 \f
9775 /* Target hook to kill the current inferior. */
9776
9777 void
9778 remote_target::kill ()
9779 {
9780 int res = -1;
9781 int pid = inferior_ptid.pid ();
9782 struct remote_state *rs = get_remote_state ();
9783
9784 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9785 {
9786 /* If we're stopped while forking and we haven't followed yet,
9787 kill the child task. We need to do this before killing the
9788 parent task because if this is a vfork then the parent will
9789 be sleeping. */
9790 kill_new_fork_children (pid);
9791
9792 res = remote_vkill (pid);
9793 if (res == 0)
9794 {
9795 target_mourn_inferior (inferior_ptid);
9796 return;
9797 }
9798 }
9799
9800 /* If we are in 'target remote' mode and we are killing the only
9801 inferior, then we will tell gdbserver to exit and unpush the
9802 target. */
9803 if (res == -1 && !remote_multi_process_p (rs)
9804 && number_of_live_inferiors (this) == 1)
9805 {
9806 remote_kill_k ();
9807
9808 /* We've killed the remote end, we get to mourn it. If we are
9809 not in extended mode, mourning the inferior also unpushes
9810 remote_ops from the target stack, which closes the remote
9811 connection. */
9812 target_mourn_inferior (inferior_ptid);
9813
9814 return;
9815 }
9816
9817 error (_("Can't kill process"));
9818 }
9819
9820 /* Send a kill request to the target using the 'vKill' packet. */
9821
9822 int
9823 remote_target::remote_vkill (int pid)
9824 {
9825 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9826 return -1;
9827
9828 remote_state *rs = get_remote_state ();
9829
9830 /* Tell the remote target to detach. */
9831 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9832 putpkt (rs->buf);
9833 getpkt (&rs->buf, 0);
9834
9835 switch (packet_ok (rs->buf,
9836 &remote_protocol_packets[PACKET_vKill]))
9837 {
9838 case PACKET_OK:
9839 return 0;
9840 case PACKET_ERROR:
9841 return 1;
9842 case PACKET_UNKNOWN:
9843 return -1;
9844 default:
9845 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9846 }
9847 }
9848
9849 /* Send a kill request to the target using the 'k' packet. */
9850
9851 void
9852 remote_target::remote_kill_k ()
9853 {
9854 /* Catch errors so the user can quit from gdb even when we
9855 aren't on speaking terms with the remote system. */
9856 try
9857 {
9858 putpkt ("k");
9859 }
9860 catch (const gdb_exception_error &ex)
9861 {
9862 if (ex.error == TARGET_CLOSE_ERROR)
9863 {
9864 /* If we got an (EOF) error that caused the target
9865 to go away, then we're done, that's what we wanted.
9866 "k" is susceptible to cause a premature EOF, given
9867 that the remote server isn't actually required to
9868 reply to "k", and it can happen that it doesn't
9869 even get to reply ACK to the "k". */
9870 return;
9871 }
9872
9873 /* Otherwise, something went wrong. We didn't actually kill
9874 the target. Just propagate the exception, and let the
9875 user or higher layers decide what to do. */
9876 throw;
9877 }
9878 }
9879
9880 void
9881 remote_target::mourn_inferior ()
9882 {
9883 struct remote_state *rs = get_remote_state ();
9884
9885 /* We're no longer interested in notification events of an inferior
9886 that exited or was killed/detached. */
9887 discard_pending_stop_replies (current_inferior ());
9888
9889 /* In 'target remote' mode with one inferior, we close the connection. */
9890 if (!rs->extended && number_of_live_inferiors (this) <= 1)
9891 {
9892 remote_unpush_target (this);
9893 return;
9894 }
9895
9896 /* In case we got here due to an error, but we're going to stay
9897 connected. */
9898 rs->waiting_for_stop_reply = 0;
9899
9900 /* If the current general thread belonged to the process we just
9901 detached from or has exited, the remote side current general
9902 thread becomes undefined. Considering a case like this:
9903
9904 - We just got here due to a detach.
9905 - The process that we're detaching from happens to immediately
9906 report a global breakpoint being hit in non-stop mode, in the
9907 same thread we had selected before.
9908 - GDB attaches to this process again.
9909 - This event happens to be the next event we handle.
9910
9911 GDB would consider that the current general thread didn't need to
9912 be set on the stub side (with Hg), since for all it knew,
9913 GENERAL_THREAD hadn't changed.
9914
9915 Notice that although in all-stop mode, the remote server always
9916 sets the current thread to the thread reporting the stop event,
9917 that doesn't happen in non-stop mode; in non-stop, the stub *must
9918 not* change the current thread when reporting a breakpoint hit,
9919 due to the decoupling of event reporting and event handling.
9920
9921 To keep things simple, we always invalidate our notion of the
9922 current thread. */
9923 record_currthread (rs, minus_one_ptid);
9924
9925 /* Call common code to mark the inferior as not running. */
9926 generic_mourn_inferior ();
9927 }
9928
9929 bool
9930 extended_remote_target::supports_disable_randomization ()
9931 {
9932 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9933 }
9934
9935 void
9936 remote_target::extended_remote_disable_randomization (int val)
9937 {
9938 struct remote_state *rs = get_remote_state ();
9939 char *reply;
9940
9941 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9942 "QDisableRandomization:%x", val);
9943 putpkt (rs->buf);
9944 reply = remote_get_noisy_reply ();
9945 if (*reply == '\0')
9946 error (_("Target does not support QDisableRandomization."));
9947 if (strcmp (reply, "OK") != 0)
9948 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9949 }
9950
9951 int
9952 remote_target::extended_remote_run (const std::string &args)
9953 {
9954 struct remote_state *rs = get_remote_state ();
9955 int len;
9956 const char *remote_exec_file = get_remote_exec_file ();
9957
9958 /* If the user has disabled vRun support, or we have detected that
9959 support is not available, do not try it. */
9960 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9961 return -1;
9962
9963 strcpy (rs->buf.data (), "vRun;");
9964 len = strlen (rs->buf.data ());
9965
9966 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9967 error (_("Remote file name too long for run packet"));
9968 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
9969 strlen (remote_exec_file));
9970
9971 if (!args.empty ())
9972 {
9973 int i;
9974
9975 gdb_argv argv (args.c_str ());
9976 for (i = 0; argv[i] != NULL; i++)
9977 {
9978 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9979 error (_("Argument list too long for run packet"));
9980 rs->buf[len++] = ';';
9981 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
9982 strlen (argv[i]));
9983 }
9984 }
9985
9986 rs->buf[len++] = '\0';
9987
9988 putpkt (rs->buf);
9989 getpkt (&rs->buf, 0);
9990
9991 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9992 {
9993 case PACKET_OK:
9994 /* We have a wait response. All is well. */
9995 return 0;
9996 case PACKET_UNKNOWN:
9997 return -1;
9998 case PACKET_ERROR:
9999 if (remote_exec_file[0] == '\0')
10000 error (_("Running the default executable on the remote target failed; "
10001 "try \"set remote exec-file\"?"));
10002 else
10003 error (_("Running \"%s\" on the remote target failed"),
10004 remote_exec_file);
10005 default:
10006 gdb_assert_not_reached (_("bad switch"));
10007 }
10008 }
10009
10010 /* Helper function to send set/unset environment packets. ACTION is
10011 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
10012 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10013 sent. */
10014
10015 void
10016 remote_target::send_environment_packet (const char *action,
10017 const char *packet,
10018 const char *value)
10019 {
10020 remote_state *rs = get_remote_state ();
10021
10022 /* Convert the environment variable to an hex string, which
10023 is the best format to be transmitted over the wire. */
10024 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10025 strlen (value));
10026
10027 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10028 "%s:%s", packet, encoded_value.c_str ());
10029
10030 putpkt (rs->buf);
10031 getpkt (&rs->buf, 0);
10032 if (strcmp (rs->buf.data (), "OK") != 0)
10033 warning (_("Unable to %s environment variable '%s' on remote."),
10034 action, value);
10035 }
10036
10037 /* Helper function to handle the QEnvironment* packets. */
10038
10039 void
10040 remote_target::extended_remote_environment_support ()
10041 {
10042 remote_state *rs = get_remote_state ();
10043
10044 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10045 {
10046 putpkt ("QEnvironmentReset");
10047 getpkt (&rs->buf, 0);
10048 if (strcmp (rs->buf.data (), "OK") != 0)
10049 warning (_("Unable to reset environment on remote."));
10050 }
10051
10052 gdb_environ *e = &current_inferior ()->environment;
10053
10054 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10055 for (const std::string &el : e->user_set_env ())
10056 send_environment_packet ("set", "QEnvironmentHexEncoded",
10057 el.c_str ());
10058
10059 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10060 for (const std::string &el : e->user_unset_env ())
10061 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10062 }
10063
10064 /* Helper function to set the current working directory for the
10065 inferior in the remote target. */
10066
10067 void
10068 remote_target::extended_remote_set_inferior_cwd ()
10069 {
10070 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10071 {
10072 const char *inferior_cwd = get_inferior_cwd ();
10073 remote_state *rs = get_remote_state ();
10074
10075 if (inferior_cwd != NULL)
10076 {
10077 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10078 strlen (inferior_cwd));
10079
10080 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10081 "QSetWorkingDir:%s", hexpath.c_str ());
10082 }
10083 else
10084 {
10085 /* An empty inferior_cwd means that the user wants us to
10086 reset the remote server's inferior's cwd. */
10087 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10088 "QSetWorkingDir:");
10089 }
10090
10091 putpkt (rs->buf);
10092 getpkt (&rs->buf, 0);
10093 if (packet_ok (rs->buf,
10094 &remote_protocol_packets[PACKET_QSetWorkingDir])
10095 != PACKET_OK)
10096 error (_("\
10097 Remote replied unexpectedly while setting the inferior's working\n\
10098 directory: %s"),
10099 rs->buf.data ());
10100
10101 }
10102 }
10103
10104 /* In the extended protocol we want to be able to do things like
10105 "run" and have them basically work as expected. So we need
10106 a special create_inferior function. We support changing the
10107 executable file and the command line arguments, but not the
10108 environment. */
10109
10110 void
10111 extended_remote_target::create_inferior (const char *exec_file,
10112 const std::string &args,
10113 char **env, int from_tty)
10114 {
10115 int run_worked;
10116 char *stop_reply;
10117 struct remote_state *rs = get_remote_state ();
10118 const char *remote_exec_file = get_remote_exec_file ();
10119
10120 /* If running asynchronously, register the target file descriptor
10121 with the event loop. */
10122 if (target_can_async_p ())
10123 target_async (1);
10124
10125 /* Disable address space randomization if requested (and supported). */
10126 if (supports_disable_randomization ())
10127 extended_remote_disable_randomization (disable_randomization);
10128
10129 /* If startup-with-shell is on, we inform gdbserver to start the
10130 remote inferior using a shell. */
10131 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10132 {
10133 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10134 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10135 putpkt (rs->buf);
10136 getpkt (&rs->buf, 0);
10137 if (strcmp (rs->buf.data (), "OK") != 0)
10138 error (_("\
10139 Remote replied unexpectedly while setting startup-with-shell: %s"),
10140 rs->buf.data ());
10141 }
10142
10143 extended_remote_environment_support ();
10144
10145 extended_remote_set_inferior_cwd ();
10146
10147 /* Now restart the remote server. */
10148 run_worked = extended_remote_run (args) != -1;
10149 if (!run_worked)
10150 {
10151 /* vRun was not supported. Fail if we need it to do what the
10152 user requested. */
10153 if (remote_exec_file[0])
10154 error (_("Remote target does not support \"set remote exec-file\""));
10155 if (!args.empty ())
10156 error (_("Remote target does not support \"set args\" or run ARGS"));
10157
10158 /* Fall back to "R". */
10159 extended_remote_restart ();
10160 }
10161
10162 /* vRun's success return is a stop reply. */
10163 stop_reply = run_worked ? rs->buf.data () : NULL;
10164 add_current_inferior_and_thread (stop_reply);
10165
10166 /* Get updated offsets, if the stub uses qOffsets. */
10167 get_offsets ();
10168 }
10169 \f
10170
10171 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10172 the list of conditions (in agent expression bytecode format), if any, the
10173 target needs to evaluate. The output is placed into the packet buffer
10174 started from BUF and ended at BUF_END. */
10175
10176 static int
10177 remote_add_target_side_condition (struct gdbarch *gdbarch,
10178 struct bp_target_info *bp_tgt, char *buf,
10179 char *buf_end)
10180 {
10181 if (bp_tgt->conditions.empty ())
10182 return 0;
10183
10184 buf += strlen (buf);
10185 xsnprintf (buf, buf_end - buf, "%s", ";");
10186 buf++;
10187
10188 /* Send conditions to the target. */
10189 for (agent_expr *aexpr : bp_tgt->conditions)
10190 {
10191 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10192 buf += strlen (buf);
10193 for (int i = 0; i < aexpr->len; ++i)
10194 buf = pack_hex_byte (buf, aexpr->buf[i]);
10195 *buf = '\0';
10196 }
10197 return 0;
10198 }
10199
10200 static void
10201 remote_add_target_side_commands (struct gdbarch *gdbarch,
10202 struct bp_target_info *bp_tgt, char *buf)
10203 {
10204 if (bp_tgt->tcommands.empty ())
10205 return;
10206
10207 buf += strlen (buf);
10208
10209 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10210 buf += strlen (buf);
10211
10212 /* Concatenate all the agent expressions that are commands into the
10213 cmds parameter. */
10214 for (agent_expr *aexpr : bp_tgt->tcommands)
10215 {
10216 sprintf (buf, "X%x,", aexpr->len);
10217 buf += strlen (buf);
10218 for (int i = 0; i < aexpr->len; ++i)
10219 buf = pack_hex_byte (buf, aexpr->buf[i]);
10220 *buf = '\0';
10221 }
10222 }
10223
10224 /* Insert a breakpoint. On targets that have software breakpoint
10225 support, we ask the remote target to do the work; on targets
10226 which don't, we insert a traditional memory breakpoint. */
10227
10228 int
10229 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10230 struct bp_target_info *bp_tgt)
10231 {
10232 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10233 If it succeeds, then set the support to PACKET_ENABLE. If it
10234 fails, and the user has explicitly requested the Z support then
10235 report an error, otherwise, mark it disabled and go on. */
10236
10237 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10238 {
10239 CORE_ADDR addr = bp_tgt->reqstd_address;
10240 struct remote_state *rs;
10241 char *p, *endbuf;
10242
10243 /* Make sure the remote is pointing at the right process, if
10244 necessary. */
10245 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10246 set_general_process ();
10247
10248 rs = get_remote_state ();
10249 p = rs->buf.data ();
10250 endbuf = p + get_remote_packet_size ();
10251
10252 *(p++) = 'Z';
10253 *(p++) = '0';
10254 *(p++) = ',';
10255 addr = (ULONGEST) remote_address_masked (addr);
10256 p += hexnumstr (p, addr);
10257 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10258
10259 if (supports_evaluation_of_breakpoint_conditions ())
10260 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10261
10262 if (can_run_breakpoint_commands ())
10263 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10264
10265 putpkt (rs->buf);
10266 getpkt (&rs->buf, 0);
10267
10268 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10269 {
10270 case PACKET_ERROR:
10271 return -1;
10272 case PACKET_OK:
10273 return 0;
10274 case PACKET_UNKNOWN:
10275 break;
10276 }
10277 }
10278
10279 /* If this breakpoint has target-side commands but this stub doesn't
10280 support Z0 packets, throw error. */
10281 if (!bp_tgt->tcommands.empty ())
10282 throw_error (NOT_SUPPORTED_ERROR, _("\
10283 Target doesn't support breakpoints that have target side commands."));
10284
10285 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10286 }
10287
10288 int
10289 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10290 struct bp_target_info *bp_tgt,
10291 enum remove_bp_reason reason)
10292 {
10293 CORE_ADDR addr = bp_tgt->placed_address;
10294 struct remote_state *rs = get_remote_state ();
10295
10296 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10297 {
10298 char *p = rs->buf.data ();
10299 char *endbuf = p + get_remote_packet_size ();
10300
10301 /* Make sure the remote is pointing at the right process, if
10302 necessary. */
10303 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10304 set_general_process ();
10305
10306 *(p++) = 'z';
10307 *(p++) = '0';
10308 *(p++) = ',';
10309
10310 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10311 p += hexnumstr (p, addr);
10312 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10313
10314 putpkt (rs->buf);
10315 getpkt (&rs->buf, 0);
10316
10317 return (rs->buf[0] == 'E');
10318 }
10319
10320 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10321 }
10322
10323 static enum Z_packet_type
10324 watchpoint_to_Z_packet (int type)
10325 {
10326 switch (type)
10327 {
10328 case hw_write:
10329 return Z_PACKET_WRITE_WP;
10330 break;
10331 case hw_read:
10332 return Z_PACKET_READ_WP;
10333 break;
10334 case hw_access:
10335 return Z_PACKET_ACCESS_WP;
10336 break;
10337 default:
10338 internal_error (__FILE__, __LINE__,
10339 _("hw_bp_to_z: bad watchpoint type %d"), type);
10340 }
10341 }
10342
10343 int
10344 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10345 enum target_hw_bp_type type, struct expression *cond)
10346 {
10347 struct remote_state *rs = get_remote_state ();
10348 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10349 char *p;
10350 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10351
10352 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10353 return 1;
10354
10355 /* Make sure the remote is pointing at the right process, if
10356 necessary. */
10357 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10358 set_general_process ();
10359
10360 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10361 p = strchr (rs->buf.data (), '\0');
10362 addr = remote_address_masked (addr);
10363 p += hexnumstr (p, (ULONGEST) addr);
10364 xsnprintf (p, endbuf - p, ",%x", len);
10365
10366 putpkt (rs->buf);
10367 getpkt (&rs->buf, 0);
10368
10369 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10370 {
10371 case PACKET_ERROR:
10372 return -1;
10373 case PACKET_UNKNOWN:
10374 return 1;
10375 case PACKET_OK:
10376 return 0;
10377 }
10378 internal_error (__FILE__, __LINE__,
10379 _("remote_insert_watchpoint: reached end of function"));
10380 }
10381
10382 bool
10383 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10384 CORE_ADDR start, int length)
10385 {
10386 CORE_ADDR diff = remote_address_masked (addr - start);
10387
10388 return diff < length;
10389 }
10390
10391
10392 int
10393 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10394 enum target_hw_bp_type type, struct expression *cond)
10395 {
10396 struct remote_state *rs = get_remote_state ();
10397 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10398 char *p;
10399 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10400
10401 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10402 return -1;
10403
10404 /* Make sure the remote is pointing at the right process, if
10405 necessary. */
10406 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10407 set_general_process ();
10408
10409 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10410 p = strchr (rs->buf.data (), '\0');
10411 addr = remote_address_masked (addr);
10412 p += hexnumstr (p, (ULONGEST) addr);
10413 xsnprintf (p, endbuf - p, ",%x", len);
10414 putpkt (rs->buf);
10415 getpkt (&rs->buf, 0);
10416
10417 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10418 {
10419 case PACKET_ERROR:
10420 case PACKET_UNKNOWN:
10421 return -1;
10422 case PACKET_OK:
10423 return 0;
10424 }
10425 internal_error (__FILE__, __LINE__,
10426 _("remote_remove_watchpoint: reached end of function"));
10427 }
10428
10429
10430 static int remote_hw_watchpoint_limit = -1;
10431 static int remote_hw_watchpoint_length_limit = -1;
10432 static int remote_hw_breakpoint_limit = -1;
10433
10434 int
10435 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10436 {
10437 if (remote_hw_watchpoint_length_limit == 0)
10438 return 0;
10439 else if (remote_hw_watchpoint_length_limit < 0)
10440 return 1;
10441 else if (len <= remote_hw_watchpoint_length_limit)
10442 return 1;
10443 else
10444 return 0;
10445 }
10446
10447 int
10448 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10449 {
10450 if (type == bp_hardware_breakpoint)
10451 {
10452 if (remote_hw_breakpoint_limit == 0)
10453 return 0;
10454 else if (remote_hw_breakpoint_limit < 0)
10455 return 1;
10456 else if (cnt <= remote_hw_breakpoint_limit)
10457 return 1;
10458 }
10459 else
10460 {
10461 if (remote_hw_watchpoint_limit == 0)
10462 return 0;
10463 else if (remote_hw_watchpoint_limit < 0)
10464 return 1;
10465 else if (ot)
10466 return -1;
10467 else if (cnt <= remote_hw_watchpoint_limit)
10468 return 1;
10469 }
10470 return -1;
10471 }
10472
10473 /* The to_stopped_by_sw_breakpoint method of target remote. */
10474
10475 bool
10476 remote_target::stopped_by_sw_breakpoint ()
10477 {
10478 struct thread_info *thread = inferior_thread ();
10479
10480 return (thread->priv != NULL
10481 && (get_remote_thread_info (thread)->stop_reason
10482 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10483 }
10484
10485 /* The to_supports_stopped_by_sw_breakpoint method of target
10486 remote. */
10487
10488 bool
10489 remote_target::supports_stopped_by_sw_breakpoint ()
10490 {
10491 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10492 }
10493
10494 /* The to_stopped_by_hw_breakpoint method of target remote. */
10495
10496 bool
10497 remote_target::stopped_by_hw_breakpoint ()
10498 {
10499 struct thread_info *thread = inferior_thread ();
10500
10501 return (thread->priv != NULL
10502 && (get_remote_thread_info (thread)->stop_reason
10503 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10504 }
10505
10506 /* The to_supports_stopped_by_hw_breakpoint method of target
10507 remote. */
10508
10509 bool
10510 remote_target::supports_stopped_by_hw_breakpoint ()
10511 {
10512 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10513 }
10514
10515 bool
10516 remote_target::stopped_by_watchpoint ()
10517 {
10518 struct thread_info *thread = inferior_thread ();
10519
10520 return (thread->priv != NULL
10521 && (get_remote_thread_info (thread)->stop_reason
10522 == TARGET_STOPPED_BY_WATCHPOINT));
10523 }
10524
10525 bool
10526 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10527 {
10528 struct thread_info *thread = inferior_thread ();
10529
10530 if (thread->priv != NULL
10531 && (get_remote_thread_info (thread)->stop_reason
10532 == TARGET_STOPPED_BY_WATCHPOINT))
10533 {
10534 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10535 return true;
10536 }
10537
10538 return false;
10539 }
10540
10541
10542 int
10543 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10544 struct bp_target_info *bp_tgt)
10545 {
10546 CORE_ADDR addr = bp_tgt->reqstd_address;
10547 struct remote_state *rs;
10548 char *p, *endbuf;
10549 char *message;
10550
10551 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10552 return -1;
10553
10554 /* Make sure the remote is pointing at the right process, if
10555 necessary. */
10556 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10557 set_general_process ();
10558
10559 rs = get_remote_state ();
10560 p = rs->buf.data ();
10561 endbuf = p + get_remote_packet_size ();
10562
10563 *(p++) = 'Z';
10564 *(p++) = '1';
10565 *(p++) = ',';
10566
10567 addr = remote_address_masked (addr);
10568 p += hexnumstr (p, (ULONGEST) addr);
10569 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10570
10571 if (supports_evaluation_of_breakpoint_conditions ())
10572 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10573
10574 if (can_run_breakpoint_commands ())
10575 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10576
10577 putpkt (rs->buf);
10578 getpkt (&rs->buf, 0);
10579
10580 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10581 {
10582 case PACKET_ERROR:
10583 if (rs->buf[1] == '.')
10584 {
10585 message = strchr (&rs->buf[2], '.');
10586 if (message)
10587 error (_("Remote failure reply: %s"), message + 1);
10588 }
10589 return -1;
10590 case PACKET_UNKNOWN:
10591 return -1;
10592 case PACKET_OK:
10593 return 0;
10594 }
10595 internal_error (__FILE__, __LINE__,
10596 _("remote_insert_hw_breakpoint: reached end of function"));
10597 }
10598
10599
10600 int
10601 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10602 struct bp_target_info *bp_tgt)
10603 {
10604 CORE_ADDR addr;
10605 struct remote_state *rs = get_remote_state ();
10606 char *p = rs->buf.data ();
10607 char *endbuf = p + get_remote_packet_size ();
10608
10609 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10610 return -1;
10611
10612 /* Make sure the remote is pointing at the right process, if
10613 necessary. */
10614 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10615 set_general_process ();
10616
10617 *(p++) = 'z';
10618 *(p++) = '1';
10619 *(p++) = ',';
10620
10621 addr = remote_address_masked (bp_tgt->placed_address);
10622 p += hexnumstr (p, (ULONGEST) addr);
10623 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10624
10625 putpkt (rs->buf);
10626 getpkt (&rs->buf, 0);
10627
10628 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10629 {
10630 case PACKET_ERROR:
10631 case PACKET_UNKNOWN:
10632 return -1;
10633 case PACKET_OK:
10634 return 0;
10635 }
10636 internal_error (__FILE__, __LINE__,
10637 _("remote_remove_hw_breakpoint: reached end of function"));
10638 }
10639
10640 /* Verify memory using the "qCRC:" request. */
10641
10642 int
10643 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10644 {
10645 struct remote_state *rs = get_remote_state ();
10646 unsigned long host_crc, target_crc;
10647 char *tmp;
10648
10649 /* It doesn't make sense to use qCRC if the remote target is
10650 connected but not running. */
10651 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10652 {
10653 enum packet_result result;
10654
10655 /* Make sure the remote is pointing at the right process. */
10656 set_general_process ();
10657
10658 /* FIXME: assumes lma can fit into long. */
10659 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10660 (long) lma, (long) size);
10661 putpkt (rs->buf);
10662
10663 /* Be clever; compute the host_crc before waiting for target
10664 reply. */
10665 host_crc = xcrc32 (data, size, 0xffffffff);
10666
10667 getpkt (&rs->buf, 0);
10668
10669 result = packet_ok (rs->buf,
10670 &remote_protocol_packets[PACKET_qCRC]);
10671 if (result == PACKET_ERROR)
10672 return -1;
10673 else if (result == PACKET_OK)
10674 {
10675 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10676 target_crc = target_crc * 16 + fromhex (*tmp);
10677
10678 return (host_crc == target_crc);
10679 }
10680 }
10681
10682 return simple_verify_memory (this, data, lma, size);
10683 }
10684
10685 /* compare-sections command
10686
10687 With no arguments, compares each loadable section in the exec bfd
10688 with the same memory range on the target, and reports mismatches.
10689 Useful for verifying the image on the target against the exec file. */
10690
10691 static void
10692 compare_sections_command (const char *args, int from_tty)
10693 {
10694 asection *s;
10695 const char *sectname;
10696 bfd_size_type size;
10697 bfd_vma lma;
10698 int matched = 0;
10699 int mismatched = 0;
10700 int res;
10701 int read_only = 0;
10702
10703 if (!exec_bfd)
10704 error (_("command cannot be used without an exec file"));
10705
10706 if (args != NULL && strcmp (args, "-r") == 0)
10707 {
10708 read_only = 1;
10709 args = NULL;
10710 }
10711
10712 for (s = exec_bfd->sections; s; s = s->next)
10713 {
10714 if (!(s->flags & SEC_LOAD))
10715 continue; /* Skip non-loadable section. */
10716
10717 if (read_only && (s->flags & SEC_READONLY) == 0)
10718 continue; /* Skip writeable sections */
10719
10720 size = bfd_section_size (s);
10721 if (size == 0)
10722 continue; /* Skip zero-length section. */
10723
10724 sectname = bfd_section_name (s);
10725 if (args && strcmp (args, sectname) != 0)
10726 continue; /* Not the section selected by user. */
10727
10728 matched = 1; /* Do this section. */
10729 lma = s->lma;
10730
10731 gdb::byte_vector sectdata (size);
10732 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10733
10734 res = target_verify_memory (sectdata.data (), lma, size);
10735
10736 if (res == -1)
10737 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10738 paddress (target_gdbarch (), lma),
10739 paddress (target_gdbarch (), lma + size));
10740
10741 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10742 paddress (target_gdbarch (), lma),
10743 paddress (target_gdbarch (), lma + size));
10744 if (res)
10745 printf_filtered ("matched.\n");
10746 else
10747 {
10748 printf_filtered ("MIS-MATCHED!\n");
10749 mismatched++;
10750 }
10751 }
10752 if (mismatched > 0)
10753 warning (_("One or more sections of the target image does not match\n\
10754 the loaded file\n"));
10755 if (args && !matched)
10756 printf_filtered (_("No loaded section named '%s'.\n"), args);
10757 }
10758
10759 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10760 into remote target. The number of bytes written to the remote
10761 target is returned, or -1 for error. */
10762
10763 target_xfer_status
10764 remote_target::remote_write_qxfer (const char *object_name,
10765 const char *annex, const gdb_byte *writebuf,
10766 ULONGEST offset, LONGEST len,
10767 ULONGEST *xfered_len,
10768 struct packet_config *packet)
10769 {
10770 int i, buf_len;
10771 ULONGEST n;
10772 struct remote_state *rs = get_remote_state ();
10773 int max_size = get_memory_write_packet_size ();
10774
10775 if (packet_config_support (packet) == PACKET_DISABLE)
10776 return TARGET_XFER_E_IO;
10777
10778 /* Insert header. */
10779 i = snprintf (rs->buf.data (), max_size,
10780 "qXfer:%s:write:%s:%s:",
10781 object_name, annex ? annex : "",
10782 phex_nz (offset, sizeof offset));
10783 max_size -= (i + 1);
10784
10785 /* Escape as much data as fits into rs->buf. */
10786 buf_len = remote_escape_output
10787 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10788
10789 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10790 || getpkt_sane (&rs->buf, 0) < 0
10791 || packet_ok (rs->buf, packet) != PACKET_OK)
10792 return TARGET_XFER_E_IO;
10793
10794 unpack_varlen_hex (rs->buf.data (), &n);
10795
10796 *xfered_len = n;
10797 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10798 }
10799
10800 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10801 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10802 number of bytes read is returned, or 0 for EOF, or -1 for error.
10803 The number of bytes read may be less than LEN without indicating an
10804 EOF. PACKET is checked and updated to indicate whether the remote
10805 target supports this object. */
10806
10807 target_xfer_status
10808 remote_target::remote_read_qxfer (const char *object_name,
10809 const char *annex,
10810 gdb_byte *readbuf, ULONGEST offset,
10811 LONGEST len,
10812 ULONGEST *xfered_len,
10813 struct packet_config *packet)
10814 {
10815 struct remote_state *rs = get_remote_state ();
10816 LONGEST i, n, packet_len;
10817
10818 if (packet_config_support (packet) == PACKET_DISABLE)
10819 return TARGET_XFER_E_IO;
10820
10821 /* Check whether we've cached an end-of-object packet that matches
10822 this request. */
10823 if (rs->finished_object)
10824 {
10825 if (strcmp (object_name, rs->finished_object) == 0
10826 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10827 && offset == rs->finished_offset)
10828 return TARGET_XFER_EOF;
10829
10830
10831 /* Otherwise, we're now reading something different. Discard
10832 the cache. */
10833 xfree (rs->finished_object);
10834 xfree (rs->finished_annex);
10835 rs->finished_object = NULL;
10836 rs->finished_annex = NULL;
10837 }
10838
10839 /* Request only enough to fit in a single packet. The actual data
10840 may not, since we don't know how much of it will need to be escaped;
10841 the target is free to respond with slightly less data. We subtract
10842 five to account for the response type and the protocol frame. */
10843 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10844 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10845 "qXfer:%s:read:%s:%s,%s",
10846 object_name, annex ? annex : "",
10847 phex_nz (offset, sizeof offset),
10848 phex_nz (n, sizeof n));
10849 i = putpkt (rs->buf);
10850 if (i < 0)
10851 return TARGET_XFER_E_IO;
10852
10853 rs->buf[0] = '\0';
10854 packet_len = getpkt_sane (&rs->buf, 0);
10855 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10856 return TARGET_XFER_E_IO;
10857
10858 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10859 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10860
10861 /* 'm' means there is (or at least might be) more data after this
10862 batch. That does not make sense unless there's at least one byte
10863 of data in this reply. */
10864 if (rs->buf[0] == 'm' && packet_len == 1)
10865 error (_("Remote qXfer reply contained no data."));
10866
10867 /* Got some data. */
10868 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10869 packet_len - 1, readbuf, n);
10870
10871 /* 'l' is an EOF marker, possibly including a final block of data,
10872 or possibly empty. If we have the final block of a non-empty
10873 object, record this fact to bypass a subsequent partial read. */
10874 if (rs->buf[0] == 'l' && offset + i > 0)
10875 {
10876 rs->finished_object = xstrdup (object_name);
10877 rs->finished_annex = xstrdup (annex ? annex : "");
10878 rs->finished_offset = offset + i;
10879 }
10880
10881 if (i == 0)
10882 return TARGET_XFER_EOF;
10883 else
10884 {
10885 *xfered_len = i;
10886 return TARGET_XFER_OK;
10887 }
10888 }
10889
10890 enum target_xfer_status
10891 remote_target::xfer_partial (enum target_object object,
10892 const char *annex, gdb_byte *readbuf,
10893 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10894 ULONGEST *xfered_len)
10895 {
10896 struct remote_state *rs;
10897 int i;
10898 char *p2;
10899 char query_type;
10900 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10901
10902 set_remote_traceframe ();
10903 set_general_thread (inferior_ptid);
10904
10905 rs = get_remote_state ();
10906
10907 /* Handle memory using the standard memory routines. */
10908 if (object == TARGET_OBJECT_MEMORY)
10909 {
10910 /* If the remote target is connected but not running, we should
10911 pass this request down to a lower stratum (e.g. the executable
10912 file). */
10913 if (!target_has_execution)
10914 return TARGET_XFER_EOF;
10915
10916 if (writebuf != NULL)
10917 return remote_write_bytes (offset, writebuf, len, unit_size,
10918 xfered_len);
10919 else
10920 return remote_read_bytes (offset, readbuf, len, unit_size,
10921 xfered_len);
10922 }
10923
10924 /* Handle extra signal info using qxfer packets. */
10925 if (object == TARGET_OBJECT_SIGNAL_INFO)
10926 {
10927 if (readbuf)
10928 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10929 xfered_len, &remote_protocol_packets
10930 [PACKET_qXfer_siginfo_read]);
10931 else
10932 return remote_write_qxfer ("siginfo", annex,
10933 writebuf, offset, len, xfered_len,
10934 &remote_protocol_packets
10935 [PACKET_qXfer_siginfo_write]);
10936 }
10937
10938 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10939 {
10940 if (readbuf)
10941 return remote_read_qxfer ("statictrace", annex,
10942 readbuf, offset, len, xfered_len,
10943 &remote_protocol_packets
10944 [PACKET_qXfer_statictrace_read]);
10945 else
10946 return TARGET_XFER_E_IO;
10947 }
10948
10949 /* Only handle flash writes. */
10950 if (writebuf != NULL)
10951 {
10952 switch (object)
10953 {
10954 case TARGET_OBJECT_FLASH:
10955 return remote_flash_write (offset, len, xfered_len,
10956 writebuf);
10957
10958 default:
10959 return TARGET_XFER_E_IO;
10960 }
10961 }
10962
10963 /* Map pre-existing objects onto letters. DO NOT do this for new
10964 objects!!! Instead specify new query packets. */
10965 switch (object)
10966 {
10967 case TARGET_OBJECT_AVR:
10968 query_type = 'R';
10969 break;
10970
10971 case TARGET_OBJECT_AUXV:
10972 gdb_assert (annex == NULL);
10973 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10974 xfered_len,
10975 &remote_protocol_packets[PACKET_qXfer_auxv]);
10976
10977 case TARGET_OBJECT_AVAILABLE_FEATURES:
10978 return remote_read_qxfer
10979 ("features", annex, readbuf, offset, len, xfered_len,
10980 &remote_protocol_packets[PACKET_qXfer_features]);
10981
10982 case TARGET_OBJECT_LIBRARIES:
10983 return remote_read_qxfer
10984 ("libraries", annex, readbuf, offset, len, xfered_len,
10985 &remote_protocol_packets[PACKET_qXfer_libraries]);
10986
10987 case TARGET_OBJECT_LIBRARIES_SVR4:
10988 return remote_read_qxfer
10989 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10990 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10991
10992 case TARGET_OBJECT_MEMORY_MAP:
10993 gdb_assert (annex == NULL);
10994 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10995 xfered_len,
10996 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10997
10998 case TARGET_OBJECT_OSDATA:
10999 /* Should only get here if we're connected. */
11000 gdb_assert (rs->remote_desc);
11001 return remote_read_qxfer
11002 ("osdata", annex, readbuf, offset, len, xfered_len,
11003 &remote_protocol_packets[PACKET_qXfer_osdata]);
11004
11005 case TARGET_OBJECT_THREADS:
11006 gdb_assert (annex == NULL);
11007 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
11008 xfered_len,
11009 &remote_protocol_packets[PACKET_qXfer_threads]);
11010
11011 case TARGET_OBJECT_TRACEFRAME_INFO:
11012 gdb_assert (annex == NULL);
11013 return remote_read_qxfer
11014 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11015 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11016
11017 case TARGET_OBJECT_FDPIC:
11018 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11019 xfered_len,
11020 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11021
11022 case TARGET_OBJECT_OPENVMS_UIB:
11023 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11024 xfered_len,
11025 &remote_protocol_packets[PACKET_qXfer_uib]);
11026
11027 case TARGET_OBJECT_BTRACE:
11028 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11029 xfered_len,
11030 &remote_protocol_packets[PACKET_qXfer_btrace]);
11031
11032 case TARGET_OBJECT_BTRACE_CONF:
11033 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11034 len, xfered_len,
11035 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11036
11037 case TARGET_OBJECT_EXEC_FILE:
11038 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11039 len, xfered_len,
11040 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11041
11042 default:
11043 return TARGET_XFER_E_IO;
11044 }
11045
11046 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11047 large enough let the caller deal with it. */
11048 if (len < get_remote_packet_size ())
11049 return TARGET_XFER_E_IO;
11050 len = get_remote_packet_size ();
11051
11052 /* Except for querying the minimum buffer size, target must be open. */
11053 if (!rs->remote_desc)
11054 error (_("remote query is only available after target open"));
11055
11056 gdb_assert (annex != NULL);
11057 gdb_assert (readbuf != NULL);
11058
11059 p2 = rs->buf.data ();
11060 *p2++ = 'q';
11061 *p2++ = query_type;
11062
11063 /* We used one buffer char for the remote protocol q command and
11064 another for the query type. As the remote protocol encapsulation
11065 uses 4 chars plus one extra in case we are debugging
11066 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11067 string. */
11068 i = 0;
11069 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11070 {
11071 /* Bad caller may have sent forbidden characters. */
11072 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11073 *p2++ = annex[i];
11074 i++;
11075 }
11076 *p2 = '\0';
11077 gdb_assert (annex[i] == '\0');
11078
11079 i = putpkt (rs->buf);
11080 if (i < 0)
11081 return TARGET_XFER_E_IO;
11082
11083 getpkt (&rs->buf, 0);
11084 strcpy ((char *) readbuf, rs->buf.data ());
11085
11086 *xfered_len = strlen ((char *) readbuf);
11087 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11088 }
11089
11090 /* Implementation of to_get_memory_xfer_limit. */
11091
11092 ULONGEST
11093 remote_target::get_memory_xfer_limit ()
11094 {
11095 return get_memory_write_packet_size ();
11096 }
11097
11098 int
11099 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11100 const gdb_byte *pattern, ULONGEST pattern_len,
11101 CORE_ADDR *found_addrp)
11102 {
11103 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11104 struct remote_state *rs = get_remote_state ();
11105 int max_size = get_memory_write_packet_size ();
11106 struct packet_config *packet =
11107 &remote_protocol_packets[PACKET_qSearch_memory];
11108 /* Number of packet bytes used to encode the pattern;
11109 this could be more than PATTERN_LEN due to escape characters. */
11110 int escaped_pattern_len;
11111 /* Amount of pattern that was encodable in the packet. */
11112 int used_pattern_len;
11113 int i;
11114 int found;
11115 ULONGEST found_addr;
11116
11117 /* Don't go to the target if we don't have to. This is done before
11118 checking packet_config_support to avoid the possibility that a
11119 success for this edge case means the facility works in
11120 general. */
11121 if (pattern_len > search_space_len)
11122 return 0;
11123 if (pattern_len == 0)
11124 {
11125 *found_addrp = start_addr;
11126 return 1;
11127 }
11128
11129 /* If we already know the packet isn't supported, fall back to the simple
11130 way of searching memory. */
11131
11132 if (packet_config_support (packet) == PACKET_DISABLE)
11133 {
11134 /* Target doesn't provided special support, fall back and use the
11135 standard support (copy memory and do the search here). */
11136 return simple_search_memory (this, start_addr, search_space_len,
11137 pattern, pattern_len, found_addrp);
11138 }
11139
11140 /* Make sure the remote is pointing at the right process. */
11141 set_general_process ();
11142
11143 /* Insert header. */
11144 i = snprintf (rs->buf.data (), max_size,
11145 "qSearch:memory:%s;%s;",
11146 phex_nz (start_addr, addr_size),
11147 phex_nz (search_space_len, sizeof (search_space_len)));
11148 max_size -= (i + 1);
11149
11150 /* Escape as much data as fits into rs->buf. */
11151 escaped_pattern_len =
11152 remote_escape_output (pattern, pattern_len, 1,
11153 (gdb_byte *) rs->buf.data () + i,
11154 &used_pattern_len, max_size);
11155
11156 /* Bail if the pattern is too large. */
11157 if (used_pattern_len != pattern_len)
11158 error (_("Pattern is too large to transmit to remote target."));
11159
11160 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11161 || getpkt_sane (&rs->buf, 0) < 0
11162 || packet_ok (rs->buf, packet) != PACKET_OK)
11163 {
11164 /* The request may not have worked because the command is not
11165 supported. If so, fall back to the simple way. */
11166 if (packet_config_support (packet) == PACKET_DISABLE)
11167 {
11168 return simple_search_memory (this, start_addr, search_space_len,
11169 pattern, pattern_len, found_addrp);
11170 }
11171 return -1;
11172 }
11173
11174 if (rs->buf[0] == '0')
11175 found = 0;
11176 else if (rs->buf[0] == '1')
11177 {
11178 found = 1;
11179 if (rs->buf[1] != ',')
11180 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11181 unpack_varlen_hex (&rs->buf[2], &found_addr);
11182 *found_addrp = found_addr;
11183 }
11184 else
11185 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11186
11187 return found;
11188 }
11189
11190 void
11191 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11192 {
11193 struct remote_state *rs = get_remote_state ();
11194 char *p = rs->buf.data ();
11195
11196 if (!rs->remote_desc)
11197 error (_("remote rcmd is only available after target open"));
11198
11199 /* Send a NULL command across as an empty command. */
11200 if (command == NULL)
11201 command = "";
11202
11203 /* The query prefix. */
11204 strcpy (rs->buf.data (), "qRcmd,");
11205 p = strchr (rs->buf.data (), '\0');
11206
11207 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11208 > get_remote_packet_size ())
11209 error (_("\"monitor\" command ``%s'' is too long."), command);
11210
11211 /* Encode the actual command. */
11212 bin2hex ((const gdb_byte *) command, p, strlen (command));
11213
11214 if (putpkt (rs->buf) < 0)
11215 error (_("Communication problem with target."));
11216
11217 /* get/display the response */
11218 while (1)
11219 {
11220 char *buf;
11221
11222 /* XXX - see also remote_get_noisy_reply(). */
11223 QUIT; /* Allow user to bail out with ^C. */
11224 rs->buf[0] = '\0';
11225 if (getpkt_sane (&rs->buf, 0) == -1)
11226 {
11227 /* Timeout. Continue to (try to) read responses.
11228 This is better than stopping with an error, assuming the stub
11229 is still executing the (long) monitor command.
11230 If needed, the user can interrupt gdb using C-c, obtaining
11231 an effect similar to stop on timeout. */
11232 continue;
11233 }
11234 buf = rs->buf.data ();
11235 if (buf[0] == '\0')
11236 error (_("Target does not support this command."));
11237 if (buf[0] == 'O' && buf[1] != 'K')
11238 {
11239 remote_console_output (buf + 1); /* 'O' message from stub. */
11240 continue;
11241 }
11242 if (strcmp (buf, "OK") == 0)
11243 break;
11244 if (strlen (buf) == 3 && buf[0] == 'E'
11245 && isdigit (buf[1]) && isdigit (buf[2]))
11246 {
11247 error (_("Protocol error with Rcmd"));
11248 }
11249 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11250 {
11251 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11252
11253 fputc_unfiltered (c, outbuf);
11254 }
11255 break;
11256 }
11257 }
11258
11259 std::vector<mem_region>
11260 remote_target::memory_map ()
11261 {
11262 std::vector<mem_region> result;
11263 gdb::optional<gdb::char_vector> text
11264 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11265
11266 if (text)
11267 result = parse_memory_map (text->data ());
11268
11269 return result;
11270 }
11271
11272 static void
11273 packet_command (const char *args, int from_tty)
11274 {
11275 remote_target *remote = get_current_remote_target ();
11276
11277 if (remote == nullptr)
11278 error (_("command can only be used with remote target"));
11279
11280 remote->packet_command (args, from_tty);
11281 }
11282
11283 void
11284 remote_target::packet_command (const char *args, int from_tty)
11285 {
11286 if (!args)
11287 error (_("remote-packet command requires packet text as argument"));
11288
11289 puts_filtered ("sending: ");
11290 print_packet (args);
11291 puts_filtered ("\n");
11292 putpkt (args);
11293
11294 remote_state *rs = get_remote_state ();
11295
11296 getpkt (&rs->buf, 0);
11297 puts_filtered ("received: ");
11298 print_packet (rs->buf.data ());
11299 puts_filtered ("\n");
11300 }
11301
11302 #if 0
11303 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11304
11305 static void display_thread_info (struct gdb_ext_thread_info *info);
11306
11307 static void threadset_test_cmd (char *cmd, int tty);
11308
11309 static void threadalive_test (char *cmd, int tty);
11310
11311 static void threadlist_test_cmd (char *cmd, int tty);
11312
11313 int get_and_display_threadinfo (threadref *ref);
11314
11315 static void threadinfo_test_cmd (char *cmd, int tty);
11316
11317 static int thread_display_step (threadref *ref, void *context);
11318
11319 static void threadlist_update_test_cmd (char *cmd, int tty);
11320
11321 static void init_remote_threadtests (void);
11322
11323 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11324
11325 static void
11326 threadset_test_cmd (const char *cmd, int tty)
11327 {
11328 int sample_thread = SAMPLE_THREAD;
11329
11330 printf_filtered (_("Remote threadset test\n"));
11331 set_general_thread (sample_thread);
11332 }
11333
11334
11335 static void
11336 threadalive_test (const char *cmd, int tty)
11337 {
11338 int sample_thread = SAMPLE_THREAD;
11339 int pid = inferior_ptid.pid ();
11340 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11341
11342 if (remote_thread_alive (ptid))
11343 printf_filtered ("PASS: Thread alive test\n");
11344 else
11345 printf_filtered ("FAIL: Thread alive test\n");
11346 }
11347
11348 void output_threadid (char *title, threadref *ref);
11349
11350 void
11351 output_threadid (char *title, threadref *ref)
11352 {
11353 char hexid[20];
11354
11355 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11356 hexid[16] = 0;
11357 printf_filtered ("%s %s\n", title, (&hexid[0]));
11358 }
11359
11360 static void
11361 threadlist_test_cmd (const char *cmd, int tty)
11362 {
11363 int startflag = 1;
11364 threadref nextthread;
11365 int done, result_count;
11366 threadref threadlist[3];
11367
11368 printf_filtered ("Remote Threadlist test\n");
11369 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11370 &result_count, &threadlist[0]))
11371 printf_filtered ("FAIL: threadlist test\n");
11372 else
11373 {
11374 threadref *scan = threadlist;
11375 threadref *limit = scan + result_count;
11376
11377 while (scan < limit)
11378 output_threadid (" thread ", scan++);
11379 }
11380 }
11381
11382 void
11383 display_thread_info (struct gdb_ext_thread_info *info)
11384 {
11385 output_threadid ("Threadid: ", &info->threadid);
11386 printf_filtered ("Name: %s\n ", info->shortname);
11387 printf_filtered ("State: %s\n", info->display);
11388 printf_filtered ("other: %s\n\n", info->more_display);
11389 }
11390
11391 int
11392 get_and_display_threadinfo (threadref *ref)
11393 {
11394 int result;
11395 int set;
11396 struct gdb_ext_thread_info threadinfo;
11397
11398 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11399 | TAG_MOREDISPLAY | TAG_DISPLAY;
11400 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11401 display_thread_info (&threadinfo);
11402 return result;
11403 }
11404
11405 static void
11406 threadinfo_test_cmd (const char *cmd, int tty)
11407 {
11408 int athread = SAMPLE_THREAD;
11409 threadref thread;
11410 int set;
11411
11412 int_to_threadref (&thread, athread);
11413 printf_filtered ("Remote Threadinfo test\n");
11414 if (!get_and_display_threadinfo (&thread))
11415 printf_filtered ("FAIL cannot get thread info\n");
11416 }
11417
11418 static int
11419 thread_display_step (threadref *ref, void *context)
11420 {
11421 /* output_threadid(" threadstep ",ref); *//* simple test */
11422 return get_and_display_threadinfo (ref);
11423 }
11424
11425 static void
11426 threadlist_update_test_cmd (const char *cmd, int tty)
11427 {
11428 printf_filtered ("Remote Threadlist update test\n");
11429 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11430 }
11431
11432 static void
11433 init_remote_threadtests (void)
11434 {
11435 add_com ("tlist", class_obscure, threadlist_test_cmd,
11436 _("Fetch and print the remote list of "
11437 "thread identifiers, one pkt only."));
11438 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11439 _("Fetch and display info about one thread."));
11440 add_com ("tset", class_obscure, threadset_test_cmd,
11441 _("Test setting to a different thread."));
11442 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11443 _("Iterate through updating all remote thread info."));
11444 add_com ("talive", class_obscure, threadalive_test,
11445 _("Remote thread alive test."));
11446 }
11447
11448 #endif /* 0 */
11449
11450 /* Convert a thread ID to a string. */
11451
11452 std::string
11453 remote_target::pid_to_str (ptid_t ptid)
11454 {
11455 struct remote_state *rs = get_remote_state ();
11456
11457 if (ptid == null_ptid)
11458 return normal_pid_to_str (ptid);
11459 else if (ptid.is_pid ())
11460 {
11461 /* Printing an inferior target id. */
11462
11463 /* When multi-process extensions are off, there's no way in the
11464 remote protocol to know the remote process id, if there's any
11465 at all. There's one exception --- when we're connected with
11466 target extended-remote, and we manually attached to a process
11467 with "attach PID". We don't record anywhere a flag that
11468 allows us to distinguish that case from the case of
11469 connecting with extended-remote and the stub already being
11470 attached to a process, and reporting yes to qAttached, hence
11471 no smart special casing here. */
11472 if (!remote_multi_process_p (rs))
11473 return "Remote target";
11474
11475 return normal_pid_to_str (ptid);
11476 }
11477 else
11478 {
11479 if (magic_null_ptid == ptid)
11480 return "Thread <main>";
11481 else if (remote_multi_process_p (rs))
11482 if (ptid.lwp () == 0)
11483 return normal_pid_to_str (ptid);
11484 else
11485 return string_printf ("Thread %d.%ld",
11486 ptid.pid (), ptid.lwp ());
11487 else
11488 return string_printf ("Thread %ld", ptid.lwp ());
11489 }
11490 }
11491
11492 /* Get the address of the thread local variable in OBJFILE which is
11493 stored at OFFSET within the thread local storage for thread PTID. */
11494
11495 CORE_ADDR
11496 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11497 CORE_ADDR offset)
11498 {
11499 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11500 {
11501 struct remote_state *rs = get_remote_state ();
11502 char *p = rs->buf.data ();
11503 char *endp = p + get_remote_packet_size ();
11504 enum packet_result result;
11505
11506 strcpy (p, "qGetTLSAddr:");
11507 p += strlen (p);
11508 p = write_ptid (p, endp, ptid);
11509 *p++ = ',';
11510 p += hexnumstr (p, offset);
11511 *p++ = ',';
11512 p += hexnumstr (p, lm);
11513 *p++ = '\0';
11514
11515 putpkt (rs->buf);
11516 getpkt (&rs->buf, 0);
11517 result = packet_ok (rs->buf,
11518 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11519 if (result == PACKET_OK)
11520 {
11521 ULONGEST addr;
11522
11523 unpack_varlen_hex (rs->buf.data (), &addr);
11524 return addr;
11525 }
11526 else if (result == PACKET_UNKNOWN)
11527 throw_error (TLS_GENERIC_ERROR,
11528 _("Remote target doesn't support qGetTLSAddr packet"));
11529 else
11530 throw_error (TLS_GENERIC_ERROR,
11531 _("Remote target failed to process qGetTLSAddr request"));
11532 }
11533 else
11534 throw_error (TLS_GENERIC_ERROR,
11535 _("TLS not supported or disabled on this target"));
11536 /* Not reached. */
11537 return 0;
11538 }
11539
11540 /* Provide thread local base, i.e. Thread Information Block address.
11541 Returns 1 if ptid is found and thread_local_base is non zero. */
11542
11543 bool
11544 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11545 {
11546 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11547 {
11548 struct remote_state *rs = get_remote_state ();
11549 char *p = rs->buf.data ();
11550 char *endp = p + get_remote_packet_size ();
11551 enum packet_result result;
11552
11553 strcpy (p, "qGetTIBAddr:");
11554 p += strlen (p);
11555 p = write_ptid (p, endp, ptid);
11556 *p++ = '\0';
11557
11558 putpkt (rs->buf);
11559 getpkt (&rs->buf, 0);
11560 result = packet_ok (rs->buf,
11561 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11562 if (result == PACKET_OK)
11563 {
11564 ULONGEST val;
11565 unpack_varlen_hex (rs->buf.data (), &val);
11566 if (addr)
11567 *addr = (CORE_ADDR) val;
11568 return true;
11569 }
11570 else if (result == PACKET_UNKNOWN)
11571 error (_("Remote target doesn't support qGetTIBAddr packet"));
11572 else
11573 error (_("Remote target failed to process qGetTIBAddr request"));
11574 }
11575 else
11576 error (_("qGetTIBAddr not supported or disabled on this target"));
11577 /* Not reached. */
11578 return false;
11579 }
11580
11581 /* Support for inferring a target description based on the current
11582 architecture and the size of a 'g' packet. While the 'g' packet
11583 can have any size (since optional registers can be left off the
11584 end), some sizes are easily recognizable given knowledge of the
11585 approximate architecture. */
11586
11587 struct remote_g_packet_guess
11588 {
11589 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11590 : bytes (bytes_),
11591 tdesc (tdesc_)
11592 {
11593 }
11594
11595 int bytes;
11596 const struct target_desc *tdesc;
11597 };
11598
11599 struct remote_g_packet_data : public allocate_on_obstack
11600 {
11601 std::vector<remote_g_packet_guess> guesses;
11602 };
11603
11604 static struct gdbarch_data *remote_g_packet_data_handle;
11605
11606 static void *
11607 remote_g_packet_data_init (struct obstack *obstack)
11608 {
11609 return new (obstack) remote_g_packet_data;
11610 }
11611
11612 void
11613 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11614 const struct target_desc *tdesc)
11615 {
11616 struct remote_g_packet_data *data
11617 = ((struct remote_g_packet_data *)
11618 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11619
11620 gdb_assert (tdesc != NULL);
11621
11622 for (const remote_g_packet_guess &guess : data->guesses)
11623 if (guess.bytes == bytes)
11624 internal_error (__FILE__, __LINE__,
11625 _("Duplicate g packet description added for size %d"),
11626 bytes);
11627
11628 data->guesses.emplace_back (bytes, tdesc);
11629 }
11630
11631 /* Return true if remote_read_description would do anything on this target
11632 and architecture, false otherwise. */
11633
11634 static bool
11635 remote_read_description_p (struct target_ops *target)
11636 {
11637 struct remote_g_packet_data *data
11638 = ((struct remote_g_packet_data *)
11639 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11640
11641 return !data->guesses.empty ();
11642 }
11643
11644 const struct target_desc *
11645 remote_target::read_description ()
11646 {
11647 struct remote_g_packet_data *data
11648 = ((struct remote_g_packet_data *)
11649 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11650
11651 /* Do not try this during initial connection, when we do not know
11652 whether there is a running but stopped thread. */
11653 if (!target_has_execution || inferior_ptid == null_ptid)
11654 return beneath ()->read_description ();
11655
11656 if (!data->guesses.empty ())
11657 {
11658 int bytes = send_g_packet ();
11659
11660 for (const remote_g_packet_guess &guess : data->guesses)
11661 if (guess.bytes == bytes)
11662 return guess.tdesc;
11663
11664 /* We discard the g packet. A minor optimization would be to
11665 hold on to it, and fill the register cache once we have selected
11666 an architecture, but it's too tricky to do safely. */
11667 }
11668
11669 return beneath ()->read_description ();
11670 }
11671
11672 /* Remote file transfer support. This is host-initiated I/O, not
11673 target-initiated; for target-initiated, see remote-fileio.c. */
11674
11675 /* If *LEFT is at least the length of STRING, copy STRING to
11676 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11677 decrease *LEFT. Otherwise raise an error. */
11678
11679 static void
11680 remote_buffer_add_string (char **buffer, int *left, const char *string)
11681 {
11682 int len = strlen (string);
11683
11684 if (len > *left)
11685 error (_("Packet too long for target."));
11686
11687 memcpy (*buffer, string, len);
11688 *buffer += len;
11689 *left -= len;
11690
11691 /* NUL-terminate the buffer as a convenience, if there is
11692 room. */
11693 if (*left)
11694 **buffer = '\0';
11695 }
11696
11697 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11698 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11699 decrease *LEFT. Otherwise raise an error. */
11700
11701 static void
11702 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11703 int len)
11704 {
11705 if (2 * len > *left)
11706 error (_("Packet too long for target."));
11707
11708 bin2hex (bytes, *buffer, len);
11709 *buffer += 2 * len;
11710 *left -= 2 * len;
11711
11712 /* NUL-terminate the buffer as a convenience, if there is
11713 room. */
11714 if (*left)
11715 **buffer = '\0';
11716 }
11717
11718 /* If *LEFT is large enough, convert VALUE to hex and add it to
11719 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11720 decrease *LEFT. Otherwise raise an error. */
11721
11722 static void
11723 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11724 {
11725 int len = hexnumlen (value);
11726
11727 if (len > *left)
11728 error (_("Packet too long for target."));
11729
11730 hexnumstr (*buffer, value);
11731 *buffer += len;
11732 *left -= len;
11733
11734 /* NUL-terminate the buffer as a convenience, if there is
11735 room. */
11736 if (*left)
11737 **buffer = '\0';
11738 }
11739
11740 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11741 value, *REMOTE_ERRNO to the remote error number or zero if none
11742 was included, and *ATTACHMENT to point to the start of the annex
11743 if any. The length of the packet isn't needed here; there may
11744 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11745
11746 Return 0 if the packet could be parsed, -1 if it could not. If
11747 -1 is returned, the other variables may not be initialized. */
11748
11749 static int
11750 remote_hostio_parse_result (char *buffer, int *retcode,
11751 int *remote_errno, char **attachment)
11752 {
11753 char *p, *p2;
11754
11755 *remote_errno = 0;
11756 *attachment = NULL;
11757
11758 if (buffer[0] != 'F')
11759 return -1;
11760
11761 errno = 0;
11762 *retcode = strtol (&buffer[1], &p, 16);
11763 if (errno != 0 || p == &buffer[1])
11764 return -1;
11765
11766 /* Check for ",errno". */
11767 if (*p == ',')
11768 {
11769 errno = 0;
11770 *remote_errno = strtol (p + 1, &p2, 16);
11771 if (errno != 0 || p + 1 == p2)
11772 return -1;
11773 p = p2;
11774 }
11775
11776 /* Check for ";attachment". If there is no attachment, the
11777 packet should end here. */
11778 if (*p == ';')
11779 {
11780 *attachment = p + 1;
11781 return 0;
11782 }
11783 else if (*p == '\0')
11784 return 0;
11785 else
11786 return -1;
11787 }
11788
11789 /* Send a prepared I/O packet to the target and read its response.
11790 The prepared packet is in the global RS->BUF before this function
11791 is called, and the answer is there when we return.
11792
11793 COMMAND_BYTES is the length of the request to send, which may include
11794 binary data. WHICH_PACKET is the packet configuration to check
11795 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11796 is set to the error number and -1 is returned. Otherwise the value
11797 returned by the function is returned.
11798
11799 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11800 attachment is expected; an error will be reported if there's a
11801 mismatch. If one is found, *ATTACHMENT will be set to point into
11802 the packet buffer and *ATTACHMENT_LEN will be set to the
11803 attachment's length. */
11804
11805 int
11806 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11807 int *remote_errno, char **attachment,
11808 int *attachment_len)
11809 {
11810 struct remote_state *rs = get_remote_state ();
11811 int ret, bytes_read;
11812 char *attachment_tmp;
11813
11814 if (packet_support (which_packet) == PACKET_DISABLE)
11815 {
11816 *remote_errno = FILEIO_ENOSYS;
11817 return -1;
11818 }
11819
11820 putpkt_binary (rs->buf.data (), command_bytes);
11821 bytes_read = getpkt_sane (&rs->buf, 0);
11822
11823 /* If it timed out, something is wrong. Don't try to parse the
11824 buffer. */
11825 if (bytes_read < 0)
11826 {
11827 *remote_errno = FILEIO_EINVAL;
11828 return -1;
11829 }
11830
11831 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11832 {
11833 case PACKET_ERROR:
11834 *remote_errno = FILEIO_EINVAL;
11835 return -1;
11836 case PACKET_UNKNOWN:
11837 *remote_errno = FILEIO_ENOSYS;
11838 return -1;
11839 case PACKET_OK:
11840 break;
11841 }
11842
11843 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11844 &attachment_tmp))
11845 {
11846 *remote_errno = FILEIO_EINVAL;
11847 return -1;
11848 }
11849
11850 /* Make sure we saw an attachment if and only if we expected one. */
11851 if ((attachment_tmp == NULL && attachment != NULL)
11852 || (attachment_tmp != NULL && attachment == NULL))
11853 {
11854 *remote_errno = FILEIO_EINVAL;
11855 return -1;
11856 }
11857
11858 /* If an attachment was found, it must point into the packet buffer;
11859 work out how many bytes there were. */
11860 if (attachment_tmp != NULL)
11861 {
11862 *attachment = attachment_tmp;
11863 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11864 }
11865
11866 return ret;
11867 }
11868
11869 /* See declaration.h. */
11870
11871 void
11872 readahead_cache::invalidate ()
11873 {
11874 this->fd = -1;
11875 }
11876
11877 /* See declaration.h. */
11878
11879 void
11880 readahead_cache::invalidate_fd (int fd)
11881 {
11882 if (this->fd == fd)
11883 this->fd = -1;
11884 }
11885
11886 /* Set the filesystem remote_hostio functions that take FILENAME
11887 arguments will use. Return 0 on success, or -1 if an error
11888 occurs (and set *REMOTE_ERRNO). */
11889
11890 int
11891 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11892 int *remote_errno)
11893 {
11894 struct remote_state *rs = get_remote_state ();
11895 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11896 char *p = rs->buf.data ();
11897 int left = get_remote_packet_size () - 1;
11898 char arg[9];
11899 int ret;
11900
11901 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11902 return 0;
11903
11904 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11905 return 0;
11906
11907 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11908
11909 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11910 remote_buffer_add_string (&p, &left, arg);
11911
11912 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11913 remote_errno, NULL, NULL);
11914
11915 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11916 return 0;
11917
11918 if (ret == 0)
11919 rs->fs_pid = required_pid;
11920
11921 return ret;
11922 }
11923
11924 /* Implementation of to_fileio_open. */
11925
11926 int
11927 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11928 int flags, int mode, int warn_if_slow,
11929 int *remote_errno)
11930 {
11931 struct remote_state *rs = get_remote_state ();
11932 char *p = rs->buf.data ();
11933 int left = get_remote_packet_size () - 1;
11934
11935 if (warn_if_slow)
11936 {
11937 static int warning_issued = 0;
11938
11939 printf_unfiltered (_("Reading %s from remote target...\n"),
11940 filename);
11941
11942 if (!warning_issued)
11943 {
11944 warning (_("File transfers from remote targets can be slow."
11945 " Use \"set sysroot\" to access files locally"
11946 " instead."));
11947 warning_issued = 1;
11948 }
11949 }
11950
11951 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11952 return -1;
11953
11954 remote_buffer_add_string (&p, &left, "vFile:open:");
11955
11956 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11957 strlen (filename));
11958 remote_buffer_add_string (&p, &left, ",");
11959
11960 remote_buffer_add_int (&p, &left, flags);
11961 remote_buffer_add_string (&p, &left, ",");
11962
11963 remote_buffer_add_int (&p, &left, mode);
11964
11965 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
11966 remote_errno, NULL, NULL);
11967 }
11968
11969 int
11970 remote_target::fileio_open (struct inferior *inf, const char *filename,
11971 int flags, int mode, int warn_if_slow,
11972 int *remote_errno)
11973 {
11974 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
11975 remote_errno);
11976 }
11977
11978 /* Implementation of to_fileio_pwrite. */
11979
11980 int
11981 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
11982 ULONGEST offset, int *remote_errno)
11983 {
11984 struct remote_state *rs = get_remote_state ();
11985 char *p = rs->buf.data ();
11986 int left = get_remote_packet_size ();
11987 int out_len;
11988
11989 rs->readahead_cache.invalidate_fd (fd);
11990
11991 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11992
11993 remote_buffer_add_int (&p, &left, fd);
11994 remote_buffer_add_string (&p, &left, ",");
11995
11996 remote_buffer_add_int (&p, &left, offset);
11997 remote_buffer_add_string (&p, &left, ",");
11998
11999 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
12000 (get_remote_packet_size ()
12001 - (p - rs->buf.data ())));
12002
12003 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
12004 remote_errno, NULL, NULL);
12005 }
12006
12007 int
12008 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
12009 ULONGEST offset, int *remote_errno)
12010 {
12011 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
12012 }
12013
12014 /* Helper for the implementation of to_fileio_pread. Read the file
12015 from the remote side with vFile:pread. */
12016
12017 int
12018 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12019 ULONGEST offset, int *remote_errno)
12020 {
12021 struct remote_state *rs = get_remote_state ();
12022 char *p = rs->buf.data ();
12023 char *attachment;
12024 int left = get_remote_packet_size ();
12025 int ret, attachment_len;
12026 int read_len;
12027
12028 remote_buffer_add_string (&p, &left, "vFile:pread:");
12029
12030 remote_buffer_add_int (&p, &left, fd);
12031 remote_buffer_add_string (&p, &left, ",");
12032
12033 remote_buffer_add_int (&p, &left, len);
12034 remote_buffer_add_string (&p, &left, ",");
12035
12036 remote_buffer_add_int (&p, &left, offset);
12037
12038 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12039 remote_errno, &attachment,
12040 &attachment_len);
12041
12042 if (ret < 0)
12043 return ret;
12044
12045 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12046 read_buf, len);
12047 if (read_len != ret)
12048 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12049
12050 return ret;
12051 }
12052
12053 /* See declaration.h. */
12054
12055 int
12056 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12057 ULONGEST offset)
12058 {
12059 if (this->fd == fd
12060 && this->offset <= offset
12061 && offset < this->offset + this->bufsize)
12062 {
12063 ULONGEST max = this->offset + this->bufsize;
12064
12065 if (offset + len > max)
12066 len = max - offset;
12067
12068 memcpy (read_buf, this->buf + offset - this->offset, len);
12069 return len;
12070 }
12071
12072 return 0;
12073 }
12074
12075 /* Implementation of to_fileio_pread. */
12076
12077 int
12078 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12079 ULONGEST offset, int *remote_errno)
12080 {
12081 int ret;
12082 struct remote_state *rs = get_remote_state ();
12083 readahead_cache *cache = &rs->readahead_cache;
12084
12085 ret = cache->pread (fd, read_buf, len, offset);
12086 if (ret > 0)
12087 {
12088 cache->hit_count++;
12089
12090 if (remote_debug)
12091 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12092 pulongest (cache->hit_count));
12093 return ret;
12094 }
12095
12096 cache->miss_count++;
12097 if (remote_debug)
12098 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12099 pulongest (cache->miss_count));
12100
12101 cache->fd = fd;
12102 cache->offset = offset;
12103 cache->bufsize = get_remote_packet_size ();
12104 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12105
12106 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12107 cache->offset, remote_errno);
12108 if (ret <= 0)
12109 {
12110 cache->invalidate_fd (fd);
12111 return ret;
12112 }
12113
12114 cache->bufsize = ret;
12115 return cache->pread (fd, read_buf, len, offset);
12116 }
12117
12118 int
12119 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12120 ULONGEST offset, int *remote_errno)
12121 {
12122 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12123 }
12124
12125 /* Implementation of to_fileio_close. */
12126
12127 int
12128 remote_target::remote_hostio_close (int fd, int *remote_errno)
12129 {
12130 struct remote_state *rs = get_remote_state ();
12131 char *p = rs->buf.data ();
12132 int left = get_remote_packet_size () - 1;
12133
12134 rs->readahead_cache.invalidate_fd (fd);
12135
12136 remote_buffer_add_string (&p, &left, "vFile:close:");
12137
12138 remote_buffer_add_int (&p, &left, fd);
12139
12140 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12141 remote_errno, NULL, NULL);
12142 }
12143
12144 int
12145 remote_target::fileio_close (int fd, int *remote_errno)
12146 {
12147 return remote_hostio_close (fd, remote_errno);
12148 }
12149
12150 /* Implementation of to_fileio_unlink. */
12151
12152 int
12153 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12154 int *remote_errno)
12155 {
12156 struct remote_state *rs = get_remote_state ();
12157 char *p = rs->buf.data ();
12158 int left = get_remote_packet_size () - 1;
12159
12160 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12161 return -1;
12162
12163 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12164
12165 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12166 strlen (filename));
12167
12168 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12169 remote_errno, NULL, NULL);
12170 }
12171
12172 int
12173 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12174 int *remote_errno)
12175 {
12176 return remote_hostio_unlink (inf, filename, remote_errno);
12177 }
12178
12179 /* Implementation of to_fileio_readlink. */
12180
12181 gdb::optional<std::string>
12182 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12183 int *remote_errno)
12184 {
12185 struct remote_state *rs = get_remote_state ();
12186 char *p = rs->buf.data ();
12187 char *attachment;
12188 int left = get_remote_packet_size ();
12189 int len, attachment_len;
12190 int read_len;
12191
12192 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12193 return {};
12194
12195 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12196
12197 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12198 strlen (filename));
12199
12200 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12201 remote_errno, &attachment,
12202 &attachment_len);
12203
12204 if (len < 0)
12205 return {};
12206
12207 std::string ret (len, '\0');
12208
12209 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12210 (gdb_byte *) &ret[0], len);
12211 if (read_len != len)
12212 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12213
12214 return ret;
12215 }
12216
12217 /* Implementation of to_fileio_fstat. */
12218
12219 int
12220 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12221 {
12222 struct remote_state *rs = get_remote_state ();
12223 char *p = rs->buf.data ();
12224 int left = get_remote_packet_size ();
12225 int attachment_len, ret;
12226 char *attachment;
12227 struct fio_stat fst;
12228 int read_len;
12229
12230 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12231
12232 remote_buffer_add_int (&p, &left, fd);
12233
12234 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12235 remote_errno, &attachment,
12236 &attachment_len);
12237 if (ret < 0)
12238 {
12239 if (*remote_errno != FILEIO_ENOSYS)
12240 return ret;
12241
12242 /* Strictly we should return -1, ENOSYS here, but when
12243 "set sysroot remote:" was implemented in August 2008
12244 BFD's need for a stat function was sidestepped with
12245 this hack. This was not remedied until March 2015
12246 so we retain the previous behavior to avoid breaking
12247 compatibility.
12248
12249 Note that the memset is a March 2015 addition; older
12250 GDBs set st_size *and nothing else* so the structure
12251 would have garbage in all other fields. This might
12252 break something but retaining the previous behavior
12253 here would be just too wrong. */
12254
12255 memset (st, 0, sizeof (struct stat));
12256 st->st_size = INT_MAX;
12257 return 0;
12258 }
12259
12260 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12261 (gdb_byte *) &fst, sizeof (fst));
12262
12263 if (read_len != ret)
12264 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12265
12266 if (read_len != sizeof (fst))
12267 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12268 read_len, (int) sizeof (fst));
12269
12270 remote_fileio_to_host_stat (&fst, st);
12271
12272 return 0;
12273 }
12274
12275 /* Implementation of to_filesystem_is_local. */
12276
12277 bool
12278 remote_target::filesystem_is_local ()
12279 {
12280 /* Valgrind GDB presents itself as a remote target but works
12281 on the local filesystem: it does not implement remote get
12282 and users are not expected to set a sysroot. To handle
12283 this case we treat the remote filesystem as local if the
12284 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12285 does not support vFile:open. */
12286 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12287 {
12288 enum packet_support ps = packet_support (PACKET_vFile_open);
12289
12290 if (ps == PACKET_SUPPORT_UNKNOWN)
12291 {
12292 int fd, remote_errno;
12293
12294 /* Try opening a file to probe support. The supplied
12295 filename is irrelevant, we only care about whether
12296 the stub recognizes the packet or not. */
12297 fd = remote_hostio_open (NULL, "just probing",
12298 FILEIO_O_RDONLY, 0700, 0,
12299 &remote_errno);
12300
12301 if (fd >= 0)
12302 remote_hostio_close (fd, &remote_errno);
12303
12304 ps = packet_support (PACKET_vFile_open);
12305 }
12306
12307 if (ps == PACKET_DISABLE)
12308 {
12309 static int warning_issued = 0;
12310
12311 if (!warning_issued)
12312 {
12313 warning (_("remote target does not support file"
12314 " transfer, attempting to access files"
12315 " from local filesystem."));
12316 warning_issued = 1;
12317 }
12318
12319 return true;
12320 }
12321 }
12322
12323 return false;
12324 }
12325
12326 static int
12327 remote_fileio_errno_to_host (int errnum)
12328 {
12329 switch (errnum)
12330 {
12331 case FILEIO_EPERM:
12332 return EPERM;
12333 case FILEIO_ENOENT:
12334 return ENOENT;
12335 case FILEIO_EINTR:
12336 return EINTR;
12337 case FILEIO_EIO:
12338 return EIO;
12339 case FILEIO_EBADF:
12340 return EBADF;
12341 case FILEIO_EACCES:
12342 return EACCES;
12343 case FILEIO_EFAULT:
12344 return EFAULT;
12345 case FILEIO_EBUSY:
12346 return EBUSY;
12347 case FILEIO_EEXIST:
12348 return EEXIST;
12349 case FILEIO_ENODEV:
12350 return ENODEV;
12351 case FILEIO_ENOTDIR:
12352 return ENOTDIR;
12353 case FILEIO_EISDIR:
12354 return EISDIR;
12355 case FILEIO_EINVAL:
12356 return EINVAL;
12357 case FILEIO_ENFILE:
12358 return ENFILE;
12359 case FILEIO_EMFILE:
12360 return EMFILE;
12361 case FILEIO_EFBIG:
12362 return EFBIG;
12363 case FILEIO_ENOSPC:
12364 return ENOSPC;
12365 case FILEIO_ESPIPE:
12366 return ESPIPE;
12367 case FILEIO_EROFS:
12368 return EROFS;
12369 case FILEIO_ENOSYS:
12370 return ENOSYS;
12371 case FILEIO_ENAMETOOLONG:
12372 return ENAMETOOLONG;
12373 }
12374 return -1;
12375 }
12376
12377 static char *
12378 remote_hostio_error (int errnum)
12379 {
12380 int host_error = remote_fileio_errno_to_host (errnum);
12381
12382 if (host_error == -1)
12383 error (_("Unknown remote I/O error %d"), errnum);
12384 else
12385 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12386 }
12387
12388 /* A RAII wrapper around a remote file descriptor. */
12389
12390 class scoped_remote_fd
12391 {
12392 public:
12393 scoped_remote_fd (remote_target *remote, int fd)
12394 : m_remote (remote), m_fd (fd)
12395 {
12396 }
12397
12398 ~scoped_remote_fd ()
12399 {
12400 if (m_fd != -1)
12401 {
12402 try
12403 {
12404 int remote_errno;
12405 m_remote->remote_hostio_close (m_fd, &remote_errno);
12406 }
12407 catch (...)
12408 {
12409 /* Swallow exception before it escapes the dtor. If
12410 something goes wrong, likely the connection is gone,
12411 and there's nothing else that can be done. */
12412 }
12413 }
12414 }
12415
12416 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12417
12418 /* Release ownership of the file descriptor, and return it. */
12419 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12420 {
12421 int fd = m_fd;
12422 m_fd = -1;
12423 return fd;
12424 }
12425
12426 /* Return the owned file descriptor. */
12427 int get () const noexcept
12428 {
12429 return m_fd;
12430 }
12431
12432 private:
12433 /* The remote target. */
12434 remote_target *m_remote;
12435
12436 /* The owned remote I/O file descriptor. */
12437 int m_fd;
12438 };
12439
12440 void
12441 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12442 {
12443 remote_target *remote = get_current_remote_target ();
12444
12445 if (remote == nullptr)
12446 error (_("command can only be used with remote target"));
12447
12448 remote->remote_file_put (local_file, remote_file, from_tty);
12449 }
12450
12451 void
12452 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12453 int from_tty)
12454 {
12455 int retcode, remote_errno, bytes, io_size;
12456 int bytes_in_buffer;
12457 int saw_eof;
12458 ULONGEST offset;
12459
12460 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12461 if (file == NULL)
12462 perror_with_name (local_file);
12463
12464 scoped_remote_fd fd
12465 (this, remote_hostio_open (NULL,
12466 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12467 | FILEIO_O_TRUNC),
12468 0700, 0, &remote_errno));
12469 if (fd.get () == -1)
12470 remote_hostio_error (remote_errno);
12471
12472 /* Send up to this many bytes at once. They won't all fit in the
12473 remote packet limit, so we'll transfer slightly fewer. */
12474 io_size = get_remote_packet_size ();
12475 gdb::byte_vector buffer (io_size);
12476
12477 bytes_in_buffer = 0;
12478 saw_eof = 0;
12479 offset = 0;
12480 while (bytes_in_buffer || !saw_eof)
12481 {
12482 if (!saw_eof)
12483 {
12484 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12485 io_size - bytes_in_buffer,
12486 file.get ());
12487 if (bytes == 0)
12488 {
12489 if (ferror (file.get ()))
12490 error (_("Error reading %s."), local_file);
12491 else
12492 {
12493 /* EOF. Unless there is something still in the
12494 buffer from the last iteration, we are done. */
12495 saw_eof = 1;
12496 if (bytes_in_buffer == 0)
12497 break;
12498 }
12499 }
12500 }
12501 else
12502 bytes = 0;
12503
12504 bytes += bytes_in_buffer;
12505 bytes_in_buffer = 0;
12506
12507 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12508 offset, &remote_errno);
12509
12510 if (retcode < 0)
12511 remote_hostio_error (remote_errno);
12512 else if (retcode == 0)
12513 error (_("Remote write of %d bytes returned 0!"), bytes);
12514 else if (retcode < bytes)
12515 {
12516 /* Short write. Save the rest of the read data for the next
12517 write. */
12518 bytes_in_buffer = bytes - retcode;
12519 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12520 }
12521
12522 offset += retcode;
12523 }
12524
12525 if (remote_hostio_close (fd.release (), &remote_errno))
12526 remote_hostio_error (remote_errno);
12527
12528 if (from_tty)
12529 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12530 }
12531
12532 void
12533 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12534 {
12535 remote_target *remote = get_current_remote_target ();
12536
12537 if (remote == nullptr)
12538 error (_("command can only be used with remote target"));
12539
12540 remote->remote_file_get (remote_file, local_file, from_tty);
12541 }
12542
12543 void
12544 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12545 int from_tty)
12546 {
12547 int remote_errno, bytes, io_size;
12548 ULONGEST offset;
12549
12550 scoped_remote_fd fd
12551 (this, remote_hostio_open (NULL,
12552 remote_file, FILEIO_O_RDONLY, 0, 0,
12553 &remote_errno));
12554 if (fd.get () == -1)
12555 remote_hostio_error (remote_errno);
12556
12557 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12558 if (file == NULL)
12559 perror_with_name (local_file);
12560
12561 /* Send up to this many bytes at once. They won't all fit in the
12562 remote packet limit, so we'll transfer slightly fewer. */
12563 io_size = get_remote_packet_size ();
12564 gdb::byte_vector buffer (io_size);
12565
12566 offset = 0;
12567 while (1)
12568 {
12569 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12570 &remote_errno);
12571 if (bytes == 0)
12572 /* Success, but no bytes, means end-of-file. */
12573 break;
12574 if (bytes == -1)
12575 remote_hostio_error (remote_errno);
12576
12577 offset += bytes;
12578
12579 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12580 if (bytes == 0)
12581 perror_with_name (local_file);
12582 }
12583
12584 if (remote_hostio_close (fd.release (), &remote_errno))
12585 remote_hostio_error (remote_errno);
12586
12587 if (from_tty)
12588 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12589 }
12590
12591 void
12592 remote_file_delete (const char *remote_file, int from_tty)
12593 {
12594 remote_target *remote = get_current_remote_target ();
12595
12596 if (remote == nullptr)
12597 error (_("command can only be used with remote target"));
12598
12599 remote->remote_file_delete (remote_file, from_tty);
12600 }
12601
12602 void
12603 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12604 {
12605 int retcode, remote_errno;
12606
12607 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12608 if (retcode == -1)
12609 remote_hostio_error (remote_errno);
12610
12611 if (from_tty)
12612 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12613 }
12614
12615 static void
12616 remote_put_command (const char *args, int from_tty)
12617 {
12618 if (args == NULL)
12619 error_no_arg (_("file to put"));
12620
12621 gdb_argv argv (args);
12622 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12623 error (_("Invalid parameters to remote put"));
12624
12625 remote_file_put (argv[0], argv[1], from_tty);
12626 }
12627
12628 static void
12629 remote_get_command (const char *args, int from_tty)
12630 {
12631 if (args == NULL)
12632 error_no_arg (_("file to get"));
12633
12634 gdb_argv argv (args);
12635 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12636 error (_("Invalid parameters to remote get"));
12637
12638 remote_file_get (argv[0], argv[1], from_tty);
12639 }
12640
12641 static void
12642 remote_delete_command (const char *args, int from_tty)
12643 {
12644 if (args == NULL)
12645 error_no_arg (_("file to delete"));
12646
12647 gdb_argv argv (args);
12648 if (argv[0] == NULL || argv[1] != NULL)
12649 error (_("Invalid parameters to remote delete"));
12650
12651 remote_file_delete (argv[0], from_tty);
12652 }
12653
12654 static void
12655 remote_command (const char *args, int from_tty)
12656 {
12657 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12658 }
12659
12660 bool
12661 remote_target::can_execute_reverse ()
12662 {
12663 if (packet_support (PACKET_bs) == PACKET_ENABLE
12664 || packet_support (PACKET_bc) == PACKET_ENABLE)
12665 return true;
12666 else
12667 return false;
12668 }
12669
12670 bool
12671 remote_target::supports_non_stop ()
12672 {
12673 return true;
12674 }
12675
12676 bool
12677 remote_target::supports_disable_randomization ()
12678 {
12679 /* Only supported in extended mode. */
12680 return false;
12681 }
12682
12683 bool
12684 remote_target::supports_multi_process ()
12685 {
12686 struct remote_state *rs = get_remote_state ();
12687
12688 return remote_multi_process_p (rs);
12689 }
12690
12691 static int
12692 remote_supports_cond_tracepoints ()
12693 {
12694 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12695 }
12696
12697 bool
12698 remote_target::supports_evaluation_of_breakpoint_conditions ()
12699 {
12700 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12701 }
12702
12703 static int
12704 remote_supports_fast_tracepoints ()
12705 {
12706 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12707 }
12708
12709 static int
12710 remote_supports_static_tracepoints ()
12711 {
12712 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12713 }
12714
12715 static int
12716 remote_supports_install_in_trace ()
12717 {
12718 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12719 }
12720
12721 bool
12722 remote_target::supports_enable_disable_tracepoint ()
12723 {
12724 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12725 == PACKET_ENABLE);
12726 }
12727
12728 bool
12729 remote_target::supports_string_tracing ()
12730 {
12731 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12732 }
12733
12734 bool
12735 remote_target::can_run_breakpoint_commands ()
12736 {
12737 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12738 }
12739
12740 void
12741 remote_target::trace_init ()
12742 {
12743 struct remote_state *rs = get_remote_state ();
12744
12745 putpkt ("QTinit");
12746 remote_get_noisy_reply ();
12747 if (strcmp (rs->buf.data (), "OK") != 0)
12748 error (_("Target does not support this command."));
12749 }
12750
12751 /* Recursive routine to walk through command list including loops, and
12752 download packets for each command. */
12753
12754 void
12755 remote_target::remote_download_command_source (int num, ULONGEST addr,
12756 struct command_line *cmds)
12757 {
12758 struct remote_state *rs = get_remote_state ();
12759 struct command_line *cmd;
12760
12761 for (cmd = cmds; cmd; cmd = cmd->next)
12762 {
12763 QUIT; /* Allow user to bail out with ^C. */
12764 strcpy (rs->buf.data (), "QTDPsrc:");
12765 encode_source_string (num, addr, "cmd", cmd->line,
12766 rs->buf.data () + strlen (rs->buf.data ()),
12767 rs->buf.size () - strlen (rs->buf.data ()));
12768 putpkt (rs->buf);
12769 remote_get_noisy_reply ();
12770 if (strcmp (rs->buf.data (), "OK"))
12771 warning (_("Target does not support source download."));
12772
12773 if (cmd->control_type == while_control
12774 || cmd->control_type == while_stepping_control)
12775 {
12776 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12777
12778 QUIT; /* Allow user to bail out with ^C. */
12779 strcpy (rs->buf.data (), "QTDPsrc:");
12780 encode_source_string (num, addr, "cmd", "end",
12781 rs->buf.data () + strlen (rs->buf.data ()),
12782 rs->buf.size () - strlen (rs->buf.data ()));
12783 putpkt (rs->buf);
12784 remote_get_noisy_reply ();
12785 if (strcmp (rs->buf.data (), "OK"))
12786 warning (_("Target does not support source download."));
12787 }
12788 }
12789 }
12790
12791 void
12792 remote_target::download_tracepoint (struct bp_location *loc)
12793 {
12794 CORE_ADDR tpaddr;
12795 char addrbuf[40];
12796 std::vector<std::string> tdp_actions;
12797 std::vector<std::string> stepping_actions;
12798 char *pkt;
12799 struct breakpoint *b = loc->owner;
12800 struct tracepoint *t = (struct tracepoint *) b;
12801 struct remote_state *rs = get_remote_state ();
12802 int ret;
12803 const char *err_msg = _("Tracepoint packet too large for target.");
12804 size_t size_left;
12805
12806 /* We use a buffer other than rs->buf because we'll build strings
12807 across multiple statements, and other statements in between could
12808 modify rs->buf. */
12809 gdb::char_vector buf (get_remote_packet_size ());
12810
12811 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12812
12813 tpaddr = loc->address;
12814 sprintf_vma (addrbuf, tpaddr);
12815 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12816 b->number, addrbuf, /* address */
12817 (b->enable_state == bp_enabled ? 'E' : 'D'),
12818 t->step_count, t->pass_count);
12819
12820 if (ret < 0 || ret >= buf.size ())
12821 error ("%s", err_msg);
12822
12823 /* Fast tracepoints are mostly handled by the target, but we can
12824 tell the target how big of an instruction block should be moved
12825 around. */
12826 if (b->type == bp_fast_tracepoint)
12827 {
12828 /* Only test for support at download time; we may not know
12829 target capabilities at definition time. */
12830 if (remote_supports_fast_tracepoints ())
12831 {
12832 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12833 NULL))
12834 {
12835 size_left = buf.size () - strlen (buf.data ());
12836 ret = snprintf (buf.data () + strlen (buf.data ()),
12837 size_left, ":F%x",
12838 gdb_insn_length (loc->gdbarch, tpaddr));
12839
12840 if (ret < 0 || ret >= size_left)
12841 error ("%s", err_msg);
12842 }
12843 else
12844 /* If it passed validation at definition but fails now,
12845 something is very wrong. */
12846 internal_error (__FILE__, __LINE__,
12847 _("Fast tracepoint not "
12848 "valid during download"));
12849 }
12850 else
12851 /* Fast tracepoints are functionally identical to regular
12852 tracepoints, so don't take lack of support as a reason to
12853 give up on the trace run. */
12854 warning (_("Target does not support fast tracepoints, "
12855 "downloading %d as regular tracepoint"), b->number);
12856 }
12857 else if (b->type == bp_static_tracepoint)
12858 {
12859 /* Only test for support at download time; we may not know
12860 target capabilities at definition time. */
12861 if (remote_supports_static_tracepoints ())
12862 {
12863 struct static_tracepoint_marker marker;
12864
12865 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12866 {
12867 size_left = buf.size () - strlen (buf.data ());
12868 ret = snprintf (buf.data () + strlen (buf.data ()),
12869 size_left, ":S");
12870
12871 if (ret < 0 || ret >= size_left)
12872 error ("%s", err_msg);
12873 }
12874 else
12875 error (_("Static tracepoint not valid during download"));
12876 }
12877 else
12878 /* Fast tracepoints are functionally identical to regular
12879 tracepoints, so don't take lack of support as a reason
12880 to give up on the trace run. */
12881 error (_("Target does not support static tracepoints"));
12882 }
12883 /* If the tracepoint has a conditional, make it into an agent
12884 expression and append to the definition. */
12885 if (loc->cond)
12886 {
12887 /* Only test support at download time, we may not know target
12888 capabilities at definition time. */
12889 if (remote_supports_cond_tracepoints ())
12890 {
12891 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12892 loc->cond.get ());
12893
12894 size_left = buf.size () - strlen (buf.data ());
12895
12896 ret = snprintf (buf.data () + strlen (buf.data ()),
12897 size_left, ":X%x,", aexpr->len);
12898
12899 if (ret < 0 || ret >= size_left)
12900 error ("%s", err_msg);
12901
12902 size_left = buf.size () - strlen (buf.data ());
12903
12904 /* Two bytes to encode each aexpr byte, plus the terminating
12905 null byte. */
12906 if (aexpr->len * 2 + 1 > size_left)
12907 error ("%s", err_msg);
12908
12909 pkt = buf.data () + strlen (buf.data ());
12910
12911 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12912 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12913 *pkt = '\0';
12914 }
12915 else
12916 warning (_("Target does not support conditional tracepoints, "
12917 "ignoring tp %d cond"), b->number);
12918 }
12919
12920 if (b->commands || *default_collect)
12921 {
12922 size_left = buf.size () - strlen (buf.data ());
12923
12924 ret = snprintf (buf.data () + strlen (buf.data ()),
12925 size_left, "-");
12926
12927 if (ret < 0 || ret >= size_left)
12928 error ("%s", err_msg);
12929 }
12930
12931 putpkt (buf.data ());
12932 remote_get_noisy_reply ();
12933 if (strcmp (rs->buf.data (), "OK"))
12934 error (_("Target does not support tracepoints."));
12935
12936 /* do_single_steps (t); */
12937 for (auto action_it = tdp_actions.begin ();
12938 action_it != tdp_actions.end (); action_it++)
12939 {
12940 QUIT; /* Allow user to bail out with ^C. */
12941
12942 bool has_more = ((action_it + 1) != tdp_actions.end ()
12943 || !stepping_actions.empty ());
12944
12945 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12946 b->number, addrbuf, /* address */
12947 action_it->c_str (),
12948 has_more ? '-' : 0);
12949
12950 if (ret < 0 || ret >= buf.size ())
12951 error ("%s", err_msg);
12952
12953 putpkt (buf.data ());
12954 remote_get_noisy_reply ();
12955 if (strcmp (rs->buf.data (), "OK"))
12956 error (_("Error on target while setting tracepoints."));
12957 }
12958
12959 for (auto action_it = stepping_actions.begin ();
12960 action_it != stepping_actions.end (); action_it++)
12961 {
12962 QUIT; /* Allow user to bail out with ^C. */
12963
12964 bool is_first = action_it == stepping_actions.begin ();
12965 bool has_more = (action_it + 1) != stepping_actions.end ();
12966
12967 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
12968 b->number, addrbuf, /* address */
12969 is_first ? "S" : "",
12970 action_it->c_str (),
12971 has_more ? "-" : "");
12972
12973 if (ret < 0 || ret >= buf.size ())
12974 error ("%s", err_msg);
12975
12976 putpkt (buf.data ());
12977 remote_get_noisy_reply ();
12978 if (strcmp (rs->buf.data (), "OK"))
12979 error (_("Error on target while setting tracepoints."));
12980 }
12981
12982 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12983 {
12984 if (b->location != NULL)
12985 {
12986 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12987
12988 if (ret < 0 || ret >= buf.size ())
12989 error ("%s", err_msg);
12990
12991 encode_source_string (b->number, loc->address, "at",
12992 event_location_to_string (b->location.get ()),
12993 buf.data () + strlen (buf.data ()),
12994 buf.size () - strlen (buf.data ()));
12995 putpkt (buf.data ());
12996 remote_get_noisy_reply ();
12997 if (strcmp (rs->buf.data (), "OK"))
12998 warning (_("Target does not support source download."));
12999 }
13000 if (b->cond_string)
13001 {
13002 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
13003
13004 if (ret < 0 || ret >= buf.size ())
13005 error ("%s", err_msg);
13006
13007 encode_source_string (b->number, loc->address,
13008 "cond", b->cond_string,
13009 buf.data () + strlen (buf.data ()),
13010 buf.size () - strlen (buf.data ()));
13011 putpkt (buf.data ());
13012 remote_get_noisy_reply ();
13013 if (strcmp (rs->buf.data (), "OK"))
13014 warning (_("Target does not support source download."));
13015 }
13016 remote_download_command_source (b->number, loc->address,
13017 breakpoint_commands (b));
13018 }
13019 }
13020
13021 bool
13022 remote_target::can_download_tracepoint ()
13023 {
13024 struct remote_state *rs = get_remote_state ();
13025 struct trace_status *ts;
13026 int status;
13027
13028 /* Don't try to install tracepoints until we've relocated our
13029 symbols, and fetched and merged the target's tracepoint list with
13030 ours. */
13031 if (rs->starting_up)
13032 return false;
13033
13034 ts = current_trace_status ();
13035 status = get_trace_status (ts);
13036
13037 if (status == -1 || !ts->running_known || !ts->running)
13038 return false;
13039
13040 /* If we are in a tracing experiment, but remote stub doesn't support
13041 installing tracepoint in trace, we have to return. */
13042 if (!remote_supports_install_in_trace ())
13043 return false;
13044
13045 return true;
13046 }
13047
13048
13049 void
13050 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13051 {
13052 struct remote_state *rs = get_remote_state ();
13053 char *p;
13054
13055 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13056 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13057 tsv.builtin);
13058 p = rs->buf.data () + strlen (rs->buf.data ());
13059 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13060 >= get_remote_packet_size ())
13061 error (_("Trace state variable name too long for tsv definition packet"));
13062 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13063 *p++ = '\0';
13064 putpkt (rs->buf);
13065 remote_get_noisy_reply ();
13066 if (rs->buf[0] == '\0')
13067 error (_("Target does not support this command."));
13068 if (strcmp (rs->buf.data (), "OK") != 0)
13069 error (_("Error on target while downloading trace state variable."));
13070 }
13071
13072 void
13073 remote_target::enable_tracepoint (struct bp_location *location)
13074 {
13075 struct remote_state *rs = get_remote_state ();
13076 char addr_buf[40];
13077
13078 sprintf_vma (addr_buf, location->address);
13079 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13080 location->owner->number, addr_buf);
13081 putpkt (rs->buf);
13082 remote_get_noisy_reply ();
13083 if (rs->buf[0] == '\0')
13084 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13085 if (strcmp (rs->buf.data (), "OK") != 0)
13086 error (_("Error on target while enabling tracepoint."));
13087 }
13088
13089 void
13090 remote_target::disable_tracepoint (struct bp_location *location)
13091 {
13092 struct remote_state *rs = get_remote_state ();
13093 char addr_buf[40];
13094
13095 sprintf_vma (addr_buf, location->address);
13096 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13097 location->owner->number, addr_buf);
13098 putpkt (rs->buf);
13099 remote_get_noisy_reply ();
13100 if (rs->buf[0] == '\0')
13101 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13102 if (strcmp (rs->buf.data (), "OK") != 0)
13103 error (_("Error on target while disabling tracepoint."));
13104 }
13105
13106 void
13107 remote_target::trace_set_readonly_regions ()
13108 {
13109 asection *s;
13110 bfd_size_type size;
13111 bfd_vma vma;
13112 int anysecs = 0;
13113 int offset = 0;
13114
13115 if (!exec_bfd)
13116 return; /* No information to give. */
13117
13118 struct remote_state *rs = get_remote_state ();
13119
13120 strcpy (rs->buf.data (), "QTro");
13121 offset = strlen (rs->buf.data ());
13122 for (s = exec_bfd->sections; s; s = s->next)
13123 {
13124 char tmp1[40], tmp2[40];
13125 int sec_length;
13126
13127 if ((s->flags & SEC_LOAD) == 0 ||
13128 /* (s->flags & SEC_CODE) == 0 || */
13129 (s->flags & SEC_READONLY) == 0)
13130 continue;
13131
13132 anysecs = 1;
13133 vma = bfd_section_vma (s);
13134 size = bfd_section_size (s);
13135 sprintf_vma (tmp1, vma);
13136 sprintf_vma (tmp2, vma + size);
13137 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13138 if (offset + sec_length + 1 > rs->buf.size ())
13139 {
13140 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13141 warning (_("\
13142 Too many sections for read-only sections definition packet."));
13143 break;
13144 }
13145 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13146 tmp1, tmp2);
13147 offset += sec_length;
13148 }
13149 if (anysecs)
13150 {
13151 putpkt (rs->buf);
13152 getpkt (&rs->buf, 0);
13153 }
13154 }
13155
13156 void
13157 remote_target::trace_start ()
13158 {
13159 struct remote_state *rs = get_remote_state ();
13160
13161 putpkt ("QTStart");
13162 remote_get_noisy_reply ();
13163 if (rs->buf[0] == '\0')
13164 error (_("Target does not support this command."));
13165 if (strcmp (rs->buf.data (), "OK") != 0)
13166 error (_("Bogus reply from target: %s"), rs->buf.data ());
13167 }
13168
13169 int
13170 remote_target::get_trace_status (struct trace_status *ts)
13171 {
13172 /* Initialize it just to avoid a GCC false warning. */
13173 char *p = NULL;
13174 enum packet_result result;
13175 struct remote_state *rs = get_remote_state ();
13176
13177 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13178 return -1;
13179
13180 /* FIXME we need to get register block size some other way. */
13181 trace_regblock_size
13182 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13183
13184 putpkt ("qTStatus");
13185
13186 try
13187 {
13188 p = remote_get_noisy_reply ();
13189 }
13190 catch (const gdb_exception_error &ex)
13191 {
13192 if (ex.error != TARGET_CLOSE_ERROR)
13193 {
13194 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13195 return -1;
13196 }
13197 throw;
13198 }
13199
13200 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13201
13202 /* If the remote target doesn't do tracing, flag it. */
13203 if (result == PACKET_UNKNOWN)
13204 return -1;
13205
13206 /* We're working with a live target. */
13207 ts->filename = NULL;
13208
13209 if (*p++ != 'T')
13210 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13211
13212 /* Function 'parse_trace_status' sets default value of each field of
13213 'ts' at first, so we don't have to do it here. */
13214 parse_trace_status (p, ts);
13215
13216 return ts->running;
13217 }
13218
13219 void
13220 remote_target::get_tracepoint_status (struct breakpoint *bp,
13221 struct uploaded_tp *utp)
13222 {
13223 struct remote_state *rs = get_remote_state ();
13224 char *reply;
13225 struct bp_location *loc;
13226 struct tracepoint *tp = (struct tracepoint *) bp;
13227 size_t size = get_remote_packet_size ();
13228
13229 if (tp)
13230 {
13231 tp->hit_count = 0;
13232 tp->traceframe_usage = 0;
13233 for (loc = tp->loc; loc; loc = loc->next)
13234 {
13235 /* If the tracepoint was never downloaded, don't go asking for
13236 any status. */
13237 if (tp->number_on_target == 0)
13238 continue;
13239 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13240 phex_nz (loc->address, 0));
13241 putpkt (rs->buf);
13242 reply = remote_get_noisy_reply ();
13243 if (reply && *reply)
13244 {
13245 if (*reply == 'V')
13246 parse_tracepoint_status (reply + 1, bp, utp);
13247 }
13248 }
13249 }
13250 else if (utp)
13251 {
13252 utp->hit_count = 0;
13253 utp->traceframe_usage = 0;
13254 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13255 phex_nz (utp->addr, 0));
13256 putpkt (rs->buf);
13257 reply = remote_get_noisy_reply ();
13258 if (reply && *reply)
13259 {
13260 if (*reply == 'V')
13261 parse_tracepoint_status (reply + 1, bp, utp);
13262 }
13263 }
13264 }
13265
13266 void
13267 remote_target::trace_stop ()
13268 {
13269 struct remote_state *rs = get_remote_state ();
13270
13271 putpkt ("QTStop");
13272 remote_get_noisy_reply ();
13273 if (rs->buf[0] == '\0')
13274 error (_("Target does not support this command."));
13275 if (strcmp (rs->buf.data (), "OK") != 0)
13276 error (_("Bogus reply from target: %s"), rs->buf.data ());
13277 }
13278
13279 int
13280 remote_target::trace_find (enum trace_find_type type, int num,
13281 CORE_ADDR addr1, CORE_ADDR addr2,
13282 int *tpp)
13283 {
13284 struct remote_state *rs = get_remote_state ();
13285 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13286 char *p, *reply;
13287 int target_frameno = -1, target_tracept = -1;
13288
13289 /* Lookups other than by absolute frame number depend on the current
13290 trace selected, so make sure it is correct on the remote end
13291 first. */
13292 if (type != tfind_number)
13293 set_remote_traceframe ();
13294
13295 p = rs->buf.data ();
13296 strcpy (p, "QTFrame:");
13297 p = strchr (p, '\0');
13298 switch (type)
13299 {
13300 case tfind_number:
13301 xsnprintf (p, endbuf - p, "%x", num);
13302 break;
13303 case tfind_pc:
13304 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13305 break;
13306 case tfind_tp:
13307 xsnprintf (p, endbuf - p, "tdp:%x", num);
13308 break;
13309 case tfind_range:
13310 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13311 phex_nz (addr2, 0));
13312 break;
13313 case tfind_outside:
13314 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13315 phex_nz (addr2, 0));
13316 break;
13317 default:
13318 error (_("Unknown trace find type %d"), type);
13319 }
13320
13321 putpkt (rs->buf);
13322 reply = remote_get_noisy_reply ();
13323 if (*reply == '\0')
13324 error (_("Target does not support this command."));
13325
13326 while (reply && *reply)
13327 switch (*reply)
13328 {
13329 case 'F':
13330 p = ++reply;
13331 target_frameno = (int) strtol (p, &reply, 16);
13332 if (reply == p)
13333 error (_("Unable to parse trace frame number"));
13334 /* Don't update our remote traceframe number cache on failure
13335 to select a remote traceframe. */
13336 if (target_frameno == -1)
13337 return -1;
13338 break;
13339 case 'T':
13340 p = ++reply;
13341 target_tracept = (int) strtol (p, &reply, 16);
13342 if (reply == p)
13343 error (_("Unable to parse tracepoint number"));
13344 break;
13345 case 'O': /* "OK"? */
13346 if (reply[1] == 'K' && reply[2] == '\0')
13347 reply += 2;
13348 else
13349 error (_("Bogus reply from target: %s"), reply);
13350 break;
13351 default:
13352 error (_("Bogus reply from target: %s"), reply);
13353 }
13354 if (tpp)
13355 *tpp = target_tracept;
13356
13357 rs->remote_traceframe_number = target_frameno;
13358 return target_frameno;
13359 }
13360
13361 bool
13362 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13363 {
13364 struct remote_state *rs = get_remote_state ();
13365 char *reply;
13366 ULONGEST uval;
13367
13368 set_remote_traceframe ();
13369
13370 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13371 putpkt (rs->buf);
13372 reply = remote_get_noisy_reply ();
13373 if (reply && *reply)
13374 {
13375 if (*reply == 'V')
13376 {
13377 unpack_varlen_hex (reply + 1, &uval);
13378 *val = (LONGEST) uval;
13379 return true;
13380 }
13381 }
13382 return false;
13383 }
13384
13385 int
13386 remote_target::save_trace_data (const char *filename)
13387 {
13388 struct remote_state *rs = get_remote_state ();
13389 char *p, *reply;
13390
13391 p = rs->buf.data ();
13392 strcpy (p, "QTSave:");
13393 p += strlen (p);
13394 if ((p - rs->buf.data ()) + strlen (filename) * 2
13395 >= get_remote_packet_size ())
13396 error (_("Remote file name too long for trace save packet"));
13397 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13398 *p++ = '\0';
13399 putpkt (rs->buf);
13400 reply = remote_get_noisy_reply ();
13401 if (*reply == '\0')
13402 error (_("Target does not support this command."));
13403 if (strcmp (reply, "OK") != 0)
13404 error (_("Bogus reply from target: %s"), reply);
13405 return 0;
13406 }
13407
13408 /* This is basically a memory transfer, but needs to be its own packet
13409 because we don't know how the target actually organizes its trace
13410 memory, plus we want to be able to ask for as much as possible, but
13411 not be unhappy if we don't get as much as we ask for. */
13412
13413 LONGEST
13414 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13415 {
13416 struct remote_state *rs = get_remote_state ();
13417 char *reply;
13418 char *p;
13419 int rslt;
13420
13421 p = rs->buf.data ();
13422 strcpy (p, "qTBuffer:");
13423 p += strlen (p);
13424 p += hexnumstr (p, offset);
13425 *p++ = ',';
13426 p += hexnumstr (p, len);
13427 *p++ = '\0';
13428
13429 putpkt (rs->buf);
13430 reply = remote_get_noisy_reply ();
13431 if (reply && *reply)
13432 {
13433 /* 'l' by itself means we're at the end of the buffer and
13434 there is nothing more to get. */
13435 if (*reply == 'l')
13436 return 0;
13437
13438 /* Convert the reply into binary. Limit the number of bytes to
13439 convert according to our passed-in buffer size, rather than
13440 what was returned in the packet; if the target is
13441 unexpectedly generous and gives us a bigger reply than we
13442 asked for, we don't want to crash. */
13443 rslt = hex2bin (reply, buf, len);
13444 return rslt;
13445 }
13446
13447 /* Something went wrong, flag as an error. */
13448 return -1;
13449 }
13450
13451 void
13452 remote_target::set_disconnected_tracing (int val)
13453 {
13454 struct remote_state *rs = get_remote_state ();
13455
13456 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13457 {
13458 char *reply;
13459
13460 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13461 "QTDisconnected:%x", val);
13462 putpkt (rs->buf);
13463 reply = remote_get_noisy_reply ();
13464 if (*reply == '\0')
13465 error (_("Target does not support this command."));
13466 if (strcmp (reply, "OK") != 0)
13467 error (_("Bogus reply from target: %s"), reply);
13468 }
13469 else if (val)
13470 warning (_("Target does not support disconnected tracing."));
13471 }
13472
13473 int
13474 remote_target::core_of_thread (ptid_t ptid)
13475 {
13476 thread_info *info = find_thread_ptid (this, ptid);
13477
13478 if (info != NULL && info->priv != NULL)
13479 return get_remote_thread_info (info)->core;
13480
13481 return -1;
13482 }
13483
13484 void
13485 remote_target::set_circular_trace_buffer (int val)
13486 {
13487 struct remote_state *rs = get_remote_state ();
13488 char *reply;
13489
13490 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13491 "QTBuffer:circular:%x", val);
13492 putpkt (rs->buf);
13493 reply = remote_get_noisy_reply ();
13494 if (*reply == '\0')
13495 error (_("Target does not support this command."));
13496 if (strcmp (reply, "OK") != 0)
13497 error (_("Bogus reply from target: %s"), reply);
13498 }
13499
13500 traceframe_info_up
13501 remote_target::traceframe_info ()
13502 {
13503 gdb::optional<gdb::char_vector> text
13504 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13505 NULL);
13506 if (text)
13507 return parse_traceframe_info (text->data ());
13508
13509 return NULL;
13510 }
13511
13512 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13513 instruction on which a fast tracepoint may be placed. Returns -1
13514 if the packet is not supported, and 0 if the minimum instruction
13515 length is unknown. */
13516
13517 int
13518 remote_target::get_min_fast_tracepoint_insn_len ()
13519 {
13520 struct remote_state *rs = get_remote_state ();
13521 char *reply;
13522
13523 /* If we're not debugging a process yet, the IPA can't be
13524 loaded. */
13525 if (!target_has_execution)
13526 return 0;
13527
13528 /* Make sure the remote is pointing at the right process. */
13529 set_general_process ();
13530
13531 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13532 putpkt (rs->buf);
13533 reply = remote_get_noisy_reply ();
13534 if (*reply == '\0')
13535 return -1;
13536 else
13537 {
13538 ULONGEST min_insn_len;
13539
13540 unpack_varlen_hex (reply, &min_insn_len);
13541
13542 return (int) min_insn_len;
13543 }
13544 }
13545
13546 void
13547 remote_target::set_trace_buffer_size (LONGEST val)
13548 {
13549 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13550 {
13551 struct remote_state *rs = get_remote_state ();
13552 char *buf = rs->buf.data ();
13553 char *endbuf = buf + get_remote_packet_size ();
13554 enum packet_result result;
13555
13556 gdb_assert (val >= 0 || val == -1);
13557 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13558 /* Send -1 as literal "-1" to avoid host size dependency. */
13559 if (val < 0)
13560 {
13561 *buf++ = '-';
13562 buf += hexnumstr (buf, (ULONGEST) -val);
13563 }
13564 else
13565 buf += hexnumstr (buf, (ULONGEST) val);
13566
13567 putpkt (rs->buf);
13568 remote_get_noisy_reply ();
13569 result = packet_ok (rs->buf,
13570 &remote_protocol_packets[PACKET_QTBuffer_size]);
13571
13572 if (result != PACKET_OK)
13573 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13574 }
13575 }
13576
13577 bool
13578 remote_target::set_trace_notes (const char *user, const char *notes,
13579 const char *stop_notes)
13580 {
13581 struct remote_state *rs = get_remote_state ();
13582 char *reply;
13583 char *buf = rs->buf.data ();
13584 char *endbuf = buf + get_remote_packet_size ();
13585 int nbytes;
13586
13587 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13588 if (user)
13589 {
13590 buf += xsnprintf (buf, endbuf - buf, "user:");
13591 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13592 buf += 2 * nbytes;
13593 *buf++ = ';';
13594 }
13595 if (notes)
13596 {
13597 buf += xsnprintf (buf, endbuf - buf, "notes:");
13598 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13599 buf += 2 * nbytes;
13600 *buf++ = ';';
13601 }
13602 if (stop_notes)
13603 {
13604 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13605 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13606 buf += 2 * nbytes;
13607 *buf++ = ';';
13608 }
13609 /* Ensure the buffer is terminated. */
13610 *buf = '\0';
13611
13612 putpkt (rs->buf);
13613 reply = remote_get_noisy_reply ();
13614 if (*reply == '\0')
13615 return false;
13616
13617 if (strcmp (reply, "OK") != 0)
13618 error (_("Bogus reply from target: %s"), reply);
13619
13620 return true;
13621 }
13622
13623 bool
13624 remote_target::use_agent (bool use)
13625 {
13626 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13627 {
13628 struct remote_state *rs = get_remote_state ();
13629
13630 /* If the stub supports QAgent. */
13631 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13632 putpkt (rs->buf);
13633 getpkt (&rs->buf, 0);
13634
13635 if (strcmp (rs->buf.data (), "OK") == 0)
13636 {
13637 ::use_agent = use;
13638 return true;
13639 }
13640 }
13641
13642 return false;
13643 }
13644
13645 bool
13646 remote_target::can_use_agent ()
13647 {
13648 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13649 }
13650
13651 struct btrace_target_info
13652 {
13653 /* The ptid of the traced thread. */
13654 ptid_t ptid;
13655
13656 /* The obtained branch trace configuration. */
13657 struct btrace_config conf;
13658 };
13659
13660 /* Reset our idea of our target's btrace configuration. */
13661
13662 static void
13663 remote_btrace_reset (remote_state *rs)
13664 {
13665 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13666 }
13667
13668 /* Synchronize the configuration with the target. */
13669
13670 void
13671 remote_target::btrace_sync_conf (const btrace_config *conf)
13672 {
13673 struct packet_config *packet;
13674 struct remote_state *rs;
13675 char *buf, *pos, *endbuf;
13676
13677 rs = get_remote_state ();
13678 buf = rs->buf.data ();
13679 endbuf = buf + get_remote_packet_size ();
13680
13681 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13682 if (packet_config_support (packet) == PACKET_ENABLE
13683 && conf->bts.size != rs->btrace_config.bts.size)
13684 {
13685 pos = buf;
13686 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13687 conf->bts.size);
13688
13689 putpkt (buf);
13690 getpkt (&rs->buf, 0);
13691
13692 if (packet_ok (buf, packet) == PACKET_ERROR)
13693 {
13694 if (buf[0] == 'E' && buf[1] == '.')
13695 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13696 else
13697 error (_("Failed to configure the BTS buffer size."));
13698 }
13699
13700 rs->btrace_config.bts.size = conf->bts.size;
13701 }
13702
13703 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13704 if (packet_config_support (packet) == PACKET_ENABLE
13705 && conf->pt.size != rs->btrace_config.pt.size)
13706 {
13707 pos = buf;
13708 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13709 conf->pt.size);
13710
13711 putpkt (buf);
13712 getpkt (&rs->buf, 0);
13713
13714 if (packet_ok (buf, packet) == PACKET_ERROR)
13715 {
13716 if (buf[0] == 'E' && buf[1] == '.')
13717 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13718 else
13719 error (_("Failed to configure the trace buffer size."));
13720 }
13721
13722 rs->btrace_config.pt.size = conf->pt.size;
13723 }
13724 }
13725
13726 /* Read the current thread's btrace configuration from the target and
13727 store it into CONF. */
13728
13729 static void
13730 btrace_read_config (struct btrace_config *conf)
13731 {
13732 gdb::optional<gdb::char_vector> xml
13733 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13734 if (xml)
13735 parse_xml_btrace_conf (conf, xml->data ());
13736 }
13737
13738 /* Maybe reopen target btrace. */
13739
13740 void
13741 remote_target::remote_btrace_maybe_reopen ()
13742 {
13743 struct remote_state *rs = get_remote_state ();
13744 int btrace_target_pushed = 0;
13745 #if !defined (HAVE_LIBIPT)
13746 int warned = 0;
13747 #endif
13748
13749 /* Don't bother walking the entirety of the remote thread list when
13750 we know the feature isn't supported by the remote. */
13751 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13752 return;
13753
13754 scoped_restore_current_thread restore_thread;
13755
13756 for (thread_info *tp : all_non_exited_threads (this))
13757 {
13758 set_general_thread (tp->ptid);
13759
13760 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13761 btrace_read_config (&rs->btrace_config);
13762
13763 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13764 continue;
13765
13766 #if !defined (HAVE_LIBIPT)
13767 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13768 {
13769 if (!warned)
13770 {
13771 warned = 1;
13772 warning (_("Target is recording using Intel Processor Trace "
13773 "but support was disabled at compile time."));
13774 }
13775
13776 continue;
13777 }
13778 #endif /* !defined (HAVE_LIBIPT) */
13779
13780 /* Push target, once, but before anything else happens. This way our
13781 changes to the threads will be cleaned up by unpushing the target
13782 in case btrace_read_config () throws. */
13783 if (!btrace_target_pushed)
13784 {
13785 btrace_target_pushed = 1;
13786 record_btrace_push_target ();
13787 printf_filtered (_("Target is recording using %s.\n"),
13788 btrace_format_string (rs->btrace_config.format));
13789 }
13790
13791 tp->btrace.target = XCNEW (struct btrace_target_info);
13792 tp->btrace.target->ptid = tp->ptid;
13793 tp->btrace.target->conf = rs->btrace_config;
13794 }
13795 }
13796
13797 /* Enable branch tracing. */
13798
13799 struct btrace_target_info *
13800 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13801 {
13802 struct btrace_target_info *tinfo = NULL;
13803 struct packet_config *packet = NULL;
13804 struct remote_state *rs = get_remote_state ();
13805 char *buf = rs->buf.data ();
13806 char *endbuf = buf + get_remote_packet_size ();
13807
13808 switch (conf->format)
13809 {
13810 case BTRACE_FORMAT_BTS:
13811 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13812 break;
13813
13814 case BTRACE_FORMAT_PT:
13815 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13816 break;
13817 }
13818
13819 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13820 error (_("Target does not support branch tracing."));
13821
13822 btrace_sync_conf (conf);
13823
13824 set_general_thread (ptid);
13825
13826 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13827 putpkt (rs->buf);
13828 getpkt (&rs->buf, 0);
13829
13830 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13831 {
13832 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13833 error (_("Could not enable branch tracing for %s: %s"),
13834 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13835 else
13836 error (_("Could not enable branch tracing for %s."),
13837 target_pid_to_str (ptid).c_str ());
13838 }
13839
13840 tinfo = XCNEW (struct btrace_target_info);
13841 tinfo->ptid = ptid;
13842
13843 /* If we fail to read the configuration, we lose some information, but the
13844 tracing itself is not impacted. */
13845 try
13846 {
13847 btrace_read_config (&tinfo->conf);
13848 }
13849 catch (const gdb_exception_error &err)
13850 {
13851 if (err.message != NULL)
13852 warning ("%s", err.what ());
13853 }
13854
13855 return tinfo;
13856 }
13857
13858 /* Disable branch tracing. */
13859
13860 void
13861 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13862 {
13863 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13864 struct remote_state *rs = get_remote_state ();
13865 char *buf = rs->buf.data ();
13866 char *endbuf = buf + get_remote_packet_size ();
13867
13868 if (packet_config_support (packet) != PACKET_ENABLE)
13869 error (_("Target does not support branch tracing."));
13870
13871 set_general_thread (tinfo->ptid);
13872
13873 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13874 putpkt (rs->buf);
13875 getpkt (&rs->buf, 0);
13876
13877 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13878 {
13879 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13880 error (_("Could not disable branch tracing for %s: %s"),
13881 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13882 else
13883 error (_("Could not disable branch tracing for %s."),
13884 target_pid_to_str (tinfo->ptid).c_str ());
13885 }
13886
13887 xfree (tinfo);
13888 }
13889
13890 /* Teardown branch tracing. */
13891
13892 void
13893 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13894 {
13895 /* We must not talk to the target during teardown. */
13896 xfree (tinfo);
13897 }
13898
13899 /* Read the branch trace. */
13900
13901 enum btrace_error
13902 remote_target::read_btrace (struct btrace_data *btrace,
13903 struct btrace_target_info *tinfo,
13904 enum btrace_read_type type)
13905 {
13906 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13907 const char *annex;
13908
13909 if (packet_config_support (packet) != PACKET_ENABLE)
13910 error (_("Target does not support branch tracing."));
13911
13912 #if !defined(HAVE_LIBEXPAT)
13913 error (_("Cannot process branch tracing result. XML parsing not supported."));
13914 #endif
13915
13916 switch (type)
13917 {
13918 case BTRACE_READ_ALL:
13919 annex = "all";
13920 break;
13921 case BTRACE_READ_NEW:
13922 annex = "new";
13923 break;
13924 case BTRACE_READ_DELTA:
13925 annex = "delta";
13926 break;
13927 default:
13928 internal_error (__FILE__, __LINE__,
13929 _("Bad branch tracing read type: %u."),
13930 (unsigned int) type);
13931 }
13932
13933 gdb::optional<gdb::char_vector> xml
13934 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13935 if (!xml)
13936 return BTRACE_ERR_UNKNOWN;
13937
13938 parse_xml_btrace (btrace, xml->data ());
13939
13940 return BTRACE_ERR_NONE;
13941 }
13942
13943 const struct btrace_config *
13944 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13945 {
13946 return &tinfo->conf;
13947 }
13948
13949 bool
13950 remote_target::augmented_libraries_svr4_read ()
13951 {
13952 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13953 == PACKET_ENABLE);
13954 }
13955
13956 /* Implementation of to_load. */
13957
13958 void
13959 remote_target::load (const char *name, int from_tty)
13960 {
13961 generic_load (name, from_tty);
13962 }
13963
13964 /* Accepts an integer PID; returns a string representing a file that
13965 can be opened on the remote side to get the symbols for the child
13966 process. Returns NULL if the operation is not supported. */
13967
13968 char *
13969 remote_target::pid_to_exec_file (int pid)
13970 {
13971 static gdb::optional<gdb::char_vector> filename;
13972 char *annex = NULL;
13973
13974 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13975 return NULL;
13976
13977 inferior *inf = find_inferior_pid (this, pid);
13978 if (inf == NULL)
13979 internal_error (__FILE__, __LINE__,
13980 _("not currently attached to process %d"), pid);
13981
13982 if (!inf->fake_pid_p)
13983 {
13984 const int annex_size = 9;
13985
13986 annex = (char *) alloca (annex_size);
13987 xsnprintf (annex, annex_size, "%x", pid);
13988 }
13989
13990 filename = target_read_stralloc (current_top_target (),
13991 TARGET_OBJECT_EXEC_FILE, annex);
13992
13993 return filename ? filename->data () : nullptr;
13994 }
13995
13996 /* Implement the to_can_do_single_step target_ops method. */
13997
13998 int
13999 remote_target::can_do_single_step ()
14000 {
14001 /* We can only tell whether target supports single step or not by
14002 supported s and S vCont actions if the stub supports vContSupported
14003 feature. If the stub doesn't support vContSupported feature,
14004 we have conservatively to think target doesn't supports single
14005 step. */
14006 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
14007 {
14008 struct remote_state *rs = get_remote_state ();
14009
14010 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14011 remote_vcont_probe ();
14012
14013 return rs->supports_vCont.s && rs->supports_vCont.S;
14014 }
14015 else
14016 return 0;
14017 }
14018
14019 /* Implementation of the to_execution_direction method for the remote
14020 target. */
14021
14022 enum exec_direction_kind
14023 remote_target::execution_direction ()
14024 {
14025 struct remote_state *rs = get_remote_state ();
14026
14027 return rs->last_resume_exec_dir;
14028 }
14029
14030 /* Return pointer to the thread_info struct which corresponds to
14031 THREAD_HANDLE (having length HANDLE_LEN). */
14032
14033 thread_info *
14034 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14035 int handle_len,
14036 inferior *inf)
14037 {
14038 for (thread_info *tp : all_non_exited_threads (this))
14039 {
14040 remote_thread_info *priv = get_remote_thread_info (tp);
14041
14042 if (tp->inf == inf && priv != NULL)
14043 {
14044 if (handle_len != priv->thread_handle.size ())
14045 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14046 handle_len, priv->thread_handle.size ());
14047 if (memcmp (thread_handle, priv->thread_handle.data (),
14048 handle_len) == 0)
14049 return tp;
14050 }
14051 }
14052
14053 return NULL;
14054 }
14055
14056 gdb::byte_vector
14057 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14058 {
14059 remote_thread_info *priv = get_remote_thread_info (tp);
14060 return priv->thread_handle;
14061 }
14062
14063 bool
14064 remote_target::can_async_p ()
14065 {
14066 struct remote_state *rs = get_remote_state ();
14067
14068 /* We don't go async if the user has explicitly prevented it with the
14069 "maint set target-async" command. */
14070 if (!target_async_permitted)
14071 return false;
14072
14073 /* We're async whenever the serial device is. */
14074 return serial_can_async_p (rs->remote_desc);
14075 }
14076
14077 bool
14078 remote_target::is_async_p ()
14079 {
14080 struct remote_state *rs = get_remote_state ();
14081
14082 if (!target_async_permitted)
14083 /* We only enable async when the user specifically asks for it. */
14084 return false;
14085
14086 /* We're async whenever the serial device is. */
14087 return serial_is_async_p (rs->remote_desc);
14088 }
14089
14090 /* Pass the SERIAL event on and up to the client. One day this code
14091 will be able to delay notifying the client of an event until the
14092 point where an entire packet has been received. */
14093
14094 static serial_event_ftype remote_async_serial_handler;
14095
14096 static void
14097 remote_async_serial_handler (struct serial *scb, void *context)
14098 {
14099 /* Don't propogate error information up to the client. Instead let
14100 the client find out about the error by querying the target. */
14101 inferior_event_handler (INF_REG_EVENT, NULL);
14102 }
14103
14104 static void
14105 remote_async_inferior_event_handler (gdb_client_data data)
14106 {
14107 inferior_event_handler (INF_REG_EVENT, data);
14108 }
14109
14110 int
14111 remote_target::async_wait_fd ()
14112 {
14113 struct remote_state *rs = get_remote_state ();
14114 return rs->remote_desc->fd;
14115 }
14116
14117 void
14118 remote_target::async (int enable)
14119 {
14120 struct remote_state *rs = get_remote_state ();
14121
14122 if (enable)
14123 {
14124 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14125
14126 /* If there are pending events in the stop reply queue tell the
14127 event loop to process them. */
14128 if (!rs->stop_reply_queue.empty ())
14129 mark_async_event_handler (rs->remote_async_inferior_event_token);
14130 /* For simplicity, below we clear the pending events token
14131 without remembering whether it is marked, so here we always
14132 mark it. If there's actually no pending notification to
14133 process, this ends up being a no-op (other than a spurious
14134 event-loop wakeup). */
14135 if (target_is_non_stop_p ())
14136 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14137 }
14138 else
14139 {
14140 serial_async (rs->remote_desc, NULL, NULL);
14141 /* If the core is disabling async, it doesn't want to be
14142 disturbed with target events. Clear all async event sources
14143 too. */
14144 clear_async_event_handler (rs->remote_async_inferior_event_token);
14145 if (target_is_non_stop_p ())
14146 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14147 }
14148 }
14149
14150 /* Implementation of the to_thread_events method. */
14151
14152 void
14153 remote_target::thread_events (int enable)
14154 {
14155 struct remote_state *rs = get_remote_state ();
14156 size_t size = get_remote_packet_size ();
14157
14158 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14159 return;
14160
14161 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14162 putpkt (rs->buf);
14163 getpkt (&rs->buf, 0);
14164
14165 switch (packet_ok (rs->buf,
14166 &remote_protocol_packets[PACKET_QThreadEvents]))
14167 {
14168 case PACKET_OK:
14169 if (strcmp (rs->buf.data (), "OK") != 0)
14170 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14171 break;
14172 case PACKET_ERROR:
14173 warning (_("Remote failure reply: %s"), rs->buf.data ());
14174 break;
14175 case PACKET_UNKNOWN:
14176 break;
14177 }
14178 }
14179
14180 static void
14181 set_remote_cmd (const char *args, int from_tty)
14182 {
14183 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14184 }
14185
14186 static void
14187 show_remote_cmd (const char *args, int from_tty)
14188 {
14189 /* We can't just use cmd_show_list here, because we want to skip
14190 the redundant "show remote Z-packet" and the legacy aliases. */
14191 struct cmd_list_element *list = remote_show_cmdlist;
14192 struct ui_out *uiout = current_uiout;
14193
14194 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14195 for (; list != NULL; list = list->next)
14196 if (strcmp (list->name, "Z-packet") == 0)
14197 continue;
14198 else if (list->type == not_set_cmd)
14199 /* Alias commands are exactly like the original, except they
14200 don't have the normal type. */
14201 continue;
14202 else
14203 {
14204 ui_out_emit_tuple option_emitter (uiout, "option");
14205
14206 uiout->field_string ("name", list->name);
14207 uiout->text (": ");
14208 if (list->type == show_cmd)
14209 do_show_command (NULL, from_tty, list);
14210 else
14211 cmd_func (list, NULL, from_tty);
14212 }
14213 }
14214
14215
14216 /* Function to be called whenever a new objfile (shlib) is detected. */
14217 static void
14218 remote_new_objfile (struct objfile *objfile)
14219 {
14220 remote_target *remote = get_current_remote_target ();
14221
14222 if (remote != NULL) /* Have a remote connection. */
14223 remote->remote_check_symbols ();
14224 }
14225
14226 /* Pull all the tracepoints defined on the target and create local
14227 data structures representing them. We don't want to create real
14228 tracepoints yet, we don't want to mess up the user's existing
14229 collection. */
14230
14231 int
14232 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14233 {
14234 struct remote_state *rs = get_remote_state ();
14235 char *p;
14236
14237 /* Ask for a first packet of tracepoint definition. */
14238 putpkt ("qTfP");
14239 getpkt (&rs->buf, 0);
14240 p = rs->buf.data ();
14241 while (*p && *p != 'l')
14242 {
14243 parse_tracepoint_definition (p, utpp);
14244 /* Ask for another packet of tracepoint definition. */
14245 putpkt ("qTsP");
14246 getpkt (&rs->buf, 0);
14247 p = rs->buf.data ();
14248 }
14249 return 0;
14250 }
14251
14252 int
14253 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14254 {
14255 struct remote_state *rs = get_remote_state ();
14256 char *p;
14257
14258 /* Ask for a first packet of variable definition. */
14259 putpkt ("qTfV");
14260 getpkt (&rs->buf, 0);
14261 p = rs->buf.data ();
14262 while (*p && *p != 'l')
14263 {
14264 parse_tsv_definition (p, utsvp);
14265 /* Ask for another packet of variable definition. */
14266 putpkt ("qTsV");
14267 getpkt (&rs->buf, 0);
14268 p = rs->buf.data ();
14269 }
14270 return 0;
14271 }
14272
14273 /* The "set/show range-stepping" show hook. */
14274
14275 static void
14276 show_range_stepping (struct ui_file *file, int from_tty,
14277 struct cmd_list_element *c,
14278 const char *value)
14279 {
14280 fprintf_filtered (file,
14281 _("Debugger's willingness to use range stepping "
14282 "is %s.\n"), value);
14283 }
14284
14285 /* Return true if the vCont;r action is supported by the remote
14286 stub. */
14287
14288 bool
14289 remote_target::vcont_r_supported ()
14290 {
14291 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14292 remote_vcont_probe ();
14293
14294 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14295 && get_remote_state ()->supports_vCont.r);
14296 }
14297
14298 /* The "set/show range-stepping" set hook. */
14299
14300 static void
14301 set_range_stepping (const char *ignore_args, int from_tty,
14302 struct cmd_list_element *c)
14303 {
14304 /* When enabling, check whether range stepping is actually supported
14305 by the target, and warn if not. */
14306 if (use_range_stepping)
14307 {
14308 remote_target *remote = get_current_remote_target ();
14309 if (remote == NULL
14310 || !remote->vcont_r_supported ())
14311 warning (_("Range stepping is not supported by the current target"));
14312 }
14313 }
14314
14315 void
14316 _initialize_remote (void)
14317 {
14318 struct cmd_list_element *cmd;
14319 const char *cmd_name;
14320
14321 /* architecture specific data */
14322 remote_g_packet_data_handle =
14323 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14324
14325 add_target (remote_target_info, remote_target::open);
14326 add_target (extended_remote_target_info, extended_remote_target::open);
14327
14328 /* Hook into new objfile notification. */
14329 gdb::observers::new_objfile.attach (remote_new_objfile);
14330
14331 #if 0
14332 init_remote_threadtests ();
14333 #endif
14334
14335 /* set/show remote ... */
14336
14337 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14338 Remote protocol specific variables.\n\
14339 Configure various remote-protocol specific variables such as\n\
14340 the packets being used."),
14341 &remote_set_cmdlist, "set remote ",
14342 0 /* allow-unknown */, &setlist);
14343 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14344 Remote protocol specific variables.\n\
14345 Configure various remote-protocol specific variables such as\n\
14346 the packets being used."),
14347 &remote_show_cmdlist, "show remote ",
14348 0 /* allow-unknown */, &showlist);
14349
14350 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14351 Compare section data on target to the exec file.\n\
14352 Argument is a single section name (default: all loaded sections).\n\
14353 To compare only read-only loaded sections, specify the -r option."),
14354 &cmdlist);
14355
14356 add_cmd ("packet", class_maintenance, packet_command, _("\
14357 Send an arbitrary packet to a remote target.\n\
14358 maintenance packet TEXT\n\
14359 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14360 this command sends the string TEXT to the inferior, and displays the\n\
14361 response packet. GDB supplies the initial `$' character, and the\n\
14362 terminating `#' character and checksum."),
14363 &maintenancelist);
14364
14365 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14366 Set whether to send break if interrupted."), _("\
14367 Show whether to send break if interrupted."), _("\
14368 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14369 set_remotebreak, show_remotebreak,
14370 &setlist, &showlist);
14371 cmd_name = "remotebreak";
14372 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14373 deprecate_cmd (cmd, "set remote interrupt-sequence");
14374 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14375 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14376 deprecate_cmd (cmd, "show remote interrupt-sequence");
14377
14378 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14379 interrupt_sequence_modes, &interrupt_sequence_mode,
14380 _("\
14381 Set interrupt sequence to remote target."), _("\
14382 Show interrupt sequence to remote target."), _("\
14383 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14384 NULL, show_interrupt_sequence,
14385 &remote_set_cmdlist,
14386 &remote_show_cmdlist);
14387
14388 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14389 &interrupt_on_connect, _("\
14390 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14391 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14392 If set, interrupt sequence is sent to remote target."),
14393 NULL, NULL,
14394 &remote_set_cmdlist, &remote_show_cmdlist);
14395
14396 /* Install commands for configuring memory read/write packets. */
14397
14398 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14399 Set the maximum number of bytes per memory write packet (deprecated)."),
14400 &setlist);
14401 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14402 Show the maximum number of bytes per memory write packet (deprecated)."),
14403 &showlist);
14404 add_cmd ("memory-write-packet-size", no_class,
14405 set_memory_write_packet_size, _("\
14406 Set the maximum number of bytes per memory-write packet.\n\
14407 Specify the number of bytes in a packet or 0 (zero) for the\n\
14408 default packet size. The actual limit is further reduced\n\
14409 dependent on the target. Specify ``fixed'' to disable the\n\
14410 further restriction and ``limit'' to enable that restriction."),
14411 &remote_set_cmdlist);
14412 add_cmd ("memory-read-packet-size", no_class,
14413 set_memory_read_packet_size, _("\
14414 Set the maximum number of bytes per memory-read packet.\n\
14415 Specify the number of bytes in a packet or 0 (zero) for the\n\
14416 default packet size. The actual limit is further reduced\n\
14417 dependent on the target. Specify ``fixed'' to disable the\n\
14418 further restriction and ``limit'' to enable that restriction."),
14419 &remote_set_cmdlist);
14420 add_cmd ("memory-write-packet-size", no_class,
14421 show_memory_write_packet_size,
14422 _("Show the maximum number of bytes per memory-write packet."),
14423 &remote_show_cmdlist);
14424 add_cmd ("memory-read-packet-size", no_class,
14425 show_memory_read_packet_size,
14426 _("Show the maximum number of bytes per memory-read packet."),
14427 &remote_show_cmdlist);
14428
14429 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14430 &remote_hw_watchpoint_limit, _("\
14431 Set the maximum number of target hardware watchpoints."), _("\
14432 Show the maximum number of target hardware watchpoints."), _("\
14433 Specify \"unlimited\" for unlimited hardware watchpoints."),
14434 NULL, show_hardware_watchpoint_limit,
14435 &remote_set_cmdlist,
14436 &remote_show_cmdlist);
14437 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14438 no_class,
14439 &remote_hw_watchpoint_length_limit, _("\
14440 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14441 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14442 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14443 NULL, show_hardware_watchpoint_length_limit,
14444 &remote_set_cmdlist, &remote_show_cmdlist);
14445 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14446 &remote_hw_breakpoint_limit, _("\
14447 Set the maximum number of target hardware breakpoints."), _("\
14448 Show the maximum number of target hardware breakpoints."), _("\
14449 Specify \"unlimited\" for unlimited hardware breakpoints."),
14450 NULL, show_hardware_breakpoint_limit,
14451 &remote_set_cmdlist, &remote_show_cmdlist);
14452
14453 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14454 &remote_address_size, _("\
14455 Set the maximum size of the address (in bits) in a memory packet."), _("\
14456 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14457 NULL,
14458 NULL, /* FIXME: i18n: */
14459 &setlist, &showlist);
14460
14461 init_all_packet_configs ();
14462
14463 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14464 "X", "binary-download", 1);
14465
14466 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14467 "vCont", "verbose-resume", 0);
14468
14469 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14470 "QPassSignals", "pass-signals", 0);
14471
14472 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14473 "QCatchSyscalls", "catch-syscalls", 0);
14474
14475 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14476 "QProgramSignals", "program-signals", 0);
14477
14478 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14479 "QSetWorkingDir", "set-working-dir", 0);
14480
14481 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14482 "QStartupWithShell", "startup-with-shell", 0);
14483
14484 add_packet_config_cmd (&remote_protocol_packets
14485 [PACKET_QEnvironmentHexEncoded],
14486 "QEnvironmentHexEncoded", "environment-hex-encoded",
14487 0);
14488
14489 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14490 "QEnvironmentReset", "environment-reset",
14491 0);
14492
14493 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14494 "QEnvironmentUnset", "environment-unset",
14495 0);
14496
14497 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14498 "qSymbol", "symbol-lookup", 0);
14499
14500 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14501 "P", "set-register", 1);
14502
14503 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14504 "p", "fetch-register", 1);
14505
14506 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14507 "Z0", "software-breakpoint", 0);
14508
14509 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14510 "Z1", "hardware-breakpoint", 0);
14511
14512 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14513 "Z2", "write-watchpoint", 0);
14514
14515 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14516 "Z3", "read-watchpoint", 0);
14517
14518 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14519 "Z4", "access-watchpoint", 0);
14520
14521 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14522 "qXfer:auxv:read", "read-aux-vector", 0);
14523
14524 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14525 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14526
14527 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14528 "qXfer:features:read", "target-features", 0);
14529
14530 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14531 "qXfer:libraries:read", "library-info", 0);
14532
14533 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14534 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14535
14536 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14537 "qXfer:memory-map:read", "memory-map", 0);
14538
14539 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14540 "qXfer:osdata:read", "osdata", 0);
14541
14542 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14543 "qXfer:threads:read", "threads", 0);
14544
14545 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14546 "qXfer:siginfo:read", "read-siginfo-object", 0);
14547
14548 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14549 "qXfer:siginfo:write", "write-siginfo-object", 0);
14550
14551 add_packet_config_cmd
14552 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14553 "qXfer:traceframe-info:read", "traceframe-info", 0);
14554
14555 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14556 "qXfer:uib:read", "unwind-info-block", 0);
14557
14558 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14559 "qGetTLSAddr", "get-thread-local-storage-address",
14560 0);
14561
14562 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14563 "qGetTIBAddr", "get-thread-information-block-address",
14564 0);
14565
14566 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14567 "bc", "reverse-continue", 0);
14568
14569 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14570 "bs", "reverse-step", 0);
14571
14572 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14573 "qSupported", "supported-packets", 0);
14574
14575 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14576 "qSearch:memory", "search-memory", 0);
14577
14578 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14579 "qTStatus", "trace-status", 0);
14580
14581 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14582 "vFile:setfs", "hostio-setfs", 0);
14583
14584 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14585 "vFile:open", "hostio-open", 0);
14586
14587 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14588 "vFile:pread", "hostio-pread", 0);
14589
14590 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14591 "vFile:pwrite", "hostio-pwrite", 0);
14592
14593 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14594 "vFile:close", "hostio-close", 0);
14595
14596 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14597 "vFile:unlink", "hostio-unlink", 0);
14598
14599 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14600 "vFile:readlink", "hostio-readlink", 0);
14601
14602 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14603 "vFile:fstat", "hostio-fstat", 0);
14604
14605 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14606 "vAttach", "attach", 0);
14607
14608 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14609 "vRun", "run", 0);
14610
14611 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14612 "QStartNoAckMode", "noack", 0);
14613
14614 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14615 "vKill", "kill", 0);
14616
14617 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14618 "qAttached", "query-attached", 0);
14619
14620 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14621 "ConditionalTracepoints",
14622 "conditional-tracepoints", 0);
14623
14624 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14625 "ConditionalBreakpoints",
14626 "conditional-breakpoints", 0);
14627
14628 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14629 "BreakpointCommands",
14630 "breakpoint-commands", 0);
14631
14632 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14633 "FastTracepoints", "fast-tracepoints", 0);
14634
14635 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14636 "TracepointSource", "TracepointSource", 0);
14637
14638 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14639 "QAllow", "allow", 0);
14640
14641 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14642 "StaticTracepoints", "static-tracepoints", 0);
14643
14644 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14645 "InstallInTrace", "install-in-trace", 0);
14646
14647 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14648 "qXfer:statictrace:read", "read-sdata-object", 0);
14649
14650 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14651 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14652
14653 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14654 "QDisableRandomization", "disable-randomization", 0);
14655
14656 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14657 "QAgent", "agent", 0);
14658
14659 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14660 "QTBuffer:size", "trace-buffer-size", 0);
14661
14662 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14663 "Qbtrace:off", "disable-btrace", 0);
14664
14665 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14666 "Qbtrace:bts", "enable-btrace-bts", 0);
14667
14668 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14669 "Qbtrace:pt", "enable-btrace-pt", 0);
14670
14671 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14672 "qXfer:btrace", "read-btrace", 0);
14673
14674 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14675 "qXfer:btrace-conf", "read-btrace-conf", 0);
14676
14677 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14678 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14679
14680 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14681 "multiprocess-feature", "multiprocess-feature", 0);
14682
14683 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14684 "swbreak-feature", "swbreak-feature", 0);
14685
14686 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14687 "hwbreak-feature", "hwbreak-feature", 0);
14688
14689 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14690 "fork-event-feature", "fork-event-feature", 0);
14691
14692 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14693 "vfork-event-feature", "vfork-event-feature", 0);
14694
14695 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14696 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14697
14698 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14699 "vContSupported", "verbose-resume-supported", 0);
14700
14701 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14702 "exec-event-feature", "exec-event-feature", 0);
14703
14704 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14705 "vCtrlC", "ctrl-c", 0);
14706
14707 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14708 "QThreadEvents", "thread-events", 0);
14709
14710 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14711 "N stop reply", "no-resumed-stop-reply", 0);
14712
14713 /* Assert that we've registered "set remote foo-packet" commands
14714 for all packet configs. */
14715 {
14716 int i;
14717
14718 for (i = 0; i < PACKET_MAX; i++)
14719 {
14720 /* Ideally all configs would have a command associated. Some
14721 still don't though. */
14722 int excepted;
14723
14724 switch (i)
14725 {
14726 case PACKET_QNonStop:
14727 case PACKET_EnableDisableTracepoints_feature:
14728 case PACKET_tracenz_feature:
14729 case PACKET_DisconnectedTracing_feature:
14730 case PACKET_augmented_libraries_svr4_read_feature:
14731 case PACKET_qCRC:
14732 /* Additions to this list need to be well justified:
14733 pre-existing packets are OK; new packets are not. */
14734 excepted = 1;
14735 break;
14736 default:
14737 excepted = 0;
14738 break;
14739 }
14740
14741 /* This catches both forgetting to add a config command, and
14742 forgetting to remove a packet from the exception list. */
14743 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14744 }
14745 }
14746
14747 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14748 Z sub-packet has its own set and show commands, but users may
14749 have sets to this variable in their .gdbinit files (or in their
14750 documentation). */
14751 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14752 &remote_Z_packet_detect, _("\
14753 Set use of remote protocol `Z' packets."), _("\
14754 Show use of remote protocol `Z' packets."), _("\
14755 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14756 packets."),
14757 set_remote_protocol_Z_packet_cmd,
14758 show_remote_protocol_Z_packet_cmd,
14759 /* FIXME: i18n: Use of remote protocol
14760 `Z' packets is %s. */
14761 &remote_set_cmdlist, &remote_show_cmdlist);
14762
14763 add_prefix_cmd ("remote", class_files, remote_command, _("\
14764 Manipulate files on the remote system.\n\
14765 Transfer files to and from the remote target system."),
14766 &remote_cmdlist, "remote ",
14767 0 /* allow-unknown */, &cmdlist);
14768
14769 add_cmd ("put", class_files, remote_put_command,
14770 _("Copy a local file to the remote system."),
14771 &remote_cmdlist);
14772
14773 add_cmd ("get", class_files, remote_get_command,
14774 _("Copy a remote file to the local system."),
14775 &remote_cmdlist);
14776
14777 add_cmd ("delete", class_files, remote_delete_command,
14778 _("Delete a remote file."),
14779 &remote_cmdlist);
14780
14781 add_setshow_string_noescape_cmd ("exec-file", class_files,
14782 &remote_exec_file_var, _("\
14783 Set the remote pathname for \"run\"."), _("\
14784 Show the remote pathname for \"run\"."), NULL,
14785 set_remote_exec_file,
14786 show_remote_exec_file,
14787 &remote_set_cmdlist,
14788 &remote_show_cmdlist);
14789
14790 add_setshow_boolean_cmd ("range-stepping", class_run,
14791 &use_range_stepping, _("\
14792 Enable or disable range stepping."), _("\
14793 Show whether target-assisted range stepping is enabled."), _("\
14794 If on, and the target supports it, when stepping a source line, GDB\n\
14795 tells the target to step the corresponding range of addresses itself instead\n\
14796 of issuing multiple single-steps. This speeds up source level\n\
14797 stepping. If off, GDB always issues single-steps, even if range\n\
14798 stepping is supported by the target. The default is on."),
14799 set_range_stepping,
14800 show_range_stepping,
14801 &setlist,
14802 &showlist);
14803
14804 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
14805 Set watchdog timer."), _("\
14806 Show watchdog timer."), _("\
14807 When non-zero, this timeout is used instead of waiting forever for a target\n\
14808 to finish a low-level step or continue operation. If the specified amount\n\
14809 of time passes without a response from the target, an error occurs."),
14810 NULL,
14811 show_watchdog,
14812 &setlist, &showlist);
14813
14814 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
14815 &remote_packet_max_chars, _("\
14816 Set the maximum number of characters to display for each remote packet."), _("\
14817 Show the maximum number of characters to display for each remote packet."), _("\
14818 Specify \"unlimited\" to display all the characters."),
14819 NULL, show_remote_packet_max_chars,
14820 &setdebuglist, &showdebuglist);
14821
14822 /* Eventually initialize fileio. See fileio.c */
14823 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14824 }
This page took 0.335629 seconds and 4 git commands to generate.