Multi-target support
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include <algorithm>
79 #include <unordered_map>
80
81 /* The remote target. */
82
83 static const char remote_doc[] = N_("\
84 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
85 Specify the serial device it is connected to\n\
86 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
87
88 #define OPAQUETHREADBYTES 8
89
90 /* a 64 bit opaque identifier */
91 typedef unsigned char threadref[OPAQUETHREADBYTES];
92
93 struct gdb_ext_thread_info;
94 struct threads_listing_context;
95 typedef int (*rmt_thread_action) (threadref *ref, void *context);
96 struct protocol_feature;
97 struct packet_reg;
98
99 struct stop_reply;
100 typedef std::unique_ptr<stop_reply> stop_reply_up;
101
102 /* Generic configuration support for packets the stub optionally
103 supports. Allows the user to specify the use of the packet as well
104 as allowing GDB to auto-detect support in the remote stub. */
105
106 enum packet_support
107 {
108 PACKET_SUPPORT_UNKNOWN = 0,
109 PACKET_ENABLE,
110 PACKET_DISABLE
111 };
112
113 /* Analyze a packet's return value and update the packet config
114 accordingly. */
115
116 enum packet_result
117 {
118 PACKET_ERROR,
119 PACKET_OK,
120 PACKET_UNKNOWN
121 };
122
123 struct threads_listing_context;
124
125 /* Stub vCont actions support.
126
127 Each field is a boolean flag indicating whether the stub reports
128 support for the corresponding action. */
129
130 struct vCont_action_support
131 {
132 /* vCont;t */
133 bool t = false;
134
135 /* vCont;r */
136 bool r = false;
137
138 /* vCont;s */
139 bool s = false;
140
141 /* vCont;S */
142 bool S = false;
143 };
144
145 /* About this many threadids fit in a packet. */
146
147 #define MAXTHREADLISTRESULTS 32
148
149 /* Data for the vFile:pread readahead cache. */
150
151 struct readahead_cache
152 {
153 /* Invalidate the readahead cache. */
154 void invalidate ();
155
156 /* Invalidate the readahead cache if it is holding data for FD. */
157 void invalidate_fd (int fd);
158
159 /* Serve pread from the readahead cache. Returns number of bytes
160 read, or 0 if the request can't be served from the cache. */
161 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
162
163 /* The file descriptor for the file that is being cached. -1 if the
164 cache is invalid. */
165 int fd = -1;
166
167 /* The offset into the file that the cache buffer corresponds
168 to. */
169 ULONGEST offset = 0;
170
171 /* The buffer holding the cache contents. */
172 gdb_byte *buf = nullptr;
173 /* The buffer's size. We try to read as much as fits into a packet
174 at a time. */
175 size_t bufsize = 0;
176
177 /* Cache hit and miss counters. */
178 ULONGEST hit_count = 0;
179 ULONGEST miss_count = 0;
180 };
181
182 /* Description of the remote protocol for a given architecture. */
183
184 struct packet_reg
185 {
186 long offset; /* Offset into G packet. */
187 long regnum; /* GDB's internal register number. */
188 LONGEST pnum; /* Remote protocol register number. */
189 int in_g_packet; /* Always part of G packet. */
190 /* long size in bytes; == register_size (target_gdbarch (), regnum);
191 at present. */
192 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
193 at present. */
194 };
195
196 struct remote_arch_state
197 {
198 explicit remote_arch_state (struct gdbarch *gdbarch);
199
200 /* Description of the remote protocol registers. */
201 long sizeof_g_packet;
202
203 /* Description of the remote protocol registers indexed by REGNUM
204 (making an array gdbarch_num_regs in size). */
205 std::unique_ptr<packet_reg[]> regs;
206
207 /* This is the size (in chars) of the first response to the ``g''
208 packet. It is used as a heuristic when determining the maximum
209 size of memory-read and memory-write packets. A target will
210 typically only reserve a buffer large enough to hold the ``g''
211 packet. The size does not include packet overhead (headers and
212 trailers). */
213 long actual_register_packet_size;
214
215 /* This is the maximum size (in chars) of a non read/write packet.
216 It is also used as a cap on the size of read/write packets. */
217 long remote_packet_size;
218 };
219
220 /* Description of the remote protocol state for the currently
221 connected target. This is per-target state, and independent of the
222 selected architecture. */
223
224 class remote_state
225 {
226 public:
227
228 remote_state ();
229 ~remote_state ();
230
231 /* Get the remote arch state for GDBARCH. */
232 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
233
234 public: /* data */
235
236 /* A buffer to use for incoming packets, and its current size. The
237 buffer is grown dynamically for larger incoming packets.
238 Outgoing packets may also be constructed in this buffer.
239 The size of the buffer is always at least REMOTE_PACKET_SIZE;
240 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
241 packets. */
242 gdb::char_vector buf;
243
244 /* True if we're going through initial connection setup (finding out
245 about the remote side's threads, relocating symbols, etc.). */
246 bool starting_up = false;
247
248 /* If we negotiated packet size explicitly (and thus can bypass
249 heuristics for the largest packet size that will not overflow
250 a buffer in the stub), this will be set to that packet size.
251 Otherwise zero, meaning to use the guessed size. */
252 long explicit_packet_size = 0;
253
254 /* remote_wait is normally called when the target is running and
255 waits for a stop reply packet. But sometimes we need to call it
256 when the target is already stopped. We can send a "?" packet
257 and have remote_wait read the response. Or, if we already have
258 the response, we can stash it in BUF and tell remote_wait to
259 skip calling getpkt. This flag is set when BUF contains a
260 stop reply packet and the target is not waiting. */
261 int cached_wait_status = 0;
262
263 /* True, if in no ack mode. That is, neither GDB nor the stub will
264 expect acks from each other. The connection is assumed to be
265 reliable. */
266 bool noack_mode = false;
267
268 /* True if we're connected in extended remote mode. */
269 bool extended = false;
270
271 /* True if we resumed the target and we're waiting for the target to
272 stop. In the mean time, we can't start another command/query.
273 The remote server wouldn't be ready to process it, so we'd
274 timeout waiting for a reply that would never come and eventually
275 we'd close the connection. This can happen in asynchronous mode
276 because we allow GDB commands while the target is running. */
277 bool waiting_for_stop_reply = false;
278
279 /* The status of the stub support for the various vCont actions. */
280 vCont_action_support supports_vCont;
281 /* Whether vCont support was probed already. This is a workaround
282 until packet_support is per-connection. */
283 bool supports_vCont_probed;
284
285 /* True if the user has pressed Ctrl-C, but the target hasn't
286 responded to that. */
287 bool ctrlc_pending_p = false;
288
289 /* True if we saw a Ctrl-C while reading or writing from/to the
290 remote descriptor. At that point it is not safe to send a remote
291 interrupt packet, so we instead remember we saw the Ctrl-C and
292 process it once we're done with sending/receiving the current
293 packet, which should be shortly. If however that takes too long,
294 and the user presses Ctrl-C again, we offer to disconnect. */
295 bool got_ctrlc_during_io = false;
296
297 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
298 remote_open knows that we don't have a file open when the program
299 starts. */
300 struct serial *remote_desc = nullptr;
301
302 /* These are the threads which we last sent to the remote system. The
303 TID member will be -1 for all or -2 for not sent yet. */
304 ptid_t general_thread = null_ptid;
305 ptid_t continue_thread = null_ptid;
306
307 /* This is the traceframe which we last selected on the remote system.
308 It will be -1 if no traceframe is selected. */
309 int remote_traceframe_number = -1;
310
311 char *last_pass_packet = nullptr;
312
313 /* The last QProgramSignals packet sent to the target. We bypass
314 sending a new program signals list down to the target if the new
315 packet is exactly the same as the last we sent. IOW, we only let
316 the target know about program signals list changes. */
317 char *last_program_signals_packet = nullptr;
318
319 gdb_signal last_sent_signal = GDB_SIGNAL_0;
320
321 bool last_sent_step = false;
322
323 /* The execution direction of the last resume we got. */
324 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
325
326 char *finished_object = nullptr;
327 char *finished_annex = nullptr;
328 ULONGEST finished_offset = 0;
329
330 /* Should we try the 'ThreadInfo' query packet?
331
332 This variable (NOT available to the user: auto-detect only!)
333 determines whether GDB will use the new, simpler "ThreadInfo"
334 query or the older, more complex syntax for thread queries.
335 This is an auto-detect variable (set to true at each connect,
336 and set to false when the target fails to recognize it). */
337 bool use_threadinfo_query = false;
338 bool use_threadextra_query = false;
339
340 threadref echo_nextthread {};
341 threadref nextthread {};
342 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
343
344 /* The state of remote notification. */
345 struct remote_notif_state *notif_state = nullptr;
346
347 /* The branch trace configuration. */
348 struct btrace_config btrace_config {};
349
350 /* The argument to the last "vFile:setfs:" packet we sent, used
351 to avoid sending repeated unnecessary "vFile:setfs:" packets.
352 Initialized to -1 to indicate that no "vFile:setfs:" packet
353 has yet been sent. */
354 int fs_pid = -1;
355
356 /* A readahead cache for vFile:pread. Often, reading a binary
357 involves a sequence of small reads. E.g., when parsing an ELF
358 file. A readahead cache helps mostly the case of remote
359 debugging on a connection with higher latency, due to the
360 request/reply nature of the RSP. We only cache data for a single
361 file descriptor at a time. */
362 struct readahead_cache readahead_cache;
363
364 /* The list of already fetched and acknowledged stop events. This
365 queue is used for notification Stop, and other notifications
366 don't need queue for their events, because the notification
367 events of Stop can't be consumed immediately, so that events
368 should be queued first, and be consumed by remote_wait_{ns,as}
369 one per time. Other notifications can consume their events
370 immediately, so queue is not needed for them. */
371 std::vector<stop_reply_up> stop_reply_queue;
372
373 /* Asynchronous signal handle registered as event loop source for
374 when we have pending events ready to be passed to the core. */
375 struct async_event_handler *remote_async_inferior_event_token = nullptr;
376
377 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
378 ``forever'' still use the normal timeout mechanism. This is
379 currently used by the ASYNC code to guarentee that target reads
380 during the initial connect always time-out. Once getpkt has been
381 modified to return a timeout indication and, in turn
382 remote_wait()/wait_for_inferior() have gained a timeout parameter
383 this can go away. */
384 int wait_forever_enabled_p = 1;
385
386 private:
387 /* Mapping of remote protocol data for each gdbarch. Usually there
388 is only one entry here, though we may see more with stubs that
389 support multi-process. */
390 std::unordered_map<struct gdbarch *, remote_arch_state>
391 m_arch_states;
392 };
393
394 static const target_info remote_target_info = {
395 "remote",
396 N_("Remote serial target in gdb-specific protocol"),
397 remote_doc
398 };
399
400 class remote_target : public process_stratum_target
401 {
402 public:
403 remote_target () = default;
404 ~remote_target () override;
405
406 const target_info &info () const override
407 { return remote_target_info; }
408
409 thread_control_capabilities get_thread_control_capabilities () override
410 { return tc_schedlock; }
411
412 /* Open a remote connection. */
413 static void open (const char *, int);
414
415 void close () override;
416
417 void detach (inferior *, int) override;
418 void disconnect (const char *, int) override;
419
420 void commit_resume () override;
421 void resume (ptid_t, int, enum gdb_signal) override;
422 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
423
424 void fetch_registers (struct regcache *, int) override;
425 void store_registers (struct regcache *, int) override;
426 void prepare_to_store (struct regcache *) override;
427
428 void files_info () override;
429
430 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
431
432 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
433 enum remove_bp_reason) override;
434
435
436 bool stopped_by_sw_breakpoint () override;
437 bool supports_stopped_by_sw_breakpoint () override;
438
439 bool stopped_by_hw_breakpoint () override;
440
441 bool supports_stopped_by_hw_breakpoint () override;
442
443 bool stopped_by_watchpoint () override;
444
445 bool stopped_data_address (CORE_ADDR *) override;
446
447 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
448
449 int can_use_hw_breakpoint (enum bptype, int, int) override;
450
451 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
452
453 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
454
455 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
456
457 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
458 struct expression *) override;
459
460 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
461 struct expression *) override;
462
463 void kill () override;
464
465 void load (const char *, int) override;
466
467 void mourn_inferior () override;
468
469 void pass_signals (gdb::array_view<const unsigned char>) override;
470
471 int set_syscall_catchpoint (int, bool, int,
472 gdb::array_view<const int>) override;
473
474 void program_signals (gdb::array_view<const unsigned char>) override;
475
476 bool thread_alive (ptid_t ptid) override;
477
478 const char *thread_name (struct thread_info *) override;
479
480 void update_thread_list () override;
481
482 std::string pid_to_str (ptid_t) override;
483
484 const char *extra_thread_info (struct thread_info *) override;
485
486 ptid_t get_ada_task_ptid (long lwp, long thread) override;
487
488 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
489 int handle_len,
490 inferior *inf) override;
491
492 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
493 override;
494
495 void stop (ptid_t) override;
496
497 void interrupt () override;
498
499 void pass_ctrlc () override;
500
501 enum target_xfer_status xfer_partial (enum target_object object,
502 const char *annex,
503 gdb_byte *readbuf,
504 const gdb_byte *writebuf,
505 ULONGEST offset, ULONGEST len,
506 ULONGEST *xfered_len) override;
507
508 ULONGEST get_memory_xfer_limit () override;
509
510 void rcmd (const char *command, struct ui_file *output) override;
511
512 char *pid_to_exec_file (int pid) override;
513
514 void log_command (const char *cmd) override
515 {
516 serial_log_command (this, cmd);
517 }
518
519 CORE_ADDR get_thread_local_address (ptid_t ptid,
520 CORE_ADDR load_module_addr,
521 CORE_ADDR offset) override;
522
523 bool can_execute_reverse () override;
524
525 std::vector<mem_region> memory_map () override;
526
527 void flash_erase (ULONGEST address, LONGEST length) override;
528
529 void flash_done () override;
530
531 const struct target_desc *read_description () override;
532
533 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
534 const gdb_byte *pattern, ULONGEST pattern_len,
535 CORE_ADDR *found_addrp) override;
536
537 bool can_async_p () override;
538
539 bool is_async_p () override;
540
541 void async (int) override;
542
543 int async_wait_fd () override;
544
545 void thread_events (int) override;
546
547 int can_do_single_step () override;
548
549 void terminal_inferior () override;
550
551 void terminal_ours () override;
552
553 bool supports_non_stop () override;
554
555 bool supports_multi_process () override;
556
557 bool supports_disable_randomization () override;
558
559 bool filesystem_is_local () override;
560
561
562 int fileio_open (struct inferior *inf, const char *filename,
563 int flags, int mode, int warn_if_slow,
564 int *target_errno) override;
565
566 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
567 ULONGEST offset, int *target_errno) override;
568
569 int fileio_pread (int fd, gdb_byte *read_buf, int len,
570 ULONGEST offset, int *target_errno) override;
571
572 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
573
574 int fileio_close (int fd, int *target_errno) override;
575
576 int fileio_unlink (struct inferior *inf,
577 const char *filename,
578 int *target_errno) override;
579
580 gdb::optional<std::string>
581 fileio_readlink (struct inferior *inf,
582 const char *filename,
583 int *target_errno) override;
584
585 bool supports_enable_disable_tracepoint () override;
586
587 bool supports_string_tracing () override;
588
589 bool supports_evaluation_of_breakpoint_conditions () override;
590
591 bool can_run_breakpoint_commands () override;
592
593 void trace_init () override;
594
595 void download_tracepoint (struct bp_location *location) override;
596
597 bool can_download_tracepoint () override;
598
599 void download_trace_state_variable (const trace_state_variable &tsv) override;
600
601 void enable_tracepoint (struct bp_location *location) override;
602
603 void disable_tracepoint (struct bp_location *location) override;
604
605 void trace_set_readonly_regions () override;
606
607 void trace_start () override;
608
609 int get_trace_status (struct trace_status *ts) override;
610
611 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
612 override;
613
614 void trace_stop () override;
615
616 int trace_find (enum trace_find_type type, int num,
617 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
618
619 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
620
621 int save_trace_data (const char *filename) override;
622
623 int upload_tracepoints (struct uploaded_tp **utpp) override;
624
625 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
626
627 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
628
629 int get_min_fast_tracepoint_insn_len () override;
630
631 void set_disconnected_tracing (int val) override;
632
633 void set_circular_trace_buffer (int val) override;
634
635 void set_trace_buffer_size (LONGEST val) override;
636
637 bool set_trace_notes (const char *user, const char *notes,
638 const char *stopnotes) override;
639
640 int core_of_thread (ptid_t ptid) override;
641
642 int verify_memory (const gdb_byte *data,
643 CORE_ADDR memaddr, ULONGEST size) override;
644
645
646 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
647
648 void set_permissions () override;
649
650 bool static_tracepoint_marker_at (CORE_ADDR,
651 struct static_tracepoint_marker *marker)
652 override;
653
654 std::vector<static_tracepoint_marker>
655 static_tracepoint_markers_by_strid (const char *id) override;
656
657 traceframe_info_up traceframe_info () override;
658
659 bool use_agent (bool use) override;
660 bool can_use_agent () override;
661
662 struct btrace_target_info *enable_btrace (ptid_t ptid,
663 const struct btrace_config *conf) override;
664
665 void disable_btrace (struct btrace_target_info *tinfo) override;
666
667 void teardown_btrace (struct btrace_target_info *tinfo) override;
668
669 enum btrace_error read_btrace (struct btrace_data *data,
670 struct btrace_target_info *btinfo,
671 enum btrace_read_type type) override;
672
673 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
674 bool augmented_libraries_svr4_read () override;
675 int follow_fork (int, int) override;
676 void follow_exec (struct inferior *, const char *) override;
677 int insert_fork_catchpoint (int) override;
678 int remove_fork_catchpoint (int) override;
679 int insert_vfork_catchpoint (int) override;
680 int remove_vfork_catchpoint (int) override;
681 int insert_exec_catchpoint (int) override;
682 int remove_exec_catchpoint (int) override;
683 enum exec_direction_kind execution_direction () override;
684
685 public: /* Remote specific methods. */
686
687 void remote_download_command_source (int num, ULONGEST addr,
688 struct command_line *cmds);
689
690 void remote_file_put (const char *local_file, const char *remote_file,
691 int from_tty);
692 void remote_file_get (const char *remote_file, const char *local_file,
693 int from_tty);
694 void remote_file_delete (const char *remote_file, int from_tty);
695
696 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
697 ULONGEST offset, int *remote_errno);
698 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
699 ULONGEST offset, int *remote_errno);
700 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
701 ULONGEST offset, int *remote_errno);
702
703 int remote_hostio_send_command (int command_bytes, int which_packet,
704 int *remote_errno, char **attachment,
705 int *attachment_len);
706 int remote_hostio_set_filesystem (struct inferior *inf,
707 int *remote_errno);
708 /* We should get rid of this and use fileio_open directly. */
709 int remote_hostio_open (struct inferior *inf, const char *filename,
710 int flags, int mode, int warn_if_slow,
711 int *remote_errno);
712 int remote_hostio_close (int fd, int *remote_errno);
713
714 int remote_hostio_unlink (inferior *inf, const char *filename,
715 int *remote_errno);
716
717 struct remote_state *get_remote_state ();
718
719 long get_remote_packet_size (void);
720 long get_memory_packet_size (struct memory_packet_config *config);
721
722 long get_memory_write_packet_size ();
723 long get_memory_read_packet_size ();
724
725 char *append_pending_thread_resumptions (char *p, char *endp,
726 ptid_t ptid);
727 static void open_1 (const char *name, int from_tty, int extended_p);
728 void start_remote (int from_tty, int extended_p);
729 void remote_detach_1 (struct inferior *inf, int from_tty);
730
731 char *append_resumption (char *p, char *endp,
732 ptid_t ptid, int step, gdb_signal siggnal);
733 int remote_resume_with_vcont (ptid_t ptid, int step,
734 gdb_signal siggnal);
735
736 void add_current_inferior_and_thread (char *wait_status);
737
738 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
739 int options);
740 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
741 int options);
742
743 ptid_t process_stop_reply (struct stop_reply *stop_reply,
744 target_waitstatus *status);
745
746 void remote_notice_new_inferior (ptid_t currthread, int executing);
747
748 void process_initial_stop_replies (int from_tty);
749
750 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
751
752 void btrace_sync_conf (const btrace_config *conf);
753
754 void remote_btrace_maybe_reopen ();
755
756 void remove_new_fork_children (threads_listing_context *context);
757 void kill_new_fork_children (int pid);
758 void discard_pending_stop_replies (struct inferior *inf);
759 int stop_reply_queue_length ();
760
761 void check_pending_events_prevent_wildcard_vcont
762 (int *may_global_wildcard_vcont);
763
764 void discard_pending_stop_replies_in_queue ();
765 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
766 struct stop_reply *queued_stop_reply (ptid_t ptid);
767 int peek_stop_reply (ptid_t ptid);
768 void remote_parse_stop_reply (const char *buf, stop_reply *event);
769
770 void remote_stop_ns (ptid_t ptid);
771 void remote_interrupt_as ();
772 void remote_interrupt_ns ();
773
774 char *remote_get_noisy_reply ();
775 int remote_query_attached (int pid);
776 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
777 int try_open_exec);
778
779 ptid_t remote_current_thread (ptid_t oldpid);
780 ptid_t get_current_thread (char *wait_status);
781
782 void set_thread (ptid_t ptid, int gen);
783 void set_general_thread (ptid_t ptid);
784 void set_continue_thread (ptid_t ptid);
785 void set_general_process ();
786
787 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
788
789 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
790 gdb_ext_thread_info *info);
791 int remote_get_threadinfo (threadref *threadid, int fieldset,
792 gdb_ext_thread_info *info);
793
794 int parse_threadlist_response (char *pkt, int result_limit,
795 threadref *original_echo,
796 threadref *resultlist,
797 int *doneflag);
798 int remote_get_threadlist (int startflag, threadref *nextthread,
799 int result_limit, int *done, int *result_count,
800 threadref *threadlist);
801
802 int remote_threadlist_iterator (rmt_thread_action stepfunction,
803 void *context, int looplimit);
804
805 int remote_get_threads_with_ql (threads_listing_context *context);
806 int remote_get_threads_with_qxfer (threads_listing_context *context);
807 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
808
809 void extended_remote_restart ();
810
811 void get_offsets ();
812
813 void remote_check_symbols ();
814
815 void remote_supported_packet (const struct protocol_feature *feature,
816 enum packet_support support,
817 const char *argument);
818
819 void remote_query_supported ();
820
821 void remote_packet_size (const protocol_feature *feature,
822 packet_support support, const char *value);
823
824 void remote_serial_quit_handler ();
825
826 void remote_detach_pid (int pid);
827
828 void remote_vcont_probe ();
829
830 void remote_resume_with_hc (ptid_t ptid, int step,
831 gdb_signal siggnal);
832
833 void send_interrupt_sequence ();
834 void interrupt_query ();
835
836 void remote_notif_get_pending_events (notif_client *nc);
837
838 int fetch_register_using_p (struct regcache *regcache,
839 packet_reg *reg);
840 int send_g_packet ();
841 void process_g_packet (struct regcache *regcache);
842 void fetch_registers_using_g (struct regcache *regcache);
843 int store_register_using_P (const struct regcache *regcache,
844 packet_reg *reg);
845 void store_registers_using_G (const struct regcache *regcache);
846
847 void set_remote_traceframe ();
848
849 void check_binary_download (CORE_ADDR addr);
850
851 target_xfer_status remote_write_bytes_aux (const char *header,
852 CORE_ADDR memaddr,
853 const gdb_byte *myaddr,
854 ULONGEST len_units,
855 int unit_size,
856 ULONGEST *xfered_len_units,
857 char packet_format,
858 int use_length);
859
860 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
861 const gdb_byte *myaddr, ULONGEST len,
862 int unit_size, ULONGEST *xfered_len);
863
864 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
865 ULONGEST len_units,
866 int unit_size, ULONGEST *xfered_len_units);
867
868 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
869 ULONGEST memaddr,
870 ULONGEST len,
871 int unit_size,
872 ULONGEST *xfered_len);
873
874 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
875 gdb_byte *myaddr, ULONGEST len,
876 int unit_size,
877 ULONGEST *xfered_len);
878
879 packet_result remote_send_printf (const char *format, ...)
880 ATTRIBUTE_PRINTF (2, 3);
881
882 target_xfer_status remote_flash_write (ULONGEST address,
883 ULONGEST length, ULONGEST *xfered_len,
884 const gdb_byte *data);
885
886 int readchar (int timeout);
887
888 void remote_serial_write (const char *str, int len);
889
890 int putpkt (const char *buf);
891 int putpkt_binary (const char *buf, int cnt);
892
893 int putpkt (const gdb::char_vector &buf)
894 {
895 return putpkt (buf.data ());
896 }
897
898 void skip_frame ();
899 long read_frame (gdb::char_vector *buf_p);
900 void getpkt (gdb::char_vector *buf, int forever);
901 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
902 int expecting_notif, int *is_notif);
903 int getpkt_sane (gdb::char_vector *buf, int forever);
904 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
905 int *is_notif);
906 int remote_vkill (int pid);
907 void remote_kill_k ();
908
909 void extended_remote_disable_randomization (int val);
910 int extended_remote_run (const std::string &args);
911
912 void send_environment_packet (const char *action,
913 const char *packet,
914 const char *value);
915
916 void extended_remote_environment_support ();
917 void extended_remote_set_inferior_cwd ();
918
919 target_xfer_status remote_write_qxfer (const char *object_name,
920 const char *annex,
921 const gdb_byte *writebuf,
922 ULONGEST offset, LONGEST len,
923 ULONGEST *xfered_len,
924 struct packet_config *packet);
925
926 target_xfer_status remote_read_qxfer (const char *object_name,
927 const char *annex,
928 gdb_byte *readbuf, ULONGEST offset,
929 LONGEST len,
930 ULONGEST *xfered_len,
931 struct packet_config *packet);
932
933 void push_stop_reply (struct stop_reply *new_event);
934
935 bool vcont_r_supported ();
936
937 void packet_command (const char *args, int from_tty);
938
939 private: /* data fields */
940
941 /* The remote state. Don't reference this directly. Use the
942 get_remote_state method instead. */
943 remote_state m_remote_state;
944 };
945
946 static const target_info extended_remote_target_info = {
947 "extended-remote",
948 N_("Extended remote serial target in gdb-specific protocol"),
949 remote_doc
950 };
951
952 /* Set up the extended remote target by extending the standard remote
953 target and adding to it. */
954
955 class extended_remote_target final : public remote_target
956 {
957 public:
958 const target_info &info () const override
959 { return extended_remote_target_info; }
960
961 /* Open an extended-remote connection. */
962 static void open (const char *, int);
963
964 bool can_create_inferior () override { return true; }
965 void create_inferior (const char *, const std::string &,
966 char **, int) override;
967
968 void detach (inferior *, int) override;
969
970 bool can_attach () override { return true; }
971 void attach (const char *, int) override;
972
973 void post_attach (int) override;
974 bool supports_disable_randomization () override;
975 };
976
977 /* Per-program-space data key. */
978 static const struct program_space_key<char, gdb::xfree_deleter<char>>
979 remote_pspace_data;
980
981 /* The variable registered as the control variable used by the
982 remote exec-file commands. While the remote exec-file setting is
983 per-program-space, the set/show machinery uses this as the
984 location of the remote exec-file value. */
985 static char *remote_exec_file_var;
986
987 /* The size to align memory write packets, when practical. The protocol
988 does not guarantee any alignment, and gdb will generate short
989 writes and unaligned writes, but even as a best-effort attempt this
990 can improve bulk transfers. For instance, if a write is misaligned
991 relative to the target's data bus, the stub may need to make an extra
992 round trip fetching data from the target. This doesn't make a
993 huge difference, but it's easy to do, so we try to be helpful.
994
995 The alignment chosen is arbitrary; usually data bus width is
996 important here, not the possibly larger cache line size. */
997 enum { REMOTE_ALIGN_WRITES = 16 };
998
999 /* Prototypes for local functions. */
1000
1001 static int hexnumlen (ULONGEST num);
1002
1003 static int stubhex (int ch);
1004
1005 static int hexnumstr (char *, ULONGEST);
1006
1007 static int hexnumnstr (char *, ULONGEST, int);
1008
1009 static CORE_ADDR remote_address_masked (CORE_ADDR);
1010
1011 static void print_packet (const char *);
1012
1013 static int stub_unpack_int (char *buff, int fieldlength);
1014
1015 struct packet_config;
1016
1017 static void show_packet_config_cmd (struct packet_config *config);
1018
1019 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1020 int from_tty,
1021 struct cmd_list_element *c,
1022 const char *value);
1023
1024 static ptid_t read_ptid (const char *buf, const char **obuf);
1025
1026 static void remote_async_inferior_event_handler (gdb_client_data);
1027
1028 static bool remote_read_description_p (struct target_ops *target);
1029
1030 static void remote_console_output (const char *msg);
1031
1032 static void remote_btrace_reset (remote_state *rs);
1033
1034 static void remote_unpush_and_throw (remote_target *target);
1035
1036 /* For "remote". */
1037
1038 static struct cmd_list_element *remote_cmdlist;
1039
1040 /* For "set remote" and "show remote". */
1041
1042 static struct cmd_list_element *remote_set_cmdlist;
1043 static struct cmd_list_element *remote_show_cmdlist;
1044
1045 /* Controls whether GDB is willing to use range stepping. */
1046
1047 static bool use_range_stepping = true;
1048
1049 /* Private data that we'll store in (struct thread_info)->priv. */
1050 struct remote_thread_info : public private_thread_info
1051 {
1052 std::string extra;
1053 std::string name;
1054 int core = -1;
1055
1056 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1057 sequence of bytes. */
1058 gdb::byte_vector thread_handle;
1059
1060 /* Whether the target stopped for a breakpoint/watchpoint. */
1061 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1062
1063 /* This is set to the data address of the access causing the target
1064 to stop for a watchpoint. */
1065 CORE_ADDR watch_data_address = 0;
1066
1067 /* Fields used by the vCont action coalescing implemented in
1068 remote_resume / remote_commit_resume. remote_resume stores each
1069 thread's last resume request in these fields, so that a later
1070 remote_commit_resume knows which is the proper action for this
1071 thread to include in the vCont packet. */
1072
1073 /* True if the last target_resume call for this thread was a step
1074 request, false if a continue request. */
1075 int last_resume_step = 0;
1076
1077 /* The signal specified in the last target_resume call for this
1078 thread. */
1079 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1080
1081 /* Whether this thread was already vCont-resumed on the remote
1082 side. */
1083 int vcont_resumed = 0;
1084 };
1085
1086 remote_state::remote_state ()
1087 : buf (400)
1088 {
1089 }
1090
1091 remote_state::~remote_state ()
1092 {
1093 xfree (this->last_pass_packet);
1094 xfree (this->last_program_signals_packet);
1095 xfree (this->finished_object);
1096 xfree (this->finished_annex);
1097 }
1098
1099 /* Utility: generate error from an incoming stub packet. */
1100 static void
1101 trace_error (char *buf)
1102 {
1103 if (*buf++ != 'E')
1104 return; /* not an error msg */
1105 switch (*buf)
1106 {
1107 case '1': /* malformed packet error */
1108 if (*++buf == '0') /* general case: */
1109 error (_("remote.c: error in outgoing packet."));
1110 else
1111 error (_("remote.c: error in outgoing packet at field #%ld."),
1112 strtol (buf, NULL, 16));
1113 default:
1114 error (_("Target returns error code '%s'."), buf);
1115 }
1116 }
1117
1118 /* Utility: wait for reply from stub, while accepting "O" packets. */
1119
1120 char *
1121 remote_target::remote_get_noisy_reply ()
1122 {
1123 struct remote_state *rs = get_remote_state ();
1124
1125 do /* Loop on reply from remote stub. */
1126 {
1127 char *buf;
1128
1129 QUIT; /* Allow user to bail out with ^C. */
1130 getpkt (&rs->buf, 0);
1131 buf = rs->buf.data ();
1132 if (buf[0] == 'E')
1133 trace_error (buf);
1134 else if (startswith (buf, "qRelocInsn:"))
1135 {
1136 ULONGEST ul;
1137 CORE_ADDR from, to, org_to;
1138 const char *p, *pp;
1139 int adjusted_size = 0;
1140 int relocated = 0;
1141
1142 p = buf + strlen ("qRelocInsn:");
1143 pp = unpack_varlen_hex (p, &ul);
1144 if (*pp != ';')
1145 error (_("invalid qRelocInsn packet: %s"), buf);
1146 from = ul;
1147
1148 p = pp + 1;
1149 unpack_varlen_hex (p, &ul);
1150 to = ul;
1151
1152 org_to = to;
1153
1154 try
1155 {
1156 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1157 relocated = 1;
1158 }
1159 catch (const gdb_exception &ex)
1160 {
1161 if (ex.error == MEMORY_ERROR)
1162 {
1163 /* Propagate memory errors silently back to the
1164 target. The stub may have limited the range of
1165 addresses we can write to, for example. */
1166 }
1167 else
1168 {
1169 /* Something unexpectedly bad happened. Be verbose
1170 so we can tell what, and propagate the error back
1171 to the stub, so it doesn't get stuck waiting for
1172 a response. */
1173 exception_fprintf (gdb_stderr, ex,
1174 _("warning: relocating instruction: "));
1175 }
1176 putpkt ("E01");
1177 }
1178
1179 if (relocated)
1180 {
1181 adjusted_size = to - org_to;
1182
1183 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1184 putpkt (buf);
1185 }
1186 }
1187 else if (buf[0] == 'O' && buf[1] != 'K')
1188 remote_console_output (buf + 1); /* 'O' message from stub */
1189 else
1190 return buf; /* Here's the actual reply. */
1191 }
1192 while (1);
1193 }
1194
1195 struct remote_arch_state *
1196 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1197 {
1198 remote_arch_state *rsa;
1199
1200 auto it = this->m_arch_states.find (gdbarch);
1201 if (it == this->m_arch_states.end ())
1202 {
1203 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1204 std::forward_as_tuple (gdbarch),
1205 std::forward_as_tuple (gdbarch));
1206 rsa = &p.first->second;
1207
1208 /* Make sure that the packet buffer is plenty big enough for
1209 this architecture. */
1210 if (this->buf.size () < rsa->remote_packet_size)
1211 this->buf.resize (2 * rsa->remote_packet_size);
1212 }
1213 else
1214 rsa = &it->second;
1215
1216 return rsa;
1217 }
1218
1219 /* Fetch the global remote target state. */
1220
1221 remote_state *
1222 remote_target::get_remote_state ()
1223 {
1224 /* Make sure that the remote architecture state has been
1225 initialized, because doing so might reallocate rs->buf. Any
1226 function which calls getpkt also needs to be mindful of changes
1227 to rs->buf, but this call limits the number of places which run
1228 into trouble. */
1229 m_remote_state.get_remote_arch_state (target_gdbarch ());
1230
1231 return &m_remote_state;
1232 }
1233
1234 /* Fetch the remote exec-file from the current program space. */
1235
1236 static const char *
1237 get_remote_exec_file (void)
1238 {
1239 char *remote_exec_file;
1240
1241 remote_exec_file = remote_pspace_data.get (current_program_space);
1242 if (remote_exec_file == NULL)
1243 return "";
1244
1245 return remote_exec_file;
1246 }
1247
1248 /* Set the remote exec file for PSPACE. */
1249
1250 static void
1251 set_pspace_remote_exec_file (struct program_space *pspace,
1252 const char *remote_exec_file)
1253 {
1254 char *old_file = remote_pspace_data.get (pspace);
1255
1256 xfree (old_file);
1257 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1258 }
1259
1260 /* The "set/show remote exec-file" set command hook. */
1261
1262 static void
1263 set_remote_exec_file (const char *ignored, int from_tty,
1264 struct cmd_list_element *c)
1265 {
1266 gdb_assert (remote_exec_file_var != NULL);
1267 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1268 }
1269
1270 /* The "set/show remote exec-file" show command hook. */
1271
1272 static void
1273 show_remote_exec_file (struct ui_file *file, int from_tty,
1274 struct cmd_list_element *cmd, const char *value)
1275 {
1276 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1277 }
1278
1279 static int
1280 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1281 {
1282 int regnum, num_remote_regs, offset;
1283 struct packet_reg **remote_regs;
1284
1285 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1286 {
1287 struct packet_reg *r = &regs[regnum];
1288
1289 if (register_size (gdbarch, regnum) == 0)
1290 /* Do not try to fetch zero-sized (placeholder) registers. */
1291 r->pnum = -1;
1292 else
1293 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1294
1295 r->regnum = regnum;
1296 }
1297
1298 /* Define the g/G packet format as the contents of each register
1299 with a remote protocol number, in order of ascending protocol
1300 number. */
1301
1302 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1303 for (num_remote_regs = 0, regnum = 0;
1304 regnum < gdbarch_num_regs (gdbarch);
1305 regnum++)
1306 if (regs[regnum].pnum != -1)
1307 remote_regs[num_remote_regs++] = &regs[regnum];
1308
1309 std::sort (remote_regs, remote_regs + num_remote_regs,
1310 [] (const packet_reg *a, const packet_reg *b)
1311 { return a->pnum < b->pnum; });
1312
1313 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1314 {
1315 remote_regs[regnum]->in_g_packet = 1;
1316 remote_regs[regnum]->offset = offset;
1317 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1318 }
1319
1320 return offset;
1321 }
1322
1323 /* Given the architecture described by GDBARCH, return the remote
1324 protocol register's number and the register's offset in the g/G
1325 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1326 If the target does not have a mapping for REGNUM, return false,
1327 otherwise, return true. */
1328
1329 int
1330 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1331 int *pnum, int *poffset)
1332 {
1333 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1334
1335 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1336
1337 map_regcache_remote_table (gdbarch, regs.data ());
1338
1339 *pnum = regs[regnum].pnum;
1340 *poffset = regs[regnum].offset;
1341
1342 return *pnum != -1;
1343 }
1344
1345 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1346 {
1347 /* Use the architecture to build a regnum<->pnum table, which will be
1348 1:1 unless a feature set specifies otherwise. */
1349 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1350
1351 /* Record the maximum possible size of the g packet - it may turn out
1352 to be smaller. */
1353 this->sizeof_g_packet
1354 = map_regcache_remote_table (gdbarch, this->regs.get ());
1355
1356 /* Default maximum number of characters in a packet body. Many
1357 remote stubs have a hardwired buffer size of 400 bytes
1358 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1359 as the maximum packet-size to ensure that the packet and an extra
1360 NUL character can always fit in the buffer. This stops GDB
1361 trashing stubs that try to squeeze an extra NUL into what is
1362 already a full buffer (As of 1999-12-04 that was most stubs). */
1363 this->remote_packet_size = 400 - 1;
1364
1365 /* This one is filled in when a ``g'' packet is received. */
1366 this->actual_register_packet_size = 0;
1367
1368 /* Should rsa->sizeof_g_packet needs more space than the
1369 default, adjust the size accordingly. Remember that each byte is
1370 encoded as two characters. 32 is the overhead for the packet
1371 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1372 (``$NN:G...#NN'') is a better guess, the below has been padded a
1373 little. */
1374 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1375 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1376 }
1377
1378 /* Get a pointer to the current remote target. If not connected to a
1379 remote target, return NULL. */
1380
1381 static remote_target *
1382 get_current_remote_target ()
1383 {
1384 target_ops *proc_target = current_inferior ()->process_target ();
1385 return dynamic_cast<remote_target *> (proc_target);
1386 }
1387
1388 /* Return the current allowed size of a remote packet. This is
1389 inferred from the current architecture, and should be used to
1390 limit the length of outgoing packets. */
1391 long
1392 remote_target::get_remote_packet_size ()
1393 {
1394 struct remote_state *rs = get_remote_state ();
1395 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1396
1397 if (rs->explicit_packet_size)
1398 return rs->explicit_packet_size;
1399
1400 return rsa->remote_packet_size;
1401 }
1402
1403 static struct packet_reg *
1404 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1405 long regnum)
1406 {
1407 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1408 return NULL;
1409 else
1410 {
1411 struct packet_reg *r = &rsa->regs[regnum];
1412
1413 gdb_assert (r->regnum == regnum);
1414 return r;
1415 }
1416 }
1417
1418 static struct packet_reg *
1419 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1420 LONGEST pnum)
1421 {
1422 int i;
1423
1424 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1425 {
1426 struct packet_reg *r = &rsa->regs[i];
1427
1428 if (r->pnum == pnum)
1429 return r;
1430 }
1431 return NULL;
1432 }
1433
1434 /* Allow the user to specify what sequence to send to the remote
1435 when he requests a program interruption: Although ^C is usually
1436 what remote systems expect (this is the default, here), it is
1437 sometimes preferable to send a break. On other systems such
1438 as the Linux kernel, a break followed by g, which is Magic SysRq g
1439 is required in order to interrupt the execution. */
1440 const char interrupt_sequence_control_c[] = "Ctrl-C";
1441 const char interrupt_sequence_break[] = "BREAK";
1442 const char interrupt_sequence_break_g[] = "BREAK-g";
1443 static const char *const interrupt_sequence_modes[] =
1444 {
1445 interrupt_sequence_control_c,
1446 interrupt_sequence_break,
1447 interrupt_sequence_break_g,
1448 NULL
1449 };
1450 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1451
1452 static void
1453 show_interrupt_sequence (struct ui_file *file, int from_tty,
1454 struct cmd_list_element *c,
1455 const char *value)
1456 {
1457 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1458 fprintf_filtered (file,
1459 _("Send the ASCII ETX character (Ctrl-c) "
1460 "to the remote target to interrupt the "
1461 "execution of the program.\n"));
1462 else if (interrupt_sequence_mode == interrupt_sequence_break)
1463 fprintf_filtered (file,
1464 _("send a break signal to the remote target "
1465 "to interrupt the execution of the program.\n"));
1466 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1467 fprintf_filtered (file,
1468 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1469 "the remote target to interrupt the execution "
1470 "of Linux kernel.\n"));
1471 else
1472 internal_error (__FILE__, __LINE__,
1473 _("Invalid value for interrupt_sequence_mode: %s."),
1474 interrupt_sequence_mode);
1475 }
1476
1477 /* This boolean variable specifies whether interrupt_sequence is sent
1478 to the remote target when gdb connects to it.
1479 This is mostly needed when you debug the Linux kernel: The Linux kernel
1480 expects BREAK g which is Magic SysRq g for connecting gdb. */
1481 static bool interrupt_on_connect = false;
1482
1483 /* This variable is used to implement the "set/show remotebreak" commands.
1484 Since these commands are now deprecated in favor of "set/show remote
1485 interrupt-sequence", it no longer has any effect on the code. */
1486 static bool remote_break;
1487
1488 static void
1489 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1490 {
1491 if (remote_break)
1492 interrupt_sequence_mode = interrupt_sequence_break;
1493 else
1494 interrupt_sequence_mode = interrupt_sequence_control_c;
1495 }
1496
1497 static void
1498 show_remotebreak (struct ui_file *file, int from_tty,
1499 struct cmd_list_element *c,
1500 const char *value)
1501 {
1502 }
1503
1504 /* This variable sets the number of bits in an address that are to be
1505 sent in a memory ("M" or "m") packet. Normally, after stripping
1506 leading zeros, the entire address would be sent. This variable
1507 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1508 initial implementation of remote.c restricted the address sent in
1509 memory packets to ``host::sizeof long'' bytes - (typically 32
1510 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1511 address was never sent. Since fixing this bug may cause a break in
1512 some remote targets this variable is principally provided to
1513 facilitate backward compatibility. */
1514
1515 static unsigned int remote_address_size;
1516
1517 \f
1518 /* User configurable variables for the number of characters in a
1519 memory read/write packet. MIN (rsa->remote_packet_size,
1520 rsa->sizeof_g_packet) is the default. Some targets need smaller
1521 values (fifo overruns, et.al.) and some users need larger values
1522 (speed up transfers). The variables ``preferred_*'' (the user
1523 request), ``current_*'' (what was actually set) and ``forced_*''
1524 (Positive - a soft limit, negative - a hard limit). */
1525
1526 struct memory_packet_config
1527 {
1528 const char *name;
1529 long size;
1530 int fixed_p;
1531 };
1532
1533 /* The default max memory-write-packet-size, when the setting is
1534 "fixed". The 16k is historical. (It came from older GDB's using
1535 alloca for buffers and the knowledge (folklore?) that some hosts
1536 don't cope very well with large alloca calls.) */
1537 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1538
1539 /* The minimum remote packet size for memory transfers. Ensures we
1540 can write at least one byte. */
1541 #define MIN_MEMORY_PACKET_SIZE 20
1542
1543 /* Get the memory packet size, assuming it is fixed. */
1544
1545 static long
1546 get_fixed_memory_packet_size (struct memory_packet_config *config)
1547 {
1548 gdb_assert (config->fixed_p);
1549
1550 if (config->size <= 0)
1551 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1552 else
1553 return config->size;
1554 }
1555
1556 /* Compute the current size of a read/write packet. Since this makes
1557 use of ``actual_register_packet_size'' the computation is dynamic. */
1558
1559 long
1560 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1561 {
1562 struct remote_state *rs = get_remote_state ();
1563 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1564
1565 long what_they_get;
1566 if (config->fixed_p)
1567 what_they_get = get_fixed_memory_packet_size (config);
1568 else
1569 {
1570 what_they_get = get_remote_packet_size ();
1571 /* Limit the packet to the size specified by the user. */
1572 if (config->size > 0
1573 && what_they_get > config->size)
1574 what_they_get = config->size;
1575
1576 /* Limit it to the size of the targets ``g'' response unless we have
1577 permission from the stub to use a larger packet size. */
1578 if (rs->explicit_packet_size == 0
1579 && rsa->actual_register_packet_size > 0
1580 && what_they_get > rsa->actual_register_packet_size)
1581 what_they_get = rsa->actual_register_packet_size;
1582 }
1583 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1584 what_they_get = MIN_MEMORY_PACKET_SIZE;
1585
1586 /* Make sure there is room in the global buffer for this packet
1587 (including its trailing NUL byte). */
1588 if (rs->buf.size () < what_they_get + 1)
1589 rs->buf.resize (2 * what_they_get);
1590
1591 return what_they_get;
1592 }
1593
1594 /* Update the size of a read/write packet. If they user wants
1595 something really big then do a sanity check. */
1596
1597 static void
1598 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1599 {
1600 int fixed_p = config->fixed_p;
1601 long size = config->size;
1602
1603 if (args == NULL)
1604 error (_("Argument required (integer, `fixed' or `limited')."));
1605 else if (strcmp (args, "hard") == 0
1606 || strcmp (args, "fixed") == 0)
1607 fixed_p = 1;
1608 else if (strcmp (args, "soft") == 0
1609 || strcmp (args, "limit") == 0)
1610 fixed_p = 0;
1611 else
1612 {
1613 char *end;
1614
1615 size = strtoul (args, &end, 0);
1616 if (args == end)
1617 error (_("Invalid %s (bad syntax)."), config->name);
1618
1619 /* Instead of explicitly capping the size of a packet to or
1620 disallowing it, the user is allowed to set the size to
1621 something arbitrarily large. */
1622 }
1623
1624 /* Extra checks? */
1625 if (fixed_p && !config->fixed_p)
1626 {
1627 /* So that the query shows the correct value. */
1628 long query_size = (size <= 0
1629 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1630 : size);
1631
1632 if (! query (_("The target may not be able to correctly handle a %s\n"
1633 "of %ld bytes. Change the packet size? "),
1634 config->name, query_size))
1635 error (_("Packet size not changed."));
1636 }
1637 /* Update the config. */
1638 config->fixed_p = fixed_p;
1639 config->size = size;
1640 }
1641
1642 static void
1643 show_memory_packet_size (struct memory_packet_config *config)
1644 {
1645 if (config->size == 0)
1646 printf_filtered (_("The %s is 0 (default). "), config->name);
1647 else
1648 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1649 if (config->fixed_p)
1650 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1651 get_fixed_memory_packet_size (config));
1652 else
1653 {
1654 remote_target *remote = get_current_remote_target ();
1655
1656 if (remote != NULL)
1657 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1658 remote->get_memory_packet_size (config));
1659 else
1660 puts_filtered ("The actual limit will be further reduced "
1661 "dependent on the target.\n");
1662 }
1663 }
1664
1665 /* FIXME: needs to be per-remote-target. */
1666 static struct memory_packet_config memory_write_packet_config =
1667 {
1668 "memory-write-packet-size",
1669 };
1670
1671 static void
1672 set_memory_write_packet_size (const char *args, int from_tty)
1673 {
1674 set_memory_packet_size (args, &memory_write_packet_config);
1675 }
1676
1677 static void
1678 show_memory_write_packet_size (const char *args, int from_tty)
1679 {
1680 show_memory_packet_size (&memory_write_packet_config);
1681 }
1682
1683 /* Show the number of hardware watchpoints that can be used. */
1684
1685 static void
1686 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1687 struct cmd_list_element *c,
1688 const char *value)
1689 {
1690 fprintf_filtered (file, _("The maximum number of target hardware "
1691 "watchpoints is %s.\n"), value);
1692 }
1693
1694 /* Show the length limit (in bytes) for hardware watchpoints. */
1695
1696 static void
1697 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1698 struct cmd_list_element *c,
1699 const char *value)
1700 {
1701 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1702 "hardware watchpoint is %s.\n"), value);
1703 }
1704
1705 /* Show the number of hardware breakpoints that can be used. */
1706
1707 static void
1708 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1709 struct cmd_list_element *c,
1710 const char *value)
1711 {
1712 fprintf_filtered (file, _("The maximum number of target hardware "
1713 "breakpoints is %s.\n"), value);
1714 }
1715
1716 /* Controls the maximum number of characters to display in the debug output
1717 for each remote packet. The remaining characters are omitted. */
1718
1719 static int remote_packet_max_chars = 512;
1720
1721 /* Show the maximum number of characters to display for each remote packet
1722 when remote debugging is enabled. */
1723
1724 static void
1725 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1726 struct cmd_list_element *c,
1727 const char *value)
1728 {
1729 fprintf_filtered (file, _("Number of remote packet characters to "
1730 "display is %s.\n"), value);
1731 }
1732
1733 long
1734 remote_target::get_memory_write_packet_size ()
1735 {
1736 return get_memory_packet_size (&memory_write_packet_config);
1737 }
1738
1739 /* FIXME: needs to be per-remote-target. */
1740 static struct memory_packet_config memory_read_packet_config =
1741 {
1742 "memory-read-packet-size",
1743 };
1744
1745 static void
1746 set_memory_read_packet_size (const char *args, int from_tty)
1747 {
1748 set_memory_packet_size (args, &memory_read_packet_config);
1749 }
1750
1751 static void
1752 show_memory_read_packet_size (const char *args, int from_tty)
1753 {
1754 show_memory_packet_size (&memory_read_packet_config);
1755 }
1756
1757 long
1758 remote_target::get_memory_read_packet_size ()
1759 {
1760 long size = get_memory_packet_size (&memory_read_packet_config);
1761
1762 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1763 extra buffer size argument before the memory read size can be
1764 increased beyond this. */
1765 if (size > get_remote_packet_size ())
1766 size = get_remote_packet_size ();
1767 return size;
1768 }
1769
1770 \f
1771
1772 struct packet_config
1773 {
1774 const char *name;
1775 const char *title;
1776
1777 /* If auto, GDB auto-detects support for this packet or feature,
1778 either through qSupported, or by trying the packet and looking
1779 at the response. If true, GDB assumes the target supports this
1780 packet. If false, the packet is disabled. Configs that don't
1781 have an associated command always have this set to auto. */
1782 enum auto_boolean detect;
1783
1784 /* Does the target support this packet? */
1785 enum packet_support support;
1786 };
1787
1788 static enum packet_support packet_config_support (struct packet_config *config);
1789 static enum packet_support packet_support (int packet);
1790
1791 static void
1792 show_packet_config_cmd (struct packet_config *config)
1793 {
1794 const char *support = "internal-error";
1795
1796 switch (packet_config_support (config))
1797 {
1798 case PACKET_ENABLE:
1799 support = "enabled";
1800 break;
1801 case PACKET_DISABLE:
1802 support = "disabled";
1803 break;
1804 case PACKET_SUPPORT_UNKNOWN:
1805 support = "unknown";
1806 break;
1807 }
1808 switch (config->detect)
1809 {
1810 case AUTO_BOOLEAN_AUTO:
1811 printf_filtered (_("Support for the `%s' packet "
1812 "is auto-detected, currently %s.\n"),
1813 config->name, support);
1814 break;
1815 case AUTO_BOOLEAN_TRUE:
1816 case AUTO_BOOLEAN_FALSE:
1817 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1818 config->name, support);
1819 break;
1820 }
1821 }
1822
1823 static void
1824 add_packet_config_cmd (struct packet_config *config, const char *name,
1825 const char *title, int legacy)
1826 {
1827 char *set_doc;
1828 char *show_doc;
1829 char *cmd_name;
1830
1831 config->name = name;
1832 config->title = title;
1833 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1834 name, title);
1835 show_doc = xstrprintf ("Show current use of remote "
1836 "protocol `%s' (%s) packet.",
1837 name, title);
1838 /* set/show TITLE-packet {auto,on,off} */
1839 cmd_name = xstrprintf ("%s-packet", title);
1840 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1841 &config->detect, set_doc,
1842 show_doc, NULL, /* help_doc */
1843 NULL,
1844 show_remote_protocol_packet_cmd,
1845 &remote_set_cmdlist, &remote_show_cmdlist);
1846 /* The command code copies the documentation strings. */
1847 xfree (set_doc);
1848 xfree (show_doc);
1849 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1850 if (legacy)
1851 {
1852 char *legacy_name;
1853
1854 legacy_name = xstrprintf ("%s-packet", name);
1855 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1856 &remote_set_cmdlist);
1857 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1858 &remote_show_cmdlist);
1859 }
1860 }
1861
1862 static enum packet_result
1863 packet_check_result (const char *buf)
1864 {
1865 if (buf[0] != '\0')
1866 {
1867 /* The stub recognized the packet request. Check that the
1868 operation succeeded. */
1869 if (buf[0] == 'E'
1870 && isxdigit (buf[1]) && isxdigit (buf[2])
1871 && buf[3] == '\0')
1872 /* "Enn" - definitely an error. */
1873 return PACKET_ERROR;
1874
1875 /* Always treat "E." as an error. This will be used for
1876 more verbose error messages, such as E.memtypes. */
1877 if (buf[0] == 'E' && buf[1] == '.')
1878 return PACKET_ERROR;
1879
1880 /* The packet may or may not be OK. Just assume it is. */
1881 return PACKET_OK;
1882 }
1883 else
1884 /* The stub does not support the packet. */
1885 return PACKET_UNKNOWN;
1886 }
1887
1888 static enum packet_result
1889 packet_check_result (const gdb::char_vector &buf)
1890 {
1891 return packet_check_result (buf.data ());
1892 }
1893
1894 static enum packet_result
1895 packet_ok (const char *buf, struct packet_config *config)
1896 {
1897 enum packet_result result;
1898
1899 if (config->detect != AUTO_BOOLEAN_TRUE
1900 && config->support == PACKET_DISABLE)
1901 internal_error (__FILE__, __LINE__,
1902 _("packet_ok: attempt to use a disabled packet"));
1903
1904 result = packet_check_result (buf);
1905 switch (result)
1906 {
1907 case PACKET_OK:
1908 case PACKET_ERROR:
1909 /* The stub recognized the packet request. */
1910 if (config->support == PACKET_SUPPORT_UNKNOWN)
1911 {
1912 if (remote_debug)
1913 fprintf_unfiltered (gdb_stdlog,
1914 "Packet %s (%s) is supported\n",
1915 config->name, config->title);
1916 config->support = PACKET_ENABLE;
1917 }
1918 break;
1919 case PACKET_UNKNOWN:
1920 /* The stub does not support the packet. */
1921 if (config->detect == AUTO_BOOLEAN_AUTO
1922 && config->support == PACKET_ENABLE)
1923 {
1924 /* If the stub previously indicated that the packet was
1925 supported then there is a protocol error. */
1926 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1927 config->name, config->title);
1928 }
1929 else if (config->detect == AUTO_BOOLEAN_TRUE)
1930 {
1931 /* The user set it wrong. */
1932 error (_("Enabled packet %s (%s) not recognized by stub"),
1933 config->name, config->title);
1934 }
1935
1936 if (remote_debug)
1937 fprintf_unfiltered (gdb_stdlog,
1938 "Packet %s (%s) is NOT supported\n",
1939 config->name, config->title);
1940 config->support = PACKET_DISABLE;
1941 break;
1942 }
1943
1944 return result;
1945 }
1946
1947 static enum packet_result
1948 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1949 {
1950 return packet_ok (buf.data (), config);
1951 }
1952
1953 enum {
1954 PACKET_vCont = 0,
1955 PACKET_X,
1956 PACKET_qSymbol,
1957 PACKET_P,
1958 PACKET_p,
1959 PACKET_Z0,
1960 PACKET_Z1,
1961 PACKET_Z2,
1962 PACKET_Z3,
1963 PACKET_Z4,
1964 PACKET_vFile_setfs,
1965 PACKET_vFile_open,
1966 PACKET_vFile_pread,
1967 PACKET_vFile_pwrite,
1968 PACKET_vFile_close,
1969 PACKET_vFile_unlink,
1970 PACKET_vFile_readlink,
1971 PACKET_vFile_fstat,
1972 PACKET_qXfer_auxv,
1973 PACKET_qXfer_features,
1974 PACKET_qXfer_exec_file,
1975 PACKET_qXfer_libraries,
1976 PACKET_qXfer_libraries_svr4,
1977 PACKET_qXfer_memory_map,
1978 PACKET_qXfer_osdata,
1979 PACKET_qXfer_threads,
1980 PACKET_qXfer_statictrace_read,
1981 PACKET_qXfer_traceframe_info,
1982 PACKET_qXfer_uib,
1983 PACKET_qGetTIBAddr,
1984 PACKET_qGetTLSAddr,
1985 PACKET_qSupported,
1986 PACKET_qTStatus,
1987 PACKET_QPassSignals,
1988 PACKET_QCatchSyscalls,
1989 PACKET_QProgramSignals,
1990 PACKET_QSetWorkingDir,
1991 PACKET_QStartupWithShell,
1992 PACKET_QEnvironmentHexEncoded,
1993 PACKET_QEnvironmentReset,
1994 PACKET_QEnvironmentUnset,
1995 PACKET_qCRC,
1996 PACKET_qSearch_memory,
1997 PACKET_vAttach,
1998 PACKET_vRun,
1999 PACKET_QStartNoAckMode,
2000 PACKET_vKill,
2001 PACKET_qXfer_siginfo_read,
2002 PACKET_qXfer_siginfo_write,
2003 PACKET_qAttached,
2004
2005 /* Support for conditional tracepoints. */
2006 PACKET_ConditionalTracepoints,
2007
2008 /* Support for target-side breakpoint conditions. */
2009 PACKET_ConditionalBreakpoints,
2010
2011 /* Support for target-side breakpoint commands. */
2012 PACKET_BreakpointCommands,
2013
2014 /* Support for fast tracepoints. */
2015 PACKET_FastTracepoints,
2016
2017 /* Support for static tracepoints. */
2018 PACKET_StaticTracepoints,
2019
2020 /* Support for installing tracepoints while a trace experiment is
2021 running. */
2022 PACKET_InstallInTrace,
2023
2024 PACKET_bc,
2025 PACKET_bs,
2026 PACKET_TracepointSource,
2027 PACKET_QAllow,
2028 PACKET_qXfer_fdpic,
2029 PACKET_QDisableRandomization,
2030 PACKET_QAgent,
2031 PACKET_QTBuffer_size,
2032 PACKET_Qbtrace_off,
2033 PACKET_Qbtrace_bts,
2034 PACKET_Qbtrace_pt,
2035 PACKET_qXfer_btrace,
2036
2037 /* Support for the QNonStop packet. */
2038 PACKET_QNonStop,
2039
2040 /* Support for the QThreadEvents packet. */
2041 PACKET_QThreadEvents,
2042
2043 /* Support for multi-process extensions. */
2044 PACKET_multiprocess_feature,
2045
2046 /* Support for enabling and disabling tracepoints while a trace
2047 experiment is running. */
2048 PACKET_EnableDisableTracepoints_feature,
2049
2050 /* Support for collecting strings using the tracenz bytecode. */
2051 PACKET_tracenz_feature,
2052
2053 /* Support for continuing to run a trace experiment while GDB is
2054 disconnected. */
2055 PACKET_DisconnectedTracing_feature,
2056
2057 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2058 PACKET_augmented_libraries_svr4_read_feature,
2059
2060 /* Support for the qXfer:btrace-conf:read packet. */
2061 PACKET_qXfer_btrace_conf,
2062
2063 /* Support for the Qbtrace-conf:bts:size packet. */
2064 PACKET_Qbtrace_conf_bts_size,
2065
2066 /* Support for swbreak+ feature. */
2067 PACKET_swbreak_feature,
2068
2069 /* Support for hwbreak+ feature. */
2070 PACKET_hwbreak_feature,
2071
2072 /* Support for fork events. */
2073 PACKET_fork_event_feature,
2074
2075 /* Support for vfork events. */
2076 PACKET_vfork_event_feature,
2077
2078 /* Support for the Qbtrace-conf:pt:size packet. */
2079 PACKET_Qbtrace_conf_pt_size,
2080
2081 /* Support for exec events. */
2082 PACKET_exec_event_feature,
2083
2084 /* Support for query supported vCont actions. */
2085 PACKET_vContSupported,
2086
2087 /* Support remote CTRL-C. */
2088 PACKET_vCtrlC,
2089
2090 /* Support TARGET_WAITKIND_NO_RESUMED. */
2091 PACKET_no_resumed,
2092
2093 PACKET_MAX
2094 };
2095
2096 /* FIXME: needs to be per-remote-target. Ignoring this for now,
2097 assuming all remote targets are the same server (thus all support
2098 the same packets). */
2099 static struct packet_config remote_protocol_packets[PACKET_MAX];
2100
2101 /* Returns the packet's corresponding "set remote foo-packet" command
2102 state. See struct packet_config for more details. */
2103
2104 static enum auto_boolean
2105 packet_set_cmd_state (int packet)
2106 {
2107 return remote_protocol_packets[packet].detect;
2108 }
2109
2110 /* Returns whether a given packet or feature is supported. This takes
2111 into account the state of the corresponding "set remote foo-packet"
2112 command, which may be used to bypass auto-detection. */
2113
2114 static enum packet_support
2115 packet_config_support (struct packet_config *config)
2116 {
2117 switch (config->detect)
2118 {
2119 case AUTO_BOOLEAN_TRUE:
2120 return PACKET_ENABLE;
2121 case AUTO_BOOLEAN_FALSE:
2122 return PACKET_DISABLE;
2123 case AUTO_BOOLEAN_AUTO:
2124 return config->support;
2125 default:
2126 gdb_assert_not_reached (_("bad switch"));
2127 }
2128 }
2129
2130 /* Same as packet_config_support, but takes the packet's enum value as
2131 argument. */
2132
2133 static enum packet_support
2134 packet_support (int packet)
2135 {
2136 struct packet_config *config = &remote_protocol_packets[packet];
2137
2138 return packet_config_support (config);
2139 }
2140
2141 static void
2142 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2143 struct cmd_list_element *c,
2144 const char *value)
2145 {
2146 struct packet_config *packet;
2147
2148 for (packet = remote_protocol_packets;
2149 packet < &remote_protocol_packets[PACKET_MAX];
2150 packet++)
2151 {
2152 if (&packet->detect == c->var)
2153 {
2154 show_packet_config_cmd (packet);
2155 return;
2156 }
2157 }
2158 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2159 c->name);
2160 }
2161
2162 /* Should we try one of the 'Z' requests? */
2163
2164 enum Z_packet_type
2165 {
2166 Z_PACKET_SOFTWARE_BP,
2167 Z_PACKET_HARDWARE_BP,
2168 Z_PACKET_WRITE_WP,
2169 Z_PACKET_READ_WP,
2170 Z_PACKET_ACCESS_WP,
2171 NR_Z_PACKET_TYPES
2172 };
2173
2174 /* For compatibility with older distributions. Provide a ``set remote
2175 Z-packet ...'' command that updates all the Z packet types. */
2176
2177 static enum auto_boolean remote_Z_packet_detect;
2178
2179 static void
2180 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2181 struct cmd_list_element *c)
2182 {
2183 int i;
2184
2185 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2186 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2187 }
2188
2189 static void
2190 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2191 struct cmd_list_element *c,
2192 const char *value)
2193 {
2194 int i;
2195
2196 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2197 {
2198 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2199 }
2200 }
2201
2202 /* Returns true if the multi-process extensions are in effect. */
2203
2204 static int
2205 remote_multi_process_p (struct remote_state *rs)
2206 {
2207 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2208 }
2209
2210 /* Returns true if fork events are supported. */
2211
2212 static int
2213 remote_fork_event_p (struct remote_state *rs)
2214 {
2215 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2216 }
2217
2218 /* Returns true if vfork events are supported. */
2219
2220 static int
2221 remote_vfork_event_p (struct remote_state *rs)
2222 {
2223 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2224 }
2225
2226 /* Returns true if exec events are supported. */
2227
2228 static int
2229 remote_exec_event_p (struct remote_state *rs)
2230 {
2231 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2232 }
2233
2234 /* Insert fork catchpoint target routine. If fork events are enabled
2235 then return success, nothing more to do. */
2236
2237 int
2238 remote_target::insert_fork_catchpoint (int pid)
2239 {
2240 struct remote_state *rs = get_remote_state ();
2241
2242 return !remote_fork_event_p (rs);
2243 }
2244
2245 /* Remove fork catchpoint target routine. Nothing to do, just
2246 return success. */
2247
2248 int
2249 remote_target::remove_fork_catchpoint (int pid)
2250 {
2251 return 0;
2252 }
2253
2254 /* Insert vfork catchpoint target routine. If vfork events are enabled
2255 then return success, nothing more to do. */
2256
2257 int
2258 remote_target::insert_vfork_catchpoint (int pid)
2259 {
2260 struct remote_state *rs = get_remote_state ();
2261
2262 return !remote_vfork_event_p (rs);
2263 }
2264
2265 /* Remove vfork catchpoint target routine. Nothing to do, just
2266 return success. */
2267
2268 int
2269 remote_target::remove_vfork_catchpoint (int pid)
2270 {
2271 return 0;
2272 }
2273
2274 /* Insert exec catchpoint target routine. If exec events are
2275 enabled, just return success. */
2276
2277 int
2278 remote_target::insert_exec_catchpoint (int pid)
2279 {
2280 struct remote_state *rs = get_remote_state ();
2281
2282 return !remote_exec_event_p (rs);
2283 }
2284
2285 /* Remove exec catchpoint target routine. Nothing to do, just
2286 return success. */
2287
2288 int
2289 remote_target::remove_exec_catchpoint (int pid)
2290 {
2291 return 0;
2292 }
2293
2294 \f
2295
2296 /* Take advantage of the fact that the TID field is not used, to tag
2297 special ptids with it set to != 0. */
2298 static const ptid_t magic_null_ptid (42000, -1, 1);
2299 static const ptid_t not_sent_ptid (42000, -2, 1);
2300 static const ptid_t any_thread_ptid (42000, 0, 1);
2301
2302 /* Find out if the stub attached to PID (and hence GDB should offer to
2303 detach instead of killing it when bailing out). */
2304
2305 int
2306 remote_target::remote_query_attached (int pid)
2307 {
2308 struct remote_state *rs = get_remote_state ();
2309 size_t size = get_remote_packet_size ();
2310
2311 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2312 return 0;
2313
2314 if (remote_multi_process_p (rs))
2315 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2316 else
2317 xsnprintf (rs->buf.data (), size, "qAttached");
2318
2319 putpkt (rs->buf);
2320 getpkt (&rs->buf, 0);
2321
2322 switch (packet_ok (rs->buf,
2323 &remote_protocol_packets[PACKET_qAttached]))
2324 {
2325 case PACKET_OK:
2326 if (strcmp (rs->buf.data (), "1") == 0)
2327 return 1;
2328 break;
2329 case PACKET_ERROR:
2330 warning (_("Remote failure reply: %s"), rs->buf.data ());
2331 break;
2332 case PACKET_UNKNOWN:
2333 break;
2334 }
2335
2336 return 0;
2337 }
2338
2339 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2340 has been invented by GDB, instead of reported by the target. Since
2341 we can be connected to a remote system before before knowing about
2342 any inferior, mark the target with execution when we find the first
2343 inferior. If ATTACHED is 1, then we had just attached to this
2344 inferior. If it is 0, then we just created this inferior. If it
2345 is -1, then try querying the remote stub to find out if it had
2346 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2347 attempt to open this inferior's executable as the main executable
2348 if no main executable is open already. */
2349
2350 inferior *
2351 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2352 int try_open_exec)
2353 {
2354 struct inferior *inf;
2355
2356 /* Check whether this process we're learning about is to be
2357 considered attached, or if is to be considered to have been
2358 spawned by the stub. */
2359 if (attached == -1)
2360 attached = remote_query_attached (pid);
2361
2362 if (gdbarch_has_global_solist (target_gdbarch ()))
2363 {
2364 /* If the target shares code across all inferiors, then every
2365 attach adds a new inferior. */
2366 inf = add_inferior (pid);
2367
2368 /* ... and every inferior is bound to the same program space.
2369 However, each inferior may still have its own address
2370 space. */
2371 inf->aspace = maybe_new_address_space ();
2372 inf->pspace = current_program_space;
2373 }
2374 else
2375 {
2376 /* In the traditional debugging scenario, there's a 1-1 match
2377 between program/address spaces. We simply bind the inferior
2378 to the program space's address space. */
2379 inf = current_inferior ();
2380
2381 /* However, if the current inferior is already bound to a
2382 process, find some other empty inferior. */
2383 if (inf->pid != 0)
2384 {
2385 inf = nullptr;
2386 for (inferior *it : all_inferiors ())
2387 if (it->pid == 0)
2388 {
2389 inf = it;
2390 break;
2391 }
2392 }
2393 if (inf == nullptr)
2394 {
2395 /* Since all inferiors were already bound to a process, add
2396 a new inferior. */
2397 inf = add_inferior_with_spaces ();
2398 }
2399 switch_to_inferior_no_thread (inf);
2400 push_target (this);
2401 inferior_appeared (inf, pid);
2402 }
2403
2404 inf->attach_flag = attached;
2405 inf->fake_pid_p = fake_pid_p;
2406
2407 /* If no main executable is currently open then attempt to
2408 open the file that was executed to create this inferior. */
2409 if (try_open_exec && get_exec_file (0) == NULL)
2410 exec_file_locate_attach (pid, 0, 1);
2411
2412 return inf;
2413 }
2414
2415 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2416 static remote_thread_info *get_remote_thread_info (remote_target *target,
2417 ptid_t ptid);
2418
2419 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2420 according to RUNNING. */
2421
2422 thread_info *
2423 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2424 {
2425 struct remote_state *rs = get_remote_state ();
2426 struct thread_info *thread;
2427
2428 /* GDB historically didn't pull threads in the initial connection
2429 setup. If the remote target doesn't even have a concept of
2430 threads (e.g., a bare-metal target), even if internally we
2431 consider that a single-threaded target, mentioning a new thread
2432 might be confusing to the user. Be silent then, preserving the
2433 age old behavior. */
2434 if (rs->starting_up)
2435 thread = add_thread_silent (this, ptid);
2436 else
2437 thread = add_thread (this, ptid);
2438
2439 get_remote_thread_info (thread)->vcont_resumed = executing;
2440 set_executing (this, ptid, executing);
2441 set_running (this, ptid, running);
2442
2443 return thread;
2444 }
2445
2446 /* Come here when we learn about a thread id from the remote target.
2447 It may be the first time we hear about such thread, so take the
2448 opportunity to add it to GDB's thread list. In case this is the
2449 first time we're noticing its corresponding inferior, add it to
2450 GDB's inferior list as well. EXECUTING indicates whether the
2451 thread is (internally) executing or stopped. */
2452
2453 void
2454 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2455 {
2456 /* In non-stop mode, we assume new found threads are (externally)
2457 running until proven otherwise with a stop reply. In all-stop,
2458 we can only get here if all threads are stopped. */
2459 int running = target_is_non_stop_p () ? 1 : 0;
2460
2461 /* If this is a new thread, add it to GDB's thread list.
2462 If we leave it up to WFI to do this, bad things will happen. */
2463
2464 thread_info *tp = find_thread_ptid (this, currthread);
2465 if (tp != NULL && tp->state == THREAD_EXITED)
2466 {
2467 /* We're seeing an event on a thread id we knew had exited.
2468 This has to be a new thread reusing the old id. Add it. */
2469 remote_add_thread (currthread, running, executing);
2470 return;
2471 }
2472
2473 if (!in_thread_list (this, currthread))
2474 {
2475 struct inferior *inf = NULL;
2476 int pid = currthread.pid ();
2477
2478 if (inferior_ptid.is_pid ()
2479 && pid == inferior_ptid.pid ())
2480 {
2481 /* inferior_ptid has no thread member yet. This can happen
2482 with the vAttach -> remote_wait,"TAAthread:" path if the
2483 stub doesn't support qC. This is the first stop reported
2484 after an attach, so this is the main thread. Update the
2485 ptid in the thread list. */
2486 if (in_thread_list (this, ptid_t (pid)))
2487 thread_change_ptid (this, inferior_ptid, currthread);
2488 else
2489 {
2490 remote_add_thread (currthread, running, executing);
2491 inferior_ptid = currthread;
2492 }
2493 return;
2494 }
2495
2496 if (magic_null_ptid == inferior_ptid)
2497 {
2498 /* inferior_ptid is not set yet. This can happen with the
2499 vRun -> remote_wait,"TAAthread:" path if the stub
2500 doesn't support qC. This is the first stop reported
2501 after an attach, so this is the main thread. Update the
2502 ptid in the thread list. */
2503 thread_change_ptid (this, inferior_ptid, currthread);
2504 return;
2505 }
2506
2507 /* When connecting to a target remote, or to a target
2508 extended-remote which already was debugging an inferior, we
2509 may not know about it yet. Add it before adding its child
2510 thread, so notifications are emitted in a sensible order. */
2511 if (find_inferior_pid (this, currthread.pid ()) == NULL)
2512 {
2513 struct remote_state *rs = get_remote_state ();
2514 bool fake_pid_p = !remote_multi_process_p (rs);
2515
2516 inf = remote_add_inferior (fake_pid_p,
2517 currthread.pid (), -1, 1);
2518 }
2519
2520 /* This is really a new thread. Add it. */
2521 thread_info *new_thr
2522 = remote_add_thread (currthread, running, executing);
2523
2524 /* If we found a new inferior, let the common code do whatever
2525 it needs to with it (e.g., read shared libraries, insert
2526 breakpoints), unless we're just setting up an all-stop
2527 connection. */
2528 if (inf != NULL)
2529 {
2530 struct remote_state *rs = get_remote_state ();
2531
2532 if (!rs->starting_up)
2533 notice_new_inferior (new_thr, executing, 0);
2534 }
2535 }
2536 }
2537
2538 /* Return THREAD's private thread data, creating it if necessary. */
2539
2540 static remote_thread_info *
2541 get_remote_thread_info (thread_info *thread)
2542 {
2543 gdb_assert (thread != NULL);
2544
2545 if (thread->priv == NULL)
2546 thread->priv.reset (new remote_thread_info);
2547
2548 return static_cast<remote_thread_info *> (thread->priv.get ());
2549 }
2550
2551 /* Return PTID's private thread data, creating it if necessary. */
2552
2553 static remote_thread_info *
2554 get_remote_thread_info (remote_target *target, ptid_t ptid)
2555 {
2556 thread_info *thr = find_thread_ptid (target, ptid);
2557 return get_remote_thread_info (thr);
2558 }
2559
2560 /* Call this function as a result of
2561 1) A halt indication (T packet) containing a thread id
2562 2) A direct query of currthread
2563 3) Successful execution of set thread */
2564
2565 static void
2566 record_currthread (struct remote_state *rs, ptid_t currthread)
2567 {
2568 rs->general_thread = currthread;
2569 }
2570
2571 /* If 'QPassSignals' is supported, tell the remote stub what signals
2572 it can simply pass through to the inferior without reporting. */
2573
2574 void
2575 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2576 {
2577 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2578 {
2579 char *pass_packet, *p;
2580 int count = 0;
2581 struct remote_state *rs = get_remote_state ();
2582
2583 gdb_assert (pass_signals.size () < 256);
2584 for (size_t i = 0; i < pass_signals.size (); i++)
2585 {
2586 if (pass_signals[i])
2587 count++;
2588 }
2589 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2590 strcpy (pass_packet, "QPassSignals:");
2591 p = pass_packet + strlen (pass_packet);
2592 for (size_t i = 0; i < pass_signals.size (); i++)
2593 {
2594 if (pass_signals[i])
2595 {
2596 if (i >= 16)
2597 *p++ = tohex (i >> 4);
2598 *p++ = tohex (i & 15);
2599 if (count)
2600 *p++ = ';';
2601 else
2602 break;
2603 count--;
2604 }
2605 }
2606 *p = 0;
2607 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2608 {
2609 putpkt (pass_packet);
2610 getpkt (&rs->buf, 0);
2611 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2612 if (rs->last_pass_packet)
2613 xfree (rs->last_pass_packet);
2614 rs->last_pass_packet = pass_packet;
2615 }
2616 else
2617 xfree (pass_packet);
2618 }
2619 }
2620
2621 /* If 'QCatchSyscalls' is supported, tell the remote stub
2622 to report syscalls to GDB. */
2623
2624 int
2625 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2626 gdb::array_view<const int> syscall_counts)
2627 {
2628 const char *catch_packet;
2629 enum packet_result result;
2630 int n_sysno = 0;
2631
2632 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2633 {
2634 /* Not supported. */
2635 return 1;
2636 }
2637
2638 if (needed && any_count == 0)
2639 {
2640 /* Count how many syscalls are to be caught. */
2641 for (size_t i = 0; i < syscall_counts.size (); i++)
2642 {
2643 if (syscall_counts[i] != 0)
2644 n_sysno++;
2645 }
2646 }
2647
2648 if (remote_debug)
2649 {
2650 fprintf_unfiltered (gdb_stdlog,
2651 "remote_set_syscall_catchpoint "
2652 "pid %d needed %d any_count %d n_sysno %d\n",
2653 pid, needed, any_count, n_sysno);
2654 }
2655
2656 std::string built_packet;
2657 if (needed)
2658 {
2659 /* Prepare a packet with the sysno list, assuming max 8+1
2660 characters for a sysno. If the resulting packet size is too
2661 big, fallback on the non-selective packet. */
2662 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2663 built_packet.reserve (maxpktsz);
2664 built_packet = "QCatchSyscalls:1";
2665 if (any_count == 0)
2666 {
2667 /* Add in each syscall to be caught. */
2668 for (size_t i = 0; i < syscall_counts.size (); i++)
2669 {
2670 if (syscall_counts[i] != 0)
2671 string_appendf (built_packet, ";%zx", i);
2672 }
2673 }
2674 if (built_packet.size () > get_remote_packet_size ())
2675 {
2676 /* catch_packet too big. Fallback to less efficient
2677 non selective mode, with GDB doing the filtering. */
2678 catch_packet = "QCatchSyscalls:1";
2679 }
2680 else
2681 catch_packet = built_packet.c_str ();
2682 }
2683 else
2684 catch_packet = "QCatchSyscalls:0";
2685
2686 struct remote_state *rs = get_remote_state ();
2687
2688 putpkt (catch_packet);
2689 getpkt (&rs->buf, 0);
2690 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2691 if (result == PACKET_OK)
2692 return 0;
2693 else
2694 return -1;
2695 }
2696
2697 /* If 'QProgramSignals' is supported, tell the remote stub what
2698 signals it should pass through to the inferior when detaching. */
2699
2700 void
2701 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2702 {
2703 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2704 {
2705 char *packet, *p;
2706 int count = 0;
2707 struct remote_state *rs = get_remote_state ();
2708
2709 gdb_assert (signals.size () < 256);
2710 for (size_t i = 0; i < signals.size (); i++)
2711 {
2712 if (signals[i])
2713 count++;
2714 }
2715 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2716 strcpy (packet, "QProgramSignals:");
2717 p = packet + strlen (packet);
2718 for (size_t i = 0; i < signals.size (); i++)
2719 {
2720 if (signal_pass_state (i))
2721 {
2722 if (i >= 16)
2723 *p++ = tohex (i >> 4);
2724 *p++ = tohex (i & 15);
2725 if (count)
2726 *p++ = ';';
2727 else
2728 break;
2729 count--;
2730 }
2731 }
2732 *p = 0;
2733 if (!rs->last_program_signals_packet
2734 || strcmp (rs->last_program_signals_packet, packet) != 0)
2735 {
2736 putpkt (packet);
2737 getpkt (&rs->buf, 0);
2738 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2739 xfree (rs->last_program_signals_packet);
2740 rs->last_program_signals_packet = packet;
2741 }
2742 else
2743 xfree (packet);
2744 }
2745 }
2746
2747 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2748 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2749 thread. If GEN is set, set the general thread, if not, then set
2750 the step/continue thread. */
2751 void
2752 remote_target::set_thread (ptid_t ptid, int gen)
2753 {
2754 struct remote_state *rs = get_remote_state ();
2755 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2756 char *buf = rs->buf.data ();
2757 char *endbuf = buf + get_remote_packet_size ();
2758
2759 if (state == ptid)
2760 return;
2761
2762 *buf++ = 'H';
2763 *buf++ = gen ? 'g' : 'c';
2764 if (ptid == magic_null_ptid)
2765 xsnprintf (buf, endbuf - buf, "0");
2766 else if (ptid == any_thread_ptid)
2767 xsnprintf (buf, endbuf - buf, "0");
2768 else if (ptid == minus_one_ptid)
2769 xsnprintf (buf, endbuf - buf, "-1");
2770 else
2771 write_ptid (buf, endbuf, ptid);
2772 putpkt (rs->buf);
2773 getpkt (&rs->buf, 0);
2774 if (gen)
2775 rs->general_thread = ptid;
2776 else
2777 rs->continue_thread = ptid;
2778 }
2779
2780 void
2781 remote_target::set_general_thread (ptid_t ptid)
2782 {
2783 set_thread (ptid, 1);
2784 }
2785
2786 void
2787 remote_target::set_continue_thread (ptid_t ptid)
2788 {
2789 set_thread (ptid, 0);
2790 }
2791
2792 /* Change the remote current process. Which thread within the process
2793 ends up selected isn't important, as long as it is the same process
2794 as what INFERIOR_PTID points to.
2795
2796 This comes from that fact that there is no explicit notion of
2797 "selected process" in the protocol. The selected process for
2798 general operations is the process the selected general thread
2799 belongs to. */
2800
2801 void
2802 remote_target::set_general_process ()
2803 {
2804 struct remote_state *rs = get_remote_state ();
2805
2806 /* If the remote can't handle multiple processes, don't bother. */
2807 if (!remote_multi_process_p (rs))
2808 return;
2809
2810 /* We only need to change the remote current thread if it's pointing
2811 at some other process. */
2812 if (rs->general_thread.pid () != inferior_ptid.pid ())
2813 set_general_thread (inferior_ptid);
2814 }
2815
2816 \f
2817 /* Return nonzero if this is the main thread that we made up ourselves
2818 to model non-threaded targets as single-threaded. */
2819
2820 static int
2821 remote_thread_always_alive (ptid_t ptid)
2822 {
2823 if (ptid == magic_null_ptid)
2824 /* The main thread is always alive. */
2825 return 1;
2826
2827 if (ptid.pid () != 0 && ptid.lwp () == 0)
2828 /* The main thread is always alive. This can happen after a
2829 vAttach, if the remote side doesn't support
2830 multi-threading. */
2831 return 1;
2832
2833 return 0;
2834 }
2835
2836 /* Return nonzero if the thread PTID is still alive on the remote
2837 system. */
2838
2839 bool
2840 remote_target::thread_alive (ptid_t ptid)
2841 {
2842 struct remote_state *rs = get_remote_state ();
2843 char *p, *endp;
2844
2845 /* Check if this is a thread that we made up ourselves to model
2846 non-threaded targets as single-threaded. */
2847 if (remote_thread_always_alive (ptid))
2848 return 1;
2849
2850 p = rs->buf.data ();
2851 endp = p + get_remote_packet_size ();
2852
2853 *p++ = 'T';
2854 write_ptid (p, endp, ptid);
2855
2856 putpkt (rs->buf);
2857 getpkt (&rs->buf, 0);
2858 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2859 }
2860
2861 /* Return a pointer to a thread name if we know it and NULL otherwise.
2862 The thread_info object owns the memory for the name. */
2863
2864 const char *
2865 remote_target::thread_name (struct thread_info *info)
2866 {
2867 if (info->priv != NULL)
2868 {
2869 const std::string &name = get_remote_thread_info (info)->name;
2870 return !name.empty () ? name.c_str () : NULL;
2871 }
2872
2873 return NULL;
2874 }
2875
2876 /* About these extended threadlist and threadinfo packets. They are
2877 variable length packets but, the fields within them are often fixed
2878 length. They are redundant enough to send over UDP as is the
2879 remote protocol in general. There is a matching unit test module
2880 in libstub. */
2881
2882 /* WARNING: This threadref data structure comes from the remote O.S.,
2883 libstub protocol encoding, and remote.c. It is not particularly
2884 changable. */
2885
2886 /* Right now, the internal structure is int. We want it to be bigger.
2887 Plan to fix this. */
2888
2889 typedef int gdb_threadref; /* Internal GDB thread reference. */
2890
2891 /* gdb_ext_thread_info is an internal GDB data structure which is
2892 equivalent to the reply of the remote threadinfo packet. */
2893
2894 struct gdb_ext_thread_info
2895 {
2896 threadref threadid; /* External form of thread reference. */
2897 int active; /* Has state interesting to GDB?
2898 regs, stack. */
2899 char display[256]; /* Brief state display, name,
2900 blocked/suspended. */
2901 char shortname[32]; /* To be used to name threads. */
2902 char more_display[256]; /* Long info, statistics, queue depth,
2903 whatever. */
2904 };
2905
2906 /* The volume of remote transfers can be limited by submitting
2907 a mask containing bits specifying the desired information.
2908 Use a union of these values as the 'selection' parameter to
2909 get_thread_info. FIXME: Make these TAG names more thread specific. */
2910
2911 #define TAG_THREADID 1
2912 #define TAG_EXISTS 2
2913 #define TAG_DISPLAY 4
2914 #define TAG_THREADNAME 8
2915 #define TAG_MOREDISPLAY 16
2916
2917 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2918
2919 static char *unpack_nibble (char *buf, int *val);
2920
2921 static char *unpack_byte (char *buf, int *value);
2922
2923 static char *pack_int (char *buf, int value);
2924
2925 static char *unpack_int (char *buf, int *value);
2926
2927 static char *unpack_string (char *src, char *dest, int length);
2928
2929 static char *pack_threadid (char *pkt, threadref *id);
2930
2931 static char *unpack_threadid (char *inbuf, threadref *id);
2932
2933 void int_to_threadref (threadref *id, int value);
2934
2935 static int threadref_to_int (threadref *ref);
2936
2937 static void copy_threadref (threadref *dest, threadref *src);
2938
2939 static int threadmatch (threadref *dest, threadref *src);
2940
2941 static char *pack_threadinfo_request (char *pkt, int mode,
2942 threadref *id);
2943
2944 static char *pack_threadlist_request (char *pkt, int startflag,
2945 int threadcount,
2946 threadref *nextthread);
2947
2948 static int remote_newthread_step (threadref *ref, void *context);
2949
2950
2951 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2952 buffer we're allowed to write to. Returns
2953 BUF+CHARACTERS_WRITTEN. */
2954
2955 char *
2956 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2957 {
2958 int pid, tid;
2959 struct remote_state *rs = get_remote_state ();
2960
2961 if (remote_multi_process_p (rs))
2962 {
2963 pid = ptid.pid ();
2964 if (pid < 0)
2965 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2966 else
2967 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2968 }
2969 tid = ptid.lwp ();
2970 if (tid < 0)
2971 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2972 else
2973 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2974
2975 return buf;
2976 }
2977
2978 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2979 last parsed char. Returns null_ptid if no thread id is found, and
2980 throws an error if the thread id has an invalid format. */
2981
2982 static ptid_t
2983 read_ptid (const char *buf, const char **obuf)
2984 {
2985 const char *p = buf;
2986 const char *pp;
2987 ULONGEST pid = 0, tid = 0;
2988
2989 if (*p == 'p')
2990 {
2991 /* Multi-process ptid. */
2992 pp = unpack_varlen_hex (p + 1, &pid);
2993 if (*pp != '.')
2994 error (_("invalid remote ptid: %s"), p);
2995
2996 p = pp;
2997 pp = unpack_varlen_hex (p + 1, &tid);
2998 if (obuf)
2999 *obuf = pp;
3000 return ptid_t (pid, tid, 0);
3001 }
3002
3003 /* No multi-process. Just a tid. */
3004 pp = unpack_varlen_hex (p, &tid);
3005
3006 /* Return null_ptid when no thread id is found. */
3007 if (p == pp)
3008 {
3009 if (obuf)
3010 *obuf = pp;
3011 return null_ptid;
3012 }
3013
3014 /* Since the stub is not sending a process id, then default to
3015 what's in inferior_ptid, unless it's null at this point. If so,
3016 then since there's no way to know the pid of the reported
3017 threads, use the magic number. */
3018 if (inferior_ptid == null_ptid)
3019 pid = magic_null_ptid.pid ();
3020 else
3021 pid = inferior_ptid.pid ();
3022
3023 if (obuf)
3024 *obuf = pp;
3025 return ptid_t (pid, tid, 0);
3026 }
3027
3028 static int
3029 stubhex (int ch)
3030 {
3031 if (ch >= 'a' && ch <= 'f')
3032 return ch - 'a' + 10;
3033 if (ch >= '0' && ch <= '9')
3034 return ch - '0';
3035 if (ch >= 'A' && ch <= 'F')
3036 return ch - 'A' + 10;
3037 return -1;
3038 }
3039
3040 static int
3041 stub_unpack_int (char *buff, int fieldlength)
3042 {
3043 int nibble;
3044 int retval = 0;
3045
3046 while (fieldlength)
3047 {
3048 nibble = stubhex (*buff++);
3049 retval |= nibble;
3050 fieldlength--;
3051 if (fieldlength)
3052 retval = retval << 4;
3053 }
3054 return retval;
3055 }
3056
3057 static char *
3058 unpack_nibble (char *buf, int *val)
3059 {
3060 *val = fromhex (*buf++);
3061 return buf;
3062 }
3063
3064 static char *
3065 unpack_byte (char *buf, int *value)
3066 {
3067 *value = stub_unpack_int (buf, 2);
3068 return buf + 2;
3069 }
3070
3071 static char *
3072 pack_int (char *buf, int value)
3073 {
3074 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3075 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3076 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3077 buf = pack_hex_byte (buf, (value & 0xff));
3078 return buf;
3079 }
3080
3081 static char *
3082 unpack_int (char *buf, int *value)
3083 {
3084 *value = stub_unpack_int (buf, 8);
3085 return buf + 8;
3086 }
3087
3088 #if 0 /* Currently unused, uncomment when needed. */
3089 static char *pack_string (char *pkt, char *string);
3090
3091 static char *
3092 pack_string (char *pkt, char *string)
3093 {
3094 char ch;
3095 int len;
3096
3097 len = strlen (string);
3098 if (len > 200)
3099 len = 200; /* Bigger than most GDB packets, junk??? */
3100 pkt = pack_hex_byte (pkt, len);
3101 while (len-- > 0)
3102 {
3103 ch = *string++;
3104 if ((ch == '\0') || (ch == '#'))
3105 ch = '*'; /* Protect encapsulation. */
3106 *pkt++ = ch;
3107 }
3108 return pkt;
3109 }
3110 #endif /* 0 (unused) */
3111
3112 static char *
3113 unpack_string (char *src, char *dest, int length)
3114 {
3115 while (length--)
3116 *dest++ = *src++;
3117 *dest = '\0';
3118 return src;
3119 }
3120
3121 static char *
3122 pack_threadid (char *pkt, threadref *id)
3123 {
3124 char *limit;
3125 unsigned char *altid;
3126
3127 altid = (unsigned char *) id;
3128 limit = pkt + BUF_THREAD_ID_SIZE;
3129 while (pkt < limit)
3130 pkt = pack_hex_byte (pkt, *altid++);
3131 return pkt;
3132 }
3133
3134
3135 static char *
3136 unpack_threadid (char *inbuf, threadref *id)
3137 {
3138 char *altref;
3139 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3140 int x, y;
3141
3142 altref = (char *) id;
3143
3144 while (inbuf < limit)
3145 {
3146 x = stubhex (*inbuf++);
3147 y = stubhex (*inbuf++);
3148 *altref++ = (x << 4) | y;
3149 }
3150 return inbuf;
3151 }
3152
3153 /* Externally, threadrefs are 64 bits but internally, they are still
3154 ints. This is due to a mismatch of specifications. We would like
3155 to use 64bit thread references internally. This is an adapter
3156 function. */
3157
3158 void
3159 int_to_threadref (threadref *id, int value)
3160 {
3161 unsigned char *scan;
3162
3163 scan = (unsigned char *) id;
3164 {
3165 int i = 4;
3166 while (i--)
3167 *scan++ = 0;
3168 }
3169 *scan++ = (value >> 24) & 0xff;
3170 *scan++ = (value >> 16) & 0xff;
3171 *scan++ = (value >> 8) & 0xff;
3172 *scan++ = (value & 0xff);
3173 }
3174
3175 static int
3176 threadref_to_int (threadref *ref)
3177 {
3178 int i, value = 0;
3179 unsigned char *scan;
3180
3181 scan = *ref;
3182 scan += 4;
3183 i = 4;
3184 while (i-- > 0)
3185 value = (value << 8) | ((*scan++) & 0xff);
3186 return value;
3187 }
3188
3189 static void
3190 copy_threadref (threadref *dest, threadref *src)
3191 {
3192 int i;
3193 unsigned char *csrc, *cdest;
3194
3195 csrc = (unsigned char *) src;
3196 cdest = (unsigned char *) dest;
3197 i = 8;
3198 while (i--)
3199 *cdest++ = *csrc++;
3200 }
3201
3202 static int
3203 threadmatch (threadref *dest, threadref *src)
3204 {
3205 /* Things are broken right now, so just assume we got a match. */
3206 #if 0
3207 unsigned char *srcp, *destp;
3208 int i, result;
3209 srcp = (char *) src;
3210 destp = (char *) dest;
3211
3212 result = 1;
3213 while (i-- > 0)
3214 result &= (*srcp++ == *destp++) ? 1 : 0;
3215 return result;
3216 #endif
3217 return 1;
3218 }
3219
3220 /*
3221 threadid:1, # always request threadid
3222 context_exists:2,
3223 display:4,
3224 unique_name:8,
3225 more_display:16
3226 */
3227
3228 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3229
3230 static char *
3231 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3232 {
3233 *pkt++ = 'q'; /* Info Query */
3234 *pkt++ = 'P'; /* process or thread info */
3235 pkt = pack_int (pkt, mode); /* mode */
3236 pkt = pack_threadid (pkt, id); /* threadid */
3237 *pkt = '\0'; /* terminate */
3238 return pkt;
3239 }
3240
3241 /* These values tag the fields in a thread info response packet. */
3242 /* Tagging the fields allows us to request specific fields and to
3243 add more fields as time goes by. */
3244
3245 #define TAG_THREADID 1 /* Echo the thread identifier. */
3246 #define TAG_EXISTS 2 /* Is this process defined enough to
3247 fetch registers and its stack? */
3248 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3249 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3250 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3251 the process. */
3252
3253 int
3254 remote_target::remote_unpack_thread_info_response (char *pkt,
3255 threadref *expectedref,
3256 gdb_ext_thread_info *info)
3257 {
3258 struct remote_state *rs = get_remote_state ();
3259 int mask, length;
3260 int tag;
3261 threadref ref;
3262 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3263 int retval = 1;
3264
3265 /* info->threadid = 0; FIXME: implement zero_threadref. */
3266 info->active = 0;
3267 info->display[0] = '\0';
3268 info->shortname[0] = '\0';
3269 info->more_display[0] = '\0';
3270
3271 /* Assume the characters indicating the packet type have been
3272 stripped. */
3273 pkt = unpack_int (pkt, &mask); /* arg mask */
3274 pkt = unpack_threadid (pkt, &ref);
3275
3276 if (mask == 0)
3277 warning (_("Incomplete response to threadinfo request."));
3278 if (!threadmatch (&ref, expectedref))
3279 { /* This is an answer to a different request. */
3280 warning (_("ERROR RMT Thread info mismatch."));
3281 return 0;
3282 }
3283 copy_threadref (&info->threadid, &ref);
3284
3285 /* Loop on tagged fields , try to bail if something goes wrong. */
3286
3287 /* Packets are terminated with nulls. */
3288 while ((pkt < limit) && mask && *pkt)
3289 {
3290 pkt = unpack_int (pkt, &tag); /* tag */
3291 pkt = unpack_byte (pkt, &length); /* length */
3292 if (!(tag & mask)) /* Tags out of synch with mask. */
3293 {
3294 warning (_("ERROR RMT: threadinfo tag mismatch."));
3295 retval = 0;
3296 break;
3297 }
3298 if (tag == TAG_THREADID)
3299 {
3300 if (length != 16)
3301 {
3302 warning (_("ERROR RMT: length of threadid is not 16."));
3303 retval = 0;
3304 break;
3305 }
3306 pkt = unpack_threadid (pkt, &ref);
3307 mask = mask & ~TAG_THREADID;
3308 continue;
3309 }
3310 if (tag == TAG_EXISTS)
3311 {
3312 info->active = stub_unpack_int (pkt, length);
3313 pkt += length;
3314 mask = mask & ~(TAG_EXISTS);
3315 if (length > 8)
3316 {
3317 warning (_("ERROR RMT: 'exists' length too long."));
3318 retval = 0;
3319 break;
3320 }
3321 continue;
3322 }
3323 if (tag == TAG_THREADNAME)
3324 {
3325 pkt = unpack_string (pkt, &info->shortname[0], length);
3326 mask = mask & ~TAG_THREADNAME;
3327 continue;
3328 }
3329 if (tag == TAG_DISPLAY)
3330 {
3331 pkt = unpack_string (pkt, &info->display[0], length);
3332 mask = mask & ~TAG_DISPLAY;
3333 continue;
3334 }
3335 if (tag == TAG_MOREDISPLAY)
3336 {
3337 pkt = unpack_string (pkt, &info->more_display[0], length);
3338 mask = mask & ~TAG_MOREDISPLAY;
3339 continue;
3340 }
3341 warning (_("ERROR RMT: unknown thread info tag."));
3342 break; /* Not a tag we know about. */
3343 }
3344 return retval;
3345 }
3346
3347 int
3348 remote_target::remote_get_threadinfo (threadref *threadid,
3349 int fieldset,
3350 gdb_ext_thread_info *info)
3351 {
3352 struct remote_state *rs = get_remote_state ();
3353 int result;
3354
3355 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3356 putpkt (rs->buf);
3357 getpkt (&rs->buf, 0);
3358
3359 if (rs->buf[0] == '\0')
3360 return 0;
3361
3362 result = remote_unpack_thread_info_response (&rs->buf[2],
3363 threadid, info);
3364 return result;
3365 }
3366
3367 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3368
3369 static char *
3370 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3371 threadref *nextthread)
3372 {
3373 *pkt++ = 'q'; /* info query packet */
3374 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3375 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3376 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3377 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3378 *pkt = '\0';
3379 return pkt;
3380 }
3381
3382 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3383
3384 int
3385 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3386 threadref *original_echo,
3387 threadref *resultlist,
3388 int *doneflag)
3389 {
3390 struct remote_state *rs = get_remote_state ();
3391 char *limit;
3392 int count, resultcount, done;
3393
3394 resultcount = 0;
3395 /* Assume the 'q' and 'M chars have been stripped. */
3396 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3397 /* done parse past here */
3398 pkt = unpack_byte (pkt, &count); /* count field */
3399 pkt = unpack_nibble (pkt, &done);
3400 /* The first threadid is the argument threadid. */
3401 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3402 while ((count-- > 0) && (pkt < limit))
3403 {
3404 pkt = unpack_threadid (pkt, resultlist++);
3405 if (resultcount++ >= result_limit)
3406 break;
3407 }
3408 if (doneflag)
3409 *doneflag = done;
3410 return resultcount;
3411 }
3412
3413 /* Fetch the next batch of threads from the remote. Returns -1 if the
3414 qL packet is not supported, 0 on error and 1 on success. */
3415
3416 int
3417 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3418 int result_limit, int *done, int *result_count,
3419 threadref *threadlist)
3420 {
3421 struct remote_state *rs = get_remote_state ();
3422 int result = 1;
3423
3424 /* Truncate result limit to be smaller than the packet size. */
3425 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3426 >= get_remote_packet_size ())
3427 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3428
3429 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3430 nextthread);
3431 putpkt (rs->buf);
3432 getpkt (&rs->buf, 0);
3433 if (rs->buf[0] == '\0')
3434 {
3435 /* Packet not supported. */
3436 return -1;
3437 }
3438
3439 *result_count =
3440 parse_threadlist_response (&rs->buf[2], result_limit,
3441 &rs->echo_nextthread, threadlist, done);
3442
3443 if (!threadmatch (&rs->echo_nextthread, nextthread))
3444 {
3445 /* FIXME: This is a good reason to drop the packet. */
3446 /* Possibly, there is a duplicate response. */
3447 /* Possibilities :
3448 retransmit immediatly - race conditions
3449 retransmit after timeout - yes
3450 exit
3451 wait for packet, then exit
3452 */
3453 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3454 return 0; /* I choose simply exiting. */
3455 }
3456 if (*result_count <= 0)
3457 {
3458 if (*done != 1)
3459 {
3460 warning (_("RMT ERROR : failed to get remote thread list."));
3461 result = 0;
3462 }
3463 return result; /* break; */
3464 }
3465 if (*result_count > result_limit)
3466 {
3467 *result_count = 0;
3468 warning (_("RMT ERROR: threadlist response longer than requested."));
3469 return 0;
3470 }
3471 return result;
3472 }
3473
3474 /* Fetch the list of remote threads, with the qL packet, and call
3475 STEPFUNCTION for each thread found. Stops iterating and returns 1
3476 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3477 STEPFUNCTION returns false. If the packet is not supported,
3478 returns -1. */
3479
3480 int
3481 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3482 void *context, int looplimit)
3483 {
3484 struct remote_state *rs = get_remote_state ();
3485 int done, i, result_count;
3486 int startflag = 1;
3487 int result = 1;
3488 int loopcount = 0;
3489
3490 done = 0;
3491 while (!done)
3492 {
3493 if (loopcount++ > looplimit)
3494 {
3495 result = 0;
3496 warning (_("Remote fetch threadlist -infinite loop-."));
3497 break;
3498 }
3499 result = remote_get_threadlist (startflag, &rs->nextthread,
3500 MAXTHREADLISTRESULTS,
3501 &done, &result_count,
3502 rs->resultthreadlist);
3503 if (result <= 0)
3504 break;
3505 /* Clear for later iterations. */
3506 startflag = 0;
3507 /* Setup to resume next batch of thread references, set nextthread. */
3508 if (result_count >= 1)
3509 copy_threadref (&rs->nextthread,
3510 &rs->resultthreadlist[result_count - 1]);
3511 i = 0;
3512 while (result_count--)
3513 {
3514 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3515 {
3516 result = 0;
3517 break;
3518 }
3519 }
3520 }
3521 return result;
3522 }
3523
3524 /* A thread found on the remote target. */
3525
3526 struct thread_item
3527 {
3528 explicit thread_item (ptid_t ptid_)
3529 : ptid (ptid_)
3530 {}
3531
3532 thread_item (thread_item &&other) = default;
3533 thread_item &operator= (thread_item &&other) = default;
3534
3535 DISABLE_COPY_AND_ASSIGN (thread_item);
3536
3537 /* The thread's PTID. */
3538 ptid_t ptid;
3539
3540 /* The thread's extra info. */
3541 std::string extra;
3542
3543 /* The thread's name. */
3544 std::string name;
3545
3546 /* The core the thread was running on. -1 if not known. */
3547 int core = -1;
3548
3549 /* The thread handle associated with the thread. */
3550 gdb::byte_vector thread_handle;
3551 };
3552
3553 /* Context passed around to the various methods listing remote
3554 threads. As new threads are found, they're added to the ITEMS
3555 vector. */
3556
3557 struct threads_listing_context
3558 {
3559 /* Return true if this object contains an entry for a thread with ptid
3560 PTID. */
3561
3562 bool contains_thread (ptid_t ptid) const
3563 {
3564 auto match_ptid = [&] (const thread_item &item)
3565 {
3566 return item.ptid == ptid;
3567 };
3568
3569 auto it = std::find_if (this->items.begin (),
3570 this->items.end (),
3571 match_ptid);
3572
3573 return it != this->items.end ();
3574 }
3575
3576 /* Remove the thread with ptid PTID. */
3577
3578 void remove_thread (ptid_t ptid)
3579 {
3580 auto match_ptid = [&] (const thread_item &item)
3581 {
3582 return item.ptid == ptid;
3583 };
3584
3585 auto it = std::remove_if (this->items.begin (),
3586 this->items.end (),
3587 match_ptid);
3588
3589 if (it != this->items.end ())
3590 this->items.erase (it);
3591 }
3592
3593 /* The threads found on the remote target. */
3594 std::vector<thread_item> items;
3595 };
3596
3597 static int
3598 remote_newthread_step (threadref *ref, void *data)
3599 {
3600 struct threads_listing_context *context
3601 = (struct threads_listing_context *) data;
3602 int pid = inferior_ptid.pid ();
3603 int lwp = threadref_to_int (ref);
3604 ptid_t ptid (pid, lwp);
3605
3606 context->items.emplace_back (ptid);
3607
3608 return 1; /* continue iterator */
3609 }
3610
3611 #define CRAZY_MAX_THREADS 1000
3612
3613 ptid_t
3614 remote_target::remote_current_thread (ptid_t oldpid)
3615 {
3616 struct remote_state *rs = get_remote_state ();
3617
3618 putpkt ("qC");
3619 getpkt (&rs->buf, 0);
3620 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3621 {
3622 const char *obuf;
3623 ptid_t result;
3624
3625 result = read_ptid (&rs->buf[2], &obuf);
3626 if (*obuf != '\0' && remote_debug)
3627 fprintf_unfiltered (gdb_stdlog,
3628 "warning: garbage in qC reply\n");
3629
3630 return result;
3631 }
3632 else
3633 return oldpid;
3634 }
3635
3636 /* List remote threads using the deprecated qL packet. */
3637
3638 int
3639 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3640 {
3641 if (remote_threadlist_iterator (remote_newthread_step, context,
3642 CRAZY_MAX_THREADS) >= 0)
3643 return 1;
3644
3645 return 0;
3646 }
3647
3648 #if defined(HAVE_LIBEXPAT)
3649
3650 static void
3651 start_thread (struct gdb_xml_parser *parser,
3652 const struct gdb_xml_element *element,
3653 void *user_data,
3654 std::vector<gdb_xml_value> &attributes)
3655 {
3656 struct threads_listing_context *data
3657 = (struct threads_listing_context *) user_data;
3658 struct gdb_xml_value *attr;
3659
3660 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3661 ptid_t ptid = read_ptid (id, NULL);
3662
3663 data->items.emplace_back (ptid);
3664 thread_item &item = data->items.back ();
3665
3666 attr = xml_find_attribute (attributes, "core");
3667 if (attr != NULL)
3668 item.core = *(ULONGEST *) attr->value.get ();
3669
3670 attr = xml_find_attribute (attributes, "name");
3671 if (attr != NULL)
3672 item.name = (const char *) attr->value.get ();
3673
3674 attr = xml_find_attribute (attributes, "handle");
3675 if (attr != NULL)
3676 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3677 }
3678
3679 static void
3680 end_thread (struct gdb_xml_parser *parser,
3681 const struct gdb_xml_element *element,
3682 void *user_data, const char *body_text)
3683 {
3684 struct threads_listing_context *data
3685 = (struct threads_listing_context *) user_data;
3686
3687 if (body_text != NULL && *body_text != '\0')
3688 data->items.back ().extra = body_text;
3689 }
3690
3691 const struct gdb_xml_attribute thread_attributes[] = {
3692 { "id", GDB_XML_AF_NONE, NULL, NULL },
3693 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3694 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3695 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3696 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3697 };
3698
3699 const struct gdb_xml_element thread_children[] = {
3700 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3701 };
3702
3703 const struct gdb_xml_element threads_children[] = {
3704 { "thread", thread_attributes, thread_children,
3705 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3706 start_thread, end_thread },
3707 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3708 };
3709
3710 const struct gdb_xml_element threads_elements[] = {
3711 { "threads", NULL, threads_children,
3712 GDB_XML_EF_NONE, NULL, NULL },
3713 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3714 };
3715
3716 #endif
3717
3718 /* List remote threads using qXfer:threads:read. */
3719
3720 int
3721 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3722 {
3723 #if defined(HAVE_LIBEXPAT)
3724 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3725 {
3726 gdb::optional<gdb::char_vector> xml
3727 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3728
3729 if (xml && (*xml)[0] != '\0')
3730 {
3731 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3732 threads_elements, xml->data (), context);
3733 }
3734
3735 return 1;
3736 }
3737 #endif
3738
3739 return 0;
3740 }
3741
3742 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3743
3744 int
3745 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3746 {
3747 struct remote_state *rs = get_remote_state ();
3748
3749 if (rs->use_threadinfo_query)
3750 {
3751 const char *bufp;
3752
3753 putpkt ("qfThreadInfo");
3754 getpkt (&rs->buf, 0);
3755 bufp = rs->buf.data ();
3756 if (bufp[0] != '\0') /* q packet recognized */
3757 {
3758 while (*bufp++ == 'm') /* reply contains one or more TID */
3759 {
3760 do
3761 {
3762 ptid_t ptid = read_ptid (bufp, &bufp);
3763 context->items.emplace_back (ptid);
3764 }
3765 while (*bufp++ == ','); /* comma-separated list */
3766 putpkt ("qsThreadInfo");
3767 getpkt (&rs->buf, 0);
3768 bufp = rs->buf.data ();
3769 }
3770 return 1;
3771 }
3772 else
3773 {
3774 /* Packet not recognized. */
3775 rs->use_threadinfo_query = 0;
3776 }
3777 }
3778
3779 return 0;
3780 }
3781
3782 /* Implement the to_update_thread_list function for the remote
3783 targets. */
3784
3785 void
3786 remote_target::update_thread_list ()
3787 {
3788 struct threads_listing_context context;
3789 int got_list = 0;
3790
3791 /* We have a few different mechanisms to fetch the thread list. Try
3792 them all, starting with the most preferred one first, falling
3793 back to older methods. */
3794 if (remote_get_threads_with_qxfer (&context)
3795 || remote_get_threads_with_qthreadinfo (&context)
3796 || remote_get_threads_with_ql (&context))
3797 {
3798 got_list = 1;
3799
3800 if (context.items.empty ()
3801 && remote_thread_always_alive (inferior_ptid))
3802 {
3803 /* Some targets don't really support threads, but still
3804 reply an (empty) thread list in response to the thread
3805 listing packets, instead of replying "packet not
3806 supported". Exit early so we don't delete the main
3807 thread. */
3808 return;
3809 }
3810
3811 /* CONTEXT now holds the current thread list on the remote
3812 target end. Delete GDB-side threads no longer found on the
3813 target. */
3814 for (thread_info *tp : all_threads_safe ())
3815 {
3816 if (tp->inf->process_target () != this)
3817 continue;
3818
3819 if (!context.contains_thread (tp->ptid))
3820 {
3821 /* Not found. */
3822 delete_thread (tp);
3823 }
3824 }
3825
3826 /* Remove any unreported fork child threads from CONTEXT so
3827 that we don't interfere with follow fork, which is where
3828 creation of such threads is handled. */
3829 remove_new_fork_children (&context);
3830
3831 /* And now add threads we don't know about yet to our list. */
3832 for (thread_item &item : context.items)
3833 {
3834 if (item.ptid != null_ptid)
3835 {
3836 /* In non-stop mode, we assume new found threads are
3837 executing until proven otherwise with a stop reply.
3838 In all-stop, we can only get here if all threads are
3839 stopped. */
3840 int executing = target_is_non_stop_p () ? 1 : 0;
3841
3842 remote_notice_new_inferior (item.ptid, executing);
3843
3844 thread_info *tp = find_thread_ptid (this, item.ptid);
3845 remote_thread_info *info = get_remote_thread_info (tp);
3846 info->core = item.core;
3847 info->extra = std::move (item.extra);
3848 info->name = std::move (item.name);
3849 info->thread_handle = std::move (item.thread_handle);
3850 }
3851 }
3852 }
3853
3854 if (!got_list)
3855 {
3856 /* If no thread listing method is supported, then query whether
3857 each known thread is alive, one by one, with the T packet.
3858 If the target doesn't support threads at all, then this is a
3859 no-op. See remote_thread_alive. */
3860 prune_threads ();
3861 }
3862 }
3863
3864 /*
3865 * Collect a descriptive string about the given thread.
3866 * The target may say anything it wants to about the thread
3867 * (typically info about its blocked / runnable state, name, etc.).
3868 * This string will appear in the info threads display.
3869 *
3870 * Optional: targets are not required to implement this function.
3871 */
3872
3873 const char *
3874 remote_target::extra_thread_info (thread_info *tp)
3875 {
3876 struct remote_state *rs = get_remote_state ();
3877 int set;
3878 threadref id;
3879 struct gdb_ext_thread_info threadinfo;
3880
3881 if (rs->remote_desc == 0) /* paranoia */
3882 internal_error (__FILE__, __LINE__,
3883 _("remote_threads_extra_info"));
3884
3885 if (tp->ptid == magic_null_ptid
3886 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3887 /* This is the main thread which was added by GDB. The remote
3888 server doesn't know about it. */
3889 return NULL;
3890
3891 std::string &extra = get_remote_thread_info (tp)->extra;
3892
3893 /* If already have cached info, use it. */
3894 if (!extra.empty ())
3895 return extra.c_str ();
3896
3897 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3898 {
3899 /* If we're using qXfer:threads:read, then the extra info is
3900 included in the XML. So if we didn't have anything cached,
3901 it's because there's really no extra info. */
3902 return NULL;
3903 }
3904
3905 if (rs->use_threadextra_query)
3906 {
3907 char *b = rs->buf.data ();
3908 char *endb = b + get_remote_packet_size ();
3909
3910 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3911 b += strlen (b);
3912 write_ptid (b, endb, tp->ptid);
3913
3914 putpkt (rs->buf);
3915 getpkt (&rs->buf, 0);
3916 if (rs->buf[0] != 0)
3917 {
3918 extra.resize (strlen (rs->buf.data ()) / 2);
3919 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3920 return extra.c_str ();
3921 }
3922 }
3923
3924 /* If the above query fails, fall back to the old method. */
3925 rs->use_threadextra_query = 0;
3926 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3927 | TAG_MOREDISPLAY | TAG_DISPLAY;
3928 int_to_threadref (&id, tp->ptid.lwp ());
3929 if (remote_get_threadinfo (&id, set, &threadinfo))
3930 if (threadinfo.active)
3931 {
3932 if (*threadinfo.shortname)
3933 string_appendf (extra, " Name: %s", threadinfo.shortname);
3934 if (*threadinfo.display)
3935 {
3936 if (!extra.empty ())
3937 extra += ',';
3938 string_appendf (extra, " State: %s", threadinfo.display);
3939 }
3940 if (*threadinfo.more_display)
3941 {
3942 if (!extra.empty ())
3943 extra += ',';
3944 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3945 }
3946 return extra.c_str ();
3947 }
3948 return NULL;
3949 }
3950 \f
3951
3952 bool
3953 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3954 struct static_tracepoint_marker *marker)
3955 {
3956 struct remote_state *rs = get_remote_state ();
3957 char *p = rs->buf.data ();
3958
3959 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3960 p += strlen (p);
3961 p += hexnumstr (p, addr);
3962 putpkt (rs->buf);
3963 getpkt (&rs->buf, 0);
3964 p = rs->buf.data ();
3965
3966 if (*p == 'E')
3967 error (_("Remote failure reply: %s"), p);
3968
3969 if (*p++ == 'm')
3970 {
3971 parse_static_tracepoint_marker_definition (p, NULL, marker);
3972 return true;
3973 }
3974
3975 return false;
3976 }
3977
3978 std::vector<static_tracepoint_marker>
3979 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3980 {
3981 struct remote_state *rs = get_remote_state ();
3982 std::vector<static_tracepoint_marker> markers;
3983 const char *p;
3984 static_tracepoint_marker marker;
3985
3986 /* Ask for a first packet of static tracepoint marker
3987 definition. */
3988 putpkt ("qTfSTM");
3989 getpkt (&rs->buf, 0);
3990 p = rs->buf.data ();
3991 if (*p == 'E')
3992 error (_("Remote failure reply: %s"), p);
3993
3994 while (*p++ == 'm')
3995 {
3996 do
3997 {
3998 parse_static_tracepoint_marker_definition (p, &p, &marker);
3999
4000 if (strid == NULL || marker.str_id == strid)
4001 markers.push_back (std::move (marker));
4002 }
4003 while (*p++ == ','); /* comma-separated list */
4004 /* Ask for another packet of static tracepoint definition. */
4005 putpkt ("qTsSTM");
4006 getpkt (&rs->buf, 0);
4007 p = rs->buf.data ();
4008 }
4009
4010 return markers;
4011 }
4012
4013 \f
4014 /* Implement the to_get_ada_task_ptid function for the remote targets. */
4015
4016 ptid_t
4017 remote_target::get_ada_task_ptid (long lwp, long thread)
4018 {
4019 return ptid_t (inferior_ptid.pid (), lwp, 0);
4020 }
4021 \f
4022
4023 /* Restart the remote side; this is an extended protocol operation. */
4024
4025 void
4026 remote_target::extended_remote_restart ()
4027 {
4028 struct remote_state *rs = get_remote_state ();
4029
4030 /* Send the restart command; for reasons I don't understand the
4031 remote side really expects a number after the "R". */
4032 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4033 putpkt (rs->buf);
4034
4035 remote_fileio_reset ();
4036 }
4037 \f
4038 /* Clean up connection to a remote debugger. */
4039
4040 void
4041 remote_target::close ()
4042 {
4043 /* Make sure we leave stdin registered in the event loop. */
4044 terminal_ours ();
4045
4046 trace_reset_local_state ();
4047
4048 delete this;
4049 }
4050
4051 remote_target::~remote_target ()
4052 {
4053 struct remote_state *rs = get_remote_state ();
4054
4055 /* Check for NULL because we may get here with a partially
4056 constructed target/connection. */
4057 if (rs->remote_desc == nullptr)
4058 return;
4059
4060 serial_close (rs->remote_desc);
4061
4062 /* We are destroying the remote target, so we should discard
4063 everything of this target. */
4064 discard_pending_stop_replies_in_queue ();
4065
4066 if (rs->remote_async_inferior_event_token)
4067 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4068
4069 delete rs->notif_state;
4070 }
4071
4072 /* Query the remote side for the text, data and bss offsets. */
4073
4074 void
4075 remote_target::get_offsets ()
4076 {
4077 struct remote_state *rs = get_remote_state ();
4078 char *buf;
4079 char *ptr;
4080 int lose, num_segments = 0, do_sections, do_segments;
4081 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4082 struct symfile_segment_data *data;
4083
4084 if (symfile_objfile == NULL)
4085 return;
4086
4087 putpkt ("qOffsets");
4088 getpkt (&rs->buf, 0);
4089 buf = rs->buf.data ();
4090
4091 if (buf[0] == '\000')
4092 return; /* Return silently. Stub doesn't support
4093 this command. */
4094 if (buf[0] == 'E')
4095 {
4096 warning (_("Remote failure reply: %s"), buf);
4097 return;
4098 }
4099
4100 /* Pick up each field in turn. This used to be done with scanf, but
4101 scanf will make trouble if CORE_ADDR size doesn't match
4102 conversion directives correctly. The following code will work
4103 with any size of CORE_ADDR. */
4104 text_addr = data_addr = bss_addr = 0;
4105 ptr = buf;
4106 lose = 0;
4107
4108 if (startswith (ptr, "Text="))
4109 {
4110 ptr += 5;
4111 /* Don't use strtol, could lose on big values. */
4112 while (*ptr && *ptr != ';')
4113 text_addr = (text_addr << 4) + fromhex (*ptr++);
4114
4115 if (startswith (ptr, ";Data="))
4116 {
4117 ptr += 6;
4118 while (*ptr && *ptr != ';')
4119 data_addr = (data_addr << 4) + fromhex (*ptr++);
4120 }
4121 else
4122 lose = 1;
4123
4124 if (!lose && startswith (ptr, ";Bss="))
4125 {
4126 ptr += 5;
4127 while (*ptr && *ptr != ';')
4128 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4129
4130 if (bss_addr != data_addr)
4131 warning (_("Target reported unsupported offsets: %s"), buf);
4132 }
4133 else
4134 lose = 1;
4135 }
4136 else if (startswith (ptr, "TextSeg="))
4137 {
4138 ptr += 8;
4139 /* Don't use strtol, could lose on big values. */
4140 while (*ptr && *ptr != ';')
4141 text_addr = (text_addr << 4) + fromhex (*ptr++);
4142 num_segments = 1;
4143
4144 if (startswith (ptr, ";DataSeg="))
4145 {
4146 ptr += 9;
4147 while (*ptr && *ptr != ';')
4148 data_addr = (data_addr << 4) + fromhex (*ptr++);
4149 num_segments++;
4150 }
4151 }
4152 else
4153 lose = 1;
4154
4155 if (lose)
4156 error (_("Malformed response to offset query, %s"), buf);
4157 else if (*ptr != '\0')
4158 warning (_("Target reported unsupported offsets: %s"), buf);
4159
4160 section_offsets offs = symfile_objfile->section_offsets;
4161
4162 data = get_symfile_segment_data (symfile_objfile->obfd);
4163 do_segments = (data != NULL);
4164 do_sections = num_segments == 0;
4165
4166 if (num_segments > 0)
4167 {
4168 segments[0] = text_addr;
4169 segments[1] = data_addr;
4170 }
4171 /* If we have two segments, we can still try to relocate everything
4172 by assuming that the .text and .data offsets apply to the whole
4173 text and data segments. Convert the offsets given in the packet
4174 to base addresses for symfile_map_offsets_to_segments. */
4175 else if (data && data->num_segments == 2)
4176 {
4177 segments[0] = data->segment_bases[0] + text_addr;
4178 segments[1] = data->segment_bases[1] + data_addr;
4179 num_segments = 2;
4180 }
4181 /* If the object file has only one segment, assume that it is text
4182 rather than data; main programs with no writable data are rare,
4183 but programs with no code are useless. Of course the code might
4184 have ended up in the data segment... to detect that we would need
4185 the permissions here. */
4186 else if (data && data->num_segments == 1)
4187 {
4188 segments[0] = data->segment_bases[0] + text_addr;
4189 num_segments = 1;
4190 }
4191 /* There's no way to relocate by segment. */
4192 else
4193 do_segments = 0;
4194
4195 if (do_segments)
4196 {
4197 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4198 offs, num_segments, segments);
4199
4200 if (ret == 0 && !do_sections)
4201 error (_("Can not handle qOffsets TextSeg "
4202 "response with this symbol file"));
4203
4204 if (ret > 0)
4205 do_sections = 0;
4206 }
4207
4208 if (data)
4209 free_symfile_segment_data (data);
4210
4211 if (do_sections)
4212 {
4213 offs[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4214
4215 /* This is a temporary kludge to force data and bss to use the
4216 same offsets because that's what nlmconv does now. The real
4217 solution requires changes to the stub and remote.c that I
4218 don't have time to do right now. */
4219
4220 offs[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4221 offs[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4222 }
4223
4224 objfile_relocate (symfile_objfile, offs);
4225 }
4226
4227 /* Send interrupt_sequence to remote target. */
4228
4229 void
4230 remote_target::send_interrupt_sequence ()
4231 {
4232 struct remote_state *rs = get_remote_state ();
4233
4234 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4235 remote_serial_write ("\x03", 1);
4236 else if (interrupt_sequence_mode == interrupt_sequence_break)
4237 serial_send_break (rs->remote_desc);
4238 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4239 {
4240 serial_send_break (rs->remote_desc);
4241 remote_serial_write ("g", 1);
4242 }
4243 else
4244 internal_error (__FILE__, __LINE__,
4245 _("Invalid value for interrupt_sequence_mode: %s."),
4246 interrupt_sequence_mode);
4247 }
4248
4249
4250 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4251 and extract the PTID. Returns NULL_PTID if not found. */
4252
4253 static ptid_t
4254 stop_reply_extract_thread (char *stop_reply)
4255 {
4256 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4257 {
4258 const char *p;
4259
4260 /* Txx r:val ; r:val (...) */
4261 p = &stop_reply[3];
4262
4263 /* Look for "register" named "thread". */
4264 while (*p != '\0')
4265 {
4266 const char *p1;
4267
4268 p1 = strchr (p, ':');
4269 if (p1 == NULL)
4270 return null_ptid;
4271
4272 if (strncmp (p, "thread", p1 - p) == 0)
4273 return read_ptid (++p1, &p);
4274
4275 p1 = strchr (p, ';');
4276 if (p1 == NULL)
4277 return null_ptid;
4278 p1++;
4279
4280 p = p1;
4281 }
4282 }
4283
4284 return null_ptid;
4285 }
4286
4287 /* Determine the remote side's current thread. If we have a stop
4288 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4289 "thread" register we can extract the current thread from. If not,
4290 ask the remote which is the current thread with qC. The former
4291 method avoids a roundtrip. */
4292
4293 ptid_t
4294 remote_target::get_current_thread (char *wait_status)
4295 {
4296 ptid_t ptid = null_ptid;
4297
4298 /* Note we don't use remote_parse_stop_reply as that makes use of
4299 the target architecture, which we haven't yet fully determined at
4300 this point. */
4301 if (wait_status != NULL)
4302 ptid = stop_reply_extract_thread (wait_status);
4303 if (ptid == null_ptid)
4304 ptid = remote_current_thread (inferior_ptid);
4305
4306 return ptid;
4307 }
4308
4309 /* Query the remote target for which is the current thread/process,
4310 add it to our tables, and update INFERIOR_PTID. The caller is
4311 responsible for setting the state such that the remote end is ready
4312 to return the current thread.
4313
4314 This function is called after handling the '?' or 'vRun' packets,
4315 whose response is a stop reply from which we can also try
4316 extracting the thread. If the target doesn't support the explicit
4317 qC query, we infer the current thread from that stop reply, passed
4318 in in WAIT_STATUS, which may be NULL. */
4319
4320 void
4321 remote_target::add_current_inferior_and_thread (char *wait_status)
4322 {
4323 struct remote_state *rs = get_remote_state ();
4324 bool fake_pid_p = false;
4325
4326 inferior_ptid = null_ptid;
4327
4328 /* Now, if we have thread information, update inferior_ptid. */
4329 ptid_t curr_ptid = get_current_thread (wait_status);
4330
4331 if (curr_ptid != null_ptid)
4332 {
4333 if (!remote_multi_process_p (rs))
4334 fake_pid_p = true;
4335 }
4336 else
4337 {
4338 /* Without this, some commands which require an active target
4339 (such as kill) won't work. This variable serves (at least)
4340 double duty as both the pid of the target process (if it has
4341 such), and as a flag indicating that a target is active. */
4342 curr_ptid = magic_null_ptid;
4343 fake_pid_p = true;
4344 }
4345
4346 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4347
4348 /* Add the main thread and switch to it. Don't try reading
4349 registers yet, since we haven't fetched the target description
4350 yet. */
4351 thread_info *tp = add_thread_silent (this, curr_ptid);
4352 switch_to_thread_no_regs (tp);
4353 }
4354
4355 /* Print info about a thread that was found already stopped on
4356 connection. */
4357
4358 static void
4359 print_one_stopped_thread (struct thread_info *thread)
4360 {
4361 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4362
4363 switch_to_thread (thread);
4364 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4365 set_current_sal_from_frame (get_current_frame ());
4366
4367 thread->suspend.waitstatus_pending_p = 0;
4368
4369 if (ws->kind == TARGET_WAITKIND_STOPPED)
4370 {
4371 enum gdb_signal sig = ws->value.sig;
4372
4373 if (signal_print_state (sig))
4374 gdb::observers::signal_received.notify (sig);
4375 }
4376 gdb::observers::normal_stop.notify (NULL, 1);
4377 }
4378
4379 /* Process all initial stop replies the remote side sent in response
4380 to the ? packet. These indicate threads that were already stopped
4381 on initial connection. We mark these threads as stopped and print
4382 their current frame before giving the user the prompt. */
4383
4384 void
4385 remote_target::process_initial_stop_replies (int from_tty)
4386 {
4387 int pending_stop_replies = stop_reply_queue_length ();
4388 struct thread_info *selected = NULL;
4389 struct thread_info *lowest_stopped = NULL;
4390 struct thread_info *first = NULL;
4391
4392 /* Consume the initial pending events. */
4393 while (pending_stop_replies-- > 0)
4394 {
4395 ptid_t waiton_ptid = minus_one_ptid;
4396 ptid_t event_ptid;
4397 struct target_waitstatus ws;
4398 int ignore_event = 0;
4399
4400 memset (&ws, 0, sizeof (ws));
4401 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4402 if (remote_debug)
4403 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4404
4405 switch (ws.kind)
4406 {
4407 case TARGET_WAITKIND_IGNORE:
4408 case TARGET_WAITKIND_NO_RESUMED:
4409 case TARGET_WAITKIND_SIGNALLED:
4410 case TARGET_WAITKIND_EXITED:
4411 /* We shouldn't see these, but if we do, just ignore. */
4412 if (remote_debug)
4413 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4414 ignore_event = 1;
4415 break;
4416
4417 case TARGET_WAITKIND_EXECD:
4418 xfree (ws.value.execd_pathname);
4419 break;
4420 default:
4421 break;
4422 }
4423
4424 if (ignore_event)
4425 continue;
4426
4427 thread_info *evthread = find_thread_ptid (this, event_ptid);
4428
4429 if (ws.kind == TARGET_WAITKIND_STOPPED)
4430 {
4431 enum gdb_signal sig = ws.value.sig;
4432
4433 /* Stubs traditionally report SIGTRAP as initial signal,
4434 instead of signal 0. Suppress it. */
4435 if (sig == GDB_SIGNAL_TRAP)
4436 sig = GDB_SIGNAL_0;
4437 evthread->suspend.stop_signal = sig;
4438 ws.value.sig = sig;
4439 }
4440
4441 evthread->suspend.waitstatus = ws;
4442
4443 if (ws.kind != TARGET_WAITKIND_STOPPED
4444 || ws.value.sig != GDB_SIGNAL_0)
4445 evthread->suspend.waitstatus_pending_p = 1;
4446
4447 set_executing (this, event_ptid, 0);
4448 set_running (this, event_ptid, 0);
4449 get_remote_thread_info (evthread)->vcont_resumed = 0;
4450 }
4451
4452 /* "Notice" the new inferiors before anything related to
4453 registers/memory. */
4454 for (inferior *inf : all_non_exited_inferiors (this))
4455 {
4456 inf->needs_setup = 1;
4457
4458 if (non_stop)
4459 {
4460 thread_info *thread = any_live_thread_of_inferior (inf);
4461 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4462 from_tty);
4463 }
4464 }
4465
4466 /* If all-stop on top of non-stop, pause all threads. Note this
4467 records the threads' stop pc, so must be done after "noticing"
4468 the inferiors. */
4469 if (!non_stop)
4470 {
4471 stop_all_threads ();
4472
4473 /* If all threads of an inferior were already stopped, we
4474 haven't setup the inferior yet. */
4475 for (inferior *inf : all_non_exited_inferiors (this))
4476 {
4477 if (inf->needs_setup)
4478 {
4479 thread_info *thread = any_live_thread_of_inferior (inf);
4480 switch_to_thread_no_regs (thread);
4481 setup_inferior (0);
4482 }
4483 }
4484 }
4485
4486 /* Now go over all threads that are stopped, and print their current
4487 frame. If all-stop, then if there's a signalled thread, pick
4488 that as current. */
4489 for (thread_info *thread : all_non_exited_threads (this))
4490 {
4491 if (first == NULL)
4492 first = thread;
4493
4494 if (!non_stop)
4495 thread->set_running (false);
4496 else if (thread->state != THREAD_STOPPED)
4497 continue;
4498
4499 if (selected == NULL
4500 && thread->suspend.waitstatus_pending_p)
4501 selected = thread;
4502
4503 if (lowest_stopped == NULL
4504 || thread->inf->num < lowest_stopped->inf->num
4505 || thread->per_inf_num < lowest_stopped->per_inf_num)
4506 lowest_stopped = thread;
4507
4508 if (non_stop)
4509 print_one_stopped_thread (thread);
4510 }
4511
4512 /* In all-stop, we only print the status of one thread, and leave
4513 others with their status pending. */
4514 if (!non_stop)
4515 {
4516 thread_info *thread = selected;
4517 if (thread == NULL)
4518 thread = lowest_stopped;
4519 if (thread == NULL)
4520 thread = first;
4521
4522 print_one_stopped_thread (thread);
4523 }
4524
4525 /* For "info program". */
4526 thread_info *thread = inferior_thread ();
4527 if (thread->state == THREAD_STOPPED)
4528 set_last_target_status (this, inferior_ptid, thread->suspend.waitstatus);
4529 }
4530
4531 /* Start the remote connection and sync state. */
4532
4533 void
4534 remote_target::start_remote (int from_tty, int extended_p)
4535 {
4536 struct remote_state *rs = get_remote_state ();
4537 struct packet_config *noack_config;
4538 char *wait_status = NULL;
4539
4540 /* Signal other parts that we're going through the initial setup,
4541 and so things may not be stable yet. E.g., we don't try to
4542 install tracepoints until we've relocated symbols. Also, a
4543 Ctrl-C before we're connected and synced up can't interrupt the
4544 target. Instead, it offers to drop the (potentially wedged)
4545 connection. */
4546 rs->starting_up = 1;
4547
4548 QUIT;
4549
4550 if (interrupt_on_connect)
4551 send_interrupt_sequence ();
4552
4553 /* Ack any packet which the remote side has already sent. */
4554 remote_serial_write ("+", 1);
4555
4556 /* The first packet we send to the target is the optional "supported
4557 packets" request. If the target can answer this, it will tell us
4558 which later probes to skip. */
4559 remote_query_supported ();
4560
4561 /* If the stub wants to get a QAllow, compose one and send it. */
4562 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4563 set_permissions ();
4564
4565 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4566 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4567 as a reply to known packet. For packet "vFile:setfs:" it is an
4568 invalid reply and GDB would return error in
4569 remote_hostio_set_filesystem, making remote files access impossible.
4570 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4571 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4572 {
4573 const char v_mustreplyempty[] = "vMustReplyEmpty";
4574
4575 putpkt (v_mustreplyempty);
4576 getpkt (&rs->buf, 0);
4577 if (strcmp (rs->buf.data (), "OK") == 0)
4578 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4579 else if (strcmp (rs->buf.data (), "") != 0)
4580 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4581 rs->buf.data ());
4582 }
4583
4584 /* Next, we possibly activate noack mode.
4585
4586 If the QStartNoAckMode packet configuration is set to AUTO,
4587 enable noack mode if the stub reported a wish for it with
4588 qSupported.
4589
4590 If set to TRUE, then enable noack mode even if the stub didn't
4591 report it in qSupported. If the stub doesn't reply OK, the
4592 session ends with an error.
4593
4594 If FALSE, then don't activate noack mode, regardless of what the
4595 stub claimed should be the default with qSupported. */
4596
4597 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4598 if (packet_config_support (noack_config) != PACKET_DISABLE)
4599 {
4600 putpkt ("QStartNoAckMode");
4601 getpkt (&rs->buf, 0);
4602 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4603 rs->noack_mode = 1;
4604 }
4605
4606 if (extended_p)
4607 {
4608 /* Tell the remote that we are using the extended protocol. */
4609 putpkt ("!");
4610 getpkt (&rs->buf, 0);
4611 }
4612
4613 /* Let the target know which signals it is allowed to pass down to
4614 the program. */
4615 update_signals_program_target ();
4616
4617 /* Next, if the target can specify a description, read it. We do
4618 this before anything involving memory or registers. */
4619 target_find_description ();
4620
4621 /* Next, now that we know something about the target, update the
4622 address spaces in the program spaces. */
4623 update_address_spaces ();
4624
4625 /* On OSs where the list of libraries is global to all
4626 processes, we fetch them early. */
4627 if (gdbarch_has_global_solist (target_gdbarch ()))
4628 solib_add (NULL, from_tty, auto_solib_add);
4629
4630 if (target_is_non_stop_p ())
4631 {
4632 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4633 error (_("Non-stop mode requested, but remote "
4634 "does not support non-stop"));
4635
4636 putpkt ("QNonStop:1");
4637 getpkt (&rs->buf, 0);
4638
4639 if (strcmp (rs->buf.data (), "OK") != 0)
4640 error (_("Remote refused setting non-stop mode with: %s"),
4641 rs->buf.data ());
4642
4643 /* Find about threads and processes the stub is already
4644 controlling. We default to adding them in the running state.
4645 The '?' query below will then tell us about which threads are
4646 stopped. */
4647 this->update_thread_list ();
4648 }
4649 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4650 {
4651 /* Don't assume that the stub can operate in all-stop mode.
4652 Request it explicitly. */
4653 putpkt ("QNonStop:0");
4654 getpkt (&rs->buf, 0);
4655
4656 if (strcmp (rs->buf.data (), "OK") != 0)
4657 error (_("Remote refused setting all-stop mode with: %s"),
4658 rs->buf.data ());
4659 }
4660
4661 /* Upload TSVs regardless of whether the target is running or not. The
4662 remote stub, such as GDBserver, may have some predefined or builtin
4663 TSVs, even if the target is not running. */
4664 if (get_trace_status (current_trace_status ()) != -1)
4665 {
4666 struct uploaded_tsv *uploaded_tsvs = NULL;
4667
4668 upload_trace_state_variables (&uploaded_tsvs);
4669 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4670 }
4671
4672 /* Check whether the target is running now. */
4673 putpkt ("?");
4674 getpkt (&rs->buf, 0);
4675
4676 if (!target_is_non_stop_p ())
4677 {
4678 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4679 {
4680 if (!extended_p)
4681 error (_("The target is not running (try extended-remote?)"));
4682
4683 /* We're connected, but not running. Drop out before we
4684 call start_remote. */
4685 rs->starting_up = 0;
4686 return;
4687 }
4688 else
4689 {
4690 /* Save the reply for later. */
4691 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4692 strcpy (wait_status, rs->buf.data ());
4693 }
4694
4695 /* Fetch thread list. */
4696 target_update_thread_list ();
4697
4698 /* Let the stub know that we want it to return the thread. */
4699 set_continue_thread (minus_one_ptid);
4700
4701 if (thread_count (this) == 0)
4702 {
4703 /* Target has no concept of threads at all. GDB treats
4704 non-threaded target as single-threaded; add a main
4705 thread. */
4706 add_current_inferior_and_thread (wait_status);
4707 }
4708 else
4709 {
4710 /* We have thread information; select the thread the target
4711 says should be current. If we're reconnecting to a
4712 multi-threaded program, this will ideally be the thread
4713 that last reported an event before GDB disconnected. */
4714 ptid_t curr_thread = get_current_thread (wait_status);
4715 if (curr_thread == null_ptid)
4716 {
4717 /* Odd... The target was able to list threads, but not
4718 tell us which thread was current (no "thread"
4719 register in T stop reply?). Just pick the first
4720 thread in the thread list then. */
4721
4722 if (remote_debug)
4723 fprintf_unfiltered (gdb_stdlog,
4724 "warning: couldn't determine remote "
4725 "current thread; picking first in list.\n");
4726
4727 for (thread_info *tp : all_non_exited_threads (this,
4728 minus_one_ptid))
4729 {
4730 switch_to_thread (tp);
4731 break;
4732 }
4733 }
4734 else
4735 switch_to_thread (find_thread_ptid (this, curr_thread));
4736 }
4737
4738 /* init_wait_for_inferior should be called before get_offsets in order
4739 to manage `inserted' flag in bp loc in a correct state.
4740 breakpoint_init_inferior, called from init_wait_for_inferior, set
4741 `inserted' flag to 0, while before breakpoint_re_set, called from
4742 start_remote, set `inserted' flag to 1. In the initialization of
4743 inferior, breakpoint_init_inferior should be called first, and then
4744 breakpoint_re_set can be called. If this order is broken, state of
4745 `inserted' flag is wrong, and cause some problems on breakpoint
4746 manipulation. */
4747 init_wait_for_inferior ();
4748
4749 get_offsets (); /* Get text, data & bss offsets. */
4750
4751 /* If we could not find a description using qXfer, and we know
4752 how to do it some other way, try again. This is not
4753 supported for non-stop; it could be, but it is tricky if
4754 there are no stopped threads when we connect. */
4755 if (remote_read_description_p (this)
4756 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4757 {
4758 target_clear_description ();
4759 target_find_description ();
4760 }
4761
4762 /* Use the previously fetched status. */
4763 gdb_assert (wait_status != NULL);
4764 strcpy (rs->buf.data (), wait_status);
4765 rs->cached_wait_status = 1;
4766
4767 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4768 }
4769 else
4770 {
4771 /* Clear WFI global state. Do this before finding about new
4772 threads and inferiors, and setting the current inferior.
4773 Otherwise we would clear the proceed status of the current
4774 inferior when we want its stop_soon state to be preserved
4775 (see notice_new_inferior). */
4776 init_wait_for_inferior ();
4777
4778 /* In non-stop, we will either get an "OK", meaning that there
4779 are no stopped threads at this time; or, a regular stop
4780 reply. In the latter case, there may be more than one thread
4781 stopped --- we pull them all out using the vStopped
4782 mechanism. */
4783 if (strcmp (rs->buf.data (), "OK") != 0)
4784 {
4785 struct notif_client *notif = &notif_client_stop;
4786
4787 /* remote_notif_get_pending_replies acks this one, and gets
4788 the rest out. */
4789 rs->notif_state->pending_event[notif_client_stop.id]
4790 = remote_notif_parse (this, notif, rs->buf.data ());
4791 remote_notif_get_pending_events (notif);
4792 }
4793
4794 if (thread_count (this) == 0)
4795 {
4796 if (!extended_p)
4797 error (_("The target is not running (try extended-remote?)"));
4798
4799 /* We're connected, but not running. Drop out before we
4800 call start_remote. */
4801 rs->starting_up = 0;
4802 return;
4803 }
4804
4805 /* In non-stop mode, any cached wait status will be stored in
4806 the stop reply queue. */
4807 gdb_assert (wait_status == NULL);
4808
4809 /* Report all signals during attach/startup. */
4810 pass_signals ({});
4811
4812 /* If there are already stopped threads, mark them stopped and
4813 report their stops before giving the prompt to the user. */
4814 process_initial_stop_replies (from_tty);
4815
4816 if (target_can_async_p ())
4817 target_async (1);
4818 }
4819
4820 /* If we connected to a live target, do some additional setup. */
4821 if (target_has_execution)
4822 {
4823 if (symfile_objfile) /* No use without a symbol-file. */
4824 remote_check_symbols ();
4825 }
4826
4827 /* Possibly the target has been engaged in a trace run started
4828 previously; find out where things are at. */
4829 if (get_trace_status (current_trace_status ()) != -1)
4830 {
4831 struct uploaded_tp *uploaded_tps = NULL;
4832
4833 if (current_trace_status ()->running)
4834 printf_filtered (_("Trace is already running on the target.\n"));
4835
4836 upload_tracepoints (&uploaded_tps);
4837
4838 merge_uploaded_tracepoints (&uploaded_tps);
4839 }
4840
4841 /* Possibly the target has been engaged in a btrace record started
4842 previously; find out where things are at. */
4843 remote_btrace_maybe_reopen ();
4844
4845 /* The thread and inferior lists are now synchronized with the
4846 target, our symbols have been relocated, and we're merged the
4847 target's tracepoints with ours. We're done with basic start
4848 up. */
4849 rs->starting_up = 0;
4850
4851 /* Maybe breakpoints are global and need to be inserted now. */
4852 if (breakpoints_should_be_inserted_now ())
4853 insert_breakpoints ();
4854 }
4855
4856 /* Open a connection to a remote debugger.
4857 NAME is the filename used for communication. */
4858
4859 void
4860 remote_target::open (const char *name, int from_tty)
4861 {
4862 open_1 (name, from_tty, 0);
4863 }
4864
4865 /* Open a connection to a remote debugger using the extended
4866 remote gdb protocol. NAME is the filename used for communication. */
4867
4868 void
4869 extended_remote_target::open (const char *name, int from_tty)
4870 {
4871 open_1 (name, from_tty, 1 /*extended_p */);
4872 }
4873
4874 /* Reset all packets back to "unknown support". Called when opening a
4875 new connection to a remote target. */
4876
4877 static void
4878 reset_all_packet_configs_support (void)
4879 {
4880 int i;
4881
4882 for (i = 0; i < PACKET_MAX; i++)
4883 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4884 }
4885
4886 /* Initialize all packet configs. */
4887
4888 static void
4889 init_all_packet_configs (void)
4890 {
4891 int i;
4892
4893 for (i = 0; i < PACKET_MAX; i++)
4894 {
4895 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4896 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4897 }
4898 }
4899
4900 /* Symbol look-up. */
4901
4902 void
4903 remote_target::remote_check_symbols ()
4904 {
4905 char *tmp;
4906 int end;
4907
4908 /* The remote side has no concept of inferiors that aren't running
4909 yet, it only knows about running processes. If we're connected
4910 but our current inferior is not running, we should not invite the
4911 remote target to request symbol lookups related to its
4912 (unrelated) current process. */
4913 if (!target_has_execution)
4914 return;
4915
4916 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4917 return;
4918
4919 /* Make sure the remote is pointing at the right process. Note
4920 there's no way to select "no process". */
4921 set_general_process ();
4922
4923 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4924 because we need both at the same time. */
4925 gdb::char_vector msg (get_remote_packet_size ());
4926 gdb::char_vector reply (get_remote_packet_size ());
4927
4928 /* Invite target to request symbol lookups. */
4929
4930 putpkt ("qSymbol::");
4931 getpkt (&reply, 0);
4932 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4933
4934 while (startswith (reply.data (), "qSymbol:"))
4935 {
4936 struct bound_minimal_symbol sym;
4937
4938 tmp = &reply[8];
4939 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4940 strlen (tmp) / 2);
4941 msg[end] = '\0';
4942 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4943 if (sym.minsym == NULL)
4944 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4945 &reply[8]);
4946 else
4947 {
4948 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4949 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4950
4951 /* If this is a function address, return the start of code
4952 instead of any data function descriptor. */
4953 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4954 sym_addr,
4955 current_top_target ());
4956
4957 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4958 phex_nz (sym_addr, addr_size), &reply[8]);
4959 }
4960
4961 putpkt (msg.data ());
4962 getpkt (&reply, 0);
4963 }
4964 }
4965
4966 static struct serial *
4967 remote_serial_open (const char *name)
4968 {
4969 static int udp_warning = 0;
4970
4971 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4972 of in ser-tcp.c, because it is the remote protocol assuming that the
4973 serial connection is reliable and not the serial connection promising
4974 to be. */
4975 if (!udp_warning && startswith (name, "udp:"))
4976 {
4977 warning (_("The remote protocol may be unreliable over UDP.\n"
4978 "Some events may be lost, rendering further debugging "
4979 "impossible."));
4980 udp_warning = 1;
4981 }
4982
4983 return serial_open (name);
4984 }
4985
4986 /* Inform the target of our permission settings. The permission flags
4987 work without this, but if the target knows the settings, it can do
4988 a couple things. First, it can add its own check, to catch cases
4989 that somehow manage to get by the permissions checks in target
4990 methods. Second, if the target is wired to disallow particular
4991 settings (for instance, a system in the field that is not set up to
4992 be able to stop at a breakpoint), it can object to any unavailable
4993 permissions. */
4994
4995 void
4996 remote_target::set_permissions ()
4997 {
4998 struct remote_state *rs = get_remote_state ();
4999
5000 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
5001 "WriteReg:%x;WriteMem:%x;"
5002 "InsertBreak:%x;InsertTrace:%x;"
5003 "InsertFastTrace:%x;Stop:%x",
5004 may_write_registers, may_write_memory,
5005 may_insert_breakpoints, may_insert_tracepoints,
5006 may_insert_fast_tracepoints, may_stop);
5007 putpkt (rs->buf);
5008 getpkt (&rs->buf, 0);
5009
5010 /* If the target didn't like the packet, warn the user. Do not try
5011 to undo the user's settings, that would just be maddening. */
5012 if (strcmp (rs->buf.data (), "OK") != 0)
5013 warning (_("Remote refused setting permissions with: %s"),
5014 rs->buf.data ());
5015 }
5016
5017 /* This type describes each known response to the qSupported
5018 packet. */
5019 struct protocol_feature
5020 {
5021 /* The name of this protocol feature. */
5022 const char *name;
5023
5024 /* The default for this protocol feature. */
5025 enum packet_support default_support;
5026
5027 /* The function to call when this feature is reported, or after
5028 qSupported processing if the feature is not supported.
5029 The first argument points to this structure. The second
5030 argument indicates whether the packet requested support be
5031 enabled, disabled, or probed (or the default, if this function
5032 is being called at the end of processing and this feature was
5033 not reported). The third argument may be NULL; if not NULL, it
5034 is a NUL-terminated string taken from the packet following
5035 this feature's name and an equals sign. */
5036 void (*func) (remote_target *remote, const struct protocol_feature *,
5037 enum packet_support, const char *);
5038
5039 /* The corresponding packet for this feature. Only used if
5040 FUNC is remote_supported_packet. */
5041 int packet;
5042 };
5043
5044 static void
5045 remote_supported_packet (remote_target *remote,
5046 const struct protocol_feature *feature,
5047 enum packet_support support,
5048 const char *argument)
5049 {
5050 if (argument)
5051 {
5052 warning (_("Remote qSupported response supplied an unexpected value for"
5053 " \"%s\"."), feature->name);
5054 return;
5055 }
5056
5057 remote_protocol_packets[feature->packet].support = support;
5058 }
5059
5060 void
5061 remote_target::remote_packet_size (const protocol_feature *feature,
5062 enum packet_support support, const char *value)
5063 {
5064 struct remote_state *rs = get_remote_state ();
5065
5066 int packet_size;
5067 char *value_end;
5068
5069 if (support != PACKET_ENABLE)
5070 return;
5071
5072 if (value == NULL || *value == '\0')
5073 {
5074 warning (_("Remote target reported \"%s\" without a size."),
5075 feature->name);
5076 return;
5077 }
5078
5079 errno = 0;
5080 packet_size = strtol (value, &value_end, 16);
5081 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5082 {
5083 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5084 feature->name, value);
5085 return;
5086 }
5087
5088 /* Record the new maximum packet size. */
5089 rs->explicit_packet_size = packet_size;
5090 }
5091
5092 static void
5093 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5094 enum packet_support support, const char *value)
5095 {
5096 remote->remote_packet_size (feature, support, value);
5097 }
5098
5099 static const struct protocol_feature remote_protocol_features[] = {
5100 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5101 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5102 PACKET_qXfer_auxv },
5103 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5104 PACKET_qXfer_exec_file },
5105 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5106 PACKET_qXfer_features },
5107 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5108 PACKET_qXfer_libraries },
5109 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5110 PACKET_qXfer_libraries_svr4 },
5111 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5112 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5113 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5114 PACKET_qXfer_memory_map },
5115 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5116 PACKET_qXfer_osdata },
5117 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5118 PACKET_qXfer_threads },
5119 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5120 PACKET_qXfer_traceframe_info },
5121 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5122 PACKET_QPassSignals },
5123 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5124 PACKET_QCatchSyscalls },
5125 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5126 PACKET_QProgramSignals },
5127 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5128 PACKET_QSetWorkingDir },
5129 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5130 PACKET_QStartupWithShell },
5131 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5132 PACKET_QEnvironmentHexEncoded },
5133 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5134 PACKET_QEnvironmentReset },
5135 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_QEnvironmentUnset },
5137 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_QStartNoAckMode },
5139 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_multiprocess_feature },
5141 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5142 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5143 PACKET_qXfer_siginfo_read },
5144 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5145 PACKET_qXfer_siginfo_write },
5146 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5147 PACKET_ConditionalTracepoints },
5148 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5149 PACKET_ConditionalBreakpoints },
5150 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5151 PACKET_BreakpointCommands },
5152 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5153 PACKET_FastTracepoints },
5154 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5155 PACKET_StaticTracepoints },
5156 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5157 PACKET_InstallInTrace},
5158 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5159 PACKET_DisconnectedTracing_feature },
5160 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5161 PACKET_bc },
5162 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5163 PACKET_bs },
5164 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5165 PACKET_TracepointSource },
5166 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5167 PACKET_QAllow },
5168 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5169 PACKET_EnableDisableTracepoints_feature },
5170 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5171 PACKET_qXfer_fdpic },
5172 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5173 PACKET_qXfer_uib },
5174 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5175 PACKET_QDisableRandomization },
5176 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5177 { "QTBuffer:size", PACKET_DISABLE,
5178 remote_supported_packet, PACKET_QTBuffer_size},
5179 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5180 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5181 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5182 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5183 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5184 PACKET_qXfer_btrace },
5185 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5186 PACKET_qXfer_btrace_conf },
5187 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5188 PACKET_Qbtrace_conf_bts_size },
5189 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5190 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5191 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5192 PACKET_fork_event_feature },
5193 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5194 PACKET_vfork_event_feature },
5195 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5196 PACKET_exec_event_feature },
5197 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5198 PACKET_Qbtrace_conf_pt_size },
5199 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5200 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5201 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5202 };
5203
5204 static char *remote_support_xml;
5205
5206 /* Register string appended to "xmlRegisters=" in qSupported query. */
5207
5208 void
5209 register_remote_support_xml (const char *xml)
5210 {
5211 #if defined(HAVE_LIBEXPAT)
5212 if (remote_support_xml == NULL)
5213 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5214 else
5215 {
5216 char *copy = xstrdup (remote_support_xml + 13);
5217 char *saveptr;
5218 char *p = strtok_r (copy, ",", &saveptr);
5219
5220 do
5221 {
5222 if (strcmp (p, xml) == 0)
5223 {
5224 /* already there */
5225 xfree (copy);
5226 return;
5227 }
5228 }
5229 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5230 xfree (copy);
5231
5232 remote_support_xml = reconcat (remote_support_xml,
5233 remote_support_xml, ",", xml,
5234 (char *) NULL);
5235 }
5236 #endif
5237 }
5238
5239 static void
5240 remote_query_supported_append (std::string *msg, const char *append)
5241 {
5242 if (!msg->empty ())
5243 msg->append (";");
5244 msg->append (append);
5245 }
5246
5247 void
5248 remote_target::remote_query_supported ()
5249 {
5250 struct remote_state *rs = get_remote_state ();
5251 char *next;
5252 int i;
5253 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5254
5255 /* The packet support flags are handled differently for this packet
5256 than for most others. We treat an error, a disabled packet, and
5257 an empty response identically: any features which must be reported
5258 to be used will be automatically disabled. An empty buffer
5259 accomplishes this, since that is also the representation for a list
5260 containing no features. */
5261
5262 rs->buf[0] = 0;
5263 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5264 {
5265 std::string q;
5266
5267 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5268 remote_query_supported_append (&q, "multiprocess+");
5269
5270 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5271 remote_query_supported_append (&q, "swbreak+");
5272 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5273 remote_query_supported_append (&q, "hwbreak+");
5274
5275 remote_query_supported_append (&q, "qRelocInsn+");
5276
5277 if (packet_set_cmd_state (PACKET_fork_event_feature)
5278 != AUTO_BOOLEAN_FALSE)
5279 remote_query_supported_append (&q, "fork-events+");
5280 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5281 != AUTO_BOOLEAN_FALSE)
5282 remote_query_supported_append (&q, "vfork-events+");
5283 if (packet_set_cmd_state (PACKET_exec_event_feature)
5284 != AUTO_BOOLEAN_FALSE)
5285 remote_query_supported_append (&q, "exec-events+");
5286
5287 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5288 remote_query_supported_append (&q, "vContSupported+");
5289
5290 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5291 remote_query_supported_append (&q, "QThreadEvents+");
5292
5293 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5294 remote_query_supported_append (&q, "no-resumed+");
5295
5296 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5297 the qSupported:xmlRegisters=i386 handling. */
5298 if (remote_support_xml != NULL
5299 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5300 remote_query_supported_append (&q, remote_support_xml);
5301
5302 q = "qSupported:" + q;
5303 putpkt (q.c_str ());
5304
5305 getpkt (&rs->buf, 0);
5306
5307 /* If an error occured, warn, but do not return - just reset the
5308 buffer to empty and go on to disable features. */
5309 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5310 == PACKET_ERROR)
5311 {
5312 warning (_("Remote failure reply: %s"), rs->buf.data ());
5313 rs->buf[0] = 0;
5314 }
5315 }
5316
5317 memset (seen, 0, sizeof (seen));
5318
5319 next = rs->buf.data ();
5320 while (*next)
5321 {
5322 enum packet_support is_supported;
5323 char *p, *end, *name_end, *value;
5324
5325 /* First separate out this item from the rest of the packet. If
5326 there's another item after this, we overwrite the separator
5327 (terminated strings are much easier to work with). */
5328 p = next;
5329 end = strchr (p, ';');
5330 if (end == NULL)
5331 {
5332 end = p + strlen (p);
5333 next = end;
5334 }
5335 else
5336 {
5337 *end = '\0';
5338 next = end + 1;
5339
5340 if (end == p)
5341 {
5342 warning (_("empty item in \"qSupported\" response"));
5343 continue;
5344 }
5345 }
5346
5347 name_end = strchr (p, '=');
5348 if (name_end)
5349 {
5350 /* This is a name=value entry. */
5351 is_supported = PACKET_ENABLE;
5352 value = name_end + 1;
5353 *name_end = '\0';
5354 }
5355 else
5356 {
5357 value = NULL;
5358 switch (end[-1])
5359 {
5360 case '+':
5361 is_supported = PACKET_ENABLE;
5362 break;
5363
5364 case '-':
5365 is_supported = PACKET_DISABLE;
5366 break;
5367
5368 case '?':
5369 is_supported = PACKET_SUPPORT_UNKNOWN;
5370 break;
5371
5372 default:
5373 warning (_("unrecognized item \"%s\" "
5374 "in \"qSupported\" response"), p);
5375 continue;
5376 }
5377 end[-1] = '\0';
5378 }
5379
5380 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5381 if (strcmp (remote_protocol_features[i].name, p) == 0)
5382 {
5383 const struct protocol_feature *feature;
5384
5385 seen[i] = 1;
5386 feature = &remote_protocol_features[i];
5387 feature->func (this, feature, is_supported, value);
5388 break;
5389 }
5390 }
5391
5392 /* If we increased the packet size, make sure to increase the global
5393 buffer size also. We delay this until after parsing the entire
5394 qSupported packet, because this is the same buffer we were
5395 parsing. */
5396 if (rs->buf.size () < rs->explicit_packet_size)
5397 rs->buf.resize (rs->explicit_packet_size);
5398
5399 /* Handle the defaults for unmentioned features. */
5400 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5401 if (!seen[i])
5402 {
5403 const struct protocol_feature *feature;
5404
5405 feature = &remote_protocol_features[i];
5406 feature->func (this, feature, feature->default_support, NULL);
5407 }
5408 }
5409
5410 /* Serial QUIT handler for the remote serial descriptor.
5411
5412 Defers handling a Ctrl-C until we're done with the current
5413 command/response packet sequence, unless:
5414
5415 - We're setting up the connection. Don't send a remote interrupt
5416 request, as we're not fully synced yet. Quit immediately
5417 instead.
5418
5419 - The target has been resumed in the foreground
5420 (target_terminal::is_ours is false) with a synchronous resume
5421 packet, and we're blocked waiting for the stop reply, thus a
5422 Ctrl-C should be immediately sent to the target.
5423
5424 - We get a second Ctrl-C while still within the same serial read or
5425 write. In that case the serial is seemingly wedged --- offer to
5426 quit/disconnect.
5427
5428 - We see a second Ctrl-C without target response, after having
5429 previously interrupted the target. In that case the target/stub
5430 is probably wedged --- offer to quit/disconnect.
5431 */
5432
5433 void
5434 remote_target::remote_serial_quit_handler ()
5435 {
5436 struct remote_state *rs = get_remote_state ();
5437
5438 if (check_quit_flag ())
5439 {
5440 /* If we're starting up, we're not fully synced yet. Quit
5441 immediately. */
5442 if (rs->starting_up)
5443 quit ();
5444 else if (rs->got_ctrlc_during_io)
5445 {
5446 if (query (_("The target is not responding to GDB commands.\n"
5447 "Stop debugging it? ")))
5448 remote_unpush_and_throw (this);
5449 }
5450 /* If ^C has already been sent once, offer to disconnect. */
5451 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5452 interrupt_query ();
5453 /* All-stop protocol, and blocked waiting for stop reply. Send
5454 an interrupt request. */
5455 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5456 target_interrupt ();
5457 else
5458 rs->got_ctrlc_during_io = 1;
5459 }
5460 }
5461
5462 /* The remote_target that is current while the quit handler is
5463 overridden with remote_serial_quit_handler. */
5464 static remote_target *curr_quit_handler_target;
5465
5466 static void
5467 remote_serial_quit_handler ()
5468 {
5469 curr_quit_handler_target->remote_serial_quit_handler ();
5470 }
5471
5472 /* Remove the remote target from the target stack of each inferior
5473 that is using it. Upper targets depend on it so remove them
5474 first. */
5475
5476 static void
5477 remote_unpush_target (remote_target *target)
5478 {
5479 /* We have to unpush the target from all inferiors, even those that
5480 aren't running. */
5481 scoped_restore_current_inferior restore_current_inferior;
5482
5483 for (inferior *inf : all_inferiors (target))
5484 {
5485 switch_to_inferior_no_thread (inf);
5486 pop_all_targets_at_and_above (process_stratum);
5487 generic_mourn_inferior ();
5488 }
5489 }
5490
5491 static void
5492 remote_unpush_and_throw (remote_target *target)
5493 {
5494 remote_unpush_target (target);
5495 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5496 }
5497
5498 void
5499 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5500 {
5501 remote_target *curr_remote = get_current_remote_target ();
5502
5503 if (name == 0)
5504 error (_("To open a remote debug connection, you need to specify what\n"
5505 "serial device is attached to the remote system\n"
5506 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5507
5508 /* If we're connected to a running target, target_preopen will kill it.
5509 Ask this question first, before target_preopen has a chance to kill
5510 anything. */
5511 if (curr_remote != NULL && !target_has_execution)
5512 {
5513 if (from_tty
5514 && !query (_("Already connected to a remote target. Disconnect? ")))
5515 error (_("Still connected."));
5516 }
5517
5518 /* Here the possibly existing remote target gets unpushed. */
5519 target_preopen (from_tty);
5520
5521 remote_fileio_reset ();
5522 reopen_exec_file ();
5523 reread_symbols ();
5524
5525 remote_target *remote
5526 = (extended_p ? new extended_remote_target () : new remote_target ());
5527 target_ops_up target_holder (remote);
5528
5529 remote_state *rs = remote->get_remote_state ();
5530
5531 /* See FIXME above. */
5532 if (!target_async_permitted)
5533 rs->wait_forever_enabled_p = 1;
5534
5535 rs->remote_desc = remote_serial_open (name);
5536 if (!rs->remote_desc)
5537 perror_with_name (name);
5538
5539 if (baud_rate != -1)
5540 {
5541 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5542 {
5543 /* The requested speed could not be set. Error out to
5544 top level after closing remote_desc. Take care to
5545 set remote_desc to NULL to avoid closing remote_desc
5546 more than once. */
5547 serial_close (rs->remote_desc);
5548 rs->remote_desc = NULL;
5549 perror_with_name (name);
5550 }
5551 }
5552
5553 serial_setparity (rs->remote_desc, serial_parity);
5554 serial_raw (rs->remote_desc);
5555
5556 /* If there is something sitting in the buffer we might take it as a
5557 response to a command, which would be bad. */
5558 serial_flush_input (rs->remote_desc);
5559
5560 if (from_tty)
5561 {
5562 puts_filtered ("Remote debugging using ");
5563 puts_filtered (name);
5564 puts_filtered ("\n");
5565 }
5566
5567 /* Switch to using the remote target now. */
5568 push_target (std::move (target_holder));
5569
5570 /* Register extra event sources in the event loop. */
5571 rs->remote_async_inferior_event_token
5572 = create_async_event_handler (remote_async_inferior_event_handler,
5573 remote);
5574 rs->notif_state = remote_notif_state_allocate (remote);
5575
5576 /* Reset the target state; these things will be queried either by
5577 remote_query_supported or as they are needed. */
5578 reset_all_packet_configs_support ();
5579 rs->cached_wait_status = 0;
5580 rs->explicit_packet_size = 0;
5581 rs->noack_mode = 0;
5582 rs->extended = extended_p;
5583 rs->waiting_for_stop_reply = 0;
5584 rs->ctrlc_pending_p = 0;
5585 rs->got_ctrlc_during_io = 0;
5586
5587 rs->general_thread = not_sent_ptid;
5588 rs->continue_thread = not_sent_ptid;
5589 rs->remote_traceframe_number = -1;
5590
5591 rs->last_resume_exec_dir = EXEC_FORWARD;
5592
5593 /* Probe for ability to use "ThreadInfo" query, as required. */
5594 rs->use_threadinfo_query = 1;
5595 rs->use_threadextra_query = 1;
5596
5597 rs->readahead_cache.invalidate ();
5598
5599 if (target_async_permitted)
5600 {
5601 /* FIXME: cagney/1999-09-23: During the initial connection it is
5602 assumed that the target is already ready and able to respond to
5603 requests. Unfortunately remote_start_remote() eventually calls
5604 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5605 around this. Eventually a mechanism that allows
5606 wait_for_inferior() to expect/get timeouts will be
5607 implemented. */
5608 rs->wait_forever_enabled_p = 0;
5609 }
5610
5611 /* First delete any symbols previously loaded from shared libraries. */
5612 no_shared_libraries (NULL, 0);
5613
5614 /* Start the remote connection. If error() or QUIT, discard this
5615 target (we'd otherwise be in an inconsistent state) and then
5616 propogate the error on up the exception chain. This ensures that
5617 the caller doesn't stumble along blindly assuming that the
5618 function succeeded. The CLI doesn't have this problem but other
5619 UI's, such as MI do.
5620
5621 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5622 this function should return an error indication letting the
5623 caller restore the previous state. Unfortunately the command
5624 ``target remote'' is directly wired to this function making that
5625 impossible. On a positive note, the CLI side of this problem has
5626 been fixed - the function set_cmd_context() makes it possible for
5627 all the ``target ....'' commands to share a common callback
5628 function. See cli-dump.c. */
5629 {
5630
5631 try
5632 {
5633 remote->start_remote (from_tty, extended_p);
5634 }
5635 catch (const gdb_exception &ex)
5636 {
5637 /* Pop the partially set up target - unless something else did
5638 already before throwing the exception. */
5639 if (ex.error != TARGET_CLOSE_ERROR)
5640 remote_unpush_target (remote);
5641 throw;
5642 }
5643 }
5644
5645 remote_btrace_reset (rs);
5646
5647 if (target_async_permitted)
5648 rs->wait_forever_enabled_p = 1;
5649 }
5650
5651 /* Detach the specified process. */
5652
5653 void
5654 remote_target::remote_detach_pid (int pid)
5655 {
5656 struct remote_state *rs = get_remote_state ();
5657
5658 /* This should not be necessary, but the handling for D;PID in
5659 GDBserver versions prior to 8.2 incorrectly assumes that the
5660 selected process points to the same process we're detaching,
5661 leading to misbehavior (and possibly GDBserver crashing) when it
5662 does not. Since it's easy and cheap, work around it by forcing
5663 GDBserver to select GDB's current process. */
5664 set_general_process ();
5665
5666 if (remote_multi_process_p (rs))
5667 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5668 else
5669 strcpy (rs->buf.data (), "D");
5670
5671 putpkt (rs->buf);
5672 getpkt (&rs->buf, 0);
5673
5674 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5675 ;
5676 else if (rs->buf[0] == '\0')
5677 error (_("Remote doesn't know how to detach"));
5678 else
5679 error (_("Can't detach process."));
5680 }
5681
5682 /* This detaches a program to which we previously attached, using
5683 inferior_ptid to identify the process. After this is done, GDB
5684 can be used to debug some other program. We better not have left
5685 any breakpoints in the target program or it'll die when it hits
5686 one. */
5687
5688 void
5689 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5690 {
5691 int pid = inferior_ptid.pid ();
5692 struct remote_state *rs = get_remote_state ();
5693 int is_fork_parent;
5694
5695 if (!target_has_execution)
5696 error (_("No process to detach from."));
5697
5698 target_announce_detach (from_tty);
5699
5700 /* Tell the remote target to detach. */
5701 remote_detach_pid (pid);
5702
5703 /* Exit only if this is the only active inferior. */
5704 if (from_tty && !rs->extended && number_of_live_inferiors (this) == 1)
5705 puts_filtered (_("Ending remote debugging.\n"));
5706
5707 thread_info *tp = find_thread_ptid (this, inferior_ptid);
5708
5709 /* Check to see if we are detaching a fork parent. Note that if we
5710 are detaching a fork child, tp == NULL. */
5711 is_fork_parent = (tp != NULL
5712 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5713
5714 /* If doing detach-on-fork, we don't mourn, because that will delete
5715 breakpoints that should be available for the followed inferior. */
5716 if (!is_fork_parent)
5717 {
5718 /* Save the pid as a string before mourning, since that will
5719 unpush the remote target, and we need the string after. */
5720 std::string infpid = target_pid_to_str (ptid_t (pid));
5721
5722 target_mourn_inferior (inferior_ptid);
5723 if (print_inferior_events)
5724 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5725 inf->num, infpid.c_str ());
5726 }
5727 else
5728 {
5729 inferior_ptid = null_ptid;
5730 detach_inferior (current_inferior ());
5731 }
5732 }
5733
5734 void
5735 remote_target::detach (inferior *inf, int from_tty)
5736 {
5737 remote_detach_1 (inf, from_tty);
5738 }
5739
5740 void
5741 extended_remote_target::detach (inferior *inf, int from_tty)
5742 {
5743 remote_detach_1 (inf, from_tty);
5744 }
5745
5746 /* Target follow-fork function for remote targets. On entry, and
5747 at return, the current inferior is the fork parent.
5748
5749 Note that although this is currently only used for extended-remote,
5750 it is named remote_follow_fork in anticipation of using it for the
5751 remote target as well. */
5752
5753 int
5754 remote_target::follow_fork (int follow_child, int detach_fork)
5755 {
5756 struct remote_state *rs = get_remote_state ();
5757 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5758
5759 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5760 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5761 {
5762 /* When following the parent and detaching the child, we detach
5763 the child here. For the case of following the child and
5764 detaching the parent, the detach is done in the target-
5765 independent follow fork code in infrun.c. We can't use
5766 target_detach when detaching an unfollowed child because
5767 the client side doesn't know anything about the child. */
5768 if (detach_fork && !follow_child)
5769 {
5770 /* Detach the fork child. */
5771 ptid_t child_ptid;
5772 pid_t child_pid;
5773
5774 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5775 child_pid = child_ptid.pid ();
5776
5777 remote_detach_pid (child_pid);
5778 }
5779 }
5780 return 0;
5781 }
5782
5783 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5784 in the program space of the new inferior. On entry and at return the
5785 current inferior is the exec'ing inferior. INF is the new exec'd
5786 inferior, which may be the same as the exec'ing inferior unless
5787 follow-exec-mode is "new". */
5788
5789 void
5790 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5791 {
5792 /* We know that this is a target file name, so if it has the "target:"
5793 prefix we strip it off before saving it in the program space. */
5794 if (is_target_filename (execd_pathname))
5795 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5796
5797 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5798 }
5799
5800 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5801
5802 void
5803 remote_target::disconnect (const char *args, int from_tty)
5804 {
5805 if (args)
5806 error (_("Argument given to \"disconnect\" when remotely debugging."));
5807
5808 /* Make sure we unpush even the extended remote targets. Calling
5809 target_mourn_inferior won't unpush, and
5810 remote_target::mourn_inferior won't unpush if there is more than
5811 one inferior left. */
5812 remote_unpush_target (this);
5813
5814 if (from_tty)
5815 puts_filtered ("Ending remote debugging.\n");
5816 }
5817
5818 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5819 be chatty about it. */
5820
5821 void
5822 extended_remote_target::attach (const char *args, int from_tty)
5823 {
5824 struct remote_state *rs = get_remote_state ();
5825 int pid;
5826 char *wait_status = NULL;
5827
5828 pid = parse_pid_to_attach (args);
5829
5830 /* Remote PID can be freely equal to getpid, do not check it here the same
5831 way as in other targets. */
5832
5833 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5834 error (_("This target does not support attaching to a process"));
5835
5836 if (from_tty)
5837 {
5838 const char *exec_file = get_exec_file (0);
5839
5840 if (exec_file)
5841 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5842 target_pid_to_str (ptid_t (pid)).c_str ());
5843 else
5844 printf_unfiltered (_("Attaching to %s\n"),
5845 target_pid_to_str (ptid_t (pid)).c_str ());
5846 }
5847
5848 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5849 putpkt (rs->buf);
5850 getpkt (&rs->buf, 0);
5851
5852 switch (packet_ok (rs->buf,
5853 &remote_protocol_packets[PACKET_vAttach]))
5854 {
5855 case PACKET_OK:
5856 if (!target_is_non_stop_p ())
5857 {
5858 /* Save the reply for later. */
5859 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5860 strcpy (wait_status, rs->buf.data ());
5861 }
5862 else if (strcmp (rs->buf.data (), "OK") != 0)
5863 error (_("Attaching to %s failed with: %s"),
5864 target_pid_to_str (ptid_t (pid)).c_str (),
5865 rs->buf.data ());
5866 break;
5867 case PACKET_UNKNOWN:
5868 error (_("This target does not support attaching to a process"));
5869 default:
5870 error (_("Attaching to %s failed"),
5871 target_pid_to_str (ptid_t (pid)).c_str ());
5872 }
5873
5874 set_current_inferior (remote_add_inferior (false, pid, 1, 0));
5875
5876 inferior_ptid = ptid_t (pid);
5877
5878 if (target_is_non_stop_p ())
5879 {
5880 struct thread_info *thread;
5881
5882 /* Get list of threads. */
5883 update_thread_list ();
5884
5885 thread = first_thread_of_inferior (current_inferior ());
5886 if (thread)
5887 inferior_ptid = thread->ptid;
5888 else
5889 inferior_ptid = ptid_t (pid);
5890
5891 /* Invalidate our notion of the remote current thread. */
5892 record_currthread (rs, minus_one_ptid);
5893 }
5894 else
5895 {
5896 /* Now, if we have thread information, update inferior_ptid. */
5897 inferior_ptid = remote_current_thread (inferior_ptid);
5898
5899 /* Add the main thread to the thread list. */
5900 thread_info *thr = add_thread_silent (this, inferior_ptid);
5901 /* Don't consider the thread stopped until we've processed the
5902 saved stop reply. */
5903 set_executing (this, thr->ptid, true);
5904 }
5905
5906 /* Next, if the target can specify a description, read it. We do
5907 this before anything involving memory or registers. */
5908 target_find_description ();
5909
5910 if (!target_is_non_stop_p ())
5911 {
5912 /* Use the previously fetched status. */
5913 gdb_assert (wait_status != NULL);
5914
5915 if (target_can_async_p ())
5916 {
5917 struct notif_event *reply
5918 = remote_notif_parse (this, &notif_client_stop, wait_status);
5919
5920 push_stop_reply ((struct stop_reply *) reply);
5921
5922 target_async (1);
5923 }
5924 else
5925 {
5926 gdb_assert (wait_status != NULL);
5927 strcpy (rs->buf.data (), wait_status);
5928 rs->cached_wait_status = 1;
5929 }
5930 }
5931 else
5932 gdb_assert (wait_status == NULL);
5933 }
5934
5935 /* Implementation of the to_post_attach method. */
5936
5937 void
5938 extended_remote_target::post_attach (int pid)
5939 {
5940 /* Get text, data & bss offsets. */
5941 get_offsets ();
5942
5943 /* In certain cases GDB might not have had the chance to start
5944 symbol lookup up until now. This could happen if the debugged
5945 binary is not using shared libraries, the vsyscall page is not
5946 present (on Linux) and the binary itself hadn't changed since the
5947 debugging process was started. */
5948 if (symfile_objfile != NULL)
5949 remote_check_symbols();
5950 }
5951
5952 \f
5953 /* Check for the availability of vCont. This function should also check
5954 the response. */
5955
5956 void
5957 remote_target::remote_vcont_probe ()
5958 {
5959 remote_state *rs = get_remote_state ();
5960 char *buf;
5961
5962 strcpy (rs->buf.data (), "vCont?");
5963 putpkt (rs->buf);
5964 getpkt (&rs->buf, 0);
5965 buf = rs->buf.data ();
5966
5967 /* Make sure that the features we assume are supported. */
5968 if (startswith (buf, "vCont"))
5969 {
5970 char *p = &buf[5];
5971 int support_c, support_C;
5972
5973 rs->supports_vCont.s = 0;
5974 rs->supports_vCont.S = 0;
5975 support_c = 0;
5976 support_C = 0;
5977 rs->supports_vCont.t = 0;
5978 rs->supports_vCont.r = 0;
5979 while (p && *p == ';')
5980 {
5981 p++;
5982 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5983 rs->supports_vCont.s = 1;
5984 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5985 rs->supports_vCont.S = 1;
5986 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5987 support_c = 1;
5988 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5989 support_C = 1;
5990 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5991 rs->supports_vCont.t = 1;
5992 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5993 rs->supports_vCont.r = 1;
5994
5995 p = strchr (p, ';');
5996 }
5997
5998 /* If c, and C are not all supported, we can't use vCont. Clearing
5999 BUF will make packet_ok disable the packet. */
6000 if (!support_c || !support_C)
6001 buf[0] = 0;
6002 }
6003
6004 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
6005 rs->supports_vCont_probed = true;
6006 }
6007
6008 /* Helper function for building "vCont" resumptions. Write a
6009 resumption to P. ENDP points to one-passed-the-end of the buffer
6010 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
6011 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
6012 resumed thread should be single-stepped and/or signalled. If PTID
6013 equals minus_one_ptid, then all threads are resumed; if PTID
6014 represents a process, then all threads of the process are resumed;
6015 the thread to be stepped and/or signalled is given in the global
6016 INFERIOR_PTID. */
6017
6018 char *
6019 remote_target::append_resumption (char *p, char *endp,
6020 ptid_t ptid, int step, gdb_signal siggnal)
6021 {
6022 struct remote_state *rs = get_remote_state ();
6023
6024 if (step && siggnal != GDB_SIGNAL_0)
6025 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6026 else if (step
6027 /* GDB is willing to range step. */
6028 && use_range_stepping
6029 /* Target supports range stepping. */
6030 && rs->supports_vCont.r
6031 /* We don't currently support range stepping multiple
6032 threads with a wildcard (though the protocol allows it,
6033 so stubs shouldn't make an active effort to forbid
6034 it). */
6035 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6036 {
6037 struct thread_info *tp;
6038
6039 if (ptid == minus_one_ptid)
6040 {
6041 /* If we don't know about the target thread's tid, then
6042 we're resuming magic_null_ptid (see caller). */
6043 tp = find_thread_ptid (this, magic_null_ptid);
6044 }
6045 else
6046 tp = find_thread_ptid (this, ptid);
6047 gdb_assert (tp != NULL);
6048
6049 if (tp->control.may_range_step)
6050 {
6051 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6052
6053 p += xsnprintf (p, endp - p, ";r%s,%s",
6054 phex_nz (tp->control.step_range_start,
6055 addr_size),
6056 phex_nz (tp->control.step_range_end,
6057 addr_size));
6058 }
6059 else
6060 p += xsnprintf (p, endp - p, ";s");
6061 }
6062 else if (step)
6063 p += xsnprintf (p, endp - p, ";s");
6064 else if (siggnal != GDB_SIGNAL_0)
6065 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6066 else
6067 p += xsnprintf (p, endp - p, ";c");
6068
6069 if (remote_multi_process_p (rs) && ptid.is_pid ())
6070 {
6071 ptid_t nptid;
6072
6073 /* All (-1) threads of process. */
6074 nptid = ptid_t (ptid.pid (), -1, 0);
6075
6076 p += xsnprintf (p, endp - p, ":");
6077 p = write_ptid (p, endp, nptid);
6078 }
6079 else if (ptid != minus_one_ptid)
6080 {
6081 p += xsnprintf (p, endp - p, ":");
6082 p = write_ptid (p, endp, ptid);
6083 }
6084
6085 return p;
6086 }
6087
6088 /* Clear the thread's private info on resume. */
6089
6090 static void
6091 resume_clear_thread_private_info (struct thread_info *thread)
6092 {
6093 if (thread->priv != NULL)
6094 {
6095 remote_thread_info *priv = get_remote_thread_info (thread);
6096
6097 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6098 priv->watch_data_address = 0;
6099 }
6100 }
6101
6102 /* Append a vCont continue-with-signal action for threads that have a
6103 non-zero stop signal. */
6104
6105 char *
6106 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6107 ptid_t ptid)
6108 {
6109 for (thread_info *thread : all_non_exited_threads (this, ptid))
6110 if (inferior_ptid != thread->ptid
6111 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6112 {
6113 p = append_resumption (p, endp, thread->ptid,
6114 0, thread->suspend.stop_signal);
6115 thread->suspend.stop_signal = GDB_SIGNAL_0;
6116 resume_clear_thread_private_info (thread);
6117 }
6118
6119 return p;
6120 }
6121
6122 /* Set the target running, using the packets that use Hc
6123 (c/s/C/S). */
6124
6125 void
6126 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6127 gdb_signal siggnal)
6128 {
6129 struct remote_state *rs = get_remote_state ();
6130 char *buf;
6131
6132 rs->last_sent_signal = siggnal;
6133 rs->last_sent_step = step;
6134
6135 /* The c/s/C/S resume packets use Hc, so set the continue
6136 thread. */
6137 if (ptid == minus_one_ptid)
6138 set_continue_thread (any_thread_ptid);
6139 else
6140 set_continue_thread (ptid);
6141
6142 for (thread_info *thread : all_non_exited_threads (this))
6143 resume_clear_thread_private_info (thread);
6144
6145 buf = rs->buf.data ();
6146 if (::execution_direction == EXEC_REVERSE)
6147 {
6148 /* We don't pass signals to the target in reverse exec mode. */
6149 if (info_verbose && siggnal != GDB_SIGNAL_0)
6150 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6151 siggnal);
6152
6153 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6154 error (_("Remote reverse-step not supported."));
6155 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6156 error (_("Remote reverse-continue not supported."));
6157
6158 strcpy (buf, step ? "bs" : "bc");
6159 }
6160 else if (siggnal != GDB_SIGNAL_0)
6161 {
6162 buf[0] = step ? 'S' : 'C';
6163 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6164 buf[2] = tohex (((int) siggnal) & 0xf);
6165 buf[3] = '\0';
6166 }
6167 else
6168 strcpy (buf, step ? "s" : "c");
6169
6170 putpkt (buf);
6171 }
6172
6173 /* Resume the remote inferior by using a "vCont" packet. The thread
6174 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6175 resumed thread should be single-stepped and/or signalled. If PTID
6176 equals minus_one_ptid, then all threads are resumed; the thread to
6177 be stepped and/or signalled is given in the global INFERIOR_PTID.
6178 This function returns non-zero iff it resumes the inferior.
6179
6180 This function issues a strict subset of all possible vCont commands
6181 at the moment. */
6182
6183 int
6184 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6185 enum gdb_signal siggnal)
6186 {
6187 struct remote_state *rs = get_remote_state ();
6188 char *p;
6189 char *endp;
6190
6191 /* No reverse execution actions defined for vCont. */
6192 if (::execution_direction == EXEC_REVERSE)
6193 return 0;
6194
6195 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6196 remote_vcont_probe ();
6197
6198 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6199 return 0;
6200
6201 p = rs->buf.data ();
6202 endp = p + get_remote_packet_size ();
6203
6204 /* If we could generate a wider range of packets, we'd have to worry
6205 about overflowing BUF. Should there be a generic
6206 "multi-part-packet" packet? */
6207
6208 p += xsnprintf (p, endp - p, "vCont");
6209
6210 if (ptid == magic_null_ptid)
6211 {
6212 /* MAGIC_NULL_PTID means that we don't have any active threads,
6213 so we don't have any TID numbers the inferior will
6214 understand. Make sure to only send forms that do not specify
6215 a TID. */
6216 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6217 }
6218 else if (ptid == minus_one_ptid || ptid.is_pid ())
6219 {
6220 /* Resume all threads (of all processes, or of a single
6221 process), with preference for INFERIOR_PTID. This assumes
6222 inferior_ptid belongs to the set of all threads we are about
6223 to resume. */
6224 if (step || siggnal != GDB_SIGNAL_0)
6225 {
6226 /* Step inferior_ptid, with or without signal. */
6227 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6228 }
6229
6230 /* Also pass down any pending signaled resumption for other
6231 threads not the current. */
6232 p = append_pending_thread_resumptions (p, endp, ptid);
6233
6234 /* And continue others without a signal. */
6235 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6236 }
6237 else
6238 {
6239 /* Scheduler locking; resume only PTID. */
6240 append_resumption (p, endp, ptid, step, siggnal);
6241 }
6242
6243 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6244 putpkt (rs->buf);
6245
6246 if (target_is_non_stop_p ())
6247 {
6248 /* In non-stop, the stub replies to vCont with "OK". The stop
6249 reply will be reported asynchronously by means of a `%Stop'
6250 notification. */
6251 getpkt (&rs->buf, 0);
6252 if (strcmp (rs->buf.data (), "OK") != 0)
6253 error (_("Unexpected vCont reply in non-stop mode: %s"),
6254 rs->buf.data ());
6255 }
6256
6257 return 1;
6258 }
6259
6260 /* Tell the remote machine to resume. */
6261
6262 void
6263 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6264 {
6265 struct remote_state *rs = get_remote_state ();
6266
6267 /* When connected in non-stop mode, the core resumes threads
6268 individually. Resuming remote threads directly in target_resume
6269 would thus result in sending one packet per thread. Instead, to
6270 minimize roundtrip latency, here we just store the resume
6271 request; the actual remote resumption will be done in
6272 target_commit_resume / remote_commit_resume, where we'll be able
6273 to do vCont action coalescing. */
6274 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6275 {
6276 remote_thread_info *remote_thr;
6277
6278 if (minus_one_ptid == ptid || ptid.is_pid ())
6279 remote_thr = get_remote_thread_info (this, inferior_ptid);
6280 else
6281 remote_thr = get_remote_thread_info (this, ptid);
6282
6283 remote_thr->last_resume_step = step;
6284 remote_thr->last_resume_sig = siggnal;
6285 return;
6286 }
6287
6288 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6289 (explained in remote-notif.c:handle_notification) so
6290 remote_notif_process is not called. We need find a place where
6291 it is safe to start a 'vNotif' sequence. It is good to do it
6292 before resuming inferior, because inferior was stopped and no RSP
6293 traffic at that moment. */
6294 if (!target_is_non_stop_p ())
6295 remote_notif_process (rs->notif_state, &notif_client_stop);
6296
6297 rs->last_resume_exec_dir = ::execution_direction;
6298
6299 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6300 if (!remote_resume_with_vcont (ptid, step, siggnal))
6301 remote_resume_with_hc (ptid, step, siggnal);
6302
6303 /* We are about to start executing the inferior, let's register it
6304 with the event loop. NOTE: this is the one place where all the
6305 execution commands end up. We could alternatively do this in each
6306 of the execution commands in infcmd.c. */
6307 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6308 into infcmd.c in order to allow inferior function calls to work
6309 NOT asynchronously. */
6310 if (target_can_async_p ())
6311 target_async (1);
6312
6313 /* We've just told the target to resume. The remote server will
6314 wait for the inferior to stop, and then send a stop reply. In
6315 the mean time, we can't start another command/query ourselves
6316 because the stub wouldn't be ready to process it. This applies
6317 only to the base all-stop protocol, however. In non-stop (which
6318 only supports vCont), the stub replies with an "OK", and is
6319 immediate able to process further serial input. */
6320 if (!target_is_non_stop_p ())
6321 rs->waiting_for_stop_reply = 1;
6322 }
6323
6324 static int is_pending_fork_parent_thread (struct thread_info *thread);
6325
6326 /* Private per-inferior info for target remote processes. */
6327
6328 struct remote_inferior : public private_inferior
6329 {
6330 /* Whether we can send a wildcard vCont for this process. */
6331 bool may_wildcard_vcont = true;
6332 };
6333
6334 /* Get the remote private inferior data associated to INF. */
6335
6336 static remote_inferior *
6337 get_remote_inferior (inferior *inf)
6338 {
6339 if (inf->priv == NULL)
6340 inf->priv.reset (new remote_inferior);
6341
6342 return static_cast<remote_inferior *> (inf->priv.get ());
6343 }
6344
6345 /* Class used to track the construction of a vCont packet in the
6346 outgoing packet buffer. This is used to send multiple vCont
6347 packets if we have more actions than would fit a single packet. */
6348
6349 class vcont_builder
6350 {
6351 public:
6352 explicit vcont_builder (remote_target *remote)
6353 : m_remote (remote)
6354 {
6355 restart ();
6356 }
6357
6358 void flush ();
6359 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6360
6361 private:
6362 void restart ();
6363
6364 /* The remote target. */
6365 remote_target *m_remote;
6366
6367 /* Pointer to the first action. P points here if no action has been
6368 appended yet. */
6369 char *m_first_action;
6370
6371 /* Where the next action will be appended. */
6372 char *m_p;
6373
6374 /* The end of the buffer. Must never write past this. */
6375 char *m_endp;
6376 };
6377
6378 /* Prepare the outgoing buffer for a new vCont packet. */
6379
6380 void
6381 vcont_builder::restart ()
6382 {
6383 struct remote_state *rs = m_remote->get_remote_state ();
6384
6385 m_p = rs->buf.data ();
6386 m_endp = m_p + m_remote->get_remote_packet_size ();
6387 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6388 m_first_action = m_p;
6389 }
6390
6391 /* If the vCont packet being built has any action, send it to the
6392 remote end. */
6393
6394 void
6395 vcont_builder::flush ()
6396 {
6397 struct remote_state *rs;
6398
6399 if (m_p == m_first_action)
6400 return;
6401
6402 rs = m_remote->get_remote_state ();
6403 m_remote->putpkt (rs->buf);
6404 m_remote->getpkt (&rs->buf, 0);
6405 if (strcmp (rs->buf.data (), "OK") != 0)
6406 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6407 }
6408
6409 /* The largest action is range-stepping, with its two addresses. This
6410 is more than sufficient. If a new, bigger action is created, it'll
6411 quickly trigger a failed assertion in append_resumption (and we'll
6412 just bump this). */
6413 #define MAX_ACTION_SIZE 200
6414
6415 /* Append a new vCont action in the outgoing packet being built. If
6416 the action doesn't fit the packet along with previous actions, push
6417 what we've got so far to the remote end and start over a new vCont
6418 packet (with the new action). */
6419
6420 void
6421 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6422 {
6423 char buf[MAX_ACTION_SIZE + 1];
6424
6425 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6426 ptid, step, siggnal);
6427
6428 /* Check whether this new action would fit in the vCont packet along
6429 with previous actions. If not, send what we've got so far and
6430 start a new vCont packet. */
6431 size_t rsize = endp - buf;
6432 if (rsize > m_endp - m_p)
6433 {
6434 flush ();
6435 restart ();
6436
6437 /* Should now fit. */
6438 gdb_assert (rsize <= m_endp - m_p);
6439 }
6440
6441 memcpy (m_p, buf, rsize);
6442 m_p += rsize;
6443 *m_p = '\0';
6444 }
6445
6446 /* to_commit_resume implementation. */
6447
6448 void
6449 remote_target::commit_resume ()
6450 {
6451 int any_process_wildcard;
6452 int may_global_wildcard_vcont;
6453
6454 /* If connected in all-stop mode, we'd send the remote resume
6455 request directly from remote_resume. Likewise if
6456 reverse-debugging, as there are no defined vCont actions for
6457 reverse execution. */
6458 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6459 return;
6460
6461 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6462 instead of resuming all threads of each process individually.
6463 However, if any thread of a process must remain halted, we can't
6464 send wildcard resumes and must send one action per thread.
6465
6466 Care must be taken to not resume threads/processes the server
6467 side already told us are stopped, but the core doesn't know about
6468 yet, because the events are still in the vStopped notification
6469 queue. For example:
6470
6471 #1 => vCont s:p1.1;c
6472 #2 <= OK
6473 #3 <= %Stopped T05 p1.1
6474 #4 => vStopped
6475 #5 <= T05 p1.2
6476 #6 => vStopped
6477 #7 <= OK
6478 #8 (infrun handles the stop for p1.1 and continues stepping)
6479 #9 => vCont s:p1.1;c
6480
6481 The last vCont above would resume thread p1.2 by mistake, because
6482 the server has no idea that the event for p1.2 had not been
6483 handled yet.
6484
6485 The server side must similarly ignore resume actions for the
6486 thread that has a pending %Stopped notification (and any other
6487 threads with events pending), until GDB acks the notification
6488 with vStopped. Otherwise, e.g., the following case is
6489 mishandled:
6490
6491 #1 => g (or any other packet)
6492 #2 <= [registers]
6493 #3 <= %Stopped T05 p1.2
6494 #4 => vCont s:p1.1;c
6495 #5 <= OK
6496
6497 Above, the server must not resume thread p1.2. GDB can't know
6498 that p1.2 stopped until it acks the %Stopped notification, and
6499 since from GDB's perspective all threads should be running, it
6500 sends a "c" action.
6501
6502 Finally, special care must also be given to handling fork/vfork
6503 events. A (v)fork event actually tells us that two processes
6504 stopped -- the parent and the child. Until we follow the fork,
6505 we must not resume the child. Therefore, if we have a pending
6506 fork follow, we must not send a global wildcard resume action
6507 (vCont;c). We can still send process-wide wildcards though. */
6508
6509 /* Start by assuming a global wildcard (vCont;c) is possible. */
6510 may_global_wildcard_vcont = 1;
6511
6512 /* And assume every process is individually wildcard-able too. */
6513 for (inferior *inf : all_non_exited_inferiors (this))
6514 {
6515 remote_inferior *priv = get_remote_inferior (inf);
6516
6517 priv->may_wildcard_vcont = true;
6518 }
6519
6520 /* Check for any pending events (not reported or processed yet) and
6521 disable process and global wildcard resumes appropriately. */
6522 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6523
6524 for (thread_info *tp : all_non_exited_threads (this))
6525 {
6526 /* If a thread of a process is not meant to be resumed, then we
6527 can't wildcard that process. */
6528 if (!tp->executing)
6529 {
6530 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6531
6532 /* And if we can't wildcard a process, we can't wildcard
6533 everything either. */
6534 may_global_wildcard_vcont = 0;
6535 continue;
6536 }
6537
6538 /* If a thread is the parent of an unfollowed fork, then we
6539 can't do a global wildcard, as that would resume the fork
6540 child. */
6541 if (is_pending_fork_parent_thread (tp))
6542 may_global_wildcard_vcont = 0;
6543 }
6544
6545 /* Now let's build the vCont packet(s). Actions must be appended
6546 from narrower to wider scopes (thread -> process -> global). If
6547 we end up with too many actions for a single packet vcont_builder
6548 flushes the current vCont packet to the remote side and starts a
6549 new one. */
6550 struct vcont_builder vcont_builder (this);
6551
6552 /* Threads first. */
6553 for (thread_info *tp : all_non_exited_threads (this))
6554 {
6555 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6556
6557 if (!tp->executing || remote_thr->vcont_resumed)
6558 continue;
6559
6560 gdb_assert (!thread_is_in_step_over_chain (tp));
6561
6562 if (!remote_thr->last_resume_step
6563 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6564 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6565 {
6566 /* We'll send a wildcard resume instead. */
6567 remote_thr->vcont_resumed = 1;
6568 continue;
6569 }
6570
6571 vcont_builder.push_action (tp->ptid,
6572 remote_thr->last_resume_step,
6573 remote_thr->last_resume_sig);
6574 remote_thr->vcont_resumed = 1;
6575 }
6576
6577 /* Now check whether we can send any process-wide wildcard. This is
6578 to avoid sending a global wildcard in the case nothing is
6579 supposed to be resumed. */
6580 any_process_wildcard = 0;
6581
6582 for (inferior *inf : all_non_exited_inferiors (this))
6583 {
6584 if (get_remote_inferior (inf)->may_wildcard_vcont)
6585 {
6586 any_process_wildcard = 1;
6587 break;
6588 }
6589 }
6590
6591 if (any_process_wildcard)
6592 {
6593 /* If all processes are wildcard-able, then send a single "c"
6594 action, otherwise, send an "all (-1) threads of process"
6595 continue action for each running process, if any. */
6596 if (may_global_wildcard_vcont)
6597 {
6598 vcont_builder.push_action (minus_one_ptid,
6599 false, GDB_SIGNAL_0);
6600 }
6601 else
6602 {
6603 for (inferior *inf : all_non_exited_inferiors (this))
6604 {
6605 if (get_remote_inferior (inf)->may_wildcard_vcont)
6606 {
6607 vcont_builder.push_action (ptid_t (inf->pid),
6608 false, GDB_SIGNAL_0);
6609 }
6610 }
6611 }
6612 }
6613
6614 vcont_builder.flush ();
6615 }
6616
6617 \f
6618
6619 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6620 thread, all threads of a remote process, or all threads of all
6621 processes. */
6622
6623 void
6624 remote_target::remote_stop_ns (ptid_t ptid)
6625 {
6626 struct remote_state *rs = get_remote_state ();
6627 char *p = rs->buf.data ();
6628 char *endp = p + get_remote_packet_size ();
6629
6630 /* FIXME: This supports_vCont_probed check is a workaround until
6631 packet_support is per-connection. */
6632 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN
6633 || !rs->supports_vCont_probed)
6634 remote_vcont_probe ();
6635
6636 if (!rs->supports_vCont.t)
6637 error (_("Remote server does not support stopping threads"));
6638
6639 if (ptid == minus_one_ptid
6640 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6641 p += xsnprintf (p, endp - p, "vCont;t");
6642 else
6643 {
6644 ptid_t nptid;
6645
6646 p += xsnprintf (p, endp - p, "vCont;t:");
6647
6648 if (ptid.is_pid ())
6649 /* All (-1) threads of process. */
6650 nptid = ptid_t (ptid.pid (), -1, 0);
6651 else
6652 {
6653 /* Small optimization: if we already have a stop reply for
6654 this thread, no use in telling the stub we want this
6655 stopped. */
6656 if (peek_stop_reply (ptid))
6657 return;
6658
6659 nptid = ptid;
6660 }
6661
6662 write_ptid (p, endp, nptid);
6663 }
6664
6665 /* In non-stop, we get an immediate OK reply. The stop reply will
6666 come in asynchronously by notification. */
6667 putpkt (rs->buf);
6668 getpkt (&rs->buf, 0);
6669 if (strcmp (rs->buf.data (), "OK") != 0)
6670 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6671 rs->buf.data ());
6672 }
6673
6674 /* All-stop version of target_interrupt. Sends a break or a ^C to
6675 interrupt the remote target. It is undefined which thread of which
6676 process reports the interrupt. */
6677
6678 void
6679 remote_target::remote_interrupt_as ()
6680 {
6681 struct remote_state *rs = get_remote_state ();
6682
6683 rs->ctrlc_pending_p = 1;
6684
6685 /* If the inferior is stopped already, but the core didn't know
6686 about it yet, just ignore the request. The cached wait status
6687 will be collected in remote_wait. */
6688 if (rs->cached_wait_status)
6689 return;
6690
6691 /* Send interrupt_sequence to remote target. */
6692 send_interrupt_sequence ();
6693 }
6694
6695 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6696 the remote target. It is undefined which thread of which process
6697 reports the interrupt. Throws an error if the packet is not
6698 supported by the server. */
6699
6700 void
6701 remote_target::remote_interrupt_ns ()
6702 {
6703 struct remote_state *rs = get_remote_state ();
6704 char *p = rs->buf.data ();
6705 char *endp = p + get_remote_packet_size ();
6706
6707 xsnprintf (p, endp - p, "vCtrlC");
6708
6709 /* In non-stop, we get an immediate OK reply. The stop reply will
6710 come in asynchronously by notification. */
6711 putpkt (rs->buf);
6712 getpkt (&rs->buf, 0);
6713
6714 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6715 {
6716 case PACKET_OK:
6717 break;
6718 case PACKET_UNKNOWN:
6719 error (_("No support for interrupting the remote target."));
6720 case PACKET_ERROR:
6721 error (_("Interrupting target failed: %s"), rs->buf.data ());
6722 }
6723 }
6724
6725 /* Implement the to_stop function for the remote targets. */
6726
6727 void
6728 remote_target::stop (ptid_t ptid)
6729 {
6730 if (remote_debug)
6731 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6732
6733 if (target_is_non_stop_p ())
6734 remote_stop_ns (ptid);
6735 else
6736 {
6737 /* We don't currently have a way to transparently pause the
6738 remote target in all-stop mode. Interrupt it instead. */
6739 remote_interrupt_as ();
6740 }
6741 }
6742
6743 /* Implement the to_interrupt function for the remote targets. */
6744
6745 void
6746 remote_target::interrupt ()
6747 {
6748 if (remote_debug)
6749 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6750
6751 if (target_is_non_stop_p ())
6752 remote_interrupt_ns ();
6753 else
6754 remote_interrupt_as ();
6755 }
6756
6757 /* Implement the to_pass_ctrlc function for the remote targets. */
6758
6759 void
6760 remote_target::pass_ctrlc ()
6761 {
6762 struct remote_state *rs = get_remote_state ();
6763
6764 if (remote_debug)
6765 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6766
6767 /* If we're starting up, we're not fully synced yet. Quit
6768 immediately. */
6769 if (rs->starting_up)
6770 quit ();
6771 /* If ^C has already been sent once, offer to disconnect. */
6772 else if (rs->ctrlc_pending_p)
6773 interrupt_query ();
6774 else
6775 target_interrupt ();
6776 }
6777
6778 /* Ask the user what to do when an interrupt is received. */
6779
6780 void
6781 remote_target::interrupt_query ()
6782 {
6783 struct remote_state *rs = get_remote_state ();
6784
6785 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6786 {
6787 if (query (_("The target is not responding to interrupt requests.\n"
6788 "Stop debugging it? ")))
6789 {
6790 remote_unpush_target (this);
6791 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6792 }
6793 }
6794 else
6795 {
6796 if (query (_("Interrupted while waiting for the program.\n"
6797 "Give up waiting? ")))
6798 quit ();
6799 }
6800 }
6801
6802 /* Enable/disable target terminal ownership. Most targets can use
6803 terminal groups to control terminal ownership. Remote targets are
6804 different in that explicit transfer of ownership to/from GDB/target
6805 is required. */
6806
6807 void
6808 remote_target::terminal_inferior ()
6809 {
6810 /* NOTE: At this point we could also register our selves as the
6811 recipient of all input. Any characters typed could then be
6812 passed on down to the target. */
6813 }
6814
6815 void
6816 remote_target::terminal_ours ()
6817 {
6818 }
6819
6820 static void
6821 remote_console_output (const char *msg)
6822 {
6823 const char *p;
6824
6825 for (p = msg; p[0] && p[1]; p += 2)
6826 {
6827 char tb[2];
6828 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6829
6830 tb[0] = c;
6831 tb[1] = 0;
6832 fputs_unfiltered (tb, gdb_stdtarg);
6833 }
6834 gdb_flush (gdb_stdtarg);
6835 }
6836
6837 struct stop_reply : public notif_event
6838 {
6839 ~stop_reply ();
6840
6841 /* The identifier of the thread about this event */
6842 ptid_t ptid;
6843
6844 /* The remote state this event is associated with. When the remote
6845 connection, represented by a remote_state object, is closed,
6846 all the associated stop_reply events should be released. */
6847 struct remote_state *rs;
6848
6849 struct target_waitstatus ws;
6850
6851 /* The architecture associated with the expedited registers. */
6852 gdbarch *arch;
6853
6854 /* Expedited registers. This makes remote debugging a bit more
6855 efficient for those targets that provide critical registers as
6856 part of their normal status mechanism (as another roundtrip to
6857 fetch them is avoided). */
6858 std::vector<cached_reg_t> regcache;
6859
6860 enum target_stop_reason stop_reason;
6861
6862 CORE_ADDR watch_data_address;
6863
6864 int core;
6865 };
6866
6867 /* Return the length of the stop reply queue. */
6868
6869 int
6870 remote_target::stop_reply_queue_length ()
6871 {
6872 remote_state *rs = get_remote_state ();
6873 return rs->stop_reply_queue.size ();
6874 }
6875
6876 static void
6877 remote_notif_stop_parse (remote_target *remote,
6878 struct notif_client *self, const char *buf,
6879 struct notif_event *event)
6880 {
6881 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6882 }
6883
6884 static void
6885 remote_notif_stop_ack (remote_target *remote,
6886 struct notif_client *self, const char *buf,
6887 struct notif_event *event)
6888 {
6889 struct stop_reply *stop_reply = (struct stop_reply *) event;
6890
6891 /* acknowledge */
6892 putpkt (remote, self->ack_command);
6893
6894 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6895 {
6896 /* We got an unknown stop reply. */
6897 error (_("Unknown stop reply"));
6898 }
6899
6900 remote->push_stop_reply (stop_reply);
6901 }
6902
6903 static int
6904 remote_notif_stop_can_get_pending_events (remote_target *remote,
6905 struct notif_client *self)
6906 {
6907 /* We can't get pending events in remote_notif_process for
6908 notification stop, and we have to do this in remote_wait_ns
6909 instead. If we fetch all queued events from stub, remote stub
6910 may exit and we have no chance to process them back in
6911 remote_wait_ns. */
6912 remote_state *rs = remote->get_remote_state ();
6913 mark_async_event_handler (rs->remote_async_inferior_event_token);
6914 return 0;
6915 }
6916
6917 stop_reply::~stop_reply ()
6918 {
6919 for (cached_reg_t &reg : regcache)
6920 xfree (reg.data);
6921 }
6922
6923 static notif_event_up
6924 remote_notif_stop_alloc_reply ()
6925 {
6926 return notif_event_up (new struct stop_reply ());
6927 }
6928
6929 /* A client of notification Stop. */
6930
6931 struct notif_client notif_client_stop =
6932 {
6933 "Stop",
6934 "vStopped",
6935 remote_notif_stop_parse,
6936 remote_notif_stop_ack,
6937 remote_notif_stop_can_get_pending_events,
6938 remote_notif_stop_alloc_reply,
6939 REMOTE_NOTIF_STOP,
6940 };
6941
6942 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6943 the pid of the process that owns the threads we want to check, or
6944 -1 if we want to check all threads. */
6945
6946 static int
6947 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6948 ptid_t thread_ptid)
6949 {
6950 if (ws->kind == TARGET_WAITKIND_FORKED
6951 || ws->kind == TARGET_WAITKIND_VFORKED)
6952 {
6953 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6954 return 1;
6955 }
6956
6957 return 0;
6958 }
6959
6960 /* Return the thread's pending status used to determine whether the
6961 thread is a fork parent stopped at a fork event. */
6962
6963 static struct target_waitstatus *
6964 thread_pending_fork_status (struct thread_info *thread)
6965 {
6966 if (thread->suspend.waitstatus_pending_p)
6967 return &thread->suspend.waitstatus;
6968 else
6969 return &thread->pending_follow;
6970 }
6971
6972 /* Determine if THREAD is a pending fork parent thread. */
6973
6974 static int
6975 is_pending_fork_parent_thread (struct thread_info *thread)
6976 {
6977 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6978 int pid = -1;
6979
6980 return is_pending_fork_parent (ws, pid, thread->ptid);
6981 }
6982
6983 /* If CONTEXT contains any fork child threads that have not been
6984 reported yet, remove them from the CONTEXT list. If such a
6985 thread exists it is because we are stopped at a fork catchpoint
6986 and have not yet called follow_fork, which will set up the
6987 host-side data structures for the new process. */
6988
6989 void
6990 remote_target::remove_new_fork_children (threads_listing_context *context)
6991 {
6992 int pid = -1;
6993 struct notif_client *notif = &notif_client_stop;
6994
6995 /* For any threads stopped at a fork event, remove the corresponding
6996 fork child threads from the CONTEXT list. */
6997 for (thread_info *thread : all_non_exited_threads (this))
6998 {
6999 struct target_waitstatus *ws = thread_pending_fork_status (thread);
7000
7001 if (is_pending_fork_parent (ws, pid, thread->ptid))
7002 context->remove_thread (ws->value.related_pid);
7003 }
7004
7005 /* Check for any pending fork events (not reported or processed yet)
7006 in process PID and remove those fork child threads from the
7007 CONTEXT list as well. */
7008 remote_notif_get_pending_events (notif);
7009 for (auto &event : get_remote_state ()->stop_reply_queue)
7010 if (event->ws.kind == TARGET_WAITKIND_FORKED
7011 || event->ws.kind == TARGET_WAITKIND_VFORKED
7012 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
7013 context->remove_thread (event->ws.value.related_pid);
7014 }
7015
7016 /* Check whether any event pending in the vStopped queue would prevent
7017 a global or process wildcard vCont action. Clear
7018 *may_global_wildcard if we can't do a global wildcard (vCont;c),
7019 and clear the event inferior's may_wildcard_vcont flag if we can't
7020 do a process-wide wildcard resume (vCont;c:pPID.-1). */
7021
7022 void
7023 remote_target::check_pending_events_prevent_wildcard_vcont
7024 (int *may_global_wildcard)
7025 {
7026 struct notif_client *notif = &notif_client_stop;
7027
7028 remote_notif_get_pending_events (notif);
7029 for (auto &event : get_remote_state ()->stop_reply_queue)
7030 {
7031 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7032 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7033 continue;
7034
7035 if (event->ws.kind == TARGET_WAITKIND_FORKED
7036 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7037 *may_global_wildcard = 0;
7038
7039 struct inferior *inf = find_inferior_ptid (this, event->ptid);
7040
7041 /* This may be the first time we heard about this process.
7042 Regardless, we must not do a global wildcard resume, otherwise
7043 we'd resume this process too. */
7044 *may_global_wildcard = 0;
7045 if (inf != NULL)
7046 get_remote_inferior (inf)->may_wildcard_vcont = false;
7047 }
7048 }
7049
7050 /* Discard all pending stop replies of inferior INF. */
7051
7052 void
7053 remote_target::discard_pending_stop_replies (struct inferior *inf)
7054 {
7055 struct stop_reply *reply;
7056 struct remote_state *rs = get_remote_state ();
7057 struct remote_notif_state *rns = rs->notif_state;
7058
7059 /* This function can be notified when an inferior exists. When the
7060 target is not remote, the notification state is NULL. */
7061 if (rs->remote_desc == NULL)
7062 return;
7063
7064 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7065
7066 /* Discard the in-flight notification. */
7067 if (reply != NULL && reply->ptid.pid () == inf->pid)
7068 {
7069 delete reply;
7070 rns->pending_event[notif_client_stop.id] = NULL;
7071 }
7072
7073 /* Discard the stop replies we have already pulled with
7074 vStopped. */
7075 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7076 rs->stop_reply_queue.end (),
7077 [=] (const stop_reply_up &event)
7078 {
7079 return event->ptid.pid () == inf->pid;
7080 });
7081 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7082 }
7083
7084 /* Discard the stop replies for RS in stop_reply_queue. */
7085
7086 void
7087 remote_target::discard_pending_stop_replies_in_queue ()
7088 {
7089 remote_state *rs = get_remote_state ();
7090
7091 /* Discard the stop replies we have already pulled with
7092 vStopped. */
7093 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7094 rs->stop_reply_queue.end (),
7095 [=] (const stop_reply_up &event)
7096 {
7097 return event->rs == rs;
7098 });
7099 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7100 }
7101
7102 /* Remove the first reply in 'stop_reply_queue' which matches
7103 PTID. */
7104
7105 struct stop_reply *
7106 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7107 {
7108 remote_state *rs = get_remote_state ();
7109
7110 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7111 rs->stop_reply_queue.end (),
7112 [=] (const stop_reply_up &event)
7113 {
7114 return event->ptid.matches (ptid);
7115 });
7116 struct stop_reply *result;
7117 if (iter == rs->stop_reply_queue.end ())
7118 result = nullptr;
7119 else
7120 {
7121 result = iter->release ();
7122 rs->stop_reply_queue.erase (iter);
7123 }
7124
7125 if (notif_debug)
7126 fprintf_unfiltered (gdb_stdlog,
7127 "notif: discard queued event: 'Stop' in %s\n",
7128 target_pid_to_str (ptid).c_str ());
7129
7130 return result;
7131 }
7132
7133 /* Look for a queued stop reply belonging to PTID. If one is found,
7134 remove it from the queue, and return it. Returns NULL if none is
7135 found. If there are still queued events left to process, tell the
7136 event loop to get back to target_wait soon. */
7137
7138 struct stop_reply *
7139 remote_target::queued_stop_reply (ptid_t ptid)
7140 {
7141 remote_state *rs = get_remote_state ();
7142 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7143
7144 if (!rs->stop_reply_queue.empty ())
7145 {
7146 /* There's still at least an event left. */
7147 mark_async_event_handler (rs->remote_async_inferior_event_token);
7148 }
7149
7150 return r;
7151 }
7152
7153 /* Push a fully parsed stop reply in the stop reply queue. Since we
7154 know that we now have at least one queued event left to pass to the
7155 core side, tell the event loop to get back to target_wait soon. */
7156
7157 void
7158 remote_target::push_stop_reply (struct stop_reply *new_event)
7159 {
7160 remote_state *rs = get_remote_state ();
7161 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7162
7163 if (notif_debug)
7164 fprintf_unfiltered (gdb_stdlog,
7165 "notif: push 'Stop' %s to queue %d\n",
7166 target_pid_to_str (new_event->ptid).c_str (),
7167 int (rs->stop_reply_queue.size ()));
7168
7169 mark_async_event_handler (rs->remote_async_inferior_event_token);
7170 }
7171
7172 /* Returns true if we have a stop reply for PTID. */
7173
7174 int
7175 remote_target::peek_stop_reply (ptid_t ptid)
7176 {
7177 remote_state *rs = get_remote_state ();
7178 for (auto &event : rs->stop_reply_queue)
7179 if (ptid == event->ptid
7180 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7181 return 1;
7182 return 0;
7183 }
7184
7185 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7186 starting with P and ending with PEND matches PREFIX. */
7187
7188 static int
7189 strprefix (const char *p, const char *pend, const char *prefix)
7190 {
7191 for ( ; p < pend; p++, prefix++)
7192 if (*p != *prefix)
7193 return 0;
7194 return *prefix == '\0';
7195 }
7196
7197 /* Parse the stop reply in BUF. Either the function succeeds, and the
7198 result is stored in EVENT, or throws an error. */
7199
7200 void
7201 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7202 {
7203 remote_arch_state *rsa = NULL;
7204 ULONGEST addr;
7205 const char *p;
7206 int skipregs = 0;
7207
7208 event->ptid = null_ptid;
7209 event->rs = get_remote_state ();
7210 event->ws.kind = TARGET_WAITKIND_IGNORE;
7211 event->ws.value.integer = 0;
7212 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7213 event->regcache.clear ();
7214 event->core = -1;
7215
7216 switch (buf[0])
7217 {
7218 case 'T': /* Status with PC, SP, FP, ... */
7219 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7220 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7221 ss = signal number
7222 n... = register number
7223 r... = register contents
7224 */
7225
7226 p = &buf[3]; /* after Txx */
7227 while (*p)
7228 {
7229 const char *p1;
7230 int fieldsize;
7231
7232 p1 = strchr (p, ':');
7233 if (p1 == NULL)
7234 error (_("Malformed packet(a) (missing colon): %s\n\
7235 Packet: '%s'\n"),
7236 p, buf);
7237 if (p == p1)
7238 error (_("Malformed packet(a) (missing register number): %s\n\
7239 Packet: '%s'\n"),
7240 p, buf);
7241
7242 /* Some "registers" are actually extended stop information.
7243 Note if you're adding a new entry here: GDB 7.9 and
7244 earlier assume that all register "numbers" that start
7245 with an hex digit are real register numbers. Make sure
7246 the server only sends such a packet if it knows the
7247 client understands it. */
7248
7249 if (strprefix (p, p1, "thread"))
7250 event->ptid = read_ptid (++p1, &p);
7251 else if (strprefix (p, p1, "syscall_entry"))
7252 {
7253 ULONGEST sysno;
7254
7255 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7256 p = unpack_varlen_hex (++p1, &sysno);
7257 event->ws.value.syscall_number = (int) sysno;
7258 }
7259 else if (strprefix (p, p1, "syscall_return"))
7260 {
7261 ULONGEST sysno;
7262
7263 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7264 p = unpack_varlen_hex (++p1, &sysno);
7265 event->ws.value.syscall_number = (int) sysno;
7266 }
7267 else if (strprefix (p, p1, "watch")
7268 || strprefix (p, p1, "rwatch")
7269 || strprefix (p, p1, "awatch"))
7270 {
7271 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7272 p = unpack_varlen_hex (++p1, &addr);
7273 event->watch_data_address = (CORE_ADDR) addr;
7274 }
7275 else if (strprefix (p, p1, "swbreak"))
7276 {
7277 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7278
7279 /* Make sure the stub doesn't forget to indicate support
7280 with qSupported. */
7281 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7282 error (_("Unexpected swbreak stop reason"));
7283
7284 /* The value part is documented as "must be empty",
7285 though we ignore it, in case we ever decide to make
7286 use of it in a backward compatible way. */
7287 p = strchrnul (p1 + 1, ';');
7288 }
7289 else if (strprefix (p, p1, "hwbreak"))
7290 {
7291 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7292
7293 /* Make sure the stub doesn't forget to indicate support
7294 with qSupported. */
7295 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7296 error (_("Unexpected hwbreak stop reason"));
7297
7298 /* See above. */
7299 p = strchrnul (p1 + 1, ';');
7300 }
7301 else if (strprefix (p, p1, "library"))
7302 {
7303 event->ws.kind = TARGET_WAITKIND_LOADED;
7304 p = strchrnul (p1 + 1, ';');
7305 }
7306 else if (strprefix (p, p1, "replaylog"))
7307 {
7308 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7309 /* p1 will indicate "begin" or "end", but it makes
7310 no difference for now, so ignore it. */
7311 p = strchrnul (p1 + 1, ';');
7312 }
7313 else if (strprefix (p, p1, "core"))
7314 {
7315 ULONGEST c;
7316
7317 p = unpack_varlen_hex (++p1, &c);
7318 event->core = c;
7319 }
7320 else if (strprefix (p, p1, "fork"))
7321 {
7322 event->ws.value.related_pid = read_ptid (++p1, &p);
7323 event->ws.kind = TARGET_WAITKIND_FORKED;
7324 }
7325 else if (strprefix (p, p1, "vfork"))
7326 {
7327 event->ws.value.related_pid = read_ptid (++p1, &p);
7328 event->ws.kind = TARGET_WAITKIND_VFORKED;
7329 }
7330 else if (strprefix (p, p1, "vforkdone"))
7331 {
7332 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7333 p = strchrnul (p1 + 1, ';');
7334 }
7335 else if (strprefix (p, p1, "exec"))
7336 {
7337 ULONGEST ignored;
7338 int pathlen;
7339
7340 /* Determine the length of the execd pathname. */
7341 p = unpack_varlen_hex (++p1, &ignored);
7342 pathlen = (p - p1) / 2;
7343
7344 /* Save the pathname for event reporting and for
7345 the next run command. */
7346 gdb::unique_xmalloc_ptr<char[]> pathname
7347 ((char *) xmalloc (pathlen + 1));
7348 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7349 pathname[pathlen] = '\0';
7350
7351 /* This is freed during event handling. */
7352 event->ws.value.execd_pathname = pathname.release ();
7353 event->ws.kind = TARGET_WAITKIND_EXECD;
7354
7355 /* Skip the registers included in this packet, since
7356 they may be for an architecture different from the
7357 one used by the original program. */
7358 skipregs = 1;
7359 }
7360 else if (strprefix (p, p1, "create"))
7361 {
7362 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7363 p = strchrnul (p1 + 1, ';');
7364 }
7365 else
7366 {
7367 ULONGEST pnum;
7368 const char *p_temp;
7369
7370 if (skipregs)
7371 {
7372 p = strchrnul (p1 + 1, ';');
7373 p++;
7374 continue;
7375 }
7376
7377 /* Maybe a real ``P'' register number. */
7378 p_temp = unpack_varlen_hex (p, &pnum);
7379 /* If the first invalid character is the colon, we got a
7380 register number. Otherwise, it's an unknown stop
7381 reason. */
7382 if (p_temp == p1)
7383 {
7384 /* If we haven't parsed the event's thread yet, find
7385 it now, in order to find the architecture of the
7386 reported expedited registers. */
7387 if (event->ptid == null_ptid)
7388 {
7389 const char *thr = strstr (p1 + 1, ";thread:");
7390 if (thr != NULL)
7391 event->ptid = read_ptid (thr + strlen (";thread:"),
7392 NULL);
7393 else
7394 {
7395 /* Either the current thread hasn't changed,
7396 or the inferior is not multi-threaded.
7397 The event must be for the thread we last
7398 set as (or learned as being) current. */
7399 event->ptid = event->rs->general_thread;
7400 }
7401 }
7402
7403 if (rsa == NULL)
7404 {
7405 inferior *inf
7406 = (event->ptid == null_ptid
7407 ? NULL
7408 : find_inferior_ptid (this, event->ptid));
7409 /* If this is the first time we learn anything
7410 about this process, skip the registers
7411 included in this packet, since we don't yet
7412 know which architecture to use to parse them.
7413 We'll determine the architecture later when
7414 we process the stop reply and retrieve the
7415 target description, via
7416 remote_notice_new_inferior ->
7417 post_create_inferior. */
7418 if (inf == NULL)
7419 {
7420 p = strchrnul (p1 + 1, ';');
7421 p++;
7422 continue;
7423 }
7424
7425 event->arch = inf->gdbarch;
7426 rsa = event->rs->get_remote_arch_state (event->arch);
7427 }
7428
7429 packet_reg *reg
7430 = packet_reg_from_pnum (event->arch, rsa, pnum);
7431 cached_reg_t cached_reg;
7432
7433 if (reg == NULL)
7434 error (_("Remote sent bad register number %s: %s\n\
7435 Packet: '%s'\n"),
7436 hex_string (pnum), p, buf);
7437
7438 cached_reg.num = reg->regnum;
7439 cached_reg.data = (gdb_byte *)
7440 xmalloc (register_size (event->arch, reg->regnum));
7441
7442 p = p1 + 1;
7443 fieldsize = hex2bin (p, cached_reg.data,
7444 register_size (event->arch, reg->regnum));
7445 p += 2 * fieldsize;
7446 if (fieldsize < register_size (event->arch, reg->regnum))
7447 warning (_("Remote reply is too short: %s"), buf);
7448
7449 event->regcache.push_back (cached_reg);
7450 }
7451 else
7452 {
7453 /* Not a number. Silently skip unknown optional
7454 info. */
7455 p = strchrnul (p1 + 1, ';');
7456 }
7457 }
7458
7459 if (*p != ';')
7460 error (_("Remote register badly formatted: %s\nhere: %s"),
7461 buf, p);
7462 ++p;
7463 }
7464
7465 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7466 break;
7467
7468 /* fall through */
7469 case 'S': /* Old style status, just signal only. */
7470 {
7471 int sig;
7472
7473 event->ws.kind = TARGET_WAITKIND_STOPPED;
7474 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7475 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7476 event->ws.value.sig = (enum gdb_signal) sig;
7477 else
7478 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7479 }
7480 break;
7481 case 'w': /* Thread exited. */
7482 {
7483 ULONGEST value;
7484
7485 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7486 p = unpack_varlen_hex (&buf[1], &value);
7487 event->ws.value.integer = value;
7488 if (*p != ';')
7489 error (_("stop reply packet badly formatted: %s"), buf);
7490 event->ptid = read_ptid (++p, NULL);
7491 break;
7492 }
7493 case 'W': /* Target exited. */
7494 case 'X':
7495 {
7496 ULONGEST value;
7497
7498 /* GDB used to accept only 2 hex chars here. Stubs should
7499 only send more if they detect GDB supports multi-process
7500 support. */
7501 p = unpack_varlen_hex (&buf[1], &value);
7502
7503 if (buf[0] == 'W')
7504 {
7505 /* The remote process exited. */
7506 event->ws.kind = TARGET_WAITKIND_EXITED;
7507 event->ws.value.integer = value;
7508 }
7509 else
7510 {
7511 /* The remote process exited with a signal. */
7512 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7513 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7514 event->ws.value.sig = (enum gdb_signal) value;
7515 else
7516 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7517 }
7518
7519 /* If no process is specified, return null_ptid, and let the
7520 caller figure out the right process to use. */
7521 int pid = 0;
7522 if (*p == '\0')
7523 ;
7524 else if (*p == ';')
7525 {
7526 p++;
7527
7528 if (*p == '\0')
7529 ;
7530 else if (startswith (p, "process:"))
7531 {
7532 ULONGEST upid;
7533
7534 p += sizeof ("process:") - 1;
7535 unpack_varlen_hex (p, &upid);
7536 pid = upid;
7537 }
7538 else
7539 error (_("unknown stop reply packet: %s"), buf);
7540 }
7541 else
7542 error (_("unknown stop reply packet: %s"), buf);
7543 event->ptid = ptid_t (pid);
7544 }
7545 break;
7546 case 'N':
7547 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7548 event->ptid = minus_one_ptid;
7549 break;
7550 }
7551
7552 if (target_is_non_stop_p () && event->ptid == null_ptid)
7553 error (_("No process or thread specified in stop reply: %s"), buf);
7554 }
7555
7556 /* When the stub wants to tell GDB about a new notification reply, it
7557 sends a notification (%Stop, for example). Those can come it at
7558 any time, hence, we have to make sure that any pending
7559 putpkt/getpkt sequence we're making is finished, before querying
7560 the stub for more events with the corresponding ack command
7561 (vStopped, for example). E.g., if we started a vStopped sequence
7562 immediately upon receiving the notification, something like this
7563 could happen:
7564
7565 1.1) --> Hg 1
7566 1.2) <-- OK
7567 1.3) --> g
7568 1.4) <-- %Stop
7569 1.5) --> vStopped
7570 1.6) <-- (registers reply to step #1.3)
7571
7572 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7573 query.
7574
7575 To solve this, whenever we parse a %Stop notification successfully,
7576 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7577 doing whatever we were doing:
7578
7579 2.1) --> Hg 1
7580 2.2) <-- OK
7581 2.3) --> g
7582 2.4) <-- %Stop
7583 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7584 2.5) <-- (registers reply to step #2.3)
7585
7586 Eventually after step #2.5, we return to the event loop, which
7587 notices there's an event on the
7588 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7589 associated callback --- the function below. At this point, we're
7590 always safe to start a vStopped sequence. :
7591
7592 2.6) --> vStopped
7593 2.7) <-- T05 thread:2
7594 2.8) --> vStopped
7595 2.9) --> OK
7596 */
7597
7598 void
7599 remote_target::remote_notif_get_pending_events (notif_client *nc)
7600 {
7601 struct remote_state *rs = get_remote_state ();
7602
7603 if (rs->notif_state->pending_event[nc->id] != NULL)
7604 {
7605 if (notif_debug)
7606 fprintf_unfiltered (gdb_stdlog,
7607 "notif: process: '%s' ack pending event\n",
7608 nc->name);
7609
7610 /* acknowledge */
7611 nc->ack (this, nc, rs->buf.data (),
7612 rs->notif_state->pending_event[nc->id]);
7613 rs->notif_state->pending_event[nc->id] = NULL;
7614
7615 while (1)
7616 {
7617 getpkt (&rs->buf, 0);
7618 if (strcmp (rs->buf.data (), "OK") == 0)
7619 break;
7620 else
7621 remote_notif_ack (this, nc, rs->buf.data ());
7622 }
7623 }
7624 else
7625 {
7626 if (notif_debug)
7627 fprintf_unfiltered (gdb_stdlog,
7628 "notif: process: '%s' no pending reply\n",
7629 nc->name);
7630 }
7631 }
7632
7633 /* Wrapper around remote_target::remote_notif_get_pending_events to
7634 avoid having to export the whole remote_target class. */
7635
7636 void
7637 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7638 {
7639 remote->remote_notif_get_pending_events (nc);
7640 }
7641
7642 /* Called when it is decided that STOP_REPLY holds the info of the
7643 event that is to be returned to the core. This function always
7644 destroys STOP_REPLY. */
7645
7646 ptid_t
7647 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7648 struct target_waitstatus *status)
7649 {
7650 ptid_t ptid;
7651
7652 *status = stop_reply->ws;
7653 ptid = stop_reply->ptid;
7654
7655 /* If no thread/process was reported by the stub, assume the current
7656 inferior. */
7657 if (ptid == null_ptid)
7658 ptid = inferior_ptid;
7659
7660 if (status->kind != TARGET_WAITKIND_EXITED
7661 && status->kind != TARGET_WAITKIND_SIGNALLED
7662 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7663 {
7664 /* Expedited registers. */
7665 if (!stop_reply->regcache.empty ())
7666 {
7667 struct regcache *regcache
7668 = get_thread_arch_regcache (this, ptid, stop_reply->arch);
7669
7670 for (cached_reg_t &reg : stop_reply->regcache)
7671 {
7672 regcache->raw_supply (reg.num, reg.data);
7673 xfree (reg.data);
7674 }
7675
7676 stop_reply->regcache.clear ();
7677 }
7678
7679 remote_notice_new_inferior (ptid, 0);
7680 remote_thread_info *remote_thr = get_remote_thread_info (this, ptid);
7681 remote_thr->core = stop_reply->core;
7682 remote_thr->stop_reason = stop_reply->stop_reason;
7683 remote_thr->watch_data_address = stop_reply->watch_data_address;
7684 remote_thr->vcont_resumed = 0;
7685 }
7686
7687 delete stop_reply;
7688 return ptid;
7689 }
7690
7691 /* The non-stop mode version of target_wait. */
7692
7693 ptid_t
7694 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7695 {
7696 struct remote_state *rs = get_remote_state ();
7697 struct stop_reply *stop_reply;
7698 int ret;
7699 int is_notif = 0;
7700
7701 /* If in non-stop mode, get out of getpkt even if a
7702 notification is received. */
7703
7704 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7705 while (1)
7706 {
7707 if (ret != -1 && !is_notif)
7708 switch (rs->buf[0])
7709 {
7710 case 'E': /* Error of some sort. */
7711 /* We're out of sync with the target now. Did it continue
7712 or not? We can't tell which thread it was in non-stop,
7713 so just ignore this. */
7714 warning (_("Remote failure reply: %s"), rs->buf.data ());
7715 break;
7716 case 'O': /* Console output. */
7717 remote_console_output (&rs->buf[1]);
7718 break;
7719 default:
7720 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7721 break;
7722 }
7723
7724 /* Acknowledge a pending stop reply that may have arrived in the
7725 mean time. */
7726 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7727 remote_notif_get_pending_events (&notif_client_stop);
7728
7729 /* If indeed we noticed a stop reply, we're done. */
7730 stop_reply = queued_stop_reply (ptid);
7731 if (stop_reply != NULL)
7732 return process_stop_reply (stop_reply, status);
7733
7734 /* Still no event. If we're just polling for an event, then
7735 return to the event loop. */
7736 if (options & TARGET_WNOHANG)
7737 {
7738 status->kind = TARGET_WAITKIND_IGNORE;
7739 return minus_one_ptid;
7740 }
7741
7742 /* Otherwise do a blocking wait. */
7743 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7744 }
7745 }
7746
7747 /* Return the first resumed thread. */
7748
7749 static ptid_t
7750 first_remote_resumed_thread (remote_target *target)
7751 {
7752 for (thread_info *tp : all_non_exited_threads (target, minus_one_ptid))
7753 if (tp->resumed)
7754 return tp->ptid;
7755 return null_ptid;
7756 }
7757
7758 /* Wait until the remote machine stops, then return, storing status in
7759 STATUS just as `wait' would. */
7760
7761 ptid_t
7762 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7763 {
7764 struct remote_state *rs = get_remote_state ();
7765 ptid_t event_ptid = null_ptid;
7766 char *buf;
7767 struct stop_reply *stop_reply;
7768
7769 again:
7770
7771 status->kind = TARGET_WAITKIND_IGNORE;
7772 status->value.integer = 0;
7773
7774 stop_reply = queued_stop_reply (ptid);
7775 if (stop_reply != NULL)
7776 return process_stop_reply (stop_reply, status);
7777
7778 if (rs->cached_wait_status)
7779 /* Use the cached wait status, but only once. */
7780 rs->cached_wait_status = 0;
7781 else
7782 {
7783 int ret;
7784 int is_notif;
7785 int forever = ((options & TARGET_WNOHANG) == 0
7786 && rs->wait_forever_enabled_p);
7787
7788 if (!rs->waiting_for_stop_reply)
7789 {
7790 status->kind = TARGET_WAITKIND_NO_RESUMED;
7791 return minus_one_ptid;
7792 }
7793
7794 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7795 _never_ wait for ever -> test on target_is_async_p().
7796 However, before we do that we need to ensure that the caller
7797 knows how to take the target into/out of async mode. */
7798 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7799
7800 /* GDB gets a notification. Return to core as this event is
7801 not interesting. */
7802 if (ret != -1 && is_notif)
7803 return minus_one_ptid;
7804
7805 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7806 return minus_one_ptid;
7807 }
7808
7809 buf = rs->buf.data ();
7810
7811 /* Assume that the target has acknowledged Ctrl-C unless we receive
7812 an 'F' or 'O' packet. */
7813 if (buf[0] != 'F' && buf[0] != 'O')
7814 rs->ctrlc_pending_p = 0;
7815
7816 switch (buf[0])
7817 {
7818 case 'E': /* Error of some sort. */
7819 /* We're out of sync with the target now. Did it continue or
7820 not? Not is more likely, so report a stop. */
7821 rs->waiting_for_stop_reply = 0;
7822
7823 warning (_("Remote failure reply: %s"), buf);
7824 status->kind = TARGET_WAITKIND_STOPPED;
7825 status->value.sig = GDB_SIGNAL_0;
7826 break;
7827 case 'F': /* File-I/O request. */
7828 /* GDB may access the inferior memory while handling the File-I/O
7829 request, but we don't want GDB accessing memory while waiting
7830 for a stop reply. See the comments in putpkt_binary. Set
7831 waiting_for_stop_reply to 0 temporarily. */
7832 rs->waiting_for_stop_reply = 0;
7833 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7834 rs->ctrlc_pending_p = 0;
7835 /* GDB handled the File-I/O request, and the target is running
7836 again. Keep waiting for events. */
7837 rs->waiting_for_stop_reply = 1;
7838 break;
7839 case 'N': case 'T': case 'S': case 'X': case 'W':
7840 {
7841 /* There is a stop reply to handle. */
7842 rs->waiting_for_stop_reply = 0;
7843
7844 stop_reply
7845 = (struct stop_reply *) remote_notif_parse (this,
7846 &notif_client_stop,
7847 rs->buf.data ());
7848
7849 event_ptid = process_stop_reply (stop_reply, status);
7850 break;
7851 }
7852 case 'O': /* Console output. */
7853 remote_console_output (buf + 1);
7854 break;
7855 case '\0':
7856 if (rs->last_sent_signal != GDB_SIGNAL_0)
7857 {
7858 /* Zero length reply means that we tried 'S' or 'C' and the
7859 remote system doesn't support it. */
7860 target_terminal::ours_for_output ();
7861 printf_filtered
7862 ("Can't send signals to this remote system. %s not sent.\n",
7863 gdb_signal_to_name (rs->last_sent_signal));
7864 rs->last_sent_signal = GDB_SIGNAL_0;
7865 target_terminal::inferior ();
7866
7867 strcpy (buf, rs->last_sent_step ? "s" : "c");
7868 putpkt (buf);
7869 break;
7870 }
7871 /* fallthrough */
7872 default:
7873 warning (_("Invalid remote reply: %s"), buf);
7874 break;
7875 }
7876
7877 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7878 return minus_one_ptid;
7879 else if (status->kind == TARGET_WAITKIND_IGNORE)
7880 {
7881 /* Nothing interesting happened. If we're doing a non-blocking
7882 poll, we're done. Otherwise, go back to waiting. */
7883 if (options & TARGET_WNOHANG)
7884 return minus_one_ptid;
7885 else
7886 goto again;
7887 }
7888 else if (status->kind != TARGET_WAITKIND_EXITED
7889 && status->kind != TARGET_WAITKIND_SIGNALLED)
7890 {
7891 if (event_ptid != null_ptid)
7892 record_currthread (rs, event_ptid);
7893 else
7894 event_ptid = first_remote_resumed_thread (this);
7895 }
7896 else
7897 {
7898 /* A process exit. Invalidate our notion of current thread. */
7899 record_currthread (rs, minus_one_ptid);
7900 /* It's possible that the packet did not include a pid. */
7901 if (event_ptid == null_ptid)
7902 event_ptid = first_remote_resumed_thread (this);
7903 /* EVENT_PTID could still be NULL_PTID. Double-check. */
7904 if (event_ptid == null_ptid)
7905 event_ptid = magic_null_ptid;
7906 }
7907
7908 return event_ptid;
7909 }
7910
7911 /* Wait until the remote machine stops, then return, storing status in
7912 STATUS just as `wait' would. */
7913
7914 ptid_t
7915 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7916 {
7917 ptid_t event_ptid;
7918
7919 if (target_is_non_stop_p ())
7920 event_ptid = wait_ns (ptid, status, options);
7921 else
7922 event_ptid = wait_as (ptid, status, options);
7923
7924 if (target_is_async_p ())
7925 {
7926 remote_state *rs = get_remote_state ();
7927
7928 /* If there are are events left in the queue tell the event loop
7929 to return here. */
7930 if (!rs->stop_reply_queue.empty ())
7931 mark_async_event_handler (rs->remote_async_inferior_event_token);
7932 }
7933
7934 return event_ptid;
7935 }
7936
7937 /* Fetch a single register using a 'p' packet. */
7938
7939 int
7940 remote_target::fetch_register_using_p (struct regcache *regcache,
7941 packet_reg *reg)
7942 {
7943 struct gdbarch *gdbarch = regcache->arch ();
7944 struct remote_state *rs = get_remote_state ();
7945 char *buf, *p;
7946 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7947 int i;
7948
7949 if (packet_support (PACKET_p) == PACKET_DISABLE)
7950 return 0;
7951
7952 if (reg->pnum == -1)
7953 return 0;
7954
7955 p = rs->buf.data ();
7956 *p++ = 'p';
7957 p += hexnumstr (p, reg->pnum);
7958 *p++ = '\0';
7959 putpkt (rs->buf);
7960 getpkt (&rs->buf, 0);
7961
7962 buf = rs->buf.data ();
7963
7964 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
7965 {
7966 case PACKET_OK:
7967 break;
7968 case PACKET_UNKNOWN:
7969 return 0;
7970 case PACKET_ERROR:
7971 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7972 gdbarch_register_name (regcache->arch (),
7973 reg->regnum),
7974 buf);
7975 }
7976
7977 /* If this register is unfetchable, tell the regcache. */
7978 if (buf[0] == 'x')
7979 {
7980 regcache->raw_supply (reg->regnum, NULL);
7981 return 1;
7982 }
7983
7984 /* Otherwise, parse and supply the value. */
7985 p = buf;
7986 i = 0;
7987 while (p[0] != 0)
7988 {
7989 if (p[1] == 0)
7990 error (_("fetch_register_using_p: early buf termination"));
7991
7992 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7993 p += 2;
7994 }
7995 regcache->raw_supply (reg->regnum, regp);
7996 return 1;
7997 }
7998
7999 /* Fetch the registers included in the target's 'g' packet. */
8000
8001 int
8002 remote_target::send_g_packet ()
8003 {
8004 struct remote_state *rs = get_remote_state ();
8005 int buf_len;
8006
8007 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
8008 putpkt (rs->buf);
8009 getpkt (&rs->buf, 0);
8010 if (packet_check_result (rs->buf) == PACKET_ERROR)
8011 error (_("Could not read registers; remote failure reply '%s'"),
8012 rs->buf.data ());
8013
8014 /* We can get out of synch in various cases. If the first character
8015 in the buffer is not a hex character, assume that has happened
8016 and try to fetch another packet to read. */
8017 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
8018 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
8019 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
8020 && rs->buf[0] != 'x') /* New: unavailable register value. */
8021 {
8022 if (remote_debug)
8023 fprintf_unfiltered (gdb_stdlog,
8024 "Bad register packet; fetching a new packet\n");
8025 getpkt (&rs->buf, 0);
8026 }
8027
8028 buf_len = strlen (rs->buf.data ());
8029
8030 /* Sanity check the received packet. */
8031 if (buf_len % 2 != 0)
8032 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8033
8034 return buf_len / 2;
8035 }
8036
8037 void
8038 remote_target::process_g_packet (struct regcache *regcache)
8039 {
8040 struct gdbarch *gdbarch = regcache->arch ();
8041 struct remote_state *rs = get_remote_state ();
8042 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8043 int i, buf_len;
8044 char *p;
8045 char *regs;
8046
8047 buf_len = strlen (rs->buf.data ());
8048
8049 /* Further sanity checks, with knowledge of the architecture. */
8050 if (buf_len > 2 * rsa->sizeof_g_packet)
8051 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8052 "bytes): %s"),
8053 rsa->sizeof_g_packet, buf_len / 2,
8054 rs->buf.data ());
8055
8056 /* Save the size of the packet sent to us by the target. It is used
8057 as a heuristic when determining the max size of packets that the
8058 target can safely receive. */
8059 if (rsa->actual_register_packet_size == 0)
8060 rsa->actual_register_packet_size = buf_len;
8061
8062 /* If this is smaller than we guessed the 'g' packet would be,
8063 update our records. A 'g' reply that doesn't include a register's
8064 value implies either that the register is not available, or that
8065 the 'p' packet must be used. */
8066 if (buf_len < 2 * rsa->sizeof_g_packet)
8067 {
8068 long sizeof_g_packet = buf_len / 2;
8069
8070 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8071 {
8072 long offset = rsa->regs[i].offset;
8073 long reg_size = register_size (gdbarch, i);
8074
8075 if (rsa->regs[i].pnum == -1)
8076 continue;
8077
8078 if (offset >= sizeof_g_packet)
8079 rsa->regs[i].in_g_packet = 0;
8080 else if (offset + reg_size > sizeof_g_packet)
8081 error (_("Truncated register %d in remote 'g' packet"), i);
8082 else
8083 rsa->regs[i].in_g_packet = 1;
8084 }
8085
8086 /* Looks valid enough, we can assume this is the correct length
8087 for a 'g' packet. It's important not to adjust
8088 rsa->sizeof_g_packet if we have truncated registers otherwise
8089 this "if" won't be run the next time the method is called
8090 with a packet of the same size and one of the internal errors
8091 below will trigger instead. */
8092 rsa->sizeof_g_packet = sizeof_g_packet;
8093 }
8094
8095 regs = (char *) alloca (rsa->sizeof_g_packet);
8096
8097 /* Unimplemented registers read as all bits zero. */
8098 memset (regs, 0, rsa->sizeof_g_packet);
8099
8100 /* Reply describes registers byte by byte, each byte encoded as two
8101 hex characters. Suck them all up, then supply them to the
8102 register cacheing/storage mechanism. */
8103
8104 p = rs->buf.data ();
8105 for (i = 0; i < rsa->sizeof_g_packet; i++)
8106 {
8107 if (p[0] == 0 || p[1] == 0)
8108 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8109 internal_error (__FILE__, __LINE__,
8110 _("unexpected end of 'g' packet reply"));
8111
8112 if (p[0] == 'x' && p[1] == 'x')
8113 regs[i] = 0; /* 'x' */
8114 else
8115 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8116 p += 2;
8117 }
8118
8119 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8120 {
8121 struct packet_reg *r = &rsa->regs[i];
8122 long reg_size = register_size (gdbarch, i);
8123
8124 if (r->in_g_packet)
8125 {
8126 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8127 /* This shouldn't happen - we adjusted in_g_packet above. */
8128 internal_error (__FILE__, __LINE__,
8129 _("unexpected end of 'g' packet reply"));
8130 else if (rs->buf[r->offset * 2] == 'x')
8131 {
8132 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8133 /* The register isn't available, mark it as such (at
8134 the same time setting the value to zero). */
8135 regcache->raw_supply (r->regnum, NULL);
8136 }
8137 else
8138 regcache->raw_supply (r->regnum, regs + r->offset);
8139 }
8140 }
8141 }
8142
8143 void
8144 remote_target::fetch_registers_using_g (struct regcache *regcache)
8145 {
8146 send_g_packet ();
8147 process_g_packet (regcache);
8148 }
8149
8150 /* Make the remote selected traceframe match GDB's selected
8151 traceframe. */
8152
8153 void
8154 remote_target::set_remote_traceframe ()
8155 {
8156 int newnum;
8157 struct remote_state *rs = get_remote_state ();
8158
8159 if (rs->remote_traceframe_number == get_traceframe_number ())
8160 return;
8161
8162 /* Avoid recursion, remote_trace_find calls us again. */
8163 rs->remote_traceframe_number = get_traceframe_number ();
8164
8165 newnum = target_trace_find (tfind_number,
8166 get_traceframe_number (), 0, 0, NULL);
8167
8168 /* Should not happen. If it does, all bets are off. */
8169 if (newnum != get_traceframe_number ())
8170 warning (_("could not set remote traceframe"));
8171 }
8172
8173 void
8174 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8175 {
8176 struct gdbarch *gdbarch = regcache->arch ();
8177 struct remote_state *rs = get_remote_state ();
8178 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8179 int i;
8180
8181 set_remote_traceframe ();
8182 set_general_thread (regcache->ptid ());
8183
8184 if (regnum >= 0)
8185 {
8186 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8187
8188 gdb_assert (reg != NULL);
8189
8190 /* If this register might be in the 'g' packet, try that first -
8191 we are likely to read more than one register. If this is the
8192 first 'g' packet, we might be overly optimistic about its
8193 contents, so fall back to 'p'. */
8194 if (reg->in_g_packet)
8195 {
8196 fetch_registers_using_g (regcache);
8197 if (reg->in_g_packet)
8198 return;
8199 }
8200
8201 if (fetch_register_using_p (regcache, reg))
8202 return;
8203
8204 /* This register is not available. */
8205 regcache->raw_supply (reg->regnum, NULL);
8206
8207 return;
8208 }
8209
8210 fetch_registers_using_g (regcache);
8211
8212 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8213 if (!rsa->regs[i].in_g_packet)
8214 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8215 {
8216 /* This register is not available. */
8217 regcache->raw_supply (i, NULL);
8218 }
8219 }
8220
8221 /* Prepare to store registers. Since we may send them all (using a
8222 'G' request), we have to read out the ones we don't want to change
8223 first. */
8224
8225 void
8226 remote_target::prepare_to_store (struct regcache *regcache)
8227 {
8228 struct remote_state *rs = get_remote_state ();
8229 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8230 int i;
8231
8232 /* Make sure the entire registers array is valid. */
8233 switch (packet_support (PACKET_P))
8234 {
8235 case PACKET_DISABLE:
8236 case PACKET_SUPPORT_UNKNOWN:
8237 /* Make sure all the necessary registers are cached. */
8238 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8239 if (rsa->regs[i].in_g_packet)
8240 regcache->raw_update (rsa->regs[i].regnum);
8241 break;
8242 case PACKET_ENABLE:
8243 break;
8244 }
8245 }
8246
8247 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8248 packet was not recognized. */
8249
8250 int
8251 remote_target::store_register_using_P (const struct regcache *regcache,
8252 packet_reg *reg)
8253 {
8254 struct gdbarch *gdbarch = regcache->arch ();
8255 struct remote_state *rs = get_remote_state ();
8256 /* Try storing a single register. */
8257 char *buf = rs->buf.data ();
8258 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8259 char *p;
8260
8261 if (packet_support (PACKET_P) == PACKET_DISABLE)
8262 return 0;
8263
8264 if (reg->pnum == -1)
8265 return 0;
8266
8267 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8268 p = buf + strlen (buf);
8269 regcache->raw_collect (reg->regnum, regp);
8270 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8271 putpkt (rs->buf);
8272 getpkt (&rs->buf, 0);
8273
8274 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8275 {
8276 case PACKET_OK:
8277 return 1;
8278 case PACKET_ERROR:
8279 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8280 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8281 case PACKET_UNKNOWN:
8282 return 0;
8283 default:
8284 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8285 }
8286 }
8287
8288 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8289 contents of the register cache buffer. FIXME: ignores errors. */
8290
8291 void
8292 remote_target::store_registers_using_G (const struct regcache *regcache)
8293 {
8294 struct remote_state *rs = get_remote_state ();
8295 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8296 gdb_byte *regs;
8297 char *p;
8298
8299 /* Extract all the registers in the regcache copying them into a
8300 local buffer. */
8301 {
8302 int i;
8303
8304 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8305 memset (regs, 0, rsa->sizeof_g_packet);
8306 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8307 {
8308 struct packet_reg *r = &rsa->regs[i];
8309
8310 if (r->in_g_packet)
8311 regcache->raw_collect (r->regnum, regs + r->offset);
8312 }
8313 }
8314
8315 /* Command describes registers byte by byte,
8316 each byte encoded as two hex characters. */
8317 p = rs->buf.data ();
8318 *p++ = 'G';
8319 bin2hex (regs, p, rsa->sizeof_g_packet);
8320 putpkt (rs->buf);
8321 getpkt (&rs->buf, 0);
8322 if (packet_check_result (rs->buf) == PACKET_ERROR)
8323 error (_("Could not write registers; remote failure reply '%s'"),
8324 rs->buf.data ());
8325 }
8326
8327 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8328 of the register cache buffer. FIXME: ignores errors. */
8329
8330 void
8331 remote_target::store_registers (struct regcache *regcache, int regnum)
8332 {
8333 struct gdbarch *gdbarch = regcache->arch ();
8334 struct remote_state *rs = get_remote_state ();
8335 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8336 int i;
8337
8338 set_remote_traceframe ();
8339 set_general_thread (regcache->ptid ());
8340
8341 if (regnum >= 0)
8342 {
8343 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8344
8345 gdb_assert (reg != NULL);
8346
8347 /* Always prefer to store registers using the 'P' packet if
8348 possible; we often change only a small number of registers.
8349 Sometimes we change a larger number; we'd need help from a
8350 higher layer to know to use 'G'. */
8351 if (store_register_using_P (regcache, reg))
8352 return;
8353
8354 /* For now, don't complain if we have no way to write the
8355 register. GDB loses track of unavailable registers too
8356 easily. Some day, this may be an error. We don't have
8357 any way to read the register, either... */
8358 if (!reg->in_g_packet)
8359 return;
8360
8361 store_registers_using_G (regcache);
8362 return;
8363 }
8364
8365 store_registers_using_G (regcache);
8366
8367 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8368 if (!rsa->regs[i].in_g_packet)
8369 if (!store_register_using_P (regcache, &rsa->regs[i]))
8370 /* See above for why we do not issue an error here. */
8371 continue;
8372 }
8373 \f
8374
8375 /* Return the number of hex digits in num. */
8376
8377 static int
8378 hexnumlen (ULONGEST num)
8379 {
8380 int i;
8381
8382 for (i = 0; num != 0; i++)
8383 num >>= 4;
8384
8385 return std::max (i, 1);
8386 }
8387
8388 /* Set BUF to the minimum number of hex digits representing NUM. */
8389
8390 static int
8391 hexnumstr (char *buf, ULONGEST num)
8392 {
8393 int len = hexnumlen (num);
8394
8395 return hexnumnstr (buf, num, len);
8396 }
8397
8398
8399 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8400
8401 static int
8402 hexnumnstr (char *buf, ULONGEST num, int width)
8403 {
8404 int i;
8405
8406 buf[width] = '\0';
8407
8408 for (i = width - 1; i >= 0; i--)
8409 {
8410 buf[i] = "0123456789abcdef"[(num & 0xf)];
8411 num >>= 4;
8412 }
8413
8414 return width;
8415 }
8416
8417 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8418
8419 static CORE_ADDR
8420 remote_address_masked (CORE_ADDR addr)
8421 {
8422 unsigned int address_size = remote_address_size;
8423
8424 /* If "remoteaddresssize" was not set, default to target address size. */
8425 if (!address_size)
8426 address_size = gdbarch_addr_bit (target_gdbarch ());
8427
8428 if (address_size > 0
8429 && address_size < (sizeof (ULONGEST) * 8))
8430 {
8431 /* Only create a mask when that mask can safely be constructed
8432 in a ULONGEST variable. */
8433 ULONGEST mask = 1;
8434
8435 mask = (mask << address_size) - 1;
8436 addr &= mask;
8437 }
8438 return addr;
8439 }
8440
8441 /* Determine whether the remote target supports binary downloading.
8442 This is accomplished by sending a no-op memory write of zero length
8443 to the target at the specified address. It does not suffice to send
8444 the whole packet, since many stubs strip the eighth bit and
8445 subsequently compute a wrong checksum, which causes real havoc with
8446 remote_write_bytes.
8447
8448 NOTE: This can still lose if the serial line is not eight-bit
8449 clean. In cases like this, the user should clear "remote
8450 X-packet". */
8451
8452 void
8453 remote_target::check_binary_download (CORE_ADDR addr)
8454 {
8455 struct remote_state *rs = get_remote_state ();
8456
8457 switch (packet_support (PACKET_X))
8458 {
8459 case PACKET_DISABLE:
8460 break;
8461 case PACKET_ENABLE:
8462 break;
8463 case PACKET_SUPPORT_UNKNOWN:
8464 {
8465 char *p;
8466
8467 p = rs->buf.data ();
8468 *p++ = 'X';
8469 p += hexnumstr (p, (ULONGEST) addr);
8470 *p++ = ',';
8471 p += hexnumstr (p, (ULONGEST) 0);
8472 *p++ = ':';
8473 *p = '\0';
8474
8475 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8476 getpkt (&rs->buf, 0);
8477
8478 if (rs->buf[0] == '\0')
8479 {
8480 if (remote_debug)
8481 fprintf_unfiltered (gdb_stdlog,
8482 "binary downloading NOT "
8483 "supported by target\n");
8484 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8485 }
8486 else
8487 {
8488 if (remote_debug)
8489 fprintf_unfiltered (gdb_stdlog,
8490 "binary downloading supported by target\n");
8491 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8492 }
8493 break;
8494 }
8495 }
8496 }
8497
8498 /* Helper function to resize the payload in order to try to get a good
8499 alignment. We try to write an amount of data such that the next write will
8500 start on an address aligned on REMOTE_ALIGN_WRITES. */
8501
8502 static int
8503 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8504 {
8505 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8506 }
8507
8508 /* Write memory data directly to the remote machine.
8509 This does not inform the data cache; the data cache uses this.
8510 HEADER is the starting part of the packet.
8511 MEMADDR is the address in the remote memory space.
8512 MYADDR is the address of the buffer in our space.
8513 LEN_UNITS is the number of addressable units to write.
8514 UNIT_SIZE is the length in bytes of an addressable unit.
8515 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8516 should send data as binary ('X'), or hex-encoded ('M').
8517
8518 The function creates packet of the form
8519 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8520
8521 where encoding of <DATA> is terminated by PACKET_FORMAT.
8522
8523 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8524 are omitted.
8525
8526 Return the transferred status, error or OK (an
8527 'enum target_xfer_status' value). Save the number of addressable units
8528 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8529
8530 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8531 exchange between gdb and the stub could look like (?? in place of the
8532 checksum):
8533
8534 -> $m1000,4#??
8535 <- aaaabbbbccccdddd
8536
8537 -> $M1000,3:eeeeffffeeee#??
8538 <- OK
8539
8540 -> $m1000,4#??
8541 <- eeeeffffeeeedddd */
8542
8543 target_xfer_status
8544 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8545 const gdb_byte *myaddr,
8546 ULONGEST len_units,
8547 int unit_size,
8548 ULONGEST *xfered_len_units,
8549 char packet_format, int use_length)
8550 {
8551 struct remote_state *rs = get_remote_state ();
8552 char *p;
8553 char *plen = NULL;
8554 int plenlen = 0;
8555 int todo_units;
8556 int units_written;
8557 int payload_capacity_bytes;
8558 int payload_length_bytes;
8559
8560 if (packet_format != 'X' && packet_format != 'M')
8561 internal_error (__FILE__, __LINE__,
8562 _("remote_write_bytes_aux: bad packet format"));
8563
8564 if (len_units == 0)
8565 return TARGET_XFER_EOF;
8566
8567 payload_capacity_bytes = get_memory_write_packet_size ();
8568
8569 /* The packet buffer will be large enough for the payload;
8570 get_memory_packet_size ensures this. */
8571 rs->buf[0] = '\0';
8572
8573 /* Compute the size of the actual payload by subtracting out the
8574 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8575
8576 payload_capacity_bytes -= strlen ("$,:#NN");
8577 if (!use_length)
8578 /* The comma won't be used. */
8579 payload_capacity_bytes += 1;
8580 payload_capacity_bytes -= strlen (header);
8581 payload_capacity_bytes -= hexnumlen (memaddr);
8582
8583 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8584
8585 strcat (rs->buf.data (), header);
8586 p = rs->buf.data () + strlen (header);
8587
8588 /* Compute a best guess of the number of bytes actually transfered. */
8589 if (packet_format == 'X')
8590 {
8591 /* Best guess at number of bytes that will fit. */
8592 todo_units = std::min (len_units,
8593 (ULONGEST) payload_capacity_bytes / unit_size);
8594 if (use_length)
8595 payload_capacity_bytes -= hexnumlen (todo_units);
8596 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8597 }
8598 else
8599 {
8600 /* Number of bytes that will fit. */
8601 todo_units
8602 = std::min (len_units,
8603 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8604 if (use_length)
8605 payload_capacity_bytes -= hexnumlen (todo_units);
8606 todo_units = std::min (todo_units,
8607 (payload_capacity_bytes / unit_size) / 2);
8608 }
8609
8610 if (todo_units <= 0)
8611 internal_error (__FILE__, __LINE__,
8612 _("minimum packet size too small to write data"));
8613
8614 /* If we already need another packet, then try to align the end
8615 of this packet to a useful boundary. */
8616 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8617 todo_units = align_for_efficient_write (todo_units, memaddr);
8618
8619 /* Append "<memaddr>". */
8620 memaddr = remote_address_masked (memaddr);
8621 p += hexnumstr (p, (ULONGEST) memaddr);
8622
8623 if (use_length)
8624 {
8625 /* Append ",". */
8626 *p++ = ',';
8627
8628 /* Append the length and retain its location and size. It may need to be
8629 adjusted once the packet body has been created. */
8630 plen = p;
8631 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8632 p += plenlen;
8633 }
8634
8635 /* Append ":". */
8636 *p++ = ':';
8637 *p = '\0';
8638
8639 /* Append the packet body. */
8640 if (packet_format == 'X')
8641 {
8642 /* Binary mode. Send target system values byte by byte, in
8643 increasing byte addresses. Only escape certain critical
8644 characters. */
8645 payload_length_bytes =
8646 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8647 &units_written, payload_capacity_bytes);
8648
8649 /* If not all TODO units fit, then we'll need another packet. Make
8650 a second try to keep the end of the packet aligned. Don't do
8651 this if the packet is tiny. */
8652 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8653 {
8654 int new_todo_units;
8655
8656 new_todo_units = align_for_efficient_write (units_written, memaddr);
8657
8658 if (new_todo_units != units_written)
8659 payload_length_bytes =
8660 remote_escape_output (myaddr, new_todo_units, unit_size,
8661 (gdb_byte *) p, &units_written,
8662 payload_capacity_bytes);
8663 }
8664
8665 p += payload_length_bytes;
8666 if (use_length && units_written < todo_units)
8667 {
8668 /* Escape chars have filled up the buffer prematurely,
8669 and we have actually sent fewer units than planned.
8670 Fix-up the length field of the packet. Use the same
8671 number of characters as before. */
8672 plen += hexnumnstr (plen, (ULONGEST) units_written,
8673 plenlen);
8674 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8675 }
8676 }
8677 else
8678 {
8679 /* Normal mode: Send target system values byte by byte, in
8680 increasing byte addresses. Each byte is encoded as a two hex
8681 value. */
8682 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8683 units_written = todo_units;
8684 }
8685
8686 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8687 getpkt (&rs->buf, 0);
8688
8689 if (rs->buf[0] == 'E')
8690 return TARGET_XFER_E_IO;
8691
8692 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8693 send fewer units than we'd planned. */
8694 *xfered_len_units = (ULONGEST) units_written;
8695 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8696 }
8697
8698 /* Write memory data directly to the remote machine.
8699 This does not inform the data cache; the data cache uses this.
8700 MEMADDR is the address in the remote memory space.
8701 MYADDR is the address of the buffer in our space.
8702 LEN is the number of bytes.
8703
8704 Return the transferred status, error or OK (an
8705 'enum target_xfer_status' value). Save the number of bytes
8706 transferred in *XFERED_LEN. Only transfer a single packet. */
8707
8708 target_xfer_status
8709 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8710 ULONGEST len, int unit_size,
8711 ULONGEST *xfered_len)
8712 {
8713 const char *packet_format = NULL;
8714
8715 /* Check whether the target supports binary download. */
8716 check_binary_download (memaddr);
8717
8718 switch (packet_support (PACKET_X))
8719 {
8720 case PACKET_ENABLE:
8721 packet_format = "X";
8722 break;
8723 case PACKET_DISABLE:
8724 packet_format = "M";
8725 break;
8726 case PACKET_SUPPORT_UNKNOWN:
8727 internal_error (__FILE__, __LINE__,
8728 _("remote_write_bytes: bad internal state"));
8729 default:
8730 internal_error (__FILE__, __LINE__, _("bad switch"));
8731 }
8732
8733 return remote_write_bytes_aux (packet_format,
8734 memaddr, myaddr, len, unit_size, xfered_len,
8735 packet_format[0], 1);
8736 }
8737
8738 /* Read memory data directly from the remote machine.
8739 This does not use the data cache; the data cache uses this.
8740 MEMADDR is the address in the remote memory space.
8741 MYADDR is the address of the buffer in our space.
8742 LEN_UNITS is the number of addressable memory units to read..
8743 UNIT_SIZE is the length in bytes of an addressable unit.
8744
8745 Return the transferred status, error or OK (an
8746 'enum target_xfer_status' value). Save the number of bytes
8747 transferred in *XFERED_LEN_UNITS.
8748
8749 See the comment of remote_write_bytes_aux for an example of
8750 memory read/write exchange between gdb and the stub. */
8751
8752 target_xfer_status
8753 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8754 ULONGEST len_units,
8755 int unit_size, ULONGEST *xfered_len_units)
8756 {
8757 struct remote_state *rs = get_remote_state ();
8758 int buf_size_bytes; /* Max size of packet output buffer. */
8759 char *p;
8760 int todo_units;
8761 int decoded_bytes;
8762
8763 buf_size_bytes = get_memory_read_packet_size ();
8764 /* The packet buffer will be large enough for the payload;
8765 get_memory_packet_size ensures this. */
8766
8767 /* Number of units that will fit. */
8768 todo_units = std::min (len_units,
8769 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8770
8771 /* Construct "m"<memaddr>","<len>". */
8772 memaddr = remote_address_masked (memaddr);
8773 p = rs->buf.data ();
8774 *p++ = 'm';
8775 p += hexnumstr (p, (ULONGEST) memaddr);
8776 *p++ = ',';
8777 p += hexnumstr (p, (ULONGEST) todo_units);
8778 *p = '\0';
8779 putpkt (rs->buf);
8780 getpkt (&rs->buf, 0);
8781 if (rs->buf[0] == 'E'
8782 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8783 && rs->buf[3] == '\0')
8784 return TARGET_XFER_E_IO;
8785 /* Reply describes memory byte by byte, each byte encoded as two hex
8786 characters. */
8787 p = rs->buf.data ();
8788 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8789 /* Return what we have. Let higher layers handle partial reads. */
8790 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8791 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8792 }
8793
8794 /* Using the set of read-only target sections of remote, read live
8795 read-only memory.
8796
8797 For interface/parameters/return description see target.h,
8798 to_xfer_partial. */
8799
8800 target_xfer_status
8801 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8802 ULONGEST memaddr,
8803 ULONGEST len,
8804 int unit_size,
8805 ULONGEST *xfered_len)
8806 {
8807 struct target_section *secp;
8808 struct target_section_table *table;
8809
8810 secp = target_section_by_addr (this, memaddr);
8811 if (secp != NULL
8812 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
8813 {
8814 struct target_section *p;
8815 ULONGEST memend = memaddr + len;
8816
8817 table = target_get_section_table (this);
8818
8819 for (p = table->sections; p < table->sections_end; p++)
8820 {
8821 if (memaddr >= p->addr)
8822 {
8823 if (memend <= p->endaddr)
8824 {
8825 /* Entire transfer is within this section. */
8826 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8827 xfered_len);
8828 }
8829 else if (memaddr >= p->endaddr)
8830 {
8831 /* This section ends before the transfer starts. */
8832 continue;
8833 }
8834 else
8835 {
8836 /* This section overlaps the transfer. Just do half. */
8837 len = p->endaddr - memaddr;
8838 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8839 xfered_len);
8840 }
8841 }
8842 }
8843 }
8844
8845 return TARGET_XFER_EOF;
8846 }
8847
8848 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8849 first if the requested memory is unavailable in traceframe.
8850 Otherwise, fall back to remote_read_bytes_1. */
8851
8852 target_xfer_status
8853 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8854 gdb_byte *myaddr, ULONGEST len, int unit_size,
8855 ULONGEST *xfered_len)
8856 {
8857 if (len == 0)
8858 return TARGET_XFER_EOF;
8859
8860 if (get_traceframe_number () != -1)
8861 {
8862 std::vector<mem_range> available;
8863
8864 /* If we fail to get the set of available memory, then the
8865 target does not support querying traceframe info, and so we
8866 attempt reading from the traceframe anyway (assuming the
8867 target implements the old QTro packet then). */
8868 if (traceframe_available_memory (&available, memaddr, len))
8869 {
8870 if (available.empty () || available[0].start != memaddr)
8871 {
8872 enum target_xfer_status res;
8873
8874 /* Don't read into the traceframe's available
8875 memory. */
8876 if (!available.empty ())
8877 {
8878 LONGEST oldlen = len;
8879
8880 len = available[0].start - memaddr;
8881 gdb_assert (len <= oldlen);
8882 }
8883
8884 /* This goes through the topmost target again. */
8885 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8886 len, unit_size, xfered_len);
8887 if (res == TARGET_XFER_OK)
8888 return TARGET_XFER_OK;
8889 else
8890 {
8891 /* No use trying further, we know some memory starting
8892 at MEMADDR isn't available. */
8893 *xfered_len = len;
8894 return (*xfered_len != 0) ?
8895 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8896 }
8897 }
8898
8899 /* Don't try to read more than how much is available, in
8900 case the target implements the deprecated QTro packet to
8901 cater for older GDBs (the target's knowledge of read-only
8902 sections may be outdated by now). */
8903 len = available[0].length;
8904 }
8905 }
8906
8907 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8908 }
8909
8910 \f
8911
8912 /* Sends a packet with content determined by the printf format string
8913 FORMAT and the remaining arguments, then gets the reply. Returns
8914 whether the packet was a success, a failure, or unknown. */
8915
8916 packet_result
8917 remote_target::remote_send_printf (const char *format, ...)
8918 {
8919 struct remote_state *rs = get_remote_state ();
8920 int max_size = get_remote_packet_size ();
8921 va_list ap;
8922
8923 va_start (ap, format);
8924
8925 rs->buf[0] = '\0';
8926 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8927
8928 va_end (ap);
8929
8930 if (size >= max_size)
8931 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8932
8933 if (putpkt (rs->buf) < 0)
8934 error (_("Communication problem with target."));
8935
8936 rs->buf[0] = '\0';
8937 getpkt (&rs->buf, 0);
8938
8939 return packet_check_result (rs->buf);
8940 }
8941
8942 /* Flash writing can take quite some time. We'll set
8943 effectively infinite timeout for flash operations.
8944 In future, we'll need to decide on a better approach. */
8945 static const int remote_flash_timeout = 1000;
8946
8947 void
8948 remote_target::flash_erase (ULONGEST address, LONGEST length)
8949 {
8950 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8951 enum packet_result ret;
8952 scoped_restore restore_timeout
8953 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8954
8955 ret = remote_send_printf ("vFlashErase:%s,%s",
8956 phex (address, addr_size),
8957 phex (length, 4));
8958 switch (ret)
8959 {
8960 case PACKET_UNKNOWN:
8961 error (_("Remote target does not support flash erase"));
8962 case PACKET_ERROR:
8963 error (_("Error erasing flash with vFlashErase packet"));
8964 default:
8965 break;
8966 }
8967 }
8968
8969 target_xfer_status
8970 remote_target::remote_flash_write (ULONGEST address,
8971 ULONGEST length, ULONGEST *xfered_len,
8972 const gdb_byte *data)
8973 {
8974 scoped_restore restore_timeout
8975 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8976 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8977 xfered_len,'X', 0);
8978 }
8979
8980 void
8981 remote_target::flash_done ()
8982 {
8983 int ret;
8984
8985 scoped_restore restore_timeout
8986 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8987
8988 ret = remote_send_printf ("vFlashDone");
8989
8990 switch (ret)
8991 {
8992 case PACKET_UNKNOWN:
8993 error (_("Remote target does not support vFlashDone"));
8994 case PACKET_ERROR:
8995 error (_("Error finishing flash operation"));
8996 default:
8997 break;
8998 }
8999 }
9000
9001 void
9002 remote_target::files_info ()
9003 {
9004 puts_filtered ("Debugging a target over a serial line.\n");
9005 }
9006 \f
9007 /* Stuff for dealing with the packets which are part of this protocol.
9008 See comment at top of file for details. */
9009
9010 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
9011 error to higher layers. Called when a serial error is detected.
9012 The exception message is STRING, followed by a colon and a blank,
9013 the system error message for errno at function entry and final dot
9014 for output compatibility with throw_perror_with_name. */
9015
9016 static void
9017 unpush_and_perror (remote_target *target, const char *string)
9018 {
9019 int saved_errno = errno;
9020
9021 remote_unpush_target (target);
9022 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
9023 safe_strerror (saved_errno));
9024 }
9025
9026 /* Read a single character from the remote end. The current quit
9027 handler is overridden to avoid quitting in the middle of packet
9028 sequence, as that would break communication with the remote server.
9029 See remote_serial_quit_handler for more detail. */
9030
9031 int
9032 remote_target::readchar (int timeout)
9033 {
9034 int ch;
9035 struct remote_state *rs = get_remote_state ();
9036
9037 {
9038 scoped_restore restore_quit_target
9039 = make_scoped_restore (&curr_quit_handler_target, this);
9040 scoped_restore restore_quit
9041 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9042
9043 rs->got_ctrlc_during_io = 0;
9044
9045 ch = serial_readchar (rs->remote_desc, timeout);
9046
9047 if (rs->got_ctrlc_during_io)
9048 set_quit_flag ();
9049 }
9050
9051 if (ch >= 0)
9052 return ch;
9053
9054 switch ((enum serial_rc) ch)
9055 {
9056 case SERIAL_EOF:
9057 remote_unpush_target (this);
9058 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9059 /* no return */
9060 case SERIAL_ERROR:
9061 unpush_and_perror (this, _("Remote communication error. "
9062 "Target disconnected."));
9063 /* no return */
9064 case SERIAL_TIMEOUT:
9065 break;
9066 }
9067 return ch;
9068 }
9069
9070 /* Wrapper for serial_write that closes the target and throws if
9071 writing fails. The current quit handler is overridden to avoid
9072 quitting in the middle of packet sequence, as that would break
9073 communication with the remote server. See
9074 remote_serial_quit_handler for more detail. */
9075
9076 void
9077 remote_target::remote_serial_write (const char *str, int len)
9078 {
9079 struct remote_state *rs = get_remote_state ();
9080
9081 scoped_restore restore_quit_target
9082 = make_scoped_restore (&curr_quit_handler_target, this);
9083 scoped_restore restore_quit
9084 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9085
9086 rs->got_ctrlc_during_io = 0;
9087
9088 if (serial_write (rs->remote_desc, str, len))
9089 {
9090 unpush_and_perror (this, _("Remote communication error. "
9091 "Target disconnected."));
9092 }
9093
9094 if (rs->got_ctrlc_during_io)
9095 set_quit_flag ();
9096 }
9097
9098 /* Return a string representing an escaped version of BUF, of len N.
9099 E.g. \n is converted to \\n, \t to \\t, etc. */
9100
9101 static std::string
9102 escape_buffer (const char *buf, int n)
9103 {
9104 string_file stb;
9105
9106 stb.putstrn (buf, n, '\\');
9107 return std::move (stb.string ());
9108 }
9109
9110 /* Display a null-terminated packet on stdout, for debugging, using C
9111 string notation. */
9112
9113 static void
9114 print_packet (const char *buf)
9115 {
9116 puts_filtered ("\"");
9117 fputstr_filtered (buf, '"', gdb_stdout);
9118 puts_filtered ("\"");
9119 }
9120
9121 int
9122 remote_target::putpkt (const char *buf)
9123 {
9124 return putpkt_binary (buf, strlen (buf));
9125 }
9126
9127 /* Wrapper around remote_target::putpkt to avoid exporting
9128 remote_target. */
9129
9130 int
9131 putpkt (remote_target *remote, const char *buf)
9132 {
9133 return remote->putpkt (buf);
9134 }
9135
9136 /* Send a packet to the remote machine, with error checking. The data
9137 of the packet is in BUF. The string in BUF can be at most
9138 get_remote_packet_size () - 5 to account for the $, # and checksum,
9139 and for a possible /0 if we are debugging (remote_debug) and want
9140 to print the sent packet as a string. */
9141
9142 int
9143 remote_target::putpkt_binary (const char *buf, int cnt)
9144 {
9145 struct remote_state *rs = get_remote_state ();
9146 int i;
9147 unsigned char csum = 0;
9148 gdb::def_vector<char> data (cnt + 6);
9149 char *buf2 = data.data ();
9150
9151 int ch;
9152 int tcount = 0;
9153 char *p;
9154
9155 /* Catch cases like trying to read memory or listing threads while
9156 we're waiting for a stop reply. The remote server wouldn't be
9157 ready to handle this request, so we'd hang and timeout. We don't
9158 have to worry about this in synchronous mode, because in that
9159 case it's not possible to issue a command while the target is
9160 running. This is not a problem in non-stop mode, because in that
9161 case, the stub is always ready to process serial input. */
9162 if (!target_is_non_stop_p ()
9163 && target_is_async_p ()
9164 && rs->waiting_for_stop_reply)
9165 {
9166 error (_("Cannot execute this command while the target is running.\n"
9167 "Use the \"interrupt\" command to stop the target\n"
9168 "and then try again."));
9169 }
9170
9171 /* We're sending out a new packet. Make sure we don't look at a
9172 stale cached response. */
9173 rs->cached_wait_status = 0;
9174
9175 /* Copy the packet into buffer BUF2, encapsulating it
9176 and giving it a checksum. */
9177
9178 p = buf2;
9179 *p++ = '$';
9180
9181 for (i = 0; i < cnt; i++)
9182 {
9183 csum += buf[i];
9184 *p++ = buf[i];
9185 }
9186 *p++ = '#';
9187 *p++ = tohex ((csum >> 4) & 0xf);
9188 *p++ = tohex (csum & 0xf);
9189
9190 /* Send it over and over until we get a positive ack. */
9191
9192 while (1)
9193 {
9194 int started_error_output = 0;
9195
9196 if (remote_debug)
9197 {
9198 *p = '\0';
9199
9200 int len = (int) (p - buf2);
9201 int max_chars;
9202
9203 if (remote_packet_max_chars < 0)
9204 max_chars = len;
9205 else
9206 max_chars = remote_packet_max_chars;
9207
9208 std::string str
9209 = escape_buffer (buf2, std::min (len, max_chars));
9210
9211 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9212
9213 if (len > max_chars)
9214 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9215 len - max_chars);
9216
9217 fprintf_unfiltered (gdb_stdlog, "...");
9218
9219 gdb_flush (gdb_stdlog);
9220 }
9221 remote_serial_write (buf2, p - buf2);
9222
9223 /* If this is a no acks version of the remote protocol, send the
9224 packet and move on. */
9225 if (rs->noack_mode)
9226 break;
9227
9228 /* Read until either a timeout occurs (-2) or '+' is read.
9229 Handle any notification that arrives in the mean time. */
9230 while (1)
9231 {
9232 ch = readchar (remote_timeout);
9233
9234 if (remote_debug)
9235 {
9236 switch (ch)
9237 {
9238 case '+':
9239 case '-':
9240 case SERIAL_TIMEOUT:
9241 case '$':
9242 case '%':
9243 if (started_error_output)
9244 {
9245 putchar_unfiltered ('\n');
9246 started_error_output = 0;
9247 }
9248 }
9249 }
9250
9251 switch (ch)
9252 {
9253 case '+':
9254 if (remote_debug)
9255 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9256 return 1;
9257 case '-':
9258 if (remote_debug)
9259 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9260 /* FALLTHROUGH */
9261 case SERIAL_TIMEOUT:
9262 tcount++;
9263 if (tcount > 3)
9264 return 0;
9265 break; /* Retransmit buffer. */
9266 case '$':
9267 {
9268 if (remote_debug)
9269 fprintf_unfiltered (gdb_stdlog,
9270 "Packet instead of Ack, ignoring it\n");
9271 /* It's probably an old response sent because an ACK
9272 was lost. Gobble up the packet and ack it so it
9273 doesn't get retransmitted when we resend this
9274 packet. */
9275 skip_frame ();
9276 remote_serial_write ("+", 1);
9277 continue; /* Now, go look for +. */
9278 }
9279
9280 case '%':
9281 {
9282 int val;
9283
9284 /* If we got a notification, handle it, and go back to looking
9285 for an ack. */
9286 /* We've found the start of a notification. Now
9287 collect the data. */
9288 val = read_frame (&rs->buf);
9289 if (val >= 0)
9290 {
9291 if (remote_debug)
9292 {
9293 std::string str = escape_buffer (rs->buf.data (), val);
9294
9295 fprintf_unfiltered (gdb_stdlog,
9296 " Notification received: %s\n",
9297 str.c_str ());
9298 }
9299 handle_notification (rs->notif_state, rs->buf.data ());
9300 /* We're in sync now, rewait for the ack. */
9301 tcount = 0;
9302 }
9303 else
9304 {
9305 if (remote_debug)
9306 {
9307 if (!started_error_output)
9308 {
9309 started_error_output = 1;
9310 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9311 }
9312 fputc_unfiltered (ch & 0177, gdb_stdlog);
9313 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9314 }
9315 }
9316 continue;
9317 }
9318 /* fall-through */
9319 default:
9320 if (remote_debug)
9321 {
9322 if (!started_error_output)
9323 {
9324 started_error_output = 1;
9325 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9326 }
9327 fputc_unfiltered (ch & 0177, gdb_stdlog);
9328 }
9329 continue;
9330 }
9331 break; /* Here to retransmit. */
9332 }
9333
9334 #if 0
9335 /* This is wrong. If doing a long backtrace, the user should be
9336 able to get out next time we call QUIT, without anything as
9337 violent as interrupt_query. If we want to provide a way out of
9338 here without getting to the next QUIT, it should be based on
9339 hitting ^C twice as in remote_wait. */
9340 if (quit_flag)
9341 {
9342 quit_flag = 0;
9343 interrupt_query ();
9344 }
9345 #endif
9346 }
9347
9348 return 0;
9349 }
9350
9351 /* Come here after finding the start of a frame when we expected an
9352 ack. Do our best to discard the rest of this packet. */
9353
9354 void
9355 remote_target::skip_frame ()
9356 {
9357 int c;
9358
9359 while (1)
9360 {
9361 c = readchar (remote_timeout);
9362 switch (c)
9363 {
9364 case SERIAL_TIMEOUT:
9365 /* Nothing we can do. */
9366 return;
9367 case '#':
9368 /* Discard the two bytes of checksum and stop. */
9369 c = readchar (remote_timeout);
9370 if (c >= 0)
9371 c = readchar (remote_timeout);
9372
9373 return;
9374 case '*': /* Run length encoding. */
9375 /* Discard the repeat count. */
9376 c = readchar (remote_timeout);
9377 if (c < 0)
9378 return;
9379 break;
9380 default:
9381 /* A regular character. */
9382 break;
9383 }
9384 }
9385 }
9386
9387 /* Come here after finding the start of the frame. Collect the rest
9388 into *BUF, verifying the checksum, length, and handling run-length
9389 compression. NUL terminate the buffer. If there is not enough room,
9390 expand *BUF.
9391
9392 Returns -1 on error, number of characters in buffer (ignoring the
9393 trailing NULL) on success. (could be extended to return one of the
9394 SERIAL status indications). */
9395
9396 long
9397 remote_target::read_frame (gdb::char_vector *buf_p)
9398 {
9399 unsigned char csum;
9400 long bc;
9401 int c;
9402 char *buf = buf_p->data ();
9403 struct remote_state *rs = get_remote_state ();
9404
9405 csum = 0;
9406 bc = 0;
9407
9408 while (1)
9409 {
9410 c = readchar (remote_timeout);
9411 switch (c)
9412 {
9413 case SERIAL_TIMEOUT:
9414 if (remote_debug)
9415 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9416 return -1;
9417 case '$':
9418 if (remote_debug)
9419 fputs_filtered ("Saw new packet start in middle of old one\n",
9420 gdb_stdlog);
9421 return -1; /* Start a new packet, count retries. */
9422 case '#':
9423 {
9424 unsigned char pktcsum;
9425 int check_0 = 0;
9426 int check_1 = 0;
9427
9428 buf[bc] = '\0';
9429
9430 check_0 = readchar (remote_timeout);
9431 if (check_0 >= 0)
9432 check_1 = readchar (remote_timeout);
9433
9434 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9435 {
9436 if (remote_debug)
9437 fputs_filtered ("Timeout in checksum, retrying\n",
9438 gdb_stdlog);
9439 return -1;
9440 }
9441 else if (check_0 < 0 || check_1 < 0)
9442 {
9443 if (remote_debug)
9444 fputs_filtered ("Communication error in checksum\n",
9445 gdb_stdlog);
9446 return -1;
9447 }
9448
9449 /* Don't recompute the checksum; with no ack packets we
9450 don't have any way to indicate a packet retransmission
9451 is necessary. */
9452 if (rs->noack_mode)
9453 return bc;
9454
9455 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9456 if (csum == pktcsum)
9457 return bc;
9458
9459 if (remote_debug)
9460 {
9461 std::string str = escape_buffer (buf, bc);
9462
9463 fprintf_unfiltered (gdb_stdlog,
9464 "Bad checksum, sentsum=0x%x, "
9465 "csum=0x%x, buf=%s\n",
9466 pktcsum, csum, str.c_str ());
9467 }
9468 /* Number of characters in buffer ignoring trailing
9469 NULL. */
9470 return -1;
9471 }
9472 case '*': /* Run length encoding. */
9473 {
9474 int repeat;
9475
9476 csum += c;
9477 c = readchar (remote_timeout);
9478 csum += c;
9479 repeat = c - ' ' + 3; /* Compute repeat count. */
9480
9481 /* The character before ``*'' is repeated. */
9482
9483 if (repeat > 0 && repeat <= 255 && bc > 0)
9484 {
9485 if (bc + repeat - 1 >= buf_p->size () - 1)
9486 {
9487 /* Make some more room in the buffer. */
9488 buf_p->resize (buf_p->size () + repeat);
9489 buf = buf_p->data ();
9490 }
9491
9492 memset (&buf[bc], buf[bc - 1], repeat);
9493 bc += repeat;
9494 continue;
9495 }
9496
9497 buf[bc] = '\0';
9498 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9499 return -1;
9500 }
9501 default:
9502 if (bc >= buf_p->size () - 1)
9503 {
9504 /* Make some more room in the buffer. */
9505 buf_p->resize (buf_p->size () * 2);
9506 buf = buf_p->data ();
9507 }
9508
9509 buf[bc++] = c;
9510 csum += c;
9511 continue;
9512 }
9513 }
9514 }
9515
9516 /* Set this to the maximum number of seconds to wait instead of waiting forever
9517 in target_wait(). If this timer times out, then it generates an error and
9518 the command is aborted. This replaces most of the need for timeouts in the
9519 GDB test suite, and makes it possible to distinguish between a hung target
9520 and one with slow communications. */
9521
9522 static int watchdog = 0;
9523 static void
9524 show_watchdog (struct ui_file *file, int from_tty,
9525 struct cmd_list_element *c, const char *value)
9526 {
9527 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9528 }
9529
9530 /* Read a packet from the remote machine, with error checking, and
9531 store it in *BUF. Resize *BUF if necessary to hold the result. If
9532 FOREVER, wait forever rather than timing out; this is used (in
9533 synchronous mode) to wait for a target that is is executing user
9534 code to stop. */
9535 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9536 don't have to change all the calls to getpkt to deal with the
9537 return value, because at the moment I don't know what the right
9538 thing to do it for those. */
9539
9540 void
9541 remote_target::getpkt (gdb::char_vector *buf, int forever)
9542 {
9543 getpkt_sane (buf, forever);
9544 }
9545
9546
9547 /* Read a packet from the remote machine, with error checking, and
9548 store it in *BUF. Resize *BUF if necessary to hold the result. If
9549 FOREVER, wait forever rather than timing out; this is used (in
9550 synchronous mode) to wait for a target that is is executing user
9551 code to stop. If FOREVER == 0, this function is allowed to time
9552 out gracefully and return an indication of this to the caller.
9553 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9554 consider receiving a notification enough reason to return to the
9555 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9556 holds a notification or not (a regular packet). */
9557
9558 int
9559 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9560 int forever, int expecting_notif,
9561 int *is_notif)
9562 {
9563 struct remote_state *rs = get_remote_state ();
9564 int c;
9565 int tries;
9566 int timeout;
9567 int val = -1;
9568
9569 /* We're reading a new response. Make sure we don't look at a
9570 previously cached response. */
9571 rs->cached_wait_status = 0;
9572
9573 strcpy (buf->data (), "timeout");
9574
9575 if (forever)
9576 timeout = watchdog > 0 ? watchdog : -1;
9577 else if (expecting_notif)
9578 timeout = 0; /* There should already be a char in the buffer. If
9579 not, bail out. */
9580 else
9581 timeout = remote_timeout;
9582
9583 #define MAX_TRIES 3
9584
9585 /* Process any number of notifications, and then return when
9586 we get a packet. */
9587 for (;;)
9588 {
9589 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9590 times. */
9591 for (tries = 1; tries <= MAX_TRIES; tries++)
9592 {
9593 /* This can loop forever if the remote side sends us
9594 characters continuously, but if it pauses, we'll get
9595 SERIAL_TIMEOUT from readchar because of timeout. Then
9596 we'll count that as a retry.
9597
9598 Note that even when forever is set, we will only wait
9599 forever prior to the start of a packet. After that, we
9600 expect characters to arrive at a brisk pace. They should
9601 show up within remote_timeout intervals. */
9602 do
9603 c = readchar (timeout);
9604 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9605
9606 if (c == SERIAL_TIMEOUT)
9607 {
9608 if (expecting_notif)
9609 return -1; /* Don't complain, it's normal to not get
9610 anything in this case. */
9611
9612 if (forever) /* Watchdog went off? Kill the target. */
9613 {
9614 remote_unpush_target (this);
9615 throw_error (TARGET_CLOSE_ERROR,
9616 _("Watchdog timeout has expired. "
9617 "Target detached."));
9618 }
9619 if (remote_debug)
9620 fputs_filtered ("Timed out.\n", gdb_stdlog);
9621 }
9622 else
9623 {
9624 /* We've found the start of a packet or notification.
9625 Now collect the data. */
9626 val = read_frame (buf);
9627 if (val >= 0)
9628 break;
9629 }
9630
9631 remote_serial_write ("-", 1);
9632 }
9633
9634 if (tries > MAX_TRIES)
9635 {
9636 /* We have tried hard enough, and just can't receive the
9637 packet/notification. Give up. */
9638 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9639
9640 /* Skip the ack char if we're in no-ack mode. */
9641 if (!rs->noack_mode)
9642 remote_serial_write ("+", 1);
9643 return -1;
9644 }
9645
9646 /* If we got an ordinary packet, return that to our caller. */
9647 if (c == '$')
9648 {
9649 if (remote_debug)
9650 {
9651 int max_chars;
9652
9653 if (remote_packet_max_chars < 0)
9654 max_chars = val;
9655 else
9656 max_chars = remote_packet_max_chars;
9657
9658 std::string str
9659 = escape_buffer (buf->data (),
9660 std::min (val, max_chars));
9661
9662 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9663 str.c_str ());
9664
9665 if (val > max_chars)
9666 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9667 val - max_chars);
9668
9669 fprintf_unfiltered (gdb_stdlog, "\n");
9670 }
9671
9672 /* Skip the ack char if we're in no-ack mode. */
9673 if (!rs->noack_mode)
9674 remote_serial_write ("+", 1);
9675 if (is_notif != NULL)
9676 *is_notif = 0;
9677 return val;
9678 }
9679
9680 /* If we got a notification, handle it, and go back to looking
9681 for a packet. */
9682 else
9683 {
9684 gdb_assert (c == '%');
9685
9686 if (remote_debug)
9687 {
9688 std::string str = escape_buffer (buf->data (), val);
9689
9690 fprintf_unfiltered (gdb_stdlog,
9691 " Notification received: %s\n",
9692 str.c_str ());
9693 }
9694 if (is_notif != NULL)
9695 *is_notif = 1;
9696
9697 handle_notification (rs->notif_state, buf->data ());
9698
9699 /* Notifications require no acknowledgement. */
9700
9701 if (expecting_notif)
9702 return val;
9703 }
9704 }
9705 }
9706
9707 int
9708 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9709 {
9710 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9711 }
9712
9713 int
9714 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9715 int *is_notif)
9716 {
9717 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9718 }
9719
9720 /* Kill any new fork children of process PID that haven't been
9721 processed by follow_fork. */
9722
9723 void
9724 remote_target::kill_new_fork_children (int pid)
9725 {
9726 remote_state *rs = get_remote_state ();
9727 struct notif_client *notif = &notif_client_stop;
9728
9729 /* Kill the fork child threads of any threads in process PID
9730 that are stopped at a fork event. */
9731 for (thread_info *thread : all_non_exited_threads (this))
9732 {
9733 struct target_waitstatus *ws = &thread->pending_follow;
9734
9735 if (is_pending_fork_parent (ws, pid, thread->ptid))
9736 {
9737 int child_pid = ws->value.related_pid.pid ();
9738 int res;
9739
9740 res = remote_vkill (child_pid);
9741 if (res != 0)
9742 error (_("Can't kill fork child process %d"), child_pid);
9743 }
9744 }
9745
9746 /* Check for any pending fork events (not reported or processed yet)
9747 in process PID and kill those fork child threads as well. */
9748 remote_notif_get_pending_events (notif);
9749 for (auto &event : rs->stop_reply_queue)
9750 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9751 {
9752 int child_pid = event->ws.value.related_pid.pid ();
9753 int res;
9754
9755 res = remote_vkill (child_pid);
9756 if (res != 0)
9757 error (_("Can't kill fork child process %d"), child_pid);
9758 }
9759 }
9760
9761 \f
9762 /* Target hook to kill the current inferior. */
9763
9764 void
9765 remote_target::kill ()
9766 {
9767 int res = -1;
9768 int pid = inferior_ptid.pid ();
9769 struct remote_state *rs = get_remote_state ();
9770
9771 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9772 {
9773 /* If we're stopped while forking and we haven't followed yet,
9774 kill the child task. We need to do this before killing the
9775 parent task because if this is a vfork then the parent will
9776 be sleeping. */
9777 kill_new_fork_children (pid);
9778
9779 res = remote_vkill (pid);
9780 if (res == 0)
9781 {
9782 target_mourn_inferior (inferior_ptid);
9783 return;
9784 }
9785 }
9786
9787 /* If we are in 'target remote' mode and we are killing the only
9788 inferior, then we will tell gdbserver to exit and unpush the
9789 target. */
9790 if (res == -1 && !remote_multi_process_p (rs)
9791 && number_of_live_inferiors (this) == 1)
9792 {
9793 remote_kill_k ();
9794
9795 /* We've killed the remote end, we get to mourn it. If we are
9796 not in extended mode, mourning the inferior also unpushes
9797 remote_ops from the target stack, which closes the remote
9798 connection. */
9799 target_mourn_inferior (inferior_ptid);
9800
9801 return;
9802 }
9803
9804 error (_("Can't kill process"));
9805 }
9806
9807 /* Send a kill request to the target using the 'vKill' packet. */
9808
9809 int
9810 remote_target::remote_vkill (int pid)
9811 {
9812 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9813 return -1;
9814
9815 remote_state *rs = get_remote_state ();
9816
9817 /* Tell the remote target to detach. */
9818 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9819 putpkt (rs->buf);
9820 getpkt (&rs->buf, 0);
9821
9822 switch (packet_ok (rs->buf,
9823 &remote_protocol_packets[PACKET_vKill]))
9824 {
9825 case PACKET_OK:
9826 return 0;
9827 case PACKET_ERROR:
9828 return 1;
9829 case PACKET_UNKNOWN:
9830 return -1;
9831 default:
9832 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9833 }
9834 }
9835
9836 /* Send a kill request to the target using the 'k' packet. */
9837
9838 void
9839 remote_target::remote_kill_k ()
9840 {
9841 /* Catch errors so the user can quit from gdb even when we
9842 aren't on speaking terms with the remote system. */
9843 try
9844 {
9845 putpkt ("k");
9846 }
9847 catch (const gdb_exception_error &ex)
9848 {
9849 if (ex.error == TARGET_CLOSE_ERROR)
9850 {
9851 /* If we got an (EOF) error that caused the target
9852 to go away, then we're done, that's what we wanted.
9853 "k" is susceptible to cause a premature EOF, given
9854 that the remote server isn't actually required to
9855 reply to "k", and it can happen that it doesn't
9856 even get to reply ACK to the "k". */
9857 return;
9858 }
9859
9860 /* Otherwise, something went wrong. We didn't actually kill
9861 the target. Just propagate the exception, and let the
9862 user or higher layers decide what to do. */
9863 throw;
9864 }
9865 }
9866
9867 void
9868 remote_target::mourn_inferior ()
9869 {
9870 struct remote_state *rs = get_remote_state ();
9871
9872 /* We're no longer interested in notification events of an inferior
9873 that exited or was killed/detached. */
9874 discard_pending_stop_replies (current_inferior ());
9875
9876 /* In 'target remote' mode with one inferior, we close the connection. */
9877 if (!rs->extended && number_of_live_inferiors (this) <= 1)
9878 {
9879 remote_unpush_target (this);
9880 return;
9881 }
9882
9883 /* In case we got here due to an error, but we're going to stay
9884 connected. */
9885 rs->waiting_for_stop_reply = 0;
9886
9887 /* If the current general thread belonged to the process we just
9888 detached from or has exited, the remote side current general
9889 thread becomes undefined. Considering a case like this:
9890
9891 - We just got here due to a detach.
9892 - The process that we're detaching from happens to immediately
9893 report a global breakpoint being hit in non-stop mode, in the
9894 same thread we had selected before.
9895 - GDB attaches to this process again.
9896 - This event happens to be the next event we handle.
9897
9898 GDB would consider that the current general thread didn't need to
9899 be set on the stub side (with Hg), since for all it knew,
9900 GENERAL_THREAD hadn't changed.
9901
9902 Notice that although in all-stop mode, the remote server always
9903 sets the current thread to the thread reporting the stop event,
9904 that doesn't happen in non-stop mode; in non-stop, the stub *must
9905 not* change the current thread when reporting a breakpoint hit,
9906 due to the decoupling of event reporting and event handling.
9907
9908 To keep things simple, we always invalidate our notion of the
9909 current thread. */
9910 record_currthread (rs, minus_one_ptid);
9911
9912 /* Call common code to mark the inferior as not running. */
9913 generic_mourn_inferior ();
9914 }
9915
9916 bool
9917 extended_remote_target::supports_disable_randomization ()
9918 {
9919 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9920 }
9921
9922 void
9923 remote_target::extended_remote_disable_randomization (int val)
9924 {
9925 struct remote_state *rs = get_remote_state ();
9926 char *reply;
9927
9928 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9929 "QDisableRandomization:%x", val);
9930 putpkt (rs->buf);
9931 reply = remote_get_noisy_reply ();
9932 if (*reply == '\0')
9933 error (_("Target does not support QDisableRandomization."));
9934 if (strcmp (reply, "OK") != 0)
9935 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9936 }
9937
9938 int
9939 remote_target::extended_remote_run (const std::string &args)
9940 {
9941 struct remote_state *rs = get_remote_state ();
9942 int len;
9943 const char *remote_exec_file = get_remote_exec_file ();
9944
9945 /* If the user has disabled vRun support, or we have detected that
9946 support is not available, do not try it. */
9947 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9948 return -1;
9949
9950 strcpy (rs->buf.data (), "vRun;");
9951 len = strlen (rs->buf.data ());
9952
9953 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9954 error (_("Remote file name too long for run packet"));
9955 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
9956 strlen (remote_exec_file));
9957
9958 if (!args.empty ())
9959 {
9960 int i;
9961
9962 gdb_argv argv (args.c_str ());
9963 for (i = 0; argv[i] != NULL; i++)
9964 {
9965 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9966 error (_("Argument list too long for run packet"));
9967 rs->buf[len++] = ';';
9968 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
9969 strlen (argv[i]));
9970 }
9971 }
9972
9973 rs->buf[len++] = '\0';
9974
9975 putpkt (rs->buf);
9976 getpkt (&rs->buf, 0);
9977
9978 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9979 {
9980 case PACKET_OK:
9981 /* We have a wait response. All is well. */
9982 return 0;
9983 case PACKET_UNKNOWN:
9984 return -1;
9985 case PACKET_ERROR:
9986 if (remote_exec_file[0] == '\0')
9987 error (_("Running the default executable on the remote target failed; "
9988 "try \"set remote exec-file\"?"));
9989 else
9990 error (_("Running \"%s\" on the remote target failed"),
9991 remote_exec_file);
9992 default:
9993 gdb_assert_not_reached (_("bad switch"));
9994 }
9995 }
9996
9997 /* Helper function to send set/unset environment packets. ACTION is
9998 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9999 or "QEnvironmentUnsetVariable". VALUE is the variable to be
10000 sent. */
10001
10002 void
10003 remote_target::send_environment_packet (const char *action,
10004 const char *packet,
10005 const char *value)
10006 {
10007 remote_state *rs = get_remote_state ();
10008
10009 /* Convert the environment variable to an hex string, which
10010 is the best format to be transmitted over the wire. */
10011 std::string encoded_value = bin2hex ((const gdb_byte *) value,
10012 strlen (value));
10013
10014 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10015 "%s:%s", packet, encoded_value.c_str ());
10016
10017 putpkt (rs->buf);
10018 getpkt (&rs->buf, 0);
10019 if (strcmp (rs->buf.data (), "OK") != 0)
10020 warning (_("Unable to %s environment variable '%s' on remote."),
10021 action, value);
10022 }
10023
10024 /* Helper function to handle the QEnvironment* packets. */
10025
10026 void
10027 remote_target::extended_remote_environment_support ()
10028 {
10029 remote_state *rs = get_remote_state ();
10030
10031 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10032 {
10033 putpkt ("QEnvironmentReset");
10034 getpkt (&rs->buf, 0);
10035 if (strcmp (rs->buf.data (), "OK") != 0)
10036 warning (_("Unable to reset environment on remote."));
10037 }
10038
10039 gdb_environ *e = &current_inferior ()->environment;
10040
10041 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10042 for (const std::string &el : e->user_set_env ())
10043 send_environment_packet ("set", "QEnvironmentHexEncoded",
10044 el.c_str ());
10045
10046 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10047 for (const std::string &el : e->user_unset_env ())
10048 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10049 }
10050
10051 /* Helper function to set the current working directory for the
10052 inferior in the remote target. */
10053
10054 void
10055 remote_target::extended_remote_set_inferior_cwd ()
10056 {
10057 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10058 {
10059 const char *inferior_cwd = get_inferior_cwd ();
10060 remote_state *rs = get_remote_state ();
10061
10062 if (inferior_cwd != NULL)
10063 {
10064 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10065 strlen (inferior_cwd));
10066
10067 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10068 "QSetWorkingDir:%s", hexpath.c_str ());
10069 }
10070 else
10071 {
10072 /* An empty inferior_cwd means that the user wants us to
10073 reset the remote server's inferior's cwd. */
10074 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10075 "QSetWorkingDir:");
10076 }
10077
10078 putpkt (rs->buf);
10079 getpkt (&rs->buf, 0);
10080 if (packet_ok (rs->buf,
10081 &remote_protocol_packets[PACKET_QSetWorkingDir])
10082 != PACKET_OK)
10083 error (_("\
10084 Remote replied unexpectedly while setting the inferior's working\n\
10085 directory: %s"),
10086 rs->buf.data ());
10087
10088 }
10089 }
10090
10091 /* In the extended protocol we want to be able to do things like
10092 "run" and have them basically work as expected. So we need
10093 a special create_inferior function. We support changing the
10094 executable file and the command line arguments, but not the
10095 environment. */
10096
10097 void
10098 extended_remote_target::create_inferior (const char *exec_file,
10099 const std::string &args,
10100 char **env, int from_tty)
10101 {
10102 int run_worked;
10103 char *stop_reply;
10104 struct remote_state *rs = get_remote_state ();
10105 const char *remote_exec_file = get_remote_exec_file ();
10106
10107 /* If running asynchronously, register the target file descriptor
10108 with the event loop. */
10109 if (target_can_async_p ())
10110 target_async (1);
10111
10112 /* Disable address space randomization if requested (and supported). */
10113 if (supports_disable_randomization ())
10114 extended_remote_disable_randomization (disable_randomization);
10115
10116 /* If startup-with-shell is on, we inform gdbserver to start the
10117 remote inferior using a shell. */
10118 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10119 {
10120 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10121 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10122 putpkt (rs->buf);
10123 getpkt (&rs->buf, 0);
10124 if (strcmp (rs->buf.data (), "OK") != 0)
10125 error (_("\
10126 Remote replied unexpectedly while setting startup-with-shell: %s"),
10127 rs->buf.data ());
10128 }
10129
10130 extended_remote_environment_support ();
10131
10132 extended_remote_set_inferior_cwd ();
10133
10134 /* Now restart the remote server. */
10135 run_worked = extended_remote_run (args) != -1;
10136 if (!run_worked)
10137 {
10138 /* vRun was not supported. Fail if we need it to do what the
10139 user requested. */
10140 if (remote_exec_file[0])
10141 error (_("Remote target does not support \"set remote exec-file\""));
10142 if (!args.empty ())
10143 error (_("Remote target does not support \"set args\" or run ARGS"));
10144
10145 /* Fall back to "R". */
10146 extended_remote_restart ();
10147 }
10148
10149 /* vRun's success return is a stop reply. */
10150 stop_reply = run_worked ? rs->buf.data () : NULL;
10151 add_current_inferior_and_thread (stop_reply);
10152
10153 /* Get updated offsets, if the stub uses qOffsets. */
10154 get_offsets ();
10155 }
10156 \f
10157
10158 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10159 the list of conditions (in agent expression bytecode format), if any, the
10160 target needs to evaluate. The output is placed into the packet buffer
10161 started from BUF and ended at BUF_END. */
10162
10163 static int
10164 remote_add_target_side_condition (struct gdbarch *gdbarch,
10165 struct bp_target_info *bp_tgt, char *buf,
10166 char *buf_end)
10167 {
10168 if (bp_tgt->conditions.empty ())
10169 return 0;
10170
10171 buf += strlen (buf);
10172 xsnprintf (buf, buf_end - buf, "%s", ";");
10173 buf++;
10174
10175 /* Send conditions to the target. */
10176 for (agent_expr *aexpr : bp_tgt->conditions)
10177 {
10178 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10179 buf += strlen (buf);
10180 for (int i = 0; i < aexpr->len; ++i)
10181 buf = pack_hex_byte (buf, aexpr->buf[i]);
10182 *buf = '\0';
10183 }
10184 return 0;
10185 }
10186
10187 static void
10188 remote_add_target_side_commands (struct gdbarch *gdbarch,
10189 struct bp_target_info *bp_tgt, char *buf)
10190 {
10191 if (bp_tgt->tcommands.empty ())
10192 return;
10193
10194 buf += strlen (buf);
10195
10196 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10197 buf += strlen (buf);
10198
10199 /* Concatenate all the agent expressions that are commands into the
10200 cmds parameter. */
10201 for (agent_expr *aexpr : bp_tgt->tcommands)
10202 {
10203 sprintf (buf, "X%x,", aexpr->len);
10204 buf += strlen (buf);
10205 for (int i = 0; i < aexpr->len; ++i)
10206 buf = pack_hex_byte (buf, aexpr->buf[i]);
10207 *buf = '\0';
10208 }
10209 }
10210
10211 /* Insert a breakpoint. On targets that have software breakpoint
10212 support, we ask the remote target to do the work; on targets
10213 which don't, we insert a traditional memory breakpoint. */
10214
10215 int
10216 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10217 struct bp_target_info *bp_tgt)
10218 {
10219 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10220 If it succeeds, then set the support to PACKET_ENABLE. If it
10221 fails, and the user has explicitly requested the Z support then
10222 report an error, otherwise, mark it disabled and go on. */
10223
10224 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10225 {
10226 CORE_ADDR addr = bp_tgt->reqstd_address;
10227 struct remote_state *rs;
10228 char *p, *endbuf;
10229
10230 /* Make sure the remote is pointing at the right process, if
10231 necessary. */
10232 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10233 set_general_process ();
10234
10235 rs = get_remote_state ();
10236 p = rs->buf.data ();
10237 endbuf = p + get_remote_packet_size ();
10238
10239 *(p++) = 'Z';
10240 *(p++) = '0';
10241 *(p++) = ',';
10242 addr = (ULONGEST) remote_address_masked (addr);
10243 p += hexnumstr (p, addr);
10244 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10245
10246 if (supports_evaluation_of_breakpoint_conditions ())
10247 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10248
10249 if (can_run_breakpoint_commands ())
10250 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10251
10252 putpkt (rs->buf);
10253 getpkt (&rs->buf, 0);
10254
10255 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10256 {
10257 case PACKET_ERROR:
10258 return -1;
10259 case PACKET_OK:
10260 return 0;
10261 case PACKET_UNKNOWN:
10262 break;
10263 }
10264 }
10265
10266 /* If this breakpoint has target-side commands but this stub doesn't
10267 support Z0 packets, throw error. */
10268 if (!bp_tgt->tcommands.empty ())
10269 throw_error (NOT_SUPPORTED_ERROR, _("\
10270 Target doesn't support breakpoints that have target side commands."));
10271
10272 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10273 }
10274
10275 int
10276 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10277 struct bp_target_info *bp_tgt,
10278 enum remove_bp_reason reason)
10279 {
10280 CORE_ADDR addr = bp_tgt->placed_address;
10281 struct remote_state *rs = get_remote_state ();
10282
10283 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10284 {
10285 char *p = rs->buf.data ();
10286 char *endbuf = p + get_remote_packet_size ();
10287
10288 /* Make sure the remote is pointing at the right process, if
10289 necessary. */
10290 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10291 set_general_process ();
10292
10293 *(p++) = 'z';
10294 *(p++) = '0';
10295 *(p++) = ',';
10296
10297 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10298 p += hexnumstr (p, addr);
10299 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10300
10301 putpkt (rs->buf);
10302 getpkt (&rs->buf, 0);
10303
10304 return (rs->buf[0] == 'E');
10305 }
10306
10307 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10308 }
10309
10310 static enum Z_packet_type
10311 watchpoint_to_Z_packet (int type)
10312 {
10313 switch (type)
10314 {
10315 case hw_write:
10316 return Z_PACKET_WRITE_WP;
10317 break;
10318 case hw_read:
10319 return Z_PACKET_READ_WP;
10320 break;
10321 case hw_access:
10322 return Z_PACKET_ACCESS_WP;
10323 break;
10324 default:
10325 internal_error (__FILE__, __LINE__,
10326 _("hw_bp_to_z: bad watchpoint type %d"), type);
10327 }
10328 }
10329
10330 int
10331 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10332 enum target_hw_bp_type type, struct expression *cond)
10333 {
10334 struct remote_state *rs = get_remote_state ();
10335 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10336 char *p;
10337 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10338
10339 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10340 return 1;
10341
10342 /* Make sure the remote is pointing at the right process, if
10343 necessary. */
10344 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10345 set_general_process ();
10346
10347 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10348 p = strchr (rs->buf.data (), '\0');
10349 addr = remote_address_masked (addr);
10350 p += hexnumstr (p, (ULONGEST) addr);
10351 xsnprintf (p, endbuf - p, ",%x", len);
10352
10353 putpkt (rs->buf);
10354 getpkt (&rs->buf, 0);
10355
10356 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10357 {
10358 case PACKET_ERROR:
10359 return -1;
10360 case PACKET_UNKNOWN:
10361 return 1;
10362 case PACKET_OK:
10363 return 0;
10364 }
10365 internal_error (__FILE__, __LINE__,
10366 _("remote_insert_watchpoint: reached end of function"));
10367 }
10368
10369 bool
10370 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10371 CORE_ADDR start, int length)
10372 {
10373 CORE_ADDR diff = remote_address_masked (addr - start);
10374
10375 return diff < length;
10376 }
10377
10378
10379 int
10380 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10381 enum target_hw_bp_type type, struct expression *cond)
10382 {
10383 struct remote_state *rs = get_remote_state ();
10384 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10385 char *p;
10386 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10387
10388 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10389 return -1;
10390
10391 /* Make sure the remote is pointing at the right process, if
10392 necessary. */
10393 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10394 set_general_process ();
10395
10396 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10397 p = strchr (rs->buf.data (), '\0');
10398 addr = remote_address_masked (addr);
10399 p += hexnumstr (p, (ULONGEST) addr);
10400 xsnprintf (p, endbuf - p, ",%x", len);
10401 putpkt (rs->buf);
10402 getpkt (&rs->buf, 0);
10403
10404 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10405 {
10406 case PACKET_ERROR:
10407 case PACKET_UNKNOWN:
10408 return -1;
10409 case PACKET_OK:
10410 return 0;
10411 }
10412 internal_error (__FILE__, __LINE__,
10413 _("remote_remove_watchpoint: reached end of function"));
10414 }
10415
10416
10417 static int remote_hw_watchpoint_limit = -1;
10418 static int remote_hw_watchpoint_length_limit = -1;
10419 static int remote_hw_breakpoint_limit = -1;
10420
10421 int
10422 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10423 {
10424 if (remote_hw_watchpoint_length_limit == 0)
10425 return 0;
10426 else if (remote_hw_watchpoint_length_limit < 0)
10427 return 1;
10428 else if (len <= remote_hw_watchpoint_length_limit)
10429 return 1;
10430 else
10431 return 0;
10432 }
10433
10434 int
10435 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10436 {
10437 if (type == bp_hardware_breakpoint)
10438 {
10439 if (remote_hw_breakpoint_limit == 0)
10440 return 0;
10441 else if (remote_hw_breakpoint_limit < 0)
10442 return 1;
10443 else if (cnt <= remote_hw_breakpoint_limit)
10444 return 1;
10445 }
10446 else
10447 {
10448 if (remote_hw_watchpoint_limit == 0)
10449 return 0;
10450 else if (remote_hw_watchpoint_limit < 0)
10451 return 1;
10452 else if (ot)
10453 return -1;
10454 else if (cnt <= remote_hw_watchpoint_limit)
10455 return 1;
10456 }
10457 return -1;
10458 }
10459
10460 /* The to_stopped_by_sw_breakpoint method of target remote. */
10461
10462 bool
10463 remote_target::stopped_by_sw_breakpoint ()
10464 {
10465 struct thread_info *thread = inferior_thread ();
10466
10467 return (thread->priv != NULL
10468 && (get_remote_thread_info (thread)->stop_reason
10469 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10470 }
10471
10472 /* The to_supports_stopped_by_sw_breakpoint method of target
10473 remote. */
10474
10475 bool
10476 remote_target::supports_stopped_by_sw_breakpoint ()
10477 {
10478 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10479 }
10480
10481 /* The to_stopped_by_hw_breakpoint method of target remote. */
10482
10483 bool
10484 remote_target::stopped_by_hw_breakpoint ()
10485 {
10486 struct thread_info *thread = inferior_thread ();
10487
10488 return (thread->priv != NULL
10489 && (get_remote_thread_info (thread)->stop_reason
10490 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10491 }
10492
10493 /* The to_supports_stopped_by_hw_breakpoint method of target
10494 remote. */
10495
10496 bool
10497 remote_target::supports_stopped_by_hw_breakpoint ()
10498 {
10499 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10500 }
10501
10502 bool
10503 remote_target::stopped_by_watchpoint ()
10504 {
10505 struct thread_info *thread = inferior_thread ();
10506
10507 return (thread->priv != NULL
10508 && (get_remote_thread_info (thread)->stop_reason
10509 == TARGET_STOPPED_BY_WATCHPOINT));
10510 }
10511
10512 bool
10513 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10514 {
10515 struct thread_info *thread = inferior_thread ();
10516
10517 if (thread->priv != NULL
10518 && (get_remote_thread_info (thread)->stop_reason
10519 == TARGET_STOPPED_BY_WATCHPOINT))
10520 {
10521 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10522 return true;
10523 }
10524
10525 return false;
10526 }
10527
10528
10529 int
10530 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10531 struct bp_target_info *bp_tgt)
10532 {
10533 CORE_ADDR addr = bp_tgt->reqstd_address;
10534 struct remote_state *rs;
10535 char *p, *endbuf;
10536 char *message;
10537
10538 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10539 return -1;
10540
10541 /* Make sure the remote is pointing at the right process, if
10542 necessary. */
10543 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10544 set_general_process ();
10545
10546 rs = get_remote_state ();
10547 p = rs->buf.data ();
10548 endbuf = p + get_remote_packet_size ();
10549
10550 *(p++) = 'Z';
10551 *(p++) = '1';
10552 *(p++) = ',';
10553
10554 addr = remote_address_masked (addr);
10555 p += hexnumstr (p, (ULONGEST) addr);
10556 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10557
10558 if (supports_evaluation_of_breakpoint_conditions ())
10559 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10560
10561 if (can_run_breakpoint_commands ())
10562 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10563
10564 putpkt (rs->buf);
10565 getpkt (&rs->buf, 0);
10566
10567 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10568 {
10569 case PACKET_ERROR:
10570 if (rs->buf[1] == '.')
10571 {
10572 message = strchr (&rs->buf[2], '.');
10573 if (message)
10574 error (_("Remote failure reply: %s"), message + 1);
10575 }
10576 return -1;
10577 case PACKET_UNKNOWN:
10578 return -1;
10579 case PACKET_OK:
10580 return 0;
10581 }
10582 internal_error (__FILE__, __LINE__,
10583 _("remote_insert_hw_breakpoint: reached end of function"));
10584 }
10585
10586
10587 int
10588 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10589 struct bp_target_info *bp_tgt)
10590 {
10591 CORE_ADDR addr;
10592 struct remote_state *rs = get_remote_state ();
10593 char *p = rs->buf.data ();
10594 char *endbuf = p + get_remote_packet_size ();
10595
10596 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10597 return -1;
10598
10599 /* Make sure the remote is pointing at the right process, if
10600 necessary. */
10601 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10602 set_general_process ();
10603
10604 *(p++) = 'z';
10605 *(p++) = '1';
10606 *(p++) = ',';
10607
10608 addr = remote_address_masked (bp_tgt->placed_address);
10609 p += hexnumstr (p, (ULONGEST) addr);
10610 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10611
10612 putpkt (rs->buf);
10613 getpkt (&rs->buf, 0);
10614
10615 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10616 {
10617 case PACKET_ERROR:
10618 case PACKET_UNKNOWN:
10619 return -1;
10620 case PACKET_OK:
10621 return 0;
10622 }
10623 internal_error (__FILE__, __LINE__,
10624 _("remote_remove_hw_breakpoint: reached end of function"));
10625 }
10626
10627 /* Verify memory using the "qCRC:" request. */
10628
10629 int
10630 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10631 {
10632 struct remote_state *rs = get_remote_state ();
10633 unsigned long host_crc, target_crc;
10634 char *tmp;
10635
10636 /* It doesn't make sense to use qCRC if the remote target is
10637 connected but not running. */
10638 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10639 {
10640 enum packet_result result;
10641
10642 /* Make sure the remote is pointing at the right process. */
10643 set_general_process ();
10644
10645 /* FIXME: assumes lma can fit into long. */
10646 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10647 (long) lma, (long) size);
10648 putpkt (rs->buf);
10649
10650 /* Be clever; compute the host_crc before waiting for target
10651 reply. */
10652 host_crc = xcrc32 (data, size, 0xffffffff);
10653
10654 getpkt (&rs->buf, 0);
10655
10656 result = packet_ok (rs->buf,
10657 &remote_protocol_packets[PACKET_qCRC]);
10658 if (result == PACKET_ERROR)
10659 return -1;
10660 else if (result == PACKET_OK)
10661 {
10662 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10663 target_crc = target_crc * 16 + fromhex (*tmp);
10664
10665 return (host_crc == target_crc);
10666 }
10667 }
10668
10669 return simple_verify_memory (this, data, lma, size);
10670 }
10671
10672 /* compare-sections command
10673
10674 With no arguments, compares each loadable section in the exec bfd
10675 with the same memory range on the target, and reports mismatches.
10676 Useful for verifying the image on the target against the exec file. */
10677
10678 static void
10679 compare_sections_command (const char *args, int from_tty)
10680 {
10681 asection *s;
10682 const char *sectname;
10683 bfd_size_type size;
10684 bfd_vma lma;
10685 int matched = 0;
10686 int mismatched = 0;
10687 int res;
10688 int read_only = 0;
10689
10690 if (!exec_bfd)
10691 error (_("command cannot be used without an exec file"));
10692
10693 if (args != NULL && strcmp (args, "-r") == 0)
10694 {
10695 read_only = 1;
10696 args = NULL;
10697 }
10698
10699 for (s = exec_bfd->sections; s; s = s->next)
10700 {
10701 if (!(s->flags & SEC_LOAD))
10702 continue; /* Skip non-loadable section. */
10703
10704 if (read_only && (s->flags & SEC_READONLY) == 0)
10705 continue; /* Skip writeable sections */
10706
10707 size = bfd_section_size (s);
10708 if (size == 0)
10709 continue; /* Skip zero-length section. */
10710
10711 sectname = bfd_section_name (s);
10712 if (args && strcmp (args, sectname) != 0)
10713 continue; /* Not the section selected by user. */
10714
10715 matched = 1; /* Do this section. */
10716 lma = s->lma;
10717
10718 gdb::byte_vector sectdata (size);
10719 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10720
10721 res = target_verify_memory (sectdata.data (), lma, size);
10722
10723 if (res == -1)
10724 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10725 paddress (target_gdbarch (), lma),
10726 paddress (target_gdbarch (), lma + size));
10727
10728 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10729 paddress (target_gdbarch (), lma),
10730 paddress (target_gdbarch (), lma + size));
10731 if (res)
10732 printf_filtered ("matched.\n");
10733 else
10734 {
10735 printf_filtered ("MIS-MATCHED!\n");
10736 mismatched++;
10737 }
10738 }
10739 if (mismatched > 0)
10740 warning (_("One or more sections of the target image does not match\n\
10741 the loaded file\n"));
10742 if (args && !matched)
10743 printf_filtered (_("No loaded section named '%s'.\n"), args);
10744 }
10745
10746 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10747 into remote target. The number of bytes written to the remote
10748 target is returned, or -1 for error. */
10749
10750 target_xfer_status
10751 remote_target::remote_write_qxfer (const char *object_name,
10752 const char *annex, const gdb_byte *writebuf,
10753 ULONGEST offset, LONGEST len,
10754 ULONGEST *xfered_len,
10755 struct packet_config *packet)
10756 {
10757 int i, buf_len;
10758 ULONGEST n;
10759 struct remote_state *rs = get_remote_state ();
10760 int max_size = get_memory_write_packet_size ();
10761
10762 if (packet_config_support (packet) == PACKET_DISABLE)
10763 return TARGET_XFER_E_IO;
10764
10765 /* Insert header. */
10766 i = snprintf (rs->buf.data (), max_size,
10767 "qXfer:%s:write:%s:%s:",
10768 object_name, annex ? annex : "",
10769 phex_nz (offset, sizeof offset));
10770 max_size -= (i + 1);
10771
10772 /* Escape as much data as fits into rs->buf. */
10773 buf_len = remote_escape_output
10774 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10775
10776 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10777 || getpkt_sane (&rs->buf, 0) < 0
10778 || packet_ok (rs->buf, packet) != PACKET_OK)
10779 return TARGET_XFER_E_IO;
10780
10781 unpack_varlen_hex (rs->buf.data (), &n);
10782
10783 *xfered_len = n;
10784 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10785 }
10786
10787 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10788 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10789 number of bytes read is returned, or 0 for EOF, or -1 for error.
10790 The number of bytes read may be less than LEN without indicating an
10791 EOF. PACKET is checked and updated to indicate whether the remote
10792 target supports this object. */
10793
10794 target_xfer_status
10795 remote_target::remote_read_qxfer (const char *object_name,
10796 const char *annex,
10797 gdb_byte *readbuf, ULONGEST offset,
10798 LONGEST len,
10799 ULONGEST *xfered_len,
10800 struct packet_config *packet)
10801 {
10802 struct remote_state *rs = get_remote_state ();
10803 LONGEST i, n, packet_len;
10804
10805 if (packet_config_support (packet) == PACKET_DISABLE)
10806 return TARGET_XFER_E_IO;
10807
10808 /* Check whether we've cached an end-of-object packet that matches
10809 this request. */
10810 if (rs->finished_object)
10811 {
10812 if (strcmp (object_name, rs->finished_object) == 0
10813 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10814 && offset == rs->finished_offset)
10815 return TARGET_XFER_EOF;
10816
10817
10818 /* Otherwise, we're now reading something different. Discard
10819 the cache. */
10820 xfree (rs->finished_object);
10821 xfree (rs->finished_annex);
10822 rs->finished_object = NULL;
10823 rs->finished_annex = NULL;
10824 }
10825
10826 /* Request only enough to fit in a single packet. The actual data
10827 may not, since we don't know how much of it will need to be escaped;
10828 the target is free to respond with slightly less data. We subtract
10829 five to account for the response type and the protocol frame. */
10830 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10831 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10832 "qXfer:%s:read:%s:%s,%s",
10833 object_name, annex ? annex : "",
10834 phex_nz (offset, sizeof offset),
10835 phex_nz (n, sizeof n));
10836 i = putpkt (rs->buf);
10837 if (i < 0)
10838 return TARGET_XFER_E_IO;
10839
10840 rs->buf[0] = '\0';
10841 packet_len = getpkt_sane (&rs->buf, 0);
10842 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10843 return TARGET_XFER_E_IO;
10844
10845 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10846 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10847
10848 /* 'm' means there is (or at least might be) more data after this
10849 batch. That does not make sense unless there's at least one byte
10850 of data in this reply. */
10851 if (rs->buf[0] == 'm' && packet_len == 1)
10852 error (_("Remote qXfer reply contained no data."));
10853
10854 /* Got some data. */
10855 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10856 packet_len - 1, readbuf, n);
10857
10858 /* 'l' is an EOF marker, possibly including a final block of data,
10859 or possibly empty. If we have the final block of a non-empty
10860 object, record this fact to bypass a subsequent partial read. */
10861 if (rs->buf[0] == 'l' && offset + i > 0)
10862 {
10863 rs->finished_object = xstrdup (object_name);
10864 rs->finished_annex = xstrdup (annex ? annex : "");
10865 rs->finished_offset = offset + i;
10866 }
10867
10868 if (i == 0)
10869 return TARGET_XFER_EOF;
10870 else
10871 {
10872 *xfered_len = i;
10873 return TARGET_XFER_OK;
10874 }
10875 }
10876
10877 enum target_xfer_status
10878 remote_target::xfer_partial (enum target_object object,
10879 const char *annex, gdb_byte *readbuf,
10880 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10881 ULONGEST *xfered_len)
10882 {
10883 struct remote_state *rs;
10884 int i;
10885 char *p2;
10886 char query_type;
10887 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10888
10889 set_remote_traceframe ();
10890 set_general_thread (inferior_ptid);
10891
10892 rs = get_remote_state ();
10893
10894 /* Handle memory using the standard memory routines. */
10895 if (object == TARGET_OBJECT_MEMORY)
10896 {
10897 /* If the remote target is connected but not running, we should
10898 pass this request down to a lower stratum (e.g. the executable
10899 file). */
10900 if (!target_has_execution)
10901 return TARGET_XFER_EOF;
10902
10903 if (writebuf != NULL)
10904 return remote_write_bytes (offset, writebuf, len, unit_size,
10905 xfered_len);
10906 else
10907 return remote_read_bytes (offset, readbuf, len, unit_size,
10908 xfered_len);
10909 }
10910
10911 /* Handle extra signal info using qxfer packets. */
10912 if (object == TARGET_OBJECT_SIGNAL_INFO)
10913 {
10914 if (readbuf)
10915 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10916 xfered_len, &remote_protocol_packets
10917 [PACKET_qXfer_siginfo_read]);
10918 else
10919 return remote_write_qxfer ("siginfo", annex,
10920 writebuf, offset, len, xfered_len,
10921 &remote_protocol_packets
10922 [PACKET_qXfer_siginfo_write]);
10923 }
10924
10925 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10926 {
10927 if (readbuf)
10928 return remote_read_qxfer ("statictrace", annex,
10929 readbuf, offset, len, xfered_len,
10930 &remote_protocol_packets
10931 [PACKET_qXfer_statictrace_read]);
10932 else
10933 return TARGET_XFER_E_IO;
10934 }
10935
10936 /* Only handle flash writes. */
10937 if (writebuf != NULL)
10938 {
10939 switch (object)
10940 {
10941 case TARGET_OBJECT_FLASH:
10942 return remote_flash_write (offset, len, xfered_len,
10943 writebuf);
10944
10945 default:
10946 return TARGET_XFER_E_IO;
10947 }
10948 }
10949
10950 /* Map pre-existing objects onto letters. DO NOT do this for new
10951 objects!!! Instead specify new query packets. */
10952 switch (object)
10953 {
10954 case TARGET_OBJECT_AVR:
10955 query_type = 'R';
10956 break;
10957
10958 case TARGET_OBJECT_AUXV:
10959 gdb_assert (annex == NULL);
10960 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10961 xfered_len,
10962 &remote_protocol_packets[PACKET_qXfer_auxv]);
10963
10964 case TARGET_OBJECT_AVAILABLE_FEATURES:
10965 return remote_read_qxfer
10966 ("features", annex, readbuf, offset, len, xfered_len,
10967 &remote_protocol_packets[PACKET_qXfer_features]);
10968
10969 case TARGET_OBJECT_LIBRARIES:
10970 return remote_read_qxfer
10971 ("libraries", annex, readbuf, offset, len, xfered_len,
10972 &remote_protocol_packets[PACKET_qXfer_libraries]);
10973
10974 case TARGET_OBJECT_LIBRARIES_SVR4:
10975 return remote_read_qxfer
10976 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10977 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10978
10979 case TARGET_OBJECT_MEMORY_MAP:
10980 gdb_assert (annex == NULL);
10981 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10982 xfered_len,
10983 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10984
10985 case TARGET_OBJECT_OSDATA:
10986 /* Should only get here if we're connected. */
10987 gdb_assert (rs->remote_desc);
10988 return remote_read_qxfer
10989 ("osdata", annex, readbuf, offset, len, xfered_len,
10990 &remote_protocol_packets[PACKET_qXfer_osdata]);
10991
10992 case TARGET_OBJECT_THREADS:
10993 gdb_assert (annex == NULL);
10994 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10995 xfered_len,
10996 &remote_protocol_packets[PACKET_qXfer_threads]);
10997
10998 case TARGET_OBJECT_TRACEFRAME_INFO:
10999 gdb_assert (annex == NULL);
11000 return remote_read_qxfer
11001 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
11002 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
11003
11004 case TARGET_OBJECT_FDPIC:
11005 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
11006 xfered_len,
11007 &remote_protocol_packets[PACKET_qXfer_fdpic]);
11008
11009 case TARGET_OBJECT_OPENVMS_UIB:
11010 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
11011 xfered_len,
11012 &remote_protocol_packets[PACKET_qXfer_uib]);
11013
11014 case TARGET_OBJECT_BTRACE:
11015 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
11016 xfered_len,
11017 &remote_protocol_packets[PACKET_qXfer_btrace]);
11018
11019 case TARGET_OBJECT_BTRACE_CONF:
11020 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
11021 len, xfered_len,
11022 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11023
11024 case TARGET_OBJECT_EXEC_FILE:
11025 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11026 len, xfered_len,
11027 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11028
11029 default:
11030 return TARGET_XFER_E_IO;
11031 }
11032
11033 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11034 large enough let the caller deal with it. */
11035 if (len < get_remote_packet_size ())
11036 return TARGET_XFER_E_IO;
11037 len = get_remote_packet_size ();
11038
11039 /* Except for querying the minimum buffer size, target must be open. */
11040 if (!rs->remote_desc)
11041 error (_("remote query is only available after target open"));
11042
11043 gdb_assert (annex != NULL);
11044 gdb_assert (readbuf != NULL);
11045
11046 p2 = rs->buf.data ();
11047 *p2++ = 'q';
11048 *p2++ = query_type;
11049
11050 /* We used one buffer char for the remote protocol q command and
11051 another for the query type. As the remote protocol encapsulation
11052 uses 4 chars plus one extra in case we are debugging
11053 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11054 string. */
11055 i = 0;
11056 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11057 {
11058 /* Bad caller may have sent forbidden characters. */
11059 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11060 *p2++ = annex[i];
11061 i++;
11062 }
11063 *p2 = '\0';
11064 gdb_assert (annex[i] == '\0');
11065
11066 i = putpkt (rs->buf);
11067 if (i < 0)
11068 return TARGET_XFER_E_IO;
11069
11070 getpkt (&rs->buf, 0);
11071 strcpy ((char *) readbuf, rs->buf.data ());
11072
11073 *xfered_len = strlen ((char *) readbuf);
11074 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11075 }
11076
11077 /* Implementation of to_get_memory_xfer_limit. */
11078
11079 ULONGEST
11080 remote_target::get_memory_xfer_limit ()
11081 {
11082 return get_memory_write_packet_size ();
11083 }
11084
11085 int
11086 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11087 const gdb_byte *pattern, ULONGEST pattern_len,
11088 CORE_ADDR *found_addrp)
11089 {
11090 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11091 struct remote_state *rs = get_remote_state ();
11092 int max_size = get_memory_write_packet_size ();
11093 struct packet_config *packet =
11094 &remote_protocol_packets[PACKET_qSearch_memory];
11095 /* Number of packet bytes used to encode the pattern;
11096 this could be more than PATTERN_LEN due to escape characters. */
11097 int escaped_pattern_len;
11098 /* Amount of pattern that was encodable in the packet. */
11099 int used_pattern_len;
11100 int i;
11101 int found;
11102 ULONGEST found_addr;
11103
11104 /* Don't go to the target if we don't have to. This is done before
11105 checking packet_config_support to avoid the possibility that a
11106 success for this edge case means the facility works in
11107 general. */
11108 if (pattern_len > search_space_len)
11109 return 0;
11110 if (pattern_len == 0)
11111 {
11112 *found_addrp = start_addr;
11113 return 1;
11114 }
11115
11116 /* If we already know the packet isn't supported, fall back to the simple
11117 way of searching memory. */
11118
11119 if (packet_config_support (packet) == PACKET_DISABLE)
11120 {
11121 /* Target doesn't provided special support, fall back and use the
11122 standard support (copy memory and do the search here). */
11123 return simple_search_memory (this, start_addr, search_space_len,
11124 pattern, pattern_len, found_addrp);
11125 }
11126
11127 /* Make sure the remote is pointing at the right process. */
11128 set_general_process ();
11129
11130 /* Insert header. */
11131 i = snprintf (rs->buf.data (), max_size,
11132 "qSearch:memory:%s;%s;",
11133 phex_nz (start_addr, addr_size),
11134 phex_nz (search_space_len, sizeof (search_space_len)));
11135 max_size -= (i + 1);
11136
11137 /* Escape as much data as fits into rs->buf. */
11138 escaped_pattern_len =
11139 remote_escape_output (pattern, pattern_len, 1,
11140 (gdb_byte *) rs->buf.data () + i,
11141 &used_pattern_len, max_size);
11142
11143 /* Bail if the pattern is too large. */
11144 if (used_pattern_len != pattern_len)
11145 error (_("Pattern is too large to transmit to remote target."));
11146
11147 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11148 || getpkt_sane (&rs->buf, 0) < 0
11149 || packet_ok (rs->buf, packet) != PACKET_OK)
11150 {
11151 /* The request may not have worked because the command is not
11152 supported. If so, fall back to the simple way. */
11153 if (packet_config_support (packet) == PACKET_DISABLE)
11154 {
11155 return simple_search_memory (this, start_addr, search_space_len,
11156 pattern, pattern_len, found_addrp);
11157 }
11158 return -1;
11159 }
11160
11161 if (rs->buf[0] == '0')
11162 found = 0;
11163 else if (rs->buf[0] == '1')
11164 {
11165 found = 1;
11166 if (rs->buf[1] != ',')
11167 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11168 unpack_varlen_hex (&rs->buf[2], &found_addr);
11169 *found_addrp = found_addr;
11170 }
11171 else
11172 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11173
11174 return found;
11175 }
11176
11177 void
11178 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11179 {
11180 struct remote_state *rs = get_remote_state ();
11181 char *p = rs->buf.data ();
11182
11183 if (!rs->remote_desc)
11184 error (_("remote rcmd is only available after target open"));
11185
11186 /* Send a NULL command across as an empty command. */
11187 if (command == NULL)
11188 command = "";
11189
11190 /* The query prefix. */
11191 strcpy (rs->buf.data (), "qRcmd,");
11192 p = strchr (rs->buf.data (), '\0');
11193
11194 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11195 > get_remote_packet_size ())
11196 error (_("\"monitor\" command ``%s'' is too long."), command);
11197
11198 /* Encode the actual command. */
11199 bin2hex ((const gdb_byte *) command, p, strlen (command));
11200
11201 if (putpkt (rs->buf) < 0)
11202 error (_("Communication problem with target."));
11203
11204 /* get/display the response */
11205 while (1)
11206 {
11207 char *buf;
11208
11209 /* XXX - see also remote_get_noisy_reply(). */
11210 QUIT; /* Allow user to bail out with ^C. */
11211 rs->buf[0] = '\0';
11212 if (getpkt_sane (&rs->buf, 0) == -1)
11213 {
11214 /* Timeout. Continue to (try to) read responses.
11215 This is better than stopping with an error, assuming the stub
11216 is still executing the (long) monitor command.
11217 If needed, the user can interrupt gdb using C-c, obtaining
11218 an effect similar to stop on timeout. */
11219 continue;
11220 }
11221 buf = rs->buf.data ();
11222 if (buf[0] == '\0')
11223 error (_("Target does not support this command."));
11224 if (buf[0] == 'O' && buf[1] != 'K')
11225 {
11226 remote_console_output (buf + 1); /* 'O' message from stub. */
11227 continue;
11228 }
11229 if (strcmp (buf, "OK") == 0)
11230 break;
11231 if (strlen (buf) == 3 && buf[0] == 'E'
11232 && isdigit (buf[1]) && isdigit (buf[2]))
11233 {
11234 error (_("Protocol error with Rcmd"));
11235 }
11236 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11237 {
11238 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11239
11240 fputc_unfiltered (c, outbuf);
11241 }
11242 break;
11243 }
11244 }
11245
11246 std::vector<mem_region>
11247 remote_target::memory_map ()
11248 {
11249 std::vector<mem_region> result;
11250 gdb::optional<gdb::char_vector> text
11251 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11252
11253 if (text)
11254 result = parse_memory_map (text->data ());
11255
11256 return result;
11257 }
11258
11259 static void
11260 packet_command (const char *args, int from_tty)
11261 {
11262 remote_target *remote = get_current_remote_target ();
11263
11264 if (remote == nullptr)
11265 error (_("command can only be used with remote target"));
11266
11267 remote->packet_command (args, from_tty);
11268 }
11269
11270 void
11271 remote_target::packet_command (const char *args, int from_tty)
11272 {
11273 if (!args)
11274 error (_("remote-packet command requires packet text as argument"));
11275
11276 puts_filtered ("sending: ");
11277 print_packet (args);
11278 puts_filtered ("\n");
11279 putpkt (args);
11280
11281 remote_state *rs = get_remote_state ();
11282
11283 getpkt (&rs->buf, 0);
11284 puts_filtered ("received: ");
11285 print_packet (rs->buf.data ());
11286 puts_filtered ("\n");
11287 }
11288
11289 #if 0
11290 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11291
11292 static void display_thread_info (struct gdb_ext_thread_info *info);
11293
11294 static void threadset_test_cmd (char *cmd, int tty);
11295
11296 static void threadalive_test (char *cmd, int tty);
11297
11298 static void threadlist_test_cmd (char *cmd, int tty);
11299
11300 int get_and_display_threadinfo (threadref *ref);
11301
11302 static void threadinfo_test_cmd (char *cmd, int tty);
11303
11304 static int thread_display_step (threadref *ref, void *context);
11305
11306 static void threadlist_update_test_cmd (char *cmd, int tty);
11307
11308 static void init_remote_threadtests (void);
11309
11310 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11311
11312 static void
11313 threadset_test_cmd (const char *cmd, int tty)
11314 {
11315 int sample_thread = SAMPLE_THREAD;
11316
11317 printf_filtered (_("Remote threadset test\n"));
11318 set_general_thread (sample_thread);
11319 }
11320
11321
11322 static void
11323 threadalive_test (const char *cmd, int tty)
11324 {
11325 int sample_thread = SAMPLE_THREAD;
11326 int pid = inferior_ptid.pid ();
11327 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11328
11329 if (remote_thread_alive (ptid))
11330 printf_filtered ("PASS: Thread alive test\n");
11331 else
11332 printf_filtered ("FAIL: Thread alive test\n");
11333 }
11334
11335 void output_threadid (char *title, threadref *ref);
11336
11337 void
11338 output_threadid (char *title, threadref *ref)
11339 {
11340 char hexid[20];
11341
11342 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11343 hexid[16] = 0;
11344 printf_filtered ("%s %s\n", title, (&hexid[0]));
11345 }
11346
11347 static void
11348 threadlist_test_cmd (const char *cmd, int tty)
11349 {
11350 int startflag = 1;
11351 threadref nextthread;
11352 int done, result_count;
11353 threadref threadlist[3];
11354
11355 printf_filtered ("Remote Threadlist test\n");
11356 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11357 &result_count, &threadlist[0]))
11358 printf_filtered ("FAIL: threadlist test\n");
11359 else
11360 {
11361 threadref *scan = threadlist;
11362 threadref *limit = scan + result_count;
11363
11364 while (scan < limit)
11365 output_threadid (" thread ", scan++);
11366 }
11367 }
11368
11369 void
11370 display_thread_info (struct gdb_ext_thread_info *info)
11371 {
11372 output_threadid ("Threadid: ", &info->threadid);
11373 printf_filtered ("Name: %s\n ", info->shortname);
11374 printf_filtered ("State: %s\n", info->display);
11375 printf_filtered ("other: %s\n\n", info->more_display);
11376 }
11377
11378 int
11379 get_and_display_threadinfo (threadref *ref)
11380 {
11381 int result;
11382 int set;
11383 struct gdb_ext_thread_info threadinfo;
11384
11385 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11386 | TAG_MOREDISPLAY | TAG_DISPLAY;
11387 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11388 display_thread_info (&threadinfo);
11389 return result;
11390 }
11391
11392 static void
11393 threadinfo_test_cmd (const char *cmd, int tty)
11394 {
11395 int athread = SAMPLE_THREAD;
11396 threadref thread;
11397 int set;
11398
11399 int_to_threadref (&thread, athread);
11400 printf_filtered ("Remote Threadinfo test\n");
11401 if (!get_and_display_threadinfo (&thread))
11402 printf_filtered ("FAIL cannot get thread info\n");
11403 }
11404
11405 static int
11406 thread_display_step (threadref *ref, void *context)
11407 {
11408 /* output_threadid(" threadstep ",ref); *//* simple test */
11409 return get_and_display_threadinfo (ref);
11410 }
11411
11412 static void
11413 threadlist_update_test_cmd (const char *cmd, int tty)
11414 {
11415 printf_filtered ("Remote Threadlist update test\n");
11416 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11417 }
11418
11419 static void
11420 init_remote_threadtests (void)
11421 {
11422 add_com ("tlist", class_obscure, threadlist_test_cmd,
11423 _("Fetch and print the remote list of "
11424 "thread identifiers, one pkt only."));
11425 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11426 _("Fetch and display info about one thread."));
11427 add_com ("tset", class_obscure, threadset_test_cmd,
11428 _("Test setting to a different thread."));
11429 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11430 _("Iterate through updating all remote thread info."));
11431 add_com ("talive", class_obscure, threadalive_test,
11432 _("Remote thread alive test."));
11433 }
11434
11435 #endif /* 0 */
11436
11437 /* Convert a thread ID to a string. */
11438
11439 std::string
11440 remote_target::pid_to_str (ptid_t ptid)
11441 {
11442 struct remote_state *rs = get_remote_state ();
11443
11444 if (ptid == null_ptid)
11445 return normal_pid_to_str (ptid);
11446 else if (ptid.is_pid ())
11447 {
11448 /* Printing an inferior target id. */
11449
11450 /* When multi-process extensions are off, there's no way in the
11451 remote protocol to know the remote process id, if there's any
11452 at all. There's one exception --- when we're connected with
11453 target extended-remote, and we manually attached to a process
11454 with "attach PID". We don't record anywhere a flag that
11455 allows us to distinguish that case from the case of
11456 connecting with extended-remote and the stub already being
11457 attached to a process, and reporting yes to qAttached, hence
11458 no smart special casing here. */
11459 if (!remote_multi_process_p (rs))
11460 return "Remote target";
11461
11462 return normal_pid_to_str (ptid);
11463 }
11464 else
11465 {
11466 if (magic_null_ptid == ptid)
11467 return "Thread <main>";
11468 else if (remote_multi_process_p (rs))
11469 if (ptid.lwp () == 0)
11470 return normal_pid_to_str (ptid);
11471 else
11472 return string_printf ("Thread %d.%ld",
11473 ptid.pid (), ptid.lwp ());
11474 else
11475 return string_printf ("Thread %ld", ptid.lwp ());
11476 }
11477 }
11478
11479 /* Get the address of the thread local variable in OBJFILE which is
11480 stored at OFFSET within the thread local storage for thread PTID. */
11481
11482 CORE_ADDR
11483 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11484 CORE_ADDR offset)
11485 {
11486 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11487 {
11488 struct remote_state *rs = get_remote_state ();
11489 char *p = rs->buf.data ();
11490 char *endp = p + get_remote_packet_size ();
11491 enum packet_result result;
11492
11493 strcpy (p, "qGetTLSAddr:");
11494 p += strlen (p);
11495 p = write_ptid (p, endp, ptid);
11496 *p++ = ',';
11497 p += hexnumstr (p, offset);
11498 *p++ = ',';
11499 p += hexnumstr (p, lm);
11500 *p++ = '\0';
11501
11502 putpkt (rs->buf);
11503 getpkt (&rs->buf, 0);
11504 result = packet_ok (rs->buf,
11505 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11506 if (result == PACKET_OK)
11507 {
11508 ULONGEST addr;
11509
11510 unpack_varlen_hex (rs->buf.data (), &addr);
11511 return addr;
11512 }
11513 else if (result == PACKET_UNKNOWN)
11514 throw_error (TLS_GENERIC_ERROR,
11515 _("Remote target doesn't support qGetTLSAddr packet"));
11516 else
11517 throw_error (TLS_GENERIC_ERROR,
11518 _("Remote target failed to process qGetTLSAddr request"));
11519 }
11520 else
11521 throw_error (TLS_GENERIC_ERROR,
11522 _("TLS not supported or disabled on this target"));
11523 /* Not reached. */
11524 return 0;
11525 }
11526
11527 /* Provide thread local base, i.e. Thread Information Block address.
11528 Returns 1 if ptid is found and thread_local_base is non zero. */
11529
11530 bool
11531 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11532 {
11533 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11534 {
11535 struct remote_state *rs = get_remote_state ();
11536 char *p = rs->buf.data ();
11537 char *endp = p + get_remote_packet_size ();
11538 enum packet_result result;
11539
11540 strcpy (p, "qGetTIBAddr:");
11541 p += strlen (p);
11542 p = write_ptid (p, endp, ptid);
11543 *p++ = '\0';
11544
11545 putpkt (rs->buf);
11546 getpkt (&rs->buf, 0);
11547 result = packet_ok (rs->buf,
11548 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11549 if (result == PACKET_OK)
11550 {
11551 ULONGEST val;
11552 unpack_varlen_hex (rs->buf.data (), &val);
11553 if (addr)
11554 *addr = (CORE_ADDR) val;
11555 return true;
11556 }
11557 else if (result == PACKET_UNKNOWN)
11558 error (_("Remote target doesn't support qGetTIBAddr packet"));
11559 else
11560 error (_("Remote target failed to process qGetTIBAddr request"));
11561 }
11562 else
11563 error (_("qGetTIBAddr not supported or disabled on this target"));
11564 /* Not reached. */
11565 return false;
11566 }
11567
11568 /* Support for inferring a target description based on the current
11569 architecture and the size of a 'g' packet. While the 'g' packet
11570 can have any size (since optional registers can be left off the
11571 end), some sizes are easily recognizable given knowledge of the
11572 approximate architecture. */
11573
11574 struct remote_g_packet_guess
11575 {
11576 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11577 : bytes (bytes_),
11578 tdesc (tdesc_)
11579 {
11580 }
11581
11582 int bytes;
11583 const struct target_desc *tdesc;
11584 };
11585
11586 struct remote_g_packet_data : public allocate_on_obstack
11587 {
11588 std::vector<remote_g_packet_guess> guesses;
11589 };
11590
11591 static struct gdbarch_data *remote_g_packet_data_handle;
11592
11593 static void *
11594 remote_g_packet_data_init (struct obstack *obstack)
11595 {
11596 return new (obstack) remote_g_packet_data;
11597 }
11598
11599 void
11600 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11601 const struct target_desc *tdesc)
11602 {
11603 struct remote_g_packet_data *data
11604 = ((struct remote_g_packet_data *)
11605 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11606
11607 gdb_assert (tdesc != NULL);
11608
11609 for (const remote_g_packet_guess &guess : data->guesses)
11610 if (guess.bytes == bytes)
11611 internal_error (__FILE__, __LINE__,
11612 _("Duplicate g packet description added for size %d"),
11613 bytes);
11614
11615 data->guesses.emplace_back (bytes, tdesc);
11616 }
11617
11618 /* Return true if remote_read_description would do anything on this target
11619 and architecture, false otherwise. */
11620
11621 static bool
11622 remote_read_description_p (struct target_ops *target)
11623 {
11624 struct remote_g_packet_data *data
11625 = ((struct remote_g_packet_data *)
11626 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11627
11628 return !data->guesses.empty ();
11629 }
11630
11631 const struct target_desc *
11632 remote_target::read_description ()
11633 {
11634 struct remote_g_packet_data *data
11635 = ((struct remote_g_packet_data *)
11636 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11637
11638 /* Do not try this during initial connection, when we do not know
11639 whether there is a running but stopped thread. */
11640 if (!target_has_execution || inferior_ptid == null_ptid)
11641 return beneath ()->read_description ();
11642
11643 if (!data->guesses.empty ())
11644 {
11645 int bytes = send_g_packet ();
11646
11647 for (const remote_g_packet_guess &guess : data->guesses)
11648 if (guess.bytes == bytes)
11649 return guess.tdesc;
11650
11651 /* We discard the g packet. A minor optimization would be to
11652 hold on to it, and fill the register cache once we have selected
11653 an architecture, but it's too tricky to do safely. */
11654 }
11655
11656 return beneath ()->read_description ();
11657 }
11658
11659 /* Remote file transfer support. This is host-initiated I/O, not
11660 target-initiated; for target-initiated, see remote-fileio.c. */
11661
11662 /* If *LEFT is at least the length of STRING, copy STRING to
11663 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11664 decrease *LEFT. Otherwise raise an error. */
11665
11666 static void
11667 remote_buffer_add_string (char **buffer, int *left, const char *string)
11668 {
11669 int len = strlen (string);
11670
11671 if (len > *left)
11672 error (_("Packet too long for target."));
11673
11674 memcpy (*buffer, string, len);
11675 *buffer += len;
11676 *left -= len;
11677
11678 /* NUL-terminate the buffer as a convenience, if there is
11679 room. */
11680 if (*left)
11681 **buffer = '\0';
11682 }
11683
11684 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11685 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11686 decrease *LEFT. Otherwise raise an error. */
11687
11688 static void
11689 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11690 int len)
11691 {
11692 if (2 * len > *left)
11693 error (_("Packet too long for target."));
11694
11695 bin2hex (bytes, *buffer, len);
11696 *buffer += 2 * len;
11697 *left -= 2 * len;
11698
11699 /* NUL-terminate the buffer as a convenience, if there is
11700 room. */
11701 if (*left)
11702 **buffer = '\0';
11703 }
11704
11705 /* If *LEFT is large enough, convert VALUE to hex and add it to
11706 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11707 decrease *LEFT. Otherwise raise an error. */
11708
11709 static void
11710 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11711 {
11712 int len = hexnumlen (value);
11713
11714 if (len > *left)
11715 error (_("Packet too long for target."));
11716
11717 hexnumstr (*buffer, value);
11718 *buffer += len;
11719 *left -= len;
11720
11721 /* NUL-terminate the buffer as a convenience, if there is
11722 room. */
11723 if (*left)
11724 **buffer = '\0';
11725 }
11726
11727 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11728 value, *REMOTE_ERRNO to the remote error number or zero if none
11729 was included, and *ATTACHMENT to point to the start of the annex
11730 if any. The length of the packet isn't needed here; there may
11731 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11732
11733 Return 0 if the packet could be parsed, -1 if it could not. If
11734 -1 is returned, the other variables may not be initialized. */
11735
11736 static int
11737 remote_hostio_parse_result (char *buffer, int *retcode,
11738 int *remote_errno, char **attachment)
11739 {
11740 char *p, *p2;
11741
11742 *remote_errno = 0;
11743 *attachment = NULL;
11744
11745 if (buffer[0] != 'F')
11746 return -1;
11747
11748 errno = 0;
11749 *retcode = strtol (&buffer[1], &p, 16);
11750 if (errno != 0 || p == &buffer[1])
11751 return -1;
11752
11753 /* Check for ",errno". */
11754 if (*p == ',')
11755 {
11756 errno = 0;
11757 *remote_errno = strtol (p + 1, &p2, 16);
11758 if (errno != 0 || p + 1 == p2)
11759 return -1;
11760 p = p2;
11761 }
11762
11763 /* Check for ";attachment". If there is no attachment, the
11764 packet should end here. */
11765 if (*p == ';')
11766 {
11767 *attachment = p + 1;
11768 return 0;
11769 }
11770 else if (*p == '\0')
11771 return 0;
11772 else
11773 return -1;
11774 }
11775
11776 /* Send a prepared I/O packet to the target and read its response.
11777 The prepared packet is in the global RS->BUF before this function
11778 is called, and the answer is there when we return.
11779
11780 COMMAND_BYTES is the length of the request to send, which may include
11781 binary data. WHICH_PACKET is the packet configuration to check
11782 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11783 is set to the error number and -1 is returned. Otherwise the value
11784 returned by the function is returned.
11785
11786 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11787 attachment is expected; an error will be reported if there's a
11788 mismatch. If one is found, *ATTACHMENT will be set to point into
11789 the packet buffer and *ATTACHMENT_LEN will be set to the
11790 attachment's length. */
11791
11792 int
11793 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11794 int *remote_errno, char **attachment,
11795 int *attachment_len)
11796 {
11797 struct remote_state *rs = get_remote_state ();
11798 int ret, bytes_read;
11799 char *attachment_tmp;
11800
11801 if (packet_support (which_packet) == PACKET_DISABLE)
11802 {
11803 *remote_errno = FILEIO_ENOSYS;
11804 return -1;
11805 }
11806
11807 putpkt_binary (rs->buf.data (), command_bytes);
11808 bytes_read = getpkt_sane (&rs->buf, 0);
11809
11810 /* If it timed out, something is wrong. Don't try to parse the
11811 buffer. */
11812 if (bytes_read < 0)
11813 {
11814 *remote_errno = FILEIO_EINVAL;
11815 return -1;
11816 }
11817
11818 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11819 {
11820 case PACKET_ERROR:
11821 *remote_errno = FILEIO_EINVAL;
11822 return -1;
11823 case PACKET_UNKNOWN:
11824 *remote_errno = FILEIO_ENOSYS;
11825 return -1;
11826 case PACKET_OK:
11827 break;
11828 }
11829
11830 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11831 &attachment_tmp))
11832 {
11833 *remote_errno = FILEIO_EINVAL;
11834 return -1;
11835 }
11836
11837 /* Make sure we saw an attachment if and only if we expected one. */
11838 if ((attachment_tmp == NULL && attachment != NULL)
11839 || (attachment_tmp != NULL && attachment == NULL))
11840 {
11841 *remote_errno = FILEIO_EINVAL;
11842 return -1;
11843 }
11844
11845 /* If an attachment was found, it must point into the packet buffer;
11846 work out how many bytes there were. */
11847 if (attachment_tmp != NULL)
11848 {
11849 *attachment = attachment_tmp;
11850 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11851 }
11852
11853 return ret;
11854 }
11855
11856 /* See declaration.h. */
11857
11858 void
11859 readahead_cache::invalidate ()
11860 {
11861 this->fd = -1;
11862 }
11863
11864 /* See declaration.h. */
11865
11866 void
11867 readahead_cache::invalidate_fd (int fd)
11868 {
11869 if (this->fd == fd)
11870 this->fd = -1;
11871 }
11872
11873 /* Set the filesystem remote_hostio functions that take FILENAME
11874 arguments will use. Return 0 on success, or -1 if an error
11875 occurs (and set *REMOTE_ERRNO). */
11876
11877 int
11878 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11879 int *remote_errno)
11880 {
11881 struct remote_state *rs = get_remote_state ();
11882 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11883 char *p = rs->buf.data ();
11884 int left = get_remote_packet_size () - 1;
11885 char arg[9];
11886 int ret;
11887
11888 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11889 return 0;
11890
11891 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11892 return 0;
11893
11894 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11895
11896 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11897 remote_buffer_add_string (&p, &left, arg);
11898
11899 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11900 remote_errno, NULL, NULL);
11901
11902 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11903 return 0;
11904
11905 if (ret == 0)
11906 rs->fs_pid = required_pid;
11907
11908 return ret;
11909 }
11910
11911 /* Implementation of to_fileio_open. */
11912
11913 int
11914 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11915 int flags, int mode, int warn_if_slow,
11916 int *remote_errno)
11917 {
11918 struct remote_state *rs = get_remote_state ();
11919 char *p = rs->buf.data ();
11920 int left = get_remote_packet_size () - 1;
11921
11922 if (warn_if_slow)
11923 {
11924 static int warning_issued = 0;
11925
11926 printf_unfiltered (_("Reading %s from remote target...\n"),
11927 filename);
11928
11929 if (!warning_issued)
11930 {
11931 warning (_("File transfers from remote targets can be slow."
11932 " Use \"set sysroot\" to access files locally"
11933 " instead."));
11934 warning_issued = 1;
11935 }
11936 }
11937
11938 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11939 return -1;
11940
11941 remote_buffer_add_string (&p, &left, "vFile:open:");
11942
11943 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11944 strlen (filename));
11945 remote_buffer_add_string (&p, &left, ",");
11946
11947 remote_buffer_add_int (&p, &left, flags);
11948 remote_buffer_add_string (&p, &left, ",");
11949
11950 remote_buffer_add_int (&p, &left, mode);
11951
11952 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
11953 remote_errno, NULL, NULL);
11954 }
11955
11956 int
11957 remote_target::fileio_open (struct inferior *inf, const char *filename,
11958 int flags, int mode, int warn_if_slow,
11959 int *remote_errno)
11960 {
11961 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
11962 remote_errno);
11963 }
11964
11965 /* Implementation of to_fileio_pwrite. */
11966
11967 int
11968 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
11969 ULONGEST offset, int *remote_errno)
11970 {
11971 struct remote_state *rs = get_remote_state ();
11972 char *p = rs->buf.data ();
11973 int left = get_remote_packet_size ();
11974 int out_len;
11975
11976 rs->readahead_cache.invalidate_fd (fd);
11977
11978 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11979
11980 remote_buffer_add_int (&p, &left, fd);
11981 remote_buffer_add_string (&p, &left, ",");
11982
11983 remote_buffer_add_int (&p, &left, offset);
11984 remote_buffer_add_string (&p, &left, ",");
11985
11986 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11987 (get_remote_packet_size ()
11988 - (p - rs->buf.data ())));
11989
11990 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
11991 remote_errno, NULL, NULL);
11992 }
11993
11994 int
11995 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
11996 ULONGEST offset, int *remote_errno)
11997 {
11998 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
11999 }
12000
12001 /* Helper for the implementation of to_fileio_pread. Read the file
12002 from the remote side with vFile:pread. */
12003
12004 int
12005 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
12006 ULONGEST offset, int *remote_errno)
12007 {
12008 struct remote_state *rs = get_remote_state ();
12009 char *p = rs->buf.data ();
12010 char *attachment;
12011 int left = get_remote_packet_size ();
12012 int ret, attachment_len;
12013 int read_len;
12014
12015 remote_buffer_add_string (&p, &left, "vFile:pread:");
12016
12017 remote_buffer_add_int (&p, &left, fd);
12018 remote_buffer_add_string (&p, &left, ",");
12019
12020 remote_buffer_add_int (&p, &left, len);
12021 remote_buffer_add_string (&p, &left, ",");
12022
12023 remote_buffer_add_int (&p, &left, offset);
12024
12025 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12026 remote_errno, &attachment,
12027 &attachment_len);
12028
12029 if (ret < 0)
12030 return ret;
12031
12032 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12033 read_buf, len);
12034 if (read_len != ret)
12035 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12036
12037 return ret;
12038 }
12039
12040 /* See declaration.h. */
12041
12042 int
12043 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12044 ULONGEST offset)
12045 {
12046 if (this->fd == fd
12047 && this->offset <= offset
12048 && offset < this->offset + this->bufsize)
12049 {
12050 ULONGEST max = this->offset + this->bufsize;
12051
12052 if (offset + len > max)
12053 len = max - offset;
12054
12055 memcpy (read_buf, this->buf + offset - this->offset, len);
12056 return len;
12057 }
12058
12059 return 0;
12060 }
12061
12062 /* Implementation of to_fileio_pread. */
12063
12064 int
12065 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12066 ULONGEST offset, int *remote_errno)
12067 {
12068 int ret;
12069 struct remote_state *rs = get_remote_state ();
12070 readahead_cache *cache = &rs->readahead_cache;
12071
12072 ret = cache->pread (fd, read_buf, len, offset);
12073 if (ret > 0)
12074 {
12075 cache->hit_count++;
12076
12077 if (remote_debug)
12078 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12079 pulongest (cache->hit_count));
12080 return ret;
12081 }
12082
12083 cache->miss_count++;
12084 if (remote_debug)
12085 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12086 pulongest (cache->miss_count));
12087
12088 cache->fd = fd;
12089 cache->offset = offset;
12090 cache->bufsize = get_remote_packet_size ();
12091 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12092
12093 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12094 cache->offset, remote_errno);
12095 if (ret <= 0)
12096 {
12097 cache->invalidate_fd (fd);
12098 return ret;
12099 }
12100
12101 cache->bufsize = ret;
12102 return cache->pread (fd, read_buf, len, offset);
12103 }
12104
12105 int
12106 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12107 ULONGEST offset, int *remote_errno)
12108 {
12109 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12110 }
12111
12112 /* Implementation of to_fileio_close. */
12113
12114 int
12115 remote_target::remote_hostio_close (int fd, int *remote_errno)
12116 {
12117 struct remote_state *rs = get_remote_state ();
12118 char *p = rs->buf.data ();
12119 int left = get_remote_packet_size () - 1;
12120
12121 rs->readahead_cache.invalidate_fd (fd);
12122
12123 remote_buffer_add_string (&p, &left, "vFile:close:");
12124
12125 remote_buffer_add_int (&p, &left, fd);
12126
12127 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12128 remote_errno, NULL, NULL);
12129 }
12130
12131 int
12132 remote_target::fileio_close (int fd, int *remote_errno)
12133 {
12134 return remote_hostio_close (fd, remote_errno);
12135 }
12136
12137 /* Implementation of to_fileio_unlink. */
12138
12139 int
12140 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12141 int *remote_errno)
12142 {
12143 struct remote_state *rs = get_remote_state ();
12144 char *p = rs->buf.data ();
12145 int left = get_remote_packet_size () - 1;
12146
12147 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12148 return -1;
12149
12150 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12151
12152 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12153 strlen (filename));
12154
12155 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12156 remote_errno, NULL, NULL);
12157 }
12158
12159 int
12160 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12161 int *remote_errno)
12162 {
12163 return remote_hostio_unlink (inf, filename, remote_errno);
12164 }
12165
12166 /* Implementation of to_fileio_readlink. */
12167
12168 gdb::optional<std::string>
12169 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12170 int *remote_errno)
12171 {
12172 struct remote_state *rs = get_remote_state ();
12173 char *p = rs->buf.data ();
12174 char *attachment;
12175 int left = get_remote_packet_size ();
12176 int len, attachment_len;
12177 int read_len;
12178
12179 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12180 return {};
12181
12182 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12183
12184 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12185 strlen (filename));
12186
12187 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12188 remote_errno, &attachment,
12189 &attachment_len);
12190
12191 if (len < 0)
12192 return {};
12193
12194 std::string ret (len, '\0');
12195
12196 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12197 (gdb_byte *) &ret[0], len);
12198 if (read_len != len)
12199 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12200
12201 return ret;
12202 }
12203
12204 /* Implementation of to_fileio_fstat. */
12205
12206 int
12207 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12208 {
12209 struct remote_state *rs = get_remote_state ();
12210 char *p = rs->buf.data ();
12211 int left = get_remote_packet_size ();
12212 int attachment_len, ret;
12213 char *attachment;
12214 struct fio_stat fst;
12215 int read_len;
12216
12217 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12218
12219 remote_buffer_add_int (&p, &left, fd);
12220
12221 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12222 remote_errno, &attachment,
12223 &attachment_len);
12224 if (ret < 0)
12225 {
12226 if (*remote_errno != FILEIO_ENOSYS)
12227 return ret;
12228
12229 /* Strictly we should return -1, ENOSYS here, but when
12230 "set sysroot remote:" was implemented in August 2008
12231 BFD's need for a stat function was sidestepped with
12232 this hack. This was not remedied until March 2015
12233 so we retain the previous behavior to avoid breaking
12234 compatibility.
12235
12236 Note that the memset is a March 2015 addition; older
12237 GDBs set st_size *and nothing else* so the structure
12238 would have garbage in all other fields. This might
12239 break something but retaining the previous behavior
12240 here would be just too wrong. */
12241
12242 memset (st, 0, sizeof (struct stat));
12243 st->st_size = INT_MAX;
12244 return 0;
12245 }
12246
12247 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12248 (gdb_byte *) &fst, sizeof (fst));
12249
12250 if (read_len != ret)
12251 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12252
12253 if (read_len != sizeof (fst))
12254 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12255 read_len, (int) sizeof (fst));
12256
12257 remote_fileio_to_host_stat (&fst, st);
12258
12259 return 0;
12260 }
12261
12262 /* Implementation of to_filesystem_is_local. */
12263
12264 bool
12265 remote_target::filesystem_is_local ()
12266 {
12267 /* Valgrind GDB presents itself as a remote target but works
12268 on the local filesystem: it does not implement remote get
12269 and users are not expected to set a sysroot. To handle
12270 this case we treat the remote filesystem as local if the
12271 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12272 does not support vFile:open. */
12273 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12274 {
12275 enum packet_support ps = packet_support (PACKET_vFile_open);
12276
12277 if (ps == PACKET_SUPPORT_UNKNOWN)
12278 {
12279 int fd, remote_errno;
12280
12281 /* Try opening a file to probe support. The supplied
12282 filename is irrelevant, we only care about whether
12283 the stub recognizes the packet or not. */
12284 fd = remote_hostio_open (NULL, "just probing",
12285 FILEIO_O_RDONLY, 0700, 0,
12286 &remote_errno);
12287
12288 if (fd >= 0)
12289 remote_hostio_close (fd, &remote_errno);
12290
12291 ps = packet_support (PACKET_vFile_open);
12292 }
12293
12294 if (ps == PACKET_DISABLE)
12295 {
12296 static int warning_issued = 0;
12297
12298 if (!warning_issued)
12299 {
12300 warning (_("remote target does not support file"
12301 " transfer, attempting to access files"
12302 " from local filesystem."));
12303 warning_issued = 1;
12304 }
12305
12306 return true;
12307 }
12308 }
12309
12310 return false;
12311 }
12312
12313 static int
12314 remote_fileio_errno_to_host (int errnum)
12315 {
12316 switch (errnum)
12317 {
12318 case FILEIO_EPERM:
12319 return EPERM;
12320 case FILEIO_ENOENT:
12321 return ENOENT;
12322 case FILEIO_EINTR:
12323 return EINTR;
12324 case FILEIO_EIO:
12325 return EIO;
12326 case FILEIO_EBADF:
12327 return EBADF;
12328 case FILEIO_EACCES:
12329 return EACCES;
12330 case FILEIO_EFAULT:
12331 return EFAULT;
12332 case FILEIO_EBUSY:
12333 return EBUSY;
12334 case FILEIO_EEXIST:
12335 return EEXIST;
12336 case FILEIO_ENODEV:
12337 return ENODEV;
12338 case FILEIO_ENOTDIR:
12339 return ENOTDIR;
12340 case FILEIO_EISDIR:
12341 return EISDIR;
12342 case FILEIO_EINVAL:
12343 return EINVAL;
12344 case FILEIO_ENFILE:
12345 return ENFILE;
12346 case FILEIO_EMFILE:
12347 return EMFILE;
12348 case FILEIO_EFBIG:
12349 return EFBIG;
12350 case FILEIO_ENOSPC:
12351 return ENOSPC;
12352 case FILEIO_ESPIPE:
12353 return ESPIPE;
12354 case FILEIO_EROFS:
12355 return EROFS;
12356 case FILEIO_ENOSYS:
12357 return ENOSYS;
12358 case FILEIO_ENAMETOOLONG:
12359 return ENAMETOOLONG;
12360 }
12361 return -1;
12362 }
12363
12364 static char *
12365 remote_hostio_error (int errnum)
12366 {
12367 int host_error = remote_fileio_errno_to_host (errnum);
12368
12369 if (host_error == -1)
12370 error (_("Unknown remote I/O error %d"), errnum);
12371 else
12372 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12373 }
12374
12375 /* A RAII wrapper around a remote file descriptor. */
12376
12377 class scoped_remote_fd
12378 {
12379 public:
12380 scoped_remote_fd (remote_target *remote, int fd)
12381 : m_remote (remote), m_fd (fd)
12382 {
12383 }
12384
12385 ~scoped_remote_fd ()
12386 {
12387 if (m_fd != -1)
12388 {
12389 try
12390 {
12391 int remote_errno;
12392 m_remote->remote_hostio_close (m_fd, &remote_errno);
12393 }
12394 catch (...)
12395 {
12396 /* Swallow exception before it escapes the dtor. If
12397 something goes wrong, likely the connection is gone,
12398 and there's nothing else that can be done. */
12399 }
12400 }
12401 }
12402
12403 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12404
12405 /* Release ownership of the file descriptor, and return it. */
12406 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12407 {
12408 int fd = m_fd;
12409 m_fd = -1;
12410 return fd;
12411 }
12412
12413 /* Return the owned file descriptor. */
12414 int get () const noexcept
12415 {
12416 return m_fd;
12417 }
12418
12419 private:
12420 /* The remote target. */
12421 remote_target *m_remote;
12422
12423 /* The owned remote I/O file descriptor. */
12424 int m_fd;
12425 };
12426
12427 void
12428 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12429 {
12430 remote_target *remote = get_current_remote_target ();
12431
12432 if (remote == nullptr)
12433 error (_("command can only be used with remote target"));
12434
12435 remote->remote_file_put (local_file, remote_file, from_tty);
12436 }
12437
12438 void
12439 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12440 int from_tty)
12441 {
12442 int retcode, remote_errno, bytes, io_size;
12443 int bytes_in_buffer;
12444 int saw_eof;
12445 ULONGEST offset;
12446
12447 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12448 if (file == NULL)
12449 perror_with_name (local_file);
12450
12451 scoped_remote_fd fd
12452 (this, remote_hostio_open (NULL,
12453 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12454 | FILEIO_O_TRUNC),
12455 0700, 0, &remote_errno));
12456 if (fd.get () == -1)
12457 remote_hostio_error (remote_errno);
12458
12459 /* Send up to this many bytes at once. They won't all fit in the
12460 remote packet limit, so we'll transfer slightly fewer. */
12461 io_size = get_remote_packet_size ();
12462 gdb::byte_vector buffer (io_size);
12463
12464 bytes_in_buffer = 0;
12465 saw_eof = 0;
12466 offset = 0;
12467 while (bytes_in_buffer || !saw_eof)
12468 {
12469 if (!saw_eof)
12470 {
12471 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12472 io_size - bytes_in_buffer,
12473 file.get ());
12474 if (bytes == 0)
12475 {
12476 if (ferror (file.get ()))
12477 error (_("Error reading %s."), local_file);
12478 else
12479 {
12480 /* EOF. Unless there is something still in the
12481 buffer from the last iteration, we are done. */
12482 saw_eof = 1;
12483 if (bytes_in_buffer == 0)
12484 break;
12485 }
12486 }
12487 }
12488 else
12489 bytes = 0;
12490
12491 bytes += bytes_in_buffer;
12492 bytes_in_buffer = 0;
12493
12494 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12495 offset, &remote_errno);
12496
12497 if (retcode < 0)
12498 remote_hostio_error (remote_errno);
12499 else if (retcode == 0)
12500 error (_("Remote write of %d bytes returned 0!"), bytes);
12501 else if (retcode < bytes)
12502 {
12503 /* Short write. Save the rest of the read data for the next
12504 write. */
12505 bytes_in_buffer = bytes - retcode;
12506 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12507 }
12508
12509 offset += retcode;
12510 }
12511
12512 if (remote_hostio_close (fd.release (), &remote_errno))
12513 remote_hostio_error (remote_errno);
12514
12515 if (from_tty)
12516 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12517 }
12518
12519 void
12520 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12521 {
12522 remote_target *remote = get_current_remote_target ();
12523
12524 if (remote == nullptr)
12525 error (_("command can only be used with remote target"));
12526
12527 remote->remote_file_get (remote_file, local_file, from_tty);
12528 }
12529
12530 void
12531 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12532 int from_tty)
12533 {
12534 int remote_errno, bytes, io_size;
12535 ULONGEST offset;
12536
12537 scoped_remote_fd fd
12538 (this, remote_hostio_open (NULL,
12539 remote_file, FILEIO_O_RDONLY, 0, 0,
12540 &remote_errno));
12541 if (fd.get () == -1)
12542 remote_hostio_error (remote_errno);
12543
12544 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12545 if (file == NULL)
12546 perror_with_name (local_file);
12547
12548 /* Send up to this many bytes at once. They won't all fit in the
12549 remote packet limit, so we'll transfer slightly fewer. */
12550 io_size = get_remote_packet_size ();
12551 gdb::byte_vector buffer (io_size);
12552
12553 offset = 0;
12554 while (1)
12555 {
12556 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12557 &remote_errno);
12558 if (bytes == 0)
12559 /* Success, but no bytes, means end-of-file. */
12560 break;
12561 if (bytes == -1)
12562 remote_hostio_error (remote_errno);
12563
12564 offset += bytes;
12565
12566 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12567 if (bytes == 0)
12568 perror_with_name (local_file);
12569 }
12570
12571 if (remote_hostio_close (fd.release (), &remote_errno))
12572 remote_hostio_error (remote_errno);
12573
12574 if (from_tty)
12575 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12576 }
12577
12578 void
12579 remote_file_delete (const char *remote_file, int from_tty)
12580 {
12581 remote_target *remote = get_current_remote_target ();
12582
12583 if (remote == nullptr)
12584 error (_("command can only be used with remote target"));
12585
12586 remote->remote_file_delete (remote_file, from_tty);
12587 }
12588
12589 void
12590 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12591 {
12592 int retcode, remote_errno;
12593
12594 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12595 if (retcode == -1)
12596 remote_hostio_error (remote_errno);
12597
12598 if (from_tty)
12599 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12600 }
12601
12602 static void
12603 remote_put_command (const char *args, int from_tty)
12604 {
12605 if (args == NULL)
12606 error_no_arg (_("file to put"));
12607
12608 gdb_argv argv (args);
12609 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12610 error (_("Invalid parameters to remote put"));
12611
12612 remote_file_put (argv[0], argv[1], from_tty);
12613 }
12614
12615 static void
12616 remote_get_command (const char *args, int from_tty)
12617 {
12618 if (args == NULL)
12619 error_no_arg (_("file to get"));
12620
12621 gdb_argv argv (args);
12622 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12623 error (_("Invalid parameters to remote get"));
12624
12625 remote_file_get (argv[0], argv[1], from_tty);
12626 }
12627
12628 static void
12629 remote_delete_command (const char *args, int from_tty)
12630 {
12631 if (args == NULL)
12632 error_no_arg (_("file to delete"));
12633
12634 gdb_argv argv (args);
12635 if (argv[0] == NULL || argv[1] != NULL)
12636 error (_("Invalid parameters to remote delete"));
12637
12638 remote_file_delete (argv[0], from_tty);
12639 }
12640
12641 static void
12642 remote_command (const char *args, int from_tty)
12643 {
12644 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12645 }
12646
12647 bool
12648 remote_target::can_execute_reverse ()
12649 {
12650 if (packet_support (PACKET_bs) == PACKET_ENABLE
12651 || packet_support (PACKET_bc) == PACKET_ENABLE)
12652 return true;
12653 else
12654 return false;
12655 }
12656
12657 bool
12658 remote_target::supports_non_stop ()
12659 {
12660 return true;
12661 }
12662
12663 bool
12664 remote_target::supports_disable_randomization ()
12665 {
12666 /* Only supported in extended mode. */
12667 return false;
12668 }
12669
12670 bool
12671 remote_target::supports_multi_process ()
12672 {
12673 struct remote_state *rs = get_remote_state ();
12674
12675 return remote_multi_process_p (rs);
12676 }
12677
12678 static int
12679 remote_supports_cond_tracepoints ()
12680 {
12681 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12682 }
12683
12684 bool
12685 remote_target::supports_evaluation_of_breakpoint_conditions ()
12686 {
12687 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12688 }
12689
12690 static int
12691 remote_supports_fast_tracepoints ()
12692 {
12693 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12694 }
12695
12696 static int
12697 remote_supports_static_tracepoints ()
12698 {
12699 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12700 }
12701
12702 static int
12703 remote_supports_install_in_trace ()
12704 {
12705 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12706 }
12707
12708 bool
12709 remote_target::supports_enable_disable_tracepoint ()
12710 {
12711 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12712 == PACKET_ENABLE);
12713 }
12714
12715 bool
12716 remote_target::supports_string_tracing ()
12717 {
12718 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12719 }
12720
12721 bool
12722 remote_target::can_run_breakpoint_commands ()
12723 {
12724 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12725 }
12726
12727 void
12728 remote_target::trace_init ()
12729 {
12730 struct remote_state *rs = get_remote_state ();
12731
12732 putpkt ("QTinit");
12733 remote_get_noisy_reply ();
12734 if (strcmp (rs->buf.data (), "OK") != 0)
12735 error (_("Target does not support this command."));
12736 }
12737
12738 /* Recursive routine to walk through command list including loops, and
12739 download packets for each command. */
12740
12741 void
12742 remote_target::remote_download_command_source (int num, ULONGEST addr,
12743 struct command_line *cmds)
12744 {
12745 struct remote_state *rs = get_remote_state ();
12746 struct command_line *cmd;
12747
12748 for (cmd = cmds; cmd; cmd = cmd->next)
12749 {
12750 QUIT; /* Allow user to bail out with ^C. */
12751 strcpy (rs->buf.data (), "QTDPsrc:");
12752 encode_source_string (num, addr, "cmd", cmd->line,
12753 rs->buf.data () + strlen (rs->buf.data ()),
12754 rs->buf.size () - strlen (rs->buf.data ()));
12755 putpkt (rs->buf);
12756 remote_get_noisy_reply ();
12757 if (strcmp (rs->buf.data (), "OK"))
12758 warning (_("Target does not support source download."));
12759
12760 if (cmd->control_type == while_control
12761 || cmd->control_type == while_stepping_control)
12762 {
12763 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12764
12765 QUIT; /* Allow user to bail out with ^C. */
12766 strcpy (rs->buf.data (), "QTDPsrc:");
12767 encode_source_string (num, addr, "cmd", "end",
12768 rs->buf.data () + strlen (rs->buf.data ()),
12769 rs->buf.size () - strlen (rs->buf.data ()));
12770 putpkt (rs->buf);
12771 remote_get_noisy_reply ();
12772 if (strcmp (rs->buf.data (), "OK"))
12773 warning (_("Target does not support source download."));
12774 }
12775 }
12776 }
12777
12778 void
12779 remote_target::download_tracepoint (struct bp_location *loc)
12780 {
12781 CORE_ADDR tpaddr;
12782 char addrbuf[40];
12783 std::vector<std::string> tdp_actions;
12784 std::vector<std::string> stepping_actions;
12785 char *pkt;
12786 struct breakpoint *b = loc->owner;
12787 struct tracepoint *t = (struct tracepoint *) b;
12788 struct remote_state *rs = get_remote_state ();
12789 int ret;
12790 const char *err_msg = _("Tracepoint packet too large for target.");
12791 size_t size_left;
12792
12793 /* We use a buffer other than rs->buf because we'll build strings
12794 across multiple statements, and other statements in between could
12795 modify rs->buf. */
12796 gdb::char_vector buf (get_remote_packet_size ());
12797
12798 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12799
12800 tpaddr = loc->address;
12801 sprintf_vma (addrbuf, tpaddr);
12802 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12803 b->number, addrbuf, /* address */
12804 (b->enable_state == bp_enabled ? 'E' : 'D'),
12805 t->step_count, t->pass_count);
12806
12807 if (ret < 0 || ret >= buf.size ())
12808 error ("%s", err_msg);
12809
12810 /* Fast tracepoints are mostly handled by the target, but we can
12811 tell the target how big of an instruction block should be moved
12812 around. */
12813 if (b->type == bp_fast_tracepoint)
12814 {
12815 /* Only test for support at download time; we may not know
12816 target capabilities at definition time. */
12817 if (remote_supports_fast_tracepoints ())
12818 {
12819 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12820 NULL))
12821 {
12822 size_left = buf.size () - strlen (buf.data ());
12823 ret = snprintf (buf.data () + strlen (buf.data ()),
12824 size_left, ":F%x",
12825 gdb_insn_length (loc->gdbarch, tpaddr));
12826
12827 if (ret < 0 || ret >= size_left)
12828 error ("%s", err_msg);
12829 }
12830 else
12831 /* If it passed validation at definition but fails now,
12832 something is very wrong. */
12833 internal_error (__FILE__, __LINE__,
12834 _("Fast tracepoint not "
12835 "valid during download"));
12836 }
12837 else
12838 /* Fast tracepoints are functionally identical to regular
12839 tracepoints, so don't take lack of support as a reason to
12840 give up on the trace run. */
12841 warning (_("Target does not support fast tracepoints, "
12842 "downloading %d as regular tracepoint"), b->number);
12843 }
12844 else if (b->type == bp_static_tracepoint)
12845 {
12846 /* Only test for support at download time; we may not know
12847 target capabilities at definition time. */
12848 if (remote_supports_static_tracepoints ())
12849 {
12850 struct static_tracepoint_marker marker;
12851
12852 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12853 {
12854 size_left = buf.size () - strlen (buf.data ());
12855 ret = snprintf (buf.data () + strlen (buf.data ()),
12856 size_left, ":S");
12857
12858 if (ret < 0 || ret >= size_left)
12859 error ("%s", err_msg);
12860 }
12861 else
12862 error (_("Static tracepoint not valid during download"));
12863 }
12864 else
12865 /* Fast tracepoints are functionally identical to regular
12866 tracepoints, so don't take lack of support as a reason
12867 to give up on the trace run. */
12868 error (_("Target does not support static tracepoints"));
12869 }
12870 /* If the tracepoint has a conditional, make it into an agent
12871 expression and append to the definition. */
12872 if (loc->cond)
12873 {
12874 /* Only test support at download time, we may not know target
12875 capabilities at definition time. */
12876 if (remote_supports_cond_tracepoints ())
12877 {
12878 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12879 loc->cond.get ());
12880
12881 size_left = buf.size () - strlen (buf.data ());
12882
12883 ret = snprintf (buf.data () + strlen (buf.data ()),
12884 size_left, ":X%x,", aexpr->len);
12885
12886 if (ret < 0 || ret >= size_left)
12887 error ("%s", err_msg);
12888
12889 size_left = buf.size () - strlen (buf.data ());
12890
12891 /* Two bytes to encode each aexpr byte, plus the terminating
12892 null byte. */
12893 if (aexpr->len * 2 + 1 > size_left)
12894 error ("%s", err_msg);
12895
12896 pkt = buf.data () + strlen (buf.data ());
12897
12898 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12899 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12900 *pkt = '\0';
12901 }
12902 else
12903 warning (_("Target does not support conditional tracepoints, "
12904 "ignoring tp %d cond"), b->number);
12905 }
12906
12907 if (b->commands || *default_collect)
12908 {
12909 size_left = buf.size () - strlen (buf.data ());
12910
12911 ret = snprintf (buf.data () + strlen (buf.data ()),
12912 size_left, "-");
12913
12914 if (ret < 0 || ret >= size_left)
12915 error ("%s", err_msg);
12916 }
12917
12918 putpkt (buf.data ());
12919 remote_get_noisy_reply ();
12920 if (strcmp (rs->buf.data (), "OK"))
12921 error (_("Target does not support tracepoints."));
12922
12923 /* do_single_steps (t); */
12924 for (auto action_it = tdp_actions.begin ();
12925 action_it != tdp_actions.end (); action_it++)
12926 {
12927 QUIT; /* Allow user to bail out with ^C. */
12928
12929 bool has_more = ((action_it + 1) != tdp_actions.end ()
12930 || !stepping_actions.empty ());
12931
12932 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12933 b->number, addrbuf, /* address */
12934 action_it->c_str (),
12935 has_more ? '-' : 0);
12936
12937 if (ret < 0 || ret >= buf.size ())
12938 error ("%s", err_msg);
12939
12940 putpkt (buf.data ());
12941 remote_get_noisy_reply ();
12942 if (strcmp (rs->buf.data (), "OK"))
12943 error (_("Error on target while setting tracepoints."));
12944 }
12945
12946 for (auto action_it = stepping_actions.begin ();
12947 action_it != stepping_actions.end (); action_it++)
12948 {
12949 QUIT; /* Allow user to bail out with ^C. */
12950
12951 bool is_first = action_it == stepping_actions.begin ();
12952 bool has_more = (action_it + 1) != stepping_actions.end ();
12953
12954 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
12955 b->number, addrbuf, /* address */
12956 is_first ? "S" : "",
12957 action_it->c_str (),
12958 has_more ? "-" : "");
12959
12960 if (ret < 0 || ret >= buf.size ())
12961 error ("%s", err_msg);
12962
12963 putpkt (buf.data ());
12964 remote_get_noisy_reply ();
12965 if (strcmp (rs->buf.data (), "OK"))
12966 error (_("Error on target while setting tracepoints."));
12967 }
12968
12969 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12970 {
12971 if (b->location != NULL)
12972 {
12973 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12974
12975 if (ret < 0 || ret >= buf.size ())
12976 error ("%s", err_msg);
12977
12978 encode_source_string (b->number, loc->address, "at",
12979 event_location_to_string (b->location.get ()),
12980 buf.data () + strlen (buf.data ()),
12981 buf.size () - strlen (buf.data ()));
12982 putpkt (buf.data ());
12983 remote_get_noisy_reply ();
12984 if (strcmp (rs->buf.data (), "OK"))
12985 warning (_("Target does not support source download."));
12986 }
12987 if (b->cond_string)
12988 {
12989 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12990
12991 if (ret < 0 || ret >= buf.size ())
12992 error ("%s", err_msg);
12993
12994 encode_source_string (b->number, loc->address,
12995 "cond", b->cond_string,
12996 buf.data () + strlen (buf.data ()),
12997 buf.size () - strlen (buf.data ()));
12998 putpkt (buf.data ());
12999 remote_get_noisy_reply ();
13000 if (strcmp (rs->buf.data (), "OK"))
13001 warning (_("Target does not support source download."));
13002 }
13003 remote_download_command_source (b->number, loc->address,
13004 breakpoint_commands (b));
13005 }
13006 }
13007
13008 bool
13009 remote_target::can_download_tracepoint ()
13010 {
13011 struct remote_state *rs = get_remote_state ();
13012 struct trace_status *ts;
13013 int status;
13014
13015 /* Don't try to install tracepoints until we've relocated our
13016 symbols, and fetched and merged the target's tracepoint list with
13017 ours. */
13018 if (rs->starting_up)
13019 return false;
13020
13021 ts = current_trace_status ();
13022 status = get_trace_status (ts);
13023
13024 if (status == -1 || !ts->running_known || !ts->running)
13025 return false;
13026
13027 /* If we are in a tracing experiment, but remote stub doesn't support
13028 installing tracepoint in trace, we have to return. */
13029 if (!remote_supports_install_in_trace ())
13030 return false;
13031
13032 return true;
13033 }
13034
13035
13036 void
13037 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13038 {
13039 struct remote_state *rs = get_remote_state ();
13040 char *p;
13041
13042 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13043 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13044 tsv.builtin);
13045 p = rs->buf.data () + strlen (rs->buf.data ());
13046 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13047 >= get_remote_packet_size ())
13048 error (_("Trace state variable name too long for tsv definition packet"));
13049 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13050 *p++ = '\0';
13051 putpkt (rs->buf);
13052 remote_get_noisy_reply ();
13053 if (rs->buf[0] == '\0')
13054 error (_("Target does not support this command."));
13055 if (strcmp (rs->buf.data (), "OK") != 0)
13056 error (_("Error on target while downloading trace state variable."));
13057 }
13058
13059 void
13060 remote_target::enable_tracepoint (struct bp_location *location)
13061 {
13062 struct remote_state *rs = get_remote_state ();
13063 char addr_buf[40];
13064
13065 sprintf_vma (addr_buf, location->address);
13066 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13067 location->owner->number, addr_buf);
13068 putpkt (rs->buf);
13069 remote_get_noisy_reply ();
13070 if (rs->buf[0] == '\0')
13071 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13072 if (strcmp (rs->buf.data (), "OK") != 0)
13073 error (_("Error on target while enabling tracepoint."));
13074 }
13075
13076 void
13077 remote_target::disable_tracepoint (struct bp_location *location)
13078 {
13079 struct remote_state *rs = get_remote_state ();
13080 char addr_buf[40];
13081
13082 sprintf_vma (addr_buf, location->address);
13083 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13084 location->owner->number, addr_buf);
13085 putpkt (rs->buf);
13086 remote_get_noisy_reply ();
13087 if (rs->buf[0] == '\0')
13088 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13089 if (strcmp (rs->buf.data (), "OK") != 0)
13090 error (_("Error on target while disabling tracepoint."));
13091 }
13092
13093 void
13094 remote_target::trace_set_readonly_regions ()
13095 {
13096 asection *s;
13097 bfd_size_type size;
13098 bfd_vma vma;
13099 int anysecs = 0;
13100 int offset = 0;
13101
13102 if (!exec_bfd)
13103 return; /* No information to give. */
13104
13105 struct remote_state *rs = get_remote_state ();
13106
13107 strcpy (rs->buf.data (), "QTro");
13108 offset = strlen (rs->buf.data ());
13109 for (s = exec_bfd->sections; s; s = s->next)
13110 {
13111 char tmp1[40], tmp2[40];
13112 int sec_length;
13113
13114 if ((s->flags & SEC_LOAD) == 0 ||
13115 /* (s->flags & SEC_CODE) == 0 || */
13116 (s->flags & SEC_READONLY) == 0)
13117 continue;
13118
13119 anysecs = 1;
13120 vma = bfd_section_vma (s);
13121 size = bfd_section_size (s);
13122 sprintf_vma (tmp1, vma);
13123 sprintf_vma (tmp2, vma + size);
13124 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13125 if (offset + sec_length + 1 > rs->buf.size ())
13126 {
13127 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13128 warning (_("\
13129 Too many sections for read-only sections definition packet."));
13130 break;
13131 }
13132 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13133 tmp1, tmp2);
13134 offset += sec_length;
13135 }
13136 if (anysecs)
13137 {
13138 putpkt (rs->buf);
13139 getpkt (&rs->buf, 0);
13140 }
13141 }
13142
13143 void
13144 remote_target::trace_start ()
13145 {
13146 struct remote_state *rs = get_remote_state ();
13147
13148 putpkt ("QTStart");
13149 remote_get_noisy_reply ();
13150 if (rs->buf[0] == '\0')
13151 error (_("Target does not support this command."));
13152 if (strcmp (rs->buf.data (), "OK") != 0)
13153 error (_("Bogus reply from target: %s"), rs->buf.data ());
13154 }
13155
13156 int
13157 remote_target::get_trace_status (struct trace_status *ts)
13158 {
13159 /* Initialize it just to avoid a GCC false warning. */
13160 char *p = NULL;
13161 enum packet_result result;
13162 struct remote_state *rs = get_remote_state ();
13163
13164 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13165 return -1;
13166
13167 /* FIXME we need to get register block size some other way. */
13168 trace_regblock_size
13169 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13170
13171 putpkt ("qTStatus");
13172
13173 try
13174 {
13175 p = remote_get_noisy_reply ();
13176 }
13177 catch (const gdb_exception_error &ex)
13178 {
13179 if (ex.error != TARGET_CLOSE_ERROR)
13180 {
13181 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13182 return -1;
13183 }
13184 throw;
13185 }
13186
13187 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13188
13189 /* If the remote target doesn't do tracing, flag it. */
13190 if (result == PACKET_UNKNOWN)
13191 return -1;
13192
13193 /* We're working with a live target. */
13194 ts->filename = NULL;
13195
13196 if (*p++ != 'T')
13197 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13198
13199 /* Function 'parse_trace_status' sets default value of each field of
13200 'ts' at first, so we don't have to do it here. */
13201 parse_trace_status (p, ts);
13202
13203 return ts->running;
13204 }
13205
13206 void
13207 remote_target::get_tracepoint_status (struct breakpoint *bp,
13208 struct uploaded_tp *utp)
13209 {
13210 struct remote_state *rs = get_remote_state ();
13211 char *reply;
13212 struct bp_location *loc;
13213 struct tracepoint *tp = (struct tracepoint *) bp;
13214 size_t size = get_remote_packet_size ();
13215
13216 if (tp)
13217 {
13218 tp->hit_count = 0;
13219 tp->traceframe_usage = 0;
13220 for (loc = tp->loc; loc; loc = loc->next)
13221 {
13222 /* If the tracepoint was never downloaded, don't go asking for
13223 any status. */
13224 if (tp->number_on_target == 0)
13225 continue;
13226 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13227 phex_nz (loc->address, 0));
13228 putpkt (rs->buf);
13229 reply = remote_get_noisy_reply ();
13230 if (reply && *reply)
13231 {
13232 if (*reply == 'V')
13233 parse_tracepoint_status (reply + 1, bp, utp);
13234 }
13235 }
13236 }
13237 else if (utp)
13238 {
13239 utp->hit_count = 0;
13240 utp->traceframe_usage = 0;
13241 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13242 phex_nz (utp->addr, 0));
13243 putpkt (rs->buf);
13244 reply = remote_get_noisy_reply ();
13245 if (reply && *reply)
13246 {
13247 if (*reply == 'V')
13248 parse_tracepoint_status (reply + 1, bp, utp);
13249 }
13250 }
13251 }
13252
13253 void
13254 remote_target::trace_stop ()
13255 {
13256 struct remote_state *rs = get_remote_state ();
13257
13258 putpkt ("QTStop");
13259 remote_get_noisy_reply ();
13260 if (rs->buf[0] == '\0')
13261 error (_("Target does not support this command."));
13262 if (strcmp (rs->buf.data (), "OK") != 0)
13263 error (_("Bogus reply from target: %s"), rs->buf.data ());
13264 }
13265
13266 int
13267 remote_target::trace_find (enum trace_find_type type, int num,
13268 CORE_ADDR addr1, CORE_ADDR addr2,
13269 int *tpp)
13270 {
13271 struct remote_state *rs = get_remote_state ();
13272 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13273 char *p, *reply;
13274 int target_frameno = -1, target_tracept = -1;
13275
13276 /* Lookups other than by absolute frame number depend on the current
13277 trace selected, so make sure it is correct on the remote end
13278 first. */
13279 if (type != tfind_number)
13280 set_remote_traceframe ();
13281
13282 p = rs->buf.data ();
13283 strcpy (p, "QTFrame:");
13284 p = strchr (p, '\0');
13285 switch (type)
13286 {
13287 case tfind_number:
13288 xsnprintf (p, endbuf - p, "%x", num);
13289 break;
13290 case tfind_pc:
13291 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13292 break;
13293 case tfind_tp:
13294 xsnprintf (p, endbuf - p, "tdp:%x", num);
13295 break;
13296 case tfind_range:
13297 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13298 phex_nz (addr2, 0));
13299 break;
13300 case tfind_outside:
13301 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13302 phex_nz (addr2, 0));
13303 break;
13304 default:
13305 error (_("Unknown trace find type %d"), type);
13306 }
13307
13308 putpkt (rs->buf);
13309 reply = remote_get_noisy_reply ();
13310 if (*reply == '\0')
13311 error (_("Target does not support this command."));
13312
13313 while (reply && *reply)
13314 switch (*reply)
13315 {
13316 case 'F':
13317 p = ++reply;
13318 target_frameno = (int) strtol (p, &reply, 16);
13319 if (reply == p)
13320 error (_("Unable to parse trace frame number"));
13321 /* Don't update our remote traceframe number cache on failure
13322 to select a remote traceframe. */
13323 if (target_frameno == -1)
13324 return -1;
13325 break;
13326 case 'T':
13327 p = ++reply;
13328 target_tracept = (int) strtol (p, &reply, 16);
13329 if (reply == p)
13330 error (_("Unable to parse tracepoint number"));
13331 break;
13332 case 'O': /* "OK"? */
13333 if (reply[1] == 'K' && reply[2] == '\0')
13334 reply += 2;
13335 else
13336 error (_("Bogus reply from target: %s"), reply);
13337 break;
13338 default:
13339 error (_("Bogus reply from target: %s"), reply);
13340 }
13341 if (tpp)
13342 *tpp = target_tracept;
13343
13344 rs->remote_traceframe_number = target_frameno;
13345 return target_frameno;
13346 }
13347
13348 bool
13349 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13350 {
13351 struct remote_state *rs = get_remote_state ();
13352 char *reply;
13353 ULONGEST uval;
13354
13355 set_remote_traceframe ();
13356
13357 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13358 putpkt (rs->buf);
13359 reply = remote_get_noisy_reply ();
13360 if (reply && *reply)
13361 {
13362 if (*reply == 'V')
13363 {
13364 unpack_varlen_hex (reply + 1, &uval);
13365 *val = (LONGEST) uval;
13366 return true;
13367 }
13368 }
13369 return false;
13370 }
13371
13372 int
13373 remote_target::save_trace_data (const char *filename)
13374 {
13375 struct remote_state *rs = get_remote_state ();
13376 char *p, *reply;
13377
13378 p = rs->buf.data ();
13379 strcpy (p, "QTSave:");
13380 p += strlen (p);
13381 if ((p - rs->buf.data ()) + strlen (filename) * 2
13382 >= get_remote_packet_size ())
13383 error (_("Remote file name too long for trace save packet"));
13384 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13385 *p++ = '\0';
13386 putpkt (rs->buf);
13387 reply = remote_get_noisy_reply ();
13388 if (*reply == '\0')
13389 error (_("Target does not support this command."));
13390 if (strcmp (reply, "OK") != 0)
13391 error (_("Bogus reply from target: %s"), reply);
13392 return 0;
13393 }
13394
13395 /* This is basically a memory transfer, but needs to be its own packet
13396 because we don't know how the target actually organizes its trace
13397 memory, plus we want to be able to ask for as much as possible, but
13398 not be unhappy if we don't get as much as we ask for. */
13399
13400 LONGEST
13401 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13402 {
13403 struct remote_state *rs = get_remote_state ();
13404 char *reply;
13405 char *p;
13406 int rslt;
13407
13408 p = rs->buf.data ();
13409 strcpy (p, "qTBuffer:");
13410 p += strlen (p);
13411 p += hexnumstr (p, offset);
13412 *p++ = ',';
13413 p += hexnumstr (p, len);
13414 *p++ = '\0';
13415
13416 putpkt (rs->buf);
13417 reply = remote_get_noisy_reply ();
13418 if (reply && *reply)
13419 {
13420 /* 'l' by itself means we're at the end of the buffer and
13421 there is nothing more to get. */
13422 if (*reply == 'l')
13423 return 0;
13424
13425 /* Convert the reply into binary. Limit the number of bytes to
13426 convert according to our passed-in buffer size, rather than
13427 what was returned in the packet; if the target is
13428 unexpectedly generous and gives us a bigger reply than we
13429 asked for, we don't want to crash. */
13430 rslt = hex2bin (reply, buf, len);
13431 return rslt;
13432 }
13433
13434 /* Something went wrong, flag as an error. */
13435 return -1;
13436 }
13437
13438 void
13439 remote_target::set_disconnected_tracing (int val)
13440 {
13441 struct remote_state *rs = get_remote_state ();
13442
13443 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13444 {
13445 char *reply;
13446
13447 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13448 "QTDisconnected:%x", val);
13449 putpkt (rs->buf);
13450 reply = remote_get_noisy_reply ();
13451 if (*reply == '\0')
13452 error (_("Target does not support this command."));
13453 if (strcmp (reply, "OK") != 0)
13454 error (_("Bogus reply from target: %s"), reply);
13455 }
13456 else if (val)
13457 warning (_("Target does not support disconnected tracing."));
13458 }
13459
13460 int
13461 remote_target::core_of_thread (ptid_t ptid)
13462 {
13463 thread_info *info = find_thread_ptid (this, ptid);
13464
13465 if (info != NULL && info->priv != NULL)
13466 return get_remote_thread_info (info)->core;
13467
13468 return -1;
13469 }
13470
13471 void
13472 remote_target::set_circular_trace_buffer (int val)
13473 {
13474 struct remote_state *rs = get_remote_state ();
13475 char *reply;
13476
13477 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13478 "QTBuffer:circular:%x", val);
13479 putpkt (rs->buf);
13480 reply = remote_get_noisy_reply ();
13481 if (*reply == '\0')
13482 error (_("Target does not support this command."));
13483 if (strcmp (reply, "OK") != 0)
13484 error (_("Bogus reply from target: %s"), reply);
13485 }
13486
13487 traceframe_info_up
13488 remote_target::traceframe_info ()
13489 {
13490 gdb::optional<gdb::char_vector> text
13491 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13492 NULL);
13493 if (text)
13494 return parse_traceframe_info (text->data ());
13495
13496 return NULL;
13497 }
13498
13499 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13500 instruction on which a fast tracepoint may be placed. Returns -1
13501 if the packet is not supported, and 0 if the minimum instruction
13502 length is unknown. */
13503
13504 int
13505 remote_target::get_min_fast_tracepoint_insn_len ()
13506 {
13507 struct remote_state *rs = get_remote_state ();
13508 char *reply;
13509
13510 /* If we're not debugging a process yet, the IPA can't be
13511 loaded. */
13512 if (!target_has_execution)
13513 return 0;
13514
13515 /* Make sure the remote is pointing at the right process. */
13516 set_general_process ();
13517
13518 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13519 putpkt (rs->buf);
13520 reply = remote_get_noisy_reply ();
13521 if (*reply == '\0')
13522 return -1;
13523 else
13524 {
13525 ULONGEST min_insn_len;
13526
13527 unpack_varlen_hex (reply, &min_insn_len);
13528
13529 return (int) min_insn_len;
13530 }
13531 }
13532
13533 void
13534 remote_target::set_trace_buffer_size (LONGEST val)
13535 {
13536 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13537 {
13538 struct remote_state *rs = get_remote_state ();
13539 char *buf = rs->buf.data ();
13540 char *endbuf = buf + get_remote_packet_size ();
13541 enum packet_result result;
13542
13543 gdb_assert (val >= 0 || val == -1);
13544 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13545 /* Send -1 as literal "-1" to avoid host size dependency. */
13546 if (val < 0)
13547 {
13548 *buf++ = '-';
13549 buf += hexnumstr (buf, (ULONGEST) -val);
13550 }
13551 else
13552 buf += hexnumstr (buf, (ULONGEST) val);
13553
13554 putpkt (rs->buf);
13555 remote_get_noisy_reply ();
13556 result = packet_ok (rs->buf,
13557 &remote_protocol_packets[PACKET_QTBuffer_size]);
13558
13559 if (result != PACKET_OK)
13560 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13561 }
13562 }
13563
13564 bool
13565 remote_target::set_trace_notes (const char *user, const char *notes,
13566 const char *stop_notes)
13567 {
13568 struct remote_state *rs = get_remote_state ();
13569 char *reply;
13570 char *buf = rs->buf.data ();
13571 char *endbuf = buf + get_remote_packet_size ();
13572 int nbytes;
13573
13574 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13575 if (user)
13576 {
13577 buf += xsnprintf (buf, endbuf - buf, "user:");
13578 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13579 buf += 2 * nbytes;
13580 *buf++ = ';';
13581 }
13582 if (notes)
13583 {
13584 buf += xsnprintf (buf, endbuf - buf, "notes:");
13585 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13586 buf += 2 * nbytes;
13587 *buf++ = ';';
13588 }
13589 if (stop_notes)
13590 {
13591 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13592 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13593 buf += 2 * nbytes;
13594 *buf++ = ';';
13595 }
13596 /* Ensure the buffer is terminated. */
13597 *buf = '\0';
13598
13599 putpkt (rs->buf);
13600 reply = remote_get_noisy_reply ();
13601 if (*reply == '\0')
13602 return false;
13603
13604 if (strcmp (reply, "OK") != 0)
13605 error (_("Bogus reply from target: %s"), reply);
13606
13607 return true;
13608 }
13609
13610 bool
13611 remote_target::use_agent (bool use)
13612 {
13613 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13614 {
13615 struct remote_state *rs = get_remote_state ();
13616
13617 /* If the stub supports QAgent. */
13618 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13619 putpkt (rs->buf);
13620 getpkt (&rs->buf, 0);
13621
13622 if (strcmp (rs->buf.data (), "OK") == 0)
13623 {
13624 ::use_agent = use;
13625 return true;
13626 }
13627 }
13628
13629 return false;
13630 }
13631
13632 bool
13633 remote_target::can_use_agent ()
13634 {
13635 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13636 }
13637
13638 struct btrace_target_info
13639 {
13640 /* The ptid of the traced thread. */
13641 ptid_t ptid;
13642
13643 /* The obtained branch trace configuration. */
13644 struct btrace_config conf;
13645 };
13646
13647 /* Reset our idea of our target's btrace configuration. */
13648
13649 static void
13650 remote_btrace_reset (remote_state *rs)
13651 {
13652 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13653 }
13654
13655 /* Synchronize the configuration with the target. */
13656
13657 void
13658 remote_target::btrace_sync_conf (const btrace_config *conf)
13659 {
13660 struct packet_config *packet;
13661 struct remote_state *rs;
13662 char *buf, *pos, *endbuf;
13663
13664 rs = get_remote_state ();
13665 buf = rs->buf.data ();
13666 endbuf = buf + get_remote_packet_size ();
13667
13668 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13669 if (packet_config_support (packet) == PACKET_ENABLE
13670 && conf->bts.size != rs->btrace_config.bts.size)
13671 {
13672 pos = buf;
13673 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13674 conf->bts.size);
13675
13676 putpkt (buf);
13677 getpkt (&rs->buf, 0);
13678
13679 if (packet_ok (buf, packet) == PACKET_ERROR)
13680 {
13681 if (buf[0] == 'E' && buf[1] == '.')
13682 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13683 else
13684 error (_("Failed to configure the BTS buffer size."));
13685 }
13686
13687 rs->btrace_config.bts.size = conf->bts.size;
13688 }
13689
13690 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13691 if (packet_config_support (packet) == PACKET_ENABLE
13692 && conf->pt.size != rs->btrace_config.pt.size)
13693 {
13694 pos = buf;
13695 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13696 conf->pt.size);
13697
13698 putpkt (buf);
13699 getpkt (&rs->buf, 0);
13700
13701 if (packet_ok (buf, packet) == PACKET_ERROR)
13702 {
13703 if (buf[0] == 'E' && buf[1] == '.')
13704 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13705 else
13706 error (_("Failed to configure the trace buffer size."));
13707 }
13708
13709 rs->btrace_config.pt.size = conf->pt.size;
13710 }
13711 }
13712
13713 /* Read the current thread's btrace configuration from the target and
13714 store it into CONF. */
13715
13716 static void
13717 btrace_read_config (struct btrace_config *conf)
13718 {
13719 gdb::optional<gdb::char_vector> xml
13720 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13721 if (xml)
13722 parse_xml_btrace_conf (conf, xml->data ());
13723 }
13724
13725 /* Maybe reopen target btrace. */
13726
13727 void
13728 remote_target::remote_btrace_maybe_reopen ()
13729 {
13730 struct remote_state *rs = get_remote_state ();
13731 int btrace_target_pushed = 0;
13732 #if !defined (HAVE_LIBIPT)
13733 int warned = 0;
13734 #endif
13735
13736 /* Don't bother walking the entirety of the remote thread list when
13737 we know the feature isn't supported by the remote. */
13738 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13739 return;
13740
13741 scoped_restore_current_thread restore_thread;
13742
13743 for (thread_info *tp : all_non_exited_threads (this))
13744 {
13745 set_general_thread (tp->ptid);
13746
13747 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13748 btrace_read_config (&rs->btrace_config);
13749
13750 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13751 continue;
13752
13753 #if !defined (HAVE_LIBIPT)
13754 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13755 {
13756 if (!warned)
13757 {
13758 warned = 1;
13759 warning (_("Target is recording using Intel Processor Trace "
13760 "but support was disabled at compile time."));
13761 }
13762
13763 continue;
13764 }
13765 #endif /* !defined (HAVE_LIBIPT) */
13766
13767 /* Push target, once, but before anything else happens. This way our
13768 changes to the threads will be cleaned up by unpushing the target
13769 in case btrace_read_config () throws. */
13770 if (!btrace_target_pushed)
13771 {
13772 btrace_target_pushed = 1;
13773 record_btrace_push_target ();
13774 printf_filtered (_("Target is recording using %s.\n"),
13775 btrace_format_string (rs->btrace_config.format));
13776 }
13777
13778 tp->btrace.target = XCNEW (struct btrace_target_info);
13779 tp->btrace.target->ptid = tp->ptid;
13780 tp->btrace.target->conf = rs->btrace_config;
13781 }
13782 }
13783
13784 /* Enable branch tracing. */
13785
13786 struct btrace_target_info *
13787 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13788 {
13789 struct btrace_target_info *tinfo = NULL;
13790 struct packet_config *packet = NULL;
13791 struct remote_state *rs = get_remote_state ();
13792 char *buf = rs->buf.data ();
13793 char *endbuf = buf + get_remote_packet_size ();
13794
13795 switch (conf->format)
13796 {
13797 case BTRACE_FORMAT_BTS:
13798 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13799 break;
13800
13801 case BTRACE_FORMAT_PT:
13802 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13803 break;
13804 }
13805
13806 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13807 error (_("Target does not support branch tracing."));
13808
13809 btrace_sync_conf (conf);
13810
13811 set_general_thread (ptid);
13812
13813 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13814 putpkt (rs->buf);
13815 getpkt (&rs->buf, 0);
13816
13817 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13818 {
13819 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13820 error (_("Could not enable branch tracing for %s: %s"),
13821 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13822 else
13823 error (_("Could not enable branch tracing for %s."),
13824 target_pid_to_str (ptid).c_str ());
13825 }
13826
13827 tinfo = XCNEW (struct btrace_target_info);
13828 tinfo->ptid = ptid;
13829
13830 /* If we fail to read the configuration, we lose some information, but the
13831 tracing itself is not impacted. */
13832 try
13833 {
13834 btrace_read_config (&tinfo->conf);
13835 }
13836 catch (const gdb_exception_error &err)
13837 {
13838 if (err.message != NULL)
13839 warning ("%s", err.what ());
13840 }
13841
13842 return tinfo;
13843 }
13844
13845 /* Disable branch tracing. */
13846
13847 void
13848 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13849 {
13850 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13851 struct remote_state *rs = get_remote_state ();
13852 char *buf = rs->buf.data ();
13853 char *endbuf = buf + get_remote_packet_size ();
13854
13855 if (packet_config_support (packet) != PACKET_ENABLE)
13856 error (_("Target does not support branch tracing."));
13857
13858 set_general_thread (tinfo->ptid);
13859
13860 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13861 putpkt (rs->buf);
13862 getpkt (&rs->buf, 0);
13863
13864 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13865 {
13866 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13867 error (_("Could not disable branch tracing for %s: %s"),
13868 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13869 else
13870 error (_("Could not disable branch tracing for %s."),
13871 target_pid_to_str (tinfo->ptid).c_str ());
13872 }
13873
13874 xfree (tinfo);
13875 }
13876
13877 /* Teardown branch tracing. */
13878
13879 void
13880 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13881 {
13882 /* We must not talk to the target during teardown. */
13883 xfree (tinfo);
13884 }
13885
13886 /* Read the branch trace. */
13887
13888 enum btrace_error
13889 remote_target::read_btrace (struct btrace_data *btrace,
13890 struct btrace_target_info *tinfo,
13891 enum btrace_read_type type)
13892 {
13893 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13894 const char *annex;
13895
13896 if (packet_config_support (packet) != PACKET_ENABLE)
13897 error (_("Target does not support branch tracing."));
13898
13899 #if !defined(HAVE_LIBEXPAT)
13900 error (_("Cannot process branch tracing result. XML parsing not supported."));
13901 #endif
13902
13903 switch (type)
13904 {
13905 case BTRACE_READ_ALL:
13906 annex = "all";
13907 break;
13908 case BTRACE_READ_NEW:
13909 annex = "new";
13910 break;
13911 case BTRACE_READ_DELTA:
13912 annex = "delta";
13913 break;
13914 default:
13915 internal_error (__FILE__, __LINE__,
13916 _("Bad branch tracing read type: %u."),
13917 (unsigned int) type);
13918 }
13919
13920 gdb::optional<gdb::char_vector> xml
13921 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13922 if (!xml)
13923 return BTRACE_ERR_UNKNOWN;
13924
13925 parse_xml_btrace (btrace, xml->data ());
13926
13927 return BTRACE_ERR_NONE;
13928 }
13929
13930 const struct btrace_config *
13931 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13932 {
13933 return &tinfo->conf;
13934 }
13935
13936 bool
13937 remote_target::augmented_libraries_svr4_read ()
13938 {
13939 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13940 == PACKET_ENABLE);
13941 }
13942
13943 /* Implementation of to_load. */
13944
13945 void
13946 remote_target::load (const char *name, int from_tty)
13947 {
13948 generic_load (name, from_tty);
13949 }
13950
13951 /* Accepts an integer PID; returns a string representing a file that
13952 can be opened on the remote side to get the symbols for the child
13953 process. Returns NULL if the operation is not supported. */
13954
13955 char *
13956 remote_target::pid_to_exec_file (int pid)
13957 {
13958 static gdb::optional<gdb::char_vector> filename;
13959 char *annex = NULL;
13960
13961 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13962 return NULL;
13963
13964 inferior *inf = find_inferior_pid (this, pid);
13965 if (inf == NULL)
13966 internal_error (__FILE__, __LINE__,
13967 _("not currently attached to process %d"), pid);
13968
13969 if (!inf->fake_pid_p)
13970 {
13971 const int annex_size = 9;
13972
13973 annex = (char *) alloca (annex_size);
13974 xsnprintf (annex, annex_size, "%x", pid);
13975 }
13976
13977 filename = target_read_stralloc (current_top_target (),
13978 TARGET_OBJECT_EXEC_FILE, annex);
13979
13980 return filename ? filename->data () : nullptr;
13981 }
13982
13983 /* Implement the to_can_do_single_step target_ops method. */
13984
13985 int
13986 remote_target::can_do_single_step ()
13987 {
13988 /* We can only tell whether target supports single step or not by
13989 supported s and S vCont actions if the stub supports vContSupported
13990 feature. If the stub doesn't support vContSupported feature,
13991 we have conservatively to think target doesn't supports single
13992 step. */
13993 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13994 {
13995 struct remote_state *rs = get_remote_state ();
13996
13997 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13998 remote_vcont_probe ();
13999
14000 return rs->supports_vCont.s && rs->supports_vCont.S;
14001 }
14002 else
14003 return 0;
14004 }
14005
14006 /* Implementation of the to_execution_direction method for the remote
14007 target. */
14008
14009 enum exec_direction_kind
14010 remote_target::execution_direction ()
14011 {
14012 struct remote_state *rs = get_remote_state ();
14013
14014 return rs->last_resume_exec_dir;
14015 }
14016
14017 /* Return pointer to the thread_info struct which corresponds to
14018 THREAD_HANDLE (having length HANDLE_LEN). */
14019
14020 thread_info *
14021 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14022 int handle_len,
14023 inferior *inf)
14024 {
14025 for (thread_info *tp : all_non_exited_threads (this))
14026 {
14027 remote_thread_info *priv = get_remote_thread_info (tp);
14028
14029 if (tp->inf == inf && priv != NULL)
14030 {
14031 if (handle_len != priv->thread_handle.size ())
14032 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14033 handle_len, priv->thread_handle.size ());
14034 if (memcmp (thread_handle, priv->thread_handle.data (),
14035 handle_len) == 0)
14036 return tp;
14037 }
14038 }
14039
14040 return NULL;
14041 }
14042
14043 gdb::byte_vector
14044 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14045 {
14046 remote_thread_info *priv = get_remote_thread_info (tp);
14047 return priv->thread_handle;
14048 }
14049
14050 bool
14051 remote_target::can_async_p ()
14052 {
14053 struct remote_state *rs = get_remote_state ();
14054
14055 /* We don't go async if the user has explicitly prevented it with the
14056 "maint set target-async" command. */
14057 if (!target_async_permitted)
14058 return false;
14059
14060 /* We're async whenever the serial device is. */
14061 return serial_can_async_p (rs->remote_desc);
14062 }
14063
14064 bool
14065 remote_target::is_async_p ()
14066 {
14067 struct remote_state *rs = get_remote_state ();
14068
14069 if (!target_async_permitted)
14070 /* We only enable async when the user specifically asks for it. */
14071 return false;
14072
14073 /* We're async whenever the serial device is. */
14074 return serial_is_async_p (rs->remote_desc);
14075 }
14076
14077 /* Pass the SERIAL event on and up to the client. One day this code
14078 will be able to delay notifying the client of an event until the
14079 point where an entire packet has been received. */
14080
14081 static serial_event_ftype remote_async_serial_handler;
14082
14083 static void
14084 remote_async_serial_handler (struct serial *scb, void *context)
14085 {
14086 /* Don't propogate error information up to the client. Instead let
14087 the client find out about the error by querying the target. */
14088 inferior_event_handler (INF_REG_EVENT, NULL);
14089 }
14090
14091 static void
14092 remote_async_inferior_event_handler (gdb_client_data data)
14093 {
14094 inferior_event_handler (INF_REG_EVENT, data);
14095 }
14096
14097 int
14098 remote_target::async_wait_fd ()
14099 {
14100 struct remote_state *rs = get_remote_state ();
14101 return rs->remote_desc->fd;
14102 }
14103
14104 void
14105 remote_target::async (int enable)
14106 {
14107 struct remote_state *rs = get_remote_state ();
14108
14109 if (enable)
14110 {
14111 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14112
14113 /* If there are pending events in the stop reply queue tell the
14114 event loop to process them. */
14115 if (!rs->stop_reply_queue.empty ())
14116 mark_async_event_handler (rs->remote_async_inferior_event_token);
14117 /* For simplicity, below we clear the pending events token
14118 without remembering whether it is marked, so here we always
14119 mark it. If there's actually no pending notification to
14120 process, this ends up being a no-op (other than a spurious
14121 event-loop wakeup). */
14122 if (target_is_non_stop_p ())
14123 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14124 }
14125 else
14126 {
14127 serial_async (rs->remote_desc, NULL, NULL);
14128 /* If the core is disabling async, it doesn't want to be
14129 disturbed with target events. Clear all async event sources
14130 too. */
14131 clear_async_event_handler (rs->remote_async_inferior_event_token);
14132 if (target_is_non_stop_p ())
14133 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14134 }
14135 }
14136
14137 /* Implementation of the to_thread_events method. */
14138
14139 void
14140 remote_target::thread_events (int enable)
14141 {
14142 struct remote_state *rs = get_remote_state ();
14143 size_t size = get_remote_packet_size ();
14144
14145 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14146 return;
14147
14148 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14149 putpkt (rs->buf);
14150 getpkt (&rs->buf, 0);
14151
14152 switch (packet_ok (rs->buf,
14153 &remote_protocol_packets[PACKET_QThreadEvents]))
14154 {
14155 case PACKET_OK:
14156 if (strcmp (rs->buf.data (), "OK") != 0)
14157 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14158 break;
14159 case PACKET_ERROR:
14160 warning (_("Remote failure reply: %s"), rs->buf.data ());
14161 break;
14162 case PACKET_UNKNOWN:
14163 break;
14164 }
14165 }
14166
14167 static void
14168 set_remote_cmd (const char *args, int from_tty)
14169 {
14170 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14171 }
14172
14173 static void
14174 show_remote_cmd (const char *args, int from_tty)
14175 {
14176 /* We can't just use cmd_show_list here, because we want to skip
14177 the redundant "show remote Z-packet" and the legacy aliases. */
14178 struct cmd_list_element *list = remote_show_cmdlist;
14179 struct ui_out *uiout = current_uiout;
14180
14181 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14182 for (; list != NULL; list = list->next)
14183 if (strcmp (list->name, "Z-packet") == 0)
14184 continue;
14185 else if (list->type == not_set_cmd)
14186 /* Alias commands are exactly like the original, except they
14187 don't have the normal type. */
14188 continue;
14189 else
14190 {
14191 ui_out_emit_tuple option_emitter (uiout, "option");
14192
14193 uiout->field_string ("name", list->name);
14194 uiout->text (": ");
14195 if (list->type == show_cmd)
14196 do_show_command (NULL, from_tty, list);
14197 else
14198 cmd_func (list, NULL, from_tty);
14199 }
14200 }
14201
14202
14203 /* Function to be called whenever a new objfile (shlib) is detected. */
14204 static void
14205 remote_new_objfile (struct objfile *objfile)
14206 {
14207 remote_target *remote = get_current_remote_target ();
14208
14209 if (remote != NULL) /* Have a remote connection. */
14210 remote->remote_check_symbols ();
14211 }
14212
14213 /* Pull all the tracepoints defined on the target and create local
14214 data structures representing them. We don't want to create real
14215 tracepoints yet, we don't want to mess up the user's existing
14216 collection. */
14217
14218 int
14219 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14220 {
14221 struct remote_state *rs = get_remote_state ();
14222 char *p;
14223
14224 /* Ask for a first packet of tracepoint definition. */
14225 putpkt ("qTfP");
14226 getpkt (&rs->buf, 0);
14227 p = rs->buf.data ();
14228 while (*p && *p != 'l')
14229 {
14230 parse_tracepoint_definition (p, utpp);
14231 /* Ask for another packet of tracepoint definition. */
14232 putpkt ("qTsP");
14233 getpkt (&rs->buf, 0);
14234 p = rs->buf.data ();
14235 }
14236 return 0;
14237 }
14238
14239 int
14240 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14241 {
14242 struct remote_state *rs = get_remote_state ();
14243 char *p;
14244
14245 /* Ask for a first packet of variable definition. */
14246 putpkt ("qTfV");
14247 getpkt (&rs->buf, 0);
14248 p = rs->buf.data ();
14249 while (*p && *p != 'l')
14250 {
14251 parse_tsv_definition (p, utsvp);
14252 /* Ask for another packet of variable definition. */
14253 putpkt ("qTsV");
14254 getpkt (&rs->buf, 0);
14255 p = rs->buf.data ();
14256 }
14257 return 0;
14258 }
14259
14260 /* The "set/show range-stepping" show hook. */
14261
14262 static void
14263 show_range_stepping (struct ui_file *file, int from_tty,
14264 struct cmd_list_element *c,
14265 const char *value)
14266 {
14267 fprintf_filtered (file,
14268 _("Debugger's willingness to use range stepping "
14269 "is %s.\n"), value);
14270 }
14271
14272 /* Return true if the vCont;r action is supported by the remote
14273 stub. */
14274
14275 bool
14276 remote_target::vcont_r_supported ()
14277 {
14278 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14279 remote_vcont_probe ();
14280
14281 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14282 && get_remote_state ()->supports_vCont.r);
14283 }
14284
14285 /* The "set/show range-stepping" set hook. */
14286
14287 static void
14288 set_range_stepping (const char *ignore_args, int from_tty,
14289 struct cmd_list_element *c)
14290 {
14291 /* When enabling, check whether range stepping is actually supported
14292 by the target, and warn if not. */
14293 if (use_range_stepping)
14294 {
14295 remote_target *remote = get_current_remote_target ();
14296 if (remote == NULL
14297 || !remote->vcont_r_supported ())
14298 warning (_("Range stepping is not supported by the current target"));
14299 }
14300 }
14301
14302 void
14303 _initialize_remote (void)
14304 {
14305 struct cmd_list_element *cmd;
14306 const char *cmd_name;
14307
14308 /* architecture specific data */
14309 remote_g_packet_data_handle =
14310 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14311
14312 add_target (remote_target_info, remote_target::open);
14313 add_target (extended_remote_target_info, extended_remote_target::open);
14314
14315 /* Hook into new objfile notification. */
14316 gdb::observers::new_objfile.attach (remote_new_objfile);
14317
14318 #if 0
14319 init_remote_threadtests ();
14320 #endif
14321
14322 /* set/show remote ... */
14323
14324 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14325 Remote protocol specific variables.\n\
14326 Configure various remote-protocol specific variables such as\n\
14327 the packets being used."),
14328 &remote_set_cmdlist, "set remote ",
14329 0 /* allow-unknown */, &setlist);
14330 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14331 Remote protocol specific variables.\n\
14332 Configure various remote-protocol specific variables such as\n\
14333 the packets being used."),
14334 &remote_show_cmdlist, "show remote ",
14335 0 /* allow-unknown */, &showlist);
14336
14337 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14338 Compare section data on target to the exec file.\n\
14339 Argument is a single section name (default: all loaded sections).\n\
14340 To compare only read-only loaded sections, specify the -r option."),
14341 &cmdlist);
14342
14343 add_cmd ("packet", class_maintenance, packet_command, _("\
14344 Send an arbitrary packet to a remote target.\n\
14345 maintenance packet TEXT\n\
14346 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14347 this command sends the string TEXT to the inferior, and displays the\n\
14348 response packet. GDB supplies the initial `$' character, and the\n\
14349 terminating `#' character and checksum."),
14350 &maintenancelist);
14351
14352 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14353 Set whether to send break if interrupted."), _("\
14354 Show whether to send break if interrupted."), _("\
14355 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14356 set_remotebreak, show_remotebreak,
14357 &setlist, &showlist);
14358 cmd_name = "remotebreak";
14359 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14360 deprecate_cmd (cmd, "set remote interrupt-sequence");
14361 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14362 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14363 deprecate_cmd (cmd, "show remote interrupt-sequence");
14364
14365 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14366 interrupt_sequence_modes, &interrupt_sequence_mode,
14367 _("\
14368 Set interrupt sequence to remote target."), _("\
14369 Show interrupt sequence to remote target."), _("\
14370 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14371 NULL, show_interrupt_sequence,
14372 &remote_set_cmdlist,
14373 &remote_show_cmdlist);
14374
14375 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14376 &interrupt_on_connect, _("\
14377 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14378 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14379 If set, interrupt sequence is sent to remote target."),
14380 NULL, NULL,
14381 &remote_set_cmdlist, &remote_show_cmdlist);
14382
14383 /* Install commands for configuring memory read/write packets. */
14384
14385 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14386 Set the maximum number of bytes per memory write packet (deprecated)."),
14387 &setlist);
14388 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14389 Show the maximum number of bytes per memory write packet (deprecated)."),
14390 &showlist);
14391 add_cmd ("memory-write-packet-size", no_class,
14392 set_memory_write_packet_size, _("\
14393 Set the maximum number of bytes per memory-write packet.\n\
14394 Specify the number of bytes in a packet or 0 (zero) for the\n\
14395 default packet size. The actual limit is further reduced\n\
14396 dependent on the target. Specify ``fixed'' to disable the\n\
14397 further restriction and ``limit'' to enable that restriction."),
14398 &remote_set_cmdlist);
14399 add_cmd ("memory-read-packet-size", no_class,
14400 set_memory_read_packet_size, _("\
14401 Set the maximum number of bytes per memory-read packet.\n\
14402 Specify the number of bytes in a packet or 0 (zero) for the\n\
14403 default packet size. The actual limit is further reduced\n\
14404 dependent on the target. Specify ``fixed'' to disable the\n\
14405 further restriction and ``limit'' to enable that restriction."),
14406 &remote_set_cmdlist);
14407 add_cmd ("memory-write-packet-size", no_class,
14408 show_memory_write_packet_size,
14409 _("Show the maximum number of bytes per memory-write packet."),
14410 &remote_show_cmdlist);
14411 add_cmd ("memory-read-packet-size", no_class,
14412 show_memory_read_packet_size,
14413 _("Show the maximum number of bytes per memory-read packet."),
14414 &remote_show_cmdlist);
14415
14416 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14417 &remote_hw_watchpoint_limit, _("\
14418 Set the maximum number of target hardware watchpoints."), _("\
14419 Show the maximum number of target hardware watchpoints."), _("\
14420 Specify \"unlimited\" for unlimited hardware watchpoints."),
14421 NULL, show_hardware_watchpoint_limit,
14422 &remote_set_cmdlist,
14423 &remote_show_cmdlist);
14424 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14425 no_class,
14426 &remote_hw_watchpoint_length_limit, _("\
14427 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14428 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14429 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14430 NULL, show_hardware_watchpoint_length_limit,
14431 &remote_set_cmdlist, &remote_show_cmdlist);
14432 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14433 &remote_hw_breakpoint_limit, _("\
14434 Set the maximum number of target hardware breakpoints."), _("\
14435 Show the maximum number of target hardware breakpoints."), _("\
14436 Specify \"unlimited\" for unlimited hardware breakpoints."),
14437 NULL, show_hardware_breakpoint_limit,
14438 &remote_set_cmdlist, &remote_show_cmdlist);
14439
14440 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14441 &remote_address_size, _("\
14442 Set the maximum size of the address (in bits) in a memory packet."), _("\
14443 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14444 NULL,
14445 NULL, /* FIXME: i18n: */
14446 &setlist, &showlist);
14447
14448 init_all_packet_configs ();
14449
14450 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14451 "X", "binary-download", 1);
14452
14453 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14454 "vCont", "verbose-resume", 0);
14455
14456 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14457 "QPassSignals", "pass-signals", 0);
14458
14459 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14460 "QCatchSyscalls", "catch-syscalls", 0);
14461
14462 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14463 "QProgramSignals", "program-signals", 0);
14464
14465 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14466 "QSetWorkingDir", "set-working-dir", 0);
14467
14468 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14469 "QStartupWithShell", "startup-with-shell", 0);
14470
14471 add_packet_config_cmd (&remote_protocol_packets
14472 [PACKET_QEnvironmentHexEncoded],
14473 "QEnvironmentHexEncoded", "environment-hex-encoded",
14474 0);
14475
14476 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14477 "QEnvironmentReset", "environment-reset",
14478 0);
14479
14480 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14481 "QEnvironmentUnset", "environment-unset",
14482 0);
14483
14484 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14485 "qSymbol", "symbol-lookup", 0);
14486
14487 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14488 "P", "set-register", 1);
14489
14490 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14491 "p", "fetch-register", 1);
14492
14493 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14494 "Z0", "software-breakpoint", 0);
14495
14496 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14497 "Z1", "hardware-breakpoint", 0);
14498
14499 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14500 "Z2", "write-watchpoint", 0);
14501
14502 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14503 "Z3", "read-watchpoint", 0);
14504
14505 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14506 "Z4", "access-watchpoint", 0);
14507
14508 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14509 "qXfer:auxv:read", "read-aux-vector", 0);
14510
14511 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14512 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14513
14514 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14515 "qXfer:features:read", "target-features", 0);
14516
14517 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14518 "qXfer:libraries:read", "library-info", 0);
14519
14520 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14521 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14522
14523 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14524 "qXfer:memory-map:read", "memory-map", 0);
14525
14526 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14527 "qXfer:osdata:read", "osdata", 0);
14528
14529 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14530 "qXfer:threads:read", "threads", 0);
14531
14532 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14533 "qXfer:siginfo:read", "read-siginfo-object", 0);
14534
14535 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14536 "qXfer:siginfo:write", "write-siginfo-object", 0);
14537
14538 add_packet_config_cmd
14539 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14540 "qXfer:traceframe-info:read", "traceframe-info", 0);
14541
14542 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14543 "qXfer:uib:read", "unwind-info-block", 0);
14544
14545 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14546 "qGetTLSAddr", "get-thread-local-storage-address",
14547 0);
14548
14549 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14550 "qGetTIBAddr", "get-thread-information-block-address",
14551 0);
14552
14553 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14554 "bc", "reverse-continue", 0);
14555
14556 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14557 "bs", "reverse-step", 0);
14558
14559 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14560 "qSupported", "supported-packets", 0);
14561
14562 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14563 "qSearch:memory", "search-memory", 0);
14564
14565 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14566 "qTStatus", "trace-status", 0);
14567
14568 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14569 "vFile:setfs", "hostio-setfs", 0);
14570
14571 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14572 "vFile:open", "hostio-open", 0);
14573
14574 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14575 "vFile:pread", "hostio-pread", 0);
14576
14577 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14578 "vFile:pwrite", "hostio-pwrite", 0);
14579
14580 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14581 "vFile:close", "hostio-close", 0);
14582
14583 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14584 "vFile:unlink", "hostio-unlink", 0);
14585
14586 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14587 "vFile:readlink", "hostio-readlink", 0);
14588
14589 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14590 "vFile:fstat", "hostio-fstat", 0);
14591
14592 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14593 "vAttach", "attach", 0);
14594
14595 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14596 "vRun", "run", 0);
14597
14598 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14599 "QStartNoAckMode", "noack", 0);
14600
14601 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14602 "vKill", "kill", 0);
14603
14604 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14605 "qAttached", "query-attached", 0);
14606
14607 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14608 "ConditionalTracepoints",
14609 "conditional-tracepoints", 0);
14610
14611 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14612 "ConditionalBreakpoints",
14613 "conditional-breakpoints", 0);
14614
14615 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14616 "BreakpointCommands",
14617 "breakpoint-commands", 0);
14618
14619 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14620 "FastTracepoints", "fast-tracepoints", 0);
14621
14622 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14623 "TracepointSource", "TracepointSource", 0);
14624
14625 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14626 "QAllow", "allow", 0);
14627
14628 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14629 "StaticTracepoints", "static-tracepoints", 0);
14630
14631 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14632 "InstallInTrace", "install-in-trace", 0);
14633
14634 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14635 "qXfer:statictrace:read", "read-sdata-object", 0);
14636
14637 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14638 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14639
14640 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14641 "QDisableRandomization", "disable-randomization", 0);
14642
14643 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14644 "QAgent", "agent", 0);
14645
14646 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14647 "QTBuffer:size", "trace-buffer-size", 0);
14648
14649 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14650 "Qbtrace:off", "disable-btrace", 0);
14651
14652 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14653 "Qbtrace:bts", "enable-btrace-bts", 0);
14654
14655 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14656 "Qbtrace:pt", "enable-btrace-pt", 0);
14657
14658 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14659 "qXfer:btrace", "read-btrace", 0);
14660
14661 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14662 "qXfer:btrace-conf", "read-btrace-conf", 0);
14663
14664 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14665 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14666
14667 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14668 "multiprocess-feature", "multiprocess-feature", 0);
14669
14670 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14671 "swbreak-feature", "swbreak-feature", 0);
14672
14673 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14674 "hwbreak-feature", "hwbreak-feature", 0);
14675
14676 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14677 "fork-event-feature", "fork-event-feature", 0);
14678
14679 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14680 "vfork-event-feature", "vfork-event-feature", 0);
14681
14682 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14683 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14684
14685 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14686 "vContSupported", "verbose-resume-supported", 0);
14687
14688 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14689 "exec-event-feature", "exec-event-feature", 0);
14690
14691 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14692 "vCtrlC", "ctrl-c", 0);
14693
14694 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14695 "QThreadEvents", "thread-events", 0);
14696
14697 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14698 "N stop reply", "no-resumed-stop-reply", 0);
14699
14700 /* Assert that we've registered "set remote foo-packet" commands
14701 for all packet configs. */
14702 {
14703 int i;
14704
14705 for (i = 0; i < PACKET_MAX; i++)
14706 {
14707 /* Ideally all configs would have a command associated. Some
14708 still don't though. */
14709 int excepted;
14710
14711 switch (i)
14712 {
14713 case PACKET_QNonStop:
14714 case PACKET_EnableDisableTracepoints_feature:
14715 case PACKET_tracenz_feature:
14716 case PACKET_DisconnectedTracing_feature:
14717 case PACKET_augmented_libraries_svr4_read_feature:
14718 case PACKET_qCRC:
14719 /* Additions to this list need to be well justified:
14720 pre-existing packets are OK; new packets are not. */
14721 excepted = 1;
14722 break;
14723 default:
14724 excepted = 0;
14725 break;
14726 }
14727
14728 /* This catches both forgetting to add a config command, and
14729 forgetting to remove a packet from the exception list. */
14730 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14731 }
14732 }
14733
14734 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14735 Z sub-packet has its own set and show commands, but users may
14736 have sets to this variable in their .gdbinit files (or in their
14737 documentation). */
14738 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14739 &remote_Z_packet_detect, _("\
14740 Set use of remote protocol `Z' packets."), _("\
14741 Show use of remote protocol `Z' packets."), _("\
14742 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14743 packets."),
14744 set_remote_protocol_Z_packet_cmd,
14745 show_remote_protocol_Z_packet_cmd,
14746 /* FIXME: i18n: Use of remote protocol
14747 `Z' packets is %s. */
14748 &remote_set_cmdlist, &remote_show_cmdlist);
14749
14750 add_prefix_cmd ("remote", class_files, remote_command, _("\
14751 Manipulate files on the remote system.\n\
14752 Transfer files to and from the remote target system."),
14753 &remote_cmdlist, "remote ",
14754 0 /* allow-unknown */, &cmdlist);
14755
14756 add_cmd ("put", class_files, remote_put_command,
14757 _("Copy a local file to the remote system."),
14758 &remote_cmdlist);
14759
14760 add_cmd ("get", class_files, remote_get_command,
14761 _("Copy a remote file to the local system."),
14762 &remote_cmdlist);
14763
14764 add_cmd ("delete", class_files, remote_delete_command,
14765 _("Delete a remote file."),
14766 &remote_cmdlist);
14767
14768 add_setshow_string_noescape_cmd ("exec-file", class_files,
14769 &remote_exec_file_var, _("\
14770 Set the remote pathname for \"run\"."), _("\
14771 Show the remote pathname for \"run\"."), NULL,
14772 set_remote_exec_file,
14773 show_remote_exec_file,
14774 &remote_set_cmdlist,
14775 &remote_show_cmdlist);
14776
14777 add_setshow_boolean_cmd ("range-stepping", class_run,
14778 &use_range_stepping, _("\
14779 Enable or disable range stepping."), _("\
14780 Show whether target-assisted range stepping is enabled."), _("\
14781 If on, and the target supports it, when stepping a source line, GDB\n\
14782 tells the target to step the corresponding range of addresses itself instead\n\
14783 of issuing multiple single-steps. This speeds up source level\n\
14784 stepping. If off, GDB always issues single-steps, even if range\n\
14785 stepping is supported by the target. The default is on."),
14786 set_range_stepping,
14787 show_range_stepping,
14788 &setlist,
14789 &showlist);
14790
14791 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
14792 Set watchdog timer."), _("\
14793 Show watchdog timer."), _("\
14794 When non-zero, this timeout is used instead of waiting forever for a target\n\
14795 to finish a low-level step or continue operation. If the specified amount\n\
14796 of time passes without a response from the target, an error occurs."),
14797 NULL,
14798 show_watchdog,
14799 &setlist, &showlist);
14800
14801 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
14802 &remote_packet_max_chars, _("\
14803 Set the maximum number of characters to display for each remote packet."), _("\
14804 Show the maximum number of characters to display for each remote packet."), _("\
14805 Specify \"unlimited\" to display all the characters."),
14806 NULL, show_remote_packet_max_chars,
14807 &setdebuglist, &showdebuglist);
14808
14809 /* Eventually initialize fileio. See fileio.c */
14810 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14811 }
This page took 0.328859 seconds and 4 git commands to generate.