Fix reconnecting to a gdbserver already debugging multiple processes, II
[deliverable/binutils-gdb.git] / gdb / remote.c
1 /* Remote target communications for serial-line targets in custom GDB protocol
2
3 Copyright (C) 1988-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 /* See the GDB User Guide for details of the GDB remote protocol. */
21
22 #include "defs.h"
23 #include <ctype.h>
24 #include <fcntl.h>
25 #include "inferior.h"
26 #include "infrun.h"
27 #include "bfd.h"
28 #include "symfile.h"
29 #include "target.h"
30 #include "process-stratum-target.h"
31 #include "gdbcmd.h"
32 #include "objfiles.h"
33 #include "gdb-stabs.h"
34 #include "gdbthread.h"
35 #include "remote.h"
36 #include "remote-notif.h"
37 #include "regcache.h"
38 #include "value.h"
39 #include "observable.h"
40 #include "solib.h"
41 #include "cli/cli-decode.h"
42 #include "cli/cli-setshow.h"
43 #include "target-descriptions.h"
44 #include "gdb_bfd.h"
45 #include "gdbsupport/filestuff.h"
46 #include "gdbsupport/rsp-low.h"
47 #include "disasm.h"
48 #include "location.h"
49
50 #include "gdbsupport/gdb_sys_time.h"
51
52 #include "event-loop.h"
53 #include "event-top.h"
54 #include "inf-loop.h"
55
56 #include <signal.h>
57 #include "serial.h"
58
59 #include "gdbcore.h" /* for exec_bfd */
60
61 #include "remote-fileio.h"
62 #include "gdb/fileio.h"
63 #include <sys/stat.h>
64 #include "xml-support.h"
65
66 #include "memory-map.h"
67
68 #include "tracepoint.h"
69 #include "ax.h"
70 #include "ax-gdb.h"
71 #include "gdbsupport/agent.h"
72 #include "btrace.h"
73 #include "record-btrace.h"
74 #include <algorithm>
75 #include "gdbsupport/scoped_restore.h"
76 #include "gdbsupport/environ.h"
77 #include "gdbsupport/byte-vector.h"
78 #include <algorithm>
79 #include <unordered_map>
80
81 /* The remote target. */
82
83 static const char remote_doc[] = N_("\
84 Use a remote computer via a serial line, using a gdb-specific protocol.\n\
85 Specify the serial device it is connected to\n\
86 (e.g. /dev/ttyS0, /dev/ttya, COM1, etc.).");
87
88 #define OPAQUETHREADBYTES 8
89
90 /* a 64 bit opaque identifier */
91 typedef unsigned char threadref[OPAQUETHREADBYTES];
92
93 struct gdb_ext_thread_info;
94 struct threads_listing_context;
95 typedef int (*rmt_thread_action) (threadref *ref, void *context);
96 struct protocol_feature;
97 struct packet_reg;
98
99 struct stop_reply;
100 typedef std::unique_ptr<stop_reply> stop_reply_up;
101
102 /* Generic configuration support for packets the stub optionally
103 supports. Allows the user to specify the use of the packet as well
104 as allowing GDB to auto-detect support in the remote stub. */
105
106 enum packet_support
107 {
108 PACKET_SUPPORT_UNKNOWN = 0,
109 PACKET_ENABLE,
110 PACKET_DISABLE
111 };
112
113 /* Analyze a packet's return value and update the packet config
114 accordingly. */
115
116 enum packet_result
117 {
118 PACKET_ERROR,
119 PACKET_OK,
120 PACKET_UNKNOWN
121 };
122
123 struct threads_listing_context;
124
125 /* Stub vCont actions support.
126
127 Each field is a boolean flag indicating whether the stub reports
128 support for the corresponding action. */
129
130 struct vCont_action_support
131 {
132 /* vCont;t */
133 bool t = false;
134
135 /* vCont;r */
136 bool r = false;
137
138 /* vCont;s */
139 bool s = false;
140
141 /* vCont;S */
142 bool S = false;
143 };
144
145 /* About this many threadids fit in a packet. */
146
147 #define MAXTHREADLISTRESULTS 32
148
149 /* Data for the vFile:pread readahead cache. */
150
151 struct readahead_cache
152 {
153 /* Invalidate the readahead cache. */
154 void invalidate ();
155
156 /* Invalidate the readahead cache if it is holding data for FD. */
157 void invalidate_fd (int fd);
158
159 /* Serve pread from the readahead cache. Returns number of bytes
160 read, or 0 if the request can't be served from the cache. */
161 int pread (int fd, gdb_byte *read_buf, size_t len, ULONGEST offset);
162
163 /* The file descriptor for the file that is being cached. -1 if the
164 cache is invalid. */
165 int fd = -1;
166
167 /* The offset into the file that the cache buffer corresponds
168 to. */
169 ULONGEST offset = 0;
170
171 /* The buffer holding the cache contents. */
172 gdb_byte *buf = nullptr;
173 /* The buffer's size. We try to read as much as fits into a packet
174 at a time. */
175 size_t bufsize = 0;
176
177 /* Cache hit and miss counters. */
178 ULONGEST hit_count = 0;
179 ULONGEST miss_count = 0;
180 };
181
182 /* Description of the remote protocol for a given architecture. */
183
184 struct packet_reg
185 {
186 long offset; /* Offset into G packet. */
187 long regnum; /* GDB's internal register number. */
188 LONGEST pnum; /* Remote protocol register number. */
189 int in_g_packet; /* Always part of G packet. */
190 /* long size in bytes; == register_size (target_gdbarch (), regnum);
191 at present. */
192 /* char *name; == gdbarch_register_name (target_gdbarch (), regnum);
193 at present. */
194 };
195
196 struct remote_arch_state
197 {
198 explicit remote_arch_state (struct gdbarch *gdbarch);
199
200 /* Description of the remote protocol registers. */
201 long sizeof_g_packet;
202
203 /* Description of the remote protocol registers indexed by REGNUM
204 (making an array gdbarch_num_regs in size). */
205 std::unique_ptr<packet_reg[]> regs;
206
207 /* This is the size (in chars) of the first response to the ``g''
208 packet. It is used as a heuristic when determining the maximum
209 size of memory-read and memory-write packets. A target will
210 typically only reserve a buffer large enough to hold the ``g''
211 packet. The size does not include packet overhead (headers and
212 trailers). */
213 long actual_register_packet_size;
214
215 /* This is the maximum size (in chars) of a non read/write packet.
216 It is also used as a cap on the size of read/write packets. */
217 long remote_packet_size;
218 };
219
220 /* Description of the remote protocol state for the currently
221 connected target. This is per-target state, and independent of the
222 selected architecture. */
223
224 class remote_state
225 {
226 public:
227
228 remote_state ();
229 ~remote_state ();
230
231 /* Get the remote arch state for GDBARCH. */
232 struct remote_arch_state *get_remote_arch_state (struct gdbarch *gdbarch);
233
234 public: /* data */
235
236 /* A buffer to use for incoming packets, and its current size. The
237 buffer is grown dynamically for larger incoming packets.
238 Outgoing packets may also be constructed in this buffer.
239 The size of the buffer is always at least REMOTE_PACKET_SIZE;
240 REMOTE_PACKET_SIZE should be used to limit the length of outgoing
241 packets. */
242 gdb::char_vector buf;
243
244 /* True if we're going through initial connection setup (finding out
245 about the remote side's threads, relocating symbols, etc.). */
246 bool starting_up = false;
247
248 /* If we negotiated packet size explicitly (and thus can bypass
249 heuristics for the largest packet size that will not overflow
250 a buffer in the stub), this will be set to that packet size.
251 Otherwise zero, meaning to use the guessed size. */
252 long explicit_packet_size = 0;
253
254 /* remote_wait is normally called when the target is running and
255 waits for a stop reply packet. But sometimes we need to call it
256 when the target is already stopped. We can send a "?" packet
257 and have remote_wait read the response. Or, if we already have
258 the response, we can stash it in BUF and tell remote_wait to
259 skip calling getpkt. This flag is set when BUF contains a
260 stop reply packet and the target is not waiting. */
261 int cached_wait_status = 0;
262
263 /* True, if in no ack mode. That is, neither GDB nor the stub will
264 expect acks from each other. The connection is assumed to be
265 reliable. */
266 bool noack_mode = false;
267
268 /* True if we're connected in extended remote mode. */
269 bool extended = false;
270
271 /* True if we resumed the target and we're waiting for the target to
272 stop. In the mean time, we can't start another command/query.
273 The remote server wouldn't be ready to process it, so we'd
274 timeout waiting for a reply that would never come and eventually
275 we'd close the connection. This can happen in asynchronous mode
276 because we allow GDB commands while the target is running. */
277 bool waiting_for_stop_reply = false;
278
279 /* The status of the stub support for the various vCont actions. */
280 vCont_action_support supports_vCont;
281
282 /* True if the user has pressed Ctrl-C, but the target hasn't
283 responded to that. */
284 bool ctrlc_pending_p = false;
285
286 /* True if we saw a Ctrl-C while reading or writing from/to the
287 remote descriptor. At that point it is not safe to send a remote
288 interrupt packet, so we instead remember we saw the Ctrl-C and
289 process it once we're done with sending/receiving the current
290 packet, which should be shortly. If however that takes too long,
291 and the user presses Ctrl-C again, we offer to disconnect. */
292 bool got_ctrlc_during_io = false;
293
294 /* Descriptor for I/O to remote machine. Initialize it to NULL so that
295 remote_open knows that we don't have a file open when the program
296 starts. */
297 struct serial *remote_desc = nullptr;
298
299 /* These are the threads which we last sent to the remote system. The
300 TID member will be -1 for all or -2 for not sent yet. */
301 ptid_t general_thread = null_ptid;
302 ptid_t continue_thread = null_ptid;
303
304 /* This is the traceframe which we last selected on the remote system.
305 It will be -1 if no traceframe is selected. */
306 int remote_traceframe_number = -1;
307
308 char *last_pass_packet = nullptr;
309
310 /* The last QProgramSignals packet sent to the target. We bypass
311 sending a new program signals list down to the target if the new
312 packet is exactly the same as the last we sent. IOW, we only let
313 the target know about program signals list changes. */
314 char *last_program_signals_packet = nullptr;
315
316 gdb_signal last_sent_signal = GDB_SIGNAL_0;
317
318 bool last_sent_step = false;
319
320 /* The execution direction of the last resume we got. */
321 exec_direction_kind last_resume_exec_dir = EXEC_FORWARD;
322
323 char *finished_object = nullptr;
324 char *finished_annex = nullptr;
325 ULONGEST finished_offset = 0;
326
327 /* Should we try the 'ThreadInfo' query packet?
328
329 This variable (NOT available to the user: auto-detect only!)
330 determines whether GDB will use the new, simpler "ThreadInfo"
331 query or the older, more complex syntax for thread queries.
332 This is an auto-detect variable (set to true at each connect,
333 and set to false when the target fails to recognize it). */
334 bool use_threadinfo_query = false;
335 bool use_threadextra_query = false;
336
337 threadref echo_nextthread {};
338 threadref nextthread {};
339 threadref resultthreadlist[MAXTHREADLISTRESULTS] {};
340
341 /* The state of remote notification. */
342 struct remote_notif_state *notif_state = nullptr;
343
344 /* The branch trace configuration. */
345 struct btrace_config btrace_config {};
346
347 /* The argument to the last "vFile:setfs:" packet we sent, used
348 to avoid sending repeated unnecessary "vFile:setfs:" packets.
349 Initialized to -1 to indicate that no "vFile:setfs:" packet
350 has yet been sent. */
351 int fs_pid = -1;
352
353 /* A readahead cache for vFile:pread. Often, reading a binary
354 involves a sequence of small reads. E.g., when parsing an ELF
355 file. A readahead cache helps mostly the case of remote
356 debugging on a connection with higher latency, due to the
357 request/reply nature of the RSP. We only cache data for a single
358 file descriptor at a time. */
359 struct readahead_cache readahead_cache;
360
361 /* The list of already fetched and acknowledged stop events. This
362 queue is used for notification Stop, and other notifications
363 don't need queue for their events, because the notification
364 events of Stop can't be consumed immediately, so that events
365 should be queued first, and be consumed by remote_wait_{ns,as}
366 one per time. Other notifications can consume their events
367 immediately, so queue is not needed for them. */
368 std::vector<stop_reply_up> stop_reply_queue;
369
370 /* Asynchronous signal handle registered as event loop source for
371 when we have pending events ready to be passed to the core. */
372 struct async_event_handler *remote_async_inferior_event_token = nullptr;
373
374 /* FIXME: cagney/1999-09-23: Even though getpkt was called with
375 ``forever'' still use the normal timeout mechanism. This is
376 currently used by the ASYNC code to guarentee that target reads
377 during the initial connect always time-out. Once getpkt has been
378 modified to return a timeout indication and, in turn
379 remote_wait()/wait_for_inferior() have gained a timeout parameter
380 this can go away. */
381 int wait_forever_enabled_p = 1;
382
383 private:
384 /* Mapping of remote protocol data for each gdbarch. Usually there
385 is only one entry here, though we may see more with stubs that
386 support multi-process. */
387 std::unordered_map<struct gdbarch *, remote_arch_state>
388 m_arch_states;
389 };
390
391 static const target_info remote_target_info = {
392 "remote",
393 N_("Remote serial target in gdb-specific protocol"),
394 remote_doc
395 };
396
397 class remote_target : public process_stratum_target
398 {
399 public:
400 remote_target () = default;
401 ~remote_target () override;
402
403 const target_info &info () const override
404 { return remote_target_info; }
405
406 thread_control_capabilities get_thread_control_capabilities () override
407 { return tc_schedlock; }
408
409 /* Open a remote connection. */
410 static void open (const char *, int);
411
412 void close () override;
413
414 void detach (inferior *, int) override;
415 void disconnect (const char *, int) override;
416
417 void commit_resume () override;
418 void resume (ptid_t, int, enum gdb_signal) override;
419 ptid_t wait (ptid_t, struct target_waitstatus *, int) override;
420
421 void fetch_registers (struct regcache *, int) override;
422 void store_registers (struct regcache *, int) override;
423 void prepare_to_store (struct regcache *) override;
424
425 void files_info () override;
426
427 int insert_breakpoint (struct gdbarch *, struct bp_target_info *) override;
428
429 int remove_breakpoint (struct gdbarch *, struct bp_target_info *,
430 enum remove_bp_reason) override;
431
432
433 bool stopped_by_sw_breakpoint () override;
434 bool supports_stopped_by_sw_breakpoint () override;
435
436 bool stopped_by_hw_breakpoint () override;
437
438 bool supports_stopped_by_hw_breakpoint () override;
439
440 bool stopped_by_watchpoint () override;
441
442 bool stopped_data_address (CORE_ADDR *) override;
443
444 bool watchpoint_addr_within_range (CORE_ADDR, CORE_ADDR, int) override;
445
446 int can_use_hw_breakpoint (enum bptype, int, int) override;
447
448 int insert_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
449
450 int remove_hw_breakpoint (struct gdbarch *, struct bp_target_info *) override;
451
452 int region_ok_for_hw_watchpoint (CORE_ADDR, int) override;
453
454 int insert_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
455 struct expression *) override;
456
457 int remove_watchpoint (CORE_ADDR, int, enum target_hw_bp_type,
458 struct expression *) override;
459
460 void kill () override;
461
462 void load (const char *, int) override;
463
464 void mourn_inferior () override;
465
466 void pass_signals (gdb::array_view<const unsigned char>) override;
467
468 int set_syscall_catchpoint (int, bool, int,
469 gdb::array_view<const int>) override;
470
471 void program_signals (gdb::array_view<const unsigned char>) override;
472
473 bool thread_alive (ptid_t ptid) override;
474
475 const char *thread_name (struct thread_info *) override;
476
477 void update_thread_list () override;
478
479 std::string pid_to_str (ptid_t) override;
480
481 const char *extra_thread_info (struct thread_info *) override;
482
483 ptid_t get_ada_task_ptid (long lwp, long thread) override;
484
485 thread_info *thread_handle_to_thread_info (const gdb_byte *thread_handle,
486 int handle_len,
487 inferior *inf) override;
488
489 gdb::byte_vector thread_info_to_thread_handle (struct thread_info *tp)
490 override;
491
492 void stop (ptid_t) override;
493
494 void interrupt () override;
495
496 void pass_ctrlc () override;
497
498 enum target_xfer_status xfer_partial (enum target_object object,
499 const char *annex,
500 gdb_byte *readbuf,
501 const gdb_byte *writebuf,
502 ULONGEST offset, ULONGEST len,
503 ULONGEST *xfered_len) override;
504
505 ULONGEST get_memory_xfer_limit () override;
506
507 void rcmd (const char *command, struct ui_file *output) override;
508
509 char *pid_to_exec_file (int pid) override;
510
511 void log_command (const char *cmd) override
512 {
513 serial_log_command (this, cmd);
514 }
515
516 CORE_ADDR get_thread_local_address (ptid_t ptid,
517 CORE_ADDR load_module_addr,
518 CORE_ADDR offset) override;
519
520 bool can_execute_reverse () override;
521
522 std::vector<mem_region> memory_map () override;
523
524 void flash_erase (ULONGEST address, LONGEST length) override;
525
526 void flash_done () override;
527
528 const struct target_desc *read_description () override;
529
530 int search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
531 const gdb_byte *pattern, ULONGEST pattern_len,
532 CORE_ADDR *found_addrp) override;
533
534 bool can_async_p () override;
535
536 bool is_async_p () override;
537
538 void async (int) override;
539
540 void thread_events (int) override;
541
542 int can_do_single_step () override;
543
544 void terminal_inferior () override;
545
546 void terminal_ours () override;
547
548 bool supports_non_stop () override;
549
550 bool supports_multi_process () override;
551
552 bool supports_disable_randomization () override;
553
554 bool filesystem_is_local () override;
555
556
557 int fileio_open (struct inferior *inf, const char *filename,
558 int flags, int mode, int warn_if_slow,
559 int *target_errno) override;
560
561 int fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
562 ULONGEST offset, int *target_errno) override;
563
564 int fileio_pread (int fd, gdb_byte *read_buf, int len,
565 ULONGEST offset, int *target_errno) override;
566
567 int fileio_fstat (int fd, struct stat *sb, int *target_errno) override;
568
569 int fileio_close (int fd, int *target_errno) override;
570
571 int fileio_unlink (struct inferior *inf,
572 const char *filename,
573 int *target_errno) override;
574
575 gdb::optional<std::string>
576 fileio_readlink (struct inferior *inf,
577 const char *filename,
578 int *target_errno) override;
579
580 bool supports_enable_disable_tracepoint () override;
581
582 bool supports_string_tracing () override;
583
584 bool supports_evaluation_of_breakpoint_conditions () override;
585
586 bool can_run_breakpoint_commands () override;
587
588 void trace_init () override;
589
590 void download_tracepoint (struct bp_location *location) override;
591
592 bool can_download_tracepoint () override;
593
594 void download_trace_state_variable (const trace_state_variable &tsv) override;
595
596 void enable_tracepoint (struct bp_location *location) override;
597
598 void disable_tracepoint (struct bp_location *location) override;
599
600 void trace_set_readonly_regions () override;
601
602 void trace_start () override;
603
604 int get_trace_status (struct trace_status *ts) override;
605
606 void get_tracepoint_status (struct breakpoint *tp, struct uploaded_tp *utp)
607 override;
608
609 void trace_stop () override;
610
611 int trace_find (enum trace_find_type type, int num,
612 CORE_ADDR addr1, CORE_ADDR addr2, int *tpp) override;
613
614 bool get_trace_state_variable_value (int tsv, LONGEST *val) override;
615
616 int save_trace_data (const char *filename) override;
617
618 int upload_tracepoints (struct uploaded_tp **utpp) override;
619
620 int upload_trace_state_variables (struct uploaded_tsv **utsvp) override;
621
622 LONGEST get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len) override;
623
624 int get_min_fast_tracepoint_insn_len () override;
625
626 void set_disconnected_tracing (int val) override;
627
628 void set_circular_trace_buffer (int val) override;
629
630 void set_trace_buffer_size (LONGEST val) override;
631
632 bool set_trace_notes (const char *user, const char *notes,
633 const char *stopnotes) override;
634
635 int core_of_thread (ptid_t ptid) override;
636
637 int verify_memory (const gdb_byte *data,
638 CORE_ADDR memaddr, ULONGEST size) override;
639
640
641 bool get_tib_address (ptid_t ptid, CORE_ADDR *addr) override;
642
643 void set_permissions () override;
644
645 bool static_tracepoint_marker_at (CORE_ADDR,
646 struct static_tracepoint_marker *marker)
647 override;
648
649 std::vector<static_tracepoint_marker>
650 static_tracepoint_markers_by_strid (const char *id) override;
651
652 traceframe_info_up traceframe_info () override;
653
654 bool use_agent (bool use) override;
655 bool can_use_agent () override;
656
657 struct btrace_target_info *enable_btrace (ptid_t ptid,
658 const struct btrace_config *conf) override;
659
660 void disable_btrace (struct btrace_target_info *tinfo) override;
661
662 void teardown_btrace (struct btrace_target_info *tinfo) override;
663
664 enum btrace_error read_btrace (struct btrace_data *data,
665 struct btrace_target_info *btinfo,
666 enum btrace_read_type type) override;
667
668 const struct btrace_config *btrace_conf (const struct btrace_target_info *) override;
669 bool augmented_libraries_svr4_read () override;
670 int follow_fork (int, int) override;
671 void follow_exec (struct inferior *, const char *) override;
672 int insert_fork_catchpoint (int) override;
673 int remove_fork_catchpoint (int) override;
674 int insert_vfork_catchpoint (int) override;
675 int remove_vfork_catchpoint (int) override;
676 int insert_exec_catchpoint (int) override;
677 int remove_exec_catchpoint (int) override;
678 enum exec_direction_kind execution_direction () override;
679
680 public: /* Remote specific methods. */
681
682 void remote_download_command_source (int num, ULONGEST addr,
683 struct command_line *cmds);
684
685 void remote_file_put (const char *local_file, const char *remote_file,
686 int from_tty);
687 void remote_file_get (const char *remote_file, const char *local_file,
688 int from_tty);
689 void remote_file_delete (const char *remote_file, int from_tty);
690
691 int remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
692 ULONGEST offset, int *remote_errno);
693 int remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
694 ULONGEST offset, int *remote_errno);
695 int remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
696 ULONGEST offset, int *remote_errno);
697
698 int remote_hostio_send_command (int command_bytes, int which_packet,
699 int *remote_errno, char **attachment,
700 int *attachment_len);
701 int remote_hostio_set_filesystem (struct inferior *inf,
702 int *remote_errno);
703 /* We should get rid of this and use fileio_open directly. */
704 int remote_hostio_open (struct inferior *inf, const char *filename,
705 int flags, int mode, int warn_if_slow,
706 int *remote_errno);
707 int remote_hostio_close (int fd, int *remote_errno);
708
709 int remote_hostio_unlink (inferior *inf, const char *filename,
710 int *remote_errno);
711
712 struct remote_state *get_remote_state ();
713
714 long get_remote_packet_size (void);
715 long get_memory_packet_size (struct memory_packet_config *config);
716
717 long get_memory_write_packet_size ();
718 long get_memory_read_packet_size ();
719
720 char *append_pending_thread_resumptions (char *p, char *endp,
721 ptid_t ptid);
722 static void open_1 (const char *name, int from_tty, int extended_p);
723 void start_remote (int from_tty, int extended_p);
724 void remote_detach_1 (struct inferior *inf, int from_tty);
725
726 char *append_resumption (char *p, char *endp,
727 ptid_t ptid, int step, gdb_signal siggnal);
728 int remote_resume_with_vcont (ptid_t ptid, int step,
729 gdb_signal siggnal);
730
731 void add_current_inferior_and_thread (char *wait_status);
732
733 ptid_t wait_ns (ptid_t ptid, struct target_waitstatus *status,
734 int options);
735 ptid_t wait_as (ptid_t ptid, target_waitstatus *status,
736 int options);
737
738 ptid_t process_stop_reply (struct stop_reply *stop_reply,
739 target_waitstatus *status);
740
741 void remote_notice_new_inferior (ptid_t currthread, int executing);
742
743 void process_initial_stop_replies (int from_tty);
744
745 thread_info *remote_add_thread (ptid_t ptid, bool running, bool executing);
746
747 void btrace_sync_conf (const btrace_config *conf);
748
749 void remote_btrace_maybe_reopen ();
750
751 void remove_new_fork_children (threads_listing_context *context);
752 void kill_new_fork_children (int pid);
753 void discard_pending_stop_replies (struct inferior *inf);
754 int stop_reply_queue_length ();
755
756 void check_pending_events_prevent_wildcard_vcont
757 (int *may_global_wildcard_vcont);
758
759 void discard_pending_stop_replies_in_queue ();
760 struct stop_reply *remote_notif_remove_queued_reply (ptid_t ptid);
761 struct stop_reply *queued_stop_reply (ptid_t ptid);
762 int peek_stop_reply (ptid_t ptid);
763 void remote_parse_stop_reply (const char *buf, stop_reply *event);
764
765 void remote_stop_ns (ptid_t ptid);
766 void remote_interrupt_as ();
767 void remote_interrupt_ns ();
768
769 char *remote_get_noisy_reply ();
770 int remote_query_attached (int pid);
771 inferior *remote_add_inferior (bool fake_pid_p, int pid, int attached,
772 int try_open_exec);
773
774 ptid_t remote_current_thread (ptid_t oldpid);
775 ptid_t get_current_thread (char *wait_status);
776
777 void set_thread (ptid_t ptid, int gen);
778 void set_general_thread (ptid_t ptid);
779 void set_continue_thread (ptid_t ptid);
780 void set_general_process ();
781
782 char *write_ptid (char *buf, const char *endbuf, ptid_t ptid);
783
784 int remote_unpack_thread_info_response (char *pkt, threadref *expectedref,
785 gdb_ext_thread_info *info);
786 int remote_get_threadinfo (threadref *threadid, int fieldset,
787 gdb_ext_thread_info *info);
788
789 int parse_threadlist_response (char *pkt, int result_limit,
790 threadref *original_echo,
791 threadref *resultlist,
792 int *doneflag);
793 int remote_get_threadlist (int startflag, threadref *nextthread,
794 int result_limit, int *done, int *result_count,
795 threadref *threadlist);
796
797 int remote_threadlist_iterator (rmt_thread_action stepfunction,
798 void *context, int looplimit);
799
800 int remote_get_threads_with_ql (threads_listing_context *context);
801 int remote_get_threads_with_qxfer (threads_listing_context *context);
802 int remote_get_threads_with_qthreadinfo (threads_listing_context *context);
803
804 void extended_remote_restart ();
805
806 void get_offsets ();
807
808 void remote_check_symbols ();
809
810 void remote_supported_packet (const struct protocol_feature *feature,
811 enum packet_support support,
812 const char *argument);
813
814 void remote_query_supported ();
815
816 void remote_packet_size (const protocol_feature *feature,
817 packet_support support, const char *value);
818
819 void remote_serial_quit_handler ();
820
821 void remote_detach_pid (int pid);
822
823 void remote_vcont_probe ();
824
825 void remote_resume_with_hc (ptid_t ptid, int step,
826 gdb_signal siggnal);
827
828 void send_interrupt_sequence ();
829 void interrupt_query ();
830
831 void remote_notif_get_pending_events (notif_client *nc);
832
833 int fetch_register_using_p (struct regcache *regcache,
834 packet_reg *reg);
835 int send_g_packet ();
836 void process_g_packet (struct regcache *regcache);
837 void fetch_registers_using_g (struct regcache *regcache);
838 int store_register_using_P (const struct regcache *regcache,
839 packet_reg *reg);
840 void store_registers_using_G (const struct regcache *regcache);
841
842 void set_remote_traceframe ();
843
844 void check_binary_download (CORE_ADDR addr);
845
846 target_xfer_status remote_write_bytes_aux (const char *header,
847 CORE_ADDR memaddr,
848 const gdb_byte *myaddr,
849 ULONGEST len_units,
850 int unit_size,
851 ULONGEST *xfered_len_units,
852 char packet_format,
853 int use_length);
854
855 target_xfer_status remote_write_bytes (CORE_ADDR memaddr,
856 const gdb_byte *myaddr, ULONGEST len,
857 int unit_size, ULONGEST *xfered_len);
858
859 target_xfer_status remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
860 ULONGEST len_units,
861 int unit_size, ULONGEST *xfered_len_units);
862
863 target_xfer_status remote_xfer_live_readonly_partial (gdb_byte *readbuf,
864 ULONGEST memaddr,
865 ULONGEST len,
866 int unit_size,
867 ULONGEST *xfered_len);
868
869 target_xfer_status remote_read_bytes (CORE_ADDR memaddr,
870 gdb_byte *myaddr, ULONGEST len,
871 int unit_size,
872 ULONGEST *xfered_len);
873
874 packet_result remote_send_printf (const char *format, ...)
875 ATTRIBUTE_PRINTF (2, 3);
876
877 target_xfer_status remote_flash_write (ULONGEST address,
878 ULONGEST length, ULONGEST *xfered_len,
879 const gdb_byte *data);
880
881 int readchar (int timeout);
882
883 void remote_serial_write (const char *str, int len);
884
885 int putpkt (const char *buf);
886 int putpkt_binary (const char *buf, int cnt);
887
888 int putpkt (const gdb::char_vector &buf)
889 {
890 return putpkt (buf.data ());
891 }
892
893 void skip_frame ();
894 long read_frame (gdb::char_vector *buf_p);
895 void getpkt (gdb::char_vector *buf, int forever);
896 int getpkt_or_notif_sane_1 (gdb::char_vector *buf, int forever,
897 int expecting_notif, int *is_notif);
898 int getpkt_sane (gdb::char_vector *buf, int forever);
899 int getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
900 int *is_notif);
901 int remote_vkill (int pid);
902 void remote_kill_k ();
903
904 void extended_remote_disable_randomization (int val);
905 int extended_remote_run (const std::string &args);
906
907 void send_environment_packet (const char *action,
908 const char *packet,
909 const char *value);
910
911 void extended_remote_environment_support ();
912 void extended_remote_set_inferior_cwd ();
913
914 target_xfer_status remote_write_qxfer (const char *object_name,
915 const char *annex,
916 const gdb_byte *writebuf,
917 ULONGEST offset, LONGEST len,
918 ULONGEST *xfered_len,
919 struct packet_config *packet);
920
921 target_xfer_status remote_read_qxfer (const char *object_name,
922 const char *annex,
923 gdb_byte *readbuf, ULONGEST offset,
924 LONGEST len,
925 ULONGEST *xfered_len,
926 struct packet_config *packet);
927
928 void push_stop_reply (struct stop_reply *new_event);
929
930 bool vcont_r_supported ();
931
932 void packet_command (const char *args, int from_tty);
933
934 private: /* data fields */
935
936 /* The remote state. Don't reference this directly. Use the
937 get_remote_state method instead. */
938 remote_state m_remote_state;
939 };
940
941 static const target_info extended_remote_target_info = {
942 "extended-remote",
943 N_("Extended remote serial target in gdb-specific protocol"),
944 remote_doc
945 };
946
947 /* Set up the extended remote target by extending the standard remote
948 target and adding to it. */
949
950 class extended_remote_target final : public remote_target
951 {
952 public:
953 const target_info &info () const override
954 { return extended_remote_target_info; }
955
956 /* Open an extended-remote connection. */
957 static void open (const char *, int);
958
959 bool can_create_inferior () override { return true; }
960 void create_inferior (const char *, const std::string &,
961 char **, int) override;
962
963 void detach (inferior *, int) override;
964
965 bool can_attach () override { return true; }
966 void attach (const char *, int) override;
967
968 void post_attach (int) override;
969 bool supports_disable_randomization () override;
970 };
971
972 /* Per-program-space data key. */
973 static const struct program_space_key<char, gdb::xfree_deleter<char>>
974 remote_pspace_data;
975
976 /* The variable registered as the control variable used by the
977 remote exec-file commands. While the remote exec-file setting is
978 per-program-space, the set/show machinery uses this as the
979 location of the remote exec-file value. */
980 static char *remote_exec_file_var;
981
982 /* The size to align memory write packets, when practical. The protocol
983 does not guarantee any alignment, and gdb will generate short
984 writes and unaligned writes, but even as a best-effort attempt this
985 can improve bulk transfers. For instance, if a write is misaligned
986 relative to the target's data bus, the stub may need to make an extra
987 round trip fetching data from the target. This doesn't make a
988 huge difference, but it's easy to do, so we try to be helpful.
989
990 The alignment chosen is arbitrary; usually data bus width is
991 important here, not the possibly larger cache line size. */
992 enum { REMOTE_ALIGN_WRITES = 16 };
993
994 /* Prototypes for local functions. */
995
996 static int hexnumlen (ULONGEST num);
997
998 static int stubhex (int ch);
999
1000 static int hexnumstr (char *, ULONGEST);
1001
1002 static int hexnumnstr (char *, ULONGEST, int);
1003
1004 static CORE_ADDR remote_address_masked (CORE_ADDR);
1005
1006 static void print_packet (const char *);
1007
1008 static int stub_unpack_int (char *buff, int fieldlength);
1009
1010 struct packet_config;
1011
1012 static void show_packet_config_cmd (struct packet_config *config);
1013
1014 static void show_remote_protocol_packet_cmd (struct ui_file *file,
1015 int from_tty,
1016 struct cmd_list_element *c,
1017 const char *value);
1018
1019 static ptid_t read_ptid (const char *buf, const char **obuf);
1020
1021 static void remote_async_inferior_event_handler (gdb_client_data);
1022
1023 static bool remote_read_description_p (struct target_ops *target);
1024
1025 static void remote_console_output (const char *msg);
1026
1027 static void remote_btrace_reset (remote_state *rs);
1028
1029 static void remote_unpush_and_throw (void);
1030
1031 /* For "remote". */
1032
1033 static struct cmd_list_element *remote_cmdlist;
1034
1035 /* For "set remote" and "show remote". */
1036
1037 static struct cmd_list_element *remote_set_cmdlist;
1038 static struct cmd_list_element *remote_show_cmdlist;
1039
1040 /* Controls whether GDB is willing to use range stepping. */
1041
1042 static bool use_range_stepping = true;
1043
1044 /* Private data that we'll store in (struct thread_info)->priv. */
1045 struct remote_thread_info : public private_thread_info
1046 {
1047 std::string extra;
1048 std::string name;
1049 int core = -1;
1050
1051 /* Thread handle, perhaps a pthread_t or thread_t value, stored as a
1052 sequence of bytes. */
1053 gdb::byte_vector thread_handle;
1054
1055 /* Whether the target stopped for a breakpoint/watchpoint. */
1056 enum target_stop_reason stop_reason = TARGET_STOPPED_BY_NO_REASON;
1057
1058 /* This is set to the data address of the access causing the target
1059 to stop for a watchpoint. */
1060 CORE_ADDR watch_data_address = 0;
1061
1062 /* Fields used by the vCont action coalescing implemented in
1063 remote_resume / remote_commit_resume. remote_resume stores each
1064 thread's last resume request in these fields, so that a later
1065 remote_commit_resume knows which is the proper action for this
1066 thread to include in the vCont packet. */
1067
1068 /* True if the last target_resume call for this thread was a step
1069 request, false if a continue request. */
1070 int last_resume_step = 0;
1071
1072 /* The signal specified in the last target_resume call for this
1073 thread. */
1074 gdb_signal last_resume_sig = GDB_SIGNAL_0;
1075
1076 /* Whether this thread was already vCont-resumed on the remote
1077 side. */
1078 int vcont_resumed = 0;
1079 };
1080
1081 remote_state::remote_state ()
1082 : buf (400)
1083 {
1084 }
1085
1086 remote_state::~remote_state ()
1087 {
1088 xfree (this->last_pass_packet);
1089 xfree (this->last_program_signals_packet);
1090 xfree (this->finished_object);
1091 xfree (this->finished_annex);
1092 }
1093
1094 /* Utility: generate error from an incoming stub packet. */
1095 static void
1096 trace_error (char *buf)
1097 {
1098 if (*buf++ != 'E')
1099 return; /* not an error msg */
1100 switch (*buf)
1101 {
1102 case '1': /* malformed packet error */
1103 if (*++buf == '0') /* general case: */
1104 error (_("remote.c: error in outgoing packet."));
1105 else
1106 error (_("remote.c: error in outgoing packet at field #%ld."),
1107 strtol (buf, NULL, 16));
1108 default:
1109 error (_("Target returns error code '%s'."), buf);
1110 }
1111 }
1112
1113 /* Utility: wait for reply from stub, while accepting "O" packets. */
1114
1115 char *
1116 remote_target::remote_get_noisy_reply ()
1117 {
1118 struct remote_state *rs = get_remote_state ();
1119
1120 do /* Loop on reply from remote stub. */
1121 {
1122 char *buf;
1123
1124 QUIT; /* Allow user to bail out with ^C. */
1125 getpkt (&rs->buf, 0);
1126 buf = rs->buf.data ();
1127 if (buf[0] == 'E')
1128 trace_error (buf);
1129 else if (startswith (buf, "qRelocInsn:"))
1130 {
1131 ULONGEST ul;
1132 CORE_ADDR from, to, org_to;
1133 const char *p, *pp;
1134 int adjusted_size = 0;
1135 int relocated = 0;
1136
1137 p = buf + strlen ("qRelocInsn:");
1138 pp = unpack_varlen_hex (p, &ul);
1139 if (*pp != ';')
1140 error (_("invalid qRelocInsn packet: %s"), buf);
1141 from = ul;
1142
1143 p = pp + 1;
1144 unpack_varlen_hex (p, &ul);
1145 to = ul;
1146
1147 org_to = to;
1148
1149 try
1150 {
1151 gdbarch_relocate_instruction (target_gdbarch (), &to, from);
1152 relocated = 1;
1153 }
1154 catch (const gdb_exception &ex)
1155 {
1156 if (ex.error == MEMORY_ERROR)
1157 {
1158 /* Propagate memory errors silently back to the
1159 target. The stub may have limited the range of
1160 addresses we can write to, for example. */
1161 }
1162 else
1163 {
1164 /* Something unexpectedly bad happened. Be verbose
1165 so we can tell what, and propagate the error back
1166 to the stub, so it doesn't get stuck waiting for
1167 a response. */
1168 exception_fprintf (gdb_stderr, ex,
1169 _("warning: relocating instruction: "));
1170 }
1171 putpkt ("E01");
1172 }
1173
1174 if (relocated)
1175 {
1176 adjusted_size = to - org_to;
1177
1178 xsnprintf (buf, rs->buf.size (), "qRelocInsn:%x", adjusted_size);
1179 putpkt (buf);
1180 }
1181 }
1182 else if (buf[0] == 'O' && buf[1] != 'K')
1183 remote_console_output (buf + 1); /* 'O' message from stub */
1184 else
1185 return buf; /* Here's the actual reply. */
1186 }
1187 while (1);
1188 }
1189
1190 struct remote_arch_state *
1191 remote_state::get_remote_arch_state (struct gdbarch *gdbarch)
1192 {
1193 remote_arch_state *rsa;
1194
1195 auto it = this->m_arch_states.find (gdbarch);
1196 if (it == this->m_arch_states.end ())
1197 {
1198 auto p = this->m_arch_states.emplace (std::piecewise_construct,
1199 std::forward_as_tuple (gdbarch),
1200 std::forward_as_tuple (gdbarch));
1201 rsa = &p.first->second;
1202
1203 /* Make sure that the packet buffer is plenty big enough for
1204 this architecture. */
1205 if (this->buf.size () < rsa->remote_packet_size)
1206 this->buf.resize (2 * rsa->remote_packet_size);
1207 }
1208 else
1209 rsa = &it->second;
1210
1211 return rsa;
1212 }
1213
1214 /* Fetch the global remote target state. */
1215
1216 remote_state *
1217 remote_target::get_remote_state ()
1218 {
1219 /* Make sure that the remote architecture state has been
1220 initialized, because doing so might reallocate rs->buf. Any
1221 function which calls getpkt also needs to be mindful of changes
1222 to rs->buf, but this call limits the number of places which run
1223 into trouble. */
1224 m_remote_state.get_remote_arch_state (target_gdbarch ());
1225
1226 return &m_remote_state;
1227 }
1228
1229 /* Fetch the remote exec-file from the current program space. */
1230
1231 static const char *
1232 get_remote_exec_file (void)
1233 {
1234 char *remote_exec_file;
1235
1236 remote_exec_file = remote_pspace_data.get (current_program_space);
1237 if (remote_exec_file == NULL)
1238 return "";
1239
1240 return remote_exec_file;
1241 }
1242
1243 /* Set the remote exec file for PSPACE. */
1244
1245 static void
1246 set_pspace_remote_exec_file (struct program_space *pspace,
1247 const char *remote_exec_file)
1248 {
1249 char *old_file = remote_pspace_data.get (pspace);
1250
1251 xfree (old_file);
1252 remote_pspace_data.set (pspace, xstrdup (remote_exec_file));
1253 }
1254
1255 /* The "set/show remote exec-file" set command hook. */
1256
1257 static void
1258 set_remote_exec_file (const char *ignored, int from_tty,
1259 struct cmd_list_element *c)
1260 {
1261 gdb_assert (remote_exec_file_var != NULL);
1262 set_pspace_remote_exec_file (current_program_space, remote_exec_file_var);
1263 }
1264
1265 /* The "set/show remote exec-file" show command hook. */
1266
1267 static void
1268 show_remote_exec_file (struct ui_file *file, int from_tty,
1269 struct cmd_list_element *cmd, const char *value)
1270 {
1271 fprintf_filtered (file, "%s\n", get_remote_exec_file ());
1272 }
1273
1274 static int
1275 map_regcache_remote_table (struct gdbarch *gdbarch, struct packet_reg *regs)
1276 {
1277 int regnum, num_remote_regs, offset;
1278 struct packet_reg **remote_regs;
1279
1280 for (regnum = 0; regnum < gdbarch_num_regs (gdbarch); regnum++)
1281 {
1282 struct packet_reg *r = &regs[regnum];
1283
1284 if (register_size (gdbarch, regnum) == 0)
1285 /* Do not try to fetch zero-sized (placeholder) registers. */
1286 r->pnum = -1;
1287 else
1288 r->pnum = gdbarch_remote_register_number (gdbarch, regnum);
1289
1290 r->regnum = regnum;
1291 }
1292
1293 /* Define the g/G packet format as the contents of each register
1294 with a remote protocol number, in order of ascending protocol
1295 number. */
1296
1297 remote_regs = XALLOCAVEC (struct packet_reg *, gdbarch_num_regs (gdbarch));
1298 for (num_remote_regs = 0, regnum = 0;
1299 regnum < gdbarch_num_regs (gdbarch);
1300 regnum++)
1301 if (regs[regnum].pnum != -1)
1302 remote_regs[num_remote_regs++] = &regs[regnum];
1303
1304 std::sort (remote_regs, remote_regs + num_remote_regs,
1305 [] (const packet_reg *a, const packet_reg *b)
1306 { return a->pnum < b->pnum; });
1307
1308 for (regnum = 0, offset = 0; regnum < num_remote_regs; regnum++)
1309 {
1310 remote_regs[regnum]->in_g_packet = 1;
1311 remote_regs[regnum]->offset = offset;
1312 offset += register_size (gdbarch, remote_regs[regnum]->regnum);
1313 }
1314
1315 return offset;
1316 }
1317
1318 /* Given the architecture described by GDBARCH, return the remote
1319 protocol register's number and the register's offset in the g/G
1320 packets of GDB register REGNUM, in PNUM and POFFSET respectively.
1321 If the target does not have a mapping for REGNUM, return false,
1322 otherwise, return true. */
1323
1324 int
1325 remote_register_number_and_offset (struct gdbarch *gdbarch, int regnum,
1326 int *pnum, int *poffset)
1327 {
1328 gdb_assert (regnum < gdbarch_num_regs (gdbarch));
1329
1330 std::vector<packet_reg> regs (gdbarch_num_regs (gdbarch));
1331
1332 map_regcache_remote_table (gdbarch, regs.data ());
1333
1334 *pnum = regs[regnum].pnum;
1335 *poffset = regs[regnum].offset;
1336
1337 return *pnum != -1;
1338 }
1339
1340 remote_arch_state::remote_arch_state (struct gdbarch *gdbarch)
1341 {
1342 /* Use the architecture to build a regnum<->pnum table, which will be
1343 1:1 unless a feature set specifies otherwise. */
1344 this->regs.reset (new packet_reg [gdbarch_num_regs (gdbarch)] ());
1345
1346 /* Record the maximum possible size of the g packet - it may turn out
1347 to be smaller. */
1348 this->sizeof_g_packet
1349 = map_regcache_remote_table (gdbarch, this->regs.get ());
1350
1351 /* Default maximum number of characters in a packet body. Many
1352 remote stubs have a hardwired buffer size of 400 bytes
1353 (c.f. BUFMAX in m68k-stub.c and i386-stub.c). BUFMAX-1 is used
1354 as the maximum packet-size to ensure that the packet and an extra
1355 NUL character can always fit in the buffer. This stops GDB
1356 trashing stubs that try to squeeze an extra NUL into what is
1357 already a full buffer (As of 1999-12-04 that was most stubs). */
1358 this->remote_packet_size = 400 - 1;
1359
1360 /* This one is filled in when a ``g'' packet is received. */
1361 this->actual_register_packet_size = 0;
1362
1363 /* Should rsa->sizeof_g_packet needs more space than the
1364 default, adjust the size accordingly. Remember that each byte is
1365 encoded as two characters. 32 is the overhead for the packet
1366 header / footer. NOTE: cagney/1999-10-26: I suspect that 8
1367 (``$NN:G...#NN'') is a better guess, the below has been padded a
1368 little. */
1369 if (this->sizeof_g_packet > ((this->remote_packet_size - 32) / 2))
1370 this->remote_packet_size = (this->sizeof_g_packet * 2 + 32);
1371 }
1372
1373 /* Get a pointer to the current remote target. If not connected to a
1374 remote target, return NULL. */
1375
1376 static remote_target *
1377 get_current_remote_target ()
1378 {
1379 target_ops *proc_target = find_target_at (process_stratum);
1380 return dynamic_cast<remote_target *> (proc_target);
1381 }
1382
1383 /* Return the current allowed size of a remote packet. This is
1384 inferred from the current architecture, and should be used to
1385 limit the length of outgoing packets. */
1386 long
1387 remote_target::get_remote_packet_size ()
1388 {
1389 struct remote_state *rs = get_remote_state ();
1390 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1391
1392 if (rs->explicit_packet_size)
1393 return rs->explicit_packet_size;
1394
1395 return rsa->remote_packet_size;
1396 }
1397
1398 static struct packet_reg *
1399 packet_reg_from_regnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1400 long regnum)
1401 {
1402 if (regnum < 0 && regnum >= gdbarch_num_regs (gdbarch))
1403 return NULL;
1404 else
1405 {
1406 struct packet_reg *r = &rsa->regs[regnum];
1407
1408 gdb_assert (r->regnum == regnum);
1409 return r;
1410 }
1411 }
1412
1413 static struct packet_reg *
1414 packet_reg_from_pnum (struct gdbarch *gdbarch, struct remote_arch_state *rsa,
1415 LONGEST pnum)
1416 {
1417 int i;
1418
1419 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
1420 {
1421 struct packet_reg *r = &rsa->regs[i];
1422
1423 if (r->pnum == pnum)
1424 return r;
1425 }
1426 return NULL;
1427 }
1428
1429 /* Allow the user to specify what sequence to send to the remote
1430 when he requests a program interruption: Although ^C is usually
1431 what remote systems expect (this is the default, here), it is
1432 sometimes preferable to send a break. On other systems such
1433 as the Linux kernel, a break followed by g, which is Magic SysRq g
1434 is required in order to interrupt the execution. */
1435 const char interrupt_sequence_control_c[] = "Ctrl-C";
1436 const char interrupt_sequence_break[] = "BREAK";
1437 const char interrupt_sequence_break_g[] = "BREAK-g";
1438 static const char *const interrupt_sequence_modes[] =
1439 {
1440 interrupt_sequence_control_c,
1441 interrupt_sequence_break,
1442 interrupt_sequence_break_g,
1443 NULL
1444 };
1445 static const char *interrupt_sequence_mode = interrupt_sequence_control_c;
1446
1447 static void
1448 show_interrupt_sequence (struct ui_file *file, int from_tty,
1449 struct cmd_list_element *c,
1450 const char *value)
1451 {
1452 if (interrupt_sequence_mode == interrupt_sequence_control_c)
1453 fprintf_filtered (file,
1454 _("Send the ASCII ETX character (Ctrl-c) "
1455 "to the remote target to interrupt the "
1456 "execution of the program.\n"));
1457 else if (interrupt_sequence_mode == interrupt_sequence_break)
1458 fprintf_filtered (file,
1459 _("send a break signal to the remote target "
1460 "to interrupt the execution of the program.\n"));
1461 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
1462 fprintf_filtered (file,
1463 _("Send a break signal and 'g' a.k.a. Magic SysRq g to "
1464 "the remote target to interrupt the execution "
1465 "of Linux kernel.\n"));
1466 else
1467 internal_error (__FILE__, __LINE__,
1468 _("Invalid value for interrupt_sequence_mode: %s."),
1469 interrupt_sequence_mode);
1470 }
1471
1472 /* This boolean variable specifies whether interrupt_sequence is sent
1473 to the remote target when gdb connects to it.
1474 This is mostly needed when you debug the Linux kernel: The Linux kernel
1475 expects BREAK g which is Magic SysRq g for connecting gdb. */
1476 static bool interrupt_on_connect = false;
1477
1478 /* This variable is used to implement the "set/show remotebreak" commands.
1479 Since these commands are now deprecated in favor of "set/show remote
1480 interrupt-sequence", it no longer has any effect on the code. */
1481 static bool remote_break;
1482
1483 static void
1484 set_remotebreak (const char *args, int from_tty, struct cmd_list_element *c)
1485 {
1486 if (remote_break)
1487 interrupt_sequence_mode = interrupt_sequence_break;
1488 else
1489 interrupt_sequence_mode = interrupt_sequence_control_c;
1490 }
1491
1492 static void
1493 show_remotebreak (struct ui_file *file, int from_tty,
1494 struct cmd_list_element *c,
1495 const char *value)
1496 {
1497 }
1498
1499 /* This variable sets the number of bits in an address that are to be
1500 sent in a memory ("M" or "m") packet. Normally, after stripping
1501 leading zeros, the entire address would be sent. This variable
1502 restricts the address to REMOTE_ADDRESS_SIZE bits. HISTORY: The
1503 initial implementation of remote.c restricted the address sent in
1504 memory packets to ``host::sizeof long'' bytes - (typically 32
1505 bits). Consequently, for 64 bit targets, the upper 32 bits of an
1506 address was never sent. Since fixing this bug may cause a break in
1507 some remote targets this variable is principally provided to
1508 facilitate backward compatibility. */
1509
1510 static unsigned int remote_address_size;
1511
1512 \f
1513 /* User configurable variables for the number of characters in a
1514 memory read/write packet. MIN (rsa->remote_packet_size,
1515 rsa->sizeof_g_packet) is the default. Some targets need smaller
1516 values (fifo overruns, et.al.) and some users need larger values
1517 (speed up transfers). The variables ``preferred_*'' (the user
1518 request), ``current_*'' (what was actually set) and ``forced_*''
1519 (Positive - a soft limit, negative - a hard limit). */
1520
1521 struct memory_packet_config
1522 {
1523 const char *name;
1524 long size;
1525 int fixed_p;
1526 };
1527
1528 /* The default max memory-write-packet-size, when the setting is
1529 "fixed". The 16k is historical. (It came from older GDB's using
1530 alloca for buffers and the knowledge (folklore?) that some hosts
1531 don't cope very well with large alloca calls.) */
1532 #define DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED 16384
1533
1534 /* The minimum remote packet size for memory transfers. Ensures we
1535 can write at least one byte. */
1536 #define MIN_MEMORY_PACKET_SIZE 20
1537
1538 /* Get the memory packet size, assuming it is fixed. */
1539
1540 static long
1541 get_fixed_memory_packet_size (struct memory_packet_config *config)
1542 {
1543 gdb_assert (config->fixed_p);
1544
1545 if (config->size <= 0)
1546 return DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED;
1547 else
1548 return config->size;
1549 }
1550
1551 /* Compute the current size of a read/write packet. Since this makes
1552 use of ``actual_register_packet_size'' the computation is dynamic. */
1553
1554 long
1555 remote_target::get_memory_packet_size (struct memory_packet_config *config)
1556 {
1557 struct remote_state *rs = get_remote_state ();
1558 remote_arch_state *rsa = rs->get_remote_arch_state (target_gdbarch ());
1559
1560 long what_they_get;
1561 if (config->fixed_p)
1562 what_they_get = get_fixed_memory_packet_size (config);
1563 else
1564 {
1565 what_they_get = get_remote_packet_size ();
1566 /* Limit the packet to the size specified by the user. */
1567 if (config->size > 0
1568 && what_they_get > config->size)
1569 what_they_get = config->size;
1570
1571 /* Limit it to the size of the targets ``g'' response unless we have
1572 permission from the stub to use a larger packet size. */
1573 if (rs->explicit_packet_size == 0
1574 && rsa->actual_register_packet_size > 0
1575 && what_they_get > rsa->actual_register_packet_size)
1576 what_they_get = rsa->actual_register_packet_size;
1577 }
1578 if (what_they_get < MIN_MEMORY_PACKET_SIZE)
1579 what_they_get = MIN_MEMORY_PACKET_SIZE;
1580
1581 /* Make sure there is room in the global buffer for this packet
1582 (including its trailing NUL byte). */
1583 if (rs->buf.size () < what_they_get + 1)
1584 rs->buf.resize (2 * what_they_get);
1585
1586 return what_they_get;
1587 }
1588
1589 /* Update the size of a read/write packet. If they user wants
1590 something really big then do a sanity check. */
1591
1592 static void
1593 set_memory_packet_size (const char *args, struct memory_packet_config *config)
1594 {
1595 int fixed_p = config->fixed_p;
1596 long size = config->size;
1597
1598 if (args == NULL)
1599 error (_("Argument required (integer, `fixed' or `limited')."));
1600 else if (strcmp (args, "hard") == 0
1601 || strcmp (args, "fixed") == 0)
1602 fixed_p = 1;
1603 else if (strcmp (args, "soft") == 0
1604 || strcmp (args, "limit") == 0)
1605 fixed_p = 0;
1606 else
1607 {
1608 char *end;
1609
1610 size = strtoul (args, &end, 0);
1611 if (args == end)
1612 error (_("Invalid %s (bad syntax)."), config->name);
1613
1614 /* Instead of explicitly capping the size of a packet to or
1615 disallowing it, the user is allowed to set the size to
1616 something arbitrarily large. */
1617 }
1618
1619 /* Extra checks? */
1620 if (fixed_p && !config->fixed_p)
1621 {
1622 /* So that the query shows the correct value. */
1623 long query_size = (size <= 0
1624 ? DEFAULT_MAX_MEMORY_PACKET_SIZE_FIXED
1625 : size);
1626
1627 if (! query (_("The target may not be able to correctly handle a %s\n"
1628 "of %ld bytes. Change the packet size? "),
1629 config->name, query_size))
1630 error (_("Packet size not changed."));
1631 }
1632 /* Update the config. */
1633 config->fixed_p = fixed_p;
1634 config->size = size;
1635 }
1636
1637 static void
1638 show_memory_packet_size (struct memory_packet_config *config)
1639 {
1640 if (config->size == 0)
1641 printf_filtered (_("The %s is 0 (default). "), config->name);
1642 else
1643 printf_filtered (_("The %s is %ld. "), config->name, config->size);
1644 if (config->fixed_p)
1645 printf_filtered (_("Packets are fixed at %ld bytes.\n"),
1646 get_fixed_memory_packet_size (config));
1647 else
1648 {
1649 remote_target *remote = get_current_remote_target ();
1650
1651 if (remote != NULL)
1652 printf_filtered (_("Packets are limited to %ld bytes.\n"),
1653 remote->get_memory_packet_size (config));
1654 else
1655 puts_filtered ("The actual limit will be further reduced "
1656 "dependent on the target.\n");
1657 }
1658 }
1659
1660 static struct memory_packet_config memory_write_packet_config =
1661 {
1662 "memory-write-packet-size",
1663 };
1664
1665 static void
1666 set_memory_write_packet_size (const char *args, int from_tty)
1667 {
1668 set_memory_packet_size (args, &memory_write_packet_config);
1669 }
1670
1671 static void
1672 show_memory_write_packet_size (const char *args, int from_tty)
1673 {
1674 show_memory_packet_size (&memory_write_packet_config);
1675 }
1676
1677 /* Show the number of hardware watchpoints that can be used. */
1678
1679 static void
1680 show_hardware_watchpoint_limit (struct ui_file *file, int from_tty,
1681 struct cmd_list_element *c,
1682 const char *value)
1683 {
1684 fprintf_filtered (file, _("The maximum number of target hardware "
1685 "watchpoints is %s.\n"), value);
1686 }
1687
1688 /* Show the length limit (in bytes) for hardware watchpoints. */
1689
1690 static void
1691 show_hardware_watchpoint_length_limit (struct ui_file *file, int from_tty,
1692 struct cmd_list_element *c,
1693 const char *value)
1694 {
1695 fprintf_filtered (file, _("The maximum length (in bytes) of a target "
1696 "hardware watchpoint is %s.\n"), value);
1697 }
1698
1699 /* Show the number of hardware breakpoints that can be used. */
1700
1701 static void
1702 show_hardware_breakpoint_limit (struct ui_file *file, int from_tty,
1703 struct cmd_list_element *c,
1704 const char *value)
1705 {
1706 fprintf_filtered (file, _("The maximum number of target hardware "
1707 "breakpoints is %s.\n"), value);
1708 }
1709
1710 /* Controls the maximum number of characters to display in the debug output
1711 for each remote packet. The remaining characters are omitted. */
1712
1713 static int remote_packet_max_chars = 512;
1714
1715 /* Show the maximum number of characters to display for each remote packet
1716 when remote debugging is enabled. */
1717
1718 static void
1719 show_remote_packet_max_chars (struct ui_file *file, int from_tty,
1720 struct cmd_list_element *c,
1721 const char *value)
1722 {
1723 fprintf_filtered (file, _("Number of remote packet characters to "
1724 "display is %s.\n"), value);
1725 }
1726
1727 long
1728 remote_target::get_memory_write_packet_size ()
1729 {
1730 return get_memory_packet_size (&memory_write_packet_config);
1731 }
1732
1733 static struct memory_packet_config memory_read_packet_config =
1734 {
1735 "memory-read-packet-size",
1736 };
1737
1738 static void
1739 set_memory_read_packet_size (const char *args, int from_tty)
1740 {
1741 set_memory_packet_size (args, &memory_read_packet_config);
1742 }
1743
1744 static void
1745 show_memory_read_packet_size (const char *args, int from_tty)
1746 {
1747 show_memory_packet_size (&memory_read_packet_config);
1748 }
1749
1750 long
1751 remote_target::get_memory_read_packet_size ()
1752 {
1753 long size = get_memory_packet_size (&memory_read_packet_config);
1754
1755 /* FIXME: cagney/1999-11-07: Functions like getpkt() need to get an
1756 extra buffer size argument before the memory read size can be
1757 increased beyond this. */
1758 if (size > get_remote_packet_size ())
1759 size = get_remote_packet_size ();
1760 return size;
1761 }
1762
1763 \f
1764
1765 struct packet_config
1766 {
1767 const char *name;
1768 const char *title;
1769
1770 /* If auto, GDB auto-detects support for this packet or feature,
1771 either through qSupported, or by trying the packet and looking
1772 at the response. If true, GDB assumes the target supports this
1773 packet. If false, the packet is disabled. Configs that don't
1774 have an associated command always have this set to auto. */
1775 enum auto_boolean detect;
1776
1777 /* Does the target support this packet? */
1778 enum packet_support support;
1779 };
1780
1781 static enum packet_support packet_config_support (struct packet_config *config);
1782 static enum packet_support packet_support (int packet);
1783
1784 static void
1785 show_packet_config_cmd (struct packet_config *config)
1786 {
1787 const char *support = "internal-error";
1788
1789 switch (packet_config_support (config))
1790 {
1791 case PACKET_ENABLE:
1792 support = "enabled";
1793 break;
1794 case PACKET_DISABLE:
1795 support = "disabled";
1796 break;
1797 case PACKET_SUPPORT_UNKNOWN:
1798 support = "unknown";
1799 break;
1800 }
1801 switch (config->detect)
1802 {
1803 case AUTO_BOOLEAN_AUTO:
1804 printf_filtered (_("Support for the `%s' packet "
1805 "is auto-detected, currently %s.\n"),
1806 config->name, support);
1807 break;
1808 case AUTO_BOOLEAN_TRUE:
1809 case AUTO_BOOLEAN_FALSE:
1810 printf_filtered (_("Support for the `%s' packet is currently %s.\n"),
1811 config->name, support);
1812 break;
1813 }
1814 }
1815
1816 static void
1817 add_packet_config_cmd (struct packet_config *config, const char *name,
1818 const char *title, int legacy)
1819 {
1820 char *set_doc;
1821 char *show_doc;
1822 char *cmd_name;
1823
1824 config->name = name;
1825 config->title = title;
1826 set_doc = xstrprintf ("Set use of remote protocol `%s' (%s) packet.",
1827 name, title);
1828 show_doc = xstrprintf ("Show current use of remote "
1829 "protocol `%s' (%s) packet.",
1830 name, title);
1831 /* set/show TITLE-packet {auto,on,off} */
1832 cmd_name = xstrprintf ("%s-packet", title);
1833 add_setshow_auto_boolean_cmd (cmd_name, class_obscure,
1834 &config->detect, set_doc,
1835 show_doc, NULL, /* help_doc */
1836 NULL,
1837 show_remote_protocol_packet_cmd,
1838 &remote_set_cmdlist, &remote_show_cmdlist);
1839 /* The command code copies the documentation strings. */
1840 xfree (set_doc);
1841 xfree (show_doc);
1842 /* set/show remote NAME-packet {auto,on,off} -- legacy. */
1843 if (legacy)
1844 {
1845 char *legacy_name;
1846
1847 legacy_name = xstrprintf ("%s-packet", name);
1848 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1849 &remote_set_cmdlist);
1850 add_alias_cmd (legacy_name, cmd_name, class_obscure, 0,
1851 &remote_show_cmdlist);
1852 }
1853 }
1854
1855 static enum packet_result
1856 packet_check_result (const char *buf)
1857 {
1858 if (buf[0] != '\0')
1859 {
1860 /* The stub recognized the packet request. Check that the
1861 operation succeeded. */
1862 if (buf[0] == 'E'
1863 && isxdigit (buf[1]) && isxdigit (buf[2])
1864 && buf[3] == '\0')
1865 /* "Enn" - definitely an error. */
1866 return PACKET_ERROR;
1867
1868 /* Always treat "E." as an error. This will be used for
1869 more verbose error messages, such as E.memtypes. */
1870 if (buf[0] == 'E' && buf[1] == '.')
1871 return PACKET_ERROR;
1872
1873 /* The packet may or may not be OK. Just assume it is. */
1874 return PACKET_OK;
1875 }
1876 else
1877 /* The stub does not support the packet. */
1878 return PACKET_UNKNOWN;
1879 }
1880
1881 static enum packet_result
1882 packet_check_result (const gdb::char_vector &buf)
1883 {
1884 return packet_check_result (buf.data ());
1885 }
1886
1887 static enum packet_result
1888 packet_ok (const char *buf, struct packet_config *config)
1889 {
1890 enum packet_result result;
1891
1892 if (config->detect != AUTO_BOOLEAN_TRUE
1893 && config->support == PACKET_DISABLE)
1894 internal_error (__FILE__, __LINE__,
1895 _("packet_ok: attempt to use a disabled packet"));
1896
1897 result = packet_check_result (buf);
1898 switch (result)
1899 {
1900 case PACKET_OK:
1901 case PACKET_ERROR:
1902 /* The stub recognized the packet request. */
1903 if (config->support == PACKET_SUPPORT_UNKNOWN)
1904 {
1905 if (remote_debug)
1906 fprintf_unfiltered (gdb_stdlog,
1907 "Packet %s (%s) is supported\n",
1908 config->name, config->title);
1909 config->support = PACKET_ENABLE;
1910 }
1911 break;
1912 case PACKET_UNKNOWN:
1913 /* The stub does not support the packet. */
1914 if (config->detect == AUTO_BOOLEAN_AUTO
1915 && config->support == PACKET_ENABLE)
1916 {
1917 /* If the stub previously indicated that the packet was
1918 supported then there is a protocol error. */
1919 error (_("Protocol error: %s (%s) conflicting enabled responses."),
1920 config->name, config->title);
1921 }
1922 else if (config->detect == AUTO_BOOLEAN_TRUE)
1923 {
1924 /* The user set it wrong. */
1925 error (_("Enabled packet %s (%s) not recognized by stub"),
1926 config->name, config->title);
1927 }
1928
1929 if (remote_debug)
1930 fprintf_unfiltered (gdb_stdlog,
1931 "Packet %s (%s) is NOT supported\n",
1932 config->name, config->title);
1933 config->support = PACKET_DISABLE;
1934 break;
1935 }
1936
1937 return result;
1938 }
1939
1940 static enum packet_result
1941 packet_ok (const gdb::char_vector &buf, struct packet_config *config)
1942 {
1943 return packet_ok (buf.data (), config);
1944 }
1945
1946 enum {
1947 PACKET_vCont = 0,
1948 PACKET_X,
1949 PACKET_qSymbol,
1950 PACKET_P,
1951 PACKET_p,
1952 PACKET_Z0,
1953 PACKET_Z1,
1954 PACKET_Z2,
1955 PACKET_Z3,
1956 PACKET_Z4,
1957 PACKET_vFile_setfs,
1958 PACKET_vFile_open,
1959 PACKET_vFile_pread,
1960 PACKET_vFile_pwrite,
1961 PACKET_vFile_close,
1962 PACKET_vFile_unlink,
1963 PACKET_vFile_readlink,
1964 PACKET_vFile_fstat,
1965 PACKET_qXfer_auxv,
1966 PACKET_qXfer_features,
1967 PACKET_qXfer_exec_file,
1968 PACKET_qXfer_libraries,
1969 PACKET_qXfer_libraries_svr4,
1970 PACKET_qXfer_memory_map,
1971 PACKET_qXfer_osdata,
1972 PACKET_qXfer_threads,
1973 PACKET_qXfer_statictrace_read,
1974 PACKET_qXfer_traceframe_info,
1975 PACKET_qXfer_uib,
1976 PACKET_qGetTIBAddr,
1977 PACKET_qGetTLSAddr,
1978 PACKET_qSupported,
1979 PACKET_qTStatus,
1980 PACKET_QPassSignals,
1981 PACKET_QCatchSyscalls,
1982 PACKET_QProgramSignals,
1983 PACKET_QSetWorkingDir,
1984 PACKET_QStartupWithShell,
1985 PACKET_QEnvironmentHexEncoded,
1986 PACKET_QEnvironmentReset,
1987 PACKET_QEnvironmentUnset,
1988 PACKET_qCRC,
1989 PACKET_qSearch_memory,
1990 PACKET_vAttach,
1991 PACKET_vRun,
1992 PACKET_QStartNoAckMode,
1993 PACKET_vKill,
1994 PACKET_qXfer_siginfo_read,
1995 PACKET_qXfer_siginfo_write,
1996 PACKET_qAttached,
1997
1998 /* Support for conditional tracepoints. */
1999 PACKET_ConditionalTracepoints,
2000
2001 /* Support for target-side breakpoint conditions. */
2002 PACKET_ConditionalBreakpoints,
2003
2004 /* Support for target-side breakpoint commands. */
2005 PACKET_BreakpointCommands,
2006
2007 /* Support for fast tracepoints. */
2008 PACKET_FastTracepoints,
2009
2010 /* Support for static tracepoints. */
2011 PACKET_StaticTracepoints,
2012
2013 /* Support for installing tracepoints while a trace experiment is
2014 running. */
2015 PACKET_InstallInTrace,
2016
2017 PACKET_bc,
2018 PACKET_bs,
2019 PACKET_TracepointSource,
2020 PACKET_QAllow,
2021 PACKET_qXfer_fdpic,
2022 PACKET_QDisableRandomization,
2023 PACKET_QAgent,
2024 PACKET_QTBuffer_size,
2025 PACKET_Qbtrace_off,
2026 PACKET_Qbtrace_bts,
2027 PACKET_Qbtrace_pt,
2028 PACKET_qXfer_btrace,
2029
2030 /* Support for the QNonStop packet. */
2031 PACKET_QNonStop,
2032
2033 /* Support for the QThreadEvents packet. */
2034 PACKET_QThreadEvents,
2035
2036 /* Support for multi-process extensions. */
2037 PACKET_multiprocess_feature,
2038
2039 /* Support for enabling and disabling tracepoints while a trace
2040 experiment is running. */
2041 PACKET_EnableDisableTracepoints_feature,
2042
2043 /* Support for collecting strings using the tracenz bytecode. */
2044 PACKET_tracenz_feature,
2045
2046 /* Support for continuing to run a trace experiment while GDB is
2047 disconnected. */
2048 PACKET_DisconnectedTracing_feature,
2049
2050 /* Support for qXfer:libraries-svr4:read with a non-empty annex. */
2051 PACKET_augmented_libraries_svr4_read_feature,
2052
2053 /* Support for the qXfer:btrace-conf:read packet. */
2054 PACKET_qXfer_btrace_conf,
2055
2056 /* Support for the Qbtrace-conf:bts:size packet. */
2057 PACKET_Qbtrace_conf_bts_size,
2058
2059 /* Support for swbreak+ feature. */
2060 PACKET_swbreak_feature,
2061
2062 /* Support for hwbreak+ feature. */
2063 PACKET_hwbreak_feature,
2064
2065 /* Support for fork events. */
2066 PACKET_fork_event_feature,
2067
2068 /* Support for vfork events. */
2069 PACKET_vfork_event_feature,
2070
2071 /* Support for the Qbtrace-conf:pt:size packet. */
2072 PACKET_Qbtrace_conf_pt_size,
2073
2074 /* Support for exec events. */
2075 PACKET_exec_event_feature,
2076
2077 /* Support for query supported vCont actions. */
2078 PACKET_vContSupported,
2079
2080 /* Support remote CTRL-C. */
2081 PACKET_vCtrlC,
2082
2083 /* Support TARGET_WAITKIND_NO_RESUMED. */
2084 PACKET_no_resumed,
2085
2086 PACKET_MAX
2087 };
2088
2089 static struct packet_config remote_protocol_packets[PACKET_MAX];
2090
2091 /* Returns the packet's corresponding "set remote foo-packet" command
2092 state. See struct packet_config for more details. */
2093
2094 static enum auto_boolean
2095 packet_set_cmd_state (int packet)
2096 {
2097 return remote_protocol_packets[packet].detect;
2098 }
2099
2100 /* Returns whether a given packet or feature is supported. This takes
2101 into account the state of the corresponding "set remote foo-packet"
2102 command, which may be used to bypass auto-detection. */
2103
2104 static enum packet_support
2105 packet_config_support (struct packet_config *config)
2106 {
2107 switch (config->detect)
2108 {
2109 case AUTO_BOOLEAN_TRUE:
2110 return PACKET_ENABLE;
2111 case AUTO_BOOLEAN_FALSE:
2112 return PACKET_DISABLE;
2113 case AUTO_BOOLEAN_AUTO:
2114 return config->support;
2115 default:
2116 gdb_assert_not_reached (_("bad switch"));
2117 }
2118 }
2119
2120 /* Same as packet_config_support, but takes the packet's enum value as
2121 argument. */
2122
2123 static enum packet_support
2124 packet_support (int packet)
2125 {
2126 struct packet_config *config = &remote_protocol_packets[packet];
2127
2128 return packet_config_support (config);
2129 }
2130
2131 static void
2132 show_remote_protocol_packet_cmd (struct ui_file *file, int from_tty,
2133 struct cmd_list_element *c,
2134 const char *value)
2135 {
2136 struct packet_config *packet;
2137
2138 for (packet = remote_protocol_packets;
2139 packet < &remote_protocol_packets[PACKET_MAX];
2140 packet++)
2141 {
2142 if (&packet->detect == c->var)
2143 {
2144 show_packet_config_cmd (packet);
2145 return;
2146 }
2147 }
2148 internal_error (__FILE__, __LINE__, _("Could not find config for %s"),
2149 c->name);
2150 }
2151
2152 /* Should we try one of the 'Z' requests? */
2153
2154 enum Z_packet_type
2155 {
2156 Z_PACKET_SOFTWARE_BP,
2157 Z_PACKET_HARDWARE_BP,
2158 Z_PACKET_WRITE_WP,
2159 Z_PACKET_READ_WP,
2160 Z_PACKET_ACCESS_WP,
2161 NR_Z_PACKET_TYPES
2162 };
2163
2164 /* For compatibility with older distributions. Provide a ``set remote
2165 Z-packet ...'' command that updates all the Z packet types. */
2166
2167 static enum auto_boolean remote_Z_packet_detect;
2168
2169 static void
2170 set_remote_protocol_Z_packet_cmd (const char *args, int from_tty,
2171 struct cmd_list_element *c)
2172 {
2173 int i;
2174
2175 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2176 remote_protocol_packets[PACKET_Z0 + i].detect = remote_Z_packet_detect;
2177 }
2178
2179 static void
2180 show_remote_protocol_Z_packet_cmd (struct ui_file *file, int from_tty,
2181 struct cmd_list_element *c,
2182 const char *value)
2183 {
2184 int i;
2185
2186 for (i = 0; i < NR_Z_PACKET_TYPES; i++)
2187 {
2188 show_packet_config_cmd (&remote_protocol_packets[PACKET_Z0 + i]);
2189 }
2190 }
2191
2192 /* Returns true if the multi-process extensions are in effect. */
2193
2194 static int
2195 remote_multi_process_p (struct remote_state *rs)
2196 {
2197 return packet_support (PACKET_multiprocess_feature) == PACKET_ENABLE;
2198 }
2199
2200 /* Returns true if fork events are supported. */
2201
2202 static int
2203 remote_fork_event_p (struct remote_state *rs)
2204 {
2205 return packet_support (PACKET_fork_event_feature) == PACKET_ENABLE;
2206 }
2207
2208 /* Returns true if vfork events are supported. */
2209
2210 static int
2211 remote_vfork_event_p (struct remote_state *rs)
2212 {
2213 return packet_support (PACKET_vfork_event_feature) == PACKET_ENABLE;
2214 }
2215
2216 /* Returns true if exec events are supported. */
2217
2218 static int
2219 remote_exec_event_p (struct remote_state *rs)
2220 {
2221 return packet_support (PACKET_exec_event_feature) == PACKET_ENABLE;
2222 }
2223
2224 /* Insert fork catchpoint target routine. If fork events are enabled
2225 then return success, nothing more to do. */
2226
2227 int
2228 remote_target::insert_fork_catchpoint (int pid)
2229 {
2230 struct remote_state *rs = get_remote_state ();
2231
2232 return !remote_fork_event_p (rs);
2233 }
2234
2235 /* Remove fork catchpoint target routine. Nothing to do, just
2236 return success. */
2237
2238 int
2239 remote_target::remove_fork_catchpoint (int pid)
2240 {
2241 return 0;
2242 }
2243
2244 /* Insert vfork catchpoint target routine. If vfork events are enabled
2245 then return success, nothing more to do. */
2246
2247 int
2248 remote_target::insert_vfork_catchpoint (int pid)
2249 {
2250 struct remote_state *rs = get_remote_state ();
2251
2252 return !remote_vfork_event_p (rs);
2253 }
2254
2255 /* Remove vfork catchpoint target routine. Nothing to do, just
2256 return success. */
2257
2258 int
2259 remote_target::remove_vfork_catchpoint (int pid)
2260 {
2261 return 0;
2262 }
2263
2264 /* Insert exec catchpoint target routine. If exec events are
2265 enabled, just return success. */
2266
2267 int
2268 remote_target::insert_exec_catchpoint (int pid)
2269 {
2270 struct remote_state *rs = get_remote_state ();
2271
2272 return !remote_exec_event_p (rs);
2273 }
2274
2275 /* Remove exec catchpoint target routine. Nothing to do, just
2276 return success. */
2277
2278 int
2279 remote_target::remove_exec_catchpoint (int pid)
2280 {
2281 return 0;
2282 }
2283
2284 \f
2285
2286 /* Take advantage of the fact that the TID field is not used, to tag
2287 special ptids with it set to != 0. */
2288 static const ptid_t magic_null_ptid (42000, -1, 1);
2289 static const ptid_t not_sent_ptid (42000, -2, 1);
2290 static const ptid_t any_thread_ptid (42000, 0, 1);
2291
2292 /* Find out if the stub attached to PID (and hence GDB should offer to
2293 detach instead of killing it when bailing out). */
2294
2295 int
2296 remote_target::remote_query_attached (int pid)
2297 {
2298 struct remote_state *rs = get_remote_state ();
2299 size_t size = get_remote_packet_size ();
2300
2301 if (packet_support (PACKET_qAttached) == PACKET_DISABLE)
2302 return 0;
2303
2304 if (remote_multi_process_p (rs))
2305 xsnprintf (rs->buf.data (), size, "qAttached:%x", pid);
2306 else
2307 xsnprintf (rs->buf.data (), size, "qAttached");
2308
2309 putpkt (rs->buf);
2310 getpkt (&rs->buf, 0);
2311
2312 switch (packet_ok (rs->buf,
2313 &remote_protocol_packets[PACKET_qAttached]))
2314 {
2315 case PACKET_OK:
2316 if (strcmp (rs->buf.data (), "1") == 0)
2317 return 1;
2318 break;
2319 case PACKET_ERROR:
2320 warning (_("Remote failure reply: %s"), rs->buf.data ());
2321 break;
2322 case PACKET_UNKNOWN:
2323 break;
2324 }
2325
2326 return 0;
2327 }
2328
2329 /* Add PID to GDB's inferior table. If FAKE_PID_P is true, then PID
2330 has been invented by GDB, instead of reported by the target. Since
2331 we can be connected to a remote system before before knowing about
2332 any inferior, mark the target with execution when we find the first
2333 inferior. If ATTACHED is 1, then we had just attached to this
2334 inferior. If it is 0, then we just created this inferior. If it
2335 is -1, then try querying the remote stub to find out if it had
2336 attached to the inferior or not. If TRY_OPEN_EXEC is true then
2337 attempt to open this inferior's executable as the main executable
2338 if no main executable is open already. */
2339
2340 inferior *
2341 remote_target::remote_add_inferior (bool fake_pid_p, int pid, int attached,
2342 int try_open_exec)
2343 {
2344 struct inferior *inf;
2345
2346 /* Check whether this process we're learning about is to be
2347 considered attached, or if is to be considered to have been
2348 spawned by the stub. */
2349 if (attached == -1)
2350 attached = remote_query_attached (pid);
2351
2352 if (gdbarch_has_global_solist (target_gdbarch ()))
2353 {
2354 /* If the target shares code across all inferiors, then every
2355 attach adds a new inferior. */
2356 inf = add_inferior (pid);
2357
2358 /* ... and every inferior is bound to the same program space.
2359 However, each inferior may still have its own address
2360 space. */
2361 inf->aspace = maybe_new_address_space ();
2362 inf->pspace = current_program_space;
2363 }
2364 else
2365 {
2366 /* In the traditional debugging scenario, there's a 1-1 match
2367 between program/address spaces. We simply bind the inferior
2368 to the program space's address space. */
2369 inf = current_inferior ();
2370
2371 /* However, if the current inferior is already bound to a
2372 process, find some other empty inferior. */
2373 if (inf->pid != 0)
2374 {
2375 inf = nullptr;
2376 for (inferior *it : all_inferiors ())
2377 if (it->pid == 0)
2378 {
2379 inf = it;
2380 break;
2381 }
2382 }
2383 if (inf == nullptr)
2384 {
2385 /* Since all inferiors were already bound to a process, add
2386 a new inferior. */
2387 inf = add_inferior_with_spaces ();
2388 }
2389 switch_to_inferior_no_thread (inf);
2390 inferior_appeared (inf, pid);
2391 }
2392
2393 inf->attach_flag = attached;
2394 inf->fake_pid_p = fake_pid_p;
2395
2396 /* If no main executable is currently open then attempt to
2397 open the file that was executed to create this inferior. */
2398 if (try_open_exec && get_exec_file (0) == NULL)
2399 exec_file_locate_attach (pid, 0, 1);
2400
2401 return inf;
2402 }
2403
2404 static remote_thread_info *get_remote_thread_info (thread_info *thread);
2405 static remote_thread_info *get_remote_thread_info (ptid_t ptid);
2406
2407 /* Add thread PTID to GDB's thread list. Tag it as executing/running
2408 according to RUNNING. */
2409
2410 thread_info *
2411 remote_target::remote_add_thread (ptid_t ptid, bool running, bool executing)
2412 {
2413 struct remote_state *rs = get_remote_state ();
2414 struct thread_info *thread;
2415
2416 /* GDB historically didn't pull threads in the initial connection
2417 setup. If the remote target doesn't even have a concept of
2418 threads (e.g., a bare-metal target), even if internally we
2419 consider that a single-threaded target, mentioning a new thread
2420 might be confusing to the user. Be silent then, preserving the
2421 age old behavior. */
2422 if (rs->starting_up)
2423 thread = add_thread_silent (ptid);
2424 else
2425 thread = add_thread (ptid);
2426
2427 get_remote_thread_info (thread)->vcont_resumed = executing;
2428 set_executing (ptid, executing);
2429 set_running (ptid, running);
2430
2431 return thread;
2432 }
2433
2434 /* Come here when we learn about a thread id from the remote target.
2435 It may be the first time we hear about such thread, so take the
2436 opportunity to add it to GDB's thread list. In case this is the
2437 first time we're noticing its corresponding inferior, add it to
2438 GDB's inferior list as well. EXECUTING indicates whether the
2439 thread is (internally) executing or stopped. */
2440
2441 void
2442 remote_target::remote_notice_new_inferior (ptid_t currthread, int executing)
2443 {
2444 /* In non-stop mode, we assume new found threads are (externally)
2445 running until proven otherwise with a stop reply. In all-stop,
2446 we can only get here if all threads are stopped. */
2447 int running = target_is_non_stop_p () ? 1 : 0;
2448
2449 /* If this is a new thread, add it to GDB's thread list.
2450 If we leave it up to WFI to do this, bad things will happen. */
2451
2452 thread_info *tp = find_thread_ptid (currthread);
2453 if (tp != NULL && tp->state == THREAD_EXITED)
2454 {
2455 /* We're seeing an event on a thread id we knew had exited.
2456 This has to be a new thread reusing the old id. Add it. */
2457 remote_add_thread (currthread, running, executing);
2458 return;
2459 }
2460
2461 if (!in_thread_list (currthread))
2462 {
2463 struct inferior *inf = NULL;
2464 int pid = currthread.pid ();
2465
2466 if (inferior_ptid.is_pid ()
2467 && pid == inferior_ptid.pid ())
2468 {
2469 /* inferior_ptid has no thread member yet. This can happen
2470 with the vAttach -> remote_wait,"TAAthread:" path if the
2471 stub doesn't support qC. This is the first stop reported
2472 after an attach, so this is the main thread. Update the
2473 ptid in the thread list. */
2474 if (in_thread_list (ptid_t (pid)))
2475 thread_change_ptid (inferior_ptid, currthread);
2476 else
2477 {
2478 remote_add_thread (currthread, running, executing);
2479 inferior_ptid = currthread;
2480 }
2481 return;
2482 }
2483
2484 if (magic_null_ptid == inferior_ptid)
2485 {
2486 /* inferior_ptid is not set yet. This can happen with the
2487 vRun -> remote_wait,"TAAthread:" path if the stub
2488 doesn't support qC. This is the first stop reported
2489 after an attach, so this is the main thread. Update the
2490 ptid in the thread list. */
2491 thread_change_ptid (inferior_ptid, currthread);
2492 return;
2493 }
2494
2495 /* When connecting to a target remote, or to a target
2496 extended-remote which already was debugging an inferior, we
2497 may not know about it yet. Add it before adding its child
2498 thread, so notifications are emitted in a sensible order. */
2499 if (find_inferior_pid (currthread.pid ()) == NULL)
2500 {
2501 struct remote_state *rs = get_remote_state ();
2502 bool fake_pid_p = !remote_multi_process_p (rs);
2503
2504 inf = remote_add_inferior (fake_pid_p,
2505 currthread.pid (), -1, 1);
2506 }
2507
2508 /* This is really a new thread. Add it. */
2509 thread_info *new_thr
2510 = remote_add_thread (currthread, running, executing);
2511
2512 /* If we found a new inferior, let the common code do whatever
2513 it needs to with it (e.g., read shared libraries, insert
2514 breakpoints), unless we're just setting up an all-stop
2515 connection. */
2516 if (inf != NULL)
2517 {
2518 struct remote_state *rs = get_remote_state ();
2519
2520 if (!rs->starting_up)
2521 notice_new_inferior (new_thr, executing, 0);
2522 }
2523 }
2524 }
2525
2526 /* Return THREAD's private thread data, creating it if necessary. */
2527
2528 static remote_thread_info *
2529 get_remote_thread_info (thread_info *thread)
2530 {
2531 gdb_assert (thread != NULL);
2532
2533 if (thread->priv == NULL)
2534 thread->priv.reset (new remote_thread_info);
2535
2536 return static_cast<remote_thread_info *> (thread->priv.get ());
2537 }
2538
2539 static remote_thread_info *
2540 get_remote_thread_info (ptid_t ptid)
2541 {
2542 thread_info *thr = find_thread_ptid (ptid);
2543 return get_remote_thread_info (thr);
2544 }
2545
2546 /* Call this function as a result of
2547 1) A halt indication (T packet) containing a thread id
2548 2) A direct query of currthread
2549 3) Successful execution of set thread */
2550
2551 static void
2552 record_currthread (struct remote_state *rs, ptid_t currthread)
2553 {
2554 rs->general_thread = currthread;
2555 }
2556
2557 /* If 'QPassSignals' is supported, tell the remote stub what signals
2558 it can simply pass through to the inferior without reporting. */
2559
2560 void
2561 remote_target::pass_signals (gdb::array_view<const unsigned char> pass_signals)
2562 {
2563 if (packet_support (PACKET_QPassSignals) != PACKET_DISABLE)
2564 {
2565 char *pass_packet, *p;
2566 int count = 0;
2567 struct remote_state *rs = get_remote_state ();
2568
2569 gdb_assert (pass_signals.size () < 256);
2570 for (size_t i = 0; i < pass_signals.size (); i++)
2571 {
2572 if (pass_signals[i])
2573 count++;
2574 }
2575 pass_packet = (char *) xmalloc (count * 3 + strlen ("QPassSignals:") + 1);
2576 strcpy (pass_packet, "QPassSignals:");
2577 p = pass_packet + strlen (pass_packet);
2578 for (size_t i = 0; i < pass_signals.size (); i++)
2579 {
2580 if (pass_signals[i])
2581 {
2582 if (i >= 16)
2583 *p++ = tohex (i >> 4);
2584 *p++ = tohex (i & 15);
2585 if (count)
2586 *p++ = ';';
2587 else
2588 break;
2589 count--;
2590 }
2591 }
2592 *p = 0;
2593 if (!rs->last_pass_packet || strcmp (rs->last_pass_packet, pass_packet))
2594 {
2595 putpkt (pass_packet);
2596 getpkt (&rs->buf, 0);
2597 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QPassSignals]);
2598 if (rs->last_pass_packet)
2599 xfree (rs->last_pass_packet);
2600 rs->last_pass_packet = pass_packet;
2601 }
2602 else
2603 xfree (pass_packet);
2604 }
2605 }
2606
2607 /* If 'QCatchSyscalls' is supported, tell the remote stub
2608 to report syscalls to GDB. */
2609
2610 int
2611 remote_target::set_syscall_catchpoint (int pid, bool needed, int any_count,
2612 gdb::array_view<const int> syscall_counts)
2613 {
2614 const char *catch_packet;
2615 enum packet_result result;
2616 int n_sysno = 0;
2617
2618 if (packet_support (PACKET_QCatchSyscalls) == PACKET_DISABLE)
2619 {
2620 /* Not supported. */
2621 return 1;
2622 }
2623
2624 if (needed && any_count == 0)
2625 {
2626 /* Count how many syscalls are to be caught. */
2627 for (size_t i = 0; i < syscall_counts.size (); i++)
2628 {
2629 if (syscall_counts[i] != 0)
2630 n_sysno++;
2631 }
2632 }
2633
2634 if (remote_debug)
2635 {
2636 fprintf_unfiltered (gdb_stdlog,
2637 "remote_set_syscall_catchpoint "
2638 "pid %d needed %d any_count %d n_sysno %d\n",
2639 pid, needed, any_count, n_sysno);
2640 }
2641
2642 std::string built_packet;
2643 if (needed)
2644 {
2645 /* Prepare a packet with the sysno list, assuming max 8+1
2646 characters for a sysno. If the resulting packet size is too
2647 big, fallback on the non-selective packet. */
2648 const int maxpktsz = strlen ("QCatchSyscalls:1") + n_sysno * 9 + 1;
2649 built_packet.reserve (maxpktsz);
2650 built_packet = "QCatchSyscalls:1";
2651 if (any_count == 0)
2652 {
2653 /* Add in each syscall to be caught. */
2654 for (size_t i = 0; i < syscall_counts.size (); i++)
2655 {
2656 if (syscall_counts[i] != 0)
2657 string_appendf (built_packet, ";%zx", i);
2658 }
2659 }
2660 if (built_packet.size () > get_remote_packet_size ())
2661 {
2662 /* catch_packet too big. Fallback to less efficient
2663 non selective mode, with GDB doing the filtering. */
2664 catch_packet = "QCatchSyscalls:1";
2665 }
2666 else
2667 catch_packet = built_packet.c_str ();
2668 }
2669 else
2670 catch_packet = "QCatchSyscalls:0";
2671
2672 struct remote_state *rs = get_remote_state ();
2673
2674 putpkt (catch_packet);
2675 getpkt (&rs->buf, 0);
2676 result = packet_ok (rs->buf, &remote_protocol_packets[PACKET_QCatchSyscalls]);
2677 if (result == PACKET_OK)
2678 return 0;
2679 else
2680 return -1;
2681 }
2682
2683 /* If 'QProgramSignals' is supported, tell the remote stub what
2684 signals it should pass through to the inferior when detaching. */
2685
2686 void
2687 remote_target::program_signals (gdb::array_view<const unsigned char> signals)
2688 {
2689 if (packet_support (PACKET_QProgramSignals) != PACKET_DISABLE)
2690 {
2691 char *packet, *p;
2692 int count = 0;
2693 struct remote_state *rs = get_remote_state ();
2694
2695 gdb_assert (signals.size () < 256);
2696 for (size_t i = 0; i < signals.size (); i++)
2697 {
2698 if (signals[i])
2699 count++;
2700 }
2701 packet = (char *) xmalloc (count * 3 + strlen ("QProgramSignals:") + 1);
2702 strcpy (packet, "QProgramSignals:");
2703 p = packet + strlen (packet);
2704 for (size_t i = 0; i < signals.size (); i++)
2705 {
2706 if (signal_pass_state (i))
2707 {
2708 if (i >= 16)
2709 *p++ = tohex (i >> 4);
2710 *p++ = tohex (i & 15);
2711 if (count)
2712 *p++ = ';';
2713 else
2714 break;
2715 count--;
2716 }
2717 }
2718 *p = 0;
2719 if (!rs->last_program_signals_packet
2720 || strcmp (rs->last_program_signals_packet, packet) != 0)
2721 {
2722 putpkt (packet);
2723 getpkt (&rs->buf, 0);
2724 packet_ok (rs->buf, &remote_protocol_packets[PACKET_QProgramSignals]);
2725 xfree (rs->last_program_signals_packet);
2726 rs->last_program_signals_packet = packet;
2727 }
2728 else
2729 xfree (packet);
2730 }
2731 }
2732
2733 /* If PTID is MAGIC_NULL_PTID, don't set any thread. If PTID is
2734 MINUS_ONE_PTID, set the thread to -1, so the stub returns the
2735 thread. If GEN is set, set the general thread, if not, then set
2736 the step/continue thread. */
2737 void
2738 remote_target::set_thread (ptid_t ptid, int gen)
2739 {
2740 struct remote_state *rs = get_remote_state ();
2741 ptid_t state = gen ? rs->general_thread : rs->continue_thread;
2742 char *buf = rs->buf.data ();
2743 char *endbuf = buf + get_remote_packet_size ();
2744
2745 if (state == ptid)
2746 return;
2747
2748 *buf++ = 'H';
2749 *buf++ = gen ? 'g' : 'c';
2750 if (ptid == magic_null_ptid)
2751 xsnprintf (buf, endbuf - buf, "0");
2752 else if (ptid == any_thread_ptid)
2753 xsnprintf (buf, endbuf - buf, "0");
2754 else if (ptid == minus_one_ptid)
2755 xsnprintf (buf, endbuf - buf, "-1");
2756 else
2757 write_ptid (buf, endbuf, ptid);
2758 putpkt (rs->buf);
2759 getpkt (&rs->buf, 0);
2760 if (gen)
2761 rs->general_thread = ptid;
2762 else
2763 rs->continue_thread = ptid;
2764 }
2765
2766 void
2767 remote_target::set_general_thread (ptid_t ptid)
2768 {
2769 set_thread (ptid, 1);
2770 }
2771
2772 void
2773 remote_target::set_continue_thread (ptid_t ptid)
2774 {
2775 set_thread (ptid, 0);
2776 }
2777
2778 /* Change the remote current process. Which thread within the process
2779 ends up selected isn't important, as long as it is the same process
2780 as what INFERIOR_PTID points to.
2781
2782 This comes from that fact that there is no explicit notion of
2783 "selected process" in the protocol. The selected process for
2784 general operations is the process the selected general thread
2785 belongs to. */
2786
2787 void
2788 remote_target::set_general_process ()
2789 {
2790 struct remote_state *rs = get_remote_state ();
2791
2792 /* If the remote can't handle multiple processes, don't bother. */
2793 if (!remote_multi_process_p (rs))
2794 return;
2795
2796 /* We only need to change the remote current thread if it's pointing
2797 at some other process. */
2798 if (rs->general_thread.pid () != inferior_ptid.pid ())
2799 set_general_thread (inferior_ptid);
2800 }
2801
2802 \f
2803 /* Return nonzero if this is the main thread that we made up ourselves
2804 to model non-threaded targets as single-threaded. */
2805
2806 static int
2807 remote_thread_always_alive (ptid_t ptid)
2808 {
2809 if (ptid == magic_null_ptid)
2810 /* The main thread is always alive. */
2811 return 1;
2812
2813 if (ptid.pid () != 0 && ptid.lwp () == 0)
2814 /* The main thread is always alive. This can happen after a
2815 vAttach, if the remote side doesn't support
2816 multi-threading. */
2817 return 1;
2818
2819 return 0;
2820 }
2821
2822 /* Return nonzero if the thread PTID is still alive on the remote
2823 system. */
2824
2825 bool
2826 remote_target::thread_alive (ptid_t ptid)
2827 {
2828 struct remote_state *rs = get_remote_state ();
2829 char *p, *endp;
2830
2831 /* Check if this is a thread that we made up ourselves to model
2832 non-threaded targets as single-threaded. */
2833 if (remote_thread_always_alive (ptid))
2834 return 1;
2835
2836 p = rs->buf.data ();
2837 endp = p + get_remote_packet_size ();
2838
2839 *p++ = 'T';
2840 write_ptid (p, endp, ptid);
2841
2842 putpkt (rs->buf);
2843 getpkt (&rs->buf, 0);
2844 return (rs->buf[0] == 'O' && rs->buf[1] == 'K');
2845 }
2846
2847 /* Return a pointer to a thread name if we know it and NULL otherwise.
2848 The thread_info object owns the memory for the name. */
2849
2850 const char *
2851 remote_target::thread_name (struct thread_info *info)
2852 {
2853 if (info->priv != NULL)
2854 {
2855 const std::string &name = get_remote_thread_info (info)->name;
2856 return !name.empty () ? name.c_str () : NULL;
2857 }
2858
2859 return NULL;
2860 }
2861
2862 /* About these extended threadlist and threadinfo packets. They are
2863 variable length packets but, the fields within them are often fixed
2864 length. They are redundant enough to send over UDP as is the
2865 remote protocol in general. There is a matching unit test module
2866 in libstub. */
2867
2868 /* WARNING: This threadref data structure comes from the remote O.S.,
2869 libstub protocol encoding, and remote.c. It is not particularly
2870 changable. */
2871
2872 /* Right now, the internal structure is int. We want it to be bigger.
2873 Plan to fix this. */
2874
2875 typedef int gdb_threadref; /* Internal GDB thread reference. */
2876
2877 /* gdb_ext_thread_info is an internal GDB data structure which is
2878 equivalent to the reply of the remote threadinfo packet. */
2879
2880 struct gdb_ext_thread_info
2881 {
2882 threadref threadid; /* External form of thread reference. */
2883 int active; /* Has state interesting to GDB?
2884 regs, stack. */
2885 char display[256]; /* Brief state display, name,
2886 blocked/suspended. */
2887 char shortname[32]; /* To be used to name threads. */
2888 char more_display[256]; /* Long info, statistics, queue depth,
2889 whatever. */
2890 };
2891
2892 /* The volume of remote transfers can be limited by submitting
2893 a mask containing bits specifying the desired information.
2894 Use a union of these values as the 'selection' parameter to
2895 get_thread_info. FIXME: Make these TAG names more thread specific. */
2896
2897 #define TAG_THREADID 1
2898 #define TAG_EXISTS 2
2899 #define TAG_DISPLAY 4
2900 #define TAG_THREADNAME 8
2901 #define TAG_MOREDISPLAY 16
2902
2903 #define BUF_THREAD_ID_SIZE (OPAQUETHREADBYTES * 2)
2904
2905 static char *unpack_nibble (char *buf, int *val);
2906
2907 static char *unpack_byte (char *buf, int *value);
2908
2909 static char *pack_int (char *buf, int value);
2910
2911 static char *unpack_int (char *buf, int *value);
2912
2913 static char *unpack_string (char *src, char *dest, int length);
2914
2915 static char *pack_threadid (char *pkt, threadref *id);
2916
2917 static char *unpack_threadid (char *inbuf, threadref *id);
2918
2919 void int_to_threadref (threadref *id, int value);
2920
2921 static int threadref_to_int (threadref *ref);
2922
2923 static void copy_threadref (threadref *dest, threadref *src);
2924
2925 static int threadmatch (threadref *dest, threadref *src);
2926
2927 static char *pack_threadinfo_request (char *pkt, int mode,
2928 threadref *id);
2929
2930 static char *pack_threadlist_request (char *pkt, int startflag,
2931 int threadcount,
2932 threadref *nextthread);
2933
2934 static int remote_newthread_step (threadref *ref, void *context);
2935
2936
2937 /* Write a PTID to BUF. ENDBUF points to one-passed-the-end of the
2938 buffer we're allowed to write to. Returns
2939 BUF+CHARACTERS_WRITTEN. */
2940
2941 char *
2942 remote_target::write_ptid (char *buf, const char *endbuf, ptid_t ptid)
2943 {
2944 int pid, tid;
2945 struct remote_state *rs = get_remote_state ();
2946
2947 if (remote_multi_process_p (rs))
2948 {
2949 pid = ptid.pid ();
2950 if (pid < 0)
2951 buf += xsnprintf (buf, endbuf - buf, "p-%x.", -pid);
2952 else
2953 buf += xsnprintf (buf, endbuf - buf, "p%x.", pid);
2954 }
2955 tid = ptid.lwp ();
2956 if (tid < 0)
2957 buf += xsnprintf (buf, endbuf - buf, "-%x", -tid);
2958 else
2959 buf += xsnprintf (buf, endbuf - buf, "%x", tid);
2960
2961 return buf;
2962 }
2963
2964 /* Extract a PTID from BUF. If non-null, OBUF is set to one past the
2965 last parsed char. Returns null_ptid if no thread id is found, and
2966 throws an error if the thread id has an invalid format. */
2967
2968 static ptid_t
2969 read_ptid (const char *buf, const char **obuf)
2970 {
2971 const char *p = buf;
2972 const char *pp;
2973 ULONGEST pid = 0, tid = 0;
2974
2975 if (*p == 'p')
2976 {
2977 /* Multi-process ptid. */
2978 pp = unpack_varlen_hex (p + 1, &pid);
2979 if (*pp != '.')
2980 error (_("invalid remote ptid: %s"), p);
2981
2982 p = pp;
2983 pp = unpack_varlen_hex (p + 1, &tid);
2984 if (obuf)
2985 *obuf = pp;
2986 return ptid_t (pid, tid, 0);
2987 }
2988
2989 /* No multi-process. Just a tid. */
2990 pp = unpack_varlen_hex (p, &tid);
2991
2992 /* Return null_ptid when no thread id is found. */
2993 if (p == pp)
2994 {
2995 if (obuf)
2996 *obuf = pp;
2997 return null_ptid;
2998 }
2999
3000 /* Since the stub is not sending a process id, then default to
3001 what's in inferior_ptid, unless it's null at this point. If so,
3002 then since there's no way to know the pid of the reported
3003 threads, use the magic number. */
3004 if (inferior_ptid == null_ptid)
3005 pid = magic_null_ptid.pid ();
3006 else
3007 pid = inferior_ptid.pid ();
3008
3009 if (obuf)
3010 *obuf = pp;
3011 return ptid_t (pid, tid, 0);
3012 }
3013
3014 static int
3015 stubhex (int ch)
3016 {
3017 if (ch >= 'a' && ch <= 'f')
3018 return ch - 'a' + 10;
3019 if (ch >= '0' && ch <= '9')
3020 return ch - '0';
3021 if (ch >= 'A' && ch <= 'F')
3022 return ch - 'A' + 10;
3023 return -1;
3024 }
3025
3026 static int
3027 stub_unpack_int (char *buff, int fieldlength)
3028 {
3029 int nibble;
3030 int retval = 0;
3031
3032 while (fieldlength)
3033 {
3034 nibble = stubhex (*buff++);
3035 retval |= nibble;
3036 fieldlength--;
3037 if (fieldlength)
3038 retval = retval << 4;
3039 }
3040 return retval;
3041 }
3042
3043 static char *
3044 unpack_nibble (char *buf, int *val)
3045 {
3046 *val = fromhex (*buf++);
3047 return buf;
3048 }
3049
3050 static char *
3051 unpack_byte (char *buf, int *value)
3052 {
3053 *value = stub_unpack_int (buf, 2);
3054 return buf + 2;
3055 }
3056
3057 static char *
3058 pack_int (char *buf, int value)
3059 {
3060 buf = pack_hex_byte (buf, (value >> 24) & 0xff);
3061 buf = pack_hex_byte (buf, (value >> 16) & 0xff);
3062 buf = pack_hex_byte (buf, (value >> 8) & 0x0ff);
3063 buf = pack_hex_byte (buf, (value & 0xff));
3064 return buf;
3065 }
3066
3067 static char *
3068 unpack_int (char *buf, int *value)
3069 {
3070 *value = stub_unpack_int (buf, 8);
3071 return buf + 8;
3072 }
3073
3074 #if 0 /* Currently unused, uncomment when needed. */
3075 static char *pack_string (char *pkt, char *string);
3076
3077 static char *
3078 pack_string (char *pkt, char *string)
3079 {
3080 char ch;
3081 int len;
3082
3083 len = strlen (string);
3084 if (len > 200)
3085 len = 200; /* Bigger than most GDB packets, junk??? */
3086 pkt = pack_hex_byte (pkt, len);
3087 while (len-- > 0)
3088 {
3089 ch = *string++;
3090 if ((ch == '\0') || (ch == '#'))
3091 ch = '*'; /* Protect encapsulation. */
3092 *pkt++ = ch;
3093 }
3094 return pkt;
3095 }
3096 #endif /* 0 (unused) */
3097
3098 static char *
3099 unpack_string (char *src, char *dest, int length)
3100 {
3101 while (length--)
3102 *dest++ = *src++;
3103 *dest = '\0';
3104 return src;
3105 }
3106
3107 static char *
3108 pack_threadid (char *pkt, threadref *id)
3109 {
3110 char *limit;
3111 unsigned char *altid;
3112
3113 altid = (unsigned char *) id;
3114 limit = pkt + BUF_THREAD_ID_SIZE;
3115 while (pkt < limit)
3116 pkt = pack_hex_byte (pkt, *altid++);
3117 return pkt;
3118 }
3119
3120
3121 static char *
3122 unpack_threadid (char *inbuf, threadref *id)
3123 {
3124 char *altref;
3125 char *limit = inbuf + BUF_THREAD_ID_SIZE;
3126 int x, y;
3127
3128 altref = (char *) id;
3129
3130 while (inbuf < limit)
3131 {
3132 x = stubhex (*inbuf++);
3133 y = stubhex (*inbuf++);
3134 *altref++ = (x << 4) | y;
3135 }
3136 return inbuf;
3137 }
3138
3139 /* Externally, threadrefs are 64 bits but internally, they are still
3140 ints. This is due to a mismatch of specifications. We would like
3141 to use 64bit thread references internally. This is an adapter
3142 function. */
3143
3144 void
3145 int_to_threadref (threadref *id, int value)
3146 {
3147 unsigned char *scan;
3148
3149 scan = (unsigned char *) id;
3150 {
3151 int i = 4;
3152 while (i--)
3153 *scan++ = 0;
3154 }
3155 *scan++ = (value >> 24) & 0xff;
3156 *scan++ = (value >> 16) & 0xff;
3157 *scan++ = (value >> 8) & 0xff;
3158 *scan++ = (value & 0xff);
3159 }
3160
3161 static int
3162 threadref_to_int (threadref *ref)
3163 {
3164 int i, value = 0;
3165 unsigned char *scan;
3166
3167 scan = *ref;
3168 scan += 4;
3169 i = 4;
3170 while (i-- > 0)
3171 value = (value << 8) | ((*scan++) & 0xff);
3172 return value;
3173 }
3174
3175 static void
3176 copy_threadref (threadref *dest, threadref *src)
3177 {
3178 int i;
3179 unsigned char *csrc, *cdest;
3180
3181 csrc = (unsigned char *) src;
3182 cdest = (unsigned char *) dest;
3183 i = 8;
3184 while (i--)
3185 *cdest++ = *csrc++;
3186 }
3187
3188 static int
3189 threadmatch (threadref *dest, threadref *src)
3190 {
3191 /* Things are broken right now, so just assume we got a match. */
3192 #if 0
3193 unsigned char *srcp, *destp;
3194 int i, result;
3195 srcp = (char *) src;
3196 destp = (char *) dest;
3197
3198 result = 1;
3199 while (i-- > 0)
3200 result &= (*srcp++ == *destp++) ? 1 : 0;
3201 return result;
3202 #endif
3203 return 1;
3204 }
3205
3206 /*
3207 threadid:1, # always request threadid
3208 context_exists:2,
3209 display:4,
3210 unique_name:8,
3211 more_display:16
3212 */
3213
3214 /* Encoding: 'Q':8,'P':8,mask:32,threadid:64 */
3215
3216 static char *
3217 pack_threadinfo_request (char *pkt, int mode, threadref *id)
3218 {
3219 *pkt++ = 'q'; /* Info Query */
3220 *pkt++ = 'P'; /* process or thread info */
3221 pkt = pack_int (pkt, mode); /* mode */
3222 pkt = pack_threadid (pkt, id); /* threadid */
3223 *pkt = '\0'; /* terminate */
3224 return pkt;
3225 }
3226
3227 /* These values tag the fields in a thread info response packet. */
3228 /* Tagging the fields allows us to request specific fields and to
3229 add more fields as time goes by. */
3230
3231 #define TAG_THREADID 1 /* Echo the thread identifier. */
3232 #define TAG_EXISTS 2 /* Is this process defined enough to
3233 fetch registers and its stack? */
3234 #define TAG_DISPLAY 4 /* A short thing maybe to put on a window */
3235 #define TAG_THREADNAME 8 /* string, maps 1-to-1 with a thread is. */
3236 #define TAG_MOREDISPLAY 16 /* Whatever the kernel wants to say about
3237 the process. */
3238
3239 int
3240 remote_target::remote_unpack_thread_info_response (char *pkt,
3241 threadref *expectedref,
3242 gdb_ext_thread_info *info)
3243 {
3244 struct remote_state *rs = get_remote_state ();
3245 int mask, length;
3246 int tag;
3247 threadref ref;
3248 char *limit = pkt + rs->buf.size (); /* Plausible parsing limit. */
3249 int retval = 1;
3250
3251 /* info->threadid = 0; FIXME: implement zero_threadref. */
3252 info->active = 0;
3253 info->display[0] = '\0';
3254 info->shortname[0] = '\0';
3255 info->more_display[0] = '\0';
3256
3257 /* Assume the characters indicating the packet type have been
3258 stripped. */
3259 pkt = unpack_int (pkt, &mask); /* arg mask */
3260 pkt = unpack_threadid (pkt, &ref);
3261
3262 if (mask == 0)
3263 warning (_("Incomplete response to threadinfo request."));
3264 if (!threadmatch (&ref, expectedref))
3265 { /* This is an answer to a different request. */
3266 warning (_("ERROR RMT Thread info mismatch."));
3267 return 0;
3268 }
3269 copy_threadref (&info->threadid, &ref);
3270
3271 /* Loop on tagged fields , try to bail if something goes wrong. */
3272
3273 /* Packets are terminated with nulls. */
3274 while ((pkt < limit) && mask && *pkt)
3275 {
3276 pkt = unpack_int (pkt, &tag); /* tag */
3277 pkt = unpack_byte (pkt, &length); /* length */
3278 if (!(tag & mask)) /* Tags out of synch with mask. */
3279 {
3280 warning (_("ERROR RMT: threadinfo tag mismatch."));
3281 retval = 0;
3282 break;
3283 }
3284 if (tag == TAG_THREADID)
3285 {
3286 if (length != 16)
3287 {
3288 warning (_("ERROR RMT: length of threadid is not 16."));
3289 retval = 0;
3290 break;
3291 }
3292 pkt = unpack_threadid (pkt, &ref);
3293 mask = mask & ~TAG_THREADID;
3294 continue;
3295 }
3296 if (tag == TAG_EXISTS)
3297 {
3298 info->active = stub_unpack_int (pkt, length);
3299 pkt += length;
3300 mask = mask & ~(TAG_EXISTS);
3301 if (length > 8)
3302 {
3303 warning (_("ERROR RMT: 'exists' length too long."));
3304 retval = 0;
3305 break;
3306 }
3307 continue;
3308 }
3309 if (tag == TAG_THREADNAME)
3310 {
3311 pkt = unpack_string (pkt, &info->shortname[0], length);
3312 mask = mask & ~TAG_THREADNAME;
3313 continue;
3314 }
3315 if (tag == TAG_DISPLAY)
3316 {
3317 pkt = unpack_string (pkt, &info->display[0], length);
3318 mask = mask & ~TAG_DISPLAY;
3319 continue;
3320 }
3321 if (tag == TAG_MOREDISPLAY)
3322 {
3323 pkt = unpack_string (pkt, &info->more_display[0], length);
3324 mask = mask & ~TAG_MOREDISPLAY;
3325 continue;
3326 }
3327 warning (_("ERROR RMT: unknown thread info tag."));
3328 break; /* Not a tag we know about. */
3329 }
3330 return retval;
3331 }
3332
3333 int
3334 remote_target::remote_get_threadinfo (threadref *threadid,
3335 int fieldset,
3336 gdb_ext_thread_info *info)
3337 {
3338 struct remote_state *rs = get_remote_state ();
3339 int result;
3340
3341 pack_threadinfo_request (rs->buf.data (), fieldset, threadid);
3342 putpkt (rs->buf);
3343 getpkt (&rs->buf, 0);
3344
3345 if (rs->buf[0] == '\0')
3346 return 0;
3347
3348 result = remote_unpack_thread_info_response (&rs->buf[2],
3349 threadid, info);
3350 return result;
3351 }
3352
3353 /* Format: i'Q':8,i"L":8,initflag:8,batchsize:16,lastthreadid:32 */
3354
3355 static char *
3356 pack_threadlist_request (char *pkt, int startflag, int threadcount,
3357 threadref *nextthread)
3358 {
3359 *pkt++ = 'q'; /* info query packet */
3360 *pkt++ = 'L'; /* Process LIST or threadLIST request */
3361 pkt = pack_nibble (pkt, startflag); /* initflag 1 bytes */
3362 pkt = pack_hex_byte (pkt, threadcount); /* threadcount 2 bytes */
3363 pkt = pack_threadid (pkt, nextthread); /* 64 bit thread identifier */
3364 *pkt = '\0';
3365 return pkt;
3366 }
3367
3368 /* Encoding: 'q':8,'M':8,count:16,done:8,argthreadid:64,(threadid:64)* */
3369
3370 int
3371 remote_target::parse_threadlist_response (char *pkt, int result_limit,
3372 threadref *original_echo,
3373 threadref *resultlist,
3374 int *doneflag)
3375 {
3376 struct remote_state *rs = get_remote_state ();
3377 char *limit;
3378 int count, resultcount, done;
3379
3380 resultcount = 0;
3381 /* Assume the 'q' and 'M chars have been stripped. */
3382 limit = pkt + (rs->buf.size () - BUF_THREAD_ID_SIZE);
3383 /* done parse past here */
3384 pkt = unpack_byte (pkt, &count); /* count field */
3385 pkt = unpack_nibble (pkt, &done);
3386 /* The first threadid is the argument threadid. */
3387 pkt = unpack_threadid (pkt, original_echo); /* should match query packet */
3388 while ((count-- > 0) && (pkt < limit))
3389 {
3390 pkt = unpack_threadid (pkt, resultlist++);
3391 if (resultcount++ >= result_limit)
3392 break;
3393 }
3394 if (doneflag)
3395 *doneflag = done;
3396 return resultcount;
3397 }
3398
3399 /* Fetch the next batch of threads from the remote. Returns -1 if the
3400 qL packet is not supported, 0 on error and 1 on success. */
3401
3402 int
3403 remote_target::remote_get_threadlist (int startflag, threadref *nextthread,
3404 int result_limit, int *done, int *result_count,
3405 threadref *threadlist)
3406 {
3407 struct remote_state *rs = get_remote_state ();
3408 int result = 1;
3409
3410 /* Truncate result limit to be smaller than the packet size. */
3411 if ((((result_limit + 1) * BUF_THREAD_ID_SIZE) + 10)
3412 >= get_remote_packet_size ())
3413 result_limit = (get_remote_packet_size () / BUF_THREAD_ID_SIZE) - 2;
3414
3415 pack_threadlist_request (rs->buf.data (), startflag, result_limit,
3416 nextthread);
3417 putpkt (rs->buf);
3418 getpkt (&rs->buf, 0);
3419 if (rs->buf[0] == '\0')
3420 {
3421 /* Packet not supported. */
3422 return -1;
3423 }
3424
3425 *result_count =
3426 parse_threadlist_response (&rs->buf[2], result_limit,
3427 &rs->echo_nextthread, threadlist, done);
3428
3429 if (!threadmatch (&rs->echo_nextthread, nextthread))
3430 {
3431 /* FIXME: This is a good reason to drop the packet. */
3432 /* Possibly, there is a duplicate response. */
3433 /* Possibilities :
3434 retransmit immediatly - race conditions
3435 retransmit after timeout - yes
3436 exit
3437 wait for packet, then exit
3438 */
3439 warning (_("HMM: threadlist did not echo arg thread, dropping it."));
3440 return 0; /* I choose simply exiting. */
3441 }
3442 if (*result_count <= 0)
3443 {
3444 if (*done != 1)
3445 {
3446 warning (_("RMT ERROR : failed to get remote thread list."));
3447 result = 0;
3448 }
3449 return result; /* break; */
3450 }
3451 if (*result_count > result_limit)
3452 {
3453 *result_count = 0;
3454 warning (_("RMT ERROR: threadlist response longer than requested."));
3455 return 0;
3456 }
3457 return result;
3458 }
3459
3460 /* Fetch the list of remote threads, with the qL packet, and call
3461 STEPFUNCTION for each thread found. Stops iterating and returns 1
3462 if STEPFUNCTION returns true. Stops iterating and returns 0 if the
3463 STEPFUNCTION returns false. If the packet is not supported,
3464 returns -1. */
3465
3466 int
3467 remote_target::remote_threadlist_iterator (rmt_thread_action stepfunction,
3468 void *context, int looplimit)
3469 {
3470 struct remote_state *rs = get_remote_state ();
3471 int done, i, result_count;
3472 int startflag = 1;
3473 int result = 1;
3474 int loopcount = 0;
3475
3476 done = 0;
3477 while (!done)
3478 {
3479 if (loopcount++ > looplimit)
3480 {
3481 result = 0;
3482 warning (_("Remote fetch threadlist -infinite loop-."));
3483 break;
3484 }
3485 result = remote_get_threadlist (startflag, &rs->nextthread,
3486 MAXTHREADLISTRESULTS,
3487 &done, &result_count,
3488 rs->resultthreadlist);
3489 if (result <= 0)
3490 break;
3491 /* Clear for later iterations. */
3492 startflag = 0;
3493 /* Setup to resume next batch of thread references, set nextthread. */
3494 if (result_count >= 1)
3495 copy_threadref (&rs->nextthread,
3496 &rs->resultthreadlist[result_count - 1]);
3497 i = 0;
3498 while (result_count--)
3499 {
3500 if (!(*stepfunction) (&rs->resultthreadlist[i++], context))
3501 {
3502 result = 0;
3503 break;
3504 }
3505 }
3506 }
3507 return result;
3508 }
3509
3510 /* A thread found on the remote target. */
3511
3512 struct thread_item
3513 {
3514 explicit thread_item (ptid_t ptid_)
3515 : ptid (ptid_)
3516 {}
3517
3518 thread_item (thread_item &&other) = default;
3519 thread_item &operator= (thread_item &&other) = default;
3520
3521 DISABLE_COPY_AND_ASSIGN (thread_item);
3522
3523 /* The thread's PTID. */
3524 ptid_t ptid;
3525
3526 /* The thread's extra info. */
3527 std::string extra;
3528
3529 /* The thread's name. */
3530 std::string name;
3531
3532 /* The core the thread was running on. -1 if not known. */
3533 int core = -1;
3534
3535 /* The thread handle associated with the thread. */
3536 gdb::byte_vector thread_handle;
3537 };
3538
3539 /* Context passed around to the various methods listing remote
3540 threads. As new threads are found, they're added to the ITEMS
3541 vector. */
3542
3543 struct threads_listing_context
3544 {
3545 /* Return true if this object contains an entry for a thread with ptid
3546 PTID. */
3547
3548 bool contains_thread (ptid_t ptid) const
3549 {
3550 auto match_ptid = [&] (const thread_item &item)
3551 {
3552 return item.ptid == ptid;
3553 };
3554
3555 auto it = std::find_if (this->items.begin (),
3556 this->items.end (),
3557 match_ptid);
3558
3559 return it != this->items.end ();
3560 }
3561
3562 /* Remove the thread with ptid PTID. */
3563
3564 void remove_thread (ptid_t ptid)
3565 {
3566 auto match_ptid = [&] (const thread_item &item)
3567 {
3568 return item.ptid == ptid;
3569 };
3570
3571 auto it = std::remove_if (this->items.begin (),
3572 this->items.end (),
3573 match_ptid);
3574
3575 if (it != this->items.end ())
3576 this->items.erase (it);
3577 }
3578
3579 /* The threads found on the remote target. */
3580 std::vector<thread_item> items;
3581 };
3582
3583 static int
3584 remote_newthread_step (threadref *ref, void *data)
3585 {
3586 struct threads_listing_context *context
3587 = (struct threads_listing_context *) data;
3588 int pid = inferior_ptid.pid ();
3589 int lwp = threadref_to_int (ref);
3590 ptid_t ptid (pid, lwp);
3591
3592 context->items.emplace_back (ptid);
3593
3594 return 1; /* continue iterator */
3595 }
3596
3597 #define CRAZY_MAX_THREADS 1000
3598
3599 ptid_t
3600 remote_target::remote_current_thread (ptid_t oldpid)
3601 {
3602 struct remote_state *rs = get_remote_state ();
3603
3604 putpkt ("qC");
3605 getpkt (&rs->buf, 0);
3606 if (rs->buf[0] == 'Q' && rs->buf[1] == 'C')
3607 {
3608 const char *obuf;
3609 ptid_t result;
3610
3611 result = read_ptid (&rs->buf[2], &obuf);
3612 if (*obuf != '\0' && remote_debug)
3613 fprintf_unfiltered (gdb_stdlog,
3614 "warning: garbage in qC reply\n");
3615
3616 return result;
3617 }
3618 else
3619 return oldpid;
3620 }
3621
3622 /* List remote threads using the deprecated qL packet. */
3623
3624 int
3625 remote_target::remote_get_threads_with_ql (threads_listing_context *context)
3626 {
3627 if (remote_threadlist_iterator (remote_newthread_step, context,
3628 CRAZY_MAX_THREADS) >= 0)
3629 return 1;
3630
3631 return 0;
3632 }
3633
3634 #if defined(HAVE_LIBEXPAT)
3635
3636 static void
3637 start_thread (struct gdb_xml_parser *parser,
3638 const struct gdb_xml_element *element,
3639 void *user_data,
3640 std::vector<gdb_xml_value> &attributes)
3641 {
3642 struct threads_listing_context *data
3643 = (struct threads_listing_context *) user_data;
3644 struct gdb_xml_value *attr;
3645
3646 char *id = (char *) xml_find_attribute (attributes, "id")->value.get ();
3647 ptid_t ptid = read_ptid (id, NULL);
3648
3649 data->items.emplace_back (ptid);
3650 thread_item &item = data->items.back ();
3651
3652 attr = xml_find_attribute (attributes, "core");
3653 if (attr != NULL)
3654 item.core = *(ULONGEST *) attr->value.get ();
3655
3656 attr = xml_find_attribute (attributes, "name");
3657 if (attr != NULL)
3658 item.name = (const char *) attr->value.get ();
3659
3660 attr = xml_find_attribute (attributes, "handle");
3661 if (attr != NULL)
3662 item.thread_handle = hex2bin ((const char *) attr->value.get ());
3663 }
3664
3665 static void
3666 end_thread (struct gdb_xml_parser *parser,
3667 const struct gdb_xml_element *element,
3668 void *user_data, const char *body_text)
3669 {
3670 struct threads_listing_context *data
3671 = (struct threads_listing_context *) user_data;
3672
3673 if (body_text != NULL && *body_text != '\0')
3674 data->items.back ().extra = body_text;
3675 }
3676
3677 const struct gdb_xml_attribute thread_attributes[] = {
3678 { "id", GDB_XML_AF_NONE, NULL, NULL },
3679 { "core", GDB_XML_AF_OPTIONAL, gdb_xml_parse_attr_ulongest, NULL },
3680 { "name", GDB_XML_AF_OPTIONAL, NULL, NULL },
3681 { "handle", GDB_XML_AF_OPTIONAL, NULL, NULL },
3682 { NULL, GDB_XML_AF_NONE, NULL, NULL }
3683 };
3684
3685 const struct gdb_xml_element thread_children[] = {
3686 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3687 };
3688
3689 const struct gdb_xml_element threads_children[] = {
3690 { "thread", thread_attributes, thread_children,
3691 GDB_XML_EF_REPEATABLE | GDB_XML_EF_OPTIONAL,
3692 start_thread, end_thread },
3693 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3694 };
3695
3696 const struct gdb_xml_element threads_elements[] = {
3697 { "threads", NULL, threads_children,
3698 GDB_XML_EF_NONE, NULL, NULL },
3699 { NULL, NULL, NULL, GDB_XML_EF_NONE, NULL, NULL }
3700 };
3701
3702 #endif
3703
3704 /* List remote threads using qXfer:threads:read. */
3705
3706 int
3707 remote_target::remote_get_threads_with_qxfer (threads_listing_context *context)
3708 {
3709 #if defined(HAVE_LIBEXPAT)
3710 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3711 {
3712 gdb::optional<gdb::char_vector> xml
3713 = target_read_stralloc (this, TARGET_OBJECT_THREADS, NULL);
3714
3715 if (xml && (*xml)[0] != '\0')
3716 {
3717 gdb_xml_parse_quick (_("threads"), "threads.dtd",
3718 threads_elements, xml->data (), context);
3719 }
3720
3721 return 1;
3722 }
3723 #endif
3724
3725 return 0;
3726 }
3727
3728 /* List remote threads using qfThreadInfo/qsThreadInfo. */
3729
3730 int
3731 remote_target::remote_get_threads_with_qthreadinfo (threads_listing_context *context)
3732 {
3733 struct remote_state *rs = get_remote_state ();
3734
3735 if (rs->use_threadinfo_query)
3736 {
3737 const char *bufp;
3738
3739 putpkt ("qfThreadInfo");
3740 getpkt (&rs->buf, 0);
3741 bufp = rs->buf.data ();
3742 if (bufp[0] != '\0') /* q packet recognized */
3743 {
3744 while (*bufp++ == 'm') /* reply contains one or more TID */
3745 {
3746 do
3747 {
3748 ptid_t ptid = read_ptid (bufp, &bufp);
3749 context->items.emplace_back (ptid);
3750 }
3751 while (*bufp++ == ','); /* comma-separated list */
3752 putpkt ("qsThreadInfo");
3753 getpkt (&rs->buf, 0);
3754 bufp = rs->buf.data ();
3755 }
3756 return 1;
3757 }
3758 else
3759 {
3760 /* Packet not recognized. */
3761 rs->use_threadinfo_query = 0;
3762 }
3763 }
3764
3765 return 0;
3766 }
3767
3768 /* Implement the to_update_thread_list function for the remote
3769 targets. */
3770
3771 void
3772 remote_target::update_thread_list ()
3773 {
3774 struct threads_listing_context context;
3775 int got_list = 0;
3776
3777 /* We have a few different mechanisms to fetch the thread list. Try
3778 them all, starting with the most preferred one first, falling
3779 back to older methods. */
3780 if (remote_get_threads_with_qxfer (&context)
3781 || remote_get_threads_with_qthreadinfo (&context)
3782 || remote_get_threads_with_ql (&context))
3783 {
3784 got_list = 1;
3785
3786 if (context.items.empty ()
3787 && remote_thread_always_alive (inferior_ptid))
3788 {
3789 /* Some targets don't really support threads, but still
3790 reply an (empty) thread list in response to the thread
3791 listing packets, instead of replying "packet not
3792 supported". Exit early so we don't delete the main
3793 thread. */
3794 return;
3795 }
3796
3797 /* CONTEXT now holds the current thread list on the remote
3798 target end. Delete GDB-side threads no longer found on the
3799 target. */
3800 for (thread_info *tp : all_threads_safe ())
3801 {
3802 if (!context.contains_thread (tp->ptid))
3803 {
3804 /* Not found. */
3805 delete_thread (tp);
3806 }
3807 }
3808
3809 /* Remove any unreported fork child threads from CONTEXT so
3810 that we don't interfere with follow fork, which is where
3811 creation of such threads is handled. */
3812 remove_new_fork_children (&context);
3813
3814 /* And now add threads we don't know about yet to our list. */
3815 for (thread_item &item : context.items)
3816 {
3817 if (item.ptid != null_ptid)
3818 {
3819 /* In non-stop mode, we assume new found threads are
3820 executing until proven otherwise with a stop reply.
3821 In all-stop, we can only get here if all threads are
3822 stopped. */
3823 int executing = target_is_non_stop_p () ? 1 : 0;
3824
3825 remote_notice_new_inferior (item.ptid, executing);
3826
3827 thread_info *tp = find_thread_ptid (item.ptid);
3828 remote_thread_info *info = get_remote_thread_info (tp);
3829 info->core = item.core;
3830 info->extra = std::move (item.extra);
3831 info->name = std::move (item.name);
3832 info->thread_handle = std::move (item.thread_handle);
3833 }
3834 }
3835 }
3836
3837 if (!got_list)
3838 {
3839 /* If no thread listing method is supported, then query whether
3840 each known thread is alive, one by one, with the T packet.
3841 If the target doesn't support threads at all, then this is a
3842 no-op. See remote_thread_alive. */
3843 prune_threads ();
3844 }
3845 }
3846
3847 /*
3848 * Collect a descriptive string about the given thread.
3849 * The target may say anything it wants to about the thread
3850 * (typically info about its blocked / runnable state, name, etc.).
3851 * This string will appear in the info threads display.
3852 *
3853 * Optional: targets are not required to implement this function.
3854 */
3855
3856 const char *
3857 remote_target::extra_thread_info (thread_info *tp)
3858 {
3859 struct remote_state *rs = get_remote_state ();
3860 int set;
3861 threadref id;
3862 struct gdb_ext_thread_info threadinfo;
3863
3864 if (rs->remote_desc == 0) /* paranoia */
3865 internal_error (__FILE__, __LINE__,
3866 _("remote_threads_extra_info"));
3867
3868 if (tp->ptid == magic_null_ptid
3869 || (tp->ptid.pid () != 0 && tp->ptid.lwp () == 0))
3870 /* This is the main thread which was added by GDB. The remote
3871 server doesn't know about it. */
3872 return NULL;
3873
3874 std::string &extra = get_remote_thread_info (tp)->extra;
3875
3876 /* If already have cached info, use it. */
3877 if (!extra.empty ())
3878 return extra.c_str ();
3879
3880 if (packet_support (PACKET_qXfer_threads) == PACKET_ENABLE)
3881 {
3882 /* If we're using qXfer:threads:read, then the extra info is
3883 included in the XML. So if we didn't have anything cached,
3884 it's because there's really no extra info. */
3885 return NULL;
3886 }
3887
3888 if (rs->use_threadextra_query)
3889 {
3890 char *b = rs->buf.data ();
3891 char *endb = b + get_remote_packet_size ();
3892
3893 xsnprintf (b, endb - b, "qThreadExtraInfo,");
3894 b += strlen (b);
3895 write_ptid (b, endb, tp->ptid);
3896
3897 putpkt (rs->buf);
3898 getpkt (&rs->buf, 0);
3899 if (rs->buf[0] != 0)
3900 {
3901 extra.resize (strlen (rs->buf.data ()) / 2);
3902 hex2bin (rs->buf.data (), (gdb_byte *) &extra[0], extra.size ());
3903 return extra.c_str ();
3904 }
3905 }
3906
3907 /* If the above query fails, fall back to the old method. */
3908 rs->use_threadextra_query = 0;
3909 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
3910 | TAG_MOREDISPLAY | TAG_DISPLAY;
3911 int_to_threadref (&id, tp->ptid.lwp ());
3912 if (remote_get_threadinfo (&id, set, &threadinfo))
3913 if (threadinfo.active)
3914 {
3915 if (*threadinfo.shortname)
3916 string_appendf (extra, " Name: %s", threadinfo.shortname);
3917 if (*threadinfo.display)
3918 {
3919 if (!extra.empty ())
3920 extra += ',';
3921 string_appendf (extra, " State: %s", threadinfo.display);
3922 }
3923 if (*threadinfo.more_display)
3924 {
3925 if (!extra.empty ())
3926 extra += ',';
3927 string_appendf (extra, " Priority: %s", threadinfo.more_display);
3928 }
3929 return extra.c_str ();
3930 }
3931 return NULL;
3932 }
3933 \f
3934
3935 bool
3936 remote_target::static_tracepoint_marker_at (CORE_ADDR addr,
3937 struct static_tracepoint_marker *marker)
3938 {
3939 struct remote_state *rs = get_remote_state ();
3940 char *p = rs->buf.data ();
3941
3942 xsnprintf (p, get_remote_packet_size (), "qTSTMat:");
3943 p += strlen (p);
3944 p += hexnumstr (p, addr);
3945 putpkt (rs->buf);
3946 getpkt (&rs->buf, 0);
3947 p = rs->buf.data ();
3948
3949 if (*p == 'E')
3950 error (_("Remote failure reply: %s"), p);
3951
3952 if (*p++ == 'm')
3953 {
3954 parse_static_tracepoint_marker_definition (p, NULL, marker);
3955 return true;
3956 }
3957
3958 return false;
3959 }
3960
3961 std::vector<static_tracepoint_marker>
3962 remote_target::static_tracepoint_markers_by_strid (const char *strid)
3963 {
3964 struct remote_state *rs = get_remote_state ();
3965 std::vector<static_tracepoint_marker> markers;
3966 const char *p;
3967 static_tracepoint_marker marker;
3968
3969 /* Ask for a first packet of static tracepoint marker
3970 definition. */
3971 putpkt ("qTfSTM");
3972 getpkt (&rs->buf, 0);
3973 p = rs->buf.data ();
3974 if (*p == 'E')
3975 error (_("Remote failure reply: %s"), p);
3976
3977 while (*p++ == 'm')
3978 {
3979 do
3980 {
3981 parse_static_tracepoint_marker_definition (p, &p, &marker);
3982
3983 if (strid == NULL || marker.str_id == strid)
3984 markers.push_back (std::move (marker));
3985 }
3986 while (*p++ == ','); /* comma-separated list */
3987 /* Ask for another packet of static tracepoint definition. */
3988 putpkt ("qTsSTM");
3989 getpkt (&rs->buf, 0);
3990 p = rs->buf.data ();
3991 }
3992
3993 return markers;
3994 }
3995
3996 \f
3997 /* Implement the to_get_ada_task_ptid function for the remote targets. */
3998
3999 ptid_t
4000 remote_target::get_ada_task_ptid (long lwp, long thread)
4001 {
4002 return ptid_t (inferior_ptid.pid (), lwp, 0);
4003 }
4004 \f
4005
4006 /* Restart the remote side; this is an extended protocol operation. */
4007
4008 void
4009 remote_target::extended_remote_restart ()
4010 {
4011 struct remote_state *rs = get_remote_state ();
4012
4013 /* Send the restart command; for reasons I don't understand the
4014 remote side really expects a number after the "R". */
4015 xsnprintf (rs->buf.data (), get_remote_packet_size (), "R%x", 0);
4016 putpkt (rs->buf);
4017
4018 remote_fileio_reset ();
4019 }
4020 \f
4021 /* Clean up connection to a remote debugger. */
4022
4023 void
4024 remote_target::close ()
4025 {
4026 /* Make sure we leave stdin registered in the event loop. */
4027 terminal_ours ();
4028
4029 /* We don't have a connection to the remote stub anymore. Get rid
4030 of all the inferiors and their threads we were controlling.
4031 Reset inferior_ptid to null_ptid first, as otherwise has_stack_frame
4032 will be unable to find the thread corresponding to (pid, 0, 0). */
4033 inferior_ptid = null_ptid;
4034 discard_all_inferiors ();
4035
4036 trace_reset_local_state ();
4037
4038 delete this;
4039 }
4040
4041 remote_target::~remote_target ()
4042 {
4043 struct remote_state *rs = get_remote_state ();
4044
4045 /* Check for NULL because we may get here with a partially
4046 constructed target/connection. */
4047 if (rs->remote_desc == nullptr)
4048 return;
4049
4050 serial_close (rs->remote_desc);
4051
4052 /* We are destroying the remote target, so we should discard
4053 everything of this target. */
4054 discard_pending_stop_replies_in_queue ();
4055
4056 if (rs->remote_async_inferior_event_token)
4057 delete_async_event_handler (&rs->remote_async_inferior_event_token);
4058
4059 delete rs->notif_state;
4060 }
4061
4062 /* Query the remote side for the text, data and bss offsets. */
4063
4064 void
4065 remote_target::get_offsets ()
4066 {
4067 struct remote_state *rs = get_remote_state ();
4068 char *buf;
4069 char *ptr;
4070 int lose, num_segments = 0, do_sections, do_segments;
4071 CORE_ADDR text_addr, data_addr, bss_addr, segments[2];
4072 struct symfile_segment_data *data;
4073
4074 if (symfile_objfile == NULL)
4075 return;
4076
4077 putpkt ("qOffsets");
4078 getpkt (&rs->buf, 0);
4079 buf = rs->buf.data ();
4080
4081 if (buf[0] == '\000')
4082 return; /* Return silently. Stub doesn't support
4083 this command. */
4084 if (buf[0] == 'E')
4085 {
4086 warning (_("Remote failure reply: %s"), buf);
4087 return;
4088 }
4089
4090 /* Pick up each field in turn. This used to be done with scanf, but
4091 scanf will make trouble if CORE_ADDR size doesn't match
4092 conversion directives correctly. The following code will work
4093 with any size of CORE_ADDR. */
4094 text_addr = data_addr = bss_addr = 0;
4095 ptr = buf;
4096 lose = 0;
4097
4098 if (startswith (ptr, "Text="))
4099 {
4100 ptr += 5;
4101 /* Don't use strtol, could lose on big values. */
4102 while (*ptr && *ptr != ';')
4103 text_addr = (text_addr << 4) + fromhex (*ptr++);
4104
4105 if (startswith (ptr, ";Data="))
4106 {
4107 ptr += 6;
4108 while (*ptr && *ptr != ';')
4109 data_addr = (data_addr << 4) + fromhex (*ptr++);
4110 }
4111 else
4112 lose = 1;
4113
4114 if (!lose && startswith (ptr, ";Bss="))
4115 {
4116 ptr += 5;
4117 while (*ptr && *ptr != ';')
4118 bss_addr = (bss_addr << 4) + fromhex (*ptr++);
4119
4120 if (bss_addr != data_addr)
4121 warning (_("Target reported unsupported offsets: %s"), buf);
4122 }
4123 else
4124 lose = 1;
4125 }
4126 else if (startswith (ptr, "TextSeg="))
4127 {
4128 ptr += 8;
4129 /* Don't use strtol, could lose on big values. */
4130 while (*ptr && *ptr != ';')
4131 text_addr = (text_addr << 4) + fromhex (*ptr++);
4132 num_segments = 1;
4133
4134 if (startswith (ptr, ";DataSeg="))
4135 {
4136 ptr += 9;
4137 while (*ptr && *ptr != ';')
4138 data_addr = (data_addr << 4) + fromhex (*ptr++);
4139 num_segments++;
4140 }
4141 }
4142 else
4143 lose = 1;
4144
4145 if (lose)
4146 error (_("Malformed response to offset query, %s"), buf);
4147 else if (*ptr != '\0')
4148 warning (_("Target reported unsupported offsets: %s"), buf);
4149
4150 section_offsets offs = symfile_objfile->section_offsets;
4151
4152 data = get_symfile_segment_data (symfile_objfile->obfd);
4153 do_segments = (data != NULL);
4154 do_sections = num_segments == 0;
4155
4156 if (num_segments > 0)
4157 {
4158 segments[0] = text_addr;
4159 segments[1] = data_addr;
4160 }
4161 /* If we have two segments, we can still try to relocate everything
4162 by assuming that the .text and .data offsets apply to the whole
4163 text and data segments. Convert the offsets given in the packet
4164 to base addresses for symfile_map_offsets_to_segments. */
4165 else if (data && data->num_segments == 2)
4166 {
4167 segments[0] = data->segment_bases[0] + text_addr;
4168 segments[1] = data->segment_bases[1] + data_addr;
4169 num_segments = 2;
4170 }
4171 /* If the object file has only one segment, assume that it is text
4172 rather than data; main programs with no writable data are rare,
4173 but programs with no code are useless. Of course the code might
4174 have ended up in the data segment... to detect that we would need
4175 the permissions here. */
4176 else if (data && data->num_segments == 1)
4177 {
4178 segments[0] = data->segment_bases[0] + text_addr;
4179 num_segments = 1;
4180 }
4181 /* There's no way to relocate by segment. */
4182 else
4183 do_segments = 0;
4184
4185 if (do_segments)
4186 {
4187 int ret = symfile_map_offsets_to_segments (symfile_objfile->obfd, data,
4188 offs, num_segments, segments);
4189
4190 if (ret == 0 && !do_sections)
4191 error (_("Can not handle qOffsets TextSeg "
4192 "response with this symbol file"));
4193
4194 if (ret > 0)
4195 do_sections = 0;
4196 }
4197
4198 if (data)
4199 free_symfile_segment_data (data);
4200
4201 if (do_sections)
4202 {
4203 offs[SECT_OFF_TEXT (symfile_objfile)] = text_addr;
4204
4205 /* This is a temporary kludge to force data and bss to use the
4206 same offsets because that's what nlmconv does now. The real
4207 solution requires changes to the stub and remote.c that I
4208 don't have time to do right now. */
4209
4210 offs[SECT_OFF_DATA (symfile_objfile)] = data_addr;
4211 offs[SECT_OFF_BSS (symfile_objfile)] = data_addr;
4212 }
4213
4214 objfile_relocate (symfile_objfile, offs);
4215 }
4216
4217 /* Send interrupt_sequence to remote target. */
4218
4219 void
4220 remote_target::send_interrupt_sequence ()
4221 {
4222 struct remote_state *rs = get_remote_state ();
4223
4224 if (interrupt_sequence_mode == interrupt_sequence_control_c)
4225 remote_serial_write ("\x03", 1);
4226 else if (interrupt_sequence_mode == interrupt_sequence_break)
4227 serial_send_break (rs->remote_desc);
4228 else if (interrupt_sequence_mode == interrupt_sequence_break_g)
4229 {
4230 serial_send_break (rs->remote_desc);
4231 remote_serial_write ("g", 1);
4232 }
4233 else
4234 internal_error (__FILE__, __LINE__,
4235 _("Invalid value for interrupt_sequence_mode: %s."),
4236 interrupt_sequence_mode);
4237 }
4238
4239
4240 /* If STOP_REPLY is a T stop reply, look for the "thread" register,
4241 and extract the PTID. Returns NULL_PTID if not found. */
4242
4243 static ptid_t
4244 stop_reply_extract_thread (char *stop_reply)
4245 {
4246 if (stop_reply[0] == 'T' && strlen (stop_reply) > 3)
4247 {
4248 const char *p;
4249
4250 /* Txx r:val ; r:val (...) */
4251 p = &stop_reply[3];
4252
4253 /* Look for "register" named "thread". */
4254 while (*p != '\0')
4255 {
4256 const char *p1;
4257
4258 p1 = strchr (p, ':');
4259 if (p1 == NULL)
4260 return null_ptid;
4261
4262 if (strncmp (p, "thread", p1 - p) == 0)
4263 return read_ptid (++p1, &p);
4264
4265 p1 = strchr (p, ';');
4266 if (p1 == NULL)
4267 return null_ptid;
4268 p1++;
4269
4270 p = p1;
4271 }
4272 }
4273
4274 return null_ptid;
4275 }
4276
4277 /* Determine the remote side's current thread. If we have a stop
4278 reply handy (in WAIT_STATUS), maybe it's a T stop reply with a
4279 "thread" register we can extract the current thread from. If not,
4280 ask the remote which is the current thread with qC. The former
4281 method avoids a roundtrip. */
4282
4283 ptid_t
4284 remote_target::get_current_thread (char *wait_status)
4285 {
4286 ptid_t ptid = null_ptid;
4287
4288 /* Note we don't use remote_parse_stop_reply as that makes use of
4289 the target architecture, which we haven't yet fully determined at
4290 this point. */
4291 if (wait_status != NULL)
4292 ptid = stop_reply_extract_thread (wait_status);
4293 if (ptid == null_ptid)
4294 ptid = remote_current_thread (inferior_ptid);
4295
4296 return ptid;
4297 }
4298
4299 /* Query the remote target for which is the current thread/process,
4300 add it to our tables, and update INFERIOR_PTID. The caller is
4301 responsible for setting the state such that the remote end is ready
4302 to return the current thread.
4303
4304 This function is called after handling the '?' or 'vRun' packets,
4305 whose response is a stop reply from which we can also try
4306 extracting the thread. If the target doesn't support the explicit
4307 qC query, we infer the current thread from that stop reply, passed
4308 in in WAIT_STATUS, which may be NULL. */
4309
4310 void
4311 remote_target::add_current_inferior_and_thread (char *wait_status)
4312 {
4313 struct remote_state *rs = get_remote_state ();
4314 bool fake_pid_p = false;
4315
4316 inferior_ptid = null_ptid;
4317
4318 /* Now, if we have thread information, update inferior_ptid. */
4319 ptid_t curr_ptid = get_current_thread (wait_status);
4320
4321 if (curr_ptid != null_ptid)
4322 {
4323 if (!remote_multi_process_p (rs))
4324 fake_pid_p = true;
4325 }
4326 else
4327 {
4328 /* Without this, some commands which require an active target
4329 (such as kill) won't work. This variable serves (at least)
4330 double duty as both the pid of the target process (if it has
4331 such), and as a flag indicating that a target is active. */
4332 curr_ptid = magic_null_ptid;
4333 fake_pid_p = true;
4334 }
4335
4336 remote_add_inferior (fake_pid_p, curr_ptid.pid (), -1, 1);
4337
4338 /* Add the main thread and switch to it. Don't try reading
4339 registers yet, since we haven't fetched the target description
4340 yet. */
4341 thread_info *tp = add_thread_silent (curr_ptid);
4342 switch_to_thread_no_regs (tp);
4343 }
4344
4345 /* Print info about a thread that was found already stopped on
4346 connection. */
4347
4348 static void
4349 print_one_stopped_thread (struct thread_info *thread)
4350 {
4351 struct target_waitstatus *ws = &thread->suspend.waitstatus;
4352
4353 switch_to_thread (thread);
4354 thread->suspend.stop_pc = get_frame_pc (get_current_frame ());
4355 set_current_sal_from_frame (get_current_frame ());
4356
4357 thread->suspend.waitstatus_pending_p = 0;
4358
4359 if (ws->kind == TARGET_WAITKIND_STOPPED)
4360 {
4361 enum gdb_signal sig = ws->value.sig;
4362
4363 if (signal_print_state (sig))
4364 gdb::observers::signal_received.notify (sig);
4365 }
4366 gdb::observers::normal_stop.notify (NULL, 1);
4367 }
4368
4369 /* Process all initial stop replies the remote side sent in response
4370 to the ? packet. These indicate threads that were already stopped
4371 on initial connection. We mark these threads as stopped and print
4372 their current frame before giving the user the prompt. */
4373
4374 void
4375 remote_target::process_initial_stop_replies (int from_tty)
4376 {
4377 int pending_stop_replies = stop_reply_queue_length ();
4378 struct thread_info *selected = NULL;
4379 struct thread_info *lowest_stopped = NULL;
4380 struct thread_info *first = NULL;
4381
4382 /* Consume the initial pending events. */
4383 while (pending_stop_replies-- > 0)
4384 {
4385 ptid_t waiton_ptid = minus_one_ptid;
4386 ptid_t event_ptid;
4387 struct target_waitstatus ws;
4388 int ignore_event = 0;
4389
4390 memset (&ws, 0, sizeof (ws));
4391 event_ptid = target_wait (waiton_ptid, &ws, TARGET_WNOHANG);
4392 if (remote_debug)
4393 print_target_wait_results (waiton_ptid, event_ptid, &ws);
4394
4395 switch (ws.kind)
4396 {
4397 case TARGET_WAITKIND_IGNORE:
4398 case TARGET_WAITKIND_NO_RESUMED:
4399 case TARGET_WAITKIND_SIGNALLED:
4400 case TARGET_WAITKIND_EXITED:
4401 /* We shouldn't see these, but if we do, just ignore. */
4402 if (remote_debug)
4403 fprintf_unfiltered (gdb_stdlog, "remote: event ignored\n");
4404 ignore_event = 1;
4405 break;
4406
4407 case TARGET_WAITKIND_EXECD:
4408 xfree (ws.value.execd_pathname);
4409 break;
4410 default:
4411 break;
4412 }
4413
4414 if (ignore_event)
4415 continue;
4416
4417 struct thread_info *evthread = find_thread_ptid (event_ptid);
4418
4419 if (ws.kind == TARGET_WAITKIND_STOPPED)
4420 {
4421 enum gdb_signal sig = ws.value.sig;
4422
4423 /* Stubs traditionally report SIGTRAP as initial signal,
4424 instead of signal 0. Suppress it. */
4425 if (sig == GDB_SIGNAL_TRAP)
4426 sig = GDB_SIGNAL_0;
4427 evthread->suspend.stop_signal = sig;
4428 ws.value.sig = sig;
4429 }
4430
4431 evthread->suspend.waitstatus = ws;
4432
4433 if (ws.kind != TARGET_WAITKIND_STOPPED
4434 || ws.value.sig != GDB_SIGNAL_0)
4435 evthread->suspend.waitstatus_pending_p = 1;
4436
4437 set_executing (event_ptid, 0);
4438 set_running (event_ptid, 0);
4439 get_remote_thread_info (evthread)->vcont_resumed = 0;
4440 }
4441
4442 /* "Notice" the new inferiors before anything related to
4443 registers/memory. */
4444 for (inferior *inf : all_non_exited_inferiors ())
4445 {
4446 inf->needs_setup = 1;
4447
4448 if (non_stop)
4449 {
4450 thread_info *thread = any_live_thread_of_inferior (inf);
4451 notice_new_inferior (thread, thread->state == THREAD_RUNNING,
4452 from_tty);
4453 }
4454 }
4455
4456 /* If all-stop on top of non-stop, pause all threads. Note this
4457 records the threads' stop pc, so must be done after "noticing"
4458 the inferiors. */
4459 if (!non_stop)
4460 {
4461 stop_all_threads ();
4462
4463 /* If all threads of an inferior were already stopped, we
4464 haven't setup the inferior yet. */
4465 for (inferior *inf : all_non_exited_inferiors ())
4466 {
4467 if (inf->needs_setup)
4468 {
4469 thread_info *thread = any_live_thread_of_inferior (inf);
4470 switch_to_thread_no_regs (thread);
4471 setup_inferior (0);
4472 }
4473 }
4474 }
4475
4476 /* Now go over all threads that are stopped, and print their current
4477 frame. If all-stop, then if there's a signalled thread, pick
4478 that as current. */
4479 for (thread_info *thread : all_non_exited_threads ())
4480 {
4481 if (first == NULL)
4482 first = thread;
4483
4484 if (!non_stop)
4485 thread->set_running (false);
4486 else if (thread->state != THREAD_STOPPED)
4487 continue;
4488
4489 if (selected == NULL
4490 && thread->suspend.waitstatus_pending_p)
4491 selected = thread;
4492
4493 if (lowest_stopped == NULL
4494 || thread->inf->num < lowest_stopped->inf->num
4495 || thread->per_inf_num < lowest_stopped->per_inf_num)
4496 lowest_stopped = thread;
4497
4498 if (non_stop)
4499 print_one_stopped_thread (thread);
4500 }
4501
4502 /* In all-stop, we only print the status of one thread, and leave
4503 others with their status pending. */
4504 if (!non_stop)
4505 {
4506 thread_info *thread = selected;
4507 if (thread == NULL)
4508 thread = lowest_stopped;
4509 if (thread == NULL)
4510 thread = first;
4511
4512 print_one_stopped_thread (thread);
4513 }
4514
4515 /* For "info program". */
4516 thread_info *thread = inferior_thread ();
4517 if (thread->state == THREAD_STOPPED)
4518 set_last_target_status (inferior_ptid, thread->suspend.waitstatus);
4519 }
4520
4521 /* Start the remote connection and sync state. */
4522
4523 void
4524 remote_target::start_remote (int from_tty, int extended_p)
4525 {
4526 struct remote_state *rs = get_remote_state ();
4527 struct packet_config *noack_config;
4528 char *wait_status = NULL;
4529
4530 /* Signal other parts that we're going through the initial setup,
4531 and so things may not be stable yet. E.g., we don't try to
4532 install tracepoints until we've relocated symbols. Also, a
4533 Ctrl-C before we're connected and synced up can't interrupt the
4534 target. Instead, it offers to drop the (potentially wedged)
4535 connection. */
4536 rs->starting_up = 1;
4537
4538 QUIT;
4539
4540 if (interrupt_on_connect)
4541 send_interrupt_sequence ();
4542
4543 /* Ack any packet which the remote side has already sent. */
4544 remote_serial_write ("+", 1);
4545
4546 /* The first packet we send to the target is the optional "supported
4547 packets" request. If the target can answer this, it will tell us
4548 which later probes to skip. */
4549 remote_query_supported ();
4550
4551 /* If the stub wants to get a QAllow, compose one and send it. */
4552 if (packet_support (PACKET_QAllow) != PACKET_DISABLE)
4553 set_permissions ();
4554
4555 /* gdbserver < 7.7 (before its fix from 2013-12-11) did reply to any
4556 unknown 'v' packet with string "OK". "OK" gets interpreted by GDB
4557 as a reply to known packet. For packet "vFile:setfs:" it is an
4558 invalid reply and GDB would return error in
4559 remote_hostio_set_filesystem, making remote files access impossible.
4560 Disable "vFile:setfs:" in such case. Do not disable other 'v' packets as
4561 other "vFile" packets get correctly detected even on gdbserver < 7.7. */
4562 {
4563 const char v_mustreplyempty[] = "vMustReplyEmpty";
4564
4565 putpkt (v_mustreplyempty);
4566 getpkt (&rs->buf, 0);
4567 if (strcmp (rs->buf.data (), "OK") == 0)
4568 remote_protocol_packets[PACKET_vFile_setfs].support = PACKET_DISABLE;
4569 else if (strcmp (rs->buf.data (), "") != 0)
4570 error (_("Remote replied unexpectedly to '%s': %s"), v_mustreplyempty,
4571 rs->buf.data ());
4572 }
4573
4574 /* Next, we possibly activate noack mode.
4575
4576 If the QStartNoAckMode packet configuration is set to AUTO,
4577 enable noack mode if the stub reported a wish for it with
4578 qSupported.
4579
4580 If set to TRUE, then enable noack mode even if the stub didn't
4581 report it in qSupported. If the stub doesn't reply OK, the
4582 session ends with an error.
4583
4584 If FALSE, then don't activate noack mode, regardless of what the
4585 stub claimed should be the default with qSupported. */
4586
4587 noack_config = &remote_protocol_packets[PACKET_QStartNoAckMode];
4588 if (packet_config_support (noack_config) != PACKET_DISABLE)
4589 {
4590 putpkt ("QStartNoAckMode");
4591 getpkt (&rs->buf, 0);
4592 if (packet_ok (rs->buf, noack_config) == PACKET_OK)
4593 rs->noack_mode = 1;
4594 }
4595
4596 if (extended_p)
4597 {
4598 /* Tell the remote that we are using the extended protocol. */
4599 putpkt ("!");
4600 getpkt (&rs->buf, 0);
4601 }
4602
4603 /* Let the target know which signals it is allowed to pass down to
4604 the program. */
4605 update_signals_program_target ();
4606
4607 /* Next, if the target can specify a description, read it. We do
4608 this before anything involving memory or registers. */
4609 target_find_description ();
4610
4611 /* Next, now that we know something about the target, update the
4612 address spaces in the program spaces. */
4613 update_address_spaces ();
4614
4615 /* On OSs where the list of libraries is global to all
4616 processes, we fetch them early. */
4617 if (gdbarch_has_global_solist (target_gdbarch ()))
4618 solib_add (NULL, from_tty, auto_solib_add);
4619
4620 if (target_is_non_stop_p ())
4621 {
4622 if (packet_support (PACKET_QNonStop) != PACKET_ENABLE)
4623 error (_("Non-stop mode requested, but remote "
4624 "does not support non-stop"));
4625
4626 putpkt ("QNonStop:1");
4627 getpkt (&rs->buf, 0);
4628
4629 if (strcmp (rs->buf.data (), "OK") != 0)
4630 error (_("Remote refused setting non-stop mode with: %s"),
4631 rs->buf.data ());
4632
4633 /* Find about threads and processes the stub is already
4634 controlling. We default to adding them in the running state.
4635 The '?' query below will then tell us about which threads are
4636 stopped. */
4637 this->update_thread_list ();
4638 }
4639 else if (packet_support (PACKET_QNonStop) == PACKET_ENABLE)
4640 {
4641 /* Don't assume that the stub can operate in all-stop mode.
4642 Request it explicitly. */
4643 putpkt ("QNonStop:0");
4644 getpkt (&rs->buf, 0);
4645
4646 if (strcmp (rs->buf.data (), "OK") != 0)
4647 error (_("Remote refused setting all-stop mode with: %s"),
4648 rs->buf.data ());
4649 }
4650
4651 /* Upload TSVs regardless of whether the target is running or not. The
4652 remote stub, such as GDBserver, may have some predefined or builtin
4653 TSVs, even if the target is not running. */
4654 if (get_trace_status (current_trace_status ()) != -1)
4655 {
4656 struct uploaded_tsv *uploaded_tsvs = NULL;
4657
4658 upload_trace_state_variables (&uploaded_tsvs);
4659 merge_uploaded_trace_state_variables (&uploaded_tsvs);
4660 }
4661
4662 /* Check whether the target is running now. */
4663 putpkt ("?");
4664 getpkt (&rs->buf, 0);
4665
4666 if (!target_is_non_stop_p ())
4667 {
4668 if (rs->buf[0] == 'W' || rs->buf[0] == 'X')
4669 {
4670 if (!extended_p)
4671 error (_("The target is not running (try extended-remote?)"));
4672
4673 /* We're connected, but not running. Drop out before we
4674 call start_remote. */
4675 rs->starting_up = 0;
4676 return;
4677 }
4678 else
4679 {
4680 /* Save the reply for later. */
4681 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
4682 strcpy (wait_status, rs->buf.data ());
4683 }
4684
4685 /* Fetch thread list. */
4686 target_update_thread_list ();
4687
4688 /* Let the stub know that we want it to return the thread. */
4689 set_continue_thread (minus_one_ptid);
4690
4691 if (thread_count () == 0)
4692 {
4693 /* Target has no concept of threads at all. GDB treats
4694 non-threaded target as single-threaded; add a main
4695 thread. */
4696 add_current_inferior_and_thread (wait_status);
4697 }
4698 else
4699 {
4700 /* We have thread information; select the thread the target
4701 says should be current. If we're reconnecting to a
4702 multi-threaded program, this will ideally be the thread
4703 that last reported an event before GDB disconnected. */
4704 ptid_t curr_thread = get_current_thread (wait_status);
4705 if (curr_thread == null_ptid)
4706 {
4707 /* Odd... The target was able to list threads, but not
4708 tell us which thread was current (no "thread"
4709 register in T stop reply?). Just pick the first
4710 thread in the thread list then. */
4711
4712 if (remote_debug)
4713 fprintf_unfiltered (gdb_stdlog,
4714 "warning: couldn't determine remote "
4715 "current thread; picking first in list.\n");
4716
4717 for (thread_info *tp : all_non_exited_threads ())
4718 {
4719 switch_to_thread (tp);
4720 break;
4721 }
4722 }
4723 else
4724 switch_to_thread (find_thread_ptid (curr_thread));
4725 }
4726
4727 /* init_wait_for_inferior should be called before get_offsets in order
4728 to manage `inserted' flag in bp loc in a correct state.
4729 breakpoint_init_inferior, called from init_wait_for_inferior, set
4730 `inserted' flag to 0, while before breakpoint_re_set, called from
4731 start_remote, set `inserted' flag to 1. In the initialization of
4732 inferior, breakpoint_init_inferior should be called first, and then
4733 breakpoint_re_set can be called. If this order is broken, state of
4734 `inserted' flag is wrong, and cause some problems on breakpoint
4735 manipulation. */
4736 init_wait_for_inferior ();
4737
4738 get_offsets (); /* Get text, data & bss offsets. */
4739
4740 /* If we could not find a description using qXfer, and we know
4741 how to do it some other way, try again. This is not
4742 supported for non-stop; it could be, but it is tricky if
4743 there are no stopped threads when we connect. */
4744 if (remote_read_description_p (this)
4745 && gdbarch_target_desc (target_gdbarch ()) == NULL)
4746 {
4747 target_clear_description ();
4748 target_find_description ();
4749 }
4750
4751 /* Use the previously fetched status. */
4752 gdb_assert (wait_status != NULL);
4753 strcpy (rs->buf.data (), wait_status);
4754 rs->cached_wait_status = 1;
4755
4756 ::start_remote (from_tty); /* Initialize gdb process mechanisms. */
4757 }
4758 else
4759 {
4760 /* Clear WFI global state. Do this before finding about new
4761 threads and inferiors, and setting the current inferior.
4762 Otherwise we would clear the proceed status of the current
4763 inferior when we want its stop_soon state to be preserved
4764 (see notice_new_inferior). */
4765 init_wait_for_inferior ();
4766
4767 /* In non-stop, we will either get an "OK", meaning that there
4768 are no stopped threads at this time; or, a regular stop
4769 reply. In the latter case, there may be more than one thread
4770 stopped --- we pull them all out using the vStopped
4771 mechanism. */
4772 if (strcmp (rs->buf.data (), "OK") != 0)
4773 {
4774 struct notif_client *notif = &notif_client_stop;
4775
4776 /* remote_notif_get_pending_replies acks this one, and gets
4777 the rest out. */
4778 rs->notif_state->pending_event[notif_client_stop.id]
4779 = remote_notif_parse (this, notif, rs->buf.data ());
4780 remote_notif_get_pending_events (notif);
4781 }
4782
4783 if (thread_count () == 0)
4784 {
4785 if (!extended_p)
4786 error (_("The target is not running (try extended-remote?)"));
4787
4788 /* We're connected, but not running. Drop out before we
4789 call start_remote. */
4790 rs->starting_up = 0;
4791 return;
4792 }
4793
4794 /* In non-stop mode, any cached wait status will be stored in
4795 the stop reply queue. */
4796 gdb_assert (wait_status == NULL);
4797
4798 /* Report all signals during attach/startup. */
4799 pass_signals ({});
4800
4801 /* If there are already stopped threads, mark them stopped and
4802 report their stops before giving the prompt to the user. */
4803 process_initial_stop_replies (from_tty);
4804
4805 if (target_can_async_p ())
4806 target_async (1);
4807 }
4808
4809 /* If we connected to a live target, do some additional setup. */
4810 if (target_has_execution)
4811 {
4812 if (symfile_objfile) /* No use without a symbol-file. */
4813 remote_check_symbols ();
4814 }
4815
4816 /* Possibly the target has been engaged in a trace run started
4817 previously; find out where things are at. */
4818 if (get_trace_status (current_trace_status ()) != -1)
4819 {
4820 struct uploaded_tp *uploaded_tps = NULL;
4821
4822 if (current_trace_status ()->running)
4823 printf_filtered (_("Trace is already running on the target.\n"));
4824
4825 upload_tracepoints (&uploaded_tps);
4826
4827 merge_uploaded_tracepoints (&uploaded_tps);
4828 }
4829
4830 /* Possibly the target has been engaged in a btrace record started
4831 previously; find out where things are at. */
4832 remote_btrace_maybe_reopen ();
4833
4834 /* The thread and inferior lists are now synchronized with the
4835 target, our symbols have been relocated, and we're merged the
4836 target's tracepoints with ours. We're done with basic start
4837 up. */
4838 rs->starting_up = 0;
4839
4840 /* Maybe breakpoints are global and need to be inserted now. */
4841 if (breakpoints_should_be_inserted_now ())
4842 insert_breakpoints ();
4843 }
4844
4845 /* Open a connection to a remote debugger.
4846 NAME is the filename used for communication. */
4847
4848 void
4849 remote_target::open (const char *name, int from_tty)
4850 {
4851 open_1 (name, from_tty, 0);
4852 }
4853
4854 /* Open a connection to a remote debugger using the extended
4855 remote gdb protocol. NAME is the filename used for communication. */
4856
4857 void
4858 extended_remote_target::open (const char *name, int from_tty)
4859 {
4860 open_1 (name, from_tty, 1 /*extended_p */);
4861 }
4862
4863 /* Reset all packets back to "unknown support". Called when opening a
4864 new connection to a remote target. */
4865
4866 static void
4867 reset_all_packet_configs_support (void)
4868 {
4869 int i;
4870
4871 for (i = 0; i < PACKET_MAX; i++)
4872 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4873 }
4874
4875 /* Initialize all packet configs. */
4876
4877 static void
4878 init_all_packet_configs (void)
4879 {
4880 int i;
4881
4882 for (i = 0; i < PACKET_MAX; i++)
4883 {
4884 remote_protocol_packets[i].detect = AUTO_BOOLEAN_AUTO;
4885 remote_protocol_packets[i].support = PACKET_SUPPORT_UNKNOWN;
4886 }
4887 }
4888
4889 /* Symbol look-up. */
4890
4891 void
4892 remote_target::remote_check_symbols ()
4893 {
4894 char *tmp;
4895 int end;
4896
4897 /* The remote side has no concept of inferiors that aren't running
4898 yet, it only knows about running processes. If we're connected
4899 but our current inferior is not running, we should not invite the
4900 remote target to request symbol lookups related to its
4901 (unrelated) current process. */
4902 if (!target_has_execution)
4903 return;
4904
4905 if (packet_support (PACKET_qSymbol) == PACKET_DISABLE)
4906 return;
4907
4908 /* Make sure the remote is pointing at the right process. Note
4909 there's no way to select "no process". */
4910 set_general_process ();
4911
4912 /* Allocate a message buffer. We can't reuse the input buffer in RS,
4913 because we need both at the same time. */
4914 gdb::char_vector msg (get_remote_packet_size ());
4915 gdb::char_vector reply (get_remote_packet_size ());
4916
4917 /* Invite target to request symbol lookups. */
4918
4919 putpkt ("qSymbol::");
4920 getpkt (&reply, 0);
4921 packet_ok (reply, &remote_protocol_packets[PACKET_qSymbol]);
4922
4923 while (startswith (reply.data (), "qSymbol:"))
4924 {
4925 struct bound_minimal_symbol sym;
4926
4927 tmp = &reply[8];
4928 end = hex2bin (tmp, reinterpret_cast <gdb_byte *> (msg.data ()),
4929 strlen (tmp) / 2);
4930 msg[end] = '\0';
4931 sym = lookup_minimal_symbol (msg.data (), NULL, NULL);
4932 if (sym.minsym == NULL)
4933 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol::%s",
4934 &reply[8]);
4935 else
4936 {
4937 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
4938 CORE_ADDR sym_addr = BMSYMBOL_VALUE_ADDRESS (sym);
4939
4940 /* If this is a function address, return the start of code
4941 instead of any data function descriptor. */
4942 sym_addr = gdbarch_convert_from_func_ptr_addr (target_gdbarch (),
4943 sym_addr,
4944 current_top_target ());
4945
4946 xsnprintf (msg.data (), get_remote_packet_size (), "qSymbol:%s:%s",
4947 phex_nz (sym_addr, addr_size), &reply[8]);
4948 }
4949
4950 putpkt (msg.data ());
4951 getpkt (&reply, 0);
4952 }
4953 }
4954
4955 static struct serial *
4956 remote_serial_open (const char *name)
4957 {
4958 static int udp_warning = 0;
4959
4960 /* FIXME: Parsing NAME here is a hack. But we want to warn here instead
4961 of in ser-tcp.c, because it is the remote protocol assuming that the
4962 serial connection is reliable and not the serial connection promising
4963 to be. */
4964 if (!udp_warning && startswith (name, "udp:"))
4965 {
4966 warning (_("The remote protocol may be unreliable over UDP.\n"
4967 "Some events may be lost, rendering further debugging "
4968 "impossible."));
4969 udp_warning = 1;
4970 }
4971
4972 return serial_open (name);
4973 }
4974
4975 /* Inform the target of our permission settings. The permission flags
4976 work without this, but if the target knows the settings, it can do
4977 a couple things. First, it can add its own check, to catch cases
4978 that somehow manage to get by the permissions checks in target
4979 methods. Second, if the target is wired to disallow particular
4980 settings (for instance, a system in the field that is not set up to
4981 be able to stop at a breakpoint), it can object to any unavailable
4982 permissions. */
4983
4984 void
4985 remote_target::set_permissions ()
4986 {
4987 struct remote_state *rs = get_remote_state ();
4988
4989 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAllow:"
4990 "WriteReg:%x;WriteMem:%x;"
4991 "InsertBreak:%x;InsertTrace:%x;"
4992 "InsertFastTrace:%x;Stop:%x",
4993 may_write_registers, may_write_memory,
4994 may_insert_breakpoints, may_insert_tracepoints,
4995 may_insert_fast_tracepoints, may_stop);
4996 putpkt (rs->buf);
4997 getpkt (&rs->buf, 0);
4998
4999 /* If the target didn't like the packet, warn the user. Do not try
5000 to undo the user's settings, that would just be maddening. */
5001 if (strcmp (rs->buf.data (), "OK") != 0)
5002 warning (_("Remote refused setting permissions with: %s"),
5003 rs->buf.data ());
5004 }
5005
5006 /* This type describes each known response to the qSupported
5007 packet. */
5008 struct protocol_feature
5009 {
5010 /* The name of this protocol feature. */
5011 const char *name;
5012
5013 /* The default for this protocol feature. */
5014 enum packet_support default_support;
5015
5016 /* The function to call when this feature is reported, or after
5017 qSupported processing if the feature is not supported.
5018 The first argument points to this structure. The second
5019 argument indicates whether the packet requested support be
5020 enabled, disabled, or probed (or the default, if this function
5021 is being called at the end of processing and this feature was
5022 not reported). The third argument may be NULL; if not NULL, it
5023 is a NUL-terminated string taken from the packet following
5024 this feature's name and an equals sign. */
5025 void (*func) (remote_target *remote, const struct protocol_feature *,
5026 enum packet_support, const char *);
5027
5028 /* The corresponding packet for this feature. Only used if
5029 FUNC is remote_supported_packet. */
5030 int packet;
5031 };
5032
5033 static void
5034 remote_supported_packet (remote_target *remote,
5035 const struct protocol_feature *feature,
5036 enum packet_support support,
5037 const char *argument)
5038 {
5039 if (argument)
5040 {
5041 warning (_("Remote qSupported response supplied an unexpected value for"
5042 " \"%s\"."), feature->name);
5043 return;
5044 }
5045
5046 remote_protocol_packets[feature->packet].support = support;
5047 }
5048
5049 void
5050 remote_target::remote_packet_size (const protocol_feature *feature,
5051 enum packet_support support, const char *value)
5052 {
5053 struct remote_state *rs = get_remote_state ();
5054
5055 int packet_size;
5056 char *value_end;
5057
5058 if (support != PACKET_ENABLE)
5059 return;
5060
5061 if (value == NULL || *value == '\0')
5062 {
5063 warning (_("Remote target reported \"%s\" without a size."),
5064 feature->name);
5065 return;
5066 }
5067
5068 errno = 0;
5069 packet_size = strtol (value, &value_end, 16);
5070 if (errno != 0 || *value_end != '\0' || packet_size < 0)
5071 {
5072 warning (_("Remote target reported \"%s\" with a bad size: \"%s\"."),
5073 feature->name, value);
5074 return;
5075 }
5076
5077 /* Record the new maximum packet size. */
5078 rs->explicit_packet_size = packet_size;
5079 }
5080
5081 static void
5082 remote_packet_size (remote_target *remote, const protocol_feature *feature,
5083 enum packet_support support, const char *value)
5084 {
5085 remote->remote_packet_size (feature, support, value);
5086 }
5087
5088 static const struct protocol_feature remote_protocol_features[] = {
5089 { "PacketSize", PACKET_DISABLE, remote_packet_size, -1 },
5090 { "qXfer:auxv:read", PACKET_DISABLE, remote_supported_packet,
5091 PACKET_qXfer_auxv },
5092 { "qXfer:exec-file:read", PACKET_DISABLE, remote_supported_packet,
5093 PACKET_qXfer_exec_file },
5094 { "qXfer:features:read", PACKET_DISABLE, remote_supported_packet,
5095 PACKET_qXfer_features },
5096 { "qXfer:libraries:read", PACKET_DISABLE, remote_supported_packet,
5097 PACKET_qXfer_libraries },
5098 { "qXfer:libraries-svr4:read", PACKET_DISABLE, remote_supported_packet,
5099 PACKET_qXfer_libraries_svr4 },
5100 { "augmented-libraries-svr4-read", PACKET_DISABLE,
5101 remote_supported_packet, PACKET_augmented_libraries_svr4_read_feature },
5102 { "qXfer:memory-map:read", PACKET_DISABLE, remote_supported_packet,
5103 PACKET_qXfer_memory_map },
5104 { "qXfer:osdata:read", PACKET_DISABLE, remote_supported_packet,
5105 PACKET_qXfer_osdata },
5106 { "qXfer:threads:read", PACKET_DISABLE, remote_supported_packet,
5107 PACKET_qXfer_threads },
5108 { "qXfer:traceframe-info:read", PACKET_DISABLE, remote_supported_packet,
5109 PACKET_qXfer_traceframe_info },
5110 { "QPassSignals", PACKET_DISABLE, remote_supported_packet,
5111 PACKET_QPassSignals },
5112 { "QCatchSyscalls", PACKET_DISABLE, remote_supported_packet,
5113 PACKET_QCatchSyscalls },
5114 { "QProgramSignals", PACKET_DISABLE, remote_supported_packet,
5115 PACKET_QProgramSignals },
5116 { "QSetWorkingDir", PACKET_DISABLE, remote_supported_packet,
5117 PACKET_QSetWorkingDir },
5118 { "QStartupWithShell", PACKET_DISABLE, remote_supported_packet,
5119 PACKET_QStartupWithShell },
5120 { "QEnvironmentHexEncoded", PACKET_DISABLE, remote_supported_packet,
5121 PACKET_QEnvironmentHexEncoded },
5122 { "QEnvironmentReset", PACKET_DISABLE, remote_supported_packet,
5123 PACKET_QEnvironmentReset },
5124 { "QEnvironmentUnset", PACKET_DISABLE, remote_supported_packet,
5125 PACKET_QEnvironmentUnset },
5126 { "QStartNoAckMode", PACKET_DISABLE, remote_supported_packet,
5127 PACKET_QStartNoAckMode },
5128 { "multiprocess", PACKET_DISABLE, remote_supported_packet,
5129 PACKET_multiprocess_feature },
5130 { "QNonStop", PACKET_DISABLE, remote_supported_packet, PACKET_QNonStop },
5131 { "qXfer:siginfo:read", PACKET_DISABLE, remote_supported_packet,
5132 PACKET_qXfer_siginfo_read },
5133 { "qXfer:siginfo:write", PACKET_DISABLE, remote_supported_packet,
5134 PACKET_qXfer_siginfo_write },
5135 { "ConditionalTracepoints", PACKET_DISABLE, remote_supported_packet,
5136 PACKET_ConditionalTracepoints },
5137 { "ConditionalBreakpoints", PACKET_DISABLE, remote_supported_packet,
5138 PACKET_ConditionalBreakpoints },
5139 { "BreakpointCommands", PACKET_DISABLE, remote_supported_packet,
5140 PACKET_BreakpointCommands },
5141 { "FastTracepoints", PACKET_DISABLE, remote_supported_packet,
5142 PACKET_FastTracepoints },
5143 { "StaticTracepoints", PACKET_DISABLE, remote_supported_packet,
5144 PACKET_StaticTracepoints },
5145 {"InstallInTrace", PACKET_DISABLE, remote_supported_packet,
5146 PACKET_InstallInTrace},
5147 { "DisconnectedTracing", PACKET_DISABLE, remote_supported_packet,
5148 PACKET_DisconnectedTracing_feature },
5149 { "ReverseContinue", PACKET_DISABLE, remote_supported_packet,
5150 PACKET_bc },
5151 { "ReverseStep", PACKET_DISABLE, remote_supported_packet,
5152 PACKET_bs },
5153 { "TracepointSource", PACKET_DISABLE, remote_supported_packet,
5154 PACKET_TracepointSource },
5155 { "QAllow", PACKET_DISABLE, remote_supported_packet,
5156 PACKET_QAllow },
5157 { "EnableDisableTracepoints", PACKET_DISABLE, remote_supported_packet,
5158 PACKET_EnableDisableTracepoints_feature },
5159 { "qXfer:fdpic:read", PACKET_DISABLE, remote_supported_packet,
5160 PACKET_qXfer_fdpic },
5161 { "qXfer:uib:read", PACKET_DISABLE, remote_supported_packet,
5162 PACKET_qXfer_uib },
5163 { "QDisableRandomization", PACKET_DISABLE, remote_supported_packet,
5164 PACKET_QDisableRandomization },
5165 { "QAgent", PACKET_DISABLE, remote_supported_packet, PACKET_QAgent},
5166 { "QTBuffer:size", PACKET_DISABLE,
5167 remote_supported_packet, PACKET_QTBuffer_size},
5168 { "tracenz", PACKET_DISABLE, remote_supported_packet, PACKET_tracenz_feature },
5169 { "Qbtrace:off", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_off },
5170 { "Qbtrace:bts", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_bts },
5171 { "Qbtrace:pt", PACKET_DISABLE, remote_supported_packet, PACKET_Qbtrace_pt },
5172 { "qXfer:btrace:read", PACKET_DISABLE, remote_supported_packet,
5173 PACKET_qXfer_btrace },
5174 { "qXfer:btrace-conf:read", PACKET_DISABLE, remote_supported_packet,
5175 PACKET_qXfer_btrace_conf },
5176 { "Qbtrace-conf:bts:size", PACKET_DISABLE, remote_supported_packet,
5177 PACKET_Qbtrace_conf_bts_size },
5178 { "swbreak", PACKET_DISABLE, remote_supported_packet, PACKET_swbreak_feature },
5179 { "hwbreak", PACKET_DISABLE, remote_supported_packet, PACKET_hwbreak_feature },
5180 { "fork-events", PACKET_DISABLE, remote_supported_packet,
5181 PACKET_fork_event_feature },
5182 { "vfork-events", PACKET_DISABLE, remote_supported_packet,
5183 PACKET_vfork_event_feature },
5184 { "exec-events", PACKET_DISABLE, remote_supported_packet,
5185 PACKET_exec_event_feature },
5186 { "Qbtrace-conf:pt:size", PACKET_DISABLE, remote_supported_packet,
5187 PACKET_Qbtrace_conf_pt_size },
5188 { "vContSupported", PACKET_DISABLE, remote_supported_packet, PACKET_vContSupported },
5189 { "QThreadEvents", PACKET_DISABLE, remote_supported_packet, PACKET_QThreadEvents },
5190 { "no-resumed", PACKET_DISABLE, remote_supported_packet, PACKET_no_resumed },
5191 };
5192
5193 static char *remote_support_xml;
5194
5195 /* Register string appended to "xmlRegisters=" in qSupported query. */
5196
5197 void
5198 register_remote_support_xml (const char *xml)
5199 {
5200 #if defined(HAVE_LIBEXPAT)
5201 if (remote_support_xml == NULL)
5202 remote_support_xml = concat ("xmlRegisters=", xml, (char *) NULL);
5203 else
5204 {
5205 char *copy = xstrdup (remote_support_xml + 13);
5206 char *saveptr;
5207 char *p = strtok_r (copy, ",", &saveptr);
5208
5209 do
5210 {
5211 if (strcmp (p, xml) == 0)
5212 {
5213 /* already there */
5214 xfree (copy);
5215 return;
5216 }
5217 }
5218 while ((p = strtok_r (NULL, ",", &saveptr)) != NULL);
5219 xfree (copy);
5220
5221 remote_support_xml = reconcat (remote_support_xml,
5222 remote_support_xml, ",", xml,
5223 (char *) NULL);
5224 }
5225 #endif
5226 }
5227
5228 static void
5229 remote_query_supported_append (std::string *msg, const char *append)
5230 {
5231 if (!msg->empty ())
5232 msg->append (";");
5233 msg->append (append);
5234 }
5235
5236 void
5237 remote_target::remote_query_supported ()
5238 {
5239 struct remote_state *rs = get_remote_state ();
5240 char *next;
5241 int i;
5242 unsigned char seen [ARRAY_SIZE (remote_protocol_features)];
5243
5244 /* The packet support flags are handled differently for this packet
5245 than for most others. We treat an error, a disabled packet, and
5246 an empty response identically: any features which must be reported
5247 to be used will be automatically disabled. An empty buffer
5248 accomplishes this, since that is also the representation for a list
5249 containing no features. */
5250
5251 rs->buf[0] = 0;
5252 if (packet_support (PACKET_qSupported) != PACKET_DISABLE)
5253 {
5254 std::string q;
5255
5256 if (packet_set_cmd_state (PACKET_multiprocess_feature) != AUTO_BOOLEAN_FALSE)
5257 remote_query_supported_append (&q, "multiprocess+");
5258
5259 if (packet_set_cmd_state (PACKET_swbreak_feature) != AUTO_BOOLEAN_FALSE)
5260 remote_query_supported_append (&q, "swbreak+");
5261 if (packet_set_cmd_state (PACKET_hwbreak_feature) != AUTO_BOOLEAN_FALSE)
5262 remote_query_supported_append (&q, "hwbreak+");
5263
5264 remote_query_supported_append (&q, "qRelocInsn+");
5265
5266 if (packet_set_cmd_state (PACKET_fork_event_feature)
5267 != AUTO_BOOLEAN_FALSE)
5268 remote_query_supported_append (&q, "fork-events+");
5269 if (packet_set_cmd_state (PACKET_vfork_event_feature)
5270 != AUTO_BOOLEAN_FALSE)
5271 remote_query_supported_append (&q, "vfork-events+");
5272 if (packet_set_cmd_state (PACKET_exec_event_feature)
5273 != AUTO_BOOLEAN_FALSE)
5274 remote_query_supported_append (&q, "exec-events+");
5275
5276 if (packet_set_cmd_state (PACKET_vContSupported) != AUTO_BOOLEAN_FALSE)
5277 remote_query_supported_append (&q, "vContSupported+");
5278
5279 if (packet_set_cmd_state (PACKET_QThreadEvents) != AUTO_BOOLEAN_FALSE)
5280 remote_query_supported_append (&q, "QThreadEvents+");
5281
5282 if (packet_set_cmd_state (PACKET_no_resumed) != AUTO_BOOLEAN_FALSE)
5283 remote_query_supported_append (&q, "no-resumed+");
5284
5285 /* Keep this one last to work around a gdbserver <= 7.10 bug in
5286 the qSupported:xmlRegisters=i386 handling. */
5287 if (remote_support_xml != NULL
5288 && packet_support (PACKET_qXfer_features) != PACKET_DISABLE)
5289 remote_query_supported_append (&q, remote_support_xml);
5290
5291 q = "qSupported:" + q;
5292 putpkt (q.c_str ());
5293
5294 getpkt (&rs->buf, 0);
5295
5296 /* If an error occured, warn, but do not return - just reset the
5297 buffer to empty and go on to disable features. */
5298 if (packet_ok (rs->buf, &remote_protocol_packets[PACKET_qSupported])
5299 == PACKET_ERROR)
5300 {
5301 warning (_("Remote failure reply: %s"), rs->buf.data ());
5302 rs->buf[0] = 0;
5303 }
5304 }
5305
5306 memset (seen, 0, sizeof (seen));
5307
5308 next = rs->buf.data ();
5309 while (*next)
5310 {
5311 enum packet_support is_supported;
5312 char *p, *end, *name_end, *value;
5313
5314 /* First separate out this item from the rest of the packet. If
5315 there's another item after this, we overwrite the separator
5316 (terminated strings are much easier to work with). */
5317 p = next;
5318 end = strchr (p, ';');
5319 if (end == NULL)
5320 {
5321 end = p + strlen (p);
5322 next = end;
5323 }
5324 else
5325 {
5326 *end = '\0';
5327 next = end + 1;
5328
5329 if (end == p)
5330 {
5331 warning (_("empty item in \"qSupported\" response"));
5332 continue;
5333 }
5334 }
5335
5336 name_end = strchr (p, '=');
5337 if (name_end)
5338 {
5339 /* This is a name=value entry. */
5340 is_supported = PACKET_ENABLE;
5341 value = name_end + 1;
5342 *name_end = '\0';
5343 }
5344 else
5345 {
5346 value = NULL;
5347 switch (end[-1])
5348 {
5349 case '+':
5350 is_supported = PACKET_ENABLE;
5351 break;
5352
5353 case '-':
5354 is_supported = PACKET_DISABLE;
5355 break;
5356
5357 case '?':
5358 is_supported = PACKET_SUPPORT_UNKNOWN;
5359 break;
5360
5361 default:
5362 warning (_("unrecognized item \"%s\" "
5363 "in \"qSupported\" response"), p);
5364 continue;
5365 }
5366 end[-1] = '\0';
5367 }
5368
5369 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5370 if (strcmp (remote_protocol_features[i].name, p) == 0)
5371 {
5372 const struct protocol_feature *feature;
5373
5374 seen[i] = 1;
5375 feature = &remote_protocol_features[i];
5376 feature->func (this, feature, is_supported, value);
5377 break;
5378 }
5379 }
5380
5381 /* If we increased the packet size, make sure to increase the global
5382 buffer size also. We delay this until after parsing the entire
5383 qSupported packet, because this is the same buffer we were
5384 parsing. */
5385 if (rs->buf.size () < rs->explicit_packet_size)
5386 rs->buf.resize (rs->explicit_packet_size);
5387
5388 /* Handle the defaults for unmentioned features. */
5389 for (i = 0; i < ARRAY_SIZE (remote_protocol_features); i++)
5390 if (!seen[i])
5391 {
5392 const struct protocol_feature *feature;
5393
5394 feature = &remote_protocol_features[i];
5395 feature->func (this, feature, feature->default_support, NULL);
5396 }
5397 }
5398
5399 /* Serial QUIT handler for the remote serial descriptor.
5400
5401 Defers handling a Ctrl-C until we're done with the current
5402 command/response packet sequence, unless:
5403
5404 - We're setting up the connection. Don't send a remote interrupt
5405 request, as we're not fully synced yet. Quit immediately
5406 instead.
5407
5408 - The target has been resumed in the foreground
5409 (target_terminal::is_ours is false) with a synchronous resume
5410 packet, and we're blocked waiting for the stop reply, thus a
5411 Ctrl-C should be immediately sent to the target.
5412
5413 - We get a second Ctrl-C while still within the same serial read or
5414 write. In that case the serial is seemingly wedged --- offer to
5415 quit/disconnect.
5416
5417 - We see a second Ctrl-C without target response, after having
5418 previously interrupted the target. In that case the target/stub
5419 is probably wedged --- offer to quit/disconnect.
5420 */
5421
5422 void
5423 remote_target::remote_serial_quit_handler ()
5424 {
5425 struct remote_state *rs = get_remote_state ();
5426
5427 if (check_quit_flag ())
5428 {
5429 /* If we're starting up, we're not fully synced yet. Quit
5430 immediately. */
5431 if (rs->starting_up)
5432 quit ();
5433 else if (rs->got_ctrlc_during_io)
5434 {
5435 if (query (_("The target is not responding to GDB commands.\n"
5436 "Stop debugging it? ")))
5437 remote_unpush_and_throw ();
5438 }
5439 /* If ^C has already been sent once, offer to disconnect. */
5440 else if (!target_terminal::is_ours () && rs->ctrlc_pending_p)
5441 interrupt_query ();
5442 /* All-stop protocol, and blocked waiting for stop reply. Send
5443 an interrupt request. */
5444 else if (!target_terminal::is_ours () && rs->waiting_for_stop_reply)
5445 target_interrupt ();
5446 else
5447 rs->got_ctrlc_during_io = 1;
5448 }
5449 }
5450
5451 /* The remote_target that is current while the quit handler is
5452 overridden with remote_serial_quit_handler. */
5453 static remote_target *curr_quit_handler_target;
5454
5455 static void
5456 remote_serial_quit_handler ()
5457 {
5458 curr_quit_handler_target->remote_serial_quit_handler ();
5459 }
5460
5461 /* Remove any of the remote.c targets from target stack. Upper targets depend
5462 on it so remove them first. */
5463
5464 static void
5465 remote_unpush_target (void)
5466 {
5467 pop_all_targets_at_and_above (process_stratum);
5468 }
5469
5470 static void
5471 remote_unpush_and_throw (void)
5472 {
5473 remote_unpush_target ();
5474 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
5475 }
5476
5477 void
5478 remote_target::open_1 (const char *name, int from_tty, int extended_p)
5479 {
5480 remote_target *curr_remote = get_current_remote_target ();
5481
5482 if (name == 0)
5483 error (_("To open a remote debug connection, you need to specify what\n"
5484 "serial device is attached to the remote system\n"
5485 "(e.g. /dev/ttyS0, /dev/ttya, COM1, etc.)."));
5486
5487 /* If we're connected to a running target, target_preopen will kill it.
5488 Ask this question first, before target_preopen has a chance to kill
5489 anything. */
5490 if (curr_remote != NULL && !have_inferiors ())
5491 {
5492 if (from_tty
5493 && !query (_("Already connected to a remote target. Disconnect? ")))
5494 error (_("Still connected."));
5495 }
5496
5497 /* Here the possibly existing remote target gets unpushed. */
5498 target_preopen (from_tty);
5499
5500 remote_fileio_reset ();
5501 reopen_exec_file ();
5502 reread_symbols ();
5503
5504 remote_target *remote
5505 = (extended_p ? new extended_remote_target () : new remote_target ());
5506 target_ops_up target_holder (remote);
5507
5508 remote_state *rs = remote->get_remote_state ();
5509
5510 /* See FIXME above. */
5511 if (!target_async_permitted)
5512 rs->wait_forever_enabled_p = 1;
5513
5514 rs->remote_desc = remote_serial_open (name);
5515 if (!rs->remote_desc)
5516 perror_with_name (name);
5517
5518 if (baud_rate != -1)
5519 {
5520 if (serial_setbaudrate (rs->remote_desc, baud_rate))
5521 {
5522 /* The requested speed could not be set. Error out to
5523 top level after closing remote_desc. Take care to
5524 set remote_desc to NULL to avoid closing remote_desc
5525 more than once. */
5526 serial_close (rs->remote_desc);
5527 rs->remote_desc = NULL;
5528 perror_with_name (name);
5529 }
5530 }
5531
5532 serial_setparity (rs->remote_desc, serial_parity);
5533 serial_raw (rs->remote_desc);
5534
5535 /* If there is something sitting in the buffer we might take it as a
5536 response to a command, which would be bad. */
5537 serial_flush_input (rs->remote_desc);
5538
5539 if (from_tty)
5540 {
5541 puts_filtered ("Remote debugging using ");
5542 puts_filtered (name);
5543 puts_filtered ("\n");
5544 }
5545
5546 /* Switch to using the remote target now. */
5547 push_target (std::move (target_holder));
5548
5549 /* Register extra event sources in the event loop. */
5550 rs->remote_async_inferior_event_token
5551 = create_async_event_handler (remote_async_inferior_event_handler,
5552 remote);
5553 rs->notif_state = remote_notif_state_allocate (remote);
5554
5555 /* Reset the target state; these things will be queried either by
5556 remote_query_supported or as they are needed. */
5557 reset_all_packet_configs_support ();
5558 rs->cached_wait_status = 0;
5559 rs->explicit_packet_size = 0;
5560 rs->noack_mode = 0;
5561 rs->extended = extended_p;
5562 rs->waiting_for_stop_reply = 0;
5563 rs->ctrlc_pending_p = 0;
5564 rs->got_ctrlc_during_io = 0;
5565
5566 rs->general_thread = not_sent_ptid;
5567 rs->continue_thread = not_sent_ptid;
5568 rs->remote_traceframe_number = -1;
5569
5570 rs->last_resume_exec_dir = EXEC_FORWARD;
5571
5572 /* Probe for ability to use "ThreadInfo" query, as required. */
5573 rs->use_threadinfo_query = 1;
5574 rs->use_threadextra_query = 1;
5575
5576 rs->readahead_cache.invalidate ();
5577
5578 if (target_async_permitted)
5579 {
5580 /* FIXME: cagney/1999-09-23: During the initial connection it is
5581 assumed that the target is already ready and able to respond to
5582 requests. Unfortunately remote_start_remote() eventually calls
5583 wait_for_inferior() with no timeout. wait_forever_enabled_p gets
5584 around this. Eventually a mechanism that allows
5585 wait_for_inferior() to expect/get timeouts will be
5586 implemented. */
5587 rs->wait_forever_enabled_p = 0;
5588 }
5589
5590 /* First delete any symbols previously loaded from shared libraries. */
5591 no_shared_libraries (NULL, 0);
5592
5593 /* Start the remote connection. If error() or QUIT, discard this
5594 target (we'd otherwise be in an inconsistent state) and then
5595 propogate the error on up the exception chain. This ensures that
5596 the caller doesn't stumble along blindly assuming that the
5597 function succeeded. The CLI doesn't have this problem but other
5598 UI's, such as MI do.
5599
5600 FIXME: cagney/2002-05-19: Instead of re-throwing the exception,
5601 this function should return an error indication letting the
5602 caller restore the previous state. Unfortunately the command
5603 ``target remote'' is directly wired to this function making that
5604 impossible. On a positive note, the CLI side of this problem has
5605 been fixed - the function set_cmd_context() makes it possible for
5606 all the ``target ....'' commands to share a common callback
5607 function. See cli-dump.c. */
5608 {
5609
5610 try
5611 {
5612 remote->start_remote (from_tty, extended_p);
5613 }
5614 catch (const gdb_exception &ex)
5615 {
5616 /* Pop the partially set up target - unless something else did
5617 already before throwing the exception. */
5618 if (ex.error != TARGET_CLOSE_ERROR)
5619 remote_unpush_target ();
5620 throw;
5621 }
5622 }
5623
5624 remote_btrace_reset (rs);
5625
5626 if (target_async_permitted)
5627 rs->wait_forever_enabled_p = 1;
5628 }
5629
5630 /* Detach the specified process. */
5631
5632 void
5633 remote_target::remote_detach_pid (int pid)
5634 {
5635 struct remote_state *rs = get_remote_state ();
5636
5637 /* This should not be necessary, but the handling for D;PID in
5638 GDBserver versions prior to 8.2 incorrectly assumes that the
5639 selected process points to the same process we're detaching,
5640 leading to misbehavior (and possibly GDBserver crashing) when it
5641 does not. Since it's easy and cheap, work around it by forcing
5642 GDBserver to select GDB's current process. */
5643 set_general_process ();
5644
5645 if (remote_multi_process_p (rs))
5646 xsnprintf (rs->buf.data (), get_remote_packet_size (), "D;%x", pid);
5647 else
5648 strcpy (rs->buf.data (), "D");
5649
5650 putpkt (rs->buf);
5651 getpkt (&rs->buf, 0);
5652
5653 if (rs->buf[0] == 'O' && rs->buf[1] == 'K')
5654 ;
5655 else if (rs->buf[0] == '\0')
5656 error (_("Remote doesn't know how to detach"));
5657 else
5658 error (_("Can't detach process."));
5659 }
5660
5661 /* This detaches a program to which we previously attached, using
5662 inferior_ptid to identify the process. After this is done, GDB
5663 can be used to debug some other program. We better not have left
5664 any breakpoints in the target program or it'll die when it hits
5665 one. */
5666
5667 void
5668 remote_target::remote_detach_1 (inferior *inf, int from_tty)
5669 {
5670 int pid = inferior_ptid.pid ();
5671 struct remote_state *rs = get_remote_state ();
5672 int is_fork_parent;
5673
5674 if (!target_has_execution)
5675 error (_("No process to detach from."));
5676
5677 target_announce_detach (from_tty);
5678
5679 /* Tell the remote target to detach. */
5680 remote_detach_pid (pid);
5681
5682 /* Exit only if this is the only active inferior. */
5683 if (from_tty && !rs->extended && number_of_live_inferiors () == 1)
5684 puts_filtered (_("Ending remote debugging.\n"));
5685
5686 struct thread_info *tp = find_thread_ptid (inferior_ptid);
5687
5688 /* Check to see if we are detaching a fork parent. Note that if we
5689 are detaching a fork child, tp == NULL. */
5690 is_fork_parent = (tp != NULL
5691 && tp->pending_follow.kind == TARGET_WAITKIND_FORKED);
5692
5693 /* If doing detach-on-fork, we don't mourn, because that will delete
5694 breakpoints that should be available for the followed inferior. */
5695 if (!is_fork_parent)
5696 {
5697 /* Save the pid as a string before mourning, since that will
5698 unpush the remote target, and we need the string after. */
5699 std::string infpid = target_pid_to_str (ptid_t (pid));
5700
5701 target_mourn_inferior (inferior_ptid);
5702 if (print_inferior_events)
5703 printf_unfiltered (_("[Inferior %d (%s) detached]\n"),
5704 inf->num, infpid.c_str ());
5705 }
5706 else
5707 {
5708 inferior_ptid = null_ptid;
5709 detach_inferior (current_inferior ());
5710 }
5711 }
5712
5713 void
5714 remote_target::detach (inferior *inf, int from_tty)
5715 {
5716 remote_detach_1 (inf, from_tty);
5717 }
5718
5719 void
5720 extended_remote_target::detach (inferior *inf, int from_tty)
5721 {
5722 remote_detach_1 (inf, from_tty);
5723 }
5724
5725 /* Target follow-fork function for remote targets. On entry, and
5726 at return, the current inferior is the fork parent.
5727
5728 Note that although this is currently only used for extended-remote,
5729 it is named remote_follow_fork in anticipation of using it for the
5730 remote target as well. */
5731
5732 int
5733 remote_target::follow_fork (int follow_child, int detach_fork)
5734 {
5735 struct remote_state *rs = get_remote_state ();
5736 enum target_waitkind kind = inferior_thread ()->pending_follow.kind;
5737
5738 if ((kind == TARGET_WAITKIND_FORKED && remote_fork_event_p (rs))
5739 || (kind == TARGET_WAITKIND_VFORKED && remote_vfork_event_p (rs)))
5740 {
5741 /* When following the parent and detaching the child, we detach
5742 the child here. For the case of following the child and
5743 detaching the parent, the detach is done in the target-
5744 independent follow fork code in infrun.c. We can't use
5745 target_detach when detaching an unfollowed child because
5746 the client side doesn't know anything about the child. */
5747 if (detach_fork && !follow_child)
5748 {
5749 /* Detach the fork child. */
5750 ptid_t child_ptid;
5751 pid_t child_pid;
5752
5753 child_ptid = inferior_thread ()->pending_follow.value.related_pid;
5754 child_pid = child_ptid.pid ();
5755
5756 remote_detach_pid (child_pid);
5757 }
5758 }
5759 return 0;
5760 }
5761
5762 /* Target follow-exec function for remote targets. Save EXECD_PATHNAME
5763 in the program space of the new inferior. On entry and at return the
5764 current inferior is the exec'ing inferior. INF is the new exec'd
5765 inferior, which may be the same as the exec'ing inferior unless
5766 follow-exec-mode is "new". */
5767
5768 void
5769 remote_target::follow_exec (struct inferior *inf, const char *execd_pathname)
5770 {
5771 /* We know that this is a target file name, so if it has the "target:"
5772 prefix we strip it off before saving it in the program space. */
5773 if (is_target_filename (execd_pathname))
5774 execd_pathname += strlen (TARGET_SYSROOT_PREFIX);
5775
5776 set_pspace_remote_exec_file (inf->pspace, execd_pathname);
5777 }
5778
5779 /* Same as remote_detach, but don't send the "D" packet; just disconnect. */
5780
5781 void
5782 remote_target::disconnect (const char *args, int from_tty)
5783 {
5784 if (args)
5785 error (_("Argument given to \"disconnect\" when remotely debugging."));
5786
5787 /* Make sure we unpush even the extended remote targets. Calling
5788 target_mourn_inferior won't unpush, and remote_mourn won't
5789 unpush if there is more than one inferior left. */
5790 unpush_target (this);
5791 generic_mourn_inferior ();
5792
5793 if (from_tty)
5794 puts_filtered ("Ending remote debugging.\n");
5795 }
5796
5797 /* Attach to the process specified by ARGS. If FROM_TTY is non-zero,
5798 be chatty about it. */
5799
5800 void
5801 extended_remote_target::attach (const char *args, int from_tty)
5802 {
5803 struct remote_state *rs = get_remote_state ();
5804 int pid;
5805 char *wait_status = NULL;
5806
5807 pid = parse_pid_to_attach (args);
5808
5809 /* Remote PID can be freely equal to getpid, do not check it here the same
5810 way as in other targets. */
5811
5812 if (packet_support (PACKET_vAttach) == PACKET_DISABLE)
5813 error (_("This target does not support attaching to a process"));
5814
5815 if (from_tty)
5816 {
5817 const char *exec_file = get_exec_file (0);
5818
5819 if (exec_file)
5820 printf_unfiltered (_("Attaching to program: %s, %s\n"), exec_file,
5821 target_pid_to_str (ptid_t (pid)).c_str ());
5822 else
5823 printf_unfiltered (_("Attaching to %s\n"),
5824 target_pid_to_str (ptid_t (pid)).c_str ());
5825 }
5826
5827 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vAttach;%x", pid);
5828 putpkt (rs->buf);
5829 getpkt (&rs->buf, 0);
5830
5831 switch (packet_ok (rs->buf,
5832 &remote_protocol_packets[PACKET_vAttach]))
5833 {
5834 case PACKET_OK:
5835 if (!target_is_non_stop_p ())
5836 {
5837 /* Save the reply for later. */
5838 wait_status = (char *) alloca (strlen (rs->buf.data ()) + 1);
5839 strcpy (wait_status, rs->buf.data ());
5840 }
5841 else if (strcmp (rs->buf.data (), "OK") != 0)
5842 error (_("Attaching to %s failed with: %s"),
5843 target_pid_to_str (ptid_t (pid)).c_str (),
5844 rs->buf.data ());
5845 break;
5846 case PACKET_UNKNOWN:
5847 error (_("This target does not support attaching to a process"));
5848 default:
5849 error (_("Attaching to %s failed"),
5850 target_pid_to_str (ptid_t (pid)).c_str ());
5851 }
5852
5853 set_current_inferior (remote_add_inferior (false, pid, 1, 0));
5854
5855 inferior_ptid = ptid_t (pid);
5856
5857 if (target_is_non_stop_p ())
5858 {
5859 struct thread_info *thread;
5860
5861 /* Get list of threads. */
5862 update_thread_list ();
5863
5864 thread = first_thread_of_inferior (current_inferior ());
5865 if (thread)
5866 inferior_ptid = thread->ptid;
5867 else
5868 inferior_ptid = ptid_t (pid);
5869
5870 /* Invalidate our notion of the remote current thread. */
5871 record_currthread (rs, minus_one_ptid);
5872 }
5873 else
5874 {
5875 /* Now, if we have thread information, update inferior_ptid. */
5876 inferior_ptid = remote_current_thread (inferior_ptid);
5877
5878 /* Add the main thread to the thread list. */
5879 thread_info *thr = add_thread_silent (inferior_ptid);
5880 /* Don't consider the thread stopped until we've processed the
5881 saved stop reply. */
5882 set_executing (thr->ptid, true);
5883 }
5884
5885 /* Next, if the target can specify a description, read it. We do
5886 this before anything involving memory or registers. */
5887 target_find_description ();
5888
5889 if (!target_is_non_stop_p ())
5890 {
5891 /* Use the previously fetched status. */
5892 gdb_assert (wait_status != NULL);
5893
5894 if (target_can_async_p ())
5895 {
5896 struct notif_event *reply
5897 = remote_notif_parse (this, &notif_client_stop, wait_status);
5898
5899 push_stop_reply ((struct stop_reply *) reply);
5900
5901 target_async (1);
5902 }
5903 else
5904 {
5905 gdb_assert (wait_status != NULL);
5906 strcpy (rs->buf.data (), wait_status);
5907 rs->cached_wait_status = 1;
5908 }
5909 }
5910 else
5911 gdb_assert (wait_status == NULL);
5912 }
5913
5914 /* Implementation of the to_post_attach method. */
5915
5916 void
5917 extended_remote_target::post_attach (int pid)
5918 {
5919 /* Get text, data & bss offsets. */
5920 get_offsets ();
5921
5922 /* In certain cases GDB might not have had the chance to start
5923 symbol lookup up until now. This could happen if the debugged
5924 binary is not using shared libraries, the vsyscall page is not
5925 present (on Linux) and the binary itself hadn't changed since the
5926 debugging process was started. */
5927 if (symfile_objfile != NULL)
5928 remote_check_symbols();
5929 }
5930
5931 \f
5932 /* Check for the availability of vCont. This function should also check
5933 the response. */
5934
5935 void
5936 remote_target::remote_vcont_probe ()
5937 {
5938 remote_state *rs = get_remote_state ();
5939 char *buf;
5940
5941 strcpy (rs->buf.data (), "vCont?");
5942 putpkt (rs->buf);
5943 getpkt (&rs->buf, 0);
5944 buf = rs->buf.data ();
5945
5946 /* Make sure that the features we assume are supported. */
5947 if (startswith (buf, "vCont"))
5948 {
5949 char *p = &buf[5];
5950 int support_c, support_C;
5951
5952 rs->supports_vCont.s = 0;
5953 rs->supports_vCont.S = 0;
5954 support_c = 0;
5955 support_C = 0;
5956 rs->supports_vCont.t = 0;
5957 rs->supports_vCont.r = 0;
5958 while (p && *p == ';')
5959 {
5960 p++;
5961 if (*p == 's' && (*(p + 1) == ';' || *(p + 1) == 0))
5962 rs->supports_vCont.s = 1;
5963 else if (*p == 'S' && (*(p + 1) == ';' || *(p + 1) == 0))
5964 rs->supports_vCont.S = 1;
5965 else if (*p == 'c' && (*(p + 1) == ';' || *(p + 1) == 0))
5966 support_c = 1;
5967 else if (*p == 'C' && (*(p + 1) == ';' || *(p + 1) == 0))
5968 support_C = 1;
5969 else if (*p == 't' && (*(p + 1) == ';' || *(p + 1) == 0))
5970 rs->supports_vCont.t = 1;
5971 else if (*p == 'r' && (*(p + 1) == ';' || *(p + 1) == 0))
5972 rs->supports_vCont.r = 1;
5973
5974 p = strchr (p, ';');
5975 }
5976
5977 /* If c, and C are not all supported, we can't use vCont. Clearing
5978 BUF will make packet_ok disable the packet. */
5979 if (!support_c || !support_C)
5980 buf[0] = 0;
5981 }
5982
5983 packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCont]);
5984 }
5985
5986 /* Helper function for building "vCont" resumptions. Write a
5987 resumption to P. ENDP points to one-passed-the-end of the buffer
5988 we're allowed to write to. Returns BUF+CHARACTERS_WRITTEN. The
5989 thread to be resumed is PTID; STEP and SIGGNAL indicate whether the
5990 resumed thread should be single-stepped and/or signalled. If PTID
5991 equals minus_one_ptid, then all threads are resumed; if PTID
5992 represents a process, then all threads of the process are resumed;
5993 the thread to be stepped and/or signalled is given in the global
5994 INFERIOR_PTID. */
5995
5996 char *
5997 remote_target::append_resumption (char *p, char *endp,
5998 ptid_t ptid, int step, gdb_signal siggnal)
5999 {
6000 struct remote_state *rs = get_remote_state ();
6001
6002 if (step && siggnal != GDB_SIGNAL_0)
6003 p += xsnprintf (p, endp - p, ";S%02x", siggnal);
6004 else if (step
6005 /* GDB is willing to range step. */
6006 && use_range_stepping
6007 /* Target supports range stepping. */
6008 && rs->supports_vCont.r
6009 /* We don't currently support range stepping multiple
6010 threads with a wildcard (though the protocol allows it,
6011 so stubs shouldn't make an active effort to forbid
6012 it). */
6013 && !(remote_multi_process_p (rs) && ptid.is_pid ()))
6014 {
6015 struct thread_info *tp;
6016
6017 if (ptid == minus_one_ptid)
6018 {
6019 /* If we don't know about the target thread's tid, then
6020 we're resuming magic_null_ptid (see caller). */
6021 tp = find_thread_ptid (magic_null_ptid);
6022 }
6023 else
6024 tp = find_thread_ptid (ptid);
6025 gdb_assert (tp != NULL);
6026
6027 if (tp->control.may_range_step)
6028 {
6029 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
6030
6031 p += xsnprintf (p, endp - p, ";r%s,%s",
6032 phex_nz (tp->control.step_range_start,
6033 addr_size),
6034 phex_nz (tp->control.step_range_end,
6035 addr_size));
6036 }
6037 else
6038 p += xsnprintf (p, endp - p, ";s");
6039 }
6040 else if (step)
6041 p += xsnprintf (p, endp - p, ";s");
6042 else if (siggnal != GDB_SIGNAL_0)
6043 p += xsnprintf (p, endp - p, ";C%02x", siggnal);
6044 else
6045 p += xsnprintf (p, endp - p, ";c");
6046
6047 if (remote_multi_process_p (rs) && ptid.is_pid ())
6048 {
6049 ptid_t nptid;
6050
6051 /* All (-1) threads of process. */
6052 nptid = ptid_t (ptid.pid (), -1, 0);
6053
6054 p += xsnprintf (p, endp - p, ":");
6055 p = write_ptid (p, endp, nptid);
6056 }
6057 else if (ptid != minus_one_ptid)
6058 {
6059 p += xsnprintf (p, endp - p, ":");
6060 p = write_ptid (p, endp, ptid);
6061 }
6062
6063 return p;
6064 }
6065
6066 /* Clear the thread's private info on resume. */
6067
6068 static void
6069 resume_clear_thread_private_info (struct thread_info *thread)
6070 {
6071 if (thread->priv != NULL)
6072 {
6073 remote_thread_info *priv = get_remote_thread_info (thread);
6074
6075 priv->stop_reason = TARGET_STOPPED_BY_NO_REASON;
6076 priv->watch_data_address = 0;
6077 }
6078 }
6079
6080 /* Append a vCont continue-with-signal action for threads that have a
6081 non-zero stop signal. */
6082
6083 char *
6084 remote_target::append_pending_thread_resumptions (char *p, char *endp,
6085 ptid_t ptid)
6086 {
6087 for (thread_info *thread : all_non_exited_threads (ptid))
6088 if (inferior_ptid != thread->ptid
6089 && thread->suspend.stop_signal != GDB_SIGNAL_0)
6090 {
6091 p = append_resumption (p, endp, thread->ptid,
6092 0, thread->suspend.stop_signal);
6093 thread->suspend.stop_signal = GDB_SIGNAL_0;
6094 resume_clear_thread_private_info (thread);
6095 }
6096
6097 return p;
6098 }
6099
6100 /* Set the target running, using the packets that use Hc
6101 (c/s/C/S). */
6102
6103 void
6104 remote_target::remote_resume_with_hc (ptid_t ptid, int step,
6105 gdb_signal siggnal)
6106 {
6107 struct remote_state *rs = get_remote_state ();
6108 char *buf;
6109
6110 rs->last_sent_signal = siggnal;
6111 rs->last_sent_step = step;
6112
6113 /* The c/s/C/S resume packets use Hc, so set the continue
6114 thread. */
6115 if (ptid == minus_one_ptid)
6116 set_continue_thread (any_thread_ptid);
6117 else
6118 set_continue_thread (ptid);
6119
6120 for (thread_info *thread : all_non_exited_threads ())
6121 resume_clear_thread_private_info (thread);
6122
6123 buf = rs->buf.data ();
6124 if (::execution_direction == EXEC_REVERSE)
6125 {
6126 /* We don't pass signals to the target in reverse exec mode. */
6127 if (info_verbose && siggnal != GDB_SIGNAL_0)
6128 warning (_(" - Can't pass signal %d to target in reverse: ignored."),
6129 siggnal);
6130
6131 if (step && packet_support (PACKET_bs) == PACKET_DISABLE)
6132 error (_("Remote reverse-step not supported."));
6133 if (!step && packet_support (PACKET_bc) == PACKET_DISABLE)
6134 error (_("Remote reverse-continue not supported."));
6135
6136 strcpy (buf, step ? "bs" : "bc");
6137 }
6138 else if (siggnal != GDB_SIGNAL_0)
6139 {
6140 buf[0] = step ? 'S' : 'C';
6141 buf[1] = tohex (((int) siggnal >> 4) & 0xf);
6142 buf[2] = tohex (((int) siggnal) & 0xf);
6143 buf[3] = '\0';
6144 }
6145 else
6146 strcpy (buf, step ? "s" : "c");
6147
6148 putpkt (buf);
6149 }
6150
6151 /* Resume the remote inferior by using a "vCont" packet. The thread
6152 to be resumed is PTID; STEP and SIGGNAL indicate whether the
6153 resumed thread should be single-stepped and/or signalled. If PTID
6154 equals minus_one_ptid, then all threads are resumed; the thread to
6155 be stepped and/or signalled is given in the global INFERIOR_PTID.
6156 This function returns non-zero iff it resumes the inferior.
6157
6158 This function issues a strict subset of all possible vCont commands
6159 at the moment. */
6160
6161 int
6162 remote_target::remote_resume_with_vcont (ptid_t ptid, int step,
6163 enum gdb_signal siggnal)
6164 {
6165 struct remote_state *rs = get_remote_state ();
6166 char *p;
6167 char *endp;
6168
6169 /* No reverse execution actions defined for vCont. */
6170 if (::execution_direction == EXEC_REVERSE)
6171 return 0;
6172
6173 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6174 remote_vcont_probe ();
6175
6176 if (packet_support (PACKET_vCont) == PACKET_DISABLE)
6177 return 0;
6178
6179 p = rs->buf.data ();
6180 endp = p + get_remote_packet_size ();
6181
6182 /* If we could generate a wider range of packets, we'd have to worry
6183 about overflowing BUF. Should there be a generic
6184 "multi-part-packet" packet? */
6185
6186 p += xsnprintf (p, endp - p, "vCont");
6187
6188 if (ptid == magic_null_ptid)
6189 {
6190 /* MAGIC_NULL_PTID means that we don't have any active threads,
6191 so we don't have any TID numbers the inferior will
6192 understand. Make sure to only send forms that do not specify
6193 a TID. */
6194 append_resumption (p, endp, minus_one_ptid, step, siggnal);
6195 }
6196 else if (ptid == minus_one_ptid || ptid.is_pid ())
6197 {
6198 /* Resume all threads (of all processes, or of a single
6199 process), with preference for INFERIOR_PTID. This assumes
6200 inferior_ptid belongs to the set of all threads we are about
6201 to resume. */
6202 if (step || siggnal != GDB_SIGNAL_0)
6203 {
6204 /* Step inferior_ptid, with or without signal. */
6205 p = append_resumption (p, endp, inferior_ptid, step, siggnal);
6206 }
6207
6208 /* Also pass down any pending signaled resumption for other
6209 threads not the current. */
6210 p = append_pending_thread_resumptions (p, endp, ptid);
6211
6212 /* And continue others without a signal. */
6213 append_resumption (p, endp, ptid, /*step=*/ 0, GDB_SIGNAL_0);
6214 }
6215 else
6216 {
6217 /* Scheduler locking; resume only PTID. */
6218 append_resumption (p, endp, ptid, step, siggnal);
6219 }
6220
6221 gdb_assert (strlen (rs->buf.data ()) < get_remote_packet_size ());
6222 putpkt (rs->buf);
6223
6224 if (target_is_non_stop_p ())
6225 {
6226 /* In non-stop, the stub replies to vCont with "OK". The stop
6227 reply will be reported asynchronously by means of a `%Stop'
6228 notification. */
6229 getpkt (&rs->buf, 0);
6230 if (strcmp (rs->buf.data (), "OK") != 0)
6231 error (_("Unexpected vCont reply in non-stop mode: %s"),
6232 rs->buf.data ());
6233 }
6234
6235 return 1;
6236 }
6237
6238 /* Tell the remote machine to resume. */
6239
6240 void
6241 remote_target::resume (ptid_t ptid, int step, enum gdb_signal siggnal)
6242 {
6243 struct remote_state *rs = get_remote_state ();
6244
6245 /* When connected in non-stop mode, the core resumes threads
6246 individually. Resuming remote threads directly in target_resume
6247 would thus result in sending one packet per thread. Instead, to
6248 minimize roundtrip latency, here we just store the resume
6249 request; the actual remote resumption will be done in
6250 target_commit_resume / remote_commit_resume, where we'll be able
6251 to do vCont action coalescing. */
6252 if (target_is_non_stop_p () && ::execution_direction != EXEC_REVERSE)
6253 {
6254 remote_thread_info *remote_thr;
6255
6256 if (minus_one_ptid == ptid || ptid.is_pid ())
6257 remote_thr = get_remote_thread_info (inferior_ptid);
6258 else
6259 remote_thr = get_remote_thread_info (ptid);
6260
6261 remote_thr->last_resume_step = step;
6262 remote_thr->last_resume_sig = siggnal;
6263 return;
6264 }
6265
6266 /* In all-stop, we can't mark REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN
6267 (explained in remote-notif.c:handle_notification) so
6268 remote_notif_process is not called. We need find a place where
6269 it is safe to start a 'vNotif' sequence. It is good to do it
6270 before resuming inferior, because inferior was stopped and no RSP
6271 traffic at that moment. */
6272 if (!target_is_non_stop_p ())
6273 remote_notif_process (rs->notif_state, &notif_client_stop);
6274
6275 rs->last_resume_exec_dir = ::execution_direction;
6276
6277 /* Prefer vCont, and fallback to s/c/S/C, which use Hc. */
6278 if (!remote_resume_with_vcont (ptid, step, siggnal))
6279 remote_resume_with_hc (ptid, step, siggnal);
6280
6281 /* We are about to start executing the inferior, let's register it
6282 with the event loop. NOTE: this is the one place where all the
6283 execution commands end up. We could alternatively do this in each
6284 of the execution commands in infcmd.c. */
6285 /* FIXME: ezannoni 1999-09-28: We may need to move this out of here
6286 into infcmd.c in order to allow inferior function calls to work
6287 NOT asynchronously. */
6288 if (target_can_async_p ())
6289 target_async (1);
6290
6291 /* We've just told the target to resume. The remote server will
6292 wait for the inferior to stop, and then send a stop reply. In
6293 the mean time, we can't start another command/query ourselves
6294 because the stub wouldn't be ready to process it. This applies
6295 only to the base all-stop protocol, however. In non-stop (which
6296 only supports vCont), the stub replies with an "OK", and is
6297 immediate able to process further serial input. */
6298 if (!target_is_non_stop_p ())
6299 rs->waiting_for_stop_reply = 1;
6300 }
6301
6302 static int is_pending_fork_parent_thread (struct thread_info *thread);
6303
6304 /* Private per-inferior info for target remote processes. */
6305
6306 struct remote_inferior : public private_inferior
6307 {
6308 /* Whether we can send a wildcard vCont for this process. */
6309 bool may_wildcard_vcont = true;
6310 };
6311
6312 /* Get the remote private inferior data associated to INF. */
6313
6314 static remote_inferior *
6315 get_remote_inferior (inferior *inf)
6316 {
6317 if (inf->priv == NULL)
6318 inf->priv.reset (new remote_inferior);
6319
6320 return static_cast<remote_inferior *> (inf->priv.get ());
6321 }
6322
6323 /* Class used to track the construction of a vCont packet in the
6324 outgoing packet buffer. This is used to send multiple vCont
6325 packets if we have more actions than would fit a single packet. */
6326
6327 class vcont_builder
6328 {
6329 public:
6330 explicit vcont_builder (remote_target *remote)
6331 : m_remote (remote)
6332 {
6333 restart ();
6334 }
6335
6336 void flush ();
6337 void push_action (ptid_t ptid, bool step, gdb_signal siggnal);
6338
6339 private:
6340 void restart ();
6341
6342 /* The remote target. */
6343 remote_target *m_remote;
6344
6345 /* Pointer to the first action. P points here if no action has been
6346 appended yet. */
6347 char *m_first_action;
6348
6349 /* Where the next action will be appended. */
6350 char *m_p;
6351
6352 /* The end of the buffer. Must never write past this. */
6353 char *m_endp;
6354 };
6355
6356 /* Prepare the outgoing buffer for a new vCont packet. */
6357
6358 void
6359 vcont_builder::restart ()
6360 {
6361 struct remote_state *rs = m_remote->get_remote_state ();
6362
6363 m_p = rs->buf.data ();
6364 m_endp = m_p + m_remote->get_remote_packet_size ();
6365 m_p += xsnprintf (m_p, m_endp - m_p, "vCont");
6366 m_first_action = m_p;
6367 }
6368
6369 /* If the vCont packet being built has any action, send it to the
6370 remote end. */
6371
6372 void
6373 vcont_builder::flush ()
6374 {
6375 struct remote_state *rs;
6376
6377 if (m_p == m_first_action)
6378 return;
6379
6380 rs = m_remote->get_remote_state ();
6381 m_remote->putpkt (rs->buf);
6382 m_remote->getpkt (&rs->buf, 0);
6383 if (strcmp (rs->buf.data (), "OK") != 0)
6384 error (_("Unexpected vCont reply in non-stop mode: %s"), rs->buf.data ());
6385 }
6386
6387 /* The largest action is range-stepping, with its two addresses. This
6388 is more than sufficient. If a new, bigger action is created, it'll
6389 quickly trigger a failed assertion in append_resumption (and we'll
6390 just bump this). */
6391 #define MAX_ACTION_SIZE 200
6392
6393 /* Append a new vCont action in the outgoing packet being built. If
6394 the action doesn't fit the packet along with previous actions, push
6395 what we've got so far to the remote end and start over a new vCont
6396 packet (with the new action). */
6397
6398 void
6399 vcont_builder::push_action (ptid_t ptid, bool step, gdb_signal siggnal)
6400 {
6401 char buf[MAX_ACTION_SIZE + 1];
6402
6403 char *endp = m_remote->append_resumption (buf, buf + sizeof (buf),
6404 ptid, step, siggnal);
6405
6406 /* Check whether this new action would fit in the vCont packet along
6407 with previous actions. If not, send what we've got so far and
6408 start a new vCont packet. */
6409 size_t rsize = endp - buf;
6410 if (rsize > m_endp - m_p)
6411 {
6412 flush ();
6413 restart ();
6414
6415 /* Should now fit. */
6416 gdb_assert (rsize <= m_endp - m_p);
6417 }
6418
6419 memcpy (m_p, buf, rsize);
6420 m_p += rsize;
6421 *m_p = '\0';
6422 }
6423
6424 /* to_commit_resume implementation. */
6425
6426 void
6427 remote_target::commit_resume ()
6428 {
6429 int any_process_wildcard;
6430 int may_global_wildcard_vcont;
6431
6432 /* If connected in all-stop mode, we'd send the remote resume
6433 request directly from remote_resume. Likewise if
6434 reverse-debugging, as there are no defined vCont actions for
6435 reverse execution. */
6436 if (!target_is_non_stop_p () || ::execution_direction == EXEC_REVERSE)
6437 return;
6438
6439 /* Try to send wildcard actions ("vCont;c" or "vCont;c:pPID.-1")
6440 instead of resuming all threads of each process individually.
6441 However, if any thread of a process must remain halted, we can't
6442 send wildcard resumes and must send one action per thread.
6443
6444 Care must be taken to not resume threads/processes the server
6445 side already told us are stopped, but the core doesn't know about
6446 yet, because the events are still in the vStopped notification
6447 queue. For example:
6448
6449 #1 => vCont s:p1.1;c
6450 #2 <= OK
6451 #3 <= %Stopped T05 p1.1
6452 #4 => vStopped
6453 #5 <= T05 p1.2
6454 #6 => vStopped
6455 #7 <= OK
6456 #8 (infrun handles the stop for p1.1 and continues stepping)
6457 #9 => vCont s:p1.1;c
6458
6459 The last vCont above would resume thread p1.2 by mistake, because
6460 the server has no idea that the event for p1.2 had not been
6461 handled yet.
6462
6463 The server side must similarly ignore resume actions for the
6464 thread that has a pending %Stopped notification (and any other
6465 threads with events pending), until GDB acks the notification
6466 with vStopped. Otherwise, e.g., the following case is
6467 mishandled:
6468
6469 #1 => g (or any other packet)
6470 #2 <= [registers]
6471 #3 <= %Stopped T05 p1.2
6472 #4 => vCont s:p1.1;c
6473 #5 <= OK
6474
6475 Above, the server must not resume thread p1.2. GDB can't know
6476 that p1.2 stopped until it acks the %Stopped notification, and
6477 since from GDB's perspective all threads should be running, it
6478 sends a "c" action.
6479
6480 Finally, special care must also be given to handling fork/vfork
6481 events. A (v)fork event actually tells us that two processes
6482 stopped -- the parent and the child. Until we follow the fork,
6483 we must not resume the child. Therefore, if we have a pending
6484 fork follow, we must not send a global wildcard resume action
6485 (vCont;c). We can still send process-wide wildcards though. */
6486
6487 /* Start by assuming a global wildcard (vCont;c) is possible. */
6488 may_global_wildcard_vcont = 1;
6489
6490 /* And assume every process is individually wildcard-able too. */
6491 for (inferior *inf : all_non_exited_inferiors ())
6492 {
6493 remote_inferior *priv = get_remote_inferior (inf);
6494
6495 priv->may_wildcard_vcont = true;
6496 }
6497
6498 /* Check for any pending events (not reported or processed yet) and
6499 disable process and global wildcard resumes appropriately. */
6500 check_pending_events_prevent_wildcard_vcont (&may_global_wildcard_vcont);
6501
6502 for (thread_info *tp : all_non_exited_threads ())
6503 {
6504 /* If a thread of a process is not meant to be resumed, then we
6505 can't wildcard that process. */
6506 if (!tp->executing)
6507 {
6508 get_remote_inferior (tp->inf)->may_wildcard_vcont = false;
6509
6510 /* And if we can't wildcard a process, we can't wildcard
6511 everything either. */
6512 may_global_wildcard_vcont = 0;
6513 continue;
6514 }
6515
6516 /* If a thread is the parent of an unfollowed fork, then we
6517 can't do a global wildcard, as that would resume the fork
6518 child. */
6519 if (is_pending_fork_parent_thread (tp))
6520 may_global_wildcard_vcont = 0;
6521 }
6522
6523 /* Now let's build the vCont packet(s). Actions must be appended
6524 from narrower to wider scopes (thread -> process -> global). If
6525 we end up with too many actions for a single packet vcont_builder
6526 flushes the current vCont packet to the remote side and starts a
6527 new one. */
6528 struct vcont_builder vcont_builder (this);
6529
6530 /* Threads first. */
6531 for (thread_info *tp : all_non_exited_threads ())
6532 {
6533 remote_thread_info *remote_thr = get_remote_thread_info (tp);
6534
6535 if (!tp->executing || remote_thr->vcont_resumed)
6536 continue;
6537
6538 gdb_assert (!thread_is_in_step_over_chain (tp));
6539
6540 if (!remote_thr->last_resume_step
6541 && remote_thr->last_resume_sig == GDB_SIGNAL_0
6542 && get_remote_inferior (tp->inf)->may_wildcard_vcont)
6543 {
6544 /* We'll send a wildcard resume instead. */
6545 remote_thr->vcont_resumed = 1;
6546 continue;
6547 }
6548
6549 vcont_builder.push_action (tp->ptid,
6550 remote_thr->last_resume_step,
6551 remote_thr->last_resume_sig);
6552 remote_thr->vcont_resumed = 1;
6553 }
6554
6555 /* Now check whether we can send any process-wide wildcard. This is
6556 to avoid sending a global wildcard in the case nothing is
6557 supposed to be resumed. */
6558 any_process_wildcard = 0;
6559
6560 for (inferior *inf : all_non_exited_inferiors ())
6561 {
6562 if (get_remote_inferior (inf)->may_wildcard_vcont)
6563 {
6564 any_process_wildcard = 1;
6565 break;
6566 }
6567 }
6568
6569 if (any_process_wildcard)
6570 {
6571 /* If all processes are wildcard-able, then send a single "c"
6572 action, otherwise, send an "all (-1) threads of process"
6573 continue action for each running process, if any. */
6574 if (may_global_wildcard_vcont)
6575 {
6576 vcont_builder.push_action (minus_one_ptid,
6577 false, GDB_SIGNAL_0);
6578 }
6579 else
6580 {
6581 for (inferior *inf : all_non_exited_inferiors ())
6582 {
6583 if (get_remote_inferior (inf)->may_wildcard_vcont)
6584 {
6585 vcont_builder.push_action (ptid_t (inf->pid),
6586 false, GDB_SIGNAL_0);
6587 }
6588 }
6589 }
6590 }
6591
6592 vcont_builder.flush ();
6593 }
6594
6595 \f
6596
6597 /* Non-stop version of target_stop. Uses `vCont;t' to stop a remote
6598 thread, all threads of a remote process, or all threads of all
6599 processes. */
6600
6601 void
6602 remote_target::remote_stop_ns (ptid_t ptid)
6603 {
6604 struct remote_state *rs = get_remote_state ();
6605 char *p = rs->buf.data ();
6606 char *endp = p + get_remote_packet_size ();
6607
6608 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
6609 remote_vcont_probe ();
6610
6611 if (!rs->supports_vCont.t)
6612 error (_("Remote server does not support stopping threads"));
6613
6614 if (ptid == minus_one_ptid
6615 || (!remote_multi_process_p (rs) && ptid.is_pid ()))
6616 p += xsnprintf (p, endp - p, "vCont;t");
6617 else
6618 {
6619 ptid_t nptid;
6620
6621 p += xsnprintf (p, endp - p, "vCont;t:");
6622
6623 if (ptid.is_pid ())
6624 /* All (-1) threads of process. */
6625 nptid = ptid_t (ptid.pid (), -1, 0);
6626 else
6627 {
6628 /* Small optimization: if we already have a stop reply for
6629 this thread, no use in telling the stub we want this
6630 stopped. */
6631 if (peek_stop_reply (ptid))
6632 return;
6633
6634 nptid = ptid;
6635 }
6636
6637 write_ptid (p, endp, nptid);
6638 }
6639
6640 /* In non-stop, we get an immediate OK reply. The stop reply will
6641 come in asynchronously by notification. */
6642 putpkt (rs->buf);
6643 getpkt (&rs->buf, 0);
6644 if (strcmp (rs->buf.data (), "OK") != 0)
6645 error (_("Stopping %s failed: %s"), target_pid_to_str (ptid).c_str (),
6646 rs->buf.data ());
6647 }
6648
6649 /* All-stop version of target_interrupt. Sends a break or a ^C to
6650 interrupt the remote target. It is undefined which thread of which
6651 process reports the interrupt. */
6652
6653 void
6654 remote_target::remote_interrupt_as ()
6655 {
6656 struct remote_state *rs = get_remote_state ();
6657
6658 rs->ctrlc_pending_p = 1;
6659
6660 /* If the inferior is stopped already, but the core didn't know
6661 about it yet, just ignore the request. The cached wait status
6662 will be collected in remote_wait. */
6663 if (rs->cached_wait_status)
6664 return;
6665
6666 /* Send interrupt_sequence to remote target. */
6667 send_interrupt_sequence ();
6668 }
6669
6670 /* Non-stop version of target_interrupt. Uses `vCtrlC' to interrupt
6671 the remote target. It is undefined which thread of which process
6672 reports the interrupt. Throws an error if the packet is not
6673 supported by the server. */
6674
6675 void
6676 remote_target::remote_interrupt_ns ()
6677 {
6678 struct remote_state *rs = get_remote_state ();
6679 char *p = rs->buf.data ();
6680 char *endp = p + get_remote_packet_size ();
6681
6682 xsnprintf (p, endp - p, "vCtrlC");
6683
6684 /* In non-stop, we get an immediate OK reply. The stop reply will
6685 come in asynchronously by notification. */
6686 putpkt (rs->buf);
6687 getpkt (&rs->buf, 0);
6688
6689 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vCtrlC]))
6690 {
6691 case PACKET_OK:
6692 break;
6693 case PACKET_UNKNOWN:
6694 error (_("No support for interrupting the remote target."));
6695 case PACKET_ERROR:
6696 error (_("Interrupting target failed: %s"), rs->buf.data ());
6697 }
6698 }
6699
6700 /* Implement the to_stop function for the remote targets. */
6701
6702 void
6703 remote_target::stop (ptid_t ptid)
6704 {
6705 if (remote_debug)
6706 fprintf_unfiltered (gdb_stdlog, "remote_stop called\n");
6707
6708 if (target_is_non_stop_p ())
6709 remote_stop_ns (ptid);
6710 else
6711 {
6712 /* We don't currently have a way to transparently pause the
6713 remote target in all-stop mode. Interrupt it instead. */
6714 remote_interrupt_as ();
6715 }
6716 }
6717
6718 /* Implement the to_interrupt function for the remote targets. */
6719
6720 void
6721 remote_target::interrupt ()
6722 {
6723 if (remote_debug)
6724 fprintf_unfiltered (gdb_stdlog, "remote_interrupt called\n");
6725
6726 if (target_is_non_stop_p ())
6727 remote_interrupt_ns ();
6728 else
6729 remote_interrupt_as ();
6730 }
6731
6732 /* Implement the to_pass_ctrlc function for the remote targets. */
6733
6734 void
6735 remote_target::pass_ctrlc ()
6736 {
6737 struct remote_state *rs = get_remote_state ();
6738
6739 if (remote_debug)
6740 fprintf_unfiltered (gdb_stdlog, "remote_pass_ctrlc called\n");
6741
6742 /* If we're starting up, we're not fully synced yet. Quit
6743 immediately. */
6744 if (rs->starting_up)
6745 quit ();
6746 /* If ^C has already been sent once, offer to disconnect. */
6747 else if (rs->ctrlc_pending_p)
6748 interrupt_query ();
6749 else
6750 target_interrupt ();
6751 }
6752
6753 /* Ask the user what to do when an interrupt is received. */
6754
6755 void
6756 remote_target::interrupt_query ()
6757 {
6758 struct remote_state *rs = get_remote_state ();
6759
6760 if (rs->waiting_for_stop_reply && rs->ctrlc_pending_p)
6761 {
6762 if (query (_("The target is not responding to interrupt requests.\n"
6763 "Stop debugging it? ")))
6764 {
6765 remote_unpush_target ();
6766 throw_error (TARGET_CLOSE_ERROR, _("Disconnected from target."));
6767 }
6768 }
6769 else
6770 {
6771 if (query (_("Interrupted while waiting for the program.\n"
6772 "Give up waiting? ")))
6773 quit ();
6774 }
6775 }
6776
6777 /* Enable/disable target terminal ownership. Most targets can use
6778 terminal groups to control terminal ownership. Remote targets are
6779 different in that explicit transfer of ownership to/from GDB/target
6780 is required. */
6781
6782 void
6783 remote_target::terminal_inferior ()
6784 {
6785 /* NOTE: At this point we could also register our selves as the
6786 recipient of all input. Any characters typed could then be
6787 passed on down to the target. */
6788 }
6789
6790 void
6791 remote_target::terminal_ours ()
6792 {
6793 }
6794
6795 static void
6796 remote_console_output (const char *msg)
6797 {
6798 const char *p;
6799
6800 for (p = msg; p[0] && p[1]; p += 2)
6801 {
6802 char tb[2];
6803 char c = fromhex (p[0]) * 16 + fromhex (p[1]);
6804
6805 tb[0] = c;
6806 tb[1] = 0;
6807 fputs_unfiltered (tb, gdb_stdtarg);
6808 }
6809 gdb_flush (gdb_stdtarg);
6810 }
6811
6812 struct stop_reply : public notif_event
6813 {
6814 ~stop_reply ();
6815
6816 /* The identifier of the thread about this event */
6817 ptid_t ptid;
6818
6819 /* The remote state this event is associated with. When the remote
6820 connection, represented by a remote_state object, is closed,
6821 all the associated stop_reply events should be released. */
6822 struct remote_state *rs;
6823
6824 struct target_waitstatus ws;
6825
6826 /* The architecture associated with the expedited registers. */
6827 gdbarch *arch;
6828
6829 /* Expedited registers. This makes remote debugging a bit more
6830 efficient for those targets that provide critical registers as
6831 part of their normal status mechanism (as another roundtrip to
6832 fetch them is avoided). */
6833 std::vector<cached_reg_t> regcache;
6834
6835 enum target_stop_reason stop_reason;
6836
6837 CORE_ADDR watch_data_address;
6838
6839 int core;
6840 };
6841
6842 /* Return the length of the stop reply queue. */
6843
6844 int
6845 remote_target::stop_reply_queue_length ()
6846 {
6847 remote_state *rs = get_remote_state ();
6848 return rs->stop_reply_queue.size ();
6849 }
6850
6851 static void
6852 remote_notif_stop_parse (remote_target *remote,
6853 struct notif_client *self, const char *buf,
6854 struct notif_event *event)
6855 {
6856 remote->remote_parse_stop_reply (buf, (struct stop_reply *) event);
6857 }
6858
6859 static void
6860 remote_notif_stop_ack (remote_target *remote,
6861 struct notif_client *self, const char *buf,
6862 struct notif_event *event)
6863 {
6864 struct stop_reply *stop_reply = (struct stop_reply *) event;
6865
6866 /* acknowledge */
6867 putpkt (remote, self->ack_command);
6868
6869 if (stop_reply->ws.kind == TARGET_WAITKIND_IGNORE)
6870 {
6871 /* We got an unknown stop reply. */
6872 error (_("Unknown stop reply"));
6873 }
6874
6875 remote->push_stop_reply (stop_reply);
6876 }
6877
6878 static int
6879 remote_notif_stop_can_get_pending_events (remote_target *remote,
6880 struct notif_client *self)
6881 {
6882 /* We can't get pending events in remote_notif_process for
6883 notification stop, and we have to do this in remote_wait_ns
6884 instead. If we fetch all queued events from stub, remote stub
6885 may exit and we have no chance to process them back in
6886 remote_wait_ns. */
6887 remote_state *rs = remote->get_remote_state ();
6888 mark_async_event_handler (rs->remote_async_inferior_event_token);
6889 return 0;
6890 }
6891
6892 stop_reply::~stop_reply ()
6893 {
6894 for (cached_reg_t &reg : regcache)
6895 xfree (reg.data);
6896 }
6897
6898 static notif_event_up
6899 remote_notif_stop_alloc_reply ()
6900 {
6901 return notif_event_up (new struct stop_reply ());
6902 }
6903
6904 /* A client of notification Stop. */
6905
6906 struct notif_client notif_client_stop =
6907 {
6908 "Stop",
6909 "vStopped",
6910 remote_notif_stop_parse,
6911 remote_notif_stop_ack,
6912 remote_notif_stop_can_get_pending_events,
6913 remote_notif_stop_alloc_reply,
6914 REMOTE_NOTIF_STOP,
6915 };
6916
6917 /* Determine if THREAD_PTID is a pending fork parent thread. ARG contains
6918 the pid of the process that owns the threads we want to check, or
6919 -1 if we want to check all threads. */
6920
6921 static int
6922 is_pending_fork_parent (struct target_waitstatus *ws, int event_pid,
6923 ptid_t thread_ptid)
6924 {
6925 if (ws->kind == TARGET_WAITKIND_FORKED
6926 || ws->kind == TARGET_WAITKIND_VFORKED)
6927 {
6928 if (event_pid == -1 || event_pid == thread_ptid.pid ())
6929 return 1;
6930 }
6931
6932 return 0;
6933 }
6934
6935 /* Return the thread's pending status used to determine whether the
6936 thread is a fork parent stopped at a fork event. */
6937
6938 static struct target_waitstatus *
6939 thread_pending_fork_status (struct thread_info *thread)
6940 {
6941 if (thread->suspend.waitstatus_pending_p)
6942 return &thread->suspend.waitstatus;
6943 else
6944 return &thread->pending_follow;
6945 }
6946
6947 /* Determine if THREAD is a pending fork parent thread. */
6948
6949 static int
6950 is_pending_fork_parent_thread (struct thread_info *thread)
6951 {
6952 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6953 int pid = -1;
6954
6955 return is_pending_fork_parent (ws, pid, thread->ptid);
6956 }
6957
6958 /* If CONTEXT contains any fork child threads that have not been
6959 reported yet, remove them from the CONTEXT list. If such a
6960 thread exists it is because we are stopped at a fork catchpoint
6961 and have not yet called follow_fork, which will set up the
6962 host-side data structures for the new process. */
6963
6964 void
6965 remote_target::remove_new_fork_children (threads_listing_context *context)
6966 {
6967 int pid = -1;
6968 struct notif_client *notif = &notif_client_stop;
6969
6970 /* For any threads stopped at a fork event, remove the corresponding
6971 fork child threads from the CONTEXT list. */
6972 for (thread_info *thread : all_non_exited_threads ())
6973 {
6974 struct target_waitstatus *ws = thread_pending_fork_status (thread);
6975
6976 if (is_pending_fork_parent (ws, pid, thread->ptid))
6977 context->remove_thread (ws->value.related_pid);
6978 }
6979
6980 /* Check for any pending fork events (not reported or processed yet)
6981 in process PID and remove those fork child threads from the
6982 CONTEXT list as well. */
6983 remote_notif_get_pending_events (notif);
6984 for (auto &event : get_remote_state ()->stop_reply_queue)
6985 if (event->ws.kind == TARGET_WAITKIND_FORKED
6986 || event->ws.kind == TARGET_WAITKIND_VFORKED
6987 || event->ws.kind == TARGET_WAITKIND_THREAD_EXITED)
6988 context->remove_thread (event->ws.value.related_pid);
6989 }
6990
6991 /* Check whether any event pending in the vStopped queue would prevent
6992 a global or process wildcard vCont action. Clear
6993 *may_global_wildcard if we can't do a global wildcard (vCont;c),
6994 and clear the event inferior's may_wildcard_vcont flag if we can't
6995 do a process-wide wildcard resume (vCont;c:pPID.-1). */
6996
6997 void
6998 remote_target::check_pending_events_prevent_wildcard_vcont
6999 (int *may_global_wildcard)
7000 {
7001 struct notif_client *notif = &notif_client_stop;
7002
7003 remote_notif_get_pending_events (notif);
7004 for (auto &event : get_remote_state ()->stop_reply_queue)
7005 {
7006 if (event->ws.kind == TARGET_WAITKIND_NO_RESUMED
7007 || event->ws.kind == TARGET_WAITKIND_NO_HISTORY)
7008 continue;
7009
7010 if (event->ws.kind == TARGET_WAITKIND_FORKED
7011 || event->ws.kind == TARGET_WAITKIND_VFORKED)
7012 *may_global_wildcard = 0;
7013
7014 struct inferior *inf = find_inferior_ptid (event->ptid);
7015
7016 /* This may be the first time we heard about this process.
7017 Regardless, we must not do a global wildcard resume, otherwise
7018 we'd resume this process too. */
7019 *may_global_wildcard = 0;
7020 if (inf != NULL)
7021 get_remote_inferior (inf)->may_wildcard_vcont = false;
7022 }
7023 }
7024
7025 /* Discard all pending stop replies of inferior INF. */
7026
7027 void
7028 remote_target::discard_pending_stop_replies (struct inferior *inf)
7029 {
7030 struct stop_reply *reply;
7031 struct remote_state *rs = get_remote_state ();
7032 struct remote_notif_state *rns = rs->notif_state;
7033
7034 /* This function can be notified when an inferior exists. When the
7035 target is not remote, the notification state is NULL. */
7036 if (rs->remote_desc == NULL)
7037 return;
7038
7039 reply = (struct stop_reply *) rns->pending_event[notif_client_stop.id];
7040
7041 /* Discard the in-flight notification. */
7042 if (reply != NULL && reply->ptid.pid () == inf->pid)
7043 {
7044 delete reply;
7045 rns->pending_event[notif_client_stop.id] = NULL;
7046 }
7047
7048 /* Discard the stop replies we have already pulled with
7049 vStopped. */
7050 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7051 rs->stop_reply_queue.end (),
7052 [=] (const stop_reply_up &event)
7053 {
7054 return event->ptid.pid () == inf->pid;
7055 });
7056 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7057 }
7058
7059 /* Discard the stop replies for RS in stop_reply_queue. */
7060
7061 void
7062 remote_target::discard_pending_stop_replies_in_queue ()
7063 {
7064 remote_state *rs = get_remote_state ();
7065
7066 /* Discard the stop replies we have already pulled with
7067 vStopped. */
7068 auto iter = std::remove_if (rs->stop_reply_queue.begin (),
7069 rs->stop_reply_queue.end (),
7070 [=] (const stop_reply_up &event)
7071 {
7072 return event->rs == rs;
7073 });
7074 rs->stop_reply_queue.erase (iter, rs->stop_reply_queue.end ());
7075 }
7076
7077 /* Remove the first reply in 'stop_reply_queue' which matches
7078 PTID. */
7079
7080 struct stop_reply *
7081 remote_target::remote_notif_remove_queued_reply (ptid_t ptid)
7082 {
7083 remote_state *rs = get_remote_state ();
7084
7085 auto iter = std::find_if (rs->stop_reply_queue.begin (),
7086 rs->stop_reply_queue.end (),
7087 [=] (const stop_reply_up &event)
7088 {
7089 return event->ptid.matches (ptid);
7090 });
7091 struct stop_reply *result;
7092 if (iter == rs->stop_reply_queue.end ())
7093 result = nullptr;
7094 else
7095 {
7096 result = iter->release ();
7097 rs->stop_reply_queue.erase (iter);
7098 }
7099
7100 if (notif_debug)
7101 fprintf_unfiltered (gdb_stdlog,
7102 "notif: discard queued event: 'Stop' in %s\n",
7103 target_pid_to_str (ptid).c_str ());
7104
7105 return result;
7106 }
7107
7108 /* Look for a queued stop reply belonging to PTID. If one is found,
7109 remove it from the queue, and return it. Returns NULL if none is
7110 found. If there are still queued events left to process, tell the
7111 event loop to get back to target_wait soon. */
7112
7113 struct stop_reply *
7114 remote_target::queued_stop_reply (ptid_t ptid)
7115 {
7116 remote_state *rs = get_remote_state ();
7117 struct stop_reply *r = remote_notif_remove_queued_reply (ptid);
7118
7119 if (!rs->stop_reply_queue.empty ())
7120 {
7121 /* There's still at least an event left. */
7122 mark_async_event_handler (rs->remote_async_inferior_event_token);
7123 }
7124
7125 return r;
7126 }
7127
7128 /* Push a fully parsed stop reply in the stop reply queue. Since we
7129 know that we now have at least one queued event left to pass to the
7130 core side, tell the event loop to get back to target_wait soon. */
7131
7132 void
7133 remote_target::push_stop_reply (struct stop_reply *new_event)
7134 {
7135 remote_state *rs = get_remote_state ();
7136 rs->stop_reply_queue.push_back (stop_reply_up (new_event));
7137
7138 if (notif_debug)
7139 fprintf_unfiltered (gdb_stdlog,
7140 "notif: push 'Stop' %s to queue %d\n",
7141 target_pid_to_str (new_event->ptid).c_str (),
7142 int (rs->stop_reply_queue.size ()));
7143
7144 mark_async_event_handler (rs->remote_async_inferior_event_token);
7145 }
7146
7147 /* Returns true if we have a stop reply for PTID. */
7148
7149 int
7150 remote_target::peek_stop_reply (ptid_t ptid)
7151 {
7152 remote_state *rs = get_remote_state ();
7153 for (auto &event : rs->stop_reply_queue)
7154 if (ptid == event->ptid
7155 && event->ws.kind == TARGET_WAITKIND_STOPPED)
7156 return 1;
7157 return 0;
7158 }
7159
7160 /* Helper for remote_parse_stop_reply. Return nonzero if the substring
7161 starting with P and ending with PEND matches PREFIX. */
7162
7163 static int
7164 strprefix (const char *p, const char *pend, const char *prefix)
7165 {
7166 for ( ; p < pend; p++, prefix++)
7167 if (*p != *prefix)
7168 return 0;
7169 return *prefix == '\0';
7170 }
7171
7172 /* Parse the stop reply in BUF. Either the function succeeds, and the
7173 result is stored in EVENT, or throws an error. */
7174
7175 void
7176 remote_target::remote_parse_stop_reply (const char *buf, stop_reply *event)
7177 {
7178 remote_arch_state *rsa = NULL;
7179 ULONGEST addr;
7180 const char *p;
7181 int skipregs = 0;
7182
7183 event->ptid = null_ptid;
7184 event->rs = get_remote_state ();
7185 event->ws.kind = TARGET_WAITKIND_IGNORE;
7186 event->ws.value.integer = 0;
7187 event->stop_reason = TARGET_STOPPED_BY_NO_REASON;
7188 event->regcache.clear ();
7189 event->core = -1;
7190
7191 switch (buf[0])
7192 {
7193 case 'T': /* Status with PC, SP, FP, ... */
7194 /* Expedited reply, containing Signal, {regno, reg} repeat. */
7195 /* format is: 'Tssn...:r...;n...:r...;n...:r...;#cc', where
7196 ss = signal number
7197 n... = register number
7198 r... = register contents
7199 */
7200
7201 p = &buf[3]; /* after Txx */
7202 while (*p)
7203 {
7204 const char *p1;
7205 int fieldsize;
7206
7207 p1 = strchr (p, ':');
7208 if (p1 == NULL)
7209 error (_("Malformed packet(a) (missing colon): %s\n\
7210 Packet: '%s'\n"),
7211 p, buf);
7212 if (p == p1)
7213 error (_("Malformed packet(a) (missing register number): %s\n\
7214 Packet: '%s'\n"),
7215 p, buf);
7216
7217 /* Some "registers" are actually extended stop information.
7218 Note if you're adding a new entry here: GDB 7.9 and
7219 earlier assume that all register "numbers" that start
7220 with an hex digit are real register numbers. Make sure
7221 the server only sends such a packet if it knows the
7222 client understands it. */
7223
7224 if (strprefix (p, p1, "thread"))
7225 event->ptid = read_ptid (++p1, &p);
7226 else if (strprefix (p, p1, "syscall_entry"))
7227 {
7228 ULONGEST sysno;
7229
7230 event->ws.kind = TARGET_WAITKIND_SYSCALL_ENTRY;
7231 p = unpack_varlen_hex (++p1, &sysno);
7232 event->ws.value.syscall_number = (int) sysno;
7233 }
7234 else if (strprefix (p, p1, "syscall_return"))
7235 {
7236 ULONGEST sysno;
7237
7238 event->ws.kind = TARGET_WAITKIND_SYSCALL_RETURN;
7239 p = unpack_varlen_hex (++p1, &sysno);
7240 event->ws.value.syscall_number = (int) sysno;
7241 }
7242 else if (strprefix (p, p1, "watch")
7243 || strprefix (p, p1, "rwatch")
7244 || strprefix (p, p1, "awatch"))
7245 {
7246 event->stop_reason = TARGET_STOPPED_BY_WATCHPOINT;
7247 p = unpack_varlen_hex (++p1, &addr);
7248 event->watch_data_address = (CORE_ADDR) addr;
7249 }
7250 else if (strprefix (p, p1, "swbreak"))
7251 {
7252 event->stop_reason = TARGET_STOPPED_BY_SW_BREAKPOINT;
7253
7254 /* Make sure the stub doesn't forget to indicate support
7255 with qSupported. */
7256 if (packet_support (PACKET_swbreak_feature) != PACKET_ENABLE)
7257 error (_("Unexpected swbreak stop reason"));
7258
7259 /* The value part is documented as "must be empty",
7260 though we ignore it, in case we ever decide to make
7261 use of it in a backward compatible way. */
7262 p = strchrnul (p1 + 1, ';');
7263 }
7264 else if (strprefix (p, p1, "hwbreak"))
7265 {
7266 event->stop_reason = TARGET_STOPPED_BY_HW_BREAKPOINT;
7267
7268 /* Make sure the stub doesn't forget to indicate support
7269 with qSupported. */
7270 if (packet_support (PACKET_hwbreak_feature) != PACKET_ENABLE)
7271 error (_("Unexpected hwbreak stop reason"));
7272
7273 /* See above. */
7274 p = strchrnul (p1 + 1, ';');
7275 }
7276 else if (strprefix (p, p1, "library"))
7277 {
7278 event->ws.kind = TARGET_WAITKIND_LOADED;
7279 p = strchrnul (p1 + 1, ';');
7280 }
7281 else if (strprefix (p, p1, "replaylog"))
7282 {
7283 event->ws.kind = TARGET_WAITKIND_NO_HISTORY;
7284 /* p1 will indicate "begin" or "end", but it makes
7285 no difference for now, so ignore it. */
7286 p = strchrnul (p1 + 1, ';');
7287 }
7288 else if (strprefix (p, p1, "core"))
7289 {
7290 ULONGEST c;
7291
7292 p = unpack_varlen_hex (++p1, &c);
7293 event->core = c;
7294 }
7295 else if (strprefix (p, p1, "fork"))
7296 {
7297 event->ws.value.related_pid = read_ptid (++p1, &p);
7298 event->ws.kind = TARGET_WAITKIND_FORKED;
7299 }
7300 else if (strprefix (p, p1, "vfork"))
7301 {
7302 event->ws.value.related_pid = read_ptid (++p1, &p);
7303 event->ws.kind = TARGET_WAITKIND_VFORKED;
7304 }
7305 else if (strprefix (p, p1, "vforkdone"))
7306 {
7307 event->ws.kind = TARGET_WAITKIND_VFORK_DONE;
7308 p = strchrnul (p1 + 1, ';');
7309 }
7310 else if (strprefix (p, p1, "exec"))
7311 {
7312 ULONGEST ignored;
7313 int pathlen;
7314
7315 /* Determine the length of the execd pathname. */
7316 p = unpack_varlen_hex (++p1, &ignored);
7317 pathlen = (p - p1) / 2;
7318
7319 /* Save the pathname for event reporting and for
7320 the next run command. */
7321 gdb::unique_xmalloc_ptr<char[]> pathname
7322 ((char *) xmalloc (pathlen + 1));
7323 hex2bin (p1, (gdb_byte *) pathname.get (), pathlen);
7324 pathname[pathlen] = '\0';
7325
7326 /* This is freed during event handling. */
7327 event->ws.value.execd_pathname = pathname.release ();
7328 event->ws.kind = TARGET_WAITKIND_EXECD;
7329
7330 /* Skip the registers included in this packet, since
7331 they may be for an architecture different from the
7332 one used by the original program. */
7333 skipregs = 1;
7334 }
7335 else if (strprefix (p, p1, "create"))
7336 {
7337 event->ws.kind = TARGET_WAITKIND_THREAD_CREATED;
7338 p = strchrnul (p1 + 1, ';');
7339 }
7340 else
7341 {
7342 ULONGEST pnum;
7343 const char *p_temp;
7344
7345 if (skipregs)
7346 {
7347 p = strchrnul (p1 + 1, ';');
7348 p++;
7349 continue;
7350 }
7351
7352 /* Maybe a real ``P'' register number. */
7353 p_temp = unpack_varlen_hex (p, &pnum);
7354 /* If the first invalid character is the colon, we got a
7355 register number. Otherwise, it's an unknown stop
7356 reason. */
7357 if (p_temp == p1)
7358 {
7359 /* If we haven't parsed the event's thread yet, find
7360 it now, in order to find the architecture of the
7361 reported expedited registers. */
7362 if (event->ptid == null_ptid)
7363 {
7364 const char *thr = strstr (p1 + 1, ";thread:");
7365 if (thr != NULL)
7366 event->ptid = read_ptid (thr + strlen (";thread:"),
7367 NULL);
7368 else
7369 {
7370 /* Either the current thread hasn't changed,
7371 or the inferior is not multi-threaded.
7372 The event must be for the thread we last
7373 set as (or learned as being) current. */
7374 event->ptid = event->rs->general_thread;
7375 }
7376 }
7377
7378 if (rsa == NULL)
7379 {
7380 inferior *inf = (event->ptid == null_ptid
7381 ? NULL
7382 : find_inferior_ptid (event->ptid));
7383 /* If this is the first time we learn anything
7384 about this process, skip the registers
7385 included in this packet, since we don't yet
7386 know which architecture to use to parse them.
7387 We'll determine the architecture later when
7388 we process the stop reply and retrieve the
7389 target description, via
7390 remote_notice_new_inferior ->
7391 post_create_inferior. */
7392 if (inf == NULL)
7393 {
7394 p = strchrnul (p1 + 1, ';');
7395 p++;
7396 continue;
7397 }
7398
7399 event->arch = inf->gdbarch;
7400 rsa = event->rs->get_remote_arch_state (event->arch);
7401 }
7402
7403 packet_reg *reg
7404 = packet_reg_from_pnum (event->arch, rsa, pnum);
7405 cached_reg_t cached_reg;
7406
7407 if (reg == NULL)
7408 error (_("Remote sent bad register number %s: %s\n\
7409 Packet: '%s'\n"),
7410 hex_string (pnum), p, buf);
7411
7412 cached_reg.num = reg->regnum;
7413 cached_reg.data = (gdb_byte *)
7414 xmalloc (register_size (event->arch, reg->regnum));
7415
7416 p = p1 + 1;
7417 fieldsize = hex2bin (p, cached_reg.data,
7418 register_size (event->arch, reg->regnum));
7419 p += 2 * fieldsize;
7420 if (fieldsize < register_size (event->arch, reg->regnum))
7421 warning (_("Remote reply is too short: %s"), buf);
7422
7423 event->regcache.push_back (cached_reg);
7424 }
7425 else
7426 {
7427 /* Not a number. Silently skip unknown optional
7428 info. */
7429 p = strchrnul (p1 + 1, ';');
7430 }
7431 }
7432
7433 if (*p != ';')
7434 error (_("Remote register badly formatted: %s\nhere: %s"),
7435 buf, p);
7436 ++p;
7437 }
7438
7439 if (event->ws.kind != TARGET_WAITKIND_IGNORE)
7440 break;
7441
7442 /* fall through */
7443 case 'S': /* Old style status, just signal only. */
7444 {
7445 int sig;
7446
7447 event->ws.kind = TARGET_WAITKIND_STOPPED;
7448 sig = (fromhex (buf[1]) << 4) + fromhex (buf[2]);
7449 if (GDB_SIGNAL_FIRST <= sig && sig < GDB_SIGNAL_LAST)
7450 event->ws.value.sig = (enum gdb_signal) sig;
7451 else
7452 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7453 }
7454 break;
7455 case 'w': /* Thread exited. */
7456 {
7457 ULONGEST value;
7458
7459 event->ws.kind = TARGET_WAITKIND_THREAD_EXITED;
7460 p = unpack_varlen_hex (&buf[1], &value);
7461 event->ws.value.integer = value;
7462 if (*p != ';')
7463 error (_("stop reply packet badly formatted: %s"), buf);
7464 event->ptid = read_ptid (++p, NULL);
7465 break;
7466 }
7467 case 'W': /* Target exited. */
7468 case 'X':
7469 {
7470 ULONGEST value;
7471
7472 /* GDB used to accept only 2 hex chars here. Stubs should
7473 only send more if they detect GDB supports multi-process
7474 support. */
7475 p = unpack_varlen_hex (&buf[1], &value);
7476
7477 if (buf[0] == 'W')
7478 {
7479 /* The remote process exited. */
7480 event->ws.kind = TARGET_WAITKIND_EXITED;
7481 event->ws.value.integer = value;
7482 }
7483 else
7484 {
7485 /* The remote process exited with a signal. */
7486 event->ws.kind = TARGET_WAITKIND_SIGNALLED;
7487 if (GDB_SIGNAL_FIRST <= value && value < GDB_SIGNAL_LAST)
7488 event->ws.value.sig = (enum gdb_signal) value;
7489 else
7490 event->ws.value.sig = GDB_SIGNAL_UNKNOWN;
7491 }
7492
7493 /* If no process is specified, return null_ptid, and let the
7494 caller figure out the right process to use. */
7495 int pid = 0;
7496 if (*p == '\0')
7497 ;
7498 else if (*p == ';')
7499 {
7500 p++;
7501
7502 if (*p == '\0')
7503 ;
7504 else if (startswith (p, "process:"))
7505 {
7506 ULONGEST upid;
7507
7508 p += sizeof ("process:") - 1;
7509 unpack_varlen_hex (p, &upid);
7510 pid = upid;
7511 }
7512 else
7513 error (_("unknown stop reply packet: %s"), buf);
7514 }
7515 else
7516 error (_("unknown stop reply packet: %s"), buf);
7517 event->ptid = ptid_t (pid);
7518 }
7519 break;
7520 case 'N':
7521 event->ws.kind = TARGET_WAITKIND_NO_RESUMED;
7522 event->ptid = minus_one_ptid;
7523 break;
7524 }
7525
7526 if (target_is_non_stop_p () && event->ptid == null_ptid)
7527 error (_("No process or thread specified in stop reply: %s"), buf);
7528 }
7529
7530 /* When the stub wants to tell GDB about a new notification reply, it
7531 sends a notification (%Stop, for example). Those can come it at
7532 any time, hence, we have to make sure that any pending
7533 putpkt/getpkt sequence we're making is finished, before querying
7534 the stub for more events with the corresponding ack command
7535 (vStopped, for example). E.g., if we started a vStopped sequence
7536 immediately upon receiving the notification, something like this
7537 could happen:
7538
7539 1.1) --> Hg 1
7540 1.2) <-- OK
7541 1.3) --> g
7542 1.4) <-- %Stop
7543 1.5) --> vStopped
7544 1.6) <-- (registers reply to step #1.3)
7545
7546 Obviously, the reply in step #1.6 would be unexpected to a vStopped
7547 query.
7548
7549 To solve this, whenever we parse a %Stop notification successfully,
7550 we mark the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN, and carry on
7551 doing whatever we were doing:
7552
7553 2.1) --> Hg 1
7554 2.2) <-- OK
7555 2.3) --> g
7556 2.4) <-- %Stop
7557 <GDB marks the REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN>
7558 2.5) <-- (registers reply to step #2.3)
7559
7560 Eventually after step #2.5, we return to the event loop, which
7561 notices there's an event on the
7562 REMOTE_ASYNC_GET_PENDING_EVENTS_TOKEN event and calls the
7563 associated callback --- the function below. At this point, we're
7564 always safe to start a vStopped sequence. :
7565
7566 2.6) --> vStopped
7567 2.7) <-- T05 thread:2
7568 2.8) --> vStopped
7569 2.9) --> OK
7570 */
7571
7572 void
7573 remote_target::remote_notif_get_pending_events (notif_client *nc)
7574 {
7575 struct remote_state *rs = get_remote_state ();
7576
7577 if (rs->notif_state->pending_event[nc->id] != NULL)
7578 {
7579 if (notif_debug)
7580 fprintf_unfiltered (gdb_stdlog,
7581 "notif: process: '%s' ack pending event\n",
7582 nc->name);
7583
7584 /* acknowledge */
7585 nc->ack (this, nc, rs->buf.data (),
7586 rs->notif_state->pending_event[nc->id]);
7587 rs->notif_state->pending_event[nc->id] = NULL;
7588
7589 while (1)
7590 {
7591 getpkt (&rs->buf, 0);
7592 if (strcmp (rs->buf.data (), "OK") == 0)
7593 break;
7594 else
7595 remote_notif_ack (this, nc, rs->buf.data ());
7596 }
7597 }
7598 else
7599 {
7600 if (notif_debug)
7601 fprintf_unfiltered (gdb_stdlog,
7602 "notif: process: '%s' no pending reply\n",
7603 nc->name);
7604 }
7605 }
7606
7607 /* Wrapper around remote_target::remote_notif_get_pending_events to
7608 avoid having to export the whole remote_target class. */
7609
7610 void
7611 remote_notif_get_pending_events (remote_target *remote, notif_client *nc)
7612 {
7613 remote->remote_notif_get_pending_events (nc);
7614 }
7615
7616 /* Called when it is decided that STOP_REPLY holds the info of the
7617 event that is to be returned to the core. This function always
7618 destroys STOP_REPLY. */
7619
7620 ptid_t
7621 remote_target::process_stop_reply (struct stop_reply *stop_reply,
7622 struct target_waitstatus *status)
7623 {
7624 ptid_t ptid;
7625
7626 *status = stop_reply->ws;
7627 ptid = stop_reply->ptid;
7628
7629 /* If no thread/process was reported by the stub, assume the current
7630 inferior. */
7631 if (ptid == null_ptid)
7632 ptid = inferior_ptid;
7633
7634 if (status->kind != TARGET_WAITKIND_EXITED
7635 && status->kind != TARGET_WAITKIND_SIGNALLED
7636 && status->kind != TARGET_WAITKIND_NO_RESUMED)
7637 {
7638 /* Expedited registers. */
7639 if (!stop_reply->regcache.empty ())
7640 {
7641 struct regcache *regcache
7642 = get_thread_arch_regcache (ptid, stop_reply->arch);
7643
7644 for (cached_reg_t &reg : stop_reply->regcache)
7645 {
7646 regcache->raw_supply (reg.num, reg.data);
7647 xfree (reg.data);
7648 }
7649
7650 stop_reply->regcache.clear ();
7651 }
7652
7653 remote_notice_new_inferior (ptid, 0);
7654 remote_thread_info *remote_thr = get_remote_thread_info (ptid);
7655 remote_thr->core = stop_reply->core;
7656 remote_thr->stop_reason = stop_reply->stop_reason;
7657 remote_thr->watch_data_address = stop_reply->watch_data_address;
7658 remote_thr->vcont_resumed = 0;
7659 }
7660
7661 delete stop_reply;
7662 return ptid;
7663 }
7664
7665 /* The non-stop mode version of target_wait. */
7666
7667 ptid_t
7668 remote_target::wait_ns (ptid_t ptid, struct target_waitstatus *status, int options)
7669 {
7670 struct remote_state *rs = get_remote_state ();
7671 struct stop_reply *stop_reply;
7672 int ret;
7673 int is_notif = 0;
7674
7675 /* If in non-stop mode, get out of getpkt even if a
7676 notification is received. */
7677
7678 ret = getpkt_or_notif_sane (&rs->buf, 0 /* forever */, &is_notif);
7679 while (1)
7680 {
7681 if (ret != -1 && !is_notif)
7682 switch (rs->buf[0])
7683 {
7684 case 'E': /* Error of some sort. */
7685 /* We're out of sync with the target now. Did it continue
7686 or not? We can't tell which thread it was in non-stop,
7687 so just ignore this. */
7688 warning (_("Remote failure reply: %s"), rs->buf.data ());
7689 break;
7690 case 'O': /* Console output. */
7691 remote_console_output (&rs->buf[1]);
7692 break;
7693 default:
7694 warning (_("Invalid remote reply: %s"), rs->buf.data ());
7695 break;
7696 }
7697
7698 /* Acknowledge a pending stop reply that may have arrived in the
7699 mean time. */
7700 if (rs->notif_state->pending_event[notif_client_stop.id] != NULL)
7701 remote_notif_get_pending_events (&notif_client_stop);
7702
7703 /* If indeed we noticed a stop reply, we're done. */
7704 stop_reply = queued_stop_reply (ptid);
7705 if (stop_reply != NULL)
7706 return process_stop_reply (stop_reply, status);
7707
7708 /* Still no event. If we're just polling for an event, then
7709 return to the event loop. */
7710 if (options & TARGET_WNOHANG)
7711 {
7712 status->kind = TARGET_WAITKIND_IGNORE;
7713 return minus_one_ptid;
7714 }
7715
7716 /* Otherwise do a blocking wait. */
7717 ret = getpkt_or_notif_sane (&rs->buf, 1 /* forever */, &is_notif);
7718 }
7719 }
7720
7721 /* Return the first resumed thread. */
7722
7723 static ptid_t
7724 first_remote_resumed_thread ()
7725 {
7726 for (thread_info *tp : all_non_exited_threads (minus_one_ptid))
7727 if (tp->resumed)
7728 return tp->ptid;
7729 return null_ptid;
7730 }
7731
7732 /* Wait until the remote machine stops, then return, storing status in
7733 STATUS just as `wait' would. */
7734
7735 ptid_t
7736 remote_target::wait_as (ptid_t ptid, target_waitstatus *status, int options)
7737 {
7738 struct remote_state *rs = get_remote_state ();
7739 ptid_t event_ptid = null_ptid;
7740 char *buf;
7741 struct stop_reply *stop_reply;
7742
7743 again:
7744
7745 status->kind = TARGET_WAITKIND_IGNORE;
7746 status->value.integer = 0;
7747
7748 stop_reply = queued_stop_reply (ptid);
7749 if (stop_reply != NULL)
7750 return process_stop_reply (stop_reply, status);
7751
7752 if (rs->cached_wait_status)
7753 /* Use the cached wait status, but only once. */
7754 rs->cached_wait_status = 0;
7755 else
7756 {
7757 int ret;
7758 int is_notif;
7759 int forever = ((options & TARGET_WNOHANG) == 0
7760 && rs->wait_forever_enabled_p);
7761
7762 if (!rs->waiting_for_stop_reply)
7763 {
7764 status->kind = TARGET_WAITKIND_NO_RESUMED;
7765 return minus_one_ptid;
7766 }
7767
7768 /* FIXME: cagney/1999-09-27: If we're in async mode we should
7769 _never_ wait for ever -> test on target_is_async_p().
7770 However, before we do that we need to ensure that the caller
7771 knows how to take the target into/out of async mode. */
7772 ret = getpkt_or_notif_sane (&rs->buf, forever, &is_notif);
7773
7774 /* GDB gets a notification. Return to core as this event is
7775 not interesting. */
7776 if (ret != -1 && is_notif)
7777 return minus_one_ptid;
7778
7779 if (ret == -1 && (options & TARGET_WNOHANG) != 0)
7780 return minus_one_ptid;
7781 }
7782
7783 buf = rs->buf.data ();
7784
7785 /* Assume that the target has acknowledged Ctrl-C unless we receive
7786 an 'F' or 'O' packet. */
7787 if (buf[0] != 'F' && buf[0] != 'O')
7788 rs->ctrlc_pending_p = 0;
7789
7790 switch (buf[0])
7791 {
7792 case 'E': /* Error of some sort. */
7793 /* We're out of sync with the target now. Did it continue or
7794 not? Not is more likely, so report a stop. */
7795 rs->waiting_for_stop_reply = 0;
7796
7797 warning (_("Remote failure reply: %s"), buf);
7798 status->kind = TARGET_WAITKIND_STOPPED;
7799 status->value.sig = GDB_SIGNAL_0;
7800 break;
7801 case 'F': /* File-I/O request. */
7802 /* GDB may access the inferior memory while handling the File-I/O
7803 request, but we don't want GDB accessing memory while waiting
7804 for a stop reply. See the comments in putpkt_binary. Set
7805 waiting_for_stop_reply to 0 temporarily. */
7806 rs->waiting_for_stop_reply = 0;
7807 remote_fileio_request (this, buf, rs->ctrlc_pending_p);
7808 rs->ctrlc_pending_p = 0;
7809 /* GDB handled the File-I/O request, and the target is running
7810 again. Keep waiting for events. */
7811 rs->waiting_for_stop_reply = 1;
7812 break;
7813 case 'N': case 'T': case 'S': case 'X': case 'W':
7814 {
7815 /* There is a stop reply to handle. */
7816 rs->waiting_for_stop_reply = 0;
7817
7818 stop_reply
7819 = (struct stop_reply *) remote_notif_parse (this,
7820 &notif_client_stop,
7821 rs->buf.data ());
7822
7823 event_ptid = process_stop_reply (stop_reply, status);
7824 break;
7825 }
7826 case 'O': /* Console output. */
7827 remote_console_output (buf + 1);
7828 break;
7829 case '\0':
7830 if (rs->last_sent_signal != GDB_SIGNAL_0)
7831 {
7832 /* Zero length reply means that we tried 'S' or 'C' and the
7833 remote system doesn't support it. */
7834 target_terminal::ours_for_output ();
7835 printf_filtered
7836 ("Can't send signals to this remote system. %s not sent.\n",
7837 gdb_signal_to_name (rs->last_sent_signal));
7838 rs->last_sent_signal = GDB_SIGNAL_0;
7839 target_terminal::inferior ();
7840
7841 strcpy (buf, rs->last_sent_step ? "s" : "c");
7842 putpkt (buf);
7843 break;
7844 }
7845 /* fallthrough */
7846 default:
7847 warning (_("Invalid remote reply: %s"), buf);
7848 break;
7849 }
7850
7851 if (status->kind == TARGET_WAITKIND_NO_RESUMED)
7852 return minus_one_ptid;
7853 else if (status->kind == TARGET_WAITKIND_IGNORE)
7854 {
7855 /* Nothing interesting happened. If we're doing a non-blocking
7856 poll, we're done. Otherwise, go back to waiting. */
7857 if (options & TARGET_WNOHANG)
7858 return minus_one_ptid;
7859 else
7860 goto again;
7861 }
7862 else if (status->kind != TARGET_WAITKIND_EXITED
7863 && status->kind != TARGET_WAITKIND_SIGNALLED)
7864 {
7865 if (event_ptid != null_ptid)
7866 record_currthread (rs, event_ptid);
7867 else
7868 event_ptid = first_remote_resumed_thread ();
7869 }
7870 else
7871 {
7872 /* A process exit. Invalidate our notion of current thread. */
7873 record_currthread (rs, minus_one_ptid);
7874 /* It's possible that the packet did not include a pid. */
7875 if (event_ptid == null_ptid)
7876 event_ptid = first_remote_resumed_thread ();
7877 /* EVENT_PTID could still be NULL_PTID. Double-check. */
7878 if (event_ptid == null_ptid)
7879 event_ptid = magic_null_ptid;
7880 }
7881
7882 return event_ptid;
7883 }
7884
7885 /* Wait until the remote machine stops, then return, storing status in
7886 STATUS just as `wait' would. */
7887
7888 ptid_t
7889 remote_target::wait (ptid_t ptid, struct target_waitstatus *status, int options)
7890 {
7891 ptid_t event_ptid;
7892
7893 if (target_is_non_stop_p ())
7894 event_ptid = wait_ns (ptid, status, options);
7895 else
7896 event_ptid = wait_as (ptid, status, options);
7897
7898 if (target_is_async_p ())
7899 {
7900 remote_state *rs = get_remote_state ();
7901
7902 /* If there are are events left in the queue tell the event loop
7903 to return here. */
7904 if (!rs->stop_reply_queue.empty ())
7905 mark_async_event_handler (rs->remote_async_inferior_event_token);
7906 }
7907
7908 return event_ptid;
7909 }
7910
7911 /* Fetch a single register using a 'p' packet. */
7912
7913 int
7914 remote_target::fetch_register_using_p (struct regcache *regcache,
7915 packet_reg *reg)
7916 {
7917 struct gdbarch *gdbarch = regcache->arch ();
7918 struct remote_state *rs = get_remote_state ();
7919 char *buf, *p;
7920 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
7921 int i;
7922
7923 if (packet_support (PACKET_p) == PACKET_DISABLE)
7924 return 0;
7925
7926 if (reg->pnum == -1)
7927 return 0;
7928
7929 p = rs->buf.data ();
7930 *p++ = 'p';
7931 p += hexnumstr (p, reg->pnum);
7932 *p++ = '\0';
7933 putpkt (rs->buf);
7934 getpkt (&rs->buf, 0);
7935
7936 buf = rs->buf.data ();
7937
7938 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_p]))
7939 {
7940 case PACKET_OK:
7941 break;
7942 case PACKET_UNKNOWN:
7943 return 0;
7944 case PACKET_ERROR:
7945 error (_("Could not fetch register \"%s\"; remote failure reply '%s'"),
7946 gdbarch_register_name (regcache->arch (),
7947 reg->regnum),
7948 buf);
7949 }
7950
7951 /* If this register is unfetchable, tell the regcache. */
7952 if (buf[0] == 'x')
7953 {
7954 regcache->raw_supply (reg->regnum, NULL);
7955 return 1;
7956 }
7957
7958 /* Otherwise, parse and supply the value. */
7959 p = buf;
7960 i = 0;
7961 while (p[0] != 0)
7962 {
7963 if (p[1] == 0)
7964 error (_("fetch_register_using_p: early buf termination"));
7965
7966 regp[i++] = fromhex (p[0]) * 16 + fromhex (p[1]);
7967 p += 2;
7968 }
7969 regcache->raw_supply (reg->regnum, regp);
7970 return 1;
7971 }
7972
7973 /* Fetch the registers included in the target's 'g' packet. */
7974
7975 int
7976 remote_target::send_g_packet ()
7977 {
7978 struct remote_state *rs = get_remote_state ();
7979 int buf_len;
7980
7981 xsnprintf (rs->buf.data (), get_remote_packet_size (), "g");
7982 putpkt (rs->buf);
7983 getpkt (&rs->buf, 0);
7984 if (packet_check_result (rs->buf) == PACKET_ERROR)
7985 error (_("Could not read registers; remote failure reply '%s'"),
7986 rs->buf.data ());
7987
7988 /* We can get out of synch in various cases. If the first character
7989 in the buffer is not a hex character, assume that has happened
7990 and try to fetch another packet to read. */
7991 while ((rs->buf[0] < '0' || rs->buf[0] > '9')
7992 && (rs->buf[0] < 'A' || rs->buf[0] > 'F')
7993 && (rs->buf[0] < 'a' || rs->buf[0] > 'f')
7994 && rs->buf[0] != 'x') /* New: unavailable register value. */
7995 {
7996 if (remote_debug)
7997 fprintf_unfiltered (gdb_stdlog,
7998 "Bad register packet; fetching a new packet\n");
7999 getpkt (&rs->buf, 0);
8000 }
8001
8002 buf_len = strlen (rs->buf.data ());
8003
8004 /* Sanity check the received packet. */
8005 if (buf_len % 2 != 0)
8006 error (_("Remote 'g' packet reply is of odd length: %s"), rs->buf.data ());
8007
8008 return buf_len / 2;
8009 }
8010
8011 void
8012 remote_target::process_g_packet (struct regcache *regcache)
8013 {
8014 struct gdbarch *gdbarch = regcache->arch ();
8015 struct remote_state *rs = get_remote_state ();
8016 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8017 int i, buf_len;
8018 char *p;
8019 char *regs;
8020
8021 buf_len = strlen (rs->buf.data ());
8022
8023 /* Further sanity checks, with knowledge of the architecture. */
8024 if (buf_len > 2 * rsa->sizeof_g_packet)
8025 error (_("Remote 'g' packet reply is too long (expected %ld bytes, got %d "
8026 "bytes): %s"),
8027 rsa->sizeof_g_packet, buf_len / 2,
8028 rs->buf.data ());
8029
8030 /* Save the size of the packet sent to us by the target. It is used
8031 as a heuristic when determining the max size of packets that the
8032 target can safely receive. */
8033 if (rsa->actual_register_packet_size == 0)
8034 rsa->actual_register_packet_size = buf_len;
8035
8036 /* If this is smaller than we guessed the 'g' packet would be,
8037 update our records. A 'g' reply that doesn't include a register's
8038 value implies either that the register is not available, or that
8039 the 'p' packet must be used. */
8040 if (buf_len < 2 * rsa->sizeof_g_packet)
8041 {
8042 long sizeof_g_packet = buf_len / 2;
8043
8044 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8045 {
8046 long offset = rsa->regs[i].offset;
8047 long reg_size = register_size (gdbarch, i);
8048
8049 if (rsa->regs[i].pnum == -1)
8050 continue;
8051
8052 if (offset >= sizeof_g_packet)
8053 rsa->regs[i].in_g_packet = 0;
8054 else if (offset + reg_size > sizeof_g_packet)
8055 error (_("Truncated register %d in remote 'g' packet"), i);
8056 else
8057 rsa->regs[i].in_g_packet = 1;
8058 }
8059
8060 /* Looks valid enough, we can assume this is the correct length
8061 for a 'g' packet. It's important not to adjust
8062 rsa->sizeof_g_packet if we have truncated registers otherwise
8063 this "if" won't be run the next time the method is called
8064 with a packet of the same size and one of the internal errors
8065 below will trigger instead. */
8066 rsa->sizeof_g_packet = sizeof_g_packet;
8067 }
8068
8069 regs = (char *) alloca (rsa->sizeof_g_packet);
8070
8071 /* Unimplemented registers read as all bits zero. */
8072 memset (regs, 0, rsa->sizeof_g_packet);
8073
8074 /* Reply describes registers byte by byte, each byte encoded as two
8075 hex characters. Suck them all up, then supply them to the
8076 register cacheing/storage mechanism. */
8077
8078 p = rs->buf.data ();
8079 for (i = 0; i < rsa->sizeof_g_packet; i++)
8080 {
8081 if (p[0] == 0 || p[1] == 0)
8082 /* This shouldn't happen - we adjusted sizeof_g_packet above. */
8083 internal_error (__FILE__, __LINE__,
8084 _("unexpected end of 'g' packet reply"));
8085
8086 if (p[0] == 'x' && p[1] == 'x')
8087 regs[i] = 0; /* 'x' */
8088 else
8089 regs[i] = fromhex (p[0]) * 16 + fromhex (p[1]);
8090 p += 2;
8091 }
8092
8093 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8094 {
8095 struct packet_reg *r = &rsa->regs[i];
8096 long reg_size = register_size (gdbarch, i);
8097
8098 if (r->in_g_packet)
8099 {
8100 if ((r->offset + reg_size) * 2 > strlen (rs->buf.data ()))
8101 /* This shouldn't happen - we adjusted in_g_packet above. */
8102 internal_error (__FILE__, __LINE__,
8103 _("unexpected end of 'g' packet reply"));
8104 else if (rs->buf[r->offset * 2] == 'x')
8105 {
8106 gdb_assert (r->offset * 2 < strlen (rs->buf.data ()));
8107 /* The register isn't available, mark it as such (at
8108 the same time setting the value to zero). */
8109 regcache->raw_supply (r->regnum, NULL);
8110 }
8111 else
8112 regcache->raw_supply (r->regnum, regs + r->offset);
8113 }
8114 }
8115 }
8116
8117 void
8118 remote_target::fetch_registers_using_g (struct regcache *regcache)
8119 {
8120 send_g_packet ();
8121 process_g_packet (regcache);
8122 }
8123
8124 /* Make the remote selected traceframe match GDB's selected
8125 traceframe. */
8126
8127 void
8128 remote_target::set_remote_traceframe ()
8129 {
8130 int newnum;
8131 struct remote_state *rs = get_remote_state ();
8132
8133 if (rs->remote_traceframe_number == get_traceframe_number ())
8134 return;
8135
8136 /* Avoid recursion, remote_trace_find calls us again. */
8137 rs->remote_traceframe_number = get_traceframe_number ();
8138
8139 newnum = target_trace_find (tfind_number,
8140 get_traceframe_number (), 0, 0, NULL);
8141
8142 /* Should not happen. If it does, all bets are off. */
8143 if (newnum != get_traceframe_number ())
8144 warning (_("could not set remote traceframe"));
8145 }
8146
8147 void
8148 remote_target::fetch_registers (struct regcache *regcache, int regnum)
8149 {
8150 struct gdbarch *gdbarch = regcache->arch ();
8151 struct remote_state *rs = get_remote_state ();
8152 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8153 int i;
8154
8155 set_remote_traceframe ();
8156 set_general_thread (regcache->ptid ());
8157
8158 if (regnum >= 0)
8159 {
8160 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8161
8162 gdb_assert (reg != NULL);
8163
8164 /* If this register might be in the 'g' packet, try that first -
8165 we are likely to read more than one register. If this is the
8166 first 'g' packet, we might be overly optimistic about its
8167 contents, so fall back to 'p'. */
8168 if (reg->in_g_packet)
8169 {
8170 fetch_registers_using_g (regcache);
8171 if (reg->in_g_packet)
8172 return;
8173 }
8174
8175 if (fetch_register_using_p (regcache, reg))
8176 return;
8177
8178 /* This register is not available. */
8179 regcache->raw_supply (reg->regnum, NULL);
8180
8181 return;
8182 }
8183
8184 fetch_registers_using_g (regcache);
8185
8186 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8187 if (!rsa->regs[i].in_g_packet)
8188 if (!fetch_register_using_p (regcache, &rsa->regs[i]))
8189 {
8190 /* This register is not available. */
8191 regcache->raw_supply (i, NULL);
8192 }
8193 }
8194
8195 /* Prepare to store registers. Since we may send them all (using a
8196 'G' request), we have to read out the ones we don't want to change
8197 first. */
8198
8199 void
8200 remote_target::prepare_to_store (struct regcache *regcache)
8201 {
8202 struct remote_state *rs = get_remote_state ();
8203 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8204 int i;
8205
8206 /* Make sure the entire registers array is valid. */
8207 switch (packet_support (PACKET_P))
8208 {
8209 case PACKET_DISABLE:
8210 case PACKET_SUPPORT_UNKNOWN:
8211 /* Make sure all the necessary registers are cached. */
8212 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8213 if (rsa->regs[i].in_g_packet)
8214 regcache->raw_update (rsa->regs[i].regnum);
8215 break;
8216 case PACKET_ENABLE:
8217 break;
8218 }
8219 }
8220
8221 /* Helper: Attempt to store REGNUM using the P packet. Return fail IFF
8222 packet was not recognized. */
8223
8224 int
8225 remote_target::store_register_using_P (const struct regcache *regcache,
8226 packet_reg *reg)
8227 {
8228 struct gdbarch *gdbarch = regcache->arch ();
8229 struct remote_state *rs = get_remote_state ();
8230 /* Try storing a single register. */
8231 char *buf = rs->buf.data ();
8232 gdb_byte *regp = (gdb_byte *) alloca (register_size (gdbarch, reg->regnum));
8233 char *p;
8234
8235 if (packet_support (PACKET_P) == PACKET_DISABLE)
8236 return 0;
8237
8238 if (reg->pnum == -1)
8239 return 0;
8240
8241 xsnprintf (buf, get_remote_packet_size (), "P%s=", phex_nz (reg->pnum, 0));
8242 p = buf + strlen (buf);
8243 regcache->raw_collect (reg->regnum, regp);
8244 bin2hex (regp, p, register_size (gdbarch, reg->regnum));
8245 putpkt (rs->buf);
8246 getpkt (&rs->buf, 0);
8247
8248 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_P]))
8249 {
8250 case PACKET_OK:
8251 return 1;
8252 case PACKET_ERROR:
8253 error (_("Could not write register \"%s\"; remote failure reply '%s'"),
8254 gdbarch_register_name (gdbarch, reg->regnum), rs->buf.data ());
8255 case PACKET_UNKNOWN:
8256 return 0;
8257 default:
8258 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
8259 }
8260 }
8261
8262 /* Store register REGNUM, or all registers if REGNUM == -1, from the
8263 contents of the register cache buffer. FIXME: ignores errors. */
8264
8265 void
8266 remote_target::store_registers_using_G (const struct regcache *regcache)
8267 {
8268 struct remote_state *rs = get_remote_state ();
8269 remote_arch_state *rsa = rs->get_remote_arch_state (regcache->arch ());
8270 gdb_byte *regs;
8271 char *p;
8272
8273 /* Extract all the registers in the regcache copying them into a
8274 local buffer. */
8275 {
8276 int i;
8277
8278 regs = (gdb_byte *) alloca (rsa->sizeof_g_packet);
8279 memset (regs, 0, rsa->sizeof_g_packet);
8280 for (i = 0; i < gdbarch_num_regs (regcache->arch ()); i++)
8281 {
8282 struct packet_reg *r = &rsa->regs[i];
8283
8284 if (r->in_g_packet)
8285 regcache->raw_collect (r->regnum, regs + r->offset);
8286 }
8287 }
8288
8289 /* Command describes registers byte by byte,
8290 each byte encoded as two hex characters. */
8291 p = rs->buf.data ();
8292 *p++ = 'G';
8293 bin2hex (regs, p, rsa->sizeof_g_packet);
8294 putpkt (rs->buf);
8295 getpkt (&rs->buf, 0);
8296 if (packet_check_result (rs->buf) == PACKET_ERROR)
8297 error (_("Could not write registers; remote failure reply '%s'"),
8298 rs->buf.data ());
8299 }
8300
8301 /* Store register REGNUM, or all registers if REGNUM == -1, from the contents
8302 of the register cache buffer. FIXME: ignores errors. */
8303
8304 void
8305 remote_target::store_registers (struct regcache *regcache, int regnum)
8306 {
8307 struct gdbarch *gdbarch = regcache->arch ();
8308 struct remote_state *rs = get_remote_state ();
8309 remote_arch_state *rsa = rs->get_remote_arch_state (gdbarch);
8310 int i;
8311
8312 set_remote_traceframe ();
8313 set_general_thread (regcache->ptid ());
8314
8315 if (regnum >= 0)
8316 {
8317 packet_reg *reg = packet_reg_from_regnum (gdbarch, rsa, regnum);
8318
8319 gdb_assert (reg != NULL);
8320
8321 /* Always prefer to store registers using the 'P' packet if
8322 possible; we often change only a small number of registers.
8323 Sometimes we change a larger number; we'd need help from a
8324 higher layer to know to use 'G'. */
8325 if (store_register_using_P (regcache, reg))
8326 return;
8327
8328 /* For now, don't complain if we have no way to write the
8329 register. GDB loses track of unavailable registers too
8330 easily. Some day, this may be an error. We don't have
8331 any way to read the register, either... */
8332 if (!reg->in_g_packet)
8333 return;
8334
8335 store_registers_using_G (regcache);
8336 return;
8337 }
8338
8339 store_registers_using_G (regcache);
8340
8341 for (i = 0; i < gdbarch_num_regs (gdbarch); i++)
8342 if (!rsa->regs[i].in_g_packet)
8343 if (!store_register_using_P (regcache, &rsa->regs[i]))
8344 /* See above for why we do not issue an error here. */
8345 continue;
8346 }
8347 \f
8348
8349 /* Return the number of hex digits in num. */
8350
8351 static int
8352 hexnumlen (ULONGEST num)
8353 {
8354 int i;
8355
8356 for (i = 0; num != 0; i++)
8357 num >>= 4;
8358
8359 return std::max (i, 1);
8360 }
8361
8362 /* Set BUF to the minimum number of hex digits representing NUM. */
8363
8364 static int
8365 hexnumstr (char *buf, ULONGEST num)
8366 {
8367 int len = hexnumlen (num);
8368
8369 return hexnumnstr (buf, num, len);
8370 }
8371
8372
8373 /* Set BUF to the hex digits representing NUM, padded to WIDTH characters. */
8374
8375 static int
8376 hexnumnstr (char *buf, ULONGEST num, int width)
8377 {
8378 int i;
8379
8380 buf[width] = '\0';
8381
8382 for (i = width - 1; i >= 0; i--)
8383 {
8384 buf[i] = "0123456789abcdef"[(num & 0xf)];
8385 num >>= 4;
8386 }
8387
8388 return width;
8389 }
8390
8391 /* Mask all but the least significant REMOTE_ADDRESS_SIZE bits. */
8392
8393 static CORE_ADDR
8394 remote_address_masked (CORE_ADDR addr)
8395 {
8396 unsigned int address_size = remote_address_size;
8397
8398 /* If "remoteaddresssize" was not set, default to target address size. */
8399 if (!address_size)
8400 address_size = gdbarch_addr_bit (target_gdbarch ());
8401
8402 if (address_size > 0
8403 && address_size < (sizeof (ULONGEST) * 8))
8404 {
8405 /* Only create a mask when that mask can safely be constructed
8406 in a ULONGEST variable. */
8407 ULONGEST mask = 1;
8408
8409 mask = (mask << address_size) - 1;
8410 addr &= mask;
8411 }
8412 return addr;
8413 }
8414
8415 /* Determine whether the remote target supports binary downloading.
8416 This is accomplished by sending a no-op memory write of zero length
8417 to the target at the specified address. It does not suffice to send
8418 the whole packet, since many stubs strip the eighth bit and
8419 subsequently compute a wrong checksum, which causes real havoc with
8420 remote_write_bytes.
8421
8422 NOTE: This can still lose if the serial line is not eight-bit
8423 clean. In cases like this, the user should clear "remote
8424 X-packet". */
8425
8426 void
8427 remote_target::check_binary_download (CORE_ADDR addr)
8428 {
8429 struct remote_state *rs = get_remote_state ();
8430
8431 switch (packet_support (PACKET_X))
8432 {
8433 case PACKET_DISABLE:
8434 break;
8435 case PACKET_ENABLE:
8436 break;
8437 case PACKET_SUPPORT_UNKNOWN:
8438 {
8439 char *p;
8440
8441 p = rs->buf.data ();
8442 *p++ = 'X';
8443 p += hexnumstr (p, (ULONGEST) addr);
8444 *p++ = ',';
8445 p += hexnumstr (p, (ULONGEST) 0);
8446 *p++ = ':';
8447 *p = '\0';
8448
8449 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8450 getpkt (&rs->buf, 0);
8451
8452 if (rs->buf[0] == '\0')
8453 {
8454 if (remote_debug)
8455 fprintf_unfiltered (gdb_stdlog,
8456 "binary downloading NOT "
8457 "supported by target\n");
8458 remote_protocol_packets[PACKET_X].support = PACKET_DISABLE;
8459 }
8460 else
8461 {
8462 if (remote_debug)
8463 fprintf_unfiltered (gdb_stdlog,
8464 "binary downloading supported by target\n");
8465 remote_protocol_packets[PACKET_X].support = PACKET_ENABLE;
8466 }
8467 break;
8468 }
8469 }
8470 }
8471
8472 /* Helper function to resize the payload in order to try to get a good
8473 alignment. We try to write an amount of data such that the next write will
8474 start on an address aligned on REMOTE_ALIGN_WRITES. */
8475
8476 static int
8477 align_for_efficient_write (int todo, CORE_ADDR memaddr)
8478 {
8479 return ((memaddr + todo) & ~(REMOTE_ALIGN_WRITES - 1)) - memaddr;
8480 }
8481
8482 /* Write memory data directly to the remote machine.
8483 This does not inform the data cache; the data cache uses this.
8484 HEADER is the starting part of the packet.
8485 MEMADDR is the address in the remote memory space.
8486 MYADDR is the address of the buffer in our space.
8487 LEN_UNITS is the number of addressable units to write.
8488 UNIT_SIZE is the length in bytes of an addressable unit.
8489 PACKET_FORMAT should be either 'X' or 'M', and indicates if we
8490 should send data as binary ('X'), or hex-encoded ('M').
8491
8492 The function creates packet of the form
8493 <HEADER><ADDRESS>,<LENGTH>:<DATA>
8494
8495 where encoding of <DATA> is terminated by PACKET_FORMAT.
8496
8497 If USE_LENGTH is 0, then the <LENGTH> field and the preceding comma
8498 are omitted.
8499
8500 Return the transferred status, error or OK (an
8501 'enum target_xfer_status' value). Save the number of addressable units
8502 transferred in *XFERED_LEN_UNITS. Only transfer a single packet.
8503
8504 On a platform with an addressable memory size of 2 bytes (UNIT_SIZE == 2), an
8505 exchange between gdb and the stub could look like (?? in place of the
8506 checksum):
8507
8508 -> $m1000,4#??
8509 <- aaaabbbbccccdddd
8510
8511 -> $M1000,3:eeeeffffeeee#??
8512 <- OK
8513
8514 -> $m1000,4#??
8515 <- eeeeffffeeeedddd */
8516
8517 target_xfer_status
8518 remote_target::remote_write_bytes_aux (const char *header, CORE_ADDR memaddr,
8519 const gdb_byte *myaddr,
8520 ULONGEST len_units,
8521 int unit_size,
8522 ULONGEST *xfered_len_units,
8523 char packet_format, int use_length)
8524 {
8525 struct remote_state *rs = get_remote_state ();
8526 char *p;
8527 char *plen = NULL;
8528 int plenlen = 0;
8529 int todo_units;
8530 int units_written;
8531 int payload_capacity_bytes;
8532 int payload_length_bytes;
8533
8534 if (packet_format != 'X' && packet_format != 'M')
8535 internal_error (__FILE__, __LINE__,
8536 _("remote_write_bytes_aux: bad packet format"));
8537
8538 if (len_units == 0)
8539 return TARGET_XFER_EOF;
8540
8541 payload_capacity_bytes = get_memory_write_packet_size ();
8542
8543 /* The packet buffer will be large enough for the payload;
8544 get_memory_packet_size ensures this. */
8545 rs->buf[0] = '\0';
8546
8547 /* Compute the size of the actual payload by subtracting out the
8548 packet header and footer overhead: "$M<memaddr>,<len>:...#nn". */
8549
8550 payload_capacity_bytes -= strlen ("$,:#NN");
8551 if (!use_length)
8552 /* The comma won't be used. */
8553 payload_capacity_bytes += 1;
8554 payload_capacity_bytes -= strlen (header);
8555 payload_capacity_bytes -= hexnumlen (memaddr);
8556
8557 /* Construct the packet excluding the data: "<header><memaddr>,<len>:". */
8558
8559 strcat (rs->buf.data (), header);
8560 p = rs->buf.data () + strlen (header);
8561
8562 /* Compute a best guess of the number of bytes actually transfered. */
8563 if (packet_format == 'X')
8564 {
8565 /* Best guess at number of bytes that will fit. */
8566 todo_units = std::min (len_units,
8567 (ULONGEST) payload_capacity_bytes / unit_size);
8568 if (use_length)
8569 payload_capacity_bytes -= hexnumlen (todo_units);
8570 todo_units = std::min (todo_units, payload_capacity_bytes / unit_size);
8571 }
8572 else
8573 {
8574 /* Number of bytes that will fit. */
8575 todo_units
8576 = std::min (len_units,
8577 (ULONGEST) (payload_capacity_bytes / unit_size) / 2);
8578 if (use_length)
8579 payload_capacity_bytes -= hexnumlen (todo_units);
8580 todo_units = std::min (todo_units,
8581 (payload_capacity_bytes / unit_size) / 2);
8582 }
8583
8584 if (todo_units <= 0)
8585 internal_error (__FILE__, __LINE__,
8586 _("minimum packet size too small to write data"));
8587
8588 /* If we already need another packet, then try to align the end
8589 of this packet to a useful boundary. */
8590 if (todo_units > 2 * REMOTE_ALIGN_WRITES && todo_units < len_units)
8591 todo_units = align_for_efficient_write (todo_units, memaddr);
8592
8593 /* Append "<memaddr>". */
8594 memaddr = remote_address_masked (memaddr);
8595 p += hexnumstr (p, (ULONGEST) memaddr);
8596
8597 if (use_length)
8598 {
8599 /* Append ",". */
8600 *p++ = ',';
8601
8602 /* Append the length and retain its location and size. It may need to be
8603 adjusted once the packet body has been created. */
8604 plen = p;
8605 plenlen = hexnumstr (p, (ULONGEST) todo_units);
8606 p += plenlen;
8607 }
8608
8609 /* Append ":". */
8610 *p++ = ':';
8611 *p = '\0';
8612
8613 /* Append the packet body. */
8614 if (packet_format == 'X')
8615 {
8616 /* Binary mode. Send target system values byte by byte, in
8617 increasing byte addresses. Only escape certain critical
8618 characters. */
8619 payload_length_bytes =
8620 remote_escape_output (myaddr, todo_units, unit_size, (gdb_byte *) p,
8621 &units_written, payload_capacity_bytes);
8622
8623 /* If not all TODO units fit, then we'll need another packet. Make
8624 a second try to keep the end of the packet aligned. Don't do
8625 this if the packet is tiny. */
8626 if (units_written < todo_units && units_written > 2 * REMOTE_ALIGN_WRITES)
8627 {
8628 int new_todo_units;
8629
8630 new_todo_units = align_for_efficient_write (units_written, memaddr);
8631
8632 if (new_todo_units != units_written)
8633 payload_length_bytes =
8634 remote_escape_output (myaddr, new_todo_units, unit_size,
8635 (gdb_byte *) p, &units_written,
8636 payload_capacity_bytes);
8637 }
8638
8639 p += payload_length_bytes;
8640 if (use_length && units_written < todo_units)
8641 {
8642 /* Escape chars have filled up the buffer prematurely,
8643 and we have actually sent fewer units than planned.
8644 Fix-up the length field of the packet. Use the same
8645 number of characters as before. */
8646 plen += hexnumnstr (plen, (ULONGEST) units_written,
8647 plenlen);
8648 *plen = ':'; /* overwrite \0 from hexnumnstr() */
8649 }
8650 }
8651 else
8652 {
8653 /* Normal mode: Send target system values byte by byte, in
8654 increasing byte addresses. Each byte is encoded as a two hex
8655 value. */
8656 p += 2 * bin2hex (myaddr, p, todo_units * unit_size);
8657 units_written = todo_units;
8658 }
8659
8660 putpkt_binary (rs->buf.data (), (int) (p - rs->buf.data ()));
8661 getpkt (&rs->buf, 0);
8662
8663 if (rs->buf[0] == 'E')
8664 return TARGET_XFER_E_IO;
8665
8666 /* Return UNITS_WRITTEN, not TODO_UNITS, in case escape chars caused us to
8667 send fewer units than we'd planned. */
8668 *xfered_len_units = (ULONGEST) units_written;
8669 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8670 }
8671
8672 /* Write memory data directly to the remote machine.
8673 This does not inform the data cache; the data cache uses this.
8674 MEMADDR is the address in the remote memory space.
8675 MYADDR is the address of the buffer in our space.
8676 LEN is the number of bytes.
8677
8678 Return the transferred status, error or OK (an
8679 'enum target_xfer_status' value). Save the number of bytes
8680 transferred in *XFERED_LEN. Only transfer a single packet. */
8681
8682 target_xfer_status
8683 remote_target::remote_write_bytes (CORE_ADDR memaddr, const gdb_byte *myaddr,
8684 ULONGEST len, int unit_size,
8685 ULONGEST *xfered_len)
8686 {
8687 const char *packet_format = NULL;
8688
8689 /* Check whether the target supports binary download. */
8690 check_binary_download (memaddr);
8691
8692 switch (packet_support (PACKET_X))
8693 {
8694 case PACKET_ENABLE:
8695 packet_format = "X";
8696 break;
8697 case PACKET_DISABLE:
8698 packet_format = "M";
8699 break;
8700 case PACKET_SUPPORT_UNKNOWN:
8701 internal_error (__FILE__, __LINE__,
8702 _("remote_write_bytes: bad internal state"));
8703 default:
8704 internal_error (__FILE__, __LINE__, _("bad switch"));
8705 }
8706
8707 return remote_write_bytes_aux (packet_format,
8708 memaddr, myaddr, len, unit_size, xfered_len,
8709 packet_format[0], 1);
8710 }
8711
8712 /* Read memory data directly from the remote machine.
8713 This does not use the data cache; the data cache uses this.
8714 MEMADDR is the address in the remote memory space.
8715 MYADDR is the address of the buffer in our space.
8716 LEN_UNITS is the number of addressable memory units to read..
8717 UNIT_SIZE is the length in bytes of an addressable unit.
8718
8719 Return the transferred status, error or OK (an
8720 'enum target_xfer_status' value). Save the number of bytes
8721 transferred in *XFERED_LEN_UNITS.
8722
8723 See the comment of remote_write_bytes_aux for an example of
8724 memory read/write exchange between gdb and the stub. */
8725
8726 target_xfer_status
8727 remote_target::remote_read_bytes_1 (CORE_ADDR memaddr, gdb_byte *myaddr,
8728 ULONGEST len_units,
8729 int unit_size, ULONGEST *xfered_len_units)
8730 {
8731 struct remote_state *rs = get_remote_state ();
8732 int buf_size_bytes; /* Max size of packet output buffer. */
8733 char *p;
8734 int todo_units;
8735 int decoded_bytes;
8736
8737 buf_size_bytes = get_memory_read_packet_size ();
8738 /* The packet buffer will be large enough for the payload;
8739 get_memory_packet_size ensures this. */
8740
8741 /* Number of units that will fit. */
8742 todo_units = std::min (len_units,
8743 (ULONGEST) (buf_size_bytes / unit_size) / 2);
8744
8745 /* Construct "m"<memaddr>","<len>". */
8746 memaddr = remote_address_masked (memaddr);
8747 p = rs->buf.data ();
8748 *p++ = 'm';
8749 p += hexnumstr (p, (ULONGEST) memaddr);
8750 *p++ = ',';
8751 p += hexnumstr (p, (ULONGEST) todo_units);
8752 *p = '\0';
8753 putpkt (rs->buf);
8754 getpkt (&rs->buf, 0);
8755 if (rs->buf[0] == 'E'
8756 && isxdigit (rs->buf[1]) && isxdigit (rs->buf[2])
8757 && rs->buf[3] == '\0')
8758 return TARGET_XFER_E_IO;
8759 /* Reply describes memory byte by byte, each byte encoded as two hex
8760 characters. */
8761 p = rs->buf.data ();
8762 decoded_bytes = hex2bin (p, myaddr, todo_units * unit_size);
8763 /* Return what we have. Let higher layers handle partial reads. */
8764 *xfered_len_units = (ULONGEST) (decoded_bytes / unit_size);
8765 return (*xfered_len_units != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
8766 }
8767
8768 /* Using the set of read-only target sections of remote, read live
8769 read-only memory.
8770
8771 For interface/parameters/return description see target.h,
8772 to_xfer_partial. */
8773
8774 target_xfer_status
8775 remote_target::remote_xfer_live_readonly_partial (gdb_byte *readbuf,
8776 ULONGEST memaddr,
8777 ULONGEST len,
8778 int unit_size,
8779 ULONGEST *xfered_len)
8780 {
8781 struct target_section *secp;
8782 struct target_section_table *table;
8783
8784 secp = target_section_by_addr (this, memaddr);
8785 if (secp != NULL
8786 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
8787 {
8788 struct target_section *p;
8789 ULONGEST memend = memaddr + len;
8790
8791 table = target_get_section_table (this);
8792
8793 for (p = table->sections; p < table->sections_end; p++)
8794 {
8795 if (memaddr >= p->addr)
8796 {
8797 if (memend <= p->endaddr)
8798 {
8799 /* Entire transfer is within this section. */
8800 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8801 xfered_len);
8802 }
8803 else if (memaddr >= p->endaddr)
8804 {
8805 /* This section ends before the transfer starts. */
8806 continue;
8807 }
8808 else
8809 {
8810 /* This section overlaps the transfer. Just do half. */
8811 len = p->endaddr - memaddr;
8812 return remote_read_bytes_1 (memaddr, readbuf, len, unit_size,
8813 xfered_len);
8814 }
8815 }
8816 }
8817 }
8818
8819 return TARGET_XFER_EOF;
8820 }
8821
8822 /* Similar to remote_read_bytes_1, but it reads from the remote stub
8823 first if the requested memory is unavailable in traceframe.
8824 Otherwise, fall back to remote_read_bytes_1. */
8825
8826 target_xfer_status
8827 remote_target::remote_read_bytes (CORE_ADDR memaddr,
8828 gdb_byte *myaddr, ULONGEST len, int unit_size,
8829 ULONGEST *xfered_len)
8830 {
8831 if (len == 0)
8832 return TARGET_XFER_EOF;
8833
8834 if (get_traceframe_number () != -1)
8835 {
8836 std::vector<mem_range> available;
8837
8838 /* If we fail to get the set of available memory, then the
8839 target does not support querying traceframe info, and so we
8840 attempt reading from the traceframe anyway (assuming the
8841 target implements the old QTro packet then). */
8842 if (traceframe_available_memory (&available, memaddr, len))
8843 {
8844 if (available.empty () || available[0].start != memaddr)
8845 {
8846 enum target_xfer_status res;
8847
8848 /* Don't read into the traceframe's available
8849 memory. */
8850 if (!available.empty ())
8851 {
8852 LONGEST oldlen = len;
8853
8854 len = available[0].start - memaddr;
8855 gdb_assert (len <= oldlen);
8856 }
8857
8858 /* This goes through the topmost target again. */
8859 res = remote_xfer_live_readonly_partial (myaddr, memaddr,
8860 len, unit_size, xfered_len);
8861 if (res == TARGET_XFER_OK)
8862 return TARGET_XFER_OK;
8863 else
8864 {
8865 /* No use trying further, we know some memory starting
8866 at MEMADDR isn't available. */
8867 *xfered_len = len;
8868 return (*xfered_len != 0) ?
8869 TARGET_XFER_UNAVAILABLE : TARGET_XFER_EOF;
8870 }
8871 }
8872
8873 /* Don't try to read more than how much is available, in
8874 case the target implements the deprecated QTro packet to
8875 cater for older GDBs (the target's knowledge of read-only
8876 sections may be outdated by now). */
8877 len = available[0].length;
8878 }
8879 }
8880
8881 return remote_read_bytes_1 (memaddr, myaddr, len, unit_size, xfered_len);
8882 }
8883
8884 \f
8885
8886 /* Sends a packet with content determined by the printf format string
8887 FORMAT and the remaining arguments, then gets the reply. Returns
8888 whether the packet was a success, a failure, or unknown. */
8889
8890 packet_result
8891 remote_target::remote_send_printf (const char *format, ...)
8892 {
8893 struct remote_state *rs = get_remote_state ();
8894 int max_size = get_remote_packet_size ();
8895 va_list ap;
8896
8897 va_start (ap, format);
8898
8899 rs->buf[0] = '\0';
8900 int size = vsnprintf (rs->buf.data (), max_size, format, ap);
8901
8902 va_end (ap);
8903
8904 if (size >= max_size)
8905 internal_error (__FILE__, __LINE__, _("Too long remote packet."));
8906
8907 if (putpkt (rs->buf) < 0)
8908 error (_("Communication problem with target."));
8909
8910 rs->buf[0] = '\0';
8911 getpkt (&rs->buf, 0);
8912
8913 return packet_check_result (rs->buf);
8914 }
8915
8916 /* Flash writing can take quite some time. We'll set
8917 effectively infinite timeout for flash operations.
8918 In future, we'll need to decide on a better approach. */
8919 static const int remote_flash_timeout = 1000;
8920
8921 void
8922 remote_target::flash_erase (ULONGEST address, LONGEST length)
8923 {
8924 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
8925 enum packet_result ret;
8926 scoped_restore restore_timeout
8927 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8928
8929 ret = remote_send_printf ("vFlashErase:%s,%s",
8930 phex (address, addr_size),
8931 phex (length, 4));
8932 switch (ret)
8933 {
8934 case PACKET_UNKNOWN:
8935 error (_("Remote target does not support flash erase"));
8936 case PACKET_ERROR:
8937 error (_("Error erasing flash with vFlashErase packet"));
8938 default:
8939 break;
8940 }
8941 }
8942
8943 target_xfer_status
8944 remote_target::remote_flash_write (ULONGEST address,
8945 ULONGEST length, ULONGEST *xfered_len,
8946 const gdb_byte *data)
8947 {
8948 scoped_restore restore_timeout
8949 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8950 return remote_write_bytes_aux ("vFlashWrite:", address, data, length, 1,
8951 xfered_len,'X', 0);
8952 }
8953
8954 void
8955 remote_target::flash_done ()
8956 {
8957 int ret;
8958
8959 scoped_restore restore_timeout
8960 = make_scoped_restore (&remote_timeout, remote_flash_timeout);
8961
8962 ret = remote_send_printf ("vFlashDone");
8963
8964 switch (ret)
8965 {
8966 case PACKET_UNKNOWN:
8967 error (_("Remote target does not support vFlashDone"));
8968 case PACKET_ERROR:
8969 error (_("Error finishing flash operation"));
8970 default:
8971 break;
8972 }
8973 }
8974
8975 void
8976 remote_target::files_info ()
8977 {
8978 puts_filtered ("Debugging a target over a serial line.\n");
8979 }
8980 \f
8981 /* Stuff for dealing with the packets which are part of this protocol.
8982 See comment at top of file for details. */
8983
8984 /* Close/unpush the remote target, and throw a TARGET_CLOSE_ERROR
8985 error to higher layers. Called when a serial error is detected.
8986 The exception message is STRING, followed by a colon and a blank,
8987 the system error message for errno at function entry and final dot
8988 for output compatibility with throw_perror_with_name. */
8989
8990 static void
8991 unpush_and_perror (const char *string)
8992 {
8993 int saved_errno = errno;
8994
8995 remote_unpush_target ();
8996 throw_error (TARGET_CLOSE_ERROR, "%s: %s.", string,
8997 safe_strerror (saved_errno));
8998 }
8999
9000 /* Read a single character from the remote end. The current quit
9001 handler is overridden to avoid quitting in the middle of packet
9002 sequence, as that would break communication with the remote server.
9003 See remote_serial_quit_handler for more detail. */
9004
9005 int
9006 remote_target::readchar (int timeout)
9007 {
9008 int ch;
9009 struct remote_state *rs = get_remote_state ();
9010
9011 {
9012 scoped_restore restore_quit_target
9013 = make_scoped_restore (&curr_quit_handler_target, this);
9014 scoped_restore restore_quit
9015 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9016
9017 rs->got_ctrlc_during_io = 0;
9018
9019 ch = serial_readchar (rs->remote_desc, timeout);
9020
9021 if (rs->got_ctrlc_during_io)
9022 set_quit_flag ();
9023 }
9024
9025 if (ch >= 0)
9026 return ch;
9027
9028 switch ((enum serial_rc) ch)
9029 {
9030 case SERIAL_EOF:
9031 remote_unpush_target ();
9032 throw_error (TARGET_CLOSE_ERROR, _("Remote connection closed"));
9033 /* no return */
9034 case SERIAL_ERROR:
9035 unpush_and_perror (_("Remote communication error. "
9036 "Target disconnected."));
9037 /* no return */
9038 case SERIAL_TIMEOUT:
9039 break;
9040 }
9041 return ch;
9042 }
9043
9044 /* Wrapper for serial_write that closes the target and throws if
9045 writing fails. The current quit handler is overridden to avoid
9046 quitting in the middle of packet sequence, as that would break
9047 communication with the remote server. See
9048 remote_serial_quit_handler for more detail. */
9049
9050 void
9051 remote_target::remote_serial_write (const char *str, int len)
9052 {
9053 struct remote_state *rs = get_remote_state ();
9054
9055 scoped_restore restore_quit_target
9056 = make_scoped_restore (&curr_quit_handler_target, this);
9057 scoped_restore restore_quit
9058 = make_scoped_restore (&quit_handler, ::remote_serial_quit_handler);
9059
9060 rs->got_ctrlc_during_io = 0;
9061
9062 if (serial_write (rs->remote_desc, str, len))
9063 {
9064 unpush_and_perror (_("Remote communication error. "
9065 "Target disconnected."));
9066 }
9067
9068 if (rs->got_ctrlc_during_io)
9069 set_quit_flag ();
9070 }
9071
9072 /* Return a string representing an escaped version of BUF, of len N.
9073 E.g. \n is converted to \\n, \t to \\t, etc. */
9074
9075 static std::string
9076 escape_buffer (const char *buf, int n)
9077 {
9078 string_file stb;
9079
9080 stb.putstrn (buf, n, '\\');
9081 return std::move (stb.string ());
9082 }
9083
9084 /* Display a null-terminated packet on stdout, for debugging, using C
9085 string notation. */
9086
9087 static void
9088 print_packet (const char *buf)
9089 {
9090 puts_filtered ("\"");
9091 fputstr_filtered (buf, '"', gdb_stdout);
9092 puts_filtered ("\"");
9093 }
9094
9095 int
9096 remote_target::putpkt (const char *buf)
9097 {
9098 return putpkt_binary (buf, strlen (buf));
9099 }
9100
9101 /* Wrapper around remote_target::putpkt to avoid exporting
9102 remote_target. */
9103
9104 int
9105 putpkt (remote_target *remote, const char *buf)
9106 {
9107 return remote->putpkt (buf);
9108 }
9109
9110 /* Send a packet to the remote machine, with error checking. The data
9111 of the packet is in BUF. The string in BUF can be at most
9112 get_remote_packet_size () - 5 to account for the $, # and checksum,
9113 and for a possible /0 if we are debugging (remote_debug) and want
9114 to print the sent packet as a string. */
9115
9116 int
9117 remote_target::putpkt_binary (const char *buf, int cnt)
9118 {
9119 struct remote_state *rs = get_remote_state ();
9120 int i;
9121 unsigned char csum = 0;
9122 gdb::def_vector<char> data (cnt + 6);
9123 char *buf2 = data.data ();
9124
9125 int ch;
9126 int tcount = 0;
9127 char *p;
9128
9129 /* Catch cases like trying to read memory or listing threads while
9130 we're waiting for a stop reply. The remote server wouldn't be
9131 ready to handle this request, so we'd hang and timeout. We don't
9132 have to worry about this in synchronous mode, because in that
9133 case it's not possible to issue a command while the target is
9134 running. This is not a problem in non-stop mode, because in that
9135 case, the stub is always ready to process serial input. */
9136 if (!target_is_non_stop_p ()
9137 && target_is_async_p ()
9138 && rs->waiting_for_stop_reply)
9139 {
9140 error (_("Cannot execute this command while the target is running.\n"
9141 "Use the \"interrupt\" command to stop the target\n"
9142 "and then try again."));
9143 }
9144
9145 /* We're sending out a new packet. Make sure we don't look at a
9146 stale cached response. */
9147 rs->cached_wait_status = 0;
9148
9149 /* Copy the packet into buffer BUF2, encapsulating it
9150 and giving it a checksum. */
9151
9152 p = buf2;
9153 *p++ = '$';
9154
9155 for (i = 0; i < cnt; i++)
9156 {
9157 csum += buf[i];
9158 *p++ = buf[i];
9159 }
9160 *p++ = '#';
9161 *p++ = tohex ((csum >> 4) & 0xf);
9162 *p++ = tohex (csum & 0xf);
9163
9164 /* Send it over and over until we get a positive ack. */
9165
9166 while (1)
9167 {
9168 int started_error_output = 0;
9169
9170 if (remote_debug)
9171 {
9172 *p = '\0';
9173
9174 int len = (int) (p - buf2);
9175 int max_chars;
9176
9177 if (remote_packet_max_chars < 0)
9178 max_chars = len;
9179 else
9180 max_chars = remote_packet_max_chars;
9181
9182 std::string str
9183 = escape_buffer (buf2, std::min (len, max_chars));
9184
9185 fprintf_unfiltered (gdb_stdlog, "Sending packet: %s", str.c_str ());
9186
9187 if (len > max_chars)
9188 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9189 len - max_chars);
9190
9191 fprintf_unfiltered (gdb_stdlog, "...");
9192
9193 gdb_flush (gdb_stdlog);
9194 }
9195 remote_serial_write (buf2, p - buf2);
9196
9197 /* If this is a no acks version of the remote protocol, send the
9198 packet and move on. */
9199 if (rs->noack_mode)
9200 break;
9201
9202 /* Read until either a timeout occurs (-2) or '+' is read.
9203 Handle any notification that arrives in the mean time. */
9204 while (1)
9205 {
9206 ch = readchar (remote_timeout);
9207
9208 if (remote_debug)
9209 {
9210 switch (ch)
9211 {
9212 case '+':
9213 case '-':
9214 case SERIAL_TIMEOUT:
9215 case '$':
9216 case '%':
9217 if (started_error_output)
9218 {
9219 putchar_unfiltered ('\n');
9220 started_error_output = 0;
9221 }
9222 }
9223 }
9224
9225 switch (ch)
9226 {
9227 case '+':
9228 if (remote_debug)
9229 fprintf_unfiltered (gdb_stdlog, "Ack\n");
9230 return 1;
9231 case '-':
9232 if (remote_debug)
9233 fprintf_unfiltered (gdb_stdlog, "Nak\n");
9234 /* FALLTHROUGH */
9235 case SERIAL_TIMEOUT:
9236 tcount++;
9237 if (tcount > 3)
9238 return 0;
9239 break; /* Retransmit buffer. */
9240 case '$':
9241 {
9242 if (remote_debug)
9243 fprintf_unfiltered (gdb_stdlog,
9244 "Packet instead of Ack, ignoring it\n");
9245 /* It's probably an old response sent because an ACK
9246 was lost. Gobble up the packet and ack it so it
9247 doesn't get retransmitted when we resend this
9248 packet. */
9249 skip_frame ();
9250 remote_serial_write ("+", 1);
9251 continue; /* Now, go look for +. */
9252 }
9253
9254 case '%':
9255 {
9256 int val;
9257
9258 /* If we got a notification, handle it, and go back to looking
9259 for an ack. */
9260 /* We've found the start of a notification. Now
9261 collect the data. */
9262 val = read_frame (&rs->buf);
9263 if (val >= 0)
9264 {
9265 if (remote_debug)
9266 {
9267 std::string str = escape_buffer (rs->buf.data (), val);
9268
9269 fprintf_unfiltered (gdb_stdlog,
9270 " Notification received: %s\n",
9271 str.c_str ());
9272 }
9273 handle_notification (rs->notif_state, rs->buf.data ());
9274 /* We're in sync now, rewait for the ack. */
9275 tcount = 0;
9276 }
9277 else
9278 {
9279 if (remote_debug)
9280 {
9281 if (!started_error_output)
9282 {
9283 started_error_output = 1;
9284 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9285 }
9286 fputc_unfiltered (ch & 0177, gdb_stdlog);
9287 fprintf_unfiltered (gdb_stdlog, "%s", rs->buf.data ());
9288 }
9289 }
9290 continue;
9291 }
9292 /* fall-through */
9293 default:
9294 if (remote_debug)
9295 {
9296 if (!started_error_output)
9297 {
9298 started_error_output = 1;
9299 fprintf_unfiltered (gdb_stdlog, "putpkt: Junk: ");
9300 }
9301 fputc_unfiltered (ch & 0177, gdb_stdlog);
9302 }
9303 continue;
9304 }
9305 break; /* Here to retransmit. */
9306 }
9307
9308 #if 0
9309 /* This is wrong. If doing a long backtrace, the user should be
9310 able to get out next time we call QUIT, without anything as
9311 violent as interrupt_query. If we want to provide a way out of
9312 here without getting to the next QUIT, it should be based on
9313 hitting ^C twice as in remote_wait. */
9314 if (quit_flag)
9315 {
9316 quit_flag = 0;
9317 interrupt_query ();
9318 }
9319 #endif
9320 }
9321
9322 return 0;
9323 }
9324
9325 /* Come here after finding the start of a frame when we expected an
9326 ack. Do our best to discard the rest of this packet. */
9327
9328 void
9329 remote_target::skip_frame ()
9330 {
9331 int c;
9332
9333 while (1)
9334 {
9335 c = readchar (remote_timeout);
9336 switch (c)
9337 {
9338 case SERIAL_TIMEOUT:
9339 /* Nothing we can do. */
9340 return;
9341 case '#':
9342 /* Discard the two bytes of checksum and stop. */
9343 c = readchar (remote_timeout);
9344 if (c >= 0)
9345 c = readchar (remote_timeout);
9346
9347 return;
9348 case '*': /* Run length encoding. */
9349 /* Discard the repeat count. */
9350 c = readchar (remote_timeout);
9351 if (c < 0)
9352 return;
9353 break;
9354 default:
9355 /* A regular character. */
9356 break;
9357 }
9358 }
9359 }
9360
9361 /* Come here after finding the start of the frame. Collect the rest
9362 into *BUF, verifying the checksum, length, and handling run-length
9363 compression. NUL terminate the buffer. If there is not enough room,
9364 expand *BUF.
9365
9366 Returns -1 on error, number of characters in buffer (ignoring the
9367 trailing NULL) on success. (could be extended to return one of the
9368 SERIAL status indications). */
9369
9370 long
9371 remote_target::read_frame (gdb::char_vector *buf_p)
9372 {
9373 unsigned char csum;
9374 long bc;
9375 int c;
9376 char *buf = buf_p->data ();
9377 struct remote_state *rs = get_remote_state ();
9378
9379 csum = 0;
9380 bc = 0;
9381
9382 while (1)
9383 {
9384 c = readchar (remote_timeout);
9385 switch (c)
9386 {
9387 case SERIAL_TIMEOUT:
9388 if (remote_debug)
9389 fputs_filtered ("Timeout in mid-packet, retrying\n", gdb_stdlog);
9390 return -1;
9391 case '$':
9392 if (remote_debug)
9393 fputs_filtered ("Saw new packet start in middle of old one\n",
9394 gdb_stdlog);
9395 return -1; /* Start a new packet, count retries. */
9396 case '#':
9397 {
9398 unsigned char pktcsum;
9399 int check_0 = 0;
9400 int check_1 = 0;
9401
9402 buf[bc] = '\0';
9403
9404 check_0 = readchar (remote_timeout);
9405 if (check_0 >= 0)
9406 check_1 = readchar (remote_timeout);
9407
9408 if (check_0 == SERIAL_TIMEOUT || check_1 == SERIAL_TIMEOUT)
9409 {
9410 if (remote_debug)
9411 fputs_filtered ("Timeout in checksum, retrying\n",
9412 gdb_stdlog);
9413 return -1;
9414 }
9415 else if (check_0 < 0 || check_1 < 0)
9416 {
9417 if (remote_debug)
9418 fputs_filtered ("Communication error in checksum\n",
9419 gdb_stdlog);
9420 return -1;
9421 }
9422
9423 /* Don't recompute the checksum; with no ack packets we
9424 don't have any way to indicate a packet retransmission
9425 is necessary. */
9426 if (rs->noack_mode)
9427 return bc;
9428
9429 pktcsum = (fromhex (check_0) << 4) | fromhex (check_1);
9430 if (csum == pktcsum)
9431 return bc;
9432
9433 if (remote_debug)
9434 {
9435 std::string str = escape_buffer (buf, bc);
9436
9437 fprintf_unfiltered (gdb_stdlog,
9438 "Bad checksum, sentsum=0x%x, "
9439 "csum=0x%x, buf=%s\n",
9440 pktcsum, csum, str.c_str ());
9441 }
9442 /* Number of characters in buffer ignoring trailing
9443 NULL. */
9444 return -1;
9445 }
9446 case '*': /* Run length encoding. */
9447 {
9448 int repeat;
9449
9450 csum += c;
9451 c = readchar (remote_timeout);
9452 csum += c;
9453 repeat = c - ' ' + 3; /* Compute repeat count. */
9454
9455 /* The character before ``*'' is repeated. */
9456
9457 if (repeat > 0 && repeat <= 255 && bc > 0)
9458 {
9459 if (bc + repeat - 1 >= buf_p->size () - 1)
9460 {
9461 /* Make some more room in the buffer. */
9462 buf_p->resize (buf_p->size () + repeat);
9463 buf = buf_p->data ();
9464 }
9465
9466 memset (&buf[bc], buf[bc - 1], repeat);
9467 bc += repeat;
9468 continue;
9469 }
9470
9471 buf[bc] = '\0';
9472 printf_filtered (_("Invalid run length encoding: %s\n"), buf);
9473 return -1;
9474 }
9475 default:
9476 if (bc >= buf_p->size () - 1)
9477 {
9478 /* Make some more room in the buffer. */
9479 buf_p->resize (buf_p->size () * 2);
9480 buf = buf_p->data ();
9481 }
9482
9483 buf[bc++] = c;
9484 csum += c;
9485 continue;
9486 }
9487 }
9488 }
9489
9490 /* Set this to the maximum number of seconds to wait instead of waiting forever
9491 in target_wait(). If this timer times out, then it generates an error and
9492 the command is aborted. This replaces most of the need for timeouts in the
9493 GDB test suite, and makes it possible to distinguish between a hung target
9494 and one with slow communications. */
9495
9496 static int watchdog = 0;
9497 static void
9498 show_watchdog (struct ui_file *file, int from_tty,
9499 struct cmd_list_element *c, const char *value)
9500 {
9501 fprintf_filtered (file, _("Watchdog timer is %s.\n"), value);
9502 }
9503
9504 /* Read a packet from the remote machine, with error checking, and
9505 store it in *BUF. Resize *BUF if necessary to hold the result. If
9506 FOREVER, wait forever rather than timing out; this is used (in
9507 synchronous mode) to wait for a target that is is executing user
9508 code to stop. */
9509 /* FIXME: ezannoni 2000-02-01 this wrapper is necessary so that we
9510 don't have to change all the calls to getpkt to deal with the
9511 return value, because at the moment I don't know what the right
9512 thing to do it for those. */
9513
9514 void
9515 remote_target::getpkt (gdb::char_vector *buf, int forever)
9516 {
9517 getpkt_sane (buf, forever);
9518 }
9519
9520
9521 /* Read a packet from the remote machine, with error checking, and
9522 store it in *BUF. Resize *BUF if necessary to hold the result. If
9523 FOREVER, wait forever rather than timing out; this is used (in
9524 synchronous mode) to wait for a target that is is executing user
9525 code to stop. If FOREVER == 0, this function is allowed to time
9526 out gracefully and return an indication of this to the caller.
9527 Otherwise return the number of bytes read. If EXPECTING_NOTIF,
9528 consider receiving a notification enough reason to return to the
9529 caller. *IS_NOTIF is an output boolean that indicates whether *BUF
9530 holds a notification or not (a regular packet). */
9531
9532 int
9533 remote_target::getpkt_or_notif_sane_1 (gdb::char_vector *buf,
9534 int forever, int expecting_notif,
9535 int *is_notif)
9536 {
9537 struct remote_state *rs = get_remote_state ();
9538 int c;
9539 int tries;
9540 int timeout;
9541 int val = -1;
9542
9543 /* We're reading a new response. Make sure we don't look at a
9544 previously cached response. */
9545 rs->cached_wait_status = 0;
9546
9547 strcpy (buf->data (), "timeout");
9548
9549 if (forever)
9550 timeout = watchdog > 0 ? watchdog : -1;
9551 else if (expecting_notif)
9552 timeout = 0; /* There should already be a char in the buffer. If
9553 not, bail out. */
9554 else
9555 timeout = remote_timeout;
9556
9557 #define MAX_TRIES 3
9558
9559 /* Process any number of notifications, and then return when
9560 we get a packet. */
9561 for (;;)
9562 {
9563 /* If we get a timeout or bad checksum, retry up to MAX_TRIES
9564 times. */
9565 for (tries = 1; tries <= MAX_TRIES; tries++)
9566 {
9567 /* This can loop forever if the remote side sends us
9568 characters continuously, but if it pauses, we'll get
9569 SERIAL_TIMEOUT from readchar because of timeout. Then
9570 we'll count that as a retry.
9571
9572 Note that even when forever is set, we will only wait
9573 forever prior to the start of a packet. After that, we
9574 expect characters to arrive at a brisk pace. They should
9575 show up within remote_timeout intervals. */
9576 do
9577 c = readchar (timeout);
9578 while (c != SERIAL_TIMEOUT && c != '$' && c != '%');
9579
9580 if (c == SERIAL_TIMEOUT)
9581 {
9582 if (expecting_notif)
9583 return -1; /* Don't complain, it's normal to not get
9584 anything in this case. */
9585
9586 if (forever) /* Watchdog went off? Kill the target. */
9587 {
9588 remote_unpush_target ();
9589 throw_error (TARGET_CLOSE_ERROR,
9590 _("Watchdog timeout has expired. "
9591 "Target detached."));
9592 }
9593 if (remote_debug)
9594 fputs_filtered ("Timed out.\n", gdb_stdlog);
9595 }
9596 else
9597 {
9598 /* We've found the start of a packet or notification.
9599 Now collect the data. */
9600 val = read_frame (buf);
9601 if (val >= 0)
9602 break;
9603 }
9604
9605 remote_serial_write ("-", 1);
9606 }
9607
9608 if (tries > MAX_TRIES)
9609 {
9610 /* We have tried hard enough, and just can't receive the
9611 packet/notification. Give up. */
9612 printf_unfiltered (_("Ignoring packet error, continuing...\n"));
9613
9614 /* Skip the ack char if we're in no-ack mode. */
9615 if (!rs->noack_mode)
9616 remote_serial_write ("+", 1);
9617 return -1;
9618 }
9619
9620 /* If we got an ordinary packet, return that to our caller. */
9621 if (c == '$')
9622 {
9623 if (remote_debug)
9624 {
9625 int max_chars;
9626
9627 if (remote_packet_max_chars < 0)
9628 max_chars = val;
9629 else
9630 max_chars = remote_packet_max_chars;
9631
9632 std::string str
9633 = escape_buffer (buf->data (),
9634 std::min (val, max_chars));
9635
9636 fprintf_unfiltered (gdb_stdlog, "Packet received: %s",
9637 str.c_str ());
9638
9639 if (val > max_chars)
9640 fprintf_unfiltered (gdb_stdlog, "[%d bytes omitted]",
9641 val - max_chars);
9642
9643 fprintf_unfiltered (gdb_stdlog, "\n");
9644 }
9645
9646 /* Skip the ack char if we're in no-ack mode. */
9647 if (!rs->noack_mode)
9648 remote_serial_write ("+", 1);
9649 if (is_notif != NULL)
9650 *is_notif = 0;
9651 return val;
9652 }
9653
9654 /* If we got a notification, handle it, and go back to looking
9655 for a packet. */
9656 else
9657 {
9658 gdb_assert (c == '%');
9659
9660 if (remote_debug)
9661 {
9662 std::string str = escape_buffer (buf->data (), val);
9663
9664 fprintf_unfiltered (gdb_stdlog,
9665 " Notification received: %s\n",
9666 str.c_str ());
9667 }
9668 if (is_notif != NULL)
9669 *is_notif = 1;
9670
9671 handle_notification (rs->notif_state, buf->data ());
9672
9673 /* Notifications require no acknowledgement. */
9674
9675 if (expecting_notif)
9676 return val;
9677 }
9678 }
9679 }
9680
9681 int
9682 remote_target::getpkt_sane (gdb::char_vector *buf, int forever)
9683 {
9684 return getpkt_or_notif_sane_1 (buf, forever, 0, NULL);
9685 }
9686
9687 int
9688 remote_target::getpkt_or_notif_sane (gdb::char_vector *buf, int forever,
9689 int *is_notif)
9690 {
9691 return getpkt_or_notif_sane_1 (buf, forever, 1, is_notif);
9692 }
9693
9694 /* Kill any new fork children of process PID that haven't been
9695 processed by follow_fork. */
9696
9697 void
9698 remote_target::kill_new_fork_children (int pid)
9699 {
9700 remote_state *rs = get_remote_state ();
9701 struct notif_client *notif = &notif_client_stop;
9702
9703 /* Kill the fork child threads of any threads in process PID
9704 that are stopped at a fork event. */
9705 for (thread_info *thread : all_non_exited_threads ())
9706 {
9707 struct target_waitstatus *ws = &thread->pending_follow;
9708
9709 if (is_pending_fork_parent (ws, pid, thread->ptid))
9710 {
9711 int child_pid = ws->value.related_pid.pid ();
9712 int res;
9713
9714 res = remote_vkill (child_pid);
9715 if (res != 0)
9716 error (_("Can't kill fork child process %d"), child_pid);
9717 }
9718 }
9719
9720 /* Check for any pending fork events (not reported or processed yet)
9721 in process PID and kill those fork child threads as well. */
9722 remote_notif_get_pending_events (notif);
9723 for (auto &event : rs->stop_reply_queue)
9724 if (is_pending_fork_parent (&event->ws, pid, event->ptid))
9725 {
9726 int child_pid = event->ws.value.related_pid.pid ();
9727 int res;
9728
9729 res = remote_vkill (child_pid);
9730 if (res != 0)
9731 error (_("Can't kill fork child process %d"), child_pid);
9732 }
9733 }
9734
9735 \f
9736 /* Target hook to kill the current inferior. */
9737
9738 void
9739 remote_target::kill ()
9740 {
9741 int res = -1;
9742 int pid = inferior_ptid.pid ();
9743 struct remote_state *rs = get_remote_state ();
9744
9745 if (packet_support (PACKET_vKill) != PACKET_DISABLE)
9746 {
9747 /* If we're stopped while forking and we haven't followed yet,
9748 kill the child task. We need to do this before killing the
9749 parent task because if this is a vfork then the parent will
9750 be sleeping. */
9751 kill_new_fork_children (pid);
9752
9753 res = remote_vkill (pid);
9754 if (res == 0)
9755 {
9756 target_mourn_inferior (inferior_ptid);
9757 return;
9758 }
9759 }
9760
9761 /* If we are in 'target remote' mode and we are killing the only
9762 inferior, then we will tell gdbserver to exit and unpush the
9763 target. */
9764 if (res == -1 && !remote_multi_process_p (rs)
9765 && number_of_live_inferiors () == 1)
9766 {
9767 remote_kill_k ();
9768
9769 /* We've killed the remote end, we get to mourn it. If we are
9770 not in extended mode, mourning the inferior also unpushes
9771 remote_ops from the target stack, which closes the remote
9772 connection. */
9773 target_mourn_inferior (inferior_ptid);
9774
9775 return;
9776 }
9777
9778 error (_("Can't kill process"));
9779 }
9780
9781 /* Send a kill request to the target using the 'vKill' packet. */
9782
9783 int
9784 remote_target::remote_vkill (int pid)
9785 {
9786 if (packet_support (PACKET_vKill) == PACKET_DISABLE)
9787 return -1;
9788
9789 remote_state *rs = get_remote_state ();
9790
9791 /* Tell the remote target to detach. */
9792 xsnprintf (rs->buf.data (), get_remote_packet_size (), "vKill;%x", pid);
9793 putpkt (rs->buf);
9794 getpkt (&rs->buf, 0);
9795
9796 switch (packet_ok (rs->buf,
9797 &remote_protocol_packets[PACKET_vKill]))
9798 {
9799 case PACKET_OK:
9800 return 0;
9801 case PACKET_ERROR:
9802 return 1;
9803 case PACKET_UNKNOWN:
9804 return -1;
9805 default:
9806 internal_error (__FILE__, __LINE__, _("Bad result from packet_ok"));
9807 }
9808 }
9809
9810 /* Send a kill request to the target using the 'k' packet. */
9811
9812 void
9813 remote_target::remote_kill_k ()
9814 {
9815 /* Catch errors so the user can quit from gdb even when we
9816 aren't on speaking terms with the remote system. */
9817 try
9818 {
9819 putpkt ("k");
9820 }
9821 catch (const gdb_exception_error &ex)
9822 {
9823 if (ex.error == TARGET_CLOSE_ERROR)
9824 {
9825 /* If we got an (EOF) error that caused the target
9826 to go away, then we're done, that's what we wanted.
9827 "k" is susceptible to cause a premature EOF, given
9828 that the remote server isn't actually required to
9829 reply to "k", and it can happen that it doesn't
9830 even get to reply ACK to the "k". */
9831 return;
9832 }
9833
9834 /* Otherwise, something went wrong. We didn't actually kill
9835 the target. Just propagate the exception, and let the
9836 user or higher layers decide what to do. */
9837 throw;
9838 }
9839 }
9840
9841 void
9842 remote_target::mourn_inferior ()
9843 {
9844 struct remote_state *rs = get_remote_state ();
9845
9846 /* We're no longer interested in notification events of an inferior
9847 that exited or was killed/detached. */
9848 discard_pending_stop_replies (current_inferior ());
9849
9850 /* In 'target remote' mode with one inferior, we close the connection. */
9851 if (!rs->extended && number_of_live_inferiors () <= 1)
9852 {
9853 unpush_target (this);
9854
9855 /* remote_close takes care of doing most of the clean up. */
9856 generic_mourn_inferior ();
9857 return;
9858 }
9859
9860 /* In case we got here due to an error, but we're going to stay
9861 connected. */
9862 rs->waiting_for_stop_reply = 0;
9863
9864 /* If the current general thread belonged to the process we just
9865 detached from or has exited, the remote side current general
9866 thread becomes undefined. Considering a case like this:
9867
9868 - We just got here due to a detach.
9869 - The process that we're detaching from happens to immediately
9870 report a global breakpoint being hit in non-stop mode, in the
9871 same thread we had selected before.
9872 - GDB attaches to this process again.
9873 - This event happens to be the next event we handle.
9874
9875 GDB would consider that the current general thread didn't need to
9876 be set on the stub side (with Hg), since for all it knew,
9877 GENERAL_THREAD hadn't changed.
9878
9879 Notice that although in all-stop mode, the remote server always
9880 sets the current thread to the thread reporting the stop event,
9881 that doesn't happen in non-stop mode; in non-stop, the stub *must
9882 not* change the current thread when reporting a breakpoint hit,
9883 due to the decoupling of event reporting and event handling.
9884
9885 To keep things simple, we always invalidate our notion of the
9886 current thread. */
9887 record_currthread (rs, minus_one_ptid);
9888
9889 /* Call common code to mark the inferior as not running. */
9890 generic_mourn_inferior ();
9891 }
9892
9893 bool
9894 extended_remote_target::supports_disable_randomization ()
9895 {
9896 return packet_support (PACKET_QDisableRandomization) == PACKET_ENABLE;
9897 }
9898
9899 void
9900 remote_target::extended_remote_disable_randomization (int val)
9901 {
9902 struct remote_state *rs = get_remote_state ();
9903 char *reply;
9904
9905 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9906 "QDisableRandomization:%x", val);
9907 putpkt (rs->buf);
9908 reply = remote_get_noisy_reply ();
9909 if (*reply == '\0')
9910 error (_("Target does not support QDisableRandomization."));
9911 if (strcmp (reply, "OK") != 0)
9912 error (_("Bogus QDisableRandomization reply from target: %s"), reply);
9913 }
9914
9915 int
9916 remote_target::extended_remote_run (const std::string &args)
9917 {
9918 struct remote_state *rs = get_remote_state ();
9919 int len;
9920 const char *remote_exec_file = get_remote_exec_file ();
9921
9922 /* If the user has disabled vRun support, or we have detected that
9923 support is not available, do not try it. */
9924 if (packet_support (PACKET_vRun) == PACKET_DISABLE)
9925 return -1;
9926
9927 strcpy (rs->buf.data (), "vRun;");
9928 len = strlen (rs->buf.data ());
9929
9930 if (strlen (remote_exec_file) * 2 + len >= get_remote_packet_size ())
9931 error (_("Remote file name too long for run packet"));
9932 len += 2 * bin2hex ((gdb_byte *) remote_exec_file, rs->buf.data () + len,
9933 strlen (remote_exec_file));
9934
9935 if (!args.empty ())
9936 {
9937 int i;
9938
9939 gdb_argv argv (args.c_str ());
9940 for (i = 0; argv[i] != NULL; i++)
9941 {
9942 if (strlen (argv[i]) * 2 + 1 + len >= get_remote_packet_size ())
9943 error (_("Argument list too long for run packet"));
9944 rs->buf[len++] = ';';
9945 len += 2 * bin2hex ((gdb_byte *) argv[i], rs->buf.data () + len,
9946 strlen (argv[i]));
9947 }
9948 }
9949
9950 rs->buf[len++] = '\0';
9951
9952 putpkt (rs->buf);
9953 getpkt (&rs->buf, 0);
9954
9955 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_vRun]))
9956 {
9957 case PACKET_OK:
9958 /* We have a wait response. All is well. */
9959 return 0;
9960 case PACKET_UNKNOWN:
9961 return -1;
9962 case PACKET_ERROR:
9963 if (remote_exec_file[0] == '\0')
9964 error (_("Running the default executable on the remote target failed; "
9965 "try \"set remote exec-file\"?"));
9966 else
9967 error (_("Running \"%s\" on the remote target failed"),
9968 remote_exec_file);
9969 default:
9970 gdb_assert_not_reached (_("bad switch"));
9971 }
9972 }
9973
9974 /* Helper function to send set/unset environment packets. ACTION is
9975 either "set" or "unset". PACKET is either "QEnvironmentHexEncoded"
9976 or "QEnvironmentUnsetVariable". VALUE is the variable to be
9977 sent. */
9978
9979 void
9980 remote_target::send_environment_packet (const char *action,
9981 const char *packet,
9982 const char *value)
9983 {
9984 remote_state *rs = get_remote_state ();
9985
9986 /* Convert the environment variable to an hex string, which
9987 is the best format to be transmitted over the wire. */
9988 std::string encoded_value = bin2hex ((const gdb_byte *) value,
9989 strlen (value));
9990
9991 xsnprintf (rs->buf.data (), get_remote_packet_size (),
9992 "%s:%s", packet, encoded_value.c_str ());
9993
9994 putpkt (rs->buf);
9995 getpkt (&rs->buf, 0);
9996 if (strcmp (rs->buf.data (), "OK") != 0)
9997 warning (_("Unable to %s environment variable '%s' on remote."),
9998 action, value);
9999 }
10000
10001 /* Helper function to handle the QEnvironment* packets. */
10002
10003 void
10004 remote_target::extended_remote_environment_support ()
10005 {
10006 remote_state *rs = get_remote_state ();
10007
10008 if (packet_support (PACKET_QEnvironmentReset) != PACKET_DISABLE)
10009 {
10010 putpkt ("QEnvironmentReset");
10011 getpkt (&rs->buf, 0);
10012 if (strcmp (rs->buf.data (), "OK") != 0)
10013 warning (_("Unable to reset environment on remote."));
10014 }
10015
10016 gdb_environ *e = &current_inferior ()->environment;
10017
10018 if (packet_support (PACKET_QEnvironmentHexEncoded) != PACKET_DISABLE)
10019 for (const std::string &el : e->user_set_env ())
10020 send_environment_packet ("set", "QEnvironmentHexEncoded",
10021 el.c_str ());
10022
10023 if (packet_support (PACKET_QEnvironmentUnset) != PACKET_DISABLE)
10024 for (const std::string &el : e->user_unset_env ())
10025 send_environment_packet ("unset", "QEnvironmentUnset", el.c_str ());
10026 }
10027
10028 /* Helper function to set the current working directory for the
10029 inferior in the remote target. */
10030
10031 void
10032 remote_target::extended_remote_set_inferior_cwd ()
10033 {
10034 if (packet_support (PACKET_QSetWorkingDir) != PACKET_DISABLE)
10035 {
10036 const char *inferior_cwd = get_inferior_cwd ();
10037 remote_state *rs = get_remote_state ();
10038
10039 if (inferior_cwd != NULL)
10040 {
10041 std::string hexpath = bin2hex ((const gdb_byte *) inferior_cwd,
10042 strlen (inferior_cwd));
10043
10044 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10045 "QSetWorkingDir:%s", hexpath.c_str ());
10046 }
10047 else
10048 {
10049 /* An empty inferior_cwd means that the user wants us to
10050 reset the remote server's inferior's cwd. */
10051 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10052 "QSetWorkingDir:");
10053 }
10054
10055 putpkt (rs->buf);
10056 getpkt (&rs->buf, 0);
10057 if (packet_ok (rs->buf,
10058 &remote_protocol_packets[PACKET_QSetWorkingDir])
10059 != PACKET_OK)
10060 error (_("\
10061 Remote replied unexpectedly while setting the inferior's working\n\
10062 directory: %s"),
10063 rs->buf.data ());
10064
10065 }
10066 }
10067
10068 /* In the extended protocol we want to be able to do things like
10069 "run" and have them basically work as expected. So we need
10070 a special create_inferior function. We support changing the
10071 executable file and the command line arguments, but not the
10072 environment. */
10073
10074 void
10075 extended_remote_target::create_inferior (const char *exec_file,
10076 const std::string &args,
10077 char **env, int from_tty)
10078 {
10079 int run_worked;
10080 char *stop_reply;
10081 struct remote_state *rs = get_remote_state ();
10082 const char *remote_exec_file = get_remote_exec_file ();
10083
10084 /* If running asynchronously, register the target file descriptor
10085 with the event loop. */
10086 if (target_can_async_p ())
10087 target_async (1);
10088
10089 /* Disable address space randomization if requested (and supported). */
10090 if (supports_disable_randomization ())
10091 extended_remote_disable_randomization (disable_randomization);
10092
10093 /* If startup-with-shell is on, we inform gdbserver to start the
10094 remote inferior using a shell. */
10095 if (packet_support (PACKET_QStartupWithShell) != PACKET_DISABLE)
10096 {
10097 xsnprintf (rs->buf.data (), get_remote_packet_size (),
10098 "QStartupWithShell:%d", startup_with_shell ? 1 : 0);
10099 putpkt (rs->buf);
10100 getpkt (&rs->buf, 0);
10101 if (strcmp (rs->buf.data (), "OK") != 0)
10102 error (_("\
10103 Remote replied unexpectedly while setting startup-with-shell: %s"),
10104 rs->buf.data ());
10105 }
10106
10107 extended_remote_environment_support ();
10108
10109 extended_remote_set_inferior_cwd ();
10110
10111 /* Now restart the remote server. */
10112 run_worked = extended_remote_run (args) != -1;
10113 if (!run_worked)
10114 {
10115 /* vRun was not supported. Fail if we need it to do what the
10116 user requested. */
10117 if (remote_exec_file[0])
10118 error (_("Remote target does not support \"set remote exec-file\""));
10119 if (!args.empty ())
10120 error (_("Remote target does not support \"set args\" or run ARGS"));
10121
10122 /* Fall back to "R". */
10123 extended_remote_restart ();
10124 }
10125
10126 /* vRun's success return is a stop reply. */
10127 stop_reply = run_worked ? rs->buf.data () : NULL;
10128 add_current_inferior_and_thread (stop_reply);
10129
10130 /* Get updated offsets, if the stub uses qOffsets. */
10131 get_offsets ();
10132 }
10133 \f
10134
10135 /* Given a location's target info BP_TGT and the packet buffer BUF, output
10136 the list of conditions (in agent expression bytecode format), if any, the
10137 target needs to evaluate. The output is placed into the packet buffer
10138 started from BUF and ended at BUF_END. */
10139
10140 static int
10141 remote_add_target_side_condition (struct gdbarch *gdbarch,
10142 struct bp_target_info *bp_tgt, char *buf,
10143 char *buf_end)
10144 {
10145 if (bp_tgt->conditions.empty ())
10146 return 0;
10147
10148 buf += strlen (buf);
10149 xsnprintf (buf, buf_end - buf, "%s", ";");
10150 buf++;
10151
10152 /* Send conditions to the target. */
10153 for (agent_expr *aexpr : bp_tgt->conditions)
10154 {
10155 xsnprintf (buf, buf_end - buf, "X%x,", aexpr->len);
10156 buf += strlen (buf);
10157 for (int i = 0; i < aexpr->len; ++i)
10158 buf = pack_hex_byte (buf, aexpr->buf[i]);
10159 *buf = '\0';
10160 }
10161 return 0;
10162 }
10163
10164 static void
10165 remote_add_target_side_commands (struct gdbarch *gdbarch,
10166 struct bp_target_info *bp_tgt, char *buf)
10167 {
10168 if (bp_tgt->tcommands.empty ())
10169 return;
10170
10171 buf += strlen (buf);
10172
10173 sprintf (buf, ";cmds:%x,", bp_tgt->persist);
10174 buf += strlen (buf);
10175
10176 /* Concatenate all the agent expressions that are commands into the
10177 cmds parameter. */
10178 for (agent_expr *aexpr : bp_tgt->tcommands)
10179 {
10180 sprintf (buf, "X%x,", aexpr->len);
10181 buf += strlen (buf);
10182 for (int i = 0; i < aexpr->len; ++i)
10183 buf = pack_hex_byte (buf, aexpr->buf[i]);
10184 *buf = '\0';
10185 }
10186 }
10187
10188 /* Insert a breakpoint. On targets that have software breakpoint
10189 support, we ask the remote target to do the work; on targets
10190 which don't, we insert a traditional memory breakpoint. */
10191
10192 int
10193 remote_target::insert_breakpoint (struct gdbarch *gdbarch,
10194 struct bp_target_info *bp_tgt)
10195 {
10196 /* Try the "Z" s/w breakpoint packet if it is not already disabled.
10197 If it succeeds, then set the support to PACKET_ENABLE. If it
10198 fails, and the user has explicitly requested the Z support then
10199 report an error, otherwise, mark it disabled and go on. */
10200
10201 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10202 {
10203 CORE_ADDR addr = bp_tgt->reqstd_address;
10204 struct remote_state *rs;
10205 char *p, *endbuf;
10206
10207 /* Make sure the remote is pointing at the right process, if
10208 necessary. */
10209 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10210 set_general_process ();
10211
10212 rs = get_remote_state ();
10213 p = rs->buf.data ();
10214 endbuf = p + get_remote_packet_size ();
10215
10216 *(p++) = 'Z';
10217 *(p++) = '0';
10218 *(p++) = ',';
10219 addr = (ULONGEST) remote_address_masked (addr);
10220 p += hexnumstr (p, addr);
10221 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10222
10223 if (supports_evaluation_of_breakpoint_conditions ())
10224 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10225
10226 if (can_run_breakpoint_commands ())
10227 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10228
10229 putpkt (rs->buf);
10230 getpkt (&rs->buf, 0);
10231
10232 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0]))
10233 {
10234 case PACKET_ERROR:
10235 return -1;
10236 case PACKET_OK:
10237 return 0;
10238 case PACKET_UNKNOWN:
10239 break;
10240 }
10241 }
10242
10243 /* If this breakpoint has target-side commands but this stub doesn't
10244 support Z0 packets, throw error. */
10245 if (!bp_tgt->tcommands.empty ())
10246 throw_error (NOT_SUPPORTED_ERROR, _("\
10247 Target doesn't support breakpoints that have target side commands."));
10248
10249 return memory_insert_breakpoint (this, gdbarch, bp_tgt);
10250 }
10251
10252 int
10253 remote_target::remove_breakpoint (struct gdbarch *gdbarch,
10254 struct bp_target_info *bp_tgt,
10255 enum remove_bp_reason reason)
10256 {
10257 CORE_ADDR addr = bp_tgt->placed_address;
10258 struct remote_state *rs = get_remote_state ();
10259
10260 if (packet_support (PACKET_Z0) != PACKET_DISABLE)
10261 {
10262 char *p = rs->buf.data ();
10263 char *endbuf = p + get_remote_packet_size ();
10264
10265 /* Make sure the remote is pointing at the right process, if
10266 necessary. */
10267 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10268 set_general_process ();
10269
10270 *(p++) = 'z';
10271 *(p++) = '0';
10272 *(p++) = ',';
10273
10274 addr = (ULONGEST) remote_address_masked (bp_tgt->placed_address);
10275 p += hexnumstr (p, addr);
10276 xsnprintf (p, endbuf - p, ",%d", bp_tgt->kind);
10277
10278 putpkt (rs->buf);
10279 getpkt (&rs->buf, 0);
10280
10281 return (rs->buf[0] == 'E');
10282 }
10283
10284 return memory_remove_breakpoint (this, gdbarch, bp_tgt, reason);
10285 }
10286
10287 static enum Z_packet_type
10288 watchpoint_to_Z_packet (int type)
10289 {
10290 switch (type)
10291 {
10292 case hw_write:
10293 return Z_PACKET_WRITE_WP;
10294 break;
10295 case hw_read:
10296 return Z_PACKET_READ_WP;
10297 break;
10298 case hw_access:
10299 return Z_PACKET_ACCESS_WP;
10300 break;
10301 default:
10302 internal_error (__FILE__, __LINE__,
10303 _("hw_bp_to_z: bad watchpoint type %d"), type);
10304 }
10305 }
10306
10307 int
10308 remote_target::insert_watchpoint (CORE_ADDR addr, int len,
10309 enum target_hw_bp_type type, struct expression *cond)
10310 {
10311 struct remote_state *rs = get_remote_state ();
10312 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10313 char *p;
10314 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10315
10316 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10317 return 1;
10318
10319 /* Make sure the remote is pointing at the right process, if
10320 necessary. */
10321 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10322 set_general_process ();
10323
10324 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "Z%x,", packet);
10325 p = strchr (rs->buf.data (), '\0');
10326 addr = remote_address_masked (addr);
10327 p += hexnumstr (p, (ULONGEST) addr);
10328 xsnprintf (p, endbuf - p, ",%x", len);
10329
10330 putpkt (rs->buf);
10331 getpkt (&rs->buf, 0);
10332
10333 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10334 {
10335 case PACKET_ERROR:
10336 return -1;
10337 case PACKET_UNKNOWN:
10338 return 1;
10339 case PACKET_OK:
10340 return 0;
10341 }
10342 internal_error (__FILE__, __LINE__,
10343 _("remote_insert_watchpoint: reached end of function"));
10344 }
10345
10346 bool
10347 remote_target::watchpoint_addr_within_range (CORE_ADDR addr,
10348 CORE_ADDR start, int length)
10349 {
10350 CORE_ADDR diff = remote_address_masked (addr - start);
10351
10352 return diff < length;
10353 }
10354
10355
10356 int
10357 remote_target::remove_watchpoint (CORE_ADDR addr, int len,
10358 enum target_hw_bp_type type, struct expression *cond)
10359 {
10360 struct remote_state *rs = get_remote_state ();
10361 char *endbuf = rs->buf.data () + get_remote_packet_size ();
10362 char *p;
10363 enum Z_packet_type packet = watchpoint_to_Z_packet (type);
10364
10365 if (packet_support (PACKET_Z0 + packet) == PACKET_DISABLE)
10366 return -1;
10367
10368 /* Make sure the remote is pointing at the right process, if
10369 necessary. */
10370 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10371 set_general_process ();
10372
10373 xsnprintf (rs->buf.data (), endbuf - rs->buf.data (), "z%x,", packet);
10374 p = strchr (rs->buf.data (), '\0');
10375 addr = remote_address_masked (addr);
10376 p += hexnumstr (p, (ULONGEST) addr);
10377 xsnprintf (p, endbuf - p, ",%x", len);
10378 putpkt (rs->buf);
10379 getpkt (&rs->buf, 0);
10380
10381 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z0 + packet]))
10382 {
10383 case PACKET_ERROR:
10384 case PACKET_UNKNOWN:
10385 return -1;
10386 case PACKET_OK:
10387 return 0;
10388 }
10389 internal_error (__FILE__, __LINE__,
10390 _("remote_remove_watchpoint: reached end of function"));
10391 }
10392
10393
10394 static int remote_hw_watchpoint_limit = -1;
10395 static int remote_hw_watchpoint_length_limit = -1;
10396 static int remote_hw_breakpoint_limit = -1;
10397
10398 int
10399 remote_target::region_ok_for_hw_watchpoint (CORE_ADDR addr, int len)
10400 {
10401 if (remote_hw_watchpoint_length_limit == 0)
10402 return 0;
10403 else if (remote_hw_watchpoint_length_limit < 0)
10404 return 1;
10405 else if (len <= remote_hw_watchpoint_length_limit)
10406 return 1;
10407 else
10408 return 0;
10409 }
10410
10411 int
10412 remote_target::can_use_hw_breakpoint (enum bptype type, int cnt, int ot)
10413 {
10414 if (type == bp_hardware_breakpoint)
10415 {
10416 if (remote_hw_breakpoint_limit == 0)
10417 return 0;
10418 else if (remote_hw_breakpoint_limit < 0)
10419 return 1;
10420 else if (cnt <= remote_hw_breakpoint_limit)
10421 return 1;
10422 }
10423 else
10424 {
10425 if (remote_hw_watchpoint_limit == 0)
10426 return 0;
10427 else if (remote_hw_watchpoint_limit < 0)
10428 return 1;
10429 else if (ot)
10430 return -1;
10431 else if (cnt <= remote_hw_watchpoint_limit)
10432 return 1;
10433 }
10434 return -1;
10435 }
10436
10437 /* The to_stopped_by_sw_breakpoint method of target remote. */
10438
10439 bool
10440 remote_target::stopped_by_sw_breakpoint ()
10441 {
10442 struct thread_info *thread = inferior_thread ();
10443
10444 return (thread->priv != NULL
10445 && (get_remote_thread_info (thread)->stop_reason
10446 == TARGET_STOPPED_BY_SW_BREAKPOINT));
10447 }
10448
10449 /* The to_supports_stopped_by_sw_breakpoint method of target
10450 remote. */
10451
10452 bool
10453 remote_target::supports_stopped_by_sw_breakpoint ()
10454 {
10455 return (packet_support (PACKET_swbreak_feature) == PACKET_ENABLE);
10456 }
10457
10458 /* The to_stopped_by_hw_breakpoint method of target remote. */
10459
10460 bool
10461 remote_target::stopped_by_hw_breakpoint ()
10462 {
10463 struct thread_info *thread = inferior_thread ();
10464
10465 return (thread->priv != NULL
10466 && (get_remote_thread_info (thread)->stop_reason
10467 == TARGET_STOPPED_BY_HW_BREAKPOINT));
10468 }
10469
10470 /* The to_supports_stopped_by_hw_breakpoint method of target
10471 remote. */
10472
10473 bool
10474 remote_target::supports_stopped_by_hw_breakpoint ()
10475 {
10476 return (packet_support (PACKET_hwbreak_feature) == PACKET_ENABLE);
10477 }
10478
10479 bool
10480 remote_target::stopped_by_watchpoint ()
10481 {
10482 struct thread_info *thread = inferior_thread ();
10483
10484 return (thread->priv != NULL
10485 && (get_remote_thread_info (thread)->stop_reason
10486 == TARGET_STOPPED_BY_WATCHPOINT));
10487 }
10488
10489 bool
10490 remote_target::stopped_data_address (CORE_ADDR *addr_p)
10491 {
10492 struct thread_info *thread = inferior_thread ();
10493
10494 if (thread->priv != NULL
10495 && (get_remote_thread_info (thread)->stop_reason
10496 == TARGET_STOPPED_BY_WATCHPOINT))
10497 {
10498 *addr_p = get_remote_thread_info (thread)->watch_data_address;
10499 return true;
10500 }
10501
10502 return false;
10503 }
10504
10505
10506 int
10507 remote_target::insert_hw_breakpoint (struct gdbarch *gdbarch,
10508 struct bp_target_info *bp_tgt)
10509 {
10510 CORE_ADDR addr = bp_tgt->reqstd_address;
10511 struct remote_state *rs;
10512 char *p, *endbuf;
10513 char *message;
10514
10515 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10516 return -1;
10517
10518 /* Make sure the remote is pointing at the right process, if
10519 necessary. */
10520 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10521 set_general_process ();
10522
10523 rs = get_remote_state ();
10524 p = rs->buf.data ();
10525 endbuf = p + get_remote_packet_size ();
10526
10527 *(p++) = 'Z';
10528 *(p++) = '1';
10529 *(p++) = ',';
10530
10531 addr = remote_address_masked (addr);
10532 p += hexnumstr (p, (ULONGEST) addr);
10533 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10534
10535 if (supports_evaluation_of_breakpoint_conditions ())
10536 remote_add_target_side_condition (gdbarch, bp_tgt, p, endbuf);
10537
10538 if (can_run_breakpoint_commands ())
10539 remote_add_target_side_commands (gdbarch, bp_tgt, p);
10540
10541 putpkt (rs->buf);
10542 getpkt (&rs->buf, 0);
10543
10544 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10545 {
10546 case PACKET_ERROR:
10547 if (rs->buf[1] == '.')
10548 {
10549 message = strchr (&rs->buf[2], '.');
10550 if (message)
10551 error (_("Remote failure reply: %s"), message + 1);
10552 }
10553 return -1;
10554 case PACKET_UNKNOWN:
10555 return -1;
10556 case PACKET_OK:
10557 return 0;
10558 }
10559 internal_error (__FILE__, __LINE__,
10560 _("remote_insert_hw_breakpoint: reached end of function"));
10561 }
10562
10563
10564 int
10565 remote_target::remove_hw_breakpoint (struct gdbarch *gdbarch,
10566 struct bp_target_info *bp_tgt)
10567 {
10568 CORE_ADDR addr;
10569 struct remote_state *rs = get_remote_state ();
10570 char *p = rs->buf.data ();
10571 char *endbuf = p + get_remote_packet_size ();
10572
10573 if (packet_support (PACKET_Z1) == PACKET_DISABLE)
10574 return -1;
10575
10576 /* Make sure the remote is pointing at the right process, if
10577 necessary. */
10578 if (!gdbarch_has_global_breakpoints (target_gdbarch ()))
10579 set_general_process ();
10580
10581 *(p++) = 'z';
10582 *(p++) = '1';
10583 *(p++) = ',';
10584
10585 addr = remote_address_masked (bp_tgt->placed_address);
10586 p += hexnumstr (p, (ULONGEST) addr);
10587 xsnprintf (p, endbuf - p, ",%x", bp_tgt->kind);
10588
10589 putpkt (rs->buf);
10590 getpkt (&rs->buf, 0);
10591
10592 switch (packet_ok (rs->buf, &remote_protocol_packets[PACKET_Z1]))
10593 {
10594 case PACKET_ERROR:
10595 case PACKET_UNKNOWN:
10596 return -1;
10597 case PACKET_OK:
10598 return 0;
10599 }
10600 internal_error (__FILE__, __LINE__,
10601 _("remote_remove_hw_breakpoint: reached end of function"));
10602 }
10603
10604 /* Verify memory using the "qCRC:" request. */
10605
10606 int
10607 remote_target::verify_memory (const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
10608 {
10609 struct remote_state *rs = get_remote_state ();
10610 unsigned long host_crc, target_crc;
10611 char *tmp;
10612
10613 /* It doesn't make sense to use qCRC if the remote target is
10614 connected but not running. */
10615 if (target_has_execution && packet_support (PACKET_qCRC) != PACKET_DISABLE)
10616 {
10617 enum packet_result result;
10618
10619 /* Make sure the remote is pointing at the right process. */
10620 set_general_process ();
10621
10622 /* FIXME: assumes lma can fit into long. */
10623 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qCRC:%lx,%lx",
10624 (long) lma, (long) size);
10625 putpkt (rs->buf);
10626
10627 /* Be clever; compute the host_crc before waiting for target
10628 reply. */
10629 host_crc = xcrc32 (data, size, 0xffffffff);
10630
10631 getpkt (&rs->buf, 0);
10632
10633 result = packet_ok (rs->buf,
10634 &remote_protocol_packets[PACKET_qCRC]);
10635 if (result == PACKET_ERROR)
10636 return -1;
10637 else if (result == PACKET_OK)
10638 {
10639 for (target_crc = 0, tmp = &rs->buf[1]; *tmp; tmp++)
10640 target_crc = target_crc * 16 + fromhex (*tmp);
10641
10642 return (host_crc == target_crc);
10643 }
10644 }
10645
10646 return simple_verify_memory (this, data, lma, size);
10647 }
10648
10649 /* compare-sections command
10650
10651 With no arguments, compares each loadable section in the exec bfd
10652 with the same memory range on the target, and reports mismatches.
10653 Useful for verifying the image on the target against the exec file. */
10654
10655 static void
10656 compare_sections_command (const char *args, int from_tty)
10657 {
10658 asection *s;
10659 const char *sectname;
10660 bfd_size_type size;
10661 bfd_vma lma;
10662 int matched = 0;
10663 int mismatched = 0;
10664 int res;
10665 int read_only = 0;
10666
10667 if (!exec_bfd)
10668 error (_("command cannot be used without an exec file"));
10669
10670 if (args != NULL && strcmp (args, "-r") == 0)
10671 {
10672 read_only = 1;
10673 args = NULL;
10674 }
10675
10676 for (s = exec_bfd->sections; s; s = s->next)
10677 {
10678 if (!(s->flags & SEC_LOAD))
10679 continue; /* Skip non-loadable section. */
10680
10681 if (read_only && (s->flags & SEC_READONLY) == 0)
10682 continue; /* Skip writeable sections */
10683
10684 size = bfd_section_size (s);
10685 if (size == 0)
10686 continue; /* Skip zero-length section. */
10687
10688 sectname = bfd_section_name (s);
10689 if (args && strcmp (args, sectname) != 0)
10690 continue; /* Not the section selected by user. */
10691
10692 matched = 1; /* Do this section. */
10693 lma = s->lma;
10694
10695 gdb::byte_vector sectdata (size);
10696 bfd_get_section_contents (exec_bfd, s, sectdata.data (), 0, size);
10697
10698 res = target_verify_memory (sectdata.data (), lma, size);
10699
10700 if (res == -1)
10701 error (_("target memory fault, section %s, range %s -- %s"), sectname,
10702 paddress (target_gdbarch (), lma),
10703 paddress (target_gdbarch (), lma + size));
10704
10705 printf_filtered ("Section %s, range %s -- %s: ", sectname,
10706 paddress (target_gdbarch (), lma),
10707 paddress (target_gdbarch (), lma + size));
10708 if (res)
10709 printf_filtered ("matched.\n");
10710 else
10711 {
10712 printf_filtered ("MIS-MATCHED!\n");
10713 mismatched++;
10714 }
10715 }
10716 if (mismatched > 0)
10717 warning (_("One or more sections of the target image does not match\n\
10718 the loaded file\n"));
10719 if (args && !matched)
10720 printf_filtered (_("No loaded section named '%s'.\n"), args);
10721 }
10722
10723 /* Write LEN bytes from WRITEBUF into OBJECT_NAME/ANNEX at OFFSET
10724 into remote target. The number of bytes written to the remote
10725 target is returned, or -1 for error. */
10726
10727 target_xfer_status
10728 remote_target::remote_write_qxfer (const char *object_name,
10729 const char *annex, const gdb_byte *writebuf,
10730 ULONGEST offset, LONGEST len,
10731 ULONGEST *xfered_len,
10732 struct packet_config *packet)
10733 {
10734 int i, buf_len;
10735 ULONGEST n;
10736 struct remote_state *rs = get_remote_state ();
10737 int max_size = get_memory_write_packet_size ();
10738
10739 if (packet_config_support (packet) == PACKET_DISABLE)
10740 return TARGET_XFER_E_IO;
10741
10742 /* Insert header. */
10743 i = snprintf (rs->buf.data (), max_size,
10744 "qXfer:%s:write:%s:%s:",
10745 object_name, annex ? annex : "",
10746 phex_nz (offset, sizeof offset));
10747 max_size -= (i + 1);
10748
10749 /* Escape as much data as fits into rs->buf. */
10750 buf_len = remote_escape_output
10751 (writebuf, len, 1, (gdb_byte *) rs->buf.data () + i, &max_size, max_size);
10752
10753 if (putpkt_binary (rs->buf.data (), i + buf_len) < 0
10754 || getpkt_sane (&rs->buf, 0) < 0
10755 || packet_ok (rs->buf, packet) != PACKET_OK)
10756 return TARGET_XFER_E_IO;
10757
10758 unpack_varlen_hex (rs->buf.data (), &n);
10759
10760 *xfered_len = n;
10761 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
10762 }
10763
10764 /* Read OBJECT_NAME/ANNEX from the remote target using a qXfer packet.
10765 Data at OFFSET, of up to LEN bytes, is read into READBUF; the
10766 number of bytes read is returned, or 0 for EOF, or -1 for error.
10767 The number of bytes read may be less than LEN without indicating an
10768 EOF. PACKET is checked and updated to indicate whether the remote
10769 target supports this object. */
10770
10771 target_xfer_status
10772 remote_target::remote_read_qxfer (const char *object_name,
10773 const char *annex,
10774 gdb_byte *readbuf, ULONGEST offset,
10775 LONGEST len,
10776 ULONGEST *xfered_len,
10777 struct packet_config *packet)
10778 {
10779 struct remote_state *rs = get_remote_state ();
10780 LONGEST i, n, packet_len;
10781
10782 if (packet_config_support (packet) == PACKET_DISABLE)
10783 return TARGET_XFER_E_IO;
10784
10785 /* Check whether we've cached an end-of-object packet that matches
10786 this request. */
10787 if (rs->finished_object)
10788 {
10789 if (strcmp (object_name, rs->finished_object) == 0
10790 && strcmp (annex ? annex : "", rs->finished_annex) == 0
10791 && offset == rs->finished_offset)
10792 return TARGET_XFER_EOF;
10793
10794
10795 /* Otherwise, we're now reading something different. Discard
10796 the cache. */
10797 xfree (rs->finished_object);
10798 xfree (rs->finished_annex);
10799 rs->finished_object = NULL;
10800 rs->finished_annex = NULL;
10801 }
10802
10803 /* Request only enough to fit in a single packet. The actual data
10804 may not, since we don't know how much of it will need to be escaped;
10805 the target is free to respond with slightly less data. We subtract
10806 five to account for the response type and the protocol frame. */
10807 n = std::min<LONGEST> (get_remote_packet_size () - 5, len);
10808 snprintf (rs->buf.data (), get_remote_packet_size () - 4,
10809 "qXfer:%s:read:%s:%s,%s",
10810 object_name, annex ? annex : "",
10811 phex_nz (offset, sizeof offset),
10812 phex_nz (n, sizeof n));
10813 i = putpkt (rs->buf);
10814 if (i < 0)
10815 return TARGET_XFER_E_IO;
10816
10817 rs->buf[0] = '\0';
10818 packet_len = getpkt_sane (&rs->buf, 0);
10819 if (packet_len < 0 || packet_ok (rs->buf, packet) != PACKET_OK)
10820 return TARGET_XFER_E_IO;
10821
10822 if (rs->buf[0] != 'l' && rs->buf[0] != 'm')
10823 error (_("Unknown remote qXfer reply: %s"), rs->buf.data ());
10824
10825 /* 'm' means there is (or at least might be) more data after this
10826 batch. That does not make sense unless there's at least one byte
10827 of data in this reply. */
10828 if (rs->buf[0] == 'm' && packet_len == 1)
10829 error (_("Remote qXfer reply contained no data."));
10830
10831 /* Got some data. */
10832 i = remote_unescape_input ((gdb_byte *) rs->buf.data () + 1,
10833 packet_len - 1, readbuf, n);
10834
10835 /* 'l' is an EOF marker, possibly including a final block of data,
10836 or possibly empty. If we have the final block of a non-empty
10837 object, record this fact to bypass a subsequent partial read. */
10838 if (rs->buf[0] == 'l' && offset + i > 0)
10839 {
10840 rs->finished_object = xstrdup (object_name);
10841 rs->finished_annex = xstrdup (annex ? annex : "");
10842 rs->finished_offset = offset + i;
10843 }
10844
10845 if (i == 0)
10846 return TARGET_XFER_EOF;
10847 else
10848 {
10849 *xfered_len = i;
10850 return TARGET_XFER_OK;
10851 }
10852 }
10853
10854 enum target_xfer_status
10855 remote_target::xfer_partial (enum target_object object,
10856 const char *annex, gdb_byte *readbuf,
10857 const gdb_byte *writebuf, ULONGEST offset, ULONGEST len,
10858 ULONGEST *xfered_len)
10859 {
10860 struct remote_state *rs;
10861 int i;
10862 char *p2;
10863 char query_type;
10864 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
10865
10866 set_remote_traceframe ();
10867 set_general_thread (inferior_ptid);
10868
10869 rs = get_remote_state ();
10870
10871 /* Handle memory using the standard memory routines. */
10872 if (object == TARGET_OBJECT_MEMORY)
10873 {
10874 /* If the remote target is connected but not running, we should
10875 pass this request down to a lower stratum (e.g. the executable
10876 file). */
10877 if (!target_has_execution)
10878 return TARGET_XFER_EOF;
10879
10880 if (writebuf != NULL)
10881 return remote_write_bytes (offset, writebuf, len, unit_size,
10882 xfered_len);
10883 else
10884 return remote_read_bytes (offset, readbuf, len, unit_size,
10885 xfered_len);
10886 }
10887
10888 /* Handle extra signal info using qxfer packets. */
10889 if (object == TARGET_OBJECT_SIGNAL_INFO)
10890 {
10891 if (readbuf)
10892 return remote_read_qxfer ("siginfo", annex, readbuf, offset, len,
10893 xfered_len, &remote_protocol_packets
10894 [PACKET_qXfer_siginfo_read]);
10895 else
10896 return remote_write_qxfer ("siginfo", annex,
10897 writebuf, offset, len, xfered_len,
10898 &remote_protocol_packets
10899 [PACKET_qXfer_siginfo_write]);
10900 }
10901
10902 if (object == TARGET_OBJECT_STATIC_TRACE_DATA)
10903 {
10904 if (readbuf)
10905 return remote_read_qxfer ("statictrace", annex,
10906 readbuf, offset, len, xfered_len,
10907 &remote_protocol_packets
10908 [PACKET_qXfer_statictrace_read]);
10909 else
10910 return TARGET_XFER_E_IO;
10911 }
10912
10913 /* Only handle flash writes. */
10914 if (writebuf != NULL)
10915 {
10916 switch (object)
10917 {
10918 case TARGET_OBJECT_FLASH:
10919 return remote_flash_write (offset, len, xfered_len,
10920 writebuf);
10921
10922 default:
10923 return TARGET_XFER_E_IO;
10924 }
10925 }
10926
10927 /* Map pre-existing objects onto letters. DO NOT do this for new
10928 objects!!! Instead specify new query packets. */
10929 switch (object)
10930 {
10931 case TARGET_OBJECT_AVR:
10932 query_type = 'R';
10933 break;
10934
10935 case TARGET_OBJECT_AUXV:
10936 gdb_assert (annex == NULL);
10937 return remote_read_qxfer ("auxv", annex, readbuf, offset, len,
10938 xfered_len,
10939 &remote_protocol_packets[PACKET_qXfer_auxv]);
10940
10941 case TARGET_OBJECT_AVAILABLE_FEATURES:
10942 return remote_read_qxfer
10943 ("features", annex, readbuf, offset, len, xfered_len,
10944 &remote_protocol_packets[PACKET_qXfer_features]);
10945
10946 case TARGET_OBJECT_LIBRARIES:
10947 return remote_read_qxfer
10948 ("libraries", annex, readbuf, offset, len, xfered_len,
10949 &remote_protocol_packets[PACKET_qXfer_libraries]);
10950
10951 case TARGET_OBJECT_LIBRARIES_SVR4:
10952 return remote_read_qxfer
10953 ("libraries-svr4", annex, readbuf, offset, len, xfered_len,
10954 &remote_protocol_packets[PACKET_qXfer_libraries_svr4]);
10955
10956 case TARGET_OBJECT_MEMORY_MAP:
10957 gdb_assert (annex == NULL);
10958 return remote_read_qxfer ("memory-map", annex, readbuf, offset, len,
10959 xfered_len,
10960 &remote_protocol_packets[PACKET_qXfer_memory_map]);
10961
10962 case TARGET_OBJECT_OSDATA:
10963 /* Should only get here if we're connected. */
10964 gdb_assert (rs->remote_desc);
10965 return remote_read_qxfer
10966 ("osdata", annex, readbuf, offset, len, xfered_len,
10967 &remote_protocol_packets[PACKET_qXfer_osdata]);
10968
10969 case TARGET_OBJECT_THREADS:
10970 gdb_assert (annex == NULL);
10971 return remote_read_qxfer ("threads", annex, readbuf, offset, len,
10972 xfered_len,
10973 &remote_protocol_packets[PACKET_qXfer_threads]);
10974
10975 case TARGET_OBJECT_TRACEFRAME_INFO:
10976 gdb_assert (annex == NULL);
10977 return remote_read_qxfer
10978 ("traceframe-info", annex, readbuf, offset, len, xfered_len,
10979 &remote_protocol_packets[PACKET_qXfer_traceframe_info]);
10980
10981 case TARGET_OBJECT_FDPIC:
10982 return remote_read_qxfer ("fdpic", annex, readbuf, offset, len,
10983 xfered_len,
10984 &remote_protocol_packets[PACKET_qXfer_fdpic]);
10985
10986 case TARGET_OBJECT_OPENVMS_UIB:
10987 return remote_read_qxfer ("uib", annex, readbuf, offset, len,
10988 xfered_len,
10989 &remote_protocol_packets[PACKET_qXfer_uib]);
10990
10991 case TARGET_OBJECT_BTRACE:
10992 return remote_read_qxfer ("btrace", annex, readbuf, offset, len,
10993 xfered_len,
10994 &remote_protocol_packets[PACKET_qXfer_btrace]);
10995
10996 case TARGET_OBJECT_BTRACE_CONF:
10997 return remote_read_qxfer ("btrace-conf", annex, readbuf, offset,
10998 len, xfered_len,
10999 &remote_protocol_packets[PACKET_qXfer_btrace_conf]);
11000
11001 case TARGET_OBJECT_EXEC_FILE:
11002 return remote_read_qxfer ("exec-file", annex, readbuf, offset,
11003 len, xfered_len,
11004 &remote_protocol_packets[PACKET_qXfer_exec_file]);
11005
11006 default:
11007 return TARGET_XFER_E_IO;
11008 }
11009
11010 /* Minimum outbuf size is get_remote_packet_size (). If LEN is not
11011 large enough let the caller deal with it. */
11012 if (len < get_remote_packet_size ())
11013 return TARGET_XFER_E_IO;
11014 len = get_remote_packet_size ();
11015
11016 /* Except for querying the minimum buffer size, target must be open. */
11017 if (!rs->remote_desc)
11018 error (_("remote query is only available after target open"));
11019
11020 gdb_assert (annex != NULL);
11021 gdb_assert (readbuf != NULL);
11022
11023 p2 = rs->buf.data ();
11024 *p2++ = 'q';
11025 *p2++ = query_type;
11026
11027 /* We used one buffer char for the remote protocol q command and
11028 another for the query type. As the remote protocol encapsulation
11029 uses 4 chars plus one extra in case we are debugging
11030 (remote_debug), we have PBUFZIZ - 7 left to pack the query
11031 string. */
11032 i = 0;
11033 while (annex[i] && (i < (get_remote_packet_size () - 8)))
11034 {
11035 /* Bad caller may have sent forbidden characters. */
11036 gdb_assert (isprint (annex[i]) && annex[i] != '$' && annex[i] != '#');
11037 *p2++ = annex[i];
11038 i++;
11039 }
11040 *p2 = '\0';
11041 gdb_assert (annex[i] == '\0');
11042
11043 i = putpkt (rs->buf);
11044 if (i < 0)
11045 return TARGET_XFER_E_IO;
11046
11047 getpkt (&rs->buf, 0);
11048 strcpy ((char *) readbuf, rs->buf.data ());
11049
11050 *xfered_len = strlen ((char *) readbuf);
11051 return (*xfered_len != 0) ? TARGET_XFER_OK : TARGET_XFER_EOF;
11052 }
11053
11054 /* Implementation of to_get_memory_xfer_limit. */
11055
11056 ULONGEST
11057 remote_target::get_memory_xfer_limit ()
11058 {
11059 return get_memory_write_packet_size ();
11060 }
11061
11062 int
11063 remote_target::search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
11064 const gdb_byte *pattern, ULONGEST pattern_len,
11065 CORE_ADDR *found_addrp)
11066 {
11067 int addr_size = gdbarch_addr_bit (target_gdbarch ()) / 8;
11068 struct remote_state *rs = get_remote_state ();
11069 int max_size = get_memory_write_packet_size ();
11070 struct packet_config *packet =
11071 &remote_protocol_packets[PACKET_qSearch_memory];
11072 /* Number of packet bytes used to encode the pattern;
11073 this could be more than PATTERN_LEN due to escape characters. */
11074 int escaped_pattern_len;
11075 /* Amount of pattern that was encodable in the packet. */
11076 int used_pattern_len;
11077 int i;
11078 int found;
11079 ULONGEST found_addr;
11080
11081 /* Don't go to the target if we don't have to. This is done before
11082 checking packet_config_support to avoid the possibility that a
11083 success for this edge case means the facility works in
11084 general. */
11085 if (pattern_len > search_space_len)
11086 return 0;
11087 if (pattern_len == 0)
11088 {
11089 *found_addrp = start_addr;
11090 return 1;
11091 }
11092
11093 /* If we already know the packet isn't supported, fall back to the simple
11094 way of searching memory. */
11095
11096 if (packet_config_support (packet) == PACKET_DISABLE)
11097 {
11098 /* Target doesn't provided special support, fall back and use the
11099 standard support (copy memory and do the search here). */
11100 return simple_search_memory (this, start_addr, search_space_len,
11101 pattern, pattern_len, found_addrp);
11102 }
11103
11104 /* Make sure the remote is pointing at the right process. */
11105 set_general_process ();
11106
11107 /* Insert header. */
11108 i = snprintf (rs->buf.data (), max_size,
11109 "qSearch:memory:%s;%s;",
11110 phex_nz (start_addr, addr_size),
11111 phex_nz (search_space_len, sizeof (search_space_len)));
11112 max_size -= (i + 1);
11113
11114 /* Escape as much data as fits into rs->buf. */
11115 escaped_pattern_len =
11116 remote_escape_output (pattern, pattern_len, 1,
11117 (gdb_byte *) rs->buf.data () + i,
11118 &used_pattern_len, max_size);
11119
11120 /* Bail if the pattern is too large. */
11121 if (used_pattern_len != pattern_len)
11122 error (_("Pattern is too large to transmit to remote target."));
11123
11124 if (putpkt_binary (rs->buf.data (), i + escaped_pattern_len) < 0
11125 || getpkt_sane (&rs->buf, 0) < 0
11126 || packet_ok (rs->buf, packet) != PACKET_OK)
11127 {
11128 /* The request may not have worked because the command is not
11129 supported. If so, fall back to the simple way. */
11130 if (packet_config_support (packet) == PACKET_DISABLE)
11131 {
11132 return simple_search_memory (this, start_addr, search_space_len,
11133 pattern, pattern_len, found_addrp);
11134 }
11135 return -1;
11136 }
11137
11138 if (rs->buf[0] == '0')
11139 found = 0;
11140 else if (rs->buf[0] == '1')
11141 {
11142 found = 1;
11143 if (rs->buf[1] != ',')
11144 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11145 unpack_varlen_hex (&rs->buf[2], &found_addr);
11146 *found_addrp = found_addr;
11147 }
11148 else
11149 error (_("Unknown qSearch:memory reply: %s"), rs->buf.data ());
11150
11151 return found;
11152 }
11153
11154 void
11155 remote_target::rcmd (const char *command, struct ui_file *outbuf)
11156 {
11157 struct remote_state *rs = get_remote_state ();
11158 char *p = rs->buf.data ();
11159
11160 if (!rs->remote_desc)
11161 error (_("remote rcmd is only available after target open"));
11162
11163 /* Send a NULL command across as an empty command. */
11164 if (command == NULL)
11165 command = "";
11166
11167 /* The query prefix. */
11168 strcpy (rs->buf.data (), "qRcmd,");
11169 p = strchr (rs->buf.data (), '\0');
11170
11171 if ((strlen (rs->buf.data ()) + strlen (command) * 2 + 8/*misc*/)
11172 > get_remote_packet_size ())
11173 error (_("\"monitor\" command ``%s'' is too long."), command);
11174
11175 /* Encode the actual command. */
11176 bin2hex ((const gdb_byte *) command, p, strlen (command));
11177
11178 if (putpkt (rs->buf) < 0)
11179 error (_("Communication problem with target."));
11180
11181 /* get/display the response */
11182 while (1)
11183 {
11184 char *buf;
11185
11186 /* XXX - see also remote_get_noisy_reply(). */
11187 QUIT; /* Allow user to bail out with ^C. */
11188 rs->buf[0] = '\0';
11189 if (getpkt_sane (&rs->buf, 0) == -1)
11190 {
11191 /* Timeout. Continue to (try to) read responses.
11192 This is better than stopping with an error, assuming the stub
11193 is still executing the (long) monitor command.
11194 If needed, the user can interrupt gdb using C-c, obtaining
11195 an effect similar to stop on timeout. */
11196 continue;
11197 }
11198 buf = rs->buf.data ();
11199 if (buf[0] == '\0')
11200 error (_("Target does not support this command."));
11201 if (buf[0] == 'O' && buf[1] != 'K')
11202 {
11203 remote_console_output (buf + 1); /* 'O' message from stub. */
11204 continue;
11205 }
11206 if (strcmp (buf, "OK") == 0)
11207 break;
11208 if (strlen (buf) == 3 && buf[0] == 'E'
11209 && isdigit (buf[1]) && isdigit (buf[2]))
11210 {
11211 error (_("Protocol error with Rcmd"));
11212 }
11213 for (p = buf; p[0] != '\0' && p[1] != '\0'; p += 2)
11214 {
11215 char c = (fromhex (p[0]) << 4) + fromhex (p[1]);
11216
11217 fputc_unfiltered (c, outbuf);
11218 }
11219 break;
11220 }
11221 }
11222
11223 std::vector<mem_region>
11224 remote_target::memory_map ()
11225 {
11226 std::vector<mem_region> result;
11227 gdb::optional<gdb::char_vector> text
11228 = target_read_stralloc (current_top_target (), TARGET_OBJECT_MEMORY_MAP, NULL);
11229
11230 if (text)
11231 result = parse_memory_map (text->data ());
11232
11233 return result;
11234 }
11235
11236 static void
11237 packet_command (const char *args, int from_tty)
11238 {
11239 remote_target *remote = get_current_remote_target ();
11240
11241 if (remote == nullptr)
11242 error (_("command can only be used with remote target"));
11243
11244 remote->packet_command (args, from_tty);
11245 }
11246
11247 void
11248 remote_target::packet_command (const char *args, int from_tty)
11249 {
11250 if (!args)
11251 error (_("remote-packet command requires packet text as argument"));
11252
11253 puts_filtered ("sending: ");
11254 print_packet (args);
11255 puts_filtered ("\n");
11256 putpkt (args);
11257
11258 remote_state *rs = get_remote_state ();
11259
11260 getpkt (&rs->buf, 0);
11261 puts_filtered ("received: ");
11262 print_packet (rs->buf.data ());
11263 puts_filtered ("\n");
11264 }
11265
11266 #if 0
11267 /* --------- UNIT_TEST for THREAD oriented PACKETS ------------------- */
11268
11269 static void display_thread_info (struct gdb_ext_thread_info *info);
11270
11271 static void threadset_test_cmd (char *cmd, int tty);
11272
11273 static void threadalive_test (char *cmd, int tty);
11274
11275 static void threadlist_test_cmd (char *cmd, int tty);
11276
11277 int get_and_display_threadinfo (threadref *ref);
11278
11279 static void threadinfo_test_cmd (char *cmd, int tty);
11280
11281 static int thread_display_step (threadref *ref, void *context);
11282
11283 static void threadlist_update_test_cmd (char *cmd, int tty);
11284
11285 static void init_remote_threadtests (void);
11286
11287 #define SAMPLE_THREAD 0x05060708 /* Truncated 64 bit threadid. */
11288
11289 static void
11290 threadset_test_cmd (const char *cmd, int tty)
11291 {
11292 int sample_thread = SAMPLE_THREAD;
11293
11294 printf_filtered (_("Remote threadset test\n"));
11295 set_general_thread (sample_thread);
11296 }
11297
11298
11299 static void
11300 threadalive_test (const char *cmd, int tty)
11301 {
11302 int sample_thread = SAMPLE_THREAD;
11303 int pid = inferior_ptid.pid ();
11304 ptid_t ptid = ptid_t (pid, sample_thread, 0);
11305
11306 if (remote_thread_alive (ptid))
11307 printf_filtered ("PASS: Thread alive test\n");
11308 else
11309 printf_filtered ("FAIL: Thread alive test\n");
11310 }
11311
11312 void output_threadid (char *title, threadref *ref);
11313
11314 void
11315 output_threadid (char *title, threadref *ref)
11316 {
11317 char hexid[20];
11318
11319 pack_threadid (&hexid[0], ref); /* Convert thread id into hex. */
11320 hexid[16] = 0;
11321 printf_filtered ("%s %s\n", title, (&hexid[0]));
11322 }
11323
11324 static void
11325 threadlist_test_cmd (const char *cmd, int tty)
11326 {
11327 int startflag = 1;
11328 threadref nextthread;
11329 int done, result_count;
11330 threadref threadlist[3];
11331
11332 printf_filtered ("Remote Threadlist test\n");
11333 if (!remote_get_threadlist (startflag, &nextthread, 3, &done,
11334 &result_count, &threadlist[0]))
11335 printf_filtered ("FAIL: threadlist test\n");
11336 else
11337 {
11338 threadref *scan = threadlist;
11339 threadref *limit = scan + result_count;
11340
11341 while (scan < limit)
11342 output_threadid (" thread ", scan++);
11343 }
11344 }
11345
11346 void
11347 display_thread_info (struct gdb_ext_thread_info *info)
11348 {
11349 output_threadid ("Threadid: ", &info->threadid);
11350 printf_filtered ("Name: %s\n ", info->shortname);
11351 printf_filtered ("State: %s\n", info->display);
11352 printf_filtered ("other: %s\n\n", info->more_display);
11353 }
11354
11355 int
11356 get_and_display_threadinfo (threadref *ref)
11357 {
11358 int result;
11359 int set;
11360 struct gdb_ext_thread_info threadinfo;
11361
11362 set = TAG_THREADID | TAG_EXISTS | TAG_THREADNAME
11363 | TAG_MOREDISPLAY | TAG_DISPLAY;
11364 if (0 != (result = remote_get_threadinfo (ref, set, &threadinfo)))
11365 display_thread_info (&threadinfo);
11366 return result;
11367 }
11368
11369 static void
11370 threadinfo_test_cmd (const char *cmd, int tty)
11371 {
11372 int athread = SAMPLE_THREAD;
11373 threadref thread;
11374 int set;
11375
11376 int_to_threadref (&thread, athread);
11377 printf_filtered ("Remote Threadinfo test\n");
11378 if (!get_and_display_threadinfo (&thread))
11379 printf_filtered ("FAIL cannot get thread info\n");
11380 }
11381
11382 static int
11383 thread_display_step (threadref *ref, void *context)
11384 {
11385 /* output_threadid(" threadstep ",ref); *//* simple test */
11386 return get_and_display_threadinfo (ref);
11387 }
11388
11389 static void
11390 threadlist_update_test_cmd (const char *cmd, int tty)
11391 {
11392 printf_filtered ("Remote Threadlist update test\n");
11393 remote_threadlist_iterator (thread_display_step, 0, CRAZY_MAX_THREADS);
11394 }
11395
11396 static void
11397 init_remote_threadtests (void)
11398 {
11399 add_com ("tlist", class_obscure, threadlist_test_cmd,
11400 _("Fetch and print the remote list of "
11401 "thread identifiers, one pkt only."));
11402 add_com ("tinfo", class_obscure, threadinfo_test_cmd,
11403 _("Fetch and display info about one thread."));
11404 add_com ("tset", class_obscure, threadset_test_cmd,
11405 _("Test setting to a different thread."));
11406 add_com ("tupd", class_obscure, threadlist_update_test_cmd,
11407 _("Iterate through updating all remote thread info."));
11408 add_com ("talive", class_obscure, threadalive_test,
11409 _("Remote thread alive test."));
11410 }
11411
11412 #endif /* 0 */
11413
11414 /* Convert a thread ID to a string. */
11415
11416 std::string
11417 remote_target::pid_to_str (ptid_t ptid)
11418 {
11419 struct remote_state *rs = get_remote_state ();
11420
11421 if (ptid == null_ptid)
11422 return normal_pid_to_str (ptid);
11423 else if (ptid.is_pid ())
11424 {
11425 /* Printing an inferior target id. */
11426
11427 /* When multi-process extensions are off, there's no way in the
11428 remote protocol to know the remote process id, if there's any
11429 at all. There's one exception --- when we're connected with
11430 target extended-remote, and we manually attached to a process
11431 with "attach PID". We don't record anywhere a flag that
11432 allows us to distinguish that case from the case of
11433 connecting with extended-remote and the stub already being
11434 attached to a process, and reporting yes to qAttached, hence
11435 no smart special casing here. */
11436 if (!remote_multi_process_p (rs))
11437 return "Remote target";
11438
11439 return normal_pid_to_str (ptid);
11440 }
11441 else
11442 {
11443 if (magic_null_ptid == ptid)
11444 return "Thread <main>";
11445 else if (remote_multi_process_p (rs))
11446 if (ptid.lwp () == 0)
11447 return normal_pid_to_str (ptid);
11448 else
11449 return string_printf ("Thread %d.%ld",
11450 ptid.pid (), ptid.lwp ());
11451 else
11452 return string_printf ("Thread %ld", ptid.lwp ());
11453 }
11454 }
11455
11456 /* Get the address of the thread local variable in OBJFILE which is
11457 stored at OFFSET within the thread local storage for thread PTID. */
11458
11459 CORE_ADDR
11460 remote_target::get_thread_local_address (ptid_t ptid, CORE_ADDR lm,
11461 CORE_ADDR offset)
11462 {
11463 if (packet_support (PACKET_qGetTLSAddr) != PACKET_DISABLE)
11464 {
11465 struct remote_state *rs = get_remote_state ();
11466 char *p = rs->buf.data ();
11467 char *endp = p + get_remote_packet_size ();
11468 enum packet_result result;
11469
11470 strcpy (p, "qGetTLSAddr:");
11471 p += strlen (p);
11472 p = write_ptid (p, endp, ptid);
11473 *p++ = ',';
11474 p += hexnumstr (p, offset);
11475 *p++ = ',';
11476 p += hexnumstr (p, lm);
11477 *p++ = '\0';
11478
11479 putpkt (rs->buf);
11480 getpkt (&rs->buf, 0);
11481 result = packet_ok (rs->buf,
11482 &remote_protocol_packets[PACKET_qGetTLSAddr]);
11483 if (result == PACKET_OK)
11484 {
11485 ULONGEST addr;
11486
11487 unpack_varlen_hex (rs->buf.data (), &addr);
11488 return addr;
11489 }
11490 else if (result == PACKET_UNKNOWN)
11491 throw_error (TLS_GENERIC_ERROR,
11492 _("Remote target doesn't support qGetTLSAddr packet"));
11493 else
11494 throw_error (TLS_GENERIC_ERROR,
11495 _("Remote target failed to process qGetTLSAddr request"));
11496 }
11497 else
11498 throw_error (TLS_GENERIC_ERROR,
11499 _("TLS not supported or disabled on this target"));
11500 /* Not reached. */
11501 return 0;
11502 }
11503
11504 /* Provide thread local base, i.e. Thread Information Block address.
11505 Returns 1 if ptid is found and thread_local_base is non zero. */
11506
11507 bool
11508 remote_target::get_tib_address (ptid_t ptid, CORE_ADDR *addr)
11509 {
11510 if (packet_support (PACKET_qGetTIBAddr) != PACKET_DISABLE)
11511 {
11512 struct remote_state *rs = get_remote_state ();
11513 char *p = rs->buf.data ();
11514 char *endp = p + get_remote_packet_size ();
11515 enum packet_result result;
11516
11517 strcpy (p, "qGetTIBAddr:");
11518 p += strlen (p);
11519 p = write_ptid (p, endp, ptid);
11520 *p++ = '\0';
11521
11522 putpkt (rs->buf);
11523 getpkt (&rs->buf, 0);
11524 result = packet_ok (rs->buf,
11525 &remote_protocol_packets[PACKET_qGetTIBAddr]);
11526 if (result == PACKET_OK)
11527 {
11528 ULONGEST val;
11529 unpack_varlen_hex (rs->buf.data (), &val);
11530 if (addr)
11531 *addr = (CORE_ADDR) val;
11532 return true;
11533 }
11534 else if (result == PACKET_UNKNOWN)
11535 error (_("Remote target doesn't support qGetTIBAddr packet"));
11536 else
11537 error (_("Remote target failed to process qGetTIBAddr request"));
11538 }
11539 else
11540 error (_("qGetTIBAddr not supported or disabled on this target"));
11541 /* Not reached. */
11542 return false;
11543 }
11544
11545 /* Support for inferring a target description based on the current
11546 architecture and the size of a 'g' packet. While the 'g' packet
11547 can have any size (since optional registers can be left off the
11548 end), some sizes are easily recognizable given knowledge of the
11549 approximate architecture. */
11550
11551 struct remote_g_packet_guess
11552 {
11553 remote_g_packet_guess (int bytes_, const struct target_desc *tdesc_)
11554 : bytes (bytes_),
11555 tdesc (tdesc_)
11556 {
11557 }
11558
11559 int bytes;
11560 const struct target_desc *tdesc;
11561 };
11562
11563 struct remote_g_packet_data : public allocate_on_obstack
11564 {
11565 std::vector<remote_g_packet_guess> guesses;
11566 };
11567
11568 static struct gdbarch_data *remote_g_packet_data_handle;
11569
11570 static void *
11571 remote_g_packet_data_init (struct obstack *obstack)
11572 {
11573 return new (obstack) remote_g_packet_data;
11574 }
11575
11576 void
11577 register_remote_g_packet_guess (struct gdbarch *gdbarch, int bytes,
11578 const struct target_desc *tdesc)
11579 {
11580 struct remote_g_packet_data *data
11581 = ((struct remote_g_packet_data *)
11582 gdbarch_data (gdbarch, remote_g_packet_data_handle));
11583
11584 gdb_assert (tdesc != NULL);
11585
11586 for (const remote_g_packet_guess &guess : data->guesses)
11587 if (guess.bytes == bytes)
11588 internal_error (__FILE__, __LINE__,
11589 _("Duplicate g packet description added for size %d"),
11590 bytes);
11591
11592 data->guesses.emplace_back (bytes, tdesc);
11593 }
11594
11595 /* Return true if remote_read_description would do anything on this target
11596 and architecture, false otherwise. */
11597
11598 static bool
11599 remote_read_description_p (struct target_ops *target)
11600 {
11601 struct remote_g_packet_data *data
11602 = ((struct remote_g_packet_data *)
11603 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11604
11605 return !data->guesses.empty ();
11606 }
11607
11608 const struct target_desc *
11609 remote_target::read_description ()
11610 {
11611 struct remote_g_packet_data *data
11612 = ((struct remote_g_packet_data *)
11613 gdbarch_data (target_gdbarch (), remote_g_packet_data_handle));
11614
11615 /* Do not try this during initial connection, when we do not know
11616 whether there is a running but stopped thread. */
11617 if (!target_has_execution || inferior_ptid == null_ptid)
11618 return beneath ()->read_description ();
11619
11620 if (!data->guesses.empty ())
11621 {
11622 int bytes = send_g_packet ();
11623
11624 for (const remote_g_packet_guess &guess : data->guesses)
11625 if (guess.bytes == bytes)
11626 return guess.tdesc;
11627
11628 /* We discard the g packet. A minor optimization would be to
11629 hold on to it, and fill the register cache once we have selected
11630 an architecture, but it's too tricky to do safely. */
11631 }
11632
11633 return beneath ()->read_description ();
11634 }
11635
11636 /* Remote file transfer support. This is host-initiated I/O, not
11637 target-initiated; for target-initiated, see remote-fileio.c. */
11638
11639 /* If *LEFT is at least the length of STRING, copy STRING to
11640 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11641 decrease *LEFT. Otherwise raise an error. */
11642
11643 static void
11644 remote_buffer_add_string (char **buffer, int *left, const char *string)
11645 {
11646 int len = strlen (string);
11647
11648 if (len > *left)
11649 error (_("Packet too long for target."));
11650
11651 memcpy (*buffer, string, len);
11652 *buffer += len;
11653 *left -= len;
11654
11655 /* NUL-terminate the buffer as a convenience, if there is
11656 room. */
11657 if (*left)
11658 **buffer = '\0';
11659 }
11660
11661 /* If *LEFT is large enough, hex encode LEN bytes from BYTES into
11662 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11663 decrease *LEFT. Otherwise raise an error. */
11664
11665 static void
11666 remote_buffer_add_bytes (char **buffer, int *left, const gdb_byte *bytes,
11667 int len)
11668 {
11669 if (2 * len > *left)
11670 error (_("Packet too long for target."));
11671
11672 bin2hex (bytes, *buffer, len);
11673 *buffer += 2 * len;
11674 *left -= 2 * len;
11675
11676 /* NUL-terminate the buffer as a convenience, if there is
11677 room. */
11678 if (*left)
11679 **buffer = '\0';
11680 }
11681
11682 /* If *LEFT is large enough, convert VALUE to hex and add it to
11683 *BUFFER, update *BUFFER to point to the new end of the buffer, and
11684 decrease *LEFT. Otherwise raise an error. */
11685
11686 static void
11687 remote_buffer_add_int (char **buffer, int *left, ULONGEST value)
11688 {
11689 int len = hexnumlen (value);
11690
11691 if (len > *left)
11692 error (_("Packet too long for target."));
11693
11694 hexnumstr (*buffer, value);
11695 *buffer += len;
11696 *left -= len;
11697
11698 /* NUL-terminate the buffer as a convenience, if there is
11699 room. */
11700 if (*left)
11701 **buffer = '\0';
11702 }
11703
11704 /* Parse an I/O result packet from BUFFER. Set RETCODE to the return
11705 value, *REMOTE_ERRNO to the remote error number or zero if none
11706 was included, and *ATTACHMENT to point to the start of the annex
11707 if any. The length of the packet isn't needed here; there may
11708 be NUL bytes in BUFFER, but they will be after *ATTACHMENT.
11709
11710 Return 0 if the packet could be parsed, -1 if it could not. If
11711 -1 is returned, the other variables may not be initialized. */
11712
11713 static int
11714 remote_hostio_parse_result (char *buffer, int *retcode,
11715 int *remote_errno, char **attachment)
11716 {
11717 char *p, *p2;
11718
11719 *remote_errno = 0;
11720 *attachment = NULL;
11721
11722 if (buffer[0] != 'F')
11723 return -1;
11724
11725 errno = 0;
11726 *retcode = strtol (&buffer[1], &p, 16);
11727 if (errno != 0 || p == &buffer[1])
11728 return -1;
11729
11730 /* Check for ",errno". */
11731 if (*p == ',')
11732 {
11733 errno = 0;
11734 *remote_errno = strtol (p + 1, &p2, 16);
11735 if (errno != 0 || p + 1 == p2)
11736 return -1;
11737 p = p2;
11738 }
11739
11740 /* Check for ";attachment". If there is no attachment, the
11741 packet should end here. */
11742 if (*p == ';')
11743 {
11744 *attachment = p + 1;
11745 return 0;
11746 }
11747 else if (*p == '\0')
11748 return 0;
11749 else
11750 return -1;
11751 }
11752
11753 /* Send a prepared I/O packet to the target and read its response.
11754 The prepared packet is in the global RS->BUF before this function
11755 is called, and the answer is there when we return.
11756
11757 COMMAND_BYTES is the length of the request to send, which may include
11758 binary data. WHICH_PACKET is the packet configuration to check
11759 before attempting a packet. If an error occurs, *REMOTE_ERRNO
11760 is set to the error number and -1 is returned. Otherwise the value
11761 returned by the function is returned.
11762
11763 ATTACHMENT and ATTACHMENT_LEN should be non-NULL if and only if an
11764 attachment is expected; an error will be reported if there's a
11765 mismatch. If one is found, *ATTACHMENT will be set to point into
11766 the packet buffer and *ATTACHMENT_LEN will be set to the
11767 attachment's length. */
11768
11769 int
11770 remote_target::remote_hostio_send_command (int command_bytes, int which_packet,
11771 int *remote_errno, char **attachment,
11772 int *attachment_len)
11773 {
11774 struct remote_state *rs = get_remote_state ();
11775 int ret, bytes_read;
11776 char *attachment_tmp;
11777
11778 if (packet_support (which_packet) == PACKET_DISABLE)
11779 {
11780 *remote_errno = FILEIO_ENOSYS;
11781 return -1;
11782 }
11783
11784 putpkt_binary (rs->buf.data (), command_bytes);
11785 bytes_read = getpkt_sane (&rs->buf, 0);
11786
11787 /* If it timed out, something is wrong. Don't try to parse the
11788 buffer. */
11789 if (bytes_read < 0)
11790 {
11791 *remote_errno = FILEIO_EINVAL;
11792 return -1;
11793 }
11794
11795 switch (packet_ok (rs->buf, &remote_protocol_packets[which_packet]))
11796 {
11797 case PACKET_ERROR:
11798 *remote_errno = FILEIO_EINVAL;
11799 return -1;
11800 case PACKET_UNKNOWN:
11801 *remote_errno = FILEIO_ENOSYS;
11802 return -1;
11803 case PACKET_OK:
11804 break;
11805 }
11806
11807 if (remote_hostio_parse_result (rs->buf.data (), &ret, remote_errno,
11808 &attachment_tmp))
11809 {
11810 *remote_errno = FILEIO_EINVAL;
11811 return -1;
11812 }
11813
11814 /* Make sure we saw an attachment if and only if we expected one. */
11815 if ((attachment_tmp == NULL && attachment != NULL)
11816 || (attachment_tmp != NULL && attachment == NULL))
11817 {
11818 *remote_errno = FILEIO_EINVAL;
11819 return -1;
11820 }
11821
11822 /* If an attachment was found, it must point into the packet buffer;
11823 work out how many bytes there were. */
11824 if (attachment_tmp != NULL)
11825 {
11826 *attachment = attachment_tmp;
11827 *attachment_len = bytes_read - (*attachment - rs->buf.data ());
11828 }
11829
11830 return ret;
11831 }
11832
11833 /* See declaration.h. */
11834
11835 void
11836 readahead_cache::invalidate ()
11837 {
11838 this->fd = -1;
11839 }
11840
11841 /* See declaration.h. */
11842
11843 void
11844 readahead_cache::invalidate_fd (int fd)
11845 {
11846 if (this->fd == fd)
11847 this->fd = -1;
11848 }
11849
11850 /* Set the filesystem remote_hostio functions that take FILENAME
11851 arguments will use. Return 0 on success, or -1 if an error
11852 occurs (and set *REMOTE_ERRNO). */
11853
11854 int
11855 remote_target::remote_hostio_set_filesystem (struct inferior *inf,
11856 int *remote_errno)
11857 {
11858 struct remote_state *rs = get_remote_state ();
11859 int required_pid = (inf == NULL || inf->fake_pid_p) ? 0 : inf->pid;
11860 char *p = rs->buf.data ();
11861 int left = get_remote_packet_size () - 1;
11862 char arg[9];
11863 int ret;
11864
11865 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11866 return 0;
11867
11868 if (rs->fs_pid != -1 && required_pid == rs->fs_pid)
11869 return 0;
11870
11871 remote_buffer_add_string (&p, &left, "vFile:setfs:");
11872
11873 xsnprintf (arg, sizeof (arg), "%x", required_pid);
11874 remote_buffer_add_string (&p, &left, arg);
11875
11876 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_setfs,
11877 remote_errno, NULL, NULL);
11878
11879 if (packet_support (PACKET_vFile_setfs) == PACKET_DISABLE)
11880 return 0;
11881
11882 if (ret == 0)
11883 rs->fs_pid = required_pid;
11884
11885 return ret;
11886 }
11887
11888 /* Implementation of to_fileio_open. */
11889
11890 int
11891 remote_target::remote_hostio_open (inferior *inf, const char *filename,
11892 int flags, int mode, int warn_if_slow,
11893 int *remote_errno)
11894 {
11895 struct remote_state *rs = get_remote_state ();
11896 char *p = rs->buf.data ();
11897 int left = get_remote_packet_size () - 1;
11898
11899 if (warn_if_slow)
11900 {
11901 static int warning_issued = 0;
11902
11903 printf_unfiltered (_("Reading %s from remote target...\n"),
11904 filename);
11905
11906 if (!warning_issued)
11907 {
11908 warning (_("File transfers from remote targets can be slow."
11909 " Use \"set sysroot\" to access files locally"
11910 " instead."));
11911 warning_issued = 1;
11912 }
11913 }
11914
11915 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
11916 return -1;
11917
11918 remote_buffer_add_string (&p, &left, "vFile:open:");
11919
11920 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
11921 strlen (filename));
11922 remote_buffer_add_string (&p, &left, ",");
11923
11924 remote_buffer_add_int (&p, &left, flags);
11925 remote_buffer_add_string (&p, &left, ",");
11926
11927 remote_buffer_add_int (&p, &left, mode);
11928
11929 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_open,
11930 remote_errno, NULL, NULL);
11931 }
11932
11933 int
11934 remote_target::fileio_open (struct inferior *inf, const char *filename,
11935 int flags, int mode, int warn_if_slow,
11936 int *remote_errno)
11937 {
11938 return remote_hostio_open (inf, filename, flags, mode, warn_if_slow,
11939 remote_errno);
11940 }
11941
11942 /* Implementation of to_fileio_pwrite. */
11943
11944 int
11945 remote_target::remote_hostio_pwrite (int fd, const gdb_byte *write_buf, int len,
11946 ULONGEST offset, int *remote_errno)
11947 {
11948 struct remote_state *rs = get_remote_state ();
11949 char *p = rs->buf.data ();
11950 int left = get_remote_packet_size ();
11951 int out_len;
11952
11953 rs->readahead_cache.invalidate_fd (fd);
11954
11955 remote_buffer_add_string (&p, &left, "vFile:pwrite:");
11956
11957 remote_buffer_add_int (&p, &left, fd);
11958 remote_buffer_add_string (&p, &left, ",");
11959
11960 remote_buffer_add_int (&p, &left, offset);
11961 remote_buffer_add_string (&p, &left, ",");
11962
11963 p += remote_escape_output (write_buf, len, 1, (gdb_byte *) p, &out_len,
11964 (get_remote_packet_size ()
11965 - (p - rs->buf.data ())));
11966
11967 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pwrite,
11968 remote_errno, NULL, NULL);
11969 }
11970
11971 int
11972 remote_target::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
11973 ULONGEST offset, int *remote_errno)
11974 {
11975 return remote_hostio_pwrite (fd, write_buf, len, offset, remote_errno);
11976 }
11977
11978 /* Helper for the implementation of to_fileio_pread. Read the file
11979 from the remote side with vFile:pread. */
11980
11981 int
11982 remote_target::remote_hostio_pread_vFile (int fd, gdb_byte *read_buf, int len,
11983 ULONGEST offset, int *remote_errno)
11984 {
11985 struct remote_state *rs = get_remote_state ();
11986 char *p = rs->buf.data ();
11987 char *attachment;
11988 int left = get_remote_packet_size ();
11989 int ret, attachment_len;
11990 int read_len;
11991
11992 remote_buffer_add_string (&p, &left, "vFile:pread:");
11993
11994 remote_buffer_add_int (&p, &left, fd);
11995 remote_buffer_add_string (&p, &left, ",");
11996
11997 remote_buffer_add_int (&p, &left, len);
11998 remote_buffer_add_string (&p, &left, ",");
11999
12000 remote_buffer_add_int (&p, &left, offset);
12001
12002 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_pread,
12003 remote_errno, &attachment,
12004 &attachment_len);
12005
12006 if (ret < 0)
12007 return ret;
12008
12009 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12010 read_buf, len);
12011 if (read_len != ret)
12012 error (_("Read returned %d, but %d bytes."), ret, (int) read_len);
12013
12014 return ret;
12015 }
12016
12017 /* See declaration.h. */
12018
12019 int
12020 readahead_cache::pread (int fd, gdb_byte *read_buf, size_t len,
12021 ULONGEST offset)
12022 {
12023 if (this->fd == fd
12024 && this->offset <= offset
12025 && offset < this->offset + this->bufsize)
12026 {
12027 ULONGEST max = this->offset + this->bufsize;
12028
12029 if (offset + len > max)
12030 len = max - offset;
12031
12032 memcpy (read_buf, this->buf + offset - this->offset, len);
12033 return len;
12034 }
12035
12036 return 0;
12037 }
12038
12039 /* Implementation of to_fileio_pread. */
12040
12041 int
12042 remote_target::remote_hostio_pread (int fd, gdb_byte *read_buf, int len,
12043 ULONGEST offset, int *remote_errno)
12044 {
12045 int ret;
12046 struct remote_state *rs = get_remote_state ();
12047 readahead_cache *cache = &rs->readahead_cache;
12048
12049 ret = cache->pread (fd, read_buf, len, offset);
12050 if (ret > 0)
12051 {
12052 cache->hit_count++;
12053
12054 if (remote_debug)
12055 fprintf_unfiltered (gdb_stdlog, "readahead cache hit %s\n",
12056 pulongest (cache->hit_count));
12057 return ret;
12058 }
12059
12060 cache->miss_count++;
12061 if (remote_debug)
12062 fprintf_unfiltered (gdb_stdlog, "readahead cache miss %s\n",
12063 pulongest (cache->miss_count));
12064
12065 cache->fd = fd;
12066 cache->offset = offset;
12067 cache->bufsize = get_remote_packet_size ();
12068 cache->buf = (gdb_byte *) xrealloc (cache->buf, cache->bufsize);
12069
12070 ret = remote_hostio_pread_vFile (cache->fd, cache->buf, cache->bufsize,
12071 cache->offset, remote_errno);
12072 if (ret <= 0)
12073 {
12074 cache->invalidate_fd (fd);
12075 return ret;
12076 }
12077
12078 cache->bufsize = ret;
12079 return cache->pread (fd, read_buf, len, offset);
12080 }
12081
12082 int
12083 remote_target::fileio_pread (int fd, gdb_byte *read_buf, int len,
12084 ULONGEST offset, int *remote_errno)
12085 {
12086 return remote_hostio_pread (fd, read_buf, len, offset, remote_errno);
12087 }
12088
12089 /* Implementation of to_fileio_close. */
12090
12091 int
12092 remote_target::remote_hostio_close (int fd, int *remote_errno)
12093 {
12094 struct remote_state *rs = get_remote_state ();
12095 char *p = rs->buf.data ();
12096 int left = get_remote_packet_size () - 1;
12097
12098 rs->readahead_cache.invalidate_fd (fd);
12099
12100 remote_buffer_add_string (&p, &left, "vFile:close:");
12101
12102 remote_buffer_add_int (&p, &left, fd);
12103
12104 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_close,
12105 remote_errno, NULL, NULL);
12106 }
12107
12108 int
12109 remote_target::fileio_close (int fd, int *remote_errno)
12110 {
12111 return remote_hostio_close (fd, remote_errno);
12112 }
12113
12114 /* Implementation of to_fileio_unlink. */
12115
12116 int
12117 remote_target::remote_hostio_unlink (inferior *inf, const char *filename,
12118 int *remote_errno)
12119 {
12120 struct remote_state *rs = get_remote_state ();
12121 char *p = rs->buf.data ();
12122 int left = get_remote_packet_size () - 1;
12123
12124 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12125 return -1;
12126
12127 remote_buffer_add_string (&p, &left, "vFile:unlink:");
12128
12129 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12130 strlen (filename));
12131
12132 return remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_unlink,
12133 remote_errno, NULL, NULL);
12134 }
12135
12136 int
12137 remote_target::fileio_unlink (struct inferior *inf, const char *filename,
12138 int *remote_errno)
12139 {
12140 return remote_hostio_unlink (inf, filename, remote_errno);
12141 }
12142
12143 /* Implementation of to_fileio_readlink. */
12144
12145 gdb::optional<std::string>
12146 remote_target::fileio_readlink (struct inferior *inf, const char *filename,
12147 int *remote_errno)
12148 {
12149 struct remote_state *rs = get_remote_state ();
12150 char *p = rs->buf.data ();
12151 char *attachment;
12152 int left = get_remote_packet_size ();
12153 int len, attachment_len;
12154 int read_len;
12155
12156 if (remote_hostio_set_filesystem (inf, remote_errno) != 0)
12157 return {};
12158
12159 remote_buffer_add_string (&p, &left, "vFile:readlink:");
12160
12161 remote_buffer_add_bytes (&p, &left, (const gdb_byte *) filename,
12162 strlen (filename));
12163
12164 len = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_readlink,
12165 remote_errno, &attachment,
12166 &attachment_len);
12167
12168 if (len < 0)
12169 return {};
12170
12171 std::string ret (len, '\0');
12172
12173 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12174 (gdb_byte *) &ret[0], len);
12175 if (read_len != len)
12176 error (_("Readlink returned %d, but %d bytes."), len, read_len);
12177
12178 return ret;
12179 }
12180
12181 /* Implementation of to_fileio_fstat. */
12182
12183 int
12184 remote_target::fileio_fstat (int fd, struct stat *st, int *remote_errno)
12185 {
12186 struct remote_state *rs = get_remote_state ();
12187 char *p = rs->buf.data ();
12188 int left = get_remote_packet_size ();
12189 int attachment_len, ret;
12190 char *attachment;
12191 struct fio_stat fst;
12192 int read_len;
12193
12194 remote_buffer_add_string (&p, &left, "vFile:fstat:");
12195
12196 remote_buffer_add_int (&p, &left, fd);
12197
12198 ret = remote_hostio_send_command (p - rs->buf.data (), PACKET_vFile_fstat,
12199 remote_errno, &attachment,
12200 &attachment_len);
12201 if (ret < 0)
12202 {
12203 if (*remote_errno != FILEIO_ENOSYS)
12204 return ret;
12205
12206 /* Strictly we should return -1, ENOSYS here, but when
12207 "set sysroot remote:" was implemented in August 2008
12208 BFD's need for a stat function was sidestepped with
12209 this hack. This was not remedied until March 2015
12210 so we retain the previous behavior to avoid breaking
12211 compatibility.
12212
12213 Note that the memset is a March 2015 addition; older
12214 GDBs set st_size *and nothing else* so the structure
12215 would have garbage in all other fields. This might
12216 break something but retaining the previous behavior
12217 here would be just too wrong. */
12218
12219 memset (st, 0, sizeof (struct stat));
12220 st->st_size = INT_MAX;
12221 return 0;
12222 }
12223
12224 read_len = remote_unescape_input ((gdb_byte *) attachment, attachment_len,
12225 (gdb_byte *) &fst, sizeof (fst));
12226
12227 if (read_len != ret)
12228 error (_("vFile:fstat returned %d, but %d bytes."), ret, read_len);
12229
12230 if (read_len != sizeof (fst))
12231 error (_("vFile:fstat returned %d bytes, but expecting %d."),
12232 read_len, (int) sizeof (fst));
12233
12234 remote_fileio_to_host_stat (&fst, st);
12235
12236 return 0;
12237 }
12238
12239 /* Implementation of to_filesystem_is_local. */
12240
12241 bool
12242 remote_target::filesystem_is_local ()
12243 {
12244 /* Valgrind GDB presents itself as a remote target but works
12245 on the local filesystem: it does not implement remote get
12246 and users are not expected to set a sysroot. To handle
12247 this case we treat the remote filesystem as local if the
12248 sysroot is exactly TARGET_SYSROOT_PREFIX and if the stub
12249 does not support vFile:open. */
12250 if (strcmp (gdb_sysroot, TARGET_SYSROOT_PREFIX) == 0)
12251 {
12252 enum packet_support ps = packet_support (PACKET_vFile_open);
12253
12254 if (ps == PACKET_SUPPORT_UNKNOWN)
12255 {
12256 int fd, remote_errno;
12257
12258 /* Try opening a file to probe support. The supplied
12259 filename is irrelevant, we only care about whether
12260 the stub recognizes the packet or not. */
12261 fd = remote_hostio_open (NULL, "just probing",
12262 FILEIO_O_RDONLY, 0700, 0,
12263 &remote_errno);
12264
12265 if (fd >= 0)
12266 remote_hostio_close (fd, &remote_errno);
12267
12268 ps = packet_support (PACKET_vFile_open);
12269 }
12270
12271 if (ps == PACKET_DISABLE)
12272 {
12273 static int warning_issued = 0;
12274
12275 if (!warning_issued)
12276 {
12277 warning (_("remote target does not support file"
12278 " transfer, attempting to access files"
12279 " from local filesystem."));
12280 warning_issued = 1;
12281 }
12282
12283 return true;
12284 }
12285 }
12286
12287 return false;
12288 }
12289
12290 static int
12291 remote_fileio_errno_to_host (int errnum)
12292 {
12293 switch (errnum)
12294 {
12295 case FILEIO_EPERM:
12296 return EPERM;
12297 case FILEIO_ENOENT:
12298 return ENOENT;
12299 case FILEIO_EINTR:
12300 return EINTR;
12301 case FILEIO_EIO:
12302 return EIO;
12303 case FILEIO_EBADF:
12304 return EBADF;
12305 case FILEIO_EACCES:
12306 return EACCES;
12307 case FILEIO_EFAULT:
12308 return EFAULT;
12309 case FILEIO_EBUSY:
12310 return EBUSY;
12311 case FILEIO_EEXIST:
12312 return EEXIST;
12313 case FILEIO_ENODEV:
12314 return ENODEV;
12315 case FILEIO_ENOTDIR:
12316 return ENOTDIR;
12317 case FILEIO_EISDIR:
12318 return EISDIR;
12319 case FILEIO_EINVAL:
12320 return EINVAL;
12321 case FILEIO_ENFILE:
12322 return ENFILE;
12323 case FILEIO_EMFILE:
12324 return EMFILE;
12325 case FILEIO_EFBIG:
12326 return EFBIG;
12327 case FILEIO_ENOSPC:
12328 return ENOSPC;
12329 case FILEIO_ESPIPE:
12330 return ESPIPE;
12331 case FILEIO_EROFS:
12332 return EROFS;
12333 case FILEIO_ENOSYS:
12334 return ENOSYS;
12335 case FILEIO_ENAMETOOLONG:
12336 return ENAMETOOLONG;
12337 }
12338 return -1;
12339 }
12340
12341 static char *
12342 remote_hostio_error (int errnum)
12343 {
12344 int host_error = remote_fileio_errno_to_host (errnum);
12345
12346 if (host_error == -1)
12347 error (_("Unknown remote I/O error %d"), errnum);
12348 else
12349 error (_("Remote I/O error: %s"), safe_strerror (host_error));
12350 }
12351
12352 /* A RAII wrapper around a remote file descriptor. */
12353
12354 class scoped_remote_fd
12355 {
12356 public:
12357 scoped_remote_fd (remote_target *remote, int fd)
12358 : m_remote (remote), m_fd (fd)
12359 {
12360 }
12361
12362 ~scoped_remote_fd ()
12363 {
12364 if (m_fd != -1)
12365 {
12366 try
12367 {
12368 int remote_errno;
12369 m_remote->remote_hostio_close (m_fd, &remote_errno);
12370 }
12371 catch (...)
12372 {
12373 /* Swallow exception before it escapes the dtor. If
12374 something goes wrong, likely the connection is gone,
12375 and there's nothing else that can be done. */
12376 }
12377 }
12378 }
12379
12380 DISABLE_COPY_AND_ASSIGN (scoped_remote_fd);
12381
12382 /* Release ownership of the file descriptor, and return it. */
12383 ATTRIBUTE_UNUSED_RESULT int release () noexcept
12384 {
12385 int fd = m_fd;
12386 m_fd = -1;
12387 return fd;
12388 }
12389
12390 /* Return the owned file descriptor. */
12391 int get () const noexcept
12392 {
12393 return m_fd;
12394 }
12395
12396 private:
12397 /* The remote target. */
12398 remote_target *m_remote;
12399
12400 /* The owned remote I/O file descriptor. */
12401 int m_fd;
12402 };
12403
12404 void
12405 remote_file_put (const char *local_file, const char *remote_file, int from_tty)
12406 {
12407 remote_target *remote = get_current_remote_target ();
12408
12409 if (remote == nullptr)
12410 error (_("command can only be used with remote target"));
12411
12412 remote->remote_file_put (local_file, remote_file, from_tty);
12413 }
12414
12415 void
12416 remote_target::remote_file_put (const char *local_file, const char *remote_file,
12417 int from_tty)
12418 {
12419 int retcode, remote_errno, bytes, io_size;
12420 int bytes_in_buffer;
12421 int saw_eof;
12422 ULONGEST offset;
12423
12424 gdb_file_up file = gdb_fopen_cloexec (local_file, "rb");
12425 if (file == NULL)
12426 perror_with_name (local_file);
12427
12428 scoped_remote_fd fd
12429 (this, remote_hostio_open (NULL,
12430 remote_file, (FILEIO_O_WRONLY | FILEIO_O_CREAT
12431 | FILEIO_O_TRUNC),
12432 0700, 0, &remote_errno));
12433 if (fd.get () == -1)
12434 remote_hostio_error (remote_errno);
12435
12436 /* Send up to this many bytes at once. They won't all fit in the
12437 remote packet limit, so we'll transfer slightly fewer. */
12438 io_size = get_remote_packet_size ();
12439 gdb::byte_vector buffer (io_size);
12440
12441 bytes_in_buffer = 0;
12442 saw_eof = 0;
12443 offset = 0;
12444 while (bytes_in_buffer || !saw_eof)
12445 {
12446 if (!saw_eof)
12447 {
12448 bytes = fread (buffer.data () + bytes_in_buffer, 1,
12449 io_size - bytes_in_buffer,
12450 file.get ());
12451 if (bytes == 0)
12452 {
12453 if (ferror (file.get ()))
12454 error (_("Error reading %s."), local_file);
12455 else
12456 {
12457 /* EOF. Unless there is something still in the
12458 buffer from the last iteration, we are done. */
12459 saw_eof = 1;
12460 if (bytes_in_buffer == 0)
12461 break;
12462 }
12463 }
12464 }
12465 else
12466 bytes = 0;
12467
12468 bytes += bytes_in_buffer;
12469 bytes_in_buffer = 0;
12470
12471 retcode = remote_hostio_pwrite (fd.get (), buffer.data (), bytes,
12472 offset, &remote_errno);
12473
12474 if (retcode < 0)
12475 remote_hostio_error (remote_errno);
12476 else if (retcode == 0)
12477 error (_("Remote write of %d bytes returned 0!"), bytes);
12478 else if (retcode < bytes)
12479 {
12480 /* Short write. Save the rest of the read data for the next
12481 write. */
12482 bytes_in_buffer = bytes - retcode;
12483 memmove (buffer.data (), buffer.data () + retcode, bytes_in_buffer);
12484 }
12485
12486 offset += retcode;
12487 }
12488
12489 if (remote_hostio_close (fd.release (), &remote_errno))
12490 remote_hostio_error (remote_errno);
12491
12492 if (from_tty)
12493 printf_filtered (_("Successfully sent file \"%s\".\n"), local_file);
12494 }
12495
12496 void
12497 remote_file_get (const char *remote_file, const char *local_file, int from_tty)
12498 {
12499 remote_target *remote = get_current_remote_target ();
12500
12501 if (remote == nullptr)
12502 error (_("command can only be used with remote target"));
12503
12504 remote->remote_file_get (remote_file, local_file, from_tty);
12505 }
12506
12507 void
12508 remote_target::remote_file_get (const char *remote_file, const char *local_file,
12509 int from_tty)
12510 {
12511 int remote_errno, bytes, io_size;
12512 ULONGEST offset;
12513
12514 scoped_remote_fd fd
12515 (this, remote_hostio_open (NULL,
12516 remote_file, FILEIO_O_RDONLY, 0, 0,
12517 &remote_errno));
12518 if (fd.get () == -1)
12519 remote_hostio_error (remote_errno);
12520
12521 gdb_file_up file = gdb_fopen_cloexec (local_file, "wb");
12522 if (file == NULL)
12523 perror_with_name (local_file);
12524
12525 /* Send up to this many bytes at once. They won't all fit in the
12526 remote packet limit, so we'll transfer slightly fewer. */
12527 io_size = get_remote_packet_size ();
12528 gdb::byte_vector buffer (io_size);
12529
12530 offset = 0;
12531 while (1)
12532 {
12533 bytes = remote_hostio_pread (fd.get (), buffer.data (), io_size, offset,
12534 &remote_errno);
12535 if (bytes == 0)
12536 /* Success, but no bytes, means end-of-file. */
12537 break;
12538 if (bytes == -1)
12539 remote_hostio_error (remote_errno);
12540
12541 offset += bytes;
12542
12543 bytes = fwrite (buffer.data (), 1, bytes, file.get ());
12544 if (bytes == 0)
12545 perror_with_name (local_file);
12546 }
12547
12548 if (remote_hostio_close (fd.release (), &remote_errno))
12549 remote_hostio_error (remote_errno);
12550
12551 if (from_tty)
12552 printf_filtered (_("Successfully fetched file \"%s\".\n"), remote_file);
12553 }
12554
12555 void
12556 remote_file_delete (const char *remote_file, int from_tty)
12557 {
12558 remote_target *remote = get_current_remote_target ();
12559
12560 if (remote == nullptr)
12561 error (_("command can only be used with remote target"));
12562
12563 remote->remote_file_delete (remote_file, from_tty);
12564 }
12565
12566 void
12567 remote_target::remote_file_delete (const char *remote_file, int from_tty)
12568 {
12569 int retcode, remote_errno;
12570
12571 retcode = remote_hostio_unlink (NULL, remote_file, &remote_errno);
12572 if (retcode == -1)
12573 remote_hostio_error (remote_errno);
12574
12575 if (from_tty)
12576 printf_filtered (_("Successfully deleted file \"%s\".\n"), remote_file);
12577 }
12578
12579 static void
12580 remote_put_command (const char *args, int from_tty)
12581 {
12582 if (args == NULL)
12583 error_no_arg (_("file to put"));
12584
12585 gdb_argv argv (args);
12586 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12587 error (_("Invalid parameters to remote put"));
12588
12589 remote_file_put (argv[0], argv[1], from_tty);
12590 }
12591
12592 static void
12593 remote_get_command (const char *args, int from_tty)
12594 {
12595 if (args == NULL)
12596 error_no_arg (_("file to get"));
12597
12598 gdb_argv argv (args);
12599 if (argv[0] == NULL || argv[1] == NULL || argv[2] != NULL)
12600 error (_("Invalid parameters to remote get"));
12601
12602 remote_file_get (argv[0], argv[1], from_tty);
12603 }
12604
12605 static void
12606 remote_delete_command (const char *args, int from_tty)
12607 {
12608 if (args == NULL)
12609 error_no_arg (_("file to delete"));
12610
12611 gdb_argv argv (args);
12612 if (argv[0] == NULL || argv[1] != NULL)
12613 error (_("Invalid parameters to remote delete"));
12614
12615 remote_file_delete (argv[0], from_tty);
12616 }
12617
12618 static void
12619 remote_command (const char *args, int from_tty)
12620 {
12621 help_list (remote_cmdlist, "remote ", all_commands, gdb_stdout);
12622 }
12623
12624 bool
12625 remote_target::can_execute_reverse ()
12626 {
12627 if (packet_support (PACKET_bs) == PACKET_ENABLE
12628 || packet_support (PACKET_bc) == PACKET_ENABLE)
12629 return true;
12630 else
12631 return false;
12632 }
12633
12634 bool
12635 remote_target::supports_non_stop ()
12636 {
12637 return true;
12638 }
12639
12640 bool
12641 remote_target::supports_disable_randomization ()
12642 {
12643 /* Only supported in extended mode. */
12644 return false;
12645 }
12646
12647 bool
12648 remote_target::supports_multi_process ()
12649 {
12650 struct remote_state *rs = get_remote_state ();
12651
12652 return remote_multi_process_p (rs);
12653 }
12654
12655 static int
12656 remote_supports_cond_tracepoints ()
12657 {
12658 return packet_support (PACKET_ConditionalTracepoints) == PACKET_ENABLE;
12659 }
12660
12661 bool
12662 remote_target::supports_evaluation_of_breakpoint_conditions ()
12663 {
12664 return packet_support (PACKET_ConditionalBreakpoints) == PACKET_ENABLE;
12665 }
12666
12667 static int
12668 remote_supports_fast_tracepoints ()
12669 {
12670 return packet_support (PACKET_FastTracepoints) == PACKET_ENABLE;
12671 }
12672
12673 static int
12674 remote_supports_static_tracepoints ()
12675 {
12676 return packet_support (PACKET_StaticTracepoints) == PACKET_ENABLE;
12677 }
12678
12679 static int
12680 remote_supports_install_in_trace ()
12681 {
12682 return packet_support (PACKET_InstallInTrace) == PACKET_ENABLE;
12683 }
12684
12685 bool
12686 remote_target::supports_enable_disable_tracepoint ()
12687 {
12688 return (packet_support (PACKET_EnableDisableTracepoints_feature)
12689 == PACKET_ENABLE);
12690 }
12691
12692 bool
12693 remote_target::supports_string_tracing ()
12694 {
12695 return packet_support (PACKET_tracenz_feature) == PACKET_ENABLE;
12696 }
12697
12698 bool
12699 remote_target::can_run_breakpoint_commands ()
12700 {
12701 return packet_support (PACKET_BreakpointCommands) == PACKET_ENABLE;
12702 }
12703
12704 void
12705 remote_target::trace_init ()
12706 {
12707 struct remote_state *rs = get_remote_state ();
12708
12709 putpkt ("QTinit");
12710 remote_get_noisy_reply ();
12711 if (strcmp (rs->buf.data (), "OK") != 0)
12712 error (_("Target does not support this command."));
12713 }
12714
12715 /* Recursive routine to walk through command list including loops, and
12716 download packets for each command. */
12717
12718 void
12719 remote_target::remote_download_command_source (int num, ULONGEST addr,
12720 struct command_line *cmds)
12721 {
12722 struct remote_state *rs = get_remote_state ();
12723 struct command_line *cmd;
12724
12725 for (cmd = cmds; cmd; cmd = cmd->next)
12726 {
12727 QUIT; /* Allow user to bail out with ^C. */
12728 strcpy (rs->buf.data (), "QTDPsrc:");
12729 encode_source_string (num, addr, "cmd", cmd->line,
12730 rs->buf.data () + strlen (rs->buf.data ()),
12731 rs->buf.size () - strlen (rs->buf.data ()));
12732 putpkt (rs->buf);
12733 remote_get_noisy_reply ();
12734 if (strcmp (rs->buf.data (), "OK"))
12735 warning (_("Target does not support source download."));
12736
12737 if (cmd->control_type == while_control
12738 || cmd->control_type == while_stepping_control)
12739 {
12740 remote_download_command_source (num, addr, cmd->body_list_0.get ());
12741
12742 QUIT; /* Allow user to bail out with ^C. */
12743 strcpy (rs->buf.data (), "QTDPsrc:");
12744 encode_source_string (num, addr, "cmd", "end",
12745 rs->buf.data () + strlen (rs->buf.data ()),
12746 rs->buf.size () - strlen (rs->buf.data ()));
12747 putpkt (rs->buf);
12748 remote_get_noisy_reply ();
12749 if (strcmp (rs->buf.data (), "OK"))
12750 warning (_("Target does not support source download."));
12751 }
12752 }
12753 }
12754
12755 void
12756 remote_target::download_tracepoint (struct bp_location *loc)
12757 {
12758 CORE_ADDR tpaddr;
12759 char addrbuf[40];
12760 std::vector<std::string> tdp_actions;
12761 std::vector<std::string> stepping_actions;
12762 char *pkt;
12763 struct breakpoint *b = loc->owner;
12764 struct tracepoint *t = (struct tracepoint *) b;
12765 struct remote_state *rs = get_remote_state ();
12766 int ret;
12767 const char *err_msg = _("Tracepoint packet too large for target.");
12768 size_t size_left;
12769
12770 /* We use a buffer other than rs->buf because we'll build strings
12771 across multiple statements, and other statements in between could
12772 modify rs->buf. */
12773 gdb::char_vector buf (get_remote_packet_size ());
12774
12775 encode_actions_rsp (loc, &tdp_actions, &stepping_actions);
12776
12777 tpaddr = loc->address;
12778 sprintf_vma (addrbuf, tpaddr);
12779 ret = snprintf (buf.data (), buf.size (), "QTDP:%x:%s:%c:%lx:%x",
12780 b->number, addrbuf, /* address */
12781 (b->enable_state == bp_enabled ? 'E' : 'D'),
12782 t->step_count, t->pass_count);
12783
12784 if (ret < 0 || ret >= buf.size ())
12785 error ("%s", err_msg);
12786
12787 /* Fast tracepoints are mostly handled by the target, but we can
12788 tell the target how big of an instruction block should be moved
12789 around. */
12790 if (b->type == bp_fast_tracepoint)
12791 {
12792 /* Only test for support at download time; we may not know
12793 target capabilities at definition time. */
12794 if (remote_supports_fast_tracepoints ())
12795 {
12796 if (gdbarch_fast_tracepoint_valid_at (loc->gdbarch, tpaddr,
12797 NULL))
12798 {
12799 size_left = buf.size () - strlen (buf.data ());
12800 ret = snprintf (buf.data () + strlen (buf.data ()),
12801 size_left, ":F%x",
12802 gdb_insn_length (loc->gdbarch, tpaddr));
12803
12804 if (ret < 0 || ret >= size_left)
12805 error ("%s", err_msg);
12806 }
12807 else
12808 /* If it passed validation at definition but fails now,
12809 something is very wrong. */
12810 internal_error (__FILE__, __LINE__,
12811 _("Fast tracepoint not "
12812 "valid during download"));
12813 }
12814 else
12815 /* Fast tracepoints are functionally identical to regular
12816 tracepoints, so don't take lack of support as a reason to
12817 give up on the trace run. */
12818 warning (_("Target does not support fast tracepoints, "
12819 "downloading %d as regular tracepoint"), b->number);
12820 }
12821 else if (b->type == bp_static_tracepoint)
12822 {
12823 /* Only test for support at download time; we may not know
12824 target capabilities at definition time. */
12825 if (remote_supports_static_tracepoints ())
12826 {
12827 struct static_tracepoint_marker marker;
12828
12829 if (target_static_tracepoint_marker_at (tpaddr, &marker))
12830 {
12831 size_left = buf.size () - strlen (buf.data ());
12832 ret = snprintf (buf.data () + strlen (buf.data ()),
12833 size_left, ":S");
12834
12835 if (ret < 0 || ret >= size_left)
12836 error ("%s", err_msg);
12837 }
12838 else
12839 error (_("Static tracepoint not valid during download"));
12840 }
12841 else
12842 /* Fast tracepoints are functionally identical to regular
12843 tracepoints, so don't take lack of support as a reason
12844 to give up on the trace run. */
12845 error (_("Target does not support static tracepoints"));
12846 }
12847 /* If the tracepoint has a conditional, make it into an agent
12848 expression and append to the definition. */
12849 if (loc->cond)
12850 {
12851 /* Only test support at download time, we may not know target
12852 capabilities at definition time. */
12853 if (remote_supports_cond_tracepoints ())
12854 {
12855 agent_expr_up aexpr = gen_eval_for_expr (tpaddr,
12856 loc->cond.get ());
12857
12858 size_left = buf.size () - strlen (buf.data ());
12859
12860 ret = snprintf (buf.data () + strlen (buf.data ()),
12861 size_left, ":X%x,", aexpr->len);
12862
12863 if (ret < 0 || ret >= size_left)
12864 error ("%s", err_msg);
12865
12866 size_left = buf.size () - strlen (buf.data ());
12867
12868 /* Two bytes to encode each aexpr byte, plus the terminating
12869 null byte. */
12870 if (aexpr->len * 2 + 1 > size_left)
12871 error ("%s", err_msg);
12872
12873 pkt = buf.data () + strlen (buf.data ());
12874
12875 for (int ndx = 0; ndx < aexpr->len; ++ndx)
12876 pkt = pack_hex_byte (pkt, aexpr->buf[ndx]);
12877 *pkt = '\0';
12878 }
12879 else
12880 warning (_("Target does not support conditional tracepoints, "
12881 "ignoring tp %d cond"), b->number);
12882 }
12883
12884 if (b->commands || *default_collect)
12885 {
12886 size_left = buf.size () - strlen (buf.data ());
12887
12888 ret = snprintf (buf.data () + strlen (buf.data ()),
12889 size_left, "-");
12890
12891 if (ret < 0 || ret >= size_left)
12892 error ("%s", err_msg);
12893 }
12894
12895 putpkt (buf.data ());
12896 remote_get_noisy_reply ();
12897 if (strcmp (rs->buf.data (), "OK"))
12898 error (_("Target does not support tracepoints."));
12899
12900 /* do_single_steps (t); */
12901 for (auto action_it = tdp_actions.begin ();
12902 action_it != tdp_actions.end (); action_it++)
12903 {
12904 QUIT; /* Allow user to bail out with ^C. */
12905
12906 bool has_more = ((action_it + 1) != tdp_actions.end ()
12907 || !stepping_actions.empty ());
12908
12909 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%c",
12910 b->number, addrbuf, /* address */
12911 action_it->c_str (),
12912 has_more ? '-' : 0);
12913
12914 if (ret < 0 || ret >= buf.size ())
12915 error ("%s", err_msg);
12916
12917 putpkt (buf.data ());
12918 remote_get_noisy_reply ();
12919 if (strcmp (rs->buf.data (), "OK"))
12920 error (_("Error on target while setting tracepoints."));
12921 }
12922
12923 for (auto action_it = stepping_actions.begin ();
12924 action_it != stepping_actions.end (); action_it++)
12925 {
12926 QUIT; /* Allow user to bail out with ^C. */
12927
12928 bool is_first = action_it == stepping_actions.begin ();
12929 bool has_more = (action_it + 1) != stepping_actions.end ();
12930
12931 ret = snprintf (buf.data (), buf.size (), "QTDP:-%x:%s:%s%s%s",
12932 b->number, addrbuf, /* address */
12933 is_first ? "S" : "",
12934 action_it->c_str (),
12935 has_more ? "-" : "");
12936
12937 if (ret < 0 || ret >= buf.size ())
12938 error ("%s", err_msg);
12939
12940 putpkt (buf.data ());
12941 remote_get_noisy_reply ();
12942 if (strcmp (rs->buf.data (), "OK"))
12943 error (_("Error on target while setting tracepoints."));
12944 }
12945
12946 if (packet_support (PACKET_TracepointSource) == PACKET_ENABLE)
12947 {
12948 if (b->location != NULL)
12949 {
12950 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12951
12952 if (ret < 0 || ret >= buf.size ())
12953 error ("%s", err_msg);
12954
12955 encode_source_string (b->number, loc->address, "at",
12956 event_location_to_string (b->location.get ()),
12957 buf.data () + strlen (buf.data ()),
12958 buf.size () - strlen (buf.data ()));
12959 putpkt (buf.data ());
12960 remote_get_noisy_reply ();
12961 if (strcmp (rs->buf.data (), "OK"))
12962 warning (_("Target does not support source download."));
12963 }
12964 if (b->cond_string)
12965 {
12966 ret = snprintf (buf.data (), buf.size (), "QTDPsrc:");
12967
12968 if (ret < 0 || ret >= buf.size ())
12969 error ("%s", err_msg);
12970
12971 encode_source_string (b->number, loc->address,
12972 "cond", b->cond_string,
12973 buf.data () + strlen (buf.data ()),
12974 buf.size () - strlen (buf.data ()));
12975 putpkt (buf.data ());
12976 remote_get_noisy_reply ();
12977 if (strcmp (rs->buf.data (), "OK"))
12978 warning (_("Target does not support source download."));
12979 }
12980 remote_download_command_source (b->number, loc->address,
12981 breakpoint_commands (b));
12982 }
12983 }
12984
12985 bool
12986 remote_target::can_download_tracepoint ()
12987 {
12988 struct remote_state *rs = get_remote_state ();
12989 struct trace_status *ts;
12990 int status;
12991
12992 /* Don't try to install tracepoints until we've relocated our
12993 symbols, and fetched and merged the target's tracepoint list with
12994 ours. */
12995 if (rs->starting_up)
12996 return false;
12997
12998 ts = current_trace_status ();
12999 status = get_trace_status (ts);
13000
13001 if (status == -1 || !ts->running_known || !ts->running)
13002 return false;
13003
13004 /* If we are in a tracing experiment, but remote stub doesn't support
13005 installing tracepoint in trace, we have to return. */
13006 if (!remote_supports_install_in_trace ())
13007 return false;
13008
13009 return true;
13010 }
13011
13012
13013 void
13014 remote_target::download_trace_state_variable (const trace_state_variable &tsv)
13015 {
13016 struct remote_state *rs = get_remote_state ();
13017 char *p;
13018
13019 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDV:%x:%s:%x:",
13020 tsv.number, phex ((ULONGEST) tsv.initial_value, 8),
13021 tsv.builtin);
13022 p = rs->buf.data () + strlen (rs->buf.data ());
13023 if ((p - rs->buf.data ()) + tsv.name.length () * 2
13024 >= get_remote_packet_size ())
13025 error (_("Trace state variable name too long for tsv definition packet"));
13026 p += 2 * bin2hex ((gdb_byte *) (tsv.name.data ()), p, tsv.name.length ());
13027 *p++ = '\0';
13028 putpkt (rs->buf);
13029 remote_get_noisy_reply ();
13030 if (rs->buf[0] == '\0')
13031 error (_("Target does not support this command."));
13032 if (strcmp (rs->buf.data (), "OK") != 0)
13033 error (_("Error on target while downloading trace state variable."));
13034 }
13035
13036 void
13037 remote_target::enable_tracepoint (struct bp_location *location)
13038 {
13039 struct remote_state *rs = get_remote_state ();
13040 char addr_buf[40];
13041
13042 sprintf_vma (addr_buf, location->address);
13043 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTEnable:%x:%s",
13044 location->owner->number, addr_buf);
13045 putpkt (rs->buf);
13046 remote_get_noisy_reply ();
13047 if (rs->buf[0] == '\0')
13048 error (_("Target does not support enabling tracepoints while a trace run is ongoing."));
13049 if (strcmp (rs->buf.data (), "OK") != 0)
13050 error (_("Error on target while enabling tracepoint."));
13051 }
13052
13053 void
13054 remote_target::disable_tracepoint (struct bp_location *location)
13055 {
13056 struct remote_state *rs = get_remote_state ();
13057 char addr_buf[40];
13058
13059 sprintf_vma (addr_buf, location->address);
13060 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QTDisable:%x:%s",
13061 location->owner->number, addr_buf);
13062 putpkt (rs->buf);
13063 remote_get_noisy_reply ();
13064 if (rs->buf[0] == '\0')
13065 error (_("Target does not support disabling tracepoints while a trace run is ongoing."));
13066 if (strcmp (rs->buf.data (), "OK") != 0)
13067 error (_("Error on target while disabling tracepoint."));
13068 }
13069
13070 void
13071 remote_target::trace_set_readonly_regions ()
13072 {
13073 asection *s;
13074 bfd_size_type size;
13075 bfd_vma vma;
13076 int anysecs = 0;
13077 int offset = 0;
13078
13079 if (!exec_bfd)
13080 return; /* No information to give. */
13081
13082 struct remote_state *rs = get_remote_state ();
13083
13084 strcpy (rs->buf.data (), "QTro");
13085 offset = strlen (rs->buf.data ());
13086 for (s = exec_bfd->sections; s; s = s->next)
13087 {
13088 char tmp1[40], tmp2[40];
13089 int sec_length;
13090
13091 if ((s->flags & SEC_LOAD) == 0 ||
13092 /* (s->flags & SEC_CODE) == 0 || */
13093 (s->flags & SEC_READONLY) == 0)
13094 continue;
13095
13096 anysecs = 1;
13097 vma = bfd_section_vma (s);
13098 size = bfd_section_size (s);
13099 sprintf_vma (tmp1, vma);
13100 sprintf_vma (tmp2, vma + size);
13101 sec_length = 1 + strlen (tmp1) + 1 + strlen (tmp2);
13102 if (offset + sec_length + 1 > rs->buf.size ())
13103 {
13104 if (packet_support (PACKET_qXfer_traceframe_info) != PACKET_ENABLE)
13105 warning (_("\
13106 Too many sections for read-only sections definition packet."));
13107 break;
13108 }
13109 xsnprintf (rs->buf.data () + offset, rs->buf.size () - offset, ":%s,%s",
13110 tmp1, tmp2);
13111 offset += sec_length;
13112 }
13113 if (anysecs)
13114 {
13115 putpkt (rs->buf);
13116 getpkt (&rs->buf, 0);
13117 }
13118 }
13119
13120 void
13121 remote_target::trace_start ()
13122 {
13123 struct remote_state *rs = get_remote_state ();
13124
13125 putpkt ("QTStart");
13126 remote_get_noisy_reply ();
13127 if (rs->buf[0] == '\0')
13128 error (_("Target does not support this command."));
13129 if (strcmp (rs->buf.data (), "OK") != 0)
13130 error (_("Bogus reply from target: %s"), rs->buf.data ());
13131 }
13132
13133 int
13134 remote_target::get_trace_status (struct trace_status *ts)
13135 {
13136 /* Initialize it just to avoid a GCC false warning. */
13137 char *p = NULL;
13138 enum packet_result result;
13139 struct remote_state *rs = get_remote_state ();
13140
13141 if (packet_support (PACKET_qTStatus) == PACKET_DISABLE)
13142 return -1;
13143
13144 /* FIXME we need to get register block size some other way. */
13145 trace_regblock_size
13146 = rs->get_remote_arch_state (target_gdbarch ())->sizeof_g_packet;
13147
13148 putpkt ("qTStatus");
13149
13150 try
13151 {
13152 p = remote_get_noisy_reply ();
13153 }
13154 catch (const gdb_exception_error &ex)
13155 {
13156 if (ex.error != TARGET_CLOSE_ERROR)
13157 {
13158 exception_fprintf (gdb_stderr, ex, "qTStatus: ");
13159 return -1;
13160 }
13161 throw;
13162 }
13163
13164 result = packet_ok (p, &remote_protocol_packets[PACKET_qTStatus]);
13165
13166 /* If the remote target doesn't do tracing, flag it. */
13167 if (result == PACKET_UNKNOWN)
13168 return -1;
13169
13170 /* We're working with a live target. */
13171 ts->filename = NULL;
13172
13173 if (*p++ != 'T')
13174 error (_("Bogus trace status reply from target: %s"), rs->buf.data ());
13175
13176 /* Function 'parse_trace_status' sets default value of each field of
13177 'ts' at first, so we don't have to do it here. */
13178 parse_trace_status (p, ts);
13179
13180 return ts->running;
13181 }
13182
13183 void
13184 remote_target::get_tracepoint_status (struct breakpoint *bp,
13185 struct uploaded_tp *utp)
13186 {
13187 struct remote_state *rs = get_remote_state ();
13188 char *reply;
13189 struct bp_location *loc;
13190 struct tracepoint *tp = (struct tracepoint *) bp;
13191 size_t size = get_remote_packet_size ();
13192
13193 if (tp)
13194 {
13195 tp->hit_count = 0;
13196 tp->traceframe_usage = 0;
13197 for (loc = tp->loc; loc; loc = loc->next)
13198 {
13199 /* If the tracepoint was never downloaded, don't go asking for
13200 any status. */
13201 if (tp->number_on_target == 0)
13202 continue;
13203 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", tp->number_on_target,
13204 phex_nz (loc->address, 0));
13205 putpkt (rs->buf);
13206 reply = remote_get_noisy_reply ();
13207 if (reply && *reply)
13208 {
13209 if (*reply == 'V')
13210 parse_tracepoint_status (reply + 1, bp, utp);
13211 }
13212 }
13213 }
13214 else if (utp)
13215 {
13216 utp->hit_count = 0;
13217 utp->traceframe_usage = 0;
13218 xsnprintf (rs->buf.data (), size, "qTP:%x:%s", utp->number,
13219 phex_nz (utp->addr, 0));
13220 putpkt (rs->buf);
13221 reply = remote_get_noisy_reply ();
13222 if (reply && *reply)
13223 {
13224 if (*reply == 'V')
13225 parse_tracepoint_status (reply + 1, bp, utp);
13226 }
13227 }
13228 }
13229
13230 void
13231 remote_target::trace_stop ()
13232 {
13233 struct remote_state *rs = get_remote_state ();
13234
13235 putpkt ("QTStop");
13236 remote_get_noisy_reply ();
13237 if (rs->buf[0] == '\0')
13238 error (_("Target does not support this command."));
13239 if (strcmp (rs->buf.data (), "OK") != 0)
13240 error (_("Bogus reply from target: %s"), rs->buf.data ());
13241 }
13242
13243 int
13244 remote_target::trace_find (enum trace_find_type type, int num,
13245 CORE_ADDR addr1, CORE_ADDR addr2,
13246 int *tpp)
13247 {
13248 struct remote_state *rs = get_remote_state ();
13249 char *endbuf = rs->buf.data () + get_remote_packet_size ();
13250 char *p, *reply;
13251 int target_frameno = -1, target_tracept = -1;
13252
13253 /* Lookups other than by absolute frame number depend on the current
13254 trace selected, so make sure it is correct on the remote end
13255 first. */
13256 if (type != tfind_number)
13257 set_remote_traceframe ();
13258
13259 p = rs->buf.data ();
13260 strcpy (p, "QTFrame:");
13261 p = strchr (p, '\0');
13262 switch (type)
13263 {
13264 case tfind_number:
13265 xsnprintf (p, endbuf - p, "%x", num);
13266 break;
13267 case tfind_pc:
13268 xsnprintf (p, endbuf - p, "pc:%s", phex_nz (addr1, 0));
13269 break;
13270 case tfind_tp:
13271 xsnprintf (p, endbuf - p, "tdp:%x", num);
13272 break;
13273 case tfind_range:
13274 xsnprintf (p, endbuf - p, "range:%s:%s", phex_nz (addr1, 0),
13275 phex_nz (addr2, 0));
13276 break;
13277 case tfind_outside:
13278 xsnprintf (p, endbuf - p, "outside:%s:%s", phex_nz (addr1, 0),
13279 phex_nz (addr2, 0));
13280 break;
13281 default:
13282 error (_("Unknown trace find type %d"), type);
13283 }
13284
13285 putpkt (rs->buf);
13286 reply = remote_get_noisy_reply ();
13287 if (*reply == '\0')
13288 error (_("Target does not support this command."));
13289
13290 while (reply && *reply)
13291 switch (*reply)
13292 {
13293 case 'F':
13294 p = ++reply;
13295 target_frameno = (int) strtol (p, &reply, 16);
13296 if (reply == p)
13297 error (_("Unable to parse trace frame number"));
13298 /* Don't update our remote traceframe number cache on failure
13299 to select a remote traceframe. */
13300 if (target_frameno == -1)
13301 return -1;
13302 break;
13303 case 'T':
13304 p = ++reply;
13305 target_tracept = (int) strtol (p, &reply, 16);
13306 if (reply == p)
13307 error (_("Unable to parse tracepoint number"));
13308 break;
13309 case 'O': /* "OK"? */
13310 if (reply[1] == 'K' && reply[2] == '\0')
13311 reply += 2;
13312 else
13313 error (_("Bogus reply from target: %s"), reply);
13314 break;
13315 default:
13316 error (_("Bogus reply from target: %s"), reply);
13317 }
13318 if (tpp)
13319 *tpp = target_tracept;
13320
13321 rs->remote_traceframe_number = target_frameno;
13322 return target_frameno;
13323 }
13324
13325 bool
13326 remote_target::get_trace_state_variable_value (int tsvnum, LONGEST *val)
13327 {
13328 struct remote_state *rs = get_remote_state ();
13329 char *reply;
13330 ULONGEST uval;
13331
13332 set_remote_traceframe ();
13333
13334 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTV:%x", tsvnum);
13335 putpkt (rs->buf);
13336 reply = remote_get_noisy_reply ();
13337 if (reply && *reply)
13338 {
13339 if (*reply == 'V')
13340 {
13341 unpack_varlen_hex (reply + 1, &uval);
13342 *val = (LONGEST) uval;
13343 return true;
13344 }
13345 }
13346 return false;
13347 }
13348
13349 int
13350 remote_target::save_trace_data (const char *filename)
13351 {
13352 struct remote_state *rs = get_remote_state ();
13353 char *p, *reply;
13354
13355 p = rs->buf.data ();
13356 strcpy (p, "QTSave:");
13357 p += strlen (p);
13358 if ((p - rs->buf.data ()) + strlen (filename) * 2
13359 >= get_remote_packet_size ())
13360 error (_("Remote file name too long for trace save packet"));
13361 p += 2 * bin2hex ((gdb_byte *) filename, p, strlen (filename));
13362 *p++ = '\0';
13363 putpkt (rs->buf);
13364 reply = remote_get_noisy_reply ();
13365 if (*reply == '\0')
13366 error (_("Target does not support this command."));
13367 if (strcmp (reply, "OK") != 0)
13368 error (_("Bogus reply from target: %s"), reply);
13369 return 0;
13370 }
13371
13372 /* This is basically a memory transfer, but needs to be its own packet
13373 because we don't know how the target actually organizes its trace
13374 memory, plus we want to be able to ask for as much as possible, but
13375 not be unhappy if we don't get as much as we ask for. */
13376
13377 LONGEST
13378 remote_target::get_raw_trace_data (gdb_byte *buf, ULONGEST offset, LONGEST len)
13379 {
13380 struct remote_state *rs = get_remote_state ();
13381 char *reply;
13382 char *p;
13383 int rslt;
13384
13385 p = rs->buf.data ();
13386 strcpy (p, "qTBuffer:");
13387 p += strlen (p);
13388 p += hexnumstr (p, offset);
13389 *p++ = ',';
13390 p += hexnumstr (p, len);
13391 *p++ = '\0';
13392
13393 putpkt (rs->buf);
13394 reply = remote_get_noisy_reply ();
13395 if (reply && *reply)
13396 {
13397 /* 'l' by itself means we're at the end of the buffer and
13398 there is nothing more to get. */
13399 if (*reply == 'l')
13400 return 0;
13401
13402 /* Convert the reply into binary. Limit the number of bytes to
13403 convert according to our passed-in buffer size, rather than
13404 what was returned in the packet; if the target is
13405 unexpectedly generous and gives us a bigger reply than we
13406 asked for, we don't want to crash. */
13407 rslt = hex2bin (reply, buf, len);
13408 return rslt;
13409 }
13410
13411 /* Something went wrong, flag as an error. */
13412 return -1;
13413 }
13414
13415 void
13416 remote_target::set_disconnected_tracing (int val)
13417 {
13418 struct remote_state *rs = get_remote_state ();
13419
13420 if (packet_support (PACKET_DisconnectedTracing_feature) == PACKET_ENABLE)
13421 {
13422 char *reply;
13423
13424 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13425 "QTDisconnected:%x", val);
13426 putpkt (rs->buf);
13427 reply = remote_get_noisy_reply ();
13428 if (*reply == '\0')
13429 error (_("Target does not support this command."));
13430 if (strcmp (reply, "OK") != 0)
13431 error (_("Bogus reply from target: %s"), reply);
13432 }
13433 else if (val)
13434 warning (_("Target does not support disconnected tracing."));
13435 }
13436
13437 int
13438 remote_target::core_of_thread (ptid_t ptid)
13439 {
13440 struct thread_info *info = find_thread_ptid (ptid);
13441
13442 if (info != NULL && info->priv != NULL)
13443 return get_remote_thread_info (info)->core;
13444
13445 return -1;
13446 }
13447
13448 void
13449 remote_target::set_circular_trace_buffer (int val)
13450 {
13451 struct remote_state *rs = get_remote_state ();
13452 char *reply;
13453
13454 xsnprintf (rs->buf.data (), get_remote_packet_size (),
13455 "QTBuffer:circular:%x", val);
13456 putpkt (rs->buf);
13457 reply = remote_get_noisy_reply ();
13458 if (*reply == '\0')
13459 error (_("Target does not support this command."));
13460 if (strcmp (reply, "OK") != 0)
13461 error (_("Bogus reply from target: %s"), reply);
13462 }
13463
13464 traceframe_info_up
13465 remote_target::traceframe_info ()
13466 {
13467 gdb::optional<gdb::char_vector> text
13468 = target_read_stralloc (current_top_target (), TARGET_OBJECT_TRACEFRAME_INFO,
13469 NULL);
13470 if (text)
13471 return parse_traceframe_info (text->data ());
13472
13473 return NULL;
13474 }
13475
13476 /* Handle the qTMinFTPILen packet. Returns the minimum length of
13477 instruction on which a fast tracepoint may be placed. Returns -1
13478 if the packet is not supported, and 0 if the minimum instruction
13479 length is unknown. */
13480
13481 int
13482 remote_target::get_min_fast_tracepoint_insn_len ()
13483 {
13484 struct remote_state *rs = get_remote_state ();
13485 char *reply;
13486
13487 /* If we're not debugging a process yet, the IPA can't be
13488 loaded. */
13489 if (!target_has_execution)
13490 return 0;
13491
13492 /* Make sure the remote is pointing at the right process. */
13493 set_general_process ();
13494
13495 xsnprintf (rs->buf.data (), get_remote_packet_size (), "qTMinFTPILen");
13496 putpkt (rs->buf);
13497 reply = remote_get_noisy_reply ();
13498 if (*reply == '\0')
13499 return -1;
13500 else
13501 {
13502 ULONGEST min_insn_len;
13503
13504 unpack_varlen_hex (reply, &min_insn_len);
13505
13506 return (int) min_insn_len;
13507 }
13508 }
13509
13510 void
13511 remote_target::set_trace_buffer_size (LONGEST val)
13512 {
13513 if (packet_support (PACKET_QTBuffer_size) != PACKET_DISABLE)
13514 {
13515 struct remote_state *rs = get_remote_state ();
13516 char *buf = rs->buf.data ();
13517 char *endbuf = buf + get_remote_packet_size ();
13518 enum packet_result result;
13519
13520 gdb_assert (val >= 0 || val == -1);
13521 buf += xsnprintf (buf, endbuf - buf, "QTBuffer:size:");
13522 /* Send -1 as literal "-1" to avoid host size dependency. */
13523 if (val < 0)
13524 {
13525 *buf++ = '-';
13526 buf += hexnumstr (buf, (ULONGEST) -val);
13527 }
13528 else
13529 buf += hexnumstr (buf, (ULONGEST) val);
13530
13531 putpkt (rs->buf);
13532 remote_get_noisy_reply ();
13533 result = packet_ok (rs->buf,
13534 &remote_protocol_packets[PACKET_QTBuffer_size]);
13535
13536 if (result != PACKET_OK)
13537 warning (_("Bogus reply from target: %s"), rs->buf.data ());
13538 }
13539 }
13540
13541 bool
13542 remote_target::set_trace_notes (const char *user, const char *notes,
13543 const char *stop_notes)
13544 {
13545 struct remote_state *rs = get_remote_state ();
13546 char *reply;
13547 char *buf = rs->buf.data ();
13548 char *endbuf = buf + get_remote_packet_size ();
13549 int nbytes;
13550
13551 buf += xsnprintf (buf, endbuf - buf, "QTNotes:");
13552 if (user)
13553 {
13554 buf += xsnprintf (buf, endbuf - buf, "user:");
13555 nbytes = bin2hex ((gdb_byte *) user, buf, strlen (user));
13556 buf += 2 * nbytes;
13557 *buf++ = ';';
13558 }
13559 if (notes)
13560 {
13561 buf += xsnprintf (buf, endbuf - buf, "notes:");
13562 nbytes = bin2hex ((gdb_byte *) notes, buf, strlen (notes));
13563 buf += 2 * nbytes;
13564 *buf++ = ';';
13565 }
13566 if (stop_notes)
13567 {
13568 buf += xsnprintf (buf, endbuf - buf, "tstop:");
13569 nbytes = bin2hex ((gdb_byte *) stop_notes, buf, strlen (stop_notes));
13570 buf += 2 * nbytes;
13571 *buf++ = ';';
13572 }
13573 /* Ensure the buffer is terminated. */
13574 *buf = '\0';
13575
13576 putpkt (rs->buf);
13577 reply = remote_get_noisy_reply ();
13578 if (*reply == '\0')
13579 return false;
13580
13581 if (strcmp (reply, "OK") != 0)
13582 error (_("Bogus reply from target: %s"), reply);
13583
13584 return true;
13585 }
13586
13587 bool
13588 remote_target::use_agent (bool use)
13589 {
13590 if (packet_support (PACKET_QAgent) != PACKET_DISABLE)
13591 {
13592 struct remote_state *rs = get_remote_state ();
13593
13594 /* If the stub supports QAgent. */
13595 xsnprintf (rs->buf.data (), get_remote_packet_size (), "QAgent:%d", use);
13596 putpkt (rs->buf);
13597 getpkt (&rs->buf, 0);
13598
13599 if (strcmp (rs->buf.data (), "OK") == 0)
13600 {
13601 ::use_agent = use;
13602 return true;
13603 }
13604 }
13605
13606 return false;
13607 }
13608
13609 bool
13610 remote_target::can_use_agent ()
13611 {
13612 return (packet_support (PACKET_QAgent) != PACKET_DISABLE);
13613 }
13614
13615 struct btrace_target_info
13616 {
13617 /* The ptid of the traced thread. */
13618 ptid_t ptid;
13619
13620 /* The obtained branch trace configuration. */
13621 struct btrace_config conf;
13622 };
13623
13624 /* Reset our idea of our target's btrace configuration. */
13625
13626 static void
13627 remote_btrace_reset (remote_state *rs)
13628 {
13629 memset (&rs->btrace_config, 0, sizeof (rs->btrace_config));
13630 }
13631
13632 /* Synchronize the configuration with the target. */
13633
13634 void
13635 remote_target::btrace_sync_conf (const btrace_config *conf)
13636 {
13637 struct packet_config *packet;
13638 struct remote_state *rs;
13639 char *buf, *pos, *endbuf;
13640
13641 rs = get_remote_state ();
13642 buf = rs->buf.data ();
13643 endbuf = buf + get_remote_packet_size ();
13644
13645 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_bts_size];
13646 if (packet_config_support (packet) == PACKET_ENABLE
13647 && conf->bts.size != rs->btrace_config.bts.size)
13648 {
13649 pos = buf;
13650 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13651 conf->bts.size);
13652
13653 putpkt (buf);
13654 getpkt (&rs->buf, 0);
13655
13656 if (packet_ok (buf, packet) == PACKET_ERROR)
13657 {
13658 if (buf[0] == 'E' && buf[1] == '.')
13659 error (_("Failed to configure the BTS buffer size: %s"), buf + 2);
13660 else
13661 error (_("Failed to configure the BTS buffer size."));
13662 }
13663
13664 rs->btrace_config.bts.size = conf->bts.size;
13665 }
13666
13667 packet = &remote_protocol_packets[PACKET_Qbtrace_conf_pt_size];
13668 if (packet_config_support (packet) == PACKET_ENABLE
13669 && conf->pt.size != rs->btrace_config.pt.size)
13670 {
13671 pos = buf;
13672 pos += xsnprintf (pos, endbuf - pos, "%s=0x%x", packet->name,
13673 conf->pt.size);
13674
13675 putpkt (buf);
13676 getpkt (&rs->buf, 0);
13677
13678 if (packet_ok (buf, packet) == PACKET_ERROR)
13679 {
13680 if (buf[0] == 'E' && buf[1] == '.')
13681 error (_("Failed to configure the trace buffer size: %s"), buf + 2);
13682 else
13683 error (_("Failed to configure the trace buffer size."));
13684 }
13685
13686 rs->btrace_config.pt.size = conf->pt.size;
13687 }
13688 }
13689
13690 /* Read the current thread's btrace configuration from the target and
13691 store it into CONF. */
13692
13693 static void
13694 btrace_read_config (struct btrace_config *conf)
13695 {
13696 gdb::optional<gdb::char_vector> xml
13697 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE_CONF, "");
13698 if (xml)
13699 parse_xml_btrace_conf (conf, xml->data ());
13700 }
13701
13702 /* Maybe reopen target btrace. */
13703
13704 void
13705 remote_target::remote_btrace_maybe_reopen ()
13706 {
13707 struct remote_state *rs = get_remote_state ();
13708 int btrace_target_pushed = 0;
13709 #if !defined (HAVE_LIBIPT)
13710 int warned = 0;
13711 #endif
13712
13713 /* Don't bother walking the entirety of the remote thread list when
13714 we know the feature isn't supported by the remote. */
13715 if (packet_support (PACKET_qXfer_btrace_conf) != PACKET_ENABLE)
13716 return;
13717
13718 scoped_restore_current_thread restore_thread;
13719
13720 for (thread_info *tp : all_non_exited_threads ())
13721 {
13722 set_general_thread (tp->ptid);
13723
13724 memset (&rs->btrace_config, 0x00, sizeof (struct btrace_config));
13725 btrace_read_config (&rs->btrace_config);
13726
13727 if (rs->btrace_config.format == BTRACE_FORMAT_NONE)
13728 continue;
13729
13730 #if !defined (HAVE_LIBIPT)
13731 if (rs->btrace_config.format == BTRACE_FORMAT_PT)
13732 {
13733 if (!warned)
13734 {
13735 warned = 1;
13736 warning (_("Target is recording using Intel Processor Trace "
13737 "but support was disabled at compile time."));
13738 }
13739
13740 continue;
13741 }
13742 #endif /* !defined (HAVE_LIBIPT) */
13743
13744 /* Push target, once, but before anything else happens. This way our
13745 changes to the threads will be cleaned up by unpushing the target
13746 in case btrace_read_config () throws. */
13747 if (!btrace_target_pushed)
13748 {
13749 btrace_target_pushed = 1;
13750 record_btrace_push_target ();
13751 printf_filtered (_("Target is recording using %s.\n"),
13752 btrace_format_string (rs->btrace_config.format));
13753 }
13754
13755 tp->btrace.target = XCNEW (struct btrace_target_info);
13756 tp->btrace.target->ptid = tp->ptid;
13757 tp->btrace.target->conf = rs->btrace_config;
13758 }
13759 }
13760
13761 /* Enable branch tracing. */
13762
13763 struct btrace_target_info *
13764 remote_target::enable_btrace (ptid_t ptid, const struct btrace_config *conf)
13765 {
13766 struct btrace_target_info *tinfo = NULL;
13767 struct packet_config *packet = NULL;
13768 struct remote_state *rs = get_remote_state ();
13769 char *buf = rs->buf.data ();
13770 char *endbuf = buf + get_remote_packet_size ();
13771
13772 switch (conf->format)
13773 {
13774 case BTRACE_FORMAT_BTS:
13775 packet = &remote_protocol_packets[PACKET_Qbtrace_bts];
13776 break;
13777
13778 case BTRACE_FORMAT_PT:
13779 packet = &remote_protocol_packets[PACKET_Qbtrace_pt];
13780 break;
13781 }
13782
13783 if (packet == NULL || packet_config_support (packet) != PACKET_ENABLE)
13784 error (_("Target does not support branch tracing."));
13785
13786 btrace_sync_conf (conf);
13787
13788 set_general_thread (ptid);
13789
13790 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13791 putpkt (rs->buf);
13792 getpkt (&rs->buf, 0);
13793
13794 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13795 {
13796 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13797 error (_("Could not enable branch tracing for %s: %s"),
13798 target_pid_to_str (ptid).c_str (), &rs->buf[2]);
13799 else
13800 error (_("Could not enable branch tracing for %s."),
13801 target_pid_to_str (ptid).c_str ());
13802 }
13803
13804 tinfo = XCNEW (struct btrace_target_info);
13805 tinfo->ptid = ptid;
13806
13807 /* If we fail to read the configuration, we lose some information, but the
13808 tracing itself is not impacted. */
13809 try
13810 {
13811 btrace_read_config (&tinfo->conf);
13812 }
13813 catch (const gdb_exception_error &err)
13814 {
13815 if (err.message != NULL)
13816 warning ("%s", err.what ());
13817 }
13818
13819 return tinfo;
13820 }
13821
13822 /* Disable branch tracing. */
13823
13824 void
13825 remote_target::disable_btrace (struct btrace_target_info *tinfo)
13826 {
13827 struct packet_config *packet = &remote_protocol_packets[PACKET_Qbtrace_off];
13828 struct remote_state *rs = get_remote_state ();
13829 char *buf = rs->buf.data ();
13830 char *endbuf = buf + get_remote_packet_size ();
13831
13832 if (packet_config_support (packet) != PACKET_ENABLE)
13833 error (_("Target does not support branch tracing."));
13834
13835 set_general_thread (tinfo->ptid);
13836
13837 buf += xsnprintf (buf, endbuf - buf, "%s", packet->name);
13838 putpkt (rs->buf);
13839 getpkt (&rs->buf, 0);
13840
13841 if (packet_ok (rs->buf, packet) == PACKET_ERROR)
13842 {
13843 if (rs->buf[0] == 'E' && rs->buf[1] == '.')
13844 error (_("Could not disable branch tracing for %s: %s"),
13845 target_pid_to_str (tinfo->ptid).c_str (), &rs->buf[2]);
13846 else
13847 error (_("Could not disable branch tracing for %s."),
13848 target_pid_to_str (tinfo->ptid).c_str ());
13849 }
13850
13851 xfree (tinfo);
13852 }
13853
13854 /* Teardown branch tracing. */
13855
13856 void
13857 remote_target::teardown_btrace (struct btrace_target_info *tinfo)
13858 {
13859 /* We must not talk to the target during teardown. */
13860 xfree (tinfo);
13861 }
13862
13863 /* Read the branch trace. */
13864
13865 enum btrace_error
13866 remote_target::read_btrace (struct btrace_data *btrace,
13867 struct btrace_target_info *tinfo,
13868 enum btrace_read_type type)
13869 {
13870 struct packet_config *packet = &remote_protocol_packets[PACKET_qXfer_btrace];
13871 const char *annex;
13872
13873 if (packet_config_support (packet) != PACKET_ENABLE)
13874 error (_("Target does not support branch tracing."));
13875
13876 #if !defined(HAVE_LIBEXPAT)
13877 error (_("Cannot process branch tracing result. XML parsing not supported."));
13878 #endif
13879
13880 switch (type)
13881 {
13882 case BTRACE_READ_ALL:
13883 annex = "all";
13884 break;
13885 case BTRACE_READ_NEW:
13886 annex = "new";
13887 break;
13888 case BTRACE_READ_DELTA:
13889 annex = "delta";
13890 break;
13891 default:
13892 internal_error (__FILE__, __LINE__,
13893 _("Bad branch tracing read type: %u."),
13894 (unsigned int) type);
13895 }
13896
13897 gdb::optional<gdb::char_vector> xml
13898 = target_read_stralloc (current_top_target (), TARGET_OBJECT_BTRACE, annex);
13899 if (!xml)
13900 return BTRACE_ERR_UNKNOWN;
13901
13902 parse_xml_btrace (btrace, xml->data ());
13903
13904 return BTRACE_ERR_NONE;
13905 }
13906
13907 const struct btrace_config *
13908 remote_target::btrace_conf (const struct btrace_target_info *tinfo)
13909 {
13910 return &tinfo->conf;
13911 }
13912
13913 bool
13914 remote_target::augmented_libraries_svr4_read ()
13915 {
13916 return (packet_support (PACKET_augmented_libraries_svr4_read_feature)
13917 == PACKET_ENABLE);
13918 }
13919
13920 /* Implementation of to_load. */
13921
13922 void
13923 remote_target::load (const char *name, int from_tty)
13924 {
13925 generic_load (name, from_tty);
13926 }
13927
13928 /* Accepts an integer PID; returns a string representing a file that
13929 can be opened on the remote side to get the symbols for the child
13930 process. Returns NULL if the operation is not supported. */
13931
13932 char *
13933 remote_target::pid_to_exec_file (int pid)
13934 {
13935 static gdb::optional<gdb::char_vector> filename;
13936 struct inferior *inf;
13937 char *annex = NULL;
13938
13939 if (packet_support (PACKET_qXfer_exec_file) != PACKET_ENABLE)
13940 return NULL;
13941
13942 inf = find_inferior_pid (pid);
13943 if (inf == NULL)
13944 internal_error (__FILE__, __LINE__,
13945 _("not currently attached to process %d"), pid);
13946
13947 if (!inf->fake_pid_p)
13948 {
13949 const int annex_size = 9;
13950
13951 annex = (char *) alloca (annex_size);
13952 xsnprintf (annex, annex_size, "%x", pid);
13953 }
13954
13955 filename = target_read_stralloc (current_top_target (),
13956 TARGET_OBJECT_EXEC_FILE, annex);
13957
13958 return filename ? filename->data () : nullptr;
13959 }
13960
13961 /* Implement the to_can_do_single_step target_ops method. */
13962
13963 int
13964 remote_target::can_do_single_step ()
13965 {
13966 /* We can only tell whether target supports single step or not by
13967 supported s and S vCont actions if the stub supports vContSupported
13968 feature. If the stub doesn't support vContSupported feature,
13969 we have conservatively to think target doesn't supports single
13970 step. */
13971 if (packet_support (PACKET_vContSupported) == PACKET_ENABLE)
13972 {
13973 struct remote_state *rs = get_remote_state ();
13974
13975 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
13976 remote_vcont_probe ();
13977
13978 return rs->supports_vCont.s && rs->supports_vCont.S;
13979 }
13980 else
13981 return 0;
13982 }
13983
13984 /* Implementation of the to_execution_direction method for the remote
13985 target. */
13986
13987 enum exec_direction_kind
13988 remote_target::execution_direction ()
13989 {
13990 struct remote_state *rs = get_remote_state ();
13991
13992 return rs->last_resume_exec_dir;
13993 }
13994
13995 /* Return pointer to the thread_info struct which corresponds to
13996 THREAD_HANDLE (having length HANDLE_LEN). */
13997
13998 thread_info *
13999 remote_target::thread_handle_to_thread_info (const gdb_byte *thread_handle,
14000 int handle_len,
14001 inferior *inf)
14002 {
14003 for (thread_info *tp : all_non_exited_threads ())
14004 {
14005 remote_thread_info *priv = get_remote_thread_info (tp);
14006
14007 if (tp->inf == inf && priv != NULL)
14008 {
14009 if (handle_len != priv->thread_handle.size ())
14010 error (_("Thread handle size mismatch: %d vs %zu (from remote)"),
14011 handle_len, priv->thread_handle.size ());
14012 if (memcmp (thread_handle, priv->thread_handle.data (),
14013 handle_len) == 0)
14014 return tp;
14015 }
14016 }
14017
14018 return NULL;
14019 }
14020
14021 gdb::byte_vector
14022 remote_target::thread_info_to_thread_handle (struct thread_info *tp)
14023 {
14024 remote_thread_info *priv = get_remote_thread_info (tp);
14025 return priv->thread_handle;
14026 }
14027
14028 bool
14029 remote_target::can_async_p ()
14030 {
14031 struct remote_state *rs = get_remote_state ();
14032
14033 /* We don't go async if the user has explicitly prevented it with the
14034 "maint set target-async" command. */
14035 if (!target_async_permitted)
14036 return false;
14037
14038 /* We're async whenever the serial device is. */
14039 return serial_can_async_p (rs->remote_desc);
14040 }
14041
14042 bool
14043 remote_target::is_async_p ()
14044 {
14045 struct remote_state *rs = get_remote_state ();
14046
14047 if (!target_async_permitted)
14048 /* We only enable async when the user specifically asks for it. */
14049 return false;
14050
14051 /* We're async whenever the serial device is. */
14052 return serial_is_async_p (rs->remote_desc);
14053 }
14054
14055 /* Pass the SERIAL event on and up to the client. One day this code
14056 will be able to delay notifying the client of an event until the
14057 point where an entire packet has been received. */
14058
14059 static serial_event_ftype remote_async_serial_handler;
14060
14061 static void
14062 remote_async_serial_handler (struct serial *scb, void *context)
14063 {
14064 /* Don't propogate error information up to the client. Instead let
14065 the client find out about the error by querying the target. */
14066 inferior_event_handler (INF_REG_EVENT, NULL);
14067 }
14068
14069 static void
14070 remote_async_inferior_event_handler (gdb_client_data data)
14071 {
14072 inferior_event_handler (INF_REG_EVENT, data);
14073 }
14074
14075 void
14076 remote_target::async (int enable)
14077 {
14078 struct remote_state *rs = get_remote_state ();
14079
14080 if (enable)
14081 {
14082 serial_async (rs->remote_desc, remote_async_serial_handler, rs);
14083
14084 /* If there are pending events in the stop reply queue tell the
14085 event loop to process them. */
14086 if (!rs->stop_reply_queue.empty ())
14087 mark_async_event_handler (rs->remote_async_inferior_event_token);
14088 /* For simplicity, below we clear the pending events token
14089 without remembering whether it is marked, so here we always
14090 mark it. If there's actually no pending notification to
14091 process, this ends up being a no-op (other than a spurious
14092 event-loop wakeup). */
14093 if (target_is_non_stop_p ())
14094 mark_async_event_handler (rs->notif_state->get_pending_events_token);
14095 }
14096 else
14097 {
14098 serial_async (rs->remote_desc, NULL, NULL);
14099 /* If the core is disabling async, it doesn't want to be
14100 disturbed with target events. Clear all async event sources
14101 too. */
14102 clear_async_event_handler (rs->remote_async_inferior_event_token);
14103 if (target_is_non_stop_p ())
14104 clear_async_event_handler (rs->notif_state->get_pending_events_token);
14105 }
14106 }
14107
14108 /* Implementation of the to_thread_events method. */
14109
14110 void
14111 remote_target::thread_events (int enable)
14112 {
14113 struct remote_state *rs = get_remote_state ();
14114 size_t size = get_remote_packet_size ();
14115
14116 if (packet_support (PACKET_QThreadEvents) == PACKET_DISABLE)
14117 return;
14118
14119 xsnprintf (rs->buf.data (), size, "QThreadEvents:%x", enable ? 1 : 0);
14120 putpkt (rs->buf);
14121 getpkt (&rs->buf, 0);
14122
14123 switch (packet_ok (rs->buf,
14124 &remote_protocol_packets[PACKET_QThreadEvents]))
14125 {
14126 case PACKET_OK:
14127 if (strcmp (rs->buf.data (), "OK") != 0)
14128 error (_("Remote refused setting thread events: %s"), rs->buf.data ());
14129 break;
14130 case PACKET_ERROR:
14131 warning (_("Remote failure reply: %s"), rs->buf.data ());
14132 break;
14133 case PACKET_UNKNOWN:
14134 break;
14135 }
14136 }
14137
14138 static void
14139 set_remote_cmd (const char *args, int from_tty)
14140 {
14141 help_list (remote_set_cmdlist, "set remote ", all_commands, gdb_stdout);
14142 }
14143
14144 static void
14145 show_remote_cmd (const char *args, int from_tty)
14146 {
14147 /* We can't just use cmd_show_list here, because we want to skip
14148 the redundant "show remote Z-packet" and the legacy aliases. */
14149 struct cmd_list_element *list = remote_show_cmdlist;
14150 struct ui_out *uiout = current_uiout;
14151
14152 ui_out_emit_tuple tuple_emitter (uiout, "showlist");
14153 for (; list != NULL; list = list->next)
14154 if (strcmp (list->name, "Z-packet") == 0)
14155 continue;
14156 else if (list->type == not_set_cmd)
14157 /* Alias commands are exactly like the original, except they
14158 don't have the normal type. */
14159 continue;
14160 else
14161 {
14162 ui_out_emit_tuple option_emitter (uiout, "option");
14163
14164 uiout->field_string ("name", list->name);
14165 uiout->text (": ");
14166 if (list->type == show_cmd)
14167 do_show_command (NULL, from_tty, list);
14168 else
14169 cmd_func (list, NULL, from_tty);
14170 }
14171 }
14172
14173
14174 /* Function to be called whenever a new objfile (shlib) is detected. */
14175 static void
14176 remote_new_objfile (struct objfile *objfile)
14177 {
14178 remote_target *remote = get_current_remote_target ();
14179
14180 if (remote != NULL) /* Have a remote connection. */
14181 remote->remote_check_symbols ();
14182 }
14183
14184 /* Pull all the tracepoints defined on the target and create local
14185 data structures representing them. We don't want to create real
14186 tracepoints yet, we don't want to mess up the user's existing
14187 collection. */
14188
14189 int
14190 remote_target::upload_tracepoints (struct uploaded_tp **utpp)
14191 {
14192 struct remote_state *rs = get_remote_state ();
14193 char *p;
14194
14195 /* Ask for a first packet of tracepoint definition. */
14196 putpkt ("qTfP");
14197 getpkt (&rs->buf, 0);
14198 p = rs->buf.data ();
14199 while (*p && *p != 'l')
14200 {
14201 parse_tracepoint_definition (p, utpp);
14202 /* Ask for another packet of tracepoint definition. */
14203 putpkt ("qTsP");
14204 getpkt (&rs->buf, 0);
14205 p = rs->buf.data ();
14206 }
14207 return 0;
14208 }
14209
14210 int
14211 remote_target::upload_trace_state_variables (struct uploaded_tsv **utsvp)
14212 {
14213 struct remote_state *rs = get_remote_state ();
14214 char *p;
14215
14216 /* Ask for a first packet of variable definition. */
14217 putpkt ("qTfV");
14218 getpkt (&rs->buf, 0);
14219 p = rs->buf.data ();
14220 while (*p && *p != 'l')
14221 {
14222 parse_tsv_definition (p, utsvp);
14223 /* Ask for another packet of variable definition. */
14224 putpkt ("qTsV");
14225 getpkt (&rs->buf, 0);
14226 p = rs->buf.data ();
14227 }
14228 return 0;
14229 }
14230
14231 /* The "set/show range-stepping" show hook. */
14232
14233 static void
14234 show_range_stepping (struct ui_file *file, int from_tty,
14235 struct cmd_list_element *c,
14236 const char *value)
14237 {
14238 fprintf_filtered (file,
14239 _("Debugger's willingness to use range stepping "
14240 "is %s.\n"), value);
14241 }
14242
14243 /* Return true if the vCont;r action is supported by the remote
14244 stub. */
14245
14246 bool
14247 remote_target::vcont_r_supported ()
14248 {
14249 if (packet_support (PACKET_vCont) == PACKET_SUPPORT_UNKNOWN)
14250 remote_vcont_probe ();
14251
14252 return (packet_support (PACKET_vCont) == PACKET_ENABLE
14253 && get_remote_state ()->supports_vCont.r);
14254 }
14255
14256 /* The "set/show range-stepping" set hook. */
14257
14258 static void
14259 set_range_stepping (const char *ignore_args, int from_tty,
14260 struct cmd_list_element *c)
14261 {
14262 /* When enabling, check whether range stepping is actually supported
14263 by the target, and warn if not. */
14264 if (use_range_stepping)
14265 {
14266 remote_target *remote = get_current_remote_target ();
14267 if (remote == NULL
14268 || !remote->vcont_r_supported ())
14269 warning (_("Range stepping is not supported by the current target"));
14270 }
14271 }
14272
14273 void
14274 _initialize_remote (void)
14275 {
14276 struct cmd_list_element *cmd;
14277 const char *cmd_name;
14278
14279 /* architecture specific data */
14280 remote_g_packet_data_handle =
14281 gdbarch_data_register_pre_init (remote_g_packet_data_init);
14282
14283 add_target (remote_target_info, remote_target::open);
14284 add_target (extended_remote_target_info, extended_remote_target::open);
14285
14286 /* Hook into new objfile notification. */
14287 gdb::observers::new_objfile.attach (remote_new_objfile);
14288
14289 #if 0
14290 init_remote_threadtests ();
14291 #endif
14292
14293 /* set/show remote ... */
14294
14295 add_prefix_cmd ("remote", class_maintenance, set_remote_cmd, _("\
14296 Remote protocol specific variables.\n\
14297 Configure various remote-protocol specific variables such as\n\
14298 the packets being used."),
14299 &remote_set_cmdlist, "set remote ",
14300 0 /* allow-unknown */, &setlist);
14301 add_prefix_cmd ("remote", class_maintenance, show_remote_cmd, _("\
14302 Remote protocol specific variables.\n\
14303 Configure various remote-protocol specific variables such as\n\
14304 the packets being used."),
14305 &remote_show_cmdlist, "show remote ",
14306 0 /* allow-unknown */, &showlist);
14307
14308 add_cmd ("compare-sections", class_obscure, compare_sections_command, _("\
14309 Compare section data on target to the exec file.\n\
14310 Argument is a single section name (default: all loaded sections).\n\
14311 To compare only read-only loaded sections, specify the -r option."),
14312 &cmdlist);
14313
14314 add_cmd ("packet", class_maintenance, packet_command, _("\
14315 Send an arbitrary packet to a remote target.\n\
14316 maintenance packet TEXT\n\
14317 If GDB is talking to an inferior via the GDB serial protocol, then\n\
14318 this command sends the string TEXT to the inferior, and displays the\n\
14319 response packet. GDB supplies the initial `$' character, and the\n\
14320 terminating `#' character and checksum."),
14321 &maintenancelist);
14322
14323 add_setshow_boolean_cmd ("remotebreak", no_class, &remote_break, _("\
14324 Set whether to send break if interrupted."), _("\
14325 Show whether to send break if interrupted."), _("\
14326 If set, a break, instead of a cntrl-c, is sent to the remote target."),
14327 set_remotebreak, show_remotebreak,
14328 &setlist, &showlist);
14329 cmd_name = "remotebreak";
14330 cmd = lookup_cmd (&cmd_name, setlist, "", -1, 1);
14331 deprecate_cmd (cmd, "set remote interrupt-sequence");
14332 cmd_name = "remotebreak"; /* needed because lookup_cmd updates the pointer */
14333 cmd = lookup_cmd (&cmd_name, showlist, "", -1, 1);
14334 deprecate_cmd (cmd, "show remote interrupt-sequence");
14335
14336 add_setshow_enum_cmd ("interrupt-sequence", class_support,
14337 interrupt_sequence_modes, &interrupt_sequence_mode,
14338 _("\
14339 Set interrupt sequence to remote target."), _("\
14340 Show interrupt sequence to remote target."), _("\
14341 Valid value is \"Ctrl-C\", \"BREAK\" or \"BREAK-g\". The default is \"Ctrl-C\"."),
14342 NULL, show_interrupt_sequence,
14343 &remote_set_cmdlist,
14344 &remote_show_cmdlist);
14345
14346 add_setshow_boolean_cmd ("interrupt-on-connect", class_support,
14347 &interrupt_on_connect, _("\
14348 Set whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14349 Show whether interrupt-sequence is sent to remote target when gdb connects to."), _("\
14350 If set, interrupt sequence is sent to remote target."),
14351 NULL, NULL,
14352 &remote_set_cmdlist, &remote_show_cmdlist);
14353
14354 /* Install commands for configuring memory read/write packets. */
14355
14356 add_cmd ("remotewritesize", no_class, set_memory_write_packet_size, _("\
14357 Set the maximum number of bytes per memory write packet (deprecated)."),
14358 &setlist);
14359 add_cmd ("remotewritesize", no_class, show_memory_write_packet_size, _("\
14360 Show the maximum number of bytes per memory write packet (deprecated)."),
14361 &showlist);
14362 add_cmd ("memory-write-packet-size", no_class,
14363 set_memory_write_packet_size, _("\
14364 Set the maximum number of bytes per memory-write packet.\n\
14365 Specify the number of bytes in a packet or 0 (zero) for the\n\
14366 default packet size. The actual limit is further reduced\n\
14367 dependent on the target. Specify ``fixed'' to disable the\n\
14368 further restriction and ``limit'' to enable that restriction."),
14369 &remote_set_cmdlist);
14370 add_cmd ("memory-read-packet-size", no_class,
14371 set_memory_read_packet_size, _("\
14372 Set the maximum number of bytes per memory-read packet.\n\
14373 Specify the number of bytes in a packet or 0 (zero) for the\n\
14374 default packet size. The actual limit is further reduced\n\
14375 dependent on the target. Specify ``fixed'' to disable the\n\
14376 further restriction and ``limit'' to enable that restriction."),
14377 &remote_set_cmdlist);
14378 add_cmd ("memory-write-packet-size", no_class,
14379 show_memory_write_packet_size,
14380 _("Show the maximum number of bytes per memory-write packet."),
14381 &remote_show_cmdlist);
14382 add_cmd ("memory-read-packet-size", no_class,
14383 show_memory_read_packet_size,
14384 _("Show the maximum number of bytes per memory-read packet."),
14385 &remote_show_cmdlist);
14386
14387 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-limit", no_class,
14388 &remote_hw_watchpoint_limit, _("\
14389 Set the maximum number of target hardware watchpoints."), _("\
14390 Show the maximum number of target hardware watchpoints."), _("\
14391 Specify \"unlimited\" for unlimited hardware watchpoints."),
14392 NULL, show_hardware_watchpoint_limit,
14393 &remote_set_cmdlist,
14394 &remote_show_cmdlist);
14395 add_setshow_zuinteger_unlimited_cmd ("hardware-watchpoint-length-limit",
14396 no_class,
14397 &remote_hw_watchpoint_length_limit, _("\
14398 Set the maximum length (in bytes) of a target hardware watchpoint."), _("\
14399 Show the maximum length (in bytes) of a target hardware watchpoint."), _("\
14400 Specify \"unlimited\" to allow watchpoints of unlimited size."),
14401 NULL, show_hardware_watchpoint_length_limit,
14402 &remote_set_cmdlist, &remote_show_cmdlist);
14403 add_setshow_zuinteger_unlimited_cmd ("hardware-breakpoint-limit", no_class,
14404 &remote_hw_breakpoint_limit, _("\
14405 Set the maximum number of target hardware breakpoints."), _("\
14406 Show the maximum number of target hardware breakpoints."), _("\
14407 Specify \"unlimited\" for unlimited hardware breakpoints."),
14408 NULL, show_hardware_breakpoint_limit,
14409 &remote_set_cmdlist, &remote_show_cmdlist);
14410
14411 add_setshow_zuinteger_cmd ("remoteaddresssize", class_obscure,
14412 &remote_address_size, _("\
14413 Set the maximum size of the address (in bits) in a memory packet."), _("\
14414 Show the maximum size of the address (in bits) in a memory packet."), NULL,
14415 NULL,
14416 NULL, /* FIXME: i18n: */
14417 &setlist, &showlist);
14418
14419 init_all_packet_configs ();
14420
14421 add_packet_config_cmd (&remote_protocol_packets[PACKET_X],
14422 "X", "binary-download", 1);
14423
14424 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCont],
14425 "vCont", "verbose-resume", 0);
14426
14427 add_packet_config_cmd (&remote_protocol_packets[PACKET_QPassSignals],
14428 "QPassSignals", "pass-signals", 0);
14429
14430 add_packet_config_cmd (&remote_protocol_packets[PACKET_QCatchSyscalls],
14431 "QCatchSyscalls", "catch-syscalls", 0);
14432
14433 add_packet_config_cmd (&remote_protocol_packets[PACKET_QProgramSignals],
14434 "QProgramSignals", "program-signals", 0);
14435
14436 add_packet_config_cmd (&remote_protocol_packets[PACKET_QSetWorkingDir],
14437 "QSetWorkingDir", "set-working-dir", 0);
14438
14439 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartupWithShell],
14440 "QStartupWithShell", "startup-with-shell", 0);
14441
14442 add_packet_config_cmd (&remote_protocol_packets
14443 [PACKET_QEnvironmentHexEncoded],
14444 "QEnvironmentHexEncoded", "environment-hex-encoded",
14445 0);
14446
14447 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentReset],
14448 "QEnvironmentReset", "environment-reset",
14449 0);
14450
14451 add_packet_config_cmd (&remote_protocol_packets[PACKET_QEnvironmentUnset],
14452 "QEnvironmentUnset", "environment-unset",
14453 0);
14454
14455 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSymbol],
14456 "qSymbol", "symbol-lookup", 0);
14457
14458 add_packet_config_cmd (&remote_protocol_packets[PACKET_P],
14459 "P", "set-register", 1);
14460
14461 add_packet_config_cmd (&remote_protocol_packets[PACKET_p],
14462 "p", "fetch-register", 1);
14463
14464 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z0],
14465 "Z0", "software-breakpoint", 0);
14466
14467 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z1],
14468 "Z1", "hardware-breakpoint", 0);
14469
14470 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z2],
14471 "Z2", "write-watchpoint", 0);
14472
14473 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z3],
14474 "Z3", "read-watchpoint", 0);
14475
14476 add_packet_config_cmd (&remote_protocol_packets[PACKET_Z4],
14477 "Z4", "access-watchpoint", 0);
14478
14479 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_auxv],
14480 "qXfer:auxv:read", "read-aux-vector", 0);
14481
14482 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_exec_file],
14483 "qXfer:exec-file:read", "pid-to-exec-file", 0);
14484
14485 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_features],
14486 "qXfer:features:read", "target-features", 0);
14487
14488 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries],
14489 "qXfer:libraries:read", "library-info", 0);
14490
14491 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_libraries_svr4],
14492 "qXfer:libraries-svr4:read", "library-info-svr4", 0);
14493
14494 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_memory_map],
14495 "qXfer:memory-map:read", "memory-map", 0);
14496
14497 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_osdata],
14498 "qXfer:osdata:read", "osdata", 0);
14499
14500 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_threads],
14501 "qXfer:threads:read", "threads", 0);
14502
14503 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_read],
14504 "qXfer:siginfo:read", "read-siginfo-object", 0);
14505
14506 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_siginfo_write],
14507 "qXfer:siginfo:write", "write-siginfo-object", 0);
14508
14509 add_packet_config_cmd
14510 (&remote_protocol_packets[PACKET_qXfer_traceframe_info],
14511 "qXfer:traceframe-info:read", "traceframe-info", 0);
14512
14513 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_uib],
14514 "qXfer:uib:read", "unwind-info-block", 0);
14515
14516 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTLSAddr],
14517 "qGetTLSAddr", "get-thread-local-storage-address",
14518 0);
14519
14520 add_packet_config_cmd (&remote_protocol_packets[PACKET_qGetTIBAddr],
14521 "qGetTIBAddr", "get-thread-information-block-address",
14522 0);
14523
14524 add_packet_config_cmd (&remote_protocol_packets[PACKET_bc],
14525 "bc", "reverse-continue", 0);
14526
14527 add_packet_config_cmd (&remote_protocol_packets[PACKET_bs],
14528 "bs", "reverse-step", 0);
14529
14530 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSupported],
14531 "qSupported", "supported-packets", 0);
14532
14533 add_packet_config_cmd (&remote_protocol_packets[PACKET_qSearch_memory],
14534 "qSearch:memory", "search-memory", 0);
14535
14536 add_packet_config_cmd (&remote_protocol_packets[PACKET_qTStatus],
14537 "qTStatus", "trace-status", 0);
14538
14539 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_setfs],
14540 "vFile:setfs", "hostio-setfs", 0);
14541
14542 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_open],
14543 "vFile:open", "hostio-open", 0);
14544
14545 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pread],
14546 "vFile:pread", "hostio-pread", 0);
14547
14548 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_pwrite],
14549 "vFile:pwrite", "hostio-pwrite", 0);
14550
14551 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_close],
14552 "vFile:close", "hostio-close", 0);
14553
14554 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_unlink],
14555 "vFile:unlink", "hostio-unlink", 0);
14556
14557 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_readlink],
14558 "vFile:readlink", "hostio-readlink", 0);
14559
14560 add_packet_config_cmd (&remote_protocol_packets[PACKET_vFile_fstat],
14561 "vFile:fstat", "hostio-fstat", 0);
14562
14563 add_packet_config_cmd (&remote_protocol_packets[PACKET_vAttach],
14564 "vAttach", "attach", 0);
14565
14566 add_packet_config_cmd (&remote_protocol_packets[PACKET_vRun],
14567 "vRun", "run", 0);
14568
14569 add_packet_config_cmd (&remote_protocol_packets[PACKET_QStartNoAckMode],
14570 "QStartNoAckMode", "noack", 0);
14571
14572 add_packet_config_cmd (&remote_protocol_packets[PACKET_vKill],
14573 "vKill", "kill", 0);
14574
14575 add_packet_config_cmd (&remote_protocol_packets[PACKET_qAttached],
14576 "qAttached", "query-attached", 0);
14577
14578 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalTracepoints],
14579 "ConditionalTracepoints",
14580 "conditional-tracepoints", 0);
14581
14582 add_packet_config_cmd (&remote_protocol_packets[PACKET_ConditionalBreakpoints],
14583 "ConditionalBreakpoints",
14584 "conditional-breakpoints", 0);
14585
14586 add_packet_config_cmd (&remote_protocol_packets[PACKET_BreakpointCommands],
14587 "BreakpointCommands",
14588 "breakpoint-commands", 0);
14589
14590 add_packet_config_cmd (&remote_protocol_packets[PACKET_FastTracepoints],
14591 "FastTracepoints", "fast-tracepoints", 0);
14592
14593 add_packet_config_cmd (&remote_protocol_packets[PACKET_TracepointSource],
14594 "TracepointSource", "TracepointSource", 0);
14595
14596 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAllow],
14597 "QAllow", "allow", 0);
14598
14599 add_packet_config_cmd (&remote_protocol_packets[PACKET_StaticTracepoints],
14600 "StaticTracepoints", "static-tracepoints", 0);
14601
14602 add_packet_config_cmd (&remote_protocol_packets[PACKET_InstallInTrace],
14603 "InstallInTrace", "install-in-trace", 0);
14604
14605 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_statictrace_read],
14606 "qXfer:statictrace:read", "read-sdata-object", 0);
14607
14608 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_fdpic],
14609 "qXfer:fdpic:read", "read-fdpic-loadmap", 0);
14610
14611 add_packet_config_cmd (&remote_protocol_packets[PACKET_QDisableRandomization],
14612 "QDisableRandomization", "disable-randomization", 0);
14613
14614 add_packet_config_cmd (&remote_protocol_packets[PACKET_QAgent],
14615 "QAgent", "agent", 0);
14616
14617 add_packet_config_cmd (&remote_protocol_packets[PACKET_QTBuffer_size],
14618 "QTBuffer:size", "trace-buffer-size", 0);
14619
14620 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_off],
14621 "Qbtrace:off", "disable-btrace", 0);
14622
14623 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_bts],
14624 "Qbtrace:bts", "enable-btrace-bts", 0);
14625
14626 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_pt],
14627 "Qbtrace:pt", "enable-btrace-pt", 0);
14628
14629 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace],
14630 "qXfer:btrace", "read-btrace", 0);
14631
14632 add_packet_config_cmd (&remote_protocol_packets[PACKET_qXfer_btrace_conf],
14633 "qXfer:btrace-conf", "read-btrace-conf", 0);
14634
14635 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_bts_size],
14636 "Qbtrace-conf:bts:size", "btrace-conf-bts-size", 0);
14637
14638 add_packet_config_cmd (&remote_protocol_packets[PACKET_multiprocess_feature],
14639 "multiprocess-feature", "multiprocess-feature", 0);
14640
14641 add_packet_config_cmd (&remote_protocol_packets[PACKET_swbreak_feature],
14642 "swbreak-feature", "swbreak-feature", 0);
14643
14644 add_packet_config_cmd (&remote_protocol_packets[PACKET_hwbreak_feature],
14645 "hwbreak-feature", "hwbreak-feature", 0);
14646
14647 add_packet_config_cmd (&remote_protocol_packets[PACKET_fork_event_feature],
14648 "fork-event-feature", "fork-event-feature", 0);
14649
14650 add_packet_config_cmd (&remote_protocol_packets[PACKET_vfork_event_feature],
14651 "vfork-event-feature", "vfork-event-feature", 0);
14652
14653 add_packet_config_cmd (&remote_protocol_packets[PACKET_Qbtrace_conf_pt_size],
14654 "Qbtrace-conf:pt:size", "btrace-conf-pt-size", 0);
14655
14656 add_packet_config_cmd (&remote_protocol_packets[PACKET_vContSupported],
14657 "vContSupported", "verbose-resume-supported", 0);
14658
14659 add_packet_config_cmd (&remote_protocol_packets[PACKET_exec_event_feature],
14660 "exec-event-feature", "exec-event-feature", 0);
14661
14662 add_packet_config_cmd (&remote_protocol_packets[PACKET_vCtrlC],
14663 "vCtrlC", "ctrl-c", 0);
14664
14665 add_packet_config_cmd (&remote_protocol_packets[PACKET_QThreadEvents],
14666 "QThreadEvents", "thread-events", 0);
14667
14668 add_packet_config_cmd (&remote_protocol_packets[PACKET_no_resumed],
14669 "N stop reply", "no-resumed-stop-reply", 0);
14670
14671 /* Assert that we've registered "set remote foo-packet" commands
14672 for all packet configs. */
14673 {
14674 int i;
14675
14676 for (i = 0; i < PACKET_MAX; i++)
14677 {
14678 /* Ideally all configs would have a command associated. Some
14679 still don't though. */
14680 int excepted;
14681
14682 switch (i)
14683 {
14684 case PACKET_QNonStop:
14685 case PACKET_EnableDisableTracepoints_feature:
14686 case PACKET_tracenz_feature:
14687 case PACKET_DisconnectedTracing_feature:
14688 case PACKET_augmented_libraries_svr4_read_feature:
14689 case PACKET_qCRC:
14690 /* Additions to this list need to be well justified:
14691 pre-existing packets are OK; new packets are not. */
14692 excepted = 1;
14693 break;
14694 default:
14695 excepted = 0;
14696 break;
14697 }
14698
14699 /* This catches both forgetting to add a config command, and
14700 forgetting to remove a packet from the exception list. */
14701 gdb_assert (excepted == (remote_protocol_packets[i].name == NULL));
14702 }
14703 }
14704
14705 /* Keep the old ``set remote Z-packet ...'' working. Each individual
14706 Z sub-packet has its own set and show commands, but users may
14707 have sets to this variable in their .gdbinit files (or in their
14708 documentation). */
14709 add_setshow_auto_boolean_cmd ("Z-packet", class_obscure,
14710 &remote_Z_packet_detect, _("\
14711 Set use of remote protocol `Z' packets."), _("\
14712 Show use of remote protocol `Z' packets."), _("\
14713 When set, GDB will attempt to use the remote breakpoint and watchpoint\n\
14714 packets."),
14715 set_remote_protocol_Z_packet_cmd,
14716 show_remote_protocol_Z_packet_cmd,
14717 /* FIXME: i18n: Use of remote protocol
14718 `Z' packets is %s. */
14719 &remote_set_cmdlist, &remote_show_cmdlist);
14720
14721 add_prefix_cmd ("remote", class_files, remote_command, _("\
14722 Manipulate files on the remote system.\n\
14723 Transfer files to and from the remote target system."),
14724 &remote_cmdlist, "remote ",
14725 0 /* allow-unknown */, &cmdlist);
14726
14727 add_cmd ("put", class_files, remote_put_command,
14728 _("Copy a local file to the remote system."),
14729 &remote_cmdlist);
14730
14731 add_cmd ("get", class_files, remote_get_command,
14732 _("Copy a remote file to the local system."),
14733 &remote_cmdlist);
14734
14735 add_cmd ("delete", class_files, remote_delete_command,
14736 _("Delete a remote file."),
14737 &remote_cmdlist);
14738
14739 add_setshow_string_noescape_cmd ("exec-file", class_files,
14740 &remote_exec_file_var, _("\
14741 Set the remote pathname for \"run\"."), _("\
14742 Show the remote pathname for \"run\"."), NULL,
14743 set_remote_exec_file,
14744 show_remote_exec_file,
14745 &remote_set_cmdlist,
14746 &remote_show_cmdlist);
14747
14748 add_setshow_boolean_cmd ("range-stepping", class_run,
14749 &use_range_stepping, _("\
14750 Enable or disable range stepping."), _("\
14751 Show whether target-assisted range stepping is enabled."), _("\
14752 If on, and the target supports it, when stepping a source line, GDB\n\
14753 tells the target to step the corresponding range of addresses itself instead\n\
14754 of issuing multiple single-steps. This speeds up source level\n\
14755 stepping. If off, GDB always issues single-steps, even if range\n\
14756 stepping is supported by the target. The default is on."),
14757 set_range_stepping,
14758 show_range_stepping,
14759 &setlist,
14760 &showlist);
14761
14762 add_setshow_zinteger_cmd ("watchdog", class_maintenance, &watchdog, _("\
14763 Set watchdog timer."), _("\
14764 Show watchdog timer."), _("\
14765 When non-zero, this timeout is used instead of waiting forever for a target\n\
14766 to finish a low-level step or continue operation. If the specified amount\n\
14767 of time passes without a response from the target, an error occurs."),
14768 NULL,
14769 show_watchdog,
14770 &setlist, &showlist);
14771
14772 add_setshow_zuinteger_unlimited_cmd ("remote-packet-max-chars", no_class,
14773 &remote_packet_max_chars, _("\
14774 Set the maximum number of characters to display for each remote packet."), _("\
14775 Show the maximum number of characters to display for each remote packet."), _("\
14776 Specify \"unlimited\" to display all the characters."),
14777 NULL, show_remote_packet_max_chars,
14778 &setdebuglist, &showdebuglist);
14779
14780 /* Eventually initialize fileio. See fileio.c */
14781 initialize_remote_fileio (remote_set_cmdlist, remote_show_cmdlist);
14782 }
This page took 0.481781 seconds and 4 git commands to generate.