Use an accessor function for general_symbol_info::language
[deliverable/binutils-gdb.git] / gdb / symtab.c
1 /* Symbol table lookup for the GNU debugger, GDB.
2
3 Copyright (C) 1986-2019 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "gdbcore.h"
24 #include "frame.h"
25 #include "target.h"
26 #include "value.h"
27 #include "symfile.h"
28 #include "objfiles.h"
29 #include "gdbcmd.h"
30 #include "gdb_regex.h"
31 #include "expression.h"
32 #include "language.h"
33 #include "demangle.h"
34 #include "inferior.h"
35 #include "source.h"
36 #include "filenames.h" /* for FILENAME_CMP */
37 #include "objc-lang.h"
38 #include "d-lang.h"
39 #include "ada-lang.h"
40 #include "go-lang.h"
41 #include "p-lang.h"
42 #include "addrmap.h"
43 #include "cli/cli-utils.h"
44 #include "cli/cli-style.h"
45 #include "fnmatch.h"
46 #include "hashtab.h"
47 #include "typeprint.h"
48
49 #include "gdb_obstack.h"
50 #include "block.h"
51 #include "dictionary.h"
52
53 #include <sys/types.h>
54 #include <fcntl.h>
55 #include <sys/stat.h>
56 #include <ctype.h>
57 #include "cp-abi.h"
58 #include "cp-support.h"
59 #include "observable.h"
60 #include "solist.h"
61 #include "macrotab.h"
62 #include "macroscope.h"
63
64 #include "parser-defs.h"
65 #include "completer.h"
66 #include "progspace-and-thread.h"
67 #include "gdbsupport/gdb_optional.h"
68 #include "filename-seen-cache.h"
69 #include "arch-utils.h"
70 #include <algorithm>
71 #include "gdbsupport/gdb_string_view.h"
72 #include "gdbsupport/pathstuff.h"
73 #include "gdbsupport/common-utils.h"
74
75 /* Forward declarations for local functions. */
76
77 static void rbreak_command (const char *, int);
78
79 static int find_line_common (struct linetable *, int, int *, int);
80
81 static struct block_symbol
82 lookup_symbol_aux (const char *name,
83 symbol_name_match_type match_type,
84 const struct block *block,
85 const domain_enum domain,
86 enum language language,
87 struct field_of_this_result *);
88
89 static
90 struct block_symbol lookup_local_symbol (const char *name,
91 symbol_name_match_type match_type,
92 const struct block *block,
93 const domain_enum domain,
94 enum language language);
95
96 static struct block_symbol
97 lookup_symbol_in_objfile (struct objfile *objfile,
98 enum block_enum block_index,
99 const char *name, const domain_enum domain);
100
101 /* Type of the data stored on the program space. */
102
103 struct main_info
104 {
105 main_info () = default;
106
107 ~main_info ()
108 {
109 xfree (name_of_main);
110 }
111
112 /* Name of "main". */
113
114 char *name_of_main = nullptr;
115
116 /* Language of "main". */
117
118 enum language language_of_main = language_unknown;
119 };
120
121 /* Program space key for finding name and language of "main". */
122
123 static const program_space_key<main_info> main_progspace_key;
124
125 /* The default symbol cache size.
126 There is no extra cpu cost for large N (except when flushing the cache,
127 which is rare). The value here is just a first attempt. A better default
128 value may be higher or lower. A prime number can make up for a bad hash
129 computation, so that's why the number is what it is. */
130 #define DEFAULT_SYMBOL_CACHE_SIZE 1021
131
132 /* The maximum symbol cache size.
133 There's no method to the decision of what value to use here, other than
134 there's no point in allowing a user typo to make gdb consume all memory. */
135 #define MAX_SYMBOL_CACHE_SIZE (1024*1024)
136
137 /* symbol_cache_lookup returns this if a previous lookup failed to find the
138 symbol in any objfile. */
139 #define SYMBOL_LOOKUP_FAILED \
140 ((struct block_symbol) {(struct symbol *) 1, NULL})
141 #define SYMBOL_LOOKUP_FAILED_P(SIB) (SIB.symbol == (struct symbol *) 1)
142
143 /* Recording lookups that don't find the symbol is just as important, if not
144 more so, than recording found symbols. */
145
146 enum symbol_cache_slot_state
147 {
148 SYMBOL_SLOT_UNUSED,
149 SYMBOL_SLOT_NOT_FOUND,
150 SYMBOL_SLOT_FOUND
151 };
152
153 struct symbol_cache_slot
154 {
155 enum symbol_cache_slot_state state;
156
157 /* The objfile that was current when the symbol was looked up.
158 This is only needed for global blocks, but for simplicity's sake
159 we allocate the space for both. If data shows the extra space used
160 for static blocks is a problem, we can split things up then.
161
162 Global blocks need cache lookup to include the objfile context because
163 we need to account for gdbarch_iterate_over_objfiles_in_search_order
164 which can traverse objfiles in, effectively, any order, depending on
165 the current objfile, thus affecting which symbol is found. Normally,
166 only the current objfile is searched first, and then the rest are
167 searched in recorded order; but putting cache lookup inside
168 gdbarch_iterate_over_objfiles_in_search_order would be awkward.
169 Instead we just make the current objfile part of the context of
170 cache lookup. This means we can record the same symbol multiple times,
171 each with a different "current objfile" that was in effect when the
172 lookup was saved in the cache, but cache space is pretty cheap. */
173 const struct objfile *objfile_context;
174
175 union
176 {
177 struct block_symbol found;
178 struct
179 {
180 char *name;
181 domain_enum domain;
182 } not_found;
183 } value;
184 };
185
186 /* Clear out SLOT. */
187
188 static void
189 symbol_cache_clear_slot (struct symbol_cache_slot *slot)
190 {
191 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
192 xfree (slot->value.not_found.name);
193 slot->state = SYMBOL_SLOT_UNUSED;
194 }
195
196 /* Symbols don't specify global vs static block.
197 So keep them in separate caches. */
198
199 struct block_symbol_cache
200 {
201 unsigned int hits;
202 unsigned int misses;
203 unsigned int collisions;
204
205 /* SYMBOLS is a variable length array of this size.
206 One can imagine that in general one cache (global/static) should be a
207 fraction of the size of the other, but there's no data at the moment
208 on which to decide. */
209 unsigned int size;
210
211 struct symbol_cache_slot symbols[1];
212 };
213
214 /* Clear all slots of BSC and free BSC. */
215
216 static void
217 destroy_block_symbol_cache (struct block_symbol_cache *bsc)
218 {
219 if (bsc != nullptr)
220 {
221 for (unsigned int i = 0; i < bsc->size; i++)
222 symbol_cache_clear_slot (&bsc->symbols[i]);
223 xfree (bsc);
224 }
225 }
226
227 /* The symbol cache.
228
229 Searching for symbols in the static and global blocks over multiple objfiles
230 again and again can be slow, as can searching very big objfiles. This is a
231 simple cache to improve symbol lookup performance, which is critical to
232 overall gdb performance.
233
234 Symbols are hashed on the name, its domain, and block.
235 They are also hashed on their objfile for objfile-specific lookups. */
236
237 struct symbol_cache
238 {
239 symbol_cache () = default;
240
241 ~symbol_cache ()
242 {
243 destroy_block_symbol_cache (global_symbols);
244 destroy_block_symbol_cache (static_symbols);
245 }
246
247 struct block_symbol_cache *global_symbols = nullptr;
248 struct block_symbol_cache *static_symbols = nullptr;
249 };
250
251 /* Program space key for finding its symbol cache. */
252
253 static const program_space_key<symbol_cache> symbol_cache_key;
254
255 /* When non-zero, print debugging messages related to symtab creation. */
256 unsigned int symtab_create_debug = 0;
257
258 /* When non-zero, print debugging messages related to symbol lookup. */
259 unsigned int symbol_lookup_debug = 0;
260
261 /* The size of the cache is staged here. */
262 static unsigned int new_symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
263
264 /* The current value of the symbol cache size.
265 This is saved so that if the user enters a value too big we can restore
266 the original value from here. */
267 static unsigned int symbol_cache_size = DEFAULT_SYMBOL_CACHE_SIZE;
268
269 /* True if a file may be known by two different basenames.
270 This is the uncommon case, and significantly slows down gdb.
271 Default set to "off" to not slow down the common case. */
272 bool basenames_may_differ = false;
273
274 /* Allow the user to configure the debugger behavior with respect
275 to multiple-choice menus when more than one symbol matches during
276 a symbol lookup. */
277
278 const char multiple_symbols_ask[] = "ask";
279 const char multiple_symbols_all[] = "all";
280 const char multiple_symbols_cancel[] = "cancel";
281 static const char *const multiple_symbols_modes[] =
282 {
283 multiple_symbols_ask,
284 multiple_symbols_all,
285 multiple_symbols_cancel,
286 NULL
287 };
288 static const char *multiple_symbols_mode = multiple_symbols_all;
289
290 /* Read-only accessor to AUTO_SELECT_MODE. */
291
292 const char *
293 multiple_symbols_select_mode (void)
294 {
295 return multiple_symbols_mode;
296 }
297
298 /* Return the name of a domain_enum. */
299
300 const char *
301 domain_name (domain_enum e)
302 {
303 switch (e)
304 {
305 case UNDEF_DOMAIN: return "UNDEF_DOMAIN";
306 case VAR_DOMAIN: return "VAR_DOMAIN";
307 case STRUCT_DOMAIN: return "STRUCT_DOMAIN";
308 case MODULE_DOMAIN: return "MODULE_DOMAIN";
309 case LABEL_DOMAIN: return "LABEL_DOMAIN";
310 case COMMON_BLOCK_DOMAIN: return "COMMON_BLOCK_DOMAIN";
311 default: gdb_assert_not_reached ("bad domain_enum");
312 }
313 }
314
315 /* Return the name of a search_domain . */
316
317 const char *
318 search_domain_name (enum search_domain e)
319 {
320 switch (e)
321 {
322 case VARIABLES_DOMAIN: return "VARIABLES_DOMAIN";
323 case FUNCTIONS_DOMAIN: return "FUNCTIONS_DOMAIN";
324 case TYPES_DOMAIN: return "TYPES_DOMAIN";
325 case MODULES_DOMAIN: return "MODULES_DOMAIN";
326 case ALL_DOMAIN: return "ALL_DOMAIN";
327 default: gdb_assert_not_reached ("bad search_domain");
328 }
329 }
330
331 /* See symtab.h. */
332
333 struct symtab *
334 compunit_primary_filetab (const struct compunit_symtab *cust)
335 {
336 gdb_assert (COMPUNIT_FILETABS (cust) != NULL);
337
338 /* The primary file symtab is the first one in the list. */
339 return COMPUNIT_FILETABS (cust);
340 }
341
342 /* See symtab.h. */
343
344 enum language
345 compunit_language (const struct compunit_symtab *cust)
346 {
347 struct symtab *symtab = compunit_primary_filetab (cust);
348
349 /* The language of the compunit symtab is the language of its primary
350 source file. */
351 return SYMTAB_LANGUAGE (symtab);
352 }
353
354 /* See symtab.h. */
355
356 bool
357 minimal_symbol::data_p () const
358 {
359 return type == mst_data
360 || type == mst_bss
361 || type == mst_abs
362 || type == mst_file_data
363 || type == mst_file_bss;
364 }
365
366 /* See symtab.h. */
367
368 bool
369 minimal_symbol::text_p () const
370 {
371 return type == mst_text
372 || type == mst_text_gnu_ifunc
373 || type == mst_data_gnu_ifunc
374 || type == mst_slot_got_plt
375 || type == mst_solib_trampoline
376 || type == mst_file_text;
377 }
378
379 /* See whether FILENAME matches SEARCH_NAME using the rule that we
380 advertise to the user. (The manual's description of linespecs
381 describes what we advertise). Returns true if they match, false
382 otherwise. */
383
384 bool
385 compare_filenames_for_search (const char *filename, const char *search_name)
386 {
387 int len = strlen (filename);
388 size_t search_len = strlen (search_name);
389
390 if (len < search_len)
391 return false;
392
393 /* The tail of FILENAME must match. */
394 if (FILENAME_CMP (filename + len - search_len, search_name) != 0)
395 return false;
396
397 /* Either the names must completely match, or the character
398 preceding the trailing SEARCH_NAME segment of FILENAME must be a
399 directory separator.
400
401 The check !IS_ABSOLUTE_PATH ensures SEARCH_NAME "/dir/file.c"
402 cannot match FILENAME "/path//dir/file.c" - as user has requested
403 absolute path. The sama applies for "c:\file.c" possibly
404 incorrectly hypothetically matching "d:\dir\c:\file.c".
405
406 The HAS_DRIVE_SPEC purpose is to make FILENAME "c:file.c"
407 compatible with SEARCH_NAME "file.c". In such case a compiler had
408 to put the "c:file.c" name into debug info. Such compatibility
409 works only on GDB built for DOS host. */
410 return (len == search_len
411 || (!IS_ABSOLUTE_PATH (search_name)
412 && IS_DIR_SEPARATOR (filename[len - search_len - 1]))
413 || (HAS_DRIVE_SPEC (filename)
414 && STRIP_DRIVE_SPEC (filename) == &filename[len - search_len]));
415 }
416
417 /* Same as compare_filenames_for_search, but for glob-style patterns.
418 Heads up on the order of the arguments. They match the order of
419 compare_filenames_for_search, but it's the opposite of the order of
420 arguments to gdb_filename_fnmatch. */
421
422 bool
423 compare_glob_filenames_for_search (const char *filename,
424 const char *search_name)
425 {
426 /* We rely on the property of glob-style patterns with FNM_FILE_NAME that
427 all /s have to be explicitly specified. */
428 int file_path_elements = count_path_elements (filename);
429 int search_path_elements = count_path_elements (search_name);
430
431 if (search_path_elements > file_path_elements)
432 return false;
433
434 if (IS_ABSOLUTE_PATH (search_name))
435 {
436 return (search_path_elements == file_path_elements
437 && gdb_filename_fnmatch (search_name, filename,
438 FNM_FILE_NAME | FNM_NOESCAPE) == 0);
439 }
440
441 {
442 const char *file_to_compare
443 = strip_leading_path_elements (filename,
444 file_path_elements - search_path_elements);
445
446 return gdb_filename_fnmatch (search_name, file_to_compare,
447 FNM_FILE_NAME | FNM_NOESCAPE) == 0;
448 }
449 }
450
451 /* Check for a symtab of a specific name by searching some symtabs.
452 This is a helper function for callbacks of iterate_over_symtabs.
453
454 If NAME is not absolute, then REAL_PATH is NULL
455 If NAME is absolute, then REAL_PATH is the gdb_realpath form of NAME.
456
457 The return value, NAME, REAL_PATH and CALLBACK are identical to the
458 `map_symtabs_matching_filename' method of quick_symbol_functions.
459
460 FIRST and AFTER_LAST indicate the range of compunit symtabs to search.
461 Each symtab within the specified compunit symtab is also searched.
462 AFTER_LAST is one past the last compunit symtab to search; NULL means to
463 search until the end of the list. */
464
465 bool
466 iterate_over_some_symtabs (const char *name,
467 const char *real_path,
468 struct compunit_symtab *first,
469 struct compunit_symtab *after_last,
470 gdb::function_view<bool (symtab *)> callback)
471 {
472 struct compunit_symtab *cust;
473 const char* base_name = lbasename (name);
474
475 for (cust = first; cust != NULL && cust != after_last; cust = cust->next)
476 {
477 for (symtab *s : compunit_filetabs (cust))
478 {
479 if (compare_filenames_for_search (s->filename, name))
480 {
481 if (callback (s))
482 return true;
483 continue;
484 }
485
486 /* Before we invoke realpath, which can get expensive when many
487 files are involved, do a quick comparison of the basenames. */
488 if (! basenames_may_differ
489 && FILENAME_CMP (base_name, lbasename (s->filename)) != 0)
490 continue;
491
492 if (compare_filenames_for_search (symtab_to_fullname (s), name))
493 {
494 if (callback (s))
495 return true;
496 continue;
497 }
498
499 /* If the user gave us an absolute path, try to find the file in
500 this symtab and use its absolute path. */
501 if (real_path != NULL)
502 {
503 const char *fullname = symtab_to_fullname (s);
504
505 gdb_assert (IS_ABSOLUTE_PATH (real_path));
506 gdb_assert (IS_ABSOLUTE_PATH (name));
507 gdb::unique_xmalloc_ptr<char> fullname_real_path
508 = gdb_realpath (fullname);
509 fullname = fullname_real_path.get ();
510 if (FILENAME_CMP (real_path, fullname) == 0)
511 {
512 if (callback (s))
513 return true;
514 continue;
515 }
516 }
517 }
518 }
519
520 return false;
521 }
522
523 /* Check for a symtab of a specific name; first in symtabs, then in
524 psymtabs. *If* there is no '/' in the name, a match after a '/'
525 in the symtab filename will also work.
526
527 Calls CALLBACK with each symtab that is found. If CALLBACK returns
528 true, the search stops. */
529
530 void
531 iterate_over_symtabs (const char *name,
532 gdb::function_view<bool (symtab *)> callback)
533 {
534 gdb::unique_xmalloc_ptr<char> real_path;
535
536 /* Here we are interested in canonicalizing an absolute path, not
537 absolutizing a relative path. */
538 if (IS_ABSOLUTE_PATH (name))
539 {
540 real_path = gdb_realpath (name);
541 gdb_assert (IS_ABSOLUTE_PATH (real_path.get ()));
542 }
543
544 for (objfile *objfile : current_program_space->objfiles ())
545 {
546 if (iterate_over_some_symtabs (name, real_path.get (),
547 objfile->compunit_symtabs, NULL,
548 callback))
549 return;
550 }
551
552 /* Same search rules as above apply here, but now we look thru the
553 psymtabs. */
554
555 for (objfile *objfile : current_program_space->objfiles ())
556 {
557 if (objfile->sf
558 && objfile->sf->qf->map_symtabs_matching_filename (objfile,
559 name,
560 real_path.get (),
561 callback))
562 return;
563 }
564 }
565
566 /* A wrapper for iterate_over_symtabs that returns the first matching
567 symtab, or NULL. */
568
569 struct symtab *
570 lookup_symtab (const char *name)
571 {
572 struct symtab *result = NULL;
573
574 iterate_over_symtabs (name, [&] (symtab *symtab)
575 {
576 result = symtab;
577 return true;
578 });
579
580 return result;
581 }
582
583 \f
584 /* Mangle a GDB method stub type. This actually reassembles the pieces of the
585 full method name, which consist of the class name (from T), the unadorned
586 method name from METHOD_ID, and the signature for the specific overload,
587 specified by SIGNATURE_ID. Note that this function is g++ specific. */
588
589 char *
590 gdb_mangle_name (struct type *type, int method_id, int signature_id)
591 {
592 int mangled_name_len;
593 char *mangled_name;
594 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, method_id);
595 struct fn_field *method = &f[signature_id];
596 const char *field_name = TYPE_FN_FIELDLIST_NAME (type, method_id);
597 const char *physname = TYPE_FN_FIELD_PHYSNAME (f, signature_id);
598 const char *newname = TYPE_NAME (type);
599
600 /* Does the form of physname indicate that it is the full mangled name
601 of a constructor (not just the args)? */
602 int is_full_physname_constructor;
603
604 int is_constructor;
605 int is_destructor = is_destructor_name (physname);
606 /* Need a new type prefix. */
607 const char *const_prefix = method->is_const ? "C" : "";
608 const char *volatile_prefix = method->is_volatile ? "V" : "";
609 char buf[20];
610 int len = (newname == NULL ? 0 : strlen (newname));
611
612 /* Nothing to do if physname already contains a fully mangled v3 abi name
613 or an operator name. */
614 if ((physname[0] == '_' && physname[1] == 'Z')
615 || is_operator_name (field_name))
616 return xstrdup (physname);
617
618 is_full_physname_constructor = is_constructor_name (physname);
619
620 is_constructor = is_full_physname_constructor
621 || (newname && strcmp (field_name, newname) == 0);
622
623 if (!is_destructor)
624 is_destructor = (startswith (physname, "__dt"));
625
626 if (is_destructor || is_full_physname_constructor)
627 {
628 mangled_name = (char *) xmalloc (strlen (physname) + 1);
629 strcpy (mangled_name, physname);
630 return mangled_name;
631 }
632
633 if (len == 0)
634 {
635 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
636 }
637 else if (physname[0] == 't' || physname[0] == 'Q')
638 {
639 /* The physname for template and qualified methods already includes
640 the class name. */
641 xsnprintf (buf, sizeof (buf), "__%s%s", const_prefix, volatile_prefix);
642 newname = NULL;
643 len = 0;
644 }
645 else
646 {
647 xsnprintf (buf, sizeof (buf), "__%s%s%d", const_prefix,
648 volatile_prefix, len);
649 }
650 mangled_name_len = ((is_constructor ? 0 : strlen (field_name))
651 + strlen (buf) + len + strlen (physname) + 1);
652
653 mangled_name = (char *) xmalloc (mangled_name_len);
654 if (is_constructor)
655 mangled_name[0] = '\0';
656 else
657 strcpy (mangled_name, field_name);
658
659 strcat (mangled_name, buf);
660 /* If the class doesn't have a name, i.e. newname NULL, then we just
661 mangle it using 0 for the length of the class. Thus it gets mangled
662 as something starting with `::' rather than `classname::'. */
663 if (newname != NULL)
664 strcat (mangled_name, newname);
665
666 strcat (mangled_name, physname);
667 return (mangled_name);
668 }
669
670 /* Set the demangled name of GSYMBOL to NAME. NAME must be already
671 correctly allocated. */
672
673 void
674 symbol_set_demangled_name (struct general_symbol_info *gsymbol,
675 const char *name,
676 struct obstack *obstack)
677 {
678 if (gsymbol->language () == language_ada)
679 {
680 if (name == NULL)
681 {
682 gsymbol->ada_mangled = 0;
683 gsymbol->language_specific.obstack = obstack;
684 }
685 else
686 {
687 gsymbol->ada_mangled = 1;
688 gsymbol->language_specific.demangled_name = name;
689 }
690 }
691 else
692 gsymbol->language_specific.demangled_name = name;
693 }
694
695 /* Return the demangled name of GSYMBOL. */
696
697 const char *
698 symbol_get_demangled_name (const struct general_symbol_info *gsymbol)
699 {
700 if (gsymbol->language () == language_ada)
701 {
702 if (!gsymbol->ada_mangled)
703 return NULL;
704 /* Fall through. */
705 }
706
707 return gsymbol->language_specific.demangled_name;
708 }
709
710 \f
711 /* Initialize the language dependent portion of a symbol
712 depending upon the language for the symbol. */
713
714 void
715 symbol_set_language (struct general_symbol_info *gsymbol,
716 enum language language,
717 struct obstack *obstack)
718 {
719 gsymbol->m_language = language;
720 if (language == language_cplus
721 || language == language_d
722 || language == language_go
723 || language == language_objc
724 || language == language_fortran)
725 {
726 symbol_set_demangled_name (gsymbol, NULL, obstack);
727 }
728 else if (language == language_ada)
729 {
730 gdb_assert (gsymbol->ada_mangled == 0);
731 gsymbol->language_specific.obstack = obstack;
732 }
733 else
734 {
735 memset (&gsymbol->language_specific, 0,
736 sizeof (gsymbol->language_specific));
737 }
738 }
739
740 /* Functions to initialize a symbol's mangled name. */
741
742 /* Objects of this type are stored in the demangled name hash table. */
743 struct demangled_name_entry
744 {
745 demangled_name_entry (gdb::string_view mangled_name)
746 : mangled (mangled_name) {}
747
748 gdb::string_view mangled;
749 enum language language;
750 gdb::unique_xmalloc_ptr<char> demangled;
751 };
752
753 /* Hash function for the demangled name hash. */
754
755 static hashval_t
756 hash_demangled_name_entry (const void *data)
757 {
758 const struct demangled_name_entry *e
759 = (const struct demangled_name_entry *) data;
760
761 return fast_hash (e->mangled.data (), e->mangled.length ());
762 }
763
764 /* Equality function for the demangled name hash. */
765
766 static int
767 eq_demangled_name_entry (const void *a, const void *b)
768 {
769 const struct demangled_name_entry *da
770 = (const struct demangled_name_entry *) a;
771 const struct demangled_name_entry *db
772 = (const struct demangled_name_entry *) b;
773
774 return da->mangled == db->mangled;
775 }
776
777 static void
778 free_demangled_name_entry (void *data)
779 {
780 struct demangled_name_entry *e
781 = (struct demangled_name_entry *) data;
782
783 e->~demangled_name_entry();
784 }
785
786 /* Create the hash table used for demangled names. Each hash entry is
787 a pair of strings; one for the mangled name and one for the demangled
788 name. The entry is hashed via just the mangled name. */
789
790 static void
791 create_demangled_names_hash (struct objfile_per_bfd_storage *per_bfd)
792 {
793 /* Choose 256 as the starting size of the hash table, somewhat arbitrarily.
794 The hash table code will round this up to the next prime number.
795 Choosing a much larger table size wastes memory, and saves only about
796 1% in symbol reading. However, if the minsym count is already
797 initialized (e.g. because symbol name setting was deferred to
798 a background thread) we can initialize the hashtable with a count
799 based on that, because we will almost certainly have at least that
800 many entries. If we have a nonzero number but less than 256,
801 we still stay with 256 to have some space for psymbols, etc. */
802
803 /* htab will expand the table when it is 3/4th full, so we account for that
804 here. +2 to round up. */
805 int minsym_based_count = (per_bfd->minimal_symbol_count + 2) / 3 * 4;
806 int count = std::max (per_bfd->minimal_symbol_count, minsym_based_count);
807
808 per_bfd->demangled_names_hash.reset (htab_create_alloc
809 (count, hash_demangled_name_entry, eq_demangled_name_entry,
810 free_demangled_name_entry, xcalloc, xfree));
811 }
812
813 /* See symtab.h */
814
815 char *
816 symbol_find_demangled_name (struct general_symbol_info *gsymbol,
817 const char *mangled)
818 {
819 char *demangled = NULL;
820 int i;
821
822 if (gsymbol->language () == language_unknown)
823 gsymbol->m_language = language_auto;
824
825 if (gsymbol->language () != language_auto)
826 {
827 const struct language_defn *lang = language_def (gsymbol->language ());
828
829 language_sniff_from_mangled_name (lang, mangled, &demangled);
830 return demangled;
831 }
832
833 for (i = language_unknown; i < nr_languages; ++i)
834 {
835 enum language l = (enum language) i;
836 const struct language_defn *lang = language_def (l);
837
838 if (language_sniff_from_mangled_name (lang, mangled, &demangled))
839 {
840 gsymbol->m_language = l;
841 return demangled;
842 }
843 }
844
845 return NULL;
846 }
847
848 /* Set both the mangled and demangled (if any) names for GSYMBOL based
849 on LINKAGE_NAME and LEN. Ordinarily, NAME is copied onto the
850 objfile's obstack; but if COPY_NAME is 0 and if NAME is
851 NUL-terminated, then this function assumes that NAME is already
852 correctly saved (either permanently or with a lifetime tied to the
853 objfile), and it will not be copied.
854
855 The hash table corresponding to OBJFILE is used, and the memory
856 comes from the per-BFD storage_obstack. LINKAGE_NAME is copied,
857 so the pointer can be discarded after calling this function. */
858
859 void
860 symbol_set_names (struct general_symbol_info *gsymbol,
861 gdb::string_view linkage_name, bool copy_name,
862 struct objfile_per_bfd_storage *per_bfd,
863 gdb::optional<hashval_t> hash)
864 {
865 struct demangled_name_entry **slot;
866
867 if (gsymbol->language () == language_ada)
868 {
869 /* In Ada, we do the symbol lookups using the mangled name, so
870 we can save some space by not storing the demangled name. */
871 if (!copy_name)
872 gsymbol->name = linkage_name.data ();
873 else
874 {
875 char *name = (char *) obstack_alloc (&per_bfd->storage_obstack,
876 linkage_name.length () + 1);
877
878 memcpy (name, linkage_name.data (), linkage_name.length ());
879 name[linkage_name.length ()] = '\0';
880 gsymbol->name = name;
881 }
882 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
883
884 return;
885 }
886
887 if (per_bfd->demangled_names_hash == NULL)
888 create_demangled_names_hash (per_bfd);
889
890 struct demangled_name_entry entry (linkage_name);
891 if (!hash.has_value ())
892 hash = hash_demangled_name_entry (&entry);
893 slot = ((struct demangled_name_entry **)
894 htab_find_slot_with_hash (per_bfd->demangled_names_hash.get (),
895 &entry, *hash, INSERT));
896
897 /* If this name is not in the hash table, add it. */
898 if (*slot == NULL
899 /* A C version of the symbol may have already snuck into the table.
900 This happens to, e.g., main.init (__go_init_main). Cope. */
901 || (gsymbol->language () == language_go && (*slot)->demangled == nullptr))
902 {
903 /* A 0-terminated copy of the linkage name. Callers must set COPY_NAME
904 to true if the string might not be nullterminated. We have to make
905 this copy because demangling needs a nullterminated string. */
906 gdb::string_view linkage_name_copy;
907 if (copy_name)
908 {
909 char *alloc_name = (char *) alloca (linkage_name.length () + 1);
910 memcpy (alloc_name, linkage_name.data (), linkage_name.length ());
911 alloc_name[linkage_name.length ()] = '\0';
912
913 linkage_name_copy = gdb::string_view (alloc_name,
914 linkage_name.length ());
915 }
916 else
917 linkage_name_copy = linkage_name;
918
919 /* The const_cast is safe because the only reason it is already
920 initialized is if we purposefully set it from a background
921 thread to avoid doing the work here. However, it is still
922 allocated from the heap and needs to be freed by us, just
923 like if we called symbol_find_demangled_name here. */
924 gdb::unique_xmalloc_ptr<char> demangled_name
925 (gsymbol->language_specific.demangled_name
926 ? const_cast<char *> (gsymbol->language_specific.demangled_name)
927 : symbol_find_demangled_name (gsymbol, linkage_name_copy.data ()));
928
929 /* Suppose we have demangled_name==NULL, copy_name==0, and
930 linkage_name_copy==linkage_name. In this case, we already have the
931 mangled name saved, and we don't have a demangled name. So,
932 you might think we could save a little space by not recording
933 this in the hash table at all.
934
935 It turns out that it is actually important to still save such
936 an entry in the hash table, because storing this name gives
937 us better bcache hit rates for partial symbols. */
938 if (!copy_name)
939 {
940 *slot
941 = ((struct demangled_name_entry *)
942 obstack_alloc (&per_bfd->storage_obstack,
943 sizeof (demangled_name_entry)));
944 new (*slot) demangled_name_entry (linkage_name);
945 }
946 else
947 {
948 /* If we must copy the mangled name, put it directly after
949 the struct so we can have a single allocation. */
950 *slot
951 = ((struct demangled_name_entry *)
952 obstack_alloc (&per_bfd->storage_obstack,
953 sizeof (demangled_name_entry)
954 + linkage_name.length () + 1));
955 char *mangled_ptr = reinterpret_cast<char *> (*slot + 1);
956 memcpy (mangled_ptr, linkage_name.data (), linkage_name.length ());
957 mangled_ptr [linkage_name.length ()] = '\0';
958 new (*slot) demangled_name_entry
959 (gdb::string_view (mangled_ptr, linkage_name.length ()));
960 }
961 (*slot)->demangled = std::move (demangled_name);
962 (*slot)->language = gsymbol->language ();
963 }
964 else if (gsymbol->language () == language_unknown
965 || gsymbol->language () == language_auto)
966 gsymbol->m_language = (*slot)->language;
967
968 gsymbol->name = (*slot)->mangled.data ();
969 if ((*slot)->demangled != nullptr)
970 symbol_set_demangled_name (gsymbol, (*slot)->demangled.get (),
971 &per_bfd->storage_obstack);
972 else
973 symbol_set_demangled_name (gsymbol, NULL, &per_bfd->storage_obstack);
974 }
975
976 /* See symtab.h. */
977
978 const char *
979 general_symbol_info::natural_name () const
980 {
981 switch (language ())
982 {
983 case language_cplus:
984 case language_d:
985 case language_go:
986 case language_objc:
987 case language_fortran:
988 if (symbol_get_demangled_name (this) != NULL)
989 return symbol_get_demangled_name (this);
990 break;
991 case language_ada:
992 return ada_decode_symbol (this);
993 default:
994 break;
995 }
996 return name;
997 }
998
999 /* See symtab.h. */
1000
1001 const char *
1002 general_symbol_info::demangled_name () const
1003 {
1004 const char *dem_name = NULL;
1005
1006 switch (language ())
1007 {
1008 case language_cplus:
1009 case language_d:
1010 case language_go:
1011 case language_objc:
1012 case language_fortran:
1013 dem_name = symbol_get_demangled_name (this);
1014 break;
1015 case language_ada:
1016 dem_name = ada_decode_symbol (this);
1017 break;
1018 default:
1019 break;
1020 }
1021 return dem_name;
1022 }
1023
1024 /* See symtab.h. */
1025
1026 const char *
1027 general_symbol_info::search_name () const
1028 {
1029 if (language () == language_ada)
1030 return name;
1031 else
1032 return natural_name ();
1033 }
1034
1035 /* See symtab.h. */
1036
1037 bool
1038 symbol_matches_search_name (const struct general_symbol_info *gsymbol,
1039 const lookup_name_info &name)
1040 {
1041 symbol_name_matcher_ftype *name_match
1042 = get_symbol_name_matcher (language_def (gsymbol->language ()), name);
1043 return name_match (gsymbol->search_name (), name, NULL);
1044 }
1045
1046 \f
1047
1048 /* Return true if the two sections are the same, or if they could
1049 plausibly be copies of each other, one in an original object
1050 file and another in a separated debug file. */
1051
1052 bool
1053 matching_obj_sections (struct obj_section *obj_first,
1054 struct obj_section *obj_second)
1055 {
1056 asection *first = obj_first? obj_first->the_bfd_section : NULL;
1057 asection *second = obj_second? obj_second->the_bfd_section : NULL;
1058
1059 /* If they're the same section, then they match. */
1060 if (first == second)
1061 return true;
1062
1063 /* If either is NULL, give up. */
1064 if (first == NULL || second == NULL)
1065 return false;
1066
1067 /* This doesn't apply to absolute symbols. */
1068 if (first->owner == NULL || second->owner == NULL)
1069 return false;
1070
1071 /* If they're in the same object file, they must be different sections. */
1072 if (first->owner == second->owner)
1073 return false;
1074
1075 /* Check whether the two sections are potentially corresponding. They must
1076 have the same size, address, and name. We can't compare section indexes,
1077 which would be more reliable, because some sections may have been
1078 stripped. */
1079 if (bfd_section_size (first) != bfd_section_size (second))
1080 return false;
1081
1082 /* In-memory addresses may start at a different offset, relativize them. */
1083 if (bfd_section_vma (first) - bfd_get_start_address (first->owner)
1084 != bfd_section_vma (second) - bfd_get_start_address (second->owner))
1085 return false;
1086
1087 if (bfd_section_name (first) == NULL
1088 || bfd_section_name (second) == NULL
1089 || strcmp (bfd_section_name (first), bfd_section_name (second)) != 0)
1090 return false;
1091
1092 /* Otherwise check that they are in corresponding objfiles. */
1093
1094 struct objfile *obj = NULL;
1095 for (objfile *objfile : current_program_space->objfiles ())
1096 if (objfile->obfd == first->owner)
1097 {
1098 obj = objfile;
1099 break;
1100 }
1101 gdb_assert (obj != NULL);
1102
1103 if (obj->separate_debug_objfile != NULL
1104 && obj->separate_debug_objfile->obfd == second->owner)
1105 return true;
1106 if (obj->separate_debug_objfile_backlink != NULL
1107 && obj->separate_debug_objfile_backlink->obfd == second->owner)
1108 return true;
1109
1110 return false;
1111 }
1112
1113 /* See symtab.h. */
1114
1115 void
1116 expand_symtab_containing_pc (CORE_ADDR pc, struct obj_section *section)
1117 {
1118 struct bound_minimal_symbol msymbol;
1119
1120 /* If we know that this is not a text address, return failure. This is
1121 necessary because we loop based on texthigh and textlow, which do
1122 not include the data ranges. */
1123 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
1124 if (msymbol.minsym && msymbol.minsym->data_p ())
1125 return;
1126
1127 for (objfile *objfile : current_program_space->objfiles ())
1128 {
1129 struct compunit_symtab *cust = NULL;
1130
1131 if (objfile->sf)
1132 cust = objfile->sf->qf->find_pc_sect_compunit_symtab (objfile, msymbol,
1133 pc, section, 0);
1134 if (cust)
1135 return;
1136 }
1137 }
1138 \f
1139 /* Hash function for the symbol cache. */
1140
1141 static unsigned int
1142 hash_symbol_entry (const struct objfile *objfile_context,
1143 const char *name, domain_enum domain)
1144 {
1145 unsigned int hash = (uintptr_t) objfile_context;
1146
1147 if (name != NULL)
1148 hash += htab_hash_string (name);
1149
1150 /* Because of symbol_matches_domain we need VAR_DOMAIN and STRUCT_DOMAIN
1151 to map to the same slot. */
1152 if (domain == STRUCT_DOMAIN)
1153 hash += VAR_DOMAIN * 7;
1154 else
1155 hash += domain * 7;
1156
1157 return hash;
1158 }
1159
1160 /* Equality function for the symbol cache. */
1161
1162 static int
1163 eq_symbol_entry (const struct symbol_cache_slot *slot,
1164 const struct objfile *objfile_context,
1165 const char *name, domain_enum domain)
1166 {
1167 const char *slot_name;
1168 domain_enum slot_domain;
1169
1170 if (slot->state == SYMBOL_SLOT_UNUSED)
1171 return 0;
1172
1173 if (slot->objfile_context != objfile_context)
1174 return 0;
1175
1176 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1177 {
1178 slot_name = slot->value.not_found.name;
1179 slot_domain = slot->value.not_found.domain;
1180 }
1181 else
1182 {
1183 slot_name = slot->value.found.symbol->search_name ();
1184 slot_domain = SYMBOL_DOMAIN (slot->value.found.symbol);
1185 }
1186
1187 /* NULL names match. */
1188 if (slot_name == NULL && name == NULL)
1189 {
1190 /* But there's no point in calling symbol_matches_domain in the
1191 SYMBOL_SLOT_FOUND case. */
1192 if (slot_domain != domain)
1193 return 0;
1194 }
1195 else if (slot_name != NULL && name != NULL)
1196 {
1197 /* It's important that we use the same comparison that was done
1198 the first time through. If the slot records a found symbol,
1199 then this means using the symbol name comparison function of
1200 the symbol's language with symbol->search_name (). See
1201 dictionary.c. It also means using symbol_matches_domain for
1202 found symbols. See block.c.
1203
1204 If the slot records a not-found symbol, then require a precise match.
1205 We could still be lax with whitespace like strcmp_iw though. */
1206
1207 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1208 {
1209 if (strcmp (slot_name, name) != 0)
1210 return 0;
1211 if (slot_domain != domain)
1212 return 0;
1213 }
1214 else
1215 {
1216 struct symbol *sym = slot->value.found.symbol;
1217 lookup_name_info lookup_name (name, symbol_name_match_type::FULL);
1218
1219 if (!SYMBOL_MATCHES_SEARCH_NAME (sym, lookup_name))
1220 return 0;
1221
1222 if (!symbol_matches_domain (sym->language (), slot_domain, domain))
1223 return 0;
1224 }
1225 }
1226 else
1227 {
1228 /* Only one name is NULL. */
1229 return 0;
1230 }
1231
1232 return 1;
1233 }
1234
1235 /* Given a cache of size SIZE, return the size of the struct (with variable
1236 length array) in bytes. */
1237
1238 static size_t
1239 symbol_cache_byte_size (unsigned int size)
1240 {
1241 return (sizeof (struct block_symbol_cache)
1242 + ((size - 1) * sizeof (struct symbol_cache_slot)));
1243 }
1244
1245 /* Resize CACHE. */
1246
1247 static void
1248 resize_symbol_cache (struct symbol_cache *cache, unsigned int new_size)
1249 {
1250 /* If there's no change in size, don't do anything.
1251 All caches have the same size, so we can just compare with the size
1252 of the global symbols cache. */
1253 if ((cache->global_symbols != NULL
1254 && cache->global_symbols->size == new_size)
1255 || (cache->global_symbols == NULL
1256 && new_size == 0))
1257 return;
1258
1259 destroy_block_symbol_cache (cache->global_symbols);
1260 destroy_block_symbol_cache (cache->static_symbols);
1261
1262 if (new_size == 0)
1263 {
1264 cache->global_symbols = NULL;
1265 cache->static_symbols = NULL;
1266 }
1267 else
1268 {
1269 size_t total_size = symbol_cache_byte_size (new_size);
1270
1271 cache->global_symbols
1272 = (struct block_symbol_cache *) xcalloc (1, total_size);
1273 cache->static_symbols
1274 = (struct block_symbol_cache *) xcalloc (1, total_size);
1275 cache->global_symbols->size = new_size;
1276 cache->static_symbols->size = new_size;
1277 }
1278 }
1279
1280 /* Return the symbol cache of PSPACE.
1281 Create one if it doesn't exist yet. */
1282
1283 static struct symbol_cache *
1284 get_symbol_cache (struct program_space *pspace)
1285 {
1286 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1287
1288 if (cache == NULL)
1289 {
1290 cache = symbol_cache_key.emplace (pspace);
1291 resize_symbol_cache (cache, symbol_cache_size);
1292 }
1293
1294 return cache;
1295 }
1296
1297 /* Set the size of the symbol cache in all program spaces. */
1298
1299 static void
1300 set_symbol_cache_size (unsigned int new_size)
1301 {
1302 struct program_space *pspace;
1303
1304 ALL_PSPACES (pspace)
1305 {
1306 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1307
1308 /* The pspace could have been created but not have a cache yet. */
1309 if (cache != NULL)
1310 resize_symbol_cache (cache, new_size);
1311 }
1312 }
1313
1314 /* Called when symbol-cache-size is set. */
1315
1316 static void
1317 set_symbol_cache_size_handler (const char *args, int from_tty,
1318 struct cmd_list_element *c)
1319 {
1320 if (new_symbol_cache_size > MAX_SYMBOL_CACHE_SIZE)
1321 {
1322 /* Restore the previous value.
1323 This is the value the "show" command prints. */
1324 new_symbol_cache_size = symbol_cache_size;
1325
1326 error (_("Symbol cache size is too large, max is %u."),
1327 MAX_SYMBOL_CACHE_SIZE);
1328 }
1329 symbol_cache_size = new_symbol_cache_size;
1330
1331 set_symbol_cache_size (symbol_cache_size);
1332 }
1333
1334 /* Lookup symbol NAME,DOMAIN in BLOCK in the symbol cache of PSPACE.
1335 OBJFILE_CONTEXT is the current objfile, which may be NULL.
1336 The result is the symbol if found, SYMBOL_LOOKUP_FAILED if a previous lookup
1337 failed (and thus this one will too), or NULL if the symbol is not present
1338 in the cache.
1339 *BSC_PTR and *SLOT_PTR are set to the cache and slot of the symbol, which
1340 can be used to save the result of a full lookup attempt. */
1341
1342 static struct block_symbol
1343 symbol_cache_lookup (struct symbol_cache *cache,
1344 struct objfile *objfile_context, enum block_enum block,
1345 const char *name, domain_enum domain,
1346 struct block_symbol_cache **bsc_ptr,
1347 struct symbol_cache_slot **slot_ptr)
1348 {
1349 struct block_symbol_cache *bsc;
1350 unsigned int hash;
1351 struct symbol_cache_slot *slot;
1352
1353 if (block == GLOBAL_BLOCK)
1354 bsc = cache->global_symbols;
1355 else
1356 bsc = cache->static_symbols;
1357 if (bsc == NULL)
1358 {
1359 *bsc_ptr = NULL;
1360 *slot_ptr = NULL;
1361 return {};
1362 }
1363
1364 hash = hash_symbol_entry (objfile_context, name, domain);
1365 slot = bsc->symbols + hash % bsc->size;
1366
1367 *bsc_ptr = bsc;
1368 *slot_ptr = slot;
1369
1370 if (eq_symbol_entry (slot, objfile_context, name, domain))
1371 {
1372 if (symbol_lookup_debug)
1373 fprintf_unfiltered (gdb_stdlog,
1374 "%s block symbol cache hit%s for %s, %s\n",
1375 block == GLOBAL_BLOCK ? "Global" : "Static",
1376 slot->state == SYMBOL_SLOT_NOT_FOUND
1377 ? " (not found)" : "",
1378 name, domain_name (domain));
1379 ++bsc->hits;
1380 if (slot->state == SYMBOL_SLOT_NOT_FOUND)
1381 return SYMBOL_LOOKUP_FAILED;
1382 return slot->value.found;
1383 }
1384
1385 /* Symbol is not present in the cache. */
1386
1387 if (symbol_lookup_debug)
1388 {
1389 fprintf_unfiltered (gdb_stdlog,
1390 "%s block symbol cache miss for %s, %s\n",
1391 block == GLOBAL_BLOCK ? "Global" : "Static",
1392 name, domain_name (domain));
1393 }
1394 ++bsc->misses;
1395 return {};
1396 }
1397
1398 /* Mark SYMBOL as found in SLOT.
1399 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1400 if it's not needed to distinguish lookups (STATIC_BLOCK). It is *not*
1401 necessarily the objfile the symbol was found in. */
1402
1403 static void
1404 symbol_cache_mark_found (struct block_symbol_cache *bsc,
1405 struct symbol_cache_slot *slot,
1406 struct objfile *objfile_context,
1407 struct symbol *symbol,
1408 const struct block *block)
1409 {
1410 if (bsc == NULL)
1411 return;
1412 if (slot->state != SYMBOL_SLOT_UNUSED)
1413 {
1414 ++bsc->collisions;
1415 symbol_cache_clear_slot (slot);
1416 }
1417 slot->state = SYMBOL_SLOT_FOUND;
1418 slot->objfile_context = objfile_context;
1419 slot->value.found.symbol = symbol;
1420 slot->value.found.block = block;
1421 }
1422
1423 /* Mark symbol NAME, DOMAIN as not found in SLOT.
1424 OBJFILE_CONTEXT is the current objfile when the lookup was done, or NULL
1425 if it's not needed to distinguish lookups (STATIC_BLOCK). */
1426
1427 static void
1428 symbol_cache_mark_not_found (struct block_symbol_cache *bsc,
1429 struct symbol_cache_slot *slot,
1430 struct objfile *objfile_context,
1431 const char *name, domain_enum domain)
1432 {
1433 if (bsc == NULL)
1434 return;
1435 if (slot->state != SYMBOL_SLOT_UNUSED)
1436 {
1437 ++bsc->collisions;
1438 symbol_cache_clear_slot (slot);
1439 }
1440 slot->state = SYMBOL_SLOT_NOT_FOUND;
1441 slot->objfile_context = objfile_context;
1442 slot->value.not_found.name = xstrdup (name);
1443 slot->value.not_found.domain = domain;
1444 }
1445
1446 /* Flush the symbol cache of PSPACE. */
1447
1448 static void
1449 symbol_cache_flush (struct program_space *pspace)
1450 {
1451 struct symbol_cache *cache = symbol_cache_key.get (pspace);
1452 int pass;
1453
1454 if (cache == NULL)
1455 return;
1456 if (cache->global_symbols == NULL)
1457 {
1458 gdb_assert (symbol_cache_size == 0);
1459 gdb_assert (cache->static_symbols == NULL);
1460 return;
1461 }
1462
1463 /* If the cache is untouched since the last flush, early exit.
1464 This is important for performance during the startup of a program linked
1465 with 100s (or 1000s) of shared libraries. */
1466 if (cache->global_symbols->misses == 0
1467 && cache->static_symbols->misses == 0)
1468 return;
1469
1470 gdb_assert (cache->global_symbols->size == symbol_cache_size);
1471 gdb_assert (cache->static_symbols->size == symbol_cache_size);
1472
1473 for (pass = 0; pass < 2; ++pass)
1474 {
1475 struct block_symbol_cache *bsc
1476 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1477 unsigned int i;
1478
1479 for (i = 0; i < bsc->size; ++i)
1480 symbol_cache_clear_slot (&bsc->symbols[i]);
1481 }
1482
1483 cache->global_symbols->hits = 0;
1484 cache->global_symbols->misses = 0;
1485 cache->global_symbols->collisions = 0;
1486 cache->static_symbols->hits = 0;
1487 cache->static_symbols->misses = 0;
1488 cache->static_symbols->collisions = 0;
1489 }
1490
1491 /* Dump CACHE. */
1492
1493 static void
1494 symbol_cache_dump (const struct symbol_cache *cache)
1495 {
1496 int pass;
1497
1498 if (cache->global_symbols == NULL)
1499 {
1500 printf_filtered (" <disabled>\n");
1501 return;
1502 }
1503
1504 for (pass = 0; pass < 2; ++pass)
1505 {
1506 const struct block_symbol_cache *bsc
1507 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1508 unsigned int i;
1509
1510 if (pass == 0)
1511 printf_filtered ("Global symbols:\n");
1512 else
1513 printf_filtered ("Static symbols:\n");
1514
1515 for (i = 0; i < bsc->size; ++i)
1516 {
1517 const struct symbol_cache_slot *slot = &bsc->symbols[i];
1518
1519 QUIT;
1520
1521 switch (slot->state)
1522 {
1523 case SYMBOL_SLOT_UNUSED:
1524 break;
1525 case SYMBOL_SLOT_NOT_FOUND:
1526 printf_filtered (" [%4u] = %s, %s %s (not found)\n", i,
1527 host_address_to_string (slot->objfile_context),
1528 slot->value.not_found.name,
1529 domain_name (slot->value.not_found.domain));
1530 break;
1531 case SYMBOL_SLOT_FOUND:
1532 {
1533 struct symbol *found = slot->value.found.symbol;
1534 const struct objfile *context = slot->objfile_context;
1535
1536 printf_filtered (" [%4u] = %s, %s %s\n", i,
1537 host_address_to_string (context),
1538 found->print_name (),
1539 domain_name (SYMBOL_DOMAIN (found)));
1540 break;
1541 }
1542 }
1543 }
1544 }
1545 }
1546
1547 /* The "mt print symbol-cache" command. */
1548
1549 static void
1550 maintenance_print_symbol_cache (const char *args, int from_tty)
1551 {
1552 struct program_space *pspace;
1553
1554 ALL_PSPACES (pspace)
1555 {
1556 struct symbol_cache *cache;
1557
1558 printf_filtered (_("Symbol cache for pspace %d\n%s:\n"),
1559 pspace->num,
1560 pspace->symfile_object_file != NULL
1561 ? objfile_name (pspace->symfile_object_file)
1562 : "(no object file)");
1563
1564 /* If the cache hasn't been created yet, avoid creating one. */
1565 cache = symbol_cache_key.get (pspace);
1566 if (cache == NULL)
1567 printf_filtered (" <empty>\n");
1568 else
1569 symbol_cache_dump (cache);
1570 }
1571 }
1572
1573 /* The "mt flush-symbol-cache" command. */
1574
1575 static void
1576 maintenance_flush_symbol_cache (const char *args, int from_tty)
1577 {
1578 struct program_space *pspace;
1579
1580 ALL_PSPACES (pspace)
1581 {
1582 symbol_cache_flush (pspace);
1583 }
1584 }
1585
1586 /* Print usage statistics of CACHE. */
1587
1588 static void
1589 symbol_cache_stats (struct symbol_cache *cache)
1590 {
1591 int pass;
1592
1593 if (cache->global_symbols == NULL)
1594 {
1595 printf_filtered (" <disabled>\n");
1596 return;
1597 }
1598
1599 for (pass = 0; pass < 2; ++pass)
1600 {
1601 const struct block_symbol_cache *bsc
1602 = pass == 0 ? cache->global_symbols : cache->static_symbols;
1603
1604 QUIT;
1605
1606 if (pass == 0)
1607 printf_filtered ("Global block cache stats:\n");
1608 else
1609 printf_filtered ("Static block cache stats:\n");
1610
1611 printf_filtered (" size: %u\n", bsc->size);
1612 printf_filtered (" hits: %u\n", bsc->hits);
1613 printf_filtered (" misses: %u\n", bsc->misses);
1614 printf_filtered (" collisions: %u\n", bsc->collisions);
1615 }
1616 }
1617
1618 /* The "mt print symbol-cache-statistics" command. */
1619
1620 static void
1621 maintenance_print_symbol_cache_statistics (const char *args, int from_tty)
1622 {
1623 struct program_space *pspace;
1624
1625 ALL_PSPACES (pspace)
1626 {
1627 struct symbol_cache *cache;
1628
1629 printf_filtered (_("Symbol cache statistics for pspace %d\n%s:\n"),
1630 pspace->num,
1631 pspace->symfile_object_file != NULL
1632 ? objfile_name (pspace->symfile_object_file)
1633 : "(no object file)");
1634
1635 /* If the cache hasn't been created yet, avoid creating one. */
1636 cache = symbol_cache_key.get (pspace);
1637 if (cache == NULL)
1638 printf_filtered (" empty, no stats available\n");
1639 else
1640 symbol_cache_stats (cache);
1641 }
1642 }
1643
1644 /* This module's 'new_objfile' observer. */
1645
1646 static void
1647 symtab_new_objfile_observer (struct objfile *objfile)
1648 {
1649 /* Ideally we'd use OBJFILE->pspace, but OBJFILE may be NULL. */
1650 symbol_cache_flush (current_program_space);
1651 }
1652
1653 /* This module's 'free_objfile' observer. */
1654
1655 static void
1656 symtab_free_objfile_observer (struct objfile *objfile)
1657 {
1658 symbol_cache_flush (objfile->pspace);
1659 }
1660 \f
1661 /* Debug symbols usually don't have section information. We need to dig that
1662 out of the minimal symbols and stash that in the debug symbol. */
1663
1664 void
1665 fixup_section (struct general_symbol_info *ginfo,
1666 CORE_ADDR addr, struct objfile *objfile)
1667 {
1668 struct minimal_symbol *msym;
1669
1670 /* First, check whether a minimal symbol with the same name exists
1671 and points to the same address. The address check is required
1672 e.g. on PowerPC64, where the minimal symbol for a function will
1673 point to the function descriptor, while the debug symbol will
1674 point to the actual function code. */
1675 msym = lookup_minimal_symbol_by_pc_name (addr, ginfo->name, objfile);
1676 if (msym)
1677 ginfo->section = MSYMBOL_SECTION (msym);
1678 else
1679 {
1680 /* Static, function-local variables do appear in the linker
1681 (minimal) symbols, but are frequently given names that won't
1682 be found via lookup_minimal_symbol(). E.g., it has been
1683 observed in frv-uclinux (ELF) executables that a static,
1684 function-local variable named "foo" might appear in the
1685 linker symbols as "foo.6" or "foo.3". Thus, there is no
1686 point in attempting to extend the lookup-by-name mechanism to
1687 handle this case due to the fact that there can be multiple
1688 names.
1689
1690 So, instead, search the section table when lookup by name has
1691 failed. The ``addr'' and ``endaddr'' fields may have already
1692 been relocated. If so, the relocation offset (i.e. the
1693 ANOFFSET value) needs to be subtracted from these values when
1694 performing the comparison. We unconditionally subtract it,
1695 because, when no relocation has been performed, the ANOFFSET
1696 value will simply be zero.
1697
1698 The address of the symbol whose section we're fixing up HAS
1699 NOT BEEN adjusted (relocated) yet. It can't have been since
1700 the section isn't yet known and knowing the section is
1701 necessary in order to add the correct relocation value. In
1702 other words, we wouldn't even be in this function (attempting
1703 to compute the section) if it were already known.
1704
1705 Note that it is possible to search the minimal symbols
1706 (subtracting the relocation value if necessary) to find the
1707 matching minimal symbol, but this is overkill and much less
1708 efficient. It is not necessary to find the matching minimal
1709 symbol, only its section.
1710
1711 Note that this technique (of doing a section table search)
1712 can fail when unrelocated section addresses overlap. For
1713 this reason, we still attempt a lookup by name prior to doing
1714 a search of the section table. */
1715
1716 struct obj_section *s;
1717 int fallback = -1;
1718
1719 ALL_OBJFILE_OSECTIONS (objfile, s)
1720 {
1721 int idx = s - objfile->sections;
1722 CORE_ADDR offset = ANOFFSET (objfile->section_offsets, idx);
1723
1724 if (fallback == -1)
1725 fallback = idx;
1726
1727 if (obj_section_addr (s) - offset <= addr
1728 && addr < obj_section_endaddr (s) - offset)
1729 {
1730 ginfo->section = idx;
1731 return;
1732 }
1733 }
1734
1735 /* If we didn't find the section, assume it is in the first
1736 section. If there is no allocated section, then it hardly
1737 matters what we pick, so just pick zero. */
1738 if (fallback == -1)
1739 ginfo->section = 0;
1740 else
1741 ginfo->section = fallback;
1742 }
1743 }
1744
1745 struct symbol *
1746 fixup_symbol_section (struct symbol *sym, struct objfile *objfile)
1747 {
1748 CORE_ADDR addr;
1749
1750 if (!sym)
1751 return NULL;
1752
1753 if (!SYMBOL_OBJFILE_OWNED (sym))
1754 return sym;
1755
1756 /* We either have an OBJFILE, or we can get at it from the sym's
1757 symtab. Anything else is a bug. */
1758 gdb_assert (objfile || symbol_symtab (sym));
1759
1760 if (objfile == NULL)
1761 objfile = symbol_objfile (sym);
1762
1763 if (SYMBOL_OBJ_SECTION (objfile, sym))
1764 return sym;
1765
1766 /* We should have an objfile by now. */
1767 gdb_assert (objfile);
1768
1769 switch (SYMBOL_CLASS (sym))
1770 {
1771 case LOC_STATIC:
1772 case LOC_LABEL:
1773 addr = SYMBOL_VALUE_ADDRESS (sym);
1774 break;
1775 case LOC_BLOCK:
1776 addr = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
1777 break;
1778
1779 default:
1780 /* Nothing else will be listed in the minsyms -- no use looking
1781 it up. */
1782 return sym;
1783 }
1784
1785 fixup_section (sym, addr, objfile);
1786
1787 return sym;
1788 }
1789
1790 /* See symtab.h. */
1791
1792 demangle_for_lookup_info::demangle_for_lookup_info
1793 (const lookup_name_info &lookup_name, language lang)
1794 {
1795 demangle_result_storage storage;
1796
1797 if (lookup_name.ignore_parameters () && lang == language_cplus)
1798 {
1799 gdb::unique_xmalloc_ptr<char> without_params
1800 = cp_remove_params_if_any (lookup_name.name ().c_str (),
1801 lookup_name.completion_mode ());
1802
1803 if (without_params != NULL)
1804 {
1805 if (lookup_name.match_type () != symbol_name_match_type::SEARCH_NAME)
1806 m_demangled_name = demangle_for_lookup (without_params.get (),
1807 lang, storage);
1808 return;
1809 }
1810 }
1811
1812 if (lookup_name.match_type () == symbol_name_match_type::SEARCH_NAME)
1813 m_demangled_name = lookup_name.name ();
1814 else
1815 m_demangled_name = demangle_for_lookup (lookup_name.name ().c_str (),
1816 lang, storage);
1817 }
1818
1819 /* See symtab.h. */
1820
1821 const lookup_name_info &
1822 lookup_name_info::match_any ()
1823 {
1824 /* Lookup any symbol that "" would complete. I.e., this matches all
1825 symbol names. */
1826 static const lookup_name_info lookup_name ({}, symbol_name_match_type::FULL,
1827 true);
1828
1829 return lookup_name;
1830 }
1831
1832 /* Compute the demangled form of NAME as used by the various symbol
1833 lookup functions. The result can either be the input NAME
1834 directly, or a pointer to a buffer owned by the STORAGE object.
1835
1836 For Ada, this function just returns NAME, unmodified.
1837 Normally, Ada symbol lookups are performed using the encoded name
1838 rather than the demangled name, and so it might seem to make sense
1839 for this function to return an encoded version of NAME.
1840 Unfortunately, we cannot do this, because this function is used in
1841 circumstances where it is not appropriate to try to encode NAME.
1842 For instance, when displaying the frame info, we demangle the name
1843 of each parameter, and then perform a symbol lookup inside our
1844 function using that demangled name. In Ada, certain functions
1845 have internally-generated parameters whose name contain uppercase
1846 characters. Encoding those name would result in those uppercase
1847 characters to become lowercase, and thus cause the symbol lookup
1848 to fail. */
1849
1850 const char *
1851 demangle_for_lookup (const char *name, enum language lang,
1852 demangle_result_storage &storage)
1853 {
1854 /* If we are using C++, D, or Go, demangle the name before doing a
1855 lookup, so we can always binary search. */
1856 if (lang == language_cplus)
1857 {
1858 char *demangled_name = gdb_demangle (name, DMGL_ANSI | DMGL_PARAMS);
1859 if (demangled_name != NULL)
1860 return storage.set_malloc_ptr (demangled_name);
1861
1862 /* If we were given a non-mangled name, canonicalize it
1863 according to the language (so far only for C++). */
1864 std::string canon = cp_canonicalize_string (name);
1865 if (!canon.empty ())
1866 return storage.swap_string (canon);
1867 }
1868 else if (lang == language_d)
1869 {
1870 char *demangled_name = d_demangle (name, 0);
1871 if (demangled_name != NULL)
1872 return storage.set_malloc_ptr (demangled_name);
1873 }
1874 else if (lang == language_go)
1875 {
1876 char *demangled_name = go_demangle (name, 0);
1877 if (demangled_name != NULL)
1878 return storage.set_malloc_ptr (demangled_name);
1879 }
1880
1881 return name;
1882 }
1883
1884 /* See symtab.h. */
1885
1886 unsigned int
1887 search_name_hash (enum language language, const char *search_name)
1888 {
1889 return language_def (language)->la_search_name_hash (search_name);
1890 }
1891
1892 /* See symtab.h.
1893
1894 This function (or rather its subordinates) have a bunch of loops and
1895 it would seem to be attractive to put in some QUIT's (though I'm not really
1896 sure whether it can run long enough to be really important). But there
1897 are a few calls for which it would appear to be bad news to quit
1898 out of here: e.g., find_proc_desc in alpha-mdebug-tdep.c. (Note
1899 that there is C++ code below which can error(), but that probably
1900 doesn't affect these calls since they are looking for a known
1901 variable and thus can probably assume it will never hit the C++
1902 code). */
1903
1904 struct block_symbol
1905 lookup_symbol_in_language (const char *name, const struct block *block,
1906 const domain_enum domain, enum language lang,
1907 struct field_of_this_result *is_a_field_of_this)
1908 {
1909 demangle_result_storage storage;
1910 const char *modified_name = demangle_for_lookup (name, lang, storage);
1911
1912 return lookup_symbol_aux (modified_name,
1913 symbol_name_match_type::FULL,
1914 block, domain, lang,
1915 is_a_field_of_this);
1916 }
1917
1918 /* See symtab.h. */
1919
1920 struct block_symbol
1921 lookup_symbol (const char *name, const struct block *block,
1922 domain_enum domain,
1923 struct field_of_this_result *is_a_field_of_this)
1924 {
1925 return lookup_symbol_in_language (name, block, domain,
1926 current_language->la_language,
1927 is_a_field_of_this);
1928 }
1929
1930 /* See symtab.h. */
1931
1932 struct block_symbol
1933 lookup_symbol_search_name (const char *search_name, const struct block *block,
1934 domain_enum domain)
1935 {
1936 return lookup_symbol_aux (search_name, symbol_name_match_type::SEARCH_NAME,
1937 block, domain, language_asm, NULL);
1938 }
1939
1940 /* See symtab.h. */
1941
1942 struct block_symbol
1943 lookup_language_this (const struct language_defn *lang,
1944 const struct block *block)
1945 {
1946 if (lang->la_name_of_this == NULL || block == NULL)
1947 return {};
1948
1949 if (symbol_lookup_debug > 1)
1950 {
1951 struct objfile *objfile = lookup_objfile_from_block (block);
1952
1953 fprintf_unfiltered (gdb_stdlog,
1954 "lookup_language_this (%s, %s (objfile %s))",
1955 lang->la_name, host_address_to_string (block),
1956 objfile_debug_name (objfile));
1957 }
1958
1959 while (block)
1960 {
1961 struct symbol *sym;
1962
1963 sym = block_lookup_symbol (block, lang->la_name_of_this,
1964 symbol_name_match_type::SEARCH_NAME,
1965 VAR_DOMAIN);
1966 if (sym != NULL)
1967 {
1968 if (symbol_lookup_debug > 1)
1969 {
1970 fprintf_unfiltered (gdb_stdlog, " = %s (%s, block %s)\n",
1971 sym->print_name (),
1972 host_address_to_string (sym),
1973 host_address_to_string (block));
1974 }
1975 return (struct block_symbol) {sym, block};
1976 }
1977 if (BLOCK_FUNCTION (block))
1978 break;
1979 block = BLOCK_SUPERBLOCK (block);
1980 }
1981
1982 if (symbol_lookup_debug > 1)
1983 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
1984 return {};
1985 }
1986
1987 /* Given TYPE, a structure/union,
1988 return 1 if the component named NAME from the ultimate target
1989 structure/union is defined, otherwise, return 0. */
1990
1991 static int
1992 check_field (struct type *type, const char *name,
1993 struct field_of_this_result *is_a_field_of_this)
1994 {
1995 int i;
1996
1997 /* The type may be a stub. */
1998 type = check_typedef (type);
1999
2000 for (i = TYPE_NFIELDS (type) - 1; i >= TYPE_N_BASECLASSES (type); i--)
2001 {
2002 const char *t_field_name = TYPE_FIELD_NAME (type, i);
2003
2004 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
2005 {
2006 is_a_field_of_this->type = type;
2007 is_a_field_of_this->field = &TYPE_FIELD (type, i);
2008 return 1;
2009 }
2010 }
2011
2012 /* C++: If it was not found as a data field, then try to return it
2013 as a pointer to a method. */
2014
2015 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; --i)
2016 {
2017 if (strcmp_iw (TYPE_FN_FIELDLIST_NAME (type, i), name) == 0)
2018 {
2019 is_a_field_of_this->type = type;
2020 is_a_field_of_this->fn_field = &TYPE_FN_FIELDLIST (type, i);
2021 return 1;
2022 }
2023 }
2024
2025 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2026 if (check_field (TYPE_BASECLASS (type, i), name, is_a_field_of_this))
2027 return 1;
2028
2029 return 0;
2030 }
2031
2032 /* Behave like lookup_symbol except that NAME is the natural name
2033 (e.g., demangled name) of the symbol that we're looking for. */
2034
2035 static struct block_symbol
2036 lookup_symbol_aux (const char *name, symbol_name_match_type match_type,
2037 const struct block *block,
2038 const domain_enum domain, enum language language,
2039 struct field_of_this_result *is_a_field_of_this)
2040 {
2041 struct block_symbol result;
2042 const struct language_defn *langdef;
2043
2044 if (symbol_lookup_debug)
2045 {
2046 struct objfile *objfile = lookup_objfile_from_block (block);
2047
2048 fprintf_unfiltered (gdb_stdlog,
2049 "lookup_symbol_aux (%s, %s (objfile %s), %s, %s)\n",
2050 name, host_address_to_string (block),
2051 objfile != NULL
2052 ? objfile_debug_name (objfile) : "NULL",
2053 domain_name (domain), language_str (language));
2054 }
2055
2056 /* Make sure we do something sensible with is_a_field_of_this, since
2057 the callers that set this parameter to some non-null value will
2058 certainly use it later. If we don't set it, the contents of
2059 is_a_field_of_this are undefined. */
2060 if (is_a_field_of_this != NULL)
2061 memset (is_a_field_of_this, 0, sizeof (*is_a_field_of_this));
2062
2063 /* Search specified block and its superiors. Don't search
2064 STATIC_BLOCK or GLOBAL_BLOCK. */
2065
2066 result = lookup_local_symbol (name, match_type, block, domain, language);
2067 if (result.symbol != NULL)
2068 {
2069 if (symbol_lookup_debug)
2070 {
2071 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2072 host_address_to_string (result.symbol));
2073 }
2074 return result;
2075 }
2076
2077 /* If requested to do so by the caller and if appropriate for LANGUAGE,
2078 check to see if NAME is a field of `this'. */
2079
2080 langdef = language_def (language);
2081
2082 /* Don't do this check if we are searching for a struct. It will
2083 not be found by check_field, but will be found by other
2084 means. */
2085 if (is_a_field_of_this != NULL && domain != STRUCT_DOMAIN)
2086 {
2087 result = lookup_language_this (langdef, block);
2088
2089 if (result.symbol)
2090 {
2091 struct type *t = result.symbol->type;
2092
2093 /* I'm not really sure that type of this can ever
2094 be typedefed; just be safe. */
2095 t = check_typedef (t);
2096 if (TYPE_CODE (t) == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2097 t = TYPE_TARGET_TYPE (t);
2098
2099 if (TYPE_CODE (t) != TYPE_CODE_STRUCT
2100 && TYPE_CODE (t) != TYPE_CODE_UNION)
2101 error (_("Internal error: `%s' is not an aggregate"),
2102 langdef->la_name_of_this);
2103
2104 if (check_field (t, name, is_a_field_of_this))
2105 {
2106 if (symbol_lookup_debug)
2107 {
2108 fprintf_unfiltered (gdb_stdlog,
2109 "lookup_symbol_aux (...) = NULL\n");
2110 }
2111 return {};
2112 }
2113 }
2114 }
2115
2116 /* Now do whatever is appropriate for LANGUAGE to look
2117 up static and global variables. */
2118
2119 result = langdef->la_lookup_symbol_nonlocal (langdef, name, block, domain);
2120 if (result.symbol != NULL)
2121 {
2122 if (symbol_lookup_debug)
2123 {
2124 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2125 host_address_to_string (result.symbol));
2126 }
2127 return result;
2128 }
2129
2130 /* Now search all static file-level symbols. Not strictly correct,
2131 but more useful than an error. */
2132
2133 result = lookup_static_symbol (name, domain);
2134 if (symbol_lookup_debug)
2135 {
2136 fprintf_unfiltered (gdb_stdlog, "lookup_symbol_aux (...) = %s\n",
2137 result.symbol != NULL
2138 ? host_address_to_string (result.symbol)
2139 : "NULL");
2140 }
2141 return result;
2142 }
2143
2144 /* Check to see if the symbol is defined in BLOCK or its superiors.
2145 Don't search STATIC_BLOCK or GLOBAL_BLOCK. */
2146
2147 static struct block_symbol
2148 lookup_local_symbol (const char *name,
2149 symbol_name_match_type match_type,
2150 const struct block *block,
2151 const domain_enum domain,
2152 enum language language)
2153 {
2154 struct symbol *sym;
2155 const struct block *static_block = block_static_block (block);
2156 const char *scope = block_scope (block);
2157
2158 /* Check if either no block is specified or it's a global block. */
2159
2160 if (static_block == NULL)
2161 return {};
2162
2163 while (block != static_block)
2164 {
2165 sym = lookup_symbol_in_block (name, match_type, block, domain);
2166 if (sym != NULL)
2167 return (struct block_symbol) {sym, block};
2168
2169 if (language == language_cplus || language == language_fortran)
2170 {
2171 struct block_symbol blocksym
2172 = cp_lookup_symbol_imports_or_template (scope, name, block,
2173 domain);
2174
2175 if (blocksym.symbol != NULL)
2176 return blocksym;
2177 }
2178
2179 if (BLOCK_FUNCTION (block) != NULL && block_inlined_p (block))
2180 break;
2181 block = BLOCK_SUPERBLOCK (block);
2182 }
2183
2184 /* We've reached the end of the function without finding a result. */
2185
2186 return {};
2187 }
2188
2189 /* See symtab.h. */
2190
2191 struct objfile *
2192 lookup_objfile_from_block (const struct block *block)
2193 {
2194 if (block == NULL)
2195 return NULL;
2196
2197 block = block_global_block (block);
2198 /* Look through all blockvectors. */
2199 for (objfile *obj : current_program_space->objfiles ())
2200 {
2201 for (compunit_symtab *cust : obj->compunits ())
2202 if (block == BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust),
2203 GLOBAL_BLOCK))
2204 {
2205 if (obj->separate_debug_objfile_backlink)
2206 obj = obj->separate_debug_objfile_backlink;
2207
2208 return obj;
2209 }
2210 }
2211
2212 return NULL;
2213 }
2214
2215 /* See symtab.h. */
2216
2217 struct symbol *
2218 lookup_symbol_in_block (const char *name, symbol_name_match_type match_type,
2219 const struct block *block,
2220 const domain_enum domain)
2221 {
2222 struct symbol *sym;
2223
2224 if (symbol_lookup_debug > 1)
2225 {
2226 struct objfile *objfile = lookup_objfile_from_block (block);
2227
2228 fprintf_unfiltered (gdb_stdlog,
2229 "lookup_symbol_in_block (%s, %s (objfile %s), %s)",
2230 name, host_address_to_string (block),
2231 objfile_debug_name (objfile),
2232 domain_name (domain));
2233 }
2234
2235 sym = block_lookup_symbol (block, name, match_type, domain);
2236 if (sym)
2237 {
2238 if (symbol_lookup_debug > 1)
2239 {
2240 fprintf_unfiltered (gdb_stdlog, " = %s\n",
2241 host_address_to_string (sym));
2242 }
2243 return fixup_symbol_section (sym, NULL);
2244 }
2245
2246 if (symbol_lookup_debug > 1)
2247 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2248 return NULL;
2249 }
2250
2251 /* See symtab.h. */
2252
2253 struct block_symbol
2254 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2255 enum block_enum block_index,
2256 const char *name,
2257 const domain_enum domain)
2258 {
2259 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2260
2261 for (objfile *objfile : main_objfile->separate_debug_objfiles ())
2262 {
2263 struct block_symbol result
2264 = lookup_symbol_in_objfile (objfile, block_index, name, domain);
2265
2266 if (result.symbol != nullptr)
2267 return result;
2268 }
2269
2270 return {};
2271 }
2272
2273 /* Check to see if the symbol is defined in one of the OBJFILE's
2274 symtabs. BLOCK_INDEX should be either GLOBAL_BLOCK or STATIC_BLOCK,
2275 depending on whether or not we want to search global symbols or
2276 static symbols. */
2277
2278 static struct block_symbol
2279 lookup_symbol_in_objfile_symtabs (struct objfile *objfile,
2280 enum block_enum block_index, const char *name,
2281 const domain_enum domain)
2282 {
2283 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2284
2285 if (symbol_lookup_debug > 1)
2286 {
2287 fprintf_unfiltered (gdb_stdlog,
2288 "lookup_symbol_in_objfile_symtabs (%s, %s, %s, %s)",
2289 objfile_debug_name (objfile),
2290 block_index == GLOBAL_BLOCK
2291 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2292 name, domain_name (domain));
2293 }
2294
2295 for (compunit_symtab *cust : objfile->compunits ())
2296 {
2297 const struct blockvector *bv;
2298 const struct block *block;
2299 struct block_symbol result;
2300
2301 bv = COMPUNIT_BLOCKVECTOR (cust);
2302 block = BLOCKVECTOR_BLOCK (bv, block_index);
2303 result.symbol = block_lookup_symbol_primary (block, name, domain);
2304 result.block = block;
2305 if (result.symbol != NULL)
2306 {
2307 if (symbol_lookup_debug > 1)
2308 {
2309 fprintf_unfiltered (gdb_stdlog, " = %s (block %s)\n",
2310 host_address_to_string (result.symbol),
2311 host_address_to_string (block));
2312 }
2313 result.symbol = fixup_symbol_section (result.symbol, objfile);
2314 return result;
2315
2316 }
2317 }
2318
2319 if (symbol_lookup_debug > 1)
2320 fprintf_unfiltered (gdb_stdlog, " = NULL\n");
2321 return {};
2322 }
2323
2324 /* Wrapper around lookup_symbol_in_objfile_symtabs for search_symbols.
2325 Look up LINKAGE_NAME in DOMAIN in the global and static blocks of OBJFILE
2326 and all associated separate debug objfiles.
2327
2328 Normally we only look in OBJFILE, and not any separate debug objfiles
2329 because the outer loop will cause them to be searched too. This case is
2330 different. Here we're called from search_symbols where it will only
2331 call us for the objfile that contains a matching minsym. */
2332
2333 static struct block_symbol
2334 lookup_symbol_in_objfile_from_linkage_name (struct objfile *objfile,
2335 const char *linkage_name,
2336 domain_enum domain)
2337 {
2338 enum language lang = current_language->la_language;
2339 struct objfile *main_objfile;
2340
2341 demangle_result_storage storage;
2342 const char *modified_name = demangle_for_lookup (linkage_name, lang, storage);
2343
2344 if (objfile->separate_debug_objfile_backlink)
2345 main_objfile = objfile->separate_debug_objfile_backlink;
2346 else
2347 main_objfile = objfile;
2348
2349 for (::objfile *cur_objfile : main_objfile->separate_debug_objfiles ())
2350 {
2351 struct block_symbol result;
2352
2353 result = lookup_symbol_in_objfile_symtabs (cur_objfile, GLOBAL_BLOCK,
2354 modified_name, domain);
2355 if (result.symbol == NULL)
2356 result = lookup_symbol_in_objfile_symtabs (cur_objfile, STATIC_BLOCK,
2357 modified_name, domain);
2358 if (result.symbol != NULL)
2359 return result;
2360 }
2361
2362 return {};
2363 }
2364
2365 /* A helper function that throws an exception when a symbol was found
2366 in a psymtab but not in a symtab. */
2367
2368 static void ATTRIBUTE_NORETURN
2369 error_in_psymtab_expansion (enum block_enum block_index, const char *name,
2370 struct compunit_symtab *cust)
2371 {
2372 error (_("\
2373 Internal: %s symbol `%s' found in %s psymtab but not in symtab.\n\
2374 %s may be an inlined function, or may be a template function\n \
2375 (if a template, try specifying an instantiation: %s<type>)."),
2376 block_index == GLOBAL_BLOCK ? "global" : "static",
2377 name,
2378 symtab_to_filename_for_display (compunit_primary_filetab (cust)),
2379 name, name);
2380 }
2381
2382 /* A helper function for various lookup routines that interfaces with
2383 the "quick" symbol table functions. */
2384
2385 static struct block_symbol
2386 lookup_symbol_via_quick_fns (struct objfile *objfile,
2387 enum block_enum block_index, const char *name,
2388 const domain_enum domain)
2389 {
2390 struct compunit_symtab *cust;
2391 const struct blockvector *bv;
2392 const struct block *block;
2393 struct block_symbol result;
2394
2395 if (!objfile->sf)
2396 return {};
2397
2398 if (symbol_lookup_debug > 1)
2399 {
2400 fprintf_unfiltered (gdb_stdlog,
2401 "lookup_symbol_via_quick_fns (%s, %s, %s, %s)\n",
2402 objfile_debug_name (objfile),
2403 block_index == GLOBAL_BLOCK
2404 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2405 name, domain_name (domain));
2406 }
2407
2408 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name, domain);
2409 if (cust == NULL)
2410 {
2411 if (symbol_lookup_debug > 1)
2412 {
2413 fprintf_unfiltered (gdb_stdlog,
2414 "lookup_symbol_via_quick_fns (...) = NULL\n");
2415 }
2416 return {};
2417 }
2418
2419 bv = COMPUNIT_BLOCKVECTOR (cust);
2420 block = BLOCKVECTOR_BLOCK (bv, block_index);
2421 result.symbol = block_lookup_symbol (block, name,
2422 symbol_name_match_type::FULL, domain);
2423 if (result.symbol == NULL)
2424 error_in_psymtab_expansion (block_index, name, cust);
2425
2426 if (symbol_lookup_debug > 1)
2427 {
2428 fprintf_unfiltered (gdb_stdlog,
2429 "lookup_symbol_via_quick_fns (...) = %s (block %s)\n",
2430 host_address_to_string (result.symbol),
2431 host_address_to_string (block));
2432 }
2433
2434 result.symbol = fixup_symbol_section (result.symbol, objfile);
2435 result.block = block;
2436 return result;
2437 }
2438
2439 /* See symtab.h. */
2440
2441 struct block_symbol
2442 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
2443 const char *name,
2444 const struct block *block,
2445 const domain_enum domain)
2446 {
2447 struct block_symbol result;
2448
2449 /* NOTE: dje/2014-10-26: The lookup in all objfiles search could skip
2450 the current objfile. Searching the current objfile first is useful
2451 for both matching user expectations as well as performance. */
2452
2453 result = lookup_symbol_in_static_block (name, block, domain);
2454 if (result.symbol != NULL)
2455 return result;
2456
2457 /* If we didn't find a definition for a builtin type in the static block,
2458 search for it now. This is actually the right thing to do and can be
2459 a massive performance win. E.g., when debugging a program with lots of
2460 shared libraries we could search all of them only to find out the
2461 builtin type isn't defined in any of them. This is common for types
2462 like "void". */
2463 if (domain == VAR_DOMAIN)
2464 {
2465 struct gdbarch *gdbarch;
2466
2467 if (block == NULL)
2468 gdbarch = target_gdbarch ();
2469 else
2470 gdbarch = block_gdbarch (block);
2471 result.symbol = language_lookup_primitive_type_as_symbol (langdef,
2472 gdbarch, name);
2473 result.block = NULL;
2474 if (result.symbol != NULL)
2475 return result;
2476 }
2477
2478 return lookup_global_symbol (name, block, domain);
2479 }
2480
2481 /* See symtab.h. */
2482
2483 struct block_symbol
2484 lookup_symbol_in_static_block (const char *name,
2485 const struct block *block,
2486 const domain_enum domain)
2487 {
2488 const struct block *static_block = block_static_block (block);
2489 struct symbol *sym;
2490
2491 if (static_block == NULL)
2492 return {};
2493
2494 if (symbol_lookup_debug)
2495 {
2496 struct objfile *objfile = lookup_objfile_from_block (static_block);
2497
2498 fprintf_unfiltered (gdb_stdlog,
2499 "lookup_symbol_in_static_block (%s, %s (objfile %s),"
2500 " %s)\n",
2501 name,
2502 host_address_to_string (block),
2503 objfile_debug_name (objfile),
2504 domain_name (domain));
2505 }
2506
2507 sym = lookup_symbol_in_block (name,
2508 symbol_name_match_type::FULL,
2509 static_block, domain);
2510 if (symbol_lookup_debug)
2511 {
2512 fprintf_unfiltered (gdb_stdlog,
2513 "lookup_symbol_in_static_block (...) = %s\n",
2514 sym != NULL ? host_address_to_string (sym) : "NULL");
2515 }
2516 return (struct block_symbol) {sym, static_block};
2517 }
2518
2519 /* Perform the standard symbol lookup of NAME in OBJFILE:
2520 1) First search expanded symtabs, and if not found
2521 2) Search the "quick" symtabs (partial or .gdb_index).
2522 BLOCK_INDEX is one of GLOBAL_BLOCK or STATIC_BLOCK. */
2523
2524 static struct block_symbol
2525 lookup_symbol_in_objfile (struct objfile *objfile, enum block_enum block_index,
2526 const char *name, const domain_enum domain)
2527 {
2528 struct block_symbol result;
2529
2530 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2531
2532 if (symbol_lookup_debug)
2533 {
2534 fprintf_unfiltered (gdb_stdlog,
2535 "lookup_symbol_in_objfile (%s, %s, %s, %s)\n",
2536 objfile_debug_name (objfile),
2537 block_index == GLOBAL_BLOCK
2538 ? "GLOBAL_BLOCK" : "STATIC_BLOCK",
2539 name, domain_name (domain));
2540 }
2541
2542 result = lookup_symbol_in_objfile_symtabs (objfile, block_index,
2543 name, domain);
2544 if (result.symbol != NULL)
2545 {
2546 if (symbol_lookup_debug)
2547 {
2548 fprintf_unfiltered (gdb_stdlog,
2549 "lookup_symbol_in_objfile (...) = %s"
2550 " (in symtabs)\n",
2551 host_address_to_string (result.symbol));
2552 }
2553 return result;
2554 }
2555
2556 result = lookup_symbol_via_quick_fns (objfile, block_index,
2557 name, domain);
2558 if (symbol_lookup_debug)
2559 {
2560 fprintf_unfiltered (gdb_stdlog,
2561 "lookup_symbol_in_objfile (...) = %s%s\n",
2562 result.symbol != NULL
2563 ? host_address_to_string (result.symbol)
2564 : "NULL",
2565 result.symbol != NULL ? " (via quick fns)" : "");
2566 }
2567 return result;
2568 }
2569
2570 /* Private data to be used with lookup_symbol_global_iterator_cb. */
2571
2572 struct global_or_static_sym_lookup_data
2573 {
2574 /* The name of the symbol we are searching for. */
2575 const char *name;
2576
2577 /* The domain to use for our search. */
2578 domain_enum domain;
2579
2580 /* The block index in which to search. */
2581 enum block_enum block_index;
2582
2583 /* The field where the callback should store the symbol if found.
2584 It should be initialized to {NULL, NULL} before the search is started. */
2585 struct block_symbol result;
2586 };
2587
2588 /* A callback function for gdbarch_iterate_over_objfiles_in_search_order.
2589 It searches by name for a symbol in the block given by BLOCK_INDEX of the
2590 given OBJFILE. The arguments for the search are passed via CB_DATA, which
2591 in reality is a pointer to struct global_or_static_sym_lookup_data. */
2592
2593 static int
2594 lookup_symbol_global_or_static_iterator_cb (struct objfile *objfile,
2595 void *cb_data)
2596 {
2597 struct global_or_static_sym_lookup_data *data =
2598 (struct global_or_static_sym_lookup_data *) cb_data;
2599
2600 gdb_assert (data->result.symbol == NULL
2601 && data->result.block == NULL);
2602
2603 data->result = lookup_symbol_in_objfile (objfile, data->block_index,
2604 data->name, data->domain);
2605
2606 /* If we found a match, tell the iterator to stop. Otherwise,
2607 keep going. */
2608 return (data->result.symbol != NULL);
2609 }
2610
2611 /* This function contains the common code of lookup_{global,static}_symbol.
2612 OBJFILE is only used if BLOCK_INDEX is GLOBAL_SCOPE, in which case it is
2613 the objfile to start the lookup in. */
2614
2615 static struct block_symbol
2616 lookup_global_or_static_symbol (const char *name,
2617 enum block_enum block_index,
2618 struct objfile *objfile,
2619 const domain_enum domain)
2620 {
2621 struct symbol_cache *cache = get_symbol_cache (current_program_space);
2622 struct block_symbol result;
2623 struct global_or_static_sym_lookup_data lookup_data;
2624 struct block_symbol_cache *bsc;
2625 struct symbol_cache_slot *slot;
2626
2627 gdb_assert (block_index == GLOBAL_BLOCK || block_index == STATIC_BLOCK);
2628 gdb_assert (objfile == nullptr || block_index == GLOBAL_BLOCK);
2629
2630 /* First see if we can find the symbol in the cache.
2631 This works because we use the current objfile to qualify the lookup. */
2632 result = symbol_cache_lookup (cache, objfile, block_index, name, domain,
2633 &bsc, &slot);
2634 if (result.symbol != NULL)
2635 {
2636 if (SYMBOL_LOOKUP_FAILED_P (result))
2637 return {};
2638 return result;
2639 }
2640
2641 /* Do a global search (of global blocks, heh). */
2642 if (result.symbol == NULL)
2643 {
2644 memset (&lookup_data, 0, sizeof (lookup_data));
2645 lookup_data.name = name;
2646 lookup_data.block_index = block_index;
2647 lookup_data.domain = domain;
2648 gdbarch_iterate_over_objfiles_in_search_order
2649 (objfile != NULL ? get_objfile_arch (objfile) : target_gdbarch (),
2650 lookup_symbol_global_or_static_iterator_cb, &lookup_data, objfile);
2651 result = lookup_data.result;
2652 }
2653
2654 if (result.symbol != NULL)
2655 symbol_cache_mark_found (bsc, slot, objfile, result.symbol, result.block);
2656 else
2657 symbol_cache_mark_not_found (bsc, slot, objfile, name, domain);
2658
2659 return result;
2660 }
2661
2662 /* See symtab.h. */
2663
2664 struct block_symbol
2665 lookup_static_symbol (const char *name, const domain_enum domain)
2666 {
2667 return lookup_global_or_static_symbol (name, STATIC_BLOCK, nullptr, domain);
2668 }
2669
2670 /* See symtab.h. */
2671
2672 struct block_symbol
2673 lookup_global_symbol (const char *name,
2674 const struct block *block,
2675 const domain_enum domain)
2676 {
2677 /* If a block was passed in, we want to search the corresponding
2678 global block first. This yields "more expected" behavior, and is
2679 needed to support 'FILENAME'::VARIABLE lookups. */
2680 const struct block *global_block = block_global_block (block);
2681 if (global_block != nullptr)
2682 {
2683 symbol *sym = lookup_symbol_in_block (name,
2684 symbol_name_match_type::FULL,
2685 global_block, domain);
2686 if (sym != nullptr)
2687 return { sym, global_block };
2688 }
2689
2690 struct objfile *objfile = lookup_objfile_from_block (block);
2691 return lookup_global_or_static_symbol (name, GLOBAL_BLOCK, objfile, domain);
2692 }
2693
2694 bool
2695 symbol_matches_domain (enum language symbol_language,
2696 domain_enum symbol_domain,
2697 domain_enum domain)
2698 {
2699 /* For C++ "struct foo { ... }" also defines a typedef for "foo".
2700 Similarly, any Ada type declaration implicitly defines a typedef. */
2701 if (symbol_language == language_cplus
2702 || symbol_language == language_d
2703 || symbol_language == language_ada
2704 || symbol_language == language_rust)
2705 {
2706 if ((domain == VAR_DOMAIN || domain == STRUCT_DOMAIN)
2707 && symbol_domain == STRUCT_DOMAIN)
2708 return true;
2709 }
2710 /* For all other languages, strict match is required. */
2711 return (symbol_domain == domain);
2712 }
2713
2714 /* See symtab.h. */
2715
2716 struct type *
2717 lookup_transparent_type (const char *name)
2718 {
2719 return current_language->la_lookup_transparent_type (name);
2720 }
2721
2722 /* A helper for basic_lookup_transparent_type that interfaces with the
2723 "quick" symbol table functions. */
2724
2725 static struct type *
2726 basic_lookup_transparent_type_quick (struct objfile *objfile,
2727 enum block_enum block_index,
2728 const char *name)
2729 {
2730 struct compunit_symtab *cust;
2731 const struct blockvector *bv;
2732 const struct block *block;
2733 struct symbol *sym;
2734
2735 if (!objfile->sf)
2736 return NULL;
2737 cust = objfile->sf->qf->lookup_symbol (objfile, block_index, name,
2738 STRUCT_DOMAIN);
2739 if (cust == NULL)
2740 return NULL;
2741
2742 bv = COMPUNIT_BLOCKVECTOR (cust);
2743 block = BLOCKVECTOR_BLOCK (bv, block_index);
2744 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2745 block_find_non_opaque_type, NULL);
2746 if (sym == NULL)
2747 error_in_psymtab_expansion (block_index, name, cust);
2748 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2749 return SYMBOL_TYPE (sym);
2750 }
2751
2752 /* Subroutine of basic_lookup_transparent_type to simplify it.
2753 Look up the non-opaque definition of NAME in BLOCK_INDEX of OBJFILE.
2754 BLOCK_INDEX is either GLOBAL_BLOCK or STATIC_BLOCK. */
2755
2756 static struct type *
2757 basic_lookup_transparent_type_1 (struct objfile *objfile,
2758 enum block_enum block_index,
2759 const char *name)
2760 {
2761 const struct blockvector *bv;
2762 const struct block *block;
2763 const struct symbol *sym;
2764
2765 for (compunit_symtab *cust : objfile->compunits ())
2766 {
2767 bv = COMPUNIT_BLOCKVECTOR (cust);
2768 block = BLOCKVECTOR_BLOCK (bv, block_index);
2769 sym = block_find_symbol (block, name, STRUCT_DOMAIN,
2770 block_find_non_opaque_type, NULL);
2771 if (sym != NULL)
2772 {
2773 gdb_assert (!TYPE_IS_OPAQUE (SYMBOL_TYPE (sym)));
2774 return SYMBOL_TYPE (sym);
2775 }
2776 }
2777
2778 return NULL;
2779 }
2780
2781 /* The standard implementation of lookup_transparent_type. This code
2782 was modeled on lookup_symbol -- the parts not relevant to looking
2783 up types were just left out. In particular it's assumed here that
2784 types are available in STRUCT_DOMAIN and only in file-static or
2785 global blocks. */
2786
2787 struct type *
2788 basic_lookup_transparent_type (const char *name)
2789 {
2790 struct type *t;
2791
2792 /* Now search all the global symbols. Do the symtab's first, then
2793 check the psymtab's. If a psymtab indicates the existence
2794 of the desired name as a global, then do psymtab-to-symtab
2795 conversion on the fly and return the found symbol. */
2796
2797 for (objfile *objfile : current_program_space->objfiles ())
2798 {
2799 t = basic_lookup_transparent_type_1 (objfile, GLOBAL_BLOCK, name);
2800 if (t)
2801 return t;
2802 }
2803
2804 for (objfile *objfile : current_program_space->objfiles ())
2805 {
2806 t = basic_lookup_transparent_type_quick (objfile, GLOBAL_BLOCK, name);
2807 if (t)
2808 return t;
2809 }
2810
2811 /* Now search the static file-level symbols.
2812 Not strictly correct, but more useful than an error.
2813 Do the symtab's first, then
2814 check the psymtab's. If a psymtab indicates the existence
2815 of the desired name as a file-level static, then do psymtab-to-symtab
2816 conversion on the fly and return the found symbol. */
2817
2818 for (objfile *objfile : current_program_space->objfiles ())
2819 {
2820 t = basic_lookup_transparent_type_1 (objfile, STATIC_BLOCK, name);
2821 if (t)
2822 return t;
2823 }
2824
2825 for (objfile *objfile : current_program_space->objfiles ())
2826 {
2827 t = basic_lookup_transparent_type_quick (objfile, STATIC_BLOCK, name);
2828 if (t)
2829 return t;
2830 }
2831
2832 return (struct type *) 0;
2833 }
2834
2835 /* See symtab.h. */
2836
2837 bool
2838 iterate_over_symbols (const struct block *block,
2839 const lookup_name_info &name,
2840 const domain_enum domain,
2841 gdb::function_view<symbol_found_callback_ftype> callback)
2842 {
2843 struct block_iterator iter;
2844 struct symbol *sym;
2845
2846 ALL_BLOCK_SYMBOLS_WITH_NAME (block, name, iter, sym)
2847 {
2848 if (symbol_matches_domain (sym->language (), SYMBOL_DOMAIN (sym), domain))
2849 {
2850 struct block_symbol block_sym = {sym, block};
2851
2852 if (!callback (&block_sym))
2853 return false;
2854 }
2855 }
2856 return true;
2857 }
2858
2859 /* See symtab.h. */
2860
2861 bool
2862 iterate_over_symbols_terminated
2863 (const struct block *block,
2864 const lookup_name_info &name,
2865 const domain_enum domain,
2866 gdb::function_view<symbol_found_callback_ftype> callback)
2867 {
2868 if (!iterate_over_symbols (block, name, domain, callback))
2869 return false;
2870 struct block_symbol block_sym = {nullptr, block};
2871 return callback (&block_sym);
2872 }
2873
2874 /* Find the compunit symtab associated with PC and SECTION.
2875 This will read in debug info as necessary. */
2876
2877 struct compunit_symtab *
2878 find_pc_sect_compunit_symtab (CORE_ADDR pc, struct obj_section *section)
2879 {
2880 struct compunit_symtab *best_cust = NULL;
2881 CORE_ADDR distance = 0;
2882 struct bound_minimal_symbol msymbol;
2883
2884 /* If we know that this is not a text address, return failure. This is
2885 necessary because we loop based on the block's high and low code
2886 addresses, which do not include the data ranges, and because
2887 we call find_pc_sect_psymtab which has a similar restriction based
2888 on the partial_symtab's texthigh and textlow. */
2889 msymbol = lookup_minimal_symbol_by_pc_section (pc, section);
2890 if (msymbol.minsym && msymbol.minsym->data_p ())
2891 return NULL;
2892
2893 /* Search all symtabs for the one whose file contains our address, and which
2894 is the smallest of all the ones containing the address. This is designed
2895 to deal with a case like symtab a is at 0x1000-0x2000 and 0x3000-0x4000
2896 and symtab b is at 0x2000-0x3000. So the GLOBAL_BLOCK for a is from
2897 0x1000-0x4000, but for address 0x2345 we want to return symtab b.
2898
2899 This happens for native ecoff format, where code from included files
2900 gets its own symtab. The symtab for the included file should have
2901 been read in already via the dependency mechanism.
2902 It might be swifter to create several symtabs with the same name
2903 like xcoff does (I'm not sure).
2904
2905 It also happens for objfiles that have their functions reordered.
2906 For these, the symtab we are looking for is not necessarily read in. */
2907
2908 for (objfile *obj_file : current_program_space->objfiles ())
2909 {
2910 for (compunit_symtab *cust : obj_file->compunits ())
2911 {
2912 const struct block *b;
2913 const struct blockvector *bv;
2914
2915 bv = COMPUNIT_BLOCKVECTOR (cust);
2916 b = BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK);
2917
2918 if (BLOCK_START (b) <= pc
2919 && BLOCK_END (b) > pc
2920 && (distance == 0
2921 || BLOCK_END (b) - BLOCK_START (b) < distance))
2922 {
2923 /* For an objfile that has its functions reordered,
2924 find_pc_psymtab will find the proper partial symbol table
2925 and we simply return its corresponding symtab. */
2926 /* In order to better support objfiles that contain both
2927 stabs and coff debugging info, we continue on if a psymtab
2928 can't be found. */
2929 if ((obj_file->flags & OBJF_REORDERED) && obj_file->sf)
2930 {
2931 struct compunit_symtab *result;
2932
2933 result
2934 = obj_file->sf->qf->find_pc_sect_compunit_symtab (obj_file,
2935 msymbol,
2936 pc,
2937 section,
2938 0);
2939 if (result != NULL)
2940 return result;
2941 }
2942 if (section != 0)
2943 {
2944 struct block_iterator iter;
2945 struct symbol *sym = NULL;
2946
2947 ALL_BLOCK_SYMBOLS (b, iter, sym)
2948 {
2949 fixup_symbol_section (sym, obj_file);
2950 if (matching_obj_sections (SYMBOL_OBJ_SECTION (obj_file,
2951 sym),
2952 section))
2953 break;
2954 }
2955 if (sym == NULL)
2956 continue; /* No symbol in this symtab matches
2957 section. */
2958 }
2959 distance = BLOCK_END (b) - BLOCK_START (b);
2960 best_cust = cust;
2961 }
2962 }
2963 }
2964
2965 if (best_cust != NULL)
2966 return best_cust;
2967
2968 /* Not found in symtabs, search the "quick" symtabs (e.g. psymtabs). */
2969
2970 for (objfile *objf : current_program_space->objfiles ())
2971 {
2972 struct compunit_symtab *result;
2973
2974 if (!objf->sf)
2975 continue;
2976 result = objf->sf->qf->find_pc_sect_compunit_symtab (objf,
2977 msymbol,
2978 pc, section,
2979 1);
2980 if (result != NULL)
2981 return result;
2982 }
2983
2984 return NULL;
2985 }
2986
2987 /* Find the compunit symtab associated with PC.
2988 This will read in debug info as necessary.
2989 Backward compatibility, no section. */
2990
2991 struct compunit_symtab *
2992 find_pc_compunit_symtab (CORE_ADDR pc)
2993 {
2994 return find_pc_sect_compunit_symtab (pc, find_pc_mapped_section (pc));
2995 }
2996
2997 /* See symtab.h. */
2998
2999 struct symbol *
3000 find_symbol_at_address (CORE_ADDR address)
3001 {
3002 for (objfile *objfile : current_program_space->objfiles ())
3003 {
3004 if (objfile->sf == NULL
3005 || objfile->sf->qf->find_compunit_symtab_by_address == NULL)
3006 continue;
3007
3008 struct compunit_symtab *symtab
3009 = objfile->sf->qf->find_compunit_symtab_by_address (objfile, address);
3010 if (symtab != NULL)
3011 {
3012 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (symtab);
3013
3014 for (int i = GLOBAL_BLOCK; i <= STATIC_BLOCK; ++i)
3015 {
3016 const struct block *b = BLOCKVECTOR_BLOCK (bv, i);
3017 struct block_iterator iter;
3018 struct symbol *sym;
3019
3020 ALL_BLOCK_SYMBOLS (b, iter, sym)
3021 {
3022 if (SYMBOL_CLASS (sym) == LOC_STATIC
3023 && SYMBOL_VALUE_ADDRESS (sym) == address)
3024 return sym;
3025 }
3026 }
3027 }
3028 }
3029
3030 return NULL;
3031 }
3032
3033 \f
3034
3035 /* Find the source file and line number for a given PC value and SECTION.
3036 Return a structure containing a symtab pointer, a line number,
3037 and a pc range for the entire source line.
3038 The value's .pc field is NOT the specified pc.
3039 NOTCURRENT nonzero means, if specified pc is on a line boundary,
3040 use the line that ends there. Otherwise, in that case, the line
3041 that begins there is used. */
3042
3043 /* The big complication here is that a line may start in one file, and end just
3044 before the start of another file. This usually occurs when you #include
3045 code in the middle of a subroutine. To properly find the end of a line's PC
3046 range, we must search all symtabs associated with this compilation unit, and
3047 find the one whose first PC is closer than that of the next line in this
3048 symtab. */
3049
3050 struct symtab_and_line
3051 find_pc_sect_line (CORE_ADDR pc, struct obj_section *section, int notcurrent)
3052 {
3053 struct compunit_symtab *cust;
3054 struct linetable *l;
3055 int len;
3056 struct linetable_entry *item;
3057 const struct blockvector *bv;
3058 struct bound_minimal_symbol msymbol;
3059
3060 /* Info on best line seen so far, and where it starts, and its file. */
3061
3062 struct linetable_entry *best = NULL;
3063 CORE_ADDR best_end = 0;
3064 struct symtab *best_symtab = 0;
3065
3066 /* Store here the first line number
3067 of a file which contains the line at the smallest pc after PC.
3068 If we don't find a line whose range contains PC,
3069 we will use a line one less than this,
3070 with a range from the start of that file to the first line's pc. */
3071 struct linetable_entry *alt = NULL;
3072
3073 /* Info on best line seen in this file. */
3074
3075 struct linetable_entry *prev;
3076
3077 /* If this pc is not from the current frame,
3078 it is the address of the end of a call instruction.
3079 Quite likely that is the start of the following statement.
3080 But what we want is the statement containing the instruction.
3081 Fudge the pc to make sure we get that. */
3082
3083 /* It's tempting to assume that, if we can't find debugging info for
3084 any function enclosing PC, that we shouldn't search for line
3085 number info, either. However, GAS can emit line number info for
3086 assembly files --- very helpful when debugging hand-written
3087 assembly code. In such a case, we'd have no debug info for the
3088 function, but we would have line info. */
3089
3090 if (notcurrent)
3091 pc -= 1;
3092
3093 /* elz: added this because this function returned the wrong
3094 information if the pc belongs to a stub (import/export)
3095 to call a shlib function. This stub would be anywhere between
3096 two functions in the target, and the line info was erroneously
3097 taken to be the one of the line before the pc. */
3098
3099 /* RT: Further explanation:
3100
3101 * We have stubs (trampolines) inserted between procedures.
3102 *
3103 * Example: "shr1" exists in a shared library, and a "shr1" stub also
3104 * exists in the main image.
3105 *
3106 * In the minimal symbol table, we have a bunch of symbols
3107 * sorted by start address. The stubs are marked as "trampoline",
3108 * the others appear as text. E.g.:
3109 *
3110 * Minimal symbol table for main image
3111 * main: code for main (text symbol)
3112 * shr1: stub (trampoline symbol)
3113 * foo: code for foo (text symbol)
3114 * ...
3115 * Minimal symbol table for "shr1" image:
3116 * ...
3117 * shr1: code for shr1 (text symbol)
3118 * ...
3119 *
3120 * So the code below is trying to detect if we are in the stub
3121 * ("shr1" stub), and if so, find the real code ("shr1" trampoline),
3122 * and if found, do the symbolization from the real-code address
3123 * rather than the stub address.
3124 *
3125 * Assumptions being made about the minimal symbol table:
3126 * 1. lookup_minimal_symbol_by_pc() will return a trampoline only
3127 * if we're really in the trampoline.s If we're beyond it (say
3128 * we're in "foo" in the above example), it'll have a closer
3129 * symbol (the "foo" text symbol for example) and will not
3130 * return the trampoline.
3131 * 2. lookup_minimal_symbol_text() will find a real text symbol
3132 * corresponding to the trampoline, and whose address will
3133 * be different than the trampoline address. I put in a sanity
3134 * check for the address being the same, to avoid an
3135 * infinite recursion.
3136 */
3137 msymbol = lookup_minimal_symbol_by_pc (pc);
3138 if (msymbol.minsym != NULL)
3139 if (MSYMBOL_TYPE (msymbol.minsym) == mst_solib_trampoline)
3140 {
3141 struct bound_minimal_symbol mfunsym
3142 = lookup_minimal_symbol_text (msymbol.minsym->linkage_name (),
3143 NULL);
3144
3145 if (mfunsym.minsym == NULL)
3146 /* I eliminated this warning since it is coming out
3147 * in the following situation:
3148 * gdb shmain // test program with shared libraries
3149 * (gdb) break shr1 // function in shared lib
3150 * Warning: In stub for ...
3151 * In the above situation, the shared lib is not loaded yet,
3152 * so of course we can't find the real func/line info,
3153 * but the "break" still works, and the warning is annoying.
3154 * So I commented out the warning. RT */
3155 /* warning ("In stub for %s; unable to find real function/line info",
3156 msymbol->linkage_name ()); */
3157 ;
3158 /* fall through */
3159 else if (BMSYMBOL_VALUE_ADDRESS (mfunsym)
3160 == BMSYMBOL_VALUE_ADDRESS (msymbol))
3161 /* Avoid infinite recursion */
3162 /* See above comment about why warning is commented out. */
3163 /* warning ("In stub for %s; unable to find real function/line info",
3164 msymbol->linkage_name ()); */
3165 ;
3166 /* fall through */
3167 else
3168 return find_pc_line (BMSYMBOL_VALUE_ADDRESS (mfunsym), 0);
3169 }
3170
3171 symtab_and_line val;
3172 val.pspace = current_program_space;
3173
3174 cust = find_pc_sect_compunit_symtab (pc, section);
3175 if (cust == NULL)
3176 {
3177 /* If no symbol information, return previous pc. */
3178 if (notcurrent)
3179 pc++;
3180 val.pc = pc;
3181 return val;
3182 }
3183
3184 bv = COMPUNIT_BLOCKVECTOR (cust);
3185
3186 /* Look at all the symtabs that share this blockvector.
3187 They all have the same apriori range, that we found was right;
3188 but they have different line tables. */
3189
3190 for (symtab *iter_s : compunit_filetabs (cust))
3191 {
3192 /* Find the best line in this symtab. */
3193 l = SYMTAB_LINETABLE (iter_s);
3194 if (!l)
3195 continue;
3196 len = l->nitems;
3197 if (len <= 0)
3198 {
3199 /* I think len can be zero if the symtab lacks line numbers
3200 (e.g. gcc -g1). (Either that or the LINETABLE is NULL;
3201 I'm not sure which, and maybe it depends on the symbol
3202 reader). */
3203 continue;
3204 }
3205
3206 prev = NULL;
3207 item = l->item; /* Get first line info. */
3208
3209 /* Is this file's first line closer than the first lines of other files?
3210 If so, record this file, and its first line, as best alternate. */
3211 if (item->pc > pc && (!alt || item->pc < alt->pc))
3212 alt = item;
3213
3214 auto pc_compare = [](const CORE_ADDR & comp_pc,
3215 const struct linetable_entry & lhs)->bool
3216 {
3217 return comp_pc < lhs.pc;
3218 };
3219
3220 struct linetable_entry *first = item;
3221 struct linetable_entry *last = item + len;
3222 item = std::upper_bound (first, last, pc, pc_compare);
3223 if (item != first)
3224 prev = item - 1; /* Found a matching item. */
3225
3226 /* At this point, prev points at the line whose start addr is <= pc, and
3227 item points at the next line. If we ran off the end of the linetable
3228 (pc >= start of the last line), then prev == item. If pc < start of
3229 the first line, prev will not be set. */
3230
3231 /* Is this file's best line closer than the best in the other files?
3232 If so, record this file, and its best line, as best so far. Don't
3233 save prev if it represents the end of a function (i.e. line number
3234 0) instead of a real line. */
3235
3236 if (prev && prev->line && (!best || prev->pc > best->pc))
3237 {
3238 best = prev;
3239 best_symtab = iter_s;
3240
3241 /* Discard BEST_END if it's before the PC of the current BEST. */
3242 if (best_end <= best->pc)
3243 best_end = 0;
3244 }
3245
3246 /* If another line (denoted by ITEM) is in the linetable and its
3247 PC is after BEST's PC, but before the current BEST_END, then
3248 use ITEM's PC as the new best_end. */
3249 if (best && item < last && item->pc > best->pc
3250 && (best_end == 0 || best_end > item->pc))
3251 best_end = item->pc;
3252 }
3253
3254 if (!best_symtab)
3255 {
3256 /* If we didn't find any line number info, just return zeros.
3257 We used to return alt->line - 1 here, but that could be
3258 anywhere; if we don't have line number info for this PC,
3259 don't make some up. */
3260 val.pc = pc;
3261 }
3262 else if (best->line == 0)
3263 {
3264 /* If our best fit is in a range of PC's for which no line
3265 number info is available (line number is zero) then we didn't
3266 find any valid line information. */
3267 val.pc = pc;
3268 }
3269 else
3270 {
3271 val.symtab = best_symtab;
3272 val.line = best->line;
3273 val.pc = best->pc;
3274 if (best_end && (!alt || best_end < alt->pc))
3275 val.end = best_end;
3276 else if (alt)
3277 val.end = alt->pc;
3278 else
3279 val.end = BLOCK_END (BLOCKVECTOR_BLOCK (bv, GLOBAL_BLOCK));
3280 }
3281 val.section = section;
3282 return val;
3283 }
3284
3285 /* Backward compatibility (no section). */
3286
3287 struct symtab_and_line
3288 find_pc_line (CORE_ADDR pc, int notcurrent)
3289 {
3290 struct obj_section *section;
3291
3292 section = find_pc_overlay (pc);
3293 if (pc_in_unmapped_range (pc, section))
3294 pc = overlay_mapped_address (pc, section);
3295 return find_pc_sect_line (pc, section, notcurrent);
3296 }
3297
3298 /* See symtab.h. */
3299
3300 struct symtab *
3301 find_pc_line_symtab (CORE_ADDR pc)
3302 {
3303 struct symtab_and_line sal;
3304
3305 /* This always passes zero for NOTCURRENT to find_pc_line.
3306 There are currently no callers that ever pass non-zero. */
3307 sal = find_pc_line (pc, 0);
3308 return sal.symtab;
3309 }
3310 \f
3311 /* Find line number LINE in any symtab whose name is the same as
3312 SYMTAB.
3313
3314 If found, return the symtab that contains the linetable in which it was
3315 found, set *INDEX to the index in the linetable of the best entry
3316 found, and set *EXACT_MATCH to true if the value returned is an
3317 exact match.
3318
3319 If not found, return NULL. */
3320
3321 struct symtab *
3322 find_line_symtab (struct symtab *sym_tab, int line,
3323 int *index, bool *exact_match)
3324 {
3325 int exact = 0; /* Initialized here to avoid a compiler warning. */
3326
3327 /* BEST_INDEX and BEST_LINETABLE identify the smallest linenumber > LINE
3328 so far seen. */
3329
3330 int best_index;
3331 struct linetable *best_linetable;
3332 struct symtab *best_symtab;
3333
3334 /* First try looking it up in the given symtab. */
3335 best_linetable = SYMTAB_LINETABLE (sym_tab);
3336 best_symtab = sym_tab;
3337 best_index = find_line_common (best_linetable, line, &exact, 0);
3338 if (best_index < 0 || !exact)
3339 {
3340 /* Didn't find an exact match. So we better keep looking for
3341 another symtab with the same name. In the case of xcoff,
3342 multiple csects for one source file (produced by IBM's FORTRAN
3343 compiler) produce multiple symtabs (this is unavoidable
3344 assuming csects can be at arbitrary places in memory and that
3345 the GLOBAL_BLOCK of a symtab has a begin and end address). */
3346
3347 /* BEST is the smallest linenumber > LINE so far seen,
3348 or 0 if none has been seen so far.
3349 BEST_INDEX and BEST_LINETABLE identify the item for it. */
3350 int best;
3351
3352 if (best_index >= 0)
3353 best = best_linetable->item[best_index].line;
3354 else
3355 best = 0;
3356
3357 for (objfile *objfile : current_program_space->objfiles ())
3358 {
3359 if (objfile->sf)
3360 objfile->sf->qf->expand_symtabs_with_fullname
3361 (objfile, symtab_to_fullname (sym_tab));
3362 }
3363
3364 for (objfile *objfile : current_program_space->objfiles ())
3365 {
3366 for (compunit_symtab *cu : objfile->compunits ())
3367 {
3368 for (symtab *s : compunit_filetabs (cu))
3369 {
3370 struct linetable *l;
3371 int ind;
3372
3373 if (FILENAME_CMP (sym_tab->filename, s->filename) != 0)
3374 continue;
3375 if (FILENAME_CMP (symtab_to_fullname (sym_tab),
3376 symtab_to_fullname (s)) != 0)
3377 continue;
3378 l = SYMTAB_LINETABLE (s);
3379 ind = find_line_common (l, line, &exact, 0);
3380 if (ind >= 0)
3381 {
3382 if (exact)
3383 {
3384 best_index = ind;
3385 best_linetable = l;
3386 best_symtab = s;
3387 goto done;
3388 }
3389 if (best == 0 || l->item[ind].line < best)
3390 {
3391 best = l->item[ind].line;
3392 best_index = ind;
3393 best_linetable = l;
3394 best_symtab = s;
3395 }
3396 }
3397 }
3398 }
3399 }
3400 }
3401 done:
3402 if (best_index < 0)
3403 return NULL;
3404
3405 if (index)
3406 *index = best_index;
3407 if (exact_match)
3408 *exact_match = (exact != 0);
3409
3410 return best_symtab;
3411 }
3412
3413 /* Given SYMTAB, returns all the PCs function in the symtab that
3414 exactly match LINE. Returns an empty vector if there are no exact
3415 matches, but updates BEST_ITEM in this case. */
3416
3417 std::vector<CORE_ADDR>
3418 find_pcs_for_symtab_line (struct symtab *symtab, int line,
3419 struct linetable_entry **best_item)
3420 {
3421 int start = 0;
3422 std::vector<CORE_ADDR> result;
3423
3424 /* First, collect all the PCs that are at this line. */
3425 while (1)
3426 {
3427 int was_exact;
3428 int idx;
3429
3430 idx = find_line_common (SYMTAB_LINETABLE (symtab), line, &was_exact,
3431 start);
3432 if (idx < 0)
3433 break;
3434
3435 if (!was_exact)
3436 {
3437 struct linetable_entry *item = &SYMTAB_LINETABLE (symtab)->item[idx];
3438
3439 if (*best_item == NULL || item->line < (*best_item)->line)
3440 *best_item = item;
3441
3442 break;
3443 }
3444
3445 result.push_back (SYMTAB_LINETABLE (symtab)->item[idx].pc);
3446 start = idx + 1;
3447 }
3448
3449 return result;
3450 }
3451
3452 \f
3453 /* Set the PC value for a given source file and line number and return true.
3454 Returns false for invalid line number (and sets the PC to 0).
3455 The source file is specified with a struct symtab. */
3456
3457 bool
3458 find_line_pc (struct symtab *symtab, int line, CORE_ADDR *pc)
3459 {
3460 struct linetable *l;
3461 int ind;
3462
3463 *pc = 0;
3464 if (symtab == 0)
3465 return false;
3466
3467 symtab = find_line_symtab (symtab, line, &ind, NULL);
3468 if (symtab != NULL)
3469 {
3470 l = SYMTAB_LINETABLE (symtab);
3471 *pc = l->item[ind].pc;
3472 return true;
3473 }
3474 else
3475 return false;
3476 }
3477
3478 /* Find the range of pc values in a line.
3479 Store the starting pc of the line into *STARTPTR
3480 and the ending pc (start of next line) into *ENDPTR.
3481 Returns true to indicate success.
3482 Returns false if could not find the specified line. */
3483
3484 bool
3485 find_line_pc_range (struct symtab_and_line sal, CORE_ADDR *startptr,
3486 CORE_ADDR *endptr)
3487 {
3488 CORE_ADDR startaddr;
3489 struct symtab_and_line found_sal;
3490
3491 startaddr = sal.pc;
3492 if (startaddr == 0 && !find_line_pc (sal.symtab, sal.line, &startaddr))
3493 return false;
3494
3495 /* This whole function is based on address. For example, if line 10 has
3496 two parts, one from 0x100 to 0x200 and one from 0x300 to 0x400, then
3497 "info line *0x123" should say the line goes from 0x100 to 0x200
3498 and "info line *0x355" should say the line goes from 0x300 to 0x400.
3499 This also insures that we never give a range like "starts at 0x134
3500 and ends at 0x12c". */
3501
3502 found_sal = find_pc_sect_line (startaddr, sal.section, 0);
3503 if (found_sal.line != sal.line)
3504 {
3505 /* The specified line (sal) has zero bytes. */
3506 *startptr = found_sal.pc;
3507 *endptr = found_sal.pc;
3508 }
3509 else
3510 {
3511 *startptr = found_sal.pc;
3512 *endptr = found_sal.end;
3513 }
3514 return true;
3515 }
3516
3517 /* Given a line table and a line number, return the index into the line
3518 table for the pc of the nearest line whose number is >= the specified one.
3519 Return -1 if none is found. The value is >= 0 if it is an index.
3520 START is the index at which to start searching the line table.
3521
3522 Set *EXACT_MATCH nonzero if the value returned is an exact match. */
3523
3524 static int
3525 find_line_common (struct linetable *l, int lineno,
3526 int *exact_match, int start)
3527 {
3528 int i;
3529 int len;
3530
3531 /* BEST is the smallest linenumber > LINENO so far seen,
3532 or 0 if none has been seen so far.
3533 BEST_INDEX identifies the item for it. */
3534
3535 int best_index = -1;
3536 int best = 0;
3537
3538 *exact_match = 0;
3539
3540 if (lineno <= 0)
3541 return -1;
3542 if (l == 0)
3543 return -1;
3544
3545 len = l->nitems;
3546 for (i = start; i < len; i++)
3547 {
3548 struct linetable_entry *item = &(l->item[i]);
3549
3550 if (item->line == lineno)
3551 {
3552 /* Return the first (lowest address) entry which matches. */
3553 *exact_match = 1;
3554 return i;
3555 }
3556
3557 if (item->line > lineno && (best == 0 || item->line < best))
3558 {
3559 best = item->line;
3560 best_index = i;
3561 }
3562 }
3563
3564 /* If we got here, we didn't get an exact match. */
3565 return best_index;
3566 }
3567
3568 bool
3569 find_pc_line_pc_range (CORE_ADDR pc, CORE_ADDR *startptr, CORE_ADDR *endptr)
3570 {
3571 struct symtab_and_line sal;
3572
3573 sal = find_pc_line (pc, 0);
3574 *startptr = sal.pc;
3575 *endptr = sal.end;
3576 return sal.symtab != 0;
3577 }
3578
3579 /* Helper for find_function_start_sal. Does most of the work, except
3580 setting the sal's symbol. */
3581
3582 static symtab_and_line
3583 find_function_start_sal_1 (CORE_ADDR func_addr, obj_section *section,
3584 bool funfirstline)
3585 {
3586 symtab_and_line sal = find_pc_sect_line (func_addr, section, 0);
3587
3588 if (funfirstline && sal.symtab != NULL
3589 && (COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (sal.symtab))
3590 || SYMTAB_LANGUAGE (sal.symtab) == language_asm))
3591 {
3592 struct gdbarch *gdbarch = get_objfile_arch (SYMTAB_OBJFILE (sal.symtab));
3593
3594 sal.pc = func_addr;
3595 if (gdbarch_skip_entrypoint_p (gdbarch))
3596 sal.pc = gdbarch_skip_entrypoint (gdbarch, sal.pc);
3597 return sal;
3598 }
3599
3600 /* We always should have a line for the function start address.
3601 If we don't, something is odd. Create a plain SAL referring
3602 just the PC and hope that skip_prologue_sal (if requested)
3603 can find a line number for after the prologue. */
3604 if (sal.pc < func_addr)
3605 {
3606 sal = {};
3607 sal.pspace = current_program_space;
3608 sal.pc = func_addr;
3609 sal.section = section;
3610 }
3611
3612 if (funfirstline)
3613 skip_prologue_sal (&sal);
3614
3615 return sal;
3616 }
3617
3618 /* See symtab.h. */
3619
3620 symtab_and_line
3621 find_function_start_sal (CORE_ADDR func_addr, obj_section *section,
3622 bool funfirstline)
3623 {
3624 symtab_and_line sal
3625 = find_function_start_sal_1 (func_addr, section, funfirstline);
3626
3627 /* find_function_start_sal_1 does a linetable search, so it finds
3628 the symtab and linenumber, but not a symbol. Fill in the
3629 function symbol too. */
3630 sal.symbol = find_pc_sect_containing_function (sal.pc, sal.section);
3631
3632 return sal;
3633 }
3634
3635 /* See symtab.h. */
3636
3637 symtab_and_line
3638 find_function_start_sal (symbol *sym, bool funfirstline)
3639 {
3640 fixup_symbol_section (sym, NULL);
3641 symtab_and_line sal
3642 = find_function_start_sal_1 (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)),
3643 SYMBOL_OBJ_SECTION (symbol_objfile (sym), sym),
3644 funfirstline);
3645 sal.symbol = sym;
3646 return sal;
3647 }
3648
3649
3650 /* Given a function start address FUNC_ADDR and SYMTAB, find the first
3651 address for that function that has an entry in SYMTAB's line info
3652 table. If such an entry cannot be found, return FUNC_ADDR
3653 unaltered. */
3654
3655 static CORE_ADDR
3656 skip_prologue_using_lineinfo (CORE_ADDR func_addr, struct symtab *symtab)
3657 {
3658 CORE_ADDR func_start, func_end;
3659 struct linetable *l;
3660 int i;
3661
3662 /* Give up if this symbol has no lineinfo table. */
3663 l = SYMTAB_LINETABLE (symtab);
3664 if (l == NULL)
3665 return func_addr;
3666
3667 /* Get the range for the function's PC values, or give up if we
3668 cannot, for some reason. */
3669 if (!find_pc_partial_function (func_addr, NULL, &func_start, &func_end))
3670 return func_addr;
3671
3672 /* Linetable entries are ordered by PC values, see the commentary in
3673 symtab.h where `struct linetable' is defined. Thus, the first
3674 entry whose PC is in the range [FUNC_START..FUNC_END[ is the
3675 address we are looking for. */
3676 for (i = 0; i < l->nitems; i++)
3677 {
3678 struct linetable_entry *item = &(l->item[i]);
3679
3680 /* Don't use line numbers of zero, they mark special entries in
3681 the table. See the commentary on symtab.h before the
3682 definition of struct linetable. */
3683 if (item->line > 0 && func_start <= item->pc && item->pc < func_end)
3684 return item->pc;
3685 }
3686
3687 return func_addr;
3688 }
3689
3690 /* Adjust SAL to the first instruction past the function prologue.
3691 If the PC was explicitly specified, the SAL is not changed.
3692 If the line number was explicitly specified then the SAL can still be
3693 updated, unless the language for SAL is assembler, in which case the SAL
3694 will be left unchanged.
3695 If SAL is already past the prologue, then do nothing. */
3696
3697 void
3698 skip_prologue_sal (struct symtab_and_line *sal)
3699 {
3700 struct symbol *sym;
3701 struct symtab_and_line start_sal;
3702 CORE_ADDR pc, saved_pc;
3703 struct obj_section *section;
3704 const char *name;
3705 struct objfile *objfile;
3706 struct gdbarch *gdbarch;
3707 const struct block *b, *function_block;
3708 int force_skip, skip;
3709
3710 /* Do not change the SAL if PC was specified explicitly. */
3711 if (sal->explicit_pc)
3712 return;
3713
3714 /* In assembly code, if the user asks for a specific line then we should
3715 not adjust the SAL. The user already has instruction level
3716 visibility in this case, so selecting a line other than one requested
3717 is likely to be the wrong choice. */
3718 if (sal->symtab != nullptr
3719 && sal->explicit_line
3720 && SYMTAB_LANGUAGE (sal->symtab) == language_asm)
3721 return;
3722
3723 scoped_restore_current_pspace_and_thread restore_pspace_thread;
3724
3725 switch_to_program_space_and_thread (sal->pspace);
3726
3727 sym = find_pc_sect_function (sal->pc, sal->section);
3728 if (sym != NULL)
3729 {
3730 fixup_symbol_section (sym, NULL);
3731
3732 objfile = symbol_objfile (sym);
3733 pc = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
3734 section = SYMBOL_OBJ_SECTION (objfile, sym);
3735 name = sym->linkage_name ();
3736 }
3737 else
3738 {
3739 struct bound_minimal_symbol msymbol
3740 = lookup_minimal_symbol_by_pc_section (sal->pc, sal->section);
3741
3742 if (msymbol.minsym == NULL)
3743 return;
3744
3745 objfile = msymbol.objfile;
3746 pc = BMSYMBOL_VALUE_ADDRESS (msymbol);
3747 section = MSYMBOL_OBJ_SECTION (objfile, msymbol.minsym);
3748 name = msymbol.minsym->linkage_name ();
3749 }
3750
3751 gdbarch = get_objfile_arch (objfile);
3752
3753 /* Process the prologue in two passes. In the first pass try to skip the
3754 prologue (SKIP is true) and verify there is a real need for it (indicated
3755 by FORCE_SKIP). If no such reason was found run a second pass where the
3756 prologue is not skipped (SKIP is false). */
3757
3758 skip = 1;
3759 force_skip = 1;
3760
3761 /* Be conservative - allow direct PC (without skipping prologue) only if we
3762 have proven the CU (Compilation Unit) supports it. sal->SYMTAB does not
3763 have to be set by the caller so we use SYM instead. */
3764 if (sym != NULL
3765 && COMPUNIT_LOCATIONS_VALID (SYMTAB_COMPUNIT (symbol_symtab (sym))))
3766 force_skip = 0;
3767
3768 saved_pc = pc;
3769 do
3770 {
3771 pc = saved_pc;
3772
3773 /* If the function is in an unmapped overlay, use its unmapped LMA address,
3774 so that gdbarch_skip_prologue has something unique to work on. */
3775 if (section_is_overlay (section) && !section_is_mapped (section))
3776 pc = overlay_unmapped_address (pc, section);
3777
3778 /* Skip "first line" of function (which is actually its prologue). */
3779 pc += gdbarch_deprecated_function_start_offset (gdbarch);
3780 if (gdbarch_skip_entrypoint_p (gdbarch))
3781 pc = gdbarch_skip_entrypoint (gdbarch, pc);
3782 if (skip)
3783 pc = gdbarch_skip_prologue_noexcept (gdbarch, pc);
3784
3785 /* For overlays, map pc back into its mapped VMA range. */
3786 pc = overlay_mapped_address (pc, section);
3787
3788 /* Calculate line number. */
3789 start_sal = find_pc_sect_line (pc, section, 0);
3790
3791 /* Check if gdbarch_skip_prologue left us in mid-line, and the next
3792 line is still part of the same function. */
3793 if (skip && start_sal.pc != pc
3794 && (sym ? (BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) <= start_sal.end
3795 && start_sal.end < BLOCK_END (SYMBOL_BLOCK_VALUE (sym)))
3796 : (lookup_minimal_symbol_by_pc_section (start_sal.end, section).minsym
3797 == lookup_minimal_symbol_by_pc_section (pc, section).minsym)))
3798 {
3799 /* First pc of next line */
3800 pc = start_sal.end;
3801 /* Recalculate the line number (might not be N+1). */
3802 start_sal = find_pc_sect_line (pc, section, 0);
3803 }
3804
3805 /* On targets with executable formats that don't have a concept of
3806 constructors (ELF with .init has, PE doesn't), gcc emits a call
3807 to `__main' in `main' between the prologue and before user
3808 code. */
3809 if (gdbarch_skip_main_prologue_p (gdbarch)
3810 && name && strcmp_iw (name, "main") == 0)
3811 {
3812 pc = gdbarch_skip_main_prologue (gdbarch, pc);
3813 /* Recalculate the line number (might not be N+1). */
3814 start_sal = find_pc_sect_line (pc, section, 0);
3815 force_skip = 1;
3816 }
3817 }
3818 while (!force_skip && skip--);
3819
3820 /* If we still don't have a valid source line, try to find the first
3821 PC in the lineinfo table that belongs to the same function. This
3822 happens with COFF debug info, which does not seem to have an
3823 entry in lineinfo table for the code after the prologue which has
3824 no direct relation to source. For example, this was found to be
3825 the case with the DJGPP target using "gcc -gcoff" when the
3826 compiler inserted code after the prologue to make sure the stack
3827 is aligned. */
3828 if (!force_skip && sym && start_sal.symtab == NULL)
3829 {
3830 pc = skip_prologue_using_lineinfo (pc, symbol_symtab (sym));
3831 /* Recalculate the line number. */
3832 start_sal = find_pc_sect_line (pc, section, 0);
3833 }
3834
3835 /* If we're already past the prologue, leave SAL unchanged. Otherwise
3836 forward SAL to the end of the prologue. */
3837 if (sal->pc >= pc)
3838 return;
3839
3840 sal->pc = pc;
3841 sal->section = section;
3842 sal->symtab = start_sal.symtab;
3843 sal->line = start_sal.line;
3844 sal->end = start_sal.end;
3845
3846 /* Check if we are now inside an inlined function. If we can,
3847 use the call site of the function instead. */
3848 b = block_for_pc_sect (sal->pc, sal->section);
3849 function_block = NULL;
3850 while (b != NULL)
3851 {
3852 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
3853 function_block = b;
3854 else if (BLOCK_FUNCTION (b) != NULL)
3855 break;
3856 b = BLOCK_SUPERBLOCK (b);
3857 }
3858 if (function_block != NULL
3859 && SYMBOL_LINE (BLOCK_FUNCTION (function_block)) != 0)
3860 {
3861 sal->line = SYMBOL_LINE (BLOCK_FUNCTION (function_block));
3862 sal->symtab = symbol_symtab (BLOCK_FUNCTION (function_block));
3863 }
3864 }
3865
3866 /* Given PC at the function's start address, attempt to find the
3867 prologue end using SAL information. Return zero if the skip fails.
3868
3869 A non-optimized prologue traditionally has one SAL for the function
3870 and a second for the function body. A single line function has
3871 them both pointing at the same line.
3872
3873 An optimized prologue is similar but the prologue may contain
3874 instructions (SALs) from the instruction body. Need to skip those
3875 while not getting into the function body.
3876
3877 The functions end point and an increasing SAL line are used as
3878 indicators of the prologue's endpoint.
3879
3880 This code is based on the function refine_prologue_limit
3881 (found in ia64). */
3882
3883 CORE_ADDR
3884 skip_prologue_using_sal (struct gdbarch *gdbarch, CORE_ADDR func_addr)
3885 {
3886 struct symtab_and_line prologue_sal;
3887 CORE_ADDR start_pc;
3888 CORE_ADDR end_pc;
3889 const struct block *bl;
3890
3891 /* Get an initial range for the function. */
3892 find_pc_partial_function (func_addr, NULL, &start_pc, &end_pc);
3893 start_pc += gdbarch_deprecated_function_start_offset (gdbarch);
3894
3895 prologue_sal = find_pc_line (start_pc, 0);
3896 if (prologue_sal.line != 0)
3897 {
3898 /* For languages other than assembly, treat two consecutive line
3899 entries at the same address as a zero-instruction prologue.
3900 The GNU assembler emits separate line notes for each instruction
3901 in a multi-instruction macro, but compilers generally will not
3902 do this. */
3903 if (prologue_sal.symtab->language != language_asm)
3904 {
3905 struct linetable *linetable = SYMTAB_LINETABLE (prologue_sal.symtab);
3906 int idx = 0;
3907
3908 /* Skip any earlier lines, and any end-of-sequence marker
3909 from a previous function. */
3910 while (linetable->item[idx].pc != prologue_sal.pc
3911 || linetable->item[idx].line == 0)
3912 idx++;
3913
3914 if (idx+1 < linetable->nitems
3915 && linetable->item[idx+1].line != 0
3916 && linetable->item[idx+1].pc == start_pc)
3917 return start_pc;
3918 }
3919
3920 /* If there is only one sal that covers the entire function,
3921 then it is probably a single line function, like
3922 "foo(){}". */
3923 if (prologue_sal.end >= end_pc)
3924 return 0;
3925
3926 while (prologue_sal.end < end_pc)
3927 {
3928 struct symtab_and_line sal;
3929
3930 sal = find_pc_line (prologue_sal.end, 0);
3931 if (sal.line == 0)
3932 break;
3933 /* Assume that a consecutive SAL for the same (or larger)
3934 line mark the prologue -> body transition. */
3935 if (sal.line >= prologue_sal.line)
3936 break;
3937 /* Likewise if we are in a different symtab altogether
3938 (e.g. within a file included via #include).  */
3939 if (sal.symtab != prologue_sal.symtab)
3940 break;
3941
3942 /* The line number is smaller. Check that it's from the
3943 same function, not something inlined. If it's inlined,
3944 then there is no point comparing the line numbers. */
3945 bl = block_for_pc (prologue_sal.end);
3946 while (bl)
3947 {
3948 if (block_inlined_p (bl))
3949 break;
3950 if (BLOCK_FUNCTION (bl))
3951 {
3952 bl = NULL;
3953 break;
3954 }
3955 bl = BLOCK_SUPERBLOCK (bl);
3956 }
3957 if (bl != NULL)
3958 break;
3959
3960 /* The case in which compiler's optimizer/scheduler has
3961 moved instructions into the prologue. We look ahead in
3962 the function looking for address ranges whose
3963 corresponding line number is less the first one that we
3964 found for the function. This is more conservative then
3965 refine_prologue_limit which scans a large number of SALs
3966 looking for any in the prologue. */
3967 prologue_sal = sal;
3968 }
3969 }
3970
3971 if (prologue_sal.end < end_pc)
3972 /* Return the end of this line, or zero if we could not find a
3973 line. */
3974 return prologue_sal.end;
3975 else
3976 /* Don't return END_PC, which is past the end of the function. */
3977 return prologue_sal.pc;
3978 }
3979
3980 /* See symtab.h. */
3981
3982 symbol *
3983 find_function_alias_target (bound_minimal_symbol msymbol)
3984 {
3985 CORE_ADDR func_addr;
3986 if (!msymbol_is_function (msymbol.objfile, msymbol.minsym, &func_addr))
3987 return NULL;
3988
3989 symbol *sym = find_pc_function (func_addr);
3990 if (sym != NULL
3991 && SYMBOL_CLASS (sym) == LOC_BLOCK
3992 && BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym)) == func_addr)
3993 return sym;
3994
3995 return NULL;
3996 }
3997
3998 \f
3999 /* If P is of the form "operator[ \t]+..." where `...' is
4000 some legitimate operator text, return a pointer to the
4001 beginning of the substring of the operator text.
4002 Otherwise, return "". */
4003
4004 static const char *
4005 operator_chars (const char *p, const char **end)
4006 {
4007 *end = "";
4008 if (!startswith (p, CP_OPERATOR_STR))
4009 return *end;
4010 p += CP_OPERATOR_LEN;
4011
4012 /* Don't get faked out by `operator' being part of a longer
4013 identifier. */
4014 if (isalpha (*p) || *p == '_' || *p == '$' || *p == '\0')
4015 return *end;
4016
4017 /* Allow some whitespace between `operator' and the operator symbol. */
4018 while (*p == ' ' || *p == '\t')
4019 p++;
4020
4021 /* Recognize 'operator TYPENAME'. */
4022
4023 if (isalpha (*p) || *p == '_' || *p == '$')
4024 {
4025 const char *q = p + 1;
4026
4027 while (isalnum (*q) || *q == '_' || *q == '$')
4028 q++;
4029 *end = q;
4030 return p;
4031 }
4032
4033 while (*p)
4034 switch (*p)
4035 {
4036 case '\\': /* regexp quoting */
4037 if (p[1] == '*')
4038 {
4039 if (p[2] == '=') /* 'operator\*=' */
4040 *end = p + 3;
4041 else /* 'operator\*' */
4042 *end = p + 2;
4043 return p;
4044 }
4045 else if (p[1] == '[')
4046 {
4047 if (p[2] == ']')
4048 error (_("mismatched quoting on brackets, "
4049 "try 'operator\\[\\]'"));
4050 else if (p[2] == '\\' && p[3] == ']')
4051 {
4052 *end = p + 4; /* 'operator\[\]' */
4053 return p;
4054 }
4055 else
4056 error (_("nothing is allowed between '[' and ']'"));
4057 }
4058 else
4059 {
4060 /* Gratuitous quote: skip it and move on. */
4061 p++;
4062 continue;
4063 }
4064 break;
4065 case '!':
4066 case '=':
4067 case '*':
4068 case '/':
4069 case '%':
4070 case '^':
4071 if (p[1] == '=')
4072 *end = p + 2;
4073 else
4074 *end = p + 1;
4075 return p;
4076 case '<':
4077 case '>':
4078 case '+':
4079 case '-':
4080 case '&':
4081 case '|':
4082 if (p[0] == '-' && p[1] == '>')
4083 {
4084 /* Struct pointer member operator 'operator->'. */
4085 if (p[2] == '*')
4086 {
4087 *end = p + 3; /* 'operator->*' */
4088 return p;
4089 }
4090 else if (p[2] == '\\')
4091 {
4092 *end = p + 4; /* Hopefully 'operator->\*' */
4093 return p;
4094 }
4095 else
4096 {
4097 *end = p + 2; /* 'operator->' */
4098 return p;
4099 }
4100 }
4101 if (p[1] == '=' || p[1] == p[0])
4102 *end = p + 2;
4103 else
4104 *end = p + 1;
4105 return p;
4106 case '~':
4107 case ',':
4108 *end = p + 1;
4109 return p;
4110 case '(':
4111 if (p[1] != ')')
4112 error (_("`operator ()' must be specified "
4113 "without whitespace in `()'"));
4114 *end = p + 2;
4115 return p;
4116 case '?':
4117 if (p[1] != ':')
4118 error (_("`operator ?:' must be specified "
4119 "without whitespace in `?:'"));
4120 *end = p + 2;
4121 return p;
4122 case '[':
4123 if (p[1] != ']')
4124 error (_("`operator []' must be specified "
4125 "without whitespace in `[]'"));
4126 *end = p + 2;
4127 return p;
4128 default:
4129 error (_("`operator %s' not supported"), p);
4130 break;
4131 }
4132
4133 *end = "";
4134 return *end;
4135 }
4136 \f
4137
4138 /* What part to match in a file name. */
4139
4140 struct filename_partial_match_opts
4141 {
4142 /* Only match the directory name part. */
4143 bool dirname = false;
4144
4145 /* Only match the basename part. */
4146 bool basename = false;
4147 };
4148
4149 /* Data structure to maintain printing state for output_source_filename. */
4150
4151 struct output_source_filename_data
4152 {
4153 /* Output only filenames matching REGEXP. */
4154 std::string regexp;
4155 gdb::optional<compiled_regex> c_regexp;
4156 /* Possibly only match a part of the filename. */
4157 filename_partial_match_opts partial_match;
4158
4159
4160 /* Cache of what we've seen so far. */
4161 struct filename_seen_cache *filename_seen_cache;
4162
4163 /* Flag of whether we're printing the first one. */
4164 int first;
4165 };
4166
4167 /* Slave routine for sources_info. Force line breaks at ,'s.
4168 NAME is the name to print.
4169 DATA contains the state for printing and watching for duplicates. */
4170
4171 static void
4172 output_source_filename (const char *name,
4173 struct output_source_filename_data *data)
4174 {
4175 /* Since a single source file can result in several partial symbol
4176 tables, we need to avoid printing it more than once. Note: if
4177 some of the psymtabs are read in and some are not, it gets
4178 printed both under "Source files for which symbols have been
4179 read" and "Source files for which symbols will be read in on
4180 demand". I consider this a reasonable way to deal with the
4181 situation. I'm not sure whether this can also happen for
4182 symtabs; it doesn't hurt to check. */
4183
4184 /* Was NAME already seen? */
4185 if (data->filename_seen_cache->seen (name))
4186 {
4187 /* Yes; don't print it again. */
4188 return;
4189 }
4190
4191 /* Does it match data->regexp? */
4192 if (data->c_regexp.has_value ())
4193 {
4194 const char *to_match;
4195 std::string dirname;
4196
4197 if (data->partial_match.dirname)
4198 {
4199 dirname = ldirname (name);
4200 to_match = dirname.c_str ();
4201 }
4202 else if (data->partial_match.basename)
4203 to_match = lbasename (name);
4204 else
4205 to_match = name;
4206
4207 if (data->c_regexp->exec (to_match, 0, NULL, 0) != 0)
4208 return;
4209 }
4210
4211 /* Print it and reset *FIRST. */
4212 if (! data->first)
4213 printf_filtered (", ");
4214 data->first = 0;
4215
4216 wrap_here ("");
4217 fputs_styled (name, file_name_style.style (), gdb_stdout);
4218 }
4219
4220 /* A callback for map_partial_symbol_filenames. */
4221
4222 static void
4223 output_partial_symbol_filename (const char *filename, const char *fullname,
4224 void *data)
4225 {
4226 output_source_filename (fullname ? fullname : filename,
4227 (struct output_source_filename_data *) data);
4228 }
4229
4230 using isrc_flag_option_def
4231 = gdb::option::flag_option_def<filename_partial_match_opts>;
4232
4233 static const gdb::option::option_def info_sources_option_defs[] = {
4234
4235 isrc_flag_option_def {
4236 "dirname",
4237 [] (filename_partial_match_opts *opts) { return &opts->dirname; },
4238 N_("Show only the files having a dirname matching REGEXP."),
4239 },
4240
4241 isrc_flag_option_def {
4242 "basename",
4243 [] (filename_partial_match_opts *opts) { return &opts->basename; },
4244 N_("Show only the files having a basename matching REGEXP."),
4245 },
4246
4247 };
4248
4249 /* Create an option_def_group for the "info sources" options, with
4250 ISRC_OPTS as context. */
4251
4252 static inline gdb::option::option_def_group
4253 make_info_sources_options_def_group (filename_partial_match_opts *isrc_opts)
4254 {
4255 return {{info_sources_option_defs}, isrc_opts};
4256 }
4257
4258 /* Prints the header message for the source files that will be printed
4259 with the matching info present in DATA. SYMBOL_MSG is a message
4260 that tells what will or has been done with the symbols of the
4261 matching source files. */
4262
4263 static void
4264 print_info_sources_header (const char *symbol_msg,
4265 const struct output_source_filename_data *data)
4266 {
4267 puts_filtered (symbol_msg);
4268 if (!data->regexp.empty ())
4269 {
4270 if (data->partial_match.dirname)
4271 printf_filtered (_("(dirname matching regular expression \"%s\")"),
4272 data->regexp.c_str ());
4273 else if (data->partial_match.basename)
4274 printf_filtered (_("(basename matching regular expression \"%s\")"),
4275 data->regexp.c_str ());
4276 else
4277 printf_filtered (_("(filename matching regular expression \"%s\")"),
4278 data->regexp.c_str ());
4279 }
4280 puts_filtered ("\n");
4281 }
4282
4283 /* Completer for "info sources". */
4284
4285 static void
4286 info_sources_command_completer (cmd_list_element *ignore,
4287 completion_tracker &tracker,
4288 const char *text, const char *word)
4289 {
4290 const auto group = make_info_sources_options_def_group (nullptr);
4291 if (gdb::option::complete_options
4292 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
4293 return;
4294 }
4295
4296 static void
4297 info_sources_command (const char *args, int from_tty)
4298 {
4299 struct output_source_filename_data data;
4300
4301 if (!have_full_symbols () && !have_partial_symbols ())
4302 {
4303 error (_("No symbol table is loaded. Use the \"file\" command."));
4304 }
4305
4306 filename_seen_cache filenames_seen;
4307
4308 auto group = make_info_sources_options_def_group (&data.partial_match);
4309
4310 gdb::option::process_options
4311 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_ERROR, group);
4312
4313 if (args != NULL && *args != '\000')
4314 data.regexp = args;
4315
4316 data.filename_seen_cache = &filenames_seen;
4317 data.first = 1;
4318
4319 if (data.partial_match.dirname && data.partial_match.basename)
4320 error (_("You cannot give both -basename and -dirname to 'info sources'."));
4321 if ((data.partial_match.dirname || data.partial_match.basename)
4322 && data.regexp.empty ())
4323 error (_("Missing REGEXP for 'info sources'."));
4324
4325 if (data.regexp.empty ())
4326 data.c_regexp.reset ();
4327 else
4328 {
4329 int cflags = REG_NOSUB;
4330 #ifdef HAVE_CASE_INSENSITIVE_FILE_SYSTEM
4331 cflags |= REG_ICASE;
4332 #endif
4333 data.c_regexp.emplace (data.regexp.c_str (), cflags,
4334 _("Invalid regexp"));
4335 }
4336
4337 print_info_sources_header
4338 (_("Source files for which symbols have been read in:\n"), &data);
4339
4340 for (objfile *objfile : current_program_space->objfiles ())
4341 {
4342 for (compunit_symtab *cu : objfile->compunits ())
4343 {
4344 for (symtab *s : compunit_filetabs (cu))
4345 {
4346 const char *fullname = symtab_to_fullname (s);
4347
4348 output_source_filename (fullname, &data);
4349 }
4350 }
4351 }
4352 printf_filtered ("\n\n");
4353
4354 print_info_sources_header
4355 (_("Source files for which symbols will be read in on demand:\n"), &data);
4356
4357 filenames_seen.clear ();
4358 data.first = 1;
4359 map_symbol_filenames (output_partial_symbol_filename, &data,
4360 1 /*need_fullname*/);
4361 printf_filtered ("\n");
4362 }
4363
4364 /* Compare FILE against all the entries of FILENAMES. If BASENAMES is
4365 true compare only lbasename of FILENAMES. */
4366
4367 static bool
4368 file_matches (const char *file, const std::vector<const char *> &filenames,
4369 bool basenames)
4370 {
4371 if (filenames.empty ())
4372 return true;
4373
4374 for (const char *name : filenames)
4375 {
4376 name = (basenames ? lbasename (name) : name);
4377 if (compare_filenames_for_search (file, name))
4378 return true;
4379 }
4380
4381 return false;
4382 }
4383
4384 /* Helper function for std::sort on symbol_search objects. Can only sort
4385 symbols, not minimal symbols. */
4386
4387 int
4388 symbol_search::compare_search_syms (const symbol_search &sym_a,
4389 const symbol_search &sym_b)
4390 {
4391 int c;
4392
4393 c = FILENAME_CMP (symbol_symtab (sym_a.symbol)->filename,
4394 symbol_symtab (sym_b.symbol)->filename);
4395 if (c != 0)
4396 return c;
4397
4398 if (sym_a.block != sym_b.block)
4399 return sym_a.block - sym_b.block;
4400
4401 return strcmp (sym_a.symbol->print_name (), sym_b.symbol->print_name ());
4402 }
4403
4404 /* Returns true if the type_name of symbol_type of SYM matches TREG.
4405 If SYM has no symbol_type or symbol_name, returns false. */
4406
4407 bool
4408 treg_matches_sym_type_name (const compiled_regex &treg,
4409 const struct symbol *sym)
4410 {
4411 struct type *sym_type;
4412 std::string printed_sym_type_name;
4413
4414 if (symbol_lookup_debug > 1)
4415 {
4416 fprintf_unfiltered (gdb_stdlog,
4417 "treg_matches_sym_type_name\n sym %s\n",
4418 sym->natural_name ());
4419 }
4420
4421 sym_type = SYMBOL_TYPE (sym);
4422 if (sym_type == NULL)
4423 return false;
4424
4425 {
4426 scoped_switch_to_sym_language_if_auto l (sym);
4427
4428 printed_sym_type_name = type_to_string (sym_type);
4429 }
4430
4431
4432 if (symbol_lookup_debug > 1)
4433 {
4434 fprintf_unfiltered (gdb_stdlog,
4435 " sym_type_name %s\n",
4436 printed_sym_type_name.c_str ());
4437 }
4438
4439
4440 if (printed_sym_type_name.empty ())
4441 return false;
4442
4443 return treg.exec (printed_sym_type_name.c_str (), 0, NULL, 0) == 0;
4444 }
4445
4446 /* See symtab.h. */
4447
4448 bool
4449 global_symbol_searcher::is_suitable_msymbol
4450 (const enum search_domain kind, const minimal_symbol *msymbol)
4451 {
4452 switch (MSYMBOL_TYPE (msymbol))
4453 {
4454 case mst_data:
4455 case mst_bss:
4456 case mst_file_data:
4457 case mst_file_bss:
4458 return kind == VARIABLES_DOMAIN;
4459 case mst_text:
4460 case mst_file_text:
4461 case mst_solib_trampoline:
4462 case mst_text_gnu_ifunc:
4463 return kind == FUNCTIONS_DOMAIN;
4464 default:
4465 return false;
4466 }
4467 }
4468
4469 /* See symtab.h. */
4470
4471 bool
4472 global_symbol_searcher::expand_symtabs
4473 (objfile *objfile, const gdb::optional<compiled_regex> &preg) const
4474 {
4475 enum search_domain kind = m_kind;
4476 bool found_msymbol = false;
4477
4478 if (objfile->sf)
4479 objfile->sf->qf->expand_symtabs_matching
4480 (objfile,
4481 [&] (const char *filename, bool basenames)
4482 {
4483 return file_matches (filename, filenames, basenames);
4484 },
4485 lookup_name_info::match_any (),
4486 [&] (const char *symname)
4487 {
4488 return (!preg.has_value ()
4489 || preg->exec (symname, 0, NULL, 0) == 0);
4490 },
4491 NULL,
4492 kind);
4493
4494 /* Here, we search through the minimal symbol tables for functions and
4495 variables that match, and force their symbols to be read. This is in
4496 particular necessary for demangled variable names, which are no longer
4497 put into the partial symbol tables. The symbol will then be found
4498 during the scan of symtabs later.
4499
4500 For functions, find_pc_symtab should succeed if we have debug info for
4501 the function, for variables we have to call
4502 lookup_symbol_in_objfile_from_linkage_name to determine if the
4503 variable has debug info. If the lookup fails, set found_msymbol so
4504 that we will rescan to print any matching symbols without debug info.
4505 We only search the objfile the msymbol came from, we no longer search
4506 all objfiles. In large programs (1000s of shared libs) searching all
4507 objfiles is not worth the pain. */
4508 if (filenames.empty ()
4509 && (kind == VARIABLES_DOMAIN || kind == FUNCTIONS_DOMAIN))
4510 {
4511 for (minimal_symbol *msymbol : objfile->msymbols ())
4512 {
4513 QUIT;
4514
4515 if (msymbol->created_by_gdb)
4516 continue;
4517
4518 if (is_suitable_msymbol (kind, msymbol))
4519 {
4520 if (!preg.has_value ()
4521 || preg->exec (msymbol->natural_name (), 0,
4522 NULL, 0) == 0)
4523 {
4524 /* An important side-effect of these lookup functions is
4525 to expand the symbol table if msymbol is found, later
4526 in the process we will add matching symbols or
4527 msymbols to the results list, and that requires that
4528 the symbols tables are expanded. */
4529 if (kind == FUNCTIONS_DOMAIN
4530 ? (find_pc_compunit_symtab
4531 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4532 == NULL)
4533 : (lookup_symbol_in_objfile_from_linkage_name
4534 (objfile, msymbol->linkage_name (),
4535 VAR_DOMAIN)
4536 .symbol == NULL))
4537 found_msymbol = true;
4538 }
4539 }
4540 }
4541 }
4542
4543 return found_msymbol;
4544 }
4545
4546 /* See symtab.h. */
4547
4548 bool
4549 global_symbol_searcher::add_matching_symbols
4550 (objfile *objfile,
4551 const gdb::optional<compiled_regex> &preg,
4552 const gdb::optional<compiled_regex> &treg,
4553 std::set<symbol_search> *result_set) const
4554 {
4555 enum search_domain kind = m_kind;
4556
4557 /* Add matching symbols (if not already present). */
4558 for (compunit_symtab *cust : objfile->compunits ())
4559 {
4560 const struct blockvector *bv = COMPUNIT_BLOCKVECTOR (cust);
4561
4562 for (block_enum block : { GLOBAL_BLOCK, STATIC_BLOCK })
4563 {
4564 struct block_iterator iter;
4565 struct symbol *sym;
4566 const struct block *b = BLOCKVECTOR_BLOCK (bv, block);
4567
4568 ALL_BLOCK_SYMBOLS (b, iter, sym)
4569 {
4570 struct symtab *real_symtab = symbol_symtab (sym);
4571
4572 QUIT;
4573
4574 /* Check first sole REAL_SYMTAB->FILENAME. It does
4575 not need to be a substring of symtab_to_fullname as
4576 it may contain "./" etc. */
4577 if ((file_matches (real_symtab->filename, filenames, false)
4578 || ((basenames_may_differ
4579 || file_matches (lbasename (real_symtab->filename),
4580 filenames, true))
4581 && file_matches (symtab_to_fullname (real_symtab),
4582 filenames, false)))
4583 && ((!preg.has_value ()
4584 || preg->exec (sym->natural_name (), 0,
4585 NULL, 0) == 0)
4586 && ((kind == VARIABLES_DOMAIN
4587 && SYMBOL_CLASS (sym) != LOC_TYPEDEF
4588 && SYMBOL_CLASS (sym) != LOC_UNRESOLVED
4589 && SYMBOL_CLASS (sym) != LOC_BLOCK
4590 /* LOC_CONST can be used for more than
4591 just enums, e.g., c++ static const
4592 members. We only want to skip enums
4593 here. */
4594 && !(SYMBOL_CLASS (sym) == LOC_CONST
4595 && (TYPE_CODE (SYMBOL_TYPE (sym))
4596 == TYPE_CODE_ENUM))
4597 && (!treg.has_value ()
4598 || treg_matches_sym_type_name (*treg, sym)))
4599 || (kind == FUNCTIONS_DOMAIN
4600 && SYMBOL_CLASS (sym) == LOC_BLOCK
4601 && (!treg.has_value ()
4602 || treg_matches_sym_type_name (*treg,
4603 sym)))
4604 || (kind == TYPES_DOMAIN
4605 && SYMBOL_CLASS (sym) == LOC_TYPEDEF
4606 && SYMBOL_DOMAIN (sym) != MODULE_DOMAIN)
4607 || (kind == MODULES_DOMAIN
4608 && SYMBOL_DOMAIN (sym) == MODULE_DOMAIN
4609 && SYMBOL_LINE (sym) != 0))))
4610 {
4611 if (result_set->size () < m_max_search_results)
4612 {
4613 /* Match, insert if not already in the results. */
4614 symbol_search ss (block, sym);
4615 if (result_set->find (ss) == result_set->end ())
4616 result_set->insert (ss);
4617 }
4618 else
4619 return false;
4620 }
4621 }
4622 }
4623 }
4624
4625 return true;
4626 }
4627
4628 /* See symtab.h. */
4629
4630 bool
4631 global_symbol_searcher::add_matching_msymbols
4632 (objfile *objfile, const gdb::optional<compiled_regex> &preg,
4633 std::vector<symbol_search> *results) const
4634 {
4635 enum search_domain kind = m_kind;
4636
4637 for (minimal_symbol *msymbol : objfile->msymbols ())
4638 {
4639 QUIT;
4640
4641 if (msymbol->created_by_gdb)
4642 continue;
4643
4644 if (is_suitable_msymbol (kind, msymbol))
4645 {
4646 if (!preg.has_value ()
4647 || preg->exec (msymbol->natural_name (), 0,
4648 NULL, 0) == 0)
4649 {
4650 /* For functions we can do a quick check of whether the
4651 symbol might be found via find_pc_symtab. */
4652 if (kind != FUNCTIONS_DOMAIN
4653 || (find_pc_compunit_symtab
4654 (MSYMBOL_VALUE_ADDRESS (objfile, msymbol))
4655 == NULL))
4656 {
4657 if (lookup_symbol_in_objfile_from_linkage_name
4658 (objfile, msymbol->linkage_name (),
4659 VAR_DOMAIN).symbol == NULL)
4660 {
4661 /* Matching msymbol, add it to the results list. */
4662 if (results->size () < m_max_search_results)
4663 results->emplace_back (GLOBAL_BLOCK, msymbol, objfile);
4664 else
4665 return false;
4666 }
4667 }
4668 }
4669 }
4670 }
4671
4672 return true;
4673 }
4674
4675 /* See symtab.h. */
4676
4677 std::vector<symbol_search>
4678 global_symbol_searcher::search () const
4679 {
4680 gdb::optional<compiled_regex> preg;
4681 gdb::optional<compiled_regex> treg;
4682
4683 gdb_assert (m_kind != ALL_DOMAIN);
4684
4685 if (m_symbol_name_regexp != NULL)
4686 {
4687 const char *symbol_name_regexp = m_symbol_name_regexp;
4688
4689 /* Make sure spacing is right for C++ operators.
4690 This is just a courtesy to make the matching less sensitive
4691 to how many spaces the user leaves between 'operator'
4692 and <TYPENAME> or <OPERATOR>. */
4693 const char *opend;
4694 const char *opname = operator_chars (symbol_name_regexp, &opend);
4695
4696 if (*opname)
4697 {
4698 int fix = -1; /* -1 means ok; otherwise number of
4699 spaces needed. */
4700
4701 if (isalpha (*opname) || *opname == '_' || *opname == '$')
4702 {
4703 /* There should 1 space between 'operator' and 'TYPENAME'. */
4704 if (opname[-1] != ' ' || opname[-2] == ' ')
4705 fix = 1;
4706 }
4707 else
4708 {
4709 /* There should 0 spaces between 'operator' and 'OPERATOR'. */
4710 if (opname[-1] == ' ')
4711 fix = 0;
4712 }
4713 /* If wrong number of spaces, fix it. */
4714 if (fix >= 0)
4715 {
4716 char *tmp = (char *) alloca (8 + fix + strlen (opname) + 1);
4717
4718 sprintf (tmp, "operator%.*s%s", fix, " ", opname);
4719 symbol_name_regexp = tmp;
4720 }
4721 }
4722
4723 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4724 ? REG_ICASE : 0);
4725 preg.emplace (symbol_name_regexp, cflags,
4726 _("Invalid regexp"));
4727 }
4728
4729 if (m_symbol_type_regexp != NULL)
4730 {
4731 int cflags = REG_NOSUB | (case_sensitivity == case_sensitive_off
4732 ? REG_ICASE : 0);
4733 treg.emplace (m_symbol_type_regexp, cflags,
4734 _("Invalid regexp"));
4735 }
4736
4737 bool found_msymbol = false;
4738 std::set<symbol_search> result_set;
4739 for (objfile *objfile : current_program_space->objfiles ())
4740 {
4741 /* Expand symtabs within objfile that possibly contain matching
4742 symbols. */
4743 found_msymbol |= expand_symtabs (objfile, preg);
4744
4745 /* Find matching symbols within OBJFILE and add them in to the
4746 RESULT_SET set. Use a set here so that we can easily detect
4747 duplicates as we go, and can therefore track how many unique
4748 matches we have found so far. */
4749 if (!add_matching_symbols (objfile, preg, treg, &result_set))
4750 break;
4751 }
4752
4753 /* Convert the result set into a sorted result list, as std::set is
4754 defined to be sorted then no explicit call to std::sort is needed. */
4755 std::vector<symbol_search> result (result_set.begin (), result_set.end ());
4756
4757 /* If there are no debug symbols, then add matching minsyms. But if the
4758 user wants to see symbols matching a type regexp, then never give a
4759 minimal symbol, as we assume that a minimal symbol does not have a
4760 type. */
4761 if ((found_msymbol || (filenames.empty () && m_kind == VARIABLES_DOMAIN))
4762 && !m_exclude_minsyms
4763 && !treg.has_value ())
4764 {
4765 gdb_assert (m_kind == VARIABLES_DOMAIN || m_kind == FUNCTIONS_DOMAIN);
4766 for (objfile *objfile : current_program_space->objfiles ())
4767 if (!add_matching_msymbols (objfile, preg, &result))
4768 break;
4769 }
4770
4771 return result;
4772 }
4773
4774 /* See symtab.h. */
4775
4776 std::string
4777 symbol_to_info_string (struct symbol *sym, int block,
4778 enum search_domain kind)
4779 {
4780 std::string str;
4781
4782 gdb_assert (block == GLOBAL_BLOCK || block == STATIC_BLOCK);
4783
4784 if (kind != TYPES_DOMAIN && block == STATIC_BLOCK)
4785 str += "static ";
4786
4787 /* Typedef that is not a C++ class. */
4788 if (kind == TYPES_DOMAIN
4789 && SYMBOL_DOMAIN (sym) != STRUCT_DOMAIN)
4790 {
4791 string_file tmp_stream;
4792
4793 /* FIXME: For C (and C++) we end up with a difference in output here
4794 between how a typedef is printed, and non-typedefs are printed.
4795 The TYPEDEF_PRINT code places a ";" at the end in an attempt to
4796 appear C-like, while TYPE_PRINT doesn't.
4797
4798 For the struct printing case below, things are worse, we force
4799 printing of the ";" in this function, which is going to be wrong
4800 for languages that don't require a ";" between statements. */
4801 if (TYPE_CODE (SYMBOL_TYPE (sym)) == TYPE_CODE_TYPEDEF)
4802 typedef_print (SYMBOL_TYPE (sym), sym, &tmp_stream);
4803 else
4804 type_print (SYMBOL_TYPE (sym), "", &tmp_stream, -1);
4805 str += tmp_stream.string ();
4806 }
4807 /* variable, func, or typedef-that-is-c++-class. */
4808 else if (kind < TYPES_DOMAIN
4809 || (kind == TYPES_DOMAIN
4810 && SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN))
4811 {
4812 string_file tmp_stream;
4813
4814 type_print (SYMBOL_TYPE (sym),
4815 (SYMBOL_CLASS (sym) == LOC_TYPEDEF
4816 ? "" : sym->print_name ()),
4817 &tmp_stream, 0);
4818
4819 str += tmp_stream.string ();
4820 str += ";";
4821 }
4822 /* Printing of modules is currently done here, maybe at some future
4823 point we might want a language specific method to print the module
4824 symbol so that we can customise the output more. */
4825 else if (kind == MODULES_DOMAIN)
4826 str += sym->print_name ();
4827
4828 return str;
4829 }
4830
4831 /* Helper function for symbol info commands, for example 'info functions',
4832 'info variables', etc. KIND is the kind of symbol we searched for, and
4833 BLOCK is the type of block the symbols was found in, either GLOBAL_BLOCK
4834 or STATIC_BLOCK. SYM is the symbol we found. If LAST is not NULL,
4835 print file and line number information for the symbol as well. Skip
4836 printing the filename if it matches LAST. */
4837
4838 static void
4839 print_symbol_info (enum search_domain kind,
4840 struct symbol *sym,
4841 int block, const char *last)
4842 {
4843 scoped_switch_to_sym_language_if_auto l (sym);
4844 struct symtab *s = symbol_symtab (sym);
4845
4846 if (last != NULL)
4847 {
4848 const char *s_filename = symtab_to_filename_for_display (s);
4849
4850 if (filename_cmp (last, s_filename) != 0)
4851 {
4852 printf_filtered (_("\nFile %ps:\n"),
4853 styled_string (file_name_style.style (),
4854 s_filename));
4855 }
4856
4857 if (SYMBOL_LINE (sym) != 0)
4858 printf_filtered ("%d:\t", SYMBOL_LINE (sym));
4859 else
4860 puts_filtered ("\t");
4861 }
4862
4863 std::string str = symbol_to_info_string (sym, block, kind);
4864 printf_filtered ("%s\n", str.c_str ());
4865 }
4866
4867 /* This help function for symtab_symbol_info() prints information
4868 for non-debugging symbols to gdb_stdout. */
4869
4870 static void
4871 print_msymbol_info (struct bound_minimal_symbol msymbol)
4872 {
4873 struct gdbarch *gdbarch = get_objfile_arch (msymbol.objfile);
4874 char *tmp;
4875
4876 if (gdbarch_addr_bit (gdbarch) <= 32)
4877 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol)
4878 & (CORE_ADDR) 0xffffffff,
4879 8);
4880 else
4881 tmp = hex_string_custom (BMSYMBOL_VALUE_ADDRESS (msymbol),
4882 16);
4883
4884 ui_file_style sym_style = (msymbol.minsym->text_p ()
4885 ? function_name_style.style ()
4886 : ui_file_style ());
4887
4888 printf_filtered (_("%ps %ps\n"),
4889 styled_string (address_style.style (), tmp),
4890 styled_string (sym_style, msymbol.minsym->print_name ()));
4891 }
4892
4893 /* This is the guts of the commands "info functions", "info types", and
4894 "info variables". It calls search_symbols to find all matches and then
4895 print_[m]symbol_info to print out some useful information about the
4896 matches. */
4897
4898 static void
4899 symtab_symbol_info (bool quiet, bool exclude_minsyms,
4900 const char *regexp, enum search_domain kind,
4901 const char *t_regexp, int from_tty)
4902 {
4903 static const char * const classnames[] =
4904 {"variable", "function", "type", "module"};
4905 const char *last_filename = "";
4906 int first = 1;
4907
4908 gdb_assert (kind != ALL_DOMAIN);
4909
4910 if (regexp != nullptr && *regexp == '\0')
4911 regexp = nullptr;
4912
4913 global_symbol_searcher spec (kind, regexp);
4914 spec.set_symbol_type_regexp (t_regexp);
4915 spec.set_exclude_minsyms (exclude_minsyms);
4916 std::vector<symbol_search> symbols = spec.search ();
4917
4918 if (!quiet)
4919 {
4920 if (regexp != NULL)
4921 {
4922 if (t_regexp != NULL)
4923 printf_filtered
4924 (_("All %ss matching regular expression \"%s\""
4925 " with type matching regular expression \"%s\":\n"),
4926 classnames[kind], regexp, t_regexp);
4927 else
4928 printf_filtered (_("All %ss matching regular expression \"%s\":\n"),
4929 classnames[kind], regexp);
4930 }
4931 else
4932 {
4933 if (t_regexp != NULL)
4934 printf_filtered
4935 (_("All defined %ss"
4936 " with type matching regular expression \"%s\" :\n"),
4937 classnames[kind], t_regexp);
4938 else
4939 printf_filtered (_("All defined %ss:\n"), classnames[kind]);
4940 }
4941 }
4942
4943 for (const symbol_search &p : symbols)
4944 {
4945 QUIT;
4946
4947 if (p.msymbol.minsym != NULL)
4948 {
4949 if (first)
4950 {
4951 if (!quiet)
4952 printf_filtered (_("\nNon-debugging symbols:\n"));
4953 first = 0;
4954 }
4955 print_msymbol_info (p.msymbol);
4956 }
4957 else
4958 {
4959 print_symbol_info (kind,
4960 p.symbol,
4961 p.block,
4962 last_filename);
4963 last_filename
4964 = symtab_to_filename_for_display (symbol_symtab (p.symbol));
4965 }
4966 }
4967 }
4968
4969 /* Structure to hold the values of the options used by the 'info variables'
4970 and 'info functions' commands. These correspond to the -q, -t, and -n
4971 options. */
4972
4973 struct info_print_options
4974 {
4975 bool quiet = false;
4976 bool exclude_minsyms = false;
4977 char *type_regexp = nullptr;
4978
4979 ~info_print_options ()
4980 {
4981 xfree (type_regexp);
4982 }
4983 };
4984
4985 /* The options used by the 'info variables' and 'info functions'
4986 commands. */
4987
4988 static const gdb::option::option_def info_print_options_defs[] = {
4989 gdb::option::boolean_option_def<info_print_options> {
4990 "q",
4991 [] (info_print_options *opt) { return &opt->quiet; },
4992 nullptr, /* show_cmd_cb */
4993 nullptr /* set_doc */
4994 },
4995
4996 gdb::option::boolean_option_def<info_print_options> {
4997 "n",
4998 [] (info_print_options *opt) { return &opt->exclude_minsyms; },
4999 nullptr, /* show_cmd_cb */
5000 nullptr /* set_doc */
5001 },
5002
5003 gdb::option::string_option_def<info_print_options> {
5004 "t",
5005 [] (info_print_options *opt) { return &opt->type_regexp; },
5006 nullptr, /* show_cmd_cb */
5007 nullptr /* set_doc */
5008 }
5009 };
5010
5011 /* Returns the option group used by 'info variables' and 'info
5012 functions'. */
5013
5014 static gdb::option::option_def_group
5015 make_info_print_options_def_group (info_print_options *opts)
5016 {
5017 return {{info_print_options_defs}, opts};
5018 }
5019
5020 /* Command completer for 'info variables' and 'info functions'. */
5021
5022 static void
5023 info_print_command_completer (struct cmd_list_element *ignore,
5024 completion_tracker &tracker,
5025 const char *text, const char * /* word */)
5026 {
5027 const auto group
5028 = make_info_print_options_def_group (nullptr);
5029 if (gdb::option::complete_options
5030 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5031 return;
5032
5033 const char *word = advance_to_expression_complete_word_point (tracker, text);
5034 symbol_completer (ignore, tracker, text, word);
5035 }
5036
5037 /* Implement the 'info variables' command. */
5038
5039 static void
5040 info_variables_command (const char *args, int from_tty)
5041 {
5042 info_print_options opts;
5043 auto grp = make_info_print_options_def_group (&opts);
5044 gdb::option::process_options
5045 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5046 if (args != nullptr && *args == '\0')
5047 args = nullptr;
5048
5049 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args, VARIABLES_DOMAIN,
5050 opts.type_regexp, from_tty);
5051 }
5052
5053 /* Implement the 'info functions' command. */
5054
5055 static void
5056 info_functions_command (const char *args, int from_tty)
5057 {
5058 info_print_options opts;
5059 auto grp = make_info_print_options_def_group (&opts);
5060 gdb::option::process_options
5061 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5062 if (args != nullptr && *args == '\0')
5063 args = nullptr;
5064
5065 symtab_symbol_info (opts.quiet, opts.exclude_minsyms, args,
5066 FUNCTIONS_DOMAIN, opts.type_regexp, from_tty);
5067 }
5068
5069 /* Holds the -q option for the 'info types' command. */
5070
5071 struct info_types_options
5072 {
5073 bool quiet = false;
5074 };
5075
5076 /* The options used by the 'info types' command. */
5077
5078 static const gdb::option::option_def info_types_options_defs[] = {
5079 gdb::option::boolean_option_def<info_types_options> {
5080 "q",
5081 [] (info_types_options *opt) { return &opt->quiet; },
5082 nullptr, /* show_cmd_cb */
5083 nullptr /* set_doc */
5084 }
5085 };
5086
5087 /* Returns the option group used by 'info types'. */
5088
5089 static gdb::option::option_def_group
5090 make_info_types_options_def_group (info_types_options *opts)
5091 {
5092 return {{info_types_options_defs}, opts};
5093 }
5094
5095 /* Implement the 'info types' command. */
5096
5097 static void
5098 info_types_command (const char *args, int from_tty)
5099 {
5100 info_types_options opts;
5101
5102 auto grp = make_info_types_options_def_group (&opts);
5103 gdb::option::process_options
5104 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5105 if (args != nullptr && *args == '\0')
5106 args = nullptr;
5107 symtab_symbol_info (opts.quiet, false, args, TYPES_DOMAIN, NULL, from_tty);
5108 }
5109
5110 /* Command completer for 'info types' command. */
5111
5112 static void
5113 info_types_command_completer (struct cmd_list_element *ignore,
5114 completion_tracker &tracker,
5115 const char *text, const char * /* word */)
5116 {
5117 const auto group
5118 = make_info_types_options_def_group (nullptr);
5119 if (gdb::option::complete_options
5120 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
5121 return;
5122
5123 const char *word = advance_to_expression_complete_word_point (tracker, text);
5124 symbol_completer (ignore, tracker, text, word);
5125 }
5126
5127 /* Implement the 'info modules' command. */
5128
5129 static void
5130 info_modules_command (const char *args, int from_tty)
5131 {
5132 info_types_options opts;
5133
5134 auto grp = make_info_types_options_def_group (&opts);
5135 gdb::option::process_options
5136 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
5137 if (args != nullptr && *args == '\0')
5138 args = nullptr;
5139 symtab_symbol_info (opts.quiet, true, args, MODULES_DOMAIN, NULL,
5140 from_tty);
5141 }
5142
5143 static void
5144 rbreak_command (const char *regexp, int from_tty)
5145 {
5146 std::string string;
5147 const char *file_name = nullptr;
5148
5149 if (regexp != nullptr)
5150 {
5151 const char *colon = strchr (regexp, ':');
5152
5153 if (colon && *(colon + 1) != ':')
5154 {
5155 int colon_index;
5156 char *local_name;
5157
5158 colon_index = colon - regexp;
5159 local_name = (char *) alloca (colon_index + 1);
5160 memcpy (local_name, regexp, colon_index);
5161 local_name[colon_index--] = 0;
5162 while (isspace (local_name[colon_index]))
5163 local_name[colon_index--] = 0;
5164 file_name = local_name;
5165 regexp = skip_spaces (colon + 1);
5166 }
5167 }
5168
5169 global_symbol_searcher spec (FUNCTIONS_DOMAIN, regexp);
5170 if (file_name != nullptr)
5171 spec.filenames.push_back (file_name);
5172 std::vector<symbol_search> symbols = spec.search ();
5173
5174 scoped_rbreak_breakpoints finalize;
5175 for (const symbol_search &p : symbols)
5176 {
5177 if (p.msymbol.minsym == NULL)
5178 {
5179 struct symtab *symtab = symbol_symtab (p.symbol);
5180 const char *fullname = symtab_to_fullname (symtab);
5181
5182 string = string_printf ("%s:'%s'", fullname,
5183 p.symbol->linkage_name ());
5184 break_command (&string[0], from_tty);
5185 print_symbol_info (FUNCTIONS_DOMAIN, p.symbol, p.block, NULL);
5186 }
5187 else
5188 {
5189 string = string_printf ("'%s'",
5190 p.msymbol.minsym->linkage_name ());
5191
5192 break_command (&string[0], from_tty);
5193 printf_filtered ("<function, no debug info> %s;\n",
5194 p.msymbol.minsym->print_name ());
5195 }
5196 }
5197 }
5198 \f
5199
5200 /* Evaluate if SYMNAME matches LOOKUP_NAME. */
5201
5202 static int
5203 compare_symbol_name (const char *symbol_name, language symbol_language,
5204 const lookup_name_info &lookup_name,
5205 completion_match_result &match_res)
5206 {
5207 const language_defn *lang = language_def (symbol_language);
5208
5209 symbol_name_matcher_ftype *name_match
5210 = get_symbol_name_matcher (lang, lookup_name);
5211
5212 return name_match (symbol_name, lookup_name, &match_res);
5213 }
5214
5215 /* See symtab.h. */
5216
5217 void
5218 completion_list_add_name (completion_tracker &tracker,
5219 language symbol_language,
5220 const char *symname,
5221 const lookup_name_info &lookup_name,
5222 const char *text, const char *word)
5223 {
5224 completion_match_result &match_res
5225 = tracker.reset_completion_match_result ();
5226
5227 /* Clip symbols that cannot match. */
5228 if (!compare_symbol_name (symname, symbol_language, lookup_name, match_res))
5229 return;
5230
5231 /* Refresh SYMNAME from the match string. It's potentially
5232 different depending on language. (E.g., on Ada, the match may be
5233 the encoded symbol name wrapped in "<>"). */
5234 symname = match_res.match.match ();
5235 gdb_assert (symname != NULL);
5236
5237 /* We have a match for a completion, so add SYMNAME to the current list
5238 of matches. Note that the name is moved to freshly malloc'd space. */
5239
5240 {
5241 gdb::unique_xmalloc_ptr<char> completion
5242 = make_completion_match_str (symname, text, word);
5243
5244 /* Here we pass the match-for-lcd object to add_completion. Some
5245 languages match the user text against substrings of symbol
5246 names in some cases. E.g., in C++, "b push_ba" completes to
5247 "std::vector::push_back", "std::string::push_back", etc., and
5248 in this case we want the completion lowest common denominator
5249 to be "push_back" instead of "std::". */
5250 tracker.add_completion (std::move (completion),
5251 &match_res.match_for_lcd, text, word);
5252 }
5253 }
5254
5255 /* completion_list_add_name wrapper for struct symbol. */
5256
5257 static void
5258 completion_list_add_symbol (completion_tracker &tracker,
5259 symbol *sym,
5260 const lookup_name_info &lookup_name,
5261 const char *text, const char *word)
5262 {
5263 completion_list_add_name (tracker, sym->language (),
5264 sym->natural_name (),
5265 lookup_name, text, word);
5266 }
5267
5268 /* completion_list_add_name wrapper for struct minimal_symbol. */
5269
5270 static void
5271 completion_list_add_msymbol (completion_tracker &tracker,
5272 minimal_symbol *sym,
5273 const lookup_name_info &lookup_name,
5274 const char *text, const char *word)
5275 {
5276 completion_list_add_name (tracker, sym->language (),
5277 sym->natural_name (),
5278 lookup_name, text, word);
5279 }
5280
5281
5282 /* ObjC: In case we are completing on a selector, look as the msymbol
5283 again and feed all the selectors into the mill. */
5284
5285 static void
5286 completion_list_objc_symbol (completion_tracker &tracker,
5287 struct minimal_symbol *msymbol,
5288 const lookup_name_info &lookup_name,
5289 const char *text, const char *word)
5290 {
5291 static char *tmp = NULL;
5292 static unsigned int tmplen = 0;
5293
5294 const char *method, *category, *selector;
5295 char *tmp2 = NULL;
5296
5297 method = msymbol->natural_name ();
5298
5299 /* Is it a method? */
5300 if ((method[0] != '-') && (method[0] != '+'))
5301 return;
5302
5303 if (text[0] == '[')
5304 /* Complete on shortened method method. */
5305 completion_list_add_name (tracker, language_objc,
5306 method + 1,
5307 lookup_name,
5308 text, word);
5309
5310 while ((strlen (method) + 1) >= tmplen)
5311 {
5312 if (tmplen == 0)
5313 tmplen = 1024;
5314 else
5315 tmplen *= 2;
5316 tmp = (char *) xrealloc (tmp, tmplen);
5317 }
5318 selector = strchr (method, ' ');
5319 if (selector != NULL)
5320 selector++;
5321
5322 category = strchr (method, '(');
5323
5324 if ((category != NULL) && (selector != NULL))
5325 {
5326 memcpy (tmp, method, (category - method));
5327 tmp[category - method] = ' ';
5328 memcpy (tmp + (category - method) + 1, selector, strlen (selector) + 1);
5329 completion_list_add_name (tracker, language_objc, tmp,
5330 lookup_name, text, word);
5331 if (text[0] == '[')
5332 completion_list_add_name (tracker, language_objc, tmp + 1,
5333 lookup_name, text, word);
5334 }
5335
5336 if (selector != NULL)
5337 {
5338 /* Complete on selector only. */
5339 strcpy (tmp, selector);
5340 tmp2 = strchr (tmp, ']');
5341 if (tmp2 != NULL)
5342 *tmp2 = '\0';
5343
5344 completion_list_add_name (tracker, language_objc, tmp,
5345 lookup_name, text, word);
5346 }
5347 }
5348
5349 /* Break the non-quoted text based on the characters which are in
5350 symbols. FIXME: This should probably be language-specific. */
5351
5352 static const char *
5353 language_search_unquoted_string (const char *text, const char *p)
5354 {
5355 for (; p > text; --p)
5356 {
5357 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0')
5358 continue;
5359 else
5360 {
5361 if ((current_language->la_language == language_objc))
5362 {
5363 if (p[-1] == ':') /* Might be part of a method name. */
5364 continue;
5365 else if (p[-1] == '[' && (p[-2] == '-' || p[-2] == '+'))
5366 p -= 2; /* Beginning of a method name. */
5367 else if (p[-1] == ' ' || p[-1] == '(' || p[-1] == ')')
5368 { /* Might be part of a method name. */
5369 const char *t = p;
5370
5371 /* Seeing a ' ' or a '(' is not conclusive evidence
5372 that we are in the middle of a method name. However,
5373 finding "-[" or "+[" should be pretty un-ambiguous.
5374 Unfortunately we have to find it now to decide. */
5375
5376 while (t > text)
5377 if (isalnum (t[-1]) || t[-1] == '_' ||
5378 t[-1] == ' ' || t[-1] == ':' ||
5379 t[-1] == '(' || t[-1] == ')')
5380 --t;
5381 else
5382 break;
5383
5384 if (t[-1] == '[' && (t[-2] == '-' || t[-2] == '+'))
5385 p = t - 2; /* Method name detected. */
5386 /* Else we leave with p unchanged. */
5387 }
5388 }
5389 break;
5390 }
5391 }
5392 return p;
5393 }
5394
5395 static void
5396 completion_list_add_fields (completion_tracker &tracker,
5397 struct symbol *sym,
5398 const lookup_name_info &lookup_name,
5399 const char *text, const char *word)
5400 {
5401 if (SYMBOL_CLASS (sym) == LOC_TYPEDEF)
5402 {
5403 struct type *t = SYMBOL_TYPE (sym);
5404 enum type_code c = TYPE_CODE (t);
5405 int j;
5406
5407 if (c == TYPE_CODE_UNION || c == TYPE_CODE_STRUCT)
5408 for (j = TYPE_N_BASECLASSES (t); j < TYPE_NFIELDS (t); j++)
5409 if (TYPE_FIELD_NAME (t, j))
5410 completion_list_add_name (tracker, sym->language (),
5411 TYPE_FIELD_NAME (t, j),
5412 lookup_name, text, word);
5413 }
5414 }
5415
5416 /* See symtab.h. */
5417
5418 bool
5419 symbol_is_function_or_method (symbol *sym)
5420 {
5421 switch (TYPE_CODE (SYMBOL_TYPE (sym)))
5422 {
5423 case TYPE_CODE_FUNC:
5424 case TYPE_CODE_METHOD:
5425 return true;
5426 default:
5427 return false;
5428 }
5429 }
5430
5431 /* See symtab.h. */
5432
5433 bool
5434 symbol_is_function_or_method (minimal_symbol *msymbol)
5435 {
5436 switch (MSYMBOL_TYPE (msymbol))
5437 {
5438 case mst_text:
5439 case mst_text_gnu_ifunc:
5440 case mst_solib_trampoline:
5441 case mst_file_text:
5442 return true;
5443 default:
5444 return false;
5445 }
5446 }
5447
5448 /* See symtab.h. */
5449
5450 bound_minimal_symbol
5451 find_gnu_ifunc (const symbol *sym)
5452 {
5453 if (SYMBOL_CLASS (sym) != LOC_BLOCK)
5454 return {};
5455
5456 lookup_name_info lookup_name (sym->search_name (),
5457 symbol_name_match_type::SEARCH_NAME);
5458 struct objfile *objfile = symbol_objfile (sym);
5459
5460 CORE_ADDR address = BLOCK_ENTRY_PC (SYMBOL_BLOCK_VALUE (sym));
5461 minimal_symbol *ifunc = NULL;
5462
5463 iterate_over_minimal_symbols (objfile, lookup_name,
5464 [&] (minimal_symbol *minsym)
5465 {
5466 if (MSYMBOL_TYPE (minsym) == mst_text_gnu_ifunc
5467 || MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5468 {
5469 CORE_ADDR msym_addr = MSYMBOL_VALUE_ADDRESS (objfile, minsym);
5470 if (MSYMBOL_TYPE (minsym) == mst_data_gnu_ifunc)
5471 {
5472 struct gdbarch *gdbarch = get_objfile_arch (objfile);
5473 msym_addr
5474 = gdbarch_convert_from_func_ptr_addr (gdbarch,
5475 msym_addr,
5476 current_top_target ());
5477 }
5478 if (msym_addr == address)
5479 {
5480 ifunc = minsym;
5481 return true;
5482 }
5483 }
5484 return false;
5485 });
5486
5487 if (ifunc != NULL)
5488 return {ifunc, objfile};
5489 return {};
5490 }
5491
5492 /* Add matching symbols from SYMTAB to the current completion list. */
5493
5494 static void
5495 add_symtab_completions (struct compunit_symtab *cust,
5496 completion_tracker &tracker,
5497 complete_symbol_mode mode,
5498 const lookup_name_info &lookup_name,
5499 const char *text, const char *word,
5500 enum type_code code)
5501 {
5502 struct symbol *sym;
5503 const struct block *b;
5504 struct block_iterator iter;
5505 int i;
5506
5507 if (cust == NULL)
5508 return;
5509
5510 for (i = GLOBAL_BLOCK; i <= STATIC_BLOCK; i++)
5511 {
5512 QUIT;
5513 b = BLOCKVECTOR_BLOCK (COMPUNIT_BLOCKVECTOR (cust), i);
5514 ALL_BLOCK_SYMBOLS (b, iter, sym)
5515 {
5516 if (completion_skip_symbol (mode, sym))
5517 continue;
5518
5519 if (code == TYPE_CODE_UNDEF
5520 || (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5521 && TYPE_CODE (SYMBOL_TYPE (sym)) == code))
5522 completion_list_add_symbol (tracker, sym,
5523 lookup_name,
5524 text, word);
5525 }
5526 }
5527 }
5528
5529 void
5530 default_collect_symbol_completion_matches_break_on
5531 (completion_tracker &tracker, complete_symbol_mode mode,
5532 symbol_name_match_type name_match_type,
5533 const char *text, const char *word,
5534 const char *break_on, enum type_code code)
5535 {
5536 /* Problem: All of the symbols have to be copied because readline
5537 frees them. I'm not going to worry about this; hopefully there
5538 won't be that many. */
5539
5540 struct symbol *sym;
5541 const struct block *b;
5542 const struct block *surrounding_static_block, *surrounding_global_block;
5543 struct block_iterator iter;
5544 /* The symbol we are completing on. Points in same buffer as text. */
5545 const char *sym_text;
5546
5547 /* Now look for the symbol we are supposed to complete on. */
5548 if (mode == complete_symbol_mode::LINESPEC)
5549 sym_text = text;
5550 else
5551 {
5552 const char *p;
5553 char quote_found;
5554 const char *quote_pos = NULL;
5555
5556 /* First see if this is a quoted string. */
5557 quote_found = '\0';
5558 for (p = text; *p != '\0'; ++p)
5559 {
5560 if (quote_found != '\0')
5561 {
5562 if (*p == quote_found)
5563 /* Found close quote. */
5564 quote_found = '\0';
5565 else if (*p == '\\' && p[1] == quote_found)
5566 /* A backslash followed by the quote character
5567 doesn't end the string. */
5568 ++p;
5569 }
5570 else if (*p == '\'' || *p == '"')
5571 {
5572 quote_found = *p;
5573 quote_pos = p;
5574 }
5575 }
5576 if (quote_found == '\'')
5577 /* A string within single quotes can be a symbol, so complete on it. */
5578 sym_text = quote_pos + 1;
5579 else if (quote_found == '"')
5580 /* A double-quoted string is never a symbol, nor does it make sense
5581 to complete it any other way. */
5582 {
5583 return;
5584 }
5585 else
5586 {
5587 /* It is not a quoted string. Break it based on the characters
5588 which are in symbols. */
5589 while (p > text)
5590 {
5591 if (isalnum (p[-1]) || p[-1] == '_' || p[-1] == '\0'
5592 || p[-1] == ':' || strchr (break_on, p[-1]) != NULL)
5593 --p;
5594 else
5595 break;
5596 }
5597 sym_text = p;
5598 }
5599 }
5600
5601 lookup_name_info lookup_name (sym_text, name_match_type, true);
5602
5603 /* At this point scan through the misc symbol vectors and add each
5604 symbol you find to the list. Eventually we want to ignore
5605 anything that isn't a text symbol (everything else will be
5606 handled by the psymtab code below). */
5607
5608 if (code == TYPE_CODE_UNDEF)
5609 {
5610 for (objfile *objfile : current_program_space->objfiles ())
5611 {
5612 for (minimal_symbol *msymbol : objfile->msymbols ())
5613 {
5614 QUIT;
5615
5616 if (completion_skip_symbol (mode, msymbol))
5617 continue;
5618
5619 completion_list_add_msymbol (tracker, msymbol, lookup_name,
5620 sym_text, word);
5621
5622 completion_list_objc_symbol (tracker, msymbol, lookup_name,
5623 sym_text, word);
5624 }
5625 }
5626 }
5627
5628 /* Add completions for all currently loaded symbol tables. */
5629 for (objfile *objfile : current_program_space->objfiles ())
5630 {
5631 for (compunit_symtab *cust : objfile->compunits ())
5632 add_symtab_completions (cust, tracker, mode, lookup_name,
5633 sym_text, word, code);
5634 }
5635
5636 /* Look through the partial symtabs for all symbols which begin by
5637 matching SYM_TEXT. Expand all CUs that you find to the list. */
5638 expand_symtabs_matching (NULL,
5639 lookup_name,
5640 NULL,
5641 [&] (compunit_symtab *symtab) /* expansion notify */
5642 {
5643 add_symtab_completions (symtab,
5644 tracker, mode, lookup_name,
5645 sym_text, word, code);
5646 },
5647 ALL_DOMAIN);
5648
5649 /* Search upwards from currently selected frame (so that we can
5650 complete on local vars). Also catch fields of types defined in
5651 this places which match our text string. Only complete on types
5652 visible from current context. */
5653
5654 b = get_selected_block (0);
5655 surrounding_static_block = block_static_block (b);
5656 surrounding_global_block = block_global_block (b);
5657 if (surrounding_static_block != NULL)
5658 while (b != surrounding_static_block)
5659 {
5660 QUIT;
5661
5662 ALL_BLOCK_SYMBOLS (b, iter, sym)
5663 {
5664 if (code == TYPE_CODE_UNDEF)
5665 {
5666 completion_list_add_symbol (tracker, sym, lookup_name,
5667 sym_text, word);
5668 completion_list_add_fields (tracker, sym, lookup_name,
5669 sym_text, word);
5670 }
5671 else if (SYMBOL_DOMAIN (sym) == STRUCT_DOMAIN
5672 && TYPE_CODE (SYMBOL_TYPE (sym)) == code)
5673 completion_list_add_symbol (tracker, sym, lookup_name,
5674 sym_text, word);
5675 }
5676
5677 /* Stop when we encounter an enclosing function. Do not stop for
5678 non-inlined functions - the locals of the enclosing function
5679 are in scope for a nested function. */
5680 if (BLOCK_FUNCTION (b) != NULL && block_inlined_p (b))
5681 break;
5682 b = BLOCK_SUPERBLOCK (b);
5683 }
5684
5685 /* Add fields from the file's types; symbols will be added below. */
5686
5687 if (code == TYPE_CODE_UNDEF)
5688 {
5689 if (surrounding_static_block != NULL)
5690 ALL_BLOCK_SYMBOLS (surrounding_static_block, iter, sym)
5691 completion_list_add_fields (tracker, sym, lookup_name,
5692 sym_text, word);
5693
5694 if (surrounding_global_block != NULL)
5695 ALL_BLOCK_SYMBOLS (surrounding_global_block, iter, sym)
5696 completion_list_add_fields (tracker, sym, lookup_name,
5697 sym_text, word);
5698 }
5699
5700 /* Skip macros if we are completing a struct tag -- arguable but
5701 usually what is expected. */
5702 if (current_language->la_macro_expansion == macro_expansion_c
5703 && code == TYPE_CODE_UNDEF)
5704 {
5705 gdb::unique_xmalloc_ptr<struct macro_scope> scope;
5706
5707 /* This adds a macro's name to the current completion list. */
5708 auto add_macro_name = [&] (const char *macro_name,
5709 const macro_definition *,
5710 macro_source_file *,
5711 int)
5712 {
5713 completion_list_add_name (tracker, language_c, macro_name,
5714 lookup_name, sym_text, word);
5715 };
5716
5717 /* Add any macros visible in the default scope. Note that this
5718 may yield the occasional wrong result, because an expression
5719 might be evaluated in a scope other than the default. For
5720 example, if the user types "break file:line if <TAB>", the
5721 resulting expression will be evaluated at "file:line" -- but
5722 at there does not seem to be a way to detect this at
5723 completion time. */
5724 scope = default_macro_scope ();
5725 if (scope)
5726 macro_for_each_in_scope (scope->file, scope->line,
5727 add_macro_name);
5728
5729 /* User-defined macros are always visible. */
5730 macro_for_each (macro_user_macros, add_macro_name);
5731 }
5732 }
5733
5734 void
5735 default_collect_symbol_completion_matches (completion_tracker &tracker,
5736 complete_symbol_mode mode,
5737 symbol_name_match_type name_match_type,
5738 const char *text, const char *word,
5739 enum type_code code)
5740 {
5741 return default_collect_symbol_completion_matches_break_on (tracker, mode,
5742 name_match_type,
5743 text, word, "",
5744 code);
5745 }
5746
5747 /* Collect all symbols (regardless of class) which begin by matching
5748 TEXT. */
5749
5750 void
5751 collect_symbol_completion_matches (completion_tracker &tracker,
5752 complete_symbol_mode mode,
5753 symbol_name_match_type name_match_type,
5754 const char *text, const char *word)
5755 {
5756 current_language->la_collect_symbol_completion_matches (tracker, mode,
5757 name_match_type,
5758 text, word,
5759 TYPE_CODE_UNDEF);
5760 }
5761
5762 /* Like collect_symbol_completion_matches, but only collect
5763 STRUCT_DOMAIN symbols whose type code is CODE. */
5764
5765 void
5766 collect_symbol_completion_matches_type (completion_tracker &tracker,
5767 const char *text, const char *word,
5768 enum type_code code)
5769 {
5770 complete_symbol_mode mode = complete_symbol_mode::EXPRESSION;
5771 symbol_name_match_type name_match_type = symbol_name_match_type::EXPRESSION;
5772
5773 gdb_assert (code == TYPE_CODE_UNION
5774 || code == TYPE_CODE_STRUCT
5775 || code == TYPE_CODE_ENUM);
5776 current_language->la_collect_symbol_completion_matches (tracker, mode,
5777 name_match_type,
5778 text, word, code);
5779 }
5780
5781 /* Like collect_symbol_completion_matches, but collects a list of
5782 symbols defined in all source files named SRCFILE. */
5783
5784 void
5785 collect_file_symbol_completion_matches (completion_tracker &tracker,
5786 complete_symbol_mode mode,
5787 symbol_name_match_type name_match_type,
5788 const char *text, const char *word,
5789 const char *srcfile)
5790 {
5791 /* The symbol we are completing on. Points in same buffer as text. */
5792 const char *sym_text;
5793
5794 /* Now look for the symbol we are supposed to complete on.
5795 FIXME: This should be language-specific. */
5796 if (mode == complete_symbol_mode::LINESPEC)
5797 sym_text = text;
5798 else
5799 {
5800 const char *p;
5801 char quote_found;
5802 const char *quote_pos = NULL;
5803
5804 /* First see if this is a quoted string. */
5805 quote_found = '\0';
5806 for (p = text; *p != '\0'; ++p)
5807 {
5808 if (quote_found != '\0')
5809 {
5810 if (*p == quote_found)
5811 /* Found close quote. */
5812 quote_found = '\0';
5813 else if (*p == '\\' && p[1] == quote_found)
5814 /* A backslash followed by the quote character
5815 doesn't end the string. */
5816 ++p;
5817 }
5818 else if (*p == '\'' || *p == '"')
5819 {
5820 quote_found = *p;
5821 quote_pos = p;
5822 }
5823 }
5824 if (quote_found == '\'')
5825 /* A string within single quotes can be a symbol, so complete on it. */
5826 sym_text = quote_pos + 1;
5827 else if (quote_found == '"')
5828 /* A double-quoted string is never a symbol, nor does it make sense
5829 to complete it any other way. */
5830 {
5831 return;
5832 }
5833 else
5834 {
5835 /* Not a quoted string. */
5836 sym_text = language_search_unquoted_string (text, p);
5837 }
5838 }
5839
5840 lookup_name_info lookup_name (sym_text, name_match_type, true);
5841
5842 /* Go through symtabs for SRCFILE and check the externs and statics
5843 for symbols which match. */
5844 iterate_over_symtabs (srcfile, [&] (symtab *s)
5845 {
5846 add_symtab_completions (SYMTAB_COMPUNIT (s),
5847 tracker, mode, lookup_name,
5848 sym_text, word, TYPE_CODE_UNDEF);
5849 return false;
5850 });
5851 }
5852
5853 /* A helper function for make_source_files_completion_list. It adds
5854 another file name to a list of possible completions, growing the
5855 list as necessary. */
5856
5857 static void
5858 add_filename_to_list (const char *fname, const char *text, const char *word,
5859 completion_list *list)
5860 {
5861 list->emplace_back (make_completion_match_str (fname, text, word));
5862 }
5863
5864 static int
5865 not_interesting_fname (const char *fname)
5866 {
5867 static const char *illegal_aliens[] = {
5868 "_globals_", /* inserted by coff_symtab_read */
5869 NULL
5870 };
5871 int i;
5872
5873 for (i = 0; illegal_aliens[i]; i++)
5874 {
5875 if (filename_cmp (fname, illegal_aliens[i]) == 0)
5876 return 1;
5877 }
5878 return 0;
5879 }
5880
5881 /* An object of this type is passed as the user_data argument to
5882 map_partial_symbol_filenames. */
5883 struct add_partial_filename_data
5884 {
5885 struct filename_seen_cache *filename_seen_cache;
5886 const char *text;
5887 const char *word;
5888 int text_len;
5889 completion_list *list;
5890 };
5891
5892 /* A callback for map_partial_symbol_filenames. */
5893
5894 static void
5895 maybe_add_partial_symtab_filename (const char *filename, const char *fullname,
5896 void *user_data)
5897 {
5898 struct add_partial_filename_data *data
5899 = (struct add_partial_filename_data *) user_data;
5900
5901 if (not_interesting_fname (filename))
5902 return;
5903 if (!data->filename_seen_cache->seen (filename)
5904 && filename_ncmp (filename, data->text, data->text_len) == 0)
5905 {
5906 /* This file matches for a completion; add it to the
5907 current list of matches. */
5908 add_filename_to_list (filename, data->text, data->word, data->list);
5909 }
5910 else
5911 {
5912 const char *base_name = lbasename (filename);
5913
5914 if (base_name != filename
5915 && !data->filename_seen_cache->seen (base_name)
5916 && filename_ncmp (base_name, data->text, data->text_len) == 0)
5917 add_filename_to_list (base_name, data->text, data->word, data->list);
5918 }
5919 }
5920
5921 /* Return a list of all source files whose names begin with matching
5922 TEXT. The file names are looked up in the symbol tables of this
5923 program. */
5924
5925 completion_list
5926 make_source_files_completion_list (const char *text, const char *word)
5927 {
5928 size_t text_len = strlen (text);
5929 completion_list list;
5930 const char *base_name;
5931 struct add_partial_filename_data datum;
5932
5933 if (!have_full_symbols () && !have_partial_symbols ())
5934 return list;
5935
5936 filename_seen_cache filenames_seen;
5937
5938 for (objfile *objfile : current_program_space->objfiles ())
5939 {
5940 for (compunit_symtab *cu : objfile->compunits ())
5941 {
5942 for (symtab *s : compunit_filetabs (cu))
5943 {
5944 if (not_interesting_fname (s->filename))
5945 continue;
5946 if (!filenames_seen.seen (s->filename)
5947 && filename_ncmp (s->filename, text, text_len) == 0)
5948 {
5949 /* This file matches for a completion; add it to the current
5950 list of matches. */
5951 add_filename_to_list (s->filename, text, word, &list);
5952 }
5953 else
5954 {
5955 /* NOTE: We allow the user to type a base name when the
5956 debug info records leading directories, but not the other
5957 way around. This is what subroutines of breakpoint
5958 command do when they parse file names. */
5959 base_name = lbasename (s->filename);
5960 if (base_name != s->filename
5961 && !filenames_seen.seen (base_name)
5962 && filename_ncmp (base_name, text, text_len) == 0)
5963 add_filename_to_list (base_name, text, word, &list);
5964 }
5965 }
5966 }
5967 }
5968
5969 datum.filename_seen_cache = &filenames_seen;
5970 datum.text = text;
5971 datum.word = word;
5972 datum.text_len = text_len;
5973 datum.list = &list;
5974 map_symbol_filenames (maybe_add_partial_symtab_filename, &datum,
5975 0 /*need_fullname*/);
5976
5977 return list;
5978 }
5979 \f
5980 /* Track MAIN */
5981
5982 /* Return the "main_info" object for the current program space. If
5983 the object has not yet been created, create it and fill in some
5984 default values. */
5985
5986 static struct main_info *
5987 get_main_info (void)
5988 {
5989 struct main_info *info = main_progspace_key.get (current_program_space);
5990
5991 if (info == NULL)
5992 {
5993 /* It may seem strange to store the main name in the progspace
5994 and also in whatever objfile happens to see a main name in
5995 its debug info. The reason for this is mainly historical:
5996 gdb returned "main" as the name even if no function named
5997 "main" was defined the program; and this approach lets us
5998 keep compatibility. */
5999 info = main_progspace_key.emplace (current_program_space);
6000 }
6001
6002 return info;
6003 }
6004
6005 static void
6006 set_main_name (const char *name, enum language lang)
6007 {
6008 struct main_info *info = get_main_info ();
6009
6010 if (info->name_of_main != NULL)
6011 {
6012 xfree (info->name_of_main);
6013 info->name_of_main = NULL;
6014 info->language_of_main = language_unknown;
6015 }
6016 if (name != NULL)
6017 {
6018 info->name_of_main = xstrdup (name);
6019 info->language_of_main = lang;
6020 }
6021 }
6022
6023 /* Deduce the name of the main procedure, and set NAME_OF_MAIN
6024 accordingly. */
6025
6026 static void
6027 find_main_name (void)
6028 {
6029 const char *new_main_name;
6030
6031 /* First check the objfiles to see whether a debuginfo reader has
6032 picked up the appropriate main name. Historically the main name
6033 was found in a more or less random way; this approach instead
6034 relies on the order of objfile creation -- which still isn't
6035 guaranteed to get the correct answer, but is just probably more
6036 accurate. */
6037 for (objfile *objfile : current_program_space->objfiles ())
6038 {
6039 if (objfile->per_bfd->name_of_main != NULL)
6040 {
6041 set_main_name (objfile->per_bfd->name_of_main,
6042 objfile->per_bfd->language_of_main);
6043 return;
6044 }
6045 }
6046
6047 /* Try to see if the main procedure is in Ada. */
6048 /* FIXME: brobecker/2005-03-07: Another way of doing this would
6049 be to add a new method in the language vector, and call this
6050 method for each language until one of them returns a non-empty
6051 name. This would allow us to remove this hard-coded call to
6052 an Ada function. It is not clear that this is a better approach
6053 at this point, because all methods need to be written in a way
6054 such that false positives never be returned. For instance, it is
6055 important that a method does not return a wrong name for the main
6056 procedure if the main procedure is actually written in a different
6057 language. It is easy to guaranty this with Ada, since we use a
6058 special symbol generated only when the main in Ada to find the name
6059 of the main procedure. It is difficult however to see how this can
6060 be guarantied for languages such as C, for instance. This suggests
6061 that order of call for these methods becomes important, which means
6062 a more complicated approach. */
6063 new_main_name = ada_main_name ();
6064 if (new_main_name != NULL)
6065 {
6066 set_main_name (new_main_name, language_ada);
6067 return;
6068 }
6069
6070 new_main_name = d_main_name ();
6071 if (new_main_name != NULL)
6072 {
6073 set_main_name (new_main_name, language_d);
6074 return;
6075 }
6076
6077 new_main_name = go_main_name ();
6078 if (new_main_name != NULL)
6079 {
6080 set_main_name (new_main_name, language_go);
6081 return;
6082 }
6083
6084 new_main_name = pascal_main_name ();
6085 if (new_main_name != NULL)
6086 {
6087 set_main_name (new_main_name, language_pascal);
6088 return;
6089 }
6090
6091 /* The languages above didn't identify the name of the main procedure.
6092 Fallback to "main". */
6093 set_main_name ("main", language_unknown);
6094 }
6095
6096 /* See symtab.h. */
6097
6098 const char *
6099 main_name ()
6100 {
6101 struct main_info *info = get_main_info ();
6102
6103 if (info->name_of_main == NULL)
6104 find_main_name ();
6105
6106 return info->name_of_main;
6107 }
6108
6109 /* Return the language of the main function. If it is not known,
6110 return language_unknown. */
6111
6112 enum language
6113 main_language (void)
6114 {
6115 struct main_info *info = get_main_info ();
6116
6117 if (info->name_of_main == NULL)
6118 find_main_name ();
6119
6120 return info->language_of_main;
6121 }
6122
6123 /* Handle ``executable_changed'' events for the symtab module. */
6124
6125 static void
6126 symtab_observer_executable_changed (void)
6127 {
6128 /* NAME_OF_MAIN may no longer be the same, so reset it for now. */
6129 set_main_name (NULL, language_unknown);
6130 }
6131
6132 /* Return 1 if the supplied producer string matches the ARM RealView
6133 compiler (armcc). */
6134
6135 bool
6136 producer_is_realview (const char *producer)
6137 {
6138 static const char *const arm_idents[] = {
6139 "ARM C Compiler, ADS",
6140 "Thumb C Compiler, ADS",
6141 "ARM C++ Compiler, ADS",
6142 "Thumb C++ Compiler, ADS",
6143 "ARM/Thumb C/C++ Compiler, RVCT",
6144 "ARM C/C++ Compiler, RVCT"
6145 };
6146 int i;
6147
6148 if (producer == NULL)
6149 return false;
6150
6151 for (i = 0; i < ARRAY_SIZE (arm_idents); i++)
6152 if (startswith (producer, arm_idents[i]))
6153 return true;
6154
6155 return false;
6156 }
6157
6158 \f
6159
6160 /* The next index to hand out in response to a registration request. */
6161
6162 static int next_aclass_value = LOC_FINAL_VALUE;
6163
6164 /* The maximum number of "aclass" registrations we support. This is
6165 constant for convenience. */
6166 #define MAX_SYMBOL_IMPLS (LOC_FINAL_VALUE + 10)
6167
6168 /* The objects representing the various "aclass" values. The elements
6169 from 0 up to LOC_FINAL_VALUE-1 represent themselves, and subsequent
6170 elements are those registered at gdb initialization time. */
6171
6172 static struct symbol_impl symbol_impl[MAX_SYMBOL_IMPLS];
6173
6174 /* The globally visible pointer. This is separate from 'symbol_impl'
6175 so that it can be const. */
6176
6177 const struct symbol_impl *symbol_impls = &symbol_impl[0];
6178
6179 /* Make sure we saved enough room in struct symbol. */
6180
6181 gdb_static_assert (MAX_SYMBOL_IMPLS <= (1 << SYMBOL_ACLASS_BITS));
6182
6183 /* Register a computed symbol type. ACLASS must be LOC_COMPUTED. OPS
6184 is the ops vector associated with this index. This returns the new
6185 index, which should be used as the aclass_index field for symbols
6186 of this type. */
6187
6188 int
6189 register_symbol_computed_impl (enum address_class aclass,
6190 const struct symbol_computed_ops *ops)
6191 {
6192 int result = next_aclass_value++;
6193
6194 gdb_assert (aclass == LOC_COMPUTED);
6195 gdb_assert (result < MAX_SYMBOL_IMPLS);
6196 symbol_impl[result].aclass = aclass;
6197 symbol_impl[result].ops_computed = ops;
6198
6199 /* Sanity check OPS. */
6200 gdb_assert (ops != NULL);
6201 gdb_assert (ops->tracepoint_var_ref != NULL);
6202 gdb_assert (ops->describe_location != NULL);
6203 gdb_assert (ops->get_symbol_read_needs != NULL);
6204 gdb_assert (ops->read_variable != NULL);
6205
6206 return result;
6207 }
6208
6209 /* Register a function with frame base type. ACLASS must be LOC_BLOCK.
6210 OPS is the ops vector associated with this index. This returns the
6211 new index, which should be used as the aclass_index field for symbols
6212 of this type. */
6213
6214 int
6215 register_symbol_block_impl (enum address_class aclass,
6216 const struct symbol_block_ops *ops)
6217 {
6218 int result = next_aclass_value++;
6219
6220 gdb_assert (aclass == LOC_BLOCK);
6221 gdb_assert (result < MAX_SYMBOL_IMPLS);
6222 symbol_impl[result].aclass = aclass;
6223 symbol_impl[result].ops_block = ops;
6224
6225 /* Sanity check OPS. */
6226 gdb_assert (ops != NULL);
6227 gdb_assert (ops->find_frame_base_location != NULL);
6228
6229 return result;
6230 }
6231
6232 /* Register a register symbol type. ACLASS must be LOC_REGISTER or
6233 LOC_REGPARM_ADDR. OPS is the register ops vector associated with
6234 this index. This returns the new index, which should be used as
6235 the aclass_index field for symbols of this type. */
6236
6237 int
6238 register_symbol_register_impl (enum address_class aclass,
6239 const struct symbol_register_ops *ops)
6240 {
6241 int result = next_aclass_value++;
6242
6243 gdb_assert (aclass == LOC_REGISTER || aclass == LOC_REGPARM_ADDR);
6244 gdb_assert (result < MAX_SYMBOL_IMPLS);
6245 symbol_impl[result].aclass = aclass;
6246 symbol_impl[result].ops_register = ops;
6247
6248 return result;
6249 }
6250
6251 /* Initialize elements of 'symbol_impl' for the constants in enum
6252 address_class. */
6253
6254 static void
6255 initialize_ordinary_address_classes (void)
6256 {
6257 int i;
6258
6259 for (i = 0; i < LOC_FINAL_VALUE; ++i)
6260 symbol_impl[i].aclass = (enum address_class) i;
6261 }
6262
6263 \f
6264
6265 /* Initialize the symbol SYM, and mark it as being owned by an objfile. */
6266
6267 void
6268 initialize_objfile_symbol (struct symbol *sym)
6269 {
6270 SYMBOL_OBJFILE_OWNED (sym) = 1;
6271 SYMBOL_SECTION (sym) = -1;
6272 }
6273
6274 /* Allocate and initialize a new 'struct symbol' on OBJFILE's
6275 obstack. */
6276
6277 struct symbol *
6278 allocate_symbol (struct objfile *objfile)
6279 {
6280 struct symbol *result = new (&objfile->objfile_obstack) symbol ();
6281
6282 initialize_objfile_symbol (result);
6283
6284 return result;
6285 }
6286
6287 /* Allocate and initialize a new 'struct template_symbol' on OBJFILE's
6288 obstack. */
6289
6290 struct template_symbol *
6291 allocate_template_symbol (struct objfile *objfile)
6292 {
6293 struct template_symbol *result;
6294
6295 result = new (&objfile->objfile_obstack) template_symbol ();
6296 initialize_objfile_symbol (result);
6297
6298 return result;
6299 }
6300
6301 /* See symtab.h. */
6302
6303 struct objfile *
6304 symbol_objfile (const struct symbol *symbol)
6305 {
6306 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6307 return SYMTAB_OBJFILE (symbol->owner.symtab);
6308 }
6309
6310 /* See symtab.h. */
6311
6312 struct gdbarch *
6313 symbol_arch (const struct symbol *symbol)
6314 {
6315 if (!SYMBOL_OBJFILE_OWNED (symbol))
6316 return symbol->owner.arch;
6317 return get_objfile_arch (SYMTAB_OBJFILE (symbol->owner.symtab));
6318 }
6319
6320 /* See symtab.h. */
6321
6322 struct symtab *
6323 symbol_symtab (const struct symbol *symbol)
6324 {
6325 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6326 return symbol->owner.symtab;
6327 }
6328
6329 /* See symtab.h. */
6330
6331 void
6332 symbol_set_symtab (struct symbol *symbol, struct symtab *symtab)
6333 {
6334 gdb_assert (SYMBOL_OBJFILE_OWNED (symbol));
6335 symbol->owner.symtab = symtab;
6336 }
6337
6338 /* See symtab.h. */
6339
6340 CORE_ADDR
6341 get_symbol_address (const struct symbol *sym)
6342 {
6343 gdb_assert (sym->maybe_copied);
6344 gdb_assert (SYMBOL_CLASS (sym) == LOC_STATIC);
6345
6346 const char *linkage_name = sym->linkage_name ();
6347
6348 for (objfile *objfile : current_program_space->objfiles ())
6349 {
6350 bound_minimal_symbol minsym
6351 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6352 if (minsym.minsym != nullptr)
6353 return BMSYMBOL_VALUE_ADDRESS (minsym);
6354 }
6355 return sym->value.address;
6356 }
6357
6358 /* See symtab.h. */
6359
6360 CORE_ADDR
6361 get_msymbol_address (struct objfile *objf, const struct minimal_symbol *minsym)
6362 {
6363 gdb_assert (minsym->maybe_copied);
6364 gdb_assert ((objf->flags & OBJF_MAINLINE) == 0);
6365
6366 const char *linkage_name = minsym->linkage_name ();
6367
6368 for (objfile *objfile : current_program_space->objfiles ())
6369 {
6370 if ((objfile->flags & OBJF_MAINLINE) != 0)
6371 {
6372 bound_minimal_symbol found
6373 = lookup_minimal_symbol_linkage (linkage_name, objfile);
6374 if (found.minsym != nullptr)
6375 return BMSYMBOL_VALUE_ADDRESS (found);
6376 }
6377 }
6378 return (minsym->value.address
6379 + ANOFFSET (objf->section_offsets, minsym->section));
6380 }
6381
6382 \f
6383
6384 /* Hold the sub-commands of 'info module'. */
6385
6386 static struct cmd_list_element *info_module_cmdlist = NULL;
6387
6388 /* Implement the 'info module' command, just displays some help text for
6389 the available sub-commands. */
6390
6391 static void
6392 info_module_command (const char *args, int from_tty)
6393 {
6394 help_list (info_module_cmdlist, "info module ", class_info, gdb_stdout);
6395 }
6396
6397 /* See symtab.h. */
6398
6399 std::vector<module_symbol_search>
6400 search_module_symbols (const char *module_regexp, const char *regexp,
6401 const char *type_regexp, search_domain kind)
6402 {
6403 std::vector<module_symbol_search> results;
6404
6405 /* Search for all modules matching MODULE_REGEXP. */
6406 global_symbol_searcher spec1 (MODULES_DOMAIN, module_regexp);
6407 spec1.set_exclude_minsyms (true);
6408 std::vector<symbol_search> modules = spec1.search ();
6409
6410 /* Now search for all symbols of the required KIND matching the required
6411 regular expressions. We figure out which ones are in which modules
6412 below. */
6413 global_symbol_searcher spec2 (kind, regexp);
6414 spec2.set_symbol_type_regexp (type_regexp);
6415 spec2.set_exclude_minsyms (true);
6416 std::vector<symbol_search> symbols = spec2.search ();
6417
6418 /* Now iterate over all MODULES, checking to see which items from
6419 SYMBOLS are in each module. */
6420 for (const symbol_search &p : modules)
6421 {
6422 QUIT;
6423
6424 /* This is a module. */
6425 gdb_assert (p.symbol != nullptr);
6426
6427 std::string prefix = p.symbol->print_name ();
6428 prefix += "::";
6429
6430 for (const symbol_search &q : symbols)
6431 {
6432 if (q.symbol == nullptr)
6433 continue;
6434
6435 if (strncmp (q.symbol->print_name (), prefix.c_str (),
6436 prefix.size ()) != 0)
6437 continue;
6438
6439 results.push_back ({p, q});
6440 }
6441 }
6442
6443 return results;
6444 }
6445
6446 /* Implement the core of both 'info module functions' and 'info module
6447 variables'. */
6448
6449 static void
6450 info_module_subcommand (bool quiet, const char *module_regexp,
6451 const char *regexp, const char *type_regexp,
6452 search_domain kind)
6453 {
6454 /* Print a header line. Don't build the header line bit by bit as this
6455 prevents internationalisation. */
6456 if (!quiet)
6457 {
6458 if (module_regexp == nullptr)
6459 {
6460 if (type_regexp == nullptr)
6461 {
6462 if (regexp == nullptr)
6463 printf_filtered ((kind == VARIABLES_DOMAIN
6464 ? _("All variables in all modules:")
6465 : _("All functions in all modules:")));
6466 else
6467 printf_filtered
6468 ((kind == VARIABLES_DOMAIN
6469 ? _("All variables matching regular expression"
6470 " \"%s\" in all modules:")
6471 : _("All functions matching regular expression"
6472 " \"%s\" in all modules:")),
6473 regexp);
6474 }
6475 else
6476 {
6477 if (regexp == nullptr)
6478 printf_filtered
6479 ((kind == VARIABLES_DOMAIN
6480 ? _("All variables with type matching regular "
6481 "expression \"%s\" in all modules:")
6482 : _("All functions with type matching regular "
6483 "expression \"%s\" in all modules:")),
6484 type_regexp);
6485 else
6486 printf_filtered
6487 ((kind == VARIABLES_DOMAIN
6488 ? _("All variables matching regular expression "
6489 "\"%s\",\n\twith type matching regular "
6490 "expression \"%s\" in all modules:")
6491 : _("All functions matching regular expression "
6492 "\"%s\",\n\twith type matching regular "
6493 "expression \"%s\" in all modules:")),
6494 regexp, type_regexp);
6495 }
6496 }
6497 else
6498 {
6499 if (type_regexp == nullptr)
6500 {
6501 if (regexp == nullptr)
6502 printf_filtered
6503 ((kind == VARIABLES_DOMAIN
6504 ? _("All variables in all modules matching regular "
6505 "expression \"%s\":")
6506 : _("All functions in all modules matching regular "
6507 "expression \"%s\":")),
6508 module_regexp);
6509 else
6510 printf_filtered
6511 ((kind == VARIABLES_DOMAIN
6512 ? _("All variables matching regular expression "
6513 "\"%s\",\n\tin all modules matching regular "
6514 "expression \"%s\":")
6515 : _("All functions matching regular expression "
6516 "\"%s\",\n\tin all modules matching regular "
6517 "expression \"%s\":")),
6518 regexp, module_regexp);
6519 }
6520 else
6521 {
6522 if (regexp == nullptr)
6523 printf_filtered
6524 ((kind == VARIABLES_DOMAIN
6525 ? _("All variables with type matching regular "
6526 "expression \"%s\"\n\tin all modules matching "
6527 "regular expression \"%s\":")
6528 : _("All functions with type matching regular "
6529 "expression \"%s\"\n\tin all modules matching "
6530 "regular expression \"%s\":")),
6531 type_regexp, module_regexp);
6532 else
6533 printf_filtered
6534 ((kind == VARIABLES_DOMAIN
6535 ? _("All variables matching regular expression "
6536 "\"%s\",\n\twith type matching regular expression "
6537 "\"%s\",\n\tin all modules matching regular "
6538 "expression \"%s\":")
6539 : _("All functions matching regular expression "
6540 "\"%s\",\n\twith type matching regular expression "
6541 "\"%s\",\n\tin all modules matching regular "
6542 "expression \"%s\":")),
6543 regexp, type_regexp, module_regexp);
6544 }
6545 }
6546 printf_filtered ("\n");
6547 }
6548
6549 /* Find all symbols of type KIND matching the given regular expressions
6550 along with the symbols for the modules in which those symbols
6551 reside. */
6552 std::vector<module_symbol_search> module_symbols
6553 = search_module_symbols (module_regexp, regexp, type_regexp, kind);
6554
6555 std::sort (module_symbols.begin (), module_symbols.end (),
6556 [] (const module_symbol_search &a, const module_symbol_search &b)
6557 {
6558 if (a.first < b.first)
6559 return true;
6560 else if (a.first == b.first)
6561 return a.second < b.second;
6562 else
6563 return false;
6564 });
6565
6566 const char *last_filename = "";
6567 const symbol *last_module_symbol = nullptr;
6568 for (const module_symbol_search &ms : module_symbols)
6569 {
6570 const symbol_search &p = ms.first;
6571 const symbol_search &q = ms.second;
6572
6573 gdb_assert (q.symbol != nullptr);
6574
6575 if (last_module_symbol != p.symbol)
6576 {
6577 printf_filtered ("\n");
6578 printf_filtered (_("Module \"%s\":\n"), p.symbol->print_name ());
6579 last_module_symbol = p.symbol;
6580 last_filename = "";
6581 }
6582
6583 print_symbol_info (FUNCTIONS_DOMAIN, q.symbol, q.block,
6584 last_filename);
6585 last_filename
6586 = symtab_to_filename_for_display (symbol_symtab (q.symbol));
6587 }
6588 }
6589
6590 /* Hold the option values for the 'info module .....' sub-commands. */
6591
6592 struct info_modules_var_func_options
6593 {
6594 bool quiet = false;
6595 char *type_regexp = nullptr;
6596 char *module_regexp = nullptr;
6597
6598 ~info_modules_var_func_options ()
6599 {
6600 xfree (type_regexp);
6601 xfree (module_regexp);
6602 }
6603 };
6604
6605 /* The options used by 'info module variables' and 'info module functions'
6606 commands. */
6607
6608 static const gdb::option::option_def info_modules_var_func_options_defs [] = {
6609 gdb::option::boolean_option_def<info_modules_var_func_options> {
6610 "q",
6611 [] (info_modules_var_func_options *opt) { return &opt->quiet; },
6612 nullptr, /* show_cmd_cb */
6613 nullptr /* set_doc */
6614 },
6615
6616 gdb::option::string_option_def<info_modules_var_func_options> {
6617 "t",
6618 [] (info_modules_var_func_options *opt) { return &opt->type_regexp; },
6619 nullptr, /* show_cmd_cb */
6620 nullptr /* set_doc */
6621 },
6622
6623 gdb::option::string_option_def<info_modules_var_func_options> {
6624 "m",
6625 [] (info_modules_var_func_options *opt) { return &opt->module_regexp; },
6626 nullptr, /* show_cmd_cb */
6627 nullptr /* set_doc */
6628 }
6629 };
6630
6631 /* Return the option group used by the 'info module ...' sub-commands. */
6632
6633 static inline gdb::option::option_def_group
6634 make_info_modules_var_func_options_def_group
6635 (info_modules_var_func_options *opts)
6636 {
6637 return {{info_modules_var_func_options_defs}, opts};
6638 }
6639
6640 /* Implements the 'info module functions' command. */
6641
6642 static void
6643 info_module_functions_command (const char *args, int from_tty)
6644 {
6645 info_modules_var_func_options opts;
6646 auto grp = make_info_modules_var_func_options_def_group (&opts);
6647 gdb::option::process_options
6648 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6649 if (args != nullptr && *args == '\0')
6650 args = nullptr;
6651
6652 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6653 opts.type_regexp, FUNCTIONS_DOMAIN);
6654 }
6655
6656 /* Implements the 'info module variables' command. */
6657
6658 static void
6659 info_module_variables_command (const char *args, int from_tty)
6660 {
6661 info_modules_var_func_options opts;
6662 auto grp = make_info_modules_var_func_options_def_group (&opts);
6663 gdb::option::process_options
6664 (&args, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, grp);
6665 if (args != nullptr && *args == '\0')
6666 args = nullptr;
6667
6668 info_module_subcommand (opts.quiet, opts.module_regexp, args,
6669 opts.type_regexp, VARIABLES_DOMAIN);
6670 }
6671
6672 /* Command completer for 'info module ...' sub-commands. */
6673
6674 static void
6675 info_module_var_func_command_completer (struct cmd_list_element *ignore,
6676 completion_tracker &tracker,
6677 const char *text,
6678 const char * /* word */)
6679 {
6680
6681 const auto group = make_info_modules_var_func_options_def_group (nullptr);
6682 if (gdb::option::complete_options
6683 (tracker, &text, gdb::option::PROCESS_OPTIONS_UNKNOWN_IS_OPERAND, group))
6684 return;
6685
6686 const char *word = advance_to_expression_complete_word_point (tracker, text);
6687 symbol_completer (ignore, tracker, text, word);
6688 }
6689
6690 \f
6691
6692 void
6693 _initialize_symtab (void)
6694 {
6695 cmd_list_element *c;
6696
6697 initialize_ordinary_address_classes ();
6698
6699 c = add_info ("variables", info_variables_command,
6700 info_print_args_help (_("\
6701 All global and static variable names or those matching REGEXPs.\n\
6702 Usage: info variables [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6703 Prints the global and static variables.\n"),
6704 _("global and static variables"),
6705 true));
6706 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6707 if (dbx_commands)
6708 {
6709 c = add_com ("whereis", class_info, info_variables_command,
6710 info_print_args_help (_("\
6711 All global and static variable names, or those matching REGEXPs.\n\
6712 Usage: whereis [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6713 Prints the global and static variables.\n"),
6714 _("global and static variables"),
6715 true));
6716 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6717 }
6718
6719 c = add_info ("functions", info_functions_command,
6720 info_print_args_help (_("\
6721 All function names or those matching REGEXPs.\n\
6722 Usage: info functions [-q] [-n] [-t TYPEREGEXP] [NAMEREGEXP]\n\
6723 Prints the functions.\n"),
6724 _("functions"),
6725 true));
6726 set_cmd_completer_handle_brkchars (c, info_print_command_completer);
6727
6728 c = add_info ("types", info_types_command, _("\
6729 All type names, or those matching REGEXP.\n\
6730 Usage: info types [-q] [REGEXP]\n\
6731 Print information about all types matching REGEXP, or all types if no\n\
6732 REGEXP is given. The optional flag -q disables printing of headers."));
6733 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6734
6735 const auto info_sources_opts = make_info_sources_options_def_group (nullptr);
6736
6737 static std::string info_sources_help
6738 = gdb::option::build_help (_("\
6739 All source files in the program or those matching REGEXP.\n\
6740 Usage: info sources [OPTION]... [REGEXP]\n\
6741 By default, REGEXP is used to match anywhere in the filename.\n\
6742 \n\
6743 Options:\n\
6744 %OPTIONS%"),
6745 info_sources_opts);
6746
6747 c = add_info ("sources", info_sources_command, info_sources_help.c_str ());
6748 set_cmd_completer_handle_brkchars (c, info_sources_command_completer);
6749
6750 c = add_info ("modules", info_modules_command,
6751 _("All module names, or those matching REGEXP."));
6752 set_cmd_completer_handle_brkchars (c, info_types_command_completer);
6753
6754 add_prefix_cmd ("module", class_info, info_module_command, _("\
6755 Print information about modules."),
6756 &info_module_cmdlist, "info module ",
6757 0, &infolist);
6758
6759 c = add_cmd ("functions", class_info, info_module_functions_command, _("\
6760 Display functions arranged by modules.\n\
6761 Usage: info module functions [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6762 Print a summary of all functions within each Fortran module, grouped by\n\
6763 module and file. For each function the line on which the function is\n\
6764 defined is given along with the type signature and name of the function.\n\
6765 \n\
6766 If REGEXP is provided then only functions whose name matches REGEXP are\n\
6767 listed. If MODREGEXP is provided then only functions in modules matching\n\
6768 MODREGEXP are listed. If TYPEREGEXP is given then only functions whose\n\
6769 type signature matches TYPEREGEXP are listed.\n\
6770 \n\
6771 The -q flag suppresses printing some header information."),
6772 &info_module_cmdlist);
6773 set_cmd_completer_handle_brkchars
6774 (c, info_module_var_func_command_completer);
6775
6776 c = add_cmd ("variables", class_info, info_module_variables_command, _("\
6777 Display variables arranged by modules.\n\
6778 Usage: info module variables [-q] [-m MODREGEXP] [-t TYPEREGEXP] [REGEXP]\n\
6779 Print a summary of all variables within each Fortran module, grouped by\n\
6780 module and file. For each variable the line on which the variable is\n\
6781 defined is given along with the type and name of the variable.\n\
6782 \n\
6783 If REGEXP is provided then only variables whose name matches REGEXP are\n\
6784 listed. If MODREGEXP is provided then only variables in modules matching\n\
6785 MODREGEXP are listed. If TYPEREGEXP is given then only variables whose\n\
6786 type matches TYPEREGEXP are listed.\n\
6787 \n\
6788 The -q flag suppresses printing some header information."),
6789 &info_module_cmdlist);
6790 set_cmd_completer_handle_brkchars
6791 (c, info_module_var_func_command_completer);
6792
6793 add_com ("rbreak", class_breakpoint, rbreak_command,
6794 _("Set a breakpoint for all functions matching REGEXP."));
6795
6796 add_setshow_enum_cmd ("multiple-symbols", no_class,
6797 multiple_symbols_modes, &multiple_symbols_mode,
6798 _("\
6799 Set how the debugger handles ambiguities in expressions."), _("\
6800 Show how the debugger handles ambiguities in expressions."), _("\
6801 Valid values are \"ask\", \"all\", \"cancel\", and the default is \"all\"."),
6802 NULL, NULL, &setlist, &showlist);
6803
6804 add_setshow_boolean_cmd ("basenames-may-differ", class_obscure,
6805 &basenames_may_differ, _("\
6806 Set whether a source file may have multiple base names."), _("\
6807 Show whether a source file may have multiple base names."), _("\
6808 (A \"base name\" is the name of a file with the directory part removed.\n\
6809 Example: The base name of \"/home/user/hello.c\" is \"hello.c\".)\n\
6810 If set, GDB will canonicalize file names (e.g., expand symlinks)\n\
6811 before comparing them. Canonicalization is an expensive operation,\n\
6812 but it allows the same file be known by more than one base name.\n\
6813 If not set (the default), all source files are assumed to have just\n\
6814 one base name, and gdb will do file name comparisons more efficiently."),
6815 NULL, NULL,
6816 &setlist, &showlist);
6817
6818 add_setshow_zuinteger_cmd ("symtab-create", no_class, &symtab_create_debug,
6819 _("Set debugging of symbol table creation."),
6820 _("Show debugging of symbol table creation."), _("\
6821 When enabled (non-zero), debugging messages are printed when building\n\
6822 symbol tables. A value of 1 (one) normally provides enough information.\n\
6823 A value greater than 1 provides more verbose information."),
6824 NULL,
6825 NULL,
6826 &setdebuglist, &showdebuglist);
6827
6828 add_setshow_zuinteger_cmd ("symbol-lookup", no_class, &symbol_lookup_debug,
6829 _("\
6830 Set debugging of symbol lookup."), _("\
6831 Show debugging of symbol lookup."), _("\
6832 When enabled (non-zero), symbol lookups are logged."),
6833 NULL, NULL,
6834 &setdebuglist, &showdebuglist);
6835
6836 add_setshow_zuinteger_cmd ("symbol-cache-size", no_class,
6837 &new_symbol_cache_size,
6838 _("Set the size of the symbol cache."),
6839 _("Show the size of the symbol cache."), _("\
6840 The size of the symbol cache.\n\
6841 If zero then the symbol cache is disabled."),
6842 set_symbol_cache_size_handler, NULL,
6843 &maintenance_set_cmdlist,
6844 &maintenance_show_cmdlist);
6845
6846 add_cmd ("symbol-cache", class_maintenance, maintenance_print_symbol_cache,
6847 _("Dump the symbol cache for each program space."),
6848 &maintenanceprintlist);
6849
6850 add_cmd ("symbol-cache-statistics", class_maintenance,
6851 maintenance_print_symbol_cache_statistics,
6852 _("Print symbol cache statistics for each program space."),
6853 &maintenanceprintlist);
6854
6855 add_cmd ("flush-symbol-cache", class_maintenance,
6856 maintenance_flush_symbol_cache,
6857 _("Flush the symbol cache for each program space."),
6858 &maintenancelist);
6859
6860 gdb::observers::executable_changed.attach (symtab_observer_executable_changed);
6861 gdb::observers::new_objfile.attach (symtab_new_objfile_observer);
6862 gdb::observers::free_objfile.attach (symtab_free_objfile_observer);
6863 }
This page took 0.170511 seconds and 4 git commands to generate.