gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / symtab.h
1 /* Symbol table definitions for GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #if !defined (SYMTAB_H)
21 #define SYMTAB_H 1
22
23 #include <array>
24 #include <vector>
25 #include <string>
26 #include <set>
27 #include "gdbsupport/gdb_vecs.h"
28 #include "gdbtypes.h"
29 #include "gdb_obstack.h"
30 #include "gdb_regex.h"
31 #include "gdbsupport/enum-flags.h"
32 #include "gdbsupport/function-view.h"
33 #include "gdbsupport/gdb_optional.h"
34 #include "gdbsupport/gdb_string_view.h"
35 #include "gdbsupport/next-iterator.h"
36 #include "completer.h"
37 #include "gdb-demangle.h"
38
39 /* Opaque declarations. */
40 struct ui_file;
41 struct frame_info;
42 struct symbol;
43 struct obstack;
44 struct objfile;
45 struct block;
46 struct blockvector;
47 struct axs_value;
48 struct agent_expr;
49 struct program_space;
50 struct language_defn;
51 struct common_block;
52 struct obj_section;
53 struct cmd_list_element;
54 class probe;
55 struct lookup_name_info;
56
57 /* How to match a lookup name against a symbol search name. */
58 enum class symbol_name_match_type
59 {
60 /* Wild matching. Matches unqualified symbol names in all
61 namespace/module/packages, etc. */
62 WILD,
63
64 /* Full matching. The lookup name indicates a fully-qualified name,
65 and only matches symbol search names in the specified
66 namespace/module/package. */
67 FULL,
68
69 /* Search name matching. This is like FULL, but the search name did
70 not come from the user; instead it is already a search name
71 retrieved from a search_name () call.
72 For Ada, this avoids re-encoding an already-encoded search name
73 (which would potentially incorrectly lowercase letters in the
74 linkage/search name that should remain uppercase). For C++, it
75 avoids trying to demangle a name we already know is
76 demangled. */
77 SEARCH_NAME,
78
79 /* Expression matching. The same as FULL matching in most
80 languages. The same as WILD matching in Ada. */
81 EXPRESSION,
82 };
83
84 /* Hash the given symbol search name according to LANGUAGE's
85 rules. */
86 extern unsigned int search_name_hash (enum language language,
87 const char *search_name);
88
89 /* Ada-specific bits of a lookup_name_info object. This is lazily
90 constructed on demand. */
91
92 class ada_lookup_name_info final
93 {
94 public:
95 /* Construct. */
96 explicit ada_lookup_name_info (const lookup_name_info &lookup_name);
97
98 /* Compare SYMBOL_SEARCH_NAME with our lookup name, using MATCH_TYPE
99 as name match type. Returns true if there's a match, false
100 otherwise. If non-NULL, store the matching results in MATCH. */
101 bool matches (const char *symbol_search_name,
102 symbol_name_match_type match_type,
103 completion_match_result *comp_match_res) const;
104
105 /* The Ada-encoded lookup name. */
106 const std::string &lookup_name () const
107 { return m_encoded_name; }
108
109 /* Return true if we're supposed to be doing a wild match look
110 up. */
111 bool wild_match_p () const
112 { return m_wild_match_p; }
113
114 /* Return true if we're looking up a name inside package
115 Standard. */
116 bool standard_p () const
117 { return m_standard_p; }
118
119 /* Return true if doing a verbatim match. */
120 bool verbatim_p () const
121 { return m_verbatim_p; }
122
123 private:
124 /* The Ada-encoded lookup name. */
125 std::string m_encoded_name;
126
127 /* Whether the user-provided lookup name was Ada encoded. If so,
128 then return encoded names in the 'matches' method's 'completion
129 match result' output. */
130 bool m_encoded_p : 1;
131
132 /* True if really doing wild matching. Even if the user requests
133 wild matching, some cases require full matching. */
134 bool m_wild_match_p : 1;
135
136 /* True if doing a verbatim match. This is true if the decoded
137 version of the symbol name is wrapped in '<'/'>'. This is an
138 escape hatch users can use to look up symbols the Ada encoding
139 does not understand. */
140 bool m_verbatim_p : 1;
141
142 /* True if the user specified a symbol name that is inside package
143 Standard. Symbol names inside package Standard are handled
144 specially. We always do a non-wild match of the symbol name
145 without the "standard__" prefix, and only search static and
146 global symbols. This was primarily introduced in order to allow
147 the user to specifically access the standard exceptions using,
148 for instance, Standard.Constraint_Error when Constraint_Error is
149 ambiguous (due to the user defining its own Constraint_Error
150 entity inside its program). */
151 bool m_standard_p : 1;
152 };
153
154 /* Language-specific bits of a lookup_name_info object, for languages
155 that do name searching using demangled names (C++/D/Go). This is
156 lazily constructed on demand. */
157
158 struct demangle_for_lookup_info final
159 {
160 public:
161 demangle_for_lookup_info (const lookup_name_info &lookup_name,
162 language lang);
163
164 /* The demangled lookup name. */
165 const std::string &lookup_name () const
166 { return m_demangled_name; }
167
168 private:
169 /* The demangled lookup name. */
170 std::string m_demangled_name;
171 };
172
173 /* Object that aggregates all information related to a symbol lookup
174 name. I.e., the name that is matched against the symbol's search
175 name. Caches per-language information so that it doesn't require
176 recomputing it for every symbol comparison, like for example the
177 Ada encoded name and the symbol's name hash for a given language.
178 The object is conceptually immutable once constructed, and thus has
179 no setters. This is to prevent some code path from tweaking some
180 property of the lookup name for some local reason and accidentally
181 altering the results of any continuing search(es).
182 lookup_name_info objects are generally passed around as a const
183 reference to reinforce that. (They're not passed around by value
184 because they're not small.) */
185 class lookup_name_info final
186 {
187 public:
188 /* We delete this overload so that the callers are required to
189 explicitly handle the lifetime of the name. */
190 lookup_name_info (std::string &&name,
191 symbol_name_match_type match_type,
192 bool completion_mode = false,
193 bool ignore_parameters = false) = delete;
194
195 /* This overload requires that NAME have a lifetime at least as long
196 as the lifetime of this object. */
197 lookup_name_info (const std::string &name,
198 symbol_name_match_type match_type,
199 bool completion_mode = false,
200 bool ignore_parameters = false)
201 : m_match_type (match_type),
202 m_completion_mode (completion_mode),
203 m_ignore_parameters (ignore_parameters),
204 m_name (name)
205 {}
206
207 /* This overload requires that NAME have a lifetime at least as long
208 as the lifetime of this object. */
209 lookup_name_info (const char *name,
210 symbol_name_match_type match_type,
211 bool completion_mode = false,
212 bool ignore_parameters = false)
213 : m_match_type (match_type),
214 m_completion_mode (completion_mode),
215 m_ignore_parameters (ignore_parameters),
216 m_name (name)
217 {}
218
219 /* Getters. See description of each corresponding field. */
220 symbol_name_match_type match_type () const { return m_match_type; }
221 bool completion_mode () const { return m_completion_mode; }
222 gdb::string_view name () const { return m_name; }
223 const bool ignore_parameters () const { return m_ignore_parameters; }
224
225 /* Like the "name" method but guarantees that the returned string is
226 \0-terminated. */
227 const char *c_str () const
228 {
229 /* Actually this is always guaranteed due to how the class is
230 constructed. */
231 return m_name.data ();
232 }
233
234 /* Return a version of this lookup name that is usable with
235 comparisons against symbols have no parameter info, such as
236 psymbols and GDB index symbols. */
237 lookup_name_info make_ignore_params () const
238 {
239 return lookup_name_info (c_str (), m_match_type, m_completion_mode,
240 true /* ignore params */);
241 }
242
243 /* Get the search name hash for searches in language LANG. */
244 unsigned int search_name_hash (language lang) const
245 {
246 /* Only compute each language's hash once. */
247 if (!m_demangled_hashes_p[lang])
248 {
249 m_demangled_hashes[lang]
250 = ::search_name_hash (lang, language_lookup_name (lang));
251 m_demangled_hashes_p[lang] = true;
252 }
253 return m_demangled_hashes[lang];
254 }
255
256 /* Get the search name for searches in language LANG. */
257 const char *language_lookup_name (language lang) const
258 {
259 switch (lang)
260 {
261 case language_ada:
262 return ada ().lookup_name ().c_str ();
263 case language_cplus:
264 return cplus ().lookup_name ().c_str ();
265 case language_d:
266 return d ().lookup_name ().c_str ();
267 case language_go:
268 return go ().lookup_name ().c_str ();
269 default:
270 return m_name.data ();
271 }
272 }
273
274 /* Get the Ada-specific lookup info. */
275 const ada_lookup_name_info &ada () const
276 {
277 maybe_init (m_ada);
278 return *m_ada;
279 }
280
281 /* Get the C++-specific lookup info. */
282 const demangle_for_lookup_info &cplus () const
283 {
284 maybe_init (m_cplus, language_cplus);
285 return *m_cplus;
286 }
287
288 /* Get the D-specific lookup info. */
289 const demangle_for_lookup_info &d () const
290 {
291 maybe_init (m_d, language_d);
292 return *m_d;
293 }
294
295 /* Get the Go-specific lookup info. */
296 const demangle_for_lookup_info &go () const
297 {
298 maybe_init (m_go, language_go);
299 return *m_go;
300 }
301
302 /* Get a reference to a lookup_name_info object that matches any
303 symbol name. */
304 static const lookup_name_info &match_any ();
305
306 private:
307 /* Initialize FIELD, if not initialized yet. */
308 template<typename Field, typename... Args>
309 void maybe_init (Field &field, Args&&... args) const
310 {
311 if (!field)
312 field.emplace (*this, std::forward<Args> (args)...);
313 }
314
315 /* The lookup info as passed to the ctor. */
316 symbol_name_match_type m_match_type;
317 bool m_completion_mode;
318 bool m_ignore_parameters;
319 gdb::string_view m_name;
320
321 /* Language-specific info. These fields are filled lazily the first
322 time a lookup is done in the corresponding language. They're
323 mutable because lookup_name_info objects are typically passed
324 around by const reference (see intro), and they're conceptually
325 "cache" that can always be reconstructed from the non-mutable
326 fields. */
327 mutable gdb::optional<ada_lookup_name_info> m_ada;
328 mutable gdb::optional<demangle_for_lookup_info> m_cplus;
329 mutable gdb::optional<demangle_for_lookup_info> m_d;
330 mutable gdb::optional<demangle_for_lookup_info> m_go;
331
332 /* The demangled hashes. Stored in an array with one entry for each
333 possible language. The second array records whether we've
334 already computed the each language's hash. (These are separate
335 arrays instead of a single array of optional<unsigned> to avoid
336 alignment padding). */
337 mutable std::array<unsigned int, nr_languages> m_demangled_hashes;
338 mutable std::array<bool, nr_languages> m_demangled_hashes_p {};
339 };
340
341 /* Comparison function for completion symbol lookup.
342
343 Returns true if the symbol name matches against LOOKUP_NAME.
344
345 SYMBOL_SEARCH_NAME should be a symbol's "search" name.
346
347 On success and if non-NULL, COMP_MATCH_RES->match is set to point
348 to the symbol name as should be presented to the user as a
349 completion match list element. In most languages, this is the same
350 as the symbol's search name, but in some, like Ada, the display
351 name is dynamically computed within the comparison routine.
352
353 Also, on success and if non-NULL, COMP_MATCH_RES->match_for_lcd
354 points the part of SYMBOL_SEARCH_NAME that was considered to match
355 LOOKUP_NAME. E.g., in C++, in linespec/wild mode, if the symbol is
356 "foo::function()" and LOOKUP_NAME is "function(", MATCH_FOR_LCD
357 points to "function()" inside SYMBOL_SEARCH_NAME. */
358 typedef bool (symbol_name_matcher_ftype)
359 (const char *symbol_search_name,
360 const lookup_name_info &lookup_name,
361 completion_match_result *comp_match_res);
362
363 /* Some of the structures in this file are space critical.
364 The space-critical structures are:
365
366 struct general_symbol_info
367 struct symbol
368 struct partial_symbol
369
370 These structures are laid out to encourage good packing.
371 They use ENUM_BITFIELD and short int fields, and they order the
372 structure members so that fields less than a word are next
373 to each other so they can be packed together. */
374
375 /* Rearranged: used ENUM_BITFIELD and rearranged field order in
376 all the space critical structures (plus struct minimal_symbol).
377 Memory usage dropped from 99360768 bytes to 90001408 bytes.
378 I measured this with before-and-after tests of
379 "HEAD-old-gdb -readnow HEAD-old-gdb" and
380 "HEAD-new-gdb -readnow HEAD-old-gdb" on native i686-pc-linux-gnu,
381 red hat linux 8, with LD_LIBRARY_PATH=/usr/lib/debug,
382 typing "maint space 1" at the first command prompt.
383
384 Here is another measurement (from andrew c):
385 # no /usr/lib/debug, just plain glibc, like a normal user
386 gdb HEAD-old-gdb
387 (gdb) break internal_error
388 (gdb) run
389 (gdb) maint internal-error
390 (gdb) backtrace
391 (gdb) maint space 1
392
393 gdb gdb_6_0_branch 2003-08-19 space used: 8896512
394 gdb HEAD 2003-08-19 space used: 8904704
395 gdb HEAD 2003-08-21 space used: 8396800 (+symtab.h)
396 gdb HEAD 2003-08-21 space used: 8265728 (+gdbtypes.h)
397
398 The third line shows the savings from the optimizations in symtab.h.
399 The fourth line shows the savings from the optimizations in
400 gdbtypes.h. Both optimizations are in gdb HEAD now.
401
402 --chastain 2003-08-21 */
403
404 /* Define a structure for the information that is common to all symbol types,
405 including minimal symbols, partial symbols, and full symbols. In a
406 multilanguage environment, some language specific information may need to
407 be recorded along with each symbol. */
408
409 /* This structure is space critical. See space comments at the top. */
410
411 struct general_symbol_info
412 {
413 /* Short version as to when to use which name accessor:
414 Use natural_name () to refer to the name of the symbol in the original
415 source code. Use linkage_name () if you want to know what the linker
416 thinks the symbol's name is. Use print_name () for output. Use
417 demangled_name () if you specifically need to know whether natural_name ()
418 and linkage_name () are different. */
419
420 const char *linkage_name () const
421 { return m_name; }
422
423 /* Return SYMBOL's "natural" name, i.e. the name that it was called in
424 the original source code. In languages like C++ where symbols may
425 be mangled for ease of manipulation by the linker, this is the
426 demangled name. */
427 const char *natural_name () const;
428
429 /* Returns a version of the name of a symbol that is
430 suitable for output. In C++ this is the "demangled" form of the
431 name if demangle is on and the "mangled" form of the name if
432 demangle is off. In other languages this is just the symbol name.
433 The result should never be NULL. Don't use this for internal
434 purposes (e.g. storing in a hashtable): it's only suitable for output. */
435 const char *print_name () const
436 { return demangle ? natural_name () : linkage_name (); }
437
438 /* Return the demangled name for a symbol based on the language for
439 that symbol. If no demangled name exists, return NULL. */
440 const char *demangled_name () const;
441
442 /* Returns the name to be used when sorting and searching symbols.
443 In C++, we search for the demangled form of a name,
444 and so sort symbols accordingly. In Ada, however, we search by mangled
445 name. If there is no distinct demangled name, then this
446 returns the same value (same pointer) as linkage_name (). */
447 const char *search_name () const;
448
449 /* Set just the linkage name of a symbol; do not try to demangle
450 it. Used for constructs which do not have a mangled name,
451 e.g. struct tags. Unlike compute_and_set_names, linkage_name must
452 be terminated and either already on the objfile's obstack or
453 permanently allocated. */
454 void set_linkage_name (const char *linkage_name)
455 { m_name = linkage_name; }
456
457 /* Set the demangled name of this symbol to NAME. NAME must be
458 already correctly allocated. If the symbol's language is Ada,
459 then the name is ignored and the obstack is set. */
460 void set_demangled_name (const char *name, struct obstack *obstack);
461
462 enum language language () const
463 { return m_language; }
464
465 /* Initializes the language dependent portion of a symbol
466 depending upon the language for the symbol. */
467 void set_language (enum language language, struct obstack *obstack);
468
469 /* Set the linkage and natural names of a symbol, by demangling
470 the linkage name. If linkage_name may not be nullterminated,
471 copy_name must be set to true. */
472 void compute_and_set_names (gdb::string_view linkage_name, bool copy_name,
473 struct objfile_per_bfd_storage *per_bfd,
474 gdb::optional<hashval_t> hash
475 = gdb::optional<hashval_t> ());
476
477 /* Name of the symbol. This is a required field. Storage for the
478 name is allocated on the objfile_obstack for the associated
479 objfile. For languages like C++ that make a distinction between
480 the mangled name and demangled name, this is the mangled
481 name. */
482
483 const char *m_name;
484
485 /* Value of the symbol. Which member of this union to use, and what
486 it means, depends on what kind of symbol this is and its
487 SYMBOL_CLASS. See comments there for more details. All of these
488 are in host byte order (though what they point to might be in
489 target byte order, e.g. LOC_CONST_BYTES). */
490
491 union
492 {
493 LONGEST ivalue;
494
495 const struct block *block;
496
497 const gdb_byte *bytes;
498
499 CORE_ADDR address;
500
501 /* A common block. Used with LOC_COMMON_BLOCK. */
502
503 const struct common_block *common_block;
504
505 /* For opaque typedef struct chain. */
506
507 struct symbol *chain;
508 }
509 value;
510
511 /* Since one and only one language can apply, wrap the language specific
512 information inside a union. */
513
514 union
515 {
516 /* A pointer to an obstack that can be used for storage associated
517 with this symbol. This is only used by Ada, and only when the
518 'ada_mangled' field is zero. */
519 struct obstack *obstack;
520
521 /* This is used by languages which wish to store a demangled name.
522 currently used by Ada, C++, and Objective C. */
523 const char *demangled_name;
524 }
525 language_specific;
526
527 /* Record the source code language that applies to this symbol.
528 This is used to select one of the fields from the language specific
529 union above. */
530
531 ENUM_BITFIELD(language) m_language : LANGUAGE_BITS;
532
533 /* This is only used by Ada. If set, then the 'demangled_name' field
534 of language_specific is valid. Otherwise, the 'obstack' field is
535 valid. */
536 unsigned int ada_mangled : 1;
537
538 /* Which section is this symbol in? This is an index into
539 section_offsets for this objfile. Negative means that the symbol
540 does not get relocated relative to a section. */
541
542 short section;
543 };
544
545 extern CORE_ADDR symbol_overlayed_address (CORE_ADDR, struct obj_section *);
546
547 /* Return the address of SYM. The MAYBE_COPIED flag must be set on
548 SYM. If SYM appears in the main program's minimal symbols, then
549 that minsym's address is returned; otherwise, SYM's address is
550 returned. This should generally only be used via the
551 SYMBOL_VALUE_ADDRESS macro. */
552
553 extern CORE_ADDR get_symbol_address (const struct symbol *sym);
554
555 /* Note that these macros only work with symbol, not partial_symbol. */
556
557 #define SYMBOL_VALUE(symbol) (symbol)->value.ivalue
558 #define SYMBOL_VALUE_ADDRESS(symbol) \
559 (((symbol)->maybe_copied) ? get_symbol_address (symbol) \
560 : ((symbol)->value.address))
561 #define SET_SYMBOL_VALUE_ADDRESS(symbol, new_value) \
562 ((symbol)->value.address = (new_value))
563 #define SYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
564 #define SYMBOL_VALUE_COMMON_BLOCK(symbol) (symbol)->value.common_block
565 #define SYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
566 #define SYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
567 #define SYMBOL_SECTION(symbol) (symbol)->section
568 #define SYMBOL_OBJ_SECTION(objfile, symbol) \
569 (((symbol)->section >= 0) \
570 ? (&(((objfile)->sections)[(symbol)->section])) \
571 : NULL)
572
573 /* Try to determine the demangled name for a symbol, based on the
574 language of that symbol. If the language is set to language_auto,
575 it will attempt to find any demangling algorithm that works and
576 then set the language appropriately. The returned name is allocated
577 by the demangler and should be xfree'd. */
578
579 extern char *symbol_find_demangled_name (struct general_symbol_info *gsymbol,
580 const char *mangled);
581
582 /* Return true if NAME matches the "search" name of SYMBOL, according
583 to the symbol's language. */
584 #define SYMBOL_MATCHES_SEARCH_NAME(symbol, name) \
585 symbol_matches_search_name ((symbol), (name))
586
587 /* Helper for SYMBOL_MATCHES_SEARCH_NAME that works with both symbols
588 and psymbols. */
589 extern bool symbol_matches_search_name
590 (const struct general_symbol_info *gsymbol,
591 const lookup_name_info &name);
592
593 /* Compute the hash of the given symbol search name of a symbol of
594 language LANGUAGE. */
595 extern unsigned int search_name_hash (enum language language,
596 const char *search_name);
597
598 /* Classification types for a minimal symbol. These should be taken as
599 "advisory only", since if gdb can't easily figure out a
600 classification it simply selects mst_unknown. It may also have to
601 guess when it can't figure out which is a better match between two
602 types (mst_data versus mst_bss) for example. Since the minimal
603 symbol info is sometimes derived from the BFD library's view of a
604 file, we need to live with what information bfd supplies. */
605
606 enum minimal_symbol_type
607 {
608 mst_unknown = 0, /* Unknown type, the default */
609 mst_text, /* Generally executable instructions */
610
611 /* A GNU ifunc symbol, in the .text section. GDB uses to know
612 whether the user is setting a breakpoint on a GNU ifunc function,
613 and thus GDB needs to actually set the breakpoint on the target
614 function. It is also used to know whether the program stepped
615 into an ifunc resolver -- the resolver may get a separate
616 symbol/alias under a different name, but it'll have the same
617 address as the ifunc symbol. */
618 mst_text_gnu_ifunc, /* Executable code returning address
619 of executable code */
620
621 /* A GNU ifunc function descriptor symbol, in a data section
622 (typically ".opd"). Seen on architectures that use function
623 descriptors, like PPC64/ELFv1. In this case, this symbol's value
624 is the address of the descriptor. There'll be a corresponding
625 mst_text_gnu_ifunc synthetic symbol for the text/entry
626 address. */
627 mst_data_gnu_ifunc, /* Executable code returning address
628 of executable code */
629
630 mst_slot_got_plt, /* GOT entries for .plt sections */
631 mst_data, /* Generally initialized data */
632 mst_bss, /* Generally uninitialized data */
633 mst_abs, /* Generally absolute (nonrelocatable) */
634 /* GDB uses mst_solib_trampoline for the start address of a shared
635 library trampoline entry. Breakpoints for shared library functions
636 are put there if the shared library is not yet loaded.
637 After the shared library is loaded, lookup_minimal_symbol will
638 prefer the minimal symbol from the shared library (usually
639 a mst_text symbol) over the mst_solib_trampoline symbol, and the
640 breakpoints will be moved to their true address in the shared
641 library via breakpoint_re_set. */
642 mst_solib_trampoline, /* Shared library trampoline code */
643 /* For the mst_file* types, the names are only guaranteed to be unique
644 within a given .o file. */
645 mst_file_text, /* Static version of mst_text */
646 mst_file_data, /* Static version of mst_data */
647 mst_file_bss, /* Static version of mst_bss */
648 nr_minsym_types
649 };
650
651 /* The number of enum minimal_symbol_type values, with some padding for
652 reasonable growth. */
653 #define MINSYM_TYPE_BITS 4
654 gdb_static_assert (nr_minsym_types <= (1 << MINSYM_TYPE_BITS));
655
656 /* Define a simple structure used to hold some very basic information about
657 all defined global symbols (text, data, bss, abs, etc). The only required
658 information is the general_symbol_info.
659
660 In many cases, even if a file was compiled with no special options for
661 debugging at all, as long as was not stripped it will contain sufficient
662 information to build a useful minimal symbol table using this structure.
663 Even when a file contains enough debugging information to build a full
664 symbol table, these minimal symbols are still useful for quickly mapping
665 between names and addresses, and vice versa. They are also sometimes
666 used to figure out what full symbol table entries need to be read in. */
667
668 struct minimal_symbol : public general_symbol_info
669 {
670 /* Size of this symbol. dbx_end_psymtab in dbxread.c uses this
671 information to calculate the end of the partial symtab based on the
672 address of the last symbol plus the size of the last symbol. */
673
674 unsigned long size;
675
676 /* Which source file is this symbol in? Only relevant for mst_file_*. */
677 const char *filename;
678
679 /* Classification type for this minimal symbol. */
680
681 ENUM_BITFIELD(minimal_symbol_type) type : MINSYM_TYPE_BITS;
682
683 /* Non-zero if this symbol was created by gdb.
684 Such symbols do not appear in the output of "info var|fun". */
685 unsigned int created_by_gdb : 1;
686
687 /* Two flag bits provided for the use of the target. */
688 unsigned int target_flag_1 : 1;
689 unsigned int target_flag_2 : 1;
690
691 /* Nonzero iff the size of the minimal symbol has been set.
692 Symbol size information can sometimes not be determined, because
693 the object file format may not carry that piece of information. */
694 unsigned int has_size : 1;
695
696 /* For data symbols only, if this is set, then the symbol might be
697 subject to copy relocation. In this case, a minimal symbol
698 matching the symbol's linkage name is first looked for in the
699 main objfile. If found, then that address is used; otherwise the
700 address in this symbol is used. */
701
702 unsigned maybe_copied : 1;
703
704 /* Non-zero if this symbol ever had its demangled name set (even if
705 it was set to NULL). */
706 unsigned int name_set : 1;
707
708 /* Minimal symbols with the same hash key are kept on a linked
709 list. This is the link. */
710
711 struct minimal_symbol *hash_next;
712
713 /* Minimal symbols are stored in two different hash tables. This is
714 the `next' pointer for the demangled hash table. */
715
716 struct minimal_symbol *demangled_hash_next;
717
718 /* True if this symbol is of some data type. */
719
720 bool data_p () const;
721
722 /* True if MSYMBOL is of some text type. */
723
724 bool text_p () const;
725 };
726
727 /* Return the address of MINSYM, which comes from OBJF. The
728 MAYBE_COPIED flag must be set on MINSYM. If MINSYM appears in the
729 main program's minimal symbols, then that minsym's address is
730 returned; otherwise, MINSYM's address is returned. This should
731 generally only be used via the MSYMBOL_VALUE_ADDRESS macro. */
732
733 extern CORE_ADDR get_msymbol_address (struct objfile *objf,
734 const struct minimal_symbol *minsym);
735
736 #define MSYMBOL_TARGET_FLAG_1(msymbol) (msymbol)->target_flag_1
737 #define MSYMBOL_TARGET_FLAG_2(msymbol) (msymbol)->target_flag_2
738 #define MSYMBOL_SIZE(msymbol) ((msymbol)->size + 0)
739 #define SET_MSYMBOL_SIZE(msymbol, sz) \
740 do \
741 { \
742 (msymbol)->size = sz; \
743 (msymbol)->has_size = 1; \
744 } while (0)
745 #define MSYMBOL_HAS_SIZE(msymbol) ((msymbol)->has_size + 0)
746 #define MSYMBOL_TYPE(msymbol) (msymbol)->type
747
748 #define MSYMBOL_VALUE(symbol) (symbol)->value.ivalue
749 /* The unrelocated address of the minimal symbol. */
750 #define MSYMBOL_VALUE_RAW_ADDRESS(symbol) ((symbol)->value.address + 0)
751 /* The relocated address of the minimal symbol, using the section
752 offsets from OBJFILE. */
753 #define MSYMBOL_VALUE_ADDRESS(objfile, symbol) \
754 (((symbol)->maybe_copied) ? get_msymbol_address (objfile, symbol) \
755 : ((symbol)->value.address \
756 + (objfile)->section_offsets[(symbol)->section]))
757 /* For a bound minsym, we can easily compute the address directly. */
758 #define BMSYMBOL_VALUE_ADDRESS(symbol) \
759 MSYMBOL_VALUE_ADDRESS ((symbol).objfile, (symbol).minsym)
760 #define SET_MSYMBOL_VALUE_ADDRESS(symbol, new_value) \
761 ((symbol)->value.address = (new_value))
762 #define MSYMBOL_VALUE_BYTES(symbol) (symbol)->value.bytes
763 #define MSYMBOL_BLOCK_VALUE(symbol) (symbol)->value.block
764 #define MSYMBOL_VALUE_CHAIN(symbol) (symbol)->value.chain
765 #define MSYMBOL_SECTION(symbol) (symbol)->section
766 #define MSYMBOL_OBJ_SECTION(objfile, symbol) \
767 (((symbol)->section >= 0) \
768 ? (&(((objfile)->sections)[(symbol)->section])) \
769 : NULL)
770
771 #include "minsyms.h"
772
773 \f
774
775 /* Represent one symbol name; a variable, constant, function or typedef. */
776
777 /* Different name domains for symbols. Looking up a symbol specifies a
778 domain and ignores symbol definitions in other name domains. */
779
780 typedef enum domain_enum_tag
781 {
782 /* UNDEF_DOMAIN is used when a domain has not been discovered or
783 none of the following apply. This usually indicates an error either
784 in the symbol information or in gdb's handling of symbols. */
785
786 UNDEF_DOMAIN,
787
788 /* VAR_DOMAIN is the usual domain. In C, this contains variables,
789 function names, typedef names and enum type values. */
790
791 VAR_DOMAIN,
792
793 /* STRUCT_DOMAIN is used in C to hold struct, union and enum type names.
794 Thus, if `struct foo' is used in a C program, it produces a symbol named
795 `foo' in the STRUCT_DOMAIN. */
796
797 STRUCT_DOMAIN,
798
799 /* MODULE_DOMAIN is used in Fortran to hold module type names. */
800
801 MODULE_DOMAIN,
802
803 /* LABEL_DOMAIN may be used for names of labels (for gotos). */
804
805 LABEL_DOMAIN,
806
807 /* Fortran common blocks. Their naming must be separate from VAR_DOMAIN.
808 They also always use LOC_COMMON_BLOCK. */
809 COMMON_BLOCK_DOMAIN,
810
811 /* This must remain last. */
812 NR_DOMAINS
813 } domain_enum;
814
815 /* The number of bits in a symbol used to represent the domain. */
816
817 #define SYMBOL_DOMAIN_BITS 3
818 gdb_static_assert (NR_DOMAINS <= (1 << SYMBOL_DOMAIN_BITS));
819
820 extern const char *domain_name (domain_enum);
821
822 /* Searching domains, used when searching for symbols. Element numbers are
823 hardcoded in GDB, check all enum uses before changing it. */
824
825 enum search_domain
826 {
827 /* Everything in VAR_DOMAIN minus FUNCTIONS_DOMAIN and
828 TYPES_DOMAIN. */
829 VARIABLES_DOMAIN = 0,
830
831 /* All functions -- for some reason not methods, though. */
832 FUNCTIONS_DOMAIN = 1,
833
834 /* All defined types */
835 TYPES_DOMAIN = 2,
836
837 /* All modules. */
838 MODULES_DOMAIN = 3,
839
840 /* Any type. */
841 ALL_DOMAIN = 4
842 };
843
844 extern const char *search_domain_name (enum search_domain);
845
846 /* An address-class says where to find the value of a symbol. */
847
848 enum address_class
849 {
850 /* Not used; catches errors. */
851
852 LOC_UNDEF,
853
854 /* Value is constant int SYMBOL_VALUE, host byteorder. */
855
856 LOC_CONST,
857
858 /* Value is at fixed address SYMBOL_VALUE_ADDRESS. */
859
860 LOC_STATIC,
861
862 /* Value is in register. SYMBOL_VALUE is the register number
863 in the original debug format. SYMBOL_REGISTER_OPS holds a
864 function that can be called to transform this into the
865 actual register number this represents in a specific target
866 architecture (gdbarch).
867
868 For some symbol formats (stabs, for some compilers at least),
869 the compiler generates two symbols, an argument and a register.
870 In some cases we combine them to a single LOC_REGISTER in symbol
871 reading, but currently not for all cases (e.g. it's passed on the
872 stack and then loaded into a register). */
873
874 LOC_REGISTER,
875
876 /* It's an argument; the value is at SYMBOL_VALUE offset in arglist. */
877
878 LOC_ARG,
879
880 /* Value address is at SYMBOL_VALUE offset in arglist. */
881
882 LOC_REF_ARG,
883
884 /* Value is in specified register. Just like LOC_REGISTER except the
885 register holds the address of the argument instead of the argument
886 itself. This is currently used for the passing of structs and unions
887 on sparc and hppa. It is also used for call by reference where the
888 address is in a register, at least by mipsread.c. */
889
890 LOC_REGPARM_ADDR,
891
892 /* Value is a local variable at SYMBOL_VALUE offset in stack frame. */
893
894 LOC_LOCAL,
895
896 /* Value not used; definition in SYMBOL_TYPE. Symbols in the domain
897 STRUCT_DOMAIN all have this class. */
898
899 LOC_TYPEDEF,
900
901 /* Value is address SYMBOL_VALUE_ADDRESS in the code. */
902
903 LOC_LABEL,
904
905 /* In a symbol table, value is SYMBOL_BLOCK_VALUE of a `struct block'.
906 In a partial symbol table, SYMBOL_VALUE_ADDRESS is the start address
907 of the block. Function names have this class. */
908
909 LOC_BLOCK,
910
911 /* Value is a constant byte-sequence pointed to by SYMBOL_VALUE_BYTES, in
912 target byte order. */
913
914 LOC_CONST_BYTES,
915
916 /* Value is at fixed address, but the address of the variable has
917 to be determined from the minimal symbol table whenever the
918 variable is referenced.
919 This happens if debugging information for a global symbol is
920 emitted and the corresponding minimal symbol is defined
921 in another object file or runtime common storage.
922 The linker might even remove the minimal symbol if the global
923 symbol is never referenced, in which case the symbol remains
924 unresolved.
925
926 GDB would normally find the symbol in the minimal symbol table if it will
927 not find it in the full symbol table. But a reference to an external
928 symbol in a local block shadowing other definition requires full symbol
929 without possibly having its address available for LOC_STATIC. Testcase
930 is provided as `gdb.dwarf2/dw2-unresolved.exp'.
931
932 This is also used for thread local storage (TLS) variables. In this case,
933 the address of the TLS variable must be determined when the variable is
934 referenced, from the MSYMBOL_VALUE_RAW_ADDRESS, which is the offset
935 of the TLS variable in the thread local storage of the shared
936 library/object. */
937
938 LOC_UNRESOLVED,
939
940 /* The variable does not actually exist in the program.
941 The value is ignored. */
942
943 LOC_OPTIMIZED_OUT,
944
945 /* The variable's address is computed by a set of location
946 functions (see "struct symbol_computed_ops" below). */
947 LOC_COMPUTED,
948
949 /* The variable uses general_symbol_info->value->common_block field.
950 It also always uses COMMON_BLOCK_DOMAIN. */
951 LOC_COMMON_BLOCK,
952
953 /* Not used, just notes the boundary of the enum. */
954 LOC_FINAL_VALUE
955 };
956
957 /* The number of bits needed for values in enum address_class, with some
958 padding for reasonable growth, and room for run-time registered address
959 classes. See symtab.c:MAX_SYMBOL_IMPLS.
960 This is a #define so that we can have a assertion elsewhere to
961 verify that we have reserved enough space for synthetic address
962 classes. */
963 #define SYMBOL_ACLASS_BITS 5
964 gdb_static_assert (LOC_FINAL_VALUE <= (1 << SYMBOL_ACLASS_BITS));
965
966 /* The methods needed to implement LOC_COMPUTED. These methods can
967 use the symbol's .aux_value for additional per-symbol information.
968
969 At present this is only used to implement location expressions. */
970
971 struct symbol_computed_ops
972 {
973
974 /* Return the value of the variable SYMBOL, relative to the stack
975 frame FRAME. If the variable has been optimized out, return
976 zero.
977
978 Iff `read_needs_frame (SYMBOL)' is not SYMBOL_NEEDS_FRAME, then
979 FRAME may be zero. */
980
981 struct value *(*read_variable) (struct symbol * symbol,
982 struct frame_info * frame);
983
984 /* Read variable SYMBOL like read_variable at (callee) FRAME's function
985 entry. SYMBOL should be a function parameter, otherwise
986 NO_ENTRY_VALUE_ERROR will be thrown. */
987 struct value *(*read_variable_at_entry) (struct symbol *symbol,
988 struct frame_info *frame);
989
990 /* Find the "symbol_needs_kind" value for the given symbol. This
991 value determines whether reading the symbol needs memory (e.g., a
992 global variable), just registers (a thread-local), or a frame (a
993 local variable). */
994 enum symbol_needs_kind (*get_symbol_read_needs) (struct symbol * symbol);
995
996 /* Write to STREAM a natural-language description of the location of
997 SYMBOL, in the context of ADDR. */
998 void (*describe_location) (struct symbol * symbol, CORE_ADDR addr,
999 struct ui_file * stream);
1000
1001 /* Non-zero if this symbol's address computation is dependent on PC. */
1002 unsigned char location_has_loclist;
1003
1004 /* Tracepoint support. Append bytecodes to the tracepoint agent
1005 expression AX that push the address of the object SYMBOL. Set
1006 VALUE appropriately. Note --- for objects in registers, this
1007 needn't emit any code; as long as it sets VALUE properly, then
1008 the caller will generate the right code in the process of
1009 treating this as an lvalue or rvalue. */
1010
1011 void (*tracepoint_var_ref) (struct symbol *symbol, struct agent_expr *ax,
1012 struct axs_value *value);
1013
1014 /* Generate C code to compute the location of SYMBOL. The C code is
1015 emitted to STREAM. GDBARCH is the current architecture and PC is
1016 the PC at which SYMBOL's location should be evaluated.
1017 REGISTERS_USED is a vector indexed by register number; the
1018 generator function should set an element in this vector if the
1019 corresponding register is needed by the location computation.
1020 The generated C code must assign the location to a local
1021 variable; this variable's name is RESULT_NAME. */
1022
1023 void (*generate_c_location) (struct symbol *symbol, string_file *stream,
1024 struct gdbarch *gdbarch,
1025 unsigned char *registers_used,
1026 CORE_ADDR pc, const char *result_name);
1027
1028 };
1029
1030 /* The methods needed to implement LOC_BLOCK for inferior functions.
1031 These methods can use the symbol's .aux_value for additional
1032 per-symbol information. */
1033
1034 struct symbol_block_ops
1035 {
1036 /* Fill in *START and *LENGTH with DWARF block data of function
1037 FRAMEFUNC valid for inferior context address PC. Set *LENGTH to
1038 zero if such location is not valid for PC; *START is left
1039 uninitialized in such case. */
1040 void (*find_frame_base_location) (struct symbol *framefunc, CORE_ADDR pc,
1041 const gdb_byte **start, size_t *length);
1042
1043 /* Return the frame base address. FRAME is the frame for which we want to
1044 compute the base address while FRAMEFUNC is the symbol for the
1045 corresponding function. Return 0 on failure (FRAMEFUNC may not hold the
1046 information we need).
1047
1048 This method is designed to work with static links (nested functions
1049 handling). Static links are function properties whose evaluation returns
1050 the frame base address for the enclosing frame. However, there are
1051 multiple definitions for "frame base": the content of the frame base
1052 register, the CFA as defined by DWARF unwinding information, ...
1053
1054 So this specific method is supposed to compute the frame base address such
1055 as for nested functions, the static link computes the same address. For
1056 instance, considering DWARF debugging information, the static link is
1057 computed with DW_AT_static_link and this method must be used to compute
1058 the corresponding DW_AT_frame_base attribute. */
1059 CORE_ADDR (*get_frame_base) (struct symbol *framefunc,
1060 struct frame_info *frame);
1061 };
1062
1063 /* Functions used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1064
1065 struct symbol_register_ops
1066 {
1067 int (*register_number) (struct symbol *symbol, struct gdbarch *gdbarch);
1068 };
1069
1070 /* Objects of this type are used to find the address class and the
1071 various computed ops vectors of a symbol. */
1072
1073 struct symbol_impl
1074 {
1075 enum address_class aclass;
1076
1077 /* Used with LOC_COMPUTED. */
1078 const struct symbol_computed_ops *ops_computed;
1079
1080 /* Used with LOC_BLOCK. */
1081 const struct symbol_block_ops *ops_block;
1082
1083 /* Used with LOC_REGISTER and LOC_REGPARM_ADDR. */
1084 const struct symbol_register_ops *ops_register;
1085 };
1086
1087 /* struct symbol has some subclasses. This enum is used to
1088 differentiate between them. */
1089
1090 enum symbol_subclass_kind
1091 {
1092 /* Plain struct symbol. */
1093 SYMBOL_NONE,
1094
1095 /* struct template_symbol. */
1096 SYMBOL_TEMPLATE,
1097
1098 /* struct rust_vtable_symbol. */
1099 SYMBOL_RUST_VTABLE
1100 };
1101
1102 /* This structure is space critical. See space comments at the top. */
1103
1104 struct symbol : public general_symbol_info, public allocate_on_obstack
1105 {
1106 symbol ()
1107 /* Class-initialization of bitfields is only allowed in C++20. */
1108 : domain (UNDEF_DOMAIN),
1109 aclass_index (0),
1110 is_objfile_owned (1),
1111 is_argument (0),
1112 is_inlined (0),
1113 maybe_copied (0),
1114 subclass (SYMBOL_NONE)
1115 {
1116 /* We can't use an initializer list for members of a base class, and
1117 general_symbol_info needs to stay a POD type. */
1118 m_name = nullptr;
1119 value.ivalue = 0;
1120 language_specific.obstack = nullptr;
1121 m_language = language_unknown;
1122 ada_mangled = 0;
1123 section = -1;
1124 /* GCC 4.8.5 (on CentOS 7) does not correctly compile class-
1125 initialization of unions, so we initialize it manually here. */
1126 owner.symtab = nullptr;
1127 }
1128
1129 symbol (const symbol &) = default;
1130
1131 /* Data type of value */
1132
1133 struct type *type = nullptr;
1134
1135 /* The owner of this symbol.
1136 Which one to use is defined by symbol.is_objfile_owned. */
1137
1138 union
1139 {
1140 /* The symbol table containing this symbol. This is the file associated
1141 with LINE. It can be NULL during symbols read-in but it is never NULL
1142 during normal operation. */
1143 struct symtab *symtab;
1144
1145 /* For types defined by the architecture. */
1146 struct gdbarch *arch;
1147 } owner;
1148
1149 /* Domain code. */
1150
1151 ENUM_BITFIELD(domain_enum_tag) domain : SYMBOL_DOMAIN_BITS;
1152
1153 /* Address class. This holds an index into the 'symbol_impls'
1154 table. The actual enum address_class value is stored there,
1155 alongside any per-class ops vectors. */
1156
1157 unsigned int aclass_index : SYMBOL_ACLASS_BITS;
1158
1159 /* If non-zero then symbol is objfile-owned, use owner.symtab.
1160 Otherwise symbol is arch-owned, use owner.arch. */
1161
1162 unsigned int is_objfile_owned : 1;
1163
1164 /* Whether this is an argument. */
1165
1166 unsigned is_argument : 1;
1167
1168 /* Whether this is an inlined function (class LOC_BLOCK only). */
1169 unsigned is_inlined : 1;
1170
1171 /* For LOC_STATIC only, if this is set, then the symbol might be
1172 subject to copy relocation. In this case, a minimal symbol
1173 matching the symbol's linkage name is first looked for in the
1174 main objfile. If found, then that address is used; otherwise the
1175 address in this symbol is used. */
1176
1177 unsigned maybe_copied : 1;
1178
1179 /* The concrete type of this symbol. */
1180
1181 ENUM_BITFIELD (symbol_subclass_kind) subclass : 2;
1182
1183 /* Line number of this symbol's definition, except for inlined
1184 functions. For an inlined function (class LOC_BLOCK and
1185 SYMBOL_INLINED set) this is the line number of the function's call
1186 site. Inlined function symbols are not definitions, and they are
1187 never found by symbol table lookup.
1188 If this symbol is arch-owned, LINE shall be zero.
1189
1190 FIXME: Should we really make the assumption that nobody will try
1191 to debug files longer than 64K lines? What about machine
1192 generated programs? */
1193
1194 unsigned short line = 0;
1195
1196 /* An arbitrary data pointer, allowing symbol readers to record
1197 additional information on a per-symbol basis. Note that this data
1198 must be allocated using the same obstack as the symbol itself. */
1199 /* So far it is only used by:
1200 LOC_COMPUTED: to find the location information
1201 LOC_BLOCK (DWARF2 function): information used internally by the
1202 DWARF 2 code --- specifically, the location expression for the frame
1203 base for this function. */
1204 /* FIXME drow/2003-02-21: For the LOC_BLOCK case, it might be better
1205 to add a magic symbol to the block containing this information,
1206 or to have a generic debug info annotation slot for symbols. */
1207
1208 void *aux_value = nullptr;
1209
1210 struct symbol *hash_next = nullptr;
1211 };
1212
1213 /* Several lookup functions return both a symbol and the block in which the
1214 symbol is found. This structure is used in these cases. */
1215
1216 struct block_symbol
1217 {
1218 /* The symbol that was found, or NULL if no symbol was found. */
1219 struct symbol *symbol;
1220
1221 /* If SYMBOL is not NULL, then this is the block in which the symbol is
1222 defined. */
1223 const struct block *block;
1224 };
1225
1226 extern const struct symbol_impl *symbol_impls;
1227
1228 /* Note: There is no accessor macro for symbol.owner because it is
1229 "private". */
1230
1231 #define SYMBOL_DOMAIN(symbol) (symbol)->domain
1232 #define SYMBOL_IMPL(symbol) (symbol_impls[(symbol)->aclass_index])
1233 #define SYMBOL_ACLASS_INDEX(symbol) (symbol)->aclass_index
1234 #define SYMBOL_CLASS(symbol) (SYMBOL_IMPL (symbol).aclass)
1235 #define SYMBOL_OBJFILE_OWNED(symbol) ((symbol)->is_objfile_owned)
1236 #define SYMBOL_IS_ARGUMENT(symbol) (symbol)->is_argument
1237 #define SYMBOL_INLINED(symbol) (symbol)->is_inlined
1238 #define SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION(symbol) \
1239 (((symbol)->subclass) == SYMBOL_TEMPLATE)
1240 #define SYMBOL_TYPE(symbol) (symbol)->type
1241 #define SYMBOL_LINE(symbol) (symbol)->line
1242 #define SYMBOL_COMPUTED_OPS(symbol) (SYMBOL_IMPL (symbol).ops_computed)
1243 #define SYMBOL_BLOCK_OPS(symbol) (SYMBOL_IMPL (symbol).ops_block)
1244 #define SYMBOL_REGISTER_OPS(symbol) (SYMBOL_IMPL (symbol).ops_register)
1245 #define SYMBOL_LOCATION_BATON(symbol) (symbol)->aux_value
1246
1247 extern int register_symbol_computed_impl (enum address_class,
1248 const struct symbol_computed_ops *);
1249
1250 extern int register_symbol_block_impl (enum address_class aclass,
1251 const struct symbol_block_ops *ops);
1252
1253 extern int register_symbol_register_impl (enum address_class,
1254 const struct symbol_register_ops *);
1255
1256 /* Return the OBJFILE of SYMBOL.
1257 It is an error to call this if symbol.is_objfile_owned is false, which
1258 only happens for architecture-provided types. */
1259
1260 extern struct objfile *symbol_objfile (const struct symbol *symbol);
1261
1262 /* Return the ARCH of SYMBOL. */
1263
1264 extern struct gdbarch *symbol_arch (const struct symbol *symbol);
1265
1266 /* Return the SYMTAB of SYMBOL.
1267 It is an error to call this if symbol.is_objfile_owned is false, which
1268 only happens for architecture-provided types. */
1269
1270 extern struct symtab *symbol_symtab (const struct symbol *symbol);
1271
1272 /* Set the symtab of SYMBOL to SYMTAB.
1273 It is an error to call this if symbol.is_objfile_owned is false, which
1274 only happens for architecture-provided types. */
1275
1276 extern void symbol_set_symtab (struct symbol *symbol, struct symtab *symtab);
1277
1278 /* An instance of this type is used to represent a C++ template
1279 function. A symbol is really of this type iff
1280 SYMBOL_IS_CPLUS_TEMPLATE_FUNCTION is true. */
1281
1282 struct template_symbol : public symbol
1283 {
1284 /* The number of template arguments. */
1285 int n_template_arguments = 0;
1286
1287 /* The template arguments. This is an array with
1288 N_TEMPLATE_ARGUMENTS elements. */
1289 struct symbol **template_arguments = nullptr;
1290 };
1291
1292 /* A symbol that represents a Rust virtual table object. */
1293
1294 struct rust_vtable_symbol : public symbol
1295 {
1296 /* The concrete type for which this vtable was created; that is, in
1297 "impl Trait for Type", this is "Type". */
1298 struct type *concrete_type = nullptr;
1299 };
1300
1301 \f
1302 /* Each item represents a line-->pc (or the reverse) mapping. This is
1303 somewhat more wasteful of space than one might wish, but since only
1304 the files which are actually debugged are read in to core, we don't
1305 waste much space. */
1306
1307 struct linetable_entry
1308 {
1309 /* The line number for this entry. */
1310 int line;
1311
1312 /* True if this PC is a good location to place a breakpoint for LINE. */
1313 unsigned is_stmt : 1;
1314
1315 /* The address for this entry. */
1316 CORE_ADDR pc;
1317 };
1318
1319 /* The order of entries in the linetable is significant. They should
1320 be sorted by increasing values of the pc field. If there is more than
1321 one entry for a given pc, then I'm not sure what should happen (and
1322 I not sure whether we currently handle it the best way).
1323
1324 Example: a C for statement generally looks like this
1325
1326 10 0x100 - for the init/test part of a for stmt.
1327 20 0x200
1328 30 0x300
1329 10 0x400 - for the increment part of a for stmt.
1330
1331 If an entry has a line number of zero, it marks the start of a PC
1332 range for which no line number information is available. It is
1333 acceptable, though wasteful of table space, for such a range to be
1334 zero length. */
1335
1336 struct linetable
1337 {
1338 int nitems;
1339
1340 /* Actually NITEMS elements. If you don't like this use of the
1341 `struct hack', you can shove it up your ANSI (seriously, if the
1342 committee tells us how to do it, we can probably go along). */
1343 struct linetable_entry item[1];
1344 };
1345
1346 /* How to relocate the symbols from each section in a symbol file.
1347 The ordering and meaning of the offsets is file-type-dependent;
1348 typically it is indexed by section numbers or symbol types or
1349 something like that. */
1350
1351 typedef std::vector<CORE_ADDR> section_offsets;
1352
1353 /* Each source file or header is represented by a struct symtab.
1354 The name "symtab" is historical, another name for it is "filetab".
1355 These objects are chained through the `next' field. */
1356
1357 struct symtab
1358 {
1359 /* Unordered chain of all filetabs in the compunit, with the exception
1360 that the "main" source file is the first entry in the list. */
1361
1362 struct symtab *next;
1363
1364 /* Backlink to containing compunit symtab. */
1365
1366 struct compunit_symtab *compunit_symtab;
1367
1368 /* Table mapping core addresses to line numbers for this file.
1369 Can be NULL if none. Never shared between different symtabs. */
1370
1371 struct linetable *linetable;
1372
1373 /* Name of this source file. This pointer is never NULL. */
1374
1375 const char *filename;
1376
1377 /* Language of this source file. */
1378
1379 enum language language;
1380
1381 /* Full name of file as found by searching the source path.
1382 NULL if not yet known. */
1383
1384 char *fullname;
1385 };
1386
1387 #define SYMTAB_COMPUNIT(symtab) ((symtab)->compunit_symtab)
1388 #define SYMTAB_LINETABLE(symtab) ((symtab)->linetable)
1389 #define SYMTAB_LANGUAGE(symtab) ((symtab)->language)
1390 #define SYMTAB_BLOCKVECTOR(symtab) \
1391 COMPUNIT_BLOCKVECTOR (SYMTAB_COMPUNIT (symtab))
1392 #define SYMTAB_OBJFILE(symtab) \
1393 COMPUNIT_OBJFILE (SYMTAB_COMPUNIT (symtab))
1394 #define SYMTAB_PSPACE(symtab) (SYMTAB_OBJFILE (symtab)->pspace)
1395 #define SYMTAB_DIRNAME(symtab) \
1396 COMPUNIT_DIRNAME (SYMTAB_COMPUNIT (symtab))
1397
1398 /* Compunit symtabs contain the actual "symbol table", aka blockvector, as well
1399 as the list of all source files (what gdb has historically associated with
1400 the term "symtab").
1401 Additional information is recorded here that is common to all symtabs in a
1402 compilation unit (DWARF or otherwise).
1403
1404 Example:
1405 For the case of a program built out of these files:
1406
1407 foo.c
1408 foo1.h
1409 foo2.h
1410 bar.c
1411 foo1.h
1412 bar.h
1413
1414 This is recorded as:
1415
1416 objfile -> foo.c(cu) -> bar.c(cu) -> NULL
1417 | |
1418 v v
1419 foo.c bar.c
1420 | |
1421 v v
1422 foo1.h foo1.h
1423 | |
1424 v v
1425 foo2.h bar.h
1426 | |
1427 v v
1428 NULL NULL
1429
1430 where "foo.c(cu)" and "bar.c(cu)" are struct compunit_symtab objects,
1431 and the files foo.c, etc. are struct symtab objects. */
1432
1433 struct compunit_symtab
1434 {
1435 /* Unordered chain of all compunit symtabs of this objfile. */
1436 struct compunit_symtab *next;
1437
1438 /* Object file from which this symtab information was read. */
1439 struct objfile *objfile;
1440
1441 /* Name of the symtab.
1442 This is *not* intended to be a usable filename, and is
1443 for debugging purposes only. */
1444 const char *name;
1445
1446 /* Unordered list of file symtabs, except that by convention the "main"
1447 source file (e.g., .c, .cc) is guaranteed to be first.
1448 Each symtab is a file, either the "main" source file (e.g., .c, .cc)
1449 or header (e.g., .h). */
1450 struct symtab *filetabs;
1451
1452 /* Last entry in FILETABS list.
1453 Subfiles are added to the end of the list so they accumulate in order,
1454 with the main source subfile living at the front.
1455 The main reason is so that the main source file symtab is at the head
1456 of the list, and the rest appear in order for debugging convenience. */
1457 struct symtab *last_filetab;
1458
1459 /* Non-NULL string that identifies the format of the debugging information,
1460 such as "stabs", "dwarf 1", "dwarf 2", "coff", etc. This is mostly useful
1461 for automated testing of gdb but may also be information that is
1462 useful to the user. */
1463 const char *debugformat;
1464
1465 /* String of producer version information, or NULL if we don't know. */
1466 const char *producer;
1467
1468 /* Directory in which it was compiled, or NULL if we don't know. */
1469 const char *dirname;
1470
1471 /* List of all symbol scope blocks for this symtab. It is shared among
1472 all symtabs in a given compilation unit. */
1473 const struct blockvector *blockvector;
1474
1475 /* Section in objfile->section_offsets for the blockvector and
1476 the linetable. Probably always SECT_OFF_TEXT. */
1477 int block_line_section;
1478
1479 /* Symtab has been compiled with both optimizations and debug info so that
1480 GDB may stop skipping prologues as variables locations are valid already
1481 at function entry points. */
1482 unsigned int locations_valid : 1;
1483
1484 /* DWARF unwinder for this CU is valid even for epilogues (PC at the return
1485 instruction). This is supported by GCC since 4.5.0. */
1486 unsigned int epilogue_unwind_valid : 1;
1487
1488 /* struct call_site entries for this compilation unit or NULL. */
1489 htab_t call_site_htab;
1490
1491 /* The macro table for this symtab. Like the blockvector, this
1492 is shared between different symtabs in a given compilation unit.
1493 It's debatable whether it *should* be shared among all the symtabs in
1494 the given compilation unit, but it currently is. */
1495 struct macro_table *macro_table;
1496
1497 /* If non-NULL, then this points to a NULL-terminated vector of
1498 included compunits. When searching the static or global
1499 block of this compunit, the corresponding block of all
1500 included compunits will also be searched. Note that this
1501 list must be flattened -- the symbol reader is responsible for
1502 ensuring that this vector contains the transitive closure of all
1503 included compunits. */
1504 struct compunit_symtab **includes;
1505
1506 /* If this is an included compunit, this points to one includer
1507 of the table. This user is considered the canonical compunit
1508 containing this one. An included compunit may itself be
1509 included by another. */
1510 struct compunit_symtab *user;
1511 };
1512
1513 #define COMPUNIT_OBJFILE(cust) ((cust)->objfile)
1514 #define COMPUNIT_FILETABS(cust) ((cust)->filetabs)
1515 #define COMPUNIT_DEBUGFORMAT(cust) ((cust)->debugformat)
1516 #define COMPUNIT_PRODUCER(cust) ((cust)->producer)
1517 #define COMPUNIT_DIRNAME(cust) ((cust)->dirname)
1518 #define COMPUNIT_BLOCKVECTOR(cust) ((cust)->blockvector)
1519 #define COMPUNIT_BLOCK_LINE_SECTION(cust) ((cust)->block_line_section)
1520 #define COMPUNIT_LOCATIONS_VALID(cust) ((cust)->locations_valid)
1521 #define COMPUNIT_EPILOGUE_UNWIND_VALID(cust) ((cust)->epilogue_unwind_valid)
1522 #define COMPUNIT_CALL_SITE_HTAB(cust) ((cust)->call_site_htab)
1523 #define COMPUNIT_MACRO_TABLE(cust) ((cust)->macro_table)
1524
1525 /* A range adapter to allowing iterating over all the file tables
1526 within a compunit. */
1527
1528 struct compunit_filetabs : public next_adapter<struct symtab>
1529 {
1530 compunit_filetabs (struct compunit_symtab *cu)
1531 : next_adapter<struct symtab> (cu->filetabs)
1532 {
1533 }
1534 };
1535
1536 /* Return the primary symtab of CUST. */
1537
1538 extern struct symtab *
1539 compunit_primary_filetab (const struct compunit_symtab *cust);
1540
1541 /* Return the language of CUST. */
1542
1543 extern enum language compunit_language (const struct compunit_symtab *cust);
1544
1545 /* Return true if this symtab is the "main" symtab of its compunit_symtab. */
1546
1547 static inline bool
1548 is_main_symtab_of_compunit_symtab (struct symtab *symtab)
1549 {
1550 return symtab == COMPUNIT_FILETABS (SYMTAB_COMPUNIT (symtab));
1551 }
1552 \f
1553
1554 /* The virtual function table is now an array of structures which have the
1555 form { int16 offset, delta; void *pfn; }.
1556
1557 In normal virtual function tables, OFFSET is unused.
1558 DELTA is the amount which is added to the apparent object's base
1559 address in order to point to the actual object to which the
1560 virtual function should be applied.
1561 PFN is a pointer to the virtual function.
1562
1563 Note that this macro is g++ specific (FIXME). */
1564
1565 #define VTBL_FNADDR_OFFSET 2
1566
1567 /* External variables and functions for the objects described above. */
1568
1569 /* True if we are nested inside psymtab_to_symtab. */
1570
1571 extern int currently_reading_symtab;
1572
1573 /* symtab.c lookup functions */
1574
1575 extern const char multiple_symbols_ask[];
1576 extern const char multiple_symbols_all[];
1577 extern const char multiple_symbols_cancel[];
1578
1579 const char *multiple_symbols_select_mode (void);
1580
1581 bool symbol_matches_domain (enum language symbol_language,
1582 domain_enum symbol_domain,
1583 domain_enum domain);
1584
1585 /* lookup a symbol table by source file name. */
1586
1587 extern struct symtab *lookup_symtab (const char *);
1588
1589 /* An object of this type is passed as the 'is_a_field_of_this'
1590 argument to lookup_symbol and lookup_symbol_in_language. */
1591
1592 struct field_of_this_result
1593 {
1594 /* The type in which the field was found. If this is NULL then the
1595 symbol was not found in 'this'. If non-NULL, then one of the
1596 other fields will be non-NULL as well. */
1597
1598 struct type *type;
1599
1600 /* If the symbol was found as an ordinary field of 'this', then this
1601 is non-NULL and points to the particular field. */
1602
1603 struct field *field;
1604
1605 /* If the symbol was found as a function field of 'this', then this
1606 is non-NULL and points to the particular field. */
1607
1608 struct fn_fieldlist *fn_field;
1609 };
1610
1611 /* Find the definition for a specified symbol name NAME
1612 in domain DOMAIN in language LANGUAGE, visible from lexical block BLOCK
1613 if non-NULL or from global/static blocks if BLOCK is NULL.
1614 Returns the struct symbol pointer, or NULL if no symbol is found.
1615 C++: if IS_A_FIELD_OF_THIS is non-NULL on entry, check to see if
1616 NAME is a field of the current implied argument `this'. If so fill in the
1617 fields of IS_A_FIELD_OF_THIS, otherwise the fields are set to NULL.
1618 The symbol's section is fixed up if necessary. */
1619
1620 extern struct block_symbol
1621 lookup_symbol_in_language (const char *,
1622 const struct block *,
1623 const domain_enum,
1624 enum language,
1625 struct field_of_this_result *);
1626
1627 /* Same as lookup_symbol_in_language, but using the current language. */
1628
1629 extern struct block_symbol lookup_symbol (const char *,
1630 const struct block *,
1631 const domain_enum,
1632 struct field_of_this_result *);
1633
1634 /* Find the definition for a specified symbol search name in domain
1635 DOMAIN, visible from lexical block BLOCK if non-NULL or from
1636 global/static blocks if BLOCK is NULL. The passed-in search name
1637 should not come from the user; instead it should already be a
1638 search name as retrieved from a search_name () call. See definition of
1639 symbol_name_match_type::SEARCH_NAME. Returns the struct symbol
1640 pointer, or NULL if no symbol is found. The symbol's section is
1641 fixed up if necessary. */
1642
1643 extern struct block_symbol lookup_symbol_search_name (const char *search_name,
1644 const struct block *block,
1645 domain_enum domain);
1646
1647 /* A default version of lookup_symbol_nonlocal for use by languages
1648 that can't think of anything better to do.
1649 This implements the C lookup rules. */
1650
1651 extern struct block_symbol
1652 basic_lookup_symbol_nonlocal (const struct language_defn *langdef,
1653 const char *,
1654 const struct block *,
1655 const domain_enum);
1656
1657 /* Some helper functions for languages that need to write their own
1658 lookup_symbol_nonlocal functions. */
1659
1660 /* Lookup a symbol in the static block associated to BLOCK, if there
1661 is one; do nothing if BLOCK is NULL or a global block.
1662 Upon success fixes up the symbol's section if necessary. */
1663
1664 extern struct block_symbol
1665 lookup_symbol_in_static_block (const char *name,
1666 const struct block *block,
1667 const domain_enum domain);
1668
1669 /* Search all static file-level symbols for NAME from DOMAIN.
1670 Upon success fixes up the symbol's section if necessary. */
1671
1672 extern struct block_symbol lookup_static_symbol (const char *name,
1673 const domain_enum domain);
1674
1675 /* Lookup a symbol in all files' global blocks.
1676
1677 If BLOCK is non-NULL then it is used for two things:
1678 1) If a target-specific lookup routine for libraries exists, then use the
1679 routine for the objfile of BLOCK, and
1680 2) The objfile of BLOCK is used to assist in determining the search order
1681 if the target requires it.
1682 See gdbarch_iterate_over_objfiles_in_search_order.
1683
1684 Upon success fixes up the symbol's section if necessary. */
1685
1686 extern struct block_symbol
1687 lookup_global_symbol (const char *name,
1688 const struct block *block,
1689 const domain_enum domain);
1690
1691 /* Lookup a symbol in block BLOCK.
1692 Upon success fixes up the symbol's section if necessary. */
1693
1694 extern struct symbol *
1695 lookup_symbol_in_block (const char *name,
1696 symbol_name_match_type match_type,
1697 const struct block *block,
1698 const domain_enum domain);
1699
1700 /* Look up the `this' symbol for LANG in BLOCK. Return the symbol if
1701 found, or NULL if not found. */
1702
1703 extern struct block_symbol
1704 lookup_language_this (const struct language_defn *lang,
1705 const struct block *block);
1706
1707 /* Lookup a [struct, union, enum] by name, within a specified block. */
1708
1709 extern struct type *lookup_struct (const char *, const struct block *);
1710
1711 extern struct type *lookup_union (const char *, const struct block *);
1712
1713 extern struct type *lookup_enum (const char *, const struct block *);
1714
1715 /* from blockframe.c: */
1716
1717 /* lookup the function symbol corresponding to the address. The
1718 return value will not be an inlined function; the containing
1719 function will be returned instead. */
1720
1721 extern struct symbol *find_pc_function (CORE_ADDR);
1722
1723 /* lookup the function corresponding to the address and section. The
1724 return value will not be an inlined function; the containing
1725 function will be returned instead. */
1726
1727 extern struct symbol *find_pc_sect_function (CORE_ADDR, struct obj_section *);
1728
1729 /* lookup the function symbol corresponding to the address and
1730 section. The return value will be the closest enclosing function,
1731 which might be an inline function. */
1732
1733 extern struct symbol *find_pc_sect_containing_function
1734 (CORE_ADDR pc, struct obj_section *section);
1735
1736 /* Find the symbol at the given address. Returns NULL if no symbol
1737 found. Only exact matches for ADDRESS are considered. */
1738
1739 extern struct symbol *find_symbol_at_address (CORE_ADDR);
1740
1741 /* Finds the "function" (text symbol) that is smaller than PC but
1742 greatest of all of the potential text symbols in SECTION. Sets
1743 *NAME and/or *ADDRESS conditionally if that pointer is non-null.
1744 If ENDADDR is non-null, then set *ENDADDR to be the end of the
1745 function (exclusive). If the optional parameter BLOCK is non-null,
1746 then set *BLOCK to the address of the block corresponding to the
1747 function symbol, if such a symbol could be found during the lookup;
1748 nullptr is used as a return value for *BLOCK if no block is found.
1749 This function either succeeds or fails (not halfway succeeds). If
1750 it succeeds, it sets *NAME, *ADDRESS, and *ENDADDR to real
1751 information and returns true. If it fails, it sets *NAME, *ADDRESS
1752 and *ENDADDR to zero and returns false.
1753
1754 If the function in question occupies non-contiguous ranges,
1755 *ADDRESS and *ENDADDR are (subject to the conditions noted above) set
1756 to the start and end of the range in which PC is found. Thus
1757 *ADDRESS <= PC < *ENDADDR with no intervening gaps (in which ranges
1758 from other functions might be found).
1759
1760 This property allows find_pc_partial_function to be used (as it had
1761 been prior to the introduction of non-contiguous range support) by
1762 various tdep files for finding a start address and limit address
1763 for prologue analysis. This still isn't ideal, however, because we
1764 probably shouldn't be doing prologue analysis (in which
1765 instructions are scanned to determine frame size and stack layout)
1766 for any range that doesn't contain the entry pc. Moreover, a good
1767 argument can be made that prologue analysis ought to be performed
1768 starting from the entry pc even when PC is within some other range.
1769 This might suggest that *ADDRESS and *ENDADDR ought to be set to the
1770 limits of the entry pc range, but that will cause the
1771 *ADDRESS <= PC < *ENDADDR condition to be violated; many of the
1772 callers of find_pc_partial_function expect this condition to hold.
1773
1774 Callers which require the start and/or end addresses for the range
1775 containing the entry pc should instead call
1776 find_function_entry_range_from_pc. */
1777
1778 extern bool find_pc_partial_function (CORE_ADDR pc, const char **name,
1779 CORE_ADDR *address, CORE_ADDR *endaddr,
1780 const struct block **block = nullptr);
1781
1782 /* Like find_pc_partial_function, above, but *ADDRESS and *ENDADDR are
1783 set to start and end addresses of the range containing the entry pc.
1784
1785 Note that it is not necessarily the case that (for non-NULL ADDRESS
1786 and ENDADDR arguments) the *ADDRESS <= PC < *ENDADDR condition will
1787 hold.
1788
1789 See comment for find_pc_partial_function, above, for further
1790 explanation. */
1791
1792 extern bool find_function_entry_range_from_pc (CORE_ADDR pc,
1793 const char **name,
1794 CORE_ADDR *address,
1795 CORE_ADDR *endaddr);
1796
1797 /* Return the type of a function with its first instruction exactly at
1798 the PC address. Return NULL otherwise. */
1799
1800 extern struct type *find_function_type (CORE_ADDR pc);
1801
1802 /* See if we can figure out the function's actual type from the type
1803 that the resolver returns. RESOLVER_FUNADDR is the address of the
1804 ifunc resolver. */
1805
1806 extern struct type *find_gnu_ifunc_target_type (CORE_ADDR resolver_funaddr);
1807
1808 /* Find the GNU ifunc minimal symbol that matches SYM. */
1809 extern bound_minimal_symbol find_gnu_ifunc (const symbol *sym);
1810
1811 extern void clear_pc_function_cache (void);
1812
1813 /* Expand symtab containing PC, SECTION if not already expanded. */
1814
1815 extern void expand_symtab_containing_pc (CORE_ADDR, struct obj_section *);
1816
1817 /* lookup full symbol table by address. */
1818
1819 extern struct compunit_symtab *find_pc_compunit_symtab (CORE_ADDR);
1820
1821 /* lookup full symbol table by address and section. */
1822
1823 extern struct compunit_symtab *
1824 find_pc_sect_compunit_symtab (CORE_ADDR, struct obj_section *);
1825
1826 extern bool find_pc_line_pc_range (CORE_ADDR, CORE_ADDR *, CORE_ADDR *);
1827
1828 extern void reread_symbols (void);
1829
1830 /* Look up a type named NAME in STRUCT_DOMAIN in the current language.
1831 The type returned must not be opaque -- i.e., must have at least one field
1832 defined. */
1833
1834 extern struct type *lookup_transparent_type (const char *);
1835
1836 extern struct type *basic_lookup_transparent_type (const char *);
1837
1838 /* Macro for name of symbol to indicate a file compiled with gcc. */
1839 #ifndef GCC_COMPILED_FLAG_SYMBOL
1840 #define GCC_COMPILED_FLAG_SYMBOL "gcc_compiled."
1841 #endif
1842
1843 /* Macro for name of symbol to indicate a file compiled with gcc2. */
1844 #ifndef GCC2_COMPILED_FLAG_SYMBOL
1845 #define GCC2_COMPILED_FLAG_SYMBOL "gcc2_compiled."
1846 #endif
1847
1848 extern bool in_gnu_ifunc_stub (CORE_ADDR pc);
1849
1850 /* Functions for resolving STT_GNU_IFUNC symbols which are implemented only
1851 for ELF symbol files. */
1852
1853 struct gnu_ifunc_fns
1854 {
1855 /* See elf_gnu_ifunc_resolve_addr for its real implementation. */
1856 CORE_ADDR (*gnu_ifunc_resolve_addr) (struct gdbarch *gdbarch, CORE_ADDR pc);
1857
1858 /* See elf_gnu_ifunc_resolve_name for its real implementation. */
1859 bool (*gnu_ifunc_resolve_name) (const char *function_name,
1860 CORE_ADDR *function_address_p);
1861
1862 /* See elf_gnu_ifunc_resolver_stop for its real implementation. */
1863 void (*gnu_ifunc_resolver_stop) (struct breakpoint *b);
1864
1865 /* See elf_gnu_ifunc_resolver_return_stop for its real implementation. */
1866 void (*gnu_ifunc_resolver_return_stop) (struct breakpoint *b);
1867 };
1868
1869 #define gnu_ifunc_resolve_addr gnu_ifunc_fns_p->gnu_ifunc_resolve_addr
1870 #define gnu_ifunc_resolve_name gnu_ifunc_fns_p->gnu_ifunc_resolve_name
1871 #define gnu_ifunc_resolver_stop gnu_ifunc_fns_p->gnu_ifunc_resolver_stop
1872 #define gnu_ifunc_resolver_return_stop \
1873 gnu_ifunc_fns_p->gnu_ifunc_resolver_return_stop
1874
1875 extern const struct gnu_ifunc_fns *gnu_ifunc_fns_p;
1876
1877 extern CORE_ADDR find_solib_trampoline_target (struct frame_info *, CORE_ADDR);
1878
1879 struct symtab_and_line
1880 {
1881 /* The program space of this sal. */
1882 struct program_space *pspace = NULL;
1883
1884 struct symtab *symtab = NULL;
1885 struct symbol *symbol = NULL;
1886 struct obj_section *section = NULL;
1887 struct minimal_symbol *msymbol = NULL;
1888 /* Line number. Line numbers start at 1 and proceed through symtab->nlines.
1889 0 is never a valid line number; it is used to indicate that line number
1890 information is not available. */
1891 int line = 0;
1892
1893 CORE_ADDR pc = 0;
1894 CORE_ADDR end = 0;
1895 bool explicit_pc = false;
1896 bool explicit_line = false;
1897
1898 /* If the line number information is valid, then this indicates if this
1899 line table entry had the is-stmt flag set or not. */
1900 bool is_stmt = false;
1901
1902 /* The probe associated with this symtab_and_line. */
1903 probe *prob = NULL;
1904 /* If PROBE is not NULL, then this is the objfile in which the probe
1905 originated. */
1906 struct objfile *objfile = NULL;
1907 };
1908
1909 \f
1910
1911 /* Given a pc value, return line number it is in. Second arg nonzero means
1912 if pc is on the boundary use the previous statement's line number. */
1913
1914 extern struct symtab_and_line find_pc_line (CORE_ADDR, int);
1915
1916 /* Same function, but specify a section as well as an address. */
1917
1918 extern struct symtab_and_line find_pc_sect_line (CORE_ADDR,
1919 struct obj_section *, int);
1920
1921 /* Wrapper around find_pc_line to just return the symtab. */
1922
1923 extern struct symtab *find_pc_line_symtab (CORE_ADDR);
1924
1925 /* Given a symtab and line number, return the pc there. */
1926
1927 extern bool find_line_pc (struct symtab *, int, CORE_ADDR *);
1928
1929 extern bool find_line_pc_range (struct symtab_and_line, CORE_ADDR *,
1930 CORE_ADDR *);
1931
1932 extern void resolve_sal_pc (struct symtab_and_line *);
1933
1934 /* solib.c */
1935
1936 extern void clear_solib (void);
1937
1938 /* The reason we're calling into a completion match list collector
1939 function. */
1940 enum class complete_symbol_mode
1941 {
1942 /* Completing an expression. */
1943 EXPRESSION,
1944
1945 /* Completing a linespec. */
1946 LINESPEC,
1947 };
1948
1949 extern void default_collect_symbol_completion_matches_break_on
1950 (completion_tracker &tracker,
1951 complete_symbol_mode mode,
1952 symbol_name_match_type name_match_type,
1953 const char *text, const char *word, const char *break_on,
1954 enum type_code code);
1955 extern void default_collect_symbol_completion_matches
1956 (completion_tracker &tracker,
1957 complete_symbol_mode,
1958 symbol_name_match_type name_match_type,
1959 const char *,
1960 const char *,
1961 enum type_code);
1962 extern void collect_symbol_completion_matches
1963 (completion_tracker &tracker,
1964 complete_symbol_mode mode,
1965 symbol_name_match_type name_match_type,
1966 const char *, const char *);
1967 extern void collect_symbol_completion_matches_type (completion_tracker &tracker,
1968 const char *, const char *,
1969 enum type_code);
1970
1971 extern void collect_file_symbol_completion_matches
1972 (completion_tracker &tracker,
1973 complete_symbol_mode,
1974 symbol_name_match_type name_match_type,
1975 const char *, const char *, const char *);
1976
1977 extern completion_list
1978 make_source_files_completion_list (const char *, const char *);
1979
1980 /* Return whether SYM is a function/method, as opposed to a data symbol. */
1981
1982 extern bool symbol_is_function_or_method (symbol *sym);
1983
1984 /* Return whether MSYMBOL is a function/method, as opposed to a data
1985 symbol */
1986
1987 extern bool symbol_is_function_or_method (minimal_symbol *msymbol);
1988
1989 /* Return whether SYM should be skipped in completion mode MODE. In
1990 linespec mode, we're only interested in functions/methods. */
1991
1992 template<typename Symbol>
1993 static bool
1994 completion_skip_symbol (complete_symbol_mode mode, Symbol *sym)
1995 {
1996 return (mode == complete_symbol_mode::LINESPEC
1997 && !symbol_is_function_or_method (sym));
1998 }
1999
2000 /* symtab.c */
2001
2002 bool matching_obj_sections (struct obj_section *, struct obj_section *);
2003
2004 extern struct symtab *find_line_symtab (struct symtab *, int, int *, bool *);
2005
2006 /* Given a function symbol SYM, find the symtab and line for the start
2007 of the function. If FUNFIRSTLINE is true, we want the first line
2008 of real code inside the function. */
2009 extern symtab_and_line find_function_start_sal (symbol *sym, bool
2010 funfirstline);
2011
2012 /* Same, but start with a function address/section instead of a
2013 symbol. */
2014 extern symtab_and_line find_function_start_sal (CORE_ADDR func_addr,
2015 obj_section *section,
2016 bool funfirstline);
2017
2018 extern void skip_prologue_sal (struct symtab_and_line *);
2019
2020 /* symtab.c */
2021
2022 extern CORE_ADDR skip_prologue_using_sal (struct gdbarch *gdbarch,
2023 CORE_ADDR func_addr);
2024
2025 extern struct symbol *fixup_symbol_section (struct symbol *,
2026 struct objfile *);
2027
2028 /* If MSYMBOL is an text symbol, look for a function debug symbol with
2029 the same address. Returns NULL if not found. This is necessary in
2030 case a function is an alias to some other function, because debug
2031 information is only emitted for the alias target function's
2032 definition, not for the alias. */
2033 extern symbol *find_function_alias_target (bound_minimal_symbol msymbol);
2034
2035 /* Symbol searching */
2036
2037 /* When using the symbol_searcher struct to search for symbols, a vector of
2038 the following structs is returned. */
2039 struct symbol_search
2040 {
2041 symbol_search (int block_, struct symbol *symbol_)
2042 : block (block_),
2043 symbol (symbol_)
2044 {
2045 msymbol.minsym = nullptr;
2046 msymbol.objfile = nullptr;
2047 }
2048
2049 symbol_search (int block_, struct minimal_symbol *minsym,
2050 struct objfile *objfile)
2051 : block (block_),
2052 symbol (nullptr)
2053 {
2054 msymbol.minsym = minsym;
2055 msymbol.objfile = objfile;
2056 }
2057
2058 bool operator< (const symbol_search &other) const
2059 {
2060 return compare_search_syms (*this, other) < 0;
2061 }
2062
2063 bool operator== (const symbol_search &other) const
2064 {
2065 return compare_search_syms (*this, other) == 0;
2066 }
2067
2068 /* The block in which the match was found. Could be, for example,
2069 STATIC_BLOCK or GLOBAL_BLOCK. */
2070 int block;
2071
2072 /* Information describing what was found.
2073
2074 If symbol is NOT NULL, then information was found for this match. */
2075 struct symbol *symbol;
2076
2077 /* If msymbol is non-null, then a match was made on something for
2078 which only minimal_symbols exist. */
2079 struct bound_minimal_symbol msymbol;
2080
2081 private:
2082
2083 static int compare_search_syms (const symbol_search &sym_a,
2084 const symbol_search &sym_b);
2085 };
2086
2087 /* In order to search for global symbols of a particular kind matching
2088 particular regular expressions, create an instance of this structure and
2089 call the SEARCH member function. */
2090 class global_symbol_searcher
2091 {
2092 public:
2093
2094 /* Constructor. */
2095 global_symbol_searcher (enum search_domain kind,
2096 const char *symbol_name_regexp)
2097 : m_kind (kind),
2098 m_symbol_name_regexp (symbol_name_regexp)
2099 {
2100 /* The symbol searching is designed to only find one kind of thing. */
2101 gdb_assert (m_kind != ALL_DOMAIN);
2102 }
2103
2104 /* Set the optional regexp that matches against the symbol type. */
2105 void set_symbol_type_regexp (const char *regexp)
2106 {
2107 m_symbol_type_regexp = regexp;
2108 }
2109
2110 /* Set the flag to exclude minsyms from the search results. */
2111 void set_exclude_minsyms (bool exclude_minsyms)
2112 {
2113 m_exclude_minsyms = exclude_minsyms;
2114 }
2115
2116 /* Set the maximum number of search results to be returned. */
2117 void set_max_search_results (size_t max_search_results)
2118 {
2119 m_max_search_results = max_search_results;
2120 }
2121
2122 /* Search the symbols from all objfiles in the current program space
2123 looking for matches as defined by the current state of this object.
2124
2125 Within each file the results are sorted locally; each symtab's global
2126 and static blocks are separately alphabetized. Duplicate entries are
2127 removed. */
2128 std::vector<symbol_search> search () const;
2129
2130 /* The set of source files to search in for matching symbols. This is
2131 currently public so that it can be populated after this object has
2132 been constructed. */
2133 std::vector<const char *> filenames;
2134
2135 private:
2136 /* The kind of symbols are we searching for.
2137 VARIABLES_DOMAIN - Search all symbols, excluding functions, type
2138 names, and constants (enums).
2139 FUNCTIONS_DOMAIN - Search all functions..
2140 TYPES_DOMAIN - Search all type names.
2141 MODULES_DOMAIN - Search all Fortran modules.
2142 ALL_DOMAIN - Not valid for this function. */
2143 enum search_domain m_kind;
2144
2145 /* Regular expression to match against the symbol name. */
2146 const char *m_symbol_name_regexp = nullptr;
2147
2148 /* Regular expression to match against the symbol type. */
2149 const char *m_symbol_type_regexp = nullptr;
2150
2151 /* When this flag is false then minsyms that match M_SYMBOL_REGEXP will
2152 be included in the results, otherwise they are excluded. */
2153 bool m_exclude_minsyms = false;
2154
2155 /* Maximum number of search results. We currently impose a hard limit
2156 of SIZE_MAX, there is no "unlimited". */
2157 size_t m_max_search_results = SIZE_MAX;
2158
2159 /* Expand symtabs in OBJFILE that match PREG, are of type M_KIND. Return
2160 true if any msymbols were seen that we should later consider adding to
2161 the results list. */
2162 bool expand_symtabs (objfile *objfile,
2163 const gdb::optional<compiled_regex> &preg) const;
2164
2165 /* Add symbols from symtabs in OBJFILE that match PREG, and TREG, and are
2166 of type M_KIND, to the results set RESULTS_SET. Return false if we
2167 stop adding results early due to having already found too many results
2168 (based on M_MAX_SEARCH_RESULTS limit), otherwise return true.
2169 Returning true does not indicate that any results were added, just
2170 that we didn't _not_ add a result due to reaching MAX_SEARCH_RESULTS. */
2171 bool add_matching_symbols (objfile *objfile,
2172 const gdb::optional<compiled_regex> &preg,
2173 const gdb::optional<compiled_regex> &treg,
2174 std::set<symbol_search> *result_set) const;
2175
2176 /* Add msymbols from OBJFILE that match PREG and M_KIND, to the results
2177 vector RESULTS. Return false if we stop adding results early due to
2178 having already found too many results (based on max search results
2179 limit M_MAX_SEARCH_RESULTS), otherwise return true. Returning true
2180 does not indicate that any results were added, just that we didn't
2181 _not_ add a result due to reaching MAX_SEARCH_RESULTS. */
2182 bool add_matching_msymbols (objfile *objfile,
2183 const gdb::optional<compiled_regex> &preg,
2184 std::vector<symbol_search> *results) const;
2185
2186 /* Return true if MSYMBOL is of type KIND. */
2187 static bool is_suitable_msymbol (const enum search_domain kind,
2188 const minimal_symbol *msymbol);
2189 };
2190
2191 /* When searching for Fortran symbols within modules (functions/variables)
2192 we return a vector of this type. The first item in the pair is the
2193 module symbol, and the second item is the symbol for the function or
2194 variable we found. */
2195 typedef std::pair<symbol_search, symbol_search> module_symbol_search;
2196
2197 /* Searches the symbols to find function and variables symbols (depending
2198 on KIND) within Fortran modules. The MODULE_REGEXP matches against the
2199 name of the module, REGEXP matches against the name of the symbol within
2200 the module, and TYPE_REGEXP matches against the type of the symbol
2201 within the module. */
2202 extern std::vector<module_symbol_search> search_module_symbols
2203 (const char *module_regexp, const char *regexp,
2204 const char *type_regexp, search_domain kind);
2205
2206 /* Convert a global or static symbol SYM (based on BLOCK, which should be
2207 either GLOBAL_BLOCK or STATIC_BLOCK) into a string for use in 'info'
2208 type commands (e.g. 'info variables', 'info functions', etc). KIND is
2209 the type of symbol that was searched for which gave us SYM. */
2210
2211 extern std::string symbol_to_info_string (struct symbol *sym, int block,
2212 enum search_domain kind);
2213
2214 extern bool treg_matches_sym_type_name (const compiled_regex &treg,
2215 const struct symbol *sym);
2216
2217 /* The name of the ``main'' function. */
2218 extern const char *main_name ();
2219 extern enum language main_language (void);
2220
2221 /* Lookup symbol NAME from DOMAIN in MAIN_OBJFILE's global or static blocks,
2222 as specified by BLOCK_INDEX.
2223 This searches MAIN_OBJFILE as well as any associated separate debug info
2224 objfiles of MAIN_OBJFILE.
2225 BLOCK_INDEX can be GLOBAL_BLOCK or STATIC_BLOCK.
2226 Upon success fixes up the symbol's section if necessary. */
2227
2228 extern struct block_symbol
2229 lookup_global_symbol_from_objfile (struct objfile *main_objfile,
2230 enum block_enum block_index,
2231 const char *name,
2232 const domain_enum domain);
2233
2234 /* Return 1 if the supplied producer string matches the ARM RealView
2235 compiler (armcc). */
2236 bool producer_is_realview (const char *producer);
2237
2238 void fixup_section (struct general_symbol_info *ginfo,
2239 CORE_ADDR addr, struct objfile *objfile);
2240
2241 extern unsigned int symtab_create_debug;
2242
2243 extern unsigned int symbol_lookup_debug;
2244
2245 extern bool basenames_may_differ;
2246
2247 bool compare_filenames_for_search (const char *filename,
2248 const char *search_name);
2249
2250 bool compare_glob_filenames_for_search (const char *filename,
2251 const char *search_name);
2252
2253 bool iterate_over_some_symtabs (const char *name,
2254 const char *real_path,
2255 struct compunit_symtab *first,
2256 struct compunit_symtab *after_last,
2257 gdb::function_view<bool (symtab *)> callback);
2258
2259 void iterate_over_symtabs (const char *name,
2260 gdb::function_view<bool (symtab *)> callback);
2261
2262
2263 std::vector<CORE_ADDR> find_pcs_for_symtab_line
2264 (struct symtab *symtab, int line, struct linetable_entry **best_entry);
2265
2266 /* Prototype for callbacks for LA_ITERATE_OVER_SYMBOLS. The callback
2267 is called once per matching symbol SYM. The callback should return
2268 true to indicate that LA_ITERATE_OVER_SYMBOLS should continue
2269 iterating, or false to indicate that the iteration should end. */
2270
2271 typedef bool (symbol_found_callback_ftype) (struct block_symbol *bsym);
2272
2273 /* Iterate over the symbols named NAME, matching DOMAIN, in BLOCK.
2274
2275 For each symbol that matches, CALLBACK is called. The symbol is
2276 passed to the callback.
2277
2278 If CALLBACK returns false, the iteration ends and this function
2279 returns false. Otherwise, the search continues, and the function
2280 eventually returns true. */
2281
2282 bool iterate_over_symbols (const struct block *block,
2283 const lookup_name_info &name,
2284 const domain_enum domain,
2285 gdb::function_view<symbol_found_callback_ftype> callback);
2286
2287 /* Like iterate_over_symbols, but if all calls to CALLBACK return
2288 true, then calls CALLBACK one additional time with a block_symbol
2289 that has a valid block but a NULL symbol. */
2290
2291 bool iterate_over_symbols_terminated
2292 (const struct block *block,
2293 const lookup_name_info &name,
2294 const domain_enum domain,
2295 gdb::function_view<symbol_found_callback_ftype> callback);
2296
2297 /* Storage type used by demangle_for_lookup. demangle_for_lookup
2298 either returns a const char * pointer that points to either of the
2299 fields of this type, or a pointer to the input NAME. This is done
2300 this way to avoid depending on the precise details of the storage
2301 for the string. */
2302 class demangle_result_storage
2303 {
2304 public:
2305
2306 /* Swap the malloc storage to STR, and return a pointer to the
2307 beginning of the new string. */
2308 const char *set_malloc_ptr (gdb::unique_xmalloc_ptr<char> &&str)
2309 {
2310 m_malloc = std::move (str);
2311 return m_malloc.get ();
2312 }
2313
2314 /* Set the malloc storage to now point at PTR. Any previous malloc
2315 storage is released. */
2316 const char *set_malloc_ptr (char *ptr)
2317 {
2318 m_malloc.reset (ptr);
2319 return ptr;
2320 }
2321
2322 private:
2323
2324 /* The storage. */
2325 gdb::unique_xmalloc_ptr<char> m_malloc;
2326 };
2327
2328 const char *
2329 demangle_for_lookup (const char *name, enum language lang,
2330 demangle_result_storage &storage);
2331
2332 /* Test to see if the symbol of language SYMBOL_LANGUAGE specified by
2333 SYMNAME (which is already demangled for C++ symbols) matches
2334 SYM_TEXT in the first SYM_TEXT_LEN characters. If so, add it to
2335 the current completion list and return true. Otherwise, return
2336 false. */
2337 bool completion_list_add_name (completion_tracker &tracker,
2338 language symbol_language,
2339 const char *symname,
2340 const lookup_name_info &lookup_name,
2341 const char *text, const char *word);
2342
2343 /* A simple symbol searching class. */
2344
2345 class symbol_searcher
2346 {
2347 public:
2348 /* Returns the symbols found for the search. */
2349 const std::vector<block_symbol> &
2350 matching_symbols () const
2351 {
2352 return m_symbols;
2353 }
2354
2355 /* Returns the minimal symbols found for the search. */
2356 const std::vector<bound_minimal_symbol> &
2357 matching_msymbols () const
2358 {
2359 return m_minimal_symbols;
2360 }
2361
2362 /* Search for all symbols named NAME in LANGUAGE with DOMAIN, restricting
2363 search to FILE_SYMTABS and SEARCH_PSPACE, both of which may be NULL
2364 to search all symtabs and program spaces. */
2365 void find_all_symbols (const std::string &name,
2366 const struct language_defn *language,
2367 enum search_domain search_domain,
2368 std::vector<symtab *> *search_symtabs,
2369 struct program_space *search_pspace);
2370
2371 /* Reset this object to perform another search. */
2372 void reset ()
2373 {
2374 m_symbols.clear ();
2375 m_minimal_symbols.clear ();
2376 }
2377
2378 private:
2379 /* Matching debug symbols. */
2380 std::vector<block_symbol> m_symbols;
2381
2382 /* Matching non-debug symbols. */
2383 std::vector<bound_minimal_symbol> m_minimal_symbols;
2384 };
2385
2386 #endif /* !defined(SYMTAB_H) */
This page took 0.079794 seconds and 4 git commands to generate.