Handle multiple target events before commit resume
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "gdbsupport/agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "gdbsupport/byte-vector.h"
50 #include "terminal.h"
51 #include <unordered_map>
52
53 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
54
55 static void default_terminal_info (struct target_ops *, const char *, int);
56
57 static int default_watchpoint_addr_within_range (struct target_ops *,
58 CORE_ADDR, CORE_ADDR, int);
59
60 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
61 CORE_ADDR, int);
62
63 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
64
65 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
66 long lwp, long tid);
67
68 static int default_follow_fork (struct target_ops *self, int follow_child,
69 int detach_fork);
70
71 static void default_mourn_inferior (struct target_ops *self);
72
73 static int default_search_memory (struct target_ops *ops,
74 CORE_ADDR start_addr,
75 ULONGEST search_space_len,
76 const gdb_byte *pattern,
77 ULONGEST pattern_len,
78 CORE_ADDR *found_addrp);
79
80 static int default_verify_memory (struct target_ops *self,
81 const gdb_byte *data,
82 CORE_ADDR memaddr, ULONGEST size);
83
84 static void tcomplain (void) ATTRIBUTE_NORETURN;
85
86 static struct target_ops *find_default_run_target (const char *);
87
88 static int dummy_find_memory_regions (struct target_ops *self,
89 find_memory_region_ftype ignore1,
90 void *ignore2);
91
92 static char *dummy_make_corefile_notes (struct target_ops *self,
93 bfd *ignore1, int *ignore2);
94
95 static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid);
96
97 static enum exec_direction_kind default_execution_direction
98 (struct target_ops *self);
99
100 /* Mapping between target_info objects (which have address identity)
101 and corresponding open/factory function/callback. Each add_target
102 call adds one entry to this map, and registers a "target
103 TARGET_NAME" command that when invoked calls the factory registered
104 here. The target_info object is associated with the command via
105 the command's context. */
106 static std::unordered_map<const target_info *, target_open_ftype *>
107 target_factories;
108
109 /* The singleton debug target. */
110
111 static struct target_ops *the_debug_target;
112
113 /* The target stack. */
114
115 static target_stack g_target_stack;
116
117 /* Top of target stack. */
118 /* The target structure we are currently using to talk to a process
119 or file or whatever "inferior" we have. */
120
121 target_ops *
122 current_top_target ()
123 {
124 return g_target_stack.top ();
125 }
126
127 /* Command list for target. */
128
129 static struct cmd_list_element *targetlist = NULL;
130
131 /* True if we should trust readonly sections from the
132 executable when reading memory. */
133
134 static bool trust_readonly = false;
135
136 /* Nonzero if we should show true memory content including
137 memory breakpoint inserted by gdb. */
138
139 static int show_memory_breakpoints = 0;
140
141 /* These globals control whether GDB attempts to perform these
142 operations; they are useful for targets that need to prevent
143 inadvertent disruption, such as in non-stop mode. */
144
145 bool may_write_registers = true;
146
147 bool may_write_memory = true;
148
149 bool may_insert_breakpoints = true;
150
151 bool may_insert_tracepoints = true;
152
153 bool may_insert_fast_tracepoints = true;
154
155 bool may_stop = true;
156
157 /* Non-zero if we want to see trace of target level stuff. */
158
159 static unsigned int targetdebug = 0;
160
161 static void
162 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
163 {
164 if (targetdebug)
165 push_target (the_debug_target);
166 else
167 unpush_target (the_debug_target);
168 }
169
170 static void
171 show_targetdebug (struct ui_file *file, int from_tty,
172 struct cmd_list_element *c, const char *value)
173 {
174 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
175 }
176
177 /* The user just typed 'target' without the name of a target. */
178
179 static void
180 target_command (const char *arg, int from_tty)
181 {
182 fputs_filtered ("Argument required (target name). Try `help target'\n",
183 gdb_stdout);
184 }
185
186 int
187 target_has_all_memory_1 (void)
188 {
189 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
190 if (t->has_all_memory ())
191 return 1;
192
193 return 0;
194 }
195
196 int
197 target_has_memory_1 (void)
198 {
199 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
200 if (t->has_memory ())
201 return 1;
202
203 return 0;
204 }
205
206 int
207 target_has_stack_1 (void)
208 {
209 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
210 if (t->has_stack ())
211 return 1;
212
213 return 0;
214 }
215
216 int
217 target_has_registers_1 (void)
218 {
219 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
220 if (t->has_registers ())
221 return 1;
222
223 return 0;
224 }
225
226 int
227 target_has_execution_1 (ptid_t the_ptid)
228 {
229 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
230 if (t->has_execution (the_ptid))
231 return 1;
232
233 return 0;
234 }
235
236 int
237 target_has_execution_current (void)
238 {
239 return target_has_execution_1 (inferior_ptid);
240 }
241
242 /* This is used to implement the various target commands. */
243
244 static void
245 open_target (const char *args, int from_tty, struct cmd_list_element *command)
246 {
247 auto *ti = static_cast<target_info *> (get_cmd_context (command));
248 target_open_ftype *func = target_factories[ti];
249
250 if (targetdebug)
251 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
252 ti->shortname);
253
254 func (args, from_tty);
255
256 if (targetdebug)
257 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
258 ti->shortname, args, from_tty);
259 }
260
261 /* See target.h. */
262
263 void
264 add_target (const target_info &t, target_open_ftype *func,
265 completer_ftype *completer)
266 {
267 struct cmd_list_element *c;
268
269 auto &func_slot = target_factories[&t];
270 if (func_slot != nullptr)
271 internal_error (__FILE__, __LINE__,
272 _("target already added (\"%s\")."), t.shortname);
273 func_slot = func;
274
275 if (targetlist == NULL)
276 add_prefix_cmd ("target", class_run, target_command, _("\
277 Connect to a target machine or process.\n\
278 The first argument is the type or protocol of the target machine.\n\
279 Remaining arguments are interpreted by the target protocol. For more\n\
280 information on the arguments for a particular protocol, type\n\
281 `help target ' followed by the protocol name."),
282 &targetlist, "target ", 0, &cmdlist);
283 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
284 set_cmd_context (c, (void *) &t);
285 set_cmd_sfunc (c, open_target);
286 if (completer != NULL)
287 set_cmd_completer (c, completer);
288 }
289
290 /* See target.h. */
291
292 void
293 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
294 {
295 struct cmd_list_element *c;
296 char *alt;
297
298 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
299 see PR cli/15104. */
300 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
301 set_cmd_sfunc (c, open_target);
302 set_cmd_context (c, (void *) &tinfo);
303 alt = xstrprintf ("target %s", tinfo.shortname);
304 deprecate_cmd (c, alt);
305 }
306
307 /* Stub functions */
308
309 void
310 target_kill (void)
311 {
312 current_top_target ()->kill ();
313 }
314
315 void
316 target_load (const char *arg, int from_tty)
317 {
318 target_dcache_invalidate ();
319 current_top_target ()->load (arg, from_tty);
320 }
321
322 /* Define it. */
323
324 target_terminal_state target_terminal::m_terminal_state
325 = target_terminal_state::is_ours;
326
327 /* See target/target.h. */
328
329 void
330 target_terminal::init (void)
331 {
332 current_top_target ()->terminal_init ();
333
334 m_terminal_state = target_terminal_state::is_ours;
335 }
336
337 /* See target/target.h. */
338
339 void
340 target_terminal::inferior (void)
341 {
342 struct ui *ui = current_ui;
343
344 /* A background resume (``run&'') should leave GDB in control of the
345 terminal. */
346 if (ui->prompt_state != PROMPT_BLOCKED)
347 return;
348
349 /* Since we always run the inferior in the main console (unless "set
350 inferior-tty" is in effect), when some UI other than the main one
351 calls target_terminal::inferior, then we leave the main UI's
352 terminal settings as is. */
353 if (ui != main_ui)
354 return;
355
356 /* If GDB is resuming the inferior in the foreground, install
357 inferior's terminal modes. */
358
359 struct inferior *inf = current_inferior ();
360
361 if (inf->terminal_state != target_terminal_state::is_inferior)
362 {
363 current_top_target ()->terminal_inferior ();
364 inf->terminal_state = target_terminal_state::is_inferior;
365 }
366
367 m_terminal_state = target_terminal_state::is_inferior;
368
369 /* If the user hit C-c before, pretend that it was hit right
370 here. */
371 if (check_quit_flag ())
372 target_pass_ctrlc ();
373 }
374
375 /* See target/target.h. */
376
377 void
378 target_terminal::restore_inferior (void)
379 {
380 struct ui *ui = current_ui;
381
382 /* See target_terminal::inferior(). */
383 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
384 return;
385
386 /* Restore the terminal settings of inferiors that were in the
387 foreground but are now ours_for_output due to a temporary
388 target_target::ours_for_output() call. */
389
390 {
391 scoped_restore_current_inferior restore_inferior;
392
393 for (::inferior *inf : all_inferiors ())
394 {
395 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
396 {
397 set_current_inferior (inf);
398 current_top_target ()->terminal_inferior ();
399 inf->terminal_state = target_terminal_state::is_inferior;
400 }
401 }
402 }
403
404 m_terminal_state = target_terminal_state::is_inferior;
405
406 /* If the user hit C-c before, pretend that it was hit right
407 here. */
408 if (check_quit_flag ())
409 target_pass_ctrlc ();
410 }
411
412 /* Switch terminal state to DESIRED_STATE, either is_ours, or
413 is_ours_for_output. */
414
415 static void
416 target_terminal_is_ours_kind (target_terminal_state desired_state)
417 {
418 scoped_restore_current_inferior restore_inferior;
419
420 /* Must do this in two passes. First, have all inferiors save the
421 current terminal settings. Then, after all inferiors have add a
422 chance to safely save the terminal settings, restore GDB's
423 terminal settings. */
424
425 for (inferior *inf : all_inferiors ())
426 {
427 if (inf->terminal_state == target_terminal_state::is_inferior)
428 {
429 set_current_inferior (inf);
430 current_top_target ()->terminal_save_inferior ();
431 }
432 }
433
434 for (inferior *inf : all_inferiors ())
435 {
436 /* Note we don't check is_inferior here like above because we
437 need to handle 'is_ours_for_output -> is_ours' too. Careful
438 to never transition from 'is_ours' to 'is_ours_for_output',
439 though. */
440 if (inf->terminal_state != target_terminal_state::is_ours
441 && inf->terminal_state != desired_state)
442 {
443 set_current_inferior (inf);
444 if (desired_state == target_terminal_state::is_ours)
445 current_top_target ()->terminal_ours ();
446 else if (desired_state == target_terminal_state::is_ours_for_output)
447 current_top_target ()->terminal_ours_for_output ();
448 else
449 gdb_assert_not_reached ("unhandled desired state");
450 inf->terminal_state = desired_state;
451 }
452 }
453 }
454
455 /* See target/target.h. */
456
457 void
458 target_terminal::ours ()
459 {
460 struct ui *ui = current_ui;
461
462 /* See target_terminal::inferior. */
463 if (ui != main_ui)
464 return;
465
466 if (m_terminal_state == target_terminal_state::is_ours)
467 return;
468
469 target_terminal_is_ours_kind (target_terminal_state::is_ours);
470 m_terminal_state = target_terminal_state::is_ours;
471 }
472
473 /* See target/target.h. */
474
475 void
476 target_terminal::ours_for_output ()
477 {
478 struct ui *ui = current_ui;
479
480 /* See target_terminal::inferior. */
481 if (ui != main_ui)
482 return;
483
484 if (!target_terminal::is_inferior ())
485 return;
486
487 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
488 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
489 }
490
491 /* See target/target.h. */
492
493 void
494 target_terminal::info (const char *arg, int from_tty)
495 {
496 current_top_target ()->terminal_info (arg, from_tty);
497 }
498
499 /* See target.h. */
500
501 bool
502 target_supports_terminal_ours (void)
503 {
504 /* This can be called before there is any target, so we must check
505 for nullptr here. */
506 target_ops *top = current_top_target ();
507
508 if (top == nullptr)
509 return false;
510 return top->supports_terminal_ours ();
511 }
512
513 static void
514 tcomplain (void)
515 {
516 error (_("You can't do that when your target is `%s'"),
517 current_top_target ()->shortname ());
518 }
519
520 void
521 noprocess (void)
522 {
523 error (_("You can't do that without a process to debug."));
524 }
525
526 static void
527 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
528 {
529 printf_unfiltered (_("No saved terminal information.\n"));
530 }
531
532 /* A default implementation for the to_get_ada_task_ptid target method.
533
534 This function builds the PTID by using both LWP and TID as part of
535 the PTID lwp and tid elements. The pid used is the pid of the
536 inferior_ptid. */
537
538 static ptid_t
539 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
540 {
541 return ptid_t (inferior_ptid.pid (), lwp, tid);
542 }
543
544 static enum exec_direction_kind
545 default_execution_direction (struct target_ops *self)
546 {
547 if (!target_can_execute_reverse)
548 return EXEC_FORWARD;
549 else if (!target_can_async_p ())
550 return EXEC_FORWARD;
551 else
552 gdb_assert_not_reached ("\
553 to_execution_direction must be implemented for reverse async");
554 }
555
556 /* See target.h. */
557
558 void
559 target_stack::push (target_ops *t)
560 {
561 /* If there's already a target at this stratum, remove it. */
562 strata stratum = t->stratum ();
563
564 if (m_stack[stratum] != NULL)
565 unpush (m_stack[stratum]);
566
567 /* Now add the new one. */
568 m_stack[stratum] = t;
569
570 if (m_top < stratum)
571 m_top = stratum;
572 }
573
574 /* See target.h. */
575
576 void
577 push_target (struct target_ops *t)
578 {
579 g_target_stack.push (t);
580 }
581
582 /* See target.h */
583
584 void
585 push_target (target_ops_up &&t)
586 {
587 g_target_stack.push (t.get ());
588 t.release ();
589 }
590
591 /* See target.h. */
592
593 int
594 unpush_target (struct target_ops *t)
595 {
596 return g_target_stack.unpush (t);
597 }
598
599 /* See target.h. */
600
601 bool
602 target_stack::unpush (target_ops *t)
603 {
604 gdb_assert (t != NULL);
605
606 strata stratum = t->stratum ();
607
608 if (stratum == dummy_stratum)
609 internal_error (__FILE__, __LINE__,
610 _("Attempt to unpush the dummy target"));
611
612 /* Look for the specified target. Note that a target can only occur
613 once in the target stack. */
614
615 if (m_stack[stratum] != t)
616 {
617 /* If T wasn't pushed, quit. Only open targets should be
618 closed. */
619 return false;
620 }
621
622 /* Unchain the target. */
623 m_stack[stratum] = NULL;
624
625 if (m_top == stratum)
626 m_top = t->beneath ()->stratum ();
627
628 /* Finally close the target. Note we do this after unchaining, so
629 any target method calls from within the target_close
630 implementation don't end up in T anymore. */
631 target_close (t);
632
633 return true;
634 }
635
636 /* Unpush TARGET and assert that it worked. */
637
638 static void
639 unpush_target_and_assert (struct target_ops *target)
640 {
641 if (!unpush_target (target))
642 {
643 fprintf_unfiltered (gdb_stderr,
644 "pop_all_targets couldn't find target %s\n",
645 target->shortname ());
646 internal_error (__FILE__, __LINE__,
647 _("failed internal consistency check"));
648 }
649 }
650
651 void
652 pop_all_targets_above (enum strata above_stratum)
653 {
654 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
655 unpush_target_and_assert (current_top_target ());
656 }
657
658 /* See target.h. */
659
660 void
661 pop_all_targets_at_and_above (enum strata stratum)
662 {
663 while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
664 unpush_target_and_assert (current_top_target ());
665 }
666
667 void
668 pop_all_targets (void)
669 {
670 pop_all_targets_above (dummy_stratum);
671 }
672
673 /* Return 1 if T is now pushed in the target stack. Return 0 otherwise. */
674
675 int
676 target_is_pushed (struct target_ops *t)
677 {
678 return g_target_stack.is_pushed (t);
679 }
680
681 /* Default implementation of to_get_thread_local_address. */
682
683 static void
684 generic_tls_error (void)
685 {
686 throw_error (TLS_GENERIC_ERROR,
687 _("Cannot find thread-local variables on this target"));
688 }
689
690 /* Using the objfile specified in OBJFILE, find the address for the
691 current thread's thread-local storage with offset OFFSET. */
692 CORE_ADDR
693 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
694 {
695 volatile CORE_ADDR addr = 0;
696 struct target_ops *target = current_top_target ();
697 struct gdbarch *gdbarch = target_gdbarch ();
698
699 if (gdbarch_fetch_tls_load_module_address_p (gdbarch))
700 {
701 ptid_t ptid = inferior_ptid;
702
703 try
704 {
705 CORE_ADDR lm_addr;
706
707 /* Fetch the load module address for this objfile. */
708 lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch,
709 objfile);
710
711 if (gdbarch_get_thread_local_address_p (gdbarch))
712 addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr,
713 offset);
714 else
715 addr = target->get_thread_local_address (ptid, lm_addr, offset);
716 }
717 /* If an error occurred, print TLS related messages here. Otherwise,
718 throw the error to some higher catcher. */
719 catch (const gdb_exception &ex)
720 {
721 int objfile_is_library = (objfile->flags & OBJF_SHARED);
722
723 switch (ex.error)
724 {
725 case TLS_NO_LIBRARY_SUPPORT_ERROR:
726 error (_("Cannot find thread-local variables "
727 "in this thread library."));
728 break;
729 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
730 if (objfile_is_library)
731 error (_("Cannot find shared library `%s' in dynamic"
732 " linker's load module list"), objfile_name (objfile));
733 else
734 error (_("Cannot find executable file `%s' in dynamic"
735 " linker's load module list"), objfile_name (objfile));
736 break;
737 case TLS_NOT_ALLOCATED_YET_ERROR:
738 if (objfile_is_library)
739 error (_("The inferior has not yet allocated storage for"
740 " thread-local variables in\n"
741 "the shared library `%s'\n"
742 "for %s"),
743 objfile_name (objfile),
744 target_pid_to_str (ptid).c_str ());
745 else
746 error (_("The inferior has not yet allocated storage for"
747 " thread-local variables in\n"
748 "the executable `%s'\n"
749 "for %s"),
750 objfile_name (objfile),
751 target_pid_to_str (ptid).c_str ());
752 break;
753 case TLS_GENERIC_ERROR:
754 if (objfile_is_library)
755 error (_("Cannot find thread-local storage for %s, "
756 "shared library %s:\n%s"),
757 target_pid_to_str (ptid).c_str (),
758 objfile_name (objfile), ex.what ());
759 else
760 error (_("Cannot find thread-local storage for %s, "
761 "executable file %s:\n%s"),
762 target_pid_to_str (ptid).c_str (),
763 objfile_name (objfile), ex.what ());
764 break;
765 default:
766 throw;
767 break;
768 }
769 }
770 }
771 else
772 error (_("Cannot find thread-local variables on this target"));
773
774 return addr;
775 }
776
777 const char *
778 target_xfer_status_to_string (enum target_xfer_status status)
779 {
780 #define CASE(X) case X: return #X
781 switch (status)
782 {
783 CASE(TARGET_XFER_E_IO);
784 CASE(TARGET_XFER_UNAVAILABLE);
785 default:
786 return "<unknown>";
787 }
788 #undef CASE
789 };
790
791
792 #undef MIN
793 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
794
795 /* target_read_string -- read a null terminated string, up to LEN bytes,
796 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
797 Set *STRING to a pointer to malloc'd memory containing the data; the caller
798 is responsible for freeing it. Return the number of bytes successfully
799 read. */
800
801 int
802 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
803 int len, int *errnop)
804 {
805 int tlen, offset, i;
806 gdb_byte buf[4];
807 int errcode = 0;
808 char *buffer;
809 int buffer_allocated;
810 char *bufptr;
811 unsigned int nbytes_read = 0;
812
813 gdb_assert (string);
814
815 /* Small for testing. */
816 buffer_allocated = 4;
817 buffer = (char *) xmalloc (buffer_allocated);
818 bufptr = buffer;
819
820 while (len > 0)
821 {
822 tlen = MIN (len, 4 - (memaddr & 3));
823 offset = memaddr & 3;
824
825 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
826 if (errcode != 0)
827 {
828 /* The transfer request might have crossed the boundary to an
829 unallocated region of memory. Retry the transfer, requesting
830 a single byte. */
831 tlen = 1;
832 offset = 0;
833 errcode = target_read_memory (memaddr, buf, 1);
834 if (errcode != 0)
835 goto done;
836 }
837
838 if (bufptr - buffer + tlen > buffer_allocated)
839 {
840 unsigned int bytes;
841
842 bytes = bufptr - buffer;
843 buffer_allocated *= 2;
844 buffer = (char *) xrealloc (buffer, buffer_allocated);
845 bufptr = buffer + bytes;
846 }
847
848 for (i = 0; i < tlen; i++)
849 {
850 *bufptr++ = buf[i + offset];
851 if (buf[i + offset] == '\000')
852 {
853 nbytes_read += i + 1;
854 goto done;
855 }
856 }
857
858 memaddr += tlen;
859 len -= tlen;
860 nbytes_read += tlen;
861 }
862 done:
863 string->reset (buffer);
864 if (errnop != NULL)
865 *errnop = errcode;
866 return nbytes_read;
867 }
868
869 struct target_section_table *
870 target_get_section_table (struct target_ops *target)
871 {
872 return target->get_section_table ();
873 }
874
875 /* Find a section containing ADDR. */
876
877 struct target_section *
878 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
879 {
880 struct target_section_table *table = target_get_section_table (target);
881 struct target_section *secp;
882
883 if (table == NULL)
884 return NULL;
885
886 for (secp = table->sections; secp < table->sections_end; secp++)
887 {
888 if (addr >= secp->addr && addr < secp->endaddr)
889 return secp;
890 }
891 return NULL;
892 }
893
894
895 /* Helper for the memory xfer routines. Checks the attributes of the
896 memory region of MEMADDR against the read or write being attempted.
897 If the access is permitted returns true, otherwise returns false.
898 REGION_P is an optional output parameter. If not-NULL, it is
899 filled with a pointer to the memory region of MEMADDR. REG_LEN
900 returns LEN trimmed to the end of the region. This is how much the
901 caller can continue requesting, if the access is permitted. A
902 single xfer request must not straddle memory region boundaries. */
903
904 static int
905 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
906 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
907 struct mem_region **region_p)
908 {
909 struct mem_region *region;
910
911 region = lookup_mem_region (memaddr);
912
913 if (region_p != NULL)
914 *region_p = region;
915
916 switch (region->attrib.mode)
917 {
918 case MEM_RO:
919 if (writebuf != NULL)
920 return 0;
921 break;
922
923 case MEM_WO:
924 if (readbuf != NULL)
925 return 0;
926 break;
927
928 case MEM_FLASH:
929 /* We only support writing to flash during "load" for now. */
930 if (writebuf != NULL)
931 error (_("Writing to flash memory forbidden in this context"));
932 break;
933
934 case MEM_NONE:
935 return 0;
936 }
937
938 /* region->hi == 0 means there's no upper bound. */
939 if (memaddr + len < region->hi || region->hi == 0)
940 *reg_len = len;
941 else
942 *reg_len = region->hi - memaddr;
943
944 return 1;
945 }
946
947 /* Read memory from more than one valid target. A core file, for
948 instance, could have some of memory but delegate other bits to
949 the target below it. So, we must manually try all targets. */
950
951 enum target_xfer_status
952 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
953 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
954 ULONGEST *xfered_len)
955 {
956 enum target_xfer_status res;
957
958 do
959 {
960 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
961 readbuf, writebuf, memaddr, len,
962 xfered_len);
963 if (res == TARGET_XFER_OK)
964 break;
965
966 /* Stop if the target reports that the memory is not available. */
967 if (res == TARGET_XFER_UNAVAILABLE)
968 break;
969
970 /* We want to continue past core files to executables, but not
971 past a running target's memory. */
972 if (ops->has_all_memory ())
973 break;
974
975 ops = ops->beneath ();
976 }
977 while (ops != NULL);
978
979 /* The cache works at the raw memory level. Make sure the cache
980 gets updated with raw contents no matter what kind of memory
981 object was originally being written. Note we do write-through
982 first, so that if it fails, we don't write to the cache contents
983 that never made it to the target. */
984 if (writebuf != NULL
985 && inferior_ptid != null_ptid
986 && target_dcache_init_p ()
987 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
988 {
989 DCACHE *dcache = target_dcache_get ();
990
991 /* Note that writing to an area of memory which wasn't present
992 in the cache doesn't cause it to be loaded in. */
993 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
994 }
995
996 return res;
997 }
998
999 /* Perform a partial memory transfer.
1000 For docs see target.h, to_xfer_partial. */
1001
1002 static enum target_xfer_status
1003 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1004 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1005 ULONGEST len, ULONGEST *xfered_len)
1006 {
1007 enum target_xfer_status res;
1008 ULONGEST reg_len;
1009 struct mem_region *region;
1010 struct inferior *inf;
1011
1012 /* For accesses to unmapped overlay sections, read directly from
1013 files. Must do this first, as MEMADDR may need adjustment. */
1014 if (readbuf != NULL && overlay_debugging)
1015 {
1016 struct obj_section *section = find_pc_overlay (memaddr);
1017
1018 if (pc_in_unmapped_range (memaddr, section))
1019 {
1020 struct target_section_table *table
1021 = target_get_section_table (ops);
1022 const char *section_name = section->the_bfd_section->name;
1023
1024 memaddr = overlay_mapped_address (memaddr, section);
1025 return section_table_xfer_memory_partial (readbuf, writebuf,
1026 memaddr, len, xfered_len,
1027 table->sections,
1028 table->sections_end,
1029 section_name);
1030 }
1031 }
1032
1033 /* Try the executable files, if "trust-readonly-sections" is set. */
1034 if (readbuf != NULL && trust_readonly)
1035 {
1036 struct target_section *secp;
1037 struct target_section_table *table;
1038
1039 secp = target_section_by_addr (ops, memaddr);
1040 if (secp != NULL
1041 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
1042 {
1043 table = target_get_section_table (ops);
1044 return section_table_xfer_memory_partial (readbuf, writebuf,
1045 memaddr, len, xfered_len,
1046 table->sections,
1047 table->sections_end,
1048 NULL);
1049 }
1050 }
1051
1052 /* Try GDB's internal data cache. */
1053
1054 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1055 &region))
1056 return TARGET_XFER_E_IO;
1057
1058 if (inferior_ptid != null_ptid)
1059 inf = current_inferior ();
1060 else
1061 inf = NULL;
1062
1063 if (inf != NULL
1064 && readbuf != NULL
1065 /* The dcache reads whole cache lines; that doesn't play well
1066 with reading from a trace buffer, because reading outside of
1067 the collected memory range fails. */
1068 && get_traceframe_number () == -1
1069 && (region->attrib.cache
1070 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1071 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1072 {
1073 DCACHE *dcache = target_dcache_get_or_init ();
1074
1075 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1076 reg_len, xfered_len);
1077 }
1078
1079 /* If none of those methods found the memory we wanted, fall back
1080 to a target partial transfer. Normally a single call to
1081 to_xfer_partial is enough; if it doesn't recognize an object
1082 it will call the to_xfer_partial of the next target down.
1083 But for memory this won't do. Memory is the only target
1084 object which can be read from more than one valid target.
1085 A core file, for instance, could have some of memory but
1086 delegate other bits to the target below it. So, we must
1087 manually try all targets. */
1088
1089 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1090 xfered_len);
1091
1092 /* If we still haven't got anything, return the last error. We
1093 give up. */
1094 return res;
1095 }
1096
1097 /* Perform a partial memory transfer. For docs see target.h,
1098 to_xfer_partial. */
1099
1100 static enum target_xfer_status
1101 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1102 gdb_byte *readbuf, const gdb_byte *writebuf,
1103 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1104 {
1105 enum target_xfer_status res;
1106
1107 /* Zero length requests are ok and require no work. */
1108 if (len == 0)
1109 return TARGET_XFER_EOF;
1110
1111 memaddr = address_significant (target_gdbarch (), memaddr);
1112
1113 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1114 breakpoint insns, thus hiding out from higher layers whether
1115 there are software breakpoints inserted in the code stream. */
1116 if (readbuf != NULL)
1117 {
1118 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1119 xfered_len);
1120
1121 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1122 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1123 }
1124 else
1125 {
1126 /* A large write request is likely to be partially satisfied
1127 by memory_xfer_partial_1. We will continually malloc
1128 and free a copy of the entire write request for breakpoint
1129 shadow handling even though we only end up writing a small
1130 subset of it. Cap writes to a limit specified by the target
1131 to mitigate this. */
1132 len = std::min (ops->get_memory_xfer_limit (), len);
1133
1134 gdb::byte_vector buf (writebuf, writebuf + len);
1135 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1136 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1137 xfered_len);
1138 }
1139
1140 return res;
1141 }
1142
1143 scoped_restore_tmpl<int>
1144 make_scoped_restore_show_memory_breakpoints (int show)
1145 {
1146 return make_scoped_restore (&show_memory_breakpoints, show);
1147 }
1148
1149 /* For docs see target.h, to_xfer_partial. */
1150
1151 enum target_xfer_status
1152 target_xfer_partial (struct target_ops *ops,
1153 enum target_object object, const char *annex,
1154 gdb_byte *readbuf, const gdb_byte *writebuf,
1155 ULONGEST offset, ULONGEST len,
1156 ULONGEST *xfered_len)
1157 {
1158 enum target_xfer_status retval;
1159
1160 /* Transfer is done when LEN is zero. */
1161 if (len == 0)
1162 return TARGET_XFER_EOF;
1163
1164 if (writebuf && !may_write_memory)
1165 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1166 core_addr_to_string_nz (offset), plongest (len));
1167
1168 *xfered_len = 0;
1169
1170 /* If this is a memory transfer, let the memory-specific code
1171 have a look at it instead. Memory transfers are more
1172 complicated. */
1173 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1174 || object == TARGET_OBJECT_CODE_MEMORY)
1175 retval = memory_xfer_partial (ops, object, readbuf,
1176 writebuf, offset, len, xfered_len);
1177 else if (object == TARGET_OBJECT_RAW_MEMORY)
1178 {
1179 /* Skip/avoid accessing the target if the memory region
1180 attributes block the access. Check this here instead of in
1181 raw_memory_xfer_partial as otherwise we'd end up checking
1182 this twice in the case of the memory_xfer_partial path is
1183 taken; once before checking the dcache, and another in the
1184 tail call to raw_memory_xfer_partial. */
1185 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1186 NULL))
1187 return TARGET_XFER_E_IO;
1188
1189 /* Request the normal memory object from other layers. */
1190 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1191 xfered_len);
1192 }
1193 else
1194 retval = ops->xfer_partial (object, annex, readbuf,
1195 writebuf, offset, len, xfered_len);
1196
1197 if (targetdebug)
1198 {
1199 const unsigned char *myaddr = NULL;
1200
1201 fprintf_unfiltered (gdb_stdlog,
1202 "%s:target_xfer_partial "
1203 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1204 ops->shortname (),
1205 (int) object,
1206 (annex ? annex : "(null)"),
1207 host_address_to_string (readbuf),
1208 host_address_to_string (writebuf),
1209 core_addr_to_string_nz (offset),
1210 pulongest (len), retval,
1211 pulongest (*xfered_len));
1212
1213 if (readbuf)
1214 myaddr = readbuf;
1215 if (writebuf)
1216 myaddr = writebuf;
1217 if (retval == TARGET_XFER_OK && myaddr != NULL)
1218 {
1219 int i;
1220
1221 fputs_unfiltered (", bytes =", gdb_stdlog);
1222 for (i = 0; i < *xfered_len; i++)
1223 {
1224 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1225 {
1226 if (targetdebug < 2 && i > 0)
1227 {
1228 fprintf_unfiltered (gdb_stdlog, " ...");
1229 break;
1230 }
1231 fprintf_unfiltered (gdb_stdlog, "\n");
1232 }
1233
1234 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1235 }
1236 }
1237
1238 fputc_unfiltered ('\n', gdb_stdlog);
1239 }
1240
1241 /* Check implementations of to_xfer_partial update *XFERED_LEN
1242 properly. Do assertion after printing debug messages, so that we
1243 can find more clues on assertion failure from debugging messages. */
1244 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1245 gdb_assert (*xfered_len > 0);
1246
1247 return retval;
1248 }
1249
1250 /* Read LEN bytes of target memory at address MEMADDR, placing the
1251 results in GDB's memory at MYADDR. Returns either 0 for success or
1252 -1 if any error occurs.
1253
1254 If an error occurs, no guarantee is made about the contents of the data at
1255 MYADDR. In particular, the caller should not depend upon partial reads
1256 filling the buffer with good data. There is no way for the caller to know
1257 how much good data might have been transfered anyway. Callers that can
1258 deal with partial reads should call target_read (which will retry until
1259 it makes no progress, and then return how much was transferred). */
1260
1261 int
1262 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1263 {
1264 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1265 myaddr, memaddr, len) == len)
1266 return 0;
1267 else
1268 return -1;
1269 }
1270
1271 /* See target/target.h. */
1272
1273 int
1274 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1275 {
1276 gdb_byte buf[4];
1277 int r;
1278
1279 r = target_read_memory (memaddr, buf, sizeof buf);
1280 if (r != 0)
1281 return r;
1282 *result = extract_unsigned_integer (buf, sizeof buf,
1283 gdbarch_byte_order (target_gdbarch ()));
1284 return 0;
1285 }
1286
1287 /* Like target_read_memory, but specify explicitly that this is a read
1288 from the target's raw memory. That is, this read bypasses the
1289 dcache, breakpoint shadowing, etc. */
1290
1291 int
1292 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1293 {
1294 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1295 myaddr, memaddr, len) == len)
1296 return 0;
1297 else
1298 return -1;
1299 }
1300
1301 /* Like target_read_memory, but specify explicitly that this is a read from
1302 the target's stack. This may trigger different cache behavior. */
1303
1304 int
1305 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1306 {
1307 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1308 myaddr, memaddr, len) == len)
1309 return 0;
1310 else
1311 return -1;
1312 }
1313
1314 /* Like target_read_memory, but specify explicitly that this is a read from
1315 the target's code. This may trigger different cache behavior. */
1316
1317 int
1318 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1319 {
1320 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1321 myaddr, memaddr, len) == len)
1322 return 0;
1323 else
1324 return -1;
1325 }
1326
1327 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1328 Returns either 0 for success or -1 if any error occurs. If an
1329 error occurs, no guarantee is made about how much data got written.
1330 Callers that can deal with partial writes should call
1331 target_write. */
1332
1333 int
1334 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1335 {
1336 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1337 myaddr, memaddr, len) == len)
1338 return 0;
1339 else
1340 return -1;
1341 }
1342
1343 /* Write LEN bytes from MYADDR to target raw memory at address
1344 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1345 If an error occurs, no guarantee is made about how much data got
1346 written. Callers that can deal with partial writes should call
1347 target_write. */
1348
1349 int
1350 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1351 {
1352 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1353 myaddr, memaddr, len) == len)
1354 return 0;
1355 else
1356 return -1;
1357 }
1358
1359 /* Fetch the target's memory map. */
1360
1361 std::vector<mem_region>
1362 target_memory_map (void)
1363 {
1364 std::vector<mem_region> result = current_top_target ()->memory_map ();
1365 if (result.empty ())
1366 return result;
1367
1368 std::sort (result.begin (), result.end ());
1369
1370 /* Check that regions do not overlap. Simultaneously assign
1371 a numbering for the "mem" commands to use to refer to
1372 each region. */
1373 mem_region *last_one = NULL;
1374 for (size_t ix = 0; ix < result.size (); ix++)
1375 {
1376 mem_region *this_one = &result[ix];
1377 this_one->number = ix;
1378
1379 if (last_one != NULL && last_one->hi > this_one->lo)
1380 {
1381 warning (_("Overlapping regions in memory map: ignoring"));
1382 return std::vector<mem_region> ();
1383 }
1384
1385 last_one = this_one;
1386 }
1387
1388 return result;
1389 }
1390
1391 void
1392 target_flash_erase (ULONGEST address, LONGEST length)
1393 {
1394 current_top_target ()->flash_erase (address, length);
1395 }
1396
1397 void
1398 target_flash_done (void)
1399 {
1400 current_top_target ()->flash_done ();
1401 }
1402
1403 static void
1404 show_trust_readonly (struct ui_file *file, int from_tty,
1405 struct cmd_list_element *c, const char *value)
1406 {
1407 fprintf_filtered (file,
1408 _("Mode for reading from readonly sections is %s.\n"),
1409 value);
1410 }
1411
1412 /* Target vector read/write partial wrapper functions. */
1413
1414 static enum target_xfer_status
1415 target_read_partial (struct target_ops *ops,
1416 enum target_object object,
1417 const char *annex, gdb_byte *buf,
1418 ULONGEST offset, ULONGEST len,
1419 ULONGEST *xfered_len)
1420 {
1421 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1422 xfered_len);
1423 }
1424
1425 static enum target_xfer_status
1426 target_write_partial (struct target_ops *ops,
1427 enum target_object object,
1428 const char *annex, const gdb_byte *buf,
1429 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1430 {
1431 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1432 xfered_len);
1433 }
1434
1435 /* Wrappers to perform the full transfer. */
1436
1437 /* For docs on target_read see target.h. */
1438
1439 LONGEST
1440 target_read (struct target_ops *ops,
1441 enum target_object object,
1442 const char *annex, gdb_byte *buf,
1443 ULONGEST offset, LONGEST len)
1444 {
1445 LONGEST xfered_total = 0;
1446 int unit_size = 1;
1447
1448 /* If we are reading from a memory object, find the length of an addressable
1449 unit for that architecture. */
1450 if (object == TARGET_OBJECT_MEMORY
1451 || object == TARGET_OBJECT_STACK_MEMORY
1452 || object == TARGET_OBJECT_CODE_MEMORY
1453 || object == TARGET_OBJECT_RAW_MEMORY)
1454 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1455
1456 while (xfered_total < len)
1457 {
1458 ULONGEST xfered_partial;
1459 enum target_xfer_status status;
1460
1461 status = target_read_partial (ops, object, annex,
1462 buf + xfered_total * unit_size,
1463 offset + xfered_total, len - xfered_total,
1464 &xfered_partial);
1465
1466 /* Call an observer, notifying them of the xfer progress? */
1467 if (status == TARGET_XFER_EOF)
1468 return xfered_total;
1469 else if (status == TARGET_XFER_OK)
1470 {
1471 xfered_total += xfered_partial;
1472 QUIT;
1473 }
1474 else
1475 return TARGET_XFER_E_IO;
1476
1477 }
1478 return len;
1479 }
1480
1481 /* Assuming that the entire [begin, end) range of memory cannot be
1482 read, try to read whatever subrange is possible to read.
1483
1484 The function returns, in RESULT, either zero or one memory block.
1485 If there's a readable subrange at the beginning, it is completely
1486 read and returned. Any further readable subrange will not be read.
1487 Otherwise, if there's a readable subrange at the end, it will be
1488 completely read and returned. Any readable subranges before it
1489 (obviously, not starting at the beginning), will be ignored. In
1490 other cases -- either no readable subrange, or readable subrange(s)
1491 that is neither at the beginning, or end, nothing is returned.
1492
1493 The purpose of this function is to handle a read across a boundary
1494 of accessible memory in a case when memory map is not available.
1495 The above restrictions are fine for this case, but will give
1496 incorrect results if the memory is 'patchy'. However, supporting
1497 'patchy' memory would require trying to read every single byte,
1498 and it seems unacceptable solution. Explicit memory map is
1499 recommended for this case -- and target_read_memory_robust will
1500 take care of reading multiple ranges then. */
1501
1502 static void
1503 read_whatever_is_readable (struct target_ops *ops,
1504 const ULONGEST begin, const ULONGEST end,
1505 int unit_size,
1506 std::vector<memory_read_result> *result)
1507 {
1508 ULONGEST current_begin = begin;
1509 ULONGEST current_end = end;
1510 int forward;
1511 ULONGEST xfered_len;
1512
1513 /* If we previously failed to read 1 byte, nothing can be done here. */
1514 if (end - begin <= 1)
1515 return;
1516
1517 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1518
1519 /* Check that either first or the last byte is readable, and give up
1520 if not. This heuristic is meant to permit reading accessible memory
1521 at the boundary of accessible region. */
1522 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1523 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1524 {
1525 forward = 1;
1526 ++current_begin;
1527 }
1528 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1529 buf.get () + (end - begin) - 1, end - 1, 1,
1530 &xfered_len) == TARGET_XFER_OK)
1531 {
1532 forward = 0;
1533 --current_end;
1534 }
1535 else
1536 return;
1537
1538 /* Loop invariant is that the [current_begin, current_end) was previously
1539 found to be not readable as a whole.
1540
1541 Note loop condition -- if the range has 1 byte, we can't divide the range
1542 so there's no point trying further. */
1543 while (current_end - current_begin > 1)
1544 {
1545 ULONGEST first_half_begin, first_half_end;
1546 ULONGEST second_half_begin, second_half_end;
1547 LONGEST xfer;
1548 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1549
1550 if (forward)
1551 {
1552 first_half_begin = current_begin;
1553 first_half_end = middle;
1554 second_half_begin = middle;
1555 second_half_end = current_end;
1556 }
1557 else
1558 {
1559 first_half_begin = middle;
1560 first_half_end = current_end;
1561 second_half_begin = current_begin;
1562 second_half_end = middle;
1563 }
1564
1565 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1566 buf.get () + (first_half_begin - begin) * unit_size,
1567 first_half_begin,
1568 first_half_end - first_half_begin);
1569
1570 if (xfer == first_half_end - first_half_begin)
1571 {
1572 /* This half reads up fine. So, the error must be in the
1573 other half. */
1574 current_begin = second_half_begin;
1575 current_end = second_half_end;
1576 }
1577 else
1578 {
1579 /* This half is not readable. Because we've tried one byte, we
1580 know some part of this half if actually readable. Go to the next
1581 iteration to divide again and try to read.
1582
1583 We don't handle the other half, because this function only tries
1584 to read a single readable subrange. */
1585 current_begin = first_half_begin;
1586 current_end = first_half_end;
1587 }
1588 }
1589
1590 if (forward)
1591 {
1592 /* The [begin, current_begin) range has been read. */
1593 result->emplace_back (begin, current_end, std::move (buf));
1594 }
1595 else
1596 {
1597 /* The [current_end, end) range has been read. */
1598 LONGEST region_len = end - current_end;
1599
1600 gdb::unique_xmalloc_ptr<gdb_byte> data
1601 ((gdb_byte *) xmalloc (region_len * unit_size));
1602 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1603 region_len * unit_size);
1604 result->emplace_back (current_end, end, std::move (data));
1605 }
1606 }
1607
1608 std::vector<memory_read_result>
1609 read_memory_robust (struct target_ops *ops,
1610 const ULONGEST offset, const LONGEST len)
1611 {
1612 std::vector<memory_read_result> result;
1613 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1614
1615 LONGEST xfered_total = 0;
1616 while (xfered_total < len)
1617 {
1618 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1619 LONGEST region_len;
1620
1621 /* If there is no explicit region, a fake one should be created. */
1622 gdb_assert (region);
1623
1624 if (region->hi == 0)
1625 region_len = len - xfered_total;
1626 else
1627 region_len = region->hi - offset;
1628
1629 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1630 {
1631 /* Cannot read this region. Note that we can end up here only
1632 if the region is explicitly marked inaccessible, or
1633 'inaccessible-by-default' is in effect. */
1634 xfered_total += region_len;
1635 }
1636 else
1637 {
1638 LONGEST to_read = std::min (len - xfered_total, region_len);
1639 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1640 ((gdb_byte *) xmalloc (to_read * unit_size));
1641
1642 LONGEST xfered_partial =
1643 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1644 offset + xfered_total, to_read);
1645 /* Call an observer, notifying them of the xfer progress? */
1646 if (xfered_partial <= 0)
1647 {
1648 /* Got an error reading full chunk. See if maybe we can read
1649 some subrange. */
1650 read_whatever_is_readable (ops, offset + xfered_total,
1651 offset + xfered_total + to_read,
1652 unit_size, &result);
1653 xfered_total += to_read;
1654 }
1655 else
1656 {
1657 result.emplace_back (offset + xfered_total,
1658 offset + xfered_total + xfered_partial,
1659 std::move (buffer));
1660 xfered_total += xfered_partial;
1661 }
1662 QUIT;
1663 }
1664 }
1665
1666 return result;
1667 }
1668
1669
1670 /* An alternative to target_write with progress callbacks. */
1671
1672 LONGEST
1673 target_write_with_progress (struct target_ops *ops,
1674 enum target_object object,
1675 const char *annex, const gdb_byte *buf,
1676 ULONGEST offset, LONGEST len,
1677 void (*progress) (ULONGEST, void *), void *baton)
1678 {
1679 LONGEST xfered_total = 0;
1680 int unit_size = 1;
1681
1682 /* If we are writing to a memory object, find the length of an addressable
1683 unit for that architecture. */
1684 if (object == TARGET_OBJECT_MEMORY
1685 || object == TARGET_OBJECT_STACK_MEMORY
1686 || object == TARGET_OBJECT_CODE_MEMORY
1687 || object == TARGET_OBJECT_RAW_MEMORY)
1688 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1689
1690 /* Give the progress callback a chance to set up. */
1691 if (progress)
1692 (*progress) (0, baton);
1693
1694 while (xfered_total < len)
1695 {
1696 ULONGEST xfered_partial;
1697 enum target_xfer_status status;
1698
1699 status = target_write_partial (ops, object, annex,
1700 buf + xfered_total * unit_size,
1701 offset + xfered_total, len - xfered_total,
1702 &xfered_partial);
1703
1704 if (status != TARGET_XFER_OK)
1705 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1706
1707 if (progress)
1708 (*progress) (xfered_partial, baton);
1709
1710 xfered_total += xfered_partial;
1711 QUIT;
1712 }
1713 return len;
1714 }
1715
1716 /* For docs on target_write see target.h. */
1717
1718 LONGEST
1719 target_write (struct target_ops *ops,
1720 enum target_object object,
1721 const char *annex, const gdb_byte *buf,
1722 ULONGEST offset, LONGEST len)
1723 {
1724 return target_write_with_progress (ops, object, annex, buf, offset, len,
1725 NULL, NULL);
1726 }
1727
1728 /* Help for target_read_alloc and target_read_stralloc. See their comments
1729 for details. */
1730
1731 template <typename T>
1732 gdb::optional<gdb::def_vector<T>>
1733 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1734 const char *annex)
1735 {
1736 gdb::def_vector<T> buf;
1737 size_t buf_pos = 0;
1738 const int chunk = 4096;
1739
1740 /* This function does not have a length parameter; it reads the
1741 entire OBJECT). Also, it doesn't support objects fetched partly
1742 from one target and partly from another (in a different stratum,
1743 e.g. a core file and an executable). Both reasons make it
1744 unsuitable for reading memory. */
1745 gdb_assert (object != TARGET_OBJECT_MEMORY);
1746
1747 /* Start by reading up to 4K at a time. The target will throttle
1748 this number down if necessary. */
1749 while (1)
1750 {
1751 ULONGEST xfered_len;
1752 enum target_xfer_status status;
1753
1754 buf.resize (buf_pos + chunk);
1755
1756 status = target_read_partial (ops, object, annex,
1757 (gdb_byte *) &buf[buf_pos],
1758 buf_pos, chunk,
1759 &xfered_len);
1760
1761 if (status == TARGET_XFER_EOF)
1762 {
1763 /* Read all there was. */
1764 buf.resize (buf_pos);
1765 return buf;
1766 }
1767 else if (status != TARGET_XFER_OK)
1768 {
1769 /* An error occurred. */
1770 return {};
1771 }
1772
1773 buf_pos += xfered_len;
1774
1775 QUIT;
1776 }
1777 }
1778
1779 /* See target.h */
1780
1781 gdb::optional<gdb::byte_vector>
1782 target_read_alloc (struct target_ops *ops, enum target_object object,
1783 const char *annex)
1784 {
1785 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1786 }
1787
1788 /* See target.h. */
1789
1790 gdb::optional<gdb::char_vector>
1791 target_read_stralloc (struct target_ops *ops, enum target_object object,
1792 const char *annex)
1793 {
1794 gdb::optional<gdb::char_vector> buf
1795 = target_read_alloc_1<char> (ops, object, annex);
1796
1797 if (!buf)
1798 return {};
1799
1800 if (buf->empty () || buf->back () != '\0')
1801 buf->push_back ('\0');
1802
1803 /* Check for embedded NUL bytes; but allow trailing NULs. */
1804 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1805 it != buf->end (); it++)
1806 if (*it != '\0')
1807 {
1808 warning (_("target object %d, annex %s, "
1809 "contained unexpected null characters"),
1810 (int) object, annex ? annex : "(none)");
1811 break;
1812 }
1813
1814 return buf;
1815 }
1816
1817 /* Memory transfer methods. */
1818
1819 void
1820 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1821 LONGEST len)
1822 {
1823 /* This method is used to read from an alternate, non-current
1824 target. This read must bypass the overlay support (as symbols
1825 don't match this target), and GDB's internal cache (wrong cache
1826 for this target). */
1827 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1828 != len)
1829 memory_error (TARGET_XFER_E_IO, addr);
1830 }
1831
1832 ULONGEST
1833 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1834 int len, enum bfd_endian byte_order)
1835 {
1836 gdb_byte buf[sizeof (ULONGEST)];
1837
1838 gdb_assert (len <= sizeof (buf));
1839 get_target_memory (ops, addr, buf, len);
1840 return extract_unsigned_integer (buf, len, byte_order);
1841 }
1842
1843 /* See target.h. */
1844
1845 int
1846 target_insert_breakpoint (struct gdbarch *gdbarch,
1847 struct bp_target_info *bp_tgt)
1848 {
1849 if (!may_insert_breakpoints)
1850 {
1851 warning (_("May not insert breakpoints"));
1852 return 1;
1853 }
1854
1855 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1856 }
1857
1858 /* See target.h. */
1859
1860 int
1861 target_remove_breakpoint (struct gdbarch *gdbarch,
1862 struct bp_target_info *bp_tgt,
1863 enum remove_bp_reason reason)
1864 {
1865 /* This is kind of a weird case to handle, but the permission might
1866 have been changed after breakpoints were inserted - in which case
1867 we should just take the user literally and assume that any
1868 breakpoints should be left in place. */
1869 if (!may_insert_breakpoints)
1870 {
1871 warning (_("May not remove breakpoints"));
1872 return 1;
1873 }
1874
1875 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1876 }
1877
1878 static void
1879 info_target_command (const char *args, int from_tty)
1880 {
1881 int has_all_mem = 0;
1882
1883 if (symfile_objfile != NULL)
1884 printf_unfiltered (_("Symbols from \"%s\".\n"),
1885 objfile_name (symfile_objfile));
1886
1887 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1888 {
1889 if (!t->has_memory ())
1890 continue;
1891
1892 if ((int) (t->stratum ()) <= (int) dummy_stratum)
1893 continue;
1894 if (has_all_mem)
1895 printf_unfiltered (_("\tWhile running this, "
1896 "GDB does not access memory from...\n"));
1897 printf_unfiltered ("%s:\n", t->longname ());
1898 t->files_info ();
1899 has_all_mem = t->has_all_memory ();
1900 }
1901 }
1902
1903 /* This function is called before any new inferior is created, e.g.
1904 by running a program, attaching, or connecting to a target.
1905 It cleans up any state from previous invocations which might
1906 change between runs. This is a subset of what target_preopen
1907 resets (things which might change between targets). */
1908
1909 void
1910 target_pre_inferior (int from_tty)
1911 {
1912 /* Clear out solib state. Otherwise the solib state of the previous
1913 inferior might have survived and is entirely wrong for the new
1914 target. This has been observed on GNU/Linux using glibc 2.3. How
1915 to reproduce:
1916
1917 bash$ ./foo&
1918 [1] 4711
1919 bash$ ./foo&
1920 [1] 4712
1921 bash$ gdb ./foo
1922 [...]
1923 (gdb) attach 4711
1924 (gdb) detach
1925 (gdb) attach 4712
1926 Cannot access memory at address 0xdeadbeef
1927 */
1928
1929 /* In some OSs, the shared library list is the same/global/shared
1930 across inferiors. If code is shared between processes, so are
1931 memory regions and features. */
1932 if (!gdbarch_has_global_solist (target_gdbarch ()))
1933 {
1934 no_shared_libraries (NULL, from_tty);
1935
1936 invalidate_target_mem_regions ();
1937
1938 target_clear_description ();
1939 }
1940
1941 /* attach_flag may be set if the previous process associated with
1942 the inferior was attached to. */
1943 current_inferior ()->attach_flag = 0;
1944
1945 current_inferior ()->highest_thread_num = 0;
1946
1947 agent_capability_invalidate ();
1948 }
1949
1950 /* Callback for iterate_over_inferiors. Gets rid of the given
1951 inferior. */
1952
1953 static int
1954 dispose_inferior (struct inferior *inf, void *args)
1955 {
1956 /* Not all killed inferiors can, or will ever be, removed from the
1957 inferior list. Killed inferiors clearly don't need to be killed
1958 again, so, we're done. */
1959 if (inf->pid == 0)
1960 return 0;
1961
1962 thread_info *thread = any_thread_of_inferior (inf);
1963 if (thread != NULL)
1964 {
1965 switch_to_thread (thread);
1966
1967 /* Core inferiors actually should be detached, not killed. */
1968 if (target_has_execution)
1969 target_kill ();
1970 else
1971 target_detach (inf, 0);
1972 }
1973
1974 return 0;
1975 }
1976
1977 /* This is to be called by the open routine before it does
1978 anything. */
1979
1980 void
1981 target_preopen (int from_tty)
1982 {
1983 dont_repeat ();
1984
1985 if (have_inferiors ())
1986 {
1987 if (!from_tty
1988 || !have_live_inferiors ()
1989 || query (_("A program is being debugged already. Kill it? ")))
1990 iterate_over_inferiors (dispose_inferior, NULL);
1991 else
1992 error (_("Program not killed."));
1993 }
1994
1995 /* Calling target_kill may remove the target from the stack. But if
1996 it doesn't (which seems like a win for UDI), remove it now. */
1997 /* Leave the exec target, though. The user may be switching from a
1998 live process to a core of the same program. */
1999 pop_all_targets_above (file_stratum);
2000
2001 target_pre_inferior (from_tty);
2002 }
2003
2004 /* See target.h. */
2005
2006 void
2007 target_detach (inferior *inf, int from_tty)
2008 {
2009 /* After we have detached, we will clear the register cache for this inferior
2010 by calling registers_changed_ptid. We must save the pid_ptid before
2011 detaching, as the target detach method will clear inf->pid. */
2012 ptid_t save_pid_ptid = ptid_t (inf->pid);
2013
2014 /* As long as some to_detach implementations rely on the current_inferior
2015 (either directly, or indirectly, like through target_gdbarch or by
2016 reading memory), INF needs to be the current inferior. When that
2017 requirement will become no longer true, then we can remove this
2018 assertion. */
2019 gdb_assert (inf == current_inferior ());
2020
2021 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2022 /* Don't remove global breakpoints here. They're removed on
2023 disconnection from the target. */
2024 ;
2025 else
2026 /* If we're in breakpoints-always-inserted mode, have to remove
2027 breakpoints before detaching. */
2028 remove_breakpoints_inf (current_inferior ());
2029
2030 prepare_for_detach ();
2031
2032 current_top_target ()->detach (inf, from_tty);
2033
2034 registers_changed_ptid (save_pid_ptid);
2035
2036 /* We have to ensure we have no frame cache left. Normally,
2037 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
2038 inferior_ptid matches save_pid_ptid, but in our case, it does not
2039 call it, as inferior_ptid has been reset. */
2040 reinit_frame_cache ();
2041 }
2042
2043 void
2044 target_disconnect (const char *args, int from_tty)
2045 {
2046 /* If we're in breakpoints-always-inserted mode or if breakpoints
2047 are global across processes, we have to remove them before
2048 disconnecting. */
2049 remove_breakpoints ();
2050
2051 current_top_target ()->disconnect (args, from_tty);
2052 }
2053
2054 /* See target/target.h. */
2055
2056 ptid_t
2057 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2058 {
2059 return current_top_target ()->wait (ptid, status, options);
2060 }
2061
2062 /* See target.h. */
2063
2064 ptid_t
2065 default_target_wait (struct target_ops *ops,
2066 ptid_t ptid, struct target_waitstatus *status,
2067 int options)
2068 {
2069 status->kind = TARGET_WAITKIND_IGNORE;
2070 return minus_one_ptid;
2071 }
2072
2073 std::string
2074 target_pid_to_str (ptid_t ptid)
2075 {
2076 return current_top_target ()->pid_to_str (ptid);
2077 }
2078
2079 const char *
2080 target_thread_name (struct thread_info *info)
2081 {
2082 return current_top_target ()->thread_name (info);
2083 }
2084
2085 struct thread_info *
2086 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2087 int handle_len,
2088 struct inferior *inf)
2089 {
2090 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2091 handle_len, inf);
2092 }
2093
2094 /* See target.h. */
2095
2096 gdb::byte_vector
2097 target_thread_info_to_thread_handle (struct thread_info *tip)
2098 {
2099 return current_top_target ()->thread_info_to_thread_handle (tip);
2100 }
2101
2102 void
2103 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2104 {
2105 target_dcache_invalidate ();
2106
2107 current_top_target ()->resume (ptid, step, signal);
2108
2109 registers_changed_ptid (ptid);
2110 /* We only set the internal executing state here. The user/frontend
2111 running state is set at a higher level. This also clears the
2112 thread's stop_pc as side effect. */
2113 set_executing (ptid, 1);
2114 clear_inline_frame_state (ptid);
2115 }
2116
2117 /* If true, target_commit_resume is a nop. */
2118 static int defer_target_commit_resume;
2119
2120 /* See target.h. */
2121
2122 void
2123 target_commit_resume (void)
2124 {
2125 if (defer_target_commit_resume)
2126 {
2127 current_top_target ()->pending_commit_resume = true;
2128 return;
2129 }
2130
2131 current_top_target ()->pending_commit_resume = false;
2132 current_top_target ()->commit_resume ();
2133 }
2134
2135 /* See target.h. */
2136
2137 scoped_restore_tmpl<int>
2138 make_scoped_defer_target_commit_resume ()
2139 {
2140 return make_scoped_restore (&defer_target_commit_resume, 1);
2141 }
2142
2143 void
2144 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2145 {
2146 current_top_target ()->pass_signals (pass_signals);
2147 }
2148
2149 void
2150 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2151 {
2152 current_top_target ()->program_signals (program_signals);
2153 }
2154
2155 static int
2156 default_follow_fork (struct target_ops *self, int follow_child,
2157 int detach_fork)
2158 {
2159 /* Some target returned a fork event, but did not know how to follow it. */
2160 internal_error (__FILE__, __LINE__,
2161 _("could not find a target to follow fork"));
2162 }
2163
2164 /* Look through the list of possible targets for a target that can
2165 follow forks. */
2166
2167 int
2168 target_follow_fork (int follow_child, int detach_fork)
2169 {
2170 return current_top_target ()->follow_fork (follow_child, detach_fork);
2171 }
2172
2173 /* Target wrapper for follow exec hook. */
2174
2175 void
2176 target_follow_exec (struct inferior *inf, const char *execd_pathname)
2177 {
2178 current_top_target ()->follow_exec (inf, execd_pathname);
2179 }
2180
2181 static void
2182 default_mourn_inferior (struct target_ops *self)
2183 {
2184 internal_error (__FILE__, __LINE__,
2185 _("could not find a target to follow mourn inferior"));
2186 }
2187
2188 void
2189 target_mourn_inferior (ptid_t ptid)
2190 {
2191 gdb_assert (ptid == inferior_ptid);
2192 current_top_target ()->mourn_inferior ();
2193
2194 /* We no longer need to keep handles on any of the object files.
2195 Make sure to release them to avoid unnecessarily locking any
2196 of them while we're not actually debugging. */
2197 bfd_cache_close_all ();
2198 }
2199
2200 /* Look for a target which can describe architectural features, starting
2201 from TARGET. If we find one, return its description. */
2202
2203 const struct target_desc *
2204 target_read_description (struct target_ops *target)
2205 {
2206 return target->read_description ();
2207 }
2208
2209 /* This implements a basic search of memory, reading target memory and
2210 performing the search here (as opposed to performing the search in on the
2211 target side with, for example, gdbserver). */
2212
2213 int
2214 simple_search_memory (struct target_ops *ops,
2215 CORE_ADDR start_addr, ULONGEST search_space_len,
2216 const gdb_byte *pattern, ULONGEST pattern_len,
2217 CORE_ADDR *found_addrp)
2218 {
2219 /* NOTE: also defined in find.c testcase. */
2220 #define SEARCH_CHUNK_SIZE 16000
2221 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2222 /* Buffer to hold memory contents for searching. */
2223 unsigned search_buf_size;
2224
2225 search_buf_size = chunk_size + pattern_len - 1;
2226
2227 /* No point in trying to allocate a buffer larger than the search space. */
2228 if (search_space_len < search_buf_size)
2229 search_buf_size = search_space_len;
2230
2231 gdb::byte_vector search_buf (search_buf_size);
2232
2233 /* Prime the search buffer. */
2234
2235 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2236 search_buf.data (), start_addr, search_buf_size)
2237 != search_buf_size)
2238 {
2239 warning (_("Unable to access %s bytes of target "
2240 "memory at %s, halting search."),
2241 pulongest (search_buf_size), hex_string (start_addr));
2242 return -1;
2243 }
2244
2245 /* Perform the search.
2246
2247 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2248 When we've scanned N bytes we copy the trailing bytes to the start and
2249 read in another N bytes. */
2250
2251 while (search_space_len >= pattern_len)
2252 {
2253 gdb_byte *found_ptr;
2254 unsigned nr_search_bytes
2255 = std::min (search_space_len, (ULONGEST) search_buf_size);
2256
2257 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2258 pattern, pattern_len);
2259
2260 if (found_ptr != NULL)
2261 {
2262 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2263
2264 *found_addrp = found_addr;
2265 return 1;
2266 }
2267
2268 /* Not found in this chunk, skip to next chunk. */
2269
2270 /* Don't let search_space_len wrap here, it's unsigned. */
2271 if (search_space_len >= chunk_size)
2272 search_space_len -= chunk_size;
2273 else
2274 search_space_len = 0;
2275
2276 if (search_space_len >= pattern_len)
2277 {
2278 unsigned keep_len = search_buf_size - chunk_size;
2279 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2280 int nr_to_read;
2281
2282 /* Copy the trailing part of the previous iteration to the front
2283 of the buffer for the next iteration. */
2284 gdb_assert (keep_len == pattern_len - 1);
2285 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2286
2287 nr_to_read = std::min (search_space_len - keep_len,
2288 (ULONGEST) chunk_size);
2289
2290 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2291 &search_buf[keep_len], read_addr,
2292 nr_to_read) != nr_to_read)
2293 {
2294 warning (_("Unable to access %s bytes of target "
2295 "memory at %s, halting search."),
2296 plongest (nr_to_read),
2297 hex_string (read_addr));
2298 return -1;
2299 }
2300
2301 start_addr += chunk_size;
2302 }
2303 }
2304
2305 /* Not found. */
2306
2307 return 0;
2308 }
2309
2310 /* Default implementation of memory-searching. */
2311
2312 static int
2313 default_search_memory (struct target_ops *self,
2314 CORE_ADDR start_addr, ULONGEST search_space_len,
2315 const gdb_byte *pattern, ULONGEST pattern_len,
2316 CORE_ADDR *found_addrp)
2317 {
2318 /* Start over from the top of the target stack. */
2319 return simple_search_memory (current_top_target (),
2320 start_addr, search_space_len,
2321 pattern, pattern_len, found_addrp);
2322 }
2323
2324 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2325 sequence of bytes in PATTERN with length PATTERN_LEN.
2326
2327 The result is 1 if found, 0 if not found, and -1 if there was an error
2328 requiring halting of the search (e.g. memory read error).
2329 If the pattern is found the address is recorded in FOUND_ADDRP. */
2330
2331 int
2332 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2333 const gdb_byte *pattern, ULONGEST pattern_len,
2334 CORE_ADDR *found_addrp)
2335 {
2336 return current_top_target ()->search_memory (start_addr, search_space_len,
2337 pattern, pattern_len, found_addrp);
2338 }
2339
2340 /* Look through the currently pushed targets. If none of them will
2341 be able to restart the currently running process, issue an error
2342 message. */
2343
2344 void
2345 target_require_runnable (void)
2346 {
2347 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2348 {
2349 /* If this target knows how to create a new program, then
2350 assume we will still be able to after killing the current
2351 one. Either killing and mourning will not pop T, or else
2352 find_default_run_target will find it again. */
2353 if (t->can_create_inferior ())
2354 return;
2355
2356 /* Do not worry about targets at certain strata that can not
2357 create inferiors. Assume they will be pushed again if
2358 necessary, and continue to the process_stratum. */
2359 if (t->stratum () > process_stratum)
2360 continue;
2361
2362 error (_("The \"%s\" target does not support \"run\". "
2363 "Try \"help target\" or \"continue\"."),
2364 t->shortname ());
2365 }
2366
2367 /* This function is only called if the target is running. In that
2368 case there should have been a process_stratum target and it
2369 should either know how to create inferiors, or not... */
2370 internal_error (__FILE__, __LINE__, _("No targets found"));
2371 }
2372
2373 /* Whether GDB is allowed to fall back to the default run target for
2374 "run", "attach", etc. when no target is connected yet. */
2375 static bool auto_connect_native_target = true;
2376
2377 static void
2378 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2379 struct cmd_list_element *c, const char *value)
2380 {
2381 fprintf_filtered (file,
2382 _("Whether GDB may automatically connect to the "
2383 "native target is %s.\n"),
2384 value);
2385 }
2386
2387 /* A pointer to the target that can respond to "run" or "attach".
2388 Native targets are always singletons and instantiated early at GDB
2389 startup. */
2390 static target_ops *the_native_target;
2391
2392 /* See target.h. */
2393
2394 void
2395 set_native_target (target_ops *target)
2396 {
2397 if (the_native_target != NULL)
2398 internal_error (__FILE__, __LINE__,
2399 _("native target already set (\"%s\")."),
2400 the_native_target->longname ());
2401
2402 the_native_target = target;
2403 }
2404
2405 /* See target.h. */
2406
2407 target_ops *
2408 get_native_target ()
2409 {
2410 return the_native_target;
2411 }
2412
2413 /* Look through the list of possible targets for a target that can
2414 execute a run or attach command without any other data. This is
2415 used to locate the default process stratum.
2416
2417 If DO_MESG is not NULL, the result is always valid (error() is
2418 called for errors); else, return NULL on error. */
2419
2420 static struct target_ops *
2421 find_default_run_target (const char *do_mesg)
2422 {
2423 if (auto_connect_native_target && the_native_target != NULL)
2424 return the_native_target;
2425
2426 if (do_mesg != NULL)
2427 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2428 return NULL;
2429 }
2430
2431 /* See target.h. */
2432
2433 struct target_ops *
2434 find_attach_target (void)
2435 {
2436 /* If a target on the current stack can attach, use it. */
2437 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2438 {
2439 if (t->can_attach ())
2440 return t;
2441 }
2442
2443 /* Otherwise, use the default run target for attaching. */
2444 return find_default_run_target ("attach");
2445 }
2446
2447 /* See target.h. */
2448
2449 struct target_ops *
2450 find_run_target (void)
2451 {
2452 /* If a target on the current stack can run, use it. */
2453 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2454 {
2455 if (t->can_create_inferior ())
2456 return t;
2457 }
2458
2459 /* Otherwise, use the default run target. */
2460 return find_default_run_target ("run");
2461 }
2462
2463 bool
2464 target_ops::info_proc (const char *args, enum info_proc_what what)
2465 {
2466 return false;
2467 }
2468
2469 /* Implement the "info proc" command. */
2470
2471 int
2472 target_info_proc (const char *args, enum info_proc_what what)
2473 {
2474 struct target_ops *t;
2475
2476 /* If we're already connected to something that can get us OS
2477 related data, use it. Otherwise, try using the native
2478 target. */
2479 t = find_target_at (process_stratum);
2480 if (t == NULL)
2481 t = find_default_run_target (NULL);
2482
2483 for (; t != NULL; t = t->beneath ())
2484 {
2485 if (t->info_proc (args, what))
2486 {
2487 if (targetdebug)
2488 fprintf_unfiltered (gdb_stdlog,
2489 "target_info_proc (\"%s\", %d)\n", args, what);
2490
2491 return 1;
2492 }
2493 }
2494
2495 return 0;
2496 }
2497
2498 static int
2499 find_default_supports_disable_randomization (struct target_ops *self)
2500 {
2501 struct target_ops *t;
2502
2503 t = find_default_run_target (NULL);
2504 if (t != NULL)
2505 return t->supports_disable_randomization ();
2506 return 0;
2507 }
2508
2509 int
2510 target_supports_disable_randomization (void)
2511 {
2512 return current_top_target ()->supports_disable_randomization ();
2513 }
2514
2515 /* See target/target.h. */
2516
2517 int
2518 target_supports_multi_process (void)
2519 {
2520 return current_top_target ()->supports_multi_process ();
2521 }
2522
2523 /* See target.h. */
2524
2525 gdb::optional<gdb::char_vector>
2526 target_get_osdata (const char *type)
2527 {
2528 struct target_ops *t;
2529
2530 /* If we're already connected to something that can get us OS
2531 related data, use it. Otherwise, try using the native
2532 target. */
2533 t = find_target_at (process_stratum);
2534 if (t == NULL)
2535 t = find_default_run_target ("get OS data");
2536
2537 if (!t)
2538 return {};
2539
2540 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2541 }
2542
2543
2544 /* Determine the current address space of thread PTID. */
2545
2546 struct address_space *
2547 target_thread_address_space (ptid_t ptid)
2548 {
2549 struct address_space *aspace;
2550
2551 aspace = current_top_target ()->thread_address_space (ptid);
2552 gdb_assert (aspace != NULL);
2553
2554 return aspace;
2555 }
2556
2557 /* See target.h. */
2558
2559 target_ops *
2560 target_ops::beneath () const
2561 {
2562 return g_target_stack.find_beneath (this);
2563 }
2564
2565 void
2566 target_ops::close ()
2567 {
2568 }
2569
2570 bool
2571 target_ops::can_attach ()
2572 {
2573 return 0;
2574 }
2575
2576 void
2577 target_ops::attach (const char *, int)
2578 {
2579 gdb_assert_not_reached ("target_ops::attach called");
2580 }
2581
2582 bool
2583 target_ops::can_create_inferior ()
2584 {
2585 return 0;
2586 }
2587
2588 void
2589 target_ops::create_inferior (const char *, const std::string &,
2590 char **, int)
2591 {
2592 gdb_assert_not_reached ("target_ops::create_inferior called");
2593 }
2594
2595 bool
2596 target_ops::can_run ()
2597 {
2598 return false;
2599 }
2600
2601 int
2602 target_can_run ()
2603 {
2604 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2605 {
2606 if (t->can_run ())
2607 return 1;
2608 }
2609
2610 return 0;
2611 }
2612
2613 /* Target file operations. */
2614
2615 static struct target_ops *
2616 default_fileio_target (void)
2617 {
2618 struct target_ops *t;
2619
2620 /* If we're already connected to something that can perform
2621 file I/O, use it. Otherwise, try using the native target. */
2622 t = find_target_at (process_stratum);
2623 if (t != NULL)
2624 return t;
2625 return find_default_run_target ("file I/O");
2626 }
2627
2628 /* File handle for target file operations. */
2629
2630 struct fileio_fh_t
2631 {
2632 /* The target on which this file is open. NULL if the target is
2633 meanwhile closed while the handle is open. */
2634 target_ops *target;
2635
2636 /* The file descriptor on the target. */
2637 int target_fd;
2638
2639 /* Check whether this fileio_fh_t represents a closed file. */
2640 bool is_closed ()
2641 {
2642 return target_fd < 0;
2643 }
2644 };
2645
2646 /* Vector of currently open file handles. The value returned by
2647 target_fileio_open and passed as the FD argument to other
2648 target_fileio_* functions is an index into this vector. This
2649 vector's entries are never freed; instead, files are marked as
2650 closed, and the handle becomes available for reuse. */
2651 static std::vector<fileio_fh_t> fileio_fhandles;
2652
2653 /* Index into fileio_fhandles of the lowest handle that might be
2654 closed. This permits handle reuse without searching the whole
2655 list each time a new file is opened. */
2656 static int lowest_closed_fd;
2657
2658 /* Invalidate the target associated with open handles that were open
2659 on target TARG, since we're about to close (and maybe destroy) the
2660 target. The handles remain open from the client's perspective, but
2661 trying to do anything with them other than closing them will fail
2662 with EIO. */
2663
2664 static void
2665 fileio_handles_invalidate_target (target_ops *targ)
2666 {
2667 for (fileio_fh_t &fh : fileio_fhandles)
2668 if (fh.target == targ)
2669 fh.target = NULL;
2670 }
2671
2672 /* Acquire a target fileio file descriptor. */
2673
2674 static int
2675 acquire_fileio_fd (target_ops *target, int target_fd)
2676 {
2677 /* Search for closed handles to reuse. */
2678 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2679 {
2680 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2681
2682 if (fh.is_closed ())
2683 break;
2684 }
2685
2686 /* Push a new handle if no closed handles were found. */
2687 if (lowest_closed_fd == fileio_fhandles.size ())
2688 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2689 else
2690 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2691
2692 /* Should no longer be marked closed. */
2693 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2694
2695 /* Return its index, and start the next lookup at
2696 the next index. */
2697 return lowest_closed_fd++;
2698 }
2699
2700 /* Release a target fileio file descriptor. */
2701
2702 static void
2703 release_fileio_fd (int fd, fileio_fh_t *fh)
2704 {
2705 fh->target_fd = -1;
2706 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2707 }
2708
2709 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2710
2711 static fileio_fh_t *
2712 fileio_fd_to_fh (int fd)
2713 {
2714 return &fileio_fhandles[fd];
2715 }
2716
2717
2718 /* Default implementations of file i/o methods. We don't want these
2719 to delegate automatically, because we need to know which target
2720 supported the method, in order to call it directly from within
2721 pread/pwrite, etc. */
2722
2723 int
2724 target_ops::fileio_open (struct inferior *inf, const char *filename,
2725 int flags, int mode, int warn_if_slow,
2726 int *target_errno)
2727 {
2728 *target_errno = FILEIO_ENOSYS;
2729 return -1;
2730 }
2731
2732 int
2733 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2734 ULONGEST offset, int *target_errno)
2735 {
2736 *target_errno = FILEIO_ENOSYS;
2737 return -1;
2738 }
2739
2740 int
2741 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2742 ULONGEST offset, int *target_errno)
2743 {
2744 *target_errno = FILEIO_ENOSYS;
2745 return -1;
2746 }
2747
2748 int
2749 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2750 {
2751 *target_errno = FILEIO_ENOSYS;
2752 return -1;
2753 }
2754
2755 int
2756 target_ops::fileio_close (int fd, int *target_errno)
2757 {
2758 *target_errno = FILEIO_ENOSYS;
2759 return -1;
2760 }
2761
2762 int
2763 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2764 int *target_errno)
2765 {
2766 *target_errno = FILEIO_ENOSYS;
2767 return -1;
2768 }
2769
2770 gdb::optional<std::string>
2771 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2772 int *target_errno)
2773 {
2774 *target_errno = FILEIO_ENOSYS;
2775 return {};
2776 }
2777
2778 /* Helper for target_fileio_open and
2779 target_fileio_open_warn_if_slow. */
2780
2781 static int
2782 target_fileio_open_1 (struct inferior *inf, const char *filename,
2783 int flags, int mode, int warn_if_slow,
2784 int *target_errno)
2785 {
2786 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2787 {
2788 int fd = t->fileio_open (inf, filename, flags, mode,
2789 warn_if_slow, target_errno);
2790
2791 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2792 continue;
2793
2794 if (fd < 0)
2795 fd = -1;
2796 else
2797 fd = acquire_fileio_fd (t, fd);
2798
2799 if (targetdebug)
2800 fprintf_unfiltered (gdb_stdlog,
2801 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2802 " = %d (%d)\n",
2803 inf == NULL ? 0 : inf->num,
2804 filename, flags, mode,
2805 warn_if_slow, fd,
2806 fd != -1 ? 0 : *target_errno);
2807 return fd;
2808 }
2809
2810 *target_errno = FILEIO_ENOSYS;
2811 return -1;
2812 }
2813
2814 /* See target.h. */
2815
2816 int
2817 target_fileio_open (struct inferior *inf, const char *filename,
2818 int flags, int mode, int *target_errno)
2819 {
2820 return target_fileio_open_1 (inf, filename, flags, mode, 0,
2821 target_errno);
2822 }
2823
2824 /* See target.h. */
2825
2826 int
2827 target_fileio_open_warn_if_slow (struct inferior *inf,
2828 const char *filename,
2829 int flags, int mode, int *target_errno)
2830 {
2831 return target_fileio_open_1 (inf, filename, flags, mode, 1,
2832 target_errno);
2833 }
2834
2835 /* See target.h. */
2836
2837 int
2838 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2839 ULONGEST offset, int *target_errno)
2840 {
2841 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2842 int ret = -1;
2843
2844 if (fh->is_closed ())
2845 *target_errno = EBADF;
2846 else if (fh->target == NULL)
2847 *target_errno = EIO;
2848 else
2849 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2850 len, offset, target_errno);
2851
2852 if (targetdebug)
2853 fprintf_unfiltered (gdb_stdlog,
2854 "target_fileio_pwrite (%d,...,%d,%s) "
2855 "= %d (%d)\n",
2856 fd, len, pulongest (offset),
2857 ret, ret != -1 ? 0 : *target_errno);
2858 return ret;
2859 }
2860
2861 /* See target.h. */
2862
2863 int
2864 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2865 ULONGEST offset, int *target_errno)
2866 {
2867 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2868 int ret = -1;
2869
2870 if (fh->is_closed ())
2871 *target_errno = EBADF;
2872 else if (fh->target == NULL)
2873 *target_errno = EIO;
2874 else
2875 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2876 len, offset, target_errno);
2877
2878 if (targetdebug)
2879 fprintf_unfiltered (gdb_stdlog,
2880 "target_fileio_pread (%d,...,%d,%s) "
2881 "= %d (%d)\n",
2882 fd, len, pulongest (offset),
2883 ret, ret != -1 ? 0 : *target_errno);
2884 return ret;
2885 }
2886
2887 /* See target.h. */
2888
2889 int
2890 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2891 {
2892 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2893 int ret = -1;
2894
2895 if (fh->is_closed ())
2896 *target_errno = EBADF;
2897 else if (fh->target == NULL)
2898 *target_errno = EIO;
2899 else
2900 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2901
2902 if (targetdebug)
2903 fprintf_unfiltered (gdb_stdlog,
2904 "target_fileio_fstat (%d) = %d (%d)\n",
2905 fd, ret, ret != -1 ? 0 : *target_errno);
2906 return ret;
2907 }
2908
2909 /* See target.h. */
2910
2911 int
2912 target_fileio_close (int fd, int *target_errno)
2913 {
2914 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2915 int ret = -1;
2916
2917 if (fh->is_closed ())
2918 *target_errno = EBADF;
2919 else
2920 {
2921 if (fh->target != NULL)
2922 ret = fh->target->fileio_close (fh->target_fd,
2923 target_errno);
2924 else
2925 ret = 0;
2926 release_fileio_fd (fd, fh);
2927 }
2928
2929 if (targetdebug)
2930 fprintf_unfiltered (gdb_stdlog,
2931 "target_fileio_close (%d) = %d (%d)\n",
2932 fd, ret, ret != -1 ? 0 : *target_errno);
2933 return ret;
2934 }
2935
2936 /* See target.h. */
2937
2938 int
2939 target_fileio_unlink (struct inferior *inf, const char *filename,
2940 int *target_errno)
2941 {
2942 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2943 {
2944 int ret = t->fileio_unlink (inf, filename, target_errno);
2945
2946 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2947 continue;
2948
2949 if (targetdebug)
2950 fprintf_unfiltered (gdb_stdlog,
2951 "target_fileio_unlink (%d,%s)"
2952 " = %d (%d)\n",
2953 inf == NULL ? 0 : inf->num, filename,
2954 ret, ret != -1 ? 0 : *target_errno);
2955 return ret;
2956 }
2957
2958 *target_errno = FILEIO_ENOSYS;
2959 return -1;
2960 }
2961
2962 /* See target.h. */
2963
2964 gdb::optional<std::string>
2965 target_fileio_readlink (struct inferior *inf, const char *filename,
2966 int *target_errno)
2967 {
2968 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2969 {
2970 gdb::optional<std::string> ret
2971 = t->fileio_readlink (inf, filename, target_errno);
2972
2973 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2974 continue;
2975
2976 if (targetdebug)
2977 fprintf_unfiltered (gdb_stdlog,
2978 "target_fileio_readlink (%d,%s)"
2979 " = %s (%d)\n",
2980 inf == NULL ? 0 : inf->num,
2981 filename, ret ? ret->c_str () : "(nil)",
2982 ret ? 0 : *target_errno);
2983 return ret;
2984 }
2985
2986 *target_errno = FILEIO_ENOSYS;
2987 return {};
2988 }
2989
2990 /* Like scoped_fd, but specific to target fileio. */
2991
2992 class scoped_target_fd
2993 {
2994 public:
2995 explicit scoped_target_fd (int fd) noexcept
2996 : m_fd (fd)
2997 {
2998 }
2999
3000 ~scoped_target_fd ()
3001 {
3002 if (m_fd >= 0)
3003 {
3004 int target_errno;
3005
3006 target_fileio_close (m_fd, &target_errno);
3007 }
3008 }
3009
3010 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
3011
3012 int get () const noexcept
3013 {
3014 return m_fd;
3015 }
3016
3017 private:
3018 int m_fd;
3019 };
3020
3021 /* Read target file FILENAME, in the filesystem as seen by INF. If
3022 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3023 remote targets, the remote stub). Store the result in *BUF_P and
3024 return the size of the transferred data. PADDING additional bytes
3025 are available in *BUF_P. This is a helper function for
3026 target_fileio_read_alloc; see the declaration of that function for
3027 more information. */
3028
3029 static LONGEST
3030 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3031 gdb_byte **buf_p, int padding)
3032 {
3033 size_t buf_alloc, buf_pos;
3034 gdb_byte *buf;
3035 LONGEST n;
3036 int target_errno;
3037
3038 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3039 0700, &target_errno));
3040 if (fd.get () == -1)
3041 return -1;
3042
3043 /* Start by reading up to 4K at a time. The target will throttle
3044 this number down if necessary. */
3045 buf_alloc = 4096;
3046 buf = (gdb_byte *) xmalloc (buf_alloc);
3047 buf_pos = 0;
3048 while (1)
3049 {
3050 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3051 buf_alloc - buf_pos - padding, buf_pos,
3052 &target_errno);
3053 if (n < 0)
3054 {
3055 /* An error occurred. */
3056 xfree (buf);
3057 return -1;
3058 }
3059 else if (n == 0)
3060 {
3061 /* Read all there was. */
3062 if (buf_pos == 0)
3063 xfree (buf);
3064 else
3065 *buf_p = buf;
3066 return buf_pos;
3067 }
3068
3069 buf_pos += n;
3070
3071 /* If the buffer is filling up, expand it. */
3072 if (buf_alloc < buf_pos * 2)
3073 {
3074 buf_alloc *= 2;
3075 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3076 }
3077
3078 QUIT;
3079 }
3080 }
3081
3082 /* See target.h. */
3083
3084 LONGEST
3085 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3086 gdb_byte **buf_p)
3087 {
3088 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3089 }
3090
3091 /* See target.h. */
3092
3093 gdb::unique_xmalloc_ptr<char>
3094 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3095 {
3096 gdb_byte *buffer;
3097 char *bufstr;
3098 LONGEST i, transferred;
3099
3100 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3101 bufstr = (char *) buffer;
3102
3103 if (transferred < 0)
3104 return gdb::unique_xmalloc_ptr<char> (nullptr);
3105
3106 if (transferred == 0)
3107 return make_unique_xstrdup ("");
3108
3109 bufstr[transferred] = 0;
3110
3111 /* Check for embedded NUL bytes; but allow trailing NULs. */
3112 for (i = strlen (bufstr); i < transferred; i++)
3113 if (bufstr[i] != 0)
3114 {
3115 warning (_("target file %s "
3116 "contained unexpected null characters"),
3117 filename);
3118 break;
3119 }
3120
3121 return gdb::unique_xmalloc_ptr<char> (bufstr);
3122 }
3123
3124
3125 static int
3126 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3127 CORE_ADDR addr, int len)
3128 {
3129 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3130 }
3131
3132 static int
3133 default_watchpoint_addr_within_range (struct target_ops *target,
3134 CORE_ADDR addr,
3135 CORE_ADDR start, int length)
3136 {
3137 return addr >= start && addr < start + length;
3138 }
3139
3140 /* See target.h. */
3141
3142 target_ops *
3143 target_stack::find_beneath (const target_ops *t) const
3144 {
3145 /* Look for a non-empty slot at stratum levels beneath T's. */
3146 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
3147 if (m_stack[stratum] != NULL)
3148 return m_stack[stratum];
3149
3150 return NULL;
3151 }
3152
3153 /* See target.h. */
3154
3155 struct target_ops *
3156 find_target_at (enum strata stratum)
3157 {
3158 return g_target_stack.at (stratum);
3159 }
3160
3161 \f
3162
3163 /* See target.h */
3164
3165 void
3166 target_announce_detach (int from_tty)
3167 {
3168 pid_t pid;
3169 const char *exec_file;
3170
3171 if (!from_tty)
3172 return;
3173
3174 exec_file = get_exec_file (0);
3175 if (exec_file == NULL)
3176 exec_file = "";
3177
3178 pid = inferior_ptid.pid ();
3179 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3180 target_pid_to_str (ptid_t (pid)).c_str ());
3181 }
3182
3183 /* The inferior process has died. Long live the inferior! */
3184
3185 void
3186 generic_mourn_inferior (void)
3187 {
3188 inferior *inf = current_inferior ();
3189
3190 inferior_ptid = null_ptid;
3191
3192 /* Mark breakpoints uninserted in case something tries to delete a
3193 breakpoint while we delete the inferior's threads (which would
3194 fail, since the inferior is long gone). */
3195 mark_breakpoints_out ();
3196
3197 if (inf->pid != 0)
3198 exit_inferior (inf);
3199
3200 /* Note this wipes step-resume breakpoints, so needs to be done
3201 after exit_inferior, which ends up referencing the step-resume
3202 breakpoints through clear_thread_inferior_resources. */
3203 breakpoint_init_inferior (inf_exited);
3204
3205 registers_changed ();
3206
3207 reopen_exec_file ();
3208 reinit_frame_cache ();
3209
3210 if (deprecated_detach_hook)
3211 deprecated_detach_hook ();
3212 }
3213 \f
3214 /* Convert a normal process ID to a string. Returns the string in a
3215 static buffer. */
3216
3217 std::string
3218 normal_pid_to_str (ptid_t ptid)
3219 {
3220 return string_printf ("process %d", ptid.pid ());
3221 }
3222
3223 static std::string
3224 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3225 {
3226 return normal_pid_to_str (ptid);
3227 }
3228
3229 /* Error-catcher for target_find_memory_regions. */
3230 static int
3231 dummy_find_memory_regions (struct target_ops *self,
3232 find_memory_region_ftype ignore1, void *ignore2)
3233 {
3234 error (_("Command not implemented for this target."));
3235 return 0;
3236 }
3237
3238 /* Error-catcher for target_make_corefile_notes. */
3239 static char *
3240 dummy_make_corefile_notes (struct target_ops *self,
3241 bfd *ignore1, int *ignore2)
3242 {
3243 error (_("Command not implemented for this target."));
3244 return NULL;
3245 }
3246
3247 #include "target-delegates.c"
3248
3249 /* The initial current target, so that there is always a semi-valid
3250 current target. */
3251
3252 static dummy_target the_dummy_target;
3253
3254 static const target_info dummy_target_info = {
3255 "None",
3256 N_("None"),
3257 ""
3258 };
3259
3260 strata
3261 dummy_target::stratum () const
3262 {
3263 return dummy_stratum;
3264 }
3265
3266 strata
3267 debug_target::stratum () const
3268 {
3269 return debug_stratum;
3270 }
3271
3272 const target_info &
3273 dummy_target::info () const
3274 {
3275 return dummy_target_info;
3276 }
3277
3278 const target_info &
3279 debug_target::info () const
3280 {
3281 return beneath ()->info ();
3282 }
3283
3284 \f
3285
3286 void
3287 target_close (struct target_ops *targ)
3288 {
3289 gdb_assert (!target_is_pushed (targ));
3290
3291 fileio_handles_invalidate_target (targ);
3292
3293 targ->close ();
3294
3295 if (targetdebug)
3296 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3297 }
3298
3299 int
3300 target_thread_alive (ptid_t ptid)
3301 {
3302 return current_top_target ()->thread_alive (ptid);
3303 }
3304
3305 void
3306 target_update_thread_list (void)
3307 {
3308 current_top_target ()->update_thread_list ();
3309 }
3310
3311 void
3312 target_stop (ptid_t ptid)
3313 {
3314 if (!may_stop)
3315 {
3316 warning (_("May not interrupt or stop the target, ignoring attempt"));
3317 return;
3318 }
3319
3320 current_top_target ()->stop (ptid);
3321 }
3322
3323 void
3324 target_interrupt ()
3325 {
3326 if (!may_stop)
3327 {
3328 warning (_("May not interrupt or stop the target, ignoring attempt"));
3329 return;
3330 }
3331
3332 current_top_target ()->interrupt ();
3333 }
3334
3335 /* See target.h. */
3336
3337 void
3338 target_pass_ctrlc (void)
3339 {
3340 current_top_target ()->pass_ctrlc ();
3341 }
3342
3343 /* See target.h. */
3344
3345 void
3346 default_target_pass_ctrlc (struct target_ops *ops)
3347 {
3348 target_interrupt ();
3349 }
3350
3351 /* See target/target.h. */
3352
3353 void
3354 target_stop_and_wait (ptid_t ptid)
3355 {
3356 struct target_waitstatus status;
3357 bool was_non_stop = non_stop;
3358
3359 non_stop = true;
3360 target_stop (ptid);
3361
3362 memset (&status, 0, sizeof (status));
3363 target_wait (ptid, &status, 0);
3364
3365 non_stop = was_non_stop;
3366 }
3367
3368 /* See target/target.h. */
3369
3370 void
3371 target_continue_no_signal (ptid_t ptid)
3372 {
3373 target_resume (ptid, 0, GDB_SIGNAL_0);
3374 }
3375
3376 /* See target/target.h. */
3377
3378 void
3379 target_continue (ptid_t ptid, enum gdb_signal signal)
3380 {
3381 target_resume (ptid, 0, signal);
3382 }
3383
3384 /* Concatenate ELEM to LIST, a comma-separated list. */
3385
3386 static void
3387 str_comma_list_concat_elem (std::string *list, const char *elem)
3388 {
3389 if (!list->empty ())
3390 list->append (", ");
3391
3392 list->append (elem);
3393 }
3394
3395 /* Helper for target_options_to_string. If OPT is present in
3396 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3397 OPT is removed from TARGET_OPTIONS. */
3398
3399 static void
3400 do_option (int *target_options, std::string *ret,
3401 int opt, const char *opt_str)
3402 {
3403 if ((*target_options & opt) != 0)
3404 {
3405 str_comma_list_concat_elem (ret, opt_str);
3406 *target_options &= ~opt;
3407 }
3408 }
3409
3410 /* See target.h. */
3411
3412 std::string
3413 target_options_to_string (int target_options)
3414 {
3415 std::string ret;
3416
3417 #define DO_TARG_OPTION(OPT) \
3418 do_option (&target_options, &ret, OPT, #OPT)
3419
3420 DO_TARG_OPTION (TARGET_WNOHANG);
3421
3422 if (target_options != 0)
3423 str_comma_list_concat_elem (&ret, "unknown???");
3424
3425 return ret;
3426 }
3427
3428 void
3429 target_fetch_registers (struct regcache *regcache, int regno)
3430 {
3431 current_top_target ()->fetch_registers (regcache, regno);
3432 if (targetdebug)
3433 regcache->debug_print_register ("target_fetch_registers", regno);
3434 }
3435
3436 void
3437 target_store_registers (struct regcache *regcache, int regno)
3438 {
3439 if (!may_write_registers)
3440 error (_("Writing to registers is not allowed (regno %d)"), regno);
3441
3442 current_top_target ()->store_registers (regcache, regno);
3443 if (targetdebug)
3444 {
3445 regcache->debug_print_register ("target_store_registers", regno);
3446 }
3447 }
3448
3449 int
3450 target_core_of_thread (ptid_t ptid)
3451 {
3452 return current_top_target ()->core_of_thread (ptid);
3453 }
3454
3455 int
3456 simple_verify_memory (struct target_ops *ops,
3457 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3458 {
3459 LONGEST total_xfered = 0;
3460
3461 while (total_xfered < size)
3462 {
3463 ULONGEST xfered_len;
3464 enum target_xfer_status status;
3465 gdb_byte buf[1024];
3466 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3467
3468 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3469 buf, NULL, lma + total_xfered, howmuch,
3470 &xfered_len);
3471 if (status == TARGET_XFER_OK
3472 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3473 {
3474 total_xfered += xfered_len;
3475 QUIT;
3476 }
3477 else
3478 return 0;
3479 }
3480 return 1;
3481 }
3482
3483 /* Default implementation of memory verification. */
3484
3485 static int
3486 default_verify_memory (struct target_ops *self,
3487 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3488 {
3489 /* Start over from the top of the target stack. */
3490 return simple_verify_memory (current_top_target (),
3491 data, memaddr, size);
3492 }
3493
3494 int
3495 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3496 {
3497 return current_top_target ()->verify_memory (data, memaddr, size);
3498 }
3499
3500 /* The documentation for this function is in its prototype declaration in
3501 target.h. */
3502
3503 int
3504 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3505 enum target_hw_bp_type rw)
3506 {
3507 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3508 }
3509
3510 /* The documentation for this function is in its prototype declaration in
3511 target.h. */
3512
3513 int
3514 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3515 enum target_hw_bp_type rw)
3516 {
3517 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3518 }
3519
3520 /* The documentation for this function is in its prototype declaration
3521 in target.h. */
3522
3523 int
3524 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3525 {
3526 return current_top_target ()->masked_watch_num_registers (addr, mask);
3527 }
3528
3529 /* The documentation for this function is in its prototype declaration
3530 in target.h. */
3531
3532 int
3533 target_ranged_break_num_registers (void)
3534 {
3535 return current_top_target ()->ranged_break_num_registers ();
3536 }
3537
3538 /* See target.h. */
3539
3540 struct btrace_target_info *
3541 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3542 {
3543 return current_top_target ()->enable_btrace (ptid, conf);
3544 }
3545
3546 /* See target.h. */
3547
3548 void
3549 target_disable_btrace (struct btrace_target_info *btinfo)
3550 {
3551 current_top_target ()->disable_btrace (btinfo);
3552 }
3553
3554 /* See target.h. */
3555
3556 void
3557 target_teardown_btrace (struct btrace_target_info *btinfo)
3558 {
3559 current_top_target ()->teardown_btrace (btinfo);
3560 }
3561
3562 /* See target.h. */
3563
3564 enum btrace_error
3565 target_read_btrace (struct btrace_data *btrace,
3566 struct btrace_target_info *btinfo,
3567 enum btrace_read_type type)
3568 {
3569 return current_top_target ()->read_btrace (btrace, btinfo, type);
3570 }
3571
3572 /* See target.h. */
3573
3574 const struct btrace_config *
3575 target_btrace_conf (const struct btrace_target_info *btinfo)
3576 {
3577 return current_top_target ()->btrace_conf (btinfo);
3578 }
3579
3580 /* See target.h. */
3581
3582 void
3583 target_stop_recording (void)
3584 {
3585 current_top_target ()->stop_recording ();
3586 }
3587
3588 /* See target.h. */
3589
3590 void
3591 target_save_record (const char *filename)
3592 {
3593 current_top_target ()->save_record (filename);
3594 }
3595
3596 /* See target.h. */
3597
3598 int
3599 target_supports_delete_record ()
3600 {
3601 return current_top_target ()->supports_delete_record ();
3602 }
3603
3604 /* See target.h. */
3605
3606 void
3607 target_delete_record (void)
3608 {
3609 current_top_target ()->delete_record ();
3610 }
3611
3612 /* See target.h. */
3613
3614 enum record_method
3615 target_record_method (ptid_t ptid)
3616 {
3617 return current_top_target ()->record_method (ptid);
3618 }
3619
3620 /* See target.h. */
3621
3622 int
3623 target_record_is_replaying (ptid_t ptid)
3624 {
3625 return current_top_target ()->record_is_replaying (ptid);
3626 }
3627
3628 /* See target.h. */
3629
3630 int
3631 target_record_will_replay (ptid_t ptid, int dir)
3632 {
3633 return current_top_target ()->record_will_replay (ptid, dir);
3634 }
3635
3636 /* See target.h. */
3637
3638 void
3639 target_record_stop_replaying (void)
3640 {
3641 current_top_target ()->record_stop_replaying ();
3642 }
3643
3644 /* See target.h. */
3645
3646 void
3647 target_goto_record_begin (void)
3648 {
3649 current_top_target ()->goto_record_begin ();
3650 }
3651
3652 /* See target.h. */
3653
3654 void
3655 target_goto_record_end (void)
3656 {
3657 current_top_target ()->goto_record_end ();
3658 }
3659
3660 /* See target.h. */
3661
3662 void
3663 target_goto_record (ULONGEST insn)
3664 {
3665 current_top_target ()->goto_record (insn);
3666 }
3667
3668 /* See target.h. */
3669
3670 void
3671 target_insn_history (int size, gdb_disassembly_flags flags)
3672 {
3673 current_top_target ()->insn_history (size, flags);
3674 }
3675
3676 /* See target.h. */
3677
3678 void
3679 target_insn_history_from (ULONGEST from, int size,
3680 gdb_disassembly_flags flags)
3681 {
3682 current_top_target ()->insn_history_from (from, size, flags);
3683 }
3684
3685 /* See target.h. */
3686
3687 void
3688 target_insn_history_range (ULONGEST begin, ULONGEST end,
3689 gdb_disassembly_flags flags)
3690 {
3691 current_top_target ()->insn_history_range (begin, end, flags);
3692 }
3693
3694 /* See target.h. */
3695
3696 void
3697 target_call_history (int size, record_print_flags flags)
3698 {
3699 current_top_target ()->call_history (size, flags);
3700 }
3701
3702 /* See target.h. */
3703
3704 void
3705 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3706 {
3707 current_top_target ()->call_history_from (begin, size, flags);
3708 }
3709
3710 /* See target.h. */
3711
3712 void
3713 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3714 {
3715 current_top_target ()->call_history_range (begin, end, flags);
3716 }
3717
3718 /* See target.h. */
3719
3720 const struct frame_unwind *
3721 target_get_unwinder (void)
3722 {
3723 return current_top_target ()->get_unwinder ();
3724 }
3725
3726 /* See target.h. */
3727
3728 const struct frame_unwind *
3729 target_get_tailcall_unwinder (void)
3730 {
3731 return current_top_target ()->get_tailcall_unwinder ();
3732 }
3733
3734 /* See target.h. */
3735
3736 void
3737 target_prepare_to_generate_core (void)
3738 {
3739 current_top_target ()->prepare_to_generate_core ();
3740 }
3741
3742 /* See target.h. */
3743
3744 void
3745 target_done_generating_core (void)
3746 {
3747 current_top_target ()->done_generating_core ();
3748 }
3749
3750 \f
3751
3752 static char targ_desc[] =
3753 "Names of targets and files being debugged.\nShows the entire \
3754 stack of targets currently in use (including the exec-file,\n\
3755 core-file, and process, if any), as well as the symbol file name.";
3756
3757 static void
3758 default_rcmd (struct target_ops *self, const char *command,
3759 struct ui_file *output)
3760 {
3761 error (_("\"monitor\" command not supported by this target."));
3762 }
3763
3764 static void
3765 do_monitor_command (const char *cmd, int from_tty)
3766 {
3767 target_rcmd (cmd, gdb_stdtarg);
3768 }
3769
3770 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3771 ignored. */
3772
3773 void
3774 flash_erase_command (const char *cmd, int from_tty)
3775 {
3776 /* Used to communicate termination of flash operations to the target. */
3777 bool found_flash_region = false;
3778 struct gdbarch *gdbarch = target_gdbarch ();
3779
3780 std::vector<mem_region> mem_regions = target_memory_map ();
3781
3782 /* Iterate over all memory regions. */
3783 for (const mem_region &m : mem_regions)
3784 {
3785 /* Is this a flash memory region? */
3786 if (m.attrib.mode == MEM_FLASH)
3787 {
3788 found_flash_region = true;
3789 target_flash_erase (m.lo, m.hi - m.lo);
3790
3791 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3792
3793 current_uiout->message (_("Erasing flash memory region at address "));
3794 current_uiout->field_core_addr ("address", gdbarch, m.lo);
3795 current_uiout->message (", size = ");
3796 current_uiout->field_string ("size", hex_string (m.hi - m.lo));
3797 current_uiout->message ("\n");
3798 }
3799 }
3800
3801 /* Did we do any flash operations? If so, we need to finalize them. */
3802 if (found_flash_region)
3803 target_flash_done ();
3804 else
3805 current_uiout->message (_("No flash memory regions found.\n"));
3806 }
3807
3808 /* Print the name of each layers of our target stack. */
3809
3810 static void
3811 maintenance_print_target_stack (const char *cmd, int from_tty)
3812 {
3813 printf_filtered (_("The current target stack is:\n"));
3814
3815 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3816 {
3817 if (t->stratum () == debug_stratum)
3818 continue;
3819 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3820 }
3821 }
3822
3823 /* See target.h. */
3824
3825 void
3826 target_async (int enable)
3827 {
3828 infrun_async (enable);
3829 current_top_target ()->async (enable);
3830 }
3831
3832 /* See target.h. */
3833
3834 void
3835 target_thread_events (int enable)
3836 {
3837 current_top_target ()->thread_events (enable);
3838 }
3839
3840 /* Controls if targets can report that they can/are async. This is
3841 just for maintainers to use when debugging gdb. */
3842 bool target_async_permitted = true;
3843
3844 /* The set command writes to this variable. If the inferior is
3845 executing, target_async_permitted is *not* updated. */
3846 static bool target_async_permitted_1 = true;
3847
3848 static void
3849 maint_set_target_async_command (const char *args, int from_tty,
3850 struct cmd_list_element *c)
3851 {
3852 if (have_live_inferiors ())
3853 {
3854 target_async_permitted_1 = target_async_permitted;
3855 error (_("Cannot change this setting while the inferior is running."));
3856 }
3857
3858 target_async_permitted = target_async_permitted_1;
3859 }
3860
3861 static void
3862 maint_show_target_async_command (struct ui_file *file, int from_tty,
3863 struct cmd_list_element *c,
3864 const char *value)
3865 {
3866 fprintf_filtered (file,
3867 _("Controlling the inferior in "
3868 "asynchronous mode is %s.\n"), value);
3869 }
3870
3871 /* Return true if the target operates in non-stop mode even with "set
3872 non-stop off". */
3873
3874 static int
3875 target_always_non_stop_p (void)
3876 {
3877 return current_top_target ()->always_non_stop_p ();
3878 }
3879
3880 /* See target.h. */
3881
3882 int
3883 target_is_non_stop_p (void)
3884 {
3885 return (non_stop
3886 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3887 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3888 && target_always_non_stop_p ()));
3889 }
3890
3891 /* Controls if targets can report that they always run in non-stop
3892 mode. This is just for maintainers to use when debugging gdb. */
3893 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3894
3895 /* The set command writes to this variable. If the inferior is
3896 executing, target_non_stop_enabled is *not* updated. */
3897 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3898
3899 /* Implementation of "maint set target-non-stop". */
3900
3901 static void
3902 maint_set_target_non_stop_command (const char *args, int from_tty,
3903 struct cmd_list_element *c)
3904 {
3905 if (have_live_inferiors ())
3906 {
3907 target_non_stop_enabled_1 = target_non_stop_enabled;
3908 error (_("Cannot change this setting while the inferior is running."));
3909 }
3910
3911 target_non_stop_enabled = target_non_stop_enabled_1;
3912 }
3913
3914 /* Implementation of "maint show target-non-stop". */
3915
3916 static void
3917 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3918 struct cmd_list_element *c,
3919 const char *value)
3920 {
3921 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3922 fprintf_filtered (file,
3923 _("Whether the target is always in non-stop mode "
3924 "is %s (currently %s).\n"), value,
3925 target_always_non_stop_p () ? "on" : "off");
3926 else
3927 fprintf_filtered (file,
3928 _("Whether the target is always in non-stop mode "
3929 "is %s.\n"), value);
3930 }
3931
3932 /* Temporary copies of permission settings. */
3933
3934 static bool may_write_registers_1 = true;
3935 static bool may_write_memory_1 = true;
3936 static bool may_insert_breakpoints_1 = true;
3937 static bool may_insert_tracepoints_1 = true;
3938 static bool may_insert_fast_tracepoints_1 = true;
3939 static bool may_stop_1 = true;
3940
3941 /* Make the user-set values match the real values again. */
3942
3943 void
3944 update_target_permissions (void)
3945 {
3946 may_write_registers_1 = may_write_registers;
3947 may_write_memory_1 = may_write_memory;
3948 may_insert_breakpoints_1 = may_insert_breakpoints;
3949 may_insert_tracepoints_1 = may_insert_tracepoints;
3950 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3951 may_stop_1 = may_stop;
3952 }
3953
3954 /* The one function handles (most of) the permission flags in the same
3955 way. */
3956
3957 static void
3958 set_target_permissions (const char *args, int from_tty,
3959 struct cmd_list_element *c)
3960 {
3961 if (target_has_execution)
3962 {
3963 update_target_permissions ();
3964 error (_("Cannot change this setting while the inferior is running."));
3965 }
3966
3967 /* Make the real values match the user-changed values. */
3968 may_write_registers = may_write_registers_1;
3969 may_insert_breakpoints = may_insert_breakpoints_1;
3970 may_insert_tracepoints = may_insert_tracepoints_1;
3971 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
3972 may_stop = may_stop_1;
3973 update_observer_mode ();
3974 }
3975
3976 /* Set memory write permission independently of observer mode. */
3977
3978 static void
3979 set_write_memory_permission (const char *args, int from_tty,
3980 struct cmd_list_element *c)
3981 {
3982 /* Make the real values match the user-changed values. */
3983 may_write_memory = may_write_memory_1;
3984 update_observer_mode ();
3985 }
3986
3987 void
3988 initialize_targets (void)
3989 {
3990 push_target (&the_dummy_target);
3991
3992 the_debug_target = new debug_target ();
3993
3994 add_info ("target", info_target_command, targ_desc);
3995 add_info ("files", info_target_command, targ_desc);
3996
3997 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
3998 Set target debugging."), _("\
3999 Show target debugging."), _("\
4000 When non-zero, target debugging is enabled. Higher numbers are more\n\
4001 verbose."),
4002 set_targetdebug,
4003 show_targetdebug,
4004 &setdebuglist, &showdebuglist);
4005
4006 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4007 &trust_readonly, _("\
4008 Set mode for reading from readonly sections."), _("\
4009 Show mode for reading from readonly sections."), _("\
4010 When this mode is on, memory reads from readonly sections (such as .text)\n\
4011 will be read from the object file instead of from the target. This will\n\
4012 result in significant performance improvement for remote targets."),
4013 NULL,
4014 show_trust_readonly,
4015 &setlist, &showlist);
4016
4017 add_com ("monitor", class_obscure, do_monitor_command,
4018 _("Send a command to the remote monitor (remote targets only)."));
4019
4020 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4021 _("Print the name of each layer of the internal target stack."),
4022 &maintenanceprintlist);
4023
4024 add_setshow_boolean_cmd ("target-async", no_class,
4025 &target_async_permitted_1, _("\
4026 Set whether gdb controls the inferior in asynchronous mode."), _("\
4027 Show whether gdb controls the inferior in asynchronous mode."), _("\
4028 Tells gdb whether to control the inferior in asynchronous mode."),
4029 maint_set_target_async_command,
4030 maint_show_target_async_command,
4031 &maintenance_set_cmdlist,
4032 &maintenance_show_cmdlist);
4033
4034 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4035 &target_non_stop_enabled_1, _("\
4036 Set whether gdb always controls the inferior in non-stop mode."), _("\
4037 Show whether gdb always controls the inferior in non-stop mode."), _("\
4038 Tells gdb whether to control the inferior in non-stop mode."),
4039 maint_set_target_non_stop_command,
4040 maint_show_target_non_stop_command,
4041 &maintenance_set_cmdlist,
4042 &maintenance_show_cmdlist);
4043
4044 add_setshow_boolean_cmd ("may-write-registers", class_support,
4045 &may_write_registers_1, _("\
4046 Set permission to write into registers."), _("\
4047 Show permission to write into registers."), _("\
4048 When this permission is on, GDB may write into the target's registers.\n\
4049 Otherwise, any sort of write attempt will result in an error."),
4050 set_target_permissions, NULL,
4051 &setlist, &showlist);
4052
4053 add_setshow_boolean_cmd ("may-write-memory", class_support,
4054 &may_write_memory_1, _("\
4055 Set permission to write into target memory."), _("\
4056 Show permission to write into target memory."), _("\
4057 When this permission is on, GDB may write into the target's memory.\n\
4058 Otherwise, any sort of write attempt will result in an error."),
4059 set_write_memory_permission, NULL,
4060 &setlist, &showlist);
4061
4062 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4063 &may_insert_breakpoints_1, _("\
4064 Set permission to insert breakpoints in the target."), _("\
4065 Show permission to insert breakpoints in the target."), _("\
4066 When this permission is on, GDB may insert breakpoints in the program.\n\
4067 Otherwise, any sort of insertion attempt will result in an error."),
4068 set_target_permissions, NULL,
4069 &setlist, &showlist);
4070
4071 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4072 &may_insert_tracepoints_1, _("\
4073 Set permission to insert tracepoints in the target."), _("\
4074 Show permission to insert tracepoints in the target."), _("\
4075 When this permission is on, GDB may insert tracepoints in the program.\n\
4076 Otherwise, any sort of insertion attempt will result in an error."),
4077 set_target_permissions, NULL,
4078 &setlist, &showlist);
4079
4080 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4081 &may_insert_fast_tracepoints_1, _("\
4082 Set permission to insert fast tracepoints in the target."), _("\
4083 Show permission to insert fast tracepoints in the target."), _("\
4084 When this permission is on, GDB may insert fast tracepoints.\n\
4085 Otherwise, any sort of insertion attempt will result in an error."),
4086 set_target_permissions, NULL,
4087 &setlist, &showlist);
4088
4089 add_setshow_boolean_cmd ("may-interrupt", class_support,
4090 &may_stop_1, _("\
4091 Set permission to interrupt or signal the target."), _("\
4092 Show permission to interrupt or signal the target."), _("\
4093 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4094 Otherwise, any attempt to interrupt or stop will be ignored."),
4095 set_target_permissions, NULL,
4096 &setlist, &showlist);
4097
4098 add_com ("flash-erase", no_class, flash_erase_command,
4099 _("Erase all flash memory regions."));
4100
4101 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4102 &auto_connect_native_target, _("\
4103 Set whether GDB may automatically connect to the native target."), _("\
4104 Show whether GDB may automatically connect to the native target."), _("\
4105 When on, and GDB is not connected to a target yet, GDB\n\
4106 attempts \"run\" and other commands with the native target."),
4107 NULL, show_auto_connect_native_target,
4108 &setlist, &showlist);
4109 }
This page took 0.114077 seconds and 4 git commands to generate.