gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / target.c
1 /* Select target systems and architectures at runtime for GDB.
2
3 Copyright (C) 1990-2020 Free Software Foundation, Inc.
4
5 Contributed by Cygnus Support.
6
7 This file is part of GDB.
8
9 This program is free software; you can redistribute it and/or modify
10 it under the terms of the GNU General Public License as published by
11 the Free Software Foundation; either version 3 of the License, or
12 (at your option) any later version.
13
14 This program is distributed in the hope that it will be useful,
15 but WITHOUT ANY WARRANTY; without even the implied warranty of
16 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 GNU General Public License for more details.
18
19 You should have received a copy of the GNU General Public License
20 along with this program. If not, see <http://www.gnu.org/licenses/>. */
21
22 #include "defs.h"
23 #include "target.h"
24 #include "target-dcache.h"
25 #include "gdbcmd.h"
26 #include "symtab.h"
27 #include "inferior.h"
28 #include "infrun.h"
29 #include "bfd.h"
30 #include "symfile.h"
31 #include "objfiles.h"
32 #include "dcache.h"
33 #include <signal.h>
34 #include "regcache.h"
35 #include "gdbcore.h"
36 #include "target-descriptions.h"
37 #include "gdbthread.h"
38 #include "solib.h"
39 #include "exec.h"
40 #include "inline-frame.h"
41 #include "tracepoint.h"
42 #include "gdb/fileio.h"
43 #include "gdbsupport/agent.h"
44 #include "auxv.h"
45 #include "target-debug.h"
46 #include "top.h"
47 #include "event-top.h"
48 #include <algorithm>
49 #include "gdbsupport/byte-vector.h"
50 #include "terminal.h"
51 #include <unordered_map>
52 #include "target-connection.h"
53
54 static void generic_tls_error (void) ATTRIBUTE_NORETURN;
55
56 static void default_terminal_info (struct target_ops *, const char *, int);
57
58 static int default_watchpoint_addr_within_range (struct target_ops *,
59 CORE_ADDR, CORE_ADDR, int);
60
61 static int default_region_ok_for_hw_watchpoint (struct target_ops *,
62 CORE_ADDR, int);
63
64 static void default_rcmd (struct target_ops *, const char *, struct ui_file *);
65
66 static ptid_t default_get_ada_task_ptid (struct target_ops *self,
67 long lwp, long tid);
68
69 static void default_mourn_inferior (struct target_ops *self);
70
71 static int default_search_memory (struct target_ops *ops,
72 CORE_ADDR start_addr,
73 ULONGEST search_space_len,
74 const gdb_byte *pattern,
75 ULONGEST pattern_len,
76 CORE_ADDR *found_addrp);
77
78 static int default_verify_memory (struct target_ops *self,
79 const gdb_byte *data,
80 CORE_ADDR memaddr, ULONGEST size);
81
82 static void tcomplain (void) ATTRIBUTE_NORETURN;
83
84 static struct target_ops *find_default_run_target (const char *);
85
86 static int dummy_find_memory_regions (struct target_ops *self,
87 find_memory_region_ftype ignore1,
88 void *ignore2);
89
90 static char *dummy_make_corefile_notes (struct target_ops *self,
91 bfd *ignore1, int *ignore2);
92
93 static std::string default_pid_to_str (struct target_ops *ops, ptid_t ptid);
94
95 static enum exec_direction_kind default_execution_direction
96 (struct target_ops *self);
97
98 /* Mapping between target_info objects (which have address identity)
99 and corresponding open/factory function/callback. Each add_target
100 call adds one entry to this map, and registers a "target
101 TARGET_NAME" command that when invoked calls the factory registered
102 here. The target_info object is associated with the command via
103 the command's context. */
104 static std::unordered_map<const target_info *, target_open_ftype *>
105 target_factories;
106
107 /* The singleton debug target. */
108
109 static struct target_ops *the_debug_target;
110
111 /* Top of target stack. */
112 /* The target structure we are currently using to talk to a process
113 or file or whatever "inferior" we have. */
114
115 target_ops *
116 current_top_target ()
117 {
118 return current_inferior ()->top_target ();
119 }
120
121 /* Command list for target. */
122
123 static struct cmd_list_element *targetlist = NULL;
124
125 /* True if we should trust readonly sections from the
126 executable when reading memory. */
127
128 static bool trust_readonly = false;
129
130 /* Nonzero if we should show true memory content including
131 memory breakpoint inserted by gdb. */
132
133 static int show_memory_breakpoints = 0;
134
135 /* These globals control whether GDB attempts to perform these
136 operations; they are useful for targets that need to prevent
137 inadvertent disruption, such as in non-stop mode. */
138
139 bool may_write_registers = true;
140
141 bool may_write_memory = true;
142
143 bool may_insert_breakpoints = true;
144
145 bool may_insert_tracepoints = true;
146
147 bool may_insert_fast_tracepoints = true;
148
149 bool may_stop = true;
150
151 /* Non-zero if we want to see trace of target level stuff. */
152
153 static unsigned int targetdebug = 0;
154
155 static void
156 set_targetdebug (const char *args, int from_tty, struct cmd_list_element *c)
157 {
158 if (targetdebug)
159 push_target (the_debug_target);
160 else
161 unpush_target (the_debug_target);
162 }
163
164 static void
165 show_targetdebug (struct ui_file *file, int from_tty,
166 struct cmd_list_element *c, const char *value)
167 {
168 fprintf_filtered (file, _("Target debugging is %s.\n"), value);
169 }
170
171 int
172 target_has_all_memory_1 (void)
173 {
174 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
175 if (t->has_all_memory ())
176 return 1;
177
178 return 0;
179 }
180
181 int
182 target_has_memory_1 (void)
183 {
184 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
185 if (t->has_memory ())
186 return 1;
187
188 return 0;
189 }
190
191 int
192 target_has_stack_1 (void)
193 {
194 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
195 if (t->has_stack ())
196 return 1;
197
198 return 0;
199 }
200
201 int
202 target_has_registers_1 (void)
203 {
204 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
205 if (t->has_registers ())
206 return 1;
207
208 return 0;
209 }
210
211 bool
212 target_has_execution_1 (inferior *inf)
213 {
214 for (target_ops *t = inf->top_target ();
215 t != nullptr;
216 t = inf->find_target_beneath (t))
217 if (t->has_execution (inf))
218 return true;
219
220 return false;
221 }
222
223 int
224 target_has_execution_current (void)
225 {
226 return target_has_execution_1 (current_inferior ());
227 }
228
229 /* This is used to implement the various target commands. */
230
231 static void
232 open_target (const char *args, int from_tty, struct cmd_list_element *command)
233 {
234 auto *ti = static_cast<target_info *> (get_cmd_context (command));
235 target_open_ftype *func = target_factories[ti];
236
237 if (targetdebug)
238 fprintf_unfiltered (gdb_stdlog, "-> %s->open (...)\n",
239 ti->shortname);
240
241 func (args, from_tty);
242
243 if (targetdebug)
244 fprintf_unfiltered (gdb_stdlog, "<- %s->open (%s, %d)\n",
245 ti->shortname, args, from_tty);
246 }
247
248 /* See target.h. */
249
250 void
251 add_target (const target_info &t, target_open_ftype *func,
252 completer_ftype *completer)
253 {
254 struct cmd_list_element *c;
255
256 auto &func_slot = target_factories[&t];
257 if (func_slot != nullptr)
258 internal_error (__FILE__, __LINE__,
259 _("target already added (\"%s\")."), t.shortname);
260 func_slot = func;
261
262 if (targetlist == NULL)
263 add_basic_prefix_cmd ("target", class_run, _("\
264 Connect to a target machine or process.\n\
265 The first argument is the type or protocol of the target machine.\n\
266 Remaining arguments are interpreted by the target protocol. For more\n\
267 information on the arguments for a particular protocol, type\n\
268 `help target ' followed by the protocol name."),
269 &targetlist, "target ", 0, &cmdlist);
270 c = add_cmd (t.shortname, no_class, t.doc, &targetlist);
271 set_cmd_context (c, (void *) &t);
272 set_cmd_sfunc (c, open_target);
273 if (completer != NULL)
274 set_cmd_completer (c, completer);
275 }
276
277 /* See target.h. */
278
279 void
280 add_deprecated_target_alias (const target_info &tinfo, const char *alias)
281 {
282 struct cmd_list_element *c;
283 char *alt;
284
285 /* If we use add_alias_cmd, here, we do not get the deprecated warning,
286 see PR cli/15104. */
287 c = add_cmd (alias, no_class, tinfo.doc, &targetlist);
288 set_cmd_sfunc (c, open_target);
289 set_cmd_context (c, (void *) &tinfo);
290 alt = xstrprintf ("target %s", tinfo.shortname);
291 deprecate_cmd (c, alt);
292 }
293
294 /* Stub functions */
295
296 void
297 target_kill (void)
298 {
299 current_top_target ()->kill ();
300 }
301
302 void
303 target_load (const char *arg, int from_tty)
304 {
305 target_dcache_invalidate ();
306 current_top_target ()->load (arg, from_tty);
307 }
308
309 /* Define it. */
310
311 target_terminal_state target_terminal::m_terminal_state
312 = target_terminal_state::is_ours;
313
314 /* See target/target.h. */
315
316 void
317 target_terminal::init (void)
318 {
319 current_top_target ()->terminal_init ();
320
321 m_terminal_state = target_terminal_state::is_ours;
322 }
323
324 /* See target/target.h. */
325
326 void
327 target_terminal::inferior (void)
328 {
329 struct ui *ui = current_ui;
330
331 /* A background resume (``run&'') should leave GDB in control of the
332 terminal. */
333 if (ui->prompt_state != PROMPT_BLOCKED)
334 return;
335
336 /* Since we always run the inferior in the main console (unless "set
337 inferior-tty" is in effect), when some UI other than the main one
338 calls target_terminal::inferior, then we leave the main UI's
339 terminal settings as is. */
340 if (ui != main_ui)
341 return;
342
343 /* If GDB is resuming the inferior in the foreground, install
344 inferior's terminal modes. */
345
346 struct inferior *inf = current_inferior ();
347
348 if (inf->terminal_state != target_terminal_state::is_inferior)
349 {
350 current_top_target ()->terminal_inferior ();
351 inf->terminal_state = target_terminal_state::is_inferior;
352 }
353
354 m_terminal_state = target_terminal_state::is_inferior;
355
356 /* If the user hit C-c before, pretend that it was hit right
357 here. */
358 if (check_quit_flag ())
359 target_pass_ctrlc ();
360 }
361
362 /* See target/target.h. */
363
364 void
365 target_terminal::restore_inferior (void)
366 {
367 struct ui *ui = current_ui;
368
369 /* See target_terminal::inferior(). */
370 if (ui->prompt_state != PROMPT_BLOCKED || ui != main_ui)
371 return;
372
373 /* Restore the terminal settings of inferiors that were in the
374 foreground but are now ours_for_output due to a temporary
375 target_target::ours_for_output() call. */
376
377 {
378 scoped_restore_current_inferior restore_inferior;
379
380 for (::inferior *inf : all_inferiors ())
381 {
382 if (inf->terminal_state == target_terminal_state::is_ours_for_output)
383 {
384 set_current_inferior (inf);
385 current_top_target ()->terminal_inferior ();
386 inf->terminal_state = target_terminal_state::is_inferior;
387 }
388 }
389 }
390
391 m_terminal_state = target_terminal_state::is_inferior;
392
393 /* If the user hit C-c before, pretend that it was hit right
394 here. */
395 if (check_quit_flag ())
396 target_pass_ctrlc ();
397 }
398
399 /* Switch terminal state to DESIRED_STATE, either is_ours, or
400 is_ours_for_output. */
401
402 static void
403 target_terminal_is_ours_kind (target_terminal_state desired_state)
404 {
405 scoped_restore_current_inferior restore_inferior;
406
407 /* Must do this in two passes. First, have all inferiors save the
408 current terminal settings. Then, after all inferiors have add a
409 chance to safely save the terminal settings, restore GDB's
410 terminal settings. */
411
412 for (inferior *inf : all_inferiors ())
413 {
414 if (inf->terminal_state == target_terminal_state::is_inferior)
415 {
416 set_current_inferior (inf);
417 current_top_target ()->terminal_save_inferior ();
418 }
419 }
420
421 for (inferior *inf : all_inferiors ())
422 {
423 /* Note we don't check is_inferior here like above because we
424 need to handle 'is_ours_for_output -> is_ours' too. Careful
425 to never transition from 'is_ours' to 'is_ours_for_output',
426 though. */
427 if (inf->terminal_state != target_terminal_state::is_ours
428 && inf->terminal_state != desired_state)
429 {
430 set_current_inferior (inf);
431 if (desired_state == target_terminal_state::is_ours)
432 current_top_target ()->terminal_ours ();
433 else if (desired_state == target_terminal_state::is_ours_for_output)
434 current_top_target ()->terminal_ours_for_output ();
435 else
436 gdb_assert_not_reached ("unhandled desired state");
437 inf->terminal_state = desired_state;
438 }
439 }
440 }
441
442 /* See target/target.h. */
443
444 void
445 target_terminal::ours ()
446 {
447 struct ui *ui = current_ui;
448
449 /* See target_terminal::inferior. */
450 if (ui != main_ui)
451 return;
452
453 if (m_terminal_state == target_terminal_state::is_ours)
454 return;
455
456 target_terminal_is_ours_kind (target_terminal_state::is_ours);
457 m_terminal_state = target_terminal_state::is_ours;
458 }
459
460 /* See target/target.h. */
461
462 void
463 target_terminal::ours_for_output ()
464 {
465 struct ui *ui = current_ui;
466
467 /* See target_terminal::inferior. */
468 if (ui != main_ui)
469 return;
470
471 if (!target_terminal::is_inferior ())
472 return;
473
474 target_terminal_is_ours_kind (target_terminal_state::is_ours_for_output);
475 target_terminal::m_terminal_state = target_terminal_state::is_ours_for_output;
476 }
477
478 /* See target/target.h. */
479
480 void
481 target_terminal::info (const char *arg, int from_tty)
482 {
483 current_top_target ()->terminal_info (arg, from_tty);
484 }
485
486 /* See target.h. */
487
488 bool
489 target_supports_terminal_ours (void)
490 {
491 /* The current top target is the target at the top of the target
492 stack of the current inferior. While normally there's always an
493 inferior, we must check for nullptr here because we can get here
494 very early during startup, before the initial inferior is first
495 created. */
496 inferior *inf = current_inferior ();
497
498 if (inf == nullptr)
499 return false;
500 return inf->top_target ()->supports_terminal_ours ();
501 }
502
503 static void
504 tcomplain (void)
505 {
506 error (_("You can't do that when your target is `%s'"),
507 current_top_target ()->shortname ());
508 }
509
510 void
511 noprocess (void)
512 {
513 error (_("You can't do that without a process to debug."));
514 }
515
516 static void
517 default_terminal_info (struct target_ops *self, const char *args, int from_tty)
518 {
519 printf_unfiltered (_("No saved terminal information.\n"));
520 }
521
522 /* A default implementation for the to_get_ada_task_ptid target method.
523
524 This function builds the PTID by using both LWP and TID as part of
525 the PTID lwp and tid elements. The pid used is the pid of the
526 inferior_ptid. */
527
528 static ptid_t
529 default_get_ada_task_ptid (struct target_ops *self, long lwp, long tid)
530 {
531 return ptid_t (inferior_ptid.pid (), lwp, tid);
532 }
533
534 static enum exec_direction_kind
535 default_execution_direction (struct target_ops *self)
536 {
537 if (!target_can_execute_reverse)
538 return EXEC_FORWARD;
539 else if (!target_can_async_p ())
540 return EXEC_FORWARD;
541 else
542 gdb_assert_not_reached ("\
543 to_execution_direction must be implemented for reverse async");
544 }
545
546 /* See target.h. */
547
548 void
549 decref_target (target_ops *t)
550 {
551 t->decref ();
552 if (t->refcount () == 0)
553 {
554 if (t->stratum () == process_stratum)
555 connection_list_remove (as_process_stratum_target (t));
556 target_close (t);
557 }
558 }
559
560 /* See target.h. */
561
562 void
563 target_stack::push (target_ops *t)
564 {
565 t->incref ();
566
567 strata stratum = t->stratum ();
568
569 if (stratum == process_stratum)
570 connection_list_add (as_process_stratum_target (t));
571
572 /* If there's already a target at this stratum, remove it. */
573
574 if (m_stack[stratum] != NULL)
575 unpush (m_stack[stratum]);
576
577 /* Now add the new one. */
578 m_stack[stratum] = t;
579
580 if (m_top < stratum)
581 m_top = stratum;
582 }
583
584 /* See target.h. */
585
586 void
587 push_target (struct target_ops *t)
588 {
589 current_inferior ()->push_target (t);
590 }
591
592 /* See target.h. */
593
594 void
595 push_target (target_ops_up &&t)
596 {
597 current_inferior ()->push_target (t.get ());
598 t.release ();
599 }
600
601 /* See target.h. */
602
603 int
604 unpush_target (struct target_ops *t)
605 {
606 return current_inferior ()->unpush_target (t);
607 }
608
609 /* See target.h. */
610
611 bool
612 target_stack::unpush (target_ops *t)
613 {
614 gdb_assert (t != NULL);
615
616 strata stratum = t->stratum ();
617
618 if (stratum == dummy_stratum)
619 internal_error (__FILE__, __LINE__,
620 _("Attempt to unpush the dummy target"));
621
622 /* Look for the specified target. Note that a target can only occur
623 once in the target stack. */
624
625 if (m_stack[stratum] != t)
626 {
627 /* If T wasn't pushed, quit. Only open targets should be
628 closed. */
629 return false;
630 }
631
632 /* Unchain the target. */
633 m_stack[stratum] = NULL;
634
635 if (m_top == stratum)
636 m_top = t->beneath ()->stratum ();
637
638 /* Finally close the target, if there are no inferiors
639 referencing this target still. Note we do this after unchaining,
640 so any target method calls from within the target_close
641 implementation don't end up in T anymore. Do leave the target
642 open if we have are other inferiors referencing this target
643 still. */
644 decref_target (t);
645
646 return true;
647 }
648
649 /* Unpush TARGET and assert that it worked. */
650
651 static void
652 unpush_target_and_assert (struct target_ops *target)
653 {
654 if (!unpush_target (target))
655 {
656 fprintf_unfiltered (gdb_stderr,
657 "pop_all_targets couldn't find target %s\n",
658 target->shortname ());
659 internal_error (__FILE__, __LINE__,
660 _("failed internal consistency check"));
661 }
662 }
663
664 void
665 pop_all_targets_above (enum strata above_stratum)
666 {
667 while ((int) (current_top_target ()->stratum ()) > (int) above_stratum)
668 unpush_target_and_assert (current_top_target ());
669 }
670
671 /* See target.h. */
672
673 void
674 pop_all_targets_at_and_above (enum strata stratum)
675 {
676 while ((int) (current_top_target ()->stratum ()) >= (int) stratum)
677 unpush_target_and_assert (current_top_target ());
678 }
679
680 void
681 pop_all_targets (void)
682 {
683 pop_all_targets_above (dummy_stratum);
684 }
685
686 /* Return true if T is now pushed in the current inferior's target
687 stack. Return false otherwise. */
688
689 bool
690 target_is_pushed (target_ops *t)
691 {
692 return current_inferior ()->target_is_pushed (t);
693 }
694
695 /* Default implementation of to_get_thread_local_address. */
696
697 static void
698 generic_tls_error (void)
699 {
700 throw_error (TLS_GENERIC_ERROR,
701 _("Cannot find thread-local variables on this target"));
702 }
703
704 /* Using the objfile specified in OBJFILE, find the address for the
705 current thread's thread-local storage with offset OFFSET. */
706 CORE_ADDR
707 target_translate_tls_address (struct objfile *objfile, CORE_ADDR offset)
708 {
709 volatile CORE_ADDR addr = 0;
710 struct target_ops *target = current_top_target ();
711 struct gdbarch *gdbarch = target_gdbarch ();
712
713 if (gdbarch_fetch_tls_load_module_address_p (gdbarch))
714 {
715 ptid_t ptid = inferior_ptid;
716
717 try
718 {
719 CORE_ADDR lm_addr;
720
721 /* Fetch the load module address for this objfile. */
722 lm_addr = gdbarch_fetch_tls_load_module_address (gdbarch,
723 objfile);
724
725 if (gdbarch_get_thread_local_address_p (gdbarch))
726 addr = gdbarch_get_thread_local_address (gdbarch, ptid, lm_addr,
727 offset);
728 else
729 addr = target->get_thread_local_address (ptid, lm_addr, offset);
730 }
731 /* If an error occurred, print TLS related messages here. Otherwise,
732 throw the error to some higher catcher. */
733 catch (const gdb_exception &ex)
734 {
735 int objfile_is_library = (objfile->flags & OBJF_SHARED);
736
737 switch (ex.error)
738 {
739 case TLS_NO_LIBRARY_SUPPORT_ERROR:
740 error (_("Cannot find thread-local variables "
741 "in this thread library."));
742 break;
743 case TLS_LOAD_MODULE_NOT_FOUND_ERROR:
744 if (objfile_is_library)
745 error (_("Cannot find shared library `%s' in dynamic"
746 " linker's load module list"), objfile_name (objfile));
747 else
748 error (_("Cannot find executable file `%s' in dynamic"
749 " linker's load module list"), objfile_name (objfile));
750 break;
751 case TLS_NOT_ALLOCATED_YET_ERROR:
752 if (objfile_is_library)
753 error (_("The inferior has not yet allocated storage for"
754 " thread-local variables in\n"
755 "the shared library `%s'\n"
756 "for %s"),
757 objfile_name (objfile),
758 target_pid_to_str (ptid).c_str ());
759 else
760 error (_("The inferior has not yet allocated storage for"
761 " thread-local variables in\n"
762 "the executable `%s'\n"
763 "for %s"),
764 objfile_name (objfile),
765 target_pid_to_str (ptid).c_str ());
766 break;
767 case TLS_GENERIC_ERROR:
768 if (objfile_is_library)
769 error (_("Cannot find thread-local storage for %s, "
770 "shared library %s:\n%s"),
771 target_pid_to_str (ptid).c_str (),
772 objfile_name (objfile), ex.what ());
773 else
774 error (_("Cannot find thread-local storage for %s, "
775 "executable file %s:\n%s"),
776 target_pid_to_str (ptid).c_str (),
777 objfile_name (objfile), ex.what ());
778 break;
779 default:
780 throw;
781 break;
782 }
783 }
784 }
785 else
786 error (_("Cannot find thread-local variables on this target"));
787
788 return addr;
789 }
790
791 const char *
792 target_xfer_status_to_string (enum target_xfer_status status)
793 {
794 #define CASE(X) case X: return #X
795 switch (status)
796 {
797 CASE(TARGET_XFER_E_IO);
798 CASE(TARGET_XFER_UNAVAILABLE);
799 default:
800 return "<unknown>";
801 }
802 #undef CASE
803 };
804
805
806 #undef MIN
807 #define MIN(A, B) (((A) <= (B)) ? (A) : (B))
808
809 /* target_read_string -- read a null terminated string, up to LEN bytes,
810 from MEMADDR in target. Set *ERRNOP to the errno code, or 0 if successful.
811 Set *STRING to a pointer to malloc'd memory containing the data; the caller
812 is responsible for freeing it. Return the number of bytes successfully
813 read. */
814
815 int
816 target_read_string (CORE_ADDR memaddr, gdb::unique_xmalloc_ptr<char> *string,
817 int len, int *errnop)
818 {
819 int tlen, offset, i;
820 gdb_byte buf[4];
821 int errcode = 0;
822 char *buffer;
823 int buffer_allocated;
824 char *bufptr;
825 unsigned int nbytes_read = 0;
826
827 gdb_assert (string);
828
829 /* Small for testing. */
830 buffer_allocated = 4;
831 buffer = (char *) xmalloc (buffer_allocated);
832 bufptr = buffer;
833
834 while (len > 0)
835 {
836 tlen = MIN (len, 4 - (memaddr & 3));
837 offset = memaddr & 3;
838
839 errcode = target_read_memory (memaddr & ~3, buf, sizeof buf);
840 if (errcode != 0)
841 {
842 /* The transfer request might have crossed the boundary to an
843 unallocated region of memory. Retry the transfer, requesting
844 a single byte. */
845 tlen = 1;
846 offset = 0;
847 errcode = target_read_memory (memaddr, buf, 1);
848 if (errcode != 0)
849 goto done;
850 }
851
852 if (bufptr - buffer + tlen > buffer_allocated)
853 {
854 unsigned int bytes;
855
856 bytes = bufptr - buffer;
857 buffer_allocated *= 2;
858 buffer = (char *) xrealloc (buffer, buffer_allocated);
859 bufptr = buffer + bytes;
860 }
861
862 for (i = 0; i < tlen; i++)
863 {
864 *bufptr++ = buf[i + offset];
865 if (buf[i + offset] == '\000')
866 {
867 nbytes_read += i + 1;
868 goto done;
869 }
870 }
871
872 memaddr += tlen;
873 len -= tlen;
874 nbytes_read += tlen;
875 }
876 done:
877 string->reset (buffer);
878 if (errnop != NULL)
879 *errnop = errcode;
880 return nbytes_read;
881 }
882
883 struct target_section_table *
884 target_get_section_table (struct target_ops *target)
885 {
886 return target->get_section_table ();
887 }
888
889 /* Find a section containing ADDR. */
890
891 struct target_section *
892 target_section_by_addr (struct target_ops *target, CORE_ADDR addr)
893 {
894 struct target_section_table *table = target_get_section_table (target);
895 struct target_section *secp;
896
897 if (table == NULL)
898 return NULL;
899
900 for (secp = table->sections; secp < table->sections_end; secp++)
901 {
902 if (addr >= secp->addr && addr < secp->endaddr)
903 return secp;
904 }
905 return NULL;
906 }
907
908
909 /* Helper for the memory xfer routines. Checks the attributes of the
910 memory region of MEMADDR against the read or write being attempted.
911 If the access is permitted returns true, otherwise returns false.
912 REGION_P is an optional output parameter. If not-NULL, it is
913 filled with a pointer to the memory region of MEMADDR. REG_LEN
914 returns LEN trimmed to the end of the region. This is how much the
915 caller can continue requesting, if the access is permitted. A
916 single xfer request must not straddle memory region boundaries. */
917
918 static int
919 memory_xfer_check_region (gdb_byte *readbuf, const gdb_byte *writebuf,
920 ULONGEST memaddr, ULONGEST len, ULONGEST *reg_len,
921 struct mem_region **region_p)
922 {
923 struct mem_region *region;
924
925 region = lookup_mem_region (memaddr);
926
927 if (region_p != NULL)
928 *region_p = region;
929
930 switch (region->attrib.mode)
931 {
932 case MEM_RO:
933 if (writebuf != NULL)
934 return 0;
935 break;
936
937 case MEM_WO:
938 if (readbuf != NULL)
939 return 0;
940 break;
941
942 case MEM_FLASH:
943 /* We only support writing to flash during "load" for now. */
944 if (writebuf != NULL)
945 error (_("Writing to flash memory forbidden in this context"));
946 break;
947
948 case MEM_NONE:
949 return 0;
950 }
951
952 /* region->hi == 0 means there's no upper bound. */
953 if (memaddr + len < region->hi || region->hi == 0)
954 *reg_len = len;
955 else
956 *reg_len = region->hi - memaddr;
957
958 return 1;
959 }
960
961 /* Read memory from more than one valid target. A core file, for
962 instance, could have some of memory but delegate other bits to
963 the target below it. So, we must manually try all targets. */
964
965 enum target_xfer_status
966 raw_memory_xfer_partial (struct target_ops *ops, gdb_byte *readbuf,
967 const gdb_byte *writebuf, ULONGEST memaddr, LONGEST len,
968 ULONGEST *xfered_len)
969 {
970 enum target_xfer_status res;
971
972 do
973 {
974 res = ops->xfer_partial (TARGET_OBJECT_MEMORY, NULL,
975 readbuf, writebuf, memaddr, len,
976 xfered_len);
977 if (res == TARGET_XFER_OK)
978 break;
979
980 /* Stop if the target reports that the memory is not available. */
981 if (res == TARGET_XFER_UNAVAILABLE)
982 break;
983
984 /* We want to continue past core files to executables, but not
985 past a running target's memory. */
986 if (ops->has_all_memory ())
987 break;
988
989 ops = ops->beneath ();
990 }
991 while (ops != NULL);
992
993 /* The cache works at the raw memory level. Make sure the cache
994 gets updated with raw contents no matter what kind of memory
995 object was originally being written. Note we do write-through
996 first, so that if it fails, we don't write to the cache contents
997 that never made it to the target. */
998 if (writebuf != NULL
999 && inferior_ptid != null_ptid
1000 && target_dcache_init_p ()
1001 && (stack_cache_enabled_p () || code_cache_enabled_p ()))
1002 {
1003 DCACHE *dcache = target_dcache_get ();
1004
1005 /* Note that writing to an area of memory which wasn't present
1006 in the cache doesn't cause it to be loaded in. */
1007 dcache_update (dcache, res, memaddr, writebuf, *xfered_len);
1008 }
1009
1010 return res;
1011 }
1012
1013 /* Perform a partial memory transfer.
1014 For docs see target.h, to_xfer_partial. */
1015
1016 static enum target_xfer_status
1017 memory_xfer_partial_1 (struct target_ops *ops, enum target_object object,
1018 gdb_byte *readbuf, const gdb_byte *writebuf, ULONGEST memaddr,
1019 ULONGEST len, ULONGEST *xfered_len)
1020 {
1021 enum target_xfer_status res;
1022 ULONGEST reg_len;
1023 struct mem_region *region;
1024 struct inferior *inf;
1025
1026 /* For accesses to unmapped overlay sections, read directly from
1027 files. Must do this first, as MEMADDR may need adjustment. */
1028 if (readbuf != NULL && overlay_debugging)
1029 {
1030 struct obj_section *section = find_pc_overlay (memaddr);
1031
1032 if (pc_in_unmapped_range (memaddr, section))
1033 {
1034 struct target_section_table *table
1035 = target_get_section_table (ops);
1036 const char *section_name = section->the_bfd_section->name;
1037
1038 memaddr = overlay_mapped_address (memaddr, section);
1039 return section_table_xfer_memory_partial (readbuf, writebuf,
1040 memaddr, len, xfered_len,
1041 table->sections,
1042 table->sections_end,
1043 section_name);
1044 }
1045 }
1046
1047 /* Try the executable files, if "trust-readonly-sections" is set. */
1048 if (readbuf != NULL && trust_readonly)
1049 {
1050 struct target_section *secp;
1051 struct target_section_table *table;
1052
1053 secp = target_section_by_addr (ops, memaddr);
1054 if (secp != NULL
1055 && (bfd_section_flags (secp->the_bfd_section) & SEC_READONLY))
1056 {
1057 table = target_get_section_table (ops);
1058 return section_table_xfer_memory_partial (readbuf, writebuf,
1059 memaddr, len, xfered_len,
1060 table->sections,
1061 table->sections_end,
1062 NULL);
1063 }
1064 }
1065
1066 /* Try GDB's internal data cache. */
1067
1068 if (!memory_xfer_check_region (readbuf, writebuf, memaddr, len, &reg_len,
1069 &region))
1070 return TARGET_XFER_E_IO;
1071
1072 if (inferior_ptid != null_ptid)
1073 inf = current_inferior ();
1074 else
1075 inf = NULL;
1076
1077 if (inf != NULL
1078 && readbuf != NULL
1079 /* The dcache reads whole cache lines; that doesn't play well
1080 with reading from a trace buffer, because reading outside of
1081 the collected memory range fails. */
1082 && get_traceframe_number () == -1
1083 && (region->attrib.cache
1084 || (stack_cache_enabled_p () && object == TARGET_OBJECT_STACK_MEMORY)
1085 || (code_cache_enabled_p () && object == TARGET_OBJECT_CODE_MEMORY)))
1086 {
1087 DCACHE *dcache = target_dcache_get_or_init ();
1088
1089 return dcache_read_memory_partial (ops, dcache, memaddr, readbuf,
1090 reg_len, xfered_len);
1091 }
1092
1093 /* If none of those methods found the memory we wanted, fall back
1094 to a target partial transfer. Normally a single call to
1095 to_xfer_partial is enough; if it doesn't recognize an object
1096 it will call the to_xfer_partial of the next target down.
1097 But for memory this won't do. Memory is the only target
1098 object which can be read from more than one valid target.
1099 A core file, for instance, could have some of memory but
1100 delegate other bits to the target below it. So, we must
1101 manually try all targets. */
1102
1103 res = raw_memory_xfer_partial (ops, readbuf, writebuf, memaddr, reg_len,
1104 xfered_len);
1105
1106 /* If we still haven't got anything, return the last error. We
1107 give up. */
1108 return res;
1109 }
1110
1111 /* Perform a partial memory transfer. For docs see target.h,
1112 to_xfer_partial. */
1113
1114 static enum target_xfer_status
1115 memory_xfer_partial (struct target_ops *ops, enum target_object object,
1116 gdb_byte *readbuf, const gdb_byte *writebuf,
1117 ULONGEST memaddr, ULONGEST len, ULONGEST *xfered_len)
1118 {
1119 enum target_xfer_status res;
1120
1121 /* Zero length requests are ok and require no work. */
1122 if (len == 0)
1123 return TARGET_XFER_EOF;
1124
1125 memaddr = address_significant (target_gdbarch (), memaddr);
1126
1127 /* Fill in READBUF with breakpoint shadows, or WRITEBUF with
1128 breakpoint insns, thus hiding out from higher layers whether
1129 there are software breakpoints inserted in the code stream. */
1130 if (readbuf != NULL)
1131 {
1132 res = memory_xfer_partial_1 (ops, object, readbuf, NULL, memaddr, len,
1133 xfered_len);
1134
1135 if (res == TARGET_XFER_OK && !show_memory_breakpoints)
1136 breakpoint_xfer_memory (readbuf, NULL, NULL, memaddr, *xfered_len);
1137 }
1138 else
1139 {
1140 /* A large write request is likely to be partially satisfied
1141 by memory_xfer_partial_1. We will continually malloc
1142 and free a copy of the entire write request for breakpoint
1143 shadow handling even though we only end up writing a small
1144 subset of it. Cap writes to a limit specified by the target
1145 to mitigate this. */
1146 len = std::min (ops->get_memory_xfer_limit (), len);
1147
1148 gdb::byte_vector buf (writebuf, writebuf + len);
1149 breakpoint_xfer_memory (NULL, buf.data (), writebuf, memaddr, len);
1150 res = memory_xfer_partial_1 (ops, object, NULL, buf.data (), memaddr, len,
1151 xfered_len);
1152 }
1153
1154 return res;
1155 }
1156
1157 scoped_restore_tmpl<int>
1158 make_scoped_restore_show_memory_breakpoints (int show)
1159 {
1160 return make_scoped_restore (&show_memory_breakpoints, show);
1161 }
1162
1163 /* For docs see target.h, to_xfer_partial. */
1164
1165 enum target_xfer_status
1166 target_xfer_partial (struct target_ops *ops,
1167 enum target_object object, const char *annex,
1168 gdb_byte *readbuf, const gdb_byte *writebuf,
1169 ULONGEST offset, ULONGEST len,
1170 ULONGEST *xfered_len)
1171 {
1172 enum target_xfer_status retval;
1173
1174 /* Transfer is done when LEN is zero. */
1175 if (len == 0)
1176 return TARGET_XFER_EOF;
1177
1178 if (writebuf && !may_write_memory)
1179 error (_("Writing to memory is not allowed (addr %s, len %s)"),
1180 core_addr_to_string_nz (offset), plongest (len));
1181
1182 *xfered_len = 0;
1183
1184 /* If this is a memory transfer, let the memory-specific code
1185 have a look at it instead. Memory transfers are more
1186 complicated. */
1187 if (object == TARGET_OBJECT_MEMORY || object == TARGET_OBJECT_STACK_MEMORY
1188 || object == TARGET_OBJECT_CODE_MEMORY)
1189 retval = memory_xfer_partial (ops, object, readbuf,
1190 writebuf, offset, len, xfered_len);
1191 else if (object == TARGET_OBJECT_RAW_MEMORY)
1192 {
1193 /* Skip/avoid accessing the target if the memory region
1194 attributes block the access. Check this here instead of in
1195 raw_memory_xfer_partial as otherwise we'd end up checking
1196 this twice in the case of the memory_xfer_partial path is
1197 taken; once before checking the dcache, and another in the
1198 tail call to raw_memory_xfer_partial. */
1199 if (!memory_xfer_check_region (readbuf, writebuf, offset, len, &len,
1200 NULL))
1201 return TARGET_XFER_E_IO;
1202
1203 /* Request the normal memory object from other layers. */
1204 retval = raw_memory_xfer_partial (ops, readbuf, writebuf, offset, len,
1205 xfered_len);
1206 }
1207 else
1208 retval = ops->xfer_partial (object, annex, readbuf,
1209 writebuf, offset, len, xfered_len);
1210
1211 if (targetdebug)
1212 {
1213 const unsigned char *myaddr = NULL;
1214
1215 fprintf_unfiltered (gdb_stdlog,
1216 "%s:target_xfer_partial "
1217 "(%d, %s, %s, %s, %s, %s) = %d, %s",
1218 ops->shortname (),
1219 (int) object,
1220 (annex ? annex : "(null)"),
1221 host_address_to_string (readbuf),
1222 host_address_to_string (writebuf),
1223 core_addr_to_string_nz (offset),
1224 pulongest (len), retval,
1225 pulongest (*xfered_len));
1226
1227 if (readbuf)
1228 myaddr = readbuf;
1229 if (writebuf)
1230 myaddr = writebuf;
1231 if (retval == TARGET_XFER_OK && myaddr != NULL)
1232 {
1233 int i;
1234
1235 fputs_unfiltered (", bytes =", gdb_stdlog);
1236 for (i = 0; i < *xfered_len; i++)
1237 {
1238 if ((((intptr_t) &(myaddr[i])) & 0xf) == 0)
1239 {
1240 if (targetdebug < 2 && i > 0)
1241 {
1242 fprintf_unfiltered (gdb_stdlog, " ...");
1243 break;
1244 }
1245 fprintf_unfiltered (gdb_stdlog, "\n");
1246 }
1247
1248 fprintf_unfiltered (gdb_stdlog, " %02x", myaddr[i] & 0xff);
1249 }
1250 }
1251
1252 fputc_unfiltered ('\n', gdb_stdlog);
1253 }
1254
1255 /* Check implementations of to_xfer_partial update *XFERED_LEN
1256 properly. Do assertion after printing debug messages, so that we
1257 can find more clues on assertion failure from debugging messages. */
1258 if (retval == TARGET_XFER_OK || retval == TARGET_XFER_UNAVAILABLE)
1259 gdb_assert (*xfered_len > 0);
1260
1261 return retval;
1262 }
1263
1264 /* Read LEN bytes of target memory at address MEMADDR, placing the
1265 results in GDB's memory at MYADDR. Returns either 0 for success or
1266 -1 if any error occurs.
1267
1268 If an error occurs, no guarantee is made about the contents of the data at
1269 MYADDR. In particular, the caller should not depend upon partial reads
1270 filling the buffer with good data. There is no way for the caller to know
1271 how much good data might have been transfered anyway. Callers that can
1272 deal with partial reads should call target_read (which will retry until
1273 it makes no progress, and then return how much was transferred). */
1274
1275 int
1276 target_read_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1277 {
1278 if (target_read (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1279 myaddr, memaddr, len) == len)
1280 return 0;
1281 else
1282 return -1;
1283 }
1284
1285 /* See target/target.h. */
1286
1287 int
1288 target_read_uint32 (CORE_ADDR memaddr, uint32_t *result)
1289 {
1290 gdb_byte buf[4];
1291 int r;
1292
1293 r = target_read_memory (memaddr, buf, sizeof buf);
1294 if (r != 0)
1295 return r;
1296 *result = extract_unsigned_integer (buf, sizeof buf,
1297 gdbarch_byte_order (target_gdbarch ()));
1298 return 0;
1299 }
1300
1301 /* Like target_read_memory, but specify explicitly that this is a read
1302 from the target's raw memory. That is, this read bypasses the
1303 dcache, breakpoint shadowing, etc. */
1304
1305 int
1306 target_read_raw_memory (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1307 {
1308 if (target_read (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1309 myaddr, memaddr, len) == len)
1310 return 0;
1311 else
1312 return -1;
1313 }
1314
1315 /* Like target_read_memory, but specify explicitly that this is a read from
1316 the target's stack. This may trigger different cache behavior. */
1317
1318 int
1319 target_read_stack (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1320 {
1321 if (target_read (current_top_target (), TARGET_OBJECT_STACK_MEMORY, NULL,
1322 myaddr, memaddr, len) == len)
1323 return 0;
1324 else
1325 return -1;
1326 }
1327
1328 /* Like target_read_memory, but specify explicitly that this is a read from
1329 the target's code. This may trigger different cache behavior. */
1330
1331 int
1332 target_read_code (CORE_ADDR memaddr, gdb_byte *myaddr, ssize_t len)
1333 {
1334 if (target_read (current_top_target (), TARGET_OBJECT_CODE_MEMORY, NULL,
1335 myaddr, memaddr, len) == len)
1336 return 0;
1337 else
1338 return -1;
1339 }
1340
1341 /* Write LEN bytes from MYADDR to target memory at address MEMADDR.
1342 Returns either 0 for success or -1 if any error occurs. If an
1343 error occurs, no guarantee is made about how much data got written.
1344 Callers that can deal with partial writes should call
1345 target_write. */
1346
1347 int
1348 target_write_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1349 {
1350 if (target_write (current_top_target (), TARGET_OBJECT_MEMORY, NULL,
1351 myaddr, memaddr, len) == len)
1352 return 0;
1353 else
1354 return -1;
1355 }
1356
1357 /* Write LEN bytes from MYADDR to target raw memory at address
1358 MEMADDR. Returns either 0 for success or -1 if any error occurs.
1359 If an error occurs, no guarantee is made about how much data got
1360 written. Callers that can deal with partial writes should call
1361 target_write. */
1362
1363 int
1364 target_write_raw_memory (CORE_ADDR memaddr, const gdb_byte *myaddr, ssize_t len)
1365 {
1366 if (target_write (current_top_target (), TARGET_OBJECT_RAW_MEMORY, NULL,
1367 myaddr, memaddr, len) == len)
1368 return 0;
1369 else
1370 return -1;
1371 }
1372
1373 /* Fetch the target's memory map. */
1374
1375 std::vector<mem_region>
1376 target_memory_map (void)
1377 {
1378 std::vector<mem_region> result = current_top_target ()->memory_map ();
1379 if (result.empty ())
1380 return result;
1381
1382 std::sort (result.begin (), result.end ());
1383
1384 /* Check that regions do not overlap. Simultaneously assign
1385 a numbering for the "mem" commands to use to refer to
1386 each region. */
1387 mem_region *last_one = NULL;
1388 for (size_t ix = 0; ix < result.size (); ix++)
1389 {
1390 mem_region *this_one = &result[ix];
1391 this_one->number = ix;
1392
1393 if (last_one != NULL && last_one->hi > this_one->lo)
1394 {
1395 warning (_("Overlapping regions in memory map: ignoring"));
1396 return std::vector<mem_region> ();
1397 }
1398
1399 last_one = this_one;
1400 }
1401
1402 return result;
1403 }
1404
1405 void
1406 target_flash_erase (ULONGEST address, LONGEST length)
1407 {
1408 current_top_target ()->flash_erase (address, length);
1409 }
1410
1411 void
1412 target_flash_done (void)
1413 {
1414 current_top_target ()->flash_done ();
1415 }
1416
1417 static void
1418 show_trust_readonly (struct ui_file *file, int from_tty,
1419 struct cmd_list_element *c, const char *value)
1420 {
1421 fprintf_filtered (file,
1422 _("Mode for reading from readonly sections is %s.\n"),
1423 value);
1424 }
1425
1426 /* Target vector read/write partial wrapper functions. */
1427
1428 static enum target_xfer_status
1429 target_read_partial (struct target_ops *ops,
1430 enum target_object object,
1431 const char *annex, gdb_byte *buf,
1432 ULONGEST offset, ULONGEST len,
1433 ULONGEST *xfered_len)
1434 {
1435 return target_xfer_partial (ops, object, annex, buf, NULL, offset, len,
1436 xfered_len);
1437 }
1438
1439 static enum target_xfer_status
1440 target_write_partial (struct target_ops *ops,
1441 enum target_object object,
1442 const char *annex, const gdb_byte *buf,
1443 ULONGEST offset, LONGEST len, ULONGEST *xfered_len)
1444 {
1445 return target_xfer_partial (ops, object, annex, NULL, buf, offset, len,
1446 xfered_len);
1447 }
1448
1449 /* Wrappers to perform the full transfer. */
1450
1451 /* For docs on target_read see target.h. */
1452
1453 LONGEST
1454 target_read (struct target_ops *ops,
1455 enum target_object object,
1456 const char *annex, gdb_byte *buf,
1457 ULONGEST offset, LONGEST len)
1458 {
1459 LONGEST xfered_total = 0;
1460 int unit_size = 1;
1461
1462 /* If we are reading from a memory object, find the length of an addressable
1463 unit for that architecture. */
1464 if (object == TARGET_OBJECT_MEMORY
1465 || object == TARGET_OBJECT_STACK_MEMORY
1466 || object == TARGET_OBJECT_CODE_MEMORY
1467 || object == TARGET_OBJECT_RAW_MEMORY)
1468 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1469
1470 while (xfered_total < len)
1471 {
1472 ULONGEST xfered_partial;
1473 enum target_xfer_status status;
1474
1475 status = target_read_partial (ops, object, annex,
1476 buf + xfered_total * unit_size,
1477 offset + xfered_total, len - xfered_total,
1478 &xfered_partial);
1479
1480 /* Call an observer, notifying them of the xfer progress? */
1481 if (status == TARGET_XFER_EOF)
1482 return xfered_total;
1483 else if (status == TARGET_XFER_OK)
1484 {
1485 xfered_total += xfered_partial;
1486 QUIT;
1487 }
1488 else
1489 return TARGET_XFER_E_IO;
1490
1491 }
1492 return len;
1493 }
1494
1495 /* Assuming that the entire [begin, end) range of memory cannot be
1496 read, try to read whatever subrange is possible to read.
1497
1498 The function returns, in RESULT, either zero or one memory block.
1499 If there's a readable subrange at the beginning, it is completely
1500 read and returned. Any further readable subrange will not be read.
1501 Otherwise, if there's a readable subrange at the end, it will be
1502 completely read and returned. Any readable subranges before it
1503 (obviously, not starting at the beginning), will be ignored. In
1504 other cases -- either no readable subrange, or readable subrange(s)
1505 that is neither at the beginning, or end, nothing is returned.
1506
1507 The purpose of this function is to handle a read across a boundary
1508 of accessible memory in a case when memory map is not available.
1509 The above restrictions are fine for this case, but will give
1510 incorrect results if the memory is 'patchy'. However, supporting
1511 'patchy' memory would require trying to read every single byte,
1512 and it seems unacceptable solution. Explicit memory map is
1513 recommended for this case -- and target_read_memory_robust will
1514 take care of reading multiple ranges then. */
1515
1516 static void
1517 read_whatever_is_readable (struct target_ops *ops,
1518 const ULONGEST begin, const ULONGEST end,
1519 int unit_size,
1520 std::vector<memory_read_result> *result)
1521 {
1522 ULONGEST current_begin = begin;
1523 ULONGEST current_end = end;
1524 int forward;
1525 ULONGEST xfered_len;
1526
1527 /* If we previously failed to read 1 byte, nothing can be done here. */
1528 if (end - begin <= 1)
1529 return;
1530
1531 gdb::unique_xmalloc_ptr<gdb_byte> buf ((gdb_byte *) xmalloc (end - begin));
1532
1533 /* Check that either first or the last byte is readable, and give up
1534 if not. This heuristic is meant to permit reading accessible memory
1535 at the boundary of accessible region. */
1536 if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1537 buf.get (), begin, 1, &xfered_len) == TARGET_XFER_OK)
1538 {
1539 forward = 1;
1540 ++current_begin;
1541 }
1542 else if (target_read_partial (ops, TARGET_OBJECT_MEMORY, NULL,
1543 buf.get () + (end - begin) - 1, end - 1, 1,
1544 &xfered_len) == TARGET_XFER_OK)
1545 {
1546 forward = 0;
1547 --current_end;
1548 }
1549 else
1550 return;
1551
1552 /* Loop invariant is that the [current_begin, current_end) was previously
1553 found to be not readable as a whole.
1554
1555 Note loop condition -- if the range has 1 byte, we can't divide the range
1556 so there's no point trying further. */
1557 while (current_end - current_begin > 1)
1558 {
1559 ULONGEST first_half_begin, first_half_end;
1560 ULONGEST second_half_begin, second_half_end;
1561 LONGEST xfer;
1562 ULONGEST middle = current_begin + (current_end - current_begin) / 2;
1563
1564 if (forward)
1565 {
1566 first_half_begin = current_begin;
1567 first_half_end = middle;
1568 second_half_begin = middle;
1569 second_half_end = current_end;
1570 }
1571 else
1572 {
1573 first_half_begin = middle;
1574 first_half_end = current_end;
1575 second_half_begin = current_begin;
1576 second_half_end = middle;
1577 }
1578
1579 xfer = target_read (ops, TARGET_OBJECT_MEMORY, NULL,
1580 buf.get () + (first_half_begin - begin) * unit_size,
1581 first_half_begin,
1582 first_half_end - first_half_begin);
1583
1584 if (xfer == first_half_end - first_half_begin)
1585 {
1586 /* This half reads up fine. So, the error must be in the
1587 other half. */
1588 current_begin = second_half_begin;
1589 current_end = second_half_end;
1590 }
1591 else
1592 {
1593 /* This half is not readable. Because we've tried one byte, we
1594 know some part of this half if actually readable. Go to the next
1595 iteration to divide again and try to read.
1596
1597 We don't handle the other half, because this function only tries
1598 to read a single readable subrange. */
1599 current_begin = first_half_begin;
1600 current_end = first_half_end;
1601 }
1602 }
1603
1604 if (forward)
1605 {
1606 /* The [begin, current_begin) range has been read. */
1607 result->emplace_back (begin, current_end, std::move (buf));
1608 }
1609 else
1610 {
1611 /* The [current_end, end) range has been read. */
1612 LONGEST region_len = end - current_end;
1613
1614 gdb::unique_xmalloc_ptr<gdb_byte> data
1615 ((gdb_byte *) xmalloc (region_len * unit_size));
1616 memcpy (data.get (), buf.get () + (current_end - begin) * unit_size,
1617 region_len * unit_size);
1618 result->emplace_back (current_end, end, std::move (data));
1619 }
1620 }
1621
1622 std::vector<memory_read_result>
1623 read_memory_robust (struct target_ops *ops,
1624 const ULONGEST offset, const LONGEST len)
1625 {
1626 std::vector<memory_read_result> result;
1627 int unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1628
1629 LONGEST xfered_total = 0;
1630 while (xfered_total < len)
1631 {
1632 struct mem_region *region = lookup_mem_region (offset + xfered_total);
1633 LONGEST region_len;
1634
1635 /* If there is no explicit region, a fake one should be created. */
1636 gdb_assert (region);
1637
1638 if (region->hi == 0)
1639 region_len = len - xfered_total;
1640 else
1641 region_len = region->hi - offset;
1642
1643 if (region->attrib.mode == MEM_NONE || region->attrib.mode == MEM_WO)
1644 {
1645 /* Cannot read this region. Note that we can end up here only
1646 if the region is explicitly marked inaccessible, or
1647 'inaccessible-by-default' is in effect. */
1648 xfered_total += region_len;
1649 }
1650 else
1651 {
1652 LONGEST to_read = std::min (len - xfered_total, region_len);
1653 gdb::unique_xmalloc_ptr<gdb_byte> buffer
1654 ((gdb_byte *) xmalloc (to_read * unit_size));
1655
1656 LONGEST xfered_partial =
1657 target_read (ops, TARGET_OBJECT_MEMORY, NULL, buffer.get (),
1658 offset + xfered_total, to_read);
1659 /* Call an observer, notifying them of the xfer progress? */
1660 if (xfered_partial <= 0)
1661 {
1662 /* Got an error reading full chunk. See if maybe we can read
1663 some subrange. */
1664 read_whatever_is_readable (ops, offset + xfered_total,
1665 offset + xfered_total + to_read,
1666 unit_size, &result);
1667 xfered_total += to_read;
1668 }
1669 else
1670 {
1671 result.emplace_back (offset + xfered_total,
1672 offset + xfered_total + xfered_partial,
1673 std::move (buffer));
1674 xfered_total += xfered_partial;
1675 }
1676 QUIT;
1677 }
1678 }
1679
1680 return result;
1681 }
1682
1683
1684 /* An alternative to target_write with progress callbacks. */
1685
1686 LONGEST
1687 target_write_with_progress (struct target_ops *ops,
1688 enum target_object object,
1689 const char *annex, const gdb_byte *buf,
1690 ULONGEST offset, LONGEST len,
1691 void (*progress) (ULONGEST, void *), void *baton)
1692 {
1693 LONGEST xfered_total = 0;
1694 int unit_size = 1;
1695
1696 /* If we are writing to a memory object, find the length of an addressable
1697 unit for that architecture. */
1698 if (object == TARGET_OBJECT_MEMORY
1699 || object == TARGET_OBJECT_STACK_MEMORY
1700 || object == TARGET_OBJECT_CODE_MEMORY
1701 || object == TARGET_OBJECT_RAW_MEMORY)
1702 unit_size = gdbarch_addressable_memory_unit_size (target_gdbarch ());
1703
1704 /* Give the progress callback a chance to set up. */
1705 if (progress)
1706 (*progress) (0, baton);
1707
1708 while (xfered_total < len)
1709 {
1710 ULONGEST xfered_partial;
1711 enum target_xfer_status status;
1712
1713 status = target_write_partial (ops, object, annex,
1714 buf + xfered_total * unit_size,
1715 offset + xfered_total, len - xfered_total,
1716 &xfered_partial);
1717
1718 if (status != TARGET_XFER_OK)
1719 return status == TARGET_XFER_EOF ? xfered_total : TARGET_XFER_E_IO;
1720
1721 if (progress)
1722 (*progress) (xfered_partial, baton);
1723
1724 xfered_total += xfered_partial;
1725 QUIT;
1726 }
1727 return len;
1728 }
1729
1730 /* For docs on target_write see target.h. */
1731
1732 LONGEST
1733 target_write (struct target_ops *ops,
1734 enum target_object object,
1735 const char *annex, const gdb_byte *buf,
1736 ULONGEST offset, LONGEST len)
1737 {
1738 return target_write_with_progress (ops, object, annex, buf, offset, len,
1739 NULL, NULL);
1740 }
1741
1742 /* Help for target_read_alloc and target_read_stralloc. See their comments
1743 for details. */
1744
1745 template <typename T>
1746 gdb::optional<gdb::def_vector<T>>
1747 target_read_alloc_1 (struct target_ops *ops, enum target_object object,
1748 const char *annex)
1749 {
1750 gdb::def_vector<T> buf;
1751 size_t buf_pos = 0;
1752 const int chunk = 4096;
1753
1754 /* This function does not have a length parameter; it reads the
1755 entire OBJECT). Also, it doesn't support objects fetched partly
1756 from one target and partly from another (in a different stratum,
1757 e.g. a core file and an executable). Both reasons make it
1758 unsuitable for reading memory. */
1759 gdb_assert (object != TARGET_OBJECT_MEMORY);
1760
1761 /* Start by reading up to 4K at a time. The target will throttle
1762 this number down if necessary. */
1763 while (1)
1764 {
1765 ULONGEST xfered_len;
1766 enum target_xfer_status status;
1767
1768 buf.resize (buf_pos + chunk);
1769
1770 status = target_read_partial (ops, object, annex,
1771 (gdb_byte *) &buf[buf_pos],
1772 buf_pos, chunk,
1773 &xfered_len);
1774
1775 if (status == TARGET_XFER_EOF)
1776 {
1777 /* Read all there was. */
1778 buf.resize (buf_pos);
1779 return buf;
1780 }
1781 else if (status != TARGET_XFER_OK)
1782 {
1783 /* An error occurred. */
1784 return {};
1785 }
1786
1787 buf_pos += xfered_len;
1788
1789 QUIT;
1790 }
1791 }
1792
1793 /* See target.h */
1794
1795 gdb::optional<gdb::byte_vector>
1796 target_read_alloc (struct target_ops *ops, enum target_object object,
1797 const char *annex)
1798 {
1799 return target_read_alloc_1<gdb_byte> (ops, object, annex);
1800 }
1801
1802 /* See target.h. */
1803
1804 gdb::optional<gdb::char_vector>
1805 target_read_stralloc (struct target_ops *ops, enum target_object object,
1806 const char *annex)
1807 {
1808 gdb::optional<gdb::char_vector> buf
1809 = target_read_alloc_1<char> (ops, object, annex);
1810
1811 if (!buf)
1812 return {};
1813
1814 if (buf->empty () || buf->back () != '\0')
1815 buf->push_back ('\0');
1816
1817 /* Check for embedded NUL bytes; but allow trailing NULs. */
1818 for (auto it = std::find (buf->begin (), buf->end (), '\0');
1819 it != buf->end (); it++)
1820 if (*it != '\0')
1821 {
1822 warning (_("target object %d, annex %s, "
1823 "contained unexpected null characters"),
1824 (int) object, annex ? annex : "(none)");
1825 break;
1826 }
1827
1828 return buf;
1829 }
1830
1831 /* Memory transfer methods. */
1832
1833 void
1834 get_target_memory (struct target_ops *ops, CORE_ADDR addr, gdb_byte *buf,
1835 LONGEST len)
1836 {
1837 /* This method is used to read from an alternate, non-current
1838 target. This read must bypass the overlay support (as symbols
1839 don't match this target), and GDB's internal cache (wrong cache
1840 for this target). */
1841 if (target_read (ops, TARGET_OBJECT_RAW_MEMORY, NULL, buf, addr, len)
1842 != len)
1843 memory_error (TARGET_XFER_E_IO, addr);
1844 }
1845
1846 ULONGEST
1847 get_target_memory_unsigned (struct target_ops *ops, CORE_ADDR addr,
1848 int len, enum bfd_endian byte_order)
1849 {
1850 gdb_byte buf[sizeof (ULONGEST)];
1851
1852 gdb_assert (len <= sizeof (buf));
1853 get_target_memory (ops, addr, buf, len);
1854 return extract_unsigned_integer (buf, len, byte_order);
1855 }
1856
1857 /* See target.h. */
1858
1859 int
1860 target_insert_breakpoint (struct gdbarch *gdbarch,
1861 struct bp_target_info *bp_tgt)
1862 {
1863 if (!may_insert_breakpoints)
1864 {
1865 warning (_("May not insert breakpoints"));
1866 return 1;
1867 }
1868
1869 return current_top_target ()->insert_breakpoint (gdbarch, bp_tgt);
1870 }
1871
1872 /* See target.h. */
1873
1874 int
1875 target_remove_breakpoint (struct gdbarch *gdbarch,
1876 struct bp_target_info *bp_tgt,
1877 enum remove_bp_reason reason)
1878 {
1879 /* This is kind of a weird case to handle, but the permission might
1880 have been changed after breakpoints were inserted - in which case
1881 we should just take the user literally and assume that any
1882 breakpoints should be left in place. */
1883 if (!may_insert_breakpoints)
1884 {
1885 warning (_("May not remove breakpoints"));
1886 return 1;
1887 }
1888
1889 return current_top_target ()->remove_breakpoint (gdbarch, bp_tgt, reason);
1890 }
1891
1892 static void
1893 info_target_command (const char *args, int from_tty)
1894 {
1895 int has_all_mem = 0;
1896
1897 if (symfile_objfile != NULL)
1898 printf_unfiltered (_("Symbols from \"%s\".\n"),
1899 objfile_name (symfile_objfile));
1900
1901 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
1902 {
1903 if (!t->has_memory ())
1904 continue;
1905
1906 if ((int) (t->stratum ()) <= (int) dummy_stratum)
1907 continue;
1908 if (has_all_mem)
1909 printf_unfiltered (_("\tWhile running this, "
1910 "GDB does not access memory from...\n"));
1911 printf_unfiltered ("%s:\n", t->longname ());
1912 t->files_info ();
1913 has_all_mem = t->has_all_memory ();
1914 }
1915 }
1916
1917 /* This function is called before any new inferior is created, e.g.
1918 by running a program, attaching, or connecting to a target.
1919 It cleans up any state from previous invocations which might
1920 change between runs. This is a subset of what target_preopen
1921 resets (things which might change between targets). */
1922
1923 void
1924 target_pre_inferior (int from_tty)
1925 {
1926 /* Clear out solib state. Otherwise the solib state of the previous
1927 inferior might have survived and is entirely wrong for the new
1928 target. This has been observed on GNU/Linux using glibc 2.3. How
1929 to reproduce:
1930
1931 bash$ ./foo&
1932 [1] 4711
1933 bash$ ./foo&
1934 [1] 4712
1935 bash$ gdb ./foo
1936 [...]
1937 (gdb) attach 4711
1938 (gdb) detach
1939 (gdb) attach 4712
1940 Cannot access memory at address 0xdeadbeef
1941 */
1942
1943 /* In some OSs, the shared library list is the same/global/shared
1944 across inferiors. If code is shared between processes, so are
1945 memory regions and features. */
1946 if (!gdbarch_has_global_solist (target_gdbarch ()))
1947 {
1948 no_shared_libraries (NULL, from_tty);
1949
1950 invalidate_target_mem_regions ();
1951
1952 target_clear_description ();
1953 }
1954
1955 /* attach_flag may be set if the previous process associated with
1956 the inferior was attached to. */
1957 current_inferior ()->attach_flag = 0;
1958
1959 current_inferior ()->highest_thread_num = 0;
1960
1961 agent_capability_invalidate ();
1962 }
1963
1964 /* This is to be called by the open routine before it does
1965 anything. */
1966
1967 void
1968 target_preopen (int from_tty)
1969 {
1970 dont_repeat ();
1971
1972 if (current_inferior ()->pid != 0)
1973 {
1974 if (!from_tty
1975 || !target_has_execution
1976 || query (_("A program is being debugged already. Kill it? ")))
1977 {
1978 /* Core inferiors actually should be detached, not
1979 killed. */
1980 if (target_has_execution)
1981 target_kill ();
1982 else
1983 target_detach (current_inferior (), 0);
1984 }
1985 else
1986 error (_("Program not killed."));
1987 }
1988
1989 /* Calling target_kill may remove the target from the stack. But if
1990 it doesn't (which seems like a win for UDI), remove it now. */
1991 /* Leave the exec target, though. The user may be switching from a
1992 live process to a core of the same program. */
1993 pop_all_targets_above (file_stratum);
1994
1995 target_pre_inferior (from_tty);
1996 }
1997
1998 /* See target.h. */
1999
2000 void
2001 target_detach (inferior *inf, int from_tty)
2002 {
2003 /* After we have detached, we will clear the register cache for this inferior
2004 by calling registers_changed_ptid. We must save the pid_ptid before
2005 detaching, as the target detach method will clear inf->pid. */
2006 ptid_t save_pid_ptid = ptid_t (inf->pid);
2007
2008 /* As long as some to_detach implementations rely on the current_inferior
2009 (either directly, or indirectly, like through target_gdbarch or by
2010 reading memory), INF needs to be the current inferior. When that
2011 requirement will become no longer true, then we can remove this
2012 assertion. */
2013 gdb_assert (inf == current_inferior ());
2014
2015 if (gdbarch_has_global_breakpoints (target_gdbarch ()))
2016 /* Don't remove global breakpoints here. They're removed on
2017 disconnection from the target. */
2018 ;
2019 else
2020 /* If we're in breakpoints-always-inserted mode, have to remove
2021 breakpoints before detaching. */
2022 remove_breakpoints_inf (current_inferior ());
2023
2024 prepare_for_detach ();
2025
2026 /* Hold a strong reference because detaching may unpush the
2027 target. */
2028 auto proc_target_ref = target_ops_ref::new_reference (inf->process_target ());
2029
2030 current_top_target ()->detach (inf, from_tty);
2031
2032 process_stratum_target *proc_target
2033 = as_process_stratum_target (proc_target_ref.get ());
2034
2035 registers_changed_ptid (proc_target, save_pid_ptid);
2036
2037 /* We have to ensure we have no frame cache left. Normally,
2038 registers_changed_ptid (save_pid_ptid) calls reinit_frame_cache when
2039 inferior_ptid matches save_pid_ptid, but in our case, it does not
2040 call it, as inferior_ptid has been reset. */
2041 reinit_frame_cache ();
2042 }
2043
2044 void
2045 target_disconnect (const char *args, int from_tty)
2046 {
2047 /* If we're in breakpoints-always-inserted mode or if breakpoints
2048 are global across processes, we have to remove them before
2049 disconnecting. */
2050 remove_breakpoints ();
2051
2052 current_top_target ()->disconnect (args, from_tty);
2053 }
2054
2055 /* See target/target.h. */
2056
2057 ptid_t
2058 target_wait (ptid_t ptid, struct target_waitstatus *status, int options)
2059 {
2060 return current_top_target ()->wait (ptid, status, options);
2061 }
2062
2063 /* See target.h. */
2064
2065 ptid_t
2066 default_target_wait (struct target_ops *ops,
2067 ptid_t ptid, struct target_waitstatus *status,
2068 int options)
2069 {
2070 status->kind = TARGET_WAITKIND_IGNORE;
2071 return minus_one_ptid;
2072 }
2073
2074 std::string
2075 target_pid_to_str (ptid_t ptid)
2076 {
2077 return current_top_target ()->pid_to_str (ptid);
2078 }
2079
2080 const char *
2081 target_thread_name (struct thread_info *info)
2082 {
2083 gdb_assert (info->inf == current_inferior ());
2084
2085 return current_top_target ()->thread_name (info);
2086 }
2087
2088 struct thread_info *
2089 target_thread_handle_to_thread_info (const gdb_byte *thread_handle,
2090 int handle_len,
2091 struct inferior *inf)
2092 {
2093 return current_top_target ()->thread_handle_to_thread_info (thread_handle,
2094 handle_len, inf);
2095 }
2096
2097 /* See target.h. */
2098
2099 gdb::byte_vector
2100 target_thread_info_to_thread_handle (struct thread_info *tip)
2101 {
2102 return current_top_target ()->thread_info_to_thread_handle (tip);
2103 }
2104
2105 void
2106 target_resume (ptid_t ptid, int step, enum gdb_signal signal)
2107 {
2108 process_stratum_target *curr_target = current_inferior ()->process_target ();
2109
2110 target_dcache_invalidate ();
2111
2112 current_top_target ()->resume (ptid, step, signal);
2113
2114 registers_changed_ptid (curr_target, ptid);
2115 /* We only set the internal executing state here. The user/frontend
2116 running state is set at a higher level. This also clears the
2117 thread's stop_pc as side effect. */
2118 set_executing (curr_target, ptid, true);
2119 clear_inline_frame_state (curr_target, ptid);
2120 }
2121
2122 /* If true, target_commit_resume is a nop. */
2123 static int defer_target_commit_resume;
2124
2125 /* See target.h. */
2126
2127 void
2128 target_commit_resume (void)
2129 {
2130 if (defer_target_commit_resume)
2131 return;
2132
2133 current_top_target ()->commit_resume ();
2134 }
2135
2136 /* See target.h. */
2137
2138 scoped_restore_tmpl<int>
2139 make_scoped_defer_target_commit_resume ()
2140 {
2141 return make_scoped_restore (&defer_target_commit_resume, 1);
2142 }
2143
2144 void
2145 target_pass_signals (gdb::array_view<const unsigned char> pass_signals)
2146 {
2147 current_top_target ()->pass_signals (pass_signals);
2148 }
2149
2150 void
2151 target_program_signals (gdb::array_view<const unsigned char> program_signals)
2152 {
2153 current_top_target ()->program_signals (program_signals);
2154 }
2155
2156 static bool
2157 default_follow_fork (struct target_ops *self, bool follow_child,
2158 bool detach_fork)
2159 {
2160 /* Some target returned a fork event, but did not know how to follow it. */
2161 internal_error (__FILE__, __LINE__,
2162 _("could not find a target to follow fork"));
2163 }
2164
2165 /* Look through the list of possible targets for a target that can
2166 follow forks. */
2167
2168 bool
2169 target_follow_fork (bool follow_child, bool detach_fork)
2170 {
2171 return current_top_target ()->follow_fork (follow_child, detach_fork);
2172 }
2173
2174 /* Target wrapper for follow exec hook. */
2175
2176 void
2177 target_follow_exec (struct inferior *inf, const char *execd_pathname)
2178 {
2179 current_top_target ()->follow_exec (inf, execd_pathname);
2180 }
2181
2182 static void
2183 default_mourn_inferior (struct target_ops *self)
2184 {
2185 internal_error (__FILE__, __LINE__,
2186 _("could not find a target to follow mourn inferior"));
2187 }
2188
2189 void
2190 target_mourn_inferior (ptid_t ptid)
2191 {
2192 gdb_assert (ptid == inferior_ptid);
2193 current_top_target ()->mourn_inferior ();
2194
2195 /* We no longer need to keep handles on any of the object files.
2196 Make sure to release them to avoid unnecessarily locking any
2197 of them while we're not actually debugging. */
2198 bfd_cache_close_all ();
2199 }
2200
2201 /* Look for a target which can describe architectural features, starting
2202 from TARGET. If we find one, return its description. */
2203
2204 const struct target_desc *
2205 target_read_description (struct target_ops *target)
2206 {
2207 return target->read_description ();
2208 }
2209
2210 /* This implements a basic search of memory, reading target memory and
2211 performing the search here (as opposed to performing the search in on the
2212 target side with, for example, gdbserver). */
2213
2214 int
2215 simple_search_memory (struct target_ops *ops,
2216 CORE_ADDR start_addr, ULONGEST search_space_len,
2217 const gdb_byte *pattern, ULONGEST pattern_len,
2218 CORE_ADDR *found_addrp)
2219 {
2220 /* NOTE: also defined in find.c testcase. */
2221 #define SEARCH_CHUNK_SIZE 16000
2222 const unsigned chunk_size = SEARCH_CHUNK_SIZE;
2223 /* Buffer to hold memory contents for searching. */
2224 unsigned search_buf_size;
2225
2226 search_buf_size = chunk_size + pattern_len - 1;
2227
2228 /* No point in trying to allocate a buffer larger than the search space. */
2229 if (search_space_len < search_buf_size)
2230 search_buf_size = search_space_len;
2231
2232 gdb::byte_vector search_buf (search_buf_size);
2233
2234 /* Prime the search buffer. */
2235
2236 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2237 search_buf.data (), start_addr, search_buf_size)
2238 != search_buf_size)
2239 {
2240 warning (_("Unable to access %s bytes of target "
2241 "memory at %s, halting search."),
2242 pulongest (search_buf_size), hex_string (start_addr));
2243 return -1;
2244 }
2245
2246 /* Perform the search.
2247
2248 The loop is kept simple by allocating [N + pattern-length - 1] bytes.
2249 When we've scanned N bytes we copy the trailing bytes to the start and
2250 read in another N bytes. */
2251
2252 while (search_space_len >= pattern_len)
2253 {
2254 gdb_byte *found_ptr;
2255 unsigned nr_search_bytes
2256 = std::min (search_space_len, (ULONGEST) search_buf_size);
2257
2258 found_ptr = (gdb_byte *) memmem (search_buf.data (), nr_search_bytes,
2259 pattern, pattern_len);
2260
2261 if (found_ptr != NULL)
2262 {
2263 CORE_ADDR found_addr = start_addr + (found_ptr - search_buf.data ());
2264
2265 *found_addrp = found_addr;
2266 return 1;
2267 }
2268
2269 /* Not found in this chunk, skip to next chunk. */
2270
2271 /* Don't let search_space_len wrap here, it's unsigned. */
2272 if (search_space_len >= chunk_size)
2273 search_space_len -= chunk_size;
2274 else
2275 search_space_len = 0;
2276
2277 if (search_space_len >= pattern_len)
2278 {
2279 unsigned keep_len = search_buf_size - chunk_size;
2280 CORE_ADDR read_addr = start_addr + chunk_size + keep_len;
2281 int nr_to_read;
2282
2283 /* Copy the trailing part of the previous iteration to the front
2284 of the buffer for the next iteration. */
2285 gdb_assert (keep_len == pattern_len - 1);
2286 memcpy (&search_buf[0], &search_buf[chunk_size], keep_len);
2287
2288 nr_to_read = std::min (search_space_len - keep_len,
2289 (ULONGEST) chunk_size);
2290
2291 if (target_read (ops, TARGET_OBJECT_MEMORY, NULL,
2292 &search_buf[keep_len], read_addr,
2293 nr_to_read) != nr_to_read)
2294 {
2295 warning (_("Unable to access %s bytes of target "
2296 "memory at %s, halting search."),
2297 plongest (nr_to_read),
2298 hex_string (read_addr));
2299 return -1;
2300 }
2301
2302 start_addr += chunk_size;
2303 }
2304 }
2305
2306 /* Not found. */
2307
2308 return 0;
2309 }
2310
2311 /* Default implementation of memory-searching. */
2312
2313 static int
2314 default_search_memory (struct target_ops *self,
2315 CORE_ADDR start_addr, ULONGEST search_space_len,
2316 const gdb_byte *pattern, ULONGEST pattern_len,
2317 CORE_ADDR *found_addrp)
2318 {
2319 /* Start over from the top of the target stack. */
2320 return simple_search_memory (current_top_target (),
2321 start_addr, search_space_len,
2322 pattern, pattern_len, found_addrp);
2323 }
2324
2325 /* Search SEARCH_SPACE_LEN bytes beginning at START_ADDR for the
2326 sequence of bytes in PATTERN with length PATTERN_LEN.
2327
2328 The result is 1 if found, 0 if not found, and -1 if there was an error
2329 requiring halting of the search (e.g. memory read error).
2330 If the pattern is found the address is recorded in FOUND_ADDRP. */
2331
2332 int
2333 target_search_memory (CORE_ADDR start_addr, ULONGEST search_space_len,
2334 const gdb_byte *pattern, ULONGEST pattern_len,
2335 CORE_ADDR *found_addrp)
2336 {
2337 return current_top_target ()->search_memory (start_addr, search_space_len,
2338 pattern, pattern_len, found_addrp);
2339 }
2340
2341 /* Look through the currently pushed targets. If none of them will
2342 be able to restart the currently running process, issue an error
2343 message. */
2344
2345 void
2346 target_require_runnable (void)
2347 {
2348 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2349 {
2350 /* If this target knows how to create a new program, then
2351 assume we will still be able to after killing the current
2352 one. Either killing and mourning will not pop T, or else
2353 find_default_run_target will find it again. */
2354 if (t->can_create_inferior ())
2355 return;
2356
2357 /* Do not worry about targets at certain strata that can not
2358 create inferiors. Assume they will be pushed again if
2359 necessary, and continue to the process_stratum. */
2360 if (t->stratum () > process_stratum)
2361 continue;
2362
2363 error (_("The \"%s\" target does not support \"run\". "
2364 "Try \"help target\" or \"continue\"."),
2365 t->shortname ());
2366 }
2367
2368 /* This function is only called if the target is running. In that
2369 case there should have been a process_stratum target and it
2370 should either know how to create inferiors, or not... */
2371 internal_error (__FILE__, __LINE__, _("No targets found"));
2372 }
2373
2374 /* Whether GDB is allowed to fall back to the default run target for
2375 "run", "attach", etc. when no target is connected yet. */
2376 static bool auto_connect_native_target = true;
2377
2378 static void
2379 show_auto_connect_native_target (struct ui_file *file, int from_tty,
2380 struct cmd_list_element *c, const char *value)
2381 {
2382 fprintf_filtered (file,
2383 _("Whether GDB may automatically connect to the "
2384 "native target is %s.\n"),
2385 value);
2386 }
2387
2388 /* A pointer to the target that can respond to "run" or "attach".
2389 Native targets are always singletons and instantiated early at GDB
2390 startup. */
2391 static target_ops *the_native_target;
2392
2393 /* See target.h. */
2394
2395 void
2396 set_native_target (target_ops *target)
2397 {
2398 if (the_native_target != NULL)
2399 internal_error (__FILE__, __LINE__,
2400 _("native target already set (\"%s\")."),
2401 the_native_target->longname ());
2402
2403 the_native_target = target;
2404 }
2405
2406 /* See target.h. */
2407
2408 target_ops *
2409 get_native_target ()
2410 {
2411 return the_native_target;
2412 }
2413
2414 /* Look through the list of possible targets for a target that can
2415 execute a run or attach command without any other data. This is
2416 used to locate the default process stratum.
2417
2418 If DO_MESG is not NULL, the result is always valid (error() is
2419 called for errors); else, return NULL on error. */
2420
2421 static struct target_ops *
2422 find_default_run_target (const char *do_mesg)
2423 {
2424 if (auto_connect_native_target && the_native_target != NULL)
2425 return the_native_target;
2426
2427 if (do_mesg != NULL)
2428 error (_("Don't know how to %s. Try \"help target\"."), do_mesg);
2429 return NULL;
2430 }
2431
2432 /* See target.h. */
2433
2434 struct target_ops *
2435 find_attach_target (void)
2436 {
2437 /* If a target on the current stack can attach, use it. */
2438 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2439 {
2440 if (t->can_attach ())
2441 return t;
2442 }
2443
2444 /* Otherwise, use the default run target for attaching. */
2445 return find_default_run_target ("attach");
2446 }
2447
2448 /* See target.h. */
2449
2450 struct target_ops *
2451 find_run_target (void)
2452 {
2453 /* If a target on the current stack can run, use it. */
2454 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2455 {
2456 if (t->can_create_inferior ())
2457 return t;
2458 }
2459
2460 /* Otherwise, use the default run target. */
2461 return find_default_run_target ("run");
2462 }
2463
2464 bool
2465 target_ops::info_proc (const char *args, enum info_proc_what what)
2466 {
2467 return false;
2468 }
2469
2470 /* Implement the "info proc" command. */
2471
2472 int
2473 target_info_proc (const char *args, enum info_proc_what what)
2474 {
2475 struct target_ops *t;
2476
2477 /* If we're already connected to something that can get us OS
2478 related data, use it. Otherwise, try using the native
2479 target. */
2480 t = find_target_at (process_stratum);
2481 if (t == NULL)
2482 t = find_default_run_target (NULL);
2483
2484 for (; t != NULL; t = t->beneath ())
2485 {
2486 if (t->info_proc (args, what))
2487 {
2488 if (targetdebug)
2489 fprintf_unfiltered (gdb_stdlog,
2490 "target_info_proc (\"%s\", %d)\n", args, what);
2491
2492 return 1;
2493 }
2494 }
2495
2496 return 0;
2497 }
2498
2499 static int
2500 find_default_supports_disable_randomization (struct target_ops *self)
2501 {
2502 struct target_ops *t;
2503
2504 t = find_default_run_target (NULL);
2505 if (t != NULL)
2506 return t->supports_disable_randomization ();
2507 return 0;
2508 }
2509
2510 int
2511 target_supports_disable_randomization (void)
2512 {
2513 return current_top_target ()->supports_disable_randomization ();
2514 }
2515
2516 /* See target/target.h. */
2517
2518 int
2519 target_supports_multi_process (void)
2520 {
2521 return current_top_target ()->supports_multi_process ();
2522 }
2523
2524 /* See target.h. */
2525
2526 gdb::optional<gdb::char_vector>
2527 target_get_osdata (const char *type)
2528 {
2529 struct target_ops *t;
2530
2531 /* If we're already connected to something that can get us OS
2532 related data, use it. Otherwise, try using the native
2533 target. */
2534 t = find_target_at (process_stratum);
2535 if (t == NULL)
2536 t = find_default_run_target ("get OS data");
2537
2538 if (!t)
2539 return {};
2540
2541 return target_read_stralloc (t, TARGET_OBJECT_OSDATA, type);
2542 }
2543
2544 /* Determine the current address space of thread PTID. */
2545
2546 struct address_space *
2547 target_thread_address_space (ptid_t ptid)
2548 {
2549 struct address_space *aspace;
2550
2551 aspace = current_top_target ()->thread_address_space (ptid);
2552 gdb_assert (aspace != NULL);
2553
2554 return aspace;
2555 }
2556
2557 /* See target.h. */
2558
2559 target_ops *
2560 target_ops::beneath () const
2561 {
2562 return current_inferior ()->find_target_beneath (this);
2563 }
2564
2565 void
2566 target_ops::close ()
2567 {
2568 }
2569
2570 bool
2571 target_ops::can_attach ()
2572 {
2573 return 0;
2574 }
2575
2576 void
2577 target_ops::attach (const char *, int)
2578 {
2579 gdb_assert_not_reached ("target_ops::attach called");
2580 }
2581
2582 bool
2583 target_ops::can_create_inferior ()
2584 {
2585 return 0;
2586 }
2587
2588 void
2589 target_ops::create_inferior (const char *, const std::string &,
2590 char **, int)
2591 {
2592 gdb_assert_not_reached ("target_ops::create_inferior called");
2593 }
2594
2595 bool
2596 target_ops::can_run ()
2597 {
2598 return false;
2599 }
2600
2601 int
2602 target_can_run ()
2603 {
2604 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
2605 {
2606 if (t->can_run ())
2607 return 1;
2608 }
2609
2610 return 0;
2611 }
2612
2613 /* Target file operations. */
2614
2615 static struct target_ops *
2616 default_fileio_target (void)
2617 {
2618 struct target_ops *t;
2619
2620 /* If we're already connected to something that can perform
2621 file I/O, use it. Otherwise, try using the native target. */
2622 t = find_target_at (process_stratum);
2623 if (t != NULL)
2624 return t;
2625 return find_default_run_target ("file I/O");
2626 }
2627
2628 /* File handle for target file operations. */
2629
2630 struct fileio_fh_t
2631 {
2632 /* The target on which this file is open. NULL if the target is
2633 meanwhile closed while the handle is open. */
2634 target_ops *target;
2635
2636 /* The file descriptor on the target. */
2637 int target_fd;
2638
2639 /* Check whether this fileio_fh_t represents a closed file. */
2640 bool is_closed ()
2641 {
2642 return target_fd < 0;
2643 }
2644 };
2645
2646 /* Vector of currently open file handles. The value returned by
2647 target_fileio_open and passed as the FD argument to other
2648 target_fileio_* functions is an index into this vector. This
2649 vector's entries are never freed; instead, files are marked as
2650 closed, and the handle becomes available for reuse. */
2651 static std::vector<fileio_fh_t> fileio_fhandles;
2652
2653 /* Index into fileio_fhandles of the lowest handle that might be
2654 closed. This permits handle reuse without searching the whole
2655 list each time a new file is opened. */
2656 static int lowest_closed_fd;
2657
2658 /* Invalidate the target associated with open handles that were open
2659 on target TARG, since we're about to close (and maybe destroy) the
2660 target. The handles remain open from the client's perspective, but
2661 trying to do anything with them other than closing them will fail
2662 with EIO. */
2663
2664 static void
2665 fileio_handles_invalidate_target (target_ops *targ)
2666 {
2667 for (fileio_fh_t &fh : fileio_fhandles)
2668 if (fh.target == targ)
2669 fh.target = NULL;
2670 }
2671
2672 /* Acquire a target fileio file descriptor. */
2673
2674 static int
2675 acquire_fileio_fd (target_ops *target, int target_fd)
2676 {
2677 /* Search for closed handles to reuse. */
2678 for (; lowest_closed_fd < fileio_fhandles.size (); lowest_closed_fd++)
2679 {
2680 fileio_fh_t &fh = fileio_fhandles[lowest_closed_fd];
2681
2682 if (fh.is_closed ())
2683 break;
2684 }
2685
2686 /* Push a new handle if no closed handles were found. */
2687 if (lowest_closed_fd == fileio_fhandles.size ())
2688 fileio_fhandles.push_back (fileio_fh_t {target, target_fd});
2689 else
2690 fileio_fhandles[lowest_closed_fd] = {target, target_fd};
2691
2692 /* Should no longer be marked closed. */
2693 gdb_assert (!fileio_fhandles[lowest_closed_fd].is_closed ());
2694
2695 /* Return its index, and start the next lookup at
2696 the next index. */
2697 return lowest_closed_fd++;
2698 }
2699
2700 /* Release a target fileio file descriptor. */
2701
2702 static void
2703 release_fileio_fd (int fd, fileio_fh_t *fh)
2704 {
2705 fh->target_fd = -1;
2706 lowest_closed_fd = std::min (lowest_closed_fd, fd);
2707 }
2708
2709 /* Return a pointer to the fileio_fhandle_t corresponding to FD. */
2710
2711 static fileio_fh_t *
2712 fileio_fd_to_fh (int fd)
2713 {
2714 return &fileio_fhandles[fd];
2715 }
2716
2717
2718 /* Default implementations of file i/o methods. We don't want these
2719 to delegate automatically, because we need to know which target
2720 supported the method, in order to call it directly from within
2721 pread/pwrite, etc. */
2722
2723 int
2724 target_ops::fileio_open (struct inferior *inf, const char *filename,
2725 int flags, int mode, int warn_if_slow,
2726 int *target_errno)
2727 {
2728 *target_errno = FILEIO_ENOSYS;
2729 return -1;
2730 }
2731
2732 int
2733 target_ops::fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2734 ULONGEST offset, int *target_errno)
2735 {
2736 *target_errno = FILEIO_ENOSYS;
2737 return -1;
2738 }
2739
2740 int
2741 target_ops::fileio_pread (int fd, gdb_byte *read_buf, int len,
2742 ULONGEST offset, int *target_errno)
2743 {
2744 *target_errno = FILEIO_ENOSYS;
2745 return -1;
2746 }
2747
2748 int
2749 target_ops::fileio_fstat (int fd, struct stat *sb, int *target_errno)
2750 {
2751 *target_errno = FILEIO_ENOSYS;
2752 return -1;
2753 }
2754
2755 int
2756 target_ops::fileio_close (int fd, int *target_errno)
2757 {
2758 *target_errno = FILEIO_ENOSYS;
2759 return -1;
2760 }
2761
2762 int
2763 target_ops::fileio_unlink (struct inferior *inf, const char *filename,
2764 int *target_errno)
2765 {
2766 *target_errno = FILEIO_ENOSYS;
2767 return -1;
2768 }
2769
2770 gdb::optional<std::string>
2771 target_ops::fileio_readlink (struct inferior *inf, const char *filename,
2772 int *target_errno)
2773 {
2774 *target_errno = FILEIO_ENOSYS;
2775 return {};
2776 }
2777
2778 /* See target.h. */
2779
2780 int
2781 target_fileio_open (struct inferior *inf, const char *filename,
2782 int flags, int mode, bool warn_if_slow, int *target_errno)
2783 {
2784 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2785 {
2786 int fd = t->fileio_open (inf, filename, flags, mode,
2787 warn_if_slow, target_errno);
2788
2789 if (fd == -1 && *target_errno == FILEIO_ENOSYS)
2790 continue;
2791
2792 if (fd < 0)
2793 fd = -1;
2794 else
2795 fd = acquire_fileio_fd (t, fd);
2796
2797 if (targetdebug)
2798 fprintf_unfiltered (gdb_stdlog,
2799 "target_fileio_open (%d,%s,0x%x,0%o,%d)"
2800 " = %d (%d)\n",
2801 inf == NULL ? 0 : inf->num,
2802 filename, flags, mode,
2803 warn_if_slow, fd,
2804 fd != -1 ? 0 : *target_errno);
2805 return fd;
2806 }
2807
2808 *target_errno = FILEIO_ENOSYS;
2809 return -1;
2810 }
2811
2812 /* See target.h. */
2813
2814 int
2815 target_fileio_pwrite (int fd, const gdb_byte *write_buf, int len,
2816 ULONGEST offset, int *target_errno)
2817 {
2818 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2819 int ret = -1;
2820
2821 if (fh->is_closed ())
2822 *target_errno = EBADF;
2823 else if (fh->target == NULL)
2824 *target_errno = EIO;
2825 else
2826 ret = fh->target->fileio_pwrite (fh->target_fd, write_buf,
2827 len, offset, target_errno);
2828
2829 if (targetdebug)
2830 fprintf_unfiltered (gdb_stdlog,
2831 "target_fileio_pwrite (%d,...,%d,%s) "
2832 "= %d (%d)\n",
2833 fd, len, pulongest (offset),
2834 ret, ret != -1 ? 0 : *target_errno);
2835 return ret;
2836 }
2837
2838 /* See target.h. */
2839
2840 int
2841 target_fileio_pread (int fd, gdb_byte *read_buf, int len,
2842 ULONGEST offset, int *target_errno)
2843 {
2844 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2845 int ret = -1;
2846
2847 if (fh->is_closed ())
2848 *target_errno = EBADF;
2849 else if (fh->target == NULL)
2850 *target_errno = EIO;
2851 else
2852 ret = fh->target->fileio_pread (fh->target_fd, read_buf,
2853 len, offset, target_errno);
2854
2855 if (targetdebug)
2856 fprintf_unfiltered (gdb_stdlog,
2857 "target_fileio_pread (%d,...,%d,%s) "
2858 "= %d (%d)\n",
2859 fd, len, pulongest (offset),
2860 ret, ret != -1 ? 0 : *target_errno);
2861 return ret;
2862 }
2863
2864 /* See target.h. */
2865
2866 int
2867 target_fileio_fstat (int fd, struct stat *sb, int *target_errno)
2868 {
2869 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2870 int ret = -1;
2871
2872 if (fh->is_closed ())
2873 *target_errno = EBADF;
2874 else if (fh->target == NULL)
2875 *target_errno = EIO;
2876 else
2877 ret = fh->target->fileio_fstat (fh->target_fd, sb, target_errno);
2878
2879 if (targetdebug)
2880 fprintf_unfiltered (gdb_stdlog,
2881 "target_fileio_fstat (%d) = %d (%d)\n",
2882 fd, ret, ret != -1 ? 0 : *target_errno);
2883 return ret;
2884 }
2885
2886 /* See target.h. */
2887
2888 int
2889 target_fileio_close (int fd, int *target_errno)
2890 {
2891 fileio_fh_t *fh = fileio_fd_to_fh (fd);
2892 int ret = -1;
2893
2894 if (fh->is_closed ())
2895 *target_errno = EBADF;
2896 else
2897 {
2898 if (fh->target != NULL)
2899 ret = fh->target->fileio_close (fh->target_fd,
2900 target_errno);
2901 else
2902 ret = 0;
2903 release_fileio_fd (fd, fh);
2904 }
2905
2906 if (targetdebug)
2907 fprintf_unfiltered (gdb_stdlog,
2908 "target_fileio_close (%d) = %d (%d)\n",
2909 fd, ret, ret != -1 ? 0 : *target_errno);
2910 return ret;
2911 }
2912
2913 /* See target.h. */
2914
2915 int
2916 target_fileio_unlink (struct inferior *inf, const char *filename,
2917 int *target_errno)
2918 {
2919 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2920 {
2921 int ret = t->fileio_unlink (inf, filename, target_errno);
2922
2923 if (ret == -1 && *target_errno == FILEIO_ENOSYS)
2924 continue;
2925
2926 if (targetdebug)
2927 fprintf_unfiltered (gdb_stdlog,
2928 "target_fileio_unlink (%d,%s)"
2929 " = %d (%d)\n",
2930 inf == NULL ? 0 : inf->num, filename,
2931 ret, ret != -1 ? 0 : *target_errno);
2932 return ret;
2933 }
2934
2935 *target_errno = FILEIO_ENOSYS;
2936 return -1;
2937 }
2938
2939 /* See target.h. */
2940
2941 gdb::optional<std::string>
2942 target_fileio_readlink (struct inferior *inf, const char *filename,
2943 int *target_errno)
2944 {
2945 for (target_ops *t = default_fileio_target (); t != NULL; t = t->beneath ())
2946 {
2947 gdb::optional<std::string> ret
2948 = t->fileio_readlink (inf, filename, target_errno);
2949
2950 if (!ret.has_value () && *target_errno == FILEIO_ENOSYS)
2951 continue;
2952
2953 if (targetdebug)
2954 fprintf_unfiltered (gdb_stdlog,
2955 "target_fileio_readlink (%d,%s)"
2956 " = %s (%d)\n",
2957 inf == NULL ? 0 : inf->num,
2958 filename, ret ? ret->c_str () : "(nil)",
2959 ret ? 0 : *target_errno);
2960 return ret;
2961 }
2962
2963 *target_errno = FILEIO_ENOSYS;
2964 return {};
2965 }
2966
2967 /* Like scoped_fd, but specific to target fileio. */
2968
2969 class scoped_target_fd
2970 {
2971 public:
2972 explicit scoped_target_fd (int fd) noexcept
2973 : m_fd (fd)
2974 {
2975 }
2976
2977 ~scoped_target_fd ()
2978 {
2979 if (m_fd >= 0)
2980 {
2981 int target_errno;
2982
2983 target_fileio_close (m_fd, &target_errno);
2984 }
2985 }
2986
2987 DISABLE_COPY_AND_ASSIGN (scoped_target_fd);
2988
2989 int get () const noexcept
2990 {
2991 return m_fd;
2992 }
2993
2994 private:
2995 int m_fd;
2996 };
2997
2998 /* Read target file FILENAME, in the filesystem as seen by INF. If
2999 INF is NULL, use the filesystem seen by the debugger (GDB or, for
3000 remote targets, the remote stub). Store the result in *BUF_P and
3001 return the size of the transferred data. PADDING additional bytes
3002 are available in *BUF_P. This is a helper function for
3003 target_fileio_read_alloc; see the declaration of that function for
3004 more information. */
3005
3006 static LONGEST
3007 target_fileio_read_alloc_1 (struct inferior *inf, const char *filename,
3008 gdb_byte **buf_p, int padding)
3009 {
3010 size_t buf_alloc, buf_pos;
3011 gdb_byte *buf;
3012 LONGEST n;
3013 int target_errno;
3014
3015 scoped_target_fd fd (target_fileio_open (inf, filename, FILEIO_O_RDONLY,
3016 0700, false, &target_errno));
3017 if (fd.get () == -1)
3018 return -1;
3019
3020 /* Start by reading up to 4K at a time. The target will throttle
3021 this number down if necessary. */
3022 buf_alloc = 4096;
3023 buf = (gdb_byte *) xmalloc (buf_alloc);
3024 buf_pos = 0;
3025 while (1)
3026 {
3027 n = target_fileio_pread (fd.get (), &buf[buf_pos],
3028 buf_alloc - buf_pos - padding, buf_pos,
3029 &target_errno);
3030 if (n < 0)
3031 {
3032 /* An error occurred. */
3033 xfree (buf);
3034 return -1;
3035 }
3036 else if (n == 0)
3037 {
3038 /* Read all there was. */
3039 if (buf_pos == 0)
3040 xfree (buf);
3041 else
3042 *buf_p = buf;
3043 return buf_pos;
3044 }
3045
3046 buf_pos += n;
3047
3048 /* If the buffer is filling up, expand it. */
3049 if (buf_alloc < buf_pos * 2)
3050 {
3051 buf_alloc *= 2;
3052 buf = (gdb_byte *) xrealloc (buf, buf_alloc);
3053 }
3054
3055 QUIT;
3056 }
3057 }
3058
3059 /* See target.h. */
3060
3061 LONGEST
3062 target_fileio_read_alloc (struct inferior *inf, const char *filename,
3063 gdb_byte **buf_p)
3064 {
3065 return target_fileio_read_alloc_1 (inf, filename, buf_p, 0);
3066 }
3067
3068 /* See target.h. */
3069
3070 gdb::unique_xmalloc_ptr<char>
3071 target_fileio_read_stralloc (struct inferior *inf, const char *filename)
3072 {
3073 gdb_byte *buffer;
3074 char *bufstr;
3075 LONGEST i, transferred;
3076
3077 transferred = target_fileio_read_alloc_1 (inf, filename, &buffer, 1);
3078 bufstr = (char *) buffer;
3079
3080 if (transferred < 0)
3081 return gdb::unique_xmalloc_ptr<char> (nullptr);
3082
3083 if (transferred == 0)
3084 return make_unique_xstrdup ("");
3085
3086 bufstr[transferred] = 0;
3087
3088 /* Check for embedded NUL bytes; but allow trailing NULs. */
3089 for (i = strlen (bufstr); i < transferred; i++)
3090 if (bufstr[i] != 0)
3091 {
3092 warning (_("target file %s "
3093 "contained unexpected null characters"),
3094 filename);
3095 break;
3096 }
3097
3098 return gdb::unique_xmalloc_ptr<char> (bufstr);
3099 }
3100
3101
3102 static int
3103 default_region_ok_for_hw_watchpoint (struct target_ops *self,
3104 CORE_ADDR addr, int len)
3105 {
3106 return (len <= gdbarch_ptr_bit (target_gdbarch ()) / TARGET_CHAR_BIT);
3107 }
3108
3109 static int
3110 default_watchpoint_addr_within_range (struct target_ops *target,
3111 CORE_ADDR addr,
3112 CORE_ADDR start, int length)
3113 {
3114 return addr >= start && addr < start + length;
3115 }
3116
3117 /* See target.h. */
3118
3119 target_ops *
3120 target_stack::find_beneath (const target_ops *t) const
3121 {
3122 /* Look for a non-empty slot at stratum levels beneath T's. */
3123 for (int stratum = t->stratum () - 1; stratum >= 0; --stratum)
3124 if (m_stack[stratum] != NULL)
3125 return m_stack[stratum];
3126
3127 return NULL;
3128 }
3129
3130 /* See target.h. */
3131
3132 struct target_ops *
3133 find_target_at (enum strata stratum)
3134 {
3135 return current_inferior ()->target_at (stratum);
3136 }
3137
3138 \f
3139
3140 /* See target.h */
3141
3142 void
3143 target_announce_detach (int from_tty)
3144 {
3145 pid_t pid;
3146 const char *exec_file;
3147
3148 if (!from_tty)
3149 return;
3150
3151 exec_file = get_exec_file (0);
3152 if (exec_file == NULL)
3153 exec_file = "";
3154
3155 pid = inferior_ptid.pid ();
3156 printf_unfiltered (_("Detaching from program: %s, %s\n"), exec_file,
3157 target_pid_to_str (ptid_t (pid)).c_str ());
3158 }
3159
3160 /* The inferior process has died. Long live the inferior! */
3161
3162 void
3163 generic_mourn_inferior (void)
3164 {
3165 inferior *inf = current_inferior ();
3166
3167 inferior_ptid = null_ptid;
3168
3169 /* Mark breakpoints uninserted in case something tries to delete a
3170 breakpoint while we delete the inferior's threads (which would
3171 fail, since the inferior is long gone). */
3172 mark_breakpoints_out ();
3173
3174 if (inf->pid != 0)
3175 exit_inferior (inf);
3176
3177 /* Note this wipes step-resume breakpoints, so needs to be done
3178 after exit_inferior, which ends up referencing the step-resume
3179 breakpoints through clear_thread_inferior_resources. */
3180 breakpoint_init_inferior (inf_exited);
3181
3182 registers_changed ();
3183
3184 reopen_exec_file ();
3185 reinit_frame_cache ();
3186
3187 if (deprecated_detach_hook)
3188 deprecated_detach_hook ();
3189 }
3190 \f
3191 /* Convert a normal process ID to a string. Returns the string in a
3192 static buffer. */
3193
3194 std::string
3195 normal_pid_to_str (ptid_t ptid)
3196 {
3197 return string_printf ("process %d", ptid.pid ());
3198 }
3199
3200 static std::string
3201 default_pid_to_str (struct target_ops *ops, ptid_t ptid)
3202 {
3203 return normal_pid_to_str (ptid);
3204 }
3205
3206 /* Error-catcher for target_find_memory_regions. */
3207 static int
3208 dummy_find_memory_regions (struct target_ops *self,
3209 find_memory_region_ftype ignore1, void *ignore2)
3210 {
3211 error (_("Command not implemented for this target."));
3212 return 0;
3213 }
3214
3215 /* Error-catcher for target_make_corefile_notes. */
3216 static char *
3217 dummy_make_corefile_notes (struct target_ops *self,
3218 bfd *ignore1, int *ignore2)
3219 {
3220 error (_("Command not implemented for this target."));
3221 return NULL;
3222 }
3223
3224 #include "target-delegates.c"
3225
3226 /* The initial current target, so that there is always a semi-valid
3227 current target. */
3228
3229 static dummy_target the_dummy_target;
3230
3231 /* See target.h. */
3232
3233 target_ops *
3234 get_dummy_target ()
3235 {
3236 return &the_dummy_target;
3237 }
3238
3239 static const target_info dummy_target_info = {
3240 "None",
3241 N_("None"),
3242 ""
3243 };
3244
3245 strata
3246 dummy_target::stratum () const
3247 {
3248 return dummy_stratum;
3249 }
3250
3251 strata
3252 debug_target::stratum () const
3253 {
3254 return debug_stratum;
3255 }
3256
3257 const target_info &
3258 dummy_target::info () const
3259 {
3260 return dummy_target_info;
3261 }
3262
3263 const target_info &
3264 debug_target::info () const
3265 {
3266 return beneath ()->info ();
3267 }
3268
3269 \f
3270
3271 void
3272 target_close (struct target_ops *targ)
3273 {
3274 gdb_assert (!target_is_pushed (targ));
3275
3276 fileio_handles_invalidate_target (targ);
3277
3278 targ->close ();
3279
3280 if (targetdebug)
3281 fprintf_unfiltered (gdb_stdlog, "target_close ()\n");
3282 }
3283
3284 int
3285 target_thread_alive (ptid_t ptid)
3286 {
3287 return current_top_target ()->thread_alive (ptid);
3288 }
3289
3290 void
3291 target_update_thread_list (void)
3292 {
3293 current_top_target ()->update_thread_list ();
3294 }
3295
3296 void
3297 target_stop (ptid_t ptid)
3298 {
3299 if (!may_stop)
3300 {
3301 warning (_("May not interrupt or stop the target, ignoring attempt"));
3302 return;
3303 }
3304
3305 current_top_target ()->stop (ptid);
3306 }
3307
3308 void
3309 target_interrupt ()
3310 {
3311 if (!may_stop)
3312 {
3313 warning (_("May not interrupt or stop the target, ignoring attempt"));
3314 return;
3315 }
3316
3317 current_top_target ()->interrupt ();
3318 }
3319
3320 /* See target.h. */
3321
3322 void
3323 target_pass_ctrlc (void)
3324 {
3325 /* Pass the Ctrl-C to the first target that has a thread
3326 running. */
3327 for (inferior *inf : all_inferiors ())
3328 {
3329 target_ops *proc_target = inf->process_target ();
3330 if (proc_target == NULL)
3331 continue;
3332
3333 for (thread_info *thr : inf->threads ())
3334 {
3335 /* A thread can be THREAD_STOPPED and executing, while
3336 running an infcall. */
3337 if (thr->state == THREAD_RUNNING || thr->executing)
3338 {
3339 /* We can get here quite deep in target layers. Avoid
3340 switching thread context or anything that would
3341 communicate with the target (e.g., to fetch
3342 registers), or flushing e.g., the frame cache. We
3343 just switch inferior in order to be able to call
3344 through the target_stack. */
3345 scoped_restore_current_inferior restore_inferior;
3346 set_current_inferior (inf);
3347 current_top_target ()->pass_ctrlc ();
3348 return;
3349 }
3350 }
3351 }
3352 }
3353
3354 /* See target.h. */
3355
3356 void
3357 default_target_pass_ctrlc (struct target_ops *ops)
3358 {
3359 target_interrupt ();
3360 }
3361
3362 /* See target/target.h. */
3363
3364 void
3365 target_stop_and_wait (ptid_t ptid)
3366 {
3367 struct target_waitstatus status;
3368 bool was_non_stop = non_stop;
3369
3370 non_stop = true;
3371 target_stop (ptid);
3372
3373 memset (&status, 0, sizeof (status));
3374 target_wait (ptid, &status, 0);
3375
3376 non_stop = was_non_stop;
3377 }
3378
3379 /* See target/target.h. */
3380
3381 void
3382 target_continue_no_signal (ptid_t ptid)
3383 {
3384 target_resume (ptid, 0, GDB_SIGNAL_0);
3385 }
3386
3387 /* See target/target.h. */
3388
3389 void
3390 target_continue (ptid_t ptid, enum gdb_signal signal)
3391 {
3392 target_resume (ptid, 0, signal);
3393 }
3394
3395 /* Concatenate ELEM to LIST, a comma-separated list. */
3396
3397 static void
3398 str_comma_list_concat_elem (std::string *list, const char *elem)
3399 {
3400 if (!list->empty ())
3401 list->append (", ");
3402
3403 list->append (elem);
3404 }
3405
3406 /* Helper for target_options_to_string. If OPT is present in
3407 TARGET_OPTIONS, append the OPT_STR (string version of OPT) in RET.
3408 OPT is removed from TARGET_OPTIONS. */
3409
3410 static void
3411 do_option (int *target_options, std::string *ret,
3412 int opt, const char *opt_str)
3413 {
3414 if ((*target_options & opt) != 0)
3415 {
3416 str_comma_list_concat_elem (ret, opt_str);
3417 *target_options &= ~opt;
3418 }
3419 }
3420
3421 /* See target.h. */
3422
3423 std::string
3424 target_options_to_string (int target_options)
3425 {
3426 std::string ret;
3427
3428 #define DO_TARG_OPTION(OPT) \
3429 do_option (&target_options, &ret, OPT, #OPT)
3430
3431 DO_TARG_OPTION (TARGET_WNOHANG);
3432
3433 if (target_options != 0)
3434 str_comma_list_concat_elem (&ret, "unknown???");
3435
3436 return ret;
3437 }
3438
3439 void
3440 target_fetch_registers (struct regcache *regcache, int regno)
3441 {
3442 current_top_target ()->fetch_registers (regcache, regno);
3443 if (targetdebug)
3444 regcache->debug_print_register ("target_fetch_registers", regno);
3445 }
3446
3447 void
3448 target_store_registers (struct regcache *regcache, int regno)
3449 {
3450 if (!may_write_registers)
3451 error (_("Writing to registers is not allowed (regno %d)"), regno);
3452
3453 current_top_target ()->store_registers (regcache, regno);
3454 if (targetdebug)
3455 {
3456 regcache->debug_print_register ("target_store_registers", regno);
3457 }
3458 }
3459
3460 int
3461 target_core_of_thread (ptid_t ptid)
3462 {
3463 return current_top_target ()->core_of_thread (ptid);
3464 }
3465
3466 int
3467 simple_verify_memory (struct target_ops *ops,
3468 const gdb_byte *data, CORE_ADDR lma, ULONGEST size)
3469 {
3470 LONGEST total_xfered = 0;
3471
3472 while (total_xfered < size)
3473 {
3474 ULONGEST xfered_len;
3475 enum target_xfer_status status;
3476 gdb_byte buf[1024];
3477 ULONGEST howmuch = std::min<ULONGEST> (sizeof (buf), size - total_xfered);
3478
3479 status = target_xfer_partial (ops, TARGET_OBJECT_MEMORY, NULL,
3480 buf, NULL, lma + total_xfered, howmuch,
3481 &xfered_len);
3482 if (status == TARGET_XFER_OK
3483 && memcmp (data + total_xfered, buf, xfered_len) == 0)
3484 {
3485 total_xfered += xfered_len;
3486 QUIT;
3487 }
3488 else
3489 return 0;
3490 }
3491 return 1;
3492 }
3493
3494 /* Default implementation of memory verification. */
3495
3496 static int
3497 default_verify_memory (struct target_ops *self,
3498 const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3499 {
3500 /* Start over from the top of the target stack. */
3501 return simple_verify_memory (current_top_target (),
3502 data, memaddr, size);
3503 }
3504
3505 int
3506 target_verify_memory (const gdb_byte *data, CORE_ADDR memaddr, ULONGEST size)
3507 {
3508 return current_top_target ()->verify_memory (data, memaddr, size);
3509 }
3510
3511 /* The documentation for this function is in its prototype declaration in
3512 target.h. */
3513
3514 int
3515 target_insert_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3516 enum target_hw_bp_type rw)
3517 {
3518 return current_top_target ()->insert_mask_watchpoint (addr, mask, rw);
3519 }
3520
3521 /* The documentation for this function is in its prototype declaration in
3522 target.h. */
3523
3524 int
3525 target_remove_mask_watchpoint (CORE_ADDR addr, CORE_ADDR mask,
3526 enum target_hw_bp_type rw)
3527 {
3528 return current_top_target ()->remove_mask_watchpoint (addr, mask, rw);
3529 }
3530
3531 /* The documentation for this function is in its prototype declaration
3532 in target.h. */
3533
3534 int
3535 target_masked_watch_num_registers (CORE_ADDR addr, CORE_ADDR mask)
3536 {
3537 return current_top_target ()->masked_watch_num_registers (addr, mask);
3538 }
3539
3540 /* The documentation for this function is in its prototype declaration
3541 in target.h. */
3542
3543 int
3544 target_ranged_break_num_registers (void)
3545 {
3546 return current_top_target ()->ranged_break_num_registers ();
3547 }
3548
3549 /* See target.h. */
3550
3551 struct btrace_target_info *
3552 target_enable_btrace (ptid_t ptid, const struct btrace_config *conf)
3553 {
3554 return current_top_target ()->enable_btrace (ptid, conf);
3555 }
3556
3557 /* See target.h. */
3558
3559 void
3560 target_disable_btrace (struct btrace_target_info *btinfo)
3561 {
3562 current_top_target ()->disable_btrace (btinfo);
3563 }
3564
3565 /* See target.h. */
3566
3567 void
3568 target_teardown_btrace (struct btrace_target_info *btinfo)
3569 {
3570 current_top_target ()->teardown_btrace (btinfo);
3571 }
3572
3573 /* See target.h. */
3574
3575 enum btrace_error
3576 target_read_btrace (struct btrace_data *btrace,
3577 struct btrace_target_info *btinfo,
3578 enum btrace_read_type type)
3579 {
3580 return current_top_target ()->read_btrace (btrace, btinfo, type);
3581 }
3582
3583 /* See target.h. */
3584
3585 const struct btrace_config *
3586 target_btrace_conf (const struct btrace_target_info *btinfo)
3587 {
3588 return current_top_target ()->btrace_conf (btinfo);
3589 }
3590
3591 /* See target.h. */
3592
3593 void
3594 target_stop_recording (void)
3595 {
3596 current_top_target ()->stop_recording ();
3597 }
3598
3599 /* See target.h. */
3600
3601 void
3602 target_save_record (const char *filename)
3603 {
3604 current_top_target ()->save_record (filename);
3605 }
3606
3607 /* See target.h. */
3608
3609 int
3610 target_supports_delete_record ()
3611 {
3612 return current_top_target ()->supports_delete_record ();
3613 }
3614
3615 /* See target.h. */
3616
3617 void
3618 target_delete_record (void)
3619 {
3620 current_top_target ()->delete_record ();
3621 }
3622
3623 /* See target.h. */
3624
3625 enum record_method
3626 target_record_method (ptid_t ptid)
3627 {
3628 return current_top_target ()->record_method (ptid);
3629 }
3630
3631 /* See target.h. */
3632
3633 int
3634 target_record_is_replaying (ptid_t ptid)
3635 {
3636 return current_top_target ()->record_is_replaying (ptid);
3637 }
3638
3639 /* See target.h. */
3640
3641 int
3642 target_record_will_replay (ptid_t ptid, int dir)
3643 {
3644 return current_top_target ()->record_will_replay (ptid, dir);
3645 }
3646
3647 /* See target.h. */
3648
3649 void
3650 target_record_stop_replaying (void)
3651 {
3652 current_top_target ()->record_stop_replaying ();
3653 }
3654
3655 /* See target.h. */
3656
3657 void
3658 target_goto_record_begin (void)
3659 {
3660 current_top_target ()->goto_record_begin ();
3661 }
3662
3663 /* See target.h. */
3664
3665 void
3666 target_goto_record_end (void)
3667 {
3668 current_top_target ()->goto_record_end ();
3669 }
3670
3671 /* See target.h. */
3672
3673 void
3674 target_goto_record (ULONGEST insn)
3675 {
3676 current_top_target ()->goto_record (insn);
3677 }
3678
3679 /* See target.h. */
3680
3681 void
3682 target_insn_history (int size, gdb_disassembly_flags flags)
3683 {
3684 current_top_target ()->insn_history (size, flags);
3685 }
3686
3687 /* See target.h. */
3688
3689 void
3690 target_insn_history_from (ULONGEST from, int size,
3691 gdb_disassembly_flags flags)
3692 {
3693 current_top_target ()->insn_history_from (from, size, flags);
3694 }
3695
3696 /* See target.h. */
3697
3698 void
3699 target_insn_history_range (ULONGEST begin, ULONGEST end,
3700 gdb_disassembly_flags flags)
3701 {
3702 current_top_target ()->insn_history_range (begin, end, flags);
3703 }
3704
3705 /* See target.h. */
3706
3707 void
3708 target_call_history (int size, record_print_flags flags)
3709 {
3710 current_top_target ()->call_history (size, flags);
3711 }
3712
3713 /* See target.h. */
3714
3715 void
3716 target_call_history_from (ULONGEST begin, int size, record_print_flags flags)
3717 {
3718 current_top_target ()->call_history_from (begin, size, flags);
3719 }
3720
3721 /* See target.h. */
3722
3723 void
3724 target_call_history_range (ULONGEST begin, ULONGEST end, record_print_flags flags)
3725 {
3726 current_top_target ()->call_history_range (begin, end, flags);
3727 }
3728
3729 /* See target.h. */
3730
3731 const struct frame_unwind *
3732 target_get_unwinder (void)
3733 {
3734 return current_top_target ()->get_unwinder ();
3735 }
3736
3737 /* See target.h. */
3738
3739 const struct frame_unwind *
3740 target_get_tailcall_unwinder (void)
3741 {
3742 return current_top_target ()->get_tailcall_unwinder ();
3743 }
3744
3745 /* See target.h. */
3746
3747 void
3748 target_prepare_to_generate_core (void)
3749 {
3750 current_top_target ()->prepare_to_generate_core ();
3751 }
3752
3753 /* See target.h. */
3754
3755 void
3756 target_done_generating_core (void)
3757 {
3758 current_top_target ()->done_generating_core ();
3759 }
3760
3761 \f
3762
3763 static char targ_desc[] =
3764 "Names of targets and files being debugged.\nShows the entire \
3765 stack of targets currently in use (including the exec-file,\n\
3766 core-file, and process, if any), as well as the symbol file name.";
3767
3768 static void
3769 default_rcmd (struct target_ops *self, const char *command,
3770 struct ui_file *output)
3771 {
3772 error (_("\"monitor\" command not supported by this target."));
3773 }
3774
3775 static void
3776 do_monitor_command (const char *cmd, int from_tty)
3777 {
3778 target_rcmd (cmd, gdb_stdtarg);
3779 }
3780
3781 /* Erases all the memory regions marked as flash. CMD and FROM_TTY are
3782 ignored. */
3783
3784 void
3785 flash_erase_command (const char *cmd, int from_tty)
3786 {
3787 /* Used to communicate termination of flash operations to the target. */
3788 bool found_flash_region = false;
3789 struct gdbarch *gdbarch = target_gdbarch ();
3790
3791 std::vector<mem_region> mem_regions = target_memory_map ();
3792
3793 /* Iterate over all memory regions. */
3794 for (const mem_region &m : mem_regions)
3795 {
3796 /* Is this a flash memory region? */
3797 if (m.attrib.mode == MEM_FLASH)
3798 {
3799 found_flash_region = true;
3800 target_flash_erase (m.lo, m.hi - m.lo);
3801
3802 ui_out_emit_tuple tuple_emitter (current_uiout, "erased-regions");
3803
3804 current_uiout->message (_("Erasing flash memory region at address "));
3805 current_uiout->field_core_addr ("address", gdbarch, m.lo);
3806 current_uiout->message (", size = ");
3807 current_uiout->field_string ("size", hex_string (m.hi - m.lo));
3808 current_uiout->message ("\n");
3809 }
3810 }
3811
3812 /* Did we do any flash operations? If so, we need to finalize them. */
3813 if (found_flash_region)
3814 target_flash_done ();
3815 else
3816 current_uiout->message (_("No flash memory regions found.\n"));
3817 }
3818
3819 /* Print the name of each layers of our target stack. */
3820
3821 static void
3822 maintenance_print_target_stack (const char *cmd, int from_tty)
3823 {
3824 printf_filtered (_("The current target stack is:\n"));
3825
3826 for (target_ops *t = current_top_target (); t != NULL; t = t->beneath ())
3827 {
3828 if (t->stratum () == debug_stratum)
3829 continue;
3830 printf_filtered (" - %s (%s)\n", t->shortname (), t->longname ());
3831 }
3832 }
3833
3834 /* See target.h. */
3835
3836 void
3837 target_async (int enable)
3838 {
3839 infrun_async (enable);
3840 current_top_target ()->async (enable);
3841 }
3842
3843 /* See target.h. */
3844
3845 void
3846 target_thread_events (int enable)
3847 {
3848 current_top_target ()->thread_events (enable);
3849 }
3850
3851 /* Controls if targets can report that they can/are async. This is
3852 just for maintainers to use when debugging gdb. */
3853 bool target_async_permitted = true;
3854
3855 /* The set command writes to this variable. If the inferior is
3856 executing, target_async_permitted is *not* updated. */
3857 static bool target_async_permitted_1 = true;
3858
3859 static void
3860 maint_set_target_async_command (const char *args, int from_tty,
3861 struct cmd_list_element *c)
3862 {
3863 if (have_live_inferiors ())
3864 {
3865 target_async_permitted_1 = target_async_permitted;
3866 error (_("Cannot change this setting while the inferior is running."));
3867 }
3868
3869 target_async_permitted = target_async_permitted_1;
3870 }
3871
3872 static void
3873 maint_show_target_async_command (struct ui_file *file, int from_tty,
3874 struct cmd_list_element *c,
3875 const char *value)
3876 {
3877 fprintf_filtered (file,
3878 _("Controlling the inferior in "
3879 "asynchronous mode is %s.\n"), value);
3880 }
3881
3882 /* Return true if the target operates in non-stop mode even with "set
3883 non-stop off". */
3884
3885 static int
3886 target_always_non_stop_p (void)
3887 {
3888 return current_top_target ()->always_non_stop_p ();
3889 }
3890
3891 /* See target.h. */
3892
3893 int
3894 target_is_non_stop_p (void)
3895 {
3896 return (non_stop
3897 || target_non_stop_enabled == AUTO_BOOLEAN_TRUE
3898 || (target_non_stop_enabled == AUTO_BOOLEAN_AUTO
3899 && target_always_non_stop_p ()));
3900 }
3901
3902 /* See target.h. */
3903
3904 bool
3905 exists_non_stop_target ()
3906 {
3907 if (target_is_non_stop_p ())
3908 return true;
3909
3910 scoped_restore_current_thread restore_thread;
3911
3912 for (inferior *inf : all_inferiors ())
3913 {
3914 switch_to_inferior_no_thread (inf);
3915 if (target_is_non_stop_p ())
3916 return true;
3917 }
3918
3919 return false;
3920 }
3921
3922 /* Controls if targets can report that they always run in non-stop
3923 mode. This is just for maintainers to use when debugging gdb. */
3924 enum auto_boolean target_non_stop_enabled = AUTO_BOOLEAN_AUTO;
3925
3926 /* The set command writes to this variable. If the inferior is
3927 executing, target_non_stop_enabled is *not* updated. */
3928 static enum auto_boolean target_non_stop_enabled_1 = AUTO_BOOLEAN_AUTO;
3929
3930 /* Implementation of "maint set target-non-stop". */
3931
3932 static void
3933 maint_set_target_non_stop_command (const char *args, int from_tty,
3934 struct cmd_list_element *c)
3935 {
3936 if (have_live_inferiors ())
3937 {
3938 target_non_stop_enabled_1 = target_non_stop_enabled;
3939 error (_("Cannot change this setting while the inferior is running."));
3940 }
3941
3942 target_non_stop_enabled = target_non_stop_enabled_1;
3943 }
3944
3945 /* Implementation of "maint show target-non-stop". */
3946
3947 static void
3948 maint_show_target_non_stop_command (struct ui_file *file, int from_tty,
3949 struct cmd_list_element *c,
3950 const char *value)
3951 {
3952 if (target_non_stop_enabled == AUTO_BOOLEAN_AUTO)
3953 fprintf_filtered (file,
3954 _("Whether the target is always in non-stop mode "
3955 "is %s (currently %s).\n"), value,
3956 target_always_non_stop_p () ? "on" : "off");
3957 else
3958 fprintf_filtered (file,
3959 _("Whether the target is always in non-stop mode "
3960 "is %s.\n"), value);
3961 }
3962
3963 /* Temporary copies of permission settings. */
3964
3965 static bool may_write_registers_1 = true;
3966 static bool may_write_memory_1 = true;
3967 static bool may_insert_breakpoints_1 = true;
3968 static bool may_insert_tracepoints_1 = true;
3969 static bool may_insert_fast_tracepoints_1 = true;
3970 static bool may_stop_1 = true;
3971
3972 /* Make the user-set values match the real values again. */
3973
3974 void
3975 update_target_permissions (void)
3976 {
3977 may_write_registers_1 = may_write_registers;
3978 may_write_memory_1 = may_write_memory;
3979 may_insert_breakpoints_1 = may_insert_breakpoints;
3980 may_insert_tracepoints_1 = may_insert_tracepoints;
3981 may_insert_fast_tracepoints_1 = may_insert_fast_tracepoints;
3982 may_stop_1 = may_stop;
3983 }
3984
3985 /* The one function handles (most of) the permission flags in the same
3986 way. */
3987
3988 static void
3989 set_target_permissions (const char *args, int from_tty,
3990 struct cmd_list_element *c)
3991 {
3992 if (target_has_execution)
3993 {
3994 update_target_permissions ();
3995 error (_("Cannot change this setting while the inferior is running."));
3996 }
3997
3998 /* Make the real values match the user-changed values. */
3999 may_write_registers = may_write_registers_1;
4000 may_insert_breakpoints = may_insert_breakpoints_1;
4001 may_insert_tracepoints = may_insert_tracepoints_1;
4002 may_insert_fast_tracepoints = may_insert_fast_tracepoints_1;
4003 may_stop = may_stop_1;
4004 update_observer_mode ();
4005 }
4006
4007 /* Set memory write permission independently of observer mode. */
4008
4009 static void
4010 set_write_memory_permission (const char *args, int from_tty,
4011 struct cmd_list_element *c)
4012 {
4013 /* Make the real values match the user-changed values. */
4014 may_write_memory = may_write_memory_1;
4015 update_observer_mode ();
4016 }
4017
4018 void _initialize_target ();
4019
4020 void
4021 _initialize_target ()
4022 {
4023 the_debug_target = new debug_target ();
4024
4025 add_info ("target", info_target_command, targ_desc);
4026 add_info ("files", info_target_command, targ_desc);
4027
4028 add_setshow_zuinteger_cmd ("target", class_maintenance, &targetdebug, _("\
4029 Set target debugging."), _("\
4030 Show target debugging."), _("\
4031 When non-zero, target debugging is enabled. Higher numbers are more\n\
4032 verbose."),
4033 set_targetdebug,
4034 show_targetdebug,
4035 &setdebuglist, &showdebuglist);
4036
4037 add_setshow_boolean_cmd ("trust-readonly-sections", class_support,
4038 &trust_readonly, _("\
4039 Set mode for reading from readonly sections."), _("\
4040 Show mode for reading from readonly sections."), _("\
4041 When this mode is on, memory reads from readonly sections (such as .text)\n\
4042 will be read from the object file instead of from the target. This will\n\
4043 result in significant performance improvement for remote targets."),
4044 NULL,
4045 show_trust_readonly,
4046 &setlist, &showlist);
4047
4048 add_com ("monitor", class_obscure, do_monitor_command,
4049 _("Send a command to the remote monitor (remote targets only)."));
4050
4051 add_cmd ("target-stack", class_maintenance, maintenance_print_target_stack,
4052 _("Print the name of each layer of the internal target stack."),
4053 &maintenanceprintlist);
4054
4055 add_setshow_boolean_cmd ("target-async", no_class,
4056 &target_async_permitted_1, _("\
4057 Set whether gdb controls the inferior in asynchronous mode."), _("\
4058 Show whether gdb controls the inferior in asynchronous mode."), _("\
4059 Tells gdb whether to control the inferior in asynchronous mode."),
4060 maint_set_target_async_command,
4061 maint_show_target_async_command,
4062 &maintenance_set_cmdlist,
4063 &maintenance_show_cmdlist);
4064
4065 add_setshow_auto_boolean_cmd ("target-non-stop", no_class,
4066 &target_non_stop_enabled_1, _("\
4067 Set whether gdb always controls the inferior in non-stop mode."), _("\
4068 Show whether gdb always controls the inferior in non-stop mode."), _("\
4069 Tells gdb whether to control the inferior in non-stop mode."),
4070 maint_set_target_non_stop_command,
4071 maint_show_target_non_stop_command,
4072 &maintenance_set_cmdlist,
4073 &maintenance_show_cmdlist);
4074
4075 add_setshow_boolean_cmd ("may-write-registers", class_support,
4076 &may_write_registers_1, _("\
4077 Set permission to write into registers."), _("\
4078 Show permission to write into registers."), _("\
4079 When this permission is on, GDB may write into the target's registers.\n\
4080 Otherwise, any sort of write attempt will result in an error."),
4081 set_target_permissions, NULL,
4082 &setlist, &showlist);
4083
4084 add_setshow_boolean_cmd ("may-write-memory", class_support,
4085 &may_write_memory_1, _("\
4086 Set permission to write into target memory."), _("\
4087 Show permission to write into target memory."), _("\
4088 When this permission is on, GDB may write into the target's memory.\n\
4089 Otherwise, any sort of write attempt will result in an error."),
4090 set_write_memory_permission, NULL,
4091 &setlist, &showlist);
4092
4093 add_setshow_boolean_cmd ("may-insert-breakpoints", class_support,
4094 &may_insert_breakpoints_1, _("\
4095 Set permission to insert breakpoints in the target."), _("\
4096 Show permission to insert breakpoints in the target."), _("\
4097 When this permission is on, GDB may insert breakpoints in the program.\n\
4098 Otherwise, any sort of insertion attempt will result in an error."),
4099 set_target_permissions, NULL,
4100 &setlist, &showlist);
4101
4102 add_setshow_boolean_cmd ("may-insert-tracepoints", class_support,
4103 &may_insert_tracepoints_1, _("\
4104 Set permission to insert tracepoints in the target."), _("\
4105 Show permission to insert tracepoints in the target."), _("\
4106 When this permission is on, GDB may insert tracepoints in the program.\n\
4107 Otherwise, any sort of insertion attempt will result in an error."),
4108 set_target_permissions, NULL,
4109 &setlist, &showlist);
4110
4111 add_setshow_boolean_cmd ("may-insert-fast-tracepoints", class_support,
4112 &may_insert_fast_tracepoints_1, _("\
4113 Set permission to insert fast tracepoints in the target."), _("\
4114 Show permission to insert fast tracepoints in the target."), _("\
4115 When this permission is on, GDB may insert fast tracepoints.\n\
4116 Otherwise, any sort of insertion attempt will result in an error."),
4117 set_target_permissions, NULL,
4118 &setlist, &showlist);
4119
4120 add_setshow_boolean_cmd ("may-interrupt", class_support,
4121 &may_stop_1, _("\
4122 Set permission to interrupt or signal the target."), _("\
4123 Show permission to interrupt or signal the target."), _("\
4124 When this permission is on, GDB may interrupt/stop the target's execution.\n\
4125 Otherwise, any attempt to interrupt or stop will be ignored."),
4126 set_target_permissions, NULL,
4127 &setlist, &showlist);
4128
4129 add_com ("flash-erase", no_class, flash_erase_command,
4130 _("Erase all flash memory regions."));
4131
4132 add_setshow_boolean_cmd ("auto-connect-native-target", class_support,
4133 &auto_connect_native_target, _("\
4134 Set whether GDB may automatically connect to the native target."), _("\
4135 Show whether GDB may automatically connect to the native target."), _("\
4136 When on, and GDB is not connected to a target yet, GDB\n\
4137 attempts \"run\" and other commands with the native target."),
4138 NULL, show_auto_connect_native_target,
4139 &setlist, &showlist);
4140 }
This page took 0.115698 seconds and 4 git commands to generate.