gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / valarith.c
1 /* Perform arithmetic and other operations on values, for GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "value.h"
22 #include "symtab.h"
23 #include "gdbtypes.h"
24 #include "expression.h"
25 #include "target.h"
26 #include "language.h"
27 #include "target-float.h"
28 #include "infcall.h"
29 #include "gdbsupport/byte-vector.h"
30 #include "gdbarch.h"
31
32 /* Define whether or not the C operator '/' truncates towards zero for
33 differently signed operands (truncation direction is undefined in C). */
34
35 #ifndef TRUNCATION_TOWARDS_ZERO
36 #define TRUNCATION_TOWARDS_ZERO ((-5 / 2) == -2)
37 #endif
38
39 /* Given a pointer, return the size of its target.
40 If the pointer type is void *, then return 1.
41 If the target type is incomplete, then error out.
42 This isn't a general purpose function, but just a
43 helper for value_ptradd. */
44
45 static LONGEST
46 find_size_for_pointer_math (struct type *ptr_type)
47 {
48 LONGEST sz = -1;
49 struct type *ptr_target;
50
51 gdb_assert (ptr_type->code () == TYPE_CODE_PTR);
52 ptr_target = check_typedef (TYPE_TARGET_TYPE (ptr_type));
53
54 sz = type_length_units (ptr_target);
55 if (sz == 0)
56 {
57 if (ptr_type->code () == TYPE_CODE_VOID)
58 sz = 1;
59 else
60 {
61 const char *name;
62
63 name = ptr_target->name ();
64 if (name == NULL)
65 error (_("Cannot perform pointer math on incomplete types, "
66 "try casting to a known type, or void *."));
67 else
68 error (_("Cannot perform pointer math on incomplete type \"%s\", "
69 "try casting to a known type, or void *."), name);
70 }
71 }
72 return sz;
73 }
74
75 /* Given a pointer ARG1 and an integral value ARG2, return the
76 result of C-style pointer arithmetic ARG1 + ARG2. */
77
78 struct value *
79 value_ptradd (struct value *arg1, LONGEST arg2)
80 {
81 struct type *valptrtype;
82 LONGEST sz;
83 struct value *result;
84
85 arg1 = coerce_array (arg1);
86 valptrtype = check_typedef (value_type (arg1));
87 sz = find_size_for_pointer_math (valptrtype);
88
89 result = value_from_pointer (valptrtype,
90 value_as_address (arg1) + sz * arg2);
91 if (VALUE_LVAL (result) != lval_internalvar)
92 set_value_component_location (result, arg1);
93 return result;
94 }
95
96 /* Given two compatible pointer values ARG1 and ARG2, return the
97 result of C-style pointer arithmetic ARG1 - ARG2. */
98
99 LONGEST
100 value_ptrdiff (struct value *arg1, struct value *arg2)
101 {
102 struct type *type1, *type2;
103 LONGEST sz;
104
105 arg1 = coerce_array (arg1);
106 arg2 = coerce_array (arg2);
107 type1 = check_typedef (value_type (arg1));
108 type2 = check_typedef (value_type (arg2));
109
110 gdb_assert (type1->code () == TYPE_CODE_PTR);
111 gdb_assert (type2->code () == TYPE_CODE_PTR);
112
113 if (TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type1)))
114 != TYPE_LENGTH (check_typedef (TYPE_TARGET_TYPE (type2))))
115 error (_("First argument of `-' is a pointer and "
116 "second argument is neither\n"
117 "an integer nor a pointer of the same type."));
118
119 sz = type_length_units (check_typedef (TYPE_TARGET_TYPE (type1)));
120 if (sz == 0)
121 {
122 warning (_("Type size unknown, assuming 1. "
123 "Try casting to a known type, or void *."));
124 sz = 1;
125 }
126
127 return (value_as_long (arg1) - value_as_long (arg2)) / sz;
128 }
129
130 /* Return the value of ARRAY[IDX].
131
132 ARRAY may be of type TYPE_CODE_ARRAY or TYPE_CODE_STRING. If the
133 current language supports C-style arrays, it may also be TYPE_CODE_PTR.
134
135 See comments in value_coerce_array() for rationale for reason for
136 doing lower bounds adjustment here rather than there.
137 FIXME: Perhaps we should validate that the index is valid and if
138 verbosity is set, warn about invalid indices (but still use them). */
139
140 struct value *
141 value_subscript (struct value *array, LONGEST index)
142 {
143 int c_style = current_language->c_style_arrays;
144 struct type *tarray;
145
146 array = coerce_ref (array);
147 tarray = check_typedef (value_type (array));
148
149 if (tarray->code () == TYPE_CODE_ARRAY
150 || tarray->code () == TYPE_CODE_STRING)
151 {
152 struct type *range_type = TYPE_INDEX_TYPE (tarray);
153 LONGEST lowerbound, upperbound;
154
155 get_discrete_bounds (range_type, &lowerbound, &upperbound);
156 if (VALUE_LVAL (array) != lval_memory)
157 return value_subscripted_rvalue (array, index, lowerbound);
158
159 if (c_style == 0)
160 {
161 if (index >= lowerbound && index <= upperbound)
162 return value_subscripted_rvalue (array, index, lowerbound);
163 /* Emit warning unless we have an array of unknown size.
164 An array of unknown size has lowerbound 0 and upperbound -1. */
165 if (upperbound > -1)
166 warning (_("array or string index out of range"));
167 /* fall doing C stuff */
168 c_style = 1;
169 }
170
171 index -= lowerbound;
172 array = value_coerce_array (array);
173 }
174
175 if (c_style)
176 return value_ind (value_ptradd (array, index));
177 else
178 error (_("not an array or string"));
179 }
180
181 /* Return the value of EXPR[IDX], expr an aggregate rvalue
182 (eg, a vector register). This routine used to promote floats
183 to doubles, but no longer does. */
184
185 struct value *
186 value_subscripted_rvalue (struct value *array, LONGEST index, LONGEST lowerbound)
187 {
188 struct type *array_type = check_typedef (value_type (array));
189 struct type *elt_type = check_typedef (TYPE_TARGET_TYPE (array_type));
190 LONGEST elt_size = type_length_units (elt_type);
191
192 /* Fetch the bit stride and convert it to a byte stride, assuming 8 bits
193 in a byte. */
194 LONGEST stride = TYPE_ARRAY_BIT_STRIDE (array_type);
195 if (stride != 0)
196 {
197 struct gdbarch *arch = get_type_arch (elt_type);
198 int unit_size = gdbarch_addressable_memory_unit_size (arch);
199 elt_size = stride / (unit_size * 8);
200 }
201
202 LONGEST elt_offs = elt_size * (index - lowerbound);
203
204 if (index < lowerbound
205 || (!TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type)
206 && elt_offs >= type_length_units (array_type))
207 || (VALUE_LVAL (array) != lval_memory
208 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (array_type)))
209 {
210 if (type_not_associated (array_type))
211 error (_("no such vector element (vector not associated)"));
212 else if (type_not_allocated (array_type))
213 error (_("no such vector element (vector not allocated)"));
214 else
215 error (_("no such vector element"));
216 }
217
218 if (is_dynamic_type (elt_type))
219 {
220 CORE_ADDR address;
221
222 address = value_address (array) + elt_offs;
223 elt_type = resolve_dynamic_type (elt_type, {}, address);
224 }
225
226 return value_from_component (array, elt_type, elt_offs);
227 }
228
229 \f
230 /* Check to see if either argument is a structure, or a reference to
231 one. This is called so we know whether to go ahead with the normal
232 binop or look for a user defined function instead.
233
234 For now, we do not overload the `=' operator. */
235
236 int
237 binop_types_user_defined_p (enum exp_opcode op,
238 struct type *type1, struct type *type2)
239 {
240 if (op == BINOP_ASSIGN || op == BINOP_CONCAT)
241 return 0;
242
243 type1 = check_typedef (type1);
244 if (TYPE_IS_REFERENCE (type1))
245 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
246
247 type2 = check_typedef (type2);
248 if (TYPE_IS_REFERENCE (type2))
249 type2 = check_typedef (TYPE_TARGET_TYPE (type2));
250
251 return (type1->code () == TYPE_CODE_STRUCT
252 || type2->code () == TYPE_CODE_STRUCT);
253 }
254
255 /* Check to see if either argument is a structure, or a reference to
256 one. This is called so we know whether to go ahead with the normal
257 binop or look for a user defined function instead.
258
259 For now, we do not overload the `=' operator. */
260
261 int
262 binop_user_defined_p (enum exp_opcode op,
263 struct value *arg1, struct value *arg2)
264 {
265 return binop_types_user_defined_p (op, value_type (arg1), value_type (arg2));
266 }
267
268 /* Check to see if argument is a structure. This is called so
269 we know whether to go ahead with the normal unop or look for a
270 user defined function instead.
271
272 For now, we do not overload the `&' operator. */
273
274 int
275 unop_user_defined_p (enum exp_opcode op, struct value *arg1)
276 {
277 struct type *type1;
278
279 if (op == UNOP_ADDR)
280 return 0;
281 type1 = check_typedef (value_type (arg1));
282 if (TYPE_IS_REFERENCE (type1))
283 type1 = check_typedef (TYPE_TARGET_TYPE (type1));
284 return type1->code () == TYPE_CODE_STRUCT;
285 }
286
287 /* Try to find an operator named OPERATOR which takes NARGS arguments
288 specified in ARGS. If the operator found is a static member operator
289 *STATIC_MEMFUNP will be set to 1, and otherwise 0.
290 The search if performed through find_overload_match which will handle
291 member operators, non member operators, operators imported implicitly or
292 explicitly, and perform correct overload resolution in all of the above
293 situations or combinations thereof. */
294
295 static struct value *
296 value_user_defined_cpp_op (gdb::array_view<value *> args, char *oper,
297 int *static_memfuncp, enum noside noside)
298 {
299
300 struct symbol *symp = NULL;
301 struct value *valp = NULL;
302
303 find_overload_match (args, oper, BOTH /* could be method */,
304 &args[0] /* objp */,
305 NULL /* pass NULL symbol since symbol is unknown */,
306 &valp, &symp, static_memfuncp, 0, noside);
307
308 if (valp)
309 return valp;
310
311 if (symp)
312 {
313 /* This is a non member function and does not
314 expect a reference as its first argument
315 rather the explicit structure. */
316 args[0] = value_ind (args[0]);
317 return value_of_variable (symp, 0);
318 }
319
320 error (_("Could not find %s."), oper);
321 }
322
323 /* Lookup user defined operator NAME. Return a value representing the
324 function, otherwise return NULL. */
325
326 static struct value *
327 value_user_defined_op (struct value **argp, gdb::array_view<value *> args,
328 char *name, int *static_memfuncp, enum noside noside)
329 {
330 struct value *result = NULL;
331
332 if (current_language->la_language == language_cplus)
333 {
334 result = value_user_defined_cpp_op (args, name, static_memfuncp,
335 noside);
336 }
337 else
338 result = value_struct_elt (argp, args.data (), name, static_memfuncp,
339 "structure");
340
341 return result;
342 }
343
344 /* We know either arg1 or arg2 is a structure, so try to find the right
345 user defined function. Create an argument vector that calls
346 arg1.operator @ (arg1,arg2) and return that value (where '@' is any
347 binary operator which is legal for GNU C++).
348
349 OP is the operator, and if it is BINOP_ASSIGN_MODIFY, then OTHEROP
350 is the opcode saying how to modify it. Otherwise, OTHEROP is
351 unused. */
352
353 struct value *
354 value_x_binop (struct value *arg1, struct value *arg2, enum exp_opcode op,
355 enum exp_opcode otherop, enum noside noside)
356 {
357 char *ptr;
358 char tstr[13];
359 int static_memfuncp;
360
361 arg1 = coerce_ref (arg1);
362 arg2 = coerce_ref (arg2);
363
364 /* now we know that what we have to do is construct our
365 arg vector and find the right function to call it with. */
366
367 if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
368 error (_("Can't do that binary op on that type")); /* FIXME be explicit */
369
370 value *argvec_storage[3];
371 gdb::array_view<value *> argvec = argvec_storage;
372
373 argvec[1] = value_addr (arg1);
374 argvec[2] = arg2;
375
376 /* Make the right function name up. */
377 strcpy (tstr, "operator__");
378 ptr = tstr + 8;
379 switch (op)
380 {
381 case BINOP_ADD:
382 strcpy (ptr, "+");
383 break;
384 case BINOP_SUB:
385 strcpy (ptr, "-");
386 break;
387 case BINOP_MUL:
388 strcpy (ptr, "*");
389 break;
390 case BINOP_DIV:
391 strcpy (ptr, "/");
392 break;
393 case BINOP_REM:
394 strcpy (ptr, "%");
395 break;
396 case BINOP_LSH:
397 strcpy (ptr, "<<");
398 break;
399 case BINOP_RSH:
400 strcpy (ptr, ">>");
401 break;
402 case BINOP_BITWISE_AND:
403 strcpy (ptr, "&");
404 break;
405 case BINOP_BITWISE_IOR:
406 strcpy (ptr, "|");
407 break;
408 case BINOP_BITWISE_XOR:
409 strcpy (ptr, "^");
410 break;
411 case BINOP_LOGICAL_AND:
412 strcpy (ptr, "&&");
413 break;
414 case BINOP_LOGICAL_OR:
415 strcpy (ptr, "||");
416 break;
417 case BINOP_MIN:
418 strcpy (ptr, "<?");
419 break;
420 case BINOP_MAX:
421 strcpy (ptr, ">?");
422 break;
423 case BINOP_ASSIGN:
424 strcpy (ptr, "=");
425 break;
426 case BINOP_ASSIGN_MODIFY:
427 switch (otherop)
428 {
429 case BINOP_ADD:
430 strcpy (ptr, "+=");
431 break;
432 case BINOP_SUB:
433 strcpy (ptr, "-=");
434 break;
435 case BINOP_MUL:
436 strcpy (ptr, "*=");
437 break;
438 case BINOP_DIV:
439 strcpy (ptr, "/=");
440 break;
441 case BINOP_REM:
442 strcpy (ptr, "%=");
443 break;
444 case BINOP_BITWISE_AND:
445 strcpy (ptr, "&=");
446 break;
447 case BINOP_BITWISE_IOR:
448 strcpy (ptr, "|=");
449 break;
450 case BINOP_BITWISE_XOR:
451 strcpy (ptr, "^=");
452 break;
453 case BINOP_MOD: /* invalid */
454 default:
455 error (_("Invalid binary operation specified."));
456 }
457 break;
458 case BINOP_SUBSCRIPT:
459 strcpy (ptr, "[]");
460 break;
461 case BINOP_EQUAL:
462 strcpy (ptr, "==");
463 break;
464 case BINOP_NOTEQUAL:
465 strcpy (ptr, "!=");
466 break;
467 case BINOP_LESS:
468 strcpy (ptr, "<");
469 break;
470 case BINOP_GTR:
471 strcpy (ptr, ">");
472 break;
473 case BINOP_GEQ:
474 strcpy (ptr, ">=");
475 break;
476 case BINOP_LEQ:
477 strcpy (ptr, "<=");
478 break;
479 case BINOP_MOD: /* invalid */
480 default:
481 error (_("Invalid binary operation specified."));
482 }
483
484 argvec[0] = value_user_defined_op (&arg1, argvec.slice (1), tstr,
485 &static_memfuncp, noside);
486
487 if (argvec[0])
488 {
489 if (static_memfuncp)
490 {
491 argvec[1] = argvec[0];
492 argvec = argvec.slice (1);
493 }
494 if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
495 {
496 /* Static xmethods are not supported yet. */
497 gdb_assert (static_memfuncp == 0);
498 if (noside == EVAL_AVOID_SIDE_EFFECTS)
499 {
500 struct type *return_type
501 = result_type_of_xmethod (argvec[0], argvec.slice (1));
502
503 if (return_type == NULL)
504 error (_("Xmethod is missing return type."));
505 return value_zero (return_type, VALUE_LVAL (arg1));
506 }
507 return call_xmethod (argvec[0], argvec.slice (1));
508 }
509 if (noside == EVAL_AVOID_SIDE_EFFECTS)
510 {
511 struct type *return_type;
512
513 return_type
514 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
515 return value_zero (return_type, VALUE_LVAL (arg1));
516 }
517 return call_function_by_hand (argvec[0], NULL,
518 argvec.slice (1, 2 - static_memfuncp));
519 }
520 throw_error (NOT_FOUND_ERROR,
521 _("member function %s not found"), tstr);
522 }
523
524 /* We know that arg1 is a structure, so try to find a unary user
525 defined operator that matches the operator in question.
526 Create an argument vector that calls arg1.operator @ (arg1)
527 and return that value (where '@' is (almost) any unary operator which
528 is legal for GNU C++). */
529
530 struct value *
531 value_x_unop (struct value *arg1, enum exp_opcode op, enum noside noside)
532 {
533 struct gdbarch *gdbarch = get_type_arch (value_type (arg1));
534 char *ptr;
535 char tstr[13], mangle_tstr[13];
536 int static_memfuncp, nargs;
537
538 arg1 = coerce_ref (arg1);
539
540 /* now we know that what we have to do is construct our
541 arg vector and find the right function to call it with. */
542
543 if (check_typedef (value_type (arg1))->code () != TYPE_CODE_STRUCT)
544 error (_("Can't do that unary op on that type")); /* FIXME be explicit */
545
546 value *argvec_storage[3];
547 gdb::array_view<value *> argvec = argvec_storage;
548
549 argvec[1] = value_addr (arg1);
550 argvec[2] = 0;
551
552 nargs = 1;
553
554 /* Make the right function name up. */
555 strcpy (tstr, "operator__");
556 ptr = tstr + 8;
557 strcpy (mangle_tstr, "__");
558 switch (op)
559 {
560 case UNOP_PREINCREMENT:
561 strcpy (ptr, "++");
562 break;
563 case UNOP_PREDECREMENT:
564 strcpy (ptr, "--");
565 break;
566 case UNOP_POSTINCREMENT:
567 strcpy (ptr, "++");
568 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
569 nargs ++;
570 break;
571 case UNOP_POSTDECREMENT:
572 strcpy (ptr, "--");
573 argvec[2] = value_from_longest (builtin_type (gdbarch)->builtin_int, 0);
574 nargs ++;
575 break;
576 case UNOP_LOGICAL_NOT:
577 strcpy (ptr, "!");
578 break;
579 case UNOP_COMPLEMENT:
580 strcpy (ptr, "~");
581 break;
582 case UNOP_NEG:
583 strcpy (ptr, "-");
584 break;
585 case UNOP_PLUS:
586 strcpy (ptr, "+");
587 break;
588 case UNOP_IND:
589 strcpy (ptr, "*");
590 break;
591 case STRUCTOP_PTR:
592 strcpy (ptr, "->");
593 break;
594 default:
595 error (_("Invalid unary operation specified."));
596 }
597
598 argvec[0] = value_user_defined_op (&arg1, argvec.slice (1, nargs), tstr,
599 &static_memfuncp, noside);
600
601 if (argvec[0])
602 {
603 if (static_memfuncp)
604 {
605 argvec[1] = argvec[0];
606 argvec = argvec.slice (1);
607 }
608 if (value_type (argvec[0])->code () == TYPE_CODE_XMETHOD)
609 {
610 /* Static xmethods are not supported yet. */
611 gdb_assert (static_memfuncp == 0);
612 if (noside == EVAL_AVOID_SIDE_EFFECTS)
613 {
614 struct type *return_type
615 = result_type_of_xmethod (argvec[0], argvec[1]);
616
617 if (return_type == NULL)
618 error (_("Xmethod is missing return type."));
619 return value_zero (return_type, VALUE_LVAL (arg1));
620 }
621 return call_xmethod (argvec[0], argvec[1]);
622 }
623 if (noside == EVAL_AVOID_SIDE_EFFECTS)
624 {
625 struct type *return_type;
626
627 return_type
628 = TYPE_TARGET_TYPE (check_typedef (value_type (argvec[0])));
629 return value_zero (return_type, VALUE_LVAL (arg1));
630 }
631 return call_function_by_hand (argvec[0], NULL,
632 argvec.slice (1, nargs));
633 }
634 throw_error (NOT_FOUND_ERROR,
635 _("member function %s not found"), tstr);
636 }
637 \f
638
639 /* Concatenate two values with the following conditions:
640
641 (1) Both values must be either bitstring values or character string
642 values and the resulting value consists of the concatenation of
643 ARG1 followed by ARG2.
644
645 or
646
647 One value must be an integer value and the other value must be
648 either a bitstring value or character string value, which is
649 to be repeated by the number of times specified by the integer
650 value.
651
652
653 (2) Boolean values are also allowed and are treated as bit string
654 values of length 1.
655
656 (3) Character values are also allowed and are treated as character
657 string values of length 1. */
658
659 struct value *
660 value_concat (struct value *arg1, struct value *arg2)
661 {
662 struct value *inval1;
663 struct value *inval2;
664 struct value *outval = NULL;
665 int inval1len, inval2len;
666 int count, idx;
667 char inchar;
668 struct type *type1 = check_typedef (value_type (arg1));
669 struct type *type2 = check_typedef (value_type (arg2));
670 struct type *char_type;
671
672 /* First figure out if we are dealing with two values to be concatenated
673 or a repeat count and a value to be repeated. INVAL1 is set to the
674 first of two concatenated values, or the repeat count. INVAL2 is set
675 to the second of the two concatenated values or the value to be
676 repeated. */
677
678 if (type2->code () == TYPE_CODE_INT)
679 {
680 struct type *tmp = type1;
681
682 type1 = tmp;
683 tmp = type2;
684 inval1 = arg2;
685 inval2 = arg1;
686 }
687 else
688 {
689 inval1 = arg1;
690 inval2 = arg2;
691 }
692
693 /* Now process the input values. */
694
695 if (type1->code () == TYPE_CODE_INT)
696 {
697 /* We have a repeat count. Validate the second value and then
698 construct a value repeated that many times. */
699 if (type2->code () == TYPE_CODE_STRING
700 || type2->code () == TYPE_CODE_CHAR)
701 {
702 count = longest_to_int (value_as_long (inval1));
703 inval2len = TYPE_LENGTH (type2);
704 std::vector<char> ptr (count * inval2len);
705 if (type2->code () == TYPE_CODE_CHAR)
706 {
707 char_type = type2;
708
709 inchar = (char) unpack_long (type2,
710 value_contents (inval2));
711 for (idx = 0; idx < count; idx++)
712 {
713 ptr[idx] = inchar;
714 }
715 }
716 else
717 {
718 char_type = TYPE_TARGET_TYPE (type2);
719
720 for (idx = 0; idx < count; idx++)
721 {
722 memcpy (&ptr[idx * inval2len], value_contents (inval2),
723 inval2len);
724 }
725 }
726 outval = value_string (ptr.data (), count * inval2len, char_type);
727 }
728 else if (type2->code () == TYPE_CODE_BOOL)
729 {
730 error (_("unimplemented support for boolean repeats"));
731 }
732 else
733 {
734 error (_("can't repeat values of that type"));
735 }
736 }
737 else if (type1->code () == TYPE_CODE_STRING
738 || type1->code () == TYPE_CODE_CHAR)
739 {
740 /* We have two character strings to concatenate. */
741 if (type2->code () != TYPE_CODE_STRING
742 && type2->code () != TYPE_CODE_CHAR)
743 {
744 error (_("Strings can only be concatenated with other strings."));
745 }
746 inval1len = TYPE_LENGTH (type1);
747 inval2len = TYPE_LENGTH (type2);
748 std::vector<char> ptr (inval1len + inval2len);
749 if (type1->code () == TYPE_CODE_CHAR)
750 {
751 char_type = type1;
752
753 ptr[0] = (char) unpack_long (type1, value_contents (inval1));
754 }
755 else
756 {
757 char_type = TYPE_TARGET_TYPE (type1);
758
759 memcpy (ptr.data (), value_contents (inval1), inval1len);
760 }
761 if (type2->code () == TYPE_CODE_CHAR)
762 {
763 ptr[inval1len] =
764 (char) unpack_long (type2, value_contents (inval2));
765 }
766 else
767 {
768 memcpy (&ptr[inval1len], value_contents (inval2), inval2len);
769 }
770 outval = value_string (ptr.data (), inval1len + inval2len, char_type);
771 }
772 else if (type1->code () == TYPE_CODE_BOOL)
773 {
774 /* We have two bitstrings to concatenate. */
775 if (type2->code () != TYPE_CODE_BOOL)
776 {
777 error (_("Booleans can only be concatenated "
778 "with other bitstrings or booleans."));
779 }
780 error (_("unimplemented support for boolean concatenation."));
781 }
782 else
783 {
784 /* We don't know how to concatenate these operands. */
785 error (_("illegal operands for concatenation."));
786 }
787 return (outval);
788 }
789 \f
790 /* Integer exponentiation: V1**V2, where both arguments are
791 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
792
793 static LONGEST
794 integer_pow (LONGEST v1, LONGEST v2)
795 {
796 if (v2 < 0)
797 {
798 if (v1 == 0)
799 error (_("Attempt to raise 0 to negative power."));
800 else
801 return 0;
802 }
803 else
804 {
805 /* The Russian Peasant's Algorithm. */
806 LONGEST v;
807
808 v = 1;
809 for (;;)
810 {
811 if (v2 & 1L)
812 v *= v1;
813 v2 >>= 1;
814 if (v2 == 0)
815 return v;
816 v1 *= v1;
817 }
818 }
819 }
820
821 /* Integer exponentiation: V1**V2, where both arguments are
822 integers. Requires V1 != 0 if V2 < 0. Returns 1 for 0 ** 0. */
823
824 static ULONGEST
825 uinteger_pow (ULONGEST v1, LONGEST v2)
826 {
827 if (v2 < 0)
828 {
829 if (v1 == 0)
830 error (_("Attempt to raise 0 to negative power."));
831 else
832 return 0;
833 }
834 else
835 {
836 /* The Russian Peasant's Algorithm. */
837 ULONGEST v;
838
839 v = 1;
840 for (;;)
841 {
842 if (v2 & 1L)
843 v *= v1;
844 v2 >>= 1;
845 if (v2 == 0)
846 return v;
847 v1 *= v1;
848 }
849 }
850 }
851
852 /* Obtain argument values for binary operation, converting from
853 other types if one of them is not floating point. */
854 static void
855 value_args_as_target_float (struct value *arg1, struct value *arg2,
856 gdb_byte *x, struct type **eff_type_x,
857 gdb_byte *y, struct type **eff_type_y)
858 {
859 struct type *type1, *type2;
860
861 type1 = check_typedef (value_type (arg1));
862 type2 = check_typedef (value_type (arg2));
863
864 /* At least one of the arguments must be of floating-point type. */
865 gdb_assert (is_floating_type (type1) || is_floating_type (type2));
866
867 if (is_floating_type (type1) && is_floating_type (type2)
868 && type1->code () != type2->code ())
869 /* The DFP extension to the C language does not allow mixing of
870 * decimal float types with other float types in expressions
871 * (see WDTR 24732, page 12). */
872 error (_("Mixing decimal floating types with "
873 "other floating types is not allowed."));
874
875 /* Obtain value of arg1, converting from other types if necessary. */
876
877 if (is_floating_type (type1))
878 {
879 *eff_type_x = type1;
880 memcpy (x, value_contents (arg1), TYPE_LENGTH (type1));
881 }
882 else if (is_integral_type (type1))
883 {
884 *eff_type_x = type2;
885 if (TYPE_UNSIGNED (type1))
886 target_float_from_ulongest (x, *eff_type_x, value_as_long (arg1));
887 else
888 target_float_from_longest (x, *eff_type_x, value_as_long (arg1));
889 }
890 else
891 error (_("Don't know how to convert from %s to %s."), type1->name (),
892 type2->name ());
893
894 /* Obtain value of arg2, converting from other types if necessary. */
895
896 if (is_floating_type (type2))
897 {
898 *eff_type_y = type2;
899 memcpy (y, value_contents (arg2), TYPE_LENGTH (type2));
900 }
901 else if (is_integral_type (type2))
902 {
903 *eff_type_y = type1;
904 if (TYPE_UNSIGNED (type2))
905 target_float_from_ulongest (y, *eff_type_y, value_as_long (arg2));
906 else
907 target_float_from_longest (y, *eff_type_y, value_as_long (arg2));
908 }
909 else
910 error (_("Don't know how to convert from %s to %s."), type1->name (),
911 type2->name ());
912 }
913
914 /* A helper function that finds the type to use for a binary operation
915 involving TYPE1 and TYPE2. */
916
917 static struct type *
918 promotion_type (struct type *type1, struct type *type2)
919 {
920 struct type *result_type;
921
922 if (is_floating_type (type1) || is_floating_type (type2))
923 {
924 /* If only one type is floating-point, use its type.
925 Otherwise use the bigger type. */
926 if (!is_floating_type (type1))
927 result_type = type2;
928 else if (!is_floating_type (type2))
929 result_type = type1;
930 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
931 result_type = type2;
932 else
933 result_type = type1;
934 }
935 else
936 {
937 /* Integer types. */
938 if (TYPE_LENGTH (type1) > TYPE_LENGTH (type2))
939 result_type = type1;
940 else if (TYPE_LENGTH (type2) > TYPE_LENGTH (type1))
941 result_type = type2;
942 else if (TYPE_UNSIGNED (type1))
943 result_type = type1;
944 else if (TYPE_UNSIGNED (type2))
945 result_type = type2;
946 else
947 result_type = type1;
948 }
949
950 return result_type;
951 }
952
953 static struct value *scalar_binop (struct value *arg1, struct value *arg2,
954 enum exp_opcode op);
955
956 /* Perform a binary operation on complex operands. */
957
958 static struct value *
959 complex_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
960 {
961 struct type *arg1_type = check_typedef (value_type (arg1));
962 struct type *arg2_type = check_typedef (value_type (arg2));
963
964 struct value *arg1_real, *arg1_imag, *arg2_real, *arg2_imag;
965 if (arg1_type->code () == TYPE_CODE_COMPLEX)
966 {
967 arg1_real = value_real_part (arg1);
968 arg1_imag = value_imaginary_part (arg1);
969 }
970 else
971 {
972 arg1_real = arg1;
973 arg1_imag = value_zero (arg1_type, not_lval);
974 }
975 if (arg2_type->code () == TYPE_CODE_COMPLEX)
976 {
977 arg2_real = value_real_part (arg2);
978 arg2_imag = value_imaginary_part (arg2);
979 }
980 else
981 {
982 arg2_real = arg2;
983 arg2_imag = value_zero (arg2_type, not_lval);
984 }
985
986 struct type *comp_type = promotion_type (value_type (arg1_real),
987 value_type (arg2_real));
988 arg1_real = value_cast (comp_type, arg1_real);
989 arg1_imag = value_cast (comp_type, arg1_imag);
990 arg2_real = value_cast (comp_type, arg2_real);
991 arg2_imag = value_cast (comp_type, arg2_imag);
992
993 struct type *result_type = init_complex_type (nullptr, comp_type);
994
995 struct value *result_real, *result_imag;
996 switch (op)
997 {
998 case BINOP_ADD:
999 case BINOP_SUB:
1000 result_real = scalar_binop (arg1_real, arg2_real, op);
1001 result_imag = scalar_binop (arg1_imag, arg2_imag, op);
1002 break;
1003
1004 case BINOP_MUL:
1005 {
1006 struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
1007 struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
1008 result_real = scalar_binop (x1, x2, BINOP_SUB);
1009
1010 x1 = scalar_binop (arg1_real, arg2_imag, op);
1011 x2 = scalar_binop (arg1_imag, arg2_real, op);
1012 result_imag = scalar_binop (x1, x2, BINOP_ADD);
1013 }
1014 break;
1015
1016 case BINOP_DIV:
1017 {
1018 if (arg2_type->code () == TYPE_CODE_COMPLEX)
1019 {
1020 struct value *conjugate = value_complement (arg2);
1021 /* We have to reconstruct ARG1, in case the type was
1022 promoted. */
1023 arg1 = value_literal_complex (arg1_real, arg1_imag, result_type);
1024
1025 struct value *numerator = scalar_binop (arg1, conjugate,
1026 BINOP_MUL);
1027 arg1_real = value_real_part (numerator);
1028 arg1_imag = value_imaginary_part (numerator);
1029
1030 struct value *x1 = scalar_binop (arg2_real, arg2_real, BINOP_MUL);
1031 struct value *x2 = scalar_binop (arg2_imag, arg2_imag, BINOP_MUL);
1032 arg2_real = scalar_binop (x1, x2, BINOP_ADD);
1033 }
1034
1035 result_real = scalar_binop (arg1_real, arg2_real, op);
1036 result_imag = scalar_binop (arg1_imag, arg2_real, op);
1037 }
1038 break;
1039
1040 case BINOP_EQUAL:
1041 case BINOP_NOTEQUAL:
1042 {
1043 struct value *x1 = scalar_binop (arg1_real, arg2_real, op);
1044 struct value *x2 = scalar_binop (arg1_imag, arg2_imag, op);
1045
1046 LONGEST v1 = value_as_long (x1);
1047 LONGEST v2 = value_as_long (x2);
1048
1049 if (op == BINOP_EQUAL)
1050 v1 = v1 && v2;
1051 else
1052 v1 = v1 || v2;
1053
1054 return value_from_longest (value_type (x1), v1);
1055 }
1056 break;
1057
1058 default:
1059 error (_("Invalid binary operation on numbers."));
1060 }
1061
1062 return value_literal_complex (result_real, result_imag, result_type);
1063 }
1064
1065 /* Perform a binary operation on two operands which have reasonable
1066 representations as integers or floats. This includes booleans,
1067 characters, integers, or floats.
1068 Does not support addition and subtraction on pointers;
1069 use value_ptradd, value_ptrsub or value_ptrdiff for those operations. */
1070
1071 static struct value *
1072 scalar_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1073 {
1074 struct value *val;
1075 struct type *type1, *type2, *result_type;
1076
1077 arg1 = coerce_ref (arg1);
1078 arg2 = coerce_ref (arg2);
1079
1080 type1 = check_typedef (value_type (arg1));
1081 type2 = check_typedef (value_type (arg2));
1082
1083 if (type1->code () == TYPE_CODE_COMPLEX
1084 || type2->code () == TYPE_CODE_COMPLEX)
1085 return complex_binop (arg1, arg2, op);
1086
1087 if ((!is_floating_value (arg1) && !is_integral_type (type1))
1088 || (!is_floating_value (arg2) && !is_integral_type (type2)))
1089 error (_("Argument to arithmetic operation not a number or boolean."));
1090
1091 if (is_floating_type (type1) || is_floating_type (type2))
1092 {
1093 result_type = promotion_type (type1, type2);
1094 val = allocate_value (result_type);
1095
1096 struct type *eff_type_v1, *eff_type_v2;
1097 gdb::byte_vector v1, v2;
1098 v1.resize (TYPE_LENGTH (result_type));
1099 v2.resize (TYPE_LENGTH (result_type));
1100
1101 value_args_as_target_float (arg1, arg2,
1102 v1.data (), &eff_type_v1,
1103 v2.data (), &eff_type_v2);
1104 target_float_binop (op, v1.data (), eff_type_v1,
1105 v2.data (), eff_type_v2,
1106 value_contents_raw (val), result_type);
1107 }
1108 else if (type1->code () == TYPE_CODE_BOOL
1109 || type2->code () == TYPE_CODE_BOOL)
1110 {
1111 LONGEST v1, v2, v = 0;
1112
1113 v1 = value_as_long (arg1);
1114 v2 = value_as_long (arg2);
1115
1116 switch (op)
1117 {
1118 case BINOP_BITWISE_AND:
1119 v = v1 & v2;
1120 break;
1121
1122 case BINOP_BITWISE_IOR:
1123 v = v1 | v2;
1124 break;
1125
1126 case BINOP_BITWISE_XOR:
1127 v = v1 ^ v2;
1128 break;
1129
1130 case BINOP_EQUAL:
1131 v = v1 == v2;
1132 break;
1133
1134 case BINOP_NOTEQUAL:
1135 v = v1 != v2;
1136 break;
1137
1138 default:
1139 error (_("Invalid operation on booleans."));
1140 }
1141
1142 result_type = type1;
1143
1144 val = allocate_value (result_type);
1145 store_signed_integer (value_contents_raw (val),
1146 TYPE_LENGTH (result_type),
1147 type_byte_order (result_type),
1148 v);
1149 }
1150 else
1151 /* Integral operations here. */
1152 {
1153 /* Determine type length of the result, and if the operation should
1154 be done unsigned. For exponentiation and shift operators,
1155 use the length and type of the left operand. Otherwise,
1156 use the signedness of the operand with the greater length.
1157 If both operands are of equal length, use unsigned operation
1158 if one of the operands is unsigned. */
1159 if (op == BINOP_RSH || op == BINOP_LSH || op == BINOP_EXP)
1160 result_type = type1;
1161 else
1162 result_type = promotion_type (type1, type2);
1163
1164 if (TYPE_UNSIGNED (result_type))
1165 {
1166 LONGEST v2_signed = value_as_long (arg2);
1167 ULONGEST v1, v2, v = 0;
1168
1169 v1 = (ULONGEST) value_as_long (arg1);
1170 v2 = (ULONGEST) v2_signed;
1171
1172 switch (op)
1173 {
1174 case BINOP_ADD:
1175 v = v1 + v2;
1176 break;
1177
1178 case BINOP_SUB:
1179 v = v1 - v2;
1180 break;
1181
1182 case BINOP_MUL:
1183 v = v1 * v2;
1184 break;
1185
1186 case BINOP_DIV:
1187 case BINOP_INTDIV:
1188 if (v2 != 0)
1189 v = v1 / v2;
1190 else
1191 error (_("Division by zero"));
1192 break;
1193
1194 case BINOP_EXP:
1195 v = uinteger_pow (v1, v2_signed);
1196 break;
1197
1198 case BINOP_REM:
1199 if (v2 != 0)
1200 v = v1 % v2;
1201 else
1202 error (_("Division by zero"));
1203 break;
1204
1205 case BINOP_MOD:
1206 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1207 v1 mod 0 has a defined value, v1. */
1208 if (v2 == 0)
1209 {
1210 v = v1;
1211 }
1212 else
1213 {
1214 v = v1 / v2;
1215 /* Note floor(v1/v2) == v1/v2 for unsigned. */
1216 v = v1 - (v2 * v);
1217 }
1218 break;
1219
1220 case BINOP_LSH:
1221 v = v1 << v2;
1222 break;
1223
1224 case BINOP_RSH:
1225 v = v1 >> v2;
1226 break;
1227
1228 case BINOP_BITWISE_AND:
1229 v = v1 & v2;
1230 break;
1231
1232 case BINOP_BITWISE_IOR:
1233 v = v1 | v2;
1234 break;
1235
1236 case BINOP_BITWISE_XOR:
1237 v = v1 ^ v2;
1238 break;
1239
1240 case BINOP_LOGICAL_AND:
1241 v = v1 && v2;
1242 break;
1243
1244 case BINOP_LOGICAL_OR:
1245 v = v1 || v2;
1246 break;
1247
1248 case BINOP_MIN:
1249 v = v1 < v2 ? v1 : v2;
1250 break;
1251
1252 case BINOP_MAX:
1253 v = v1 > v2 ? v1 : v2;
1254 break;
1255
1256 case BINOP_EQUAL:
1257 v = v1 == v2;
1258 break;
1259
1260 case BINOP_NOTEQUAL:
1261 v = v1 != v2;
1262 break;
1263
1264 case BINOP_LESS:
1265 v = v1 < v2;
1266 break;
1267
1268 case BINOP_GTR:
1269 v = v1 > v2;
1270 break;
1271
1272 case BINOP_LEQ:
1273 v = v1 <= v2;
1274 break;
1275
1276 case BINOP_GEQ:
1277 v = v1 >= v2;
1278 break;
1279
1280 default:
1281 error (_("Invalid binary operation on numbers."));
1282 }
1283
1284 val = allocate_value (result_type);
1285 store_unsigned_integer (value_contents_raw (val),
1286 TYPE_LENGTH (value_type (val)),
1287 type_byte_order (result_type),
1288 v);
1289 }
1290 else
1291 {
1292 LONGEST v1, v2, v = 0;
1293
1294 v1 = value_as_long (arg1);
1295 v2 = value_as_long (arg2);
1296
1297 switch (op)
1298 {
1299 case BINOP_ADD:
1300 v = v1 + v2;
1301 break;
1302
1303 case BINOP_SUB:
1304 v = v1 - v2;
1305 break;
1306
1307 case BINOP_MUL:
1308 v = v1 * v2;
1309 break;
1310
1311 case BINOP_DIV:
1312 case BINOP_INTDIV:
1313 if (v2 != 0)
1314 v = v1 / v2;
1315 else
1316 error (_("Division by zero"));
1317 break;
1318
1319 case BINOP_EXP:
1320 v = integer_pow (v1, v2);
1321 break;
1322
1323 case BINOP_REM:
1324 if (v2 != 0)
1325 v = v1 % v2;
1326 else
1327 error (_("Division by zero"));
1328 break;
1329
1330 case BINOP_MOD:
1331 /* Knuth 1.2.4, integer only. Note that unlike the C '%' op,
1332 X mod 0 has a defined value, X. */
1333 if (v2 == 0)
1334 {
1335 v = v1;
1336 }
1337 else
1338 {
1339 v = v1 / v2;
1340 /* Compute floor. */
1341 if (TRUNCATION_TOWARDS_ZERO && (v < 0) && ((v1 % v2) != 0))
1342 {
1343 v--;
1344 }
1345 v = v1 - (v2 * v);
1346 }
1347 break;
1348
1349 case BINOP_LSH:
1350 v = v1 << v2;
1351 break;
1352
1353 case BINOP_RSH:
1354 v = v1 >> v2;
1355 break;
1356
1357 case BINOP_BITWISE_AND:
1358 v = v1 & v2;
1359 break;
1360
1361 case BINOP_BITWISE_IOR:
1362 v = v1 | v2;
1363 break;
1364
1365 case BINOP_BITWISE_XOR:
1366 v = v1 ^ v2;
1367 break;
1368
1369 case BINOP_LOGICAL_AND:
1370 v = v1 && v2;
1371 break;
1372
1373 case BINOP_LOGICAL_OR:
1374 v = v1 || v2;
1375 break;
1376
1377 case BINOP_MIN:
1378 v = v1 < v2 ? v1 : v2;
1379 break;
1380
1381 case BINOP_MAX:
1382 v = v1 > v2 ? v1 : v2;
1383 break;
1384
1385 case BINOP_EQUAL:
1386 v = v1 == v2;
1387 break;
1388
1389 case BINOP_NOTEQUAL:
1390 v = v1 != v2;
1391 break;
1392
1393 case BINOP_LESS:
1394 v = v1 < v2;
1395 break;
1396
1397 case BINOP_GTR:
1398 v = v1 > v2;
1399 break;
1400
1401 case BINOP_LEQ:
1402 v = v1 <= v2;
1403 break;
1404
1405 case BINOP_GEQ:
1406 v = v1 >= v2;
1407 break;
1408
1409 default:
1410 error (_("Invalid binary operation on numbers."));
1411 }
1412
1413 val = allocate_value (result_type);
1414 store_signed_integer (value_contents_raw (val),
1415 TYPE_LENGTH (value_type (val)),
1416 type_byte_order (result_type),
1417 v);
1418 }
1419 }
1420
1421 return val;
1422 }
1423
1424 /* Widen a scalar value SCALAR_VALUE to vector type VECTOR_TYPE by
1425 replicating SCALAR_VALUE for each element of the vector. Only scalar
1426 types that can be cast to the type of one element of the vector are
1427 acceptable. The newly created vector value is returned upon success,
1428 otherwise an error is thrown. */
1429
1430 struct value *
1431 value_vector_widen (struct value *scalar_value, struct type *vector_type)
1432 {
1433 /* Widen the scalar to a vector. */
1434 struct type *eltype, *scalar_type;
1435 struct value *val, *elval;
1436 LONGEST low_bound, high_bound;
1437 int i;
1438
1439 vector_type = check_typedef (vector_type);
1440
1441 gdb_assert (vector_type->code () == TYPE_CODE_ARRAY
1442 && TYPE_VECTOR (vector_type));
1443
1444 if (!get_array_bounds (vector_type, &low_bound, &high_bound))
1445 error (_("Could not determine the vector bounds"));
1446
1447 eltype = check_typedef (TYPE_TARGET_TYPE (vector_type));
1448 elval = value_cast (eltype, scalar_value);
1449
1450 scalar_type = check_typedef (value_type (scalar_value));
1451
1452 /* If we reduced the length of the scalar then check we didn't loose any
1453 important bits. */
1454 if (TYPE_LENGTH (eltype) < TYPE_LENGTH (scalar_type)
1455 && !value_equal (elval, scalar_value))
1456 error (_("conversion of scalar to vector involves truncation"));
1457
1458 val = allocate_value (vector_type);
1459 for (i = 0; i < high_bound - low_bound + 1; i++)
1460 /* Duplicate the contents of elval into the destination vector. */
1461 memcpy (value_contents_writeable (val) + (i * TYPE_LENGTH (eltype)),
1462 value_contents_all (elval), TYPE_LENGTH (eltype));
1463
1464 return val;
1465 }
1466
1467 /* Performs a binary operation on two vector operands by calling scalar_binop
1468 for each pair of vector components. */
1469
1470 static struct value *
1471 vector_binop (struct value *val1, struct value *val2, enum exp_opcode op)
1472 {
1473 struct value *val, *tmp, *mark;
1474 struct type *type1, *type2, *eltype1, *eltype2;
1475 int t1_is_vec, t2_is_vec, elsize, i;
1476 LONGEST low_bound1, high_bound1, low_bound2, high_bound2;
1477
1478 type1 = check_typedef (value_type (val1));
1479 type2 = check_typedef (value_type (val2));
1480
1481 t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
1482 && TYPE_VECTOR (type1)) ? 1 : 0;
1483 t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
1484 && TYPE_VECTOR (type2)) ? 1 : 0;
1485
1486 if (!t1_is_vec || !t2_is_vec)
1487 error (_("Vector operations are only supported among vectors"));
1488
1489 if (!get_array_bounds (type1, &low_bound1, &high_bound1)
1490 || !get_array_bounds (type2, &low_bound2, &high_bound2))
1491 error (_("Could not determine the vector bounds"));
1492
1493 eltype1 = check_typedef (TYPE_TARGET_TYPE (type1));
1494 eltype2 = check_typedef (TYPE_TARGET_TYPE (type2));
1495 elsize = TYPE_LENGTH (eltype1);
1496
1497 if (eltype1->code () != eltype2->code ()
1498 || elsize != TYPE_LENGTH (eltype2)
1499 || TYPE_UNSIGNED (eltype1) != TYPE_UNSIGNED (eltype2)
1500 || low_bound1 != low_bound2 || high_bound1 != high_bound2)
1501 error (_("Cannot perform operation on vectors with different types"));
1502
1503 val = allocate_value (type1);
1504 mark = value_mark ();
1505 for (i = 0; i < high_bound1 - low_bound1 + 1; i++)
1506 {
1507 tmp = value_binop (value_subscript (val1, i),
1508 value_subscript (val2, i), op);
1509 memcpy (value_contents_writeable (val) + i * elsize,
1510 value_contents_all (tmp),
1511 elsize);
1512 }
1513 value_free_to_mark (mark);
1514
1515 return val;
1516 }
1517
1518 /* Perform a binary operation on two operands. */
1519
1520 struct value *
1521 value_binop (struct value *arg1, struct value *arg2, enum exp_opcode op)
1522 {
1523 struct value *val;
1524 struct type *type1 = check_typedef (value_type (arg1));
1525 struct type *type2 = check_typedef (value_type (arg2));
1526 int t1_is_vec = (type1->code () == TYPE_CODE_ARRAY
1527 && TYPE_VECTOR (type1));
1528 int t2_is_vec = (type2->code () == TYPE_CODE_ARRAY
1529 && TYPE_VECTOR (type2));
1530
1531 if (!t1_is_vec && !t2_is_vec)
1532 val = scalar_binop (arg1, arg2, op);
1533 else if (t1_is_vec && t2_is_vec)
1534 val = vector_binop (arg1, arg2, op);
1535 else
1536 {
1537 /* Widen the scalar operand to a vector. */
1538 struct value **v = t1_is_vec ? &arg2 : &arg1;
1539 struct type *t = t1_is_vec ? type2 : type1;
1540
1541 if (t->code () != TYPE_CODE_FLT
1542 && t->code () != TYPE_CODE_DECFLOAT
1543 && !is_integral_type (t))
1544 error (_("Argument to operation not a number or boolean."));
1545
1546 /* Replicate the scalar value to make a vector value. */
1547 *v = value_vector_widen (*v, t1_is_vec ? type1 : type2);
1548
1549 val = vector_binop (arg1, arg2, op);
1550 }
1551
1552 return val;
1553 }
1554 \f
1555 /* Simulate the C operator ! -- return 1 if ARG1 contains zero. */
1556
1557 int
1558 value_logical_not (struct value *arg1)
1559 {
1560 int len;
1561 const gdb_byte *p;
1562 struct type *type1;
1563
1564 arg1 = coerce_array (arg1);
1565 type1 = check_typedef (value_type (arg1));
1566
1567 if (is_floating_value (arg1))
1568 return target_float_is_zero (value_contents (arg1), type1);
1569
1570 len = TYPE_LENGTH (type1);
1571 p = value_contents (arg1);
1572
1573 while (--len >= 0)
1574 {
1575 if (*p++)
1576 break;
1577 }
1578
1579 return len < 0;
1580 }
1581
1582 /* Perform a comparison on two string values (whose content are not
1583 necessarily null terminated) based on their length. */
1584
1585 static int
1586 value_strcmp (struct value *arg1, struct value *arg2)
1587 {
1588 int len1 = TYPE_LENGTH (value_type (arg1));
1589 int len2 = TYPE_LENGTH (value_type (arg2));
1590 const gdb_byte *s1 = value_contents (arg1);
1591 const gdb_byte *s2 = value_contents (arg2);
1592 int i, len = len1 < len2 ? len1 : len2;
1593
1594 for (i = 0; i < len; i++)
1595 {
1596 if (s1[i] < s2[i])
1597 return -1;
1598 else if (s1[i] > s2[i])
1599 return 1;
1600 else
1601 continue;
1602 }
1603
1604 if (len1 < len2)
1605 return -1;
1606 else if (len1 > len2)
1607 return 1;
1608 else
1609 return 0;
1610 }
1611
1612 /* Simulate the C operator == by returning a 1
1613 iff ARG1 and ARG2 have equal contents. */
1614
1615 int
1616 value_equal (struct value *arg1, struct value *arg2)
1617 {
1618 int len;
1619 const gdb_byte *p1;
1620 const gdb_byte *p2;
1621 struct type *type1, *type2;
1622 enum type_code code1;
1623 enum type_code code2;
1624 int is_int1, is_int2;
1625
1626 arg1 = coerce_array (arg1);
1627 arg2 = coerce_array (arg2);
1628
1629 type1 = check_typedef (value_type (arg1));
1630 type2 = check_typedef (value_type (arg2));
1631 code1 = type1->code ();
1632 code2 = type2->code ();
1633 is_int1 = is_integral_type (type1);
1634 is_int2 = is_integral_type (type2);
1635
1636 if (is_int1 && is_int2)
1637 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1638 BINOP_EQUAL)));
1639 else if ((is_floating_value (arg1) || is_int1)
1640 && (is_floating_value (arg2) || is_int2))
1641 {
1642 struct type *eff_type_v1, *eff_type_v2;
1643 gdb::byte_vector v1, v2;
1644 v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1645 v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1646
1647 value_args_as_target_float (arg1, arg2,
1648 v1.data (), &eff_type_v1,
1649 v2.data (), &eff_type_v2);
1650
1651 return target_float_compare (v1.data (), eff_type_v1,
1652 v2.data (), eff_type_v2) == 0;
1653 }
1654
1655 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1656 is bigger. */
1657 else if (code1 == TYPE_CODE_PTR && is_int2)
1658 return value_as_address (arg1) == (CORE_ADDR) value_as_long (arg2);
1659 else if (code2 == TYPE_CODE_PTR && is_int1)
1660 return (CORE_ADDR) value_as_long (arg1) == value_as_address (arg2);
1661
1662 else if (code1 == code2
1663 && ((len = (int) TYPE_LENGTH (type1))
1664 == (int) TYPE_LENGTH (type2)))
1665 {
1666 p1 = value_contents (arg1);
1667 p2 = value_contents (arg2);
1668 while (--len >= 0)
1669 {
1670 if (*p1++ != *p2++)
1671 break;
1672 }
1673 return len < 0;
1674 }
1675 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1676 {
1677 return value_strcmp (arg1, arg2) == 0;
1678 }
1679 else
1680 error (_("Invalid type combination in equality test."));
1681 }
1682
1683 /* Compare values based on their raw contents. Useful for arrays since
1684 value_equal coerces them to pointers, thus comparing just the address
1685 of the array instead of its contents. */
1686
1687 int
1688 value_equal_contents (struct value *arg1, struct value *arg2)
1689 {
1690 struct type *type1, *type2;
1691
1692 type1 = check_typedef (value_type (arg1));
1693 type2 = check_typedef (value_type (arg2));
1694
1695 return (type1->code () == type2->code ()
1696 && TYPE_LENGTH (type1) == TYPE_LENGTH (type2)
1697 && memcmp (value_contents (arg1), value_contents (arg2),
1698 TYPE_LENGTH (type1)) == 0);
1699 }
1700
1701 /* Simulate the C operator < by returning 1
1702 iff ARG1's contents are less than ARG2's. */
1703
1704 int
1705 value_less (struct value *arg1, struct value *arg2)
1706 {
1707 enum type_code code1;
1708 enum type_code code2;
1709 struct type *type1, *type2;
1710 int is_int1, is_int2;
1711
1712 arg1 = coerce_array (arg1);
1713 arg2 = coerce_array (arg2);
1714
1715 type1 = check_typedef (value_type (arg1));
1716 type2 = check_typedef (value_type (arg2));
1717 code1 = type1->code ();
1718 code2 = type2->code ();
1719 is_int1 = is_integral_type (type1);
1720 is_int2 = is_integral_type (type2);
1721
1722 if (is_int1 && is_int2)
1723 return longest_to_int (value_as_long (value_binop (arg1, arg2,
1724 BINOP_LESS)));
1725 else if ((is_floating_value (arg1) || is_int1)
1726 && (is_floating_value (arg2) || is_int2))
1727 {
1728 struct type *eff_type_v1, *eff_type_v2;
1729 gdb::byte_vector v1, v2;
1730 v1.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1731 v2.resize (std::max (TYPE_LENGTH (type1), TYPE_LENGTH (type2)));
1732
1733 value_args_as_target_float (arg1, arg2,
1734 v1.data (), &eff_type_v1,
1735 v2.data (), &eff_type_v2);
1736
1737 return target_float_compare (v1.data (), eff_type_v1,
1738 v2.data (), eff_type_v2) == -1;
1739 }
1740 else if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
1741 return value_as_address (arg1) < value_as_address (arg2);
1742
1743 /* FIXME: Need to promote to either CORE_ADDR or LONGEST, whichever
1744 is bigger. */
1745 else if (code1 == TYPE_CODE_PTR && is_int2)
1746 return value_as_address (arg1) < (CORE_ADDR) value_as_long (arg2);
1747 else if (code2 == TYPE_CODE_PTR && is_int1)
1748 return (CORE_ADDR) value_as_long (arg1) < value_as_address (arg2);
1749 else if (code1 == TYPE_CODE_STRING && code2 == TYPE_CODE_STRING)
1750 return value_strcmp (arg1, arg2) < 0;
1751 else
1752 {
1753 error (_("Invalid type combination in ordering comparison."));
1754 return 0;
1755 }
1756 }
1757 \f
1758 /* The unary operators +, - and ~. They free the argument ARG1. */
1759
1760 struct value *
1761 value_pos (struct value *arg1)
1762 {
1763 struct type *type;
1764
1765 arg1 = coerce_ref (arg1);
1766 type = check_typedef (value_type (arg1));
1767
1768 if (is_integral_type (type) || is_floating_value (arg1)
1769 || (type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1770 || type->code () == TYPE_CODE_COMPLEX)
1771 return value_from_contents (type, value_contents (arg1));
1772 else
1773 error (_("Argument to positive operation not a number."));
1774 }
1775
1776 struct value *
1777 value_neg (struct value *arg1)
1778 {
1779 struct type *type;
1780
1781 arg1 = coerce_ref (arg1);
1782 type = check_typedef (value_type (arg1));
1783
1784 if (is_integral_type (type) || is_floating_type (type))
1785 return value_binop (value_from_longest (type, 0), arg1, BINOP_SUB);
1786 else if (type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1787 {
1788 struct value *tmp, *val = allocate_value (type);
1789 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1790 int i;
1791 LONGEST low_bound, high_bound;
1792
1793 if (!get_array_bounds (type, &low_bound, &high_bound))
1794 error (_("Could not determine the vector bounds"));
1795
1796 for (i = 0; i < high_bound - low_bound + 1; i++)
1797 {
1798 tmp = value_neg (value_subscript (arg1, i));
1799 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1800 value_contents_all (tmp), TYPE_LENGTH (eltype));
1801 }
1802 return val;
1803 }
1804 else if (type->code () == TYPE_CODE_COMPLEX)
1805 {
1806 struct value *real = value_real_part (arg1);
1807 struct value *imag = value_imaginary_part (arg1);
1808
1809 real = value_neg (real);
1810 imag = value_neg (imag);
1811 return value_literal_complex (real, imag, type);
1812 }
1813 else
1814 error (_("Argument to negate operation not a number."));
1815 }
1816
1817 struct value *
1818 value_complement (struct value *arg1)
1819 {
1820 struct type *type;
1821 struct value *val;
1822
1823 arg1 = coerce_ref (arg1);
1824 type = check_typedef (value_type (arg1));
1825
1826 if (is_integral_type (type))
1827 val = value_from_longest (type, ~value_as_long (arg1));
1828 else if (type->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type))
1829 {
1830 struct value *tmp;
1831 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type));
1832 int i;
1833 LONGEST low_bound, high_bound;
1834
1835 if (!get_array_bounds (type, &low_bound, &high_bound))
1836 error (_("Could not determine the vector bounds"));
1837
1838 val = allocate_value (type);
1839 for (i = 0; i < high_bound - low_bound + 1; i++)
1840 {
1841 tmp = value_complement (value_subscript (arg1, i));
1842 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
1843 value_contents_all (tmp), TYPE_LENGTH (eltype));
1844 }
1845 }
1846 else if (type->code () == TYPE_CODE_COMPLEX)
1847 {
1848 /* GCC has an extension that treats ~complex as the complex
1849 conjugate. */
1850 struct value *real = value_real_part (arg1);
1851 struct value *imag = value_imaginary_part (arg1);
1852
1853 imag = value_neg (imag);
1854 return value_literal_complex (real, imag, type);
1855 }
1856 else
1857 error (_("Argument to complement operation not an integer, boolean."));
1858
1859 return val;
1860 }
1861 \f
1862 /* The INDEX'th bit of SET value whose value_type is TYPE,
1863 and whose value_contents is valaddr.
1864 Return -1 if out of range, -2 other error. */
1865
1866 int
1867 value_bit_index (struct type *type, const gdb_byte *valaddr, int index)
1868 {
1869 struct gdbarch *gdbarch = get_type_arch (type);
1870 LONGEST low_bound, high_bound;
1871 LONGEST word;
1872 unsigned rel_index;
1873 struct type *range = TYPE_INDEX_TYPE (type);
1874
1875 if (get_discrete_bounds (range, &low_bound, &high_bound) < 0)
1876 return -2;
1877 if (index < low_bound || index > high_bound)
1878 return -1;
1879 rel_index = index - low_bound;
1880 word = extract_unsigned_integer (valaddr + (rel_index / TARGET_CHAR_BIT), 1,
1881 type_byte_order (type));
1882 rel_index %= TARGET_CHAR_BIT;
1883 if (gdbarch_byte_order (gdbarch) == BFD_ENDIAN_BIG)
1884 rel_index = TARGET_CHAR_BIT - 1 - rel_index;
1885 return (word >> rel_index) & 1;
1886 }
1887
1888 int
1889 value_in (struct value *element, struct value *set)
1890 {
1891 int member;
1892 struct type *settype = check_typedef (value_type (set));
1893 struct type *eltype = check_typedef (value_type (element));
1894
1895 if (eltype->code () == TYPE_CODE_RANGE)
1896 eltype = TYPE_TARGET_TYPE (eltype);
1897 if (settype->code () != TYPE_CODE_SET)
1898 error (_("Second argument of 'IN' has wrong type"));
1899 if (eltype->code () != TYPE_CODE_INT
1900 && eltype->code () != TYPE_CODE_CHAR
1901 && eltype->code () != TYPE_CODE_ENUM
1902 && eltype->code () != TYPE_CODE_BOOL)
1903 error (_("First argument of 'IN' has wrong type"));
1904 member = value_bit_index (settype, value_contents (set),
1905 value_as_long (element));
1906 if (member < 0)
1907 error (_("First argument of 'IN' not in range"));
1908 return member;
1909 }
This page took 0.068311 seconds and 4 git commands to generate.