gdb: add target_ops::supports_displaced_step
[deliverable/binutils-gdb.git] / gdb / valops.c
1 /* Perform non-arithmetic operations on values, for GDB.
2
3 Copyright (C) 1986-2020 Free Software Foundation, Inc.
4
5 This file is part of GDB.
6
7 This program is free software; you can redistribute it and/or modify
8 it under the terms of the GNU General Public License as published by
9 the Free Software Foundation; either version 3 of the License, or
10 (at your option) any later version.
11
12 This program is distributed in the hope that it will be useful,
13 but WITHOUT ANY WARRANTY; without even the implied warranty of
14 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 GNU General Public License for more details.
16
17 You should have received a copy of the GNU General Public License
18 along with this program. If not, see <http://www.gnu.org/licenses/>. */
19
20 #include "defs.h"
21 #include "symtab.h"
22 #include "gdbtypes.h"
23 #include "value.h"
24 #include "frame.h"
25 #include "inferior.h"
26 #include "gdbcore.h"
27 #include "target.h"
28 #include "demangle.h"
29 #include "language.h"
30 #include "gdbcmd.h"
31 #include "regcache.h"
32 #include "cp-abi.h"
33 #include "block.h"
34 #include "infcall.h"
35 #include "dictionary.h"
36 #include "cp-support.h"
37 #include "target-float.h"
38 #include "tracepoint.h"
39 #include "observable.h"
40 #include "objfiles.h"
41 #include "extension.h"
42 #include "gdbtypes.h"
43 #include "gdbsupport/byte-vector.h"
44
45 /* Local functions. */
46
47 static int typecmp (int staticp, int varargs, int nargs,
48 struct field t1[], struct value *t2[]);
49
50 static struct value *search_struct_field (const char *, struct value *,
51 struct type *, int);
52
53 static struct value *search_struct_method (const char *, struct value **,
54 struct value **,
55 LONGEST, int *, struct type *);
56
57 static int find_oload_champ_namespace (gdb::array_view<value *> args,
58 const char *, const char *,
59 std::vector<symbol *> *oload_syms,
60 badness_vector *,
61 const int no_adl);
62
63 static int find_oload_champ_namespace_loop (gdb::array_view<value *> args,
64 const char *, const char *,
65 int, std::vector<symbol *> *oload_syms,
66 badness_vector *, int *,
67 const int no_adl);
68
69 static int find_oload_champ (gdb::array_view<value *> args,
70 size_t num_fns,
71 fn_field *methods,
72 xmethod_worker_up *xmethods,
73 symbol **functions,
74 badness_vector *oload_champ_bv);
75
76 static int oload_method_static_p (struct fn_field *, int);
77
78 enum oload_classification { STANDARD, NON_STANDARD, INCOMPATIBLE };
79
80 static enum oload_classification classify_oload_match
81 (const badness_vector &, int, int);
82
83 static struct value *value_struct_elt_for_reference (struct type *,
84 int, struct type *,
85 const char *,
86 struct type *,
87 int, enum noside);
88
89 static struct value *value_namespace_elt (const struct type *,
90 const char *, int , enum noside);
91
92 static struct value *value_maybe_namespace_elt (const struct type *,
93 const char *, int,
94 enum noside);
95
96 static CORE_ADDR allocate_space_in_inferior (int);
97
98 static struct value *cast_into_complex (struct type *, struct value *);
99
100 bool overload_resolution = false;
101 static void
102 show_overload_resolution (struct ui_file *file, int from_tty,
103 struct cmd_list_element *c,
104 const char *value)
105 {
106 fprintf_filtered (file, _("Overload resolution in evaluating "
107 "C++ functions is %s.\n"),
108 value);
109 }
110
111 /* Find the address of function name NAME in the inferior. If OBJF_P
112 is non-NULL, *OBJF_P will be set to the OBJFILE where the function
113 is defined. */
114
115 struct value *
116 find_function_in_inferior (const char *name, struct objfile **objf_p)
117 {
118 struct block_symbol sym;
119
120 sym = lookup_symbol (name, 0, VAR_DOMAIN, 0);
121 if (sym.symbol != NULL)
122 {
123 if (SYMBOL_CLASS (sym.symbol) != LOC_BLOCK)
124 {
125 error (_("\"%s\" exists in this program but is not a function."),
126 name);
127 }
128
129 if (objf_p)
130 *objf_p = symbol_objfile (sym.symbol);
131
132 return value_of_variable (sym.symbol, sym.block);
133 }
134 else
135 {
136 struct bound_minimal_symbol msymbol =
137 lookup_bound_minimal_symbol (name);
138
139 if (msymbol.minsym != NULL)
140 {
141 struct objfile *objfile = msymbol.objfile;
142 struct gdbarch *gdbarch = objfile->arch ();
143
144 struct type *type;
145 CORE_ADDR maddr;
146 type = lookup_pointer_type (builtin_type (gdbarch)->builtin_char);
147 type = lookup_function_type (type);
148 type = lookup_pointer_type (type);
149 maddr = BMSYMBOL_VALUE_ADDRESS (msymbol);
150
151 if (objf_p)
152 *objf_p = objfile;
153
154 return value_from_pointer (type, maddr);
155 }
156 else
157 {
158 if (!target_has_execution)
159 error (_("evaluation of this expression "
160 "requires the target program to be active"));
161 else
162 error (_("evaluation of this expression requires the "
163 "program to have a function \"%s\"."),
164 name);
165 }
166 }
167 }
168
169 /* Allocate NBYTES of space in the inferior using the inferior's
170 malloc and return a value that is a pointer to the allocated
171 space. */
172
173 struct value *
174 value_allocate_space_in_inferior (int len)
175 {
176 struct objfile *objf;
177 struct value *val = find_function_in_inferior ("malloc", &objf);
178 struct gdbarch *gdbarch = objf->arch ();
179 struct value *blocklen;
180
181 blocklen = value_from_longest (builtin_type (gdbarch)->builtin_int, len);
182 val = call_function_by_hand (val, NULL, blocklen);
183 if (value_logical_not (val))
184 {
185 if (!target_has_execution)
186 error (_("No memory available to program now: "
187 "you need to start the target first"));
188 else
189 error (_("No memory available to program: call to malloc failed"));
190 }
191 return val;
192 }
193
194 static CORE_ADDR
195 allocate_space_in_inferior (int len)
196 {
197 return value_as_long (value_allocate_space_in_inferior (len));
198 }
199
200 /* Cast struct value VAL to type TYPE and return as a value.
201 Both type and val must be of TYPE_CODE_STRUCT or TYPE_CODE_UNION
202 for this to work. Typedef to one of the codes is permitted.
203 Returns NULL if the cast is neither an upcast nor a downcast. */
204
205 static struct value *
206 value_cast_structs (struct type *type, struct value *v2)
207 {
208 struct type *t1;
209 struct type *t2;
210 struct value *v;
211
212 gdb_assert (type != NULL && v2 != NULL);
213
214 t1 = check_typedef (type);
215 t2 = check_typedef (value_type (v2));
216
217 /* Check preconditions. */
218 gdb_assert ((t1->code () == TYPE_CODE_STRUCT
219 || t1->code () == TYPE_CODE_UNION)
220 && !!"Precondition is that type is of STRUCT or UNION kind.");
221 gdb_assert ((t2->code () == TYPE_CODE_STRUCT
222 || t2->code () == TYPE_CODE_UNION)
223 && !!"Precondition is that value is of STRUCT or UNION kind");
224
225 if (t1->name () != NULL
226 && t2->name () != NULL
227 && !strcmp (t1->name (), t2->name ()))
228 return NULL;
229
230 /* Upcasting: look in the type of the source to see if it contains the
231 type of the target as a superclass. If so, we'll need to
232 offset the pointer rather than just change its type. */
233 if (t1->name () != NULL)
234 {
235 v = search_struct_field (t1->name (),
236 v2, t2, 1);
237 if (v)
238 return v;
239 }
240
241 /* Downcasting: look in the type of the target to see if it contains the
242 type of the source as a superclass. If so, we'll need to
243 offset the pointer rather than just change its type. */
244 if (t2->name () != NULL)
245 {
246 /* Try downcasting using the run-time type of the value. */
247 int full, using_enc;
248 LONGEST top;
249 struct type *real_type;
250
251 real_type = value_rtti_type (v2, &full, &top, &using_enc);
252 if (real_type)
253 {
254 v = value_full_object (v2, real_type, full, top, using_enc);
255 v = value_at_lazy (real_type, value_address (v));
256 real_type = value_type (v);
257
258 /* We might be trying to cast to the outermost enclosing
259 type, in which case search_struct_field won't work. */
260 if (real_type->name () != NULL
261 && !strcmp (real_type->name (), t1->name ()))
262 return v;
263
264 v = search_struct_field (t2->name (), v, real_type, 1);
265 if (v)
266 return v;
267 }
268
269 /* Try downcasting using information from the destination type
270 T2. This wouldn't work properly for classes with virtual
271 bases, but those were handled above. */
272 v = search_struct_field (t2->name (),
273 value_zero (t1, not_lval), t1, 1);
274 if (v)
275 {
276 /* Downcasting is possible (t1 is superclass of v2). */
277 CORE_ADDR addr2 = value_address (v2);
278
279 addr2 -= value_address (v) + value_embedded_offset (v);
280 return value_at (type, addr2);
281 }
282 }
283
284 return NULL;
285 }
286
287 /* Cast one pointer or reference type to another. Both TYPE and
288 the type of ARG2 should be pointer types, or else both should be
289 reference types. If SUBCLASS_CHECK is non-zero, this will force a
290 check to see whether TYPE is a superclass of ARG2's type. If
291 SUBCLASS_CHECK is zero, then the subclass check is done only when
292 ARG2 is itself non-zero. Returns the new pointer or reference. */
293
294 struct value *
295 value_cast_pointers (struct type *type, struct value *arg2,
296 int subclass_check)
297 {
298 struct type *type1 = check_typedef (type);
299 struct type *type2 = check_typedef (value_type (arg2));
300 struct type *t1 = check_typedef (TYPE_TARGET_TYPE (type1));
301 struct type *t2 = check_typedef (TYPE_TARGET_TYPE (type2));
302
303 if (t1->code () == TYPE_CODE_STRUCT
304 && t2->code () == TYPE_CODE_STRUCT
305 && (subclass_check || !value_logical_not (arg2)))
306 {
307 struct value *v2;
308
309 if (TYPE_IS_REFERENCE (type2))
310 v2 = coerce_ref (arg2);
311 else
312 v2 = value_ind (arg2);
313 gdb_assert (check_typedef (value_type (v2))->code ()
314 == TYPE_CODE_STRUCT && !!"Why did coercion fail?");
315 v2 = value_cast_structs (t1, v2);
316 /* At this point we have what we can have, un-dereference if needed. */
317 if (v2)
318 {
319 struct value *v = value_addr (v2);
320
321 deprecated_set_value_type (v, type);
322 return v;
323 }
324 }
325
326 /* No superclass found, just change the pointer type. */
327 arg2 = value_copy (arg2);
328 deprecated_set_value_type (arg2, type);
329 set_value_enclosing_type (arg2, type);
330 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
331 return arg2;
332 }
333
334 /* Cast value ARG2 to type TYPE and return as a value.
335 More general than a C cast: accepts any two types of the same length,
336 and if ARG2 is an lvalue it can be cast into anything at all. */
337 /* In C++, casts may change pointer or object representations. */
338
339 struct value *
340 value_cast (struct type *type, struct value *arg2)
341 {
342 enum type_code code1;
343 enum type_code code2;
344 int scalar;
345 struct type *type2;
346
347 int convert_to_boolean = 0;
348
349 if (value_type (arg2) == type)
350 return arg2;
351
352 /* Check if we are casting struct reference to struct reference. */
353 if (TYPE_IS_REFERENCE (check_typedef (type)))
354 {
355 /* We dereference type; then we recurse and finally
356 we generate value of the given reference. Nothing wrong with
357 that. */
358 struct type *t1 = check_typedef (type);
359 struct type *dereftype = check_typedef (TYPE_TARGET_TYPE (t1));
360 struct value *val = value_cast (dereftype, arg2);
361
362 return value_ref (val, t1->code ());
363 }
364
365 if (TYPE_IS_REFERENCE (check_typedef (value_type (arg2))))
366 /* We deref the value and then do the cast. */
367 return value_cast (type, coerce_ref (arg2));
368
369 /* Strip typedefs / resolve stubs in order to get at the type's
370 code/length, but remember the original type, to use as the
371 resulting type of the cast, in case it was a typedef. */
372 struct type *to_type = type;
373
374 type = check_typedef (type);
375 code1 = type->code ();
376 arg2 = coerce_ref (arg2);
377 type2 = check_typedef (value_type (arg2));
378
379 /* You can't cast to a reference type. See value_cast_pointers
380 instead. */
381 gdb_assert (!TYPE_IS_REFERENCE (type));
382
383 /* A cast to an undetermined-length array_type, such as
384 (TYPE [])OBJECT, is treated like a cast to (TYPE [N])OBJECT,
385 where N is sizeof(OBJECT)/sizeof(TYPE). */
386 if (code1 == TYPE_CODE_ARRAY)
387 {
388 struct type *element_type = TYPE_TARGET_TYPE (type);
389 unsigned element_length = TYPE_LENGTH (check_typedef (element_type));
390
391 if (element_length > 0 && TYPE_ARRAY_UPPER_BOUND_IS_UNDEFINED (type))
392 {
393 struct type *range_type = TYPE_INDEX_TYPE (type);
394 int val_length = TYPE_LENGTH (type2);
395 LONGEST low_bound, high_bound, new_length;
396
397 if (get_discrete_bounds (range_type, &low_bound, &high_bound) < 0)
398 low_bound = 0, high_bound = 0;
399 new_length = val_length / element_length;
400 if (val_length % element_length != 0)
401 warning (_("array element type size does not "
402 "divide object size in cast"));
403 /* FIXME-type-allocation: need a way to free this type when
404 we are done with it. */
405 range_type = create_static_range_type (NULL,
406 TYPE_TARGET_TYPE (range_type),
407 low_bound,
408 new_length + low_bound - 1);
409 deprecated_set_value_type (arg2,
410 create_array_type (NULL,
411 element_type,
412 range_type));
413 return arg2;
414 }
415 }
416
417 if (current_language->c_style_arrays
418 && type2->code () == TYPE_CODE_ARRAY
419 && !TYPE_VECTOR (type2))
420 arg2 = value_coerce_array (arg2);
421
422 if (type2->code () == TYPE_CODE_FUNC)
423 arg2 = value_coerce_function (arg2);
424
425 type2 = check_typedef (value_type (arg2));
426 code2 = type2->code ();
427
428 if (code1 == TYPE_CODE_COMPLEX)
429 return cast_into_complex (to_type, arg2);
430 if (code1 == TYPE_CODE_BOOL)
431 {
432 code1 = TYPE_CODE_INT;
433 convert_to_boolean = 1;
434 }
435 if (code1 == TYPE_CODE_CHAR)
436 code1 = TYPE_CODE_INT;
437 if (code2 == TYPE_CODE_BOOL || code2 == TYPE_CODE_CHAR)
438 code2 = TYPE_CODE_INT;
439
440 scalar = (code2 == TYPE_CODE_INT || code2 == TYPE_CODE_FLT
441 || code2 == TYPE_CODE_DECFLOAT || code2 == TYPE_CODE_ENUM
442 || code2 == TYPE_CODE_RANGE);
443
444 if ((code1 == TYPE_CODE_STRUCT || code1 == TYPE_CODE_UNION)
445 && (code2 == TYPE_CODE_STRUCT || code2 == TYPE_CODE_UNION)
446 && type->name () != 0)
447 {
448 struct value *v = value_cast_structs (to_type, arg2);
449
450 if (v)
451 return v;
452 }
453
454 if (is_floating_type (type) && scalar)
455 {
456 if (is_floating_value (arg2))
457 {
458 struct value *v = allocate_value (to_type);
459 target_float_convert (value_contents (arg2), type2,
460 value_contents_raw (v), type);
461 return v;
462 }
463
464 /* The only option left is an integral type. */
465 if (TYPE_UNSIGNED (type2))
466 return value_from_ulongest (to_type, value_as_long (arg2));
467 else
468 return value_from_longest (to_type, value_as_long (arg2));
469 }
470 else if ((code1 == TYPE_CODE_INT || code1 == TYPE_CODE_ENUM
471 || code1 == TYPE_CODE_RANGE)
472 && (scalar || code2 == TYPE_CODE_PTR
473 || code2 == TYPE_CODE_MEMBERPTR))
474 {
475 LONGEST longest;
476
477 /* When we cast pointers to integers, we mustn't use
478 gdbarch_pointer_to_address to find the address the pointer
479 represents, as value_as_long would. GDB should evaluate
480 expressions just as the compiler would --- and the compiler
481 sees a cast as a simple reinterpretation of the pointer's
482 bits. */
483 if (code2 == TYPE_CODE_PTR)
484 longest = extract_unsigned_integer
485 (value_contents (arg2), TYPE_LENGTH (type2),
486 type_byte_order (type2));
487 else
488 longest = value_as_long (arg2);
489 return value_from_longest (to_type, convert_to_boolean ?
490 (LONGEST) (longest ? 1 : 0) : longest);
491 }
492 else if (code1 == TYPE_CODE_PTR && (code2 == TYPE_CODE_INT
493 || code2 == TYPE_CODE_ENUM
494 || code2 == TYPE_CODE_RANGE))
495 {
496 /* TYPE_LENGTH (type) is the length of a pointer, but we really
497 want the length of an address! -- we are really dealing with
498 addresses (i.e., gdb representations) not pointers (i.e.,
499 target representations) here.
500
501 This allows things like "print *(int *)0x01000234" to work
502 without printing a misleading message -- which would
503 otherwise occur when dealing with a target having two byte
504 pointers and four byte addresses. */
505
506 int addr_bit = gdbarch_addr_bit (get_type_arch (type2));
507 LONGEST longest = value_as_long (arg2);
508
509 if (addr_bit < sizeof (LONGEST) * HOST_CHAR_BIT)
510 {
511 if (longest >= ((LONGEST) 1 << addr_bit)
512 || longest <= -((LONGEST) 1 << addr_bit))
513 warning (_("value truncated"));
514 }
515 return value_from_longest (to_type, longest);
516 }
517 else if (code1 == TYPE_CODE_METHODPTR && code2 == TYPE_CODE_INT
518 && value_as_long (arg2) == 0)
519 {
520 struct value *result = allocate_value (to_type);
521
522 cplus_make_method_ptr (to_type, value_contents_writeable (result), 0, 0);
523 return result;
524 }
525 else if (code1 == TYPE_CODE_MEMBERPTR && code2 == TYPE_CODE_INT
526 && value_as_long (arg2) == 0)
527 {
528 /* The Itanium C++ ABI represents NULL pointers to members as
529 minus one, instead of biasing the normal case. */
530 return value_from_longest (to_type, -1);
531 }
532 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type)
533 && code2 == TYPE_CODE_ARRAY && TYPE_VECTOR (type2)
534 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
535 error (_("Cannot convert between vector values of different sizes"));
536 else if (code1 == TYPE_CODE_ARRAY && TYPE_VECTOR (type) && scalar
537 && TYPE_LENGTH (type) != TYPE_LENGTH (type2))
538 error (_("can only cast scalar to vector of same size"));
539 else if (code1 == TYPE_CODE_VOID)
540 {
541 return value_zero (to_type, not_lval);
542 }
543 else if (TYPE_LENGTH (type) == TYPE_LENGTH (type2))
544 {
545 if (code1 == TYPE_CODE_PTR && code2 == TYPE_CODE_PTR)
546 return value_cast_pointers (to_type, arg2, 0);
547
548 arg2 = value_copy (arg2);
549 deprecated_set_value_type (arg2, to_type);
550 set_value_enclosing_type (arg2, to_type);
551 set_value_pointed_to_offset (arg2, 0); /* pai: chk_val */
552 return arg2;
553 }
554 else if (VALUE_LVAL (arg2) == lval_memory)
555 return value_at_lazy (to_type, value_address (arg2));
556 else
557 {
558 if (current_language->la_language == language_ada)
559 error (_("Invalid type conversion."));
560 error (_("Invalid cast."));
561 }
562 }
563
564 /* The C++ reinterpret_cast operator. */
565
566 struct value *
567 value_reinterpret_cast (struct type *type, struct value *arg)
568 {
569 struct value *result;
570 struct type *real_type = check_typedef (type);
571 struct type *arg_type, *dest_type;
572 int is_ref = 0;
573 enum type_code dest_code, arg_code;
574
575 /* Do reference, function, and array conversion. */
576 arg = coerce_array (arg);
577
578 /* Attempt to preserve the type the user asked for. */
579 dest_type = type;
580
581 /* If we are casting to a reference type, transform
582 reinterpret_cast<T&[&]>(V) to *reinterpret_cast<T*>(&V). */
583 if (TYPE_IS_REFERENCE (real_type))
584 {
585 is_ref = 1;
586 arg = value_addr (arg);
587 dest_type = lookup_pointer_type (TYPE_TARGET_TYPE (dest_type));
588 real_type = lookup_pointer_type (real_type);
589 }
590
591 arg_type = value_type (arg);
592
593 dest_code = real_type->code ();
594 arg_code = arg_type->code ();
595
596 /* We can convert pointer types, or any pointer type to int, or int
597 type to pointer. */
598 if ((dest_code == TYPE_CODE_PTR && arg_code == TYPE_CODE_INT)
599 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_PTR)
600 || (dest_code == TYPE_CODE_METHODPTR && arg_code == TYPE_CODE_INT)
601 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_METHODPTR)
602 || (dest_code == TYPE_CODE_MEMBERPTR && arg_code == TYPE_CODE_INT)
603 || (dest_code == TYPE_CODE_INT && arg_code == TYPE_CODE_MEMBERPTR)
604 || (dest_code == arg_code
605 && (dest_code == TYPE_CODE_PTR
606 || dest_code == TYPE_CODE_METHODPTR
607 || dest_code == TYPE_CODE_MEMBERPTR)))
608 result = value_cast (dest_type, arg);
609 else
610 error (_("Invalid reinterpret_cast"));
611
612 if (is_ref)
613 result = value_cast (type, value_ref (value_ind (result),
614 type->code ()));
615
616 return result;
617 }
618
619 /* A helper for value_dynamic_cast. This implements the first of two
620 runtime checks: we iterate over all the base classes of the value's
621 class which are equal to the desired class; if only one of these
622 holds the value, then it is the answer. */
623
624 static int
625 dynamic_cast_check_1 (struct type *desired_type,
626 const gdb_byte *valaddr,
627 LONGEST embedded_offset,
628 CORE_ADDR address,
629 struct value *val,
630 struct type *search_type,
631 CORE_ADDR arg_addr,
632 struct type *arg_type,
633 struct value **result)
634 {
635 int i, result_count = 0;
636
637 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
638 {
639 LONGEST offset = baseclass_offset (search_type, i, valaddr,
640 embedded_offset,
641 address, val);
642
643 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
644 {
645 if (address + embedded_offset + offset >= arg_addr
646 && address + embedded_offset + offset < arg_addr + TYPE_LENGTH (arg_type))
647 {
648 ++result_count;
649 if (!*result)
650 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
651 address + embedded_offset + offset);
652 }
653 }
654 else
655 result_count += dynamic_cast_check_1 (desired_type,
656 valaddr,
657 embedded_offset + offset,
658 address, val,
659 TYPE_BASECLASS (search_type, i),
660 arg_addr,
661 arg_type,
662 result);
663 }
664
665 return result_count;
666 }
667
668 /* A helper for value_dynamic_cast. This implements the second of two
669 runtime checks: we look for a unique public sibling class of the
670 argument's declared class. */
671
672 static int
673 dynamic_cast_check_2 (struct type *desired_type,
674 const gdb_byte *valaddr,
675 LONGEST embedded_offset,
676 CORE_ADDR address,
677 struct value *val,
678 struct type *search_type,
679 struct value **result)
680 {
681 int i, result_count = 0;
682
683 for (i = 0; i < TYPE_N_BASECLASSES (search_type) && result_count < 2; ++i)
684 {
685 LONGEST offset;
686
687 if (! BASETYPE_VIA_PUBLIC (search_type, i))
688 continue;
689
690 offset = baseclass_offset (search_type, i, valaddr, embedded_offset,
691 address, val);
692 if (class_types_same_p (desired_type, TYPE_BASECLASS (search_type, i)))
693 {
694 ++result_count;
695 if (*result == NULL)
696 *result = value_at_lazy (TYPE_BASECLASS (search_type, i),
697 address + embedded_offset + offset);
698 }
699 else
700 result_count += dynamic_cast_check_2 (desired_type,
701 valaddr,
702 embedded_offset + offset,
703 address, val,
704 TYPE_BASECLASS (search_type, i),
705 result);
706 }
707
708 return result_count;
709 }
710
711 /* The C++ dynamic_cast operator. */
712
713 struct value *
714 value_dynamic_cast (struct type *type, struct value *arg)
715 {
716 int full, using_enc;
717 LONGEST top;
718 struct type *resolved_type = check_typedef (type);
719 struct type *arg_type = check_typedef (value_type (arg));
720 struct type *class_type, *rtti_type;
721 struct value *result, *tem, *original_arg = arg;
722 CORE_ADDR addr;
723 int is_ref = TYPE_IS_REFERENCE (resolved_type);
724
725 if (resolved_type->code () != TYPE_CODE_PTR
726 && !TYPE_IS_REFERENCE (resolved_type))
727 error (_("Argument to dynamic_cast must be a pointer or reference type"));
728 if (TYPE_TARGET_TYPE (resolved_type)->code () != TYPE_CODE_VOID
729 && TYPE_TARGET_TYPE (resolved_type)->code () != TYPE_CODE_STRUCT)
730 error (_("Argument to dynamic_cast must be pointer to class or `void *'"));
731
732 class_type = check_typedef (TYPE_TARGET_TYPE (resolved_type));
733 if (resolved_type->code () == TYPE_CODE_PTR)
734 {
735 if (arg_type->code () != TYPE_CODE_PTR
736 && ! (arg_type->code () == TYPE_CODE_INT
737 && value_as_long (arg) == 0))
738 error (_("Argument to dynamic_cast does not have pointer type"));
739 if (arg_type->code () == TYPE_CODE_PTR)
740 {
741 arg_type = check_typedef (TYPE_TARGET_TYPE (arg_type));
742 if (arg_type->code () != TYPE_CODE_STRUCT)
743 error (_("Argument to dynamic_cast does "
744 "not have pointer to class type"));
745 }
746
747 /* Handle NULL pointers. */
748 if (value_as_long (arg) == 0)
749 return value_zero (type, not_lval);
750
751 arg = value_ind (arg);
752 }
753 else
754 {
755 if (arg_type->code () != TYPE_CODE_STRUCT)
756 error (_("Argument to dynamic_cast does not have class type"));
757 }
758
759 /* If the classes are the same, just return the argument. */
760 if (class_types_same_p (class_type, arg_type))
761 return value_cast (type, arg);
762
763 /* If the target type is a unique base class of the argument's
764 declared type, just cast it. */
765 if (is_ancestor (class_type, arg_type))
766 {
767 if (is_unique_ancestor (class_type, arg))
768 return value_cast (type, original_arg);
769 error (_("Ambiguous dynamic_cast"));
770 }
771
772 rtti_type = value_rtti_type (arg, &full, &top, &using_enc);
773 if (! rtti_type)
774 error (_("Couldn't determine value's most derived type for dynamic_cast"));
775
776 /* Compute the most derived object's address. */
777 addr = value_address (arg);
778 if (full)
779 {
780 /* Done. */
781 }
782 else if (using_enc)
783 addr += top;
784 else
785 addr += top + value_embedded_offset (arg);
786
787 /* dynamic_cast<void *> means to return a pointer to the
788 most-derived object. */
789 if (resolved_type->code () == TYPE_CODE_PTR
790 && TYPE_TARGET_TYPE (resolved_type)->code () == TYPE_CODE_VOID)
791 return value_at_lazy (type, addr);
792
793 tem = value_at (type, addr);
794 type = value_type (tem);
795
796 /* The first dynamic check specified in 5.2.7. */
797 if (is_public_ancestor (arg_type, TYPE_TARGET_TYPE (resolved_type)))
798 {
799 if (class_types_same_p (rtti_type, TYPE_TARGET_TYPE (resolved_type)))
800 return tem;
801 result = NULL;
802 if (dynamic_cast_check_1 (TYPE_TARGET_TYPE (resolved_type),
803 value_contents_for_printing (tem),
804 value_embedded_offset (tem),
805 value_address (tem), tem,
806 rtti_type, addr,
807 arg_type,
808 &result) == 1)
809 return value_cast (type,
810 is_ref
811 ? value_ref (result, resolved_type->code ())
812 : value_addr (result));
813 }
814
815 /* The second dynamic check specified in 5.2.7. */
816 result = NULL;
817 if (is_public_ancestor (arg_type, rtti_type)
818 && dynamic_cast_check_2 (TYPE_TARGET_TYPE (resolved_type),
819 value_contents_for_printing (tem),
820 value_embedded_offset (tem),
821 value_address (tem), tem,
822 rtti_type, &result) == 1)
823 return value_cast (type,
824 is_ref
825 ? value_ref (result, resolved_type->code ())
826 : value_addr (result));
827
828 if (resolved_type->code () == TYPE_CODE_PTR)
829 return value_zero (type, not_lval);
830
831 error (_("dynamic_cast failed"));
832 }
833
834 /* Create a value of type TYPE that is zero, and return it. */
835
836 struct value *
837 value_zero (struct type *type, enum lval_type lv)
838 {
839 struct value *val = allocate_value (type);
840
841 VALUE_LVAL (val) = (lv == lval_computed ? not_lval : lv);
842 return val;
843 }
844
845 /* Create a not_lval value of numeric type TYPE that is one, and return it. */
846
847 struct value *
848 value_one (struct type *type)
849 {
850 struct type *type1 = check_typedef (type);
851 struct value *val;
852
853 if (is_integral_type (type1) || is_floating_type (type1))
854 {
855 val = value_from_longest (type, (LONGEST) 1);
856 }
857 else if (type1->code () == TYPE_CODE_ARRAY && TYPE_VECTOR (type1))
858 {
859 struct type *eltype = check_typedef (TYPE_TARGET_TYPE (type1));
860 int i;
861 LONGEST low_bound, high_bound;
862 struct value *tmp;
863
864 if (!get_array_bounds (type1, &low_bound, &high_bound))
865 error (_("Could not determine the vector bounds"));
866
867 val = allocate_value (type);
868 for (i = 0; i < high_bound - low_bound + 1; i++)
869 {
870 tmp = value_one (eltype);
871 memcpy (value_contents_writeable (val) + i * TYPE_LENGTH (eltype),
872 value_contents_all (tmp), TYPE_LENGTH (eltype));
873 }
874 }
875 else
876 {
877 error (_("Not a numeric type."));
878 }
879
880 /* value_one result is never used for assignments to. */
881 gdb_assert (VALUE_LVAL (val) == not_lval);
882
883 return val;
884 }
885
886 /* Helper function for value_at, value_at_lazy, and value_at_lazy_stack.
887 The type of the created value may differ from the passed type TYPE.
888 Make sure to retrieve the returned values's new type after this call
889 e.g. in case the type is a variable length array. */
890
891 static struct value *
892 get_value_at (struct type *type, CORE_ADDR addr, int lazy)
893 {
894 struct value *val;
895
896 if (check_typedef (type)->code () == TYPE_CODE_VOID)
897 error (_("Attempt to dereference a generic pointer."));
898
899 val = value_from_contents_and_address (type, NULL, addr);
900
901 if (!lazy)
902 value_fetch_lazy (val);
903
904 return val;
905 }
906
907 /* Return a value with type TYPE located at ADDR.
908
909 Call value_at only if the data needs to be fetched immediately;
910 if we can be 'lazy' and defer the fetch, perhaps indefinitely, call
911 value_at_lazy instead. value_at_lazy simply records the address of
912 the data and sets the lazy-evaluation-required flag. The lazy flag
913 is tested in the value_contents macro, which is used if and when
914 the contents are actually required. The type of the created value
915 may differ from the passed type TYPE. Make sure to retrieve the
916 returned values's new type after this call e.g. in case the type
917 is a variable length array.
918
919 Note: value_at does *NOT* handle embedded offsets; perform such
920 adjustments before or after calling it. */
921
922 struct value *
923 value_at (struct type *type, CORE_ADDR addr)
924 {
925 return get_value_at (type, addr, 0);
926 }
927
928 /* Return a lazy value with type TYPE located at ADDR (cf. value_at).
929 The type of the created value may differ from the passed type TYPE.
930 Make sure to retrieve the returned values's new type after this call
931 e.g. in case the type is a variable length array. */
932
933 struct value *
934 value_at_lazy (struct type *type, CORE_ADDR addr)
935 {
936 return get_value_at (type, addr, 1);
937 }
938
939 void
940 read_value_memory (struct value *val, LONGEST bit_offset,
941 int stack, CORE_ADDR memaddr,
942 gdb_byte *buffer, size_t length)
943 {
944 ULONGEST xfered_total = 0;
945 struct gdbarch *arch = get_value_arch (val);
946 int unit_size = gdbarch_addressable_memory_unit_size (arch);
947 enum target_object object;
948
949 object = stack ? TARGET_OBJECT_STACK_MEMORY : TARGET_OBJECT_MEMORY;
950
951 while (xfered_total < length)
952 {
953 enum target_xfer_status status;
954 ULONGEST xfered_partial;
955
956 status = target_xfer_partial (current_top_target (),
957 object, NULL,
958 buffer + xfered_total * unit_size, NULL,
959 memaddr + xfered_total,
960 length - xfered_total,
961 &xfered_partial);
962
963 if (status == TARGET_XFER_OK)
964 /* nothing */;
965 else if (status == TARGET_XFER_UNAVAILABLE)
966 mark_value_bits_unavailable (val, (xfered_total * HOST_CHAR_BIT
967 + bit_offset),
968 xfered_partial * HOST_CHAR_BIT);
969 else if (status == TARGET_XFER_EOF)
970 memory_error (TARGET_XFER_E_IO, memaddr + xfered_total);
971 else
972 memory_error (status, memaddr + xfered_total);
973
974 xfered_total += xfered_partial;
975 QUIT;
976 }
977 }
978
979 /* Store the contents of FROMVAL into the location of TOVAL.
980 Return a new value with the location of TOVAL and contents of FROMVAL. */
981
982 struct value *
983 value_assign (struct value *toval, struct value *fromval)
984 {
985 struct type *type;
986 struct value *val;
987 struct frame_id old_frame;
988
989 if (!deprecated_value_modifiable (toval))
990 error (_("Left operand of assignment is not a modifiable lvalue."));
991
992 toval = coerce_ref (toval);
993
994 type = value_type (toval);
995 if (VALUE_LVAL (toval) != lval_internalvar)
996 fromval = value_cast (type, fromval);
997 else
998 {
999 /* Coerce arrays and functions to pointers, except for arrays
1000 which only live in GDB's storage. */
1001 if (!value_must_coerce_to_target (fromval))
1002 fromval = coerce_array (fromval);
1003 }
1004
1005 type = check_typedef (type);
1006
1007 /* Since modifying a register can trash the frame chain, and
1008 modifying memory can trash the frame cache, we save the old frame
1009 and then restore the new frame afterwards. */
1010 old_frame = get_frame_id (deprecated_safe_get_selected_frame ());
1011
1012 switch (VALUE_LVAL (toval))
1013 {
1014 case lval_internalvar:
1015 set_internalvar (VALUE_INTERNALVAR (toval), fromval);
1016 return value_of_internalvar (get_type_arch (type),
1017 VALUE_INTERNALVAR (toval));
1018
1019 case lval_internalvar_component:
1020 {
1021 LONGEST offset = value_offset (toval);
1022
1023 /* Are we dealing with a bitfield?
1024
1025 It is important to mention that `value_parent (toval)' is
1026 non-NULL iff `value_bitsize (toval)' is non-zero. */
1027 if (value_bitsize (toval))
1028 {
1029 /* VALUE_INTERNALVAR below refers to the parent value, while
1030 the offset is relative to this parent value. */
1031 gdb_assert (value_parent (value_parent (toval)) == NULL);
1032 offset += value_offset (value_parent (toval));
1033 }
1034
1035 set_internalvar_component (VALUE_INTERNALVAR (toval),
1036 offset,
1037 value_bitpos (toval),
1038 value_bitsize (toval),
1039 fromval);
1040 }
1041 break;
1042
1043 case lval_memory:
1044 {
1045 const gdb_byte *dest_buffer;
1046 CORE_ADDR changed_addr;
1047 int changed_len;
1048 gdb_byte buffer[sizeof (LONGEST)];
1049
1050 if (value_bitsize (toval))
1051 {
1052 struct value *parent = value_parent (toval);
1053
1054 changed_addr = value_address (parent) + value_offset (toval);
1055 changed_len = (value_bitpos (toval)
1056 + value_bitsize (toval)
1057 + HOST_CHAR_BIT - 1)
1058 / HOST_CHAR_BIT;
1059
1060 /* If we can read-modify-write exactly the size of the
1061 containing type (e.g. short or int) then do so. This
1062 is safer for volatile bitfields mapped to hardware
1063 registers. */
1064 if (changed_len < TYPE_LENGTH (type)
1065 && TYPE_LENGTH (type) <= (int) sizeof (LONGEST)
1066 && ((LONGEST) changed_addr % TYPE_LENGTH (type)) == 0)
1067 changed_len = TYPE_LENGTH (type);
1068
1069 if (changed_len > (int) sizeof (LONGEST))
1070 error (_("Can't handle bitfields which "
1071 "don't fit in a %d bit word."),
1072 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1073
1074 read_memory (changed_addr, buffer, changed_len);
1075 modify_field (type, buffer, value_as_long (fromval),
1076 value_bitpos (toval), value_bitsize (toval));
1077 dest_buffer = buffer;
1078 }
1079 else
1080 {
1081 changed_addr = value_address (toval);
1082 changed_len = type_length_units (type);
1083 dest_buffer = value_contents (fromval);
1084 }
1085
1086 write_memory_with_notification (changed_addr, dest_buffer, changed_len);
1087 }
1088 break;
1089
1090 case lval_register:
1091 {
1092 struct frame_info *frame;
1093 struct gdbarch *gdbarch;
1094 int value_reg;
1095
1096 /* Figure out which frame this is in currently.
1097
1098 We use VALUE_FRAME_ID for obtaining the value's frame id instead of
1099 VALUE_NEXT_FRAME_ID due to requiring a frame which may be passed to
1100 put_frame_register_bytes() below. That function will (eventually)
1101 perform the necessary unwind operation by first obtaining the next
1102 frame. */
1103 frame = frame_find_by_id (VALUE_FRAME_ID (toval));
1104
1105 value_reg = VALUE_REGNUM (toval);
1106
1107 if (!frame)
1108 error (_("Value being assigned to is no longer active."));
1109
1110 gdbarch = get_frame_arch (frame);
1111
1112 if (value_bitsize (toval))
1113 {
1114 struct value *parent = value_parent (toval);
1115 LONGEST offset = value_offset (parent) + value_offset (toval);
1116 int changed_len;
1117 gdb_byte buffer[sizeof (LONGEST)];
1118 int optim, unavail;
1119
1120 changed_len = (value_bitpos (toval)
1121 + value_bitsize (toval)
1122 + HOST_CHAR_BIT - 1)
1123 / HOST_CHAR_BIT;
1124
1125 if (changed_len > (int) sizeof (LONGEST))
1126 error (_("Can't handle bitfields which "
1127 "don't fit in a %d bit word."),
1128 (int) sizeof (LONGEST) * HOST_CHAR_BIT);
1129
1130 if (!get_frame_register_bytes (frame, value_reg, offset,
1131 changed_len, buffer,
1132 &optim, &unavail))
1133 {
1134 if (optim)
1135 throw_error (OPTIMIZED_OUT_ERROR,
1136 _("value has been optimized out"));
1137 if (unavail)
1138 throw_error (NOT_AVAILABLE_ERROR,
1139 _("value is not available"));
1140 }
1141
1142 modify_field (type, buffer, value_as_long (fromval),
1143 value_bitpos (toval), value_bitsize (toval));
1144
1145 put_frame_register_bytes (frame, value_reg, offset,
1146 changed_len, buffer);
1147 }
1148 else
1149 {
1150 if (gdbarch_convert_register_p (gdbarch, VALUE_REGNUM (toval),
1151 type))
1152 {
1153 /* If TOVAL is a special machine register requiring
1154 conversion of program values to a special raw
1155 format. */
1156 gdbarch_value_to_register (gdbarch, frame,
1157 VALUE_REGNUM (toval), type,
1158 value_contents (fromval));
1159 }
1160 else
1161 {
1162 put_frame_register_bytes (frame, value_reg,
1163 value_offset (toval),
1164 TYPE_LENGTH (type),
1165 value_contents (fromval));
1166 }
1167 }
1168
1169 gdb::observers::register_changed.notify (frame, value_reg);
1170 break;
1171 }
1172
1173 case lval_computed:
1174 {
1175 const struct lval_funcs *funcs = value_computed_funcs (toval);
1176
1177 if (funcs->write != NULL)
1178 {
1179 funcs->write (toval, fromval);
1180 break;
1181 }
1182 }
1183 /* Fall through. */
1184
1185 default:
1186 error (_("Left operand of assignment is not an lvalue."));
1187 }
1188
1189 /* Assigning to the stack pointer, frame pointer, and other
1190 (architecture and calling convention specific) registers may
1191 cause the frame cache and regcache to be out of date. Assigning to memory
1192 also can. We just do this on all assignments to registers or
1193 memory, for simplicity's sake; I doubt the slowdown matters. */
1194 switch (VALUE_LVAL (toval))
1195 {
1196 case lval_memory:
1197 case lval_register:
1198 case lval_computed:
1199
1200 gdb::observers::target_changed.notify (current_top_target ());
1201
1202 /* Having destroyed the frame cache, restore the selected
1203 frame. */
1204
1205 /* FIXME: cagney/2002-11-02: There has to be a better way of
1206 doing this. Instead of constantly saving/restoring the
1207 frame. Why not create a get_selected_frame() function that,
1208 having saved the selected frame's ID can automatically
1209 re-find the previously selected frame automatically. */
1210
1211 {
1212 struct frame_info *fi = frame_find_by_id (old_frame);
1213
1214 if (fi != NULL)
1215 select_frame (fi);
1216 }
1217
1218 break;
1219 default:
1220 break;
1221 }
1222
1223 /* If the field does not entirely fill a LONGEST, then zero the sign
1224 bits. If the field is signed, and is negative, then sign
1225 extend. */
1226 if ((value_bitsize (toval) > 0)
1227 && (value_bitsize (toval) < 8 * (int) sizeof (LONGEST)))
1228 {
1229 LONGEST fieldval = value_as_long (fromval);
1230 LONGEST valmask = (((ULONGEST) 1) << value_bitsize (toval)) - 1;
1231
1232 fieldval &= valmask;
1233 if (!TYPE_UNSIGNED (type)
1234 && (fieldval & (valmask ^ (valmask >> 1))))
1235 fieldval |= ~valmask;
1236
1237 fromval = value_from_longest (type, fieldval);
1238 }
1239
1240 /* The return value is a copy of TOVAL so it shares its location
1241 information, but its contents are updated from FROMVAL. This
1242 implies the returned value is not lazy, even if TOVAL was. */
1243 val = value_copy (toval);
1244 set_value_lazy (val, 0);
1245 memcpy (value_contents_raw (val), value_contents (fromval),
1246 TYPE_LENGTH (type));
1247
1248 /* We copy over the enclosing type and pointed-to offset from FROMVAL
1249 in the case of pointer types. For object types, the enclosing type
1250 and embedded offset must *not* be copied: the target object refered
1251 to by TOVAL retains its original dynamic type after assignment. */
1252 if (type->code () == TYPE_CODE_PTR)
1253 {
1254 set_value_enclosing_type (val, value_enclosing_type (fromval));
1255 set_value_pointed_to_offset (val, value_pointed_to_offset (fromval));
1256 }
1257
1258 return val;
1259 }
1260
1261 /* Extend a value VAL to COUNT repetitions of its type. */
1262
1263 struct value *
1264 value_repeat (struct value *arg1, int count)
1265 {
1266 struct value *val;
1267
1268 if (VALUE_LVAL (arg1) != lval_memory)
1269 error (_("Only values in memory can be extended with '@'."));
1270 if (count < 1)
1271 error (_("Invalid number %d of repetitions."), count);
1272
1273 val = allocate_repeat_value (value_enclosing_type (arg1), count);
1274
1275 VALUE_LVAL (val) = lval_memory;
1276 set_value_address (val, value_address (arg1));
1277
1278 read_value_memory (val, 0, value_stack (val), value_address (val),
1279 value_contents_all_raw (val),
1280 type_length_units (value_enclosing_type (val)));
1281
1282 return val;
1283 }
1284
1285 struct value *
1286 value_of_variable (struct symbol *var, const struct block *b)
1287 {
1288 struct frame_info *frame = NULL;
1289
1290 if (symbol_read_needs_frame (var))
1291 frame = get_selected_frame (_("No frame selected."));
1292
1293 return read_var_value (var, b, frame);
1294 }
1295
1296 struct value *
1297 address_of_variable (struct symbol *var, const struct block *b)
1298 {
1299 struct type *type = SYMBOL_TYPE (var);
1300 struct value *val;
1301
1302 /* Evaluate it first; if the result is a memory address, we're fine.
1303 Lazy evaluation pays off here. */
1304
1305 val = value_of_variable (var, b);
1306 type = value_type (val);
1307
1308 if ((VALUE_LVAL (val) == lval_memory && value_lazy (val))
1309 || type->code () == TYPE_CODE_FUNC)
1310 {
1311 CORE_ADDR addr = value_address (val);
1312
1313 return value_from_pointer (lookup_pointer_type (type), addr);
1314 }
1315
1316 /* Not a memory address; check what the problem was. */
1317 switch (VALUE_LVAL (val))
1318 {
1319 case lval_register:
1320 {
1321 struct frame_info *frame;
1322 const char *regname;
1323
1324 frame = frame_find_by_id (VALUE_NEXT_FRAME_ID (val));
1325 gdb_assert (frame);
1326
1327 regname = gdbarch_register_name (get_frame_arch (frame),
1328 VALUE_REGNUM (val));
1329 gdb_assert (regname && *regname);
1330
1331 error (_("Address requested for identifier "
1332 "\"%s\" which is in register $%s"),
1333 var->print_name (), regname);
1334 break;
1335 }
1336
1337 default:
1338 error (_("Can't take address of \"%s\" which isn't an lvalue."),
1339 var->print_name ());
1340 break;
1341 }
1342
1343 return val;
1344 }
1345
1346 /* See value.h. */
1347
1348 bool
1349 value_must_coerce_to_target (struct value *val)
1350 {
1351 struct type *valtype;
1352
1353 /* The only lval kinds which do not live in target memory. */
1354 if (VALUE_LVAL (val) != not_lval
1355 && VALUE_LVAL (val) != lval_internalvar
1356 && VALUE_LVAL (val) != lval_xcallable)
1357 return false;
1358
1359 valtype = check_typedef (value_type (val));
1360
1361 switch (valtype->code ())
1362 {
1363 case TYPE_CODE_ARRAY:
1364 return TYPE_VECTOR (valtype) ? 0 : 1;
1365 case TYPE_CODE_STRING:
1366 return true;
1367 default:
1368 return false;
1369 }
1370 }
1371
1372 /* Make sure that VAL lives in target memory if it's supposed to. For
1373 instance, strings are constructed as character arrays in GDB's
1374 storage, and this function copies them to the target. */
1375
1376 struct value *
1377 value_coerce_to_target (struct value *val)
1378 {
1379 LONGEST length;
1380 CORE_ADDR addr;
1381
1382 if (!value_must_coerce_to_target (val))
1383 return val;
1384
1385 length = TYPE_LENGTH (check_typedef (value_type (val)));
1386 addr = allocate_space_in_inferior (length);
1387 write_memory (addr, value_contents (val), length);
1388 return value_at_lazy (value_type (val), addr);
1389 }
1390
1391 /* Given a value which is an array, return a value which is a pointer
1392 to its first element, regardless of whether or not the array has a
1393 nonzero lower bound.
1394
1395 FIXME: A previous comment here indicated that this routine should
1396 be substracting the array's lower bound. It's not clear to me that
1397 this is correct. Given an array subscripting operation, it would
1398 certainly work to do the adjustment here, essentially computing:
1399
1400 (&array[0] - (lowerbound * sizeof array[0])) + (index * sizeof array[0])
1401
1402 However I believe a more appropriate and logical place to account
1403 for the lower bound is to do so in value_subscript, essentially
1404 computing:
1405
1406 (&array[0] + ((index - lowerbound) * sizeof array[0]))
1407
1408 As further evidence consider what would happen with operations
1409 other than array subscripting, where the caller would get back a
1410 value that had an address somewhere before the actual first element
1411 of the array, and the information about the lower bound would be
1412 lost because of the coercion to pointer type. */
1413
1414 struct value *
1415 value_coerce_array (struct value *arg1)
1416 {
1417 struct type *type = check_typedef (value_type (arg1));
1418
1419 /* If the user tries to do something requiring a pointer with an
1420 array that has not yet been pushed to the target, then this would
1421 be a good time to do so. */
1422 arg1 = value_coerce_to_target (arg1);
1423
1424 if (VALUE_LVAL (arg1) != lval_memory)
1425 error (_("Attempt to take address of value not located in memory."));
1426
1427 return value_from_pointer (lookup_pointer_type (TYPE_TARGET_TYPE (type)),
1428 value_address (arg1));
1429 }
1430
1431 /* Given a value which is a function, return a value which is a pointer
1432 to it. */
1433
1434 struct value *
1435 value_coerce_function (struct value *arg1)
1436 {
1437 struct value *retval;
1438
1439 if (VALUE_LVAL (arg1) != lval_memory)
1440 error (_("Attempt to take address of value not located in memory."));
1441
1442 retval = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1443 value_address (arg1));
1444 return retval;
1445 }
1446
1447 /* Return a pointer value for the object for which ARG1 is the
1448 contents. */
1449
1450 struct value *
1451 value_addr (struct value *arg1)
1452 {
1453 struct value *arg2;
1454 struct type *type = check_typedef (value_type (arg1));
1455
1456 if (TYPE_IS_REFERENCE (type))
1457 {
1458 if (value_bits_synthetic_pointer (arg1, value_embedded_offset (arg1),
1459 TARGET_CHAR_BIT * TYPE_LENGTH (type)))
1460 arg1 = coerce_ref (arg1);
1461 else
1462 {
1463 /* Copy the value, but change the type from (T&) to (T*). We
1464 keep the same location information, which is efficient, and
1465 allows &(&X) to get the location containing the reference.
1466 Do the same to its enclosing type for consistency. */
1467 struct type *type_ptr
1468 = lookup_pointer_type (TYPE_TARGET_TYPE (type));
1469 struct type *enclosing_type
1470 = check_typedef (value_enclosing_type (arg1));
1471 struct type *enclosing_type_ptr
1472 = lookup_pointer_type (TYPE_TARGET_TYPE (enclosing_type));
1473
1474 arg2 = value_copy (arg1);
1475 deprecated_set_value_type (arg2, type_ptr);
1476 set_value_enclosing_type (arg2, enclosing_type_ptr);
1477
1478 return arg2;
1479 }
1480 }
1481 if (type->code () == TYPE_CODE_FUNC)
1482 return value_coerce_function (arg1);
1483
1484 /* If this is an array that has not yet been pushed to the target,
1485 then this would be a good time to force it to memory. */
1486 arg1 = value_coerce_to_target (arg1);
1487
1488 if (VALUE_LVAL (arg1) != lval_memory)
1489 error (_("Attempt to take address of value not located in memory."));
1490
1491 /* Get target memory address. */
1492 arg2 = value_from_pointer (lookup_pointer_type (value_type (arg1)),
1493 (value_address (arg1)
1494 + value_embedded_offset (arg1)));
1495
1496 /* This may be a pointer to a base subobject; so remember the
1497 full derived object's type ... */
1498 set_value_enclosing_type (arg2,
1499 lookup_pointer_type (value_enclosing_type (arg1)));
1500 /* ... and also the relative position of the subobject in the full
1501 object. */
1502 set_value_pointed_to_offset (arg2, value_embedded_offset (arg1));
1503 return arg2;
1504 }
1505
1506 /* Return a reference value for the object for which ARG1 is the
1507 contents. */
1508
1509 struct value *
1510 value_ref (struct value *arg1, enum type_code refcode)
1511 {
1512 struct value *arg2;
1513 struct type *type = check_typedef (value_type (arg1));
1514
1515 gdb_assert (refcode == TYPE_CODE_REF || refcode == TYPE_CODE_RVALUE_REF);
1516
1517 if ((type->code () == TYPE_CODE_REF
1518 || type->code () == TYPE_CODE_RVALUE_REF)
1519 && type->code () == refcode)
1520 return arg1;
1521
1522 arg2 = value_addr (arg1);
1523 deprecated_set_value_type (arg2, lookup_reference_type (type, refcode));
1524 return arg2;
1525 }
1526
1527 /* Given a value of a pointer type, apply the C unary * operator to
1528 it. */
1529
1530 struct value *
1531 value_ind (struct value *arg1)
1532 {
1533 struct type *base_type;
1534 struct value *arg2;
1535
1536 arg1 = coerce_array (arg1);
1537
1538 base_type = check_typedef (value_type (arg1));
1539
1540 if (VALUE_LVAL (arg1) == lval_computed)
1541 {
1542 const struct lval_funcs *funcs = value_computed_funcs (arg1);
1543
1544 if (funcs->indirect)
1545 {
1546 struct value *result = funcs->indirect (arg1);
1547
1548 if (result)
1549 return result;
1550 }
1551 }
1552
1553 if (base_type->code () == TYPE_CODE_PTR)
1554 {
1555 struct type *enc_type;
1556
1557 /* We may be pointing to something embedded in a larger object.
1558 Get the real type of the enclosing object. */
1559 enc_type = check_typedef (value_enclosing_type (arg1));
1560 enc_type = TYPE_TARGET_TYPE (enc_type);
1561
1562 if (check_typedef (enc_type)->code () == TYPE_CODE_FUNC
1563 || check_typedef (enc_type)->code () == TYPE_CODE_METHOD)
1564 /* For functions, go through find_function_addr, which knows
1565 how to handle function descriptors. */
1566 arg2 = value_at_lazy (enc_type,
1567 find_function_addr (arg1, NULL));
1568 else
1569 /* Retrieve the enclosing object pointed to. */
1570 arg2 = value_at_lazy (enc_type,
1571 (value_as_address (arg1)
1572 - value_pointed_to_offset (arg1)));
1573
1574 enc_type = value_type (arg2);
1575 return readjust_indirect_value_type (arg2, enc_type, base_type, arg1);
1576 }
1577
1578 error (_("Attempt to take contents of a non-pointer value."));
1579 }
1580 \f
1581 /* Create a value for an array by allocating space in GDB, copying the
1582 data into that space, and then setting up an array value.
1583
1584 The array bounds are set from LOWBOUND and HIGHBOUND, and the array
1585 is populated from the values passed in ELEMVEC.
1586
1587 The element type of the array is inherited from the type of the
1588 first element, and all elements must have the same size (though we
1589 don't currently enforce any restriction on their types). */
1590
1591 struct value *
1592 value_array (int lowbound, int highbound, struct value **elemvec)
1593 {
1594 int nelem;
1595 int idx;
1596 ULONGEST typelength;
1597 struct value *val;
1598 struct type *arraytype;
1599
1600 /* Validate that the bounds are reasonable and that each of the
1601 elements have the same size. */
1602
1603 nelem = highbound - lowbound + 1;
1604 if (nelem <= 0)
1605 {
1606 error (_("bad array bounds (%d, %d)"), lowbound, highbound);
1607 }
1608 typelength = type_length_units (value_enclosing_type (elemvec[0]));
1609 for (idx = 1; idx < nelem; idx++)
1610 {
1611 if (type_length_units (value_enclosing_type (elemvec[idx]))
1612 != typelength)
1613 {
1614 error (_("array elements must all be the same size"));
1615 }
1616 }
1617
1618 arraytype = lookup_array_range_type (value_enclosing_type (elemvec[0]),
1619 lowbound, highbound);
1620
1621 if (!current_language->c_style_arrays)
1622 {
1623 val = allocate_value (arraytype);
1624 for (idx = 0; idx < nelem; idx++)
1625 value_contents_copy (val, idx * typelength, elemvec[idx], 0,
1626 typelength);
1627 return val;
1628 }
1629
1630 /* Allocate space to store the array, and then initialize it by
1631 copying in each element. */
1632
1633 val = allocate_value (arraytype);
1634 for (idx = 0; idx < nelem; idx++)
1635 value_contents_copy (val, idx * typelength, elemvec[idx], 0, typelength);
1636 return val;
1637 }
1638
1639 struct value *
1640 value_cstring (const char *ptr, ssize_t len, struct type *char_type)
1641 {
1642 struct value *val;
1643 int lowbound = current_language->string_lower_bound;
1644 ssize_t highbound = len / TYPE_LENGTH (char_type);
1645 struct type *stringtype
1646 = lookup_array_range_type (char_type, lowbound, highbound + lowbound - 1);
1647
1648 val = allocate_value (stringtype);
1649 memcpy (value_contents_raw (val), ptr, len);
1650 return val;
1651 }
1652
1653 /* Create a value for a string constant by allocating space in the
1654 inferior, copying the data into that space, and returning the
1655 address with type TYPE_CODE_STRING. PTR points to the string
1656 constant data; LEN is number of characters.
1657
1658 Note that string types are like array of char types with a lower
1659 bound of zero and an upper bound of LEN - 1. Also note that the
1660 string may contain embedded null bytes. */
1661
1662 struct value *
1663 value_string (const char *ptr, ssize_t len, struct type *char_type)
1664 {
1665 struct value *val;
1666 int lowbound = current_language->string_lower_bound;
1667 ssize_t highbound = len / TYPE_LENGTH (char_type);
1668 struct type *stringtype
1669 = lookup_string_range_type (char_type, lowbound, highbound + lowbound - 1);
1670
1671 val = allocate_value (stringtype);
1672 memcpy (value_contents_raw (val), ptr, len);
1673 return val;
1674 }
1675
1676 \f
1677 /* See if we can pass arguments in T2 to a function which takes
1678 arguments of types T1. T1 is a list of NARGS arguments, and T2 is
1679 a NULL-terminated vector. If some arguments need coercion of some
1680 sort, then the coerced values are written into T2. Return value is
1681 0 if the arguments could be matched, or the position at which they
1682 differ if not.
1683
1684 STATICP is nonzero if the T1 argument list came from a static
1685 member function. T2 will still include the ``this'' pointer, but
1686 it will be skipped.
1687
1688 For non-static member functions, we ignore the first argument,
1689 which is the type of the instance variable. This is because we
1690 want to handle calls with objects from derived classes. This is
1691 not entirely correct: we should actually check to make sure that a
1692 requested operation is type secure, shouldn't we? FIXME. */
1693
1694 static int
1695 typecmp (int staticp, int varargs, int nargs,
1696 struct field t1[], struct value *t2[])
1697 {
1698 int i;
1699
1700 if (t2 == 0)
1701 internal_error (__FILE__, __LINE__,
1702 _("typecmp: no argument list"));
1703
1704 /* Skip ``this'' argument if applicable. T2 will always include
1705 THIS. */
1706 if (staticp)
1707 t2 ++;
1708
1709 for (i = 0;
1710 (i < nargs) && t1[i].type->code () != TYPE_CODE_VOID;
1711 i++)
1712 {
1713 struct type *tt1, *tt2;
1714
1715 if (!t2[i])
1716 return i + 1;
1717
1718 tt1 = check_typedef (t1[i].type);
1719 tt2 = check_typedef (value_type (t2[i]));
1720
1721 if (TYPE_IS_REFERENCE (tt1)
1722 /* We should be doing hairy argument matching, as below. */
1723 && (check_typedef (TYPE_TARGET_TYPE (tt1))->code ()
1724 == tt2->code ()))
1725 {
1726 if (tt2->code () == TYPE_CODE_ARRAY)
1727 t2[i] = value_coerce_array (t2[i]);
1728 else
1729 t2[i] = value_ref (t2[i], tt1->code ());
1730 continue;
1731 }
1732
1733 /* djb - 20000715 - Until the new type structure is in the
1734 place, and we can attempt things like implicit conversions,
1735 we need to do this so you can take something like a map<const
1736 char *>, and properly access map["hello"], because the
1737 argument to [] will be a reference to a pointer to a char,
1738 and the argument will be a pointer to a char. */
1739 while (TYPE_IS_REFERENCE (tt1) || tt1->code () == TYPE_CODE_PTR)
1740 {
1741 tt1 = check_typedef ( TYPE_TARGET_TYPE (tt1) );
1742 }
1743 while (tt2->code () == TYPE_CODE_ARRAY
1744 || tt2->code () == TYPE_CODE_PTR
1745 || TYPE_IS_REFERENCE (tt2))
1746 {
1747 tt2 = check_typedef (TYPE_TARGET_TYPE (tt2));
1748 }
1749 if (tt1->code () == tt2->code ())
1750 continue;
1751 /* Array to pointer is a `trivial conversion' according to the
1752 ARM. */
1753
1754 /* We should be doing much hairier argument matching (see
1755 section 13.2 of the ARM), but as a quick kludge, just check
1756 for the same type code. */
1757 if (t1[i].type->code () != value_type (t2[i])->code ())
1758 return i + 1;
1759 }
1760 if (varargs || t2[i] == NULL)
1761 return 0;
1762 return i + 1;
1763 }
1764
1765 /* Helper class for do_search_struct_field that updates *RESULT_PTR
1766 and *LAST_BOFFSET, and possibly throws an exception if the field
1767 search has yielded ambiguous results. */
1768
1769 static void
1770 update_search_result (struct value **result_ptr, struct value *v,
1771 LONGEST *last_boffset, LONGEST boffset,
1772 const char *name, struct type *type)
1773 {
1774 if (v != NULL)
1775 {
1776 if (*result_ptr != NULL
1777 /* The result is not ambiguous if all the classes that are
1778 found occupy the same space. */
1779 && *last_boffset != boffset)
1780 error (_("base class '%s' is ambiguous in type '%s'"),
1781 name, TYPE_SAFE_NAME (type));
1782 *result_ptr = v;
1783 *last_boffset = boffset;
1784 }
1785 }
1786
1787 /* A helper for search_struct_field. This does all the work; most
1788 arguments are as passed to search_struct_field. The result is
1789 stored in *RESULT_PTR, which must be initialized to NULL.
1790 OUTERMOST_TYPE is the type of the initial type passed to
1791 search_struct_field; this is used for error reporting when the
1792 lookup is ambiguous. */
1793
1794 static void
1795 do_search_struct_field (const char *name, struct value *arg1, LONGEST offset,
1796 struct type *type, int looking_for_baseclass,
1797 struct value **result_ptr,
1798 LONGEST *last_boffset,
1799 struct type *outermost_type)
1800 {
1801 int i;
1802 int nbases;
1803
1804 type = check_typedef (type);
1805 nbases = TYPE_N_BASECLASSES (type);
1806
1807 if (!looking_for_baseclass)
1808 for (i = type->num_fields () - 1; i >= nbases; i--)
1809 {
1810 const char *t_field_name = TYPE_FIELD_NAME (type, i);
1811
1812 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1813 {
1814 struct value *v;
1815
1816 if (field_is_static (&type->field (i)))
1817 v = value_static_field (type, i);
1818 else
1819 v = value_primitive_field (arg1, offset, i, type);
1820 *result_ptr = v;
1821 return;
1822 }
1823
1824 if (t_field_name
1825 && t_field_name[0] == '\0')
1826 {
1827 struct type *field_type = TYPE_FIELD_TYPE (type, i);
1828
1829 if (field_type->code () == TYPE_CODE_UNION
1830 || field_type->code () == TYPE_CODE_STRUCT)
1831 {
1832 /* Look for a match through the fields of an anonymous
1833 union, or anonymous struct. C++ provides anonymous
1834 unions.
1835
1836 In the GNU Chill (now deleted from GDB)
1837 implementation of variant record types, each
1838 <alternative field> has an (anonymous) union type,
1839 each member of the union represents a <variant
1840 alternative>. Each <variant alternative> is
1841 represented as a struct, with a member for each
1842 <variant field>. */
1843
1844 struct value *v = NULL;
1845 LONGEST new_offset = offset;
1846
1847 /* This is pretty gross. In G++, the offset in an
1848 anonymous union is relative to the beginning of the
1849 enclosing struct. In the GNU Chill (now deleted
1850 from GDB) implementation of variant records, the
1851 bitpos is zero in an anonymous union field, so we
1852 have to add the offset of the union here. */
1853 if (field_type->code () == TYPE_CODE_STRUCT
1854 || (field_type->num_fields () > 0
1855 && TYPE_FIELD_BITPOS (field_type, 0) == 0))
1856 new_offset += TYPE_FIELD_BITPOS (type, i) / 8;
1857
1858 do_search_struct_field (name, arg1, new_offset,
1859 field_type,
1860 looking_for_baseclass, &v,
1861 last_boffset,
1862 outermost_type);
1863 if (v)
1864 {
1865 *result_ptr = v;
1866 return;
1867 }
1868 }
1869 }
1870 }
1871
1872 for (i = 0; i < nbases; i++)
1873 {
1874 struct value *v = NULL;
1875 struct type *basetype = check_typedef (TYPE_BASECLASS (type, i));
1876 /* If we are looking for baseclasses, this is what we get when
1877 we hit them. But it could happen that the base part's member
1878 name is not yet filled in. */
1879 int found_baseclass = (looking_for_baseclass
1880 && TYPE_BASECLASS_NAME (type, i) != NULL
1881 && (strcmp_iw (name,
1882 TYPE_BASECLASS_NAME (type,
1883 i)) == 0));
1884 LONGEST boffset = value_embedded_offset (arg1) + offset;
1885
1886 if (BASETYPE_VIA_VIRTUAL (type, i))
1887 {
1888 struct value *v2;
1889
1890 boffset = baseclass_offset (type, i,
1891 value_contents_for_printing (arg1),
1892 value_embedded_offset (arg1) + offset,
1893 value_address (arg1),
1894 arg1);
1895
1896 /* The virtual base class pointer might have been clobbered
1897 by the user program. Make sure that it still points to a
1898 valid memory location. */
1899
1900 boffset += value_embedded_offset (arg1) + offset;
1901 if (boffset < 0
1902 || boffset >= TYPE_LENGTH (value_enclosing_type (arg1)))
1903 {
1904 CORE_ADDR base_addr;
1905
1906 base_addr = value_address (arg1) + boffset;
1907 v2 = value_at_lazy (basetype, base_addr);
1908 if (target_read_memory (base_addr,
1909 value_contents_raw (v2),
1910 TYPE_LENGTH (value_type (v2))) != 0)
1911 error (_("virtual baseclass botch"));
1912 }
1913 else
1914 {
1915 v2 = value_copy (arg1);
1916 deprecated_set_value_type (v2, basetype);
1917 set_value_embedded_offset (v2, boffset);
1918 }
1919
1920 if (found_baseclass)
1921 v = v2;
1922 else
1923 {
1924 do_search_struct_field (name, v2, 0,
1925 TYPE_BASECLASS (type, i),
1926 looking_for_baseclass,
1927 result_ptr, last_boffset,
1928 outermost_type);
1929 }
1930 }
1931 else if (found_baseclass)
1932 v = value_primitive_field (arg1, offset, i, type);
1933 else
1934 {
1935 do_search_struct_field (name, arg1,
1936 offset + TYPE_BASECLASS_BITPOS (type,
1937 i) / 8,
1938 basetype, looking_for_baseclass,
1939 result_ptr, last_boffset,
1940 outermost_type);
1941 }
1942
1943 update_search_result (result_ptr, v, last_boffset,
1944 boffset, name, outermost_type);
1945 }
1946 }
1947
1948 /* Helper function used by value_struct_elt to recurse through
1949 baseclasses. Look for a field NAME in ARG1. Search in it assuming
1950 it has (class) type TYPE. If found, return value, else return NULL.
1951
1952 If LOOKING_FOR_BASECLASS, then instead of looking for struct
1953 fields, look for a baseclass named NAME. */
1954
1955 static struct value *
1956 search_struct_field (const char *name, struct value *arg1,
1957 struct type *type, int looking_for_baseclass)
1958 {
1959 struct value *result = NULL;
1960 LONGEST boffset = 0;
1961
1962 do_search_struct_field (name, arg1, 0, type, looking_for_baseclass,
1963 &result, &boffset, type);
1964 return result;
1965 }
1966
1967 /* Helper function used by value_struct_elt to recurse through
1968 baseclasses. Look for a field NAME in ARG1. Adjust the address of
1969 ARG1 by OFFSET bytes, and search in it assuming it has (class) type
1970 TYPE.
1971
1972 If found, return value, else if name matched and args not return
1973 (value) -1, else return NULL. */
1974
1975 static struct value *
1976 search_struct_method (const char *name, struct value **arg1p,
1977 struct value **args, LONGEST offset,
1978 int *static_memfuncp, struct type *type)
1979 {
1980 int i;
1981 struct value *v;
1982 int name_matched = 0;
1983
1984 type = check_typedef (type);
1985 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
1986 {
1987 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
1988
1989 if (t_field_name && (strcmp_iw (t_field_name, name) == 0))
1990 {
1991 int j = TYPE_FN_FIELDLIST_LENGTH (type, i) - 1;
1992 struct fn_field *f = TYPE_FN_FIELDLIST1 (type, i);
1993
1994 name_matched = 1;
1995 check_stub_method_group (type, i);
1996 if (j > 0 && args == 0)
1997 error (_("cannot resolve overloaded method "
1998 "`%s': no arguments supplied"), name);
1999 else if (j == 0 && args == 0)
2000 {
2001 v = value_fn_field (arg1p, f, j, type, offset);
2002 if (v != NULL)
2003 return v;
2004 }
2005 else
2006 while (j >= 0)
2007 {
2008 if (!typecmp (TYPE_FN_FIELD_STATIC_P (f, j),
2009 TYPE_VARARGS (TYPE_FN_FIELD_TYPE (f, j)),
2010 TYPE_FN_FIELD_TYPE (f, j)->num_fields (),
2011 TYPE_FN_FIELD_ARGS (f, j), args))
2012 {
2013 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
2014 return value_virtual_fn_field (arg1p, f, j,
2015 type, offset);
2016 if (TYPE_FN_FIELD_STATIC_P (f, j)
2017 && static_memfuncp)
2018 *static_memfuncp = 1;
2019 v = value_fn_field (arg1p, f, j, type, offset);
2020 if (v != NULL)
2021 return v;
2022 }
2023 j--;
2024 }
2025 }
2026 }
2027
2028 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2029 {
2030 LONGEST base_offset;
2031 LONGEST this_offset;
2032
2033 if (BASETYPE_VIA_VIRTUAL (type, i))
2034 {
2035 struct type *baseclass = check_typedef (TYPE_BASECLASS (type, i));
2036 struct value *base_val;
2037 const gdb_byte *base_valaddr;
2038
2039 /* The virtual base class pointer might have been
2040 clobbered by the user program. Make sure that it
2041 still points to a valid memory location. */
2042
2043 if (offset < 0 || offset >= TYPE_LENGTH (type))
2044 {
2045 CORE_ADDR address;
2046
2047 gdb::byte_vector tmp (TYPE_LENGTH (baseclass));
2048 address = value_address (*arg1p);
2049
2050 if (target_read_memory (address + offset,
2051 tmp.data (), TYPE_LENGTH (baseclass)) != 0)
2052 error (_("virtual baseclass botch"));
2053
2054 base_val = value_from_contents_and_address (baseclass,
2055 tmp.data (),
2056 address + offset);
2057 base_valaddr = value_contents_for_printing (base_val);
2058 this_offset = 0;
2059 }
2060 else
2061 {
2062 base_val = *arg1p;
2063 base_valaddr = value_contents_for_printing (*arg1p);
2064 this_offset = offset;
2065 }
2066
2067 base_offset = baseclass_offset (type, i, base_valaddr,
2068 this_offset, value_address (base_val),
2069 base_val);
2070 }
2071 else
2072 {
2073 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2074 }
2075 v = search_struct_method (name, arg1p, args, base_offset + offset,
2076 static_memfuncp, TYPE_BASECLASS (type, i));
2077 if (v == (struct value *) - 1)
2078 {
2079 name_matched = 1;
2080 }
2081 else if (v)
2082 {
2083 /* FIXME-bothner: Why is this commented out? Why is it here? */
2084 /* *arg1p = arg1_tmp; */
2085 return v;
2086 }
2087 }
2088 if (name_matched)
2089 return (struct value *) - 1;
2090 else
2091 return NULL;
2092 }
2093
2094 /* Given *ARGP, a value of type (pointer to a)* structure/union,
2095 extract the component named NAME from the ultimate target
2096 structure/union and return it as a value with its appropriate type.
2097 ERR is used in the error message if *ARGP's type is wrong.
2098
2099 C++: ARGS is a list of argument types to aid in the selection of
2100 an appropriate method. Also, handle derived types.
2101
2102 STATIC_MEMFUNCP, if non-NULL, points to a caller-supplied location
2103 where the truthvalue of whether the function that was resolved was
2104 a static member function or not is stored.
2105
2106 ERR is an error message to be printed in case the field is not
2107 found. */
2108
2109 struct value *
2110 value_struct_elt (struct value **argp, struct value **args,
2111 const char *name, int *static_memfuncp, const char *err)
2112 {
2113 struct type *t;
2114 struct value *v;
2115
2116 *argp = coerce_array (*argp);
2117
2118 t = check_typedef (value_type (*argp));
2119
2120 /* Follow pointers until we get to a non-pointer. */
2121
2122 while (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2123 {
2124 *argp = value_ind (*argp);
2125 /* Don't coerce fn pointer to fn and then back again! */
2126 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2127 *argp = coerce_array (*argp);
2128 t = check_typedef (value_type (*argp));
2129 }
2130
2131 if (t->code () != TYPE_CODE_STRUCT
2132 && t->code () != TYPE_CODE_UNION)
2133 error (_("Attempt to extract a component of a value that is not a %s."),
2134 err);
2135
2136 /* Assume it's not, unless we see that it is. */
2137 if (static_memfuncp)
2138 *static_memfuncp = 0;
2139
2140 if (!args)
2141 {
2142 /* if there are no arguments ...do this... */
2143
2144 /* Try as a field first, because if we succeed, there is less
2145 work to be done. */
2146 v = search_struct_field (name, *argp, t, 0);
2147 if (v)
2148 return v;
2149
2150 /* C++: If it was not found as a data field, then try to
2151 return it as a pointer to a method. */
2152 v = search_struct_method (name, argp, args, 0,
2153 static_memfuncp, t);
2154
2155 if (v == (struct value *) - 1)
2156 error (_("Cannot take address of method %s."), name);
2157 else if (v == 0)
2158 {
2159 if (TYPE_NFN_FIELDS (t))
2160 error (_("There is no member or method named %s."), name);
2161 else
2162 error (_("There is no member named %s."), name);
2163 }
2164 return v;
2165 }
2166
2167 v = search_struct_method (name, argp, args, 0,
2168 static_memfuncp, t);
2169
2170 if (v == (struct value *) - 1)
2171 {
2172 error (_("One of the arguments you tried to pass to %s could not "
2173 "be converted to what the function wants."), name);
2174 }
2175 else if (v == 0)
2176 {
2177 /* See if user tried to invoke data as function. If so, hand it
2178 back. If it's not callable (i.e., a pointer to function),
2179 gdb should give an error. */
2180 v = search_struct_field (name, *argp, t, 0);
2181 /* If we found an ordinary field, then it is not a method call.
2182 So, treat it as if it were a static member function. */
2183 if (v && static_memfuncp)
2184 *static_memfuncp = 1;
2185 }
2186
2187 if (!v)
2188 throw_error (NOT_FOUND_ERROR,
2189 _("Structure has no component named %s."), name);
2190 return v;
2191 }
2192
2193 /* Given *ARGP, a value of type structure or union, or a pointer/reference
2194 to a structure or union, extract and return its component (field) of
2195 type FTYPE at the specified BITPOS.
2196 Throw an exception on error. */
2197
2198 struct value *
2199 value_struct_elt_bitpos (struct value **argp, int bitpos, struct type *ftype,
2200 const char *err)
2201 {
2202 struct type *t;
2203 int i;
2204
2205 *argp = coerce_array (*argp);
2206
2207 t = check_typedef (value_type (*argp));
2208
2209 while (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2210 {
2211 *argp = value_ind (*argp);
2212 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2213 *argp = coerce_array (*argp);
2214 t = check_typedef (value_type (*argp));
2215 }
2216
2217 if (t->code () != TYPE_CODE_STRUCT
2218 && t->code () != TYPE_CODE_UNION)
2219 error (_("Attempt to extract a component of a value that is not a %s."),
2220 err);
2221
2222 for (i = TYPE_N_BASECLASSES (t); i < t->num_fields (); i++)
2223 {
2224 if (!field_is_static (&t->field (i))
2225 && bitpos == TYPE_FIELD_BITPOS (t, i)
2226 && types_equal (ftype, TYPE_FIELD_TYPE (t, i)))
2227 return value_primitive_field (*argp, 0, i, t);
2228 }
2229
2230 error (_("No field with matching bitpos and type."));
2231
2232 /* Never hit. */
2233 return NULL;
2234 }
2235
2236 /* Search through the methods of an object (and its bases) to find a
2237 specified method. Return a reference to the fn_field list METHODS of
2238 overloaded instances defined in the source language. If available
2239 and matching, a vector of matching xmethods defined in extension
2240 languages are also returned in XMETHODS.
2241
2242 Helper function for value_find_oload_list.
2243 ARGP is a pointer to a pointer to a value (the object).
2244 METHOD is a string containing the method name.
2245 OFFSET is the offset within the value.
2246 TYPE is the assumed type of the object.
2247 METHODS is a pointer to the matching overloaded instances defined
2248 in the source language. Since this is a recursive function,
2249 *METHODS should be set to NULL when calling this function.
2250 NUM_FNS is the number of overloaded instances. *NUM_FNS should be set to
2251 0 when calling this function.
2252 XMETHODS is the vector of matching xmethod workers. *XMETHODS
2253 should also be set to NULL when calling this function.
2254 BASETYPE is set to the actual type of the subobject where the
2255 method is found.
2256 BOFFSET is the offset of the base subobject where the method is found. */
2257
2258 static void
2259 find_method_list (struct value **argp, const char *method,
2260 LONGEST offset, struct type *type,
2261 gdb::array_view<fn_field> *methods,
2262 std::vector<xmethod_worker_up> *xmethods,
2263 struct type **basetype, LONGEST *boffset)
2264 {
2265 int i;
2266 struct fn_field *f = NULL;
2267
2268 gdb_assert (methods != NULL && xmethods != NULL);
2269 type = check_typedef (type);
2270
2271 /* First check in object itself.
2272 This function is called recursively to search through base classes.
2273 If there is a source method match found at some stage, then we need not
2274 look for source methods in consequent recursive calls. */
2275 if (methods->empty ())
2276 {
2277 for (i = TYPE_NFN_FIELDS (type) - 1; i >= 0; i--)
2278 {
2279 /* pai: FIXME What about operators and type conversions? */
2280 const char *fn_field_name = TYPE_FN_FIELDLIST_NAME (type, i);
2281
2282 if (fn_field_name && (strcmp_iw (fn_field_name, method) == 0))
2283 {
2284 int len = TYPE_FN_FIELDLIST_LENGTH (type, i);
2285 f = TYPE_FN_FIELDLIST1 (type, i);
2286 *methods = gdb::make_array_view (f, len);
2287
2288 *basetype = type;
2289 *boffset = offset;
2290
2291 /* Resolve any stub methods. */
2292 check_stub_method_group (type, i);
2293
2294 break;
2295 }
2296 }
2297 }
2298
2299 /* Unlike source methods, xmethods can be accumulated over successive
2300 recursive calls. In other words, an xmethod named 'm' in a class
2301 will not hide an xmethod named 'm' in its base class(es). We want
2302 it to be this way because xmethods are after all convenience functions
2303 and hence there is no point restricting them with something like method
2304 hiding. Moreover, if hiding is done for xmethods as well, then we will
2305 have to provide a mechanism to un-hide (like the 'using' construct). */
2306 get_matching_xmethod_workers (type, method, xmethods);
2307
2308 /* If source methods are not found in current class, look for them in the
2309 base classes. We also have to go through the base classes to gather
2310 extension methods. */
2311 for (i = TYPE_N_BASECLASSES (type) - 1; i >= 0; i--)
2312 {
2313 LONGEST base_offset;
2314
2315 if (BASETYPE_VIA_VIRTUAL (type, i))
2316 {
2317 base_offset = baseclass_offset (type, i,
2318 value_contents_for_printing (*argp),
2319 value_offset (*argp) + offset,
2320 value_address (*argp), *argp);
2321 }
2322 else /* Non-virtual base, simply use bit position from debug
2323 info. */
2324 {
2325 base_offset = TYPE_BASECLASS_BITPOS (type, i) / 8;
2326 }
2327
2328 find_method_list (argp, method, base_offset + offset,
2329 TYPE_BASECLASS (type, i), methods,
2330 xmethods, basetype, boffset);
2331 }
2332 }
2333
2334 /* Return the list of overloaded methods of a specified name. The methods
2335 could be those GDB finds in the binary, or xmethod. Methods found in
2336 the binary are returned in METHODS, and xmethods are returned in
2337 XMETHODS.
2338
2339 ARGP is a pointer to a pointer to a value (the object).
2340 METHOD is the method name.
2341 OFFSET is the offset within the value contents.
2342 METHODS is the list of matching overloaded instances defined in
2343 the source language.
2344 XMETHODS is the vector of matching xmethod workers defined in
2345 extension languages.
2346 BASETYPE is set to the type of the base subobject that defines the
2347 method.
2348 BOFFSET is the offset of the base subobject which defines the method. */
2349
2350 static void
2351 value_find_oload_method_list (struct value **argp, const char *method,
2352 LONGEST offset,
2353 gdb::array_view<fn_field> *methods,
2354 std::vector<xmethod_worker_up> *xmethods,
2355 struct type **basetype, LONGEST *boffset)
2356 {
2357 struct type *t;
2358
2359 t = check_typedef (value_type (*argp));
2360
2361 /* Code snarfed from value_struct_elt. */
2362 while (t->code () == TYPE_CODE_PTR || TYPE_IS_REFERENCE (t))
2363 {
2364 *argp = value_ind (*argp);
2365 /* Don't coerce fn pointer to fn and then back again! */
2366 if (check_typedef (value_type (*argp))->code () != TYPE_CODE_FUNC)
2367 *argp = coerce_array (*argp);
2368 t = check_typedef (value_type (*argp));
2369 }
2370
2371 if (t->code () != TYPE_CODE_STRUCT
2372 && t->code () != TYPE_CODE_UNION)
2373 error (_("Attempt to extract a component of a "
2374 "value that is not a struct or union"));
2375
2376 gdb_assert (methods != NULL && xmethods != NULL);
2377
2378 /* Clear the lists. */
2379 *methods = {};
2380 xmethods->clear ();
2381
2382 find_method_list (argp, method, 0, t, methods, xmethods,
2383 basetype, boffset);
2384 }
2385
2386 /* Given an array of arguments (ARGS) (which includes an entry for
2387 "this" in the case of C++ methods), the NAME of a function, and
2388 whether it's a method or not (METHOD), find the best function that
2389 matches on the argument types according to the overload resolution
2390 rules.
2391
2392 METHOD can be one of three values:
2393 NON_METHOD for non-member functions.
2394 METHOD: for member functions.
2395 BOTH: used for overload resolution of operators where the
2396 candidates are expected to be either member or non member
2397 functions. In this case the first argument ARGTYPES
2398 (representing 'this') is expected to be a reference to the
2399 target object, and will be dereferenced when attempting the
2400 non-member search.
2401
2402 In the case of class methods, the parameter OBJ is an object value
2403 in which to search for overloaded methods.
2404
2405 In the case of non-method functions, the parameter FSYM is a symbol
2406 corresponding to one of the overloaded functions.
2407
2408 Return value is an integer: 0 -> good match, 10 -> debugger applied
2409 non-standard coercions, 100 -> incompatible.
2410
2411 If a method is being searched for, VALP will hold the value.
2412 If a non-method is being searched for, SYMP will hold the symbol
2413 for it.
2414
2415 If a method is being searched for, and it is a static method,
2416 then STATICP will point to a non-zero value.
2417
2418 If NO_ADL argument dependent lookup is disabled. This is used to prevent
2419 ADL overload candidates when performing overload resolution for a fully
2420 qualified name.
2421
2422 If NOSIDE is EVAL_AVOID_SIDE_EFFECTS, then OBJP's memory cannot be
2423 read while picking the best overload match (it may be all zeroes and thus
2424 not have a vtable pointer), in which case skip virtual function lookup.
2425 This is ok as typically EVAL_AVOID_SIDE_EFFECTS is only used to determine
2426 the result type.
2427
2428 Note: This function does *not* check the value of
2429 overload_resolution. Caller must check it to see whether overload
2430 resolution is permitted. */
2431
2432 int
2433 find_overload_match (gdb::array_view<value *> args,
2434 const char *name, enum oload_search_type method,
2435 struct value **objp, struct symbol *fsym,
2436 struct value **valp, struct symbol **symp,
2437 int *staticp, const int no_adl,
2438 const enum noside noside)
2439 {
2440 struct value *obj = (objp ? *objp : NULL);
2441 struct type *obj_type = obj ? value_type (obj) : NULL;
2442 /* Index of best overloaded function. */
2443 int func_oload_champ = -1;
2444 int method_oload_champ = -1;
2445 int src_method_oload_champ = -1;
2446 int ext_method_oload_champ = -1;
2447
2448 /* The measure for the current best match. */
2449 badness_vector method_badness;
2450 badness_vector func_badness;
2451 badness_vector ext_method_badness;
2452 badness_vector src_method_badness;
2453
2454 struct value *temp = obj;
2455 /* For methods, the list of overloaded methods. */
2456 gdb::array_view<fn_field> methods;
2457 /* For non-methods, the list of overloaded function symbols. */
2458 std::vector<symbol *> functions;
2459 /* For xmethods, the vector of xmethod workers. */
2460 std::vector<xmethod_worker_up> xmethods;
2461 struct type *basetype = NULL;
2462 LONGEST boffset;
2463
2464 const char *obj_type_name = NULL;
2465 const char *func_name = NULL;
2466 gdb::unique_xmalloc_ptr<char> temp_func;
2467 enum oload_classification match_quality;
2468 enum oload_classification method_match_quality = INCOMPATIBLE;
2469 enum oload_classification src_method_match_quality = INCOMPATIBLE;
2470 enum oload_classification ext_method_match_quality = INCOMPATIBLE;
2471 enum oload_classification func_match_quality = INCOMPATIBLE;
2472
2473 /* Get the list of overloaded methods or functions. */
2474 if (method == METHOD || method == BOTH)
2475 {
2476 gdb_assert (obj);
2477
2478 /* OBJ may be a pointer value rather than the object itself. */
2479 obj = coerce_ref (obj);
2480 while (check_typedef (value_type (obj))->code () == TYPE_CODE_PTR)
2481 obj = coerce_ref (value_ind (obj));
2482 obj_type_name = value_type (obj)->name ();
2483
2484 /* First check whether this is a data member, e.g. a pointer to
2485 a function. */
2486 if (check_typedef (value_type (obj))->code () == TYPE_CODE_STRUCT)
2487 {
2488 *valp = search_struct_field (name, obj,
2489 check_typedef (value_type (obj)), 0);
2490 if (*valp)
2491 {
2492 *staticp = 1;
2493 return 0;
2494 }
2495 }
2496
2497 /* Retrieve the list of methods with the name NAME. */
2498 value_find_oload_method_list (&temp, name, 0, &methods,
2499 &xmethods, &basetype, &boffset);
2500 /* If this is a method only search, and no methods were found
2501 the search has failed. */
2502 if (method == METHOD && methods.empty () && xmethods.empty ())
2503 error (_("Couldn't find method %s%s%s"),
2504 obj_type_name,
2505 (obj_type_name && *obj_type_name) ? "::" : "",
2506 name);
2507 /* If we are dealing with stub method types, they should have
2508 been resolved by find_method_list via
2509 value_find_oload_method_list above. */
2510 if (!methods.empty ())
2511 {
2512 gdb_assert (TYPE_SELF_TYPE (methods[0].type) != NULL);
2513
2514 src_method_oload_champ
2515 = find_oload_champ (args,
2516 methods.size (),
2517 methods.data (), NULL, NULL,
2518 &src_method_badness);
2519
2520 src_method_match_quality = classify_oload_match
2521 (src_method_badness, args.size (),
2522 oload_method_static_p (methods.data (), src_method_oload_champ));
2523 }
2524
2525 if (!xmethods.empty ())
2526 {
2527 ext_method_oload_champ
2528 = find_oload_champ (args,
2529 xmethods.size (),
2530 NULL, xmethods.data (), NULL,
2531 &ext_method_badness);
2532 ext_method_match_quality = classify_oload_match (ext_method_badness,
2533 args.size (), 0);
2534 }
2535
2536 if (src_method_oload_champ >= 0 && ext_method_oload_champ >= 0)
2537 {
2538 switch (compare_badness (ext_method_badness, src_method_badness))
2539 {
2540 case 0: /* Src method and xmethod are equally good. */
2541 /* If src method and xmethod are equally good, then
2542 xmethod should be the winner. Hence, fall through to the
2543 case where a xmethod is better than the source
2544 method, except when the xmethod match quality is
2545 non-standard. */
2546 /* FALLTHROUGH */
2547 case 1: /* Src method and ext method are incompatible. */
2548 /* If ext method match is not standard, then let source method
2549 win. Otherwise, fallthrough to let xmethod win. */
2550 if (ext_method_match_quality != STANDARD)
2551 {
2552 method_oload_champ = src_method_oload_champ;
2553 method_badness = src_method_badness;
2554 ext_method_oload_champ = -1;
2555 method_match_quality = src_method_match_quality;
2556 break;
2557 }
2558 /* FALLTHROUGH */
2559 case 2: /* Ext method is champion. */
2560 method_oload_champ = ext_method_oload_champ;
2561 method_badness = ext_method_badness;
2562 src_method_oload_champ = -1;
2563 method_match_quality = ext_method_match_quality;
2564 break;
2565 case 3: /* Src method is champion. */
2566 method_oload_champ = src_method_oload_champ;
2567 method_badness = src_method_badness;
2568 ext_method_oload_champ = -1;
2569 method_match_quality = src_method_match_quality;
2570 break;
2571 default:
2572 gdb_assert_not_reached ("Unexpected overload comparison "
2573 "result");
2574 break;
2575 }
2576 }
2577 else if (src_method_oload_champ >= 0)
2578 {
2579 method_oload_champ = src_method_oload_champ;
2580 method_badness = src_method_badness;
2581 method_match_quality = src_method_match_quality;
2582 }
2583 else if (ext_method_oload_champ >= 0)
2584 {
2585 method_oload_champ = ext_method_oload_champ;
2586 method_badness = ext_method_badness;
2587 method_match_quality = ext_method_match_quality;
2588 }
2589 }
2590
2591 if (method == NON_METHOD || method == BOTH)
2592 {
2593 const char *qualified_name = NULL;
2594
2595 /* If the overload match is being search for both as a method
2596 and non member function, the first argument must now be
2597 dereferenced. */
2598 if (method == BOTH)
2599 args[0] = value_ind (args[0]);
2600
2601 if (fsym)
2602 {
2603 qualified_name = fsym->natural_name ();
2604
2605 /* If we have a function with a C++ name, try to extract just
2606 the function part. Do not try this for non-functions (e.g.
2607 function pointers). */
2608 if (qualified_name
2609 && (check_typedef (SYMBOL_TYPE (fsym))->code ()
2610 == TYPE_CODE_FUNC))
2611 {
2612 temp_func = cp_func_name (qualified_name);
2613
2614 /* If cp_func_name did not remove anything, the name of the
2615 symbol did not include scope or argument types - it was
2616 probably a C-style function. */
2617 if (temp_func != nullptr)
2618 {
2619 if (strcmp (temp_func.get (), qualified_name) == 0)
2620 func_name = NULL;
2621 else
2622 func_name = temp_func.get ();
2623 }
2624 }
2625 }
2626 else
2627 {
2628 func_name = name;
2629 qualified_name = name;
2630 }
2631
2632 /* If there was no C++ name, this must be a C-style function or
2633 not a function at all. Just return the same symbol. Do the
2634 same if cp_func_name fails for some reason. */
2635 if (func_name == NULL)
2636 {
2637 *symp = fsym;
2638 return 0;
2639 }
2640
2641 func_oload_champ = find_oload_champ_namespace (args,
2642 func_name,
2643 qualified_name,
2644 &functions,
2645 &func_badness,
2646 no_adl);
2647
2648 if (func_oload_champ >= 0)
2649 func_match_quality = classify_oload_match (func_badness,
2650 args.size (), 0);
2651 }
2652
2653 /* Did we find a match ? */
2654 if (method_oload_champ == -1 && func_oload_champ == -1)
2655 throw_error (NOT_FOUND_ERROR,
2656 _("No symbol \"%s\" in current context."),
2657 name);
2658
2659 /* If we have found both a method match and a function
2660 match, find out which one is better, and calculate match
2661 quality. */
2662 if (method_oload_champ >= 0 && func_oload_champ >= 0)
2663 {
2664 switch (compare_badness (func_badness, method_badness))
2665 {
2666 case 0: /* Top two contenders are equally good. */
2667 /* FIXME: GDB does not support the general ambiguous case.
2668 All candidates should be collected and presented the
2669 user. */
2670 error (_("Ambiguous overload resolution"));
2671 break;
2672 case 1: /* Incomparable top contenders. */
2673 /* This is an error incompatible candidates
2674 should not have been proposed. */
2675 error (_("Internal error: incompatible "
2676 "overload candidates proposed"));
2677 break;
2678 case 2: /* Function champion. */
2679 method_oload_champ = -1;
2680 match_quality = func_match_quality;
2681 break;
2682 case 3: /* Method champion. */
2683 func_oload_champ = -1;
2684 match_quality = method_match_quality;
2685 break;
2686 default:
2687 error (_("Internal error: unexpected overload comparison result"));
2688 break;
2689 }
2690 }
2691 else
2692 {
2693 /* We have either a method match or a function match. */
2694 if (method_oload_champ >= 0)
2695 match_quality = method_match_quality;
2696 else
2697 match_quality = func_match_quality;
2698 }
2699
2700 if (match_quality == INCOMPATIBLE)
2701 {
2702 if (method == METHOD)
2703 error (_("Cannot resolve method %s%s%s to any overloaded instance"),
2704 obj_type_name,
2705 (obj_type_name && *obj_type_name) ? "::" : "",
2706 name);
2707 else
2708 error (_("Cannot resolve function %s to any overloaded instance"),
2709 func_name);
2710 }
2711 else if (match_quality == NON_STANDARD)
2712 {
2713 if (method == METHOD)
2714 warning (_("Using non-standard conversion to match "
2715 "method %s%s%s to supplied arguments"),
2716 obj_type_name,
2717 (obj_type_name && *obj_type_name) ? "::" : "",
2718 name);
2719 else
2720 warning (_("Using non-standard conversion to match "
2721 "function %s to supplied arguments"),
2722 func_name);
2723 }
2724
2725 if (staticp != NULL)
2726 *staticp = oload_method_static_p (methods.data (), method_oload_champ);
2727
2728 if (method_oload_champ >= 0)
2729 {
2730 if (src_method_oload_champ >= 0)
2731 {
2732 if (TYPE_FN_FIELD_VIRTUAL_P (methods, method_oload_champ)
2733 && noside != EVAL_AVOID_SIDE_EFFECTS)
2734 {
2735 *valp = value_virtual_fn_field (&temp, methods.data (),
2736 method_oload_champ, basetype,
2737 boffset);
2738 }
2739 else
2740 *valp = value_fn_field (&temp, methods.data (),
2741 method_oload_champ, basetype, boffset);
2742 }
2743 else
2744 *valp = value_from_xmethod
2745 (std::move (xmethods[ext_method_oload_champ]));
2746 }
2747 else
2748 *symp = functions[func_oload_champ];
2749
2750 if (objp)
2751 {
2752 struct type *temp_type = check_typedef (value_type (temp));
2753 struct type *objtype = check_typedef (obj_type);
2754
2755 if (temp_type->code () != TYPE_CODE_PTR
2756 && (objtype->code () == TYPE_CODE_PTR
2757 || TYPE_IS_REFERENCE (objtype)))
2758 {
2759 temp = value_addr (temp);
2760 }
2761 *objp = temp;
2762 }
2763
2764 switch (match_quality)
2765 {
2766 case INCOMPATIBLE:
2767 return 100;
2768 case NON_STANDARD:
2769 return 10;
2770 default: /* STANDARD */
2771 return 0;
2772 }
2773 }
2774
2775 /* Find the best overload match, searching for FUNC_NAME in namespaces
2776 contained in QUALIFIED_NAME until it either finds a good match or
2777 runs out of namespaces. It stores the overloaded functions in
2778 *OLOAD_SYMS, and the badness vector in *OLOAD_CHAMP_BV. If NO_ADL,
2779 argument dependent lookup is not performed. */
2780
2781 static int
2782 find_oload_champ_namespace (gdb::array_view<value *> args,
2783 const char *func_name,
2784 const char *qualified_name,
2785 std::vector<symbol *> *oload_syms,
2786 badness_vector *oload_champ_bv,
2787 const int no_adl)
2788 {
2789 int oload_champ;
2790
2791 find_oload_champ_namespace_loop (args,
2792 func_name,
2793 qualified_name, 0,
2794 oload_syms, oload_champ_bv,
2795 &oload_champ,
2796 no_adl);
2797
2798 return oload_champ;
2799 }
2800
2801 /* Helper function for find_oload_champ_namespace; NAMESPACE_LEN is
2802 how deep we've looked for namespaces, and the champ is stored in
2803 OLOAD_CHAMP. The return value is 1 if the champ is a good one, 0
2804 if it isn't. Other arguments are the same as in
2805 find_oload_champ_namespace. */
2806
2807 static int
2808 find_oload_champ_namespace_loop (gdb::array_view<value *> args,
2809 const char *func_name,
2810 const char *qualified_name,
2811 int namespace_len,
2812 std::vector<symbol *> *oload_syms,
2813 badness_vector *oload_champ_bv,
2814 int *oload_champ,
2815 const int no_adl)
2816 {
2817 int next_namespace_len = namespace_len;
2818 int searched_deeper = 0;
2819 int new_oload_champ;
2820 char *new_namespace;
2821
2822 if (next_namespace_len != 0)
2823 {
2824 gdb_assert (qualified_name[next_namespace_len] == ':');
2825 next_namespace_len += 2;
2826 }
2827 next_namespace_len +=
2828 cp_find_first_component (qualified_name + next_namespace_len);
2829
2830 /* First, see if we have a deeper namespace we can search in.
2831 If we get a good match there, use it. */
2832
2833 if (qualified_name[next_namespace_len] == ':')
2834 {
2835 searched_deeper = 1;
2836
2837 if (find_oload_champ_namespace_loop (args,
2838 func_name, qualified_name,
2839 next_namespace_len,
2840 oload_syms, oload_champ_bv,
2841 oload_champ, no_adl))
2842 {
2843 return 1;
2844 }
2845 };
2846
2847 /* If we reach here, either we're in the deepest namespace or we
2848 didn't find a good match in a deeper namespace. But, in the
2849 latter case, we still have a bad match in a deeper namespace;
2850 note that we might not find any match at all in the current
2851 namespace. (There's always a match in the deepest namespace,
2852 because this overload mechanism only gets called if there's a
2853 function symbol to start off with.) */
2854
2855 new_namespace = (char *) alloca (namespace_len + 1);
2856 strncpy (new_namespace, qualified_name, namespace_len);
2857 new_namespace[namespace_len] = '\0';
2858
2859 std::vector<symbol *> new_oload_syms
2860 = make_symbol_overload_list (func_name, new_namespace);
2861
2862 /* If we have reached the deepest level perform argument
2863 determined lookup. */
2864 if (!searched_deeper && !no_adl)
2865 {
2866 int ix;
2867 struct type **arg_types;
2868
2869 /* Prepare list of argument types for overload resolution. */
2870 arg_types = (struct type **)
2871 alloca (args.size () * (sizeof (struct type *)));
2872 for (ix = 0; ix < args.size (); ix++)
2873 arg_types[ix] = value_type (args[ix]);
2874 add_symbol_overload_list_adl ({arg_types, args.size ()}, func_name,
2875 &new_oload_syms);
2876 }
2877
2878 badness_vector new_oload_champ_bv;
2879 new_oload_champ = find_oload_champ (args,
2880 new_oload_syms.size (),
2881 NULL, NULL, new_oload_syms.data (),
2882 &new_oload_champ_bv);
2883
2884 /* Case 1: We found a good match. Free earlier matches (if any),
2885 and return it. Case 2: We didn't find a good match, but we're
2886 not the deepest function. Then go with the bad match that the
2887 deeper function found. Case 3: We found a bad match, and we're
2888 the deepest function. Then return what we found, even though
2889 it's a bad match. */
2890
2891 if (new_oload_champ != -1
2892 && classify_oload_match (new_oload_champ_bv, args.size (), 0) == STANDARD)
2893 {
2894 *oload_syms = std::move (new_oload_syms);
2895 *oload_champ = new_oload_champ;
2896 *oload_champ_bv = std::move (new_oload_champ_bv);
2897 return 1;
2898 }
2899 else if (searched_deeper)
2900 {
2901 return 0;
2902 }
2903 else
2904 {
2905 *oload_syms = std::move (new_oload_syms);
2906 *oload_champ = new_oload_champ;
2907 *oload_champ_bv = std::move (new_oload_champ_bv);
2908 return 0;
2909 }
2910 }
2911
2912 /* Look for a function to take ARGS. Find the best match from among
2913 the overloaded methods or functions given by METHODS or FUNCTIONS
2914 or XMETHODS, respectively. One, and only one of METHODS, FUNCTIONS
2915 and XMETHODS can be non-NULL.
2916
2917 NUM_FNS is the length of the array pointed at by METHODS, FUNCTIONS
2918 or XMETHODS, whichever is non-NULL.
2919
2920 Return the index of the best match; store an indication of the
2921 quality of the match in OLOAD_CHAMP_BV. */
2922
2923 static int
2924 find_oload_champ (gdb::array_view<value *> args,
2925 size_t num_fns,
2926 fn_field *methods,
2927 xmethod_worker_up *xmethods,
2928 symbol **functions,
2929 badness_vector *oload_champ_bv)
2930 {
2931 /* A measure of how good an overloaded instance is. */
2932 badness_vector bv;
2933 /* Index of best overloaded function. */
2934 int oload_champ = -1;
2935 /* Current ambiguity state for overload resolution. */
2936 int oload_ambiguous = 0;
2937 /* 0 => no ambiguity, 1 => two good funcs, 2 => incomparable funcs. */
2938
2939 /* A champion can be found among methods alone, or among functions
2940 alone, or in xmethods alone, but not in more than one of these
2941 groups. */
2942 gdb_assert ((methods != NULL) + (functions != NULL) + (xmethods != NULL)
2943 == 1);
2944
2945 /* Consider each candidate in turn. */
2946 for (size_t ix = 0; ix < num_fns; ix++)
2947 {
2948 int jj;
2949 int static_offset = 0;
2950 std::vector<type *> parm_types;
2951
2952 if (xmethods != NULL)
2953 parm_types = xmethods[ix]->get_arg_types ();
2954 else
2955 {
2956 size_t nparms;
2957
2958 if (methods != NULL)
2959 {
2960 nparms = TYPE_FN_FIELD_TYPE (methods, ix)->num_fields ();
2961 static_offset = oload_method_static_p (methods, ix);
2962 }
2963 else
2964 nparms = SYMBOL_TYPE (functions[ix])->num_fields ();
2965
2966 parm_types.reserve (nparms);
2967 for (jj = 0; jj < nparms; jj++)
2968 {
2969 type *t = (methods != NULL
2970 ? (TYPE_FN_FIELD_ARGS (methods, ix)[jj].type)
2971 : TYPE_FIELD_TYPE (SYMBOL_TYPE (functions[ix]),
2972 jj));
2973 parm_types.push_back (t);
2974 }
2975 }
2976
2977 /* Compare parameter types to supplied argument types. Skip
2978 THIS for static methods. */
2979 bv = rank_function (parm_types,
2980 args.slice (static_offset));
2981
2982 if (overload_debug)
2983 {
2984 if (methods != NULL)
2985 fprintf_filtered (gdb_stderr,
2986 "Overloaded method instance %s, # of parms %d\n",
2987 methods[ix].physname, (int) parm_types.size ());
2988 else if (xmethods != NULL)
2989 fprintf_filtered (gdb_stderr,
2990 "Xmethod worker, # of parms %d\n",
2991 (int) parm_types.size ());
2992 else
2993 fprintf_filtered (gdb_stderr,
2994 "Overloaded function instance "
2995 "%s # of parms %d\n",
2996 functions[ix]->demangled_name (),
2997 (int) parm_types.size ());
2998
2999 fprintf_filtered (gdb_stderr,
3000 "...Badness of length : {%d, %d}\n",
3001 bv[0].rank, bv[0].subrank);
3002
3003 for (jj = 1; jj < bv.size (); jj++)
3004 fprintf_filtered (gdb_stderr,
3005 "...Badness of arg %d : {%d, %d}\n",
3006 jj, bv[jj].rank, bv[jj].subrank);
3007 }
3008
3009 if (oload_champ_bv->empty ())
3010 {
3011 *oload_champ_bv = std::move (bv);
3012 oload_champ = 0;
3013 }
3014 else /* See whether current candidate is better or worse than
3015 previous best. */
3016 switch (compare_badness (bv, *oload_champ_bv))
3017 {
3018 case 0: /* Top two contenders are equally good. */
3019 oload_ambiguous = 1;
3020 break;
3021 case 1: /* Incomparable top contenders. */
3022 oload_ambiguous = 2;
3023 break;
3024 case 2: /* New champion, record details. */
3025 *oload_champ_bv = std::move (bv);
3026 oload_ambiguous = 0;
3027 oload_champ = ix;
3028 break;
3029 case 3:
3030 default:
3031 break;
3032 }
3033 if (overload_debug)
3034 fprintf_filtered (gdb_stderr, "Overload resolution "
3035 "champion is %d, ambiguous? %d\n",
3036 oload_champ, oload_ambiguous);
3037 }
3038
3039 return oload_champ;
3040 }
3041
3042 /* Return 1 if we're looking at a static method, 0 if we're looking at
3043 a non-static method or a function that isn't a method. */
3044
3045 static int
3046 oload_method_static_p (struct fn_field *fns_ptr, int index)
3047 {
3048 if (fns_ptr && index >= 0 && TYPE_FN_FIELD_STATIC_P (fns_ptr, index))
3049 return 1;
3050 else
3051 return 0;
3052 }
3053
3054 /* Check how good an overload match OLOAD_CHAMP_BV represents. */
3055
3056 static enum oload_classification
3057 classify_oload_match (const badness_vector &oload_champ_bv,
3058 int nargs,
3059 int static_offset)
3060 {
3061 int ix;
3062 enum oload_classification worst = STANDARD;
3063
3064 for (ix = 1; ix <= nargs - static_offset; ix++)
3065 {
3066 /* If this conversion is as bad as INCOMPATIBLE_TYPE_BADNESS
3067 or worse return INCOMPATIBLE. */
3068 if (compare_ranks (oload_champ_bv[ix],
3069 INCOMPATIBLE_TYPE_BADNESS) <= 0)
3070 return INCOMPATIBLE; /* Truly mismatched types. */
3071 /* Otherwise If this conversion is as bad as
3072 NS_POINTER_CONVERSION_BADNESS or worse return NON_STANDARD. */
3073 else if (compare_ranks (oload_champ_bv[ix],
3074 NS_POINTER_CONVERSION_BADNESS) <= 0)
3075 worst = NON_STANDARD; /* Non-standard type conversions
3076 needed. */
3077 }
3078
3079 /* If no INCOMPATIBLE classification was found, return the worst one
3080 that was found (if any). */
3081 return worst;
3082 }
3083
3084 /* C++: return 1 is NAME is a legitimate name for the destructor of
3085 type TYPE. If TYPE does not have a destructor, or if NAME is
3086 inappropriate for TYPE, an error is signaled. Parameter TYPE should not yet
3087 have CHECK_TYPEDEF applied, this function will apply it itself. */
3088
3089 int
3090 destructor_name_p (const char *name, struct type *type)
3091 {
3092 if (name[0] == '~')
3093 {
3094 const char *dname = type_name_or_error (type);
3095 const char *cp = strchr (dname, '<');
3096 unsigned int len;
3097
3098 /* Do not compare the template part for template classes. */
3099 if (cp == NULL)
3100 len = strlen (dname);
3101 else
3102 len = cp - dname;
3103 if (strlen (name + 1) != len || strncmp (dname, name + 1, len) != 0)
3104 error (_("name of destructor must equal name of class"));
3105 else
3106 return 1;
3107 }
3108 return 0;
3109 }
3110
3111 /* Find an enum constant named NAME in TYPE. TYPE must be an "enum
3112 class". If the name is found, return a value representing it;
3113 otherwise throw an exception. */
3114
3115 static struct value *
3116 enum_constant_from_type (struct type *type, const char *name)
3117 {
3118 int i;
3119 int name_len = strlen (name);
3120
3121 gdb_assert (type->code () == TYPE_CODE_ENUM
3122 && TYPE_DECLARED_CLASS (type));
3123
3124 for (i = TYPE_N_BASECLASSES (type); i < type->num_fields (); ++i)
3125 {
3126 const char *fname = TYPE_FIELD_NAME (type, i);
3127 int len;
3128
3129 if (TYPE_FIELD_LOC_KIND (type, i) != FIELD_LOC_KIND_ENUMVAL
3130 || fname == NULL)
3131 continue;
3132
3133 /* Look for the trailing "::NAME", since enum class constant
3134 names are qualified here. */
3135 len = strlen (fname);
3136 if (len + 2 >= name_len
3137 && fname[len - name_len - 2] == ':'
3138 && fname[len - name_len - 1] == ':'
3139 && strcmp (&fname[len - name_len], name) == 0)
3140 return value_from_longest (type, TYPE_FIELD_ENUMVAL (type, i));
3141 }
3142
3143 error (_("no constant named \"%s\" in enum \"%s\""),
3144 name, type->name ());
3145 }
3146
3147 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3148 return the appropriate member (or the address of the member, if
3149 WANT_ADDRESS). This function is used to resolve user expressions
3150 of the form "DOMAIN::NAME". For more details on what happens, see
3151 the comment before value_struct_elt_for_reference. */
3152
3153 struct value *
3154 value_aggregate_elt (struct type *curtype, const char *name,
3155 struct type *expect_type, int want_address,
3156 enum noside noside)
3157 {
3158 switch (curtype->code ())
3159 {
3160 case TYPE_CODE_STRUCT:
3161 case TYPE_CODE_UNION:
3162 return value_struct_elt_for_reference (curtype, 0, curtype,
3163 name, expect_type,
3164 want_address, noside);
3165 case TYPE_CODE_NAMESPACE:
3166 return value_namespace_elt (curtype, name,
3167 want_address, noside);
3168
3169 case TYPE_CODE_ENUM:
3170 return enum_constant_from_type (curtype, name);
3171
3172 default:
3173 internal_error (__FILE__, __LINE__,
3174 _("non-aggregate type in value_aggregate_elt"));
3175 }
3176 }
3177
3178 /* Compares the two method/function types T1 and T2 for "equality"
3179 with respect to the methods' parameters. If the types of the
3180 two parameter lists are the same, returns 1; 0 otherwise. This
3181 comparison may ignore any artificial parameters in T1 if
3182 SKIP_ARTIFICIAL is non-zero. This function will ALWAYS skip
3183 the first artificial parameter in T1, assumed to be a 'this' pointer.
3184
3185 The type T2 is expected to have come from make_params (in eval.c). */
3186
3187 static int
3188 compare_parameters (struct type *t1, struct type *t2, int skip_artificial)
3189 {
3190 int start = 0;
3191
3192 if (t1->num_fields () > 0 && TYPE_FIELD_ARTIFICIAL (t1, 0))
3193 ++start;
3194
3195 /* If skipping artificial fields, find the first real field
3196 in T1. */
3197 if (skip_artificial)
3198 {
3199 while (start < t1->num_fields ()
3200 && TYPE_FIELD_ARTIFICIAL (t1, start))
3201 ++start;
3202 }
3203
3204 /* Now compare parameters. */
3205
3206 /* Special case: a method taking void. T1 will contain no
3207 non-artificial fields, and T2 will contain TYPE_CODE_VOID. */
3208 if ((t1->num_fields () - start) == 0 && t2->num_fields () == 1
3209 && TYPE_FIELD_TYPE (t2, 0)->code () == TYPE_CODE_VOID)
3210 return 1;
3211
3212 if ((t1->num_fields () - start) == t2->num_fields ())
3213 {
3214 int i;
3215
3216 for (i = 0; i < t2->num_fields (); ++i)
3217 {
3218 if (compare_ranks (rank_one_type (TYPE_FIELD_TYPE (t1, start + i),
3219 TYPE_FIELD_TYPE (t2, i), NULL),
3220 EXACT_MATCH_BADNESS) != 0)
3221 return 0;
3222 }
3223
3224 return 1;
3225 }
3226
3227 return 0;
3228 }
3229
3230 /* C++: Given an aggregate type VT, and a class type CLS, search
3231 recursively for CLS using value V; If found, store the offset
3232 which is either fetched from the virtual base pointer if CLS
3233 is virtual or accumulated offset of its parent classes if
3234 CLS is non-virtual in *BOFFS, set ISVIRT to indicate if CLS
3235 is virtual, and return true. If not found, return false. */
3236
3237 static bool
3238 get_baseclass_offset (struct type *vt, struct type *cls,
3239 struct value *v, int *boffs, bool *isvirt)
3240 {
3241 for (int i = 0; i < TYPE_N_BASECLASSES (vt); i++)
3242 {
3243 struct type *t = TYPE_FIELD_TYPE (vt, i);
3244 if (types_equal (t, cls))
3245 {
3246 if (BASETYPE_VIA_VIRTUAL (vt, i))
3247 {
3248 const gdb_byte *adr = value_contents_for_printing (v);
3249 *boffs = baseclass_offset (vt, i, adr, value_offset (v),
3250 value_as_long (v), v);
3251 *isvirt = true;
3252 }
3253 else
3254 *isvirt = false;
3255 return true;
3256 }
3257
3258 if (get_baseclass_offset (check_typedef (t), cls, v, boffs, isvirt))
3259 {
3260 if (*isvirt == false) /* Add non-virtual base offset. */
3261 {
3262 const gdb_byte *adr = value_contents_for_printing (v);
3263 *boffs += baseclass_offset (vt, i, adr, value_offset (v),
3264 value_as_long (v), v);
3265 }
3266 return true;
3267 }
3268 }
3269
3270 return false;
3271 }
3272
3273 /* C++: Given an aggregate type CURTYPE, and a member name NAME,
3274 return the address of this member as a "pointer to member" type.
3275 If INTYPE is non-null, then it will be the type of the member we
3276 are looking for. This will help us resolve "pointers to member
3277 functions". This function is used to resolve user expressions of
3278 the form "DOMAIN::NAME". */
3279
3280 static struct value *
3281 value_struct_elt_for_reference (struct type *domain, int offset,
3282 struct type *curtype, const char *name,
3283 struct type *intype,
3284 int want_address,
3285 enum noside noside)
3286 {
3287 struct type *t = check_typedef (curtype);
3288 int i;
3289 struct value *result;
3290
3291 if (t->code () != TYPE_CODE_STRUCT
3292 && t->code () != TYPE_CODE_UNION)
3293 error (_("Internal error: non-aggregate type "
3294 "to value_struct_elt_for_reference"));
3295
3296 for (i = t->num_fields () - 1; i >= TYPE_N_BASECLASSES (t); i--)
3297 {
3298 const char *t_field_name = TYPE_FIELD_NAME (t, i);
3299
3300 if (t_field_name && strcmp (t_field_name, name) == 0)
3301 {
3302 if (field_is_static (&t->field (i)))
3303 {
3304 struct value *v = value_static_field (t, i);
3305 if (want_address)
3306 v = value_addr (v);
3307 return v;
3308 }
3309 if (TYPE_FIELD_PACKED (t, i))
3310 error (_("pointers to bitfield members not allowed"));
3311
3312 if (want_address)
3313 return value_from_longest
3314 (lookup_memberptr_type (TYPE_FIELD_TYPE (t, i), domain),
3315 offset + (LONGEST) (TYPE_FIELD_BITPOS (t, i) >> 3));
3316 else if (noside != EVAL_NORMAL)
3317 return allocate_value (TYPE_FIELD_TYPE (t, i));
3318 else
3319 {
3320 /* Try to evaluate NAME as a qualified name with implicit
3321 this pointer. In this case, attempt to return the
3322 equivalent to `this->*(&TYPE::NAME)'. */
3323 struct value *v = value_of_this_silent (current_language);
3324 if (v != NULL)
3325 {
3326 struct value *ptr, *this_v = v;
3327 long mem_offset;
3328 struct type *type, *tmp;
3329
3330 ptr = value_aggregate_elt (domain, name, NULL, 1, noside);
3331 type = check_typedef (value_type (ptr));
3332 gdb_assert (type != NULL
3333 && type->code () == TYPE_CODE_MEMBERPTR);
3334 tmp = lookup_pointer_type (TYPE_SELF_TYPE (type));
3335 v = value_cast_pointers (tmp, v, 1);
3336 mem_offset = value_as_long (ptr);
3337 if (domain != curtype)
3338 {
3339 /* Find class offset of type CURTYPE from either its
3340 parent type DOMAIN or the type of implied this. */
3341 int boff = 0;
3342 bool isvirt = false;
3343 if (get_baseclass_offset (domain, curtype, v, &boff,
3344 &isvirt))
3345 mem_offset += boff;
3346 else
3347 {
3348 struct type *p = check_typedef (value_type (this_v));
3349 p = check_typedef (TYPE_TARGET_TYPE (p));
3350 if (get_baseclass_offset (p, curtype, this_v,
3351 &boff, &isvirt))
3352 mem_offset += boff;
3353 }
3354 }
3355 tmp = lookup_pointer_type (TYPE_TARGET_TYPE (type));
3356 result = value_from_pointer (tmp,
3357 value_as_long (v) + mem_offset);
3358 return value_ind (result);
3359 }
3360
3361 error (_("Cannot reference non-static field \"%s\""), name);
3362 }
3363 }
3364 }
3365
3366 /* C++: If it was not found as a data field, then try to return it
3367 as a pointer to a method. */
3368
3369 /* Perform all necessary dereferencing. */
3370 while (intype && intype->code () == TYPE_CODE_PTR)
3371 intype = TYPE_TARGET_TYPE (intype);
3372
3373 for (i = TYPE_NFN_FIELDS (t) - 1; i >= 0; --i)
3374 {
3375 const char *t_field_name = TYPE_FN_FIELDLIST_NAME (t, i);
3376
3377 if (t_field_name && strcmp (t_field_name, name) == 0)
3378 {
3379 int j;
3380 int len = TYPE_FN_FIELDLIST_LENGTH (t, i);
3381 struct fn_field *f = TYPE_FN_FIELDLIST1 (t, i);
3382
3383 check_stub_method_group (t, i);
3384
3385 if (intype)
3386 {
3387 for (j = 0; j < len; ++j)
3388 {
3389 if (TYPE_CONST (intype) != TYPE_FN_FIELD_CONST (f, j))
3390 continue;
3391 if (TYPE_VOLATILE (intype) != TYPE_FN_FIELD_VOLATILE (f, j))
3392 continue;
3393
3394 if (compare_parameters (TYPE_FN_FIELD_TYPE (f, j), intype, 0)
3395 || compare_parameters (TYPE_FN_FIELD_TYPE (f, j),
3396 intype, 1))
3397 break;
3398 }
3399
3400 if (j == len)
3401 error (_("no member function matches "
3402 "that type instantiation"));
3403 }
3404 else
3405 {
3406 int ii;
3407
3408 j = -1;
3409 for (ii = 0; ii < len; ++ii)
3410 {
3411 /* Skip artificial methods. This is necessary if,
3412 for example, the user wants to "print
3413 subclass::subclass" with only one user-defined
3414 constructor. There is no ambiguity in this case.
3415 We are careful here to allow artificial methods
3416 if they are the unique result. */
3417 if (TYPE_FN_FIELD_ARTIFICIAL (f, ii))
3418 {
3419 if (j == -1)
3420 j = ii;
3421 continue;
3422 }
3423
3424 /* Desired method is ambiguous if more than one
3425 method is defined. */
3426 if (j != -1 && !TYPE_FN_FIELD_ARTIFICIAL (f, j))
3427 error (_("non-unique member `%s' requires "
3428 "type instantiation"), name);
3429
3430 j = ii;
3431 }
3432
3433 if (j == -1)
3434 error (_("no matching member function"));
3435 }
3436
3437 if (TYPE_FN_FIELD_STATIC_P (f, j))
3438 {
3439 struct symbol *s =
3440 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3441 0, VAR_DOMAIN, 0).symbol;
3442
3443 if (s == NULL)
3444 return NULL;
3445
3446 if (want_address)
3447 return value_addr (read_var_value (s, 0, 0));
3448 else
3449 return read_var_value (s, 0, 0);
3450 }
3451
3452 if (TYPE_FN_FIELD_VIRTUAL_P (f, j))
3453 {
3454 if (want_address)
3455 {
3456 result = allocate_value
3457 (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3458 cplus_make_method_ptr (value_type (result),
3459 value_contents_writeable (result),
3460 TYPE_FN_FIELD_VOFFSET (f, j), 1);
3461 }
3462 else if (noside == EVAL_AVOID_SIDE_EFFECTS)
3463 return allocate_value (TYPE_FN_FIELD_TYPE (f, j));
3464 else
3465 error (_("Cannot reference virtual member function \"%s\""),
3466 name);
3467 }
3468 else
3469 {
3470 struct symbol *s =
3471 lookup_symbol (TYPE_FN_FIELD_PHYSNAME (f, j),
3472 0, VAR_DOMAIN, 0).symbol;
3473
3474 if (s == NULL)
3475 return NULL;
3476
3477 struct value *v = read_var_value (s, 0, 0);
3478 if (!want_address)
3479 result = v;
3480 else
3481 {
3482 result = allocate_value (lookup_methodptr_type (TYPE_FN_FIELD_TYPE (f, j)));
3483 cplus_make_method_ptr (value_type (result),
3484 value_contents_writeable (result),
3485 value_address (v), 0);
3486 }
3487 }
3488 return result;
3489 }
3490 }
3491 for (i = TYPE_N_BASECLASSES (t) - 1; i >= 0; i--)
3492 {
3493 struct value *v;
3494 int base_offset;
3495
3496 if (BASETYPE_VIA_VIRTUAL (t, i))
3497 base_offset = 0;
3498 else
3499 base_offset = TYPE_BASECLASS_BITPOS (t, i) / 8;
3500 v = value_struct_elt_for_reference (domain,
3501 offset + base_offset,
3502 TYPE_BASECLASS (t, i),
3503 name, intype,
3504 want_address, noside);
3505 if (v)
3506 return v;
3507 }
3508
3509 /* As a last chance, pretend that CURTYPE is a namespace, and look
3510 it up that way; this (frequently) works for types nested inside
3511 classes. */
3512
3513 return value_maybe_namespace_elt (curtype, name,
3514 want_address, noside);
3515 }
3516
3517 /* C++: Return the member NAME of the namespace given by the type
3518 CURTYPE. */
3519
3520 static struct value *
3521 value_namespace_elt (const struct type *curtype,
3522 const char *name, int want_address,
3523 enum noside noside)
3524 {
3525 struct value *retval = value_maybe_namespace_elt (curtype, name,
3526 want_address,
3527 noside);
3528
3529 if (retval == NULL)
3530 error (_("No symbol \"%s\" in namespace \"%s\"."),
3531 name, curtype->name ());
3532
3533 return retval;
3534 }
3535
3536 /* A helper function used by value_namespace_elt and
3537 value_struct_elt_for_reference. It looks up NAME inside the
3538 context CURTYPE; this works if CURTYPE is a namespace or if CURTYPE
3539 is a class and NAME refers to a type in CURTYPE itself (as opposed
3540 to, say, some base class of CURTYPE). */
3541
3542 static struct value *
3543 value_maybe_namespace_elt (const struct type *curtype,
3544 const char *name, int want_address,
3545 enum noside noside)
3546 {
3547 const char *namespace_name = curtype->name ();
3548 struct block_symbol sym;
3549 struct value *result;
3550
3551 sym = cp_lookup_symbol_namespace (namespace_name, name,
3552 get_selected_block (0), VAR_DOMAIN);
3553
3554 if (sym.symbol == NULL)
3555 return NULL;
3556 else if ((noside == EVAL_AVOID_SIDE_EFFECTS)
3557 && (SYMBOL_CLASS (sym.symbol) == LOC_TYPEDEF))
3558 result = allocate_value (SYMBOL_TYPE (sym.symbol));
3559 else
3560 result = value_of_variable (sym.symbol, sym.block);
3561
3562 if (want_address)
3563 result = value_addr (result);
3564
3565 return result;
3566 }
3567
3568 /* Given a pointer or a reference value V, find its real (RTTI) type.
3569
3570 Other parameters FULL, TOP, USING_ENC as with value_rtti_type()
3571 and refer to the values computed for the object pointed to. */
3572
3573 struct type *
3574 value_rtti_indirect_type (struct value *v, int *full,
3575 LONGEST *top, int *using_enc)
3576 {
3577 struct value *target = NULL;
3578 struct type *type, *real_type, *target_type;
3579
3580 type = value_type (v);
3581 type = check_typedef (type);
3582 if (TYPE_IS_REFERENCE (type))
3583 target = coerce_ref (v);
3584 else if (type->code () == TYPE_CODE_PTR)
3585 {
3586
3587 try
3588 {
3589 target = value_ind (v);
3590 }
3591 catch (const gdb_exception_error &except)
3592 {
3593 if (except.error == MEMORY_ERROR)
3594 {
3595 /* value_ind threw a memory error. The pointer is NULL or
3596 contains an uninitialized value: we can't determine any
3597 type. */
3598 return NULL;
3599 }
3600 throw;
3601 }
3602 }
3603 else
3604 return NULL;
3605
3606 real_type = value_rtti_type (target, full, top, using_enc);
3607
3608 if (real_type)
3609 {
3610 /* Copy qualifiers to the referenced object. */
3611 target_type = value_type (target);
3612 real_type = make_cv_type (TYPE_CONST (target_type),
3613 TYPE_VOLATILE (target_type), real_type, NULL);
3614 if (TYPE_IS_REFERENCE (type))
3615 real_type = lookup_reference_type (real_type, type->code ());
3616 else if (type->code () == TYPE_CODE_PTR)
3617 real_type = lookup_pointer_type (real_type);
3618 else
3619 internal_error (__FILE__, __LINE__, _("Unexpected value type."));
3620
3621 /* Copy qualifiers to the pointer/reference. */
3622 real_type = make_cv_type (TYPE_CONST (type), TYPE_VOLATILE (type),
3623 real_type, NULL);
3624 }
3625
3626 return real_type;
3627 }
3628
3629 /* Given a value pointed to by ARGP, check its real run-time type, and
3630 if that is different from the enclosing type, create a new value
3631 using the real run-time type as the enclosing type (and of the same
3632 type as ARGP) and return it, with the embedded offset adjusted to
3633 be the correct offset to the enclosed object. RTYPE is the type,
3634 and XFULL, XTOP, and XUSING_ENC are the other parameters, computed
3635 by value_rtti_type(). If these are available, they can be supplied
3636 and a second call to value_rtti_type() is avoided. (Pass RTYPE ==
3637 NULL if they're not available. */
3638
3639 struct value *
3640 value_full_object (struct value *argp,
3641 struct type *rtype,
3642 int xfull, int xtop,
3643 int xusing_enc)
3644 {
3645 struct type *real_type;
3646 int full = 0;
3647 LONGEST top = -1;
3648 int using_enc = 0;
3649 struct value *new_val;
3650
3651 if (rtype)
3652 {
3653 real_type = rtype;
3654 full = xfull;
3655 top = xtop;
3656 using_enc = xusing_enc;
3657 }
3658 else
3659 real_type = value_rtti_type (argp, &full, &top, &using_enc);
3660
3661 /* If no RTTI data, or if object is already complete, do nothing. */
3662 if (!real_type || real_type == value_enclosing_type (argp))
3663 return argp;
3664
3665 /* In a destructor we might see a real type that is a superclass of
3666 the object's type. In this case it is better to leave the object
3667 as-is. */
3668 if (full
3669 && TYPE_LENGTH (real_type) < TYPE_LENGTH (value_enclosing_type (argp)))
3670 return argp;
3671
3672 /* If we have the full object, but for some reason the enclosing
3673 type is wrong, set it. */
3674 /* pai: FIXME -- sounds iffy */
3675 if (full)
3676 {
3677 argp = value_copy (argp);
3678 set_value_enclosing_type (argp, real_type);
3679 return argp;
3680 }
3681
3682 /* Check if object is in memory. */
3683 if (VALUE_LVAL (argp) != lval_memory)
3684 {
3685 warning (_("Couldn't retrieve complete object of RTTI "
3686 "type %s; object may be in register(s)."),
3687 real_type->name ());
3688
3689 return argp;
3690 }
3691
3692 /* All other cases -- retrieve the complete object. */
3693 /* Go back by the computed top_offset from the beginning of the
3694 object, adjusting for the embedded offset of argp if that's what
3695 value_rtti_type used for its computation. */
3696 new_val = value_at_lazy (real_type, value_address (argp) - top +
3697 (using_enc ? 0 : value_embedded_offset (argp)));
3698 deprecated_set_value_type (new_val, value_type (argp));
3699 set_value_embedded_offset (new_val, (using_enc
3700 ? top + value_embedded_offset (argp)
3701 : top));
3702 return new_val;
3703 }
3704
3705
3706 /* Return the value of the local variable, if one exists. Throw error
3707 otherwise, such as if the request is made in an inappropriate context. */
3708
3709 struct value *
3710 value_of_this (const struct language_defn *lang)
3711 {
3712 struct block_symbol sym;
3713 const struct block *b;
3714 struct frame_info *frame;
3715
3716 if (!lang->la_name_of_this)
3717 error (_("no `this' in current language"));
3718
3719 frame = get_selected_frame (_("no frame selected"));
3720
3721 b = get_frame_block (frame, NULL);
3722
3723 sym = lookup_language_this (lang, b);
3724 if (sym.symbol == NULL)
3725 error (_("current stack frame does not contain a variable named `%s'"),
3726 lang->la_name_of_this);
3727
3728 return read_var_value (sym.symbol, sym.block, frame);
3729 }
3730
3731 /* Return the value of the local variable, if one exists. Return NULL
3732 otherwise. Never throw error. */
3733
3734 struct value *
3735 value_of_this_silent (const struct language_defn *lang)
3736 {
3737 struct value *ret = NULL;
3738
3739 try
3740 {
3741 ret = value_of_this (lang);
3742 }
3743 catch (const gdb_exception_error &except)
3744 {
3745 }
3746
3747 return ret;
3748 }
3749
3750 /* Create a slice (sub-string, sub-array) of ARRAY, that is LENGTH
3751 elements long, starting at LOWBOUND. The result has the same lower
3752 bound as the original ARRAY. */
3753
3754 struct value *
3755 value_slice (struct value *array, int lowbound, int length)
3756 {
3757 struct type *slice_range_type, *slice_type, *range_type;
3758 LONGEST lowerbound, upperbound;
3759 struct value *slice;
3760 struct type *array_type;
3761
3762 array_type = check_typedef (value_type (array));
3763 if (array_type->code () != TYPE_CODE_ARRAY
3764 && array_type->code () != TYPE_CODE_STRING)
3765 error (_("cannot take slice of non-array"));
3766
3767 if (type_not_allocated (array_type))
3768 error (_("array not allocated"));
3769 if (type_not_associated (array_type))
3770 error (_("array not associated"));
3771
3772 range_type = TYPE_INDEX_TYPE (array_type);
3773 if (get_discrete_bounds (range_type, &lowerbound, &upperbound) < 0)
3774 error (_("slice from bad array or bitstring"));
3775
3776 if (lowbound < lowerbound || length < 0
3777 || lowbound + length - 1 > upperbound)
3778 error (_("slice out of range"));
3779
3780 /* FIXME-type-allocation: need a way to free this type when we are
3781 done with it. */
3782 slice_range_type = create_static_range_type (NULL,
3783 TYPE_TARGET_TYPE (range_type),
3784 lowbound,
3785 lowbound + length - 1);
3786
3787 {
3788 struct type *element_type = TYPE_TARGET_TYPE (array_type);
3789 LONGEST offset
3790 = (lowbound - lowerbound) * TYPE_LENGTH (check_typedef (element_type));
3791
3792 slice_type = create_array_type (NULL,
3793 element_type,
3794 slice_range_type);
3795 slice_type->set_code (array_type->code ());
3796
3797 if (VALUE_LVAL (array) == lval_memory && value_lazy (array))
3798 slice = allocate_value_lazy (slice_type);
3799 else
3800 {
3801 slice = allocate_value (slice_type);
3802 value_contents_copy (slice, 0, array, offset,
3803 type_length_units (slice_type));
3804 }
3805
3806 set_value_component_location (slice, array);
3807 set_value_offset (slice, value_offset (array) + offset);
3808 }
3809
3810 return slice;
3811 }
3812
3813 /* See value.h. */
3814
3815 struct value *
3816 value_literal_complex (struct value *arg1,
3817 struct value *arg2,
3818 struct type *type)
3819 {
3820 struct value *val;
3821 struct type *real_type = TYPE_TARGET_TYPE (type);
3822
3823 val = allocate_value (type);
3824 arg1 = value_cast (real_type, arg1);
3825 arg2 = value_cast (real_type, arg2);
3826
3827 memcpy (value_contents_raw (val),
3828 value_contents (arg1), TYPE_LENGTH (real_type));
3829 memcpy (value_contents_raw (val) + TYPE_LENGTH (real_type),
3830 value_contents (arg2), TYPE_LENGTH (real_type));
3831 return val;
3832 }
3833
3834 /* See value.h. */
3835
3836 struct value *
3837 value_real_part (struct value *value)
3838 {
3839 struct type *type = check_typedef (value_type (value));
3840 struct type *ttype = TYPE_TARGET_TYPE (type);
3841
3842 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
3843 return value_from_component (value, ttype, 0);
3844 }
3845
3846 /* See value.h. */
3847
3848 struct value *
3849 value_imaginary_part (struct value *value)
3850 {
3851 struct type *type = check_typedef (value_type (value));
3852 struct type *ttype = TYPE_TARGET_TYPE (type);
3853
3854 gdb_assert (type->code () == TYPE_CODE_COMPLEX);
3855 return value_from_component (value, ttype,
3856 TYPE_LENGTH (check_typedef (ttype)));
3857 }
3858
3859 /* Cast a value into the appropriate complex data type. */
3860
3861 static struct value *
3862 cast_into_complex (struct type *type, struct value *val)
3863 {
3864 struct type *real_type = TYPE_TARGET_TYPE (type);
3865
3866 if (value_type (val)->code () == TYPE_CODE_COMPLEX)
3867 {
3868 struct type *val_real_type = TYPE_TARGET_TYPE (value_type (val));
3869 struct value *re_val = allocate_value (val_real_type);
3870 struct value *im_val = allocate_value (val_real_type);
3871
3872 memcpy (value_contents_raw (re_val),
3873 value_contents (val), TYPE_LENGTH (val_real_type));
3874 memcpy (value_contents_raw (im_val),
3875 value_contents (val) + TYPE_LENGTH (val_real_type),
3876 TYPE_LENGTH (val_real_type));
3877
3878 return value_literal_complex (re_val, im_val, type);
3879 }
3880 else if (value_type (val)->code () == TYPE_CODE_FLT
3881 || value_type (val)->code () == TYPE_CODE_INT)
3882 return value_literal_complex (val,
3883 value_zero (real_type, not_lval),
3884 type);
3885 else
3886 error (_("cannot cast non-number to complex"));
3887 }
3888
3889 void _initialize_valops ();
3890 void
3891 _initialize_valops ()
3892 {
3893 add_setshow_boolean_cmd ("overload-resolution", class_support,
3894 &overload_resolution, _("\
3895 Set overload resolution in evaluating C++ functions."), _("\
3896 Show overload resolution in evaluating C++ functions."),
3897 NULL, NULL,
3898 show_overload_resolution,
3899 &setlist, &showlist);
3900 overload_resolution = 1;
3901 }
This page took 0.112186 seconds and 4 git commands to generate.