kvm: update_memslots: clean flags for invalid memslots
[deliverable/linux.git] / arch / arm / kvm / mmu.c
CommitLineData
749cf76c
CD
1/*
2 * Copyright (C) 2012 - Virtual Open Systems and Columbia University
3 * Author: Christoffer Dall <c.dall@virtualopensystems.com>
4 *
5 * This program is free software; you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License, version 2, as
7 * published by the Free Software Foundation.
8 *
9 * This program is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License
15 * along with this program; if not, write to the Free Software
16 * Foundation, 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
17 */
342cd0ab
CD
18
19#include <linux/mman.h>
20#include <linux/kvm_host.h>
21#include <linux/io.h>
ad361f09 22#include <linux/hugetlb.h>
45e96ea6 23#include <trace/events/kvm.h>
342cd0ab 24#include <asm/pgalloc.h>
94f8e641 25#include <asm/cacheflush.h>
342cd0ab
CD
26#include <asm/kvm_arm.h>
27#include <asm/kvm_mmu.h>
45e96ea6 28#include <asm/kvm_mmio.h>
d5d8184d 29#include <asm/kvm_asm.h>
94f8e641 30#include <asm/kvm_emulate.h>
d5d8184d
CD
31
32#include "trace.h"
342cd0ab
CD
33
34extern char __hyp_idmap_text_start[], __hyp_idmap_text_end[];
35
5a677ce0 36static pgd_t *boot_hyp_pgd;
2fb41059 37static pgd_t *hyp_pgd;
342cd0ab
CD
38static DEFINE_MUTEX(kvm_hyp_pgd_mutex);
39
5a677ce0
MZ
40static void *init_bounce_page;
41static unsigned long hyp_idmap_start;
42static unsigned long hyp_idmap_end;
43static phys_addr_t hyp_idmap_vector;
44
38f791a4 45#define hyp_pgd_order get_order(PTRS_PER_PGD * sizeof(pgd_t))
5d4e08c4 46
9b5fdb97 47#define kvm_pmd_huge(_x) (pmd_huge(_x) || pmd_trans_huge(_x))
c6473555 48#define kvm_pud_huge(_x) pud_huge(_x)
ad361f09 49
15a49a44
MS
50#define KVM_S2PTE_FLAG_IS_IOMAP (1UL << 0)
51#define KVM_S2_FLAG_LOGGING_ACTIVE (1UL << 1)
52
53static bool memslot_is_logging(struct kvm_memory_slot *memslot)
54{
15a49a44 55 return memslot->dirty_bitmap && !(memslot->flags & KVM_MEM_READONLY);
7276030a
MS
56}
57
58/**
59 * kvm_flush_remote_tlbs() - flush all VM TLB entries for v7/8
60 * @kvm: pointer to kvm structure.
61 *
62 * Interface to HYP function to flush all VM TLB entries
63 */
64void kvm_flush_remote_tlbs(struct kvm *kvm)
65{
66 kvm_call_hyp(__kvm_tlb_flush_vmid, kvm);
15a49a44
MS
67}
68
48762767 69static void kvm_tlb_flush_vmid_ipa(struct kvm *kvm, phys_addr_t ipa)
d5d8184d 70{
d4cb9df5
MZ
71 /*
72 * This function also gets called when dealing with HYP page
73 * tables. As HYP doesn't have an associated struct kvm (and
74 * the HYP page tables are fairly static), we don't do
75 * anything there.
76 */
77 if (kvm)
78 kvm_call_hyp(__kvm_tlb_flush_vmid_ipa, kvm, ipa);
d5d8184d
CD
79}
80
15a49a44
MS
81/**
82 * stage2_dissolve_pmd() - clear and flush huge PMD entry
83 * @kvm: pointer to kvm structure.
84 * @addr: IPA
85 * @pmd: pmd pointer for IPA
86 *
87 * Function clears a PMD entry, flushes addr 1st and 2nd stage TLBs. Marks all
88 * pages in the range dirty.
89 */
90static void stage2_dissolve_pmd(struct kvm *kvm, phys_addr_t addr, pmd_t *pmd)
91{
92 if (!kvm_pmd_huge(*pmd))
93 return;
94
95 pmd_clear(pmd);
96 kvm_tlb_flush_vmid_ipa(kvm, addr);
97 put_page(virt_to_page(pmd));
98}
99
d5d8184d
CD
100static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
101 int min, int max)
102{
103 void *page;
104
105 BUG_ON(max > KVM_NR_MEM_OBJS);
106 if (cache->nobjs >= min)
107 return 0;
108 while (cache->nobjs < max) {
109 page = (void *)__get_free_page(PGALLOC_GFP);
110 if (!page)
111 return -ENOMEM;
112 cache->objects[cache->nobjs++] = page;
113 }
114 return 0;
115}
116
117static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc)
118{
119 while (mc->nobjs)
120 free_page((unsigned long)mc->objects[--mc->nobjs]);
121}
122
123static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
124{
125 void *p;
126
127 BUG_ON(!mc || !mc->nobjs);
128 p = mc->objects[--mc->nobjs];
129 return p;
130}
131
4f853a71 132static void clear_pgd_entry(struct kvm *kvm, pgd_t *pgd, phys_addr_t addr)
979acd5e 133{
4f853a71
CD
134 pud_t *pud_table __maybe_unused = pud_offset(pgd, 0);
135 pgd_clear(pgd);
136 kvm_tlb_flush_vmid_ipa(kvm, addr);
137 pud_free(NULL, pud_table);
138 put_page(virt_to_page(pgd));
979acd5e
MZ
139}
140
d4cb9df5 141static void clear_pud_entry(struct kvm *kvm, pud_t *pud, phys_addr_t addr)
342cd0ab 142{
4f853a71
CD
143 pmd_t *pmd_table = pmd_offset(pud, 0);
144 VM_BUG_ON(pud_huge(*pud));
145 pud_clear(pud);
146 kvm_tlb_flush_vmid_ipa(kvm, addr);
147 pmd_free(NULL, pmd_table);
4f728276
MZ
148 put_page(virt_to_page(pud));
149}
342cd0ab 150
d4cb9df5 151static void clear_pmd_entry(struct kvm *kvm, pmd_t *pmd, phys_addr_t addr)
4f728276 152{
4f853a71
CD
153 pte_t *pte_table = pte_offset_kernel(pmd, 0);
154 VM_BUG_ON(kvm_pmd_huge(*pmd));
155 pmd_clear(pmd);
156 kvm_tlb_flush_vmid_ipa(kvm, addr);
157 pte_free_kernel(NULL, pte_table);
4f728276
MZ
158 put_page(virt_to_page(pmd));
159}
160
4f853a71
CD
161static void unmap_ptes(struct kvm *kvm, pmd_t *pmd,
162 phys_addr_t addr, phys_addr_t end)
4f728276 163{
4f853a71
CD
164 phys_addr_t start_addr = addr;
165 pte_t *pte, *start_pte;
166
167 start_pte = pte = pte_offset_kernel(pmd, addr);
168 do {
169 if (!pte_none(*pte)) {
170 kvm_set_pte(pte, __pte(0));
171 put_page(virt_to_page(pte));
172 kvm_tlb_flush_vmid_ipa(kvm, addr);
173 }
174 } while (pte++, addr += PAGE_SIZE, addr != end);
175
38f791a4 176 if (kvm_pte_table_empty(kvm, start_pte))
4f853a71 177 clear_pmd_entry(kvm, pmd, start_addr);
342cd0ab
CD
178}
179
4f853a71
CD
180static void unmap_pmds(struct kvm *kvm, pud_t *pud,
181 phys_addr_t addr, phys_addr_t end)
000d3996 182{
4f853a71
CD
183 phys_addr_t next, start_addr = addr;
184 pmd_t *pmd, *start_pmd;
000d3996 185
4f853a71
CD
186 start_pmd = pmd = pmd_offset(pud, addr);
187 do {
188 next = kvm_pmd_addr_end(addr, end);
189 if (!pmd_none(*pmd)) {
190 if (kvm_pmd_huge(*pmd)) {
191 pmd_clear(pmd);
192 kvm_tlb_flush_vmid_ipa(kvm, addr);
193 put_page(virt_to_page(pmd));
194 } else {
195 unmap_ptes(kvm, pmd, addr, next);
196 }
ad361f09 197 }
4f853a71 198 } while (pmd++, addr = next, addr != end);
ad361f09 199
38f791a4 200 if (kvm_pmd_table_empty(kvm, start_pmd))
4f853a71
CD
201 clear_pud_entry(kvm, pud, start_addr);
202}
000d3996 203
4f853a71
CD
204static void unmap_puds(struct kvm *kvm, pgd_t *pgd,
205 phys_addr_t addr, phys_addr_t end)
206{
207 phys_addr_t next, start_addr = addr;
208 pud_t *pud, *start_pud;
4f728276 209
4f853a71
CD
210 start_pud = pud = pud_offset(pgd, addr);
211 do {
212 next = kvm_pud_addr_end(addr, end);
213 if (!pud_none(*pud)) {
214 if (pud_huge(*pud)) {
215 pud_clear(pud);
216 kvm_tlb_flush_vmid_ipa(kvm, addr);
217 put_page(virt_to_page(pud));
218 } else {
219 unmap_pmds(kvm, pud, addr, next);
4f728276
MZ
220 }
221 }
4f853a71 222 } while (pud++, addr = next, addr != end);
4f728276 223
38f791a4 224 if (kvm_pud_table_empty(kvm, start_pud))
4f853a71
CD
225 clear_pgd_entry(kvm, pgd, start_addr);
226}
227
228
229static void unmap_range(struct kvm *kvm, pgd_t *pgdp,
230 phys_addr_t start, u64 size)
231{
232 pgd_t *pgd;
233 phys_addr_t addr = start, end = start + size;
234 phys_addr_t next;
235
236 pgd = pgdp + pgd_index(addr);
237 do {
238 next = kvm_pgd_addr_end(addr, end);
7cbb87d6
MR
239 if (!pgd_none(*pgd))
240 unmap_puds(kvm, pgd, addr, next);
4f853a71 241 } while (pgd++, addr = next, addr != end);
000d3996
MZ
242}
243
9d218a1f
MZ
244static void stage2_flush_ptes(struct kvm *kvm, pmd_t *pmd,
245 phys_addr_t addr, phys_addr_t end)
246{
247 pte_t *pte;
248
249 pte = pte_offset_kernel(pmd, addr);
250 do {
251 if (!pte_none(*pte)) {
252 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
253 kvm_flush_dcache_to_poc((void*)hva, PAGE_SIZE);
254 }
255 } while (pte++, addr += PAGE_SIZE, addr != end);
256}
257
258static void stage2_flush_pmds(struct kvm *kvm, pud_t *pud,
259 phys_addr_t addr, phys_addr_t end)
260{
261 pmd_t *pmd;
262 phys_addr_t next;
263
264 pmd = pmd_offset(pud, addr);
265 do {
266 next = kvm_pmd_addr_end(addr, end);
267 if (!pmd_none(*pmd)) {
268 if (kvm_pmd_huge(*pmd)) {
269 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
270 kvm_flush_dcache_to_poc((void*)hva, PMD_SIZE);
271 } else {
272 stage2_flush_ptes(kvm, pmd, addr, next);
273 }
274 }
275 } while (pmd++, addr = next, addr != end);
276}
277
278static void stage2_flush_puds(struct kvm *kvm, pgd_t *pgd,
279 phys_addr_t addr, phys_addr_t end)
280{
281 pud_t *pud;
282 phys_addr_t next;
283
284 pud = pud_offset(pgd, addr);
285 do {
286 next = kvm_pud_addr_end(addr, end);
287 if (!pud_none(*pud)) {
288 if (pud_huge(*pud)) {
289 hva_t hva = gfn_to_hva(kvm, addr >> PAGE_SHIFT);
290 kvm_flush_dcache_to_poc((void*)hva, PUD_SIZE);
291 } else {
292 stage2_flush_pmds(kvm, pud, addr, next);
293 }
294 }
295 } while (pud++, addr = next, addr != end);
296}
297
298static void stage2_flush_memslot(struct kvm *kvm,
299 struct kvm_memory_slot *memslot)
300{
301 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
302 phys_addr_t end = addr + PAGE_SIZE * memslot->npages;
303 phys_addr_t next;
304 pgd_t *pgd;
305
306 pgd = kvm->arch.pgd + pgd_index(addr);
307 do {
308 next = kvm_pgd_addr_end(addr, end);
309 stage2_flush_puds(kvm, pgd, addr, next);
310 } while (pgd++, addr = next, addr != end);
311}
312
313/**
314 * stage2_flush_vm - Invalidate cache for pages mapped in stage 2
315 * @kvm: The struct kvm pointer
316 *
317 * Go through the stage 2 page tables and invalidate any cache lines
318 * backing memory already mapped to the VM.
319 */
320void stage2_flush_vm(struct kvm *kvm)
321{
322 struct kvm_memslots *slots;
323 struct kvm_memory_slot *memslot;
324 int idx;
325
326 idx = srcu_read_lock(&kvm->srcu);
327 spin_lock(&kvm->mmu_lock);
328
329 slots = kvm_memslots(kvm);
330 kvm_for_each_memslot(memslot, slots)
331 stage2_flush_memslot(kvm, memslot);
332
333 spin_unlock(&kvm->mmu_lock);
334 srcu_read_unlock(&kvm->srcu, idx);
335}
336
d157f4a5
MZ
337/**
338 * free_boot_hyp_pgd - free HYP boot page tables
339 *
340 * Free the HYP boot page tables. The bounce page is also freed.
341 */
342void free_boot_hyp_pgd(void)
343{
344 mutex_lock(&kvm_hyp_pgd_mutex);
345
346 if (boot_hyp_pgd) {
d4cb9df5
MZ
347 unmap_range(NULL, boot_hyp_pgd, hyp_idmap_start, PAGE_SIZE);
348 unmap_range(NULL, boot_hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
38f791a4 349 free_pages((unsigned long)boot_hyp_pgd, hyp_pgd_order);
d157f4a5
MZ
350 boot_hyp_pgd = NULL;
351 }
352
353 if (hyp_pgd)
d4cb9df5 354 unmap_range(NULL, hyp_pgd, TRAMPOLINE_VA, PAGE_SIZE);
d157f4a5 355
5d4e08c4 356 free_page((unsigned long)init_bounce_page);
d157f4a5
MZ
357 init_bounce_page = NULL;
358
359 mutex_unlock(&kvm_hyp_pgd_mutex);
360}
361
342cd0ab 362/**
4f728276 363 * free_hyp_pgds - free Hyp-mode page tables
342cd0ab 364 *
5a677ce0
MZ
365 * Assumes hyp_pgd is a page table used strictly in Hyp-mode and
366 * therefore contains either mappings in the kernel memory area (above
367 * PAGE_OFFSET), or device mappings in the vmalloc range (from
368 * VMALLOC_START to VMALLOC_END).
369 *
370 * boot_hyp_pgd should only map two pages for the init code.
342cd0ab 371 */
4f728276 372void free_hyp_pgds(void)
342cd0ab 373{
342cd0ab
CD
374 unsigned long addr;
375
d157f4a5 376 free_boot_hyp_pgd();
4f728276 377
d157f4a5 378 mutex_lock(&kvm_hyp_pgd_mutex);
5a677ce0 379
4f728276
MZ
380 if (hyp_pgd) {
381 for (addr = PAGE_OFFSET; virt_addr_valid(addr); addr += PGDIR_SIZE)
d4cb9df5 382 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
4f728276 383 for (addr = VMALLOC_START; is_vmalloc_addr((void*)addr); addr += PGDIR_SIZE)
d4cb9df5
MZ
384 unmap_range(NULL, hyp_pgd, KERN_TO_HYP(addr), PGDIR_SIZE);
385
38f791a4 386 free_pages((unsigned long)hyp_pgd, hyp_pgd_order);
d157f4a5 387 hyp_pgd = NULL;
4f728276
MZ
388 }
389
342cd0ab
CD
390 mutex_unlock(&kvm_hyp_pgd_mutex);
391}
392
393static void create_hyp_pte_mappings(pmd_t *pmd, unsigned long start,
6060df84
MZ
394 unsigned long end, unsigned long pfn,
395 pgprot_t prot)
342cd0ab
CD
396{
397 pte_t *pte;
398 unsigned long addr;
342cd0ab 399
3562c76d
MZ
400 addr = start;
401 do {
6060df84
MZ
402 pte = pte_offset_kernel(pmd, addr);
403 kvm_set_pte(pte, pfn_pte(pfn, prot));
4f728276 404 get_page(virt_to_page(pte));
5a677ce0 405 kvm_flush_dcache_to_poc(pte, sizeof(*pte));
6060df84 406 pfn++;
3562c76d 407 } while (addr += PAGE_SIZE, addr != end);
342cd0ab
CD
408}
409
410static int create_hyp_pmd_mappings(pud_t *pud, unsigned long start,
6060df84
MZ
411 unsigned long end, unsigned long pfn,
412 pgprot_t prot)
342cd0ab
CD
413{
414 pmd_t *pmd;
415 pte_t *pte;
416 unsigned long addr, next;
417
3562c76d
MZ
418 addr = start;
419 do {
6060df84 420 pmd = pmd_offset(pud, addr);
342cd0ab
CD
421
422 BUG_ON(pmd_sect(*pmd));
423
424 if (pmd_none(*pmd)) {
6060df84 425 pte = pte_alloc_one_kernel(NULL, addr);
342cd0ab
CD
426 if (!pte) {
427 kvm_err("Cannot allocate Hyp pte\n");
428 return -ENOMEM;
429 }
430 pmd_populate_kernel(NULL, pmd, pte);
4f728276 431 get_page(virt_to_page(pmd));
5a677ce0 432 kvm_flush_dcache_to_poc(pmd, sizeof(*pmd));
342cd0ab
CD
433 }
434
435 next = pmd_addr_end(addr, end);
436
6060df84
MZ
437 create_hyp_pte_mappings(pmd, addr, next, pfn, prot);
438 pfn += (next - addr) >> PAGE_SHIFT;
3562c76d 439 } while (addr = next, addr != end);
342cd0ab
CD
440
441 return 0;
442}
443
38f791a4
CD
444static int create_hyp_pud_mappings(pgd_t *pgd, unsigned long start,
445 unsigned long end, unsigned long pfn,
446 pgprot_t prot)
447{
448 pud_t *pud;
449 pmd_t *pmd;
450 unsigned long addr, next;
451 int ret;
452
453 addr = start;
454 do {
455 pud = pud_offset(pgd, addr);
456
457 if (pud_none_or_clear_bad(pud)) {
458 pmd = pmd_alloc_one(NULL, addr);
459 if (!pmd) {
460 kvm_err("Cannot allocate Hyp pmd\n");
461 return -ENOMEM;
462 }
463 pud_populate(NULL, pud, pmd);
464 get_page(virt_to_page(pud));
465 kvm_flush_dcache_to_poc(pud, sizeof(*pud));
466 }
467
468 next = pud_addr_end(addr, end);
469 ret = create_hyp_pmd_mappings(pud, addr, next, pfn, prot);
470 if (ret)
471 return ret;
472 pfn += (next - addr) >> PAGE_SHIFT;
473 } while (addr = next, addr != end);
474
475 return 0;
476}
477
6060df84
MZ
478static int __create_hyp_mappings(pgd_t *pgdp,
479 unsigned long start, unsigned long end,
480 unsigned long pfn, pgprot_t prot)
342cd0ab 481{
342cd0ab
CD
482 pgd_t *pgd;
483 pud_t *pud;
342cd0ab
CD
484 unsigned long addr, next;
485 int err = 0;
486
342cd0ab 487 mutex_lock(&kvm_hyp_pgd_mutex);
3562c76d
MZ
488 addr = start & PAGE_MASK;
489 end = PAGE_ALIGN(end);
490 do {
6060df84 491 pgd = pgdp + pgd_index(addr);
342cd0ab 492
38f791a4
CD
493 if (pgd_none(*pgd)) {
494 pud = pud_alloc_one(NULL, addr);
495 if (!pud) {
496 kvm_err("Cannot allocate Hyp pud\n");
342cd0ab
CD
497 err = -ENOMEM;
498 goto out;
499 }
38f791a4
CD
500 pgd_populate(NULL, pgd, pud);
501 get_page(virt_to_page(pgd));
502 kvm_flush_dcache_to_poc(pgd, sizeof(*pgd));
342cd0ab
CD
503 }
504
505 next = pgd_addr_end(addr, end);
38f791a4 506 err = create_hyp_pud_mappings(pgd, addr, next, pfn, prot);
342cd0ab
CD
507 if (err)
508 goto out;
6060df84 509 pfn += (next - addr) >> PAGE_SHIFT;
3562c76d 510 } while (addr = next, addr != end);
342cd0ab
CD
511out:
512 mutex_unlock(&kvm_hyp_pgd_mutex);
513 return err;
514}
515
40c2729b
CD
516static phys_addr_t kvm_kaddr_to_phys(void *kaddr)
517{
518 if (!is_vmalloc_addr(kaddr)) {
519 BUG_ON(!virt_addr_valid(kaddr));
520 return __pa(kaddr);
521 } else {
522 return page_to_phys(vmalloc_to_page(kaddr)) +
523 offset_in_page(kaddr);
524 }
525}
526
342cd0ab 527/**
06e8c3b0 528 * create_hyp_mappings - duplicate a kernel virtual address range in Hyp mode
342cd0ab
CD
529 * @from: The virtual kernel start address of the range
530 * @to: The virtual kernel end address of the range (exclusive)
531 *
06e8c3b0
MZ
532 * The same virtual address as the kernel virtual address is also used
533 * in Hyp-mode mapping (modulo HYP_PAGE_OFFSET) to the same underlying
534 * physical pages.
342cd0ab
CD
535 */
536int create_hyp_mappings(void *from, void *to)
537{
40c2729b
CD
538 phys_addr_t phys_addr;
539 unsigned long virt_addr;
6060df84
MZ
540 unsigned long start = KERN_TO_HYP((unsigned long)from);
541 unsigned long end = KERN_TO_HYP((unsigned long)to);
542
40c2729b
CD
543 start = start & PAGE_MASK;
544 end = PAGE_ALIGN(end);
6060df84 545
40c2729b
CD
546 for (virt_addr = start; virt_addr < end; virt_addr += PAGE_SIZE) {
547 int err;
6060df84 548
40c2729b
CD
549 phys_addr = kvm_kaddr_to_phys(from + virt_addr - start);
550 err = __create_hyp_mappings(hyp_pgd, virt_addr,
551 virt_addr + PAGE_SIZE,
552 __phys_to_pfn(phys_addr),
553 PAGE_HYP);
554 if (err)
555 return err;
556 }
557
558 return 0;
342cd0ab
CD
559}
560
561/**
06e8c3b0
MZ
562 * create_hyp_io_mappings - duplicate a kernel IO mapping into Hyp mode
563 * @from: The kernel start VA of the range
564 * @to: The kernel end VA of the range (exclusive)
6060df84 565 * @phys_addr: The physical start address which gets mapped
06e8c3b0
MZ
566 *
567 * The resulting HYP VA is the same as the kernel VA, modulo
568 * HYP_PAGE_OFFSET.
342cd0ab 569 */
6060df84 570int create_hyp_io_mappings(void *from, void *to, phys_addr_t phys_addr)
342cd0ab 571{
6060df84
MZ
572 unsigned long start = KERN_TO_HYP((unsigned long)from);
573 unsigned long end = KERN_TO_HYP((unsigned long)to);
574
575 /* Check for a valid kernel IO mapping */
576 if (!is_vmalloc_addr(from) || !is_vmalloc_addr(to - 1))
577 return -EINVAL;
578
579 return __create_hyp_mappings(hyp_pgd, start, end,
580 __phys_to_pfn(phys_addr), PAGE_HYP_DEVICE);
342cd0ab
CD
581}
582
d5d8184d
CD
583/**
584 * kvm_alloc_stage2_pgd - allocate level-1 table for stage-2 translation.
585 * @kvm: The KVM struct pointer for the VM.
586 *
587 * Allocates the 1st level table only of size defined by S2_PGD_ORDER (can
588 * support either full 40-bit input addresses or limited to 32-bit input
589 * addresses). Clears the allocated pages.
590 *
591 * Note we don't need locking here as this is only called when the VM is
592 * created, which can only be done once.
593 */
594int kvm_alloc_stage2_pgd(struct kvm *kvm)
595{
38f791a4 596 int ret;
d5d8184d
CD
597 pgd_t *pgd;
598
599 if (kvm->arch.pgd != NULL) {
600 kvm_err("kvm_arch already initialized?\n");
601 return -EINVAL;
602 }
603
38f791a4
CD
604 if (KVM_PREALLOC_LEVEL > 0) {
605 /*
606 * Allocate fake pgd for the page table manipulation macros to
607 * work. This is not used by the hardware and we have no
608 * alignment requirement for this allocation.
609 */
610 pgd = (pgd_t *)kmalloc(PTRS_PER_S2_PGD * sizeof(pgd_t),
611 GFP_KERNEL | __GFP_ZERO);
612 } else {
613 /*
614 * Allocate actual first-level Stage-2 page table used by the
615 * hardware for Stage-2 page table walks.
616 */
617 pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, S2_PGD_ORDER);
618 }
619
d5d8184d
CD
620 if (!pgd)
621 return -ENOMEM;
622
38f791a4
CD
623 ret = kvm_prealloc_hwpgd(kvm, pgd);
624 if (ret)
625 goto out_err;
626
c62ee2b2 627 kvm_clean_pgd(pgd);
d5d8184d 628 kvm->arch.pgd = pgd;
d5d8184d 629 return 0;
38f791a4
CD
630out_err:
631 if (KVM_PREALLOC_LEVEL > 0)
632 kfree(pgd);
633 else
634 free_pages((unsigned long)pgd, S2_PGD_ORDER);
635 return ret;
d5d8184d
CD
636}
637
d5d8184d
CD
638/**
639 * unmap_stage2_range -- Clear stage2 page table entries to unmap a range
640 * @kvm: The VM pointer
641 * @start: The intermediate physical base address of the range to unmap
642 * @size: The size of the area to unmap
643 *
644 * Clear a range of stage-2 mappings, lowering the various ref-counts. Must
645 * be called while holding mmu_lock (unless for freeing the stage2 pgd before
646 * destroying the VM), otherwise another faulting VCPU may come in and mess
647 * with things behind our backs.
648 */
649static void unmap_stage2_range(struct kvm *kvm, phys_addr_t start, u64 size)
650{
d4cb9df5 651 unmap_range(kvm, kvm->arch.pgd, start, size);
d5d8184d
CD
652}
653
957db105
CD
654static void stage2_unmap_memslot(struct kvm *kvm,
655 struct kvm_memory_slot *memslot)
656{
657 hva_t hva = memslot->userspace_addr;
658 phys_addr_t addr = memslot->base_gfn << PAGE_SHIFT;
659 phys_addr_t size = PAGE_SIZE * memslot->npages;
660 hva_t reg_end = hva + size;
661
662 /*
663 * A memory region could potentially cover multiple VMAs, and any holes
664 * between them, so iterate over all of them to find out if we should
665 * unmap any of them.
666 *
667 * +--------------------------------------------+
668 * +---------------+----------------+ +----------------+
669 * | : VMA 1 | VMA 2 | | VMA 3 : |
670 * +---------------+----------------+ +----------------+
671 * | memory region |
672 * +--------------------------------------------+
673 */
674 do {
675 struct vm_area_struct *vma = find_vma(current->mm, hva);
676 hva_t vm_start, vm_end;
677
678 if (!vma || vma->vm_start >= reg_end)
679 break;
680
681 /*
682 * Take the intersection of this VMA with the memory region
683 */
684 vm_start = max(hva, vma->vm_start);
685 vm_end = min(reg_end, vma->vm_end);
686
687 if (!(vma->vm_flags & VM_PFNMAP)) {
688 gpa_t gpa = addr + (vm_start - memslot->userspace_addr);
689 unmap_stage2_range(kvm, gpa, vm_end - vm_start);
690 }
691 hva = vm_end;
692 } while (hva < reg_end);
693}
694
695/**
696 * stage2_unmap_vm - Unmap Stage-2 RAM mappings
697 * @kvm: The struct kvm pointer
698 *
699 * Go through the memregions and unmap any reguler RAM
700 * backing memory already mapped to the VM.
701 */
702void stage2_unmap_vm(struct kvm *kvm)
703{
704 struct kvm_memslots *slots;
705 struct kvm_memory_slot *memslot;
706 int idx;
707
708 idx = srcu_read_lock(&kvm->srcu);
709 spin_lock(&kvm->mmu_lock);
710
711 slots = kvm_memslots(kvm);
712 kvm_for_each_memslot(memslot, slots)
713 stage2_unmap_memslot(kvm, memslot);
714
715 spin_unlock(&kvm->mmu_lock);
716 srcu_read_unlock(&kvm->srcu, idx);
717}
718
d5d8184d
CD
719/**
720 * kvm_free_stage2_pgd - free all stage-2 tables
721 * @kvm: The KVM struct pointer for the VM.
722 *
723 * Walks the level-1 page table pointed to by kvm->arch.pgd and frees all
724 * underlying level-2 and level-3 tables before freeing the actual level-1 table
725 * and setting the struct pointer to NULL.
726 *
727 * Note we don't need locking here as this is only called when the VM is
728 * destroyed, which can only be done once.
729 */
730void kvm_free_stage2_pgd(struct kvm *kvm)
731{
732 if (kvm->arch.pgd == NULL)
733 return;
734
735 unmap_stage2_range(kvm, 0, KVM_PHYS_SIZE);
38f791a4
CD
736 kvm_free_hwpgd(kvm);
737 if (KVM_PREALLOC_LEVEL > 0)
738 kfree(kvm->arch.pgd);
739 else
740 free_pages((unsigned long)kvm->arch.pgd, S2_PGD_ORDER);
d5d8184d
CD
741 kvm->arch.pgd = NULL;
742}
743
38f791a4 744static pud_t *stage2_get_pud(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
ad361f09 745 phys_addr_t addr)
d5d8184d
CD
746{
747 pgd_t *pgd;
748 pud_t *pud;
d5d8184d 749
d5d8184d 750 pgd = kvm->arch.pgd + pgd_index(addr);
38f791a4
CD
751 if (WARN_ON(pgd_none(*pgd))) {
752 if (!cache)
753 return NULL;
754 pud = mmu_memory_cache_alloc(cache);
755 pgd_populate(NULL, pgd, pud);
756 get_page(virt_to_page(pgd));
757 }
758
759 return pud_offset(pgd, addr);
760}
761
762static pmd_t *stage2_get_pmd(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
763 phys_addr_t addr)
764{
765 pud_t *pud;
766 pmd_t *pmd;
767
768 pud = stage2_get_pud(kvm, cache, addr);
d5d8184d
CD
769 if (pud_none(*pud)) {
770 if (!cache)
ad361f09 771 return NULL;
d5d8184d
CD
772 pmd = mmu_memory_cache_alloc(cache);
773 pud_populate(NULL, pud, pmd);
d5d8184d 774 get_page(virt_to_page(pud));
c62ee2b2
MZ
775 }
776
ad361f09
CD
777 return pmd_offset(pud, addr);
778}
779
780static int stage2_set_pmd_huge(struct kvm *kvm, struct kvm_mmu_memory_cache
781 *cache, phys_addr_t addr, const pmd_t *new_pmd)
782{
783 pmd_t *pmd, old_pmd;
784
785 pmd = stage2_get_pmd(kvm, cache, addr);
786 VM_BUG_ON(!pmd);
d5d8184d 787
ad361f09
CD
788 /*
789 * Mapping in huge pages should only happen through a fault. If a
790 * page is merged into a transparent huge page, the individual
791 * subpages of that huge page should be unmapped through MMU
792 * notifiers before we get here.
793 *
794 * Merging of CompoundPages is not supported; they should become
795 * splitting first, unmapped, merged, and mapped back in on-demand.
796 */
797 VM_BUG_ON(pmd_present(*pmd) && pmd_pfn(*pmd) != pmd_pfn(*new_pmd));
798
799 old_pmd = *pmd;
800 kvm_set_pmd(pmd, *new_pmd);
801 if (pmd_present(old_pmd))
802 kvm_tlb_flush_vmid_ipa(kvm, addr);
803 else
804 get_page(virt_to_page(pmd));
805 return 0;
806}
807
808static int stage2_set_pte(struct kvm *kvm, struct kvm_mmu_memory_cache *cache,
15a49a44
MS
809 phys_addr_t addr, const pte_t *new_pte,
810 unsigned long flags)
ad361f09
CD
811{
812 pmd_t *pmd;
813 pte_t *pte, old_pte;
15a49a44
MS
814 bool iomap = flags & KVM_S2PTE_FLAG_IS_IOMAP;
815 bool logging_active = flags & KVM_S2_FLAG_LOGGING_ACTIVE;
816
817 VM_BUG_ON(logging_active && !cache);
ad361f09 818
38f791a4 819 /* Create stage-2 page table mapping - Levels 0 and 1 */
ad361f09
CD
820 pmd = stage2_get_pmd(kvm, cache, addr);
821 if (!pmd) {
822 /*
823 * Ignore calls from kvm_set_spte_hva for unallocated
824 * address ranges.
825 */
826 return 0;
827 }
828
15a49a44
MS
829 /*
830 * While dirty page logging - dissolve huge PMD, then continue on to
831 * allocate page.
832 */
833 if (logging_active)
834 stage2_dissolve_pmd(kvm, addr, pmd);
835
ad361f09 836 /* Create stage-2 page mappings - Level 2 */
d5d8184d
CD
837 if (pmd_none(*pmd)) {
838 if (!cache)
839 return 0; /* ignore calls from kvm_set_spte_hva */
840 pte = mmu_memory_cache_alloc(cache);
c62ee2b2 841 kvm_clean_pte(pte);
d5d8184d 842 pmd_populate_kernel(NULL, pmd, pte);
d5d8184d 843 get_page(virt_to_page(pmd));
c62ee2b2
MZ
844 }
845
846 pte = pte_offset_kernel(pmd, addr);
d5d8184d
CD
847
848 if (iomap && pte_present(*pte))
849 return -EFAULT;
850
851 /* Create 2nd stage page table mapping - Level 3 */
852 old_pte = *pte;
853 kvm_set_pte(pte, *new_pte);
854 if (pte_present(old_pte))
48762767 855 kvm_tlb_flush_vmid_ipa(kvm, addr);
d5d8184d
CD
856 else
857 get_page(virt_to_page(pte));
858
859 return 0;
860}
861
862/**
863 * kvm_phys_addr_ioremap - map a device range to guest IPA
864 *
865 * @kvm: The KVM pointer
866 * @guest_ipa: The IPA at which to insert the mapping
867 * @pa: The physical address of the device
868 * @size: The size of the mapping
869 */
870int kvm_phys_addr_ioremap(struct kvm *kvm, phys_addr_t guest_ipa,
c40f2f8f 871 phys_addr_t pa, unsigned long size, bool writable)
d5d8184d
CD
872{
873 phys_addr_t addr, end;
874 int ret = 0;
875 unsigned long pfn;
876 struct kvm_mmu_memory_cache cache = { 0, };
877
878 end = (guest_ipa + size + PAGE_SIZE - 1) & PAGE_MASK;
879 pfn = __phys_to_pfn(pa);
880
881 for (addr = guest_ipa; addr < end; addr += PAGE_SIZE) {
c62ee2b2 882 pte_t pte = pfn_pte(pfn, PAGE_S2_DEVICE);
d5d8184d 883
c40f2f8f
AB
884 if (writable)
885 kvm_set_s2pte_writable(&pte);
886
38f791a4
CD
887 ret = mmu_topup_memory_cache(&cache, KVM_MMU_CACHE_MIN_PAGES,
888 KVM_NR_MEM_OBJS);
d5d8184d
CD
889 if (ret)
890 goto out;
891 spin_lock(&kvm->mmu_lock);
15a49a44
MS
892 ret = stage2_set_pte(kvm, &cache, addr, &pte,
893 KVM_S2PTE_FLAG_IS_IOMAP);
d5d8184d
CD
894 spin_unlock(&kvm->mmu_lock);
895 if (ret)
896 goto out;
897
898 pfn++;
899 }
900
901out:
902 mmu_free_memory_cache(&cache);
903 return ret;
904}
905
9b5fdb97
CD
906static bool transparent_hugepage_adjust(pfn_t *pfnp, phys_addr_t *ipap)
907{
908 pfn_t pfn = *pfnp;
909 gfn_t gfn = *ipap >> PAGE_SHIFT;
910
911 if (PageTransCompound(pfn_to_page(pfn))) {
912 unsigned long mask;
913 /*
914 * The address we faulted on is backed by a transparent huge
915 * page. However, because we map the compound huge page and
916 * not the individual tail page, we need to transfer the
917 * refcount to the head page. We have to be careful that the
918 * THP doesn't start to split while we are adjusting the
919 * refcounts.
920 *
921 * We are sure this doesn't happen, because mmu_notifier_retry
922 * was successful and we are holding the mmu_lock, so if this
923 * THP is trying to split, it will be blocked in the mmu
924 * notifier before touching any of the pages, specifically
925 * before being able to call __split_huge_page_refcount().
926 *
927 * We can therefore safely transfer the refcount from PG_tail
928 * to PG_head and switch the pfn from a tail page to the head
929 * page accordingly.
930 */
931 mask = PTRS_PER_PMD - 1;
932 VM_BUG_ON((gfn & mask) != (pfn & mask));
933 if (pfn & mask) {
934 *ipap &= PMD_MASK;
935 kvm_release_pfn_clean(pfn);
936 pfn &= ~mask;
937 kvm_get_pfn(pfn);
938 *pfnp = pfn;
939 }
940
941 return true;
942 }
943
944 return false;
945}
946
a7d079ce
AB
947static bool kvm_is_write_fault(struct kvm_vcpu *vcpu)
948{
949 if (kvm_vcpu_trap_is_iabt(vcpu))
950 return false;
951
952 return kvm_vcpu_dabt_iswrite(vcpu);
953}
954
bb55e9b1
AB
955static bool kvm_is_device_pfn(unsigned long pfn)
956{
957 return !pfn_valid(pfn);
958}
959
c6473555
MS
960/**
961 * stage2_wp_ptes - write protect PMD range
962 * @pmd: pointer to pmd entry
963 * @addr: range start address
964 * @end: range end address
965 */
966static void stage2_wp_ptes(pmd_t *pmd, phys_addr_t addr, phys_addr_t end)
967{
968 pte_t *pte;
969
970 pte = pte_offset_kernel(pmd, addr);
971 do {
972 if (!pte_none(*pte)) {
973 if (!kvm_s2pte_readonly(pte))
974 kvm_set_s2pte_readonly(pte);
975 }
976 } while (pte++, addr += PAGE_SIZE, addr != end);
977}
978
979/**
980 * stage2_wp_pmds - write protect PUD range
981 * @pud: pointer to pud entry
982 * @addr: range start address
983 * @end: range end address
984 */
985static void stage2_wp_pmds(pud_t *pud, phys_addr_t addr, phys_addr_t end)
986{
987 pmd_t *pmd;
988 phys_addr_t next;
989
990 pmd = pmd_offset(pud, addr);
991
992 do {
993 next = kvm_pmd_addr_end(addr, end);
994 if (!pmd_none(*pmd)) {
995 if (kvm_pmd_huge(*pmd)) {
996 if (!kvm_s2pmd_readonly(pmd))
997 kvm_set_s2pmd_readonly(pmd);
998 } else {
999 stage2_wp_ptes(pmd, addr, next);
1000 }
1001 }
1002 } while (pmd++, addr = next, addr != end);
1003}
1004
1005/**
1006 * stage2_wp_puds - write protect PGD range
1007 * @pgd: pointer to pgd entry
1008 * @addr: range start address
1009 * @end: range end address
1010 *
1011 * Process PUD entries, for a huge PUD we cause a panic.
1012 */
1013static void stage2_wp_puds(pgd_t *pgd, phys_addr_t addr, phys_addr_t end)
1014{
1015 pud_t *pud;
1016 phys_addr_t next;
1017
1018 pud = pud_offset(pgd, addr);
1019 do {
1020 next = kvm_pud_addr_end(addr, end);
1021 if (!pud_none(*pud)) {
1022 /* TODO:PUD not supported, revisit later if supported */
1023 BUG_ON(kvm_pud_huge(*pud));
1024 stage2_wp_pmds(pud, addr, next);
1025 }
1026 } while (pud++, addr = next, addr != end);
1027}
1028
1029/**
1030 * stage2_wp_range() - write protect stage2 memory region range
1031 * @kvm: The KVM pointer
1032 * @addr: Start address of range
1033 * @end: End address of range
1034 */
1035static void stage2_wp_range(struct kvm *kvm, phys_addr_t addr, phys_addr_t end)
1036{
1037 pgd_t *pgd;
1038 phys_addr_t next;
1039
1040 pgd = kvm->arch.pgd + pgd_index(addr);
1041 do {
1042 /*
1043 * Release kvm_mmu_lock periodically if the memory region is
1044 * large. Otherwise, we may see kernel panics with
227ea818
CD
1045 * CONFIG_DETECT_HUNG_TASK, CONFIG_LOCKUP_DETECTOR,
1046 * CONFIG_LOCKDEP. Additionally, holding the lock too long
c6473555
MS
1047 * will also starve other vCPUs.
1048 */
1049 if (need_resched() || spin_needbreak(&kvm->mmu_lock))
1050 cond_resched_lock(&kvm->mmu_lock);
1051
1052 next = kvm_pgd_addr_end(addr, end);
1053 if (pgd_present(*pgd))
1054 stage2_wp_puds(pgd, addr, next);
1055 } while (pgd++, addr = next, addr != end);
1056}
1057
1058/**
1059 * kvm_mmu_wp_memory_region() - write protect stage 2 entries for memory slot
1060 * @kvm: The KVM pointer
1061 * @slot: The memory slot to write protect
1062 *
1063 * Called to start logging dirty pages after memory region
1064 * KVM_MEM_LOG_DIRTY_PAGES operation is called. After this function returns
1065 * all present PMD and PTEs are write protected in the memory region.
1066 * Afterwards read of dirty page log can be called.
1067 *
1068 * Acquires kvm_mmu_lock. Called with kvm->slots_lock mutex acquired,
1069 * serializing operations for VM memory regions.
1070 */
1071void kvm_mmu_wp_memory_region(struct kvm *kvm, int slot)
1072{
1073 struct kvm_memory_slot *memslot = id_to_memslot(kvm->memslots, slot);
1074 phys_addr_t start = memslot->base_gfn << PAGE_SHIFT;
1075 phys_addr_t end = (memslot->base_gfn + memslot->npages) << PAGE_SHIFT;
1076
1077 spin_lock(&kvm->mmu_lock);
1078 stage2_wp_range(kvm, start, end);
1079 spin_unlock(&kvm->mmu_lock);
1080 kvm_flush_remote_tlbs(kvm);
1081}
53c810c3
MS
1082
1083/**
1084 * kvm_arch_mmu_write_protect_pt_masked() - write protect dirty pages
1085 * @kvm: The KVM pointer
1086 * @slot: The memory slot associated with mask
1087 * @gfn_offset: The gfn offset in memory slot
1088 * @mask: The mask of dirty pages at offset 'gfn_offset' in this memory
1089 * slot to be write protected
1090 *
1091 * Walks bits set in mask write protects the associated pte's. Caller must
1092 * acquire kvm_mmu_lock.
1093 */
1094void kvm_arch_mmu_write_protect_pt_masked(struct kvm *kvm,
1095 struct kvm_memory_slot *slot,
1096 gfn_t gfn_offset, unsigned long mask)
1097{
1098 phys_addr_t base_gfn = slot->base_gfn + gfn_offset;
1099 phys_addr_t start = (base_gfn + __ffs(mask)) << PAGE_SHIFT;
1100 phys_addr_t end = (base_gfn + __fls(mask) + 1) << PAGE_SHIFT;
1101
1102 stage2_wp_range(kvm, start, end);
1103}
c6473555 1104
94f8e641 1105static int user_mem_abort(struct kvm_vcpu *vcpu, phys_addr_t fault_ipa,
98047888 1106 struct kvm_memory_slot *memslot, unsigned long hva,
94f8e641
CD
1107 unsigned long fault_status)
1108{
94f8e641 1109 int ret;
9b5fdb97 1110 bool write_fault, writable, hugetlb = false, force_pte = false;
94f8e641 1111 unsigned long mmu_seq;
ad361f09 1112 gfn_t gfn = fault_ipa >> PAGE_SHIFT;
ad361f09 1113 struct kvm *kvm = vcpu->kvm;
94f8e641 1114 struct kvm_mmu_memory_cache *memcache = &vcpu->arch.mmu_page_cache;
ad361f09
CD
1115 struct vm_area_struct *vma;
1116 pfn_t pfn;
b8865767 1117 pgprot_t mem_type = PAGE_S2;
840f4bfb 1118 bool fault_ipa_uncached;
15a49a44
MS
1119 bool logging_active = memslot_is_logging(memslot);
1120 unsigned long flags = 0;
94f8e641 1121
a7d079ce 1122 write_fault = kvm_is_write_fault(vcpu);
94f8e641
CD
1123 if (fault_status == FSC_PERM && !write_fault) {
1124 kvm_err("Unexpected L2 read permission error\n");
1125 return -EFAULT;
1126 }
1127
ad361f09
CD
1128 /* Let's check if we will get back a huge page backed by hugetlbfs */
1129 down_read(&current->mm->mmap_sem);
1130 vma = find_vma_intersection(current->mm, hva, hva + 1);
37b54408
AB
1131 if (unlikely(!vma)) {
1132 kvm_err("Failed to find VMA for hva 0x%lx\n", hva);
1133 up_read(&current->mm->mmap_sem);
1134 return -EFAULT;
1135 }
1136
15a49a44 1137 if (is_vm_hugetlb_page(vma) && !logging_active) {
ad361f09
CD
1138 hugetlb = true;
1139 gfn = (fault_ipa & PMD_MASK) >> PAGE_SHIFT;
9b5fdb97
CD
1140 } else {
1141 /*
136d737f
MZ
1142 * Pages belonging to memslots that don't have the same
1143 * alignment for userspace and IPA cannot be mapped using
1144 * block descriptors even if the pages belong to a THP for
1145 * the process, because the stage-2 block descriptor will
1146 * cover more than a single THP and we loose atomicity for
1147 * unmapping, updates, and splits of the THP or other pages
1148 * in the stage-2 block range.
9b5fdb97 1149 */
136d737f
MZ
1150 if ((memslot->userspace_addr & ~PMD_MASK) !=
1151 ((memslot->base_gfn << PAGE_SHIFT) & ~PMD_MASK))
9b5fdb97 1152 force_pte = true;
ad361f09
CD
1153 }
1154 up_read(&current->mm->mmap_sem);
1155
94f8e641 1156 /* We need minimum second+third level pages */
38f791a4
CD
1157 ret = mmu_topup_memory_cache(memcache, KVM_MMU_CACHE_MIN_PAGES,
1158 KVM_NR_MEM_OBJS);
94f8e641
CD
1159 if (ret)
1160 return ret;
1161
1162 mmu_seq = vcpu->kvm->mmu_notifier_seq;
1163 /*
1164 * Ensure the read of mmu_notifier_seq happens before we call
1165 * gfn_to_pfn_prot (which calls get_user_pages), so that we don't risk
1166 * the page we just got a reference to gets unmapped before we have a
1167 * chance to grab the mmu_lock, which ensure that if the page gets
1168 * unmapped afterwards, the call to kvm_unmap_hva will take it away
1169 * from us again properly. This smp_rmb() interacts with the smp_wmb()
1170 * in kvm_mmu_notifier_invalidate_<page|range_end>.
1171 */
1172 smp_rmb();
1173
ad361f09 1174 pfn = gfn_to_pfn_prot(kvm, gfn, write_fault, &writable);
94f8e641
CD
1175 if (is_error_pfn(pfn))
1176 return -EFAULT;
1177
15a49a44 1178 if (kvm_is_device_pfn(pfn)) {
b8865767 1179 mem_type = PAGE_S2_DEVICE;
15a49a44
MS
1180 flags |= KVM_S2PTE_FLAG_IS_IOMAP;
1181 } else if (logging_active) {
1182 /*
1183 * Faults on pages in a memslot with logging enabled
1184 * should not be mapped with huge pages (it introduces churn
1185 * and performance degradation), so force a pte mapping.
1186 */
1187 force_pte = true;
1188 flags |= KVM_S2_FLAG_LOGGING_ACTIVE;
1189
1190 /*
1191 * Only actually map the page as writable if this was a write
1192 * fault.
1193 */
1194 if (!write_fault)
1195 writable = false;
1196 }
b8865767 1197
ad361f09
CD
1198 spin_lock(&kvm->mmu_lock);
1199 if (mmu_notifier_retry(kvm, mmu_seq))
94f8e641 1200 goto out_unlock;
15a49a44 1201
9b5fdb97
CD
1202 if (!hugetlb && !force_pte)
1203 hugetlb = transparent_hugepage_adjust(&pfn, &fault_ipa);
ad361f09 1204
849260c7 1205 fault_ipa_uncached = memslot->flags & KVM_MEMSLOT_INCOHERENT;
840f4bfb 1206
ad361f09 1207 if (hugetlb) {
b8865767 1208 pmd_t new_pmd = pfn_pmd(pfn, mem_type);
ad361f09
CD
1209 new_pmd = pmd_mkhuge(new_pmd);
1210 if (writable) {
1211 kvm_set_s2pmd_writable(&new_pmd);
1212 kvm_set_pfn_dirty(pfn);
1213 }
840f4bfb
LE
1214 coherent_cache_guest_page(vcpu, hva & PMD_MASK, PMD_SIZE,
1215 fault_ipa_uncached);
ad361f09
CD
1216 ret = stage2_set_pmd_huge(kvm, memcache, fault_ipa, &new_pmd);
1217 } else {
b8865767 1218 pte_t new_pte = pfn_pte(pfn, mem_type);
15a49a44 1219
ad361f09
CD
1220 if (writable) {
1221 kvm_set_s2pte_writable(&new_pte);
1222 kvm_set_pfn_dirty(pfn);
15a49a44 1223 mark_page_dirty(kvm, gfn);
ad361f09 1224 }
840f4bfb
LE
1225 coherent_cache_guest_page(vcpu, hva, PAGE_SIZE,
1226 fault_ipa_uncached);
15a49a44 1227 ret = stage2_set_pte(kvm, memcache, fault_ipa, &new_pte, flags);
94f8e641 1228 }
ad361f09 1229
94f8e641 1230out_unlock:
ad361f09 1231 spin_unlock(&kvm->mmu_lock);
94f8e641 1232 kvm_release_pfn_clean(pfn);
ad361f09 1233 return ret;
94f8e641
CD
1234}
1235
1236/**
1237 * kvm_handle_guest_abort - handles all 2nd stage aborts
1238 * @vcpu: the VCPU pointer
1239 * @run: the kvm_run structure
1240 *
1241 * Any abort that gets to the host is almost guaranteed to be caused by a
1242 * missing second stage translation table entry, which can mean that either the
1243 * guest simply needs more memory and we must allocate an appropriate page or it
1244 * can mean that the guest tried to access I/O memory, which is emulated by user
1245 * space. The distinction is based on the IPA causing the fault and whether this
1246 * memory region has been registered as standard RAM by user space.
1247 */
342cd0ab
CD
1248int kvm_handle_guest_abort(struct kvm_vcpu *vcpu, struct kvm_run *run)
1249{
94f8e641
CD
1250 unsigned long fault_status;
1251 phys_addr_t fault_ipa;
1252 struct kvm_memory_slot *memslot;
98047888
CD
1253 unsigned long hva;
1254 bool is_iabt, write_fault, writable;
94f8e641
CD
1255 gfn_t gfn;
1256 int ret, idx;
1257
52d1dba9 1258 is_iabt = kvm_vcpu_trap_is_iabt(vcpu);
7393b599 1259 fault_ipa = kvm_vcpu_get_fault_ipa(vcpu);
94f8e641 1260
7393b599
MZ
1261 trace_kvm_guest_fault(*vcpu_pc(vcpu), kvm_vcpu_get_hsr(vcpu),
1262 kvm_vcpu_get_hfar(vcpu), fault_ipa);
94f8e641
CD
1263
1264 /* Check the stage-2 fault is trans. fault or write fault */
0496daa5 1265 fault_status = kvm_vcpu_trap_get_fault_type(vcpu);
94f8e641 1266 if (fault_status != FSC_FAULT && fault_status != FSC_PERM) {
0496daa5
CD
1267 kvm_err("Unsupported FSC: EC=%#x xFSC=%#lx ESR_EL2=%#lx\n",
1268 kvm_vcpu_trap_get_class(vcpu),
1269 (unsigned long)kvm_vcpu_trap_get_fault(vcpu),
1270 (unsigned long)kvm_vcpu_get_hsr(vcpu));
94f8e641
CD
1271 return -EFAULT;
1272 }
1273
1274 idx = srcu_read_lock(&vcpu->kvm->srcu);
1275
1276 gfn = fault_ipa >> PAGE_SHIFT;
98047888
CD
1277 memslot = gfn_to_memslot(vcpu->kvm, gfn);
1278 hva = gfn_to_hva_memslot_prot(memslot, gfn, &writable);
a7d079ce 1279 write_fault = kvm_is_write_fault(vcpu);
98047888 1280 if (kvm_is_error_hva(hva) || (write_fault && !writable)) {
94f8e641
CD
1281 if (is_iabt) {
1282 /* Prefetch Abort on I/O address */
7393b599 1283 kvm_inject_pabt(vcpu, kvm_vcpu_get_hfar(vcpu));
94f8e641
CD
1284 ret = 1;
1285 goto out_unlock;
1286 }
1287
cfe3950c
MZ
1288 /*
1289 * The IPA is reported as [MAX:12], so we need to
1290 * complement it with the bottom 12 bits from the
1291 * faulting VA. This is always 12 bits, irrespective
1292 * of the page size.
1293 */
1294 fault_ipa |= kvm_vcpu_get_hfar(vcpu) & ((1 << 12) - 1);
45e96ea6 1295 ret = io_mem_abort(vcpu, run, fault_ipa);
94f8e641
CD
1296 goto out_unlock;
1297 }
1298
c3058d5d
CD
1299 /* Userspace should not be able to register out-of-bounds IPAs */
1300 VM_BUG_ON(fault_ipa >= KVM_PHYS_SIZE);
1301
98047888 1302 ret = user_mem_abort(vcpu, fault_ipa, memslot, hva, fault_status);
94f8e641
CD
1303 if (ret == 0)
1304 ret = 1;
1305out_unlock:
1306 srcu_read_unlock(&vcpu->kvm->srcu, idx);
1307 return ret;
342cd0ab
CD
1308}
1309
d5d8184d
CD
1310static void handle_hva_to_gpa(struct kvm *kvm,
1311 unsigned long start,
1312 unsigned long end,
1313 void (*handler)(struct kvm *kvm,
1314 gpa_t gpa, void *data),
1315 void *data)
1316{
1317 struct kvm_memslots *slots;
1318 struct kvm_memory_slot *memslot;
1319
1320 slots = kvm_memslots(kvm);
1321
1322 /* we only care about the pages that the guest sees */
1323 kvm_for_each_memslot(memslot, slots) {
1324 unsigned long hva_start, hva_end;
1325 gfn_t gfn, gfn_end;
1326
1327 hva_start = max(start, memslot->userspace_addr);
1328 hva_end = min(end, memslot->userspace_addr +
1329 (memslot->npages << PAGE_SHIFT));
1330 if (hva_start >= hva_end)
1331 continue;
1332
1333 /*
1334 * {gfn(page) | page intersects with [hva_start, hva_end)} =
1335 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
1336 */
1337 gfn = hva_to_gfn_memslot(hva_start, memslot);
1338 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
1339
1340 for (; gfn < gfn_end; ++gfn) {
1341 gpa_t gpa = gfn << PAGE_SHIFT;
1342 handler(kvm, gpa, data);
1343 }
1344 }
1345}
1346
1347static void kvm_unmap_hva_handler(struct kvm *kvm, gpa_t gpa, void *data)
1348{
1349 unmap_stage2_range(kvm, gpa, PAGE_SIZE);
d5d8184d
CD
1350}
1351
1352int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1353{
1354 unsigned long end = hva + PAGE_SIZE;
1355
1356 if (!kvm->arch.pgd)
1357 return 0;
1358
1359 trace_kvm_unmap_hva(hva);
1360 handle_hva_to_gpa(kvm, hva, end, &kvm_unmap_hva_handler, NULL);
1361 return 0;
1362}
1363
1364int kvm_unmap_hva_range(struct kvm *kvm,
1365 unsigned long start, unsigned long end)
1366{
1367 if (!kvm->arch.pgd)
1368 return 0;
1369
1370 trace_kvm_unmap_hva_range(start, end);
1371 handle_hva_to_gpa(kvm, start, end, &kvm_unmap_hva_handler, NULL);
1372 return 0;
1373}
1374
1375static void kvm_set_spte_handler(struct kvm *kvm, gpa_t gpa, void *data)
1376{
1377 pte_t *pte = (pte_t *)data;
1378
15a49a44
MS
1379 /*
1380 * We can always call stage2_set_pte with KVM_S2PTE_FLAG_LOGGING_ACTIVE
1381 * flag clear because MMU notifiers will have unmapped a huge PMD before
1382 * calling ->change_pte() (which in turn calls kvm_set_spte_hva()) and
1383 * therefore stage2_set_pte() never needs to clear out a huge PMD
1384 * through this calling path.
1385 */
1386 stage2_set_pte(kvm, NULL, gpa, pte, 0);
d5d8184d
CD
1387}
1388
1389
1390void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1391{
1392 unsigned long end = hva + PAGE_SIZE;
1393 pte_t stage2_pte;
1394
1395 if (!kvm->arch.pgd)
1396 return;
1397
1398 trace_kvm_set_spte_hva(hva);
1399 stage2_pte = pfn_pte(pte_pfn(pte), PAGE_S2);
1400 handle_hva_to_gpa(kvm, hva, end, &kvm_set_spte_handler, &stage2_pte);
1401}
1402
1403void kvm_mmu_free_memory_caches(struct kvm_vcpu *vcpu)
1404{
1405 mmu_free_memory_cache(&vcpu->arch.mmu_page_cache);
1406}
1407
342cd0ab
CD
1408phys_addr_t kvm_mmu_get_httbr(void)
1409{
342cd0ab
CD
1410 return virt_to_phys(hyp_pgd);
1411}
1412
5a677ce0
MZ
1413phys_addr_t kvm_mmu_get_boot_httbr(void)
1414{
1415 return virt_to_phys(boot_hyp_pgd);
1416}
1417
1418phys_addr_t kvm_get_idmap_vector(void)
1419{
1420 return hyp_idmap_vector;
1421}
1422
342cd0ab
CD
1423int kvm_mmu_init(void)
1424{
2fb41059
MZ
1425 int err;
1426
4fda342c
SS
1427 hyp_idmap_start = kvm_virt_to_phys(__hyp_idmap_text_start);
1428 hyp_idmap_end = kvm_virt_to_phys(__hyp_idmap_text_end);
1429 hyp_idmap_vector = kvm_virt_to_phys(__kvm_hyp_init);
5a677ce0
MZ
1430
1431 if ((hyp_idmap_start ^ hyp_idmap_end) & PAGE_MASK) {
1432 /*
1433 * Our init code is crossing a page boundary. Allocate
1434 * a bounce page, copy the code over and use that.
1435 */
1436 size_t len = __hyp_idmap_text_end - __hyp_idmap_text_start;
1437 phys_addr_t phys_base;
1438
5d4e08c4 1439 init_bounce_page = (void *)__get_free_page(GFP_KERNEL);
5a677ce0
MZ
1440 if (!init_bounce_page) {
1441 kvm_err("Couldn't allocate HYP init bounce page\n");
1442 err = -ENOMEM;
1443 goto out;
1444 }
1445
1446 memcpy(init_bounce_page, __hyp_idmap_text_start, len);
1447 /*
1448 * Warning: the code we just copied to the bounce page
1449 * must be flushed to the point of coherency.
1450 * Otherwise, the data may be sitting in L2, and HYP
1451 * mode won't be able to observe it as it runs with
1452 * caches off at that point.
1453 */
1454 kvm_flush_dcache_to_poc(init_bounce_page, len);
1455
4fda342c 1456 phys_base = kvm_virt_to_phys(init_bounce_page);
5a677ce0
MZ
1457 hyp_idmap_vector += phys_base - hyp_idmap_start;
1458 hyp_idmap_start = phys_base;
1459 hyp_idmap_end = phys_base + len;
1460
1461 kvm_info("Using HYP init bounce page @%lx\n",
1462 (unsigned long)phys_base);
1463 }
1464
38f791a4
CD
1465 hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
1466 boot_hyp_pgd = (pgd_t *)__get_free_pages(GFP_KERNEL | __GFP_ZERO, hyp_pgd_order);
5d4e08c4 1467
5a677ce0 1468 if (!hyp_pgd || !boot_hyp_pgd) {
d5d8184d 1469 kvm_err("Hyp mode PGD not allocated\n");
2fb41059
MZ
1470 err = -ENOMEM;
1471 goto out;
1472 }
1473
1474 /* Create the idmap in the boot page tables */
1475 err = __create_hyp_mappings(boot_hyp_pgd,
1476 hyp_idmap_start, hyp_idmap_end,
1477 __phys_to_pfn(hyp_idmap_start),
1478 PAGE_HYP);
1479
1480 if (err) {
1481 kvm_err("Failed to idmap %lx-%lx\n",
1482 hyp_idmap_start, hyp_idmap_end);
1483 goto out;
d5d8184d
CD
1484 }
1485
5a677ce0
MZ
1486 /* Map the very same page at the trampoline VA */
1487 err = __create_hyp_mappings(boot_hyp_pgd,
1488 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1489 __phys_to_pfn(hyp_idmap_start),
1490 PAGE_HYP);
1491 if (err) {
1492 kvm_err("Failed to map trampoline @%lx into boot HYP pgd\n",
1493 TRAMPOLINE_VA);
1494 goto out;
1495 }
1496
1497 /* Map the same page again into the runtime page tables */
1498 err = __create_hyp_mappings(hyp_pgd,
1499 TRAMPOLINE_VA, TRAMPOLINE_VA + PAGE_SIZE,
1500 __phys_to_pfn(hyp_idmap_start),
1501 PAGE_HYP);
1502 if (err) {
1503 kvm_err("Failed to map trampoline @%lx into runtime HYP pgd\n",
1504 TRAMPOLINE_VA);
1505 goto out;
1506 }
1507
d5d8184d 1508 return 0;
2fb41059 1509out:
4f728276 1510 free_hyp_pgds();
2fb41059 1511 return err;
342cd0ab 1512}
df6ce24f
EA
1513
1514void kvm_arch_commit_memory_region(struct kvm *kvm,
1515 struct kvm_userspace_memory_region *mem,
1516 const struct kvm_memory_slot *old,
1517 enum kvm_mr_change change)
1518{
c6473555
MS
1519 /*
1520 * At this point memslot has been committed and there is an
1521 * allocated dirty_bitmap[], dirty pages will be be tracked while the
1522 * memory slot is write protected.
1523 */
1524 if (change != KVM_MR_DELETE && mem->flags & KVM_MEM_LOG_DIRTY_PAGES)
1525 kvm_mmu_wp_memory_region(kvm, mem->slot);
df6ce24f
EA
1526}
1527
1528int kvm_arch_prepare_memory_region(struct kvm *kvm,
1529 struct kvm_memory_slot *memslot,
1530 struct kvm_userspace_memory_region *mem,
1531 enum kvm_mr_change change)
1532{
8eef9123
AB
1533 hva_t hva = mem->userspace_addr;
1534 hva_t reg_end = hva + mem->memory_size;
1535 bool writable = !(mem->flags & KVM_MEM_READONLY);
1536 int ret = 0;
1537
15a49a44
MS
1538 if (change != KVM_MR_CREATE && change != KVM_MR_MOVE &&
1539 change != KVM_MR_FLAGS_ONLY)
8eef9123
AB
1540 return 0;
1541
c3058d5d
CD
1542 /*
1543 * Prevent userspace from creating a memory region outside of the IPA
1544 * space addressable by the KVM guest IPA space.
1545 */
1546 if (memslot->base_gfn + memslot->npages >=
1547 (KVM_PHYS_SIZE >> PAGE_SHIFT))
1548 return -EFAULT;
1549
8eef9123
AB
1550 /*
1551 * A memory region could potentially cover multiple VMAs, and any holes
1552 * between them, so iterate over all of them to find out if we can map
1553 * any of them right now.
1554 *
1555 * +--------------------------------------------+
1556 * +---------------+----------------+ +----------------+
1557 * | : VMA 1 | VMA 2 | | VMA 3 : |
1558 * +---------------+----------------+ +----------------+
1559 * | memory region |
1560 * +--------------------------------------------+
1561 */
1562 do {
1563 struct vm_area_struct *vma = find_vma(current->mm, hva);
1564 hva_t vm_start, vm_end;
1565
1566 if (!vma || vma->vm_start >= reg_end)
1567 break;
1568
1569 /*
1570 * Mapping a read-only VMA is only allowed if the
1571 * memory region is configured as read-only.
1572 */
1573 if (writable && !(vma->vm_flags & VM_WRITE)) {
1574 ret = -EPERM;
1575 break;
1576 }
1577
1578 /*
1579 * Take the intersection of this VMA with the memory region
1580 */
1581 vm_start = max(hva, vma->vm_start);
1582 vm_end = min(reg_end, vma->vm_end);
1583
1584 if (vma->vm_flags & VM_PFNMAP) {
1585 gpa_t gpa = mem->guest_phys_addr +
1586 (vm_start - mem->userspace_addr);
1587 phys_addr_t pa = (vma->vm_pgoff << PAGE_SHIFT) +
1588 vm_start - vma->vm_start;
1589
15a49a44
MS
1590 /* IO region dirty page logging not allowed */
1591 if (memslot->flags & KVM_MEM_LOG_DIRTY_PAGES)
1592 return -EINVAL;
1593
8eef9123
AB
1594 ret = kvm_phys_addr_ioremap(kvm, gpa, pa,
1595 vm_end - vm_start,
1596 writable);
1597 if (ret)
1598 break;
1599 }
1600 hva = vm_end;
1601 } while (hva < reg_end);
1602
15a49a44
MS
1603 if (change == KVM_MR_FLAGS_ONLY)
1604 return ret;
1605
849260c7
AB
1606 spin_lock(&kvm->mmu_lock);
1607 if (ret)
8eef9123 1608 unmap_stage2_range(kvm, mem->guest_phys_addr, mem->memory_size);
849260c7
AB
1609 else
1610 stage2_flush_memslot(kvm, memslot);
1611 spin_unlock(&kvm->mmu_lock);
8eef9123 1612 return ret;
df6ce24f
EA
1613}
1614
1615void kvm_arch_free_memslot(struct kvm *kvm, struct kvm_memory_slot *free,
1616 struct kvm_memory_slot *dont)
1617{
1618}
1619
1620int kvm_arch_create_memslot(struct kvm *kvm, struct kvm_memory_slot *slot,
1621 unsigned long npages)
1622{
849260c7
AB
1623 /*
1624 * Readonly memslots are not incoherent with the caches by definition,
1625 * but in practice, they are used mostly to emulate ROMs or NOR flashes
1626 * that the guest may consider devices and hence map as uncached.
1627 * To prevent incoherency issues in these cases, tag all readonly
1628 * regions as incoherent.
1629 */
1630 if (slot->flags & KVM_MEM_READONLY)
1631 slot->flags |= KVM_MEMSLOT_INCOHERENT;
df6ce24f
EA
1632 return 0;
1633}
1634
1635void kvm_arch_memslots_updated(struct kvm *kvm)
1636{
1637}
1638
1639void kvm_arch_flush_shadow_all(struct kvm *kvm)
1640{
1641}
1642
1643void kvm_arch_flush_shadow_memslot(struct kvm *kvm,
1644 struct kvm_memory_slot *slot)
1645{
8eef9123
AB
1646 gpa_t gpa = slot->base_gfn << PAGE_SHIFT;
1647 phys_addr_t size = slot->npages << PAGE_SHIFT;
1648
1649 spin_lock(&kvm->mmu_lock);
1650 unmap_stage2_range(kvm, gpa, size);
1651 spin_unlock(&kvm->mmu_lock);
df6ce24f 1652}
This page took 0.178798 seconds and 5 git commands to generate.