Merge branch 'fixes' of git://git.armlinux.org.uk/~rmk/linux-arm
[deliverable/linux.git] / arch / powerpc / mm / hugetlbpage.c
CommitLineData
1da177e4 1/*
41151e77 2 * PPC Huge TLB Page Support for Kernel.
1da177e4
LT
3 *
4 * Copyright (C) 2003 David Gibson, IBM Corporation.
41151e77 5 * Copyright (C) 2011 Becky Bruce, Freescale Semiconductor
1da177e4
LT
6 *
7 * Based on the IA-32 version:
8 * Copyright (C) 2002, Rohit Seth <rohit.seth@intel.com>
9 */
10
1da177e4 11#include <linux/mm.h>
883a3e52 12#include <linux/io.h>
5a0e3ad6 13#include <linux/slab.h>
1da177e4 14#include <linux/hugetlb.h>
342d3db7 15#include <linux/export.h>
41151e77
BB
16#include <linux/of_fdt.h>
17#include <linux/memblock.h>
18#include <linux/bootmem.h>
13020be8 19#include <linux/moduleparam.h>
883a3e52 20#include <asm/pgtable.h>
1da177e4
LT
21#include <asm/pgalloc.h>
22#include <asm/tlb.h>
41151e77 23#include <asm/setup.h>
29409997
AK
24#include <asm/hugetlb.h>
25
26#ifdef CONFIG_HUGETLB_PAGE
1da177e4 27
91224346
JT
28#define PAGE_SHIFT_64K 16
29#define PAGE_SHIFT_16M 24
30#define PAGE_SHIFT_16G 34
4ec161cf 31
41151e77 32unsigned int HPAGE_SHIFT;
ec4b2c0c 33
41151e77
BB
34/*
35 * Tracks gpages after the device tree is scanned and before the
a6146888
BB
36 * huge_boot_pages list is ready. On non-Freescale implementations, this is
37 * just used to track 16G pages and so is a single array. FSL-based
38 * implementations may have more than one gpage size, so we need multiple
39 * arrays
41151e77 40 */
881fde1d 41#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
42#define MAX_NUMBER_GPAGES 128
43struct psize_gpages {
44 u64 gpage_list[MAX_NUMBER_GPAGES];
45 unsigned int nr_gpages;
46};
47static struct psize_gpages gpage_freearray[MMU_PAGE_COUNT];
881fde1d
BB
48#else
49#define MAX_NUMBER_GPAGES 1024
50static u64 gpage_freearray[MAX_NUMBER_GPAGES];
51static unsigned nr_gpages;
41151e77 52#endif
f10a04c0 53
a4fe3ce7
DG
54#define hugepd_none(hpd) ((hpd).pd == 0)
55
a4fe3ce7
DG
56pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
57{
12bc9f6f 58 /* Only called for hugetlbfs pages, hence can ignore THP */
891121e6 59 return __find_linux_pte_or_hugepte(mm->pgd, addr, NULL, NULL);
a4fe3ce7
DG
60}
61
f10a04c0 62static int __hugepte_alloc(struct mm_struct *mm, hugepd_t *hpdp,
a4fe3ce7 63 unsigned long address, unsigned pdshift, unsigned pshift)
f10a04c0 64{
41151e77
BB
65 struct kmem_cache *cachep;
66 pte_t *new;
67
881fde1d 68#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
69 int i;
70 int num_hugepd = 1 << (pshift - pdshift);
71 cachep = hugepte_cache;
881fde1d
BB
72#else
73 cachep = PGT_CACHE(pdshift - pshift);
41151e77
BB
74#endif
75
76 new = kmem_cache_zalloc(cachep, GFP_KERNEL|__GFP_REPEAT);
f10a04c0 77
a4fe3ce7
DG
78 BUG_ON(pshift > HUGEPD_SHIFT_MASK);
79 BUG_ON((unsigned long)new & HUGEPD_SHIFT_MASK);
80
f10a04c0
DG
81 if (! new)
82 return -ENOMEM;
83
84 spin_lock(&mm->page_table_lock);
881fde1d 85#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
86 /*
87 * We have multiple higher-level entries that point to the same
88 * actual pte location. Fill in each as we go and backtrack on error.
89 * We need all of these so the DTLB pgtable walk code can find the
90 * right higher-level entry without knowing if it's a hugepage or not.
91 */
92 for (i = 0; i < num_hugepd; i++, hpdp++) {
93 if (unlikely(!hugepd_none(*hpdp)))
94 break;
95 else
cf9427b8 96 /* We use the old format for PPC_FSL_BOOK3E */
41151e77
BB
97 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
98 }
99 /* If we bailed from the for loop early, an error occurred, clean up */
100 if (i < num_hugepd) {
101 for (i = i - 1 ; i >= 0; i--, hpdp--)
102 hpdp->pd = 0;
103 kmem_cache_free(cachep, new);
104 }
a1cd5419
BB
105#else
106 if (!hugepd_none(*hpdp))
107 kmem_cache_free(cachep, new);
cf9427b8
AK
108 else {
109#ifdef CONFIG_PPC_BOOK3S_64
c61a8843 110 hpdp->pd = __pa(new) | (shift_to_mmu_psize(pshift) << 2);
cf9427b8 111#else
a1cd5419 112 hpdp->pd = ((unsigned long)new & ~PD_HUGE) | pshift;
cf9427b8
AK
113#endif
114 }
41151e77 115#endif
f10a04c0
DG
116 spin_unlock(&mm->page_table_lock);
117 return 0;
118}
119
a1cd5419
BB
120/*
121 * These macros define how to determine which level of the page table holds
122 * the hpdp.
123 */
124#ifdef CONFIG_PPC_FSL_BOOK3E
125#define HUGEPD_PGD_SHIFT PGDIR_SHIFT
126#define HUGEPD_PUD_SHIFT PUD_SHIFT
127#else
128#define HUGEPD_PGD_SHIFT PUD_SHIFT
129#define HUGEPD_PUD_SHIFT PMD_SHIFT
130#endif
131
e2b3d202
AK
132#ifdef CONFIG_PPC_BOOK3S_64
133/*
134 * At this point we do the placement change only for BOOK3S 64. This would
135 * possibly work on other subarchs.
136 */
137pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
138{
139 pgd_t *pg;
140 pud_t *pu;
141 pmd_t *pm;
142 hugepd_t *hpdp = NULL;
143 unsigned pshift = __ffs(sz);
144 unsigned pdshift = PGDIR_SHIFT;
145
146 addr &= ~(sz-1);
147 pg = pgd_offset(mm, addr);
148
149 if (pshift == PGDIR_SHIFT)
150 /* 16GB huge page */
151 return (pte_t *) pg;
152 else if (pshift > PUD_SHIFT)
153 /*
154 * We need to use hugepd table
155 */
156 hpdp = (hugepd_t *)pg;
157 else {
158 pdshift = PUD_SHIFT;
159 pu = pud_alloc(mm, pg, addr);
160 if (pshift == PUD_SHIFT)
161 return (pte_t *)pu;
162 else if (pshift > PMD_SHIFT)
163 hpdp = (hugepd_t *)pu;
164 else {
165 pdshift = PMD_SHIFT;
166 pm = pmd_alloc(mm, pu, addr);
167 if (pshift == PMD_SHIFT)
168 /* 16MB hugepage */
169 return (pte_t *)pm;
170 else
171 hpdp = (hugepd_t *)pm;
172 }
173 }
174 if (!hpdp)
175 return NULL;
176
177 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
178
179 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
180 return NULL;
181
b30e7590 182 return hugepte_offset(*hpdp, addr, pdshift);
e2b3d202
AK
183}
184
185#else
186
a4fe3ce7 187pte_t *huge_pte_alloc(struct mm_struct *mm, unsigned long addr, unsigned long sz)
0b26425c 188{
a4fe3ce7
DG
189 pgd_t *pg;
190 pud_t *pu;
191 pmd_t *pm;
192 hugepd_t *hpdp = NULL;
193 unsigned pshift = __ffs(sz);
194 unsigned pdshift = PGDIR_SHIFT;
195
196 addr &= ~(sz-1);
197
198 pg = pgd_offset(mm, addr);
a1cd5419
BB
199
200 if (pshift >= HUGEPD_PGD_SHIFT) {
a4fe3ce7
DG
201 hpdp = (hugepd_t *)pg;
202 } else {
203 pdshift = PUD_SHIFT;
204 pu = pud_alloc(mm, pg, addr);
a1cd5419 205 if (pshift >= HUGEPD_PUD_SHIFT) {
a4fe3ce7
DG
206 hpdp = (hugepd_t *)pu;
207 } else {
208 pdshift = PMD_SHIFT;
209 pm = pmd_alloc(mm, pu, addr);
210 hpdp = (hugepd_t *)pm;
211 }
212 }
213
214 if (!hpdp)
215 return NULL;
216
217 BUG_ON(!hugepd_none(*hpdp) && !hugepd_ok(*hpdp));
218
219 if (hugepd_none(*hpdp) && __hugepte_alloc(mm, hpdp, addr, pdshift, pshift))
220 return NULL;
221
b30e7590 222 return hugepte_offset(*hpdp, addr, pdshift);
4ec161cf 223}
e2b3d202 224#endif
4ec161cf 225
881fde1d 226#ifdef CONFIG_PPC_FSL_BOOK3E
658013e9 227/* Build list of addresses of gigantic pages. This function is used in early
14ed7409 228 * boot before the buddy allocator is setup.
658013e9 229 */
41151e77
BB
230void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
231{
232 unsigned int idx = shift_to_mmu_psize(__ffs(page_size));
233 int i;
234
235 if (addr == 0)
236 return;
237
238 gpage_freearray[idx].nr_gpages = number_of_pages;
239
240 for (i = 0; i < number_of_pages; i++) {
241 gpage_freearray[idx].gpage_list[i] = addr;
242 addr += page_size;
243 }
244}
245
246/*
247 * Moves the gigantic page addresses from the temporary list to the
248 * huge_boot_pages list.
249 */
250int alloc_bootmem_huge_page(struct hstate *hstate)
251{
252 struct huge_bootmem_page *m;
2415cf12 253 int idx = shift_to_mmu_psize(huge_page_shift(hstate));
41151e77
BB
254 int nr_gpages = gpage_freearray[idx].nr_gpages;
255
256 if (nr_gpages == 0)
257 return 0;
258
259#ifdef CONFIG_HIGHMEM
260 /*
261 * If gpages can be in highmem we can't use the trick of storing the
262 * data structure in the page; allocate space for this
263 */
e39f223f 264 m = memblock_virt_alloc(sizeof(struct huge_bootmem_page), 0);
41151e77
BB
265 m->phys = gpage_freearray[idx].gpage_list[--nr_gpages];
266#else
267 m = phys_to_virt(gpage_freearray[idx].gpage_list[--nr_gpages]);
268#endif
269
270 list_add(&m->list, &huge_boot_pages);
271 gpage_freearray[idx].nr_gpages = nr_gpages;
272 gpage_freearray[idx].gpage_list[nr_gpages] = 0;
273 m->hstate = hstate;
274
275 return 1;
276}
277/*
278 * Scan the command line hugepagesz= options for gigantic pages; store those in
279 * a list that we use to allocate the memory once all options are parsed.
280 */
281
282unsigned long gpage_npages[MMU_PAGE_COUNT];
283
89528127 284static int __init do_gpage_early_setup(char *param, char *val,
ecc86170 285 const char *unused, void *arg)
41151e77
BB
286{
287 static phys_addr_t size;
288 unsigned long npages;
289
290 /*
291 * The hugepagesz and hugepages cmdline options are interleaved. We
292 * use the size variable to keep track of whether or not this was done
293 * properly and skip over instances where it is incorrect. Other
294 * command-line parsing code will issue warnings, so we don't need to.
295 *
296 */
297 if ((strcmp(param, "default_hugepagesz") == 0) ||
298 (strcmp(param, "hugepagesz") == 0)) {
299 size = memparse(val, NULL);
300 } else if (strcmp(param, "hugepages") == 0) {
301 if (size != 0) {
302 if (sscanf(val, "%lu", &npages) <= 0)
303 npages = 0;
c4f3eb5f
JY
304 if (npages > MAX_NUMBER_GPAGES) {
305 pr_warn("MMU: %lu pages requested for page "
306 "size %llu KB, limiting to "
307 __stringify(MAX_NUMBER_GPAGES) "\n",
308 npages, size / 1024);
309 npages = MAX_NUMBER_GPAGES;
310 }
41151e77
BB
311 gpage_npages[shift_to_mmu_psize(__ffs(size))] = npages;
312 size = 0;
313 }
314 }
315 return 0;
316}
317
318
319/*
320 * This function allocates physical space for pages that are larger than the
321 * buddy allocator can handle. We want to allocate these in highmem because
322 * the amount of lowmem is limited. This means that this function MUST be
323 * called before lowmem_end_addr is set up in MMU_init() in order for the lmb
324 * allocate to grab highmem.
325 */
326void __init reserve_hugetlb_gpages(void)
327{
328 static __initdata char cmdline[COMMAND_LINE_SIZE];
329 phys_addr_t size, base;
330 int i;
331
332 strlcpy(cmdline, boot_command_line, COMMAND_LINE_SIZE);
026cee00 333 parse_args("hugetlb gpages", cmdline, NULL, 0, 0, 0,
ecc86170 334 NULL, &do_gpage_early_setup);
41151e77
BB
335
336 /*
337 * Walk gpage list in reverse, allocating larger page sizes first.
338 * Skip over unsupported sizes, or sizes that have 0 gpages allocated.
339 * When we reach the point in the list where pages are no longer
340 * considered gpages, we're done.
341 */
342 for (i = MMU_PAGE_COUNT-1; i >= 0; i--) {
343 if (mmu_psize_defs[i].shift == 0 || gpage_npages[i] == 0)
344 continue;
345 else if (mmu_psize_to_shift(i) < (MAX_ORDER + PAGE_SHIFT))
346 break;
347
348 size = (phys_addr_t)(1ULL << mmu_psize_to_shift(i));
349 base = memblock_alloc_base(size * gpage_npages[i], size,
350 MEMBLOCK_ALLOC_ANYWHERE);
351 add_gpage(base, size, gpage_npages[i]);
352 }
353}
354
881fde1d 355#else /* !PPC_FSL_BOOK3E */
41151e77
BB
356
357/* Build list of addresses of gigantic pages. This function is used in early
14ed7409 358 * boot before the buddy allocator is setup.
41151e77
BB
359 */
360void add_gpage(u64 addr, u64 page_size, unsigned long number_of_pages)
658013e9
JT
361{
362 if (!addr)
363 return;
364 while (number_of_pages > 0) {
365 gpage_freearray[nr_gpages] = addr;
366 nr_gpages++;
367 number_of_pages--;
368 addr += page_size;
369 }
370}
371
ec4b2c0c 372/* Moves the gigantic page addresses from the temporary list to the
0d9ea754
JT
373 * huge_boot_pages list.
374 */
375int alloc_bootmem_huge_page(struct hstate *hstate)
ec4b2c0c
JT
376{
377 struct huge_bootmem_page *m;
378 if (nr_gpages == 0)
379 return 0;
380 m = phys_to_virt(gpage_freearray[--nr_gpages]);
381 gpage_freearray[nr_gpages] = 0;
382 list_add(&m->list, &huge_boot_pages);
0d9ea754 383 m->hstate = hstate;
ec4b2c0c
JT
384 return 1;
385}
41151e77 386#endif
ec4b2c0c 387
881fde1d 388#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
389#define HUGEPD_FREELIST_SIZE \
390 ((PAGE_SIZE - sizeof(struct hugepd_freelist)) / sizeof(pte_t))
391
392struct hugepd_freelist {
393 struct rcu_head rcu;
394 unsigned int index;
395 void *ptes[0];
396};
397
398static DEFINE_PER_CPU(struct hugepd_freelist *, hugepd_freelist_cur);
399
400static void hugepd_free_rcu_callback(struct rcu_head *head)
401{
402 struct hugepd_freelist *batch =
403 container_of(head, struct hugepd_freelist, rcu);
404 unsigned int i;
405
406 for (i = 0; i < batch->index; i++)
407 kmem_cache_free(hugepte_cache, batch->ptes[i]);
408
409 free_page((unsigned long)batch);
410}
411
412static void hugepd_free(struct mmu_gather *tlb, void *hugepte)
413{
414 struct hugepd_freelist **batchp;
415
08a5bb29 416 batchp = &get_cpu_var(hugepd_freelist_cur);
41151e77
BB
417
418 if (atomic_read(&tlb->mm->mm_users) < 2 ||
419 cpumask_equal(mm_cpumask(tlb->mm),
420 cpumask_of(smp_processor_id()))) {
421 kmem_cache_free(hugepte_cache, hugepte);
08a5bb29 422 put_cpu_var(hugepd_freelist_cur);
41151e77
BB
423 return;
424 }
425
426 if (*batchp == NULL) {
427 *batchp = (struct hugepd_freelist *)__get_free_page(GFP_ATOMIC);
428 (*batchp)->index = 0;
429 }
430
431 (*batchp)->ptes[(*batchp)->index++] = hugepte;
432 if ((*batchp)->index == HUGEPD_FREELIST_SIZE) {
433 call_rcu_sched(&(*batchp)->rcu, hugepd_free_rcu_callback);
434 *batchp = NULL;
435 }
94b09d75 436 put_cpu_var(hugepd_freelist_cur);
41151e77
BB
437}
438#endif
439
a4fe3ce7
DG
440static void free_hugepd_range(struct mmu_gather *tlb, hugepd_t *hpdp, int pdshift,
441 unsigned long start, unsigned long end,
442 unsigned long floor, unsigned long ceiling)
f10a04c0
DG
443{
444 pte_t *hugepte = hugepd_page(*hpdp);
41151e77
BB
445 int i;
446
a4fe3ce7 447 unsigned long pdmask = ~((1UL << pdshift) - 1);
41151e77
BB
448 unsigned int num_hugepd = 1;
449
881fde1d
BB
450#ifdef CONFIG_PPC_FSL_BOOK3E
451 /* Note: On fsl the hpdp may be the first of several */
41151e77 452 num_hugepd = (1 << (hugepd_shift(*hpdp) - pdshift));
881fde1d
BB
453#else
454 unsigned int shift = hugepd_shift(*hpdp);
41151e77 455#endif
a4fe3ce7
DG
456
457 start &= pdmask;
458 if (start < floor)
459 return;
460 if (ceiling) {
461 ceiling &= pdmask;
462 if (! ceiling)
463 return;
464 }
465 if (end - 1 > ceiling - 1)
466 return;
f10a04c0 467
41151e77
BB
468 for (i = 0; i < num_hugepd; i++, hpdp++)
469 hpdp->pd = 0;
470
881fde1d 471#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77 472 hugepd_free(tlb, hugepte);
881fde1d
BB
473#else
474 pgtable_free_tlb(tlb, hugepte, pdshift - shift);
41151e77 475#endif
f10a04c0
DG
476}
477
f10a04c0
DG
478static void hugetlb_free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
479 unsigned long addr, unsigned long end,
a4fe3ce7 480 unsigned long floor, unsigned long ceiling)
f10a04c0
DG
481{
482 pmd_t *pmd;
483 unsigned long next;
484 unsigned long start;
485
486 start = addr;
f10a04c0 487 do {
a1cd5419 488 pmd = pmd_offset(pud, addr);
f10a04c0 489 next = pmd_addr_end(addr, end);
b30e7590 490 if (!is_hugepd(__hugepd(pmd_val(*pmd)))) {
8bbd9f04
AK
491 /*
492 * if it is not hugepd pointer, we should already find
493 * it cleared.
494 */
495 WARN_ON(!pmd_none_or_clear_bad(pmd));
f10a04c0 496 continue;
8bbd9f04 497 }
a1cd5419
BB
498#ifdef CONFIG_PPC_FSL_BOOK3E
499 /*
500 * Increment next by the size of the huge mapping since
501 * there may be more than one entry at this level for a
502 * single hugepage, but all of them point to
503 * the same kmem cache that holds the hugepte.
504 */
505 next = addr + (1 << hugepd_shift(*(hugepd_t *)pmd));
506#endif
a4fe3ce7
DG
507 free_hugepd_range(tlb, (hugepd_t *)pmd, PMD_SHIFT,
508 addr, next, floor, ceiling);
a1cd5419 509 } while (addr = next, addr != end);
f10a04c0
DG
510
511 start &= PUD_MASK;
512 if (start < floor)
513 return;
514 if (ceiling) {
515 ceiling &= PUD_MASK;
516 if (!ceiling)
517 return;
1da177e4 518 }
f10a04c0
DG
519 if (end - 1 > ceiling - 1)
520 return;
1da177e4 521
f10a04c0
DG
522 pmd = pmd_offset(pud, start);
523 pud_clear(pud);
9e1b32ca 524 pmd_free_tlb(tlb, pmd, start);
50c6a665 525 mm_dec_nr_pmds(tlb->mm);
f10a04c0 526}
f10a04c0
DG
527
528static void hugetlb_free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
529 unsigned long addr, unsigned long end,
530 unsigned long floor, unsigned long ceiling)
531{
532 pud_t *pud;
533 unsigned long next;
534 unsigned long start;
535
536 start = addr;
f10a04c0 537 do {
a1cd5419 538 pud = pud_offset(pgd, addr);
f10a04c0 539 next = pud_addr_end(addr, end);
b30e7590 540 if (!is_hugepd(__hugepd(pud_val(*pud)))) {
4ec161cf
JT
541 if (pud_none_or_clear_bad(pud))
542 continue;
0d9ea754 543 hugetlb_free_pmd_range(tlb, pud, addr, next, floor,
a4fe3ce7 544 ceiling);
4ec161cf 545 } else {
a1cd5419
BB
546#ifdef CONFIG_PPC_FSL_BOOK3E
547 /*
548 * Increment next by the size of the huge mapping since
549 * there may be more than one entry at this level for a
550 * single hugepage, but all of them point to
551 * the same kmem cache that holds the hugepte.
552 */
553 next = addr + (1 << hugepd_shift(*(hugepd_t *)pud));
554#endif
a4fe3ce7
DG
555 free_hugepd_range(tlb, (hugepd_t *)pud, PUD_SHIFT,
556 addr, next, floor, ceiling);
4ec161cf 557 }
a1cd5419 558 } while (addr = next, addr != end);
f10a04c0
DG
559
560 start &= PGDIR_MASK;
561 if (start < floor)
562 return;
563 if (ceiling) {
564 ceiling &= PGDIR_MASK;
565 if (!ceiling)
566 return;
567 }
568 if (end - 1 > ceiling - 1)
569 return;
570
571 pud = pud_offset(pgd, start);
572 pgd_clear(pgd);
9e1b32ca 573 pud_free_tlb(tlb, pud, start);
f10a04c0
DG
574}
575
576/*
577 * This function frees user-level page tables of a process.
f10a04c0 578 */
42b77728 579void hugetlb_free_pgd_range(struct mmu_gather *tlb,
f10a04c0
DG
580 unsigned long addr, unsigned long end,
581 unsigned long floor, unsigned long ceiling)
582{
583 pgd_t *pgd;
584 unsigned long next;
f10a04c0
DG
585
586 /*
a4fe3ce7
DG
587 * Because there are a number of different possible pagetable
588 * layouts for hugepage ranges, we limit knowledge of how
589 * things should be laid out to the allocation path
590 * (huge_pte_alloc(), above). Everything else works out the
591 * structure as it goes from information in the hugepd
592 * pointers. That means that we can't here use the
593 * optimization used in the normal page free_pgd_range(), of
594 * checking whether we're actually covering a large enough
595 * range to have to do anything at the top level of the walk
596 * instead of at the bottom.
f10a04c0 597 *
a4fe3ce7
DG
598 * To make sense of this, you should probably go read the big
599 * block comment at the top of the normal free_pgd_range(),
600 * too.
f10a04c0 601 */
f10a04c0 602
f10a04c0 603 do {
f10a04c0 604 next = pgd_addr_end(addr, end);
41151e77 605 pgd = pgd_offset(tlb->mm, addr);
b30e7590 606 if (!is_hugepd(__hugepd(pgd_val(*pgd)))) {
0b26425c
DG
607 if (pgd_none_or_clear_bad(pgd))
608 continue;
609 hugetlb_free_pud_range(tlb, pgd, addr, next, floor, ceiling);
610 } else {
881fde1d 611#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
612 /*
613 * Increment next by the size of the huge mapping since
881fde1d
BB
614 * there may be more than one entry at the pgd level
615 * for a single hugepage, but all of them point to the
616 * same kmem cache that holds the hugepte.
41151e77
BB
617 */
618 next = addr + (1 << hugepd_shift(*(hugepd_t *)pgd));
619#endif
a4fe3ce7
DG
620 free_hugepd_range(tlb, (hugepd_t *)pgd, PGDIR_SHIFT,
621 addr, next, floor, ceiling);
0b26425c 622 }
41151e77 623 } while (addr = next, addr != end);
1da177e4
LT
624}
625
691e95fd
AK
626/*
627 * We are holding mmap_sem, so a parallel huge page collapse cannot run.
628 * To prevent hugepage split, disable irq.
629 */
1da177e4
LT
630struct page *
631follow_huge_addr(struct mm_struct *mm, unsigned long address, int write)
632{
891121e6 633 bool is_thp;
7b868e81 634 pte_t *ptep, pte;
a4fe3ce7 635 unsigned shift;
691e95fd 636 unsigned long mask, flags;
7b868e81
AK
637 struct page *page = ERR_PTR(-EINVAL);
638
639 local_irq_save(flags);
891121e6 640 ptep = find_linux_pte_or_hugepte(mm->pgd, address, &is_thp, &shift);
7b868e81
AK
641 if (!ptep)
642 goto no_page;
643 pte = READ_ONCE(*ptep);
12bc9f6f 644 /*
7b868e81 645 * Verify it is a huge page else bail.
12bc9f6f
AK
646 * Transparent hugepages are handled by generic code. We can skip them
647 * here.
648 */
891121e6 649 if (!shift || is_thp)
7b868e81 650 goto no_page;
1da177e4 651
7b868e81
AK
652 if (!pte_present(pte)) {
653 page = NULL;
654 goto no_page;
691e95fd 655 }
a4fe3ce7 656 mask = (1UL << shift) - 1;
7b868e81 657 page = pte_page(pte);
a4fe3ce7
DG
658 if (page)
659 page += (address & mask) / PAGE_SIZE;
1da177e4 660
7b868e81 661no_page:
691e95fd 662 local_irq_restore(flags);
1da177e4
LT
663 return page;
664}
665
1da177e4
LT
666struct page *
667follow_huge_pmd(struct mm_struct *mm, unsigned long address,
668 pmd_t *pmd, int write)
669{
670 BUG();
671 return NULL;
672}
673
61f77eda
NH
674struct page *
675follow_huge_pud(struct mm_struct *mm, unsigned long address,
676 pud_t *pud, int write)
677{
678 BUG();
679 return NULL;
680}
681
39adfa54
DG
682static unsigned long hugepte_addr_end(unsigned long addr, unsigned long end,
683 unsigned long sz)
684{
685 unsigned long __boundary = (addr + sz) & ~(sz-1);
686 return (__boundary - 1 < end - 1) ? __boundary : end;
687}
688
b30e7590
AK
689int gup_huge_pd(hugepd_t hugepd, unsigned long addr, unsigned pdshift,
690 unsigned long end, int write, struct page **pages, int *nr)
a4fe3ce7
DG
691{
692 pte_t *ptep;
b30e7590 693 unsigned long sz = 1UL << hugepd_shift(hugepd);
39adfa54 694 unsigned long next;
a4fe3ce7
DG
695
696 ptep = hugepte_offset(hugepd, addr, pdshift);
697 do {
39adfa54 698 next = hugepte_addr_end(addr, end, sz);
a4fe3ce7
DG
699 if (!gup_hugepte(ptep, sz, addr, end, write, pages, nr))
700 return 0;
39adfa54 701 } while (ptep++, addr = next, addr != end);
a4fe3ce7
DG
702
703 return 1;
704}
1da177e4 705
76512959 706#ifdef CONFIG_PPC_MM_SLICES
1da177e4
LT
707unsigned long hugetlb_get_unmapped_area(struct file *file, unsigned long addr,
708 unsigned long len, unsigned long pgoff,
709 unsigned long flags)
710{
0d9ea754
JT
711 struct hstate *hstate = hstate_file(file);
712 int mmu_psize = shift_to_mmu_psize(huge_page_shift(hstate));
48f797de 713
34d07177 714 return slice_get_unmapped_area(addr, len, flags, mmu_psize, 1);
1da177e4 715}
76512959 716#endif
1da177e4 717
3340289d
MG
718unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
719{
25c29f9e 720#ifdef CONFIG_PPC_MM_SLICES
3340289d
MG
721 unsigned int psize = get_slice_psize(vma->vm_mm, vma->vm_start);
722
723 return 1UL << mmu_psize_to_shift(psize);
41151e77
BB
724#else
725 if (!is_vm_hugetlb_page(vma))
726 return PAGE_SIZE;
727
728 return huge_page_size(hstate_vma(vma));
729#endif
730}
731
732static inline bool is_power_of_4(unsigned long x)
733{
734 if (is_power_of_2(x))
735 return (__ilog2(x) % 2) ? false : true;
736 return false;
3340289d
MG
737}
738
d1837cba 739static int __init add_huge_page_size(unsigned long long size)
4ec161cf 740{
d1837cba
DG
741 int shift = __ffs(size);
742 int mmu_psize;
a4fe3ce7 743
4ec161cf 744 /* Check that it is a page size supported by the hardware and
d1837cba 745 * that it fits within pagetable and slice limits. */
41151e77
BB
746#ifdef CONFIG_PPC_FSL_BOOK3E
747 if ((size < PAGE_SIZE) || !is_power_of_4(size))
748 return -EINVAL;
749#else
d1837cba
DG
750 if (!is_power_of_2(size)
751 || (shift > SLICE_HIGH_SHIFT) || (shift <= PAGE_SHIFT))
752 return -EINVAL;
41151e77 753#endif
91224346 754
d1837cba
DG
755 if ((mmu_psize = shift_to_mmu_psize(shift)) < 0)
756 return -EINVAL;
757
d1837cba
DG
758 BUG_ON(mmu_psize_defs[mmu_psize].shift != shift);
759
760 /* Return if huge page size has already been setup */
761 if (size_to_hstate(size))
762 return 0;
763
764 hugetlb_add_hstate(shift - PAGE_SHIFT);
765
766 return 0;
4ec161cf
JT
767}
768
769static int __init hugepage_setup_sz(char *str)
770{
771 unsigned long long size;
4ec161cf
JT
772
773 size = memparse(str, &str);
774
d1837cba 775 if (add_huge_page_size(size) != 0)
4ec161cf
JT
776 printk(KERN_WARNING "Invalid huge page size specified(%llu)\n", size);
777
778 return 1;
779}
780__setup("hugepagesz=", hugepage_setup_sz);
781
881fde1d 782#ifdef CONFIG_PPC_FSL_BOOK3E
41151e77
BB
783struct kmem_cache *hugepte_cache;
784static int __init hugetlbpage_init(void)
785{
786 int psize;
787
788 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
789 unsigned shift;
790
791 if (!mmu_psize_defs[psize].shift)
792 continue;
793
794 shift = mmu_psize_to_shift(psize);
795
796 /* Don't treat normal page sizes as huge... */
797 if (shift != PAGE_SHIFT)
798 if (add_huge_page_size(1ULL << shift) < 0)
799 continue;
800 }
801
802 /*
803 * Create a kmem cache for hugeptes. The bottom bits in the pte have
804 * size information encoded in them, so align them to allow this
805 */
806 hugepte_cache = kmem_cache_create("hugepte-cache", sizeof(pte_t),
807 HUGEPD_SHIFT_MASK + 1, 0, NULL);
808 if (hugepte_cache == NULL)
809 panic("%s: Unable to create kmem cache for hugeptes\n",
810 __func__);
811
812 /* Default hpage size = 4M */
813 if (mmu_psize_defs[MMU_PAGE_4M].shift)
814 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_4M].shift;
815 else
816 panic("%s: Unable to set default huge page size\n", __func__);
817
818
819 return 0;
820}
821#else
f10a04c0
DG
822static int __init hugetlbpage_init(void)
823{
a4fe3ce7 824 int psize;
0d9ea754 825
44ae3ab3 826 if (!mmu_has_feature(MMU_FTR_16M_PAGE))
f10a04c0 827 return -ENODEV;
00df438e 828
d1837cba
DG
829 for (psize = 0; psize < MMU_PAGE_COUNT; ++psize) {
830 unsigned shift;
831 unsigned pdshift;
0d9ea754 832
d1837cba
DG
833 if (!mmu_psize_defs[psize].shift)
834 continue;
00df438e 835
d1837cba
DG
836 shift = mmu_psize_to_shift(psize);
837
838 if (add_huge_page_size(1ULL << shift) < 0)
839 continue;
840
841 if (shift < PMD_SHIFT)
842 pdshift = PMD_SHIFT;
843 else if (shift < PUD_SHIFT)
844 pdshift = PUD_SHIFT;
845 else
846 pdshift = PGDIR_SHIFT;
e2b3d202
AK
847 /*
848 * if we have pdshift and shift value same, we don't
849 * use pgt cache for hugepd.
850 */
851 if (pdshift != shift) {
852 pgtable_cache_add(pdshift - shift, NULL);
853 if (!PGT_CACHE(pdshift - shift))
854 panic("hugetlbpage_init(): could not create "
855 "pgtable cache for %d bit pagesize\n", shift);
856 }
0d9ea754 857 }
f10a04c0 858
d1837cba
DG
859 /* Set default large page size. Currently, we pick 16M or 1M
860 * depending on what is available
861 */
862 if (mmu_psize_defs[MMU_PAGE_16M].shift)
863 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_16M].shift;
864 else if (mmu_psize_defs[MMU_PAGE_1M].shift)
865 HPAGE_SHIFT = mmu_psize_defs[MMU_PAGE_1M].shift;
866
f10a04c0
DG
867 return 0;
868}
41151e77 869#endif
6f114281 870arch_initcall(hugetlbpage_init);
0895ecda
DG
871
872void flush_dcache_icache_hugepage(struct page *page)
873{
874 int i;
41151e77 875 void *start;
0895ecda
DG
876
877 BUG_ON(!PageCompound(page));
878
41151e77
BB
879 for (i = 0; i < (1UL << compound_order(page)); i++) {
880 if (!PageHighMem(page)) {
881 __flush_dcache_icache(page_address(page+i));
882 } else {
2480b208 883 start = kmap_atomic(page+i);
41151e77 884 __flush_dcache_icache(start);
2480b208 885 kunmap_atomic(start);
41151e77
BB
886 }
887 }
0895ecda 888}
29409997
AK
889
890#endif /* CONFIG_HUGETLB_PAGE */
891
892/*
893 * We have 4 cases for pgds and pmds:
894 * (1) invalid (all zeroes)
895 * (2) pointer to next table, as normal; bottom 6 bits == 0
6a119eae
AK
896 * (3) leaf pte for huge page _PAGE_PTE set
897 * (4) hugepd pointer, _PAGE_PTE = 0 and bits [2..6] indicate size of table
0ac52dd7
AK
898 *
899 * So long as we atomically load page table pointers we are safe against teardown,
900 * we can follow the address down to the the page and take a ref on it.
691e95fd
AK
901 * This function need to be called with interrupts disabled. We use this variant
902 * when we have MSR[EE] = 0 but the paca->soft_enabled = 1
29409997 903 */
0ac52dd7 904
691e95fd 905pte_t *__find_linux_pte_or_hugepte(pgd_t *pgdir, unsigned long ea,
891121e6 906 bool *is_thp, unsigned *shift)
29409997 907{
0ac52dd7
AK
908 pgd_t pgd, *pgdp;
909 pud_t pud, *pudp;
910 pmd_t pmd, *pmdp;
29409997
AK
911 pte_t *ret_pte;
912 hugepd_t *hpdp = NULL;
913 unsigned pdshift = PGDIR_SHIFT;
914
915 if (shift)
916 *shift = 0;
917
891121e6
AK
918 if (is_thp)
919 *is_thp = false;
920
0ac52dd7 921 pgdp = pgdir + pgd_index(ea);
4f9c53c8 922 pgd = READ_ONCE(*pgdp);
ac52ae47 923 /*
0ac52dd7
AK
924 * Always operate on the local stack value. This make sure the
925 * value don't get updated by a parallel THP split/collapse,
926 * page fault or a page unmap. The return pte_t * is still not
927 * stable. So should be checked there for above conditions.
ac52ae47 928 */
0ac52dd7 929 if (pgd_none(pgd))
ac52ae47 930 return NULL;
0ac52dd7
AK
931 else if (pgd_huge(pgd)) {
932 ret_pte = (pte_t *) pgdp;
29409997 933 goto out;
b30e7590 934 } else if (is_hugepd(__hugepd(pgd_val(pgd))))
0ac52dd7 935 hpdp = (hugepd_t *)&pgd;
ac52ae47 936 else {
0ac52dd7
AK
937 /*
938 * Even if we end up with an unmap, the pgtable will not
939 * be freed, because we do an rcu free and here we are
940 * irq disabled
941 */
29409997 942 pdshift = PUD_SHIFT;
0ac52dd7 943 pudp = pud_offset(&pgd, ea);
da1a288d 944 pud = READ_ONCE(*pudp);
29409997 945
0ac52dd7 946 if (pud_none(pud))
ac52ae47 947 return NULL;
0ac52dd7
AK
948 else if (pud_huge(pud)) {
949 ret_pte = (pte_t *) pudp;
29409997 950 goto out;
b30e7590 951 } else if (is_hugepd(__hugepd(pud_val(pud))))
0ac52dd7 952 hpdp = (hugepd_t *)&pud;
ac52ae47 953 else {
29409997 954 pdshift = PMD_SHIFT;
0ac52dd7 955 pmdp = pmd_offset(&pud, ea);
da1a288d 956 pmd = READ_ONCE(*pmdp);
ac52ae47
AK
957 /*
958 * A hugepage collapse is captured by pmd_none, because
959 * it mark the pmd none and do a hpte invalidate.
ac52ae47 960 */
7d6e7f7f 961 if (pmd_none(pmd))
ac52ae47 962 return NULL;
29409997 963
891121e6
AK
964 if (pmd_trans_huge(pmd)) {
965 if (is_thp)
966 *is_thp = true;
967 ret_pte = (pte_t *) pmdp;
968 goto out;
969 }
970
971 if (pmd_huge(pmd)) {
0ac52dd7 972 ret_pte = (pte_t *) pmdp;
29409997 973 goto out;
b30e7590 974 } else if (is_hugepd(__hugepd(pmd_val(pmd))))
0ac52dd7 975 hpdp = (hugepd_t *)&pmd;
ac52ae47 976 else
0ac52dd7 977 return pte_offset_kernel(&pmd, ea);
29409997
AK
978 }
979 }
980 if (!hpdp)
981 return NULL;
982
b30e7590 983 ret_pte = hugepte_offset(*hpdp, ea, pdshift);
29409997
AK
984 pdshift = hugepd_shift(*hpdp);
985out:
986 if (shift)
987 *shift = pdshift;
988 return ret_pte;
989}
691e95fd 990EXPORT_SYMBOL_GPL(__find_linux_pte_or_hugepte);
29409997
AK
991
992int gup_hugepte(pte_t *ptep, unsigned long sz, unsigned long addr,
993 unsigned long end, int write, struct page **pages, int *nr)
994{
995 unsigned long mask;
996 unsigned long pte_end;
ddc58f27 997 struct page *head, *page;
29409997
AK
998 pte_t pte;
999 int refs;
1000
1001 pte_end = (addr + sz) & ~(sz-1);
1002 if (pte_end < end)
1003 end = pte_end;
1004
4f9c53c8 1005 pte = READ_ONCE(*ptep);
29409997
AK
1006 mask = _PAGE_PRESENT | _PAGE_USER;
1007 if (write)
1008 mask |= _PAGE_RW;
1009
1010 if ((pte_val(pte) & mask) != mask)
1011 return 0;
1012
1013 /* hugepages are never "special" */
1014 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1015
1016 refs = 0;
1017 head = pte_page(pte);
1018
1019 page = head + ((addr & (sz-1)) >> PAGE_SHIFT);
29409997
AK
1020 do {
1021 VM_BUG_ON(compound_head(page) != head);
1022 pages[*nr] = page;
1023 (*nr)++;
1024 page++;
1025 refs++;
1026 } while (addr += PAGE_SIZE, addr != end);
1027
1028 if (!page_cache_add_speculative(head, refs)) {
1029 *nr -= refs;
1030 return 0;
1031 }
1032
1033 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
1034 /* Could be optimized better */
1035 *nr -= refs;
1036 while (refs--)
1037 put_page(head);
1038 return 0;
1039 }
1040
29409997
AK
1041 return 1;
1042}
This page took 0.794068 seconds and 5 git commands to generate.