x86/entry/64: Fix context tracking state warning when load_gs_index fails
[deliverable/linux.git] / arch / x86 / entry / entry_64.S
CommitLineData
1da177e4
LT
1/*
2 * linux/arch/x86_64/entry.S
3 *
4 * Copyright (C) 1991, 1992 Linus Torvalds
5 * Copyright (C) 2000, 2001, 2002 Andi Kleen SuSE Labs
6 * Copyright (C) 2000 Pavel Machek <pavel@suse.cz>
4d732138 7 *
1da177e4
LT
8 * entry.S contains the system-call and fault low-level handling routines.
9 *
8b4777a4
AL
10 * Some of this is documented in Documentation/x86/entry_64.txt
11 *
0bd7b798 12 * A note on terminology:
4d732138
IM
13 * - iret frame: Architecture defined interrupt frame from SS to RIP
14 * at the top of the kernel process stack.
2e91a17b
AK
15 *
16 * Some macro usage:
4d732138
IM
17 * - ENTRY/END: Define functions in the symbol table.
18 * - TRACE_IRQ_*: Trace hardirq state for lock debugging.
19 * - idtentry: Define exception entry points.
1da177e4 20 */
1da177e4
LT
21#include <linux/linkage.h>
22#include <asm/segment.h>
1da177e4
LT
23#include <asm/cache.h>
24#include <asm/errno.h>
d36f9479 25#include "calling.h"
e2d5df93 26#include <asm/asm-offsets.h>
1da177e4
LT
27#include <asm/msr.h>
28#include <asm/unistd.h>
29#include <asm/thread_info.h>
30#include <asm/hw_irq.h>
0341c14d 31#include <asm/page_types.h>
2601e64d 32#include <asm/irqflags.h>
72fe4858 33#include <asm/paravirt.h>
9939ddaf 34#include <asm/percpu.h>
d7abc0fa 35#include <asm/asm.h>
63bcff2a 36#include <asm/smap.h>
3891a04a 37#include <asm/pgtable_types.h>
d7e7528b 38#include <linux/err.h>
1da177e4 39
86a1c34a
RM
40/* Avoid __ASSEMBLER__'ifying <linux/audit.h> just for this. */
41#include <linux/elf-em.h>
4d732138
IM
42#define AUDIT_ARCH_X86_64 (EM_X86_64|__AUDIT_ARCH_64BIT|__AUDIT_ARCH_LE)
43#define __AUDIT_ARCH_64BIT 0x80000000
44#define __AUDIT_ARCH_LE 0x40000000
ea714547 45
4d732138
IM
46.code64
47.section .entry.text, "ax"
16444a8a 48
72fe4858 49#ifdef CONFIG_PARAVIRT
2be29982 50ENTRY(native_usergs_sysret64)
72fe4858
GOC
51 swapgs
52 sysretq
b3baaa13 53ENDPROC(native_usergs_sysret64)
72fe4858
GOC
54#endif /* CONFIG_PARAVIRT */
55
f2db9382 56.macro TRACE_IRQS_IRETQ
2601e64d 57#ifdef CONFIG_TRACE_IRQFLAGS
4d732138
IM
58 bt $9, EFLAGS(%rsp) /* interrupts off? */
59 jnc 1f
2601e64d
IM
60 TRACE_IRQS_ON
611:
62#endif
63.endm
64
5963e317
SR
65/*
66 * When dynamic function tracer is enabled it will add a breakpoint
67 * to all locations that it is about to modify, sync CPUs, update
68 * all the code, sync CPUs, then remove the breakpoints. In this time
69 * if lockdep is enabled, it might jump back into the debug handler
70 * outside the updating of the IST protection. (TRACE_IRQS_ON/OFF).
71 *
72 * We need to change the IDT table before calling TRACE_IRQS_ON/OFF to
73 * make sure the stack pointer does not get reset back to the top
74 * of the debug stack, and instead just reuses the current stack.
75 */
76#if defined(CONFIG_DYNAMIC_FTRACE) && defined(CONFIG_TRACE_IRQFLAGS)
77
78.macro TRACE_IRQS_OFF_DEBUG
4d732138 79 call debug_stack_set_zero
5963e317 80 TRACE_IRQS_OFF
4d732138 81 call debug_stack_reset
5963e317
SR
82.endm
83
84.macro TRACE_IRQS_ON_DEBUG
4d732138 85 call debug_stack_set_zero
5963e317 86 TRACE_IRQS_ON
4d732138 87 call debug_stack_reset
5963e317
SR
88.endm
89
f2db9382 90.macro TRACE_IRQS_IRETQ_DEBUG
4d732138
IM
91 bt $9, EFLAGS(%rsp) /* interrupts off? */
92 jnc 1f
5963e317
SR
93 TRACE_IRQS_ON_DEBUG
941:
95.endm
96
97#else
4d732138
IM
98# define TRACE_IRQS_OFF_DEBUG TRACE_IRQS_OFF
99# define TRACE_IRQS_ON_DEBUG TRACE_IRQS_ON
100# define TRACE_IRQS_IRETQ_DEBUG TRACE_IRQS_IRETQ
5963e317
SR
101#endif
102
1da177e4 103/*
4d732138 104 * 64-bit SYSCALL instruction entry. Up to 6 arguments in registers.
1da177e4 105 *
fda57b22
AL
106 * This is the only entry point used for 64-bit system calls. The
107 * hardware interface is reasonably well designed and the register to
108 * argument mapping Linux uses fits well with the registers that are
109 * available when SYSCALL is used.
110 *
111 * SYSCALL instructions can be found inlined in libc implementations as
112 * well as some other programs and libraries. There are also a handful
113 * of SYSCALL instructions in the vDSO used, for example, as a
114 * clock_gettimeofday fallback.
115 *
4d732138 116 * 64-bit SYSCALL saves rip to rcx, clears rflags.RF, then saves rflags to r11,
b87cf63e
DV
117 * then loads new ss, cs, and rip from previously programmed MSRs.
118 * rflags gets masked by a value from another MSR (so CLD and CLAC
119 * are not needed). SYSCALL does not save anything on the stack
120 * and does not change rsp.
121 *
122 * Registers on entry:
1da177e4 123 * rax system call number
b87cf63e
DV
124 * rcx return address
125 * r11 saved rflags (note: r11 is callee-clobbered register in C ABI)
1da177e4 126 * rdi arg0
1da177e4 127 * rsi arg1
0bd7b798 128 * rdx arg2
b87cf63e 129 * r10 arg3 (needs to be moved to rcx to conform to C ABI)
1da177e4
LT
130 * r8 arg4
131 * r9 arg5
4d732138 132 * (note: r12-r15, rbp, rbx are callee-preserved in C ABI)
0bd7b798 133 *
1da177e4
LT
134 * Only called from user space.
135 *
7fcb3bc3 136 * When user can change pt_regs->foo always force IRET. That is because
7bf36bbc
AK
137 * it deals with uncanonical addresses better. SYSRET has trouble
138 * with them due to bugs in both AMD and Intel CPUs.
0bd7b798 139 */
1da177e4 140
b2502b41 141ENTRY(entry_SYSCALL_64)
9ed8e7d8
DV
142 /*
143 * Interrupts are off on entry.
144 * We do not frame this tiny irq-off block with TRACE_IRQS_OFF/ON,
145 * it is too small to ever cause noticeable irq latency.
146 */
72fe4858
GOC
147 SWAPGS_UNSAFE_STACK
148 /*
149 * A hypervisor implementation might want to use a label
150 * after the swapgs, so that it can do the swapgs
151 * for the guest and jump here on syscall.
152 */
b2502b41 153GLOBAL(entry_SYSCALL_64_after_swapgs)
72fe4858 154
4d732138
IM
155 movq %rsp, PER_CPU_VAR(rsp_scratch)
156 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
9ed8e7d8 157
1e423bff
AL
158 TRACE_IRQS_OFF
159
9ed8e7d8 160 /* Construct struct pt_regs on stack */
4d732138
IM
161 pushq $__USER_DS /* pt_regs->ss */
162 pushq PER_CPU_VAR(rsp_scratch) /* pt_regs->sp */
4d732138
IM
163 pushq %r11 /* pt_regs->flags */
164 pushq $__USER_CS /* pt_regs->cs */
165 pushq %rcx /* pt_regs->ip */
166 pushq %rax /* pt_regs->orig_ax */
167 pushq %rdi /* pt_regs->di */
168 pushq %rsi /* pt_regs->si */
169 pushq %rdx /* pt_regs->dx */
170 pushq %rcx /* pt_regs->cx */
171 pushq $-ENOSYS /* pt_regs->ax */
172 pushq %r8 /* pt_regs->r8 */
173 pushq %r9 /* pt_regs->r9 */
174 pushq %r10 /* pt_regs->r10 */
175 pushq %r11 /* pt_regs->r11 */
176 sub $(6*8), %rsp /* pt_regs->bp, bx, r12-15 not saved */
177
1e423bff
AL
178 /*
179 * If we need to do entry work or if we guess we'll need to do
180 * exit work, go straight to the slow path.
181 */
182 testl $_TIF_WORK_SYSCALL_ENTRY|_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
183 jnz entry_SYSCALL64_slow_path
184
b2502b41 185entry_SYSCALL_64_fastpath:
1e423bff
AL
186 /*
187 * Easy case: enable interrupts and issue the syscall. If the syscall
188 * needs pt_regs, we'll call a stub that disables interrupts again
189 * and jumps to the slow path.
190 */
191 TRACE_IRQS_ON
192 ENABLE_INTERRUPTS(CLBR_NONE)
fca460f9 193#if __SYSCALL_MASK == ~0
4d732138 194 cmpq $__NR_syscall_max, %rax
fca460f9 195#else
4d732138
IM
196 andl $__SYSCALL_MASK, %eax
197 cmpl $__NR_syscall_max, %eax
fca460f9 198#endif
4d732138
IM
199 ja 1f /* return -ENOSYS (already in pt_regs->ax) */
200 movq %r10, %rcx
302f5b26
AL
201
202 /*
203 * This call instruction is handled specially in stub_ptregs_64.
b7765086
AL
204 * It might end up jumping to the slow path. If it jumps, RAX
205 * and all argument registers are clobbered.
302f5b26 206 */
4d732138 207 call *sys_call_table(, %rax, 8)
302f5b26
AL
208.Lentry_SYSCALL_64_after_fastpath_call:
209
4d732138 210 movq %rax, RAX(%rsp)
146b2b09 2111:
b3494a4a
AL
212
213 /*
1e423bff
AL
214 * If we get here, then we know that pt_regs is clean for SYSRET64.
215 * If we see that no exit work is required (which we are required
216 * to check with IRQs off), then we can go straight to SYSRET64.
b3494a4a 217 */
1e423bff
AL
218 DISABLE_INTERRUPTS(CLBR_NONE)
219 TRACE_IRQS_OFF
4d732138 220 testl $_TIF_ALLWORK_MASK, ASM_THREAD_INFO(TI_flags, %rsp, SIZEOF_PTREGS)
1e423bff 221 jnz 1f
b3494a4a 222
1e423bff
AL
223 LOCKDEP_SYS_EXIT
224 TRACE_IRQS_ON /* user mode is traced as IRQs on */
eb2a54c3
AL
225 movq RIP(%rsp), %rcx
226 movq EFLAGS(%rsp), %r11
227 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 228 movq RSP(%rsp), %rsp
2be29982 229 USERGS_SYSRET64
1da177e4 230
1e423bff
AL
2311:
232 /*
233 * The fast path looked good when we started, but something changed
234 * along the way and we need to switch to the slow path. Calling
235 * raise(3) will trigger this, for example. IRQs are off.
236 */
29ea1b25
AL
237 TRACE_IRQS_ON
238 ENABLE_INTERRUPTS(CLBR_NONE)
76f5df43 239 SAVE_EXTRA_REGS
4d732138 240 movq %rsp, %rdi
1e423bff
AL
241 call syscall_return_slowpath /* returns with IRQs disabled */
242 jmp return_from_SYSCALL_64
0bd7b798 243
1e423bff
AL
244entry_SYSCALL64_slow_path:
245 /* IRQs are off. */
76f5df43 246 SAVE_EXTRA_REGS
29ea1b25 247 movq %rsp, %rdi
1e423bff
AL
248 call do_syscall_64 /* returns with IRQs disabled */
249
250return_from_SYSCALL_64:
76f5df43 251 RESTORE_EXTRA_REGS
29ea1b25 252 TRACE_IRQS_IRETQ /* we're about to change IF */
fffbb5dc
DV
253
254 /*
255 * Try to use SYSRET instead of IRET if we're returning to
256 * a completely clean 64-bit userspace context.
257 */
4d732138
IM
258 movq RCX(%rsp), %rcx
259 movq RIP(%rsp), %r11
260 cmpq %rcx, %r11 /* RCX == RIP */
261 jne opportunistic_sysret_failed
fffbb5dc
DV
262
263 /*
264 * On Intel CPUs, SYSRET with non-canonical RCX/RIP will #GP
265 * in kernel space. This essentially lets the user take over
17be0aec 266 * the kernel, since userspace controls RSP.
fffbb5dc 267 *
17be0aec 268 * If width of "canonical tail" ever becomes variable, this will need
fffbb5dc
DV
269 * to be updated to remain correct on both old and new CPUs.
270 */
271 .ifne __VIRTUAL_MASK_SHIFT - 47
272 .error "virtual address width changed -- SYSRET checks need update"
273 .endif
4d732138 274
17be0aec
DV
275 /* Change top 16 bits to be the sign-extension of 47th bit */
276 shl $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
277 sar $(64 - (__VIRTUAL_MASK_SHIFT+1)), %rcx
4d732138 278
17be0aec
DV
279 /* If this changed %rcx, it was not canonical */
280 cmpq %rcx, %r11
281 jne opportunistic_sysret_failed
fffbb5dc 282
4d732138
IM
283 cmpq $__USER_CS, CS(%rsp) /* CS must match SYSRET */
284 jne opportunistic_sysret_failed
fffbb5dc 285
4d732138
IM
286 movq R11(%rsp), %r11
287 cmpq %r11, EFLAGS(%rsp) /* R11 == RFLAGS */
288 jne opportunistic_sysret_failed
fffbb5dc
DV
289
290 /*
3e035305
BP
291 * SYSCALL clears RF when it saves RFLAGS in R11 and SYSRET cannot
292 * restore RF properly. If the slowpath sets it for whatever reason, we
293 * need to restore it correctly.
294 *
295 * SYSRET can restore TF, but unlike IRET, restoring TF results in a
296 * trap from userspace immediately after SYSRET. This would cause an
297 * infinite loop whenever #DB happens with register state that satisfies
298 * the opportunistic SYSRET conditions. For example, single-stepping
299 * this user code:
fffbb5dc 300 *
4d732138 301 * movq $stuck_here, %rcx
fffbb5dc
DV
302 * pushfq
303 * popq %r11
304 * stuck_here:
305 *
306 * would never get past 'stuck_here'.
307 */
4d732138
IM
308 testq $(X86_EFLAGS_RF|X86_EFLAGS_TF), %r11
309 jnz opportunistic_sysret_failed
fffbb5dc
DV
310
311 /* nothing to check for RSP */
312
4d732138
IM
313 cmpq $__USER_DS, SS(%rsp) /* SS must match SYSRET */
314 jne opportunistic_sysret_failed
fffbb5dc
DV
315
316 /*
4d732138
IM
317 * We win! This label is here just for ease of understanding
318 * perf profiles. Nothing jumps here.
fffbb5dc
DV
319 */
320syscall_return_via_sysret:
17be0aec
DV
321 /* rcx and r11 are already restored (see code above) */
322 RESTORE_C_REGS_EXCEPT_RCX_R11
4d732138 323 movq RSP(%rsp), %rsp
fffbb5dc 324 USERGS_SYSRET64
fffbb5dc
DV
325
326opportunistic_sysret_failed:
327 SWAPGS
328 jmp restore_c_regs_and_iret
b2502b41 329END(entry_SYSCALL_64)
0bd7b798 330
302f5b26
AL
331ENTRY(stub_ptregs_64)
332 /*
333 * Syscalls marked as needing ptregs land here.
b7765086
AL
334 * If we are on the fast path, we need to save the extra regs,
335 * which we achieve by trying again on the slow path. If we are on
336 * the slow path, the extra regs are already saved.
302f5b26
AL
337 *
338 * RAX stores a pointer to the C function implementing the syscall.
b7765086 339 * IRQs are on.
302f5b26
AL
340 */
341 cmpq $.Lentry_SYSCALL_64_after_fastpath_call, (%rsp)
342 jne 1f
343
b7765086
AL
344 /*
345 * Called from fast path -- disable IRQs again, pop return address
346 * and jump to slow path
347 */
348 DISABLE_INTERRUPTS(CLBR_NONE)
349 TRACE_IRQS_OFF
302f5b26 350 popq %rax
b7765086 351 jmp entry_SYSCALL64_slow_path
302f5b26
AL
352
3531:
354 /* Called from C */
355 jmp *%rax /* called from C */
356END(stub_ptregs_64)
357
358.macro ptregs_stub func
359ENTRY(ptregs_\func)
360 leaq \func(%rip), %rax
361 jmp stub_ptregs_64
362END(ptregs_\func)
363.endm
364
365/* Instantiate ptregs_stub for each ptregs-using syscall */
366#define __SYSCALL_64_QUAL_(sym)
367#define __SYSCALL_64_QUAL_ptregs(sym) ptregs_stub sym
368#define __SYSCALL_64(nr, sym, qual) __SYSCALL_64_QUAL_##qual(sym)
369#include <asm/syscalls_64.h>
fffbb5dc 370
1eeb207f
DV
371/*
372 * A newly forked process directly context switches into this address.
373 *
374 * rdi: prev task we switched from
375 */
376ENTRY(ret_from_fork)
4d732138 377 LOCK ; btr $TIF_FORK, TI_flags(%r8)
1eeb207f 378
4d732138 379 call schedule_tail /* rdi: 'prev' task parameter */
1eeb207f 380
4d732138 381 testb $3, CS(%rsp) /* from kernel_thread? */
24d978b7 382 jnz 1f
1eeb207f 383
1e3fbb8a 384 /*
24d978b7
AL
385 * We came from kernel_thread. This code path is quite twisted, and
386 * someone should clean it up.
387 *
388 * copy_thread_tls stashes the function pointer in RBX and the
389 * parameter to be passed in RBP. The called function is permitted
390 * to call do_execve and thereby jump to user mode.
1e3fbb8a 391 */
24d978b7
AL
392 movq RBP(%rsp), %rdi
393 call *RBX(%rsp)
394 movl $0, RAX(%rsp)
1eeb207f 395
4d732138 396 /*
24d978b7
AL
397 * Fall through as though we're exiting a syscall. This makes a
398 * twisted sort of sense if we just called do_execve.
4d732138 399 */
24d978b7
AL
400
4011:
402 movq %rsp, %rdi
403 call syscall_return_slowpath /* returns with IRQs disabled */
404 TRACE_IRQS_ON /* user mode is traced as IRQS on */
405 SWAPGS
406 jmp restore_regs_and_iret
1eeb207f
DV
407END(ret_from_fork)
408
939b7871 409/*
3304c9c3
DV
410 * Build the entry stubs with some assembler magic.
411 * We pack 1 stub into every 8-byte block.
939b7871 412 */
3304c9c3 413 .align 8
939b7871 414ENTRY(irq_entries_start)
3304c9c3
DV
415 vector=FIRST_EXTERNAL_VECTOR
416 .rept (FIRST_SYSTEM_VECTOR - FIRST_EXTERNAL_VECTOR)
4d732138 417 pushq $(~vector+0x80) /* Note: always in signed byte range */
3304c9c3
DV
418 vector=vector+1
419 jmp common_interrupt
3304c9c3
DV
420 .align 8
421 .endr
939b7871
PA
422END(irq_entries_start)
423
d99015b1 424/*
1da177e4
LT
425 * Interrupt entry/exit.
426 *
427 * Interrupt entry points save only callee clobbered registers in fast path.
d99015b1
AH
428 *
429 * Entry runs with interrupts off.
430 */
1da177e4 431
722024db 432/* 0(%rsp): ~(interrupt number) */
1da177e4 433 .macro interrupt func
f6f64681 434 cld
ff467594
AL
435 ALLOC_PT_GPREGS_ON_STACK
436 SAVE_C_REGS
437 SAVE_EXTRA_REGS
76f5df43 438
ff467594 439 testb $3, CS(%rsp)
dde74f2e 440 jz 1f
02bc7768
AL
441
442 /*
443 * IRQ from user mode. Switch to kernel gsbase and inform context
444 * tracking that we're in kernel mode.
445 */
f6f64681 446 SWAPGS
f1075053
AL
447
448 /*
449 * We need to tell lockdep that IRQs are off. We can't do this until
450 * we fix gsbase, and we should do it before enter_from_user_mode
451 * (which can take locks). Since TRACE_IRQS_OFF idempotent,
452 * the simplest way to handle it is to just call it twice if
453 * we enter from user mode. There's no reason to optimize this since
454 * TRACE_IRQS_OFF is a no-op if lockdep is off.
455 */
456 TRACE_IRQS_OFF
457
478dc89c 458 CALL_enter_from_user_mode
02bc7768 459
76f5df43 4601:
f6f64681 461 /*
e90e147c 462 * Save previous stack pointer, optionally switch to interrupt stack.
f6f64681
DV
463 * irq_count is used to check if a CPU is already on an interrupt stack
464 * or not. While this is essentially redundant with preempt_count it is
465 * a little cheaper to use a separate counter in the PDA (short of
466 * moving irq_enter into assembly, which would be too much work)
467 */
a586f98e 468 movq %rsp, %rdi
4d732138
IM
469 incl PER_CPU_VAR(irq_count)
470 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
a586f98e 471 pushq %rdi
f6f64681
DV
472 /* We entered an interrupt context - irqs are off: */
473 TRACE_IRQS_OFF
474
a586f98e 475 call \func /* rdi points to pt_regs */
1da177e4
LT
476 .endm
477
722024db
AH
478 /*
479 * The interrupt stubs push (~vector+0x80) onto the stack and
480 * then jump to common_interrupt.
481 */
939b7871
PA
482 .p2align CONFIG_X86_L1_CACHE_SHIFT
483common_interrupt:
ee4eb87b 484 ASM_CLAC
4d732138 485 addq $-0x80, (%rsp) /* Adjust vector to [-256, -1] range */
1da177e4 486 interrupt do_IRQ
34061f13 487 /* 0(%rsp): old RSP */
7effaa88 488ret_from_intr:
72fe4858 489 DISABLE_INTERRUPTS(CLBR_NONE)
2601e64d 490 TRACE_IRQS_OFF
4d732138 491 decl PER_CPU_VAR(irq_count)
625dbc3b 492
a2bbe750 493 /* Restore saved previous stack */
ff467594 494 popq %rsp
625dbc3b 495
03335e95 496 testb $3, CS(%rsp)
dde74f2e 497 jz retint_kernel
4d732138 498
02bc7768 499 /* Interrupt came from user space */
02bc7768
AL
500GLOBAL(retint_user)
501 mov %rsp,%rdi
502 call prepare_exit_to_usermode
2601e64d 503 TRACE_IRQS_IRETQ
72fe4858 504 SWAPGS
ff467594 505 jmp restore_regs_and_iret
2601e64d 506
627276cb 507/* Returning to kernel space */
6ba71b76 508retint_kernel:
627276cb
DV
509#ifdef CONFIG_PREEMPT
510 /* Interrupts are off */
511 /* Check if we need preemption */
4d732138 512 bt $9, EFLAGS(%rsp) /* were interrupts off? */
6ba71b76 513 jnc 1f
4d732138 5140: cmpl $0, PER_CPU_VAR(__preempt_count)
36acef25 515 jnz 1f
627276cb 516 call preempt_schedule_irq
36acef25 517 jmp 0b
6ba71b76 5181:
627276cb 519#endif
2601e64d
IM
520 /*
521 * The iretq could re-enable interrupts:
522 */
523 TRACE_IRQS_IRETQ
fffbb5dc
DV
524
525/*
526 * At this label, code paths which return to kernel and to user,
527 * which come from interrupts/exception and from syscalls, merge.
528 */
ee08c6bd 529GLOBAL(restore_regs_and_iret)
ff467594 530 RESTORE_EXTRA_REGS
fffbb5dc 531restore_c_regs_and_iret:
76f5df43
DV
532 RESTORE_C_REGS
533 REMOVE_PT_GPREGS_FROM_STACK 8
7209a75d
AL
534 INTERRUPT_RETURN
535
536ENTRY(native_iret)
3891a04a
PA
537 /*
538 * Are we returning to a stack segment from the LDT? Note: in
539 * 64-bit mode SS:RSP on the exception stack is always valid.
540 */
34273f41 541#ifdef CONFIG_X86_ESPFIX64
4d732138
IM
542 testb $4, (SS-RIP)(%rsp)
543 jnz native_irq_return_ldt
34273f41 544#endif
3891a04a 545
af726f21 546.global native_irq_return_iret
7209a75d 547native_irq_return_iret:
b645af2d
AL
548 /*
549 * This may fault. Non-paranoid faults on return to userspace are
550 * handled by fixup_bad_iret. These include #SS, #GP, and #NP.
551 * Double-faults due to espfix64 are handled in do_double_fault.
552 * Other faults here are fatal.
553 */
1da177e4 554 iretq
3701d863 555
34273f41 556#ifdef CONFIG_X86_ESPFIX64
7209a75d 557native_irq_return_ldt:
4d732138
IM
558 pushq %rax
559 pushq %rdi
3891a04a 560 SWAPGS
4d732138
IM
561 movq PER_CPU_VAR(espfix_waddr), %rdi
562 movq %rax, (0*8)(%rdi) /* RAX */
563 movq (2*8)(%rsp), %rax /* RIP */
564 movq %rax, (1*8)(%rdi)
565 movq (3*8)(%rsp), %rax /* CS */
566 movq %rax, (2*8)(%rdi)
567 movq (4*8)(%rsp), %rax /* RFLAGS */
568 movq %rax, (3*8)(%rdi)
569 movq (6*8)(%rsp), %rax /* SS */
570 movq %rax, (5*8)(%rdi)
571 movq (5*8)(%rsp), %rax /* RSP */
572 movq %rax, (4*8)(%rdi)
573 andl $0xffff0000, %eax
574 popq %rdi
575 orq PER_CPU_VAR(espfix_stack), %rax
3891a04a 576 SWAPGS
4d732138
IM
577 movq %rax, %rsp
578 popq %rax
579 jmp native_irq_return_iret
34273f41 580#endif
4b787e0b 581END(common_interrupt)
3891a04a 582
1da177e4
LT
583/*
584 * APIC interrupts.
0bd7b798 585 */
cf910e83 586.macro apicinterrupt3 num sym do_sym
322648d1 587ENTRY(\sym)
ee4eb87b 588 ASM_CLAC
4d732138 589 pushq $~(\num)
39e95433 590.Lcommon_\sym:
322648d1 591 interrupt \do_sym
4d732138 592 jmp ret_from_intr
322648d1
AH
593END(\sym)
594.endm
1da177e4 595
cf910e83
SA
596#ifdef CONFIG_TRACING
597#define trace(sym) trace_##sym
598#define smp_trace(sym) smp_trace_##sym
599
600.macro trace_apicinterrupt num sym
601apicinterrupt3 \num trace(\sym) smp_trace(\sym)
602.endm
603#else
604.macro trace_apicinterrupt num sym do_sym
605.endm
606#endif
607
469f0023
AP
608/* Make sure APIC interrupt handlers end up in the irqentry section: */
609#if defined(CONFIG_FUNCTION_GRAPH_TRACER) || defined(CONFIG_KASAN)
610# define PUSH_SECTION_IRQENTRY .pushsection .irqentry.text, "ax"
611# define POP_SECTION_IRQENTRY .popsection
612#else
613# define PUSH_SECTION_IRQENTRY
614# define POP_SECTION_IRQENTRY
615#endif
616
cf910e83 617.macro apicinterrupt num sym do_sym
469f0023 618PUSH_SECTION_IRQENTRY
cf910e83
SA
619apicinterrupt3 \num \sym \do_sym
620trace_apicinterrupt \num \sym
469f0023 621POP_SECTION_IRQENTRY
cf910e83
SA
622.endm
623
322648d1 624#ifdef CONFIG_SMP
4d732138
IM
625apicinterrupt3 IRQ_MOVE_CLEANUP_VECTOR irq_move_cleanup_interrupt smp_irq_move_cleanup_interrupt
626apicinterrupt3 REBOOT_VECTOR reboot_interrupt smp_reboot_interrupt
322648d1 627#endif
1da177e4 628
03b48632 629#ifdef CONFIG_X86_UV
4d732138 630apicinterrupt3 UV_BAU_MESSAGE uv_bau_message_intr1 uv_bau_message_interrupt
03b48632 631#endif
4d732138
IM
632
633apicinterrupt LOCAL_TIMER_VECTOR apic_timer_interrupt smp_apic_timer_interrupt
634apicinterrupt X86_PLATFORM_IPI_VECTOR x86_platform_ipi smp_x86_platform_ipi
89b831ef 635
d78f2664 636#ifdef CONFIG_HAVE_KVM
4d732138
IM
637apicinterrupt3 POSTED_INTR_VECTOR kvm_posted_intr_ipi smp_kvm_posted_intr_ipi
638apicinterrupt3 POSTED_INTR_WAKEUP_VECTOR kvm_posted_intr_wakeup_ipi smp_kvm_posted_intr_wakeup_ipi
d78f2664
YZ
639#endif
640
33e5ff63 641#ifdef CONFIG_X86_MCE_THRESHOLD
4d732138 642apicinterrupt THRESHOLD_APIC_VECTOR threshold_interrupt smp_threshold_interrupt
33e5ff63
SA
643#endif
644
24fd78a8 645#ifdef CONFIG_X86_MCE_AMD
4d732138 646apicinterrupt DEFERRED_ERROR_VECTOR deferred_error_interrupt smp_deferred_error_interrupt
24fd78a8
AG
647#endif
648
33e5ff63 649#ifdef CONFIG_X86_THERMAL_VECTOR
4d732138 650apicinterrupt THERMAL_APIC_VECTOR thermal_interrupt smp_thermal_interrupt
33e5ff63 651#endif
1812924b 652
322648d1 653#ifdef CONFIG_SMP
4d732138
IM
654apicinterrupt CALL_FUNCTION_SINGLE_VECTOR call_function_single_interrupt smp_call_function_single_interrupt
655apicinterrupt CALL_FUNCTION_VECTOR call_function_interrupt smp_call_function_interrupt
656apicinterrupt RESCHEDULE_VECTOR reschedule_interrupt smp_reschedule_interrupt
322648d1 657#endif
1da177e4 658
4d732138
IM
659apicinterrupt ERROR_APIC_VECTOR error_interrupt smp_error_interrupt
660apicinterrupt SPURIOUS_APIC_VECTOR spurious_interrupt smp_spurious_interrupt
0bd7b798 661
e360adbe 662#ifdef CONFIG_IRQ_WORK
4d732138 663apicinterrupt IRQ_WORK_VECTOR irq_work_interrupt smp_irq_work_interrupt
241771ef
IM
664#endif
665
1da177e4
LT
666/*
667 * Exception entry points.
0bd7b798 668 */
9b476688 669#define CPU_TSS_IST(x) PER_CPU_VAR(cpu_tss) + (TSS_ist + ((x) - 1) * 8)
577ed45e
AL
670
671.macro idtentry sym do_sym has_error_code:req paranoid=0 shift_ist=-1
322648d1 672ENTRY(\sym)
577ed45e
AL
673 /* Sanity check */
674 .if \shift_ist != -1 && \paranoid == 0
675 .error "using shift_ist requires paranoid=1"
676 .endif
677
ee4eb87b 678 ASM_CLAC
b8b1d08b 679 PARAVIRT_ADJUST_EXCEPTION_FRAME
cb5dd2c5
AL
680
681 .ifeq \has_error_code
4d732138 682 pushq $-1 /* ORIG_RAX: no syscall to restart */
cb5dd2c5
AL
683 .endif
684
76f5df43 685 ALLOC_PT_GPREGS_ON_STACK
cb5dd2c5
AL
686
687 .if \paranoid
48e08d0f 688 .if \paranoid == 1
4d732138
IM
689 testb $3, CS(%rsp) /* If coming from userspace, switch stacks */
690 jnz 1f
48e08d0f 691 .endif
4d732138 692 call paranoid_entry
cb5dd2c5 693 .else
4d732138 694 call error_entry
cb5dd2c5 695 .endif
ebfc453e 696 /* returned flag: ebx=0: need swapgs on exit, ebx=1: don't need it */
cb5dd2c5 697
cb5dd2c5 698 .if \paranoid
577ed45e 699 .if \shift_ist != -1
4d732138 700 TRACE_IRQS_OFF_DEBUG /* reload IDT in case of recursion */
577ed45e 701 .else
b8b1d08b 702 TRACE_IRQS_OFF
cb5dd2c5 703 .endif
577ed45e 704 .endif
cb5dd2c5 705
4d732138 706 movq %rsp, %rdi /* pt_regs pointer */
cb5dd2c5
AL
707
708 .if \has_error_code
4d732138
IM
709 movq ORIG_RAX(%rsp), %rsi /* get error code */
710 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
cb5dd2c5 711 .else
4d732138 712 xorl %esi, %esi /* no error code */
cb5dd2c5
AL
713 .endif
714
577ed45e 715 .if \shift_ist != -1
4d732138 716 subq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
717 .endif
718
4d732138 719 call \do_sym
cb5dd2c5 720
577ed45e 721 .if \shift_ist != -1
4d732138 722 addq $EXCEPTION_STKSZ, CPU_TSS_IST(\shift_ist)
577ed45e
AL
723 .endif
724
ebfc453e 725 /* these procedures expect "no swapgs" flag in ebx */
cb5dd2c5 726 .if \paranoid
4d732138 727 jmp paranoid_exit
cb5dd2c5 728 .else
4d732138 729 jmp error_exit
cb5dd2c5
AL
730 .endif
731
48e08d0f 732 .if \paranoid == 1
48e08d0f
AL
733 /*
734 * Paranoid entry from userspace. Switch stacks and treat it
735 * as a normal entry. This means that paranoid handlers
736 * run in real process context if user_mode(regs).
737 */
7381:
4d732138 739 call error_entry
48e08d0f 740
48e08d0f 741
4d732138
IM
742 movq %rsp, %rdi /* pt_regs pointer */
743 call sync_regs
744 movq %rax, %rsp /* switch stack */
48e08d0f 745
4d732138 746 movq %rsp, %rdi /* pt_regs pointer */
48e08d0f
AL
747
748 .if \has_error_code
4d732138
IM
749 movq ORIG_RAX(%rsp), %rsi /* get error code */
750 movq $-1, ORIG_RAX(%rsp) /* no syscall to restart */
48e08d0f 751 .else
4d732138 752 xorl %esi, %esi /* no error code */
48e08d0f
AL
753 .endif
754
4d732138 755 call \do_sym
48e08d0f 756
4d732138 757 jmp error_exit /* %ebx: no swapgs flag */
48e08d0f 758 .endif
ddeb8f21 759END(\sym)
322648d1 760.endm
b8b1d08b 761
25c74b10 762#ifdef CONFIG_TRACING
cb5dd2c5
AL
763.macro trace_idtentry sym do_sym has_error_code:req
764idtentry trace(\sym) trace(\do_sym) has_error_code=\has_error_code
765idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
766.endm
767#else
cb5dd2c5
AL
768.macro trace_idtentry sym do_sym has_error_code:req
769idtentry \sym \do_sym has_error_code=\has_error_code
25c74b10
SA
770.endm
771#endif
772
4d732138
IM
773idtentry divide_error do_divide_error has_error_code=0
774idtentry overflow do_overflow has_error_code=0
775idtentry bounds do_bounds has_error_code=0
776idtentry invalid_op do_invalid_op has_error_code=0
777idtentry device_not_available do_device_not_available has_error_code=0
778idtentry double_fault do_double_fault has_error_code=1 paranoid=2
779idtentry coprocessor_segment_overrun do_coprocessor_segment_overrun has_error_code=0
780idtentry invalid_TSS do_invalid_TSS has_error_code=1
781idtentry segment_not_present do_segment_not_present has_error_code=1
782idtentry spurious_interrupt_bug do_spurious_interrupt_bug has_error_code=0
783idtentry coprocessor_error do_coprocessor_error has_error_code=0
784idtentry alignment_check do_alignment_check has_error_code=1
785idtentry simd_coprocessor_error do_simd_coprocessor_error has_error_code=0
786
787
788 /*
789 * Reload gs selector with exception handling
790 * edi: new selector
791 */
9f9d489a 792ENTRY(native_load_gs_index)
131484c8 793 pushfq
b8aa287f 794 DISABLE_INTERRUPTS(CLBR_ANY & ~CLBR_RDI)
9f1e87ea 795 SWAPGS
42c748bb 796.Lgs_change:
4d732138 797 movl %edi, %gs
96e5d28a 7982: ALTERNATIVE "", "mfence", X86_BUG_SWAPGS_FENCE
72fe4858 799 SWAPGS
131484c8 800 popfq
9f1e87ea 801 ret
6efdcfaf 802END(native_load_gs_index)
0bd7b798 803
42c748bb 804 _ASM_EXTABLE(.Lgs_change, bad_gs)
4d732138 805 .section .fixup, "ax"
1da177e4 806 /* running with kernelgs */
0bd7b798 807bad_gs:
4d732138 808 SWAPGS /* switch back to user gs */
b038c842
AL
809.macro ZAP_GS
810 /* This can't be a string because the preprocessor needs to see it. */
811 movl $__USER_DS, %eax
812 movl %eax, %gs
813.endm
814 ALTERNATIVE "", "ZAP_GS", X86_BUG_NULL_SEG
4d732138
IM
815 xorl %eax, %eax
816 movl %eax, %gs
817 jmp 2b
9f1e87ea 818 .previous
0bd7b798 819
2699500b 820/* Call softirq on interrupt stack. Interrupts are off. */
7d65f4a6 821ENTRY(do_softirq_own_stack)
4d732138
IM
822 pushq %rbp
823 mov %rsp, %rbp
824 incl PER_CPU_VAR(irq_count)
825 cmove PER_CPU_VAR(irq_stack_ptr), %rsp
826 push %rbp /* frame pointer backlink */
827 call __do_softirq
2699500b 828 leaveq
4d732138 829 decl PER_CPU_VAR(irq_count)
ed6b676c 830 ret
7d65f4a6 831END(do_softirq_own_stack)
75154f40 832
3d75e1b8 833#ifdef CONFIG_XEN
cb5dd2c5 834idtentry xen_hypervisor_callback xen_do_hypervisor_callback has_error_code=0
3d75e1b8
JF
835
836/*
9f1e87ea
CG
837 * A note on the "critical region" in our callback handler.
838 * We want to avoid stacking callback handlers due to events occurring
839 * during handling of the last event. To do this, we keep events disabled
840 * until we've done all processing. HOWEVER, we must enable events before
841 * popping the stack frame (can't be done atomically) and so it would still
842 * be possible to get enough handler activations to overflow the stack.
843 * Although unlikely, bugs of that kind are hard to track down, so we'd
844 * like to avoid the possibility.
845 * So, on entry to the handler we detect whether we interrupted an
846 * existing activation in its critical region -- if so, we pop the current
847 * activation and restart the handler using the previous one.
848 */
4d732138
IM
849ENTRY(xen_do_hypervisor_callback) /* do_hypervisor_callback(struct *pt_regs) */
850
9f1e87ea
CG
851/*
852 * Since we don't modify %rdi, evtchn_do_upall(struct *pt_regs) will
853 * see the correct pointer to the pt_regs
854 */
4d732138
IM
855 movq %rdi, %rsp /* we don't return, adjust the stack frame */
85611: incl PER_CPU_VAR(irq_count)
857 movq %rsp, %rbp
858 cmovzq PER_CPU_VAR(irq_stack_ptr), %rsp
859 pushq %rbp /* frame pointer backlink */
860 call xen_evtchn_do_upcall
861 popq %rsp
862 decl PER_CPU_VAR(irq_count)
fdfd811d 863#ifndef CONFIG_PREEMPT
4d732138 864 call xen_maybe_preempt_hcall
fdfd811d 865#endif
4d732138 866 jmp error_exit
371c394a 867END(xen_do_hypervisor_callback)
3d75e1b8
JF
868
869/*
9f1e87ea
CG
870 * Hypervisor uses this for application faults while it executes.
871 * We get here for two reasons:
872 * 1. Fault while reloading DS, ES, FS or GS
873 * 2. Fault while executing IRET
874 * Category 1 we do not need to fix up as Xen has already reloaded all segment
875 * registers that could be reloaded and zeroed the others.
876 * Category 2 we fix up by killing the current process. We cannot use the
877 * normal Linux return path in this case because if we use the IRET hypercall
878 * to pop the stack frame we end up in an infinite loop of failsafe callbacks.
879 * We distinguish between categories by comparing each saved segment register
880 * with its current contents: any discrepancy means we in category 1.
881 */
3d75e1b8 882ENTRY(xen_failsafe_callback)
4d732138
IM
883 movl %ds, %ecx
884 cmpw %cx, 0x10(%rsp)
885 jne 1f
886 movl %es, %ecx
887 cmpw %cx, 0x18(%rsp)
888 jne 1f
889 movl %fs, %ecx
890 cmpw %cx, 0x20(%rsp)
891 jne 1f
892 movl %gs, %ecx
893 cmpw %cx, 0x28(%rsp)
894 jne 1f
3d75e1b8 895 /* All segments match their saved values => Category 2 (Bad IRET). */
4d732138
IM
896 movq (%rsp), %rcx
897 movq 8(%rsp), %r11
898 addq $0x30, %rsp
899 pushq $0 /* RIP */
900 pushq %r11
901 pushq %rcx
902 jmp general_protection
3d75e1b8 9031: /* Segment mismatch => Category 1 (Bad segment). Retry the IRET. */
4d732138
IM
904 movq (%rsp), %rcx
905 movq 8(%rsp), %r11
906 addq $0x30, %rsp
907 pushq $-1 /* orig_ax = -1 => not a system call */
76f5df43
DV
908 ALLOC_PT_GPREGS_ON_STACK
909 SAVE_C_REGS
910 SAVE_EXTRA_REGS
4d732138 911 jmp error_exit
3d75e1b8
JF
912END(xen_failsafe_callback)
913
cf910e83 914apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
38e20b07
SY
915 xen_hvm_callback_vector xen_evtchn_do_upcall
916
3d75e1b8 917#endif /* CONFIG_XEN */
ddeb8f21 918
bc2b0331 919#if IS_ENABLED(CONFIG_HYPERV)
cf910e83 920apicinterrupt3 HYPERVISOR_CALLBACK_VECTOR \
bc2b0331
S
921 hyperv_callback_vector hyperv_vector_handler
922#endif /* CONFIG_HYPERV */
923
4d732138
IM
924idtentry debug do_debug has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
925idtentry int3 do_int3 has_error_code=0 paranoid=1 shift_ist=DEBUG_STACK
926idtentry stack_segment do_stack_segment has_error_code=1
927
6cac5a92 928#ifdef CONFIG_XEN
4d732138
IM
929idtentry xen_debug do_debug has_error_code=0
930idtentry xen_int3 do_int3 has_error_code=0
931idtentry xen_stack_segment do_stack_segment has_error_code=1
6cac5a92 932#endif
4d732138
IM
933
934idtentry general_protection do_general_protection has_error_code=1
935trace_idtentry page_fault do_page_fault has_error_code=1
936
631bc487 937#ifdef CONFIG_KVM_GUEST
4d732138 938idtentry async_page_fault do_async_page_fault has_error_code=1
631bc487 939#endif
4d732138 940
ddeb8f21 941#ifdef CONFIG_X86_MCE
4d732138 942idtentry machine_check has_error_code=0 paranoid=1 do_sym=*machine_check_vector(%rip)
ddeb8f21
AH
943#endif
944
ebfc453e
DV
945/*
946 * Save all registers in pt_regs, and switch gs if needed.
947 * Use slow, but surefire "are we in kernel?" check.
948 * Return: ebx=0: need swapgs on exit, ebx=1: otherwise
949 */
950ENTRY(paranoid_entry)
1eeb207f
DV
951 cld
952 SAVE_C_REGS 8
953 SAVE_EXTRA_REGS 8
4d732138
IM
954 movl $1, %ebx
955 movl $MSR_GS_BASE, %ecx
1eeb207f 956 rdmsr
4d732138
IM
957 testl %edx, %edx
958 js 1f /* negative -> in kernel */
1eeb207f 959 SWAPGS
4d732138 960 xorl %ebx, %ebx
1eeb207f 9611: ret
ebfc453e 962END(paranoid_entry)
ddeb8f21 963
ebfc453e
DV
964/*
965 * "Paranoid" exit path from exception stack. This is invoked
966 * only on return from non-NMI IST interrupts that came
967 * from kernel space.
968 *
969 * We may be returning to very strange contexts (e.g. very early
970 * in syscall entry), so checking for preemption here would
971 * be complicated. Fortunately, we there's no good reason
972 * to try to handle preemption here.
4d732138
IM
973 *
974 * On entry, ebx is "no swapgs" flag (1: don't need swapgs, 0: need it)
ebfc453e 975 */
ddeb8f21 976ENTRY(paranoid_exit)
ddeb8f21 977 DISABLE_INTERRUPTS(CLBR_NONE)
5963e317 978 TRACE_IRQS_OFF_DEBUG
4d732138
IM
979 testl %ebx, %ebx /* swapgs needed? */
980 jnz paranoid_exit_no_swapgs
f2db9382 981 TRACE_IRQS_IRETQ
ddeb8f21 982 SWAPGS_UNSAFE_STACK
4d732138 983 jmp paranoid_exit_restore
0d550836 984paranoid_exit_no_swapgs:
f2db9382 985 TRACE_IRQS_IRETQ_DEBUG
0d550836 986paranoid_exit_restore:
76f5df43
DV
987 RESTORE_EXTRA_REGS
988 RESTORE_C_REGS
989 REMOVE_PT_GPREGS_FROM_STACK 8
48e08d0f 990 INTERRUPT_RETURN
ddeb8f21
AH
991END(paranoid_exit)
992
993/*
ebfc453e 994 * Save all registers in pt_regs, and switch gs if needed.
539f5113 995 * Return: EBX=0: came from user mode; EBX=1: otherwise
ddeb8f21
AH
996 */
997ENTRY(error_entry)
ddeb8f21 998 cld
76f5df43
DV
999 SAVE_C_REGS 8
1000 SAVE_EXTRA_REGS 8
4d732138 1001 xorl %ebx, %ebx
03335e95 1002 testb $3, CS+8(%rsp)
cb6f64ed 1003 jz .Lerror_kernelspace
539f5113 1004
cb6f64ed
AL
1005 /*
1006 * We entered from user mode or we're pretending to have entered
1007 * from user mode due to an IRET fault.
1008 */
ddeb8f21 1009 SWAPGS
539f5113 1010
cb6f64ed 1011.Lerror_entry_from_usermode_after_swapgs:
f1075053
AL
1012 /*
1013 * We need to tell lockdep that IRQs are off. We can't do this until
1014 * we fix gsbase, and we should do it before enter_from_user_mode
1015 * (which can take locks).
1016 */
1017 TRACE_IRQS_OFF
478dc89c 1018 CALL_enter_from_user_mode
f1075053 1019 ret
02bc7768 1020
cb6f64ed 1021.Lerror_entry_done:
ddeb8f21
AH
1022 TRACE_IRQS_OFF
1023 ret
ddeb8f21 1024
ebfc453e
DV
1025 /*
1026 * There are two places in the kernel that can potentially fault with
1027 * usergs. Handle them here. B stepping K8s sometimes report a
1028 * truncated RIP for IRET exceptions returning to compat mode. Check
1029 * for these here too.
1030 */
cb6f64ed 1031.Lerror_kernelspace:
4d732138
IM
1032 incl %ebx
1033 leaq native_irq_return_iret(%rip), %rcx
1034 cmpq %rcx, RIP+8(%rsp)
cb6f64ed 1035 je .Lerror_bad_iret
4d732138
IM
1036 movl %ecx, %eax /* zero extend */
1037 cmpq %rax, RIP+8(%rsp)
cb6f64ed 1038 je .Lbstep_iret
42c748bb 1039 cmpq $.Lgs_change, RIP+8(%rsp)
cb6f64ed 1040 jne .Lerror_entry_done
539f5113
AL
1041
1042 /*
42c748bb 1043 * hack: .Lgs_change can fail with user gsbase. If this happens, fix up
539f5113 1044 * gsbase and proceed. We'll fix up the exception and land in
42c748bb 1045 * .Lgs_change's error handler with kernel gsbase.
539f5113 1046 */
2fa5f04f
WL
1047 SWAPGS
1048 jmp .Lerror_entry_done
ae24ffe5 1049
cb6f64ed 1050.Lbstep_iret:
ae24ffe5 1051 /* Fix truncated RIP */
4d732138 1052 movq %rcx, RIP+8(%rsp)
b645af2d
AL
1053 /* fall through */
1054
cb6f64ed 1055.Lerror_bad_iret:
539f5113
AL
1056 /*
1057 * We came from an IRET to user mode, so we have user gsbase.
1058 * Switch to kernel gsbase:
1059 */
b645af2d 1060 SWAPGS
539f5113
AL
1061
1062 /*
1063 * Pretend that the exception came from user mode: set up pt_regs
1064 * as if we faulted immediately after IRET and clear EBX so that
1065 * error_exit knows that we will be returning to user mode.
1066 */
4d732138
IM
1067 mov %rsp, %rdi
1068 call fixup_bad_iret
1069 mov %rax, %rsp
539f5113 1070 decl %ebx
cb6f64ed 1071 jmp .Lerror_entry_from_usermode_after_swapgs
ddeb8f21
AH
1072END(error_entry)
1073
1074
539f5113
AL
1075/*
1076 * On entry, EBS is a "return to kernel mode" flag:
1077 * 1: already in kernel mode, don't need SWAPGS
1078 * 0: user gsbase is loaded, we need SWAPGS and standard preparation for return to usermode
1079 */
ddeb8f21 1080ENTRY(error_exit)
4d732138 1081 movl %ebx, %eax
ddeb8f21
AH
1082 DISABLE_INTERRUPTS(CLBR_NONE)
1083 TRACE_IRQS_OFF
4d732138
IM
1084 testl %eax, %eax
1085 jnz retint_kernel
1086 jmp retint_user
ddeb8f21
AH
1087END(error_exit)
1088
0784b364 1089/* Runs on exception stack */
ddeb8f21 1090ENTRY(nmi)
fc57a7c6
AL
1091 /*
1092 * Fix up the exception frame if we're on Xen.
1093 * PARAVIRT_ADJUST_EXCEPTION_FRAME is guaranteed to push at most
1094 * one value to the stack on native, so it may clobber the rdx
1095 * scratch slot, but it won't clobber any of the important
1096 * slots past it.
1097 *
1098 * Xen is a different story, because the Xen frame itself overlaps
1099 * the "NMI executing" variable.
1100 */
ddeb8f21 1101 PARAVIRT_ADJUST_EXCEPTION_FRAME
fc57a7c6 1102
3f3c8b8c
SR
1103 /*
1104 * We allow breakpoints in NMIs. If a breakpoint occurs, then
1105 * the iretq it performs will take us out of NMI context.
1106 * This means that we can have nested NMIs where the next
1107 * NMI is using the top of the stack of the previous NMI. We
1108 * can't let it execute because the nested NMI will corrupt the
1109 * stack of the previous NMI. NMI handlers are not re-entrant
1110 * anyway.
1111 *
1112 * To handle this case we do the following:
1113 * Check the a special location on the stack that contains
1114 * a variable that is set when NMIs are executing.
1115 * The interrupted task's stack is also checked to see if it
1116 * is an NMI stack.
1117 * If the variable is not set and the stack is not the NMI
1118 * stack then:
1119 * o Set the special variable on the stack
0b22930e
AL
1120 * o Copy the interrupt frame into an "outermost" location on the
1121 * stack
1122 * o Copy the interrupt frame into an "iret" location on the stack
3f3c8b8c
SR
1123 * o Continue processing the NMI
1124 * If the variable is set or the previous stack is the NMI stack:
0b22930e 1125 * o Modify the "iret" location to jump to the repeat_nmi
3f3c8b8c
SR
1126 * o return back to the first NMI
1127 *
1128 * Now on exit of the first NMI, we first clear the stack variable
1129 * The NMI stack will tell any nested NMIs at that point that it is
1130 * nested. Then we pop the stack normally with iret, and if there was
1131 * a nested NMI that updated the copy interrupt stack frame, a
1132 * jump will be made to the repeat_nmi code that will handle the second
1133 * NMI.
9b6e6a83
AL
1134 *
1135 * However, espfix prevents us from directly returning to userspace
1136 * with a single IRET instruction. Similarly, IRET to user mode
1137 * can fault. We therefore handle NMIs from user space like
1138 * other IST entries.
3f3c8b8c
SR
1139 */
1140
146b2b09 1141 /* Use %rdx as our temp variable throughout */
4d732138 1142 pushq %rdx
3f3c8b8c 1143
9b6e6a83
AL
1144 testb $3, CS-RIP+8(%rsp)
1145 jz .Lnmi_from_kernel
1146
1147 /*
1148 * NMI from user mode. We need to run on the thread stack, but we
1149 * can't go through the normal entry paths: NMIs are masked, and
1150 * we don't want to enable interrupts, because then we'll end
1151 * up in an awkward situation in which IRQs are on but NMIs
1152 * are off.
83c133cf
AL
1153 *
1154 * We also must not push anything to the stack before switching
1155 * stacks lest we corrupt the "NMI executing" variable.
9b6e6a83
AL
1156 */
1157
83c133cf 1158 SWAPGS_UNSAFE_STACK
9b6e6a83
AL
1159 cld
1160 movq %rsp, %rdx
1161 movq PER_CPU_VAR(cpu_current_top_of_stack), %rsp
1162 pushq 5*8(%rdx) /* pt_regs->ss */
1163 pushq 4*8(%rdx) /* pt_regs->rsp */
1164 pushq 3*8(%rdx) /* pt_regs->flags */
1165 pushq 2*8(%rdx) /* pt_regs->cs */
1166 pushq 1*8(%rdx) /* pt_regs->rip */
1167 pushq $-1 /* pt_regs->orig_ax */
1168 pushq %rdi /* pt_regs->di */
1169 pushq %rsi /* pt_regs->si */
1170 pushq (%rdx) /* pt_regs->dx */
1171 pushq %rcx /* pt_regs->cx */
1172 pushq %rax /* pt_regs->ax */
1173 pushq %r8 /* pt_regs->r8 */
1174 pushq %r9 /* pt_regs->r9 */
1175 pushq %r10 /* pt_regs->r10 */
1176 pushq %r11 /* pt_regs->r11 */
1177 pushq %rbx /* pt_regs->rbx */
1178 pushq %rbp /* pt_regs->rbp */
1179 pushq %r12 /* pt_regs->r12 */
1180 pushq %r13 /* pt_regs->r13 */
1181 pushq %r14 /* pt_regs->r14 */
1182 pushq %r15 /* pt_regs->r15 */
1183
1184 /*
1185 * At this point we no longer need to worry about stack damage
1186 * due to nesting -- we're on the normal thread stack and we're
1187 * done with the NMI stack.
1188 */
1189
1190 movq %rsp, %rdi
1191 movq $-1, %rsi
1192 call do_nmi
1193
45d5a168 1194 /*
9b6e6a83
AL
1195 * Return back to user mode. We must *not* do the normal exit
1196 * work, because we don't want to enable interrupts. Fortunately,
1197 * do_nmi doesn't modify pt_regs.
45d5a168 1198 */
9b6e6a83
AL
1199 SWAPGS
1200 jmp restore_c_regs_and_iret
45d5a168 1201
9b6e6a83 1202.Lnmi_from_kernel:
3f3c8b8c 1203 /*
0b22930e
AL
1204 * Here's what our stack frame will look like:
1205 * +---------------------------------------------------------+
1206 * | original SS |
1207 * | original Return RSP |
1208 * | original RFLAGS |
1209 * | original CS |
1210 * | original RIP |
1211 * +---------------------------------------------------------+
1212 * | temp storage for rdx |
1213 * +---------------------------------------------------------+
1214 * | "NMI executing" variable |
1215 * +---------------------------------------------------------+
1216 * | iret SS } Copied from "outermost" frame |
1217 * | iret Return RSP } on each loop iteration; overwritten |
1218 * | iret RFLAGS } by a nested NMI to force another |
1219 * | iret CS } iteration if needed. |
1220 * | iret RIP } |
1221 * +---------------------------------------------------------+
1222 * | outermost SS } initialized in first_nmi; |
1223 * | outermost Return RSP } will not be changed before |
1224 * | outermost RFLAGS } NMI processing is done. |
1225 * | outermost CS } Copied to "iret" frame on each |
1226 * | outermost RIP } iteration. |
1227 * +---------------------------------------------------------+
1228 * | pt_regs |
1229 * +---------------------------------------------------------+
1230 *
1231 * The "original" frame is used by hardware. Before re-enabling
1232 * NMIs, we need to be done with it, and we need to leave enough
1233 * space for the asm code here.
1234 *
1235 * We return by executing IRET while RSP points to the "iret" frame.
1236 * That will either return for real or it will loop back into NMI
1237 * processing.
1238 *
1239 * The "outermost" frame is copied to the "iret" frame on each
1240 * iteration of the loop, so each iteration starts with the "iret"
1241 * frame pointing to the final return target.
1242 */
1243
45d5a168 1244 /*
0b22930e
AL
1245 * Determine whether we're a nested NMI.
1246 *
a27507ca
AL
1247 * If we interrupted kernel code between repeat_nmi and
1248 * end_repeat_nmi, then we are a nested NMI. We must not
1249 * modify the "iret" frame because it's being written by
1250 * the outer NMI. That's okay; the outer NMI handler is
1251 * about to about to call do_nmi anyway, so we can just
1252 * resume the outer NMI.
45d5a168 1253 */
a27507ca
AL
1254
1255 movq $repeat_nmi, %rdx
1256 cmpq 8(%rsp), %rdx
1257 ja 1f
1258 movq $end_repeat_nmi, %rdx
1259 cmpq 8(%rsp), %rdx
1260 ja nested_nmi_out
12611:
45d5a168 1262
3f3c8b8c 1263 /*
a27507ca 1264 * Now check "NMI executing". If it's set, then we're nested.
0b22930e
AL
1265 * This will not detect if we interrupted an outer NMI just
1266 * before IRET.
3f3c8b8c 1267 */
4d732138
IM
1268 cmpl $1, -8(%rsp)
1269 je nested_nmi
3f3c8b8c
SR
1270
1271 /*
0b22930e
AL
1272 * Now test if the previous stack was an NMI stack. This covers
1273 * the case where we interrupt an outer NMI after it clears
810bc075
AL
1274 * "NMI executing" but before IRET. We need to be careful, though:
1275 * there is one case in which RSP could point to the NMI stack
1276 * despite there being no NMI active: naughty userspace controls
1277 * RSP at the very beginning of the SYSCALL targets. We can
1278 * pull a fast one on naughty userspace, though: we program
1279 * SYSCALL to mask DF, so userspace cannot cause DF to be set
1280 * if it controls the kernel's RSP. We set DF before we clear
1281 * "NMI executing".
3f3c8b8c 1282 */
0784b364
DV
1283 lea 6*8(%rsp), %rdx
1284 /* Compare the NMI stack (rdx) with the stack we came from (4*8(%rsp)) */
1285 cmpq %rdx, 4*8(%rsp)
1286 /* If the stack pointer is above the NMI stack, this is a normal NMI */
1287 ja first_nmi
4d732138 1288
0784b364
DV
1289 subq $EXCEPTION_STKSZ, %rdx
1290 cmpq %rdx, 4*8(%rsp)
1291 /* If it is below the NMI stack, it is a normal NMI */
1292 jb first_nmi
810bc075
AL
1293
1294 /* Ah, it is within the NMI stack. */
1295
1296 testb $(X86_EFLAGS_DF >> 8), (3*8 + 1)(%rsp)
1297 jz first_nmi /* RSP was user controlled. */
1298
1299 /* This is a nested NMI. */
0784b364 1300
3f3c8b8c
SR
1301nested_nmi:
1302 /*
0b22930e
AL
1303 * Modify the "iret" frame to point to repeat_nmi, forcing another
1304 * iteration of NMI handling.
3f3c8b8c 1305 */
23a781e9 1306 subq $8, %rsp
4d732138
IM
1307 leaq -10*8(%rsp), %rdx
1308 pushq $__KERNEL_DS
1309 pushq %rdx
131484c8 1310 pushfq
4d732138
IM
1311 pushq $__KERNEL_CS
1312 pushq $repeat_nmi
3f3c8b8c
SR
1313
1314 /* Put stack back */
4d732138 1315 addq $(6*8), %rsp
3f3c8b8c
SR
1316
1317nested_nmi_out:
4d732138 1318 popq %rdx
3f3c8b8c 1319
0b22930e 1320 /* We are returning to kernel mode, so this cannot result in a fault. */
3f3c8b8c
SR
1321 INTERRUPT_RETURN
1322
1323first_nmi:
0b22930e 1324 /* Restore rdx. */
4d732138 1325 movq (%rsp), %rdx
62610913 1326
36f1a77b
AL
1327 /* Make room for "NMI executing". */
1328 pushq $0
3f3c8b8c 1329
0b22930e 1330 /* Leave room for the "iret" frame */
4d732138 1331 subq $(5*8), %rsp
28696f43 1332
0b22930e 1333 /* Copy the "original" frame to the "outermost" frame */
3f3c8b8c 1334 .rept 5
4d732138 1335 pushq 11*8(%rsp)
3f3c8b8c 1336 .endr
62610913 1337
79fb4ad6
SR
1338 /* Everything up to here is safe from nested NMIs */
1339
a97439aa
AL
1340#ifdef CONFIG_DEBUG_ENTRY
1341 /*
1342 * For ease of testing, unmask NMIs right away. Disabled by
1343 * default because IRET is very expensive.
1344 */
1345 pushq $0 /* SS */
1346 pushq %rsp /* RSP (minus 8 because of the previous push) */
1347 addq $8, (%rsp) /* Fix up RSP */
1348 pushfq /* RFLAGS */
1349 pushq $__KERNEL_CS /* CS */
1350 pushq $1f /* RIP */
1351 INTERRUPT_RETURN /* continues at repeat_nmi below */
13521:
1353#endif
1354
0b22930e 1355repeat_nmi:
62610913
JB
1356 /*
1357 * If there was a nested NMI, the first NMI's iret will return
1358 * here. But NMIs are still enabled and we can take another
1359 * nested NMI. The nested NMI checks the interrupted RIP to see
1360 * if it is between repeat_nmi and end_repeat_nmi, and if so
1361 * it will just return, as we are about to repeat an NMI anyway.
1362 * This makes it safe to copy to the stack frame that a nested
1363 * NMI will update.
0b22930e
AL
1364 *
1365 * RSP is pointing to "outermost RIP". gsbase is unknown, but, if
1366 * we're repeating an NMI, gsbase has the same value that it had on
1367 * the first iteration. paranoid_entry will load the kernel
36f1a77b
AL
1368 * gsbase if needed before we call do_nmi. "NMI executing"
1369 * is zero.
62610913 1370 */
36f1a77b 1371 movq $1, 10*8(%rsp) /* Set "NMI executing". */
3f3c8b8c 1372
62610913 1373 /*
0b22930e
AL
1374 * Copy the "outermost" frame to the "iret" frame. NMIs that nest
1375 * here must not modify the "iret" frame while we're writing to
1376 * it or it will end up containing garbage.
62610913 1377 */
4d732138 1378 addq $(10*8), %rsp
3f3c8b8c 1379 .rept 5
4d732138 1380 pushq -6*8(%rsp)
3f3c8b8c 1381 .endr
4d732138 1382 subq $(5*8), %rsp
62610913 1383end_repeat_nmi:
3f3c8b8c
SR
1384
1385 /*
0b22930e
AL
1386 * Everything below this point can be preempted by a nested NMI.
1387 * If this happens, then the inner NMI will change the "iret"
1388 * frame to point back to repeat_nmi.
3f3c8b8c 1389 */
4d732138 1390 pushq $-1 /* ORIG_RAX: no syscall to restart */
76f5df43
DV
1391 ALLOC_PT_GPREGS_ON_STACK
1392
1fd466ef 1393 /*
ebfc453e 1394 * Use paranoid_entry to handle SWAPGS, but no need to use paranoid_exit
1fd466ef
SR
1395 * as we should not be calling schedule in NMI context.
1396 * Even with normal interrupts enabled. An NMI should not be
1397 * setting NEED_RESCHED or anything that normal interrupts and
1398 * exceptions might do.
1399 */
4d732138 1400 call paranoid_entry
7fbb98c5 1401
ddeb8f21 1402 /* paranoidentry do_nmi, 0; without TRACE_IRQS_OFF */
4d732138
IM
1403 movq %rsp, %rdi
1404 movq $-1, %rsi
1405 call do_nmi
7fbb98c5 1406
4d732138
IM
1407 testl %ebx, %ebx /* swapgs needed? */
1408 jnz nmi_restore
ddeb8f21
AH
1409nmi_swapgs:
1410 SWAPGS_UNSAFE_STACK
1411nmi_restore:
76f5df43
DV
1412 RESTORE_EXTRA_REGS
1413 RESTORE_C_REGS
0b22930e
AL
1414
1415 /* Point RSP at the "iret" frame. */
76f5df43 1416 REMOVE_PT_GPREGS_FROM_STACK 6*8
28696f43 1417
810bc075
AL
1418 /*
1419 * Clear "NMI executing". Set DF first so that we can easily
1420 * distinguish the remaining code between here and IRET from
1421 * the SYSCALL entry and exit paths. On a native kernel, we
1422 * could just inspect RIP, but, on paravirt kernels,
1423 * INTERRUPT_RETURN can translate into a jump into a
1424 * hypercall page.
1425 */
1426 std
1427 movq $0, 5*8(%rsp) /* clear "NMI executing" */
0b22930e
AL
1428
1429 /*
1430 * INTERRUPT_RETURN reads the "iret" frame and exits the NMI
1431 * stack in a single instruction. We are returning to kernel
1432 * mode, so this cannot result in a fault.
1433 */
5ca6f70f 1434 INTERRUPT_RETURN
ddeb8f21
AH
1435END(nmi)
1436
1437ENTRY(ignore_sysret)
4d732138 1438 mov $-ENOSYS, %eax
ddeb8f21 1439 sysret
ddeb8f21 1440END(ignore_sysret)
2deb4be2
AL
1441
1442ENTRY(rewind_stack_do_exit)
1443 /* Prevent any naive code from trying to unwind to our caller. */
1444 xorl %ebp, %ebp
1445
1446 movq PER_CPU_VAR(cpu_current_top_of_stack), %rax
1447 leaq -TOP_OF_KERNEL_STACK_PADDING-PTREGS_SIZE(%rax), %rsp
1448
1449 call do_exit
14501: jmp 1b
1451END(rewind_stack_do_exit)
This page took 0.987404 seconds and 5 git commands to generate.