KVM: MMU: Use gfn_to_rmap() instead of directly reading rmap array
[deliverable/linux.git] / arch / x86 / kvm / mmu.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * MMU support
8 *
9 * Copyright (C) 2006 Qumranet, Inc.
9611c187 10 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
11 *
12 * Authors:
13 * Yaniv Kamay <yaniv@qumranet.com>
14 * Avi Kivity <avi@qumranet.com>
15 *
16 * This work is licensed under the terms of the GNU GPL, version 2. See
17 * the COPYING file in the top-level directory.
18 *
19 */
e495606d 20
af585b92 21#include "irq.h"
1d737c8a 22#include "mmu.h"
836a1b3c 23#include "x86.h"
6de4f3ad 24#include "kvm_cache_regs.h"
e495606d 25
edf88417 26#include <linux/kvm_host.h>
6aa8b732
AK
27#include <linux/types.h>
28#include <linux/string.h>
6aa8b732
AK
29#include <linux/mm.h>
30#include <linux/highmem.h>
31#include <linux/module.h>
448353ca 32#include <linux/swap.h>
05da4558 33#include <linux/hugetlb.h>
2f333bcb 34#include <linux/compiler.h>
bc6678a3 35#include <linux/srcu.h>
5a0e3ad6 36#include <linux/slab.h>
bf998156 37#include <linux/uaccess.h>
6aa8b732 38
e495606d
AK
39#include <asm/page.h>
40#include <asm/cmpxchg.h>
4e542370 41#include <asm/io.h>
13673a90 42#include <asm/vmx.h>
6aa8b732 43
18552672
JR
44/*
45 * When setting this variable to true it enables Two-Dimensional-Paging
46 * where the hardware walks 2 page tables:
47 * 1. the guest-virtual to guest-physical
48 * 2. while doing 1. it walks guest-physical to host-physical
49 * If the hardware supports that we don't need to do shadow paging.
50 */
2f333bcb 51bool tdp_enabled = false;
18552672 52
8b1fe17c
XG
53enum {
54 AUDIT_PRE_PAGE_FAULT,
55 AUDIT_POST_PAGE_FAULT,
56 AUDIT_PRE_PTE_WRITE,
6903074c
XG
57 AUDIT_POST_PTE_WRITE,
58 AUDIT_PRE_SYNC,
59 AUDIT_POST_SYNC
8b1fe17c 60};
37a7d8b0 61
8b1fe17c 62#undef MMU_DEBUG
37a7d8b0
AK
63
64#ifdef MMU_DEBUG
65
66#define pgprintk(x...) do { if (dbg) printk(x); } while (0)
67#define rmap_printk(x...) do { if (dbg) printk(x); } while (0)
68
69#else
70
71#define pgprintk(x...) do { } while (0)
72#define rmap_printk(x...) do { } while (0)
73
74#endif
75
8b1fe17c 76#ifdef MMU_DEBUG
476bc001 77static bool dbg = 0;
6ada8cca 78module_param(dbg, bool, 0644);
37a7d8b0 79#endif
6aa8b732 80
d6c69ee9
YD
81#ifndef MMU_DEBUG
82#define ASSERT(x) do { } while (0)
83#else
6aa8b732
AK
84#define ASSERT(x) \
85 if (!(x)) { \
86 printk(KERN_WARNING "assertion failed %s:%d: %s\n", \
87 __FILE__, __LINE__, #x); \
88 }
d6c69ee9 89#endif
6aa8b732 90
957ed9ef
XG
91#define PTE_PREFETCH_NUM 8
92
00763e41 93#define PT_FIRST_AVAIL_BITS_SHIFT 10
6aa8b732
AK
94#define PT64_SECOND_AVAIL_BITS_SHIFT 52
95
6aa8b732
AK
96#define PT64_LEVEL_BITS 9
97
98#define PT64_LEVEL_SHIFT(level) \
d77c26fc 99 (PAGE_SHIFT + (level - 1) * PT64_LEVEL_BITS)
6aa8b732 100
6aa8b732
AK
101#define PT64_INDEX(address, level)\
102 (((address) >> PT64_LEVEL_SHIFT(level)) & ((1 << PT64_LEVEL_BITS) - 1))
103
104
105#define PT32_LEVEL_BITS 10
106
107#define PT32_LEVEL_SHIFT(level) \
d77c26fc 108 (PAGE_SHIFT + (level - 1) * PT32_LEVEL_BITS)
6aa8b732 109
e04da980
JR
110#define PT32_LVL_OFFSET_MASK(level) \
111 (PT32_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
112 * PT32_LEVEL_BITS))) - 1))
6aa8b732
AK
113
114#define PT32_INDEX(address, level)\
115 (((address) >> PT32_LEVEL_SHIFT(level)) & ((1 << PT32_LEVEL_BITS) - 1))
116
117
27aba766 118#define PT64_BASE_ADDR_MASK (((1ULL << 52) - 1) & ~(u64)(PAGE_SIZE-1))
6aa8b732
AK
119#define PT64_DIR_BASE_ADDR_MASK \
120 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + PT64_LEVEL_BITS)) - 1))
e04da980
JR
121#define PT64_LVL_ADDR_MASK(level) \
122 (PT64_BASE_ADDR_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
123 * PT64_LEVEL_BITS))) - 1))
124#define PT64_LVL_OFFSET_MASK(level) \
125 (PT64_BASE_ADDR_MASK & ((1ULL << (PAGE_SHIFT + (((level) - 1) \
126 * PT64_LEVEL_BITS))) - 1))
6aa8b732
AK
127
128#define PT32_BASE_ADDR_MASK PAGE_MASK
129#define PT32_DIR_BASE_ADDR_MASK \
130 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + PT32_LEVEL_BITS)) - 1))
e04da980
JR
131#define PT32_LVL_ADDR_MASK(level) \
132 (PAGE_MASK & ~((1ULL << (PAGE_SHIFT + (((level) - 1) \
133 * PT32_LEVEL_BITS))) - 1))
6aa8b732 134
79539cec
AK
135#define PT64_PERM_MASK (PT_PRESENT_MASK | PT_WRITABLE_MASK | PT_USER_MASK \
136 | PT64_NX_MASK)
6aa8b732 137
fe135d2c
AK
138#define ACC_EXEC_MASK 1
139#define ACC_WRITE_MASK PT_WRITABLE_MASK
140#define ACC_USER_MASK PT_USER_MASK
141#define ACC_ALL (ACC_EXEC_MASK | ACC_WRITE_MASK | ACC_USER_MASK)
142
90bb6fc5
AK
143#include <trace/events/kvm.h>
144
07420171
AK
145#define CREATE_TRACE_POINTS
146#include "mmutrace.h"
147
49fde340
XG
148#define SPTE_HOST_WRITEABLE (1ULL << PT_FIRST_AVAIL_BITS_SHIFT)
149#define SPTE_MMU_WRITEABLE (1ULL << (PT_FIRST_AVAIL_BITS_SHIFT + 1))
1403283a 150
135f8c2b
AK
151#define SHADOW_PT_INDEX(addr, level) PT64_INDEX(addr, level)
152
220f773a
TY
153/* make pte_list_desc fit well in cache line */
154#define PTE_LIST_EXT 3
155
53c07b18
XG
156struct pte_list_desc {
157 u64 *sptes[PTE_LIST_EXT];
158 struct pte_list_desc *more;
cd4a4e53
AK
159};
160
2d11123a
AK
161struct kvm_shadow_walk_iterator {
162 u64 addr;
163 hpa_t shadow_addr;
2d11123a 164 u64 *sptep;
dd3bfd59 165 int level;
2d11123a
AK
166 unsigned index;
167};
168
169#define for_each_shadow_entry(_vcpu, _addr, _walker) \
170 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
171 shadow_walk_okay(&(_walker)); \
172 shadow_walk_next(&(_walker)))
173
c2a2ac2b
XG
174#define for_each_shadow_entry_lockless(_vcpu, _addr, _walker, spte) \
175 for (shadow_walk_init(&(_walker), _vcpu, _addr); \
176 shadow_walk_okay(&(_walker)) && \
177 ({ spte = mmu_spte_get_lockless(_walker.sptep); 1; }); \
178 __shadow_walk_next(&(_walker), spte))
179
53c07b18 180static struct kmem_cache *pte_list_desc_cache;
d3d25b04 181static struct kmem_cache *mmu_page_header_cache;
45221ab6 182static struct percpu_counter kvm_total_used_mmu_pages;
b5a33a75 183
7b52345e
SY
184static u64 __read_mostly shadow_nx_mask;
185static u64 __read_mostly shadow_x_mask; /* mutual exclusive with nx_mask */
186static u64 __read_mostly shadow_user_mask;
187static u64 __read_mostly shadow_accessed_mask;
188static u64 __read_mostly shadow_dirty_mask;
ce88decf
XG
189static u64 __read_mostly shadow_mmio_mask;
190
191static void mmu_spte_set(u64 *sptep, u64 spte);
e676505a 192static void mmu_free_roots(struct kvm_vcpu *vcpu);
ce88decf
XG
193
194void kvm_mmu_set_mmio_spte_mask(u64 mmio_mask)
195{
196 shadow_mmio_mask = mmio_mask;
197}
198EXPORT_SYMBOL_GPL(kvm_mmu_set_mmio_spte_mask);
199
200static void mark_mmio_spte(u64 *sptep, u64 gfn, unsigned access)
201{
202 access &= ACC_WRITE_MASK | ACC_USER_MASK;
203
4f022648 204 trace_mark_mmio_spte(sptep, gfn, access);
ce88decf
XG
205 mmu_spte_set(sptep, shadow_mmio_mask | access | gfn << PAGE_SHIFT);
206}
207
208static bool is_mmio_spte(u64 spte)
209{
210 return (spte & shadow_mmio_mask) == shadow_mmio_mask;
211}
212
213static gfn_t get_mmio_spte_gfn(u64 spte)
214{
215 return (spte & ~shadow_mmio_mask) >> PAGE_SHIFT;
216}
217
218static unsigned get_mmio_spte_access(u64 spte)
219{
220 return (spte & ~shadow_mmio_mask) & ~PAGE_MASK;
221}
222
223static bool set_mmio_spte(u64 *sptep, gfn_t gfn, pfn_t pfn, unsigned access)
224{
225 if (unlikely(is_noslot_pfn(pfn))) {
226 mark_mmio_spte(sptep, gfn, access);
227 return true;
228 }
229
230 return false;
231}
c7addb90 232
82725b20
DE
233static inline u64 rsvd_bits(int s, int e)
234{
235 return ((1ULL << (e - s + 1)) - 1) << s;
236}
237
7b52345e 238void kvm_mmu_set_mask_ptes(u64 user_mask, u64 accessed_mask,
4b12f0de 239 u64 dirty_mask, u64 nx_mask, u64 x_mask)
7b52345e
SY
240{
241 shadow_user_mask = user_mask;
242 shadow_accessed_mask = accessed_mask;
243 shadow_dirty_mask = dirty_mask;
244 shadow_nx_mask = nx_mask;
245 shadow_x_mask = x_mask;
246}
247EXPORT_SYMBOL_GPL(kvm_mmu_set_mask_ptes);
248
6aa8b732
AK
249static int is_cpuid_PSE36(void)
250{
251 return 1;
252}
253
73b1087e
AK
254static int is_nx(struct kvm_vcpu *vcpu)
255{
f6801dff 256 return vcpu->arch.efer & EFER_NX;
73b1087e
AK
257}
258
c7addb90
AK
259static int is_shadow_present_pte(u64 pte)
260{
ce88decf 261 return pte & PT_PRESENT_MASK && !is_mmio_spte(pte);
c7addb90
AK
262}
263
05da4558
MT
264static int is_large_pte(u64 pte)
265{
266 return pte & PT_PAGE_SIZE_MASK;
267}
268
43a3795a 269static int is_dirty_gpte(unsigned long pte)
e3c5e7ec 270{
439e218a 271 return pte & PT_DIRTY_MASK;
e3c5e7ec
AK
272}
273
43a3795a 274static int is_rmap_spte(u64 pte)
cd4a4e53 275{
4b1a80fa 276 return is_shadow_present_pte(pte);
cd4a4e53
AK
277}
278
776e6633
MT
279static int is_last_spte(u64 pte, int level)
280{
281 if (level == PT_PAGE_TABLE_LEVEL)
282 return 1;
852e3c19 283 if (is_large_pte(pte))
776e6633
MT
284 return 1;
285 return 0;
286}
287
35149e21 288static pfn_t spte_to_pfn(u64 pte)
0b49ea86 289{
35149e21 290 return (pte & PT64_BASE_ADDR_MASK) >> PAGE_SHIFT;
0b49ea86
AK
291}
292
da928521
AK
293static gfn_t pse36_gfn_delta(u32 gpte)
294{
295 int shift = 32 - PT32_DIR_PSE36_SHIFT - PAGE_SHIFT;
296
297 return (gpte & PT32_DIR_PSE36_MASK) << shift;
298}
299
603e0651 300#ifdef CONFIG_X86_64
d555c333 301static void __set_spte(u64 *sptep, u64 spte)
e663ee64 302{
603e0651 303 *sptep = spte;
e663ee64
AK
304}
305
603e0651 306static void __update_clear_spte_fast(u64 *sptep, u64 spte)
a9221dd5 307{
603e0651
XG
308 *sptep = spte;
309}
310
311static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
312{
313 return xchg(sptep, spte);
314}
c2a2ac2b
XG
315
316static u64 __get_spte_lockless(u64 *sptep)
317{
318 return ACCESS_ONCE(*sptep);
319}
ce88decf
XG
320
321static bool __check_direct_spte_mmio_pf(u64 spte)
322{
323 /* It is valid if the spte is zapped. */
324 return spte == 0ull;
325}
a9221dd5 326#else
603e0651
XG
327union split_spte {
328 struct {
329 u32 spte_low;
330 u32 spte_high;
331 };
332 u64 spte;
333};
a9221dd5 334
c2a2ac2b
XG
335static void count_spte_clear(u64 *sptep, u64 spte)
336{
337 struct kvm_mmu_page *sp = page_header(__pa(sptep));
338
339 if (is_shadow_present_pte(spte))
340 return;
341
342 /* Ensure the spte is completely set before we increase the count */
343 smp_wmb();
344 sp->clear_spte_count++;
345}
346
603e0651
XG
347static void __set_spte(u64 *sptep, u64 spte)
348{
349 union split_spte *ssptep, sspte;
a9221dd5 350
603e0651
XG
351 ssptep = (union split_spte *)sptep;
352 sspte = (union split_spte)spte;
353
354 ssptep->spte_high = sspte.spte_high;
355
356 /*
357 * If we map the spte from nonpresent to present, We should store
358 * the high bits firstly, then set present bit, so cpu can not
359 * fetch this spte while we are setting the spte.
360 */
361 smp_wmb();
362
363 ssptep->spte_low = sspte.spte_low;
a9221dd5
AK
364}
365
603e0651
XG
366static void __update_clear_spte_fast(u64 *sptep, u64 spte)
367{
368 union split_spte *ssptep, sspte;
369
370 ssptep = (union split_spte *)sptep;
371 sspte = (union split_spte)spte;
372
373 ssptep->spte_low = sspte.spte_low;
374
375 /*
376 * If we map the spte from present to nonpresent, we should clear
377 * present bit firstly to avoid vcpu fetch the old high bits.
378 */
379 smp_wmb();
380
381 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 382 count_spte_clear(sptep, spte);
603e0651
XG
383}
384
385static u64 __update_clear_spte_slow(u64 *sptep, u64 spte)
386{
387 union split_spte *ssptep, sspte, orig;
388
389 ssptep = (union split_spte *)sptep;
390 sspte = (union split_spte)spte;
391
392 /* xchg acts as a barrier before the setting of the high bits */
393 orig.spte_low = xchg(&ssptep->spte_low, sspte.spte_low);
41bc3186
ZJ
394 orig.spte_high = ssptep->spte_high;
395 ssptep->spte_high = sspte.spte_high;
c2a2ac2b 396 count_spte_clear(sptep, spte);
603e0651
XG
397
398 return orig.spte;
399}
c2a2ac2b
XG
400
401/*
402 * The idea using the light way get the spte on x86_32 guest is from
403 * gup_get_pte(arch/x86/mm/gup.c).
404 * The difference is we can not catch the spte tlb flush if we leave
405 * guest mode, so we emulate it by increase clear_spte_count when spte
406 * is cleared.
407 */
408static u64 __get_spte_lockless(u64 *sptep)
409{
410 struct kvm_mmu_page *sp = page_header(__pa(sptep));
411 union split_spte spte, *orig = (union split_spte *)sptep;
412 int count;
413
414retry:
415 count = sp->clear_spte_count;
416 smp_rmb();
417
418 spte.spte_low = orig->spte_low;
419 smp_rmb();
420
421 spte.spte_high = orig->spte_high;
422 smp_rmb();
423
424 if (unlikely(spte.spte_low != orig->spte_low ||
425 count != sp->clear_spte_count))
426 goto retry;
427
428 return spte.spte;
429}
ce88decf
XG
430
431static bool __check_direct_spte_mmio_pf(u64 spte)
432{
433 union split_spte sspte = (union split_spte)spte;
434 u32 high_mmio_mask = shadow_mmio_mask >> 32;
435
436 /* It is valid if the spte is zapped. */
437 if (spte == 0ull)
438 return true;
439
440 /* It is valid if the spte is being zapped. */
441 if (sspte.spte_low == 0ull &&
442 (sspte.spte_high & high_mmio_mask) == high_mmio_mask)
443 return true;
444
445 return false;
446}
603e0651
XG
447#endif
448
c7ba5b48
XG
449static bool spte_is_locklessly_modifiable(u64 spte)
450{
451 return !(~spte & (SPTE_HOST_WRITEABLE | SPTE_MMU_WRITEABLE));
452}
453
8672b721
XG
454static bool spte_has_volatile_bits(u64 spte)
455{
c7ba5b48
XG
456 /*
457 * Always atomicly update spte if it can be updated
458 * out of mmu-lock, it can ensure dirty bit is not lost,
459 * also, it can help us to get a stable is_writable_pte()
460 * to ensure tlb flush is not missed.
461 */
462 if (spte_is_locklessly_modifiable(spte))
463 return true;
464
8672b721
XG
465 if (!shadow_accessed_mask)
466 return false;
467
468 if (!is_shadow_present_pte(spte))
469 return false;
470
4132779b
XG
471 if ((spte & shadow_accessed_mask) &&
472 (!is_writable_pte(spte) || (spte & shadow_dirty_mask)))
8672b721
XG
473 return false;
474
475 return true;
476}
477
4132779b
XG
478static bool spte_is_bit_cleared(u64 old_spte, u64 new_spte, u64 bit_mask)
479{
480 return (old_spte & bit_mask) && !(new_spte & bit_mask);
481}
482
1df9f2dc
XG
483/* Rules for using mmu_spte_set:
484 * Set the sptep from nonpresent to present.
485 * Note: the sptep being assigned *must* be either not present
486 * or in a state where the hardware will not attempt to update
487 * the spte.
488 */
489static void mmu_spte_set(u64 *sptep, u64 new_spte)
490{
491 WARN_ON(is_shadow_present_pte(*sptep));
492 __set_spte(sptep, new_spte);
493}
494
495/* Rules for using mmu_spte_update:
496 * Update the state bits, it means the mapped pfn is not changged.
6e7d0354
XG
497 *
498 * Whenever we overwrite a writable spte with a read-only one we
499 * should flush remote TLBs. Otherwise rmap_write_protect
500 * will find a read-only spte, even though the writable spte
501 * might be cached on a CPU's TLB, the return value indicates this
502 * case.
1df9f2dc 503 */
6e7d0354 504static bool mmu_spte_update(u64 *sptep, u64 new_spte)
b79b93f9 505{
c7ba5b48 506 u64 old_spte = *sptep;
6e7d0354 507 bool ret = false;
4132779b
XG
508
509 WARN_ON(!is_rmap_spte(new_spte));
b79b93f9 510
6e7d0354
XG
511 if (!is_shadow_present_pte(old_spte)) {
512 mmu_spte_set(sptep, new_spte);
513 return ret;
514 }
4132779b 515
c7ba5b48 516 if (!spte_has_volatile_bits(old_spte))
603e0651 517 __update_clear_spte_fast(sptep, new_spte);
4132779b 518 else
603e0651 519 old_spte = __update_clear_spte_slow(sptep, new_spte);
4132779b 520
c7ba5b48
XG
521 /*
522 * For the spte updated out of mmu-lock is safe, since
523 * we always atomicly update it, see the comments in
524 * spte_has_volatile_bits().
525 */
6e7d0354
XG
526 if (is_writable_pte(old_spte) && !is_writable_pte(new_spte))
527 ret = true;
528
4132779b 529 if (!shadow_accessed_mask)
6e7d0354 530 return ret;
4132779b
XG
531
532 if (spte_is_bit_cleared(old_spte, new_spte, shadow_accessed_mask))
533 kvm_set_pfn_accessed(spte_to_pfn(old_spte));
534 if (spte_is_bit_cleared(old_spte, new_spte, shadow_dirty_mask))
535 kvm_set_pfn_dirty(spte_to_pfn(old_spte));
6e7d0354
XG
536
537 return ret;
b79b93f9
AK
538}
539
1df9f2dc
XG
540/*
541 * Rules for using mmu_spte_clear_track_bits:
542 * It sets the sptep from present to nonpresent, and track the
543 * state bits, it is used to clear the last level sptep.
544 */
545static int mmu_spte_clear_track_bits(u64 *sptep)
546{
547 pfn_t pfn;
548 u64 old_spte = *sptep;
549
550 if (!spte_has_volatile_bits(old_spte))
603e0651 551 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc 552 else
603e0651 553 old_spte = __update_clear_spte_slow(sptep, 0ull);
1df9f2dc
XG
554
555 if (!is_rmap_spte(old_spte))
556 return 0;
557
558 pfn = spte_to_pfn(old_spte);
86fde74c
XG
559
560 /*
561 * KVM does not hold the refcount of the page used by
562 * kvm mmu, before reclaiming the page, we should
563 * unmap it from mmu first.
564 */
565 WARN_ON(!kvm_is_mmio_pfn(pfn) && !page_count(pfn_to_page(pfn)));
566
1df9f2dc
XG
567 if (!shadow_accessed_mask || old_spte & shadow_accessed_mask)
568 kvm_set_pfn_accessed(pfn);
569 if (!shadow_dirty_mask || (old_spte & shadow_dirty_mask))
570 kvm_set_pfn_dirty(pfn);
571 return 1;
572}
573
574/*
575 * Rules for using mmu_spte_clear_no_track:
576 * Directly clear spte without caring the state bits of sptep,
577 * it is used to set the upper level spte.
578 */
579static void mmu_spte_clear_no_track(u64 *sptep)
580{
603e0651 581 __update_clear_spte_fast(sptep, 0ull);
1df9f2dc
XG
582}
583
c2a2ac2b
XG
584static u64 mmu_spte_get_lockless(u64 *sptep)
585{
586 return __get_spte_lockless(sptep);
587}
588
589static void walk_shadow_page_lockless_begin(struct kvm_vcpu *vcpu)
590{
c142786c
AK
591 /*
592 * Prevent page table teardown by making any free-er wait during
593 * kvm_flush_remote_tlbs() IPI to all active vcpus.
594 */
595 local_irq_disable();
596 vcpu->mode = READING_SHADOW_PAGE_TABLES;
597 /*
598 * Make sure a following spte read is not reordered ahead of the write
599 * to vcpu->mode.
600 */
601 smp_mb();
c2a2ac2b
XG
602}
603
604static void walk_shadow_page_lockless_end(struct kvm_vcpu *vcpu)
605{
c142786c
AK
606 /*
607 * Make sure the write to vcpu->mode is not reordered in front of
608 * reads to sptes. If it does, kvm_commit_zap_page() can see us
609 * OUTSIDE_GUEST_MODE and proceed to free the shadow page table.
610 */
611 smp_mb();
612 vcpu->mode = OUTSIDE_GUEST_MODE;
613 local_irq_enable();
c2a2ac2b
XG
614}
615
e2dec939 616static int mmu_topup_memory_cache(struct kvm_mmu_memory_cache *cache,
2e3e5882 617 struct kmem_cache *base_cache, int min)
714b93da
AK
618{
619 void *obj;
620
621 if (cache->nobjs >= min)
e2dec939 622 return 0;
714b93da 623 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
2e3e5882 624 obj = kmem_cache_zalloc(base_cache, GFP_KERNEL);
714b93da 625 if (!obj)
e2dec939 626 return -ENOMEM;
714b93da
AK
627 cache->objects[cache->nobjs++] = obj;
628 }
e2dec939 629 return 0;
714b93da
AK
630}
631
f759e2b4
XG
632static int mmu_memory_cache_free_objects(struct kvm_mmu_memory_cache *cache)
633{
634 return cache->nobjs;
635}
636
e8ad9a70
XG
637static void mmu_free_memory_cache(struct kvm_mmu_memory_cache *mc,
638 struct kmem_cache *cache)
714b93da
AK
639{
640 while (mc->nobjs)
e8ad9a70 641 kmem_cache_free(cache, mc->objects[--mc->nobjs]);
714b93da
AK
642}
643
c1158e63 644static int mmu_topup_memory_cache_page(struct kvm_mmu_memory_cache *cache,
2e3e5882 645 int min)
c1158e63 646{
842f22ed 647 void *page;
c1158e63
AK
648
649 if (cache->nobjs >= min)
650 return 0;
651 while (cache->nobjs < ARRAY_SIZE(cache->objects)) {
842f22ed 652 page = (void *)__get_free_page(GFP_KERNEL);
c1158e63
AK
653 if (!page)
654 return -ENOMEM;
842f22ed 655 cache->objects[cache->nobjs++] = page;
c1158e63
AK
656 }
657 return 0;
658}
659
660static void mmu_free_memory_cache_page(struct kvm_mmu_memory_cache *mc)
661{
662 while (mc->nobjs)
c4d198d5 663 free_page((unsigned long)mc->objects[--mc->nobjs]);
c1158e63
AK
664}
665
2e3e5882 666static int mmu_topup_memory_caches(struct kvm_vcpu *vcpu)
714b93da 667{
e2dec939
AK
668 int r;
669
53c07b18 670 r = mmu_topup_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
67052b35 671 pte_list_desc_cache, 8 + PTE_PREFETCH_NUM);
d3d25b04
AK
672 if (r)
673 goto out;
ad312c7c 674 r = mmu_topup_memory_cache_page(&vcpu->arch.mmu_page_cache, 8);
d3d25b04
AK
675 if (r)
676 goto out;
ad312c7c 677 r = mmu_topup_memory_cache(&vcpu->arch.mmu_page_header_cache,
2e3e5882 678 mmu_page_header_cache, 4);
e2dec939
AK
679out:
680 return r;
714b93da
AK
681}
682
683static void mmu_free_memory_caches(struct kvm_vcpu *vcpu)
684{
53c07b18
XG
685 mmu_free_memory_cache(&vcpu->arch.mmu_pte_list_desc_cache,
686 pte_list_desc_cache);
ad312c7c 687 mmu_free_memory_cache_page(&vcpu->arch.mmu_page_cache);
e8ad9a70
XG
688 mmu_free_memory_cache(&vcpu->arch.mmu_page_header_cache,
689 mmu_page_header_cache);
714b93da
AK
690}
691
80feb89a 692static void *mmu_memory_cache_alloc(struct kvm_mmu_memory_cache *mc)
714b93da
AK
693{
694 void *p;
695
696 BUG_ON(!mc->nobjs);
697 p = mc->objects[--mc->nobjs];
714b93da
AK
698 return p;
699}
700
53c07b18 701static struct pte_list_desc *mmu_alloc_pte_list_desc(struct kvm_vcpu *vcpu)
714b93da 702{
80feb89a 703 return mmu_memory_cache_alloc(&vcpu->arch.mmu_pte_list_desc_cache);
714b93da
AK
704}
705
53c07b18 706static void mmu_free_pte_list_desc(struct pte_list_desc *pte_list_desc)
714b93da 707{
53c07b18 708 kmem_cache_free(pte_list_desc_cache, pte_list_desc);
714b93da
AK
709}
710
2032a93d
LJ
711static gfn_t kvm_mmu_page_get_gfn(struct kvm_mmu_page *sp, int index)
712{
713 if (!sp->role.direct)
714 return sp->gfns[index];
715
716 return sp->gfn + (index << ((sp->role.level - 1) * PT64_LEVEL_BITS));
717}
718
719static void kvm_mmu_page_set_gfn(struct kvm_mmu_page *sp, int index, gfn_t gfn)
720{
721 if (sp->role.direct)
722 BUG_ON(gfn != kvm_mmu_page_get_gfn(sp, index));
723 else
724 sp->gfns[index] = gfn;
725}
726
05da4558 727/*
d4dbf470
TY
728 * Return the pointer to the large page information for a given gfn,
729 * handling slots that are not large page aligned.
05da4558 730 */
d4dbf470
TY
731static struct kvm_lpage_info *lpage_info_slot(gfn_t gfn,
732 struct kvm_memory_slot *slot,
733 int level)
05da4558
MT
734{
735 unsigned long idx;
736
fb03cb6f 737 idx = gfn_to_index(gfn, slot->base_gfn, level);
db3fe4eb 738 return &slot->arch.lpage_info[level - 2][idx];
05da4558
MT
739}
740
741static void account_shadowed(struct kvm *kvm, gfn_t gfn)
742{
d25797b2 743 struct kvm_memory_slot *slot;
d4dbf470 744 struct kvm_lpage_info *linfo;
d25797b2 745 int i;
05da4558 746
a1f4d395 747 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
748 for (i = PT_DIRECTORY_LEVEL;
749 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
750 linfo = lpage_info_slot(gfn, slot, i);
751 linfo->write_count += 1;
d25797b2 752 }
332b207d 753 kvm->arch.indirect_shadow_pages++;
05da4558
MT
754}
755
756static void unaccount_shadowed(struct kvm *kvm, gfn_t gfn)
757{
d25797b2 758 struct kvm_memory_slot *slot;
d4dbf470 759 struct kvm_lpage_info *linfo;
d25797b2 760 int i;
05da4558 761
a1f4d395 762 slot = gfn_to_memslot(kvm, gfn);
d25797b2
JR
763 for (i = PT_DIRECTORY_LEVEL;
764 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
d4dbf470
TY
765 linfo = lpage_info_slot(gfn, slot, i);
766 linfo->write_count -= 1;
767 WARN_ON(linfo->write_count < 0);
d25797b2 768 }
332b207d 769 kvm->arch.indirect_shadow_pages--;
05da4558
MT
770}
771
d25797b2
JR
772static int has_wrprotected_page(struct kvm *kvm,
773 gfn_t gfn,
774 int level)
05da4558 775{
2843099f 776 struct kvm_memory_slot *slot;
d4dbf470 777 struct kvm_lpage_info *linfo;
05da4558 778
a1f4d395 779 slot = gfn_to_memslot(kvm, gfn);
05da4558 780 if (slot) {
d4dbf470
TY
781 linfo = lpage_info_slot(gfn, slot, level);
782 return linfo->write_count;
05da4558
MT
783 }
784
785 return 1;
786}
787
d25797b2 788static int host_mapping_level(struct kvm *kvm, gfn_t gfn)
05da4558 789{
8f0b1ab6 790 unsigned long page_size;
d25797b2 791 int i, ret = 0;
05da4558 792
8f0b1ab6 793 page_size = kvm_host_page_size(kvm, gfn);
05da4558 794
d25797b2
JR
795 for (i = PT_PAGE_TABLE_LEVEL;
796 i < (PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES); ++i) {
797 if (page_size >= KVM_HPAGE_SIZE(i))
798 ret = i;
799 else
800 break;
801 }
802
4c2155ce 803 return ret;
05da4558
MT
804}
805
5d163b1c
XG
806static struct kvm_memory_slot *
807gfn_to_memslot_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t gfn,
808 bool no_dirty_log)
05da4558
MT
809{
810 struct kvm_memory_slot *slot;
5d163b1c
XG
811
812 slot = gfn_to_memslot(vcpu->kvm, gfn);
813 if (!slot || slot->flags & KVM_MEMSLOT_INVALID ||
814 (no_dirty_log && slot->dirty_bitmap))
815 slot = NULL;
816
817 return slot;
818}
819
820static bool mapping_level_dirty_bitmap(struct kvm_vcpu *vcpu, gfn_t large_gfn)
821{
a0a8eaba 822 return !gfn_to_memslot_dirty_bitmap(vcpu, large_gfn, true);
936a5fe6
AA
823}
824
825static int mapping_level(struct kvm_vcpu *vcpu, gfn_t large_gfn)
826{
827 int host_level, level, max_level;
05da4558 828
d25797b2
JR
829 host_level = host_mapping_level(vcpu->kvm, large_gfn);
830
831 if (host_level == PT_PAGE_TABLE_LEVEL)
832 return host_level;
833
878403b7
SY
834 max_level = kvm_x86_ops->get_lpage_level() < host_level ?
835 kvm_x86_ops->get_lpage_level() : host_level;
836
837 for (level = PT_DIRECTORY_LEVEL; level <= max_level; ++level)
d25797b2
JR
838 if (has_wrprotected_page(vcpu->kvm, large_gfn, level))
839 break;
d25797b2
JR
840
841 return level - 1;
05da4558
MT
842}
843
290fc38d 844/*
53c07b18 845 * Pte mapping structures:
cd4a4e53 846 *
53c07b18 847 * If pte_list bit zero is zero, then pte_list point to the spte.
cd4a4e53 848 *
53c07b18
XG
849 * If pte_list bit zero is one, (then pte_list & ~1) points to a struct
850 * pte_list_desc containing more mappings.
53a27b39 851 *
53c07b18 852 * Returns the number of pte entries before the spte was added or zero if
53a27b39
MT
853 * the spte was not added.
854 *
cd4a4e53 855 */
53c07b18
XG
856static int pte_list_add(struct kvm_vcpu *vcpu, u64 *spte,
857 unsigned long *pte_list)
cd4a4e53 858{
53c07b18 859 struct pte_list_desc *desc;
53a27b39 860 int i, count = 0;
cd4a4e53 861
53c07b18
XG
862 if (!*pte_list) {
863 rmap_printk("pte_list_add: %p %llx 0->1\n", spte, *spte);
864 *pte_list = (unsigned long)spte;
865 } else if (!(*pte_list & 1)) {
866 rmap_printk("pte_list_add: %p %llx 1->many\n", spte, *spte);
867 desc = mmu_alloc_pte_list_desc(vcpu);
868 desc->sptes[0] = (u64 *)*pte_list;
d555c333 869 desc->sptes[1] = spte;
53c07b18 870 *pte_list = (unsigned long)desc | 1;
cb16a7b3 871 ++count;
cd4a4e53 872 } else {
53c07b18
XG
873 rmap_printk("pte_list_add: %p %llx many->many\n", spte, *spte);
874 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
875 while (desc->sptes[PTE_LIST_EXT-1] && desc->more) {
cd4a4e53 876 desc = desc->more;
53c07b18 877 count += PTE_LIST_EXT;
53a27b39 878 }
53c07b18
XG
879 if (desc->sptes[PTE_LIST_EXT-1]) {
880 desc->more = mmu_alloc_pte_list_desc(vcpu);
cd4a4e53
AK
881 desc = desc->more;
882 }
d555c333 883 for (i = 0; desc->sptes[i]; ++i)
cb16a7b3 884 ++count;
d555c333 885 desc->sptes[i] = spte;
cd4a4e53 886 }
53a27b39 887 return count;
cd4a4e53
AK
888}
889
53c07b18
XG
890static void
891pte_list_desc_remove_entry(unsigned long *pte_list, struct pte_list_desc *desc,
892 int i, struct pte_list_desc *prev_desc)
cd4a4e53
AK
893{
894 int j;
895
53c07b18 896 for (j = PTE_LIST_EXT - 1; !desc->sptes[j] && j > i; --j)
cd4a4e53 897 ;
d555c333
AK
898 desc->sptes[i] = desc->sptes[j];
899 desc->sptes[j] = NULL;
cd4a4e53
AK
900 if (j != 0)
901 return;
902 if (!prev_desc && !desc->more)
53c07b18 903 *pte_list = (unsigned long)desc->sptes[0];
cd4a4e53
AK
904 else
905 if (prev_desc)
906 prev_desc->more = desc->more;
907 else
53c07b18
XG
908 *pte_list = (unsigned long)desc->more | 1;
909 mmu_free_pte_list_desc(desc);
cd4a4e53
AK
910}
911
53c07b18 912static void pte_list_remove(u64 *spte, unsigned long *pte_list)
cd4a4e53 913{
53c07b18
XG
914 struct pte_list_desc *desc;
915 struct pte_list_desc *prev_desc;
cd4a4e53
AK
916 int i;
917
53c07b18
XG
918 if (!*pte_list) {
919 printk(KERN_ERR "pte_list_remove: %p 0->BUG\n", spte);
cd4a4e53 920 BUG();
53c07b18
XG
921 } else if (!(*pte_list & 1)) {
922 rmap_printk("pte_list_remove: %p 1->0\n", spte);
923 if ((u64 *)*pte_list != spte) {
924 printk(KERN_ERR "pte_list_remove: %p 1->BUG\n", spte);
cd4a4e53
AK
925 BUG();
926 }
53c07b18 927 *pte_list = 0;
cd4a4e53 928 } else {
53c07b18
XG
929 rmap_printk("pte_list_remove: %p many->many\n", spte);
930 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
cd4a4e53
AK
931 prev_desc = NULL;
932 while (desc) {
53c07b18 933 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
d555c333 934 if (desc->sptes[i] == spte) {
53c07b18 935 pte_list_desc_remove_entry(pte_list,
714b93da 936 desc, i,
cd4a4e53
AK
937 prev_desc);
938 return;
939 }
940 prev_desc = desc;
941 desc = desc->more;
942 }
53c07b18 943 pr_err("pte_list_remove: %p many->many\n", spte);
cd4a4e53
AK
944 BUG();
945 }
946}
947
67052b35
XG
948typedef void (*pte_list_walk_fn) (u64 *spte);
949static void pte_list_walk(unsigned long *pte_list, pte_list_walk_fn fn)
950{
951 struct pte_list_desc *desc;
952 int i;
953
954 if (!*pte_list)
955 return;
956
957 if (!(*pte_list & 1))
958 return fn((u64 *)*pte_list);
959
960 desc = (struct pte_list_desc *)(*pte_list & ~1ul);
961 while (desc) {
962 for (i = 0; i < PTE_LIST_EXT && desc->sptes[i]; ++i)
963 fn(desc->sptes[i]);
964 desc = desc->more;
965 }
966}
967
9373e2c0 968static unsigned long *__gfn_to_rmap(gfn_t gfn, int level,
9b9b1492 969 struct kvm_memory_slot *slot)
53c07b18 970{
77d11309 971 unsigned long idx;
53c07b18 972
53c07b18
XG
973 if (likely(level == PT_PAGE_TABLE_LEVEL))
974 return &slot->rmap[gfn - slot->base_gfn];
975
77d11309
TY
976 idx = gfn_to_index(gfn, slot->base_gfn, level);
977 return &slot->arch.rmap_pde[level - PT_DIRECTORY_LEVEL][idx];
53c07b18
XG
978}
979
9b9b1492
TY
980/*
981 * Take gfn and return the reverse mapping to it.
982 */
983static unsigned long *gfn_to_rmap(struct kvm *kvm, gfn_t gfn, int level)
984{
985 struct kvm_memory_slot *slot;
986
987 slot = gfn_to_memslot(kvm, gfn);
9373e2c0 988 return __gfn_to_rmap(gfn, level, slot);
9b9b1492
TY
989}
990
f759e2b4
XG
991static bool rmap_can_add(struct kvm_vcpu *vcpu)
992{
993 struct kvm_mmu_memory_cache *cache;
994
995 cache = &vcpu->arch.mmu_pte_list_desc_cache;
996 return mmu_memory_cache_free_objects(cache);
997}
998
53c07b18
XG
999static int rmap_add(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
1000{
1001 struct kvm_mmu_page *sp;
1002 unsigned long *rmapp;
1003
53c07b18
XG
1004 sp = page_header(__pa(spte));
1005 kvm_mmu_page_set_gfn(sp, spte - sp->spt, gfn);
1006 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
1007 return pte_list_add(vcpu, spte, rmapp);
1008}
1009
53c07b18
XG
1010static void rmap_remove(struct kvm *kvm, u64 *spte)
1011{
1012 struct kvm_mmu_page *sp;
1013 gfn_t gfn;
1014 unsigned long *rmapp;
1015
1016 sp = page_header(__pa(spte));
1017 gfn = kvm_mmu_page_get_gfn(sp, spte - sp->spt);
1018 rmapp = gfn_to_rmap(kvm, gfn, sp->role.level);
1019 pte_list_remove(spte, rmapp);
1020}
1021
1e3f42f0
TY
1022/*
1023 * Used by the following functions to iterate through the sptes linked by a
1024 * rmap. All fields are private and not assumed to be used outside.
1025 */
1026struct rmap_iterator {
1027 /* private fields */
1028 struct pte_list_desc *desc; /* holds the sptep if not NULL */
1029 int pos; /* index of the sptep */
1030};
1031
1032/*
1033 * Iteration must be started by this function. This should also be used after
1034 * removing/dropping sptes from the rmap link because in such cases the
1035 * information in the itererator may not be valid.
1036 *
1037 * Returns sptep if found, NULL otherwise.
1038 */
1039static u64 *rmap_get_first(unsigned long rmap, struct rmap_iterator *iter)
1040{
1041 if (!rmap)
1042 return NULL;
1043
1044 if (!(rmap & 1)) {
1045 iter->desc = NULL;
1046 return (u64 *)rmap;
1047 }
1048
1049 iter->desc = (struct pte_list_desc *)(rmap & ~1ul);
1050 iter->pos = 0;
1051 return iter->desc->sptes[iter->pos];
1052}
1053
1054/*
1055 * Must be used with a valid iterator: e.g. after rmap_get_first().
1056 *
1057 * Returns sptep if found, NULL otherwise.
1058 */
1059static u64 *rmap_get_next(struct rmap_iterator *iter)
1060{
1061 if (iter->desc) {
1062 if (iter->pos < PTE_LIST_EXT - 1) {
1063 u64 *sptep;
1064
1065 ++iter->pos;
1066 sptep = iter->desc->sptes[iter->pos];
1067 if (sptep)
1068 return sptep;
1069 }
1070
1071 iter->desc = iter->desc->more;
1072
1073 if (iter->desc) {
1074 iter->pos = 0;
1075 /* desc->sptes[0] cannot be NULL */
1076 return iter->desc->sptes[iter->pos];
1077 }
1078 }
1079
1080 return NULL;
1081}
1082
c3707958 1083static void drop_spte(struct kvm *kvm, u64 *sptep)
e4b502ea 1084{
1df9f2dc 1085 if (mmu_spte_clear_track_bits(sptep))
eb45fda4 1086 rmap_remove(kvm, sptep);
be38d276
AK
1087}
1088
8e22f955
XG
1089
1090static bool __drop_large_spte(struct kvm *kvm, u64 *sptep)
1091{
1092 if (is_large_pte(*sptep)) {
1093 WARN_ON(page_header(__pa(sptep))->role.level ==
1094 PT_PAGE_TABLE_LEVEL);
1095 drop_spte(kvm, sptep);
1096 --kvm->stat.lpages;
1097 return true;
1098 }
1099
1100 return false;
1101}
1102
1103static void drop_large_spte(struct kvm_vcpu *vcpu, u64 *sptep)
1104{
1105 if (__drop_large_spte(vcpu->kvm, sptep))
1106 kvm_flush_remote_tlbs(vcpu->kvm);
1107}
1108
1109/*
49fde340
XG
1110 * Write-protect on the specified @sptep, @pt_protect indicates whether
1111 * spte writ-protection is caused by protecting shadow page table.
1112 * @flush indicates whether tlb need be flushed.
1113 *
1114 * Note: write protection is difference between drity logging and spte
1115 * protection:
1116 * - for dirty logging, the spte can be set to writable at anytime if
1117 * its dirty bitmap is properly set.
1118 * - for spte protection, the spte can be writable only after unsync-ing
1119 * shadow page.
8e22f955
XG
1120 *
1121 * Return true if the spte is dropped.
1122 */
49fde340
XG
1123static bool
1124spte_write_protect(struct kvm *kvm, u64 *sptep, bool *flush, bool pt_protect)
d13bc5b5
XG
1125{
1126 u64 spte = *sptep;
1127
49fde340
XG
1128 if (!is_writable_pte(spte) &&
1129 !(pt_protect && spte_is_locklessly_modifiable(spte)))
d13bc5b5
XG
1130 return false;
1131
1132 rmap_printk("rmap_write_protect: spte %p %llx\n", sptep, *sptep);
1133
49fde340
XG
1134 if (__drop_large_spte(kvm, sptep)) {
1135 *flush |= true;
d13bc5b5 1136 return true;
49fde340 1137 }
d13bc5b5 1138
49fde340
XG
1139 if (pt_protect)
1140 spte &= ~SPTE_MMU_WRITEABLE;
d13bc5b5 1141 spte = spte & ~PT_WRITABLE_MASK;
49fde340
XG
1142
1143 *flush |= mmu_spte_update(sptep, spte);
d13bc5b5
XG
1144 return false;
1145}
1146
49fde340
XG
1147static bool __rmap_write_protect(struct kvm *kvm, unsigned long *rmapp,
1148 int level, bool pt_protect)
98348e95 1149{
1e3f42f0
TY
1150 u64 *sptep;
1151 struct rmap_iterator iter;
d13bc5b5 1152 bool flush = false;
374cbac0 1153
1e3f42f0
TY
1154 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1155 BUG_ON(!(*sptep & PT_PRESENT_MASK));
49fde340 1156 if (spte_write_protect(kvm, sptep, &flush, pt_protect)) {
1e3f42f0 1157 sptep = rmap_get_first(*rmapp, &iter);
d13bc5b5 1158 continue;
caa5b8a5 1159 }
a0ed4607 1160
d13bc5b5 1161 sptep = rmap_get_next(&iter);
374cbac0 1162 }
855149aa 1163
d13bc5b5 1164 return flush;
a0ed4607
TY
1165}
1166
5dc99b23
TY
1167/**
1168 * kvm_mmu_write_protect_pt_masked - write protect selected PT level pages
1169 * @kvm: kvm instance
1170 * @slot: slot to protect
1171 * @gfn_offset: start of the BITS_PER_LONG pages we care about
1172 * @mask: indicates which pages we should protect
1173 *
1174 * Used when we do not need to care about huge page mappings: e.g. during dirty
1175 * logging we do not have any such mappings.
1176 */
1177void kvm_mmu_write_protect_pt_masked(struct kvm *kvm,
1178 struct kvm_memory_slot *slot,
1179 gfn_t gfn_offset, unsigned long mask)
a0ed4607
TY
1180{
1181 unsigned long *rmapp;
a0ed4607 1182
5dc99b23 1183 while (mask) {
65fbe37c
TY
1184 rmapp = __gfn_to_rmap(slot->base_gfn + gfn_offset + __ffs(mask),
1185 PT_PAGE_TABLE_LEVEL, slot);
49fde340 1186 __rmap_write_protect(kvm, rmapp, PT_PAGE_TABLE_LEVEL, false);
05da4558 1187
5dc99b23
TY
1188 /* clear the first set bit */
1189 mask &= mask - 1;
1190 }
374cbac0
AK
1191}
1192
2f84569f 1193static bool rmap_write_protect(struct kvm *kvm, u64 gfn)
95d4c16c
TY
1194{
1195 struct kvm_memory_slot *slot;
5dc99b23
TY
1196 unsigned long *rmapp;
1197 int i;
2f84569f 1198 bool write_protected = false;
95d4c16c
TY
1199
1200 slot = gfn_to_memslot(kvm, gfn);
5dc99b23
TY
1201
1202 for (i = PT_PAGE_TABLE_LEVEL;
1203 i < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++i) {
1204 rmapp = __gfn_to_rmap(gfn, i, slot);
49fde340 1205 write_protected |= __rmap_write_protect(kvm, rmapp, i, true);
5dc99b23
TY
1206 }
1207
1208 return write_protected;
95d4c16c
TY
1209}
1210
8a8365c5 1211static int kvm_unmap_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1212 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1213{
1e3f42f0
TY
1214 u64 *sptep;
1215 struct rmap_iterator iter;
e930bffe
AA
1216 int need_tlb_flush = 0;
1217
1e3f42f0
TY
1218 while ((sptep = rmap_get_first(*rmapp, &iter))) {
1219 BUG_ON(!(*sptep & PT_PRESENT_MASK));
1220 rmap_printk("kvm_rmap_unmap_hva: spte %p %llx\n", sptep, *sptep);
1221
1222 drop_spte(kvm, sptep);
e930bffe
AA
1223 need_tlb_flush = 1;
1224 }
1e3f42f0 1225
e930bffe
AA
1226 return need_tlb_flush;
1227}
1228
8a8365c5 1229static int kvm_set_pte_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1230 struct kvm_memory_slot *slot, unsigned long data)
3da0dd43 1231{
1e3f42f0
TY
1232 u64 *sptep;
1233 struct rmap_iterator iter;
3da0dd43 1234 int need_flush = 0;
1e3f42f0 1235 u64 new_spte;
3da0dd43
IE
1236 pte_t *ptep = (pte_t *)data;
1237 pfn_t new_pfn;
1238
1239 WARN_ON(pte_huge(*ptep));
1240 new_pfn = pte_pfn(*ptep);
1e3f42f0
TY
1241
1242 for (sptep = rmap_get_first(*rmapp, &iter); sptep;) {
1243 BUG_ON(!is_shadow_present_pte(*sptep));
1244 rmap_printk("kvm_set_pte_rmapp: spte %p %llx\n", sptep, *sptep);
1245
3da0dd43 1246 need_flush = 1;
1e3f42f0 1247
3da0dd43 1248 if (pte_write(*ptep)) {
1e3f42f0
TY
1249 drop_spte(kvm, sptep);
1250 sptep = rmap_get_first(*rmapp, &iter);
3da0dd43 1251 } else {
1e3f42f0 1252 new_spte = *sptep & ~PT64_BASE_ADDR_MASK;
3da0dd43
IE
1253 new_spte |= (u64)new_pfn << PAGE_SHIFT;
1254
1255 new_spte &= ~PT_WRITABLE_MASK;
1256 new_spte &= ~SPTE_HOST_WRITEABLE;
b79b93f9 1257 new_spte &= ~shadow_accessed_mask;
1e3f42f0
TY
1258
1259 mmu_spte_clear_track_bits(sptep);
1260 mmu_spte_set(sptep, new_spte);
1261 sptep = rmap_get_next(&iter);
3da0dd43
IE
1262 }
1263 }
1e3f42f0 1264
3da0dd43
IE
1265 if (need_flush)
1266 kvm_flush_remote_tlbs(kvm);
1267
1268 return 0;
1269}
1270
84504ef3
TY
1271static int kvm_handle_hva_range(struct kvm *kvm,
1272 unsigned long start,
1273 unsigned long end,
1274 unsigned long data,
1275 int (*handler)(struct kvm *kvm,
1276 unsigned long *rmapp,
048212d0 1277 struct kvm_memory_slot *slot,
84504ef3 1278 unsigned long data))
e930bffe 1279{
be6ba0f0 1280 int j;
f395302e 1281 int ret = 0;
bc6678a3 1282 struct kvm_memslots *slots;
be6ba0f0 1283 struct kvm_memory_slot *memslot;
bc6678a3 1284
90d83dc3 1285 slots = kvm_memslots(kvm);
e930bffe 1286
be6ba0f0 1287 kvm_for_each_memslot(memslot, slots) {
84504ef3 1288 unsigned long hva_start, hva_end;
bcd3ef58 1289 gfn_t gfn_start, gfn_end;
e930bffe 1290
84504ef3
TY
1291 hva_start = max(start, memslot->userspace_addr);
1292 hva_end = min(end, memslot->userspace_addr +
1293 (memslot->npages << PAGE_SHIFT));
1294 if (hva_start >= hva_end)
1295 continue;
1296 /*
1297 * {gfn(page) | page intersects with [hva_start, hva_end)} =
bcd3ef58 1298 * {gfn_start, gfn_start+1, ..., gfn_end-1}.
84504ef3 1299 */
bcd3ef58 1300 gfn_start = hva_to_gfn_memslot(hva_start, memslot);
84504ef3 1301 gfn_end = hva_to_gfn_memslot(hva_end + PAGE_SIZE - 1, memslot);
852e3c19 1302
bcd3ef58
TY
1303 for (j = PT_PAGE_TABLE_LEVEL;
1304 j < PT_PAGE_TABLE_LEVEL + KVM_NR_PAGE_SIZES; ++j) {
1305 unsigned long idx, idx_end;
1306 unsigned long *rmapp;
d4dbf470 1307
bcd3ef58
TY
1308 /*
1309 * {idx(page_j) | page_j intersects with
1310 * [hva_start, hva_end)} = {idx, idx+1, ..., idx_end}.
1311 */
1312 idx = gfn_to_index(gfn_start, memslot->base_gfn, j);
1313 idx_end = gfn_to_index(gfn_end - 1, memslot->base_gfn, j);
852e3c19 1314
bcd3ef58 1315 rmapp = __gfn_to_rmap(gfn_start, j, memslot);
d4dbf470 1316
bcd3ef58
TY
1317 for (; idx <= idx_end; ++idx)
1318 ret |= handler(kvm, rmapp++, memslot, data);
e930bffe
AA
1319 }
1320 }
1321
f395302e 1322 return ret;
e930bffe
AA
1323}
1324
84504ef3
TY
1325static int kvm_handle_hva(struct kvm *kvm, unsigned long hva,
1326 unsigned long data,
1327 int (*handler)(struct kvm *kvm, unsigned long *rmapp,
048212d0 1328 struct kvm_memory_slot *slot,
84504ef3
TY
1329 unsigned long data))
1330{
1331 return kvm_handle_hva_range(kvm, hva, hva + 1, data, handler);
e930bffe
AA
1332}
1333
1334int kvm_unmap_hva(struct kvm *kvm, unsigned long hva)
1335{
3da0dd43
IE
1336 return kvm_handle_hva(kvm, hva, 0, kvm_unmap_rmapp);
1337}
1338
b3ae2096
TY
1339int kvm_unmap_hva_range(struct kvm *kvm, unsigned long start, unsigned long end)
1340{
1341 return kvm_handle_hva_range(kvm, start, end, 0, kvm_unmap_rmapp);
1342}
1343
3da0dd43
IE
1344void kvm_set_spte_hva(struct kvm *kvm, unsigned long hva, pte_t pte)
1345{
8a8365c5 1346 kvm_handle_hva(kvm, hva, (unsigned long)&pte, kvm_set_pte_rmapp);
e930bffe
AA
1347}
1348
8a8365c5 1349static int kvm_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1350 struct kvm_memory_slot *slot, unsigned long data)
e930bffe 1351{
1e3f42f0 1352 u64 *sptep;
79f702a6 1353 struct rmap_iterator uninitialized_var(iter);
e930bffe
AA
1354 int young = 0;
1355
6316e1c8 1356 /*
3f6d8c8a
XH
1357 * In case of absence of EPT Access and Dirty Bits supports,
1358 * emulate the accessed bit for EPT, by checking if this page has
6316e1c8
RR
1359 * an EPT mapping, and clearing it if it does. On the next access,
1360 * a new EPT mapping will be established.
1361 * This has some overhead, but not as much as the cost of swapping
1362 * out actively used pages or breaking up actively used hugepages.
1363 */
f395302e
TY
1364 if (!shadow_accessed_mask) {
1365 young = kvm_unmap_rmapp(kvm, rmapp, slot, data);
1366 goto out;
1367 }
534e38b4 1368
1e3f42f0
TY
1369 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1370 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1371 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1372
3f6d8c8a 1373 if (*sptep & shadow_accessed_mask) {
e930bffe 1374 young = 1;
3f6d8c8a
XH
1375 clear_bit((ffs(shadow_accessed_mask) - 1),
1376 (unsigned long *)sptep);
e930bffe 1377 }
e930bffe 1378 }
f395302e
TY
1379out:
1380 /* @data has hva passed to kvm_age_hva(). */
1381 trace_kvm_age_page(data, slot, young);
e930bffe
AA
1382 return young;
1383}
1384
8ee53820 1385static int kvm_test_age_rmapp(struct kvm *kvm, unsigned long *rmapp,
048212d0 1386 struct kvm_memory_slot *slot, unsigned long data)
8ee53820 1387{
1e3f42f0
TY
1388 u64 *sptep;
1389 struct rmap_iterator iter;
8ee53820
AA
1390 int young = 0;
1391
1392 /*
1393 * If there's no access bit in the secondary pte set by the
1394 * hardware it's up to gup-fast/gup to set the access bit in
1395 * the primary pte or in the page structure.
1396 */
1397 if (!shadow_accessed_mask)
1398 goto out;
1399
1e3f42f0
TY
1400 for (sptep = rmap_get_first(*rmapp, &iter); sptep;
1401 sptep = rmap_get_next(&iter)) {
3f6d8c8a 1402 BUG_ON(!is_shadow_present_pte(*sptep));
1e3f42f0 1403
3f6d8c8a 1404 if (*sptep & shadow_accessed_mask) {
8ee53820
AA
1405 young = 1;
1406 break;
1407 }
8ee53820
AA
1408 }
1409out:
1410 return young;
1411}
1412
53a27b39
MT
1413#define RMAP_RECYCLE_THRESHOLD 1000
1414
852e3c19 1415static void rmap_recycle(struct kvm_vcpu *vcpu, u64 *spte, gfn_t gfn)
53a27b39
MT
1416{
1417 unsigned long *rmapp;
852e3c19
JR
1418 struct kvm_mmu_page *sp;
1419
1420 sp = page_header(__pa(spte));
53a27b39 1421
852e3c19 1422 rmapp = gfn_to_rmap(vcpu->kvm, gfn, sp->role.level);
53a27b39 1423
048212d0 1424 kvm_unmap_rmapp(vcpu->kvm, rmapp, NULL, 0);
53a27b39
MT
1425 kvm_flush_remote_tlbs(vcpu->kvm);
1426}
1427
e930bffe
AA
1428int kvm_age_hva(struct kvm *kvm, unsigned long hva)
1429{
f395302e 1430 return kvm_handle_hva(kvm, hva, hva, kvm_age_rmapp);
e930bffe
AA
1431}
1432
8ee53820
AA
1433int kvm_test_age_hva(struct kvm *kvm, unsigned long hva)
1434{
1435 return kvm_handle_hva(kvm, hva, 0, kvm_test_age_rmapp);
1436}
1437
d6c69ee9 1438#ifdef MMU_DEBUG
47ad8e68 1439static int is_empty_shadow_page(u64 *spt)
6aa8b732 1440{
139bdb2d
AK
1441 u64 *pos;
1442 u64 *end;
1443
47ad8e68 1444 for (pos = spt, end = pos + PAGE_SIZE / sizeof(u64); pos != end; pos++)
3c915510 1445 if (is_shadow_present_pte(*pos)) {
b8688d51 1446 printk(KERN_ERR "%s: %p %llx\n", __func__,
139bdb2d 1447 pos, *pos);
6aa8b732 1448 return 0;
139bdb2d 1449 }
6aa8b732
AK
1450 return 1;
1451}
d6c69ee9 1452#endif
6aa8b732 1453
45221ab6
DH
1454/*
1455 * This value is the sum of all of the kvm instances's
1456 * kvm->arch.n_used_mmu_pages values. We need a global,
1457 * aggregate version in order to make the slab shrinker
1458 * faster
1459 */
1460static inline void kvm_mod_used_mmu_pages(struct kvm *kvm, int nr)
1461{
1462 kvm->arch.n_used_mmu_pages += nr;
1463 percpu_counter_add(&kvm_total_used_mmu_pages, nr);
1464}
1465
bd4c86ea
XG
1466/*
1467 * Remove the sp from shadow page cache, after call it,
1468 * we can not find this sp from the cache, and the shadow
1469 * page table is still valid.
1470 * It should be under the protection of mmu lock.
1471 */
1472static void kvm_mmu_isolate_page(struct kvm_mmu_page *sp)
260746c0 1473{
4db35314 1474 ASSERT(is_empty_shadow_page(sp->spt));
7775834a 1475 hlist_del(&sp->hash_link);
2032a93d 1476 if (!sp->role.direct)
842f22ed 1477 free_page((unsigned long)sp->gfns);
bd4c86ea
XG
1478}
1479
1480/*
1481 * Free the shadow page table and the sp, we can do it
1482 * out of the protection of mmu lock.
1483 */
1484static void kvm_mmu_free_page(struct kvm_mmu_page *sp)
1485{
1486 list_del(&sp->link);
1487 free_page((unsigned long)sp->spt);
e8ad9a70 1488 kmem_cache_free(mmu_page_header_cache, sp);
260746c0
AK
1489}
1490
cea0f0e7
AK
1491static unsigned kvm_page_table_hashfn(gfn_t gfn)
1492{
1ae0a13d 1493 return gfn & ((1 << KVM_MMU_HASH_SHIFT) - 1);
cea0f0e7
AK
1494}
1495
714b93da 1496static void mmu_page_add_parent_pte(struct kvm_vcpu *vcpu,
4db35314 1497 struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 1498{
cea0f0e7
AK
1499 if (!parent_pte)
1500 return;
cea0f0e7 1501
67052b35 1502 pte_list_add(vcpu, parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1503}
1504
4db35314 1505static void mmu_page_remove_parent_pte(struct kvm_mmu_page *sp,
cea0f0e7
AK
1506 u64 *parent_pte)
1507{
67052b35 1508 pte_list_remove(parent_pte, &sp->parent_ptes);
cea0f0e7
AK
1509}
1510
bcdd9a93
XG
1511static void drop_parent_pte(struct kvm_mmu_page *sp,
1512 u64 *parent_pte)
1513{
1514 mmu_page_remove_parent_pte(sp, parent_pte);
1df9f2dc 1515 mmu_spte_clear_no_track(parent_pte);
bcdd9a93
XG
1516}
1517
67052b35
XG
1518static struct kvm_mmu_page *kvm_mmu_alloc_page(struct kvm_vcpu *vcpu,
1519 u64 *parent_pte, int direct)
ad8cfbe3 1520{
67052b35 1521 struct kvm_mmu_page *sp;
80feb89a
TY
1522 sp = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_header_cache);
1523 sp->spt = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35 1524 if (!direct)
80feb89a 1525 sp->gfns = mmu_memory_cache_alloc(&vcpu->arch.mmu_page_cache);
67052b35
XG
1526 set_page_private(virt_to_page(sp->spt), (unsigned long)sp);
1527 list_add(&sp->link, &vcpu->kvm->arch.active_mmu_pages);
93a5cef0 1528 bitmap_zero(sp->slot_bitmap, KVM_MEM_SLOTS_NUM);
67052b35
XG
1529 sp->parent_ptes = 0;
1530 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1531 kvm_mod_used_mmu_pages(vcpu->kvm, +1);
1532 return sp;
ad8cfbe3
MT
1533}
1534
67052b35 1535static void mark_unsync(u64 *spte);
1047df1f 1536static void kvm_mmu_mark_parents_unsync(struct kvm_mmu_page *sp)
0074ff63 1537{
67052b35 1538 pte_list_walk(&sp->parent_ptes, mark_unsync);
0074ff63
MT
1539}
1540
67052b35 1541static void mark_unsync(u64 *spte)
0074ff63 1542{
67052b35 1543 struct kvm_mmu_page *sp;
1047df1f 1544 unsigned int index;
0074ff63 1545
67052b35 1546 sp = page_header(__pa(spte));
1047df1f
XG
1547 index = spte - sp->spt;
1548 if (__test_and_set_bit(index, sp->unsync_child_bitmap))
0074ff63 1549 return;
1047df1f 1550 if (sp->unsync_children++)
0074ff63 1551 return;
1047df1f 1552 kvm_mmu_mark_parents_unsync(sp);
0074ff63
MT
1553}
1554
e8bc217a 1555static int nonpaging_sync_page(struct kvm_vcpu *vcpu,
a4a8e6f7 1556 struct kvm_mmu_page *sp)
e8bc217a
MT
1557{
1558 return 1;
1559}
1560
a7052897
MT
1561static void nonpaging_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
1562{
1563}
1564
0f53b5b1
XG
1565static void nonpaging_update_pte(struct kvm_vcpu *vcpu,
1566 struct kvm_mmu_page *sp, u64 *spte,
7c562522 1567 const void *pte)
0f53b5b1
XG
1568{
1569 WARN_ON(1);
1570}
1571
60c8aec6
MT
1572#define KVM_PAGE_ARRAY_NR 16
1573
1574struct kvm_mmu_pages {
1575 struct mmu_page_and_offset {
1576 struct kvm_mmu_page *sp;
1577 unsigned int idx;
1578 } page[KVM_PAGE_ARRAY_NR];
1579 unsigned int nr;
1580};
1581
cded19f3
HE
1582static int mmu_pages_add(struct kvm_mmu_pages *pvec, struct kvm_mmu_page *sp,
1583 int idx)
4731d4c7 1584{
60c8aec6 1585 int i;
4731d4c7 1586
60c8aec6
MT
1587 if (sp->unsync)
1588 for (i=0; i < pvec->nr; i++)
1589 if (pvec->page[i].sp == sp)
1590 return 0;
1591
1592 pvec->page[pvec->nr].sp = sp;
1593 pvec->page[pvec->nr].idx = idx;
1594 pvec->nr++;
1595 return (pvec->nr == KVM_PAGE_ARRAY_NR);
1596}
1597
1598static int __mmu_unsync_walk(struct kvm_mmu_page *sp,
1599 struct kvm_mmu_pages *pvec)
1600{
1601 int i, ret, nr_unsync_leaf = 0;
4731d4c7 1602
37178b8b 1603 for_each_set_bit(i, sp->unsync_child_bitmap, 512) {
7a8f1a74 1604 struct kvm_mmu_page *child;
4731d4c7
MT
1605 u64 ent = sp->spt[i];
1606
7a8f1a74
XG
1607 if (!is_shadow_present_pte(ent) || is_large_pte(ent))
1608 goto clear_child_bitmap;
1609
1610 child = page_header(ent & PT64_BASE_ADDR_MASK);
1611
1612 if (child->unsync_children) {
1613 if (mmu_pages_add(pvec, child, i))
1614 return -ENOSPC;
1615
1616 ret = __mmu_unsync_walk(child, pvec);
1617 if (!ret)
1618 goto clear_child_bitmap;
1619 else if (ret > 0)
1620 nr_unsync_leaf += ret;
1621 else
1622 return ret;
1623 } else if (child->unsync) {
1624 nr_unsync_leaf++;
1625 if (mmu_pages_add(pvec, child, i))
1626 return -ENOSPC;
1627 } else
1628 goto clear_child_bitmap;
1629
1630 continue;
1631
1632clear_child_bitmap:
1633 __clear_bit(i, sp->unsync_child_bitmap);
1634 sp->unsync_children--;
1635 WARN_ON((int)sp->unsync_children < 0);
4731d4c7
MT
1636 }
1637
4731d4c7 1638
60c8aec6
MT
1639 return nr_unsync_leaf;
1640}
1641
1642static int mmu_unsync_walk(struct kvm_mmu_page *sp,
1643 struct kvm_mmu_pages *pvec)
1644{
1645 if (!sp->unsync_children)
1646 return 0;
1647
1648 mmu_pages_add(pvec, sp, 0);
1649 return __mmu_unsync_walk(sp, pvec);
4731d4c7
MT
1650}
1651
4731d4c7
MT
1652static void kvm_unlink_unsync_page(struct kvm *kvm, struct kvm_mmu_page *sp)
1653{
1654 WARN_ON(!sp->unsync);
5e1b3ddb 1655 trace_kvm_mmu_sync_page(sp);
4731d4c7
MT
1656 sp->unsync = 0;
1657 --kvm->stat.mmu_unsync;
1658}
1659
7775834a
XG
1660static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
1661 struct list_head *invalid_list);
1662static void kvm_mmu_commit_zap_page(struct kvm *kvm,
1663 struct list_head *invalid_list);
4731d4c7 1664
f41d335a
XG
1665#define for_each_gfn_sp(kvm, sp, gfn, pos) \
1666 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1667 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1668 if ((sp)->gfn != (gfn)) {} else
1669
f41d335a
XG
1670#define for_each_gfn_indirect_valid_sp(kvm, sp, gfn, pos) \
1671 hlist_for_each_entry(sp, pos, \
7ae680eb
XG
1672 &(kvm)->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)], hash_link) \
1673 if ((sp)->gfn != (gfn) || (sp)->role.direct || \
1674 (sp)->role.invalid) {} else
1675
f918b443 1676/* @sp->gfn should be write-protected at the call site */
1d9dc7e0 1677static int __kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
d98ba053 1678 struct list_head *invalid_list, bool clear_unsync)
4731d4c7 1679{
5b7e0102 1680 if (sp->role.cr4_pae != !!is_pae(vcpu)) {
d98ba053 1681 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1682 return 1;
1683 }
1684
f918b443 1685 if (clear_unsync)
1d9dc7e0 1686 kvm_unlink_unsync_page(vcpu->kvm, sp);
1d9dc7e0 1687
a4a8e6f7 1688 if (vcpu->arch.mmu.sync_page(vcpu, sp)) {
d98ba053 1689 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, invalid_list);
4731d4c7
MT
1690 return 1;
1691 }
1692
1693 kvm_mmu_flush_tlb(vcpu);
4731d4c7
MT
1694 return 0;
1695}
1696
1d9dc7e0
XG
1697static int kvm_sync_page_transient(struct kvm_vcpu *vcpu,
1698 struct kvm_mmu_page *sp)
1699{
d98ba053 1700 LIST_HEAD(invalid_list);
1d9dc7e0
XG
1701 int ret;
1702
d98ba053 1703 ret = __kvm_sync_page(vcpu, sp, &invalid_list, false);
be71e061 1704 if (ret)
d98ba053
XG
1705 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
1706
1d9dc7e0
XG
1707 return ret;
1708}
1709
e37fa785
XG
1710#ifdef CONFIG_KVM_MMU_AUDIT
1711#include "mmu_audit.c"
1712#else
1713static void kvm_mmu_audit(struct kvm_vcpu *vcpu, int point) { }
1714static void mmu_audit_disable(void) { }
1715#endif
1716
d98ba053
XG
1717static int kvm_sync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp,
1718 struct list_head *invalid_list)
1d9dc7e0 1719{
d98ba053 1720 return __kvm_sync_page(vcpu, sp, invalid_list, true);
1d9dc7e0
XG
1721}
1722
9f1a122f
XG
1723/* @gfn should be write-protected at the call site */
1724static void kvm_sync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
1725{
9f1a122f 1726 struct kvm_mmu_page *s;
f41d335a 1727 struct hlist_node *node;
d98ba053 1728 LIST_HEAD(invalid_list);
9f1a122f
XG
1729 bool flush = false;
1730
f41d335a 1731 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 1732 if (!s->unsync)
9f1a122f
XG
1733 continue;
1734
1735 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
a4a8e6f7 1736 kvm_unlink_unsync_page(vcpu->kvm, s);
9f1a122f 1737 if ((s->role.cr4_pae != !!is_pae(vcpu)) ||
a4a8e6f7 1738 (vcpu->arch.mmu.sync_page(vcpu, s))) {
d98ba053 1739 kvm_mmu_prepare_zap_page(vcpu->kvm, s, &invalid_list);
9f1a122f
XG
1740 continue;
1741 }
9f1a122f
XG
1742 flush = true;
1743 }
1744
d98ba053 1745 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
9f1a122f
XG
1746 if (flush)
1747 kvm_mmu_flush_tlb(vcpu);
1748}
1749
60c8aec6
MT
1750struct mmu_page_path {
1751 struct kvm_mmu_page *parent[PT64_ROOT_LEVEL-1];
1752 unsigned int idx[PT64_ROOT_LEVEL-1];
4731d4c7
MT
1753};
1754
60c8aec6
MT
1755#define for_each_sp(pvec, sp, parents, i) \
1756 for (i = mmu_pages_next(&pvec, &parents, -1), \
1757 sp = pvec.page[i].sp; \
1758 i < pvec.nr && ({ sp = pvec.page[i].sp; 1;}); \
1759 i = mmu_pages_next(&pvec, &parents, i))
1760
cded19f3
HE
1761static int mmu_pages_next(struct kvm_mmu_pages *pvec,
1762 struct mmu_page_path *parents,
1763 int i)
60c8aec6
MT
1764{
1765 int n;
1766
1767 for (n = i+1; n < pvec->nr; n++) {
1768 struct kvm_mmu_page *sp = pvec->page[n].sp;
1769
1770 if (sp->role.level == PT_PAGE_TABLE_LEVEL) {
1771 parents->idx[0] = pvec->page[n].idx;
1772 return n;
1773 }
1774
1775 parents->parent[sp->role.level-2] = sp;
1776 parents->idx[sp->role.level-1] = pvec->page[n].idx;
1777 }
1778
1779 return n;
1780}
1781
cded19f3 1782static void mmu_pages_clear_parents(struct mmu_page_path *parents)
4731d4c7 1783{
60c8aec6
MT
1784 struct kvm_mmu_page *sp;
1785 unsigned int level = 0;
1786
1787 do {
1788 unsigned int idx = parents->idx[level];
4731d4c7 1789
60c8aec6
MT
1790 sp = parents->parent[level];
1791 if (!sp)
1792 return;
1793
1794 --sp->unsync_children;
1795 WARN_ON((int)sp->unsync_children < 0);
1796 __clear_bit(idx, sp->unsync_child_bitmap);
1797 level++;
1798 } while (level < PT64_ROOT_LEVEL-1 && !sp->unsync_children);
4731d4c7
MT
1799}
1800
60c8aec6
MT
1801static void kvm_mmu_pages_init(struct kvm_mmu_page *parent,
1802 struct mmu_page_path *parents,
1803 struct kvm_mmu_pages *pvec)
4731d4c7 1804{
60c8aec6
MT
1805 parents->parent[parent->role.level-1] = NULL;
1806 pvec->nr = 0;
1807}
4731d4c7 1808
60c8aec6
MT
1809static void mmu_sync_children(struct kvm_vcpu *vcpu,
1810 struct kvm_mmu_page *parent)
1811{
1812 int i;
1813 struct kvm_mmu_page *sp;
1814 struct mmu_page_path parents;
1815 struct kvm_mmu_pages pages;
d98ba053 1816 LIST_HEAD(invalid_list);
60c8aec6
MT
1817
1818 kvm_mmu_pages_init(parent, &parents, &pages);
1819 while (mmu_unsync_walk(parent, &pages)) {
2f84569f 1820 bool protected = false;
b1a36821
MT
1821
1822 for_each_sp(pages, sp, parents, i)
1823 protected |= rmap_write_protect(vcpu->kvm, sp->gfn);
1824
1825 if (protected)
1826 kvm_flush_remote_tlbs(vcpu->kvm);
1827
60c8aec6 1828 for_each_sp(pages, sp, parents, i) {
d98ba053 1829 kvm_sync_page(vcpu, sp, &invalid_list);
60c8aec6
MT
1830 mmu_pages_clear_parents(&parents);
1831 }
d98ba053 1832 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
4731d4c7 1833 cond_resched_lock(&vcpu->kvm->mmu_lock);
60c8aec6
MT
1834 kvm_mmu_pages_init(parent, &parents, &pages);
1835 }
4731d4c7
MT
1836}
1837
c3707958
XG
1838static void init_shadow_page_table(struct kvm_mmu_page *sp)
1839{
1840 int i;
1841
1842 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
1843 sp->spt[i] = 0ull;
1844}
1845
a30f47cb
XG
1846static void __clear_sp_write_flooding_count(struct kvm_mmu_page *sp)
1847{
1848 sp->write_flooding_count = 0;
1849}
1850
1851static void clear_sp_write_flooding_count(u64 *spte)
1852{
1853 struct kvm_mmu_page *sp = page_header(__pa(spte));
1854
1855 __clear_sp_write_flooding_count(sp);
1856}
1857
cea0f0e7
AK
1858static struct kvm_mmu_page *kvm_mmu_get_page(struct kvm_vcpu *vcpu,
1859 gfn_t gfn,
1860 gva_t gaddr,
1861 unsigned level,
f6e2c02b 1862 int direct,
41074d07 1863 unsigned access,
f7d9c7b7 1864 u64 *parent_pte)
cea0f0e7
AK
1865{
1866 union kvm_mmu_page_role role;
cea0f0e7 1867 unsigned quadrant;
9f1a122f 1868 struct kvm_mmu_page *sp;
f41d335a 1869 struct hlist_node *node;
9f1a122f 1870 bool need_sync = false;
cea0f0e7 1871
a770f6f2 1872 role = vcpu->arch.mmu.base_role;
cea0f0e7 1873 role.level = level;
f6e2c02b 1874 role.direct = direct;
84b0c8c6 1875 if (role.direct)
5b7e0102 1876 role.cr4_pae = 0;
41074d07 1877 role.access = access;
c5a78f2b
JR
1878 if (!vcpu->arch.mmu.direct_map
1879 && vcpu->arch.mmu.root_level <= PT32_ROOT_LEVEL) {
cea0f0e7
AK
1880 quadrant = gaddr >> (PAGE_SHIFT + (PT64_PT_BITS * level));
1881 quadrant &= (1 << ((PT32_PT_BITS - PT64_PT_BITS) * level)) - 1;
1882 role.quadrant = quadrant;
1883 }
f41d335a 1884 for_each_gfn_sp(vcpu->kvm, sp, gfn, node) {
7ae680eb
XG
1885 if (!need_sync && sp->unsync)
1886 need_sync = true;
4731d4c7 1887
7ae680eb
XG
1888 if (sp->role.word != role.word)
1889 continue;
4731d4c7 1890
7ae680eb
XG
1891 if (sp->unsync && kvm_sync_page_transient(vcpu, sp))
1892 break;
e02aa901 1893
7ae680eb
XG
1894 mmu_page_add_parent_pte(vcpu, sp, parent_pte);
1895 if (sp->unsync_children) {
a8eeb04a 1896 kvm_make_request(KVM_REQ_MMU_SYNC, vcpu);
7ae680eb
XG
1897 kvm_mmu_mark_parents_unsync(sp);
1898 } else if (sp->unsync)
1899 kvm_mmu_mark_parents_unsync(sp);
e02aa901 1900
a30f47cb 1901 __clear_sp_write_flooding_count(sp);
7ae680eb
XG
1902 trace_kvm_mmu_get_page(sp, false);
1903 return sp;
1904 }
dfc5aa00 1905 ++vcpu->kvm->stat.mmu_cache_miss;
2032a93d 1906 sp = kvm_mmu_alloc_page(vcpu, parent_pte, direct);
4db35314
AK
1907 if (!sp)
1908 return sp;
4db35314
AK
1909 sp->gfn = gfn;
1910 sp->role = role;
7ae680eb
XG
1911 hlist_add_head(&sp->hash_link,
1912 &vcpu->kvm->arch.mmu_page_hash[kvm_page_table_hashfn(gfn)]);
f6e2c02b 1913 if (!direct) {
b1a36821
MT
1914 if (rmap_write_protect(vcpu->kvm, gfn))
1915 kvm_flush_remote_tlbs(vcpu->kvm);
9f1a122f
XG
1916 if (level > PT_PAGE_TABLE_LEVEL && need_sync)
1917 kvm_sync_pages(vcpu, gfn);
1918
4731d4c7
MT
1919 account_shadowed(vcpu->kvm, gfn);
1920 }
c3707958 1921 init_shadow_page_table(sp);
f691fe1d 1922 trace_kvm_mmu_get_page(sp, true);
4db35314 1923 return sp;
cea0f0e7
AK
1924}
1925
2d11123a
AK
1926static void shadow_walk_init(struct kvm_shadow_walk_iterator *iterator,
1927 struct kvm_vcpu *vcpu, u64 addr)
1928{
1929 iterator->addr = addr;
1930 iterator->shadow_addr = vcpu->arch.mmu.root_hpa;
1931 iterator->level = vcpu->arch.mmu.shadow_root_level;
81407ca5
JR
1932
1933 if (iterator->level == PT64_ROOT_LEVEL &&
1934 vcpu->arch.mmu.root_level < PT64_ROOT_LEVEL &&
1935 !vcpu->arch.mmu.direct_map)
1936 --iterator->level;
1937
2d11123a
AK
1938 if (iterator->level == PT32E_ROOT_LEVEL) {
1939 iterator->shadow_addr
1940 = vcpu->arch.mmu.pae_root[(addr >> 30) & 3];
1941 iterator->shadow_addr &= PT64_BASE_ADDR_MASK;
1942 --iterator->level;
1943 if (!iterator->shadow_addr)
1944 iterator->level = 0;
1945 }
1946}
1947
1948static bool shadow_walk_okay(struct kvm_shadow_walk_iterator *iterator)
1949{
1950 if (iterator->level < PT_PAGE_TABLE_LEVEL)
1951 return false;
4d88954d 1952
2d11123a
AK
1953 iterator->index = SHADOW_PT_INDEX(iterator->addr, iterator->level);
1954 iterator->sptep = ((u64 *)__va(iterator->shadow_addr)) + iterator->index;
1955 return true;
1956}
1957
c2a2ac2b
XG
1958static void __shadow_walk_next(struct kvm_shadow_walk_iterator *iterator,
1959 u64 spte)
2d11123a 1960{
c2a2ac2b 1961 if (is_last_spte(spte, iterator->level)) {
052331be
XG
1962 iterator->level = 0;
1963 return;
1964 }
1965
c2a2ac2b 1966 iterator->shadow_addr = spte & PT64_BASE_ADDR_MASK;
2d11123a
AK
1967 --iterator->level;
1968}
1969
c2a2ac2b
XG
1970static void shadow_walk_next(struct kvm_shadow_walk_iterator *iterator)
1971{
1972 return __shadow_walk_next(iterator, *iterator->sptep);
1973}
1974
32ef26a3
AK
1975static void link_shadow_page(u64 *sptep, struct kvm_mmu_page *sp)
1976{
1977 u64 spte;
1978
1979 spte = __pa(sp->spt)
1980 | PT_PRESENT_MASK | PT_ACCESSED_MASK
1981 | PT_WRITABLE_MASK | PT_USER_MASK;
1df9f2dc 1982 mmu_spte_set(sptep, spte);
32ef26a3
AK
1983}
1984
a357bd22
AK
1985static void validate_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1986 unsigned direct_access)
1987{
1988 if (is_shadow_present_pte(*sptep) && !is_large_pte(*sptep)) {
1989 struct kvm_mmu_page *child;
1990
1991 /*
1992 * For the direct sp, if the guest pte's dirty bit
1993 * changed form clean to dirty, it will corrupt the
1994 * sp's access: allow writable in the read-only sp,
1995 * so we should update the spte at this point to get
1996 * a new sp with the correct access.
1997 */
1998 child = page_header(*sptep & PT64_BASE_ADDR_MASK);
1999 if (child->role.access == direct_access)
2000 return;
2001
bcdd9a93 2002 drop_parent_pte(child, sptep);
a357bd22
AK
2003 kvm_flush_remote_tlbs(vcpu->kvm);
2004 }
2005}
2006
505aef8f 2007static bool mmu_page_zap_pte(struct kvm *kvm, struct kvm_mmu_page *sp,
38e3b2b2
XG
2008 u64 *spte)
2009{
2010 u64 pte;
2011 struct kvm_mmu_page *child;
2012
2013 pte = *spte;
2014 if (is_shadow_present_pte(pte)) {
505aef8f 2015 if (is_last_spte(pte, sp->role.level)) {
c3707958 2016 drop_spte(kvm, spte);
505aef8f
XG
2017 if (is_large_pte(pte))
2018 --kvm->stat.lpages;
2019 } else {
38e3b2b2 2020 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2021 drop_parent_pte(child, spte);
38e3b2b2 2022 }
505aef8f
XG
2023 return true;
2024 }
2025
2026 if (is_mmio_spte(pte))
ce88decf 2027 mmu_spte_clear_no_track(spte);
c3707958 2028
505aef8f 2029 return false;
38e3b2b2
XG
2030}
2031
90cb0529 2032static void kvm_mmu_page_unlink_children(struct kvm *kvm,
4db35314 2033 struct kvm_mmu_page *sp)
a436036b 2034{
697fe2e2 2035 unsigned i;
697fe2e2 2036
38e3b2b2
XG
2037 for (i = 0; i < PT64_ENT_PER_PAGE; ++i)
2038 mmu_page_zap_pte(kvm, sp, sp->spt + i);
a436036b
AK
2039}
2040
4db35314 2041static void kvm_mmu_put_page(struct kvm_mmu_page *sp, u64 *parent_pte)
cea0f0e7 2042{
4db35314 2043 mmu_page_remove_parent_pte(sp, parent_pte);
a436036b
AK
2044}
2045
31aa2b44 2046static void kvm_mmu_unlink_parents(struct kvm *kvm, struct kvm_mmu_page *sp)
a436036b 2047{
1e3f42f0
TY
2048 u64 *sptep;
2049 struct rmap_iterator iter;
a436036b 2050
1e3f42f0
TY
2051 while ((sptep = rmap_get_first(sp->parent_ptes, &iter)))
2052 drop_parent_pte(sp, sptep);
31aa2b44
AK
2053}
2054
60c8aec6 2055static int mmu_zap_unsync_children(struct kvm *kvm,
7775834a
XG
2056 struct kvm_mmu_page *parent,
2057 struct list_head *invalid_list)
4731d4c7 2058{
60c8aec6
MT
2059 int i, zapped = 0;
2060 struct mmu_page_path parents;
2061 struct kvm_mmu_pages pages;
4731d4c7 2062
60c8aec6 2063 if (parent->role.level == PT_PAGE_TABLE_LEVEL)
4731d4c7 2064 return 0;
60c8aec6
MT
2065
2066 kvm_mmu_pages_init(parent, &parents, &pages);
2067 while (mmu_unsync_walk(parent, &pages)) {
2068 struct kvm_mmu_page *sp;
2069
2070 for_each_sp(pages, sp, parents, i) {
7775834a 2071 kvm_mmu_prepare_zap_page(kvm, sp, invalid_list);
60c8aec6 2072 mmu_pages_clear_parents(&parents);
77662e00 2073 zapped++;
60c8aec6 2074 }
60c8aec6
MT
2075 kvm_mmu_pages_init(parent, &parents, &pages);
2076 }
2077
2078 return zapped;
4731d4c7
MT
2079}
2080
7775834a
XG
2081static int kvm_mmu_prepare_zap_page(struct kvm *kvm, struct kvm_mmu_page *sp,
2082 struct list_head *invalid_list)
31aa2b44 2083{
4731d4c7 2084 int ret;
f691fe1d 2085
7775834a 2086 trace_kvm_mmu_prepare_zap_page(sp);
31aa2b44 2087 ++kvm->stat.mmu_shadow_zapped;
7775834a 2088 ret = mmu_zap_unsync_children(kvm, sp, invalid_list);
4db35314 2089 kvm_mmu_page_unlink_children(kvm, sp);
31aa2b44 2090 kvm_mmu_unlink_parents(kvm, sp);
f6e2c02b 2091 if (!sp->role.invalid && !sp->role.direct)
5b5c6a5a 2092 unaccount_shadowed(kvm, sp->gfn);
4731d4c7
MT
2093 if (sp->unsync)
2094 kvm_unlink_unsync_page(kvm, sp);
4db35314 2095 if (!sp->root_count) {
54a4f023
GJ
2096 /* Count self */
2097 ret++;
7775834a 2098 list_move(&sp->link, invalid_list);
aa6bd187 2099 kvm_mod_used_mmu_pages(kvm, -1);
2e53d63a 2100 } else {
5b5c6a5a 2101 list_move(&sp->link, &kvm->arch.active_mmu_pages);
2e53d63a
MT
2102 kvm_reload_remote_mmus(kvm);
2103 }
7775834a
XG
2104
2105 sp->role.invalid = 1;
4731d4c7 2106 return ret;
a436036b
AK
2107}
2108
7775834a
XG
2109static void kvm_mmu_commit_zap_page(struct kvm *kvm,
2110 struct list_head *invalid_list)
2111{
2112 struct kvm_mmu_page *sp;
2113
2114 if (list_empty(invalid_list))
2115 return;
2116
c142786c
AK
2117 /*
2118 * wmb: make sure everyone sees our modifications to the page tables
2119 * rmb: make sure we see changes to vcpu->mode
2120 */
2121 smp_mb();
4f022648 2122
c142786c
AK
2123 /*
2124 * Wait for all vcpus to exit guest mode and/or lockless shadow
2125 * page table walks.
2126 */
2127 kvm_flush_remote_tlbs(kvm);
c2a2ac2b 2128
7775834a
XG
2129 do {
2130 sp = list_first_entry(invalid_list, struct kvm_mmu_page, link);
2131 WARN_ON(!sp->role.invalid || sp->root_count);
bd4c86ea 2132 kvm_mmu_isolate_page(sp);
aa6bd187 2133 kvm_mmu_free_page(sp);
7775834a 2134 } while (!list_empty(invalid_list));
7775834a
XG
2135}
2136
82ce2c96
IE
2137/*
2138 * Changing the number of mmu pages allocated to the vm
49d5ca26 2139 * Note: if goal_nr_mmu_pages is too small, you will get dead lock
82ce2c96 2140 */
49d5ca26 2141void kvm_mmu_change_mmu_pages(struct kvm *kvm, unsigned int goal_nr_mmu_pages)
82ce2c96 2142{
d98ba053 2143 LIST_HEAD(invalid_list);
82ce2c96
IE
2144 /*
2145 * If we set the number of mmu pages to be smaller be than the
2146 * number of actived pages , we must to free some mmu pages before we
2147 * change the value
2148 */
2149
49d5ca26
DH
2150 if (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages) {
2151 while (kvm->arch.n_used_mmu_pages > goal_nr_mmu_pages &&
77662e00 2152 !list_empty(&kvm->arch.active_mmu_pages)) {
82ce2c96
IE
2153 struct kvm_mmu_page *page;
2154
f05e70ac 2155 page = container_of(kvm->arch.active_mmu_pages.prev,
82ce2c96 2156 struct kvm_mmu_page, link);
80b63faf 2157 kvm_mmu_prepare_zap_page(kvm, page, &invalid_list);
82ce2c96 2158 }
aa6bd187 2159 kvm_mmu_commit_zap_page(kvm, &invalid_list);
49d5ca26 2160 goal_nr_mmu_pages = kvm->arch.n_used_mmu_pages;
82ce2c96 2161 }
82ce2c96 2162
49d5ca26 2163 kvm->arch.n_max_mmu_pages = goal_nr_mmu_pages;
82ce2c96
IE
2164}
2165
1cb3f3ae 2166int kvm_mmu_unprotect_page(struct kvm *kvm, gfn_t gfn)
a436036b 2167{
4db35314 2168 struct kvm_mmu_page *sp;
f41d335a 2169 struct hlist_node *node;
d98ba053 2170 LIST_HEAD(invalid_list);
a436036b
AK
2171 int r;
2172
9ad17b10 2173 pgprintk("%s: looking for gfn %llx\n", __func__, gfn);
a436036b 2174 r = 0;
1cb3f3ae 2175 spin_lock(&kvm->mmu_lock);
f41d335a 2176 for_each_gfn_indirect_valid_sp(kvm, sp, gfn, node) {
9ad17b10 2177 pgprintk("%s: gfn %llx role %x\n", __func__, gfn,
7ae680eb
XG
2178 sp->role.word);
2179 r = 1;
f41d335a 2180 kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list);
7ae680eb 2181 }
d98ba053 2182 kvm_mmu_commit_zap_page(kvm, &invalid_list);
1cb3f3ae
XG
2183 spin_unlock(&kvm->mmu_lock);
2184
a436036b 2185 return r;
cea0f0e7 2186}
1cb3f3ae 2187EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page);
cea0f0e7 2188
38c335f1 2189static void page_header_update_slot(struct kvm *kvm, void *pte, gfn_t gfn)
6aa8b732 2190{
bc6678a3 2191 int slot = memslot_id(kvm, gfn);
4db35314 2192 struct kvm_mmu_page *sp = page_header(__pa(pte));
6aa8b732 2193
291f26bc 2194 __set_bit(slot, sp->slot_bitmap);
6aa8b732
AK
2195}
2196
74be52e3
SY
2197/*
2198 * The function is based on mtrr_type_lookup() in
2199 * arch/x86/kernel/cpu/mtrr/generic.c
2200 */
2201static int get_mtrr_type(struct mtrr_state_type *mtrr_state,
2202 u64 start, u64 end)
2203{
2204 int i;
2205 u64 base, mask;
2206 u8 prev_match, curr_match;
2207 int num_var_ranges = KVM_NR_VAR_MTRR;
2208
2209 if (!mtrr_state->enabled)
2210 return 0xFF;
2211
2212 /* Make end inclusive end, instead of exclusive */
2213 end--;
2214
2215 /* Look in fixed ranges. Just return the type as per start */
2216 if (mtrr_state->have_fixed && (start < 0x100000)) {
2217 int idx;
2218
2219 if (start < 0x80000) {
2220 idx = 0;
2221 idx += (start >> 16);
2222 return mtrr_state->fixed_ranges[idx];
2223 } else if (start < 0xC0000) {
2224 idx = 1 * 8;
2225 idx += ((start - 0x80000) >> 14);
2226 return mtrr_state->fixed_ranges[idx];
2227 } else if (start < 0x1000000) {
2228 idx = 3 * 8;
2229 idx += ((start - 0xC0000) >> 12);
2230 return mtrr_state->fixed_ranges[idx];
2231 }
2232 }
2233
2234 /*
2235 * Look in variable ranges
2236 * Look of multiple ranges matching this address and pick type
2237 * as per MTRR precedence
2238 */
2239 if (!(mtrr_state->enabled & 2))
2240 return mtrr_state->def_type;
2241
2242 prev_match = 0xFF;
2243 for (i = 0; i < num_var_ranges; ++i) {
2244 unsigned short start_state, end_state;
2245
2246 if (!(mtrr_state->var_ranges[i].mask_lo & (1 << 11)))
2247 continue;
2248
2249 base = (((u64)mtrr_state->var_ranges[i].base_hi) << 32) +
2250 (mtrr_state->var_ranges[i].base_lo & PAGE_MASK);
2251 mask = (((u64)mtrr_state->var_ranges[i].mask_hi) << 32) +
2252 (mtrr_state->var_ranges[i].mask_lo & PAGE_MASK);
2253
2254 start_state = ((start & mask) == (base & mask));
2255 end_state = ((end & mask) == (base & mask));
2256 if (start_state != end_state)
2257 return 0xFE;
2258
2259 if ((start & mask) != (base & mask))
2260 continue;
2261
2262 curr_match = mtrr_state->var_ranges[i].base_lo & 0xff;
2263 if (prev_match == 0xFF) {
2264 prev_match = curr_match;
2265 continue;
2266 }
2267
2268 if (prev_match == MTRR_TYPE_UNCACHABLE ||
2269 curr_match == MTRR_TYPE_UNCACHABLE)
2270 return MTRR_TYPE_UNCACHABLE;
2271
2272 if ((prev_match == MTRR_TYPE_WRBACK &&
2273 curr_match == MTRR_TYPE_WRTHROUGH) ||
2274 (prev_match == MTRR_TYPE_WRTHROUGH &&
2275 curr_match == MTRR_TYPE_WRBACK)) {
2276 prev_match = MTRR_TYPE_WRTHROUGH;
2277 curr_match = MTRR_TYPE_WRTHROUGH;
2278 }
2279
2280 if (prev_match != curr_match)
2281 return MTRR_TYPE_UNCACHABLE;
2282 }
2283
2284 if (prev_match != 0xFF)
2285 return prev_match;
2286
2287 return mtrr_state->def_type;
2288}
2289
4b12f0de 2290u8 kvm_get_guest_memory_type(struct kvm_vcpu *vcpu, gfn_t gfn)
74be52e3
SY
2291{
2292 u8 mtrr;
2293
2294 mtrr = get_mtrr_type(&vcpu->arch.mtrr_state, gfn << PAGE_SHIFT,
2295 (gfn << PAGE_SHIFT) + PAGE_SIZE);
2296 if (mtrr == 0xfe || mtrr == 0xff)
2297 mtrr = MTRR_TYPE_WRBACK;
2298 return mtrr;
2299}
4b12f0de 2300EXPORT_SYMBOL_GPL(kvm_get_guest_memory_type);
74be52e3 2301
9cf5cf5a
XG
2302static void __kvm_unsync_page(struct kvm_vcpu *vcpu, struct kvm_mmu_page *sp)
2303{
2304 trace_kvm_mmu_unsync_page(sp);
2305 ++vcpu->kvm->stat.mmu_unsync;
2306 sp->unsync = 1;
2307
2308 kvm_mmu_mark_parents_unsync(sp);
9cf5cf5a
XG
2309}
2310
2311static void kvm_unsync_pages(struct kvm_vcpu *vcpu, gfn_t gfn)
4731d4c7 2312{
4731d4c7 2313 struct kvm_mmu_page *s;
f41d335a 2314 struct hlist_node *node;
9cf5cf5a 2315
f41d335a 2316 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
7ae680eb 2317 if (s->unsync)
4731d4c7 2318 continue;
9cf5cf5a
XG
2319 WARN_ON(s->role.level != PT_PAGE_TABLE_LEVEL);
2320 __kvm_unsync_page(vcpu, s);
4731d4c7 2321 }
4731d4c7
MT
2322}
2323
2324static int mmu_need_write_protect(struct kvm_vcpu *vcpu, gfn_t gfn,
2325 bool can_unsync)
2326{
9cf5cf5a 2327 struct kvm_mmu_page *s;
f41d335a 2328 struct hlist_node *node;
9cf5cf5a
XG
2329 bool need_unsync = false;
2330
f41d335a 2331 for_each_gfn_indirect_valid_sp(vcpu->kvm, s, gfn, node) {
36a2e677
XG
2332 if (!can_unsync)
2333 return 1;
2334
9cf5cf5a 2335 if (s->role.level != PT_PAGE_TABLE_LEVEL)
4731d4c7 2336 return 1;
9cf5cf5a
XG
2337
2338 if (!need_unsync && !s->unsync) {
9cf5cf5a
XG
2339 need_unsync = true;
2340 }
4731d4c7 2341 }
9cf5cf5a
XG
2342 if (need_unsync)
2343 kvm_unsync_pages(vcpu, gfn);
4731d4c7
MT
2344 return 0;
2345}
2346
d555c333 2347static int set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2348 unsigned pte_access, int user_fault,
640d9b0d 2349 int write_fault, int level,
c2d0ee46 2350 gfn_t gfn, pfn_t pfn, bool speculative,
9bdbba13 2351 bool can_unsync, bool host_writable)
1c4f1fd6 2352{
6e7d0354 2353 u64 spte;
1e73f9dd 2354 int ret = 0;
64d4d521 2355
ce88decf
XG
2356 if (set_mmio_spte(sptep, gfn, pfn, pte_access))
2357 return 0;
2358
982c2565 2359 spte = PT_PRESENT_MASK;
947da538 2360 if (!speculative)
3201b5d9 2361 spte |= shadow_accessed_mask;
640d9b0d 2362
7b52345e
SY
2363 if (pte_access & ACC_EXEC_MASK)
2364 spte |= shadow_x_mask;
2365 else
2366 spte |= shadow_nx_mask;
49fde340 2367
1c4f1fd6 2368 if (pte_access & ACC_USER_MASK)
7b52345e 2369 spte |= shadow_user_mask;
49fde340 2370
852e3c19 2371 if (level > PT_PAGE_TABLE_LEVEL)
05da4558 2372 spte |= PT_PAGE_SIZE_MASK;
b0bc3ee2 2373 if (tdp_enabled)
4b12f0de
SY
2374 spte |= kvm_x86_ops->get_mt_mask(vcpu, gfn,
2375 kvm_is_mmio_pfn(pfn));
1c4f1fd6 2376
9bdbba13 2377 if (host_writable)
1403283a 2378 spte |= SPTE_HOST_WRITEABLE;
f8e453b0
XG
2379 else
2380 pte_access &= ~ACC_WRITE_MASK;
1403283a 2381
35149e21 2382 spte |= (u64)pfn << PAGE_SHIFT;
1c4f1fd6
AK
2383
2384 if ((pte_access & ACC_WRITE_MASK)
c5a78f2b
JR
2385 || (!vcpu->arch.mmu.direct_map && write_fault
2386 && !is_write_protection(vcpu) && !user_fault)) {
1c4f1fd6 2387
852e3c19
JR
2388 if (level > PT_PAGE_TABLE_LEVEL &&
2389 has_wrprotected_page(vcpu->kvm, gfn, level)) {
38187c83 2390 ret = 1;
c3707958 2391 drop_spte(vcpu->kvm, sptep);
be38d276 2392 goto done;
38187c83
MT
2393 }
2394
49fde340 2395 spte |= PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE;
1c4f1fd6 2396
c5a78f2b 2397 if (!vcpu->arch.mmu.direct_map
411c588d 2398 && !(pte_access & ACC_WRITE_MASK)) {
69325a12 2399 spte &= ~PT_USER_MASK;
411c588d
AK
2400 /*
2401 * If we converted a user page to a kernel page,
2402 * so that the kernel can write to it when cr0.wp=0,
2403 * then we should prevent the kernel from executing it
2404 * if SMEP is enabled.
2405 */
2406 if (kvm_read_cr4_bits(vcpu, X86_CR4_SMEP))
2407 spte |= PT64_NX_MASK;
2408 }
69325a12 2409
ecc5589f
MT
2410 /*
2411 * Optimization: for pte sync, if spte was writable the hash
2412 * lookup is unnecessary (and expensive). Write protection
2413 * is responsibility of mmu_get_page / kvm_sync_page.
2414 * Same reasoning can be applied to dirty page accounting.
2415 */
8dae4445 2416 if (!can_unsync && is_writable_pte(*sptep))
ecc5589f
MT
2417 goto set_pte;
2418
4731d4c7 2419 if (mmu_need_write_protect(vcpu, gfn, can_unsync)) {
9ad17b10 2420 pgprintk("%s: found shadow page for %llx, marking ro\n",
b8688d51 2421 __func__, gfn);
1e73f9dd 2422 ret = 1;
1c4f1fd6 2423 pte_access &= ~ACC_WRITE_MASK;
49fde340 2424 spte &= ~(PT_WRITABLE_MASK | SPTE_MMU_WRITEABLE);
1c4f1fd6
AK
2425 }
2426 }
2427
1c4f1fd6
AK
2428 if (pte_access & ACC_WRITE_MASK)
2429 mark_page_dirty(vcpu->kvm, gfn);
2430
38187c83 2431set_pte:
6e7d0354 2432 if (mmu_spte_update(sptep, spte))
b330aa0c 2433 kvm_flush_remote_tlbs(vcpu->kvm);
be38d276 2434done:
1e73f9dd
MT
2435 return ret;
2436}
2437
d555c333 2438static void mmu_set_spte(struct kvm_vcpu *vcpu, u64 *sptep,
1e73f9dd 2439 unsigned pt_access, unsigned pte_access,
640d9b0d 2440 int user_fault, int write_fault,
b90a0e6c 2441 int *emulate, int level, gfn_t gfn,
1403283a 2442 pfn_t pfn, bool speculative,
9bdbba13 2443 bool host_writable)
1e73f9dd
MT
2444{
2445 int was_rmapped = 0;
53a27b39 2446 int rmap_count;
1e73f9dd
MT
2447
2448 pgprintk("%s: spte %llx access %x write_fault %d"
9ad17b10 2449 " user_fault %d gfn %llx\n",
d555c333 2450 __func__, *sptep, pt_access,
1e73f9dd
MT
2451 write_fault, user_fault, gfn);
2452
d555c333 2453 if (is_rmap_spte(*sptep)) {
1e73f9dd
MT
2454 /*
2455 * If we overwrite a PTE page pointer with a 2MB PMD, unlink
2456 * the parent of the now unreachable PTE.
2457 */
852e3c19
JR
2458 if (level > PT_PAGE_TABLE_LEVEL &&
2459 !is_large_pte(*sptep)) {
1e73f9dd 2460 struct kvm_mmu_page *child;
d555c333 2461 u64 pte = *sptep;
1e73f9dd
MT
2462
2463 child = page_header(pte & PT64_BASE_ADDR_MASK);
bcdd9a93 2464 drop_parent_pte(child, sptep);
3be2264b 2465 kvm_flush_remote_tlbs(vcpu->kvm);
d555c333 2466 } else if (pfn != spte_to_pfn(*sptep)) {
9ad17b10 2467 pgprintk("hfn old %llx new %llx\n",
d555c333 2468 spte_to_pfn(*sptep), pfn);
c3707958 2469 drop_spte(vcpu->kvm, sptep);
91546356 2470 kvm_flush_remote_tlbs(vcpu->kvm);
6bed6b9e
JR
2471 } else
2472 was_rmapped = 1;
1e73f9dd 2473 }
852e3c19 2474
d555c333 2475 if (set_spte(vcpu, sptep, pte_access, user_fault, write_fault,
640d9b0d 2476 level, gfn, pfn, speculative, true,
9bdbba13 2477 host_writable)) {
1e73f9dd 2478 if (write_fault)
b90a0e6c 2479 *emulate = 1;
5304efde 2480 kvm_mmu_flush_tlb(vcpu);
a378b4e6 2481 }
1e73f9dd 2482
ce88decf
XG
2483 if (unlikely(is_mmio_spte(*sptep) && emulate))
2484 *emulate = 1;
2485
d555c333 2486 pgprintk("%s: setting spte %llx\n", __func__, *sptep);
9ad17b10 2487 pgprintk("instantiating %s PTE (%s) at %llx (%llx) addr %p\n",
d555c333 2488 is_large_pte(*sptep)? "2MB" : "4kB",
a205bc19
JR
2489 *sptep & PT_PRESENT_MASK ?"RW":"R", gfn,
2490 *sptep, sptep);
d555c333 2491 if (!was_rmapped && is_large_pte(*sptep))
05da4558
MT
2492 ++vcpu->kvm->stat.lpages;
2493
ffb61bb3
XG
2494 if (is_shadow_present_pte(*sptep)) {
2495 page_header_update_slot(vcpu->kvm, sptep, gfn);
2496 if (!was_rmapped) {
2497 rmap_count = rmap_add(vcpu, sptep, gfn);
2498 if (rmap_count > RMAP_RECYCLE_THRESHOLD)
2499 rmap_recycle(vcpu, sptep, gfn);
2500 }
1c4f1fd6 2501 }
9ed5520d 2502 kvm_release_pfn_clean(pfn);
1c4f1fd6
AK
2503}
2504
6aa8b732
AK
2505static void nonpaging_new_cr3(struct kvm_vcpu *vcpu)
2506{
e676505a 2507 mmu_free_roots(vcpu);
6aa8b732
AK
2508}
2509
957ed9ef
XG
2510static pfn_t pte_prefetch_gfn_to_pfn(struct kvm_vcpu *vcpu, gfn_t gfn,
2511 bool no_dirty_log)
2512{
2513 struct kvm_memory_slot *slot;
2514 unsigned long hva;
2515
5d163b1c 2516 slot = gfn_to_memslot_dirty_bitmap(vcpu, gfn, no_dirty_log);
903816fa
XG
2517 if (!slot)
2518 return get_fault_pfn();
957ed9ef
XG
2519
2520 hva = gfn_to_hva_memslot(slot, gfn);
2521
d5661048 2522 return hva_to_pfn_atomic(hva);
957ed9ef
XG
2523}
2524
2525static int direct_pte_prefetch_many(struct kvm_vcpu *vcpu,
2526 struct kvm_mmu_page *sp,
2527 u64 *start, u64 *end)
2528{
2529 struct page *pages[PTE_PREFETCH_NUM];
2530 unsigned access = sp->role.access;
2531 int i, ret;
2532 gfn_t gfn;
2533
2534 gfn = kvm_mmu_page_get_gfn(sp, start - sp->spt);
5d163b1c 2535 if (!gfn_to_memslot_dirty_bitmap(vcpu, gfn, access & ACC_WRITE_MASK))
957ed9ef
XG
2536 return -1;
2537
2538 ret = gfn_to_page_many_atomic(vcpu->kvm, gfn, pages, end - start);
2539 if (ret <= 0)
2540 return -1;
2541
2542 for (i = 0; i < ret; i++, gfn++, start++)
2543 mmu_set_spte(vcpu, start, ACC_ALL,
640d9b0d 2544 access, 0, 0, NULL,
957ed9ef
XG
2545 sp->role.level, gfn,
2546 page_to_pfn(pages[i]), true, true);
2547
2548 return 0;
2549}
2550
2551static void __direct_pte_prefetch(struct kvm_vcpu *vcpu,
2552 struct kvm_mmu_page *sp, u64 *sptep)
2553{
2554 u64 *spte, *start = NULL;
2555 int i;
2556
2557 WARN_ON(!sp->role.direct);
2558
2559 i = (sptep - sp->spt) & ~(PTE_PREFETCH_NUM - 1);
2560 spte = sp->spt + i;
2561
2562 for (i = 0; i < PTE_PREFETCH_NUM; i++, spte++) {
c3707958 2563 if (is_shadow_present_pte(*spte) || spte == sptep) {
957ed9ef
XG
2564 if (!start)
2565 continue;
2566 if (direct_pte_prefetch_many(vcpu, sp, start, spte) < 0)
2567 break;
2568 start = NULL;
2569 } else if (!start)
2570 start = spte;
2571 }
2572}
2573
2574static void direct_pte_prefetch(struct kvm_vcpu *vcpu, u64 *sptep)
2575{
2576 struct kvm_mmu_page *sp;
2577
2578 /*
2579 * Since it's no accessed bit on EPT, it's no way to
2580 * distinguish between actually accessed translations
2581 * and prefetched, so disable pte prefetch if EPT is
2582 * enabled.
2583 */
2584 if (!shadow_accessed_mask)
2585 return;
2586
2587 sp = page_header(__pa(sptep));
2588 if (sp->role.level > PT_PAGE_TABLE_LEVEL)
2589 return;
2590
2591 __direct_pte_prefetch(vcpu, sp, sptep);
2592}
2593
9f652d21 2594static int __direct_map(struct kvm_vcpu *vcpu, gpa_t v, int write,
2ec4739d
XG
2595 int map_writable, int level, gfn_t gfn, pfn_t pfn,
2596 bool prefault)
140754bc 2597{
9f652d21 2598 struct kvm_shadow_walk_iterator iterator;
140754bc 2599 struct kvm_mmu_page *sp;
b90a0e6c 2600 int emulate = 0;
140754bc 2601 gfn_t pseudo_gfn;
6aa8b732 2602
9f652d21 2603 for_each_shadow_entry(vcpu, (u64)gfn << PAGE_SHIFT, iterator) {
852e3c19 2604 if (iterator.level == level) {
612819c3
MT
2605 unsigned pte_access = ACC_ALL;
2606
612819c3 2607 mmu_set_spte(vcpu, iterator.sptep, ACC_ALL, pte_access,
b90a0e6c 2608 0, write, &emulate,
2ec4739d 2609 level, gfn, pfn, prefault, map_writable);
957ed9ef 2610 direct_pte_prefetch(vcpu, iterator.sptep);
9f652d21
AK
2611 ++vcpu->stat.pf_fixed;
2612 break;
6aa8b732
AK
2613 }
2614
c3707958 2615 if (!is_shadow_present_pte(*iterator.sptep)) {
c9fa0b3b
LJ
2616 u64 base_addr = iterator.addr;
2617
2618 base_addr &= PT64_LVL_ADDR_MASK(iterator.level);
2619 pseudo_gfn = base_addr >> PAGE_SHIFT;
9f652d21
AK
2620 sp = kvm_mmu_get_page(vcpu, pseudo_gfn, iterator.addr,
2621 iterator.level - 1,
2622 1, ACC_ALL, iterator.sptep);
2623 if (!sp) {
2624 pgprintk("nonpaging_map: ENOMEM\n");
2625 kvm_release_pfn_clean(pfn);
2626 return -ENOMEM;
2627 }
140754bc 2628
1df9f2dc
XG
2629 mmu_spte_set(iterator.sptep,
2630 __pa(sp->spt)
2631 | PT_PRESENT_MASK | PT_WRITABLE_MASK
2632 | shadow_user_mask | shadow_x_mask
2633 | shadow_accessed_mask);
9f652d21
AK
2634 }
2635 }
b90a0e6c 2636 return emulate;
6aa8b732
AK
2637}
2638
77db5cbd 2639static void kvm_send_hwpoison_signal(unsigned long address, struct task_struct *tsk)
bf998156 2640{
77db5cbd
HY
2641 siginfo_t info;
2642
2643 info.si_signo = SIGBUS;
2644 info.si_errno = 0;
2645 info.si_code = BUS_MCEERR_AR;
2646 info.si_addr = (void __user *)address;
2647 info.si_addr_lsb = PAGE_SHIFT;
bf998156 2648
77db5cbd 2649 send_sig_info(SIGBUS, &info, tsk);
bf998156
HY
2650}
2651
d7c55201 2652static int kvm_handle_bad_page(struct kvm_vcpu *vcpu, gfn_t gfn, pfn_t pfn)
bf998156
HY
2653{
2654 kvm_release_pfn_clean(pfn);
2655 if (is_hwpoison_pfn(pfn)) {
bebb106a 2656 kvm_send_hwpoison_signal(gfn_to_hva(vcpu->kvm, gfn), current);
bf998156 2657 return 0;
d7c55201 2658 }
edba23e5 2659
d7c55201 2660 return -EFAULT;
bf998156
HY
2661}
2662
936a5fe6
AA
2663static void transparent_hugepage_adjust(struct kvm_vcpu *vcpu,
2664 gfn_t *gfnp, pfn_t *pfnp, int *levelp)
2665{
2666 pfn_t pfn = *pfnp;
2667 gfn_t gfn = *gfnp;
2668 int level = *levelp;
2669
2670 /*
2671 * Check if it's a transparent hugepage. If this would be an
2672 * hugetlbfs page, level wouldn't be set to
2673 * PT_PAGE_TABLE_LEVEL and there would be no adjustment done
2674 * here.
2675 */
2676 if (!is_error_pfn(pfn) && !kvm_is_mmio_pfn(pfn) &&
2677 level == PT_PAGE_TABLE_LEVEL &&
2678 PageTransCompound(pfn_to_page(pfn)) &&
2679 !has_wrprotected_page(vcpu->kvm, gfn, PT_DIRECTORY_LEVEL)) {
2680 unsigned long mask;
2681 /*
2682 * mmu_notifier_retry was successful and we hold the
2683 * mmu_lock here, so the pmd can't become splitting
2684 * from under us, and in turn
2685 * __split_huge_page_refcount() can't run from under
2686 * us and we can safely transfer the refcount from
2687 * PG_tail to PG_head as we switch the pfn to tail to
2688 * head.
2689 */
2690 *levelp = level = PT_DIRECTORY_LEVEL;
2691 mask = KVM_PAGES_PER_HPAGE(level) - 1;
2692 VM_BUG_ON((gfn & mask) != (pfn & mask));
2693 if (pfn & mask) {
2694 gfn &= ~mask;
2695 *gfnp = gfn;
2696 kvm_release_pfn_clean(pfn);
2697 pfn &= ~mask;
c3586667 2698 kvm_get_pfn(pfn);
936a5fe6
AA
2699 *pfnp = pfn;
2700 }
2701 }
2702}
2703
d7c55201
XG
2704static bool mmu_invalid_pfn(pfn_t pfn)
2705{
ce88decf 2706 return unlikely(is_invalid_pfn(pfn));
d7c55201
XG
2707}
2708
2709static bool handle_abnormal_pfn(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn,
2710 pfn_t pfn, unsigned access, int *ret_val)
2711{
2712 bool ret = true;
2713
2714 /* The pfn is invalid, report the error! */
2715 if (unlikely(is_invalid_pfn(pfn))) {
2716 *ret_val = kvm_handle_bad_page(vcpu, gfn, pfn);
2717 goto exit;
2718 }
2719
ce88decf 2720 if (unlikely(is_noslot_pfn(pfn)))
d7c55201 2721 vcpu_cache_mmio_info(vcpu, gva, gfn, access);
d7c55201
XG
2722
2723 ret = false;
2724exit:
2725 return ret;
2726}
2727
c7ba5b48
XG
2728static bool page_fault_can_be_fast(struct kvm_vcpu *vcpu, u32 error_code)
2729{
2730 /*
2731 * #PF can be fast only if the shadow page table is present and it
2732 * is caused by write-protect, that means we just need change the
2733 * W bit of the spte which can be done out of mmu-lock.
2734 */
2735 if (!(error_code & PFERR_PRESENT_MASK) ||
2736 !(error_code & PFERR_WRITE_MASK))
2737 return false;
2738
2739 return true;
2740}
2741
2742static bool
2743fast_pf_fix_direct_spte(struct kvm_vcpu *vcpu, u64 *sptep, u64 spte)
2744{
2745 struct kvm_mmu_page *sp = page_header(__pa(sptep));
2746 gfn_t gfn;
2747
2748 WARN_ON(!sp->role.direct);
2749
2750 /*
2751 * The gfn of direct spte is stable since it is calculated
2752 * by sp->gfn.
2753 */
2754 gfn = kvm_mmu_page_get_gfn(sp, sptep - sp->spt);
2755
2756 if (cmpxchg64(sptep, spte, spte | PT_WRITABLE_MASK) == spte)
2757 mark_page_dirty(vcpu->kvm, gfn);
2758
2759 return true;
2760}
2761
2762/*
2763 * Return value:
2764 * - true: let the vcpu to access on the same address again.
2765 * - false: let the real page fault path to fix it.
2766 */
2767static bool fast_page_fault(struct kvm_vcpu *vcpu, gva_t gva, int level,
2768 u32 error_code)
2769{
2770 struct kvm_shadow_walk_iterator iterator;
2771 bool ret = false;
2772 u64 spte = 0ull;
2773
2774 if (!page_fault_can_be_fast(vcpu, error_code))
2775 return false;
2776
2777 walk_shadow_page_lockless_begin(vcpu);
2778 for_each_shadow_entry_lockless(vcpu, gva, iterator, spte)
2779 if (!is_shadow_present_pte(spte) || iterator.level < level)
2780 break;
2781
2782 /*
2783 * If the mapping has been changed, let the vcpu fault on the
2784 * same address again.
2785 */
2786 if (!is_rmap_spte(spte)) {
2787 ret = true;
2788 goto exit;
2789 }
2790
2791 if (!is_last_spte(spte, level))
2792 goto exit;
2793
2794 /*
2795 * Check if it is a spurious fault caused by TLB lazily flushed.
2796 *
2797 * Need not check the access of upper level table entries since
2798 * they are always ACC_ALL.
2799 */
2800 if (is_writable_pte(spte)) {
2801 ret = true;
2802 goto exit;
2803 }
2804
2805 /*
2806 * Currently, to simplify the code, only the spte write-protected
2807 * by dirty-log can be fast fixed.
2808 */
2809 if (!spte_is_locklessly_modifiable(spte))
2810 goto exit;
2811
2812 /*
2813 * Currently, fast page fault only works for direct mapping since
2814 * the gfn is not stable for indirect shadow page.
2815 * See Documentation/virtual/kvm/locking.txt to get more detail.
2816 */
2817 ret = fast_pf_fix_direct_spte(vcpu, iterator.sptep, spte);
2818exit:
a72faf25
XG
2819 trace_fast_page_fault(vcpu, gva, error_code, iterator.sptep,
2820 spte, ret);
c7ba5b48
XG
2821 walk_shadow_page_lockless_end(vcpu);
2822
2823 return ret;
2824}
2825
78b2c54a 2826static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
060c2abe
XG
2827 gva_t gva, pfn_t *pfn, bool write, bool *writable);
2828
c7ba5b48
XG
2829static int nonpaging_map(struct kvm_vcpu *vcpu, gva_t v, u32 error_code,
2830 gfn_t gfn, bool prefault)
10589a46
MT
2831{
2832 int r;
852e3c19 2833 int level;
936a5fe6 2834 int force_pt_level;
35149e21 2835 pfn_t pfn;
e930bffe 2836 unsigned long mmu_seq;
c7ba5b48 2837 bool map_writable, write = error_code & PFERR_WRITE_MASK;
aaee2c94 2838
936a5fe6
AA
2839 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
2840 if (likely(!force_pt_level)) {
2841 level = mapping_level(vcpu, gfn);
2842 /*
2843 * This path builds a PAE pagetable - so we can map
2844 * 2mb pages at maximum. Therefore check if the level
2845 * is larger than that.
2846 */
2847 if (level > PT_DIRECTORY_LEVEL)
2848 level = PT_DIRECTORY_LEVEL;
852e3c19 2849
936a5fe6
AA
2850 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
2851 } else
2852 level = PT_PAGE_TABLE_LEVEL;
05da4558 2853
c7ba5b48
XG
2854 if (fast_page_fault(vcpu, v, level, error_code))
2855 return 0;
2856
e930bffe 2857 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 2858 smp_rmb();
060c2abe 2859
78b2c54a 2860 if (try_async_pf(vcpu, prefault, gfn, v, &pfn, write, &map_writable))
060c2abe 2861 return 0;
aaee2c94 2862
d7c55201
XG
2863 if (handle_abnormal_pfn(vcpu, v, gfn, pfn, ACC_ALL, &r))
2864 return r;
d196e343 2865
aaee2c94 2866 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
2867 if (mmu_notifier_retry(vcpu, mmu_seq))
2868 goto out_unlock;
eb787d10 2869 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
2870 if (likely(!force_pt_level))
2871 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
2ec4739d
XG
2872 r = __direct_map(vcpu, v, write, map_writable, level, gfn, pfn,
2873 prefault);
aaee2c94
MT
2874 spin_unlock(&vcpu->kvm->mmu_lock);
2875
aaee2c94 2876
10589a46 2877 return r;
e930bffe
AA
2878
2879out_unlock:
2880 spin_unlock(&vcpu->kvm->mmu_lock);
2881 kvm_release_pfn_clean(pfn);
2882 return 0;
10589a46
MT
2883}
2884
2885
17ac10ad
AK
2886static void mmu_free_roots(struct kvm_vcpu *vcpu)
2887{
2888 int i;
4db35314 2889 struct kvm_mmu_page *sp;
d98ba053 2890 LIST_HEAD(invalid_list);
17ac10ad 2891
ad312c7c 2892 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
7b53aa56 2893 return;
aaee2c94 2894 spin_lock(&vcpu->kvm->mmu_lock);
81407ca5
JR
2895 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL &&
2896 (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL ||
2897 vcpu->arch.mmu.direct_map)) {
ad312c7c 2898 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad 2899
4db35314
AK
2900 sp = page_header(root);
2901 --sp->root_count;
d98ba053
XG
2902 if (!sp->root_count && sp->role.invalid) {
2903 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
2904 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
2905 }
ad312c7c 2906 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
aaee2c94 2907 spin_unlock(&vcpu->kvm->mmu_lock);
17ac10ad
AK
2908 return;
2909 }
17ac10ad 2910 for (i = 0; i < 4; ++i) {
ad312c7c 2911 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad 2912
417726a3 2913 if (root) {
417726a3 2914 root &= PT64_BASE_ADDR_MASK;
4db35314
AK
2915 sp = page_header(root);
2916 --sp->root_count;
2e53d63a 2917 if (!sp->root_count && sp->role.invalid)
d98ba053
XG
2918 kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
2919 &invalid_list);
417726a3 2920 }
ad312c7c 2921 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 2922 }
d98ba053 2923 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
aaee2c94 2924 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 2925 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
17ac10ad
AK
2926}
2927
8986ecc0
MT
2928static int mmu_check_root(struct kvm_vcpu *vcpu, gfn_t root_gfn)
2929{
2930 int ret = 0;
2931
2932 if (!kvm_is_visible_gfn(vcpu->kvm, root_gfn)) {
a8eeb04a 2933 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
8986ecc0
MT
2934 ret = 1;
2935 }
2936
2937 return ret;
2938}
2939
651dd37a
JR
2940static int mmu_alloc_direct_roots(struct kvm_vcpu *vcpu)
2941{
2942 struct kvm_mmu_page *sp;
7ebaf15e 2943 unsigned i;
651dd37a
JR
2944
2945 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
2946 spin_lock(&vcpu->kvm->mmu_lock);
2947 kvm_mmu_free_some_pages(vcpu);
2948 sp = kvm_mmu_get_page(vcpu, 0, 0, PT64_ROOT_LEVEL,
2949 1, ACC_ALL, NULL);
2950 ++sp->root_count;
2951 spin_unlock(&vcpu->kvm->mmu_lock);
2952 vcpu->arch.mmu.root_hpa = __pa(sp->spt);
2953 } else if (vcpu->arch.mmu.shadow_root_level == PT32E_ROOT_LEVEL) {
2954 for (i = 0; i < 4; ++i) {
2955 hpa_t root = vcpu->arch.mmu.pae_root[i];
2956
2957 ASSERT(!VALID_PAGE(root));
2958 spin_lock(&vcpu->kvm->mmu_lock);
2959 kvm_mmu_free_some_pages(vcpu);
649497d1
AK
2960 sp = kvm_mmu_get_page(vcpu, i << (30 - PAGE_SHIFT),
2961 i << 30,
651dd37a
JR
2962 PT32_ROOT_LEVEL, 1, ACC_ALL,
2963 NULL);
2964 root = __pa(sp->spt);
2965 ++sp->root_count;
2966 spin_unlock(&vcpu->kvm->mmu_lock);
2967 vcpu->arch.mmu.pae_root[i] = root | PT_PRESENT_MASK;
651dd37a 2968 }
6292757f 2969 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
651dd37a
JR
2970 } else
2971 BUG();
2972
2973 return 0;
2974}
2975
2976static int mmu_alloc_shadow_roots(struct kvm_vcpu *vcpu)
17ac10ad 2977{
4db35314 2978 struct kvm_mmu_page *sp;
81407ca5
JR
2979 u64 pdptr, pm_mask;
2980 gfn_t root_gfn;
2981 int i;
3bb65a22 2982
5777ed34 2983 root_gfn = vcpu->arch.mmu.get_cr3(vcpu) >> PAGE_SHIFT;
17ac10ad 2984
651dd37a
JR
2985 if (mmu_check_root(vcpu, root_gfn))
2986 return 1;
2987
2988 /*
2989 * Do we shadow a long mode page table? If so we need to
2990 * write-protect the guests page table root.
2991 */
2992 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
ad312c7c 2993 hpa_t root = vcpu->arch.mmu.root_hpa;
17ac10ad
AK
2994
2995 ASSERT(!VALID_PAGE(root));
651dd37a 2996
8facbbff 2997 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 2998 kvm_mmu_free_some_pages(vcpu);
651dd37a
JR
2999 sp = kvm_mmu_get_page(vcpu, root_gfn, 0, PT64_ROOT_LEVEL,
3000 0, ACC_ALL, NULL);
4db35314
AK
3001 root = __pa(sp->spt);
3002 ++sp->root_count;
8facbbff 3003 spin_unlock(&vcpu->kvm->mmu_lock);
ad312c7c 3004 vcpu->arch.mmu.root_hpa = root;
8986ecc0 3005 return 0;
17ac10ad 3006 }
f87f9288 3007
651dd37a
JR
3008 /*
3009 * We shadow a 32 bit page table. This may be a legacy 2-level
81407ca5
JR
3010 * or a PAE 3-level page table. In either case we need to be aware that
3011 * the shadow page table may be a PAE or a long mode page table.
651dd37a 3012 */
81407ca5
JR
3013 pm_mask = PT_PRESENT_MASK;
3014 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL)
3015 pm_mask |= PT_ACCESSED_MASK | PT_WRITABLE_MASK | PT_USER_MASK;
3016
17ac10ad 3017 for (i = 0; i < 4; ++i) {
ad312c7c 3018 hpa_t root = vcpu->arch.mmu.pae_root[i];
17ac10ad
AK
3019
3020 ASSERT(!VALID_PAGE(root));
ad312c7c 3021 if (vcpu->arch.mmu.root_level == PT32E_ROOT_LEVEL) {
e4e517b4 3022 pdptr = vcpu->arch.mmu.get_pdptr(vcpu, i);
43a3795a 3023 if (!is_present_gpte(pdptr)) {
ad312c7c 3024 vcpu->arch.mmu.pae_root[i] = 0;
417726a3
AK
3025 continue;
3026 }
6de4f3ad 3027 root_gfn = pdptr >> PAGE_SHIFT;
f87f9288
JR
3028 if (mmu_check_root(vcpu, root_gfn))
3029 return 1;
5a7388c2 3030 }
8facbbff 3031 spin_lock(&vcpu->kvm->mmu_lock);
24955b6c 3032 kvm_mmu_free_some_pages(vcpu);
4db35314 3033 sp = kvm_mmu_get_page(vcpu, root_gfn, i << 30,
651dd37a 3034 PT32_ROOT_LEVEL, 0,
f7d9c7b7 3035 ACC_ALL, NULL);
4db35314
AK
3036 root = __pa(sp->spt);
3037 ++sp->root_count;
8facbbff
AK
3038 spin_unlock(&vcpu->kvm->mmu_lock);
3039
81407ca5 3040 vcpu->arch.mmu.pae_root[i] = root | pm_mask;
17ac10ad 3041 }
6292757f 3042 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.pae_root);
81407ca5
JR
3043
3044 /*
3045 * If we shadow a 32 bit page table with a long mode page
3046 * table we enter this path.
3047 */
3048 if (vcpu->arch.mmu.shadow_root_level == PT64_ROOT_LEVEL) {
3049 if (vcpu->arch.mmu.lm_root == NULL) {
3050 /*
3051 * The additional page necessary for this is only
3052 * allocated on demand.
3053 */
3054
3055 u64 *lm_root;
3056
3057 lm_root = (void*)get_zeroed_page(GFP_KERNEL);
3058 if (lm_root == NULL)
3059 return 1;
3060
3061 lm_root[0] = __pa(vcpu->arch.mmu.pae_root) | pm_mask;
3062
3063 vcpu->arch.mmu.lm_root = lm_root;
3064 }
3065
3066 vcpu->arch.mmu.root_hpa = __pa(vcpu->arch.mmu.lm_root);
3067 }
3068
8986ecc0 3069 return 0;
17ac10ad
AK
3070}
3071
651dd37a
JR
3072static int mmu_alloc_roots(struct kvm_vcpu *vcpu)
3073{
3074 if (vcpu->arch.mmu.direct_map)
3075 return mmu_alloc_direct_roots(vcpu);
3076 else
3077 return mmu_alloc_shadow_roots(vcpu);
3078}
3079
0ba73cda
MT
3080static void mmu_sync_roots(struct kvm_vcpu *vcpu)
3081{
3082 int i;
3083 struct kvm_mmu_page *sp;
3084
81407ca5
JR
3085 if (vcpu->arch.mmu.direct_map)
3086 return;
3087
0ba73cda
MT
3088 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3089 return;
6903074c 3090
bebb106a 3091 vcpu_clear_mmio_info(vcpu, ~0ul);
0375f7fa 3092 kvm_mmu_audit(vcpu, AUDIT_PRE_SYNC);
81407ca5 3093 if (vcpu->arch.mmu.root_level == PT64_ROOT_LEVEL) {
0ba73cda
MT
3094 hpa_t root = vcpu->arch.mmu.root_hpa;
3095 sp = page_header(root);
3096 mmu_sync_children(vcpu, sp);
0375f7fa 3097 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3098 return;
3099 }
3100 for (i = 0; i < 4; ++i) {
3101 hpa_t root = vcpu->arch.mmu.pae_root[i];
3102
8986ecc0 3103 if (root && VALID_PAGE(root)) {
0ba73cda
MT
3104 root &= PT64_BASE_ADDR_MASK;
3105 sp = page_header(root);
3106 mmu_sync_children(vcpu, sp);
3107 }
3108 }
0375f7fa 3109 kvm_mmu_audit(vcpu, AUDIT_POST_SYNC);
0ba73cda
MT
3110}
3111
3112void kvm_mmu_sync_roots(struct kvm_vcpu *vcpu)
3113{
3114 spin_lock(&vcpu->kvm->mmu_lock);
3115 mmu_sync_roots(vcpu);
6cffe8ca 3116 spin_unlock(&vcpu->kvm->mmu_lock);
0ba73cda
MT
3117}
3118
1871c602 3119static gpa_t nonpaging_gva_to_gpa(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313 3120 u32 access, struct x86_exception *exception)
6aa8b732 3121{
ab9ae313
AK
3122 if (exception)
3123 exception->error_code = 0;
6aa8b732
AK
3124 return vaddr;
3125}
3126
6539e738 3127static gpa_t nonpaging_gva_to_gpa_nested(struct kvm_vcpu *vcpu, gva_t vaddr,
ab9ae313
AK
3128 u32 access,
3129 struct x86_exception *exception)
6539e738 3130{
ab9ae313
AK
3131 if (exception)
3132 exception->error_code = 0;
6539e738
JR
3133 return vcpu->arch.nested_mmu.translate_gpa(vcpu, vaddr, access);
3134}
3135
ce88decf
XG
3136static bool quickly_check_mmio_pf(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3137{
3138 if (direct)
3139 return vcpu_match_mmio_gpa(vcpu, addr);
3140
3141 return vcpu_match_mmio_gva(vcpu, addr);
3142}
3143
3144
3145/*
3146 * On direct hosts, the last spte is only allows two states
3147 * for mmio page fault:
3148 * - It is the mmio spte
3149 * - It is zapped or it is being zapped.
3150 *
3151 * This function completely checks the spte when the last spte
3152 * is not the mmio spte.
3153 */
3154static bool check_direct_spte_mmio_pf(u64 spte)
3155{
3156 return __check_direct_spte_mmio_pf(spte);
3157}
3158
3159static u64 walk_shadow_page_get_mmio_spte(struct kvm_vcpu *vcpu, u64 addr)
3160{
3161 struct kvm_shadow_walk_iterator iterator;
3162 u64 spte = 0ull;
3163
3164 walk_shadow_page_lockless_begin(vcpu);
3165 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte)
3166 if (!is_shadow_present_pte(spte))
3167 break;
3168 walk_shadow_page_lockless_end(vcpu);
3169
3170 return spte;
3171}
3172
3173/*
3174 * If it is a real mmio page fault, return 1 and emulat the instruction
3175 * directly, return 0 to let CPU fault again on the address, -1 is
3176 * returned if bug is detected.
3177 */
3178int handle_mmio_page_fault_common(struct kvm_vcpu *vcpu, u64 addr, bool direct)
3179{
3180 u64 spte;
3181
3182 if (quickly_check_mmio_pf(vcpu, addr, direct))
3183 return 1;
3184
3185 spte = walk_shadow_page_get_mmio_spte(vcpu, addr);
3186
3187 if (is_mmio_spte(spte)) {
3188 gfn_t gfn = get_mmio_spte_gfn(spte);
3189 unsigned access = get_mmio_spte_access(spte);
3190
3191 if (direct)
3192 addr = 0;
4f022648
XG
3193
3194 trace_handle_mmio_page_fault(addr, gfn, access);
ce88decf
XG
3195 vcpu_cache_mmio_info(vcpu, addr, gfn, access);
3196 return 1;
3197 }
3198
3199 /*
3200 * It's ok if the gva is remapped by other cpus on shadow guest,
3201 * it's a BUG if the gfn is not a mmio page.
3202 */
3203 if (direct && !check_direct_spte_mmio_pf(spte))
3204 return -1;
3205
3206 /*
3207 * If the page table is zapped by other cpus, let CPU fault again on
3208 * the address.
3209 */
3210 return 0;
3211}
3212EXPORT_SYMBOL_GPL(handle_mmio_page_fault_common);
3213
3214static int handle_mmio_page_fault(struct kvm_vcpu *vcpu, u64 addr,
3215 u32 error_code, bool direct)
3216{
3217 int ret;
3218
3219 ret = handle_mmio_page_fault_common(vcpu, addr, direct);
3220 WARN_ON(ret < 0);
3221 return ret;
3222}
3223
6aa8b732 3224static int nonpaging_page_fault(struct kvm_vcpu *vcpu, gva_t gva,
78b2c54a 3225 u32 error_code, bool prefault)
6aa8b732 3226{
e833240f 3227 gfn_t gfn;
e2dec939 3228 int r;
6aa8b732 3229
b8688d51 3230 pgprintk("%s: gva %lx error %x\n", __func__, gva, error_code);
ce88decf
XG
3231
3232 if (unlikely(error_code & PFERR_RSVD_MASK))
3233 return handle_mmio_page_fault(vcpu, gva, error_code, true);
3234
e2dec939
AK
3235 r = mmu_topup_memory_caches(vcpu);
3236 if (r)
3237 return r;
714b93da 3238
6aa8b732 3239 ASSERT(vcpu);
ad312c7c 3240 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732 3241
e833240f 3242 gfn = gva >> PAGE_SHIFT;
6aa8b732 3243
e833240f 3244 return nonpaging_map(vcpu, gva & PAGE_MASK,
c7ba5b48 3245 error_code, gfn, prefault);
6aa8b732
AK
3246}
3247
7e1fbeac 3248static int kvm_arch_setup_async_pf(struct kvm_vcpu *vcpu, gva_t gva, gfn_t gfn)
af585b92
GN
3249{
3250 struct kvm_arch_async_pf arch;
fb67e14f 3251
7c90705b 3252 arch.token = (vcpu->arch.apf.id++ << 12) | vcpu->vcpu_id;
af585b92 3253 arch.gfn = gfn;
c4806acd 3254 arch.direct_map = vcpu->arch.mmu.direct_map;
fb67e14f 3255 arch.cr3 = vcpu->arch.mmu.get_cr3(vcpu);
af585b92
GN
3256
3257 return kvm_setup_async_pf(vcpu, gva, gfn, &arch);
3258}
3259
3260static bool can_do_async_pf(struct kvm_vcpu *vcpu)
3261{
3262 if (unlikely(!irqchip_in_kernel(vcpu->kvm) ||
3263 kvm_event_needs_reinjection(vcpu)))
3264 return false;
3265
3266 return kvm_x86_ops->interrupt_allowed(vcpu);
3267}
3268
78b2c54a 3269static bool try_async_pf(struct kvm_vcpu *vcpu, bool prefault, gfn_t gfn,
612819c3 3270 gva_t gva, pfn_t *pfn, bool write, bool *writable)
af585b92
GN
3271{
3272 bool async;
3273
612819c3 3274 *pfn = gfn_to_pfn_async(vcpu->kvm, gfn, &async, write, writable);
af585b92
GN
3275
3276 if (!async)
3277 return false; /* *pfn has correct page already */
3278
3b2bd2f8 3279 kvm_release_pfn_clean(*pfn);
af585b92 3280
78b2c54a 3281 if (!prefault && can_do_async_pf(vcpu)) {
c9b263d2 3282 trace_kvm_try_async_get_page(gva, gfn);
af585b92
GN
3283 if (kvm_find_async_pf_gfn(vcpu, gfn)) {
3284 trace_kvm_async_pf_doublefault(gva, gfn);
3285 kvm_make_request(KVM_REQ_APF_HALT, vcpu);
3286 return true;
3287 } else if (kvm_arch_setup_async_pf(vcpu, gva, gfn))
3288 return true;
3289 }
3290
612819c3 3291 *pfn = gfn_to_pfn_prot(vcpu->kvm, gfn, write, writable);
af585b92
GN
3292
3293 return false;
3294}
3295
56028d08 3296static int tdp_page_fault(struct kvm_vcpu *vcpu, gva_t gpa, u32 error_code,
78b2c54a 3297 bool prefault)
fb72d167 3298{
35149e21 3299 pfn_t pfn;
fb72d167 3300 int r;
852e3c19 3301 int level;
936a5fe6 3302 int force_pt_level;
05da4558 3303 gfn_t gfn = gpa >> PAGE_SHIFT;
e930bffe 3304 unsigned long mmu_seq;
612819c3
MT
3305 int write = error_code & PFERR_WRITE_MASK;
3306 bool map_writable;
fb72d167
JR
3307
3308 ASSERT(vcpu);
3309 ASSERT(VALID_PAGE(vcpu->arch.mmu.root_hpa));
3310
ce88decf
XG
3311 if (unlikely(error_code & PFERR_RSVD_MASK))
3312 return handle_mmio_page_fault(vcpu, gpa, error_code, true);
3313
fb72d167
JR
3314 r = mmu_topup_memory_caches(vcpu);
3315 if (r)
3316 return r;
3317
936a5fe6
AA
3318 force_pt_level = mapping_level_dirty_bitmap(vcpu, gfn);
3319 if (likely(!force_pt_level)) {
3320 level = mapping_level(vcpu, gfn);
3321 gfn &= ~(KVM_PAGES_PER_HPAGE(level) - 1);
3322 } else
3323 level = PT_PAGE_TABLE_LEVEL;
852e3c19 3324
c7ba5b48
XG
3325 if (fast_page_fault(vcpu, gpa, level, error_code))
3326 return 0;
3327
e930bffe 3328 mmu_seq = vcpu->kvm->mmu_notifier_seq;
4c2155ce 3329 smp_rmb();
af585b92 3330
78b2c54a 3331 if (try_async_pf(vcpu, prefault, gfn, gpa, &pfn, write, &map_writable))
af585b92
GN
3332 return 0;
3333
d7c55201
XG
3334 if (handle_abnormal_pfn(vcpu, 0, gfn, pfn, ACC_ALL, &r))
3335 return r;
3336
fb72d167 3337 spin_lock(&vcpu->kvm->mmu_lock);
e930bffe
AA
3338 if (mmu_notifier_retry(vcpu, mmu_seq))
3339 goto out_unlock;
fb72d167 3340 kvm_mmu_free_some_pages(vcpu);
936a5fe6
AA
3341 if (likely(!force_pt_level))
3342 transparent_hugepage_adjust(vcpu, &gfn, &pfn, &level);
612819c3 3343 r = __direct_map(vcpu, gpa, write, map_writable,
2ec4739d 3344 level, gfn, pfn, prefault);
fb72d167 3345 spin_unlock(&vcpu->kvm->mmu_lock);
fb72d167
JR
3346
3347 return r;
e930bffe
AA
3348
3349out_unlock:
3350 spin_unlock(&vcpu->kvm->mmu_lock);
3351 kvm_release_pfn_clean(pfn);
3352 return 0;
fb72d167
JR
3353}
3354
6aa8b732
AK
3355static void nonpaging_free(struct kvm_vcpu *vcpu)
3356{
17ac10ad 3357 mmu_free_roots(vcpu);
6aa8b732
AK
3358}
3359
52fde8df
JR
3360static int nonpaging_init_context(struct kvm_vcpu *vcpu,
3361 struct kvm_mmu *context)
6aa8b732 3362{
6aa8b732
AK
3363 context->new_cr3 = nonpaging_new_cr3;
3364 context->page_fault = nonpaging_page_fault;
6aa8b732
AK
3365 context->gva_to_gpa = nonpaging_gva_to_gpa;
3366 context->free = nonpaging_free;
e8bc217a 3367 context->sync_page = nonpaging_sync_page;
a7052897 3368 context->invlpg = nonpaging_invlpg;
0f53b5b1 3369 context->update_pte = nonpaging_update_pte;
cea0f0e7 3370 context->root_level = 0;
6aa8b732 3371 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3372 context->root_hpa = INVALID_PAGE;
c5a78f2b 3373 context->direct_map = true;
2d48a985 3374 context->nx = false;
6aa8b732
AK
3375 return 0;
3376}
3377
d835dfec 3378void kvm_mmu_flush_tlb(struct kvm_vcpu *vcpu)
6aa8b732 3379{
1165f5fe 3380 ++vcpu->stat.tlb_flush;
a8eeb04a 3381 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
6aa8b732
AK
3382}
3383
3384static void paging_new_cr3(struct kvm_vcpu *vcpu)
3385{
9f8fe504 3386 pgprintk("%s: cr3 %lx\n", __func__, kvm_read_cr3(vcpu));
cea0f0e7 3387 mmu_free_roots(vcpu);
6aa8b732
AK
3388}
3389
5777ed34
JR
3390static unsigned long get_cr3(struct kvm_vcpu *vcpu)
3391{
9f8fe504 3392 return kvm_read_cr3(vcpu);
5777ed34
JR
3393}
3394
6389ee94
AK
3395static void inject_page_fault(struct kvm_vcpu *vcpu,
3396 struct x86_exception *fault)
6aa8b732 3397{
6389ee94 3398 vcpu->arch.mmu.inject_page_fault(vcpu, fault);
6aa8b732
AK
3399}
3400
6aa8b732
AK
3401static void paging_free(struct kvm_vcpu *vcpu)
3402{
3403 nonpaging_free(vcpu);
3404}
3405
3241f22d 3406static bool is_rsvd_bits_set(struct kvm_mmu *mmu, u64 gpte, int level)
82725b20
DE
3407{
3408 int bit7;
3409
3410 bit7 = (gpte >> 7) & 1;
3241f22d 3411 return (gpte & mmu->rsvd_bits_mask[bit7][level-1]) != 0;
82725b20
DE
3412}
3413
ce88decf
XG
3414static bool sync_mmio_spte(u64 *sptep, gfn_t gfn, unsigned access,
3415 int *nr_present)
3416{
3417 if (unlikely(is_mmio_spte(*sptep))) {
3418 if (gfn != get_mmio_spte_gfn(*sptep)) {
3419 mmu_spte_clear_no_track(sptep);
3420 return true;
3421 }
3422
3423 (*nr_present)++;
3424 mark_mmio_spte(sptep, gfn, access);
3425 return true;
3426 }
3427
3428 return false;
3429}
3430
6aa8b732
AK
3431#define PTTYPE 64
3432#include "paging_tmpl.h"
3433#undef PTTYPE
3434
3435#define PTTYPE 32
3436#include "paging_tmpl.h"
3437#undef PTTYPE
3438
52fde8df 3439static void reset_rsvds_bits_mask(struct kvm_vcpu *vcpu,
4d6931c3 3440 struct kvm_mmu *context)
82725b20 3441{
82725b20
DE
3442 int maxphyaddr = cpuid_maxphyaddr(vcpu);
3443 u64 exb_bit_rsvd = 0;
3444
2d48a985 3445 if (!context->nx)
82725b20 3446 exb_bit_rsvd = rsvd_bits(63, 63);
4d6931c3 3447 switch (context->root_level) {
82725b20
DE
3448 case PT32_ROOT_LEVEL:
3449 /* no rsvd bits for 2 level 4K page table entries */
3450 context->rsvd_bits_mask[0][1] = 0;
3451 context->rsvd_bits_mask[0][0] = 0;
f815bce8
XG
3452 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
3453
3454 if (!is_pse(vcpu)) {
3455 context->rsvd_bits_mask[1][1] = 0;
3456 break;
3457 }
3458
82725b20
DE
3459 if (is_cpuid_PSE36())
3460 /* 36bits PSE 4MB page */
3461 context->rsvd_bits_mask[1][1] = rsvd_bits(17, 21);
3462 else
3463 /* 32 bits PSE 4MB page */
3464 context->rsvd_bits_mask[1][1] = rsvd_bits(13, 21);
82725b20
DE
3465 break;
3466 case PT32E_ROOT_LEVEL:
20c466b5
DE
3467 context->rsvd_bits_mask[0][2] =
3468 rsvd_bits(maxphyaddr, 63) |
3469 rsvd_bits(7, 8) | rsvd_bits(1, 2); /* PDPTE */
82725b20 3470 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3471 rsvd_bits(maxphyaddr, 62); /* PDE */
82725b20
DE
3472 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3473 rsvd_bits(maxphyaddr, 62); /* PTE */
3474 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
3475 rsvd_bits(maxphyaddr, 62) |
3476 rsvd_bits(13, 20); /* large page */
f815bce8 3477 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3478 break;
3479 case PT64_ROOT_LEVEL:
3480 context->rsvd_bits_mask[0][3] = exb_bit_rsvd |
3481 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3482 context->rsvd_bits_mask[0][2] = exb_bit_rsvd |
3483 rsvd_bits(maxphyaddr, 51) | rsvd_bits(7, 8);
3484 context->rsvd_bits_mask[0][1] = exb_bit_rsvd |
4c26b4cd 3485 rsvd_bits(maxphyaddr, 51);
82725b20
DE
3486 context->rsvd_bits_mask[0][0] = exb_bit_rsvd |
3487 rsvd_bits(maxphyaddr, 51);
3488 context->rsvd_bits_mask[1][3] = context->rsvd_bits_mask[0][3];
e04da980
JR
3489 context->rsvd_bits_mask[1][2] = exb_bit_rsvd |
3490 rsvd_bits(maxphyaddr, 51) |
3491 rsvd_bits(13, 29);
82725b20 3492 context->rsvd_bits_mask[1][1] = exb_bit_rsvd |
4c26b4cd
SY
3493 rsvd_bits(maxphyaddr, 51) |
3494 rsvd_bits(13, 20); /* large page */
f815bce8 3495 context->rsvd_bits_mask[1][0] = context->rsvd_bits_mask[0][0];
82725b20
DE
3496 break;
3497 }
3498}
3499
52fde8df
JR
3500static int paging64_init_context_common(struct kvm_vcpu *vcpu,
3501 struct kvm_mmu *context,
3502 int level)
6aa8b732 3503{
2d48a985 3504 context->nx = is_nx(vcpu);
4d6931c3 3505 context->root_level = level;
2d48a985 3506
4d6931c3 3507 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3508
3509 ASSERT(is_pae(vcpu));
3510 context->new_cr3 = paging_new_cr3;
3511 context->page_fault = paging64_page_fault;
6aa8b732 3512 context->gva_to_gpa = paging64_gva_to_gpa;
e8bc217a 3513 context->sync_page = paging64_sync_page;
a7052897 3514 context->invlpg = paging64_invlpg;
0f53b5b1 3515 context->update_pte = paging64_update_pte;
6aa8b732 3516 context->free = paging_free;
17ac10ad 3517 context->shadow_root_level = level;
17c3ba9d 3518 context->root_hpa = INVALID_PAGE;
c5a78f2b 3519 context->direct_map = false;
6aa8b732
AK
3520 return 0;
3521}
3522
52fde8df
JR
3523static int paging64_init_context(struct kvm_vcpu *vcpu,
3524 struct kvm_mmu *context)
17ac10ad 3525{
52fde8df 3526 return paging64_init_context_common(vcpu, context, PT64_ROOT_LEVEL);
17ac10ad
AK
3527}
3528
52fde8df
JR
3529static int paging32_init_context(struct kvm_vcpu *vcpu,
3530 struct kvm_mmu *context)
6aa8b732 3531{
2d48a985 3532 context->nx = false;
4d6931c3 3533 context->root_level = PT32_ROOT_LEVEL;
2d48a985 3534
4d6931c3 3535 reset_rsvds_bits_mask(vcpu, context);
6aa8b732
AK
3536
3537 context->new_cr3 = paging_new_cr3;
3538 context->page_fault = paging32_page_fault;
6aa8b732
AK
3539 context->gva_to_gpa = paging32_gva_to_gpa;
3540 context->free = paging_free;
e8bc217a 3541 context->sync_page = paging32_sync_page;
a7052897 3542 context->invlpg = paging32_invlpg;
0f53b5b1 3543 context->update_pte = paging32_update_pte;
6aa8b732 3544 context->shadow_root_level = PT32E_ROOT_LEVEL;
17c3ba9d 3545 context->root_hpa = INVALID_PAGE;
c5a78f2b 3546 context->direct_map = false;
6aa8b732
AK
3547 return 0;
3548}
3549
52fde8df
JR
3550static int paging32E_init_context(struct kvm_vcpu *vcpu,
3551 struct kvm_mmu *context)
6aa8b732 3552{
52fde8df 3553 return paging64_init_context_common(vcpu, context, PT32E_ROOT_LEVEL);
6aa8b732
AK
3554}
3555
fb72d167
JR
3556static int init_kvm_tdp_mmu(struct kvm_vcpu *vcpu)
3557{
14dfe855 3558 struct kvm_mmu *context = vcpu->arch.walk_mmu;
fb72d167 3559
c445f8ef 3560 context->base_role.word = 0;
fb72d167
JR
3561 context->new_cr3 = nonpaging_new_cr3;
3562 context->page_fault = tdp_page_fault;
3563 context->free = nonpaging_free;
e8bc217a 3564 context->sync_page = nonpaging_sync_page;
a7052897 3565 context->invlpg = nonpaging_invlpg;
0f53b5b1 3566 context->update_pte = nonpaging_update_pte;
67253af5 3567 context->shadow_root_level = kvm_x86_ops->get_tdp_level();
fb72d167 3568 context->root_hpa = INVALID_PAGE;
c5a78f2b 3569 context->direct_map = true;
1c97f0a0 3570 context->set_cr3 = kvm_x86_ops->set_tdp_cr3;
5777ed34 3571 context->get_cr3 = get_cr3;
e4e517b4 3572 context->get_pdptr = kvm_pdptr_read;
cb659db8 3573 context->inject_page_fault = kvm_inject_page_fault;
fb72d167
JR
3574
3575 if (!is_paging(vcpu)) {
2d48a985 3576 context->nx = false;
fb72d167
JR
3577 context->gva_to_gpa = nonpaging_gva_to_gpa;
3578 context->root_level = 0;
3579 } else if (is_long_mode(vcpu)) {
2d48a985 3580 context->nx = is_nx(vcpu);
fb72d167 3581 context->root_level = PT64_ROOT_LEVEL;
4d6931c3
DB
3582 reset_rsvds_bits_mask(vcpu, context);
3583 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3584 } else if (is_pae(vcpu)) {
2d48a985 3585 context->nx = is_nx(vcpu);
fb72d167 3586 context->root_level = PT32E_ROOT_LEVEL;
4d6931c3
DB
3587 reset_rsvds_bits_mask(vcpu, context);
3588 context->gva_to_gpa = paging64_gva_to_gpa;
fb72d167 3589 } else {
2d48a985 3590 context->nx = false;
fb72d167 3591 context->root_level = PT32_ROOT_LEVEL;
4d6931c3
DB
3592 reset_rsvds_bits_mask(vcpu, context);
3593 context->gva_to_gpa = paging32_gva_to_gpa;
fb72d167
JR
3594 }
3595
3596 return 0;
3597}
3598
52fde8df 3599int kvm_init_shadow_mmu(struct kvm_vcpu *vcpu, struct kvm_mmu *context)
6aa8b732 3600{
a770f6f2 3601 int r;
411c588d 3602 bool smep = kvm_read_cr4_bits(vcpu, X86_CR4_SMEP);
6aa8b732 3603 ASSERT(vcpu);
ad312c7c 3604 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
6aa8b732
AK
3605
3606 if (!is_paging(vcpu))
52fde8df 3607 r = nonpaging_init_context(vcpu, context);
a9058ecd 3608 else if (is_long_mode(vcpu))
52fde8df 3609 r = paging64_init_context(vcpu, context);
6aa8b732 3610 else if (is_pae(vcpu))
52fde8df 3611 r = paging32E_init_context(vcpu, context);
6aa8b732 3612 else
52fde8df 3613 r = paging32_init_context(vcpu, context);
a770f6f2 3614
5b7e0102 3615 vcpu->arch.mmu.base_role.cr4_pae = !!is_pae(vcpu);
f43addd4 3616 vcpu->arch.mmu.base_role.cr0_wp = is_write_protection(vcpu);
411c588d
AK
3617 vcpu->arch.mmu.base_role.smep_andnot_wp
3618 = smep && !is_write_protection(vcpu);
52fde8df
JR
3619
3620 return r;
3621}
3622EXPORT_SYMBOL_GPL(kvm_init_shadow_mmu);
3623
3624static int init_kvm_softmmu(struct kvm_vcpu *vcpu)
3625{
14dfe855 3626 int r = kvm_init_shadow_mmu(vcpu, vcpu->arch.walk_mmu);
52fde8df 3627
14dfe855
JR
3628 vcpu->arch.walk_mmu->set_cr3 = kvm_x86_ops->set_cr3;
3629 vcpu->arch.walk_mmu->get_cr3 = get_cr3;
e4e517b4 3630 vcpu->arch.walk_mmu->get_pdptr = kvm_pdptr_read;
14dfe855 3631 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
a770f6f2
AK
3632
3633 return r;
6aa8b732
AK
3634}
3635
02f59dc9
JR
3636static int init_kvm_nested_mmu(struct kvm_vcpu *vcpu)
3637{
3638 struct kvm_mmu *g_context = &vcpu->arch.nested_mmu;
3639
3640 g_context->get_cr3 = get_cr3;
e4e517b4 3641 g_context->get_pdptr = kvm_pdptr_read;
02f59dc9
JR
3642 g_context->inject_page_fault = kvm_inject_page_fault;
3643
3644 /*
3645 * Note that arch.mmu.gva_to_gpa translates l2_gva to l1_gpa. The
3646 * translation of l2_gpa to l1_gpa addresses is done using the
3647 * arch.nested_mmu.gva_to_gpa function. Basically the gva_to_gpa
3648 * functions between mmu and nested_mmu are swapped.
3649 */
3650 if (!is_paging(vcpu)) {
2d48a985 3651 g_context->nx = false;
02f59dc9
JR
3652 g_context->root_level = 0;
3653 g_context->gva_to_gpa = nonpaging_gva_to_gpa_nested;
3654 } else if (is_long_mode(vcpu)) {
2d48a985 3655 g_context->nx = is_nx(vcpu);
02f59dc9 3656 g_context->root_level = PT64_ROOT_LEVEL;
4d6931c3 3657 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3658 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3659 } else if (is_pae(vcpu)) {
2d48a985 3660 g_context->nx = is_nx(vcpu);
02f59dc9 3661 g_context->root_level = PT32E_ROOT_LEVEL;
4d6931c3 3662 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3663 g_context->gva_to_gpa = paging64_gva_to_gpa_nested;
3664 } else {
2d48a985 3665 g_context->nx = false;
02f59dc9 3666 g_context->root_level = PT32_ROOT_LEVEL;
4d6931c3 3667 reset_rsvds_bits_mask(vcpu, g_context);
02f59dc9
JR
3668 g_context->gva_to_gpa = paging32_gva_to_gpa_nested;
3669 }
3670
3671 return 0;
3672}
3673
fb72d167
JR
3674static int init_kvm_mmu(struct kvm_vcpu *vcpu)
3675{
02f59dc9
JR
3676 if (mmu_is_nested(vcpu))
3677 return init_kvm_nested_mmu(vcpu);
3678 else if (tdp_enabled)
fb72d167
JR
3679 return init_kvm_tdp_mmu(vcpu);
3680 else
3681 return init_kvm_softmmu(vcpu);
3682}
3683
6aa8b732
AK
3684static void destroy_kvm_mmu(struct kvm_vcpu *vcpu)
3685{
3686 ASSERT(vcpu);
62ad0755
SY
3687 if (VALID_PAGE(vcpu->arch.mmu.root_hpa))
3688 /* mmu.free() should set root_hpa = INVALID_PAGE */
ad312c7c 3689 vcpu->arch.mmu.free(vcpu);
6aa8b732
AK
3690}
3691
3692int kvm_mmu_reset_context(struct kvm_vcpu *vcpu)
17c3ba9d
AK
3693{
3694 destroy_kvm_mmu(vcpu);
f8f7e5ee 3695 return init_kvm_mmu(vcpu);
17c3ba9d 3696}
8668a3c4 3697EXPORT_SYMBOL_GPL(kvm_mmu_reset_context);
17c3ba9d
AK
3698
3699int kvm_mmu_load(struct kvm_vcpu *vcpu)
6aa8b732 3700{
714b93da
AK
3701 int r;
3702
e2dec939 3703 r = mmu_topup_memory_caches(vcpu);
17c3ba9d
AK
3704 if (r)
3705 goto out;
8986ecc0 3706 r = mmu_alloc_roots(vcpu);
8facbbff 3707 spin_lock(&vcpu->kvm->mmu_lock);
0ba73cda 3708 mmu_sync_roots(vcpu);
aaee2c94 3709 spin_unlock(&vcpu->kvm->mmu_lock);
8986ecc0
MT
3710 if (r)
3711 goto out;
3662cb1c 3712 /* set_cr3() should ensure TLB has been flushed */
f43addd4 3713 vcpu->arch.mmu.set_cr3(vcpu, vcpu->arch.mmu.root_hpa);
714b93da
AK
3714out:
3715 return r;
6aa8b732 3716}
17c3ba9d
AK
3717EXPORT_SYMBOL_GPL(kvm_mmu_load);
3718
3719void kvm_mmu_unload(struct kvm_vcpu *vcpu)
3720{
3721 mmu_free_roots(vcpu);
3722}
4b16184c 3723EXPORT_SYMBOL_GPL(kvm_mmu_unload);
6aa8b732 3724
0028425f 3725static void mmu_pte_write_new_pte(struct kvm_vcpu *vcpu,
7c562522
XG
3726 struct kvm_mmu_page *sp, u64 *spte,
3727 const void *new)
0028425f 3728{
30945387 3729 if (sp->role.level != PT_PAGE_TABLE_LEVEL) {
7e4e4056
JR
3730 ++vcpu->kvm->stat.mmu_pde_zapped;
3731 return;
30945387 3732 }
0028425f 3733
4cee5764 3734 ++vcpu->kvm->stat.mmu_pte_updated;
7c562522 3735 vcpu->arch.mmu.update_pte(vcpu, sp, spte, new);
0028425f
AK
3736}
3737
79539cec
AK
3738static bool need_remote_flush(u64 old, u64 new)
3739{
3740 if (!is_shadow_present_pte(old))
3741 return false;
3742 if (!is_shadow_present_pte(new))
3743 return true;
3744 if ((old ^ new) & PT64_BASE_ADDR_MASK)
3745 return true;
3746 old ^= PT64_NX_MASK;
3747 new ^= PT64_NX_MASK;
3748 return (old & ~new & PT64_PERM_MASK) != 0;
3749}
3750
0671a8e7
XG
3751static void mmu_pte_write_flush_tlb(struct kvm_vcpu *vcpu, bool zap_page,
3752 bool remote_flush, bool local_flush)
79539cec 3753{
0671a8e7
XG
3754 if (zap_page)
3755 return;
3756
3757 if (remote_flush)
79539cec 3758 kvm_flush_remote_tlbs(vcpu->kvm);
0671a8e7 3759 else if (local_flush)
79539cec
AK
3760 kvm_mmu_flush_tlb(vcpu);
3761}
3762
889e5cbc
XG
3763static u64 mmu_pte_write_fetch_gpte(struct kvm_vcpu *vcpu, gpa_t *gpa,
3764 const u8 *new, int *bytes)
da4a00f0 3765{
889e5cbc
XG
3766 u64 gentry;
3767 int r;
72016f3a 3768
72016f3a
AK
3769 /*
3770 * Assume that the pte write on a page table of the same type
49b26e26
XG
3771 * as the current vcpu paging mode since we update the sptes only
3772 * when they have the same mode.
72016f3a 3773 */
889e5cbc 3774 if (is_pae(vcpu) && *bytes == 4) {
72016f3a 3775 /* Handle a 32-bit guest writing two halves of a 64-bit gpte */
889e5cbc
XG
3776 *gpa &= ~(gpa_t)7;
3777 *bytes = 8;
3778 r = kvm_read_guest(vcpu->kvm, *gpa, &gentry, min(*bytes, 8));
72016f3a
AK
3779 if (r)
3780 gentry = 0;
08e850c6
AK
3781 new = (const u8 *)&gentry;
3782 }
3783
889e5cbc 3784 switch (*bytes) {
08e850c6
AK
3785 case 4:
3786 gentry = *(const u32 *)new;
3787 break;
3788 case 8:
3789 gentry = *(const u64 *)new;
3790 break;
3791 default:
3792 gentry = 0;
3793 break;
72016f3a
AK
3794 }
3795
889e5cbc
XG
3796 return gentry;
3797}
3798
3799/*
3800 * If we're seeing too many writes to a page, it may no longer be a page table,
3801 * or we may be forking, in which case it is better to unmap the page.
3802 */
a138fe75 3803static bool detect_write_flooding(struct kvm_mmu_page *sp)
889e5cbc 3804{
a30f47cb
XG
3805 /*
3806 * Skip write-flooding detected for the sp whose level is 1, because
3807 * it can become unsync, then the guest page is not write-protected.
3808 */
f71fa31f 3809 if (sp->role.level == PT_PAGE_TABLE_LEVEL)
a30f47cb 3810 return false;
3246af0e 3811
a30f47cb 3812 return ++sp->write_flooding_count >= 3;
889e5cbc
XG
3813}
3814
3815/*
3816 * Misaligned accesses are too much trouble to fix up; also, they usually
3817 * indicate a page is not used as a page table.
3818 */
3819static bool detect_write_misaligned(struct kvm_mmu_page *sp, gpa_t gpa,
3820 int bytes)
3821{
3822 unsigned offset, pte_size, misaligned;
3823
3824 pgprintk("misaligned: gpa %llx bytes %d role %x\n",
3825 gpa, bytes, sp->role.word);
3826
3827 offset = offset_in_page(gpa);
3828 pte_size = sp->role.cr4_pae ? 8 : 4;
5d9ca30e
XG
3829
3830 /*
3831 * Sometimes, the OS only writes the last one bytes to update status
3832 * bits, for example, in linux, andb instruction is used in clear_bit().
3833 */
3834 if (!(offset & (pte_size - 1)) && bytes == 1)
3835 return false;
3836
889e5cbc
XG
3837 misaligned = (offset ^ (offset + bytes - 1)) & ~(pte_size - 1);
3838 misaligned |= bytes < 4;
3839
3840 return misaligned;
3841}
3842
3843static u64 *get_written_sptes(struct kvm_mmu_page *sp, gpa_t gpa, int *nspte)
3844{
3845 unsigned page_offset, quadrant;
3846 u64 *spte;
3847 int level;
3848
3849 page_offset = offset_in_page(gpa);
3850 level = sp->role.level;
3851 *nspte = 1;
3852 if (!sp->role.cr4_pae) {
3853 page_offset <<= 1; /* 32->64 */
3854 /*
3855 * A 32-bit pde maps 4MB while the shadow pdes map
3856 * only 2MB. So we need to double the offset again
3857 * and zap two pdes instead of one.
3858 */
3859 if (level == PT32_ROOT_LEVEL) {
3860 page_offset &= ~7; /* kill rounding error */
3861 page_offset <<= 1;
3862 *nspte = 2;
3863 }
3864 quadrant = page_offset >> PAGE_SHIFT;
3865 page_offset &= ~PAGE_MASK;
3866 if (quadrant != sp->role.quadrant)
3867 return NULL;
3868 }
3869
3870 spte = &sp->spt[page_offset / sizeof(*spte)];
3871 return spte;
3872}
3873
3874void kvm_mmu_pte_write(struct kvm_vcpu *vcpu, gpa_t gpa,
3875 const u8 *new, int bytes)
3876{
3877 gfn_t gfn = gpa >> PAGE_SHIFT;
3878 union kvm_mmu_page_role mask = { .word = 0 };
3879 struct kvm_mmu_page *sp;
3880 struct hlist_node *node;
3881 LIST_HEAD(invalid_list);
3882 u64 entry, gentry, *spte;
3883 int npte;
a30f47cb 3884 bool remote_flush, local_flush, zap_page;
889e5cbc
XG
3885
3886 /*
3887 * If we don't have indirect shadow pages, it means no page is
3888 * write-protected, so we can exit simply.
3889 */
3890 if (!ACCESS_ONCE(vcpu->kvm->arch.indirect_shadow_pages))
3891 return;
3892
3893 zap_page = remote_flush = local_flush = false;
3894
3895 pgprintk("%s: gpa %llx bytes %d\n", __func__, gpa, bytes);
3896
3897 gentry = mmu_pte_write_fetch_gpte(vcpu, &gpa, new, &bytes);
3898
3899 /*
3900 * No need to care whether allocation memory is successful
3901 * or not since pte prefetch is skiped if it does not have
3902 * enough objects in the cache.
3903 */
3904 mmu_topup_memory_caches(vcpu);
3905
3906 spin_lock(&vcpu->kvm->mmu_lock);
3907 ++vcpu->kvm->stat.mmu_pte_write;
0375f7fa 3908 kvm_mmu_audit(vcpu, AUDIT_PRE_PTE_WRITE);
889e5cbc 3909
fa1de2bf 3910 mask.cr0_wp = mask.cr4_pae = mask.nxe = 1;
f41d335a 3911 for_each_gfn_indirect_valid_sp(vcpu->kvm, sp, gfn, node) {
a30f47cb 3912 if (detect_write_misaligned(sp, gpa, bytes) ||
a138fe75 3913 detect_write_flooding(sp)) {
0671a8e7 3914 zap_page |= !!kvm_mmu_prepare_zap_page(vcpu->kvm, sp,
f41d335a 3915 &invalid_list);
4cee5764 3916 ++vcpu->kvm->stat.mmu_flooded;
0e7bc4b9
AK
3917 continue;
3918 }
889e5cbc
XG
3919
3920 spte = get_written_sptes(sp, gpa, &npte);
3921 if (!spte)
3922 continue;
3923
0671a8e7 3924 local_flush = true;
ac1b714e 3925 while (npte--) {
79539cec 3926 entry = *spte;
38e3b2b2 3927 mmu_page_zap_pte(vcpu->kvm, sp, spte);
fa1de2bf
XG
3928 if (gentry &&
3929 !((sp->role.word ^ vcpu->arch.mmu.base_role.word)
f759e2b4 3930 & mask.word) && rmap_can_add(vcpu))
7c562522 3931 mmu_pte_write_new_pte(vcpu, sp, spte, &gentry);
0671a8e7
XG
3932 if (!remote_flush && need_remote_flush(entry, *spte))
3933 remote_flush = true;
ac1b714e 3934 ++spte;
9b7a0325 3935 }
9b7a0325 3936 }
0671a8e7 3937 mmu_pte_write_flush_tlb(vcpu, zap_page, remote_flush, local_flush);
d98ba053 3938 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
0375f7fa 3939 kvm_mmu_audit(vcpu, AUDIT_POST_PTE_WRITE);
aaee2c94 3940 spin_unlock(&vcpu->kvm->mmu_lock);
da4a00f0
AK
3941}
3942
a436036b
AK
3943int kvm_mmu_unprotect_page_virt(struct kvm_vcpu *vcpu, gva_t gva)
3944{
10589a46
MT
3945 gpa_t gpa;
3946 int r;
a436036b 3947
c5a78f2b 3948 if (vcpu->arch.mmu.direct_map)
60f24784
AK
3949 return 0;
3950
1871c602 3951 gpa = kvm_mmu_gva_to_gpa_read(vcpu, gva, NULL);
10589a46 3952
10589a46 3953 r = kvm_mmu_unprotect_page(vcpu->kvm, gpa >> PAGE_SHIFT);
1cb3f3ae 3954
10589a46 3955 return r;
a436036b 3956}
577bdc49 3957EXPORT_SYMBOL_GPL(kvm_mmu_unprotect_page_virt);
a436036b 3958
22d95b12 3959void __kvm_mmu_free_some_pages(struct kvm_vcpu *vcpu)
ebeace86 3960{
d98ba053 3961 LIST_HEAD(invalid_list);
103ad25a 3962
e0df7b9f 3963 while (kvm_mmu_available_pages(vcpu->kvm) < KVM_REFILL_PAGES &&
3b80fffe 3964 !list_empty(&vcpu->kvm->arch.active_mmu_pages)) {
4db35314 3965 struct kvm_mmu_page *sp;
ebeace86 3966
f05e70ac 3967 sp = container_of(vcpu->kvm->arch.active_mmu_pages.prev,
4db35314 3968 struct kvm_mmu_page, link);
e0df7b9f 3969 kvm_mmu_prepare_zap_page(vcpu->kvm, sp, &invalid_list);
4cee5764 3970 ++vcpu->kvm->stat.mmu_recycled;
ebeace86 3971 }
aa6bd187 3972 kvm_mmu_commit_zap_page(vcpu->kvm, &invalid_list);
ebeace86 3973}
ebeace86 3974
1cb3f3ae
XG
3975static bool is_mmio_page_fault(struct kvm_vcpu *vcpu, gva_t addr)
3976{
3977 if (vcpu->arch.mmu.direct_map || mmu_is_nested(vcpu))
3978 return vcpu_match_mmio_gpa(vcpu, addr);
3979
3980 return vcpu_match_mmio_gva(vcpu, addr);
3981}
3982
dc25e89e
AP
3983int kvm_mmu_page_fault(struct kvm_vcpu *vcpu, gva_t cr2, u32 error_code,
3984 void *insn, int insn_len)
3067714c 3985{
1cb3f3ae 3986 int r, emulation_type = EMULTYPE_RETRY;
3067714c
AK
3987 enum emulation_result er;
3988
56028d08 3989 r = vcpu->arch.mmu.page_fault(vcpu, cr2, error_code, false);
3067714c
AK
3990 if (r < 0)
3991 goto out;
3992
3993 if (!r) {
3994 r = 1;
3995 goto out;
3996 }
3997
1cb3f3ae
XG
3998 if (is_mmio_page_fault(vcpu, cr2))
3999 emulation_type = 0;
4000
4001 er = x86_emulate_instruction(vcpu, cr2, emulation_type, insn, insn_len);
3067714c
AK
4002
4003 switch (er) {
4004 case EMULATE_DONE:
4005 return 1;
4006 case EMULATE_DO_MMIO:
4007 ++vcpu->stat.mmio_exits;
6d77dbfc 4008 /* fall through */
3067714c 4009 case EMULATE_FAIL:
3f5d18a9 4010 return 0;
3067714c
AK
4011 default:
4012 BUG();
4013 }
4014out:
3067714c
AK
4015 return r;
4016}
4017EXPORT_SYMBOL_GPL(kvm_mmu_page_fault);
4018
a7052897
MT
4019void kvm_mmu_invlpg(struct kvm_vcpu *vcpu, gva_t gva)
4020{
a7052897 4021 vcpu->arch.mmu.invlpg(vcpu, gva);
a7052897
MT
4022 kvm_mmu_flush_tlb(vcpu);
4023 ++vcpu->stat.invlpg;
4024}
4025EXPORT_SYMBOL_GPL(kvm_mmu_invlpg);
4026
18552672
JR
4027void kvm_enable_tdp(void)
4028{
4029 tdp_enabled = true;
4030}
4031EXPORT_SYMBOL_GPL(kvm_enable_tdp);
4032
5f4cb662
JR
4033void kvm_disable_tdp(void)
4034{
4035 tdp_enabled = false;
4036}
4037EXPORT_SYMBOL_GPL(kvm_disable_tdp);
4038
6aa8b732
AK
4039static void free_mmu_pages(struct kvm_vcpu *vcpu)
4040{
ad312c7c 4041 free_page((unsigned long)vcpu->arch.mmu.pae_root);
81407ca5
JR
4042 if (vcpu->arch.mmu.lm_root != NULL)
4043 free_page((unsigned long)vcpu->arch.mmu.lm_root);
6aa8b732
AK
4044}
4045
4046static int alloc_mmu_pages(struct kvm_vcpu *vcpu)
4047{
17ac10ad 4048 struct page *page;
6aa8b732
AK
4049 int i;
4050
4051 ASSERT(vcpu);
4052
17ac10ad
AK
4053 /*
4054 * When emulating 32-bit mode, cr3 is only 32 bits even on x86_64.
4055 * Therefore we need to allocate shadow page tables in the first
4056 * 4GB of memory, which happens to fit the DMA32 zone.
4057 */
4058 page = alloc_page(GFP_KERNEL | __GFP_DMA32);
4059 if (!page)
d7fa6ab2
WY
4060 return -ENOMEM;
4061
ad312c7c 4062 vcpu->arch.mmu.pae_root = page_address(page);
17ac10ad 4063 for (i = 0; i < 4; ++i)
ad312c7c 4064 vcpu->arch.mmu.pae_root[i] = INVALID_PAGE;
17ac10ad 4065
6aa8b732 4066 return 0;
6aa8b732
AK
4067}
4068
8018c27b 4069int kvm_mmu_create(struct kvm_vcpu *vcpu)
6aa8b732 4070{
6aa8b732 4071 ASSERT(vcpu);
e459e322
XG
4072
4073 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
4074 vcpu->arch.mmu.root_hpa = INVALID_PAGE;
4075 vcpu->arch.mmu.translate_gpa = translate_gpa;
4076 vcpu->arch.nested_mmu.translate_gpa = translate_nested_gpa;
6aa8b732 4077
8018c27b
IM
4078 return alloc_mmu_pages(vcpu);
4079}
6aa8b732 4080
8018c27b
IM
4081int kvm_mmu_setup(struct kvm_vcpu *vcpu)
4082{
4083 ASSERT(vcpu);
ad312c7c 4084 ASSERT(!VALID_PAGE(vcpu->arch.mmu.root_hpa));
2c264957 4085
8018c27b 4086 return init_kvm_mmu(vcpu);
6aa8b732
AK
4087}
4088
90cb0529 4089void kvm_mmu_slot_remove_write_access(struct kvm *kvm, int slot)
6aa8b732 4090{
4db35314 4091 struct kvm_mmu_page *sp;
d13bc5b5 4092 bool flush = false;
6aa8b732 4093
f05e70ac 4094 list_for_each_entry(sp, &kvm->arch.active_mmu_pages, link) {
6aa8b732
AK
4095 int i;
4096 u64 *pt;
4097
291f26bc 4098 if (!test_bit(slot, sp->slot_bitmap))
6aa8b732
AK
4099 continue;
4100
4db35314 4101 pt = sp->spt;
8234b22e 4102 for (i = 0; i < PT64_ENT_PER_PAGE; ++i) {
da8dc75f
XG
4103 if (!is_shadow_present_pte(pt[i]) ||
4104 !is_last_spte(pt[i], sp->role.level))
4105 continue;
4106
49fde340 4107 spte_write_protect(kvm, &pt[i], &flush, false);
8234b22e 4108 }
6aa8b732 4109 }
171d595d 4110 kvm_flush_remote_tlbs(kvm);
6aa8b732 4111}
37a7d8b0 4112
90cb0529 4113void kvm_mmu_zap_all(struct kvm *kvm)
e0fa826f 4114{
4db35314 4115 struct kvm_mmu_page *sp, *node;
d98ba053 4116 LIST_HEAD(invalid_list);
e0fa826f 4117
aaee2c94 4118 spin_lock(&kvm->mmu_lock);
3246af0e 4119restart:
f05e70ac 4120 list_for_each_entry_safe(sp, node, &kvm->arch.active_mmu_pages, link)
d98ba053 4121 if (kvm_mmu_prepare_zap_page(kvm, sp, &invalid_list))
3246af0e
XG
4122 goto restart;
4123
d98ba053 4124 kvm_mmu_commit_zap_page(kvm, &invalid_list);
aaee2c94 4125 spin_unlock(&kvm->mmu_lock);
e0fa826f
DL
4126}
4127
3d56cbdf
JK
4128static void kvm_mmu_remove_some_alloc_mmu_pages(struct kvm *kvm,
4129 struct list_head *invalid_list)
3ee16c81
IE
4130{
4131 struct kvm_mmu_page *page;
4132
85b70591
XG
4133 if (list_empty(&kvm->arch.active_mmu_pages))
4134 return;
4135
3ee16c81
IE
4136 page = container_of(kvm->arch.active_mmu_pages.prev,
4137 struct kvm_mmu_page, link);
3d56cbdf 4138 kvm_mmu_prepare_zap_page(kvm, page, invalid_list);
3ee16c81
IE
4139}
4140
1495f230 4141static int mmu_shrink(struct shrinker *shrink, struct shrink_control *sc)
3ee16c81
IE
4142{
4143 struct kvm *kvm;
1495f230 4144 int nr_to_scan = sc->nr_to_scan;
45221ab6
DH
4145
4146 if (nr_to_scan == 0)
4147 goto out;
3ee16c81 4148
e935b837 4149 raw_spin_lock(&kvm_lock);
3ee16c81
IE
4150
4151 list_for_each_entry(kvm, &vm_list, vm_list) {
3d56cbdf 4152 int idx;
d98ba053 4153 LIST_HEAD(invalid_list);
3ee16c81 4154
19526396
GN
4155 /*
4156 * n_used_mmu_pages is accessed without holding kvm->mmu_lock
4157 * here. We may skip a VM instance errorneosly, but we do not
4158 * want to shrink a VM that only started to populate its MMU
4159 * anyway.
4160 */
4161 if (kvm->arch.n_used_mmu_pages > 0) {
4162 if (!nr_to_scan--)
4163 break;
4164 continue;
4165 }
4166
f656ce01 4167 idx = srcu_read_lock(&kvm->srcu);
3ee16c81 4168 spin_lock(&kvm->mmu_lock);
3ee16c81 4169
19526396 4170 kvm_mmu_remove_some_alloc_mmu_pages(kvm, &invalid_list);
d98ba053 4171 kvm_mmu_commit_zap_page(kvm, &invalid_list);
19526396 4172
3ee16c81 4173 spin_unlock(&kvm->mmu_lock);
f656ce01 4174 srcu_read_unlock(&kvm->srcu, idx);
19526396
GN
4175
4176 list_move_tail(&kvm->vm_list, &vm_list);
4177 break;
3ee16c81 4178 }
3ee16c81 4179
e935b837 4180 raw_spin_unlock(&kvm_lock);
3ee16c81 4181
45221ab6
DH
4182out:
4183 return percpu_counter_read_positive(&kvm_total_used_mmu_pages);
3ee16c81
IE
4184}
4185
4186static struct shrinker mmu_shrinker = {
4187 .shrink = mmu_shrink,
4188 .seeks = DEFAULT_SEEKS * 10,
4189};
4190
2ddfd20e 4191static void mmu_destroy_caches(void)
b5a33a75 4192{
53c07b18
XG
4193 if (pte_list_desc_cache)
4194 kmem_cache_destroy(pte_list_desc_cache);
d3d25b04
AK
4195 if (mmu_page_header_cache)
4196 kmem_cache_destroy(mmu_page_header_cache);
b5a33a75
AK
4197}
4198
4199int kvm_mmu_module_init(void)
4200{
53c07b18
XG
4201 pte_list_desc_cache = kmem_cache_create("pte_list_desc",
4202 sizeof(struct pte_list_desc),
20c2df83 4203 0, 0, NULL);
53c07b18 4204 if (!pte_list_desc_cache)
b5a33a75
AK
4205 goto nomem;
4206
d3d25b04
AK
4207 mmu_page_header_cache = kmem_cache_create("kvm_mmu_page_header",
4208 sizeof(struct kvm_mmu_page),
20c2df83 4209 0, 0, NULL);
d3d25b04
AK
4210 if (!mmu_page_header_cache)
4211 goto nomem;
4212
45bf21a8
WY
4213 if (percpu_counter_init(&kvm_total_used_mmu_pages, 0))
4214 goto nomem;
4215
3ee16c81
IE
4216 register_shrinker(&mmu_shrinker);
4217
b5a33a75
AK
4218 return 0;
4219
4220nomem:
3ee16c81 4221 mmu_destroy_caches();
b5a33a75
AK
4222 return -ENOMEM;
4223}
4224
3ad82a7e
ZX
4225/*
4226 * Caculate mmu pages needed for kvm.
4227 */
4228unsigned int kvm_mmu_calculate_mmu_pages(struct kvm *kvm)
4229{
3ad82a7e
ZX
4230 unsigned int nr_mmu_pages;
4231 unsigned int nr_pages = 0;
bc6678a3 4232 struct kvm_memslots *slots;
be6ba0f0 4233 struct kvm_memory_slot *memslot;
3ad82a7e 4234
90d83dc3
LJ
4235 slots = kvm_memslots(kvm);
4236
be6ba0f0
XG
4237 kvm_for_each_memslot(memslot, slots)
4238 nr_pages += memslot->npages;
3ad82a7e
ZX
4239
4240 nr_mmu_pages = nr_pages * KVM_PERMILLE_MMU_PAGES / 1000;
4241 nr_mmu_pages = max(nr_mmu_pages,
4242 (unsigned int) KVM_MIN_ALLOC_MMU_PAGES);
4243
4244 return nr_mmu_pages;
4245}
4246
94d8b056
MT
4247int kvm_mmu_get_spte_hierarchy(struct kvm_vcpu *vcpu, u64 addr, u64 sptes[4])
4248{
4249 struct kvm_shadow_walk_iterator iterator;
c2a2ac2b 4250 u64 spte;
94d8b056
MT
4251 int nr_sptes = 0;
4252
c2a2ac2b
XG
4253 walk_shadow_page_lockless_begin(vcpu);
4254 for_each_shadow_entry_lockless(vcpu, addr, iterator, spte) {
4255 sptes[iterator.level-1] = spte;
94d8b056 4256 nr_sptes++;
c2a2ac2b 4257 if (!is_shadow_present_pte(spte))
94d8b056
MT
4258 break;
4259 }
c2a2ac2b 4260 walk_shadow_page_lockless_end(vcpu);
94d8b056
MT
4261
4262 return nr_sptes;
4263}
4264EXPORT_SYMBOL_GPL(kvm_mmu_get_spte_hierarchy);
4265
c42fffe3
XG
4266void kvm_mmu_destroy(struct kvm_vcpu *vcpu)
4267{
4268 ASSERT(vcpu);
4269
4270 destroy_kvm_mmu(vcpu);
4271 free_mmu_pages(vcpu);
4272 mmu_free_memory_caches(vcpu);
b034cf01
XG
4273}
4274
b034cf01
XG
4275void kvm_mmu_module_exit(void)
4276{
4277 mmu_destroy_caches();
4278 percpu_counter_destroy(&kvm_total_used_mmu_pages);
4279 unregister_shrinker(&mmu_shrinker);
c42fffe3
XG
4280 mmu_audit_disable();
4281}
This page took 0.796328 seconds and 5 git commands to generate.