Merge tag 'fixes-for-linus' of git://git.kernel.org/pub/scm/linux/kernel/git/arm...
[deliverable/linux.git] / arch / x86 / kvm / vmx.c
CommitLineData
6aa8b732
AK
1/*
2 * Kernel-based Virtual Machine driver for Linux
3 *
4 * This module enables machines with Intel VT-x extensions to run virtual
5 * machines without emulation or binary translation.
6 *
7 * Copyright (C) 2006 Qumranet, Inc.
9611c187 8 * Copyright 2010 Red Hat, Inc. and/or its affiliates.
6aa8b732
AK
9 *
10 * Authors:
11 * Avi Kivity <avi@qumranet.com>
12 * Yaniv Kamay <yaniv@qumranet.com>
13 *
14 * This work is licensed under the terms of the GNU GPL, version 2. See
15 * the COPYING file in the top-level directory.
16 *
17 */
18
85f455f7 19#include "irq.h"
1d737c8a 20#include "mmu.h"
00b27a3e 21#include "cpuid.h"
d62caabb 22#include "lapic.h"
e495606d 23
edf88417 24#include <linux/kvm_host.h>
6aa8b732 25#include <linux/module.h>
9d8f549d 26#include <linux/kernel.h>
6aa8b732
AK
27#include <linux/mm.h>
28#include <linux/highmem.h>
e8edc6e0 29#include <linux/sched.h>
c7addb90 30#include <linux/moduleparam.h>
e9bda3b3 31#include <linux/mod_devicetable.h>
af658dca 32#include <linux/trace_events.h>
5a0e3ad6 33#include <linux/slab.h>
cafd6659 34#include <linux/tboot.h>
f4124500 35#include <linux/hrtimer.h>
5fdbf976 36#include "kvm_cache_regs.h"
35920a35 37#include "x86.h"
e495606d 38
28b835d6 39#include <asm/cpu.h>
6aa8b732 40#include <asm/io.h>
3b3be0d1 41#include <asm/desc.h>
13673a90 42#include <asm/vmx.h>
6210e37b 43#include <asm/virtext.h>
a0861c02 44#include <asm/mce.h>
952f07ec 45#include <asm/fpu/internal.h>
d7cd9796 46#include <asm/perf_event.h>
81908bf4 47#include <asm/debugreg.h>
8f536b76 48#include <asm/kexec.h>
dab2087d 49#include <asm/apic.h>
efc64404 50#include <asm/irq_remapping.h>
6aa8b732 51
229456fc 52#include "trace.h"
25462f7f 53#include "pmu.h"
229456fc 54
4ecac3fd 55#define __ex(x) __kvm_handle_fault_on_reboot(x)
5e520e62
AK
56#define __ex_clear(x, reg) \
57 ____kvm_handle_fault_on_reboot(x, "xor " reg " , " reg)
4ecac3fd 58
6aa8b732
AK
59MODULE_AUTHOR("Qumranet");
60MODULE_LICENSE("GPL");
61
e9bda3b3
JT
62static const struct x86_cpu_id vmx_cpu_id[] = {
63 X86_FEATURE_MATCH(X86_FEATURE_VMX),
64 {}
65};
66MODULE_DEVICE_TABLE(x86cpu, vmx_cpu_id);
67
476bc001 68static bool __read_mostly enable_vpid = 1;
736caefe 69module_param_named(vpid, enable_vpid, bool, 0444);
2384d2b3 70
476bc001 71static bool __read_mostly flexpriority_enabled = 1;
736caefe 72module_param_named(flexpriority, flexpriority_enabled, bool, S_IRUGO);
4c9fc8ef 73
476bc001 74static bool __read_mostly enable_ept = 1;
736caefe 75module_param_named(ept, enable_ept, bool, S_IRUGO);
d56f546d 76
476bc001 77static bool __read_mostly enable_unrestricted_guest = 1;
3a624e29
NK
78module_param_named(unrestricted_guest,
79 enable_unrestricted_guest, bool, S_IRUGO);
80
83c3a331
XH
81static bool __read_mostly enable_ept_ad_bits = 1;
82module_param_named(eptad, enable_ept_ad_bits, bool, S_IRUGO);
83
a27685c3 84static bool __read_mostly emulate_invalid_guest_state = true;
c1f8bc04 85module_param(emulate_invalid_guest_state, bool, S_IRUGO);
04fa4d32 86
476bc001 87static bool __read_mostly vmm_exclusive = 1;
b923e62e
DX
88module_param(vmm_exclusive, bool, S_IRUGO);
89
476bc001 90static bool __read_mostly fasteoi = 1;
58fbbf26
KT
91module_param(fasteoi, bool, S_IRUGO);
92
5a71785d 93static bool __read_mostly enable_apicv = 1;
01e439be 94module_param(enable_apicv, bool, S_IRUGO);
83d4c286 95
abc4fc58
AG
96static bool __read_mostly enable_shadow_vmcs = 1;
97module_param_named(enable_shadow_vmcs, enable_shadow_vmcs, bool, S_IRUGO);
801d3424
NHE
98/*
99 * If nested=1, nested virtualization is supported, i.e., guests may use
100 * VMX and be a hypervisor for its own guests. If nested=0, guests may not
101 * use VMX instructions.
102 */
476bc001 103static bool __read_mostly nested = 0;
801d3424
NHE
104module_param(nested, bool, S_IRUGO);
105
20300099
WL
106static u64 __read_mostly host_xss;
107
843e4330
KH
108static bool __read_mostly enable_pml = 1;
109module_param_named(pml, enable_pml, bool, S_IRUGO);
110
64903d61
HZ
111#define KVM_VMX_TSC_MULTIPLIER_MAX 0xffffffffffffffffULL
112
5037878e
GN
113#define KVM_GUEST_CR0_MASK (X86_CR0_NW | X86_CR0_CD)
114#define KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST (X86_CR0_WP | X86_CR0_NE)
cdc0e244
AK
115#define KVM_VM_CR0_ALWAYS_ON \
116 (KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST | X86_CR0_PG | X86_CR0_PE)
4c38609a
AK
117#define KVM_CR4_GUEST_OWNED_BITS \
118 (X86_CR4_PVI | X86_CR4_DE | X86_CR4_PCE | X86_CR4_OSFXSR \
52ce3c21 119 | X86_CR4_OSXMMEXCPT | X86_CR4_TSD)
4c38609a 120
cdc0e244
AK
121#define KVM_PMODE_VM_CR4_ALWAYS_ON (X86_CR4_PAE | X86_CR4_VMXE)
122#define KVM_RMODE_VM_CR4_ALWAYS_ON (X86_CR4_VME | X86_CR4_PAE | X86_CR4_VMXE)
123
78ac8b47
AK
124#define RMODE_GUEST_OWNED_EFLAGS_BITS (~(X86_EFLAGS_IOPL | X86_EFLAGS_VM))
125
f4124500
JK
126#define VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE 5
127
4b8d54f9
ZE
128/*
129 * These 2 parameters are used to config the controls for Pause-Loop Exiting:
130 * ple_gap: upper bound on the amount of time between two successive
131 * executions of PAUSE in a loop. Also indicate if ple enabled.
00c25bce 132 * According to test, this time is usually smaller than 128 cycles.
4b8d54f9
ZE
133 * ple_window: upper bound on the amount of time a guest is allowed to execute
134 * in a PAUSE loop. Tests indicate that most spinlocks are held for
135 * less than 2^12 cycles
136 * Time is measured based on a counter that runs at the same rate as the TSC,
137 * refer SDM volume 3b section 21.6.13 & 22.1.3.
138 */
b4a2d31d
RK
139#define KVM_VMX_DEFAULT_PLE_GAP 128
140#define KVM_VMX_DEFAULT_PLE_WINDOW 4096
141#define KVM_VMX_DEFAULT_PLE_WINDOW_GROW 2
142#define KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK 0
143#define KVM_VMX_DEFAULT_PLE_WINDOW_MAX \
144 INT_MAX / KVM_VMX_DEFAULT_PLE_WINDOW_GROW
145
4b8d54f9
ZE
146static int ple_gap = KVM_VMX_DEFAULT_PLE_GAP;
147module_param(ple_gap, int, S_IRUGO);
148
149static int ple_window = KVM_VMX_DEFAULT_PLE_WINDOW;
150module_param(ple_window, int, S_IRUGO);
151
b4a2d31d
RK
152/* Default doubles per-vcpu window every exit. */
153static int ple_window_grow = KVM_VMX_DEFAULT_PLE_WINDOW_GROW;
154module_param(ple_window_grow, int, S_IRUGO);
155
156/* Default resets per-vcpu window every exit to ple_window. */
157static int ple_window_shrink = KVM_VMX_DEFAULT_PLE_WINDOW_SHRINK;
158module_param(ple_window_shrink, int, S_IRUGO);
159
160/* Default is to compute the maximum so we can never overflow. */
161static int ple_window_actual_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
162static int ple_window_max = KVM_VMX_DEFAULT_PLE_WINDOW_MAX;
163module_param(ple_window_max, int, S_IRUGO);
164
83287ea4
AK
165extern const ulong vmx_return;
166
8bf00a52 167#define NR_AUTOLOAD_MSRS 8
ff2f6fe9 168#define VMCS02_POOL_SIZE 1
61d2ef2c 169
a2fa3e9f
GH
170struct vmcs {
171 u32 revision_id;
172 u32 abort;
173 char data[0];
174};
175
d462b819
NHE
176/*
177 * Track a VMCS that may be loaded on a certain CPU. If it is (cpu!=-1), also
178 * remember whether it was VMLAUNCHed, and maintain a linked list of all VMCSs
179 * loaded on this CPU (so we can clear them if the CPU goes down).
180 */
181struct loaded_vmcs {
182 struct vmcs *vmcs;
183 int cpu;
184 int launched;
185 struct list_head loaded_vmcss_on_cpu_link;
186};
187
26bb0981
AK
188struct shared_msr_entry {
189 unsigned index;
190 u64 data;
d5696725 191 u64 mask;
26bb0981
AK
192};
193
a9d30f33
NHE
194/*
195 * struct vmcs12 describes the state that our guest hypervisor (L1) keeps for a
196 * single nested guest (L2), hence the name vmcs12. Any VMX implementation has
197 * a VMCS structure, and vmcs12 is our emulated VMX's VMCS. This structure is
198 * stored in guest memory specified by VMPTRLD, but is opaque to the guest,
199 * which must access it using VMREAD/VMWRITE/VMCLEAR instructions.
200 * More than one of these structures may exist, if L1 runs multiple L2 guests.
201 * nested_vmx_run() will use the data here to build a vmcs02: a VMCS for the
202 * underlying hardware which will be used to run L2.
203 * This structure is packed to ensure that its layout is identical across
204 * machines (necessary for live migration).
205 * If there are changes in this struct, VMCS12_REVISION must be changed.
206 */
22bd0358 207typedef u64 natural_width;
a9d30f33
NHE
208struct __packed vmcs12 {
209 /* According to the Intel spec, a VMCS region must start with the
210 * following two fields. Then follow implementation-specific data.
211 */
212 u32 revision_id;
213 u32 abort;
22bd0358 214
27d6c865
NHE
215 u32 launch_state; /* set to 0 by VMCLEAR, to 1 by VMLAUNCH */
216 u32 padding[7]; /* room for future expansion */
217
22bd0358
NHE
218 u64 io_bitmap_a;
219 u64 io_bitmap_b;
220 u64 msr_bitmap;
221 u64 vm_exit_msr_store_addr;
222 u64 vm_exit_msr_load_addr;
223 u64 vm_entry_msr_load_addr;
224 u64 tsc_offset;
225 u64 virtual_apic_page_addr;
226 u64 apic_access_addr;
705699a1 227 u64 posted_intr_desc_addr;
22bd0358 228 u64 ept_pointer;
608406e2
WV
229 u64 eoi_exit_bitmap0;
230 u64 eoi_exit_bitmap1;
231 u64 eoi_exit_bitmap2;
232 u64 eoi_exit_bitmap3;
81dc01f7 233 u64 xss_exit_bitmap;
22bd0358
NHE
234 u64 guest_physical_address;
235 u64 vmcs_link_pointer;
236 u64 guest_ia32_debugctl;
237 u64 guest_ia32_pat;
238 u64 guest_ia32_efer;
239 u64 guest_ia32_perf_global_ctrl;
240 u64 guest_pdptr0;
241 u64 guest_pdptr1;
242 u64 guest_pdptr2;
243 u64 guest_pdptr3;
36be0b9d 244 u64 guest_bndcfgs;
22bd0358
NHE
245 u64 host_ia32_pat;
246 u64 host_ia32_efer;
247 u64 host_ia32_perf_global_ctrl;
248 u64 padding64[8]; /* room for future expansion */
249 /*
250 * To allow migration of L1 (complete with its L2 guests) between
251 * machines of different natural widths (32 or 64 bit), we cannot have
252 * unsigned long fields with no explict size. We use u64 (aliased
253 * natural_width) instead. Luckily, x86 is little-endian.
254 */
255 natural_width cr0_guest_host_mask;
256 natural_width cr4_guest_host_mask;
257 natural_width cr0_read_shadow;
258 natural_width cr4_read_shadow;
259 natural_width cr3_target_value0;
260 natural_width cr3_target_value1;
261 natural_width cr3_target_value2;
262 natural_width cr3_target_value3;
263 natural_width exit_qualification;
264 natural_width guest_linear_address;
265 natural_width guest_cr0;
266 natural_width guest_cr3;
267 natural_width guest_cr4;
268 natural_width guest_es_base;
269 natural_width guest_cs_base;
270 natural_width guest_ss_base;
271 natural_width guest_ds_base;
272 natural_width guest_fs_base;
273 natural_width guest_gs_base;
274 natural_width guest_ldtr_base;
275 natural_width guest_tr_base;
276 natural_width guest_gdtr_base;
277 natural_width guest_idtr_base;
278 natural_width guest_dr7;
279 natural_width guest_rsp;
280 natural_width guest_rip;
281 natural_width guest_rflags;
282 natural_width guest_pending_dbg_exceptions;
283 natural_width guest_sysenter_esp;
284 natural_width guest_sysenter_eip;
285 natural_width host_cr0;
286 natural_width host_cr3;
287 natural_width host_cr4;
288 natural_width host_fs_base;
289 natural_width host_gs_base;
290 natural_width host_tr_base;
291 natural_width host_gdtr_base;
292 natural_width host_idtr_base;
293 natural_width host_ia32_sysenter_esp;
294 natural_width host_ia32_sysenter_eip;
295 natural_width host_rsp;
296 natural_width host_rip;
297 natural_width paddingl[8]; /* room for future expansion */
298 u32 pin_based_vm_exec_control;
299 u32 cpu_based_vm_exec_control;
300 u32 exception_bitmap;
301 u32 page_fault_error_code_mask;
302 u32 page_fault_error_code_match;
303 u32 cr3_target_count;
304 u32 vm_exit_controls;
305 u32 vm_exit_msr_store_count;
306 u32 vm_exit_msr_load_count;
307 u32 vm_entry_controls;
308 u32 vm_entry_msr_load_count;
309 u32 vm_entry_intr_info_field;
310 u32 vm_entry_exception_error_code;
311 u32 vm_entry_instruction_len;
312 u32 tpr_threshold;
313 u32 secondary_vm_exec_control;
314 u32 vm_instruction_error;
315 u32 vm_exit_reason;
316 u32 vm_exit_intr_info;
317 u32 vm_exit_intr_error_code;
318 u32 idt_vectoring_info_field;
319 u32 idt_vectoring_error_code;
320 u32 vm_exit_instruction_len;
321 u32 vmx_instruction_info;
322 u32 guest_es_limit;
323 u32 guest_cs_limit;
324 u32 guest_ss_limit;
325 u32 guest_ds_limit;
326 u32 guest_fs_limit;
327 u32 guest_gs_limit;
328 u32 guest_ldtr_limit;
329 u32 guest_tr_limit;
330 u32 guest_gdtr_limit;
331 u32 guest_idtr_limit;
332 u32 guest_es_ar_bytes;
333 u32 guest_cs_ar_bytes;
334 u32 guest_ss_ar_bytes;
335 u32 guest_ds_ar_bytes;
336 u32 guest_fs_ar_bytes;
337 u32 guest_gs_ar_bytes;
338 u32 guest_ldtr_ar_bytes;
339 u32 guest_tr_ar_bytes;
340 u32 guest_interruptibility_info;
341 u32 guest_activity_state;
342 u32 guest_sysenter_cs;
343 u32 host_ia32_sysenter_cs;
0238ea91
JK
344 u32 vmx_preemption_timer_value;
345 u32 padding32[7]; /* room for future expansion */
22bd0358 346 u16 virtual_processor_id;
705699a1 347 u16 posted_intr_nv;
22bd0358
NHE
348 u16 guest_es_selector;
349 u16 guest_cs_selector;
350 u16 guest_ss_selector;
351 u16 guest_ds_selector;
352 u16 guest_fs_selector;
353 u16 guest_gs_selector;
354 u16 guest_ldtr_selector;
355 u16 guest_tr_selector;
608406e2 356 u16 guest_intr_status;
22bd0358
NHE
357 u16 host_es_selector;
358 u16 host_cs_selector;
359 u16 host_ss_selector;
360 u16 host_ds_selector;
361 u16 host_fs_selector;
362 u16 host_gs_selector;
363 u16 host_tr_selector;
a9d30f33
NHE
364};
365
366/*
367 * VMCS12_REVISION is an arbitrary id that should be changed if the content or
368 * layout of struct vmcs12 is changed. MSR_IA32_VMX_BASIC returns this id, and
369 * VMPTRLD verifies that the VMCS region that L1 is loading contains this id.
370 */
371#define VMCS12_REVISION 0x11e57ed0
372
373/*
374 * VMCS12_SIZE is the number of bytes L1 should allocate for the VMXON region
375 * and any VMCS region. Although only sizeof(struct vmcs12) are used by the
376 * current implementation, 4K are reserved to avoid future complications.
377 */
378#define VMCS12_SIZE 0x1000
379
ff2f6fe9
NHE
380/* Used to remember the last vmcs02 used for some recently used vmcs12s */
381struct vmcs02_list {
382 struct list_head list;
383 gpa_t vmptr;
384 struct loaded_vmcs vmcs02;
385};
386
ec378aee
NHE
387/*
388 * The nested_vmx structure is part of vcpu_vmx, and holds information we need
389 * for correct emulation of VMX (i.e., nested VMX) on this vcpu.
390 */
391struct nested_vmx {
392 /* Has the level1 guest done vmxon? */
393 bool vmxon;
3573e22c 394 gpa_t vmxon_ptr;
a9d30f33
NHE
395
396 /* The guest-physical address of the current VMCS L1 keeps for L2 */
397 gpa_t current_vmptr;
398 /* The host-usable pointer to the above */
399 struct page *current_vmcs12_page;
400 struct vmcs12 *current_vmcs12;
8de48833 401 struct vmcs *current_shadow_vmcs;
012f83cb
AG
402 /*
403 * Indicates if the shadow vmcs must be updated with the
404 * data hold by vmcs12
405 */
406 bool sync_shadow_vmcs;
ff2f6fe9
NHE
407
408 /* vmcs02_list cache of VMCSs recently used to run L2 guests */
409 struct list_head vmcs02_pool;
410 int vmcs02_num;
fe3ef05c 411 u64 vmcs01_tsc_offset;
644d711a
NHE
412 /* L2 must run next, and mustn't decide to exit to L1. */
413 bool nested_run_pending;
fe3ef05c
NHE
414 /*
415 * Guest pages referred to in vmcs02 with host-physical pointers, so
416 * we must keep them pinned while L2 runs.
417 */
418 struct page *apic_access_page;
a7c0b07d 419 struct page *virtual_apic_page;
705699a1
WV
420 struct page *pi_desc_page;
421 struct pi_desc *pi_desc;
422 bool pi_pending;
423 u16 posted_intr_nv;
b3897a49 424 u64 msr_ia32_feature_control;
f4124500
JK
425
426 struct hrtimer preemption_timer;
427 bool preemption_timer_expired;
2996fca0
JK
428
429 /* to migrate it to L2 if VM_ENTRY_LOAD_DEBUG_CONTROLS is off */
430 u64 vmcs01_debugctl;
b9c237bb 431
5c614b35
WL
432 u16 vpid02;
433 u16 last_vpid;
434
b9c237bb
WV
435 u32 nested_vmx_procbased_ctls_low;
436 u32 nested_vmx_procbased_ctls_high;
437 u32 nested_vmx_true_procbased_ctls_low;
438 u32 nested_vmx_secondary_ctls_low;
439 u32 nested_vmx_secondary_ctls_high;
440 u32 nested_vmx_pinbased_ctls_low;
441 u32 nested_vmx_pinbased_ctls_high;
442 u32 nested_vmx_exit_ctls_low;
443 u32 nested_vmx_exit_ctls_high;
444 u32 nested_vmx_true_exit_ctls_low;
445 u32 nested_vmx_entry_ctls_low;
446 u32 nested_vmx_entry_ctls_high;
447 u32 nested_vmx_true_entry_ctls_low;
448 u32 nested_vmx_misc_low;
449 u32 nested_vmx_misc_high;
450 u32 nested_vmx_ept_caps;
99b83ac8 451 u32 nested_vmx_vpid_caps;
ec378aee
NHE
452};
453
01e439be 454#define POSTED_INTR_ON 0
ebbfc765
FW
455#define POSTED_INTR_SN 1
456
01e439be
YZ
457/* Posted-Interrupt Descriptor */
458struct pi_desc {
459 u32 pir[8]; /* Posted interrupt requested */
6ef1522f
FW
460 union {
461 struct {
462 /* bit 256 - Outstanding Notification */
463 u16 on : 1,
464 /* bit 257 - Suppress Notification */
465 sn : 1,
466 /* bit 271:258 - Reserved */
467 rsvd_1 : 14;
468 /* bit 279:272 - Notification Vector */
469 u8 nv;
470 /* bit 287:280 - Reserved */
471 u8 rsvd_2;
472 /* bit 319:288 - Notification Destination */
473 u32 ndst;
474 };
475 u64 control;
476 };
477 u32 rsvd[6];
01e439be
YZ
478} __aligned(64);
479
a20ed54d
YZ
480static bool pi_test_and_set_on(struct pi_desc *pi_desc)
481{
482 return test_and_set_bit(POSTED_INTR_ON,
483 (unsigned long *)&pi_desc->control);
484}
485
486static bool pi_test_and_clear_on(struct pi_desc *pi_desc)
487{
488 return test_and_clear_bit(POSTED_INTR_ON,
489 (unsigned long *)&pi_desc->control);
490}
491
492static int pi_test_and_set_pir(int vector, struct pi_desc *pi_desc)
493{
494 return test_and_set_bit(vector, (unsigned long *)pi_desc->pir);
495}
496
ebbfc765
FW
497static inline void pi_clear_sn(struct pi_desc *pi_desc)
498{
499 return clear_bit(POSTED_INTR_SN,
500 (unsigned long *)&pi_desc->control);
501}
502
503static inline void pi_set_sn(struct pi_desc *pi_desc)
504{
505 return set_bit(POSTED_INTR_SN,
506 (unsigned long *)&pi_desc->control);
507}
508
509static inline int pi_test_on(struct pi_desc *pi_desc)
510{
511 return test_bit(POSTED_INTR_ON,
512 (unsigned long *)&pi_desc->control);
513}
514
515static inline int pi_test_sn(struct pi_desc *pi_desc)
516{
517 return test_bit(POSTED_INTR_SN,
518 (unsigned long *)&pi_desc->control);
519}
520
a2fa3e9f 521struct vcpu_vmx {
fb3f0f51 522 struct kvm_vcpu vcpu;
313dbd49 523 unsigned long host_rsp;
29bd8a78 524 u8 fail;
9d58b931 525 bool nmi_known_unmasked;
51aa01d1 526 u32 exit_intr_info;
1155f76a 527 u32 idt_vectoring_info;
6de12732 528 ulong rflags;
26bb0981 529 struct shared_msr_entry *guest_msrs;
a2fa3e9f
GH
530 int nmsrs;
531 int save_nmsrs;
a547c6db 532 unsigned long host_idt_base;
a2fa3e9f 533#ifdef CONFIG_X86_64
44ea2b17
AK
534 u64 msr_host_kernel_gs_base;
535 u64 msr_guest_kernel_gs_base;
a2fa3e9f 536#endif
2961e876
GN
537 u32 vm_entry_controls_shadow;
538 u32 vm_exit_controls_shadow;
d462b819
NHE
539 /*
540 * loaded_vmcs points to the VMCS currently used in this vcpu. For a
541 * non-nested (L1) guest, it always points to vmcs01. For a nested
542 * guest (L2), it points to a different VMCS.
543 */
544 struct loaded_vmcs vmcs01;
545 struct loaded_vmcs *loaded_vmcs;
546 bool __launched; /* temporary, used in vmx_vcpu_run */
61d2ef2c
AK
547 struct msr_autoload {
548 unsigned nr;
549 struct vmx_msr_entry guest[NR_AUTOLOAD_MSRS];
550 struct vmx_msr_entry host[NR_AUTOLOAD_MSRS];
551 } msr_autoload;
a2fa3e9f
GH
552 struct {
553 int loaded;
554 u16 fs_sel, gs_sel, ldt_sel;
b2da15ac
AK
555#ifdef CONFIG_X86_64
556 u16 ds_sel, es_sel;
557#endif
152d3f2f
LV
558 int gs_ldt_reload_needed;
559 int fs_reload_needed;
da8999d3 560 u64 msr_host_bndcfgs;
d974baa3 561 unsigned long vmcs_host_cr4; /* May not match real cr4 */
d77c26fc 562 } host_state;
9c8cba37 563 struct {
7ffd92c5 564 int vm86_active;
78ac8b47 565 ulong save_rflags;
f5f7b2fe
AK
566 struct kvm_segment segs[8];
567 } rmode;
568 struct {
569 u32 bitmask; /* 4 bits per segment (1 bit per field) */
7ffd92c5
AK
570 struct kvm_save_segment {
571 u16 selector;
572 unsigned long base;
573 u32 limit;
574 u32 ar;
f5f7b2fe 575 } seg[8];
2fb92db1 576 } segment_cache;
2384d2b3 577 int vpid;
04fa4d32 578 bool emulation_required;
3b86cd99
JK
579
580 /* Support for vnmi-less CPUs */
581 int soft_vnmi_blocked;
582 ktime_t entry_time;
583 s64 vnmi_blocked_time;
a0861c02 584 u32 exit_reason;
4e47c7a6 585
01e439be
YZ
586 /* Posted interrupt descriptor */
587 struct pi_desc pi_desc;
588
ec378aee
NHE
589 /* Support for a guest hypervisor (nested VMX) */
590 struct nested_vmx nested;
a7653ecd
RK
591
592 /* Dynamic PLE window. */
593 int ple_window;
594 bool ple_window_dirty;
843e4330
KH
595
596 /* Support for PML */
597#define PML_ENTITY_NUM 512
598 struct page *pml_pg;
2680d6da
OH
599
600 u64 current_tsc_ratio;
1be0e61c
XG
601
602 bool guest_pkru_valid;
603 u32 guest_pkru;
604 u32 host_pkru;
a2fa3e9f
GH
605};
606
2fb92db1
AK
607enum segment_cache_field {
608 SEG_FIELD_SEL = 0,
609 SEG_FIELD_BASE = 1,
610 SEG_FIELD_LIMIT = 2,
611 SEG_FIELD_AR = 3,
612
613 SEG_FIELD_NR = 4
614};
615
a2fa3e9f
GH
616static inline struct vcpu_vmx *to_vmx(struct kvm_vcpu *vcpu)
617{
fb3f0f51 618 return container_of(vcpu, struct vcpu_vmx, vcpu);
a2fa3e9f
GH
619}
620
efc64404
FW
621static struct pi_desc *vcpu_to_pi_desc(struct kvm_vcpu *vcpu)
622{
623 return &(to_vmx(vcpu)->pi_desc);
624}
625
22bd0358
NHE
626#define VMCS12_OFFSET(x) offsetof(struct vmcs12, x)
627#define FIELD(number, name) [number] = VMCS12_OFFSET(name)
628#define FIELD64(number, name) [number] = VMCS12_OFFSET(name), \
629 [number##_HIGH] = VMCS12_OFFSET(name)+4
630
4607c2d7 631
fe2b201b 632static unsigned long shadow_read_only_fields[] = {
4607c2d7
AG
633 /*
634 * We do NOT shadow fields that are modified when L0
635 * traps and emulates any vmx instruction (e.g. VMPTRLD,
636 * VMXON...) executed by L1.
637 * For example, VM_INSTRUCTION_ERROR is read
638 * by L1 if a vmx instruction fails (part of the error path).
639 * Note the code assumes this logic. If for some reason
640 * we start shadowing these fields then we need to
641 * force a shadow sync when L0 emulates vmx instructions
642 * (e.g. force a sync if VM_INSTRUCTION_ERROR is modified
643 * by nested_vmx_failValid)
644 */
645 VM_EXIT_REASON,
646 VM_EXIT_INTR_INFO,
647 VM_EXIT_INSTRUCTION_LEN,
648 IDT_VECTORING_INFO_FIELD,
649 IDT_VECTORING_ERROR_CODE,
650 VM_EXIT_INTR_ERROR_CODE,
651 EXIT_QUALIFICATION,
652 GUEST_LINEAR_ADDRESS,
653 GUEST_PHYSICAL_ADDRESS
654};
fe2b201b 655static int max_shadow_read_only_fields =
4607c2d7
AG
656 ARRAY_SIZE(shadow_read_only_fields);
657
fe2b201b 658static unsigned long shadow_read_write_fields[] = {
a7c0b07d 659 TPR_THRESHOLD,
4607c2d7
AG
660 GUEST_RIP,
661 GUEST_RSP,
662 GUEST_CR0,
663 GUEST_CR3,
664 GUEST_CR4,
665 GUEST_INTERRUPTIBILITY_INFO,
666 GUEST_RFLAGS,
667 GUEST_CS_SELECTOR,
668 GUEST_CS_AR_BYTES,
669 GUEST_CS_LIMIT,
670 GUEST_CS_BASE,
671 GUEST_ES_BASE,
36be0b9d 672 GUEST_BNDCFGS,
4607c2d7
AG
673 CR0_GUEST_HOST_MASK,
674 CR0_READ_SHADOW,
675 CR4_READ_SHADOW,
676 TSC_OFFSET,
677 EXCEPTION_BITMAP,
678 CPU_BASED_VM_EXEC_CONTROL,
679 VM_ENTRY_EXCEPTION_ERROR_CODE,
680 VM_ENTRY_INTR_INFO_FIELD,
681 VM_ENTRY_INSTRUCTION_LEN,
682 VM_ENTRY_EXCEPTION_ERROR_CODE,
683 HOST_FS_BASE,
684 HOST_GS_BASE,
685 HOST_FS_SELECTOR,
686 HOST_GS_SELECTOR
687};
fe2b201b 688static int max_shadow_read_write_fields =
4607c2d7
AG
689 ARRAY_SIZE(shadow_read_write_fields);
690
772e0318 691static const unsigned short vmcs_field_to_offset_table[] = {
22bd0358 692 FIELD(VIRTUAL_PROCESSOR_ID, virtual_processor_id),
705699a1 693 FIELD(POSTED_INTR_NV, posted_intr_nv),
22bd0358
NHE
694 FIELD(GUEST_ES_SELECTOR, guest_es_selector),
695 FIELD(GUEST_CS_SELECTOR, guest_cs_selector),
696 FIELD(GUEST_SS_SELECTOR, guest_ss_selector),
697 FIELD(GUEST_DS_SELECTOR, guest_ds_selector),
698 FIELD(GUEST_FS_SELECTOR, guest_fs_selector),
699 FIELD(GUEST_GS_SELECTOR, guest_gs_selector),
700 FIELD(GUEST_LDTR_SELECTOR, guest_ldtr_selector),
701 FIELD(GUEST_TR_SELECTOR, guest_tr_selector),
608406e2 702 FIELD(GUEST_INTR_STATUS, guest_intr_status),
22bd0358
NHE
703 FIELD(HOST_ES_SELECTOR, host_es_selector),
704 FIELD(HOST_CS_SELECTOR, host_cs_selector),
705 FIELD(HOST_SS_SELECTOR, host_ss_selector),
706 FIELD(HOST_DS_SELECTOR, host_ds_selector),
707 FIELD(HOST_FS_SELECTOR, host_fs_selector),
708 FIELD(HOST_GS_SELECTOR, host_gs_selector),
709 FIELD(HOST_TR_SELECTOR, host_tr_selector),
710 FIELD64(IO_BITMAP_A, io_bitmap_a),
711 FIELD64(IO_BITMAP_B, io_bitmap_b),
712 FIELD64(MSR_BITMAP, msr_bitmap),
713 FIELD64(VM_EXIT_MSR_STORE_ADDR, vm_exit_msr_store_addr),
714 FIELD64(VM_EXIT_MSR_LOAD_ADDR, vm_exit_msr_load_addr),
715 FIELD64(VM_ENTRY_MSR_LOAD_ADDR, vm_entry_msr_load_addr),
716 FIELD64(TSC_OFFSET, tsc_offset),
717 FIELD64(VIRTUAL_APIC_PAGE_ADDR, virtual_apic_page_addr),
718 FIELD64(APIC_ACCESS_ADDR, apic_access_addr),
705699a1 719 FIELD64(POSTED_INTR_DESC_ADDR, posted_intr_desc_addr),
22bd0358 720 FIELD64(EPT_POINTER, ept_pointer),
608406e2
WV
721 FIELD64(EOI_EXIT_BITMAP0, eoi_exit_bitmap0),
722 FIELD64(EOI_EXIT_BITMAP1, eoi_exit_bitmap1),
723 FIELD64(EOI_EXIT_BITMAP2, eoi_exit_bitmap2),
724 FIELD64(EOI_EXIT_BITMAP3, eoi_exit_bitmap3),
81dc01f7 725 FIELD64(XSS_EXIT_BITMAP, xss_exit_bitmap),
22bd0358
NHE
726 FIELD64(GUEST_PHYSICAL_ADDRESS, guest_physical_address),
727 FIELD64(VMCS_LINK_POINTER, vmcs_link_pointer),
728 FIELD64(GUEST_IA32_DEBUGCTL, guest_ia32_debugctl),
729 FIELD64(GUEST_IA32_PAT, guest_ia32_pat),
730 FIELD64(GUEST_IA32_EFER, guest_ia32_efer),
731 FIELD64(GUEST_IA32_PERF_GLOBAL_CTRL, guest_ia32_perf_global_ctrl),
732 FIELD64(GUEST_PDPTR0, guest_pdptr0),
733 FIELD64(GUEST_PDPTR1, guest_pdptr1),
734 FIELD64(GUEST_PDPTR2, guest_pdptr2),
735 FIELD64(GUEST_PDPTR3, guest_pdptr3),
36be0b9d 736 FIELD64(GUEST_BNDCFGS, guest_bndcfgs),
22bd0358
NHE
737 FIELD64(HOST_IA32_PAT, host_ia32_pat),
738 FIELD64(HOST_IA32_EFER, host_ia32_efer),
739 FIELD64(HOST_IA32_PERF_GLOBAL_CTRL, host_ia32_perf_global_ctrl),
740 FIELD(PIN_BASED_VM_EXEC_CONTROL, pin_based_vm_exec_control),
741 FIELD(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control),
742 FIELD(EXCEPTION_BITMAP, exception_bitmap),
743 FIELD(PAGE_FAULT_ERROR_CODE_MASK, page_fault_error_code_mask),
744 FIELD(PAGE_FAULT_ERROR_CODE_MATCH, page_fault_error_code_match),
745 FIELD(CR3_TARGET_COUNT, cr3_target_count),
746 FIELD(VM_EXIT_CONTROLS, vm_exit_controls),
747 FIELD(VM_EXIT_MSR_STORE_COUNT, vm_exit_msr_store_count),
748 FIELD(VM_EXIT_MSR_LOAD_COUNT, vm_exit_msr_load_count),
749 FIELD(VM_ENTRY_CONTROLS, vm_entry_controls),
750 FIELD(VM_ENTRY_MSR_LOAD_COUNT, vm_entry_msr_load_count),
751 FIELD(VM_ENTRY_INTR_INFO_FIELD, vm_entry_intr_info_field),
752 FIELD(VM_ENTRY_EXCEPTION_ERROR_CODE, vm_entry_exception_error_code),
753 FIELD(VM_ENTRY_INSTRUCTION_LEN, vm_entry_instruction_len),
754 FIELD(TPR_THRESHOLD, tpr_threshold),
755 FIELD(SECONDARY_VM_EXEC_CONTROL, secondary_vm_exec_control),
756 FIELD(VM_INSTRUCTION_ERROR, vm_instruction_error),
757 FIELD(VM_EXIT_REASON, vm_exit_reason),
758 FIELD(VM_EXIT_INTR_INFO, vm_exit_intr_info),
759 FIELD(VM_EXIT_INTR_ERROR_CODE, vm_exit_intr_error_code),
760 FIELD(IDT_VECTORING_INFO_FIELD, idt_vectoring_info_field),
761 FIELD(IDT_VECTORING_ERROR_CODE, idt_vectoring_error_code),
762 FIELD(VM_EXIT_INSTRUCTION_LEN, vm_exit_instruction_len),
763 FIELD(VMX_INSTRUCTION_INFO, vmx_instruction_info),
764 FIELD(GUEST_ES_LIMIT, guest_es_limit),
765 FIELD(GUEST_CS_LIMIT, guest_cs_limit),
766 FIELD(GUEST_SS_LIMIT, guest_ss_limit),
767 FIELD(GUEST_DS_LIMIT, guest_ds_limit),
768 FIELD(GUEST_FS_LIMIT, guest_fs_limit),
769 FIELD(GUEST_GS_LIMIT, guest_gs_limit),
770 FIELD(GUEST_LDTR_LIMIT, guest_ldtr_limit),
771 FIELD(GUEST_TR_LIMIT, guest_tr_limit),
772 FIELD(GUEST_GDTR_LIMIT, guest_gdtr_limit),
773 FIELD(GUEST_IDTR_LIMIT, guest_idtr_limit),
774 FIELD(GUEST_ES_AR_BYTES, guest_es_ar_bytes),
775 FIELD(GUEST_CS_AR_BYTES, guest_cs_ar_bytes),
776 FIELD(GUEST_SS_AR_BYTES, guest_ss_ar_bytes),
777 FIELD(GUEST_DS_AR_BYTES, guest_ds_ar_bytes),
778 FIELD(GUEST_FS_AR_BYTES, guest_fs_ar_bytes),
779 FIELD(GUEST_GS_AR_BYTES, guest_gs_ar_bytes),
780 FIELD(GUEST_LDTR_AR_BYTES, guest_ldtr_ar_bytes),
781 FIELD(GUEST_TR_AR_BYTES, guest_tr_ar_bytes),
782 FIELD(GUEST_INTERRUPTIBILITY_INFO, guest_interruptibility_info),
783 FIELD(GUEST_ACTIVITY_STATE, guest_activity_state),
784 FIELD(GUEST_SYSENTER_CS, guest_sysenter_cs),
785 FIELD(HOST_IA32_SYSENTER_CS, host_ia32_sysenter_cs),
0238ea91 786 FIELD(VMX_PREEMPTION_TIMER_VALUE, vmx_preemption_timer_value),
22bd0358
NHE
787 FIELD(CR0_GUEST_HOST_MASK, cr0_guest_host_mask),
788 FIELD(CR4_GUEST_HOST_MASK, cr4_guest_host_mask),
789 FIELD(CR0_READ_SHADOW, cr0_read_shadow),
790 FIELD(CR4_READ_SHADOW, cr4_read_shadow),
791 FIELD(CR3_TARGET_VALUE0, cr3_target_value0),
792 FIELD(CR3_TARGET_VALUE1, cr3_target_value1),
793 FIELD(CR3_TARGET_VALUE2, cr3_target_value2),
794 FIELD(CR3_TARGET_VALUE3, cr3_target_value3),
795 FIELD(EXIT_QUALIFICATION, exit_qualification),
796 FIELD(GUEST_LINEAR_ADDRESS, guest_linear_address),
797 FIELD(GUEST_CR0, guest_cr0),
798 FIELD(GUEST_CR3, guest_cr3),
799 FIELD(GUEST_CR4, guest_cr4),
800 FIELD(GUEST_ES_BASE, guest_es_base),
801 FIELD(GUEST_CS_BASE, guest_cs_base),
802 FIELD(GUEST_SS_BASE, guest_ss_base),
803 FIELD(GUEST_DS_BASE, guest_ds_base),
804 FIELD(GUEST_FS_BASE, guest_fs_base),
805 FIELD(GUEST_GS_BASE, guest_gs_base),
806 FIELD(GUEST_LDTR_BASE, guest_ldtr_base),
807 FIELD(GUEST_TR_BASE, guest_tr_base),
808 FIELD(GUEST_GDTR_BASE, guest_gdtr_base),
809 FIELD(GUEST_IDTR_BASE, guest_idtr_base),
810 FIELD(GUEST_DR7, guest_dr7),
811 FIELD(GUEST_RSP, guest_rsp),
812 FIELD(GUEST_RIP, guest_rip),
813 FIELD(GUEST_RFLAGS, guest_rflags),
814 FIELD(GUEST_PENDING_DBG_EXCEPTIONS, guest_pending_dbg_exceptions),
815 FIELD(GUEST_SYSENTER_ESP, guest_sysenter_esp),
816 FIELD(GUEST_SYSENTER_EIP, guest_sysenter_eip),
817 FIELD(HOST_CR0, host_cr0),
818 FIELD(HOST_CR3, host_cr3),
819 FIELD(HOST_CR4, host_cr4),
820 FIELD(HOST_FS_BASE, host_fs_base),
821 FIELD(HOST_GS_BASE, host_gs_base),
822 FIELD(HOST_TR_BASE, host_tr_base),
823 FIELD(HOST_GDTR_BASE, host_gdtr_base),
824 FIELD(HOST_IDTR_BASE, host_idtr_base),
825 FIELD(HOST_IA32_SYSENTER_ESP, host_ia32_sysenter_esp),
826 FIELD(HOST_IA32_SYSENTER_EIP, host_ia32_sysenter_eip),
827 FIELD(HOST_RSP, host_rsp),
828 FIELD(HOST_RIP, host_rip),
829};
22bd0358
NHE
830
831static inline short vmcs_field_to_offset(unsigned long field)
832{
a2ae9df7
PB
833 BUILD_BUG_ON(ARRAY_SIZE(vmcs_field_to_offset_table) > SHRT_MAX);
834
835 if (field >= ARRAY_SIZE(vmcs_field_to_offset_table) ||
836 vmcs_field_to_offset_table[field] == 0)
837 return -ENOENT;
838
22bd0358
NHE
839 return vmcs_field_to_offset_table[field];
840}
841
a9d30f33
NHE
842static inline struct vmcs12 *get_vmcs12(struct kvm_vcpu *vcpu)
843{
844 return to_vmx(vcpu)->nested.current_vmcs12;
845}
846
847static struct page *nested_get_page(struct kvm_vcpu *vcpu, gpa_t addr)
848{
54bf36aa 849 struct page *page = kvm_vcpu_gfn_to_page(vcpu, addr >> PAGE_SHIFT);
32cad84f 850 if (is_error_page(page))
a9d30f33 851 return NULL;
32cad84f 852
a9d30f33
NHE
853 return page;
854}
855
856static void nested_release_page(struct page *page)
857{
858 kvm_release_page_dirty(page);
859}
860
861static void nested_release_page_clean(struct page *page)
862{
863 kvm_release_page_clean(page);
864}
865
bfd0a56b 866static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu);
4e1096d2 867static u64 construct_eptp(unsigned long root_hpa);
4610c9cc
DX
868static void kvm_cpu_vmxon(u64 addr);
869static void kvm_cpu_vmxoff(void);
f53cd63c 870static bool vmx_xsaves_supported(void);
776e58ea 871static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr);
b246dd5d
OW
872static void vmx_set_segment(struct kvm_vcpu *vcpu,
873 struct kvm_segment *var, int seg);
874static void vmx_get_segment(struct kvm_vcpu *vcpu,
875 struct kvm_segment *var, int seg);
d99e4152
GN
876static bool guest_state_valid(struct kvm_vcpu *vcpu);
877static u32 vmx_segment_access_rights(struct kvm_segment *var);
c3114420 878static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx);
16f5b903 879static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx);
a255d479 880static int alloc_identity_pagetable(struct kvm *kvm);
75880a01 881
6aa8b732
AK
882static DEFINE_PER_CPU(struct vmcs *, vmxarea);
883static DEFINE_PER_CPU(struct vmcs *, current_vmcs);
d462b819
NHE
884/*
885 * We maintain a per-CPU linked-list of VMCS loaded on that CPU. This is needed
886 * when a CPU is brought down, and we need to VMCLEAR all VMCSs loaded on it.
887 */
888static DEFINE_PER_CPU(struct list_head, loaded_vmcss_on_cpu);
3444d7da 889static DEFINE_PER_CPU(struct desc_ptr, host_gdt);
6aa8b732 890
bf9f6ac8
FW
891/*
892 * We maintian a per-CPU linked-list of vCPU, so in wakeup_handler() we
893 * can find which vCPU should be waken up.
894 */
895static DEFINE_PER_CPU(struct list_head, blocked_vcpu_on_cpu);
896static DEFINE_PER_CPU(spinlock_t, blocked_vcpu_on_cpu_lock);
897
3e7c73e9
AK
898static unsigned long *vmx_io_bitmap_a;
899static unsigned long *vmx_io_bitmap_b;
5897297b
AK
900static unsigned long *vmx_msr_bitmap_legacy;
901static unsigned long *vmx_msr_bitmap_longmode;
8d14695f
YZ
902static unsigned long *vmx_msr_bitmap_legacy_x2apic;
903static unsigned long *vmx_msr_bitmap_longmode_x2apic;
3af18d9c 904static unsigned long *vmx_msr_bitmap_nested;
4607c2d7
AG
905static unsigned long *vmx_vmread_bitmap;
906static unsigned long *vmx_vmwrite_bitmap;
fdef3ad1 907
110312c8 908static bool cpu_has_load_ia32_efer;
8bf00a52 909static bool cpu_has_load_perf_global_ctrl;
110312c8 910
2384d2b3
SY
911static DECLARE_BITMAP(vmx_vpid_bitmap, VMX_NR_VPIDS);
912static DEFINE_SPINLOCK(vmx_vpid_lock);
913
1c3d14fe 914static struct vmcs_config {
6aa8b732
AK
915 int size;
916 int order;
917 u32 revision_id;
1c3d14fe
YS
918 u32 pin_based_exec_ctrl;
919 u32 cpu_based_exec_ctrl;
f78e0e2e 920 u32 cpu_based_2nd_exec_ctrl;
1c3d14fe
YS
921 u32 vmexit_ctrl;
922 u32 vmentry_ctrl;
923} vmcs_config;
6aa8b732 924
efff9e53 925static struct vmx_capability {
d56f546d
SY
926 u32 ept;
927 u32 vpid;
928} vmx_capability;
929
6aa8b732
AK
930#define VMX_SEGMENT_FIELD(seg) \
931 [VCPU_SREG_##seg] = { \
932 .selector = GUEST_##seg##_SELECTOR, \
933 .base = GUEST_##seg##_BASE, \
934 .limit = GUEST_##seg##_LIMIT, \
935 .ar_bytes = GUEST_##seg##_AR_BYTES, \
936 }
937
772e0318 938static const struct kvm_vmx_segment_field {
6aa8b732
AK
939 unsigned selector;
940 unsigned base;
941 unsigned limit;
942 unsigned ar_bytes;
943} kvm_vmx_segment_fields[] = {
944 VMX_SEGMENT_FIELD(CS),
945 VMX_SEGMENT_FIELD(DS),
946 VMX_SEGMENT_FIELD(ES),
947 VMX_SEGMENT_FIELD(FS),
948 VMX_SEGMENT_FIELD(GS),
949 VMX_SEGMENT_FIELD(SS),
950 VMX_SEGMENT_FIELD(TR),
951 VMX_SEGMENT_FIELD(LDTR),
952};
953
26bb0981
AK
954static u64 host_efer;
955
6de4f3ad
AK
956static void ept_save_pdptrs(struct kvm_vcpu *vcpu);
957
4d56c8a7 958/*
8c06585d 959 * Keep MSR_STAR at the end, as setup_msrs() will try to optimize it
4d56c8a7
AK
960 * away by decrementing the array size.
961 */
6aa8b732 962static const u32 vmx_msr_index[] = {
05b3e0c2 963#ifdef CONFIG_X86_64
44ea2b17 964 MSR_SYSCALL_MASK, MSR_LSTAR, MSR_CSTAR,
6aa8b732 965#endif
8c06585d 966 MSR_EFER, MSR_TSC_AUX, MSR_STAR,
6aa8b732 967};
6aa8b732 968
5bb16016 969static inline bool is_exception_n(u32 intr_info, u8 vector)
6aa8b732
AK
970{
971 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
972 INTR_INFO_VALID_MASK)) ==
5bb16016
JK
973 (INTR_TYPE_HARD_EXCEPTION | vector | INTR_INFO_VALID_MASK);
974}
975
6f05485d
JK
976static inline bool is_debug(u32 intr_info)
977{
978 return is_exception_n(intr_info, DB_VECTOR);
979}
980
981static inline bool is_breakpoint(u32 intr_info)
982{
983 return is_exception_n(intr_info, BP_VECTOR);
984}
985
5bb16016
JK
986static inline bool is_page_fault(u32 intr_info)
987{
988 return is_exception_n(intr_info, PF_VECTOR);
6aa8b732
AK
989}
990
31299944 991static inline bool is_no_device(u32 intr_info)
2ab455cc 992{
5bb16016 993 return is_exception_n(intr_info, NM_VECTOR);
2ab455cc
AL
994}
995
31299944 996static inline bool is_invalid_opcode(u32 intr_info)
7aa81cc0 997{
5bb16016 998 return is_exception_n(intr_info, UD_VECTOR);
7aa81cc0
AL
999}
1000
31299944 1001static inline bool is_external_interrupt(u32 intr_info)
6aa8b732
AK
1002{
1003 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1004 == (INTR_TYPE_EXT_INTR | INTR_INFO_VALID_MASK);
1005}
1006
31299944 1007static inline bool is_machine_check(u32 intr_info)
a0861c02
AK
1008{
1009 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VECTOR_MASK |
1010 INTR_INFO_VALID_MASK)) ==
1011 (INTR_TYPE_HARD_EXCEPTION | MC_VECTOR | INTR_INFO_VALID_MASK);
1012}
1013
31299944 1014static inline bool cpu_has_vmx_msr_bitmap(void)
25c5f225 1015{
04547156 1016 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_USE_MSR_BITMAPS;
25c5f225
SY
1017}
1018
31299944 1019static inline bool cpu_has_vmx_tpr_shadow(void)
6e5d865c 1020{
04547156 1021 return vmcs_config.cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW;
6e5d865c
YS
1022}
1023
35754c98 1024static inline bool cpu_need_tpr_shadow(struct kvm_vcpu *vcpu)
6e5d865c 1025{
35754c98 1026 return cpu_has_vmx_tpr_shadow() && lapic_in_kernel(vcpu);
6e5d865c
YS
1027}
1028
31299944 1029static inline bool cpu_has_secondary_exec_ctrls(void)
f78e0e2e 1030{
04547156
SY
1031 return vmcs_config.cpu_based_exec_ctrl &
1032 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
f78e0e2e
SY
1033}
1034
774ead3a 1035static inline bool cpu_has_vmx_virtualize_apic_accesses(void)
f78e0e2e 1036{
04547156
SY
1037 return vmcs_config.cpu_based_2nd_exec_ctrl &
1038 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
1039}
1040
8d14695f
YZ
1041static inline bool cpu_has_vmx_virtualize_x2apic_mode(void)
1042{
1043 return vmcs_config.cpu_based_2nd_exec_ctrl &
1044 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
1045}
1046
83d4c286
YZ
1047static inline bool cpu_has_vmx_apic_register_virt(void)
1048{
1049 return vmcs_config.cpu_based_2nd_exec_ctrl &
1050 SECONDARY_EXEC_APIC_REGISTER_VIRT;
1051}
1052
c7c9c56c
YZ
1053static inline bool cpu_has_vmx_virtual_intr_delivery(void)
1054{
1055 return vmcs_config.cpu_based_2nd_exec_ctrl &
1056 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY;
1057}
1058
01e439be
YZ
1059static inline bool cpu_has_vmx_posted_intr(void)
1060{
d6a858d1
PB
1061 return IS_ENABLED(CONFIG_X86_LOCAL_APIC) &&
1062 vmcs_config.pin_based_exec_ctrl & PIN_BASED_POSTED_INTR;
01e439be
YZ
1063}
1064
1065static inline bool cpu_has_vmx_apicv(void)
1066{
1067 return cpu_has_vmx_apic_register_virt() &&
1068 cpu_has_vmx_virtual_intr_delivery() &&
1069 cpu_has_vmx_posted_intr();
1070}
1071
04547156
SY
1072static inline bool cpu_has_vmx_flexpriority(void)
1073{
1074 return cpu_has_vmx_tpr_shadow() &&
1075 cpu_has_vmx_virtualize_apic_accesses();
f78e0e2e
SY
1076}
1077
e799794e
MT
1078static inline bool cpu_has_vmx_ept_execute_only(void)
1079{
31299944 1080 return vmx_capability.ept & VMX_EPT_EXECUTE_ONLY_BIT;
e799794e
MT
1081}
1082
e799794e
MT
1083static inline bool cpu_has_vmx_ept_2m_page(void)
1084{
31299944 1085 return vmx_capability.ept & VMX_EPT_2MB_PAGE_BIT;
e799794e
MT
1086}
1087
878403b7
SY
1088static inline bool cpu_has_vmx_ept_1g_page(void)
1089{
31299944 1090 return vmx_capability.ept & VMX_EPT_1GB_PAGE_BIT;
878403b7
SY
1091}
1092
4bc9b982
SY
1093static inline bool cpu_has_vmx_ept_4levels(void)
1094{
1095 return vmx_capability.ept & VMX_EPT_PAGE_WALK_4_BIT;
1096}
1097
83c3a331
XH
1098static inline bool cpu_has_vmx_ept_ad_bits(void)
1099{
1100 return vmx_capability.ept & VMX_EPT_AD_BIT;
1101}
1102
31299944 1103static inline bool cpu_has_vmx_invept_context(void)
d56f546d 1104{
31299944 1105 return vmx_capability.ept & VMX_EPT_EXTENT_CONTEXT_BIT;
d56f546d
SY
1106}
1107
31299944 1108static inline bool cpu_has_vmx_invept_global(void)
d56f546d 1109{
31299944 1110 return vmx_capability.ept & VMX_EPT_EXTENT_GLOBAL_BIT;
d56f546d
SY
1111}
1112
518c8aee
GJ
1113static inline bool cpu_has_vmx_invvpid_single(void)
1114{
1115 return vmx_capability.vpid & VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT;
1116}
1117
b9d762fa
GJ
1118static inline bool cpu_has_vmx_invvpid_global(void)
1119{
1120 return vmx_capability.vpid & VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
1121}
1122
31299944 1123static inline bool cpu_has_vmx_ept(void)
d56f546d 1124{
04547156
SY
1125 return vmcs_config.cpu_based_2nd_exec_ctrl &
1126 SECONDARY_EXEC_ENABLE_EPT;
d56f546d
SY
1127}
1128
31299944 1129static inline bool cpu_has_vmx_unrestricted_guest(void)
3a624e29
NK
1130{
1131 return vmcs_config.cpu_based_2nd_exec_ctrl &
1132 SECONDARY_EXEC_UNRESTRICTED_GUEST;
1133}
1134
31299944 1135static inline bool cpu_has_vmx_ple(void)
4b8d54f9
ZE
1136{
1137 return vmcs_config.cpu_based_2nd_exec_ctrl &
1138 SECONDARY_EXEC_PAUSE_LOOP_EXITING;
1139}
1140
35754c98 1141static inline bool cpu_need_virtualize_apic_accesses(struct kvm_vcpu *vcpu)
f78e0e2e 1142{
35754c98 1143 return flexpriority_enabled && lapic_in_kernel(vcpu);
f78e0e2e
SY
1144}
1145
31299944 1146static inline bool cpu_has_vmx_vpid(void)
2384d2b3 1147{
04547156
SY
1148 return vmcs_config.cpu_based_2nd_exec_ctrl &
1149 SECONDARY_EXEC_ENABLE_VPID;
2384d2b3
SY
1150}
1151
31299944 1152static inline bool cpu_has_vmx_rdtscp(void)
4e47c7a6
SY
1153{
1154 return vmcs_config.cpu_based_2nd_exec_ctrl &
1155 SECONDARY_EXEC_RDTSCP;
1156}
1157
ad756a16
MJ
1158static inline bool cpu_has_vmx_invpcid(void)
1159{
1160 return vmcs_config.cpu_based_2nd_exec_ctrl &
1161 SECONDARY_EXEC_ENABLE_INVPCID;
1162}
1163
31299944 1164static inline bool cpu_has_virtual_nmis(void)
f08864b4
SY
1165{
1166 return vmcs_config.pin_based_exec_ctrl & PIN_BASED_VIRTUAL_NMIS;
1167}
1168
f5f48ee1
SY
1169static inline bool cpu_has_vmx_wbinvd_exit(void)
1170{
1171 return vmcs_config.cpu_based_2nd_exec_ctrl &
1172 SECONDARY_EXEC_WBINVD_EXITING;
1173}
1174
abc4fc58
AG
1175static inline bool cpu_has_vmx_shadow_vmcs(void)
1176{
1177 u64 vmx_msr;
1178 rdmsrl(MSR_IA32_VMX_MISC, vmx_msr);
1179 /* check if the cpu supports writing r/o exit information fields */
1180 if (!(vmx_msr & MSR_IA32_VMX_MISC_VMWRITE_SHADOW_RO_FIELDS))
1181 return false;
1182
1183 return vmcs_config.cpu_based_2nd_exec_ctrl &
1184 SECONDARY_EXEC_SHADOW_VMCS;
1185}
1186
843e4330
KH
1187static inline bool cpu_has_vmx_pml(void)
1188{
1189 return vmcs_config.cpu_based_2nd_exec_ctrl & SECONDARY_EXEC_ENABLE_PML;
1190}
1191
64903d61
HZ
1192static inline bool cpu_has_vmx_tsc_scaling(void)
1193{
1194 return vmcs_config.cpu_based_2nd_exec_ctrl &
1195 SECONDARY_EXEC_TSC_SCALING;
1196}
1197
04547156
SY
1198static inline bool report_flexpriority(void)
1199{
1200 return flexpriority_enabled;
1201}
1202
fe3ef05c
NHE
1203static inline bool nested_cpu_has(struct vmcs12 *vmcs12, u32 bit)
1204{
1205 return vmcs12->cpu_based_vm_exec_control & bit;
1206}
1207
1208static inline bool nested_cpu_has2(struct vmcs12 *vmcs12, u32 bit)
1209{
1210 return (vmcs12->cpu_based_vm_exec_control &
1211 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) &&
1212 (vmcs12->secondary_vm_exec_control & bit);
1213}
1214
f5c4368f 1215static inline bool nested_cpu_has_virtual_nmis(struct vmcs12 *vmcs12)
644d711a
NHE
1216{
1217 return vmcs12->pin_based_vm_exec_control & PIN_BASED_VIRTUAL_NMIS;
1218}
1219
f4124500
JK
1220static inline bool nested_cpu_has_preemption_timer(struct vmcs12 *vmcs12)
1221{
1222 return vmcs12->pin_based_vm_exec_control &
1223 PIN_BASED_VMX_PREEMPTION_TIMER;
1224}
1225
155a97a3
NHE
1226static inline int nested_cpu_has_ept(struct vmcs12 *vmcs12)
1227{
1228 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_EPT);
1229}
1230
81dc01f7
WL
1231static inline bool nested_cpu_has_xsaves(struct vmcs12 *vmcs12)
1232{
1233 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES) &&
1234 vmx_xsaves_supported();
1235}
1236
f2b93280
WV
1237static inline bool nested_cpu_has_virt_x2apic_mode(struct vmcs12 *vmcs12)
1238{
1239 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE);
1240}
1241
5c614b35
WL
1242static inline bool nested_cpu_has_vpid(struct vmcs12 *vmcs12)
1243{
1244 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_ENABLE_VPID);
1245}
1246
82f0dd4b
WV
1247static inline bool nested_cpu_has_apic_reg_virt(struct vmcs12 *vmcs12)
1248{
1249 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_APIC_REGISTER_VIRT);
1250}
1251
608406e2
WV
1252static inline bool nested_cpu_has_vid(struct vmcs12 *vmcs12)
1253{
1254 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
1255}
1256
705699a1
WV
1257static inline bool nested_cpu_has_posted_intr(struct vmcs12 *vmcs12)
1258{
1259 return vmcs12->pin_based_vm_exec_control & PIN_BASED_POSTED_INTR;
1260}
1261
644d711a
NHE
1262static inline bool is_exception(u32 intr_info)
1263{
1264 return (intr_info & (INTR_INFO_INTR_TYPE_MASK | INTR_INFO_VALID_MASK))
1265 == (INTR_TYPE_HARD_EXCEPTION | INTR_INFO_VALID_MASK);
1266}
1267
533558bc
JK
1268static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
1269 u32 exit_intr_info,
1270 unsigned long exit_qualification);
7c177938
NHE
1271static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
1272 struct vmcs12 *vmcs12,
1273 u32 reason, unsigned long qualification);
1274
8b9cf98c 1275static int __find_msr_index(struct vcpu_vmx *vmx, u32 msr)
7725f0ba
AK
1276{
1277 int i;
1278
a2fa3e9f 1279 for (i = 0; i < vmx->nmsrs; ++i)
26bb0981 1280 if (vmx_msr_index[vmx->guest_msrs[i].index] == msr)
a75beee6
ED
1281 return i;
1282 return -1;
1283}
1284
2384d2b3
SY
1285static inline void __invvpid(int ext, u16 vpid, gva_t gva)
1286{
1287 struct {
1288 u64 vpid : 16;
1289 u64 rsvd : 48;
1290 u64 gva;
1291 } operand = { vpid, 0, gva };
1292
4ecac3fd 1293 asm volatile (__ex(ASM_VMX_INVVPID)
2384d2b3
SY
1294 /* CF==1 or ZF==1 --> rc = -1 */
1295 "; ja 1f ; ud2 ; 1:"
1296 : : "a"(&operand), "c"(ext) : "cc", "memory");
1297}
1298
1439442c
SY
1299static inline void __invept(int ext, u64 eptp, gpa_t gpa)
1300{
1301 struct {
1302 u64 eptp, gpa;
1303 } operand = {eptp, gpa};
1304
4ecac3fd 1305 asm volatile (__ex(ASM_VMX_INVEPT)
1439442c
SY
1306 /* CF==1 or ZF==1 --> rc = -1 */
1307 "; ja 1f ; ud2 ; 1:\n"
1308 : : "a" (&operand), "c" (ext) : "cc", "memory");
1309}
1310
26bb0981 1311static struct shared_msr_entry *find_msr_entry(struct vcpu_vmx *vmx, u32 msr)
a75beee6
ED
1312{
1313 int i;
1314
8b9cf98c 1315 i = __find_msr_index(vmx, msr);
a75beee6 1316 if (i >= 0)
a2fa3e9f 1317 return &vmx->guest_msrs[i];
8b6d44c7 1318 return NULL;
7725f0ba
AK
1319}
1320
6aa8b732
AK
1321static void vmcs_clear(struct vmcs *vmcs)
1322{
1323 u64 phys_addr = __pa(vmcs);
1324 u8 error;
1325
4ecac3fd 1326 asm volatile (__ex(ASM_VMX_VMCLEAR_RAX) "; setna %0"
16d8f72f 1327 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
6aa8b732
AK
1328 : "cc", "memory");
1329 if (error)
1330 printk(KERN_ERR "kvm: vmclear fail: %p/%llx\n",
1331 vmcs, phys_addr);
1332}
1333
d462b819
NHE
1334static inline void loaded_vmcs_init(struct loaded_vmcs *loaded_vmcs)
1335{
1336 vmcs_clear(loaded_vmcs->vmcs);
1337 loaded_vmcs->cpu = -1;
1338 loaded_vmcs->launched = 0;
1339}
1340
7725b894
DX
1341static void vmcs_load(struct vmcs *vmcs)
1342{
1343 u64 phys_addr = __pa(vmcs);
1344 u8 error;
1345
1346 asm volatile (__ex(ASM_VMX_VMPTRLD_RAX) "; setna %0"
16d8f72f 1347 : "=qm"(error) : "a"(&phys_addr), "m"(phys_addr)
7725b894
DX
1348 : "cc", "memory");
1349 if (error)
2844d849 1350 printk(KERN_ERR "kvm: vmptrld %p/%llx failed\n",
7725b894
DX
1351 vmcs, phys_addr);
1352}
1353
2965faa5 1354#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
1355/*
1356 * This bitmap is used to indicate whether the vmclear
1357 * operation is enabled on all cpus. All disabled by
1358 * default.
1359 */
1360static cpumask_t crash_vmclear_enabled_bitmap = CPU_MASK_NONE;
1361
1362static inline void crash_enable_local_vmclear(int cpu)
1363{
1364 cpumask_set_cpu(cpu, &crash_vmclear_enabled_bitmap);
1365}
1366
1367static inline void crash_disable_local_vmclear(int cpu)
1368{
1369 cpumask_clear_cpu(cpu, &crash_vmclear_enabled_bitmap);
1370}
1371
1372static inline int crash_local_vmclear_enabled(int cpu)
1373{
1374 return cpumask_test_cpu(cpu, &crash_vmclear_enabled_bitmap);
1375}
1376
1377static void crash_vmclear_local_loaded_vmcss(void)
1378{
1379 int cpu = raw_smp_processor_id();
1380 struct loaded_vmcs *v;
1381
1382 if (!crash_local_vmclear_enabled(cpu))
1383 return;
1384
1385 list_for_each_entry(v, &per_cpu(loaded_vmcss_on_cpu, cpu),
1386 loaded_vmcss_on_cpu_link)
1387 vmcs_clear(v->vmcs);
1388}
1389#else
1390static inline void crash_enable_local_vmclear(int cpu) { }
1391static inline void crash_disable_local_vmclear(int cpu) { }
2965faa5 1392#endif /* CONFIG_KEXEC_CORE */
8f536b76 1393
d462b819 1394static void __loaded_vmcs_clear(void *arg)
6aa8b732 1395{
d462b819 1396 struct loaded_vmcs *loaded_vmcs = arg;
d3b2c338 1397 int cpu = raw_smp_processor_id();
6aa8b732 1398
d462b819
NHE
1399 if (loaded_vmcs->cpu != cpu)
1400 return; /* vcpu migration can race with cpu offline */
1401 if (per_cpu(current_vmcs, cpu) == loaded_vmcs->vmcs)
6aa8b732 1402 per_cpu(current_vmcs, cpu) = NULL;
8f536b76 1403 crash_disable_local_vmclear(cpu);
d462b819 1404 list_del(&loaded_vmcs->loaded_vmcss_on_cpu_link);
5a560f8b
XG
1405
1406 /*
1407 * we should ensure updating loaded_vmcs->loaded_vmcss_on_cpu_link
1408 * is before setting loaded_vmcs->vcpu to -1 which is done in
1409 * loaded_vmcs_init. Otherwise, other cpu can see vcpu = -1 fist
1410 * then adds the vmcs into percpu list before it is deleted.
1411 */
1412 smp_wmb();
1413
d462b819 1414 loaded_vmcs_init(loaded_vmcs);
8f536b76 1415 crash_enable_local_vmclear(cpu);
6aa8b732
AK
1416}
1417
d462b819 1418static void loaded_vmcs_clear(struct loaded_vmcs *loaded_vmcs)
8d0be2b3 1419{
e6c7d321
XG
1420 int cpu = loaded_vmcs->cpu;
1421
1422 if (cpu != -1)
1423 smp_call_function_single(cpu,
1424 __loaded_vmcs_clear, loaded_vmcs, 1);
8d0be2b3
AK
1425}
1426
dd5f5341 1427static inline void vpid_sync_vcpu_single(int vpid)
2384d2b3 1428{
dd5f5341 1429 if (vpid == 0)
2384d2b3
SY
1430 return;
1431
518c8aee 1432 if (cpu_has_vmx_invvpid_single())
dd5f5341 1433 __invvpid(VMX_VPID_EXTENT_SINGLE_CONTEXT, vpid, 0);
2384d2b3
SY
1434}
1435
b9d762fa
GJ
1436static inline void vpid_sync_vcpu_global(void)
1437{
1438 if (cpu_has_vmx_invvpid_global())
1439 __invvpid(VMX_VPID_EXTENT_ALL_CONTEXT, 0, 0);
1440}
1441
dd5f5341 1442static inline void vpid_sync_context(int vpid)
b9d762fa
GJ
1443{
1444 if (cpu_has_vmx_invvpid_single())
dd5f5341 1445 vpid_sync_vcpu_single(vpid);
b9d762fa
GJ
1446 else
1447 vpid_sync_vcpu_global();
1448}
1449
1439442c
SY
1450static inline void ept_sync_global(void)
1451{
1452 if (cpu_has_vmx_invept_global())
1453 __invept(VMX_EPT_EXTENT_GLOBAL, 0, 0);
1454}
1455
1456static inline void ept_sync_context(u64 eptp)
1457{
089d034e 1458 if (enable_ept) {
1439442c
SY
1459 if (cpu_has_vmx_invept_context())
1460 __invept(VMX_EPT_EXTENT_CONTEXT, eptp, 0);
1461 else
1462 ept_sync_global();
1463 }
1464}
1465
8a86aea9
PB
1466static __always_inline void vmcs_check16(unsigned long field)
1467{
1468 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1469 "16-bit accessor invalid for 64-bit field");
1470 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1471 "16-bit accessor invalid for 64-bit high field");
1472 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1473 "16-bit accessor invalid for 32-bit high field");
1474 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1475 "16-bit accessor invalid for natural width field");
1476}
1477
1478static __always_inline void vmcs_check32(unsigned long field)
1479{
1480 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1481 "32-bit accessor invalid for 16-bit field");
1482 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1483 "32-bit accessor invalid for natural width field");
1484}
1485
1486static __always_inline void vmcs_check64(unsigned long field)
1487{
1488 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1489 "64-bit accessor invalid for 16-bit field");
1490 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1491 "64-bit accessor invalid for 64-bit high field");
1492 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1493 "64-bit accessor invalid for 32-bit field");
1494 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x6000,
1495 "64-bit accessor invalid for natural width field");
1496}
1497
1498static __always_inline void vmcs_checkl(unsigned long field)
1499{
1500 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0,
1501 "Natural width accessor invalid for 16-bit field");
1502 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2000,
1503 "Natural width accessor invalid for 64-bit field");
1504 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6001) == 0x2001,
1505 "Natural width accessor invalid for 64-bit high field");
1506 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x4000,
1507 "Natural width accessor invalid for 32-bit field");
1508}
1509
1510static __always_inline unsigned long __vmcs_readl(unsigned long field)
6aa8b732 1511{
5e520e62 1512 unsigned long value;
6aa8b732 1513
5e520e62
AK
1514 asm volatile (__ex_clear(ASM_VMX_VMREAD_RDX_RAX, "%0")
1515 : "=a"(value) : "d"(field) : "cc");
6aa8b732
AK
1516 return value;
1517}
1518
96304217 1519static __always_inline u16 vmcs_read16(unsigned long field)
6aa8b732 1520{
8a86aea9
PB
1521 vmcs_check16(field);
1522 return __vmcs_readl(field);
6aa8b732
AK
1523}
1524
96304217 1525static __always_inline u32 vmcs_read32(unsigned long field)
6aa8b732 1526{
8a86aea9
PB
1527 vmcs_check32(field);
1528 return __vmcs_readl(field);
6aa8b732
AK
1529}
1530
96304217 1531static __always_inline u64 vmcs_read64(unsigned long field)
6aa8b732 1532{
8a86aea9 1533 vmcs_check64(field);
05b3e0c2 1534#ifdef CONFIG_X86_64
8a86aea9 1535 return __vmcs_readl(field);
6aa8b732 1536#else
8a86aea9 1537 return __vmcs_readl(field) | ((u64)__vmcs_readl(field+1) << 32);
6aa8b732
AK
1538#endif
1539}
1540
8a86aea9
PB
1541static __always_inline unsigned long vmcs_readl(unsigned long field)
1542{
1543 vmcs_checkl(field);
1544 return __vmcs_readl(field);
1545}
1546
e52de1b8
AK
1547static noinline void vmwrite_error(unsigned long field, unsigned long value)
1548{
1549 printk(KERN_ERR "vmwrite error: reg %lx value %lx (err %d)\n",
1550 field, value, vmcs_read32(VM_INSTRUCTION_ERROR));
1551 dump_stack();
1552}
1553
8a86aea9 1554static __always_inline void __vmcs_writel(unsigned long field, unsigned long value)
6aa8b732
AK
1555{
1556 u8 error;
1557
4ecac3fd 1558 asm volatile (__ex(ASM_VMX_VMWRITE_RAX_RDX) "; setna %0"
d77c26fc 1559 : "=q"(error) : "a"(value), "d"(field) : "cc");
e52de1b8
AK
1560 if (unlikely(error))
1561 vmwrite_error(field, value);
6aa8b732
AK
1562}
1563
8a86aea9 1564static __always_inline void vmcs_write16(unsigned long field, u16 value)
6aa8b732 1565{
8a86aea9
PB
1566 vmcs_check16(field);
1567 __vmcs_writel(field, value);
6aa8b732
AK
1568}
1569
8a86aea9 1570static __always_inline void vmcs_write32(unsigned long field, u32 value)
6aa8b732 1571{
8a86aea9
PB
1572 vmcs_check32(field);
1573 __vmcs_writel(field, value);
6aa8b732
AK
1574}
1575
8a86aea9 1576static __always_inline void vmcs_write64(unsigned long field, u64 value)
6aa8b732 1577{
8a86aea9
PB
1578 vmcs_check64(field);
1579 __vmcs_writel(field, value);
7682f2d0 1580#ifndef CONFIG_X86_64
6aa8b732 1581 asm volatile ("");
8a86aea9 1582 __vmcs_writel(field+1, value >> 32);
6aa8b732
AK
1583#endif
1584}
1585
8a86aea9 1586static __always_inline void vmcs_writel(unsigned long field, unsigned long value)
2ab455cc 1587{
8a86aea9
PB
1588 vmcs_checkl(field);
1589 __vmcs_writel(field, value);
2ab455cc
AL
1590}
1591
8a86aea9 1592static __always_inline void vmcs_clear_bits(unsigned long field, u32 mask)
2ab455cc 1593{
8a86aea9
PB
1594 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1595 "vmcs_clear_bits does not support 64-bit fields");
1596 __vmcs_writel(field, __vmcs_readl(field) & ~mask);
2ab455cc
AL
1597}
1598
8a86aea9 1599static __always_inline void vmcs_set_bits(unsigned long field, u32 mask)
2ab455cc 1600{
8a86aea9
PB
1601 BUILD_BUG_ON_MSG(__builtin_constant_p(field) && ((field) & 0x6000) == 0x2000,
1602 "vmcs_set_bits does not support 64-bit fields");
1603 __vmcs_writel(field, __vmcs_readl(field) | mask);
2ab455cc
AL
1604}
1605
2961e876
GN
1606static inline void vm_entry_controls_init(struct vcpu_vmx *vmx, u32 val)
1607{
1608 vmcs_write32(VM_ENTRY_CONTROLS, val);
1609 vmx->vm_entry_controls_shadow = val;
1610}
1611
1612static inline void vm_entry_controls_set(struct vcpu_vmx *vmx, u32 val)
1613{
1614 if (vmx->vm_entry_controls_shadow != val)
1615 vm_entry_controls_init(vmx, val);
1616}
1617
1618static inline u32 vm_entry_controls_get(struct vcpu_vmx *vmx)
1619{
1620 return vmx->vm_entry_controls_shadow;
1621}
1622
1623
1624static inline void vm_entry_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1625{
1626 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) | val);
1627}
1628
1629static inline void vm_entry_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1630{
1631 vm_entry_controls_set(vmx, vm_entry_controls_get(vmx) & ~val);
1632}
1633
1634static inline void vm_exit_controls_init(struct vcpu_vmx *vmx, u32 val)
1635{
1636 vmcs_write32(VM_EXIT_CONTROLS, val);
1637 vmx->vm_exit_controls_shadow = val;
1638}
1639
1640static inline void vm_exit_controls_set(struct vcpu_vmx *vmx, u32 val)
1641{
1642 if (vmx->vm_exit_controls_shadow != val)
1643 vm_exit_controls_init(vmx, val);
1644}
1645
1646static inline u32 vm_exit_controls_get(struct vcpu_vmx *vmx)
1647{
1648 return vmx->vm_exit_controls_shadow;
1649}
1650
1651
1652static inline void vm_exit_controls_setbit(struct vcpu_vmx *vmx, u32 val)
1653{
1654 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) | val);
1655}
1656
1657static inline void vm_exit_controls_clearbit(struct vcpu_vmx *vmx, u32 val)
1658{
1659 vm_exit_controls_set(vmx, vm_exit_controls_get(vmx) & ~val);
1660}
1661
2fb92db1
AK
1662static void vmx_segment_cache_clear(struct vcpu_vmx *vmx)
1663{
1664 vmx->segment_cache.bitmask = 0;
1665}
1666
1667static bool vmx_segment_cache_test_set(struct vcpu_vmx *vmx, unsigned seg,
1668 unsigned field)
1669{
1670 bool ret;
1671 u32 mask = 1 << (seg * SEG_FIELD_NR + field);
1672
1673 if (!(vmx->vcpu.arch.regs_avail & (1 << VCPU_EXREG_SEGMENTS))) {
1674 vmx->vcpu.arch.regs_avail |= (1 << VCPU_EXREG_SEGMENTS);
1675 vmx->segment_cache.bitmask = 0;
1676 }
1677 ret = vmx->segment_cache.bitmask & mask;
1678 vmx->segment_cache.bitmask |= mask;
1679 return ret;
1680}
1681
1682static u16 vmx_read_guest_seg_selector(struct vcpu_vmx *vmx, unsigned seg)
1683{
1684 u16 *p = &vmx->segment_cache.seg[seg].selector;
1685
1686 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_SEL))
1687 *p = vmcs_read16(kvm_vmx_segment_fields[seg].selector);
1688 return *p;
1689}
1690
1691static ulong vmx_read_guest_seg_base(struct vcpu_vmx *vmx, unsigned seg)
1692{
1693 ulong *p = &vmx->segment_cache.seg[seg].base;
1694
1695 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_BASE))
1696 *p = vmcs_readl(kvm_vmx_segment_fields[seg].base);
1697 return *p;
1698}
1699
1700static u32 vmx_read_guest_seg_limit(struct vcpu_vmx *vmx, unsigned seg)
1701{
1702 u32 *p = &vmx->segment_cache.seg[seg].limit;
1703
1704 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_LIMIT))
1705 *p = vmcs_read32(kvm_vmx_segment_fields[seg].limit);
1706 return *p;
1707}
1708
1709static u32 vmx_read_guest_seg_ar(struct vcpu_vmx *vmx, unsigned seg)
1710{
1711 u32 *p = &vmx->segment_cache.seg[seg].ar;
1712
1713 if (!vmx_segment_cache_test_set(vmx, seg, SEG_FIELD_AR))
1714 *p = vmcs_read32(kvm_vmx_segment_fields[seg].ar_bytes);
1715 return *p;
1716}
1717
abd3f2d6
AK
1718static void update_exception_bitmap(struct kvm_vcpu *vcpu)
1719{
1720 u32 eb;
1721
fd7373cc 1722 eb = (1u << PF_VECTOR) | (1u << UD_VECTOR) | (1u << MC_VECTOR) |
54a20552 1723 (1u << NM_VECTOR) | (1u << DB_VECTOR) | (1u << AC_VECTOR);
fd7373cc
JK
1724 if ((vcpu->guest_debug &
1725 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP)) ==
1726 (KVM_GUESTDBG_ENABLE | KVM_GUESTDBG_USE_SW_BP))
1727 eb |= 1u << BP_VECTOR;
7ffd92c5 1728 if (to_vmx(vcpu)->rmode.vm86_active)
abd3f2d6 1729 eb = ~0;
089d034e 1730 if (enable_ept)
1439442c 1731 eb &= ~(1u << PF_VECTOR); /* bypass_guest_pf = 0 */
02daab21
AK
1732 if (vcpu->fpu_active)
1733 eb &= ~(1u << NM_VECTOR);
36cf24e0
NHE
1734
1735 /* When we are running a nested L2 guest and L1 specified for it a
1736 * certain exception bitmap, we must trap the same exceptions and pass
1737 * them to L1. When running L2, we will only handle the exceptions
1738 * specified above if L1 did not want them.
1739 */
1740 if (is_guest_mode(vcpu))
1741 eb |= get_vmcs12(vcpu)->exception_bitmap;
1742
abd3f2d6
AK
1743 vmcs_write32(EXCEPTION_BITMAP, eb);
1744}
1745
2961e876
GN
1746static void clear_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1747 unsigned long entry, unsigned long exit)
8bf00a52 1748{
2961e876
GN
1749 vm_entry_controls_clearbit(vmx, entry);
1750 vm_exit_controls_clearbit(vmx, exit);
8bf00a52
GN
1751}
1752
61d2ef2c
AK
1753static void clear_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr)
1754{
1755 unsigned i;
1756 struct msr_autoload *m = &vmx->msr_autoload;
1757
8bf00a52
GN
1758 switch (msr) {
1759 case MSR_EFER:
1760 if (cpu_has_load_ia32_efer) {
2961e876
GN
1761 clear_atomic_switch_msr_special(vmx,
1762 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1763 VM_EXIT_LOAD_IA32_EFER);
1764 return;
1765 }
1766 break;
1767 case MSR_CORE_PERF_GLOBAL_CTRL:
1768 if (cpu_has_load_perf_global_ctrl) {
2961e876 1769 clear_atomic_switch_msr_special(vmx,
8bf00a52
GN
1770 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1771 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
1772 return;
1773 }
1774 break;
110312c8
AK
1775 }
1776
61d2ef2c
AK
1777 for (i = 0; i < m->nr; ++i)
1778 if (m->guest[i].index == msr)
1779 break;
1780
1781 if (i == m->nr)
1782 return;
1783 --m->nr;
1784 m->guest[i] = m->guest[m->nr];
1785 m->host[i] = m->host[m->nr];
1786 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1787 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1788}
1789
2961e876
GN
1790static void add_atomic_switch_msr_special(struct vcpu_vmx *vmx,
1791 unsigned long entry, unsigned long exit,
1792 unsigned long guest_val_vmcs, unsigned long host_val_vmcs,
1793 u64 guest_val, u64 host_val)
8bf00a52
GN
1794{
1795 vmcs_write64(guest_val_vmcs, guest_val);
1796 vmcs_write64(host_val_vmcs, host_val);
2961e876
GN
1797 vm_entry_controls_setbit(vmx, entry);
1798 vm_exit_controls_setbit(vmx, exit);
8bf00a52
GN
1799}
1800
61d2ef2c
AK
1801static void add_atomic_switch_msr(struct vcpu_vmx *vmx, unsigned msr,
1802 u64 guest_val, u64 host_val)
1803{
1804 unsigned i;
1805 struct msr_autoload *m = &vmx->msr_autoload;
1806
8bf00a52
GN
1807 switch (msr) {
1808 case MSR_EFER:
1809 if (cpu_has_load_ia32_efer) {
2961e876
GN
1810 add_atomic_switch_msr_special(vmx,
1811 VM_ENTRY_LOAD_IA32_EFER,
8bf00a52
GN
1812 VM_EXIT_LOAD_IA32_EFER,
1813 GUEST_IA32_EFER,
1814 HOST_IA32_EFER,
1815 guest_val, host_val);
1816 return;
1817 }
1818 break;
1819 case MSR_CORE_PERF_GLOBAL_CTRL:
1820 if (cpu_has_load_perf_global_ctrl) {
2961e876 1821 add_atomic_switch_msr_special(vmx,
8bf00a52
GN
1822 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL,
1823 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL,
1824 GUEST_IA32_PERF_GLOBAL_CTRL,
1825 HOST_IA32_PERF_GLOBAL_CTRL,
1826 guest_val, host_val);
1827 return;
1828 }
1829 break;
7099e2e1
RK
1830 case MSR_IA32_PEBS_ENABLE:
1831 /* PEBS needs a quiescent period after being disabled (to write
1832 * a record). Disabling PEBS through VMX MSR swapping doesn't
1833 * provide that period, so a CPU could write host's record into
1834 * guest's memory.
1835 */
1836 wrmsrl(MSR_IA32_PEBS_ENABLE, 0);
110312c8
AK
1837 }
1838
61d2ef2c
AK
1839 for (i = 0; i < m->nr; ++i)
1840 if (m->guest[i].index == msr)
1841 break;
1842
e7fc6f93 1843 if (i == NR_AUTOLOAD_MSRS) {
60266204 1844 printk_once(KERN_WARNING "Not enough msr switch entries. "
e7fc6f93
GN
1845 "Can't add msr %x\n", msr);
1846 return;
1847 } else if (i == m->nr) {
61d2ef2c
AK
1848 ++m->nr;
1849 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, m->nr);
1850 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, m->nr);
1851 }
1852
1853 m->guest[i].index = msr;
1854 m->guest[i].value = guest_val;
1855 m->host[i].index = msr;
1856 m->host[i].value = host_val;
1857}
1858
33ed6329
AK
1859static void reload_tss(void)
1860{
33ed6329
AK
1861 /*
1862 * VT restores TR but not its size. Useless.
1863 */
89cbc767 1864 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
a5f61300 1865 struct desc_struct *descs;
33ed6329 1866
d359192f 1867 descs = (void *)gdt->address;
33ed6329
AK
1868 descs[GDT_ENTRY_TSS].type = 9; /* available TSS */
1869 load_TR_desc();
33ed6329
AK
1870}
1871
92c0d900 1872static bool update_transition_efer(struct vcpu_vmx *vmx, int efer_offset)
2cc51560 1873{
844a5fe2
PB
1874 u64 guest_efer = vmx->vcpu.arch.efer;
1875 u64 ignore_bits = 0;
1876
1877 if (!enable_ept) {
1878 /*
1879 * NX is needed to handle CR0.WP=1, CR4.SMEP=1. Testing
1880 * host CPUID is more efficient than testing guest CPUID
1881 * or CR4. Host SMEP is anyway a requirement for guest SMEP.
1882 */
1883 if (boot_cpu_has(X86_FEATURE_SMEP))
1884 guest_efer |= EFER_NX;
1885 else if (!(guest_efer & EFER_NX))
1886 ignore_bits |= EFER_NX;
1887 }
3a34a881 1888
51c6cf66 1889 /*
844a5fe2 1890 * LMA and LME handled by hardware; SCE meaningless outside long mode.
51c6cf66 1891 */
844a5fe2 1892 ignore_bits |= EFER_SCE;
51c6cf66
AK
1893#ifdef CONFIG_X86_64
1894 ignore_bits |= EFER_LMA | EFER_LME;
1895 /* SCE is meaningful only in long mode on Intel */
1896 if (guest_efer & EFER_LMA)
1897 ignore_bits &= ~(u64)EFER_SCE;
1898#endif
84ad33ef
AK
1899
1900 clear_atomic_switch_msr(vmx, MSR_EFER);
f6577a5f
AL
1901
1902 /*
1903 * On EPT, we can't emulate NX, so we must switch EFER atomically.
1904 * On CPUs that support "load IA32_EFER", always switch EFER
1905 * atomically, since it's faster than switching it manually.
1906 */
1907 if (cpu_has_load_ia32_efer ||
1908 (enable_ept && ((vmx->vcpu.arch.efer ^ host_efer) & EFER_NX))) {
84ad33ef
AK
1909 if (!(guest_efer & EFER_LMA))
1910 guest_efer &= ~EFER_LME;
54b98bff
AL
1911 if (guest_efer != host_efer)
1912 add_atomic_switch_msr(vmx, MSR_EFER,
1913 guest_efer, host_efer);
84ad33ef 1914 return false;
844a5fe2
PB
1915 } else {
1916 guest_efer &= ~ignore_bits;
1917 guest_efer |= host_efer & ignore_bits;
1918
1919 vmx->guest_msrs[efer_offset].data = guest_efer;
1920 vmx->guest_msrs[efer_offset].mask = ~ignore_bits;
84ad33ef 1921
844a5fe2
PB
1922 return true;
1923 }
51c6cf66
AK
1924}
1925
2d49ec72
GN
1926static unsigned long segment_base(u16 selector)
1927{
89cbc767 1928 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
2d49ec72
GN
1929 struct desc_struct *d;
1930 unsigned long table_base;
1931 unsigned long v;
1932
1933 if (!(selector & ~3))
1934 return 0;
1935
d359192f 1936 table_base = gdt->address;
2d49ec72
GN
1937
1938 if (selector & 4) { /* from ldt */
1939 u16 ldt_selector = kvm_read_ldt();
1940
1941 if (!(ldt_selector & ~3))
1942 return 0;
1943
1944 table_base = segment_base(ldt_selector);
1945 }
1946 d = (struct desc_struct *)(table_base + (selector & ~7));
1947 v = get_desc_base(d);
1948#ifdef CONFIG_X86_64
1949 if (d->s == 0 && (d->type == 2 || d->type == 9 || d->type == 11))
1950 v |= ((unsigned long)((struct ldttss_desc64 *)d)->base3) << 32;
1951#endif
1952 return v;
1953}
1954
1955static inline unsigned long kvm_read_tr_base(void)
1956{
1957 u16 tr;
1958 asm("str %0" : "=g"(tr));
1959 return segment_base(tr);
1960}
1961
04d2cc77 1962static void vmx_save_host_state(struct kvm_vcpu *vcpu)
33ed6329 1963{
04d2cc77 1964 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 1965 int i;
04d2cc77 1966
a2fa3e9f 1967 if (vmx->host_state.loaded)
33ed6329
AK
1968 return;
1969
a2fa3e9f 1970 vmx->host_state.loaded = 1;
33ed6329
AK
1971 /*
1972 * Set host fs and gs selectors. Unfortunately, 22.2.3 does not
1973 * allow segment selectors with cpl > 0 or ti == 1.
1974 */
d6e88aec 1975 vmx->host_state.ldt_sel = kvm_read_ldt();
152d3f2f 1976 vmx->host_state.gs_ldt_reload_needed = vmx->host_state.ldt_sel;
9581d442 1977 savesegment(fs, vmx->host_state.fs_sel);
152d3f2f 1978 if (!(vmx->host_state.fs_sel & 7)) {
a2fa3e9f 1979 vmcs_write16(HOST_FS_SELECTOR, vmx->host_state.fs_sel);
152d3f2f
LV
1980 vmx->host_state.fs_reload_needed = 0;
1981 } else {
33ed6329 1982 vmcs_write16(HOST_FS_SELECTOR, 0);
152d3f2f 1983 vmx->host_state.fs_reload_needed = 1;
33ed6329 1984 }
9581d442 1985 savesegment(gs, vmx->host_state.gs_sel);
a2fa3e9f
GH
1986 if (!(vmx->host_state.gs_sel & 7))
1987 vmcs_write16(HOST_GS_SELECTOR, vmx->host_state.gs_sel);
33ed6329
AK
1988 else {
1989 vmcs_write16(HOST_GS_SELECTOR, 0);
152d3f2f 1990 vmx->host_state.gs_ldt_reload_needed = 1;
33ed6329
AK
1991 }
1992
b2da15ac
AK
1993#ifdef CONFIG_X86_64
1994 savesegment(ds, vmx->host_state.ds_sel);
1995 savesegment(es, vmx->host_state.es_sel);
1996#endif
1997
33ed6329
AK
1998#ifdef CONFIG_X86_64
1999 vmcs_writel(HOST_FS_BASE, read_msr(MSR_FS_BASE));
2000 vmcs_writel(HOST_GS_BASE, read_msr(MSR_GS_BASE));
2001#else
a2fa3e9f
GH
2002 vmcs_writel(HOST_FS_BASE, segment_base(vmx->host_state.fs_sel));
2003 vmcs_writel(HOST_GS_BASE, segment_base(vmx->host_state.gs_sel));
33ed6329 2004#endif
707c0874
AK
2005
2006#ifdef CONFIG_X86_64
c8770e7b
AK
2007 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
2008 if (is_long_mode(&vmx->vcpu))
44ea2b17 2009 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
707c0874 2010#endif
da8999d3
LJ
2011 if (boot_cpu_has(X86_FEATURE_MPX))
2012 rdmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
26bb0981
AK
2013 for (i = 0; i < vmx->save_nmsrs; ++i)
2014 kvm_set_shared_msr(vmx->guest_msrs[i].index,
d5696725
AK
2015 vmx->guest_msrs[i].data,
2016 vmx->guest_msrs[i].mask);
33ed6329
AK
2017}
2018
a9b21b62 2019static void __vmx_load_host_state(struct vcpu_vmx *vmx)
33ed6329 2020{
a2fa3e9f 2021 if (!vmx->host_state.loaded)
33ed6329
AK
2022 return;
2023
e1beb1d3 2024 ++vmx->vcpu.stat.host_state_reload;
a2fa3e9f 2025 vmx->host_state.loaded = 0;
c8770e7b
AK
2026#ifdef CONFIG_X86_64
2027 if (is_long_mode(&vmx->vcpu))
2028 rdmsrl(MSR_KERNEL_GS_BASE, vmx->msr_guest_kernel_gs_base);
2029#endif
152d3f2f 2030 if (vmx->host_state.gs_ldt_reload_needed) {
d6e88aec 2031 kvm_load_ldt(vmx->host_state.ldt_sel);
33ed6329 2032#ifdef CONFIG_X86_64
9581d442 2033 load_gs_index(vmx->host_state.gs_sel);
9581d442
AK
2034#else
2035 loadsegment(gs, vmx->host_state.gs_sel);
33ed6329 2036#endif
33ed6329 2037 }
0a77fe4c
AK
2038 if (vmx->host_state.fs_reload_needed)
2039 loadsegment(fs, vmx->host_state.fs_sel);
b2da15ac
AK
2040#ifdef CONFIG_X86_64
2041 if (unlikely(vmx->host_state.ds_sel | vmx->host_state.es_sel)) {
2042 loadsegment(ds, vmx->host_state.ds_sel);
2043 loadsegment(es, vmx->host_state.es_sel);
2044 }
b2da15ac 2045#endif
152d3f2f 2046 reload_tss();
44ea2b17 2047#ifdef CONFIG_X86_64
c8770e7b 2048 wrmsrl(MSR_KERNEL_GS_BASE, vmx->msr_host_kernel_gs_base);
44ea2b17 2049#endif
da8999d3
LJ
2050 if (vmx->host_state.msr_host_bndcfgs)
2051 wrmsrl(MSR_IA32_BNDCFGS, vmx->host_state.msr_host_bndcfgs);
b1a74bf8
SS
2052 /*
2053 * If the FPU is not active (through the host task or
2054 * the guest vcpu), then restore the cr0.TS bit.
2055 */
3c6dffa9 2056 if (!fpregs_active() && !vmx->vcpu.guest_fpu_loaded)
b1a74bf8 2057 stts();
89cbc767 2058 load_gdt(this_cpu_ptr(&host_gdt));
33ed6329
AK
2059}
2060
a9b21b62
AK
2061static void vmx_load_host_state(struct vcpu_vmx *vmx)
2062{
2063 preempt_disable();
2064 __vmx_load_host_state(vmx);
2065 preempt_enable();
2066}
2067
28b835d6
FW
2068static void vmx_vcpu_pi_load(struct kvm_vcpu *vcpu, int cpu)
2069{
2070 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2071 struct pi_desc old, new;
2072 unsigned int dest;
2073
2074 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2075 !irq_remapping_cap(IRQ_POSTING_CAP))
2076 return;
2077
2078 do {
2079 old.control = new.control = pi_desc->control;
2080
2081 /*
2082 * If 'nv' field is POSTED_INTR_WAKEUP_VECTOR, there
2083 * are two possible cases:
2084 * 1. After running 'pre_block', context switch
2085 * happened. For this case, 'sn' was set in
2086 * vmx_vcpu_put(), so we need to clear it here.
2087 * 2. After running 'pre_block', we were blocked,
2088 * and woken up by some other guy. For this case,
2089 * we don't need to do anything, 'pi_post_block'
2090 * will do everything for us. However, we cannot
2091 * check whether it is case #1 or case #2 here
2092 * (maybe, not needed), so we also clear sn here,
2093 * I think it is not a big deal.
2094 */
2095 if (pi_desc->nv != POSTED_INTR_WAKEUP_VECTOR) {
2096 if (vcpu->cpu != cpu) {
2097 dest = cpu_physical_id(cpu);
2098
2099 if (x2apic_enabled())
2100 new.ndst = dest;
2101 else
2102 new.ndst = (dest << 8) & 0xFF00;
2103 }
2104
2105 /* set 'NV' to 'notification vector' */
2106 new.nv = POSTED_INTR_VECTOR;
2107 }
2108
2109 /* Allow posting non-urgent interrupts */
2110 new.sn = 0;
2111 } while (cmpxchg(&pi_desc->control, old.control,
2112 new.control) != old.control);
2113}
1be0e61c 2114
6aa8b732
AK
2115/*
2116 * Switches to specified vcpu, until a matching vcpu_put(), but assumes
2117 * vcpu mutex is already taken.
2118 */
15ad7146 2119static void vmx_vcpu_load(struct kvm_vcpu *vcpu, int cpu)
6aa8b732 2120{
a2fa3e9f 2121 struct vcpu_vmx *vmx = to_vmx(vcpu);
4610c9cc 2122 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
6aa8b732 2123
4610c9cc
DX
2124 if (!vmm_exclusive)
2125 kvm_cpu_vmxon(phys_addr);
d462b819
NHE
2126 else if (vmx->loaded_vmcs->cpu != cpu)
2127 loaded_vmcs_clear(vmx->loaded_vmcs);
6aa8b732 2128
d462b819
NHE
2129 if (per_cpu(current_vmcs, cpu) != vmx->loaded_vmcs->vmcs) {
2130 per_cpu(current_vmcs, cpu) = vmx->loaded_vmcs->vmcs;
2131 vmcs_load(vmx->loaded_vmcs->vmcs);
6aa8b732
AK
2132 }
2133
d462b819 2134 if (vmx->loaded_vmcs->cpu != cpu) {
89cbc767 2135 struct desc_ptr *gdt = this_cpu_ptr(&host_gdt);
6aa8b732
AK
2136 unsigned long sysenter_esp;
2137
a8eeb04a 2138 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
92fe13be 2139 local_irq_disable();
8f536b76 2140 crash_disable_local_vmclear(cpu);
5a560f8b
XG
2141
2142 /*
2143 * Read loaded_vmcs->cpu should be before fetching
2144 * loaded_vmcs->loaded_vmcss_on_cpu_link.
2145 * See the comments in __loaded_vmcs_clear().
2146 */
2147 smp_rmb();
2148
d462b819
NHE
2149 list_add(&vmx->loaded_vmcs->loaded_vmcss_on_cpu_link,
2150 &per_cpu(loaded_vmcss_on_cpu, cpu));
8f536b76 2151 crash_enable_local_vmclear(cpu);
92fe13be
DX
2152 local_irq_enable();
2153
6aa8b732
AK
2154 /*
2155 * Linux uses per-cpu TSS and GDT, so set these when switching
2156 * processors.
2157 */
d6e88aec 2158 vmcs_writel(HOST_TR_BASE, kvm_read_tr_base()); /* 22.2.4 */
d359192f 2159 vmcs_writel(HOST_GDTR_BASE, gdt->address); /* 22.2.4 */
6aa8b732
AK
2160
2161 rdmsrl(MSR_IA32_SYSENTER_ESP, sysenter_esp);
2162 vmcs_writel(HOST_IA32_SYSENTER_ESP, sysenter_esp); /* 22.2.3 */
ff2c3a18 2163
d462b819 2164 vmx->loaded_vmcs->cpu = cpu;
6aa8b732 2165 }
28b835d6 2166
2680d6da
OH
2167 /* Setup TSC multiplier */
2168 if (kvm_has_tsc_control &&
2169 vmx->current_tsc_ratio != vcpu->arch.tsc_scaling_ratio) {
2170 vmx->current_tsc_ratio = vcpu->arch.tsc_scaling_ratio;
2171 vmcs_write64(TSC_MULTIPLIER, vmx->current_tsc_ratio);
2172 }
2173
28b835d6 2174 vmx_vcpu_pi_load(vcpu, cpu);
1be0e61c 2175 vmx->host_pkru = read_pkru();
28b835d6
FW
2176}
2177
2178static void vmx_vcpu_pi_put(struct kvm_vcpu *vcpu)
2179{
2180 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
2181
2182 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
2183 !irq_remapping_cap(IRQ_POSTING_CAP))
2184 return;
2185
2186 /* Set SN when the vCPU is preempted */
2187 if (vcpu->preempted)
2188 pi_set_sn(pi_desc);
6aa8b732
AK
2189}
2190
2191static void vmx_vcpu_put(struct kvm_vcpu *vcpu)
2192{
28b835d6
FW
2193 vmx_vcpu_pi_put(vcpu);
2194
a9b21b62 2195 __vmx_load_host_state(to_vmx(vcpu));
4610c9cc 2196 if (!vmm_exclusive) {
d462b819
NHE
2197 __loaded_vmcs_clear(to_vmx(vcpu)->loaded_vmcs);
2198 vcpu->cpu = -1;
4610c9cc
DX
2199 kvm_cpu_vmxoff();
2200 }
6aa8b732
AK
2201}
2202
5fd86fcf
AK
2203static void vmx_fpu_activate(struct kvm_vcpu *vcpu)
2204{
81231c69
AK
2205 ulong cr0;
2206
5fd86fcf
AK
2207 if (vcpu->fpu_active)
2208 return;
2209 vcpu->fpu_active = 1;
81231c69
AK
2210 cr0 = vmcs_readl(GUEST_CR0);
2211 cr0 &= ~(X86_CR0_TS | X86_CR0_MP);
2212 cr0 |= kvm_read_cr0_bits(vcpu, X86_CR0_TS | X86_CR0_MP);
2213 vmcs_writel(GUEST_CR0, cr0);
5fd86fcf 2214 update_exception_bitmap(vcpu);
edcafe3c 2215 vcpu->arch.cr0_guest_owned_bits = X86_CR0_TS;
36cf24e0
NHE
2216 if (is_guest_mode(vcpu))
2217 vcpu->arch.cr0_guest_owned_bits &=
2218 ~get_vmcs12(vcpu)->cr0_guest_host_mask;
edcafe3c 2219 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
5fd86fcf
AK
2220}
2221
edcafe3c
AK
2222static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu);
2223
fe3ef05c
NHE
2224/*
2225 * Return the cr0 value that a nested guest would read. This is a combination
2226 * of the real cr0 used to run the guest (guest_cr0), and the bits shadowed by
2227 * its hypervisor (cr0_read_shadow).
2228 */
2229static inline unsigned long nested_read_cr0(struct vmcs12 *fields)
2230{
2231 return (fields->guest_cr0 & ~fields->cr0_guest_host_mask) |
2232 (fields->cr0_read_shadow & fields->cr0_guest_host_mask);
2233}
2234static inline unsigned long nested_read_cr4(struct vmcs12 *fields)
2235{
2236 return (fields->guest_cr4 & ~fields->cr4_guest_host_mask) |
2237 (fields->cr4_read_shadow & fields->cr4_guest_host_mask);
2238}
2239
5fd86fcf
AK
2240static void vmx_fpu_deactivate(struct kvm_vcpu *vcpu)
2241{
36cf24e0
NHE
2242 /* Note that there is no vcpu->fpu_active = 0 here. The caller must
2243 * set this *before* calling this function.
2244 */
edcafe3c 2245 vmx_decache_cr0_guest_bits(vcpu);
81231c69 2246 vmcs_set_bits(GUEST_CR0, X86_CR0_TS | X86_CR0_MP);
5fd86fcf 2247 update_exception_bitmap(vcpu);
edcafe3c
AK
2248 vcpu->arch.cr0_guest_owned_bits = 0;
2249 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
36cf24e0
NHE
2250 if (is_guest_mode(vcpu)) {
2251 /*
2252 * L1's specified read shadow might not contain the TS bit,
2253 * so now that we turned on shadowing of this bit, we need to
2254 * set this bit of the shadow. Like in nested_vmx_run we need
2255 * nested_read_cr0(vmcs12), but vmcs12->guest_cr0 is not yet
2256 * up-to-date here because we just decached cr0.TS (and we'll
2257 * only update vmcs12->guest_cr0 on nested exit).
2258 */
2259 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2260 vmcs12->guest_cr0 = (vmcs12->guest_cr0 & ~X86_CR0_TS) |
2261 (vcpu->arch.cr0 & X86_CR0_TS);
2262 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
2263 } else
2264 vmcs_writel(CR0_READ_SHADOW, vcpu->arch.cr0);
5fd86fcf
AK
2265}
2266
6aa8b732
AK
2267static unsigned long vmx_get_rflags(struct kvm_vcpu *vcpu)
2268{
78ac8b47 2269 unsigned long rflags, save_rflags;
345dcaa8 2270
6de12732
AK
2271 if (!test_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail)) {
2272 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2273 rflags = vmcs_readl(GUEST_RFLAGS);
2274 if (to_vmx(vcpu)->rmode.vm86_active) {
2275 rflags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
2276 save_rflags = to_vmx(vcpu)->rmode.save_rflags;
2277 rflags |= save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
2278 }
2279 to_vmx(vcpu)->rflags = rflags;
78ac8b47 2280 }
6de12732 2281 return to_vmx(vcpu)->rflags;
6aa8b732
AK
2282}
2283
2284static void vmx_set_rflags(struct kvm_vcpu *vcpu, unsigned long rflags)
2285{
6de12732
AK
2286 __set_bit(VCPU_EXREG_RFLAGS, (ulong *)&vcpu->arch.regs_avail);
2287 to_vmx(vcpu)->rflags = rflags;
78ac8b47
AK
2288 if (to_vmx(vcpu)->rmode.vm86_active) {
2289 to_vmx(vcpu)->rmode.save_rflags = rflags;
053de044 2290 rflags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
78ac8b47 2291 }
6aa8b732
AK
2292 vmcs_writel(GUEST_RFLAGS, rflags);
2293}
2294
be94f6b7
HH
2295static u32 vmx_get_pkru(struct kvm_vcpu *vcpu)
2296{
2297 return to_vmx(vcpu)->guest_pkru;
2298}
2299
37ccdcbe 2300static u32 vmx_get_interrupt_shadow(struct kvm_vcpu *vcpu)
2809f5d2
GC
2301{
2302 u32 interruptibility = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2303 int ret = 0;
2304
2305 if (interruptibility & GUEST_INTR_STATE_STI)
48005f64 2306 ret |= KVM_X86_SHADOW_INT_STI;
2809f5d2 2307 if (interruptibility & GUEST_INTR_STATE_MOV_SS)
48005f64 2308 ret |= KVM_X86_SHADOW_INT_MOV_SS;
2809f5d2 2309
37ccdcbe 2310 return ret;
2809f5d2
GC
2311}
2312
2313static void vmx_set_interrupt_shadow(struct kvm_vcpu *vcpu, int mask)
2314{
2315 u32 interruptibility_old = vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
2316 u32 interruptibility = interruptibility_old;
2317
2318 interruptibility &= ~(GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS);
2319
48005f64 2320 if (mask & KVM_X86_SHADOW_INT_MOV_SS)
2809f5d2 2321 interruptibility |= GUEST_INTR_STATE_MOV_SS;
48005f64 2322 else if (mask & KVM_X86_SHADOW_INT_STI)
2809f5d2
GC
2323 interruptibility |= GUEST_INTR_STATE_STI;
2324
2325 if ((interruptibility != interruptibility_old))
2326 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, interruptibility);
2327}
2328
6aa8b732
AK
2329static void skip_emulated_instruction(struct kvm_vcpu *vcpu)
2330{
2331 unsigned long rip;
6aa8b732 2332
5fdbf976 2333 rip = kvm_rip_read(vcpu);
6aa8b732 2334 rip += vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
5fdbf976 2335 kvm_rip_write(vcpu, rip);
6aa8b732 2336
2809f5d2
GC
2337 /* skipping an emulated instruction also counts */
2338 vmx_set_interrupt_shadow(vcpu, 0);
6aa8b732
AK
2339}
2340
0b6ac343
NHE
2341/*
2342 * KVM wants to inject page-faults which it got to the guest. This function
2343 * checks whether in a nested guest, we need to inject them to L1 or L2.
0b6ac343 2344 */
e011c663 2345static int nested_vmx_check_exception(struct kvm_vcpu *vcpu, unsigned nr)
0b6ac343
NHE
2346{
2347 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
2348
e011c663 2349 if (!(vmcs12->exception_bitmap & (1u << nr)))
0b6ac343
NHE
2350 return 0;
2351
533558bc
JK
2352 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
2353 vmcs_read32(VM_EXIT_INTR_INFO),
2354 vmcs_readl(EXIT_QUALIFICATION));
0b6ac343
NHE
2355 return 1;
2356}
2357
298101da 2358static void vmx_queue_exception(struct kvm_vcpu *vcpu, unsigned nr,
ce7ddec4
JR
2359 bool has_error_code, u32 error_code,
2360 bool reinject)
298101da 2361{
77ab6db0 2362 struct vcpu_vmx *vmx = to_vmx(vcpu);
8ab2d2e2 2363 u32 intr_info = nr | INTR_INFO_VALID_MASK;
77ab6db0 2364
e011c663
GN
2365 if (!reinject && is_guest_mode(vcpu) &&
2366 nested_vmx_check_exception(vcpu, nr))
0b6ac343
NHE
2367 return;
2368
8ab2d2e2 2369 if (has_error_code) {
77ab6db0 2370 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE, error_code);
8ab2d2e2
JK
2371 intr_info |= INTR_INFO_DELIVER_CODE_MASK;
2372 }
77ab6db0 2373
7ffd92c5 2374 if (vmx->rmode.vm86_active) {
71f9833b
SH
2375 int inc_eip = 0;
2376 if (kvm_exception_is_soft(nr))
2377 inc_eip = vcpu->arch.event_exit_inst_len;
2378 if (kvm_inject_realmode_interrupt(vcpu, nr, inc_eip) != EMULATE_DONE)
a92601bb 2379 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
77ab6db0
JK
2380 return;
2381 }
2382
66fd3f7f
GN
2383 if (kvm_exception_is_soft(nr)) {
2384 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
2385 vmx->vcpu.arch.event_exit_inst_len);
8ab2d2e2
JK
2386 intr_info |= INTR_TYPE_SOFT_EXCEPTION;
2387 } else
2388 intr_info |= INTR_TYPE_HARD_EXCEPTION;
2389
2390 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr_info);
298101da
AK
2391}
2392
4e47c7a6
SY
2393static bool vmx_rdtscp_supported(void)
2394{
2395 return cpu_has_vmx_rdtscp();
2396}
2397
ad756a16
MJ
2398static bool vmx_invpcid_supported(void)
2399{
2400 return cpu_has_vmx_invpcid() && enable_ept;
2401}
2402
a75beee6
ED
2403/*
2404 * Swap MSR entry in host/guest MSR entry array.
2405 */
8b9cf98c 2406static void move_msr_up(struct vcpu_vmx *vmx, int from, int to)
a75beee6 2407{
26bb0981 2408 struct shared_msr_entry tmp;
a2fa3e9f
GH
2409
2410 tmp = vmx->guest_msrs[to];
2411 vmx->guest_msrs[to] = vmx->guest_msrs[from];
2412 vmx->guest_msrs[from] = tmp;
a75beee6
ED
2413}
2414
8d14695f
YZ
2415static void vmx_set_msr_bitmap(struct kvm_vcpu *vcpu)
2416{
2417 unsigned long *msr_bitmap;
2418
670125bd
WV
2419 if (is_guest_mode(vcpu))
2420 msr_bitmap = vmx_msr_bitmap_nested;
8a9781f7 2421 else if (vcpu->arch.apic_base & X2APIC_ENABLE) {
8d14695f
YZ
2422 if (is_long_mode(vcpu))
2423 msr_bitmap = vmx_msr_bitmap_longmode_x2apic;
2424 else
2425 msr_bitmap = vmx_msr_bitmap_legacy_x2apic;
2426 } else {
2427 if (is_long_mode(vcpu))
2428 msr_bitmap = vmx_msr_bitmap_longmode;
2429 else
2430 msr_bitmap = vmx_msr_bitmap_legacy;
2431 }
2432
2433 vmcs_write64(MSR_BITMAP, __pa(msr_bitmap));
2434}
2435
e38aea3e
AK
2436/*
2437 * Set up the vmcs to automatically save and restore system
2438 * msrs. Don't touch the 64-bit msrs if the guest is in legacy
2439 * mode, as fiddling with msrs is very expensive.
2440 */
8b9cf98c 2441static void setup_msrs(struct vcpu_vmx *vmx)
e38aea3e 2442{
26bb0981 2443 int save_nmsrs, index;
e38aea3e 2444
a75beee6
ED
2445 save_nmsrs = 0;
2446#ifdef CONFIG_X86_64
8b9cf98c 2447 if (is_long_mode(&vmx->vcpu)) {
8b9cf98c 2448 index = __find_msr_index(vmx, MSR_SYSCALL_MASK);
a75beee6 2449 if (index >= 0)
8b9cf98c
RR
2450 move_msr_up(vmx, index, save_nmsrs++);
2451 index = __find_msr_index(vmx, MSR_LSTAR);
a75beee6 2452 if (index >= 0)
8b9cf98c
RR
2453 move_msr_up(vmx, index, save_nmsrs++);
2454 index = __find_msr_index(vmx, MSR_CSTAR);
a75beee6 2455 if (index >= 0)
8b9cf98c 2456 move_msr_up(vmx, index, save_nmsrs++);
4e47c7a6 2457 index = __find_msr_index(vmx, MSR_TSC_AUX);
1cea0ce6 2458 if (index >= 0 && guest_cpuid_has_rdtscp(&vmx->vcpu))
4e47c7a6 2459 move_msr_up(vmx, index, save_nmsrs++);
a75beee6 2460 /*
8c06585d 2461 * MSR_STAR is only needed on long mode guests, and only
a75beee6
ED
2462 * if efer.sce is enabled.
2463 */
8c06585d 2464 index = __find_msr_index(vmx, MSR_STAR);
f6801dff 2465 if ((index >= 0) && (vmx->vcpu.arch.efer & EFER_SCE))
8b9cf98c 2466 move_msr_up(vmx, index, save_nmsrs++);
a75beee6
ED
2467 }
2468#endif
92c0d900
AK
2469 index = __find_msr_index(vmx, MSR_EFER);
2470 if (index >= 0 && update_transition_efer(vmx, index))
26bb0981 2471 move_msr_up(vmx, index, save_nmsrs++);
e38aea3e 2472
26bb0981 2473 vmx->save_nmsrs = save_nmsrs;
5897297b 2474
8d14695f
YZ
2475 if (cpu_has_vmx_msr_bitmap())
2476 vmx_set_msr_bitmap(&vmx->vcpu);
e38aea3e
AK
2477}
2478
6aa8b732
AK
2479/*
2480 * reads and returns guest's timestamp counter "register"
be7b263e
HZ
2481 * guest_tsc = (host_tsc * tsc multiplier) >> 48 + tsc_offset
2482 * -- Intel TSC Scaling for Virtualization White Paper, sec 1.3
6aa8b732 2483 */
be7b263e 2484static u64 guest_read_tsc(struct kvm_vcpu *vcpu)
6aa8b732
AK
2485{
2486 u64 host_tsc, tsc_offset;
2487
4ea1636b 2488 host_tsc = rdtsc();
6aa8b732 2489 tsc_offset = vmcs_read64(TSC_OFFSET);
be7b263e 2490 return kvm_scale_tsc(vcpu, host_tsc) + tsc_offset;
6aa8b732
AK
2491}
2492
d5c1785d
NHE
2493/*
2494 * Like guest_read_tsc, but always returns L1's notion of the timestamp
2495 * counter, even if a nested guest (L2) is currently running.
2496 */
48d89b92 2497static u64 vmx_read_l1_tsc(struct kvm_vcpu *vcpu, u64 host_tsc)
d5c1785d 2498{
886b470c 2499 u64 tsc_offset;
d5c1785d 2500
d5c1785d
NHE
2501 tsc_offset = is_guest_mode(vcpu) ?
2502 to_vmx(vcpu)->nested.vmcs01_tsc_offset :
2503 vmcs_read64(TSC_OFFSET);
2504 return host_tsc + tsc_offset;
2505}
2506
ba904635
WA
2507static u64 vmx_read_tsc_offset(struct kvm_vcpu *vcpu)
2508{
2509 return vmcs_read64(TSC_OFFSET);
2510}
2511
6aa8b732 2512/*
99e3e30a 2513 * writes 'offset' into guest's timestamp counter offset register
6aa8b732 2514 */
99e3e30a 2515static void vmx_write_tsc_offset(struct kvm_vcpu *vcpu, u64 offset)
6aa8b732 2516{
27fc51b2 2517 if (is_guest_mode(vcpu)) {
7991825b 2518 /*
27fc51b2
NHE
2519 * We're here if L1 chose not to trap WRMSR to TSC. According
2520 * to the spec, this should set L1's TSC; The offset that L1
2521 * set for L2 remains unchanged, and still needs to be added
2522 * to the newly set TSC to get L2's TSC.
7991825b 2523 */
27fc51b2
NHE
2524 struct vmcs12 *vmcs12;
2525 to_vmx(vcpu)->nested.vmcs01_tsc_offset = offset;
2526 /* recalculate vmcs02.TSC_OFFSET: */
2527 vmcs12 = get_vmcs12(vcpu);
2528 vmcs_write64(TSC_OFFSET, offset +
2529 (nested_cpu_has(vmcs12, CPU_BASED_USE_TSC_OFFSETING) ?
2530 vmcs12->tsc_offset : 0));
2531 } else {
489223ed
YY
2532 trace_kvm_write_tsc_offset(vcpu->vcpu_id,
2533 vmcs_read64(TSC_OFFSET), offset);
27fc51b2
NHE
2534 vmcs_write64(TSC_OFFSET, offset);
2535 }
6aa8b732
AK
2536}
2537
58ea6767 2538static void vmx_adjust_tsc_offset_guest(struct kvm_vcpu *vcpu, s64 adjustment)
e48672fa
ZA
2539{
2540 u64 offset = vmcs_read64(TSC_OFFSET);
489223ed 2541
e48672fa 2542 vmcs_write64(TSC_OFFSET, offset + adjustment);
7991825b
NHE
2543 if (is_guest_mode(vcpu)) {
2544 /* Even when running L2, the adjustment needs to apply to L1 */
2545 to_vmx(vcpu)->nested.vmcs01_tsc_offset += adjustment;
489223ed
YY
2546 } else
2547 trace_kvm_write_tsc_offset(vcpu->vcpu_id, offset,
2548 offset + adjustment);
e48672fa
ZA
2549}
2550
801d3424
NHE
2551static bool guest_cpuid_has_vmx(struct kvm_vcpu *vcpu)
2552{
2553 struct kvm_cpuid_entry2 *best = kvm_find_cpuid_entry(vcpu, 1, 0);
2554 return best && (best->ecx & (1 << (X86_FEATURE_VMX & 31)));
2555}
2556
2557/*
2558 * nested_vmx_allowed() checks whether a guest should be allowed to use VMX
2559 * instructions and MSRs (i.e., nested VMX). Nested VMX is disabled for
2560 * all guests if the "nested" module option is off, and can also be disabled
2561 * for a single guest by disabling its VMX cpuid bit.
2562 */
2563static inline bool nested_vmx_allowed(struct kvm_vcpu *vcpu)
2564{
2565 return nested && guest_cpuid_has_vmx(vcpu);
2566}
2567
b87a51ae
NHE
2568/*
2569 * nested_vmx_setup_ctls_msrs() sets up variables containing the values to be
2570 * returned for the various VMX controls MSRs when nested VMX is enabled.
2571 * The same values should also be used to verify that vmcs12 control fields are
2572 * valid during nested entry from L1 to L2.
2573 * Each of these control msrs has a low and high 32-bit half: A low bit is on
2574 * if the corresponding bit in the (32-bit) control field *must* be on, and a
2575 * bit in the high half is on if the corresponding bit in the control field
2576 * may be on. See also vmx_control_verify().
b87a51ae 2577 */
b9c237bb 2578static void nested_vmx_setup_ctls_msrs(struct vcpu_vmx *vmx)
b87a51ae
NHE
2579{
2580 /*
2581 * Note that as a general rule, the high half of the MSRs (bits in
2582 * the control fields which may be 1) should be initialized by the
2583 * intersection of the underlying hardware's MSR (i.e., features which
2584 * can be supported) and the list of features we want to expose -
2585 * because they are known to be properly supported in our code.
2586 * Also, usually, the low half of the MSRs (bits which must be 1) can
2587 * be set to 0, meaning that L1 may turn off any of these bits. The
2588 * reason is that if one of these bits is necessary, it will appear
2589 * in vmcs01 and prepare_vmcs02, when it bitwise-or's the control
2590 * fields of vmcs01 and vmcs02, will turn these bits off - and
2591 * nested_vmx_exit_handled() will not pass related exits to L1.
2592 * These rules have exceptions below.
2593 */
2594
2595 /* pin-based controls */
eabeaacc 2596 rdmsr(MSR_IA32_VMX_PINBASED_CTLS,
b9c237bb
WV
2597 vmx->nested.nested_vmx_pinbased_ctls_low,
2598 vmx->nested.nested_vmx_pinbased_ctls_high);
2599 vmx->nested.nested_vmx_pinbased_ctls_low |=
2600 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2601 vmx->nested.nested_vmx_pinbased_ctls_high &=
2602 PIN_BASED_EXT_INTR_MASK |
2603 PIN_BASED_NMI_EXITING |
2604 PIN_BASED_VIRTUAL_NMIS;
2605 vmx->nested.nested_vmx_pinbased_ctls_high |=
2606 PIN_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
0238ea91 2607 PIN_BASED_VMX_PREEMPTION_TIMER;
d62caabb 2608 if (kvm_vcpu_apicv_active(&vmx->vcpu))
705699a1
WV
2609 vmx->nested.nested_vmx_pinbased_ctls_high |=
2610 PIN_BASED_POSTED_INTR;
b87a51ae 2611
3dbcd8da 2612 /* exit controls */
c0dfee58 2613 rdmsr(MSR_IA32_VMX_EXIT_CTLS,
b9c237bb
WV
2614 vmx->nested.nested_vmx_exit_ctls_low,
2615 vmx->nested.nested_vmx_exit_ctls_high);
2616 vmx->nested.nested_vmx_exit_ctls_low =
2617 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR;
e0ba1a6f 2618
b9c237bb 2619 vmx->nested.nested_vmx_exit_ctls_high &=
b87a51ae 2620#ifdef CONFIG_X86_64
c0dfee58 2621 VM_EXIT_HOST_ADDR_SPACE_SIZE |
b87a51ae 2622#endif
f4124500 2623 VM_EXIT_LOAD_IA32_PAT | VM_EXIT_SAVE_IA32_PAT;
b9c237bb
WV
2624 vmx->nested.nested_vmx_exit_ctls_high |=
2625 VM_EXIT_ALWAYSON_WITHOUT_TRUE_MSR |
f4124500 2626 VM_EXIT_LOAD_IA32_EFER | VM_EXIT_SAVE_IA32_EFER |
e0ba1a6f
BD
2627 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER | VM_EXIT_ACK_INTR_ON_EXIT;
2628
a87036ad 2629 if (kvm_mpx_supported())
b9c237bb 2630 vmx->nested.nested_vmx_exit_ctls_high |= VM_EXIT_CLEAR_BNDCFGS;
b87a51ae 2631
2996fca0 2632 /* We support free control of debug control saving. */
b9c237bb
WV
2633 vmx->nested.nested_vmx_true_exit_ctls_low =
2634 vmx->nested.nested_vmx_exit_ctls_low &
2996fca0
JK
2635 ~VM_EXIT_SAVE_DEBUG_CONTROLS;
2636
b87a51ae
NHE
2637 /* entry controls */
2638 rdmsr(MSR_IA32_VMX_ENTRY_CTLS,
b9c237bb
WV
2639 vmx->nested.nested_vmx_entry_ctls_low,
2640 vmx->nested.nested_vmx_entry_ctls_high);
2641 vmx->nested.nested_vmx_entry_ctls_low =
2642 VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR;
2643 vmx->nested.nested_vmx_entry_ctls_high &=
57435349
JK
2644#ifdef CONFIG_X86_64
2645 VM_ENTRY_IA32E_MODE |
2646#endif
2647 VM_ENTRY_LOAD_IA32_PAT;
b9c237bb
WV
2648 vmx->nested.nested_vmx_entry_ctls_high |=
2649 (VM_ENTRY_ALWAYSON_WITHOUT_TRUE_MSR | VM_ENTRY_LOAD_IA32_EFER);
a87036ad 2650 if (kvm_mpx_supported())
b9c237bb 2651 vmx->nested.nested_vmx_entry_ctls_high |= VM_ENTRY_LOAD_BNDCFGS;
57435349 2652
2996fca0 2653 /* We support free control of debug control loading. */
b9c237bb
WV
2654 vmx->nested.nested_vmx_true_entry_ctls_low =
2655 vmx->nested.nested_vmx_entry_ctls_low &
2996fca0
JK
2656 ~VM_ENTRY_LOAD_DEBUG_CONTROLS;
2657
b87a51ae
NHE
2658 /* cpu-based controls */
2659 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS,
b9c237bb
WV
2660 vmx->nested.nested_vmx_procbased_ctls_low,
2661 vmx->nested.nested_vmx_procbased_ctls_high);
2662 vmx->nested.nested_vmx_procbased_ctls_low =
2663 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR;
2664 vmx->nested.nested_vmx_procbased_ctls_high &=
a294c9bb
JK
2665 CPU_BASED_VIRTUAL_INTR_PENDING |
2666 CPU_BASED_VIRTUAL_NMI_PENDING | CPU_BASED_USE_TSC_OFFSETING |
b87a51ae
NHE
2667 CPU_BASED_HLT_EXITING | CPU_BASED_INVLPG_EXITING |
2668 CPU_BASED_MWAIT_EXITING | CPU_BASED_CR3_LOAD_EXITING |
2669 CPU_BASED_CR3_STORE_EXITING |
2670#ifdef CONFIG_X86_64
2671 CPU_BASED_CR8_LOAD_EXITING | CPU_BASED_CR8_STORE_EXITING |
2672#endif
2673 CPU_BASED_MOV_DR_EXITING | CPU_BASED_UNCOND_IO_EXITING |
5f3d45e7
MD
2674 CPU_BASED_USE_IO_BITMAPS | CPU_BASED_MONITOR_TRAP_FLAG |
2675 CPU_BASED_MONITOR_EXITING | CPU_BASED_RDPMC_EXITING |
2676 CPU_BASED_RDTSC_EXITING | CPU_BASED_PAUSE_EXITING |
2677 CPU_BASED_TPR_SHADOW | CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
b87a51ae
NHE
2678 /*
2679 * We can allow some features even when not supported by the
2680 * hardware. For example, L1 can specify an MSR bitmap - and we
2681 * can use it to avoid exits to L1 - even when L0 runs L2
2682 * without MSR bitmaps.
2683 */
b9c237bb
WV
2684 vmx->nested.nested_vmx_procbased_ctls_high |=
2685 CPU_BASED_ALWAYSON_WITHOUT_TRUE_MSR |
560b7ee1 2686 CPU_BASED_USE_MSR_BITMAPS;
b87a51ae 2687
3dcdf3ec 2688 /* We support free control of CR3 access interception. */
b9c237bb
WV
2689 vmx->nested.nested_vmx_true_procbased_ctls_low =
2690 vmx->nested.nested_vmx_procbased_ctls_low &
3dcdf3ec
JK
2691 ~(CPU_BASED_CR3_LOAD_EXITING | CPU_BASED_CR3_STORE_EXITING);
2692
b87a51ae
NHE
2693 /* secondary cpu-based controls */
2694 rdmsr(MSR_IA32_VMX_PROCBASED_CTLS2,
b9c237bb
WV
2695 vmx->nested.nested_vmx_secondary_ctls_low,
2696 vmx->nested.nested_vmx_secondary_ctls_high);
2697 vmx->nested.nested_vmx_secondary_ctls_low = 0;
2698 vmx->nested.nested_vmx_secondary_ctls_high &=
d6851fbe 2699 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 2700 SECONDARY_EXEC_RDTSCP |
f2b93280 2701 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
5c614b35 2702 SECONDARY_EXEC_ENABLE_VPID |
82f0dd4b 2703 SECONDARY_EXEC_APIC_REGISTER_VIRT |
608406e2 2704 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
81dc01f7 2705 SECONDARY_EXEC_WBINVD_EXITING |
8b3e34e4
XG
2706 SECONDARY_EXEC_XSAVES |
2707 SECONDARY_EXEC_PCOMMIT;
c18911a2 2708
afa61f75
NHE
2709 if (enable_ept) {
2710 /* nested EPT: emulate EPT also to L1 */
b9c237bb 2711 vmx->nested.nested_vmx_secondary_ctls_high |=
0790ec17 2712 SECONDARY_EXEC_ENABLE_EPT;
b9c237bb 2713 vmx->nested.nested_vmx_ept_caps = VMX_EPT_PAGE_WALK_4_BIT |
d3134dbf
JK
2714 VMX_EPTP_WB_BIT | VMX_EPT_2MB_PAGE_BIT |
2715 VMX_EPT_INVEPT_BIT;
b9c237bb 2716 vmx->nested.nested_vmx_ept_caps &= vmx_capability.ept;
afa61f75 2717 /*
4b855078
BD
2718 * For nested guests, we don't do anything specific
2719 * for single context invalidation. Hence, only advertise
2720 * support for global context invalidation.
afa61f75 2721 */
b9c237bb 2722 vmx->nested.nested_vmx_ept_caps |= VMX_EPT_EXTENT_GLOBAL_BIT;
afa61f75 2723 } else
b9c237bb 2724 vmx->nested.nested_vmx_ept_caps = 0;
afa61f75 2725
ef697a71
PB
2726 /*
2727 * Old versions of KVM use the single-context version without
2728 * checking for support, so declare that it is supported even
2729 * though it is treated as global context. The alternative is
2730 * not failing the single-context invvpid, and it is worse.
2731 */
089d7b6e
WL
2732 if (enable_vpid)
2733 vmx->nested.nested_vmx_vpid_caps = VMX_VPID_INVVPID_BIT |
ef697a71 2734 VMX_VPID_EXTENT_SINGLE_CONTEXT_BIT |
089d7b6e
WL
2735 VMX_VPID_EXTENT_GLOBAL_CONTEXT_BIT;
2736 else
2737 vmx->nested.nested_vmx_vpid_caps = 0;
99b83ac8 2738
0790ec17
RK
2739 if (enable_unrestricted_guest)
2740 vmx->nested.nested_vmx_secondary_ctls_high |=
2741 SECONDARY_EXEC_UNRESTRICTED_GUEST;
2742
c18911a2 2743 /* miscellaneous data */
b9c237bb
WV
2744 rdmsr(MSR_IA32_VMX_MISC,
2745 vmx->nested.nested_vmx_misc_low,
2746 vmx->nested.nested_vmx_misc_high);
2747 vmx->nested.nested_vmx_misc_low &= VMX_MISC_SAVE_EFER_LMA;
2748 vmx->nested.nested_vmx_misc_low |=
2749 VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE |
f4124500 2750 VMX_MISC_ACTIVITY_HLT;
b9c237bb 2751 vmx->nested.nested_vmx_misc_high = 0;
b87a51ae
NHE
2752}
2753
2754static inline bool vmx_control_verify(u32 control, u32 low, u32 high)
2755{
2756 /*
2757 * Bits 0 in high must be 0, and bits 1 in low must be 1.
2758 */
2759 return ((control & high) | low) == control;
2760}
2761
2762static inline u64 vmx_control_msr(u32 low, u32 high)
2763{
2764 return low | ((u64)high << 32);
2765}
2766
cae50139 2767/* Returns 0 on success, non-0 otherwise. */
b87a51ae
NHE
2768static int vmx_get_vmx_msr(struct kvm_vcpu *vcpu, u32 msr_index, u64 *pdata)
2769{
b9c237bb
WV
2770 struct vcpu_vmx *vmx = to_vmx(vcpu);
2771
b87a51ae 2772 switch (msr_index) {
b87a51ae
NHE
2773 case MSR_IA32_VMX_BASIC:
2774 /*
2775 * This MSR reports some information about VMX support. We
2776 * should return information about the VMX we emulate for the
2777 * guest, and the VMCS structure we give it - not about the
2778 * VMX support of the underlying hardware.
2779 */
3dbcd8da 2780 *pdata = VMCS12_REVISION | VMX_BASIC_TRUE_CTLS |
b87a51ae
NHE
2781 ((u64)VMCS12_SIZE << VMX_BASIC_VMCS_SIZE_SHIFT) |
2782 (VMX_BASIC_MEM_TYPE_WB << VMX_BASIC_MEM_TYPE_SHIFT);
2783 break;
2784 case MSR_IA32_VMX_TRUE_PINBASED_CTLS:
2785 case MSR_IA32_VMX_PINBASED_CTLS:
b9c237bb
WV
2786 *pdata = vmx_control_msr(
2787 vmx->nested.nested_vmx_pinbased_ctls_low,
2788 vmx->nested.nested_vmx_pinbased_ctls_high);
b87a51ae
NHE
2789 break;
2790 case MSR_IA32_VMX_TRUE_PROCBASED_CTLS:
b9c237bb
WV
2791 *pdata = vmx_control_msr(
2792 vmx->nested.nested_vmx_true_procbased_ctls_low,
2793 vmx->nested.nested_vmx_procbased_ctls_high);
3dcdf3ec 2794 break;
b87a51ae 2795 case MSR_IA32_VMX_PROCBASED_CTLS:
b9c237bb
WV
2796 *pdata = vmx_control_msr(
2797 vmx->nested.nested_vmx_procbased_ctls_low,
2798 vmx->nested.nested_vmx_procbased_ctls_high);
b87a51ae
NHE
2799 break;
2800 case MSR_IA32_VMX_TRUE_EXIT_CTLS:
b9c237bb
WV
2801 *pdata = vmx_control_msr(
2802 vmx->nested.nested_vmx_true_exit_ctls_low,
2803 vmx->nested.nested_vmx_exit_ctls_high);
2996fca0 2804 break;
b87a51ae 2805 case MSR_IA32_VMX_EXIT_CTLS:
b9c237bb
WV
2806 *pdata = vmx_control_msr(
2807 vmx->nested.nested_vmx_exit_ctls_low,
2808 vmx->nested.nested_vmx_exit_ctls_high);
b87a51ae
NHE
2809 break;
2810 case MSR_IA32_VMX_TRUE_ENTRY_CTLS:
b9c237bb
WV
2811 *pdata = vmx_control_msr(
2812 vmx->nested.nested_vmx_true_entry_ctls_low,
2813 vmx->nested.nested_vmx_entry_ctls_high);
2996fca0 2814 break;
b87a51ae 2815 case MSR_IA32_VMX_ENTRY_CTLS:
b9c237bb
WV
2816 *pdata = vmx_control_msr(
2817 vmx->nested.nested_vmx_entry_ctls_low,
2818 vmx->nested.nested_vmx_entry_ctls_high);
b87a51ae
NHE
2819 break;
2820 case MSR_IA32_VMX_MISC:
b9c237bb
WV
2821 *pdata = vmx_control_msr(
2822 vmx->nested.nested_vmx_misc_low,
2823 vmx->nested.nested_vmx_misc_high);
b87a51ae
NHE
2824 break;
2825 /*
2826 * These MSRs specify bits which the guest must keep fixed (on or off)
2827 * while L1 is in VMXON mode (in L1's root mode, or running an L2).
2828 * We picked the standard core2 setting.
2829 */
2830#define VMXON_CR0_ALWAYSON (X86_CR0_PE | X86_CR0_PG | X86_CR0_NE)
2831#define VMXON_CR4_ALWAYSON X86_CR4_VMXE
2832 case MSR_IA32_VMX_CR0_FIXED0:
2833 *pdata = VMXON_CR0_ALWAYSON;
2834 break;
2835 case MSR_IA32_VMX_CR0_FIXED1:
2836 *pdata = -1ULL;
2837 break;
2838 case MSR_IA32_VMX_CR4_FIXED0:
2839 *pdata = VMXON_CR4_ALWAYSON;
2840 break;
2841 case MSR_IA32_VMX_CR4_FIXED1:
2842 *pdata = -1ULL;
2843 break;
2844 case MSR_IA32_VMX_VMCS_ENUM:
5381417f 2845 *pdata = 0x2e; /* highest index: VMX_PREEMPTION_TIMER_VALUE */
b87a51ae
NHE
2846 break;
2847 case MSR_IA32_VMX_PROCBASED_CTLS2:
b9c237bb
WV
2848 *pdata = vmx_control_msr(
2849 vmx->nested.nested_vmx_secondary_ctls_low,
2850 vmx->nested.nested_vmx_secondary_ctls_high);
b87a51ae
NHE
2851 break;
2852 case MSR_IA32_VMX_EPT_VPID_CAP:
afa61f75 2853 /* Currently, no nested vpid support */
089d7b6e
WL
2854 *pdata = vmx->nested.nested_vmx_ept_caps |
2855 ((u64)vmx->nested.nested_vmx_vpid_caps << 32);
b87a51ae
NHE
2856 break;
2857 default:
b87a51ae 2858 return 1;
b3897a49
NHE
2859 }
2860
b87a51ae
NHE
2861 return 0;
2862}
2863
6aa8b732
AK
2864/*
2865 * Reads an msr value (of 'msr_index') into 'pdata'.
2866 * Returns 0 on success, non-0 otherwise.
2867 * Assumes vcpu_load() was already called.
2868 */
609e36d3 2869static int vmx_get_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2870{
26bb0981 2871 struct shared_msr_entry *msr;
6aa8b732 2872
609e36d3 2873 switch (msr_info->index) {
05b3e0c2 2874#ifdef CONFIG_X86_64
6aa8b732 2875 case MSR_FS_BASE:
609e36d3 2876 msr_info->data = vmcs_readl(GUEST_FS_BASE);
6aa8b732
AK
2877 break;
2878 case MSR_GS_BASE:
609e36d3 2879 msr_info->data = vmcs_readl(GUEST_GS_BASE);
6aa8b732 2880 break;
44ea2b17
AK
2881 case MSR_KERNEL_GS_BASE:
2882 vmx_load_host_state(to_vmx(vcpu));
609e36d3 2883 msr_info->data = to_vmx(vcpu)->msr_guest_kernel_gs_base;
44ea2b17 2884 break;
26bb0981 2885#endif
6aa8b732 2886 case MSR_EFER:
609e36d3 2887 return kvm_get_msr_common(vcpu, msr_info);
af24a4e4 2888 case MSR_IA32_TSC:
be7b263e 2889 msr_info->data = guest_read_tsc(vcpu);
6aa8b732
AK
2890 break;
2891 case MSR_IA32_SYSENTER_CS:
609e36d3 2892 msr_info->data = vmcs_read32(GUEST_SYSENTER_CS);
6aa8b732
AK
2893 break;
2894 case MSR_IA32_SYSENTER_EIP:
609e36d3 2895 msr_info->data = vmcs_readl(GUEST_SYSENTER_EIP);
6aa8b732
AK
2896 break;
2897 case MSR_IA32_SYSENTER_ESP:
609e36d3 2898 msr_info->data = vmcs_readl(GUEST_SYSENTER_ESP);
6aa8b732 2899 break;
0dd376e7 2900 case MSR_IA32_BNDCFGS:
a87036ad 2901 if (!kvm_mpx_supported())
93c4adc7 2902 return 1;
609e36d3 2903 msr_info->data = vmcs_read64(GUEST_BNDCFGS);
0dd376e7 2904 break;
cae50139
JK
2905 case MSR_IA32_FEATURE_CONTROL:
2906 if (!nested_vmx_allowed(vcpu))
2907 return 1;
609e36d3 2908 msr_info->data = to_vmx(vcpu)->nested.msr_ia32_feature_control;
cae50139
JK
2909 break;
2910 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
2911 if (!nested_vmx_allowed(vcpu))
2912 return 1;
609e36d3 2913 return vmx_get_vmx_msr(vcpu, msr_info->index, &msr_info->data);
20300099
WL
2914 case MSR_IA32_XSS:
2915 if (!vmx_xsaves_supported())
2916 return 1;
609e36d3 2917 msr_info->data = vcpu->arch.ia32_xss;
20300099 2918 break;
4e47c7a6 2919 case MSR_TSC_AUX:
81b1b9ca 2920 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
4e47c7a6
SY
2921 return 1;
2922 /* Otherwise falls through */
6aa8b732 2923 default:
609e36d3 2924 msr = find_msr_entry(to_vmx(vcpu), msr_info->index);
3bab1f5d 2925 if (msr) {
609e36d3 2926 msr_info->data = msr->data;
3bab1f5d 2927 break;
6aa8b732 2928 }
609e36d3 2929 return kvm_get_msr_common(vcpu, msr_info);
6aa8b732
AK
2930 }
2931
6aa8b732
AK
2932 return 0;
2933}
2934
cae50139
JK
2935static void vmx_leave_nested(struct kvm_vcpu *vcpu);
2936
6aa8b732
AK
2937/*
2938 * Writes msr value into into the appropriate "register".
2939 * Returns 0 on success, non-0 otherwise.
2940 * Assumes vcpu_load() was already called.
2941 */
8fe8ab46 2942static int vmx_set_msr(struct kvm_vcpu *vcpu, struct msr_data *msr_info)
6aa8b732 2943{
a2fa3e9f 2944 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981 2945 struct shared_msr_entry *msr;
2cc51560 2946 int ret = 0;
8fe8ab46
WA
2947 u32 msr_index = msr_info->index;
2948 u64 data = msr_info->data;
2cc51560 2949
6aa8b732 2950 switch (msr_index) {
3bab1f5d 2951 case MSR_EFER:
8fe8ab46 2952 ret = kvm_set_msr_common(vcpu, msr_info);
2cc51560 2953 break;
16175a79 2954#ifdef CONFIG_X86_64
6aa8b732 2955 case MSR_FS_BASE:
2fb92db1 2956 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2957 vmcs_writel(GUEST_FS_BASE, data);
2958 break;
2959 case MSR_GS_BASE:
2fb92db1 2960 vmx_segment_cache_clear(vmx);
6aa8b732
AK
2961 vmcs_writel(GUEST_GS_BASE, data);
2962 break;
44ea2b17
AK
2963 case MSR_KERNEL_GS_BASE:
2964 vmx_load_host_state(vmx);
2965 vmx->msr_guest_kernel_gs_base = data;
2966 break;
6aa8b732
AK
2967#endif
2968 case MSR_IA32_SYSENTER_CS:
2969 vmcs_write32(GUEST_SYSENTER_CS, data);
2970 break;
2971 case MSR_IA32_SYSENTER_EIP:
f5b42c33 2972 vmcs_writel(GUEST_SYSENTER_EIP, data);
6aa8b732
AK
2973 break;
2974 case MSR_IA32_SYSENTER_ESP:
f5b42c33 2975 vmcs_writel(GUEST_SYSENTER_ESP, data);
6aa8b732 2976 break;
0dd376e7 2977 case MSR_IA32_BNDCFGS:
a87036ad 2978 if (!kvm_mpx_supported())
93c4adc7 2979 return 1;
0dd376e7
LJ
2980 vmcs_write64(GUEST_BNDCFGS, data);
2981 break;
af24a4e4 2982 case MSR_IA32_TSC:
8fe8ab46 2983 kvm_write_tsc(vcpu, msr_info);
6aa8b732 2984 break;
468d472f
SY
2985 case MSR_IA32_CR_PAT:
2986 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT) {
4566654b
NA
2987 if (!kvm_mtrr_valid(vcpu, MSR_IA32_CR_PAT, data))
2988 return 1;
468d472f
SY
2989 vmcs_write64(GUEST_IA32_PAT, data);
2990 vcpu->arch.pat = data;
2991 break;
2992 }
8fe8ab46 2993 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2994 break;
ba904635
WA
2995 case MSR_IA32_TSC_ADJUST:
2996 ret = kvm_set_msr_common(vcpu, msr_info);
4e47c7a6 2997 break;
cae50139
JK
2998 case MSR_IA32_FEATURE_CONTROL:
2999 if (!nested_vmx_allowed(vcpu) ||
3000 (to_vmx(vcpu)->nested.msr_ia32_feature_control &
3001 FEATURE_CONTROL_LOCKED && !msr_info->host_initiated))
3002 return 1;
3003 vmx->nested.msr_ia32_feature_control = data;
3004 if (msr_info->host_initiated && data == 0)
3005 vmx_leave_nested(vcpu);
3006 break;
3007 case MSR_IA32_VMX_BASIC ... MSR_IA32_VMX_VMFUNC:
3008 return 1; /* they are read-only */
20300099
WL
3009 case MSR_IA32_XSS:
3010 if (!vmx_xsaves_supported())
3011 return 1;
3012 /*
3013 * The only supported bit as of Skylake is bit 8, but
3014 * it is not supported on KVM.
3015 */
3016 if (data != 0)
3017 return 1;
3018 vcpu->arch.ia32_xss = data;
3019 if (vcpu->arch.ia32_xss != host_xss)
3020 add_atomic_switch_msr(vmx, MSR_IA32_XSS,
3021 vcpu->arch.ia32_xss, host_xss);
3022 else
3023 clear_atomic_switch_msr(vmx, MSR_IA32_XSS);
3024 break;
4e47c7a6 3025 case MSR_TSC_AUX:
81b1b9ca 3026 if (!guest_cpuid_has_rdtscp(vcpu) && !msr_info->host_initiated)
4e47c7a6
SY
3027 return 1;
3028 /* Check reserved bit, higher 32 bits should be zero */
3029 if ((data >> 32) != 0)
3030 return 1;
3031 /* Otherwise falls through */
6aa8b732 3032 default:
8b9cf98c 3033 msr = find_msr_entry(vmx, msr_index);
3bab1f5d 3034 if (msr) {
8b3c3104 3035 u64 old_msr_data = msr->data;
3bab1f5d 3036 msr->data = data;
2225fd56
AK
3037 if (msr - vmx->guest_msrs < vmx->save_nmsrs) {
3038 preempt_disable();
8b3c3104
AH
3039 ret = kvm_set_shared_msr(msr->index, msr->data,
3040 msr->mask);
2225fd56 3041 preempt_enable();
8b3c3104
AH
3042 if (ret)
3043 msr->data = old_msr_data;
2225fd56 3044 }
3bab1f5d 3045 break;
6aa8b732 3046 }
8fe8ab46 3047 ret = kvm_set_msr_common(vcpu, msr_info);
6aa8b732
AK
3048 }
3049
2cc51560 3050 return ret;
6aa8b732
AK
3051}
3052
5fdbf976 3053static void vmx_cache_reg(struct kvm_vcpu *vcpu, enum kvm_reg reg)
6aa8b732 3054{
5fdbf976
MT
3055 __set_bit(reg, (unsigned long *)&vcpu->arch.regs_avail);
3056 switch (reg) {
3057 case VCPU_REGS_RSP:
3058 vcpu->arch.regs[VCPU_REGS_RSP] = vmcs_readl(GUEST_RSP);
3059 break;
3060 case VCPU_REGS_RIP:
3061 vcpu->arch.regs[VCPU_REGS_RIP] = vmcs_readl(GUEST_RIP);
3062 break;
6de4f3ad
AK
3063 case VCPU_EXREG_PDPTR:
3064 if (enable_ept)
3065 ept_save_pdptrs(vcpu);
3066 break;
5fdbf976
MT
3067 default:
3068 break;
3069 }
6aa8b732
AK
3070}
3071
6aa8b732
AK
3072static __init int cpu_has_kvm_support(void)
3073{
6210e37b 3074 return cpu_has_vmx();
6aa8b732
AK
3075}
3076
3077static __init int vmx_disabled_by_bios(void)
3078{
3079 u64 msr;
3080
3081 rdmsrl(MSR_IA32_FEATURE_CONTROL, msr);
cafd6659 3082 if (msr & FEATURE_CONTROL_LOCKED) {
23f3e991 3083 /* launched w/ TXT and VMX disabled */
cafd6659
SW
3084 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
3085 && tboot_enabled())
3086 return 1;
23f3e991 3087 /* launched w/o TXT and VMX only enabled w/ TXT */
cafd6659 3088 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
23f3e991 3089 && (msr & FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX)
f9335afe
SW
3090 && !tboot_enabled()) {
3091 printk(KERN_WARNING "kvm: disable TXT in the BIOS or "
23f3e991 3092 "activate TXT before enabling KVM\n");
cafd6659 3093 return 1;
f9335afe 3094 }
23f3e991
JC
3095 /* launched w/o TXT and VMX disabled */
3096 if (!(msr & FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX)
3097 && !tboot_enabled())
3098 return 1;
cafd6659
SW
3099 }
3100
3101 return 0;
6aa8b732
AK
3102}
3103
7725b894
DX
3104static void kvm_cpu_vmxon(u64 addr)
3105{
1c5ac21a
AS
3106 intel_pt_handle_vmx(1);
3107
7725b894
DX
3108 asm volatile (ASM_VMX_VMXON_RAX
3109 : : "a"(&addr), "m"(addr)
3110 : "memory", "cc");
3111}
3112
13a34e06 3113static int hardware_enable(void)
6aa8b732
AK
3114{
3115 int cpu = raw_smp_processor_id();
3116 u64 phys_addr = __pa(per_cpu(vmxarea, cpu));
cafd6659 3117 u64 old, test_bits;
6aa8b732 3118
1e02ce4c 3119 if (cr4_read_shadow() & X86_CR4_VMXE)
10474ae8
AG
3120 return -EBUSY;
3121
d462b819 3122 INIT_LIST_HEAD(&per_cpu(loaded_vmcss_on_cpu, cpu));
bf9f6ac8
FW
3123 INIT_LIST_HEAD(&per_cpu(blocked_vcpu_on_cpu, cpu));
3124 spin_lock_init(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
8f536b76
ZY
3125
3126 /*
3127 * Now we can enable the vmclear operation in kdump
3128 * since the loaded_vmcss_on_cpu list on this cpu
3129 * has been initialized.
3130 *
3131 * Though the cpu is not in VMX operation now, there
3132 * is no problem to enable the vmclear operation
3133 * for the loaded_vmcss_on_cpu list is empty!
3134 */
3135 crash_enable_local_vmclear(cpu);
3136
6aa8b732 3137 rdmsrl(MSR_IA32_FEATURE_CONTROL, old);
cafd6659
SW
3138
3139 test_bits = FEATURE_CONTROL_LOCKED;
3140 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
3141 if (tboot_enabled())
3142 test_bits |= FEATURE_CONTROL_VMXON_ENABLED_INSIDE_SMX;
3143
3144 if ((old & test_bits) != test_bits) {
6aa8b732 3145 /* enable and lock */
cafd6659
SW
3146 wrmsrl(MSR_IA32_FEATURE_CONTROL, old | test_bits);
3147 }
375074cc 3148 cr4_set_bits(X86_CR4_VMXE);
10474ae8 3149
4610c9cc
DX
3150 if (vmm_exclusive) {
3151 kvm_cpu_vmxon(phys_addr);
3152 ept_sync_global();
3153 }
10474ae8 3154
89cbc767 3155 native_store_gdt(this_cpu_ptr(&host_gdt));
3444d7da 3156
10474ae8 3157 return 0;
6aa8b732
AK
3158}
3159
d462b819 3160static void vmclear_local_loaded_vmcss(void)
543e4243
AK
3161{
3162 int cpu = raw_smp_processor_id();
d462b819 3163 struct loaded_vmcs *v, *n;
543e4243 3164
d462b819
NHE
3165 list_for_each_entry_safe(v, n, &per_cpu(loaded_vmcss_on_cpu, cpu),
3166 loaded_vmcss_on_cpu_link)
3167 __loaded_vmcs_clear(v);
543e4243
AK
3168}
3169
710ff4a8
EH
3170
3171/* Just like cpu_vmxoff(), but with the __kvm_handle_fault_on_reboot()
3172 * tricks.
3173 */
3174static void kvm_cpu_vmxoff(void)
6aa8b732 3175{
4ecac3fd 3176 asm volatile (__ex(ASM_VMX_VMXOFF) : : : "cc");
1c5ac21a
AS
3177
3178 intel_pt_handle_vmx(0);
6aa8b732
AK
3179}
3180
13a34e06 3181static void hardware_disable(void)
710ff4a8 3182{
4610c9cc 3183 if (vmm_exclusive) {
d462b819 3184 vmclear_local_loaded_vmcss();
4610c9cc
DX
3185 kvm_cpu_vmxoff();
3186 }
375074cc 3187 cr4_clear_bits(X86_CR4_VMXE);
710ff4a8
EH
3188}
3189
1c3d14fe 3190static __init int adjust_vmx_controls(u32 ctl_min, u32 ctl_opt,
d77c26fc 3191 u32 msr, u32 *result)
1c3d14fe
YS
3192{
3193 u32 vmx_msr_low, vmx_msr_high;
3194 u32 ctl = ctl_min | ctl_opt;
3195
3196 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3197
3198 ctl &= vmx_msr_high; /* bit == 0 in high word ==> must be zero */
3199 ctl |= vmx_msr_low; /* bit == 1 in low word ==> must be one */
3200
3201 /* Ensure minimum (required) set of control bits are supported. */
3202 if (ctl_min & ~ctl)
002c7f7c 3203 return -EIO;
1c3d14fe
YS
3204
3205 *result = ctl;
3206 return 0;
3207}
3208
110312c8
AK
3209static __init bool allow_1_setting(u32 msr, u32 ctl)
3210{
3211 u32 vmx_msr_low, vmx_msr_high;
3212
3213 rdmsr(msr, vmx_msr_low, vmx_msr_high);
3214 return vmx_msr_high & ctl;
3215}
3216
002c7f7c 3217static __init int setup_vmcs_config(struct vmcs_config *vmcs_conf)
6aa8b732
AK
3218{
3219 u32 vmx_msr_low, vmx_msr_high;
d56f546d 3220 u32 min, opt, min2, opt2;
1c3d14fe
YS
3221 u32 _pin_based_exec_control = 0;
3222 u32 _cpu_based_exec_control = 0;
f78e0e2e 3223 u32 _cpu_based_2nd_exec_control = 0;
1c3d14fe
YS
3224 u32 _vmexit_control = 0;
3225 u32 _vmentry_control = 0;
3226
10166744 3227 min = CPU_BASED_HLT_EXITING |
1c3d14fe
YS
3228#ifdef CONFIG_X86_64
3229 CPU_BASED_CR8_LOAD_EXITING |
3230 CPU_BASED_CR8_STORE_EXITING |
3231#endif
d56f546d
SY
3232 CPU_BASED_CR3_LOAD_EXITING |
3233 CPU_BASED_CR3_STORE_EXITING |
1c3d14fe
YS
3234 CPU_BASED_USE_IO_BITMAPS |
3235 CPU_BASED_MOV_DR_EXITING |
a7052897 3236 CPU_BASED_USE_TSC_OFFSETING |
59708670
SY
3237 CPU_BASED_MWAIT_EXITING |
3238 CPU_BASED_MONITOR_EXITING |
fee84b07
AK
3239 CPU_BASED_INVLPG_EXITING |
3240 CPU_BASED_RDPMC_EXITING;
443381a8 3241
f78e0e2e 3242 opt = CPU_BASED_TPR_SHADOW |
25c5f225 3243 CPU_BASED_USE_MSR_BITMAPS |
f78e0e2e 3244 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS;
1c3d14fe
YS
3245 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PROCBASED_CTLS,
3246 &_cpu_based_exec_control) < 0)
002c7f7c 3247 return -EIO;
6e5d865c
YS
3248#ifdef CONFIG_X86_64
3249 if ((_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3250 _cpu_based_exec_control &= ~CPU_BASED_CR8_LOAD_EXITING &
3251 ~CPU_BASED_CR8_STORE_EXITING;
3252#endif
f78e0e2e 3253 if (_cpu_based_exec_control & CPU_BASED_ACTIVATE_SECONDARY_CONTROLS) {
d56f546d
SY
3254 min2 = 0;
3255 opt2 = SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
8d14695f 3256 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
2384d2b3 3257 SECONDARY_EXEC_WBINVD_EXITING |
d56f546d 3258 SECONDARY_EXEC_ENABLE_VPID |
3a624e29 3259 SECONDARY_EXEC_ENABLE_EPT |
4b8d54f9 3260 SECONDARY_EXEC_UNRESTRICTED_GUEST |
4e47c7a6 3261 SECONDARY_EXEC_PAUSE_LOOP_EXITING |
ad756a16 3262 SECONDARY_EXEC_RDTSCP |
83d4c286 3263 SECONDARY_EXEC_ENABLE_INVPCID |
c7c9c56c 3264 SECONDARY_EXEC_APIC_REGISTER_VIRT |
abc4fc58 3265 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
20300099 3266 SECONDARY_EXEC_SHADOW_VMCS |
843e4330 3267 SECONDARY_EXEC_XSAVES |
8b3e34e4 3268 SECONDARY_EXEC_ENABLE_PML |
64903d61
HZ
3269 SECONDARY_EXEC_PCOMMIT |
3270 SECONDARY_EXEC_TSC_SCALING;
d56f546d
SY
3271 if (adjust_vmx_controls(min2, opt2,
3272 MSR_IA32_VMX_PROCBASED_CTLS2,
f78e0e2e
SY
3273 &_cpu_based_2nd_exec_control) < 0)
3274 return -EIO;
3275 }
3276#ifndef CONFIG_X86_64
3277 if (!(_cpu_based_2nd_exec_control &
3278 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
3279 _cpu_based_exec_control &= ~CPU_BASED_TPR_SHADOW;
3280#endif
83d4c286
YZ
3281
3282 if (!(_cpu_based_exec_control & CPU_BASED_TPR_SHADOW))
3283 _cpu_based_2nd_exec_control &= ~(
8d14695f 3284 SECONDARY_EXEC_APIC_REGISTER_VIRT |
c7c9c56c
YZ
3285 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
3286 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
83d4c286 3287
d56f546d 3288 if (_cpu_based_2nd_exec_control & SECONDARY_EXEC_ENABLE_EPT) {
a7052897
MT
3289 /* CR3 accesses and invlpg don't need to cause VM Exits when EPT
3290 enabled */
5fff7d27
GN
3291 _cpu_based_exec_control &= ~(CPU_BASED_CR3_LOAD_EXITING |
3292 CPU_BASED_CR3_STORE_EXITING |
3293 CPU_BASED_INVLPG_EXITING);
d56f546d
SY
3294 rdmsr(MSR_IA32_VMX_EPT_VPID_CAP,
3295 vmx_capability.ept, vmx_capability.vpid);
3296 }
1c3d14fe 3297
81908bf4 3298 min = VM_EXIT_SAVE_DEBUG_CONTROLS;
1c3d14fe
YS
3299#ifdef CONFIG_X86_64
3300 min |= VM_EXIT_HOST_ADDR_SPACE_SIZE;
3301#endif
a547c6db 3302 opt = VM_EXIT_SAVE_IA32_PAT | VM_EXIT_LOAD_IA32_PAT |
da8999d3 3303 VM_EXIT_ACK_INTR_ON_EXIT | VM_EXIT_CLEAR_BNDCFGS;
1c3d14fe
YS
3304 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_EXIT_CTLS,
3305 &_vmexit_control) < 0)
002c7f7c 3306 return -EIO;
1c3d14fe 3307
01e439be
YZ
3308 min = PIN_BASED_EXT_INTR_MASK | PIN_BASED_NMI_EXITING;
3309 opt = PIN_BASED_VIRTUAL_NMIS | PIN_BASED_POSTED_INTR;
3310 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_PINBASED_CTLS,
3311 &_pin_based_exec_control) < 0)
3312 return -EIO;
3313
3314 if (!(_cpu_based_2nd_exec_control &
3315 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) ||
3316 !(_vmexit_control & VM_EXIT_ACK_INTR_ON_EXIT))
3317 _pin_based_exec_control &= ~PIN_BASED_POSTED_INTR;
3318
c845f9c6 3319 min = VM_ENTRY_LOAD_DEBUG_CONTROLS;
da8999d3 3320 opt = VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_BNDCFGS;
1c3d14fe
YS
3321 if (adjust_vmx_controls(min, opt, MSR_IA32_VMX_ENTRY_CTLS,
3322 &_vmentry_control) < 0)
002c7f7c 3323 return -EIO;
6aa8b732 3324
c68876fd 3325 rdmsr(MSR_IA32_VMX_BASIC, vmx_msr_low, vmx_msr_high);
1c3d14fe
YS
3326
3327 /* IA-32 SDM Vol 3B: VMCS size is never greater than 4kB. */
3328 if ((vmx_msr_high & 0x1fff) > PAGE_SIZE)
002c7f7c 3329 return -EIO;
1c3d14fe
YS
3330
3331#ifdef CONFIG_X86_64
3332 /* IA-32 SDM Vol 3B: 64-bit CPUs always have VMX_BASIC_MSR[48]==0. */
3333 if (vmx_msr_high & (1u<<16))
002c7f7c 3334 return -EIO;
1c3d14fe
YS
3335#endif
3336
3337 /* Require Write-Back (WB) memory type for VMCS accesses. */
3338 if (((vmx_msr_high >> 18) & 15) != 6)
002c7f7c 3339 return -EIO;
1c3d14fe 3340
002c7f7c
YS
3341 vmcs_conf->size = vmx_msr_high & 0x1fff;
3342 vmcs_conf->order = get_order(vmcs_config.size);
3343 vmcs_conf->revision_id = vmx_msr_low;
1c3d14fe 3344
002c7f7c
YS
3345 vmcs_conf->pin_based_exec_ctrl = _pin_based_exec_control;
3346 vmcs_conf->cpu_based_exec_ctrl = _cpu_based_exec_control;
f78e0e2e 3347 vmcs_conf->cpu_based_2nd_exec_ctrl = _cpu_based_2nd_exec_control;
002c7f7c
YS
3348 vmcs_conf->vmexit_ctrl = _vmexit_control;
3349 vmcs_conf->vmentry_ctrl = _vmentry_control;
1c3d14fe 3350
110312c8
AK
3351 cpu_has_load_ia32_efer =
3352 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3353 VM_ENTRY_LOAD_IA32_EFER)
3354 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3355 VM_EXIT_LOAD_IA32_EFER);
3356
8bf00a52
GN
3357 cpu_has_load_perf_global_ctrl =
3358 allow_1_setting(MSR_IA32_VMX_ENTRY_CTLS,
3359 VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
3360 && allow_1_setting(MSR_IA32_VMX_EXIT_CTLS,
3361 VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL);
3362
3363 /*
3364 * Some cpus support VM_ENTRY_(LOAD|SAVE)_IA32_PERF_GLOBAL_CTRL
3365 * but due to arrata below it can't be used. Workaround is to use
3366 * msr load mechanism to switch IA32_PERF_GLOBAL_CTRL.
3367 *
3368 * VM Exit May Incorrectly Clear IA32_PERF_GLOBAL_CTRL [34:32]
3369 *
3370 * AAK155 (model 26)
3371 * AAP115 (model 30)
3372 * AAT100 (model 37)
3373 * BC86,AAY89,BD102 (model 44)
3374 * BA97 (model 46)
3375 *
3376 */
3377 if (cpu_has_load_perf_global_ctrl && boot_cpu_data.x86 == 0x6) {
3378 switch (boot_cpu_data.x86_model) {
3379 case 26:
3380 case 30:
3381 case 37:
3382 case 44:
3383 case 46:
3384 cpu_has_load_perf_global_ctrl = false;
3385 printk_once(KERN_WARNING"kvm: VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL "
3386 "does not work properly. Using workaround\n");
3387 break;
3388 default:
3389 break;
3390 }
3391 }
3392
20300099
WL
3393 if (cpu_has_xsaves)
3394 rdmsrl(MSR_IA32_XSS, host_xss);
3395
1c3d14fe 3396 return 0;
c68876fd 3397}
6aa8b732
AK
3398
3399static struct vmcs *alloc_vmcs_cpu(int cpu)
3400{
3401 int node = cpu_to_node(cpu);
3402 struct page *pages;
3403 struct vmcs *vmcs;
3404
96db800f 3405 pages = __alloc_pages_node(node, GFP_KERNEL, vmcs_config.order);
6aa8b732
AK
3406 if (!pages)
3407 return NULL;
3408 vmcs = page_address(pages);
1c3d14fe
YS
3409 memset(vmcs, 0, vmcs_config.size);
3410 vmcs->revision_id = vmcs_config.revision_id; /* vmcs revision id */
6aa8b732
AK
3411 return vmcs;
3412}
3413
3414static struct vmcs *alloc_vmcs(void)
3415{
d3b2c338 3416 return alloc_vmcs_cpu(raw_smp_processor_id());
6aa8b732
AK
3417}
3418
3419static void free_vmcs(struct vmcs *vmcs)
3420{
1c3d14fe 3421 free_pages((unsigned long)vmcs, vmcs_config.order);
6aa8b732
AK
3422}
3423
d462b819
NHE
3424/*
3425 * Free a VMCS, but before that VMCLEAR it on the CPU where it was last loaded
3426 */
3427static void free_loaded_vmcs(struct loaded_vmcs *loaded_vmcs)
3428{
3429 if (!loaded_vmcs->vmcs)
3430 return;
3431 loaded_vmcs_clear(loaded_vmcs);
3432 free_vmcs(loaded_vmcs->vmcs);
3433 loaded_vmcs->vmcs = NULL;
3434}
3435
39959588 3436static void free_kvm_area(void)
6aa8b732
AK
3437{
3438 int cpu;
3439
3230bb47 3440 for_each_possible_cpu(cpu) {
6aa8b732 3441 free_vmcs(per_cpu(vmxarea, cpu));
3230bb47
ZA
3442 per_cpu(vmxarea, cpu) = NULL;
3443 }
6aa8b732
AK
3444}
3445
fe2b201b
BD
3446static void init_vmcs_shadow_fields(void)
3447{
3448 int i, j;
3449
3450 /* No checks for read only fields yet */
3451
3452 for (i = j = 0; i < max_shadow_read_write_fields; i++) {
3453 switch (shadow_read_write_fields[i]) {
3454 case GUEST_BNDCFGS:
a87036ad 3455 if (!kvm_mpx_supported())
fe2b201b
BD
3456 continue;
3457 break;
3458 default:
3459 break;
3460 }
3461
3462 if (j < i)
3463 shadow_read_write_fields[j] =
3464 shadow_read_write_fields[i];
3465 j++;
3466 }
3467 max_shadow_read_write_fields = j;
3468
3469 /* shadowed fields guest access without vmexit */
3470 for (i = 0; i < max_shadow_read_write_fields; i++) {
3471 clear_bit(shadow_read_write_fields[i],
3472 vmx_vmwrite_bitmap);
3473 clear_bit(shadow_read_write_fields[i],
3474 vmx_vmread_bitmap);
3475 }
3476 for (i = 0; i < max_shadow_read_only_fields; i++)
3477 clear_bit(shadow_read_only_fields[i],
3478 vmx_vmread_bitmap);
3479}
3480
6aa8b732
AK
3481static __init int alloc_kvm_area(void)
3482{
3483 int cpu;
3484
3230bb47 3485 for_each_possible_cpu(cpu) {
6aa8b732
AK
3486 struct vmcs *vmcs;
3487
3488 vmcs = alloc_vmcs_cpu(cpu);
3489 if (!vmcs) {
3490 free_kvm_area();
3491 return -ENOMEM;
3492 }
3493
3494 per_cpu(vmxarea, cpu) = vmcs;
3495 }
3496 return 0;
3497}
3498
14168786
GN
3499static bool emulation_required(struct kvm_vcpu *vcpu)
3500{
3501 return emulate_invalid_guest_state && !guest_state_valid(vcpu);
3502}
3503
91b0aa2c 3504static void fix_pmode_seg(struct kvm_vcpu *vcpu, int seg,
d99e4152 3505 struct kvm_segment *save)
6aa8b732 3506{
d99e4152
GN
3507 if (!emulate_invalid_guest_state) {
3508 /*
3509 * CS and SS RPL should be equal during guest entry according
3510 * to VMX spec, but in reality it is not always so. Since vcpu
3511 * is in the middle of the transition from real mode to
3512 * protected mode it is safe to assume that RPL 0 is a good
3513 * default value.
3514 */
3515 if (seg == VCPU_SREG_CS || seg == VCPU_SREG_SS)
b32a9918
NA
3516 save->selector &= ~SEGMENT_RPL_MASK;
3517 save->dpl = save->selector & SEGMENT_RPL_MASK;
d99e4152 3518 save->s = 1;
6aa8b732 3519 }
d99e4152 3520 vmx_set_segment(vcpu, save, seg);
6aa8b732
AK
3521}
3522
3523static void enter_pmode(struct kvm_vcpu *vcpu)
3524{
3525 unsigned long flags;
a89a8fb9 3526 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3527
d99e4152
GN
3528 /*
3529 * Update real mode segment cache. It may be not up-to-date if sement
3530 * register was written while vcpu was in a guest mode.
3531 */
3532 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3533 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3534 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3535 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
3536 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3537 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
3538
7ffd92c5 3539 vmx->rmode.vm86_active = 0;
6aa8b732 3540
2fb92db1
AK
3541 vmx_segment_cache_clear(vmx);
3542
f5f7b2fe 3543 vmx_set_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
6aa8b732
AK
3544
3545 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47
AK
3546 flags &= RMODE_GUEST_OWNED_EFLAGS_BITS;
3547 flags |= vmx->rmode.save_rflags & ~RMODE_GUEST_OWNED_EFLAGS_BITS;
6aa8b732
AK
3548 vmcs_writel(GUEST_RFLAGS, flags);
3549
66aee91a
RR
3550 vmcs_writel(GUEST_CR4, (vmcs_readl(GUEST_CR4) & ~X86_CR4_VME) |
3551 (vmcs_readl(CR4_READ_SHADOW) & X86_CR4_VME));
6aa8b732
AK
3552
3553 update_exception_bitmap(vcpu);
3554
91b0aa2c
GN
3555 fix_pmode_seg(vcpu, VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3556 fix_pmode_seg(vcpu, VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3557 fix_pmode_seg(vcpu, VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3558 fix_pmode_seg(vcpu, VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3559 fix_pmode_seg(vcpu, VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
3560 fix_pmode_seg(vcpu, VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
6aa8b732
AK
3561}
3562
f5f7b2fe 3563static void fix_rmode_seg(int seg, struct kvm_segment *save)
6aa8b732 3564{
772e0318 3565 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
d99e4152
GN
3566 struct kvm_segment var = *save;
3567
3568 var.dpl = 0x3;
3569 if (seg == VCPU_SREG_CS)
3570 var.type = 0x3;
3571
3572 if (!emulate_invalid_guest_state) {
3573 var.selector = var.base >> 4;
3574 var.base = var.base & 0xffff0;
3575 var.limit = 0xffff;
3576 var.g = 0;
3577 var.db = 0;
3578 var.present = 1;
3579 var.s = 1;
3580 var.l = 0;
3581 var.unusable = 0;
3582 var.type = 0x3;
3583 var.avl = 0;
3584 if (save->base & 0xf)
3585 printk_once(KERN_WARNING "kvm: segment base is not "
3586 "paragraph aligned when entering "
3587 "protected mode (seg=%d)", seg);
3588 }
6aa8b732 3589
d99e4152
GN
3590 vmcs_write16(sf->selector, var.selector);
3591 vmcs_write32(sf->base, var.base);
3592 vmcs_write32(sf->limit, var.limit);
3593 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(&var));
6aa8b732
AK
3594}
3595
3596static void enter_rmode(struct kvm_vcpu *vcpu)
3597{
3598 unsigned long flags;
a89a8fb9 3599 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732 3600
f5f7b2fe
AK
3601 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_TR], VCPU_SREG_TR);
3602 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_ES], VCPU_SREG_ES);
3603 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_DS], VCPU_SREG_DS);
3604 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_FS], VCPU_SREG_FS);
3605 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_GS], VCPU_SREG_GS);
c6ad1153
GN
3606 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_SS], VCPU_SREG_SS);
3607 vmx_get_segment(vcpu, &vmx->rmode.segs[VCPU_SREG_CS], VCPU_SREG_CS);
f5f7b2fe 3608
7ffd92c5 3609 vmx->rmode.vm86_active = 1;
6aa8b732 3610
776e58ea
GN
3611 /*
3612 * Very old userspace does not call KVM_SET_TSS_ADDR before entering
4918c6ca 3613 * vcpu. Warn the user that an update is overdue.
776e58ea 3614 */
4918c6ca 3615 if (!vcpu->kvm->arch.tss_addr)
776e58ea
GN
3616 printk_once(KERN_WARNING "kvm: KVM_SET_TSS_ADDR need to be "
3617 "called before entering vcpu\n");
776e58ea 3618
2fb92db1
AK
3619 vmx_segment_cache_clear(vmx);
3620
4918c6ca 3621 vmcs_writel(GUEST_TR_BASE, vcpu->kvm->arch.tss_addr);
6aa8b732 3622 vmcs_write32(GUEST_TR_LIMIT, RMODE_TSS_SIZE - 1);
6aa8b732
AK
3623 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
3624
3625 flags = vmcs_readl(GUEST_RFLAGS);
78ac8b47 3626 vmx->rmode.save_rflags = flags;
6aa8b732 3627
053de044 3628 flags |= X86_EFLAGS_IOPL | X86_EFLAGS_VM;
6aa8b732
AK
3629
3630 vmcs_writel(GUEST_RFLAGS, flags);
66aee91a 3631 vmcs_writel(GUEST_CR4, vmcs_readl(GUEST_CR4) | X86_CR4_VME);
6aa8b732
AK
3632 update_exception_bitmap(vcpu);
3633
d99e4152
GN
3634 fix_rmode_seg(VCPU_SREG_SS, &vmx->rmode.segs[VCPU_SREG_SS]);
3635 fix_rmode_seg(VCPU_SREG_CS, &vmx->rmode.segs[VCPU_SREG_CS]);
3636 fix_rmode_seg(VCPU_SREG_ES, &vmx->rmode.segs[VCPU_SREG_ES]);
3637 fix_rmode_seg(VCPU_SREG_DS, &vmx->rmode.segs[VCPU_SREG_DS]);
3638 fix_rmode_seg(VCPU_SREG_GS, &vmx->rmode.segs[VCPU_SREG_GS]);
3639 fix_rmode_seg(VCPU_SREG_FS, &vmx->rmode.segs[VCPU_SREG_FS]);
b246dd5d 3640
8668a3c4 3641 kvm_mmu_reset_context(vcpu);
6aa8b732
AK
3642}
3643
401d10de
AS
3644static void vmx_set_efer(struct kvm_vcpu *vcpu, u64 efer)
3645{
3646 struct vcpu_vmx *vmx = to_vmx(vcpu);
26bb0981
AK
3647 struct shared_msr_entry *msr = find_msr_entry(vmx, MSR_EFER);
3648
3649 if (!msr)
3650 return;
401d10de 3651
44ea2b17
AK
3652 /*
3653 * Force kernel_gs_base reloading before EFER changes, as control
3654 * of this msr depends on is_long_mode().
3655 */
3656 vmx_load_host_state(to_vmx(vcpu));
f6801dff 3657 vcpu->arch.efer = efer;
401d10de 3658 if (efer & EFER_LMA) {
2961e876 3659 vm_entry_controls_setbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3660 msr->data = efer;
3661 } else {
2961e876 3662 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
401d10de
AS
3663
3664 msr->data = efer & ~EFER_LME;
3665 }
3666 setup_msrs(vmx);
3667}
3668
05b3e0c2 3669#ifdef CONFIG_X86_64
6aa8b732
AK
3670
3671static void enter_lmode(struct kvm_vcpu *vcpu)
3672{
3673 u32 guest_tr_ar;
3674
2fb92db1
AK
3675 vmx_segment_cache_clear(to_vmx(vcpu));
3676
6aa8b732 3677 guest_tr_ar = vmcs_read32(GUEST_TR_AR_BYTES);
4d283ec9 3678 if ((guest_tr_ar & VMX_AR_TYPE_MASK) != VMX_AR_TYPE_BUSY_64_TSS) {
bd80158a
JK
3679 pr_debug_ratelimited("%s: tss fixup for long mode. \n",
3680 __func__);
6aa8b732 3681 vmcs_write32(GUEST_TR_AR_BYTES,
4d283ec9
AL
3682 (guest_tr_ar & ~VMX_AR_TYPE_MASK)
3683 | VMX_AR_TYPE_BUSY_64_TSS);
6aa8b732 3684 }
da38f438 3685 vmx_set_efer(vcpu, vcpu->arch.efer | EFER_LMA);
6aa8b732
AK
3686}
3687
3688static void exit_lmode(struct kvm_vcpu *vcpu)
3689{
2961e876 3690 vm_entry_controls_clearbit(to_vmx(vcpu), VM_ENTRY_IA32E_MODE);
da38f438 3691 vmx_set_efer(vcpu, vcpu->arch.efer & ~EFER_LMA);
6aa8b732
AK
3692}
3693
3694#endif
3695
dd5f5341 3696static inline void __vmx_flush_tlb(struct kvm_vcpu *vcpu, int vpid)
2384d2b3 3697{
dd5f5341 3698 vpid_sync_context(vpid);
dd180b3e
XG
3699 if (enable_ept) {
3700 if (!VALID_PAGE(vcpu->arch.mmu.root_hpa))
3701 return;
4e1096d2 3702 ept_sync_context(construct_eptp(vcpu->arch.mmu.root_hpa));
dd180b3e 3703 }
2384d2b3
SY
3704}
3705
dd5f5341
WL
3706static void vmx_flush_tlb(struct kvm_vcpu *vcpu)
3707{
3708 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->vpid);
3709}
3710
e8467fda
AK
3711static void vmx_decache_cr0_guest_bits(struct kvm_vcpu *vcpu)
3712{
3713 ulong cr0_guest_owned_bits = vcpu->arch.cr0_guest_owned_bits;
3714
3715 vcpu->arch.cr0 &= ~cr0_guest_owned_bits;
3716 vcpu->arch.cr0 |= vmcs_readl(GUEST_CR0) & cr0_guest_owned_bits;
3717}
3718
aff48baa
AK
3719static void vmx_decache_cr3(struct kvm_vcpu *vcpu)
3720{
3721 if (enable_ept && is_paging(vcpu))
3722 vcpu->arch.cr3 = vmcs_readl(GUEST_CR3);
3723 __set_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail);
3724}
3725
25c4c276 3726static void vmx_decache_cr4_guest_bits(struct kvm_vcpu *vcpu)
399badf3 3727{
fc78f519
AK
3728 ulong cr4_guest_owned_bits = vcpu->arch.cr4_guest_owned_bits;
3729
3730 vcpu->arch.cr4 &= ~cr4_guest_owned_bits;
3731 vcpu->arch.cr4 |= vmcs_readl(GUEST_CR4) & cr4_guest_owned_bits;
399badf3
AK
3732}
3733
1439442c
SY
3734static void ept_load_pdptrs(struct kvm_vcpu *vcpu)
3735{
d0d538b9
GN
3736 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3737
6de4f3ad
AK
3738 if (!test_bit(VCPU_EXREG_PDPTR,
3739 (unsigned long *)&vcpu->arch.regs_dirty))
3740 return;
3741
1439442c 3742 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3743 vmcs_write64(GUEST_PDPTR0, mmu->pdptrs[0]);
3744 vmcs_write64(GUEST_PDPTR1, mmu->pdptrs[1]);
3745 vmcs_write64(GUEST_PDPTR2, mmu->pdptrs[2]);
3746 vmcs_write64(GUEST_PDPTR3, mmu->pdptrs[3]);
1439442c
SY
3747 }
3748}
3749
8f5d549f
AK
3750static void ept_save_pdptrs(struct kvm_vcpu *vcpu)
3751{
d0d538b9
GN
3752 struct kvm_mmu *mmu = vcpu->arch.walk_mmu;
3753
8f5d549f 3754 if (is_paging(vcpu) && is_pae(vcpu) && !is_long_mode(vcpu)) {
d0d538b9
GN
3755 mmu->pdptrs[0] = vmcs_read64(GUEST_PDPTR0);
3756 mmu->pdptrs[1] = vmcs_read64(GUEST_PDPTR1);
3757 mmu->pdptrs[2] = vmcs_read64(GUEST_PDPTR2);
3758 mmu->pdptrs[3] = vmcs_read64(GUEST_PDPTR3);
8f5d549f 3759 }
6de4f3ad
AK
3760
3761 __set_bit(VCPU_EXREG_PDPTR,
3762 (unsigned long *)&vcpu->arch.regs_avail);
3763 __set_bit(VCPU_EXREG_PDPTR,
3764 (unsigned long *)&vcpu->arch.regs_dirty);
8f5d549f
AK
3765}
3766
5e1746d6 3767static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4);
1439442c
SY
3768
3769static void ept_update_paging_mode_cr0(unsigned long *hw_cr0,
3770 unsigned long cr0,
3771 struct kvm_vcpu *vcpu)
3772{
5233dd51
MT
3773 if (!test_bit(VCPU_EXREG_CR3, (ulong *)&vcpu->arch.regs_avail))
3774 vmx_decache_cr3(vcpu);
1439442c
SY
3775 if (!(cr0 & X86_CR0_PG)) {
3776 /* From paging/starting to nonpaging */
3777 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3778 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) |
1439442c
SY
3779 (CPU_BASED_CR3_LOAD_EXITING |
3780 CPU_BASED_CR3_STORE_EXITING));
3781 vcpu->arch.cr0 = cr0;
fc78f519 3782 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c
SY
3783 } else if (!is_paging(vcpu)) {
3784 /* From nonpaging to paging */
3785 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL,
65267ea1 3786 vmcs_read32(CPU_BASED_VM_EXEC_CONTROL) &
1439442c
SY
3787 ~(CPU_BASED_CR3_LOAD_EXITING |
3788 CPU_BASED_CR3_STORE_EXITING));
3789 vcpu->arch.cr0 = cr0;
fc78f519 3790 vmx_set_cr4(vcpu, kvm_read_cr4(vcpu));
1439442c 3791 }
95eb84a7
SY
3792
3793 if (!(cr0 & X86_CR0_WP))
3794 *hw_cr0 &= ~X86_CR0_WP;
1439442c
SY
3795}
3796
6aa8b732
AK
3797static void vmx_set_cr0(struct kvm_vcpu *vcpu, unsigned long cr0)
3798{
7ffd92c5 3799 struct vcpu_vmx *vmx = to_vmx(vcpu);
3a624e29
NK
3800 unsigned long hw_cr0;
3801
5037878e 3802 hw_cr0 = (cr0 & ~KVM_GUEST_CR0_MASK);
3a624e29 3803 if (enable_unrestricted_guest)
5037878e 3804 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON_UNRESTRICTED_GUEST;
218e763f 3805 else {
5037878e 3806 hw_cr0 |= KVM_VM_CR0_ALWAYS_ON;
1439442c 3807
218e763f
GN
3808 if (vmx->rmode.vm86_active && (cr0 & X86_CR0_PE))
3809 enter_pmode(vcpu);
6aa8b732 3810
218e763f
GN
3811 if (!vmx->rmode.vm86_active && !(cr0 & X86_CR0_PE))
3812 enter_rmode(vcpu);
3813 }
6aa8b732 3814
05b3e0c2 3815#ifdef CONFIG_X86_64
f6801dff 3816 if (vcpu->arch.efer & EFER_LME) {
707d92fa 3817 if (!is_paging(vcpu) && (cr0 & X86_CR0_PG))
6aa8b732 3818 enter_lmode(vcpu);
707d92fa 3819 if (is_paging(vcpu) && !(cr0 & X86_CR0_PG))
6aa8b732
AK
3820 exit_lmode(vcpu);
3821 }
3822#endif
3823
089d034e 3824 if (enable_ept)
1439442c
SY
3825 ept_update_paging_mode_cr0(&hw_cr0, cr0, vcpu);
3826
02daab21 3827 if (!vcpu->fpu_active)
81231c69 3828 hw_cr0 |= X86_CR0_TS | X86_CR0_MP;
02daab21 3829
6aa8b732 3830 vmcs_writel(CR0_READ_SHADOW, cr0);
1439442c 3831 vmcs_writel(GUEST_CR0, hw_cr0);
ad312c7c 3832 vcpu->arch.cr0 = cr0;
14168786
GN
3833
3834 /* depends on vcpu->arch.cr0 to be set to a new value */
3835 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
3836}
3837
1439442c
SY
3838static u64 construct_eptp(unsigned long root_hpa)
3839{
3840 u64 eptp;
3841
3842 /* TODO write the value reading from MSR */
3843 eptp = VMX_EPT_DEFAULT_MT |
3844 VMX_EPT_DEFAULT_GAW << VMX_EPT_GAW_EPTP_SHIFT;
b38f9934
XH
3845 if (enable_ept_ad_bits)
3846 eptp |= VMX_EPT_AD_ENABLE_BIT;
1439442c
SY
3847 eptp |= (root_hpa & PAGE_MASK);
3848
3849 return eptp;
3850}
3851
6aa8b732
AK
3852static void vmx_set_cr3(struct kvm_vcpu *vcpu, unsigned long cr3)
3853{
1439442c
SY
3854 unsigned long guest_cr3;
3855 u64 eptp;
3856
3857 guest_cr3 = cr3;
089d034e 3858 if (enable_ept) {
1439442c
SY
3859 eptp = construct_eptp(cr3);
3860 vmcs_write64(EPT_POINTER, eptp);
59ab5a8f
JK
3861 if (is_paging(vcpu) || is_guest_mode(vcpu))
3862 guest_cr3 = kvm_read_cr3(vcpu);
3863 else
3864 guest_cr3 = vcpu->kvm->arch.ept_identity_map_addr;
7c93be44 3865 ept_load_pdptrs(vcpu);
1439442c
SY
3866 }
3867
2384d2b3 3868 vmx_flush_tlb(vcpu);
1439442c 3869 vmcs_writel(GUEST_CR3, guest_cr3);
6aa8b732
AK
3870}
3871
5e1746d6 3872static int vmx_set_cr4(struct kvm_vcpu *vcpu, unsigned long cr4)
6aa8b732 3873{
085e68ee
BS
3874 /*
3875 * Pass through host's Machine Check Enable value to hw_cr4, which
3876 * is in force while we are in guest mode. Do not let guests control
3877 * this bit, even if host CR4.MCE == 0.
3878 */
3879 unsigned long hw_cr4 =
3880 (cr4_read_shadow() & X86_CR4_MCE) |
3881 (cr4 & ~X86_CR4_MCE) |
3882 (to_vmx(vcpu)->rmode.vm86_active ?
3883 KVM_RMODE_VM_CR4_ALWAYS_ON : KVM_PMODE_VM_CR4_ALWAYS_ON);
1439442c 3884
5e1746d6
NHE
3885 if (cr4 & X86_CR4_VMXE) {
3886 /*
3887 * To use VMXON (and later other VMX instructions), a guest
3888 * must first be able to turn on cr4.VMXE (see handle_vmon()).
3889 * So basically the check on whether to allow nested VMX
3890 * is here.
3891 */
3892 if (!nested_vmx_allowed(vcpu))
3893 return 1;
1a0d74e6
JK
3894 }
3895 if (to_vmx(vcpu)->nested.vmxon &&
3896 ((cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON))
5e1746d6
NHE
3897 return 1;
3898
ad312c7c 3899 vcpu->arch.cr4 = cr4;
bc23008b
AK
3900 if (enable_ept) {
3901 if (!is_paging(vcpu)) {
3902 hw_cr4 &= ~X86_CR4_PAE;
3903 hw_cr4 |= X86_CR4_PSE;
3904 } else if (!(cr4 & X86_CR4_PAE)) {
3905 hw_cr4 &= ~X86_CR4_PAE;
3906 }
3907 }
1439442c 3908
656ec4a4
RK
3909 if (!enable_unrestricted_guest && !is_paging(vcpu))
3910 /*
ddba2628
HH
3911 * SMEP/SMAP/PKU is disabled if CPU is in non-paging mode in
3912 * hardware. To emulate this behavior, SMEP/SMAP/PKU needs
3913 * to be manually disabled when guest switches to non-paging
3914 * mode.
3915 *
3916 * If !enable_unrestricted_guest, the CPU is always running
3917 * with CR0.PG=1 and CR4 needs to be modified.
3918 * If enable_unrestricted_guest, the CPU automatically
3919 * disables SMEP/SMAP/PKU when the guest sets CR0.PG=0.
656ec4a4 3920 */
ddba2628 3921 hw_cr4 &= ~(X86_CR4_SMEP | X86_CR4_SMAP | X86_CR4_PKE);
656ec4a4 3922
1439442c
SY
3923 vmcs_writel(CR4_READ_SHADOW, cr4);
3924 vmcs_writel(GUEST_CR4, hw_cr4);
5e1746d6 3925 return 0;
6aa8b732
AK
3926}
3927
6aa8b732
AK
3928static void vmx_get_segment(struct kvm_vcpu *vcpu,
3929 struct kvm_segment *var, int seg)
3930{
a9179499 3931 struct vcpu_vmx *vmx = to_vmx(vcpu);
6aa8b732
AK
3932 u32 ar;
3933
c6ad1153 3934 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
f5f7b2fe 3935 *var = vmx->rmode.segs[seg];
a9179499 3936 if (seg == VCPU_SREG_TR
2fb92db1 3937 || var->selector == vmx_read_guest_seg_selector(vmx, seg))
f5f7b2fe 3938 return;
1390a28b
AK
3939 var->base = vmx_read_guest_seg_base(vmx, seg);
3940 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3941 return;
a9179499 3942 }
2fb92db1
AK
3943 var->base = vmx_read_guest_seg_base(vmx, seg);
3944 var->limit = vmx_read_guest_seg_limit(vmx, seg);
3945 var->selector = vmx_read_guest_seg_selector(vmx, seg);
3946 ar = vmx_read_guest_seg_ar(vmx, seg);
03617c18 3947 var->unusable = (ar >> 16) & 1;
6aa8b732
AK
3948 var->type = ar & 15;
3949 var->s = (ar >> 4) & 1;
3950 var->dpl = (ar >> 5) & 3;
03617c18
GN
3951 /*
3952 * Some userspaces do not preserve unusable property. Since usable
3953 * segment has to be present according to VMX spec we can use present
3954 * property to amend userspace bug by making unusable segment always
3955 * nonpresent. vmx_segment_access_rights() already marks nonpresent
3956 * segment as unusable.
3957 */
3958 var->present = !var->unusable;
6aa8b732
AK
3959 var->avl = (ar >> 12) & 1;
3960 var->l = (ar >> 13) & 1;
3961 var->db = (ar >> 14) & 1;
3962 var->g = (ar >> 15) & 1;
6aa8b732
AK
3963}
3964
a9179499
AK
3965static u64 vmx_get_segment_base(struct kvm_vcpu *vcpu, int seg)
3966{
a9179499
AK
3967 struct kvm_segment s;
3968
3969 if (to_vmx(vcpu)->rmode.vm86_active) {
3970 vmx_get_segment(vcpu, &s, seg);
3971 return s.base;
3972 }
2fb92db1 3973 return vmx_read_guest_seg_base(to_vmx(vcpu), seg);
a9179499
AK
3974}
3975
b09408d0 3976static int vmx_get_cpl(struct kvm_vcpu *vcpu)
2e4d2653 3977{
b09408d0
MT
3978 struct vcpu_vmx *vmx = to_vmx(vcpu);
3979
ae9fedc7 3980 if (unlikely(vmx->rmode.vm86_active))
2e4d2653 3981 return 0;
ae9fedc7
PB
3982 else {
3983 int ar = vmx_read_guest_seg_ar(vmx, VCPU_SREG_SS);
4d283ec9 3984 return VMX_AR_DPL(ar);
69c73028 3985 }
69c73028
AK
3986}
3987
653e3108 3988static u32 vmx_segment_access_rights(struct kvm_segment *var)
6aa8b732 3989{
6aa8b732
AK
3990 u32 ar;
3991
f0495f9b 3992 if (var->unusable || !var->present)
6aa8b732
AK
3993 ar = 1 << 16;
3994 else {
3995 ar = var->type & 15;
3996 ar |= (var->s & 1) << 4;
3997 ar |= (var->dpl & 3) << 5;
3998 ar |= (var->present & 1) << 7;
3999 ar |= (var->avl & 1) << 12;
4000 ar |= (var->l & 1) << 13;
4001 ar |= (var->db & 1) << 14;
4002 ar |= (var->g & 1) << 15;
4003 }
653e3108
AK
4004
4005 return ar;
4006}
4007
4008static void vmx_set_segment(struct kvm_vcpu *vcpu,
4009 struct kvm_segment *var, int seg)
4010{
7ffd92c5 4011 struct vcpu_vmx *vmx = to_vmx(vcpu);
772e0318 4012 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
653e3108 4013
2fb92db1
AK
4014 vmx_segment_cache_clear(vmx);
4015
1ecd50a9
GN
4016 if (vmx->rmode.vm86_active && seg != VCPU_SREG_LDTR) {
4017 vmx->rmode.segs[seg] = *var;
4018 if (seg == VCPU_SREG_TR)
4019 vmcs_write16(sf->selector, var->selector);
4020 else if (var->s)
4021 fix_rmode_seg(seg, &vmx->rmode.segs[seg]);
d99e4152 4022 goto out;
653e3108 4023 }
1ecd50a9 4024
653e3108
AK
4025 vmcs_writel(sf->base, var->base);
4026 vmcs_write32(sf->limit, var->limit);
4027 vmcs_write16(sf->selector, var->selector);
3a624e29
NK
4028
4029 /*
4030 * Fix the "Accessed" bit in AR field of segment registers for older
4031 * qemu binaries.
4032 * IA32 arch specifies that at the time of processor reset the
4033 * "Accessed" bit in the AR field of segment registers is 1. And qemu
0fa06071 4034 * is setting it to 0 in the userland code. This causes invalid guest
3a624e29
NK
4035 * state vmexit when "unrestricted guest" mode is turned on.
4036 * Fix for this setup issue in cpu_reset is being pushed in the qemu
4037 * tree. Newer qemu binaries with that qemu fix would not need this
4038 * kvm hack.
4039 */
4040 if (enable_unrestricted_guest && (seg != VCPU_SREG_LDTR))
f924d66d 4041 var->type |= 0x1; /* Accessed */
3a624e29 4042
f924d66d 4043 vmcs_write32(sf->ar_bytes, vmx_segment_access_rights(var));
d99e4152
GN
4044
4045out:
98eb2f8b 4046 vmx->emulation_required = emulation_required(vcpu);
6aa8b732
AK
4047}
4048
6aa8b732
AK
4049static void vmx_get_cs_db_l_bits(struct kvm_vcpu *vcpu, int *db, int *l)
4050{
2fb92db1 4051 u32 ar = vmx_read_guest_seg_ar(to_vmx(vcpu), VCPU_SREG_CS);
6aa8b732
AK
4052
4053 *db = (ar >> 14) & 1;
4054 *l = (ar >> 13) & 1;
4055}
4056
89a27f4d 4057static void vmx_get_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4058{
89a27f4d
GN
4059 dt->size = vmcs_read32(GUEST_IDTR_LIMIT);
4060 dt->address = vmcs_readl(GUEST_IDTR_BASE);
6aa8b732
AK
4061}
4062
89a27f4d 4063static void vmx_set_idt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4064{
89a27f4d
GN
4065 vmcs_write32(GUEST_IDTR_LIMIT, dt->size);
4066 vmcs_writel(GUEST_IDTR_BASE, dt->address);
6aa8b732
AK
4067}
4068
89a27f4d 4069static void vmx_get_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4070{
89a27f4d
GN
4071 dt->size = vmcs_read32(GUEST_GDTR_LIMIT);
4072 dt->address = vmcs_readl(GUEST_GDTR_BASE);
6aa8b732
AK
4073}
4074
89a27f4d 4075static void vmx_set_gdt(struct kvm_vcpu *vcpu, struct desc_ptr *dt)
6aa8b732 4076{
89a27f4d
GN
4077 vmcs_write32(GUEST_GDTR_LIMIT, dt->size);
4078 vmcs_writel(GUEST_GDTR_BASE, dt->address);
6aa8b732
AK
4079}
4080
648dfaa7
MG
4081static bool rmode_segment_valid(struct kvm_vcpu *vcpu, int seg)
4082{
4083 struct kvm_segment var;
4084 u32 ar;
4085
4086 vmx_get_segment(vcpu, &var, seg);
07f42f5f 4087 var.dpl = 0x3;
0647f4aa
GN
4088 if (seg == VCPU_SREG_CS)
4089 var.type = 0x3;
648dfaa7
MG
4090 ar = vmx_segment_access_rights(&var);
4091
4092 if (var.base != (var.selector << 4))
4093 return false;
89efbed0 4094 if (var.limit != 0xffff)
648dfaa7 4095 return false;
07f42f5f 4096 if (ar != 0xf3)
648dfaa7
MG
4097 return false;
4098
4099 return true;
4100}
4101
4102static bool code_segment_valid(struct kvm_vcpu *vcpu)
4103{
4104 struct kvm_segment cs;
4105 unsigned int cs_rpl;
4106
4107 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
b32a9918 4108 cs_rpl = cs.selector & SEGMENT_RPL_MASK;
648dfaa7 4109
1872a3f4
AK
4110 if (cs.unusable)
4111 return false;
4d283ec9 4112 if (~cs.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_ACCESSES_MASK))
648dfaa7
MG
4113 return false;
4114 if (!cs.s)
4115 return false;
4d283ec9 4116 if (cs.type & VMX_AR_TYPE_WRITEABLE_MASK) {
648dfaa7
MG
4117 if (cs.dpl > cs_rpl)
4118 return false;
1872a3f4 4119 } else {
648dfaa7
MG
4120 if (cs.dpl != cs_rpl)
4121 return false;
4122 }
4123 if (!cs.present)
4124 return false;
4125
4126 /* TODO: Add Reserved field check, this'll require a new member in the kvm_segment_field structure */
4127 return true;
4128}
4129
4130static bool stack_segment_valid(struct kvm_vcpu *vcpu)
4131{
4132 struct kvm_segment ss;
4133 unsigned int ss_rpl;
4134
4135 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
b32a9918 4136 ss_rpl = ss.selector & SEGMENT_RPL_MASK;
648dfaa7 4137
1872a3f4
AK
4138 if (ss.unusable)
4139 return true;
4140 if (ss.type != 3 && ss.type != 7)
648dfaa7
MG
4141 return false;
4142 if (!ss.s)
4143 return false;
4144 if (ss.dpl != ss_rpl) /* DPL != RPL */
4145 return false;
4146 if (!ss.present)
4147 return false;
4148
4149 return true;
4150}
4151
4152static bool data_segment_valid(struct kvm_vcpu *vcpu, int seg)
4153{
4154 struct kvm_segment var;
4155 unsigned int rpl;
4156
4157 vmx_get_segment(vcpu, &var, seg);
b32a9918 4158 rpl = var.selector & SEGMENT_RPL_MASK;
648dfaa7 4159
1872a3f4
AK
4160 if (var.unusable)
4161 return true;
648dfaa7
MG
4162 if (!var.s)
4163 return false;
4164 if (!var.present)
4165 return false;
4d283ec9 4166 if (~var.type & (VMX_AR_TYPE_CODE_MASK|VMX_AR_TYPE_WRITEABLE_MASK)) {
648dfaa7
MG
4167 if (var.dpl < rpl) /* DPL < RPL */
4168 return false;
4169 }
4170
4171 /* TODO: Add other members to kvm_segment_field to allow checking for other access
4172 * rights flags
4173 */
4174 return true;
4175}
4176
4177static bool tr_valid(struct kvm_vcpu *vcpu)
4178{
4179 struct kvm_segment tr;
4180
4181 vmx_get_segment(vcpu, &tr, VCPU_SREG_TR);
4182
1872a3f4
AK
4183 if (tr.unusable)
4184 return false;
b32a9918 4185 if (tr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7 4186 return false;
1872a3f4 4187 if (tr.type != 3 && tr.type != 11) /* TODO: Check if guest is in IA32e mode */
648dfaa7
MG
4188 return false;
4189 if (!tr.present)
4190 return false;
4191
4192 return true;
4193}
4194
4195static bool ldtr_valid(struct kvm_vcpu *vcpu)
4196{
4197 struct kvm_segment ldtr;
4198
4199 vmx_get_segment(vcpu, &ldtr, VCPU_SREG_LDTR);
4200
1872a3f4
AK
4201 if (ldtr.unusable)
4202 return true;
b32a9918 4203 if (ldtr.selector & SEGMENT_TI_MASK) /* TI = 1 */
648dfaa7
MG
4204 return false;
4205 if (ldtr.type != 2)
4206 return false;
4207 if (!ldtr.present)
4208 return false;
4209
4210 return true;
4211}
4212
4213static bool cs_ss_rpl_check(struct kvm_vcpu *vcpu)
4214{
4215 struct kvm_segment cs, ss;
4216
4217 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
4218 vmx_get_segment(vcpu, &ss, VCPU_SREG_SS);
4219
b32a9918
NA
4220 return ((cs.selector & SEGMENT_RPL_MASK) ==
4221 (ss.selector & SEGMENT_RPL_MASK));
648dfaa7
MG
4222}
4223
4224/*
4225 * Check if guest state is valid. Returns true if valid, false if
4226 * not.
4227 * We assume that registers are always usable
4228 */
4229static bool guest_state_valid(struct kvm_vcpu *vcpu)
4230{
c5e97c80
GN
4231 if (enable_unrestricted_guest)
4232 return true;
4233
648dfaa7 4234 /* real mode guest state checks */
f13882d8 4235 if (!is_protmode(vcpu) || (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
648dfaa7
MG
4236 if (!rmode_segment_valid(vcpu, VCPU_SREG_CS))
4237 return false;
4238 if (!rmode_segment_valid(vcpu, VCPU_SREG_SS))
4239 return false;
4240 if (!rmode_segment_valid(vcpu, VCPU_SREG_DS))
4241 return false;
4242 if (!rmode_segment_valid(vcpu, VCPU_SREG_ES))
4243 return false;
4244 if (!rmode_segment_valid(vcpu, VCPU_SREG_FS))
4245 return false;
4246 if (!rmode_segment_valid(vcpu, VCPU_SREG_GS))
4247 return false;
4248 } else {
4249 /* protected mode guest state checks */
4250 if (!cs_ss_rpl_check(vcpu))
4251 return false;
4252 if (!code_segment_valid(vcpu))
4253 return false;
4254 if (!stack_segment_valid(vcpu))
4255 return false;
4256 if (!data_segment_valid(vcpu, VCPU_SREG_DS))
4257 return false;
4258 if (!data_segment_valid(vcpu, VCPU_SREG_ES))
4259 return false;
4260 if (!data_segment_valid(vcpu, VCPU_SREG_FS))
4261 return false;
4262 if (!data_segment_valid(vcpu, VCPU_SREG_GS))
4263 return false;
4264 if (!tr_valid(vcpu))
4265 return false;
4266 if (!ldtr_valid(vcpu))
4267 return false;
4268 }
4269 /* TODO:
4270 * - Add checks on RIP
4271 * - Add checks on RFLAGS
4272 */
4273
4274 return true;
4275}
4276
d77c26fc 4277static int init_rmode_tss(struct kvm *kvm)
6aa8b732 4278{
40dcaa9f 4279 gfn_t fn;
195aefde 4280 u16 data = 0;
1f755a82 4281 int idx, r;
6aa8b732 4282
40dcaa9f 4283 idx = srcu_read_lock(&kvm->srcu);
4918c6ca 4284 fn = kvm->arch.tss_addr >> PAGE_SHIFT;
195aefde
IE
4285 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4286 if (r < 0)
10589a46 4287 goto out;
195aefde 4288 data = TSS_BASE_SIZE + TSS_REDIRECTION_SIZE;
464d17c8
SY
4289 r = kvm_write_guest_page(kvm, fn++, &data,
4290 TSS_IOPB_BASE_OFFSET, sizeof(u16));
195aefde 4291 if (r < 0)
10589a46 4292 goto out;
195aefde
IE
4293 r = kvm_clear_guest_page(kvm, fn++, 0, PAGE_SIZE);
4294 if (r < 0)
10589a46 4295 goto out;
195aefde
IE
4296 r = kvm_clear_guest_page(kvm, fn, 0, PAGE_SIZE);
4297 if (r < 0)
10589a46 4298 goto out;
195aefde 4299 data = ~0;
10589a46
MT
4300 r = kvm_write_guest_page(kvm, fn, &data,
4301 RMODE_TSS_SIZE - 2 * PAGE_SIZE - 1,
4302 sizeof(u8));
10589a46 4303out:
40dcaa9f 4304 srcu_read_unlock(&kvm->srcu, idx);
1f755a82 4305 return r;
6aa8b732
AK
4306}
4307
b7ebfb05
SY
4308static int init_rmode_identity_map(struct kvm *kvm)
4309{
f51770ed 4310 int i, idx, r = 0;
ba049e93 4311 kvm_pfn_t identity_map_pfn;
b7ebfb05
SY
4312 u32 tmp;
4313
089d034e 4314 if (!enable_ept)
f51770ed 4315 return 0;
a255d479
TC
4316
4317 /* Protect kvm->arch.ept_identity_pagetable_done. */
4318 mutex_lock(&kvm->slots_lock);
4319
f51770ed 4320 if (likely(kvm->arch.ept_identity_pagetable_done))
a255d479 4321 goto out2;
a255d479 4322
b927a3ce 4323 identity_map_pfn = kvm->arch.ept_identity_map_addr >> PAGE_SHIFT;
a255d479
TC
4324
4325 r = alloc_identity_pagetable(kvm);
f51770ed 4326 if (r < 0)
a255d479
TC
4327 goto out2;
4328
40dcaa9f 4329 idx = srcu_read_lock(&kvm->srcu);
b7ebfb05
SY
4330 r = kvm_clear_guest_page(kvm, identity_map_pfn, 0, PAGE_SIZE);
4331 if (r < 0)
4332 goto out;
4333 /* Set up identity-mapping pagetable for EPT in real mode */
4334 for (i = 0; i < PT32_ENT_PER_PAGE; i++) {
4335 tmp = (i << 22) + (_PAGE_PRESENT | _PAGE_RW | _PAGE_USER |
4336 _PAGE_ACCESSED | _PAGE_DIRTY | _PAGE_PSE);
4337 r = kvm_write_guest_page(kvm, identity_map_pfn,
4338 &tmp, i * sizeof(tmp), sizeof(tmp));
4339 if (r < 0)
4340 goto out;
4341 }
4342 kvm->arch.ept_identity_pagetable_done = true;
f51770ed 4343
b7ebfb05 4344out:
40dcaa9f 4345 srcu_read_unlock(&kvm->srcu, idx);
a255d479
TC
4346
4347out2:
4348 mutex_unlock(&kvm->slots_lock);
f51770ed 4349 return r;
b7ebfb05
SY
4350}
4351
6aa8b732
AK
4352static void seg_setup(int seg)
4353{
772e0318 4354 const struct kvm_vmx_segment_field *sf = &kvm_vmx_segment_fields[seg];
3a624e29 4355 unsigned int ar;
6aa8b732
AK
4356
4357 vmcs_write16(sf->selector, 0);
4358 vmcs_writel(sf->base, 0);
4359 vmcs_write32(sf->limit, 0xffff);
d54d07b2
GN
4360 ar = 0x93;
4361 if (seg == VCPU_SREG_CS)
4362 ar |= 0x08; /* code segment */
3a624e29
NK
4363
4364 vmcs_write32(sf->ar_bytes, ar);
6aa8b732
AK
4365}
4366
f78e0e2e
SY
4367static int alloc_apic_access_page(struct kvm *kvm)
4368{
4484141a 4369 struct page *page;
f78e0e2e
SY
4370 int r = 0;
4371
79fac95e 4372 mutex_lock(&kvm->slots_lock);
c24ae0dc 4373 if (kvm->arch.apic_access_page_done)
f78e0e2e 4374 goto out;
1d8007bd
PB
4375 r = __x86_set_memory_region(kvm, APIC_ACCESS_PAGE_PRIVATE_MEMSLOT,
4376 APIC_DEFAULT_PHYS_BASE, PAGE_SIZE);
f78e0e2e
SY
4377 if (r)
4378 goto out;
72dc67a6 4379
73a6d941 4380 page = gfn_to_page(kvm, APIC_DEFAULT_PHYS_BASE >> PAGE_SHIFT);
4484141a
XG
4381 if (is_error_page(page)) {
4382 r = -EFAULT;
4383 goto out;
4384 }
4385
c24ae0dc
TC
4386 /*
4387 * Do not pin the page in memory, so that memory hot-unplug
4388 * is able to migrate it.
4389 */
4390 put_page(page);
4391 kvm->arch.apic_access_page_done = true;
f78e0e2e 4392out:
79fac95e 4393 mutex_unlock(&kvm->slots_lock);
f78e0e2e
SY
4394 return r;
4395}
4396
b7ebfb05
SY
4397static int alloc_identity_pagetable(struct kvm *kvm)
4398{
a255d479
TC
4399 /* Called with kvm->slots_lock held. */
4400
b7ebfb05
SY
4401 int r = 0;
4402
a255d479
TC
4403 BUG_ON(kvm->arch.ept_identity_pagetable_done);
4404
1d8007bd
PB
4405 r = __x86_set_memory_region(kvm, IDENTITY_PAGETABLE_PRIVATE_MEMSLOT,
4406 kvm->arch.ept_identity_map_addr, PAGE_SIZE);
b7ebfb05 4407
b7ebfb05
SY
4408 return r;
4409}
4410
991e7a0e 4411static int allocate_vpid(void)
2384d2b3
SY
4412{
4413 int vpid;
4414
919818ab 4415 if (!enable_vpid)
991e7a0e 4416 return 0;
2384d2b3
SY
4417 spin_lock(&vmx_vpid_lock);
4418 vpid = find_first_zero_bit(vmx_vpid_bitmap, VMX_NR_VPIDS);
991e7a0e 4419 if (vpid < VMX_NR_VPIDS)
2384d2b3 4420 __set_bit(vpid, vmx_vpid_bitmap);
991e7a0e
WL
4421 else
4422 vpid = 0;
2384d2b3 4423 spin_unlock(&vmx_vpid_lock);
991e7a0e 4424 return vpid;
2384d2b3
SY
4425}
4426
991e7a0e 4427static void free_vpid(int vpid)
cdbecfc3 4428{
991e7a0e 4429 if (!enable_vpid || vpid == 0)
cdbecfc3
LJ
4430 return;
4431 spin_lock(&vmx_vpid_lock);
991e7a0e 4432 __clear_bit(vpid, vmx_vpid_bitmap);
cdbecfc3
LJ
4433 spin_unlock(&vmx_vpid_lock);
4434}
4435
8d14695f
YZ
4436#define MSR_TYPE_R 1
4437#define MSR_TYPE_W 2
4438static void __vmx_disable_intercept_for_msr(unsigned long *msr_bitmap,
4439 u32 msr, int type)
25c5f225 4440{
3e7c73e9 4441 int f = sizeof(unsigned long);
25c5f225
SY
4442
4443 if (!cpu_has_vmx_msr_bitmap())
4444 return;
4445
4446 /*
4447 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4448 * have the write-low and read-high bitmap offsets the wrong way round.
4449 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4450 */
25c5f225 4451 if (msr <= 0x1fff) {
8d14695f
YZ
4452 if (type & MSR_TYPE_R)
4453 /* read-low */
4454 __clear_bit(msr, msr_bitmap + 0x000 / f);
4455
4456 if (type & MSR_TYPE_W)
4457 /* write-low */
4458 __clear_bit(msr, msr_bitmap + 0x800 / f);
4459
25c5f225
SY
4460 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4461 msr &= 0x1fff;
8d14695f
YZ
4462 if (type & MSR_TYPE_R)
4463 /* read-high */
4464 __clear_bit(msr, msr_bitmap + 0x400 / f);
4465
4466 if (type & MSR_TYPE_W)
4467 /* write-high */
4468 __clear_bit(msr, msr_bitmap + 0xc00 / f);
4469
4470 }
4471}
4472
4473static void __vmx_enable_intercept_for_msr(unsigned long *msr_bitmap,
4474 u32 msr, int type)
4475{
4476 int f = sizeof(unsigned long);
4477
4478 if (!cpu_has_vmx_msr_bitmap())
4479 return;
4480
4481 /*
4482 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4483 * have the write-low and read-high bitmap offsets the wrong way round.
4484 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4485 */
4486 if (msr <= 0x1fff) {
4487 if (type & MSR_TYPE_R)
4488 /* read-low */
4489 __set_bit(msr, msr_bitmap + 0x000 / f);
4490
4491 if (type & MSR_TYPE_W)
4492 /* write-low */
4493 __set_bit(msr, msr_bitmap + 0x800 / f);
4494
4495 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4496 msr &= 0x1fff;
4497 if (type & MSR_TYPE_R)
4498 /* read-high */
4499 __set_bit(msr, msr_bitmap + 0x400 / f);
4500
4501 if (type & MSR_TYPE_W)
4502 /* write-high */
4503 __set_bit(msr, msr_bitmap + 0xc00 / f);
4504
25c5f225 4505 }
25c5f225
SY
4506}
4507
f2b93280
WV
4508/*
4509 * If a msr is allowed by L0, we should check whether it is allowed by L1.
4510 * The corresponding bit will be cleared unless both of L0 and L1 allow it.
4511 */
4512static void nested_vmx_disable_intercept_for_msr(unsigned long *msr_bitmap_l1,
4513 unsigned long *msr_bitmap_nested,
4514 u32 msr, int type)
4515{
4516 int f = sizeof(unsigned long);
4517
4518 if (!cpu_has_vmx_msr_bitmap()) {
4519 WARN_ON(1);
4520 return;
4521 }
4522
4523 /*
4524 * See Intel PRM Vol. 3, 20.6.9 (MSR-Bitmap Address). Early manuals
4525 * have the write-low and read-high bitmap offsets the wrong way round.
4526 * We can control MSRs 0x00000000-0x00001fff and 0xc0000000-0xc0001fff.
4527 */
4528 if (msr <= 0x1fff) {
4529 if (type & MSR_TYPE_R &&
4530 !test_bit(msr, msr_bitmap_l1 + 0x000 / f))
4531 /* read-low */
4532 __clear_bit(msr, msr_bitmap_nested + 0x000 / f);
4533
4534 if (type & MSR_TYPE_W &&
4535 !test_bit(msr, msr_bitmap_l1 + 0x800 / f))
4536 /* write-low */
4537 __clear_bit(msr, msr_bitmap_nested + 0x800 / f);
4538
4539 } else if ((msr >= 0xc0000000) && (msr <= 0xc0001fff)) {
4540 msr &= 0x1fff;
4541 if (type & MSR_TYPE_R &&
4542 !test_bit(msr, msr_bitmap_l1 + 0x400 / f))
4543 /* read-high */
4544 __clear_bit(msr, msr_bitmap_nested + 0x400 / f);
4545
4546 if (type & MSR_TYPE_W &&
4547 !test_bit(msr, msr_bitmap_l1 + 0xc00 / f))
4548 /* write-high */
4549 __clear_bit(msr, msr_bitmap_nested + 0xc00 / f);
4550
4551 }
4552}
4553
5897297b
AK
4554static void vmx_disable_intercept_for_msr(u32 msr, bool longmode_only)
4555{
4556 if (!longmode_only)
8d14695f
YZ
4557 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy,
4558 msr, MSR_TYPE_R | MSR_TYPE_W);
4559 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode,
4560 msr, MSR_TYPE_R | MSR_TYPE_W);
4561}
4562
4563static void vmx_enable_intercept_msr_read_x2apic(u32 msr)
4564{
4565 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4566 msr, MSR_TYPE_R);
4567 __vmx_enable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4568 msr, MSR_TYPE_R);
4569}
4570
4571static void vmx_disable_intercept_msr_read_x2apic(u32 msr)
4572{
4573 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4574 msr, MSR_TYPE_R);
4575 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4576 msr, MSR_TYPE_R);
4577}
4578
4579static void vmx_disable_intercept_msr_write_x2apic(u32 msr)
4580{
4581 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_legacy_x2apic,
4582 msr, MSR_TYPE_W);
4583 __vmx_disable_intercept_for_msr(vmx_msr_bitmap_longmode_x2apic,
4584 msr, MSR_TYPE_W);
5897297b
AK
4585}
4586
d62caabb 4587static bool vmx_get_enable_apicv(void)
d50ab6c1 4588{
d62caabb 4589 return enable_apicv;
d50ab6c1
PB
4590}
4591
705699a1
WV
4592static int vmx_complete_nested_posted_interrupt(struct kvm_vcpu *vcpu)
4593{
4594 struct vcpu_vmx *vmx = to_vmx(vcpu);
4595 int max_irr;
4596 void *vapic_page;
4597 u16 status;
4598
4599 if (vmx->nested.pi_desc &&
4600 vmx->nested.pi_pending) {
4601 vmx->nested.pi_pending = false;
4602 if (!pi_test_and_clear_on(vmx->nested.pi_desc))
4603 return 0;
4604
4605 max_irr = find_last_bit(
4606 (unsigned long *)vmx->nested.pi_desc->pir, 256);
4607
4608 if (max_irr == 256)
4609 return 0;
4610
4611 vapic_page = kmap(vmx->nested.virtual_apic_page);
4612 if (!vapic_page) {
4613 WARN_ON(1);
4614 return -ENOMEM;
4615 }
4616 __kvm_apic_update_irr(vmx->nested.pi_desc->pir, vapic_page);
4617 kunmap(vmx->nested.virtual_apic_page);
4618
4619 status = vmcs_read16(GUEST_INTR_STATUS);
4620 if ((u8)max_irr > ((u8)status & 0xff)) {
4621 status &= ~0xff;
4622 status |= (u8)max_irr;
4623 vmcs_write16(GUEST_INTR_STATUS, status);
4624 }
4625 }
4626 return 0;
4627}
4628
21bc8dc5
RK
4629static inline bool kvm_vcpu_trigger_posted_interrupt(struct kvm_vcpu *vcpu)
4630{
4631#ifdef CONFIG_SMP
4632 if (vcpu->mode == IN_GUEST_MODE) {
28b835d6
FW
4633 struct vcpu_vmx *vmx = to_vmx(vcpu);
4634
4635 /*
4636 * Currently, we don't support urgent interrupt,
4637 * all interrupts are recognized as non-urgent
4638 * interrupt, so we cannot post interrupts when
4639 * 'SN' is set.
4640 *
4641 * If the vcpu is in guest mode, it means it is
4642 * running instead of being scheduled out and
4643 * waiting in the run queue, and that's the only
4644 * case when 'SN' is set currently, warning if
4645 * 'SN' is set.
4646 */
4647 WARN_ON_ONCE(pi_test_sn(&vmx->pi_desc));
4648
21bc8dc5
RK
4649 apic->send_IPI_mask(get_cpu_mask(vcpu->cpu),
4650 POSTED_INTR_VECTOR);
4651 return true;
4652 }
4653#endif
4654 return false;
4655}
4656
705699a1
WV
4657static int vmx_deliver_nested_posted_interrupt(struct kvm_vcpu *vcpu,
4658 int vector)
4659{
4660 struct vcpu_vmx *vmx = to_vmx(vcpu);
4661
4662 if (is_guest_mode(vcpu) &&
4663 vector == vmx->nested.posted_intr_nv) {
4664 /* the PIR and ON have been set by L1. */
21bc8dc5 4665 kvm_vcpu_trigger_posted_interrupt(vcpu);
705699a1
WV
4666 /*
4667 * If a posted intr is not recognized by hardware,
4668 * we will accomplish it in the next vmentry.
4669 */
4670 vmx->nested.pi_pending = true;
4671 kvm_make_request(KVM_REQ_EVENT, vcpu);
4672 return 0;
4673 }
4674 return -1;
4675}
a20ed54d
YZ
4676/*
4677 * Send interrupt to vcpu via posted interrupt way.
4678 * 1. If target vcpu is running(non-root mode), send posted interrupt
4679 * notification to vcpu and hardware will sync PIR to vIRR atomically.
4680 * 2. If target vcpu isn't running(root mode), kick it to pick up the
4681 * interrupt from PIR in next vmentry.
4682 */
4683static void vmx_deliver_posted_interrupt(struct kvm_vcpu *vcpu, int vector)
4684{
4685 struct vcpu_vmx *vmx = to_vmx(vcpu);
4686 int r;
4687
705699a1
WV
4688 r = vmx_deliver_nested_posted_interrupt(vcpu, vector);
4689 if (!r)
4690 return;
4691
a20ed54d
YZ
4692 if (pi_test_and_set_pir(vector, &vmx->pi_desc))
4693 return;
4694
4695 r = pi_test_and_set_on(&vmx->pi_desc);
4696 kvm_make_request(KVM_REQ_EVENT, vcpu);
21bc8dc5 4697 if (r || !kvm_vcpu_trigger_posted_interrupt(vcpu))
a20ed54d
YZ
4698 kvm_vcpu_kick(vcpu);
4699}
4700
4701static void vmx_sync_pir_to_irr(struct kvm_vcpu *vcpu)
4702{
4703 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704
4705 if (!pi_test_and_clear_on(&vmx->pi_desc))
4706 return;
4707
4708 kvm_apic_update_irr(vcpu, vmx->pi_desc.pir);
4709}
4710
a3a8ff8e
NHE
4711/*
4712 * Set up the vmcs's constant host-state fields, i.e., host-state fields that
4713 * will not change in the lifetime of the guest.
4714 * Note that host-state that does change is set elsewhere. E.g., host-state
4715 * that is set differently for each CPU is set in vmx_vcpu_load(), not here.
4716 */
a547c6db 4717static void vmx_set_constant_host_state(struct vcpu_vmx *vmx)
a3a8ff8e
NHE
4718{
4719 u32 low32, high32;
4720 unsigned long tmpl;
4721 struct desc_ptr dt;
d974baa3 4722 unsigned long cr4;
a3a8ff8e 4723
b1a74bf8 4724 vmcs_writel(HOST_CR0, read_cr0() & ~X86_CR0_TS); /* 22.2.3 */
a3a8ff8e
NHE
4725 vmcs_writel(HOST_CR3, read_cr3()); /* 22.2.3 FIXME: shadow tables */
4726
d974baa3 4727 /* Save the most likely value for this task's CR4 in the VMCS. */
1e02ce4c 4728 cr4 = cr4_read_shadow();
d974baa3
AL
4729 vmcs_writel(HOST_CR4, cr4); /* 22.2.3, 22.2.5 */
4730 vmx->host_state.vmcs_host_cr4 = cr4;
4731
a3a8ff8e 4732 vmcs_write16(HOST_CS_SELECTOR, __KERNEL_CS); /* 22.2.4 */
b2da15ac
AK
4733#ifdef CONFIG_X86_64
4734 /*
4735 * Load null selectors, so we can avoid reloading them in
4736 * __vmx_load_host_state(), in case userspace uses the null selectors
4737 * too (the expected case).
4738 */
4739 vmcs_write16(HOST_DS_SELECTOR, 0);
4740 vmcs_write16(HOST_ES_SELECTOR, 0);
4741#else
a3a8ff8e
NHE
4742 vmcs_write16(HOST_DS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4743 vmcs_write16(HOST_ES_SELECTOR, __KERNEL_DS); /* 22.2.4 */
b2da15ac 4744#endif
a3a8ff8e
NHE
4745 vmcs_write16(HOST_SS_SELECTOR, __KERNEL_DS); /* 22.2.4 */
4746 vmcs_write16(HOST_TR_SELECTOR, GDT_ENTRY_TSS*8); /* 22.2.4 */
4747
4748 native_store_idt(&dt);
4749 vmcs_writel(HOST_IDTR_BASE, dt.address); /* 22.2.4 */
a547c6db 4750 vmx->host_idt_base = dt.address;
a3a8ff8e 4751
83287ea4 4752 vmcs_writel(HOST_RIP, vmx_return); /* 22.2.5 */
a3a8ff8e
NHE
4753
4754 rdmsr(MSR_IA32_SYSENTER_CS, low32, high32);
4755 vmcs_write32(HOST_IA32_SYSENTER_CS, low32);
4756 rdmsrl(MSR_IA32_SYSENTER_EIP, tmpl);
4757 vmcs_writel(HOST_IA32_SYSENTER_EIP, tmpl); /* 22.2.3 */
4758
4759 if (vmcs_config.vmexit_ctrl & VM_EXIT_LOAD_IA32_PAT) {
4760 rdmsr(MSR_IA32_CR_PAT, low32, high32);
4761 vmcs_write64(HOST_IA32_PAT, low32 | ((u64) high32 << 32));
4762 }
4763}
4764
bf8179a0
NHE
4765static void set_cr4_guest_host_mask(struct vcpu_vmx *vmx)
4766{
4767 vmx->vcpu.arch.cr4_guest_owned_bits = KVM_CR4_GUEST_OWNED_BITS;
4768 if (enable_ept)
4769 vmx->vcpu.arch.cr4_guest_owned_bits |= X86_CR4_PGE;
fe3ef05c
NHE
4770 if (is_guest_mode(&vmx->vcpu))
4771 vmx->vcpu.arch.cr4_guest_owned_bits &=
4772 ~get_vmcs12(&vmx->vcpu)->cr4_guest_host_mask;
bf8179a0
NHE
4773 vmcs_writel(CR4_GUEST_HOST_MASK, ~vmx->vcpu.arch.cr4_guest_owned_bits);
4774}
4775
01e439be
YZ
4776static u32 vmx_pin_based_exec_ctrl(struct vcpu_vmx *vmx)
4777{
4778 u32 pin_based_exec_ctrl = vmcs_config.pin_based_exec_ctrl;
4779
d62caabb 4780 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
01e439be
YZ
4781 pin_based_exec_ctrl &= ~PIN_BASED_POSTED_INTR;
4782 return pin_based_exec_ctrl;
4783}
4784
d62caabb
AS
4785static void vmx_refresh_apicv_exec_ctrl(struct kvm_vcpu *vcpu)
4786{
4787 struct vcpu_vmx *vmx = to_vmx(vcpu);
4788
4789 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
4790}
4791
bf8179a0
NHE
4792static u32 vmx_exec_control(struct vcpu_vmx *vmx)
4793{
4794 u32 exec_control = vmcs_config.cpu_based_exec_ctrl;
d16c293e
PB
4795
4796 if (vmx->vcpu.arch.switch_db_regs & KVM_DEBUGREG_WONT_EXIT)
4797 exec_control &= ~CPU_BASED_MOV_DR_EXITING;
4798
35754c98 4799 if (!cpu_need_tpr_shadow(&vmx->vcpu)) {
bf8179a0
NHE
4800 exec_control &= ~CPU_BASED_TPR_SHADOW;
4801#ifdef CONFIG_X86_64
4802 exec_control |= CPU_BASED_CR8_STORE_EXITING |
4803 CPU_BASED_CR8_LOAD_EXITING;
4804#endif
4805 }
4806 if (!enable_ept)
4807 exec_control |= CPU_BASED_CR3_STORE_EXITING |
4808 CPU_BASED_CR3_LOAD_EXITING |
4809 CPU_BASED_INVLPG_EXITING;
4810 return exec_control;
4811}
4812
4813static u32 vmx_secondary_exec_control(struct vcpu_vmx *vmx)
4814{
4815 u32 exec_control = vmcs_config.cpu_based_2nd_exec_ctrl;
35754c98 4816 if (!cpu_need_virtualize_apic_accesses(&vmx->vcpu))
bf8179a0
NHE
4817 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
4818 if (vmx->vpid == 0)
4819 exec_control &= ~SECONDARY_EXEC_ENABLE_VPID;
4820 if (!enable_ept) {
4821 exec_control &= ~SECONDARY_EXEC_ENABLE_EPT;
4822 enable_unrestricted_guest = 0;
ad756a16
MJ
4823 /* Enable INVPCID for non-ept guests may cause performance regression. */
4824 exec_control &= ~SECONDARY_EXEC_ENABLE_INVPCID;
bf8179a0
NHE
4825 }
4826 if (!enable_unrestricted_guest)
4827 exec_control &= ~SECONDARY_EXEC_UNRESTRICTED_GUEST;
4828 if (!ple_gap)
4829 exec_control &= ~SECONDARY_EXEC_PAUSE_LOOP_EXITING;
d62caabb 4830 if (!kvm_vcpu_apicv_active(&vmx->vcpu))
c7c9c56c
YZ
4831 exec_control &= ~(SECONDARY_EXEC_APIC_REGISTER_VIRT |
4832 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY);
8d14695f 4833 exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
abc4fc58
AG
4834 /* SECONDARY_EXEC_SHADOW_VMCS is enabled when L1 executes VMPTRLD
4835 (handle_vmptrld).
4836 We can NOT enable shadow_vmcs here because we don't have yet
4837 a current VMCS12
4838 */
4839 exec_control &= ~SECONDARY_EXEC_SHADOW_VMCS;
a3eaa864
KH
4840
4841 if (!enable_pml)
4842 exec_control &= ~SECONDARY_EXEC_ENABLE_PML;
843e4330 4843
8b3e34e4
XG
4844 /* Currently, we allow L1 guest to directly run pcommit instruction. */
4845 exec_control &= ~SECONDARY_EXEC_PCOMMIT;
4846
bf8179a0
NHE
4847 return exec_control;
4848}
4849
ce88decf
XG
4850static void ept_set_mmio_spte_mask(void)
4851{
4852 /*
4853 * EPT Misconfigurations can be generated if the value of bits 2:0
4854 * of an EPT paging-structure entry is 110b (write/execute).
885032b9 4855 * Also, magic bits (0x3ull << 62) is set to quickly identify mmio
ce88decf
XG
4856 * spte.
4857 */
885032b9 4858 kvm_mmu_set_mmio_spte_mask((0x3ull << 62) | 0x6ull);
ce88decf
XG
4859}
4860
f53cd63c 4861#define VMX_XSS_EXIT_BITMAP 0
6aa8b732
AK
4862/*
4863 * Sets up the vmcs for emulated real mode.
4864 */
8b9cf98c 4865static int vmx_vcpu_setup(struct vcpu_vmx *vmx)
6aa8b732 4866{
2e4ce7f5 4867#ifdef CONFIG_X86_64
6aa8b732 4868 unsigned long a;
2e4ce7f5 4869#endif
6aa8b732 4870 int i;
6aa8b732 4871
6aa8b732 4872 /* I/O */
3e7c73e9
AK
4873 vmcs_write64(IO_BITMAP_A, __pa(vmx_io_bitmap_a));
4874 vmcs_write64(IO_BITMAP_B, __pa(vmx_io_bitmap_b));
6aa8b732 4875
4607c2d7
AG
4876 if (enable_shadow_vmcs) {
4877 vmcs_write64(VMREAD_BITMAP, __pa(vmx_vmread_bitmap));
4878 vmcs_write64(VMWRITE_BITMAP, __pa(vmx_vmwrite_bitmap));
4879 }
25c5f225 4880 if (cpu_has_vmx_msr_bitmap())
5897297b 4881 vmcs_write64(MSR_BITMAP, __pa(vmx_msr_bitmap_legacy));
25c5f225 4882
6aa8b732
AK
4883 vmcs_write64(VMCS_LINK_POINTER, -1ull); /* 22.3.1.5 */
4884
6aa8b732 4885 /* Control */
01e439be 4886 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, vmx_pin_based_exec_ctrl(vmx));
6e5d865c 4887
bf8179a0 4888 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, vmx_exec_control(vmx));
6aa8b732 4889
8b3e34e4 4890 if (cpu_has_secondary_exec_ctrls())
bf8179a0
NHE
4891 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
4892 vmx_secondary_exec_control(vmx));
f78e0e2e 4893
d62caabb 4894 if (kvm_vcpu_apicv_active(&vmx->vcpu)) {
c7c9c56c
YZ
4895 vmcs_write64(EOI_EXIT_BITMAP0, 0);
4896 vmcs_write64(EOI_EXIT_BITMAP1, 0);
4897 vmcs_write64(EOI_EXIT_BITMAP2, 0);
4898 vmcs_write64(EOI_EXIT_BITMAP3, 0);
4899
4900 vmcs_write16(GUEST_INTR_STATUS, 0);
01e439be 4901
0bcf261c 4902 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
01e439be 4903 vmcs_write64(POSTED_INTR_DESC_ADDR, __pa((&vmx->pi_desc)));
c7c9c56c
YZ
4904 }
4905
4b8d54f9
ZE
4906 if (ple_gap) {
4907 vmcs_write32(PLE_GAP, ple_gap);
a7653ecd
RK
4908 vmx->ple_window = ple_window;
4909 vmx->ple_window_dirty = true;
4b8d54f9
ZE
4910 }
4911
c3707958
XG
4912 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK, 0);
4913 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH, 0);
6aa8b732
AK
4914 vmcs_write32(CR3_TARGET_COUNT, 0); /* 22.2.1 */
4915
9581d442
AK
4916 vmcs_write16(HOST_FS_SELECTOR, 0); /* 22.2.4 */
4917 vmcs_write16(HOST_GS_SELECTOR, 0); /* 22.2.4 */
a547c6db 4918 vmx_set_constant_host_state(vmx);
05b3e0c2 4919#ifdef CONFIG_X86_64
6aa8b732
AK
4920 rdmsrl(MSR_FS_BASE, a);
4921 vmcs_writel(HOST_FS_BASE, a); /* 22.2.4 */
4922 rdmsrl(MSR_GS_BASE, a);
4923 vmcs_writel(HOST_GS_BASE, a); /* 22.2.4 */
4924#else
4925 vmcs_writel(HOST_FS_BASE, 0); /* 22.2.4 */
4926 vmcs_writel(HOST_GS_BASE, 0); /* 22.2.4 */
4927#endif
4928
2cc51560
ED
4929 vmcs_write32(VM_EXIT_MSR_STORE_COUNT, 0);
4930 vmcs_write32(VM_EXIT_MSR_LOAD_COUNT, 0);
61d2ef2c 4931 vmcs_write64(VM_EXIT_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.host));
2cc51560 4932 vmcs_write32(VM_ENTRY_MSR_LOAD_COUNT, 0);
61d2ef2c 4933 vmcs_write64(VM_ENTRY_MSR_LOAD_ADDR, __pa(vmx->msr_autoload.guest));
6aa8b732 4934
74545705
RK
4935 if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
4936 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
468d472f 4937
03916db9 4938 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i) {
6aa8b732
AK
4939 u32 index = vmx_msr_index[i];
4940 u32 data_low, data_high;
a2fa3e9f 4941 int j = vmx->nmsrs;
6aa8b732
AK
4942
4943 if (rdmsr_safe(index, &data_low, &data_high) < 0)
4944 continue;
432bd6cb
AK
4945 if (wrmsr_safe(index, data_low, data_high) < 0)
4946 continue;
26bb0981
AK
4947 vmx->guest_msrs[j].index = i;
4948 vmx->guest_msrs[j].data = 0;
d5696725 4949 vmx->guest_msrs[j].mask = -1ull;
a2fa3e9f 4950 ++vmx->nmsrs;
6aa8b732 4951 }
6aa8b732 4952
2961e876
GN
4953
4954 vm_exit_controls_init(vmx, vmcs_config.vmexit_ctrl);
6aa8b732
AK
4955
4956 /* 22.2.1, 20.8.1 */
2961e876 4957 vm_entry_controls_init(vmx, vmcs_config.vmentry_ctrl);
1c3d14fe 4958
e00c8cf2 4959 vmcs_writel(CR0_GUEST_HOST_MASK, ~0UL);
bf8179a0 4960 set_cr4_guest_host_mask(vmx);
e00c8cf2 4961
f53cd63c
WL
4962 if (vmx_xsaves_supported())
4963 vmcs_write64(XSS_EXIT_BITMAP, VMX_XSS_EXIT_BITMAP);
4964
e00c8cf2
AK
4965 return 0;
4966}
4967
d28bc9dd 4968static void vmx_vcpu_reset(struct kvm_vcpu *vcpu, bool init_event)
e00c8cf2
AK
4969{
4970 struct vcpu_vmx *vmx = to_vmx(vcpu);
58cb628d 4971 struct msr_data apic_base_msr;
d28bc9dd 4972 u64 cr0;
e00c8cf2 4973
7ffd92c5 4974 vmx->rmode.vm86_active = 0;
e00c8cf2 4975
3b86cd99
JK
4976 vmx->soft_vnmi_blocked = 0;
4977
ad312c7c 4978 vmx->vcpu.arch.regs[VCPU_REGS_RDX] = get_rdx_init_val();
d28bc9dd
NA
4979 kvm_set_cr8(vcpu, 0);
4980
4981 if (!init_event) {
4982 apic_base_msr.data = APIC_DEFAULT_PHYS_BASE |
4983 MSR_IA32_APICBASE_ENABLE;
4984 if (kvm_vcpu_is_reset_bsp(vcpu))
4985 apic_base_msr.data |= MSR_IA32_APICBASE_BSP;
4986 apic_base_msr.host_initiated = true;
4987 kvm_set_apic_base(vcpu, &apic_base_msr);
4988 }
e00c8cf2 4989
2fb92db1
AK
4990 vmx_segment_cache_clear(vmx);
4991
5706be0d 4992 seg_setup(VCPU_SREG_CS);
66450a21 4993 vmcs_write16(GUEST_CS_SELECTOR, 0xf000);
f3531054 4994 vmcs_writel(GUEST_CS_BASE, 0xffff0000ul);
e00c8cf2
AK
4995
4996 seg_setup(VCPU_SREG_DS);
4997 seg_setup(VCPU_SREG_ES);
4998 seg_setup(VCPU_SREG_FS);
4999 seg_setup(VCPU_SREG_GS);
5000 seg_setup(VCPU_SREG_SS);
5001
5002 vmcs_write16(GUEST_TR_SELECTOR, 0);
5003 vmcs_writel(GUEST_TR_BASE, 0);
5004 vmcs_write32(GUEST_TR_LIMIT, 0xffff);
5005 vmcs_write32(GUEST_TR_AR_BYTES, 0x008b);
5006
5007 vmcs_write16(GUEST_LDTR_SELECTOR, 0);
5008 vmcs_writel(GUEST_LDTR_BASE, 0);
5009 vmcs_write32(GUEST_LDTR_LIMIT, 0xffff);
5010 vmcs_write32(GUEST_LDTR_AR_BYTES, 0x00082);
5011
d28bc9dd
NA
5012 if (!init_event) {
5013 vmcs_write32(GUEST_SYSENTER_CS, 0);
5014 vmcs_writel(GUEST_SYSENTER_ESP, 0);
5015 vmcs_writel(GUEST_SYSENTER_EIP, 0);
5016 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
5017 }
e00c8cf2
AK
5018
5019 vmcs_writel(GUEST_RFLAGS, 0x02);
66450a21 5020 kvm_rip_write(vcpu, 0xfff0);
e00c8cf2 5021
e00c8cf2
AK
5022 vmcs_writel(GUEST_GDTR_BASE, 0);
5023 vmcs_write32(GUEST_GDTR_LIMIT, 0xffff);
5024
5025 vmcs_writel(GUEST_IDTR_BASE, 0);
5026 vmcs_write32(GUEST_IDTR_LIMIT, 0xffff);
5027
443381a8 5028 vmcs_write32(GUEST_ACTIVITY_STATE, GUEST_ACTIVITY_ACTIVE);
e00c8cf2 5029 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO, 0);
f3531054 5030 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS, 0);
e00c8cf2 5031
e00c8cf2
AK
5032 setup_msrs(vmx);
5033
6aa8b732
AK
5034 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0); /* 22.2.1 */
5035
d28bc9dd 5036 if (cpu_has_vmx_tpr_shadow() && !init_event) {
f78e0e2e 5037 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR, 0);
35754c98 5038 if (cpu_need_tpr_shadow(vcpu))
f78e0e2e 5039 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
d28bc9dd 5040 __pa(vcpu->arch.apic->regs));
f78e0e2e
SY
5041 vmcs_write32(TPR_THRESHOLD, 0);
5042 }
5043
a73896cb 5044 kvm_make_request(KVM_REQ_APIC_PAGE_RELOAD, vcpu);
6aa8b732 5045
d62caabb 5046 if (kvm_vcpu_apicv_active(vcpu))
01e439be
YZ
5047 memset(&vmx->pi_desc, 0, sizeof(struct pi_desc));
5048
2384d2b3
SY
5049 if (vmx->vpid != 0)
5050 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
5051
d28bc9dd
NA
5052 cr0 = X86_CR0_NW | X86_CR0_CD | X86_CR0_ET;
5053 vmx_set_cr0(vcpu, cr0); /* enter rmode */
5054 vmx->vcpu.arch.cr0 = cr0;
5055 vmx_set_cr4(vcpu, 0);
5690891b 5056 vmx_set_efer(vcpu, 0);
d28bc9dd
NA
5057 vmx_fpu_activate(vcpu);
5058 update_exception_bitmap(vcpu);
6aa8b732 5059
dd5f5341 5060 vpid_sync_context(vmx->vpid);
6aa8b732
AK
5061}
5062
b6f1250e
NHE
5063/*
5064 * In nested virtualization, check if L1 asked to exit on external interrupts.
5065 * For most existing hypervisors, this will always return true.
5066 */
5067static bool nested_exit_on_intr(struct kvm_vcpu *vcpu)
5068{
5069 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5070 PIN_BASED_EXT_INTR_MASK;
5071}
5072
77b0f5d6
BD
5073/*
5074 * In nested virtualization, check if L1 has set
5075 * VM_EXIT_ACK_INTR_ON_EXIT
5076 */
5077static bool nested_exit_intr_ack_set(struct kvm_vcpu *vcpu)
5078{
5079 return get_vmcs12(vcpu)->vm_exit_controls &
5080 VM_EXIT_ACK_INTR_ON_EXIT;
5081}
5082
ea8ceb83
JK
5083static bool nested_exit_on_nmi(struct kvm_vcpu *vcpu)
5084{
5085 return get_vmcs12(vcpu)->pin_based_vm_exec_control &
5086 PIN_BASED_NMI_EXITING;
5087}
5088
c9a7953f 5089static void enable_irq_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
5090{
5091 u32 cpu_based_vm_exec_control;
730dca42 5092
3b86cd99
JK
5093 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5094 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_INTR_PENDING;
5095 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5096}
5097
c9a7953f 5098static void enable_nmi_window(struct kvm_vcpu *vcpu)
3b86cd99
JK
5099{
5100 u32 cpu_based_vm_exec_control;
5101
c9a7953f
JK
5102 if (!cpu_has_virtual_nmis() ||
5103 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_STI) {
5104 enable_irq_window(vcpu);
5105 return;
5106 }
3b86cd99
JK
5107
5108 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5109 cpu_based_vm_exec_control |= CPU_BASED_VIRTUAL_NMI_PENDING;
5110 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
5111}
5112
66fd3f7f 5113static void vmx_inject_irq(struct kvm_vcpu *vcpu)
85f455f7 5114{
9c8cba37 5115 struct vcpu_vmx *vmx = to_vmx(vcpu);
66fd3f7f
GN
5116 uint32_t intr;
5117 int irq = vcpu->arch.interrupt.nr;
9c8cba37 5118
229456fc 5119 trace_kvm_inj_virq(irq);
2714d1d3 5120
fa89a817 5121 ++vcpu->stat.irq_injections;
7ffd92c5 5122 if (vmx->rmode.vm86_active) {
71f9833b
SH
5123 int inc_eip = 0;
5124 if (vcpu->arch.interrupt.soft)
5125 inc_eip = vcpu->arch.event_exit_inst_len;
5126 if (kvm_inject_realmode_interrupt(vcpu, irq, inc_eip) != EMULATE_DONE)
a92601bb 5127 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
85f455f7
ED
5128 return;
5129 }
66fd3f7f
GN
5130 intr = irq | INTR_INFO_VALID_MASK;
5131 if (vcpu->arch.interrupt.soft) {
5132 intr |= INTR_TYPE_SOFT_INTR;
5133 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
5134 vmx->vcpu.arch.event_exit_inst_len);
5135 } else
5136 intr |= INTR_TYPE_EXT_INTR;
5137 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, intr);
85f455f7
ED
5138}
5139
f08864b4
SY
5140static void vmx_inject_nmi(struct kvm_vcpu *vcpu)
5141{
66a5a347
JK
5142 struct vcpu_vmx *vmx = to_vmx(vcpu);
5143
0b6ac343
NHE
5144 if (is_guest_mode(vcpu))
5145 return;
5146
3b86cd99
JK
5147 if (!cpu_has_virtual_nmis()) {
5148 /*
5149 * Tracking the NMI-blocked state in software is built upon
5150 * finding the next open IRQ window. This, in turn, depends on
5151 * well-behaving guests: They have to keep IRQs disabled at
5152 * least as long as the NMI handler runs. Otherwise we may
5153 * cause NMI nesting, maybe breaking the guest. But as this is
5154 * highly unlikely, we can live with the residual risk.
5155 */
5156 vmx->soft_vnmi_blocked = 1;
5157 vmx->vnmi_blocked_time = 0;
5158 }
5159
487b391d 5160 ++vcpu->stat.nmi_injections;
9d58b931 5161 vmx->nmi_known_unmasked = false;
7ffd92c5 5162 if (vmx->rmode.vm86_active) {
71f9833b 5163 if (kvm_inject_realmode_interrupt(vcpu, NMI_VECTOR, 0) != EMULATE_DONE)
a92601bb 5164 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
66a5a347
JK
5165 return;
5166 }
f08864b4
SY
5167 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
5168 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR);
f08864b4
SY
5169}
5170
3cfc3092
JK
5171static bool vmx_get_nmi_mask(struct kvm_vcpu *vcpu)
5172{
5173 if (!cpu_has_virtual_nmis())
5174 return to_vmx(vcpu)->soft_vnmi_blocked;
9d58b931
AK
5175 if (to_vmx(vcpu)->nmi_known_unmasked)
5176 return false;
c332c83a 5177 return vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) & GUEST_INTR_STATE_NMI;
3cfc3092
JK
5178}
5179
5180static void vmx_set_nmi_mask(struct kvm_vcpu *vcpu, bool masked)
5181{
5182 struct vcpu_vmx *vmx = to_vmx(vcpu);
5183
5184 if (!cpu_has_virtual_nmis()) {
5185 if (vmx->soft_vnmi_blocked != masked) {
5186 vmx->soft_vnmi_blocked = masked;
5187 vmx->vnmi_blocked_time = 0;
5188 }
5189 } else {
9d58b931 5190 vmx->nmi_known_unmasked = !masked;
3cfc3092
JK
5191 if (masked)
5192 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
5193 GUEST_INTR_STATE_NMI);
5194 else
5195 vmcs_clear_bits(GUEST_INTERRUPTIBILITY_INFO,
5196 GUEST_INTR_STATE_NMI);
5197 }
5198}
5199
2505dc9f
JK
5200static int vmx_nmi_allowed(struct kvm_vcpu *vcpu)
5201{
b6b8a145
JK
5202 if (to_vmx(vcpu)->nested.nested_run_pending)
5203 return 0;
ea8ceb83 5204
2505dc9f
JK
5205 if (!cpu_has_virtual_nmis() && to_vmx(vcpu)->soft_vnmi_blocked)
5206 return 0;
5207
5208 return !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5209 (GUEST_INTR_STATE_MOV_SS | GUEST_INTR_STATE_STI
5210 | GUEST_INTR_STATE_NMI));
5211}
5212
78646121
GN
5213static int vmx_interrupt_allowed(struct kvm_vcpu *vcpu)
5214{
b6b8a145
JK
5215 return (!to_vmx(vcpu)->nested.nested_run_pending &&
5216 vmcs_readl(GUEST_RFLAGS) & X86_EFLAGS_IF) &&
c4282df9
GN
5217 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO) &
5218 (GUEST_INTR_STATE_STI | GUEST_INTR_STATE_MOV_SS));
78646121
GN
5219}
5220
cbc94022
IE
5221static int vmx_set_tss_addr(struct kvm *kvm, unsigned int addr)
5222{
5223 int ret;
cbc94022 5224
1d8007bd
PB
5225 ret = x86_set_memory_region(kvm, TSS_PRIVATE_MEMSLOT, addr,
5226 PAGE_SIZE * 3);
cbc94022
IE
5227 if (ret)
5228 return ret;
bfc6d222 5229 kvm->arch.tss_addr = addr;
1f755a82 5230 return init_rmode_tss(kvm);
cbc94022
IE
5231}
5232
0ca1b4f4 5233static bool rmode_exception(struct kvm_vcpu *vcpu, int vec)
6aa8b732 5234{
77ab6db0 5235 switch (vec) {
77ab6db0 5236 case BP_VECTOR:
c573cd22
JK
5237 /*
5238 * Update instruction length as we may reinject the exception
5239 * from user space while in guest debugging mode.
5240 */
5241 to_vmx(vcpu)->vcpu.arch.event_exit_inst_len =
5242 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
d0bfb940 5243 if (vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
0ca1b4f4
GN
5244 return false;
5245 /* fall through */
5246 case DB_VECTOR:
5247 if (vcpu->guest_debug &
5248 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
5249 return false;
d0bfb940
JK
5250 /* fall through */
5251 case DE_VECTOR:
77ab6db0
JK
5252 case OF_VECTOR:
5253 case BR_VECTOR:
5254 case UD_VECTOR:
5255 case DF_VECTOR:
5256 case SS_VECTOR:
5257 case GP_VECTOR:
5258 case MF_VECTOR:
0ca1b4f4
GN
5259 return true;
5260 break;
77ab6db0 5261 }
0ca1b4f4
GN
5262 return false;
5263}
5264
5265static int handle_rmode_exception(struct kvm_vcpu *vcpu,
5266 int vec, u32 err_code)
5267{
5268 /*
5269 * Instruction with address size override prefix opcode 0x67
5270 * Cause the #SS fault with 0 error code in VM86 mode.
5271 */
5272 if (((vec == GP_VECTOR) || (vec == SS_VECTOR)) && err_code == 0) {
5273 if (emulate_instruction(vcpu, 0) == EMULATE_DONE) {
5274 if (vcpu->arch.halt_request) {
5275 vcpu->arch.halt_request = 0;
5cb56059 5276 return kvm_vcpu_halt(vcpu);
0ca1b4f4
GN
5277 }
5278 return 1;
5279 }
5280 return 0;
5281 }
5282
5283 /*
5284 * Forward all other exceptions that are valid in real mode.
5285 * FIXME: Breaks guest debugging in real mode, needs to be fixed with
5286 * the required debugging infrastructure rework.
5287 */
5288 kvm_queue_exception(vcpu, vec);
5289 return 1;
6aa8b732
AK
5290}
5291
a0861c02
AK
5292/*
5293 * Trigger machine check on the host. We assume all the MSRs are already set up
5294 * by the CPU and that we still run on the same CPU as the MCE occurred on.
5295 * We pass a fake environment to the machine check handler because we want
5296 * the guest to be always treated like user space, no matter what context
5297 * it used internally.
5298 */
5299static void kvm_machine_check(void)
5300{
5301#if defined(CONFIG_X86_MCE) && defined(CONFIG_X86_64)
5302 struct pt_regs regs = {
5303 .cs = 3, /* Fake ring 3 no matter what the guest ran on */
5304 .flags = X86_EFLAGS_IF,
5305 };
5306
5307 do_machine_check(&regs, 0);
5308#endif
5309}
5310
851ba692 5311static int handle_machine_check(struct kvm_vcpu *vcpu)
a0861c02
AK
5312{
5313 /* already handled by vcpu_run */
5314 return 1;
5315}
5316
851ba692 5317static int handle_exception(struct kvm_vcpu *vcpu)
6aa8b732 5318{
1155f76a 5319 struct vcpu_vmx *vmx = to_vmx(vcpu);
851ba692 5320 struct kvm_run *kvm_run = vcpu->run;
d0bfb940 5321 u32 intr_info, ex_no, error_code;
42dbaa5a 5322 unsigned long cr2, rip, dr6;
6aa8b732
AK
5323 u32 vect_info;
5324 enum emulation_result er;
5325
1155f76a 5326 vect_info = vmx->idt_vectoring_info;
88786475 5327 intr_info = vmx->exit_intr_info;
6aa8b732 5328
a0861c02 5329 if (is_machine_check(intr_info))
851ba692 5330 return handle_machine_check(vcpu);
a0861c02 5331
e4a41889 5332 if ((intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR)
1b6269db 5333 return 1; /* already handled by vmx_vcpu_run() */
2ab455cc
AL
5334
5335 if (is_no_device(intr_info)) {
5fd86fcf 5336 vmx_fpu_activate(vcpu);
2ab455cc
AL
5337 return 1;
5338 }
5339
7aa81cc0 5340 if (is_invalid_opcode(intr_info)) {
ae1f5767
JK
5341 if (is_guest_mode(vcpu)) {
5342 kvm_queue_exception(vcpu, UD_VECTOR);
5343 return 1;
5344 }
51d8b661 5345 er = emulate_instruction(vcpu, EMULTYPE_TRAP_UD);
7aa81cc0 5346 if (er != EMULATE_DONE)
7ee5d940 5347 kvm_queue_exception(vcpu, UD_VECTOR);
7aa81cc0
AL
5348 return 1;
5349 }
5350
6aa8b732 5351 error_code = 0;
2e11384c 5352 if (intr_info & INTR_INFO_DELIVER_CODE_MASK)
6aa8b732 5353 error_code = vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
bf4ca23e
XG
5354
5355 /*
5356 * The #PF with PFEC.RSVD = 1 indicates the guest is accessing
5357 * MMIO, it is better to report an internal error.
5358 * See the comments in vmx_handle_exit.
5359 */
5360 if ((vect_info & VECTORING_INFO_VALID_MASK) &&
5361 !(is_page_fault(intr_info) && !(error_code & PFERR_RSVD_MASK))) {
5362 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5363 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_SIMUL_EX;
80f0e95d 5364 vcpu->run->internal.ndata = 3;
bf4ca23e
XG
5365 vcpu->run->internal.data[0] = vect_info;
5366 vcpu->run->internal.data[1] = intr_info;
80f0e95d 5367 vcpu->run->internal.data[2] = error_code;
bf4ca23e
XG
5368 return 0;
5369 }
5370
6aa8b732 5371 if (is_page_fault(intr_info)) {
1439442c 5372 /* EPT won't cause page fault directly */
cf3ace79 5373 BUG_ON(enable_ept);
6aa8b732 5374 cr2 = vmcs_readl(EXIT_QUALIFICATION);
229456fc
MT
5375 trace_kvm_page_fault(cr2, error_code);
5376
3298b75c 5377 if (kvm_event_needs_reinjection(vcpu))
577bdc49 5378 kvm_mmu_unprotect_page_virt(vcpu, cr2);
dc25e89e 5379 return kvm_mmu_page_fault(vcpu, cr2, error_code, NULL, 0);
6aa8b732
AK
5380 }
5381
d0bfb940 5382 ex_no = intr_info & INTR_INFO_VECTOR_MASK;
0ca1b4f4
GN
5383
5384 if (vmx->rmode.vm86_active && rmode_exception(vcpu, ex_no))
5385 return handle_rmode_exception(vcpu, ex_no, error_code);
5386
42dbaa5a 5387 switch (ex_no) {
54a20552
EN
5388 case AC_VECTOR:
5389 kvm_queue_exception_e(vcpu, AC_VECTOR, error_code);
5390 return 1;
42dbaa5a
JK
5391 case DB_VECTOR:
5392 dr6 = vmcs_readl(EXIT_QUALIFICATION);
5393 if (!(vcpu->guest_debug &
5394 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))) {
8246bf52 5395 vcpu->arch.dr6 &= ~15;
6f43ed01 5396 vcpu->arch.dr6 |= dr6 | DR6_RTM;
fd2a445a
HD
5397 if (!(dr6 & ~DR6_RESERVED)) /* icebp */
5398 skip_emulated_instruction(vcpu);
5399
42dbaa5a
JK
5400 kvm_queue_exception(vcpu, DB_VECTOR);
5401 return 1;
5402 }
5403 kvm_run->debug.arch.dr6 = dr6 | DR6_FIXED_1;
5404 kvm_run->debug.arch.dr7 = vmcs_readl(GUEST_DR7);
5405 /* fall through */
5406 case BP_VECTOR:
c573cd22
JK
5407 /*
5408 * Update instruction length as we may reinject #BP from
5409 * user space while in guest debugging mode. Reading it for
5410 * #DB as well causes no harm, it is not used in that case.
5411 */
5412 vmx->vcpu.arch.event_exit_inst_len =
5413 vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
6aa8b732 5414 kvm_run->exit_reason = KVM_EXIT_DEBUG;
0a434bb2 5415 rip = kvm_rip_read(vcpu);
d0bfb940
JK
5416 kvm_run->debug.arch.pc = vmcs_readl(GUEST_CS_BASE) + rip;
5417 kvm_run->debug.arch.exception = ex_no;
42dbaa5a
JK
5418 break;
5419 default:
d0bfb940
JK
5420 kvm_run->exit_reason = KVM_EXIT_EXCEPTION;
5421 kvm_run->ex.exception = ex_no;
5422 kvm_run->ex.error_code = error_code;
42dbaa5a 5423 break;
6aa8b732 5424 }
6aa8b732
AK
5425 return 0;
5426}
5427
851ba692 5428static int handle_external_interrupt(struct kvm_vcpu *vcpu)
6aa8b732 5429{
1165f5fe 5430 ++vcpu->stat.irq_exits;
6aa8b732
AK
5431 return 1;
5432}
5433
851ba692 5434static int handle_triple_fault(struct kvm_vcpu *vcpu)
988ad74f 5435{
851ba692 5436 vcpu->run->exit_reason = KVM_EXIT_SHUTDOWN;
988ad74f
AK
5437 return 0;
5438}
6aa8b732 5439
851ba692 5440static int handle_io(struct kvm_vcpu *vcpu)
6aa8b732 5441{
bfdaab09 5442 unsigned long exit_qualification;
34c33d16 5443 int size, in, string;
039576c0 5444 unsigned port;
6aa8b732 5445
bfdaab09 5446 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
039576c0 5447 string = (exit_qualification & 16) != 0;
cf8f70bf 5448 in = (exit_qualification & 8) != 0;
e70669ab 5449
cf8f70bf 5450 ++vcpu->stat.io_exits;
e70669ab 5451
cf8f70bf 5452 if (string || in)
51d8b661 5453 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
e70669ab 5454
cf8f70bf
GN
5455 port = exit_qualification >> 16;
5456 size = (exit_qualification & 7) + 1;
e93f36bc 5457 skip_emulated_instruction(vcpu);
cf8f70bf
GN
5458
5459 return kvm_fast_pio_out(vcpu, size, port);
6aa8b732
AK
5460}
5461
102d8325
IM
5462static void
5463vmx_patch_hypercall(struct kvm_vcpu *vcpu, unsigned char *hypercall)
5464{
5465 /*
5466 * Patch in the VMCALL instruction:
5467 */
5468 hypercall[0] = 0x0f;
5469 hypercall[1] = 0x01;
5470 hypercall[2] = 0xc1;
102d8325
IM
5471}
5472
b9c237bb 5473static bool nested_cr0_valid(struct kvm_vcpu *vcpu, unsigned long val)
92fbc7b1
JK
5474{
5475 unsigned long always_on = VMXON_CR0_ALWAYSON;
b9c237bb 5476 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
92fbc7b1 5477
b9c237bb 5478 if (to_vmx(vcpu)->nested.nested_vmx_secondary_ctls_high &
92fbc7b1
JK
5479 SECONDARY_EXEC_UNRESTRICTED_GUEST &&
5480 nested_cpu_has2(vmcs12, SECONDARY_EXEC_UNRESTRICTED_GUEST))
5481 always_on &= ~(X86_CR0_PE | X86_CR0_PG);
5482 return (val & always_on) == always_on;
5483}
5484
0fa06071 5485/* called to set cr0 as appropriate for a mov-to-cr0 exit. */
eeadf9e7
NHE
5486static int handle_set_cr0(struct kvm_vcpu *vcpu, unsigned long val)
5487{
eeadf9e7 5488 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5489 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5490 unsigned long orig_val = val;
5491
eeadf9e7
NHE
5492 /*
5493 * We get here when L2 changed cr0 in a way that did not change
5494 * any of L1's shadowed bits (see nested_vmx_exit_handled_cr),
1a0d74e6
JK
5495 * but did change L0 shadowed bits. So we first calculate the
5496 * effective cr0 value that L1 would like to write into the
5497 * hardware. It consists of the L2-owned bits from the new
5498 * value combined with the L1-owned bits from L1's guest_cr0.
eeadf9e7 5499 */
1a0d74e6
JK
5500 val = (val & ~vmcs12->cr0_guest_host_mask) |
5501 (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask);
5502
b9c237bb 5503 if (!nested_cr0_valid(vcpu, val))
eeadf9e7 5504 return 1;
1a0d74e6
JK
5505
5506 if (kvm_set_cr0(vcpu, val))
5507 return 1;
5508 vmcs_writel(CR0_READ_SHADOW, orig_val);
eeadf9e7 5509 return 0;
1a0d74e6
JK
5510 } else {
5511 if (to_vmx(vcpu)->nested.vmxon &&
5512 ((val & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON))
5513 return 1;
eeadf9e7 5514 return kvm_set_cr0(vcpu, val);
1a0d74e6 5515 }
eeadf9e7
NHE
5516}
5517
5518static int handle_set_cr4(struct kvm_vcpu *vcpu, unsigned long val)
5519{
5520 if (is_guest_mode(vcpu)) {
1a0d74e6
JK
5521 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
5522 unsigned long orig_val = val;
5523
5524 /* analogously to handle_set_cr0 */
5525 val = (val & ~vmcs12->cr4_guest_host_mask) |
5526 (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask);
5527 if (kvm_set_cr4(vcpu, val))
eeadf9e7 5528 return 1;
1a0d74e6 5529 vmcs_writel(CR4_READ_SHADOW, orig_val);
eeadf9e7
NHE
5530 return 0;
5531 } else
5532 return kvm_set_cr4(vcpu, val);
5533}
5534
6a6256f9 5535/* called to set cr0 as appropriate for clts instruction exit. */
eeadf9e7
NHE
5536static void handle_clts(struct kvm_vcpu *vcpu)
5537{
5538 if (is_guest_mode(vcpu)) {
5539 /*
5540 * We get here when L2 did CLTS, and L1 didn't shadow CR0.TS
5541 * but we did (!fpu_active). We need to keep GUEST_CR0.TS on,
5542 * just pretend it's off (also in arch.cr0 for fpu_activate).
5543 */
5544 vmcs_writel(CR0_READ_SHADOW,
5545 vmcs_readl(CR0_READ_SHADOW) & ~X86_CR0_TS);
5546 vcpu->arch.cr0 &= ~X86_CR0_TS;
5547 } else
5548 vmx_set_cr0(vcpu, kvm_read_cr0_bits(vcpu, ~X86_CR0_TS));
5549}
5550
851ba692 5551static int handle_cr(struct kvm_vcpu *vcpu)
6aa8b732 5552{
229456fc 5553 unsigned long exit_qualification, val;
6aa8b732
AK
5554 int cr;
5555 int reg;
49a9b07e 5556 int err;
6aa8b732 5557
bfdaab09 5558 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
6aa8b732
AK
5559 cr = exit_qualification & 15;
5560 reg = (exit_qualification >> 8) & 15;
5561 switch ((exit_qualification >> 4) & 3) {
5562 case 0: /* mov to cr */
1e32c079 5563 val = kvm_register_readl(vcpu, reg);
229456fc 5564 trace_kvm_cr_write(cr, val);
6aa8b732
AK
5565 switch (cr) {
5566 case 0:
eeadf9e7 5567 err = handle_set_cr0(vcpu, val);
db8fcefa 5568 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5569 return 1;
5570 case 3:
2390218b 5571 err = kvm_set_cr3(vcpu, val);
db8fcefa 5572 kvm_complete_insn_gp(vcpu, err);
6aa8b732
AK
5573 return 1;
5574 case 4:
eeadf9e7 5575 err = handle_set_cr4(vcpu, val);
db8fcefa 5576 kvm_complete_insn_gp(vcpu, err);
6aa8b732 5577 return 1;
0a5fff19
GN
5578 case 8: {
5579 u8 cr8_prev = kvm_get_cr8(vcpu);
1e32c079 5580 u8 cr8 = (u8)val;
eea1cff9 5581 err = kvm_set_cr8(vcpu, cr8);
db8fcefa 5582 kvm_complete_insn_gp(vcpu, err);
35754c98 5583 if (lapic_in_kernel(vcpu))
0a5fff19
GN
5584 return 1;
5585 if (cr8_prev <= cr8)
5586 return 1;
851ba692 5587 vcpu->run->exit_reason = KVM_EXIT_SET_TPR;
0a5fff19
GN
5588 return 0;
5589 }
4b8073e4 5590 }
6aa8b732 5591 break;
25c4c276 5592 case 2: /* clts */
eeadf9e7 5593 handle_clts(vcpu);
4d4ec087 5594 trace_kvm_cr_write(0, kvm_read_cr0(vcpu));
25c4c276 5595 skip_emulated_instruction(vcpu);
6b52d186 5596 vmx_fpu_activate(vcpu);
25c4c276 5597 return 1;
6aa8b732
AK
5598 case 1: /*mov from cr*/
5599 switch (cr) {
5600 case 3:
9f8fe504
AK
5601 val = kvm_read_cr3(vcpu);
5602 kvm_register_write(vcpu, reg, val);
5603 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5604 skip_emulated_instruction(vcpu);
5605 return 1;
5606 case 8:
229456fc
MT
5607 val = kvm_get_cr8(vcpu);
5608 kvm_register_write(vcpu, reg, val);
5609 trace_kvm_cr_read(cr, val);
6aa8b732
AK
5610 skip_emulated_instruction(vcpu);
5611 return 1;
5612 }
5613 break;
5614 case 3: /* lmsw */
a1f83a74 5615 val = (exit_qualification >> LMSW_SOURCE_DATA_SHIFT) & 0x0f;
4d4ec087 5616 trace_kvm_cr_write(0, (kvm_read_cr0(vcpu) & ~0xful) | val);
a1f83a74 5617 kvm_lmsw(vcpu, val);
6aa8b732
AK
5618
5619 skip_emulated_instruction(vcpu);
5620 return 1;
5621 default:
5622 break;
5623 }
851ba692 5624 vcpu->run->exit_reason = 0;
a737f256 5625 vcpu_unimpl(vcpu, "unhandled control register: op %d cr %d\n",
6aa8b732
AK
5626 (int)(exit_qualification >> 4) & 3, cr);
5627 return 0;
5628}
5629
851ba692 5630static int handle_dr(struct kvm_vcpu *vcpu)
6aa8b732 5631{
bfdaab09 5632 unsigned long exit_qualification;
16f8a6f9
NA
5633 int dr, dr7, reg;
5634
5635 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5636 dr = exit_qualification & DEBUG_REG_ACCESS_NUM;
5637
5638 /* First, if DR does not exist, trigger UD */
5639 if (!kvm_require_dr(vcpu, dr))
5640 return 1;
6aa8b732 5641
f2483415 5642 /* Do not handle if the CPL > 0, will trigger GP on re-entry */
0a79b009
AK
5643 if (!kvm_require_cpl(vcpu, 0))
5644 return 1;
16f8a6f9
NA
5645 dr7 = vmcs_readl(GUEST_DR7);
5646 if (dr7 & DR7_GD) {
42dbaa5a
JK
5647 /*
5648 * As the vm-exit takes precedence over the debug trap, we
5649 * need to emulate the latter, either for the host or the
5650 * guest debugging itself.
5651 */
5652 if (vcpu->guest_debug & KVM_GUESTDBG_USE_HW_BP) {
851ba692 5653 vcpu->run->debug.arch.dr6 = vcpu->arch.dr6;
16f8a6f9 5654 vcpu->run->debug.arch.dr7 = dr7;
82b32774 5655 vcpu->run->debug.arch.pc = kvm_get_linear_rip(vcpu);
851ba692
AK
5656 vcpu->run->debug.arch.exception = DB_VECTOR;
5657 vcpu->run->exit_reason = KVM_EXIT_DEBUG;
42dbaa5a
JK
5658 return 0;
5659 } else {
7305eb5d 5660 vcpu->arch.dr6 &= ~15;
6f43ed01 5661 vcpu->arch.dr6 |= DR6_BD | DR6_RTM;
42dbaa5a
JK
5662 kvm_queue_exception(vcpu, DB_VECTOR);
5663 return 1;
5664 }
5665 }
5666
81908bf4 5667 if (vcpu->guest_debug == 0) {
8f22372f
PB
5668 vmcs_clear_bits(CPU_BASED_VM_EXEC_CONTROL,
5669 CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
5670
5671 /*
5672 * No more DR vmexits; force a reload of the debug registers
5673 * and reenter on this instruction. The next vmexit will
5674 * retrieve the full state of the debug registers.
5675 */
5676 vcpu->arch.switch_db_regs |= KVM_DEBUGREG_WONT_EXIT;
5677 return 1;
5678 }
5679
42dbaa5a
JK
5680 reg = DEBUG_REG_ACCESS_REG(exit_qualification);
5681 if (exit_qualification & TYPE_MOV_FROM_DR) {
020df079 5682 unsigned long val;
4c4d563b
JK
5683
5684 if (kvm_get_dr(vcpu, dr, &val))
5685 return 1;
5686 kvm_register_write(vcpu, reg, val);
020df079 5687 } else
5777392e 5688 if (kvm_set_dr(vcpu, dr, kvm_register_readl(vcpu, reg)))
4c4d563b
JK
5689 return 1;
5690
6aa8b732
AK
5691 skip_emulated_instruction(vcpu);
5692 return 1;
5693}
5694
73aaf249
JK
5695static u64 vmx_get_dr6(struct kvm_vcpu *vcpu)
5696{
5697 return vcpu->arch.dr6;
5698}
5699
5700static void vmx_set_dr6(struct kvm_vcpu *vcpu, unsigned long val)
5701{
5702}
5703
81908bf4
PB
5704static void vmx_sync_dirty_debug_regs(struct kvm_vcpu *vcpu)
5705{
81908bf4
PB
5706 get_debugreg(vcpu->arch.db[0], 0);
5707 get_debugreg(vcpu->arch.db[1], 1);
5708 get_debugreg(vcpu->arch.db[2], 2);
5709 get_debugreg(vcpu->arch.db[3], 3);
5710 get_debugreg(vcpu->arch.dr6, 6);
5711 vcpu->arch.dr7 = vmcs_readl(GUEST_DR7);
5712
5713 vcpu->arch.switch_db_regs &= ~KVM_DEBUGREG_WONT_EXIT;
8f22372f 5714 vmcs_set_bits(CPU_BASED_VM_EXEC_CONTROL, CPU_BASED_MOV_DR_EXITING);
81908bf4
PB
5715}
5716
020df079
GN
5717static void vmx_set_dr7(struct kvm_vcpu *vcpu, unsigned long val)
5718{
5719 vmcs_writel(GUEST_DR7, val);
5720}
5721
851ba692 5722static int handle_cpuid(struct kvm_vcpu *vcpu)
6aa8b732 5723{
06465c5a
AK
5724 kvm_emulate_cpuid(vcpu);
5725 return 1;
6aa8b732
AK
5726}
5727
851ba692 5728static int handle_rdmsr(struct kvm_vcpu *vcpu)
6aa8b732 5729{
ad312c7c 5730 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
609e36d3 5731 struct msr_data msr_info;
6aa8b732 5732
609e36d3
PB
5733 msr_info.index = ecx;
5734 msr_info.host_initiated = false;
5735 if (vmx_get_msr(vcpu, &msr_info)) {
59200273 5736 trace_kvm_msr_read_ex(ecx);
c1a5d4f9 5737 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5738 return 1;
5739 }
5740
609e36d3 5741 trace_kvm_msr_read(ecx, msr_info.data);
2714d1d3 5742
6aa8b732 5743 /* FIXME: handling of bits 32:63 of rax, rdx */
609e36d3
PB
5744 vcpu->arch.regs[VCPU_REGS_RAX] = msr_info.data & -1u;
5745 vcpu->arch.regs[VCPU_REGS_RDX] = (msr_info.data >> 32) & -1u;
6aa8b732
AK
5746 skip_emulated_instruction(vcpu);
5747 return 1;
5748}
5749
851ba692 5750static int handle_wrmsr(struct kvm_vcpu *vcpu)
6aa8b732 5751{
8fe8ab46 5752 struct msr_data msr;
ad312c7c
ZX
5753 u32 ecx = vcpu->arch.regs[VCPU_REGS_RCX];
5754 u64 data = (vcpu->arch.regs[VCPU_REGS_RAX] & -1u)
5755 | ((u64)(vcpu->arch.regs[VCPU_REGS_RDX] & -1u) << 32);
6aa8b732 5756
8fe8ab46
WA
5757 msr.data = data;
5758 msr.index = ecx;
5759 msr.host_initiated = false;
854e8bb1 5760 if (kvm_set_msr(vcpu, &msr) != 0) {
59200273 5761 trace_kvm_msr_write_ex(ecx, data);
c1a5d4f9 5762 kvm_inject_gp(vcpu, 0);
6aa8b732
AK
5763 return 1;
5764 }
5765
59200273 5766 trace_kvm_msr_write(ecx, data);
6aa8b732
AK
5767 skip_emulated_instruction(vcpu);
5768 return 1;
5769}
5770
851ba692 5771static int handle_tpr_below_threshold(struct kvm_vcpu *vcpu)
6e5d865c 5772{
3842d135 5773 kvm_make_request(KVM_REQ_EVENT, vcpu);
6e5d865c
YS
5774 return 1;
5775}
5776
851ba692 5777static int handle_interrupt_window(struct kvm_vcpu *vcpu)
6aa8b732 5778{
85f455f7
ED
5779 u32 cpu_based_vm_exec_control;
5780
5781 /* clear pending irq */
5782 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
5783 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
5784 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
2714d1d3 5785
3842d135
AK
5786 kvm_make_request(KVM_REQ_EVENT, vcpu);
5787
a26bf12a 5788 ++vcpu->stat.irq_window_exits;
6aa8b732
AK
5789 return 1;
5790}
5791
851ba692 5792static int handle_halt(struct kvm_vcpu *vcpu)
6aa8b732 5793{
d3bef15f 5794 return kvm_emulate_halt(vcpu);
6aa8b732
AK
5795}
5796
851ba692 5797static int handle_vmcall(struct kvm_vcpu *vcpu)
c21415e8 5798{
0d9c055e 5799 return kvm_emulate_hypercall(vcpu);
c21415e8
IM
5800}
5801
ec25d5e6
GN
5802static int handle_invd(struct kvm_vcpu *vcpu)
5803{
51d8b661 5804 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
ec25d5e6
GN
5805}
5806
851ba692 5807static int handle_invlpg(struct kvm_vcpu *vcpu)
a7052897 5808{
f9c617f6 5809 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
a7052897
MT
5810
5811 kvm_mmu_invlpg(vcpu, exit_qualification);
5812 skip_emulated_instruction(vcpu);
5813 return 1;
5814}
5815
fee84b07
AK
5816static int handle_rdpmc(struct kvm_vcpu *vcpu)
5817{
5818 int err;
5819
5820 err = kvm_rdpmc(vcpu);
5821 kvm_complete_insn_gp(vcpu, err);
5822
5823 return 1;
5824}
5825
851ba692 5826static int handle_wbinvd(struct kvm_vcpu *vcpu)
e5edaa01 5827{
f5f48ee1 5828 kvm_emulate_wbinvd(vcpu);
e5edaa01
ED
5829 return 1;
5830}
5831
2acf923e
DC
5832static int handle_xsetbv(struct kvm_vcpu *vcpu)
5833{
5834 u64 new_bv = kvm_read_edx_eax(vcpu);
5835 u32 index = kvm_register_read(vcpu, VCPU_REGS_RCX);
5836
5837 if (kvm_set_xcr(vcpu, index, new_bv) == 0)
5838 skip_emulated_instruction(vcpu);
5839 return 1;
5840}
5841
f53cd63c
WL
5842static int handle_xsaves(struct kvm_vcpu *vcpu)
5843{
5844 skip_emulated_instruction(vcpu);
5845 WARN(1, "this should never happen\n");
5846 return 1;
5847}
5848
5849static int handle_xrstors(struct kvm_vcpu *vcpu)
5850{
5851 skip_emulated_instruction(vcpu);
5852 WARN(1, "this should never happen\n");
5853 return 1;
5854}
5855
851ba692 5856static int handle_apic_access(struct kvm_vcpu *vcpu)
f78e0e2e 5857{
58fbbf26
KT
5858 if (likely(fasteoi)) {
5859 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5860 int access_type, offset;
5861
5862 access_type = exit_qualification & APIC_ACCESS_TYPE;
5863 offset = exit_qualification & APIC_ACCESS_OFFSET;
5864 /*
5865 * Sane guest uses MOV to write EOI, with written value
5866 * not cared. So make a short-circuit here by avoiding
5867 * heavy instruction emulation.
5868 */
5869 if ((access_type == TYPE_LINEAR_APIC_INST_WRITE) &&
5870 (offset == APIC_EOI)) {
5871 kvm_lapic_set_eoi(vcpu);
5872 skip_emulated_instruction(vcpu);
5873 return 1;
5874 }
5875 }
51d8b661 5876 return emulate_instruction(vcpu, 0) == EMULATE_DONE;
f78e0e2e
SY
5877}
5878
c7c9c56c
YZ
5879static int handle_apic_eoi_induced(struct kvm_vcpu *vcpu)
5880{
5881 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5882 int vector = exit_qualification & 0xff;
5883
5884 /* EOI-induced VM exit is trap-like and thus no need to adjust IP */
5885 kvm_apic_set_eoi_accelerated(vcpu, vector);
5886 return 1;
5887}
5888
83d4c286
YZ
5889static int handle_apic_write(struct kvm_vcpu *vcpu)
5890{
5891 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5892 u32 offset = exit_qualification & 0xfff;
5893
5894 /* APIC-write VM exit is trap-like and thus no need to adjust IP */
5895 kvm_apic_write_nodecode(vcpu, offset);
5896 return 1;
5897}
5898
851ba692 5899static int handle_task_switch(struct kvm_vcpu *vcpu)
37817f29 5900{
60637aac 5901 struct vcpu_vmx *vmx = to_vmx(vcpu);
37817f29 5902 unsigned long exit_qualification;
e269fb21
JK
5903 bool has_error_code = false;
5904 u32 error_code = 0;
37817f29 5905 u16 tss_selector;
7f3d35fd 5906 int reason, type, idt_v, idt_index;
64a7ec06
GN
5907
5908 idt_v = (vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK);
7f3d35fd 5909 idt_index = (vmx->idt_vectoring_info & VECTORING_INFO_VECTOR_MASK);
64a7ec06 5910 type = (vmx->idt_vectoring_info & VECTORING_INFO_TYPE_MASK);
37817f29
IE
5911
5912 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
5913
5914 reason = (u32)exit_qualification >> 30;
64a7ec06
GN
5915 if (reason == TASK_SWITCH_GATE && idt_v) {
5916 switch (type) {
5917 case INTR_TYPE_NMI_INTR:
5918 vcpu->arch.nmi_injected = false;
654f06fc 5919 vmx_set_nmi_mask(vcpu, true);
64a7ec06
GN
5920 break;
5921 case INTR_TYPE_EXT_INTR:
66fd3f7f 5922 case INTR_TYPE_SOFT_INTR:
64a7ec06
GN
5923 kvm_clear_interrupt_queue(vcpu);
5924 break;
5925 case INTR_TYPE_HARD_EXCEPTION:
e269fb21
JK
5926 if (vmx->idt_vectoring_info &
5927 VECTORING_INFO_DELIVER_CODE_MASK) {
5928 has_error_code = true;
5929 error_code =
5930 vmcs_read32(IDT_VECTORING_ERROR_CODE);
5931 }
5932 /* fall through */
64a7ec06
GN
5933 case INTR_TYPE_SOFT_EXCEPTION:
5934 kvm_clear_exception_queue(vcpu);
5935 break;
5936 default:
5937 break;
5938 }
60637aac 5939 }
37817f29
IE
5940 tss_selector = exit_qualification;
5941
64a7ec06
GN
5942 if (!idt_v || (type != INTR_TYPE_HARD_EXCEPTION &&
5943 type != INTR_TYPE_EXT_INTR &&
5944 type != INTR_TYPE_NMI_INTR))
5945 skip_emulated_instruction(vcpu);
5946
7f3d35fd
KW
5947 if (kvm_task_switch(vcpu, tss_selector,
5948 type == INTR_TYPE_SOFT_INTR ? idt_index : -1, reason,
5949 has_error_code, error_code) == EMULATE_FAIL) {
acb54517
GN
5950 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
5951 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
5952 vcpu->run->internal.ndata = 0;
42dbaa5a 5953 return 0;
acb54517 5954 }
42dbaa5a 5955
42dbaa5a
JK
5956 /*
5957 * TODO: What about debug traps on tss switch?
5958 * Are we supposed to inject them and update dr6?
5959 */
5960
5961 return 1;
37817f29
IE
5962}
5963
851ba692 5964static int handle_ept_violation(struct kvm_vcpu *vcpu)
1439442c 5965{
f9c617f6 5966 unsigned long exit_qualification;
1439442c 5967 gpa_t gpa;
4f5982a5 5968 u32 error_code;
1439442c 5969 int gla_validity;
1439442c 5970
f9c617f6 5971 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
1439442c 5972
1439442c
SY
5973 gla_validity = (exit_qualification >> 7) & 0x3;
5974 if (gla_validity != 0x3 && gla_validity != 0x1 && gla_validity != 0) {
5975 printk(KERN_ERR "EPT: Handling EPT violation failed!\n");
5976 printk(KERN_ERR "EPT: GPA: 0x%lx, GVA: 0x%lx\n",
5977 (long unsigned int)vmcs_read64(GUEST_PHYSICAL_ADDRESS),
f9c617f6 5978 vmcs_readl(GUEST_LINEAR_ADDRESS));
1439442c
SY
5979 printk(KERN_ERR "EPT: Exit qualification is 0x%lx\n",
5980 (long unsigned int)exit_qualification);
851ba692
AK
5981 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
5982 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_VIOLATION;
596ae895 5983 return 0;
1439442c
SY
5984 }
5985
0be9c7a8
GN
5986 /*
5987 * EPT violation happened while executing iret from NMI,
5988 * "blocked by NMI" bit has to be set before next VM entry.
5989 * There are errata that may cause this bit to not be set:
5990 * AAK134, BY25.
5991 */
bcd1c294
GN
5992 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
5993 cpu_has_virtual_nmis() &&
5994 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
0be9c7a8
GN
5995 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO, GUEST_INTR_STATE_NMI);
5996
1439442c 5997 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
229456fc 5998 trace_kvm_page_fault(gpa, exit_qualification);
4f5982a5
XG
5999
6000 /* It is a write fault? */
81ed33e4 6001 error_code = exit_qualification & PFERR_WRITE_MASK;
25d92081 6002 /* It is a fetch fault? */
81ed33e4 6003 error_code |= (exit_qualification << 2) & PFERR_FETCH_MASK;
4f5982a5 6004 /* ept page table is present? */
81ed33e4 6005 error_code |= (exit_qualification >> 3) & PFERR_PRESENT_MASK;
4f5982a5 6006
25d92081
YZ
6007 vcpu->arch.exit_qualification = exit_qualification;
6008
4f5982a5 6009 return kvm_mmu_page_fault(vcpu, gpa, error_code, NULL, 0);
1439442c
SY
6010}
6011
851ba692 6012static int handle_ept_misconfig(struct kvm_vcpu *vcpu)
68f89400 6013{
f735d4af 6014 int ret;
68f89400
MT
6015 gpa_t gpa;
6016
6017 gpa = vmcs_read64(GUEST_PHYSICAL_ADDRESS);
e32edf4f 6018 if (!kvm_io_bus_write(vcpu, KVM_FAST_MMIO_BUS, gpa, 0, NULL)) {
68c3b4d1 6019 skip_emulated_instruction(vcpu);
931c33b1 6020 trace_kvm_fast_mmio(gpa);
68c3b4d1
MT
6021 return 1;
6022 }
68f89400 6023
450869d6 6024 ret = handle_mmio_page_fault(vcpu, gpa, true);
b37fbea6 6025 if (likely(ret == RET_MMIO_PF_EMULATE))
ce88decf
XG
6026 return x86_emulate_instruction(vcpu, gpa, 0, NULL, 0) ==
6027 EMULATE_DONE;
f8f55942
XG
6028
6029 if (unlikely(ret == RET_MMIO_PF_INVALID))
6030 return kvm_mmu_page_fault(vcpu, gpa, 0, NULL, 0);
6031
b37fbea6 6032 if (unlikely(ret == RET_MMIO_PF_RETRY))
ce88decf
XG
6033 return 1;
6034
6035 /* It is the real ept misconfig */
f735d4af 6036 WARN_ON(1);
68f89400 6037
851ba692
AK
6038 vcpu->run->exit_reason = KVM_EXIT_UNKNOWN;
6039 vcpu->run->hw.hardware_exit_reason = EXIT_REASON_EPT_MISCONFIG;
68f89400
MT
6040
6041 return 0;
6042}
6043
851ba692 6044static int handle_nmi_window(struct kvm_vcpu *vcpu)
f08864b4
SY
6045{
6046 u32 cpu_based_vm_exec_control;
6047
6048 /* clear pending NMI */
6049 cpu_based_vm_exec_control = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6050 cpu_based_vm_exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
6051 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, cpu_based_vm_exec_control);
6052 ++vcpu->stat.nmi_window_exits;
3842d135 6053 kvm_make_request(KVM_REQ_EVENT, vcpu);
f08864b4
SY
6054
6055 return 1;
6056}
6057
80ced186 6058static int handle_invalid_guest_state(struct kvm_vcpu *vcpu)
ea953ef0 6059{
8b3079a5
AK
6060 struct vcpu_vmx *vmx = to_vmx(vcpu);
6061 enum emulation_result err = EMULATE_DONE;
80ced186 6062 int ret = 1;
49e9d557
AK
6063 u32 cpu_exec_ctrl;
6064 bool intr_window_requested;
b8405c18 6065 unsigned count = 130;
49e9d557
AK
6066
6067 cpu_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
6068 intr_window_requested = cpu_exec_ctrl & CPU_BASED_VIRTUAL_INTR_PENDING;
ea953ef0 6069
98eb2f8b 6070 while (vmx->emulation_required && count-- != 0) {
bdea48e3 6071 if (intr_window_requested && vmx_interrupt_allowed(vcpu))
49e9d557
AK
6072 return handle_interrupt_window(&vmx->vcpu);
6073
de87dcdd
AK
6074 if (test_bit(KVM_REQ_EVENT, &vcpu->requests))
6075 return 1;
6076
991eebf9 6077 err = emulate_instruction(vcpu, EMULTYPE_NO_REEXECUTE);
ea953ef0 6078
ac0a48c3 6079 if (err == EMULATE_USER_EXIT) {
94452b9e 6080 ++vcpu->stat.mmio_exits;
80ced186
MG
6081 ret = 0;
6082 goto out;
6083 }
1d5a4d9b 6084
de5f70e0
AK
6085 if (err != EMULATE_DONE) {
6086 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
6087 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_EMULATION;
6088 vcpu->run->internal.ndata = 0;
6d77dbfc 6089 return 0;
de5f70e0 6090 }
ea953ef0 6091
8d76c49e
GN
6092 if (vcpu->arch.halt_request) {
6093 vcpu->arch.halt_request = 0;
5cb56059 6094 ret = kvm_vcpu_halt(vcpu);
8d76c49e
GN
6095 goto out;
6096 }
6097
ea953ef0 6098 if (signal_pending(current))
80ced186 6099 goto out;
ea953ef0
MG
6100 if (need_resched())
6101 schedule();
6102 }
6103
80ced186
MG
6104out:
6105 return ret;
ea953ef0
MG
6106}
6107
b4a2d31d
RK
6108static int __grow_ple_window(int val)
6109{
6110 if (ple_window_grow < 1)
6111 return ple_window;
6112
6113 val = min(val, ple_window_actual_max);
6114
6115 if (ple_window_grow < ple_window)
6116 val *= ple_window_grow;
6117 else
6118 val += ple_window_grow;
6119
6120 return val;
6121}
6122
6123static int __shrink_ple_window(int val, int modifier, int minimum)
6124{
6125 if (modifier < 1)
6126 return ple_window;
6127
6128 if (modifier < ple_window)
6129 val /= modifier;
6130 else
6131 val -= modifier;
6132
6133 return max(val, minimum);
6134}
6135
6136static void grow_ple_window(struct kvm_vcpu *vcpu)
6137{
6138 struct vcpu_vmx *vmx = to_vmx(vcpu);
6139 int old = vmx->ple_window;
6140
6141 vmx->ple_window = __grow_ple_window(old);
6142
6143 if (vmx->ple_window != old)
6144 vmx->ple_window_dirty = true;
7b46268d
RK
6145
6146 trace_kvm_ple_window_grow(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6147}
6148
6149static void shrink_ple_window(struct kvm_vcpu *vcpu)
6150{
6151 struct vcpu_vmx *vmx = to_vmx(vcpu);
6152 int old = vmx->ple_window;
6153
6154 vmx->ple_window = __shrink_ple_window(old,
6155 ple_window_shrink, ple_window);
6156
6157 if (vmx->ple_window != old)
6158 vmx->ple_window_dirty = true;
7b46268d
RK
6159
6160 trace_kvm_ple_window_shrink(vcpu->vcpu_id, vmx->ple_window, old);
b4a2d31d
RK
6161}
6162
6163/*
6164 * ple_window_actual_max is computed to be one grow_ple_window() below
6165 * ple_window_max. (See __grow_ple_window for the reason.)
6166 * This prevents overflows, because ple_window_max is int.
6167 * ple_window_max effectively rounded down to a multiple of ple_window_grow in
6168 * this process.
6169 * ple_window_max is also prevented from setting vmx->ple_window < ple_window.
6170 */
6171static void update_ple_window_actual_max(void)
6172{
6173 ple_window_actual_max =
6174 __shrink_ple_window(max(ple_window_max, ple_window),
6175 ple_window_grow, INT_MIN);
6176}
6177
bf9f6ac8
FW
6178/*
6179 * Handler for POSTED_INTERRUPT_WAKEUP_VECTOR.
6180 */
6181static void wakeup_handler(void)
6182{
6183 struct kvm_vcpu *vcpu;
6184 int cpu = smp_processor_id();
6185
6186 spin_lock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6187 list_for_each_entry(vcpu, &per_cpu(blocked_vcpu_on_cpu, cpu),
6188 blocked_vcpu_list) {
6189 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
6190
6191 if (pi_test_on(pi_desc) == 1)
6192 kvm_vcpu_kick(vcpu);
6193 }
6194 spin_unlock(&per_cpu(blocked_vcpu_on_cpu_lock, cpu));
6195}
6196
f2c7648d
TC
6197static __init int hardware_setup(void)
6198{
34a1cd60
TC
6199 int r = -ENOMEM, i, msr;
6200
6201 rdmsrl_safe(MSR_EFER, &host_efer);
6202
6203 for (i = 0; i < ARRAY_SIZE(vmx_msr_index); ++i)
6204 kvm_define_shared_msr(i, vmx_msr_index[i]);
6205
6206 vmx_io_bitmap_a = (unsigned long *)__get_free_page(GFP_KERNEL);
6207 if (!vmx_io_bitmap_a)
6208 return r;
6209
6210 vmx_io_bitmap_b = (unsigned long *)__get_free_page(GFP_KERNEL);
6211 if (!vmx_io_bitmap_b)
6212 goto out;
6213
6214 vmx_msr_bitmap_legacy = (unsigned long *)__get_free_page(GFP_KERNEL);
6215 if (!vmx_msr_bitmap_legacy)
6216 goto out1;
6217
6218 vmx_msr_bitmap_legacy_x2apic =
6219 (unsigned long *)__get_free_page(GFP_KERNEL);
6220 if (!vmx_msr_bitmap_legacy_x2apic)
6221 goto out2;
6222
6223 vmx_msr_bitmap_longmode = (unsigned long *)__get_free_page(GFP_KERNEL);
6224 if (!vmx_msr_bitmap_longmode)
6225 goto out3;
6226
6227 vmx_msr_bitmap_longmode_x2apic =
6228 (unsigned long *)__get_free_page(GFP_KERNEL);
6229 if (!vmx_msr_bitmap_longmode_x2apic)
6230 goto out4;
3af18d9c
WV
6231
6232 if (nested) {
6233 vmx_msr_bitmap_nested =
6234 (unsigned long *)__get_free_page(GFP_KERNEL);
6235 if (!vmx_msr_bitmap_nested)
6236 goto out5;
6237 }
6238
34a1cd60
TC
6239 vmx_vmread_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6240 if (!vmx_vmread_bitmap)
3af18d9c 6241 goto out6;
34a1cd60
TC
6242
6243 vmx_vmwrite_bitmap = (unsigned long *)__get_free_page(GFP_KERNEL);
6244 if (!vmx_vmwrite_bitmap)
3af18d9c 6245 goto out7;
34a1cd60
TC
6246
6247 memset(vmx_vmread_bitmap, 0xff, PAGE_SIZE);
6248 memset(vmx_vmwrite_bitmap, 0xff, PAGE_SIZE);
6249
6250 /*
6251 * Allow direct access to the PC debug port (it is often used for I/O
6252 * delays, but the vmexits simply slow things down).
6253 */
6254 memset(vmx_io_bitmap_a, 0xff, PAGE_SIZE);
6255 clear_bit(0x80, vmx_io_bitmap_a);
6256
6257 memset(vmx_io_bitmap_b, 0xff, PAGE_SIZE);
6258
6259 memset(vmx_msr_bitmap_legacy, 0xff, PAGE_SIZE);
6260 memset(vmx_msr_bitmap_longmode, 0xff, PAGE_SIZE);
3af18d9c
WV
6261 if (nested)
6262 memset(vmx_msr_bitmap_nested, 0xff, PAGE_SIZE);
34a1cd60 6263
34a1cd60
TC
6264 if (setup_vmcs_config(&vmcs_config) < 0) {
6265 r = -EIO;
3af18d9c 6266 goto out8;
baa03522 6267 }
f2c7648d
TC
6268
6269 if (boot_cpu_has(X86_FEATURE_NX))
6270 kvm_enable_efer_bits(EFER_NX);
6271
6272 if (!cpu_has_vmx_vpid())
6273 enable_vpid = 0;
6274 if (!cpu_has_vmx_shadow_vmcs())
6275 enable_shadow_vmcs = 0;
6276 if (enable_shadow_vmcs)
6277 init_vmcs_shadow_fields();
6278
6279 if (!cpu_has_vmx_ept() ||
6280 !cpu_has_vmx_ept_4levels()) {
6281 enable_ept = 0;
6282 enable_unrestricted_guest = 0;
6283 enable_ept_ad_bits = 0;
6284 }
6285
6286 if (!cpu_has_vmx_ept_ad_bits())
6287 enable_ept_ad_bits = 0;
6288
6289 if (!cpu_has_vmx_unrestricted_guest())
6290 enable_unrestricted_guest = 0;
6291
ad15a296 6292 if (!cpu_has_vmx_flexpriority())
f2c7648d
TC
6293 flexpriority_enabled = 0;
6294
ad15a296
PB
6295 /*
6296 * set_apic_access_page_addr() is used to reload apic access
6297 * page upon invalidation. No need to do anything if not
6298 * using the APIC_ACCESS_ADDR VMCS field.
6299 */
6300 if (!flexpriority_enabled)
f2c7648d 6301 kvm_x86_ops->set_apic_access_page_addr = NULL;
f2c7648d
TC
6302
6303 if (!cpu_has_vmx_tpr_shadow())
6304 kvm_x86_ops->update_cr8_intercept = NULL;
6305
6306 if (enable_ept && !cpu_has_vmx_ept_2m_page())
6307 kvm_disable_largepages();
6308
6309 if (!cpu_has_vmx_ple())
6310 ple_gap = 0;
6311
6312 if (!cpu_has_vmx_apicv())
6313 enable_apicv = 0;
6314
64903d61
HZ
6315 if (cpu_has_vmx_tsc_scaling()) {
6316 kvm_has_tsc_control = true;
6317 kvm_max_tsc_scaling_ratio = KVM_VMX_TSC_MULTIPLIER_MAX;
6318 kvm_tsc_scaling_ratio_frac_bits = 48;
6319 }
6320
baa03522
TC
6321 vmx_disable_intercept_for_msr(MSR_FS_BASE, false);
6322 vmx_disable_intercept_for_msr(MSR_GS_BASE, false);
6323 vmx_disable_intercept_for_msr(MSR_KERNEL_GS_BASE, true);
6324 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_CS, false);
6325 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_ESP, false);
6326 vmx_disable_intercept_for_msr(MSR_IA32_SYSENTER_EIP, false);
6327 vmx_disable_intercept_for_msr(MSR_IA32_BNDCFGS, true);
6328
6329 memcpy(vmx_msr_bitmap_legacy_x2apic,
6330 vmx_msr_bitmap_legacy, PAGE_SIZE);
6331 memcpy(vmx_msr_bitmap_longmode_x2apic,
6332 vmx_msr_bitmap_longmode, PAGE_SIZE);
6333
04bb92e4
WL
6334 set_bit(0, vmx_vpid_bitmap); /* 0 is reserved for host */
6335
baa03522
TC
6336 if (enable_apicv) {
6337 for (msr = 0x800; msr <= 0x8ff; msr++)
6338 vmx_disable_intercept_msr_read_x2apic(msr);
6339
6340 /* According SDM, in x2apic mode, the whole id reg is used.
6341 * But in KVM, it only use the highest eight bits. Need to
6342 * intercept it */
6343 vmx_enable_intercept_msr_read_x2apic(0x802);
6344 /* TMCCT */
6345 vmx_enable_intercept_msr_read_x2apic(0x839);
6346 /* TPR */
6347 vmx_disable_intercept_msr_write_x2apic(0x808);
6348 /* EOI */
6349 vmx_disable_intercept_msr_write_x2apic(0x80b);
6350 /* SELF-IPI */
6351 vmx_disable_intercept_msr_write_x2apic(0x83f);
6352 }
6353
6354 if (enable_ept) {
6355 kvm_mmu_set_mask_ptes(0ull,
6356 (enable_ept_ad_bits) ? VMX_EPT_ACCESS_BIT : 0ull,
6357 (enable_ept_ad_bits) ? VMX_EPT_DIRTY_BIT : 0ull,
6358 0ull, VMX_EPT_EXECUTABLE_MASK);
6359 ept_set_mmio_spte_mask();
6360 kvm_enable_tdp();
6361 } else
6362 kvm_disable_tdp();
6363
6364 update_ple_window_actual_max();
6365
843e4330
KH
6366 /*
6367 * Only enable PML when hardware supports PML feature, and both EPT
6368 * and EPT A/D bit features are enabled -- PML depends on them to work.
6369 */
6370 if (!enable_ept || !enable_ept_ad_bits || !cpu_has_vmx_pml())
6371 enable_pml = 0;
6372
6373 if (!enable_pml) {
6374 kvm_x86_ops->slot_enable_log_dirty = NULL;
6375 kvm_x86_ops->slot_disable_log_dirty = NULL;
6376 kvm_x86_ops->flush_log_dirty = NULL;
6377 kvm_x86_ops->enable_log_dirty_pt_masked = NULL;
6378 }
6379
bf9f6ac8
FW
6380 kvm_set_posted_intr_wakeup_handler(wakeup_handler);
6381
f2c7648d 6382 return alloc_kvm_area();
34a1cd60 6383
3af18d9c 6384out8:
34a1cd60 6385 free_page((unsigned long)vmx_vmwrite_bitmap);
3af18d9c 6386out7:
34a1cd60 6387 free_page((unsigned long)vmx_vmread_bitmap);
3af18d9c
WV
6388out6:
6389 if (nested)
6390 free_page((unsigned long)vmx_msr_bitmap_nested);
34a1cd60
TC
6391out5:
6392 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6393out4:
6394 free_page((unsigned long)vmx_msr_bitmap_longmode);
6395out3:
6396 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6397out2:
6398 free_page((unsigned long)vmx_msr_bitmap_legacy);
6399out1:
6400 free_page((unsigned long)vmx_io_bitmap_b);
6401out:
6402 free_page((unsigned long)vmx_io_bitmap_a);
6403
6404 return r;
f2c7648d
TC
6405}
6406
6407static __exit void hardware_unsetup(void)
6408{
34a1cd60
TC
6409 free_page((unsigned long)vmx_msr_bitmap_legacy_x2apic);
6410 free_page((unsigned long)vmx_msr_bitmap_longmode_x2apic);
6411 free_page((unsigned long)vmx_msr_bitmap_legacy);
6412 free_page((unsigned long)vmx_msr_bitmap_longmode);
6413 free_page((unsigned long)vmx_io_bitmap_b);
6414 free_page((unsigned long)vmx_io_bitmap_a);
6415 free_page((unsigned long)vmx_vmwrite_bitmap);
6416 free_page((unsigned long)vmx_vmread_bitmap);
3af18d9c
WV
6417 if (nested)
6418 free_page((unsigned long)vmx_msr_bitmap_nested);
34a1cd60 6419
f2c7648d
TC
6420 free_kvm_area();
6421}
6422
4b8d54f9
ZE
6423/*
6424 * Indicate a busy-waiting vcpu in spinlock. We do not enable the PAUSE
6425 * exiting, so only get here on cpu with PAUSE-Loop-Exiting.
6426 */
9fb41ba8 6427static int handle_pause(struct kvm_vcpu *vcpu)
4b8d54f9 6428{
b4a2d31d
RK
6429 if (ple_gap)
6430 grow_ple_window(vcpu);
6431
4b8d54f9
ZE
6432 skip_emulated_instruction(vcpu);
6433 kvm_vcpu_on_spin(vcpu);
6434
6435 return 1;
6436}
6437
87c00572 6438static int handle_nop(struct kvm_vcpu *vcpu)
59708670 6439{
87c00572 6440 skip_emulated_instruction(vcpu);
59708670
SY
6441 return 1;
6442}
6443
87c00572
GS
6444static int handle_mwait(struct kvm_vcpu *vcpu)
6445{
6446 printk_once(KERN_WARNING "kvm: MWAIT instruction emulated as NOP!\n");
6447 return handle_nop(vcpu);
6448}
6449
5f3d45e7
MD
6450static int handle_monitor_trap(struct kvm_vcpu *vcpu)
6451{
6452 return 1;
6453}
6454
87c00572
GS
6455static int handle_monitor(struct kvm_vcpu *vcpu)
6456{
6457 printk_once(KERN_WARNING "kvm: MONITOR instruction emulated as NOP!\n");
6458 return handle_nop(vcpu);
6459}
6460
ff2f6fe9
NHE
6461/*
6462 * To run an L2 guest, we need a vmcs02 based on the L1-specified vmcs12.
6463 * We could reuse a single VMCS for all the L2 guests, but we also want the
6464 * option to allocate a separate vmcs02 for each separate loaded vmcs12 - this
6465 * allows keeping them loaded on the processor, and in the future will allow
6466 * optimizations where prepare_vmcs02 doesn't need to set all the fields on
6467 * every entry if they never change.
6468 * So we keep, in vmx->nested.vmcs02_pool, a cache of size VMCS02_POOL_SIZE
6469 * (>=0) with a vmcs02 for each recently loaded vmcs12s, most recent first.
6470 *
6471 * The following functions allocate and free a vmcs02 in this pool.
6472 */
6473
6474/* Get a VMCS from the pool to use as vmcs02 for the current vmcs12. */
6475static struct loaded_vmcs *nested_get_current_vmcs02(struct vcpu_vmx *vmx)
6476{
6477 struct vmcs02_list *item;
6478 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6479 if (item->vmptr == vmx->nested.current_vmptr) {
6480 list_move(&item->list, &vmx->nested.vmcs02_pool);
6481 return &item->vmcs02;
6482 }
6483
6484 if (vmx->nested.vmcs02_num >= max(VMCS02_POOL_SIZE, 1)) {
6485 /* Recycle the least recently used VMCS. */
d74c0e6b
GT
6486 item = list_last_entry(&vmx->nested.vmcs02_pool,
6487 struct vmcs02_list, list);
ff2f6fe9
NHE
6488 item->vmptr = vmx->nested.current_vmptr;
6489 list_move(&item->list, &vmx->nested.vmcs02_pool);
6490 return &item->vmcs02;
6491 }
6492
6493 /* Create a new VMCS */
0fa24ce3 6494 item = kmalloc(sizeof(struct vmcs02_list), GFP_KERNEL);
ff2f6fe9
NHE
6495 if (!item)
6496 return NULL;
6497 item->vmcs02.vmcs = alloc_vmcs();
6498 if (!item->vmcs02.vmcs) {
6499 kfree(item);
6500 return NULL;
6501 }
6502 loaded_vmcs_init(&item->vmcs02);
6503 item->vmptr = vmx->nested.current_vmptr;
6504 list_add(&(item->list), &(vmx->nested.vmcs02_pool));
6505 vmx->nested.vmcs02_num++;
6506 return &item->vmcs02;
6507}
6508
6509/* Free and remove from pool a vmcs02 saved for a vmcs12 (if there is one) */
6510static void nested_free_vmcs02(struct vcpu_vmx *vmx, gpa_t vmptr)
6511{
6512 struct vmcs02_list *item;
6513 list_for_each_entry(item, &vmx->nested.vmcs02_pool, list)
6514 if (item->vmptr == vmptr) {
6515 free_loaded_vmcs(&item->vmcs02);
6516 list_del(&item->list);
6517 kfree(item);
6518 vmx->nested.vmcs02_num--;
6519 return;
6520 }
6521}
6522
6523/*
6524 * Free all VMCSs saved for this vcpu, except the one pointed by
4fa7734c
PB
6525 * vmx->loaded_vmcs. We must be running L1, so vmx->loaded_vmcs
6526 * must be &vmx->vmcs01.
ff2f6fe9
NHE
6527 */
6528static void nested_free_all_saved_vmcss(struct vcpu_vmx *vmx)
6529{
6530 struct vmcs02_list *item, *n;
4fa7734c
PB
6531
6532 WARN_ON(vmx->loaded_vmcs != &vmx->vmcs01);
ff2f6fe9 6533 list_for_each_entry_safe(item, n, &vmx->nested.vmcs02_pool, list) {
4fa7734c
PB
6534 /*
6535 * Something will leak if the above WARN triggers. Better than
6536 * a use-after-free.
6537 */
6538 if (vmx->loaded_vmcs == &item->vmcs02)
6539 continue;
6540
6541 free_loaded_vmcs(&item->vmcs02);
ff2f6fe9
NHE
6542 list_del(&item->list);
6543 kfree(item);
4fa7734c 6544 vmx->nested.vmcs02_num--;
ff2f6fe9 6545 }
ff2f6fe9
NHE
6546}
6547
0658fbaa
ACL
6548/*
6549 * The following 3 functions, nested_vmx_succeed()/failValid()/failInvalid(),
6550 * set the success or error code of an emulated VMX instruction, as specified
6551 * by Vol 2B, VMX Instruction Reference, "Conventions".
6552 */
6553static void nested_vmx_succeed(struct kvm_vcpu *vcpu)
6554{
6555 vmx_set_rflags(vcpu, vmx_get_rflags(vcpu)
6556 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6557 X86_EFLAGS_ZF | X86_EFLAGS_SF | X86_EFLAGS_OF));
6558}
6559
6560static void nested_vmx_failInvalid(struct kvm_vcpu *vcpu)
6561{
6562 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6563 & ~(X86_EFLAGS_PF | X86_EFLAGS_AF | X86_EFLAGS_ZF |
6564 X86_EFLAGS_SF | X86_EFLAGS_OF))
6565 | X86_EFLAGS_CF);
6566}
6567
145c28dd 6568static void nested_vmx_failValid(struct kvm_vcpu *vcpu,
0658fbaa
ACL
6569 u32 vm_instruction_error)
6570{
6571 if (to_vmx(vcpu)->nested.current_vmptr == -1ull) {
6572 /*
6573 * failValid writes the error number to the current VMCS, which
6574 * can't be done there isn't a current VMCS.
6575 */
6576 nested_vmx_failInvalid(vcpu);
6577 return;
6578 }
6579 vmx_set_rflags(vcpu, (vmx_get_rflags(vcpu)
6580 & ~(X86_EFLAGS_CF | X86_EFLAGS_PF | X86_EFLAGS_AF |
6581 X86_EFLAGS_SF | X86_EFLAGS_OF))
6582 | X86_EFLAGS_ZF);
6583 get_vmcs12(vcpu)->vm_instruction_error = vm_instruction_error;
6584 /*
6585 * We don't need to force a shadow sync because
6586 * VM_INSTRUCTION_ERROR is not shadowed
6587 */
6588}
145c28dd 6589
ff651cb6
WV
6590static void nested_vmx_abort(struct kvm_vcpu *vcpu, u32 indicator)
6591{
6592 /* TODO: not to reset guest simply here. */
6593 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
6594 pr_warn("kvm: nested vmx abort, indicator %d\n", indicator);
6595}
6596
f4124500
JK
6597static enum hrtimer_restart vmx_preemption_timer_fn(struct hrtimer *timer)
6598{
6599 struct vcpu_vmx *vmx =
6600 container_of(timer, struct vcpu_vmx, nested.preemption_timer);
6601
6602 vmx->nested.preemption_timer_expired = true;
6603 kvm_make_request(KVM_REQ_EVENT, &vmx->vcpu);
6604 kvm_vcpu_kick(&vmx->vcpu);
6605
6606 return HRTIMER_NORESTART;
6607}
6608
19677e32
BD
6609/*
6610 * Decode the memory-address operand of a vmx instruction, as recorded on an
6611 * exit caused by such an instruction (run by a guest hypervisor).
6612 * On success, returns 0. When the operand is invalid, returns 1 and throws
6613 * #UD or #GP.
6614 */
6615static int get_vmx_mem_address(struct kvm_vcpu *vcpu,
6616 unsigned long exit_qualification,
f9eb4af6 6617 u32 vmx_instruction_info, bool wr, gva_t *ret)
19677e32 6618{
f9eb4af6
EK
6619 gva_t off;
6620 bool exn;
6621 struct kvm_segment s;
6622
19677e32
BD
6623 /*
6624 * According to Vol. 3B, "Information for VM Exits Due to Instruction
6625 * Execution", on an exit, vmx_instruction_info holds most of the
6626 * addressing components of the operand. Only the displacement part
6627 * is put in exit_qualification (see 3B, "Basic VM-Exit Information").
6628 * For how an actual address is calculated from all these components,
6629 * refer to Vol. 1, "Operand Addressing".
6630 */
6631 int scaling = vmx_instruction_info & 3;
6632 int addr_size = (vmx_instruction_info >> 7) & 7;
6633 bool is_reg = vmx_instruction_info & (1u << 10);
6634 int seg_reg = (vmx_instruction_info >> 15) & 7;
6635 int index_reg = (vmx_instruction_info >> 18) & 0xf;
6636 bool index_is_valid = !(vmx_instruction_info & (1u << 22));
6637 int base_reg = (vmx_instruction_info >> 23) & 0xf;
6638 bool base_is_valid = !(vmx_instruction_info & (1u << 27));
6639
6640 if (is_reg) {
6641 kvm_queue_exception(vcpu, UD_VECTOR);
6642 return 1;
6643 }
6644
6645 /* Addr = segment_base + offset */
6646 /* offset = base + [index * scale] + displacement */
f9eb4af6 6647 off = exit_qualification; /* holds the displacement */
19677e32 6648 if (base_is_valid)
f9eb4af6 6649 off += kvm_register_read(vcpu, base_reg);
19677e32 6650 if (index_is_valid)
f9eb4af6
EK
6651 off += kvm_register_read(vcpu, index_reg)<<scaling;
6652 vmx_get_segment(vcpu, &s, seg_reg);
6653 *ret = s.base + off;
19677e32
BD
6654
6655 if (addr_size == 1) /* 32 bit */
6656 *ret &= 0xffffffff;
6657
f9eb4af6
EK
6658 /* Checks for #GP/#SS exceptions. */
6659 exn = false;
6660 if (is_protmode(vcpu)) {
6661 /* Protected mode: apply checks for segment validity in the
6662 * following order:
6663 * - segment type check (#GP(0) may be thrown)
6664 * - usability check (#GP(0)/#SS(0))
6665 * - limit check (#GP(0)/#SS(0))
6666 */
6667 if (wr)
6668 /* #GP(0) if the destination operand is located in a
6669 * read-only data segment or any code segment.
6670 */
6671 exn = ((s.type & 0xa) == 0 || (s.type & 8));
6672 else
6673 /* #GP(0) if the source operand is located in an
6674 * execute-only code segment
6675 */
6676 exn = ((s.type & 0xa) == 8);
6677 }
6678 if (exn) {
6679 kvm_queue_exception_e(vcpu, GP_VECTOR, 0);
6680 return 1;
6681 }
6682 if (is_long_mode(vcpu)) {
6683 /* Long mode: #GP(0)/#SS(0) if the memory address is in a
6684 * non-canonical form. This is an only check for long mode.
6685 */
6686 exn = is_noncanonical_address(*ret);
6687 } else if (is_protmode(vcpu)) {
6688 /* Protected mode: #GP(0)/#SS(0) if the segment is unusable.
6689 */
6690 exn = (s.unusable != 0);
6691 /* Protected mode: #GP(0)/#SS(0) if the memory
6692 * operand is outside the segment limit.
6693 */
6694 exn = exn || (off + sizeof(u64) > s.limit);
6695 }
6696 if (exn) {
6697 kvm_queue_exception_e(vcpu,
6698 seg_reg == VCPU_SREG_SS ?
6699 SS_VECTOR : GP_VECTOR,
6700 0);
6701 return 1;
6702 }
6703
19677e32
BD
6704 return 0;
6705}
6706
3573e22c
BD
6707/*
6708 * This function performs the various checks including
6709 * - if it's 4KB aligned
6710 * - No bits beyond the physical address width are set
6711 * - Returns 0 on success or else 1
4291b588 6712 * (Intel SDM Section 30.3)
3573e22c 6713 */
4291b588
BD
6714static int nested_vmx_check_vmptr(struct kvm_vcpu *vcpu, int exit_reason,
6715 gpa_t *vmpointer)
3573e22c
BD
6716{
6717 gva_t gva;
6718 gpa_t vmptr;
6719 struct x86_exception e;
6720 struct page *page;
6721 struct vcpu_vmx *vmx = to_vmx(vcpu);
6722 int maxphyaddr = cpuid_maxphyaddr(vcpu);
6723
6724 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 6725 vmcs_read32(VMX_INSTRUCTION_INFO), false, &gva))
3573e22c
BD
6726 return 1;
6727
6728 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vmptr,
6729 sizeof(vmptr), &e)) {
6730 kvm_inject_page_fault(vcpu, &e);
6731 return 1;
6732 }
6733
6734 switch (exit_reason) {
6735 case EXIT_REASON_VMON:
6736 /*
6737 * SDM 3: 24.11.5
6738 * The first 4 bytes of VMXON region contain the supported
6739 * VMCS revision identifier
6740 *
6741 * Note - IA32_VMX_BASIC[48] will never be 1
6742 * for the nested case;
6743 * which replaces physical address width with 32
6744 *
6745 */
bc39c4db 6746 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
3573e22c
BD
6747 nested_vmx_failInvalid(vcpu);
6748 skip_emulated_instruction(vcpu);
6749 return 1;
6750 }
6751
6752 page = nested_get_page(vcpu, vmptr);
6753 if (page == NULL ||
6754 *(u32 *)kmap(page) != VMCS12_REVISION) {
6755 nested_vmx_failInvalid(vcpu);
6756 kunmap(page);
6757 skip_emulated_instruction(vcpu);
6758 return 1;
6759 }
6760 kunmap(page);
6761 vmx->nested.vmxon_ptr = vmptr;
6762 break;
4291b588 6763 case EXIT_REASON_VMCLEAR:
bc39c4db 6764 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6765 nested_vmx_failValid(vcpu,
6766 VMXERR_VMCLEAR_INVALID_ADDRESS);
6767 skip_emulated_instruction(vcpu);
6768 return 1;
6769 }
6770
6771 if (vmptr == vmx->nested.vmxon_ptr) {
6772 nested_vmx_failValid(vcpu,
6773 VMXERR_VMCLEAR_VMXON_POINTER);
6774 skip_emulated_instruction(vcpu);
6775 return 1;
6776 }
6777 break;
6778 case EXIT_REASON_VMPTRLD:
bc39c4db 6779 if (!PAGE_ALIGNED(vmptr) || (vmptr >> maxphyaddr)) {
4291b588
BD
6780 nested_vmx_failValid(vcpu,
6781 VMXERR_VMPTRLD_INVALID_ADDRESS);
6782 skip_emulated_instruction(vcpu);
6783 return 1;
6784 }
3573e22c 6785
4291b588
BD
6786 if (vmptr == vmx->nested.vmxon_ptr) {
6787 nested_vmx_failValid(vcpu,
6788 VMXERR_VMCLEAR_VMXON_POINTER);
6789 skip_emulated_instruction(vcpu);
6790 return 1;
6791 }
6792 break;
3573e22c
BD
6793 default:
6794 return 1; /* shouldn't happen */
6795 }
6796
4291b588
BD
6797 if (vmpointer)
6798 *vmpointer = vmptr;
3573e22c
BD
6799 return 0;
6800}
6801
ec378aee
NHE
6802/*
6803 * Emulate the VMXON instruction.
6804 * Currently, we just remember that VMX is active, and do not save or even
6805 * inspect the argument to VMXON (the so-called "VMXON pointer") because we
6806 * do not currently need to store anything in that guest-allocated memory
6807 * region. Consequently, VMCLEAR and VMPTRLD also do not verify that the their
6808 * argument is different from the VMXON pointer (which the spec says they do).
6809 */
6810static int handle_vmon(struct kvm_vcpu *vcpu)
6811{
6812 struct kvm_segment cs;
6813 struct vcpu_vmx *vmx = to_vmx(vcpu);
8de48833 6814 struct vmcs *shadow_vmcs;
b3897a49
NHE
6815 const u64 VMXON_NEEDED_FEATURES = FEATURE_CONTROL_LOCKED
6816 | FEATURE_CONTROL_VMXON_ENABLED_OUTSIDE_SMX;
ec378aee
NHE
6817
6818 /* The Intel VMX Instruction Reference lists a bunch of bits that
6819 * are prerequisite to running VMXON, most notably cr4.VMXE must be
6820 * set to 1 (see vmx_set_cr4() for when we allow the guest to set this).
6821 * Otherwise, we should fail with #UD. We test these now:
6822 */
6823 if (!kvm_read_cr4_bits(vcpu, X86_CR4_VMXE) ||
6824 !kvm_read_cr0_bits(vcpu, X86_CR0_PE) ||
6825 (vmx_get_rflags(vcpu) & X86_EFLAGS_VM)) {
6826 kvm_queue_exception(vcpu, UD_VECTOR);
6827 return 1;
6828 }
6829
6830 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6831 if (is_long_mode(vcpu) && !cs.l) {
6832 kvm_queue_exception(vcpu, UD_VECTOR);
6833 return 1;
6834 }
6835
6836 if (vmx_get_cpl(vcpu)) {
6837 kvm_inject_gp(vcpu, 0);
6838 return 1;
6839 }
3573e22c 6840
4291b588 6841 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMON, NULL))
3573e22c
BD
6842 return 1;
6843
145c28dd
AG
6844 if (vmx->nested.vmxon) {
6845 nested_vmx_failValid(vcpu, VMXERR_VMXON_IN_VMX_ROOT_OPERATION);
6846 skip_emulated_instruction(vcpu);
6847 return 1;
6848 }
b3897a49
NHE
6849
6850 if ((vmx->nested.msr_ia32_feature_control & VMXON_NEEDED_FEATURES)
6851 != VMXON_NEEDED_FEATURES) {
6852 kvm_inject_gp(vcpu, 0);
6853 return 1;
6854 }
6855
8de48833
AG
6856 if (enable_shadow_vmcs) {
6857 shadow_vmcs = alloc_vmcs();
6858 if (!shadow_vmcs)
6859 return -ENOMEM;
6860 /* mark vmcs as shadow */
6861 shadow_vmcs->revision_id |= (1u << 31);
6862 /* init shadow vmcs */
6863 vmcs_clear(shadow_vmcs);
6864 vmx->nested.current_shadow_vmcs = shadow_vmcs;
6865 }
ec378aee 6866
ff2f6fe9
NHE
6867 INIT_LIST_HEAD(&(vmx->nested.vmcs02_pool));
6868 vmx->nested.vmcs02_num = 0;
6869
f4124500
JK
6870 hrtimer_init(&vmx->nested.preemption_timer, CLOCK_MONOTONIC,
6871 HRTIMER_MODE_REL);
6872 vmx->nested.preemption_timer.function = vmx_preemption_timer_fn;
6873
ec378aee
NHE
6874 vmx->nested.vmxon = true;
6875
6876 skip_emulated_instruction(vcpu);
a25eb114 6877 nested_vmx_succeed(vcpu);
ec378aee
NHE
6878 return 1;
6879}
6880
6881/*
6882 * Intel's VMX Instruction Reference specifies a common set of prerequisites
6883 * for running VMX instructions (except VMXON, whose prerequisites are
6884 * slightly different). It also specifies what exception to inject otherwise.
6885 */
6886static int nested_vmx_check_permission(struct kvm_vcpu *vcpu)
6887{
6888 struct kvm_segment cs;
6889 struct vcpu_vmx *vmx = to_vmx(vcpu);
6890
6891 if (!vmx->nested.vmxon) {
6892 kvm_queue_exception(vcpu, UD_VECTOR);
6893 return 0;
6894 }
6895
6896 vmx_get_segment(vcpu, &cs, VCPU_SREG_CS);
6897 if ((vmx_get_rflags(vcpu) & X86_EFLAGS_VM) ||
6898 (is_long_mode(vcpu) && !cs.l)) {
6899 kvm_queue_exception(vcpu, UD_VECTOR);
6900 return 0;
6901 }
6902
6903 if (vmx_get_cpl(vcpu)) {
6904 kvm_inject_gp(vcpu, 0);
6905 return 0;
6906 }
6907
6908 return 1;
6909}
6910
e7953d7f
AG
6911static inline void nested_release_vmcs12(struct vcpu_vmx *vmx)
6912{
9a2a05b9
PB
6913 if (vmx->nested.current_vmptr == -1ull)
6914 return;
6915
6916 /* current_vmptr and current_vmcs12 are always set/reset together */
6917 if (WARN_ON(vmx->nested.current_vmcs12 == NULL))
6918 return;
6919
012f83cb 6920 if (enable_shadow_vmcs) {
9a2a05b9
PB
6921 /* copy to memory all shadowed fields in case
6922 they were modified */
6923 copy_shadow_to_vmcs12(vmx);
6924 vmx->nested.sync_shadow_vmcs = false;
7ec36296
XG
6925 vmcs_clear_bits(SECONDARY_VM_EXEC_CONTROL,
6926 SECONDARY_EXEC_SHADOW_VMCS);
9a2a05b9 6927 vmcs_write64(VMCS_LINK_POINTER, -1ull);
012f83cb 6928 }
705699a1 6929 vmx->nested.posted_intr_nv = -1;
e7953d7f
AG
6930 kunmap(vmx->nested.current_vmcs12_page);
6931 nested_release_page(vmx->nested.current_vmcs12_page);
9a2a05b9
PB
6932 vmx->nested.current_vmptr = -1ull;
6933 vmx->nested.current_vmcs12 = NULL;
e7953d7f
AG
6934}
6935
ec378aee
NHE
6936/*
6937 * Free whatever needs to be freed from vmx->nested when L1 goes down, or
6938 * just stops using VMX.
6939 */
6940static void free_nested(struct vcpu_vmx *vmx)
6941{
6942 if (!vmx->nested.vmxon)
6943 return;
9a2a05b9 6944
ec378aee 6945 vmx->nested.vmxon = false;
5c614b35 6946 free_vpid(vmx->nested.vpid02);
9a2a05b9 6947 nested_release_vmcs12(vmx);
e7953d7f
AG
6948 if (enable_shadow_vmcs)
6949 free_vmcs(vmx->nested.current_shadow_vmcs);
fe3ef05c
NHE
6950 /* Unpin physical memory we referred to in current vmcs02 */
6951 if (vmx->nested.apic_access_page) {
6952 nested_release_page(vmx->nested.apic_access_page);
48d89b92 6953 vmx->nested.apic_access_page = NULL;
fe3ef05c 6954 }
a7c0b07d
WL
6955 if (vmx->nested.virtual_apic_page) {
6956 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 6957 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 6958 }
705699a1
WV
6959 if (vmx->nested.pi_desc_page) {
6960 kunmap(vmx->nested.pi_desc_page);
6961 nested_release_page(vmx->nested.pi_desc_page);
6962 vmx->nested.pi_desc_page = NULL;
6963 vmx->nested.pi_desc = NULL;
6964 }
ff2f6fe9
NHE
6965
6966 nested_free_all_saved_vmcss(vmx);
ec378aee
NHE
6967}
6968
6969/* Emulate the VMXOFF instruction */
6970static int handle_vmoff(struct kvm_vcpu *vcpu)
6971{
6972 if (!nested_vmx_check_permission(vcpu))
6973 return 1;
6974 free_nested(to_vmx(vcpu));
6975 skip_emulated_instruction(vcpu);
a25eb114 6976 nested_vmx_succeed(vcpu);
ec378aee
NHE
6977 return 1;
6978}
6979
27d6c865
NHE
6980/* Emulate the VMCLEAR instruction */
6981static int handle_vmclear(struct kvm_vcpu *vcpu)
6982{
6983 struct vcpu_vmx *vmx = to_vmx(vcpu);
27d6c865
NHE
6984 gpa_t vmptr;
6985 struct vmcs12 *vmcs12;
6986 struct page *page;
27d6c865
NHE
6987
6988 if (!nested_vmx_check_permission(vcpu))
6989 return 1;
6990
4291b588 6991 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMCLEAR, &vmptr))
27d6c865 6992 return 1;
27d6c865 6993
9a2a05b9 6994 if (vmptr == vmx->nested.current_vmptr)
e7953d7f 6995 nested_release_vmcs12(vmx);
27d6c865
NHE
6996
6997 page = nested_get_page(vcpu, vmptr);
6998 if (page == NULL) {
6999 /*
7000 * For accurate processor emulation, VMCLEAR beyond available
7001 * physical memory should do nothing at all. However, it is
7002 * possible that a nested vmx bug, not a guest hypervisor bug,
7003 * resulted in this case, so let's shut down before doing any
7004 * more damage:
7005 */
7006 kvm_make_request(KVM_REQ_TRIPLE_FAULT, vcpu);
7007 return 1;
7008 }
7009 vmcs12 = kmap(page);
7010 vmcs12->launch_state = 0;
7011 kunmap(page);
7012 nested_release_page(page);
7013
7014 nested_free_vmcs02(vmx, vmptr);
7015
7016 skip_emulated_instruction(vcpu);
7017 nested_vmx_succeed(vcpu);
7018 return 1;
7019}
7020
cd232ad0
NHE
7021static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch);
7022
7023/* Emulate the VMLAUNCH instruction */
7024static int handle_vmlaunch(struct kvm_vcpu *vcpu)
7025{
7026 return nested_vmx_run(vcpu, true);
7027}
7028
7029/* Emulate the VMRESUME instruction */
7030static int handle_vmresume(struct kvm_vcpu *vcpu)
7031{
7032
7033 return nested_vmx_run(vcpu, false);
7034}
7035
49f705c5
NHE
7036enum vmcs_field_type {
7037 VMCS_FIELD_TYPE_U16 = 0,
7038 VMCS_FIELD_TYPE_U64 = 1,
7039 VMCS_FIELD_TYPE_U32 = 2,
7040 VMCS_FIELD_TYPE_NATURAL_WIDTH = 3
7041};
7042
7043static inline int vmcs_field_type(unsigned long field)
7044{
7045 if (0x1 & field) /* the *_HIGH fields are all 32 bit */
7046 return VMCS_FIELD_TYPE_U32;
7047 return (field >> 13) & 0x3 ;
7048}
7049
7050static inline int vmcs_field_readonly(unsigned long field)
7051{
7052 return (((field >> 10) & 0x3) == 1);
7053}
7054
7055/*
7056 * Read a vmcs12 field. Since these can have varying lengths and we return
7057 * one type, we chose the biggest type (u64) and zero-extend the return value
7058 * to that size. Note that the caller, handle_vmread, might need to use only
7059 * some of the bits we return here (e.g., on 32-bit guests, only 32 bits of
7060 * 64-bit fields are to be returned).
7061 */
a2ae9df7
PB
7062static inline int vmcs12_read_any(struct kvm_vcpu *vcpu,
7063 unsigned long field, u64 *ret)
49f705c5
NHE
7064{
7065 short offset = vmcs_field_to_offset(field);
7066 char *p;
7067
7068 if (offset < 0)
a2ae9df7 7069 return offset;
49f705c5
NHE
7070
7071 p = ((char *)(get_vmcs12(vcpu))) + offset;
7072
7073 switch (vmcs_field_type(field)) {
7074 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7075 *ret = *((natural_width *)p);
a2ae9df7 7076 return 0;
49f705c5
NHE
7077 case VMCS_FIELD_TYPE_U16:
7078 *ret = *((u16 *)p);
a2ae9df7 7079 return 0;
49f705c5
NHE
7080 case VMCS_FIELD_TYPE_U32:
7081 *ret = *((u32 *)p);
a2ae9df7 7082 return 0;
49f705c5
NHE
7083 case VMCS_FIELD_TYPE_U64:
7084 *ret = *((u64 *)p);
a2ae9df7 7085 return 0;
49f705c5 7086 default:
a2ae9df7
PB
7087 WARN_ON(1);
7088 return -ENOENT;
49f705c5
NHE
7089 }
7090}
7091
20b97fea 7092
a2ae9df7
PB
7093static inline int vmcs12_write_any(struct kvm_vcpu *vcpu,
7094 unsigned long field, u64 field_value){
20b97fea
AG
7095 short offset = vmcs_field_to_offset(field);
7096 char *p = ((char *) get_vmcs12(vcpu)) + offset;
7097 if (offset < 0)
a2ae9df7 7098 return offset;
20b97fea
AG
7099
7100 switch (vmcs_field_type(field)) {
7101 case VMCS_FIELD_TYPE_U16:
7102 *(u16 *)p = field_value;
a2ae9df7 7103 return 0;
20b97fea
AG
7104 case VMCS_FIELD_TYPE_U32:
7105 *(u32 *)p = field_value;
a2ae9df7 7106 return 0;
20b97fea
AG
7107 case VMCS_FIELD_TYPE_U64:
7108 *(u64 *)p = field_value;
a2ae9df7 7109 return 0;
20b97fea
AG
7110 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7111 *(natural_width *)p = field_value;
a2ae9df7 7112 return 0;
20b97fea 7113 default:
a2ae9df7
PB
7114 WARN_ON(1);
7115 return -ENOENT;
20b97fea
AG
7116 }
7117
7118}
7119
16f5b903
AG
7120static void copy_shadow_to_vmcs12(struct vcpu_vmx *vmx)
7121{
7122 int i;
7123 unsigned long field;
7124 u64 field_value;
7125 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
c2bae893
MK
7126 const unsigned long *fields = shadow_read_write_fields;
7127 const int num_fields = max_shadow_read_write_fields;
16f5b903 7128
282da870
JK
7129 preempt_disable();
7130
16f5b903
AG
7131 vmcs_load(shadow_vmcs);
7132
7133 for (i = 0; i < num_fields; i++) {
7134 field = fields[i];
7135 switch (vmcs_field_type(field)) {
7136 case VMCS_FIELD_TYPE_U16:
7137 field_value = vmcs_read16(field);
7138 break;
7139 case VMCS_FIELD_TYPE_U32:
7140 field_value = vmcs_read32(field);
7141 break;
7142 case VMCS_FIELD_TYPE_U64:
7143 field_value = vmcs_read64(field);
7144 break;
7145 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7146 field_value = vmcs_readl(field);
7147 break;
a2ae9df7
PB
7148 default:
7149 WARN_ON(1);
7150 continue;
16f5b903
AG
7151 }
7152 vmcs12_write_any(&vmx->vcpu, field, field_value);
7153 }
7154
7155 vmcs_clear(shadow_vmcs);
7156 vmcs_load(vmx->loaded_vmcs->vmcs);
282da870
JK
7157
7158 preempt_enable();
16f5b903
AG
7159}
7160
c3114420
AG
7161static void copy_vmcs12_to_shadow(struct vcpu_vmx *vmx)
7162{
c2bae893
MK
7163 const unsigned long *fields[] = {
7164 shadow_read_write_fields,
7165 shadow_read_only_fields
c3114420 7166 };
c2bae893 7167 const int max_fields[] = {
c3114420
AG
7168 max_shadow_read_write_fields,
7169 max_shadow_read_only_fields
7170 };
7171 int i, q;
7172 unsigned long field;
7173 u64 field_value = 0;
7174 struct vmcs *shadow_vmcs = vmx->nested.current_shadow_vmcs;
7175
7176 vmcs_load(shadow_vmcs);
7177
c2bae893 7178 for (q = 0; q < ARRAY_SIZE(fields); q++) {
c3114420
AG
7179 for (i = 0; i < max_fields[q]; i++) {
7180 field = fields[q][i];
7181 vmcs12_read_any(&vmx->vcpu, field, &field_value);
7182
7183 switch (vmcs_field_type(field)) {
7184 case VMCS_FIELD_TYPE_U16:
7185 vmcs_write16(field, (u16)field_value);
7186 break;
7187 case VMCS_FIELD_TYPE_U32:
7188 vmcs_write32(field, (u32)field_value);
7189 break;
7190 case VMCS_FIELD_TYPE_U64:
7191 vmcs_write64(field, (u64)field_value);
7192 break;
7193 case VMCS_FIELD_TYPE_NATURAL_WIDTH:
7194 vmcs_writel(field, (long)field_value);
7195 break;
a2ae9df7
PB
7196 default:
7197 WARN_ON(1);
7198 break;
c3114420
AG
7199 }
7200 }
7201 }
7202
7203 vmcs_clear(shadow_vmcs);
7204 vmcs_load(vmx->loaded_vmcs->vmcs);
7205}
7206
49f705c5
NHE
7207/*
7208 * VMX instructions which assume a current vmcs12 (i.e., that VMPTRLD was
7209 * used before) all generate the same failure when it is missing.
7210 */
7211static int nested_vmx_check_vmcs12(struct kvm_vcpu *vcpu)
7212{
7213 struct vcpu_vmx *vmx = to_vmx(vcpu);
7214 if (vmx->nested.current_vmptr == -1ull) {
7215 nested_vmx_failInvalid(vcpu);
7216 skip_emulated_instruction(vcpu);
7217 return 0;
7218 }
7219 return 1;
7220}
7221
7222static int handle_vmread(struct kvm_vcpu *vcpu)
7223{
7224 unsigned long field;
7225 u64 field_value;
7226 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7227 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7228 gva_t gva = 0;
7229
7230 if (!nested_vmx_check_permission(vcpu) ||
7231 !nested_vmx_check_vmcs12(vcpu))
7232 return 1;
7233
7234 /* Decode instruction info and find the field to read */
27e6fb5d 7235 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5 7236 /* Read the field, zero-extended to a u64 field_value */
a2ae9df7 7237 if (vmcs12_read_any(vcpu, field, &field_value) < 0) {
49f705c5
NHE
7238 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7239 skip_emulated_instruction(vcpu);
7240 return 1;
7241 }
7242 /*
7243 * Now copy part of this value to register or memory, as requested.
7244 * Note that the number of bits actually copied is 32 or 64 depending
7245 * on the guest's mode (32 or 64 bit), not on the given field's length.
7246 */
7247 if (vmx_instruction_info & (1u << 10)) {
27e6fb5d 7248 kvm_register_writel(vcpu, (((vmx_instruction_info) >> 3) & 0xf),
49f705c5
NHE
7249 field_value);
7250 } else {
7251 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7252 vmx_instruction_info, true, &gva))
49f705c5
NHE
7253 return 1;
7254 /* _system ok, as nested_vmx_check_permission verified cpl=0 */
7255 kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, gva,
7256 &field_value, (is_long_mode(vcpu) ? 8 : 4), NULL);
7257 }
7258
7259 nested_vmx_succeed(vcpu);
7260 skip_emulated_instruction(vcpu);
7261 return 1;
7262}
7263
7264
7265static int handle_vmwrite(struct kvm_vcpu *vcpu)
7266{
7267 unsigned long field;
7268 gva_t gva;
7269 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7270 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
49f705c5
NHE
7271 /* The value to write might be 32 or 64 bits, depending on L1's long
7272 * mode, and eventually we need to write that into a field of several
7273 * possible lengths. The code below first zero-extends the value to 64
6a6256f9 7274 * bit (field_value), and then copies only the appropriate number of
49f705c5
NHE
7275 * bits into the vmcs12 field.
7276 */
7277 u64 field_value = 0;
7278 struct x86_exception e;
7279
7280 if (!nested_vmx_check_permission(vcpu) ||
7281 !nested_vmx_check_vmcs12(vcpu))
7282 return 1;
7283
7284 if (vmx_instruction_info & (1u << 10))
27e6fb5d 7285 field_value = kvm_register_readl(vcpu,
49f705c5
NHE
7286 (((vmx_instruction_info) >> 3) & 0xf));
7287 else {
7288 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7289 vmx_instruction_info, false, &gva))
49f705c5
NHE
7290 return 1;
7291 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva,
27e6fb5d 7292 &field_value, (is_64_bit_mode(vcpu) ? 8 : 4), &e)) {
49f705c5
NHE
7293 kvm_inject_page_fault(vcpu, &e);
7294 return 1;
7295 }
7296 }
7297
7298
27e6fb5d 7299 field = kvm_register_readl(vcpu, (((vmx_instruction_info) >> 28) & 0xf));
49f705c5
NHE
7300 if (vmcs_field_readonly(field)) {
7301 nested_vmx_failValid(vcpu,
7302 VMXERR_VMWRITE_READ_ONLY_VMCS_COMPONENT);
7303 skip_emulated_instruction(vcpu);
7304 return 1;
7305 }
7306
a2ae9df7 7307 if (vmcs12_write_any(vcpu, field, field_value) < 0) {
49f705c5
NHE
7308 nested_vmx_failValid(vcpu, VMXERR_UNSUPPORTED_VMCS_COMPONENT);
7309 skip_emulated_instruction(vcpu);
7310 return 1;
7311 }
7312
7313 nested_vmx_succeed(vcpu);
7314 skip_emulated_instruction(vcpu);
7315 return 1;
7316}
7317
63846663
NHE
7318/* Emulate the VMPTRLD instruction */
7319static int handle_vmptrld(struct kvm_vcpu *vcpu)
7320{
7321 struct vcpu_vmx *vmx = to_vmx(vcpu);
63846663 7322 gpa_t vmptr;
63846663
NHE
7323
7324 if (!nested_vmx_check_permission(vcpu))
7325 return 1;
7326
4291b588 7327 if (nested_vmx_check_vmptr(vcpu, EXIT_REASON_VMPTRLD, &vmptr))
63846663 7328 return 1;
63846663
NHE
7329
7330 if (vmx->nested.current_vmptr != vmptr) {
7331 struct vmcs12 *new_vmcs12;
7332 struct page *page;
7333 page = nested_get_page(vcpu, vmptr);
7334 if (page == NULL) {
7335 nested_vmx_failInvalid(vcpu);
7336 skip_emulated_instruction(vcpu);
7337 return 1;
7338 }
7339 new_vmcs12 = kmap(page);
7340 if (new_vmcs12->revision_id != VMCS12_REVISION) {
7341 kunmap(page);
7342 nested_release_page_clean(page);
7343 nested_vmx_failValid(vcpu,
7344 VMXERR_VMPTRLD_INCORRECT_VMCS_REVISION_ID);
7345 skip_emulated_instruction(vcpu);
7346 return 1;
7347 }
63846663 7348
9a2a05b9 7349 nested_release_vmcs12(vmx);
63846663
NHE
7350 vmx->nested.current_vmptr = vmptr;
7351 vmx->nested.current_vmcs12 = new_vmcs12;
7352 vmx->nested.current_vmcs12_page = page;
012f83cb 7353 if (enable_shadow_vmcs) {
7ec36296
XG
7354 vmcs_set_bits(SECONDARY_VM_EXEC_CONTROL,
7355 SECONDARY_EXEC_SHADOW_VMCS);
8a1b9dd0
AG
7356 vmcs_write64(VMCS_LINK_POINTER,
7357 __pa(vmx->nested.current_shadow_vmcs));
012f83cb
AG
7358 vmx->nested.sync_shadow_vmcs = true;
7359 }
63846663
NHE
7360 }
7361
7362 nested_vmx_succeed(vcpu);
7363 skip_emulated_instruction(vcpu);
7364 return 1;
7365}
7366
6a4d7550
NHE
7367/* Emulate the VMPTRST instruction */
7368static int handle_vmptrst(struct kvm_vcpu *vcpu)
7369{
7370 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7371 u32 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7372 gva_t vmcs_gva;
7373 struct x86_exception e;
7374
7375 if (!nested_vmx_check_permission(vcpu))
7376 return 1;
7377
7378 if (get_vmx_mem_address(vcpu, exit_qualification,
f9eb4af6 7379 vmx_instruction_info, true, &vmcs_gva))
6a4d7550
NHE
7380 return 1;
7381 /* ok to use *_system, as nested_vmx_check_permission verified cpl=0 */
7382 if (kvm_write_guest_virt_system(&vcpu->arch.emulate_ctxt, vmcs_gva,
7383 (void *)&to_vmx(vcpu)->nested.current_vmptr,
7384 sizeof(u64), &e)) {
7385 kvm_inject_page_fault(vcpu, &e);
7386 return 1;
7387 }
7388 nested_vmx_succeed(vcpu);
7389 skip_emulated_instruction(vcpu);
7390 return 1;
7391}
7392
bfd0a56b
NHE
7393/* Emulate the INVEPT instruction */
7394static int handle_invept(struct kvm_vcpu *vcpu)
7395{
b9c237bb 7396 struct vcpu_vmx *vmx = to_vmx(vcpu);
bfd0a56b
NHE
7397 u32 vmx_instruction_info, types;
7398 unsigned long type;
7399 gva_t gva;
7400 struct x86_exception e;
7401 struct {
7402 u64 eptp, gpa;
7403 } operand;
bfd0a56b 7404
b9c237bb
WV
7405 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7406 SECONDARY_EXEC_ENABLE_EPT) ||
7407 !(vmx->nested.nested_vmx_ept_caps & VMX_EPT_INVEPT_BIT)) {
bfd0a56b
NHE
7408 kvm_queue_exception(vcpu, UD_VECTOR);
7409 return 1;
7410 }
7411
7412 if (!nested_vmx_check_permission(vcpu))
7413 return 1;
7414
7415 if (!kvm_read_cr0_bits(vcpu, X86_CR0_PE)) {
7416 kvm_queue_exception(vcpu, UD_VECTOR);
7417 return 1;
7418 }
7419
7420 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
27e6fb5d 7421 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
bfd0a56b 7422
b9c237bb 7423 types = (vmx->nested.nested_vmx_ept_caps >> VMX_EPT_EXTENT_SHIFT) & 6;
bfd0a56b
NHE
7424
7425 if (!(types & (1UL << type))) {
7426 nested_vmx_failValid(vcpu,
7427 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
2849eb4f 7428 skip_emulated_instruction(vcpu);
bfd0a56b
NHE
7429 return 1;
7430 }
7431
7432 /* According to the Intel VMX instruction reference, the memory
7433 * operand is read even if it isn't needed (e.g., for type==global)
7434 */
7435 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
f9eb4af6 7436 vmx_instruction_info, false, &gva))
bfd0a56b
NHE
7437 return 1;
7438 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &operand,
7439 sizeof(operand), &e)) {
7440 kvm_inject_page_fault(vcpu, &e);
7441 return 1;
7442 }
7443
7444 switch (type) {
bfd0a56b
NHE
7445 case VMX_EPT_EXTENT_GLOBAL:
7446 kvm_mmu_sync_roots(vcpu);
77c3913b 7447 kvm_make_request(KVM_REQ_TLB_FLUSH, vcpu);
bfd0a56b
NHE
7448 nested_vmx_succeed(vcpu);
7449 break;
7450 default:
4b855078 7451 /* Trap single context invalidation invept calls */
bfd0a56b
NHE
7452 BUG_ON(1);
7453 break;
7454 }
7455
7456 skip_emulated_instruction(vcpu);
7457 return 1;
7458}
7459
a642fc30
PM
7460static int handle_invvpid(struct kvm_vcpu *vcpu)
7461{
99b83ac8
WL
7462 struct vcpu_vmx *vmx = to_vmx(vcpu);
7463 u32 vmx_instruction_info;
7464 unsigned long type, types;
7465 gva_t gva;
7466 struct x86_exception e;
7467 int vpid;
7468
7469 if (!(vmx->nested.nested_vmx_secondary_ctls_high &
7470 SECONDARY_EXEC_ENABLE_VPID) ||
7471 !(vmx->nested.nested_vmx_vpid_caps & VMX_VPID_INVVPID_BIT)) {
7472 kvm_queue_exception(vcpu, UD_VECTOR);
7473 return 1;
7474 }
7475
7476 if (!nested_vmx_check_permission(vcpu))
7477 return 1;
7478
7479 vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
7480 type = kvm_register_readl(vcpu, (vmx_instruction_info >> 28) & 0xf);
7481
7482 types = (vmx->nested.nested_vmx_vpid_caps >> 8) & 0x7;
7483
7484 if (!(types & (1UL << type))) {
7485 nested_vmx_failValid(vcpu,
7486 VMXERR_INVALID_OPERAND_TO_INVEPT_INVVPID);
f6870ee9 7487 skip_emulated_instruction(vcpu);
99b83ac8
WL
7488 return 1;
7489 }
7490
7491 /* according to the intel vmx instruction reference, the memory
7492 * operand is read even if it isn't needed (e.g., for type==global)
7493 */
7494 if (get_vmx_mem_address(vcpu, vmcs_readl(EXIT_QUALIFICATION),
7495 vmx_instruction_info, false, &gva))
7496 return 1;
7497 if (kvm_read_guest_virt(&vcpu->arch.emulate_ctxt, gva, &vpid,
7498 sizeof(u32), &e)) {
7499 kvm_inject_page_fault(vcpu, &e);
7500 return 1;
7501 }
7502
7503 switch (type) {
ef697a71
PB
7504 case VMX_VPID_EXTENT_SINGLE_CONTEXT:
7505 /*
7506 * Old versions of KVM use the single-context version so we
7507 * have to support it; just treat it the same as all-context.
7508 */
99b83ac8 7509 case VMX_VPID_EXTENT_ALL_CONTEXT:
5c614b35 7510 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
99b83ac8
WL
7511 nested_vmx_succeed(vcpu);
7512 break;
7513 default:
ef697a71 7514 /* Trap individual address invalidation invvpid calls */
99b83ac8
WL
7515 BUG_ON(1);
7516 break;
7517 }
7518
7519 skip_emulated_instruction(vcpu);
a642fc30
PM
7520 return 1;
7521}
7522
843e4330
KH
7523static int handle_pml_full(struct kvm_vcpu *vcpu)
7524{
7525 unsigned long exit_qualification;
7526
7527 trace_kvm_pml_full(vcpu->vcpu_id);
7528
7529 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7530
7531 /*
7532 * PML buffer FULL happened while executing iret from NMI,
7533 * "blocked by NMI" bit has to be set before next VM entry.
7534 */
7535 if (!(to_vmx(vcpu)->idt_vectoring_info & VECTORING_INFO_VALID_MASK) &&
7536 cpu_has_virtual_nmis() &&
7537 (exit_qualification & INTR_INFO_UNBLOCK_NMI))
7538 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
7539 GUEST_INTR_STATE_NMI);
7540
7541 /*
7542 * PML buffer already flushed at beginning of VMEXIT. Nothing to do
7543 * here.., and there's no userspace involvement needed for PML.
7544 */
7545 return 1;
7546}
7547
8b3e34e4
XG
7548static int handle_pcommit(struct kvm_vcpu *vcpu)
7549{
7550 /* we never catch pcommit instruct for L1 guest. */
7551 WARN_ON(1);
7552 return 1;
7553}
7554
6aa8b732
AK
7555/*
7556 * The exit handlers return 1 if the exit was handled fully and guest execution
7557 * may resume. Otherwise they set the kvm_run parameter to indicate what needs
7558 * to be done to userspace and return 0.
7559 */
772e0318 7560static int (*const kvm_vmx_exit_handlers[])(struct kvm_vcpu *vcpu) = {
6aa8b732
AK
7561 [EXIT_REASON_EXCEPTION_NMI] = handle_exception,
7562 [EXIT_REASON_EXTERNAL_INTERRUPT] = handle_external_interrupt,
988ad74f 7563 [EXIT_REASON_TRIPLE_FAULT] = handle_triple_fault,
f08864b4 7564 [EXIT_REASON_NMI_WINDOW] = handle_nmi_window,
6aa8b732 7565 [EXIT_REASON_IO_INSTRUCTION] = handle_io,
6aa8b732
AK
7566 [EXIT_REASON_CR_ACCESS] = handle_cr,
7567 [EXIT_REASON_DR_ACCESS] = handle_dr,
7568 [EXIT_REASON_CPUID] = handle_cpuid,
7569 [EXIT_REASON_MSR_READ] = handle_rdmsr,
7570 [EXIT_REASON_MSR_WRITE] = handle_wrmsr,
7571 [EXIT_REASON_PENDING_INTERRUPT] = handle_interrupt_window,
7572 [EXIT_REASON_HLT] = handle_halt,
ec25d5e6 7573 [EXIT_REASON_INVD] = handle_invd,
a7052897 7574 [EXIT_REASON_INVLPG] = handle_invlpg,
fee84b07 7575 [EXIT_REASON_RDPMC] = handle_rdpmc,
c21415e8 7576 [EXIT_REASON_VMCALL] = handle_vmcall,
27d6c865 7577 [EXIT_REASON_VMCLEAR] = handle_vmclear,
cd232ad0 7578 [EXIT_REASON_VMLAUNCH] = handle_vmlaunch,
63846663 7579 [EXIT_REASON_VMPTRLD] = handle_vmptrld,
6a4d7550 7580 [EXIT_REASON_VMPTRST] = handle_vmptrst,
49f705c5 7581 [EXIT_REASON_VMREAD] = handle_vmread,
cd232ad0 7582 [EXIT_REASON_VMRESUME] = handle_vmresume,
49f705c5 7583 [EXIT_REASON_VMWRITE] = handle_vmwrite,
ec378aee
NHE
7584 [EXIT_REASON_VMOFF] = handle_vmoff,
7585 [EXIT_REASON_VMON] = handle_vmon,
f78e0e2e
SY
7586 [EXIT_REASON_TPR_BELOW_THRESHOLD] = handle_tpr_below_threshold,
7587 [EXIT_REASON_APIC_ACCESS] = handle_apic_access,
83d4c286 7588 [EXIT_REASON_APIC_WRITE] = handle_apic_write,
c7c9c56c 7589 [EXIT_REASON_EOI_INDUCED] = handle_apic_eoi_induced,
e5edaa01 7590 [EXIT_REASON_WBINVD] = handle_wbinvd,
2acf923e 7591 [EXIT_REASON_XSETBV] = handle_xsetbv,
37817f29 7592 [EXIT_REASON_TASK_SWITCH] = handle_task_switch,
a0861c02 7593 [EXIT_REASON_MCE_DURING_VMENTRY] = handle_machine_check,
68f89400
MT
7594 [EXIT_REASON_EPT_VIOLATION] = handle_ept_violation,
7595 [EXIT_REASON_EPT_MISCONFIG] = handle_ept_misconfig,
4b8d54f9 7596 [EXIT_REASON_PAUSE_INSTRUCTION] = handle_pause,
87c00572 7597 [EXIT_REASON_MWAIT_INSTRUCTION] = handle_mwait,
5f3d45e7 7598 [EXIT_REASON_MONITOR_TRAP_FLAG] = handle_monitor_trap,
87c00572 7599 [EXIT_REASON_MONITOR_INSTRUCTION] = handle_monitor,
bfd0a56b 7600 [EXIT_REASON_INVEPT] = handle_invept,
a642fc30 7601 [EXIT_REASON_INVVPID] = handle_invvpid,
f53cd63c
WL
7602 [EXIT_REASON_XSAVES] = handle_xsaves,
7603 [EXIT_REASON_XRSTORS] = handle_xrstors,
843e4330 7604 [EXIT_REASON_PML_FULL] = handle_pml_full,
8b3e34e4 7605 [EXIT_REASON_PCOMMIT] = handle_pcommit,
6aa8b732
AK
7606};
7607
7608static const int kvm_vmx_max_exit_handlers =
50a3485c 7609 ARRAY_SIZE(kvm_vmx_exit_handlers);
6aa8b732 7610
908a7bdd
JK
7611static bool nested_vmx_exit_handled_io(struct kvm_vcpu *vcpu,
7612 struct vmcs12 *vmcs12)
7613{
7614 unsigned long exit_qualification;
7615 gpa_t bitmap, last_bitmap;
7616 unsigned int port;
7617 int size;
7618 u8 b;
7619
908a7bdd 7620 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_IO_BITMAPS))
2f0a6397 7621 return nested_cpu_has(vmcs12, CPU_BASED_UNCOND_IO_EXITING);
908a7bdd
JK
7622
7623 exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7624
7625 port = exit_qualification >> 16;
7626 size = (exit_qualification & 7) + 1;
7627
7628 last_bitmap = (gpa_t)-1;
7629 b = -1;
7630
7631 while (size > 0) {
7632 if (port < 0x8000)
7633 bitmap = vmcs12->io_bitmap_a;
7634 else if (port < 0x10000)
7635 bitmap = vmcs12->io_bitmap_b;
7636 else
1d804d07 7637 return true;
908a7bdd
JK
7638 bitmap += (port & 0x7fff) / 8;
7639
7640 if (last_bitmap != bitmap)
54bf36aa 7641 if (kvm_vcpu_read_guest(vcpu, bitmap, &b, 1))
1d804d07 7642 return true;
908a7bdd 7643 if (b & (1 << (port & 7)))
1d804d07 7644 return true;
908a7bdd
JK
7645
7646 port++;
7647 size--;
7648 last_bitmap = bitmap;
7649 }
7650
1d804d07 7651 return false;
908a7bdd
JK
7652}
7653
644d711a
NHE
7654/*
7655 * Return 1 if we should exit from L2 to L1 to handle an MSR access access,
7656 * rather than handle it ourselves in L0. I.e., check whether L1 expressed
7657 * disinterest in the current event (read or write a specific MSR) by using an
7658 * MSR bitmap. This may be the case even when L0 doesn't use MSR bitmaps.
7659 */
7660static bool nested_vmx_exit_handled_msr(struct kvm_vcpu *vcpu,
7661 struct vmcs12 *vmcs12, u32 exit_reason)
7662{
7663 u32 msr_index = vcpu->arch.regs[VCPU_REGS_RCX];
7664 gpa_t bitmap;
7665
cbd29cb6 7666 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
1d804d07 7667 return true;
644d711a
NHE
7668
7669 /*
7670 * The MSR_BITMAP page is divided into four 1024-byte bitmaps,
7671 * for the four combinations of read/write and low/high MSR numbers.
7672 * First we need to figure out which of the four to use:
7673 */
7674 bitmap = vmcs12->msr_bitmap;
7675 if (exit_reason == EXIT_REASON_MSR_WRITE)
7676 bitmap += 2048;
7677 if (msr_index >= 0xc0000000) {
7678 msr_index -= 0xc0000000;
7679 bitmap += 1024;
7680 }
7681
7682 /* Then read the msr_index'th bit from this bitmap: */
7683 if (msr_index < 1024*8) {
7684 unsigned char b;
54bf36aa 7685 if (kvm_vcpu_read_guest(vcpu, bitmap + msr_index/8, &b, 1))
1d804d07 7686 return true;
644d711a
NHE
7687 return 1 & (b >> (msr_index & 7));
7688 } else
1d804d07 7689 return true; /* let L1 handle the wrong parameter */
644d711a
NHE
7690}
7691
7692/*
7693 * Return 1 if we should exit from L2 to L1 to handle a CR access exit,
7694 * rather than handle it ourselves in L0. I.e., check if L1 wanted to
7695 * intercept (via guest_host_mask etc.) the current event.
7696 */
7697static bool nested_vmx_exit_handled_cr(struct kvm_vcpu *vcpu,
7698 struct vmcs12 *vmcs12)
7699{
7700 unsigned long exit_qualification = vmcs_readl(EXIT_QUALIFICATION);
7701 int cr = exit_qualification & 15;
7702 int reg = (exit_qualification >> 8) & 15;
1e32c079 7703 unsigned long val = kvm_register_readl(vcpu, reg);
644d711a
NHE
7704
7705 switch ((exit_qualification >> 4) & 3) {
7706 case 0: /* mov to cr */
7707 switch (cr) {
7708 case 0:
7709 if (vmcs12->cr0_guest_host_mask &
7710 (val ^ vmcs12->cr0_read_shadow))
1d804d07 7711 return true;
644d711a
NHE
7712 break;
7713 case 3:
7714 if ((vmcs12->cr3_target_count >= 1 &&
7715 vmcs12->cr3_target_value0 == val) ||
7716 (vmcs12->cr3_target_count >= 2 &&
7717 vmcs12->cr3_target_value1 == val) ||
7718 (vmcs12->cr3_target_count >= 3 &&
7719 vmcs12->cr3_target_value2 == val) ||
7720 (vmcs12->cr3_target_count >= 4 &&
7721 vmcs12->cr3_target_value3 == val))
1d804d07 7722 return false;
644d711a 7723 if (nested_cpu_has(vmcs12, CPU_BASED_CR3_LOAD_EXITING))
1d804d07 7724 return true;
644d711a
NHE
7725 break;
7726 case 4:
7727 if (vmcs12->cr4_guest_host_mask &
7728 (vmcs12->cr4_read_shadow ^ val))
1d804d07 7729 return true;
644d711a
NHE
7730 break;
7731 case 8:
7732 if (nested_cpu_has(vmcs12, CPU_BASED_CR8_LOAD_EXITING))
1d804d07 7733 return true;
644d711a
NHE
7734 break;
7735 }
7736 break;
7737 case 2: /* clts */
7738 if ((vmcs12->cr0_guest_host_mask & X86_CR0_TS) &&
7739 (vmcs12->cr0_read_shadow & X86_CR0_TS))
1d804d07 7740 return true;
644d711a
NHE
7741 break;
7742 case 1: /* mov from cr */
7743 switch (cr) {
7744 case 3:
7745 if (vmcs12->cpu_based_vm_exec_control &
7746 CPU_BASED_CR3_STORE_EXITING)
1d804d07 7747 return true;
644d711a
NHE
7748 break;
7749 case 8:
7750 if (vmcs12->cpu_based_vm_exec_control &
7751 CPU_BASED_CR8_STORE_EXITING)
1d804d07 7752 return true;
644d711a
NHE
7753 break;
7754 }
7755 break;
7756 case 3: /* lmsw */
7757 /*
7758 * lmsw can change bits 1..3 of cr0, and only set bit 0 of
7759 * cr0. Other attempted changes are ignored, with no exit.
7760 */
7761 if (vmcs12->cr0_guest_host_mask & 0xe &
7762 (val ^ vmcs12->cr0_read_shadow))
1d804d07 7763 return true;
644d711a
NHE
7764 if ((vmcs12->cr0_guest_host_mask & 0x1) &&
7765 !(vmcs12->cr0_read_shadow & 0x1) &&
7766 (val & 0x1))
1d804d07 7767 return true;
644d711a
NHE
7768 break;
7769 }
1d804d07 7770 return false;
644d711a
NHE
7771}
7772
7773/*
7774 * Return 1 if we should exit from L2 to L1 to handle an exit, or 0 if we
7775 * should handle it ourselves in L0 (and then continue L2). Only call this
7776 * when in is_guest_mode (L2).
7777 */
7778static bool nested_vmx_exit_handled(struct kvm_vcpu *vcpu)
7779{
644d711a
NHE
7780 u32 intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
7781 struct vcpu_vmx *vmx = to_vmx(vcpu);
7782 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
957c897e 7783 u32 exit_reason = vmx->exit_reason;
644d711a 7784
542060ea
JK
7785 trace_kvm_nested_vmexit(kvm_rip_read(vcpu), exit_reason,
7786 vmcs_readl(EXIT_QUALIFICATION),
7787 vmx->idt_vectoring_info,
7788 intr_info,
7789 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
7790 KVM_ISA_VMX);
7791
644d711a 7792 if (vmx->nested.nested_run_pending)
1d804d07 7793 return false;
644d711a
NHE
7794
7795 if (unlikely(vmx->fail)) {
bd80158a
JK
7796 pr_info_ratelimited("%s failed vm entry %x\n", __func__,
7797 vmcs_read32(VM_INSTRUCTION_ERROR));
1d804d07 7798 return true;
644d711a
NHE
7799 }
7800
7801 switch (exit_reason) {
7802 case EXIT_REASON_EXCEPTION_NMI:
7803 if (!is_exception(intr_info))
1d804d07 7804 return false;
644d711a
NHE
7805 else if (is_page_fault(intr_info))
7806 return enable_ept;
e504c909 7807 else if (is_no_device(intr_info) &&
ccf9844e 7808 !(vmcs12->guest_cr0 & X86_CR0_TS))
1d804d07 7809 return false;
6f05485d
JK
7810 else if (is_debug(intr_info) &&
7811 vcpu->guest_debug &
7812 (KVM_GUESTDBG_SINGLESTEP | KVM_GUESTDBG_USE_HW_BP))
7813 return false;
7814 else if (is_breakpoint(intr_info) &&
7815 vcpu->guest_debug & KVM_GUESTDBG_USE_SW_BP)
7816 return false;
644d711a
NHE
7817 return vmcs12->exception_bitmap &
7818 (1u << (intr_info & INTR_INFO_VECTOR_MASK));
7819 case EXIT_REASON_EXTERNAL_INTERRUPT:
1d804d07 7820 return false;
644d711a 7821 case EXIT_REASON_TRIPLE_FAULT:
1d804d07 7822 return true;
644d711a 7823 case EXIT_REASON_PENDING_INTERRUPT:
3b656cf7 7824 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_INTR_PENDING);
644d711a 7825 case EXIT_REASON_NMI_WINDOW:
3b656cf7 7826 return nested_cpu_has(vmcs12, CPU_BASED_VIRTUAL_NMI_PENDING);
644d711a 7827 case EXIT_REASON_TASK_SWITCH:
1d804d07 7828 return true;
644d711a 7829 case EXIT_REASON_CPUID:
bc613494 7830 if (kvm_register_read(vcpu, VCPU_REGS_RAX) == 0xa)
1d804d07
JP
7831 return false;
7832 return true;
644d711a
NHE
7833 case EXIT_REASON_HLT:
7834 return nested_cpu_has(vmcs12, CPU_BASED_HLT_EXITING);
7835 case EXIT_REASON_INVD:
1d804d07 7836 return true;
644d711a
NHE
7837 case EXIT_REASON_INVLPG:
7838 return nested_cpu_has(vmcs12, CPU_BASED_INVLPG_EXITING);
7839 case EXIT_REASON_RDPMC:
7840 return nested_cpu_has(vmcs12, CPU_BASED_RDPMC_EXITING);
b3a2a907 7841 case EXIT_REASON_RDTSC: case EXIT_REASON_RDTSCP:
644d711a
NHE
7842 return nested_cpu_has(vmcs12, CPU_BASED_RDTSC_EXITING);
7843 case EXIT_REASON_VMCALL: case EXIT_REASON_VMCLEAR:
7844 case EXIT_REASON_VMLAUNCH: case EXIT_REASON_VMPTRLD:
7845 case EXIT_REASON_VMPTRST: case EXIT_REASON_VMREAD:
7846 case EXIT_REASON_VMRESUME: case EXIT_REASON_VMWRITE:
7847 case EXIT_REASON_VMOFF: case EXIT_REASON_VMON:
a642fc30 7848 case EXIT_REASON_INVEPT: case EXIT_REASON_INVVPID:
644d711a
NHE
7849 /*
7850 * VMX instructions trap unconditionally. This allows L1 to
7851 * emulate them for its L2 guest, i.e., allows 3-level nesting!
7852 */
1d804d07 7853 return true;
644d711a
NHE
7854 case EXIT_REASON_CR_ACCESS:
7855 return nested_vmx_exit_handled_cr(vcpu, vmcs12);
7856 case EXIT_REASON_DR_ACCESS:
7857 return nested_cpu_has(vmcs12, CPU_BASED_MOV_DR_EXITING);
7858 case EXIT_REASON_IO_INSTRUCTION:
908a7bdd 7859 return nested_vmx_exit_handled_io(vcpu, vmcs12);
644d711a
NHE
7860 case EXIT_REASON_MSR_READ:
7861 case EXIT_REASON_MSR_WRITE:
7862 return nested_vmx_exit_handled_msr(vcpu, vmcs12, exit_reason);
7863 case EXIT_REASON_INVALID_STATE:
1d804d07 7864 return true;
644d711a
NHE
7865 case EXIT_REASON_MWAIT_INSTRUCTION:
7866 return nested_cpu_has(vmcs12, CPU_BASED_MWAIT_EXITING);
5f3d45e7
MD
7867 case EXIT_REASON_MONITOR_TRAP_FLAG:
7868 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_TRAP_FLAG);
644d711a
NHE
7869 case EXIT_REASON_MONITOR_INSTRUCTION:
7870 return nested_cpu_has(vmcs12, CPU_BASED_MONITOR_EXITING);
7871 case EXIT_REASON_PAUSE_INSTRUCTION:
7872 return nested_cpu_has(vmcs12, CPU_BASED_PAUSE_EXITING) ||
7873 nested_cpu_has2(vmcs12,
7874 SECONDARY_EXEC_PAUSE_LOOP_EXITING);
7875 case EXIT_REASON_MCE_DURING_VMENTRY:
1d804d07 7876 return false;
644d711a 7877 case EXIT_REASON_TPR_BELOW_THRESHOLD:
a7c0b07d 7878 return nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW);
644d711a
NHE
7879 case EXIT_REASON_APIC_ACCESS:
7880 return nested_cpu_has2(vmcs12,
7881 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES);
82f0dd4b 7882 case EXIT_REASON_APIC_WRITE:
608406e2
WV
7883 case EXIT_REASON_EOI_INDUCED:
7884 /* apic_write and eoi_induced should exit unconditionally. */
1d804d07 7885 return true;
644d711a 7886 case EXIT_REASON_EPT_VIOLATION:
2b1be677
NHE
7887 /*
7888 * L0 always deals with the EPT violation. If nested EPT is
7889 * used, and the nested mmu code discovers that the address is
7890 * missing in the guest EPT table (EPT12), the EPT violation
7891 * will be injected with nested_ept_inject_page_fault()
7892 */
1d804d07 7893 return false;
644d711a 7894 case EXIT_REASON_EPT_MISCONFIG:
2b1be677
NHE
7895 /*
7896 * L2 never uses directly L1's EPT, but rather L0's own EPT
7897 * table (shadow on EPT) or a merged EPT table that L0 built
7898 * (EPT on EPT). So any problems with the structure of the
7899 * table is L0's fault.
7900 */
1d804d07 7901 return false;
644d711a
NHE
7902 case EXIT_REASON_WBINVD:
7903 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_WBINVD_EXITING);
7904 case EXIT_REASON_XSETBV:
1d804d07 7905 return true;
81dc01f7
WL
7906 case EXIT_REASON_XSAVES: case EXIT_REASON_XRSTORS:
7907 /*
7908 * This should never happen, since it is not possible to
7909 * set XSS to a non-zero value---neither in L1 nor in L2.
7910 * If if it were, XSS would have to be checked against
7911 * the XSS exit bitmap in vmcs12.
7912 */
7913 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_XSAVES);
8b3e34e4
XG
7914 case EXIT_REASON_PCOMMIT:
7915 return nested_cpu_has2(vmcs12, SECONDARY_EXEC_PCOMMIT);
644d711a 7916 default:
1d804d07 7917 return true;
644d711a
NHE
7918 }
7919}
7920
586f9607
AK
7921static void vmx_get_exit_info(struct kvm_vcpu *vcpu, u64 *info1, u64 *info2)
7922{
7923 *info1 = vmcs_readl(EXIT_QUALIFICATION);
7924 *info2 = vmcs_read32(VM_EXIT_INTR_INFO);
7925}
7926
a3eaa864 7927static int vmx_create_pml_buffer(struct vcpu_vmx *vmx)
843e4330
KH
7928{
7929 struct page *pml_pg;
843e4330
KH
7930
7931 pml_pg = alloc_page(GFP_KERNEL | __GFP_ZERO);
7932 if (!pml_pg)
7933 return -ENOMEM;
7934
7935 vmx->pml_pg = pml_pg;
7936
7937 vmcs_write64(PML_ADDRESS, page_to_phys(vmx->pml_pg));
7938 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7939
843e4330
KH
7940 return 0;
7941}
7942
a3eaa864 7943static void vmx_destroy_pml_buffer(struct vcpu_vmx *vmx)
843e4330 7944{
a3eaa864
KH
7945 if (vmx->pml_pg) {
7946 __free_page(vmx->pml_pg);
7947 vmx->pml_pg = NULL;
7948 }
843e4330
KH
7949}
7950
54bf36aa 7951static void vmx_flush_pml_buffer(struct kvm_vcpu *vcpu)
843e4330 7952{
54bf36aa 7953 struct vcpu_vmx *vmx = to_vmx(vcpu);
843e4330
KH
7954 u64 *pml_buf;
7955 u16 pml_idx;
7956
7957 pml_idx = vmcs_read16(GUEST_PML_INDEX);
7958
7959 /* Do nothing if PML buffer is empty */
7960 if (pml_idx == (PML_ENTITY_NUM - 1))
7961 return;
7962
7963 /* PML index always points to next available PML buffer entity */
7964 if (pml_idx >= PML_ENTITY_NUM)
7965 pml_idx = 0;
7966 else
7967 pml_idx++;
7968
7969 pml_buf = page_address(vmx->pml_pg);
7970 for (; pml_idx < PML_ENTITY_NUM; pml_idx++) {
7971 u64 gpa;
7972
7973 gpa = pml_buf[pml_idx];
7974 WARN_ON(gpa & (PAGE_SIZE - 1));
54bf36aa 7975 kvm_vcpu_mark_page_dirty(vcpu, gpa >> PAGE_SHIFT);
843e4330
KH
7976 }
7977
7978 /* reset PML index */
7979 vmcs_write16(GUEST_PML_INDEX, PML_ENTITY_NUM - 1);
7980}
7981
7982/*
7983 * Flush all vcpus' PML buffer and update logged GPAs to dirty_bitmap.
7984 * Called before reporting dirty_bitmap to userspace.
7985 */
7986static void kvm_flush_pml_buffers(struct kvm *kvm)
7987{
7988 int i;
7989 struct kvm_vcpu *vcpu;
7990 /*
7991 * We only need to kick vcpu out of guest mode here, as PML buffer
7992 * is flushed at beginning of all VMEXITs, and it's obvious that only
7993 * vcpus running in guest are possible to have unflushed GPAs in PML
7994 * buffer.
7995 */
7996 kvm_for_each_vcpu(i, vcpu, kvm)
7997 kvm_vcpu_kick(vcpu);
7998}
7999
4eb64dce
PB
8000static void vmx_dump_sel(char *name, uint32_t sel)
8001{
8002 pr_err("%s sel=0x%04x, attr=0x%05x, limit=0x%08x, base=0x%016lx\n",
8003 name, vmcs_read32(sel),
8004 vmcs_read32(sel + GUEST_ES_AR_BYTES - GUEST_ES_SELECTOR),
8005 vmcs_read32(sel + GUEST_ES_LIMIT - GUEST_ES_SELECTOR),
8006 vmcs_readl(sel + GUEST_ES_BASE - GUEST_ES_SELECTOR));
8007}
8008
8009static void vmx_dump_dtsel(char *name, uint32_t limit)
8010{
8011 pr_err("%s limit=0x%08x, base=0x%016lx\n",
8012 name, vmcs_read32(limit),
8013 vmcs_readl(limit + GUEST_GDTR_BASE - GUEST_GDTR_LIMIT));
8014}
8015
8016static void dump_vmcs(void)
8017{
8018 u32 vmentry_ctl = vmcs_read32(VM_ENTRY_CONTROLS);
8019 u32 vmexit_ctl = vmcs_read32(VM_EXIT_CONTROLS);
8020 u32 cpu_based_exec_ctrl = vmcs_read32(CPU_BASED_VM_EXEC_CONTROL);
8021 u32 pin_based_exec_ctrl = vmcs_read32(PIN_BASED_VM_EXEC_CONTROL);
8022 u32 secondary_exec_control = 0;
8023 unsigned long cr4 = vmcs_readl(GUEST_CR4);
f3531054 8024 u64 efer = vmcs_read64(GUEST_IA32_EFER);
4eb64dce
PB
8025 int i, n;
8026
8027 if (cpu_has_secondary_exec_ctrls())
8028 secondary_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8029
8030 pr_err("*** Guest State ***\n");
8031 pr_err("CR0: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8032 vmcs_readl(GUEST_CR0), vmcs_readl(CR0_READ_SHADOW),
8033 vmcs_readl(CR0_GUEST_HOST_MASK));
8034 pr_err("CR4: actual=0x%016lx, shadow=0x%016lx, gh_mask=%016lx\n",
8035 cr4, vmcs_readl(CR4_READ_SHADOW), vmcs_readl(CR4_GUEST_HOST_MASK));
8036 pr_err("CR3 = 0x%016lx\n", vmcs_readl(GUEST_CR3));
8037 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT) &&
8038 (cr4 & X86_CR4_PAE) && !(efer & EFER_LMA))
8039 {
845c5b40
PB
8040 pr_err("PDPTR0 = 0x%016llx PDPTR1 = 0x%016llx\n",
8041 vmcs_read64(GUEST_PDPTR0), vmcs_read64(GUEST_PDPTR1));
8042 pr_err("PDPTR2 = 0x%016llx PDPTR3 = 0x%016llx\n",
8043 vmcs_read64(GUEST_PDPTR2), vmcs_read64(GUEST_PDPTR3));
4eb64dce
PB
8044 }
8045 pr_err("RSP = 0x%016lx RIP = 0x%016lx\n",
8046 vmcs_readl(GUEST_RSP), vmcs_readl(GUEST_RIP));
8047 pr_err("RFLAGS=0x%08lx DR7 = 0x%016lx\n",
8048 vmcs_readl(GUEST_RFLAGS), vmcs_readl(GUEST_DR7));
8049 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8050 vmcs_readl(GUEST_SYSENTER_ESP),
8051 vmcs_read32(GUEST_SYSENTER_CS), vmcs_readl(GUEST_SYSENTER_EIP));
8052 vmx_dump_sel("CS: ", GUEST_CS_SELECTOR);
8053 vmx_dump_sel("DS: ", GUEST_DS_SELECTOR);
8054 vmx_dump_sel("SS: ", GUEST_SS_SELECTOR);
8055 vmx_dump_sel("ES: ", GUEST_ES_SELECTOR);
8056 vmx_dump_sel("FS: ", GUEST_FS_SELECTOR);
8057 vmx_dump_sel("GS: ", GUEST_GS_SELECTOR);
8058 vmx_dump_dtsel("GDTR:", GUEST_GDTR_LIMIT);
8059 vmx_dump_sel("LDTR:", GUEST_LDTR_SELECTOR);
8060 vmx_dump_dtsel("IDTR:", GUEST_IDTR_LIMIT);
8061 vmx_dump_sel("TR: ", GUEST_TR_SELECTOR);
8062 if ((vmexit_ctl & (VM_EXIT_SAVE_IA32_PAT | VM_EXIT_SAVE_IA32_EFER)) ||
8063 (vmentry_ctl & (VM_ENTRY_LOAD_IA32_PAT | VM_ENTRY_LOAD_IA32_EFER)))
845c5b40
PB
8064 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8065 efer, vmcs_read64(GUEST_IA32_PAT));
8066 pr_err("DebugCtl = 0x%016llx DebugExceptions = 0x%016lx\n",
8067 vmcs_read64(GUEST_IA32_DEBUGCTL),
4eb64dce
PB
8068 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS));
8069 if (vmentry_ctl & VM_ENTRY_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8070 pr_err("PerfGlobCtl = 0x%016llx\n",
8071 vmcs_read64(GUEST_IA32_PERF_GLOBAL_CTRL));
4eb64dce 8072 if (vmentry_ctl & VM_ENTRY_LOAD_BNDCFGS)
845c5b40 8073 pr_err("BndCfgS = 0x%016llx\n", vmcs_read64(GUEST_BNDCFGS));
4eb64dce
PB
8074 pr_err("Interruptibility = %08x ActivityState = %08x\n",
8075 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO),
8076 vmcs_read32(GUEST_ACTIVITY_STATE));
8077 if (secondary_exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY)
8078 pr_err("InterruptStatus = %04x\n",
8079 vmcs_read16(GUEST_INTR_STATUS));
8080
8081 pr_err("*** Host State ***\n");
8082 pr_err("RIP = 0x%016lx RSP = 0x%016lx\n",
8083 vmcs_readl(HOST_RIP), vmcs_readl(HOST_RSP));
8084 pr_err("CS=%04x SS=%04x DS=%04x ES=%04x FS=%04x GS=%04x TR=%04x\n",
8085 vmcs_read16(HOST_CS_SELECTOR), vmcs_read16(HOST_SS_SELECTOR),
8086 vmcs_read16(HOST_DS_SELECTOR), vmcs_read16(HOST_ES_SELECTOR),
8087 vmcs_read16(HOST_FS_SELECTOR), vmcs_read16(HOST_GS_SELECTOR),
8088 vmcs_read16(HOST_TR_SELECTOR));
8089 pr_err("FSBase=%016lx GSBase=%016lx TRBase=%016lx\n",
8090 vmcs_readl(HOST_FS_BASE), vmcs_readl(HOST_GS_BASE),
8091 vmcs_readl(HOST_TR_BASE));
8092 pr_err("GDTBase=%016lx IDTBase=%016lx\n",
8093 vmcs_readl(HOST_GDTR_BASE), vmcs_readl(HOST_IDTR_BASE));
8094 pr_err("CR0=%016lx CR3=%016lx CR4=%016lx\n",
8095 vmcs_readl(HOST_CR0), vmcs_readl(HOST_CR3),
8096 vmcs_readl(HOST_CR4));
8097 pr_err("Sysenter RSP=%016lx CS:RIP=%04x:%016lx\n",
8098 vmcs_readl(HOST_IA32_SYSENTER_ESP),
8099 vmcs_read32(HOST_IA32_SYSENTER_CS),
8100 vmcs_readl(HOST_IA32_SYSENTER_EIP));
8101 if (vmexit_ctl & (VM_EXIT_LOAD_IA32_PAT | VM_EXIT_LOAD_IA32_EFER))
845c5b40
PB
8102 pr_err("EFER = 0x%016llx PAT = 0x%016llx\n",
8103 vmcs_read64(HOST_IA32_EFER),
8104 vmcs_read64(HOST_IA32_PAT));
4eb64dce 8105 if (vmexit_ctl & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
845c5b40
PB
8106 pr_err("PerfGlobCtl = 0x%016llx\n",
8107 vmcs_read64(HOST_IA32_PERF_GLOBAL_CTRL));
4eb64dce
PB
8108
8109 pr_err("*** Control State ***\n");
8110 pr_err("PinBased=%08x CPUBased=%08x SecondaryExec=%08x\n",
8111 pin_based_exec_ctrl, cpu_based_exec_ctrl, secondary_exec_control);
8112 pr_err("EntryControls=%08x ExitControls=%08x\n", vmentry_ctl, vmexit_ctl);
8113 pr_err("ExceptionBitmap=%08x PFECmask=%08x PFECmatch=%08x\n",
8114 vmcs_read32(EXCEPTION_BITMAP),
8115 vmcs_read32(PAGE_FAULT_ERROR_CODE_MASK),
8116 vmcs_read32(PAGE_FAULT_ERROR_CODE_MATCH));
8117 pr_err("VMEntry: intr_info=%08x errcode=%08x ilen=%08x\n",
8118 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8119 vmcs_read32(VM_ENTRY_EXCEPTION_ERROR_CODE),
8120 vmcs_read32(VM_ENTRY_INSTRUCTION_LEN));
8121 pr_err("VMExit: intr_info=%08x errcode=%08x ilen=%08x\n",
8122 vmcs_read32(VM_EXIT_INTR_INFO),
8123 vmcs_read32(VM_EXIT_INTR_ERROR_CODE),
8124 vmcs_read32(VM_EXIT_INSTRUCTION_LEN));
8125 pr_err(" reason=%08x qualification=%016lx\n",
8126 vmcs_read32(VM_EXIT_REASON), vmcs_readl(EXIT_QUALIFICATION));
8127 pr_err("IDTVectoring: info=%08x errcode=%08x\n",
8128 vmcs_read32(IDT_VECTORING_INFO_FIELD),
8129 vmcs_read32(IDT_VECTORING_ERROR_CODE));
845c5b40 8130 pr_err("TSC Offset = 0x%016llx\n", vmcs_read64(TSC_OFFSET));
8cfe9866 8131 if (secondary_exec_control & SECONDARY_EXEC_TSC_SCALING)
845c5b40
PB
8132 pr_err("TSC Multiplier = 0x%016llx\n",
8133 vmcs_read64(TSC_MULTIPLIER));
4eb64dce
PB
8134 if (cpu_based_exec_ctrl & CPU_BASED_TPR_SHADOW)
8135 pr_err("TPR Threshold = 0x%02x\n", vmcs_read32(TPR_THRESHOLD));
8136 if (pin_based_exec_ctrl & PIN_BASED_POSTED_INTR)
8137 pr_err("PostedIntrVec = 0x%02x\n", vmcs_read16(POSTED_INTR_NV));
8138 if ((secondary_exec_control & SECONDARY_EXEC_ENABLE_EPT))
845c5b40 8139 pr_err("EPT pointer = 0x%016llx\n", vmcs_read64(EPT_POINTER));
4eb64dce
PB
8140 n = vmcs_read32(CR3_TARGET_COUNT);
8141 for (i = 0; i + 1 < n; i += 4)
8142 pr_err("CR3 target%u=%016lx target%u=%016lx\n",
8143 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2),
8144 i + 1, vmcs_readl(CR3_TARGET_VALUE0 + i * 2 + 2));
8145 if (i < n)
8146 pr_err("CR3 target%u=%016lx\n",
8147 i, vmcs_readl(CR3_TARGET_VALUE0 + i * 2));
8148 if (secondary_exec_control & SECONDARY_EXEC_PAUSE_LOOP_EXITING)
8149 pr_err("PLE Gap=%08x Window=%08x\n",
8150 vmcs_read32(PLE_GAP), vmcs_read32(PLE_WINDOW));
8151 if (secondary_exec_control & SECONDARY_EXEC_ENABLE_VPID)
8152 pr_err("Virtual processor ID = 0x%04x\n",
8153 vmcs_read16(VIRTUAL_PROCESSOR_ID));
8154}
8155
6aa8b732
AK
8156/*
8157 * The guest has exited. See if we can fix it or if we need userspace
8158 * assistance.
8159 */
851ba692 8160static int vmx_handle_exit(struct kvm_vcpu *vcpu)
6aa8b732 8161{
29bd8a78 8162 struct vcpu_vmx *vmx = to_vmx(vcpu);
a0861c02 8163 u32 exit_reason = vmx->exit_reason;
1155f76a 8164 u32 vectoring_info = vmx->idt_vectoring_info;
29bd8a78 8165
8b89fe1f
PB
8166 trace_kvm_exit(exit_reason, vcpu, KVM_ISA_VMX);
8167
843e4330
KH
8168 /*
8169 * Flush logged GPAs PML buffer, this will make dirty_bitmap more
8170 * updated. Another good is, in kvm_vm_ioctl_get_dirty_log, before
8171 * querying dirty_bitmap, we only need to kick all vcpus out of guest
8172 * mode as if vcpus is in root mode, the PML buffer must has been
8173 * flushed already.
8174 */
8175 if (enable_pml)
54bf36aa 8176 vmx_flush_pml_buffer(vcpu);
843e4330 8177
80ced186 8178 /* If guest state is invalid, start emulating */
14168786 8179 if (vmx->emulation_required)
80ced186 8180 return handle_invalid_guest_state(vcpu);
1d5a4d9b 8181
644d711a 8182 if (is_guest_mode(vcpu) && nested_vmx_exit_handled(vcpu)) {
533558bc
JK
8183 nested_vmx_vmexit(vcpu, exit_reason,
8184 vmcs_read32(VM_EXIT_INTR_INFO),
8185 vmcs_readl(EXIT_QUALIFICATION));
644d711a
NHE
8186 return 1;
8187 }
8188
5120702e 8189 if (exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY) {
4eb64dce 8190 dump_vmcs();
5120702e
MG
8191 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8192 vcpu->run->fail_entry.hardware_entry_failure_reason
8193 = exit_reason;
8194 return 0;
8195 }
8196
29bd8a78 8197 if (unlikely(vmx->fail)) {
851ba692
AK
8198 vcpu->run->exit_reason = KVM_EXIT_FAIL_ENTRY;
8199 vcpu->run->fail_entry.hardware_entry_failure_reason
29bd8a78
AK
8200 = vmcs_read32(VM_INSTRUCTION_ERROR);
8201 return 0;
8202 }
6aa8b732 8203
b9bf6882
XG
8204 /*
8205 * Note:
8206 * Do not try to fix EXIT_REASON_EPT_MISCONFIG if it caused by
8207 * delivery event since it indicates guest is accessing MMIO.
8208 * The vm-exit can be triggered again after return to guest that
8209 * will cause infinite loop.
8210 */
d77c26fc 8211 if ((vectoring_info & VECTORING_INFO_VALID_MASK) &&
1439442c 8212 (exit_reason != EXIT_REASON_EXCEPTION_NMI &&
60637aac 8213 exit_reason != EXIT_REASON_EPT_VIOLATION &&
b9bf6882
XG
8214 exit_reason != EXIT_REASON_TASK_SWITCH)) {
8215 vcpu->run->exit_reason = KVM_EXIT_INTERNAL_ERROR;
8216 vcpu->run->internal.suberror = KVM_INTERNAL_ERROR_DELIVERY_EV;
8217 vcpu->run->internal.ndata = 2;
8218 vcpu->run->internal.data[0] = vectoring_info;
8219 vcpu->run->internal.data[1] = exit_reason;
8220 return 0;
8221 }
3b86cd99 8222
644d711a
NHE
8223 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked &&
8224 !(is_guest_mode(vcpu) && nested_cpu_has_virtual_nmis(
f5c4368f 8225 get_vmcs12(vcpu))))) {
c4282df9 8226 if (vmx_interrupt_allowed(vcpu)) {
3b86cd99 8227 vmx->soft_vnmi_blocked = 0;
3b86cd99 8228 } else if (vmx->vnmi_blocked_time > 1000000000LL &&
4531220b 8229 vcpu->arch.nmi_pending) {
3b86cd99
JK
8230 /*
8231 * This CPU don't support us in finding the end of an
8232 * NMI-blocked window if the guest runs with IRQs
8233 * disabled. So we pull the trigger after 1 s of
8234 * futile waiting, but inform the user about this.
8235 */
8236 printk(KERN_WARNING "%s: Breaking out of NMI-blocked "
8237 "state on VCPU %d after 1 s timeout\n",
8238 __func__, vcpu->vcpu_id);
8239 vmx->soft_vnmi_blocked = 0;
3b86cd99 8240 }
3b86cd99
JK
8241 }
8242
6aa8b732
AK
8243 if (exit_reason < kvm_vmx_max_exit_handlers
8244 && kvm_vmx_exit_handlers[exit_reason])
851ba692 8245 return kvm_vmx_exit_handlers[exit_reason](vcpu);
6aa8b732 8246 else {
2bc19dc3
MT
8247 WARN_ONCE(1, "vmx: unexpected exit reason 0x%x\n", exit_reason);
8248 kvm_queue_exception(vcpu, UD_VECTOR);
8249 return 1;
6aa8b732 8250 }
6aa8b732
AK
8251}
8252
95ba8273 8253static void update_cr8_intercept(struct kvm_vcpu *vcpu, int tpr, int irr)
6e5d865c 8254{
a7c0b07d
WL
8255 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
8256
8257 if (is_guest_mode(vcpu) &&
8258 nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
8259 return;
8260
95ba8273 8261 if (irr == -1 || tpr < irr) {
6e5d865c
YS
8262 vmcs_write32(TPR_THRESHOLD, 0);
8263 return;
8264 }
8265
95ba8273 8266 vmcs_write32(TPR_THRESHOLD, irr);
6e5d865c
YS
8267}
8268
8d14695f
YZ
8269static void vmx_set_virtual_x2apic_mode(struct kvm_vcpu *vcpu, bool set)
8270{
8271 u32 sec_exec_control;
8272
8273 /*
8274 * There is not point to enable virtualize x2apic without enable
8275 * apicv
8276 */
c7c9c56c 8277 if (!cpu_has_vmx_virtualize_x2apic_mode() ||
d62caabb 8278 !kvm_vcpu_apicv_active(vcpu))
8d14695f
YZ
8279 return;
8280
35754c98 8281 if (!cpu_need_tpr_shadow(vcpu))
8d14695f
YZ
8282 return;
8283
8284 sec_exec_control = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
8285
8286 if (set) {
8287 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8288 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8289 } else {
8290 sec_exec_control &= ~SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE;
8291 sec_exec_control |= SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
8292 }
8293 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, sec_exec_control);
8294
8295 vmx_set_msr_bitmap(vcpu);
8296}
8297
38b99173
TC
8298static void vmx_set_apic_access_page_addr(struct kvm_vcpu *vcpu, hpa_t hpa)
8299{
8300 struct vcpu_vmx *vmx = to_vmx(vcpu);
8301
8302 /*
8303 * Currently we do not handle the nested case where L2 has an
8304 * APIC access page of its own; that page is still pinned.
8305 * Hence, we skip the case where the VCPU is in guest mode _and_
8306 * L1 prepared an APIC access page for L2.
8307 *
8308 * For the case where L1 and L2 share the same APIC access page
8309 * (flexpriority=Y but SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES clear
8310 * in the vmcs12), this function will only update either the vmcs01
8311 * or the vmcs02. If the former, the vmcs02 will be updated by
8312 * prepare_vmcs02. If the latter, the vmcs01 will be updated in
8313 * the next L2->L1 exit.
8314 */
8315 if (!is_guest_mode(vcpu) ||
8316 !nested_cpu_has2(vmx->nested.current_vmcs12,
8317 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
8318 vmcs_write64(APIC_ACCESS_ADDR, hpa);
8319}
8320
c7c9c56c
YZ
8321static void vmx_hwapic_isr_update(struct kvm *kvm, int isr)
8322{
8323 u16 status;
8324 u8 old;
8325
c7c9c56c
YZ
8326 if (isr == -1)
8327 isr = 0;
8328
8329 status = vmcs_read16(GUEST_INTR_STATUS);
8330 old = status >> 8;
8331 if (isr != old) {
8332 status &= 0xff;
8333 status |= isr << 8;
8334 vmcs_write16(GUEST_INTR_STATUS, status);
8335 }
8336}
8337
8338static void vmx_set_rvi(int vector)
8339{
8340 u16 status;
8341 u8 old;
8342
4114c27d
WW
8343 if (vector == -1)
8344 vector = 0;
8345
c7c9c56c
YZ
8346 status = vmcs_read16(GUEST_INTR_STATUS);
8347 old = (u8)status & 0xff;
8348 if ((u8)vector != old) {
8349 status &= ~0xff;
8350 status |= (u8)vector;
8351 vmcs_write16(GUEST_INTR_STATUS, status);
8352 }
8353}
8354
8355static void vmx_hwapic_irr_update(struct kvm_vcpu *vcpu, int max_irr)
8356{
4114c27d
WW
8357 if (!is_guest_mode(vcpu)) {
8358 vmx_set_rvi(max_irr);
8359 return;
8360 }
8361
c7c9c56c
YZ
8362 if (max_irr == -1)
8363 return;
8364
963fee16 8365 /*
4114c27d
WW
8366 * In guest mode. If a vmexit is needed, vmx_check_nested_events
8367 * handles it.
963fee16 8368 */
4114c27d 8369 if (nested_exit_on_intr(vcpu))
963fee16
WL
8370 return;
8371
963fee16 8372 /*
4114c27d 8373 * Else, fall back to pre-APICv interrupt injection since L2
963fee16
WL
8374 * is run without virtual interrupt delivery.
8375 */
8376 if (!kvm_event_needs_reinjection(vcpu) &&
8377 vmx_interrupt_allowed(vcpu)) {
8378 kvm_queue_interrupt(vcpu, max_irr, false);
8379 vmx_inject_irq(vcpu);
8380 }
c7c9c56c
YZ
8381}
8382
6308630b 8383static void vmx_load_eoi_exitmap(struct kvm_vcpu *vcpu, u64 *eoi_exit_bitmap)
c7c9c56c 8384{
d62caabb 8385 if (!kvm_vcpu_apicv_active(vcpu))
3d81bc7e
YZ
8386 return;
8387
c7c9c56c
YZ
8388 vmcs_write64(EOI_EXIT_BITMAP0, eoi_exit_bitmap[0]);
8389 vmcs_write64(EOI_EXIT_BITMAP1, eoi_exit_bitmap[1]);
8390 vmcs_write64(EOI_EXIT_BITMAP2, eoi_exit_bitmap[2]);
8391 vmcs_write64(EOI_EXIT_BITMAP3, eoi_exit_bitmap[3]);
8392}
8393
51aa01d1 8394static void vmx_complete_atomic_exit(struct vcpu_vmx *vmx)
cf393f75 8395{
00eba012
AK
8396 u32 exit_intr_info;
8397
8398 if (!(vmx->exit_reason == EXIT_REASON_MCE_DURING_VMENTRY
8399 || vmx->exit_reason == EXIT_REASON_EXCEPTION_NMI))
8400 return;
8401
c5ca8e57 8402 vmx->exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
00eba012 8403 exit_intr_info = vmx->exit_intr_info;
a0861c02
AK
8404
8405 /* Handle machine checks before interrupts are enabled */
00eba012 8406 if (is_machine_check(exit_intr_info))
a0861c02
AK
8407 kvm_machine_check();
8408
20f65983 8409 /* We need to handle NMIs before interrupts are enabled */
00eba012 8410 if ((exit_intr_info & INTR_INFO_INTR_TYPE_MASK) == INTR_TYPE_NMI_INTR &&
ff9d07a0
ZY
8411 (exit_intr_info & INTR_INFO_VALID_MASK)) {
8412 kvm_before_handle_nmi(&vmx->vcpu);
20f65983 8413 asm("int $2");
ff9d07a0
ZY
8414 kvm_after_handle_nmi(&vmx->vcpu);
8415 }
51aa01d1 8416}
20f65983 8417
a547c6db
YZ
8418static void vmx_handle_external_intr(struct kvm_vcpu *vcpu)
8419{
8420 u32 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
3f62de5f 8421 register void *__sp asm(_ASM_SP);
a547c6db
YZ
8422
8423 /*
8424 * If external interrupt exists, IF bit is set in rflags/eflags on the
8425 * interrupt stack frame, and interrupt will be enabled on a return
8426 * from interrupt handler.
8427 */
8428 if ((exit_intr_info & (INTR_INFO_VALID_MASK | INTR_INFO_INTR_TYPE_MASK))
8429 == (INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR)) {
8430 unsigned int vector;
8431 unsigned long entry;
8432 gate_desc *desc;
8433 struct vcpu_vmx *vmx = to_vmx(vcpu);
8434#ifdef CONFIG_X86_64
8435 unsigned long tmp;
8436#endif
8437
8438 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8439 desc = (gate_desc *)vmx->host_idt_base + vector;
8440 entry = gate_offset(*desc);
8441 asm volatile(
8442#ifdef CONFIG_X86_64
8443 "mov %%" _ASM_SP ", %[sp]\n\t"
8444 "and $0xfffffffffffffff0, %%" _ASM_SP "\n\t"
8445 "push $%c[ss]\n\t"
8446 "push %[sp]\n\t"
8447#endif
8448 "pushf\n\t"
8449 "orl $0x200, (%%" _ASM_SP ")\n\t"
8450 __ASM_SIZE(push) " $%c[cs]\n\t"
8451 "call *%[entry]\n\t"
8452 :
8453#ifdef CONFIG_X86_64
3f62de5f 8454 [sp]"=&r"(tmp),
a547c6db 8455#endif
3f62de5f 8456 "+r"(__sp)
a547c6db
YZ
8457 :
8458 [entry]"r"(entry),
8459 [ss]"i"(__KERNEL_DS),
8460 [cs]"i"(__KERNEL_CS)
8461 );
8462 } else
8463 local_irq_enable();
8464}
8465
6d396b55
PB
8466static bool vmx_has_high_real_mode_segbase(void)
8467{
8468 return enable_unrestricted_guest || emulate_invalid_guest_state;
8469}
8470
da8999d3
LJ
8471static bool vmx_mpx_supported(void)
8472{
8473 return (vmcs_config.vmexit_ctrl & VM_EXIT_CLEAR_BNDCFGS) &&
8474 (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_BNDCFGS);
8475}
8476
55412b2e
WL
8477static bool vmx_xsaves_supported(void)
8478{
8479 return vmcs_config.cpu_based_2nd_exec_ctrl &
8480 SECONDARY_EXEC_XSAVES;
8481}
8482
51aa01d1
AK
8483static void vmx_recover_nmi_blocking(struct vcpu_vmx *vmx)
8484{
c5ca8e57 8485 u32 exit_intr_info;
51aa01d1
AK
8486 bool unblock_nmi;
8487 u8 vector;
8488 bool idtv_info_valid;
8489
8490 idtv_info_valid = vmx->idt_vectoring_info & VECTORING_INFO_VALID_MASK;
20f65983 8491
cf393f75 8492 if (cpu_has_virtual_nmis()) {
9d58b931
AK
8493 if (vmx->nmi_known_unmasked)
8494 return;
c5ca8e57
AK
8495 /*
8496 * Can't use vmx->exit_intr_info since we're not sure what
8497 * the exit reason is.
8498 */
8499 exit_intr_info = vmcs_read32(VM_EXIT_INTR_INFO);
cf393f75
AK
8500 unblock_nmi = (exit_intr_info & INTR_INFO_UNBLOCK_NMI) != 0;
8501 vector = exit_intr_info & INTR_INFO_VECTOR_MASK;
8502 /*
7b4a25cb 8503 * SDM 3: 27.7.1.2 (September 2008)
cf393f75
AK
8504 * Re-set bit "block by NMI" before VM entry if vmexit caused by
8505 * a guest IRET fault.
7b4a25cb
GN
8506 * SDM 3: 23.2.2 (September 2008)
8507 * Bit 12 is undefined in any of the following cases:
8508 * If the VM exit sets the valid bit in the IDT-vectoring
8509 * information field.
8510 * If the VM exit is due to a double fault.
cf393f75 8511 */
7b4a25cb
GN
8512 if ((exit_intr_info & INTR_INFO_VALID_MASK) && unblock_nmi &&
8513 vector != DF_VECTOR && !idtv_info_valid)
cf393f75
AK
8514 vmcs_set_bits(GUEST_INTERRUPTIBILITY_INFO,
8515 GUEST_INTR_STATE_NMI);
9d58b931
AK
8516 else
8517 vmx->nmi_known_unmasked =
8518 !(vmcs_read32(GUEST_INTERRUPTIBILITY_INFO)
8519 & GUEST_INTR_STATE_NMI);
3b86cd99
JK
8520 } else if (unlikely(vmx->soft_vnmi_blocked))
8521 vmx->vnmi_blocked_time +=
8522 ktime_to_ns(ktime_sub(ktime_get(), vmx->entry_time));
51aa01d1
AK
8523}
8524
3ab66e8a 8525static void __vmx_complete_interrupts(struct kvm_vcpu *vcpu,
83422e17
AK
8526 u32 idt_vectoring_info,
8527 int instr_len_field,
8528 int error_code_field)
51aa01d1 8529{
51aa01d1
AK
8530 u8 vector;
8531 int type;
8532 bool idtv_info_valid;
8533
8534 idtv_info_valid = idt_vectoring_info & VECTORING_INFO_VALID_MASK;
668f612f 8535
3ab66e8a
JK
8536 vcpu->arch.nmi_injected = false;
8537 kvm_clear_exception_queue(vcpu);
8538 kvm_clear_interrupt_queue(vcpu);
37b96e98
GN
8539
8540 if (!idtv_info_valid)
8541 return;
8542
3ab66e8a 8543 kvm_make_request(KVM_REQ_EVENT, vcpu);
3842d135 8544
668f612f
AK
8545 vector = idt_vectoring_info & VECTORING_INFO_VECTOR_MASK;
8546 type = idt_vectoring_info & VECTORING_INFO_TYPE_MASK;
37b96e98 8547
64a7ec06 8548 switch (type) {
37b96e98 8549 case INTR_TYPE_NMI_INTR:
3ab66e8a 8550 vcpu->arch.nmi_injected = true;
668f612f 8551 /*
7b4a25cb 8552 * SDM 3: 27.7.1.2 (September 2008)
37b96e98
GN
8553 * Clear bit "block by NMI" before VM entry if a NMI
8554 * delivery faulted.
668f612f 8555 */
3ab66e8a 8556 vmx_set_nmi_mask(vcpu, false);
37b96e98 8557 break;
37b96e98 8558 case INTR_TYPE_SOFT_EXCEPTION:
3ab66e8a 8559 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f
GN
8560 /* fall through */
8561 case INTR_TYPE_HARD_EXCEPTION:
35920a35 8562 if (idt_vectoring_info & VECTORING_INFO_DELIVER_CODE_MASK) {
83422e17 8563 u32 err = vmcs_read32(error_code_field);
851eb667 8564 kvm_requeue_exception_e(vcpu, vector, err);
35920a35 8565 } else
851eb667 8566 kvm_requeue_exception(vcpu, vector);
37b96e98 8567 break;
66fd3f7f 8568 case INTR_TYPE_SOFT_INTR:
3ab66e8a 8569 vcpu->arch.event_exit_inst_len = vmcs_read32(instr_len_field);
66fd3f7f 8570 /* fall through */
37b96e98 8571 case INTR_TYPE_EXT_INTR:
3ab66e8a 8572 kvm_queue_interrupt(vcpu, vector, type == INTR_TYPE_SOFT_INTR);
37b96e98
GN
8573 break;
8574 default:
8575 break;
f7d9238f 8576 }
cf393f75
AK
8577}
8578
83422e17
AK
8579static void vmx_complete_interrupts(struct vcpu_vmx *vmx)
8580{
3ab66e8a 8581 __vmx_complete_interrupts(&vmx->vcpu, vmx->idt_vectoring_info,
83422e17
AK
8582 VM_EXIT_INSTRUCTION_LEN,
8583 IDT_VECTORING_ERROR_CODE);
8584}
8585
b463a6f7
AK
8586static void vmx_cancel_injection(struct kvm_vcpu *vcpu)
8587{
3ab66e8a 8588 __vmx_complete_interrupts(vcpu,
b463a6f7
AK
8589 vmcs_read32(VM_ENTRY_INTR_INFO_FIELD),
8590 VM_ENTRY_INSTRUCTION_LEN,
8591 VM_ENTRY_EXCEPTION_ERROR_CODE);
8592
8593 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD, 0);
8594}
8595
d7cd9796
GN
8596static void atomic_switch_perf_msrs(struct vcpu_vmx *vmx)
8597{
8598 int i, nr_msrs;
8599 struct perf_guest_switch_msr *msrs;
8600
8601 msrs = perf_guest_get_msrs(&nr_msrs);
8602
8603 if (!msrs)
8604 return;
8605
8606 for (i = 0; i < nr_msrs; i++)
8607 if (msrs[i].host == msrs[i].guest)
8608 clear_atomic_switch_msr(vmx, msrs[i].msr);
8609 else
8610 add_atomic_switch_msr(vmx, msrs[i].msr, msrs[i].guest,
8611 msrs[i].host);
8612}
8613
a3b5ba49 8614static void __noclone vmx_vcpu_run(struct kvm_vcpu *vcpu)
6aa8b732 8615{
a2fa3e9f 8616 struct vcpu_vmx *vmx = to_vmx(vcpu);
d974baa3 8617 unsigned long debugctlmsr, cr4;
104f226b
AK
8618
8619 /* Record the guest's net vcpu time for enforced NMI injections. */
8620 if (unlikely(!cpu_has_virtual_nmis() && vmx->soft_vnmi_blocked))
8621 vmx->entry_time = ktime_get();
8622
8623 /* Don't enter VMX if guest state is invalid, let the exit handler
8624 start emulation until we arrive back to a valid state */
14168786 8625 if (vmx->emulation_required)
104f226b
AK
8626 return;
8627
a7653ecd
RK
8628 if (vmx->ple_window_dirty) {
8629 vmx->ple_window_dirty = false;
8630 vmcs_write32(PLE_WINDOW, vmx->ple_window);
8631 }
8632
012f83cb
AG
8633 if (vmx->nested.sync_shadow_vmcs) {
8634 copy_vmcs12_to_shadow(vmx);
8635 vmx->nested.sync_shadow_vmcs = false;
8636 }
8637
104f226b
AK
8638 if (test_bit(VCPU_REGS_RSP, (unsigned long *)&vcpu->arch.regs_dirty))
8639 vmcs_writel(GUEST_RSP, vcpu->arch.regs[VCPU_REGS_RSP]);
8640 if (test_bit(VCPU_REGS_RIP, (unsigned long *)&vcpu->arch.regs_dirty))
8641 vmcs_writel(GUEST_RIP, vcpu->arch.regs[VCPU_REGS_RIP]);
8642
1e02ce4c 8643 cr4 = cr4_read_shadow();
d974baa3
AL
8644 if (unlikely(cr4 != vmx->host_state.vmcs_host_cr4)) {
8645 vmcs_writel(HOST_CR4, cr4);
8646 vmx->host_state.vmcs_host_cr4 = cr4;
8647 }
8648
104f226b
AK
8649 /* When single-stepping over STI and MOV SS, we must clear the
8650 * corresponding interruptibility bits in the guest state. Otherwise
8651 * vmentry fails as it then expects bit 14 (BS) in pending debug
8652 * exceptions being set, but that's not correct for the guest debugging
8653 * case. */
8654 if (vcpu->guest_debug & KVM_GUESTDBG_SINGLESTEP)
8655 vmx_set_interrupt_shadow(vcpu, 0);
8656
1be0e61c
XG
8657 if (vmx->guest_pkru_valid)
8658 __write_pkru(vmx->guest_pkru);
8659
d7cd9796 8660 atomic_switch_perf_msrs(vmx);
2a7921b7 8661 debugctlmsr = get_debugctlmsr();
d7cd9796 8662
d462b819 8663 vmx->__launched = vmx->loaded_vmcs->launched;
104f226b 8664 asm(
6aa8b732 8665 /* Store host registers */
b188c81f
AK
8666 "push %%" _ASM_DX "; push %%" _ASM_BP ";"
8667 "push %%" _ASM_CX " \n\t" /* placeholder for guest rcx */
8668 "push %%" _ASM_CX " \n\t"
8669 "cmp %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
313dbd49 8670 "je 1f \n\t"
b188c81f 8671 "mov %%" _ASM_SP ", %c[host_rsp](%0) \n\t"
4ecac3fd 8672 __ex(ASM_VMX_VMWRITE_RSP_RDX) "\n\t"
313dbd49 8673 "1: \n\t"
d3edefc0 8674 /* Reload cr2 if changed */
b188c81f
AK
8675 "mov %c[cr2](%0), %%" _ASM_AX " \n\t"
8676 "mov %%cr2, %%" _ASM_DX " \n\t"
8677 "cmp %%" _ASM_AX ", %%" _ASM_DX " \n\t"
d3edefc0 8678 "je 2f \n\t"
b188c81f 8679 "mov %%" _ASM_AX", %%cr2 \n\t"
d3edefc0 8680 "2: \n\t"
6aa8b732 8681 /* Check if vmlaunch of vmresume is needed */
e08aa78a 8682 "cmpl $0, %c[launched](%0) \n\t"
6aa8b732 8683 /* Load guest registers. Don't clobber flags. */
b188c81f
AK
8684 "mov %c[rax](%0), %%" _ASM_AX " \n\t"
8685 "mov %c[rbx](%0), %%" _ASM_BX " \n\t"
8686 "mov %c[rdx](%0), %%" _ASM_DX " \n\t"
8687 "mov %c[rsi](%0), %%" _ASM_SI " \n\t"
8688 "mov %c[rdi](%0), %%" _ASM_DI " \n\t"
8689 "mov %c[rbp](%0), %%" _ASM_BP " \n\t"
05b3e0c2 8690#ifdef CONFIG_X86_64
e08aa78a
AK
8691 "mov %c[r8](%0), %%r8 \n\t"
8692 "mov %c[r9](%0), %%r9 \n\t"
8693 "mov %c[r10](%0), %%r10 \n\t"
8694 "mov %c[r11](%0), %%r11 \n\t"
8695 "mov %c[r12](%0), %%r12 \n\t"
8696 "mov %c[r13](%0), %%r13 \n\t"
8697 "mov %c[r14](%0), %%r14 \n\t"
8698 "mov %c[r15](%0), %%r15 \n\t"
6aa8b732 8699#endif
b188c81f 8700 "mov %c[rcx](%0), %%" _ASM_CX " \n\t" /* kills %0 (ecx) */
c801949d 8701
6aa8b732 8702 /* Enter guest mode */
83287ea4 8703 "jne 1f \n\t"
4ecac3fd 8704 __ex(ASM_VMX_VMLAUNCH) "\n\t"
83287ea4
AK
8705 "jmp 2f \n\t"
8706 "1: " __ex(ASM_VMX_VMRESUME) "\n\t"
8707 "2: "
6aa8b732 8708 /* Save guest registers, load host registers, keep flags */
b188c81f 8709 "mov %0, %c[wordsize](%%" _ASM_SP ") \n\t"
40712fae 8710 "pop %0 \n\t"
b188c81f
AK
8711 "mov %%" _ASM_AX ", %c[rax](%0) \n\t"
8712 "mov %%" _ASM_BX ", %c[rbx](%0) \n\t"
8713 __ASM_SIZE(pop) " %c[rcx](%0) \n\t"
8714 "mov %%" _ASM_DX ", %c[rdx](%0) \n\t"
8715 "mov %%" _ASM_SI ", %c[rsi](%0) \n\t"
8716 "mov %%" _ASM_DI ", %c[rdi](%0) \n\t"
8717 "mov %%" _ASM_BP ", %c[rbp](%0) \n\t"
05b3e0c2 8718#ifdef CONFIG_X86_64
e08aa78a
AK
8719 "mov %%r8, %c[r8](%0) \n\t"
8720 "mov %%r9, %c[r9](%0) \n\t"
8721 "mov %%r10, %c[r10](%0) \n\t"
8722 "mov %%r11, %c[r11](%0) \n\t"
8723 "mov %%r12, %c[r12](%0) \n\t"
8724 "mov %%r13, %c[r13](%0) \n\t"
8725 "mov %%r14, %c[r14](%0) \n\t"
8726 "mov %%r15, %c[r15](%0) \n\t"
6aa8b732 8727#endif
b188c81f
AK
8728 "mov %%cr2, %%" _ASM_AX " \n\t"
8729 "mov %%" _ASM_AX ", %c[cr2](%0) \n\t"
c801949d 8730
b188c81f 8731 "pop %%" _ASM_BP "; pop %%" _ASM_DX " \n\t"
e08aa78a 8732 "setbe %c[fail](%0) \n\t"
83287ea4
AK
8733 ".pushsection .rodata \n\t"
8734 ".global vmx_return \n\t"
8735 "vmx_return: " _ASM_PTR " 2b \n\t"
8736 ".popsection"
e08aa78a 8737 : : "c"(vmx), "d"((unsigned long)HOST_RSP),
d462b819 8738 [launched]"i"(offsetof(struct vcpu_vmx, __launched)),
e08aa78a 8739 [fail]"i"(offsetof(struct vcpu_vmx, fail)),
313dbd49 8740 [host_rsp]"i"(offsetof(struct vcpu_vmx, host_rsp)),
ad312c7c
ZX
8741 [rax]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RAX])),
8742 [rbx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBX])),
8743 [rcx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RCX])),
8744 [rdx]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDX])),
8745 [rsi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RSI])),
8746 [rdi]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RDI])),
8747 [rbp]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_RBP])),
05b3e0c2 8748#ifdef CONFIG_X86_64
ad312c7c
ZX
8749 [r8]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R8])),
8750 [r9]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R9])),
8751 [r10]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R10])),
8752 [r11]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R11])),
8753 [r12]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R12])),
8754 [r13]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R13])),
8755 [r14]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R14])),
8756 [r15]"i"(offsetof(struct vcpu_vmx, vcpu.arch.regs[VCPU_REGS_R15])),
6aa8b732 8757#endif
40712fae
AK
8758 [cr2]"i"(offsetof(struct vcpu_vmx, vcpu.arch.cr2)),
8759 [wordsize]"i"(sizeof(ulong))
c2036300
LV
8760 : "cc", "memory"
8761#ifdef CONFIG_X86_64
b188c81f 8762 , "rax", "rbx", "rdi", "rsi"
c2036300 8763 , "r8", "r9", "r10", "r11", "r12", "r13", "r14", "r15"
b188c81f
AK
8764#else
8765 , "eax", "ebx", "edi", "esi"
c2036300
LV
8766#endif
8767 );
6aa8b732 8768
2a7921b7
GN
8769 /* MSR_IA32_DEBUGCTLMSR is zeroed on vmexit. Restore it if needed */
8770 if (debugctlmsr)
8771 update_debugctlmsr(debugctlmsr);
8772
aa67f609
AK
8773#ifndef CONFIG_X86_64
8774 /*
8775 * The sysexit path does not restore ds/es, so we must set them to
8776 * a reasonable value ourselves.
8777 *
8778 * We can't defer this to vmx_load_host_state() since that function
8779 * may be executed in interrupt context, which saves and restore segments
8780 * around it, nullifying its effect.
8781 */
8782 loadsegment(ds, __USER_DS);
8783 loadsegment(es, __USER_DS);
8784#endif
8785
6de4f3ad 8786 vcpu->arch.regs_avail = ~((1 << VCPU_REGS_RIP) | (1 << VCPU_REGS_RSP)
6de12732 8787 | (1 << VCPU_EXREG_RFLAGS)
aff48baa 8788 | (1 << VCPU_EXREG_PDPTR)
2fb92db1 8789 | (1 << VCPU_EXREG_SEGMENTS)
aff48baa 8790 | (1 << VCPU_EXREG_CR3));
5fdbf976
MT
8791 vcpu->arch.regs_dirty = 0;
8792
1155f76a
AK
8793 vmx->idt_vectoring_info = vmcs_read32(IDT_VECTORING_INFO_FIELD);
8794
d462b819 8795 vmx->loaded_vmcs->launched = 1;
1b6269db 8796
51aa01d1 8797 vmx->exit_reason = vmcs_read32(VM_EXIT_REASON);
51aa01d1 8798
1be0e61c
XG
8799 /*
8800 * eager fpu is enabled if PKEY is supported and CR4 is switched
8801 * back on host, so it is safe to read guest PKRU from current
8802 * XSAVE.
8803 */
8804 if (boot_cpu_has(X86_FEATURE_OSPKE)) {
8805 vmx->guest_pkru = __read_pkru();
8806 if (vmx->guest_pkru != vmx->host_pkru) {
8807 vmx->guest_pkru_valid = true;
8808 __write_pkru(vmx->host_pkru);
8809 } else
8810 vmx->guest_pkru_valid = false;
8811 }
8812
e0b890d3
GN
8813 /*
8814 * the KVM_REQ_EVENT optimization bit is only on for one entry, and if
8815 * we did not inject a still-pending event to L1 now because of
8816 * nested_run_pending, we need to re-enable this bit.
8817 */
8818 if (vmx->nested.nested_run_pending)
8819 kvm_make_request(KVM_REQ_EVENT, vcpu);
8820
8821 vmx->nested.nested_run_pending = 0;
8822
51aa01d1
AK
8823 vmx_complete_atomic_exit(vmx);
8824 vmx_recover_nmi_blocking(vmx);
cf393f75 8825 vmx_complete_interrupts(vmx);
6aa8b732
AK
8826}
8827
4fa7734c
PB
8828static void vmx_load_vmcs01(struct kvm_vcpu *vcpu)
8829{
8830 struct vcpu_vmx *vmx = to_vmx(vcpu);
8831 int cpu;
8832
8833 if (vmx->loaded_vmcs == &vmx->vmcs01)
8834 return;
8835
8836 cpu = get_cpu();
8837 vmx->loaded_vmcs = &vmx->vmcs01;
8838 vmx_vcpu_put(vcpu);
8839 vmx_vcpu_load(vcpu, cpu);
8840 vcpu->cpu = cpu;
8841 put_cpu();
8842}
8843
6aa8b732
AK
8844static void vmx_free_vcpu(struct kvm_vcpu *vcpu)
8845{
fb3f0f51
RR
8846 struct vcpu_vmx *vmx = to_vmx(vcpu);
8847
843e4330 8848 if (enable_pml)
a3eaa864 8849 vmx_destroy_pml_buffer(vmx);
991e7a0e 8850 free_vpid(vmx->vpid);
4fa7734c
PB
8851 leave_guest_mode(vcpu);
8852 vmx_load_vmcs01(vcpu);
26a865f4 8853 free_nested(vmx);
4fa7734c 8854 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51
RR
8855 kfree(vmx->guest_msrs);
8856 kvm_vcpu_uninit(vcpu);
a4770347 8857 kmem_cache_free(kvm_vcpu_cache, vmx);
6aa8b732
AK
8858}
8859
fb3f0f51 8860static struct kvm_vcpu *vmx_create_vcpu(struct kvm *kvm, unsigned int id)
6aa8b732 8861{
fb3f0f51 8862 int err;
c16f862d 8863 struct vcpu_vmx *vmx = kmem_cache_zalloc(kvm_vcpu_cache, GFP_KERNEL);
15ad7146 8864 int cpu;
6aa8b732 8865
a2fa3e9f 8866 if (!vmx)
fb3f0f51
RR
8867 return ERR_PTR(-ENOMEM);
8868
991e7a0e 8869 vmx->vpid = allocate_vpid();
2384d2b3 8870
fb3f0f51
RR
8871 err = kvm_vcpu_init(&vmx->vcpu, kvm, id);
8872 if (err)
8873 goto free_vcpu;
965b58a5 8874
a2fa3e9f 8875 vmx->guest_msrs = kmalloc(PAGE_SIZE, GFP_KERNEL);
03916db9
PB
8876 BUILD_BUG_ON(ARRAY_SIZE(vmx_msr_index) * sizeof(vmx->guest_msrs[0])
8877 > PAGE_SIZE);
0123be42 8878
be6d05cf 8879 err = -ENOMEM;
fb3f0f51 8880 if (!vmx->guest_msrs) {
fb3f0f51
RR
8881 goto uninit_vcpu;
8882 }
965b58a5 8883
d462b819
NHE
8884 vmx->loaded_vmcs = &vmx->vmcs01;
8885 vmx->loaded_vmcs->vmcs = alloc_vmcs();
8886 if (!vmx->loaded_vmcs->vmcs)
fb3f0f51 8887 goto free_msrs;
d462b819
NHE
8888 if (!vmm_exclusive)
8889 kvm_cpu_vmxon(__pa(per_cpu(vmxarea, raw_smp_processor_id())));
8890 loaded_vmcs_init(vmx->loaded_vmcs);
8891 if (!vmm_exclusive)
8892 kvm_cpu_vmxoff();
a2fa3e9f 8893
15ad7146
AK
8894 cpu = get_cpu();
8895 vmx_vcpu_load(&vmx->vcpu, cpu);
e48672fa 8896 vmx->vcpu.cpu = cpu;
8b9cf98c 8897 err = vmx_vcpu_setup(vmx);
fb3f0f51 8898 vmx_vcpu_put(&vmx->vcpu);
15ad7146 8899 put_cpu();
fb3f0f51
RR
8900 if (err)
8901 goto free_vmcs;
35754c98 8902 if (cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
be6d05cf
JK
8903 err = alloc_apic_access_page(kvm);
8904 if (err)
5e4a0b3c 8905 goto free_vmcs;
a63cb560 8906 }
fb3f0f51 8907
b927a3ce
SY
8908 if (enable_ept) {
8909 if (!kvm->arch.ept_identity_map_addr)
8910 kvm->arch.ept_identity_map_addr =
8911 VMX_EPT_IDENTITY_PAGETABLE_ADDR;
f51770ed
TC
8912 err = init_rmode_identity_map(kvm);
8913 if (err)
93ea5388 8914 goto free_vmcs;
b927a3ce 8915 }
b7ebfb05 8916
5c614b35 8917 if (nested) {
b9c237bb 8918 nested_vmx_setup_ctls_msrs(vmx);
5c614b35
WL
8919 vmx->nested.vpid02 = allocate_vpid();
8920 }
b9c237bb 8921
705699a1 8922 vmx->nested.posted_intr_nv = -1;
a9d30f33
NHE
8923 vmx->nested.current_vmptr = -1ull;
8924 vmx->nested.current_vmcs12 = NULL;
8925
843e4330
KH
8926 /*
8927 * If PML is turned on, failure on enabling PML just results in failure
8928 * of creating the vcpu, therefore we can simplify PML logic (by
8929 * avoiding dealing with cases, such as enabling PML partially on vcpus
8930 * for the guest, etc.
8931 */
8932 if (enable_pml) {
a3eaa864 8933 err = vmx_create_pml_buffer(vmx);
843e4330
KH
8934 if (err)
8935 goto free_vmcs;
8936 }
8937
fb3f0f51
RR
8938 return &vmx->vcpu;
8939
8940free_vmcs:
5c614b35 8941 free_vpid(vmx->nested.vpid02);
5f3fbc34 8942 free_loaded_vmcs(vmx->loaded_vmcs);
fb3f0f51 8943free_msrs:
fb3f0f51
RR
8944 kfree(vmx->guest_msrs);
8945uninit_vcpu:
8946 kvm_vcpu_uninit(&vmx->vcpu);
8947free_vcpu:
991e7a0e 8948 free_vpid(vmx->vpid);
a4770347 8949 kmem_cache_free(kvm_vcpu_cache, vmx);
fb3f0f51 8950 return ERR_PTR(err);
6aa8b732
AK
8951}
8952
002c7f7c
YS
8953static void __init vmx_check_processor_compat(void *rtn)
8954{
8955 struct vmcs_config vmcs_conf;
8956
8957 *(int *)rtn = 0;
8958 if (setup_vmcs_config(&vmcs_conf) < 0)
8959 *(int *)rtn = -EIO;
8960 if (memcmp(&vmcs_config, &vmcs_conf, sizeof(struct vmcs_config)) != 0) {
8961 printk(KERN_ERR "kvm: CPU %d feature inconsistency!\n",
8962 smp_processor_id());
8963 *(int *)rtn = -EIO;
8964 }
8965}
8966
67253af5
SY
8967static int get_ept_level(void)
8968{
8969 return VMX_EPT_DEFAULT_GAW + 1;
8970}
8971
4b12f0de 8972static u64 vmx_get_mt_mask(struct kvm_vcpu *vcpu, gfn_t gfn, bool is_mmio)
64d4d521 8973{
b18d5431
XG
8974 u8 cache;
8975 u64 ipat = 0;
4b12f0de 8976
522c68c4 8977 /* For VT-d and EPT combination
606decd6 8978 * 1. MMIO: always map as UC
522c68c4
SY
8979 * 2. EPT with VT-d:
8980 * a. VT-d without snooping control feature: can't guarantee the
606decd6 8981 * result, try to trust guest.
522c68c4
SY
8982 * b. VT-d with snooping control feature: snooping control feature of
8983 * VT-d engine can guarantee the cache correctness. Just set it
8984 * to WB to keep consistent with host. So the same as item 3.
a19a6d11 8985 * 3. EPT without VT-d: always map as WB and set IPAT=1 to keep
522c68c4
SY
8986 * consistent with host MTRR
8987 */
606decd6
PB
8988 if (is_mmio) {
8989 cache = MTRR_TYPE_UNCACHABLE;
8990 goto exit;
8991 }
8992
8993 if (!kvm_arch_has_noncoherent_dma(vcpu->kvm)) {
b18d5431
XG
8994 ipat = VMX_EPT_IPAT_BIT;
8995 cache = MTRR_TYPE_WRBACK;
8996 goto exit;
8997 }
8998
8999 if (kvm_read_cr0(vcpu) & X86_CR0_CD) {
9000 ipat = VMX_EPT_IPAT_BIT;
0da029ed 9001 if (kvm_check_has_quirk(vcpu->kvm, KVM_X86_QUIRK_CD_NW_CLEARED))
fb279950
XG
9002 cache = MTRR_TYPE_WRBACK;
9003 else
9004 cache = MTRR_TYPE_UNCACHABLE;
b18d5431
XG
9005 goto exit;
9006 }
9007
ff53604b 9008 cache = kvm_mtrr_get_guest_memory_type(vcpu, gfn);
b18d5431
XG
9009
9010exit:
9011 return (cache << VMX_EPT_MT_EPTE_SHIFT) | ipat;
64d4d521
SY
9012}
9013
17cc3935 9014static int vmx_get_lpage_level(void)
344f414f 9015{
878403b7
SY
9016 if (enable_ept && !cpu_has_vmx_ept_1g_page())
9017 return PT_DIRECTORY_LEVEL;
9018 else
9019 /* For shadow and EPT supported 1GB page */
9020 return PT_PDPE_LEVEL;
344f414f
JR
9021}
9022
feda805f
XG
9023static void vmcs_set_secondary_exec_control(u32 new_ctl)
9024{
9025 /*
9026 * These bits in the secondary execution controls field
9027 * are dynamic, the others are mostly based on the hypervisor
9028 * architecture and the guest's CPUID. Do not touch the
9029 * dynamic bits.
9030 */
9031 u32 mask =
9032 SECONDARY_EXEC_SHADOW_VMCS |
9033 SECONDARY_EXEC_VIRTUALIZE_X2APIC_MODE |
9034 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9035
9036 u32 cur_ctl = vmcs_read32(SECONDARY_VM_EXEC_CONTROL);
9037
9038 vmcs_write32(SECONDARY_VM_EXEC_CONTROL,
9039 (new_ctl & ~mask) | (cur_ctl & mask));
9040}
9041
0e851880
SY
9042static void vmx_cpuid_update(struct kvm_vcpu *vcpu)
9043{
4e47c7a6
SY
9044 struct kvm_cpuid_entry2 *best;
9045 struct vcpu_vmx *vmx = to_vmx(vcpu);
feda805f 9046 u32 secondary_exec_ctl = vmx_secondary_exec_control(vmx);
4e47c7a6 9047
4e47c7a6 9048 if (vmx_rdtscp_supported()) {
1cea0ce6
XG
9049 bool rdtscp_enabled = guest_cpuid_has_rdtscp(vcpu);
9050 if (!rdtscp_enabled)
feda805f 9051 secondary_exec_ctl &= ~SECONDARY_EXEC_RDTSCP;
f36201e5 9052
8b97265a 9053 if (nested) {
1cea0ce6 9054 if (rdtscp_enabled)
8b97265a
PB
9055 vmx->nested.nested_vmx_secondary_ctls_high |=
9056 SECONDARY_EXEC_RDTSCP;
9057 else
9058 vmx->nested.nested_vmx_secondary_ctls_high &=
9059 ~SECONDARY_EXEC_RDTSCP;
9060 }
4e47c7a6 9061 }
ad756a16 9062
ad756a16
MJ
9063 /* Exposing INVPCID only when PCID is exposed */
9064 best = kvm_find_cpuid_entry(vcpu, 0x7, 0);
9065 if (vmx_invpcid_supported() &&
29541bb8
XG
9066 (!best || !(best->ebx & bit(X86_FEATURE_INVPCID)) ||
9067 !guest_cpuid_has_pcid(vcpu))) {
feda805f 9068 secondary_exec_ctl &= ~SECONDARY_EXEC_ENABLE_INVPCID;
29541bb8 9069
ad756a16 9070 if (best)
4f977045 9071 best->ebx &= ~bit(X86_FEATURE_INVPCID);
ad756a16 9072 }
8b3e34e4 9073
45bdbcfd
HH
9074 if (cpu_has_secondary_exec_ctrls())
9075 vmcs_set_secondary_exec_control(secondary_exec_ctl);
feda805f 9076
8b3e34e4
XG
9077 if (static_cpu_has(X86_FEATURE_PCOMMIT) && nested) {
9078 if (guest_cpuid_has_pcommit(vcpu))
9079 vmx->nested.nested_vmx_secondary_ctls_high |=
9080 SECONDARY_EXEC_PCOMMIT;
9081 else
9082 vmx->nested.nested_vmx_secondary_ctls_high &=
9083 ~SECONDARY_EXEC_PCOMMIT;
9084 }
0e851880
SY
9085}
9086
d4330ef2
JR
9087static void vmx_set_supported_cpuid(u32 func, struct kvm_cpuid_entry2 *entry)
9088{
7b8050f5
NHE
9089 if (func == 1 && nested)
9090 entry->ecx |= bit(X86_FEATURE_VMX);
d4330ef2
JR
9091}
9092
25d92081
YZ
9093static void nested_ept_inject_page_fault(struct kvm_vcpu *vcpu,
9094 struct x86_exception *fault)
9095{
533558bc
JK
9096 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9097 u32 exit_reason;
25d92081
YZ
9098
9099 if (fault->error_code & PFERR_RSVD_MASK)
533558bc 9100 exit_reason = EXIT_REASON_EPT_MISCONFIG;
25d92081 9101 else
533558bc
JK
9102 exit_reason = EXIT_REASON_EPT_VIOLATION;
9103 nested_vmx_vmexit(vcpu, exit_reason, 0, vcpu->arch.exit_qualification);
25d92081
YZ
9104 vmcs12->guest_physical_address = fault->address;
9105}
9106
155a97a3
NHE
9107/* Callbacks for nested_ept_init_mmu_context: */
9108
9109static unsigned long nested_ept_get_cr3(struct kvm_vcpu *vcpu)
9110{
9111 /* return the page table to be shadowed - in our case, EPT12 */
9112 return get_vmcs12(vcpu)->ept_pointer;
9113}
9114
8a3c1a33 9115static void nested_ept_init_mmu_context(struct kvm_vcpu *vcpu)
155a97a3 9116{
ad896af0
PB
9117 WARN_ON(mmu_is_nested(vcpu));
9118 kvm_init_shadow_ept_mmu(vcpu,
b9c237bb
WV
9119 to_vmx(vcpu)->nested.nested_vmx_ept_caps &
9120 VMX_EPT_EXECUTE_ONLY_BIT);
155a97a3
NHE
9121 vcpu->arch.mmu.set_cr3 = vmx_set_cr3;
9122 vcpu->arch.mmu.get_cr3 = nested_ept_get_cr3;
9123 vcpu->arch.mmu.inject_page_fault = nested_ept_inject_page_fault;
9124
9125 vcpu->arch.walk_mmu = &vcpu->arch.nested_mmu;
155a97a3
NHE
9126}
9127
9128static void nested_ept_uninit_mmu_context(struct kvm_vcpu *vcpu)
9129{
9130 vcpu->arch.walk_mmu = &vcpu->arch.mmu;
9131}
9132
19d5f10b
EK
9133static bool nested_vmx_is_page_fault_vmexit(struct vmcs12 *vmcs12,
9134 u16 error_code)
9135{
9136 bool inequality, bit;
9137
9138 bit = (vmcs12->exception_bitmap & (1u << PF_VECTOR)) != 0;
9139 inequality =
9140 (error_code & vmcs12->page_fault_error_code_mask) !=
9141 vmcs12->page_fault_error_code_match;
9142 return inequality ^ bit;
9143}
9144
feaf0c7d
GN
9145static void vmx_inject_page_fault_nested(struct kvm_vcpu *vcpu,
9146 struct x86_exception *fault)
9147{
9148 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
9149
9150 WARN_ON(!is_guest_mode(vcpu));
9151
19d5f10b 9152 if (nested_vmx_is_page_fault_vmexit(vmcs12, fault->error_code))
533558bc
JK
9153 nested_vmx_vmexit(vcpu, to_vmx(vcpu)->exit_reason,
9154 vmcs_read32(VM_EXIT_INTR_INFO),
9155 vmcs_readl(EXIT_QUALIFICATION));
feaf0c7d
GN
9156 else
9157 kvm_inject_page_fault(vcpu, fault);
9158}
9159
a2bcba50
WL
9160static bool nested_get_vmcs12_pages(struct kvm_vcpu *vcpu,
9161 struct vmcs12 *vmcs12)
9162{
9163 struct vcpu_vmx *vmx = to_vmx(vcpu);
9090422f 9164 int maxphyaddr = cpuid_maxphyaddr(vcpu);
a2bcba50
WL
9165
9166 if (nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES)) {
9090422f
EK
9167 if (!PAGE_ALIGNED(vmcs12->apic_access_addr) ||
9168 vmcs12->apic_access_addr >> maxphyaddr)
a2bcba50
WL
9169 return false;
9170
9171 /*
9172 * Translate L1 physical address to host physical
9173 * address for vmcs02. Keep the page pinned, so this
9174 * physical address remains valid. We keep a reference
9175 * to it so we can release it later.
9176 */
9177 if (vmx->nested.apic_access_page) /* shouldn't happen */
9178 nested_release_page(vmx->nested.apic_access_page);
9179 vmx->nested.apic_access_page =
9180 nested_get_page(vcpu, vmcs12->apic_access_addr);
9181 }
a7c0b07d
WL
9182
9183 if (nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW)) {
9090422f
EK
9184 if (!PAGE_ALIGNED(vmcs12->virtual_apic_page_addr) ||
9185 vmcs12->virtual_apic_page_addr >> maxphyaddr)
a7c0b07d
WL
9186 return false;
9187
9188 if (vmx->nested.virtual_apic_page) /* shouldn't happen */
9189 nested_release_page(vmx->nested.virtual_apic_page);
9190 vmx->nested.virtual_apic_page =
9191 nested_get_page(vcpu, vmcs12->virtual_apic_page_addr);
9192
9193 /*
9194 * Failing the vm entry is _not_ what the processor does
9195 * but it's basically the only possibility we have.
9196 * We could still enter the guest if CR8 load exits are
9197 * enabled, CR8 store exits are enabled, and virtualize APIC
9198 * access is disabled; in this case the processor would never
9199 * use the TPR shadow and we could simply clear the bit from
9200 * the execution control. But such a configuration is useless,
9201 * so let's keep the code simple.
9202 */
9203 if (!vmx->nested.virtual_apic_page)
9204 return false;
9205 }
9206
705699a1 9207 if (nested_cpu_has_posted_intr(vmcs12)) {
9090422f
EK
9208 if (!IS_ALIGNED(vmcs12->posted_intr_desc_addr, 64) ||
9209 vmcs12->posted_intr_desc_addr >> maxphyaddr)
705699a1
WV
9210 return false;
9211
9212 if (vmx->nested.pi_desc_page) { /* shouldn't happen */
9213 kunmap(vmx->nested.pi_desc_page);
9214 nested_release_page(vmx->nested.pi_desc_page);
9215 }
9216 vmx->nested.pi_desc_page =
9217 nested_get_page(vcpu, vmcs12->posted_intr_desc_addr);
9218 if (!vmx->nested.pi_desc_page)
9219 return false;
9220
9221 vmx->nested.pi_desc =
9222 (struct pi_desc *)kmap(vmx->nested.pi_desc_page);
9223 if (!vmx->nested.pi_desc) {
9224 nested_release_page_clean(vmx->nested.pi_desc_page);
9225 return false;
9226 }
9227 vmx->nested.pi_desc =
9228 (struct pi_desc *)((void *)vmx->nested.pi_desc +
9229 (unsigned long)(vmcs12->posted_intr_desc_addr &
9230 (PAGE_SIZE - 1)));
9231 }
9232
a2bcba50
WL
9233 return true;
9234}
9235
f4124500
JK
9236static void vmx_start_preemption_timer(struct kvm_vcpu *vcpu)
9237{
9238 u64 preemption_timeout = get_vmcs12(vcpu)->vmx_preemption_timer_value;
9239 struct vcpu_vmx *vmx = to_vmx(vcpu);
9240
9241 if (vcpu->arch.virtual_tsc_khz == 0)
9242 return;
9243
9244 /* Make sure short timeouts reliably trigger an immediate vmexit.
9245 * hrtimer_start does not guarantee this. */
9246 if (preemption_timeout <= 1) {
9247 vmx_preemption_timer_fn(&vmx->nested.preemption_timer);
9248 return;
9249 }
9250
9251 preemption_timeout <<= VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
9252 preemption_timeout *= 1000000;
9253 do_div(preemption_timeout, vcpu->arch.virtual_tsc_khz);
9254 hrtimer_start(&vmx->nested.preemption_timer,
9255 ns_to_ktime(preemption_timeout), HRTIMER_MODE_REL);
9256}
9257
3af18d9c
WV
9258static int nested_vmx_check_msr_bitmap_controls(struct kvm_vcpu *vcpu,
9259 struct vmcs12 *vmcs12)
9260{
9261 int maxphyaddr;
9262 u64 addr;
9263
9264 if (!nested_cpu_has(vmcs12, CPU_BASED_USE_MSR_BITMAPS))
9265 return 0;
9266
9267 if (vmcs12_read_any(vcpu, MSR_BITMAP, &addr)) {
9268 WARN_ON(1);
9269 return -EINVAL;
9270 }
9271 maxphyaddr = cpuid_maxphyaddr(vcpu);
9272
9273 if (!PAGE_ALIGNED(vmcs12->msr_bitmap) ||
9274 ((addr + PAGE_SIZE) >> maxphyaddr))
9275 return -EINVAL;
9276
9277 return 0;
9278}
9279
9280/*
9281 * Merge L0's and L1's MSR bitmap, return false to indicate that
9282 * we do not use the hardware.
9283 */
9284static inline bool nested_vmx_merge_msr_bitmap(struct kvm_vcpu *vcpu,
9285 struct vmcs12 *vmcs12)
9286{
82f0dd4b 9287 int msr;
f2b93280
WV
9288 struct page *page;
9289 unsigned long *msr_bitmap;
9290
9291 if (!nested_cpu_has_virt_x2apic_mode(vmcs12))
9292 return false;
9293
9294 page = nested_get_page(vcpu, vmcs12->msr_bitmap);
9295 if (!page) {
9296 WARN_ON(1);
9297 return false;
9298 }
9299 msr_bitmap = (unsigned long *)kmap(page);
9300 if (!msr_bitmap) {
9301 nested_release_page_clean(page);
9302 WARN_ON(1);
9303 return false;
9304 }
9305
9306 if (nested_cpu_has_virt_x2apic_mode(vmcs12)) {
82f0dd4b
WV
9307 if (nested_cpu_has_apic_reg_virt(vmcs12))
9308 for (msr = 0x800; msr <= 0x8ff; msr++)
9309 nested_vmx_disable_intercept_for_msr(
9310 msr_bitmap,
9311 vmx_msr_bitmap_nested,
9312 msr, MSR_TYPE_R);
f2b93280
WV
9313 /* TPR is allowed */
9314 nested_vmx_disable_intercept_for_msr(msr_bitmap,
9315 vmx_msr_bitmap_nested,
9316 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
9317 MSR_TYPE_R | MSR_TYPE_W);
608406e2
WV
9318 if (nested_cpu_has_vid(vmcs12)) {
9319 /* EOI and self-IPI are allowed */
9320 nested_vmx_disable_intercept_for_msr(
9321 msr_bitmap,
9322 vmx_msr_bitmap_nested,
9323 APIC_BASE_MSR + (APIC_EOI >> 4),
9324 MSR_TYPE_W);
9325 nested_vmx_disable_intercept_for_msr(
9326 msr_bitmap,
9327 vmx_msr_bitmap_nested,
9328 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9329 MSR_TYPE_W);
9330 }
82f0dd4b
WV
9331 } else {
9332 /*
9333 * Enable reading intercept of all the x2apic
9334 * MSRs. We should not rely on vmcs12 to do any
9335 * optimizations here, it may have been modified
9336 * by L1.
9337 */
9338 for (msr = 0x800; msr <= 0x8ff; msr++)
9339 __vmx_enable_intercept_for_msr(
9340 vmx_msr_bitmap_nested,
9341 msr,
9342 MSR_TYPE_R);
9343
f2b93280
WV
9344 __vmx_enable_intercept_for_msr(
9345 vmx_msr_bitmap_nested,
9346 APIC_BASE_MSR + (APIC_TASKPRI >> 4),
82f0dd4b 9347 MSR_TYPE_W);
608406e2
WV
9348 __vmx_enable_intercept_for_msr(
9349 vmx_msr_bitmap_nested,
9350 APIC_BASE_MSR + (APIC_EOI >> 4),
9351 MSR_TYPE_W);
9352 __vmx_enable_intercept_for_msr(
9353 vmx_msr_bitmap_nested,
9354 APIC_BASE_MSR + (APIC_SELF_IPI >> 4),
9355 MSR_TYPE_W);
82f0dd4b 9356 }
f2b93280
WV
9357 kunmap(page);
9358 nested_release_page_clean(page);
9359
9360 return true;
9361}
9362
9363static int nested_vmx_check_apicv_controls(struct kvm_vcpu *vcpu,
9364 struct vmcs12 *vmcs12)
9365{
82f0dd4b 9366 if (!nested_cpu_has_virt_x2apic_mode(vmcs12) &&
608406e2 9367 !nested_cpu_has_apic_reg_virt(vmcs12) &&
705699a1
WV
9368 !nested_cpu_has_vid(vmcs12) &&
9369 !nested_cpu_has_posted_intr(vmcs12))
f2b93280
WV
9370 return 0;
9371
9372 /*
9373 * If virtualize x2apic mode is enabled,
9374 * virtualize apic access must be disabled.
9375 */
82f0dd4b
WV
9376 if (nested_cpu_has_virt_x2apic_mode(vmcs12) &&
9377 nested_cpu_has2(vmcs12, SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES))
f2b93280
WV
9378 return -EINVAL;
9379
608406e2
WV
9380 /*
9381 * If virtual interrupt delivery is enabled,
9382 * we must exit on external interrupts.
9383 */
9384 if (nested_cpu_has_vid(vmcs12) &&
9385 !nested_exit_on_intr(vcpu))
9386 return -EINVAL;
9387
705699a1
WV
9388 /*
9389 * bits 15:8 should be zero in posted_intr_nv,
9390 * the descriptor address has been already checked
9391 * in nested_get_vmcs12_pages.
9392 */
9393 if (nested_cpu_has_posted_intr(vmcs12) &&
9394 (!nested_cpu_has_vid(vmcs12) ||
9395 !nested_exit_intr_ack_set(vcpu) ||
9396 vmcs12->posted_intr_nv & 0xff00))
9397 return -EINVAL;
9398
f2b93280
WV
9399 /* tpr shadow is needed by all apicv features. */
9400 if (!nested_cpu_has(vmcs12, CPU_BASED_TPR_SHADOW))
9401 return -EINVAL;
9402
9403 return 0;
3af18d9c
WV
9404}
9405
e9ac033e
EK
9406static int nested_vmx_check_msr_switch(struct kvm_vcpu *vcpu,
9407 unsigned long count_field,
92d71bc6 9408 unsigned long addr_field)
ff651cb6 9409{
92d71bc6 9410 int maxphyaddr;
e9ac033e
EK
9411 u64 count, addr;
9412
9413 if (vmcs12_read_any(vcpu, count_field, &count) ||
9414 vmcs12_read_any(vcpu, addr_field, &addr)) {
9415 WARN_ON(1);
9416 return -EINVAL;
9417 }
9418 if (count == 0)
9419 return 0;
92d71bc6 9420 maxphyaddr = cpuid_maxphyaddr(vcpu);
e9ac033e
EK
9421 if (!IS_ALIGNED(addr, 16) || addr >> maxphyaddr ||
9422 (addr + count * sizeof(struct vmx_msr_entry) - 1) >> maxphyaddr) {
9423 pr_warn_ratelimited(
9424 "nVMX: invalid MSR switch (0x%lx, %d, %llu, 0x%08llx)",
9425 addr_field, maxphyaddr, count, addr);
9426 return -EINVAL;
9427 }
9428 return 0;
9429}
9430
9431static int nested_vmx_check_msr_switch_controls(struct kvm_vcpu *vcpu,
9432 struct vmcs12 *vmcs12)
9433{
e9ac033e
EK
9434 if (vmcs12->vm_exit_msr_load_count == 0 &&
9435 vmcs12->vm_exit_msr_store_count == 0 &&
9436 vmcs12->vm_entry_msr_load_count == 0)
9437 return 0; /* Fast path */
e9ac033e 9438 if (nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_LOAD_COUNT,
92d71bc6 9439 VM_EXIT_MSR_LOAD_ADDR) ||
e9ac033e 9440 nested_vmx_check_msr_switch(vcpu, VM_EXIT_MSR_STORE_COUNT,
92d71bc6 9441 VM_EXIT_MSR_STORE_ADDR) ||
e9ac033e 9442 nested_vmx_check_msr_switch(vcpu, VM_ENTRY_MSR_LOAD_COUNT,
92d71bc6 9443 VM_ENTRY_MSR_LOAD_ADDR))
e9ac033e
EK
9444 return -EINVAL;
9445 return 0;
9446}
9447
9448static int nested_vmx_msr_check_common(struct kvm_vcpu *vcpu,
9449 struct vmx_msr_entry *e)
9450{
9451 /* x2APIC MSR accesses are not allowed */
8a9781f7 9452 if (vcpu->arch.apic_base & X2APIC_ENABLE && e->index >> 8 == 0x8)
e9ac033e
EK
9453 return -EINVAL;
9454 if (e->index == MSR_IA32_UCODE_WRITE || /* SDM Table 35-2 */
9455 e->index == MSR_IA32_UCODE_REV)
9456 return -EINVAL;
9457 if (e->reserved != 0)
ff651cb6
WV
9458 return -EINVAL;
9459 return 0;
9460}
9461
e9ac033e
EK
9462static int nested_vmx_load_msr_check(struct kvm_vcpu *vcpu,
9463 struct vmx_msr_entry *e)
ff651cb6
WV
9464{
9465 if (e->index == MSR_FS_BASE ||
9466 e->index == MSR_GS_BASE ||
e9ac033e
EK
9467 e->index == MSR_IA32_SMM_MONITOR_CTL || /* SMM is not supported */
9468 nested_vmx_msr_check_common(vcpu, e))
9469 return -EINVAL;
9470 return 0;
9471}
9472
9473static int nested_vmx_store_msr_check(struct kvm_vcpu *vcpu,
9474 struct vmx_msr_entry *e)
9475{
9476 if (e->index == MSR_IA32_SMBASE || /* SMM is not supported */
9477 nested_vmx_msr_check_common(vcpu, e))
ff651cb6
WV
9478 return -EINVAL;
9479 return 0;
9480}
9481
9482/*
9483 * Load guest's/host's msr at nested entry/exit.
9484 * return 0 for success, entry index for failure.
9485 */
9486static u32 nested_vmx_load_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9487{
9488 u32 i;
9489 struct vmx_msr_entry e;
9490 struct msr_data msr;
9491
9492 msr.host_initiated = false;
9493 for (i = 0; i < count; i++) {
54bf36aa
PB
9494 if (kvm_vcpu_read_guest(vcpu, gpa + i * sizeof(e),
9495 &e, sizeof(e))) {
e9ac033e
EK
9496 pr_warn_ratelimited(
9497 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9498 __func__, i, gpa + i * sizeof(e));
ff651cb6 9499 goto fail;
e9ac033e
EK
9500 }
9501 if (nested_vmx_load_msr_check(vcpu, &e)) {
9502 pr_warn_ratelimited(
9503 "%s check failed (%u, 0x%x, 0x%x)\n",
9504 __func__, i, e.index, e.reserved);
9505 goto fail;
9506 }
ff651cb6
WV
9507 msr.index = e.index;
9508 msr.data = e.value;
e9ac033e
EK
9509 if (kvm_set_msr(vcpu, &msr)) {
9510 pr_warn_ratelimited(
9511 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
9512 __func__, i, e.index, e.value);
ff651cb6 9513 goto fail;
e9ac033e 9514 }
ff651cb6
WV
9515 }
9516 return 0;
9517fail:
9518 return i + 1;
9519}
9520
9521static int nested_vmx_store_msr(struct kvm_vcpu *vcpu, u64 gpa, u32 count)
9522{
9523 u32 i;
9524 struct vmx_msr_entry e;
9525
9526 for (i = 0; i < count; i++) {
609e36d3 9527 struct msr_data msr_info;
54bf36aa
PB
9528 if (kvm_vcpu_read_guest(vcpu,
9529 gpa + i * sizeof(e),
9530 &e, 2 * sizeof(u32))) {
e9ac033e
EK
9531 pr_warn_ratelimited(
9532 "%s cannot read MSR entry (%u, 0x%08llx)\n",
9533 __func__, i, gpa + i * sizeof(e));
ff651cb6 9534 return -EINVAL;
e9ac033e
EK
9535 }
9536 if (nested_vmx_store_msr_check(vcpu, &e)) {
9537 pr_warn_ratelimited(
9538 "%s check failed (%u, 0x%x, 0x%x)\n",
9539 __func__, i, e.index, e.reserved);
ff651cb6 9540 return -EINVAL;
e9ac033e 9541 }
609e36d3
PB
9542 msr_info.host_initiated = false;
9543 msr_info.index = e.index;
9544 if (kvm_get_msr(vcpu, &msr_info)) {
e9ac033e
EK
9545 pr_warn_ratelimited(
9546 "%s cannot read MSR (%u, 0x%x)\n",
9547 __func__, i, e.index);
9548 return -EINVAL;
9549 }
54bf36aa
PB
9550 if (kvm_vcpu_write_guest(vcpu,
9551 gpa + i * sizeof(e) +
9552 offsetof(struct vmx_msr_entry, value),
9553 &msr_info.data, sizeof(msr_info.data))) {
e9ac033e
EK
9554 pr_warn_ratelimited(
9555 "%s cannot write MSR (%u, 0x%x, 0x%llx)\n",
609e36d3 9556 __func__, i, e.index, msr_info.data);
e9ac033e
EK
9557 return -EINVAL;
9558 }
ff651cb6
WV
9559 }
9560 return 0;
9561}
9562
fe3ef05c
NHE
9563/*
9564 * prepare_vmcs02 is called when the L1 guest hypervisor runs its nested
9565 * L2 guest. L1 has a vmcs for L2 (vmcs12), and this function "merges" it
b4619660 9566 * with L0's requirements for its guest (a.k.a. vmcs01), so we can run the L2
fe3ef05c
NHE
9567 * guest in a way that will both be appropriate to L1's requests, and our
9568 * needs. In addition to modifying the active vmcs (which is vmcs02), this
9569 * function also has additional necessary side-effects, like setting various
9570 * vcpu->arch fields.
9571 */
9572static void prepare_vmcs02(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
9573{
9574 struct vcpu_vmx *vmx = to_vmx(vcpu);
9575 u32 exec_control;
9576
9577 vmcs_write16(GUEST_ES_SELECTOR, vmcs12->guest_es_selector);
9578 vmcs_write16(GUEST_CS_SELECTOR, vmcs12->guest_cs_selector);
9579 vmcs_write16(GUEST_SS_SELECTOR, vmcs12->guest_ss_selector);
9580 vmcs_write16(GUEST_DS_SELECTOR, vmcs12->guest_ds_selector);
9581 vmcs_write16(GUEST_FS_SELECTOR, vmcs12->guest_fs_selector);
9582 vmcs_write16(GUEST_GS_SELECTOR, vmcs12->guest_gs_selector);
9583 vmcs_write16(GUEST_LDTR_SELECTOR, vmcs12->guest_ldtr_selector);
9584 vmcs_write16(GUEST_TR_SELECTOR, vmcs12->guest_tr_selector);
9585 vmcs_write32(GUEST_ES_LIMIT, vmcs12->guest_es_limit);
9586 vmcs_write32(GUEST_CS_LIMIT, vmcs12->guest_cs_limit);
9587 vmcs_write32(GUEST_SS_LIMIT, vmcs12->guest_ss_limit);
9588 vmcs_write32(GUEST_DS_LIMIT, vmcs12->guest_ds_limit);
9589 vmcs_write32(GUEST_FS_LIMIT, vmcs12->guest_fs_limit);
9590 vmcs_write32(GUEST_GS_LIMIT, vmcs12->guest_gs_limit);
9591 vmcs_write32(GUEST_LDTR_LIMIT, vmcs12->guest_ldtr_limit);
9592 vmcs_write32(GUEST_TR_LIMIT, vmcs12->guest_tr_limit);
9593 vmcs_write32(GUEST_GDTR_LIMIT, vmcs12->guest_gdtr_limit);
9594 vmcs_write32(GUEST_IDTR_LIMIT, vmcs12->guest_idtr_limit);
9595 vmcs_write32(GUEST_ES_AR_BYTES, vmcs12->guest_es_ar_bytes);
9596 vmcs_write32(GUEST_CS_AR_BYTES, vmcs12->guest_cs_ar_bytes);
9597 vmcs_write32(GUEST_SS_AR_BYTES, vmcs12->guest_ss_ar_bytes);
9598 vmcs_write32(GUEST_DS_AR_BYTES, vmcs12->guest_ds_ar_bytes);
9599 vmcs_write32(GUEST_FS_AR_BYTES, vmcs12->guest_fs_ar_bytes);
9600 vmcs_write32(GUEST_GS_AR_BYTES, vmcs12->guest_gs_ar_bytes);
9601 vmcs_write32(GUEST_LDTR_AR_BYTES, vmcs12->guest_ldtr_ar_bytes);
9602 vmcs_write32(GUEST_TR_AR_BYTES, vmcs12->guest_tr_ar_bytes);
9603 vmcs_writel(GUEST_ES_BASE, vmcs12->guest_es_base);
9604 vmcs_writel(GUEST_CS_BASE, vmcs12->guest_cs_base);
9605 vmcs_writel(GUEST_SS_BASE, vmcs12->guest_ss_base);
9606 vmcs_writel(GUEST_DS_BASE, vmcs12->guest_ds_base);
9607 vmcs_writel(GUEST_FS_BASE, vmcs12->guest_fs_base);
9608 vmcs_writel(GUEST_GS_BASE, vmcs12->guest_gs_base);
9609 vmcs_writel(GUEST_LDTR_BASE, vmcs12->guest_ldtr_base);
9610 vmcs_writel(GUEST_TR_BASE, vmcs12->guest_tr_base);
9611 vmcs_writel(GUEST_GDTR_BASE, vmcs12->guest_gdtr_base);
9612 vmcs_writel(GUEST_IDTR_BASE, vmcs12->guest_idtr_base);
9613
2996fca0
JK
9614 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS) {
9615 kvm_set_dr(vcpu, 7, vmcs12->guest_dr7);
9616 vmcs_write64(GUEST_IA32_DEBUGCTL, vmcs12->guest_ia32_debugctl);
9617 } else {
9618 kvm_set_dr(vcpu, 7, vcpu->arch.dr7);
9619 vmcs_write64(GUEST_IA32_DEBUGCTL, vmx->nested.vmcs01_debugctl);
9620 }
fe3ef05c
NHE
9621 vmcs_write32(VM_ENTRY_INTR_INFO_FIELD,
9622 vmcs12->vm_entry_intr_info_field);
9623 vmcs_write32(VM_ENTRY_EXCEPTION_ERROR_CODE,
9624 vmcs12->vm_entry_exception_error_code);
9625 vmcs_write32(VM_ENTRY_INSTRUCTION_LEN,
9626 vmcs12->vm_entry_instruction_len);
9627 vmcs_write32(GUEST_INTERRUPTIBILITY_INFO,
9628 vmcs12->guest_interruptibility_info);
fe3ef05c 9629 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->guest_sysenter_cs);
63fbf59f 9630 vmx_set_rflags(vcpu, vmcs12->guest_rflags);
fe3ef05c
NHE
9631 vmcs_writel(GUEST_PENDING_DBG_EXCEPTIONS,
9632 vmcs12->guest_pending_dbg_exceptions);
9633 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->guest_sysenter_esp);
9634 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->guest_sysenter_eip);
9635
81dc01f7
WL
9636 if (nested_cpu_has_xsaves(vmcs12))
9637 vmcs_write64(XSS_EXIT_BITMAP, vmcs12->xss_exit_bitmap);
fe3ef05c
NHE
9638 vmcs_write64(VMCS_LINK_POINTER, -1ull);
9639
f4124500
JK
9640 exec_control = vmcs12->pin_based_vm_exec_control;
9641 exec_control |= vmcs_config.pin_based_exec_ctrl;
705699a1
WV
9642 exec_control &= ~PIN_BASED_VMX_PREEMPTION_TIMER;
9643
9644 if (nested_cpu_has_posted_intr(vmcs12)) {
9645 /*
9646 * Note that we use L0's vector here and in
9647 * vmx_deliver_nested_posted_interrupt.
9648 */
9649 vmx->nested.posted_intr_nv = vmcs12->posted_intr_nv;
9650 vmx->nested.pi_pending = false;
0bcf261c 9651 vmcs_write16(POSTED_INTR_NV, POSTED_INTR_VECTOR);
705699a1
WV
9652 vmcs_write64(POSTED_INTR_DESC_ADDR,
9653 page_to_phys(vmx->nested.pi_desc_page) +
9654 (unsigned long)(vmcs12->posted_intr_desc_addr &
9655 (PAGE_SIZE - 1)));
9656 } else
9657 exec_control &= ~PIN_BASED_POSTED_INTR;
9658
f4124500 9659 vmcs_write32(PIN_BASED_VM_EXEC_CONTROL, exec_control);
fe3ef05c 9660
f4124500
JK
9661 vmx->nested.preemption_timer_expired = false;
9662 if (nested_cpu_has_preemption_timer(vmcs12))
9663 vmx_start_preemption_timer(vcpu);
0238ea91 9664
fe3ef05c
NHE
9665 /*
9666 * Whether page-faults are trapped is determined by a combination of
9667 * 3 settings: PFEC_MASK, PFEC_MATCH and EXCEPTION_BITMAP.PF.
9668 * If enable_ept, L0 doesn't care about page faults and we should
9669 * set all of these to L1's desires. However, if !enable_ept, L0 does
9670 * care about (at least some) page faults, and because it is not easy
9671 * (if at all possible?) to merge L0 and L1's desires, we simply ask
9672 * to exit on each and every L2 page fault. This is done by setting
9673 * MASK=MATCH=0 and (see below) EB.PF=1.
9674 * Note that below we don't need special code to set EB.PF beyond the
9675 * "or"ing of the EB of vmcs01 and vmcs12, because when enable_ept,
9676 * vmcs01's EB.PF is 0 so the "or" will take vmcs12's value, and when
9677 * !enable_ept, EB.PF is 1, so the "or" will always be 1.
9678 *
9679 * A problem with this approach (when !enable_ept) is that L1 may be
9680 * injected with more page faults than it asked for. This could have
9681 * caused problems, but in practice existing hypervisors don't care.
9682 * To fix this, we will need to emulate the PFEC checking (on the L1
9683 * page tables), using walk_addr(), when injecting PFs to L1.
9684 */
9685 vmcs_write32(PAGE_FAULT_ERROR_CODE_MASK,
9686 enable_ept ? vmcs12->page_fault_error_code_mask : 0);
9687 vmcs_write32(PAGE_FAULT_ERROR_CODE_MATCH,
9688 enable_ept ? vmcs12->page_fault_error_code_match : 0);
9689
9690 if (cpu_has_secondary_exec_ctrls()) {
f4124500 9691 exec_control = vmx_secondary_exec_control(vmx);
e2821620 9692
fe3ef05c 9693 /* Take the following fields only from vmcs12 */
696dfd95 9694 exec_control &= ~(SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES |
b3a2a907 9695 SECONDARY_EXEC_RDTSCP |
696dfd95 9696 SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY |
8b3e34e4
XG
9697 SECONDARY_EXEC_APIC_REGISTER_VIRT |
9698 SECONDARY_EXEC_PCOMMIT);
fe3ef05c
NHE
9699 if (nested_cpu_has(vmcs12,
9700 CPU_BASED_ACTIVATE_SECONDARY_CONTROLS))
9701 exec_control |= vmcs12->secondary_vm_exec_control;
9702
9703 if (exec_control & SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES) {
fe3ef05c
NHE
9704 /*
9705 * If translation failed, no matter: This feature asks
9706 * to exit when accessing the given address, and if it
9707 * can never be accessed, this feature won't do
9708 * anything anyway.
9709 */
9710 if (!vmx->nested.apic_access_page)
9711 exec_control &=
9712 ~SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
9713 else
9714 vmcs_write64(APIC_ACCESS_ADDR,
9715 page_to_phys(vmx->nested.apic_access_page));
f2b93280 9716 } else if (!(nested_cpu_has_virt_x2apic_mode(vmcs12)) &&
35754c98 9717 cpu_need_virtualize_apic_accesses(&vmx->vcpu)) {
ca3f257a
JK
9718 exec_control |=
9719 SECONDARY_EXEC_VIRTUALIZE_APIC_ACCESSES;
38b99173 9720 kvm_vcpu_reload_apic_access_page(vcpu);
fe3ef05c
NHE
9721 }
9722
608406e2
WV
9723 if (exec_control & SECONDARY_EXEC_VIRTUAL_INTR_DELIVERY) {
9724 vmcs_write64(EOI_EXIT_BITMAP0,
9725 vmcs12->eoi_exit_bitmap0);
9726 vmcs_write64(EOI_EXIT_BITMAP1,
9727 vmcs12->eoi_exit_bitmap1);
9728 vmcs_write64(EOI_EXIT_BITMAP2,
9729 vmcs12->eoi_exit_bitmap2);
9730 vmcs_write64(EOI_EXIT_BITMAP3,
9731 vmcs12->eoi_exit_bitmap3);
9732 vmcs_write16(GUEST_INTR_STATUS,
9733 vmcs12->guest_intr_status);
9734 }
9735
fe3ef05c
NHE
9736 vmcs_write32(SECONDARY_VM_EXEC_CONTROL, exec_control);
9737 }
9738
9739
9740 /*
9741 * Set host-state according to L0's settings (vmcs12 is irrelevant here)
9742 * Some constant fields are set here by vmx_set_constant_host_state().
9743 * Other fields are different per CPU, and will be set later when
9744 * vmx_vcpu_load() is called, and when vmx_save_host_state() is called.
9745 */
a547c6db 9746 vmx_set_constant_host_state(vmx);
fe3ef05c
NHE
9747
9748 /*
9749 * HOST_RSP is normally set correctly in vmx_vcpu_run() just before
9750 * entry, but only if the current (host) sp changed from the value
9751 * we wrote last (vmx->host_rsp). This cache is no longer relevant
9752 * if we switch vmcs, and rather than hold a separate cache per vmcs,
9753 * here we just force the write to happen on entry.
9754 */
9755 vmx->host_rsp = 0;
9756
9757 exec_control = vmx_exec_control(vmx); /* L0's desires */
9758 exec_control &= ~CPU_BASED_VIRTUAL_INTR_PENDING;
9759 exec_control &= ~CPU_BASED_VIRTUAL_NMI_PENDING;
9760 exec_control &= ~CPU_BASED_TPR_SHADOW;
9761 exec_control |= vmcs12->cpu_based_vm_exec_control;
a7c0b07d
WL
9762
9763 if (exec_control & CPU_BASED_TPR_SHADOW) {
9764 vmcs_write64(VIRTUAL_APIC_PAGE_ADDR,
9765 page_to_phys(vmx->nested.virtual_apic_page));
9766 vmcs_write32(TPR_THRESHOLD, vmcs12->tpr_threshold);
9767 }
9768
3af18d9c 9769 if (cpu_has_vmx_msr_bitmap() &&
670125bd
WV
9770 exec_control & CPU_BASED_USE_MSR_BITMAPS) {
9771 nested_vmx_merge_msr_bitmap(vcpu, vmcs12);
9772 /* MSR_BITMAP will be set by following vmx_set_efer. */
3af18d9c
WV
9773 } else
9774 exec_control &= ~CPU_BASED_USE_MSR_BITMAPS;
9775
fe3ef05c 9776 /*
3af18d9c 9777 * Merging of IO bitmap not currently supported.
fe3ef05c
NHE
9778 * Rather, exit every time.
9779 */
fe3ef05c
NHE
9780 exec_control &= ~CPU_BASED_USE_IO_BITMAPS;
9781 exec_control |= CPU_BASED_UNCOND_IO_EXITING;
9782
9783 vmcs_write32(CPU_BASED_VM_EXEC_CONTROL, exec_control);
9784
9785 /* EXCEPTION_BITMAP and CR0_GUEST_HOST_MASK should basically be the
9786 * bitwise-or of what L1 wants to trap for L2, and what we want to
9787 * trap. Note that CR0.TS also needs updating - we do this later.
9788 */
9789 update_exception_bitmap(vcpu);
9790 vcpu->arch.cr0_guest_owned_bits &= ~vmcs12->cr0_guest_host_mask;
9791 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
9792
8049d651
NHE
9793 /* L2->L1 exit controls are emulated - the hardware exit is to L0 so
9794 * we should use its exit controls. Note that VM_EXIT_LOAD_IA32_EFER
9795 * bits are further modified by vmx_set_efer() below.
9796 */
f4124500 9797 vmcs_write32(VM_EXIT_CONTROLS, vmcs_config.vmexit_ctrl);
8049d651
NHE
9798
9799 /* vmcs12's VM_ENTRY_LOAD_IA32_EFER and VM_ENTRY_IA32E_MODE are
9800 * emulated by vmx_set_efer(), below.
9801 */
2961e876 9802 vm_entry_controls_init(vmx,
8049d651
NHE
9803 (vmcs12->vm_entry_controls & ~VM_ENTRY_LOAD_IA32_EFER &
9804 ~VM_ENTRY_IA32E_MODE) |
fe3ef05c
NHE
9805 (vmcs_config.vmentry_ctrl & ~VM_ENTRY_IA32E_MODE));
9806
44811c02 9807 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_PAT) {
fe3ef05c 9808 vmcs_write64(GUEST_IA32_PAT, vmcs12->guest_ia32_pat);
44811c02
JK
9809 vcpu->arch.pat = vmcs12->guest_ia32_pat;
9810 } else if (vmcs_config.vmentry_ctrl & VM_ENTRY_LOAD_IA32_PAT)
fe3ef05c
NHE
9811 vmcs_write64(GUEST_IA32_PAT, vmx->vcpu.arch.pat);
9812
9813
9814 set_cr4_guest_host_mask(vmx);
9815
36be0b9d
PB
9816 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_BNDCFGS)
9817 vmcs_write64(GUEST_BNDCFGS, vmcs12->guest_bndcfgs);
9818
27fc51b2
NHE
9819 if (vmcs12->cpu_based_vm_exec_control & CPU_BASED_USE_TSC_OFFSETING)
9820 vmcs_write64(TSC_OFFSET,
9821 vmx->nested.vmcs01_tsc_offset + vmcs12->tsc_offset);
9822 else
9823 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
fe3ef05c
NHE
9824
9825 if (enable_vpid) {
9826 /*
5c614b35
WL
9827 * There is no direct mapping between vpid02 and vpid12, the
9828 * vpid02 is per-vCPU for L0 and reused while the value of
9829 * vpid12 is changed w/ one invvpid during nested vmentry.
9830 * The vpid12 is allocated by L1 for L2, so it will not
9831 * influence global bitmap(for vpid01 and vpid02 allocation)
9832 * even if spawn a lot of nested vCPUs.
fe3ef05c 9833 */
5c614b35
WL
9834 if (nested_cpu_has_vpid(vmcs12) && vmx->nested.vpid02) {
9835 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->nested.vpid02);
9836 if (vmcs12->virtual_processor_id != vmx->nested.last_vpid) {
9837 vmx->nested.last_vpid = vmcs12->virtual_processor_id;
9838 __vmx_flush_tlb(vcpu, to_vmx(vcpu)->nested.vpid02);
9839 }
9840 } else {
9841 vmcs_write16(VIRTUAL_PROCESSOR_ID, vmx->vpid);
9842 vmx_flush_tlb(vcpu);
9843 }
9844
fe3ef05c
NHE
9845 }
9846
155a97a3
NHE
9847 if (nested_cpu_has_ept(vmcs12)) {
9848 kvm_mmu_unload(vcpu);
9849 nested_ept_init_mmu_context(vcpu);
9850 }
9851
fe3ef05c
NHE
9852 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER)
9853 vcpu->arch.efer = vmcs12->guest_ia32_efer;
d1fa0352 9854 else if (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE)
fe3ef05c
NHE
9855 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
9856 else
9857 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
9858 /* Note: modifies VM_ENTRY/EXIT_CONTROLS and GUEST/HOST_IA32_EFER */
9859 vmx_set_efer(vcpu, vcpu->arch.efer);
9860
9861 /*
9862 * This sets GUEST_CR0 to vmcs12->guest_cr0, with possibly a modified
9863 * TS bit (for lazy fpu) and bits which we consider mandatory enabled.
9864 * The CR0_READ_SHADOW is what L2 should have expected to read given
9865 * the specifications by L1; It's not enough to take
9866 * vmcs12->cr0_read_shadow because on our cr0_guest_host_mask we we
9867 * have more bits than L1 expected.
9868 */
9869 vmx_set_cr0(vcpu, vmcs12->guest_cr0);
9870 vmcs_writel(CR0_READ_SHADOW, nested_read_cr0(vmcs12));
9871
9872 vmx_set_cr4(vcpu, vmcs12->guest_cr4);
9873 vmcs_writel(CR4_READ_SHADOW, nested_read_cr4(vmcs12));
9874
9875 /* shadow page tables on either EPT or shadow page tables */
9876 kvm_set_cr3(vcpu, vmcs12->guest_cr3);
9877 kvm_mmu_reset_context(vcpu);
9878
feaf0c7d
GN
9879 if (!enable_ept)
9880 vcpu->arch.walk_mmu->inject_page_fault = vmx_inject_page_fault_nested;
9881
3633cfc3
NHE
9882 /*
9883 * L1 may access the L2's PDPTR, so save them to construct vmcs12
9884 */
9885 if (enable_ept) {
9886 vmcs_write64(GUEST_PDPTR0, vmcs12->guest_pdptr0);
9887 vmcs_write64(GUEST_PDPTR1, vmcs12->guest_pdptr1);
9888 vmcs_write64(GUEST_PDPTR2, vmcs12->guest_pdptr2);
9889 vmcs_write64(GUEST_PDPTR3, vmcs12->guest_pdptr3);
9890 }
9891
fe3ef05c
NHE
9892 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->guest_rsp);
9893 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->guest_rip);
9894}
9895
cd232ad0
NHE
9896/*
9897 * nested_vmx_run() handles a nested entry, i.e., a VMLAUNCH or VMRESUME on L1
9898 * for running an L2 nested guest.
9899 */
9900static int nested_vmx_run(struct kvm_vcpu *vcpu, bool launch)
9901{
9902 struct vmcs12 *vmcs12;
9903 struct vcpu_vmx *vmx = to_vmx(vcpu);
9904 int cpu;
9905 struct loaded_vmcs *vmcs02;
384bb783 9906 bool ia32e;
ff651cb6 9907 u32 msr_entry_idx;
cd232ad0
NHE
9908
9909 if (!nested_vmx_check_permission(vcpu) ||
9910 !nested_vmx_check_vmcs12(vcpu))
9911 return 1;
9912
9913 skip_emulated_instruction(vcpu);
9914 vmcs12 = get_vmcs12(vcpu);
9915
012f83cb
AG
9916 if (enable_shadow_vmcs)
9917 copy_shadow_to_vmcs12(vmx);
9918
7c177938
NHE
9919 /*
9920 * The nested entry process starts with enforcing various prerequisites
9921 * on vmcs12 as required by the Intel SDM, and act appropriately when
9922 * they fail: As the SDM explains, some conditions should cause the
9923 * instruction to fail, while others will cause the instruction to seem
9924 * to succeed, but return an EXIT_REASON_INVALID_STATE.
9925 * To speed up the normal (success) code path, we should avoid checking
9926 * for misconfigurations which will anyway be caught by the processor
9927 * when using the merged vmcs02.
9928 */
9929 if (vmcs12->launch_state == launch) {
9930 nested_vmx_failValid(vcpu,
9931 launch ? VMXERR_VMLAUNCH_NONCLEAR_VMCS
9932 : VMXERR_VMRESUME_NONLAUNCHED_VMCS);
9933 return 1;
9934 }
9935
6dfacadd
JK
9936 if (vmcs12->guest_activity_state != GUEST_ACTIVITY_ACTIVE &&
9937 vmcs12->guest_activity_state != GUEST_ACTIVITY_HLT) {
26539bd0
PB
9938 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9939 return 1;
9940 }
9941
3af18d9c 9942 if (!nested_get_vmcs12_pages(vcpu, vmcs12)) {
7c177938
NHE
9943 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9944 return 1;
9945 }
9946
3af18d9c 9947 if (nested_vmx_check_msr_bitmap_controls(vcpu, vmcs12)) {
7c177938
NHE
9948 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9949 return 1;
9950 }
9951
f2b93280
WV
9952 if (nested_vmx_check_apicv_controls(vcpu, vmcs12)) {
9953 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9954 return 1;
9955 }
9956
e9ac033e
EK
9957 if (nested_vmx_check_msr_switch_controls(vcpu, vmcs12)) {
9958 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9959 return 1;
9960 }
9961
7c177938 9962 if (!vmx_control_verify(vmcs12->cpu_based_vm_exec_control,
b9c237bb
WV
9963 vmx->nested.nested_vmx_true_procbased_ctls_low,
9964 vmx->nested.nested_vmx_procbased_ctls_high) ||
7c177938 9965 !vmx_control_verify(vmcs12->secondary_vm_exec_control,
b9c237bb
WV
9966 vmx->nested.nested_vmx_secondary_ctls_low,
9967 vmx->nested.nested_vmx_secondary_ctls_high) ||
7c177938 9968 !vmx_control_verify(vmcs12->pin_based_vm_exec_control,
b9c237bb
WV
9969 vmx->nested.nested_vmx_pinbased_ctls_low,
9970 vmx->nested.nested_vmx_pinbased_ctls_high) ||
7c177938 9971 !vmx_control_verify(vmcs12->vm_exit_controls,
b9c237bb
WV
9972 vmx->nested.nested_vmx_true_exit_ctls_low,
9973 vmx->nested.nested_vmx_exit_ctls_high) ||
7c177938 9974 !vmx_control_verify(vmcs12->vm_entry_controls,
b9c237bb
WV
9975 vmx->nested.nested_vmx_true_entry_ctls_low,
9976 vmx->nested.nested_vmx_entry_ctls_high))
7c177938
NHE
9977 {
9978 nested_vmx_failValid(vcpu, VMXERR_ENTRY_INVALID_CONTROL_FIELD);
9979 return 1;
9980 }
9981
9982 if (((vmcs12->host_cr0 & VMXON_CR0_ALWAYSON) != VMXON_CR0_ALWAYSON) ||
9983 ((vmcs12->host_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9984 nested_vmx_failValid(vcpu,
9985 VMXERR_ENTRY_INVALID_HOST_STATE_FIELD);
9986 return 1;
9987 }
9988
b9c237bb 9989 if (!nested_cr0_valid(vcpu, vmcs12->guest_cr0) ||
7c177938
NHE
9990 ((vmcs12->guest_cr4 & VMXON_CR4_ALWAYSON) != VMXON_CR4_ALWAYSON)) {
9991 nested_vmx_entry_failure(vcpu, vmcs12,
9992 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
9993 return 1;
9994 }
9995 if (vmcs12->vmcs_link_pointer != -1ull) {
9996 nested_vmx_entry_failure(vcpu, vmcs12,
9997 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_VMCS_LINK_PTR);
9998 return 1;
9999 }
10000
384bb783 10001 /*
cb0c8cda 10002 * If the load IA32_EFER VM-entry control is 1, the following checks
384bb783
JK
10003 * are performed on the field for the IA32_EFER MSR:
10004 * - Bits reserved in the IA32_EFER MSR must be 0.
10005 * - Bit 10 (corresponding to IA32_EFER.LMA) must equal the value of
10006 * the IA-32e mode guest VM-exit control. It must also be identical
10007 * to bit 8 (LME) if bit 31 in the CR0 field (corresponding to
10008 * CR0.PG) is 1.
10009 */
10010 if (vmcs12->vm_entry_controls & VM_ENTRY_LOAD_IA32_EFER) {
10011 ia32e = (vmcs12->vm_entry_controls & VM_ENTRY_IA32E_MODE) != 0;
10012 if (!kvm_valid_efer(vcpu, vmcs12->guest_ia32_efer) ||
10013 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LMA) ||
10014 ((vmcs12->guest_cr0 & X86_CR0_PG) &&
10015 ia32e != !!(vmcs12->guest_ia32_efer & EFER_LME))) {
10016 nested_vmx_entry_failure(vcpu, vmcs12,
10017 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10018 return 1;
10019 }
10020 }
10021
10022 /*
10023 * If the load IA32_EFER VM-exit control is 1, bits reserved in the
10024 * IA32_EFER MSR must be 0 in the field for that register. In addition,
10025 * the values of the LMA and LME bits in the field must each be that of
10026 * the host address-space size VM-exit control.
10027 */
10028 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER) {
10029 ia32e = (vmcs12->vm_exit_controls &
10030 VM_EXIT_HOST_ADDR_SPACE_SIZE) != 0;
10031 if (!kvm_valid_efer(vcpu, vmcs12->host_ia32_efer) ||
10032 ia32e != !!(vmcs12->host_ia32_efer & EFER_LMA) ||
10033 ia32e != !!(vmcs12->host_ia32_efer & EFER_LME)) {
10034 nested_vmx_entry_failure(vcpu, vmcs12,
10035 EXIT_REASON_INVALID_STATE, ENTRY_FAIL_DEFAULT);
10036 return 1;
10037 }
10038 }
10039
7c177938
NHE
10040 /*
10041 * We're finally done with prerequisite checking, and can start with
10042 * the nested entry.
10043 */
10044
cd232ad0
NHE
10045 vmcs02 = nested_get_current_vmcs02(vmx);
10046 if (!vmcs02)
10047 return -ENOMEM;
10048
10049 enter_guest_mode(vcpu);
10050
10051 vmx->nested.vmcs01_tsc_offset = vmcs_read64(TSC_OFFSET);
10052
2996fca0
JK
10053 if (!(vmcs12->vm_entry_controls & VM_ENTRY_LOAD_DEBUG_CONTROLS))
10054 vmx->nested.vmcs01_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10055
cd232ad0
NHE
10056 cpu = get_cpu();
10057 vmx->loaded_vmcs = vmcs02;
10058 vmx_vcpu_put(vcpu);
10059 vmx_vcpu_load(vcpu, cpu);
10060 vcpu->cpu = cpu;
10061 put_cpu();
10062
36c3cc42
JK
10063 vmx_segment_cache_clear(vmx);
10064
cd232ad0
NHE
10065 prepare_vmcs02(vcpu, vmcs12);
10066
ff651cb6
WV
10067 msr_entry_idx = nested_vmx_load_msr(vcpu,
10068 vmcs12->vm_entry_msr_load_addr,
10069 vmcs12->vm_entry_msr_load_count);
10070 if (msr_entry_idx) {
10071 leave_guest_mode(vcpu);
10072 vmx_load_vmcs01(vcpu);
10073 nested_vmx_entry_failure(vcpu, vmcs12,
10074 EXIT_REASON_MSR_LOAD_FAIL, msr_entry_idx);
10075 return 1;
10076 }
10077
10078 vmcs12->launch_state = 1;
10079
6dfacadd 10080 if (vmcs12->guest_activity_state == GUEST_ACTIVITY_HLT)
5cb56059 10081 return kvm_vcpu_halt(vcpu);
6dfacadd 10082
7af40ad3
JK
10083 vmx->nested.nested_run_pending = 1;
10084
cd232ad0
NHE
10085 /*
10086 * Note no nested_vmx_succeed or nested_vmx_fail here. At this point
10087 * we are no longer running L1, and VMLAUNCH/VMRESUME has not yet
10088 * returned as far as L1 is concerned. It will only return (and set
10089 * the success flag) when L2 exits (see nested_vmx_vmexit()).
10090 */
10091 return 1;
10092}
10093
4704d0be
NHE
10094/*
10095 * On a nested exit from L2 to L1, vmcs12.guest_cr0 might not be up-to-date
10096 * because L2 may have changed some cr0 bits directly (CRO_GUEST_HOST_MASK).
10097 * This function returns the new value we should put in vmcs12.guest_cr0.
10098 * It's not enough to just return the vmcs02 GUEST_CR0. Rather,
10099 * 1. Bits that neither L0 nor L1 trapped, were set directly by L2 and are now
10100 * available in vmcs02 GUEST_CR0. (Note: It's enough to check that L0
10101 * didn't trap the bit, because if L1 did, so would L0).
10102 * 2. Bits that L1 asked to trap (and therefore L0 also did) could not have
10103 * been modified by L2, and L1 knows it. So just leave the old value of
10104 * the bit from vmcs12.guest_cr0. Note that the bit from vmcs02 GUEST_CR0
10105 * isn't relevant, because if L0 traps this bit it can set it to anything.
10106 * 3. Bits that L1 didn't trap, but L0 did. L1 believes the guest could have
10107 * changed these bits, and therefore they need to be updated, but L0
10108 * didn't necessarily allow them to be changed in GUEST_CR0 - and rather
10109 * put them in vmcs02 CR0_READ_SHADOW. So take these bits from there.
10110 */
10111static inline unsigned long
10112vmcs12_guest_cr0(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10113{
10114 return
10115 /*1*/ (vmcs_readl(GUEST_CR0) & vcpu->arch.cr0_guest_owned_bits) |
10116 /*2*/ (vmcs12->guest_cr0 & vmcs12->cr0_guest_host_mask) |
10117 /*3*/ (vmcs_readl(CR0_READ_SHADOW) & ~(vmcs12->cr0_guest_host_mask |
10118 vcpu->arch.cr0_guest_owned_bits));
10119}
10120
10121static inline unsigned long
10122vmcs12_guest_cr4(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12)
10123{
10124 return
10125 /*1*/ (vmcs_readl(GUEST_CR4) & vcpu->arch.cr4_guest_owned_bits) |
10126 /*2*/ (vmcs12->guest_cr4 & vmcs12->cr4_guest_host_mask) |
10127 /*3*/ (vmcs_readl(CR4_READ_SHADOW) & ~(vmcs12->cr4_guest_host_mask |
10128 vcpu->arch.cr4_guest_owned_bits));
10129}
10130
5f3d5799
JK
10131static void vmcs12_save_pending_event(struct kvm_vcpu *vcpu,
10132 struct vmcs12 *vmcs12)
10133{
10134 u32 idt_vectoring;
10135 unsigned int nr;
10136
851eb667 10137 if (vcpu->arch.exception.pending && vcpu->arch.exception.reinject) {
5f3d5799
JK
10138 nr = vcpu->arch.exception.nr;
10139 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10140
10141 if (kvm_exception_is_soft(nr)) {
10142 vmcs12->vm_exit_instruction_len =
10143 vcpu->arch.event_exit_inst_len;
10144 idt_vectoring |= INTR_TYPE_SOFT_EXCEPTION;
10145 } else
10146 idt_vectoring |= INTR_TYPE_HARD_EXCEPTION;
10147
10148 if (vcpu->arch.exception.has_error_code) {
10149 idt_vectoring |= VECTORING_INFO_DELIVER_CODE_MASK;
10150 vmcs12->idt_vectoring_error_code =
10151 vcpu->arch.exception.error_code;
10152 }
10153
10154 vmcs12->idt_vectoring_info_field = idt_vectoring;
cd2633c5 10155 } else if (vcpu->arch.nmi_injected) {
5f3d5799
JK
10156 vmcs12->idt_vectoring_info_field =
10157 INTR_TYPE_NMI_INTR | INTR_INFO_VALID_MASK | NMI_VECTOR;
10158 } else if (vcpu->arch.interrupt.pending) {
10159 nr = vcpu->arch.interrupt.nr;
10160 idt_vectoring = nr | VECTORING_INFO_VALID_MASK;
10161
10162 if (vcpu->arch.interrupt.soft) {
10163 idt_vectoring |= INTR_TYPE_SOFT_INTR;
10164 vmcs12->vm_entry_instruction_len =
10165 vcpu->arch.event_exit_inst_len;
10166 } else
10167 idt_vectoring |= INTR_TYPE_EXT_INTR;
10168
10169 vmcs12->idt_vectoring_info_field = idt_vectoring;
10170 }
10171}
10172
b6b8a145
JK
10173static int vmx_check_nested_events(struct kvm_vcpu *vcpu, bool external_intr)
10174{
10175 struct vcpu_vmx *vmx = to_vmx(vcpu);
10176
f4124500
JK
10177 if (nested_cpu_has_preemption_timer(get_vmcs12(vcpu)) &&
10178 vmx->nested.preemption_timer_expired) {
10179 if (vmx->nested.nested_run_pending)
10180 return -EBUSY;
10181 nested_vmx_vmexit(vcpu, EXIT_REASON_PREEMPTION_TIMER, 0, 0);
10182 return 0;
10183 }
10184
b6b8a145 10185 if (vcpu->arch.nmi_pending && nested_exit_on_nmi(vcpu)) {
220c5672
JK
10186 if (vmx->nested.nested_run_pending ||
10187 vcpu->arch.interrupt.pending)
b6b8a145
JK
10188 return -EBUSY;
10189 nested_vmx_vmexit(vcpu, EXIT_REASON_EXCEPTION_NMI,
10190 NMI_VECTOR | INTR_TYPE_NMI_INTR |
10191 INTR_INFO_VALID_MASK, 0);
10192 /*
10193 * The NMI-triggered VM exit counts as injection:
10194 * clear this one and block further NMIs.
10195 */
10196 vcpu->arch.nmi_pending = 0;
10197 vmx_set_nmi_mask(vcpu, true);
10198 return 0;
10199 }
10200
10201 if ((kvm_cpu_has_interrupt(vcpu) || external_intr) &&
10202 nested_exit_on_intr(vcpu)) {
10203 if (vmx->nested.nested_run_pending)
10204 return -EBUSY;
10205 nested_vmx_vmexit(vcpu, EXIT_REASON_EXTERNAL_INTERRUPT, 0, 0);
705699a1 10206 return 0;
b6b8a145
JK
10207 }
10208
705699a1 10209 return vmx_complete_nested_posted_interrupt(vcpu);
b6b8a145
JK
10210}
10211
f4124500
JK
10212static u32 vmx_get_preemption_timer_value(struct kvm_vcpu *vcpu)
10213{
10214 ktime_t remaining =
10215 hrtimer_get_remaining(&to_vmx(vcpu)->nested.preemption_timer);
10216 u64 value;
10217
10218 if (ktime_to_ns(remaining) <= 0)
10219 return 0;
10220
10221 value = ktime_to_ns(remaining) * vcpu->arch.virtual_tsc_khz;
10222 do_div(value, 1000000);
10223 return value >> VMX_MISC_EMULATED_PREEMPTION_TIMER_RATE;
10224}
10225
4704d0be
NHE
10226/*
10227 * prepare_vmcs12 is part of what we need to do when the nested L2 guest exits
10228 * and we want to prepare to run its L1 parent. L1 keeps a vmcs for L2 (vmcs12),
10229 * and this function updates it to reflect the changes to the guest state while
10230 * L2 was running (and perhaps made some exits which were handled directly by L0
10231 * without going back to L1), and to reflect the exit reason.
10232 * Note that we do not have to copy here all VMCS fields, just those that
10233 * could have changed by the L2 guest or the exit - i.e., the guest-state and
10234 * exit-information fields only. Other fields are modified by L1 with VMWRITE,
10235 * which already writes to vmcs12 directly.
10236 */
533558bc
JK
10237static void prepare_vmcs12(struct kvm_vcpu *vcpu, struct vmcs12 *vmcs12,
10238 u32 exit_reason, u32 exit_intr_info,
10239 unsigned long exit_qualification)
4704d0be
NHE
10240{
10241 /* update guest state fields: */
10242 vmcs12->guest_cr0 = vmcs12_guest_cr0(vcpu, vmcs12);
10243 vmcs12->guest_cr4 = vmcs12_guest_cr4(vcpu, vmcs12);
10244
4704d0be
NHE
10245 vmcs12->guest_rsp = kvm_register_read(vcpu, VCPU_REGS_RSP);
10246 vmcs12->guest_rip = kvm_register_read(vcpu, VCPU_REGS_RIP);
10247 vmcs12->guest_rflags = vmcs_readl(GUEST_RFLAGS);
10248
10249 vmcs12->guest_es_selector = vmcs_read16(GUEST_ES_SELECTOR);
10250 vmcs12->guest_cs_selector = vmcs_read16(GUEST_CS_SELECTOR);
10251 vmcs12->guest_ss_selector = vmcs_read16(GUEST_SS_SELECTOR);
10252 vmcs12->guest_ds_selector = vmcs_read16(GUEST_DS_SELECTOR);
10253 vmcs12->guest_fs_selector = vmcs_read16(GUEST_FS_SELECTOR);
10254 vmcs12->guest_gs_selector = vmcs_read16(GUEST_GS_SELECTOR);
10255 vmcs12->guest_ldtr_selector = vmcs_read16(GUEST_LDTR_SELECTOR);
10256 vmcs12->guest_tr_selector = vmcs_read16(GUEST_TR_SELECTOR);
10257 vmcs12->guest_es_limit = vmcs_read32(GUEST_ES_LIMIT);
10258 vmcs12->guest_cs_limit = vmcs_read32(GUEST_CS_LIMIT);
10259 vmcs12->guest_ss_limit = vmcs_read32(GUEST_SS_LIMIT);
10260 vmcs12->guest_ds_limit = vmcs_read32(GUEST_DS_LIMIT);
10261 vmcs12->guest_fs_limit = vmcs_read32(GUEST_FS_LIMIT);
10262 vmcs12->guest_gs_limit = vmcs_read32(GUEST_GS_LIMIT);
10263 vmcs12->guest_ldtr_limit = vmcs_read32(GUEST_LDTR_LIMIT);
10264 vmcs12->guest_tr_limit = vmcs_read32(GUEST_TR_LIMIT);
10265 vmcs12->guest_gdtr_limit = vmcs_read32(GUEST_GDTR_LIMIT);
10266 vmcs12->guest_idtr_limit = vmcs_read32(GUEST_IDTR_LIMIT);
10267 vmcs12->guest_es_ar_bytes = vmcs_read32(GUEST_ES_AR_BYTES);
10268 vmcs12->guest_cs_ar_bytes = vmcs_read32(GUEST_CS_AR_BYTES);
10269 vmcs12->guest_ss_ar_bytes = vmcs_read32(GUEST_SS_AR_BYTES);
10270 vmcs12->guest_ds_ar_bytes = vmcs_read32(GUEST_DS_AR_BYTES);
10271 vmcs12->guest_fs_ar_bytes = vmcs_read32(GUEST_FS_AR_BYTES);
10272 vmcs12->guest_gs_ar_bytes = vmcs_read32(GUEST_GS_AR_BYTES);
10273 vmcs12->guest_ldtr_ar_bytes = vmcs_read32(GUEST_LDTR_AR_BYTES);
10274 vmcs12->guest_tr_ar_bytes = vmcs_read32(GUEST_TR_AR_BYTES);
10275 vmcs12->guest_es_base = vmcs_readl(GUEST_ES_BASE);
10276 vmcs12->guest_cs_base = vmcs_readl(GUEST_CS_BASE);
10277 vmcs12->guest_ss_base = vmcs_readl(GUEST_SS_BASE);
10278 vmcs12->guest_ds_base = vmcs_readl(GUEST_DS_BASE);
10279 vmcs12->guest_fs_base = vmcs_readl(GUEST_FS_BASE);
10280 vmcs12->guest_gs_base = vmcs_readl(GUEST_GS_BASE);
10281 vmcs12->guest_ldtr_base = vmcs_readl(GUEST_LDTR_BASE);
10282 vmcs12->guest_tr_base = vmcs_readl(GUEST_TR_BASE);
10283 vmcs12->guest_gdtr_base = vmcs_readl(GUEST_GDTR_BASE);
10284 vmcs12->guest_idtr_base = vmcs_readl(GUEST_IDTR_BASE);
10285
4704d0be
NHE
10286 vmcs12->guest_interruptibility_info =
10287 vmcs_read32(GUEST_INTERRUPTIBILITY_INFO);
10288 vmcs12->guest_pending_dbg_exceptions =
10289 vmcs_readl(GUEST_PENDING_DBG_EXCEPTIONS);
3edf1e69
JK
10290 if (vcpu->arch.mp_state == KVM_MP_STATE_HALTED)
10291 vmcs12->guest_activity_state = GUEST_ACTIVITY_HLT;
10292 else
10293 vmcs12->guest_activity_state = GUEST_ACTIVITY_ACTIVE;
4704d0be 10294
f4124500
JK
10295 if (nested_cpu_has_preemption_timer(vmcs12)) {
10296 if (vmcs12->vm_exit_controls &
10297 VM_EXIT_SAVE_VMX_PREEMPTION_TIMER)
10298 vmcs12->vmx_preemption_timer_value =
10299 vmx_get_preemption_timer_value(vcpu);
10300 hrtimer_cancel(&to_vmx(vcpu)->nested.preemption_timer);
10301 }
7854cbca 10302
3633cfc3
NHE
10303 /*
10304 * In some cases (usually, nested EPT), L2 is allowed to change its
10305 * own CR3 without exiting. If it has changed it, we must keep it.
10306 * Of course, if L0 is using shadow page tables, GUEST_CR3 was defined
10307 * by L0, not L1 or L2, so we mustn't unconditionally copy it to vmcs12.
10308 *
10309 * Additionally, restore L2's PDPTR to vmcs12.
10310 */
10311 if (enable_ept) {
f3531054 10312 vmcs12->guest_cr3 = vmcs_readl(GUEST_CR3);
3633cfc3
NHE
10313 vmcs12->guest_pdptr0 = vmcs_read64(GUEST_PDPTR0);
10314 vmcs12->guest_pdptr1 = vmcs_read64(GUEST_PDPTR1);
10315 vmcs12->guest_pdptr2 = vmcs_read64(GUEST_PDPTR2);
10316 vmcs12->guest_pdptr3 = vmcs_read64(GUEST_PDPTR3);
10317 }
10318
608406e2
WV
10319 if (nested_cpu_has_vid(vmcs12))
10320 vmcs12->guest_intr_status = vmcs_read16(GUEST_INTR_STATUS);
10321
c18911a2
JK
10322 vmcs12->vm_entry_controls =
10323 (vmcs12->vm_entry_controls & ~VM_ENTRY_IA32E_MODE) |
2961e876 10324 (vm_entry_controls_get(to_vmx(vcpu)) & VM_ENTRY_IA32E_MODE);
c18911a2 10325
2996fca0
JK
10326 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_DEBUG_CONTROLS) {
10327 kvm_get_dr(vcpu, 7, (unsigned long *)&vmcs12->guest_dr7);
10328 vmcs12->guest_ia32_debugctl = vmcs_read64(GUEST_IA32_DEBUGCTL);
10329 }
10330
4704d0be
NHE
10331 /* TODO: These cannot have changed unless we have MSR bitmaps and
10332 * the relevant bit asks not to trap the change */
b8c07d55 10333 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_PAT)
4704d0be 10334 vmcs12->guest_ia32_pat = vmcs_read64(GUEST_IA32_PAT);
10ba54a5
JK
10335 if (vmcs12->vm_exit_controls & VM_EXIT_SAVE_IA32_EFER)
10336 vmcs12->guest_ia32_efer = vcpu->arch.efer;
4704d0be
NHE
10337 vmcs12->guest_sysenter_cs = vmcs_read32(GUEST_SYSENTER_CS);
10338 vmcs12->guest_sysenter_esp = vmcs_readl(GUEST_SYSENTER_ESP);
10339 vmcs12->guest_sysenter_eip = vmcs_readl(GUEST_SYSENTER_EIP);
a87036ad 10340 if (kvm_mpx_supported())
36be0b9d 10341 vmcs12->guest_bndcfgs = vmcs_read64(GUEST_BNDCFGS);
81dc01f7
WL
10342 if (nested_cpu_has_xsaves(vmcs12))
10343 vmcs12->xss_exit_bitmap = vmcs_read64(XSS_EXIT_BITMAP);
4704d0be
NHE
10344
10345 /* update exit information fields: */
10346
533558bc
JK
10347 vmcs12->vm_exit_reason = exit_reason;
10348 vmcs12->exit_qualification = exit_qualification;
4704d0be 10349
533558bc 10350 vmcs12->vm_exit_intr_info = exit_intr_info;
c0d1c770
JK
10351 if ((vmcs12->vm_exit_intr_info &
10352 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK)) ==
10353 (INTR_INFO_VALID_MASK | INTR_INFO_DELIVER_CODE_MASK))
10354 vmcs12->vm_exit_intr_error_code =
10355 vmcs_read32(VM_EXIT_INTR_ERROR_CODE);
5f3d5799 10356 vmcs12->idt_vectoring_info_field = 0;
4704d0be
NHE
10357 vmcs12->vm_exit_instruction_len = vmcs_read32(VM_EXIT_INSTRUCTION_LEN);
10358 vmcs12->vmx_instruction_info = vmcs_read32(VMX_INSTRUCTION_INFO);
10359
5f3d5799
JK
10360 if (!(vmcs12->vm_exit_reason & VMX_EXIT_REASONS_FAILED_VMENTRY)) {
10361 /* vm_entry_intr_info_field is cleared on exit. Emulate this
10362 * instead of reading the real value. */
4704d0be 10363 vmcs12->vm_entry_intr_info_field &= ~INTR_INFO_VALID_MASK;
5f3d5799
JK
10364
10365 /*
10366 * Transfer the event that L0 or L1 may wanted to inject into
10367 * L2 to IDT_VECTORING_INFO_FIELD.
10368 */
10369 vmcs12_save_pending_event(vcpu, vmcs12);
10370 }
10371
10372 /*
10373 * Drop what we picked up for L2 via vmx_complete_interrupts. It is
10374 * preserved above and would only end up incorrectly in L1.
10375 */
10376 vcpu->arch.nmi_injected = false;
10377 kvm_clear_exception_queue(vcpu);
10378 kvm_clear_interrupt_queue(vcpu);
4704d0be
NHE
10379}
10380
10381/*
10382 * A part of what we need to when the nested L2 guest exits and we want to
10383 * run its L1 parent, is to reset L1's guest state to the host state specified
10384 * in vmcs12.
10385 * This function is to be called not only on normal nested exit, but also on
10386 * a nested entry failure, as explained in Intel's spec, 3B.23.7 ("VM-Entry
10387 * Failures During or After Loading Guest State").
10388 * This function should be called when the active VMCS is L1's (vmcs01).
10389 */
733568f9
JK
10390static void load_vmcs12_host_state(struct kvm_vcpu *vcpu,
10391 struct vmcs12 *vmcs12)
4704d0be 10392{
21feb4eb
ACL
10393 struct kvm_segment seg;
10394
4704d0be
NHE
10395 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_EFER)
10396 vcpu->arch.efer = vmcs12->host_ia32_efer;
d1fa0352 10397 else if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
4704d0be
NHE
10398 vcpu->arch.efer |= (EFER_LMA | EFER_LME);
10399 else
10400 vcpu->arch.efer &= ~(EFER_LMA | EFER_LME);
10401 vmx_set_efer(vcpu, vcpu->arch.efer);
10402
10403 kvm_register_write(vcpu, VCPU_REGS_RSP, vmcs12->host_rsp);
10404 kvm_register_write(vcpu, VCPU_REGS_RIP, vmcs12->host_rip);
1adfa76a 10405 vmx_set_rflags(vcpu, X86_EFLAGS_FIXED);
4704d0be
NHE
10406 /*
10407 * Note that calling vmx_set_cr0 is important, even if cr0 hasn't
10408 * actually changed, because it depends on the current state of
10409 * fpu_active (which may have changed).
10410 * Note that vmx_set_cr0 refers to efer set above.
10411 */
9e3e4dbf 10412 vmx_set_cr0(vcpu, vmcs12->host_cr0);
4704d0be
NHE
10413 /*
10414 * If we did fpu_activate()/fpu_deactivate() during L2's run, we need
10415 * to apply the same changes to L1's vmcs. We just set cr0 correctly,
10416 * but we also need to update cr0_guest_host_mask and exception_bitmap.
10417 */
10418 update_exception_bitmap(vcpu);
10419 vcpu->arch.cr0_guest_owned_bits = (vcpu->fpu_active ? X86_CR0_TS : 0);
10420 vmcs_writel(CR0_GUEST_HOST_MASK, ~vcpu->arch.cr0_guest_owned_bits);
10421
10422 /*
10423 * Note that CR4_GUEST_HOST_MASK is already set in the original vmcs01
10424 * (KVM doesn't change it)- no reason to call set_cr4_guest_host_mask();
10425 */
10426 vcpu->arch.cr4_guest_owned_bits = ~vmcs_readl(CR4_GUEST_HOST_MASK);
10427 kvm_set_cr4(vcpu, vmcs12->host_cr4);
10428
29bf08f1 10429 nested_ept_uninit_mmu_context(vcpu);
155a97a3 10430
4704d0be
NHE
10431 kvm_set_cr3(vcpu, vmcs12->host_cr3);
10432 kvm_mmu_reset_context(vcpu);
10433
feaf0c7d
GN
10434 if (!enable_ept)
10435 vcpu->arch.walk_mmu->inject_page_fault = kvm_inject_page_fault;
10436
4704d0be
NHE
10437 if (enable_vpid) {
10438 /*
10439 * Trivially support vpid by letting L2s share their parent
10440 * L1's vpid. TODO: move to a more elaborate solution, giving
10441 * each L2 its own vpid and exposing the vpid feature to L1.
10442 */
10443 vmx_flush_tlb(vcpu);
10444 }
10445
10446
10447 vmcs_write32(GUEST_SYSENTER_CS, vmcs12->host_ia32_sysenter_cs);
10448 vmcs_writel(GUEST_SYSENTER_ESP, vmcs12->host_ia32_sysenter_esp);
10449 vmcs_writel(GUEST_SYSENTER_EIP, vmcs12->host_ia32_sysenter_eip);
10450 vmcs_writel(GUEST_IDTR_BASE, vmcs12->host_idtr_base);
10451 vmcs_writel(GUEST_GDTR_BASE, vmcs12->host_gdtr_base);
4704d0be 10452
36be0b9d
PB
10453 /* If not VM_EXIT_CLEAR_BNDCFGS, the L2 value propagates to L1. */
10454 if (vmcs12->vm_exit_controls & VM_EXIT_CLEAR_BNDCFGS)
10455 vmcs_write64(GUEST_BNDCFGS, 0);
10456
44811c02 10457 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PAT) {
4704d0be 10458 vmcs_write64(GUEST_IA32_PAT, vmcs12->host_ia32_pat);
44811c02
JK
10459 vcpu->arch.pat = vmcs12->host_ia32_pat;
10460 }
4704d0be
NHE
10461 if (vmcs12->vm_exit_controls & VM_EXIT_LOAD_IA32_PERF_GLOBAL_CTRL)
10462 vmcs_write64(GUEST_IA32_PERF_GLOBAL_CTRL,
10463 vmcs12->host_ia32_perf_global_ctrl);
503cd0c5 10464
21feb4eb
ACL
10465 /* Set L1 segment info according to Intel SDM
10466 27.5.2 Loading Host Segment and Descriptor-Table Registers */
10467 seg = (struct kvm_segment) {
10468 .base = 0,
10469 .limit = 0xFFFFFFFF,
10470 .selector = vmcs12->host_cs_selector,
10471 .type = 11,
10472 .present = 1,
10473 .s = 1,
10474 .g = 1
10475 };
10476 if (vmcs12->vm_exit_controls & VM_EXIT_HOST_ADDR_SPACE_SIZE)
10477 seg.l = 1;
10478 else
10479 seg.db = 1;
10480 vmx_set_segment(vcpu, &seg, VCPU_SREG_CS);
10481 seg = (struct kvm_segment) {
10482 .base = 0,
10483 .limit = 0xFFFFFFFF,
10484 .type = 3,
10485 .present = 1,
10486 .s = 1,
10487 .db = 1,
10488 .g = 1
10489 };
10490 seg.selector = vmcs12->host_ds_selector;
10491 vmx_set_segment(vcpu, &seg, VCPU_SREG_DS);
10492 seg.selector = vmcs12->host_es_selector;
10493 vmx_set_segment(vcpu, &seg, VCPU_SREG_ES);
10494 seg.selector = vmcs12->host_ss_selector;
10495 vmx_set_segment(vcpu, &seg, VCPU_SREG_SS);
10496 seg.selector = vmcs12->host_fs_selector;
10497 seg.base = vmcs12->host_fs_base;
10498 vmx_set_segment(vcpu, &seg, VCPU_SREG_FS);
10499 seg.selector = vmcs12->host_gs_selector;
10500 seg.base = vmcs12->host_gs_base;
10501 vmx_set_segment(vcpu, &seg, VCPU_SREG_GS);
10502 seg = (struct kvm_segment) {
205befd9 10503 .base = vmcs12->host_tr_base,
21feb4eb
ACL
10504 .limit = 0x67,
10505 .selector = vmcs12->host_tr_selector,
10506 .type = 11,
10507 .present = 1
10508 };
10509 vmx_set_segment(vcpu, &seg, VCPU_SREG_TR);
10510
503cd0c5
JK
10511 kvm_set_dr(vcpu, 7, 0x400);
10512 vmcs_write64(GUEST_IA32_DEBUGCTL, 0);
ff651cb6 10513
3af18d9c
WV
10514 if (cpu_has_vmx_msr_bitmap())
10515 vmx_set_msr_bitmap(vcpu);
10516
ff651cb6
WV
10517 if (nested_vmx_load_msr(vcpu, vmcs12->vm_exit_msr_load_addr,
10518 vmcs12->vm_exit_msr_load_count))
10519 nested_vmx_abort(vcpu, VMX_ABORT_LOAD_HOST_MSR_FAIL);
4704d0be
NHE
10520}
10521
10522/*
10523 * Emulate an exit from nested guest (L2) to L1, i.e., prepare to run L1
10524 * and modify vmcs12 to make it see what it would expect to see there if
10525 * L2 was its real guest. Must only be called when in L2 (is_guest_mode())
10526 */
533558bc
JK
10527static void nested_vmx_vmexit(struct kvm_vcpu *vcpu, u32 exit_reason,
10528 u32 exit_intr_info,
10529 unsigned long exit_qualification)
4704d0be
NHE
10530{
10531 struct vcpu_vmx *vmx = to_vmx(vcpu);
4704d0be
NHE
10532 struct vmcs12 *vmcs12 = get_vmcs12(vcpu);
10533
5f3d5799
JK
10534 /* trying to cancel vmlaunch/vmresume is a bug */
10535 WARN_ON_ONCE(vmx->nested.nested_run_pending);
10536
4704d0be 10537 leave_guest_mode(vcpu);
533558bc
JK
10538 prepare_vmcs12(vcpu, vmcs12, exit_reason, exit_intr_info,
10539 exit_qualification);
4704d0be 10540
ff651cb6
WV
10541 if (nested_vmx_store_msr(vcpu, vmcs12->vm_exit_msr_store_addr,
10542 vmcs12->vm_exit_msr_store_count))
10543 nested_vmx_abort(vcpu, VMX_ABORT_SAVE_GUEST_MSR_FAIL);
10544
f3380ca5
WL
10545 vmx_load_vmcs01(vcpu);
10546
77b0f5d6
BD
10547 if ((exit_reason == EXIT_REASON_EXTERNAL_INTERRUPT)
10548 && nested_exit_intr_ack_set(vcpu)) {
10549 int irq = kvm_cpu_get_interrupt(vcpu);
10550 WARN_ON(irq < 0);
10551 vmcs12->vm_exit_intr_info = irq |
10552 INTR_INFO_VALID_MASK | INTR_TYPE_EXT_INTR;
10553 }
10554
542060ea
JK
10555 trace_kvm_nested_vmexit_inject(vmcs12->vm_exit_reason,
10556 vmcs12->exit_qualification,
10557 vmcs12->idt_vectoring_info_field,
10558 vmcs12->vm_exit_intr_info,
10559 vmcs12->vm_exit_intr_error_code,
10560 KVM_ISA_VMX);
4704d0be 10561
2961e876
GN
10562 vm_entry_controls_init(vmx, vmcs_read32(VM_ENTRY_CONTROLS));
10563 vm_exit_controls_init(vmx, vmcs_read32(VM_EXIT_CONTROLS));
36c3cc42
JK
10564 vmx_segment_cache_clear(vmx);
10565
4704d0be
NHE
10566 /* if no vmcs02 cache requested, remove the one we used */
10567 if (VMCS02_POOL_SIZE == 0)
10568 nested_free_vmcs02(vmx, vmx->nested.current_vmptr);
10569
10570 load_vmcs12_host_state(vcpu, vmcs12);
10571
27fc51b2 10572 /* Update TSC_OFFSET if TSC was changed while L2 ran */
4704d0be
NHE
10573 vmcs_write64(TSC_OFFSET, vmx->nested.vmcs01_tsc_offset);
10574
10575 /* This is needed for same reason as it was needed in prepare_vmcs02 */
10576 vmx->host_rsp = 0;
10577
10578 /* Unpin physical memory we referred to in vmcs02 */
10579 if (vmx->nested.apic_access_page) {
10580 nested_release_page(vmx->nested.apic_access_page);
48d89b92 10581 vmx->nested.apic_access_page = NULL;
4704d0be 10582 }
a7c0b07d
WL
10583 if (vmx->nested.virtual_apic_page) {
10584 nested_release_page(vmx->nested.virtual_apic_page);
48d89b92 10585 vmx->nested.virtual_apic_page = NULL;
a7c0b07d 10586 }
705699a1
WV
10587 if (vmx->nested.pi_desc_page) {
10588 kunmap(vmx->nested.pi_desc_page);
10589 nested_release_page(vmx->nested.pi_desc_page);
10590 vmx->nested.pi_desc_page = NULL;
10591 vmx->nested.pi_desc = NULL;
10592 }
4704d0be 10593
38b99173
TC
10594 /*
10595 * We are now running in L2, mmu_notifier will force to reload the
10596 * page's hpa for L2 vmcs. Need to reload it for L1 before entering L1.
10597 */
10598 kvm_vcpu_reload_apic_access_page(vcpu);
10599
4704d0be
NHE
10600 /*
10601 * Exiting from L2 to L1, we're now back to L1 which thinks it just
10602 * finished a VMLAUNCH or VMRESUME instruction, so we need to set the
10603 * success or failure flag accordingly.
10604 */
10605 if (unlikely(vmx->fail)) {
10606 vmx->fail = 0;
10607 nested_vmx_failValid(vcpu, vmcs_read32(VM_INSTRUCTION_ERROR));
10608 } else
10609 nested_vmx_succeed(vcpu);
012f83cb
AG
10610 if (enable_shadow_vmcs)
10611 vmx->nested.sync_shadow_vmcs = true;
b6b8a145
JK
10612
10613 /* in case we halted in L2 */
10614 vcpu->arch.mp_state = KVM_MP_STATE_RUNNABLE;
4704d0be
NHE
10615}
10616
42124925
JK
10617/*
10618 * Forcibly leave nested mode in order to be able to reset the VCPU later on.
10619 */
10620static void vmx_leave_nested(struct kvm_vcpu *vcpu)
10621{
10622 if (is_guest_mode(vcpu))
533558bc 10623 nested_vmx_vmexit(vcpu, -1, 0, 0);
42124925
JK
10624 free_nested(to_vmx(vcpu));
10625}
10626
7c177938
NHE
10627/*
10628 * L1's failure to enter L2 is a subset of a normal exit, as explained in
10629 * 23.7 "VM-entry failures during or after loading guest state" (this also
10630 * lists the acceptable exit-reason and exit-qualification parameters).
10631 * It should only be called before L2 actually succeeded to run, and when
10632 * vmcs01 is current (it doesn't leave_guest_mode() or switch vmcss).
10633 */
10634static void nested_vmx_entry_failure(struct kvm_vcpu *vcpu,
10635 struct vmcs12 *vmcs12,
10636 u32 reason, unsigned long qualification)
10637{
10638 load_vmcs12_host_state(vcpu, vmcs12);
10639 vmcs12->vm_exit_reason = reason | VMX_EXIT_REASONS_FAILED_VMENTRY;
10640 vmcs12->exit_qualification = qualification;
10641 nested_vmx_succeed(vcpu);
012f83cb
AG
10642 if (enable_shadow_vmcs)
10643 to_vmx(vcpu)->nested.sync_shadow_vmcs = true;
7c177938
NHE
10644}
10645
8a76d7f2
JR
10646static int vmx_check_intercept(struct kvm_vcpu *vcpu,
10647 struct x86_instruction_info *info,
10648 enum x86_intercept_stage stage)
10649{
10650 return X86EMUL_CONTINUE;
10651}
10652
48d89b92 10653static void vmx_sched_in(struct kvm_vcpu *vcpu, int cpu)
ae97a3b8 10654{
b4a2d31d
RK
10655 if (ple_gap)
10656 shrink_ple_window(vcpu);
ae97a3b8
RK
10657}
10658
843e4330
KH
10659static void vmx_slot_enable_log_dirty(struct kvm *kvm,
10660 struct kvm_memory_slot *slot)
10661{
10662 kvm_mmu_slot_leaf_clear_dirty(kvm, slot);
10663 kvm_mmu_slot_largepage_remove_write_access(kvm, slot);
10664}
10665
10666static void vmx_slot_disable_log_dirty(struct kvm *kvm,
10667 struct kvm_memory_slot *slot)
10668{
10669 kvm_mmu_slot_set_dirty(kvm, slot);
10670}
10671
10672static void vmx_flush_log_dirty(struct kvm *kvm)
10673{
10674 kvm_flush_pml_buffers(kvm);
10675}
10676
10677static void vmx_enable_log_dirty_pt_masked(struct kvm *kvm,
10678 struct kvm_memory_slot *memslot,
10679 gfn_t offset, unsigned long mask)
10680{
10681 kvm_mmu_clear_dirty_pt_masked(kvm, memslot, offset, mask);
10682}
10683
bf9f6ac8
FW
10684/*
10685 * This routine does the following things for vCPU which is going
10686 * to be blocked if VT-d PI is enabled.
10687 * - Store the vCPU to the wakeup list, so when interrupts happen
10688 * we can find the right vCPU to wake up.
10689 * - Change the Posted-interrupt descriptor as below:
10690 * 'NDST' <-- vcpu->pre_pcpu
10691 * 'NV' <-- POSTED_INTR_WAKEUP_VECTOR
10692 * - If 'ON' is set during this process, which means at least one
10693 * interrupt is posted for this vCPU, we cannot block it, in
10694 * this case, return 1, otherwise, return 0.
10695 *
10696 */
10697static int vmx_pre_block(struct kvm_vcpu *vcpu)
10698{
10699 unsigned long flags;
10700 unsigned int dest;
10701 struct pi_desc old, new;
10702 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10703
10704 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10705 !irq_remapping_cap(IRQ_POSTING_CAP))
10706 return 0;
10707
10708 vcpu->pre_pcpu = vcpu->cpu;
10709 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10710 vcpu->pre_pcpu), flags);
10711 list_add_tail(&vcpu->blocked_vcpu_list,
10712 &per_cpu(blocked_vcpu_on_cpu,
10713 vcpu->pre_pcpu));
10714 spin_unlock_irqrestore(&per_cpu(blocked_vcpu_on_cpu_lock,
10715 vcpu->pre_pcpu), flags);
10716
10717 do {
10718 old.control = new.control = pi_desc->control;
10719
10720 /*
10721 * We should not block the vCPU if
10722 * an interrupt is posted for it.
10723 */
10724 if (pi_test_on(pi_desc) == 1) {
10725 spin_lock_irqsave(&per_cpu(blocked_vcpu_on_cpu_lock,
10726 vcpu->pre_pcpu), flags);
10727 list_del(&vcpu->blocked_vcpu_list);
10728 spin_unlock_irqrestore(
10729 &per_cpu(blocked_vcpu_on_cpu_lock,
10730 vcpu->pre_pcpu), flags);
10731 vcpu->pre_pcpu = -1;
10732
10733 return 1;
10734 }
10735
10736 WARN((pi_desc->sn == 1),
10737 "Warning: SN field of posted-interrupts "
10738 "is set before blocking\n");
10739
10740 /*
10741 * Since vCPU can be preempted during this process,
10742 * vcpu->cpu could be different with pre_pcpu, we
10743 * need to set pre_pcpu as the destination of wakeup
10744 * notification event, then we can find the right vCPU
10745 * to wakeup in wakeup handler if interrupts happen
10746 * when the vCPU is in blocked state.
10747 */
10748 dest = cpu_physical_id(vcpu->pre_pcpu);
10749
10750 if (x2apic_enabled())
10751 new.ndst = dest;
10752 else
10753 new.ndst = (dest << 8) & 0xFF00;
10754
10755 /* set 'NV' to 'wakeup vector' */
10756 new.nv = POSTED_INTR_WAKEUP_VECTOR;
10757 } while (cmpxchg(&pi_desc->control, old.control,
10758 new.control) != old.control);
10759
10760 return 0;
10761}
10762
10763static void vmx_post_block(struct kvm_vcpu *vcpu)
10764{
10765 struct pi_desc *pi_desc = vcpu_to_pi_desc(vcpu);
10766 struct pi_desc old, new;
10767 unsigned int dest;
10768 unsigned long flags;
10769
10770 if (!kvm_arch_has_assigned_device(vcpu->kvm) ||
10771 !irq_remapping_cap(IRQ_POSTING_CAP))
10772 return;
10773
10774 do {
10775 old.control = new.control = pi_desc->control;
10776
10777 dest = cpu_physical_id(vcpu->cpu);
10778
10779 if (x2apic_enabled())
10780 new.ndst = dest;
10781 else
10782 new.ndst = (dest << 8) & 0xFF00;
10783
10784 /* Allow posting non-urgent interrupts */
10785 new.sn = 0;
10786
10787 /* set 'NV' to 'notification vector' */
10788 new.nv = POSTED_INTR_VECTOR;
10789 } while (cmpxchg(&pi_desc->control, old.control,
10790 new.control) != old.control);
10791
10792 if(vcpu->pre_pcpu != -1) {
10793 spin_lock_irqsave(
10794 &per_cpu(blocked_vcpu_on_cpu_lock,
10795 vcpu->pre_pcpu), flags);
10796 list_del(&vcpu->blocked_vcpu_list);
10797 spin_unlock_irqrestore(
10798 &per_cpu(blocked_vcpu_on_cpu_lock,
10799 vcpu->pre_pcpu), flags);
10800 vcpu->pre_pcpu = -1;
10801 }
10802}
10803
efc64404
FW
10804/*
10805 * vmx_update_pi_irte - set IRTE for Posted-Interrupts
10806 *
10807 * @kvm: kvm
10808 * @host_irq: host irq of the interrupt
10809 * @guest_irq: gsi of the interrupt
10810 * @set: set or unset PI
10811 * returns 0 on success, < 0 on failure
10812 */
10813static int vmx_update_pi_irte(struct kvm *kvm, unsigned int host_irq,
10814 uint32_t guest_irq, bool set)
10815{
10816 struct kvm_kernel_irq_routing_entry *e;
10817 struct kvm_irq_routing_table *irq_rt;
10818 struct kvm_lapic_irq irq;
10819 struct kvm_vcpu *vcpu;
10820 struct vcpu_data vcpu_info;
10821 int idx, ret = -EINVAL;
10822
10823 if (!kvm_arch_has_assigned_device(kvm) ||
10824 !irq_remapping_cap(IRQ_POSTING_CAP))
10825 return 0;
10826
10827 idx = srcu_read_lock(&kvm->irq_srcu);
10828 irq_rt = srcu_dereference(kvm->irq_routing, &kvm->irq_srcu);
10829 BUG_ON(guest_irq >= irq_rt->nr_rt_entries);
10830
10831 hlist_for_each_entry(e, &irq_rt->map[guest_irq], link) {
10832 if (e->type != KVM_IRQ_ROUTING_MSI)
10833 continue;
10834 /*
10835 * VT-d PI cannot support posting multicast/broadcast
10836 * interrupts to a vCPU, we still use interrupt remapping
10837 * for these kind of interrupts.
10838 *
10839 * For lowest-priority interrupts, we only support
10840 * those with single CPU as the destination, e.g. user
10841 * configures the interrupts via /proc/irq or uses
10842 * irqbalance to make the interrupts single-CPU.
10843 *
10844 * We will support full lowest-priority interrupt later.
10845 */
10846
10847 kvm_set_msi_irq(e, &irq);
23a1c257
FW
10848 if (!kvm_intr_is_single_vcpu(kvm, &irq, &vcpu)) {
10849 /*
10850 * Make sure the IRTE is in remapped mode if
10851 * we don't handle it in posted mode.
10852 */
10853 ret = irq_set_vcpu_affinity(host_irq, NULL);
10854 if (ret < 0) {
10855 printk(KERN_INFO
10856 "failed to back to remapped mode, irq: %u\n",
10857 host_irq);
10858 goto out;
10859 }
10860
efc64404 10861 continue;
23a1c257 10862 }
efc64404
FW
10863
10864 vcpu_info.pi_desc_addr = __pa(vcpu_to_pi_desc(vcpu));
10865 vcpu_info.vector = irq.vector;
10866
b6ce9780 10867 trace_kvm_pi_irte_update(vcpu->vcpu_id, host_irq, e->gsi,
efc64404
FW
10868 vcpu_info.vector, vcpu_info.pi_desc_addr, set);
10869
10870 if (set)
10871 ret = irq_set_vcpu_affinity(host_irq, &vcpu_info);
10872 else {
10873 /* suppress notification event before unposting */
10874 pi_set_sn(vcpu_to_pi_desc(vcpu));
10875 ret = irq_set_vcpu_affinity(host_irq, NULL);
10876 pi_clear_sn(vcpu_to_pi_desc(vcpu));
10877 }
10878
10879 if (ret < 0) {
10880 printk(KERN_INFO "%s: failed to update PI IRTE\n",
10881 __func__);
10882 goto out;
10883 }
10884 }
10885
10886 ret = 0;
10887out:
10888 srcu_read_unlock(&kvm->irq_srcu, idx);
10889 return ret;
10890}
10891
cbdd1bea 10892static struct kvm_x86_ops vmx_x86_ops = {
6aa8b732
AK
10893 .cpu_has_kvm_support = cpu_has_kvm_support,
10894 .disabled_by_bios = vmx_disabled_by_bios,
10895 .hardware_setup = hardware_setup,
10896 .hardware_unsetup = hardware_unsetup,
002c7f7c 10897 .check_processor_compatibility = vmx_check_processor_compat,
6aa8b732
AK
10898 .hardware_enable = hardware_enable,
10899 .hardware_disable = hardware_disable,
04547156 10900 .cpu_has_accelerated_tpr = report_flexpriority,
6d396b55 10901 .cpu_has_high_real_mode_segbase = vmx_has_high_real_mode_segbase,
6aa8b732
AK
10902
10903 .vcpu_create = vmx_create_vcpu,
10904 .vcpu_free = vmx_free_vcpu,
04d2cc77 10905 .vcpu_reset = vmx_vcpu_reset,
6aa8b732 10906
04d2cc77 10907 .prepare_guest_switch = vmx_save_host_state,
6aa8b732
AK
10908 .vcpu_load = vmx_vcpu_load,
10909 .vcpu_put = vmx_vcpu_put,
10910
a96036b8 10911 .update_bp_intercept = update_exception_bitmap,
6aa8b732
AK
10912 .get_msr = vmx_get_msr,
10913 .set_msr = vmx_set_msr,
10914 .get_segment_base = vmx_get_segment_base,
10915 .get_segment = vmx_get_segment,
10916 .set_segment = vmx_set_segment,
2e4d2653 10917 .get_cpl = vmx_get_cpl,
6aa8b732 10918 .get_cs_db_l_bits = vmx_get_cs_db_l_bits,
e8467fda 10919 .decache_cr0_guest_bits = vmx_decache_cr0_guest_bits,
aff48baa 10920 .decache_cr3 = vmx_decache_cr3,
25c4c276 10921 .decache_cr4_guest_bits = vmx_decache_cr4_guest_bits,
6aa8b732 10922 .set_cr0 = vmx_set_cr0,
6aa8b732
AK
10923 .set_cr3 = vmx_set_cr3,
10924 .set_cr4 = vmx_set_cr4,
6aa8b732 10925 .set_efer = vmx_set_efer,
6aa8b732
AK
10926 .get_idt = vmx_get_idt,
10927 .set_idt = vmx_set_idt,
10928 .get_gdt = vmx_get_gdt,
10929 .set_gdt = vmx_set_gdt,
73aaf249
JK
10930 .get_dr6 = vmx_get_dr6,
10931 .set_dr6 = vmx_set_dr6,
020df079 10932 .set_dr7 = vmx_set_dr7,
81908bf4 10933 .sync_dirty_debug_regs = vmx_sync_dirty_debug_regs,
5fdbf976 10934 .cache_reg = vmx_cache_reg,
6aa8b732
AK
10935 .get_rflags = vmx_get_rflags,
10936 .set_rflags = vmx_set_rflags,
be94f6b7
HH
10937
10938 .get_pkru = vmx_get_pkru,
10939
0fdd74f7 10940 .fpu_activate = vmx_fpu_activate,
02daab21 10941 .fpu_deactivate = vmx_fpu_deactivate,
6aa8b732
AK
10942
10943 .tlb_flush = vmx_flush_tlb,
6aa8b732 10944
6aa8b732 10945 .run = vmx_vcpu_run,
6062d012 10946 .handle_exit = vmx_handle_exit,
6aa8b732 10947 .skip_emulated_instruction = skip_emulated_instruction,
2809f5d2
GC
10948 .set_interrupt_shadow = vmx_set_interrupt_shadow,
10949 .get_interrupt_shadow = vmx_get_interrupt_shadow,
102d8325 10950 .patch_hypercall = vmx_patch_hypercall,
2a8067f1 10951 .set_irq = vmx_inject_irq,
95ba8273 10952 .set_nmi = vmx_inject_nmi,
298101da 10953 .queue_exception = vmx_queue_exception,
b463a6f7 10954 .cancel_injection = vmx_cancel_injection,
78646121 10955 .interrupt_allowed = vmx_interrupt_allowed,
95ba8273 10956 .nmi_allowed = vmx_nmi_allowed,
3cfc3092
JK
10957 .get_nmi_mask = vmx_get_nmi_mask,
10958 .set_nmi_mask = vmx_set_nmi_mask,
95ba8273
GN
10959 .enable_nmi_window = enable_nmi_window,
10960 .enable_irq_window = enable_irq_window,
10961 .update_cr8_intercept = update_cr8_intercept,
8d14695f 10962 .set_virtual_x2apic_mode = vmx_set_virtual_x2apic_mode,
38b99173 10963 .set_apic_access_page_addr = vmx_set_apic_access_page_addr,
d62caabb
AS
10964 .get_enable_apicv = vmx_get_enable_apicv,
10965 .refresh_apicv_exec_ctrl = vmx_refresh_apicv_exec_ctrl,
c7c9c56c
YZ
10966 .load_eoi_exitmap = vmx_load_eoi_exitmap,
10967 .hwapic_irr_update = vmx_hwapic_irr_update,
10968 .hwapic_isr_update = vmx_hwapic_isr_update,
a20ed54d
YZ
10969 .sync_pir_to_irr = vmx_sync_pir_to_irr,
10970 .deliver_posted_interrupt = vmx_deliver_posted_interrupt,
95ba8273 10971
cbc94022 10972 .set_tss_addr = vmx_set_tss_addr,
67253af5 10973 .get_tdp_level = get_ept_level,
4b12f0de 10974 .get_mt_mask = vmx_get_mt_mask,
229456fc 10975
586f9607 10976 .get_exit_info = vmx_get_exit_info,
586f9607 10977
17cc3935 10978 .get_lpage_level = vmx_get_lpage_level,
0e851880
SY
10979
10980 .cpuid_update = vmx_cpuid_update,
4e47c7a6
SY
10981
10982 .rdtscp_supported = vmx_rdtscp_supported,
ad756a16 10983 .invpcid_supported = vmx_invpcid_supported,
d4330ef2
JR
10984
10985 .set_supported_cpuid = vmx_set_supported_cpuid,
f5f48ee1
SY
10986
10987 .has_wbinvd_exit = cpu_has_vmx_wbinvd_exit,
99e3e30a 10988
ba904635 10989 .read_tsc_offset = vmx_read_tsc_offset,
99e3e30a 10990 .write_tsc_offset = vmx_write_tsc_offset,
58ea6767 10991 .adjust_tsc_offset_guest = vmx_adjust_tsc_offset_guest,
d5c1785d 10992 .read_l1_tsc = vmx_read_l1_tsc,
1c97f0a0
JR
10993
10994 .set_tdp_cr3 = vmx_set_cr3,
8a76d7f2
JR
10995
10996 .check_intercept = vmx_check_intercept,
a547c6db 10997 .handle_external_intr = vmx_handle_external_intr,
da8999d3 10998 .mpx_supported = vmx_mpx_supported,
55412b2e 10999 .xsaves_supported = vmx_xsaves_supported,
b6b8a145
JK
11000
11001 .check_nested_events = vmx_check_nested_events,
ae97a3b8
RK
11002
11003 .sched_in = vmx_sched_in,
843e4330
KH
11004
11005 .slot_enable_log_dirty = vmx_slot_enable_log_dirty,
11006 .slot_disable_log_dirty = vmx_slot_disable_log_dirty,
11007 .flush_log_dirty = vmx_flush_log_dirty,
11008 .enable_log_dirty_pt_masked = vmx_enable_log_dirty_pt_masked,
25462f7f 11009
bf9f6ac8
FW
11010 .pre_block = vmx_pre_block,
11011 .post_block = vmx_post_block,
11012
25462f7f 11013 .pmu_ops = &intel_pmu_ops,
efc64404
FW
11014
11015 .update_pi_irte = vmx_update_pi_irte,
6aa8b732
AK
11016};
11017
11018static int __init vmx_init(void)
11019{
34a1cd60
TC
11020 int r = kvm_init(&vmx_x86_ops, sizeof(struct vcpu_vmx),
11021 __alignof__(struct vcpu_vmx), THIS_MODULE);
fdef3ad1 11022 if (r)
34a1cd60 11023 return r;
25c5f225 11024
2965faa5 11025#ifdef CONFIG_KEXEC_CORE
8f536b76
ZY
11026 rcu_assign_pointer(crash_vmclear_loaded_vmcss,
11027 crash_vmclear_local_loaded_vmcss);
11028#endif
11029
fdef3ad1 11030 return 0;
6aa8b732
AK
11031}
11032
11033static void __exit vmx_exit(void)
11034{
2965faa5 11035#ifdef CONFIG_KEXEC_CORE
3b63a43f 11036 RCU_INIT_POINTER(crash_vmclear_loaded_vmcss, NULL);
8f536b76
ZY
11037 synchronize_rcu();
11038#endif
11039
cb498ea2 11040 kvm_exit();
6aa8b732
AK
11041}
11042
11043module_init(vmx_init)
11044module_exit(vmx_exit)
This page took 1.699096 seconds and 5 git commands to generate.