zram: use proper type to update max_used_pages
[deliverable/linux.git] / drivers / block / zram / zram_drv.c
CommitLineData
306b0c95 1/*
f1e3cfff 2 * Compressed RAM block device
306b0c95 3 *
1130ebba 4 * Copyright (C) 2008, 2009, 2010 Nitin Gupta
7bfb3de8 5 * 2012, 2013 Minchan Kim
306b0c95
NG
6 *
7 * This code is released using a dual license strategy: BSD/GPL
8 * You can choose the licence that better fits your requirements.
9 *
10 * Released under the terms of 3-clause BSD License
11 * Released under the terms of GNU General Public License Version 2.0
12 *
306b0c95
NG
13 */
14
f1e3cfff 15#define KMSG_COMPONENT "zram"
306b0c95
NG
16#define pr_fmt(fmt) KMSG_COMPONENT ": " fmt
17
b1f5b81e
RJ
18#ifdef CONFIG_ZRAM_DEBUG
19#define DEBUG
20#endif
21
306b0c95
NG
22#include <linux/module.h>
23#include <linux/kernel.h>
8946a086 24#include <linux/bio.h>
306b0c95
NG
25#include <linux/bitops.h>
26#include <linux/blkdev.h>
27#include <linux/buffer_head.h>
28#include <linux/device.h>
29#include <linux/genhd.h>
30#include <linux/highmem.h>
5a0e3ad6 31#include <linux/slab.h>
306b0c95 32#include <linux/string.h>
306b0c95 33#include <linux/vmalloc.h>
fcfa8d95 34#include <linux/err.h>
306b0c95 35
16a4bfb9 36#include "zram_drv.h"
306b0c95
NG
37
38/* Globals */
f1e3cfff 39static int zram_major;
0f0e3ba3 40static struct zram *zram_devices;
b7ca232e 41static const char *default_compressor = "lzo";
306b0c95 42
306b0c95 43/* Module params (documentation at end) */
ca3d70bd 44static unsigned int num_devices = 1;
33863c21 45
a68eb3b6 46#define ZRAM_ATTR_RO(name) \
083914ea 47static ssize_t name##_show(struct device *d, \
a68eb3b6
SS
48 struct device_attribute *attr, char *b) \
49{ \
50 struct zram *zram = dev_to_zram(d); \
56b4e8cb 51 return scnprintf(b, PAGE_SIZE, "%llu\n", \
a68eb3b6
SS
52 (u64)atomic64_read(&zram->stats.name)); \
53} \
083914ea 54static DEVICE_ATTR_RO(name);
a68eb3b6 55
08eee69f 56static inline bool init_done(struct zram *zram)
be2d1d56 57{
08eee69f 58 return zram->disksize;
be2d1d56
SS
59}
60
9b3bb7ab
SS
61static inline struct zram *dev_to_zram(struct device *dev)
62{
63 return (struct zram *)dev_to_disk(dev)->private_data;
64}
65
66static ssize_t disksize_show(struct device *dev,
67 struct device_attribute *attr, char *buf)
68{
69 struct zram *zram = dev_to_zram(dev);
70
56b4e8cb 71 return scnprintf(buf, PAGE_SIZE, "%llu\n", zram->disksize);
9b3bb7ab
SS
72}
73
74static ssize_t initstate_show(struct device *dev,
75 struct device_attribute *attr, char *buf)
76{
a68eb3b6 77 u32 val;
9b3bb7ab
SS
78 struct zram *zram = dev_to_zram(dev);
79
a68eb3b6
SS
80 down_read(&zram->init_lock);
81 val = init_done(zram);
82 up_read(&zram->init_lock);
9b3bb7ab 83
56b4e8cb 84 return scnprintf(buf, PAGE_SIZE, "%u\n", val);
9b3bb7ab
SS
85}
86
87static ssize_t orig_data_size_show(struct device *dev,
88 struct device_attribute *attr, char *buf)
89{
90 struct zram *zram = dev_to_zram(dev);
91
56b4e8cb 92 return scnprintf(buf, PAGE_SIZE, "%llu\n",
90a7806e 93 (u64)(atomic64_read(&zram->stats.pages_stored)) << PAGE_SHIFT);
9b3bb7ab
SS
94}
95
9b3bb7ab
SS
96static ssize_t mem_used_total_show(struct device *dev,
97 struct device_attribute *attr, char *buf)
98{
99 u64 val = 0;
100 struct zram *zram = dev_to_zram(dev);
9b3bb7ab
SS
101
102 down_read(&zram->init_lock);
5a99e95b
WY
103 if (init_done(zram)) {
104 struct zram_meta *meta = zram->meta;
722cdc17 105 val = zs_get_total_pages(meta->mem_pool);
5a99e95b 106 }
9b3bb7ab
SS
107 up_read(&zram->init_lock);
108
722cdc17 109 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
9b3bb7ab
SS
110}
111
beca3ec7
SS
112static ssize_t max_comp_streams_show(struct device *dev,
113 struct device_attribute *attr, char *buf)
114{
115 int val;
116 struct zram *zram = dev_to_zram(dev);
117
118 down_read(&zram->init_lock);
119 val = zram->max_comp_streams;
120 up_read(&zram->init_lock);
121
56b4e8cb 122 return scnprintf(buf, PAGE_SIZE, "%d\n", val);
beca3ec7
SS
123}
124
9ada9da9
MK
125static ssize_t mem_limit_show(struct device *dev,
126 struct device_attribute *attr, char *buf)
127{
128 u64 val;
129 struct zram *zram = dev_to_zram(dev);
130
131 down_read(&zram->init_lock);
132 val = zram->limit_pages;
133 up_read(&zram->init_lock);
134
135 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
136}
137
138static ssize_t mem_limit_store(struct device *dev,
139 struct device_attribute *attr, const char *buf, size_t len)
140{
141 u64 limit;
142 char *tmp;
143 struct zram *zram = dev_to_zram(dev);
144
145 limit = memparse(buf, &tmp);
146 if (buf == tmp) /* no chars parsed, invalid input */
147 return -EINVAL;
148
149 down_write(&zram->init_lock);
150 zram->limit_pages = PAGE_ALIGN(limit) >> PAGE_SHIFT;
151 up_write(&zram->init_lock);
152
153 return len;
154}
155
461a8eee
MK
156static ssize_t mem_used_max_show(struct device *dev,
157 struct device_attribute *attr, char *buf)
158{
159 u64 val = 0;
160 struct zram *zram = dev_to_zram(dev);
161
162 down_read(&zram->init_lock);
163 if (init_done(zram))
164 val = atomic_long_read(&zram->stats.max_used_pages);
165 up_read(&zram->init_lock);
166
167 return scnprintf(buf, PAGE_SIZE, "%llu\n", val << PAGE_SHIFT);
168}
169
170static ssize_t mem_used_max_store(struct device *dev,
171 struct device_attribute *attr, const char *buf, size_t len)
172{
173 int err;
174 unsigned long val;
175 struct zram *zram = dev_to_zram(dev);
461a8eee
MK
176
177 err = kstrtoul(buf, 10, &val);
178 if (err || val != 0)
179 return -EINVAL;
180
181 down_read(&zram->init_lock);
5a99e95b
WY
182 if (init_done(zram)) {
183 struct zram_meta *meta = zram->meta;
461a8eee
MK
184 atomic_long_set(&zram->stats.max_used_pages,
185 zs_get_total_pages(meta->mem_pool));
5a99e95b 186 }
461a8eee
MK
187 up_read(&zram->init_lock);
188
189 return len;
190}
191
beca3ec7
SS
192static ssize_t max_comp_streams_store(struct device *dev,
193 struct device_attribute *attr, const char *buf, size_t len)
194{
195 int num;
196 struct zram *zram = dev_to_zram(dev);
60a726e3 197 int ret;
beca3ec7 198
60a726e3
MK
199 ret = kstrtoint(buf, 0, &num);
200 if (ret < 0)
201 return ret;
beca3ec7
SS
202 if (num < 1)
203 return -EINVAL;
60a726e3 204
beca3ec7
SS
205 down_write(&zram->init_lock);
206 if (init_done(zram)) {
60a726e3 207 if (!zcomp_set_max_streams(zram->comp, num)) {
fe8eb122 208 pr_info("Cannot change max compression streams\n");
60a726e3
MK
209 ret = -EINVAL;
210 goto out;
211 }
beca3ec7 212 }
60a726e3 213
beca3ec7 214 zram->max_comp_streams = num;
60a726e3
MK
215 ret = len;
216out:
beca3ec7 217 up_write(&zram->init_lock);
60a726e3 218 return ret;
beca3ec7
SS
219}
220
e46b8a03
SS
221static ssize_t comp_algorithm_show(struct device *dev,
222 struct device_attribute *attr, char *buf)
223{
224 size_t sz;
225 struct zram *zram = dev_to_zram(dev);
226
227 down_read(&zram->init_lock);
228 sz = zcomp_available_show(zram->compressor, buf);
229 up_read(&zram->init_lock);
230
231 return sz;
232}
233
234static ssize_t comp_algorithm_store(struct device *dev,
235 struct device_attribute *attr, const char *buf, size_t len)
236{
237 struct zram *zram = dev_to_zram(dev);
238 down_write(&zram->init_lock);
239 if (init_done(zram)) {
240 up_write(&zram->init_lock);
241 pr_info("Can't change algorithm for initialized device\n");
242 return -EBUSY;
243 }
244 strlcpy(zram->compressor, buf, sizeof(zram->compressor));
245 up_write(&zram->init_lock);
246 return len;
247}
248
92967471 249/* flag operations needs meta->tb_lock */
8b3cc3ed 250static int zram_test_flag(struct zram_meta *meta, u32 index,
f1e3cfff 251 enum zram_pageflags flag)
306b0c95 252{
d2d5e762 253 return meta->table[index].value & BIT(flag);
306b0c95
NG
254}
255
8b3cc3ed 256static void zram_set_flag(struct zram_meta *meta, u32 index,
f1e3cfff 257 enum zram_pageflags flag)
306b0c95 258{
d2d5e762 259 meta->table[index].value |= BIT(flag);
306b0c95
NG
260}
261
8b3cc3ed 262static void zram_clear_flag(struct zram_meta *meta, u32 index,
f1e3cfff 263 enum zram_pageflags flag)
306b0c95 264{
d2d5e762
WY
265 meta->table[index].value &= ~BIT(flag);
266}
267
268static size_t zram_get_obj_size(struct zram_meta *meta, u32 index)
269{
270 return meta->table[index].value & (BIT(ZRAM_FLAG_SHIFT) - 1);
271}
272
273static void zram_set_obj_size(struct zram_meta *meta,
274 u32 index, size_t size)
275{
276 unsigned long flags = meta->table[index].value >> ZRAM_FLAG_SHIFT;
277
278 meta->table[index].value = (flags << ZRAM_FLAG_SHIFT) | size;
306b0c95
NG
279}
280
9b3bb7ab
SS
281static inline int is_partial_io(struct bio_vec *bvec)
282{
283 return bvec->bv_len != PAGE_SIZE;
284}
285
286/*
287 * Check if request is within bounds and aligned on zram logical blocks.
288 */
54850e73 289static inline int valid_io_request(struct zram *zram,
290 sector_t start, unsigned int size)
9b3bb7ab 291{
54850e73 292 u64 end, bound;
a539c72a 293
9b3bb7ab 294 /* unaligned request */
54850e73 295 if (unlikely(start & (ZRAM_SECTOR_PER_LOGICAL_BLOCK - 1)))
9b3bb7ab 296 return 0;
54850e73 297 if (unlikely(size & (ZRAM_LOGICAL_BLOCK_SIZE - 1)))
9b3bb7ab
SS
298 return 0;
299
54850e73 300 end = start + (size >> SECTOR_SHIFT);
9b3bb7ab
SS
301 bound = zram->disksize >> SECTOR_SHIFT;
302 /* out of range range */
75c7caf5 303 if (unlikely(start >= bound || end > bound || start > end))
9b3bb7ab
SS
304 return 0;
305
306 /* I/O request is valid */
307 return 1;
308}
309
1fec1172 310static void zram_meta_free(struct zram_meta *meta, u64 disksize)
9b3bb7ab 311{
1fec1172
GM
312 size_t num_pages = disksize >> PAGE_SHIFT;
313 size_t index;
314
315 /* Free all pages that are still in this zram device */
316 for (index = 0; index < num_pages; index++) {
317 unsigned long handle = meta->table[index].handle;
318
319 if (!handle)
320 continue;
321
322 zs_free(meta->mem_pool, handle);
323 }
324
9b3bb7ab 325 zs_destroy_pool(meta->mem_pool);
9b3bb7ab
SS
326 vfree(meta->table);
327 kfree(meta);
328}
329
3eba0c6a 330static struct zram_meta *zram_meta_alloc(int device_id, u64 disksize)
9b3bb7ab
SS
331{
332 size_t num_pages;
3eba0c6a 333 char pool_name[8];
9b3bb7ab 334 struct zram_meta *meta = kmalloc(sizeof(*meta), GFP_KERNEL);
b8179958 335
9b3bb7ab 336 if (!meta)
b8179958 337 return NULL;
9b3bb7ab 338
9b3bb7ab
SS
339 num_pages = disksize >> PAGE_SHIFT;
340 meta->table = vzalloc(num_pages * sizeof(*meta->table));
341 if (!meta->table) {
342 pr_err("Error allocating zram address table\n");
b8179958 343 goto out_error;
9b3bb7ab
SS
344 }
345
3eba0c6a
GM
346 snprintf(pool_name, sizeof(pool_name), "zram%d", device_id);
347 meta->mem_pool = zs_create_pool(pool_name, GFP_NOIO | __GFP_HIGHMEM);
9b3bb7ab
SS
348 if (!meta->mem_pool) {
349 pr_err("Error creating memory pool\n");
b8179958 350 goto out_error;
9b3bb7ab
SS
351 }
352
353 return meta;
354
b8179958 355out_error:
9b3bb7ab 356 vfree(meta->table);
9b3bb7ab 357 kfree(meta);
b8179958 358 return NULL;
9b3bb7ab
SS
359}
360
08eee69f
MK
361static inline bool zram_meta_get(struct zram *zram)
362{
363 if (atomic_inc_not_zero(&zram->refcount))
364 return true;
365 return false;
366}
367
368static inline void zram_meta_put(struct zram *zram)
369{
370 atomic_dec(&zram->refcount);
371}
372
9b3bb7ab
SS
373static void update_position(u32 *index, int *offset, struct bio_vec *bvec)
374{
375 if (*offset + bvec->bv_len >= PAGE_SIZE)
376 (*index)++;
377 *offset = (*offset + bvec->bv_len) % PAGE_SIZE;
378}
379
306b0c95
NG
380static int page_zero_filled(void *ptr)
381{
382 unsigned int pos;
383 unsigned long *page;
384
385 page = (unsigned long *)ptr;
386
387 for (pos = 0; pos != PAGE_SIZE / sizeof(*page); pos++) {
388 if (page[pos])
389 return 0;
390 }
391
392 return 1;
393}
394
9b3bb7ab
SS
395static void handle_zero_page(struct bio_vec *bvec)
396{
397 struct page *page = bvec->bv_page;
398 void *user_mem;
399
400 user_mem = kmap_atomic(page);
401 if (is_partial_io(bvec))
402 memset(user_mem + bvec->bv_offset, 0, bvec->bv_len);
403 else
404 clear_page(user_mem);
405 kunmap_atomic(user_mem);
406
407 flush_dcache_page(page);
408}
409
d2d5e762
WY
410
411/*
412 * To protect concurrent access to the same index entry,
413 * caller should hold this table index entry's bit_spinlock to
414 * indicate this index entry is accessing.
415 */
f1e3cfff 416static void zram_free_page(struct zram *zram, size_t index)
306b0c95 417{
8b3cc3ed
MK
418 struct zram_meta *meta = zram->meta;
419 unsigned long handle = meta->table[index].handle;
306b0c95 420
fd1a30de 421 if (unlikely(!handle)) {
2e882281
NG
422 /*
423 * No memory is allocated for zero filled pages.
424 * Simply clear zero page flag.
425 */
8b3cc3ed
MK
426 if (zram_test_flag(meta, index, ZRAM_ZERO)) {
427 zram_clear_flag(meta, index, ZRAM_ZERO);
90a7806e 428 atomic64_dec(&zram->stats.zero_pages);
306b0c95
NG
429 }
430 return;
431 }
432
8b3cc3ed 433 zs_free(meta->mem_pool, handle);
306b0c95 434
d2d5e762
WY
435 atomic64_sub(zram_get_obj_size(meta, index),
436 &zram->stats.compr_data_size);
90a7806e 437 atomic64_dec(&zram->stats.pages_stored);
306b0c95 438
8b3cc3ed 439 meta->table[index].handle = 0;
d2d5e762 440 zram_set_obj_size(meta, index, 0);
306b0c95
NG
441}
442
37b51fdd 443static int zram_decompress_page(struct zram *zram, char *mem, u32 index)
306b0c95 444{
b7ca232e 445 int ret = 0;
37b51fdd 446 unsigned char *cmem;
8b3cc3ed 447 struct zram_meta *meta = zram->meta;
92967471 448 unsigned long handle;
023b409f 449 size_t size;
92967471 450
d2d5e762 451 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
92967471 452 handle = meta->table[index].handle;
d2d5e762 453 size = zram_get_obj_size(meta, index);
306b0c95 454
8b3cc3ed 455 if (!handle || zram_test_flag(meta, index, ZRAM_ZERO)) {
d2d5e762 456 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
42e99bd9 457 clear_page(mem);
8c921b2b
JM
458 return 0;
459 }
306b0c95 460
8b3cc3ed 461 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_RO);
92967471 462 if (size == PAGE_SIZE)
42e99bd9 463 copy_page(mem, cmem);
37b51fdd 464 else
b7ca232e 465 ret = zcomp_decompress(zram->comp, cmem, size, mem);
8b3cc3ed 466 zs_unmap_object(meta->mem_pool, handle);
d2d5e762 467 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
a1dd52af 468
8c921b2b 469 /* Should NEVER happen. Return bio error if it does. */
b7ca232e 470 if (unlikely(ret)) {
8c921b2b 471 pr_err("Decompression failed! err=%d, page=%u\n", ret, index);
8c921b2b 472 return ret;
a1dd52af 473 }
306b0c95 474
8c921b2b 475 return 0;
306b0c95
NG
476}
477
37b51fdd 478static int zram_bvec_read(struct zram *zram, struct bio_vec *bvec,
b627cff3 479 u32 index, int offset)
924bd88d
JM
480{
481 int ret;
37b51fdd
SS
482 struct page *page;
483 unsigned char *user_mem, *uncmem = NULL;
8b3cc3ed 484 struct zram_meta *meta = zram->meta;
37b51fdd
SS
485 page = bvec->bv_page;
486
d2d5e762 487 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
8b3cc3ed
MK
488 if (unlikely(!meta->table[index].handle) ||
489 zram_test_flag(meta, index, ZRAM_ZERO)) {
d2d5e762 490 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
37b51fdd 491 handle_zero_page(bvec);
924bd88d
JM
492 return 0;
493 }
d2d5e762 494 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
924bd88d 495
37b51fdd
SS
496 if (is_partial_io(bvec))
497 /* Use a temporary buffer to decompress the page */
7e5a5104
MK
498 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
499
500 user_mem = kmap_atomic(page);
501 if (!is_partial_io(bvec))
37b51fdd
SS
502 uncmem = user_mem;
503
504 if (!uncmem) {
505 pr_info("Unable to allocate temp memory\n");
506 ret = -ENOMEM;
507 goto out_cleanup;
508 }
924bd88d 509
37b51fdd 510 ret = zram_decompress_page(zram, uncmem, index);
924bd88d 511 /* Should NEVER happen. Return bio error if it does. */
b7ca232e 512 if (unlikely(ret))
37b51fdd 513 goto out_cleanup;
924bd88d 514
37b51fdd
SS
515 if (is_partial_io(bvec))
516 memcpy(user_mem + bvec->bv_offset, uncmem + offset,
517 bvec->bv_len);
518
519 flush_dcache_page(page);
520 ret = 0;
521out_cleanup:
522 kunmap_atomic(user_mem);
523 if (is_partial_io(bvec))
524 kfree(uncmem);
525 return ret;
924bd88d
JM
526}
527
461a8eee
MK
528static inline void update_used_max(struct zram *zram,
529 const unsigned long pages)
530{
2ea55a2c 531 unsigned long old_max, cur_max;
461a8eee
MK
532
533 old_max = atomic_long_read(&zram->stats.max_used_pages);
534
535 do {
536 cur_max = old_max;
537 if (pages > cur_max)
538 old_max = atomic_long_cmpxchg(
539 &zram->stats.max_used_pages, cur_max, pages);
540 } while (old_max != cur_max);
541}
542
924bd88d
JM
543static int zram_bvec_write(struct zram *zram, struct bio_vec *bvec, u32 index,
544 int offset)
306b0c95 545{
397c6066 546 int ret = 0;
8c921b2b 547 size_t clen;
c2344348 548 unsigned long handle;
130f315a 549 struct page *page;
924bd88d 550 unsigned char *user_mem, *cmem, *src, *uncmem = NULL;
8b3cc3ed 551 struct zram_meta *meta = zram->meta;
b7ca232e 552 struct zcomp_strm *zstrm;
e46e3315 553 bool locked = false;
461a8eee 554 unsigned long alloced_pages;
306b0c95 555
8c921b2b 556 page = bvec->bv_page;
924bd88d
JM
557 if (is_partial_io(bvec)) {
558 /*
559 * This is a partial IO. We need to read the full page
560 * before to write the changes.
561 */
7e5a5104 562 uncmem = kmalloc(PAGE_SIZE, GFP_NOIO);
924bd88d 563 if (!uncmem) {
924bd88d
JM
564 ret = -ENOMEM;
565 goto out;
566 }
37b51fdd 567 ret = zram_decompress_page(zram, uncmem, index);
397c6066 568 if (ret)
924bd88d 569 goto out;
924bd88d
JM
570 }
571
b7ca232e 572 zstrm = zcomp_strm_find(zram->comp);
e46e3315 573 locked = true;
ba82fe2e 574 user_mem = kmap_atomic(page);
924bd88d 575
397c6066 576 if (is_partial_io(bvec)) {
924bd88d
JM
577 memcpy(uncmem + offset, user_mem + bvec->bv_offset,
578 bvec->bv_len);
397c6066
NG
579 kunmap_atomic(user_mem);
580 user_mem = NULL;
581 } else {
924bd88d 582 uncmem = user_mem;
397c6066 583 }
924bd88d
JM
584
585 if (page_zero_filled(uncmem)) {
c4065152
WY
586 if (user_mem)
587 kunmap_atomic(user_mem);
f40ac2ae 588 /* Free memory associated with this sector now. */
d2d5e762 589 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae 590 zram_free_page(zram, index);
92967471 591 zram_set_flag(meta, index, ZRAM_ZERO);
d2d5e762 592 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae 593
90a7806e 594 atomic64_inc(&zram->stats.zero_pages);
924bd88d
JM
595 ret = 0;
596 goto out;
8c921b2b 597 }
306b0c95 598
b7ca232e 599 ret = zcomp_compress(zram->comp, zstrm, uncmem, &clen);
397c6066
NG
600 if (!is_partial_io(bvec)) {
601 kunmap_atomic(user_mem);
602 user_mem = NULL;
603 uncmem = NULL;
604 }
306b0c95 605
b7ca232e 606 if (unlikely(ret)) {
8c921b2b 607 pr_err("Compression failed! err=%d\n", ret);
924bd88d 608 goto out;
8c921b2b 609 }
b7ca232e 610 src = zstrm->buffer;
c8f2f0db 611 if (unlikely(clen > max_zpage_size)) {
c8f2f0db 612 clen = PAGE_SIZE;
397c6066
NG
613 if (is_partial_io(bvec))
614 src = uncmem;
c8f2f0db 615 }
a1dd52af 616
8b3cc3ed 617 handle = zs_malloc(meta->mem_pool, clen);
fd1a30de 618 if (!handle) {
596b3dd4
MR
619 pr_info("Error allocating memory for compressed page: %u, size=%zu\n",
620 index, clen);
924bd88d
JM
621 ret = -ENOMEM;
622 goto out;
8c921b2b 623 }
9ada9da9 624
461a8eee
MK
625 alloced_pages = zs_get_total_pages(meta->mem_pool);
626 if (zram->limit_pages && alloced_pages > zram->limit_pages) {
9ada9da9
MK
627 zs_free(meta->mem_pool, handle);
628 ret = -ENOMEM;
629 goto out;
630 }
631
461a8eee
MK
632 update_used_max(zram, alloced_pages);
633
8b3cc3ed 634 cmem = zs_map_object(meta->mem_pool, handle, ZS_MM_WO);
306b0c95 635
42e99bd9 636 if ((clen == PAGE_SIZE) && !is_partial_io(bvec)) {
397c6066 637 src = kmap_atomic(page);
42e99bd9 638 copy_page(cmem, src);
397c6066 639 kunmap_atomic(src);
42e99bd9
JL
640 } else {
641 memcpy(cmem, src, clen);
642 }
306b0c95 643
b7ca232e
SS
644 zcomp_strm_release(zram->comp, zstrm);
645 locked = false;
8b3cc3ed 646 zs_unmap_object(meta->mem_pool, handle);
fd1a30de 647
f40ac2ae
SS
648 /*
649 * Free memory associated with this sector
650 * before overwriting unused sectors.
651 */
d2d5e762 652 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f40ac2ae
SS
653 zram_free_page(zram, index);
654
8b3cc3ed 655 meta->table[index].handle = handle;
d2d5e762
WY
656 zram_set_obj_size(meta, index, clen);
657 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
306b0c95 658
8c921b2b 659 /* Update stats */
90a7806e
SS
660 atomic64_add(clen, &zram->stats.compr_data_size);
661 atomic64_inc(&zram->stats.pages_stored);
924bd88d 662out:
e46e3315 663 if (locked)
b7ca232e 664 zcomp_strm_release(zram->comp, zstrm);
397c6066
NG
665 if (is_partial_io(bvec))
666 kfree(uncmem);
924bd88d 667 return ret;
8c921b2b
JM
668}
669
670static int zram_bvec_rw(struct zram *zram, struct bio_vec *bvec, u32 index,
b627cff3 671 int offset, int rw)
8c921b2b 672{
c5bde238 673 int ret;
8c921b2b 674
be257c61
SS
675 if (rw == READ) {
676 atomic64_inc(&zram->stats.num_reads);
b627cff3 677 ret = zram_bvec_read(zram, bvec, index, offset);
be257c61
SS
678 } else {
679 atomic64_inc(&zram->stats.num_writes);
c5bde238 680 ret = zram_bvec_write(zram, bvec, index, offset);
be257c61 681 }
c5bde238 682
0cf1e9d6
CY
683 if (unlikely(ret)) {
684 if (rw == READ)
685 atomic64_inc(&zram->stats.failed_reads);
686 else
687 atomic64_inc(&zram->stats.failed_writes);
688 }
689
c5bde238 690 return ret;
924bd88d
JM
691}
692
f4659d8e
JK
693/*
694 * zram_bio_discard - handler on discard request
695 * @index: physical block index in PAGE_SIZE units
696 * @offset: byte offset within physical block
697 */
698static void zram_bio_discard(struct zram *zram, u32 index,
699 int offset, struct bio *bio)
700{
701 size_t n = bio->bi_iter.bi_size;
d2d5e762 702 struct zram_meta *meta = zram->meta;
f4659d8e
JK
703
704 /*
705 * zram manages data in physical block size units. Because logical block
706 * size isn't identical with physical block size on some arch, we
707 * could get a discard request pointing to a specific offset within a
708 * certain physical block. Although we can handle this request by
709 * reading that physiclal block and decompressing and partially zeroing
710 * and re-compressing and then re-storing it, this isn't reasonable
711 * because our intent with a discard request is to save memory. So
712 * skipping this logical block is appropriate here.
713 */
714 if (offset) {
38515c73 715 if (n <= (PAGE_SIZE - offset))
f4659d8e
JK
716 return;
717
38515c73 718 n -= (PAGE_SIZE - offset);
f4659d8e
JK
719 index++;
720 }
721
722 while (n >= PAGE_SIZE) {
d2d5e762 723 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f4659d8e 724 zram_free_page(zram, index);
d2d5e762 725 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
015254da 726 atomic64_inc(&zram->stats.notify_free);
f4659d8e
JK
727 index++;
728 n -= PAGE_SIZE;
729 }
730}
731
ba6b17d6 732static void zram_reset_device(struct zram *zram)
924bd88d 733{
08eee69f
MK
734 struct zram_meta *meta;
735 struct zcomp *comp;
736 u64 disksize;
737
644d4787 738 down_write(&zram->init_lock);
9ada9da9
MK
739
740 zram->limit_pages = 0;
741
be2d1d56 742 if (!init_done(zram)) {
644d4787 743 up_write(&zram->init_lock);
9b3bb7ab 744 return;
644d4787 745 }
9b3bb7ab 746
08eee69f
MK
747 meta = zram->meta;
748 comp = zram->comp;
749 disksize = zram->disksize;
750 /*
751 * Refcount will go down to 0 eventually and r/w handler
752 * cannot handle further I/O so it will bail out by
753 * check zram_meta_get.
754 */
755 zram_meta_put(zram);
756 /*
757 * We want to free zram_meta in process context to avoid
758 * deadlock between reclaim path and any other locks.
759 */
760 wait_event(zram->io_done, atomic_read(&zram->refcount) == 0);
761
9b3bb7ab
SS
762 /* Reset stats */
763 memset(&zram->stats, 0, sizeof(zram->stats));
9b3bb7ab 764 zram->disksize = 0;
08eee69f 765 zram->max_comp_streams = 1;
a096cafc
SS
766 set_capacity(zram->disk, 0);
767
644d4787 768 up_write(&zram->init_lock);
08eee69f
MK
769 /* I/O operation under all of CPU are done so let's free */
770 zram_meta_free(meta, disksize);
771 zcomp_destroy(comp);
9b3bb7ab
SS
772}
773
9b3bb7ab
SS
774static ssize_t disksize_store(struct device *dev,
775 struct device_attribute *attr, const char *buf, size_t len)
776{
777 u64 disksize;
d61f98c7 778 struct zcomp *comp;
9b3bb7ab
SS
779 struct zram_meta *meta;
780 struct zram *zram = dev_to_zram(dev);
fcfa8d95 781 int err;
9b3bb7ab
SS
782
783 disksize = memparse(buf, NULL);
784 if (!disksize)
785 return -EINVAL;
786
787 disksize = PAGE_ALIGN(disksize);
3eba0c6a 788 meta = zram_meta_alloc(zram->disk->first_minor, disksize);
db5d711e
MK
789 if (!meta)
790 return -ENOMEM;
b67d1ec1 791
d61f98c7 792 comp = zcomp_create(zram->compressor, zram->max_comp_streams);
fcfa8d95 793 if (IS_ERR(comp)) {
d61f98c7
SS
794 pr_info("Cannot initialise %s compressing backend\n",
795 zram->compressor);
fcfa8d95
SS
796 err = PTR_ERR(comp);
797 goto out_free_meta;
d61f98c7
SS
798 }
799
9b3bb7ab 800 down_write(&zram->init_lock);
be2d1d56 801 if (init_done(zram)) {
9b3bb7ab 802 pr_info("Cannot change disksize for initialized device\n");
b7ca232e 803 err = -EBUSY;
fcfa8d95 804 goto out_destroy_comp;
9b3bb7ab
SS
805 }
806
08eee69f
MK
807 init_waitqueue_head(&zram->io_done);
808 atomic_set(&zram->refcount, 1);
b67d1ec1 809 zram->meta = meta;
d61f98c7 810 zram->comp = comp;
9b3bb7ab
SS
811 zram->disksize = disksize;
812 set_capacity(zram->disk, zram->disksize >> SECTOR_SHIFT);
9b3bb7ab 813 up_write(&zram->init_lock);
b4c5c609
MK
814
815 /*
816 * Revalidate disk out of the init_lock to avoid lockdep splat.
817 * It's okay because disk's capacity is protected by init_lock
818 * so that revalidate_disk always sees up-to-date capacity.
819 */
820 revalidate_disk(zram->disk);
821
9b3bb7ab 822 return len;
b7ca232e 823
fcfa8d95
SS
824out_destroy_comp:
825 up_write(&zram->init_lock);
826 zcomp_destroy(comp);
827out_free_meta:
1fec1172 828 zram_meta_free(meta, disksize);
b7ca232e 829 return err;
9b3bb7ab
SS
830}
831
832static ssize_t reset_store(struct device *dev,
833 struct device_attribute *attr, const char *buf, size_t len)
834{
835 int ret;
836 unsigned short do_reset;
837 struct zram *zram;
838 struct block_device *bdev;
839
840 zram = dev_to_zram(dev);
841 bdev = bdget_disk(zram->disk, 0);
842
46a51c80
RK
843 if (!bdev)
844 return -ENOMEM;
845
ba6b17d6 846 mutex_lock(&bdev->bd_mutex);
9b3bb7ab 847 /* Do not reset an active device! */
2b269ce6 848 if (bdev->bd_openers) {
1b672224
RK
849 ret = -EBUSY;
850 goto out;
851 }
9b3bb7ab
SS
852
853 ret = kstrtou16(buf, 10, &do_reset);
854 if (ret)
1b672224 855 goto out;
9b3bb7ab 856
1b672224
RK
857 if (!do_reset) {
858 ret = -EINVAL;
859 goto out;
860 }
9b3bb7ab
SS
861
862 /* Make sure all pending I/O is finished */
46a51c80 863 fsync_bdev(bdev);
ba6b17d6 864 zram_reset_device(zram);
ba6b17d6
SS
865
866 mutex_unlock(&bdev->bd_mutex);
867 revalidate_disk(zram->disk);
1b672224 868 bdput(bdev);
9b3bb7ab 869
9b3bb7ab 870 return len;
1b672224
RK
871
872out:
ba6b17d6 873 mutex_unlock(&bdev->bd_mutex);
1b672224
RK
874 bdput(bdev);
875 return ret;
8c921b2b
JM
876}
877
be257c61 878static void __zram_make_request(struct zram *zram, struct bio *bio)
8c921b2b 879{
b627cff3 880 int offset, rw;
8c921b2b 881 u32 index;
7988613b
KO
882 struct bio_vec bvec;
883 struct bvec_iter iter;
8c921b2b 884
4f024f37
KO
885 index = bio->bi_iter.bi_sector >> SECTORS_PER_PAGE_SHIFT;
886 offset = (bio->bi_iter.bi_sector &
887 (SECTORS_PER_PAGE - 1)) << SECTOR_SHIFT;
8c921b2b 888
f4659d8e
JK
889 if (unlikely(bio->bi_rw & REQ_DISCARD)) {
890 zram_bio_discard(zram, index, offset, bio);
891 bio_endio(bio, 0);
892 return;
893 }
894
b627cff3 895 rw = bio_data_dir(bio);
7988613b 896 bio_for_each_segment(bvec, bio, iter) {
924bd88d
JM
897 int max_transfer_size = PAGE_SIZE - offset;
898
7988613b 899 if (bvec.bv_len > max_transfer_size) {
924bd88d
JM
900 /*
901 * zram_bvec_rw() can only make operation on a single
902 * zram page. Split the bio vector.
903 */
904 struct bio_vec bv;
905
7988613b 906 bv.bv_page = bvec.bv_page;
924bd88d 907 bv.bv_len = max_transfer_size;
7988613b 908 bv.bv_offset = bvec.bv_offset;
924bd88d 909
b627cff3 910 if (zram_bvec_rw(zram, &bv, index, offset, rw) < 0)
924bd88d
JM
911 goto out;
912
7988613b 913 bv.bv_len = bvec.bv_len - max_transfer_size;
924bd88d 914 bv.bv_offset += max_transfer_size;
b627cff3 915 if (zram_bvec_rw(zram, &bv, index + 1, 0, rw) < 0)
924bd88d
JM
916 goto out;
917 } else
b627cff3 918 if (zram_bvec_rw(zram, &bvec, index, offset, rw) < 0)
924bd88d
JM
919 goto out;
920
7988613b 921 update_position(&index, &offset, &bvec);
a1dd52af 922 }
306b0c95
NG
923
924 set_bit(BIO_UPTODATE, &bio->bi_flags);
925 bio_endio(bio, 0);
7d7854b4 926 return;
306b0c95
NG
927
928out:
306b0c95 929 bio_io_error(bio);
306b0c95
NG
930}
931
306b0c95 932/*
f1e3cfff 933 * Handler function for all zram I/O requests.
306b0c95 934 */
5a7bbad2 935static void zram_make_request(struct request_queue *queue, struct bio *bio)
306b0c95 936{
f1e3cfff 937 struct zram *zram = queue->queuedata;
306b0c95 938
08eee69f 939 if (unlikely(!zram_meta_get(zram)))
3de738cd 940 goto error;
0900beae 941
54850e73 942 if (!valid_io_request(zram, bio->bi_iter.bi_sector,
943 bio->bi_iter.bi_size)) {
da5cc7d3 944 atomic64_inc(&zram->stats.invalid_io);
08eee69f 945 goto put_zram;
6642a67c
JM
946 }
947
be257c61 948 __zram_make_request(zram, bio);
08eee69f 949 zram_meta_put(zram);
b4fdcb02 950 return;
08eee69f
MK
951put_zram:
952 zram_meta_put(zram);
0900beae
JM
953error:
954 bio_io_error(bio);
306b0c95
NG
955}
956
2ccbec05
NG
957static void zram_slot_free_notify(struct block_device *bdev,
958 unsigned long index)
107c161b 959{
f1e3cfff 960 struct zram *zram;
f614a9f4 961 struct zram_meta *meta;
107c161b 962
f1e3cfff 963 zram = bdev->bd_disk->private_data;
f614a9f4 964 meta = zram->meta;
a0c516cb 965
d2d5e762 966 bit_spin_lock(ZRAM_ACCESS, &meta->table[index].value);
f614a9f4 967 zram_free_page(zram, index);
d2d5e762 968 bit_spin_unlock(ZRAM_ACCESS, &meta->table[index].value);
f614a9f4 969 atomic64_inc(&zram->stats.notify_free);
107c161b
NG
970}
971
8c7f0102 972static int zram_rw_page(struct block_device *bdev, sector_t sector,
973 struct page *page, int rw)
974{
08eee69f 975 int offset, err = -EIO;
8c7f0102 976 u32 index;
977 struct zram *zram;
978 struct bio_vec bv;
979
980 zram = bdev->bd_disk->private_data;
08eee69f
MK
981 if (unlikely(!zram_meta_get(zram)))
982 goto out;
983
8c7f0102 984 if (!valid_io_request(zram, sector, PAGE_SIZE)) {
985 atomic64_inc(&zram->stats.invalid_io);
08eee69f
MK
986 err = -EINVAL;
987 goto put_zram;
8c7f0102 988 }
989
990 index = sector >> SECTORS_PER_PAGE_SHIFT;
991 offset = sector & (SECTORS_PER_PAGE - 1) << SECTOR_SHIFT;
992
993 bv.bv_page = page;
994 bv.bv_len = PAGE_SIZE;
995 bv.bv_offset = 0;
996
997 err = zram_bvec_rw(zram, &bv, index, offset, rw);
08eee69f
MK
998put_zram:
999 zram_meta_put(zram);
1000out:
8c7f0102 1001 /*
1002 * If I/O fails, just return error(ie, non-zero) without
1003 * calling page_endio.
1004 * It causes resubmit the I/O with bio request by upper functions
1005 * of rw_page(e.g., swap_readpage, __swap_writepage) and
1006 * bio->bi_end_io does things to handle the error
1007 * (e.g., SetPageError, set_page_dirty and extra works).
1008 */
1009 if (err == 0)
1010 page_endio(page, rw, 0);
1011 return err;
1012}
1013
f1e3cfff 1014static const struct block_device_operations zram_devops = {
f1e3cfff 1015 .swap_slot_free_notify = zram_slot_free_notify,
8c7f0102 1016 .rw_page = zram_rw_page,
107c161b 1017 .owner = THIS_MODULE
306b0c95
NG
1018};
1019
083914ea
GM
1020static DEVICE_ATTR_RW(disksize);
1021static DEVICE_ATTR_RO(initstate);
1022static DEVICE_ATTR_WO(reset);
1023static DEVICE_ATTR_RO(orig_data_size);
1024static DEVICE_ATTR_RO(mem_used_total);
1025static DEVICE_ATTR_RW(mem_limit);
1026static DEVICE_ATTR_RW(mem_used_max);
1027static DEVICE_ATTR_RW(max_comp_streams);
1028static DEVICE_ATTR_RW(comp_algorithm);
9b3bb7ab 1029
a68eb3b6
SS
1030ZRAM_ATTR_RO(num_reads);
1031ZRAM_ATTR_RO(num_writes);
64447249
SS
1032ZRAM_ATTR_RO(failed_reads);
1033ZRAM_ATTR_RO(failed_writes);
a68eb3b6
SS
1034ZRAM_ATTR_RO(invalid_io);
1035ZRAM_ATTR_RO(notify_free);
1036ZRAM_ATTR_RO(zero_pages);
1037ZRAM_ATTR_RO(compr_data_size);
1038
9b3bb7ab
SS
1039static struct attribute *zram_disk_attrs[] = {
1040 &dev_attr_disksize.attr,
1041 &dev_attr_initstate.attr,
1042 &dev_attr_reset.attr,
1043 &dev_attr_num_reads.attr,
1044 &dev_attr_num_writes.attr,
64447249
SS
1045 &dev_attr_failed_reads.attr,
1046 &dev_attr_failed_writes.attr,
9b3bb7ab
SS
1047 &dev_attr_invalid_io.attr,
1048 &dev_attr_notify_free.attr,
1049 &dev_attr_zero_pages.attr,
1050 &dev_attr_orig_data_size.attr,
1051 &dev_attr_compr_data_size.attr,
1052 &dev_attr_mem_used_total.attr,
9ada9da9 1053 &dev_attr_mem_limit.attr,
461a8eee 1054 &dev_attr_mem_used_max.attr,
beca3ec7 1055 &dev_attr_max_comp_streams.attr,
e46b8a03 1056 &dev_attr_comp_algorithm.attr,
9b3bb7ab
SS
1057 NULL,
1058};
1059
1060static struct attribute_group zram_disk_attr_group = {
1061 .attrs = zram_disk_attrs,
1062};
1063
f1e3cfff 1064static int create_device(struct zram *zram, int device_id)
306b0c95 1065{
ee980160 1066 struct request_queue *queue;
39a9b8ac 1067 int ret = -ENOMEM;
de1a21a0 1068
0900beae 1069 init_rwsem(&zram->init_lock);
306b0c95 1070
ee980160
SS
1071 queue = blk_alloc_queue(GFP_KERNEL);
1072 if (!queue) {
306b0c95
NG
1073 pr_err("Error allocating disk queue for device %d\n",
1074 device_id);
de1a21a0 1075 goto out;
306b0c95
NG
1076 }
1077
ee980160 1078 blk_queue_make_request(queue, zram_make_request);
306b0c95
NG
1079
1080 /* gendisk structure */
f1e3cfff
NG
1081 zram->disk = alloc_disk(1);
1082 if (!zram->disk) {
94b8435f 1083 pr_warn("Error allocating disk structure for device %d\n",
306b0c95 1084 device_id);
39a9b8ac 1085 goto out_free_queue;
306b0c95
NG
1086 }
1087
f1e3cfff
NG
1088 zram->disk->major = zram_major;
1089 zram->disk->first_minor = device_id;
1090 zram->disk->fops = &zram_devops;
ee980160
SS
1091 zram->disk->queue = queue;
1092 zram->disk->queue->queuedata = zram;
f1e3cfff
NG
1093 zram->disk->private_data = zram;
1094 snprintf(zram->disk->disk_name, 16, "zram%d", device_id);
306b0c95 1095
33863c21 1096 /* Actual capacity set using syfs (/sys/block/zram<id>/disksize */
f1e3cfff 1097 set_capacity(zram->disk, 0);
b67d1ec1
SS
1098 /* zram devices sort of resembles non-rotational disks */
1099 queue_flag_set_unlocked(QUEUE_FLAG_NONROT, zram->disk->queue);
b277da0a 1100 queue_flag_clear_unlocked(QUEUE_FLAG_ADD_RANDOM, zram->disk->queue);
a1dd52af
NG
1101 /*
1102 * To ensure that we always get PAGE_SIZE aligned
1103 * and n*PAGE_SIZED sized I/O requests.
1104 */
f1e3cfff 1105 blk_queue_physical_block_size(zram->disk->queue, PAGE_SIZE);
7b19b8d4
RJ
1106 blk_queue_logical_block_size(zram->disk->queue,
1107 ZRAM_LOGICAL_BLOCK_SIZE);
f1e3cfff
NG
1108 blk_queue_io_min(zram->disk->queue, PAGE_SIZE);
1109 blk_queue_io_opt(zram->disk->queue, PAGE_SIZE);
f4659d8e
JK
1110 zram->disk->queue->limits.discard_granularity = PAGE_SIZE;
1111 zram->disk->queue->limits.max_discard_sectors = UINT_MAX;
1112 /*
1113 * zram_bio_discard() will clear all logical blocks if logical block
1114 * size is identical with physical block size(PAGE_SIZE). But if it is
1115 * different, we will skip discarding some parts of logical blocks in
1116 * the part of the request range which isn't aligned to physical block
1117 * size. So we can't ensure that all discarded logical blocks are
1118 * zeroed.
1119 */
1120 if (ZRAM_LOGICAL_BLOCK_SIZE == PAGE_SIZE)
1121 zram->disk->queue->limits.discard_zeroes_data = 1;
1122 else
1123 zram->disk->queue->limits.discard_zeroes_data = 0;
1124 queue_flag_set_unlocked(QUEUE_FLAG_DISCARD, zram->disk->queue);
5d83d5a0 1125
f1e3cfff 1126 add_disk(zram->disk);
306b0c95 1127
33863c21
NG
1128 ret = sysfs_create_group(&disk_to_dev(zram->disk)->kobj,
1129 &zram_disk_attr_group);
1130 if (ret < 0) {
94b8435f 1131 pr_warn("Error creating sysfs group");
39a9b8ac 1132 goto out_free_disk;
33863c21 1133 }
e46b8a03 1134 strlcpy(zram->compressor, default_compressor, sizeof(zram->compressor));
be2d1d56 1135 zram->meta = NULL;
beca3ec7 1136 zram->max_comp_streams = 1;
39a9b8ac 1137 return 0;
de1a21a0 1138
39a9b8ac
JL
1139out_free_disk:
1140 del_gendisk(zram->disk);
1141 put_disk(zram->disk);
1142out_free_queue:
ee980160 1143 blk_cleanup_queue(queue);
de1a21a0
NG
1144out:
1145 return ret;
306b0c95
NG
1146}
1147
a096cafc 1148static void destroy_devices(unsigned int nr)
306b0c95 1149{
a096cafc
SS
1150 struct zram *zram;
1151 unsigned int i;
33863c21 1152
a096cafc
SS
1153 for (i = 0; i < nr; i++) {
1154 zram = &zram_devices[i];
1155 /*
1156 * Remove sysfs first, so no one will perform a disksize
1157 * store while we destroy the devices
1158 */
1159 sysfs_remove_group(&disk_to_dev(zram->disk)->kobj,
1160 &zram_disk_attr_group);
306b0c95 1161
a096cafc
SS
1162 zram_reset_device(zram);
1163
ee980160 1164 blk_cleanup_queue(zram->disk->queue);
a096cafc
SS
1165 del_gendisk(zram->disk);
1166 put_disk(zram->disk);
a096cafc
SS
1167 }
1168
1169 kfree(zram_devices);
1170 unregister_blkdev(zram_major, "zram");
1171 pr_info("Destroyed %u device(s)\n", nr);
306b0c95
NG
1172}
1173
f1e3cfff 1174static int __init zram_init(void)
306b0c95 1175{
de1a21a0 1176 int ret, dev_id;
306b0c95 1177
5fa5a901 1178 if (num_devices > max_num_devices) {
94b8435f 1179 pr_warn("Invalid value for num_devices: %u\n",
5fa5a901 1180 num_devices);
a096cafc 1181 return -EINVAL;
306b0c95
NG
1182 }
1183
f1e3cfff
NG
1184 zram_major = register_blkdev(0, "zram");
1185 if (zram_major <= 0) {
94b8435f 1186 pr_warn("Unable to get major number\n");
a096cafc 1187 return -EBUSY;
306b0c95
NG
1188 }
1189
306b0c95 1190 /* Allocate the device array and initialize each one */
5fa5a901 1191 zram_devices = kzalloc(num_devices * sizeof(struct zram), GFP_KERNEL);
43801f6e 1192 if (!zram_devices) {
a096cafc
SS
1193 unregister_blkdev(zram_major, "zram");
1194 return -ENOMEM;
de1a21a0 1195 }
306b0c95 1196
5fa5a901 1197 for (dev_id = 0; dev_id < num_devices; dev_id++) {
43801f6e 1198 ret = create_device(&zram_devices[dev_id], dev_id);
de1a21a0 1199 if (ret)
a096cafc 1200 goto out_error;
de1a21a0
NG
1201 }
1202
a096cafc 1203 pr_info("Created %u device(s)\n", num_devices);
306b0c95 1204 return 0;
de1a21a0 1205
a096cafc
SS
1206out_error:
1207 destroy_devices(dev_id);
306b0c95
NG
1208 return ret;
1209}
1210
f1e3cfff 1211static void __exit zram_exit(void)
306b0c95 1212{
a096cafc 1213 destroy_devices(num_devices);
306b0c95
NG
1214}
1215
f1e3cfff
NG
1216module_init(zram_init);
1217module_exit(zram_exit);
306b0c95 1218
9b3bb7ab
SS
1219module_param(num_devices, uint, 0);
1220MODULE_PARM_DESC(num_devices, "Number of zram devices");
1221
306b0c95
NG
1222MODULE_LICENSE("Dual BSD/GPL");
1223MODULE_AUTHOR("Nitin Gupta <ngupta@vflare.org>");
f1e3cfff 1224MODULE_DESCRIPTION("Compressed RAM Block Device");
This page took 0.601181 seconds and 5 git commands to generate.