intel_pstate: Fix intel_pstate_get()
[deliverable/linux.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13#include <linux/kernel.h>
14#include <linux/kernel_stat.h>
15#include <linux/module.h>
16#include <linux/ktime.h>
17#include <linux/hrtimer.h>
18#include <linux/tick.h>
19#include <linux/slab.h>
20#include <linux/sched.h>
21#include <linux/list.h>
22#include <linux/cpu.h>
23#include <linux/cpufreq.h>
24#include <linux/sysfs.h>
25#include <linux/types.h>
26#include <linux/fs.h>
27#include <linux/debugfs.h>
fbbcdc07 28#include <linux/acpi.h>
d6472302 29#include <linux/vmalloc.h>
93f0822d
DB
30#include <trace/events/power.h>
31
32#include <asm/div64.h>
33#include <asm/msr.h>
34#include <asm/cpu_device_id.h>
64df1fdf 35#include <asm/cpufeature.h>
93f0822d 36
938d21a2
PL
37#define ATOM_RATIOS 0x66a
38#define ATOM_VIDS 0x66b
39#define ATOM_TURBO_RATIOS 0x66c
40#define ATOM_TURBO_VIDS 0x66d
61d8d2ab 41
f0fe3cd7 42#define FRAC_BITS 8
93f0822d
DB
43#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 45
93f0822d
DB
46static inline int32_t mul_fp(int32_t x, int32_t y)
47{
48 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
49}
50
7180dddf 51static inline int32_t div_fp(s64 x, s64 y)
93f0822d 52{
7180dddf 53 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
54}
55
d022a65e
DB
56static inline int ceiling_fp(int32_t x)
57{
58 int mask, ret;
59
60 ret = fp_toint(x);
61 mask = (1 << FRAC_BITS) - 1;
62 if (x & mask)
63 ret += 1;
64 return ret;
65}
66
13ad7701
SP
67/**
68 * struct sample - Store performance sample
69 * @core_pct_busy: Ratio of APERF/MPERF in percent, which is actual
70 * performance during last sample period
71 * @busy_scaled: Scaled busy value which is used to calculate next
72 * P state. This can be different than core_pct_busy
73 * to account for cpu idle period
74 * @aperf: Difference of actual performance frequency clock count
75 * read from APERF MSR between last and current sample
76 * @mperf: Difference of maximum performance frequency clock count
77 * read from MPERF MSR between last and current sample
78 * @tsc: Difference of time stamp counter between last and
79 * current sample
80 * @freq: Effective frequency calculated from APERF/MPERF
81 * @time: Current time from scheduler
82 *
83 * This structure is used in the cpudata structure to store performance sample
84 * data for choosing next P State.
85 */
93f0822d 86struct sample {
d253d2a5 87 int32_t core_pct_busy;
157386b6 88 int32_t busy_scaled;
93f0822d
DB
89 u64 aperf;
90 u64 mperf;
4055fad3 91 u64 tsc;
93f0822d 92 int freq;
a4675fbc 93 u64 time;
93f0822d
DB
94};
95
13ad7701
SP
96/**
97 * struct pstate_data - Store P state data
98 * @current_pstate: Current requested P state
99 * @min_pstate: Min P state possible for this platform
100 * @max_pstate: Max P state possible for this platform
101 * @max_pstate_physical:This is physical Max P state for a processor
102 * This can be higher than the max_pstate which can
103 * be limited by platform thermal design power limits
104 * @scaling: Scaling factor to convert frequency to cpufreq
105 * frequency units
106 * @turbo_pstate: Max Turbo P state possible for this platform
107 *
108 * Stores the per cpu model P state limits and current P state.
109 */
93f0822d
DB
110struct pstate_data {
111 int current_pstate;
112 int min_pstate;
113 int max_pstate;
3bcc6fa9 114 int max_pstate_physical;
b27580b0 115 int scaling;
93f0822d
DB
116 int turbo_pstate;
117};
118
13ad7701
SP
119/**
120 * struct vid_data - Stores voltage information data
121 * @min: VID data for this platform corresponding to
122 * the lowest P state
123 * @max: VID data corresponding to the highest P State.
124 * @turbo: VID data for turbo P state
125 * @ratio: Ratio of (vid max - vid min) /
126 * (max P state - Min P State)
127 *
128 * Stores the voltage data for DVFS (Dynamic Voltage and Frequency Scaling)
129 * This data is used in Atom platforms, where in addition to target P state,
130 * the voltage data needs to be specified to select next P State.
131 */
007bea09 132struct vid_data {
21855ff5
DB
133 int min;
134 int max;
135 int turbo;
007bea09
DB
136 int32_t ratio;
137};
138
13ad7701
SP
139/**
140 * struct _pid - Stores PID data
141 * @setpoint: Target set point for busyness or performance
142 * @integral: Storage for accumulated error values
143 * @p_gain: PID proportional gain
144 * @i_gain: PID integral gain
145 * @d_gain: PID derivative gain
146 * @deadband: PID deadband
147 * @last_err: Last error storage for integral part of PID calculation
148 *
149 * Stores PID coefficients and last error for PID controller.
150 */
93f0822d
DB
151struct _pid {
152 int setpoint;
153 int32_t integral;
154 int32_t p_gain;
155 int32_t i_gain;
156 int32_t d_gain;
157 int deadband;
d253d2a5 158 int32_t last_err;
93f0822d
DB
159};
160
13ad7701
SP
161/**
162 * struct cpudata - Per CPU instance data storage
163 * @cpu: CPU number for this instance data
164 * @update_util: CPUFreq utility callback information
165 * @pstate: Stores P state limits for this CPU
166 * @vid: Stores VID limits for this CPU
167 * @pid: Stores PID parameters for this CPU
168 * @last_sample_time: Last Sample time
169 * @prev_aperf: Last APERF value read from APERF MSR
170 * @prev_mperf: Last MPERF value read from MPERF MSR
171 * @prev_tsc: Last timestamp counter (TSC) value
172 * @prev_cummulative_iowait: IO Wait time difference from last and
173 * current sample
174 * @sample: Storage for storing last Sample data
175 *
176 * This structure stores per CPU instance data for all CPUs.
177 */
93f0822d
DB
178struct cpudata {
179 int cpu;
180
a4675fbc 181 struct update_util_data update_util;
93f0822d 182
93f0822d 183 struct pstate_data pstate;
007bea09 184 struct vid_data vid;
93f0822d 185 struct _pid pid;
93f0822d 186
a4675fbc 187 u64 last_sample_time;
93f0822d
DB
188 u64 prev_aperf;
189 u64 prev_mperf;
4055fad3 190 u64 prev_tsc;
63d1d656 191 u64 prev_cummulative_iowait;
d37e2b76 192 struct sample sample;
93f0822d
DB
193};
194
195static struct cpudata **all_cpu_data;
13ad7701
SP
196
197/**
198 * struct pid_adjust_policy - Stores static PID configuration data
199 * @sample_rate_ms: PID calculation sample rate in ms
200 * @sample_rate_ns: Sample rate calculation in ns
201 * @deadband: PID deadband
202 * @setpoint: PID Setpoint
203 * @p_gain_pct: PID proportional gain
204 * @i_gain_pct: PID integral gain
205 * @d_gain_pct: PID derivative gain
206 *
207 * Stores per CPU model static PID configuration data.
208 */
93f0822d
DB
209struct pstate_adjust_policy {
210 int sample_rate_ms;
a4675fbc 211 s64 sample_rate_ns;
93f0822d
DB
212 int deadband;
213 int setpoint;
214 int p_gain_pct;
215 int d_gain_pct;
216 int i_gain_pct;
217};
218
13ad7701
SP
219/**
220 * struct pstate_funcs - Per CPU model specific callbacks
221 * @get_max: Callback to get maximum non turbo effective P state
222 * @get_max_physical: Callback to get maximum non turbo physical P state
223 * @get_min: Callback to get minimum P state
224 * @get_turbo: Callback to get turbo P state
225 * @get_scaling: Callback to get frequency scaling factor
226 * @get_val: Callback to convert P state to actual MSR write value
227 * @get_vid: Callback to get VID data for Atom platforms
228 * @get_target_pstate: Callback to a function to calculate next P state to use
229 *
230 * Core and Atom CPU models have different way to get P State limits. This
231 * structure is used to store those callbacks.
232 */
016c8150
DB
233struct pstate_funcs {
234 int (*get_max)(void);
3bcc6fa9 235 int (*get_max_physical)(void);
016c8150
DB
236 int (*get_min)(void);
237 int (*get_turbo)(void);
b27580b0 238 int (*get_scaling)(void);
fdfdb2b1 239 u64 (*get_val)(struct cpudata*, int pstate);
007bea09 240 void (*get_vid)(struct cpudata *);
157386b6 241 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
242};
243
13ad7701
SP
244/**
245 * struct cpu_defaults- Per CPU model default config data
246 * @pid_policy: PID config data
247 * @funcs: Callback function data
248 */
016c8150
DB
249struct cpu_defaults {
250 struct pstate_adjust_policy pid_policy;
251 struct pstate_funcs funcs;
93f0822d
DB
252};
253
157386b6 254static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 255static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 256
016c8150
DB
257static struct pstate_adjust_policy pid_params;
258static struct pstate_funcs pstate_funcs;
2f86dc4c 259static int hwp_active;
016c8150 260
13ad7701
SP
261
262/**
263 * struct perf_limits - Store user and policy limits
264 * @no_turbo: User requested turbo state from intel_pstate sysfs
265 * @turbo_disabled: Platform turbo status either from msr
266 * MSR_IA32_MISC_ENABLE or when maximum available pstate
267 * matches the maximum turbo pstate
268 * @max_perf_pct: Effective maximum performance limit in percentage, this
269 * is minimum of either limits enforced by cpufreq policy
270 * or limits from user set limits via intel_pstate sysfs
271 * @min_perf_pct: Effective minimum performance limit in percentage, this
272 * is maximum of either limits enforced by cpufreq policy
273 * or limits from user set limits via intel_pstate sysfs
274 * @max_perf: This is a scaled value between 0 to 255 for max_perf_pct
275 * This value is used to limit max pstate
276 * @min_perf: This is a scaled value between 0 to 255 for min_perf_pct
277 * This value is used to limit min pstate
278 * @max_policy_pct: The maximum performance in percentage enforced by
279 * cpufreq setpolicy interface
280 * @max_sysfs_pct: The maximum performance in percentage enforced by
281 * intel pstate sysfs interface
282 * @min_policy_pct: The minimum performance in percentage enforced by
283 * cpufreq setpolicy interface
284 * @min_sysfs_pct: The minimum performance in percentage enforced by
285 * intel pstate sysfs interface
286 *
287 * Storage for user and policy defined limits.
288 */
93f0822d
DB
289struct perf_limits {
290 int no_turbo;
dd5fbf70 291 int turbo_disabled;
93f0822d
DB
292 int max_perf_pct;
293 int min_perf_pct;
294 int32_t max_perf;
295 int32_t min_perf;
d8f469e9
DB
296 int max_policy_pct;
297 int max_sysfs_pct;
a0475992
KCA
298 int min_policy_pct;
299 int min_sysfs_pct;
93f0822d
DB
300};
301
51443fbf
PB
302static struct perf_limits performance_limits = {
303 .no_turbo = 0,
304 .turbo_disabled = 0,
305 .max_perf_pct = 100,
306 .max_perf = int_tofp(1),
307 .min_perf_pct = 100,
308 .min_perf = int_tofp(1),
309 .max_policy_pct = 100,
310 .max_sysfs_pct = 100,
311 .min_policy_pct = 0,
312 .min_sysfs_pct = 0,
313};
314
315static struct perf_limits powersave_limits = {
93f0822d 316 .no_turbo = 0,
4521e1a0 317 .turbo_disabled = 0,
93f0822d
DB
318 .max_perf_pct = 100,
319 .max_perf = int_tofp(1),
320 .min_perf_pct = 0,
321 .min_perf = 0,
d8f469e9
DB
322 .max_policy_pct = 100,
323 .max_sysfs_pct = 100,
a0475992
KCA
324 .min_policy_pct = 0,
325 .min_sysfs_pct = 0,
93f0822d
DB
326};
327
51443fbf
PB
328#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
329static struct perf_limits *limits = &performance_limits;
330#else
331static struct perf_limits *limits = &powersave_limits;
332#endif
333
93f0822d 334static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 335 int deadband, int integral) {
b54a0dfd
PL
336 pid->setpoint = int_tofp(setpoint);
337 pid->deadband = int_tofp(deadband);
93f0822d 338 pid->integral = int_tofp(integral);
d98d099b 339 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
340}
341
342static inline void pid_p_gain_set(struct _pid *pid, int percent)
343{
344 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
345}
346
347static inline void pid_i_gain_set(struct _pid *pid, int percent)
348{
349 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
350}
351
352static inline void pid_d_gain_set(struct _pid *pid, int percent)
353{
93f0822d
DB
354 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
355}
356
d253d2a5 357static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 358{
d253d2a5 359 signed int result;
93f0822d
DB
360 int32_t pterm, dterm, fp_error;
361 int32_t integral_limit;
362
b54a0dfd 363 fp_error = pid->setpoint - busy;
93f0822d 364
b54a0dfd 365 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
366 return 0;
367
368 pterm = mul_fp(pid->p_gain, fp_error);
369
370 pid->integral += fp_error;
371
e0d4c8f8
KCA
372 /*
373 * We limit the integral here so that it will never
374 * get higher than 30. This prevents it from becoming
375 * too large an input over long periods of time and allows
376 * it to get factored out sooner.
377 *
378 * The value of 30 was chosen through experimentation.
379 */
93f0822d
DB
380 integral_limit = int_tofp(30);
381 if (pid->integral > integral_limit)
382 pid->integral = integral_limit;
383 if (pid->integral < -integral_limit)
384 pid->integral = -integral_limit;
385
d253d2a5
BS
386 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
387 pid->last_err = fp_error;
93f0822d
DB
388
389 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 390 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
391 return (signed int)fp_toint(result);
392}
393
394static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
395{
016c8150
DB
396 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
397 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
398 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 399
2d8d1f18 400 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
401}
402
93f0822d
DB
403static inline void intel_pstate_reset_all_pid(void)
404{
405 unsigned int cpu;
845c1cbe 406
93f0822d
DB
407 for_each_online_cpu(cpu) {
408 if (all_cpu_data[cpu])
409 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
410 }
411}
412
4521e1a0
GM
413static inline void update_turbo_state(void)
414{
415 u64 misc_en;
416 struct cpudata *cpu;
417
418 cpu = all_cpu_data[0];
419 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
51443fbf 420 limits->turbo_disabled =
4521e1a0
GM
421 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
422 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
423}
424
41cfd64c 425static void intel_pstate_hwp_set(const struct cpumask *cpumask)
2f86dc4c 426{
74da56ce
KCA
427 int min, hw_min, max, hw_max, cpu, range, adj_range;
428 u64 value, cap;
429
430 rdmsrl(MSR_HWP_CAPABILITIES, cap);
431 hw_min = HWP_LOWEST_PERF(cap);
432 hw_max = HWP_HIGHEST_PERF(cap);
433 range = hw_max - hw_min;
2f86dc4c 434
41cfd64c 435 for_each_cpu(cpu, cpumask) {
2f86dc4c 436 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
51443fbf 437 adj_range = limits->min_perf_pct * range / 100;
74da56ce 438 min = hw_min + adj_range;
2f86dc4c
DB
439 value &= ~HWP_MIN_PERF(~0L);
440 value |= HWP_MIN_PERF(min);
441
51443fbf 442 adj_range = limits->max_perf_pct * range / 100;
74da56ce 443 max = hw_min + adj_range;
51443fbf 444 if (limits->no_turbo) {
74da56ce
KCA
445 hw_max = HWP_GUARANTEED_PERF(cap);
446 if (hw_max < max)
447 max = hw_max;
2f86dc4c
DB
448 }
449
450 value &= ~HWP_MAX_PERF(~0L);
451 value |= HWP_MAX_PERF(max);
452 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
453 }
41cfd64c 454}
2f86dc4c 455
ba41e1bc
RW
456static int intel_pstate_hwp_set_policy(struct cpufreq_policy *policy)
457{
458 if (hwp_active)
459 intel_pstate_hwp_set(policy->cpus);
460
461 return 0;
462}
463
41cfd64c
VK
464static void intel_pstate_hwp_set_online_cpus(void)
465{
466 get_online_cpus();
467 intel_pstate_hwp_set(cpu_online_mask);
2f86dc4c
DB
468 put_online_cpus();
469}
470
93f0822d
DB
471/************************** debugfs begin ************************/
472static int pid_param_set(void *data, u64 val)
473{
474 *(u32 *)data = val;
475 intel_pstate_reset_all_pid();
476 return 0;
477}
845c1cbe 478
93f0822d
DB
479static int pid_param_get(void *data, u64 *val)
480{
481 *val = *(u32 *)data;
482 return 0;
483}
2d8d1f18 484DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d
DB
485
486struct pid_param {
487 char *name;
488 void *value;
489};
490
491static struct pid_param pid_files[] = {
016c8150
DB
492 {"sample_rate_ms", &pid_params.sample_rate_ms},
493 {"d_gain_pct", &pid_params.d_gain_pct},
494 {"i_gain_pct", &pid_params.i_gain_pct},
495 {"deadband", &pid_params.deadband},
496 {"setpoint", &pid_params.setpoint},
497 {"p_gain_pct", &pid_params.p_gain_pct},
93f0822d
DB
498 {NULL, NULL}
499};
500
317dd50e 501static void __init intel_pstate_debug_expose_params(void)
93f0822d 502{
317dd50e 503 struct dentry *debugfs_parent;
93f0822d
DB
504 int i = 0;
505
2f86dc4c
DB
506 if (hwp_active)
507 return;
93f0822d
DB
508 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
509 if (IS_ERR_OR_NULL(debugfs_parent))
510 return;
511 while (pid_files[i].name) {
512 debugfs_create_file(pid_files[i].name, 0660,
c410833a
SK
513 debugfs_parent, pid_files[i].value,
514 &fops_pid_param);
93f0822d
DB
515 i++;
516 }
517}
518
519/************************** debugfs end ************************/
520
521/************************** sysfs begin ************************/
522#define show_one(file_name, object) \
523 static ssize_t show_##file_name \
524 (struct kobject *kobj, struct attribute *attr, char *buf) \
525 { \
51443fbf 526 return sprintf(buf, "%u\n", limits->object); \
93f0822d
DB
527 }
528
d01b1f48
KCA
529static ssize_t show_turbo_pct(struct kobject *kobj,
530 struct attribute *attr, char *buf)
531{
532 struct cpudata *cpu;
533 int total, no_turbo, turbo_pct;
534 uint32_t turbo_fp;
535
536 cpu = all_cpu_data[0];
537
538 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
539 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
540 turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
541 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
542 return sprintf(buf, "%u\n", turbo_pct);
543}
544
0522424e
KCA
545static ssize_t show_num_pstates(struct kobject *kobj,
546 struct attribute *attr, char *buf)
547{
548 struct cpudata *cpu;
549 int total;
550
551 cpu = all_cpu_data[0];
552 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
553 return sprintf(buf, "%u\n", total);
554}
555
4521e1a0
GM
556static ssize_t show_no_turbo(struct kobject *kobj,
557 struct attribute *attr, char *buf)
558{
559 ssize_t ret;
560
561 update_turbo_state();
51443fbf
PB
562 if (limits->turbo_disabled)
563 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
4521e1a0 564 else
51443fbf 565 ret = sprintf(buf, "%u\n", limits->no_turbo);
4521e1a0
GM
566
567 return ret;
568}
569
93f0822d 570static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 571 const char *buf, size_t count)
93f0822d
DB
572{
573 unsigned int input;
574 int ret;
845c1cbe 575
93f0822d
DB
576 ret = sscanf(buf, "%u", &input);
577 if (ret != 1)
578 return -EINVAL;
4521e1a0
GM
579
580 update_turbo_state();
51443fbf 581 if (limits->turbo_disabled) {
f16255eb 582 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
4521e1a0 583 return -EPERM;
dd5fbf70 584 }
2f86dc4c 585
51443fbf 586 limits->no_turbo = clamp_t(int, input, 0, 1);
4521e1a0 587
2f86dc4c 588 if (hwp_active)
41cfd64c 589 intel_pstate_hwp_set_online_cpus();
2f86dc4c 590
93f0822d
DB
591 return count;
592}
593
594static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 595 const char *buf, size_t count)
93f0822d
DB
596{
597 unsigned int input;
598 int ret;
845c1cbe 599
93f0822d
DB
600 ret = sscanf(buf, "%u", &input);
601 if (ret != 1)
602 return -EINVAL;
603
51443fbf
PB
604 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
605 limits->max_perf_pct = min(limits->max_policy_pct,
606 limits->max_sysfs_pct);
607 limits->max_perf_pct = max(limits->min_policy_pct,
608 limits->max_perf_pct);
609 limits->max_perf_pct = max(limits->min_perf_pct,
610 limits->max_perf_pct);
611 limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
612 int_tofp(100));
845c1cbe 613
2f86dc4c 614 if (hwp_active)
41cfd64c 615 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
616 return count;
617}
618
619static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 620 const char *buf, size_t count)
93f0822d
DB
621{
622 unsigned int input;
623 int ret;
845c1cbe 624
93f0822d
DB
625 ret = sscanf(buf, "%u", &input);
626 if (ret != 1)
627 return -EINVAL;
a0475992 628
51443fbf
PB
629 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
630 limits->min_perf_pct = max(limits->min_policy_pct,
631 limits->min_sysfs_pct);
632 limits->min_perf_pct = min(limits->max_policy_pct,
633 limits->min_perf_pct);
634 limits->min_perf_pct = min(limits->max_perf_pct,
635 limits->min_perf_pct);
636 limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
637 int_tofp(100));
93f0822d 638
2f86dc4c 639 if (hwp_active)
41cfd64c 640 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
641 return count;
642}
643
93f0822d
DB
644show_one(max_perf_pct, max_perf_pct);
645show_one(min_perf_pct, min_perf_pct);
646
647define_one_global_rw(no_turbo);
648define_one_global_rw(max_perf_pct);
649define_one_global_rw(min_perf_pct);
d01b1f48 650define_one_global_ro(turbo_pct);
0522424e 651define_one_global_ro(num_pstates);
93f0822d
DB
652
653static struct attribute *intel_pstate_attributes[] = {
654 &no_turbo.attr,
655 &max_perf_pct.attr,
656 &min_perf_pct.attr,
d01b1f48 657 &turbo_pct.attr,
0522424e 658 &num_pstates.attr,
93f0822d
DB
659 NULL
660};
661
662static struct attribute_group intel_pstate_attr_group = {
663 .attrs = intel_pstate_attributes,
664};
93f0822d 665
317dd50e 666static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 667{
317dd50e 668 struct kobject *intel_pstate_kobject;
93f0822d
DB
669 int rc;
670
671 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
672 &cpu_subsys.dev_root->kobj);
673 BUG_ON(!intel_pstate_kobject);
2d8d1f18 674 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
93f0822d
DB
675 BUG_ON(rc);
676}
93f0822d 677/************************** sysfs end ************************/
2f86dc4c 678
ba88d433 679static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 680{
f05c9665
SP
681 /* First disable HWP notification interrupt as we don't process them */
682 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
683
ba88d433 684 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
2f86dc4c
DB
685}
686
938d21a2 687static int atom_get_min_pstate(void)
19e77c28
DB
688{
689 u64 value;
845c1cbe 690
938d21a2 691 rdmsrl(ATOM_RATIOS, value);
c16ed060 692 return (value >> 8) & 0x7F;
19e77c28
DB
693}
694
938d21a2 695static int atom_get_max_pstate(void)
19e77c28
DB
696{
697 u64 value;
845c1cbe 698
938d21a2 699 rdmsrl(ATOM_RATIOS, value);
c16ed060 700 return (value >> 16) & 0x7F;
19e77c28 701}
93f0822d 702
938d21a2 703static int atom_get_turbo_pstate(void)
61d8d2ab
DB
704{
705 u64 value;
845c1cbe 706
938d21a2 707 rdmsrl(ATOM_TURBO_RATIOS, value);
c16ed060 708 return value & 0x7F;
61d8d2ab
DB
709}
710
fdfdb2b1 711static u64 atom_get_val(struct cpudata *cpudata, int pstate)
007bea09
DB
712{
713 u64 val;
714 int32_t vid_fp;
715 u32 vid;
716
144c8e17 717 val = (u64)pstate << 8;
51443fbf 718 if (limits->no_turbo && !limits->turbo_disabled)
007bea09
DB
719 val |= (u64)1 << 32;
720
721 vid_fp = cpudata->vid.min + mul_fp(
722 int_tofp(pstate - cpudata->pstate.min_pstate),
723 cpudata->vid.ratio);
724
725 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 726 vid = ceiling_fp(vid_fp);
007bea09 727
21855ff5
DB
728 if (pstate > cpudata->pstate.max_pstate)
729 vid = cpudata->vid.turbo;
730
fdfdb2b1 731 return val | vid;
007bea09
DB
732}
733
1421df63 734static int silvermont_get_scaling(void)
b27580b0
DB
735{
736 u64 value;
737 int i;
1421df63
PL
738 /* Defined in Table 35-6 from SDM (Sept 2015) */
739 static int silvermont_freq_table[] = {
740 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
741
742 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
743 i = value & 0x7;
744 WARN_ON(i > 4);
b27580b0 745
1421df63
PL
746 return silvermont_freq_table[i];
747}
b27580b0 748
1421df63
PL
749static int airmont_get_scaling(void)
750{
751 u64 value;
752 int i;
753 /* Defined in Table 35-10 from SDM (Sept 2015) */
754 static int airmont_freq_table[] = {
755 83300, 100000, 133300, 116700, 80000,
756 93300, 90000, 88900, 87500};
757
758 rdmsrl(MSR_FSB_FREQ, value);
759 i = value & 0xF;
760 WARN_ON(i > 8);
761
762 return airmont_freq_table[i];
b27580b0
DB
763}
764
938d21a2 765static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
766{
767 u64 value;
768
938d21a2 769 rdmsrl(ATOM_VIDS, value);
c16ed060
DB
770 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
771 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
772 cpudata->vid.ratio = div_fp(
773 cpudata->vid.max - cpudata->vid.min,
774 int_tofp(cpudata->pstate.max_pstate -
775 cpudata->pstate.min_pstate));
21855ff5 776
938d21a2 777 rdmsrl(ATOM_TURBO_VIDS, value);
21855ff5 778 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
779}
780
016c8150 781static int core_get_min_pstate(void)
93f0822d
DB
782{
783 u64 value;
845c1cbe 784
05e99c8c 785 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
786 return (value >> 40) & 0xFF;
787}
788
3bcc6fa9 789static int core_get_max_pstate_physical(void)
93f0822d
DB
790{
791 u64 value;
845c1cbe 792
05e99c8c 793 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
794 return (value >> 8) & 0xFF;
795}
796
016c8150 797static int core_get_max_pstate(void)
93f0822d 798{
6a35fc2d
SP
799 u64 tar;
800 u64 plat_info;
801 int max_pstate;
802 int err;
803
804 rdmsrl(MSR_PLATFORM_INFO, plat_info);
805 max_pstate = (plat_info >> 8) & 0xFF;
806
807 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
808 if (!err) {
809 /* Do some sanity checking for safety */
810 if (plat_info & 0x600000000) {
811 u64 tdp_ctrl;
812 u64 tdp_ratio;
813 int tdp_msr;
814
815 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
816 if (err)
817 goto skip_tar;
818
819 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
820 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
821 if (err)
822 goto skip_tar;
823
1becf035
SP
824 /* For level 1 and 2, bits[23:16] contain the ratio */
825 if (tdp_ctrl)
826 tdp_ratio >>= 16;
827
828 tdp_ratio &= 0xff; /* ratios are only 8 bits long */
6a35fc2d
SP
829 if (tdp_ratio - 1 == tar) {
830 max_pstate = tar;
831 pr_debug("max_pstate=TAC %x\n", max_pstate);
832 } else {
833 goto skip_tar;
834 }
835 }
836 }
845c1cbe 837
6a35fc2d
SP
838skip_tar:
839 return max_pstate;
93f0822d
DB
840}
841
016c8150 842static int core_get_turbo_pstate(void)
93f0822d
DB
843{
844 u64 value;
845 int nont, ret;
845c1cbe 846
05e99c8c 847 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
016c8150 848 nont = core_get_max_pstate();
285cb990 849 ret = (value) & 255;
93f0822d
DB
850 if (ret <= nont)
851 ret = nont;
852 return ret;
853}
854
b27580b0
DB
855static inline int core_get_scaling(void)
856{
857 return 100000;
858}
859
fdfdb2b1 860static u64 core_get_val(struct cpudata *cpudata, int pstate)
016c8150
DB
861{
862 u64 val;
863
144c8e17 864 val = (u64)pstate << 8;
51443fbf 865 if (limits->no_turbo && !limits->turbo_disabled)
016c8150
DB
866 val |= (u64)1 << 32;
867
fdfdb2b1 868 return val;
016c8150
DB
869}
870
b34ef932
DC
871static int knl_get_turbo_pstate(void)
872{
873 u64 value;
874 int nont, ret;
875
876 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
877 nont = core_get_max_pstate();
878 ret = (((value) >> 8) & 0xFF);
879 if (ret <= nont)
880 ret = nont;
881 return ret;
882}
883
016c8150
DB
884static struct cpu_defaults core_params = {
885 .pid_policy = {
886 .sample_rate_ms = 10,
887 .deadband = 0,
888 .setpoint = 97,
889 .p_gain_pct = 20,
890 .d_gain_pct = 0,
891 .i_gain_pct = 0,
892 },
893 .funcs = {
894 .get_max = core_get_max_pstate,
3bcc6fa9 895 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
896 .get_min = core_get_min_pstate,
897 .get_turbo = core_get_turbo_pstate,
b27580b0 898 .get_scaling = core_get_scaling,
fdfdb2b1 899 .get_val = core_get_val,
157386b6 900 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
901 },
902};
903
1421df63
PL
904static struct cpu_defaults silvermont_params = {
905 .pid_policy = {
906 .sample_rate_ms = 10,
907 .deadband = 0,
908 .setpoint = 60,
909 .p_gain_pct = 14,
910 .d_gain_pct = 0,
911 .i_gain_pct = 4,
912 },
913 .funcs = {
914 .get_max = atom_get_max_pstate,
915 .get_max_physical = atom_get_max_pstate,
916 .get_min = atom_get_min_pstate,
917 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 918 .get_val = atom_get_val,
1421df63
PL
919 .get_scaling = silvermont_get_scaling,
920 .get_vid = atom_get_vid,
e70eed2b 921 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
922 },
923};
924
925static struct cpu_defaults airmont_params = {
19e77c28
DB
926 .pid_policy = {
927 .sample_rate_ms = 10,
928 .deadband = 0,
6a82ba6d 929 .setpoint = 60,
19e77c28
DB
930 .p_gain_pct = 14,
931 .d_gain_pct = 0,
932 .i_gain_pct = 4,
933 },
934 .funcs = {
938d21a2
PL
935 .get_max = atom_get_max_pstate,
936 .get_max_physical = atom_get_max_pstate,
937 .get_min = atom_get_min_pstate,
938 .get_turbo = atom_get_turbo_pstate,
fdfdb2b1 939 .get_val = atom_get_val,
1421df63 940 .get_scaling = airmont_get_scaling,
938d21a2 941 .get_vid = atom_get_vid,
e70eed2b 942 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
943 },
944};
945
b34ef932
DC
946static struct cpu_defaults knl_params = {
947 .pid_policy = {
948 .sample_rate_ms = 10,
949 .deadband = 0,
950 .setpoint = 97,
951 .p_gain_pct = 20,
952 .d_gain_pct = 0,
953 .i_gain_pct = 0,
954 },
955 .funcs = {
956 .get_max = core_get_max_pstate,
3bcc6fa9 957 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
958 .get_min = core_get_min_pstate,
959 .get_turbo = knl_get_turbo_pstate,
69cefc27 960 .get_scaling = core_get_scaling,
fdfdb2b1 961 .get_val = core_get_val,
157386b6 962 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
963 },
964};
965
93f0822d
DB
966static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
967{
968 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 969 int max_perf_adj;
93f0822d 970 int min_perf;
845c1cbe 971
51443fbf 972 if (limits->no_turbo || limits->turbo_disabled)
93f0822d
DB
973 max_perf = cpu->pstate.max_pstate;
974
e0d4c8f8
KCA
975 /*
976 * performance can be limited by user through sysfs, by cpufreq
977 * policy, or by cpu specific default values determined through
978 * experimentation.
979 */
a158bed5 980 max_perf_adj = fp_toint(max_perf * limits->max_perf);
799281a3
RW
981 *max = clamp_t(int, max_perf_adj,
982 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 983
a158bed5 984 min_perf = fp_toint(max_perf * limits->min_perf);
799281a3 985 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
986}
987
fdfdb2b1 988static inline void intel_pstate_record_pstate(struct cpudata *cpu, int pstate)
93f0822d 989{
b27580b0 990 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
93f0822d 991 cpu->pstate.current_pstate = pstate;
fdfdb2b1 992}
93f0822d 993
fdfdb2b1
RW
994static void intel_pstate_set_min_pstate(struct cpudata *cpu)
995{
996 int pstate = cpu->pstate.min_pstate;
997
998 intel_pstate_record_pstate(cpu, pstate);
999 /*
1000 * Generally, there is no guarantee that this code will always run on
1001 * the CPU being updated, so force the register update to run on the
1002 * right CPU.
1003 */
1004 wrmsrl_on_cpu(cpu->cpu, MSR_IA32_PERF_CTL,
1005 pstate_funcs.get_val(cpu, pstate));
93f0822d
DB
1006}
1007
93f0822d
DB
1008static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
1009{
016c8150
DB
1010 cpu->pstate.min_pstate = pstate_funcs.get_min();
1011 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 1012 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 1013 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 1014 cpu->pstate.scaling = pstate_funcs.get_scaling();
93f0822d 1015
007bea09
DB
1016 if (pstate_funcs.get_vid)
1017 pstate_funcs.get_vid(cpu);
fdfdb2b1
RW
1018
1019 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1020}
1021
6b17ddb2 1022static inline void intel_pstate_calc_busy(struct cpudata *cpu)
93f0822d 1023{
6b17ddb2 1024 struct sample *sample = &cpu->sample;
bf810222 1025 int64_t core_pct;
93f0822d 1026
bf810222 1027 core_pct = int_tofp(sample->aperf) * int_tofp(100);
78e27086 1028 core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
e66c1768 1029
bf810222 1030 sample->core_pct_busy = (int32_t)core_pct;
93f0822d
DB
1031}
1032
4fec7ad5 1033static inline bool intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 1034{
93f0822d 1035 u64 aperf, mperf;
4ab60c3f 1036 unsigned long flags;
4055fad3 1037 u64 tsc;
93f0822d 1038
4ab60c3f 1039 local_irq_save(flags);
93f0822d
DB
1040 rdmsrl(MSR_IA32_APERF, aperf);
1041 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b 1042 tsc = rdtsc();
4fec7ad5 1043 if (cpu->prev_mperf == mperf || cpu->prev_tsc == tsc) {
8e601a9f 1044 local_irq_restore(flags);
4fec7ad5 1045 return false;
8e601a9f 1046 }
4ab60c3f 1047 local_irq_restore(flags);
b69880f9 1048
c4ee841f 1049 cpu->last_sample_time = cpu->sample.time;
a4675fbc 1050 cpu->sample.time = time;
d37e2b76
DB
1051 cpu->sample.aperf = aperf;
1052 cpu->sample.mperf = mperf;
4055fad3 1053 cpu->sample.tsc = tsc;
d37e2b76
DB
1054 cpu->sample.aperf -= cpu->prev_aperf;
1055 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 1056 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 1057
93f0822d
DB
1058 cpu->prev_aperf = aperf;
1059 cpu->prev_mperf = mperf;
4055fad3 1060 cpu->prev_tsc = tsc;
febce40f
RW
1061 /*
1062 * First time this function is invoked in a given cycle, all of the
1063 * previous sample data fields are equal to zero or stale and they must
1064 * be populated with meaningful numbers for things to work, so assume
1065 * that sample.time will always be reset before setting the utilization
1066 * update hook and make the caller skip the sample then.
1067 */
1068 return !!cpu->last_sample_time;
93f0822d
DB
1069}
1070
8fa520af
PL
1071static inline int32_t get_avg_frequency(struct cpudata *cpu)
1072{
6d45b719
RW
1073 return fp_toint(mul_fp(cpu->sample.core_pct_busy,
1074 int_tofp(cpu->pstate.max_pstate_physical *
1075 cpu->pstate.scaling / 100)));
8fa520af
PL
1076}
1077
e70eed2b
PL
1078static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
1079{
1080 struct sample *sample = &cpu->sample;
63d1d656
PL
1081 u64 cummulative_iowait, delta_iowait_us;
1082 u64 delta_iowait_mperf;
1083 u64 mperf, now;
e70eed2b
PL
1084 int32_t cpu_load;
1085
63d1d656
PL
1086 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
1087
1088 /*
1089 * Convert iowait time into number of IO cycles spent at max_freq.
1090 * IO is considered as busy only for the cpu_load algorithm. For
1091 * performance this is not needed since we always try to reach the
1092 * maximum P-State, so we are already boosting the IOs.
1093 */
1094 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
1095 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
1096 cpu->pstate.max_pstate, MSEC_PER_SEC);
1097
1098 mperf = cpu->sample.mperf + delta_iowait_mperf;
1099 cpu->prev_cummulative_iowait = cummulative_iowait;
1100
e70eed2b
PL
1101 /*
1102 * The load can be estimated as the ratio of the mperf counter
1103 * running at a constant frequency during active periods
1104 * (C0) and the time stamp counter running at the same frequency
1105 * also during C-states.
1106 */
63d1d656 1107 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
e70eed2b
PL
1108 cpu->sample.busy_scaled = cpu_load;
1109
1110 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
1111}
1112
157386b6 1113static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 1114{
c4ee841f 1115 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
a4675fbc 1116 u64 duration_ns;
93f0822d 1117
e0d4c8f8
KCA
1118 /*
1119 * core_busy is the ratio of actual performance to max
1120 * max_pstate is the max non turbo pstate available
1121 * current_pstate was the pstate that was requested during
1122 * the last sample period.
1123 *
1124 * We normalize core_busy, which was our actual percent
1125 * performance to what we requested during the last sample
1126 * period. The result will be a percentage of busy at a
1127 * specified pstate.
1128 */
d37e2b76 1129 core_busy = cpu->sample.core_pct_busy;
3bcc6fa9 1130 max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
93f0822d 1131 current_pstate = int_tofp(cpu->pstate.current_pstate);
e66c1768 1132 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
c4ee841f 1133
e0d4c8f8 1134 /*
a4675fbc
RW
1135 * Since our utilization update callback will not run unless we are
1136 * in C0, check if the actual elapsed time is significantly greater (3x)
1137 * than our sample interval. If it is, then we were idle for a long
1138 * enough period of time to adjust our busyness.
e0d4c8f8 1139 */
a4675fbc 1140 duration_ns = cpu->sample.time - cpu->last_sample_time;
febce40f 1141 if ((s64)duration_ns > pid_params.sample_rate_ns * 3) {
a4675fbc
RW
1142 sample_ratio = div_fp(int_tofp(pid_params.sample_rate_ns),
1143 int_tofp(duration_ns));
c4ee841f 1144 core_busy = mul_fp(core_busy, sample_ratio);
ffb81056
RW
1145 } else {
1146 sample_ratio = div_fp(100 * cpu->sample.mperf, cpu->sample.tsc);
1147 if (sample_ratio < int_tofp(1))
1148 core_busy = 0;
c4ee841f
DB
1149 }
1150
157386b6
PL
1151 cpu->sample.busy_scaled = core_busy;
1152 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
93f0822d
DB
1153}
1154
fdfdb2b1
RW
1155static inline void intel_pstate_update_pstate(struct cpudata *cpu, int pstate)
1156{
1157 int max_perf, min_perf;
1158
1159 update_turbo_state();
1160
1161 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
1162 pstate = clamp_t(int, pstate, min_perf, max_perf);
1163 if (pstate == cpu->pstate.current_pstate)
1164 return;
1165
1166 intel_pstate_record_pstate(cpu, pstate);
1167 wrmsrl(MSR_IA32_PERF_CTL, pstate_funcs.get_val(cpu, pstate));
1168}
1169
93f0822d
DB
1170static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1171{
157386b6 1172 int from, target_pstate;
4055fad3
DS
1173 struct sample *sample;
1174
1175 from = cpu->pstate.current_pstate;
93f0822d 1176
157386b6 1177 target_pstate = pstate_funcs.get_target_pstate(cpu);
93f0822d 1178
fdfdb2b1 1179 intel_pstate_update_pstate(cpu, target_pstate);
4055fad3
DS
1180
1181 sample = &cpu->sample;
1182 trace_pstate_sample(fp_toint(sample->core_pct_busy),
157386b6 1183 fp_toint(sample->busy_scaled),
4055fad3
DS
1184 from,
1185 cpu->pstate.current_pstate,
1186 sample->mperf,
1187 sample->aperf,
1188 sample->tsc,
8fa520af 1189 get_avg_frequency(cpu));
93f0822d
DB
1190}
1191
a4675fbc
RW
1192static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1193 unsigned long util, unsigned long max)
93f0822d 1194{
a4675fbc
RW
1195 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1196 u64 delta_ns = time - cpu->sample.time;
b69880f9 1197
a4675fbc 1198 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
4fec7ad5
RW
1199 bool sample_taken = intel_pstate_sample(cpu, time);
1200
6d45b719
RW
1201 if (sample_taken) {
1202 intel_pstate_calc_busy(cpu);
1203 if (!hwp_active)
1204 intel_pstate_adjust_busy_pstate(cpu);
1205 }
a4675fbc 1206 }
93f0822d
DB
1207}
1208
1209#define ICPU(model, policy) \
6cbd7ee1
DB
1210 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1211 (unsigned long)&policy }
93f0822d
DB
1212
1213static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
016c8150
DB
1214 ICPU(0x2a, core_params),
1215 ICPU(0x2d, core_params),
1421df63 1216 ICPU(0x37, silvermont_params),
016c8150
DB
1217 ICPU(0x3a, core_params),
1218 ICPU(0x3c, core_params),
c7e241df 1219 ICPU(0x3d, core_params),
016c8150
DB
1220 ICPU(0x3e, core_params),
1221 ICPU(0x3f, core_params),
1222 ICPU(0x45, core_params),
1223 ICPU(0x46, core_params),
43f8a966 1224 ICPU(0x47, core_params),
1421df63 1225 ICPU(0x4c, airmont_params),
7ab0256e 1226 ICPU(0x4e, core_params),
c7e241df 1227 ICPU(0x4f, core_params),
1c939123 1228 ICPU(0x5e, core_params),
c7e241df 1229 ICPU(0x56, core_params),
b34ef932 1230 ICPU(0x57, knl_params),
93f0822d
DB
1231 {}
1232};
1233MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1234
2f86dc4c
DB
1235static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1236 ICPU(0x56, core_params),
1237 {}
1238};
1239
93f0822d
DB
1240static int intel_pstate_init_cpu(unsigned int cpunum)
1241{
93f0822d
DB
1242 struct cpudata *cpu;
1243
c0348717
DB
1244 if (!all_cpu_data[cpunum])
1245 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1246 GFP_KERNEL);
93f0822d
DB
1247 if (!all_cpu_data[cpunum])
1248 return -ENOMEM;
1249
1250 cpu = all_cpu_data[cpunum];
1251
93f0822d 1252 cpu->cpu = cpunum;
ba88d433 1253
a4675fbc 1254 if (hwp_active) {
ba88d433 1255 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
1256 pid_params.sample_rate_ms = 50;
1257 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1258 }
ba88d433 1259
179e8471 1260 intel_pstate_get_cpu_pstates(cpu);
016c8150 1261
93f0822d 1262 intel_pstate_busy_pid_reset(cpu);
93f0822d 1263
a4675fbc 1264 cpu->update_util.func = intel_pstate_update_util;
93f0822d 1265
f16255eb 1266 pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
93f0822d
DB
1267
1268 return 0;
1269}
1270
1271static unsigned int intel_pstate_get(unsigned int cpu_num)
1272{
1273 struct sample *sample;
1274 struct cpudata *cpu;
1275
1276 cpu = all_cpu_data[cpu_num];
1277 if (!cpu)
1278 return 0;
d37e2b76 1279 sample = &cpu->sample;
8fa520af 1280 return get_avg_frequency(cpu);
93f0822d
DB
1281}
1282
febce40f 1283static void intel_pstate_set_update_util_hook(unsigned int cpu_num)
bb6ab52f 1284{
febce40f
RW
1285 struct cpudata *cpu = all_cpu_data[cpu_num];
1286
1287 /* Prevent intel_pstate_update_util() from using stale data. */
1288 cpu->sample.time = 0;
1289 cpufreq_set_update_util_data(cpu_num, &cpu->update_util);
bb6ab52f
RW
1290}
1291
1292static void intel_pstate_clear_update_util_hook(unsigned int cpu)
1293{
1294 cpufreq_set_update_util_data(cpu, NULL);
1295 synchronize_sched();
1296}
1297
30a39153
SP
1298static void intel_pstate_set_performance_limits(struct perf_limits *limits)
1299{
1300 limits->no_turbo = 0;
1301 limits->turbo_disabled = 0;
1302 limits->max_perf_pct = 100;
1303 limits->max_perf = int_tofp(1);
1304 limits->min_perf_pct = 100;
1305 limits->min_perf = int_tofp(1);
1306 limits->max_policy_pct = 100;
1307 limits->max_sysfs_pct = 100;
1308 limits->min_policy_pct = 0;
1309 limits->min_sysfs_pct = 0;
1310}
1311
93f0822d
DB
1312static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1313{
d3929b83
DB
1314 if (!policy->cpuinfo.max_freq)
1315 return -ENODEV;
1316
bb6ab52f
RW
1317 intel_pstate_clear_update_util_hook(policy->cpu);
1318
30a39153 1319 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE) {
51443fbf 1320 limits = &performance_limits;
30a39153
SP
1321 if (policy->max >= policy->cpuinfo.max_freq) {
1322 pr_debug("intel_pstate: set performance\n");
1323 intel_pstate_set_performance_limits(limits);
1324 goto out;
1325 }
1326 } else {
1327 pr_debug("intel_pstate: set powersave\n");
1328 limits = &powersave_limits;
93f0822d 1329 }
2f86dc4c 1330
51443fbf
PB
1331 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1332 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
8478f539
PB
1333 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1334 policy->cpuinfo.max_freq);
51443fbf 1335 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
43717aad
CY
1336
1337 /* Normalize user input to [min_policy_pct, max_policy_pct] */
51443fbf
PB
1338 limits->min_perf_pct = max(limits->min_policy_pct,
1339 limits->min_sysfs_pct);
1340 limits->min_perf_pct = min(limits->max_policy_pct,
1341 limits->min_perf_pct);
1342 limits->max_perf_pct = min(limits->max_policy_pct,
1343 limits->max_sysfs_pct);
1344 limits->max_perf_pct = max(limits->min_policy_pct,
1345 limits->max_perf_pct);
88b7b7c0 1346 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
43717aad
CY
1347
1348 /* Make sure min_perf_pct <= max_perf_pct */
51443fbf 1349 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
43717aad 1350
51443fbf
PB
1351 limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
1352 int_tofp(100));
1353 limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
1354 int_tofp(100));
93f0822d 1355
bb6ab52f
RW
1356 out:
1357 intel_pstate_set_update_util_hook(policy->cpu);
1358
ba41e1bc 1359 intel_pstate_hwp_set_policy(policy);
2f86dc4c 1360
93f0822d
DB
1361 return 0;
1362}
1363
1364static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1365{
be49e346 1366 cpufreq_verify_within_cpu_limits(policy);
93f0822d 1367
285cb990 1368 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 1369 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
1370 return -EINVAL;
1371
1372 return 0;
1373}
1374
bb18008f 1375static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 1376{
bb18008f
DB
1377 int cpu_num = policy->cpu;
1378 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1379
f16255eb 1380 pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
bb18008f 1381
bb6ab52f 1382 intel_pstate_clear_update_util_hook(cpu_num);
a4675fbc 1383
2f86dc4c
DB
1384 if (hwp_active)
1385 return;
1386
fdfdb2b1 1387 intel_pstate_set_min_pstate(cpu);
93f0822d
DB
1388}
1389
2760984f 1390static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 1391{
93f0822d 1392 struct cpudata *cpu;
52e0a509 1393 int rc;
93f0822d
DB
1394
1395 rc = intel_pstate_init_cpu(policy->cpu);
1396 if (rc)
1397 return rc;
1398
1399 cpu = all_cpu_data[policy->cpu];
1400
51443fbf 1401 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
93f0822d
DB
1402 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1403 else
1404 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1405
b27580b0
DB
1406 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1407 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
1408
1409 /* cpuinfo and default policy values */
b27580b0
DB
1410 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1411 policy->cpuinfo.max_freq =
1412 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
1413 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1414 cpumask_set_cpu(policy->cpu, policy->cpus);
1415
1416 return 0;
1417}
1418
1419static struct cpufreq_driver intel_pstate_driver = {
1420 .flags = CPUFREQ_CONST_LOOPS,
1421 .verify = intel_pstate_verify_policy,
1422 .setpolicy = intel_pstate_set_policy,
ba41e1bc 1423 .resume = intel_pstate_hwp_set_policy,
93f0822d
DB
1424 .get = intel_pstate_get,
1425 .init = intel_pstate_cpu_init,
bb18008f 1426 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 1427 .name = "intel_pstate",
93f0822d
DB
1428};
1429
6be26498 1430static int __initdata no_load;
2f86dc4c 1431static int __initdata no_hwp;
d64c3b0b 1432static int __initdata hwp_only;
aa4ea34d 1433static unsigned int force_load;
6be26498 1434
b563b4e3
DB
1435static int intel_pstate_msrs_not_valid(void)
1436{
016c8150 1437 if (!pstate_funcs.get_max() ||
c410833a
SK
1438 !pstate_funcs.get_min() ||
1439 !pstate_funcs.get_turbo())
b563b4e3
DB
1440 return -ENODEV;
1441
b563b4e3
DB
1442 return 0;
1443}
016c8150 1444
e0a261a2 1445static void copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
1446{
1447 pid_params.sample_rate_ms = policy->sample_rate_ms;
a4675fbc 1448 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
016c8150
DB
1449 pid_params.p_gain_pct = policy->p_gain_pct;
1450 pid_params.i_gain_pct = policy->i_gain_pct;
1451 pid_params.d_gain_pct = policy->d_gain_pct;
1452 pid_params.deadband = policy->deadband;
1453 pid_params.setpoint = policy->setpoint;
1454}
1455
e0a261a2 1456static void copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
1457{
1458 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 1459 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
1460 pstate_funcs.get_min = funcs->get_min;
1461 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 1462 pstate_funcs.get_scaling = funcs->get_scaling;
fdfdb2b1 1463 pstate_funcs.get_val = funcs->get_val;
007bea09 1464 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
1465 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1466
016c8150
DB
1467}
1468
fbbcdc07 1469#if IS_ENABLED(CONFIG_ACPI)
6ee11e41 1470#include <acpi/processor.h>
fbbcdc07
AH
1471
1472static bool intel_pstate_no_acpi_pss(void)
1473{
1474 int i;
1475
1476 for_each_possible_cpu(i) {
1477 acpi_status status;
1478 union acpi_object *pss;
1479 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1480 struct acpi_processor *pr = per_cpu(processors, i);
1481
1482 if (!pr)
1483 continue;
1484
1485 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1486 if (ACPI_FAILURE(status))
1487 continue;
1488
1489 pss = buffer.pointer;
1490 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1491 kfree(pss);
1492 return false;
1493 }
1494
1495 kfree(pss);
1496 }
1497
1498 return true;
1499}
1500
966916ea 1501static bool intel_pstate_has_acpi_ppc(void)
1502{
1503 int i;
1504
1505 for_each_possible_cpu(i) {
1506 struct acpi_processor *pr = per_cpu(processors, i);
1507
1508 if (!pr)
1509 continue;
1510 if (acpi_has_method(pr->handle, "_PPC"))
1511 return true;
1512 }
1513 return false;
1514}
1515
1516enum {
1517 PSS,
1518 PPC,
1519};
1520
fbbcdc07
AH
1521struct hw_vendor_info {
1522 u16 valid;
1523 char oem_id[ACPI_OEM_ID_SIZE];
1524 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 1525 int oem_pwr_table;
fbbcdc07
AH
1526};
1527
1528/* Hardware vendor-specific info that has its own power management modes */
1529static struct hw_vendor_info vendor_info[] = {
966916ea 1530 {1, "HP ", "ProLiant", PSS},
1531 {1, "ORACLE", "X4-2 ", PPC},
1532 {1, "ORACLE", "X4-2L ", PPC},
1533 {1, "ORACLE", "X4-2B ", PPC},
1534 {1, "ORACLE", "X3-2 ", PPC},
1535 {1, "ORACLE", "X3-2L ", PPC},
1536 {1, "ORACLE", "X3-2B ", PPC},
1537 {1, "ORACLE", "X4470M2 ", PPC},
1538 {1, "ORACLE", "X4270M3 ", PPC},
1539 {1, "ORACLE", "X4270M2 ", PPC},
1540 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
1541 {1, "ORACLE", "X4170 M3", PPC},
1542 {1, "ORACLE", "X4275 M3", PPC},
1543 {1, "ORACLE", "X6-2 ", PPC},
1544 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
1545 {0, "", ""},
1546};
1547
1548static bool intel_pstate_platform_pwr_mgmt_exists(void)
1549{
1550 struct acpi_table_header hdr;
1551 struct hw_vendor_info *v_info;
2f86dc4c
DB
1552 const struct x86_cpu_id *id;
1553 u64 misc_pwr;
1554
1555 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1556 if (id) {
1557 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1558 if ( misc_pwr & (1 << 8))
1559 return true;
1560 }
fbbcdc07 1561
c410833a
SK
1562 if (acpi_disabled ||
1563 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
1564 return false;
1565
1566 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 1567 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 1568 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1569 ACPI_OEM_TABLE_ID_SIZE))
1570 switch (v_info->oem_pwr_table) {
1571 case PSS:
1572 return intel_pstate_no_acpi_pss();
1573 case PPC:
aa4ea34d
EZ
1574 return intel_pstate_has_acpi_ppc() &&
1575 (!force_load);
966916ea 1576 }
fbbcdc07
AH
1577 }
1578
1579 return false;
1580}
1581#else /* CONFIG_ACPI not enabled */
1582static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 1583static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
fbbcdc07
AH
1584#endif /* CONFIG_ACPI */
1585
7791e4aa
SP
1586static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1587 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1588 {}
1589};
1590
93f0822d
DB
1591static int __init intel_pstate_init(void)
1592{
907cc908 1593 int cpu, rc = 0;
93f0822d 1594 const struct x86_cpu_id *id;
64df1fdf 1595 struct cpu_defaults *cpu_def;
93f0822d 1596
6be26498
DB
1597 if (no_load)
1598 return -ENODEV;
1599
7791e4aa
SP
1600 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1601 copy_cpu_funcs(&core_params.funcs);
1602 hwp_active++;
1603 goto hwp_cpu_matched;
1604 }
1605
93f0822d
DB
1606 id = x86_match_cpu(intel_pstate_cpu_ids);
1607 if (!id)
1608 return -ENODEV;
1609
64df1fdf 1610 cpu_def = (struct cpu_defaults *)id->driver_data;
016c8150 1611
64df1fdf
BP
1612 copy_pid_params(&cpu_def->pid_policy);
1613 copy_cpu_funcs(&cpu_def->funcs);
016c8150 1614
b563b4e3
DB
1615 if (intel_pstate_msrs_not_valid())
1616 return -ENODEV;
1617
7791e4aa
SP
1618hwp_cpu_matched:
1619 /*
1620 * The Intel pstate driver will be ignored if the platform
1621 * firmware has its own power management modes.
1622 */
1623 if (intel_pstate_platform_pwr_mgmt_exists())
1624 return -ENODEV;
1625
93f0822d
DB
1626 pr_info("Intel P-state driver initializing.\n");
1627
b57ffac5 1628 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
1629 if (!all_cpu_data)
1630 return -ENOMEM;
93f0822d 1631
d64c3b0b
KCA
1632 if (!hwp_active && hwp_only)
1633 goto out;
1634
93f0822d
DB
1635 rc = cpufreq_register_driver(&intel_pstate_driver);
1636 if (rc)
1637 goto out;
1638
1639 intel_pstate_debug_expose_params();
1640 intel_pstate_sysfs_expose_params();
b69880f9 1641
7791e4aa
SP
1642 if (hwp_active)
1643 pr_info("intel_pstate: HWP enabled\n");
1644
93f0822d
DB
1645 return rc;
1646out:
907cc908
DB
1647 get_online_cpus();
1648 for_each_online_cpu(cpu) {
1649 if (all_cpu_data[cpu]) {
bb6ab52f 1650 intel_pstate_clear_update_util_hook(cpu);
907cc908
DB
1651 kfree(all_cpu_data[cpu]);
1652 }
1653 }
1654
1655 put_online_cpus();
1656 vfree(all_cpu_data);
93f0822d
DB
1657 return -ENODEV;
1658}
1659device_initcall(intel_pstate_init);
1660
6be26498
DB
1661static int __init intel_pstate_setup(char *str)
1662{
1663 if (!str)
1664 return -EINVAL;
1665
1666 if (!strcmp(str, "disable"))
1667 no_load = 1;
539342f6
PB
1668 if (!strcmp(str, "no_hwp")) {
1669 pr_info("intel_pstate: HWP disabled\n");
2f86dc4c 1670 no_hwp = 1;
539342f6 1671 }
aa4ea34d
EZ
1672 if (!strcmp(str, "force"))
1673 force_load = 1;
d64c3b0b
KCA
1674 if (!strcmp(str, "hwp_only"))
1675 hwp_only = 1;
6be26498
DB
1676 return 0;
1677}
1678early_param("intel_pstate", intel_pstate_setup);
1679
93f0822d
DB
1680MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1681MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1682MODULE_LICENSE("GPL");
This page took 0.243628 seconds and 5 git commands to generate.