intel_pstate: Remove freq calculation from intel_pstate_calc_busy()
[deliverable/linux.git] / drivers / cpufreq / intel_pstate.c
CommitLineData
93f0822d 1/*
d1b68485 2 * intel_pstate.c: Native P state management for Intel processors
93f0822d
DB
3 *
4 * (C) Copyright 2012 Intel Corporation
5 * Author: Dirk Brandewie <dirk.j.brandewie@intel.com>
6 *
7 * This program is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU General Public License
9 * as published by the Free Software Foundation; version 2
10 * of the License.
11 */
12
13#include <linux/kernel.h>
14#include <linux/kernel_stat.h>
15#include <linux/module.h>
16#include <linux/ktime.h>
17#include <linux/hrtimer.h>
18#include <linux/tick.h>
19#include <linux/slab.h>
20#include <linux/sched.h>
21#include <linux/list.h>
22#include <linux/cpu.h>
23#include <linux/cpufreq.h>
24#include <linux/sysfs.h>
25#include <linux/types.h>
26#include <linux/fs.h>
27#include <linux/debugfs.h>
fbbcdc07 28#include <linux/acpi.h>
d6472302 29#include <linux/vmalloc.h>
93f0822d
DB
30#include <trace/events/power.h>
31
32#include <asm/div64.h>
33#include <asm/msr.h>
34#include <asm/cpu_device_id.h>
64df1fdf 35#include <asm/cpufeature.h>
93f0822d 36
938d21a2
PL
37#define ATOM_RATIOS 0x66a
38#define ATOM_VIDS 0x66b
39#define ATOM_TURBO_RATIOS 0x66c
40#define ATOM_TURBO_VIDS 0x66d
61d8d2ab 41
f0fe3cd7 42#define FRAC_BITS 8
93f0822d
DB
43#define int_tofp(X) ((int64_t)(X) << FRAC_BITS)
44#define fp_toint(X) ((X) >> FRAC_BITS)
f0fe3cd7 45
93f0822d
DB
46static inline int32_t mul_fp(int32_t x, int32_t y)
47{
48 return ((int64_t)x * (int64_t)y) >> FRAC_BITS;
49}
50
7180dddf 51static inline int32_t div_fp(s64 x, s64 y)
93f0822d 52{
7180dddf 53 return div64_s64((int64_t)x << FRAC_BITS, y);
93f0822d
DB
54}
55
d022a65e
DB
56static inline int ceiling_fp(int32_t x)
57{
58 int mask, ret;
59
60 ret = fp_toint(x);
61 mask = (1 << FRAC_BITS) - 1;
62 if (x & mask)
63 ret += 1;
64 return ret;
65}
66
93f0822d 67struct sample {
d253d2a5 68 int32_t core_pct_busy;
157386b6 69 int32_t busy_scaled;
93f0822d
DB
70 u64 aperf;
71 u64 mperf;
4055fad3 72 u64 tsc;
93f0822d 73 int freq;
a4675fbc 74 u64 time;
93f0822d
DB
75};
76
77struct pstate_data {
78 int current_pstate;
79 int min_pstate;
80 int max_pstate;
3bcc6fa9 81 int max_pstate_physical;
b27580b0 82 int scaling;
93f0822d
DB
83 int turbo_pstate;
84};
85
007bea09 86struct vid_data {
21855ff5
DB
87 int min;
88 int max;
89 int turbo;
007bea09
DB
90 int32_t ratio;
91};
92
93f0822d
DB
93struct _pid {
94 int setpoint;
95 int32_t integral;
96 int32_t p_gain;
97 int32_t i_gain;
98 int32_t d_gain;
99 int deadband;
d253d2a5 100 int32_t last_err;
93f0822d
DB
101};
102
103struct cpudata {
104 int cpu;
105
a4675fbc 106 struct update_util_data update_util;
93f0822d 107
93f0822d 108 struct pstate_data pstate;
007bea09 109 struct vid_data vid;
93f0822d 110 struct _pid pid;
93f0822d 111
a4675fbc 112 u64 last_sample_time;
93f0822d
DB
113 u64 prev_aperf;
114 u64 prev_mperf;
4055fad3 115 u64 prev_tsc;
63d1d656 116 u64 prev_cummulative_iowait;
d37e2b76 117 struct sample sample;
93f0822d
DB
118};
119
120static struct cpudata **all_cpu_data;
121struct pstate_adjust_policy {
122 int sample_rate_ms;
a4675fbc 123 s64 sample_rate_ns;
93f0822d
DB
124 int deadband;
125 int setpoint;
126 int p_gain_pct;
127 int d_gain_pct;
128 int i_gain_pct;
129};
130
016c8150
DB
131struct pstate_funcs {
132 int (*get_max)(void);
3bcc6fa9 133 int (*get_max_physical)(void);
016c8150
DB
134 int (*get_min)(void);
135 int (*get_turbo)(void);
b27580b0 136 int (*get_scaling)(void);
007bea09
DB
137 void (*set)(struct cpudata*, int pstate);
138 void (*get_vid)(struct cpudata *);
157386b6 139 int32_t (*get_target_pstate)(struct cpudata *);
93f0822d
DB
140};
141
016c8150
DB
142struct cpu_defaults {
143 struct pstate_adjust_policy pid_policy;
144 struct pstate_funcs funcs;
93f0822d
DB
145};
146
157386b6 147static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu);
e70eed2b 148static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu);
157386b6 149
016c8150
DB
150static struct pstate_adjust_policy pid_params;
151static struct pstate_funcs pstate_funcs;
2f86dc4c 152static int hwp_active;
016c8150 153
93f0822d
DB
154struct perf_limits {
155 int no_turbo;
dd5fbf70 156 int turbo_disabled;
93f0822d
DB
157 int max_perf_pct;
158 int min_perf_pct;
159 int32_t max_perf;
160 int32_t min_perf;
d8f469e9
DB
161 int max_policy_pct;
162 int max_sysfs_pct;
a0475992
KCA
163 int min_policy_pct;
164 int min_sysfs_pct;
93f0822d
DB
165};
166
51443fbf
PB
167static struct perf_limits performance_limits = {
168 .no_turbo = 0,
169 .turbo_disabled = 0,
170 .max_perf_pct = 100,
171 .max_perf = int_tofp(1),
172 .min_perf_pct = 100,
173 .min_perf = int_tofp(1),
174 .max_policy_pct = 100,
175 .max_sysfs_pct = 100,
176 .min_policy_pct = 0,
177 .min_sysfs_pct = 0,
178};
179
180static struct perf_limits powersave_limits = {
93f0822d 181 .no_turbo = 0,
4521e1a0 182 .turbo_disabled = 0,
93f0822d
DB
183 .max_perf_pct = 100,
184 .max_perf = int_tofp(1),
185 .min_perf_pct = 0,
186 .min_perf = 0,
d8f469e9
DB
187 .max_policy_pct = 100,
188 .max_sysfs_pct = 100,
a0475992
KCA
189 .min_policy_pct = 0,
190 .min_sysfs_pct = 0,
93f0822d
DB
191};
192
51443fbf
PB
193#ifdef CONFIG_CPU_FREQ_DEFAULT_GOV_PERFORMANCE
194static struct perf_limits *limits = &performance_limits;
195#else
196static struct perf_limits *limits = &powersave_limits;
197#endif
198
93f0822d 199static inline void pid_reset(struct _pid *pid, int setpoint, int busy,
c410833a 200 int deadband, int integral) {
b54a0dfd
PL
201 pid->setpoint = int_tofp(setpoint);
202 pid->deadband = int_tofp(deadband);
93f0822d 203 pid->integral = int_tofp(integral);
d98d099b 204 pid->last_err = int_tofp(setpoint) - int_tofp(busy);
93f0822d
DB
205}
206
207static inline void pid_p_gain_set(struct _pid *pid, int percent)
208{
209 pid->p_gain = div_fp(int_tofp(percent), int_tofp(100));
210}
211
212static inline void pid_i_gain_set(struct _pid *pid, int percent)
213{
214 pid->i_gain = div_fp(int_tofp(percent), int_tofp(100));
215}
216
217static inline void pid_d_gain_set(struct _pid *pid, int percent)
218{
93f0822d
DB
219 pid->d_gain = div_fp(int_tofp(percent), int_tofp(100));
220}
221
d253d2a5 222static signed int pid_calc(struct _pid *pid, int32_t busy)
93f0822d 223{
d253d2a5 224 signed int result;
93f0822d
DB
225 int32_t pterm, dterm, fp_error;
226 int32_t integral_limit;
227
b54a0dfd 228 fp_error = pid->setpoint - busy;
93f0822d 229
b54a0dfd 230 if (abs(fp_error) <= pid->deadband)
93f0822d
DB
231 return 0;
232
233 pterm = mul_fp(pid->p_gain, fp_error);
234
235 pid->integral += fp_error;
236
e0d4c8f8
KCA
237 /*
238 * We limit the integral here so that it will never
239 * get higher than 30. This prevents it from becoming
240 * too large an input over long periods of time and allows
241 * it to get factored out sooner.
242 *
243 * The value of 30 was chosen through experimentation.
244 */
93f0822d
DB
245 integral_limit = int_tofp(30);
246 if (pid->integral > integral_limit)
247 pid->integral = integral_limit;
248 if (pid->integral < -integral_limit)
249 pid->integral = -integral_limit;
250
d253d2a5
BS
251 dterm = mul_fp(pid->d_gain, fp_error - pid->last_err);
252 pid->last_err = fp_error;
93f0822d
DB
253
254 result = pterm + mul_fp(pid->integral, pid->i_gain) + dterm;
51d211e9 255 result = result + (1 << (FRAC_BITS-1));
93f0822d
DB
256 return (signed int)fp_toint(result);
257}
258
259static inline void intel_pstate_busy_pid_reset(struct cpudata *cpu)
260{
016c8150
DB
261 pid_p_gain_set(&cpu->pid, pid_params.p_gain_pct);
262 pid_d_gain_set(&cpu->pid, pid_params.d_gain_pct);
263 pid_i_gain_set(&cpu->pid, pid_params.i_gain_pct);
93f0822d 264
2d8d1f18 265 pid_reset(&cpu->pid, pid_params.setpoint, 100, pid_params.deadband, 0);
93f0822d
DB
266}
267
93f0822d
DB
268static inline void intel_pstate_reset_all_pid(void)
269{
270 unsigned int cpu;
845c1cbe 271
93f0822d
DB
272 for_each_online_cpu(cpu) {
273 if (all_cpu_data[cpu])
274 intel_pstate_busy_pid_reset(all_cpu_data[cpu]);
275 }
276}
277
4521e1a0
GM
278static inline void update_turbo_state(void)
279{
280 u64 misc_en;
281 struct cpudata *cpu;
282
283 cpu = all_cpu_data[0];
284 rdmsrl(MSR_IA32_MISC_ENABLE, misc_en);
51443fbf 285 limits->turbo_disabled =
4521e1a0
GM
286 (misc_en & MSR_IA32_MISC_ENABLE_TURBO_DISABLE ||
287 cpu->pstate.max_pstate == cpu->pstate.turbo_pstate);
288}
289
41cfd64c 290static void intel_pstate_hwp_set(const struct cpumask *cpumask)
2f86dc4c 291{
74da56ce
KCA
292 int min, hw_min, max, hw_max, cpu, range, adj_range;
293 u64 value, cap;
294
295 rdmsrl(MSR_HWP_CAPABILITIES, cap);
296 hw_min = HWP_LOWEST_PERF(cap);
297 hw_max = HWP_HIGHEST_PERF(cap);
298 range = hw_max - hw_min;
2f86dc4c 299
41cfd64c 300 for_each_cpu(cpu, cpumask) {
2f86dc4c 301 rdmsrl_on_cpu(cpu, MSR_HWP_REQUEST, &value);
51443fbf 302 adj_range = limits->min_perf_pct * range / 100;
74da56ce 303 min = hw_min + adj_range;
2f86dc4c
DB
304 value &= ~HWP_MIN_PERF(~0L);
305 value |= HWP_MIN_PERF(min);
306
51443fbf 307 adj_range = limits->max_perf_pct * range / 100;
74da56ce 308 max = hw_min + adj_range;
51443fbf 309 if (limits->no_turbo) {
74da56ce
KCA
310 hw_max = HWP_GUARANTEED_PERF(cap);
311 if (hw_max < max)
312 max = hw_max;
2f86dc4c
DB
313 }
314
315 value &= ~HWP_MAX_PERF(~0L);
316 value |= HWP_MAX_PERF(max);
317 wrmsrl_on_cpu(cpu, MSR_HWP_REQUEST, value);
318 }
41cfd64c 319}
2f86dc4c 320
41cfd64c
VK
321static void intel_pstate_hwp_set_online_cpus(void)
322{
323 get_online_cpus();
324 intel_pstate_hwp_set(cpu_online_mask);
2f86dc4c
DB
325 put_online_cpus();
326}
327
93f0822d
DB
328/************************** debugfs begin ************************/
329static int pid_param_set(void *data, u64 val)
330{
331 *(u32 *)data = val;
332 intel_pstate_reset_all_pid();
333 return 0;
334}
845c1cbe 335
93f0822d
DB
336static int pid_param_get(void *data, u64 *val)
337{
338 *val = *(u32 *)data;
339 return 0;
340}
2d8d1f18 341DEFINE_SIMPLE_ATTRIBUTE(fops_pid_param, pid_param_get, pid_param_set, "%llu\n");
93f0822d
DB
342
343struct pid_param {
344 char *name;
345 void *value;
346};
347
348static struct pid_param pid_files[] = {
016c8150
DB
349 {"sample_rate_ms", &pid_params.sample_rate_ms},
350 {"d_gain_pct", &pid_params.d_gain_pct},
351 {"i_gain_pct", &pid_params.i_gain_pct},
352 {"deadband", &pid_params.deadband},
353 {"setpoint", &pid_params.setpoint},
354 {"p_gain_pct", &pid_params.p_gain_pct},
93f0822d
DB
355 {NULL, NULL}
356};
357
317dd50e 358static void __init intel_pstate_debug_expose_params(void)
93f0822d 359{
317dd50e 360 struct dentry *debugfs_parent;
93f0822d
DB
361 int i = 0;
362
2f86dc4c
DB
363 if (hwp_active)
364 return;
93f0822d
DB
365 debugfs_parent = debugfs_create_dir("pstate_snb", NULL);
366 if (IS_ERR_OR_NULL(debugfs_parent))
367 return;
368 while (pid_files[i].name) {
369 debugfs_create_file(pid_files[i].name, 0660,
c410833a
SK
370 debugfs_parent, pid_files[i].value,
371 &fops_pid_param);
93f0822d
DB
372 i++;
373 }
374}
375
376/************************** debugfs end ************************/
377
378/************************** sysfs begin ************************/
379#define show_one(file_name, object) \
380 static ssize_t show_##file_name \
381 (struct kobject *kobj, struct attribute *attr, char *buf) \
382 { \
51443fbf 383 return sprintf(buf, "%u\n", limits->object); \
93f0822d
DB
384 }
385
d01b1f48
KCA
386static ssize_t show_turbo_pct(struct kobject *kobj,
387 struct attribute *attr, char *buf)
388{
389 struct cpudata *cpu;
390 int total, no_turbo, turbo_pct;
391 uint32_t turbo_fp;
392
393 cpu = all_cpu_data[0];
394
395 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
396 no_turbo = cpu->pstate.max_pstate - cpu->pstate.min_pstate + 1;
397 turbo_fp = div_fp(int_tofp(no_turbo), int_tofp(total));
398 turbo_pct = 100 - fp_toint(mul_fp(turbo_fp, int_tofp(100)));
399 return sprintf(buf, "%u\n", turbo_pct);
400}
401
0522424e
KCA
402static ssize_t show_num_pstates(struct kobject *kobj,
403 struct attribute *attr, char *buf)
404{
405 struct cpudata *cpu;
406 int total;
407
408 cpu = all_cpu_data[0];
409 total = cpu->pstate.turbo_pstate - cpu->pstate.min_pstate + 1;
410 return sprintf(buf, "%u\n", total);
411}
412
4521e1a0
GM
413static ssize_t show_no_turbo(struct kobject *kobj,
414 struct attribute *attr, char *buf)
415{
416 ssize_t ret;
417
418 update_turbo_state();
51443fbf
PB
419 if (limits->turbo_disabled)
420 ret = sprintf(buf, "%u\n", limits->turbo_disabled);
4521e1a0 421 else
51443fbf 422 ret = sprintf(buf, "%u\n", limits->no_turbo);
4521e1a0
GM
423
424 return ret;
425}
426
93f0822d 427static ssize_t store_no_turbo(struct kobject *a, struct attribute *b,
c410833a 428 const char *buf, size_t count)
93f0822d
DB
429{
430 unsigned int input;
431 int ret;
845c1cbe 432
93f0822d
DB
433 ret = sscanf(buf, "%u", &input);
434 if (ret != 1)
435 return -EINVAL;
4521e1a0
GM
436
437 update_turbo_state();
51443fbf 438 if (limits->turbo_disabled) {
f16255eb 439 pr_warn("intel_pstate: Turbo disabled by BIOS or unavailable on processor\n");
4521e1a0 440 return -EPERM;
dd5fbf70 441 }
2f86dc4c 442
51443fbf 443 limits->no_turbo = clamp_t(int, input, 0, 1);
4521e1a0 444
2f86dc4c 445 if (hwp_active)
41cfd64c 446 intel_pstate_hwp_set_online_cpus();
2f86dc4c 447
93f0822d
DB
448 return count;
449}
450
451static ssize_t store_max_perf_pct(struct kobject *a, struct attribute *b,
c410833a 452 const char *buf, size_t count)
93f0822d
DB
453{
454 unsigned int input;
455 int ret;
845c1cbe 456
93f0822d
DB
457 ret = sscanf(buf, "%u", &input);
458 if (ret != 1)
459 return -EINVAL;
460
51443fbf
PB
461 limits->max_sysfs_pct = clamp_t(int, input, 0 , 100);
462 limits->max_perf_pct = min(limits->max_policy_pct,
463 limits->max_sysfs_pct);
464 limits->max_perf_pct = max(limits->min_policy_pct,
465 limits->max_perf_pct);
466 limits->max_perf_pct = max(limits->min_perf_pct,
467 limits->max_perf_pct);
468 limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
469 int_tofp(100));
845c1cbe 470
2f86dc4c 471 if (hwp_active)
41cfd64c 472 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
473 return count;
474}
475
476static ssize_t store_min_perf_pct(struct kobject *a, struct attribute *b,
c410833a 477 const char *buf, size_t count)
93f0822d
DB
478{
479 unsigned int input;
480 int ret;
845c1cbe 481
93f0822d
DB
482 ret = sscanf(buf, "%u", &input);
483 if (ret != 1)
484 return -EINVAL;
a0475992 485
51443fbf
PB
486 limits->min_sysfs_pct = clamp_t(int, input, 0 , 100);
487 limits->min_perf_pct = max(limits->min_policy_pct,
488 limits->min_sysfs_pct);
489 limits->min_perf_pct = min(limits->max_policy_pct,
490 limits->min_perf_pct);
491 limits->min_perf_pct = min(limits->max_perf_pct,
492 limits->min_perf_pct);
493 limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
494 int_tofp(100));
93f0822d 495
2f86dc4c 496 if (hwp_active)
41cfd64c 497 intel_pstate_hwp_set_online_cpus();
93f0822d
DB
498 return count;
499}
500
93f0822d
DB
501show_one(max_perf_pct, max_perf_pct);
502show_one(min_perf_pct, min_perf_pct);
503
504define_one_global_rw(no_turbo);
505define_one_global_rw(max_perf_pct);
506define_one_global_rw(min_perf_pct);
d01b1f48 507define_one_global_ro(turbo_pct);
0522424e 508define_one_global_ro(num_pstates);
93f0822d
DB
509
510static struct attribute *intel_pstate_attributes[] = {
511 &no_turbo.attr,
512 &max_perf_pct.attr,
513 &min_perf_pct.attr,
d01b1f48 514 &turbo_pct.attr,
0522424e 515 &num_pstates.attr,
93f0822d
DB
516 NULL
517};
518
519static struct attribute_group intel_pstate_attr_group = {
520 .attrs = intel_pstate_attributes,
521};
93f0822d 522
317dd50e 523static void __init intel_pstate_sysfs_expose_params(void)
93f0822d 524{
317dd50e 525 struct kobject *intel_pstate_kobject;
93f0822d
DB
526 int rc;
527
528 intel_pstate_kobject = kobject_create_and_add("intel_pstate",
529 &cpu_subsys.dev_root->kobj);
530 BUG_ON(!intel_pstate_kobject);
2d8d1f18 531 rc = sysfs_create_group(intel_pstate_kobject, &intel_pstate_attr_group);
93f0822d
DB
532 BUG_ON(rc);
533}
93f0822d 534/************************** sysfs end ************************/
2f86dc4c 535
ba88d433 536static void intel_pstate_hwp_enable(struct cpudata *cpudata)
2f86dc4c 537{
f05c9665
SP
538 /* First disable HWP notification interrupt as we don't process them */
539 wrmsrl_on_cpu(cpudata->cpu, MSR_HWP_INTERRUPT, 0x00);
540
ba88d433 541 wrmsrl_on_cpu(cpudata->cpu, MSR_PM_ENABLE, 0x1);
2f86dc4c
DB
542}
543
938d21a2 544static int atom_get_min_pstate(void)
19e77c28
DB
545{
546 u64 value;
845c1cbe 547
938d21a2 548 rdmsrl(ATOM_RATIOS, value);
c16ed060 549 return (value >> 8) & 0x7F;
19e77c28
DB
550}
551
938d21a2 552static int atom_get_max_pstate(void)
19e77c28
DB
553{
554 u64 value;
845c1cbe 555
938d21a2 556 rdmsrl(ATOM_RATIOS, value);
c16ed060 557 return (value >> 16) & 0x7F;
19e77c28 558}
93f0822d 559
938d21a2 560static int atom_get_turbo_pstate(void)
61d8d2ab
DB
561{
562 u64 value;
845c1cbe 563
938d21a2 564 rdmsrl(ATOM_TURBO_RATIOS, value);
c16ed060 565 return value & 0x7F;
61d8d2ab
DB
566}
567
938d21a2 568static void atom_set_pstate(struct cpudata *cpudata, int pstate)
007bea09
DB
569{
570 u64 val;
571 int32_t vid_fp;
572 u32 vid;
573
144c8e17 574 val = (u64)pstate << 8;
51443fbf 575 if (limits->no_turbo && !limits->turbo_disabled)
007bea09
DB
576 val |= (u64)1 << 32;
577
578 vid_fp = cpudata->vid.min + mul_fp(
579 int_tofp(pstate - cpudata->pstate.min_pstate),
580 cpudata->vid.ratio);
581
582 vid_fp = clamp_t(int32_t, vid_fp, cpudata->vid.min, cpudata->vid.max);
d022a65e 583 vid = ceiling_fp(vid_fp);
007bea09 584
21855ff5
DB
585 if (pstate > cpudata->pstate.max_pstate)
586 vid = cpudata->vid.turbo;
587
007bea09
DB
588 val |= vid;
589
0dd23f94 590 wrmsrl_on_cpu(cpudata->cpu, MSR_IA32_PERF_CTL, val);
007bea09
DB
591}
592
1421df63 593static int silvermont_get_scaling(void)
b27580b0
DB
594{
595 u64 value;
596 int i;
1421df63
PL
597 /* Defined in Table 35-6 from SDM (Sept 2015) */
598 static int silvermont_freq_table[] = {
599 83300, 100000, 133300, 116700, 80000};
b27580b0
DB
600
601 rdmsrl(MSR_FSB_FREQ, value);
1421df63
PL
602 i = value & 0x7;
603 WARN_ON(i > 4);
b27580b0 604
1421df63
PL
605 return silvermont_freq_table[i];
606}
b27580b0 607
1421df63
PL
608static int airmont_get_scaling(void)
609{
610 u64 value;
611 int i;
612 /* Defined in Table 35-10 from SDM (Sept 2015) */
613 static int airmont_freq_table[] = {
614 83300, 100000, 133300, 116700, 80000,
615 93300, 90000, 88900, 87500};
616
617 rdmsrl(MSR_FSB_FREQ, value);
618 i = value & 0xF;
619 WARN_ON(i > 8);
620
621 return airmont_freq_table[i];
b27580b0
DB
622}
623
938d21a2 624static void atom_get_vid(struct cpudata *cpudata)
007bea09
DB
625{
626 u64 value;
627
938d21a2 628 rdmsrl(ATOM_VIDS, value);
c16ed060
DB
629 cpudata->vid.min = int_tofp((value >> 8) & 0x7f);
630 cpudata->vid.max = int_tofp((value >> 16) & 0x7f);
007bea09
DB
631 cpudata->vid.ratio = div_fp(
632 cpudata->vid.max - cpudata->vid.min,
633 int_tofp(cpudata->pstate.max_pstate -
634 cpudata->pstate.min_pstate));
21855ff5 635
938d21a2 636 rdmsrl(ATOM_TURBO_VIDS, value);
21855ff5 637 cpudata->vid.turbo = value & 0x7f;
007bea09
DB
638}
639
016c8150 640static int core_get_min_pstate(void)
93f0822d
DB
641{
642 u64 value;
845c1cbe 643
05e99c8c 644 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
645 return (value >> 40) & 0xFF;
646}
647
3bcc6fa9 648static int core_get_max_pstate_physical(void)
93f0822d
DB
649{
650 u64 value;
845c1cbe 651
05e99c8c 652 rdmsrl(MSR_PLATFORM_INFO, value);
93f0822d
DB
653 return (value >> 8) & 0xFF;
654}
655
016c8150 656static int core_get_max_pstate(void)
93f0822d 657{
6a35fc2d
SP
658 u64 tar;
659 u64 plat_info;
660 int max_pstate;
661 int err;
662
663 rdmsrl(MSR_PLATFORM_INFO, plat_info);
664 max_pstate = (plat_info >> 8) & 0xFF;
665
666 err = rdmsrl_safe(MSR_TURBO_ACTIVATION_RATIO, &tar);
667 if (!err) {
668 /* Do some sanity checking for safety */
669 if (plat_info & 0x600000000) {
670 u64 tdp_ctrl;
671 u64 tdp_ratio;
672 int tdp_msr;
673
674 err = rdmsrl_safe(MSR_CONFIG_TDP_CONTROL, &tdp_ctrl);
675 if (err)
676 goto skip_tar;
677
678 tdp_msr = MSR_CONFIG_TDP_NOMINAL + tdp_ctrl;
679 err = rdmsrl_safe(tdp_msr, &tdp_ratio);
680 if (err)
681 goto skip_tar;
682
683 if (tdp_ratio - 1 == tar) {
684 max_pstate = tar;
685 pr_debug("max_pstate=TAC %x\n", max_pstate);
686 } else {
687 goto skip_tar;
688 }
689 }
690 }
845c1cbe 691
6a35fc2d
SP
692skip_tar:
693 return max_pstate;
93f0822d
DB
694}
695
016c8150 696static int core_get_turbo_pstate(void)
93f0822d
DB
697{
698 u64 value;
699 int nont, ret;
845c1cbe 700
05e99c8c 701 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
016c8150 702 nont = core_get_max_pstate();
285cb990 703 ret = (value) & 255;
93f0822d
DB
704 if (ret <= nont)
705 ret = nont;
706 return ret;
707}
708
b27580b0
DB
709static inline int core_get_scaling(void)
710{
711 return 100000;
712}
713
007bea09 714static void core_set_pstate(struct cpudata *cpudata, int pstate)
016c8150
DB
715{
716 u64 val;
717
144c8e17 718 val = (u64)pstate << 8;
51443fbf 719 if (limits->no_turbo && !limits->turbo_disabled)
016c8150
DB
720 val |= (u64)1 << 32;
721
a4675fbc 722 wrmsrl(MSR_IA32_PERF_CTL, val);
016c8150
DB
723}
724
b34ef932
DC
725static int knl_get_turbo_pstate(void)
726{
727 u64 value;
728 int nont, ret;
729
730 rdmsrl(MSR_NHM_TURBO_RATIO_LIMIT, value);
731 nont = core_get_max_pstate();
732 ret = (((value) >> 8) & 0xFF);
733 if (ret <= nont)
734 ret = nont;
735 return ret;
736}
737
016c8150
DB
738static struct cpu_defaults core_params = {
739 .pid_policy = {
740 .sample_rate_ms = 10,
741 .deadband = 0,
742 .setpoint = 97,
743 .p_gain_pct = 20,
744 .d_gain_pct = 0,
745 .i_gain_pct = 0,
746 },
747 .funcs = {
748 .get_max = core_get_max_pstate,
3bcc6fa9 749 .get_max_physical = core_get_max_pstate_physical,
016c8150
DB
750 .get_min = core_get_min_pstate,
751 .get_turbo = core_get_turbo_pstate,
b27580b0 752 .get_scaling = core_get_scaling,
016c8150 753 .set = core_set_pstate,
157386b6 754 .get_target_pstate = get_target_pstate_use_performance,
016c8150
DB
755 },
756};
757
1421df63
PL
758static struct cpu_defaults silvermont_params = {
759 .pid_policy = {
760 .sample_rate_ms = 10,
761 .deadband = 0,
762 .setpoint = 60,
763 .p_gain_pct = 14,
764 .d_gain_pct = 0,
765 .i_gain_pct = 4,
766 },
767 .funcs = {
768 .get_max = atom_get_max_pstate,
769 .get_max_physical = atom_get_max_pstate,
770 .get_min = atom_get_min_pstate,
771 .get_turbo = atom_get_turbo_pstate,
772 .set = atom_set_pstate,
773 .get_scaling = silvermont_get_scaling,
774 .get_vid = atom_get_vid,
e70eed2b 775 .get_target_pstate = get_target_pstate_use_cpu_load,
1421df63
PL
776 },
777};
778
779static struct cpu_defaults airmont_params = {
19e77c28
DB
780 .pid_policy = {
781 .sample_rate_ms = 10,
782 .deadband = 0,
6a82ba6d 783 .setpoint = 60,
19e77c28
DB
784 .p_gain_pct = 14,
785 .d_gain_pct = 0,
786 .i_gain_pct = 4,
787 },
788 .funcs = {
938d21a2
PL
789 .get_max = atom_get_max_pstate,
790 .get_max_physical = atom_get_max_pstate,
791 .get_min = atom_get_min_pstate,
792 .get_turbo = atom_get_turbo_pstate,
793 .set = atom_set_pstate,
1421df63 794 .get_scaling = airmont_get_scaling,
938d21a2 795 .get_vid = atom_get_vid,
e70eed2b 796 .get_target_pstate = get_target_pstate_use_cpu_load,
19e77c28
DB
797 },
798};
799
b34ef932
DC
800static struct cpu_defaults knl_params = {
801 .pid_policy = {
802 .sample_rate_ms = 10,
803 .deadband = 0,
804 .setpoint = 97,
805 .p_gain_pct = 20,
806 .d_gain_pct = 0,
807 .i_gain_pct = 0,
808 },
809 .funcs = {
810 .get_max = core_get_max_pstate,
3bcc6fa9 811 .get_max_physical = core_get_max_pstate_physical,
b34ef932
DC
812 .get_min = core_get_min_pstate,
813 .get_turbo = knl_get_turbo_pstate,
69cefc27 814 .get_scaling = core_get_scaling,
b34ef932 815 .set = core_set_pstate,
157386b6 816 .get_target_pstate = get_target_pstate_use_performance,
b34ef932
DC
817 },
818};
819
93f0822d
DB
820static void intel_pstate_get_min_max(struct cpudata *cpu, int *min, int *max)
821{
822 int max_perf = cpu->pstate.turbo_pstate;
7244cb62 823 int max_perf_adj;
93f0822d 824 int min_perf;
845c1cbe 825
51443fbf 826 if (limits->no_turbo || limits->turbo_disabled)
93f0822d
DB
827 max_perf = cpu->pstate.max_pstate;
828
e0d4c8f8
KCA
829 /*
830 * performance can be limited by user through sysfs, by cpufreq
831 * policy, or by cpu specific default values determined through
832 * experimentation.
833 */
a158bed5 834 max_perf_adj = fp_toint(max_perf * limits->max_perf);
799281a3
RW
835 *max = clamp_t(int, max_perf_adj,
836 cpu->pstate.min_pstate, cpu->pstate.turbo_pstate);
93f0822d 837
a158bed5 838 min_perf = fp_toint(max_perf * limits->min_perf);
799281a3 839 *min = clamp_t(int, min_perf, cpu->pstate.min_pstate, max_perf);
93f0822d
DB
840}
841
6c1e4591 842static void intel_pstate_set_pstate(struct cpudata *cpu, int pstate, bool force)
93f0822d
DB
843{
844 int max_perf, min_perf;
845
6c1e4591
DS
846 if (force) {
847 update_turbo_state();
93f0822d 848
6c1e4591 849 intel_pstate_get_min_max(cpu, &min_perf, &max_perf);
93f0822d 850
6c1e4591 851 pstate = clamp_t(int, pstate, min_perf, max_perf);
93f0822d 852
6c1e4591
DS
853 if (pstate == cpu->pstate.current_pstate)
854 return;
855 }
b27580b0 856 trace_cpu_frequency(pstate * cpu->pstate.scaling, cpu->cpu);
35363e94 857
93f0822d 858 cpu->pstate.current_pstate = pstate;
93f0822d 859
007bea09 860 pstate_funcs.set(cpu, pstate);
93f0822d
DB
861}
862
93f0822d
DB
863static void intel_pstate_get_cpu_pstates(struct cpudata *cpu)
864{
016c8150
DB
865 cpu->pstate.min_pstate = pstate_funcs.get_min();
866 cpu->pstate.max_pstate = pstate_funcs.get_max();
3bcc6fa9 867 cpu->pstate.max_pstate_physical = pstate_funcs.get_max_physical();
016c8150 868 cpu->pstate.turbo_pstate = pstate_funcs.get_turbo();
b27580b0 869 cpu->pstate.scaling = pstate_funcs.get_scaling();
93f0822d 870
007bea09
DB
871 if (pstate_funcs.get_vid)
872 pstate_funcs.get_vid(cpu);
6c1e4591 873 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
93f0822d
DB
874}
875
6b17ddb2 876static inline void intel_pstate_calc_busy(struct cpudata *cpu)
93f0822d 877{
6b17ddb2 878 struct sample *sample = &cpu->sample;
bf810222 879 int64_t core_pct;
93f0822d 880
bf810222 881 core_pct = int_tofp(sample->aperf) * int_tofp(100);
78e27086 882 core_pct = div64_u64(core_pct, int_tofp(sample->mperf));
e66c1768 883
bf810222 884 sample->core_pct_busy = (int32_t)core_pct;
93f0822d
DB
885}
886
a4675fbc 887static inline void intel_pstate_sample(struct cpudata *cpu, u64 time)
93f0822d 888{
93f0822d 889 u64 aperf, mperf;
4ab60c3f 890 unsigned long flags;
4055fad3 891 u64 tsc;
93f0822d 892
4ab60c3f 893 local_irq_save(flags);
93f0822d
DB
894 rdmsrl(MSR_IA32_APERF, aperf);
895 rdmsrl(MSR_IA32_MPERF, mperf);
e70eed2b
PL
896 tsc = rdtsc();
897 if ((cpu->prev_mperf == mperf) || (cpu->prev_tsc == tsc)) {
8e601a9f
SP
898 local_irq_restore(flags);
899 return;
900 }
4ab60c3f 901 local_irq_restore(flags);
b69880f9 902
c4ee841f 903 cpu->last_sample_time = cpu->sample.time;
a4675fbc 904 cpu->sample.time = time;
d37e2b76
DB
905 cpu->sample.aperf = aperf;
906 cpu->sample.mperf = mperf;
4055fad3 907 cpu->sample.tsc = tsc;
d37e2b76
DB
908 cpu->sample.aperf -= cpu->prev_aperf;
909 cpu->sample.mperf -= cpu->prev_mperf;
4055fad3 910 cpu->sample.tsc -= cpu->prev_tsc;
1abc4b20 911
93f0822d
DB
912 cpu->prev_aperf = aperf;
913 cpu->prev_mperf = mperf;
4055fad3 914 cpu->prev_tsc = tsc;
93f0822d
DB
915}
916
8fa520af
PL
917static inline int32_t get_avg_frequency(struct cpudata *cpu)
918{
919 return div64_u64(cpu->pstate.max_pstate_physical * cpu->sample.aperf *
920 cpu->pstate.scaling, cpu->sample.mperf);
921}
922
e70eed2b
PL
923static inline int32_t get_target_pstate_use_cpu_load(struct cpudata *cpu)
924{
925 struct sample *sample = &cpu->sample;
63d1d656
PL
926 u64 cummulative_iowait, delta_iowait_us;
927 u64 delta_iowait_mperf;
928 u64 mperf, now;
e70eed2b
PL
929 int32_t cpu_load;
930
63d1d656
PL
931 cummulative_iowait = get_cpu_iowait_time_us(cpu->cpu, &now);
932
933 /*
934 * Convert iowait time into number of IO cycles spent at max_freq.
935 * IO is considered as busy only for the cpu_load algorithm. For
936 * performance this is not needed since we always try to reach the
937 * maximum P-State, so we are already boosting the IOs.
938 */
939 delta_iowait_us = cummulative_iowait - cpu->prev_cummulative_iowait;
940 delta_iowait_mperf = div64_u64(delta_iowait_us * cpu->pstate.scaling *
941 cpu->pstate.max_pstate, MSEC_PER_SEC);
942
943 mperf = cpu->sample.mperf + delta_iowait_mperf;
944 cpu->prev_cummulative_iowait = cummulative_iowait;
945
e70eed2b
PL
946 /*
947 * The load can be estimated as the ratio of the mperf counter
948 * running at a constant frequency during active periods
949 * (C0) and the time stamp counter running at the same frequency
950 * also during C-states.
951 */
63d1d656 952 cpu_load = div64_u64(int_tofp(100) * mperf, sample->tsc);
e70eed2b
PL
953 cpu->sample.busy_scaled = cpu_load;
954
955 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, cpu_load);
956}
957
157386b6 958static inline int32_t get_target_pstate_use_performance(struct cpudata *cpu)
93f0822d 959{
c4ee841f 960 int32_t core_busy, max_pstate, current_pstate, sample_ratio;
a4675fbc 961 u64 duration_ns;
93f0822d 962
7349ec04
PL
963 intel_pstate_calc_busy(cpu);
964
e0d4c8f8
KCA
965 /*
966 * core_busy is the ratio of actual performance to max
967 * max_pstate is the max non turbo pstate available
968 * current_pstate was the pstate that was requested during
969 * the last sample period.
970 *
971 * We normalize core_busy, which was our actual percent
972 * performance to what we requested during the last sample
973 * period. The result will be a percentage of busy at a
974 * specified pstate.
975 */
d37e2b76 976 core_busy = cpu->sample.core_pct_busy;
3bcc6fa9 977 max_pstate = int_tofp(cpu->pstate.max_pstate_physical);
93f0822d 978 current_pstate = int_tofp(cpu->pstate.current_pstate);
e66c1768 979 core_busy = mul_fp(core_busy, div_fp(max_pstate, current_pstate));
c4ee841f 980
e0d4c8f8 981 /*
a4675fbc
RW
982 * Since our utilization update callback will not run unless we are
983 * in C0, check if the actual elapsed time is significantly greater (3x)
984 * than our sample interval. If it is, then we were idle for a long
985 * enough period of time to adjust our busyness.
e0d4c8f8 986 */
a4675fbc
RW
987 duration_ns = cpu->sample.time - cpu->last_sample_time;
988 if ((s64)duration_ns > pid_params.sample_rate_ns * 3
989 && cpu->last_sample_time > 0) {
990 sample_ratio = div_fp(int_tofp(pid_params.sample_rate_ns),
991 int_tofp(duration_ns));
c4ee841f
DB
992 core_busy = mul_fp(core_busy, sample_ratio);
993 }
994
157386b6
PL
995 cpu->sample.busy_scaled = core_busy;
996 return cpu->pstate.current_pstate - pid_calc(&cpu->pid, core_busy);
93f0822d
DB
997}
998
999static inline void intel_pstate_adjust_busy_pstate(struct cpudata *cpu)
1000{
157386b6 1001 int from, target_pstate;
4055fad3
DS
1002 struct sample *sample;
1003
1004 from = cpu->pstate.current_pstate;
93f0822d 1005
157386b6 1006 target_pstate = pstate_funcs.get_target_pstate(cpu);
93f0822d 1007
157386b6 1008 intel_pstate_set_pstate(cpu, target_pstate, true);
4055fad3
DS
1009
1010 sample = &cpu->sample;
1011 trace_pstate_sample(fp_toint(sample->core_pct_busy),
157386b6 1012 fp_toint(sample->busy_scaled),
4055fad3
DS
1013 from,
1014 cpu->pstate.current_pstate,
1015 sample->mperf,
1016 sample->aperf,
1017 sample->tsc,
8fa520af 1018 get_avg_frequency(cpu));
93f0822d
DB
1019}
1020
a4675fbc
RW
1021static void intel_pstate_update_util(struct update_util_data *data, u64 time,
1022 unsigned long util, unsigned long max)
93f0822d 1023{
a4675fbc
RW
1024 struct cpudata *cpu = container_of(data, struct cpudata, update_util);
1025 u64 delta_ns = time - cpu->sample.time;
b69880f9 1026
a4675fbc
RW
1027 if ((s64)delta_ns >= pid_params.sample_rate_ns) {
1028 intel_pstate_sample(cpu, time);
1029 if (!hwp_active)
1030 intel_pstate_adjust_busy_pstate(cpu);
1031 }
93f0822d
DB
1032}
1033
1034#define ICPU(model, policy) \
6cbd7ee1
DB
1035 { X86_VENDOR_INTEL, 6, model, X86_FEATURE_APERFMPERF,\
1036 (unsigned long)&policy }
93f0822d
DB
1037
1038static const struct x86_cpu_id intel_pstate_cpu_ids[] = {
016c8150
DB
1039 ICPU(0x2a, core_params),
1040 ICPU(0x2d, core_params),
1421df63 1041 ICPU(0x37, silvermont_params),
016c8150
DB
1042 ICPU(0x3a, core_params),
1043 ICPU(0x3c, core_params),
c7e241df 1044 ICPU(0x3d, core_params),
016c8150
DB
1045 ICPU(0x3e, core_params),
1046 ICPU(0x3f, core_params),
1047 ICPU(0x45, core_params),
1048 ICPU(0x46, core_params),
43f8a966 1049 ICPU(0x47, core_params),
1421df63 1050 ICPU(0x4c, airmont_params),
7ab0256e 1051 ICPU(0x4e, core_params),
c7e241df 1052 ICPU(0x4f, core_params),
1c939123 1053 ICPU(0x5e, core_params),
c7e241df 1054 ICPU(0x56, core_params),
b34ef932 1055 ICPU(0x57, knl_params),
93f0822d
DB
1056 {}
1057};
1058MODULE_DEVICE_TABLE(x86cpu, intel_pstate_cpu_ids);
1059
2f86dc4c
DB
1060static const struct x86_cpu_id intel_pstate_cpu_oob_ids[] = {
1061 ICPU(0x56, core_params),
1062 {}
1063};
1064
93f0822d
DB
1065static int intel_pstate_init_cpu(unsigned int cpunum)
1066{
93f0822d
DB
1067 struct cpudata *cpu;
1068
c0348717
DB
1069 if (!all_cpu_data[cpunum])
1070 all_cpu_data[cpunum] = kzalloc(sizeof(struct cpudata),
1071 GFP_KERNEL);
93f0822d
DB
1072 if (!all_cpu_data[cpunum])
1073 return -ENOMEM;
1074
1075 cpu = all_cpu_data[cpunum];
1076
93f0822d 1077 cpu->cpu = cpunum;
ba88d433 1078
a4675fbc 1079 if (hwp_active) {
ba88d433 1080 intel_pstate_hwp_enable(cpu);
a4675fbc
RW
1081 pid_params.sample_rate_ms = 50;
1082 pid_params.sample_rate_ns = 50 * NSEC_PER_MSEC;
1083 }
ba88d433 1084
179e8471 1085 intel_pstate_get_cpu_pstates(cpu);
016c8150 1086
93f0822d 1087 intel_pstate_busy_pid_reset(cpu);
a4675fbc 1088 intel_pstate_sample(cpu, 0);
93f0822d 1089
a4675fbc
RW
1090 cpu->update_util.func = intel_pstate_update_util;
1091 cpufreq_set_update_util_data(cpunum, &cpu->update_util);
93f0822d 1092
f16255eb 1093 pr_debug("intel_pstate: controlling: cpu %d\n", cpunum);
93f0822d
DB
1094
1095 return 0;
1096}
1097
1098static unsigned int intel_pstate_get(unsigned int cpu_num)
1099{
1100 struct sample *sample;
1101 struct cpudata *cpu;
1102
1103 cpu = all_cpu_data[cpu_num];
1104 if (!cpu)
1105 return 0;
d37e2b76 1106 sample = &cpu->sample;
8fa520af 1107 return get_avg_frequency(cpu);
93f0822d
DB
1108}
1109
1110static int intel_pstate_set_policy(struct cpufreq_policy *policy)
1111{
d3929b83
DB
1112 if (!policy->cpuinfo.max_freq)
1113 return -ENODEV;
1114
630ec286
SP
1115 if (policy->policy == CPUFREQ_POLICY_PERFORMANCE &&
1116 policy->max >= policy->cpuinfo.max_freq) {
51443fbf
PB
1117 pr_debug("intel_pstate: set performance\n");
1118 limits = &performance_limits;
584ee3dc 1119 if (hwp_active)
41cfd64c 1120 intel_pstate_hwp_set(policy->cpus);
d1b68485 1121 return 0;
93f0822d 1122 }
2f86dc4c 1123
51443fbf
PB
1124 pr_debug("intel_pstate: set powersave\n");
1125 limits = &powersave_limits;
1126 limits->min_policy_pct = (policy->min * 100) / policy->cpuinfo.max_freq;
1127 limits->min_policy_pct = clamp_t(int, limits->min_policy_pct, 0 , 100);
8478f539
PB
1128 limits->max_policy_pct = DIV_ROUND_UP(policy->max * 100,
1129 policy->cpuinfo.max_freq);
51443fbf 1130 limits->max_policy_pct = clamp_t(int, limits->max_policy_pct, 0 , 100);
43717aad
CY
1131
1132 /* Normalize user input to [min_policy_pct, max_policy_pct] */
51443fbf
PB
1133 limits->min_perf_pct = max(limits->min_policy_pct,
1134 limits->min_sysfs_pct);
1135 limits->min_perf_pct = min(limits->max_policy_pct,
1136 limits->min_perf_pct);
1137 limits->max_perf_pct = min(limits->max_policy_pct,
1138 limits->max_sysfs_pct);
1139 limits->max_perf_pct = max(limits->min_policy_pct,
1140 limits->max_perf_pct);
88b7b7c0 1141 limits->max_perf = round_up(limits->max_perf, FRAC_BITS);
43717aad
CY
1142
1143 /* Make sure min_perf_pct <= max_perf_pct */
51443fbf 1144 limits->min_perf_pct = min(limits->max_perf_pct, limits->min_perf_pct);
43717aad 1145
51443fbf
PB
1146 limits->min_perf = div_fp(int_tofp(limits->min_perf_pct),
1147 int_tofp(100));
1148 limits->max_perf = div_fp(int_tofp(limits->max_perf_pct),
1149 int_tofp(100));
93f0822d 1150
2f86dc4c 1151 if (hwp_active)
41cfd64c 1152 intel_pstate_hwp_set(policy->cpus);
2f86dc4c 1153
93f0822d
DB
1154 return 0;
1155}
1156
1157static int intel_pstate_verify_policy(struct cpufreq_policy *policy)
1158{
be49e346 1159 cpufreq_verify_within_cpu_limits(policy);
93f0822d 1160
285cb990 1161 if (policy->policy != CPUFREQ_POLICY_POWERSAVE &&
c410833a 1162 policy->policy != CPUFREQ_POLICY_PERFORMANCE)
93f0822d
DB
1163 return -EINVAL;
1164
1165 return 0;
1166}
1167
bb18008f 1168static void intel_pstate_stop_cpu(struct cpufreq_policy *policy)
93f0822d 1169{
bb18008f
DB
1170 int cpu_num = policy->cpu;
1171 struct cpudata *cpu = all_cpu_data[cpu_num];
93f0822d 1172
f16255eb 1173 pr_debug("intel_pstate: CPU %d exiting\n", cpu_num);
bb18008f 1174
a4675fbc 1175 cpufreq_set_update_util_data(cpu_num, NULL);
08f511fd 1176 synchronize_sched();
a4675fbc 1177
2f86dc4c
DB
1178 if (hwp_active)
1179 return;
1180
6c1e4591 1181 intel_pstate_set_pstate(cpu, cpu->pstate.min_pstate, false);
93f0822d
DB
1182}
1183
2760984f 1184static int intel_pstate_cpu_init(struct cpufreq_policy *policy)
93f0822d 1185{
93f0822d 1186 struct cpudata *cpu;
52e0a509 1187 int rc;
93f0822d
DB
1188
1189 rc = intel_pstate_init_cpu(policy->cpu);
1190 if (rc)
1191 return rc;
1192
1193 cpu = all_cpu_data[policy->cpu];
1194
51443fbf 1195 if (limits->min_perf_pct == 100 && limits->max_perf_pct == 100)
93f0822d
DB
1196 policy->policy = CPUFREQ_POLICY_PERFORMANCE;
1197 else
1198 policy->policy = CPUFREQ_POLICY_POWERSAVE;
1199
b27580b0
DB
1200 policy->min = cpu->pstate.min_pstate * cpu->pstate.scaling;
1201 policy->max = cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
1202
1203 /* cpuinfo and default policy values */
b27580b0
DB
1204 policy->cpuinfo.min_freq = cpu->pstate.min_pstate * cpu->pstate.scaling;
1205 policy->cpuinfo.max_freq =
1206 cpu->pstate.turbo_pstate * cpu->pstate.scaling;
93f0822d
DB
1207 policy->cpuinfo.transition_latency = CPUFREQ_ETERNAL;
1208 cpumask_set_cpu(policy->cpu, policy->cpus);
1209
1210 return 0;
1211}
1212
1213static struct cpufreq_driver intel_pstate_driver = {
1214 .flags = CPUFREQ_CONST_LOOPS,
1215 .verify = intel_pstate_verify_policy,
1216 .setpolicy = intel_pstate_set_policy,
1217 .get = intel_pstate_get,
1218 .init = intel_pstate_cpu_init,
bb18008f 1219 .stop_cpu = intel_pstate_stop_cpu,
93f0822d 1220 .name = "intel_pstate",
93f0822d
DB
1221};
1222
6be26498 1223static int __initdata no_load;
2f86dc4c 1224static int __initdata no_hwp;
d64c3b0b 1225static int __initdata hwp_only;
aa4ea34d 1226static unsigned int force_load;
6be26498 1227
b563b4e3
DB
1228static int intel_pstate_msrs_not_valid(void)
1229{
016c8150 1230 if (!pstate_funcs.get_max() ||
c410833a
SK
1231 !pstate_funcs.get_min() ||
1232 !pstate_funcs.get_turbo())
b563b4e3
DB
1233 return -ENODEV;
1234
b563b4e3
DB
1235 return 0;
1236}
016c8150 1237
e0a261a2 1238static void copy_pid_params(struct pstate_adjust_policy *policy)
016c8150
DB
1239{
1240 pid_params.sample_rate_ms = policy->sample_rate_ms;
a4675fbc 1241 pid_params.sample_rate_ns = pid_params.sample_rate_ms * NSEC_PER_MSEC;
016c8150
DB
1242 pid_params.p_gain_pct = policy->p_gain_pct;
1243 pid_params.i_gain_pct = policy->i_gain_pct;
1244 pid_params.d_gain_pct = policy->d_gain_pct;
1245 pid_params.deadband = policy->deadband;
1246 pid_params.setpoint = policy->setpoint;
1247}
1248
e0a261a2 1249static void copy_cpu_funcs(struct pstate_funcs *funcs)
016c8150
DB
1250{
1251 pstate_funcs.get_max = funcs->get_max;
3bcc6fa9 1252 pstate_funcs.get_max_physical = funcs->get_max_physical;
016c8150
DB
1253 pstate_funcs.get_min = funcs->get_min;
1254 pstate_funcs.get_turbo = funcs->get_turbo;
b27580b0 1255 pstate_funcs.get_scaling = funcs->get_scaling;
016c8150 1256 pstate_funcs.set = funcs->set;
007bea09 1257 pstate_funcs.get_vid = funcs->get_vid;
157386b6
PL
1258 pstate_funcs.get_target_pstate = funcs->get_target_pstate;
1259
016c8150
DB
1260}
1261
fbbcdc07 1262#if IS_ENABLED(CONFIG_ACPI)
6ee11e41 1263#include <acpi/processor.h>
fbbcdc07
AH
1264
1265static bool intel_pstate_no_acpi_pss(void)
1266{
1267 int i;
1268
1269 for_each_possible_cpu(i) {
1270 acpi_status status;
1271 union acpi_object *pss;
1272 struct acpi_buffer buffer = { ACPI_ALLOCATE_BUFFER, NULL };
1273 struct acpi_processor *pr = per_cpu(processors, i);
1274
1275 if (!pr)
1276 continue;
1277
1278 status = acpi_evaluate_object(pr->handle, "_PSS", NULL, &buffer);
1279 if (ACPI_FAILURE(status))
1280 continue;
1281
1282 pss = buffer.pointer;
1283 if (pss && pss->type == ACPI_TYPE_PACKAGE) {
1284 kfree(pss);
1285 return false;
1286 }
1287
1288 kfree(pss);
1289 }
1290
1291 return true;
1292}
1293
966916ea 1294static bool intel_pstate_has_acpi_ppc(void)
1295{
1296 int i;
1297
1298 for_each_possible_cpu(i) {
1299 struct acpi_processor *pr = per_cpu(processors, i);
1300
1301 if (!pr)
1302 continue;
1303 if (acpi_has_method(pr->handle, "_PPC"))
1304 return true;
1305 }
1306 return false;
1307}
1308
1309enum {
1310 PSS,
1311 PPC,
1312};
1313
fbbcdc07
AH
1314struct hw_vendor_info {
1315 u16 valid;
1316 char oem_id[ACPI_OEM_ID_SIZE];
1317 char oem_table_id[ACPI_OEM_TABLE_ID_SIZE];
966916ea 1318 int oem_pwr_table;
fbbcdc07
AH
1319};
1320
1321/* Hardware vendor-specific info that has its own power management modes */
1322static struct hw_vendor_info vendor_info[] = {
966916ea 1323 {1, "HP ", "ProLiant", PSS},
1324 {1, "ORACLE", "X4-2 ", PPC},
1325 {1, "ORACLE", "X4-2L ", PPC},
1326 {1, "ORACLE", "X4-2B ", PPC},
1327 {1, "ORACLE", "X3-2 ", PPC},
1328 {1, "ORACLE", "X3-2L ", PPC},
1329 {1, "ORACLE", "X3-2B ", PPC},
1330 {1, "ORACLE", "X4470M2 ", PPC},
1331 {1, "ORACLE", "X4270M3 ", PPC},
1332 {1, "ORACLE", "X4270M2 ", PPC},
1333 {1, "ORACLE", "X4170M2 ", PPC},
5aecc3c8
EZ
1334 {1, "ORACLE", "X4170 M3", PPC},
1335 {1, "ORACLE", "X4275 M3", PPC},
1336 {1, "ORACLE", "X6-2 ", PPC},
1337 {1, "ORACLE", "Sudbury ", PPC},
fbbcdc07
AH
1338 {0, "", ""},
1339};
1340
1341static bool intel_pstate_platform_pwr_mgmt_exists(void)
1342{
1343 struct acpi_table_header hdr;
1344 struct hw_vendor_info *v_info;
2f86dc4c
DB
1345 const struct x86_cpu_id *id;
1346 u64 misc_pwr;
1347
1348 id = x86_match_cpu(intel_pstate_cpu_oob_ids);
1349 if (id) {
1350 rdmsrl(MSR_MISC_PWR_MGMT, misc_pwr);
1351 if ( misc_pwr & (1 << 8))
1352 return true;
1353 }
fbbcdc07 1354
c410833a
SK
1355 if (acpi_disabled ||
1356 ACPI_FAILURE(acpi_get_table_header(ACPI_SIG_FADT, 0, &hdr)))
fbbcdc07
AH
1357 return false;
1358
1359 for (v_info = vendor_info; v_info->valid; v_info++) {
c410833a 1360 if (!strncmp(hdr.oem_id, v_info->oem_id, ACPI_OEM_ID_SIZE) &&
966916ea 1361 !strncmp(hdr.oem_table_id, v_info->oem_table_id,
1362 ACPI_OEM_TABLE_ID_SIZE))
1363 switch (v_info->oem_pwr_table) {
1364 case PSS:
1365 return intel_pstate_no_acpi_pss();
1366 case PPC:
aa4ea34d
EZ
1367 return intel_pstate_has_acpi_ppc() &&
1368 (!force_load);
966916ea 1369 }
fbbcdc07
AH
1370 }
1371
1372 return false;
1373}
1374#else /* CONFIG_ACPI not enabled */
1375static inline bool intel_pstate_platform_pwr_mgmt_exists(void) { return false; }
966916ea 1376static inline bool intel_pstate_has_acpi_ppc(void) { return false; }
fbbcdc07
AH
1377#endif /* CONFIG_ACPI */
1378
7791e4aa
SP
1379static const struct x86_cpu_id hwp_support_ids[] __initconst = {
1380 { X86_VENDOR_INTEL, 6, X86_MODEL_ANY, X86_FEATURE_HWP },
1381 {}
1382};
1383
93f0822d
DB
1384static int __init intel_pstate_init(void)
1385{
907cc908 1386 int cpu, rc = 0;
93f0822d 1387 const struct x86_cpu_id *id;
64df1fdf 1388 struct cpu_defaults *cpu_def;
93f0822d 1389
6be26498
DB
1390 if (no_load)
1391 return -ENODEV;
1392
7791e4aa
SP
1393 if (x86_match_cpu(hwp_support_ids) && !no_hwp) {
1394 copy_cpu_funcs(&core_params.funcs);
1395 hwp_active++;
1396 goto hwp_cpu_matched;
1397 }
1398
93f0822d
DB
1399 id = x86_match_cpu(intel_pstate_cpu_ids);
1400 if (!id)
1401 return -ENODEV;
1402
64df1fdf 1403 cpu_def = (struct cpu_defaults *)id->driver_data;
016c8150 1404
64df1fdf
BP
1405 copy_pid_params(&cpu_def->pid_policy);
1406 copy_cpu_funcs(&cpu_def->funcs);
016c8150 1407
b563b4e3
DB
1408 if (intel_pstate_msrs_not_valid())
1409 return -ENODEV;
1410
7791e4aa
SP
1411hwp_cpu_matched:
1412 /*
1413 * The Intel pstate driver will be ignored if the platform
1414 * firmware has its own power management modes.
1415 */
1416 if (intel_pstate_platform_pwr_mgmt_exists())
1417 return -ENODEV;
1418
93f0822d
DB
1419 pr_info("Intel P-state driver initializing.\n");
1420
b57ffac5 1421 all_cpu_data = vzalloc(sizeof(void *) * num_possible_cpus());
93f0822d
DB
1422 if (!all_cpu_data)
1423 return -ENOMEM;
93f0822d 1424
d64c3b0b
KCA
1425 if (!hwp_active && hwp_only)
1426 goto out;
1427
93f0822d
DB
1428 rc = cpufreq_register_driver(&intel_pstate_driver);
1429 if (rc)
1430 goto out;
1431
1432 intel_pstate_debug_expose_params();
1433 intel_pstate_sysfs_expose_params();
b69880f9 1434
7791e4aa
SP
1435 if (hwp_active)
1436 pr_info("intel_pstate: HWP enabled\n");
1437
93f0822d
DB
1438 return rc;
1439out:
907cc908
DB
1440 get_online_cpus();
1441 for_each_online_cpu(cpu) {
1442 if (all_cpu_data[cpu]) {
a4675fbc 1443 cpufreq_set_update_util_data(cpu, NULL);
08f511fd 1444 synchronize_sched();
907cc908
DB
1445 kfree(all_cpu_data[cpu]);
1446 }
1447 }
1448
1449 put_online_cpus();
1450 vfree(all_cpu_data);
93f0822d
DB
1451 return -ENODEV;
1452}
1453device_initcall(intel_pstate_init);
1454
6be26498
DB
1455static int __init intel_pstate_setup(char *str)
1456{
1457 if (!str)
1458 return -EINVAL;
1459
1460 if (!strcmp(str, "disable"))
1461 no_load = 1;
539342f6
PB
1462 if (!strcmp(str, "no_hwp")) {
1463 pr_info("intel_pstate: HWP disabled\n");
2f86dc4c 1464 no_hwp = 1;
539342f6 1465 }
aa4ea34d
EZ
1466 if (!strcmp(str, "force"))
1467 force_load = 1;
d64c3b0b
KCA
1468 if (!strcmp(str, "hwp_only"))
1469 hwp_only = 1;
6be26498
DB
1470 return 0;
1471}
1472early_param("intel_pstate", intel_pstate_setup);
1473
93f0822d
DB
1474MODULE_AUTHOR("Dirk Brandewie <dirk.j.brandewie@intel.com>");
1475MODULE_DESCRIPTION("'intel_pstate' - P state driver Intel Core processors");
1476MODULE_LICENSE("GPL");
This page took 0.224384 seconds and 5 git commands to generate.