Merge branch 'for-linus' of git://git.kernel.dk/linux-block
[deliverable/linux.git] / drivers / net / ethernet / intel / e1000 / e1000_main.c
CommitLineData
1da177e4
LT
1/*******************************************************************************
2
0abb6eb1
AK
3 Intel PRO/1000 Linux driver
4 Copyright(c) 1999 - 2006 Intel Corporation.
5
6 This program is free software; you can redistribute it and/or modify it
7 under the terms and conditions of the GNU General Public License,
8 version 2, as published by the Free Software Foundation.
9
10 This program is distributed in the hope it will be useful, but WITHOUT
11 ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
1da177e4 13 more details.
0abb6eb1 14
1da177e4 15 You should have received a copy of the GNU General Public License along with
0abb6eb1
AK
16 this program; if not, write to the Free Software Foundation, Inc.,
17 51 Franklin St - Fifth Floor, Boston, MA 02110-1301 USA.
18
19 The full GNU General Public License is included in this distribution in
20 the file called "COPYING".
21
1da177e4
LT
22 Contact Information:
23 Linux NICS <linux.nics@intel.com>
3d41e30a 24 e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
1da177e4
LT
25 Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
26
27*******************************************************************************/
28
29#include "e1000.h"
d0bb53e1 30#include <net/ip6_checksum.h>
5377a416 31#include <linux/io.h>
70c71606 32#include <linux/prefetch.h>
5622e404
JP
33#include <linux/bitops.h>
34#include <linux/if_vlan.h>
5377a416 35
1da177e4 36char e1000_driver_name[] = "e1000";
3ad2cc67 37static char e1000_driver_string[] = "Intel(R) PRO/1000 Network Driver";
ab08853f 38#define DRV_VERSION "7.3.21-k8-NAPI"
abec42a4
SH
39const char e1000_driver_version[] = DRV_VERSION;
40static const char e1000_copyright[] = "Copyright (c) 1999-2006 Intel Corporation.";
1da177e4
LT
41
42/* e1000_pci_tbl - PCI Device ID Table
43 *
44 * Last entry must be all 0s
45 *
46 * Macro expands to...
47 * {PCI_DEVICE(PCI_VENDOR_ID_INTEL, device_id)}
48 */
9baa3c34 49static const struct pci_device_id e1000_pci_tbl[] = {
1da177e4
LT
50 INTEL_E1000_ETHERNET_DEVICE(0x1000),
51 INTEL_E1000_ETHERNET_DEVICE(0x1001),
52 INTEL_E1000_ETHERNET_DEVICE(0x1004),
53 INTEL_E1000_ETHERNET_DEVICE(0x1008),
54 INTEL_E1000_ETHERNET_DEVICE(0x1009),
55 INTEL_E1000_ETHERNET_DEVICE(0x100C),
56 INTEL_E1000_ETHERNET_DEVICE(0x100D),
57 INTEL_E1000_ETHERNET_DEVICE(0x100E),
58 INTEL_E1000_ETHERNET_DEVICE(0x100F),
59 INTEL_E1000_ETHERNET_DEVICE(0x1010),
60 INTEL_E1000_ETHERNET_DEVICE(0x1011),
61 INTEL_E1000_ETHERNET_DEVICE(0x1012),
62 INTEL_E1000_ETHERNET_DEVICE(0x1013),
63 INTEL_E1000_ETHERNET_DEVICE(0x1014),
64 INTEL_E1000_ETHERNET_DEVICE(0x1015),
65 INTEL_E1000_ETHERNET_DEVICE(0x1016),
66 INTEL_E1000_ETHERNET_DEVICE(0x1017),
67 INTEL_E1000_ETHERNET_DEVICE(0x1018),
68 INTEL_E1000_ETHERNET_DEVICE(0x1019),
2648345f 69 INTEL_E1000_ETHERNET_DEVICE(0x101A),
1da177e4
LT
70 INTEL_E1000_ETHERNET_DEVICE(0x101D),
71 INTEL_E1000_ETHERNET_DEVICE(0x101E),
72 INTEL_E1000_ETHERNET_DEVICE(0x1026),
73 INTEL_E1000_ETHERNET_DEVICE(0x1027),
74 INTEL_E1000_ETHERNET_DEVICE(0x1028),
75 INTEL_E1000_ETHERNET_DEVICE(0x1075),
76 INTEL_E1000_ETHERNET_DEVICE(0x1076),
77 INTEL_E1000_ETHERNET_DEVICE(0x1077),
78 INTEL_E1000_ETHERNET_DEVICE(0x1078),
79 INTEL_E1000_ETHERNET_DEVICE(0x1079),
80 INTEL_E1000_ETHERNET_DEVICE(0x107A),
81 INTEL_E1000_ETHERNET_DEVICE(0x107B),
82 INTEL_E1000_ETHERNET_DEVICE(0x107C),
83 INTEL_E1000_ETHERNET_DEVICE(0x108A),
b7ee49db 84 INTEL_E1000_ETHERNET_DEVICE(0x1099),
b7ee49db 85 INTEL_E1000_ETHERNET_DEVICE(0x10B5),
5377a416 86 INTEL_E1000_ETHERNET_DEVICE(0x2E6E),
1da177e4
LT
87 /* required last entry */
88 {0,}
89};
90
91MODULE_DEVICE_TABLE(pci, e1000_pci_tbl);
92
35574764
NN
93int e1000_up(struct e1000_adapter *adapter);
94void e1000_down(struct e1000_adapter *adapter);
95void e1000_reinit_locked(struct e1000_adapter *adapter);
96void e1000_reset(struct e1000_adapter *adapter);
35574764
NN
97int e1000_setup_all_tx_resources(struct e1000_adapter *adapter);
98int e1000_setup_all_rx_resources(struct e1000_adapter *adapter);
99void e1000_free_all_tx_resources(struct e1000_adapter *adapter);
100void e1000_free_all_rx_resources(struct e1000_adapter *adapter);
3ad2cc67 101static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
a48954c8 102 struct e1000_tx_ring *txdr);
3ad2cc67 103static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
a48954c8 104 struct e1000_rx_ring *rxdr);
3ad2cc67 105static void e1000_free_tx_resources(struct e1000_adapter *adapter,
a48954c8 106 struct e1000_tx_ring *tx_ring);
3ad2cc67 107static void e1000_free_rx_resources(struct e1000_adapter *adapter,
a48954c8 108 struct e1000_rx_ring *rx_ring);
35574764 109void e1000_update_stats(struct e1000_adapter *adapter);
1da177e4
LT
110
111static int e1000_init_module(void);
112static void e1000_exit_module(void);
113static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent);
9f9a12f8 114static void e1000_remove(struct pci_dev *pdev);
581d708e 115static int e1000_alloc_queues(struct e1000_adapter *adapter);
1da177e4
LT
116static int e1000_sw_init(struct e1000_adapter *adapter);
117static int e1000_open(struct net_device *netdev);
118static int e1000_close(struct net_device *netdev);
119static void e1000_configure_tx(struct e1000_adapter *adapter);
120static void e1000_configure_rx(struct e1000_adapter *adapter);
121static void e1000_setup_rctl(struct e1000_adapter *adapter);
581d708e
MC
122static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter);
123static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter);
124static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
a48954c8 125 struct e1000_tx_ring *tx_ring);
581d708e 126static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
a48954c8 127 struct e1000_rx_ring *rx_ring);
db0ce50d 128static void e1000_set_rx_mode(struct net_device *netdev);
5cf42fcd 129static void e1000_update_phy_info_task(struct work_struct *work);
a4010afe 130static void e1000_watchdog(struct work_struct *work);
5cf42fcd 131static void e1000_82547_tx_fifo_stall_task(struct work_struct *work);
3b29a56d
SH
132static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
133 struct net_device *netdev);
a48954c8 134static struct net_device_stats *e1000_get_stats(struct net_device *netdev);
1da177e4
LT
135static int e1000_change_mtu(struct net_device *netdev, int new_mtu);
136static int e1000_set_mac(struct net_device *netdev, void *p);
7d12e780 137static irqreturn_t e1000_intr(int irq, void *data);
c3033b01
JP
138static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
139 struct e1000_tx_ring *tx_ring);
bea3348e 140static int e1000_clean(struct napi_struct *napi, int budget);
c3033b01
JP
141static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
142 struct e1000_rx_ring *rx_ring,
143 int *work_done, int work_to_do);
edbbb3ca
JB
144static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
145 struct e1000_rx_ring *rx_ring,
146 int *work_done, int work_to_do);
08e83316
SD
147static void e1000_alloc_dummy_rx_buffers(struct e1000_adapter *adapter,
148 struct e1000_rx_ring *rx_ring,
149 int cleaned_count)
150{
151}
581d708e 152static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
edbbb3ca 153 struct e1000_rx_ring *rx_ring,
72d64a43 154 int cleaned_count);
edbbb3ca
JB
155static void e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
156 struct e1000_rx_ring *rx_ring,
157 int cleaned_count);
1da177e4
LT
158static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd);
159static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
160 int cmd);
1da177e4
LT
161static void e1000_enter_82542_rst(struct e1000_adapter *adapter);
162static void e1000_leave_82542_rst(struct e1000_adapter *adapter);
163static void e1000_tx_timeout(struct net_device *dev);
65f27f38 164static void e1000_reset_task(struct work_struct *work);
1da177e4 165static void e1000_smartspeed(struct e1000_adapter *adapter);
e619d523 166static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
a48954c8 167 struct sk_buff *skb);
1da177e4 168
5622e404 169static bool e1000_vlan_used(struct e1000_adapter *adapter);
c8f44aff
MM
170static void e1000_vlan_mode(struct net_device *netdev,
171 netdev_features_t features);
52f5509f
JP
172static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
173 bool filter_on);
80d5c368
PM
174static int e1000_vlan_rx_add_vid(struct net_device *netdev,
175 __be16 proto, u16 vid);
176static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
177 __be16 proto, u16 vid);
1da177e4
LT
178static void e1000_restore_vlan(struct e1000_adapter *adapter);
179
6fdfef16 180#ifdef CONFIG_PM
b43fcd7d 181static int e1000_suspend(struct pci_dev *pdev, pm_message_t state);
1da177e4
LT
182static int e1000_resume(struct pci_dev *pdev);
183#endif
c653e635 184static void e1000_shutdown(struct pci_dev *pdev);
1da177e4
LT
185
186#ifdef CONFIG_NET_POLL_CONTROLLER
187/* for netdump / net console */
188static void e1000_netpoll (struct net_device *netdev);
189#endif
190
1f753861
JB
191#define COPYBREAK_DEFAULT 256
192static unsigned int copybreak __read_mostly = COPYBREAK_DEFAULT;
193module_param(copybreak, uint, 0644);
194MODULE_PARM_DESC(copybreak,
195 "Maximum size of packet that is copied to a new buffer on receive");
196
9026729b 197static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
a48954c8 198 pci_channel_state_t state);
9026729b
AK
199static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev);
200static void e1000_io_resume(struct pci_dev *pdev);
201
3646f0e5 202static const struct pci_error_handlers e1000_err_handler = {
9026729b
AK
203 .error_detected = e1000_io_error_detected,
204 .slot_reset = e1000_io_slot_reset,
205 .resume = e1000_io_resume,
206};
24025e4e 207
1da177e4
LT
208static struct pci_driver e1000_driver = {
209 .name = e1000_driver_name,
210 .id_table = e1000_pci_tbl,
211 .probe = e1000_probe,
9f9a12f8 212 .remove = e1000_remove,
c4e24f01 213#ifdef CONFIG_PM
25985edc 214 /* Power Management Hooks */
1da177e4 215 .suspend = e1000_suspend,
c653e635 216 .resume = e1000_resume,
1da177e4 217#endif
9026729b
AK
218 .shutdown = e1000_shutdown,
219 .err_handler = &e1000_err_handler
1da177e4
LT
220};
221
222MODULE_AUTHOR("Intel Corporation, <linux.nics@intel.com>");
223MODULE_DESCRIPTION("Intel(R) PRO/1000 Network Driver");
224MODULE_LICENSE("GPL");
225MODULE_VERSION(DRV_VERSION);
226
b3f4d599 227#define DEFAULT_MSG_ENABLE (NETIF_MSG_DRV|NETIF_MSG_PROBE|NETIF_MSG_LINK)
228static int debug = -1;
1da177e4
LT
229module_param(debug, int, 0);
230MODULE_PARM_DESC(debug, "Debug level (0=none,...,16=all)");
231
675ad473
ET
232/**
233 * e1000_get_hw_dev - return device
234 * used by hardware layer to print debugging information
235 *
236 **/
237struct net_device *e1000_get_hw_dev(struct e1000_hw *hw)
238{
239 struct e1000_adapter *adapter = hw->back;
240 return adapter->netdev;
241}
242
1da177e4
LT
243/**
244 * e1000_init_module - Driver Registration Routine
245 *
246 * e1000_init_module is the first routine called when the driver is
247 * loaded. All it does is register with the PCI subsystem.
248 **/
64798845 249static int __init e1000_init_module(void)
1da177e4
LT
250{
251 int ret;
675ad473 252 pr_info("%s - version %s\n", e1000_driver_string, e1000_driver_version);
1da177e4 253
675ad473 254 pr_info("%s\n", e1000_copyright);
1da177e4 255
29917620 256 ret = pci_register_driver(&e1000_driver);
1f753861
JB
257 if (copybreak != COPYBREAK_DEFAULT) {
258 if (copybreak == 0)
675ad473 259 pr_info("copybreak disabled\n");
1f753861 260 else
675ad473
ET
261 pr_info("copybreak enabled for "
262 "packets <= %u bytes\n", copybreak);
1f753861 263 }
1da177e4
LT
264 return ret;
265}
266
267module_init(e1000_init_module);
268
269/**
270 * e1000_exit_module - Driver Exit Cleanup Routine
271 *
272 * e1000_exit_module is called just before the driver is removed
273 * from memory.
274 **/
64798845 275static void __exit e1000_exit_module(void)
1da177e4 276{
1da177e4
LT
277 pci_unregister_driver(&e1000_driver);
278}
279
280module_exit(e1000_exit_module);
281
2db10a08
AK
282static int e1000_request_irq(struct e1000_adapter *adapter)
283{
284 struct net_device *netdev = adapter->netdev;
3e18826c 285 irq_handler_t handler = e1000_intr;
e94bd23f
AK
286 int irq_flags = IRQF_SHARED;
287 int err;
2db10a08 288
e94bd23f 289 err = request_irq(adapter->pdev->irq, handler, irq_flags, netdev->name,
a48954c8 290 netdev);
e94bd23f 291 if (err) {
feb8f478 292 e_err(probe, "Unable to allocate interrupt Error: %d\n", err);
e94bd23f 293 }
2db10a08
AK
294
295 return err;
296}
297
298static void e1000_free_irq(struct e1000_adapter *adapter)
299{
300 struct net_device *netdev = adapter->netdev;
301
302 free_irq(adapter->pdev->irq, netdev);
2db10a08
AK
303}
304
1da177e4
LT
305/**
306 * e1000_irq_disable - Mask off interrupt generation on the NIC
307 * @adapter: board private structure
308 **/
64798845 309static void e1000_irq_disable(struct e1000_adapter *adapter)
1da177e4 310{
1dc32918
JP
311 struct e1000_hw *hw = &adapter->hw;
312
313 ew32(IMC, ~0);
314 E1000_WRITE_FLUSH();
1da177e4
LT
315 synchronize_irq(adapter->pdev->irq);
316}
317
318/**
319 * e1000_irq_enable - Enable default interrupt generation settings
320 * @adapter: board private structure
321 **/
64798845 322static void e1000_irq_enable(struct e1000_adapter *adapter)
1da177e4 323{
1dc32918
JP
324 struct e1000_hw *hw = &adapter->hw;
325
326 ew32(IMS, IMS_ENABLE_MASK);
327 E1000_WRITE_FLUSH();
1da177e4 328}
3ad2cc67 329
64798845 330static void e1000_update_mng_vlan(struct e1000_adapter *adapter)
2d7edb92 331{
1dc32918 332 struct e1000_hw *hw = &adapter->hw;
2d7edb92 333 struct net_device *netdev = adapter->netdev;
1dc32918 334 u16 vid = hw->mng_cookie.vlan_id;
406874a7 335 u16 old_vid = adapter->mng_vlan_id;
96838a40 336
5622e404
JP
337 if (!e1000_vlan_used(adapter))
338 return;
339
340 if (!test_bit(vid, adapter->active_vlans)) {
341 if (hw->mng_cookie.status &
342 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) {
80d5c368 343 e1000_vlan_rx_add_vid(netdev, htons(ETH_P_8021Q), vid);
c5f226fe 344 adapter->mng_vlan_id = vid;
5622e404
JP
345 } else {
346 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
347 }
348 if ((old_vid != (u16)E1000_MNG_VLAN_NONE) &&
349 (vid != old_vid) &&
350 !test_bit(old_vid, adapter->active_vlans))
80d5c368
PM
351 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
352 old_vid);
5622e404
JP
353 } else {
354 adapter->mng_vlan_id = vid;
2d7edb92
MC
355 }
356}
b55ccb35 357
64798845 358static void e1000_init_manageability(struct e1000_adapter *adapter)
0fccd0e9 359{
1dc32918
JP
360 struct e1000_hw *hw = &adapter->hw;
361
0fccd0e9 362 if (adapter->en_mng_pt) {
1dc32918 363 u32 manc = er32(MANC);
0fccd0e9
JG
364
365 /* disable hardware interception of ARP */
366 manc &= ~(E1000_MANC_ARP_EN);
367
1dc32918 368 ew32(MANC, manc);
0fccd0e9
JG
369 }
370}
371
64798845 372static void e1000_release_manageability(struct e1000_adapter *adapter)
0fccd0e9 373{
1dc32918
JP
374 struct e1000_hw *hw = &adapter->hw;
375
0fccd0e9 376 if (adapter->en_mng_pt) {
1dc32918 377 u32 manc = er32(MANC);
0fccd0e9
JG
378
379 /* re-enable hardware interception of ARP */
380 manc |= E1000_MANC_ARP_EN;
381
1dc32918 382 ew32(MANC, manc);
0fccd0e9
JG
383 }
384}
385
e0aac5a2
AK
386/**
387 * e1000_configure - configure the hardware for RX and TX
388 * @adapter = private board structure
389 **/
390static void e1000_configure(struct e1000_adapter *adapter)
1da177e4
LT
391{
392 struct net_device *netdev = adapter->netdev;
2db10a08 393 int i;
1da177e4 394
db0ce50d 395 e1000_set_rx_mode(netdev);
1da177e4
LT
396
397 e1000_restore_vlan(adapter);
0fccd0e9 398 e1000_init_manageability(adapter);
1da177e4
LT
399
400 e1000_configure_tx(adapter);
401 e1000_setup_rctl(adapter);
402 e1000_configure_rx(adapter);
72d64a43
JK
403 /* call E1000_DESC_UNUSED which always leaves
404 * at least 1 descriptor unused to make sure
6cfbd97b
JK
405 * next_to_use != next_to_clean
406 */
f56799ea 407 for (i = 0; i < adapter->num_rx_queues; i++) {
72d64a43 408 struct e1000_rx_ring *ring = &adapter->rx_ring[i];
a292ca6e 409 adapter->alloc_rx_buf(adapter, ring,
6cfbd97b 410 E1000_DESC_UNUSED(ring));
f56799ea 411 }
e0aac5a2
AK
412}
413
414int e1000_up(struct e1000_adapter *adapter)
415{
1dc32918
JP
416 struct e1000_hw *hw = &adapter->hw;
417
e0aac5a2
AK
418 /* hardware has been reset, we need to reload some things */
419 e1000_configure(adapter);
420
421 clear_bit(__E1000_DOWN, &adapter->flags);
7bfa4816 422
bea3348e 423 napi_enable(&adapter->napi);
c3570acb 424
5de55624
MC
425 e1000_irq_enable(adapter);
426
4cb9be7a
JB
427 netif_wake_queue(adapter->netdev);
428
79f3d399 429 /* fire a link change interrupt to start the watchdog */
1dc32918 430 ew32(ICS, E1000_ICS_LSC);
1da177e4
LT
431 return 0;
432}
433
79f05bf0
AK
434/**
435 * e1000_power_up_phy - restore link in case the phy was powered down
436 * @adapter: address of board private structure
437 *
438 * The phy may be powered down to save power and turn off link when the
439 * driver is unloaded and wake on lan is not enabled (among others)
440 * *** this routine MUST be followed by a call to e1000_reset ***
79f05bf0 441 **/
d658266e 442void e1000_power_up_phy(struct e1000_adapter *adapter)
79f05bf0 443{
1dc32918 444 struct e1000_hw *hw = &adapter->hw;
406874a7 445 u16 mii_reg = 0;
79f05bf0
AK
446
447 /* Just clear the power down bit to wake the phy back up */
1dc32918 448 if (hw->media_type == e1000_media_type_copper) {
79f05bf0 449 /* according to the manual, the phy will retain its
6cfbd97b
JK
450 * settings across a power-down/up cycle
451 */
1dc32918 452 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
79f05bf0 453 mii_reg &= ~MII_CR_POWER_DOWN;
1dc32918 454 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
79f05bf0
AK
455 }
456}
457
458static void e1000_power_down_phy(struct e1000_adapter *adapter)
459{
1dc32918
JP
460 struct e1000_hw *hw = &adapter->hw;
461
61c2505f 462 /* Power down the PHY so no link is implied when interface is down *
c3033b01 463 * The PHY cannot be powered down if any of the following is true *
79f05bf0
AK
464 * (a) WoL is enabled
465 * (b) AMT is active
6cfbd97b
JK
466 * (c) SoL/IDER session is active
467 */
1dc32918
JP
468 if (!adapter->wol && hw->mac_type >= e1000_82540 &&
469 hw->media_type == e1000_media_type_copper) {
406874a7 470 u16 mii_reg = 0;
61c2505f 471
1dc32918 472 switch (hw->mac_type) {
61c2505f
BA
473 case e1000_82540:
474 case e1000_82545:
475 case e1000_82545_rev_3:
476 case e1000_82546:
5377a416 477 case e1000_ce4100:
61c2505f
BA
478 case e1000_82546_rev_3:
479 case e1000_82541:
480 case e1000_82541_rev_2:
481 case e1000_82547:
482 case e1000_82547_rev_2:
1dc32918 483 if (er32(MANC) & E1000_MANC_SMBUS_EN)
61c2505f
BA
484 goto out;
485 break;
61c2505f
BA
486 default:
487 goto out;
488 }
1dc32918 489 e1000_read_phy_reg(hw, PHY_CTRL, &mii_reg);
79f05bf0 490 mii_reg |= MII_CR_POWER_DOWN;
1dc32918 491 e1000_write_phy_reg(hw, PHY_CTRL, mii_reg);
4e0d8f7d 492 msleep(1);
79f05bf0 493 }
61c2505f
BA
494out:
495 return;
79f05bf0
AK
496}
497
a4010afe
JB
498static void e1000_down_and_stop(struct e1000_adapter *adapter)
499{
500 set_bit(__E1000_DOWN, &adapter->flags);
8ce6909f 501
a4010afe 502 cancel_delayed_work_sync(&adapter->watchdog_task);
74a1b1ea
VD
503
504 /*
505 * Since the watchdog task can reschedule other tasks, we should cancel
506 * it first, otherwise we can run into the situation when a work is
507 * still running after the adapter has been turned down.
508 */
509
a4010afe
JB
510 cancel_delayed_work_sync(&adapter->phy_info_task);
511 cancel_delayed_work_sync(&adapter->fifo_stall_task);
74a1b1ea
VD
512
513 /* Only kill reset task if adapter is not resetting */
514 if (!test_bit(__E1000_RESETTING, &adapter->flags))
515 cancel_work_sync(&adapter->reset_task);
a4010afe
JB
516}
517
64798845 518void e1000_down(struct e1000_adapter *adapter)
1da177e4 519{
a6c42322 520 struct e1000_hw *hw = &adapter->hw;
1da177e4 521 struct net_device *netdev = adapter->netdev;
a6c42322 522 u32 rctl, tctl;
1da177e4 523
f9c029db 524 netif_carrier_off(netdev);
1314bbf3 525
a6c42322
JB
526 /* disable receives in the hardware */
527 rctl = er32(RCTL);
528 ew32(RCTL, rctl & ~E1000_RCTL_EN);
529 /* flush and sleep below */
530
51851073 531 netif_tx_disable(netdev);
a6c42322
JB
532
533 /* disable transmits in the hardware */
534 tctl = er32(TCTL);
535 tctl &= ~E1000_TCTL_EN;
536 ew32(TCTL, tctl);
537 /* flush both disables and wait for them to finish */
538 E1000_WRITE_FLUSH();
539 msleep(10);
540
bea3348e 541 napi_disable(&adapter->napi);
c3570acb 542
1da177e4 543 e1000_irq_disable(adapter);
c1605eb3 544
6cfbd97b 545 /* Setting DOWN must be after irq_disable to prevent
ab08853f 546 * a screaming interrupt. Setting DOWN also prevents
a4010afe 547 * tasks from rescheduling.
ab08853f 548 */
a4010afe 549 e1000_down_and_stop(adapter);
1da177e4 550
1da177e4
LT
551 adapter->link_speed = 0;
552 adapter->link_duplex = 0;
1da177e4
LT
553
554 e1000_reset(adapter);
581d708e
MC
555 e1000_clean_all_tx_rings(adapter);
556 e1000_clean_all_rx_rings(adapter);
1da177e4 557}
1da177e4 558
64798845 559void e1000_reinit_locked(struct e1000_adapter *adapter)
2db10a08
AK
560{
561 WARN_ON(in_interrupt());
562 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
563 msleep(1);
564 e1000_down(adapter);
565 e1000_up(adapter);
566 clear_bit(__E1000_RESETTING, &adapter->flags);
1da177e4
LT
567}
568
64798845 569void e1000_reset(struct e1000_adapter *adapter)
1da177e4 570{
1dc32918 571 struct e1000_hw *hw = &adapter->hw;
406874a7 572 u32 pba = 0, tx_space, min_tx_space, min_rx_space;
c3033b01 573 bool legacy_pba_adjust = false;
b7cb8c2c 574 u16 hwm;
1da177e4
LT
575
576 /* Repartition Pba for greater than 9k mtu
577 * To take effect CTRL.RST is required.
578 */
579
1dc32918 580 switch (hw->mac_type) {
018ea44e
BA
581 case e1000_82542_rev2_0:
582 case e1000_82542_rev2_1:
583 case e1000_82543:
584 case e1000_82544:
585 case e1000_82540:
586 case e1000_82541:
587 case e1000_82541_rev_2:
c3033b01 588 legacy_pba_adjust = true;
018ea44e
BA
589 pba = E1000_PBA_48K;
590 break;
591 case e1000_82545:
592 case e1000_82545_rev_3:
593 case e1000_82546:
5377a416 594 case e1000_ce4100:
018ea44e
BA
595 case e1000_82546_rev_3:
596 pba = E1000_PBA_48K;
597 break;
2d7edb92 598 case e1000_82547:
0e6ef3e0 599 case e1000_82547_rev_2:
c3033b01 600 legacy_pba_adjust = true;
2d7edb92
MC
601 pba = E1000_PBA_30K;
602 break;
018ea44e
BA
603 case e1000_undefined:
604 case e1000_num_macs:
2d7edb92
MC
605 break;
606 }
607
c3033b01 608 if (legacy_pba_adjust) {
b7cb8c2c 609 if (hw->max_frame_size > E1000_RXBUFFER_8192)
018ea44e 610 pba -= 8; /* allocate more FIFO for Tx */
2d7edb92 611
1dc32918 612 if (hw->mac_type == e1000_82547) {
018ea44e
BA
613 adapter->tx_fifo_head = 0;
614 adapter->tx_head_addr = pba << E1000_TX_HEAD_ADDR_SHIFT;
615 adapter->tx_fifo_size =
616 (E1000_PBA_40K - pba) << E1000_PBA_BYTES_SHIFT;
617 atomic_set(&adapter->tx_fifo_stall, 0);
618 }
b7cb8c2c 619 } else if (hw->max_frame_size > ETH_FRAME_LEN + ETH_FCS_LEN) {
018ea44e 620 /* adjust PBA for jumbo frames */
1dc32918 621 ew32(PBA, pba);
018ea44e
BA
622
623 /* To maintain wire speed transmits, the Tx FIFO should be
b7cb8c2c 624 * large enough to accommodate two full transmit packets,
018ea44e 625 * rounded up to the next 1KB and expressed in KB. Likewise,
b7cb8c2c 626 * the Rx FIFO should be large enough to accommodate at least
018ea44e 627 * one full receive packet and is similarly rounded up and
6cfbd97b
JK
628 * expressed in KB.
629 */
1dc32918 630 pba = er32(PBA);
018ea44e
BA
631 /* upper 16 bits has Tx packet buffer allocation size in KB */
632 tx_space = pba >> 16;
633 /* lower 16 bits has Rx packet buffer allocation size in KB */
634 pba &= 0xffff;
6cfbd97b 635 /* the Tx fifo also stores 16 bytes of information about the Tx
b7cb8c2c
JB
636 * but don't include ethernet FCS because hardware appends it
637 */
638 min_tx_space = (hw->max_frame_size +
a48954c8
JW
639 sizeof(struct e1000_tx_desc) -
640 ETH_FCS_LEN) * 2;
9099cfb9 641 min_tx_space = ALIGN(min_tx_space, 1024);
018ea44e 642 min_tx_space >>= 10;
b7cb8c2c
JB
643 /* software strips receive CRC, so leave room for it */
644 min_rx_space = hw->max_frame_size;
9099cfb9 645 min_rx_space = ALIGN(min_rx_space, 1024);
018ea44e
BA
646 min_rx_space >>= 10;
647
648 /* If current Tx allocation is less than the min Tx FIFO size,
649 * and the min Tx FIFO size is less than the current Rx FIFO
6cfbd97b
JK
650 * allocation, take space away from current Rx allocation
651 */
018ea44e
BA
652 if (tx_space < min_tx_space &&
653 ((min_tx_space - tx_space) < pba)) {
654 pba = pba - (min_tx_space - tx_space);
655
656 /* PCI/PCIx hardware has PBA alignment constraints */
1dc32918 657 switch (hw->mac_type) {
018ea44e
BA
658 case e1000_82545 ... e1000_82546_rev_3:
659 pba &= ~(E1000_PBA_8K - 1);
660 break;
661 default:
662 break;
663 }
664
6cfbd97b
JK
665 /* if short on Rx space, Rx wins and must trump Tx
666 * adjustment or use Early Receive if available
667 */
1532ecea
JB
668 if (pba < min_rx_space)
669 pba = min_rx_space;
018ea44e 670 }
1da177e4 671 }
2d7edb92 672
1dc32918 673 ew32(PBA, pba);
1da177e4 674
6cfbd97b 675 /* flow control settings:
b7cb8c2c
JB
676 * The high water mark must be low enough to fit one full frame
677 * (or the size used for early receive) above it in the Rx FIFO.
678 * Set it to the lower of:
679 * - 90% of the Rx FIFO size, and
680 * - the full Rx FIFO size minus the early receive size (for parts
681 * with ERT support assuming ERT set to E1000_ERT_2048), or
682 * - the full Rx FIFO size minus one full frame
683 */
684 hwm = min(((pba << 10) * 9 / 10),
685 ((pba << 10) - hw->max_frame_size));
686
687 hw->fc_high_water = hwm & 0xFFF8; /* 8-byte granularity */
688 hw->fc_low_water = hw->fc_high_water - 8;
edbbb3ca 689 hw->fc_pause_time = E1000_FC_PAUSE_TIME;
1dc32918
JP
690 hw->fc_send_xon = 1;
691 hw->fc = hw->original_fc;
1da177e4 692
2d7edb92 693 /* Allow time for pending master requests to run */
1dc32918
JP
694 e1000_reset_hw(hw);
695 if (hw->mac_type >= e1000_82544)
696 ew32(WUC, 0);
09ae3e88 697
1dc32918 698 if (e1000_init_hw(hw))
feb8f478 699 e_dev_err("Hardware Error\n");
2d7edb92 700 e1000_update_mng_vlan(adapter);
3d5460a0
JB
701
702 /* if (adapter->hwflags & HWFLAGS_PHY_PWR_BIT) { */
1dc32918 703 if (hw->mac_type >= e1000_82544 &&
1dc32918
JP
704 hw->autoneg == 1 &&
705 hw->autoneg_advertised == ADVERTISE_1000_FULL) {
706 u32 ctrl = er32(CTRL);
3d5460a0
JB
707 /* clear phy power management bit if we are in gig only mode,
708 * which if enabled will attempt negotiation to 100Mb, which
6cfbd97b
JK
709 * can cause a loss of link at power off or driver unload
710 */
3d5460a0 711 ctrl &= ~E1000_CTRL_SWDPIN3;
1dc32918 712 ew32(CTRL, ctrl);
3d5460a0
JB
713 }
714
1da177e4 715 /* Enable h/w to recognize an 802.1Q VLAN Ethernet packet */
1dc32918 716 ew32(VET, ETHERNET_IEEE_VLAN_TYPE);
1da177e4 717
1dc32918
JP
718 e1000_reset_adaptive(hw);
719 e1000_phy_get_info(hw, &adapter->phy_info);
9a53a202 720
0fccd0e9 721 e1000_release_manageability(adapter);
1da177e4
LT
722}
723
1aa8b471 724/* Dump the eeprom for users having checksum issues */
b4ea895d 725static void e1000_dump_eeprom(struct e1000_adapter *adapter)
67b3c27c
AK
726{
727 struct net_device *netdev = adapter->netdev;
728 struct ethtool_eeprom eeprom;
729 const struct ethtool_ops *ops = netdev->ethtool_ops;
730 u8 *data;
731 int i;
732 u16 csum_old, csum_new = 0;
733
734 eeprom.len = ops->get_eeprom_len(netdev);
735 eeprom.offset = 0;
736
737 data = kmalloc(eeprom.len, GFP_KERNEL);
e404decb 738 if (!data)
67b3c27c 739 return;
67b3c27c
AK
740
741 ops->get_eeprom(netdev, &eeprom, data);
742
743 csum_old = (data[EEPROM_CHECKSUM_REG * 2]) +
744 (data[EEPROM_CHECKSUM_REG * 2 + 1] << 8);
745 for (i = 0; i < EEPROM_CHECKSUM_REG * 2; i += 2)
746 csum_new += data[i] + (data[i + 1] << 8);
747 csum_new = EEPROM_SUM - csum_new;
748
675ad473
ET
749 pr_err("/*********************/\n");
750 pr_err("Current EEPROM Checksum : 0x%04x\n", csum_old);
751 pr_err("Calculated : 0x%04x\n", csum_new);
67b3c27c 752
675ad473
ET
753 pr_err("Offset Values\n");
754 pr_err("======== ======\n");
67b3c27c
AK
755 print_hex_dump(KERN_ERR, "", DUMP_PREFIX_OFFSET, 16, 1, data, 128, 0);
756
675ad473
ET
757 pr_err("Include this output when contacting your support provider.\n");
758 pr_err("This is not a software error! Something bad happened to\n");
759 pr_err("your hardware or EEPROM image. Ignoring this problem could\n");
760 pr_err("result in further problems, possibly loss of data,\n");
761 pr_err("corruption or system hangs!\n");
762 pr_err("The MAC Address will be reset to 00:00:00:00:00:00,\n");
763 pr_err("which is invalid and requires you to set the proper MAC\n");
764 pr_err("address manually before continuing to enable this network\n");
765 pr_err("device. Please inspect the EEPROM dump and report the\n");
766 pr_err("issue to your hardware vendor or Intel Customer Support.\n");
767 pr_err("/*********************/\n");
67b3c27c
AK
768
769 kfree(data);
770}
771
81250297
TI
772/**
773 * e1000_is_need_ioport - determine if an adapter needs ioport resources or not
774 * @pdev: PCI device information struct
775 *
776 * Return true if an adapter needs ioport resources
777 **/
778static int e1000_is_need_ioport(struct pci_dev *pdev)
779{
780 switch (pdev->device) {
781 case E1000_DEV_ID_82540EM:
782 case E1000_DEV_ID_82540EM_LOM:
783 case E1000_DEV_ID_82540EP:
784 case E1000_DEV_ID_82540EP_LOM:
785 case E1000_DEV_ID_82540EP_LP:
786 case E1000_DEV_ID_82541EI:
787 case E1000_DEV_ID_82541EI_MOBILE:
788 case E1000_DEV_ID_82541ER:
789 case E1000_DEV_ID_82541ER_LOM:
790 case E1000_DEV_ID_82541GI:
791 case E1000_DEV_ID_82541GI_LF:
792 case E1000_DEV_ID_82541GI_MOBILE:
793 case E1000_DEV_ID_82544EI_COPPER:
794 case E1000_DEV_ID_82544EI_FIBER:
795 case E1000_DEV_ID_82544GC_COPPER:
796 case E1000_DEV_ID_82544GC_LOM:
797 case E1000_DEV_ID_82545EM_COPPER:
798 case E1000_DEV_ID_82545EM_FIBER:
799 case E1000_DEV_ID_82546EB_COPPER:
800 case E1000_DEV_ID_82546EB_FIBER:
801 case E1000_DEV_ID_82546EB_QUAD_COPPER:
802 return true;
803 default:
804 return false;
805 }
806}
807
c8f44aff
MM
808static netdev_features_t e1000_fix_features(struct net_device *netdev,
809 netdev_features_t features)
5622e404 810{
6cfbd97b
JK
811 /* Since there is no support for separate Rx/Tx vlan accel
812 * enable/disable make sure Tx flag is always in same state as Rx.
5622e404 813 */
f646968f
PM
814 if (features & NETIF_F_HW_VLAN_CTAG_RX)
815 features |= NETIF_F_HW_VLAN_CTAG_TX;
5622e404 816 else
f646968f 817 features &= ~NETIF_F_HW_VLAN_CTAG_TX;
5622e404
JP
818
819 return features;
820}
821
c8f44aff
MM
822static int e1000_set_features(struct net_device *netdev,
823 netdev_features_t features)
e97d3207
MM
824{
825 struct e1000_adapter *adapter = netdev_priv(netdev);
c8f44aff 826 netdev_features_t changed = features ^ netdev->features;
e97d3207 827
f646968f 828 if (changed & NETIF_F_HW_VLAN_CTAG_RX)
5622e404
JP
829 e1000_vlan_mode(netdev, features);
830
e825b731 831 if (!(changed & (NETIF_F_RXCSUM | NETIF_F_RXALL)))
e97d3207
MM
832 return 0;
833
e825b731 834 netdev->features = features;
e97d3207
MM
835 adapter->rx_csum = !!(features & NETIF_F_RXCSUM);
836
837 if (netif_running(netdev))
838 e1000_reinit_locked(adapter);
839 else
840 e1000_reset(adapter);
841
842 return 0;
843}
844
0e7614bc
SH
845static const struct net_device_ops e1000_netdev_ops = {
846 .ndo_open = e1000_open,
847 .ndo_stop = e1000_close,
00829823 848 .ndo_start_xmit = e1000_xmit_frame,
0e7614bc
SH
849 .ndo_get_stats = e1000_get_stats,
850 .ndo_set_rx_mode = e1000_set_rx_mode,
851 .ndo_set_mac_address = e1000_set_mac,
5622e404 852 .ndo_tx_timeout = e1000_tx_timeout,
0e7614bc
SH
853 .ndo_change_mtu = e1000_change_mtu,
854 .ndo_do_ioctl = e1000_ioctl,
855 .ndo_validate_addr = eth_validate_addr,
0e7614bc
SH
856 .ndo_vlan_rx_add_vid = e1000_vlan_rx_add_vid,
857 .ndo_vlan_rx_kill_vid = e1000_vlan_rx_kill_vid,
858#ifdef CONFIG_NET_POLL_CONTROLLER
859 .ndo_poll_controller = e1000_netpoll,
860#endif
5622e404
JP
861 .ndo_fix_features = e1000_fix_features,
862 .ndo_set_features = e1000_set_features,
0e7614bc
SH
863};
864
e508be17
JB
865/**
866 * e1000_init_hw_struct - initialize members of hw struct
867 * @adapter: board private struct
868 * @hw: structure used by e1000_hw.c
869 *
870 * Factors out initialization of the e1000_hw struct to its own function
871 * that can be called very early at init (just after struct allocation).
872 * Fields are initialized based on PCI device information and
873 * OS network device settings (MTU size).
874 * Returns negative error codes if MAC type setup fails.
875 */
876static int e1000_init_hw_struct(struct e1000_adapter *adapter,
877 struct e1000_hw *hw)
878{
879 struct pci_dev *pdev = adapter->pdev;
880
881 /* PCI config space info */
882 hw->vendor_id = pdev->vendor;
883 hw->device_id = pdev->device;
884 hw->subsystem_vendor_id = pdev->subsystem_vendor;
885 hw->subsystem_id = pdev->subsystem_device;
886 hw->revision_id = pdev->revision;
887
888 pci_read_config_word(pdev, PCI_COMMAND, &hw->pci_cmd_word);
889
890 hw->max_frame_size = adapter->netdev->mtu +
891 ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
892 hw->min_frame_size = MINIMUM_ETHERNET_FRAME_SIZE;
893
894 /* identify the MAC */
895 if (e1000_set_mac_type(hw)) {
896 e_err(probe, "Unknown MAC Type\n");
897 return -EIO;
898 }
899
900 switch (hw->mac_type) {
901 default:
902 break;
903 case e1000_82541:
904 case e1000_82547:
905 case e1000_82541_rev_2:
906 case e1000_82547_rev_2:
907 hw->phy_init_script = 1;
908 break;
909 }
910
911 e1000_set_media_type(hw);
912 e1000_get_bus_info(hw);
913
914 hw->wait_autoneg_complete = false;
915 hw->tbi_compatibility_en = true;
916 hw->adaptive_ifs = true;
917
918 /* Copper options */
919
920 if (hw->media_type == e1000_media_type_copper) {
921 hw->mdix = AUTO_ALL_MODES;
922 hw->disable_polarity_correction = false;
923 hw->master_slave = E1000_MASTER_SLAVE;
924 }
925
926 return 0;
927}
928
1da177e4
LT
929/**
930 * e1000_probe - Device Initialization Routine
931 * @pdev: PCI device information struct
932 * @ent: entry in e1000_pci_tbl
933 *
934 * Returns 0 on success, negative on failure
935 *
936 * e1000_probe initializes an adapter identified by a pci_dev structure.
937 * The OS initialization, configuring of the adapter private structure,
938 * and a hardware reset occur.
939 **/
1dd06ae8 940static int e1000_probe(struct pci_dev *pdev, const struct pci_device_id *ent)
1da177e4
LT
941{
942 struct net_device *netdev;
943 struct e1000_adapter *adapter;
1dc32918 944 struct e1000_hw *hw;
2d7edb92 945
a48954c8
JW
946 static int cards_found;
947 static int global_quad_port_a; /* global ksp3 port a indication */
2d7edb92 948 int i, err, pci_using_dac;
406874a7 949 u16 eeprom_data = 0;
5377a416 950 u16 tmp = 0;
406874a7 951 u16 eeprom_apme_mask = E1000_EEPROM_APME;
81250297 952 int bars, need_ioport;
0795af57 953
81250297
TI
954 /* do not allocate ioport bars when not needed */
955 need_ioport = e1000_is_need_ioport(pdev);
956 if (need_ioport) {
957 bars = pci_select_bars(pdev, IORESOURCE_MEM | IORESOURCE_IO);
958 err = pci_enable_device(pdev);
959 } else {
960 bars = pci_select_bars(pdev, IORESOURCE_MEM);
4d7155b9 961 err = pci_enable_device_mem(pdev);
81250297 962 }
c7be73bc 963 if (err)
1da177e4
LT
964 return err;
965
81250297 966 err = pci_request_selected_regions(pdev, bars, e1000_driver_name);
c7be73bc 967 if (err)
6dd62ab0 968 goto err_pci_reg;
1da177e4
LT
969
970 pci_set_master(pdev);
dbb5aaeb
NN
971 err = pci_save_state(pdev);
972 if (err)
973 goto err_alloc_etherdev;
1da177e4 974
6dd62ab0 975 err = -ENOMEM;
1da177e4 976 netdev = alloc_etherdev(sizeof(struct e1000_adapter));
6dd62ab0 977 if (!netdev)
1da177e4 978 goto err_alloc_etherdev;
1da177e4 979
1da177e4
LT
980 SET_NETDEV_DEV(netdev, &pdev->dev);
981
982 pci_set_drvdata(pdev, netdev);
60490fe0 983 adapter = netdev_priv(netdev);
1da177e4
LT
984 adapter->netdev = netdev;
985 adapter->pdev = pdev;
b3f4d599 986 adapter->msg_enable = netif_msg_init(debug, DEFAULT_MSG_ENABLE);
81250297
TI
987 adapter->bars = bars;
988 adapter->need_ioport = need_ioport;
1da177e4 989
1dc32918
JP
990 hw = &adapter->hw;
991 hw->back = adapter;
992
6dd62ab0 993 err = -EIO;
275f165f 994 hw->hw_addr = pci_ioremap_bar(pdev, BAR_0);
1dc32918 995 if (!hw->hw_addr)
1da177e4 996 goto err_ioremap;
1da177e4 997
81250297
TI
998 if (adapter->need_ioport) {
999 for (i = BAR_1; i <= BAR_5; i++) {
1000 if (pci_resource_len(pdev, i) == 0)
1001 continue;
1002 if (pci_resource_flags(pdev, i) & IORESOURCE_IO) {
1003 hw->io_base = pci_resource_start(pdev, i);
1004 break;
1005 }
1da177e4
LT
1006 }
1007 }
1008
e508be17
JB
1009 /* make ready for any if (hw->...) below */
1010 err = e1000_init_hw_struct(adapter, hw);
1011 if (err)
1012 goto err_sw_init;
1013
6cfbd97b 1014 /* there is a workaround being applied below that limits
e508be17
JB
1015 * 64-bit DMA addresses to 64-bit hardware. There are some
1016 * 32-bit adapters that Tx hang when given 64-bit DMA addresses
1017 */
1018 pci_using_dac = 0;
1019 if ((hw->bus_type == e1000_bus_type_pcix) &&
9931a26e 1020 !dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64))) {
e508be17 1021 pci_using_dac = 1;
e508be17 1022 } else {
9931a26e 1023 err = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32));
19a0b67a
DN
1024 if (err) {
1025 pr_err("No usable DMA config, aborting\n");
1026 goto err_dma;
1027 }
e508be17
JB
1028 }
1029
0e7614bc 1030 netdev->netdev_ops = &e1000_netdev_ops;
1da177e4 1031 e1000_set_ethtool_ops(netdev);
1da177e4 1032 netdev->watchdog_timeo = 5 * HZ;
bea3348e 1033 netif_napi_add(netdev, &adapter->napi, e1000_clean, 64);
0e7614bc 1034
0eb5a34c 1035 strncpy(netdev->name, pci_name(pdev), sizeof(netdev->name) - 1);
1da177e4 1036
1da177e4
LT
1037 adapter->bd_number = cards_found;
1038
1039 /* setup the private structure */
1040
c7be73bc
JP
1041 err = e1000_sw_init(adapter);
1042 if (err)
1da177e4
LT
1043 goto err_sw_init;
1044
6dd62ab0 1045 err = -EIO;
5377a416 1046 if (hw->mac_type == e1000_ce4100) {
13acde8f
FF
1047 hw->ce4100_gbe_mdio_base_virt =
1048 ioremap(pci_resource_start(pdev, BAR_1),
a48954c8 1049 pci_resource_len(pdev, BAR_1));
5377a416 1050
13acde8f 1051 if (!hw->ce4100_gbe_mdio_base_virt)
5377a416
DB
1052 goto err_mdio_ioremap;
1053 }
2d7edb92 1054
1dc32918 1055 if (hw->mac_type >= e1000_82543) {
e97d3207 1056 netdev->hw_features = NETIF_F_SG |
5622e404 1057 NETIF_F_HW_CSUM |
f646968f
PM
1058 NETIF_F_HW_VLAN_CTAG_RX;
1059 netdev->features = NETIF_F_HW_VLAN_CTAG_TX |
1060 NETIF_F_HW_VLAN_CTAG_FILTER;
1da177e4
LT
1061 }
1062
1dc32918
JP
1063 if ((hw->mac_type >= e1000_82544) &&
1064 (hw->mac_type != e1000_82547))
e97d3207
MM
1065 netdev->hw_features |= NETIF_F_TSO;
1066
11a78dcf
BG
1067 netdev->priv_flags |= IFF_SUPP_NOFCS;
1068
e97d3207 1069 netdev->features |= netdev->hw_features;
7500673b
TD
1070 netdev->hw_features |= (NETIF_F_RXCSUM |
1071 NETIF_F_RXALL |
1072 NETIF_F_RXFCS);
2d7edb92 1073
7b872a55 1074 if (pci_using_dac) {
1da177e4 1075 netdev->features |= NETIF_F_HIGHDMA;
7b872a55
YZ
1076 netdev->vlan_features |= NETIF_F_HIGHDMA;
1077 }
1da177e4 1078
7500673b
TD
1079 netdev->vlan_features |= (NETIF_F_TSO |
1080 NETIF_F_HW_CSUM |
1081 NETIF_F_SG);
20501a69 1082
a22bb0b9
FR
1083 /* Do not set IFF_UNICAST_FLT for VMWare's 82545EM */
1084 if (hw->device_id != E1000_DEV_ID_82545EM_COPPER ||
1085 hw->subsystem_vendor_id != PCI_VENDOR_ID_VMWARE)
1086 netdev->priv_flags |= IFF_UNICAST_FLT;
01789349 1087
1dc32918 1088 adapter->en_mng_pt = e1000_enable_mng_pass_thru(hw);
2d7edb92 1089
cd94dd0b 1090 /* initialize eeprom parameters */
1dc32918 1091 if (e1000_init_eeprom_params(hw)) {
feb8f478 1092 e_err(probe, "EEPROM initialization failed\n");
6dd62ab0 1093 goto err_eeprom;
cd94dd0b
AK
1094 }
1095
96838a40 1096 /* before reading the EEPROM, reset the controller to
6cfbd97b
JK
1097 * put the device in a known good starting state
1098 */
96838a40 1099
1dc32918 1100 e1000_reset_hw(hw);
1da177e4
LT
1101
1102 /* make sure the EEPROM is good */
1dc32918 1103 if (e1000_validate_eeprom_checksum(hw) < 0) {
feb8f478 1104 e_err(probe, "The EEPROM Checksum Is Not Valid\n");
67b3c27c 1105 e1000_dump_eeprom(adapter);
6cfbd97b 1106 /* set MAC address to all zeroes to invalidate and temporary
67b3c27c
AK
1107 * disable this device for the user. This blocks regular
1108 * traffic while still permitting ethtool ioctls from reaching
1109 * the hardware as well as allowing the user to run the
1110 * interface after manually setting a hw addr using
1111 * `ip set address`
1112 */
1dc32918 1113 memset(hw->mac_addr, 0, netdev->addr_len);
67b3c27c
AK
1114 } else {
1115 /* copy the MAC address out of the EEPROM */
1dc32918 1116 if (e1000_read_mac_addr(hw))
feb8f478 1117 e_err(probe, "EEPROM Read Error\n");
1da177e4 1118 }
dbedd44e 1119 /* don't block initialization here due to bad MAC address */
1dc32918 1120 memcpy(netdev->dev_addr, hw->mac_addr, netdev->addr_len);
1da177e4 1121
aaeb6cdf 1122 if (!is_valid_ether_addr(netdev->dev_addr))
feb8f478 1123 e_err(probe, "Invalid MAC Address\n");
1da177e4 1124
1da177e4 1125
a4010afe
JB
1126 INIT_DELAYED_WORK(&adapter->watchdog_task, e1000_watchdog);
1127 INIT_DELAYED_WORK(&adapter->fifo_stall_task,
1128 e1000_82547_tx_fifo_stall_task);
1129 INIT_DELAYED_WORK(&adapter->phy_info_task, e1000_update_phy_info_task);
65f27f38 1130 INIT_WORK(&adapter->reset_task, e1000_reset_task);
1da177e4 1131
1da177e4
LT
1132 e1000_check_options(adapter);
1133
1134 /* Initial Wake on LAN setting
1135 * If APM wake is enabled in the EEPROM,
1136 * enable the ACPI Magic Packet filter
1137 */
1138
1dc32918 1139 switch (hw->mac_type) {
1da177e4
LT
1140 case e1000_82542_rev2_0:
1141 case e1000_82542_rev2_1:
1142 case e1000_82543:
1143 break;
1144 case e1000_82544:
1dc32918 1145 e1000_read_eeprom(hw,
1da177e4
LT
1146 EEPROM_INIT_CONTROL2_REG, 1, &eeprom_data);
1147 eeprom_apme_mask = E1000_EEPROM_82544_APM;
1148 break;
1149 case e1000_82546:
1150 case e1000_82546_rev_3:
a48954c8 1151 if (er32(STATUS) & E1000_STATUS_FUNC_1) {
1dc32918 1152 e1000_read_eeprom(hw,
1da177e4
LT
1153 EEPROM_INIT_CONTROL3_PORT_B, 1, &eeprom_data);
1154 break;
1155 }
1156 /* Fall Through */
1157 default:
1dc32918 1158 e1000_read_eeprom(hw,
1da177e4
LT
1159 EEPROM_INIT_CONTROL3_PORT_A, 1, &eeprom_data);
1160 break;
1161 }
96838a40 1162 if (eeprom_data & eeprom_apme_mask)
120cd576
JB
1163 adapter->eeprom_wol |= E1000_WUFC_MAG;
1164
1165 /* now that we have the eeprom settings, apply the special cases
1166 * where the eeprom may be wrong or the board simply won't support
6cfbd97b
JK
1167 * wake on lan on a particular port
1168 */
120cd576
JB
1169 switch (pdev->device) {
1170 case E1000_DEV_ID_82546GB_PCIE:
1171 adapter->eeprom_wol = 0;
1172 break;
1173 case E1000_DEV_ID_82546EB_FIBER:
1174 case E1000_DEV_ID_82546GB_FIBER:
120cd576 1175 /* Wake events only supported on port A for dual fiber
6cfbd97b
JK
1176 * regardless of eeprom setting
1177 */
1dc32918 1178 if (er32(STATUS) & E1000_STATUS_FUNC_1)
120cd576
JB
1179 adapter->eeprom_wol = 0;
1180 break;
1181 case E1000_DEV_ID_82546GB_QUAD_COPPER_KSP3:
1182 /* if quad port adapter, disable WoL on all but port A */
1183 if (global_quad_port_a != 0)
1184 adapter->eeprom_wol = 0;
1185 else
3db1cd5c 1186 adapter->quad_port_a = true;
120cd576
JB
1187 /* Reset for multiple quad port adapters */
1188 if (++global_quad_port_a == 4)
1189 global_quad_port_a = 0;
1190 break;
1191 }
1192
1193 /* initialize the wol settings based on the eeprom settings */
1194 adapter->wol = adapter->eeprom_wol;
de126489 1195 device_set_wakeup_enable(&adapter->pdev->dev, adapter->wol);
1da177e4 1196
5377a416
DB
1197 /* Auto detect PHY address */
1198 if (hw->mac_type == e1000_ce4100) {
1199 for (i = 0; i < 32; i++) {
1200 hw->phy_addr = i;
1201 e1000_read_phy_reg(hw, PHY_ID2, &tmp);
4e01f3a8
JS
1202
1203 if (tmp != 0 && tmp != 0xFF)
5377a416
DB
1204 break;
1205 }
4e01f3a8
JS
1206
1207 if (i >= 32)
1208 goto err_eeprom;
5377a416
DB
1209 }
1210
675ad473
ET
1211 /* reset the hardware with the new settings */
1212 e1000_reset(adapter);
1213
1214 strcpy(netdev->name, "eth%d");
1215 err = register_netdev(netdev);
1216 if (err)
1217 goto err_register;
1218
52f5509f 1219 e1000_vlan_filter_on_off(adapter, false);
5622e404 1220
fb3d47d4 1221 /* print bus type/speed/width info */
feb8f478 1222 e_info(probe, "(PCI%s:%dMHz:%d-bit) %pM\n",
7837e58c
JP
1223 ((hw->bus_type == e1000_bus_type_pcix) ? "-X" : ""),
1224 ((hw->bus_speed == e1000_bus_speed_133) ? 133 :
1225 (hw->bus_speed == e1000_bus_speed_120) ? 120 :
1226 (hw->bus_speed == e1000_bus_speed_100) ? 100 :
1227 (hw->bus_speed == e1000_bus_speed_66) ? 66 : 33),
1228 ((hw->bus_width == e1000_bus_width_64) ? 64 : 32),
1229 netdev->dev_addr);
1314bbf3 1230
eb62efd2
JB
1231 /* carrier off reporting is important to ethtool even BEFORE open */
1232 netif_carrier_off(netdev);
1233
feb8f478 1234 e_info(probe, "Intel(R) PRO/1000 Network Connection\n");
1da177e4
LT
1235
1236 cards_found++;
1237 return 0;
1238
1239err_register:
6dd62ab0 1240err_eeprom:
1532ecea 1241 e1000_phy_hw_reset(hw);
6dd62ab0 1242
1dc32918
JP
1243 if (hw->flash_address)
1244 iounmap(hw->flash_address);
6dd62ab0
VA
1245 kfree(adapter->tx_ring);
1246 kfree(adapter->rx_ring);
e508be17 1247err_dma:
1da177e4 1248err_sw_init:
5377a416 1249err_mdio_ioremap:
13acde8f 1250 iounmap(hw->ce4100_gbe_mdio_base_virt);
1dc32918 1251 iounmap(hw->hw_addr);
1da177e4
LT
1252err_ioremap:
1253 free_netdev(netdev);
1254err_alloc_etherdev:
81250297 1255 pci_release_selected_regions(pdev, bars);
6dd62ab0 1256err_pci_reg:
6dd62ab0 1257 pci_disable_device(pdev);
1da177e4
LT
1258 return err;
1259}
1260
1261/**
1262 * e1000_remove - Device Removal Routine
1263 * @pdev: PCI device information struct
1264 *
1265 * e1000_remove is called by the PCI subsystem to alert the driver
b6fad9f9 1266 * that it should release a PCI device. That could be caused by a
1da177e4
LT
1267 * Hot-Plug event, or because the driver is going to be removed from
1268 * memory.
1269 **/
9f9a12f8 1270static void e1000_remove(struct pci_dev *pdev)
1da177e4
LT
1271{
1272 struct net_device *netdev = pci_get_drvdata(pdev);
60490fe0 1273 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 1274 struct e1000_hw *hw = &adapter->hw;
1da177e4 1275
a4010afe 1276 e1000_down_and_stop(adapter);
0fccd0e9 1277 e1000_release_manageability(adapter);
1da177e4 1278
bea3348e
SH
1279 unregister_netdev(netdev);
1280
1532ecea 1281 e1000_phy_hw_reset(hw);
1da177e4 1282
24025e4e
MC
1283 kfree(adapter->tx_ring);
1284 kfree(adapter->rx_ring);
24025e4e 1285
1c26750c 1286 if (hw->mac_type == e1000_ce4100)
13acde8f 1287 iounmap(hw->ce4100_gbe_mdio_base_virt);
1dc32918
JP
1288 iounmap(hw->hw_addr);
1289 if (hw->flash_address)
1290 iounmap(hw->flash_address);
81250297 1291 pci_release_selected_regions(pdev, adapter->bars);
1da177e4
LT
1292
1293 free_netdev(netdev);
1294
1295 pci_disable_device(pdev);
1296}
1297
1298/**
1299 * e1000_sw_init - Initialize general software structures (struct e1000_adapter)
1300 * @adapter: board private structure to initialize
1301 *
1302 * e1000_sw_init initializes the Adapter private data structure.
e508be17 1303 * e1000_init_hw_struct MUST be called before this function
1da177e4 1304 **/
9f9a12f8 1305static int e1000_sw_init(struct e1000_adapter *adapter)
1da177e4 1306{
eb0f8054 1307 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
1da177e4 1308
f56799ea
JK
1309 adapter->num_tx_queues = 1;
1310 adapter->num_rx_queues = 1;
581d708e
MC
1311
1312 if (e1000_alloc_queues(adapter)) {
feb8f478 1313 e_err(probe, "Unable to allocate memory for queues\n");
581d708e
MC
1314 return -ENOMEM;
1315 }
1316
47313054 1317 /* Explicitly disable IRQ since the NIC can be in any state. */
47313054
HX
1318 e1000_irq_disable(adapter);
1319
1da177e4 1320 spin_lock_init(&adapter->stats_lock);
1da177e4 1321
1314bbf3
AK
1322 set_bit(__E1000_DOWN, &adapter->flags);
1323
1da177e4
LT
1324 return 0;
1325}
1326
581d708e
MC
1327/**
1328 * e1000_alloc_queues - Allocate memory for all rings
1329 * @adapter: board private structure to initialize
1330 *
1331 * We allocate one ring per queue at run-time since we don't know the
3e1d7cd2 1332 * number of queues at compile-time.
581d708e 1333 **/
9f9a12f8 1334static int e1000_alloc_queues(struct e1000_adapter *adapter)
581d708e 1335{
1c7e5b12 1336 adapter->tx_ring = kcalloc(adapter->num_tx_queues,
a48954c8 1337 sizeof(struct e1000_tx_ring), GFP_KERNEL);
581d708e
MC
1338 if (!adapter->tx_ring)
1339 return -ENOMEM;
581d708e 1340
1c7e5b12 1341 adapter->rx_ring = kcalloc(adapter->num_rx_queues,
a48954c8 1342 sizeof(struct e1000_rx_ring), GFP_KERNEL);
581d708e
MC
1343 if (!adapter->rx_ring) {
1344 kfree(adapter->tx_ring);
1345 return -ENOMEM;
1346 }
581d708e 1347
581d708e
MC
1348 return E1000_SUCCESS;
1349}
1350
1da177e4
LT
1351/**
1352 * e1000_open - Called when a network interface is made active
1353 * @netdev: network interface device structure
1354 *
1355 * Returns 0 on success, negative value on failure
1356 *
1357 * The open entry point is called when a network interface is made
1358 * active by the system (IFF_UP). At this point all resources needed
1359 * for transmit and receive operations are allocated, the interrupt
a4010afe 1360 * handler is registered with the OS, the watchdog task is started,
1da177e4
LT
1361 * and the stack is notified that the interface is ready.
1362 **/
64798845 1363static int e1000_open(struct net_device *netdev)
1da177e4 1364{
60490fe0 1365 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 1366 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
1367 int err;
1368
2db10a08 1369 /* disallow open during test */
1314bbf3 1370 if (test_bit(__E1000_TESTING, &adapter->flags))
2db10a08
AK
1371 return -EBUSY;
1372
eb62efd2
JB
1373 netif_carrier_off(netdev);
1374
1da177e4 1375 /* allocate transmit descriptors */
e0aac5a2
AK
1376 err = e1000_setup_all_tx_resources(adapter);
1377 if (err)
1da177e4
LT
1378 goto err_setup_tx;
1379
1380 /* allocate receive descriptors */
e0aac5a2 1381 err = e1000_setup_all_rx_resources(adapter);
b5bf28cd 1382 if (err)
e0aac5a2 1383 goto err_setup_rx;
b5bf28cd 1384
79f05bf0
AK
1385 e1000_power_up_phy(adapter);
1386
2d7edb92 1387 adapter->mng_vlan_id = E1000_MNG_VLAN_NONE;
1dc32918 1388 if ((hw->mng_cookie.status &
2d7edb92
MC
1389 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT)) {
1390 e1000_update_mng_vlan(adapter);
1391 }
1da177e4 1392
e0aac5a2
AK
1393 /* before we allocate an interrupt, we must be ready to handle it.
1394 * Setting DEBUG_SHIRQ in the kernel makes it fire an interrupt
1395 * as soon as we call pci_request_irq, so we have to setup our
6cfbd97b
JK
1396 * clean_rx handler before we do so.
1397 */
e0aac5a2
AK
1398 e1000_configure(adapter);
1399
1400 err = e1000_request_irq(adapter);
1401 if (err)
1402 goto err_req_irq;
1403
1404 /* From here on the code is the same as e1000_up() */
1405 clear_bit(__E1000_DOWN, &adapter->flags);
1406
bea3348e 1407 napi_enable(&adapter->napi);
47313054 1408
e0aac5a2
AK
1409 e1000_irq_enable(adapter);
1410
076152d5
BH
1411 netif_start_queue(netdev);
1412
e0aac5a2 1413 /* fire a link status change interrupt to start the watchdog */
1dc32918 1414 ew32(ICS, E1000_ICS_LSC);
e0aac5a2 1415
1da177e4
LT
1416 return E1000_SUCCESS;
1417
b5bf28cd 1418err_req_irq:
e0aac5a2 1419 e1000_power_down_phy(adapter);
581d708e 1420 e1000_free_all_rx_resources(adapter);
1da177e4 1421err_setup_rx:
581d708e 1422 e1000_free_all_tx_resources(adapter);
1da177e4
LT
1423err_setup_tx:
1424 e1000_reset(adapter);
1425
1426 return err;
1427}
1428
1429/**
1430 * e1000_close - Disables a network interface
1431 * @netdev: network interface device structure
1432 *
1433 * Returns 0, this is not allowed to fail
1434 *
1435 * The close entry point is called when an interface is de-activated
1436 * by the OS. The hardware is still under the drivers control, but
1437 * needs to be disabled. A global MAC reset is issued to stop the
1438 * hardware, and all transmit and receive resources are freed.
1439 **/
64798845 1440static int e1000_close(struct net_device *netdev)
1da177e4 1441{
60490fe0 1442 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 1443 struct e1000_hw *hw = &adapter->hw;
6a7d64e3 1444 int count = E1000_CHECK_RESET_COUNT;
1445
1446 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
1447 usleep_range(10000, 20000);
1da177e4 1448
2db10a08 1449 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1da177e4 1450 e1000_down(adapter);
79f05bf0 1451 e1000_power_down_phy(adapter);
2db10a08 1452 e1000_free_irq(adapter);
1da177e4 1453
581d708e
MC
1454 e1000_free_all_tx_resources(adapter);
1455 e1000_free_all_rx_resources(adapter);
1da177e4 1456
4666560a 1457 /* kill manageability vlan ID if supported, but not if a vlan with
6cfbd97b
JK
1458 * the same ID is registered on the host OS (let 8021q kill it)
1459 */
1dc32918 1460 if ((hw->mng_cookie.status &
6cfbd97b
JK
1461 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
1462 !test_bit(adapter->mng_vlan_id, adapter->active_vlans)) {
80d5c368
PM
1463 e1000_vlan_rx_kill_vid(netdev, htons(ETH_P_8021Q),
1464 adapter->mng_vlan_id);
2d7edb92 1465 }
b55ccb35 1466
1da177e4
LT
1467 return 0;
1468}
1469
1470/**
1471 * e1000_check_64k_bound - check that memory doesn't cross 64kB boundary
1472 * @adapter: address of board private structure
2d7edb92
MC
1473 * @start: address of beginning of memory
1474 * @len: length of memory
1da177e4 1475 **/
64798845
JP
1476static bool e1000_check_64k_bound(struct e1000_adapter *adapter, void *start,
1477 unsigned long len)
1da177e4 1478{
1dc32918 1479 struct e1000_hw *hw = &adapter->hw;
e982f17c 1480 unsigned long begin = (unsigned long)start;
1da177e4
LT
1481 unsigned long end = begin + len;
1482
2648345f 1483 /* First rev 82545 and 82546 need to not allow any memory
6cfbd97b
JK
1484 * write location to cross 64k boundary due to errata 23
1485 */
1dc32918 1486 if (hw->mac_type == e1000_82545 ||
5377a416 1487 hw->mac_type == e1000_ce4100 ||
1dc32918 1488 hw->mac_type == e1000_82546) {
c3033b01 1489 return ((begin ^ (end - 1)) >> 16) != 0 ? false : true;
1da177e4
LT
1490 }
1491
c3033b01 1492 return true;
1da177e4
LT
1493}
1494
1495/**
1496 * e1000_setup_tx_resources - allocate Tx resources (Descriptors)
1497 * @adapter: board private structure
581d708e 1498 * @txdr: tx descriptor ring (for a specific queue) to setup
1da177e4
LT
1499 *
1500 * Return 0 on success, negative on failure
1501 **/
64798845
JP
1502static int e1000_setup_tx_resources(struct e1000_adapter *adapter,
1503 struct e1000_tx_ring *txdr)
1da177e4 1504{
1da177e4
LT
1505 struct pci_dev *pdev = adapter->pdev;
1506 int size;
1507
580f321d 1508 size = sizeof(struct e1000_tx_buffer) * txdr->count;
89bf67f1 1509 txdr->buffer_info = vzalloc(size);
14f8dc49 1510 if (!txdr->buffer_info)
1da177e4 1511 return -ENOMEM;
1da177e4
LT
1512
1513 /* round up to nearest 4K */
1514
1515 txdr->size = txdr->count * sizeof(struct e1000_tx_desc);
9099cfb9 1516 txdr->size = ALIGN(txdr->size, 4096);
1da177e4 1517
b16f53be
NN
1518 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size, &txdr->dma,
1519 GFP_KERNEL);
96838a40 1520 if (!txdr->desc) {
1da177e4 1521setup_tx_desc_die:
1da177e4
LT
1522 vfree(txdr->buffer_info);
1523 return -ENOMEM;
1524 }
1525
2648345f 1526 /* Fix for errata 23, can't cross 64kB boundary */
1da177e4
LT
1527 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1528 void *olddesc = txdr->desc;
1529 dma_addr_t olddma = txdr->dma;
feb8f478 1530 e_err(tx_err, "txdr align check failed: %u bytes at %p\n",
675ad473 1531 txdr->size, txdr->desc);
2648345f 1532 /* Try again, without freeing the previous */
b16f53be
NN
1533 txdr->desc = dma_alloc_coherent(&pdev->dev, txdr->size,
1534 &txdr->dma, GFP_KERNEL);
2648345f 1535 /* Failed allocation, critical failure */
96838a40 1536 if (!txdr->desc) {
b16f53be
NN
1537 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1538 olddma);
1da177e4
LT
1539 goto setup_tx_desc_die;
1540 }
1541
1542 if (!e1000_check_64k_bound(adapter, txdr->desc, txdr->size)) {
1543 /* give up */
b16f53be
NN
1544 dma_free_coherent(&pdev->dev, txdr->size, txdr->desc,
1545 txdr->dma);
1546 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1547 olddma);
feb8f478 1548 e_err(probe, "Unable to allocate aligned memory "
675ad473 1549 "for the transmit descriptor ring\n");
1da177e4
LT
1550 vfree(txdr->buffer_info);
1551 return -ENOMEM;
1552 } else {
2648345f 1553 /* Free old allocation, new allocation was successful */
b16f53be
NN
1554 dma_free_coherent(&pdev->dev, txdr->size, olddesc,
1555 olddma);
1da177e4
LT
1556 }
1557 }
1558 memset(txdr->desc, 0, txdr->size);
1559
1560 txdr->next_to_use = 0;
1561 txdr->next_to_clean = 0;
1562
1563 return 0;
1564}
1565
581d708e
MC
1566/**
1567 * e1000_setup_all_tx_resources - wrapper to allocate Tx resources
1568 * (Descriptors) for all queues
1569 * @adapter: board private structure
1570 *
581d708e
MC
1571 * Return 0 on success, negative on failure
1572 **/
64798845 1573int e1000_setup_all_tx_resources(struct e1000_adapter *adapter)
581d708e
MC
1574{
1575 int i, err = 0;
1576
f56799ea 1577 for (i = 0; i < adapter->num_tx_queues; i++) {
581d708e
MC
1578 err = e1000_setup_tx_resources(adapter, &adapter->tx_ring[i]);
1579 if (err) {
feb8f478 1580 e_err(probe, "Allocation for Tx Queue %u failed\n", i);
3fbbc72e
VA
1581 for (i-- ; i >= 0; i--)
1582 e1000_free_tx_resources(adapter,
1583 &adapter->tx_ring[i]);
581d708e
MC
1584 break;
1585 }
1586 }
1587
1588 return err;
1589}
1590
1da177e4
LT
1591/**
1592 * e1000_configure_tx - Configure 8254x Transmit Unit after Reset
1593 * @adapter: board private structure
1594 *
1595 * Configure the Tx unit of the MAC after a reset.
1596 **/
64798845 1597static void e1000_configure_tx(struct e1000_adapter *adapter)
1da177e4 1598{
406874a7 1599 u64 tdba;
581d708e 1600 struct e1000_hw *hw = &adapter->hw;
1532ecea 1601 u32 tdlen, tctl, tipg;
406874a7 1602 u32 ipgr1, ipgr2;
1da177e4
LT
1603
1604 /* Setup the HW Tx Head and Tail descriptor pointers */
1605
f56799ea 1606 switch (adapter->num_tx_queues) {
24025e4e
MC
1607 case 1:
1608 default:
581d708e
MC
1609 tdba = adapter->tx_ring[0].dma;
1610 tdlen = adapter->tx_ring[0].count *
1611 sizeof(struct e1000_tx_desc);
1dc32918
JP
1612 ew32(TDLEN, tdlen);
1613 ew32(TDBAH, (tdba >> 32));
1614 ew32(TDBAL, (tdba & 0x00000000ffffffffULL));
1615 ew32(TDT, 0);
1616 ew32(TDH, 0);
6cfbd97b
JK
1617 adapter->tx_ring[0].tdh = ((hw->mac_type >= e1000_82543) ?
1618 E1000_TDH : E1000_82542_TDH);
1619 adapter->tx_ring[0].tdt = ((hw->mac_type >= e1000_82543) ?
1620 E1000_TDT : E1000_82542_TDT);
24025e4e
MC
1621 break;
1622 }
1da177e4
LT
1623
1624 /* Set the default values for the Tx Inter Packet Gap timer */
1532ecea 1625 if ((hw->media_type == e1000_media_type_fiber ||
d89b6c67 1626 hw->media_type == e1000_media_type_internal_serdes))
0fadb059
JK
1627 tipg = DEFAULT_82543_TIPG_IPGT_FIBER;
1628 else
1629 tipg = DEFAULT_82543_TIPG_IPGT_COPPER;
1630
581d708e 1631 switch (hw->mac_type) {
1da177e4
LT
1632 case e1000_82542_rev2_0:
1633 case e1000_82542_rev2_1:
1634 tipg = DEFAULT_82542_TIPG_IPGT;
0fadb059
JK
1635 ipgr1 = DEFAULT_82542_TIPG_IPGR1;
1636 ipgr2 = DEFAULT_82542_TIPG_IPGR2;
1da177e4
LT
1637 break;
1638 default:
0fadb059
JK
1639 ipgr1 = DEFAULT_82543_TIPG_IPGR1;
1640 ipgr2 = DEFAULT_82543_TIPG_IPGR2;
1641 break;
1da177e4 1642 }
0fadb059
JK
1643 tipg |= ipgr1 << E1000_TIPG_IPGR1_SHIFT;
1644 tipg |= ipgr2 << E1000_TIPG_IPGR2_SHIFT;
1dc32918 1645 ew32(TIPG, tipg);
1da177e4
LT
1646
1647 /* Set the Tx Interrupt Delay register */
1648
1dc32918 1649 ew32(TIDV, adapter->tx_int_delay);
581d708e 1650 if (hw->mac_type >= e1000_82540)
1dc32918 1651 ew32(TADV, adapter->tx_abs_int_delay);
1da177e4
LT
1652
1653 /* Program the Transmit Control Register */
1654
1dc32918 1655 tctl = er32(TCTL);
1da177e4 1656 tctl &= ~E1000_TCTL_CT;
7e6c9861 1657 tctl |= E1000_TCTL_PSP | E1000_TCTL_RTLC |
1da177e4
LT
1658 (E1000_COLLISION_THRESHOLD << E1000_CT_SHIFT);
1659
581d708e 1660 e1000_config_collision_dist(hw);
1da177e4
LT
1661
1662 /* Setup Transmit Descriptor Settings for eop descriptor */
6a042dab
JB
1663 adapter->txd_cmd = E1000_TXD_CMD_EOP | E1000_TXD_CMD_IFCS;
1664
1665 /* only set IDE if we are delaying interrupts using the timers */
1666 if (adapter->tx_int_delay)
1667 adapter->txd_cmd |= E1000_TXD_CMD_IDE;
1da177e4 1668
581d708e 1669 if (hw->mac_type < e1000_82543)
1da177e4
LT
1670 adapter->txd_cmd |= E1000_TXD_CMD_RPS;
1671 else
1672 adapter->txd_cmd |= E1000_TXD_CMD_RS;
1673
1674 /* Cache if we're 82544 running in PCI-X because we'll
6cfbd97b
JK
1675 * need this to apply a workaround later in the send path.
1676 */
581d708e
MC
1677 if (hw->mac_type == e1000_82544 &&
1678 hw->bus_type == e1000_bus_type_pcix)
3db1cd5c 1679 adapter->pcix_82544 = true;
7e6c9861 1680
1dc32918 1681 ew32(TCTL, tctl);
7e6c9861 1682
1da177e4
LT
1683}
1684
1685/**
1686 * e1000_setup_rx_resources - allocate Rx resources (Descriptors)
1687 * @adapter: board private structure
581d708e 1688 * @rxdr: rx descriptor ring (for a specific queue) to setup
1da177e4
LT
1689 *
1690 * Returns 0 on success, negative on failure
1691 **/
64798845
JP
1692static int e1000_setup_rx_resources(struct e1000_adapter *adapter,
1693 struct e1000_rx_ring *rxdr)
1da177e4 1694{
1da177e4 1695 struct pci_dev *pdev = adapter->pdev;
2d7edb92 1696 int size, desc_len;
1da177e4 1697
93f0afe9 1698 size = sizeof(struct e1000_rx_buffer) * rxdr->count;
89bf67f1 1699 rxdr->buffer_info = vzalloc(size);
14f8dc49 1700 if (!rxdr->buffer_info)
1da177e4 1701 return -ENOMEM;
1da177e4 1702
1532ecea 1703 desc_len = sizeof(struct e1000_rx_desc);
2d7edb92 1704
1da177e4
LT
1705 /* Round up to nearest 4K */
1706
2d7edb92 1707 rxdr->size = rxdr->count * desc_len;
9099cfb9 1708 rxdr->size = ALIGN(rxdr->size, 4096);
1da177e4 1709
b16f53be
NN
1710 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size, &rxdr->dma,
1711 GFP_KERNEL);
581d708e 1712 if (!rxdr->desc) {
1da177e4 1713setup_rx_desc_die:
1da177e4
LT
1714 vfree(rxdr->buffer_info);
1715 return -ENOMEM;
1716 }
1717
2648345f 1718 /* Fix for errata 23, can't cross 64kB boundary */
1da177e4
LT
1719 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1720 void *olddesc = rxdr->desc;
1721 dma_addr_t olddma = rxdr->dma;
feb8f478 1722 e_err(rx_err, "rxdr align check failed: %u bytes at %p\n",
675ad473 1723 rxdr->size, rxdr->desc);
2648345f 1724 /* Try again, without freeing the previous */
b16f53be
NN
1725 rxdr->desc = dma_alloc_coherent(&pdev->dev, rxdr->size,
1726 &rxdr->dma, GFP_KERNEL);
2648345f 1727 /* Failed allocation, critical failure */
581d708e 1728 if (!rxdr->desc) {
b16f53be
NN
1729 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1730 olddma);
1da177e4
LT
1731 goto setup_rx_desc_die;
1732 }
1733
1734 if (!e1000_check_64k_bound(adapter, rxdr->desc, rxdr->size)) {
1735 /* give up */
b16f53be
NN
1736 dma_free_coherent(&pdev->dev, rxdr->size, rxdr->desc,
1737 rxdr->dma);
1738 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1739 olddma);
feb8f478
ET
1740 e_err(probe, "Unable to allocate aligned memory for "
1741 "the Rx descriptor ring\n");
581d708e 1742 goto setup_rx_desc_die;
1da177e4 1743 } else {
2648345f 1744 /* Free old allocation, new allocation was successful */
b16f53be
NN
1745 dma_free_coherent(&pdev->dev, rxdr->size, olddesc,
1746 olddma);
1da177e4
LT
1747 }
1748 }
1749 memset(rxdr->desc, 0, rxdr->size);
1750
1751 rxdr->next_to_clean = 0;
1752 rxdr->next_to_use = 0;
edbbb3ca 1753 rxdr->rx_skb_top = NULL;
1da177e4
LT
1754
1755 return 0;
1756}
1757
581d708e
MC
1758/**
1759 * e1000_setup_all_rx_resources - wrapper to allocate Rx resources
1760 * (Descriptors) for all queues
1761 * @adapter: board private structure
1762 *
581d708e
MC
1763 * Return 0 on success, negative on failure
1764 **/
64798845 1765int e1000_setup_all_rx_resources(struct e1000_adapter *adapter)
581d708e
MC
1766{
1767 int i, err = 0;
1768
f56799ea 1769 for (i = 0; i < adapter->num_rx_queues; i++) {
581d708e
MC
1770 err = e1000_setup_rx_resources(adapter, &adapter->rx_ring[i]);
1771 if (err) {
feb8f478 1772 e_err(probe, "Allocation for Rx Queue %u failed\n", i);
3fbbc72e
VA
1773 for (i-- ; i >= 0; i--)
1774 e1000_free_rx_resources(adapter,
1775 &adapter->rx_ring[i]);
581d708e
MC
1776 break;
1777 }
1778 }
1779
1780 return err;
1781}
1782
1da177e4 1783/**
2648345f 1784 * e1000_setup_rctl - configure the receive control registers
1da177e4
LT
1785 * @adapter: Board private structure
1786 **/
64798845 1787static void e1000_setup_rctl(struct e1000_adapter *adapter)
1da177e4 1788{
1dc32918 1789 struct e1000_hw *hw = &adapter->hw;
630b25cd 1790 u32 rctl;
1da177e4 1791
1dc32918 1792 rctl = er32(RCTL);
1da177e4
LT
1793
1794 rctl &= ~(3 << E1000_RCTL_MO_SHIFT);
1795
d5bc77a2
DN
1796 rctl |= E1000_RCTL_BAM | E1000_RCTL_LBM_NO |
1797 E1000_RCTL_RDMTS_HALF |
1dc32918 1798 (hw->mc_filter_type << E1000_RCTL_MO_SHIFT);
1da177e4 1799
1dc32918 1800 if (hw->tbi_compatibility_on == 1)
1da177e4
LT
1801 rctl |= E1000_RCTL_SBP;
1802 else
1803 rctl &= ~E1000_RCTL_SBP;
1804
2d7edb92
MC
1805 if (adapter->netdev->mtu <= ETH_DATA_LEN)
1806 rctl &= ~E1000_RCTL_LPE;
1807 else
1808 rctl |= E1000_RCTL_LPE;
1809
1da177e4 1810 /* Setup buffer sizes */
9e2feace
AK
1811 rctl &= ~E1000_RCTL_SZ_4096;
1812 rctl |= E1000_RCTL_BSEX;
1813 switch (adapter->rx_buffer_len) {
a48954c8
JW
1814 case E1000_RXBUFFER_2048:
1815 default:
1816 rctl |= E1000_RCTL_SZ_2048;
1817 rctl &= ~E1000_RCTL_BSEX;
1818 break;
1819 case E1000_RXBUFFER_4096:
1820 rctl |= E1000_RCTL_SZ_4096;
1821 break;
1822 case E1000_RXBUFFER_8192:
1823 rctl |= E1000_RCTL_SZ_8192;
1824 break;
1825 case E1000_RXBUFFER_16384:
1826 rctl |= E1000_RCTL_SZ_16384;
1827 break;
2d7edb92
MC
1828 }
1829
e825b731
BG
1830 /* This is useful for sniffing bad packets. */
1831 if (adapter->netdev->features & NETIF_F_RXALL) {
1832 /* UPE and MPE will be handled by normal PROMISC logic
6cfbd97b
JK
1833 * in e1000e_set_rx_mode
1834 */
e825b731
BG
1835 rctl |= (E1000_RCTL_SBP | /* Receive bad packets */
1836 E1000_RCTL_BAM | /* RX All Bcast Pkts */
1837 E1000_RCTL_PMCF); /* RX All MAC Ctrl Pkts */
1838
1839 rctl &= ~(E1000_RCTL_VFE | /* Disable VLAN filter */
1840 E1000_RCTL_DPF | /* Allow filtered pause */
1841 E1000_RCTL_CFIEN); /* Dis VLAN CFIEN Filter */
1842 /* Do not mess with E1000_CTRL_VME, it affects transmit as well,
1843 * and that breaks VLANs.
1844 */
1845 }
1846
1dc32918 1847 ew32(RCTL, rctl);
1da177e4
LT
1848}
1849
1850/**
1851 * e1000_configure_rx - Configure 8254x Receive Unit after Reset
1852 * @adapter: board private structure
1853 *
1854 * Configure the Rx unit of the MAC after a reset.
1855 **/
64798845 1856static void e1000_configure_rx(struct e1000_adapter *adapter)
1da177e4 1857{
406874a7 1858 u64 rdba;
581d708e 1859 struct e1000_hw *hw = &adapter->hw;
1532ecea 1860 u32 rdlen, rctl, rxcsum;
2d7edb92 1861
edbbb3ca
JB
1862 if (adapter->netdev->mtu > ETH_DATA_LEN) {
1863 rdlen = adapter->rx_ring[0].count *
a48954c8 1864 sizeof(struct e1000_rx_desc);
edbbb3ca
JB
1865 adapter->clean_rx = e1000_clean_jumbo_rx_irq;
1866 adapter->alloc_rx_buf = e1000_alloc_jumbo_rx_buffers;
1867 } else {
1868 rdlen = adapter->rx_ring[0].count *
a48954c8 1869 sizeof(struct e1000_rx_desc);
edbbb3ca
JB
1870 adapter->clean_rx = e1000_clean_rx_irq;
1871 adapter->alloc_rx_buf = e1000_alloc_rx_buffers;
1872 }
1da177e4
LT
1873
1874 /* disable receives while setting up the descriptors */
1dc32918
JP
1875 rctl = er32(RCTL);
1876 ew32(RCTL, rctl & ~E1000_RCTL_EN);
1da177e4
LT
1877
1878 /* set the Receive Delay Timer Register */
1dc32918 1879 ew32(RDTR, adapter->rx_int_delay);
1da177e4 1880
581d708e 1881 if (hw->mac_type >= e1000_82540) {
1dc32918 1882 ew32(RADV, adapter->rx_abs_int_delay);
835bb129 1883 if (adapter->itr_setting != 0)
1dc32918 1884 ew32(ITR, 1000000000 / (adapter->itr * 256));
1da177e4
LT
1885 }
1886
581d708e 1887 /* Setup the HW Rx Head and Tail Descriptor Pointers and
6cfbd97b
JK
1888 * the Base and Length of the Rx Descriptor Ring
1889 */
f56799ea 1890 switch (adapter->num_rx_queues) {
24025e4e
MC
1891 case 1:
1892 default:
581d708e 1893 rdba = adapter->rx_ring[0].dma;
1dc32918
JP
1894 ew32(RDLEN, rdlen);
1895 ew32(RDBAH, (rdba >> 32));
1896 ew32(RDBAL, (rdba & 0x00000000ffffffffULL));
1897 ew32(RDT, 0);
1898 ew32(RDH, 0);
6cfbd97b
JK
1899 adapter->rx_ring[0].rdh = ((hw->mac_type >= e1000_82543) ?
1900 E1000_RDH : E1000_82542_RDH);
1901 adapter->rx_ring[0].rdt = ((hw->mac_type >= e1000_82543) ?
1902 E1000_RDT : E1000_82542_RDT);
581d708e 1903 break;
24025e4e
MC
1904 }
1905
1da177e4 1906 /* Enable 82543 Receive Checksum Offload for TCP and UDP */
581d708e 1907 if (hw->mac_type >= e1000_82543) {
1dc32918 1908 rxcsum = er32(RXCSUM);
630b25cd 1909 if (adapter->rx_csum)
2d7edb92 1910 rxcsum |= E1000_RXCSUM_TUOFL;
630b25cd 1911 else
2d7edb92 1912 /* don't need to clear IPPCSE as it defaults to 0 */
630b25cd 1913 rxcsum &= ~E1000_RXCSUM_TUOFL;
1dc32918 1914 ew32(RXCSUM, rxcsum);
1da177e4
LT
1915 }
1916
1917 /* Enable Receives */
d5bc77a2 1918 ew32(RCTL, rctl | E1000_RCTL_EN);
1da177e4
LT
1919}
1920
1921/**
581d708e 1922 * e1000_free_tx_resources - Free Tx Resources per Queue
1da177e4 1923 * @adapter: board private structure
581d708e 1924 * @tx_ring: Tx descriptor ring for a specific queue
1da177e4
LT
1925 *
1926 * Free all transmit software resources
1927 **/
64798845
JP
1928static void e1000_free_tx_resources(struct e1000_adapter *adapter,
1929 struct e1000_tx_ring *tx_ring)
1da177e4
LT
1930{
1931 struct pci_dev *pdev = adapter->pdev;
1932
581d708e 1933 e1000_clean_tx_ring(adapter, tx_ring);
1da177e4 1934
581d708e
MC
1935 vfree(tx_ring->buffer_info);
1936 tx_ring->buffer_info = NULL;
1da177e4 1937
b16f53be
NN
1938 dma_free_coherent(&pdev->dev, tx_ring->size, tx_ring->desc,
1939 tx_ring->dma);
1da177e4 1940
581d708e
MC
1941 tx_ring->desc = NULL;
1942}
1943
1944/**
1945 * e1000_free_all_tx_resources - Free Tx Resources for All Queues
1946 * @adapter: board private structure
1947 *
1948 * Free all transmit software resources
1949 **/
64798845 1950void e1000_free_all_tx_resources(struct e1000_adapter *adapter)
581d708e
MC
1951{
1952 int i;
1953
f56799ea 1954 for (i = 0; i < adapter->num_tx_queues; i++)
581d708e 1955 e1000_free_tx_resources(adapter, &adapter->tx_ring[i]);
1da177e4
LT
1956}
1957
580f321d
FW
1958static void
1959e1000_unmap_and_free_tx_resource(struct e1000_adapter *adapter,
1960 struct e1000_tx_buffer *buffer_info)
1da177e4 1961{
602c0554
AD
1962 if (buffer_info->dma) {
1963 if (buffer_info->mapped_as_page)
b16f53be
NN
1964 dma_unmap_page(&adapter->pdev->dev, buffer_info->dma,
1965 buffer_info->length, DMA_TO_DEVICE);
602c0554 1966 else
b16f53be 1967 dma_unmap_single(&adapter->pdev->dev, buffer_info->dma,
602c0554 1968 buffer_info->length,
b16f53be 1969 DMA_TO_DEVICE);
602c0554
AD
1970 buffer_info->dma = 0;
1971 }
a9ebadd6 1972 if (buffer_info->skb) {
1da177e4 1973 dev_kfree_skb_any(buffer_info->skb);
a9ebadd6
JB
1974 buffer_info->skb = NULL;
1975 }
37e73df8 1976 buffer_info->time_stamp = 0;
a9ebadd6 1977 /* buffer_info must be completely set up in the transmit path */
1da177e4
LT
1978}
1979
1980/**
1981 * e1000_clean_tx_ring - Free Tx Buffers
1982 * @adapter: board private structure
581d708e 1983 * @tx_ring: ring to be cleaned
1da177e4 1984 **/
64798845
JP
1985static void e1000_clean_tx_ring(struct e1000_adapter *adapter,
1986 struct e1000_tx_ring *tx_ring)
1da177e4 1987{
1dc32918 1988 struct e1000_hw *hw = &adapter->hw;
580f321d 1989 struct e1000_tx_buffer *buffer_info;
1da177e4
LT
1990 unsigned long size;
1991 unsigned int i;
1992
1993 /* Free all the Tx ring sk_buffs */
1994
96838a40 1995 for (i = 0; i < tx_ring->count; i++) {
1da177e4
LT
1996 buffer_info = &tx_ring->buffer_info[i];
1997 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
1998 }
1999
2f66fd36 2000 netdev_reset_queue(adapter->netdev);
580f321d 2001 size = sizeof(struct e1000_tx_buffer) * tx_ring->count;
1da177e4
LT
2002 memset(tx_ring->buffer_info, 0, size);
2003
2004 /* Zero out the descriptor ring */
2005
2006 memset(tx_ring->desc, 0, tx_ring->size);
2007
2008 tx_ring->next_to_use = 0;
2009 tx_ring->next_to_clean = 0;
3db1cd5c 2010 tx_ring->last_tx_tso = false;
1da177e4 2011
1dc32918
JP
2012 writel(0, hw->hw_addr + tx_ring->tdh);
2013 writel(0, hw->hw_addr + tx_ring->tdt);
581d708e
MC
2014}
2015
2016/**
2017 * e1000_clean_all_tx_rings - Free Tx Buffers for all queues
2018 * @adapter: board private structure
2019 **/
64798845 2020static void e1000_clean_all_tx_rings(struct e1000_adapter *adapter)
581d708e
MC
2021{
2022 int i;
2023
f56799ea 2024 for (i = 0; i < adapter->num_tx_queues; i++)
581d708e 2025 e1000_clean_tx_ring(adapter, &adapter->tx_ring[i]);
1da177e4
LT
2026}
2027
2028/**
2029 * e1000_free_rx_resources - Free Rx Resources
2030 * @adapter: board private structure
581d708e 2031 * @rx_ring: ring to clean the resources from
1da177e4
LT
2032 *
2033 * Free all receive software resources
2034 **/
64798845
JP
2035static void e1000_free_rx_resources(struct e1000_adapter *adapter,
2036 struct e1000_rx_ring *rx_ring)
1da177e4 2037{
1da177e4
LT
2038 struct pci_dev *pdev = adapter->pdev;
2039
581d708e 2040 e1000_clean_rx_ring(adapter, rx_ring);
1da177e4
LT
2041
2042 vfree(rx_ring->buffer_info);
2043 rx_ring->buffer_info = NULL;
2044
b16f53be
NN
2045 dma_free_coherent(&pdev->dev, rx_ring->size, rx_ring->desc,
2046 rx_ring->dma);
1da177e4
LT
2047
2048 rx_ring->desc = NULL;
2049}
2050
2051/**
581d708e 2052 * e1000_free_all_rx_resources - Free Rx Resources for All Queues
1da177e4 2053 * @adapter: board private structure
581d708e
MC
2054 *
2055 * Free all receive software resources
2056 **/
64798845 2057void e1000_free_all_rx_resources(struct e1000_adapter *adapter)
581d708e
MC
2058{
2059 int i;
2060
f56799ea 2061 for (i = 0; i < adapter->num_rx_queues; i++)
581d708e
MC
2062 e1000_free_rx_resources(adapter, &adapter->rx_ring[i]);
2063}
2064
13809609
FW
2065#define E1000_HEADROOM (NET_SKB_PAD + NET_IP_ALIGN)
2066static unsigned int e1000_frag_len(const struct e1000_adapter *a)
2067{
2068 return SKB_DATA_ALIGN(a->rx_buffer_len + E1000_HEADROOM) +
2069 SKB_DATA_ALIGN(sizeof(struct skb_shared_info));
2070}
2071
2072static void *e1000_alloc_frag(const struct e1000_adapter *a)
2073{
2074 unsigned int len = e1000_frag_len(a);
2075 u8 *data = netdev_alloc_frag(len);
2076
2077 if (likely(data))
2078 data += E1000_HEADROOM;
2079 return data;
2080}
2081
581d708e
MC
2082/**
2083 * e1000_clean_rx_ring - Free Rx Buffers per Queue
2084 * @adapter: board private structure
2085 * @rx_ring: ring to free buffers from
1da177e4 2086 **/
64798845
JP
2087static void e1000_clean_rx_ring(struct e1000_adapter *adapter,
2088 struct e1000_rx_ring *rx_ring)
1da177e4 2089{
1dc32918 2090 struct e1000_hw *hw = &adapter->hw;
93f0afe9 2091 struct e1000_rx_buffer *buffer_info;
1da177e4
LT
2092 struct pci_dev *pdev = adapter->pdev;
2093 unsigned long size;
630b25cd 2094 unsigned int i;
1da177e4 2095
13809609 2096 /* Free all the Rx netfrags */
96838a40 2097 for (i = 0; i < rx_ring->count; i++) {
1da177e4 2098 buffer_info = &rx_ring->buffer_info[i];
13809609
FW
2099 if (adapter->clean_rx == e1000_clean_rx_irq) {
2100 if (buffer_info->dma)
2101 dma_unmap_single(&pdev->dev, buffer_info->dma,
2102 adapter->rx_buffer_len,
2103 DMA_FROM_DEVICE);
2104 if (buffer_info->rxbuf.data) {
6bf93ba8 2105 skb_free_frag(buffer_info->rxbuf.data);
13809609
FW
2106 buffer_info->rxbuf.data = NULL;
2107 }
2108 } else if (adapter->clean_rx == e1000_clean_jumbo_rx_irq) {
2109 if (buffer_info->dma)
2110 dma_unmap_page(&pdev->dev, buffer_info->dma,
2111 adapter->rx_buffer_len,
2112 DMA_FROM_DEVICE);
2113 if (buffer_info->rxbuf.page) {
2114 put_page(buffer_info->rxbuf.page);
2115 buffer_info->rxbuf.page = NULL;
2116 }
679be3ba 2117 }
1da177e4 2118
679be3ba 2119 buffer_info->dma = 0;
1da177e4
LT
2120 }
2121
edbbb3ca 2122 /* there also may be some cached data from a chained receive */
de591c78
FW
2123 napi_free_frags(&adapter->napi);
2124 rx_ring->rx_skb_top = NULL;
edbbb3ca 2125
93f0afe9 2126 size = sizeof(struct e1000_rx_buffer) * rx_ring->count;
1da177e4
LT
2127 memset(rx_ring->buffer_info, 0, size);
2128
2129 /* Zero out the descriptor ring */
1da177e4
LT
2130 memset(rx_ring->desc, 0, rx_ring->size);
2131
2132 rx_ring->next_to_clean = 0;
2133 rx_ring->next_to_use = 0;
2134
1dc32918
JP
2135 writel(0, hw->hw_addr + rx_ring->rdh);
2136 writel(0, hw->hw_addr + rx_ring->rdt);
581d708e
MC
2137}
2138
2139/**
2140 * e1000_clean_all_rx_rings - Free Rx Buffers for all queues
2141 * @adapter: board private structure
2142 **/
64798845 2143static void e1000_clean_all_rx_rings(struct e1000_adapter *adapter)
581d708e
MC
2144{
2145 int i;
2146
f56799ea 2147 for (i = 0; i < adapter->num_rx_queues; i++)
581d708e 2148 e1000_clean_rx_ring(adapter, &adapter->rx_ring[i]);
1da177e4
LT
2149}
2150
2151/* The 82542 2.0 (revision 2) needs to have the receive unit in reset
2152 * and memory write and invalidate disabled for certain operations
2153 */
64798845 2154static void e1000_enter_82542_rst(struct e1000_adapter *adapter)
1da177e4 2155{
1dc32918 2156 struct e1000_hw *hw = &adapter->hw;
1da177e4 2157 struct net_device *netdev = adapter->netdev;
406874a7 2158 u32 rctl;
1da177e4 2159
1dc32918 2160 e1000_pci_clear_mwi(hw);
1da177e4 2161
1dc32918 2162 rctl = er32(RCTL);
1da177e4 2163 rctl |= E1000_RCTL_RST;
1dc32918
JP
2164 ew32(RCTL, rctl);
2165 E1000_WRITE_FLUSH();
1da177e4
LT
2166 mdelay(5);
2167
96838a40 2168 if (netif_running(netdev))
581d708e 2169 e1000_clean_all_rx_rings(adapter);
1da177e4
LT
2170}
2171
64798845 2172static void e1000_leave_82542_rst(struct e1000_adapter *adapter)
1da177e4 2173{
1dc32918 2174 struct e1000_hw *hw = &adapter->hw;
1da177e4 2175 struct net_device *netdev = adapter->netdev;
406874a7 2176 u32 rctl;
1da177e4 2177
1dc32918 2178 rctl = er32(RCTL);
1da177e4 2179 rctl &= ~E1000_RCTL_RST;
1dc32918
JP
2180 ew32(RCTL, rctl);
2181 E1000_WRITE_FLUSH();
1da177e4
LT
2182 mdelay(5);
2183
1dc32918
JP
2184 if (hw->pci_cmd_word & PCI_COMMAND_INVALIDATE)
2185 e1000_pci_set_mwi(hw);
1da177e4 2186
96838a40 2187 if (netif_running(netdev)) {
72d64a43
JK
2188 /* No need to loop, because 82542 supports only 1 queue */
2189 struct e1000_rx_ring *ring = &adapter->rx_ring[0];
7c4d3367 2190 e1000_configure_rx(adapter);
72d64a43 2191 adapter->alloc_rx_buf(adapter, ring, E1000_DESC_UNUSED(ring));
1da177e4
LT
2192 }
2193}
2194
2195/**
2196 * e1000_set_mac - Change the Ethernet Address of the NIC
2197 * @netdev: network interface device structure
2198 * @p: pointer to an address structure
2199 *
2200 * Returns 0 on success, negative on failure
2201 **/
64798845 2202static int e1000_set_mac(struct net_device *netdev, void *p)
1da177e4 2203{
60490fe0 2204 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 2205 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
2206 struct sockaddr *addr = p;
2207
96838a40 2208 if (!is_valid_ether_addr(addr->sa_data))
1da177e4
LT
2209 return -EADDRNOTAVAIL;
2210
2211 /* 82542 2.0 needs to be in reset to write receive address registers */
2212
1dc32918 2213 if (hw->mac_type == e1000_82542_rev2_0)
1da177e4
LT
2214 e1000_enter_82542_rst(adapter);
2215
2216 memcpy(netdev->dev_addr, addr->sa_data, netdev->addr_len);
1dc32918 2217 memcpy(hw->mac_addr, addr->sa_data, netdev->addr_len);
1da177e4 2218
1dc32918 2219 e1000_rar_set(hw, hw->mac_addr, 0);
1da177e4 2220
1dc32918 2221 if (hw->mac_type == e1000_82542_rev2_0)
1da177e4
LT
2222 e1000_leave_82542_rst(adapter);
2223
2224 return 0;
2225}
2226
2227/**
db0ce50d 2228 * e1000_set_rx_mode - Secondary Unicast, Multicast and Promiscuous mode set
1da177e4
LT
2229 * @netdev: network interface device structure
2230 *
db0ce50d
PM
2231 * The set_rx_mode entry point is called whenever the unicast or multicast
2232 * address lists or the network interface flags are updated. This routine is
2233 * responsible for configuring the hardware for proper unicast, multicast,
1da177e4
LT
2234 * promiscuous mode, and all-multi behavior.
2235 **/
64798845 2236static void e1000_set_rx_mode(struct net_device *netdev)
1da177e4 2237{
60490fe0 2238 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4 2239 struct e1000_hw *hw = &adapter->hw;
ccffad25
JP
2240 struct netdev_hw_addr *ha;
2241 bool use_uc = false;
406874a7
JP
2242 u32 rctl;
2243 u32 hash_value;
868d5309 2244 int i, rar_entries = E1000_RAR_ENTRIES;
1532ecea 2245 int mta_reg_count = E1000_NUM_MTA_REGISTERS;
81c52285
JB
2246 u32 *mcarray = kcalloc(mta_reg_count, sizeof(u32), GFP_ATOMIC);
2247
14f8dc49 2248 if (!mcarray)
81c52285 2249 return;
cd94dd0b 2250
2648345f
MC
2251 /* Check for Promiscuous and All Multicast modes */
2252
1dc32918 2253 rctl = er32(RCTL);
1da177e4 2254
96838a40 2255 if (netdev->flags & IFF_PROMISC) {
1da177e4 2256 rctl |= (E1000_RCTL_UPE | E1000_RCTL_MPE);
746b9f02 2257 rctl &= ~E1000_RCTL_VFE;
1da177e4 2258 } else {
1532ecea 2259 if (netdev->flags & IFF_ALLMULTI)
746b9f02 2260 rctl |= E1000_RCTL_MPE;
1532ecea 2261 else
746b9f02 2262 rctl &= ~E1000_RCTL_MPE;
1532ecea 2263 /* Enable VLAN filter if there is a VLAN */
5622e404 2264 if (e1000_vlan_used(adapter))
1532ecea 2265 rctl |= E1000_RCTL_VFE;
db0ce50d
PM
2266 }
2267
32e7bfc4 2268 if (netdev_uc_count(netdev) > rar_entries - 1) {
db0ce50d
PM
2269 rctl |= E1000_RCTL_UPE;
2270 } else if (!(netdev->flags & IFF_PROMISC)) {
2271 rctl &= ~E1000_RCTL_UPE;
ccffad25 2272 use_uc = true;
1da177e4
LT
2273 }
2274
1dc32918 2275 ew32(RCTL, rctl);
1da177e4
LT
2276
2277 /* 82542 2.0 needs to be in reset to write receive address registers */
2278
96838a40 2279 if (hw->mac_type == e1000_82542_rev2_0)
1da177e4
LT
2280 e1000_enter_82542_rst(adapter);
2281
db0ce50d
PM
2282 /* load the first 14 addresses into the exact filters 1-14. Unicast
2283 * addresses take precedence to avoid disabling unicast filtering
2284 * when possible.
2285 *
b595076a 2286 * RAR 0 is used for the station MAC address
1da177e4
LT
2287 * if there are not 14 addresses, go ahead and clear the filters
2288 */
ccffad25
JP
2289 i = 1;
2290 if (use_uc)
32e7bfc4 2291 netdev_for_each_uc_addr(ha, netdev) {
ccffad25
JP
2292 if (i == rar_entries)
2293 break;
2294 e1000_rar_set(hw, ha->addr, i++);
2295 }
2296
22bedad3 2297 netdev_for_each_mc_addr(ha, netdev) {
7a81e9f3
JP
2298 if (i == rar_entries) {
2299 /* load any remaining addresses into the hash table */
2300 u32 hash_reg, hash_bit, mta;
22bedad3 2301 hash_value = e1000_hash_mc_addr(hw, ha->addr);
7a81e9f3
JP
2302 hash_reg = (hash_value >> 5) & 0x7F;
2303 hash_bit = hash_value & 0x1F;
2304 mta = (1 << hash_bit);
2305 mcarray[hash_reg] |= mta;
10886af5 2306 } else {
22bedad3 2307 e1000_rar_set(hw, ha->addr, i++);
1da177e4
LT
2308 }
2309 }
2310
7a81e9f3
JP
2311 for (; i < rar_entries; i++) {
2312 E1000_WRITE_REG_ARRAY(hw, RA, i << 1, 0);
2313 E1000_WRITE_FLUSH();
2314 E1000_WRITE_REG_ARRAY(hw, RA, (i << 1) + 1, 0);
2315 E1000_WRITE_FLUSH();
1da177e4
LT
2316 }
2317
81c52285 2318 /* write the hash table completely, write from bottom to avoid
6cfbd97b
JK
2319 * both stupid write combining chipsets, and flushing each write
2320 */
81c52285 2321 for (i = mta_reg_count - 1; i >= 0 ; i--) {
6cfbd97b 2322 /* If we are on an 82544 has an errata where writing odd
81c52285
JB
2323 * offsets overwrites the previous even offset, but writing
2324 * backwards over the range solves the issue by always
2325 * writing the odd offset first
2326 */
2327 E1000_WRITE_REG_ARRAY(hw, MTA, i, mcarray[i]);
2328 }
2329 E1000_WRITE_FLUSH();
2330
96838a40 2331 if (hw->mac_type == e1000_82542_rev2_0)
1da177e4 2332 e1000_leave_82542_rst(adapter);
81c52285
JB
2333
2334 kfree(mcarray);
1da177e4
LT
2335}
2336
a4010afe
JB
2337/**
2338 * e1000_update_phy_info_task - get phy info
2339 * @work: work struct contained inside adapter struct
2340 *
2341 * Need to wait a few seconds after link up to get diagnostic information from
2342 * the phy
2343 */
5cf42fcd
JB
2344static void e1000_update_phy_info_task(struct work_struct *work)
2345{
2346 struct e1000_adapter *adapter = container_of(work,
a4010afe
JB
2347 struct e1000_adapter,
2348 phy_info_task.work);
b2f963bf 2349
a4010afe 2350 e1000_phy_get_info(&adapter->hw, &adapter->phy_info);
1da177e4
LT
2351}
2352
5cf42fcd
JB
2353/**
2354 * e1000_82547_tx_fifo_stall_task - task to complete work
2355 * @work: work struct contained inside adapter struct
2356 **/
2357static void e1000_82547_tx_fifo_stall_task(struct work_struct *work)
2358{
2359 struct e1000_adapter *adapter = container_of(work,
a4010afe
JB
2360 struct e1000_adapter,
2361 fifo_stall_task.work);
1dc32918 2362 struct e1000_hw *hw = &adapter->hw;
1da177e4 2363 struct net_device *netdev = adapter->netdev;
406874a7 2364 u32 tctl;
1da177e4 2365
96838a40 2366 if (atomic_read(&adapter->tx_fifo_stall)) {
1dc32918
JP
2367 if ((er32(TDT) == er32(TDH)) &&
2368 (er32(TDFT) == er32(TDFH)) &&
2369 (er32(TDFTS) == er32(TDFHS))) {
2370 tctl = er32(TCTL);
2371 ew32(TCTL, tctl & ~E1000_TCTL_EN);
2372 ew32(TDFT, adapter->tx_head_addr);
2373 ew32(TDFH, adapter->tx_head_addr);
2374 ew32(TDFTS, adapter->tx_head_addr);
2375 ew32(TDFHS, adapter->tx_head_addr);
2376 ew32(TCTL, tctl);
2377 E1000_WRITE_FLUSH();
1da177e4
LT
2378
2379 adapter->tx_fifo_head = 0;
2380 atomic_set(&adapter->tx_fifo_stall, 0);
2381 netif_wake_queue(netdev);
baa34745 2382 } else if (!test_bit(__E1000_DOWN, &adapter->flags)) {
a4010afe 2383 schedule_delayed_work(&adapter->fifo_stall_task, 1);
1da177e4
LT
2384 }
2385 }
2386}
2387
b548192a 2388bool e1000_has_link(struct e1000_adapter *adapter)
be0f0719
JB
2389{
2390 struct e1000_hw *hw = &adapter->hw;
2391 bool link_active = false;
be0f0719 2392
6d9e5130
NS
2393 /* get_link_status is set on LSC (link status) interrupt or rx
2394 * sequence error interrupt (except on intel ce4100).
2395 * get_link_status will stay false until the
2396 * e1000_check_for_link establishes link for copper adapters
2397 * ONLY
be0f0719
JB
2398 */
2399 switch (hw->media_type) {
2400 case e1000_media_type_copper:
6d9e5130
NS
2401 if (hw->mac_type == e1000_ce4100)
2402 hw->get_link_status = 1;
be0f0719 2403 if (hw->get_link_status) {
120a5d0d 2404 e1000_check_for_link(hw);
be0f0719
JB
2405 link_active = !hw->get_link_status;
2406 } else {
2407 link_active = true;
2408 }
2409 break;
2410 case e1000_media_type_fiber:
120a5d0d 2411 e1000_check_for_link(hw);
be0f0719
JB
2412 link_active = !!(er32(STATUS) & E1000_STATUS_LU);
2413 break;
2414 case e1000_media_type_internal_serdes:
120a5d0d 2415 e1000_check_for_link(hw);
be0f0719
JB
2416 link_active = hw->serdes_has_link;
2417 break;
2418 default:
2419 break;
2420 }
2421
2422 return link_active;
2423}
2424
1da177e4 2425/**
a4010afe
JB
2426 * e1000_watchdog - work function
2427 * @work: work struct contained inside adapter struct
1da177e4 2428 **/
a4010afe 2429static void e1000_watchdog(struct work_struct *work)
1da177e4 2430{
a4010afe
JB
2431 struct e1000_adapter *adapter = container_of(work,
2432 struct e1000_adapter,
2433 watchdog_task.work);
1dc32918 2434 struct e1000_hw *hw = &adapter->hw;
1da177e4 2435 struct net_device *netdev = adapter->netdev;
545c67c0 2436 struct e1000_tx_ring *txdr = adapter->tx_ring;
406874a7 2437 u32 link, tctl;
90fb5135 2438
be0f0719
JB
2439 link = e1000_has_link(adapter);
2440 if ((netif_carrier_ok(netdev)) && link)
2441 goto link_up;
1da177e4 2442
96838a40
JB
2443 if (link) {
2444 if (!netif_carrier_ok(netdev)) {
406874a7 2445 u32 ctrl;
c3033b01 2446 bool txb2b = true;
be0f0719 2447 /* update snapshot of PHY registers on LSC */
1dc32918 2448 e1000_get_speed_and_duplex(hw,
6cfbd97b
JK
2449 &adapter->link_speed,
2450 &adapter->link_duplex);
1da177e4 2451
1dc32918 2452 ctrl = er32(CTRL);
675ad473
ET
2453 pr_info("%s NIC Link is Up %d Mbps %s, "
2454 "Flow Control: %s\n",
2455 netdev->name,
2456 adapter->link_speed,
2457 adapter->link_duplex == FULL_DUPLEX ?
2458 "Full Duplex" : "Half Duplex",
2459 ((ctrl & E1000_CTRL_TFCE) && (ctrl &
2460 E1000_CTRL_RFCE)) ? "RX/TX" : ((ctrl &
2461 E1000_CTRL_RFCE) ? "RX" : ((ctrl &
2462 E1000_CTRL_TFCE) ? "TX" : "None")));
1da177e4 2463
39ca5f03 2464 /* adjust timeout factor according to speed/duplex */
66a2b0a3 2465 adapter->tx_timeout_factor = 1;
7e6c9861
JK
2466 switch (adapter->link_speed) {
2467 case SPEED_10:
c3033b01 2468 txb2b = false;
be0f0719 2469 adapter->tx_timeout_factor = 16;
7e6c9861
JK
2470 break;
2471 case SPEED_100:
c3033b01 2472 txb2b = false;
7e6c9861
JK
2473 /* maybe add some timeout factor ? */
2474 break;
2475 }
2476
1532ecea 2477 /* enable transmits in the hardware */
1dc32918 2478 tctl = er32(TCTL);
7e6c9861 2479 tctl |= E1000_TCTL_EN;
1dc32918 2480 ew32(TCTL, tctl);
66a2b0a3 2481
1da177e4 2482 netif_carrier_on(netdev);
baa34745 2483 if (!test_bit(__E1000_DOWN, &adapter->flags))
a4010afe
JB
2484 schedule_delayed_work(&adapter->phy_info_task,
2485 2 * HZ);
1da177e4
LT
2486 adapter->smartspeed = 0;
2487 }
2488 } else {
96838a40 2489 if (netif_carrier_ok(netdev)) {
1da177e4
LT
2490 adapter->link_speed = 0;
2491 adapter->link_duplex = 0;
675ad473
ET
2492 pr_info("%s NIC Link is Down\n",
2493 netdev->name);
1da177e4 2494 netif_carrier_off(netdev);
baa34745
JB
2495
2496 if (!test_bit(__E1000_DOWN, &adapter->flags))
a4010afe
JB
2497 schedule_delayed_work(&adapter->phy_info_task,
2498 2 * HZ);
1da177e4
LT
2499 }
2500
2501 e1000_smartspeed(adapter);
2502 }
2503
be0f0719 2504link_up:
1da177e4
LT
2505 e1000_update_stats(adapter);
2506
1dc32918 2507 hw->tx_packet_delta = adapter->stats.tpt - adapter->tpt_old;
1da177e4 2508 adapter->tpt_old = adapter->stats.tpt;
1dc32918 2509 hw->collision_delta = adapter->stats.colc - adapter->colc_old;
1da177e4
LT
2510 adapter->colc_old = adapter->stats.colc;
2511
2512 adapter->gorcl = adapter->stats.gorcl - adapter->gorcl_old;
2513 adapter->gorcl_old = adapter->stats.gorcl;
2514 adapter->gotcl = adapter->stats.gotcl - adapter->gotcl_old;
2515 adapter->gotcl_old = adapter->stats.gotcl;
2516
1dc32918 2517 e1000_update_adaptive(hw);
1da177e4 2518
f56799ea 2519 if (!netif_carrier_ok(netdev)) {
581d708e 2520 if (E1000_DESC_UNUSED(txdr) + 1 < txdr->count) {
1da177e4
LT
2521 /* We've lost link, so the controller stops DMA,
2522 * but we've got queued Tx work that's never going
2523 * to get done, so reset controller to flush Tx.
6cfbd97b
JK
2524 * (Do the reset outside of interrupt context).
2525 */
87041639
JK
2526 adapter->tx_timeout_count++;
2527 schedule_work(&adapter->reset_task);
0ef4eedc 2528 /* exit immediately since reset is imminent */
b2f963bf 2529 return;
1da177e4
LT
2530 }
2531 }
2532
eab2abf5
JB
2533 /* Simple mode for Interrupt Throttle Rate (ITR) */
2534 if (hw->mac_type >= e1000_82540 && adapter->itr_setting == 4) {
6cfbd97b 2535 /* Symmetric Tx/Rx gets a reduced ITR=2000;
eab2abf5
JB
2536 * Total asymmetrical Tx or Rx gets ITR=8000;
2537 * everyone else is between 2000-8000.
2538 */
2539 u32 goc = (adapter->gotcl + adapter->gorcl) / 10000;
2540 u32 dif = (adapter->gotcl > adapter->gorcl ?
2541 adapter->gotcl - adapter->gorcl :
2542 adapter->gorcl - adapter->gotcl) / 10000;
2543 u32 itr = goc > 0 ? (dif * 6000 / goc + 2000) : 8000;
2544
2545 ew32(ITR, 1000000000 / (itr * 256));
2546 }
2547
1da177e4 2548 /* Cause software interrupt to ensure rx ring is cleaned */
1dc32918 2549 ew32(ICS, E1000_ICS_RXDMT0);
1da177e4 2550
2648345f 2551 /* Force detection of hung controller every watchdog period */
c3033b01 2552 adapter->detect_tx_hung = true;
1da177e4 2553
a4010afe 2554 /* Reschedule the task */
baa34745 2555 if (!test_bit(__E1000_DOWN, &adapter->flags))
a4010afe 2556 schedule_delayed_work(&adapter->watchdog_task, 2 * HZ);
1da177e4
LT
2557}
2558
835bb129
JB
2559enum latency_range {
2560 lowest_latency = 0,
2561 low_latency = 1,
2562 bulk_latency = 2,
2563 latency_invalid = 255
2564};
2565
2566/**
2567 * e1000_update_itr - update the dynamic ITR value based on statistics
8fce4731
JB
2568 * @adapter: pointer to adapter
2569 * @itr_setting: current adapter->itr
2570 * @packets: the number of packets during this measurement interval
2571 * @bytes: the number of bytes during this measurement interval
2572 *
835bb129
JB
2573 * Stores a new ITR value based on packets and byte
2574 * counts during the last interrupt. The advantage of per interrupt
2575 * computation is faster updates and more accurate ITR for the current
2576 * traffic pattern. Constants in this function were computed
2577 * based on theoretical maximum wire speed and thresholds were set based
2578 * on testing data as well as attempting to minimize response time
2579 * while increasing bulk throughput.
2580 * this functionality is controlled by the InterruptThrottleRate module
2581 * parameter (see e1000_param.c)
835bb129
JB
2582 **/
2583static unsigned int e1000_update_itr(struct e1000_adapter *adapter,
64798845 2584 u16 itr_setting, int packets, int bytes)
835bb129
JB
2585{
2586 unsigned int retval = itr_setting;
2587 struct e1000_hw *hw = &adapter->hw;
2588
2589 if (unlikely(hw->mac_type < e1000_82540))
2590 goto update_itr_done;
2591
2592 if (packets == 0)
2593 goto update_itr_done;
2594
835bb129
JB
2595 switch (itr_setting) {
2596 case lowest_latency:
2b65326e
JB
2597 /* jumbo frames get bulk treatment*/
2598 if (bytes/packets > 8000)
2599 retval = bulk_latency;
2600 else if ((packets < 5) && (bytes > 512))
835bb129
JB
2601 retval = low_latency;
2602 break;
2603 case low_latency: /* 50 usec aka 20000 ints/s */
2604 if (bytes > 10000) {
2b65326e
JB
2605 /* jumbo frames need bulk latency setting */
2606 if (bytes/packets > 8000)
2607 retval = bulk_latency;
2608 else if ((packets < 10) || ((bytes/packets) > 1200))
835bb129
JB
2609 retval = bulk_latency;
2610 else if ((packets > 35))
2611 retval = lowest_latency;
2b65326e
JB
2612 } else if (bytes/packets > 2000)
2613 retval = bulk_latency;
2614 else if (packets <= 2 && bytes < 512)
835bb129
JB
2615 retval = lowest_latency;
2616 break;
2617 case bulk_latency: /* 250 usec aka 4000 ints/s */
2618 if (bytes > 25000) {
2619 if (packets > 35)
2620 retval = low_latency;
2b65326e
JB
2621 } else if (bytes < 6000) {
2622 retval = low_latency;
835bb129
JB
2623 }
2624 break;
2625 }
2626
2627update_itr_done:
2628 return retval;
2629}
2630
2631static void e1000_set_itr(struct e1000_adapter *adapter)
2632{
2633 struct e1000_hw *hw = &adapter->hw;
406874a7
JP
2634 u16 current_itr;
2635 u32 new_itr = adapter->itr;
835bb129
JB
2636
2637 if (unlikely(hw->mac_type < e1000_82540))
2638 return;
2639
2640 /* for non-gigabit speeds, just fix the interrupt rate at 4000 */
2641 if (unlikely(adapter->link_speed != SPEED_1000)) {
2642 current_itr = 0;
2643 new_itr = 4000;
2644 goto set_itr_now;
2645 }
2646
6cfbd97b
JK
2647 adapter->tx_itr = e1000_update_itr(adapter, adapter->tx_itr,
2648 adapter->total_tx_packets,
2649 adapter->total_tx_bytes);
2b65326e
JB
2650 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2651 if (adapter->itr_setting == 3 && adapter->tx_itr == lowest_latency)
2652 adapter->tx_itr = low_latency;
2653
6cfbd97b
JK
2654 adapter->rx_itr = e1000_update_itr(adapter, adapter->rx_itr,
2655 adapter->total_rx_packets,
2656 adapter->total_rx_bytes);
2b65326e
JB
2657 /* conservative mode (itr 3) eliminates the lowest_latency setting */
2658 if (adapter->itr_setting == 3 && adapter->rx_itr == lowest_latency)
2659 adapter->rx_itr = low_latency;
835bb129
JB
2660
2661 current_itr = max(adapter->rx_itr, adapter->tx_itr);
2662
835bb129
JB
2663 switch (current_itr) {
2664 /* counts and packets in update_itr are dependent on these numbers */
2665 case lowest_latency:
2666 new_itr = 70000;
2667 break;
2668 case low_latency:
2669 new_itr = 20000; /* aka hwitr = ~200 */
2670 break;
2671 case bulk_latency:
2672 new_itr = 4000;
2673 break;
2674 default:
2675 break;
2676 }
2677
2678set_itr_now:
2679 if (new_itr != adapter->itr) {
2680 /* this attempts to bias the interrupt rate towards Bulk
2681 * by adding intermediate steps when interrupt rate is
6cfbd97b
JK
2682 * increasing
2683 */
835bb129 2684 new_itr = new_itr > adapter->itr ?
6cfbd97b
JK
2685 min(adapter->itr + (new_itr >> 2), new_itr) :
2686 new_itr;
835bb129 2687 adapter->itr = new_itr;
1dc32918 2688 ew32(ITR, 1000000000 / (new_itr * 256));
835bb129 2689 }
835bb129
JB
2690}
2691
1da177e4
LT
2692#define E1000_TX_FLAGS_CSUM 0x00000001
2693#define E1000_TX_FLAGS_VLAN 0x00000002
2694#define E1000_TX_FLAGS_TSO 0x00000004
2d7edb92 2695#define E1000_TX_FLAGS_IPV4 0x00000008
11a78dcf 2696#define E1000_TX_FLAGS_NO_FCS 0x00000010
1da177e4
LT
2697#define E1000_TX_FLAGS_VLAN_MASK 0xffff0000
2698#define E1000_TX_FLAGS_VLAN_SHIFT 16
2699
64798845 2700static int e1000_tso(struct e1000_adapter *adapter,
06f4d033
VY
2701 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2702 __be16 protocol)
1da177e4 2703{
1da177e4 2704 struct e1000_context_desc *context_desc;
580f321d 2705 struct e1000_tx_buffer *buffer_info;
1da177e4 2706 unsigned int i;
406874a7
JP
2707 u32 cmd_length = 0;
2708 u16 ipcse = 0, tucse, mss;
2709 u8 ipcss, ipcso, tucss, tucso, hdr_len;
1da177e4 2710
89114afd 2711 if (skb_is_gso(skb)) {
4a54b1e5
FR
2712 int err;
2713
2714 err = skb_cow_head(skb, 0);
2715 if (err < 0)
2716 return err;
1da177e4 2717
ab6a5bb6 2718 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
7967168c 2719 mss = skb_shinfo(skb)->gso_size;
06f4d033 2720 if (protocol == htons(ETH_P_IP)) {
eddc9ec5
ACM
2721 struct iphdr *iph = ip_hdr(skb);
2722 iph->tot_len = 0;
2723 iph->check = 0;
aa8223c7
ACM
2724 tcp_hdr(skb)->check = ~csum_tcpudp_magic(iph->saddr,
2725 iph->daddr, 0,
2726 IPPROTO_TCP,
2727 0);
2d7edb92 2728 cmd_length = E1000_TXD_CMD_IP;
ea2ae17d 2729 ipcse = skb_transport_offset(skb) - 1;
06f4d033 2730 } else if (skb_is_gso_v6(skb)) {
0660e03f 2731 ipv6_hdr(skb)->payload_len = 0;
aa8223c7 2732 tcp_hdr(skb)->check =
0660e03f
ACM
2733 ~csum_ipv6_magic(&ipv6_hdr(skb)->saddr,
2734 &ipv6_hdr(skb)->daddr,
2735 0, IPPROTO_TCP, 0);
2d7edb92 2736 ipcse = 0;
2d7edb92 2737 }
bbe735e4 2738 ipcss = skb_network_offset(skb);
eddc9ec5 2739 ipcso = (void *)&(ip_hdr(skb)->check) - (void *)skb->data;
ea2ae17d 2740 tucss = skb_transport_offset(skb);
aa8223c7 2741 tucso = (void *)&(tcp_hdr(skb)->check) - (void *)skb->data;
1da177e4
LT
2742 tucse = 0;
2743
2744 cmd_length |= (E1000_TXD_CMD_DEXT | E1000_TXD_CMD_TSE |
2d7edb92 2745 E1000_TXD_CMD_TCP | (skb->len - (hdr_len)));
1da177e4 2746
581d708e
MC
2747 i = tx_ring->next_to_use;
2748 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
545c67c0 2749 buffer_info = &tx_ring->buffer_info[i];
1da177e4
LT
2750
2751 context_desc->lower_setup.ip_fields.ipcss = ipcss;
2752 context_desc->lower_setup.ip_fields.ipcso = ipcso;
2753 context_desc->lower_setup.ip_fields.ipcse = cpu_to_le16(ipcse);
2754 context_desc->upper_setup.tcp_fields.tucss = tucss;
2755 context_desc->upper_setup.tcp_fields.tucso = tucso;
2756 context_desc->upper_setup.tcp_fields.tucse = cpu_to_le16(tucse);
2757 context_desc->tcp_seg_setup.fields.mss = cpu_to_le16(mss);
2758 context_desc->tcp_seg_setup.fields.hdr_len = hdr_len;
2759 context_desc->cmd_and_length = cpu_to_le32(cmd_length);
2760
545c67c0 2761 buffer_info->time_stamp = jiffies;
a9ebadd6 2762 buffer_info->next_to_watch = i;
545c67c0 2763
a48954c8
JW
2764 if (++i == tx_ring->count)
2765 i = 0;
2766
581d708e 2767 tx_ring->next_to_use = i;
1da177e4 2768
c3033b01 2769 return true;
1da177e4 2770 }
c3033b01 2771 return false;
1da177e4
LT
2772}
2773
64798845 2774static bool e1000_tx_csum(struct e1000_adapter *adapter,
06f4d033
VY
2775 struct e1000_tx_ring *tx_ring, struct sk_buff *skb,
2776 __be16 protocol)
1da177e4
LT
2777{
2778 struct e1000_context_desc *context_desc;
580f321d 2779 struct e1000_tx_buffer *buffer_info;
1da177e4 2780 unsigned int i;
406874a7 2781 u8 css;
3ed30676 2782 u32 cmd_len = E1000_TXD_CMD_DEXT;
1da177e4 2783
3ed30676
DG
2784 if (skb->ip_summed != CHECKSUM_PARTIAL)
2785 return false;
1da177e4 2786
06f4d033 2787 switch (protocol) {
09640e63 2788 case cpu_to_be16(ETH_P_IP):
3ed30676
DG
2789 if (ip_hdr(skb)->protocol == IPPROTO_TCP)
2790 cmd_len |= E1000_TXD_CMD_TCP;
2791 break;
09640e63 2792 case cpu_to_be16(ETH_P_IPV6):
3ed30676
DG
2793 /* XXX not handling all IPV6 headers */
2794 if (ipv6_hdr(skb)->nexthdr == IPPROTO_TCP)
2795 cmd_len |= E1000_TXD_CMD_TCP;
2796 break;
2797 default:
2798 if (unlikely(net_ratelimit()))
feb8f478
ET
2799 e_warn(drv, "checksum_partial proto=%x!\n",
2800 skb->protocol);
3ed30676
DG
2801 break;
2802 }
1da177e4 2803
0d0b1672 2804 css = skb_checksum_start_offset(skb);
1da177e4 2805
3ed30676
DG
2806 i = tx_ring->next_to_use;
2807 buffer_info = &tx_ring->buffer_info[i];
2808 context_desc = E1000_CONTEXT_DESC(*tx_ring, i);
545c67c0 2809
3ed30676
DG
2810 context_desc->lower_setup.ip_config = 0;
2811 context_desc->upper_setup.tcp_fields.tucss = css;
2812 context_desc->upper_setup.tcp_fields.tucso =
2813 css + skb->csum_offset;
2814 context_desc->upper_setup.tcp_fields.tucse = 0;
2815 context_desc->tcp_seg_setup.data = 0;
2816 context_desc->cmd_and_length = cpu_to_le32(cmd_len);
1da177e4 2817
3ed30676
DG
2818 buffer_info->time_stamp = jiffies;
2819 buffer_info->next_to_watch = i;
1da177e4 2820
a48954c8
JW
2821 if (unlikely(++i == tx_ring->count))
2822 i = 0;
2823
3ed30676
DG
2824 tx_ring->next_to_use = i;
2825
2826 return true;
1da177e4
LT
2827}
2828
2829#define E1000_MAX_TXD_PWR 12
2830#define E1000_MAX_DATA_PER_TXD (1<<E1000_MAX_TXD_PWR)
2831
64798845
JP
2832static int e1000_tx_map(struct e1000_adapter *adapter,
2833 struct e1000_tx_ring *tx_ring,
2834 struct sk_buff *skb, unsigned int first,
2835 unsigned int max_per_txd, unsigned int nr_frags,
2836 unsigned int mss)
1da177e4 2837{
1dc32918 2838 struct e1000_hw *hw = &adapter->hw;
602c0554 2839 struct pci_dev *pdev = adapter->pdev;
580f321d 2840 struct e1000_tx_buffer *buffer_info;
d20b606c 2841 unsigned int len = skb_headlen(skb);
602c0554 2842 unsigned int offset = 0, size, count = 0, i;
31c15a2f 2843 unsigned int f, bytecount, segs;
1da177e4
LT
2844
2845 i = tx_ring->next_to_use;
2846
96838a40 2847 while (len) {
37e73df8 2848 buffer_info = &tx_ring->buffer_info[i];
1da177e4 2849 size = min(len, max_per_txd);
fd803241
JK
2850 /* Workaround for Controller erratum --
2851 * descriptor for non-tso packet in a linear SKB that follows a
2852 * tso gets written back prematurely before the data is fully
6cfbd97b
JK
2853 * DMA'd to the controller
2854 */
fd803241 2855 if (!skb->data_len && tx_ring->last_tx_tso &&
89114afd 2856 !skb_is_gso(skb)) {
3db1cd5c 2857 tx_ring->last_tx_tso = false;
fd803241
JK
2858 size -= 4;
2859 }
2860
1da177e4 2861 /* Workaround for premature desc write-backs
6cfbd97b
JK
2862 * in TSO mode. Append 4-byte sentinel desc
2863 */
96838a40 2864 if (unlikely(mss && !nr_frags && size == len && size > 8))
1da177e4 2865 size -= 4;
97338bde
MC
2866 /* work-around for errata 10 and it applies
2867 * to all controllers in PCI-X mode
2868 * The fix is to make sure that the first descriptor of a
2869 * packet is smaller than 2048 - 16 - 16 (or 2016) bytes
2870 */
1dc32918 2871 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
a48954c8
JW
2872 (size > 2015) && count == 0))
2873 size = 2015;
96838a40 2874
1da177e4 2875 /* Workaround for potential 82544 hang in PCI-X. Avoid
6cfbd97b
JK
2876 * terminating buffers within evenly-aligned dwords.
2877 */
96838a40 2878 if (unlikely(adapter->pcix_82544 &&
1da177e4
LT
2879 !((unsigned long)(skb->data + offset + size - 1) & 4) &&
2880 size > 4))
2881 size -= 4;
2882
2883 buffer_info->length = size;
cdd7549e 2884 /* set time_stamp *before* dma to help avoid a possible race */
1da177e4 2885 buffer_info->time_stamp = jiffies;
602c0554 2886 buffer_info->mapped_as_page = false;
b16f53be
NN
2887 buffer_info->dma = dma_map_single(&pdev->dev,
2888 skb->data + offset,
6cfbd97b 2889 size, DMA_TO_DEVICE);
b16f53be 2890 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
602c0554 2891 goto dma_error;
a9ebadd6 2892 buffer_info->next_to_watch = i;
1da177e4
LT
2893
2894 len -= size;
2895 offset += size;
2896 count++;
37e73df8
AD
2897 if (len) {
2898 i++;
2899 if (unlikely(i == tx_ring->count))
2900 i = 0;
2901 }
1da177e4
LT
2902 }
2903
96838a40 2904 for (f = 0; f < nr_frags; f++) {
9e903e08 2905 const struct skb_frag_struct *frag;
1da177e4
LT
2906
2907 frag = &skb_shinfo(skb)->frags[f];
9e903e08 2908 len = skb_frag_size(frag);
877749bf 2909 offset = 0;
1da177e4 2910
96838a40 2911 while (len) {
877749bf 2912 unsigned long bufend;
37e73df8
AD
2913 i++;
2914 if (unlikely(i == tx_ring->count))
2915 i = 0;
2916
1da177e4
LT
2917 buffer_info = &tx_ring->buffer_info[i];
2918 size = min(len, max_per_txd);
1da177e4 2919 /* Workaround for premature desc write-backs
6cfbd97b
JK
2920 * in TSO mode. Append 4-byte sentinel desc
2921 */
2922 if (unlikely(mss && f == (nr_frags-1) &&
2923 size == len && size > 8))
1da177e4 2924 size -= 4;
1da177e4
LT
2925 /* Workaround for potential 82544 hang in PCI-X.
2926 * Avoid terminating buffers within evenly-aligned
6cfbd97b
JK
2927 * dwords.
2928 */
877749bf
IC
2929 bufend = (unsigned long)
2930 page_to_phys(skb_frag_page(frag));
2931 bufend += offset + size - 1;
96838a40 2932 if (unlikely(adapter->pcix_82544 &&
877749bf
IC
2933 !(bufend & 4) &&
2934 size > 4))
1da177e4
LT
2935 size -= 4;
2936
2937 buffer_info->length = size;
1da177e4 2938 buffer_info->time_stamp = jiffies;
602c0554 2939 buffer_info->mapped_as_page = true;
877749bf
IC
2940 buffer_info->dma = skb_frag_dma_map(&pdev->dev, frag,
2941 offset, size, DMA_TO_DEVICE);
b16f53be 2942 if (dma_mapping_error(&pdev->dev, buffer_info->dma))
602c0554 2943 goto dma_error;
a9ebadd6 2944 buffer_info->next_to_watch = i;
1da177e4
LT
2945
2946 len -= size;
2947 offset += size;
2948 count++;
1da177e4
LT
2949 }
2950 }
2951
31c15a2f
DN
2952 segs = skb_shinfo(skb)->gso_segs ?: 1;
2953 /* multiply data chunks by size of headers */
2954 bytecount = ((segs - 1) * skb_headlen(skb)) + skb->len;
2955
1da177e4 2956 tx_ring->buffer_info[i].skb = skb;
31c15a2f
DN
2957 tx_ring->buffer_info[i].segs = segs;
2958 tx_ring->buffer_info[i].bytecount = bytecount;
1da177e4
LT
2959 tx_ring->buffer_info[first].next_to_watch = i;
2960
2961 return count;
602c0554
AD
2962
2963dma_error:
2964 dev_err(&pdev->dev, "TX DMA map failed\n");
2965 buffer_info->dma = 0;
c1fa347f 2966 if (count)
602c0554 2967 count--;
c1fa347f
RK
2968
2969 while (count--) {
a48954c8 2970 if (i == 0)
602c0554 2971 i += tx_ring->count;
c1fa347f 2972 i--;
602c0554
AD
2973 buffer_info = &tx_ring->buffer_info[i];
2974 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
2975 }
2976
2977 return 0;
1da177e4
LT
2978}
2979
64798845
JP
2980static void e1000_tx_queue(struct e1000_adapter *adapter,
2981 struct e1000_tx_ring *tx_ring, int tx_flags,
2982 int count)
1da177e4 2983{
1da177e4 2984 struct e1000_tx_desc *tx_desc = NULL;
580f321d 2985 struct e1000_tx_buffer *buffer_info;
406874a7 2986 u32 txd_upper = 0, txd_lower = E1000_TXD_CMD_IFCS;
1da177e4
LT
2987 unsigned int i;
2988
96838a40 2989 if (likely(tx_flags & E1000_TX_FLAGS_TSO)) {
1da177e4 2990 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D |
6cfbd97b 2991 E1000_TXD_CMD_TSE;
2d7edb92
MC
2992 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
2993
96838a40 2994 if (likely(tx_flags & E1000_TX_FLAGS_IPV4))
2d7edb92 2995 txd_upper |= E1000_TXD_POPTS_IXSM << 8;
1da177e4
LT
2996 }
2997
96838a40 2998 if (likely(tx_flags & E1000_TX_FLAGS_CSUM)) {
1da177e4
LT
2999 txd_lower |= E1000_TXD_CMD_DEXT | E1000_TXD_DTYP_D;
3000 txd_upper |= E1000_TXD_POPTS_TXSM << 8;
3001 }
3002
96838a40 3003 if (unlikely(tx_flags & E1000_TX_FLAGS_VLAN)) {
1da177e4
LT
3004 txd_lower |= E1000_TXD_CMD_VLE;
3005 txd_upper |= (tx_flags & E1000_TX_FLAGS_VLAN_MASK);
3006 }
3007
11a78dcf
BG
3008 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3009 txd_lower &= ~(E1000_TXD_CMD_IFCS);
3010
1da177e4
LT
3011 i = tx_ring->next_to_use;
3012
96838a40 3013 while (count--) {
1da177e4
LT
3014 buffer_info = &tx_ring->buffer_info[i];
3015 tx_desc = E1000_TX_DESC(*tx_ring, i);
3016 tx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
3017 tx_desc->lower.data =
3018 cpu_to_le32(txd_lower | buffer_info->length);
3019 tx_desc->upper.data = cpu_to_le32(txd_upper);
a48954c8
JW
3020 if (unlikely(++i == tx_ring->count))
3021 i = 0;
1da177e4
LT
3022 }
3023
3024 tx_desc->lower.data |= cpu_to_le32(adapter->txd_cmd);
3025
11a78dcf
BG
3026 /* txd_cmd re-enables FCS, so we'll re-disable it here as desired. */
3027 if (unlikely(tx_flags & E1000_TX_FLAGS_NO_FCS))
3028 tx_desc->lower.data &= ~(cpu_to_le32(E1000_TXD_CMD_IFCS));
3029
1da177e4
LT
3030 /* Force memory writes to complete before letting h/w
3031 * know there are new descriptors to fetch. (Only
3032 * applicable for weak-ordered memory model archs,
6cfbd97b
JK
3033 * such as IA-64).
3034 */
1da177e4
LT
3035 wmb();
3036
3037 tx_ring->next_to_use = i;
1da177e4
LT
3038}
3039
1aa8b471 3040/* 82547 workaround to avoid controller hang in half-duplex environment.
1da177e4
LT
3041 * The workaround is to avoid queuing a large packet that would span
3042 * the internal Tx FIFO ring boundary by notifying the stack to resend
3043 * the packet at a later time. This gives the Tx FIFO an opportunity to
3044 * flush all packets. When that occurs, we reset the Tx FIFO pointers
3045 * to the beginning of the Tx FIFO.
1aa8b471 3046 */
1da177e4
LT
3047
3048#define E1000_FIFO_HDR 0x10
3049#define E1000_82547_PAD_LEN 0x3E0
3050
64798845
JP
3051static int e1000_82547_fifo_workaround(struct e1000_adapter *adapter,
3052 struct sk_buff *skb)
1da177e4 3053{
406874a7
JP
3054 u32 fifo_space = adapter->tx_fifo_size - adapter->tx_fifo_head;
3055 u32 skb_fifo_len = skb->len + E1000_FIFO_HDR;
1da177e4 3056
9099cfb9 3057 skb_fifo_len = ALIGN(skb_fifo_len, E1000_FIFO_HDR);
1da177e4 3058
96838a40 3059 if (adapter->link_duplex != HALF_DUPLEX)
1da177e4
LT
3060 goto no_fifo_stall_required;
3061
96838a40 3062 if (atomic_read(&adapter->tx_fifo_stall))
1da177e4
LT
3063 return 1;
3064
96838a40 3065 if (skb_fifo_len >= (E1000_82547_PAD_LEN + fifo_space)) {
1da177e4
LT
3066 atomic_set(&adapter->tx_fifo_stall, 1);
3067 return 1;
3068 }
3069
3070no_fifo_stall_required:
3071 adapter->tx_fifo_head += skb_fifo_len;
96838a40 3072 if (adapter->tx_fifo_head >= adapter->tx_fifo_size)
1da177e4
LT
3073 adapter->tx_fifo_head -= adapter->tx_fifo_size;
3074 return 0;
3075}
3076
65c7973f
JB
3077static int __e1000_maybe_stop_tx(struct net_device *netdev, int size)
3078{
3079 struct e1000_adapter *adapter = netdev_priv(netdev);
3080 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3081
3082 netif_stop_queue(netdev);
3083 /* Herbert's original patch had:
3084 * smp_mb__after_netif_stop_queue();
6cfbd97b
JK
3085 * but since that doesn't exist yet, just open code it.
3086 */
65c7973f
JB
3087 smp_mb();
3088
3089 /* We need to check again in a case another CPU has just
6cfbd97b
JK
3090 * made room available.
3091 */
65c7973f
JB
3092 if (likely(E1000_DESC_UNUSED(tx_ring) < size))
3093 return -EBUSY;
3094
3095 /* A reprieve! */
3096 netif_start_queue(netdev);
fcfb1224 3097 ++adapter->restart_queue;
65c7973f
JB
3098 return 0;
3099}
3100
3101static int e1000_maybe_stop_tx(struct net_device *netdev,
6cfbd97b 3102 struct e1000_tx_ring *tx_ring, int size)
65c7973f
JB
3103{
3104 if (likely(E1000_DESC_UNUSED(tx_ring) >= size))
3105 return 0;
3106 return __e1000_maybe_stop_tx(netdev, size);
3107}
3108
847a1d67 3109#define TXD_USE_COUNT(S, X) (((S) + ((1 << (X)) - 1)) >> (X))
3b29a56d
SH
3110static netdev_tx_t e1000_xmit_frame(struct sk_buff *skb,
3111 struct net_device *netdev)
1da177e4 3112{
60490fe0 3113 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 3114 struct e1000_hw *hw = &adapter->hw;
581d708e 3115 struct e1000_tx_ring *tx_ring;
1da177e4
LT
3116 unsigned int first, max_per_txd = E1000_MAX_DATA_PER_TXD;
3117 unsigned int max_txd_pwr = E1000_MAX_TXD_PWR;
3118 unsigned int tx_flags = 0;
e743d313 3119 unsigned int len = skb_headlen(skb);
6d1e3aa7
KK
3120 unsigned int nr_frags;
3121 unsigned int mss;
1da177e4 3122 int count = 0;
76c224bc 3123 int tso;
1da177e4 3124 unsigned int f;
06f4d033 3125 __be16 protocol = vlan_get_protocol(skb);
1da177e4 3126
6cfbd97b 3127 /* This goes back to the question of how to logically map a Tx queue
65c7973f 3128 * to a flow. Right now, performance is impacted slightly negatively
6cfbd97b
JK
3129 * if using multiple Tx queues. If the stack breaks away from a
3130 * single qdisc implementation, we can look at this again.
3131 */
581d708e 3132 tx_ring = adapter->tx_ring;
24025e4e 3133
59d86c76
TD
3134 /* On PCI/PCI-X HW, if packet size is less than ETH_ZLEN,
3135 * packets may get corrupted during padding by HW.
3136 * To WA this issue, pad all small packets manually.
3137 */
a94d9e22
AD
3138 if (eth_skb_pad(skb))
3139 return NETDEV_TX_OK;
59d86c76 3140
7967168c 3141 mss = skb_shinfo(skb)->gso_size;
76c224bc 3142 /* The controller does a simple calculation to
1da177e4
LT
3143 * make sure there is enough room in the FIFO before
3144 * initiating the DMA for each buffer. The calc is:
3145 * 4 = ceil(buffer len/mss). To make sure we don't
3146 * overrun the FIFO, adjust the max buffer len if mss
6cfbd97b
JK
3147 * drops.
3148 */
96838a40 3149 if (mss) {
406874a7 3150 u8 hdr_len;
1da177e4
LT
3151 max_per_txd = min(mss << 2, max_per_txd);
3152 max_txd_pwr = fls(max_per_txd) - 1;
9a3056da 3153
ab6a5bb6 3154 hdr_len = skb_transport_offset(skb) + tcp_hdrlen(skb);
6d1e3aa7 3155 if (skb->data_len && hdr_len == len) {
1dc32918 3156 switch (hw->mac_type) {
9f687888 3157 unsigned int pull_size;
683a2aa3
HX
3158 case e1000_82544:
3159 /* Make sure we have room to chop off 4 bytes,
3160 * and that the end alignment will work out to
3161 * this hardware's requirements
3162 * NOTE: this is a TSO only workaround
3163 * if end byte alignment not correct move us
6cfbd97b
JK
3164 * into the next dword
3165 */
3166 if ((unsigned long)(skb_tail_pointer(skb) - 1)
3167 & 4)
683a2aa3
HX
3168 break;
3169 /* fall through */
9f687888
JK
3170 pull_size = min((unsigned int)4, skb->data_len);
3171 if (!__pskb_pull_tail(skb, pull_size)) {
feb8f478
ET
3172 e_err(drv, "__pskb_pull_tail "
3173 "failed.\n");
9f687888 3174 dev_kfree_skb_any(skb);
749dfc70 3175 return NETDEV_TX_OK;
9f687888 3176 }
e743d313 3177 len = skb_headlen(skb);
9f687888
JK
3178 break;
3179 default:
3180 /* do nothing */
3181 break;
d74bbd3b 3182 }
9a3056da 3183 }
1da177e4
LT
3184 }
3185
9a3056da 3186 /* reserve a descriptor for the offload context */
84fa7933 3187 if ((mss) || (skb->ip_summed == CHECKSUM_PARTIAL))
1da177e4 3188 count++;
2648345f 3189 count++;
fd803241 3190
fd803241 3191 /* Controller Erratum workaround */
89114afd 3192 if (!skb->data_len && tx_ring->last_tx_tso && !skb_is_gso(skb))
fd803241 3193 count++;
fd803241 3194
1da177e4
LT
3195 count += TXD_USE_COUNT(len, max_txd_pwr);
3196
96838a40 3197 if (adapter->pcix_82544)
1da177e4
LT
3198 count++;
3199
96838a40 3200 /* work-around for errata 10 and it applies to all controllers
97338bde
MC
3201 * in PCI-X mode, so add one more descriptor to the count
3202 */
1dc32918 3203 if (unlikely((hw->bus_type == e1000_bus_type_pcix) &&
97338bde
MC
3204 (len > 2015)))
3205 count++;
3206
1da177e4 3207 nr_frags = skb_shinfo(skb)->nr_frags;
96838a40 3208 for (f = 0; f < nr_frags; f++)
9e903e08 3209 count += TXD_USE_COUNT(skb_frag_size(&skb_shinfo(skb)->frags[f]),
1da177e4 3210 max_txd_pwr);
96838a40 3211 if (adapter->pcix_82544)
1da177e4
LT
3212 count += nr_frags;
3213
1da177e4 3214 /* need: count + 2 desc gap to keep tail from touching
6cfbd97b
JK
3215 * head, otherwise try next time
3216 */
8017943e 3217 if (unlikely(e1000_maybe_stop_tx(netdev, tx_ring, count + 2)))
1da177e4 3218 return NETDEV_TX_BUSY;
1da177e4 3219
a4010afe
JB
3220 if (unlikely((hw->mac_type == e1000_82547) &&
3221 (e1000_82547_fifo_workaround(adapter, skb)))) {
3222 netif_stop_queue(netdev);
3223 if (!test_bit(__E1000_DOWN, &adapter->flags))
3224 schedule_delayed_work(&adapter->fifo_stall_task, 1);
3225 return NETDEV_TX_BUSY;
1da177e4
LT
3226 }
3227
df8a39de 3228 if (skb_vlan_tag_present(skb)) {
1da177e4 3229 tx_flags |= E1000_TX_FLAGS_VLAN;
df8a39de
JP
3230 tx_flags |= (skb_vlan_tag_get(skb) <<
3231 E1000_TX_FLAGS_VLAN_SHIFT);
1da177e4
LT
3232 }
3233
581d708e 3234 first = tx_ring->next_to_use;
96838a40 3235
06f4d033 3236 tso = e1000_tso(adapter, tx_ring, skb, protocol);
1da177e4
LT
3237 if (tso < 0) {
3238 dev_kfree_skb_any(skb);
3239 return NETDEV_TX_OK;
3240 }
3241
fd803241 3242 if (likely(tso)) {
8fce4731 3243 if (likely(hw->mac_type != e1000_82544))
3db1cd5c 3244 tx_ring->last_tx_tso = true;
1da177e4 3245 tx_flags |= E1000_TX_FLAGS_TSO;
06f4d033 3246 } else if (likely(e1000_tx_csum(adapter, tx_ring, skb, protocol)))
1da177e4
LT
3247 tx_flags |= E1000_TX_FLAGS_CSUM;
3248
06f4d033 3249 if (protocol == htons(ETH_P_IP))
2d7edb92
MC
3250 tx_flags |= E1000_TX_FLAGS_IPV4;
3251
11a78dcf
BG
3252 if (unlikely(skb->no_fcs))
3253 tx_flags |= E1000_TX_FLAGS_NO_FCS;
3254
37e73df8 3255 count = e1000_tx_map(adapter, tx_ring, skb, first, max_per_txd,
6cfbd97b 3256 nr_frags, mss);
1da177e4 3257
37e73df8 3258 if (count) {
a4605fef
AD
3259 /* The descriptors needed is higher than other Intel drivers
3260 * due to a number of workarounds. The breakdown is below:
3261 * Data descriptors: MAX_SKB_FRAGS + 1
3262 * Context Descriptor: 1
3263 * Keep head from touching tail: 2
3264 * Workarounds: 3
3265 */
3266 int desc_needed = MAX_SKB_FRAGS + 7;
3267
2f66fd36 3268 netdev_sent_queue(netdev, skb->len);
eab467f5
WB
3269 skb_tx_timestamp(skb);
3270
37e73df8 3271 e1000_tx_queue(adapter, tx_ring, tx_flags, count);
a4605fef
AD
3272
3273 /* 82544 potentially requires twice as many data descriptors
3274 * in order to guarantee buffers don't end on evenly-aligned
3275 * dwords
3276 */
3277 if (adapter->pcix_82544)
3278 desc_needed += MAX_SKB_FRAGS + 1;
3279
37e73df8 3280 /* Make sure there is space in the ring for the next send. */
a4605fef 3281 e1000_maybe_stop_tx(netdev, tx_ring, desc_needed);
1da177e4 3282
8a4d0b93
FW
3283 if (!skb->xmit_more ||
3284 netif_xmit_stopped(netdev_get_tx_queue(netdev, 0))) {
3285 writel(tx_ring->next_to_use, hw->hw_addr + tx_ring->tdt);
3286 /* we need this if more than one processor can write to
3287 * our tail at a time, it synchronizes IO on IA64/Altix
3288 * systems
3289 */
3290 mmiowb();
3291 }
37e73df8
AD
3292 } else {
3293 dev_kfree_skb_any(skb);
3294 tx_ring->buffer_info[first].time_stamp = 0;
3295 tx_ring->next_to_use = first;
3296 }
1da177e4 3297
1da177e4
LT
3298 return NETDEV_TX_OK;
3299}
3300
b04e36ba
TD
3301#define NUM_REGS 38 /* 1 based count */
3302static void e1000_regdump(struct e1000_adapter *adapter)
3303{
3304 struct e1000_hw *hw = &adapter->hw;
3305 u32 regs[NUM_REGS];
3306 u32 *regs_buff = regs;
3307 int i = 0;
3308
e29b5d8f
TD
3309 static const char * const reg_name[] = {
3310 "CTRL", "STATUS",
3311 "RCTL", "RDLEN", "RDH", "RDT", "RDTR",
3312 "TCTL", "TDBAL", "TDBAH", "TDLEN", "TDH", "TDT",
3313 "TIDV", "TXDCTL", "TADV", "TARC0",
3314 "TDBAL1", "TDBAH1", "TDLEN1", "TDH1", "TDT1",
3315 "TXDCTL1", "TARC1",
3316 "CTRL_EXT", "ERT", "RDBAL", "RDBAH",
3317 "TDFH", "TDFT", "TDFHS", "TDFTS", "TDFPC",
3318 "RDFH", "RDFT", "RDFHS", "RDFTS", "RDFPC"
b04e36ba
TD
3319 };
3320
3321 regs_buff[0] = er32(CTRL);
3322 regs_buff[1] = er32(STATUS);
3323
3324 regs_buff[2] = er32(RCTL);
3325 regs_buff[3] = er32(RDLEN);
3326 regs_buff[4] = er32(RDH);
3327 regs_buff[5] = er32(RDT);
3328 regs_buff[6] = er32(RDTR);
3329
3330 regs_buff[7] = er32(TCTL);
3331 regs_buff[8] = er32(TDBAL);
3332 regs_buff[9] = er32(TDBAH);
3333 regs_buff[10] = er32(TDLEN);
3334 regs_buff[11] = er32(TDH);
3335 regs_buff[12] = er32(TDT);
3336 regs_buff[13] = er32(TIDV);
3337 regs_buff[14] = er32(TXDCTL);
3338 regs_buff[15] = er32(TADV);
3339 regs_buff[16] = er32(TARC0);
3340
3341 regs_buff[17] = er32(TDBAL1);
3342 regs_buff[18] = er32(TDBAH1);
3343 regs_buff[19] = er32(TDLEN1);
3344 regs_buff[20] = er32(TDH1);
3345 regs_buff[21] = er32(TDT1);
3346 regs_buff[22] = er32(TXDCTL1);
3347 regs_buff[23] = er32(TARC1);
3348 regs_buff[24] = er32(CTRL_EXT);
3349 regs_buff[25] = er32(ERT);
3350 regs_buff[26] = er32(RDBAL0);
3351 regs_buff[27] = er32(RDBAH0);
3352 regs_buff[28] = er32(TDFH);
3353 regs_buff[29] = er32(TDFT);
3354 regs_buff[30] = er32(TDFHS);
3355 regs_buff[31] = er32(TDFTS);
3356 regs_buff[32] = er32(TDFPC);
3357 regs_buff[33] = er32(RDFH);
3358 regs_buff[34] = er32(RDFT);
3359 regs_buff[35] = er32(RDFHS);
3360 regs_buff[36] = er32(RDFTS);
3361 regs_buff[37] = er32(RDFPC);
3362
3363 pr_info("Register dump\n");
e29b5d8f
TD
3364 for (i = 0; i < NUM_REGS; i++)
3365 pr_info("%-15s %08x\n", reg_name[i], regs_buff[i]);
b04e36ba
TD
3366}
3367
3368/*
3369 * e1000_dump: Print registers, tx ring and rx ring
3370 */
3371static void e1000_dump(struct e1000_adapter *adapter)
3372{
3373 /* this code doesn't handle multiple rings */
3374 struct e1000_tx_ring *tx_ring = adapter->tx_ring;
3375 struct e1000_rx_ring *rx_ring = adapter->rx_ring;
3376 int i;
3377
3378 if (!netif_msg_hw(adapter))
3379 return;
3380
3381 /* Print Registers */
3382 e1000_regdump(adapter);
3383
6cfbd97b 3384 /* transmit dump */
b04e36ba
TD
3385 pr_info("TX Desc ring0 dump\n");
3386
3387 /* Transmit Descriptor Formats - DEXT[29] is 0 (Legacy) or 1 (Extended)
3388 *
3389 * Legacy Transmit Descriptor
3390 * +--------------------------------------------------------------+
3391 * 0 | Buffer Address [63:0] (Reserved on Write Back) |
3392 * +--------------------------------------------------------------+
3393 * 8 | Special | CSS | Status | CMD | CSO | Length |
3394 * +--------------------------------------------------------------+
3395 * 63 48 47 36 35 32 31 24 23 16 15 0
3396 *
3397 * Extended Context Descriptor (DTYP=0x0) for TSO or checksum offload
3398 * 63 48 47 40 39 32 31 16 15 8 7 0
3399 * +----------------------------------------------------------------+
3400 * 0 | TUCSE | TUCS0 | TUCSS | IPCSE | IPCS0 | IPCSS |
3401 * +----------------------------------------------------------------+
3402 * 8 | MSS | HDRLEN | RSV | STA | TUCMD | DTYP | PAYLEN |
3403 * +----------------------------------------------------------------+
3404 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3405 *
3406 * Extended Data Descriptor (DTYP=0x1)
3407 * +----------------------------------------------------------------+
3408 * 0 | Buffer Address [63:0] |
3409 * +----------------------------------------------------------------+
3410 * 8 | VLAN tag | POPTS | Rsvd | Status | Command | DTYP | DTALEN |
3411 * +----------------------------------------------------------------+
3412 * 63 48 47 40 39 36 35 32 31 24 23 20 19 0
3413 */
e29b5d8f
TD
3414 pr_info("Tc[desc] [Ce CoCsIpceCoS] [MssHlRSCm0Plen] [bi->dma ] leng ntw timestmp bi->skb\n");
3415 pr_info("Td[desc] [address 63:0 ] [VlaPoRSCm1Dlen] [bi->dma ] leng ntw timestmp bi->skb\n");
b04e36ba
TD
3416
3417 if (!netif_msg_tx_done(adapter))
3418 goto rx_ring_summary;
3419
3420 for (i = 0; tx_ring->desc && (i < tx_ring->count); i++) {
3421 struct e1000_tx_desc *tx_desc = E1000_TX_DESC(*tx_ring, i);
580f321d 3422 struct e1000_tx_buffer *buffer_info = &tx_ring->buffer_info[i];
dd7f5c9e 3423 struct my_u { __le64 a; __le64 b; };
b04e36ba 3424 struct my_u *u = (struct my_u *)tx_desc;
e29b5d8f
TD
3425 const char *type;
3426
b04e36ba 3427 if (i == tx_ring->next_to_use && i == tx_ring->next_to_clean)
e29b5d8f 3428 type = "NTC/U";
b04e36ba 3429 else if (i == tx_ring->next_to_use)
e29b5d8f 3430 type = "NTU";
b04e36ba 3431 else if (i == tx_ring->next_to_clean)
e29b5d8f 3432 type = "NTC";
b04e36ba 3433 else
e29b5d8f 3434 type = "";
b04e36ba 3435
e29b5d8f
TD
3436 pr_info("T%c[0x%03X] %016llX %016llX %016llX %04X %3X %016llX %p %s\n",
3437 ((le64_to_cpu(u->b) & (1<<20)) ? 'd' : 'c'), i,
3438 le64_to_cpu(u->a), le64_to_cpu(u->b),
3439 (u64)buffer_info->dma, buffer_info->length,
3440 buffer_info->next_to_watch,
3441 (u64)buffer_info->time_stamp, buffer_info->skb, type);
b04e36ba
TD
3442 }
3443
3444rx_ring_summary:
6cfbd97b 3445 /* receive dump */
b04e36ba
TD
3446 pr_info("\nRX Desc ring dump\n");
3447
3448 /* Legacy Receive Descriptor Format
3449 *
3450 * +-----------------------------------------------------+
3451 * | Buffer Address [63:0] |
3452 * +-----------------------------------------------------+
3453 * | VLAN Tag | Errors | Status 0 | Packet csum | Length |
3454 * +-----------------------------------------------------+
3455 * 63 48 47 40 39 32 31 16 15 0
3456 */
e29b5d8f 3457 pr_info("R[desc] [address 63:0 ] [vl er S cks ln] [bi->dma ] [bi->skb]\n");
b04e36ba
TD
3458
3459 if (!netif_msg_rx_status(adapter))
3460 goto exit;
3461
3462 for (i = 0; rx_ring->desc && (i < rx_ring->count); i++) {
3463 struct e1000_rx_desc *rx_desc = E1000_RX_DESC(*rx_ring, i);
93f0afe9 3464 struct e1000_rx_buffer *buffer_info = &rx_ring->buffer_info[i];
dd7f5c9e 3465 struct my_u { __le64 a; __le64 b; };
b04e36ba 3466 struct my_u *u = (struct my_u *)rx_desc;
e29b5d8f
TD
3467 const char *type;
3468
b04e36ba 3469 if (i == rx_ring->next_to_use)
e29b5d8f 3470 type = "NTU";
b04e36ba 3471 else if (i == rx_ring->next_to_clean)
e29b5d8f 3472 type = "NTC";
b04e36ba 3473 else
e29b5d8f 3474 type = "";
b04e36ba 3475
e29b5d8f
TD
3476 pr_info("R[0x%03X] %016llX %016llX %016llX %p %s\n",
3477 i, le64_to_cpu(u->a), le64_to_cpu(u->b),
13809609 3478 (u64)buffer_info->dma, buffer_info->rxbuf.data, type);
b04e36ba
TD
3479 } /* for */
3480
3481 /* dump the descriptor caches */
3482 /* rx */
e29b5d8f 3483 pr_info("Rx descriptor cache in 64bit format\n");
b04e36ba 3484 for (i = 0x6000; i <= 0x63FF ; i += 0x10) {
e29b5d8f
TD
3485 pr_info("R%04X: %08X|%08X %08X|%08X\n",
3486 i,
3487 readl(adapter->hw.hw_addr + i+4),
3488 readl(adapter->hw.hw_addr + i),
3489 readl(adapter->hw.hw_addr + i+12),
3490 readl(adapter->hw.hw_addr + i+8));
b04e36ba
TD
3491 }
3492 /* tx */
e29b5d8f 3493 pr_info("Tx descriptor cache in 64bit format\n");
b04e36ba 3494 for (i = 0x7000; i <= 0x73FF ; i += 0x10) {
e29b5d8f
TD
3495 pr_info("T%04X: %08X|%08X %08X|%08X\n",
3496 i,
3497 readl(adapter->hw.hw_addr + i+4),
3498 readl(adapter->hw.hw_addr + i),
3499 readl(adapter->hw.hw_addr + i+12),
3500 readl(adapter->hw.hw_addr + i+8));
b04e36ba
TD
3501 }
3502exit:
3503 return;
3504}
3505
1da177e4
LT
3506/**
3507 * e1000_tx_timeout - Respond to a Tx Hang
3508 * @netdev: network interface device structure
3509 **/
64798845 3510static void e1000_tx_timeout(struct net_device *netdev)
1da177e4 3511{
60490fe0 3512 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4
LT
3513
3514 /* Do the reset outside of interrupt context */
87041639
JK
3515 adapter->tx_timeout_count++;
3516 schedule_work(&adapter->reset_task);
1da177e4
LT
3517}
3518
64798845 3519static void e1000_reset_task(struct work_struct *work)
1da177e4 3520{
65f27f38
DH
3521 struct e1000_adapter *adapter =
3522 container_of(work, struct e1000_adapter, reset_task);
1da177e4 3523
b04e36ba 3524 e_err(drv, "Reset adapter\n");
b2f963bf 3525 e1000_reinit_locked(adapter);
1da177e4
LT
3526}
3527
3528/**
3529 * e1000_get_stats - Get System Network Statistics
3530 * @netdev: network interface device structure
3531 *
3532 * Returns the address of the device statistics structure.
a4010afe 3533 * The statistics are actually updated from the watchdog.
1da177e4 3534 **/
64798845 3535static struct net_device_stats *e1000_get_stats(struct net_device *netdev)
1da177e4 3536{
6b7660cd 3537 /* only return the current stats */
5fe31def 3538 return &netdev->stats;
1da177e4
LT
3539}
3540
3541/**
3542 * e1000_change_mtu - Change the Maximum Transfer Unit
3543 * @netdev: network interface device structure
3544 * @new_mtu: new value for maximum frame size
3545 *
3546 * Returns 0 on success, negative on failure
3547 **/
64798845 3548static int e1000_change_mtu(struct net_device *netdev, int new_mtu)
1da177e4 3549{
60490fe0 3550 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 3551 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
3552 int max_frame = new_mtu + ENET_HEADER_SIZE + ETHERNET_FCS_SIZE;
3553
96838a40
JB
3554 if ((max_frame < MINIMUM_ETHERNET_FRAME_SIZE) ||
3555 (max_frame > MAX_JUMBO_FRAME_SIZE)) {
feb8f478 3556 e_err(probe, "Invalid MTU setting\n");
1da177e4 3557 return -EINVAL;
2d7edb92 3558 }
1da177e4 3559
997f5cbd 3560 /* Adapter-specific max frame size limits. */
1dc32918 3561 switch (hw->mac_type) {
9e2feace 3562 case e1000_undefined ... e1000_82542_rev2_1:
b7cb8c2c 3563 if (max_frame > (ETH_FRAME_LEN + ETH_FCS_LEN)) {
feb8f478 3564 e_err(probe, "Jumbo Frames not supported.\n");
2d7edb92 3565 return -EINVAL;
2d7edb92 3566 }
997f5cbd 3567 break;
997f5cbd
JK
3568 default:
3569 /* Capable of supporting up to MAX_JUMBO_FRAME_SIZE limit. */
3570 break;
1da177e4
LT
3571 }
3572
3d6114e7
JB
3573 while (test_and_set_bit(__E1000_RESETTING, &adapter->flags))
3574 msleep(1);
3575 /* e1000_down has a dependency on max_frame_size */
3576 hw->max_frame_size = max_frame;
08e83316
SD
3577 if (netif_running(netdev)) {
3578 /* prevent buffers from being reallocated */
3579 adapter->alloc_rx_buf = e1000_alloc_dummy_rx_buffers;
3d6114e7 3580 e1000_down(adapter);
08e83316 3581 }
3d6114e7 3582
87f5032e 3583 /* NOTE: netdev_alloc_skb reserves 16 bytes, and typically NET_IP_ALIGN
9e2feace 3584 * means we reserve 2 more, this pushes us to allocate from the next
edbbb3ca
JB
3585 * larger slab size.
3586 * i.e. RXBUFFER_2048 --> size-4096 slab
6cfbd97b
JK
3587 * however with the new *_jumbo_rx* routines, jumbo receives will use
3588 * fragmented skbs
3589 */
9e2feace 3590
9926146b 3591 if (max_frame <= E1000_RXBUFFER_2048)
9e2feace 3592 adapter->rx_buffer_len = E1000_RXBUFFER_2048;
edbbb3ca
JB
3593 else
3594#if (PAGE_SIZE >= E1000_RXBUFFER_16384)
9e2feace 3595 adapter->rx_buffer_len = E1000_RXBUFFER_16384;
edbbb3ca
JB
3596#elif (PAGE_SIZE >= E1000_RXBUFFER_4096)
3597 adapter->rx_buffer_len = PAGE_SIZE;
3598#endif
9e2feace
AK
3599
3600 /* adjust allocation if LPE protects us, and we aren't using SBP */
1dc32918 3601 if (!hw->tbi_compatibility_on &&
b7cb8c2c 3602 ((max_frame == (ETH_FRAME_LEN + ETH_FCS_LEN)) ||
9e2feace
AK
3603 (max_frame == MAXIMUM_ETHERNET_VLAN_SIZE)))
3604 adapter->rx_buffer_len = MAXIMUM_ETHERNET_VLAN_SIZE;
997f5cbd 3605
675ad473
ET
3606 pr_info("%s changing MTU from %d to %d\n",
3607 netdev->name, netdev->mtu, new_mtu);
2d7edb92
MC
3608 netdev->mtu = new_mtu;
3609
2db10a08 3610 if (netif_running(netdev))
3d6114e7
JB
3611 e1000_up(adapter);
3612 else
3613 e1000_reset(adapter);
3614
3615 clear_bit(__E1000_RESETTING, &adapter->flags);
1da177e4 3616
1da177e4
LT
3617 return 0;
3618}
3619
3620/**
3621 * e1000_update_stats - Update the board statistics counters
3622 * @adapter: board private structure
3623 **/
64798845 3624void e1000_update_stats(struct e1000_adapter *adapter)
1da177e4 3625{
5fe31def 3626 struct net_device *netdev = adapter->netdev;
1da177e4 3627 struct e1000_hw *hw = &adapter->hw;
282f33c9 3628 struct pci_dev *pdev = adapter->pdev;
1da177e4 3629 unsigned long flags;
406874a7 3630 u16 phy_tmp;
1da177e4
LT
3631
3632#define PHY_IDLE_ERROR_COUNT_MASK 0x00FF
3633
6cfbd97b 3634 /* Prevent stats update while adapter is being reset, or if the pci
282f33c9
LV
3635 * connection is down.
3636 */
9026729b 3637 if (adapter->link_speed == 0)
282f33c9 3638 return;
81b1955e 3639 if (pci_channel_offline(pdev))
9026729b
AK
3640 return;
3641
1da177e4
LT
3642 spin_lock_irqsave(&adapter->stats_lock, flags);
3643
828d055f 3644 /* these counters are modified from e1000_tbi_adjust_stats,
1da177e4
LT
3645 * called from the interrupt context, so they must only
3646 * be written while holding adapter->stats_lock
3647 */
3648
1dc32918
JP
3649 adapter->stats.crcerrs += er32(CRCERRS);
3650 adapter->stats.gprc += er32(GPRC);
3651 adapter->stats.gorcl += er32(GORCL);
3652 adapter->stats.gorch += er32(GORCH);
3653 adapter->stats.bprc += er32(BPRC);
3654 adapter->stats.mprc += er32(MPRC);
3655 adapter->stats.roc += er32(ROC);
3656
1532ecea
JB
3657 adapter->stats.prc64 += er32(PRC64);
3658 adapter->stats.prc127 += er32(PRC127);
3659 adapter->stats.prc255 += er32(PRC255);
3660 adapter->stats.prc511 += er32(PRC511);
3661 adapter->stats.prc1023 += er32(PRC1023);
3662 adapter->stats.prc1522 += er32(PRC1522);
1dc32918
JP
3663
3664 adapter->stats.symerrs += er32(SYMERRS);
3665 adapter->stats.mpc += er32(MPC);
3666 adapter->stats.scc += er32(SCC);
3667 adapter->stats.ecol += er32(ECOL);
3668 adapter->stats.mcc += er32(MCC);
3669 adapter->stats.latecol += er32(LATECOL);
3670 adapter->stats.dc += er32(DC);
3671 adapter->stats.sec += er32(SEC);
3672 adapter->stats.rlec += er32(RLEC);
3673 adapter->stats.xonrxc += er32(XONRXC);
3674 adapter->stats.xontxc += er32(XONTXC);
3675 adapter->stats.xoffrxc += er32(XOFFRXC);
3676 adapter->stats.xofftxc += er32(XOFFTXC);
3677 adapter->stats.fcruc += er32(FCRUC);
3678 adapter->stats.gptc += er32(GPTC);
3679 adapter->stats.gotcl += er32(GOTCL);
3680 adapter->stats.gotch += er32(GOTCH);
3681 adapter->stats.rnbc += er32(RNBC);
3682 adapter->stats.ruc += er32(RUC);
3683 adapter->stats.rfc += er32(RFC);
3684 adapter->stats.rjc += er32(RJC);
3685 adapter->stats.torl += er32(TORL);
3686 adapter->stats.torh += er32(TORH);
3687 adapter->stats.totl += er32(TOTL);
3688 adapter->stats.toth += er32(TOTH);
3689 adapter->stats.tpr += er32(TPR);
3690
1532ecea
JB
3691 adapter->stats.ptc64 += er32(PTC64);
3692 adapter->stats.ptc127 += er32(PTC127);
3693 adapter->stats.ptc255 += er32(PTC255);
3694 adapter->stats.ptc511 += er32(PTC511);
3695 adapter->stats.ptc1023 += er32(PTC1023);
3696 adapter->stats.ptc1522 += er32(PTC1522);
1dc32918
JP
3697
3698 adapter->stats.mptc += er32(MPTC);
3699 adapter->stats.bptc += er32(BPTC);
1da177e4
LT
3700
3701 /* used for adaptive IFS */
3702
1dc32918 3703 hw->tx_packet_delta = er32(TPT);
1da177e4 3704 adapter->stats.tpt += hw->tx_packet_delta;
1dc32918 3705 hw->collision_delta = er32(COLC);
1da177e4
LT
3706 adapter->stats.colc += hw->collision_delta;
3707
96838a40 3708 if (hw->mac_type >= e1000_82543) {
1dc32918
JP
3709 adapter->stats.algnerrc += er32(ALGNERRC);
3710 adapter->stats.rxerrc += er32(RXERRC);
3711 adapter->stats.tncrs += er32(TNCRS);
3712 adapter->stats.cexterr += er32(CEXTERR);
3713 adapter->stats.tsctc += er32(TSCTC);
3714 adapter->stats.tsctfc += er32(TSCTFC);
1da177e4
LT
3715 }
3716
3717 /* Fill out the OS statistics structure */
5fe31def
AK
3718 netdev->stats.multicast = adapter->stats.mprc;
3719 netdev->stats.collisions = adapter->stats.colc;
1da177e4
LT
3720
3721 /* Rx Errors */
3722
87041639 3723 /* RLEC on some newer hardware can be incorrect so build
6cfbd97b
JK
3724 * our own version based on RUC and ROC
3725 */
5fe31def 3726 netdev->stats.rx_errors = adapter->stats.rxerrc +
1da177e4 3727 adapter->stats.crcerrs + adapter->stats.algnerrc +
87041639
JK
3728 adapter->stats.ruc + adapter->stats.roc +
3729 adapter->stats.cexterr;
49559854 3730 adapter->stats.rlerrc = adapter->stats.ruc + adapter->stats.roc;
5fe31def
AK
3731 netdev->stats.rx_length_errors = adapter->stats.rlerrc;
3732 netdev->stats.rx_crc_errors = adapter->stats.crcerrs;
3733 netdev->stats.rx_frame_errors = adapter->stats.algnerrc;
3734 netdev->stats.rx_missed_errors = adapter->stats.mpc;
1da177e4
LT
3735
3736 /* Tx Errors */
49559854 3737 adapter->stats.txerrc = adapter->stats.ecol + adapter->stats.latecol;
5fe31def
AK
3738 netdev->stats.tx_errors = adapter->stats.txerrc;
3739 netdev->stats.tx_aborted_errors = adapter->stats.ecol;
3740 netdev->stats.tx_window_errors = adapter->stats.latecol;
3741 netdev->stats.tx_carrier_errors = adapter->stats.tncrs;
1dc32918 3742 if (hw->bad_tx_carr_stats_fd &&
167fb284 3743 adapter->link_duplex == FULL_DUPLEX) {
5fe31def 3744 netdev->stats.tx_carrier_errors = 0;
167fb284
JG
3745 adapter->stats.tncrs = 0;
3746 }
1da177e4
LT
3747
3748 /* Tx Dropped needs to be maintained elsewhere */
3749
3750 /* Phy Stats */
96838a40
JB
3751 if (hw->media_type == e1000_media_type_copper) {
3752 if ((adapter->link_speed == SPEED_1000) &&
1da177e4
LT
3753 (!e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_tmp))) {
3754 phy_tmp &= PHY_IDLE_ERROR_COUNT_MASK;
3755 adapter->phy_stats.idle_errors += phy_tmp;
3756 }
3757
96838a40 3758 if ((hw->mac_type <= e1000_82546) &&
1da177e4
LT
3759 (hw->phy_type == e1000_phy_m88) &&
3760 !e1000_read_phy_reg(hw, M88E1000_RX_ERR_CNTR, &phy_tmp))
3761 adapter->phy_stats.receive_errors += phy_tmp;
3762 }
3763
15e376b4 3764 /* Management Stats */
1dc32918
JP
3765 if (hw->has_smbus) {
3766 adapter->stats.mgptc += er32(MGTPTC);
3767 adapter->stats.mgprc += er32(MGTPRC);
3768 adapter->stats.mgpdc += er32(MGTPDC);
15e376b4
JG
3769 }
3770
1da177e4
LT
3771 spin_unlock_irqrestore(&adapter->stats_lock, flags);
3772}
9ac98284 3773
1da177e4
LT
3774/**
3775 * e1000_intr - Interrupt Handler
3776 * @irq: interrupt number
3777 * @data: pointer to a network interface device structure
1da177e4 3778 **/
64798845 3779static irqreturn_t e1000_intr(int irq, void *data)
1da177e4
LT
3780{
3781 struct net_device *netdev = data;
60490fe0 3782 struct e1000_adapter *adapter = netdev_priv(netdev);
1da177e4 3783 struct e1000_hw *hw = &adapter->hw;
1532ecea 3784 u32 icr = er32(ICR);
c3570acb 3785
4c11b8ad 3786 if (unlikely((!icr)))
835bb129
JB
3787 return IRQ_NONE; /* Not our interrupt */
3788
6cfbd97b 3789 /* we might have caused the interrupt, but the above
4c11b8ad
JB
3790 * read cleared it, and just in case the driver is
3791 * down there is nothing to do so return handled
3792 */
3793 if (unlikely(test_bit(__E1000_DOWN, &adapter->flags)))
3794 return IRQ_HANDLED;
3795
96838a40 3796 if (unlikely(icr & (E1000_ICR_RXSEQ | E1000_ICR_LSC))) {
1da177e4 3797 hw->get_link_status = 1;
1314bbf3
AK
3798 /* guard against interrupt when we're going down */
3799 if (!test_bit(__E1000_DOWN, &adapter->flags))
a4010afe 3800 schedule_delayed_work(&adapter->watchdog_task, 1);
1da177e4
LT
3801 }
3802
1532ecea
JB
3803 /* disable interrupts, without the synchronize_irq bit */
3804 ew32(IMC, ~0);
3805 E1000_WRITE_FLUSH();
3806
288379f0 3807 if (likely(napi_schedule_prep(&adapter->napi))) {
835bb129
JB
3808 adapter->total_tx_bytes = 0;
3809 adapter->total_tx_packets = 0;
3810 adapter->total_rx_bytes = 0;
3811 adapter->total_rx_packets = 0;
288379f0 3812 __napi_schedule(&adapter->napi);
a6c42322 3813 } else {
90fb5135 3814 /* this really should not happen! if it does it is basically a
6cfbd97b
JK
3815 * bug, but not a hard error, so enable ints and continue
3816 */
a6c42322
JB
3817 if (!test_bit(__E1000_DOWN, &adapter->flags))
3818 e1000_irq_enable(adapter);
3819 }
1da177e4 3820
1da177e4
LT
3821 return IRQ_HANDLED;
3822}
3823
1da177e4
LT
3824/**
3825 * e1000_clean - NAPI Rx polling callback
3826 * @adapter: board private structure
3827 **/
64798845 3828static int e1000_clean(struct napi_struct *napi, int budget)
1da177e4 3829{
6cfbd97b
JK
3830 struct e1000_adapter *adapter = container_of(napi, struct e1000_adapter,
3831 napi);
650b5a5c 3832 int tx_clean_complete = 0, work_done = 0;
581d708e 3833
650b5a5c 3834 tx_clean_complete = e1000_clean_tx_irq(adapter, &adapter->tx_ring[0]);
581d708e 3835
650b5a5c 3836 adapter->clean_rx(adapter, &adapter->rx_ring[0], &work_done, budget);
581d708e 3837
650b5a5c 3838 if (!tx_clean_complete)
d2c7ddd6
DM
3839 work_done = budget;
3840
53e52c72
DM
3841 /* If budget not fully consumed, exit the polling mode */
3842 if (work_done < budget) {
835bb129
JB
3843 if (likely(adapter->itr_setting & 3))
3844 e1000_set_itr(adapter);
32b3e08f 3845 napi_complete_done(napi, work_done);
a6c42322
JB
3846 if (!test_bit(__E1000_DOWN, &adapter->flags))
3847 e1000_irq_enable(adapter);
1da177e4
LT
3848 }
3849
bea3348e 3850 return work_done;
1da177e4
LT
3851}
3852
1da177e4
LT
3853/**
3854 * e1000_clean_tx_irq - Reclaim resources after transmit completes
3855 * @adapter: board private structure
3856 **/
64798845
JP
3857static bool e1000_clean_tx_irq(struct e1000_adapter *adapter,
3858 struct e1000_tx_ring *tx_ring)
1da177e4 3859{
1dc32918 3860 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
3861 struct net_device *netdev = adapter->netdev;
3862 struct e1000_tx_desc *tx_desc, *eop_desc;
580f321d 3863 struct e1000_tx_buffer *buffer_info;
1da177e4 3864 unsigned int i, eop;
2a1af5d7 3865 unsigned int count = 0;
a48954c8 3866 unsigned int total_tx_bytes = 0, total_tx_packets = 0;
2f66fd36 3867 unsigned int bytes_compl = 0, pkts_compl = 0;
1da177e4
LT
3868
3869 i = tx_ring->next_to_clean;
3870 eop = tx_ring->buffer_info[i].next_to_watch;
3871 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3872
ccfb342c
AD
3873 while ((eop_desc->upper.data & cpu_to_le32(E1000_TXD_STAT_DD)) &&
3874 (count < tx_ring->count)) {
843f4267 3875 bool cleaned = false;
837a1dba 3876 dma_rmb(); /* read buffer_info after eop_desc */
843f4267 3877 for ( ; !cleaned; count++) {
1da177e4
LT
3878 tx_desc = E1000_TX_DESC(*tx_ring, i);
3879 buffer_info = &tx_ring->buffer_info[i];
3880 cleaned = (i == eop);
3881
835bb129 3882 if (cleaned) {
31c15a2f
DN
3883 total_tx_packets += buffer_info->segs;
3884 total_tx_bytes += buffer_info->bytecount;
2f66fd36
OESC
3885 if (buffer_info->skb) {
3886 bytes_compl += buffer_info->skb->len;
3887 pkts_compl++;
3888 }
3889
835bb129 3890 }
fd803241 3891 e1000_unmap_and_free_tx_resource(adapter, buffer_info);
a9ebadd6 3892 tx_desc->upper.data = 0;
1da177e4 3893
a48954c8
JW
3894 if (unlikely(++i == tx_ring->count))
3895 i = 0;
1da177e4 3896 }
581d708e 3897
1da177e4
LT
3898 eop = tx_ring->buffer_info[i].next_to_watch;
3899 eop_desc = E1000_TX_DESC(*tx_ring, eop);
3900 }
3901
9eab46b7
DV
3902 /* Synchronize with E1000_DESC_UNUSED called from e1000_xmit_frame,
3903 * which will reuse the cleaned buffers.
3904 */
3905 smp_store_release(&tx_ring->next_to_clean, i);
1da177e4 3906
2f66fd36
OESC
3907 netdev_completed_queue(netdev, pkts_compl, bytes_compl);
3908
77b2aad5 3909#define TX_WAKE_THRESHOLD 32
843f4267 3910 if (unlikely(count && netif_carrier_ok(netdev) &&
65c7973f
JB
3911 E1000_DESC_UNUSED(tx_ring) >= TX_WAKE_THRESHOLD)) {
3912 /* Make sure that anybody stopping the queue after this
3913 * sees the new next_to_clean.
3914 */
3915 smp_mb();
cdd7549e
JB
3916
3917 if (netif_queue_stopped(netdev) &&
3918 !(test_bit(__E1000_DOWN, &adapter->flags))) {
77b2aad5 3919 netif_wake_queue(netdev);
fcfb1224
JB
3920 ++adapter->restart_queue;
3921 }
77b2aad5 3922 }
2648345f 3923
581d708e 3924 if (adapter->detect_tx_hung) {
2648345f 3925 /* Detect a transmit hang in hardware, this serializes the
6cfbd97b
JK
3926 * check with the clearing of time_stamp and movement of i
3927 */
c3033b01 3928 adapter->detect_tx_hung = false;
cdd7549e
JB
3929 if (tx_ring->buffer_info[eop].time_stamp &&
3930 time_after(jiffies, tx_ring->buffer_info[eop].time_stamp +
6cfbd97b 3931 (adapter->tx_timeout_factor * HZ)) &&
8e95a202 3932 !(er32(STATUS) & E1000_STATUS_TXOFF)) {
70b8f1e1
MC
3933
3934 /* detected Tx unit hang */
feb8f478 3935 e_err(drv, "Detected Tx Unit Hang\n"
675ad473
ET
3936 " Tx Queue <%lu>\n"
3937 " TDH <%x>\n"
3938 " TDT <%x>\n"
3939 " next_to_use <%x>\n"
3940 " next_to_clean <%x>\n"
3941 "buffer_info[next_to_clean]\n"
3942 " time_stamp <%lx>\n"
3943 " next_to_watch <%x>\n"
3944 " jiffies <%lx>\n"
3945 " next_to_watch.status <%x>\n",
49a45a06 3946 (unsigned long)(tx_ring - adapter->tx_ring),
1dc32918
JP
3947 readl(hw->hw_addr + tx_ring->tdh),
3948 readl(hw->hw_addr + tx_ring->tdt),
70b8f1e1 3949 tx_ring->next_to_use,
392137fa 3950 tx_ring->next_to_clean,
cdd7549e 3951 tx_ring->buffer_info[eop].time_stamp,
70b8f1e1
MC
3952 eop,
3953 jiffies,
3954 eop_desc->upper.fields.status);
b04e36ba 3955 e1000_dump(adapter);
1da177e4 3956 netif_stop_queue(netdev);
70b8f1e1 3957 }
1da177e4 3958 }
835bb129
JB
3959 adapter->total_tx_bytes += total_tx_bytes;
3960 adapter->total_tx_packets += total_tx_packets;
5fe31def
AK
3961 netdev->stats.tx_bytes += total_tx_bytes;
3962 netdev->stats.tx_packets += total_tx_packets;
807540ba 3963 return count < tx_ring->count;
1da177e4
LT
3964}
3965
3966/**
3967 * e1000_rx_checksum - Receive Checksum Offload for 82543
2d7edb92
MC
3968 * @adapter: board private structure
3969 * @status_err: receive descriptor status and error fields
3970 * @csum: receive descriptor csum field
3971 * @sk_buff: socket buffer with received data
1da177e4 3972 **/
64798845
JP
3973static void e1000_rx_checksum(struct e1000_adapter *adapter, u32 status_err,
3974 u32 csum, struct sk_buff *skb)
1da177e4 3975{
1dc32918 3976 struct e1000_hw *hw = &adapter->hw;
406874a7
JP
3977 u16 status = (u16)status_err;
3978 u8 errors = (u8)(status_err >> 24);
bc8acf2c
ED
3979
3980 skb_checksum_none_assert(skb);
2d7edb92 3981
1da177e4 3982 /* 82543 or newer only */
a48954c8
JW
3983 if (unlikely(hw->mac_type < e1000_82543))
3984 return;
1da177e4 3985 /* Ignore Checksum bit is set */
a48954c8
JW
3986 if (unlikely(status & E1000_RXD_STAT_IXSM))
3987 return;
2d7edb92 3988 /* TCP/UDP checksum error bit is set */
96838a40 3989 if (unlikely(errors & E1000_RXD_ERR_TCPE)) {
1da177e4 3990 /* let the stack verify checksum errors */
1da177e4 3991 adapter->hw_csum_err++;
2d7edb92
MC
3992 return;
3993 }
3994 /* TCP/UDP Checksum has not been calculated */
1532ecea
JB
3995 if (!(status & E1000_RXD_STAT_TCPCS))
3996 return;
3997
2d7edb92
MC
3998 /* It must be a TCP or UDP packet with a valid checksum */
3999 if (likely(status & E1000_RXD_STAT_TCPCS)) {
1da177e4
LT
4000 /* TCP checksum is good */
4001 skb->ip_summed = CHECKSUM_UNNECESSARY;
1da177e4 4002 }
2d7edb92 4003 adapter->hw_csum_good++;
1da177e4
LT
4004}
4005
edbbb3ca 4006/**
13809609 4007 * e1000_consume_page - helper function for jumbo Rx path
edbbb3ca 4008 **/
93f0afe9 4009static void e1000_consume_page(struct e1000_rx_buffer *bi, struct sk_buff *skb,
6cfbd97b 4010 u16 length)
edbbb3ca 4011{
13809609 4012 bi->rxbuf.page = NULL;
edbbb3ca
JB
4013 skb->len += length;
4014 skb->data_len += length;
ed64b3cc 4015 skb->truesize += PAGE_SIZE;
edbbb3ca
JB
4016}
4017
4018/**
4019 * e1000_receive_skb - helper function to handle rx indications
4020 * @adapter: board private structure
4021 * @status: descriptor status field as written by hardware
4022 * @vlan: descriptor vlan field as written by hardware (no le/be conversion)
4023 * @skb: pointer to sk_buff to be indicated to stack
4024 */
4025static void e1000_receive_skb(struct e1000_adapter *adapter, u8 status,
4026 __le16 vlan, struct sk_buff *skb)
4027{
6a08d194
JB
4028 skb->protocol = eth_type_trans(skb, adapter->netdev);
4029
5622e404
JP
4030 if (status & E1000_RXD_STAT_VP) {
4031 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4032
86a9bad3 4033 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
5622e404
JP
4034 }
4035 napi_gro_receive(&adapter->napi, skb);
edbbb3ca
JB
4036}
4037
4f0aeb1e
FW
4038/**
4039 * e1000_tbi_adjust_stats
4040 * @hw: Struct containing variables accessed by shared code
4041 * @frame_len: The length of the frame in question
4042 * @mac_addr: The Ethernet destination address of the frame in question
4043 *
4044 * Adjusts the statistic counters when a frame is accepted by TBI_ACCEPT
4045 */
4046static void e1000_tbi_adjust_stats(struct e1000_hw *hw,
4047 struct e1000_hw_stats *stats,
4048 u32 frame_len, const u8 *mac_addr)
4049{
4050 u64 carry_bit;
4051
4052 /* First adjust the frame length. */
4053 frame_len--;
4054 /* We need to adjust the statistics counters, since the hardware
4055 * counters overcount this packet as a CRC error and undercount
4056 * the packet as a good packet
4057 */
4058 /* This packet should not be counted as a CRC error. */
4059 stats->crcerrs--;
4060 /* This packet does count as a Good Packet Received. */
4061 stats->gprc++;
4062
4063 /* Adjust the Good Octets received counters */
4064 carry_bit = 0x80000000 & stats->gorcl;
4065 stats->gorcl += frame_len;
4066 /* If the high bit of Gorcl (the low 32 bits of the Good Octets
4067 * Received Count) was one before the addition,
4068 * AND it is zero after, then we lost the carry out,
4069 * need to add one to Gorch (Good Octets Received Count High).
4070 * This could be simplified if all environments supported
4071 * 64-bit integers.
4072 */
4073 if (carry_bit && ((stats->gorcl & 0x80000000) == 0))
4074 stats->gorch++;
4075 /* Is this a broadcast or multicast? Check broadcast first,
4076 * since the test for a multicast frame will test positive on
4077 * a broadcast frame.
4078 */
4079 if (is_broadcast_ether_addr(mac_addr))
4080 stats->bprc++;
4081 else if (is_multicast_ether_addr(mac_addr))
4082 stats->mprc++;
4083
4084 if (frame_len == hw->max_frame_size) {
4085 /* In this case, the hardware has overcounted the number of
4086 * oversize frames.
4087 */
4088 if (stats->roc > 0)
4089 stats->roc--;
4090 }
4091
4092 /* Adjust the bin counters when the extra byte put the frame in the
4093 * wrong bin. Remember that the frame_len was adjusted above.
4094 */
4095 if (frame_len == 64) {
4096 stats->prc64++;
4097 stats->prc127--;
4098 } else if (frame_len == 127) {
4099 stats->prc127++;
4100 stats->prc255--;
4101 } else if (frame_len == 255) {
4102 stats->prc255++;
4103 stats->prc511--;
4104 } else if (frame_len == 511) {
4105 stats->prc511++;
4106 stats->prc1023--;
4107 } else if (frame_len == 1023) {
4108 stats->prc1023++;
4109 stats->prc1522--;
4110 } else if (frame_len == 1522) {
4111 stats->prc1522++;
4112 }
4113}
4114
2037110c
FW
4115static bool e1000_tbi_should_accept(struct e1000_adapter *adapter,
4116 u8 status, u8 errors,
4117 u32 length, const u8 *data)
4118{
4119 struct e1000_hw *hw = &adapter->hw;
4120 u8 last_byte = *(data + length - 1);
4121
4122 if (TBI_ACCEPT(hw, status, errors, length, last_byte)) {
4123 unsigned long irq_flags;
4124
4125 spin_lock_irqsave(&adapter->stats_lock, irq_flags);
4126 e1000_tbi_adjust_stats(hw, &adapter->stats, length, data);
4127 spin_unlock_irqrestore(&adapter->stats_lock, irq_flags);
4128
4129 return true;
4130 }
4131
4132 return false;
4133}
4134
2b294b18
FW
4135static struct sk_buff *e1000_alloc_rx_skb(struct e1000_adapter *adapter,
4136 unsigned int bufsz)
4137{
67fd893e 4138 struct sk_buff *skb = napi_alloc_skb(&adapter->napi, bufsz);
2b294b18
FW
4139
4140 if (unlikely(!skb))
4141 adapter->alloc_rx_buff_failed++;
4142 return skb;
4143}
4144
edbbb3ca
JB
4145/**
4146 * e1000_clean_jumbo_rx_irq - Send received data up the network stack; legacy
4147 * @adapter: board private structure
4148 * @rx_ring: ring to clean
4149 * @work_done: amount of napi work completed this call
4150 * @work_to_do: max amount of work allowed for this call to do
4151 *
4152 * the return value indicates whether actual cleaning was done, there
4153 * is no guarantee that everything was cleaned
4154 */
4155static bool e1000_clean_jumbo_rx_irq(struct e1000_adapter *adapter,
4156 struct e1000_rx_ring *rx_ring,
4157 int *work_done, int work_to_do)
4158{
edbbb3ca
JB
4159 struct net_device *netdev = adapter->netdev;
4160 struct pci_dev *pdev = adapter->pdev;
4161 struct e1000_rx_desc *rx_desc, *next_rxd;
93f0afe9 4162 struct e1000_rx_buffer *buffer_info, *next_buffer;
edbbb3ca
JB
4163 u32 length;
4164 unsigned int i;
4165 int cleaned_count = 0;
4166 bool cleaned = false;
a48954c8 4167 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
edbbb3ca
JB
4168
4169 i = rx_ring->next_to_clean;
4170 rx_desc = E1000_RX_DESC(*rx_ring, i);
4171 buffer_info = &rx_ring->buffer_info[i];
4172
4173 while (rx_desc->status & E1000_RXD_STAT_DD) {
4174 struct sk_buff *skb;
4175 u8 status;
4176
4177 if (*work_done >= work_to_do)
4178 break;
4179 (*work_done)++;
837a1dba 4180 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
edbbb3ca
JB
4181
4182 status = rx_desc->status;
edbbb3ca 4183
a48954c8
JW
4184 if (++i == rx_ring->count)
4185 i = 0;
4186
edbbb3ca
JB
4187 next_rxd = E1000_RX_DESC(*rx_ring, i);
4188 prefetch(next_rxd);
4189
4190 next_buffer = &rx_ring->buffer_info[i];
4191
4192 cleaned = true;
4193 cleaned_count++;
b16f53be 4194 dma_unmap_page(&pdev->dev, buffer_info->dma,
93f0afe9 4195 adapter->rx_buffer_len, DMA_FROM_DEVICE);
edbbb3ca
JB
4196 buffer_info->dma = 0;
4197
4198 length = le16_to_cpu(rx_desc->length);
4199
4200 /* errors is only valid for DD + EOP descriptors */
4201 if (unlikely((status & E1000_RXD_STAT_EOP) &&
4202 (rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK))) {
13809609 4203 u8 *mapped = page_address(buffer_info->rxbuf.page);
2037110c
FW
4204
4205 if (e1000_tbi_should_accept(adapter, status,
4206 rx_desc->errors,
4207 length, mapped)) {
edbbb3ca 4208 length--;
2037110c
FW
4209 } else if (netdev->features & NETIF_F_RXALL) {
4210 goto process_skb;
edbbb3ca 4211 } else {
edbbb3ca 4212 /* an error means any chain goes out the window
6cfbd97b
JK
4213 * too
4214 */
edbbb3ca
JB
4215 if (rx_ring->rx_skb_top)
4216 dev_kfree_skb(rx_ring->rx_skb_top);
4217 rx_ring->rx_skb_top = NULL;
4218 goto next_desc;
4219 }
4220 }
4221
4222#define rxtop rx_ring->rx_skb_top
e825b731 4223process_skb:
edbbb3ca
JB
4224 if (!(status & E1000_RXD_STAT_EOP)) {
4225 /* this descriptor is only the beginning (or middle) */
4226 if (!rxtop) {
4227 /* this is the beginning of a chain */
de591c78 4228 rxtop = napi_get_frags(&adapter->napi);
13809609
FW
4229 if (!rxtop)
4230 break;
4231
4232 skb_fill_page_desc(rxtop, 0,
4233 buffer_info->rxbuf.page,
6cfbd97b 4234 0, length);
edbbb3ca
JB
4235 } else {
4236 /* this is the middle of a chain */
4237 skb_fill_page_desc(rxtop,
4238 skb_shinfo(rxtop)->nr_frags,
13809609 4239 buffer_info->rxbuf.page, 0, length);
edbbb3ca
JB
4240 }
4241 e1000_consume_page(buffer_info, rxtop, length);
4242 goto next_desc;
4243 } else {
4244 if (rxtop) {
4245 /* end of the chain */
4246 skb_fill_page_desc(rxtop,
4247 skb_shinfo(rxtop)->nr_frags,
13809609 4248 buffer_info->rxbuf.page, 0, length);
edbbb3ca
JB
4249 skb = rxtop;
4250 rxtop = NULL;
4251 e1000_consume_page(buffer_info, skb, length);
4252 } else {
13809609 4253 struct page *p;
edbbb3ca 4254 /* no chain, got EOP, this buf is the packet
6cfbd97b
JK
4255 * copybreak to save the put_page/alloc_page
4256 */
13809609 4257 p = buffer_info->rxbuf.page;
de591c78 4258 if (length <= copybreak) {
edbbb3ca 4259 u8 *vaddr;
13809609 4260
de591c78
FW
4261 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4262 length -= 4;
4263 skb = e1000_alloc_rx_skb(adapter,
4264 length);
4265 if (!skb)
4266 break;
4267
13809609 4268 vaddr = kmap_atomic(p);
6cfbd97b
JK
4269 memcpy(skb_tail_pointer(skb), vaddr,
4270 length);
4679026d 4271 kunmap_atomic(vaddr);
edbbb3ca 4272 /* re-use the page, so don't erase
13809609 4273 * buffer_info->rxbuf.page
6cfbd97b 4274 */
edbbb3ca 4275 skb_put(skb, length);
de591c78
FW
4276 e1000_rx_checksum(adapter,
4277 status | rx_desc->errors << 24,
4278 le16_to_cpu(rx_desc->csum), skb);
4279
4280 total_rx_bytes += skb->len;
4281 total_rx_packets++;
4282
4283 e1000_receive_skb(adapter, status,
4284 rx_desc->special, skb);
4285 goto next_desc;
edbbb3ca 4286 } else {
de591c78
FW
4287 skb = napi_get_frags(&adapter->napi);
4288 if (!skb) {
4289 adapter->alloc_rx_buff_failed++;
4290 break;
4291 }
13809609 4292 skb_fill_page_desc(skb, 0, p, 0,
6cfbd97b 4293 length);
edbbb3ca 4294 e1000_consume_page(buffer_info, skb,
6cfbd97b 4295 length);
edbbb3ca
JB
4296 }
4297 }
4298 }
4299
4300 /* Receive Checksum Offload XXX recompute due to CRC strip? */
4301 e1000_rx_checksum(adapter,
6cfbd97b
JK
4302 (u32)(status) |
4303 ((u32)(rx_desc->errors) << 24),
4304 le16_to_cpu(rx_desc->csum), skb);
edbbb3ca 4305
b0d1562c
BG
4306 total_rx_bytes += (skb->len - 4); /* don't count FCS */
4307 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4308 pskb_trim(skb, skb->len - 4);
edbbb3ca
JB
4309 total_rx_packets++;
4310
de591c78
FW
4311 if (status & E1000_RXD_STAT_VP) {
4312 __le16 vlan = rx_desc->special;
4313 u16 vid = le16_to_cpu(vlan) & E1000_RXD_SPC_VLAN_MASK;
4314
4315 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vid);
edbbb3ca
JB
4316 }
4317
de591c78 4318 napi_gro_frags(&adapter->napi);
edbbb3ca
JB
4319
4320next_desc:
4321 rx_desc->status = 0;
4322
4323 /* return some buffers to hardware, one at a time is too slow */
4324 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4325 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4326 cleaned_count = 0;
4327 }
4328
4329 /* use prefetched values */
4330 rx_desc = next_rxd;
4331 buffer_info = next_buffer;
4332 }
4333 rx_ring->next_to_clean = i;
4334
4335 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4336 if (cleaned_count)
4337 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4338
4339 adapter->total_rx_packets += total_rx_packets;
4340 adapter->total_rx_bytes += total_rx_bytes;
5fe31def
AK
4341 netdev->stats.rx_bytes += total_rx_bytes;
4342 netdev->stats.rx_packets += total_rx_packets;
edbbb3ca
JB
4343 return cleaned;
4344}
4345
6cfbd97b 4346/* this should improve performance for small packets with large amounts
57bf6eef
JP
4347 * of reassembly being done in the stack
4348 */
2b294b18 4349static struct sk_buff *e1000_copybreak(struct e1000_adapter *adapter,
93f0afe9 4350 struct e1000_rx_buffer *buffer_info,
2b294b18 4351 u32 length, const void *data)
57bf6eef 4352{
2b294b18 4353 struct sk_buff *skb;
57bf6eef
JP
4354
4355 if (length > copybreak)
2b294b18 4356 return NULL;
57bf6eef 4357
2b294b18
FW
4358 skb = e1000_alloc_rx_skb(adapter, length);
4359 if (!skb)
4360 return NULL;
4361
4362 dma_sync_single_for_cpu(&adapter->pdev->dev, buffer_info->dma,
4363 length, DMA_FROM_DEVICE);
4364
4365 memcpy(skb_put(skb, length), data, length);
57bf6eef 4366
2b294b18 4367 return skb;
57bf6eef
JP
4368}
4369
1da177e4 4370/**
2d7edb92 4371 * e1000_clean_rx_irq - Send received data up the network stack; legacy
1da177e4 4372 * @adapter: board private structure
edbbb3ca
JB
4373 * @rx_ring: ring to clean
4374 * @work_done: amount of napi work completed this call
4375 * @work_to_do: max amount of work allowed for this call to do
4376 */
64798845
JP
4377static bool e1000_clean_rx_irq(struct e1000_adapter *adapter,
4378 struct e1000_rx_ring *rx_ring,
4379 int *work_done, int work_to_do)
1da177e4 4380{
1da177e4
LT
4381 struct net_device *netdev = adapter->netdev;
4382 struct pci_dev *pdev = adapter->pdev;
86c3d59f 4383 struct e1000_rx_desc *rx_desc, *next_rxd;
93f0afe9 4384 struct e1000_rx_buffer *buffer_info, *next_buffer;
406874a7 4385 u32 length;
1da177e4 4386 unsigned int i;
72d64a43 4387 int cleaned_count = 0;
c3033b01 4388 bool cleaned = false;
a48954c8 4389 unsigned int total_rx_bytes = 0, total_rx_packets = 0;
1da177e4
LT
4390
4391 i = rx_ring->next_to_clean;
4392 rx_desc = E1000_RX_DESC(*rx_ring, i);
b92ff8ee 4393 buffer_info = &rx_ring->buffer_info[i];
1da177e4 4394
b92ff8ee 4395 while (rx_desc->status & E1000_RXD_STAT_DD) {
24f476ee 4396 struct sk_buff *skb;
13809609 4397 u8 *data;
a292ca6e 4398 u8 status;
90fb5135 4399
96838a40 4400 if (*work_done >= work_to_do)
1da177e4
LT
4401 break;
4402 (*work_done)++;
837a1dba 4403 dma_rmb(); /* read descriptor and rx_buffer_info after status DD */
c3570acb 4404
a292ca6e 4405 status = rx_desc->status;
2b294b18 4406 length = le16_to_cpu(rx_desc->length);
86c3d59f 4407
13809609
FW
4408 data = buffer_info->rxbuf.data;
4409 prefetch(data);
4410 skb = e1000_copybreak(adapter, buffer_info, length, data);
2b294b18 4411 if (!skb) {
13809609
FW
4412 unsigned int frag_len = e1000_frag_len(adapter);
4413
4414 skb = build_skb(data - E1000_HEADROOM, frag_len);
4415 if (!skb) {
4416 adapter->alloc_rx_buff_failed++;
4417 break;
4418 }
4419
4420 skb_reserve(skb, E1000_HEADROOM);
2b294b18 4421 dma_unmap_single(&pdev->dev, buffer_info->dma,
93f0afe9
FW
4422 adapter->rx_buffer_len,
4423 DMA_FROM_DEVICE);
2b294b18 4424 buffer_info->dma = 0;
13809609 4425 buffer_info->rxbuf.data = NULL;
2b294b18 4426 }
30320be8 4427
a48954c8
JW
4428 if (++i == rx_ring->count)
4429 i = 0;
4430
86c3d59f 4431 next_rxd = E1000_RX_DESC(*rx_ring, i);
30320be8
JK
4432 prefetch(next_rxd);
4433
86c3d59f 4434 next_buffer = &rx_ring->buffer_info[i];
86c3d59f 4435
c3033b01 4436 cleaned = true;
72d64a43 4437 cleaned_count++;
1da177e4 4438
ea30e119 4439 /* !EOP means multiple descriptors were used to store a single
40a14dea
JB
4440 * packet, if thats the case we need to toss it. In fact, we
4441 * to toss every packet with the EOP bit clear and the next
4442 * frame that _does_ have the EOP bit set, as it is by
4443 * definition only a frame fragment
4444 */
4445 if (unlikely(!(status & E1000_RXD_STAT_EOP)))
4446 adapter->discarding = true;
4447
4448 if (adapter->discarding) {
a1415ee6 4449 /* All receives must fit into a single buffer */
2037110c 4450 netdev_dbg(netdev, "Receive packet consumed multiple buffers\n");
2b294b18 4451 dev_kfree_skb(skb);
40a14dea
JB
4452 if (status & E1000_RXD_STAT_EOP)
4453 adapter->discarding = false;
1da177e4
LT
4454 goto next_desc;
4455 }
4456
96838a40 4457 if (unlikely(rx_desc->errors & E1000_RXD_ERR_FRAME_ERR_MASK)) {
2037110c
FW
4458 if (e1000_tbi_should_accept(adapter, status,
4459 rx_desc->errors,
13809609 4460 length, data)) {
1da177e4 4461 length--;
2037110c
FW
4462 } else if (netdev->features & NETIF_F_RXALL) {
4463 goto process_skb;
1da177e4 4464 } else {
2b294b18 4465 dev_kfree_skb(skb);
1da177e4
LT
4466 goto next_desc;
4467 }
1cb5821f 4468 }
1da177e4 4469
e825b731 4470process_skb:
b0d1562c 4471 total_rx_bytes += (length - 4); /* don't count FCS */
835bb129
JB
4472 total_rx_packets++;
4473
b0d1562c
BG
4474 if (likely(!(netdev->features & NETIF_F_RXFCS)))
4475 /* adjust length to remove Ethernet CRC, this must be
4476 * done after the TBI_ACCEPT workaround above
4477 */
4478 length -= 4;
4479
13809609 4480 if (buffer_info->rxbuf.data == NULL)
2b294b18
FW
4481 skb_put(skb, length);
4482 else /* copybreak skb */
4483 skb_trim(skb, length);
1da177e4
LT
4484
4485 /* Receive Checksum Offload */
a292ca6e 4486 e1000_rx_checksum(adapter,
406874a7
JP
4487 (u32)(status) |
4488 ((u32)(rx_desc->errors) << 24),
c3d7a3a4 4489 le16_to_cpu(rx_desc->csum), skb);
96838a40 4490
edbbb3ca 4491 e1000_receive_skb(adapter, status, rx_desc->special, skb);
c3570acb 4492
1da177e4
LT
4493next_desc:
4494 rx_desc->status = 0;
1da177e4 4495
72d64a43
JK
4496 /* return some buffers to hardware, one at a time is too slow */
4497 if (unlikely(cleaned_count >= E1000_RX_BUFFER_WRITE)) {
4498 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
4499 cleaned_count = 0;
4500 }
4501
30320be8 4502 /* use prefetched values */
86c3d59f
JB
4503 rx_desc = next_rxd;
4504 buffer_info = next_buffer;
1da177e4 4505 }
1da177e4 4506 rx_ring->next_to_clean = i;
72d64a43
JK
4507
4508 cleaned_count = E1000_DESC_UNUSED(rx_ring);
4509 if (cleaned_count)
4510 adapter->alloc_rx_buf(adapter, rx_ring, cleaned_count);
2d7edb92 4511
835bb129
JB
4512 adapter->total_rx_packets += total_rx_packets;
4513 adapter->total_rx_bytes += total_rx_bytes;
5fe31def
AK
4514 netdev->stats.rx_bytes += total_rx_bytes;
4515 netdev->stats.rx_packets += total_rx_packets;
2d7edb92
MC
4516 return cleaned;
4517}
4518
edbbb3ca
JB
4519/**
4520 * e1000_alloc_jumbo_rx_buffers - Replace used jumbo receive buffers
4521 * @adapter: address of board private structure
4522 * @rx_ring: pointer to receive ring structure
4523 * @cleaned_count: number of buffers to allocate this pass
4524 **/
edbbb3ca
JB
4525static void
4526e1000_alloc_jumbo_rx_buffers(struct e1000_adapter *adapter,
6cfbd97b 4527 struct e1000_rx_ring *rx_ring, int cleaned_count)
edbbb3ca 4528{
edbbb3ca
JB
4529 struct pci_dev *pdev = adapter->pdev;
4530 struct e1000_rx_desc *rx_desc;
93f0afe9 4531 struct e1000_rx_buffer *buffer_info;
edbbb3ca 4532 unsigned int i;
edbbb3ca
JB
4533
4534 i = rx_ring->next_to_use;
4535 buffer_info = &rx_ring->buffer_info[i];
4536
4537 while (cleaned_count--) {
edbbb3ca 4538 /* allocate a new page if necessary */
13809609
FW
4539 if (!buffer_info->rxbuf.page) {
4540 buffer_info->rxbuf.page = alloc_page(GFP_ATOMIC);
4541 if (unlikely(!buffer_info->rxbuf.page)) {
edbbb3ca
JB
4542 adapter->alloc_rx_buff_failed++;
4543 break;
4544 }
4545 }
4546
b5abb028 4547 if (!buffer_info->dma) {
b16f53be 4548 buffer_info->dma = dma_map_page(&pdev->dev,
13809609
FW
4549 buffer_info->rxbuf.page, 0,
4550 adapter->rx_buffer_len,
b16f53be
NN
4551 DMA_FROM_DEVICE);
4552 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
13809609
FW
4553 put_page(buffer_info->rxbuf.page);
4554 buffer_info->rxbuf.page = NULL;
b5abb028
AB
4555 buffer_info->dma = 0;
4556 adapter->alloc_rx_buff_failed++;
13809609 4557 break;
b5abb028
AB
4558 }
4559 }
edbbb3ca
JB
4560
4561 rx_desc = E1000_RX_DESC(*rx_ring, i);
4562 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4563
4564 if (unlikely(++i == rx_ring->count))
4565 i = 0;
4566 buffer_info = &rx_ring->buffer_info[i];
4567 }
4568
4569 if (likely(rx_ring->next_to_use != i)) {
4570 rx_ring->next_to_use = i;
4571 if (unlikely(i-- == 0))
4572 i = (rx_ring->count - 1);
4573
4574 /* Force memory writes to complete before letting h/w
4575 * know there are new descriptors to fetch. (Only
4576 * applicable for weak-ordered memory model archs,
6cfbd97b
JK
4577 * such as IA-64).
4578 */
edbbb3ca
JB
4579 wmb();
4580 writel(i, adapter->hw.hw_addr + rx_ring->rdt);
4581 }
4582}
4583
1da177e4 4584/**
2d7edb92 4585 * e1000_alloc_rx_buffers - Replace used receive buffers; legacy & extended
1da177e4
LT
4586 * @adapter: address of board private structure
4587 **/
64798845
JP
4588static void e1000_alloc_rx_buffers(struct e1000_adapter *adapter,
4589 struct e1000_rx_ring *rx_ring,
4590 int cleaned_count)
1da177e4 4591{
1dc32918 4592 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
4593 struct pci_dev *pdev = adapter->pdev;
4594 struct e1000_rx_desc *rx_desc;
93f0afe9 4595 struct e1000_rx_buffer *buffer_info;
2648345f 4596 unsigned int i;
89d71a66 4597 unsigned int bufsz = adapter->rx_buffer_len;
1da177e4
LT
4598
4599 i = rx_ring->next_to_use;
4600 buffer_info = &rx_ring->buffer_info[i];
4601
a292ca6e 4602 while (cleaned_count--) {
13809609
FW
4603 void *data;
4604
4605 if (buffer_info->rxbuf.data)
2b294b18 4606 goto skip;
a292ca6e 4607
13809609
FW
4608 data = e1000_alloc_frag(adapter);
4609 if (!data) {
1da177e4 4610 /* Better luck next round */
72d64a43 4611 adapter->alloc_rx_buff_failed++;
1da177e4
LT
4612 break;
4613 }
4614
2648345f 4615 /* Fix for errata 23, can't cross 64kB boundary */
13809609
FW
4616 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
4617 void *olddata = data;
feb8f478 4618 e_err(rx_err, "skb align check failed: %u bytes at "
13809609 4619 "%p\n", bufsz, data);
2648345f 4620 /* Try again, without freeing the previous */
13809609 4621 data = e1000_alloc_frag(adapter);
2648345f 4622 /* Failed allocation, critical failure */
13809609 4623 if (!data) {
6bf93ba8 4624 skb_free_frag(olddata);
edbbb3ca 4625 adapter->alloc_rx_buff_failed++;
1da177e4
LT
4626 break;
4627 }
2648345f 4628
13809609 4629 if (!e1000_check_64k_bound(adapter, data, bufsz)) {
1da177e4 4630 /* give up */
6bf93ba8
AD
4631 skb_free_frag(data);
4632 skb_free_frag(olddata);
edbbb3ca 4633 adapter->alloc_rx_buff_failed++;
13809609 4634 break;
1da177e4 4635 }
ca6f7224
CH
4636
4637 /* Use new allocation */
6bf93ba8 4638 skb_free_frag(olddata);
1da177e4 4639 }
b16f53be 4640 buffer_info->dma = dma_map_single(&pdev->dev,
13809609 4641 data,
93f0afe9 4642 adapter->rx_buffer_len,
b16f53be
NN
4643 DMA_FROM_DEVICE);
4644 if (dma_mapping_error(&pdev->dev, buffer_info->dma)) {
6bf93ba8 4645 skb_free_frag(data);
b5abb028
AB
4646 buffer_info->dma = 0;
4647 adapter->alloc_rx_buff_failed++;
13809609 4648 break;
b5abb028 4649 }
1da177e4 4650
6cfbd97b 4651 /* XXX if it was allocated cleanly it will never map to a
edbbb3ca
JB
4652 * boundary crossing
4653 */
4654
2648345f
MC
4655 /* Fix for errata 23, can't cross 64kB boundary */
4656 if (!e1000_check_64k_bound(adapter,
4657 (void *)(unsigned long)buffer_info->dma,
4658 adapter->rx_buffer_len)) {
feb8f478
ET
4659 e_err(rx_err, "dma align check failed: %u bytes at "
4660 "%p\n", adapter->rx_buffer_len,
675ad473 4661 (void *)(unsigned long)buffer_info->dma);
1da177e4 4662
b16f53be 4663 dma_unmap_single(&pdev->dev, buffer_info->dma,
1da177e4 4664 adapter->rx_buffer_len,
b16f53be 4665 DMA_FROM_DEVICE);
13809609 4666
6bf93ba8 4667 skb_free_frag(data);
13809609 4668 buffer_info->rxbuf.data = NULL;
679be3ba 4669 buffer_info->dma = 0;
1da177e4 4670
edbbb3ca 4671 adapter->alloc_rx_buff_failed++;
13809609 4672 break;
1da177e4 4673 }
13809609
FW
4674 buffer_info->rxbuf.data = data;
4675 skip:
1da177e4
LT
4676 rx_desc = E1000_RX_DESC(*rx_ring, i);
4677 rx_desc->buffer_addr = cpu_to_le64(buffer_info->dma);
4678
96838a40
JB
4679 if (unlikely(++i == rx_ring->count))
4680 i = 0;
1da177e4
LT
4681 buffer_info = &rx_ring->buffer_info[i];
4682 }
4683
b92ff8ee
JB
4684 if (likely(rx_ring->next_to_use != i)) {
4685 rx_ring->next_to_use = i;
4686 if (unlikely(i-- == 0))
4687 i = (rx_ring->count - 1);
4688
4689 /* Force memory writes to complete before letting h/w
4690 * know there are new descriptors to fetch. (Only
4691 * applicable for weak-ordered memory model archs,
6cfbd97b
JK
4692 * such as IA-64).
4693 */
b92ff8ee 4694 wmb();
1dc32918 4695 writel(i, hw->hw_addr + rx_ring->rdt);
b92ff8ee 4696 }
1da177e4
LT
4697}
4698
4699/**
4700 * e1000_smartspeed - Workaround for SmartSpeed on 82541 and 82547 controllers.
4701 * @adapter:
4702 **/
64798845 4703static void e1000_smartspeed(struct e1000_adapter *adapter)
1da177e4 4704{
1dc32918 4705 struct e1000_hw *hw = &adapter->hw;
406874a7
JP
4706 u16 phy_status;
4707 u16 phy_ctrl;
1da177e4 4708
1dc32918
JP
4709 if ((hw->phy_type != e1000_phy_igp) || !hw->autoneg ||
4710 !(hw->autoneg_advertised & ADVERTISE_1000_FULL))
1da177e4
LT
4711 return;
4712
96838a40 4713 if (adapter->smartspeed == 0) {
1da177e4 4714 /* If Master/Slave config fault is asserted twice,
6cfbd97b
JK
4715 * we assume back-to-back
4716 */
1dc32918 4717 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
a48954c8
JW
4718 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4719 return;
1dc32918 4720 e1000_read_phy_reg(hw, PHY_1000T_STATUS, &phy_status);
a48954c8
JW
4721 if (!(phy_status & SR_1000T_MS_CONFIG_FAULT))
4722 return;
1dc32918 4723 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
96838a40 4724 if (phy_ctrl & CR_1000T_MS_ENABLE) {
1da177e4 4725 phy_ctrl &= ~CR_1000T_MS_ENABLE;
1dc32918 4726 e1000_write_phy_reg(hw, PHY_1000T_CTRL,
1da177e4
LT
4727 phy_ctrl);
4728 adapter->smartspeed++;
1dc32918
JP
4729 if (!e1000_phy_setup_autoneg(hw) &&
4730 !e1000_read_phy_reg(hw, PHY_CTRL,
6cfbd97b 4731 &phy_ctrl)) {
1da177e4
LT
4732 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4733 MII_CR_RESTART_AUTO_NEG);
1dc32918 4734 e1000_write_phy_reg(hw, PHY_CTRL,
1da177e4
LT
4735 phy_ctrl);
4736 }
4737 }
4738 return;
96838a40 4739 } else if (adapter->smartspeed == E1000_SMARTSPEED_DOWNSHIFT) {
1da177e4 4740 /* If still no link, perhaps using 2/3 pair cable */
1dc32918 4741 e1000_read_phy_reg(hw, PHY_1000T_CTRL, &phy_ctrl);
1da177e4 4742 phy_ctrl |= CR_1000T_MS_ENABLE;
1dc32918
JP
4743 e1000_write_phy_reg(hw, PHY_1000T_CTRL, phy_ctrl);
4744 if (!e1000_phy_setup_autoneg(hw) &&
4745 !e1000_read_phy_reg(hw, PHY_CTRL, &phy_ctrl)) {
1da177e4
LT
4746 phy_ctrl |= (MII_CR_AUTO_NEG_EN |
4747 MII_CR_RESTART_AUTO_NEG);
1dc32918 4748 e1000_write_phy_reg(hw, PHY_CTRL, phy_ctrl);
1da177e4
LT
4749 }
4750 }
4751 /* Restart process after E1000_SMARTSPEED_MAX iterations */
96838a40 4752 if (adapter->smartspeed++ == E1000_SMARTSPEED_MAX)
1da177e4
LT
4753 adapter->smartspeed = 0;
4754}
4755
4756/**
4757 * e1000_ioctl -
4758 * @netdev:
4759 * @ifreq:
4760 * @cmd:
4761 **/
64798845 4762static int e1000_ioctl(struct net_device *netdev, struct ifreq *ifr, int cmd)
1da177e4
LT
4763{
4764 switch (cmd) {
4765 case SIOCGMIIPHY:
4766 case SIOCGMIIREG:
4767 case SIOCSMIIREG:
4768 return e1000_mii_ioctl(netdev, ifr, cmd);
4769 default:
4770 return -EOPNOTSUPP;
4771 }
4772}
4773
4774/**
4775 * e1000_mii_ioctl -
4776 * @netdev:
4777 * @ifreq:
4778 * @cmd:
4779 **/
64798845
JP
4780static int e1000_mii_ioctl(struct net_device *netdev, struct ifreq *ifr,
4781 int cmd)
1da177e4 4782{
60490fe0 4783 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 4784 struct e1000_hw *hw = &adapter->hw;
1da177e4
LT
4785 struct mii_ioctl_data *data = if_mii(ifr);
4786 int retval;
406874a7 4787 u16 mii_reg;
97876fc6 4788 unsigned long flags;
1da177e4 4789
1dc32918 4790 if (hw->media_type != e1000_media_type_copper)
1da177e4
LT
4791 return -EOPNOTSUPP;
4792
4793 switch (cmd) {
4794 case SIOCGMIIPHY:
1dc32918 4795 data->phy_id = hw->phy_addr;
1da177e4
LT
4796 break;
4797 case SIOCGMIIREG:
97876fc6 4798 spin_lock_irqsave(&adapter->stats_lock, flags);
1dc32918 4799 if (e1000_read_phy_reg(hw, data->reg_num & 0x1F,
97876fc6
MC
4800 &data->val_out)) {
4801 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1da177e4 4802 return -EIO;
97876fc6
MC
4803 }
4804 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1da177e4
LT
4805 break;
4806 case SIOCSMIIREG:
96838a40 4807 if (data->reg_num & ~(0x1F))
1da177e4
LT
4808 return -EFAULT;
4809 mii_reg = data->val_in;
97876fc6 4810 spin_lock_irqsave(&adapter->stats_lock, flags);
1dc32918 4811 if (e1000_write_phy_reg(hw, data->reg_num,
97876fc6
MC
4812 mii_reg)) {
4813 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1da177e4 4814 return -EIO;
97876fc6 4815 }
f0163ac4 4816 spin_unlock_irqrestore(&adapter->stats_lock, flags);
1dc32918 4817 if (hw->media_type == e1000_media_type_copper) {
1da177e4
LT
4818 switch (data->reg_num) {
4819 case PHY_CTRL:
96838a40 4820 if (mii_reg & MII_CR_POWER_DOWN)
1da177e4 4821 break;
96838a40 4822 if (mii_reg & MII_CR_AUTO_NEG_EN) {
1dc32918
JP
4823 hw->autoneg = 1;
4824 hw->autoneg_advertised = 0x2F;
1da177e4 4825 } else {
14ad2513 4826 u32 speed;
1da177e4 4827 if (mii_reg & 0x40)
14ad2513 4828 speed = SPEED_1000;
1da177e4 4829 else if (mii_reg & 0x2000)
14ad2513 4830 speed = SPEED_100;
1da177e4 4831 else
14ad2513
DD
4832 speed = SPEED_10;
4833 retval = e1000_set_spd_dplx(
4834 adapter, speed,
4835 ((mii_reg & 0x100)
4836 ? DUPLEX_FULL :
4837 DUPLEX_HALF));
f0163ac4 4838 if (retval)
1da177e4
LT
4839 return retval;
4840 }
2db10a08
AK
4841 if (netif_running(adapter->netdev))
4842 e1000_reinit_locked(adapter);
4843 else
1da177e4
LT
4844 e1000_reset(adapter);
4845 break;
4846 case M88E1000_PHY_SPEC_CTRL:
4847 case M88E1000_EXT_PHY_SPEC_CTRL:
1dc32918 4848 if (e1000_phy_reset(hw))
1da177e4
LT
4849 return -EIO;
4850 break;
4851 }
4852 } else {
4853 switch (data->reg_num) {
4854 case PHY_CTRL:
96838a40 4855 if (mii_reg & MII_CR_POWER_DOWN)
1da177e4 4856 break;
2db10a08
AK
4857 if (netif_running(adapter->netdev))
4858 e1000_reinit_locked(adapter);
4859 else
1da177e4
LT
4860 e1000_reset(adapter);
4861 break;
4862 }
4863 }
4864 break;
4865 default:
4866 return -EOPNOTSUPP;
4867 }
4868 return E1000_SUCCESS;
4869}
4870
64798845 4871void e1000_pci_set_mwi(struct e1000_hw *hw)
1da177e4
LT
4872{
4873 struct e1000_adapter *adapter = hw->back;
2648345f 4874 int ret_val = pci_set_mwi(adapter->pdev);
1da177e4 4875
96838a40 4876 if (ret_val)
feb8f478 4877 e_err(probe, "Error in setting MWI\n");
1da177e4
LT
4878}
4879
64798845 4880void e1000_pci_clear_mwi(struct e1000_hw *hw)
1da177e4
LT
4881{
4882 struct e1000_adapter *adapter = hw->back;
4883
4884 pci_clear_mwi(adapter->pdev);
4885}
4886
64798845 4887int e1000_pcix_get_mmrbc(struct e1000_hw *hw)
007755eb
PO
4888{
4889 struct e1000_adapter *adapter = hw->back;
4890 return pcix_get_mmrbc(adapter->pdev);
4891}
4892
64798845 4893void e1000_pcix_set_mmrbc(struct e1000_hw *hw, int mmrbc)
007755eb
PO
4894{
4895 struct e1000_adapter *adapter = hw->back;
4896 pcix_set_mmrbc(adapter->pdev, mmrbc);
4897}
4898
64798845 4899void e1000_io_write(struct e1000_hw *hw, unsigned long port, u32 value)
1da177e4
LT
4900{
4901 outl(value, port);
4902}
4903
5622e404
JP
4904static bool e1000_vlan_used(struct e1000_adapter *adapter)
4905{
4906 u16 vid;
4907
4908 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
4909 return true;
4910 return false;
4911}
4912
52f5509f
JP
4913static void __e1000_vlan_mode(struct e1000_adapter *adapter,
4914 netdev_features_t features)
4915{
4916 struct e1000_hw *hw = &adapter->hw;
4917 u32 ctrl;
4918
4919 ctrl = er32(CTRL);
f646968f 4920 if (features & NETIF_F_HW_VLAN_CTAG_RX) {
52f5509f
JP
4921 /* enable VLAN tag insert/strip */
4922 ctrl |= E1000_CTRL_VME;
4923 } else {
4924 /* disable VLAN tag insert/strip */
4925 ctrl &= ~E1000_CTRL_VME;
4926 }
4927 ew32(CTRL, ctrl);
4928}
5622e404
JP
4929static void e1000_vlan_filter_on_off(struct e1000_adapter *adapter,
4930 bool filter_on)
1da177e4 4931{
1dc32918 4932 struct e1000_hw *hw = &adapter->hw;
5622e404 4933 u32 rctl;
1da177e4 4934
9150b76a
JB
4935 if (!test_bit(__E1000_DOWN, &adapter->flags))
4936 e1000_irq_disable(adapter);
1da177e4 4937
52f5509f 4938 __e1000_vlan_mode(adapter, adapter->netdev->features);
5622e404 4939 if (filter_on) {
1532ecea
JB
4940 /* enable VLAN receive filtering */
4941 rctl = er32(RCTL);
4942 rctl &= ~E1000_RCTL_CFIEN;
5622e404 4943 if (!(adapter->netdev->flags & IFF_PROMISC))
1532ecea
JB
4944 rctl |= E1000_RCTL_VFE;
4945 ew32(RCTL, rctl);
4946 e1000_update_mng_vlan(adapter);
1da177e4 4947 } else {
1532ecea
JB
4948 /* disable VLAN receive filtering */
4949 rctl = er32(RCTL);
4950 rctl &= ~E1000_RCTL_VFE;
4951 ew32(RCTL, rctl);
5622e404 4952 }
fd38d7a0 4953
5622e404
JP
4954 if (!test_bit(__E1000_DOWN, &adapter->flags))
4955 e1000_irq_enable(adapter);
4956}
4957
c8f44aff 4958static void e1000_vlan_mode(struct net_device *netdev,
52f5509f 4959 netdev_features_t features)
5622e404
JP
4960{
4961 struct e1000_adapter *adapter = netdev_priv(netdev);
5622e404
JP
4962
4963 if (!test_bit(__E1000_DOWN, &adapter->flags))
4964 e1000_irq_disable(adapter);
4965
52f5509f 4966 __e1000_vlan_mode(adapter, features);
1da177e4 4967
9150b76a
JB
4968 if (!test_bit(__E1000_DOWN, &adapter->flags))
4969 e1000_irq_enable(adapter);
1da177e4
LT
4970}
4971
80d5c368
PM
4972static int e1000_vlan_rx_add_vid(struct net_device *netdev,
4973 __be16 proto, u16 vid)
1da177e4 4974{
60490fe0 4975 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 4976 struct e1000_hw *hw = &adapter->hw;
406874a7 4977 u32 vfta, index;
96838a40 4978
1dc32918 4979 if ((hw->mng_cookie.status &
96838a40
JB
4980 E1000_MNG_DHCP_COOKIE_STATUS_VLAN_SUPPORT) &&
4981 (vid == adapter->mng_vlan_id))
8e586137 4982 return 0;
5622e404
JP
4983
4984 if (!e1000_vlan_used(adapter))
4985 e1000_vlan_filter_on_off(adapter, true);
4986
1da177e4
LT
4987 /* add VID to filter table */
4988 index = (vid >> 5) & 0x7F;
1dc32918 4989 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
1da177e4 4990 vfta |= (1 << (vid & 0x1F));
1dc32918 4991 e1000_write_vfta(hw, index, vfta);
5622e404
JP
4992
4993 set_bit(vid, adapter->active_vlans);
8e586137
JP
4994
4995 return 0;
1da177e4
LT
4996}
4997
80d5c368
PM
4998static int e1000_vlan_rx_kill_vid(struct net_device *netdev,
4999 __be16 proto, u16 vid)
1da177e4 5000{
60490fe0 5001 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 5002 struct e1000_hw *hw = &adapter->hw;
406874a7 5003 u32 vfta, index;
1da177e4 5004
9150b76a
JB
5005 if (!test_bit(__E1000_DOWN, &adapter->flags))
5006 e1000_irq_disable(adapter);
9150b76a
JB
5007 if (!test_bit(__E1000_DOWN, &adapter->flags))
5008 e1000_irq_enable(adapter);
1da177e4
LT
5009
5010 /* remove VID from filter table */
5011 index = (vid >> 5) & 0x7F;
1dc32918 5012 vfta = E1000_READ_REG_ARRAY(hw, VFTA, index);
1da177e4 5013 vfta &= ~(1 << (vid & 0x1F));
1dc32918 5014 e1000_write_vfta(hw, index, vfta);
5622e404
JP
5015
5016 clear_bit(vid, adapter->active_vlans);
5017
5018 if (!e1000_vlan_used(adapter))
5019 e1000_vlan_filter_on_off(adapter, false);
8e586137
JP
5020
5021 return 0;
1da177e4
LT
5022}
5023
64798845 5024static void e1000_restore_vlan(struct e1000_adapter *adapter)
1da177e4 5025{
5622e404 5026 u16 vid;
1da177e4 5027
5622e404
JP
5028 if (!e1000_vlan_used(adapter))
5029 return;
5030
5031 e1000_vlan_filter_on_off(adapter, true);
5032 for_each_set_bit(vid, adapter->active_vlans, VLAN_N_VID)
80d5c368 5033 e1000_vlan_rx_add_vid(adapter->netdev, htons(ETH_P_8021Q), vid);
1da177e4
LT
5034}
5035
14ad2513 5036int e1000_set_spd_dplx(struct e1000_adapter *adapter, u32 spd, u8 dplx)
1da177e4 5037{
1dc32918
JP
5038 struct e1000_hw *hw = &adapter->hw;
5039
5040 hw->autoneg = 0;
1da177e4 5041
14ad2513 5042 /* Make sure dplx is at most 1 bit and lsb of speed is not set
6cfbd97b
JK
5043 * for the switch() below to work
5044 */
14ad2513
DD
5045 if ((spd & 1) || (dplx & ~1))
5046 goto err_inval;
5047
6921368f 5048 /* Fiber NICs only allow 1000 gbps Full duplex */
1dc32918 5049 if ((hw->media_type == e1000_media_type_fiber) &&
14ad2513
DD
5050 spd != SPEED_1000 &&
5051 dplx != DUPLEX_FULL)
5052 goto err_inval;
6921368f 5053
14ad2513 5054 switch (spd + dplx) {
1da177e4 5055 case SPEED_10 + DUPLEX_HALF:
1dc32918 5056 hw->forced_speed_duplex = e1000_10_half;
1da177e4
LT
5057 break;
5058 case SPEED_10 + DUPLEX_FULL:
1dc32918 5059 hw->forced_speed_duplex = e1000_10_full;
1da177e4
LT
5060 break;
5061 case SPEED_100 + DUPLEX_HALF:
1dc32918 5062 hw->forced_speed_duplex = e1000_100_half;
1da177e4
LT
5063 break;
5064 case SPEED_100 + DUPLEX_FULL:
1dc32918 5065 hw->forced_speed_duplex = e1000_100_full;
1da177e4
LT
5066 break;
5067 case SPEED_1000 + DUPLEX_FULL:
1dc32918
JP
5068 hw->autoneg = 1;
5069 hw->autoneg_advertised = ADVERTISE_1000_FULL;
1da177e4
LT
5070 break;
5071 case SPEED_1000 + DUPLEX_HALF: /* not supported */
5072 default:
14ad2513 5073 goto err_inval;
1da177e4 5074 }
c819bbd5
JB
5075
5076 /* clear MDI, MDI(-X) override is only allowed when autoneg enabled */
5077 hw->mdix = AUTO_ALL_MODES;
5078
1da177e4 5079 return 0;
14ad2513
DD
5080
5081err_inval:
5082 e_err(probe, "Unsupported Speed/Duplex configuration\n");
5083 return -EINVAL;
1da177e4
LT
5084}
5085
b43fcd7d 5086static int __e1000_shutdown(struct pci_dev *pdev, bool *enable_wake)
1da177e4
LT
5087{
5088 struct net_device *netdev = pci_get_drvdata(pdev);
60490fe0 5089 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 5090 struct e1000_hw *hw = &adapter->hw;
406874a7
JP
5091 u32 ctrl, ctrl_ext, rctl, status;
5092 u32 wufc = adapter->wol;
6fdfef16 5093#ifdef CONFIG_PM
240b1710 5094 int retval = 0;
6fdfef16 5095#endif
1da177e4
LT
5096
5097 netif_device_detach(netdev);
5098
2db10a08 5099 if (netif_running(netdev)) {
6a7d64e3 5100 int count = E1000_CHECK_RESET_COUNT;
5101
5102 while (test_bit(__E1000_RESETTING, &adapter->flags) && count--)
5103 usleep_range(10000, 20000);
5104
2db10a08 5105 WARN_ON(test_bit(__E1000_RESETTING, &adapter->flags));
1da177e4 5106 e1000_down(adapter);
2db10a08 5107 }
1da177e4 5108
2f82665f 5109#ifdef CONFIG_PM
1d33e9c6 5110 retval = pci_save_state(pdev);
3a3847e0 5111 if (retval)
2f82665f
JB
5112 return retval;
5113#endif
5114
1dc32918 5115 status = er32(STATUS);
96838a40 5116 if (status & E1000_STATUS_LU)
1da177e4
LT
5117 wufc &= ~E1000_WUFC_LNKC;
5118
96838a40 5119 if (wufc) {
1da177e4 5120 e1000_setup_rctl(adapter);
db0ce50d 5121 e1000_set_rx_mode(netdev);
1da177e4 5122
b868179c
DN
5123 rctl = er32(RCTL);
5124
1da177e4 5125 /* turn on all-multi mode if wake on multicast is enabled */
b868179c 5126 if (wufc & E1000_WUFC_MC)
1da177e4 5127 rctl |= E1000_RCTL_MPE;
b868179c
DN
5128
5129 /* enable receives in the hardware */
5130 ew32(RCTL, rctl | E1000_RCTL_EN);
1da177e4 5131
1dc32918
JP
5132 if (hw->mac_type >= e1000_82540) {
5133 ctrl = er32(CTRL);
1da177e4
LT
5134 /* advertise wake from D3Cold */
5135 #define E1000_CTRL_ADVD3WUC 0x00100000
5136 /* phy power management enable */
5137 #define E1000_CTRL_EN_PHY_PWR_MGMT 0x00200000
5138 ctrl |= E1000_CTRL_ADVD3WUC |
5139 E1000_CTRL_EN_PHY_PWR_MGMT;
1dc32918 5140 ew32(CTRL, ctrl);
1da177e4
LT
5141 }
5142
1dc32918 5143 if (hw->media_type == e1000_media_type_fiber ||
1532ecea 5144 hw->media_type == e1000_media_type_internal_serdes) {
1da177e4 5145 /* keep the laser running in D3 */
1dc32918 5146 ctrl_ext = er32(CTRL_EXT);
1da177e4 5147 ctrl_ext |= E1000_CTRL_EXT_SDP7_DATA;
1dc32918 5148 ew32(CTRL_EXT, ctrl_ext);
1da177e4
LT
5149 }
5150
1dc32918
JP
5151 ew32(WUC, E1000_WUC_PME_EN);
5152 ew32(WUFC, wufc);
1da177e4 5153 } else {
1dc32918
JP
5154 ew32(WUC, 0);
5155 ew32(WUFC, 0);
1da177e4
LT
5156 }
5157
0fccd0e9
JG
5158 e1000_release_manageability(adapter);
5159
b43fcd7d
RW
5160 *enable_wake = !!wufc;
5161
0fccd0e9 5162 /* make sure adapter isn't asleep if manageability is enabled */
b43fcd7d
RW
5163 if (adapter->en_mng_pt)
5164 *enable_wake = true;
1da177e4 5165
edd106fc
AK
5166 if (netif_running(netdev))
5167 e1000_free_irq(adapter);
5168
1da177e4 5169 pci_disable_device(pdev);
240b1710 5170
1da177e4
LT
5171 return 0;
5172}
5173
2f82665f 5174#ifdef CONFIG_PM
b43fcd7d
RW
5175static int e1000_suspend(struct pci_dev *pdev, pm_message_t state)
5176{
5177 int retval;
5178 bool wake;
5179
5180 retval = __e1000_shutdown(pdev, &wake);
5181 if (retval)
5182 return retval;
5183
5184 if (wake) {
5185 pci_prepare_to_sleep(pdev);
5186 } else {
5187 pci_wake_from_d3(pdev, false);
5188 pci_set_power_state(pdev, PCI_D3hot);
5189 }
5190
5191 return 0;
5192}
5193
64798845 5194static int e1000_resume(struct pci_dev *pdev)
1da177e4
LT
5195{
5196 struct net_device *netdev = pci_get_drvdata(pdev);
60490fe0 5197 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 5198 struct e1000_hw *hw = &adapter->hw;
406874a7 5199 u32 err;
1da177e4 5200
d0e027db 5201 pci_set_power_state(pdev, PCI_D0);
1d33e9c6 5202 pci_restore_state(pdev);
dbb5aaeb 5203 pci_save_state(pdev);
81250297
TI
5204
5205 if (adapter->need_ioport)
5206 err = pci_enable_device(pdev);
5207 else
5208 err = pci_enable_device_mem(pdev);
c7be73bc 5209 if (err) {
675ad473 5210 pr_err("Cannot enable PCI device from suspend\n");
3d1dd8cb
AK
5211 return err;
5212 }
a4cb847d 5213 pci_set_master(pdev);
1da177e4 5214
d0e027db
AK
5215 pci_enable_wake(pdev, PCI_D3hot, 0);
5216 pci_enable_wake(pdev, PCI_D3cold, 0);
1da177e4 5217
c7be73bc
JP
5218 if (netif_running(netdev)) {
5219 err = e1000_request_irq(adapter);
5220 if (err)
5221 return err;
5222 }
edd106fc
AK
5223
5224 e1000_power_up_phy(adapter);
1da177e4 5225 e1000_reset(adapter);
1dc32918 5226 ew32(WUS, ~0);
1da177e4 5227
0fccd0e9
JG
5228 e1000_init_manageability(adapter);
5229
96838a40 5230 if (netif_running(netdev))
1da177e4
LT
5231 e1000_up(adapter);
5232
5233 netif_device_attach(netdev);
5234
1da177e4
LT
5235 return 0;
5236}
5237#endif
c653e635
AK
5238
5239static void e1000_shutdown(struct pci_dev *pdev)
5240{
b43fcd7d
RW
5241 bool wake;
5242
5243 __e1000_shutdown(pdev, &wake);
5244
5245 if (system_state == SYSTEM_POWER_OFF) {
5246 pci_wake_from_d3(pdev, wake);
5247 pci_set_power_state(pdev, PCI_D3hot);
5248 }
c653e635
AK
5249}
5250
1da177e4 5251#ifdef CONFIG_NET_POLL_CONTROLLER
6cfbd97b 5252/* Polling 'interrupt' - used by things like netconsole to send skbs
1da177e4
LT
5253 * without having to re-enable interrupts. It's not called while
5254 * the interrupt routine is executing.
5255 */
64798845 5256static void e1000_netpoll(struct net_device *netdev)
1da177e4 5257{
60490fe0 5258 struct e1000_adapter *adapter = netdev_priv(netdev);
d3d9e484 5259
1da177e4 5260 disable_irq(adapter->pdev->irq);
7d12e780 5261 e1000_intr(adapter->pdev->irq, netdev);
1da177e4
LT
5262 enable_irq(adapter->pdev->irq);
5263}
5264#endif
5265
9026729b
AK
5266/**
5267 * e1000_io_error_detected - called when PCI error is detected
5268 * @pdev: Pointer to PCI device
120a5d0d 5269 * @state: The current pci connection state
9026729b
AK
5270 *
5271 * This function is called after a PCI bus error affecting
5272 * this device has been detected.
5273 */
64798845
JP
5274static pci_ers_result_t e1000_io_error_detected(struct pci_dev *pdev,
5275 pci_channel_state_t state)
9026729b
AK
5276{
5277 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 5278 struct e1000_adapter *adapter = netdev_priv(netdev);
9026729b
AK
5279
5280 netif_device_detach(netdev);
5281
eab63302
AD
5282 if (state == pci_channel_io_perm_failure)
5283 return PCI_ERS_RESULT_DISCONNECT;
5284
9026729b
AK
5285 if (netif_running(netdev))
5286 e1000_down(adapter);
72e8d6bb 5287 pci_disable_device(pdev);
9026729b
AK
5288
5289 /* Request a slot slot reset. */
5290 return PCI_ERS_RESULT_NEED_RESET;
5291}
5292
5293/**
5294 * e1000_io_slot_reset - called after the pci bus has been reset.
5295 * @pdev: Pointer to PCI device
5296 *
5297 * Restart the card from scratch, as if from a cold-boot. Implementation
5298 * resembles the first-half of the e1000_resume routine.
5299 */
5300static pci_ers_result_t e1000_io_slot_reset(struct pci_dev *pdev)
5301{
5302 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 5303 struct e1000_adapter *adapter = netdev_priv(netdev);
1dc32918 5304 struct e1000_hw *hw = &adapter->hw;
81250297 5305 int err;
9026729b 5306
81250297
TI
5307 if (adapter->need_ioport)
5308 err = pci_enable_device(pdev);
5309 else
5310 err = pci_enable_device_mem(pdev);
5311 if (err) {
675ad473 5312 pr_err("Cannot re-enable PCI device after reset.\n");
9026729b
AK
5313 return PCI_ERS_RESULT_DISCONNECT;
5314 }
5315 pci_set_master(pdev);
5316
dbf38c94
LV
5317 pci_enable_wake(pdev, PCI_D3hot, 0);
5318 pci_enable_wake(pdev, PCI_D3cold, 0);
9026729b 5319
9026729b 5320 e1000_reset(adapter);
1dc32918 5321 ew32(WUS, ~0);
9026729b
AK
5322
5323 return PCI_ERS_RESULT_RECOVERED;
5324}
5325
5326/**
5327 * e1000_io_resume - called when traffic can start flowing again.
5328 * @pdev: Pointer to PCI device
5329 *
5330 * This callback is called when the error recovery driver tells us that
5331 * its OK to resume normal operation. Implementation resembles the
5332 * second-half of the e1000_resume routine.
5333 */
5334static void e1000_io_resume(struct pci_dev *pdev)
5335{
5336 struct net_device *netdev = pci_get_drvdata(pdev);
4cf1653a 5337 struct e1000_adapter *adapter = netdev_priv(netdev);
0fccd0e9
JG
5338
5339 e1000_init_manageability(adapter);
9026729b
AK
5340
5341 if (netif_running(netdev)) {
5342 if (e1000_up(adapter)) {
675ad473 5343 pr_info("can't bring device back up after reset\n");
9026729b
AK
5344 return;
5345 }
5346 }
5347
5348 netif_device_attach(netdev);
9026729b
AK
5349}
5350
1da177e4 5351/* e1000_main.c */
This page took 1.692991 seconds and 5 git commands to generate.