Merge tag 'powerpc-4.6-5' of git://git.kernel.org/pub/scm/linux/kernel/git/powerpc...
[deliverable/linux.git] / drivers / net / ethernet / intel / i40evf / i40e_txrx.h
CommitLineData
5321a21c
GR
1/*******************************************************************************
2 *
3 * Intel Ethernet Controller XL710 Family Linux Virtual Function Driver
ecc6a239 4 * Copyright(c) 2013 - 2016 Intel Corporation.
5321a21c
GR
5 *
6 * This program is free software; you can redistribute it and/or modify it
7 * under the terms and conditions of the GNU General Public License,
8 * version 2, as published by the Free Software Foundation.
9 *
10 * This program is distributed in the hope it will be useful, but WITHOUT
11 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
12 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
13 * more details.
14 *
b831607d
JB
15 * You should have received a copy of the GNU General Public License along
16 * with this program. If not, see <http://www.gnu.org/licenses/>.
17 *
5321a21c
GR
18 * The full GNU General Public License is included in this distribution in
19 * the file called "COPYING".
20 *
21 * Contact Information:
22 * e1000-devel Mailing List <e1000-devel@lists.sourceforge.net>
23 * Intel Corporation, 5200 N.E. Elam Young Parkway, Hillsboro, OR 97124-6497
24 *
25 ******************************************************************************/
26
27#ifndef _I40E_TXRX_H_
28#define _I40E_TXRX_H_
29
aee8087f 30/* Interrupt Throttling and Rate Limiting Goodies */
5321a21c
GR
31
32#define I40E_MAX_ITR 0x0FF0 /* reg uses 2 usec resolution */
79442d38 33#define I40E_MIN_ITR 0x0001 /* reg uses 2 usec resolution */
5321a21c 34#define I40E_ITR_100K 0x0005
c56625d5 35#define I40E_ITR_50K 0x000A
5321a21c 36#define I40E_ITR_20K 0x0019
c56625d5 37#define I40E_ITR_18K 0x001B
5321a21c
GR
38#define I40E_ITR_8K 0x003E
39#define I40E_ITR_4K 0x007A
ac26fc13 40#define I40E_MAX_INTRL 0x3B /* reg uses 4 usec resolution */
ee2319cf
JB
41#define I40E_ITR_RX_DEF I40E_ITR_20K
42#define I40E_ITR_TX_DEF I40E_ITR_20K
5321a21c
GR
43#define I40E_ITR_DYNAMIC 0x8000 /* use top bit as a flag */
44#define I40E_MIN_INT_RATE 250 /* ~= 1000000 / (I40E_MAX_ITR * 2) */
45#define I40E_MAX_INT_RATE 500000 /* == 1000000 / (I40E_MIN_ITR * 2) */
46#define I40E_DEFAULT_IRQ_WORK 256
47#define ITR_TO_REG(setting) ((setting & ~I40E_ITR_DYNAMIC) >> 1)
48#define ITR_IS_DYNAMIC(setting) (!!(setting & I40E_ITR_DYNAMIC))
49#define ITR_REG_TO_USEC(itr_reg) (itr_reg << 1)
ac26fc13
JB
50/* 0x40 is the enable bit for interrupt rate limiting, and must be set if
51 * the value of the rate limit is non-zero
52 */
53#define INTRL_ENA BIT(6)
54#define INTRL_REG_TO_USEC(intrl) ((intrl & ~INTRL_ENA) << 2)
55#define INTRL_USEC_TO_REG(set) ((set) ? ((set) >> 2) | INTRL_ENA : 0)
56#define I40E_INTRL_8K 125 /* 8000 ints/sec */
57#define I40E_INTRL_62K 16 /* 62500 ints/sec */
58#define I40E_INTRL_83K 12 /* 83333 ints/sec */
5321a21c
GR
59
60#define I40E_QUEUE_END_OF_LIST 0x7FF
61
62/* this enum matches hardware bits and is meant to be used by DYN_CTLN
63 * registers and QINT registers or more generally anywhere in the manual
64 * mentioning ITR_INDX, ITR_NONE cannot be used as an index 'n' into any
65 * register but instead is a special value meaning "don't update" ITR0/1/2.
66 */
67enum i40e_dyn_idx_t {
68 I40E_IDX_ITR0 = 0,
69 I40E_IDX_ITR1 = 1,
70 I40E_IDX_ITR2 = 2,
71 I40E_ITR_NONE = 3 /* ITR_NONE must not be used as an index */
72};
73
74/* these are indexes into ITRN registers */
75#define I40E_RX_ITR I40E_IDX_ITR0
76#define I40E_TX_ITR I40E_IDX_ITR1
77#define I40E_PE_ITR I40E_IDX_ITR2
78
79/* Supported RSS offloads */
80#define I40E_DEFAULT_RSS_HENA ( \
41a1d04b
JB
81 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_UDP) | \
82 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_SCTP) | \
83 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP) | \
84 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_OTHER) | \
85 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV4) | \
86 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_UDP) | \
87 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP) | \
88 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_SCTP) | \
89 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_OTHER) | \
90 BIT_ULL(I40E_FILTER_PCTYPE_FRAG_IPV6) | \
91 BIT_ULL(I40E_FILTER_PCTYPE_L2_PAYLOAD))
5321a21c 92
e25d00b8 93#define I40E_DEFAULT_RSS_HENA_EXPANDED (I40E_DEFAULT_RSS_HENA | \
d08f5558
JB
94 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV4_TCP_SYN_NO_ACK) | \
95 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV4_UDP) | \
96 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV4_UDP) | \
97 BIT_ULL(I40E_FILTER_PCTYPE_NONF_IPV6_TCP_SYN_NO_ACK) | \
98 BIT_ULL(I40E_FILTER_PCTYPE_NONF_UNICAST_IPV6_UDP) | \
99 BIT_ULL(I40E_FILTER_PCTYPE_NONF_MULTICAST_IPV6_UDP))
e25d00b8
ASJ
100
101#define i40e_pf_get_default_rss_hena(pf) \
102 (((pf)->flags & I40E_FLAG_MULTIPLE_TCP_UDP_RSS_PCTYPE) ? \
d08f5558 103 I40E_DEFAULT_RSS_HENA_EXPANDED : I40E_DEFAULT_RSS_HENA)
e25d00b8 104
5321a21c
GR
105/* Supported Rx Buffer Sizes */
106#define I40E_RXBUFFER_512 512 /* Used for packet split */
107#define I40E_RXBUFFER_2048 2048
108#define I40E_RXBUFFER_3072 3072 /* For FCoE MTU of 2158 */
109#define I40E_RXBUFFER_4096 4096
110#define I40E_RXBUFFER_8192 8192
111#define I40E_MAX_RXBUFFER 9728 /* largest size for single descriptor */
112
113/* NOTE: netdev_alloc_skb reserves up to 64 bytes, NET_IP_ALIGN means we
114 * reserve 2 more, and skb_shared_info adds an additional 384 bytes more,
115 * this adds up to 512 bytes of extra data meaning the smallest allocation
116 * we could have is 1K.
117 * i.e. RXBUFFER_512 --> size-1024 slab
118 */
119#define I40E_RX_HDR_SIZE I40E_RXBUFFER_512
120
121/* How many Rx Buffers do we bundle into one write to the hardware ? */
122#define I40E_RX_BUFFER_WRITE 16 /* Must be power of 2 */
a132af24
MW
123#define I40E_RX_INCREMENT(r, i) \
124 do { \
125 (i)++; \
126 if ((i) == (r)->count) \
127 i = 0; \
128 r->next_to_clean = i; \
129 } while (0)
130
5321a21c
GR
131#define I40E_RX_NEXT_DESC(r, i, n) \
132 do { \
133 (i)++; \
134 if ((i) == (r)->count) \
135 i = 0; \
136 (n) = I40E_RX_DESC((r), (i)); \
137 } while (0)
138
139#define I40E_RX_NEXT_DESC_PREFETCH(r, i, n) \
140 do { \
141 I40E_RX_NEXT_DESC((r), (i), (n)); \
142 prefetch((n)); \
143 } while (0)
144
145#define i40e_rx_desc i40e_32byte_rx_desc
146
71da6197 147#define I40E_MAX_BUFFER_TXD 8
5321a21c 148#define I40E_MIN_TX_LEN 17
980093eb 149#define I40E_MAX_DATA_PER_TXD 8192
5321a21c
GR
150
151/* Tx Descriptors needed, worst case */
152#define TXD_USE_COUNT(S) DIV_ROUND_UP((S), I40E_MAX_DATA_PER_TXD)
980093eb 153#define DESC_NEEDED (MAX_SKB_FRAGS + 4)
810b3ae4 154#define I40E_MIN_DESC_PENDING 4
5321a21c 155
41a1d04b
JB
156#define I40E_TX_FLAGS_HW_VLAN BIT(1)
157#define I40E_TX_FLAGS_SW_VLAN BIT(2)
158#define I40E_TX_FLAGS_TSO BIT(3)
159#define I40E_TX_FLAGS_IPV4 BIT(4)
160#define I40E_TX_FLAGS_IPV6 BIT(5)
161#define I40E_TX_FLAGS_FCCRC BIT(6)
162#define I40E_TX_FLAGS_FSO BIT(7)
163#define I40E_TX_FLAGS_FD_SB BIT(9)
164#define I40E_TX_FLAGS_VXLAN_TUNNEL BIT(10)
5321a21c
GR
165#define I40E_TX_FLAGS_VLAN_MASK 0xffff0000
166#define I40E_TX_FLAGS_VLAN_PRIO_MASK 0xe0000000
167#define I40E_TX_FLAGS_VLAN_PRIO_SHIFT 29
168#define I40E_TX_FLAGS_VLAN_SHIFT 16
169
170struct i40e_tx_buffer {
171 struct i40e_tx_desc *next_to_watch;
49d7d933
ASJ
172 union {
173 struct sk_buff *skb;
174 void *raw_buf;
175 };
5321a21c
GR
176 unsigned int bytecount;
177 unsigned short gso_segs;
6995b36c 178
5321a21c
GR
179 DEFINE_DMA_UNMAP_ADDR(dma);
180 DEFINE_DMA_UNMAP_LEN(len);
181 u32 tx_flags;
182};
183
184struct i40e_rx_buffer {
185 struct sk_buff *skb;
a132af24 186 void *hdr_buf;
5321a21c
GR
187 dma_addr_t dma;
188 struct page *page;
189 dma_addr_t page_dma;
190 unsigned int page_offset;
191};
192
193struct i40e_queue_stats {
194 u64 packets;
195 u64 bytes;
196};
197
198struct i40e_tx_queue_stats {
199 u64 restart_queue;
200 u64 tx_busy;
201 u64 tx_done_old;
2fc3d715 202 u64 tx_linearize;
164c9f54 203 u64 tx_force_wb;
dd353109 204 u64 tx_lost_interrupt;
5321a21c
GR
205};
206
207struct i40e_rx_queue_stats {
208 u64 non_eop_descs;
209 u64 alloc_page_failed;
210 u64 alloc_buff_failed;
f16704e5
MW
211 u64 page_reuse_count;
212 u64 realloc_count;
5321a21c
GR
213};
214
215enum i40e_ring_state_t {
216 __I40E_TX_FDIR_INIT_DONE,
217 __I40E_TX_XPS_INIT_DONE,
5321a21c 218 __I40E_RX_PS_ENABLED,
5321a21c
GR
219 __I40E_RX_16BYTE_DESC_ENABLED,
220};
221
222#define ring_is_ps_enabled(ring) \
223 test_bit(__I40E_RX_PS_ENABLED, &(ring)->state)
224#define set_ring_ps_enabled(ring) \
225 set_bit(__I40E_RX_PS_ENABLED, &(ring)->state)
226#define clear_ring_ps_enabled(ring) \
227 clear_bit(__I40E_RX_PS_ENABLED, &(ring)->state)
5321a21c
GR
228#define ring_is_16byte_desc_enabled(ring) \
229 test_bit(__I40E_RX_16BYTE_DESC_ENABLED, &(ring)->state)
230#define set_ring_16byte_desc_enabled(ring) \
231 set_bit(__I40E_RX_16BYTE_DESC_ENABLED, &(ring)->state)
232#define clear_ring_16byte_desc_enabled(ring) \
233 clear_bit(__I40E_RX_16BYTE_DESC_ENABLED, &(ring)->state)
234
235/* struct that defines a descriptor ring, associated with a VSI */
236struct i40e_ring {
237 struct i40e_ring *next; /* pointer to next ring in q_vector */
238 void *desc; /* Descriptor ring memory */
239 struct device *dev; /* Used for DMA mapping */
240 struct net_device *netdev; /* netdev ring maps to */
241 union {
242 struct i40e_tx_buffer *tx_bi;
243 struct i40e_rx_buffer *rx_bi;
244 };
245 unsigned long state;
246 u16 queue_index; /* Queue number of ring */
247 u8 dcb_tc; /* Traffic class of ring */
248 u8 __iomem *tail;
249
250 u16 count; /* Number of descriptors */
251 u16 reg_idx; /* HW register index of the ring */
252 u16 rx_hdr_len;
253 u16 rx_buf_len;
254 u8 dtype;
255#define I40E_RX_DTYPE_NO_SPLIT 0
a132af24
MW
256#define I40E_RX_DTYPE_HEADER_SPLIT 1
257#define I40E_RX_DTYPE_SPLIT_ALWAYS 2
5321a21c
GR
258#define I40E_RX_SPLIT_L2 0x1
259#define I40E_RX_SPLIT_IP 0x2
260#define I40E_RX_SPLIT_TCP_UDP 0x4
261#define I40E_RX_SPLIT_SCTP 0x8
262
263 /* used in interrupt processing */
264 u16 next_to_use;
265 u16 next_to_clean;
266
267 u8 atr_sample_rate;
268 u8 atr_count;
269
270 bool ring_active; /* is ring online or not */
c29af37f 271 bool arm_wb; /* do something to arm write back */
6a7fded7
ASJ
272 u8 packet_stride;
273#define I40E_TXR_FLAGS_LAST_XMIT_MORE_SET BIT(2)
5321a21c 274
8e0764b4
ASJ
275 u16 flags;
276#define I40E_TXR_FLAGS_WB_ON_ITR BIT(0)
527274c7 277
5321a21c
GR
278 /* stats structs */
279 struct i40e_queue_stats stats;
280 struct u64_stats_sync syncp;
281 union {
282 struct i40e_tx_queue_stats tx_stats;
283 struct i40e_rx_queue_stats rx_stats;
284 };
285
286 unsigned int size; /* length of descriptor ring in bytes */
287 dma_addr_t dma; /* physical address of ring */
288
289 struct i40e_vsi *vsi; /* Backreference to associated VSI */
290 struct i40e_q_vector *q_vector; /* Backreference to associated vector */
291
292 struct rcu_head rcu; /* to avoid race on free */
293} ____cacheline_internodealigned_in_smp;
294
295enum i40e_latency_range {
296 I40E_LOWEST_LATENCY = 0,
297 I40E_LOW_LATENCY = 1,
298 I40E_BULK_LATENCY = 2,
c56625d5 299 I40E_ULTRA_LATENCY = 3,
5321a21c
GR
300};
301
302struct i40e_ring_container {
303 /* array of pointers to rings */
304 struct i40e_ring *ring;
305 unsigned int total_bytes; /* total bytes processed this int */
306 unsigned int total_packets; /* total packets processed this int */
307 u16 count;
308 enum i40e_latency_range latency_range;
309 u16 itr;
310};
311
312/* iterator for handling rings in ring container */
313#define i40e_for_each_ring(pos, head) \
314 for (pos = (head).ring; pos != NULL; pos = pos->next)
315
c2e245ab
JB
316bool i40evf_alloc_rx_buffers_ps(struct i40e_ring *rxr, u16 cleaned_count);
317bool i40evf_alloc_rx_buffers_1buf(struct i40e_ring *rxr, u16 cleaned_count);
a132af24 318void i40evf_alloc_rx_headers(struct i40e_ring *rxr);
5321a21c
GR
319netdev_tx_t i40evf_xmit_frame(struct sk_buff *skb, struct net_device *netdev);
320void i40evf_clean_tx_ring(struct i40e_ring *tx_ring);
321void i40evf_clean_rx_ring(struct i40e_ring *rx_ring);
322int i40evf_setup_tx_descriptors(struct i40e_ring *tx_ring);
323int i40evf_setup_rx_descriptors(struct i40e_ring *rx_ring);
324void i40evf_free_tx_resources(struct i40e_ring *tx_ring);
325void i40evf_free_rx_resources(struct i40e_ring *rx_ring);
326int i40evf_napi_poll(struct napi_struct *napi, int budget);
ecc6a239 327void i40evf_force_wb(struct i40e_vsi *vsi, struct i40e_q_vector *q_vector);
dd353109 328u32 i40evf_get_tx_pending(struct i40e_ring *ring, bool in_sw);
4ec441df 329int __i40evf_maybe_stop_tx(struct i40e_ring *tx_ring, int size);
2d37490b 330bool __i40evf_chk_linearize(struct sk_buff *skb);
9c6c1259
KP
331
332/**
333 * i40e_get_head - Retrieve head from head writeback
334 * @tx_ring: Tx ring to fetch head of
335 *
336 * Returns value of Tx ring head based on value stored
337 * in head write-back location
338 **/
339static inline u32 i40e_get_head(struct i40e_ring *tx_ring)
340{
341 void *head = (struct i40e_tx_desc *)tx_ring->desc + tx_ring->count;
342
343 return le32_to_cpu(*(volatile __le32 *)head);
344}
4ec441df
AD
345
346/**
347 * i40e_xmit_descriptor_count - calculate number of Tx descriptors needed
348 * @skb: send buffer
349 * @tx_ring: ring to send buffer on
350 *
351 * Returns number of data descriptors needed for this skb. Returns 0 to indicate
352 * there is not enough descriptors available in this ring since we need at least
353 * one descriptor.
354 **/
355static inline int i40e_xmit_descriptor_count(struct sk_buff *skb)
356{
357 const struct skb_frag_struct *frag = &skb_shinfo(skb)->frags[0];
358 unsigned int nr_frags = skb_shinfo(skb)->nr_frags;
359 int count = 0, size = skb_headlen(skb);
360
361 for (;;) {
362 count += TXD_USE_COUNT(size);
363
364 if (!nr_frags--)
365 break;
366
367 size = skb_frag_size(frag++);
368 }
369
370 return count;
371}
372
373/**
374 * i40e_maybe_stop_tx - 1st level check for Tx stop conditions
375 * @tx_ring: the ring to be checked
376 * @size: the size buffer we want to assure is available
377 *
378 * Returns 0 if stop is not needed
379 **/
380static inline int i40e_maybe_stop_tx(struct i40e_ring *tx_ring, int size)
381{
382 if (likely(I40E_DESC_UNUSED(tx_ring) >= size))
383 return 0;
384 return __i40evf_maybe_stop_tx(tx_ring, size);
385}
2d37490b
AD
386
387/**
388 * i40e_chk_linearize - Check if there are more than 8 fragments per packet
389 * @skb: send buffer
390 * @count: number of buffers used
391 *
392 * Note: Our HW can't scatter-gather more than 8 fragments to build
393 * a packet on the wire and so we need to figure out the cases where we
394 * need to linearize the skb.
395 **/
396static inline bool i40e_chk_linearize(struct sk_buff *skb, int count)
397{
3f3f7cb8
AD
398 /* Both TSO and single send will work if count is less than 8 */
399 if (likely(count < I40E_MAX_BUFFER_TXD))
2d37490b
AD
400 return false;
401
3f3f7cb8
AD
402 if (skb_is_gso(skb))
403 return __i40evf_chk_linearize(skb);
404
405 /* we can support up to 8 data buffers for a single send */
406 return count != I40E_MAX_BUFFER_TXD;
2d37490b 407}
5321a21c 408#endif /* _I40E_TXRX_H_ */
This page took 0.188739 seconds and 5 git commands to generate.