Merge tag 'staging-4.6-rc7' of git://git.kernel.org/pub/scm/linux/kernel/git/gregkh...
[deliverable/linux.git] / fs / ext4 / crypto.c
CommitLineData
b30ab0e0
MH
1/*
2 * linux/fs/ext4/crypto.c
3 *
4 * Copyright (C) 2015, Google, Inc.
5 *
6 * This contains encryption functions for ext4
7 *
8 * Written by Michael Halcrow, 2014.
9 *
10 * Filename encryption additions
11 * Uday Savagaonkar, 2014
12 * Encryption policy handling additions
13 * Ildar Muslukhov, 2014
14 *
15 * This has not yet undergone a rigorous security audit.
16 *
17 * The usage of AES-XTS should conform to recommendations in NIST
18 * Special Publication 800-38E and IEEE P1619/D16.
19 */
20
3f32a5be 21#include <crypto/skcipher.h>
b30ab0e0
MH
22#include <keys/user-type.h>
23#include <keys/encrypted-type.h>
b30ab0e0
MH
24#include <linux/ecryptfs.h>
25#include <linux/gfp.h>
26#include <linux/kernel.h>
27#include <linux/key.h>
28#include <linux/list.h>
29#include <linux/mempool.h>
30#include <linux/module.h>
31#include <linux/mutex.h>
32#include <linux/random.h>
33#include <linux/scatterlist.h>
34#include <linux/spinlock_types.h>
03a8bb0e 35#include <linux/namei.h>
b30ab0e0
MH
36
37#include "ext4_extents.h"
38#include "xattr.h"
39
40/* Encryption added and removed here! (L: */
41
42static unsigned int num_prealloc_crypto_pages = 32;
43static unsigned int num_prealloc_crypto_ctxs = 128;
44
45module_param(num_prealloc_crypto_pages, uint, 0444);
46MODULE_PARM_DESC(num_prealloc_crypto_pages,
47 "Number of crypto pages to preallocate");
48module_param(num_prealloc_crypto_ctxs, uint, 0444);
49MODULE_PARM_DESC(num_prealloc_crypto_ctxs,
50 "Number of crypto contexts to preallocate");
51
52static mempool_t *ext4_bounce_page_pool;
53
54static LIST_HEAD(ext4_free_crypto_ctxs);
55static DEFINE_SPINLOCK(ext4_crypto_ctx_lock);
56
8ee03714
TT
57static struct kmem_cache *ext4_crypto_ctx_cachep;
58struct kmem_cache *ext4_crypt_info_cachep;
59
b30ab0e0
MH
60/**
61 * ext4_release_crypto_ctx() - Releases an encryption context
62 * @ctx: The encryption context to release.
63 *
64 * If the encryption context was allocated from the pre-allocated pool, returns
65 * it to that pool. Else, frees it.
66 *
67 * If there's a bounce page in the context, this frees that.
68 */
69void ext4_release_crypto_ctx(struct ext4_crypto_ctx *ctx)
70{
71 unsigned long flags;
72
3dbb5eb9
TT
73 if (ctx->flags & EXT4_WRITE_PATH_FL && ctx->w.bounce_page)
74 mempool_free(ctx->w.bounce_page, ext4_bounce_page_pool);
614def70
TT
75 ctx->w.bounce_page = NULL;
76 ctx->w.control_page = NULL;
b30ab0e0 77 if (ctx->flags & EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL) {
8ee03714 78 kmem_cache_free(ext4_crypto_ctx_cachep, ctx);
b30ab0e0
MH
79 } else {
80 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
81 list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
82 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
83 }
84}
85
b30ab0e0
MH
86/**
87 * ext4_get_crypto_ctx() - Gets an encryption context
88 * @inode: The inode for which we are doing the crypto
89 *
90 * Allocates and initializes an encryption context.
91 *
92 * Return: An allocated and initialized encryption context on success; error
93 * value or NULL otherwise.
94 */
c9af28fd
TT
95struct ext4_crypto_ctx *ext4_get_crypto_ctx(struct inode *inode,
96 gfp_t gfp_flags)
b30ab0e0
MH
97{
98 struct ext4_crypto_ctx *ctx = NULL;
99 int res = 0;
100 unsigned long flags;
b7236e21 101 struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
b30ab0e0 102
abdd438b
TT
103 if (ci == NULL)
104 return ERR_PTR(-ENOKEY);
b30ab0e0
MH
105
106 /*
107 * We first try getting the ctx from a free list because in
108 * the common case the ctx will have an allocated and
109 * initialized crypto tfm, so it's probably a worthwhile
110 * optimization. For the bounce page, we first try getting it
111 * from the kernel allocator because that's just about as fast
112 * as getting it from a list and because a cache of free pages
113 * should generally be a "last resort" option for a filesystem
114 * to be able to do its job.
115 */
116 spin_lock_irqsave(&ext4_crypto_ctx_lock, flags);
117 ctx = list_first_entry_or_null(&ext4_free_crypto_ctxs,
118 struct ext4_crypto_ctx, free_list);
119 if (ctx)
120 list_del(&ctx->free_list);
121 spin_unlock_irqrestore(&ext4_crypto_ctx_lock, flags);
122 if (!ctx) {
c9af28fd 123 ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, gfp_flags);
8ee03714
TT
124 if (!ctx) {
125 res = -ENOMEM;
b30ab0e0
MH
126 goto out;
127 }
128 ctx->flags |= EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
129 } else {
130 ctx->flags &= ~EXT4_CTX_REQUIRES_FREE_ENCRYPT_FL;
131 }
614def70 132 ctx->flags &= ~EXT4_WRITE_PATH_FL;
b30ab0e0 133
b30ab0e0
MH
134out:
135 if (res) {
136 if (!IS_ERR_OR_NULL(ctx))
137 ext4_release_crypto_ctx(ctx);
138 ctx = ERR_PTR(res);
139 }
140 return ctx;
141}
142
143struct workqueue_struct *ext4_read_workqueue;
144static DEFINE_MUTEX(crypto_init);
145
146/**
147 * ext4_exit_crypto() - Shutdown the ext4 encryption system
148 */
149void ext4_exit_crypto(void)
150{
151 struct ext4_crypto_ctx *pos, *n;
152
c936e1ec 153 list_for_each_entry_safe(pos, n, &ext4_free_crypto_ctxs, free_list)
8ee03714 154 kmem_cache_free(ext4_crypto_ctx_cachep, pos);
b30ab0e0
MH
155 INIT_LIST_HEAD(&ext4_free_crypto_ctxs);
156 if (ext4_bounce_page_pool)
157 mempool_destroy(ext4_bounce_page_pool);
158 ext4_bounce_page_pool = NULL;
159 if (ext4_read_workqueue)
160 destroy_workqueue(ext4_read_workqueue);
161 ext4_read_workqueue = NULL;
8ee03714
TT
162 if (ext4_crypto_ctx_cachep)
163 kmem_cache_destroy(ext4_crypto_ctx_cachep);
164 ext4_crypto_ctx_cachep = NULL;
165 if (ext4_crypt_info_cachep)
166 kmem_cache_destroy(ext4_crypt_info_cachep);
167 ext4_crypt_info_cachep = NULL;
b30ab0e0
MH
168}
169
170/**
171 * ext4_init_crypto() - Set up for ext4 encryption.
172 *
173 * We only call this when we start accessing encrypted files, since it
174 * results in memory getting allocated that wouldn't otherwise be used.
175 *
176 * Return: Zero on success, non-zero otherwise.
177 */
178int ext4_init_crypto(void)
179{
8ee03714 180 int i, res = -ENOMEM;
b30ab0e0
MH
181
182 mutex_lock(&crypto_init);
183 if (ext4_read_workqueue)
184 goto already_initialized;
185 ext4_read_workqueue = alloc_workqueue("ext4_crypto", WQ_HIGHPRI, 0);
8ee03714
TT
186 if (!ext4_read_workqueue)
187 goto fail;
188
189 ext4_crypto_ctx_cachep = KMEM_CACHE(ext4_crypto_ctx,
190 SLAB_RECLAIM_ACCOUNT);
191 if (!ext4_crypto_ctx_cachep)
192 goto fail;
193
194 ext4_crypt_info_cachep = KMEM_CACHE(ext4_crypt_info,
195 SLAB_RECLAIM_ACCOUNT);
196 if (!ext4_crypt_info_cachep)
b30ab0e0 197 goto fail;
b30ab0e0
MH
198
199 for (i = 0; i < num_prealloc_crypto_ctxs; i++) {
200 struct ext4_crypto_ctx *ctx;
201
8ee03714
TT
202 ctx = kmem_cache_zalloc(ext4_crypto_ctx_cachep, GFP_NOFS);
203 if (!ctx) {
204 res = -ENOMEM;
b30ab0e0
MH
205 goto fail;
206 }
207 list_add(&ctx->free_list, &ext4_free_crypto_ctxs);
208 }
209
210 ext4_bounce_page_pool =
211 mempool_create_page_pool(num_prealloc_crypto_pages, 0);
212 if (!ext4_bounce_page_pool) {
213 res = -ENOMEM;
214 goto fail;
215 }
216already_initialized:
217 mutex_unlock(&crypto_init);
218 return 0;
219fail:
220 ext4_exit_crypto();
221 mutex_unlock(&crypto_init);
222 return res;
223}
224
225void ext4_restore_control_page(struct page *data_page)
226{
227 struct ext4_crypto_ctx *ctx =
228 (struct ext4_crypto_ctx *)page_private(data_page);
229
230 set_page_private(data_page, (unsigned long)NULL);
231 ClearPagePrivate(data_page);
232 unlock_page(data_page);
233 ext4_release_crypto_ctx(ctx);
234}
235
236/**
237 * ext4_crypt_complete() - The completion callback for page encryption
238 * @req: The asynchronous encryption request context
239 * @res: The result of the encryption operation
240 */
241static void ext4_crypt_complete(struct crypto_async_request *req, int res)
242{
243 struct ext4_completion_result *ecr = req->data;
244
245 if (res == -EINPROGRESS)
246 return;
247 ecr->res = res;
248 complete(&ecr->completion);
249}
250
251typedef enum {
252 EXT4_DECRYPT = 0,
253 EXT4_ENCRYPT,
254} ext4_direction_t;
255
3684de8c 256static int ext4_page_crypto(struct inode *inode,
b30ab0e0
MH
257 ext4_direction_t rw,
258 pgoff_t index,
259 struct page *src_page,
c9af28fd
TT
260 struct page *dest_page,
261 gfp_t gfp_flags)
b30ab0e0
MH
262
263{
264 u8 xts_tweak[EXT4_XTS_TWEAK_SIZE];
3f32a5be 265 struct skcipher_request *req = NULL;
b30ab0e0
MH
266 DECLARE_EXT4_COMPLETION_RESULT(ecr);
267 struct scatterlist dst, src;
c936e1ec 268 struct ext4_crypt_info *ci = EXT4_I(inode)->i_crypt_info;
3f32a5be 269 struct crypto_skcipher *tfm = ci->ci_ctfm;
b30ab0e0
MH
270 int res = 0;
271
c9af28fd 272 req = skcipher_request_alloc(tfm, gfp_flags);
b30ab0e0
MH
273 if (!req) {
274 printk_ratelimited(KERN_ERR
275 "%s: crypto_request_alloc() failed\n",
276 __func__);
277 return -ENOMEM;
278 }
3f32a5be 279 skcipher_request_set_callback(
b30ab0e0
MH
280 req, CRYPTO_TFM_REQ_MAY_BACKLOG | CRYPTO_TFM_REQ_MAY_SLEEP,
281 ext4_crypt_complete, &ecr);
282
283 BUILD_BUG_ON(EXT4_XTS_TWEAK_SIZE < sizeof(index));
284 memcpy(xts_tweak, &index, sizeof(index));
285 memset(&xts_tweak[sizeof(index)], 0,
286 EXT4_XTS_TWEAK_SIZE - sizeof(index));
287
288 sg_init_table(&dst, 1);
09cbfeaf 289 sg_set_page(&dst, dest_page, PAGE_SIZE, 0);
b30ab0e0 290 sg_init_table(&src, 1);
09cbfeaf
KS
291 sg_set_page(&src, src_page, PAGE_SIZE, 0);
292 skcipher_request_set_crypt(req, &src, &dst, PAGE_SIZE,
3f32a5be 293 xts_tweak);
b30ab0e0 294 if (rw == EXT4_DECRYPT)
3f32a5be 295 res = crypto_skcipher_decrypt(req);
b30ab0e0 296 else
3f32a5be 297 res = crypto_skcipher_encrypt(req);
b30ab0e0 298 if (res == -EINPROGRESS || res == -EBUSY) {
b30ab0e0
MH
299 wait_for_completion(&ecr.completion);
300 res = ecr.res;
301 }
3f32a5be 302 skcipher_request_free(req);
b30ab0e0
MH
303 if (res) {
304 printk_ratelimited(
305 KERN_ERR
3f32a5be 306 "%s: crypto_skcipher_encrypt() returned %d\n",
b30ab0e0
MH
307 __func__, res);
308 return res;
309 }
310 return 0;
311}
312
c9af28fd
TT
313static struct page *alloc_bounce_page(struct ext4_crypto_ctx *ctx,
314 gfp_t gfp_flags)
95ea68b4 315{
c9af28fd 316 ctx->w.bounce_page = mempool_alloc(ext4_bounce_page_pool, gfp_flags);
3dbb5eb9
TT
317 if (ctx->w.bounce_page == NULL)
318 return ERR_PTR(-ENOMEM);
95ea68b4 319 ctx->flags |= EXT4_WRITE_PATH_FL;
3dbb5eb9 320 return ctx->w.bounce_page;
95ea68b4
TT
321}
322
b30ab0e0
MH
323/**
324 * ext4_encrypt() - Encrypts a page
325 * @inode: The inode for which the encryption should take place
326 * @plaintext_page: The page to encrypt. Must be locked.
327 *
328 * Allocates a ciphertext page and encrypts plaintext_page into it using the ctx
329 * encryption context.
330 *
331 * Called on the page write path. The caller must call
332 * ext4_restore_control_page() on the returned ciphertext page to
333 * release the bounce buffer and the encryption context.
334 *
335 * Return: An allocated page with the encrypted content on success. Else, an
336 * error value or NULL.
337 */
338struct page *ext4_encrypt(struct inode *inode,
c9af28fd
TT
339 struct page *plaintext_page,
340 gfp_t gfp_flags)
b30ab0e0
MH
341{
342 struct ext4_crypto_ctx *ctx;
343 struct page *ciphertext_page = NULL;
344 int err;
345
346 BUG_ON(!PageLocked(plaintext_page));
347
c9af28fd 348 ctx = ext4_get_crypto_ctx(inode, gfp_flags);
b30ab0e0
MH
349 if (IS_ERR(ctx))
350 return (struct page *) ctx;
351
352 /* The encryption operation will require a bounce page. */
c9af28fd 353 ciphertext_page = alloc_bounce_page(ctx, gfp_flags);
95ea68b4
TT
354 if (IS_ERR(ciphertext_page))
355 goto errout;
614def70 356 ctx->w.control_page = plaintext_page;
3684de8c 357 err = ext4_page_crypto(inode, EXT4_ENCRYPT, plaintext_page->index,
c9af28fd 358 plaintext_page, ciphertext_page, gfp_flags);
b30ab0e0 359 if (err) {
95ea68b4
TT
360 ciphertext_page = ERR_PTR(err);
361 errout:
b30ab0e0 362 ext4_release_crypto_ctx(ctx);
95ea68b4 363 return ciphertext_page;
b30ab0e0
MH
364 }
365 SetPagePrivate(ciphertext_page);
366 set_page_private(ciphertext_page, (unsigned long)ctx);
367 lock_page(ciphertext_page);
368 return ciphertext_page;
369}
370
371/**
372 * ext4_decrypt() - Decrypts a page in-place
373 * @ctx: The encryption context.
374 * @page: The page to decrypt. Must be locked.
375 *
376 * Decrypts page in-place using the ctx encryption context.
377 *
378 * Called from the read completion callback.
379 *
380 * Return: Zero on success, non-zero otherwise.
381 */
3684de8c 382int ext4_decrypt(struct page *page)
b30ab0e0
MH
383{
384 BUG_ON(!PageLocked(page));
385
c9af28fd
TT
386 return ext4_page_crypto(page->mapping->host, EXT4_DECRYPT,
387 page->index, page, page, GFP_NOFS);
b30ab0e0
MH
388}
389
53085fac
JK
390int ext4_encrypted_zeroout(struct inode *inode, ext4_lblk_t lblk,
391 ext4_fsblk_t pblk, ext4_lblk_t len)
b30ab0e0
MH
392{
393 struct ext4_crypto_ctx *ctx;
394 struct page *ciphertext_page = NULL;
395 struct bio *bio;
36086d43
TT
396 int ret, err = 0;
397
398#if 0
399 ext4_msg(inode->i_sb, KERN_CRIT,
400 "ext4_encrypted_zeroout ino %lu lblk %u len %u",
401 (unsigned long) inode->i_ino, lblk, len);
402#endif
b30ab0e0 403
09cbfeaf 404 BUG_ON(inode->i_sb->s_blocksize != PAGE_SIZE);
b30ab0e0 405
c9af28fd 406 ctx = ext4_get_crypto_ctx(inode, GFP_NOFS);
b30ab0e0
MH
407 if (IS_ERR(ctx))
408 return PTR_ERR(ctx);
409
c9af28fd 410 ciphertext_page = alloc_bounce_page(ctx, GFP_NOWAIT);
95ea68b4
TT
411 if (IS_ERR(ciphertext_page)) {
412 err = PTR_ERR(ciphertext_page);
413 goto errout;
b30ab0e0 414 }
b30ab0e0
MH
415
416 while (len--) {
3684de8c 417 err = ext4_page_crypto(inode, EXT4_ENCRYPT, lblk,
c9af28fd
TT
418 ZERO_PAGE(0), ciphertext_page,
419 GFP_NOFS);
b30ab0e0
MH
420 if (err)
421 goto errout;
422
c9af28fd 423 bio = bio_alloc(GFP_NOWAIT, 1);
b30ab0e0
MH
424 if (!bio) {
425 err = -ENOMEM;
426 goto errout;
427 }
428 bio->bi_bdev = inode->i_sb->s_bdev;
36086d43
TT
429 bio->bi_iter.bi_sector =
430 pblk << (inode->i_sb->s_blocksize_bits - 9);
431 ret = bio_add_page(bio, ciphertext_page,
b30ab0e0 432 inode->i_sb->s_blocksize, 0);
36086d43
TT
433 if (ret != inode->i_sb->s_blocksize) {
434 /* should never happen! */
435 ext4_msg(inode->i_sb, KERN_ERR,
436 "bio_add_page failed: %d", ret);
437 WARN_ON(1);
b30ab0e0 438 bio_put(bio);
36086d43 439 err = -EIO;
b30ab0e0
MH
440 goto errout;
441 }
442 err = submit_bio_wait(WRITE, bio);
36086d43
TT
443 if ((err == 0) && bio->bi_error)
444 err = -EIO;
95ea68b4 445 bio_put(bio);
b30ab0e0
MH
446 if (err)
447 goto errout;
36086d43 448 lblk++; pblk++;
b30ab0e0
MH
449 }
450 err = 0;
451errout:
452 ext4_release_crypto_ctx(ctx);
453 return err;
454}
455
456bool ext4_valid_contents_enc_mode(uint32_t mode)
457{
458 return (mode == EXT4_ENCRYPTION_MODE_AES_256_XTS);
459}
460
461/**
462 * ext4_validate_encryption_key_size() - Validate the encryption key size
463 * @mode: The key mode.
464 * @size: The key size to validate.
465 *
466 * Return: The validated key size for @mode. Zero if invalid.
467 */
468uint32_t ext4_validate_encryption_key_size(uint32_t mode, uint32_t size)
469{
470 if (size == ext4_encryption_key_size(mode))
471 return size;
472 return 0;
473}
28b4c263
TT
474
475/*
476 * Validate dentries for encrypted directories to make sure we aren't
477 * potentially caching stale data after a key has been added or
478 * removed.
479 */
480static int ext4_d_revalidate(struct dentry *dentry, unsigned int flags)
481{
3d43bcfe
TT
482 struct dentry *dir;
483 struct ext4_crypt_info *ci;
28b4c263
TT
484 int dir_has_key, cached_with_key;
485
03a8bb0e
JK
486 if (flags & LOOKUP_RCU)
487 return -ECHILD;
488
3d43bcfe
TT
489 dir = dget_parent(dentry);
490 if (!ext4_encrypted_inode(d_inode(dir))) {
491 dput(dir);
28b4c263 492 return 0;
3d43bcfe
TT
493 }
494 ci = EXT4_I(d_inode(dir))->i_crypt_info;
28b4c263
TT
495 if (ci && ci->ci_keyring_key &&
496 (ci->ci_keyring_key->flags & ((1 << KEY_FLAG_INVALIDATED) |
497 (1 << KEY_FLAG_REVOKED) |
498 (1 << KEY_FLAG_DEAD))))
499 ci = NULL;
500
501 /* this should eventually be an flag in d_flags */
502 cached_with_key = dentry->d_fsdata != NULL;
503 dir_has_key = (ci != NULL);
3d43bcfe 504 dput(dir);
28b4c263
TT
505
506 /*
507 * If the dentry was cached without the key, and it is a
508 * negative dentry, it might be a valid name. We can't check
509 * if the key has since been made available due to locking
510 * reasons, so we fail the validation so ext4_lookup() can do
511 * this check.
512 *
513 * We also fail the validation if the dentry was created with
514 * the key present, but we no longer have the key, or vice versa.
515 */
516 if ((!cached_with_key && d_is_negative(dentry)) ||
517 (!cached_with_key && dir_has_key) ||
518 (cached_with_key && !dir_has_key)) {
519#if 0 /* Revalidation debug */
520 char buf[80];
521 char *cp = simple_dname(dentry, buf, sizeof(buf));
522
523 if (IS_ERR(cp))
524 cp = (char *) "???";
525 pr_err("revalidate: %s %p %d %d %d\n", cp, dentry->d_fsdata,
526 cached_with_key, d_is_negative(dentry),
527 dir_has_key);
528#endif
529 return 0;
530 }
531 return 1;
532}
533
534const struct dentry_operations ext4_encrypted_d_ops = {
535 .d_revalidate = ext4_d_revalidate,
536};
This page took 0.077207 seconds and 5 git commands to generate.