s390/mm: implement software dirty bits
[deliverable/linux.git] / include / asm-generic / pgtable.h
CommitLineData
1da177e4
LT
1#ifndef _ASM_GENERIC_PGTABLE_H
2#define _ASM_GENERIC_PGTABLE_H
3
673eae82 4#ifndef __ASSEMBLY__
9535239f 5#ifdef CONFIG_MMU
673eae82 6
fbd71844 7#include <linux/mm_types.h>
187f1882 8#include <linux/bug.h>
fbd71844 9
1da177e4 10#ifndef __HAVE_ARCH_PTEP_SET_ACCESS_FLAGS
e2cda322
AA
11extern int ptep_set_access_flags(struct vm_area_struct *vma,
12 unsigned long address, pte_t *ptep,
13 pte_t entry, int dirty);
14#endif
15
16#ifndef __HAVE_ARCH_PMDP_SET_ACCESS_FLAGS
17extern int pmdp_set_access_flags(struct vm_area_struct *vma,
18 unsigned long address, pmd_t *pmdp,
19 pmd_t entry, int dirty);
1da177e4
LT
20#endif
21
22#ifndef __HAVE_ARCH_PTEP_TEST_AND_CLEAR_YOUNG
e2cda322
AA
23static inline int ptep_test_and_clear_young(struct vm_area_struct *vma,
24 unsigned long address,
25 pte_t *ptep)
26{
27 pte_t pte = *ptep;
28 int r = 1;
29 if (!pte_young(pte))
30 r = 0;
31 else
32 set_pte_at(vma->vm_mm, address, ptep, pte_mkold(pte));
33 return r;
34}
35#endif
36
37#ifndef __HAVE_ARCH_PMDP_TEST_AND_CLEAR_YOUNG
38#ifdef CONFIG_TRANSPARENT_HUGEPAGE
39static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
40 unsigned long address,
41 pmd_t *pmdp)
42{
43 pmd_t pmd = *pmdp;
44 int r = 1;
45 if (!pmd_young(pmd))
46 r = 0;
47 else
48 set_pmd_at(vma->vm_mm, address, pmdp, pmd_mkold(pmd));
49 return r;
50}
51#else /* CONFIG_TRANSPARENT_HUGEPAGE */
52static inline int pmdp_test_and_clear_young(struct vm_area_struct *vma,
53 unsigned long address,
54 pmd_t *pmdp)
55{
56 BUG();
57 return 0;
58}
59#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
60#endif
61
62#ifndef __HAVE_ARCH_PTEP_CLEAR_YOUNG_FLUSH
e2cda322
AA
63int ptep_clear_flush_young(struct vm_area_struct *vma,
64 unsigned long address, pte_t *ptep);
65#endif
66
67#ifndef __HAVE_ARCH_PMDP_CLEAR_YOUNG_FLUSH
68int pmdp_clear_flush_young(struct vm_area_struct *vma,
69 unsigned long address, pmd_t *pmdp);
1da177e4
LT
70#endif
71
1da177e4 72#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR
e2cda322
AA
73static inline pte_t ptep_get_and_clear(struct mm_struct *mm,
74 unsigned long address,
75 pte_t *ptep)
76{
77 pte_t pte = *ptep;
78 pte_clear(mm, address, ptep);
79 return pte;
80}
81#endif
82
83#ifndef __HAVE_ARCH_PMDP_GET_AND_CLEAR
84#ifdef CONFIG_TRANSPARENT_HUGEPAGE
85static inline pmd_t pmdp_get_and_clear(struct mm_struct *mm,
86 unsigned long address,
87 pmd_t *pmdp)
88{
89 pmd_t pmd = *pmdp;
2d28a227 90 pmd_clear(pmdp);
e2cda322 91 return pmd;
49b24d6b 92}
e2cda322 93#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
94#endif
95
a600388d 96#ifndef __HAVE_ARCH_PTEP_GET_AND_CLEAR_FULL
e2cda322
AA
97static inline pte_t ptep_get_and_clear_full(struct mm_struct *mm,
98 unsigned long address, pte_t *ptep,
99 int full)
100{
101 pte_t pte;
102 pte = ptep_get_and_clear(mm, address, ptep);
103 return pte;
104}
a600388d
ZA
105#endif
106
9888a1ca
ZA
107/*
108 * Some architectures may be able to avoid expensive synchronization
109 * primitives when modifications are made to PTE's which are already
110 * not present, or in the process of an address space destruction.
111 */
112#ifndef __HAVE_ARCH_PTE_CLEAR_NOT_PRESENT_FULL
e2cda322
AA
113static inline void pte_clear_not_present_full(struct mm_struct *mm,
114 unsigned long address,
115 pte_t *ptep,
116 int full)
117{
118 pte_clear(mm, address, ptep);
119}
a600388d
ZA
120#endif
121
1da177e4 122#ifndef __HAVE_ARCH_PTEP_CLEAR_FLUSH
e2cda322
AA
123extern pte_t ptep_clear_flush(struct vm_area_struct *vma,
124 unsigned long address,
125 pte_t *ptep);
126#endif
127
128#ifndef __HAVE_ARCH_PMDP_CLEAR_FLUSH
129extern pmd_t pmdp_clear_flush(struct vm_area_struct *vma,
130 unsigned long address,
131 pmd_t *pmdp);
1da177e4
LT
132#endif
133
134#ifndef __HAVE_ARCH_PTEP_SET_WRPROTECT
8c65b4a6 135struct mm_struct;
1da177e4
LT
136static inline void ptep_set_wrprotect(struct mm_struct *mm, unsigned long address, pte_t *ptep)
137{
138 pte_t old_pte = *ptep;
139 set_pte_at(mm, address, ptep, pte_wrprotect(old_pte));
140}
141#endif
142
e2cda322
AA
143#ifndef __HAVE_ARCH_PMDP_SET_WRPROTECT
144#ifdef CONFIG_TRANSPARENT_HUGEPAGE
145static inline void pmdp_set_wrprotect(struct mm_struct *mm,
146 unsigned long address, pmd_t *pmdp)
147{
148 pmd_t old_pmd = *pmdp;
149 set_pmd_at(mm, address, pmdp, pmd_wrprotect(old_pmd));
150}
151#else /* CONFIG_TRANSPARENT_HUGEPAGE */
152static inline void pmdp_set_wrprotect(struct mm_struct *mm,
153 unsigned long address, pmd_t *pmdp)
154{
155 BUG();
156}
157#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
158#endif
159
160#ifndef __HAVE_ARCH_PMDP_SPLITTING_FLUSH
73636b1a
CM
161extern void pmdp_splitting_flush(struct vm_area_struct *vma,
162 unsigned long address, pmd_t *pmdp);
e2cda322
AA
163#endif
164
e3ebcf64
GS
165#ifndef __HAVE_ARCH_PGTABLE_DEPOSIT
166extern void pgtable_trans_huge_deposit(struct mm_struct *mm, pgtable_t pgtable);
167#endif
168
169#ifndef __HAVE_ARCH_PGTABLE_WITHDRAW
170extern pgtable_t pgtable_trans_huge_withdraw(struct mm_struct *mm);
171#endif
172
46dcde73
GS
173#ifndef __HAVE_ARCH_PMDP_INVALIDATE
174extern void pmdp_invalidate(struct vm_area_struct *vma, unsigned long address,
175 pmd_t *pmdp);
176#endif
177
1da177e4 178#ifndef __HAVE_ARCH_PTE_SAME
e2cda322
AA
179static inline int pte_same(pte_t pte_a, pte_t pte_b)
180{
181 return pte_val(pte_a) == pte_val(pte_b);
182}
183#endif
184
185#ifndef __HAVE_ARCH_PMD_SAME
186#ifdef CONFIG_TRANSPARENT_HUGEPAGE
187static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
188{
189 return pmd_val(pmd_a) == pmd_val(pmd_b);
190}
191#else /* CONFIG_TRANSPARENT_HUGEPAGE */
192static inline int pmd_same(pmd_t pmd_a, pmd_t pmd_b)
193{
194 BUG();
195 return 0;
196}
197#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
1da177e4
LT
198#endif
199
1da177e4 200#ifndef __HAVE_ARCH_PAGE_TEST_AND_CLEAR_YOUNG
2d42552d 201#define page_test_and_clear_young(pfn) (0)
1da177e4
LT
202#endif
203
204#ifndef __HAVE_ARCH_PGD_OFFSET_GATE
205#define pgd_offset_gate(mm, addr) pgd_offset(mm, addr)
206#endif
207
0b0968a3 208#ifndef __HAVE_ARCH_MOVE_PTE
8b1f3124 209#define move_pte(pte, prot, old_addr, new_addr) (pte)
8b1f3124
NP
210#endif
211
2c3cf556
RR
212#ifndef pte_accessible
213# define pte_accessible(pte) ((void)(pte),1)
214#endif
215
61c77326
SL
216#ifndef flush_tlb_fix_spurious_fault
217#define flush_tlb_fix_spurious_fault(vma, address) flush_tlb_page(vma, address)
218#endif
219
0634a632
PM
220#ifndef pgprot_noncached
221#define pgprot_noncached(prot) (prot)
222#endif
223
2520bd31 224#ifndef pgprot_writecombine
225#define pgprot_writecombine pgprot_noncached
226#endif
227
1da177e4 228/*
8f6c99c1
HD
229 * When walking page tables, get the address of the next boundary,
230 * or the end address of the range if that comes earlier. Although no
231 * vma end wraps to 0, rounded up __boundary may wrap to 0 throughout.
1da177e4
LT
232 */
233
1da177e4
LT
234#define pgd_addr_end(addr, end) \
235({ unsigned long __boundary = ((addr) + PGDIR_SIZE) & PGDIR_MASK; \
236 (__boundary - 1 < (end) - 1)? __boundary: (end); \
237})
1da177e4
LT
238
239#ifndef pud_addr_end
240#define pud_addr_end(addr, end) \
241({ unsigned long __boundary = ((addr) + PUD_SIZE) & PUD_MASK; \
242 (__boundary - 1 < (end) - 1)? __boundary: (end); \
243})
244#endif
245
246#ifndef pmd_addr_end
247#define pmd_addr_end(addr, end) \
248({ unsigned long __boundary = ((addr) + PMD_SIZE) & PMD_MASK; \
249 (__boundary - 1 < (end) - 1)? __boundary: (end); \
250})
251#endif
252
1da177e4
LT
253/*
254 * When walking page tables, we usually want to skip any p?d_none entries;
255 * and any p?d_bad entries - reporting the error before resetting to none.
256 * Do the tests inline, but report and clear the bad entry in mm/memory.c.
257 */
258void pgd_clear_bad(pgd_t *);
259void pud_clear_bad(pud_t *);
260void pmd_clear_bad(pmd_t *);
261
262static inline int pgd_none_or_clear_bad(pgd_t *pgd)
263{
264 if (pgd_none(*pgd))
265 return 1;
266 if (unlikely(pgd_bad(*pgd))) {
267 pgd_clear_bad(pgd);
268 return 1;
269 }
270 return 0;
271}
272
273static inline int pud_none_or_clear_bad(pud_t *pud)
274{
275 if (pud_none(*pud))
276 return 1;
277 if (unlikely(pud_bad(*pud))) {
278 pud_clear_bad(pud);
279 return 1;
280 }
281 return 0;
282}
283
284static inline int pmd_none_or_clear_bad(pmd_t *pmd)
285{
286 if (pmd_none(*pmd))
287 return 1;
288 if (unlikely(pmd_bad(*pmd))) {
289 pmd_clear_bad(pmd);
290 return 1;
291 }
292 return 0;
293}
9535239f 294
1ea0704e
JF
295static inline pte_t __ptep_modify_prot_start(struct mm_struct *mm,
296 unsigned long addr,
297 pte_t *ptep)
298{
299 /*
300 * Get the current pte state, but zero it out to make it
301 * non-present, preventing the hardware from asynchronously
302 * updating it.
303 */
304 return ptep_get_and_clear(mm, addr, ptep);
305}
306
307static inline void __ptep_modify_prot_commit(struct mm_struct *mm,
308 unsigned long addr,
309 pte_t *ptep, pte_t pte)
310{
311 /*
312 * The pte is non-present, so there's no hardware state to
313 * preserve.
314 */
315 set_pte_at(mm, addr, ptep, pte);
316}
317
318#ifndef __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION
319/*
320 * Start a pte protection read-modify-write transaction, which
321 * protects against asynchronous hardware modifications to the pte.
322 * The intention is not to prevent the hardware from making pte
323 * updates, but to prevent any updates it may make from being lost.
324 *
325 * This does not protect against other software modifications of the
326 * pte; the appropriate pte lock must be held over the transation.
327 *
328 * Note that this interface is intended to be batchable, meaning that
329 * ptep_modify_prot_commit may not actually update the pte, but merely
330 * queue the update to be done at some later time. The update must be
331 * actually committed before the pte lock is released, however.
332 */
333static inline pte_t ptep_modify_prot_start(struct mm_struct *mm,
334 unsigned long addr,
335 pte_t *ptep)
336{
337 return __ptep_modify_prot_start(mm, addr, ptep);
338}
339
340/*
341 * Commit an update to a pte, leaving any hardware-controlled bits in
342 * the PTE unmodified.
343 */
344static inline void ptep_modify_prot_commit(struct mm_struct *mm,
345 unsigned long addr,
346 pte_t *ptep, pte_t pte)
347{
348 __ptep_modify_prot_commit(mm, addr, ptep, pte);
349}
350#endif /* __HAVE_ARCH_PTEP_MODIFY_PROT_TRANSACTION */
fe1a6875 351#endif /* CONFIG_MMU */
1ea0704e 352
9535239f
GU
353/*
354 * A facility to provide lazy MMU batching. This allows PTE updates and
355 * page invalidations to be delayed until a call to leave lazy MMU mode
356 * is issued. Some architectures may benefit from doing this, and it is
357 * beneficial for both shadow and direct mode hypervisors, which may batch
358 * the PTE updates which happen during this window. Note that using this
359 * interface requires that read hazards be removed from the code. A read
360 * hazard could result in the direct mode hypervisor case, since the actual
361 * write to the page tables may not yet have taken place, so reads though
362 * a raw PTE pointer after it has been modified are not guaranteed to be
363 * up to date. This mode can only be entered and left under the protection of
364 * the page table locks for all page tables which may be modified. In the UP
365 * case, this is required so that preemption is disabled, and in the SMP case,
366 * it must synchronize the delayed page table writes properly on other CPUs.
367 */
368#ifndef __HAVE_ARCH_ENTER_LAZY_MMU_MODE
369#define arch_enter_lazy_mmu_mode() do {} while (0)
370#define arch_leave_lazy_mmu_mode() do {} while (0)
371#define arch_flush_lazy_mmu_mode() do {} while (0)
372#endif
373
374/*
7fd7d83d
JF
375 * A facility to provide batching of the reload of page tables and
376 * other process state with the actual context switch code for
377 * paravirtualized guests. By convention, only one of the batched
378 * update (lazy) modes (CPU, MMU) should be active at any given time,
379 * entry should never be nested, and entry and exits should always be
380 * paired. This is for sanity of maintaining and reasoning about the
381 * kernel code. In this case, the exit (end of the context switch) is
382 * in architecture-specific code, and so doesn't need a generic
383 * definition.
9535239f 384 */
7fd7d83d 385#ifndef __HAVE_ARCH_START_CONTEXT_SWITCH
224101ed 386#define arch_start_context_switch(prev) do {} while (0)
9535239f
GU
387#endif
388
34801ba9 389#ifndef __HAVE_PFNMAP_TRACKING
390/*
5180da41
SS
391 * Interfaces that can be used by architecture code to keep track of
392 * memory type of pfn mappings specified by the remap_pfn_range,
393 * vm_insert_pfn.
394 */
395
396/*
397 * track_pfn_remap is called when a _new_ pfn mapping is being established
398 * by remap_pfn_range() for physical range indicated by pfn and size.
34801ba9 399 */
5180da41 400static inline int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
401 unsigned long pfn, unsigned long addr,
402 unsigned long size)
34801ba9 403{
404 return 0;
405}
406
407/*
5180da41
SS
408 * track_pfn_insert is called when a _new_ single pfn is established
409 * by vm_insert_pfn().
410 */
411static inline int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
412 unsigned long pfn)
413{
414 return 0;
415}
416
417/*
418 * track_pfn_copy is called when vma that is covering the pfnmap gets
34801ba9 419 * copied through copy_page_range().
420 */
5180da41 421static inline int track_pfn_copy(struct vm_area_struct *vma)
34801ba9 422{
423 return 0;
424}
425
426/*
34801ba9 427 * untrack_pfn_vma is called while unmapping a pfnmap for a region.
428 * untrack can be called for a specific region indicated by pfn and size or
5180da41 429 * can be for the entire vma (in which case pfn, size are zero).
34801ba9 430 */
5180da41
SS
431static inline void untrack_pfn(struct vm_area_struct *vma,
432 unsigned long pfn, unsigned long size)
34801ba9 433{
434}
435#else
5180da41 436extern int track_pfn_remap(struct vm_area_struct *vma, pgprot_t *prot,
b3b9c293
KK
437 unsigned long pfn, unsigned long addr,
438 unsigned long size);
5180da41
SS
439extern int track_pfn_insert(struct vm_area_struct *vma, pgprot_t *prot,
440 unsigned long pfn);
441extern int track_pfn_copy(struct vm_area_struct *vma);
442extern void untrack_pfn(struct vm_area_struct *vma, unsigned long pfn,
443 unsigned long size);
34801ba9 444#endif
445
816422ad
KS
446#ifdef __HAVE_COLOR_ZERO_PAGE
447static inline int is_zero_pfn(unsigned long pfn)
448{
449 extern unsigned long zero_pfn;
450 unsigned long offset_from_zero_pfn = pfn - zero_pfn;
451 return offset_from_zero_pfn <= (zero_page_mask >> PAGE_SHIFT);
452}
453
2f91ec8c
KS
454#define my_zero_pfn(addr) page_to_pfn(ZERO_PAGE(addr))
455
816422ad
KS
456#else
457static inline int is_zero_pfn(unsigned long pfn)
458{
459 extern unsigned long zero_pfn;
460 return pfn == zero_pfn;
461}
462
463static inline unsigned long my_zero_pfn(unsigned long addr)
464{
465 extern unsigned long zero_pfn;
466 return zero_pfn;
467}
468#endif
469
1a5a9906
AA
470#ifdef CONFIG_MMU
471
5f6e8da7
AA
472#ifndef CONFIG_TRANSPARENT_HUGEPAGE
473static inline int pmd_trans_huge(pmd_t pmd)
474{
475 return 0;
476}
477static inline int pmd_trans_splitting(pmd_t pmd)
478{
479 return 0;
480}
e2cda322
AA
481#ifndef __HAVE_ARCH_PMD_WRITE
482static inline int pmd_write(pmd_t pmd)
483{
484 BUG();
485 return 0;
486}
487#endif /* __HAVE_ARCH_PMD_WRITE */
1a5a9906
AA
488#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
489
26c19178
AA
490#ifndef pmd_read_atomic
491static inline pmd_t pmd_read_atomic(pmd_t *pmdp)
492{
493 /*
494 * Depend on compiler for an atomic pmd read. NOTE: this is
495 * only going to work, if the pmdval_t isn't larger than
496 * an unsigned long.
497 */
498 return *pmdp;
499}
500#endif
501
1a5a9906
AA
502/*
503 * This function is meant to be used by sites walking pagetables with
504 * the mmap_sem hold in read mode to protect against MADV_DONTNEED and
505 * transhuge page faults. MADV_DONTNEED can convert a transhuge pmd
506 * into a null pmd and the transhuge page fault can convert a null pmd
507 * into an hugepmd or into a regular pmd (if the hugepage allocation
508 * fails). While holding the mmap_sem in read mode the pmd becomes
509 * stable and stops changing under us only if it's not null and not a
510 * transhuge pmd. When those races occurs and this function makes a
511 * difference vs the standard pmd_none_or_clear_bad, the result is
512 * undefined so behaving like if the pmd was none is safe (because it
513 * can return none anyway). The compiler level barrier() is critically
514 * important to compute the two checks atomically on the same pmdval.
26c19178
AA
515 *
516 * For 32bit kernels with a 64bit large pmd_t this automatically takes
517 * care of reading the pmd atomically to avoid SMP race conditions
518 * against pmd_populate() when the mmap_sem is hold for reading by the
519 * caller (a special atomic read not done by "gcc" as in the generic
520 * version above, is also needed when THP is disabled because the page
521 * fault can populate the pmd from under us).
1a5a9906
AA
522 */
523static inline int pmd_none_or_trans_huge_or_clear_bad(pmd_t *pmd)
524{
26c19178 525 pmd_t pmdval = pmd_read_atomic(pmd);
1a5a9906
AA
526 /*
527 * The barrier will stabilize the pmdval in a register or on
528 * the stack so that it will stop changing under the code.
e4eed03f
AA
529 *
530 * When CONFIG_TRANSPARENT_HUGEPAGE=y on x86 32bit PAE,
531 * pmd_read_atomic is allowed to return a not atomic pmdval
532 * (for example pointing to an hugepage that has never been
533 * mapped in the pmd). The below checks will only care about
534 * the low part of the pmd with 32bit PAE x86 anyway, with the
535 * exception of pmd_none(). So the important thing is that if
536 * the low part of the pmd is found null, the high part will
537 * be also null or the pmd_none() check below would be
538 * confused.
1a5a9906
AA
539 */
540#ifdef CONFIG_TRANSPARENT_HUGEPAGE
541 barrier();
542#endif
543 if (pmd_none(pmdval))
544 return 1;
545 if (unlikely(pmd_bad(pmdval))) {
546 if (!pmd_trans_huge(pmdval))
547 pmd_clear_bad(pmd);
548 return 1;
549 }
550 return 0;
551}
552
553/*
554 * This is a noop if Transparent Hugepage Support is not built into
555 * the kernel. Otherwise it is equivalent to
556 * pmd_none_or_trans_huge_or_clear_bad(), and shall only be called in
557 * places that already verified the pmd is not none and they want to
558 * walk ptes while holding the mmap sem in read mode (write mode don't
559 * need this). If THP is not enabled, the pmd can't go away under the
560 * code even if MADV_DONTNEED runs, but if THP is enabled we need to
561 * run a pmd_trans_unstable before walking the ptes after
562 * split_huge_page_pmd returns (because it may have run when the pmd
563 * become null, but then a page fault can map in a THP and not a
564 * regular page).
565 */
566static inline int pmd_trans_unstable(pmd_t *pmd)
567{
568#ifdef CONFIG_TRANSPARENT_HUGEPAGE
569 return pmd_none_or_trans_huge_or_clear_bad(pmd);
570#else
571 return 0;
5f6e8da7 572#endif
1a5a9906
AA
573}
574
be3a7284
AA
575#ifdef CONFIG_NUMA_BALANCING
576#ifdef CONFIG_ARCH_USES_NUMA_PROT_NONE
577/*
578 * _PAGE_NUMA works identical to _PAGE_PROTNONE (it's actually the
579 * same bit too). It's set only when _PAGE_PRESET is not set and it's
580 * never set if _PAGE_PRESENT is set.
581 *
582 * pte/pmd_present() returns true if pte/pmd_numa returns true. Page
583 * fault triggers on those regions if pte/pmd_numa returns true
584 * (because _PAGE_PRESENT is not set).
585 */
586#ifndef pte_numa
587static inline int pte_numa(pte_t pte)
588{
589 return (pte_flags(pte) &
590 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
591}
592#endif
593
594#ifndef pmd_numa
595static inline int pmd_numa(pmd_t pmd)
596{
597 return (pmd_flags(pmd) &
598 (_PAGE_NUMA|_PAGE_PRESENT)) == _PAGE_NUMA;
599}
600#endif
601
602/*
603 * pte/pmd_mknuma sets the _PAGE_ACCESSED bitflag automatically
604 * because they're called by the NUMA hinting minor page fault. If we
605 * wouldn't set the _PAGE_ACCESSED bitflag here, the TLB miss handler
606 * would be forced to set it later while filling the TLB after we
607 * return to userland. That would trigger a second write to memory
608 * that we optimize away by setting _PAGE_ACCESSED here.
609 */
610#ifndef pte_mknonnuma
611static inline pte_t pte_mknonnuma(pte_t pte)
612{
613 pte = pte_clear_flags(pte, _PAGE_NUMA);
614 return pte_set_flags(pte, _PAGE_PRESENT|_PAGE_ACCESSED);
615}
616#endif
617
618#ifndef pmd_mknonnuma
619static inline pmd_t pmd_mknonnuma(pmd_t pmd)
620{
621 pmd = pmd_clear_flags(pmd, _PAGE_NUMA);
622 return pmd_set_flags(pmd, _PAGE_PRESENT|_PAGE_ACCESSED);
623}
624#endif
625
626#ifndef pte_mknuma
627static inline pte_t pte_mknuma(pte_t pte)
628{
629 pte = pte_set_flags(pte, _PAGE_NUMA);
630 return pte_clear_flags(pte, _PAGE_PRESENT);
631}
632#endif
633
634#ifndef pmd_mknuma
635static inline pmd_t pmd_mknuma(pmd_t pmd)
636{
637 pmd = pmd_set_flags(pmd, _PAGE_NUMA);
638 return pmd_clear_flags(pmd, _PAGE_PRESENT);
639}
640#endif
641#else
642extern int pte_numa(pte_t pte);
643extern int pmd_numa(pmd_t pmd);
644extern pte_t pte_mknonnuma(pte_t pte);
645extern pmd_t pmd_mknonnuma(pmd_t pmd);
646extern pte_t pte_mknuma(pte_t pte);
647extern pmd_t pmd_mknuma(pmd_t pmd);
648#endif /* CONFIG_ARCH_USES_NUMA_PROT_NONE */
649#else
650static inline int pmd_numa(pmd_t pmd)
651{
652 return 0;
653}
654
655static inline int pte_numa(pte_t pte)
656{
657 return 0;
658}
659
660static inline pte_t pte_mknonnuma(pte_t pte)
661{
662 return pte;
663}
664
665static inline pmd_t pmd_mknonnuma(pmd_t pmd)
666{
667 return pmd;
668}
669
670static inline pte_t pte_mknuma(pte_t pte)
671{
672 return pte;
673}
674
675static inline pmd_t pmd_mknuma(pmd_t pmd)
676{
677 return pmd;
678}
679#endif /* CONFIG_NUMA_BALANCING */
680
1a5a9906 681#endif /* CONFIG_MMU */
5f6e8da7 682
1da177e4
LT
683#endif /* !__ASSEMBLY__ */
684
685#endif /* _ASM_GENERIC_PGTABLE_H */
This page took 0.681925 seconds and 5 git commands to generate.