proc: revert /proc/<pid>/maps [stack:TID] annotation
[deliverable/linux.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
3565fce3 19#include <linux/percpu-refcount.h>
e9da73d6 20#include <linux/bit_spinlock.h>
b0d40c92 21#include <linux/shrinker.h>
9c599024 22#include <linux/resource.h>
e30825f1 23#include <linux/page_ext.h>
8025e5dd 24#include <linux/err.h>
1da177e4
LT
25
26struct mempolicy;
27struct anon_vma;
bf181b9f 28struct anon_vma_chain;
4e950f6f 29struct file_ra_state;
e8edc6e0 30struct user_struct;
4e950f6f 31struct writeback_control;
682aa8e1 32struct bdi_writeback;
1da177e4 33
fccc9987 34#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 35extern unsigned long max_mapnr;
fccc9987
JL
36
37static inline void set_max_mapnr(unsigned long limit)
38{
39 max_mapnr = limit;
40}
41#else
42static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
43#endif
44
4481374c 45extern unsigned long totalram_pages;
1da177e4 46extern void * high_memory;
1da177e4
LT
47extern int page_cluster;
48
49#ifdef CONFIG_SYSCTL
50extern int sysctl_legacy_va_layout;
51#else
52#define sysctl_legacy_va_layout 0
53#endif
54
d07e2259
DC
55#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
56extern const int mmap_rnd_bits_min;
57extern const int mmap_rnd_bits_max;
58extern int mmap_rnd_bits __read_mostly;
59#endif
60#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
61extern const int mmap_rnd_compat_bits_min;
62extern const int mmap_rnd_compat_bits_max;
63extern int mmap_rnd_compat_bits __read_mostly;
64#endif
65
1da177e4
LT
66#include <asm/page.h>
67#include <asm/pgtable.h>
68#include <asm/processor.h>
1da177e4 69
79442ed1
TC
70#ifndef __pa_symbol
71#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
72#endif
73
593befa6
DD
74/*
75 * To prevent common memory management code establishing
76 * a zero page mapping on a read fault.
77 * This macro should be defined within <asm/pgtable.h>.
78 * s390 does this to prevent multiplexing of hardware bits
79 * related to the physical page in case of virtualization.
80 */
81#ifndef mm_forbids_zeropage
82#define mm_forbids_zeropage(X) (0)
83#endif
84
c9b1d098 85extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 86extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 87
49f0ce5f
JM
88extern int sysctl_overcommit_memory;
89extern int sysctl_overcommit_ratio;
90extern unsigned long sysctl_overcommit_kbytes;
91
92extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
93 size_t *, loff_t *);
94extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
95 size_t *, loff_t *);
96
1da177e4
LT
97#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
98
27ac792c
AR
99/* to align the pointer to the (next) page boundary */
100#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
101
0fa73b86
AM
102/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
103#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
104
1da177e4
LT
105/*
106 * Linux kernel virtual memory manager primitives.
107 * The idea being to have a "virtual" mm in the same way
108 * we have a virtual fs - giving a cleaner interface to the
109 * mm details, and allowing different kinds of memory mappings
110 * (from shared memory to executable loading to arbitrary
111 * mmap() functions).
112 */
113
c43692e8
CL
114extern struct kmem_cache *vm_area_cachep;
115
1da177e4 116#ifndef CONFIG_MMU
8feae131
DH
117extern struct rb_root nommu_region_tree;
118extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
119
120extern unsigned int kobjsize(const void *objp);
121#endif
122
123/*
605d9288 124 * vm_flags in vm_area_struct, see mm_types.h.
1da177e4 125 */
cc2383ec
KK
126#define VM_NONE 0x00000000
127
1da177e4
LT
128#define VM_READ 0x00000001 /* currently active flags */
129#define VM_WRITE 0x00000002
130#define VM_EXEC 0x00000004
131#define VM_SHARED 0x00000008
132
7e2cff42 133/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
134#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
135#define VM_MAYWRITE 0x00000020
136#define VM_MAYEXEC 0x00000040
137#define VM_MAYSHARE 0x00000080
138
139#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 140#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 141#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 142#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 143#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 144
1da177e4
LT
145#define VM_LOCKED 0x00002000
146#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
147
148 /* Used by sys_madvise() */
149#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
150#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
151
152#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
153#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 154#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 155#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 156#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 157#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 158#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 159#define VM_ARCH_2 0x02000000
0103bd16 160#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 161
d9104d1c
CG
162#ifdef CONFIG_MEM_SOFT_DIRTY
163# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
164#else
165# define VM_SOFTDIRTY 0
166#endif
167
b379d790 168#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
169#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
170#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 171#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 172
cc2383ec
KK
173#if defined(CONFIG_X86)
174# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
175#elif defined(CONFIG_PPC)
176# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
177#elif defined(CONFIG_PARISC)
178# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
179#elif defined(CONFIG_METAG)
180# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
181#elif defined(CONFIG_IA64)
182# define VM_GROWSUP VM_ARCH_1
183#elif !defined(CONFIG_MMU)
184# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
185#endif
186
4aae7e43
QR
187#if defined(CONFIG_X86)
188/* MPX specific bounds table or bounds directory */
189# define VM_MPX VM_ARCH_2
190#endif
191
cc2383ec
KK
192#ifndef VM_GROWSUP
193# define VM_GROWSUP VM_NONE
194#endif
195
a8bef8ff
MG
196/* Bits set in the VMA until the stack is in its final location */
197#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
198
1da177e4
LT
199#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
200#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
201#endif
202
203#ifdef CONFIG_STACK_GROWSUP
204#define VM_STACK_FLAGS (VM_GROWSUP | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
205#else
206#define VM_STACK_FLAGS (VM_GROWSDOWN | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
207#endif
208
b291f000 209/*
78f11a25
AA
210 * Special vmas that are non-mergable, non-mlock()able.
211 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 212 */
9050d7eb 213#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 214
a0715cc2
AT
215/* This mask defines which mm->def_flags a process can inherit its parent */
216#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
217
de60f5f1
EM
218/* This mask is used to clear all the VMA flags used by mlock */
219#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
220
1da177e4
LT
221/*
222 * mapping from the currently active vm_flags protection bits (the
223 * low four bits) to a page protection mask..
224 */
225extern pgprot_t protection_map[16];
226
d0217ac0 227#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
228#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
229#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
230#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
231#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
232#define FAULT_FLAG_TRIED 0x20 /* Second try */
233#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
d0217ac0 234
54cb8821 235/*
d0217ac0 236 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
237 * ->fault function. The vma's ->fault is responsible for returning a bitmask
238 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 239 *
c20cd45e
MH
240 * MM layer fills up gfp_mask for page allocations but fault handler might
241 * alter it if its implementation requires a different allocation context.
242 *
9b4bdd2f 243 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 244 */
d0217ac0
NP
245struct vm_fault {
246 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 247 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0
NP
248 pgoff_t pgoff; /* Logical page offset based on vma */
249 void __user *virtual_address; /* Faulting virtual address */
250
2e4cdab0 251 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 252 struct page *page; /* ->fault handlers should return a
83c54070 253 * page here, unless VM_FAULT_NOPAGE
d0217ac0 254 * is set (which is also implied by
83c54070 255 * VM_FAULT_ERROR).
d0217ac0 256 */
8c6e50b0
KS
257 /* for ->map_pages() only */
258 pgoff_t max_pgoff; /* map pages for offset from pgoff till
259 * max_pgoff inclusive */
260 pte_t *pte; /* pte entry associated with ->pgoff */
54cb8821 261};
1da177e4
LT
262
263/*
264 * These are the virtual MM functions - opening of an area, closing and
265 * unmapping it (needed to keep files on disk up-to-date etc), pointer
266 * to the functions called when a no-page or a wp-page exception occurs.
267 */
268struct vm_operations_struct {
269 void (*open)(struct vm_area_struct * area);
270 void (*close)(struct vm_area_struct * area);
5477e70a 271 int (*mremap)(struct vm_area_struct * area);
d0217ac0 272 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
b96375f7
MW
273 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
274 pmd_t *, unsigned int flags);
8c6e50b0 275 void (*map_pages)(struct vm_area_struct *vma, struct vm_fault *vmf);
9637a5ef
DH
276
277 /* notification that a previously read-only page is about to become
278 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 279 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 280
dd906184
BH
281 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
282 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
283
28b2ee20
RR
284 /* called by access_process_vm when get_user_pages() fails, typically
285 * for use by special VMAs that can switch between memory and hardware
286 */
287 int (*access)(struct vm_area_struct *vma, unsigned long addr,
288 void *buf, int len, int write);
78d683e8
AL
289
290 /* Called by the /proc/PID/maps code to ask the vma whether it
291 * has a special name. Returning non-NULL will also cause this
292 * vma to be dumped unconditionally. */
293 const char *(*name)(struct vm_area_struct *vma);
294
1da177e4 295#ifdef CONFIG_NUMA
a6020ed7
LS
296 /*
297 * set_policy() op must add a reference to any non-NULL @new mempolicy
298 * to hold the policy upon return. Caller should pass NULL @new to
299 * remove a policy and fall back to surrounding context--i.e. do not
300 * install a MPOL_DEFAULT policy, nor the task or system default
301 * mempolicy.
302 */
1da177e4 303 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
304
305 /*
306 * get_policy() op must add reference [mpol_get()] to any policy at
307 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
308 * in mm/mempolicy.c will do this automatically.
309 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
310 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
311 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
312 * must return NULL--i.e., do not "fallback" to task or system default
313 * policy.
314 */
1da177e4
LT
315 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
316 unsigned long addr);
317#endif
667a0a06
DV
318 /*
319 * Called by vm_normal_page() for special PTEs to find the
320 * page for @addr. This is useful if the default behavior
321 * (using pte_page()) would not find the correct page.
322 */
323 struct page *(*find_special_page)(struct vm_area_struct *vma,
324 unsigned long addr);
1da177e4
LT
325};
326
327struct mmu_gather;
328struct inode;
329
349aef0b
AM
330#define page_private(page) ((page)->private)
331#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 332
5c7fb56e
DW
333#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
334static inline int pmd_devmap(pmd_t pmd)
335{
336 return 0;
337}
338#endif
339
1da177e4
LT
340/*
341 * FIXME: take this include out, include page-flags.h in
342 * files which need it (119 of them)
343 */
344#include <linux/page-flags.h>
71e3aac0 345#include <linux/huge_mm.h>
1da177e4
LT
346
347/*
348 * Methods to modify the page usage count.
349 *
350 * What counts for a page usage:
351 * - cache mapping (page->mapping)
352 * - private data (page->private)
353 * - page mapped in a task's page tables, each mapping
354 * is counted separately
355 *
356 * Also, many kernel routines increase the page count before a critical
357 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
358 */
359
360/*
da6052f7 361 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 362 */
7c8ee9a8
NP
363static inline int put_page_testzero(struct page *page)
364{
309381fe 365 VM_BUG_ON_PAGE(atomic_read(&page->_count) == 0, page);
8dc04efb 366 return atomic_dec_and_test(&page->_count);
7c8ee9a8 367}
1da177e4
LT
368
369/*
7c8ee9a8
NP
370 * Try to grab a ref unless the page has a refcount of zero, return false if
371 * that is the case.
8e0861fa
AK
372 * This can be called when MMU is off so it must not access
373 * any of the virtual mappings.
1da177e4 374 */
7c8ee9a8
NP
375static inline int get_page_unless_zero(struct page *page)
376{
8dc04efb 377 return atomic_inc_not_zero(&page->_count);
7c8ee9a8 378}
1da177e4 379
53df8fdc 380extern int page_is_ram(unsigned long pfn);
124fe20d
DW
381
382enum {
383 REGION_INTERSECTS,
384 REGION_DISJOINT,
385 REGION_MIXED,
386};
387
388int region_intersects(resource_size_t offset, size_t size, const char *type);
53df8fdc 389
48667e7a 390/* Support for virtually mapped pages */
b3bdda02
CL
391struct page *vmalloc_to_page(const void *addr);
392unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 393
0738c4bb
PM
394/*
395 * Determine if an address is within the vmalloc range
396 *
397 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
398 * is no special casing required.
399 */
9e2779fa
CL
400static inline int is_vmalloc_addr(const void *x)
401{
0738c4bb 402#ifdef CONFIG_MMU
9e2779fa
CL
403 unsigned long addr = (unsigned long)x;
404
405 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb
PM
406#else
407 return 0;
8ca3ed87 408#endif
0738c4bb 409}
81ac3ad9
KH
410#ifdef CONFIG_MMU
411extern int is_vmalloc_or_module_addr(const void *x);
412#else
934831d0 413static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
414{
415 return 0;
416}
417#endif
9e2779fa 418
39f1f78d
AV
419extern void kvfree(const void *addr);
420
53f9263b
KS
421static inline atomic_t *compound_mapcount_ptr(struct page *page)
422{
423 return &page[1].compound_mapcount;
424}
425
426static inline int compound_mapcount(struct page *page)
427{
428 if (!PageCompound(page))
429 return 0;
430 page = compound_head(page);
431 return atomic_read(compound_mapcount_ptr(page)) + 1;
432}
433
70b50f94
AA
434/*
435 * The atomic page->_mapcount, starts from -1: so that transitions
436 * both from it and to it can be tracked, using atomic_inc_and_test
437 * and atomic_add_negative(-1).
438 */
22b751c3 439static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
440{
441 atomic_set(&(page)->_mapcount, -1);
442}
443
b20ce5e0
KS
444int __page_mapcount(struct page *page);
445
70b50f94
AA
446static inline int page_mapcount(struct page *page)
447{
1d148e21 448 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 449
b20ce5e0
KS
450 if (unlikely(PageCompound(page)))
451 return __page_mapcount(page);
452 return atomic_read(&page->_mapcount) + 1;
453}
454
455#ifdef CONFIG_TRANSPARENT_HUGEPAGE
456int total_mapcount(struct page *page);
457#else
458static inline int total_mapcount(struct page *page)
459{
460 return page_mapcount(page);
70b50f94 461}
b20ce5e0 462#endif
70b50f94 463
4c21e2f2 464static inline int page_count(struct page *page)
1da177e4 465{
d85f3385 466 return atomic_read(&compound_head(page)->_count);
1da177e4
LT
467}
468
b49af68f
CL
469static inline struct page *virt_to_head_page(const void *x)
470{
471 struct page *page = virt_to_page(x);
ccaafd7f 472
1d798ca3 473 return compound_head(page);
b49af68f
CL
474}
475
7835e98b
NP
476/*
477 * Setup the page count before being freed into the page allocator for
478 * the first time (boot or memory hotplug)
479 */
480static inline void init_page_count(struct page *page)
481{
482 atomic_set(&page->_count, 1);
483}
484
ddc58f27
KS
485void __put_page(struct page *page);
486
1d7ea732 487void put_pages_list(struct list_head *pages);
1da177e4 488
8dfcc9ba 489void split_page(struct page *page, unsigned int order);
748446bb 490int split_free_page(struct page *page);
8dfcc9ba 491
33f2ef89
AW
492/*
493 * Compound pages have a destructor function. Provide a
494 * prototype for that function and accessor functions.
f1e61557 495 * These are _only_ valid on the head of a compound page.
33f2ef89 496 */
f1e61557
KS
497typedef void compound_page_dtor(struct page *);
498
499/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
500enum compound_dtor_id {
501 NULL_COMPOUND_DTOR,
502 COMPOUND_PAGE_DTOR,
503#ifdef CONFIG_HUGETLB_PAGE
504 HUGETLB_PAGE_DTOR,
9a982250
KS
505#endif
506#ifdef CONFIG_TRANSPARENT_HUGEPAGE
507 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
508#endif
509 NR_COMPOUND_DTORS,
510};
511extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
512
513static inline void set_compound_page_dtor(struct page *page,
f1e61557 514 enum compound_dtor_id compound_dtor)
33f2ef89 515{
f1e61557
KS
516 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
517 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
518}
519
520static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
521{
f1e61557
KS
522 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
523 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
524}
525
d00181b9 526static inline unsigned int compound_order(struct page *page)
d85f3385 527{
6d777953 528 if (!PageHead(page))
d85f3385 529 return 0;
e4b294c2 530 return page[1].compound_order;
d85f3385
CL
531}
532
f1e61557 533static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 534{
e4b294c2 535 page[1].compound_order = order;
d85f3385
CL
536}
537
9a982250
KS
538void free_compound_page(struct page *page);
539
3dece370 540#ifdef CONFIG_MMU
14fd403f
AA
541/*
542 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
543 * servicing faults for write access. In the normal case, do always want
544 * pte_mkwrite. But get_user_pages can cause write faults for mappings
545 * that do not have writing enabled, when used by access_process_vm.
546 */
547static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
548{
549 if (likely(vma->vm_flags & VM_WRITE))
550 pte = pte_mkwrite(pte);
551 return pte;
552}
8c6e50b0
KS
553
554void do_set_pte(struct vm_area_struct *vma, unsigned long address,
555 struct page *page, pte_t *pte, bool write, bool anon);
3dece370 556#endif
14fd403f 557
1da177e4
LT
558/*
559 * Multiple processes may "see" the same page. E.g. for untouched
560 * mappings of /dev/null, all processes see the same page full of
561 * zeroes, and text pages of executables and shared libraries have
562 * only one copy in memory, at most, normally.
563 *
564 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
565 * page_count() == 0 means the page is free. page->lru is then used for
566 * freelist management in the buddy allocator.
da6052f7 567 * page_count() > 0 means the page has been allocated.
1da177e4 568 *
da6052f7
NP
569 * Pages are allocated by the slab allocator in order to provide memory
570 * to kmalloc and kmem_cache_alloc. In this case, the management of the
571 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
572 * unless a particular usage is carefully commented. (the responsibility of
573 * freeing the kmalloc memory is the caller's, of course).
1da177e4 574 *
da6052f7
NP
575 * A page may be used by anyone else who does a __get_free_page().
576 * In this case, page_count still tracks the references, and should only
577 * be used through the normal accessor functions. The top bits of page->flags
578 * and page->virtual store page management information, but all other fields
579 * are unused and could be used privately, carefully. The management of this
580 * page is the responsibility of the one who allocated it, and those who have
581 * subsequently been given references to it.
582 *
583 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
584 * managed by the Linux memory manager: I/O, buffers, swapping etc.
585 * The following discussion applies only to them.
586 *
da6052f7
NP
587 * A pagecache page contains an opaque `private' member, which belongs to the
588 * page's address_space. Usually, this is the address of a circular list of
589 * the page's disk buffers. PG_private must be set to tell the VM to call
590 * into the filesystem to release these pages.
1da177e4 591 *
da6052f7
NP
592 * A page may belong to an inode's memory mapping. In this case, page->mapping
593 * is the pointer to the inode, and page->index is the file offset of the page,
594 * in units of PAGE_CACHE_SIZE.
1da177e4 595 *
da6052f7
NP
596 * If pagecache pages are not associated with an inode, they are said to be
597 * anonymous pages. These may become associated with the swapcache, and in that
598 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 599 *
da6052f7
NP
600 * In either case (swapcache or inode backed), the pagecache itself holds one
601 * reference to the page. Setting PG_private should also increment the
602 * refcount. The each user mapping also has a reference to the page.
1da177e4 603 *
da6052f7
NP
604 * The pagecache pages are stored in a per-mapping radix tree, which is
605 * rooted at mapping->page_tree, and indexed by offset.
606 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
607 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 608 *
da6052f7 609 * All pagecache pages may be subject to I/O:
1da177e4
LT
610 * - inode pages may need to be read from disk,
611 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
612 * to be written back to the inode on disk,
613 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
614 * modified may need to be swapped out to swap space and (later) to be read
615 * back into memory.
1da177e4
LT
616 */
617
618/*
619 * The zone field is never updated after free_area_init_core()
620 * sets it, so none of the operations on it need to be atomic.
1da177e4 621 */
348f8b6c 622
90572890 623/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 624#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
625#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
626#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 627#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 628
348f8b6c 629/*
25985edc 630 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
631 * sections we define the shift as 0; that plus a 0 mask ensures
632 * the compiler will optimise away reference to them.
633 */
d41dee36
AW
634#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
635#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
636#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 637#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 638
bce54bbf
WD
639/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
640#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 641#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
642#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
643 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 644#else
89689ae7 645#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
646#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
647 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
648#endif
649
bd8029b6 650#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 651
9223b419
CL
652#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
653#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
654#endif
655
d41dee36
AW
656#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
657#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
658#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 659#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 660#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 661
33dd4e0e 662static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 663{
348f8b6c 664 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 665}
1da177e4 666
260ae3f7 667#ifdef CONFIG_ZONE_DEVICE
3565fce3
DW
668void get_zone_device_page(struct page *page);
669void put_zone_device_page(struct page *page);
260ae3f7
DW
670static inline bool is_zone_device_page(const struct page *page)
671{
672 return page_zonenum(page) == ZONE_DEVICE;
673}
674#else
3565fce3
DW
675static inline void get_zone_device_page(struct page *page)
676{
677}
678static inline void put_zone_device_page(struct page *page)
679{
680}
260ae3f7
DW
681static inline bool is_zone_device_page(const struct page *page)
682{
683 return false;
684}
685#endif
686
3565fce3
DW
687static inline void get_page(struct page *page)
688{
689 page = compound_head(page);
690 /*
691 * Getting a normal page or the head of a compound page
692 * requires to already have an elevated page->_count.
693 */
694 VM_BUG_ON_PAGE(atomic_read(&page->_count) <= 0, page);
695 atomic_inc(&page->_count);
696
697 if (unlikely(is_zone_device_page(page)))
698 get_zone_device_page(page);
699}
700
701static inline void put_page(struct page *page)
702{
703 page = compound_head(page);
704
705 if (put_page_testzero(page))
706 __put_page(page);
707
708 if (unlikely(is_zone_device_page(page)))
709 put_zone_device_page(page);
710}
711
9127ab4f
CS
712#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
713#define SECTION_IN_PAGE_FLAGS
714#endif
715
89689ae7 716/*
7a8010cd
VB
717 * The identification function is mainly used by the buddy allocator for
718 * determining if two pages could be buddies. We are not really identifying
719 * the zone since we could be using the section number id if we do not have
720 * node id available in page flags.
721 * We only guarantee that it will return the same value for two combinable
722 * pages in a zone.
89689ae7 723 */
cb2b95e1
AW
724static inline int page_zone_id(struct page *page)
725{
89689ae7 726 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
727}
728
25ba77c1 729static inline int zone_to_nid(struct zone *zone)
89fa3024 730{
d5f541ed
CL
731#ifdef CONFIG_NUMA
732 return zone->node;
733#else
734 return 0;
735#endif
89fa3024
CL
736}
737
89689ae7 738#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 739extern int page_to_nid(const struct page *page);
89689ae7 740#else
33dd4e0e 741static inline int page_to_nid(const struct page *page)
d41dee36 742{
89689ae7 743 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 744}
89689ae7
CL
745#endif
746
57e0a030 747#ifdef CONFIG_NUMA_BALANCING
90572890 748static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 749{
90572890 750 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
751}
752
90572890 753static inline int cpupid_to_pid(int cpupid)
57e0a030 754{
90572890 755 return cpupid & LAST__PID_MASK;
57e0a030 756}
b795854b 757
90572890 758static inline int cpupid_to_cpu(int cpupid)
b795854b 759{
90572890 760 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
761}
762
90572890 763static inline int cpupid_to_nid(int cpupid)
b795854b 764{
90572890 765 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
766}
767
90572890 768static inline bool cpupid_pid_unset(int cpupid)
57e0a030 769{
90572890 770 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
771}
772
90572890 773static inline bool cpupid_cpu_unset(int cpupid)
b795854b 774{
90572890 775 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
776}
777
8c8a743c
PZ
778static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
779{
780 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
781}
782
783#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
784#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
785static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 786{
1ae71d03 787 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 788}
90572890
PZ
789
790static inline int page_cpupid_last(struct page *page)
791{
792 return page->_last_cpupid;
793}
794static inline void page_cpupid_reset_last(struct page *page)
b795854b 795{
1ae71d03 796 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
797}
798#else
90572890 799static inline int page_cpupid_last(struct page *page)
75980e97 800{
90572890 801 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
802}
803
90572890 804extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 805
90572890 806static inline void page_cpupid_reset_last(struct page *page)
75980e97 807{
90572890 808 int cpupid = (1 << LAST_CPUPID_SHIFT) - 1;
4468b8f1 809
90572890
PZ
810 page->flags &= ~(LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT);
811 page->flags |= (cpupid & LAST_CPUPID_MASK) << LAST_CPUPID_PGSHIFT;
75980e97 812}
90572890
PZ
813#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
814#else /* !CONFIG_NUMA_BALANCING */
815static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 816{
90572890 817 return page_to_nid(page); /* XXX */
57e0a030
MG
818}
819
90572890 820static inline int page_cpupid_last(struct page *page)
57e0a030 821{
90572890 822 return page_to_nid(page); /* XXX */
57e0a030
MG
823}
824
90572890 825static inline int cpupid_to_nid(int cpupid)
b795854b
MG
826{
827 return -1;
828}
829
90572890 830static inline int cpupid_to_pid(int cpupid)
b795854b
MG
831{
832 return -1;
833}
834
90572890 835static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
836{
837 return -1;
838}
839
90572890
PZ
840static inline int cpu_pid_to_cpupid(int nid, int pid)
841{
842 return -1;
843}
844
845static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
846{
847 return 1;
848}
849
90572890 850static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
851{
852}
8c8a743c
PZ
853
854static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
855{
856 return false;
857}
90572890 858#endif /* CONFIG_NUMA_BALANCING */
57e0a030 859
33dd4e0e 860static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
861{
862 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
863}
864
9127ab4f 865#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
866static inline void set_page_section(struct page *page, unsigned long section)
867{
868 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
869 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
870}
871
aa462abe 872static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
873{
874 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
875}
308c05e3 876#endif
d41dee36 877
2f1b6248 878static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
879{
880 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
881 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
882}
2f1b6248 883
348f8b6c
DH
884static inline void set_page_node(struct page *page, unsigned long node)
885{
886 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
887 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 888}
89689ae7 889
2f1b6248 890static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 891 unsigned long node, unsigned long pfn)
1da177e4 892{
348f8b6c
DH
893 set_page_zone(page, zone);
894 set_page_node(page, node);
9127ab4f 895#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 896 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 897#endif
1da177e4
LT
898}
899
0610c25d
GT
900#ifdef CONFIG_MEMCG
901static inline struct mem_cgroup *page_memcg(struct page *page)
902{
903 return page->mem_cgroup;
904}
905
906static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
907{
908 page->mem_cgroup = memcg;
909}
910#else
911static inline struct mem_cgroup *page_memcg(struct page *page)
912{
913 return NULL;
914}
915
916static inline void set_page_memcg(struct page *page, struct mem_cgroup *memcg)
917{
918}
919#endif
920
f6ac2354
CL
921/*
922 * Some inline functions in vmstat.h depend on page_zone()
923 */
924#include <linux/vmstat.h>
925
33dd4e0e 926static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 927{
aa462abe 928 return __va(PFN_PHYS(page_to_pfn(page)));
1da177e4
LT
929}
930
931#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
932#define HASHED_PAGE_VIRTUAL
933#endif
934
935#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
936static inline void *page_address(const struct page *page)
937{
938 return page->virtual;
939}
940static inline void set_page_address(struct page *page, void *address)
941{
942 page->virtual = address;
943}
1da177e4
LT
944#define page_address_init() do { } while(0)
945#endif
946
947#if defined(HASHED_PAGE_VIRTUAL)
f9918794 948void *page_address(const struct page *page);
1da177e4
LT
949void set_page_address(struct page *page, void *virtual);
950void page_address_init(void);
951#endif
952
953#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
954#define page_address(page) lowmem_page_address(page)
955#define set_page_address(page, address) do { } while(0)
956#define page_address_init() do { } while(0)
957#endif
958
e39155ea
KS
959extern void *page_rmapping(struct page *page);
960extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 961extern struct address_space *page_mapping(struct page *page);
1da177e4 962
f981c595
MG
963extern struct address_space *__page_file_mapping(struct page *);
964
965static inline
966struct address_space *page_file_mapping(struct page *page)
967{
968 if (unlikely(PageSwapCache(page)))
969 return __page_file_mapping(page);
970
971 return page->mapping;
972}
973
1da177e4
LT
974/*
975 * Return the pagecache index of the passed page. Regular pagecache pages
976 * use ->index whereas swapcache pages use ->private
977 */
978static inline pgoff_t page_index(struct page *page)
979{
980 if (unlikely(PageSwapCache(page)))
4c21e2f2 981 return page_private(page);
1da177e4
LT
982 return page->index;
983}
984
f981c595
MG
985extern pgoff_t __page_file_index(struct page *page);
986
987/*
988 * Return the file index of the page. Regular pagecache pages use ->index
989 * whereas swapcache pages use swp_offset(->private)
990 */
991static inline pgoff_t page_file_index(struct page *page)
992{
993 if (unlikely(PageSwapCache(page)))
994 return __page_file_index(page);
995
996 return page->index;
997}
998
1da177e4
LT
999/*
1000 * Return true if this page is mapped into pagetables.
e1534ae9 1001 * For compound page it returns true if any subpage of compound page is mapped.
1da177e4 1002 */
e1534ae9 1003static inline bool page_mapped(struct page *page)
1da177e4 1004{
e1534ae9
KS
1005 int i;
1006 if (likely(!PageCompound(page)))
1007 return atomic_read(&page->_mapcount) >= 0;
1008 page = compound_head(page);
1009 if (atomic_read(compound_mapcount_ptr(page)) >= 0)
1010 return true;
1011 for (i = 0; i < hpage_nr_pages(page); i++) {
1012 if (atomic_read(&page[i]._mapcount) >= 0)
1013 return true;
1014 }
1015 return false;
1da177e4
LT
1016}
1017
2f064f34
MH
1018/*
1019 * Return true only if the page has been allocated with
1020 * ALLOC_NO_WATERMARKS and the low watermark was not
1021 * met implying that the system is under some pressure.
1022 */
1023static inline bool page_is_pfmemalloc(struct page *page)
1024{
1025 /*
1026 * Page index cannot be this large so this must be
1027 * a pfmemalloc page.
1028 */
1029 return page->index == -1UL;
1030}
1031
1032/*
1033 * Only to be called by the page allocator on a freshly allocated
1034 * page.
1035 */
1036static inline void set_page_pfmemalloc(struct page *page)
1037{
1038 page->index = -1UL;
1039}
1040
1041static inline void clear_page_pfmemalloc(struct page *page)
1042{
1043 page->index = 0;
1044}
1045
1da177e4
LT
1046/*
1047 * Different kinds of faults, as returned by handle_mm_fault().
1048 * Used to decide whether a process gets delivered SIGBUS or
1049 * just gets major/minor fault counters bumped up.
1050 */
d0217ac0 1051
83c54070 1052#define VM_FAULT_MINOR 0 /* For backwards compat. Remove me quickly. */
d0217ac0 1053
83c54070
NP
1054#define VM_FAULT_OOM 0x0001
1055#define VM_FAULT_SIGBUS 0x0002
1056#define VM_FAULT_MAJOR 0x0004
1057#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1058#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1059#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1060#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1061
83c54070
NP
1062#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1063#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1064#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1065#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
1da177e4 1066
aa50d3a7
AK
1067#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1068
33692f27
LT
1069#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1070 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1071 VM_FAULT_FALLBACK)
aa50d3a7
AK
1072
1073/* Encode hstate index for a hwpoisoned large page */
1074#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1075#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1076
1c0fe6e3
NP
1077/*
1078 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1079 */
1080extern void pagefault_out_of_memory(void);
1081
1da177e4
LT
1082#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1083
ddd588b5 1084/*
7bf02ea2 1085 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1086 * various contexts.
1087 */
4b59e6c4 1088#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1089
7bf02ea2
DR
1090extern void show_free_areas(unsigned int flags);
1091extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1092
1da177e4 1093int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1094#ifdef CONFIG_SHMEM
1095bool shmem_mapping(struct address_space *mapping);
1096#else
1097static inline bool shmem_mapping(struct address_space *mapping)
1098{
1099 return false;
1100}
1101#endif
1da177e4 1102
7f43add4 1103extern bool can_do_mlock(void);
1da177e4
LT
1104extern int user_shm_lock(size_t, struct user_struct *);
1105extern void user_shm_unlock(size_t, struct user_struct *);
1106
1107/*
1108 * Parameter block passed down to zap_pte_range in exceptional cases.
1109 */
1110struct zap_details {
1da177e4
LT
1111 struct address_space *check_mapping; /* Check page->mapping if set */
1112 pgoff_t first_index; /* Lowest page->index to unmap */
1113 pgoff_t last_index; /* Highest page->index to unmap */
1da177e4
LT
1114};
1115
7e675137
NP
1116struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1117 pte_t pte);
1118
c627f9cc
JS
1119int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1120 unsigned long size);
14f5ff5d 1121void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1122 unsigned long size, struct zap_details *);
4f74d2c8
LT
1123void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1124 unsigned long start, unsigned long end);
e6473092
MM
1125
1126/**
1127 * mm_walk - callbacks for walk_page_range
e6473092 1128 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1129 * this handler is required to be able to handle
1130 * pmd_trans_huge() pmds. They may simply choose to
1131 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1132 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1133 * @pte_hole: if set, called for each hole at all levels
5dc37642 1134 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1135 * @test_walk: caller specific callback function to determine whether
1136 * we walk over the current vma or not. A positive returned
1137 * value means "do page table walk over the current vma,"
1138 * and a negative one means "abort current page table walk
1139 * right now." 0 means "skip the current vma."
1140 * @mm: mm_struct representing the target process of page table walk
1141 * @vma: vma currently walked (NULL if walking outside vmas)
1142 * @private: private data for callbacks' usage
e6473092 1143 *
fafaa426 1144 * (see the comment on walk_page_range() for more details)
e6473092
MM
1145 */
1146struct mm_walk {
0f157a5b
AM
1147 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1148 unsigned long next, struct mm_walk *walk);
1149 int (*pte_entry)(pte_t *pte, unsigned long addr,
1150 unsigned long next, struct mm_walk *walk);
1151 int (*pte_hole)(unsigned long addr, unsigned long next,
1152 struct mm_walk *walk);
1153 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1154 unsigned long addr, unsigned long next,
1155 struct mm_walk *walk);
fafaa426
NH
1156 int (*test_walk)(unsigned long addr, unsigned long next,
1157 struct mm_walk *walk);
2165009b 1158 struct mm_struct *mm;
fafaa426 1159 struct vm_area_struct *vma;
2165009b 1160 void *private;
e6473092
MM
1161};
1162
2165009b
DH
1163int walk_page_range(unsigned long addr, unsigned long end,
1164 struct mm_walk *walk);
900fc5f1 1165int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1166void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1167 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1168int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1169 struct vm_area_struct *vma);
1da177e4
LT
1170void unmap_mapping_range(struct address_space *mapping,
1171 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1172int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1173 unsigned long *pfn);
d87fe660 1174int follow_phys(struct vm_area_struct *vma, unsigned long address,
1175 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1176int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1177 void *buf, int len, int write);
1da177e4
LT
1178
1179static inline void unmap_shared_mapping_range(struct address_space *mapping,
1180 loff_t const holebegin, loff_t const holelen)
1181{
1182 unmap_mapping_range(mapping, holebegin, holelen, 0);
1183}
1184
7caef267 1185extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1186extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1187void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1188void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1189int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1190int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1191int invalidate_inode_page(struct page *page);
1192
7ee1dd3f 1193#ifdef CONFIG_MMU
83c54070 1194extern int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
d06063cc 1195 unsigned long address, unsigned int flags);
5c723ba5 1196extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1197 unsigned long address, unsigned int fault_flags,
1198 bool *unlocked);
7ee1dd3f
DH
1199#else
1200static inline int handle_mm_fault(struct mm_struct *mm,
1201 struct vm_area_struct *vma, unsigned long address,
d06063cc 1202 unsigned int flags)
7ee1dd3f
DH
1203{
1204 /* should never happen if there's no MMU */
1205 BUG();
1206 return VM_FAULT_SIGBUS;
1207}
5c723ba5
PZ
1208static inline int fixup_user_fault(struct task_struct *tsk,
1209 struct mm_struct *mm, unsigned long address,
4a9e1cda 1210 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1211{
1212 /* should never happen if there's no MMU */
1213 BUG();
1214 return -EFAULT;
1215}
7ee1dd3f 1216#endif
f33ea7f4 1217
1da177e4 1218extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1219extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1220 void *buf, int len, int write);
1da177e4 1221
28a35716
ML
1222long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1223 unsigned long start, unsigned long nr_pages,
1224 unsigned int foll_flags, struct page **pages,
1225 struct vm_area_struct **vmas, int *nonblocking);
1226long get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1227 unsigned long start, unsigned long nr_pages,
1228 int write, int force, struct page **pages,
1229 struct vm_area_struct **vmas);
f0818f47
AA
1230long get_user_pages_locked(struct task_struct *tsk, struct mm_struct *mm,
1231 unsigned long start, unsigned long nr_pages,
1232 int write, int force, struct page **pages,
1233 int *locked);
0fd71a56
AA
1234long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1235 unsigned long start, unsigned long nr_pages,
1236 int write, int force, struct page **pages,
1237 unsigned int gup_flags);
f0818f47
AA
1238long get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1239 unsigned long start, unsigned long nr_pages,
1240 int write, int force, struct page **pages);
d2bf6be8
NP
1241int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1242 struct page **pages);
8025e5dd
JK
1243
1244/* Container for pinned pfns / pages */
1245struct frame_vector {
1246 unsigned int nr_allocated; /* Number of frames we have space for */
1247 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1248 bool got_ref; /* Did we pin pages by getting page ref? */
1249 bool is_pfns; /* Does array contain pages or pfns? */
1250 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1251 * pfns_vector_pages() or pfns_vector_pfns()
1252 * for access */
1253};
1254
1255struct frame_vector *frame_vector_create(unsigned int nr_frames);
1256void frame_vector_destroy(struct frame_vector *vec);
1257int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1258 bool write, bool force, struct frame_vector *vec);
1259void put_vaddr_frames(struct frame_vector *vec);
1260int frame_vector_to_pages(struct frame_vector *vec);
1261void frame_vector_to_pfns(struct frame_vector *vec);
1262
1263static inline unsigned int frame_vector_count(struct frame_vector *vec)
1264{
1265 return vec->nr_frames;
1266}
1267
1268static inline struct page **frame_vector_pages(struct frame_vector *vec)
1269{
1270 if (vec->is_pfns) {
1271 int err = frame_vector_to_pages(vec);
1272
1273 if (err)
1274 return ERR_PTR(err);
1275 }
1276 return (struct page **)(vec->ptrs);
1277}
1278
1279static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1280{
1281 if (!vec->is_pfns)
1282 frame_vector_to_pfns(vec);
1283 return (unsigned long *)(vec->ptrs);
1284}
1285
18022c5d
MG
1286struct kvec;
1287int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1288 struct page **pages);
1289int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1290struct page *get_dump_page(unsigned long addr);
1da177e4 1291
cf9a2ae8 1292extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1293extern void do_invalidatepage(struct page *page, unsigned int offset,
1294 unsigned int length);
cf9a2ae8 1295
1da177e4 1296int __set_page_dirty_nobuffers(struct page *page);
76719325 1297int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1298int redirty_page_for_writepage(struct writeback_control *wbc,
1299 struct page *page);
c4843a75
GT
1300void account_page_dirtied(struct page *page, struct address_space *mapping,
1301 struct mem_cgroup *memcg);
1302void account_page_cleaned(struct page *page, struct address_space *mapping,
682aa8e1 1303 struct mem_cgroup *memcg, struct bdi_writeback *wb);
b3c97528 1304int set_page_dirty(struct page *page);
1da177e4 1305int set_page_dirty_lock(struct page *page);
11f81bec 1306void cancel_dirty_page(struct page *page);
1da177e4 1307int clear_page_dirty_for_io(struct page *page);
b9ea2515 1308
a9090253 1309int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1310
39aa3cb3 1311/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1312static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1313{
1314 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1315}
1316
b5330628
ON
1317static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1318{
1319 return !vma->vm_ops;
1320}
1321
a09a79f6
MP
1322static inline int stack_guard_page_start(struct vm_area_struct *vma,
1323 unsigned long addr)
1324{
1325 return (vma->vm_flags & VM_GROWSDOWN) &&
1326 (vma->vm_start == addr) &&
1327 !vma_growsdown(vma->vm_prev, addr);
1328}
1329
1330/* Is the vma a continuation of the stack vma below it? */
1331static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1332{
1333 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1334}
1335
1336static inline int stack_guard_page_end(struct vm_area_struct *vma,
1337 unsigned long addr)
1338{
1339 return (vma->vm_flags & VM_GROWSUP) &&
1340 (vma->vm_end == addr) &&
1341 !vma_growsup(vma->vm_next, addr);
1342}
1343
65376df5 1344int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
b7643757 1345
b6a2fea3
OW
1346extern unsigned long move_page_tables(struct vm_area_struct *vma,
1347 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1348 unsigned long new_addr, unsigned long len,
1349 bool need_rmap_locks);
7da4d641
PZ
1350extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1351 unsigned long end, pgprot_t newprot,
4b10e7d5 1352 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1353extern int mprotect_fixup(struct vm_area_struct *vma,
1354 struct vm_area_struct **pprev, unsigned long start,
1355 unsigned long end, unsigned long newflags);
1da177e4 1356
465a454f
PZ
1357/*
1358 * doesn't attempt to fault and will return short.
1359 */
1360int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1361 struct page **pages);
d559db08
KH
1362/*
1363 * per-process(per-mm_struct) statistics.
1364 */
d559db08
KH
1365static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1366{
69c97823
KK
1367 long val = atomic_long_read(&mm->rss_stat.count[member]);
1368
1369#ifdef SPLIT_RSS_COUNTING
1370 /*
1371 * counter is updated in asynchronous manner and may go to minus.
1372 * But it's never be expected number for users.
1373 */
1374 if (val < 0)
1375 val = 0;
172703b0 1376#endif
69c97823
KK
1377 return (unsigned long)val;
1378}
d559db08
KH
1379
1380static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1381{
172703b0 1382 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1383}
1384
1385static inline void inc_mm_counter(struct mm_struct *mm, int member)
1386{
172703b0 1387 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1388}
1389
1390static inline void dec_mm_counter(struct mm_struct *mm, int member)
1391{
172703b0 1392 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1393}
1394
eca56ff9
JM
1395/* Optimized variant when page is already known not to be PageAnon */
1396static inline int mm_counter_file(struct page *page)
1397{
1398 if (PageSwapBacked(page))
1399 return MM_SHMEMPAGES;
1400 return MM_FILEPAGES;
1401}
1402
1403static inline int mm_counter(struct page *page)
1404{
1405 if (PageAnon(page))
1406 return MM_ANONPAGES;
1407 return mm_counter_file(page);
1408}
1409
d559db08
KH
1410static inline unsigned long get_mm_rss(struct mm_struct *mm)
1411{
1412 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1413 get_mm_counter(mm, MM_ANONPAGES) +
1414 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1415}
1416
1417static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1418{
1419 return max(mm->hiwater_rss, get_mm_rss(mm));
1420}
1421
1422static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1423{
1424 return max(mm->hiwater_vm, mm->total_vm);
1425}
1426
1427static inline void update_hiwater_rss(struct mm_struct *mm)
1428{
1429 unsigned long _rss = get_mm_rss(mm);
1430
1431 if ((mm)->hiwater_rss < _rss)
1432 (mm)->hiwater_rss = _rss;
1433}
1434
1435static inline void update_hiwater_vm(struct mm_struct *mm)
1436{
1437 if (mm->hiwater_vm < mm->total_vm)
1438 mm->hiwater_vm = mm->total_vm;
1439}
1440
695f0559
PC
1441static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1442{
1443 mm->hiwater_rss = get_mm_rss(mm);
1444}
1445
d559db08
KH
1446static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1447 struct mm_struct *mm)
1448{
1449 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1450
1451 if (*maxrss < hiwater_rss)
1452 *maxrss = hiwater_rss;
1453}
1454
53bddb4e 1455#if defined(SPLIT_RSS_COUNTING)
05af2e10 1456void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1457#else
05af2e10 1458static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1459{
1460}
1461#endif
465a454f 1462
3565fce3
DW
1463#ifndef __HAVE_ARCH_PTE_DEVMAP
1464static inline int pte_devmap(pte_t pte)
1465{
1466 return 0;
1467}
1468#endif
1469
4e950f6f 1470int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1471
25ca1d6c
NK
1472extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1473 spinlock_t **ptl);
1474static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1475 spinlock_t **ptl)
1476{
1477 pte_t *ptep;
1478 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1479 return ptep;
1480}
c9cfcddf 1481
5f22df00
NP
1482#ifdef __PAGETABLE_PUD_FOLDED
1483static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1484 unsigned long address)
1485{
1486 return 0;
1487}
1488#else
1bb3630e 1489int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1490#endif
1491
2d2f5119 1492#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1493static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1494 unsigned long address)
1495{
1496 return 0;
1497}
dc6c9a35 1498
2d2f5119
KS
1499static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1500
dc6c9a35
KS
1501static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1502{
1503 return 0;
1504}
1505
1506static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1507static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1508
5f22df00 1509#else
1bb3630e 1510int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1511
2d2f5119
KS
1512static inline void mm_nr_pmds_init(struct mm_struct *mm)
1513{
1514 atomic_long_set(&mm->nr_pmds, 0);
1515}
1516
dc6c9a35
KS
1517static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1518{
1519 return atomic_long_read(&mm->nr_pmds);
1520}
1521
1522static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1523{
1524 atomic_long_inc(&mm->nr_pmds);
1525}
1526
1527static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1528{
1529 atomic_long_dec(&mm->nr_pmds);
1530}
5f22df00
NP
1531#endif
1532
8ac1f832
AA
1533int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
1534 pmd_t *pmd, unsigned long address);
1bb3630e
HD
1535int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1536
1da177e4
LT
1537/*
1538 * The following ifdef needed to get the 4level-fixup.h header to work.
1539 * Remove it when 4level-fixup.h has been removed.
1540 */
1bb3630e 1541#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1542static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1543{
1bb3630e
HD
1544 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1545 NULL: pud_offset(pgd, address);
1da177e4
LT
1546}
1547
1548static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1549{
1bb3630e
HD
1550 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1551 NULL: pmd_offset(pud, address);
1da177e4 1552}
1bb3630e
HD
1553#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1554
57c1ffce 1555#if USE_SPLIT_PTE_PTLOCKS
597d795a 1556#if ALLOC_SPLIT_PTLOCKS
b35f1819 1557void __init ptlock_cache_init(void);
539edb58
PZ
1558extern bool ptlock_alloc(struct page *page);
1559extern void ptlock_free(struct page *page);
1560
1561static inline spinlock_t *ptlock_ptr(struct page *page)
1562{
1563 return page->ptl;
1564}
597d795a 1565#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1566static inline void ptlock_cache_init(void)
1567{
1568}
1569
49076ec2
KS
1570static inline bool ptlock_alloc(struct page *page)
1571{
49076ec2
KS
1572 return true;
1573}
539edb58 1574
49076ec2
KS
1575static inline void ptlock_free(struct page *page)
1576{
49076ec2
KS
1577}
1578
1579static inline spinlock_t *ptlock_ptr(struct page *page)
1580{
539edb58 1581 return &page->ptl;
49076ec2 1582}
597d795a 1583#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1584
1585static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1586{
1587 return ptlock_ptr(pmd_page(*pmd));
1588}
1589
1590static inline bool ptlock_init(struct page *page)
1591{
1592 /*
1593 * prep_new_page() initialize page->private (and therefore page->ptl)
1594 * with 0. Make sure nobody took it in use in between.
1595 *
1596 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1597 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1598 */
309381fe 1599 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1600 if (!ptlock_alloc(page))
1601 return false;
1602 spin_lock_init(ptlock_ptr(page));
1603 return true;
1604}
1605
1606/* Reset page->mapping so free_pages_check won't complain. */
1607static inline void pte_lock_deinit(struct page *page)
1608{
1609 page->mapping = NULL;
1610 ptlock_free(page);
1611}
1612
57c1ffce 1613#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1614/*
1615 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1616 */
49076ec2
KS
1617static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1618{
1619 return &mm->page_table_lock;
1620}
b35f1819 1621static inline void ptlock_cache_init(void) {}
49076ec2
KS
1622static inline bool ptlock_init(struct page *page) { return true; }
1623static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1624#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1625
b35f1819
KS
1626static inline void pgtable_init(void)
1627{
1628 ptlock_cache_init();
1629 pgtable_cache_init();
1630}
1631
390f44e2 1632static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1633{
706874e9
VD
1634 if (!ptlock_init(page))
1635 return false;
2f569afd 1636 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1637 return true;
2f569afd
MS
1638}
1639
1640static inline void pgtable_page_dtor(struct page *page)
1641{
1642 pte_lock_deinit(page);
1643 dec_zone_page_state(page, NR_PAGETABLE);
1644}
1645
c74df32c
HD
1646#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1647({ \
4c21e2f2 1648 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1649 pte_t *__pte = pte_offset_map(pmd, address); \
1650 *(ptlp) = __ptl; \
1651 spin_lock(__ptl); \
1652 __pte; \
1653})
1654
1655#define pte_unmap_unlock(pte, ptl) do { \
1656 spin_unlock(ptl); \
1657 pte_unmap(pte); \
1658} while (0)
1659
8ac1f832
AA
1660#define pte_alloc_map(mm, vma, pmd, address) \
1661 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, vma, \
1662 pmd, address))? \
1663 NULL: pte_offset_map(pmd, address))
1bb3630e 1664
c74df32c 1665#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
8ac1f832
AA
1666 ((unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, NULL, \
1667 pmd, address))? \
c74df32c
HD
1668 NULL: pte_offset_map_lock(mm, pmd, address, ptlp))
1669
1bb3630e 1670#define pte_alloc_kernel(pmd, address) \
8ac1f832 1671 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1672 NULL: pte_offset_kernel(pmd, address))
1da177e4 1673
e009bb30
KS
1674#if USE_SPLIT_PMD_PTLOCKS
1675
634391ac
MS
1676static struct page *pmd_to_page(pmd_t *pmd)
1677{
1678 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1679 return virt_to_page((void *)((unsigned long) pmd & mask));
1680}
1681
e009bb30
KS
1682static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1683{
634391ac 1684 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1685}
1686
1687static inline bool pgtable_pmd_page_ctor(struct page *page)
1688{
e009bb30
KS
1689#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1690 page->pmd_huge_pte = NULL;
1691#endif
49076ec2 1692 return ptlock_init(page);
e009bb30
KS
1693}
1694
1695static inline void pgtable_pmd_page_dtor(struct page *page)
1696{
1697#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1698 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1699#endif
49076ec2 1700 ptlock_free(page);
e009bb30
KS
1701}
1702
634391ac 1703#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1704
1705#else
1706
9a86cb7b
KS
1707static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1708{
1709 return &mm->page_table_lock;
1710}
1711
e009bb30
KS
1712static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1713static inline void pgtable_pmd_page_dtor(struct page *page) {}
1714
c389a250 1715#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1716
e009bb30
KS
1717#endif
1718
9a86cb7b
KS
1719static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1720{
1721 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1722 spin_lock(ptl);
1723 return ptl;
1724}
1725
1da177e4 1726extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1727extern void free_area_init_node(int nid, unsigned long * zones_size,
1728 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1729extern void free_initmem(void);
1730
69afade7
JL
1731/*
1732 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1733 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1734 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1735 * Return pages freed into the buddy system.
1736 */
11199692 1737extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1738 int poison, char *s);
c3d5f5f0 1739
cfa11e08
JL
1740#ifdef CONFIG_HIGHMEM
1741/*
1742 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1743 * and totalram_pages.
1744 */
1745extern void free_highmem_page(struct page *page);
1746#endif
69afade7 1747
c3d5f5f0 1748extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1749extern void mem_init_print_info(const char *str);
69afade7 1750
92923ca3
NZ
1751extern void reserve_bootmem_region(unsigned long start, unsigned long end);
1752
69afade7
JL
1753/* Free the reserved page into the buddy system, so it gets managed. */
1754static inline void __free_reserved_page(struct page *page)
1755{
1756 ClearPageReserved(page);
1757 init_page_count(page);
1758 __free_page(page);
1759}
1760
1761static inline void free_reserved_page(struct page *page)
1762{
1763 __free_reserved_page(page);
1764 adjust_managed_page_count(page, 1);
1765}
1766
1767static inline void mark_page_reserved(struct page *page)
1768{
1769 SetPageReserved(page);
1770 adjust_managed_page_count(page, -1);
1771}
1772
1773/*
1774 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1775 * The freed pages will be poisoned with pattern "poison" if it's within
1776 * range [0, UCHAR_MAX].
1777 * Return pages freed into the buddy system.
69afade7
JL
1778 */
1779static inline unsigned long free_initmem_default(int poison)
1780{
1781 extern char __init_begin[], __init_end[];
1782
11199692 1783 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1784 poison, "unused kernel");
1785}
1786
7ee3d4e8
JL
1787static inline unsigned long get_num_physpages(void)
1788{
1789 int nid;
1790 unsigned long phys_pages = 0;
1791
1792 for_each_online_node(nid)
1793 phys_pages += node_present_pages(nid);
1794
1795 return phys_pages;
1796}
1797
0ee332c1 1798#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1799/*
0ee332c1 1800 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1801 * zones, allocate the backing mem_map and account for memory holes in a more
1802 * architecture independent manner. This is a substitute for creating the
1803 * zone_sizes[] and zholes_size[] arrays and passing them to
1804 * free_area_init_node()
1805 *
1806 * An architecture is expected to register range of page frames backed by
0ee332c1 1807 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1808 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1809 * usage, an architecture is expected to do something like
1810 *
1811 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1812 * max_highmem_pfn};
1813 * for_each_valid_physical_page_range()
0ee332c1 1814 * memblock_add_node(base, size, nid)
c713216d
MG
1815 * free_area_init_nodes(max_zone_pfns);
1816 *
0ee332c1
TH
1817 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1818 * registered physical page range. Similarly
1819 * sparse_memory_present_with_active_regions() calls memory_present() for
1820 * each range when SPARSEMEM is enabled.
c713216d
MG
1821 *
1822 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1823 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1824 */
1825extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1826unsigned long node_map_pfn_alignment(void);
32996250
YL
1827unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1828 unsigned long end_pfn);
c713216d
MG
1829extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1830 unsigned long end_pfn);
1831extern void get_pfn_range_for_nid(unsigned int nid,
1832 unsigned long *start_pfn, unsigned long *end_pfn);
1833extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1834extern void free_bootmem_with_active_regions(int nid,
1835 unsigned long max_low_pfn);
1836extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1837
0ee332c1 1838#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1839
0ee332c1 1840#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1841 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1842static inline int __early_pfn_to_nid(unsigned long pfn,
1843 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1844{
1845 return 0;
1846}
1847#else
1848/* please see mm/page_alloc.c */
1849extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1850/* there is a per-arch backend function. */
8a942fde
MG
1851extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1852 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1853#endif
1854
0e0b864e 1855extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1856extern void memmap_init_zone(unsigned long, int, unsigned long,
1857 unsigned long, enum memmap_context);
bc75d33f 1858extern void setup_per_zone_wmarks(void);
1b79acc9 1859extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1860extern void mem_init(void);
8feae131 1861extern void __init mmap_init(void);
b2b755b5 1862extern void show_mem(unsigned int flags);
1da177e4
LT
1863extern void si_meminfo(struct sysinfo * val);
1864extern void si_meminfo_node(struct sysinfo *val, int nid);
1865
3ee9a4f0 1866extern __printf(3, 4)
d00181b9
KS
1867void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1868 const char *fmt, ...);
a238ab5b 1869
e7c8d5c9 1870extern void setup_per_cpu_pageset(void);
e7c8d5c9 1871
112067f0 1872extern void zone_pcp_update(struct zone *zone);
340175b7 1873extern void zone_pcp_reset(struct zone *zone);
112067f0 1874
75f7ad8e
PS
1875/* page_alloc.c */
1876extern int min_free_kbytes;
1877
8feae131 1878/* nommu.c */
33e5d769 1879extern atomic_long_t mmap_pages_allocated;
7e660872 1880extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1881
6b2dbba8 1882/* interval_tree.c */
6b2dbba8
ML
1883void vma_interval_tree_insert(struct vm_area_struct *node,
1884 struct rb_root *root);
9826a516
ML
1885void vma_interval_tree_insert_after(struct vm_area_struct *node,
1886 struct vm_area_struct *prev,
1887 struct rb_root *root);
6b2dbba8
ML
1888void vma_interval_tree_remove(struct vm_area_struct *node,
1889 struct rb_root *root);
1890struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1891 unsigned long start, unsigned long last);
1892struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1893 unsigned long start, unsigned long last);
1894
1895#define vma_interval_tree_foreach(vma, root, start, last) \
1896 for (vma = vma_interval_tree_iter_first(root, start, last); \
1897 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1898
bf181b9f
ML
1899void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1900 struct rb_root *root);
1901void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1902 struct rb_root *root);
1903struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1904 struct rb_root *root, unsigned long start, unsigned long last);
1905struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1906 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1907#ifdef CONFIG_DEBUG_VM_RB
1908void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1909#endif
bf181b9f
ML
1910
1911#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1912 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1913 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1914
1da177e4 1915/* mmap.c */
34b4e4aa 1916extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1917extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1918 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1919extern struct vm_area_struct *vma_merge(struct mm_struct *,
1920 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1921 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 1922 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
1923extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1924extern int split_vma(struct mm_struct *,
1925 struct vm_area_struct *, unsigned long addr, int new_below);
1926extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1927extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1928 struct rb_node **, struct rb_node *);
a8fb5618 1929extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1930extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1931 unsigned long addr, unsigned long len, pgoff_t pgoff,
1932 bool *need_rmap_locks);
1da177e4 1933extern void exit_mmap(struct mm_struct *);
925d1c40 1934
9c599024
CG
1935static inline int check_data_rlimit(unsigned long rlim,
1936 unsigned long new,
1937 unsigned long start,
1938 unsigned long end_data,
1939 unsigned long start_data)
1940{
1941 if (rlim < RLIM_INFINITY) {
1942 if (((new - start) + (end_data - start_data)) > rlim)
1943 return -ENOSPC;
1944 }
1945
1946 return 0;
1947}
1948
7906d00c
AA
1949extern int mm_take_all_locks(struct mm_struct *mm);
1950extern void mm_drop_all_locks(struct mm_struct *mm);
1951
38646013
JS
1952extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
1953extern struct file *get_mm_exe_file(struct mm_struct *mm);
925d1c40 1954
84638335
KK
1955extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
1956extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
1957
3935ed6a
SS
1958extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
1959 unsigned long addr, unsigned long len,
a62c34bd
AL
1960 unsigned long flags,
1961 const struct vm_special_mapping *spec);
1962/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
1963extern int install_special_mapping(struct mm_struct *mm,
1964 unsigned long addr, unsigned long len,
1965 unsigned long flags, struct page **pages);
1da177e4
LT
1966
1967extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
1968
0165ab44 1969extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 1970 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1fcfd8db 1971extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 1972 unsigned long len, unsigned long prot, unsigned long flags,
1fcfd8db 1973 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1da177e4
LT
1974extern int do_munmap(struct mm_struct *, unsigned long, size_t);
1975
1fcfd8db
ON
1976static inline unsigned long
1977do_mmap_pgoff(struct file *file, unsigned long addr,
1978 unsigned long len, unsigned long prot, unsigned long flags,
1979 unsigned long pgoff, unsigned long *populate)
1980{
1981 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
1982}
1983
bebeb3d6
ML
1984#ifdef CONFIG_MMU
1985extern int __mm_populate(unsigned long addr, unsigned long len,
1986 int ignore_errors);
1987static inline void mm_populate(unsigned long addr, unsigned long len)
1988{
1989 /* Ignore errors */
1990 (void) __mm_populate(addr, len, 1);
1991}
1992#else
1993static inline void mm_populate(unsigned long addr, unsigned long len) {}
1994#endif
1995
e4eb1ff6
LT
1996/* These take the mm semaphore themselves */
1997extern unsigned long vm_brk(unsigned long, unsigned long);
bfce281c 1998extern int vm_munmap(unsigned long, size_t);
6be5ceb0
LT
1999extern unsigned long vm_mmap(struct file *, unsigned long,
2000 unsigned long, unsigned long,
2001 unsigned long, unsigned long);
1da177e4 2002
db4fbfb9
ML
2003struct vm_unmapped_area_info {
2004#define VM_UNMAPPED_AREA_TOPDOWN 1
2005 unsigned long flags;
2006 unsigned long length;
2007 unsigned long low_limit;
2008 unsigned long high_limit;
2009 unsigned long align_mask;
2010 unsigned long align_offset;
2011};
2012
2013extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2014extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2015
2016/*
2017 * Search for an unmapped address range.
2018 *
2019 * We are looking for a range that:
2020 * - does not intersect with any VMA;
2021 * - is contained within the [low_limit, high_limit) interval;
2022 * - is at least the desired size.
2023 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2024 */
2025static inline unsigned long
2026vm_unmapped_area(struct vm_unmapped_area_info *info)
2027{
cdd7875e 2028 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2029 return unmapped_area_topdown(info);
cdd7875e
BP
2030 else
2031 return unmapped_area(info);
db4fbfb9
ML
2032}
2033
85821aab 2034/* truncate.c */
1da177e4 2035extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2036extern void truncate_inode_pages_range(struct address_space *,
2037 loff_t lstart, loff_t lend);
91b0abe3 2038extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2039
2040/* generic vm_area_ops exported for stackable file systems */
d0217ac0 2041extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
f1820361 2042extern void filemap_map_pages(struct vm_area_struct *vma, struct vm_fault *vmf);
4fcf1c62 2043extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
2044
2045/* mm/page-writeback.c */
2046int write_one_page(struct page *page, int wait);
1cf6e7d8 2047void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2048
2049/* readahead.c */
2050#define VM_MAX_READAHEAD 128 /* kbytes */
2051#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2052
1da177e4 2053int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2054 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2055
2056void page_cache_sync_readahead(struct address_space *mapping,
2057 struct file_ra_state *ra,
2058 struct file *filp,
2059 pgoff_t offset,
2060 unsigned long size);
2061
2062void page_cache_async_readahead(struct address_space *mapping,
2063 struct file_ra_state *ra,
2064 struct file *filp,
2065 struct page *pg,
2066 pgoff_t offset,
2067 unsigned long size);
2068
d05f3169 2069/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2070extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2071
2072/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2073extern int expand_downwards(struct vm_area_struct *vma,
2074 unsigned long address);
8ca3eb08 2075#if VM_GROWSUP
46dea3d0 2076extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2077#else
fee7e49d 2078 #define expand_upwards(vma, address) (0)
9ab88515 2079#endif
1da177e4
LT
2080
2081/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2082extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2083extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2084 struct vm_area_struct **pprev);
2085
2086/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2087 NULL if none. Assume start_addr < end_addr. */
2088static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2089{
2090 struct vm_area_struct * vma = find_vma(mm,start_addr);
2091
2092 if (vma && end_addr <= vma->vm_start)
2093 vma = NULL;
2094 return vma;
2095}
2096
2097static inline unsigned long vma_pages(struct vm_area_struct *vma)
2098{
2099 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2100}
2101
640708a2
PE
2102/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2103static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2104 unsigned long vm_start, unsigned long vm_end)
2105{
2106 struct vm_area_struct *vma = find_vma(mm, vm_start);
2107
2108 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2109 vma = NULL;
2110
2111 return vma;
2112}
2113
bad849b3 2114#ifdef CONFIG_MMU
804af2cf 2115pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2116void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2117#else
2118static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2119{
2120 return __pgprot(0);
2121}
64e45507
PF
2122static inline void vma_set_page_prot(struct vm_area_struct *vma)
2123{
2124 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2125}
bad849b3
DH
2126#endif
2127
5877231f 2128#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2129unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2130 unsigned long start, unsigned long end);
2131#endif
2132
deceb6cd 2133struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2134int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2135 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2136int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2137int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2138 unsigned long pfn);
423bad60 2139int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2140 pfn_t pfn);
b4cbb197
LT
2141int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2142
deceb6cd 2143
240aadee
ML
2144struct page *follow_page_mask(struct vm_area_struct *vma,
2145 unsigned long address, unsigned int foll_flags,
2146 unsigned int *page_mask);
2147
2148static inline struct page *follow_page(struct vm_area_struct *vma,
2149 unsigned long address, unsigned int foll_flags)
2150{
2151 unsigned int unused_page_mask;
2152 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2153}
2154
deceb6cd
HD
2155#define FOLL_WRITE 0x01 /* check pte is writable */
2156#define FOLL_TOUCH 0x02 /* mark page accessed */
2157#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2158#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2159#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2160#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2161 * and return without waiting upon it */
84d33df2 2162#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2163#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2164#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2165#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2166#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2167#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2168#define FOLL_MLOCK 0x1000 /* lock present pages */
1da177e4 2169
2f569afd 2170typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2171 void *data);
2172extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2173 unsigned long size, pte_fn_t fn, void *data);
2174
1da177e4 2175
12d6f21e 2176#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2177extern bool _debug_pagealloc_enabled;
2178extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2179
2180static inline bool debug_pagealloc_enabled(void)
2181{
2182 return _debug_pagealloc_enabled;
2183}
2184
2185static inline void
2186kernel_map_pages(struct page *page, int numpages, int enable)
2187{
2188 if (!debug_pagealloc_enabled())
2189 return;
2190
2191 __kernel_map_pages(page, numpages, enable);
2192}
8a235efa
RW
2193#ifdef CONFIG_HIBERNATION
2194extern bool kernel_page_present(struct page *page);
2195#endif /* CONFIG_HIBERNATION */
12d6f21e 2196#else
1da177e4 2197static inline void
9858db50 2198kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2199#ifdef CONFIG_HIBERNATION
2200static inline bool kernel_page_present(struct page *page) { return true; }
2201#endif /* CONFIG_HIBERNATION */
1da177e4
LT
2202#endif
2203
a6c19dfe 2204#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2205extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2206extern int in_gate_area_no_mm(unsigned long addr);
2207extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2208#else
a6c19dfe
AL
2209static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2210{
2211 return NULL;
2212}
2213static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2214static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2215{
2216 return 0;
2217}
1da177e4
LT
2218#endif /* __HAVE_ARCH_GATE_AREA */
2219
146732ce
JT
2220#ifdef CONFIG_SYSCTL
2221extern int sysctl_drop_caches;
8d65af78 2222int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2223 void __user *, size_t *, loff_t *);
146732ce
JT
2224#endif
2225
cb731d6c
VD
2226void drop_slab(void);
2227void drop_slab_node(int nid);
9d0243bc 2228
7a9166e3
LY
2229#ifndef CONFIG_MMU
2230#define randomize_va_space 0
2231#else
a62eaf15 2232extern int randomize_va_space;
7a9166e3 2233#endif
a62eaf15 2234
045e72ac 2235const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2236void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2237
9bdac914
YL
2238void sparse_mem_maps_populate_node(struct page **map_map,
2239 unsigned long pnum_begin,
2240 unsigned long pnum_end,
2241 unsigned long map_count,
2242 int nodeid);
2243
98f3cfc1 2244struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2245pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2246pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2247pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2248pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2249void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2250struct vmem_altmap;
2251void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2252 struct vmem_altmap *altmap);
2253static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2254{
2255 return __vmemmap_alloc_block_buf(size, node, NULL);
2256}
2257
8f6aac41 2258void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2259int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2260 int node);
2261int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2262void vmemmap_populate_print_last(void);
0197518c 2263#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2264void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2265#endif
46723bfa
YI
2266void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2267 unsigned long size);
6a46079c 2268
82ba011b
AK
2269enum mf_flags {
2270 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2271 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2272 MF_MUST_KILL = 1 << 2,
cf870c70 2273 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2274};
cd42f4a3 2275extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2276extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2277extern int unpoison_memory(unsigned long pfn);
ead07f6a 2278extern int get_hwpoison_page(struct page *page);
4e41a30c 2279#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2280extern int sysctl_memory_failure_early_kill;
2281extern int sysctl_memory_failure_recovery;
facb6011 2282extern void shake_page(struct page *p, int access);
293c07e3 2283extern atomic_long_t num_poisoned_pages;
facb6011 2284extern int soft_offline_page(struct page *page, int flags);
6a46079c 2285
cc637b17
XX
2286
2287/*
2288 * Error handlers for various types of pages.
2289 */
cc3e2af4 2290enum mf_result {
cc637b17
XX
2291 MF_IGNORED, /* Error: cannot be handled */
2292 MF_FAILED, /* Error: handling failed */
2293 MF_DELAYED, /* Will be handled later */
2294 MF_RECOVERED, /* Successfully recovered */
2295};
2296
2297enum mf_action_page_type {
2298 MF_MSG_KERNEL,
2299 MF_MSG_KERNEL_HIGH_ORDER,
2300 MF_MSG_SLAB,
2301 MF_MSG_DIFFERENT_COMPOUND,
2302 MF_MSG_POISONED_HUGE,
2303 MF_MSG_HUGE,
2304 MF_MSG_FREE_HUGE,
2305 MF_MSG_UNMAP_FAILED,
2306 MF_MSG_DIRTY_SWAPCACHE,
2307 MF_MSG_CLEAN_SWAPCACHE,
2308 MF_MSG_DIRTY_MLOCKED_LRU,
2309 MF_MSG_CLEAN_MLOCKED_LRU,
2310 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2311 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2312 MF_MSG_DIRTY_LRU,
2313 MF_MSG_CLEAN_LRU,
2314 MF_MSG_TRUNCATED_LRU,
2315 MF_MSG_BUDDY,
2316 MF_MSG_BUDDY_2ND,
2317 MF_MSG_UNKNOWN,
2318};
2319
47ad8475
AA
2320#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2321extern void clear_huge_page(struct page *page,
2322 unsigned long addr,
2323 unsigned int pages_per_huge_page);
2324extern void copy_user_huge_page(struct page *dst, struct page *src,
2325 unsigned long addr, struct vm_area_struct *vma,
2326 unsigned int pages_per_huge_page);
2327#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2328
e30825f1
JK
2329extern struct page_ext_operations debug_guardpage_ops;
2330extern struct page_ext_operations page_poisoning_ops;
2331
c0a32fc5
SG
2332#ifdef CONFIG_DEBUG_PAGEALLOC
2333extern unsigned int _debug_guardpage_minorder;
e30825f1 2334extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2335
2336static inline unsigned int debug_guardpage_minorder(void)
2337{
2338 return _debug_guardpage_minorder;
2339}
2340
e30825f1
JK
2341static inline bool debug_guardpage_enabled(void)
2342{
2343 return _debug_guardpage_enabled;
2344}
2345
c0a32fc5
SG
2346static inline bool page_is_guard(struct page *page)
2347{
e30825f1
JK
2348 struct page_ext *page_ext;
2349
2350 if (!debug_guardpage_enabled())
2351 return false;
2352
2353 page_ext = lookup_page_ext(page);
2354 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2355}
2356#else
2357static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2358static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2359static inline bool page_is_guard(struct page *page) { return false; }
2360#endif /* CONFIG_DEBUG_PAGEALLOC */
2361
f9872caf
CS
2362#if MAX_NUMNODES > 1
2363void __init setup_nr_node_ids(void);
2364#else
2365static inline void setup_nr_node_ids(void) {}
2366#endif
2367
1da177e4
LT
2368#endif /* __KERNEL__ */
2369#endif /* _LINUX_MM_H */
This page took 1.491642 seconds and 5 git commands to generate.