mm: remove gup_flags FOLL_WRITE games from __get_user_pages()
[deliverable/linux.git] / include / linux / mm.h
CommitLineData
1da177e4
LT
1#ifndef _LINUX_MM_H
2#define _LINUX_MM_H
3
1da177e4
LT
4#include <linux/errno.h>
5
6#ifdef __KERNEL__
7
309381fe 8#include <linux/mmdebug.h>
1da177e4 9#include <linux/gfp.h>
187f1882 10#include <linux/bug.h>
1da177e4
LT
11#include <linux/list.h>
12#include <linux/mmzone.h>
13#include <linux/rbtree.h>
83aeeada 14#include <linux/atomic.h>
9a11b49a 15#include <linux/debug_locks.h>
5b99cd0e 16#include <linux/mm_types.h>
08677214 17#include <linux/range.h>
c6f6b596 18#include <linux/pfn.h>
3565fce3 19#include <linux/percpu-refcount.h>
e9da73d6 20#include <linux/bit_spinlock.h>
b0d40c92 21#include <linux/shrinker.h>
9c599024 22#include <linux/resource.h>
e30825f1 23#include <linux/page_ext.h>
8025e5dd 24#include <linux/err.h>
fe896d18 25#include <linux/page_ref.h>
1da177e4
LT
26
27struct mempolicy;
28struct anon_vma;
bf181b9f 29struct anon_vma_chain;
4e950f6f 30struct file_ra_state;
e8edc6e0 31struct user_struct;
4e950f6f 32struct writeback_control;
682aa8e1 33struct bdi_writeback;
1da177e4 34
fccc9987 35#ifndef CONFIG_NEED_MULTIPLE_NODES /* Don't use mapnrs, do it properly */
1da177e4 36extern unsigned long max_mapnr;
fccc9987
JL
37
38static inline void set_max_mapnr(unsigned long limit)
39{
40 max_mapnr = limit;
41}
42#else
43static inline void set_max_mapnr(unsigned long limit) { }
1da177e4
LT
44#endif
45
4481374c 46extern unsigned long totalram_pages;
1da177e4 47extern void * high_memory;
1da177e4
LT
48extern int page_cluster;
49
50#ifdef CONFIG_SYSCTL
51extern int sysctl_legacy_va_layout;
52#else
53#define sysctl_legacy_va_layout 0
54#endif
55
d07e2259
DC
56#ifdef CONFIG_HAVE_ARCH_MMAP_RND_BITS
57extern const int mmap_rnd_bits_min;
58extern const int mmap_rnd_bits_max;
59extern int mmap_rnd_bits __read_mostly;
60#endif
61#ifdef CONFIG_HAVE_ARCH_MMAP_RND_COMPAT_BITS
62extern const int mmap_rnd_compat_bits_min;
63extern const int mmap_rnd_compat_bits_max;
64extern int mmap_rnd_compat_bits __read_mostly;
65#endif
66
1da177e4
LT
67#include <asm/page.h>
68#include <asm/pgtable.h>
69#include <asm/processor.h>
1da177e4 70
79442ed1
TC
71#ifndef __pa_symbol
72#define __pa_symbol(x) __pa(RELOC_HIDE((unsigned long)(x), 0))
73#endif
74
1dff8083
AB
75#ifndef page_to_virt
76#define page_to_virt(x) __va(PFN_PHYS(page_to_pfn(x)))
77#endif
78
593befa6
DD
79/*
80 * To prevent common memory management code establishing
81 * a zero page mapping on a read fault.
82 * This macro should be defined within <asm/pgtable.h>.
83 * s390 does this to prevent multiplexing of hardware bits
84 * related to the physical page in case of virtualization.
85 */
86#ifndef mm_forbids_zeropage
87#define mm_forbids_zeropage(X) (0)
88#endif
89
ea606cf5
AR
90/*
91 * Default maximum number of active map areas, this limits the number of vmas
92 * per mm struct. Users can overwrite this number by sysctl but there is a
93 * problem.
94 *
95 * When a program's coredump is generated as ELF format, a section is created
96 * per a vma. In ELF, the number of sections is represented in unsigned short.
97 * This means the number of sections should be smaller than 65535 at coredump.
98 * Because the kernel adds some informative sections to a image of program at
99 * generating coredump, we need some margin. The number of extra sections is
100 * 1-3 now and depends on arch. We use "5" as safe margin, here.
101 *
102 * ELF extended numbering allows more than 65535 sections, so 16-bit bound is
103 * not a hard limit any more. Although some userspace tools can be surprised by
104 * that.
105 */
106#define MAPCOUNT_ELF_CORE_MARGIN (5)
107#define DEFAULT_MAX_MAP_COUNT (USHRT_MAX - MAPCOUNT_ELF_CORE_MARGIN)
108
109extern int sysctl_max_map_count;
110
c9b1d098 111extern unsigned long sysctl_user_reserve_kbytes;
4eeab4f5 112extern unsigned long sysctl_admin_reserve_kbytes;
c9b1d098 113
49f0ce5f
JM
114extern int sysctl_overcommit_memory;
115extern int sysctl_overcommit_ratio;
116extern unsigned long sysctl_overcommit_kbytes;
117
118extern int overcommit_ratio_handler(struct ctl_table *, int, void __user *,
119 size_t *, loff_t *);
120extern int overcommit_kbytes_handler(struct ctl_table *, int, void __user *,
121 size_t *, loff_t *);
122
1da177e4
LT
123#define nth_page(page,n) pfn_to_page(page_to_pfn((page)) + (n))
124
27ac792c
AR
125/* to align the pointer to the (next) page boundary */
126#define PAGE_ALIGN(addr) ALIGN(addr, PAGE_SIZE)
127
0fa73b86
AM
128/* test whether an address (unsigned long or pointer) is aligned to PAGE_SIZE */
129#define PAGE_ALIGNED(addr) IS_ALIGNED((unsigned long)addr, PAGE_SIZE)
130
1da177e4
LT
131/*
132 * Linux kernel virtual memory manager primitives.
133 * The idea being to have a "virtual" mm in the same way
134 * we have a virtual fs - giving a cleaner interface to the
135 * mm details, and allowing different kinds of memory mappings
136 * (from shared memory to executable loading to arbitrary
137 * mmap() functions).
138 */
139
c43692e8
CL
140extern struct kmem_cache *vm_area_cachep;
141
1da177e4 142#ifndef CONFIG_MMU
8feae131
DH
143extern struct rb_root nommu_region_tree;
144extern struct rw_semaphore nommu_region_sem;
1da177e4
LT
145
146extern unsigned int kobjsize(const void *objp);
147#endif
148
149/*
605d9288 150 * vm_flags in vm_area_struct, see mm_types.h.
bcf66917 151 * When changing, update also include/trace/events/mmflags.h
1da177e4 152 */
cc2383ec
KK
153#define VM_NONE 0x00000000
154
1da177e4
LT
155#define VM_READ 0x00000001 /* currently active flags */
156#define VM_WRITE 0x00000002
157#define VM_EXEC 0x00000004
158#define VM_SHARED 0x00000008
159
7e2cff42 160/* mprotect() hardcodes VM_MAYREAD >> 4 == VM_READ, and so for r/w/x bits. */
1da177e4
LT
161#define VM_MAYREAD 0x00000010 /* limits for mprotect() etc */
162#define VM_MAYWRITE 0x00000020
163#define VM_MAYEXEC 0x00000040
164#define VM_MAYSHARE 0x00000080
165
166#define VM_GROWSDOWN 0x00000100 /* general info on the segment */
16ba6f81 167#define VM_UFFD_MISSING 0x00000200 /* missing pages tracking */
6aab341e 168#define VM_PFNMAP 0x00000400 /* Page-ranges managed without "struct page", just pure PFN */
1da177e4 169#define VM_DENYWRITE 0x00000800 /* ETXTBSY on write attempts.. */
16ba6f81 170#define VM_UFFD_WP 0x00001000 /* wrprotect pages tracking */
1da177e4 171
1da177e4
LT
172#define VM_LOCKED 0x00002000
173#define VM_IO 0x00004000 /* Memory mapped I/O or similar */
174
175 /* Used by sys_madvise() */
176#define VM_SEQ_READ 0x00008000 /* App will access data sequentially */
177#define VM_RAND_READ 0x00010000 /* App will not benefit from clustered reads */
178
179#define VM_DONTCOPY 0x00020000 /* Do not copy this vma on fork */
180#define VM_DONTEXPAND 0x00040000 /* Cannot expand with mremap() */
de60f5f1 181#define VM_LOCKONFAULT 0x00080000 /* Lock the pages covered when they are faulted in */
1da177e4 182#define VM_ACCOUNT 0x00100000 /* Is a VM accounted object */
cdfd4325 183#define VM_NORESERVE 0x00200000 /* should the VM suppress accounting */
1da177e4 184#define VM_HUGETLB 0x00400000 /* Huge TLB Page VM */
cc2383ec 185#define VM_ARCH_1 0x01000000 /* Architecture-specific flag */
4aae7e43 186#define VM_ARCH_2 0x02000000
0103bd16 187#define VM_DONTDUMP 0x04000000 /* Do not include in the core dump */
d00806b1 188
d9104d1c
CG
189#ifdef CONFIG_MEM_SOFT_DIRTY
190# define VM_SOFTDIRTY 0x08000000 /* Not soft dirty clean area */
191#else
192# define VM_SOFTDIRTY 0
193#endif
194
b379d790 195#define VM_MIXEDMAP 0x10000000 /* Can contain "struct page" and pure PFN pages */
cc2383ec
KK
196#define VM_HUGEPAGE 0x20000000 /* MADV_HUGEPAGE marked this vma */
197#define VM_NOHUGEPAGE 0x40000000 /* MADV_NOHUGEPAGE marked this vma */
f8af4da3 198#define VM_MERGEABLE 0x80000000 /* KSM may merge identical pages */
1da177e4 199
63c17fb8
DH
200#ifdef CONFIG_ARCH_USES_HIGH_VMA_FLAGS
201#define VM_HIGH_ARCH_BIT_0 32 /* bit only usable on 64-bit architectures */
202#define VM_HIGH_ARCH_BIT_1 33 /* bit only usable on 64-bit architectures */
203#define VM_HIGH_ARCH_BIT_2 34 /* bit only usable on 64-bit architectures */
204#define VM_HIGH_ARCH_BIT_3 35 /* bit only usable on 64-bit architectures */
205#define VM_HIGH_ARCH_0 BIT(VM_HIGH_ARCH_BIT_0)
206#define VM_HIGH_ARCH_1 BIT(VM_HIGH_ARCH_BIT_1)
207#define VM_HIGH_ARCH_2 BIT(VM_HIGH_ARCH_BIT_2)
208#define VM_HIGH_ARCH_3 BIT(VM_HIGH_ARCH_BIT_3)
209#endif /* CONFIG_ARCH_USES_HIGH_VMA_FLAGS */
210
cc2383ec
KK
211#if defined(CONFIG_X86)
212# define VM_PAT VM_ARCH_1 /* PAT reserves whole VMA at once (x86) */
8f62c883
DH
213#if defined (CONFIG_X86_INTEL_MEMORY_PROTECTION_KEYS)
214# define VM_PKEY_SHIFT VM_HIGH_ARCH_BIT_0
215# define VM_PKEY_BIT0 VM_HIGH_ARCH_0 /* A protection key is a 4-bit value */
216# define VM_PKEY_BIT1 VM_HIGH_ARCH_1
217# define VM_PKEY_BIT2 VM_HIGH_ARCH_2
218# define VM_PKEY_BIT3 VM_HIGH_ARCH_3
219#endif
cc2383ec
KK
220#elif defined(CONFIG_PPC)
221# define VM_SAO VM_ARCH_1 /* Strong Access Ordering (powerpc) */
222#elif defined(CONFIG_PARISC)
223# define VM_GROWSUP VM_ARCH_1
9ca52ed9
JH
224#elif defined(CONFIG_METAG)
225# define VM_GROWSUP VM_ARCH_1
cc2383ec
KK
226#elif defined(CONFIG_IA64)
227# define VM_GROWSUP VM_ARCH_1
228#elif !defined(CONFIG_MMU)
229# define VM_MAPPED_COPY VM_ARCH_1 /* T if mapped copy of data (nommu mmap) */
230#endif
231
4aae7e43
QR
232#if defined(CONFIG_X86)
233/* MPX specific bounds table or bounds directory */
234# define VM_MPX VM_ARCH_2
235#endif
236
cc2383ec
KK
237#ifndef VM_GROWSUP
238# define VM_GROWSUP VM_NONE
239#endif
240
a8bef8ff
MG
241/* Bits set in the VMA until the stack is in its final location */
242#define VM_STACK_INCOMPLETE_SETUP (VM_RAND_READ | VM_SEQ_READ)
243
1da177e4
LT
244#ifndef VM_STACK_DEFAULT_FLAGS /* arch can override this */
245#define VM_STACK_DEFAULT_FLAGS VM_DATA_DEFAULT_FLAGS
246#endif
247
248#ifdef CONFIG_STACK_GROWSUP
30bdbb78 249#define VM_STACK VM_GROWSUP
1da177e4 250#else
30bdbb78 251#define VM_STACK VM_GROWSDOWN
1da177e4
LT
252#endif
253
30bdbb78
KK
254#define VM_STACK_FLAGS (VM_STACK | VM_STACK_DEFAULT_FLAGS | VM_ACCOUNT)
255
b291f000 256/*
78f11a25
AA
257 * Special vmas that are non-mergable, non-mlock()able.
258 * Note: mm/huge_memory.c VM_NO_THP depends on this definition.
b291f000 259 */
9050d7eb 260#define VM_SPECIAL (VM_IO | VM_DONTEXPAND | VM_PFNMAP | VM_MIXEDMAP)
b291f000 261
a0715cc2
AT
262/* This mask defines which mm->def_flags a process can inherit its parent */
263#define VM_INIT_DEF_MASK VM_NOHUGEPAGE
264
de60f5f1
EM
265/* This mask is used to clear all the VMA flags used by mlock */
266#define VM_LOCKED_CLEAR_MASK (~(VM_LOCKED | VM_LOCKONFAULT))
267
1da177e4
LT
268/*
269 * mapping from the currently active vm_flags protection bits (the
270 * low four bits) to a page protection mask..
271 */
272extern pgprot_t protection_map[16];
273
d0217ac0 274#define FAULT_FLAG_WRITE 0x01 /* Fault was a write access */
9b4bdd2f
KS
275#define FAULT_FLAG_MKWRITE 0x02 /* Fault was mkwrite of existing pte */
276#define FAULT_FLAG_ALLOW_RETRY 0x04 /* Retry fault if blocking */
277#define FAULT_FLAG_RETRY_NOWAIT 0x08 /* Don't drop mmap_sem and wait when retrying */
278#define FAULT_FLAG_KILLABLE 0x10 /* The fault task is in SIGKILL killable region */
279#define FAULT_FLAG_TRIED 0x20 /* Second try */
280#define FAULT_FLAG_USER 0x40 /* The fault originated in userspace */
1b2ee126 281#define FAULT_FLAG_REMOTE 0x80 /* faulting for non current tsk/mm */
d61172b4 282#define FAULT_FLAG_INSTRUCTION 0x100 /* The fault was during an instruction fetch */
d0217ac0 283
54cb8821 284/*
d0217ac0 285 * vm_fault is filled by the the pagefault handler and passed to the vma's
83c54070
NP
286 * ->fault function. The vma's ->fault is responsible for returning a bitmask
287 * of VM_FAULT_xxx flags that give details about how the fault was handled.
54cb8821 288 *
c20cd45e
MH
289 * MM layer fills up gfp_mask for page allocations but fault handler might
290 * alter it if its implementation requires a different allocation context.
291 *
9b4bdd2f 292 * pgoff should be used in favour of virtual_address, if possible.
54cb8821 293 */
d0217ac0
NP
294struct vm_fault {
295 unsigned int flags; /* FAULT_FLAG_xxx flags */
c20cd45e 296 gfp_t gfp_mask; /* gfp mask to be used for allocations */
d0217ac0
NP
297 pgoff_t pgoff; /* Logical page offset based on vma */
298 void __user *virtual_address; /* Faulting virtual address */
299
2e4cdab0 300 struct page *cow_page; /* Handler may choose to COW */
d0217ac0 301 struct page *page; /* ->fault handlers should return a
83c54070 302 * page here, unless VM_FAULT_NOPAGE
d0217ac0 303 * is set (which is also implied by
83c54070 304 * VM_FAULT_ERROR).
d0217ac0 305 */
bc2466e4
JK
306 void *entry; /* ->fault handler can alternatively
307 * return locked DAX entry. In that
308 * case handler should return
309 * VM_FAULT_DAX_LOCKED and fill in
310 * entry here.
311 */
bae473a4
KS
312};
313
314/*
315 * Page fault context: passes though page fault handler instead of endless list
316 * of function arguments.
317 */
318struct fault_env {
319 struct vm_area_struct *vma; /* Target VMA */
320 unsigned long address; /* Faulting virtual address */
321 unsigned int flags; /* FAULT_FLAG_xxx flags */
322 pmd_t *pmd; /* Pointer to pmd entry matching
323 * the 'address'
324 */
325 pte_t *pte; /* Pointer to pte entry matching
326 * the 'address'. NULL if the page
327 * table hasn't been allocated.
328 */
329 spinlock_t *ptl; /* Page table lock.
330 * Protects pte page table if 'pte'
331 * is not NULL, otherwise pmd.
332 */
7267ec00
KS
333 pgtable_t prealloc_pte; /* Pre-allocated pte page table.
334 * vm_ops->map_pages() calls
335 * alloc_set_pte() from atomic context.
336 * do_fault_around() pre-allocates
337 * page table to avoid allocation from
338 * atomic context.
339 */
54cb8821 340};
1da177e4
LT
341
342/*
343 * These are the virtual MM functions - opening of an area, closing and
344 * unmapping it (needed to keep files on disk up-to-date etc), pointer
345 * to the functions called when a no-page or a wp-page exception occurs.
346 */
347struct vm_operations_struct {
348 void (*open)(struct vm_area_struct * area);
349 void (*close)(struct vm_area_struct * area);
5477e70a 350 int (*mremap)(struct vm_area_struct * area);
d0217ac0 351 int (*fault)(struct vm_area_struct *vma, struct vm_fault *vmf);
b96375f7
MW
352 int (*pmd_fault)(struct vm_area_struct *, unsigned long address,
353 pmd_t *, unsigned int flags);
bae473a4
KS
354 void (*map_pages)(struct fault_env *fe,
355 pgoff_t start_pgoff, pgoff_t end_pgoff);
9637a5ef
DH
356
357 /* notification that a previously read-only page is about to become
358 * writable, if an error is returned it will cause a SIGBUS */
c2ec175c 359 int (*page_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
28b2ee20 360
dd906184
BH
361 /* same as page_mkwrite when using VM_PFNMAP|VM_MIXEDMAP */
362 int (*pfn_mkwrite)(struct vm_area_struct *vma, struct vm_fault *vmf);
363
28b2ee20
RR
364 /* called by access_process_vm when get_user_pages() fails, typically
365 * for use by special VMAs that can switch between memory and hardware
366 */
367 int (*access)(struct vm_area_struct *vma, unsigned long addr,
368 void *buf, int len, int write);
78d683e8
AL
369
370 /* Called by the /proc/PID/maps code to ask the vma whether it
371 * has a special name. Returning non-NULL will also cause this
372 * vma to be dumped unconditionally. */
373 const char *(*name)(struct vm_area_struct *vma);
374
1da177e4 375#ifdef CONFIG_NUMA
a6020ed7
LS
376 /*
377 * set_policy() op must add a reference to any non-NULL @new mempolicy
378 * to hold the policy upon return. Caller should pass NULL @new to
379 * remove a policy and fall back to surrounding context--i.e. do not
380 * install a MPOL_DEFAULT policy, nor the task or system default
381 * mempolicy.
382 */
1da177e4 383 int (*set_policy)(struct vm_area_struct *vma, struct mempolicy *new);
a6020ed7
LS
384
385 /*
386 * get_policy() op must add reference [mpol_get()] to any policy at
387 * (vma,addr) marked as MPOL_SHARED. The shared policy infrastructure
388 * in mm/mempolicy.c will do this automatically.
389 * get_policy() must NOT add a ref if the policy at (vma,addr) is not
390 * marked as MPOL_SHARED. vma policies are protected by the mmap_sem.
391 * If no [shared/vma] mempolicy exists at the addr, get_policy() op
392 * must return NULL--i.e., do not "fallback" to task or system default
393 * policy.
394 */
1da177e4
LT
395 struct mempolicy *(*get_policy)(struct vm_area_struct *vma,
396 unsigned long addr);
397#endif
667a0a06
DV
398 /*
399 * Called by vm_normal_page() for special PTEs to find the
400 * page for @addr. This is useful if the default behavior
401 * (using pte_page()) would not find the correct page.
402 */
403 struct page *(*find_special_page)(struct vm_area_struct *vma,
404 unsigned long addr);
1da177e4
LT
405};
406
407struct mmu_gather;
408struct inode;
409
349aef0b
AM
410#define page_private(page) ((page)->private)
411#define set_page_private(page, v) ((page)->private = (v))
4c21e2f2 412
5c7fb56e
DW
413#if !defined(__HAVE_ARCH_PTE_DEVMAP) || !defined(CONFIG_TRANSPARENT_HUGEPAGE)
414static inline int pmd_devmap(pmd_t pmd)
415{
416 return 0;
417}
418#endif
419
1da177e4
LT
420/*
421 * FIXME: take this include out, include page-flags.h in
422 * files which need it (119 of them)
423 */
424#include <linux/page-flags.h>
71e3aac0 425#include <linux/huge_mm.h>
1da177e4
LT
426
427/*
428 * Methods to modify the page usage count.
429 *
430 * What counts for a page usage:
431 * - cache mapping (page->mapping)
432 * - private data (page->private)
433 * - page mapped in a task's page tables, each mapping
434 * is counted separately
435 *
436 * Also, many kernel routines increase the page count before a critical
437 * routine so they can be sure the page doesn't go away from under them.
1da177e4
LT
438 */
439
440/*
da6052f7 441 * Drop a ref, return true if the refcount fell to zero (the page has no users)
1da177e4 442 */
7c8ee9a8
NP
443static inline int put_page_testzero(struct page *page)
444{
fe896d18
JK
445 VM_BUG_ON_PAGE(page_ref_count(page) == 0, page);
446 return page_ref_dec_and_test(page);
7c8ee9a8 447}
1da177e4
LT
448
449/*
7c8ee9a8
NP
450 * Try to grab a ref unless the page has a refcount of zero, return false if
451 * that is the case.
8e0861fa
AK
452 * This can be called when MMU is off so it must not access
453 * any of the virtual mappings.
1da177e4 454 */
7c8ee9a8
NP
455static inline int get_page_unless_zero(struct page *page)
456{
fe896d18 457 return page_ref_add_unless(page, 1, 0);
7c8ee9a8 458}
1da177e4 459
53df8fdc 460extern int page_is_ram(unsigned long pfn);
124fe20d
DW
461
462enum {
463 REGION_INTERSECTS,
464 REGION_DISJOINT,
465 REGION_MIXED,
466};
467
1c29f25b
TK
468int region_intersects(resource_size_t offset, size_t size, unsigned long flags,
469 unsigned long desc);
53df8fdc 470
48667e7a 471/* Support for virtually mapped pages */
b3bdda02
CL
472struct page *vmalloc_to_page(const void *addr);
473unsigned long vmalloc_to_pfn(const void *addr);
48667e7a 474
0738c4bb
PM
475/*
476 * Determine if an address is within the vmalloc range
477 *
478 * On nommu, vmalloc/vfree wrap through kmalloc/kfree directly, so there
479 * is no special casing required.
480 */
bb00a789 481static inline bool is_vmalloc_addr(const void *x)
9e2779fa 482{
0738c4bb 483#ifdef CONFIG_MMU
9e2779fa
CL
484 unsigned long addr = (unsigned long)x;
485
486 return addr >= VMALLOC_START && addr < VMALLOC_END;
0738c4bb 487#else
bb00a789 488 return false;
8ca3ed87 489#endif
0738c4bb 490}
81ac3ad9
KH
491#ifdef CONFIG_MMU
492extern int is_vmalloc_or_module_addr(const void *x);
493#else
934831d0 494static inline int is_vmalloc_or_module_addr(const void *x)
81ac3ad9
KH
495{
496 return 0;
497}
498#endif
9e2779fa 499
39f1f78d
AV
500extern void kvfree(const void *addr);
501
53f9263b
KS
502static inline atomic_t *compound_mapcount_ptr(struct page *page)
503{
504 return &page[1].compound_mapcount;
505}
506
507static inline int compound_mapcount(struct page *page)
508{
5f527c2b 509 VM_BUG_ON_PAGE(!PageCompound(page), page);
53f9263b
KS
510 page = compound_head(page);
511 return atomic_read(compound_mapcount_ptr(page)) + 1;
512}
513
70b50f94
AA
514/*
515 * The atomic page->_mapcount, starts from -1: so that transitions
516 * both from it and to it can be tracked, using atomic_inc_and_test
517 * and atomic_add_negative(-1).
518 */
22b751c3 519static inline void page_mapcount_reset(struct page *page)
70b50f94
AA
520{
521 atomic_set(&(page)->_mapcount, -1);
522}
523
b20ce5e0
KS
524int __page_mapcount(struct page *page);
525
70b50f94
AA
526static inline int page_mapcount(struct page *page)
527{
1d148e21 528 VM_BUG_ON_PAGE(PageSlab(page), page);
53f9263b 529
b20ce5e0
KS
530 if (unlikely(PageCompound(page)))
531 return __page_mapcount(page);
532 return atomic_read(&page->_mapcount) + 1;
533}
534
535#ifdef CONFIG_TRANSPARENT_HUGEPAGE
536int total_mapcount(struct page *page);
6d0a07ed 537int page_trans_huge_mapcount(struct page *page, int *total_mapcount);
b20ce5e0
KS
538#else
539static inline int total_mapcount(struct page *page)
540{
541 return page_mapcount(page);
70b50f94 542}
6d0a07ed
AA
543static inline int page_trans_huge_mapcount(struct page *page,
544 int *total_mapcount)
545{
546 int mapcount = page_mapcount(page);
547 if (total_mapcount)
548 *total_mapcount = mapcount;
549 return mapcount;
550}
b20ce5e0 551#endif
70b50f94 552
b49af68f
CL
553static inline struct page *virt_to_head_page(const void *x)
554{
555 struct page *page = virt_to_page(x);
ccaafd7f 556
1d798ca3 557 return compound_head(page);
b49af68f
CL
558}
559
ddc58f27
KS
560void __put_page(struct page *page);
561
1d7ea732 562void put_pages_list(struct list_head *pages);
1da177e4 563
8dfcc9ba 564void split_page(struct page *page, unsigned int order);
8dfcc9ba 565
33f2ef89
AW
566/*
567 * Compound pages have a destructor function. Provide a
568 * prototype for that function and accessor functions.
f1e61557 569 * These are _only_ valid on the head of a compound page.
33f2ef89 570 */
f1e61557
KS
571typedef void compound_page_dtor(struct page *);
572
573/* Keep the enum in sync with compound_page_dtors array in mm/page_alloc.c */
574enum compound_dtor_id {
575 NULL_COMPOUND_DTOR,
576 COMPOUND_PAGE_DTOR,
577#ifdef CONFIG_HUGETLB_PAGE
578 HUGETLB_PAGE_DTOR,
9a982250
KS
579#endif
580#ifdef CONFIG_TRANSPARENT_HUGEPAGE
581 TRANSHUGE_PAGE_DTOR,
f1e61557
KS
582#endif
583 NR_COMPOUND_DTORS,
584};
585extern compound_page_dtor * const compound_page_dtors[];
33f2ef89
AW
586
587static inline void set_compound_page_dtor(struct page *page,
f1e61557 588 enum compound_dtor_id compound_dtor)
33f2ef89 589{
f1e61557
KS
590 VM_BUG_ON_PAGE(compound_dtor >= NR_COMPOUND_DTORS, page);
591 page[1].compound_dtor = compound_dtor;
33f2ef89
AW
592}
593
594static inline compound_page_dtor *get_compound_page_dtor(struct page *page)
595{
f1e61557
KS
596 VM_BUG_ON_PAGE(page[1].compound_dtor >= NR_COMPOUND_DTORS, page);
597 return compound_page_dtors[page[1].compound_dtor];
33f2ef89
AW
598}
599
d00181b9 600static inline unsigned int compound_order(struct page *page)
d85f3385 601{
6d777953 602 if (!PageHead(page))
d85f3385 603 return 0;
e4b294c2 604 return page[1].compound_order;
d85f3385
CL
605}
606
f1e61557 607static inline void set_compound_order(struct page *page, unsigned int order)
d85f3385 608{
e4b294c2 609 page[1].compound_order = order;
d85f3385
CL
610}
611
9a982250
KS
612void free_compound_page(struct page *page);
613
3dece370 614#ifdef CONFIG_MMU
14fd403f
AA
615/*
616 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
617 * servicing faults for write access. In the normal case, do always want
618 * pte_mkwrite. But get_user_pages can cause write faults for mappings
619 * that do not have writing enabled, when used by access_process_vm.
620 */
621static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
622{
623 if (likely(vma->vm_flags & VM_WRITE))
624 pte = pte_mkwrite(pte);
625 return pte;
626}
8c6e50b0 627
7267ec00
KS
628int alloc_set_pte(struct fault_env *fe, struct mem_cgroup *memcg,
629 struct page *page);
3dece370 630#endif
14fd403f 631
1da177e4
LT
632/*
633 * Multiple processes may "see" the same page. E.g. for untouched
634 * mappings of /dev/null, all processes see the same page full of
635 * zeroes, and text pages of executables and shared libraries have
636 * only one copy in memory, at most, normally.
637 *
638 * For the non-reserved pages, page_count(page) denotes a reference count.
7e871b6c
PBG
639 * page_count() == 0 means the page is free. page->lru is then used for
640 * freelist management in the buddy allocator.
da6052f7 641 * page_count() > 0 means the page has been allocated.
1da177e4 642 *
da6052f7
NP
643 * Pages are allocated by the slab allocator in order to provide memory
644 * to kmalloc and kmem_cache_alloc. In this case, the management of the
645 * page, and the fields in 'struct page' are the responsibility of mm/slab.c
646 * unless a particular usage is carefully commented. (the responsibility of
647 * freeing the kmalloc memory is the caller's, of course).
1da177e4 648 *
da6052f7
NP
649 * A page may be used by anyone else who does a __get_free_page().
650 * In this case, page_count still tracks the references, and should only
651 * be used through the normal accessor functions. The top bits of page->flags
652 * and page->virtual store page management information, but all other fields
653 * are unused and could be used privately, carefully. The management of this
654 * page is the responsibility of the one who allocated it, and those who have
655 * subsequently been given references to it.
656 *
657 * The other pages (we may call them "pagecache pages") are completely
1da177e4
LT
658 * managed by the Linux memory manager: I/O, buffers, swapping etc.
659 * The following discussion applies only to them.
660 *
da6052f7
NP
661 * A pagecache page contains an opaque `private' member, which belongs to the
662 * page's address_space. Usually, this is the address of a circular list of
663 * the page's disk buffers. PG_private must be set to tell the VM to call
664 * into the filesystem to release these pages.
1da177e4 665 *
da6052f7
NP
666 * A page may belong to an inode's memory mapping. In this case, page->mapping
667 * is the pointer to the inode, and page->index is the file offset of the page,
ea1754a0 668 * in units of PAGE_SIZE.
1da177e4 669 *
da6052f7
NP
670 * If pagecache pages are not associated with an inode, they are said to be
671 * anonymous pages. These may become associated with the swapcache, and in that
672 * case PG_swapcache is set, and page->private is an offset into the swapcache.
1da177e4 673 *
da6052f7
NP
674 * In either case (swapcache or inode backed), the pagecache itself holds one
675 * reference to the page. Setting PG_private should also increment the
676 * refcount. The each user mapping also has a reference to the page.
1da177e4 677 *
da6052f7
NP
678 * The pagecache pages are stored in a per-mapping radix tree, which is
679 * rooted at mapping->page_tree, and indexed by offset.
680 * Where 2.4 and early 2.6 kernels kept dirty/clean pages in per-address_space
681 * lists, we instead now tag pages as dirty/writeback in the radix tree.
1da177e4 682 *
da6052f7 683 * All pagecache pages may be subject to I/O:
1da177e4
LT
684 * - inode pages may need to be read from disk,
685 * - inode pages which have been modified and are MAP_SHARED may need
da6052f7
NP
686 * to be written back to the inode on disk,
687 * - anonymous pages (including MAP_PRIVATE file mappings) which have been
688 * modified may need to be swapped out to swap space and (later) to be read
689 * back into memory.
1da177e4
LT
690 */
691
692/*
693 * The zone field is never updated after free_area_init_core()
694 * sets it, so none of the operations on it need to be atomic.
1da177e4 695 */
348f8b6c 696
90572890 697/* Page flags: | [SECTION] | [NODE] | ZONE | [LAST_CPUPID] | ... | FLAGS | */
07808b74 698#define SECTIONS_PGOFF ((sizeof(unsigned long)*8) - SECTIONS_WIDTH)
d41dee36
AW
699#define NODES_PGOFF (SECTIONS_PGOFF - NODES_WIDTH)
700#define ZONES_PGOFF (NODES_PGOFF - ZONES_WIDTH)
90572890 701#define LAST_CPUPID_PGOFF (ZONES_PGOFF - LAST_CPUPID_WIDTH)
d41dee36 702
348f8b6c 703/*
25985edc 704 * Define the bit shifts to access each section. For non-existent
348f8b6c
DH
705 * sections we define the shift as 0; that plus a 0 mask ensures
706 * the compiler will optimise away reference to them.
707 */
d41dee36
AW
708#define SECTIONS_PGSHIFT (SECTIONS_PGOFF * (SECTIONS_WIDTH != 0))
709#define NODES_PGSHIFT (NODES_PGOFF * (NODES_WIDTH != 0))
710#define ZONES_PGSHIFT (ZONES_PGOFF * (ZONES_WIDTH != 0))
90572890 711#define LAST_CPUPID_PGSHIFT (LAST_CPUPID_PGOFF * (LAST_CPUPID_WIDTH != 0))
348f8b6c 712
bce54bbf
WD
713/* NODE:ZONE or SECTION:ZONE is used to ID a zone for the buddy allocator */
714#ifdef NODE_NOT_IN_PAGE_FLAGS
89689ae7 715#define ZONEID_SHIFT (SECTIONS_SHIFT + ZONES_SHIFT)
bd8029b6
AW
716#define ZONEID_PGOFF ((SECTIONS_PGOFF < ZONES_PGOFF)? \
717 SECTIONS_PGOFF : ZONES_PGOFF)
d41dee36 718#else
89689ae7 719#define ZONEID_SHIFT (NODES_SHIFT + ZONES_SHIFT)
bd8029b6
AW
720#define ZONEID_PGOFF ((NODES_PGOFF < ZONES_PGOFF)? \
721 NODES_PGOFF : ZONES_PGOFF)
89689ae7
CL
722#endif
723
bd8029b6 724#define ZONEID_PGSHIFT (ZONEID_PGOFF * (ZONEID_SHIFT != 0))
348f8b6c 725
9223b419
CL
726#if SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
727#error SECTIONS_WIDTH+NODES_WIDTH+ZONES_WIDTH > BITS_PER_LONG - NR_PAGEFLAGS
348f8b6c
DH
728#endif
729
d41dee36
AW
730#define ZONES_MASK ((1UL << ZONES_WIDTH) - 1)
731#define NODES_MASK ((1UL << NODES_WIDTH) - 1)
732#define SECTIONS_MASK ((1UL << SECTIONS_WIDTH) - 1)
834a964a 733#define LAST_CPUPID_MASK ((1UL << LAST_CPUPID_SHIFT) - 1)
89689ae7 734#define ZONEID_MASK ((1UL << ZONEID_SHIFT) - 1)
348f8b6c 735
33dd4e0e 736static inline enum zone_type page_zonenum(const struct page *page)
1da177e4 737{
348f8b6c 738 return (page->flags >> ZONES_PGSHIFT) & ZONES_MASK;
1da177e4 739}
1da177e4 740
260ae3f7 741#ifdef CONFIG_ZONE_DEVICE
3565fce3
DW
742void get_zone_device_page(struct page *page);
743void put_zone_device_page(struct page *page);
260ae3f7
DW
744static inline bool is_zone_device_page(const struct page *page)
745{
746 return page_zonenum(page) == ZONE_DEVICE;
747}
748#else
3565fce3
DW
749static inline void get_zone_device_page(struct page *page)
750{
751}
752static inline void put_zone_device_page(struct page *page)
753{
754}
260ae3f7
DW
755static inline bool is_zone_device_page(const struct page *page)
756{
757 return false;
758}
759#endif
760
3565fce3
DW
761static inline void get_page(struct page *page)
762{
763 page = compound_head(page);
764 /*
765 * Getting a normal page or the head of a compound page
0139aa7b 766 * requires to already have an elevated page->_refcount.
3565fce3 767 */
fe896d18
JK
768 VM_BUG_ON_PAGE(page_ref_count(page) <= 0, page);
769 page_ref_inc(page);
3565fce3
DW
770
771 if (unlikely(is_zone_device_page(page)))
772 get_zone_device_page(page);
773}
774
775static inline void put_page(struct page *page)
776{
777 page = compound_head(page);
778
779 if (put_page_testzero(page))
780 __put_page(page);
781
782 if (unlikely(is_zone_device_page(page)))
783 put_zone_device_page(page);
784}
785
9127ab4f
CS
786#if defined(CONFIG_SPARSEMEM) && !defined(CONFIG_SPARSEMEM_VMEMMAP)
787#define SECTION_IN_PAGE_FLAGS
788#endif
789
89689ae7 790/*
7a8010cd
VB
791 * The identification function is mainly used by the buddy allocator for
792 * determining if two pages could be buddies. We are not really identifying
793 * the zone since we could be using the section number id if we do not have
794 * node id available in page flags.
795 * We only guarantee that it will return the same value for two combinable
796 * pages in a zone.
89689ae7 797 */
cb2b95e1
AW
798static inline int page_zone_id(struct page *page)
799{
89689ae7 800 return (page->flags >> ZONEID_PGSHIFT) & ZONEID_MASK;
348f8b6c
DH
801}
802
25ba77c1 803static inline int zone_to_nid(struct zone *zone)
89fa3024 804{
d5f541ed
CL
805#ifdef CONFIG_NUMA
806 return zone->node;
807#else
808 return 0;
809#endif
89fa3024
CL
810}
811
89689ae7 812#ifdef NODE_NOT_IN_PAGE_FLAGS
33dd4e0e 813extern int page_to_nid(const struct page *page);
89689ae7 814#else
33dd4e0e 815static inline int page_to_nid(const struct page *page)
d41dee36 816{
89689ae7 817 return (page->flags >> NODES_PGSHIFT) & NODES_MASK;
d41dee36 818}
89689ae7
CL
819#endif
820
57e0a030 821#ifdef CONFIG_NUMA_BALANCING
90572890 822static inline int cpu_pid_to_cpupid(int cpu, int pid)
57e0a030 823{
90572890 824 return ((cpu & LAST__CPU_MASK) << LAST__PID_SHIFT) | (pid & LAST__PID_MASK);
57e0a030
MG
825}
826
90572890 827static inline int cpupid_to_pid(int cpupid)
57e0a030 828{
90572890 829 return cpupid & LAST__PID_MASK;
57e0a030 830}
b795854b 831
90572890 832static inline int cpupid_to_cpu(int cpupid)
b795854b 833{
90572890 834 return (cpupid >> LAST__PID_SHIFT) & LAST__CPU_MASK;
b795854b
MG
835}
836
90572890 837static inline int cpupid_to_nid(int cpupid)
b795854b 838{
90572890 839 return cpu_to_node(cpupid_to_cpu(cpupid));
b795854b
MG
840}
841
90572890 842static inline bool cpupid_pid_unset(int cpupid)
57e0a030 843{
90572890 844 return cpupid_to_pid(cpupid) == (-1 & LAST__PID_MASK);
b795854b
MG
845}
846
90572890 847static inline bool cpupid_cpu_unset(int cpupid)
b795854b 848{
90572890 849 return cpupid_to_cpu(cpupid) == (-1 & LAST__CPU_MASK);
b795854b
MG
850}
851
8c8a743c
PZ
852static inline bool __cpupid_match_pid(pid_t task_pid, int cpupid)
853{
854 return (task_pid & LAST__PID_MASK) == cpupid_to_pid(cpupid);
855}
856
857#define cpupid_match_pid(task, cpupid) __cpupid_match_pid(task->pid, cpupid)
90572890
PZ
858#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
859static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
b795854b 860{
1ae71d03 861 return xchg(&page->_last_cpupid, cpupid & LAST_CPUPID_MASK);
b795854b 862}
90572890
PZ
863
864static inline int page_cpupid_last(struct page *page)
865{
866 return page->_last_cpupid;
867}
868static inline void page_cpupid_reset_last(struct page *page)
b795854b 869{
1ae71d03 870 page->_last_cpupid = -1 & LAST_CPUPID_MASK;
57e0a030
MG
871}
872#else
90572890 873static inline int page_cpupid_last(struct page *page)
75980e97 874{
90572890 875 return (page->flags >> LAST_CPUPID_PGSHIFT) & LAST_CPUPID_MASK;
75980e97
PZ
876}
877
90572890 878extern int page_cpupid_xchg_last(struct page *page, int cpupid);
75980e97 879
90572890 880static inline void page_cpupid_reset_last(struct page *page)
75980e97 881{
09940a4f 882 page->flags |= LAST_CPUPID_MASK << LAST_CPUPID_PGSHIFT;
75980e97 883}
90572890
PZ
884#endif /* LAST_CPUPID_NOT_IN_PAGE_FLAGS */
885#else /* !CONFIG_NUMA_BALANCING */
886static inline int page_cpupid_xchg_last(struct page *page, int cpupid)
57e0a030 887{
90572890 888 return page_to_nid(page); /* XXX */
57e0a030
MG
889}
890
90572890 891static inline int page_cpupid_last(struct page *page)
57e0a030 892{
90572890 893 return page_to_nid(page); /* XXX */
57e0a030
MG
894}
895
90572890 896static inline int cpupid_to_nid(int cpupid)
b795854b
MG
897{
898 return -1;
899}
900
90572890 901static inline int cpupid_to_pid(int cpupid)
b795854b
MG
902{
903 return -1;
904}
905
90572890 906static inline int cpupid_to_cpu(int cpupid)
b795854b
MG
907{
908 return -1;
909}
910
90572890
PZ
911static inline int cpu_pid_to_cpupid(int nid, int pid)
912{
913 return -1;
914}
915
916static inline bool cpupid_pid_unset(int cpupid)
b795854b
MG
917{
918 return 1;
919}
920
90572890 921static inline void page_cpupid_reset_last(struct page *page)
57e0a030
MG
922{
923}
8c8a743c
PZ
924
925static inline bool cpupid_match_pid(struct task_struct *task, int cpupid)
926{
927 return false;
928}
90572890 929#endif /* CONFIG_NUMA_BALANCING */
57e0a030 930
33dd4e0e 931static inline struct zone *page_zone(const struct page *page)
89689ae7
CL
932{
933 return &NODE_DATA(page_to_nid(page))->node_zones[page_zonenum(page)];
934}
935
75ef7184
MG
936static inline pg_data_t *page_pgdat(const struct page *page)
937{
938 return NODE_DATA(page_to_nid(page));
939}
940
9127ab4f 941#ifdef SECTION_IN_PAGE_FLAGS
bf4e8902
DK
942static inline void set_page_section(struct page *page, unsigned long section)
943{
944 page->flags &= ~(SECTIONS_MASK << SECTIONS_PGSHIFT);
945 page->flags |= (section & SECTIONS_MASK) << SECTIONS_PGSHIFT;
946}
947
aa462abe 948static inline unsigned long page_to_section(const struct page *page)
d41dee36
AW
949{
950 return (page->flags >> SECTIONS_PGSHIFT) & SECTIONS_MASK;
951}
308c05e3 952#endif
d41dee36 953
2f1b6248 954static inline void set_page_zone(struct page *page, enum zone_type zone)
348f8b6c
DH
955{
956 page->flags &= ~(ZONES_MASK << ZONES_PGSHIFT);
957 page->flags |= (zone & ZONES_MASK) << ZONES_PGSHIFT;
958}
2f1b6248 959
348f8b6c
DH
960static inline void set_page_node(struct page *page, unsigned long node)
961{
962 page->flags &= ~(NODES_MASK << NODES_PGSHIFT);
963 page->flags |= (node & NODES_MASK) << NODES_PGSHIFT;
1da177e4 964}
89689ae7 965
2f1b6248 966static inline void set_page_links(struct page *page, enum zone_type zone,
d41dee36 967 unsigned long node, unsigned long pfn)
1da177e4 968{
348f8b6c
DH
969 set_page_zone(page, zone);
970 set_page_node(page, node);
9127ab4f 971#ifdef SECTION_IN_PAGE_FLAGS
d41dee36 972 set_page_section(page, pfn_to_section_nr(pfn));
bf4e8902 973#endif
1da177e4
LT
974}
975
0610c25d
GT
976#ifdef CONFIG_MEMCG
977static inline struct mem_cgroup *page_memcg(struct page *page)
978{
979 return page->mem_cgroup;
980}
55779ec7
JW
981static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
982{
983 WARN_ON_ONCE(!rcu_read_lock_held());
984 return READ_ONCE(page->mem_cgroup);
985}
0610c25d
GT
986#else
987static inline struct mem_cgroup *page_memcg(struct page *page)
988{
989 return NULL;
990}
55779ec7
JW
991static inline struct mem_cgroup *page_memcg_rcu(struct page *page)
992{
993 WARN_ON_ONCE(!rcu_read_lock_held());
994 return NULL;
995}
0610c25d
GT
996#endif
997
f6ac2354
CL
998/*
999 * Some inline functions in vmstat.h depend on page_zone()
1000 */
1001#include <linux/vmstat.h>
1002
33dd4e0e 1003static __always_inline void *lowmem_page_address(const struct page *page)
1da177e4 1004{
1dff8083 1005 return page_to_virt(page);
1da177e4
LT
1006}
1007
1008#if defined(CONFIG_HIGHMEM) && !defined(WANT_PAGE_VIRTUAL)
1009#define HASHED_PAGE_VIRTUAL
1010#endif
1011
1012#if defined(WANT_PAGE_VIRTUAL)
f92f455f
GU
1013static inline void *page_address(const struct page *page)
1014{
1015 return page->virtual;
1016}
1017static inline void set_page_address(struct page *page, void *address)
1018{
1019 page->virtual = address;
1020}
1da177e4
LT
1021#define page_address_init() do { } while(0)
1022#endif
1023
1024#if defined(HASHED_PAGE_VIRTUAL)
f9918794 1025void *page_address(const struct page *page);
1da177e4
LT
1026void set_page_address(struct page *page, void *virtual);
1027void page_address_init(void);
1028#endif
1029
1030#if !defined(HASHED_PAGE_VIRTUAL) && !defined(WANT_PAGE_VIRTUAL)
1031#define page_address(page) lowmem_page_address(page)
1032#define set_page_address(page, address) do { } while(0)
1033#define page_address_init() do { } while(0)
1034#endif
1035
e39155ea
KS
1036extern void *page_rmapping(struct page *page);
1037extern struct anon_vma *page_anon_vma(struct page *page);
9800339b 1038extern struct address_space *page_mapping(struct page *page);
1da177e4 1039
f981c595
MG
1040extern struct address_space *__page_file_mapping(struct page *);
1041
1042static inline
1043struct address_space *page_file_mapping(struct page *page)
1044{
1045 if (unlikely(PageSwapCache(page)))
1046 return __page_file_mapping(page);
1047
1048 return page->mapping;
1049}
1050
1da177e4
LT
1051/*
1052 * Return the pagecache index of the passed page. Regular pagecache pages
1053 * use ->index whereas swapcache pages use ->private
1054 */
1055static inline pgoff_t page_index(struct page *page)
1056{
1057 if (unlikely(PageSwapCache(page)))
4c21e2f2 1058 return page_private(page);
1da177e4
LT
1059 return page->index;
1060}
1061
f981c595
MG
1062extern pgoff_t __page_file_index(struct page *page);
1063
1064/*
1065 * Return the file index of the page. Regular pagecache pages use ->index
1066 * whereas swapcache pages use swp_offset(->private)
1067 */
1068static inline pgoff_t page_file_index(struct page *page)
1069{
1070 if (unlikely(PageSwapCache(page)))
1071 return __page_file_index(page);
1072
1073 return page->index;
1074}
1075
1aa8aea5 1076bool page_mapped(struct page *page);
bda807d4 1077struct address_space *page_mapping(struct page *page);
1da177e4 1078
2f064f34
MH
1079/*
1080 * Return true only if the page has been allocated with
1081 * ALLOC_NO_WATERMARKS and the low watermark was not
1082 * met implying that the system is under some pressure.
1083 */
1084static inline bool page_is_pfmemalloc(struct page *page)
1085{
1086 /*
1087 * Page index cannot be this large so this must be
1088 * a pfmemalloc page.
1089 */
1090 return page->index == -1UL;
1091}
1092
1093/*
1094 * Only to be called by the page allocator on a freshly allocated
1095 * page.
1096 */
1097static inline void set_page_pfmemalloc(struct page *page)
1098{
1099 page->index = -1UL;
1100}
1101
1102static inline void clear_page_pfmemalloc(struct page *page)
1103{
1104 page->index = 0;
1105}
1106
1da177e4
LT
1107/*
1108 * Different kinds of faults, as returned by handle_mm_fault().
1109 * Used to decide whether a process gets delivered SIGBUS or
1110 * just gets major/minor fault counters bumped up.
1111 */
d0217ac0 1112
83c54070
NP
1113#define VM_FAULT_OOM 0x0001
1114#define VM_FAULT_SIGBUS 0x0002
1115#define VM_FAULT_MAJOR 0x0004
1116#define VM_FAULT_WRITE 0x0008 /* Special case for get_user_pages */
aa50d3a7
AK
1117#define VM_FAULT_HWPOISON 0x0010 /* Hit poisoned small page */
1118#define VM_FAULT_HWPOISON_LARGE 0x0020 /* Hit poisoned large page. Index encoded in upper bits */
33692f27 1119#define VM_FAULT_SIGSEGV 0x0040
f33ea7f4 1120
83c54070
NP
1121#define VM_FAULT_NOPAGE 0x0100 /* ->fault installed the pte, not return page */
1122#define VM_FAULT_LOCKED 0x0200 /* ->fault locked the returned page */
d065bd81 1123#define VM_FAULT_RETRY 0x0400 /* ->fault blocked, must retry */
c0292554 1124#define VM_FAULT_FALLBACK 0x0800 /* huge page fault failed, fall back to small */
bc2466e4 1125#define VM_FAULT_DAX_LOCKED 0x1000 /* ->fault has locked DAX entry */
1da177e4 1126
aa50d3a7
AK
1127#define VM_FAULT_HWPOISON_LARGE_MASK 0xf000 /* encodes hpage index for large hwpoison */
1128
33692f27
LT
1129#define VM_FAULT_ERROR (VM_FAULT_OOM | VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV | \
1130 VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE | \
1131 VM_FAULT_FALLBACK)
aa50d3a7
AK
1132
1133/* Encode hstate index for a hwpoisoned large page */
1134#define VM_FAULT_SET_HINDEX(x) ((x) << 12)
1135#define VM_FAULT_GET_HINDEX(x) (((x) >> 12) & 0xf)
d0217ac0 1136
1c0fe6e3
NP
1137/*
1138 * Can be called by the pagefault handler when it gets a VM_FAULT_OOM.
1139 */
1140extern void pagefault_out_of_memory(void);
1141
1da177e4
LT
1142#define offset_in_page(p) ((unsigned long)(p) & ~PAGE_MASK)
1143
ddd588b5 1144/*
7bf02ea2 1145 * Flags passed to show_mem() and show_free_areas() to suppress output in
ddd588b5
DR
1146 * various contexts.
1147 */
4b59e6c4 1148#define SHOW_MEM_FILTER_NODES (0x0001u) /* disallowed nodes */
ddd588b5 1149
7bf02ea2
DR
1150extern void show_free_areas(unsigned int flags);
1151extern bool skip_free_areas_node(unsigned int flags, int nid);
1da177e4 1152
1da177e4 1153int shmem_zero_setup(struct vm_area_struct *);
0cd6144a
JW
1154#ifdef CONFIG_SHMEM
1155bool shmem_mapping(struct address_space *mapping);
1156#else
1157static inline bool shmem_mapping(struct address_space *mapping)
1158{
1159 return false;
1160}
1161#endif
1da177e4 1162
7f43add4 1163extern bool can_do_mlock(void);
1da177e4
LT
1164extern int user_shm_lock(size_t, struct user_struct *);
1165extern void user_shm_unlock(size_t, struct user_struct *);
1166
1167/*
1168 * Parameter block passed down to zap_pte_range in exceptional cases.
1169 */
1170struct zap_details {
1da177e4
LT
1171 struct address_space *check_mapping; /* Check page->mapping if set */
1172 pgoff_t first_index; /* Lowest page->index to unmap */
1173 pgoff_t last_index; /* Highest page->index to unmap */
aac45363
MH
1174 bool ignore_dirty; /* Ignore dirty pages */
1175 bool check_swap_entries; /* Check also swap entries */
1da177e4
LT
1176};
1177
7e675137
NP
1178struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
1179 pte_t pte);
28093f9f
GS
1180struct page *vm_normal_page_pmd(struct vm_area_struct *vma, unsigned long addr,
1181 pmd_t pmd);
7e675137 1182
c627f9cc
JS
1183int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1184 unsigned long size);
14f5ff5d 1185void zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4 1186 unsigned long size, struct zap_details *);
4f74d2c8
LT
1187void unmap_vmas(struct mmu_gather *tlb, struct vm_area_struct *start_vma,
1188 unsigned long start, unsigned long end);
e6473092
MM
1189
1190/**
1191 * mm_walk - callbacks for walk_page_range
e6473092 1192 * @pmd_entry: if set, called for each non-empty PMD (3rd-level) entry
03319327
DH
1193 * this handler is required to be able to handle
1194 * pmd_trans_huge() pmds. They may simply choose to
1195 * split_huge_page() instead of handling it explicitly.
e6473092
MM
1196 * @pte_entry: if set, called for each non-empty PTE (4th-level) entry
1197 * @pte_hole: if set, called for each hole at all levels
5dc37642 1198 * @hugetlb_entry: if set, called for each hugetlb entry
fafaa426
NH
1199 * @test_walk: caller specific callback function to determine whether
1200 * we walk over the current vma or not. A positive returned
1201 * value means "do page table walk over the current vma,"
1202 * and a negative one means "abort current page table walk
1203 * right now." 0 means "skip the current vma."
1204 * @mm: mm_struct representing the target process of page table walk
1205 * @vma: vma currently walked (NULL if walking outside vmas)
1206 * @private: private data for callbacks' usage
e6473092 1207 *
fafaa426 1208 * (see the comment on walk_page_range() for more details)
e6473092
MM
1209 */
1210struct mm_walk {
0f157a5b
AM
1211 int (*pmd_entry)(pmd_t *pmd, unsigned long addr,
1212 unsigned long next, struct mm_walk *walk);
1213 int (*pte_entry)(pte_t *pte, unsigned long addr,
1214 unsigned long next, struct mm_walk *walk);
1215 int (*pte_hole)(unsigned long addr, unsigned long next,
1216 struct mm_walk *walk);
1217 int (*hugetlb_entry)(pte_t *pte, unsigned long hmask,
1218 unsigned long addr, unsigned long next,
1219 struct mm_walk *walk);
fafaa426
NH
1220 int (*test_walk)(unsigned long addr, unsigned long next,
1221 struct mm_walk *walk);
2165009b 1222 struct mm_struct *mm;
fafaa426 1223 struct vm_area_struct *vma;
2165009b 1224 void *private;
e6473092
MM
1225};
1226
2165009b
DH
1227int walk_page_range(unsigned long addr, unsigned long end,
1228 struct mm_walk *walk);
900fc5f1 1229int walk_page_vma(struct vm_area_struct *vma, struct mm_walk *walk);
42b77728 1230void free_pgd_range(struct mmu_gather *tlb, unsigned long addr,
3bf5ee95 1231 unsigned long end, unsigned long floor, unsigned long ceiling);
1da177e4
LT
1232int copy_page_range(struct mm_struct *dst, struct mm_struct *src,
1233 struct vm_area_struct *vma);
1da177e4
LT
1234void unmap_mapping_range(struct address_space *mapping,
1235 loff_t const holebegin, loff_t const holelen, int even_cows);
3b6748e2
JW
1236int follow_pfn(struct vm_area_struct *vma, unsigned long address,
1237 unsigned long *pfn);
d87fe660 1238int follow_phys(struct vm_area_struct *vma, unsigned long address,
1239 unsigned int flags, unsigned long *prot, resource_size_t *phys);
28b2ee20
RR
1240int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
1241 void *buf, int len, int write);
1da177e4
LT
1242
1243static inline void unmap_shared_mapping_range(struct address_space *mapping,
1244 loff_t const holebegin, loff_t const holelen)
1245{
1246 unmap_mapping_range(mapping, holebegin, holelen, 0);
1247}
1248
7caef267 1249extern void truncate_pagecache(struct inode *inode, loff_t new);
2c27c65e 1250extern void truncate_setsize(struct inode *inode, loff_t newsize);
90a80202 1251void pagecache_isize_extended(struct inode *inode, loff_t from, loff_t to);
623e3db9 1252void truncate_pagecache_range(struct inode *inode, loff_t offset, loff_t end);
750b4987 1253int truncate_inode_page(struct address_space *mapping, struct page *page);
25718736 1254int generic_error_remove_page(struct address_space *mapping, struct page *page);
83f78668
WF
1255int invalidate_inode_page(struct page *page);
1256
7ee1dd3f 1257#ifdef CONFIG_MMU
dcddffd4
KS
1258extern int handle_mm_fault(struct vm_area_struct *vma, unsigned long address,
1259 unsigned int flags);
5c723ba5 1260extern int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
1261 unsigned long address, unsigned int fault_flags,
1262 bool *unlocked);
7ee1dd3f 1263#else
dcddffd4
KS
1264static inline int handle_mm_fault(struct vm_area_struct *vma,
1265 unsigned long address, unsigned int flags)
7ee1dd3f
DH
1266{
1267 /* should never happen if there's no MMU */
1268 BUG();
1269 return VM_FAULT_SIGBUS;
1270}
5c723ba5
PZ
1271static inline int fixup_user_fault(struct task_struct *tsk,
1272 struct mm_struct *mm, unsigned long address,
4a9e1cda 1273 unsigned int fault_flags, bool *unlocked)
5c723ba5
PZ
1274{
1275 /* should never happen if there's no MMU */
1276 BUG();
1277 return -EFAULT;
1278}
7ee1dd3f 1279#endif
f33ea7f4 1280
1da177e4 1281extern int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write);
5ddd36b9
SW
1282extern int access_remote_vm(struct mm_struct *mm, unsigned long addr,
1283 void *buf, int len, int write);
1da177e4 1284
28a35716
ML
1285long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1286 unsigned long start, unsigned long nr_pages,
1287 unsigned int foll_flags, struct page **pages,
1288 struct vm_area_struct **vmas, int *nonblocking);
1e987790
DH
1289long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
1290 unsigned long start, unsigned long nr_pages,
1291 int write, int force, struct page **pages,
1292 struct vm_area_struct **vmas);
c12d2da5 1293long get_user_pages(unsigned long start, unsigned long nr_pages,
cde70140
DH
1294 int write, int force, struct page **pages,
1295 struct vm_area_struct **vmas);
c12d2da5 1296long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
cde70140 1297 int write, int force, struct page **pages, int *locked);
0fd71a56
AA
1298long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
1299 unsigned long start, unsigned long nr_pages,
1300 int write, int force, struct page **pages,
1301 unsigned int gup_flags);
c12d2da5 1302long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
f0818f47 1303 int write, int force, struct page **pages);
d2bf6be8
NP
1304int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1305 struct page **pages);
8025e5dd
JK
1306
1307/* Container for pinned pfns / pages */
1308struct frame_vector {
1309 unsigned int nr_allocated; /* Number of frames we have space for */
1310 unsigned int nr_frames; /* Number of frames stored in ptrs array */
1311 bool got_ref; /* Did we pin pages by getting page ref? */
1312 bool is_pfns; /* Does array contain pages or pfns? */
1313 void *ptrs[0]; /* Array of pinned pfns / pages. Use
1314 * pfns_vector_pages() or pfns_vector_pfns()
1315 * for access */
1316};
1317
1318struct frame_vector *frame_vector_create(unsigned int nr_frames);
1319void frame_vector_destroy(struct frame_vector *vec);
1320int get_vaddr_frames(unsigned long start, unsigned int nr_pfns,
1321 bool write, bool force, struct frame_vector *vec);
1322void put_vaddr_frames(struct frame_vector *vec);
1323int frame_vector_to_pages(struct frame_vector *vec);
1324void frame_vector_to_pfns(struct frame_vector *vec);
1325
1326static inline unsigned int frame_vector_count(struct frame_vector *vec)
1327{
1328 return vec->nr_frames;
1329}
1330
1331static inline struct page **frame_vector_pages(struct frame_vector *vec)
1332{
1333 if (vec->is_pfns) {
1334 int err = frame_vector_to_pages(vec);
1335
1336 if (err)
1337 return ERR_PTR(err);
1338 }
1339 return (struct page **)(vec->ptrs);
1340}
1341
1342static inline unsigned long *frame_vector_pfns(struct frame_vector *vec)
1343{
1344 if (!vec->is_pfns)
1345 frame_vector_to_pfns(vec);
1346 return (unsigned long *)(vec->ptrs);
1347}
1348
18022c5d
MG
1349struct kvec;
1350int get_kernel_pages(const struct kvec *iov, int nr_pages, int write,
1351 struct page **pages);
1352int get_kernel_page(unsigned long start, int write, struct page **pages);
f3e8fccd 1353struct page *get_dump_page(unsigned long addr);
1da177e4 1354
cf9a2ae8 1355extern int try_to_release_page(struct page * page, gfp_t gfp_mask);
d47992f8
LC
1356extern void do_invalidatepage(struct page *page, unsigned int offset,
1357 unsigned int length);
cf9a2ae8 1358
1da177e4 1359int __set_page_dirty_nobuffers(struct page *page);
76719325 1360int __set_page_dirty_no_writeback(struct page *page);
1da177e4
LT
1361int redirty_page_for_writepage(struct writeback_control *wbc,
1362 struct page *page);
62cccb8c 1363void account_page_dirtied(struct page *page, struct address_space *mapping);
c4843a75 1364void account_page_cleaned(struct page *page, struct address_space *mapping,
62cccb8c 1365 struct bdi_writeback *wb);
b3c97528 1366int set_page_dirty(struct page *page);
1da177e4 1367int set_page_dirty_lock(struct page *page);
11f81bec 1368void cancel_dirty_page(struct page *page);
1da177e4 1369int clear_page_dirty_for_io(struct page *page);
b9ea2515 1370
a9090253 1371int get_cmdline(struct task_struct *task, char *buffer, int buflen);
1da177e4 1372
39aa3cb3 1373/* Is the vma a continuation of the stack vma above it? */
a09a79f6 1374static inline int vma_growsdown(struct vm_area_struct *vma, unsigned long addr)
39aa3cb3
SB
1375{
1376 return vma && (vma->vm_end == addr) && (vma->vm_flags & VM_GROWSDOWN);
1377}
1378
b5330628
ON
1379static inline bool vma_is_anonymous(struct vm_area_struct *vma)
1380{
1381 return !vma->vm_ops;
1382}
1383
a09a79f6
MP
1384static inline int stack_guard_page_start(struct vm_area_struct *vma,
1385 unsigned long addr)
1386{
1387 return (vma->vm_flags & VM_GROWSDOWN) &&
1388 (vma->vm_start == addr) &&
1389 !vma_growsdown(vma->vm_prev, addr);
1390}
1391
1392/* Is the vma a continuation of the stack vma below it? */
1393static inline int vma_growsup(struct vm_area_struct *vma, unsigned long addr)
1394{
1395 return vma && (vma->vm_start == addr) && (vma->vm_flags & VM_GROWSUP);
1396}
1397
1398static inline int stack_guard_page_end(struct vm_area_struct *vma,
1399 unsigned long addr)
1400{
1401 return (vma->vm_flags & VM_GROWSUP) &&
1402 (vma->vm_end == addr) &&
1403 !vma_growsup(vma->vm_next, addr);
1404}
1405
65376df5 1406int vma_is_stack_for_task(struct vm_area_struct *vma, struct task_struct *t);
b7643757 1407
b6a2fea3
OW
1408extern unsigned long move_page_tables(struct vm_area_struct *vma,
1409 unsigned long old_addr, struct vm_area_struct *new_vma,
38a76013
ML
1410 unsigned long new_addr, unsigned long len,
1411 bool need_rmap_locks);
7da4d641
PZ
1412extern unsigned long change_protection(struct vm_area_struct *vma, unsigned long start,
1413 unsigned long end, pgprot_t newprot,
4b10e7d5 1414 int dirty_accountable, int prot_numa);
b6a2fea3
OW
1415extern int mprotect_fixup(struct vm_area_struct *vma,
1416 struct vm_area_struct **pprev, unsigned long start,
1417 unsigned long end, unsigned long newflags);
1da177e4 1418
465a454f
PZ
1419/*
1420 * doesn't attempt to fault and will return short.
1421 */
1422int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1423 struct page **pages);
d559db08
KH
1424/*
1425 * per-process(per-mm_struct) statistics.
1426 */
d559db08
KH
1427static inline unsigned long get_mm_counter(struct mm_struct *mm, int member)
1428{
69c97823
KK
1429 long val = atomic_long_read(&mm->rss_stat.count[member]);
1430
1431#ifdef SPLIT_RSS_COUNTING
1432 /*
1433 * counter is updated in asynchronous manner and may go to minus.
1434 * But it's never be expected number for users.
1435 */
1436 if (val < 0)
1437 val = 0;
172703b0 1438#endif
69c97823
KK
1439 return (unsigned long)val;
1440}
d559db08
KH
1441
1442static inline void add_mm_counter(struct mm_struct *mm, int member, long value)
1443{
172703b0 1444 atomic_long_add(value, &mm->rss_stat.count[member]);
d559db08
KH
1445}
1446
1447static inline void inc_mm_counter(struct mm_struct *mm, int member)
1448{
172703b0 1449 atomic_long_inc(&mm->rss_stat.count[member]);
d559db08
KH
1450}
1451
1452static inline void dec_mm_counter(struct mm_struct *mm, int member)
1453{
172703b0 1454 atomic_long_dec(&mm->rss_stat.count[member]);
d559db08
KH
1455}
1456
eca56ff9
JM
1457/* Optimized variant when page is already known not to be PageAnon */
1458static inline int mm_counter_file(struct page *page)
1459{
1460 if (PageSwapBacked(page))
1461 return MM_SHMEMPAGES;
1462 return MM_FILEPAGES;
1463}
1464
1465static inline int mm_counter(struct page *page)
1466{
1467 if (PageAnon(page))
1468 return MM_ANONPAGES;
1469 return mm_counter_file(page);
1470}
1471
d559db08
KH
1472static inline unsigned long get_mm_rss(struct mm_struct *mm)
1473{
1474 return get_mm_counter(mm, MM_FILEPAGES) +
eca56ff9
JM
1475 get_mm_counter(mm, MM_ANONPAGES) +
1476 get_mm_counter(mm, MM_SHMEMPAGES);
d559db08
KH
1477}
1478
1479static inline unsigned long get_mm_hiwater_rss(struct mm_struct *mm)
1480{
1481 return max(mm->hiwater_rss, get_mm_rss(mm));
1482}
1483
1484static inline unsigned long get_mm_hiwater_vm(struct mm_struct *mm)
1485{
1486 return max(mm->hiwater_vm, mm->total_vm);
1487}
1488
1489static inline void update_hiwater_rss(struct mm_struct *mm)
1490{
1491 unsigned long _rss = get_mm_rss(mm);
1492
1493 if ((mm)->hiwater_rss < _rss)
1494 (mm)->hiwater_rss = _rss;
1495}
1496
1497static inline void update_hiwater_vm(struct mm_struct *mm)
1498{
1499 if (mm->hiwater_vm < mm->total_vm)
1500 mm->hiwater_vm = mm->total_vm;
1501}
1502
695f0559
PC
1503static inline void reset_mm_hiwater_rss(struct mm_struct *mm)
1504{
1505 mm->hiwater_rss = get_mm_rss(mm);
1506}
1507
d559db08
KH
1508static inline void setmax_mm_hiwater_rss(unsigned long *maxrss,
1509 struct mm_struct *mm)
1510{
1511 unsigned long hiwater_rss = get_mm_hiwater_rss(mm);
1512
1513 if (*maxrss < hiwater_rss)
1514 *maxrss = hiwater_rss;
1515}
1516
53bddb4e 1517#if defined(SPLIT_RSS_COUNTING)
05af2e10 1518void sync_mm_rss(struct mm_struct *mm);
53bddb4e 1519#else
05af2e10 1520static inline void sync_mm_rss(struct mm_struct *mm)
53bddb4e
KH
1521{
1522}
1523#endif
465a454f 1524
3565fce3
DW
1525#ifndef __HAVE_ARCH_PTE_DEVMAP
1526static inline int pte_devmap(pte_t pte)
1527{
1528 return 0;
1529}
1530#endif
1531
4e950f6f 1532int vma_wants_writenotify(struct vm_area_struct *vma);
d08b3851 1533
25ca1d6c
NK
1534extern pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
1535 spinlock_t **ptl);
1536static inline pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1537 spinlock_t **ptl)
1538{
1539 pte_t *ptep;
1540 __cond_lock(*ptl, ptep = __get_locked_pte(mm, addr, ptl));
1541 return ptep;
1542}
c9cfcddf 1543
5f22df00
NP
1544#ifdef __PAGETABLE_PUD_FOLDED
1545static inline int __pud_alloc(struct mm_struct *mm, pgd_t *pgd,
1546 unsigned long address)
1547{
1548 return 0;
1549}
1550#else
1bb3630e 1551int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address);
5f22df00
NP
1552#endif
1553
2d2f5119 1554#if defined(__PAGETABLE_PMD_FOLDED) || !defined(CONFIG_MMU)
5f22df00
NP
1555static inline int __pmd_alloc(struct mm_struct *mm, pud_t *pud,
1556 unsigned long address)
1557{
1558 return 0;
1559}
dc6c9a35 1560
2d2f5119
KS
1561static inline void mm_nr_pmds_init(struct mm_struct *mm) {}
1562
dc6c9a35
KS
1563static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1564{
1565 return 0;
1566}
1567
1568static inline void mm_inc_nr_pmds(struct mm_struct *mm) {}
1569static inline void mm_dec_nr_pmds(struct mm_struct *mm) {}
1570
5f22df00 1571#else
1bb3630e 1572int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address);
dc6c9a35 1573
2d2f5119
KS
1574static inline void mm_nr_pmds_init(struct mm_struct *mm)
1575{
1576 atomic_long_set(&mm->nr_pmds, 0);
1577}
1578
dc6c9a35
KS
1579static inline unsigned long mm_nr_pmds(struct mm_struct *mm)
1580{
1581 return atomic_long_read(&mm->nr_pmds);
1582}
1583
1584static inline void mm_inc_nr_pmds(struct mm_struct *mm)
1585{
1586 atomic_long_inc(&mm->nr_pmds);
1587}
1588
1589static inline void mm_dec_nr_pmds(struct mm_struct *mm)
1590{
1591 atomic_long_dec(&mm->nr_pmds);
1592}
5f22df00
NP
1593#endif
1594
3ed3a4f0 1595int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address);
1bb3630e
HD
1596int __pte_alloc_kernel(pmd_t *pmd, unsigned long address);
1597
1da177e4
LT
1598/*
1599 * The following ifdef needed to get the 4level-fixup.h header to work.
1600 * Remove it when 4level-fixup.h has been removed.
1601 */
1bb3630e 1602#if defined(CONFIG_MMU) && !defined(__ARCH_HAS_4LEVEL_HACK)
1da177e4
LT
1603static inline pud_t *pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1604{
1bb3630e
HD
1605 return (unlikely(pgd_none(*pgd)) && __pud_alloc(mm, pgd, address))?
1606 NULL: pud_offset(pgd, address);
1da177e4
LT
1607}
1608
1609static inline pmd_t *pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1610{
1bb3630e
HD
1611 return (unlikely(pud_none(*pud)) && __pmd_alloc(mm, pud, address))?
1612 NULL: pmd_offset(pud, address);
1da177e4 1613}
1bb3630e
HD
1614#endif /* CONFIG_MMU && !__ARCH_HAS_4LEVEL_HACK */
1615
57c1ffce 1616#if USE_SPLIT_PTE_PTLOCKS
597d795a 1617#if ALLOC_SPLIT_PTLOCKS
b35f1819 1618void __init ptlock_cache_init(void);
539edb58
PZ
1619extern bool ptlock_alloc(struct page *page);
1620extern void ptlock_free(struct page *page);
1621
1622static inline spinlock_t *ptlock_ptr(struct page *page)
1623{
1624 return page->ptl;
1625}
597d795a 1626#else /* ALLOC_SPLIT_PTLOCKS */
b35f1819
KS
1627static inline void ptlock_cache_init(void)
1628{
1629}
1630
49076ec2
KS
1631static inline bool ptlock_alloc(struct page *page)
1632{
49076ec2
KS
1633 return true;
1634}
539edb58 1635
49076ec2
KS
1636static inline void ptlock_free(struct page *page)
1637{
49076ec2
KS
1638}
1639
1640static inline spinlock_t *ptlock_ptr(struct page *page)
1641{
539edb58 1642 return &page->ptl;
49076ec2 1643}
597d795a 1644#endif /* ALLOC_SPLIT_PTLOCKS */
49076ec2
KS
1645
1646static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1647{
1648 return ptlock_ptr(pmd_page(*pmd));
1649}
1650
1651static inline bool ptlock_init(struct page *page)
1652{
1653 /*
1654 * prep_new_page() initialize page->private (and therefore page->ptl)
1655 * with 0. Make sure nobody took it in use in between.
1656 *
1657 * It can happen if arch try to use slab for page table allocation:
1d798ca3 1658 * slab code uses page->slab_cache, which share storage with page->ptl.
49076ec2 1659 */
309381fe 1660 VM_BUG_ON_PAGE(*(unsigned long *)&page->ptl, page);
49076ec2
KS
1661 if (!ptlock_alloc(page))
1662 return false;
1663 spin_lock_init(ptlock_ptr(page));
1664 return true;
1665}
1666
1667/* Reset page->mapping so free_pages_check won't complain. */
1668static inline void pte_lock_deinit(struct page *page)
1669{
1670 page->mapping = NULL;
1671 ptlock_free(page);
1672}
1673
57c1ffce 1674#else /* !USE_SPLIT_PTE_PTLOCKS */
4c21e2f2
HD
1675/*
1676 * We use mm->page_table_lock to guard all pagetable pages of the mm.
1677 */
49076ec2
KS
1678static inline spinlock_t *pte_lockptr(struct mm_struct *mm, pmd_t *pmd)
1679{
1680 return &mm->page_table_lock;
1681}
b35f1819 1682static inline void ptlock_cache_init(void) {}
49076ec2
KS
1683static inline bool ptlock_init(struct page *page) { return true; }
1684static inline void pte_lock_deinit(struct page *page) {}
57c1ffce 1685#endif /* USE_SPLIT_PTE_PTLOCKS */
4c21e2f2 1686
b35f1819
KS
1687static inline void pgtable_init(void)
1688{
1689 ptlock_cache_init();
1690 pgtable_cache_init();
1691}
1692
390f44e2 1693static inline bool pgtable_page_ctor(struct page *page)
2f569afd 1694{
706874e9
VD
1695 if (!ptlock_init(page))
1696 return false;
2f569afd 1697 inc_zone_page_state(page, NR_PAGETABLE);
706874e9 1698 return true;
2f569afd
MS
1699}
1700
1701static inline void pgtable_page_dtor(struct page *page)
1702{
1703 pte_lock_deinit(page);
1704 dec_zone_page_state(page, NR_PAGETABLE);
1705}
1706
c74df32c
HD
1707#define pte_offset_map_lock(mm, pmd, address, ptlp) \
1708({ \
4c21e2f2 1709 spinlock_t *__ptl = pte_lockptr(mm, pmd); \
c74df32c
HD
1710 pte_t *__pte = pte_offset_map(pmd, address); \
1711 *(ptlp) = __ptl; \
1712 spin_lock(__ptl); \
1713 __pte; \
1714})
1715
1716#define pte_unmap_unlock(pte, ptl) do { \
1717 spin_unlock(ptl); \
1718 pte_unmap(pte); \
1719} while (0)
1720
3ed3a4f0
KS
1721#define pte_alloc(mm, pmd, address) \
1722 (unlikely(pmd_none(*(pmd))) && __pte_alloc(mm, pmd, address))
1723
1724#define pte_alloc_map(mm, pmd, address) \
1725 (pte_alloc(mm, pmd, address) ? NULL : pte_offset_map(pmd, address))
1bb3630e 1726
c74df32c 1727#define pte_alloc_map_lock(mm, pmd, address, ptlp) \
3ed3a4f0
KS
1728 (pte_alloc(mm, pmd, address) ? \
1729 NULL : pte_offset_map_lock(mm, pmd, address, ptlp))
c74df32c 1730
1bb3630e 1731#define pte_alloc_kernel(pmd, address) \
8ac1f832 1732 ((unlikely(pmd_none(*(pmd))) && __pte_alloc_kernel(pmd, address))? \
1bb3630e 1733 NULL: pte_offset_kernel(pmd, address))
1da177e4 1734
e009bb30
KS
1735#if USE_SPLIT_PMD_PTLOCKS
1736
634391ac
MS
1737static struct page *pmd_to_page(pmd_t *pmd)
1738{
1739 unsigned long mask = ~(PTRS_PER_PMD * sizeof(pmd_t) - 1);
1740 return virt_to_page((void *)((unsigned long) pmd & mask));
1741}
1742
e009bb30
KS
1743static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1744{
634391ac 1745 return ptlock_ptr(pmd_to_page(pmd));
e009bb30
KS
1746}
1747
1748static inline bool pgtable_pmd_page_ctor(struct page *page)
1749{
e009bb30
KS
1750#ifdef CONFIG_TRANSPARENT_HUGEPAGE
1751 page->pmd_huge_pte = NULL;
1752#endif
49076ec2 1753 return ptlock_init(page);
e009bb30
KS
1754}
1755
1756static inline void pgtable_pmd_page_dtor(struct page *page)
1757{
1758#ifdef CONFIG_TRANSPARENT_HUGEPAGE
309381fe 1759 VM_BUG_ON_PAGE(page->pmd_huge_pte, page);
e009bb30 1760#endif
49076ec2 1761 ptlock_free(page);
e009bb30
KS
1762}
1763
634391ac 1764#define pmd_huge_pte(mm, pmd) (pmd_to_page(pmd)->pmd_huge_pte)
e009bb30
KS
1765
1766#else
1767
9a86cb7b
KS
1768static inline spinlock_t *pmd_lockptr(struct mm_struct *mm, pmd_t *pmd)
1769{
1770 return &mm->page_table_lock;
1771}
1772
e009bb30
KS
1773static inline bool pgtable_pmd_page_ctor(struct page *page) { return true; }
1774static inline void pgtable_pmd_page_dtor(struct page *page) {}
1775
c389a250 1776#define pmd_huge_pte(mm, pmd) ((mm)->pmd_huge_pte)
9a86cb7b 1777
e009bb30
KS
1778#endif
1779
9a86cb7b
KS
1780static inline spinlock_t *pmd_lock(struct mm_struct *mm, pmd_t *pmd)
1781{
1782 spinlock_t *ptl = pmd_lockptr(mm, pmd);
1783 spin_lock(ptl);
1784 return ptl;
1785}
1786
1da177e4 1787extern void free_area_init(unsigned long * zones_size);
9109fb7b
JW
1788extern void free_area_init_node(int nid, unsigned long * zones_size,
1789 unsigned long zone_start_pfn, unsigned long *zholes_size);
49a7f04a
DH
1790extern void free_initmem(void);
1791
69afade7
JL
1792/*
1793 * Free reserved pages within range [PAGE_ALIGN(start), end & PAGE_MASK)
1794 * into the buddy system. The freed pages will be poisoned with pattern
dbe67df4 1795 * "poison" if it's within range [0, UCHAR_MAX].
69afade7
JL
1796 * Return pages freed into the buddy system.
1797 */
11199692 1798extern unsigned long free_reserved_area(void *start, void *end,
69afade7 1799 int poison, char *s);
c3d5f5f0 1800
cfa11e08
JL
1801#ifdef CONFIG_HIGHMEM
1802/*
1803 * Free a highmem page into the buddy system, adjusting totalhigh_pages
1804 * and totalram_pages.
1805 */
1806extern void free_highmem_page(struct page *page);
1807#endif
69afade7 1808
c3d5f5f0 1809extern void adjust_managed_page_count(struct page *page, long count);
7ee3d4e8 1810extern void mem_init_print_info(const char *str);
69afade7 1811
4b50bcc7 1812extern void reserve_bootmem_region(phys_addr_t start, phys_addr_t end);
92923ca3 1813
69afade7
JL
1814/* Free the reserved page into the buddy system, so it gets managed. */
1815static inline void __free_reserved_page(struct page *page)
1816{
1817 ClearPageReserved(page);
1818 init_page_count(page);
1819 __free_page(page);
1820}
1821
1822static inline void free_reserved_page(struct page *page)
1823{
1824 __free_reserved_page(page);
1825 adjust_managed_page_count(page, 1);
1826}
1827
1828static inline void mark_page_reserved(struct page *page)
1829{
1830 SetPageReserved(page);
1831 adjust_managed_page_count(page, -1);
1832}
1833
1834/*
1835 * Default method to free all the __init memory into the buddy system.
dbe67df4
JL
1836 * The freed pages will be poisoned with pattern "poison" if it's within
1837 * range [0, UCHAR_MAX].
1838 * Return pages freed into the buddy system.
69afade7
JL
1839 */
1840static inline unsigned long free_initmem_default(int poison)
1841{
1842 extern char __init_begin[], __init_end[];
1843
11199692 1844 return free_reserved_area(&__init_begin, &__init_end,
69afade7
JL
1845 poison, "unused kernel");
1846}
1847
7ee3d4e8
JL
1848static inline unsigned long get_num_physpages(void)
1849{
1850 int nid;
1851 unsigned long phys_pages = 0;
1852
1853 for_each_online_node(nid)
1854 phys_pages += node_present_pages(nid);
1855
1856 return phys_pages;
1857}
1858
0ee332c1 1859#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 1860/*
0ee332c1 1861 * With CONFIG_HAVE_MEMBLOCK_NODE_MAP set, an architecture may initialise its
c713216d
MG
1862 * zones, allocate the backing mem_map and account for memory holes in a more
1863 * architecture independent manner. This is a substitute for creating the
1864 * zone_sizes[] and zholes_size[] arrays and passing them to
1865 * free_area_init_node()
1866 *
1867 * An architecture is expected to register range of page frames backed by
0ee332c1 1868 * physical memory with memblock_add[_node]() before calling
c713216d
MG
1869 * free_area_init_nodes() passing in the PFN each zone ends at. At a basic
1870 * usage, an architecture is expected to do something like
1871 *
1872 * unsigned long max_zone_pfns[MAX_NR_ZONES] = {max_dma, max_normal_pfn,
1873 * max_highmem_pfn};
1874 * for_each_valid_physical_page_range()
0ee332c1 1875 * memblock_add_node(base, size, nid)
c713216d
MG
1876 * free_area_init_nodes(max_zone_pfns);
1877 *
0ee332c1
TH
1878 * free_bootmem_with_active_regions() calls free_bootmem_node() for each
1879 * registered physical page range. Similarly
1880 * sparse_memory_present_with_active_regions() calls memory_present() for
1881 * each range when SPARSEMEM is enabled.
c713216d
MG
1882 *
1883 * See mm/page_alloc.c for more information on each function exposed by
0ee332c1 1884 * CONFIG_HAVE_MEMBLOCK_NODE_MAP.
c713216d
MG
1885 */
1886extern void free_area_init_nodes(unsigned long *max_zone_pfn);
1e01979c 1887unsigned long node_map_pfn_alignment(void);
32996250
YL
1888unsigned long __absent_pages_in_range(int nid, unsigned long start_pfn,
1889 unsigned long end_pfn);
c713216d
MG
1890extern unsigned long absent_pages_in_range(unsigned long start_pfn,
1891 unsigned long end_pfn);
1892extern void get_pfn_range_for_nid(unsigned int nid,
1893 unsigned long *start_pfn, unsigned long *end_pfn);
1894extern unsigned long find_min_pfn_with_active_regions(void);
c713216d
MG
1895extern void free_bootmem_with_active_regions(int nid,
1896 unsigned long max_low_pfn);
1897extern void sparse_memory_present_with_active_regions(int nid);
f2dbcfa7 1898
0ee332c1 1899#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
f2dbcfa7 1900
0ee332c1 1901#if !defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) && \
f2dbcfa7 1902 !defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID)
8a942fde
MG
1903static inline int __early_pfn_to_nid(unsigned long pfn,
1904 struct mminit_pfnnid_cache *state)
f2dbcfa7
KH
1905{
1906 return 0;
1907}
1908#else
1909/* please see mm/page_alloc.c */
1910extern int __meminit early_pfn_to_nid(unsigned long pfn);
f2dbcfa7 1911/* there is a per-arch backend function. */
8a942fde
MG
1912extern int __meminit __early_pfn_to_nid(unsigned long pfn,
1913 struct mminit_pfnnid_cache *state);
f2dbcfa7
KH
1914#endif
1915
0e0b864e 1916extern void set_dma_reserve(unsigned long new_dma_reserve);
a2f3aa02
DH
1917extern void memmap_init_zone(unsigned long, int, unsigned long,
1918 unsigned long, enum memmap_context);
bc75d33f 1919extern void setup_per_zone_wmarks(void);
1b79acc9 1920extern int __meminit init_per_zone_wmark_min(void);
1da177e4 1921extern void mem_init(void);
8feae131 1922extern void __init mmap_init(void);
b2b755b5 1923extern void show_mem(unsigned int flags);
d02bd27b 1924extern long si_mem_available(void);
1da177e4
LT
1925extern void si_meminfo(struct sysinfo * val);
1926extern void si_meminfo_node(struct sysinfo *val, int nid);
1927
3ee9a4f0 1928extern __printf(3, 4)
d00181b9
KS
1929void warn_alloc_failed(gfp_t gfp_mask, unsigned int order,
1930 const char *fmt, ...);
a238ab5b 1931
e7c8d5c9 1932extern void setup_per_cpu_pageset(void);
e7c8d5c9 1933
112067f0 1934extern void zone_pcp_update(struct zone *zone);
340175b7 1935extern void zone_pcp_reset(struct zone *zone);
112067f0 1936
75f7ad8e
PS
1937/* page_alloc.c */
1938extern int min_free_kbytes;
795ae7a0 1939extern int watermark_scale_factor;
75f7ad8e 1940
8feae131 1941/* nommu.c */
33e5d769 1942extern atomic_long_t mmap_pages_allocated;
7e660872 1943extern int nommu_shrink_inode_mappings(struct inode *, size_t, size_t);
8feae131 1944
6b2dbba8 1945/* interval_tree.c */
6b2dbba8
ML
1946void vma_interval_tree_insert(struct vm_area_struct *node,
1947 struct rb_root *root);
9826a516
ML
1948void vma_interval_tree_insert_after(struct vm_area_struct *node,
1949 struct vm_area_struct *prev,
1950 struct rb_root *root);
6b2dbba8
ML
1951void vma_interval_tree_remove(struct vm_area_struct *node,
1952 struct rb_root *root);
1953struct vm_area_struct *vma_interval_tree_iter_first(struct rb_root *root,
1954 unsigned long start, unsigned long last);
1955struct vm_area_struct *vma_interval_tree_iter_next(struct vm_area_struct *node,
1956 unsigned long start, unsigned long last);
1957
1958#define vma_interval_tree_foreach(vma, root, start, last) \
1959 for (vma = vma_interval_tree_iter_first(root, start, last); \
1960 vma; vma = vma_interval_tree_iter_next(vma, start, last))
1da177e4 1961
bf181b9f
ML
1962void anon_vma_interval_tree_insert(struct anon_vma_chain *node,
1963 struct rb_root *root);
1964void anon_vma_interval_tree_remove(struct anon_vma_chain *node,
1965 struct rb_root *root);
1966struct anon_vma_chain *anon_vma_interval_tree_iter_first(
1967 struct rb_root *root, unsigned long start, unsigned long last);
1968struct anon_vma_chain *anon_vma_interval_tree_iter_next(
1969 struct anon_vma_chain *node, unsigned long start, unsigned long last);
ed8ea815
ML
1970#ifdef CONFIG_DEBUG_VM_RB
1971void anon_vma_interval_tree_verify(struct anon_vma_chain *node);
1972#endif
bf181b9f
ML
1973
1974#define anon_vma_interval_tree_foreach(avc, root, start, last) \
1975 for (avc = anon_vma_interval_tree_iter_first(root, start, last); \
1976 avc; avc = anon_vma_interval_tree_iter_next(avc, start, last))
1977
1da177e4 1978/* mmap.c */
34b4e4aa 1979extern int __vm_enough_memory(struct mm_struct *mm, long pages, int cap_sys_admin);
5beb4930 1980extern int vma_adjust(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1981 unsigned long end, pgoff_t pgoff, struct vm_area_struct *insert);
1982extern struct vm_area_struct *vma_merge(struct mm_struct *,
1983 struct vm_area_struct *prev, unsigned long addr, unsigned long end,
1984 unsigned long vm_flags, struct anon_vma *, struct file *, pgoff_t,
19a809af 1985 struct mempolicy *, struct vm_userfaultfd_ctx);
1da177e4
LT
1986extern struct anon_vma *find_mergeable_anon_vma(struct vm_area_struct *);
1987extern int split_vma(struct mm_struct *,
1988 struct vm_area_struct *, unsigned long addr, int new_below);
1989extern int insert_vm_struct(struct mm_struct *, struct vm_area_struct *);
1990extern void __vma_link_rb(struct mm_struct *, struct vm_area_struct *,
1991 struct rb_node **, struct rb_node *);
a8fb5618 1992extern void unlink_file_vma(struct vm_area_struct *);
1da177e4 1993extern struct vm_area_struct *copy_vma(struct vm_area_struct **,
38a76013
ML
1994 unsigned long addr, unsigned long len, pgoff_t pgoff,
1995 bool *need_rmap_locks);
1da177e4 1996extern void exit_mmap(struct mm_struct *);
925d1c40 1997
9c599024
CG
1998static inline int check_data_rlimit(unsigned long rlim,
1999 unsigned long new,
2000 unsigned long start,
2001 unsigned long end_data,
2002 unsigned long start_data)
2003{
2004 if (rlim < RLIM_INFINITY) {
2005 if (((new - start) + (end_data - start_data)) > rlim)
2006 return -ENOSPC;
2007 }
2008
2009 return 0;
2010}
2011
7906d00c
AA
2012extern int mm_take_all_locks(struct mm_struct *mm);
2013extern void mm_drop_all_locks(struct mm_struct *mm);
2014
38646013
JS
2015extern void set_mm_exe_file(struct mm_struct *mm, struct file *new_exe_file);
2016extern struct file *get_mm_exe_file(struct mm_struct *mm);
cd81a917 2017extern struct file *get_task_exe_file(struct task_struct *task);
925d1c40 2018
84638335
KK
2019extern bool may_expand_vm(struct mm_struct *, vm_flags_t, unsigned long npages);
2020extern void vm_stat_account(struct mm_struct *, vm_flags_t, long npages);
2021
3935ed6a
SS
2022extern struct vm_area_struct *_install_special_mapping(struct mm_struct *mm,
2023 unsigned long addr, unsigned long len,
a62c34bd
AL
2024 unsigned long flags,
2025 const struct vm_special_mapping *spec);
2026/* This is an obsolete alternative to _install_special_mapping. */
fa5dc22f
RM
2027extern int install_special_mapping(struct mm_struct *mm,
2028 unsigned long addr, unsigned long len,
2029 unsigned long flags, struct page **pages);
1da177e4
LT
2030
2031extern unsigned long get_unmapped_area(struct file *, unsigned long, unsigned long, unsigned long, unsigned long);
2032
0165ab44 2033extern unsigned long mmap_region(struct file *file, unsigned long addr,
c22c0d63 2034 unsigned long len, vm_flags_t vm_flags, unsigned long pgoff);
1fcfd8db 2035extern unsigned long do_mmap(struct file *file, unsigned long addr,
bebeb3d6 2036 unsigned long len, unsigned long prot, unsigned long flags,
1fcfd8db 2037 vm_flags_t vm_flags, unsigned long pgoff, unsigned long *populate);
1da177e4
LT
2038extern int do_munmap(struct mm_struct *, unsigned long, size_t);
2039
1fcfd8db
ON
2040static inline unsigned long
2041do_mmap_pgoff(struct file *file, unsigned long addr,
2042 unsigned long len, unsigned long prot, unsigned long flags,
2043 unsigned long pgoff, unsigned long *populate)
2044{
2045 return do_mmap(file, addr, len, prot, flags, 0, pgoff, populate);
2046}
2047
bebeb3d6
ML
2048#ifdef CONFIG_MMU
2049extern int __mm_populate(unsigned long addr, unsigned long len,
2050 int ignore_errors);
2051static inline void mm_populate(unsigned long addr, unsigned long len)
2052{
2053 /* Ignore errors */
2054 (void) __mm_populate(addr, len, 1);
2055}
2056#else
2057static inline void mm_populate(unsigned long addr, unsigned long len) {}
2058#endif
2059
e4eb1ff6 2060/* These take the mm semaphore themselves */
5d22fc25 2061extern int __must_check vm_brk(unsigned long, unsigned long);
bfce281c 2062extern int vm_munmap(unsigned long, size_t);
9fbeb5ab 2063extern unsigned long __must_check vm_mmap(struct file *, unsigned long,
6be5ceb0
LT
2064 unsigned long, unsigned long,
2065 unsigned long, unsigned long);
1da177e4 2066
db4fbfb9
ML
2067struct vm_unmapped_area_info {
2068#define VM_UNMAPPED_AREA_TOPDOWN 1
2069 unsigned long flags;
2070 unsigned long length;
2071 unsigned long low_limit;
2072 unsigned long high_limit;
2073 unsigned long align_mask;
2074 unsigned long align_offset;
2075};
2076
2077extern unsigned long unmapped_area(struct vm_unmapped_area_info *info);
2078extern unsigned long unmapped_area_topdown(struct vm_unmapped_area_info *info);
2079
2080/*
2081 * Search for an unmapped address range.
2082 *
2083 * We are looking for a range that:
2084 * - does not intersect with any VMA;
2085 * - is contained within the [low_limit, high_limit) interval;
2086 * - is at least the desired size.
2087 * - satisfies (begin_addr & align_mask) == (align_offset & align_mask)
2088 */
2089static inline unsigned long
2090vm_unmapped_area(struct vm_unmapped_area_info *info)
2091{
cdd7875e 2092 if (info->flags & VM_UNMAPPED_AREA_TOPDOWN)
db4fbfb9 2093 return unmapped_area_topdown(info);
cdd7875e
BP
2094 else
2095 return unmapped_area(info);
db4fbfb9
ML
2096}
2097
85821aab 2098/* truncate.c */
1da177e4 2099extern void truncate_inode_pages(struct address_space *, loff_t);
d7339071
HR
2100extern void truncate_inode_pages_range(struct address_space *,
2101 loff_t lstart, loff_t lend);
91b0abe3 2102extern void truncate_inode_pages_final(struct address_space *);
1da177e4
LT
2103
2104/* generic vm_area_ops exported for stackable file systems */
d0217ac0 2105extern int filemap_fault(struct vm_area_struct *, struct vm_fault *);
bae473a4
KS
2106extern void filemap_map_pages(struct fault_env *fe,
2107 pgoff_t start_pgoff, pgoff_t end_pgoff);
4fcf1c62 2108extern int filemap_page_mkwrite(struct vm_area_struct *vma, struct vm_fault *vmf);
1da177e4
LT
2109
2110/* mm/page-writeback.c */
2111int write_one_page(struct page *page, int wait);
1cf6e7d8 2112void task_dirty_inc(struct task_struct *tsk);
1da177e4
LT
2113
2114/* readahead.c */
2115#define VM_MAX_READAHEAD 128 /* kbytes */
2116#define VM_MIN_READAHEAD 16 /* kbytes (includes current page) */
1da177e4 2117
1da177e4 2118int force_page_cache_readahead(struct address_space *mapping, struct file *filp,
7361f4d8 2119 pgoff_t offset, unsigned long nr_to_read);
cf914a7d
RR
2120
2121void page_cache_sync_readahead(struct address_space *mapping,
2122 struct file_ra_state *ra,
2123 struct file *filp,
2124 pgoff_t offset,
2125 unsigned long size);
2126
2127void page_cache_async_readahead(struct address_space *mapping,
2128 struct file_ra_state *ra,
2129 struct file *filp,
2130 struct page *pg,
2131 pgoff_t offset,
2132 unsigned long size);
2133
d05f3169 2134/* Generic expand stack which grows the stack according to GROWS{UP,DOWN} */
46dea3d0 2135extern int expand_stack(struct vm_area_struct *vma, unsigned long address);
d05f3169
MH
2136
2137/* CONFIG_STACK_GROWSUP still needs to to grow downwards at some places */
2138extern int expand_downwards(struct vm_area_struct *vma,
2139 unsigned long address);
8ca3eb08 2140#if VM_GROWSUP
46dea3d0 2141extern int expand_upwards(struct vm_area_struct *vma, unsigned long address);
8ca3eb08 2142#else
fee7e49d 2143 #define expand_upwards(vma, address) (0)
9ab88515 2144#endif
1da177e4
LT
2145
2146/* Look up the first VMA which satisfies addr < vm_end, NULL if none. */
2147extern struct vm_area_struct * find_vma(struct mm_struct * mm, unsigned long addr);
2148extern struct vm_area_struct * find_vma_prev(struct mm_struct * mm, unsigned long addr,
2149 struct vm_area_struct **pprev);
2150
2151/* Look up the first VMA which intersects the interval start_addr..end_addr-1,
2152 NULL if none. Assume start_addr < end_addr. */
2153static inline struct vm_area_struct * find_vma_intersection(struct mm_struct * mm, unsigned long start_addr, unsigned long end_addr)
2154{
2155 struct vm_area_struct * vma = find_vma(mm,start_addr);
2156
2157 if (vma && end_addr <= vma->vm_start)
2158 vma = NULL;
2159 return vma;
2160}
2161
2162static inline unsigned long vma_pages(struct vm_area_struct *vma)
2163{
2164 return (vma->vm_end - vma->vm_start) >> PAGE_SHIFT;
2165}
2166
640708a2
PE
2167/* Look up the first VMA which exactly match the interval vm_start ... vm_end */
2168static inline struct vm_area_struct *find_exact_vma(struct mm_struct *mm,
2169 unsigned long vm_start, unsigned long vm_end)
2170{
2171 struct vm_area_struct *vma = find_vma(mm, vm_start);
2172
2173 if (vma && (vma->vm_start != vm_start || vma->vm_end != vm_end))
2174 vma = NULL;
2175
2176 return vma;
2177}
2178
bad849b3 2179#ifdef CONFIG_MMU
804af2cf 2180pgprot_t vm_get_page_prot(unsigned long vm_flags);
64e45507 2181void vma_set_page_prot(struct vm_area_struct *vma);
bad849b3
DH
2182#else
2183static inline pgprot_t vm_get_page_prot(unsigned long vm_flags)
2184{
2185 return __pgprot(0);
2186}
64e45507
PF
2187static inline void vma_set_page_prot(struct vm_area_struct *vma)
2188{
2189 vma->vm_page_prot = vm_get_page_prot(vma->vm_flags);
2190}
bad849b3
DH
2191#endif
2192
5877231f 2193#ifdef CONFIG_NUMA_BALANCING
4b10e7d5 2194unsigned long change_prot_numa(struct vm_area_struct *vma,
b24f53a0
LS
2195 unsigned long start, unsigned long end);
2196#endif
2197
deceb6cd 2198struct vm_area_struct *find_extend_vma(struct mm_struct *, unsigned long addr);
deceb6cd
HD
2199int remap_pfn_range(struct vm_area_struct *, unsigned long addr,
2200 unsigned long pfn, unsigned long size, pgprot_t);
a145dd41 2201int vm_insert_page(struct vm_area_struct *, unsigned long addr, struct page *);
e0dc0d8f
NP
2202int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
2203 unsigned long pfn);
1745cbc5
AL
2204int vm_insert_pfn_prot(struct vm_area_struct *vma, unsigned long addr,
2205 unsigned long pfn, pgprot_t pgprot);
423bad60 2206int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
01c8f1c4 2207 pfn_t pfn);
b4cbb197
LT
2208int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len);
2209
deceb6cd 2210
240aadee
ML
2211struct page *follow_page_mask(struct vm_area_struct *vma,
2212 unsigned long address, unsigned int foll_flags,
2213 unsigned int *page_mask);
2214
2215static inline struct page *follow_page(struct vm_area_struct *vma,
2216 unsigned long address, unsigned int foll_flags)
2217{
2218 unsigned int unused_page_mask;
2219 return follow_page_mask(vma, address, foll_flags, &unused_page_mask);
2220}
2221
deceb6cd
HD
2222#define FOLL_WRITE 0x01 /* check pte is writable */
2223#define FOLL_TOUCH 0x02 /* mark page accessed */
2224#define FOLL_GET 0x04 /* do get_page on page */
8e4b9a60 2225#define FOLL_DUMP 0x08 /* give error on hole if it would be zero */
58fa879e 2226#define FOLL_FORCE 0x10 /* get_user_pages read/write w/o permission */
318b275f
GN
2227#define FOLL_NOWAIT 0x20 /* if a disk transfer is needed, start the IO
2228 * and return without waiting upon it */
84d33df2 2229#define FOLL_POPULATE 0x40 /* fault in page */
500d65d4 2230#define FOLL_SPLIT 0x80 /* don't return transhuge pages, split them */
69ebb83e 2231#define FOLL_HWPOISON 0x100 /* check page is hwpoisoned */
0b9d7052 2232#define FOLL_NUMA 0x200 /* force NUMA hinting page fault */
5117b3b8 2233#define FOLL_MIGRATION 0x400 /* wait for page to replace migration entry */
234b239b 2234#define FOLL_TRIED 0x800 /* a retry, previous pass started an IO */
de60f5f1 2235#define FOLL_MLOCK 0x1000 /* lock present pages */
1e987790 2236#define FOLL_REMOTE 0x2000 /* we are working on non-current tsk/mm */
89eeba15 2237#define FOLL_COW 0x4000 /* internal GUP flag */
1da177e4 2238
2f569afd 2239typedef int (*pte_fn_t)(pte_t *pte, pgtable_t token, unsigned long addr,
aee16b3c
JF
2240 void *data);
2241extern int apply_to_page_range(struct mm_struct *mm, unsigned long address,
2242 unsigned long size, pte_fn_t fn, void *data);
2243
1da177e4 2244
8823b1db
LA
2245#ifdef CONFIG_PAGE_POISONING
2246extern bool page_poisoning_enabled(void);
2247extern void kernel_poison_pages(struct page *page, int numpages, int enable);
1414c7f4 2248extern bool page_is_poisoned(struct page *page);
8823b1db
LA
2249#else
2250static inline bool page_poisoning_enabled(void) { return false; }
2251static inline void kernel_poison_pages(struct page *page, int numpages,
2252 int enable) { }
1414c7f4 2253static inline bool page_is_poisoned(struct page *page) { return false; }
8823b1db
LA
2254#endif
2255
12d6f21e 2256#ifdef CONFIG_DEBUG_PAGEALLOC
031bc574
JK
2257extern bool _debug_pagealloc_enabled;
2258extern void __kernel_map_pages(struct page *page, int numpages, int enable);
2259
2260static inline bool debug_pagealloc_enabled(void)
2261{
2262 return _debug_pagealloc_enabled;
2263}
2264
2265static inline void
2266kernel_map_pages(struct page *page, int numpages, int enable)
2267{
2268 if (!debug_pagealloc_enabled())
2269 return;
2270
2271 __kernel_map_pages(page, numpages, enable);
2272}
8a235efa
RW
2273#ifdef CONFIG_HIBERNATION
2274extern bool kernel_page_present(struct page *page);
40b44137
JK
2275#endif /* CONFIG_HIBERNATION */
2276#else /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2277static inline void
9858db50 2278kernel_map_pages(struct page *page, int numpages, int enable) {}
8a235efa
RW
2279#ifdef CONFIG_HIBERNATION
2280static inline bool kernel_page_present(struct page *page) { return true; }
40b44137
JK
2281#endif /* CONFIG_HIBERNATION */
2282static inline bool debug_pagealloc_enabled(void)
2283{
2284 return false;
2285}
2286#endif /* CONFIG_DEBUG_PAGEALLOC */
1da177e4 2287
a6c19dfe 2288#ifdef __HAVE_ARCH_GATE_AREA
31db58b3 2289extern struct vm_area_struct *get_gate_vma(struct mm_struct *mm);
a6c19dfe
AL
2290extern int in_gate_area_no_mm(unsigned long addr);
2291extern int in_gate_area(struct mm_struct *mm, unsigned long addr);
1da177e4 2292#else
a6c19dfe
AL
2293static inline struct vm_area_struct *get_gate_vma(struct mm_struct *mm)
2294{
2295 return NULL;
2296}
2297static inline int in_gate_area_no_mm(unsigned long addr) { return 0; }
2298static inline int in_gate_area(struct mm_struct *mm, unsigned long addr)
2299{
2300 return 0;
2301}
1da177e4
LT
2302#endif /* __HAVE_ARCH_GATE_AREA */
2303
44a70ade
MH
2304extern bool process_shares_mm(struct task_struct *p, struct mm_struct *mm);
2305
146732ce
JT
2306#ifdef CONFIG_SYSCTL
2307extern int sysctl_drop_caches;
8d65af78 2308int drop_caches_sysctl_handler(struct ctl_table *, int,
9d0243bc 2309 void __user *, size_t *, loff_t *);
146732ce
JT
2310#endif
2311
cb731d6c
VD
2312void drop_slab(void);
2313void drop_slab_node(int nid);
9d0243bc 2314
7a9166e3
LY
2315#ifndef CONFIG_MMU
2316#define randomize_va_space 0
2317#else
a62eaf15 2318extern int randomize_va_space;
7a9166e3 2319#endif
a62eaf15 2320
045e72ac 2321const char * arch_vma_name(struct vm_area_struct *vma);
03252919 2322void print_vma_addr(char *prefix, unsigned long rip);
e6e5494c 2323
9bdac914
YL
2324void sparse_mem_maps_populate_node(struct page **map_map,
2325 unsigned long pnum_begin,
2326 unsigned long pnum_end,
2327 unsigned long map_count,
2328 int nodeid);
2329
98f3cfc1 2330struct page *sparse_mem_map_populate(unsigned long pnum, int nid);
29c71111
AW
2331pgd_t *vmemmap_pgd_populate(unsigned long addr, int node);
2332pud_t *vmemmap_pud_populate(pgd_t *pgd, unsigned long addr, int node);
2333pmd_t *vmemmap_pmd_populate(pud_t *pud, unsigned long addr, int node);
2334pte_t *vmemmap_pte_populate(pmd_t *pmd, unsigned long addr, int node);
8f6aac41 2335void *vmemmap_alloc_block(unsigned long size, int node);
4b94ffdc
DW
2336struct vmem_altmap;
2337void *__vmemmap_alloc_block_buf(unsigned long size, int node,
2338 struct vmem_altmap *altmap);
2339static inline void *vmemmap_alloc_block_buf(unsigned long size, int node)
2340{
2341 return __vmemmap_alloc_block_buf(size, node, NULL);
2342}
2343
8f6aac41 2344void vmemmap_verify(pte_t *, int, unsigned long, unsigned long);
0aad818b
JW
2345int vmemmap_populate_basepages(unsigned long start, unsigned long end,
2346 int node);
2347int vmemmap_populate(unsigned long start, unsigned long end, int node);
c2b91e2e 2348void vmemmap_populate_print_last(void);
0197518c 2349#ifdef CONFIG_MEMORY_HOTPLUG
0aad818b 2350void vmemmap_free(unsigned long start, unsigned long end);
0197518c 2351#endif
46723bfa
YI
2352void register_page_bootmem_memmap(unsigned long section_nr, struct page *map,
2353 unsigned long size);
6a46079c 2354
82ba011b
AK
2355enum mf_flags {
2356 MF_COUNT_INCREASED = 1 << 0,
7329bbeb 2357 MF_ACTION_REQUIRED = 1 << 1,
6751ed65 2358 MF_MUST_KILL = 1 << 2,
cf870c70 2359 MF_SOFT_OFFLINE = 1 << 3,
82ba011b 2360};
cd42f4a3 2361extern int memory_failure(unsigned long pfn, int trapno, int flags);
ea8f5fb8 2362extern void memory_failure_queue(unsigned long pfn, int trapno, int flags);
847ce401 2363extern int unpoison_memory(unsigned long pfn);
ead07f6a 2364extern int get_hwpoison_page(struct page *page);
4e41a30c 2365#define put_hwpoison_page(page) put_page(page)
6a46079c
AK
2366extern int sysctl_memory_failure_early_kill;
2367extern int sysctl_memory_failure_recovery;
facb6011 2368extern void shake_page(struct page *p, int access);
293c07e3 2369extern atomic_long_t num_poisoned_pages;
facb6011 2370extern int soft_offline_page(struct page *page, int flags);
6a46079c 2371
cc637b17
XX
2372
2373/*
2374 * Error handlers for various types of pages.
2375 */
cc3e2af4 2376enum mf_result {
cc637b17
XX
2377 MF_IGNORED, /* Error: cannot be handled */
2378 MF_FAILED, /* Error: handling failed */
2379 MF_DELAYED, /* Will be handled later */
2380 MF_RECOVERED, /* Successfully recovered */
2381};
2382
2383enum mf_action_page_type {
2384 MF_MSG_KERNEL,
2385 MF_MSG_KERNEL_HIGH_ORDER,
2386 MF_MSG_SLAB,
2387 MF_MSG_DIFFERENT_COMPOUND,
2388 MF_MSG_POISONED_HUGE,
2389 MF_MSG_HUGE,
2390 MF_MSG_FREE_HUGE,
2391 MF_MSG_UNMAP_FAILED,
2392 MF_MSG_DIRTY_SWAPCACHE,
2393 MF_MSG_CLEAN_SWAPCACHE,
2394 MF_MSG_DIRTY_MLOCKED_LRU,
2395 MF_MSG_CLEAN_MLOCKED_LRU,
2396 MF_MSG_DIRTY_UNEVICTABLE_LRU,
2397 MF_MSG_CLEAN_UNEVICTABLE_LRU,
2398 MF_MSG_DIRTY_LRU,
2399 MF_MSG_CLEAN_LRU,
2400 MF_MSG_TRUNCATED_LRU,
2401 MF_MSG_BUDDY,
2402 MF_MSG_BUDDY_2ND,
2403 MF_MSG_UNKNOWN,
2404};
2405
47ad8475
AA
2406#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
2407extern void clear_huge_page(struct page *page,
2408 unsigned long addr,
2409 unsigned int pages_per_huge_page);
2410extern void copy_user_huge_page(struct page *dst, struct page *src,
2411 unsigned long addr, struct vm_area_struct *vma,
2412 unsigned int pages_per_huge_page);
2413#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
2414
e30825f1
JK
2415extern struct page_ext_operations debug_guardpage_ops;
2416extern struct page_ext_operations page_poisoning_ops;
2417
c0a32fc5
SG
2418#ifdef CONFIG_DEBUG_PAGEALLOC
2419extern unsigned int _debug_guardpage_minorder;
e30825f1 2420extern bool _debug_guardpage_enabled;
c0a32fc5
SG
2421
2422static inline unsigned int debug_guardpage_minorder(void)
2423{
2424 return _debug_guardpage_minorder;
2425}
2426
e30825f1
JK
2427static inline bool debug_guardpage_enabled(void)
2428{
2429 return _debug_guardpage_enabled;
2430}
2431
c0a32fc5
SG
2432static inline bool page_is_guard(struct page *page)
2433{
e30825f1
JK
2434 struct page_ext *page_ext;
2435
2436 if (!debug_guardpage_enabled())
2437 return false;
2438
2439 page_ext = lookup_page_ext(page);
0bb2fd13
YS
2440 if (unlikely(!page_ext))
2441 return false;
2442
e30825f1 2443 return test_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
c0a32fc5
SG
2444}
2445#else
2446static inline unsigned int debug_guardpage_minorder(void) { return 0; }
e30825f1 2447static inline bool debug_guardpage_enabled(void) { return false; }
c0a32fc5
SG
2448static inline bool page_is_guard(struct page *page) { return false; }
2449#endif /* CONFIG_DEBUG_PAGEALLOC */
2450
f9872caf
CS
2451#if MAX_NUMNODES > 1
2452void __init setup_nr_node_ids(void);
2453#else
2454static inline void setup_nr_node_ids(void) {}
2455#endif
2456
1da177e4
LT
2457#endif /* __KERNEL__ */
2458#endif /* _LINUX_MM_H */
This page took 1.688828 seconds and 5 git commands to generate.