IB: start documenting device capabilities
[deliverable/linux.git] / include / rdma / ib_verbs.h
CommitLineData
1da177e4
LT
1/*
2 * Copyright (c) 2004 Mellanox Technologies Ltd. All rights reserved.
3 * Copyright (c) 2004 Infinicon Corporation. All rights reserved.
4 * Copyright (c) 2004 Intel Corporation. All rights reserved.
5 * Copyright (c) 2004 Topspin Corporation. All rights reserved.
6 * Copyright (c) 2004 Voltaire Corporation. All rights reserved.
2a1d9b7f 7 * Copyright (c) 2005 Sun Microsystems, Inc. All rights reserved.
f7c6a7b5 8 * Copyright (c) 2005, 2006, 2007 Cisco Systems. All rights reserved.
1da177e4
LT
9 *
10 * This software is available to you under a choice of one of two
11 * licenses. You may choose to be licensed under the terms of the GNU
12 * General Public License (GPL) Version 2, available from the file
13 * COPYING in the main directory of this source tree, or the
14 * OpenIB.org BSD license below:
15 *
16 * Redistribution and use in source and binary forms, with or
17 * without modification, are permitted provided that the following
18 * conditions are met:
19 *
20 * - Redistributions of source code must retain the above
21 * copyright notice, this list of conditions and the following
22 * disclaimer.
23 *
24 * - Redistributions in binary form must reproduce the above
25 * copyright notice, this list of conditions and the following
26 * disclaimer in the documentation and/or other materials
27 * provided with the distribution.
28 *
29 * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
30 * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
31 * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
32 * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS
33 * BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN
34 * ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN
35 * CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
36 * SOFTWARE.
1da177e4
LT
37 */
38
39#if !defined(IB_VERBS_H)
40#define IB_VERBS_H
41
42#include <linux/types.h>
43#include <linux/device.h>
9b513090
RC
44#include <linux/mm.h>
45#include <linux/dma-mapping.h>
459d6e2a 46#include <linux/kref.h>
bfb3ea12
DB
47#include <linux/list.h>
48#include <linux/rwsem.h>
87ae9afd 49#include <linux/scatterlist.h>
f0626710 50#include <linux/workqueue.h>
9268f72d 51#include <linux/socket.h>
14d3a3b2 52#include <linux/irq_poll.h>
dd5f03be 53#include <uapi/linux/if_ether.h>
c865f246
SK
54#include <net/ipv6.h>
55#include <net/ip.h>
e2773c06 56
60063497 57#include <linux/atomic.h>
882214e2 58#include <linux/mmu_notifier.h>
e2773c06 59#include <asm/uaccess.h>
1da177e4 60
f0626710 61extern struct workqueue_struct *ib_wq;
14d3a3b2 62extern struct workqueue_struct *ib_comp_wq;
f0626710 63
1da177e4
LT
64union ib_gid {
65 u8 raw[16];
66 struct {
97f52eb4
SH
67 __be64 subnet_prefix;
68 __be64 interface_id;
1da177e4
LT
69 } global;
70};
71
e26be1bf
MS
72extern union ib_gid zgid;
73
b39ffa1d
MB
74enum ib_gid_type {
75 /* If link layer is Ethernet, this is RoCE V1 */
76 IB_GID_TYPE_IB = 0,
77 IB_GID_TYPE_ROCE = 0,
7766a99f 78 IB_GID_TYPE_ROCE_UDP_ENCAP = 1,
b39ffa1d
MB
79 IB_GID_TYPE_SIZE
80};
81
03db3a2d 82struct ib_gid_attr {
b39ffa1d 83 enum ib_gid_type gid_type;
03db3a2d
MB
84 struct net_device *ndev;
85};
86
07ebafba
TT
87enum rdma_node_type {
88 /* IB values map to NodeInfo:NodeType. */
89 RDMA_NODE_IB_CA = 1,
90 RDMA_NODE_IB_SWITCH,
91 RDMA_NODE_IB_ROUTER,
180771a3
UM
92 RDMA_NODE_RNIC,
93 RDMA_NODE_USNIC,
5db5765e 94 RDMA_NODE_USNIC_UDP,
1da177e4
LT
95};
96
07ebafba
TT
97enum rdma_transport_type {
98 RDMA_TRANSPORT_IB,
180771a3 99 RDMA_TRANSPORT_IWARP,
248567f7
UM
100 RDMA_TRANSPORT_USNIC,
101 RDMA_TRANSPORT_USNIC_UDP
07ebafba
TT
102};
103
6b90a6d6
MW
104enum rdma_protocol_type {
105 RDMA_PROTOCOL_IB,
106 RDMA_PROTOCOL_IBOE,
107 RDMA_PROTOCOL_IWARP,
108 RDMA_PROTOCOL_USNIC_UDP
109};
110
8385fd84
RD
111__attribute_const__ enum rdma_transport_type
112rdma_node_get_transport(enum rdma_node_type node_type);
07ebafba 113
c865f246
SK
114enum rdma_network_type {
115 RDMA_NETWORK_IB,
116 RDMA_NETWORK_ROCE_V1 = RDMA_NETWORK_IB,
117 RDMA_NETWORK_IPV4,
118 RDMA_NETWORK_IPV6
119};
120
121static inline enum ib_gid_type ib_network_to_gid_type(enum rdma_network_type network_type)
122{
123 if (network_type == RDMA_NETWORK_IPV4 ||
124 network_type == RDMA_NETWORK_IPV6)
125 return IB_GID_TYPE_ROCE_UDP_ENCAP;
126
127 /* IB_GID_TYPE_IB same as RDMA_NETWORK_ROCE_V1 */
128 return IB_GID_TYPE_IB;
129}
130
131static inline enum rdma_network_type ib_gid_to_network_type(enum ib_gid_type gid_type,
132 union ib_gid *gid)
133{
134 if (gid_type == IB_GID_TYPE_IB)
135 return RDMA_NETWORK_IB;
136
137 if (ipv6_addr_v4mapped((struct in6_addr *)gid))
138 return RDMA_NETWORK_IPV4;
139 else
140 return RDMA_NETWORK_IPV6;
141}
142
a3f5adaf
EC
143enum rdma_link_layer {
144 IB_LINK_LAYER_UNSPECIFIED,
145 IB_LINK_LAYER_INFINIBAND,
146 IB_LINK_LAYER_ETHERNET,
147};
148
1da177e4
LT
149enum ib_device_cap_flags {
150 IB_DEVICE_RESIZE_MAX_WR = 1,
151 IB_DEVICE_BAD_PKEY_CNTR = (1<<1),
152 IB_DEVICE_BAD_QKEY_CNTR = (1<<2),
153 IB_DEVICE_RAW_MULTI = (1<<3),
154 IB_DEVICE_AUTO_PATH_MIG = (1<<4),
155 IB_DEVICE_CHANGE_PHY_PORT = (1<<5),
156 IB_DEVICE_UD_AV_PORT_ENFORCE = (1<<6),
157 IB_DEVICE_CURR_QP_STATE_MOD = (1<<7),
158 IB_DEVICE_SHUTDOWN_PORT = (1<<8),
159 IB_DEVICE_INIT_TYPE = (1<<9),
160 IB_DEVICE_PORT_ACTIVE_EVENT = (1<<10),
161 IB_DEVICE_SYS_IMAGE_GUID = (1<<11),
162 IB_DEVICE_RC_RNR_NAK_GEN = (1<<12),
163 IB_DEVICE_SRQ_RESIZE = (1<<13),
164 IB_DEVICE_N_NOTIFY_CQ = (1<<14),
b1adc714
CH
165
166 /*
167 * This device supports a per-device lkey or stag that can be
168 * used without performing a memory registration for the local
169 * memory. Note that ULPs should never check this flag, but
170 * instead of use the local_dma_lkey flag in the ib_pd structure,
171 * which will always contain a usable lkey.
172 */
96f15c03 173 IB_DEVICE_LOCAL_DMA_LKEY = (1<<15),
0f39cf3d 174 IB_DEVICE_RESERVED = (1<<16), /* old SEND_W_INV */
e0605d91
EC
175 IB_DEVICE_MEM_WINDOW = (1<<17),
176 /*
177 * Devices should set IB_DEVICE_UD_IP_SUM if they support
178 * insertion of UDP and TCP checksum on outgoing UD IPoIB
179 * messages and can verify the validity of checksum for
180 * incoming messages. Setting this flag implies that the
181 * IPoIB driver may set NETIF_F_IP_CSUM for datagram mode.
182 */
183 IB_DEVICE_UD_IP_CSUM = (1<<18),
c93570f2 184 IB_DEVICE_UD_TSO = (1<<19),
59991f94 185 IB_DEVICE_XRC = (1<<20),
b1adc714
CH
186
187 /*
188 * This device supports the IB "base memory management extension",
189 * which includes support for fast registrations (IB_WR_REG_MR,
190 * IB_WR_LOCAL_INV and IB_WR_SEND_WITH_INV verbs). This flag should
191 * also be set by any iWarp device which must support FRs to comply
192 * to the iWarp verbs spec. iWarp devices also support the
193 * IB_WR_RDMA_READ_WITH_INV verb for RDMA READs that invalidate the
194 * stag.
195 */
00f7ec36 196 IB_DEVICE_MEM_MGT_EXTENSIONS = (1<<21),
47ee1b9f 197 IB_DEVICE_BLOCK_MULTICAST_LOOPBACK = (1<<22),
7083e42e 198 IB_DEVICE_MEM_WINDOW_TYPE_2A = (1<<23),
319a441d 199 IB_DEVICE_MEM_WINDOW_TYPE_2B = (1<<24),
470a5535
BW
200 IB_DEVICE_RC_IP_CSUM = (1<<25),
201 IB_DEVICE_RAW_IP_CSUM = (1<<26),
1b01d335 202 IB_DEVICE_MANAGED_FLOW_STEERING = (1<<29),
860f10a7
SG
203 IB_DEVICE_SIGNATURE_HANDOVER = (1<<30),
204 IB_DEVICE_ON_DEMAND_PAGING = (1<<31),
1b01d335
SG
205};
206
207enum ib_signature_prot_cap {
208 IB_PROT_T10DIF_TYPE_1 = 1,
209 IB_PROT_T10DIF_TYPE_2 = 1 << 1,
210 IB_PROT_T10DIF_TYPE_3 = 1 << 2,
211};
212
213enum ib_signature_guard_cap {
214 IB_GUARD_T10DIF_CRC = 1,
215 IB_GUARD_T10DIF_CSUM = 1 << 1,
1da177e4
LT
216};
217
218enum ib_atomic_cap {
219 IB_ATOMIC_NONE,
220 IB_ATOMIC_HCA,
221 IB_ATOMIC_GLOB
222};
223
860f10a7
SG
224enum ib_odp_general_cap_bits {
225 IB_ODP_SUPPORT = 1 << 0,
226};
227
228enum ib_odp_transport_cap_bits {
229 IB_ODP_SUPPORT_SEND = 1 << 0,
230 IB_ODP_SUPPORT_RECV = 1 << 1,
231 IB_ODP_SUPPORT_WRITE = 1 << 2,
232 IB_ODP_SUPPORT_READ = 1 << 3,
233 IB_ODP_SUPPORT_ATOMIC = 1 << 4,
234};
235
236struct ib_odp_caps {
237 uint64_t general_caps;
238 struct {
239 uint32_t rc_odp_caps;
240 uint32_t uc_odp_caps;
241 uint32_t ud_odp_caps;
242 } per_transport_caps;
243};
244
b9926b92
MB
245enum ib_cq_creation_flags {
246 IB_CQ_FLAGS_TIMESTAMP_COMPLETION = 1 << 0,
247};
248
bcf4c1ea
MB
249struct ib_cq_init_attr {
250 unsigned int cqe;
251 int comp_vector;
252 u32 flags;
253};
254
1da177e4
LT
255struct ib_device_attr {
256 u64 fw_ver;
97f52eb4 257 __be64 sys_image_guid;
1da177e4
LT
258 u64 max_mr_size;
259 u64 page_size_cap;
260 u32 vendor_id;
261 u32 vendor_part_id;
262 u32 hw_ver;
263 int max_qp;
264 int max_qp_wr;
265 int device_cap_flags;
266 int max_sge;
267 int max_sge_rd;
268 int max_cq;
269 int max_cqe;
270 int max_mr;
271 int max_pd;
272 int max_qp_rd_atom;
273 int max_ee_rd_atom;
274 int max_res_rd_atom;
275 int max_qp_init_rd_atom;
276 int max_ee_init_rd_atom;
277 enum ib_atomic_cap atomic_cap;
5e80ba8f 278 enum ib_atomic_cap masked_atomic_cap;
1da177e4
LT
279 int max_ee;
280 int max_rdd;
281 int max_mw;
282 int max_raw_ipv6_qp;
283 int max_raw_ethy_qp;
284 int max_mcast_grp;
285 int max_mcast_qp_attach;
286 int max_total_mcast_qp_attach;
287 int max_ah;
288 int max_fmr;
289 int max_map_per_fmr;
290 int max_srq;
291 int max_srq_wr;
292 int max_srq_sge;
00f7ec36 293 unsigned int max_fast_reg_page_list_len;
1da177e4
LT
294 u16 max_pkeys;
295 u8 local_ca_ack_delay;
1b01d335
SG
296 int sig_prot_cap;
297 int sig_guard_cap;
860f10a7 298 struct ib_odp_caps odp_caps;
24306dc6
MB
299 uint64_t timestamp_mask;
300 uint64_t hca_core_clock; /* in KHZ */
1da177e4
LT
301};
302
303enum ib_mtu {
304 IB_MTU_256 = 1,
305 IB_MTU_512 = 2,
306 IB_MTU_1024 = 3,
307 IB_MTU_2048 = 4,
308 IB_MTU_4096 = 5
309};
310
311static inline int ib_mtu_enum_to_int(enum ib_mtu mtu)
312{
313 switch (mtu) {
314 case IB_MTU_256: return 256;
315 case IB_MTU_512: return 512;
316 case IB_MTU_1024: return 1024;
317 case IB_MTU_2048: return 2048;
318 case IB_MTU_4096: return 4096;
319 default: return -1;
320 }
321}
322
323enum ib_port_state {
324 IB_PORT_NOP = 0,
325 IB_PORT_DOWN = 1,
326 IB_PORT_INIT = 2,
327 IB_PORT_ARMED = 3,
328 IB_PORT_ACTIVE = 4,
329 IB_PORT_ACTIVE_DEFER = 5
330};
331
332enum ib_port_cap_flags {
333 IB_PORT_SM = 1 << 1,
334 IB_PORT_NOTICE_SUP = 1 << 2,
335 IB_PORT_TRAP_SUP = 1 << 3,
336 IB_PORT_OPT_IPD_SUP = 1 << 4,
337 IB_PORT_AUTO_MIGR_SUP = 1 << 5,
338 IB_PORT_SL_MAP_SUP = 1 << 6,
339 IB_PORT_MKEY_NVRAM = 1 << 7,
340 IB_PORT_PKEY_NVRAM = 1 << 8,
341 IB_PORT_LED_INFO_SUP = 1 << 9,
342 IB_PORT_SM_DISABLED = 1 << 10,
343 IB_PORT_SYS_IMAGE_GUID_SUP = 1 << 11,
344 IB_PORT_PKEY_SW_EXT_PORT_TRAP_SUP = 1 << 12,
71eeba16 345 IB_PORT_EXTENDED_SPEEDS_SUP = 1 << 14,
1da177e4
LT
346 IB_PORT_CM_SUP = 1 << 16,
347 IB_PORT_SNMP_TUNNEL_SUP = 1 << 17,
348 IB_PORT_REINIT_SUP = 1 << 18,
349 IB_PORT_DEVICE_MGMT_SUP = 1 << 19,
350 IB_PORT_VENDOR_CLASS_SUP = 1 << 20,
351 IB_PORT_DR_NOTICE_SUP = 1 << 21,
352 IB_PORT_CAP_MASK_NOTICE_SUP = 1 << 22,
353 IB_PORT_BOOT_MGMT_SUP = 1 << 23,
354 IB_PORT_LINK_LATENCY_SUP = 1 << 24,
b4a26a27 355 IB_PORT_CLIENT_REG_SUP = 1 << 25,
03db3a2d 356 IB_PORT_IP_BASED_GIDS = 1 << 26,
1da177e4
LT
357};
358
359enum ib_port_width {
360 IB_WIDTH_1X = 1,
361 IB_WIDTH_4X = 2,
362 IB_WIDTH_8X = 4,
363 IB_WIDTH_12X = 8
364};
365
366static inline int ib_width_enum_to_int(enum ib_port_width width)
367{
368 switch (width) {
369 case IB_WIDTH_1X: return 1;
370 case IB_WIDTH_4X: return 4;
371 case IB_WIDTH_8X: return 8;
372 case IB_WIDTH_12X: return 12;
373 default: return -1;
374 }
375}
376
2e96691c
OG
377enum ib_port_speed {
378 IB_SPEED_SDR = 1,
379 IB_SPEED_DDR = 2,
380 IB_SPEED_QDR = 4,
381 IB_SPEED_FDR10 = 8,
382 IB_SPEED_FDR = 16,
383 IB_SPEED_EDR = 32
384};
385
7f624d02
SW
386struct ib_protocol_stats {
387 /* TBD... */
388};
389
390struct iw_protocol_stats {
391 u64 ipInReceives;
392 u64 ipInHdrErrors;
393 u64 ipInTooBigErrors;
394 u64 ipInNoRoutes;
395 u64 ipInAddrErrors;
396 u64 ipInUnknownProtos;
397 u64 ipInTruncatedPkts;
398 u64 ipInDiscards;
399 u64 ipInDelivers;
400 u64 ipOutForwDatagrams;
401 u64 ipOutRequests;
402 u64 ipOutDiscards;
403 u64 ipOutNoRoutes;
404 u64 ipReasmTimeout;
405 u64 ipReasmReqds;
406 u64 ipReasmOKs;
407 u64 ipReasmFails;
408 u64 ipFragOKs;
409 u64 ipFragFails;
410 u64 ipFragCreates;
411 u64 ipInMcastPkts;
412 u64 ipOutMcastPkts;
413 u64 ipInBcastPkts;
414 u64 ipOutBcastPkts;
415
416 u64 tcpRtoAlgorithm;
417 u64 tcpRtoMin;
418 u64 tcpRtoMax;
419 u64 tcpMaxConn;
420 u64 tcpActiveOpens;
421 u64 tcpPassiveOpens;
422 u64 tcpAttemptFails;
423 u64 tcpEstabResets;
424 u64 tcpCurrEstab;
425 u64 tcpInSegs;
426 u64 tcpOutSegs;
427 u64 tcpRetransSegs;
428 u64 tcpInErrs;
429 u64 tcpOutRsts;
430};
431
432union rdma_protocol_stats {
433 struct ib_protocol_stats ib;
434 struct iw_protocol_stats iw;
435};
436
f9b22e35
IW
437/* Define bits for the various functionality this port needs to be supported by
438 * the core.
439 */
440/* Management 0x00000FFF */
441#define RDMA_CORE_CAP_IB_MAD 0x00000001
442#define RDMA_CORE_CAP_IB_SMI 0x00000002
443#define RDMA_CORE_CAP_IB_CM 0x00000004
444#define RDMA_CORE_CAP_IW_CM 0x00000008
445#define RDMA_CORE_CAP_IB_SA 0x00000010
65995fee 446#define RDMA_CORE_CAP_OPA_MAD 0x00000020
f9b22e35
IW
447
448/* Address format 0x000FF000 */
449#define RDMA_CORE_CAP_AF_IB 0x00001000
450#define RDMA_CORE_CAP_ETH_AH 0x00002000
451
452/* Protocol 0xFFF00000 */
453#define RDMA_CORE_CAP_PROT_IB 0x00100000
454#define RDMA_CORE_CAP_PROT_ROCE 0x00200000
455#define RDMA_CORE_CAP_PROT_IWARP 0x00400000
7766a99f 456#define RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP 0x00800000
f9b22e35
IW
457
458#define RDMA_CORE_PORT_IBA_IB (RDMA_CORE_CAP_PROT_IB \
459 | RDMA_CORE_CAP_IB_MAD \
460 | RDMA_CORE_CAP_IB_SMI \
461 | RDMA_CORE_CAP_IB_CM \
462 | RDMA_CORE_CAP_IB_SA \
463 | RDMA_CORE_CAP_AF_IB)
464#define RDMA_CORE_PORT_IBA_ROCE (RDMA_CORE_CAP_PROT_ROCE \
465 | RDMA_CORE_CAP_IB_MAD \
466 | RDMA_CORE_CAP_IB_CM \
f9b22e35
IW
467 | RDMA_CORE_CAP_AF_IB \
468 | RDMA_CORE_CAP_ETH_AH)
7766a99f
MB
469#define RDMA_CORE_PORT_IBA_ROCE_UDP_ENCAP \
470 (RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP \
471 | RDMA_CORE_CAP_IB_MAD \
472 | RDMA_CORE_CAP_IB_CM \
473 | RDMA_CORE_CAP_AF_IB \
474 | RDMA_CORE_CAP_ETH_AH)
f9b22e35
IW
475#define RDMA_CORE_PORT_IWARP (RDMA_CORE_CAP_PROT_IWARP \
476 | RDMA_CORE_CAP_IW_CM)
65995fee
IW
477#define RDMA_CORE_PORT_INTEL_OPA (RDMA_CORE_PORT_IBA_IB \
478 | RDMA_CORE_CAP_OPA_MAD)
f9b22e35 479
1da177e4
LT
480struct ib_port_attr {
481 enum ib_port_state state;
482 enum ib_mtu max_mtu;
483 enum ib_mtu active_mtu;
484 int gid_tbl_len;
485 u32 port_cap_flags;
486 u32 max_msg_sz;
487 u32 bad_pkey_cntr;
488 u32 qkey_viol_cntr;
489 u16 pkey_tbl_len;
490 u16 lid;
491 u16 sm_lid;
492 u8 lmc;
493 u8 max_vl_num;
494 u8 sm_sl;
495 u8 subnet_timeout;
496 u8 init_type_reply;
497 u8 active_width;
498 u8 active_speed;
499 u8 phys_state;
500};
501
502enum ib_device_modify_flags {
c5bcbbb9
RD
503 IB_DEVICE_MODIFY_SYS_IMAGE_GUID = 1 << 0,
504 IB_DEVICE_MODIFY_NODE_DESC = 1 << 1
1da177e4
LT
505};
506
507struct ib_device_modify {
508 u64 sys_image_guid;
c5bcbbb9 509 char node_desc[64];
1da177e4
LT
510};
511
512enum ib_port_modify_flags {
513 IB_PORT_SHUTDOWN = 1,
514 IB_PORT_INIT_TYPE = (1<<2),
515 IB_PORT_RESET_QKEY_CNTR = (1<<3)
516};
517
518struct ib_port_modify {
519 u32 set_port_cap_mask;
520 u32 clr_port_cap_mask;
521 u8 init_type;
522};
523
524enum ib_event_type {
525 IB_EVENT_CQ_ERR,
526 IB_EVENT_QP_FATAL,
527 IB_EVENT_QP_REQ_ERR,
528 IB_EVENT_QP_ACCESS_ERR,
529 IB_EVENT_COMM_EST,
530 IB_EVENT_SQ_DRAINED,
531 IB_EVENT_PATH_MIG,
532 IB_EVENT_PATH_MIG_ERR,
533 IB_EVENT_DEVICE_FATAL,
534 IB_EVENT_PORT_ACTIVE,
535 IB_EVENT_PORT_ERR,
536 IB_EVENT_LID_CHANGE,
537 IB_EVENT_PKEY_CHANGE,
d41fcc67
RD
538 IB_EVENT_SM_CHANGE,
539 IB_EVENT_SRQ_ERR,
540 IB_EVENT_SRQ_LIMIT_REACHED,
63942c9a 541 IB_EVENT_QP_LAST_WQE_REACHED,
761d90ed
OG
542 IB_EVENT_CLIENT_REREGISTER,
543 IB_EVENT_GID_CHANGE,
1da177e4
LT
544};
545
db7489e0 546const char *__attribute_const__ ib_event_msg(enum ib_event_type event);
2b1b5b60 547
1da177e4
LT
548struct ib_event {
549 struct ib_device *device;
550 union {
551 struct ib_cq *cq;
552 struct ib_qp *qp;
d41fcc67 553 struct ib_srq *srq;
1da177e4
LT
554 u8 port_num;
555 } element;
556 enum ib_event_type event;
557};
558
559struct ib_event_handler {
560 struct ib_device *device;
561 void (*handler)(struct ib_event_handler *, struct ib_event *);
562 struct list_head list;
563};
564
565#define INIT_IB_EVENT_HANDLER(_ptr, _device, _handler) \
566 do { \
567 (_ptr)->device = _device; \
568 (_ptr)->handler = _handler; \
569 INIT_LIST_HEAD(&(_ptr)->list); \
570 } while (0)
571
572struct ib_global_route {
573 union ib_gid dgid;
574 u32 flow_label;
575 u8 sgid_index;
576 u8 hop_limit;
577 u8 traffic_class;
578};
579
513789ed 580struct ib_grh {
97f52eb4
SH
581 __be32 version_tclass_flow;
582 __be16 paylen;
513789ed
HR
583 u8 next_hdr;
584 u8 hop_limit;
585 union ib_gid sgid;
586 union ib_gid dgid;
587};
588
c865f246
SK
589union rdma_network_hdr {
590 struct ib_grh ibgrh;
591 struct {
592 /* The IB spec states that if it's IPv4, the header
593 * is located in the last 20 bytes of the header.
594 */
595 u8 reserved[20];
596 struct iphdr roce4grh;
597 };
598};
599
1da177e4
LT
600enum {
601 IB_MULTICAST_QPN = 0xffffff
602};
603
f3a7c66b 604#define IB_LID_PERMISSIVE cpu_to_be16(0xFFFF)
97f52eb4 605
1da177e4
LT
606enum ib_ah_flags {
607 IB_AH_GRH = 1
608};
609
bf6a9e31
JM
610enum ib_rate {
611 IB_RATE_PORT_CURRENT = 0,
612 IB_RATE_2_5_GBPS = 2,
613 IB_RATE_5_GBPS = 5,
614 IB_RATE_10_GBPS = 3,
615 IB_RATE_20_GBPS = 6,
616 IB_RATE_30_GBPS = 4,
617 IB_RATE_40_GBPS = 7,
618 IB_RATE_60_GBPS = 8,
619 IB_RATE_80_GBPS = 9,
71eeba16
MA
620 IB_RATE_120_GBPS = 10,
621 IB_RATE_14_GBPS = 11,
622 IB_RATE_56_GBPS = 12,
623 IB_RATE_112_GBPS = 13,
624 IB_RATE_168_GBPS = 14,
625 IB_RATE_25_GBPS = 15,
626 IB_RATE_100_GBPS = 16,
627 IB_RATE_200_GBPS = 17,
628 IB_RATE_300_GBPS = 18
bf6a9e31
JM
629};
630
631/**
632 * ib_rate_to_mult - Convert the IB rate enum to a multiple of the
633 * base rate of 2.5 Gbit/sec. For example, IB_RATE_5_GBPS will be
634 * converted to 2, since 5 Gbit/sec is 2 * 2.5 Gbit/sec.
635 * @rate: rate to convert.
636 */
8385fd84 637__attribute_const__ int ib_rate_to_mult(enum ib_rate rate);
bf6a9e31 638
71eeba16
MA
639/**
640 * ib_rate_to_mbps - Convert the IB rate enum to Mbps.
641 * For example, IB_RATE_2_5_GBPS will be converted to 2500.
642 * @rate: rate to convert.
643 */
8385fd84 644__attribute_const__ int ib_rate_to_mbps(enum ib_rate rate);
71eeba16 645
17cd3a2d
SG
646
647/**
9bee178b
SG
648 * enum ib_mr_type - memory region type
649 * @IB_MR_TYPE_MEM_REG: memory region that is used for
650 * normal registration
651 * @IB_MR_TYPE_SIGNATURE: memory region that is used for
652 * signature operations (data-integrity
653 * capable regions)
17cd3a2d 654 */
9bee178b
SG
655enum ib_mr_type {
656 IB_MR_TYPE_MEM_REG,
657 IB_MR_TYPE_SIGNATURE,
17cd3a2d
SG
658};
659
1b01d335 660/**
78eda2bb
SG
661 * Signature types
662 * IB_SIG_TYPE_NONE: Unprotected.
663 * IB_SIG_TYPE_T10_DIF: Type T10-DIF
1b01d335 664 */
78eda2bb
SG
665enum ib_signature_type {
666 IB_SIG_TYPE_NONE,
667 IB_SIG_TYPE_T10_DIF,
1b01d335
SG
668};
669
670/**
671 * Signature T10-DIF block-guard types
672 * IB_T10DIF_CRC: Corresponds to T10-PI mandated CRC checksum rules.
673 * IB_T10DIF_CSUM: Corresponds to IP checksum rules.
674 */
675enum ib_t10_dif_bg_type {
676 IB_T10DIF_CRC,
677 IB_T10DIF_CSUM
678};
679
680/**
681 * struct ib_t10_dif_domain - Parameters specific for T10-DIF
682 * domain.
1b01d335
SG
683 * @bg_type: T10-DIF block guard type (CRC|CSUM)
684 * @pi_interval: protection information interval.
685 * @bg: seed of guard computation.
686 * @app_tag: application tag of guard block
687 * @ref_tag: initial guard block reference tag.
78eda2bb
SG
688 * @ref_remap: Indicate wethear the reftag increments each block
689 * @app_escape: Indicate to skip block check if apptag=0xffff
690 * @ref_escape: Indicate to skip block check if reftag=0xffffffff
691 * @apptag_check_mask: check bitmask of application tag.
1b01d335
SG
692 */
693struct ib_t10_dif_domain {
1b01d335
SG
694 enum ib_t10_dif_bg_type bg_type;
695 u16 pi_interval;
696 u16 bg;
697 u16 app_tag;
698 u32 ref_tag;
78eda2bb
SG
699 bool ref_remap;
700 bool app_escape;
701 bool ref_escape;
702 u16 apptag_check_mask;
1b01d335
SG
703};
704
705/**
706 * struct ib_sig_domain - Parameters for signature domain
707 * @sig_type: specific signauture type
708 * @sig: union of all signature domain attributes that may
709 * be used to set domain layout.
710 */
711struct ib_sig_domain {
712 enum ib_signature_type sig_type;
713 union {
714 struct ib_t10_dif_domain dif;
715 } sig;
716};
717
718/**
719 * struct ib_sig_attrs - Parameters for signature handover operation
720 * @check_mask: bitmask for signature byte check (8 bytes)
721 * @mem: memory domain layout desciptor.
722 * @wire: wire domain layout desciptor.
723 */
724struct ib_sig_attrs {
725 u8 check_mask;
726 struct ib_sig_domain mem;
727 struct ib_sig_domain wire;
728};
729
730enum ib_sig_err_type {
731 IB_SIG_BAD_GUARD,
732 IB_SIG_BAD_REFTAG,
733 IB_SIG_BAD_APPTAG,
734};
735
736/**
737 * struct ib_sig_err - signature error descriptor
738 */
739struct ib_sig_err {
740 enum ib_sig_err_type err_type;
741 u32 expected;
742 u32 actual;
743 u64 sig_err_offset;
744 u32 key;
745};
746
747enum ib_mr_status_check {
748 IB_MR_CHECK_SIG_STATUS = 1,
749};
750
751/**
752 * struct ib_mr_status - Memory region status container
753 *
754 * @fail_status: Bitmask of MR checks status. For each
755 * failed check a corresponding status bit is set.
756 * @sig_err: Additional info for IB_MR_CEHCK_SIG_STATUS
757 * failure.
758 */
759struct ib_mr_status {
760 u32 fail_status;
761 struct ib_sig_err sig_err;
762};
763
bf6a9e31
JM
764/**
765 * mult_to_ib_rate - Convert a multiple of 2.5 Gbit/sec to an IB rate
766 * enum.
767 * @mult: multiple to convert.
768 */
8385fd84 769__attribute_const__ enum ib_rate mult_to_ib_rate(int mult);
bf6a9e31 770
1da177e4
LT
771struct ib_ah_attr {
772 struct ib_global_route grh;
773 u16 dlid;
774 u8 sl;
775 u8 src_path_bits;
776 u8 static_rate;
777 u8 ah_flags;
778 u8 port_num;
dd5f03be 779 u8 dmac[ETH_ALEN];
1da177e4
LT
780};
781
782enum ib_wc_status {
783 IB_WC_SUCCESS,
784 IB_WC_LOC_LEN_ERR,
785 IB_WC_LOC_QP_OP_ERR,
786 IB_WC_LOC_EEC_OP_ERR,
787 IB_WC_LOC_PROT_ERR,
788 IB_WC_WR_FLUSH_ERR,
789 IB_WC_MW_BIND_ERR,
790 IB_WC_BAD_RESP_ERR,
791 IB_WC_LOC_ACCESS_ERR,
792 IB_WC_REM_INV_REQ_ERR,
793 IB_WC_REM_ACCESS_ERR,
794 IB_WC_REM_OP_ERR,
795 IB_WC_RETRY_EXC_ERR,
796 IB_WC_RNR_RETRY_EXC_ERR,
797 IB_WC_LOC_RDD_VIOL_ERR,
798 IB_WC_REM_INV_RD_REQ_ERR,
799 IB_WC_REM_ABORT_ERR,
800 IB_WC_INV_EECN_ERR,
801 IB_WC_INV_EEC_STATE_ERR,
802 IB_WC_FATAL_ERR,
803 IB_WC_RESP_TIMEOUT_ERR,
804 IB_WC_GENERAL_ERR
805};
806
db7489e0 807const char *__attribute_const__ ib_wc_status_msg(enum ib_wc_status status);
2b1b5b60 808
1da177e4
LT
809enum ib_wc_opcode {
810 IB_WC_SEND,
811 IB_WC_RDMA_WRITE,
812 IB_WC_RDMA_READ,
813 IB_WC_COMP_SWAP,
814 IB_WC_FETCH_ADD,
815 IB_WC_BIND_MW,
c93570f2 816 IB_WC_LSO,
00f7ec36 817 IB_WC_LOCAL_INV,
4c67e2bf 818 IB_WC_REG_MR,
5e80ba8f
VS
819 IB_WC_MASKED_COMP_SWAP,
820 IB_WC_MASKED_FETCH_ADD,
1da177e4
LT
821/*
822 * Set value of IB_WC_RECV so consumers can test if a completion is a
823 * receive by testing (opcode & IB_WC_RECV).
824 */
825 IB_WC_RECV = 1 << 7,
826 IB_WC_RECV_RDMA_WITH_IMM
827};
828
829enum ib_wc_flags {
830 IB_WC_GRH = 1,
00f7ec36
SW
831 IB_WC_WITH_IMM = (1<<1),
832 IB_WC_WITH_INVALIDATE = (1<<2),
d927d505 833 IB_WC_IP_CSUM_OK = (1<<3),
dd5f03be
MB
834 IB_WC_WITH_SMAC = (1<<4),
835 IB_WC_WITH_VLAN = (1<<5),
c865f246 836 IB_WC_WITH_NETWORK_HDR_TYPE = (1<<6),
1da177e4
LT
837};
838
839struct ib_wc {
14d3a3b2
CH
840 union {
841 u64 wr_id;
842 struct ib_cqe *wr_cqe;
843 };
1da177e4
LT
844 enum ib_wc_status status;
845 enum ib_wc_opcode opcode;
846 u32 vendor_err;
847 u32 byte_len;
062dbb69 848 struct ib_qp *qp;
00f7ec36
SW
849 union {
850 __be32 imm_data;
851 u32 invalidate_rkey;
852 } ex;
1da177e4
LT
853 u32 src_qp;
854 int wc_flags;
855 u16 pkey_index;
856 u16 slid;
857 u8 sl;
858 u8 dlid_path_bits;
859 u8 port_num; /* valid only for DR SMPs on switches */
dd5f03be
MB
860 u8 smac[ETH_ALEN];
861 u16 vlan_id;
c865f246 862 u8 network_hdr_type;
1da177e4
LT
863};
864
ed23a727
RD
865enum ib_cq_notify_flags {
866 IB_CQ_SOLICITED = 1 << 0,
867 IB_CQ_NEXT_COMP = 1 << 1,
868 IB_CQ_SOLICITED_MASK = IB_CQ_SOLICITED | IB_CQ_NEXT_COMP,
869 IB_CQ_REPORT_MISSED_EVENTS = 1 << 2,
1da177e4
LT
870};
871
96104eda 872enum ib_srq_type {
418d5130
SH
873 IB_SRQT_BASIC,
874 IB_SRQT_XRC
96104eda
SH
875};
876
d41fcc67
RD
877enum ib_srq_attr_mask {
878 IB_SRQ_MAX_WR = 1 << 0,
879 IB_SRQ_LIMIT = 1 << 1,
880};
881
882struct ib_srq_attr {
883 u32 max_wr;
884 u32 max_sge;
885 u32 srq_limit;
886};
887
888struct ib_srq_init_attr {
889 void (*event_handler)(struct ib_event *, void *);
890 void *srq_context;
891 struct ib_srq_attr attr;
96104eda 892 enum ib_srq_type srq_type;
418d5130
SH
893
894 union {
895 struct {
896 struct ib_xrcd *xrcd;
897 struct ib_cq *cq;
898 } xrc;
899 } ext;
d41fcc67
RD
900};
901
1da177e4
LT
902struct ib_qp_cap {
903 u32 max_send_wr;
904 u32 max_recv_wr;
905 u32 max_send_sge;
906 u32 max_recv_sge;
907 u32 max_inline_data;
908};
909
910enum ib_sig_type {
911 IB_SIGNAL_ALL_WR,
912 IB_SIGNAL_REQ_WR
913};
914
915enum ib_qp_type {
916 /*
917 * IB_QPT_SMI and IB_QPT_GSI have to be the first two entries
918 * here (and in that order) since the MAD layer uses them as
919 * indices into a 2-entry table.
920 */
921 IB_QPT_SMI,
922 IB_QPT_GSI,
923
924 IB_QPT_RC,
925 IB_QPT_UC,
926 IB_QPT_UD,
927 IB_QPT_RAW_IPV6,
b42b63cf 928 IB_QPT_RAW_ETHERTYPE,
c938a616 929 IB_QPT_RAW_PACKET = 8,
b42b63cf
SH
930 IB_QPT_XRC_INI = 9,
931 IB_QPT_XRC_TGT,
0134f16b
JM
932 IB_QPT_MAX,
933 /* Reserve a range for qp types internal to the low level driver.
934 * These qp types will not be visible at the IB core layer, so the
935 * IB_QPT_MAX usages should not be affected in the core layer
936 */
937 IB_QPT_RESERVED1 = 0x1000,
938 IB_QPT_RESERVED2,
939 IB_QPT_RESERVED3,
940 IB_QPT_RESERVED4,
941 IB_QPT_RESERVED5,
942 IB_QPT_RESERVED6,
943 IB_QPT_RESERVED7,
944 IB_QPT_RESERVED8,
945 IB_QPT_RESERVED9,
946 IB_QPT_RESERVED10,
1da177e4
LT
947};
948
b846f25a 949enum ib_qp_create_flags {
47ee1b9f
RL
950 IB_QP_CREATE_IPOIB_UD_LSO = 1 << 0,
951 IB_QP_CREATE_BLOCK_MULTICAST_LOOPBACK = 1 << 1,
90f1d1b4 952 IB_QP_CREATE_NETIF_QP = 1 << 5,
1b01d335 953 IB_QP_CREATE_SIGNATURE_EN = 1 << 6,
09b93088 954 IB_QP_CREATE_USE_GFP_NOIO = 1 << 7,
d2b57063
JM
955 /* reserve bits 26-31 for low level drivers' internal use */
956 IB_QP_CREATE_RESERVED_START = 1 << 26,
957 IB_QP_CREATE_RESERVED_END = 1 << 31,
b846f25a
EC
958};
959
73c40c61
YH
960/*
961 * Note: users may not call ib_close_qp or ib_destroy_qp from the event_handler
962 * callback to destroy the passed in QP.
963 */
964
1da177e4
LT
965struct ib_qp_init_attr {
966 void (*event_handler)(struct ib_event *, void *);
967 void *qp_context;
968 struct ib_cq *send_cq;
969 struct ib_cq *recv_cq;
970 struct ib_srq *srq;
b42b63cf 971 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
1da177e4
LT
972 struct ib_qp_cap cap;
973 enum ib_sig_type sq_sig_type;
974 enum ib_qp_type qp_type;
b846f25a 975 enum ib_qp_create_flags create_flags;
1da177e4
LT
976 u8 port_num; /* special QP types only */
977};
978
0e0ec7e0
SH
979struct ib_qp_open_attr {
980 void (*event_handler)(struct ib_event *, void *);
981 void *qp_context;
982 u32 qp_num;
983 enum ib_qp_type qp_type;
984};
985
1da177e4
LT
986enum ib_rnr_timeout {
987 IB_RNR_TIMER_655_36 = 0,
988 IB_RNR_TIMER_000_01 = 1,
989 IB_RNR_TIMER_000_02 = 2,
990 IB_RNR_TIMER_000_03 = 3,
991 IB_RNR_TIMER_000_04 = 4,
992 IB_RNR_TIMER_000_06 = 5,
993 IB_RNR_TIMER_000_08 = 6,
994 IB_RNR_TIMER_000_12 = 7,
995 IB_RNR_TIMER_000_16 = 8,
996 IB_RNR_TIMER_000_24 = 9,
997 IB_RNR_TIMER_000_32 = 10,
998 IB_RNR_TIMER_000_48 = 11,
999 IB_RNR_TIMER_000_64 = 12,
1000 IB_RNR_TIMER_000_96 = 13,
1001 IB_RNR_TIMER_001_28 = 14,
1002 IB_RNR_TIMER_001_92 = 15,
1003 IB_RNR_TIMER_002_56 = 16,
1004 IB_RNR_TIMER_003_84 = 17,
1005 IB_RNR_TIMER_005_12 = 18,
1006 IB_RNR_TIMER_007_68 = 19,
1007 IB_RNR_TIMER_010_24 = 20,
1008 IB_RNR_TIMER_015_36 = 21,
1009 IB_RNR_TIMER_020_48 = 22,
1010 IB_RNR_TIMER_030_72 = 23,
1011 IB_RNR_TIMER_040_96 = 24,
1012 IB_RNR_TIMER_061_44 = 25,
1013 IB_RNR_TIMER_081_92 = 26,
1014 IB_RNR_TIMER_122_88 = 27,
1015 IB_RNR_TIMER_163_84 = 28,
1016 IB_RNR_TIMER_245_76 = 29,
1017 IB_RNR_TIMER_327_68 = 30,
1018 IB_RNR_TIMER_491_52 = 31
1019};
1020
1021enum ib_qp_attr_mask {
1022 IB_QP_STATE = 1,
1023 IB_QP_CUR_STATE = (1<<1),
1024 IB_QP_EN_SQD_ASYNC_NOTIFY = (1<<2),
1025 IB_QP_ACCESS_FLAGS = (1<<3),
1026 IB_QP_PKEY_INDEX = (1<<4),
1027 IB_QP_PORT = (1<<5),
1028 IB_QP_QKEY = (1<<6),
1029 IB_QP_AV = (1<<7),
1030 IB_QP_PATH_MTU = (1<<8),
1031 IB_QP_TIMEOUT = (1<<9),
1032 IB_QP_RETRY_CNT = (1<<10),
1033 IB_QP_RNR_RETRY = (1<<11),
1034 IB_QP_RQ_PSN = (1<<12),
1035 IB_QP_MAX_QP_RD_ATOMIC = (1<<13),
1036 IB_QP_ALT_PATH = (1<<14),
1037 IB_QP_MIN_RNR_TIMER = (1<<15),
1038 IB_QP_SQ_PSN = (1<<16),
1039 IB_QP_MAX_DEST_RD_ATOMIC = (1<<17),
1040 IB_QP_PATH_MIG_STATE = (1<<18),
1041 IB_QP_CAP = (1<<19),
dd5f03be 1042 IB_QP_DEST_QPN = (1<<20),
aa744cc0
MB
1043 IB_QP_RESERVED1 = (1<<21),
1044 IB_QP_RESERVED2 = (1<<22),
1045 IB_QP_RESERVED3 = (1<<23),
1046 IB_QP_RESERVED4 = (1<<24),
1da177e4
LT
1047};
1048
1049enum ib_qp_state {
1050 IB_QPS_RESET,
1051 IB_QPS_INIT,
1052 IB_QPS_RTR,
1053 IB_QPS_RTS,
1054 IB_QPS_SQD,
1055 IB_QPS_SQE,
1056 IB_QPS_ERR
1057};
1058
1059enum ib_mig_state {
1060 IB_MIG_MIGRATED,
1061 IB_MIG_REARM,
1062 IB_MIG_ARMED
1063};
1064
7083e42e
SM
1065enum ib_mw_type {
1066 IB_MW_TYPE_1 = 1,
1067 IB_MW_TYPE_2 = 2
1068};
1069
1da177e4
LT
1070struct ib_qp_attr {
1071 enum ib_qp_state qp_state;
1072 enum ib_qp_state cur_qp_state;
1073 enum ib_mtu path_mtu;
1074 enum ib_mig_state path_mig_state;
1075 u32 qkey;
1076 u32 rq_psn;
1077 u32 sq_psn;
1078 u32 dest_qp_num;
1079 int qp_access_flags;
1080 struct ib_qp_cap cap;
1081 struct ib_ah_attr ah_attr;
1082 struct ib_ah_attr alt_ah_attr;
1083 u16 pkey_index;
1084 u16 alt_pkey_index;
1085 u8 en_sqd_async_notify;
1086 u8 sq_draining;
1087 u8 max_rd_atomic;
1088 u8 max_dest_rd_atomic;
1089 u8 min_rnr_timer;
1090 u8 port_num;
1091 u8 timeout;
1092 u8 retry_cnt;
1093 u8 rnr_retry;
1094 u8 alt_port_num;
1095 u8 alt_timeout;
1096};
1097
1098enum ib_wr_opcode {
1099 IB_WR_RDMA_WRITE,
1100 IB_WR_RDMA_WRITE_WITH_IMM,
1101 IB_WR_SEND,
1102 IB_WR_SEND_WITH_IMM,
1103 IB_WR_RDMA_READ,
1104 IB_WR_ATOMIC_CMP_AND_SWP,
c93570f2 1105 IB_WR_ATOMIC_FETCH_AND_ADD,
0f39cf3d
RD
1106 IB_WR_LSO,
1107 IB_WR_SEND_WITH_INV,
00f7ec36
SW
1108 IB_WR_RDMA_READ_WITH_INV,
1109 IB_WR_LOCAL_INV,
4c67e2bf 1110 IB_WR_REG_MR,
5e80ba8f
VS
1111 IB_WR_MASKED_ATOMIC_CMP_AND_SWP,
1112 IB_WR_MASKED_ATOMIC_FETCH_AND_ADD,
7083e42e 1113 IB_WR_BIND_MW,
1b01d335 1114 IB_WR_REG_SIG_MR,
0134f16b
JM
1115 /* reserve values for low level drivers' internal use.
1116 * These values will not be used at all in the ib core layer.
1117 */
1118 IB_WR_RESERVED1 = 0xf0,
1119 IB_WR_RESERVED2,
1120 IB_WR_RESERVED3,
1121 IB_WR_RESERVED4,
1122 IB_WR_RESERVED5,
1123 IB_WR_RESERVED6,
1124 IB_WR_RESERVED7,
1125 IB_WR_RESERVED8,
1126 IB_WR_RESERVED9,
1127 IB_WR_RESERVED10,
1da177e4
LT
1128};
1129
1130enum ib_send_flags {
1131 IB_SEND_FENCE = 1,
1132 IB_SEND_SIGNALED = (1<<1),
1133 IB_SEND_SOLICITED = (1<<2),
e0605d91 1134 IB_SEND_INLINE = (1<<3),
0134f16b
JM
1135 IB_SEND_IP_CSUM = (1<<4),
1136
1137 /* reserve bits 26-31 for low level drivers' internal use */
1138 IB_SEND_RESERVED_START = (1 << 26),
1139 IB_SEND_RESERVED_END = (1 << 31),
1da177e4
LT
1140};
1141
1142struct ib_sge {
1143 u64 addr;
1144 u32 length;
1145 u32 lkey;
1146};
1147
7083e42e
SM
1148/**
1149 * struct ib_mw_bind_info - Parameters for a memory window bind operation.
1150 * @mr: A memory region to bind the memory window to.
1151 * @addr: The address where the memory window should begin.
1152 * @length: The length of the memory window, in bytes.
1153 * @mw_access_flags: Access flags from enum ib_access_flags for the window.
1154 *
1155 * This struct contains the shared parameters for type 1 and type 2
1156 * memory window bind operations.
1157 */
1158struct ib_mw_bind_info {
1159 struct ib_mr *mr;
1160 u64 addr;
1161 u64 length;
1162 int mw_access_flags;
1163};
1164
14d3a3b2
CH
1165struct ib_cqe {
1166 void (*done)(struct ib_cq *cq, struct ib_wc *wc);
1167};
1168
1da177e4
LT
1169struct ib_send_wr {
1170 struct ib_send_wr *next;
14d3a3b2
CH
1171 union {
1172 u64 wr_id;
1173 struct ib_cqe *wr_cqe;
1174 };
1da177e4
LT
1175 struct ib_sge *sg_list;
1176 int num_sge;
1177 enum ib_wr_opcode opcode;
1178 int send_flags;
0f39cf3d
RD
1179 union {
1180 __be32 imm_data;
1181 u32 invalidate_rkey;
1182 } ex;
1da177e4
LT
1183};
1184
e622f2f4
CH
1185struct ib_rdma_wr {
1186 struct ib_send_wr wr;
1187 u64 remote_addr;
1188 u32 rkey;
1189};
1190
1191static inline struct ib_rdma_wr *rdma_wr(struct ib_send_wr *wr)
1192{
1193 return container_of(wr, struct ib_rdma_wr, wr);
1194}
1195
1196struct ib_atomic_wr {
1197 struct ib_send_wr wr;
1198 u64 remote_addr;
1199 u64 compare_add;
1200 u64 swap;
1201 u64 compare_add_mask;
1202 u64 swap_mask;
1203 u32 rkey;
1204};
1205
1206static inline struct ib_atomic_wr *atomic_wr(struct ib_send_wr *wr)
1207{
1208 return container_of(wr, struct ib_atomic_wr, wr);
1209}
1210
1211struct ib_ud_wr {
1212 struct ib_send_wr wr;
1213 struct ib_ah *ah;
1214 void *header;
1215 int hlen;
1216 int mss;
1217 u32 remote_qpn;
1218 u32 remote_qkey;
1219 u16 pkey_index; /* valid for GSI only */
1220 u8 port_num; /* valid for DR SMPs on switch only */
1221};
1222
1223static inline struct ib_ud_wr *ud_wr(struct ib_send_wr *wr)
1224{
1225 return container_of(wr, struct ib_ud_wr, wr);
1226}
1227
4c67e2bf
SG
1228struct ib_reg_wr {
1229 struct ib_send_wr wr;
1230 struct ib_mr *mr;
1231 u32 key;
1232 int access;
1233};
1234
1235static inline struct ib_reg_wr *reg_wr(struct ib_send_wr *wr)
1236{
1237 return container_of(wr, struct ib_reg_wr, wr);
1238}
1239
e622f2f4
CH
1240struct ib_bind_mw_wr {
1241 struct ib_send_wr wr;
1242 struct ib_mw *mw;
1243 /* The new rkey for the memory window. */
1244 u32 rkey;
1245 struct ib_mw_bind_info bind_info;
1246};
1247
1248static inline struct ib_bind_mw_wr *bind_mw_wr(struct ib_send_wr *wr)
1249{
1250 return container_of(wr, struct ib_bind_mw_wr, wr);
1251}
1252
1253struct ib_sig_handover_wr {
1254 struct ib_send_wr wr;
1255 struct ib_sig_attrs *sig_attrs;
1256 struct ib_mr *sig_mr;
1257 int access_flags;
1258 struct ib_sge *prot;
1259};
1260
1261static inline struct ib_sig_handover_wr *sig_handover_wr(struct ib_send_wr *wr)
1262{
1263 return container_of(wr, struct ib_sig_handover_wr, wr);
1264}
1265
1da177e4
LT
1266struct ib_recv_wr {
1267 struct ib_recv_wr *next;
14d3a3b2
CH
1268 union {
1269 u64 wr_id;
1270 struct ib_cqe *wr_cqe;
1271 };
1da177e4
LT
1272 struct ib_sge *sg_list;
1273 int num_sge;
1274};
1275
1276enum ib_access_flags {
1277 IB_ACCESS_LOCAL_WRITE = 1,
1278 IB_ACCESS_REMOTE_WRITE = (1<<1),
1279 IB_ACCESS_REMOTE_READ = (1<<2),
1280 IB_ACCESS_REMOTE_ATOMIC = (1<<3),
7083e42e 1281 IB_ACCESS_MW_BIND = (1<<4),
860f10a7
SG
1282 IB_ZERO_BASED = (1<<5),
1283 IB_ACCESS_ON_DEMAND = (1<<6),
1da177e4
LT
1284};
1285
1286struct ib_phys_buf {
1287 u64 addr;
1288 u64 size;
1289};
1290
1291struct ib_mr_attr {
1292 struct ib_pd *pd;
1293 u64 device_virt_addr;
1294 u64 size;
1295 int mr_access_flags;
1296 u32 lkey;
1297 u32 rkey;
1298};
1299
1300enum ib_mr_rereg_flags {
1301 IB_MR_REREG_TRANS = 1,
1302 IB_MR_REREG_PD = (1<<1),
7e6edb9b
MB
1303 IB_MR_REREG_ACCESS = (1<<2),
1304 IB_MR_REREG_SUPPORTED = ((IB_MR_REREG_ACCESS << 1) - 1)
1da177e4
LT
1305};
1306
7083e42e
SM
1307/**
1308 * struct ib_mw_bind - Parameters for a type 1 memory window bind operation.
1309 * @wr_id: Work request id.
1310 * @send_flags: Flags from ib_send_flags enum.
1311 * @bind_info: More parameters of the bind operation.
1312 */
1da177e4 1313struct ib_mw_bind {
7083e42e
SM
1314 u64 wr_id;
1315 int send_flags;
1316 struct ib_mw_bind_info bind_info;
1da177e4
LT
1317};
1318
1319struct ib_fmr_attr {
1320 int max_pages;
1321 int max_maps;
d36f34aa 1322 u8 page_shift;
1da177e4
LT
1323};
1324
882214e2
HE
1325struct ib_umem;
1326
e2773c06
RD
1327struct ib_ucontext {
1328 struct ib_device *device;
1329 struct list_head pd_list;
1330 struct list_head mr_list;
1331 struct list_head mw_list;
1332 struct list_head cq_list;
1333 struct list_head qp_list;
1334 struct list_head srq_list;
1335 struct list_head ah_list;
53d0bd1e 1336 struct list_head xrcd_list;
436f2ad0 1337 struct list_head rule_list;
f7c6a7b5 1338 int closing;
8ada2c1c
SR
1339
1340 struct pid *tgid;
882214e2
HE
1341#ifdef CONFIG_INFINIBAND_ON_DEMAND_PAGING
1342 struct rb_root umem_tree;
1343 /*
1344 * Protects .umem_rbroot and tree, as well as odp_mrs_count and
1345 * mmu notifiers registration.
1346 */
1347 struct rw_semaphore umem_rwsem;
1348 void (*invalidate_range)(struct ib_umem *umem,
1349 unsigned long start, unsigned long end);
1350
1351 struct mmu_notifier mn;
1352 atomic_t notifier_count;
1353 /* A list of umems that don't have private mmu notifier counters yet. */
1354 struct list_head no_private_counters;
1355 int odp_mrs_count;
1356#endif
e2773c06
RD
1357};
1358
1359struct ib_uobject {
1360 u64 user_handle; /* handle given to us by userspace */
1361 struct ib_ucontext *context; /* associated user context */
9ead190b 1362 void *object; /* containing object */
e2773c06 1363 struct list_head list; /* link to context's list */
b3d636b0 1364 int id; /* index into kernel idr */
9ead190b
RD
1365 struct kref ref;
1366 struct rw_semaphore mutex; /* protects .live */
d144da8c 1367 struct rcu_head rcu; /* kfree_rcu() overhead */
9ead190b 1368 int live;
e2773c06
RD
1369};
1370
e2773c06 1371struct ib_udata {
309243ec 1372 const void __user *inbuf;
e2773c06
RD
1373 void __user *outbuf;
1374 size_t inlen;
1375 size_t outlen;
1376};
1377
1da177e4 1378struct ib_pd {
96249d70 1379 u32 local_dma_lkey;
e2773c06
RD
1380 struct ib_device *device;
1381 struct ib_uobject *uobject;
1382 atomic_t usecnt; /* count all resources */
96249d70 1383 struct ib_mr *local_mr;
1da177e4
LT
1384};
1385
59991f94
SH
1386struct ib_xrcd {
1387 struct ib_device *device;
d3d72d90 1388 atomic_t usecnt; /* count all exposed resources */
53d0bd1e 1389 struct inode *inode;
d3d72d90
SH
1390
1391 struct mutex tgt_qp_mutex;
1392 struct list_head tgt_qp_list;
59991f94
SH
1393};
1394
1da177e4
LT
1395struct ib_ah {
1396 struct ib_device *device;
1397 struct ib_pd *pd;
e2773c06 1398 struct ib_uobject *uobject;
1da177e4
LT
1399};
1400
1401typedef void (*ib_comp_handler)(struct ib_cq *cq, void *cq_context);
1402
14d3a3b2
CH
1403enum ib_poll_context {
1404 IB_POLL_DIRECT, /* caller context, no hw completions */
1405 IB_POLL_SOFTIRQ, /* poll from softirq context */
1406 IB_POLL_WORKQUEUE, /* poll from workqueue */
1407};
1408
1da177e4 1409struct ib_cq {
e2773c06
RD
1410 struct ib_device *device;
1411 struct ib_uobject *uobject;
1412 ib_comp_handler comp_handler;
1413 void (*event_handler)(struct ib_event *, void *);
4deccd6d 1414 void *cq_context;
e2773c06
RD
1415 int cqe;
1416 atomic_t usecnt; /* count number of work queues */
14d3a3b2
CH
1417 enum ib_poll_context poll_ctx;
1418 struct ib_wc *wc;
1419 union {
1420 struct irq_poll iop;
1421 struct work_struct work;
1422 };
1da177e4
LT
1423};
1424
1425struct ib_srq {
d41fcc67
RD
1426 struct ib_device *device;
1427 struct ib_pd *pd;
1428 struct ib_uobject *uobject;
1429 void (*event_handler)(struct ib_event *, void *);
1430 void *srq_context;
96104eda 1431 enum ib_srq_type srq_type;
1da177e4 1432 atomic_t usecnt;
418d5130
SH
1433
1434 union {
1435 struct {
1436 struct ib_xrcd *xrcd;
1437 struct ib_cq *cq;
1438 u32 srq_num;
1439 } xrc;
1440 } ext;
1da177e4
LT
1441};
1442
1443struct ib_qp {
1444 struct ib_device *device;
1445 struct ib_pd *pd;
1446 struct ib_cq *send_cq;
1447 struct ib_cq *recv_cq;
1448 struct ib_srq *srq;
b42b63cf 1449 struct ib_xrcd *xrcd; /* XRC TGT QPs only */
d3d72d90 1450 struct list_head xrcd_list;
319a441d
HHZ
1451 /* count times opened, mcast attaches, flow attaches */
1452 atomic_t usecnt;
0e0ec7e0
SH
1453 struct list_head open_list;
1454 struct ib_qp *real_qp;
e2773c06 1455 struct ib_uobject *uobject;
1da177e4
LT
1456 void (*event_handler)(struct ib_event *, void *);
1457 void *qp_context;
1458 u32 qp_num;
1459 enum ib_qp_type qp_type;
1460};
1461
1462struct ib_mr {
e2773c06
RD
1463 struct ib_device *device;
1464 struct ib_pd *pd;
1465 struct ib_uobject *uobject;
1466 u32 lkey;
1467 u32 rkey;
4c67e2bf
SG
1468 u64 iova;
1469 u32 length;
1470 unsigned int page_size;
e2773c06 1471 atomic_t usecnt; /* count number of MWs */
1da177e4
LT
1472};
1473
1474struct ib_mw {
1475 struct ib_device *device;
1476 struct ib_pd *pd;
e2773c06 1477 struct ib_uobject *uobject;
1da177e4 1478 u32 rkey;
7083e42e 1479 enum ib_mw_type type;
1da177e4
LT
1480};
1481
1482struct ib_fmr {
1483 struct ib_device *device;
1484 struct ib_pd *pd;
1485 struct list_head list;
1486 u32 lkey;
1487 u32 rkey;
1488};
1489
319a441d
HHZ
1490/* Supported steering options */
1491enum ib_flow_attr_type {
1492 /* steering according to rule specifications */
1493 IB_FLOW_ATTR_NORMAL = 0x0,
1494 /* default unicast and multicast rule -
1495 * receive all Eth traffic which isn't steered to any QP
1496 */
1497 IB_FLOW_ATTR_ALL_DEFAULT = 0x1,
1498 /* default multicast rule -
1499 * receive all Eth multicast traffic which isn't steered to any QP
1500 */
1501 IB_FLOW_ATTR_MC_DEFAULT = 0x2,
1502 /* sniffer rule - receive all port traffic */
1503 IB_FLOW_ATTR_SNIFFER = 0x3
1504};
1505
1506/* Supported steering header types */
1507enum ib_flow_spec_type {
1508 /* L2 headers*/
1509 IB_FLOW_SPEC_ETH = 0x20,
240ae00e 1510 IB_FLOW_SPEC_IB = 0x22,
319a441d
HHZ
1511 /* L3 header*/
1512 IB_FLOW_SPEC_IPV4 = 0x30,
1513 /* L4 headers*/
1514 IB_FLOW_SPEC_TCP = 0x40,
1515 IB_FLOW_SPEC_UDP = 0x41
1516};
240ae00e 1517#define IB_FLOW_SPEC_LAYER_MASK 0xF0
22878dbc
MB
1518#define IB_FLOW_SPEC_SUPPORT_LAYERS 4
1519
319a441d
HHZ
1520/* Flow steering rule priority is set according to it's domain.
1521 * Lower domain value means higher priority.
1522 */
1523enum ib_flow_domain {
1524 IB_FLOW_DOMAIN_USER,
1525 IB_FLOW_DOMAIN_ETHTOOL,
1526 IB_FLOW_DOMAIN_RFS,
1527 IB_FLOW_DOMAIN_NIC,
1528 IB_FLOW_DOMAIN_NUM /* Must be last */
1529};
1530
1531struct ib_flow_eth_filter {
1532 u8 dst_mac[6];
1533 u8 src_mac[6];
1534 __be16 ether_type;
1535 __be16 vlan_tag;
1536};
1537
1538struct ib_flow_spec_eth {
1539 enum ib_flow_spec_type type;
1540 u16 size;
1541 struct ib_flow_eth_filter val;
1542 struct ib_flow_eth_filter mask;
1543};
1544
240ae00e
MB
1545struct ib_flow_ib_filter {
1546 __be16 dlid;
1547 __u8 sl;
1548};
1549
1550struct ib_flow_spec_ib {
1551 enum ib_flow_spec_type type;
1552 u16 size;
1553 struct ib_flow_ib_filter val;
1554 struct ib_flow_ib_filter mask;
1555};
1556
319a441d
HHZ
1557struct ib_flow_ipv4_filter {
1558 __be32 src_ip;
1559 __be32 dst_ip;
1560};
1561
1562struct ib_flow_spec_ipv4 {
1563 enum ib_flow_spec_type type;
1564 u16 size;
1565 struct ib_flow_ipv4_filter val;
1566 struct ib_flow_ipv4_filter mask;
1567};
1568
1569struct ib_flow_tcp_udp_filter {
1570 __be16 dst_port;
1571 __be16 src_port;
1572};
1573
1574struct ib_flow_spec_tcp_udp {
1575 enum ib_flow_spec_type type;
1576 u16 size;
1577 struct ib_flow_tcp_udp_filter val;
1578 struct ib_flow_tcp_udp_filter mask;
1579};
1580
1581union ib_flow_spec {
1582 struct {
1583 enum ib_flow_spec_type type;
1584 u16 size;
1585 };
1586 struct ib_flow_spec_eth eth;
240ae00e 1587 struct ib_flow_spec_ib ib;
319a441d
HHZ
1588 struct ib_flow_spec_ipv4 ipv4;
1589 struct ib_flow_spec_tcp_udp tcp_udp;
1590};
1591
1592struct ib_flow_attr {
1593 enum ib_flow_attr_type type;
1594 u16 size;
1595 u16 priority;
1596 u32 flags;
1597 u8 num_of_specs;
1598 u8 port;
1599 /* Following are the optional layers according to user request
1600 * struct ib_flow_spec_xxx
1601 * struct ib_flow_spec_yyy
1602 */
1603};
1604
1605struct ib_flow {
1606 struct ib_qp *qp;
1607 struct ib_uobject *uobject;
1608};
1609
4cd7c947 1610struct ib_mad_hdr;
1da177e4
LT
1611struct ib_grh;
1612
1613enum ib_process_mad_flags {
1614 IB_MAD_IGNORE_MKEY = 1,
1615 IB_MAD_IGNORE_BKEY = 2,
1616 IB_MAD_IGNORE_ALL = IB_MAD_IGNORE_MKEY | IB_MAD_IGNORE_BKEY
1617};
1618
1619enum ib_mad_result {
1620 IB_MAD_RESULT_FAILURE = 0, /* (!SUCCESS is the important flag) */
1621 IB_MAD_RESULT_SUCCESS = 1 << 0, /* MAD was successfully processed */
1622 IB_MAD_RESULT_REPLY = 1 << 1, /* Reply packet needs to be sent */
1623 IB_MAD_RESULT_CONSUMED = 1 << 2 /* Packet consumed: stop processing */
1624};
1625
1626#define IB_DEVICE_NAME_MAX 64
1627
1628struct ib_cache {
1629 rwlock_t lock;
1630 struct ib_event_handler event_handler;
1631 struct ib_pkey_cache **pkey_cache;
03db3a2d 1632 struct ib_gid_table **gid_cache;
6fb9cdbf 1633 u8 *lmc_cache;
1da177e4
LT
1634};
1635
9b513090
RC
1636struct ib_dma_mapping_ops {
1637 int (*mapping_error)(struct ib_device *dev,
1638 u64 dma_addr);
1639 u64 (*map_single)(struct ib_device *dev,
1640 void *ptr, size_t size,
1641 enum dma_data_direction direction);
1642 void (*unmap_single)(struct ib_device *dev,
1643 u64 addr, size_t size,
1644 enum dma_data_direction direction);
1645 u64 (*map_page)(struct ib_device *dev,
1646 struct page *page, unsigned long offset,
1647 size_t size,
1648 enum dma_data_direction direction);
1649 void (*unmap_page)(struct ib_device *dev,
1650 u64 addr, size_t size,
1651 enum dma_data_direction direction);
1652 int (*map_sg)(struct ib_device *dev,
1653 struct scatterlist *sg, int nents,
1654 enum dma_data_direction direction);
1655 void (*unmap_sg)(struct ib_device *dev,
1656 struct scatterlist *sg, int nents,
1657 enum dma_data_direction direction);
9b513090
RC
1658 void (*sync_single_for_cpu)(struct ib_device *dev,
1659 u64 dma_handle,
1660 size_t size,
4deccd6d 1661 enum dma_data_direction dir);
9b513090
RC
1662 void (*sync_single_for_device)(struct ib_device *dev,
1663 u64 dma_handle,
1664 size_t size,
1665 enum dma_data_direction dir);
1666 void *(*alloc_coherent)(struct ib_device *dev,
1667 size_t size,
1668 u64 *dma_handle,
1669 gfp_t flag);
1670 void (*free_coherent)(struct ib_device *dev,
1671 size_t size, void *cpu_addr,
1672 u64 dma_handle);
1673};
1674
07ebafba
TT
1675struct iw_cm_verbs;
1676
7738613e
IW
1677struct ib_port_immutable {
1678 int pkey_tbl_len;
1679 int gid_tbl_len;
f9b22e35 1680 u32 core_cap_flags;
337877a4 1681 u32 max_mad_size;
7738613e
IW
1682};
1683
1da177e4
LT
1684struct ib_device {
1685 struct device *dma_device;
1686
1687 char name[IB_DEVICE_NAME_MAX];
1688
1689 struct list_head event_handler_list;
1690 spinlock_t event_handler_lock;
1691
17a55f79 1692 spinlock_t client_data_lock;
1da177e4 1693 struct list_head core_list;
7c1eb45a
HE
1694 /* Access to the client_data_list is protected by the client_data_lock
1695 * spinlock and the lists_rwsem read-write semaphore */
1da177e4 1696 struct list_head client_data_list;
1da177e4
LT
1697
1698 struct ib_cache cache;
7738613e
IW
1699 /**
1700 * port_immutable is indexed by port number
1701 */
1702 struct ib_port_immutable *port_immutable;
1da177e4 1703
f4fd0b22
MT
1704 int num_comp_vectors;
1705
07ebafba
TT
1706 struct iw_cm_verbs *iwcm;
1707
7f624d02
SW
1708 int (*get_protocol_stats)(struct ib_device *device,
1709 union rdma_protocol_stats *stats);
1da177e4 1710 int (*query_device)(struct ib_device *device,
2528e33e
MB
1711 struct ib_device_attr *device_attr,
1712 struct ib_udata *udata);
1da177e4
LT
1713 int (*query_port)(struct ib_device *device,
1714 u8 port_num,
1715 struct ib_port_attr *port_attr);
a3f5adaf
EC
1716 enum rdma_link_layer (*get_link_layer)(struct ib_device *device,
1717 u8 port_num);
03db3a2d
MB
1718 /* When calling get_netdev, the HW vendor's driver should return the
1719 * net device of device @device at port @port_num or NULL if such
1720 * a net device doesn't exist. The vendor driver should call dev_hold
1721 * on this net device. The HW vendor's device driver must guarantee
1722 * that this function returns NULL before the net device reaches
1723 * NETDEV_UNREGISTER_FINAL state.
1724 */
1725 struct net_device *(*get_netdev)(struct ib_device *device,
1726 u8 port_num);
1da177e4
LT
1727 int (*query_gid)(struct ib_device *device,
1728 u8 port_num, int index,
1729 union ib_gid *gid);
03db3a2d
MB
1730 /* When calling add_gid, the HW vendor's driver should
1731 * add the gid of device @device at gid index @index of
1732 * port @port_num to be @gid. Meta-info of that gid (for example,
1733 * the network device related to this gid is available
1734 * at @attr. @context allows the HW vendor driver to store extra
1735 * information together with a GID entry. The HW vendor may allocate
1736 * memory to contain this information and store it in @context when a
1737 * new GID entry is written to. Params are consistent until the next
1738 * call of add_gid or delete_gid. The function should return 0 on
1739 * success or error otherwise. The function could be called
1740 * concurrently for different ports. This function is only called
1741 * when roce_gid_table is used.
1742 */
1743 int (*add_gid)(struct ib_device *device,
1744 u8 port_num,
1745 unsigned int index,
1746 const union ib_gid *gid,
1747 const struct ib_gid_attr *attr,
1748 void **context);
1749 /* When calling del_gid, the HW vendor's driver should delete the
1750 * gid of device @device at gid index @index of port @port_num.
1751 * Upon the deletion of a GID entry, the HW vendor must free any
1752 * allocated memory. The caller will clear @context afterwards.
1753 * This function is only called when roce_gid_table is used.
1754 */
1755 int (*del_gid)(struct ib_device *device,
1756 u8 port_num,
1757 unsigned int index,
1758 void **context);
1da177e4
LT
1759 int (*query_pkey)(struct ib_device *device,
1760 u8 port_num, u16 index, u16 *pkey);
1761 int (*modify_device)(struct ib_device *device,
1762 int device_modify_mask,
1763 struct ib_device_modify *device_modify);
1764 int (*modify_port)(struct ib_device *device,
1765 u8 port_num, int port_modify_mask,
1766 struct ib_port_modify *port_modify);
e2773c06
RD
1767 struct ib_ucontext * (*alloc_ucontext)(struct ib_device *device,
1768 struct ib_udata *udata);
1769 int (*dealloc_ucontext)(struct ib_ucontext *context);
1770 int (*mmap)(struct ib_ucontext *context,
1771 struct vm_area_struct *vma);
1772 struct ib_pd * (*alloc_pd)(struct ib_device *device,
1773 struct ib_ucontext *context,
1774 struct ib_udata *udata);
1da177e4
LT
1775 int (*dealloc_pd)(struct ib_pd *pd);
1776 struct ib_ah * (*create_ah)(struct ib_pd *pd,
1777 struct ib_ah_attr *ah_attr);
1778 int (*modify_ah)(struct ib_ah *ah,
1779 struct ib_ah_attr *ah_attr);
1780 int (*query_ah)(struct ib_ah *ah,
1781 struct ib_ah_attr *ah_attr);
1782 int (*destroy_ah)(struct ib_ah *ah);
d41fcc67
RD
1783 struct ib_srq * (*create_srq)(struct ib_pd *pd,
1784 struct ib_srq_init_attr *srq_init_attr,
1785 struct ib_udata *udata);
1786 int (*modify_srq)(struct ib_srq *srq,
1787 struct ib_srq_attr *srq_attr,
9bc57e2d
RC
1788 enum ib_srq_attr_mask srq_attr_mask,
1789 struct ib_udata *udata);
d41fcc67
RD
1790 int (*query_srq)(struct ib_srq *srq,
1791 struct ib_srq_attr *srq_attr);
1792 int (*destroy_srq)(struct ib_srq *srq);
1793 int (*post_srq_recv)(struct ib_srq *srq,
1794 struct ib_recv_wr *recv_wr,
1795 struct ib_recv_wr **bad_recv_wr);
1da177e4 1796 struct ib_qp * (*create_qp)(struct ib_pd *pd,
e2773c06
RD
1797 struct ib_qp_init_attr *qp_init_attr,
1798 struct ib_udata *udata);
1da177e4
LT
1799 int (*modify_qp)(struct ib_qp *qp,
1800 struct ib_qp_attr *qp_attr,
9bc57e2d
RC
1801 int qp_attr_mask,
1802 struct ib_udata *udata);
1da177e4
LT
1803 int (*query_qp)(struct ib_qp *qp,
1804 struct ib_qp_attr *qp_attr,
1805 int qp_attr_mask,
1806 struct ib_qp_init_attr *qp_init_attr);
1807 int (*destroy_qp)(struct ib_qp *qp);
1808 int (*post_send)(struct ib_qp *qp,
1809 struct ib_send_wr *send_wr,
1810 struct ib_send_wr **bad_send_wr);
1811 int (*post_recv)(struct ib_qp *qp,
1812 struct ib_recv_wr *recv_wr,
1813 struct ib_recv_wr **bad_recv_wr);
bcf4c1ea
MB
1814 struct ib_cq * (*create_cq)(struct ib_device *device,
1815 const struct ib_cq_init_attr *attr,
e2773c06
RD
1816 struct ib_ucontext *context,
1817 struct ib_udata *udata);
2dd57162
EC
1818 int (*modify_cq)(struct ib_cq *cq, u16 cq_count,
1819 u16 cq_period);
1da177e4 1820 int (*destroy_cq)(struct ib_cq *cq);
33b9b3ee
RD
1821 int (*resize_cq)(struct ib_cq *cq, int cqe,
1822 struct ib_udata *udata);
1da177e4
LT
1823 int (*poll_cq)(struct ib_cq *cq, int num_entries,
1824 struct ib_wc *wc);
1825 int (*peek_cq)(struct ib_cq *cq, int wc_cnt);
1826 int (*req_notify_cq)(struct ib_cq *cq,
ed23a727 1827 enum ib_cq_notify_flags flags);
1da177e4
LT
1828 int (*req_ncomp_notif)(struct ib_cq *cq,
1829 int wc_cnt);
1830 struct ib_mr * (*get_dma_mr)(struct ib_pd *pd,
1831 int mr_access_flags);
1832 struct ib_mr * (*reg_phys_mr)(struct ib_pd *pd,
1833 struct ib_phys_buf *phys_buf_array,
1834 int num_phys_buf,
1835 int mr_access_flags,
1836 u64 *iova_start);
e2773c06 1837 struct ib_mr * (*reg_user_mr)(struct ib_pd *pd,
f7c6a7b5
RD
1838 u64 start, u64 length,
1839 u64 virt_addr,
e2773c06
RD
1840 int mr_access_flags,
1841 struct ib_udata *udata);
7e6edb9b
MB
1842 int (*rereg_user_mr)(struct ib_mr *mr,
1843 int flags,
1844 u64 start, u64 length,
1845 u64 virt_addr,
1846 int mr_access_flags,
1847 struct ib_pd *pd,
1848 struct ib_udata *udata);
1da177e4
LT
1849 int (*query_mr)(struct ib_mr *mr,
1850 struct ib_mr_attr *mr_attr);
1851 int (*dereg_mr)(struct ib_mr *mr);
9bee178b
SG
1852 struct ib_mr * (*alloc_mr)(struct ib_pd *pd,
1853 enum ib_mr_type mr_type,
1854 u32 max_num_sg);
4c67e2bf
SG
1855 int (*map_mr_sg)(struct ib_mr *mr,
1856 struct scatterlist *sg,
1857 int sg_nents);
1da177e4
LT
1858 int (*rereg_phys_mr)(struct ib_mr *mr,
1859 int mr_rereg_mask,
1860 struct ib_pd *pd,
1861 struct ib_phys_buf *phys_buf_array,
1862 int num_phys_buf,
1863 int mr_access_flags,
1864 u64 *iova_start);
7083e42e
SM
1865 struct ib_mw * (*alloc_mw)(struct ib_pd *pd,
1866 enum ib_mw_type type);
1da177e4
LT
1867 int (*bind_mw)(struct ib_qp *qp,
1868 struct ib_mw *mw,
1869 struct ib_mw_bind *mw_bind);
1870 int (*dealloc_mw)(struct ib_mw *mw);
1871 struct ib_fmr * (*alloc_fmr)(struct ib_pd *pd,
1872 int mr_access_flags,
1873 struct ib_fmr_attr *fmr_attr);
1874 int (*map_phys_fmr)(struct ib_fmr *fmr,
1875 u64 *page_list, int list_len,
1876 u64 iova);
1877 int (*unmap_fmr)(struct list_head *fmr_list);
1878 int (*dealloc_fmr)(struct ib_fmr *fmr);
1879 int (*attach_mcast)(struct ib_qp *qp,
1880 union ib_gid *gid,
1881 u16 lid);
1882 int (*detach_mcast)(struct ib_qp *qp,
1883 union ib_gid *gid,
1884 u16 lid);
1885 int (*process_mad)(struct ib_device *device,
1886 int process_mad_flags,
1887 u8 port_num,
a97e2d86
IW
1888 const struct ib_wc *in_wc,
1889 const struct ib_grh *in_grh,
4cd7c947
IW
1890 const struct ib_mad_hdr *in_mad,
1891 size_t in_mad_size,
1892 struct ib_mad_hdr *out_mad,
1893 size_t *out_mad_size,
1894 u16 *out_mad_pkey_index);
59991f94
SH
1895 struct ib_xrcd * (*alloc_xrcd)(struct ib_device *device,
1896 struct ib_ucontext *ucontext,
1897 struct ib_udata *udata);
1898 int (*dealloc_xrcd)(struct ib_xrcd *xrcd);
319a441d
HHZ
1899 struct ib_flow * (*create_flow)(struct ib_qp *qp,
1900 struct ib_flow_attr
1901 *flow_attr,
1902 int domain);
1903 int (*destroy_flow)(struct ib_flow *flow_id);
1b01d335
SG
1904 int (*check_mr_status)(struct ib_mr *mr, u32 check_mask,
1905 struct ib_mr_status *mr_status);
036b1063 1906 void (*disassociate_ucontext)(struct ib_ucontext *ibcontext);
1da177e4 1907
9b513090
RC
1908 struct ib_dma_mapping_ops *dma_ops;
1909
e2773c06 1910 struct module *owner;
f4e91eb4 1911 struct device dev;
35be0681 1912 struct kobject *ports_parent;
1da177e4
LT
1913 struct list_head port_list;
1914
1915 enum {
1916 IB_DEV_UNINITIALIZED,
1917 IB_DEV_REGISTERED,
1918 IB_DEV_UNREGISTERED
1919 } reg_state;
1920
274c0891 1921 int uverbs_abi_ver;
17a55f79 1922 u64 uverbs_cmd_mask;
f21519b2 1923 u64 uverbs_ex_cmd_mask;
274c0891 1924
c5bcbbb9 1925 char node_desc[64];
cf311cd4 1926 __be64 node_guid;
96f15c03 1927 u32 local_dma_lkey;
4139032b 1928 u16 is_switch:1;
1da177e4
LT
1929 u8 node_type;
1930 u8 phys_port_cnt;
3e153a93 1931 struct ib_device_attr attrs;
7738613e
IW
1932
1933 /**
1934 * The following mandatory functions are used only at device
1935 * registration. Keep functions such as these at the end of this
1936 * structure to avoid cache line misses when accessing struct ib_device
1937 * in fast paths.
1938 */
1939 int (*get_port_immutable)(struct ib_device *, u8, struct ib_port_immutable *);
1da177e4
LT
1940};
1941
1942struct ib_client {
1943 char *name;
1944 void (*add) (struct ib_device *);
7c1eb45a 1945 void (*remove)(struct ib_device *, void *client_data);
1da177e4 1946
9268f72d
YK
1947 /* Returns the net_dev belonging to this ib_client and matching the
1948 * given parameters.
1949 * @dev: An RDMA device that the net_dev use for communication.
1950 * @port: A physical port number on the RDMA device.
1951 * @pkey: P_Key that the net_dev uses if applicable.
1952 * @gid: A GID that the net_dev uses to communicate.
1953 * @addr: An IP address the net_dev is configured with.
1954 * @client_data: The device's client data set by ib_set_client_data().
1955 *
1956 * An ib_client that implements a net_dev on top of RDMA devices
1957 * (such as IP over IB) should implement this callback, allowing the
1958 * rdma_cm module to find the right net_dev for a given request.
1959 *
1960 * The caller is responsible for calling dev_put on the returned
1961 * netdev. */
1962 struct net_device *(*get_net_dev_by_params)(
1963 struct ib_device *dev,
1964 u8 port,
1965 u16 pkey,
1966 const union ib_gid *gid,
1967 const struct sockaddr *addr,
1968 void *client_data);
1da177e4
LT
1969 struct list_head list;
1970};
1971
1972struct ib_device *ib_alloc_device(size_t size);
1973void ib_dealloc_device(struct ib_device *device);
1974
9a6edb60
RC
1975int ib_register_device(struct ib_device *device,
1976 int (*port_callback)(struct ib_device *,
1977 u8, struct kobject *));
1da177e4
LT
1978void ib_unregister_device(struct ib_device *device);
1979
1980int ib_register_client (struct ib_client *client);
1981void ib_unregister_client(struct ib_client *client);
1982
1983void *ib_get_client_data(struct ib_device *device, struct ib_client *client);
1984void ib_set_client_data(struct ib_device *device, struct ib_client *client,
1985 void *data);
1986
e2773c06
RD
1987static inline int ib_copy_from_udata(void *dest, struct ib_udata *udata, size_t len)
1988{
1989 return copy_from_user(dest, udata->inbuf, len) ? -EFAULT : 0;
1990}
1991
1992static inline int ib_copy_to_udata(struct ib_udata *udata, void *src, size_t len)
1993{
43c61165 1994 return copy_to_user(udata->outbuf, src, len) ? -EFAULT : 0;
e2773c06
RD
1995}
1996
8a51866f
RD
1997/**
1998 * ib_modify_qp_is_ok - Check that the supplied attribute mask
1999 * contains all required attributes and no attributes not allowed for
2000 * the given QP state transition.
2001 * @cur_state: Current QP state
2002 * @next_state: Next QP state
2003 * @type: QP type
2004 * @mask: Mask of supplied QP attributes
dd5f03be 2005 * @ll : link layer of port
8a51866f
RD
2006 *
2007 * This function is a helper function that a low-level driver's
2008 * modify_qp method can use to validate the consumer's input. It
2009 * checks that cur_state and next_state are valid QP states, that a
2010 * transition from cur_state to next_state is allowed by the IB spec,
2011 * and that the attribute mask supplied is allowed for the transition.
2012 */
2013int ib_modify_qp_is_ok(enum ib_qp_state cur_state, enum ib_qp_state next_state,
dd5f03be
MB
2014 enum ib_qp_type type, enum ib_qp_attr_mask mask,
2015 enum rdma_link_layer ll);
8a51866f 2016
1da177e4
LT
2017int ib_register_event_handler (struct ib_event_handler *event_handler);
2018int ib_unregister_event_handler(struct ib_event_handler *event_handler);
2019void ib_dispatch_event(struct ib_event *event);
2020
1da177e4
LT
2021int ib_query_port(struct ib_device *device,
2022 u8 port_num, struct ib_port_attr *port_attr);
2023
a3f5adaf
EC
2024enum rdma_link_layer rdma_port_get_link_layer(struct ib_device *device,
2025 u8 port_num);
2026
4139032b
HR
2027/**
2028 * rdma_cap_ib_switch - Check if the device is IB switch
2029 * @device: Device to check
2030 *
2031 * Device driver is responsible for setting is_switch bit on
2032 * in ib_device structure at init time.
2033 *
2034 * Return: true if the device is IB switch.
2035 */
2036static inline bool rdma_cap_ib_switch(const struct ib_device *device)
2037{
2038 return device->is_switch;
2039}
2040
0cf18d77
IW
2041/**
2042 * rdma_start_port - Return the first valid port number for the device
2043 * specified
2044 *
2045 * @device: Device to be checked
2046 *
2047 * Return start port number
2048 */
2049static inline u8 rdma_start_port(const struct ib_device *device)
2050{
4139032b 2051 return rdma_cap_ib_switch(device) ? 0 : 1;
0cf18d77
IW
2052}
2053
2054/**
2055 * rdma_end_port - Return the last valid port number for the device
2056 * specified
2057 *
2058 * @device: Device to be checked
2059 *
2060 * Return last port number
2061 */
2062static inline u8 rdma_end_port(const struct ib_device *device)
2063{
4139032b 2064 return rdma_cap_ib_switch(device) ? 0 : device->phys_port_cnt;
0cf18d77
IW
2065}
2066
5ede9289 2067static inline bool rdma_protocol_ib(const struct ib_device *device, u8 port_num)
de66be94 2068{
f9b22e35 2069 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IB;
de66be94
MW
2070}
2071
5ede9289 2072static inline bool rdma_protocol_roce(const struct ib_device *device, u8 port_num)
7766a99f
MB
2073{
2074 return device->port_immutable[port_num].core_cap_flags &
2075 (RDMA_CORE_CAP_PROT_ROCE | RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP);
2076}
2077
2078static inline bool rdma_protocol_roce_udp_encap(const struct ib_device *device, u8 port_num)
2079{
2080 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE_UDP_ENCAP;
2081}
2082
2083static inline bool rdma_protocol_roce_eth_encap(const struct ib_device *device, u8 port_num)
de66be94 2084{
f9b22e35 2085 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_ROCE;
de66be94
MW
2086}
2087
5ede9289 2088static inline bool rdma_protocol_iwarp(const struct ib_device *device, u8 port_num)
de66be94 2089{
f9b22e35 2090 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_PROT_IWARP;
de66be94
MW
2091}
2092
5ede9289 2093static inline bool rdma_ib_or_roce(const struct ib_device *device, u8 port_num)
de66be94 2094{
7766a99f
MB
2095 return rdma_protocol_ib(device, port_num) ||
2096 rdma_protocol_roce(device, port_num);
de66be94
MW
2097}
2098
c757dea8 2099/**
296ec009 2100 * rdma_cap_ib_mad - Check if the port of a device supports Infiniband
c757dea8 2101 * Management Datagrams.
296ec009
MW
2102 * @device: Device to check
2103 * @port_num: Port number to check
c757dea8 2104 *
296ec009
MW
2105 * Management Datagrams (MAD) are a required part of the InfiniBand
2106 * specification and are supported on all InfiniBand devices. A slightly
2107 * extended version are also supported on OPA interfaces.
c757dea8 2108 *
296ec009 2109 * Return: true if the port supports sending/receiving of MAD packets.
c757dea8 2110 */
5ede9289 2111static inline bool rdma_cap_ib_mad(const struct ib_device *device, u8 port_num)
c757dea8 2112{
f9b22e35 2113 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_MAD;
c757dea8
MW
2114}
2115
65995fee
IW
2116/**
2117 * rdma_cap_opa_mad - Check if the port of device provides support for OPA
2118 * Management Datagrams.
2119 * @device: Device to check
2120 * @port_num: Port number to check
2121 *
2122 * Intel OmniPath devices extend and/or replace the InfiniBand Management
2123 * datagrams with their own versions. These OPA MADs share many but not all of
2124 * the characteristics of InfiniBand MADs.
2125 *
2126 * OPA MADs differ in the following ways:
2127 *
2128 * 1) MADs are variable size up to 2K
2129 * IBTA defined MADs remain fixed at 256 bytes
2130 * 2) OPA SMPs must carry valid PKeys
2131 * 3) OPA SMP packets are a different format
2132 *
2133 * Return: true if the port supports OPA MAD packet formats.
2134 */
2135static inline bool rdma_cap_opa_mad(struct ib_device *device, u8 port_num)
2136{
2137 return (device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_OPA_MAD)
2138 == RDMA_CORE_CAP_OPA_MAD;
2139}
2140
29541e3a 2141/**
296ec009
MW
2142 * rdma_cap_ib_smi - Check if the port of a device provides an Infiniband
2143 * Subnet Management Agent (SMA) on the Subnet Management Interface (SMI).
2144 * @device: Device to check
2145 * @port_num: Port number to check
29541e3a 2146 *
296ec009
MW
2147 * Each InfiniBand node is required to provide a Subnet Management Agent
2148 * that the subnet manager can access. Prior to the fabric being fully
2149 * configured by the subnet manager, the SMA is accessed via a well known
2150 * interface called the Subnet Management Interface (SMI). This interface
2151 * uses directed route packets to communicate with the SM to get around the
2152 * chicken and egg problem of the SM needing to know what's on the fabric
2153 * in order to configure the fabric, and needing to configure the fabric in
2154 * order to send packets to the devices on the fabric. These directed
2155 * route packets do not need the fabric fully configured in order to reach
2156 * their destination. The SMI is the only method allowed to send
2157 * directed route packets on an InfiniBand fabric.
29541e3a 2158 *
296ec009 2159 * Return: true if the port provides an SMI.
29541e3a 2160 */
5ede9289 2161static inline bool rdma_cap_ib_smi(const struct ib_device *device, u8 port_num)
29541e3a 2162{
f9b22e35 2163 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SMI;
29541e3a
MW
2164}
2165
72219cea
MW
2166/**
2167 * rdma_cap_ib_cm - Check if the port of device has the capability Infiniband
2168 * Communication Manager.
296ec009
MW
2169 * @device: Device to check
2170 * @port_num: Port number to check
72219cea 2171 *
296ec009
MW
2172 * The InfiniBand Communication Manager is one of many pre-defined General
2173 * Service Agents (GSA) that are accessed via the General Service
2174 * Interface (GSI). It's role is to facilitate establishment of connections
2175 * between nodes as well as other management related tasks for established
2176 * connections.
72219cea 2177 *
296ec009
MW
2178 * Return: true if the port supports an IB CM (this does not guarantee that
2179 * a CM is actually running however).
72219cea 2180 */
5ede9289 2181static inline bool rdma_cap_ib_cm(const struct ib_device *device, u8 port_num)
72219cea 2182{
f9b22e35 2183 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_CM;
72219cea
MW
2184}
2185
04215330
MW
2186/**
2187 * rdma_cap_iw_cm - Check if the port of device has the capability IWARP
2188 * Communication Manager.
296ec009
MW
2189 * @device: Device to check
2190 * @port_num: Port number to check
04215330 2191 *
296ec009
MW
2192 * Similar to above, but specific to iWARP connections which have a different
2193 * managment protocol than InfiniBand.
04215330 2194 *
296ec009
MW
2195 * Return: true if the port supports an iWARP CM (this does not guarantee that
2196 * a CM is actually running however).
04215330 2197 */
5ede9289 2198static inline bool rdma_cap_iw_cm(const struct ib_device *device, u8 port_num)
04215330 2199{
f9b22e35 2200 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IW_CM;
04215330
MW
2201}
2202
fe53ba2f
MW
2203/**
2204 * rdma_cap_ib_sa - Check if the port of device has the capability Infiniband
2205 * Subnet Administration.
296ec009
MW
2206 * @device: Device to check
2207 * @port_num: Port number to check
fe53ba2f 2208 *
296ec009
MW
2209 * An InfiniBand Subnet Administration (SA) service is a pre-defined General
2210 * Service Agent (GSA) provided by the Subnet Manager (SM). On InfiniBand
2211 * fabrics, devices should resolve routes to other hosts by contacting the
2212 * SA to query the proper route.
fe53ba2f 2213 *
296ec009
MW
2214 * Return: true if the port should act as a client to the fabric Subnet
2215 * Administration interface. This does not imply that the SA service is
2216 * running locally.
fe53ba2f 2217 */
5ede9289 2218static inline bool rdma_cap_ib_sa(const struct ib_device *device, u8 port_num)
fe53ba2f 2219{
f9b22e35 2220 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_IB_SA;
fe53ba2f
MW
2221}
2222
a31ad3b0
MW
2223/**
2224 * rdma_cap_ib_mcast - Check if the port of device has the capability Infiniband
2225 * Multicast.
296ec009
MW
2226 * @device: Device to check
2227 * @port_num: Port number to check
a31ad3b0 2228 *
296ec009
MW
2229 * InfiniBand multicast registration is more complex than normal IPv4 or
2230 * IPv6 multicast registration. Each Host Channel Adapter must register
2231 * with the Subnet Manager when it wishes to join a multicast group. It
2232 * should do so only once regardless of how many queue pairs it subscribes
2233 * to this group. And it should leave the group only after all queue pairs
2234 * attached to the group have been detached.
a31ad3b0 2235 *
296ec009
MW
2236 * Return: true if the port must undertake the additional adminstrative
2237 * overhead of registering/unregistering with the SM and tracking of the
2238 * total number of queue pairs attached to the multicast group.
a31ad3b0 2239 */
5ede9289 2240static inline bool rdma_cap_ib_mcast(const struct ib_device *device, u8 port_num)
a31ad3b0
MW
2241{
2242 return rdma_cap_ib_sa(device, port_num);
2243}
2244
30a74ef4
MW
2245/**
2246 * rdma_cap_af_ib - Check if the port of device has the capability
2247 * Native Infiniband Address.
296ec009
MW
2248 * @device: Device to check
2249 * @port_num: Port number to check
30a74ef4 2250 *
296ec009
MW
2251 * InfiniBand addressing uses a port's GUID + Subnet Prefix to make a default
2252 * GID. RoCE uses a different mechanism, but still generates a GID via
2253 * a prescribed mechanism and port specific data.
30a74ef4 2254 *
296ec009
MW
2255 * Return: true if the port uses a GID address to identify devices on the
2256 * network.
30a74ef4 2257 */
5ede9289 2258static inline bool rdma_cap_af_ib(const struct ib_device *device, u8 port_num)
30a74ef4 2259{
f9b22e35 2260 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_AF_IB;
30a74ef4
MW
2261}
2262
227128fc
MW
2263/**
2264 * rdma_cap_eth_ah - Check if the port of device has the capability
296ec009
MW
2265 * Ethernet Address Handle.
2266 * @device: Device to check
2267 * @port_num: Port number to check
227128fc 2268 *
296ec009
MW
2269 * RoCE is InfiniBand over Ethernet, and it uses a well defined technique
2270 * to fabricate GIDs over Ethernet/IP specific addresses native to the
2271 * port. Normally, packet headers are generated by the sending host
2272 * adapter, but when sending connectionless datagrams, we must manually
2273 * inject the proper headers for the fabric we are communicating over.
227128fc 2274 *
296ec009
MW
2275 * Return: true if we are running as a RoCE port and must force the
2276 * addition of a Global Route Header built from our Ethernet Address
2277 * Handle into our header list for connectionless packets.
227128fc 2278 */
5ede9289 2279static inline bool rdma_cap_eth_ah(const struct ib_device *device, u8 port_num)
227128fc 2280{
f9b22e35 2281 return device->port_immutable[port_num].core_cap_flags & RDMA_CORE_CAP_ETH_AH;
227128fc
MW
2282}
2283
337877a4
IW
2284/**
2285 * rdma_max_mad_size - Return the max MAD size required by this RDMA Port.
2286 *
2287 * @device: Device
2288 * @port_num: Port number
2289 *
2290 * This MAD size includes the MAD headers and MAD payload. No other headers
2291 * are included.
2292 *
2293 * Return the max MAD size required by the Port. Will return 0 if the port
2294 * does not support MADs
2295 */
2296static inline size_t rdma_max_mad_size(const struct ib_device *device, u8 port_num)
2297{
2298 return device->port_immutable[port_num].max_mad_size;
2299}
2300
03db3a2d
MB
2301/**
2302 * rdma_cap_roce_gid_table - Check if the port of device uses roce_gid_table
2303 * @device: Device to check
2304 * @port_num: Port number to check
2305 *
2306 * RoCE GID table mechanism manages the various GIDs for a device.
2307 *
2308 * NOTE: if allocating the port's GID table has failed, this call will still
2309 * return true, but any RoCE GID table API will fail.
2310 *
2311 * Return: true if the port uses RoCE GID table mechanism in order to manage
2312 * its GIDs.
2313 */
2314static inline bool rdma_cap_roce_gid_table(const struct ib_device *device,
2315 u8 port_num)
2316{
2317 return rdma_protocol_roce(device, port_num) &&
2318 device->add_gid && device->del_gid;
2319}
2320
1da177e4 2321int ib_query_gid(struct ib_device *device,
55ee3ab2
MB
2322 u8 port_num, int index, union ib_gid *gid,
2323 struct ib_gid_attr *attr);
1da177e4
LT
2324
2325int ib_query_pkey(struct ib_device *device,
2326 u8 port_num, u16 index, u16 *pkey);
2327
2328int ib_modify_device(struct ib_device *device,
2329 int device_modify_mask,
2330 struct ib_device_modify *device_modify);
2331
2332int ib_modify_port(struct ib_device *device,
2333 u8 port_num, int port_modify_mask,
2334 struct ib_port_modify *port_modify);
2335
5eb620c8 2336int ib_find_gid(struct ib_device *device, union ib_gid *gid,
b39ffa1d
MB
2337 enum ib_gid_type gid_type, struct net_device *ndev,
2338 u8 *port_num, u16 *index);
5eb620c8
YE
2339
2340int ib_find_pkey(struct ib_device *device,
2341 u8 port_num, u16 pkey, u16 *index);
2342
1da177e4
LT
2343struct ib_pd *ib_alloc_pd(struct ib_device *device);
2344
7dd78647 2345void ib_dealloc_pd(struct ib_pd *pd);
1da177e4
LT
2346
2347/**
2348 * ib_create_ah - Creates an address handle for the given address vector.
2349 * @pd: The protection domain associated with the address handle.
2350 * @ah_attr: The attributes of the address vector.
2351 *
2352 * The address handle is used to reference a local or global destination
2353 * in all UD QP post sends.
2354 */
2355struct ib_ah *ib_create_ah(struct ib_pd *pd, struct ib_ah_attr *ah_attr);
2356
4e00d694
SH
2357/**
2358 * ib_init_ah_from_wc - Initializes address handle attributes from a
2359 * work completion.
2360 * @device: Device on which the received message arrived.
2361 * @port_num: Port on which the received message arrived.
2362 * @wc: Work completion associated with the received message.
2363 * @grh: References the received global route header. This parameter is
2364 * ignored unless the work completion indicates that the GRH is valid.
2365 * @ah_attr: Returned attributes that can be used when creating an address
2366 * handle for replying to the message.
2367 */
73cdaaee
IW
2368int ib_init_ah_from_wc(struct ib_device *device, u8 port_num,
2369 const struct ib_wc *wc, const struct ib_grh *grh,
2370 struct ib_ah_attr *ah_attr);
4e00d694 2371
513789ed
HR
2372/**
2373 * ib_create_ah_from_wc - Creates an address handle associated with the
2374 * sender of the specified work completion.
2375 * @pd: The protection domain associated with the address handle.
2376 * @wc: Work completion information associated with a received message.
2377 * @grh: References the received global route header. This parameter is
2378 * ignored unless the work completion indicates that the GRH is valid.
2379 * @port_num: The outbound port number to associate with the address.
2380 *
2381 * The address handle is used to reference a local or global destination
2382 * in all UD QP post sends.
2383 */
73cdaaee
IW
2384struct ib_ah *ib_create_ah_from_wc(struct ib_pd *pd, const struct ib_wc *wc,
2385 const struct ib_grh *grh, u8 port_num);
513789ed 2386
1da177e4
LT
2387/**
2388 * ib_modify_ah - Modifies the address vector associated with an address
2389 * handle.
2390 * @ah: The address handle to modify.
2391 * @ah_attr: The new address vector attributes to associate with the
2392 * address handle.
2393 */
2394int ib_modify_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2395
2396/**
2397 * ib_query_ah - Queries the address vector associated with an address
2398 * handle.
2399 * @ah: The address handle to query.
2400 * @ah_attr: The address vector attributes associated with the address
2401 * handle.
2402 */
2403int ib_query_ah(struct ib_ah *ah, struct ib_ah_attr *ah_attr);
2404
2405/**
2406 * ib_destroy_ah - Destroys an address handle.
2407 * @ah: The address handle to destroy.
2408 */
2409int ib_destroy_ah(struct ib_ah *ah);
2410
d41fcc67
RD
2411/**
2412 * ib_create_srq - Creates a SRQ associated with the specified protection
2413 * domain.
2414 * @pd: The protection domain associated with the SRQ.
abb6e9ba
DB
2415 * @srq_init_attr: A list of initial attributes required to create the
2416 * SRQ. If SRQ creation succeeds, then the attributes are updated to
2417 * the actual capabilities of the created SRQ.
d41fcc67
RD
2418 *
2419 * srq_attr->max_wr and srq_attr->max_sge are read the determine the
2420 * requested size of the SRQ, and set to the actual values allocated
2421 * on return. If ib_create_srq() succeeds, then max_wr and max_sge
2422 * will always be at least as large as the requested values.
2423 */
2424struct ib_srq *ib_create_srq(struct ib_pd *pd,
2425 struct ib_srq_init_attr *srq_init_attr);
2426
2427/**
2428 * ib_modify_srq - Modifies the attributes for the specified SRQ.
2429 * @srq: The SRQ to modify.
2430 * @srq_attr: On input, specifies the SRQ attributes to modify. On output,
2431 * the current values of selected SRQ attributes are returned.
2432 * @srq_attr_mask: A bit-mask used to specify which attributes of the SRQ
2433 * are being modified.
2434 *
2435 * The mask may contain IB_SRQ_MAX_WR to resize the SRQ and/or
2436 * IB_SRQ_LIMIT to set the SRQ's limit and request notification when
2437 * the number of receives queued drops below the limit.
2438 */
2439int ib_modify_srq(struct ib_srq *srq,
2440 struct ib_srq_attr *srq_attr,
2441 enum ib_srq_attr_mask srq_attr_mask);
2442
2443/**
2444 * ib_query_srq - Returns the attribute list and current values for the
2445 * specified SRQ.
2446 * @srq: The SRQ to query.
2447 * @srq_attr: The attributes of the specified SRQ.
2448 */
2449int ib_query_srq(struct ib_srq *srq,
2450 struct ib_srq_attr *srq_attr);
2451
2452/**
2453 * ib_destroy_srq - Destroys the specified SRQ.
2454 * @srq: The SRQ to destroy.
2455 */
2456int ib_destroy_srq(struct ib_srq *srq);
2457
2458/**
2459 * ib_post_srq_recv - Posts a list of work requests to the specified SRQ.
2460 * @srq: The SRQ to post the work request on.
2461 * @recv_wr: A list of work requests to post on the receive queue.
2462 * @bad_recv_wr: On an immediate failure, this parameter will reference
2463 * the work request that failed to be posted on the QP.
2464 */
2465static inline int ib_post_srq_recv(struct ib_srq *srq,
2466 struct ib_recv_wr *recv_wr,
2467 struct ib_recv_wr **bad_recv_wr)
2468{
2469 return srq->device->post_srq_recv(srq, recv_wr, bad_recv_wr);
2470}
2471
1da177e4
LT
2472/**
2473 * ib_create_qp - Creates a QP associated with the specified protection
2474 * domain.
2475 * @pd: The protection domain associated with the QP.
abb6e9ba
DB
2476 * @qp_init_attr: A list of initial attributes required to create the
2477 * QP. If QP creation succeeds, then the attributes are updated to
2478 * the actual capabilities of the created QP.
1da177e4
LT
2479 */
2480struct ib_qp *ib_create_qp(struct ib_pd *pd,
2481 struct ib_qp_init_attr *qp_init_attr);
2482
2483/**
2484 * ib_modify_qp - Modifies the attributes for the specified QP and then
2485 * transitions the QP to the given state.
2486 * @qp: The QP to modify.
2487 * @qp_attr: On input, specifies the QP attributes to modify. On output,
2488 * the current values of selected QP attributes are returned.
2489 * @qp_attr_mask: A bit-mask used to specify which attributes of the QP
2490 * are being modified.
2491 */
2492int ib_modify_qp(struct ib_qp *qp,
2493 struct ib_qp_attr *qp_attr,
2494 int qp_attr_mask);
2495
2496/**
2497 * ib_query_qp - Returns the attribute list and current values for the
2498 * specified QP.
2499 * @qp: The QP to query.
2500 * @qp_attr: The attributes of the specified QP.
2501 * @qp_attr_mask: A bit-mask used to select specific attributes to query.
2502 * @qp_init_attr: Additional attributes of the selected QP.
2503 *
2504 * The qp_attr_mask may be used to limit the query to gathering only the
2505 * selected attributes.
2506 */
2507int ib_query_qp(struct ib_qp *qp,
2508 struct ib_qp_attr *qp_attr,
2509 int qp_attr_mask,
2510 struct ib_qp_init_attr *qp_init_attr);
2511
2512/**
2513 * ib_destroy_qp - Destroys the specified QP.
2514 * @qp: The QP to destroy.
2515 */
2516int ib_destroy_qp(struct ib_qp *qp);
2517
d3d72d90 2518/**
0e0ec7e0
SH
2519 * ib_open_qp - Obtain a reference to an existing sharable QP.
2520 * @xrcd - XRC domain
2521 * @qp_open_attr: Attributes identifying the QP to open.
2522 *
2523 * Returns a reference to a sharable QP.
2524 */
2525struct ib_qp *ib_open_qp(struct ib_xrcd *xrcd,
2526 struct ib_qp_open_attr *qp_open_attr);
2527
2528/**
2529 * ib_close_qp - Release an external reference to a QP.
d3d72d90
SH
2530 * @qp: The QP handle to release
2531 *
0e0ec7e0
SH
2532 * The opened QP handle is released by the caller. The underlying
2533 * shared QP is not destroyed until all internal references are released.
d3d72d90 2534 */
0e0ec7e0 2535int ib_close_qp(struct ib_qp *qp);
d3d72d90 2536
1da177e4
LT
2537/**
2538 * ib_post_send - Posts a list of work requests to the send queue of
2539 * the specified QP.
2540 * @qp: The QP to post the work request on.
2541 * @send_wr: A list of work requests to post on the send queue.
2542 * @bad_send_wr: On an immediate failure, this parameter will reference
2543 * the work request that failed to be posted on the QP.
55464d46
BVA
2544 *
2545 * While IBA Vol. 1 section 11.4.1.1 specifies that if an immediate
2546 * error is returned, the QP state shall not be affected,
2547 * ib_post_send() will return an immediate error after queueing any
2548 * earlier work requests in the list.
1da177e4
LT
2549 */
2550static inline int ib_post_send(struct ib_qp *qp,
2551 struct ib_send_wr *send_wr,
2552 struct ib_send_wr **bad_send_wr)
2553{
2554 return qp->device->post_send(qp, send_wr, bad_send_wr);
2555}
2556
2557/**
2558 * ib_post_recv - Posts a list of work requests to the receive queue of
2559 * the specified QP.
2560 * @qp: The QP to post the work request on.
2561 * @recv_wr: A list of work requests to post on the receive queue.
2562 * @bad_recv_wr: On an immediate failure, this parameter will reference
2563 * the work request that failed to be posted on the QP.
2564 */
2565static inline int ib_post_recv(struct ib_qp *qp,
2566 struct ib_recv_wr *recv_wr,
2567 struct ib_recv_wr **bad_recv_wr)
2568{
2569 return qp->device->post_recv(qp, recv_wr, bad_recv_wr);
2570}
2571
14d3a3b2
CH
2572struct ib_cq *ib_alloc_cq(struct ib_device *dev, void *private,
2573 int nr_cqe, int comp_vector, enum ib_poll_context poll_ctx);
2574void ib_free_cq(struct ib_cq *cq);
2575int ib_process_cq_direct(struct ib_cq *cq, int budget);
2576
1da177e4
LT
2577/**
2578 * ib_create_cq - Creates a CQ on the specified device.
2579 * @device: The device on which to create the CQ.
2580 * @comp_handler: A user-specified callback that is invoked when a
2581 * completion event occurs on the CQ.
2582 * @event_handler: A user-specified callback that is invoked when an
2583 * asynchronous event not associated with a completion occurs on the CQ.
2584 * @cq_context: Context associated with the CQ returned to the user via
2585 * the associated completion and event handlers.
8e37210b 2586 * @cq_attr: The attributes the CQ should be created upon.
1da177e4
LT
2587 *
2588 * Users can examine the cq structure to determine the actual CQ size.
2589 */
2590struct ib_cq *ib_create_cq(struct ib_device *device,
2591 ib_comp_handler comp_handler,
2592 void (*event_handler)(struct ib_event *, void *),
8e37210b
MB
2593 void *cq_context,
2594 const struct ib_cq_init_attr *cq_attr);
1da177e4
LT
2595
2596/**
2597 * ib_resize_cq - Modifies the capacity of the CQ.
2598 * @cq: The CQ to resize.
2599 * @cqe: The minimum size of the CQ.
2600 *
2601 * Users can examine the cq structure to determine the actual CQ size.
2602 */
2603int ib_resize_cq(struct ib_cq *cq, int cqe);
2604
2dd57162
EC
2605/**
2606 * ib_modify_cq - Modifies moderation params of the CQ
2607 * @cq: The CQ to modify.
2608 * @cq_count: number of CQEs that will trigger an event
2609 * @cq_period: max period of time in usec before triggering an event
2610 *
2611 */
2612int ib_modify_cq(struct ib_cq *cq, u16 cq_count, u16 cq_period);
2613
1da177e4
LT
2614/**
2615 * ib_destroy_cq - Destroys the specified CQ.
2616 * @cq: The CQ to destroy.
2617 */
2618int ib_destroy_cq(struct ib_cq *cq);
2619
2620/**
2621 * ib_poll_cq - poll a CQ for completion(s)
2622 * @cq:the CQ being polled
2623 * @num_entries:maximum number of completions to return
2624 * @wc:array of at least @num_entries &struct ib_wc where completions
2625 * will be returned
2626 *
2627 * Poll a CQ for (possibly multiple) completions. If the return value
2628 * is < 0, an error occurred. If the return value is >= 0, it is the
2629 * number of completions returned. If the return value is
2630 * non-negative and < num_entries, then the CQ was emptied.
2631 */
2632static inline int ib_poll_cq(struct ib_cq *cq, int num_entries,
2633 struct ib_wc *wc)
2634{
2635 return cq->device->poll_cq(cq, num_entries, wc);
2636}
2637
2638/**
2639 * ib_peek_cq - Returns the number of unreaped completions currently
2640 * on the specified CQ.
2641 * @cq: The CQ to peek.
2642 * @wc_cnt: A minimum number of unreaped completions to check for.
2643 *
2644 * If the number of unreaped completions is greater than or equal to wc_cnt,
2645 * this function returns wc_cnt, otherwise, it returns the actual number of
2646 * unreaped completions.
2647 */
2648int ib_peek_cq(struct ib_cq *cq, int wc_cnt);
2649
2650/**
2651 * ib_req_notify_cq - Request completion notification on a CQ.
2652 * @cq: The CQ to generate an event for.
ed23a727
RD
2653 * @flags:
2654 * Must contain exactly one of %IB_CQ_SOLICITED or %IB_CQ_NEXT_COMP
2655 * to request an event on the next solicited event or next work
2656 * completion at any type, respectively. %IB_CQ_REPORT_MISSED_EVENTS
2657 * may also be |ed in to request a hint about missed events, as
2658 * described below.
2659 *
2660 * Return Value:
2661 * < 0 means an error occurred while requesting notification
2662 * == 0 means notification was requested successfully, and if
2663 * IB_CQ_REPORT_MISSED_EVENTS was passed in, then no events
2664 * were missed and it is safe to wait for another event. In
2665 * this case is it guaranteed that any work completions added
2666 * to the CQ since the last CQ poll will trigger a completion
2667 * notification event.
2668 * > 0 is only returned if IB_CQ_REPORT_MISSED_EVENTS was passed
2669 * in. It means that the consumer must poll the CQ again to
2670 * make sure it is empty to avoid missing an event because of a
2671 * race between requesting notification and an entry being
2672 * added to the CQ. This return value means it is possible
2673 * (but not guaranteed) that a work completion has been added
2674 * to the CQ since the last poll without triggering a
2675 * completion notification event.
1da177e4
LT
2676 */
2677static inline int ib_req_notify_cq(struct ib_cq *cq,
ed23a727 2678 enum ib_cq_notify_flags flags)
1da177e4 2679{
ed23a727 2680 return cq->device->req_notify_cq(cq, flags);
1da177e4
LT
2681}
2682
2683/**
2684 * ib_req_ncomp_notif - Request completion notification when there are
2685 * at least the specified number of unreaped completions on the CQ.
2686 * @cq: The CQ to generate an event for.
2687 * @wc_cnt: The number of unreaped completions that should be on the
2688 * CQ before an event is generated.
2689 */
2690static inline int ib_req_ncomp_notif(struct ib_cq *cq, int wc_cnt)
2691{
2692 return cq->device->req_ncomp_notif ?
2693 cq->device->req_ncomp_notif(cq, wc_cnt) :
2694 -ENOSYS;
2695}
2696
2697/**
2698 * ib_get_dma_mr - Returns a memory region for system memory that is
2699 * usable for DMA.
2700 * @pd: The protection domain associated with the memory region.
2701 * @mr_access_flags: Specifies the memory access rights.
9b513090
RC
2702 *
2703 * Note that the ib_dma_*() functions defined below must be used
2704 * to create/destroy addresses used with the Lkey or Rkey returned
2705 * by ib_get_dma_mr().
1da177e4
LT
2706 */
2707struct ib_mr *ib_get_dma_mr(struct ib_pd *pd, int mr_access_flags);
2708
9b513090
RC
2709/**
2710 * ib_dma_mapping_error - check a DMA addr for error
2711 * @dev: The device for which the dma_addr was created
2712 * @dma_addr: The DMA address to check
2713 */
2714static inline int ib_dma_mapping_error(struct ib_device *dev, u64 dma_addr)
2715{
d1998ef3
BC
2716 if (dev->dma_ops)
2717 return dev->dma_ops->mapping_error(dev, dma_addr);
8d8bb39b 2718 return dma_mapping_error(dev->dma_device, dma_addr);
9b513090
RC
2719}
2720
2721/**
2722 * ib_dma_map_single - Map a kernel virtual address to DMA address
2723 * @dev: The device for which the dma_addr is to be created
2724 * @cpu_addr: The kernel virtual address
2725 * @size: The size of the region in bytes
2726 * @direction: The direction of the DMA
2727 */
2728static inline u64 ib_dma_map_single(struct ib_device *dev,
2729 void *cpu_addr, size_t size,
2730 enum dma_data_direction direction)
2731{
d1998ef3
BC
2732 if (dev->dma_ops)
2733 return dev->dma_ops->map_single(dev, cpu_addr, size, direction);
2734 return dma_map_single(dev->dma_device, cpu_addr, size, direction);
9b513090
RC
2735}
2736
2737/**
2738 * ib_dma_unmap_single - Destroy a mapping created by ib_dma_map_single()
2739 * @dev: The device for which the DMA address was created
2740 * @addr: The DMA address
2741 * @size: The size of the region in bytes
2742 * @direction: The direction of the DMA
2743 */
2744static inline void ib_dma_unmap_single(struct ib_device *dev,
2745 u64 addr, size_t size,
2746 enum dma_data_direction direction)
2747{
d1998ef3
BC
2748 if (dev->dma_ops)
2749 dev->dma_ops->unmap_single(dev, addr, size, direction);
2750 else
9b513090
RC
2751 dma_unmap_single(dev->dma_device, addr, size, direction);
2752}
2753
cb9fbc5c
AK
2754static inline u64 ib_dma_map_single_attrs(struct ib_device *dev,
2755 void *cpu_addr, size_t size,
2756 enum dma_data_direction direction,
2757 struct dma_attrs *attrs)
2758{
2759 return dma_map_single_attrs(dev->dma_device, cpu_addr, size,
2760 direction, attrs);
2761}
2762
2763static inline void ib_dma_unmap_single_attrs(struct ib_device *dev,
2764 u64 addr, size_t size,
2765 enum dma_data_direction direction,
2766 struct dma_attrs *attrs)
2767{
2768 return dma_unmap_single_attrs(dev->dma_device, addr, size,
2769 direction, attrs);
2770}
2771
9b513090
RC
2772/**
2773 * ib_dma_map_page - Map a physical page to DMA address
2774 * @dev: The device for which the dma_addr is to be created
2775 * @page: The page to be mapped
2776 * @offset: The offset within the page
2777 * @size: The size of the region in bytes
2778 * @direction: The direction of the DMA
2779 */
2780static inline u64 ib_dma_map_page(struct ib_device *dev,
2781 struct page *page,
2782 unsigned long offset,
2783 size_t size,
2784 enum dma_data_direction direction)
2785{
d1998ef3
BC
2786 if (dev->dma_ops)
2787 return dev->dma_ops->map_page(dev, page, offset, size, direction);
2788 return dma_map_page(dev->dma_device, page, offset, size, direction);
9b513090
RC
2789}
2790
2791/**
2792 * ib_dma_unmap_page - Destroy a mapping created by ib_dma_map_page()
2793 * @dev: The device for which the DMA address was created
2794 * @addr: The DMA address
2795 * @size: The size of the region in bytes
2796 * @direction: The direction of the DMA
2797 */
2798static inline void ib_dma_unmap_page(struct ib_device *dev,
2799 u64 addr, size_t size,
2800 enum dma_data_direction direction)
2801{
d1998ef3
BC
2802 if (dev->dma_ops)
2803 dev->dma_ops->unmap_page(dev, addr, size, direction);
2804 else
9b513090
RC
2805 dma_unmap_page(dev->dma_device, addr, size, direction);
2806}
2807
2808/**
2809 * ib_dma_map_sg - Map a scatter/gather list to DMA addresses
2810 * @dev: The device for which the DMA addresses are to be created
2811 * @sg: The array of scatter/gather entries
2812 * @nents: The number of scatter/gather entries
2813 * @direction: The direction of the DMA
2814 */
2815static inline int ib_dma_map_sg(struct ib_device *dev,
2816 struct scatterlist *sg, int nents,
2817 enum dma_data_direction direction)
2818{
d1998ef3
BC
2819 if (dev->dma_ops)
2820 return dev->dma_ops->map_sg(dev, sg, nents, direction);
2821 return dma_map_sg(dev->dma_device, sg, nents, direction);
9b513090
RC
2822}
2823
2824/**
2825 * ib_dma_unmap_sg - Unmap a scatter/gather list of DMA addresses
2826 * @dev: The device for which the DMA addresses were created
2827 * @sg: The array of scatter/gather entries
2828 * @nents: The number of scatter/gather entries
2829 * @direction: The direction of the DMA
2830 */
2831static inline void ib_dma_unmap_sg(struct ib_device *dev,
2832 struct scatterlist *sg, int nents,
2833 enum dma_data_direction direction)
2834{
d1998ef3
BC
2835 if (dev->dma_ops)
2836 dev->dma_ops->unmap_sg(dev, sg, nents, direction);
2837 else
9b513090
RC
2838 dma_unmap_sg(dev->dma_device, sg, nents, direction);
2839}
2840
cb9fbc5c
AK
2841static inline int ib_dma_map_sg_attrs(struct ib_device *dev,
2842 struct scatterlist *sg, int nents,
2843 enum dma_data_direction direction,
2844 struct dma_attrs *attrs)
2845{
2846 return dma_map_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2847}
2848
2849static inline void ib_dma_unmap_sg_attrs(struct ib_device *dev,
2850 struct scatterlist *sg, int nents,
2851 enum dma_data_direction direction,
2852 struct dma_attrs *attrs)
2853{
2854 dma_unmap_sg_attrs(dev->dma_device, sg, nents, direction, attrs);
2855}
9b513090
RC
2856/**
2857 * ib_sg_dma_address - Return the DMA address from a scatter/gather entry
2858 * @dev: The device for which the DMA addresses were created
2859 * @sg: The scatter/gather entry
ea58a595
MM
2860 *
2861 * Note: this function is obsolete. To do: change all occurrences of
2862 * ib_sg_dma_address() into sg_dma_address().
9b513090
RC
2863 */
2864static inline u64 ib_sg_dma_address(struct ib_device *dev,
2865 struct scatterlist *sg)
2866{
d1998ef3 2867 return sg_dma_address(sg);
9b513090
RC
2868}
2869
2870/**
2871 * ib_sg_dma_len - Return the DMA length from a scatter/gather entry
2872 * @dev: The device for which the DMA addresses were created
2873 * @sg: The scatter/gather entry
ea58a595
MM
2874 *
2875 * Note: this function is obsolete. To do: change all occurrences of
2876 * ib_sg_dma_len() into sg_dma_len().
9b513090
RC
2877 */
2878static inline unsigned int ib_sg_dma_len(struct ib_device *dev,
2879 struct scatterlist *sg)
2880{
d1998ef3 2881 return sg_dma_len(sg);
9b513090
RC
2882}
2883
2884/**
2885 * ib_dma_sync_single_for_cpu - Prepare DMA region to be accessed by CPU
2886 * @dev: The device for which the DMA address was created
2887 * @addr: The DMA address
2888 * @size: The size of the region in bytes
2889 * @dir: The direction of the DMA
2890 */
2891static inline void ib_dma_sync_single_for_cpu(struct ib_device *dev,
2892 u64 addr,
2893 size_t size,
2894 enum dma_data_direction dir)
2895{
d1998ef3
BC
2896 if (dev->dma_ops)
2897 dev->dma_ops->sync_single_for_cpu(dev, addr, size, dir);
2898 else
9b513090
RC
2899 dma_sync_single_for_cpu(dev->dma_device, addr, size, dir);
2900}
2901
2902/**
2903 * ib_dma_sync_single_for_device - Prepare DMA region to be accessed by device
2904 * @dev: The device for which the DMA address was created
2905 * @addr: The DMA address
2906 * @size: The size of the region in bytes
2907 * @dir: The direction of the DMA
2908 */
2909static inline void ib_dma_sync_single_for_device(struct ib_device *dev,
2910 u64 addr,
2911 size_t size,
2912 enum dma_data_direction dir)
2913{
d1998ef3
BC
2914 if (dev->dma_ops)
2915 dev->dma_ops->sync_single_for_device(dev, addr, size, dir);
2916 else
9b513090
RC
2917 dma_sync_single_for_device(dev->dma_device, addr, size, dir);
2918}
2919
2920/**
2921 * ib_dma_alloc_coherent - Allocate memory and map it for DMA
2922 * @dev: The device for which the DMA address is requested
2923 * @size: The size of the region to allocate in bytes
2924 * @dma_handle: A pointer for returning the DMA address of the region
2925 * @flag: memory allocator flags
2926 */
2927static inline void *ib_dma_alloc_coherent(struct ib_device *dev,
2928 size_t size,
2929 u64 *dma_handle,
2930 gfp_t flag)
2931{
d1998ef3
BC
2932 if (dev->dma_ops)
2933 return dev->dma_ops->alloc_coherent(dev, size, dma_handle, flag);
c59a3da1
RD
2934 else {
2935 dma_addr_t handle;
2936 void *ret;
2937
2938 ret = dma_alloc_coherent(dev->dma_device, size, &handle, flag);
2939 *dma_handle = handle;
2940 return ret;
2941 }
9b513090
RC
2942}
2943
2944/**
2945 * ib_dma_free_coherent - Free memory allocated by ib_dma_alloc_coherent()
2946 * @dev: The device for which the DMA addresses were allocated
2947 * @size: The size of the region
2948 * @cpu_addr: the address returned by ib_dma_alloc_coherent()
2949 * @dma_handle: the DMA address returned by ib_dma_alloc_coherent()
2950 */
2951static inline void ib_dma_free_coherent(struct ib_device *dev,
2952 size_t size, void *cpu_addr,
2953 u64 dma_handle)
2954{
d1998ef3
BC
2955 if (dev->dma_ops)
2956 dev->dma_ops->free_coherent(dev, size, cpu_addr, dma_handle);
2957 else
9b513090
RC
2958 dma_free_coherent(dev->dma_device, size, cpu_addr, dma_handle);
2959}
2960
1da177e4
LT
2961/**
2962 * ib_query_mr - Retrieves information about a specific memory region.
2963 * @mr: The memory region to retrieve information about.
2964 * @mr_attr: The attributes of the specified memory region.
2965 */
2966int ib_query_mr(struct ib_mr *mr, struct ib_mr_attr *mr_attr);
2967
2968/**
2969 * ib_dereg_mr - Deregisters a memory region and removes it from the
2970 * HCA translation table.
2971 * @mr: The memory region to deregister.
7083e42e
SM
2972 *
2973 * This function can fail, if the memory region has memory windows bound to it.
1da177e4
LT
2974 */
2975int ib_dereg_mr(struct ib_mr *mr);
2976
9bee178b
SG
2977struct ib_mr *ib_alloc_mr(struct ib_pd *pd,
2978 enum ib_mr_type mr_type,
2979 u32 max_num_sg);
00f7ec36 2980
00f7ec36
SW
2981/**
2982 * ib_update_fast_reg_key - updates the key portion of the fast_reg MR
2983 * R_Key and L_Key.
2984 * @mr - struct ib_mr pointer to be updated.
2985 * @newkey - new key to be used.
2986 */
2987static inline void ib_update_fast_reg_key(struct ib_mr *mr, u8 newkey)
2988{
2989 mr->lkey = (mr->lkey & 0xffffff00) | newkey;
2990 mr->rkey = (mr->rkey & 0xffffff00) | newkey;
2991}
2992
7083e42e
SM
2993/**
2994 * ib_inc_rkey - increments the key portion of the given rkey. Can be used
2995 * for calculating a new rkey for type 2 memory windows.
2996 * @rkey - the rkey to increment.
2997 */
2998static inline u32 ib_inc_rkey(u32 rkey)
2999{
3000 const u32 mask = 0x000000ff;
3001 return ((rkey + 1) & mask) | (rkey & ~mask);
3002}
3003
1da177e4
LT
3004/**
3005 * ib_alloc_mw - Allocates a memory window.
3006 * @pd: The protection domain associated with the memory window.
7083e42e 3007 * @type: The type of the memory window (1 or 2).
1da177e4 3008 */
7083e42e 3009struct ib_mw *ib_alloc_mw(struct ib_pd *pd, enum ib_mw_type type);
1da177e4
LT
3010
3011/**
3012 * ib_bind_mw - Posts a work request to the send queue of the specified
3013 * QP, which binds the memory window to the given address range and
3014 * remote access attributes.
3015 * @qp: QP to post the bind work request on.
3016 * @mw: The memory window to bind.
3017 * @mw_bind: Specifies information about the memory window, including
3018 * its address range, remote access rights, and associated memory region.
7083e42e
SM
3019 *
3020 * If there is no immediate error, the function will update the rkey member
3021 * of the mw parameter to its new value. The bind operation can still fail
3022 * asynchronously.
1da177e4
LT
3023 */
3024static inline int ib_bind_mw(struct ib_qp *qp,
3025 struct ib_mw *mw,
3026 struct ib_mw_bind *mw_bind)
3027{
3028 /* XXX reference counting in corresponding MR? */
3029 return mw->device->bind_mw ?
3030 mw->device->bind_mw(qp, mw, mw_bind) :
3031 -ENOSYS;
3032}
3033
3034/**
3035 * ib_dealloc_mw - Deallocates a memory window.
3036 * @mw: The memory window to deallocate.
3037 */
3038int ib_dealloc_mw(struct ib_mw *mw);
3039
3040/**
3041 * ib_alloc_fmr - Allocates a unmapped fast memory region.
3042 * @pd: The protection domain associated with the unmapped region.
3043 * @mr_access_flags: Specifies the memory access rights.
3044 * @fmr_attr: Attributes of the unmapped region.
3045 *
3046 * A fast memory region must be mapped before it can be used as part of
3047 * a work request.
3048 */
3049struct ib_fmr *ib_alloc_fmr(struct ib_pd *pd,
3050 int mr_access_flags,
3051 struct ib_fmr_attr *fmr_attr);
3052
3053/**
3054 * ib_map_phys_fmr - Maps a list of physical pages to a fast memory region.
3055 * @fmr: The fast memory region to associate with the pages.
3056 * @page_list: An array of physical pages to map to the fast memory region.
3057 * @list_len: The number of pages in page_list.
3058 * @iova: The I/O virtual address to use with the mapped region.
3059 */
3060static inline int ib_map_phys_fmr(struct ib_fmr *fmr,
3061 u64 *page_list, int list_len,
3062 u64 iova)
3063{
3064 return fmr->device->map_phys_fmr(fmr, page_list, list_len, iova);
3065}
3066
3067/**
3068 * ib_unmap_fmr - Removes the mapping from a list of fast memory regions.
3069 * @fmr_list: A linked list of fast memory regions to unmap.
3070 */
3071int ib_unmap_fmr(struct list_head *fmr_list);
3072
3073/**
3074 * ib_dealloc_fmr - Deallocates a fast memory region.
3075 * @fmr: The fast memory region to deallocate.
3076 */
3077int ib_dealloc_fmr(struct ib_fmr *fmr);
3078
3079/**
3080 * ib_attach_mcast - Attaches the specified QP to a multicast group.
3081 * @qp: QP to attach to the multicast group. The QP must be type
3082 * IB_QPT_UD.
3083 * @gid: Multicast group GID.
3084 * @lid: Multicast group LID in host byte order.
3085 *
3086 * In order to send and receive multicast packets, subnet
3087 * administration must have created the multicast group and configured
3088 * the fabric appropriately. The port associated with the specified
3089 * QP must also be a member of the multicast group.
3090 */
3091int ib_attach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3092
3093/**
3094 * ib_detach_mcast - Detaches the specified QP from a multicast group.
3095 * @qp: QP to detach from the multicast group.
3096 * @gid: Multicast group GID.
3097 * @lid: Multicast group LID in host byte order.
3098 */
3099int ib_detach_mcast(struct ib_qp *qp, union ib_gid *gid, u16 lid);
3100
59991f94
SH
3101/**
3102 * ib_alloc_xrcd - Allocates an XRC domain.
3103 * @device: The device on which to allocate the XRC domain.
3104 */
3105struct ib_xrcd *ib_alloc_xrcd(struct ib_device *device);
3106
3107/**
3108 * ib_dealloc_xrcd - Deallocates an XRC domain.
3109 * @xrcd: The XRC domain to deallocate.
3110 */
3111int ib_dealloc_xrcd(struct ib_xrcd *xrcd);
3112
319a441d
HHZ
3113struct ib_flow *ib_create_flow(struct ib_qp *qp,
3114 struct ib_flow_attr *flow_attr, int domain);
3115int ib_destroy_flow(struct ib_flow *flow_id);
3116
1c636f80
EC
3117static inline int ib_check_mr_access(int flags)
3118{
3119 /*
3120 * Local write permission is required if remote write or
3121 * remote atomic permission is also requested.
3122 */
3123 if (flags & (IB_ACCESS_REMOTE_ATOMIC | IB_ACCESS_REMOTE_WRITE) &&
3124 !(flags & IB_ACCESS_LOCAL_WRITE))
3125 return -EINVAL;
3126
3127 return 0;
3128}
3129
1b01d335
SG
3130/**
3131 * ib_check_mr_status: lightweight check of MR status.
3132 * This routine may provide status checks on a selected
3133 * ib_mr. first use is for signature status check.
3134 *
3135 * @mr: A memory region.
3136 * @check_mask: Bitmask of which checks to perform from
3137 * ib_mr_status_check enumeration.
3138 * @mr_status: The container of relevant status checks.
3139 * failed checks will be indicated in the status bitmask
3140 * and the relevant info shall be in the error item.
3141 */
3142int ib_check_mr_status(struct ib_mr *mr, u32 check_mask,
3143 struct ib_mr_status *mr_status);
3144
9268f72d
YK
3145struct net_device *ib_get_net_dev_by_params(struct ib_device *dev, u8 port,
3146 u16 pkey, const union ib_gid *gid,
3147 const struct sockaddr *addr);
3148
4c67e2bf
SG
3149int ib_map_mr_sg(struct ib_mr *mr,
3150 struct scatterlist *sg,
3151 int sg_nents,
3152 unsigned int page_size);
3153
3154static inline int
3155ib_map_mr_sg_zbva(struct ib_mr *mr,
3156 struct scatterlist *sg,
3157 int sg_nents,
3158 unsigned int page_size)
3159{
3160 int n;
3161
3162 n = ib_map_mr_sg(mr, sg, sg_nents, page_size);
3163 mr->iova = 0;
3164
3165 return n;
3166}
3167
3168int ib_sg_to_pages(struct ib_mr *mr,
3169 struct scatterlist *sgl,
3170 int sg_nents,
3171 int (*set_page)(struct ib_mr *, u64));
3172
1da177e4 3173#endif /* IB_VERBS_H */
This page took 0.820166 seconds and 5 git commands to generate.