perf: Remove __free_event()
[deliverable/linux.git] / kernel / events / core.c
CommitLineData
0793a61d 1/*
57c0c15b 2 * Performance events core code:
0793a61d 3 *
98144511 4 * Copyright (C) 2008 Thomas Gleixner <tglx@linutronix.de>
e7e7ee2e 5 * Copyright (C) 2008-2011 Red Hat, Inc., Ingo Molnar
90eec103 6 * Copyright (C) 2008-2011 Red Hat, Inc., Peter Zijlstra
d36b6910 7 * Copyright © 2009 Paul Mackerras, IBM Corp. <paulus@au1.ibm.com>
7b732a75 8 *
57c0c15b 9 * For licensing details see kernel-base/COPYING
0793a61d
TG
10 */
11
12#include <linux/fs.h>
b9cacc7b 13#include <linux/mm.h>
0793a61d
TG
14#include <linux/cpu.h>
15#include <linux/smp.h>
2e80a82a 16#include <linux/idr.h>
04289bb9 17#include <linux/file.h>
0793a61d 18#include <linux/poll.h>
5a0e3ad6 19#include <linux/slab.h>
76e1d904 20#include <linux/hash.h>
12351ef8 21#include <linux/tick.h>
0793a61d 22#include <linux/sysfs.h>
22a4f650 23#include <linux/dcache.h>
0793a61d 24#include <linux/percpu.h>
22a4f650 25#include <linux/ptrace.h>
c277443c 26#include <linux/reboot.h>
b9cacc7b 27#include <linux/vmstat.h>
abe43400 28#include <linux/device.h>
6e5fdeed 29#include <linux/export.h>
906010b2 30#include <linux/vmalloc.h>
b9cacc7b
PZ
31#include <linux/hardirq.h>
32#include <linux/rculist.h>
0793a61d
TG
33#include <linux/uaccess.h>
34#include <linux/syscalls.h>
35#include <linux/anon_inodes.h>
aa9c4c0f 36#include <linux/kernel_stat.h>
39bed6cb 37#include <linux/cgroup.h>
cdd6c482 38#include <linux/perf_event.h>
af658dca 39#include <linux/trace_events.h>
3c502e7a 40#include <linux/hw_breakpoint.h>
c5ebcedb 41#include <linux/mm_types.h>
c464c76e 42#include <linux/module.h>
f972eb63 43#include <linux/mman.h>
b3f20785 44#include <linux/compat.h>
2541517c
AS
45#include <linux/bpf.h>
46#include <linux/filter.h>
0793a61d 47
76369139
FW
48#include "internal.h"
49
4e193bd4
TB
50#include <asm/irq_regs.h>
51
fadfe7be
JO
52static struct workqueue_struct *perf_wq;
53
272325c4
PZ
54typedef int (*remote_function_f)(void *);
55
fe4b04fa 56struct remote_function_call {
e7e7ee2e 57 struct task_struct *p;
272325c4 58 remote_function_f func;
e7e7ee2e
IM
59 void *info;
60 int ret;
fe4b04fa
PZ
61};
62
63static void remote_function(void *data)
64{
65 struct remote_function_call *tfc = data;
66 struct task_struct *p = tfc->p;
67
68 if (p) {
69 tfc->ret = -EAGAIN;
70 if (task_cpu(p) != smp_processor_id() || !task_curr(p))
71 return;
72 }
73
74 tfc->ret = tfc->func(tfc->info);
75}
76
77/**
78 * task_function_call - call a function on the cpu on which a task runs
79 * @p: the task to evaluate
80 * @func: the function to be called
81 * @info: the function call argument
82 *
83 * Calls the function @func when the task is currently running. This might
84 * be on the current CPU, which just calls the function directly
85 *
86 * returns: @func return value, or
87 * -ESRCH - when the process isn't running
88 * -EAGAIN - when the process moved away
89 */
90static int
272325c4 91task_function_call(struct task_struct *p, remote_function_f func, void *info)
fe4b04fa
PZ
92{
93 struct remote_function_call data = {
e7e7ee2e
IM
94 .p = p,
95 .func = func,
96 .info = info,
97 .ret = -ESRCH, /* No such (running) process */
fe4b04fa
PZ
98 };
99
100 if (task_curr(p))
101 smp_call_function_single(task_cpu(p), remote_function, &data, 1);
102
103 return data.ret;
104}
105
106/**
107 * cpu_function_call - call a function on the cpu
108 * @func: the function to be called
109 * @info: the function call argument
110 *
111 * Calls the function @func on the remote cpu.
112 *
113 * returns: @func return value or -ENXIO when the cpu is offline
114 */
272325c4 115static int cpu_function_call(int cpu, remote_function_f func, void *info)
fe4b04fa
PZ
116{
117 struct remote_function_call data = {
e7e7ee2e
IM
118 .p = NULL,
119 .func = func,
120 .info = info,
121 .ret = -ENXIO, /* No such CPU */
fe4b04fa
PZ
122 };
123
124 smp_call_function_single(cpu, remote_function, &data, 1);
125
126 return data.ret;
127}
128
fae3fde6
PZ
129static inline struct perf_cpu_context *
130__get_cpu_context(struct perf_event_context *ctx)
131{
132 return this_cpu_ptr(ctx->pmu->pmu_cpu_context);
133}
134
135static void perf_ctx_lock(struct perf_cpu_context *cpuctx,
136 struct perf_event_context *ctx)
137{
138 raw_spin_lock(&cpuctx->ctx.lock);
139 if (ctx)
140 raw_spin_lock(&ctx->lock);
141}
142
143static void perf_ctx_unlock(struct perf_cpu_context *cpuctx,
144 struct perf_event_context *ctx)
145{
146 if (ctx)
147 raw_spin_unlock(&ctx->lock);
148 raw_spin_unlock(&cpuctx->ctx.lock);
149}
150
63b6da39
PZ
151#define TASK_TOMBSTONE ((void *)-1L)
152
153static bool is_kernel_event(struct perf_event *event)
154{
155 return event->owner == TASK_TOMBSTONE;
156}
157
39a43640
PZ
158/*
159 * On task ctx scheduling...
160 *
161 * When !ctx->nr_events a task context will not be scheduled. This means
162 * we can disable the scheduler hooks (for performance) without leaving
163 * pending task ctx state.
164 *
165 * This however results in two special cases:
166 *
167 * - removing the last event from a task ctx; this is relatively straight
168 * forward and is done in __perf_remove_from_context.
169 *
170 * - adding the first event to a task ctx; this is tricky because we cannot
171 * rely on ctx->is_active and therefore cannot use event_function_call().
172 * See perf_install_in_context().
173 *
174 * This is because we need a ctx->lock serialized variable (ctx->is_active)
175 * to reliably determine if a particular task/context is scheduled in. The
176 * task_curr() use in task_function_call() is racy in that a remote context
177 * switch is not a single atomic operation.
178 *
179 * As is, the situation is 'safe' because we set rq->curr before we do the
180 * actual context switch. This means that task_curr() will fail early, but
181 * we'll continue spinning on ctx->is_active until we've passed
182 * perf_event_task_sched_out().
183 *
184 * Without this ctx->lock serialized variable we could have race where we find
185 * the task (and hence the context) would not be active while in fact they are.
186 *
187 * If ctx->nr_events, then ctx->is_active and cpuctx->task_ctx are set.
188 */
189
fae3fde6
PZ
190typedef void (*event_f)(struct perf_event *, struct perf_cpu_context *,
191 struct perf_event_context *, void *);
192
193struct event_function_struct {
194 struct perf_event *event;
195 event_f func;
196 void *data;
197};
198
199static int event_function(void *info)
200{
201 struct event_function_struct *efs = info;
202 struct perf_event *event = efs->event;
203 struct perf_event_context *ctx = event->ctx;
204 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
205 struct perf_event_context *task_ctx = cpuctx->task_ctx;
63b6da39 206 int ret = 0;
fae3fde6
PZ
207
208 WARN_ON_ONCE(!irqs_disabled());
209
63b6da39 210 perf_ctx_lock(cpuctx, task_ctx);
fae3fde6
PZ
211 /*
212 * Since we do the IPI call without holding ctx->lock things can have
213 * changed, double check we hit the task we set out to hit.
fae3fde6
PZ
214 */
215 if (ctx->task) {
63b6da39
PZ
216 if (ctx->task != current) {
217 ret = -EAGAIN;
218 goto unlock;
219 }
fae3fde6 220
fae3fde6
PZ
221 /*
222 * We only use event_function_call() on established contexts,
223 * and event_function() is only ever called when active (or
224 * rather, we'll have bailed in task_function_call() or the
225 * above ctx->task != current test), therefore we must have
226 * ctx->is_active here.
227 */
228 WARN_ON_ONCE(!ctx->is_active);
229 /*
230 * And since we have ctx->is_active, cpuctx->task_ctx must
231 * match.
232 */
63b6da39
PZ
233 WARN_ON_ONCE(task_ctx != ctx);
234 } else {
235 WARN_ON_ONCE(&cpuctx->ctx != ctx);
fae3fde6 236 }
63b6da39 237
fae3fde6 238 efs->func(event, cpuctx, ctx, efs->data);
63b6da39 239unlock:
fae3fde6
PZ
240 perf_ctx_unlock(cpuctx, task_ctx);
241
63b6da39 242 return ret;
fae3fde6
PZ
243}
244
245static void event_function_local(struct perf_event *event, event_f func, void *data)
246{
247 struct event_function_struct efs = {
248 .event = event,
249 .func = func,
250 .data = data,
251 };
252
253 int ret = event_function(&efs);
254 WARN_ON_ONCE(ret);
255}
256
257static void event_function_call(struct perf_event *event, event_f func, void *data)
0017960f
PZ
258{
259 struct perf_event_context *ctx = event->ctx;
63b6da39 260 struct task_struct *task = READ_ONCE(ctx->task); /* verified in event_function */
fae3fde6
PZ
261 struct event_function_struct efs = {
262 .event = event,
263 .func = func,
264 .data = data,
265 };
0017960f 266
c97f4736
PZ
267 if (!event->parent) {
268 /*
269 * If this is a !child event, we must hold ctx::mutex to
270 * stabilize the the event->ctx relation. See
271 * perf_event_ctx_lock().
272 */
273 lockdep_assert_held(&ctx->mutex);
274 }
275
0017960f 276 if (!task) {
fae3fde6 277 cpu_function_call(event->cpu, event_function, &efs);
0017960f
PZ
278 return;
279 }
280
281again:
63b6da39
PZ
282 if (task == TASK_TOMBSTONE)
283 return;
284
fae3fde6 285 if (!task_function_call(task, event_function, &efs))
0017960f
PZ
286 return;
287
288 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
289 /*
290 * Reload the task pointer, it might have been changed by
291 * a concurrent perf_event_context_sched_out().
292 */
293 task = ctx->task;
294 if (task != TASK_TOMBSTONE) {
295 if (ctx->is_active) {
296 raw_spin_unlock_irq(&ctx->lock);
297 goto again;
298 }
299 func(event, NULL, ctx, data);
0017960f 300 }
0017960f
PZ
301 raw_spin_unlock_irq(&ctx->lock);
302}
303
e5d1367f
SE
304#define PERF_FLAG_ALL (PERF_FLAG_FD_NO_GROUP |\
305 PERF_FLAG_FD_OUTPUT |\
a21b0b35
YD
306 PERF_FLAG_PID_CGROUP |\
307 PERF_FLAG_FD_CLOEXEC)
e5d1367f 308
bce38cd5
SE
309/*
310 * branch priv levels that need permission checks
311 */
312#define PERF_SAMPLE_BRANCH_PERM_PLM \
313 (PERF_SAMPLE_BRANCH_KERNEL |\
314 PERF_SAMPLE_BRANCH_HV)
315
0b3fcf17
SE
316enum event_type_t {
317 EVENT_FLEXIBLE = 0x1,
318 EVENT_PINNED = 0x2,
319 EVENT_ALL = EVENT_FLEXIBLE | EVENT_PINNED,
320};
321
e5d1367f
SE
322/*
323 * perf_sched_events : >0 events exist
324 * perf_cgroup_events: >0 per-cpu cgroup events exist on this cpu
325 */
c5905afb 326struct static_key_deferred perf_sched_events __read_mostly;
e5d1367f 327static DEFINE_PER_CPU(atomic_t, perf_cgroup_events);
ba532500 328static DEFINE_PER_CPU(int, perf_sched_cb_usages);
e5d1367f 329
cdd6c482
IM
330static atomic_t nr_mmap_events __read_mostly;
331static atomic_t nr_comm_events __read_mostly;
332static atomic_t nr_task_events __read_mostly;
948b26b6 333static atomic_t nr_freq_events __read_mostly;
45ac1403 334static atomic_t nr_switch_events __read_mostly;
9ee318a7 335
108b02cf
PZ
336static LIST_HEAD(pmus);
337static DEFINE_MUTEX(pmus_lock);
338static struct srcu_struct pmus_srcu;
339
0764771d 340/*
cdd6c482 341 * perf event paranoia level:
0fbdea19
IM
342 * -1 - not paranoid at all
343 * 0 - disallow raw tracepoint access for unpriv
cdd6c482 344 * 1 - disallow cpu events for unpriv
0fbdea19 345 * 2 - disallow kernel profiling for unpriv
0764771d 346 */
cdd6c482 347int sysctl_perf_event_paranoid __read_mostly = 1;
0764771d 348
20443384
FW
349/* Minimum for 512 kiB + 1 user control page */
350int sysctl_perf_event_mlock __read_mostly = 512 + (PAGE_SIZE / 1024); /* 'free' kiB per user */
df58ab24
PZ
351
352/*
cdd6c482 353 * max perf event sample rate
df58ab24 354 */
14c63f17
DH
355#define DEFAULT_MAX_SAMPLE_RATE 100000
356#define DEFAULT_SAMPLE_PERIOD_NS (NSEC_PER_SEC / DEFAULT_MAX_SAMPLE_RATE)
357#define DEFAULT_CPU_TIME_MAX_PERCENT 25
358
359int sysctl_perf_event_sample_rate __read_mostly = DEFAULT_MAX_SAMPLE_RATE;
360
361static int max_samples_per_tick __read_mostly = DIV_ROUND_UP(DEFAULT_MAX_SAMPLE_RATE, HZ);
362static int perf_sample_period_ns __read_mostly = DEFAULT_SAMPLE_PERIOD_NS;
363
d9494cb4
PZ
364static int perf_sample_allowed_ns __read_mostly =
365 DEFAULT_SAMPLE_PERIOD_NS * DEFAULT_CPU_TIME_MAX_PERCENT / 100;
14c63f17 366
18ab2cd3 367static void update_perf_cpu_limits(void)
14c63f17
DH
368{
369 u64 tmp = perf_sample_period_ns;
370
371 tmp *= sysctl_perf_cpu_time_max_percent;
e5302920 372 do_div(tmp, 100);
d9494cb4 373 ACCESS_ONCE(perf_sample_allowed_ns) = tmp;
14c63f17 374}
163ec435 375
9e630205
SE
376static int perf_rotate_context(struct perf_cpu_context *cpuctx);
377
163ec435
PZ
378int perf_proc_update_handler(struct ctl_table *table, int write,
379 void __user *buffer, size_t *lenp,
380 loff_t *ppos)
381{
723478c8 382 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
163ec435
PZ
383
384 if (ret || !write)
385 return ret;
386
387 max_samples_per_tick = DIV_ROUND_UP(sysctl_perf_event_sample_rate, HZ);
14c63f17
DH
388 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
389 update_perf_cpu_limits();
390
391 return 0;
392}
393
394int sysctl_perf_cpu_time_max_percent __read_mostly = DEFAULT_CPU_TIME_MAX_PERCENT;
395
396int perf_cpu_time_max_percent_handler(struct ctl_table *table, int write,
397 void __user *buffer, size_t *lenp,
398 loff_t *ppos)
399{
400 int ret = proc_dointvec(table, write, buffer, lenp, ppos);
401
402 if (ret || !write)
403 return ret;
404
405 update_perf_cpu_limits();
163ec435
PZ
406
407 return 0;
408}
1ccd1549 409
14c63f17
DH
410/*
411 * perf samples are done in some very critical code paths (NMIs).
412 * If they take too much CPU time, the system can lock up and not
413 * get any real work done. This will drop the sample rate when
414 * we detect that events are taking too long.
415 */
416#define NR_ACCUMULATED_SAMPLES 128
d9494cb4 417static DEFINE_PER_CPU(u64, running_sample_length);
14c63f17 418
6a02ad66 419static void perf_duration_warn(struct irq_work *w)
14c63f17 420{
6a02ad66 421 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
14c63f17 422 u64 avg_local_sample_len;
e5302920 423 u64 local_samples_len;
6a02ad66 424
4a32fea9 425 local_samples_len = __this_cpu_read(running_sample_length);
6a02ad66
PZ
426 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
427
428 printk_ratelimited(KERN_WARNING
429 "perf interrupt took too long (%lld > %lld), lowering "
430 "kernel.perf_event_max_sample_rate to %d\n",
cd578abb 431 avg_local_sample_len, allowed_ns >> 1,
6a02ad66
PZ
432 sysctl_perf_event_sample_rate);
433}
434
435static DEFINE_IRQ_WORK(perf_duration_work, perf_duration_warn);
436
437void perf_sample_event_took(u64 sample_len_ns)
438{
d9494cb4 439 u64 allowed_ns = ACCESS_ONCE(perf_sample_allowed_ns);
6a02ad66
PZ
440 u64 avg_local_sample_len;
441 u64 local_samples_len;
14c63f17 442
d9494cb4 443 if (allowed_ns == 0)
14c63f17
DH
444 return;
445
446 /* decay the counter by 1 average sample */
4a32fea9 447 local_samples_len = __this_cpu_read(running_sample_length);
14c63f17
DH
448 local_samples_len -= local_samples_len/NR_ACCUMULATED_SAMPLES;
449 local_samples_len += sample_len_ns;
4a32fea9 450 __this_cpu_write(running_sample_length, local_samples_len);
14c63f17
DH
451
452 /*
453 * note: this will be biased artifically low until we have
454 * seen NR_ACCUMULATED_SAMPLES. Doing it this way keeps us
455 * from having to maintain a count.
456 */
457 avg_local_sample_len = local_samples_len/NR_ACCUMULATED_SAMPLES;
458
d9494cb4 459 if (avg_local_sample_len <= allowed_ns)
14c63f17
DH
460 return;
461
462 if (max_samples_per_tick <= 1)
463 return;
464
465 max_samples_per_tick = DIV_ROUND_UP(max_samples_per_tick, 2);
466 sysctl_perf_event_sample_rate = max_samples_per_tick * HZ;
467 perf_sample_period_ns = NSEC_PER_SEC / sysctl_perf_event_sample_rate;
468
14c63f17 469 update_perf_cpu_limits();
6a02ad66 470
cd578abb
PZ
471 if (!irq_work_queue(&perf_duration_work)) {
472 early_printk("perf interrupt took too long (%lld > %lld), lowering "
473 "kernel.perf_event_max_sample_rate to %d\n",
474 avg_local_sample_len, allowed_ns >> 1,
475 sysctl_perf_event_sample_rate);
476 }
14c63f17
DH
477}
478
cdd6c482 479static atomic64_t perf_event_id;
a96bbc16 480
0b3fcf17
SE
481static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
482 enum event_type_t event_type);
483
484static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
485 enum event_type_t event_type,
486 struct task_struct *task);
487
488static void update_context_time(struct perf_event_context *ctx);
489static u64 perf_event_time(struct perf_event *event);
0b3fcf17 490
cdd6c482 491void __weak perf_event_print_debug(void) { }
0793a61d 492
84c79910 493extern __weak const char *perf_pmu_name(void)
0793a61d 494{
84c79910 495 return "pmu";
0793a61d
TG
496}
497
0b3fcf17
SE
498static inline u64 perf_clock(void)
499{
500 return local_clock();
501}
502
34f43927
PZ
503static inline u64 perf_event_clock(struct perf_event *event)
504{
505 return event->clock();
506}
507
e5d1367f
SE
508#ifdef CONFIG_CGROUP_PERF
509
e5d1367f
SE
510static inline bool
511perf_cgroup_match(struct perf_event *event)
512{
513 struct perf_event_context *ctx = event->ctx;
514 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
515
ef824fa1
TH
516 /* @event doesn't care about cgroup */
517 if (!event->cgrp)
518 return true;
519
520 /* wants specific cgroup scope but @cpuctx isn't associated with any */
521 if (!cpuctx->cgrp)
522 return false;
523
524 /*
525 * Cgroup scoping is recursive. An event enabled for a cgroup is
526 * also enabled for all its descendant cgroups. If @cpuctx's
527 * cgroup is a descendant of @event's (the test covers identity
528 * case), it's a match.
529 */
530 return cgroup_is_descendant(cpuctx->cgrp->css.cgroup,
531 event->cgrp->css.cgroup);
e5d1367f
SE
532}
533
e5d1367f
SE
534static inline void perf_detach_cgroup(struct perf_event *event)
535{
4e2ba650 536 css_put(&event->cgrp->css);
e5d1367f
SE
537 event->cgrp = NULL;
538}
539
540static inline int is_cgroup_event(struct perf_event *event)
541{
542 return event->cgrp != NULL;
543}
544
545static inline u64 perf_cgroup_event_time(struct perf_event *event)
546{
547 struct perf_cgroup_info *t;
548
549 t = per_cpu_ptr(event->cgrp->info, event->cpu);
550 return t->time;
551}
552
553static inline void __update_cgrp_time(struct perf_cgroup *cgrp)
554{
555 struct perf_cgroup_info *info;
556 u64 now;
557
558 now = perf_clock();
559
560 info = this_cpu_ptr(cgrp->info);
561
562 info->time += now - info->timestamp;
563 info->timestamp = now;
564}
565
566static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
567{
568 struct perf_cgroup *cgrp_out = cpuctx->cgrp;
569 if (cgrp_out)
570 __update_cgrp_time(cgrp_out);
571}
572
573static inline void update_cgrp_time_from_event(struct perf_event *event)
574{
3f7cce3c
SE
575 struct perf_cgroup *cgrp;
576
e5d1367f 577 /*
3f7cce3c
SE
578 * ensure we access cgroup data only when needed and
579 * when we know the cgroup is pinned (css_get)
e5d1367f 580 */
3f7cce3c 581 if (!is_cgroup_event(event))
e5d1367f
SE
582 return;
583
614e4c4e 584 cgrp = perf_cgroup_from_task(current, event->ctx);
3f7cce3c
SE
585 /*
586 * Do not update time when cgroup is not active
587 */
588 if (cgrp == event->cgrp)
589 __update_cgrp_time(event->cgrp);
e5d1367f
SE
590}
591
592static inline void
3f7cce3c
SE
593perf_cgroup_set_timestamp(struct task_struct *task,
594 struct perf_event_context *ctx)
e5d1367f
SE
595{
596 struct perf_cgroup *cgrp;
597 struct perf_cgroup_info *info;
598
3f7cce3c
SE
599 /*
600 * ctx->lock held by caller
601 * ensure we do not access cgroup data
602 * unless we have the cgroup pinned (css_get)
603 */
604 if (!task || !ctx->nr_cgroups)
e5d1367f
SE
605 return;
606
614e4c4e 607 cgrp = perf_cgroup_from_task(task, ctx);
e5d1367f 608 info = this_cpu_ptr(cgrp->info);
3f7cce3c 609 info->timestamp = ctx->timestamp;
e5d1367f
SE
610}
611
612#define PERF_CGROUP_SWOUT 0x1 /* cgroup switch out every event */
613#define PERF_CGROUP_SWIN 0x2 /* cgroup switch in events based on task */
614
615/*
616 * reschedule events based on the cgroup constraint of task.
617 *
618 * mode SWOUT : schedule out everything
619 * mode SWIN : schedule in based on cgroup for next
620 */
18ab2cd3 621static void perf_cgroup_switch(struct task_struct *task, int mode)
e5d1367f
SE
622{
623 struct perf_cpu_context *cpuctx;
624 struct pmu *pmu;
625 unsigned long flags;
626
627 /*
628 * disable interrupts to avoid geting nr_cgroup
629 * changes via __perf_event_disable(). Also
630 * avoids preemption.
631 */
632 local_irq_save(flags);
633
634 /*
635 * we reschedule only in the presence of cgroup
636 * constrained events.
637 */
e5d1367f
SE
638
639 list_for_each_entry_rcu(pmu, &pmus, entry) {
e5d1367f 640 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
95cf59ea
PZ
641 if (cpuctx->unique_pmu != pmu)
642 continue; /* ensure we process each cpuctx once */
e5d1367f 643
e5d1367f
SE
644 /*
645 * perf_cgroup_events says at least one
646 * context on this CPU has cgroup events.
647 *
648 * ctx->nr_cgroups reports the number of cgroup
649 * events for a context.
650 */
651 if (cpuctx->ctx.nr_cgroups > 0) {
facc4307
PZ
652 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
653 perf_pmu_disable(cpuctx->ctx.pmu);
e5d1367f
SE
654
655 if (mode & PERF_CGROUP_SWOUT) {
656 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
657 /*
658 * must not be done before ctxswout due
659 * to event_filter_match() in event_sched_out()
660 */
661 cpuctx->cgrp = NULL;
662 }
663
664 if (mode & PERF_CGROUP_SWIN) {
e566b76e 665 WARN_ON_ONCE(cpuctx->cgrp);
95cf59ea
PZ
666 /*
667 * set cgrp before ctxsw in to allow
668 * event_filter_match() to not have to pass
669 * task around
614e4c4e
SE
670 * we pass the cpuctx->ctx to perf_cgroup_from_task()
671 * because cgorup events are only per-cpu
e5d1367f 672 */
614e4c4e 673 cpuctx->cgrp = perf_cgroup_from_task(task, &cpuctx->ctx);
e5d1367f
SE
674 cpu_ctx_sched_in(cpuctx, EVENT_ALL, task);
675 }
facc4307
PZ
676 perf_pmu_enable(cpuctx->ctx.pmu);
677 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
e5d1367f 678 }
e5d1367f
SE
679 }
680
e5d1367f
SE
681 local_irq_restore(flags);
682}
683
a8d757ef
SE
684static inline void perf_cgroup_sched_out(struct task_struct *task,
685 struct task_struct *next)
e5d1367f 686{
a8d757ef
SE
687 struct perf_cgroup *cgrp1;
688 struct perf_cgroup *cgrp2 = NULL;
689
ddaaf4e2 690 rcu_read_lock();
a8d757ef
SE
691 /*
692 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
693 * we do not need to pass the ctx here because we know
694 * we are holding the rcu lock
a8d757ef 695 */
614e4c4e 696 cgrp1 = perf_cgroup_from_task(task, NULL);
70a01657 697 cgrp2 = perf_cgroup_from_task(next, NULL);
a8d757ef
SE
698
699 /*
700 * only schedule out current cgroup events if we know
701 * that we are switching to a different cgroup. Otherwise,
702 * do no touch the cgroup events.
703 */
704 if (cgrp1 != cgrp2)
705 perf_cgroup_switch(task, PERF_CGROUP_SWOUT);
ddaaf4e2
SE
706
707 rcu_read_unlock();
e5d1367f
SE
708}
709
a8d757ef
SE
710static inline void perf_cgroup_sched_in(struct task_struct *prev,
711 struct task_struct *task)
e5d1367f 712{
a8d757ef
SE
713 struct perf_cgroup *cgrp1;
714 struct perf_cgroup *cgrp2 = NULL;
715
ddaaf4e2 716 rcu_read_lock();
a8d757ef
SE
717 /*
718 * we come here when we know perf_cgroup_events > 0
614e4c4e
SE
719 * we do not need to pass the ctx here because we know
720 * we are holding the rcu lock
a8d757ef 721 */
614e4c4e 722 cgrp1 = perf_cgroup_from_task(task, NULL);
614e4c4e 723 cgrp2 = perf_cgroup_from_task(prev, NULL);
a8d757ef
SE
724
725 /*
726 * only need to schedule in cgroup events if we are changing
727 * cgroup during ctxsw. Cgroup events were not scheduled
728 * out of ctxsw out if that was not the case.
729 */
730 if (cgrp1 != cgrp2)
731 perf_cgroup_switch(task, PERF_CGROUP_SWIN);
ddaaf4e2
SE
732
733 rcu_read_unlock();
e5d1367f
SE
734}
735
736static inline int perf_cgroup_connect(int fd, struct perf_event *event,
737 struct perf_event_attr *attr,
738 struct perf_event *group_leader)
739{
740 struct perf_cgroup *cgrp;
741 struct cgroup_subsys_state *css;
2903ff01
AV
742 struct fd f = fdget(fd);
743 int ret = 0;
e5d1367f 744
2903ff01 745 if (!f.file)
e5d1367f
SE
746 return -EBADF;
747
b583043e 748 css = css_tryget_online_from_dir(f.file->f_path.dentry,
ec903c0c 749 &perf_event_cgrp_subsys);
3db272c0
LZ
750 if (IS_ERR(css)) {
751 ret = PTR_ERR(css);
752 goto out;
753 }
e5d1367f
SE
754
755 cgrp = container_of(css, struct perf_cgroup, css);
756 event->cgrp = cgrp;
757
758 /*
759 * all events in a group must monitor
760 * the same cgroup because a task belongs
761 * to only one perf cgroup at a time
762 */
763 if (group_leader && group_leader->cgrp != cgrp) {
764 perf_detach_cgroup(event);
765 ret = -EINVAL;
e5d1367f 766 }
3db272c0 767out:
2903ff01 768 fdput(f);
e5d1367f
SE
769 return ret;
770}
771
772static inline void
773perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
774{
775 struct perf_cgroup_info *t;
776 t = per_cpu_ptr(event->cgrp->info, event->cpu);
777 event->shadow_ctx_time = now - t->timestamp;
778}
779
780static inline void
781perf_cgroup_defer_enabled(struct perf_event *event)
782{
783 /*
784 * when the current task's perf cgroup does not match
785 * the event's, we need to remember to call the
786 * perf_mark_enable() function the first time a task with
787 * a matching perf cgroup is scheduled in.
788 */
789 if (is_cgroup_event(event) && !perf_cgroup_match(event))
790 event->cgrp_defer_enabled = 1;
791}
792
793static inline void
794perf_cgroup_mark_enabled(struct perf_event *event,
795 struct perf_event_context *ctx)
796{
797 struct perf_event *sub;
798 u64 tstamp = perf_event_time(event);
799
800 if (!event->cgrp_defer_enabled)
801 return;
802
803 event->cgrp_defer_enabled = 0;
804
805 event->tstamp_enabled = tstamp - event->total_time_enabled;
806 list_for_each_entry(sub, &event->sibling_list, group_entry) {
807 if (sub->state >= PERF_EVENT_STATE_INACTIVE) {
808 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
809 sub->cgrp_defer_enabled = 0;
810 }
811 }
812}
813#else /* !CONFIG_CGROUP_PERF */
814
815static inline bool
816perf_cgroup_match(struct perf_event *event)
817{
818 return true;
819}
820
821static inline void perf_detach_cgroup(struct perf_event *event)
822{}
823
824static inline int is_cgroup_event(struct perf_event *event)
825{
826 return 0;
827}
828
829static inline u64 perf_cgroup_event_cgrp_time(struct perf_event *event)
830{
831 return 0;
832}
833
834static inline void update_cgrp_time_from_event(struct perf_event *event)
835{
836}
837
838static inline void update_cgrp_time_from_cpuctx(struct perf_cpu_context *cpuctx)
839{
840}
841
a8d757ef
SE
842static inline void perf_cgroup_sched_out(struct task_struct *task,
843 struct task_struct *next)
e5d1367f
SE
844{
845}
846
a8d757ef
SE
847static inline void perf_cgroup_sched_in(struct task_struct *prev,
848 struct task_struct *task)
e5d1367f
SE
849{
850}
851
852static inline int perf_cgroup_connect(pid_t pid, struct perf_event *event,
853 struct perf_event_attr *attr,
854 struct perf_event *group_leader)
855{
856 return -EINVAL;
857}
858
859static inline void
3f7cce3c
SE
860perf_cgroup_set_timestamp(struct task_struct *task,
861 struct perf_event_context *ctx)
e5d1367f
SE
862{
863}
864
865void
866perf_cgroup_switch(struct task_struct *task, struct task_struct *next)
867{
868}
869
870static inline void
871perf_cgroup_set_shadow_time(struct perf_event *event, u64 now)
872{
873}
874
875static inline u64 perf_cgroup_event_time(struct perf_event *event)
876{
877 return 0;
878}
879
880static inline void
881perf_cgroup_defer_enabled(struct perf_event *event)
882{
883}
884
885static inline void
886perf_cgroup_mark_enabled(struct perf_event *event,
887 struct perf_event_context *ctx)
888{
889}
890#endif
891
9e630205
SE
892/*
893 * set default to be dependent on timer tick just
894 * like original code
895 */
896#define PERF_CPU_HRTIMER (1000 / HZ)
897/*
898 * function must be called with interrupts disbled
899 */
272325c4 900static enum hrtimer_restart perf_mux_hrtimer_handler(struct hrtimer *hr)
9e630205
SE
901{
902 struct perf_cpu_context *cpuctx;
9e630205
SE
903 int rotations = 0;
904
905 WARN_ON(!irqs_disabled());
906
907 cpuctx = container_of(hr, struct perf_cpu_context, hrtimer);
9e630205
SE
908 rotations = perf_rotate_context(cpuctx);
909
4cfafd30
PZ
910 raw_spin_lock(&cpuctx->hrtimer_lock);
911 if (rotations)
9e630205 912 hrtimer_forward_now(hr, cpuctx->hrtimer_interval);
4cfafd30
PZ
913 else
914 cpuctx->hrtimer_active = 0;
915 raw_spin_unlock(&cpuctx->hrtimer_lock);
9e630205 916
4cfafd30 917 return rotations ? HRTIMER_RESTART : HRTIMER_NORESTART;
9e630205
SE
918}
919
272325c4 920static void __perf_mux_hrtimer_init(struct perf_cpu_context *cpuctx, int cpu)
9e630205 921{
272325c4 922 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 923 struct pmu *pmu = cpuctx->ctx.pmu;
272325c4 924 u64 interval;
9e630205
SE
925
926 /* no multiplexing needed for SW PMU */
927 if (pmu->task_ctx_nr == perf_sw_context)
928 return;
929
62b85639
SE
930 /*
931 * check default is sane, if not set then force to
932 * default interval (1/tick)
933 */
272325c4
PZ
934 interval = pmu->hrtimer_interval_ms;
935 if (interval < 1)
936 interval = pmu->hrtimer_interval_ms = PERF_CPU_HRTIMER;
62b85639 937
272325c4 938 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * interval);
9e630205 939
4cfafd30
PZ
940 raw_spin_lock_init(&cpuctx->hrtimer_lock);
941 hrtimer_init(timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
272325c4 942 timer->function = perf_mux_hrtimer_handler;
9e630205
SE
943}
944
272325c4 945static int perf_mux_hrtimer_restart(struct perf_cpu_context *cpuctx)
9e630205 946{
272325c4 947 struct hrtimer *timer = &cpuctx->hrtimer;
9e630205 948 struct pmu *pmu = cpuctx->ctx.pmu;
4cfafd30 949 unsigned long flags;
9e630205
SE
950
951 /* not for SW PMU */
952 if (pmu->task_ctx_nr == perf_sw_context)
272325c4 953 return 0;
9e630205 954
4cfafd30
PZ
955 raw_spin_lock_irqsave(&cpuctx->hrtimer_lock, flags);
956 if (!cpuctx->hrtimer_active) {
957 cpuctx->hrtimer_active = 1;
958 hrtimer_forward_now(timer, cpuctx->hrtimer_interval);
959 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
960 }
961 raw_spin_unlock_irqrestore(&cpuctx->hrtimer_lock, flags);
9e630205 962
272325c4 963 return 0;
9e630205
SE
964}
965
33696fc0 966void perf_pmu_disable(struct pmu *pmu)
9e35ad38 967{
33696fc0
PZ
968 int *count = this_cpu_ptr(pmu->pmu_disable_count);
969 if (!(*count)++)
970 pmu->pmu_disable(pmu);
9e35ad38 971}
9e35ad38 972
33696fc0 973void perf_pmu_enable(struct pmu *pmu)
9e35ad38 974{
33696fc0
PZ
975 int *count = this_cpu_ptr(pmu->pmu_disable_count);
976 if (!--(*count))
977 pmu->pmu_enable(pmu);
9e35ad38 978}
9e35ad38 979
2fde4f94 980static DEFINE_PER_CPU(struct list_head, active_ctx_list);
e9d2b064
PZ
981
982/*
2fde4f94
MR
983 * perf_event_ctx_activate(), perf_event_ctx_deactivate(), and
984 * perf_event_task_tick() are fully serialized because they're strictly cpu
985 * affine and perf_event_ctx{activate,deactivate} are called with IRQs
986 * disabled, while perf_event_task_tick is called from IRQ context.
e9d2b064 987 */
2fde4f94 988static void perf_event_ctx_activate(struct perf_event_context *ctx)
9e35ad38 989{
2fde4f94 990 struct list_head *head = this_cpu_ptr(&active_ctx_list);
b5ab4cd5 991
e9d2b064 992 WARN_ON(!irqs_disabled());
b5ab4cd5 993
2fde4f94
MR
994 WARN_ON(!list_empty(&ctx->active_ctx_list));
995
996 list_add(&ctx->active_ctx_list, head);
997}
998
999static void perf_event_ctx_deactivate(struct perf_event_context *ctx)
1000{
1001 WARN_ON(!irqs_disabled());
1002
1003 WARN_ON(list_empty(&ctx->active_ctx_list));
1004
1005 list_del_init(&ctx->active_ctx_list);
9e35ad38 1006}
9e35ad38 1007
cdd6c482 1008static void get_ctx(struct perf_event_context *ctx)
a63eaf34 1009{
e5289d4a 1010 WARN_ON(!atomic_inc_not_zero(&ctx->refcount));
a63eaf34
PM
1011}
1012
4af57ef2
YZ
1013static void free_ctx(struct rcu_head *head)
1014{
1015 struct perf_event_context *ctx;
1016
1017 ctx = container_of(head, struct perf_event_context, rcu_head);
1018 kfree(ctx->task_ctx_data);
1019 kfree(ctx);
1020}
1021
cdd6c482 1022static void put_ctx(struct perf_event_context *ctx)
a63eaf34 1023{
564c2b21
PM
1024 if (atomic_dec_and_test(&ctx->refcount)) {
1025 if (ctx->parent_ctx)
1026 put_ctx(ctx->parent_ctx);
63b6da39 1027 if (ctx->task && ctx->task != TASK_TOMBSTONE)
c93f7669 1028 put_task_struct(ctx->task);
4af57ef2 1029 call_rcu(&ctx->rcu_head, free_ctx);
564c2b21 1030 }
a63eaf34
PM
1031}
1032
f63a8daa
PZ
1033/*
1034 * Because of perf_event::ctx migration in sys_perf_event_open::move_group and
1035 * perf_pmu_migrate_context() we need some magic.
1036 *
1037 * Those places that change perf_event::ctx will hold both
1038 * perf_event_ctx::mutex of the 'old' and 'new' ctx value.
1039 *
8b10c5e2
PZ
1040 * Lock ordering is by mutex address. There are two other sites where
1041 * perf_event_context::mutex nests and those are:
1042 *
1043 * - perf_event_exit_task_context() [ child , 0 ]
1044 * __perf_event_exit_task()
1045 * sync_child_event()
1046 * put_event() [ parent, 1 ]
1047 *
1048 * - perf_event_init_context() [ parent, 0 ]
1049 * inherit_task_group()
1050 * inherit_group()
1051 * inherit_event()
1052 * perf_event_alloc()
1053 * perf_init_event()
1054 * perf_try_init_event() [ child , 1 ]
1055 *
1056 * While it appears there is an obvious deadlock here -- the parent and child
1057 * nesting levels are inverted between the two. This is in fact safe because
1058 * life-time rules separate them. That is an exiting task cannot fork, and a
1059 * spawning task cannot (yet) exit.
1060 *
1061 * But remember that that these are parent<->child context relations, and
1062 * migration does not affect children, therefore these two orderings should not
1063 * interact.
f63a8daa
PZ
1064 *
1065 * The change in perf_event::ctx does not affect children (as claimed above)
1066 * because the sys_perf_event_open() case will install a new event and break
1067 * the ctx parent<->child relation, and perf_pmu_migrate_context() is only
1068 * concerned with cpuctx and that doesn't have children.
1069 *
1070 * The places that change perf_event::ctx will issue:
1071 *
1072 * perf_remove_from_context();
1073 * synchronize_rcu();
1074 * perf_install_in_context();
1075 *
1076 * to affect the change. The remove_from_context() + synchronize_rcu() should
1077 * quiesce the event, after which we can install it in the new location. This
1078 * means that only external vectors (perf_fops, prctl) can perturb the event
1079 * while in transit. Therefore all such accessors should also acquire
1080 * perf_event_context::mutex to serialize against this.
1081 *
1082 * However; because event->ctx can change while we're waiting to acquire
1083 * ctx->mutex we must be careful and use the below perf_event_ctx_lock()
1084 * function.
1085 *
1086 * Lock order:
1087 * task_struct::perf_event_mutex
1088 * perf_event_context::mutex
1089 * perf_event_context::lock
1090 * perf_event::child_mutex;
1091 * perf_event::mmap_mutex
1092 * mmap_sem
1093 */
a83fe28e
PZ
1094static struct perf_event_context *
1095perf_event_ctx_lock_nested(struct perf_event *event, int nesting)
f63a8daa
PZ
1096{
1097 struct perf_event_context *ctx;
1098
1099again:
1100 rcu_read_lock();
1101 ctx = ACCESS_ONCE(event->ctx);
1102 if (!atomic_inc_not_zero(&ctx->refcount)) {
1103 rcu_read_unlock();
1104 goto again;
1105 }
1106 rcu_read_unlock();
1107
a83fe28e 1108 mutex_lock_nested(&ctx->mutex, nesting);
f63a8daa
PZ
1109 if (event->ctx != ctx) {
1110 mutex_unlock(&ctx->mutex);
1111 put_ctx(ctx);
1112 goto again;
1113 }
1114
1115 return ctx;
1116}
1117
a83fe28e
PZ
1118static inline struct perf_event_context *
1119perf_event_ctx_lock(struct perf_event *event)
1120{
1121 return perf_event_ctx_lock_nested(event, 0);
1122}
1123
f63a8daa
PZ
1124static void perf_event_ctx_unlock(struct perf_event *event,
1125 struct perf_event_context *ctx)
1126{
1127 mutex_unlock(&ctx->mutex);
1128 put_ctx(ctx);
1129}
1130
211de6eb
PZ
1131/*
1132 * This must be done under the ctx->lock, such as to serialize against
1133 * context_equiv(), therefore we cannot call put_ctx() since that might end up
1134 * calling scheduler related locks and ctx->lock nests inside those.
1135 */
1136static __must_check struct perf_event_context *
1137unclone_ctx(struct perf_event_context *ctx)
71a851b4 1138{
211de6eb
PZ
1139 struct perf_event_context *parent_ctx = ctx->parent_ctx;
1140
1141 lockdep_assert_held(&ctx->lock);
1142
1143 if (parent_ctx)
71a851b4 1144 ctx->parent_ctx = NULL;
5a3126d4 1145 ctx->generation++;
211de6eb
PZ
1146
1147 return parent_ctx;
71a851b4
PZ
1148}
1149
6844c09d
ACM
1150static u32 perf_event_pid(struct perf_event *event, struct task_struct *p)
1151{
1152 /*
1153 * only top level events have the pid namespace they were created in
1154 */
1155 if (event->parent)
1156 event = event->parent;
1157
1158 return task_tgid_nr_ns(p, event->ns);
1159}
1160
1161static u32 perf_event_tid(struct perf_event *event, struct task_struct *p)
1162{
1163 /*
1164 * only top level events have the pid namespace they were created in
1165 */
1166 if (event->parent)
1167 event = event->parent;
1168
1169 return task_pid_nr_ns(p, event->ns);
1170}
1171
7f453c24 1172/*
cdd6c482 1173 * If we inherit events we want to return the parent event id
7f453c24
PZ
1174 * to userspace.
1175 */
cdd6c482 1176static u64 primary_event_id(struct perf_event *event)
7f453c24 1177{
cdd6c482 1178 u64 id = event->id;
7f453c24 1179
cdd6c482
IM
1180 if (event->parent)
1181 id = event->parent->id;
7f453c24
PZ
1182
1183 return id;
1184}
1185
25346b93 1186/*
cdd6c482 1187 * Get the perf_event_context for a task and lock it.
63b6da39 1188 *
25346b93
PM
1189 * This has to cope with with the fact that until it is locked,
1190 * the context could get moved to another task.
1191 */
cdd6c482 1192static struct perf_event_context *
8dc85d54 1193perf_lock_task_context(struct task_struct *task, int ctxn, unsigned long *flags)
25346b93 1194{
cdd6c482 1195 struct perf_event_context *ctx;
25346b93 1196
9ed6060d 1197retry:
058ebd0e
PZ
1198 /*
1199 * One of the few rules of preemptible RCU is that one cannot do
1200 * rcu_read_unlock() while holding a scheduler (or nested) lock when
2fd59077 1201 * part of the read side critical section was irqs-enabled -- see
058ebd0e
PZ
1202 * rcu_read_unlock_special().
1203 *
1204 * Since ctx->lock nests under rq->lock we must ensure the entire read
2fd59077 1205 * side critical section has interrupts disabled.
058ebd0e 1206 */
2fd59077 1207 local_irq_save(*flags);
058ebd0e 1208 rcu_read_lock();
8dc85d54 1209 ctx = rcu_dereference(task->perf_event_ctxp[ctxn]);
25346b93
PM
1210 if (ctx) {
1211 /*
1212 * If this context is a clone of another, it might
1213 * get swapped for another underneath us by
cdd6c482 1214 * perf_event_task_sched_out, though the
25346b93
PM
1215 * rcu_read_lock() protects us from any context
1216 * getting freed. Lock the context and check if it
1217 * got swapped before we could get the lock, and retry
1218 * if so. If we locked the right context, then it
1219 * can't get swapped on us any more.
1220 */
2fd59077 1221 raw_spin_lock(&ctx->lock);
8dc85d54 1222 if (ctx != rcu_dereference(task->perf_event_ctxp[ctxn])) {
2fd59077 1223 raw_spin_unlock(&ctx->lock);
058ebd0e 1224 rcu_read_unlock();
2fd59077 1225 local_irq_restore(*flags);
25346b93
PM
1226 goto retry;
1227 }
b49a9e7e 1228
63b6da39
PZ
1229 if (ctx->task == TASK_TOMBSTONE ||
1230 !atomic_inc_not_zero(&ctx->refcount)) {
2fd59077 1231 raw_spin_unlock(&ctx->lock);
b49a9e7e 1232 ctx = NULL;
828b6f0e
PZ
1233 } else {
1234 WARN_ON_ONCE(ctx->task != task);
b49a9e7e 1235 }
25346b93
PM
1236 }
1237 rcu_read_unlock();
2fd59077
PM
1238 if (!ctx)
1239 local_irq_restore(*flags);
25346b93
PM
1240 return ctx;
1241}
1242
1243/*
1244 * Get the context for a task and increment its pin_count so it
1245 * can't get swapped to another task. This also increments its
1246 * reference count so that the context can't get freed.
1247 */
8dc85d54
PZ
1248static struct perf_event_context *
1249perf_pin_task_context(struct task_struct *task, int ctxn)
25346b93 1250{
cdd6c482 1251 struct perf_event_context *ctx;
25346b93
PM
1252 unsigned long flags;
1253
8dc85d54 1254 ctx = perf_lock_task_context(task, ctxn, &flags);
25346b93
PM
1255 if (ctx) {
1256 ++ctx->pin_count;
e625cce1 1257 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1258 }
1259 return ctx;
1260}
1261
cdd6c482 1262static void perf_unpin_context(struct perf_event_context *ctx)
25346b93
PM
1263{
1264 unsigned long flags;
1265
e625cce1 1266 raw_spin_lock_irqsave(&ctx->lock, flags);
25346b93 1267 --ctx->pin_count;
e625cce1 1268 raw_spin_unlock_irqrestore(&ctx->lock, flags);
25346b93
PM
1269}
1270
f67218c3
PZ
1271/*
1272 * Update the record of the current time in a context.
1273 */
1274static void update_context_time(struct perf_event_context *ctx)
1275{
1276 u64 now = perf_clock();
1277
1278 ctx->time += now - ctx->timestamp;
1279 ctx->timestamp = now;
1280}
1281
4158755d
SE
1282static u64 perf_event_time(struct perf_event *event)
1283{
1284 struct perf_event_context *ctx = event->ctx;
e5d1367f
SE
1285
1286 if (is_cgroup_event(event))
1287 return perf_cgroup_event_time(event);
1288
4158755d
SE
1289 return ctx ? ctx->time : 0;
1290}
1291
f67218c3
PZ
1292/*
1293 * Update the total_time_enabled and total_time_running fields for a event.
b7526f0c 1294 * The caller of this function needs to hold the ctx->lock.
f67218c3
PZ
1295 */
1296static void update_event_times(struct perf_event *event)
1297{
1298 struct perf_event_context *ctx = event->ctx;
1299 u64 run_end;
1300
1301 if (event->state < PERF_EVENT_STATE_INACTIVE ||
1302 event->group_leader->state < PERF_EVENT_STATE_INACTIVE)
1303 return;
e5d1367f
SE
1304 /*
1305 * in cgroup mode, time_enabled represents
1306 * the time the event was enabled AND active
1307 * tasks were in the monitored cgroup. This is
1308 * independent of the activity of the context as
1309 * there may be a mix of cgroup and non-cgroup events.
1310 *
1311 * That is why we treat cgroup events differently
1312 * here.
1313 */
1314 if (is_cgroup_event(event))
46cd6a7f 1315 run_end = perf_cgroup_event_time(event);
e5d1367f
SE
1316 else if (ctx->is_active)
1317 run_end = ctx->time;
acd1d7c1
PZ
1318 else
1319 run_end = event->tstamp_stopped;
1320
1321 event->total_time_enabled = run_end - event->tstamp_enabled;
f67218c3
PZ
1322
1323 if (event->state == PERF_EVENT_STATE_INACTIVE)
1324 run_end = event->tstamp_stopped;
1325 else
4158755d 1326 run_end = perf_event_time(event);
f67218c3
PZ
1327
1328 event->total_time_running = run_end - event->tstamp_running;
e5d1367f 1329
f67218c3
PZ
1330}
1331
96c21a46
PZ
1332/*
1333 * Update total_time_enabled and total_time_running for all events in a group.
1334 */
1335static void update_group_times(struct perf_event *leader)
1336{
1337 struct perf_event *event;
1338
1339 update_event_times(leader);
1340 list_for_each_entry(event, &leader->sibling_list, group_entry)
1341 update_event_times(event);
1342}
1343
889ff015
FW
1344static struct list_head *
1345ctx_group_list(struct perf_event *event, struct perf_event_context *ctx)
1346{
1347 if (event->attr.pinned)
1348 return &ctx->pinned_groups;
1349 else
1350 return &ctx->flexible_groups;
1351}
1352
fccc714b 1353/*
cdd6c482 1354 * Add a event from the lists for its context.
fccc714b
PZ
1355 * Must be called with ctx->mutex and ctx->lock held.
1356 */
04289bb9 1357static void
cdd6c482 1358list_add_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1359{
c994d613
PZ
1360 lockdep_assert_held(&ctx->lock);
1361
8a49542c
PZ
1362 WARN_ON_ONCE(event->attach_state & PERF_ATTACH_CONTEXT);
1363 event->attach_state |= PERF_ATTACH_CONTEXT;
04289bb9
IM
1364
1365 /*
8a49542c
PZ
1366 * If we're a stand alone event or group leader, we go to the context
1367 * list, group events are kept attached to the group so that
1368 * perf_group_detach can, at all times, locate all siblings.
04289bb9 1369 */
8a49542c 1370 if (event->group_leader == event) {
889ff015
FW
1371 struct list_head *list;
1372
d6f962b5
FW
1373 if (is_software_event(event))
1374 event->group_flags |= PERF_GROUP_SOFTWARE;
1375
889ff015
FW
1376 list = ctx_group_list(event, ctx);
1377 list_add_tail(&event->group_entry, list);
5c148194 1378 }
592903cd 1379
08309379 1380 if (is_cgroup_event(event))
e5d1367f 1381 ctx->nr_cgroups++;
e5d1367f 1382
cdd6c482
IM
1383 list_add_rcu(&event->event_entry, &ctx->event_list);
1384 ctx->nr_events++;
1385 if (event->attr.inherit_stat)
bfbd3381 1386 ctx->nr_stat++;
5a3126d4
PZ
1387
1388 ctx->generation++;
04289bb9
IM
1389}
1390
0231bb53
JO
1391/*
1392 * Initialize event state based on the perf_event_attr::disabled.
1393 */
1394static inline void perf_event__state_init(struct perf_event *event)
1395{
1396 event->state = event->attr.disabled ? PERF_EVENT_STATE_OFF :
1397 PERF_EVENT_STATE_INACTIVE;
1398}
1399
a723968c 1400static void __perf_event_read_size(struct perf_event *event, int nr_siblings)
c320c7b7
ACM
1401{
1402 int entry = sizeof(u64); /* value */
1403 int size = 0;
1404 int nr = 1;
1405
1406 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
1407 size += sizeof(u64);
1408
1409 if (event->attr.read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
1410 size += sizeof(u64);
1411
1412 if (event->attr.read_format & PERF_FORMAT_ID)
1413 entry += sizeof(u64);
1414
1415 if (event->attr.read_format & PERF_FORMAT_GROUP) {
a723968c 1416 nr += nr_siblings;
c320c7b7
ACM
1417 size += sizeof(u64);
1418 }
1419
1420 size += entry * nr;
1421 event->read_size = size;
1422}
1423
a723968c 1424static void __perf_event_header_size(struct perf_event *event, u64 sample_type)
c320c7b7
ACM
1425{
1426 struct perf_sample_data *data;
c320c7b7
ACM
1427 u16 size = 0;
1428
c320c7b7
ACM
1429 if (sample_type & PERF_SAMPLE_IP)
1430 size += sizeof(data->ip);
1431
6844c09d
ACM
1432 if (sample_type & PERF_SAMPLE_ADDR)
1433 size += sizeof(data->addr);
1434
1435 if (sample_type & PERF_SAMPLE_PERIOD)
1436 size += sizeof(data->period);
1437
c3feedf2
AK
1438 if (sample_type & PERF_SAMPLE_WEIGHT)
1439 size += sizeof(data->weight);
1440
6844c09d
ACM
1441 if (sample_type & PERF_SAMPLE_READ)
1442 size += event->read_size;
1443
d6be9ad6
SE
1444 if (sample_type & PERF_SAMPLE_DATA_SRC)
1445 size += sizeof(data->data_src.val);
1446
fdfbbd07
AK
1447 if (sample_type & PERF_SAMPLE_TRANSACTION)
1448 size += sizeof(data->txn);
1449
6844c09d
ACM
1450 event->header_size = size;
1451}
1452
a723968c
PZ
1453/*
1454 * Called at perf_event creation and when events are attached/detached from a
1455 * group.
1456 */
1457static void perf_event__header_size(struct perf_event *event)
1458{
1459 __perf_event_read_size(event,
1460 event->group_leader->nr_siblings);
1461 __perf_event_header_size(event, event->attr.sample_type);
1462}
1463
6844c09d
ACM
1464static void perf_event__id_header_size(struct perf_event *event)
1465{
1466 struct perf_sample_data *data;
1467 u64 sample_type = event->attr.sample_type;
1468 u16 size = 0;
1469
c320c7b7
ACM
1470 if (sample_type & PERF_SAMPLE_TID)
1471 size += sizeof(data->tid_entry);
1472
1473 if (sample_type & PERF_SAMPLE_TIME)
1474 size += sizeof(data->time);
1475
ff3d527c
AH
1476 if (sample_type & PERF_SAMPLE_IDENTIFIER)
1477 size += sizeof(data->id);
1478
c320c7b7
ACM
1479 if (sample_type & PERF_SAMPLE_ID)
1480 size += sizeof(data->id);
1481
1482 if (sample_type & PERF_SAMPLE_STREAM_ID)
1483 size += sizeof(data->stream_id);
1484
1485 if (sample_type & PERF_SAMPLE_CPU)
1486 size += sizeof(data->cpu_entry);
1487
6844c09d 1488 event->id_header_size = size;
c320c7b7
ACM
1489}
1490
a723968c
PZ
1491static bool perf_event_validate_size(struct perf_event *event)
1492{
1493 /*
1494 * The values computed here will be over-written when we actually
1495 * attach the event.
1496 */
1497 __perf_event_read_size(event, event->group_leader->nr_siblings + 1);
1498 __perf_event_header_size(event, event->attr.sample_type & ~PERF_SAMPLE_READ);
1499 perf_event__id_header_size(event);
1500
1501 /*
1502 * Sum the lot; should not exceed the 64k limit we have on records.
1503 * Conservative limit to allow for callchains and other variable fields.
1504 */
1505 if (event->read_size + event->header_size +
1506 event->id_header_size + sizeof(struct perf_event_header) >= 16*1024)
1507 return false;
1508
1509 return true;
1510}
1511
8a49542c
PZ
1512static void perf_group_attach(struct perf_event *event)
1513{
c320c7b7 1514 struct perf_event *group_leader = event->group_leader, *pos;
8a49542c 1515
74c3337c
PZ
1516 /*
1517 * We can have double attach due to group movement in perf_event_open.
1518 */
1519 if (event->attach_state & PERF_ATTACH_GROUP)
1520 return;
1521
8a49542c
PZ
1522 event->attach_state |= PERF_ATTACH_GROUP;
1523
1524 if (group_leader == event)
1525 return;
1526
652884fe
PZ
1527 WARN_ON_ONCE(group_leader->ctx != event->ctx);
1528
8a49542c
PZ
1529 if (group_leader->group_flags & PERF_GROUP_SOFTWARE &&
1530 !is_software_event(event))
1531 group_leader->group_flags &= ~PERF_GROUP_SOFTWARE;
1532
1533 list_add_tail(&event->group_entry, &group_leader->sibling_list);
1534 group_leader->nr_siblings++;
c320c7b7
ACM
1535
1536 perf_event__header_size(group_leader);
1537
1538 list_for_each_entry(pos, &group_leader->sibling_list, group_entry)
1539 perf_event__header_size(pos);
8a49542c
PZ
1540}
1541
a63eaf34 1542/*
cdd6c482 1543 * Remove a event from the lists for its context.
fccc714b 1544 * Must be called with ctx->mutex and ctx->lock held.
a63eaf34 1545 */
04289bb9 1546static void
cdd6c482 1547list_del_event(struct perf_event *event, struct perf_event_context *ctx)
04289bb9 1548{
68cacd29 1549 struct perf_cpu_context *cpuctx;
652884fe
PZ
1550
1551 WARN_ON_ONCE(event->ctx != ctx);
1552 lockdep_assert_held(&ctx->lock);
1553
8a49542c
PZ
1554 /*
1555 * We can have double detach due to exit/hot-unplug + close.
1556 */
1557 if (!(event->attach_state & PERF_ATTACH_CONTEXT))
a63eaf34 1558 return;
8a49542c
PZ
1559
1560 event->attach_state &= ~PERF_ATTACH_CONTEXT;
1561
68cacd29 1562 if (is_cgroup_event(event)) {
e5d1367f 1563 ctx->nr_cgroups--;
70a01657
PZ
1564 /*
1565 * Because cgroup events are always per-cpu events, this will
1566 * always be called from the right CPU.
1567 */
68cacd29
SE
1568 cpuctx = __get_cpu_context(ctx);
1569 /*
70a01657
PZ
1570 * If there are no more cgroup events then clear cgrp to avoid
1571 * stale pointer in update_cgrp_time_from_cpuctx().
68cacd29
SE
1572 */
1573 if (!ctx->nr_cgroups)
1574 cpuctx->cgrp = NULL;
1575 }
e5d1367f 1576
cdd6c482
IM
1577 ctx->nr_events--;
1578 if (event->attr.inherit_stat)
bfbd3381 1579 ctx->nr_stat--;
8bc20959 1580
cdd6c482 1581 list_del_rcu(&event->event_entry);
04289bb9 1582
8a49542c
PZ
1583 if (event->group_leader == event)
1584 list_del_init(&event->group_entry);
5c148194 1585
96c21a46 1586 update_group_times(event);
b2e74a26
SE
1587
1588 /*
1589 * If event was in error state, then keep it
1590 * that way, otherwise bogus counts will be
1591 * returned on read(). The only way to get out
1592 * of error state is by explicit re-enabling
1593 * of the event
1594 */
1595 if (event->state > PERF_EVENT_STATE_OFF)
1596 event->state = PERF_EVENT_STATE_OFF;
5a3126d4
PZ
1597
1598 ctx->generation++;
050735b0
PZ
1599}
1600
8a49542c 1601static void perf_group_detach(struct perf_event *event)
050735b0
PZ
1602{
1603 struct perf_event *sibling, *tmp;
8a49542c
PZ
1604 struct list_head *list = NULL;
1605
1606 /*
1607 * We can have double detach due to exit/hot-unplug + close.
1608 */
1609 if (!(event->attach_state & PERF_ATTACH_GROUP))
1610 return;
1611
1612 event->attach_state &= ~PERF_ATTACH_GROUP;
1613
1614 /*
1615 * If this is a sibling, remove it from its group.
1616 */
1617 if (event->group_leader != event) {
1618 list_del_init(&event->group_entry);
1619 event->group_leader->nr_siblings--;
c320c7b7 1620 goto out;
8a49542c
PZ
1621 }
1622
1623 if (!list_empty(&event->group_entry))
1624 list = &event->group_entry;
2e2af50b 1625
04289bb9 1626 /*
cdd6c482
IM
1627 * If this was a group event with sibling events then
1628 * upgrade the siblings to singleton events by adding them
8a49542c 1629 * to whatever list we are on.
04289bb9 1630 */
cdd6c482 1631 list_for_each_entry_safe(sibling, tmp, &event->sibling_list, group_entry) {
8a49542c
PZ
1632 if (list)
1633 list_move_tail(&sibling->group_entry, list);
04289bb9 1634 sibling->group_leader = sibling;
d6f962b5
FW
1635
1636 /* Inherit group flags from the previous leader */
1637 sibling->group_flags = event->group_flags;
652884fe
PZ
1638
1639 WARN_ON_ONCE(sibling->ctx != event->ctx);
04289bb9 1640 }
c320c7b7
ACM
1641
1642out:
1643 perf_event__header_size(event->group_leader);
1644
1645 list_for_each_entry(tmp, &event->group_leader->sibling_list, group_entry)
1646 perf_event__header_size(tmp);
04289bb9
IM
1647}
1648
fadfe7be
JO
1649/*
1650 * User event without the task.
1651 */
1652static bool is_orphaned_event(struct perf_event *event)
1653{
1654 return event && !is_kernel_event(event) && !event->owner;
1655}
1656
1657/*
1658 * Event has a parent but parent's task finished and it's
1659 * alive only because of children holding refference.
1660 */
1661static bool is_orphaned_child(struct perf_event *event)
1662{
1663 return is_orphaned_event(event->parent);
1664}
1665
1666static void orphans_remove_work(struct work_struct *work);
1667
1668static void schedule_orphans_remove(struct perf_event_context *ctx)
1669{
1670 if (!ctx->task || ctx->orphans_remove_sched || !perf_wq)
1671 return;
1672
1673 if (queue_delayed_work(perf_wq, &ctx->orphans_remove, 1)) {
1674 get_ctx(ctx);
1675 ctx->orphans_remove_sched = true;
1676 }
1677}
1678
1679static int __init perf_workqueue_init(void)
1680{
1681 perf_wq = create_singlethread_workqueue("perf");
1682 WARN(!perf_wq, "failed to create perf workqueue\n");
1683 return perf_wq ? 0 : -1;
1684}
1685
1686core_initcall(perf_workqueue_init);
1687
66eb579e
MR
1688static inline int pmu_filter_match(struct perf_event *event)
1689{
1690 struct pmu *pmu = event->pmu;
1691 return pmu->filter_match ? pmu->filter_match(event) : 1;
1692}
1693
fa66f07a
SE
1694static inline int
1695event_filter_match(struct perf_event *event)
1696{
e5d1367f 1697 return (event->cpu == -1 || event->cpu == smp_processor_id())
66eb579e 1698 && perf_cgroup_match(event) && pmu_filter_match(event);
fa66f07a
SE
1699}
1700
9ffcfa6f
SE
1701static void
1702event_sched_out(struct perf_event *event,
3b6f9e5c 1703 struct perf_cpu_context *cpuctx,
cdd6c482 1704 struct perf_event_context *ctx)
3b6f9e5c 1705{
4158755d 1706 u64 tstamp = perf_event_time(event);
fa66f07a 1707 u64 delta;
652884fe
PZ
1708
1709 WARN_ON_ONCE(event->ctx != ctx);
1710 lockdep_assert_held(&ctx->lock);
1711
fa66f07a
SE
1712 /*
1713 * An event which could not be activated because of
1714 * filter mismatch still needs to have its timings
1715 * maintained, otherwise bogus information is return
1716 * via read() for time_enabled, time_running:
1717 */
1718 if (event->state == PERF_EVENT_STATE_INACTIVE
1719 && !event_filter_match(event)) {
e5d1367f 1720 delta = tstamp - event->tstamp_stopped;
fa66f07a 1721 event->tstamp_running += delta;
4158755d 1722 event->tstamp_stopped = tstamp;
fa66f07a
SE
1723 }
1724
cdd6c482 1725 if (event->state != PERF_EVENT_STATE_ACTIVE)
9ffcfa6f 1726 return;
3b6f9e5c 1727
44377277
AS
1728 perf_pmu_disable(event->pmu);
1729
cdd6c482
IM
1730 event->state = PERF_EVENT_STATE_INACTIVE;
1731 if (event->pending_disable) {
1732 event->pending_disable = 0;
1733 event->state = PERF_EVENT_STATE_OFF;
970892a9 1734 }
4158755d 1735 event->tstamp_stopped = tstamp;
a4eaf7f1 1736 event->pmu->del(event, 0);
cdd6c482 1737 event->oncpu = -1;
3b6f9e5c 1738
cdd6c482 1739 if (!is_software_event(event))
3b6f9e5c 1740 cpuctx->active_oncpu--;
2fde4f94
MR
1741 if (!--ctx->nr_active)
1742 perf_event_ctx_deactivate(ctx);
0f5a2601
PZ
1743 if (event->attr.freq && event->attr.sample_freq)
1744 ctx->nr_freq--;
cdd6c482 1745 if (event->attr.exclusive || !cpuctx->active_oncpu)
3b6f9e5c 1746 cpuctx->exclusive = 0;
44377277 1747
fadfe7be
JO
1748 if (is_orphaned_child(event))
1749 schedule_orphans_remove(ctx);
1750
44377277 1751 perf_pmu_enable(event->pmu);
3b6f9e5c
PM
1752}
1753
d859e29f 1754static void
cdd6c482 1755group_sched_out(struct perf_event *group_event,
d859e29f 1756 struct perf_cpu_context *cpuctx,
cdd6c482 1757 struct perf_event_context *ctx)
d859e29f 1758{
cdd6c482 1759 struct perf_event *event;
fa66f07a 1760 int state = group_event->state;
d859e29f 1761
cdd6c482 1762 event_sched_out(group_event, cpuctx, ctx);
d859e29f
PM
1763
1764 /*
1765 * Schedule out siblings (if any):
1766 */
cdd6c482
IM
1767 list_for_each_entry(event, &group_event->sibling_list, group_entry)
1768 event_sched_out(event, cpuctx, ctx);
d859e29f 1769
fa66f07a 1770 if (state == PERF_EVENT_STATE_ACTIVE && group_event->attr.exclusive)
d859e29f
PM
1771 cpuctx->exclusive = 0;
1772}
1773
0793a61d 1774/*
cdd6c482 1775 * Cross CPU call to remove a performance event
0793a61d 1776 *
cdd6c482 1777 * We disable the event on the hardware level first. After that we
0793a61d
TG
1778 * remove it from the context list.
1779 */
fae3fde6
PZ
1780static void
1781__perf_remove_from_context(struct perf_event *event,
1782 struct perf_cpu_context *cpuctx,
1783 struct perf_event_context *ctx,
1784 void *info)
0793a61d 1785{
fae3fde6 1786 bool detach_group = (unsigned long)info;
0793a61d 1787
cdd6c482 1788 event_sched_out(event, cpuctx, ctx);
fae3fde6 1789 if (detach_group)
46ce0fe9 1790 perf_group_detach(event);
cdd6c482 1791 list_del_event(event, ctx);
39a43640
PZ
1792
1793 if (!ctx->nr_events && ctx->is_active) {
64ce3126 1794 ctx->is_active = 0;
39a43640
PZ
1795 if (ctx->task) {
1796 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
1797 cpuctx->task_ctx = NULL;
1798 }
64ce3126 1799 }
0793a61d
TG
1800}
1801
0793a61d 1802/*
cdd6c482 1803 * Remove the event from a task's (or a CPU's) list of events.
0793a61d 1804 *
cdd6c482
IM
1805 * If event->ctx is a cloned context, callers must make sure that
1806 * every task struct that event->ctx->task could possibly point to
c93f7669
PM
1807 * remains valid. This is OK when called from perf_release since
1808 * that only calls us on the top-level context, which can't be a clone.
cdd6c482 1809 * When called from perf_event_exit_task, it's OK because the
c93f7669 1810 * context has been detached from its task.
0793a61d 1811 */
46ce0fe9 1812static void perf_remove_from_context(struct perf_event *event, bool detach_group)
0793a61d 1813{
fae3fde6 1814 lockdep_assert_held(&event->ctx->mutex);
fe4b04fa 1815
0017960f 1816 event_function_call(event, __perf_remove_from_context,
fae3fde6 1817 (void *)(unsigned long)detach_group);
0793a61d
TG
1818}
1819
d859e29f 1820/*
cdd6c482 1821 * Cross CPU call to disable a performance event
d859e29f 1822 */
fae3fde6
PZ
1823static void __perf_event_disable(struct perf_event *event,
1824 struct perf_cpu_context *cpuctx,
1825 struct perf_event_context *ctx,
1826 void *info)
7b648018 1827{
fae3fde6
PZ
1828 if (event->state < PERF_EVENT_STATE_INACTIVE)
1829 return;
7b648018 1830
fae3fde6
PZ
1831 update_context_time(ctx);
1832 update_cgrp_time_from_event(event);
1833 update_group_times(event);
1834 if (event == event->group_leader)
1835 group_sched_out(event, cpuctx, ctx);
1836 else
1837 event_sched_out(event, cpuctx, ctx);
1838 event->state = PERF_EVENT_STATE_OFF;
7b648018
PZ
1839}
1840
d859e29f 1841/*
cdd6c482 1842 * Disable a event.
c93f7669 1843 *
cdd6c482
IM
1844 * If event->ctx is a cloned context, callers must make sure that
1845 * every task struct that event->ctx->task could possibly point to
c93f7669 1846 * remains valid. This condition is satisifed when called through
cdd6c482
IM
1847 * perf_event_for_each_child or perf_event_for_each because they
1848 * hold the top-level event's child_mutex, so any descendant that
1849 * goes to exit will block in sync_child_event.
1850 * When called from perf_pending_event it's OK because event->ctx
c93f7669 1851 * is the current context on this CPU and preemption is disabled,
cdd6c482 1852 * hence we can't get into perf_event_task_sched_out for this context.
d859e29f 1853 */
f63a8daa 1854static void _perf_event_disable(struct perf_event *event)
d859e29f 1855{
cdd6c482 1856 struct perf_event_context *ctx = event->ctx;
d859e29f 1857
e625cce1 1858 raw_spin_lock_irq(&ctx->lock);
7b648018 1859 if (event->state <= PERF_EVENT_STATE_OFF) {
e625cce1 1860 raw_spin_unlock_irq(&ctx->lock);
7b648018 1861 return;
53cfbf59 1862 }
e625cce1 1863 raw_spin_unlock_irq(&ctx->lock);
7b648018 1864
fae3fde6
PZ
1865 event_function_call(event, __perf_event_disable, NULL);
1866}
1867
1868void perf_event_disable_local(struct perf_event *event)
1869{
1870 event_function_local(event, __perf_event_disable, NULL);
d859e29f 1871}
f63a8daa
PZ
1872
1873/*
1874 * Strictly speaking kernel users cannot create groups and therefore this
1875 * interface does not need the perf_event_ctx_lock() magic.
1876 */
1877void perf_event_disable(struct perf_event *event)
1878{
1879 struct perf_event_context *ctx;
1880
1881 ctx = perf_event_ctx_lock(event);
1882 _perf_event_disable(event);
1883 perf_event_ctx_unlock(event, ctx);
1884}
dcfce4a0 1885EXPORT_SYMBOL_GPL(perf_event_disable);
d859e29f 1886
e5d1367f
SE
1887static void perf_set_shadow_time(struct perf_event *event,
1888 struct perf_event_context *ctx,
1889 u64 tstamp)
1890{
1891 /*
1892 * use the correct time source for the time snapshot
1893 *
1894 * We could get by without this by leveraging the
1895 * fact that to get to this function, the caller
1896 * has most likely already called update_context_time()
1897 * and update_cgrp_time_xx() and thus both timestamp
1898 * are identical (or very close). Given that tstamp is,
1899 * already adjusted for cgroup, we could say that:
1900 * tstamp - ctx->timestamp
1901 * is equivalent to
1902 * tstamp - cgrp->timestamp.
1903 *
1904 * Then, in perf_output_read(), the calculation would
1905 * work with no changes because:
1906 * - event is guaranteed scheduled in
1907 * - no scheduled out in between
1908 * - thus the timestamp would be the same
1909 *
1910 * But this is a bit hairy.
1911 *
1912 * So instead, we have an explicit cgroup call to remain
1913 * within the time time source all along. We believe it
1914 * is cleaner and simpler to understand.
1915 */
1916 if (is_cgroup_event(event))
1917 perf_cgroup_set_shadow_time(event, tstamp);
1918 else
1919 event->shadow_ctx_time = tstamp - ctx->timestamp;
1920}
1921
4fe757dd
PZ
1922#define MAX_INTERRUPTS (~0ULL)
1923
1924static void perf_log_throttle(struct perf_event *event, int enable);
ec0d7729 1925static void perf_log_itrace_start(struct perf_event *event);
4fe757dd 1926
235c7fc7 1927static int
9ffcfa6f 1928event_sched_in(struct perf_event *event,
235c7fc7 1929 struct perf_cpu_context *cpuctx,
6e37738a 1930 struct perf_event_context *ctx)
235c7fc7 1931{
4158755d 1932 u64 tstamp = perf_event_time(event);
44377277 1933 int ret = 0;
4158755d 1934
63342411
PZ
1935 lockdep_assert_held(&ctx->lock);
1936
cdd6c482 1937 if (event->state <= PERF_EVENT_STATE_OFF)
235c7fc7
IM
1938 return 0;
1939
cdd6c482 1940 event->state = PERF_EVENT_STATE_ACTIVE;
6e37738a 1941 event->oncpu = smp_processor_id();
4fe757dd
PZ
1942
1943 /*
1944 * Unthrottle events, since we scheduled we might have missed several
1945 * ticks already, also for a heavily scheduling task there is little
1946 * guarantee it'll get a tick in a timely manner.
1947 */
1948 if (unlikely(event->hw.interrupts == MAX_INTERRUPTS)) {
1949 perf_log_throttle(event, 1);
1950 event->hw.interrupts = 0;
1951 }
1952
235c7fc7
IM
1953 /*
1954 * The new state must be visible before we turn it on in the hardware:
1955 */
1956 smp_wmb();
1957
44377277
AS
1958 perf_pmu_disable(event->pmu);
1959
72f669c0
SL
1960 perf_set_shadow_time(event, ctx, tstamp);
1961
ec0d7729
AS
1962 perf_log_itrace_start(event);
1963
a4eaf7f1 1964 if (event->pmu->add(event, PERF_EF_START)) {
cdd6c482
IM
1965 event->state = PERF_EVENT_STATE_INACTIVE;
1966 event->oncpu = -1;
44377277
AS
1967 ret = -EAGAIN;
1968 goto out;
235c7fc7
IM
1969 }
1970
00a2916f
PZ
1971 event->tstamp_running += tstamp - event->tstamp_stopped;
1972
cdd6c482 1973 if (!is_software_event(event))
3b6f9e5c 1974 cpuctx->active_oncpu++;
2fde4f94
MR
1975 if (!ctx->nr_active++)
1976 perf_event_ctx_activate(ctx);
0f5a2601
PZ
1977 if (event->attr.freq && event->attr.sample_freq)
1978 ctx->nr_freq++;
235c7fc7 1979
cdd6c482 1980 if (event->attr.exclusive)
3b6f9e5c
PM
1981 cpuctx->exclusive = 1;
1982
fadfe7be
JO
1983 if (is_orphaned_child(event))
1984 schedule_orphans_remove(ctx);
1985
44377277
AS
1986out:
1987 perf_pmu_enable(event->pmu);
1988
1989 return ret;
235c7fc7
IM
1990}
1991
6751b71e 1992static int
cdd6c482 1993group_sched_in(struct perf_event *group_event,
6751b71e 1994 struct perf_cpu_context *cpuctx,
6e37738a 1995 struct perf_event_context *ctx)
6751b71e 1996{
6bde9b6c 1997 struct perf_event *event, *partial_group = NULL;
4a234593 1998 struct pmu *pmu = ctx->pmu;
d7842da4
SE
1999 u64 now = ctx->time;
2000 bool simulate = false;
6751b71e 2001
cdd6c482 2002 if (group_event->state == PERF_EVENT_STATE_OFF)
6751b71e
PM
2003 return 0;
2004
fbbe0701 2005 pmu->start_txn(pmu, PERF_PMU_TXN_ADD);
6bde9b6c 2006
9ffcfa6f 2007 if (event_sched_in(group_event, cpuctx, ctx)) {
ad5133b7 2008 pmu->cancel_txn(pmu);
272325c4 2009 perf_mux_hrtimer_restart(cpuctx);
6751b71e 2010 return -EAGAIN;
90151c35 2011 }
6751b71e
PM
2012
2013 /*
2014 * Schedule in siblings as one group (if any):
2015 */
cdd6c482 2016 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
9ffcfa6f 2017 if (event_sched_in(event, cpuctx, ctx)) {
cdd6c482 2018 partial_group = event;
6751b71e
PM
2019 goto group_error;
2020 }
2021 }
2022
9ffcfa6f 2023 if (!pmu->commit_txn(pmu))
6e85158c 2024 return 0;
9ffcfa6f 2025
6751b71e
PM
2026group_error:
2027 /*
2028 * Groups can be scheduled in as one unit only, so undo any
2029 * partial group before returning:
d7842da4
SE
2030 * The events up to the failed event are scheduled out normally,
2031 * tstamp_stopped will be updated.
2032 *
2033 * The failed events and the remaining siblings need to have
2034 * their timings updated as if they had gone thru event_sched_in()
2035 * and event_sched_out(). This is required to get consistent timings
2036 * across the group. This also takes care of the case where the group
2037 * could never be scheduled by ensuring tstamp_stopped is set to mark
2038 * the time the event was actually stopped, such that time delta
2039 * calculation in update_event_times() is correct.
6751b71e 2040 */
cdd6c482
IM
2041 list_for_each_entry(event, &group_event->sibling_list, group_entry) {
2042 if (event == partial_group)
d7842da4
SE
2043 simulate = true;
2044
2045 if (simulate) {
2046 event->tstamp_running += now - event->tstamp_stopped;
2047 event->tstamp_stopped = now;
2048 } else {
2049 event_sched_out(event, cpuctx, ctx);
2050 }
6751b71e 2051 }
9ffcfa6f 2052 event_sched_out(group_event, cpuctx, ctx);
6751b71e 2053
ad5133b7 2054 pmu->cancel_txn(pmu);
90151c35 2055
272325c4 2056 perf_mux_hrtimer_restart(cpuctx);
9e630205 2057
6751b71e
PM
2058 return -EAGAIN;
2059}
2060
3b6f9e5c 2061/*
cdd6c482 2062 * Work out whether we can put this event group on the CPU now.
3b6f9e5c 2063 */
cdd6c482 2064static int group_can_go_on(struct perf_event *event,
3b6f9e5c
PM
2065 struct perf_cpu_context *cpuctx,
2066 int can_add_hw)
2067{
2068 /*
cdd6c482 2069 * Groups consisting entirely of software events can always go on.
3b6f9e5c 2070 */
d6f962b5 2071 if (event->group_flags & PERF_GROUP_SOFTWARE)
3b6f9e5c
PM
2072 return 1;
2073 /*
2074 * If an exclusive group is already on, no other hardware
cdd6c482 2075 * events can go on.
3b6f9e5c
PM
2076 */
2077 if (cpuctx->exclusive)
2078 return 0;
2079 /*
2080 * If this group is exclusive and there are already
cdd6c482 2081 * events on the CPU, it can't go on.
3b6f9e5c 2082 */
cdd6c482 2083 if (event->attr.exclusive && cpuctx->active_oncpu)
3b6f9e5c
PM
2084 return 0;
2085 /*
2086 * Otherwise, try to add it if all previous groups were able
2087 * to go on.
2088 */
2089 return can_add_hw;
2090}
2091
cdd6c482
IM
2092static void add_event_to_ctx(struct perf_event *event,
2093 struct perf_event_context *ctx)
53cfbf59 2094{
4158755d
SE
2095 u64 tstamp = perf_event_time(event);
2096
cdd6c482 2097 list_add_event(event, ctx);
8a49542c 2098 perf_group_attach(event);
4158755d
SE
2099 event->tstamp_enabled = tstamp;
2100 event->tstamp_running = tstamp;
2101 event->tstamp_stopped = tstamp;
53cfbf59
PM
2102}
2103
3e349507
PZ
2104static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2105 struct perf_event_context *ctx);
2c29ef0f
PZ
2106static void
2107ctx_sched_in(struct perf_event_context *ctx,
2108 struct perf_cpu_context *cpuctx,
2109 enum event_type_t event_type,
2110 struct task_struct *task);
fe4b04fa 2111
dce5855b
PZ
2112static void perf_event_sched_in(struct perf_cpu_context *cpuctx,
2113 struct perf_event_context *ctx,
2114 struct task_struct *task)
2115{
2116 cpu_ctx_sched_in(cpuctx, EVENT_PINNED, task);
2117 if (ctx)
2118 ctx_sched_in(ctx, cpuctx, EVENT_PINNED, task);
2119 cpu_ctx_sched_in(cpuctx, EVENT_FLEXIBLE, task);
2120 if (ctx)
2121 ctx_sched_in(ctx, cpuctx, EVENT_FLEXIBLE, task);
2122}
2123
3e349507
PZ
2124static void ctx_resched(struct perf_cpu_context *cpuctx,
2125 struct perf_event_context *task_ctx)
2126{
2127 perf_pmu_disable(cpuctx->ctx.pmu);
2128 if (task_ctx)
2129 task_ctx_sched_out(cpuctx, task_ctx);
2130 cpu_ctx_sched_out(cpuctx, EVENT_ALL);
2131 perf_event_sched_in(cpuctx, task_ctx, current);
2132 perf_pmu_enable(cpuctx->ctx.pmu);
2133}
2134
0793a61d 2135/*
cdd6c482 2136 * Cross CPU call to install and enable a performance event
682076ae
PZ
2137 *
2138 * Must be called with ctx->mutex held
0793a61d 2139 */
fe4b04fa 2140static int __perf_install_in_context(void *info)
0793a61d 2141{
39a43640 2142 struct perf_event_context *ctx = info;
108b02cf 2143 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
2c29ef0f 2144 struct perf_event_context *task_ctx = cpuctx->task_ctx;
2c29ef0f 2145
63b6da39 2146 raw_spin_lock(&cpuctx->ctx.lock);
39a43640 2147 if (ctx->task) {
63b6da39 2148 raw_spin_lock(&ctx->lock);
39a43640
PZ
2149 /*
2150 * If we hit the 'wrong' task, we've since scheduled and
2151 * everything should be sorted, nothing to do!
2152 */
63b6da39 2153 task_ctx = ctx;
39a43640 2154 if (ctx->task != current)
63b6da39 2155 goto unlock;
b58f6b0d 2156
39a43640
PZ
2157 /*
2158 * If task_ctx is set, it had better be to us.
2159 */
2160 WARN_ON_ONCE(cpuctx->task_ctx != ctx && cpuctx->task_ctx);
63b6da39
PZ
2161 } else if (task_ctx) {
2162 raw_spin_lock(&task_ctx->lock);
b58f6b0d
PZ
2163 }
2164
39a43640 2165 ctx_resched(cpuctx, task_ctx);
63b6da39 2166unlock:
2c29ef0f 2167 perf_ctx_unlock(cpuctx, task_ctx);
fe4b04fa
PZ
2168
2169 return 0;
0793a61d
TG
2170}
2171
2172/*
cdd6c482 2173 * Attach a performance event to a context
0793a61d
TG
2174 */
2175static void
cdd6c482
IM
2176perf_install_in_context(struct perf_event_context *ctx,
2177 struct perf_event *event,
0793a61d
TG
2178 int cpu)
2179{
39a43640
PZ
2180 struct task_struct *task = NULL;
2181
fe4b04fa
PZ
2182 lockdep_assert_held(&ctx->mutex);
2183
c3f00c70 2184 event->ctx = ctx;
0cda4c02
YZ
2185 if (event->cpu != -1)
2186 event->cpu = cpu;
c3f00c70 2187
39a43640
PZ
2188 /*
2189 * Installing events is tricky because we cannot rely on ctx->is_active
2190 * to be set in case this is the nr_events 0 -> 1 transition.
2191 *
2192 * So what we do is we add the event to the list here, which will allow
2193 * a future context switch to DTRT and then send a racy IPI. If the IPI
2194 * fails to hit the right task, this means a context switch must have
2195 * happened and that will have taken care of business.
2196 */
2197 raw_spin_lock_irq(&ctx->lock);
63b6da39
PZ
2198 task = ctx->task;
2199 /*
2200 * Worse, we cannot even rely on the ctx actually existing anymore. If
2201 * between find_get_context() and perf_install_in_context() the task
2202 * went through perf_event_exit_task() its dead and we should not be
2203 * adding new events.
2204 */
2205 if (task == TASK_TOMBSTONE) {
2206 raw_spin_unlock_irq(&ctx->lock);
2207 return;
2208 }
39a43640
PZ
2209 update_context_time(ctx);
2210 /*
2211 * Update cgrp time only if current cgrp matches event->cgrp.
2212 * Must be done before calling add_event_to_ctx().
2213 */
2214 update_cgrp_time_from_event(event);
2215 add_event_to_ctx(event, ctx);
39a43640
PZ
2216 raw_spin_unlock_irq(&ctx->lock);
2217
2218 if (task)
2219 task_function_call(task, __perf_install_in_context, ctx);
2220 else
2221 cpu_function_call(cpu, __perf_install_in_context, ctx);
0793a61d
TG
2222}
2223
fa289bec 2224/*
cdd6c482 2225 * Put a event into inactive state and update time fields.
fa289bec
PM
2226 * Enabling the leader of a group effectively enables all
2227 * the group members that aren't explicitly disabled, so we
2228 * have to update their ->tstamp_enabled also.
2229 * Note: this works for group members as well as group leaders
2230 * since the non-leader members' sibling_lists will be empty.
2231 */
1d9b482e 2232static void __perf_event_mark_enabled(struct perf_event *event)
fa289bec 2233{
cdd6c482 2234 struct perf_event *sub;
4158755d 2235 u64 tstamp = perf_event_time(event);
fa289bec 2236
cdd6c482 2237 event->state = PERF_EVENT_STATE_INACTIVE;
4158755d 2238 event->tstamp_enabled = tstamp - event->total_time_enabled;
9ed6060d 2239 list_for_each_entry(sub, &event->sibling_list, group_entry) {
4158755d
SE
2240 if (sub->state >= PERF_EVENT_STATE_INACTIVE)
2241 sub->tstamp_enabled = tstamp - sub->total_time_enabled;
9ed6060d 2242 }
fa289bec
PM
2243}
2244
d859e29f 2245/*
cdd6c482 2246 * Cross CPU call to enable a performance event
d859e29f 2247 */
fae3fde6
PZ
2248static void __perf_event_enable(struct perf_event *event,
2249 struct perf_cpu_context *cpuctx,
2250 struct perf_event_context *ctx,
2251 void *info)
04289bb9 2252{
cdd6c482 2253 struct perf_event *leader = event->group_leader;
fae3fde6 2254 struct perf_event_context *task_ctx;
d859e29f 2255
cdd6c482 2256 if (event->state >= PERF_EVENT_STATE_INACTIVE)
fae3fde6 2257 return;
e5d1367f 2258
fae3fde6 2259 update_context_time(ctx);
1d9b482e 2260 __perf_event_mark_enabled(event);
04289bb9 2261
fae3fde6
PZ
2262 if (!ctx->is_active)
2263 return;
2264
e5d1367f 2265 if (!event_filter_match(event)) {
fae3fde6
PZ
2266 if (is_cgroup_event(event)) {
2267 perf_cgroup_set_timestamp(current, ctx); // XXX ?
e5d1367f 2268 perf_cgroup_defer_enabled(event);
fae3fde6
PZ
2269 }
2270 return;
e5d1367f 2271 }
f4c4176f 2272
04289bb9 2273 /*
cdd6c482 2274 * If the event is in a group and isn't the group leader,
d859e29f 2275 * then don't put it on unless the group is on.
04289bb9 2276 */
cdd6c482 2277 if (leader != event && leader->state != PERF_EVENT_STATE_ACTIVE)
fae3fde6 2278 return;
3b6f9e5c 2279
fae3fde6
PZ
2280 task_ctx = cpuctx->task_ctx;
2281 if (ctx->task)
2282 WARN_ON_ONCE(task_ctx != ctx);
d859e29f 2283
fae3fde6 2284 ctx_resched(cpuctx, task_ctx);
7b648018
PZ
2285}
2286
d859e29f 2287/*
cdd6c482 2288 * Enable a event.
c93f7669 2289 *
cdd6c482
IM
2290 * If event->ctx is a cloned context, callers must make sure that
2291 * every task struct that event->ctx->task could possibly point to
c93f7669 2292 * remains valid. This condition is satisfied when called through
cdd6c482
IM
2293 * perf_event_for_each_child or perf_event_for_each as described
2294 * for perf_event_disable.
d859e29f 2295 */
f63a8daa 2296static void _perf_event_enable(struct perf_event *event)
d859e29f 2297{
cdd6c482 2298 struct perf_event_context *ctx = event->ctx;
d859e29f 2299
7b648018
PZ
2300 raw_spin_lock_irq(&ctx->lock);
2301 if (event->state >= PERF_EVENT_STATE_INACTIVE) {
2302 raw_spin_unlock_irq(&ctx->lock);
d859e29f
PM
2303 return;
2304 }
2305
d859e29f 2306 /*
cdd6c482 2307 * If the event is in error state, clear that first.
7b648018
PZ
2308 *
2309 * That way, if we see the event in error state below, we know that it
2310 * has gone back into error state, as distinct from the task having
2311 * been scheduled away before the cross-call arrived.
d859e29f 2312 */
cdd6c482
IM
2313 if (event->state == PERF_EVENT_STATE_ERROR)
2314 event->state = PERF_EVENT_STATE_OFF;
e625cce1 2315 raw_spin_unlock_irq(&ctx->lock);
fe4b04fa 2316
fae3fde6 2317 event_function_call(event, __perf_event_enable, NULL);
d859e29f 2318}
f63a8daa
PZ
2319
2320/*
2321 * See perf_event_disable();
2322 */
2323void perf_event_enable(struct perf_event *event)
2324{
2325 struct perf_event_context *ctx;
2326
2327 ctx = perf_event_ctx_lock(event);
2328 _perf_event_enable(event);
2329 perf_event_ctx_unlock(event, ctx);
2330}
dcfce4a0 2331EXPORT_SYMBOL_GPL(perf_event_enable);
d859e29f 2332
f63a8daa 2333static int _perf_event_refresh(struct perf_event *event, int refresh)
79f14641 2334{
2023b359 2335 /*
cdd6c482 2336 * not supported on inherited events
2023b359 2337 */
2e939d1d 2338 if (event->attr.inherit || !is_sampling_event(event))
2023b359
PZ
2339 return -EINVAL;
2340
cdd6c482 2341 atomic_add(refresh, &event->event_limit);
f63a8daa 2342 _perf_event_enable(event);
2023b359
PZ
2343
2344 return 0;
79f14641 2345}
f63a8daa
PZ
2346
2347/*
2348 * See perf_event_disable()
2349 */
2350int perf_event_refresh(struct perf_event *event, int refresh)
2351{
2352 struct perf_event_context *ctx;
2353 int ret;
2354
2355 ctx = perf_event_ctx_lock(event);
2356 ret = _perf_event_refresh(event, refresh);
2357 perf_event_ctx_unlock(event, ctx);
2358
2359 return ret;
2360}
26ca5c11 2361EXPORT_SYMBOL_GPL(perf_event_refresh);
79f14641 2362
5b0311e1
FW
2363static void ctx_sched_out(struct perf_event_context *ctx,
2364 struct perf_cpu_context *cpuctx,
2365 enum event_type_t event_type)
235c7fc7 2366{
db24d33e 2367 int is_active = ctx->is_active;
c994d613
PZ
2368 struct perf_event *event;
2369
2370 lockdep_assert_held(&ctx->lock);
235c7fc7 2371
39a43640
PZ
2372 if (likely(!ctx->nr_events)) {
2373 /*
2374 * See __perf_remove_from_context().
2375 */
2376 WARN_ON_ONCE(ctx->is_active);
2377 if (ctx->task)
2378 WARN_ON_ONCE(cpuctx->task_ctx);
2379 return;
2380 }
2381
db24d33e 2382 ctx->is_active &= ~event_type;
63e30d3e
PZ
2383 if (ctx->task) {
2384 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2385 if (!ctx->is_active)
2386 cpuctx->task_ctx = NULL;
2387 }
2388
4af4998b 2389 update_context_time(ctx);
e5d1367f 2390 update_cgrp_time_from_cpuctx(cpuctx);
5b0311e1 2391 if (!ctx->nr_active)
facc4307 2392 return;
5b0311e1 2393
075e0b00 2394 perf_pmu_disable(ctx->pmu);
db24d33e 2395 if ((is_active & EVENT_PINNED) && (event_type & EVENT_PINNED)) {
889ff015
FW
2396 list_for_each_entry(event, &ctx->pinned_groups, group_entry)
2397 group_sched_out(event, cpuctx, ctx);
9ed6060d 2398 }
889ff015 2399
db24d33e 2400 if ((is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE)) {
889ff015 2401 list_for_each_entry(event, &ctx->flexible_groups, group_entry)
8c9ed8e1 2402 group_sched_out(event, cpuctx, ctx);
9ed6060d 2403 }
1b9a644f 2404 perf_pmu_enable(ctx->pmu);
235c7fc7
IM
2405}
2406
564c2b21 2407/*
5a3126d4
PZ
2408 * Test whether two contexts are equivalent, i.e. whether they have both been
2409 * cloned from the same version of the same context.
2410 *
2411 * Equivalence is measured using a generation number in the context that is
2412 * incremented on each modification to it; see unclone_ctx(), list_add_event()
2413 * and list_del_event().
564c2b21 2414 */
cdd6c482
IM
2415static int context_equiv(struct perf_event_context *ctx1,
2416 struct perf_event_context *ctx2)
564c2b21 2417{
211de6eb
PZ
2418 lockdep_assert_held(&ctx1->lock);
2419 lockdep_assert_held(&ctx2->lock);
2420
5a3126d4
PZ
2421 /* Pinning disables the swap optimization */
2422 if (ctx1->pin_count || ctx2->pin_count)
2423 return 0;
2424
2425 /* If ctx1 is the parent of ctx2 */
2426 if (ctx1 == ctx2->parent_ctx && ctx1->generation == ctx2->parent_gen)
2427 return 1;
2428
2429 /* If ctx2 is the parent of ctx1 */
2430 if (ctx1->parent_ctx == ctx2 && ctx1->parent_gen == ctx2->generation)
2431 return 1;
2432
2433 /*
2434 * If ctx1 and ctx2 have the same parent; we flatten the parent
2435 * hierarchy, see perf_event_init_context().
2436 */
2437 if (ctx1->parent_ctx && ctx1->parent_ctx == ctx2->parent_ctx &&
2438 ctx1->parent_gen == ctx2->parent_gen)
2439 return 1;
2440
2441 /* Unmatched */
2442 return 0;
564c2b21
PM
2443}
2444
cdd6c482
IM
2445static void __perf_event_sync_stat(struct perf_event *event,
2446 struct perf_event *next_event)
bfbd3381
PZ
2447{
2448 u64 value;
2449
cdd6c482 2450 if (!event->attr.inherit_stat)
bfbd3381
PZ
2451 return;
2452
2453 /*
cdd6c482 2454 * Update the event value, we cannot use perf_event_read()
bfbd3381
PZ
2455 * because we're in the middle of a context switch and have IRQs
2456 * disabled, which upsets smp_call_function_single(), however
cdd6c482 2457 * we know the event must be on the current CPU, therefore we
bfbd3381
PZ
2458 * don't need to use it.
2459 */
cdd6c482
IM
2460 switch (event->state) {
2461 case PERF_EVENT_STATE_ACTIVE:
3dbebf15
PZ
2462 event->pmu->read(event);
2463 /* fall-through */
bfbd3381 2464
cdd6c482
IM
2465 case PERF_EVENT_STATE_INACTIVE:
2466 update_event_times(event);
bfbd3381
PZ
2467 break;
2468
2469 default:
2470 break;
2471 }
2472
2473 /*
cdd6c482 2474 * In order to keep per-task stats reliable we need to flip the event
bfbd3381
PZ
2475 * values when we flip the contexts.
2476 */
e7850595
PZ
2477 value = local64_read(&next_event->count);
2478 value = local64_xchg(&event->count, value);
2479 local64_set(&next_event->count, value);
bfbd3381 2480
cdd6c482
IM
2481 swap(event->total_time_enabled, next_event->total_time_enabled);
2482 swap(event->total_time_running, next_event->total_time_running);
19d2e755 2483
bfbd3381 2484 /*
19d2e755 2485 * Since we swizzled the values, update the user visible data too.
bfbd3381 2486 */
cdd6c482
IM
2487 perf_event_update_userpage(event);
2488 perf_event_update_userpage(next_event);
bfbd3381
PZ
2489}
2490
cdd6c482
IM
2491static void perf_event_sync_stat(struct perf_event_context *ctx,
2492 struct perf_event_context *next_ctx)
bfbd3381 2493{
cdd6c482 2494 struct perf_event *event, *next_event;
bfbd3381
PZ
2495
2496 if (!ctx->nr_stat)
2497 return;
2498
02ffdbc8
PZ
2499 update_context_time(ctx);
2500
cdd6c482
IM
2501 event = list_first_entry(&ctx->event_list,
2502 struct perf_event, event_entry);
bfbd3381 2503
cdd6c482
IM
2504 next_event = list_first_entry(&next_ctx->event_list,
2505 struct perf_event, event_entry);
bfbd3381 2506
cdd6c482
IM
2507 while (&event->event_entry != &ctx->event_list &&
2508 &next_event->event_entry != &next_ctx->event_list) {
bfbd3381 2509
cdd6c482 2510 __perf_event_sync_stat(event, next_event);
bfbd3381 2511
cdd6c482
IM
2512 event = list_next_entry(event, event_entry);
2513 next_event = list_next_entry(next_event, event_entry);
bfbd3381
PZ
2514 }
2515}
2516
fe4b04fa
PZ
2517static void perf_event_context_sched_out(struct task_struct *task, int ctxn,
2518 struct task_struct *next)
0793a61d 2519{
8dc85d54 2520 struct perf_event_context *ctx = task->perf_event_ctxp[ctxn];
cdd6c482 2521 struct perf_event_context *next_ctx;
5a3126d4 2522 struct perf_event_context *parent, *next_parent;
108b02cf 2523 struct perf_cpu_context *cpuctx;
c93f7669 2524 int do_switch = 1;
0793a61d 2525
108b02cf
PZ
2526 if (likely(!ctx))
2527 return;
10989fb2 2528
108b02cf
PZ
2529 cpuctx = __get_cpu_context(ctx);
2530 if (!cpuctx->task_ctx)
0793a61d
TG
2531 return;
2532
c93f7669 2533 rcu_read_lock();
8dc85d54 2534 next_ctx = next->perf_event_ctxp[ctxn];
5a3126d4
PZ
2535 if (!next_ctx)
2536 goto unlock;
2537
2538 parent = rcu_dereference(ctx->parent_ctx);
2539 next_parent = rcu_dereference(next_ctx->parent_ctx);
2540
2541 /* If neither context have a parent context; they cannot be clones. */
802c8a61 2542 if (!parent && !next_parent)
5a3126d4
PZ
2543 goto unlock;
2544
2545 if (next_parent == ctx || next_ctx == parent || next_parent == parent) {
c93f7669
PM
2546 /*
2547 * Looks like the two contexts are clones, so we might be
2548 * able to optimize the context switch. We lock both
2549 * contexts and check that they are clones under the
2550 * lock (including re-checking that neither has been
2551 * uncloned in the meantime). It doesn't matter which
2552 * order we take the locks because no other cpu could
2553 * be trying to lock both of these tasks.
2554 */
e625cce1
TG
2555 raw_spin_lock(&ctx->lock);
2556 raw_spin_lock_nested(&next_ctx->lock, SINGLE_DEPTH_NESTING);
c93f7669 2557 if (context_equiv(ctx, next_ctx)) {
63b6da39
PZ
2558 WRITE_ONCE(ctx->task, next);
2559 WRITE_ONCE(next_ctx->task, task);
5a158c3c
YZ
2560
2561 swap(ctx->task_ctx_data, next_ctx->task_ctx_data);
2562
63b6da39
PZ
2563 /*
2564 * RCU_INIT_POINTER here is safe because we've not
2565 * modified the ctx and the above modification of
2566 * ctx->task and ctx->task_ctx_data are immaterial
2567 * since those values are always verified under
2568 * ctx->lock which we're now holding.
2569 */
2570 RCU_INIT_POINTER(task->perf_event_ctxp[ctxn], next_ctx);
2571 RCU_INIT_POINTER(next->perf_event_ctxp[ctxn], ctx);
2572
c93f7669 2573 do_switch = 0;
bfbd3381 2574
cdd6c482 2575 perf_event_sync_stat(ctx, next_ctx);
c93f7669 2576 }
e625cce1
TG
2577 raw_spin_unlock(&next_ctx->lock);
2578 raw_spin_unlock(&ctx->lock);
564c2b21 2579 }
5a3126d4 2580unlock:
c93f7669 2581 rcu_read_unlock();
564c2b21 2582
c93f7669 2583 if (do_switch) {
facc4307 2584 raw_spin_lock(&ctx->lock);
8833d0e2 2585 task_ctx_sched_out(cpuctx, ctx);
facc4307 2586 raw_spin_unlock(&ctx->lock);
c93f7669 2587 }
0793a61d
TG
2588}
2589
ba532500
YZ
2590void perf_sched_cb_dec(struct pmu *pmu)
2591{
2592 this_cpu_dec(perf_sched_cb_usages);
2593}
2594
2595void perf_sched_cb_inc(struct pmu *pmu)
2596{
2597 this_cpu_inc(perf_sched_cb_usages);
2598}
2599
2600/*
2601 * This function provides the context switch callback to the lower code
2602 * layer. It is invoked ONLY when the context switch callback is enabled.
2603 */
2604static void perf_pmu_sched_task(struct task_struct *prev,
2605 struct task_struct *next,
2606 bool sched_in)
2607{
2608 struct perf_cpu_context *cpuctx;
2609 struct pmu *pmu;
2610 unsigned long flags;
2611
2612 if (prev == next)
2613 return;
2614
2615 local_irq_save(flags);
2616
2617 rcu_read_lock();
2618
2619 list_for_each_entry_rcu(pmu, &pmus, entry) {
2620 if (pmu->sched_task) {
2621 cpuctx = this_cpu_ptr(pmu->pmu_cpu_context);
2622
2623 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
2624
2625 perf_pmu_disable(pmu);
2626
2627 pmu->sched_task(cpuctx->task_ctx, sched_in);
2628
2629 perf_pmu_enable(pmu);
2630
2631 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
2632 }
2633 }
2634
2635 rcu_read_unlock();
2636
2637 local_irq_restore(flags);
2638}
2639
45ac1403
AH
2640static void perf_event_switch(struct task_struct *task,
2641 struct task_struct *next_prev, bool sched_in);
2642
8dc85d54
PZ
2643#define for_each_task_context_nr(ctxn) \
2644 for ((ctxn) = 0; (ctxn) < perf_nr_task_contexts; (ctxn)++)
2645
2646/*
2647 * Called from scheduler to remove the events of the current task,
2648 * with interrupts disabled.
2649 *
2650 * We stop each event and update the event value in event->count.
2651 *
2652 * This does not protect us against NMI, but disable()
2653 * sets the disabled bit in the control field of event _before_
2654 * accessing the event control register. If a NMI hits, then it will
2655 * not restart the event.
2656 */
ab0cce56
JO
2657void __perf_event_task_sched_out(struct task_struct *task,
2658 struct task_struct *next)
8dc85d54
PZ
2659{
2660 int ctxn;
2661
ba532500
YZ
2662 if (__this_cpu_read(perf_sched_cb_usages))
2663 perf_pmu_sched_task(task, next, false);
2664
45ac1403
AH
2665 if (atomic_read(&nr_switch_events))
2666 perf_event_switch(task, next, false);
2667
8dc85d54
PZ
2668 for_each_task_context_nr(ctxn)
2669 perf_event_context_sched_out(task, ctxn, next);
e5d1367f
SE
2670
2671 /*
2672 * if cgroup events exist on this CPU, then we need
2673 * to check if we have to switch out PMU state.
2674 * cgroup event are system-wide mode only
2675 */
4a32fea9 2676 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
a8d757ef 2677 perf_cgroup_sched_out(task, next);
8dc85d54
PZ
2678}
2679
3e349507
PZ
2680static void task_ctx_sched_out(struct perf_cpu_context *cpuctx,
2681 struct perf_event_context *ctx)
a08b159f 2682{
a63eaf34
PM
2683 if (!cpuctx->task_ctx)
2684 return;
012b84da
IM
2685
2686 if (WARN_ON_ONCE(ctx != cpuctx->task_ctx))
2687 return;
2688
04dc2dbb 2689 ctx_sched_out(ctx, cpuctx, EVENT_ALL);
a08b159f
PM
2690}
2691
5b0311e1
FW
2692/*
2693 * Called with IRQs disabled
2694 */
2695static void cpu_ctx_sched_out(struct perf_cpu_context *cpuctx,
2696 enum event_type_t event_type)
2697{
2698 ctx_sched_out(&cpuctx->ctx, cpuctx, event_type);
04289bb9
IM
2699}
2700
235c7fc7 2701static void
5b0311e1 2702ctx_pinned_sched_in(struct perf_event_context *ctx,
6e37738a 2703 struct perf_cpu_context *cpuctx)
0793a61d 2704{
cdd6c482 2705 struct perf_event *event;
0793a61d 2706
889ff015
FW
2707 list_for_each_entry(event, &ctx->pinned_groups, group_entry) {
2708 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2709 continue;
5632ab12 2710 if (!event_filter_match(event))
3b6f9e5c
PM
2711 continue;
2712
e5d1367f
SE
2713 /* may need to reset tstamp_enabled */
2714 if (is_cgroup_event(event))
2715 perf_cgroup_mark_enabled(event, ctx);
2716
8c9ed8e1 2717 if (group_can_go_on(event, cpuctx, 1))
6e37738a 2718 group_sched_in(event, cpuctx, ctx);
3b6f9e5c
PM
2719
2720 /*
2721 * If this pinned group hasn't been scheduled,
2722 * put it in error state.
2723 */
cdd6c482
IM
2724 if (event->state == PERF_EVENT_STATE_INACTIVE) {
2725 update_group_times(event);
2726 event->state = PERF_EVENT_STATE_ERROR;
53cfbf59 2727 }
3b6f9e5c 2728 }
5b0311e1
FW
2729}
2730
2731static void
2732ctx_flexible_sched_in(struct perf_event_context *ctx,
6e37738a 2733 struct perf_cpu_context *cpuctx)
5b0311e1
FW
2734{
2735 struct perf_event *event;
2736 int can_add_hw = 1;
3b6f9e5c 2737
889ff015
FW
2738 list_for_each_entry(event, &ctx->flexible_groups, group_entry) {
2739 /* Ignore events in OFF or ERROR state */
2740 if (event->state <= PERF_EVENT_STATE_OFF)
3b6f9e5c 2741 continue;
04289bb9
IM
2742 /*
2743 * Listen to the 'cpu' scheduling filter constraint
cdd6c482 2744 * of events:
04289bb9 2745 */
5632ab12 2746 if (!event_filter_match(event))
0793a61d
TG
2747 continue;
2748
e5d1367f
SE
2749 /* may need to reset tstamp_enabled */
2750 if (is_cgroup_event(event))
2751 perf_cgroup_mark_enabled(event, ctx);
2752
9ed6060d 2753 if (group_can_go_on(event, cpuctx, can_add_hw)) {
6e37738a 2754 if (group_sched_in(event, cpuctx, ctx))
dd0e6ba2 2755 can_add_hw = 0;
9ed6060d 2756 }
0793a61d 2757 }
5b0311e1
FW
2758}
2759
2760static void
2761ctx_sched_in(struct perf_event_context *ctx,
2762 struct perf_cpu_context *cpuctx,
e5d1367f
SE
2763 enum event_type_t event_type,
2764 struct task_struct *task)
5b0311e1 2765{
db24d33e 2766 int is_active = ctx->is_active;
c994d613
PZ
2767 u64 now;
2768
2769 lockdep_assert_held(&ctx->lock);
e5d1367f 2770
39a43640
PZ
2771 if (likely(!ctx->nr_events))
2772 return;
2773
db24d33e 2774 ctx->is_active |= event_type;
63e30d3e
PZ
2775 if (ctx->task) {
2776 if (!is_active)
2777 cpuctx->task_ctx = ctx;
2778 else
2779 WARN_ON_ONCE(cpuctx->task_ctx != ctx);
2780 }
2781
e5d1367f
SE
2782 now = perf_clock();
2783 ctx->timestamp = now;
3f7cce3c 2784 perf_cgroup_set_timestamp(task, ctx);
5b0311e1
FW
2785 /*
2786 * First go through the list and put on any pinned groups
2787 * in order to give them the best chance of going on.
2788 */
db24d33e 2789 if (!(is_active & EVENT_PINNED) && (event_type & EVENT_PINNED))
6e37738a 2790 ctx_pinned_sched_in(ctx, cpuctx);
5b0311e1
FW
2791
2792 /* Then walk through the lower prio flexible groups */
db24d33e 2793 if (!(is_active & EVENT_FLEXIBLE) && (event_type & EVENT_FLEXIBLE))
6e37738a 2794 ctx_flexible_sched_in(ctx, cpuctx);
235c7fc7
IM
2795}
2796
329c0e01 2797static void cpu_ctx_sched_in(struct perf_cpu_context *cpuctx,
e5d1367f
SE
2798 enum event_type_t event_type,
2799 struct task_struct *task)
329c0e01
FW
2800{
2801 struct perf_event_context *ctx = &cpuctx->ctx;
2802
e5d1367f 2803 ctx_sched_in(ctx, cpuctx, event_type, task);
329c0e01
FW
2804}
2805
e5d1367f
SE
2806static void perf_event_context_sched_in(struct perf_event_context *ctx,
2807 struct task_struct *task)
235c7fc7 2808{
108b02cf 2809 struct perf_cpu_context *cpuctx;
235c7fc7 2810
108b02cf 2811 cpuctx = __get_cpu_context(ctx);
329c0e01
FW
2812 if (cpuctx->task_ctx == ctx)
2813 return;
2814
facc4307 2815 perf_ctx_lock(cpuctx, ctx);
1b9a644f 2816 perf_pmu_disable(ctx->pmu);
329c0e01
FW
2817 /*
2818 * We want to keep the following priority order:
2819 * cpu pinned (that don't need to move), task pinned,
2820 * cpu flexible, task flexible.
2821 */
2822 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
63e30d3e 2823 perf_event_sched_in(cpuctx, ctx, task);
facc4307
PZ
2824 perf_pmu_enable(ctx->pmu);
2825 perf_ctx_unlock(cpuctx, ctx);
235c7fc7
IM
2826}
2827
8dc85d54
PZ
2828/*
2829 * Called from scheduler to add the events of the current task
2830 * with interrupts disabled.
2831 *
2832 * We restore the event value and then enable it.
2833 *
2834 * This does not protect us against NMI, but enable()
2835 * sets the enabled bit in the control field of event _before_
2836 * accessing the event control register. If a NMI hits, then it will
2837 * keep the event running.
2838 */
ab0cce56
JO
2839void __perf_event_task_sched_in(struct task_struct *prev,
2840 struct task_struct *task)
8dc85d54
PZ
2841{
2842 struct perf_event_context *ctx;
2843 int ctxn;
2844
7e41d177
PZ
2845 /*
2846 * If cgroup events exist on this CPU, then we need to check if we have
2847 * to switch in PMU state; cgroup event are system-wide mode only.
2848 *
2849 * Since cgroup events are CPU events, we must schedule these in before
2850 * we schedule in the task events.
2851 */
2852 if (atomic_read(this_cpu_ptr(&perf_cgroup_events)))
2853 perf_cgroup_sched_in(prev, task);
2854
8dc85d54
PZ
2855 for_each_task_context_nr(ctxn) {
2856 ctx = task->perf_event_ctxp[ctxn];
2857 if (likely(!ctx))
2858 continue;
2859
e5d1367f 2860 perf_event_context_sched_in(ctx, task);
8dc85d54 2861 }
d010b332 2862
45ac1403
AH
2863 if (atomic_read(&nr_switch_events))
2864 perf_event_switch(task, prev, true);
2865
ba532500
YZ
2866 if (__this_cpu_read(perf_sched_cb_usages))
2867 perf_pmu_sched_task(prev, task, true);
235c7fc7
IM
2868}
2869
abd50713
PZ
2870static u64 perf_calculate_period(struct perf_event *event, u64 nsec, u64 count)
2871{
2872 u64 frequency = event->attr.sample_freq;
2873 u64 sec = NSEC_PER_SEC;
2874 u64 divisor, dividend;
2875
2876 int count_fls, nsec_fls, frequency_fls, sec_fls;
2877
2878 count_fls = fls64(count);
2879 nsec_fls = fls64(nsec);
2880 frequency_fls = fls64(frequency);
2881 sec_fls = 30;
2882
2883 /*
2884 * We got @count in @nsec, with a target of sample_freq HZ
2885 * the target period becomes:
2886 *
2887 * @count * 10^9
2888 * period = -------------------
2889 * @nsec * sample_freq
2890 *
2891 */
2892
2893 /*
2894 * Reduce accuracy by one bit such that @a and @b converge
2895 * to a similar magnitude.
2896 */
fe4b04fa 2897#define REDUCE_FLS(a, b) \
abd50713
PZ
2898do { \
2899 if (a##_fls > b##_fls) { \
2900 a >>= 1; \
2901 a##_fls--; \
2902 } else { \
2903 b >>= 1; \
2904 b##_fls--; \
2905 } \
2906} while (0)
2907
2908 /*
2909 * Reduce accuracy until either term fits in a u64, then proceed with
2910 * the other, so that finally we can do a u64/u64 division.
2911 */
2912 while (count_fls + sec_fls > 64 && nsec_fls + frequency_fls > 64) {
2913 REDUCE_FLS(nsec, frequency);
2914 REDUCE_FLS(sec, count);
2915 }
2916
2917 if (count_fls + sec_fls > 64) {
2918 divisor = nsec * frequency;
2919
2920 while (count_fls + sec_fls > 64) {
2921 REDUCE_FLS(count, sec);
2922 divisor >>= 1;
2923 }
2924
2925 dividend = count * sec;
2926 } else {
2927 dividend = count * sec;
2928
2929 while (nsec_fls + frequency_fls > 64) {
2930 REDUCE_FLS(nsec, frequency);
2931 dividend >>= 1;
2932 }
2933
2934 divisor = nsec * frequency;
2935 }
2936
f6ab91ad
PZ
2937 if (!divisor)
2938 return dividend;
2939
abd50713
PZ
2940 return div64_u64(dividend, divisor);
2941}
2942
e050e3f0
SE
2943static DEFINE_PER_CPU(int, perf_throttled_count);
2944static DEFINE_PER_CPU(u64, perf_throttled_seq);
2945
f39d47ff 2946static void perf_adjust_period(struct perf_event *event, u64 nsec, u64 count, bool disable)
bd2b5b12 2947{
cdd6c482 2948 struct hw_perf_event *hwc = &event->hw;
f6ab91ad 2949 s64 period, sample_period;
bd2b5b12
PZ
2950 s64 delta;
2951
abd50713 2952 period = perf_calculate_period(event, nsec, count);
bd2b5b12
PZ
2953
2954 delta = (s64)(period - hwc->sample_period);
2955 delta = (delta + 7) / 8; /* low pass filter */
2956
2957 sample_period = hwc->sample_period + delta;
2958
2959 if (!sample_period)
2960 sample_period = 1;
2961
bd2b5b12 2962 hwc->sample_period = sample_period;
abd50713 2963
e7850595 2964 if (local64_read(&hwc->period_left) > 8*sample_period) {
f39d47ff
SE
2965 if (disable)
2966 event->pmu->stop(event, PERF_EF_UPDATE);
2967
e7850595 2968 local64_set(&hwc->period_left, 0);
f39d47ff
SE
2969
2970 if (disable)
2971 event->pmu->start(event, PERF_EF_RELOAD);
abd50713 2972 }
bd2b5b12
PZ
2973}
2974
e050e3f0
SE
2975/*
2976 * combine freq adjustment with unthrottling to avoid two passes over the
2977 * events. At the same time, make sure, having freq events does not change
2978 * the rate of unthrottling as that would introduce bias.
2979 */
2980static void perf_adjust_freq_unthr_context(struct perf_event_context *ctx,
2981 int needs_unthr)
60db5e09 2982{
cdd6c482
IM
2983 struct perf_event *event;
2984 struct hw_perf_event *hwc;
e050e3f0 2985 u64 now, period = TICK_NSEC;
abd50713 2986 s64 delta;
60db5e09 2987
e050e3f0
SE
2988 /*
2989 * only need to iterate over all events iff:
2990 * - context have events in frequency mode (needs freq adjust)
2991 * - there are events to unthrottle on this cpu
2992 */
2993 if (!(ctx->nr_freq || needs_unthr))
0f5a2601
PZ
2994 return;
2995
e050e3f0 2996 raw_spin_lock(&ctx->lock);
f39d47ff 2997 perf_pmu_disable(ctx->pmu);
e050e3f0 2998
03541f8b 2999 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
cdd6c482 3000 if (event->state != PERF_EVENT_STATE_ACTIVE)
60db5e09
PZ
3001 continue;
3002
5632ab12 3003 if (!event_filter_match(event))
5d27c23d
PZ
3004 continue;
3005
44377277
AS
3006 perf_pmu_disable(event->pmu);
3007
cdd6c482 3008 hwc = &event->hw;
6a24ed6c 3009
ae23bff1 3010 if (hwc->interrupts == MAX_INTERRUPTS) {
e050e3f0 3011 hwc->interrupts = 0;
cdd6c482 3012 perf_log_throttle(event, 1);
a4eaf7f1 3013 event->pmu->start(event, 0);
a78ac325
PZ
3014 }
3015
cdd6c482 3016 if (!event->attr.freq || !event->attr.sample_freq)
44377277 3017 goto next;
60db5e09 3018
e050e3f0
SE
3019 /*
3020 * stop the event and update event->count
3021 */
3022 event->pmu->stop(event, PERF_EF_UPDATE);
3023
e7850595 3024 now = local64_read(&event->count);
abd50713
PZ
3025 delta = now - hwc->freq_count_stamp;
3026 hwc->freq_count_stamp = now;
60db5e09 3027
e050e3f0
SE
3028 /*
3029 * restart the event
3030 * reload only if value has changed
f39d47ff
SE
3031 * we have stopped the event so tell that
3032 * to perf_adjust_period() to avoid stopping it
3033 * twice.
e050e3f0 3034 */
abd50713 3035 if (delta > 0)
f39d47ff 3036 perf_adjust_period(event, period, delta, false);
e050e3f0
SE
3037
3038 event->pmu->start(event, delta > 0 ? PERF_EF_RELOAD : 0);
44377277
AS
3039 next:
3040 perf_pmu_enable(event->pmu);
60db5e09 3041 }
e050e3f0 3042
f39d47ff 3043 perf_pmu_enable(ctx->pmu);
e050e3f0 3044 raw_spin_unlock(&ctx->lock);
60db5e09
PZ
3045}
3046
235c7fc7 3047/*
cdd6c482 3048 * Round-robin a context's events:
235c7fc7 3049 */
cdd6c482 3050static void rotate_ctx(struct perf_event_context *ctx)
0793a61d 3051{
dddd3379
TG
3052 /*
3053 * Rotate the first entry last of non-pinned groups. Rotation might be
3054 * disabled by the inheritance code.
3055 */
3056 if (!ctx->rotate_disable)
3057 list_rotate_left(&ctx->flexible_groups);
235c7fc7
IM
3058}
3059
9e630205 3060static int perf_rotate_context(struct perf_cpu_context *cpuctx)
235c7fc7 3061{
8dc85d54 3062 struct perf_event_context *ctx = NULL;
2fde4f94 3063 int rotate = 0;
7fc23a53 3064
b5ab4cd5 3065 if (cpuctx->ctx.nr_events) {
b5ab4cd5
PZ
3066 if (cpuctx->ctx.nr_events != cpuctx->ctx.nr_active)
3067 rotate = 1;
3068 }
235c7fc7 3069
8dc85d54 3070 ctx = cpuctx->task_ctx;
b5ab4cd5 3071 if (ctx && ctx->nr_events) {
b5ab4cd5
PZ
3072 if (ctx->nr_events != ctx->nr_active)
3073 rotate = 1;
3074 }
9717e6cd 3075
e050e3f0 3076 if (!rotate)
0f5a2601
PZ
3077 goto done;
3078
facc4307 3079 perf_ctx_lock(cpuctx, cpuctx->task_ctx);
1b9a644f 3080 perf_pmu_disable(cpuctx->ctx.pmu);
60db5e09 3081
e050e3f0
SE
3082 cpu_ctx_sched_out(cpuctx, EVENT_FLEXIBLE);
3083 if (ctx)
3084 ctx_sched_out(ctx, cpuctx, EVENT_FLEXIBLE);
0793a61d 3085
e050e3f0
SE
3086 rotate_ctx(&cpuctx->ctx);
3087 if (ctx)
3088 rotate_ctx(ctx);
235c7fc7 3089
e050e3f0 3090 perf_event_sched_in(cpuctx, ctx, current);
235c7fc7 3091
0f5a2601
PZ
3092 perf_pmu_enable(cpuctx->ctx.pmu);
3093 perf_ctx_unlock(cpuctx, cpuctx->task_ctx);
b5ab4cd5 3094done:
9e630205
SE
3095
3096 return rotate;
e9d2b064
PZ
3097}
3098
026249ef
FW
3099#ifdef CONFIG_NO_HZ_FULL
3100bool perf_event_can_stop_tick(void)
3101{
948b26b6 3102 if (atomic_read(&nr_freq_events) ||
d84153d6 3103 __this_cpu_read(perf_throttled_count))
026249ef 3104 return false;
d84153d6
FW
3105 else
3106 return true;
026249ef
FW
3107}
3108#endif
3109
e9d2b064
PZ
3110void perf_event_task_tick(void)
3111{
2fde4f94
MR
3112 struct list_head *head = this_cpu_ptr(&active_ctx_list);
3113 struct perf_event_context *ctx, *tmp;
e050e3f0 3114 int throttled;
b5ab4cd5 3115
e9d2b064
PZ
3116 WARN_ON(!irqs_disabled());
3117
e050e3f0
SE
3118 __this_cpu_inc(perf_throttled_seq);
3119 throttled = __this_cpu_xchg(perf_throttled_count, 0);
3120
2fde4f94 3121 list_for_each_entry_safe(ctx, tmp, head, active_ctx_list)
e050e3f0 3122 perf_adjust_freq_unthr_context(ctx, throttled);
0793a61d
TG
3123}
3124
889ff015
FW
3125static int event_enable_on_exec(struct perf_event *event,
3126 struct perf_event_context *ctx)
3127{
3128 if (!event->attr.enable_on_exec)
3129 return 0;
3130
3131 event->attr.enable_on_exec = 0;
3132 if (event->state >= PERF_EVENT_STATE_INACTIVE)
3133 return 0;
3134
1d9b482e 3135 __perf_event_mark_enabled(event);
889ff015
FW
3136
3137 return 1;
3138}
3139
57e7986e 3140/*
cdd6c482 3141 * Enable all of a task's events that have been marked enable-on-exec.
57e7986e
PM
3142 * This expects task == current.
3143 */
c1274499 3144static void perf_event_enable_on_exec(int ctxn)
57e7986e 3145{
c1274499 3146 struct perf_event_context *ctx, *clone_ctx = NULL;
3e349507 3147 struct perf_cpu_context *cpuctx;
cdd6c482 3148 struct perf_event *event;
57e7986e
PM
3149 unsigned long flags;
3150 int enabled = 0;
3151
3152 local_irq_save(flags);
c1274499 3153 ctx = current->perf_event_ctxp[ctxn];
cdd6c482 3154 if (!ctx || !ctx->nr_events)
57e7986e
PM
3155 goto out;
3156
3e349507
PZ
3157 cpuctx = __get_cpu_context(ctx);
3158 perf_ctx_lock(cpuctx, ctx);
3159 list_for_each_entry(event, &ctx->event_list, event_entry)
3160 enabled |= event_enable_on_exec(event, ctx);
57e7986e
PM
3161
3162 /*
3e349507 3163 * Unclone and reschedule this context if we enabled any event.
57e7986e 3164 */
3e349507 3165 if (enabled) {
211de6eb 3166 clone_ctx = unclone_ctx(ctx);
3e349507
PZ
3167 ctx_resched(cpuctx, ctx);
3168 }
3169 perf_ctx_unlock(cpuctx, ctx);
57e7986e 3170
9ed6060d 3171out:
57e7986e 3172 local_irq_restore(flags);
211de6eb
PZ
3173
3174 if (clone_ctx)
3175 put_ctx(clone_ctx);
57e7986e
PM
3176}
3177
e041e328
PZ
3178void perf_event_exec(void)
3179{
e041e328
PZ
3180 int ctxn;
3181
3182 rcu_read_lock();
c1274499
PZ
3183 for_each_task_context_nr(ctxn)
3184 perf_event_enable_on_exec(ctxn);
e041e328
PZ
3185 rcu_read_unlock();
3186}
3187
0492d4c5
PZ
3188struct perf_read_data {
3189 struct perf_event *event;
3190 bool group;
7d88962e 3191 int ret;
0492d4c5
PZ
3192};
3193
0793a61d 3194/*
cdd6c482 3195 * Cross CPU call to read the hardware event
0793a61d 3196 */
cdd6c482 3197static void __perf_event_read(void *info)
0793a61d 3198{
0492d4c5
PZ
3199 struct perf_read_data *data = info;
3200 struct perf_event *sub, *event = data->event;
cdd6c482 3201 struct perf_event_context *ctx = event->ctx;
108b02cf 3202 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
4a00c16e 3203 struct pmu *pmu = event->pmu;
621a01ea 3204
e1ac3614
PM
3205 /*
3206 * If this is a task context, we need to check whether it is
3207 * the current task context of this cpu. If not it has been
3208 * scheduled out before the smp call arrived. In that case
cdd6c482
IM
3209 * event->count would have been updated to a recent sample
3210 * when the event was scheduled out.
e1ac3614
PM
3211 */
3212 if (ctx->task && cpuctx->task_ctx != ctx)
3213 return;
3214
e625cce1 3215 raw_spin_lock(&ctx->lock);
e5d1367f 3216 if (ctx->is_active) {
542e72fc 3217 update_context_time(ctx);
e5d1367f
SE
3218 update_cgrp_time_from_event(event);
3219 }
0492d4c5 3220
cdd6c482 3221 update_event_times(event);
4a00c16e
SB
3222 if (event->state != PERF_EVENT_STATE_ACTIVE)
3223 goto unlock;
0492d4c5 3224
4a00c16e
SB
3225 if (!data->group) {
3226 pmu->read(event);
3227 data->ret = 0;
0492d4c5 3228 goto unlock;
4a00c16e
SB
3229 }
3230
3231 pmu->start_txn(pmu, PERF_PMU_TXN_READ);
3232
3233 pmu->read(event);
0492d4c5
PZ
3234
3235 list_for_each_entry(sub, &event->sibling_list, group_entry) {
3236 update_event_times(sub);
4a00c16e
SB
3237 if (sub->state == PERF_EVENT_STATE_ACTIVE) {
3238 /*
3239 * Use sibling's PMU rather than @event's since
3240 * sibling could be on different (eg: software) PMU.
3241 */
0492d4c5 3242 sub->pmu->read(sub);
4a00c16e 3243 }
0492d4c5 3244 }
4a00c16e
SB
3245
3246 data->ret = pmu->commit_txn(pmu);
0492d4c5
PZ
3247
3248unlock:
e625cce1 3249 raw_spin_unlock(&ctx->lock);
0793a61d
TG
3250}
3251
b5e58793
PZ
3252static inline u64 perf_event_count(struct perf_event *event)
3253{
eacd3ecc
MF
3254 if (event->pmu->count)
3255 return event->pmu->count(event);
3256
3257 return __perf_event_count(event);
b5e58793
PZ
3258}
3259
ffe8690c
KX
3260/*
3261 * NMI-safe method to read a local event, that is an event that
3262 * is:
3263 * - either for the current task, or for this CPU
3264 * - does not have inherit set, for inherited task events
3265 * will not be local and we cannot read them atomically
3266 * - must not have a pmu::count method
3267 */
3268u64 perf_event_read_local(struct perf_event *event)
3269{
3270 unsigned long flags;
3271 u64 val;
3272
3273 /*
3274 * Disabling interrupts avoids all counter scheduling (context
3275 * switches, timer based rotation and IPIs).
3276 */
3277 local_irq_save(flags);
3278
3279 /* If this is a per-task event, it must be for current */
3280 WARN_ON_ONCE((event->attach_state & PERF_ATTACH_TASK) &&
3281 event->hw.target != current);
3282
3283 /* If this is a per-CPU event, it must be for this CPU */
3284 WARN_ON_ONCE(!(event->attach_state & PERF_ATTACH_TASK) &&
3285 event->cpu != smp_processor_id());
3286
3287 /*
3288 * It must not be an event with inherit set, we cannot read
3289 * all child counters from atomic context.
3290 */
3291 WARN_ON_ONCE(event->attr.inherit);
3292
3293 /*
3294 * It must not have a pmu::count method, those are not
3295 * NMI safe.
3296 */
3297 WARN_ON_ONCE(event->pmu->count);
3298
3299 /*
3300 * If the event is currently on this CPU, its either a per-task event,
3301 * or local to this CPU. Furthermore it means its ACTIVE (otherwise
3302 * oncpu == -1).
3303 */
3304 if (event->oncpu == smp_processor_id())
3305 event->pmu->read(event);
3306
3307 val = local64_read(&event->count);
3308 local_irq_restore(flags);
3309
3310 return val;
3311}
3312
7d88962e 3313static int perf_event_read(struct perf_event *event, bool group)
0793a61d 3314{
7d88962e
SB
3315 int ret = 0;
3316
0793a61d 3317 /*
cdd6c482
IM
3318 * If event is enabled and currently active on a CPU, update the
3319 * value in the event structure:
0793a61d 3320 */
cdd6c482 3321 if (event->state == PERF_EVENT_STATE_ACTIVE) {
0492d4c5
PZ
3322 struct perf_read_data data = {
3323 .event = event,
3324 .group = group,
7d88962e 3325 .ret = 0,
0492d4c5 3326 };
cdd6c482 3327 smp_call_function_single(event->oncpu,
0492d4c5 3328 __perf_event_read, &data, 1);
7d88962e 3329 ret = data.ret;
cdd6c482 3330 } else if (event->state == PERF_EVENT_STATE_INACTIVE) {
2b8988c9
PZ
3331 struct perf_event_context *ctx = event->ctx;
3332 unsigned long flags;
3333
e625cce1 3334 raw_spin_lock_irqsave(&ctx->lock, flags);
c530ccd9
SE
3335 /*
3336 * may read while context is not active
3337 * (e.g., thread is blocked), in that case
3338 * we cannot update context time
3339 */
e5d1367f 3340 if (ctx->is_active) {
c530ccd9 3341 update_context_time(ctx);
e5d1367f
SE
3342 update_cgrp_time_from_event(event);
3343 }
0492d4c5
PZ
3344 if (group)
3345 update_group_times(event);
3346 else
3347 update_event_times(event);
e625cce1 3348 raw_spin_unlock_irqrestore(&ctx->lock, flags);
0793a61d 3349 }
7d88962e
SB
3350
3351 return ret;
0793a61d
TG
3352}
3353
a63eaf34 3354/*
cdd6c482 3355 * Initialize the perf_event context in a task_struct:
a63eaf34 3356 */
eb184479 3357static void __perf_event_init_context(struct perf_event_context *ctx)
a63eaf34 3358{
e625cce1 3359 raw_spin_lock_init(&ctx->lock);
a63eaf34 3360 mutex_init(&ctx->mutex);
2fde4f94 3361 INIT_LIST_HEAD(&ctx->active_ctx_list);
889ff015
FW
3362 INIT_LIST_HEAD(&ctx->pinned_groups);
3363 INIT_LIST_HEAD(&ctx->flexible_groups);
a63eaf34
PM
3364 INIT_LIST_HEAD(&ctx->event_list);
3365 atomic_set(&ctx->refcount, 1);
fadfe7be 3366 INIT_DELAYED_WORK(&ctx->orphans_remove, orphans_remove_work);
eb184479
PZ
3367}
3368
3369static struct perf_event_context *
3370alloc_perf_context(struct pmu *pmu, struct task_struct *task)
3371{
3372 struct perf_event_context *ctx;
3373
3374 ctx = kzalloc(sizeof(struct perf_event_context), GFP_KERNEL);
3375 if (!ctx)
3376 return NULL;
3377
3378 __perf_event_init_context(ctx);
3379 if (task) {
3380 ctx->task = task;
3381 get_task_struct(task);
0793a61d 3382 }
eb184479
PZ
3383 ctx->pmu = pmu;
3384
3385 return ctx;
a63eaf34
PM
3386}
3387
2ebd4ffb
MH
3388static struct task_struct *
3389find_lively_task_by_vpid(pid_t vpid)
3390{
3391 struct task_struct *task;
3392 int err;
0793a61d
TG
3393
3394 rcu_read_lock();
2ebd4ffb 3395 if (!vpid)
0793a61d
TG
3396 task = current;
3397 else
2ebd4ffb 3398 task = find_task_by_vpid(vpid);
0793a61d
TG
3399 if (task)
3400 get_task_struct(task);
3401 rcu_read_unlock();
3402
3403 if (!task)
3404 return ERR_PTR(-ESRCH);
3405
0793a61d 3406 /* Reuse ptrace permission checks for now. */
c93f7669
PM
3407 err = -EACCES;
3408 if (!ptrace_may_access(task, PTRACE_MODE_READ))
3409 goto errout;
3410
2ebd4ffb
MH
3411 return task;
3412errout:
3413 put_task_struct(task);
3414 return ERR_PTR(err);
3415
3416}
3417
fe4b04fa
PZ
3418/*
3419 * Returns a matching context with refcount and pincount.
3420 */
108b02cf 3421static struct perf_event_context *
4af57ef2
YZ
3422find_get_context(struct pmu *pmu, struct task_struct *task,
3423 struct perf_event *event)
0793a61d 3424{
211de6eb 3425 struct perf_event_context *ctx, *clone_ctx = NULL;
22a4f650 3426 struct perf_cpu_context *cpuctx;
4af57ef2 3427 void *task_ctx_data = NULL;
25346b93 3428 unsigned long flags;
8dc85d54 3429 int ctxn, err;
4af57ef2 3430 int cpu = event->cpu;
0793a61d 3431
22a4ec72 3432 if (!task) {
cdd6c482 3433 /* Must be root to operate on a CPU event: */
0764771d 3434 if (perf_paranoid_cpu() && !capable(CAP_SYS_ADMIN))
0793a61d
TG
3435 return ERR_PTR(-EACCES);
3436
0793a61d 3437 /*
cdd6c482 3438 * We could be clever and allow to attach a event to an
0793a61d
TG
3439 * offline CPU and activate it when the CPU comes up, but
3440 * that's for later.
3441 */
f6325e30 3442 if (!cpu_online(cpu))
0793a61d
TG
3443 return ERR_PTR(-ENODEV);
3444
108b02cf 3445 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
0793a61d 3446 ctx = &cpuctx->ctx;
c93f7669 3447 get_ctx(ctx);
fe4b04fa 3448 ++ctx->pin_count;
0793a61d 3449
0793a61d
TG
3450 return ctx;
3451 }
3452
8dc85d54
PZ
3453 err = -EINVAL;
3454 ctxn = pmu->task_ctx_nr;
3455 if (ctxn < 0)
3456 goto errout;
3457
4af57ef2
YZ
3458 if (event->attach_state & PERF_ATTACH_TASK_DATA) {
3459 task_ctx_data = kzalloc(pmu->task_ctx_size, GFP_KERNEL);
3460 if (!task_ctx_data) {
3461 err = -ENOMEM;
3462 goto errout;
3463 }
3464 }
3465
9ed6060d 3466retry:
8dc85d54 3467 ctx = perf_lock_task_context(task, ctxn, &flags);
c93f7669 3468 if (ctx) {
211de6eb 3469 clone_ctx = unclone_ctx(ctx);
fe4b04fa 3470 ++ctx->pin_count;
4af57ef2
YZ
3471
3472 if (task_ctx_data && !ctx->task_ctx_data) {
3473 ctx->task_ctx_data = task_ctx_data;
3474 task_ctx_data = NULL;
3475 }
e625cce1 3476 raw_spin_unlock_irqrestore(&ctx->lock, flags);
211de6eb
PZ
3477
3478 if (clone_ctx)
3479 put_ctx(clone_ctx);
9137fb28 3480 } else {
eb184479 3481 ctx = alloc_perf_context(pmu, task);
c93f7669
PM
3482 err = -ENOMEM;
3483 if (!ctx)
3484 goto errout;
eb184479 3485
4af57ef2
YZ
3486 if (task_ctx_data) {
3487 ctx->task_ctx_data = task_ctx_data;
3488 task_ctx_data = NULL;
3489 }
3490
dbe08d82
ON
3491 err = 0;
3492 mutex_lock(&task->perf_event_mutex);
3493 /*
3494 * If it has already passed perf_event_exit_task().
3495 * we must see PF_EXITING, it takes this mutex too.
3496 */
3497 if (task->flags & PF_EXITING)
3498 err = -ESRCH;
3499 else if (task->perf_event_ctxp[ctxn])
3500 err = -EAGAIN;
fe4b04fa 3501 else {
9137fb28 3502 get_ctx(ctx);
fe4b04fa 3503 ++ctx->pin_count;
dbe08d82 3504 rcu_assign_pointer(task->perf_event_ctxp[ctxn], ctx);
fe4b04fa 3505 }
dbe08d82
ON
3506 mutex_unlock(&task->perf_event_mutex);
3507
3508 if (unlikely(err)) {
9137fb28 3509 put_ctx(ctx);
dbe08d82
ON
3510
3511 if (err == -EAGAIN)
3512 goto retry;
3513 goto errout;
a63eaf34
PM
3514 }
3515 }
3516
4af57ef2 3517 kfree(task_ctx_data);
0793a61d 3518 return ctx;
c93f7669 3519
9ed6060d 3520errout:
4af57ef2 3521 kfree(task_ctx_data);
c93f7669 3522 return ERR_PTR(err);
0793a61d
TG
3523}
3524
6fb2915d 3525static void perf_event_free_filter(struct perf_event *event);
2541517c 3526static void perf_event_free_bpf_prog(struct perf_event *event);
6fb2915d 3527
cdd6c482 3528static void free_event_rcu(struct rcu_head *head)
592903cd 3529{
cdd6c482 3530 struct perf_event *event;
592903cd 3531
cdd6c482
IM
3532 event = container_of(head, struct perf_event, rcu_head);
3533 if (event->ns)
3534 put_pid_ns(event->ns);
6fb2915d 3535 perf_event_free_filter(event);
cdd6c482 3536 kfree(event);
592903cd
PZ
3537}
3538
b69cf536
PZ
3539static void ring_buffer_attach(struct perf_event *event,
3540 struct ring_buffer *rb);
925d519a 3541
4beb31f3 3542static void unaccount_event_cpu(struct perf_event *event, int cpu)
f1600952 3543{
4beb31f3
FW
3544 if (event->parent)
3545 return;
3546
4beb31f3
FW
3547 if (is_cgroup_event(event))
3548 atomic_dec(&per_cpu(perf_cgroup_events, cpu));
3549}
925d519a 3550
4beb31f3
FW
3551static void unaccount_event(struct perf_event *event)
3552{
25432ae9
PZ
3553 bool dec = false;
3554
4beb31f3
FW
3555 if (event->parent)
3556 return;
3557
3558 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 3559 dec = true;
4beb31f3
FW
3560 if (event->attr.mmap || event->attr.mmap_data)
3561 atomic_dec(&nr_mmap_events);
3562 if (event->attr.comm)
3563 atomic_dec(&nr_comm_events);
3564 if (event->attr.task)
3565 atomic_dec(&nr_task_events);
948b26b6
FW
3566 if (event->attr.freq)
3567 atomic_dec(&nr_freq_events);
45ac1403 3568 if (event->attr.context_switch) {
25432ae9 3569 dec = true;
45ac1403
AH
3570 atomic_dec(&nr_switch_events);
3571 }
4beb31f3 3572 if (is_cgroup_event(event))
25432ae9 3573 dec = true;
4beb31f3 3574 if (has_branch_stack(event))
25432ae9
PZ
3575 dec = true;
3576
3577 if (dec)
4beb31f3
FW
3578 static_key_slow_dec_deferred(&perf_sched_events);
3579
3580 unaccount_event_cpu(event, event->cpu);
3581}
925d519a 3582
bed5b25a
AS
3583/*
3584 * The following implement mutual exclusion of events on "exclusive" pmus
3585 * (PERF_PMU_CAP_EXCLUSIVE). Such pmus can only have one event scheduled
3586 * at a time, so we disallow creating events that might conflict, namely:
3587 *
3588 * 1) cpu-wide events in the presence of per-task events,
3589 * 2) per-task events in the presence of cpu-wide events,
3590 * 3) two matching events on the same context.
3591 *
3592 * The former two cases are handled in the allocation path (perf_event_alloc(),
a0733e69 3593 * _free_event()), the latter -- before the first perf_install_in_context().
bed5b25a
AS
3594 */
3595static int exclusive_event_init(struct perf_event *event)
3596{
3597 struct pmu *pmu = event->pmu;
3598
3599 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3600 return 0;
3601
3602 /*
3603 * Prevent co-existence of per-task and cpu-wide events on the
3604 * same exclusive pmu.
3605 *
3606 * Negative pmu::exclusive_cnt means there are cpu-wide
3607 * events on this "exclusive" pmu, positive means there are
3608 * per-task events.
3609 *
3610 * Since this is called in perf_event_alloc() path, event::ctx
3611 * doesn't exist yet; it is, however, safe to use PERF_ATTACH_TASK
3612 * to mean "per-task event", because unlike other attach states it
3613 * never gets cleared.
3614 */
3615 if (event->attach_state & PERF_ATTACH_TASK) {
3616 if (!atomic_inc_unless_negative(&pmu->exclusive_cnt))
3617 return -EBUSY;
3618 } else {
3619 if (!atomic_dec_unless_positive(&pmu->exclusive_cnt))
3620 return -EBUSY;
3621 }
3622
3623 return 0;
3624}
3625
3626static void exclusive_event_destroy(struct perf_event *event)
3627{
3628 struct pmu *pmu = event->pmu;
3629
3630 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3631 return;
3632
3633 /* see comment in exclusive_event_init() */
3634 if (event->attach_state & PERF_ATTACH_TASK)
3635 atomic_dec(&pmu->exclusive_cnt);
3636 else
3637 atomic_inc(&pmu->exclusive_cnt);
3638}
3639
3640static bool exclusive_event_match(struct perf_event *e1, struct perf_event *e2)
3641{
3642 if ((e1->pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) &&
3643 (e1->cpu == e2->cpu ||
3644 e1->cpu == -1 ||
3645 e2->cpu == -1))
3646 return true;
3647 return false;
3648}
3649
3650/* Called under the same ctx::mutex as perf_install_in_context() */
3651static bool exclusive_event_installable(struct perf_event *event,
3652 struct perf_event_context *ctx)
3653{
3654 struct perf_event *iter_event;
3655 struct pmu *pmu = event->pmu;
3656
3657 if (!(pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE))
3658 return true;
3659
3660 list_for_each_entry(iter_event, &ctx->event_list, event_entry) {
3661 if (exclusive_event_match(iter_event, event))
3662 return false;
3663 }
3664
3665 return true;
3666}
3667
683ede43 3668static void _free_event(struct perf_event *event)
f1600952 3669{
e360adbe 3670 irq_work_sync(&event->pending);
925d519a 3671
4beb31f3 3672 unaccount_event(event);
9ee318a7 3673
76369139 3674 if (event->rb) {
9bb5d40c
PZ
3675 /*
3676 * Can happen when we close an event with re-directed output.
3677 *
3678 * Since we have a 0 refcount, perf_mmap_close() will skip
3679 * over us; possibly making our ring_buffer_put() the last.
3680 */
3681 mutex_lock(&event->mmap_mutex);
b69cf536 3682 ring_buffer_attach(event, NULL);
9bb5d40c 3683 mutex_unlock(&event->mmap_mutex);
a4be7c27
PZ
3684 }
3685
e5d1367f
SE
3686 if (is_cgroup_event(event))
3687 perf_detach_cgroup(event);
3688
a0733e69
PZ
3689 if (!event->parent) {
3690 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN)
3691 put_callchain_buffers();
3692 }
3693
3694 perf_event_free_bpf_prog(event);
3695
3696 if (event->destroy)
3697 event->destroy(event);
3698
3699 if (event->ctx)
3700 put_ctx(event->ctx);
3701
3702 if (event->pmu) {
3703 exclusive_event_destroy(event);
3704 module_put(event->pmu->module);
3705 }
3706
3707 call_rcu(&event->rcu_head, free_event_rcu);
f1600952
PZ
3708}
3709
683ede43
PZ
3710/*
3711 * Used to free events which have a known refcount of 1, such as in error paths
3712 * where the event isn't exposed yet and inherited events.
3713 */
3714static void free_event(struct perf_event *event)
0793a61d 3715{
683ede43
PZ
3716 if (WARN(atomic_long_cmpxchg(&event->refcount, 1, 0) != 1,
3717 "unexpected event refcount: %ld; ptr=%p\n",
3718 atomic_long_read(&event->refcount), event)) {
3719 /* leak to avoid use-after-free */
3720 return;
3721 }
0793a61d 3722
683ede43 3723 _free_event(event);
0793a61d
TG
3724}
3725
a66a3052 3726/*
f8697762 3727 * Remove user event from the owner task.
a66a3052 3728 */
f8697762 3729static void perf_remove_from_owner(struct perf_event *event)
fb0459d7 3730{
8882135b 3731 struct task_struct *owner;
fb0459d7 3732
8882135b
PZ
3733 rcu_read_lock();
3734 owner = ACCESS_ONCE(event->owner);
3735 /*
3736 * Matches the smp_wmb() in perf_event_exit_task(). If we observe
3737 * !owner it means the list deletion is complete and we can indeed
3738 * free this event, otherwise we need to serialize on
3739 * owner->perf_event_mutex.
3740 */
3741 smp_read_barrier_depends();
3742 if (owner) {
3743 /*
3744 * Since delayed_put_task_struct() also drops the last
3745 * task reference we can safely take a new reference
3746 * while holding the rcu_read_lock().
3747 */
3748 get_task_struct(owner);
3749 }
3750 rcu_read_unlock();
3751
3752 if (owner) {
f63a8daa
PZ
3753 /*
3754 * If we're here through perf_event_exit_task() we're already
3755 * holding ctx->mutex which would be an inversion wrt. the
3756 * normal lock order.
3757 *
3758 * However we can safely take this lock because its the child
3759 * ctx->mutex.
3760 */
3761 mutex_lock_nested(&owner->perf_event_mutex, SINGLE_DEPTH_NESTING);
3762
8882135b
PZ
3763 /*
3764 * We have to re-check the event->owner field, if it is cleared
3765 * we raced with perf_event_exit_task(), acquiring the mutex
3766 * ensured they're done, and we can proceed with freeing the
3767 * event.
3768 */
3769 if (event->owner)
3770 list_del_init(&event->owner_entry);
3771 mutex_unlock(&owner->perf_event_mutex);
3772 put_task_struct(owner);
3773 }
f8697762
JO
3774}
3775
f8697762
JO
3776static void put_event(struct perf_event *event)
3777{
a83fe28e 3778 struct perf_event_context *ctx;
f8697762
JO
3779
3780 if (!atomic_long_dec_and_test(&event->refcount))
3781 return;
3782
3783 if (!is_kernel_event(event))
3784 perf_remove_from_owner(event);
8882135b 3785
683ede43
PZ
3786 /*
3787 * There are two ways this annotation is useful:
3788 *
3789 * 1) there is a lock recursion from perf_event_exit_task
3790 * see the comment there.
3791 *
3792 * 2) there is a lock-inversion with mmap_sem through
b15f495b 3793 * perf_read_group(), which takes faults while
683ede43
PZ
3794 * holding ctx->mutex, however this is called after
3795 * the last filedesc died, so there is no possibility
3796 * to trigger the AB-BA case.
3797 */
a83fe28e
PZ
3798 ctx = perf_event_ctx_lock_nested(event, SINGLE_DEPTH_NESTING);
3799 WARN_ON_ONCE(ctx->parent_ctx);
683ede43 3800 perf_remove_from_context(event, true);
d415a7f1 3801 perf_event_ctx_unlock(event, ctx);
683ede43
PZ
3802
3803 _free_event(event);
a6fa941d
AV
3804}
3805
683ede43
PZ
3806int perf_event_release_kernel(struct perf_event *event)
3807{
3808 put_event(event);
3809 return 0;
3810}
3811EXPORT_SYMBOL_GPL(perf_event_release_kernel);
3812
8b10c5e2
PZ
3813/*
3814 * Called when the last reference to the file is gone.
3815 */
a6fa941d
AV
3816static int perf_release(struct inode *inode, struct file *file)
3817{
3818 put_event(file->private_data);
3819 return 0;
fb0459d7 3820}
fb0459d7 3821
fadfe7be
JO
3822/*
3823 * Remove all orphanes events from the context.
3824 */
3825static void orphans_remove_work(struct work_struct *work)
3826{
3827 struct perf_event_context *ctx;
3828 struct perf_event *event, *tmp;
3829
3830 ctx = container_of(work, struct perf_event_context,
3831 orphans_remove.work);
3832
3833 mutex_lock(&ctx->mutex);
3834 list_for_each_entry_safe(event, tmp, &ctx->event_list, event_entry) {
3835 struct perf_event *parent_event = event->parent;
3836
3837 if (!is_orphaned_child(event))
3838 continue;
3839
3840 perf_remove_from_context(event, true);
3841
3842 mutex_lock(&parent_event->child_mutex);
3843 list_del_init(&event->child_list);
3844 mutex_unlock(&parent_event->child_mutex);
3845
3846 free_event(event);
3847 put_event(parent_event);
3848 }
3849
3850 raw_spin_lock_irq(&ctx->lock);
3851 ctx->orphans_remove_sched = false;
3852 raw_spin_unlock_irq(&ctx->lock);
3853 mutex_unlock(&ctx->mutex);
3854
3855 put_ctx(ctx);
3856}
3857
59ed446f 3858u64 perf_event_read_value(struct perf_event *event, u64 *enabled, u64 *running)
e53c0994 3859{
cdd6c482 3860 struct perf_event *child;
e53c0994
PZ
3861 u64 total = 0;
3862
59ed446f
PZ
3863 *enabled = 0;
3864 *running = 0;
3865
6f10581a 3866 mutex_lock(&event->child_mutex);
01add3ea 3867
7d88962e 3868 (void)perf_event_read(event, false);
01add3ea
SB
3869 total += perf_event_count(event);
3870
59ed446f
PZ
3871 *enabled += event->total_time_enabled +
3872 atomic64_read(&event->child_total_time_enabled);
3873 *running += event->total_time_running +
3874 atomic64_read(&event->child_total_time_running);
3875
3876 list_for_each_entry(child, &event->child_list, child_list) {
7d88962e 3877 (void)perf_event_read(child, false);
01add3ea 3878 total += perf_event_count(child);
59ed446f
PZ
3879 *enabled += child->total_time_enabled;
3880 *running += child->total_time_running;
3881 }
6f10581a 3882 mutex_unlock(&event->child_mutex);
e53c0994
PZ
3883
3884 return total;
3885}
fb0459d7 3886EXPORT_SYMBOL_GPL(perf_event_read_value);
e53c0994 3887
7d88962e 3888static int __perf_read_group_add(struct perf_event *leader,
fa8c2693 3889 u64 read_format, u64 *values)
3dab77fb 3890{
fa8c2693
PZ
3891 struct perf_event *sub;
3892 int n = 1; /* skip @nr */
7d88962e 3893 int ret;
f63a8daa 3894
7d88962e
SB
3895 ret = perf_event_read(leader, true);
3896 if (ret)
3897 return ret;
abf4868b 3898
fa8c2693
PZ
3899 /*
3900 * Since we co-schedule groups, {enabled,running} times of siblings
3901 * will be identical to those of the leader, so we only publish one
3902 * set.
3903 */
3904 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
3905 values[n++] += leader->total_time_enabled +
3906 atomic64_read(&leader->child_total_time_enabled);
3907 }
3dab77fb 3908
fa8c2693
PZ
3909 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
3910 values[n++] += leader->total_time_running +
3911 atomic64_read(&leader->child_total_time_running);
3912 }
3913
3914 /*
3915 * Write {count,id} tuples for every sibling.
3916 */
3917 values[n++] += perf_event_count(leader);
abf4868b
PZ
3918 if (read_format & PERF_FORMAT_ID)
3919 values[n++] = primary_event_id(leader);
3dab77fb 3920
fa8c2693
PZ
3921 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3922 values[n++] += perf_event_count(sub);
3923 if (read_format & PERF_FORMAT_ID)
3924 values[n++] = primary_event_id(sub);
3925 }
7d88962e
SB
3926
3927 return 0;
fa8c2693 3928}
3dab77fb 3929
fa8c2693
PZ
3930static int perf_read_group(struct perf_event *event,
3931 u64 read_format, char __user *buf)
3932{
3933 struct perf_event *leader = event->group_leader, *child;
3934 struct perf_event_context *ctx = leader->ctx;
7d88962e 3935 int ret;
fa8c2693 3936 u64 *values;
3dab77fb 3937
fa8c2693 3938 lockdep_assert_held(&ctx->mutex);
3dab77fb 3939
fa8c2693
PZ
3940 values = kzalloc(event->read_size, GFP_KERNEL);
3941 if (!values)
3942 return -ENOMEM;
3dab77fb 3943
fa8c2693
PZ
3944 values[0] = 1 + leader->nr_siblings;
3945
3946 /*
3947 * By locking the child_mutex of the leader we effectively
3948 * lock the child list of all siblings.. XXX explain how.
3949 */
3950 mutex_lock(&leader->child_mutex);
abf4868b 3951
7d88962e
SB
3952 ret = __perf_read_group_add(leader, read_format, values);
3953 if (ret)
3954 goto unlock;
3955
3956 list_for_each_entry(child, &leader->child_list, child_list) {
3957 ret = __perf_read_group_add(child, read_format, values);
3958 if (ret)
3959 goto unlock;
3960 }
abf4868b 3961
fa8c2693 3962 mutex_unlock(&leader->child_mutex);
abf4868b 3963
7d88962e 3964 ret = event->read_size;
fa8c2693
PZ
3965 if (copy_to_user(buf, values, event->read_size))
3966 ret = -EFAULT;
7d88962e 3967 goto out;
fa8c2693 3968
7d88962e
SB
3969unlock:
3970 mutex_unlock(&leader->child_mutex);
3971out:
fa8c2693 3972 kfree(values);
abf4868b 3973 return ret;
3dab77fb
PZ
3974}
3975
b15f495b 3976static int perf_read_one(struct perf_event *event,
3dab77fb
PZ
3977 u64 read_format, char __user *buf)
3978{
59ed446f 3979 u64 enabled, running;
3dab77fb
PZ
3980 u64 values[4];
3981 int n = 0;
3982
59ed446f
PZ
3983 values[n++] = perf_event_read_value(event, &enabled, &running);
3984 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
3985 values[n++] = enabled;
3986 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
3987 values[n++] = running;
3dab77fb 3988 if (read_format & PERF_FORMAT_ID)
cdd6c482 3989 values[n++] = primary_event_id(event);
3dab77fb
PZ
3990
3991 if (copy_to_user(buf, values, n * sizeof(u64)))
3992 return -EFAULT;
3993
3994 return n * sizeof(u64);
3995}
3996
dc633982
JO
3997static bool is_event_hup(struct perf_event *event)
3998{
3999 bool no_children;
4000
4001 if (event->state != PERF_EVENT_STATE_EXIT)
4002 return false;
4003
4004 mutex_lock(&event->child_mutex);
4005 no_children = list_empty(&event->child_list);
4006 mutex_unlock(&event->child_mutex);
4007 return no_children;
4008}
4009
0793a61d 4010/*
cdd6c482 4011 * Read the performance event - simple non blocking version for now
0793a61d
TG
4012 */
4013static ssize_t
b15f495b 4014__perf_read(struct perf_event *event, char __user *buf, size_t count)
0793a61d 4015{
cdd6c482 4016 u64 read_format = event->attr.read_format;
3dab77fb 4017 int ret;
0793a61d 4018
3b6f9e5c 4019 /*
cdd6c482 4020 * Return end-of-file for a read on a event that is in
3b6f9e5c
PM
4021 * error state (i.e. because it was pinned but it couldn't be
4022 * scheduled on to the CPU at some point).
4023 */
cdd6c482 4024 if (event->state == PERF_EVENT_STATE_ERROR)
3b6f9e5c
PM
4025 return 0;
4026
c320c7b7 4027 if (count < event->read_size)
3dab77fb
PZ
4028 return -ENOSPC;
4029
cdd6c482 4030 WARN_ON_ONCE(event->ctx->parent_ctx);
3dab77fb 4031 if (read_format & PERF_FORMAT_GROUP)
b15f495b 4032 ret = perf_read_group(event, read_format, buf);
3dab77fb 4033 else
b15f495b 4034 ret = perf_read_one(event, read_format, buf);
0793a61d 4035
3dab77fb 4036 return ret;
0793a61d
TG
4037}
4038
0793a61d
TG
4039static ssize_t
4040perf_read(struct file *file, char __user *buf, size_t count, loff_t *ppos)
4041{
cdd6c482 4042 struct perf_event *event = file->private_data;
f63a8daa
PZ
4043 struct perf_event_context *ctx;
4044 int ret;
0793a61d 4045
f63a8daa 4046 ctx = perf_event_ctx_lock(event);
b15f495b 4047 ret = __perf_read(event, buf, count);
f63a8daa
PZ
4048 perf_event_ctx_unlock(event, ctx);
4049
4050 return ret;
0793a61d
TG
4051}
4052
4053static unsigned int perf_poll(struct file *file, poll_table *wait)
4054{
cdd6c482 4055 struct perf_event *event = file->private_data;
76369139 4056 struct ring_buffer *rb;
61b67684 4057 unsigned int events = POLLHUP;
c7138f37 4058
e708d7ad 4059 poll_wait(file, &event->waitq, wait);
179033b3 4060
dc633982 4061 if (is_event_hup(event))
179033b3 4062 return events;
c7138f37 4063
10c6db11 4064 /*
9bb5d40c
PZ
4065 * Pin the event->rb by taking event->mmap_mutex; otherwise
4066 * perf_event_set_output() can swizzle our rb and make us miss wakeups.
10c6db11
PZ
4067 */
4068 mutex_lock(&event->mmap_mutex);
9bb5d40c
PZ
4069 rb = event->rb;
4070 if (rb)
76369139 4071 events = atomic_xchg(&rb->poll, 0);
10c6db11 4072 mutex_unlock(&event->mmap_mutex);
0793a61d
TG
4073 return events;
4074}
4075
f63a8daa 4076static void _perf_event_reset(struct perf_event *event)
6de6a7b9 4077{
7d88962e 4078 (void)perf_event_read(event, false);
e7850595 4079 local64_set(&event->count, 0);
cdd6c482 4080 perf_event_update_userpage(event);
3df5edad
PZ
4081}
4082
c93f7669 4083/*
cdd6c482
IM
4084 * Holding the top-level event's child_mutex means that any
4085 * descendant process that has inherited this event will block
4086 * in sync_child_event if it goes to exit, thus satisfying the
4087 * task existence requirements of perf_event_enable/disable.
c93f7669 4088 */
cdd6c482
IM
4089static void perf_event_for_each_child(struct perf_event *event,
4090 void (*func)(struct perf_event *))
3df5edad 4091{
cdd6c482 4092 struct perf_event *child;
3df5edad 4093
cdd6c482 4094 WARN_ON_ONCE(event->ctx->parent_ctx);
f63a8daa 4095
cdd6c482
IM
4096 mutex_lock(&event->child_mutex);
4097 func(event);
4098 list_for_each_entry(child, &event->child_list, child_list)
3df5edad 4099 func(child);
cdd6c482 4100 mutex_unlock(&event->child_mutex);
3df5edad
PZ
4101}
4102
cdd6c482
IM
4103static void perf_event_for_each(struct perf_event *event,
4104 void (*func)(struct perf_event *))
3df5edad 4105{
cdd6c482
IM
4106 struct perf_event_context *ctx = event->ctx;
4107 struct perf_event *sibling;
3df5edad 4108
f63a8daa
PZ
4109 lockdep_assert_held(&ctx->mutex);
4110
cdd6c482 4111 event = event->group_leader;
75f937f2 4112
cdd6c482 4113 perf_event_for_each_child(event, func);
cdd6c482 4114 list_for_each_entry(sibling, &event->sibling_list, group_entry)
724b6daa 4115 perf_event_for_each_child(sibling, func);
6de6a7b9
PZ
4116}
4117
fae3fde6
PZ
4118static void __perf_event_period(struct perf_event *event,
4119 struct perf_cpu_context *cpuctx,
4120 struct perf_event_context *ctx,
4121 void *info)
c7999c6f 4122{
fae3fde6 4123 u64 value = *((u64 *)info);
c7999c6f 4124 bool active;
08247e31 4125
cdd6c482 4126 if (event->attr.freq) {
cdd6c482 4127 event->attr.sample_freq = value;
08247e31 4128 } else {
cdd6c482
IM
4129 event->attr.sample_period = value;
4130 event->hw.sample_period = value;
08247e31 4131 }
bad7192b
PZ
4132
4133 active = (event->state == PERF_EVENT_STATE_ACTIVE);
4134 if (active) {
4135 perf_pmu_disable(ctx->pmu);
4136 event->pmu->stop(event, PERF_EF_UPDATE);
4137 }
4138
4139 local64_set(&event->hw.period_left, 0);
4140
4141 if (active) {
4142 event->pmu->start(event, PERF_EF_RELOAD);
4143 perf_pmu_enable(ctx->pmu);
4144 }
c7999c6f
PZ
4145}
4146
4147static int perf_event_period(struct perf_event *event, u64 __user *arg)
4148{
c7999c6f
PZ
4149 u64 value;
4150
4151 if (!is_sampling_event(event))
4152 return -EINVAL;
4153
4154 if (copy_from_user(&value, arg, sizeof(value)))
4155 return -EFAULT;
4156
4157 if (!value)
4158 return -EINVAL;
4159
4160 if (event->attr.freq && value > sysctl_perf_event_sample_rate)
4161 return -EINVAL;
4162
fae3fde6 4163 event_function_call(event, __perf_event_period, &value);
08247e31 4164
c7999c6f 4165 return 0;
08247e31
PZ
4166}
4167
ac9721f3
PZ
4168static const struct file_operations perf_fops;
4169
2903ff01 4170static inline int perf_fget_light(int fd, struct fd *p)
ac9721f3 4171{
2903ff01
AV
4172 struct fd f = fdget(fd);
4173 if (!f.file)
4174 return -EBADF;
ac9721f3 4175
2903ff01
AV
4176 if (f.file->f_op != &perf_fops) {
4177 fdput(f);
4178 return -EBADF;
ac9721f3 4179 }
2903ff01
AV
4180 *p = f;
4181 return 0;
ac9721f3
PZ
4182}
4183
4184static int perf_event_set_output(struct perf_event *event,
4185 struct perf_event *output_event);
6fb2915d 4186static int perf_event_set_filter(struct perf_event *event, void __user *arg);
2541517c 4187static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd);
a4be7c27 4188
f63a8daa 4189static long _perf_ioctl(struct perf_event *event, unsigned int cmd, unsigned long arg)
d859e29f 4190{
cdd6c482 4191 void (*func)(struct perf_event *);
3df5edad 4192 u32 flags = arg;
d859e29f
PM
4193
4194 switch (cmd) {
cdd6c482 4195 case PERF_EVENT_IOC_ENABLE:
f63a8daa 4196 func = _perf_event_enable;
d859e29f 4197 break;
cdd6c482 4198 case PERF_EVENT_IOC_DISABLE:
f63a8daa 4199 func = _perf_event_disable;
79f14641 4200 break;
cdd6c482 4201 case PERF_EVENT_IOC_RESET:
f63a8daa 4202 func = _perf_event_reset;
6de6a7b9 4203 break;
3df5edad 4204
cdd6c482 4205 case PERF_EVENT_IOC_REFRESH:
f63a8daa 4206 return _perf_event_refresh(event, arg);
08247e31 4207
cdd6c482
IM
4208 case PERF_EVENT_IOC_PERIOD:
4209 return perf_event_period(event, (u64 __user *)arg);
08247e31 4210
cf4957f1
JO
4211 case PERF_EVENT_IOC_ID:
4212 {
4213 u64 id = primary_event_id(event);
4214
4215 if (copy_to_user((void __user *)arg, &id, sizeof(id)))
4216 return -EFAULT;
4217 return 0;
4218 }
4219
cdd6c482 4220 case PERF_EVENT_IOC_SET_OUTPUT:
ac9721f3 4221 {
ac9721f3 4222 int ret;
ac9721f3 4223 if (arg != -1) {
2903ff01
AV
4224 struct perf_event *output_event;
4225 struct fd output;
4226 ret = perf_fget_light(arg, &output);
4227 if (ret)
4228 return ret;
4229 output_event = output.file->private_data;
4230 ret = perf_event_set_output(event, output_event);
4231 fdput(output);
4232 } else {
4233 ret = perf_event_set_output(event, NULL);
ac9721f3 4234 }
ac9721f3
PZ
4235 return ret;
4236 }
a4be7c27 4237
6fb2915d
LZ
4238 case PERF_EVENT_IOC_SET_FILTER:
4239 return perf_event_set_filter(event, (void __user *)arg);
4240
2541517c
AS
4241 case PERF_EVENT_IOC_SET_BPF:
4242 return perf_event_set_bpf_prog(event, arg);
4243
d859e29f 4244 default:
3df5edad 4245 return -ENOTTY;
d859e29f 4246 }
3df5edad
PZ
4247
4248 if (flags & PERF_IOC_FLAG_GROUP)
cdd6c482 4249 perf_event_for_each(event, func);
3df5edad 4250 else
cdd6c482 4251 perf_event_for_each_child(event, func);
3df5edad
PZ
4252
4253 return 0;
d859e29f
PM
4254}
4255
f63a8daa
PZ
4256static long perf_ioctl(struct file *file, unsigned int cmd, unsigned long arg)
4257{
4258 struct perf_event *event = file->private_data;
4259 struct perf_event_context *ctx;
4260 long ret;
4261
4262 ctx = perf_event_ctx_lock(event);
4263 ret = _perf_ioctl(event, cmd, arg);
4264 perf_event_ctx_unlock(event, ctx);
4265
4266 return ret;
4267}
4268
b3f20785
PM
4269#ifdef CONFIG_COMPAT
4270static long perf_compat_ioctl(struct file *file, unsigned int cmd,
4271 unsigned long arg)
4272{
4273 switch (_IOC_NR(cmd)) {
4274 case _IOC_NR(PERF_EVENT_IOC_SET_FILTER):
4275 case _IOC_NR(PERF_EVENT_IOC_ID):
4276 /* Fix up pointer size (usually 4 -> 8 in 32-on-64-bit case */
4277 if (_IOC_SIZE(cmd) == sizeof(compat_uptr_t)) {
4278 cmd &= ~IOCSIZE_MASK;
4279 cmd |= sizeof(void *) << IOCSIZE_SHIFT;
4280 }
4281 break;
4282 }
4283 return perf_ioctl(file, cmd, arg);
4284}
4285#else
4286# define perf_compat_ioctl NULL
4287#endif
4288
cdd6c482 4289int perf_event_task_enable(void)
771d7cde 4290{
f63a8daa 4291 struct perf_event_context *ctx;
cdd6c482 4292 struct perf_event *event;
771d7cde 4293
cdd6c482 4294 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4295 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4296 ctx = perf_event_ctx_lock(event);
4297 perf_event_for_each_child(event, _perf_event_enable);
4298 perf_event_ctx_unlock(event, ctx);
4299 }
cdd6c482 4300 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4301
4302 return 0;
4303}
4304
cdd6c482 4305int perf_event_task_disable(void)
771d7cde 4306{
f63a8daa 4307 struct perf_event_context *ctx;
cdd6c482 4308 struct perf_event *event;
771d7cde 4309
cdd6c482 4310 mutex_lock(&current->perf_event_mutex);
f63a8daa
PZ
4311 list_for_each_entry(event, &current->perf_event_list, owner_entry) {
4312 ctx = perf_event_ctx_lock(event);
4313 perf_event_for_each_child(event, _perf_event_disable);
4314 perf_event_ctx_unlock(event, ctx);
4315 }
cdd6c482 4316 mutex_unlock(&current->perf_event_mutex);
771d7cde
PZ
4317
4318 return 0;
4319}
4320
cdd6c482 4321static int perf_event_index(struct perf_event *event)
194002b2 4322{
a4eaf7f1
PZ
4323 if (event->hw.state & PERF_HES_STOPPED)
4324 return 0;
4325
cdd6c482 4326 if (event->state != PERF_EVENT_STATE_ACTIVE)
194002b2
PZ
4327 return 0;
4328
35edc2a5 4329 return event->pmu->event_idx(event);
194002b2
PZ
4330}
4331
c4794295 4332static void calc_timer_values(struct perf_event *event,
e3f3541c 4333 u64 *now,
7f310a5d
EM
4334 u64 *enabled,
4335 u64 *running)
c4794295 4336{
e3f3541c 4337 u64 ctx_time;
c4794295 4338
e3f3541c
PZ
4339 *now = perf_clock();
4340 ctx_time = event->shadow_ctx_time + *now;
c4794295
EM
4341 *enabled = ctx_time - event->tstamp_enabled;
4342 *running = ctx_time - event->tstamp_running;
4343}
4344
fa731587
PZ
4345static void perf_event_init_userpage(struct perf_event *event)
4346{
4347 struct perf_event_mmap_page *userpg;
4348 struct ring_buffer *rb;
4349
4350 rcu_read_lock();
4351 rb = rcu_dereference(event->rb);
4352 if (!rb)
4353 goto unlock;
4354
4355 userpg = rb->user_page;
4356
4357 /* Allow new userspace to detect that bit 0 is deprecated */
4358 userpg->cap_bit0_is_deprecated = 1;
4359 userpg->size = offsetof(struct perf_event_mmap_page, __reserved);
e8c6deac
AS
4360 userpg->data_offset = PAGE_SIZE;
4361 userpg->data_size = perf_data_size(rb);
fa731587
PZ
4362
4363unlock:
4364 rcu_read_unlock();
4365}
4366
c1317ec2
AL
4367void __weak arch_perf_update_userpage(
4368 struct perf_event *event, struct perf_event_mmap_page *userpg, u64 now)
e3f3541c
PZ
4369{
4370}
4371
38ff667b
PZ
4372/*
4373 * Callers need to ensure there can be no nesting of this function, otherwise
4374 * the seqlock logic goes bad. We can not serialize this because the arch
4375 * code calls this from NMI context.
4376 */
cdd6c482 4377void perf_event_update_userpage(struct perf_event *event)
37d81828 4378{
cdd6c482 4379 struct perf_event_mmap_page *userpg;
76369139 4380 struct ring_buffer *rb;
e3f3541c 4381 u64 enabled, running, now;
38ff667b
PZ
4382
4383 rcu_read_lock();
5ec4c599
PZ
4384 rb = rcu_dereference(event->rb);
4385 if (!rb)
4386 goto unlock;
4387
0d641208
EM
4388 /*
4389 * compute total_time_enabled, total_time_running
4390 * based on snapshot values taken when the event
4391 * was last scheduled in.
4392 *
4393 * we cannot simply called update_context_time()
4394 * because of locking issue as we can be called in
4395 * NMI context
4396 */
e3f3541c 4397 calc_timer_values(event, &now, &enabled, &running);
38ff667b 4398
76369139 4399 userpg = rb->user_page;
7b732a75
PZ
4400 /*
4401 * Disable preemption so as to not let the corresponding user-space
4402 * spin too long if we get preempted.
4403 */
4404 preempt_disable();
37d81828 4405 ++userpg->lock;
92f22a38 4406 barrier();
cdd6c482 4407 userpg->index = perf_event_index(event);
b5e58793 4408 userpg->offset = perf_event_count(event);
365a4038 4409 if (userpg->index)
e7850595 4410 userpg->offset -= local64_read(&event->hw.prev_count);
7b732a75 4411
0d641208 4412 userpg->time_enabled = enabled +
cdd6c482 4413 atomic64_read(&event->child_total_time_enabled);
7f8b4e4e 4414
0d641208 4415 userpg->time_running = running +
cdd6c482 4416 atomic64_read(&event->child_total_time_running);
7f8b4e4e 4417
c1317ec2 4418 arch_perf_update_userpage(event, userpg, now);
e3f3541c 4419
92f22a38 4420 barrier();
37d81828 4421 ++userpg->lock;
7b732a75 4422 preempt_enable();
38ff667b 4423unlock:
7b732a75 4424 rcu_read_unlock();
37d81828
PM
4425}
4426
906010b2
PZ
4427static int perf_mmap_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
4428{
4429 struct perf_event *event = vma->vm_file->private_data;
76369139 4430 struct ring_buffer *rb;
906010b2
PZ
4431 int ret = VM_FAULT_SIGBUS;
4432
4433 if (vmf->flags & FAULT_FLAG_MKWRITE) {
4434 if (vmf->pgoff == 0)
4435 ret = 0;
4436 return ret;
4437 }
4438
4439 rcu_read_lock();
76369139
FW
4440 rb = rcu_dereference(event->rb);
4441 if (!rb)
906010b2
PZ
4442 goto unlock;
4443
4444 if (vmf->pgoff && (vmf->flags & FAULT_FLAG_WRITE))
4445 goto unlock;
4446
76369139 4447 vmf->page = perf_mmap_to_page(rb, vmf->pgoff);
906010b2
PZ
4448 if (!vmf->page)
4449 goto unlock;
4450
4451 get_page(vmf->page);
4452 vmf->page->mapping = vma->vm_file->f_mapping;
4453 vmf->page->index = vmf->pgoff;
4454
4455 ret = 0;
4456unlock:
4457 rcu_read_unlock();
4458
4459 return ret;
4460}
4461
10c6db11
PZ
4462static void ring_buffer_attach(struct perf_event *event,
4463 struct ring_buffer *rb)
4464{
b69cf536 4465 struct ring_buffer *old_rb = NULL;
10c6db11
PZ
4466 unsigned long flags;
4467
b69cf536
PZ
4468 if (event->rb) {
4469 /*
4470 * Should be impossible, we set this when removing
4471 * event->rb_entry and wait/clear when adding event->rb_entry.
4472 */
4473 WARN_ON_ONCE(event->rcu_pending);
10c6db11 4474
b69cf536 4475 old_rb = event->rb;
b69cf536
PZ
4476 spin_lock_irqsave(&old_rb->event_lock, flags);
4477 list_del_rcu(&event->rb_entry);
4478 spin_unlock_irqrestore(&old_rb->event_lock, flags);
10c6db11 4479
2f993cf0
ON
4480 event->rcu_batches = get_state_synchronize_rcu();
4481 event->rcu_pending = 1;
b69cf536 4482 }
10c6db11 4483
b69cf536 4484 if (rb) {
2f993cf0
ON
4485 if (event->rcu_pending) {
4486 cond_synchronize_rcu(event->rcu_batches);
4487 event->rcu_pending = 0;
4488 }
4489
b69cf536
PZ
4490 spin_lock_irqsave(&rb->event_lock, flags);
4491 list_add_rcu(&event->rb_entry, &rb->event_list);
4492 spin_unlock_irqrestore(&rb->event_lock, flags);
4493 }
4494
4495 rcu_assign_pointer(event->rb, rb);
4496
4497 if (old_rb) {
4498 ring_buffer_put(old_rb);
4499 /*
4500 * Since we detached before setting the new rb, so that we
4501 * could attach the new rb, we could have missed a wakeup.
4502 * Provide it now.
4503 */
4504 wake_up_all(&event->waitq);
4505 }
10c6db11
PZ
4506}
4507
4508static void ring_buffer_wakeup(struct perf_event *event)
4509{
4510 struct ring_buffer *rb;
4511
4512 rcu_read_lock();
4513 rb = rcu_dereference(event->rb);
9bb5d40c
PZ
4514 if (rb) {
4515 list_for_each_entry_rcu(event, &rb->event_list, rb_entry)
4516 wake_up_all(&event->waitq);
4517 }
10c6db11
PZ
4518 rcu_read_unlock();
4519}
4520
fdc26706 4521struct ring_buffer *ring_buffer_get(struct perf_event *event)
7b732a75 4522{
76369139 4523 struct ring_buffer *rb;
7b732a75 4524
ac9721f3 4525 rcu_read_lock();
76369139
FW
4526 rb = rcu_dereference(event->rb);
4527 if (rb) {
4528 if (!atomic_inc_not_zero(&rb->refcount))
4529 rb = NULL;
ac9721f3
PZ
4530 }
4531 rcu_read_unlock();
4532
76369139 4533 return rb;
ac9721f3
PZ
4534}
4535
fdc26706 4536void ring_buffer_put(struct ring_buffer *rb)
ac9721f3 4537{
76369139 4538 if (!atomic_dec_and_test(&rb->refcount))
ac9721f3 4539 return;
7b732a75 4540
9bb5d40c 4541 WARN_ON_ONCE(!list_empty(&rb->event_list));
10c6db11 4542
76369139 4543 call_rcu(&rb->rcu_head, rb_free_rcu);
7b732a75
PZ
4544}
4545
4546static void perf_mmap_open(struct vm_area_struct *vma)
4547{
cdd6c482 4548 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4549
cdd6c482 4550 atomic_inc(&event->mmap_count);
9bb5d40c 4551 atomic_inc(&event->rb->mmap_count);
1e0fb9ec 4552
45bfb2e5
PZ
4553 if (vma->vm_pgoff)
4554 atomic_inc(&event->rb->aux_mmap_count);
4555
1e0fb9ec
AL
4556 if (event->pmu->event_mapped)
4557 event->pmu->event_mapped(event);
7b732a75
PZ
4558}
4559
9bb5d40c
PZ
4560/*
4561 * A buffer can be mmap()ed multiple times; either directly through the same
4562 * event, or through other events by use of perf_event_set_output().
4563 *
4564 * In order to undo the VM accounting done by perf_mmap() we need to destroy
4565 * the buffer here, where we still have a VM context. This means we need
4566 * to detach all events redirecting to us.
4567 */
7b732a75
PZ
4568static void perf_mmap_close(struct vm_area_struct *vma)
4569{
cdd6c482 4570 struct perf_event *event = vma->vm_file->private_data;
7b732a75 4571
b69cf536 4572 struct ring_buffer *rb = ring_buffer_get(event);
9bb5d40c
PZ
4573 struct user_struct *mmap_user = rb->mmap_user;
4574 int mmap_locked = rb->mmap_locked;
4575 unsigned long size = perf_data_size(rb);
789f90fc 4576
1e0fb9ec
AL
4577 if (event->pmu->event_unmapped)
4578 event->pmu->event_unmapped(event);
4579
45bfb2e5
PZ
4580 /*
4581 * rb->aux_mmap_count will always drop before rb->mmap_count and
4582 * event->mmap_count, so it is ok to use event->mmap_mutex to
4583 * serialize with perf_mmap here.
4584 */
4585 if (rb_has_aux(rb) && vma->vm_pgoff == rb->aux_pgoff &&
4586 atomic_dec_and_mutex_lock(&rb->aux_mmap_count, &event->mmap_mutex)) {
4587 atomic_long_sub(rb->aux_nr_pages, &mmap_user->locked_vm);
4588 vma->vm_mm->pinned_vm -= rb->aux_mmap_locked;
4589
4590 rb_free_aux(rb);
4591 mutex_unlock(&event->mmap_mutex);
4592 }
4593
9bb5d40c
PZ
4594 atomic_dec(&rb->mmap_count);
4595
4596 if (!atomic_dec_and_mutex_lock(&event->mmap_count, &event->mmap_mutex))
b69cf536 4597 goto out_put;
9bb5d40c 4598
b69cf536 4599 ring_buffer_attach(event, NULL);
9bb5d40c
PZ
4600 mutex_unlock(&event->mmap_mutex);
4601
4602 /* If there's still other mmap()s of this buffer, we're done. */
b69cf536
PZ
4603 if (atomic_read(&rb->mmap_count))
4604 goto out_put;
ac9721f3 4605
9bb5d40c
PZ
4606 /*
4607 * No other mmap()s, detach from all other events that might redirect
4608 * into the now unreachable buffer. Somewhat complicated by the
4609 * fact that rb::event_lock otherwise nests inside mmap_mutex.
4610 */
4611again:
4612 rcu_read_lock();
4613 list_for_each_entry_rcu(event, &rb->event_list, rb_entry) {
4614 if (!atomic_long_inc_not_zero(&event->refcount)) {
4615 /*
4616 * This event is en-route to free_event() which will
4617 * detach it and remove it from the list.
4618 */
4619 continue;
4620 }
4621 rcu_read_unlock();
789f90fc 4622
9bb5d40c
PZ
4623 mutex_lock(&event->mmap_mutex);
4624 /*
4625 * Check we didn't race with perf_event_set_output() which can
4626 * swizzle the rb from under us while we were waiting to
4627 * acquire mmap_mutex.
4628 *
4629 * If we find a different rb; ignore this event, a next
4630 * iteration will no longer find it on the list. We have to
4631 * still restart the iteration to make sure we're not now
4632 * iterating the wrong list.
4633 */
b69cf536
PZ
4634 if (event->rb == rb)
4635 ring_buffer_attach(event, NULL);
4636
cdd6c482 4637 mutex_unlock(&event->mmap_mutex);
9bb5d40c 4638 put_event(event);
ac9721f3 4639
9bb5d40c
PZ
4640 /*
4641 * Restart the iteration; either we're on the wrong list or
4642 * destroyed its integrity by doing a deletion.
4643 */
4644 goto again;
7b732a75 4645 }
9bb5d40c
PZ
4646 rcu_read_unlock();
4647
4648 /*
4649 * It could be there's still a few 0-ref events on the list; they'll
4650 * get cleaned up by free_event() -- they'll also still have their
4651 * ref on the rb and will free it whenever they are done with it.
4652 *
4653 * Aside from that, this buffer is 'fully' detached and unmapped,
4654 * undo the VM accounting.
4655 */
4656
4657 atomic_long_sub((size >> PAGE_SHIFT) + 1, &mmap_user->locked_vm);
4658 vma->vm_mm->pinned_vm -= mmap_locked;
4659 free_uid(mmap_user);
4660
b69cf536 4661out_put:
9bb5d40c 4662 ring_buffer_put(rb); /* could be last */
37d81828
PM
4663}
4664
f0f37e2f 4665static const struct vm_operations_struct perf_mmap_vmops = {
43a21ea8 4666 .open = perf_mmap_open,
45bfb2e5 4667 .close = perf_mmap_close, /* non mergable */
43a21ea8
PZ
4668 .fault = perf_mmap_fault,
4669 .page_mkwrite = perf_mmap_fault,
37d81828
PM
4670};
4671
4672static int perf_mmap(struct file *file, struct vm_area_struct *vma)
4673{
cdd6c482 4674 struct perf_event *event = file->private_data;
22a4f650 4675 unsigned long user_locked, user_lock_limit;
789f90fc 4676 struct user_struct *user = current_user();
22a4f650 4677 unsigned long locked, lock_limit;
45bfb2e5 4678 struct ring_buffer *rb = NULL;
7b732a75
PZ
4679 unsigned long vma_size;
4680 unsigned long nr_pages;
45bfb2e5 4681 long user_extra = 0, extra = 0;
d57e34fd 4682 int ret = 0, flags = 0;
37d81828 4683
c7920614
PZ
4684 /*
4685 * Don't allow mmap() of inherited per-task counters. This would
4686 * create a performance issue due to all children writing to the
76369139 4687 * same rb.
c7920614
PZ
4688 */
4689 if (event->cpu == -1 && event->attr.inherit)
4690 return -EINVAL;
4691
43a21ea8 4692 if (!(vma->vm_flags & VM_SHARED))
37d81828 4693 return -EINVAL;
7b732a75
PZ
4694
4695 vma_size = vma->vm_end - vma->vm_start;
45bfb2e5
PZ
4696
4697 if (vma->vm_pgoff == 0) {
4698 nr_pages = (vma_size / PAGE_SIZE) - 1;
4699 } else {
4700 /*
4701 * AUX area mapping: if rb->aux_nr_pages != 0, it's already
4702 * mapped, all subsequent mappings should have the same size
4703 * and offset. Must be above the normal perf buffer.
4704 */
4705 u64 aux_offset, aux_size;
4706
4707 if (!event->rb)
4708 return -EINVAL;
4709
4710 nr_pages = vma_size / PAGE_SIZE;
4711
4712 mutex_lock(&event->mmap_mutex);
4713 ret = -EINVAL;
4714
4715 rb = event->rb;
4716 if (!rb)
4717 goto aux_unlock;
4718
4719 aux_offset = ACCESS_ONCE(rb->user_page->aux_offset);
4720 aux_size = ACCESS_ONCE(rb->user_page->aux_size);
4721
4722 if (aux_offset < perf_data_size(rb) + PAGE_SIZE)
4723 goto aux_unlock;
4724
4725 if (aux_offset != vma->vm_pgoff << PAGE_SHIFT)
4726 goto aux_unlock;
4727
4728 /* already mapped with a different offset */
4729 if (rb_has_aux(rb) && rb->aux_pgoff != vma->vm_pgoff)
4730 goto aux_unlock;
4731
4732 if (aux_size != vma_size || aux_size != nr_pages * PAGE_SIZE)
4733 goto aux_unlock;
4734
4735 /* already mapped with a different size */
4736 if (rb_has_aux(rb) && rb->aux_nr_pages != nr_pages)
4737 goto aux_unlock;
4738
4739 if (!is_power_of_2(nr_pages))
4740 goto aux_unlock;
4741
4742 if (!atomic_inc_not_zero(&rb->mmap_count))
4743 goto aux_unlock;
4744
4745 if (rb_has_aux(rb)) {
4746 atomic_inc(&rb->aux_mmap_count);
4747 ret = 0;
4748 goto unlock;
4749 }
4750
4751 atomic_set(&rb->aux_mmap_count, 1);
4752 user_extra = nr_pages;
4753
4754 goto accounting;
4755 }
7b732a75 4756
7730d865 4757 /*
76369139 4758 * If we have rb pages ensure they're a power-of-two number, so we
7730d865
PZ
4759 * can do bitmasks instead of modulo.
4760 */
2ed11312 4761 if (nr_pages != 0 && !is_power_of_2(nr_pages))
37d81828
PM
4762 return -EINVAL;
4763
7b732a75 4764 if (vma_size != PAGE_SIZE * (1 + nr_pages))
37d81828
PM
4765 return -EINVAL;
4766
cdd6c482 4767 WARN_ON_ONCE(event->ctx->parent_ctx);
9bb5d40c 4768again:
cdd6c482 4769 mutex_lock(&event->mmap_mutex);
76369139 4770 if (event->rb) {
9bb5d40c 4771 if (event->rb->nr_pages != nr_pages) {
ebb3c4c4 4772 ret = -EINVAL;
9bb5d40c
PZ
4773 goto unlock;
4774 }
4775
4776 if (!atomic_inc_not_zero(&event->rb->mmap_count)) {
4777 /*
4778 * Raced against perf_mmap_close() through
4779 * perf_event_set_output(). Try again, hope for better
4780 * luck.
4781 */
4782 mutex_unlock(&event->mmap_mutex);
4783 goto again;
4784 }
4785
ebb3c4c4
PZ
4786 goto unlock;
4787 }
4788
789f90fc 4789 user_extra = nr_pages + 1;
45bfb2e5
PZ
4790
4791accounting:
cdd6c482 4792 user_lock_limit = sysctl_perf_event_mlock >> (PAGE_SHIFT - 10);
a3862d3f
IM
4793
4794 /*
4795 * Increase the limit linearly with more CPUs:
4796 */
4797 user_lock_limit *= num_online_cpus();
4798
789f90fc 4799 user_locked = atomic_long_read(&user->locked_vm) + user_extra;
c5078f78 4800
789f90fc
PZ
4801 if (user_locked > user_lock_limit)
4802 extra = user_locked - user_lock_limit;
7b732a75 4803
78d7d407 4804 lock_limit = rlimit(RLIMIT_MEMLOCK);
7b732a75 4805 lock_limit >>= PAGE_SHIFT;
bc3e53f6 4806 locked = vma->vm_mm->pinned_vm + extra;
7b732a75 4807
459ec28a
IM
4808 if ((locked > lock_limit) && perf_paranoid_tracepoint_raw() &&
4809 !capable(CAP_IPC_LOCK)) {
ebb3c4c4
PZ
4810 ret = -EPERM;
4811 goto unlock;
4812 }
7b732a75 4813
45bfb2e5 4814 WARN_ON(!rb && event->rb);
906010b2 4815
d57e34fd 4816 if (vma->vm_flags & VM_WRITE)
76369139 4817 flags |= RING_BUFFER_WRITABLE;
d57e34fd 4818
76369139 4819 if (!rb) {
45bfb2e5
PZ
4820 rb = rb_alloc(nr_pages,
4821 event->attr.watermark ? event->attr.wakeup_watermark : 0,
4822 event->cpu, flags);
26cb63ad 4823
45bfb2e5
PZ
4824 if (!rb) {
4825 ret = -ENOMEM;
4826 goto unlock;
4827 }
43a21ea8 4828
45bfb2e5
PZ
4829 atomic_set(&rb->mmap_count, 1);
4830 rb->mmap_user = get_current_user();
4831 rb->mmap_locked = extra;
26cb63ad 4832
45bfb2e5 4833 ring_buffer_attach(event, rb);
ac9721f3 4834
45bfb2e5
PZ
4835 perf_event_init_userpage(event);
4836 perf_event_update_userpage(event);
4837 } else {
1a594131
AS
4838 ret = rb_alloc_aux(rb, event, vma->vm_pgoff, nr_pages,
4839 event->attr.aux_watermark, flags);
45bfb2e5
PZ
4840 if (!ret)
4841 rb->aux_mmap_locked = extra;
4842 }
9a0f05cb 4843
ebb3c4c4 4844unlock:
45bfb2e5
PZ
4845 if (!ret) {
4846 atomic_long_add(user_extra, &user->locked_vm);
4847 vma->vm_mm->pinned_vm += extra;
4848
ac9721f3 4849 atomic_inc(&event->mmap_count);
45bfb2e5
PZ
4850 } else if (rb) {
4851 atomic_dec(&rb->mmap_count);
4852 }
4853aux_unlock:
cdd6c482 4854 mutex_unlock(&event->mmap_mutex);
37d81828 4855
9bb5d40c
PZ
4856 /*
4857 * Since pinned accounting is per vm we cannot allow fork() to copy our
4858 * vma.
4859 */
26cb63ad 4860 vma->vm_flags |= VM_DONTCOPY | VM_DONTEXPAND | VM_DONTDUMP;
37d81828 4861 vma->vm_ops = &perf_mmap_vmops;
7b732a75 4862
1e0fb9ec
AL
4863 if (event->pmu->event_mapped)
4864 event->pmu->event_mapped(event);
4865
7b732a75 4866 return ret;
37d81828
PM
4867}
4868
3c446b3d
PZ
4869static int perf_fasync(int fd, struct file *filp, int on)
4870{
496ad9aa 4871 struct inode *inode = file_inode(filp);
cdd6c482 4872 struct perf_event *event = filp->private_data;
3c446b3d
PZ
4873 int retval;
4874
4875 mutex_lock(&inode->i_mutex);
cdd6c482 4876 retval = fasync_helper(fd, filp, on, &event->fasync);
3c446b3d
PZ
4877 mutex_unlock(&inode->i_mutex);
4878
4879 if (retval < 0)
4880 return retval;
4881
4882 return 0;
4883}
4884
0793a61d 4885static const struct file_operations perf_fops = {
3326c1ce 4886 .llseek = no_llseek,
0793a61d
TG
4887 .release = perf_release,
4888 .read = perf_read,
4889 .poll = perf_poll,
d859e29f 4890 .unlocked_ioctl = perf_ioctl,
b3f20785 4891 .compat_ioctl = perf_compat_ioctl,
37d81828 4892 .mmap = perf_mmap,
3c446b3d 4893 .fasync = perf_fasync,
0793a61d
TG
4894};
4895
925d519a 4896/*
cdd6c482 4897 * Perf event wakeup
925d519a
PZ
4898 *
4899 * If there's data, ensure we set the poll() state and publish everything
4900 * to user-space before waking everybody up.
4901 */
4902
fed66e2c
PZ
4903static inline struct fasync_struct **perf_event_fasync(struct perf_event *event)
4904{
4905 /* only the parent has fasync state */
4906 if (event->parent)
4907 event = event->parent;
4908 return &event->fasync;
4909}
4910
cdd6c482 4911void perf_event_wakeup(struct perf_event *event)
925d519a 4912{
10c6db11 4913 ring_buffer_wakeup(event);
4c9e2542 4914
cdd6c482 4915 if (event->pending_kill) {
fed66e2c 4916 kill_fasync(perf_event_fasync(event), SIGIO, event->pending_kill);
cdd6c482 4917 event->pending_kill = 0;
4c9e2542 4918 }
925d519a
PZ
4919}
4920
e360adbe 4921static void perf_pending_event(struct irq_work *entry)
79f14641 4922{
cdd6c482
IM
4923 struct perf_event *event = container_of(entry,
4924 struct perf_event, pending);
d525211f
PZ
4925 int rctx;
4926
4927 rctx = perf_swevent_get_recursion_context();
4928 /*
4929 * If we 'fail' here, that's OK, it means recursion is already disabled
4930 * and we won't recurse 'further'.
4931 */
79f14641 4932
cdd6c482
IM
4933 if (event->pending_disable) {
4934 event->pending_disable = 0;
fae3fde6 4935 perf_event_disable_local(event);
79f14641
PZ
4936 }
4937
cdd6c482
IM
4938 if (event->pending_wakeup) {
4939 event->pending_wakeup = 0;
4940 perf_event_wakeup(event);
79f14641 4941 }
d525211f
PZ
4942
4943 if (rctx >= 0)
4944 perf_swevent_put_recursion_context(rctx);
79f14641
PZ
4945}
4946
39447b38
ZY
4947/*
4948 * We assume there is only KVM supporting the callbacks.
4949 * Later on, we might change it to a list if there is
4950 * another virtualization implementation supporting the callbacks.
4951 */
4952struct perf_guest_info_callbacks *perf_guest_cbs;
4953
4954int perf_register_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4955{
4956 perf_guest_cbs = cbs;
4957 return 0;
4958}
4959EXPORT_SYMBOL_GPL(perf_register_guest_info_callbacks);
4960
4961int perf_unregister_guest_info_callbacks(struct perf_guest_info_callbacks *cbs)
4962{
4963 perf_guest_cbs = NULL;
4964 return 0;
4965}
4966EXPORT_SYMBOL_GPL(perf_unregister_guest_info_callbacks);
4967
4018994f
JO
4968static void
4969perf_output_sample_regs(struct perf_output_handle *handle,
4970 struct pt_regs *regs, u64 mask)
4971{
4972 int bit;
4973
4974 for_each_set_bit(bit, (const unsigned long *) &mask,
4975 sizeof(mask) * BITS_PER_BYTE) {
4976 u64 val;
4977
4978 val = perf_reg_value(regs, bit);
4979 perf_output_put(handle, val);
4980 }
4981}
4982
60e2364e 4983static void perf_sample_regs_user(struct perf_regs *regs_user,
88a7c26a
AL
4984 struct pt_regs *regs,
4985 struct pt_regs *regs_user_copy)
4018994f 4986{
88a7c26a
AL
4987 if (user_mode(regs)) {
4988 regs_user->abi = perf_reg_abi(current);
2565711f 4989 regs_user->regs = regs;
88a7c26a
AL
4990 } else if (current->mm) {
4991 perf_get_regs_user(regs_user, regs, regs_user_copy);
2565711f
PZ
4992 } else {
4993 regs_user->abi = PERF_SAMPLE_REGS_ABI_NONE;
4994 regs_user->regs = NULL;
4018994f
JO
4995 }
4996}
4997
60e2364e
SE
4998static void perf_sample_regs_intr(struct perf_regs *regs_intr,
4999 struct pt_regs *regs)
5000{
5001 regs_intr->regs = regs;
5002 regs_intr->abi = perf_reg_abi(current);
5003}
5004
5005
c5ebcedb
JO
5006/*
5007 * Get remaining task size from user stack pointer.
5008 *
5009 * It'd be better to take stack vma map and limit this more
5010 * precisly, but there's no way to get it safely under interrupt,
5011 * so using TASK_SIZE as limit.
5012 */
5013static u64 perf_ustack_task_size(struct pt_regs *regs)
5014{
5015 unsigned long addr = perf_user_stack_pointer(regs);
5016
5017 if (!addr || addr >= TASK_SIZE)
5018 return 0;
5019
5020 return TASK_SIZE - addr;
5021}
5022
5023static u16
5024perf_sample_ustack_size(u16 stack_size, u16 header_size,
5025 struct pt_regs *regs)
5026{
5027 u64 task_size;
5028
5029 /* No regs, no stack pointer, no dump. */
5030 if (!regs)
5031 return 0;
5032
5033 /*
5034 * Check if we fit in with the requested stack size into the:
5035 * - TASK_SIZE
5036 * If we don't, we limit the size to the TASK_SIZE.
5037 *
5038 * - remaining sample size
5039 * If we don't, we customize the stack size to
5040 * fit in to the remaining sample size.
5041 */
5042
5043 task_size = min((u64) USHRT_MAX, perf_ustack_task_size(regs));
5044 stack_size = min(stack_size, (u16) task_size);
5045
5046 /* Current header size plus static size and dynamic size. */
5047 header_size += 2 * sizeof(u64);
5048
5049 /* Do we fit in with the current stack dump size? */
5050 if ((u16) (header_size + stack_size) < header_size) {
5051 /*
5052 * If we overflow the maximum size for the sample,
5053 * we customize the stack dump size to fit in.
5054 */
5055 stack_size = USHRT_MAX - header_size - sizeof(u64);
5056 stack_size = round_up(stack_size, sizeof(u64));
5057 }
5058
5059 return stack_size;
5060}
5061
5062static void
5063perf_output_sample_ustack(struct perf_output_handle *handle, u64 dump_size,
5064 struct pt_regs *regs)
5065{
5066 /* Case of a kernel thread, nothing to dump */
5067 if (!regs) {
5068 u64 size = 0;
5069 perf_output_put(handle, size);
5070 } else {
5071 unsigned long sp;
5072 unsigned int rem;
5073 u64 dyn_size;
5074
5075 /*
5076 * We dump:
5077 * static size
5078 * - the size requested by user or the best one we can fit
5079 * in to the sample max size
5080 * data
5081 * - user stack dump data
5082 * dynamic size
5083 * - the actual dumped size
5084 */
5085
5086 /* Static size. */
5087 perf_output_put(handle, dump_size);
5088
5089 /* Data. */
5090 sp = perf_user_stack_pointer(regs);
5091 rem = __output_copy_user(handle, (void *) sp, dump_size);
5092 dyn_size = dump_size - rem;
5093
5094 perf_output_skip(handle, rem);
5095
5096 /* Dynamic size. */
5097 perf_output_put(handle, dyn_size);
5098 }
5099}
5100
c980d109
ACM
5101static void __perf_event_header__init_id(struct perf_event_header *header,
5102 struct perf_sample_data *data,
5103 struct perf_event *event)
6844c09d
ACM
5104{
5105 u64 sample_type = event->attr.sample_type;
5106
5107 data->type = sample_type;
5108 header->size += event->id_header_size;
5109
5110 if (sample_type & PERF_SAMPLE_TID) {
5111 /* namespace issues */
5112 data->tid_entry.pid = perf_event_pid(event, current);
5113 data->tid_entry.tid = perf_event_tid(event, current);
5114 }
5115
5116 if (sample_type & PERF_SAMPLE_TIME)
34f43927 5117 data->time = perf_event_clock(event);
6844c09d 5118
ff3d527c 5119 if (sample_type & (PERF_SAMPLE_ID | PERF_SAMPLE_IDENTIFIER))
6844c09d
ACM
5120 data->id = primary_event_id(event);
5121
5122 if (sample_type & PERF_SAMPLE_STREAM_ID)
5123 data->stream_id = event->id;
5124
5125 if (sample_type & PERF_SAMPLE_CPU) {
5126 data->cpu_entry.cpu = raw_smp_processor_id();
5127 data->cpu_entry.reserved = 0;
5128 }
5129}
5130
76369139
FW
5131void perf_event_header__init_id(struct perf_event_header *header,
5132 struct perf_sample_data *data,
5133 struct perf_event *event)
c980d109
ACM
5134{
5135 if (event->attr.sample_id_all)
5136 __perf_event_header__init_id(header, data, event);
5137}
5138
5139static void __perf_event__output_id_sample(struct perf_output_handle *handle,
5140 struct perf_sample_data *data)
5141{
5142 u64 sample_type = data->type;
5143
5144 if (sample_type & PERF_SAMPLE_TID)
5145 perf_output_put(handle, data->tid_entry);
5146
5147 if (sample_type & PERF_SAMPLE_TIME)
5148 perf_output_put(handle, data->time);
5149
5150 if (sample_type & PERF_SAMPLE_ID)
5151 perf_output_put(handle, data->id);
5152
5153 if (sample_type & PERF_SAMPLE_STREAM_ID)
5154 perf_output_put(handle, data->stream_id);
5155
5156 if (sample_type & PERF_SAMPLE_CPU)
5157 perf_output_put(handle, data->cpu_entry);
ff3d527c
AH
5158
5159 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5160 perf_output_put(handle, data->id);
c980d109
ACM
5161}
5162
76369139
FW
5163void perf_event__output_id_sample(struct perf_event *event,
5164 struct perf_output_handle *handle,
5165 struct perf_sample_data *sample)
c980d109
ACM
5166{
5167 if (event->attr.sample_id_all)
5168 __perf_event__output_id_sample(handle, sample);
5169}
5170
3dab77fb 5171static void perf_output_read_one(struct perf_output_handle *handle,
eed01528
SE
5172 struct perf_event *event,
5173 u64 enabled, u64 running)
3dab77fb 5174{
cdd6c482 5175 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5176 u64 values[4];
5177 int n = 0;
5178
b5e58793 5179 values[n++] = perf_event_count(event);
3dab77fb 5180 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED) {
eed01528 5181 values[n++] = enabled +
cdd6c482 5182 atomic64_read(&event->child_total_time_enabled);
3dab77fb
PZ
5183 }
5184 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING) {
eed01528 5185 values[n++] = running +
cdd6c482 5186 atomic64_read(&event->child_total_time_running);
3dab77fb
PZ
5187 }
5188 if (read_format & PERF_FORMAT_ID)
cdd6c482 5189 values[n++] = primary_event_id(event);
3dab77fb 5190
76369139 5191 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5192}
5193
5194/*
cdd6c482 5195 * XXX PERF_FORMAT_GROUP vs inherited events seems difficult.
3dab77fb
PZ
5196 */
5197static void perf_output_read_group(struct perf_output_handle *handle,
eed01528
SE
5198 struct perf_event *event,
5199 u64 enabled, u64 running)
3dab77fb 5200{
cdd6c482
IM
5201 struct perf_event *leader = event->group_leader, *sub;
5202 u64 read_format = event->attr.read_format;
3dab77fb
PZ
5203 u64 values[5];
5204 int n = 0;
5205
5206 values[n++] = 1 + leader->nr_siblings;
5207
5208 if (read_format & PERF_FORMAT_TOTAL_TIME_ENABLED)
eed01528 5209 values[n++] = enabled;
3dab77fb
PZ
5210
5211 if (read_format & PERF_FORMAT_TOTAL_TIME_RUNNING)
eed01528 5212 values[n++] = running;
3dab77fb 5213
cdd6c482 5214 if (leader != event)
3dab77fb
PZ
5215 leader->pmu->read(leader);
5216
b5e58793 5217 values[n++] = perf_event_count(leader);
3dab77fb 5218 if (read_format & PERF_FORMAT_ID)
cdd6c482 5219 values[n++] = primary_event_id(leader);
3dab77fb 5220
76369139 5221 __output_copy(handle, values, n * sizeof(u64));
3dab77fb 5222
65abc865 5223 list_for_each_entry(sub, &leader->sibling_list, group_entry) {
3dab77fb
PZ
5224 n = 0;
5225
6f5ab001
JO
5226 if ((sub != event) &&
5227 (sub->state == PERF_EVENT_STATE_ACTIVE))
3dab77fb
PZ
5228 sub->pmu->read(sub);
5229
b5e58793 5230 values[n++] = perf_event_count(sub);
3dab77fb 5231 if (read_format & PERF_FORMAT_ID)
cdd6c482 5232 values[n++] = primary_event_id(sub);
3dab77fb 5233
76369139 5234 __output_copy(handle, values, n * sizeof(u64));
3dab77fb
PZ
5235 }
5236}
5237
eed01528
SE
5238#define PERF_FORMAT_TOTAL_TIMES (PERF_FORMAT_TOTAL_TIME_ENABLED|\
5239 PERF_FORMAT_TOTAL_TIME_RUNNING)
5240
3dab77fb 5241static void perf_output_read(struct perf_output_handle *handle,
cdd6c482 5242 struct perf_event *event)
3dab77fb 5243{
e3f3541c 5244 u64 enabled = 0, running = 0, now;
eed01528
SE
5245 u64 read_format = event->attr.read_format;
5246
5247 /*
5248 * compute total_time_enabled, total_time_running
5249 * based on snapshot values taken when the event
5250 * was last scheduled in.
5251 *
5252 * we cannot simply called update_context_time()
5253 * because of locking issue as we are called in
5254 * NMI context
5255 */
c4794295 5256 if (read_format & PERF_FORMAT_TOTAL_TIMES)
e3f3541c 5257 calc_timer_values(event, &now, &enabled, &running);
eed01528 5258
cdd6c482 5259 if (event->attr.read_format & PERF_FORMAT_GROUP)
eed01528 5260 perf_output_read_group(handle, event, enabled, running);
3dab77fb 5261 else
eed01528 5262 perf_output_read_one(handle, event, enabled, running);
3dab77fb
PZ
5263}
5264
5622f295
MM
5265void perf_output_sample(struct perf_output_handle *handle,
5266 struct perf_event_header *header,
5267 struct perf_sample_data *data,
cdd6c482 5268 struct perf_event *event)
5622f295
MM
5269{
5270 u64 sample_type = data->type;
5271
5272 perf_output_put(handle, *header);
5273
ff3d527c
AH
5274 if (sample_type & PERF_SAMPLE_IDENTIFIER)
5275 perf_output_put(handle, data->id);
5276
5622f295
MM
5277 if (sample_type & PERF_SAMPLE_IP)
5278 perf_output_put(handle, data->ip);
5279
5280 if (sample_type & PERF_SAMPLE_TID)
5281 perf_output_put(handle, data->tid_entry);
5282
5283 if (sample_type & PERF_SAMPLE_TIME)
5284 perf_output_put(handle, data->time);
5285
5286 if (sample_type & PERF_SAMPLE_ADDR)
5287 perf_output_put(handle, data->addr);
5288
5289 if (sample_type & PERF_SAMPLE_ID)
5290 perf_output_put(handle, data->id);
5291
5292 if (sample_type & PERF_SAMPLE_STREAM_ID)
5293 perf_output_put(handle, data->stream_id);
5294
5295 if (sample_type & PERF_SAMPLE_CPU)
5296 perf_output_put(handle, data->cpu_entry);
5297
5298 if (sample_type & PERF_SAMPLE_PERIOD)
5299 perf_output_put(handle, data->period);
5300
5301 if (sample_type & PERF_SAMPLE_READ)
cdd6c482 5302 perf_output_read(handle, event);
5622f295
MM
5303
5304 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5305 if (data->callchain) {
5306 int size = 1;
5307
5308 if (data->callchain)
5309 size += data->callchain->nr;
5310
5311 size *= sizeof(u64);
5312
76369139 5313 __output_copy(handle, data->callchain, size);
5622f295
MM
5314 } else {
5315 u64 nr = 0;
5316 perf_output_put(handle, nr);
5317 }
5318 }
5319
5320 if (sample_type & PERF_SAMPLE_RAW) {
5321 if (data->raw) {
fa128e6a
AS
5322 u32 raw_size = data->raw->size;
5323 u32 real_size = round_up(raw_size + sizeof(u32),
5324 sizeof(u64)) - sizeof(u32);
5325 u64 zero = 0;
5326
5327 perf_output_put(handle, real_size);
5328 __output_copy(handle, data->raw->data, raw_size);
5329 if (real_size - raw_size)
5330 __output_copy(handle, &zero, real_size - raw_size);
5622f295
MM
5331 } else {
5332 struct {
5333 u32 size;
5334 u32 data;
5335 } raw = {
5336 .size = sizeof(u32),
5337 .data = 0,
5338 };
5339 perf_output_put(handle, raw);
5340 }
5341 }
a7ac67ea 5342
bce38cd5
SE
5343 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5344 if (data->br_stack) {
5345 size_t size;
5346
5347 size = data->br_stack->nr
5348 * sizeof(struct perf_branch_entry);
5349
5350 perf_output_put(handle, data->br_stack->nr);
5351 perf_output_copy(handle, data->br_stack->entries, size);
5352 } else {
5353 /*
5354 * we always store at least the value of nr
5355 */
5356 u64 nr = 0;
5357 perf_output_put(handle, nr);
5358 }
5359 }
4018994f
JO
5360
5361 if (sample_type & PERF_SAMPLE_REGS_USER) {
5362 u64 abi = data->regs_user.abi;
5363
5364 /*
5365 * If there are no regs to dump, notice it through
5366 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5367 */
5368 perf_output_put(handle, abi);
5369
5370 if (abi) {
5371 u64 mask = event->attr.sample_regs_user;
5372 perf_output_sample_regs(handle,
5373 data->regs_user.regs,
5374 mask);
5375 }
5376 }
c5ebcedb 5377
a5cdd40c 5378 if (sample_type & PERF_SAMPLE_STACK_USER) {
c5ebcedb
JO
5379 perf_output_sample_ustack(handle,
5380 data->stack_user_size,
5381 data->regs_user.regs);
a5cdd40c 5382 }
c3feedf2
AK
5383
5384 if (sample_type & PERF_SAMPLE_WEIGHT)
5385 perf_output_put(handle, data->weight);
d6be9ad6
SE
5386
5387 if (sample_type & PERF_SAMPLE_DATA_SRC)
5388 perf_output_put(handle, data->data_src.val);
a5cdd40c 5389
fdfbbd07
AK
5390 if (sample_type & PERF_SAMPLE_TRANSACTION)
5391 perf_output_put(handle, data->txn);
5392
60e2364e
SE
5393 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5394 u64 abi = data->regs_intr.abi;
5395 /*
5396 * If there are no regs to dump, notice it through
5397 * first u64 being zero (PERF_SAMPLE_REGS_ABI_NONE).
5398 */
5399 perf_output_put(handle, abi);
5400
5401 if (abi) {
5402 u64 mask = event->attr.sample_regs_intr;
5403
5404 perf_output_sample_regs(handle,
5405 data->regs_intr.regs,
5406 mask);
5407 }
5408 }
5409
a5cdd40c
PZ
5410 if (!event->attr.watermark) {
5411 int wakeup_events = event->attr.wakeup_events;
5412
5413 if (wakeup_events) {
5414 struct ring_buffer *rb = handle->rb;
5415 int events = local_inc_return(&rb->events);
5416
5417 if (events >= wakeup_events) {
5418 local_sub(wakeup_events, &rb->events);
5419 local_inc(&rb->wakeup);
5420 }
5421 }
5422 }
5622f295
MM
5423}
5424
5425void perf_prepare_sample(struct perf_event_header *header,
5426 struct perf_sample_data *data,
cdd6c482 5427 struct perf_event *event,
5622f295 5428 struct pt_regs *regs)
7b732a75 5429{
cdd6c482 5430 u64 sample_type = event->attr.sample_type;
7b732a75 5431
cdd6c482 5432 header->type = PERF_RECORD_SAMPLE;
c320c7b7 5433 header->size = sizeof(*header) + event->header_size;
5622f295
MM
5434
5435 header->misc = 0;
5436 header->misc |= perf_misc_flags(regs);
6fab0192 5437
c980d109 5438 __perf_event_header__init_id(header, data, event);
6844c09d 5439
c320c7b7 5440 if (sample_type & PERF_SAMPLE_IP)
5622f295
MM
5441 data->ip = perf_instruction_pointer(regs);
5442
b23f3325 5443 if (sample_type & PERF_SAMPLE_CALLCHAIN) {
5622f295 5444 int size = 1;
394ee076 5445
e6dab5ff 5446 data->callchain = perf_callchain(event, regs);
5622f295
MM
5447
5448 if (data->callchain)
5449 size += data->callchain->nr;
5450
5451 header->size += size * sizeof(u64);
394ee076
PZ
5452 }
5453
3a43ce68 5454 if (sample_type & PERF_SAMPLE_RAW) {
a044560c
PZ
5455 int size = sizeof(u32);
5456
5457 if (data->raw)
5458 size += data->raw->size;
5459 else
5460 size += sizeof(u32);
5461
fa128e6a 5462 header->size += round_up(size, sizeof(u64));
7f453c24 5463 }
bce38cd5
SE
5464
5465 if (sample_type & PERF_SAMPLE_BRANCH_STACK) {
5466 int size = sizeof(u64); /* nr */
5467 if (data->br_stack) {
5468 size += data->br_stack->nr
5469 * sizeof(struct perf_branch_entry);
5470 }
5471 header->size += size;
5472 }
4018994f 5473
2565711f 5474 if (sample_type & (PERF_SAMPLE_REGS_USER | PERF_SAMPLE_STACK_USER))
88a7c26a
AL
5475 perf_sample_regs_user(&data->regs_user, regs,
5476 &data->regs_user_copy);
2565711f 5477
4018994f
JO
5478 if (sample_type & PERF_SAMPLE_REGS_USER) {
5479 /* regs dump ABI info */
5480 int size = sizeof(u64);
5481
4018994f
JO
5482 if (data->regs_user.regs) {
5483 u64 mask = event->attr.sample_regs_user;
5484 size += hweight64(mask) * sizeof(u64);
5485 }
5486
5487 header->size += size;
5488 }
c5ebcedb
JO
5489
5490 if (sample_type & PERF_SAMPLE_STACK_USER) {
5491 /*
5492 * Either we need PERF_SAMPLE_STACK_USER bit to be allways
5493 * processed as the last one or have additional check added
5494 * in case new sample type is added, because we could eat
5495 * up the rest of the sample size.
5496 */
c5ebcedb
JO
5497 u16 stack_size = event->attr.sample_stack_user;
5498 u16 size = sizeof(u64);
5499
c5ebcedb 5500 stack_size = perf_sample_ustack_size(stack_size, header->size,
2565711f 5501 data->regs_user.regs);
c5ebcedb
JO
5502
5503 /*
5504 * If there is something to dump, add space for the dump
5505 * itself and for the field that tells the dynamic size,
5506 * which is how many have been actually dumped.
5507 */
5508 if (stack_size)
5509 size += sizeof(u64) + stack_size;
5510
5511 data->stack_user_size = stack_size;
5512 header->size += size;
5513 }
60e2364e
SE
5514
5515 if (sample_type & PERF_SAMPLE_REGS_INTR) {
5516 /* regs dump ABI info */
5517 int size = sizeof(u64);
5518
5519 perf_sample_regs_intr(&data->regs_intr, regs);
5520
5521 if (data->regs_intr.regs) {
5522 u64 mask = event->attr.sample_regs_intr;
5523
5524 size += hweight64(mask) * sizeof(u64);
5525 }
5526
5527 header->size += size;
5528 }
5622f295 5529}
7f453c24 5530
21509084
YZ
5531void perf_event_output(struct perf_event *event,
5532 struct perf_sample_data *data,
5533 struct pt_regs *regs)
5622f295
MM
5534{
5535 struct perf_output_handle handle;
5536 struct perf_event_header header;
689802b2 5537
927c7a9e
FW
5538 /* protect the callchain buffers */
5539 rcu_read_lock();
5540
cdd6c482 5541 perf_prepare_sample(&header, data, event, regs);
5c148194 5542
a7ac67ea 5543 if (perf_output_begin(&handle, event, header.size))
927c7a9e 5544 goto exit;
0322cd6e 5545
cdd6c482 5546 perf_output_sample(&handle, &header, data, event);
f413cdb8 5547
8a057d84 5548 perf_output_end(&handle);
927c7a9e
FW
5549
5550exit:
5551 rcu_read_unlock();
0322cd6e
PZ
5552}
5553
38b200d6 5554/*
cdd6c482 5555 * read event_id
38b200d6
PZ
5556 */
5557
5558struct perf_read_event {
5559 struct perf_event_header header;
5560
5561 u32 pid;
5562 u32 tid;
38b200d6
PZ
5563};
5564
5565static void
cdd6c482 5566perf_event_read_event(struct perf_event *event,
38b200d6
PZ
5567 struct task_struct *task)
5568{
5569 struct perf_output_handle handle;
c980d109 5570 struct perf_sample_data sample;
dfc65094 5571 struct perf_read_event read_event = {
38b200d6 5572 .header = {
cdd6c482 5573 .type = PERF_RECORD_READ,
38b200d6 5574 .misc = 0,
c320c7b7 5575 .size = sizeof(read_event) + event->read_size,
38b200d6 5576 },
cdd6c482
IM
5577 .pid = perf_event_pid(event, task),
5578 .tid = perf_event_tid(event, task),
38b200d6 5579 };
3dab77fb 5580 int ret;
38b200d6 5581
c980d109 5582 perf_event_header__init_id(&read_event.header, &sample, event);
a7ac67ea 5583 ret = perf_output_begin(&handle, event, read_event.header.size);
38b200d6
PZ
5584 if (ret)
5585 return;
5586
dfc65094 5587 perf_output_put(&handle, read_event);
cdd6c482 5588 perf_output_read(&handle, event);
c980d109 5589 perf_event__output_id_sample(event, &handle, &sample);
3dab77fb 5590
38b200d6
PZ
5591 perf_output_end(&handle);
5592}
5593
52d857a8
JO
5594typedef void (perf_event_aux_output_cb)(struct perf_event *event, void *data);
5595
5596static void
5597perf_event_aux_ctx(struct perf_event_context *ctx,
52d857a8
JO
5598 perf_event_aux_output_cb output,
5599 void *data)
5600{
5601 struct perf_event *event;
5602
5603 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
5604 if (event->state < PERF_EVENT_STATE_INACTIVE)
5605 continue;
5606 if (!event_filter_match(event))
5607 continue;
67516844 5608 output(event, data);
52d857a8
JO
5609 }
5610}
5611
4e93ad60
JO
5612static void
5613perf_event_aux_task_ctx(perf_event_aux_output_cb output, void *data,
5614 struct perf_event_context *task_ctx)
5615{
5616 rcu_read_lock();
5617 preempt_disable();
5618 perf_event_aux_ctx(task_ctx, output, data);
5619 preempt_enable();
5620 rcu_read_unlock();
5621}
5622
52d857a8 5623static void
67516844 5624perf_event_aux(perf_event_aux_output_cb output, void *data,
52d857a8
JO
5625 struct perf_event_context *task_ctx)
5626{
5627 struct perf_cpu_context *cpuctx;
5628 struct perf_event_context *ctx;
5629 struct pmu *pmu;
5630 int ctxn;
5631
4e93ad60
JO
5632 /*
5633 * If we have task_ctx != NULL we only notify
5634 * the task context itself. The task_ctx is set
5635 * only for EXIT events before releasing task
5636 * context.
5637 */
5638 if (task_ctx) {
5639 perf_event_aux_task_ctx(output, data, task_ctx);
5640 return;
5641 }
5642
52d857a8
JO
5643 rcu_read_lock();
5644 list_for_each_entry_rcu(pmu, &pmus, entry) {
5645 cpuctx = get_cpu_ptr(pmu->pmu_cpu_context);
5646 if (cpuctx->unique_pmu != pmu)
5647 goto next;
67516844 5648 perf_event_aux_ctx(&cpuctx->ctx, output, data);
52d857a8
JO
5649 ctxn = pmu->task_ctx_nr;
5650 if (ctxn < 0)
5651 goto next;
5652 ctx = rcu_dereference(current->perf_event_ctxp[ctxn]);
5653 if (ctx)
67516844 5654 perf_event_aux_ctx(ctx, output, data);
52d857a8
JO
5655next:
5656 put_cpu_ptr(pmu->pmu_cpu_context);
5657 }
52d857a8
JO
5658 rcu_read_unlock();
5659}
5660
60313ebe 5661/*
9f498cc5
PZ
5662 * task tracking -- fork/exit
5663 *
13d7a241 5664 * enabled by: attr.comm | attr.mmap | attr.mmap2 | attr.mmap_data | attr.task
60313ebe
PZ
5665 */
5666
9f498cc5 5667struct perf_task_event {
3a80b4a3 5668 struct task_struct *task;
cdd6c482 5669 struct perf_event_context *task_ctx;
60313ebe
PZ
5670
5671 struct {
5672 struct perf_event_header header;
5673
5674 u32 pid;
5675 u32 ppid;
9f498cc5
PZ
5676 u32 tid;
5677 u32 ptid;
393b2ad8 5678 u64 time;
cdd6c482 5679 } event_id;
60313ebe
PZ
5680};
5681
67516844
JO
5682static int perf_event_task_match(struct perf_event *event)
5683{
13d7a241
SE
5684 return event->attr.comm || event->attr.mmap ||
5685 event->attr.mmap2 || event->attr.mmap_data ||
5686 event->attr.task;
67516844
JO
5687}
5688
cdd6c482 5689static void perf_event_task_output(struct perf_event *event,
52d857a8 5690 void *data)
60313ebe 5691{
52d857a8 5692 struct perf_task_event *task_event = data;
60313ebe 5693 struct perf_output_handle handle;
c980d109 5694 struct perf_sample_data sample;
9f498cc5 5695 struct task_struct *task = task_event->task;
c980d109 5696 int ret, size = task_event->event_id.header.size;
8bb39f9a 5697
67516844
JO
5698 if (!perf_event_task_match(event))
5699 return;
5700
c980d109 5701 perf_event_header__init_id(&task_event->event_id.header, &sample, event);
60313ebe 5702
c980d109 5703 ret = perf_output_begin(&handle, event,
a7ac67ea 5704 task_event->event_id.header.size);
ef60777c 5705 if (ret)
c980d109 5706 goto out;
60313ebe 5707
cdd6c482
IM
5708 task_event->event_id.pid = perf_event_pid(event, task);
5709 task_event->event_id.ppid = perf_event_pid(event, current);
60313ebe 5710
cdd6c482
IM
5711 task_event->event_id.tid = perf_event_tid(event, task);
5712 task_event->event_id.ptid = perf_event_tid(event, current);
9f498cc5 5713
34f43927
PZ
5714 task_event->event_id.time = perf_event_clock(event);
5715
cdd6c482 5716 perf_output_put(&handle, task_event->event_id);
393b2ad8 5717
c980d109
ACM
5718 perf_event__output_id_sample(event, &handle, &sample);
5719
60313ebe 5720 perf_output_end(&handle);
c980d109
ACM
5721out:
5722 task_event->event_id.header.size = size;
60313ebe
PZ
5723}
5724
cdd6c482
IM
5725static void perf_event_task(struct task_struct *task,
5726 struct perf_event_context *task_ctx,
3a80b4a3 5727 int new)
60313ebe 5728{
9f498cc5 5729 struct perf_task_event task_event;
60313ebe 5730
cdd6c482
IM
5731 if (!atomic_read(&nr_comm_events) &&
5732 !atomic_read(&nr_mmap_events) &&
5733 !atomic_read(&nr_task_events))
60313ebe
PZ
5734 return;
5735
9f498cc5 5736 task_event = (struct perf_task_event){
3a80b4a3
PZ
5737 .task = task,
5738 .task_ctx = task_ctx,
cdd6c482 5739 .event_id = {
60313ebe 5740 .header = {
cdd6c482 5741 .type = new ? PERF_RECORD_FORK : PERF_RECORD_EXIT,
573402db 5742 .misc = 0,
cdd6c482 5743 .size = sizeof(task_event.event_id),
60313ebe 5744 },
573402db
PZ
5745 /* .pid */
5746 /* .ppid */
9f498cc5
PZ
5747 /* .tid */
5748 /* .ptid */
34f43927 5749 /* .time */
60313ebe
PZ
5750 },
5751 };
5752
67516844 5753 perf_event_aux(perf_event_task_output,
52d857a8
JO
5754 &task_event,
5755 task_ctx);
9f498cc5
PZ
5756}
5757
cdd6c482 5758void perf_event_fork(struct task_struct *task)
9f498cc5 5759{
cdd6c482 5760 perf_event_task(task, NULL, 1);
60313ebe
PZ
5761}
5762
8d1b2d93
PZ
5763/*
5764 * comm tracking
5765 */
5766
5767struct perf_comm_event {
22a4f650
IM
5768 struct task_struct *task;
5769 char *comm;
8d1b2d93
PZ
5770 int comm_size;
5771
5772 struct {
5773 struct perf_event_header header;
5774
5775 u32 pid;
5776 u32 tid;
cdd6c482 5777 } event_id;
8d1b2d93
PZ
5778};
5779
67516844
JO
5780static int perf_event_comm_match(struct perf_event *event)
5781{
5782 return event->attr.comm;
5783}
5784
cdd6c482 5785static void perf_event_comm_output(struct perf_event *event,
52d857a8 5786 void *data)
8d1b2d93 5787{
52d857a8 5788 struct perf_comm_event *comm_event = data;
8d1b2d93 5789 struct perf_output_handle handle;
c980d109 5790 struct perf_sample_data sample;
cdd6c482 5791 int size = comm_event->event_id.header.size;
c980d109
ACM
5792 int ret;
5793
67516844
JO
5794 if (!perf_event_comm_match(event))
5795 return;
5796
c980d109
ACM
5797 perf_event_header__init_id(&comm_event->event_id.header, &sample, event);
5798 ret = perf_output_begin(&handle, event,
a7ac67ea 5799 comm_event->event_id.header.size);
8d1b2d93
PZ
5800
5801 if (ret)
c980d109 5802 goto out;
8d1b2d93 5803
cdd6c482
IM
5804 comm_event->event_id.pid = perf_event_pid(event, comm_event->task);
5805 comm_event->event_id.tid = perf_event_tid(event, comm_event->task);
709e50cf 5806
cdd6c482 5807 perf_output_put(&handle, comm_event->event_id);
76369139 5808 __output_copy(&handle, comm_event->comm,
8d1b2d93 5809 comm_event->comm_size);
c980d109
ACM
5810
5811 perf_event__output_id_sample(event, &handle, &sample);
5812
8d1b2d93 5813 perf_output_end(&handle);
c980d109
ACM
5814out:
5815 comm_event->event_id.header.size = size;
8d1b2d93
PZ
5816}
5817
cdd6c482 5818static void perf_event_comm_event(struct perf_comm_event *comm_event)
8d1b2d93 5819{
413ee3b4 5820 char comm[TASK_COMM_LEN];
8d1b2d93 5821 unsigned int size;
8d1b2d93 5822
413ee3b4 5823 memset(comm, 0, sizeof(comm));
96b02d78 5824 strlcpy(comm, comm_event->task->comm, sizeof(comm));
888fcee0 5825 size = ALIGN(strlen(comm)+1, sizeof(u64));
8d1b2d93
PZ
5826
5827 comm_event->comm = comm;
5828 comm_event->comm_size = size;
5829
cdd6c482 5830 comm_event->event_id.header.size = sizeof(comm_event->event_id) + size;
8dc85d54 5831
67516844 5832 perf_event_aux(perf_event_comm_output,
52d857a8
JO
5833 comm_event,
5834 NULL);
8d1b2d93
PZ
5835}
5836
82b89778 5837void perf_event_comm(struct task_struct *task, bool exec)
8d1b2d93 5838{
9ee318a7
PZ
5839 struct perf_comm_event comm_event;
5840
cdd6c482 5841 if (!atomic_read(&nr_comm_events))
9ee318a7 5842 return;
a63eaf34 5843
9ee318a7 5844 comm_event = (struct perf_comm_event){
8d1b2d93 5845 .task = task,
573402db
PZ
5846 /* .comm */
5847 /* .comm_size */
cdd6c482 5848 .event_id = {
573402db 5849 .header = {
cdd6c482 5850 .type = PERF_RECORD_COMM,
82b89778 5851 .misc = exec ? PERF_RECORD_MISC_COMM_EXEC : 0,
573402db
PZ
5852 /* .size */
5853 },
5854 /* .pid */
5855 /* .tid */
8d1b2d93
PZ
5856 },
5857 };
5858
cdd6c482 5859 perf_event_comm_event(&comm_event);
8d1b2d93
PZ
5860}
5861
0a4a9391
PZ
5862/*
5863 * mmap tracking
5864 */
5865
5866struct perf_mmap_event {
089dd79d
PZ
5867 struct vm_area_struct *vma;
5868
5869 const char *file_name;
5870 int file_size;
13d7a241
SE
5871 int maj, min;
5872 u64 ino;
5873 u64 ino_generation;
f972eb63 5874 u32 prot, flags;
0a4a9391
PZ
5875
5876 struct {
5877 struct perf_event_header header;
5878
5879 u32 pid;
5880 u32 tid;
5881 u64 start;
5882 u64 len;
5883 u64 pgoff;
cdd6c482 5884 } event_id;
0a4a9391
PZ
5885};
5886
67516844
JO
5887static int perf_event_mmap_match(struct perf_event *event,
5888 void *data)
5889{
5890 struct perf_mmap_event *mmap_event = data;
5891 struct vm_area_struct *vma = mmap_event->vma;
5892 int executable = vma->vm_flags & VM_EXEC;
5893
5894 return (!executable && event->attr.mmap_data) ||
13d7a241 5895 (executable && (event->attr.mmap || event->attr.mmap2));
67516844
JO
5896}
5897
cdd6c482 5898static void perf_event_mmap_output(struct perf_event *event,
52d857a8 5899 void *data)
0a4a9391 5900{
52d857a8 5901 struct perf_mmap_event *mmap_event = data;
0a4a9391 5902 struct perf_output_handle handle;
c980d109 5903 struct perf_sample_data sample;
cdd6c482 5904 int size = mmap_event->event_id.header.size;
c980d109 5905 int ret;
0a4a9391 5906
67516844
JO
5907 if (!perf_event_mmap_match(event, data))
5908 return;
5909
13d7a241
SE
5910 if (event->attr.mmap2) {
5911 mmap_event->event_id.header.type = PERF_RECORD_MMAP2;
5912 mmap_event->event_id.header.size += sizeof(mmap_event->maj);
5913 mmap_event->event_id.header.size += sizeof(mmap_event->min);
5914 mmap_event->event_id.header.size += sizeof(mmap_event->ino);
d008d525 5915 mmap_event->event_id.header.size += sizeof(mmap_event->ino_generation);
f972eb63
PZ
5916 mmap_event->event_id.header.size += sizeof(mmap_event->prot);
5917 mmap_event->event_id.header.size += sizeof(mmap_event->flags);
13d7a241
SE
5918 }
5919
c980d109
ACM
5920 perf_event_header__init_id(&mmap_event->event_id.header, &sample, event);
5921 ret = perf_output_begin(&handle, event,
a7ac67ea 5922 mmap_event->event_id.header.size);
0a4a9391 5923 if (ret)
c980d109 5924 goto out;
0a4a9391 5925
cdd6c482
IM
5926 mmap_event->event_id.pid = perf_event_pid(event, current);
5927 mmap_event->event_id.tid = perf_event_tid(event, current);
709e50cf 5928
cdd6c482 5929 perf_output_put(&handle, mmap_event->event_id);
13d7a241
SE
5930
5931 if (event->attr.mmap2) {
5932 perf_output_put(&handle, mmap_event->maj);
5933 perf_output_put(&handle, mmap_event->min);
5934 perf_output_put(&handle, mmap_event->ino);
5935 perf_output_put(&handle, mmap_event->ino_generation);
f972eb63
PZ
5936 perf_output_put(&handle, mmap_event->prot);
5937 perf_output_put(&handle, mmap_event->flags);
13d7a241
SE
5938 }
5939
76369139 5940 __output_copy(&handle, mmap_event->file_name,
0a4a9391 5941 mmap_event->file_size);
c980d109
ACM
5942
5943 perf_event__output_id_sample(event, &handle, &sample);
5944
78d613eb 5945 perf_output_end(&handle);
c980d109
ACM
5946out:
5947 mmap_event->event_id.header.size = size;
0a4a9391
PZ
5948}
5949
cdd6c482 5950static void perf_event_mmap_event(struct perf_mmap_event *mmap_event)
0a4a9391 5951{
089dd79d
PZ
5952 struct vm_area_struct *vma = mmap_event->vma;
5953 struct file *file = vma->vm_file;
13d7a241
SE
5954 int maj = 0, min = 0;
5955 u64 ino = 0, gen = 0;
f972eb63 5956 u32 prot = 0, flags = 0;
0a4a9391
PZ
5957 unsigned int size;
5958 char tmp[16];
5959 char *buf = NULL;
2c42cfbf 5960 char *name;
413ee3b4 5961
0a4a9391 5962 if (file) {
13d7a241
SE
5963 struct inode *inode;
5964 dev_t dev;
3ea2f2b9 5965
2c42cfbf 5966 buf = kmalloc(PATH_MAX, GFP_KERNEL);
0a4a9391 5967 if (!buf) {
c7e548b4
ON
5968 name = "//enomem";
5969 goto cpy_name;
0a4a9391 5970 }
413ee3b4 5971 /*
3ea2f2b9 5972 * d_path() works from the end of the rb backwards, so we
413ee3b4
AB
5973 * need to add enough zero bytes after the string to handle
5974 * the 64bit alignment we do later.
5975 */
9bf39ab2 5976 name = file_path(file, buf, PATH_MAX - sizeof(u64));
0a4a9391 5977 if (IS_ERR(name)) {
c7e548b4
ON
5978 name = "//toolong";
5979 goto cpy_name;
0a4a9391 5980 }
13d7a241
SE
5981 inode = file_inode(vma->vm_file);
5982 dev = inode->i_sb->s_dev;
5983 ino = inode->i_ino;
5984 gen = inode->i_generation;
5985 maj = MAJOR(dev);
5986 min = MINOR(dev);
f972eb63
PZ
5987
5988 if (vma->vm_flags & VM_READ)
5989 prot |= PROT_READ;
5990 if (vma->vm_flags & VM_WRITE)
5991 prot |= PROT_WRITE;
5992 if (vma->vm_flags & VM_EXEC)
5993 prot |= PROT_EXEC;
5994
5995 if (vma->vm_flags & VM_MAYSHARE)
5996 flags = MAP_SHARED;
5997 else
5998 flags = MAP_PRIVATE;
5999
6000 if (vma->vm_flags & VM_DENYWRITE)
6001 flags |= MAP_DENYWRITE;
6002 if (vma->vm_flags & VM_MAYEXEC)
6003 flags |= MAP_EXECUTABLE;
6004 if (vma->vm_flags & VM_LOCKED)
6005 flags |= MAP_LOCKED;
6006 if (vma->vm_flags & VM_HUGETLB)
6007 flags |= MAP_HUGETLB;
6008
c7e548b4 6009 goto got_name;
0a4a9391 6010 } else {
fbe26abe
JO
6011 if (vma->vm_ops && vma->vm_ops->name) {
6012 name = (char *) vma->vm_ops->name(vma);
6013 if (name)
6014 goto cpy_name;
6015 }
6016
2c42cfbf 6017 name = (char *)arch_vma_name(vma);
c7e548b4
ON
6018 if (name)
6019 goto cpy_name;
089dd79d 6020
32c5fb7e 6021 if (vma->vm_start <= vma->vm_mm->start_brk &&
3af9e859 6022 vma->vm_end >= vma->vm_mm->brk) {
c7e548b4
ON
6023 name = "[heap]";
6024 goto cpy_name;
32c5fb7e
ON
6025 }
6026 if (vma->vm_start <= vma->vm_mm->start_stack &&
3af9e859 6027 vma->vm_end >= vma->vm_mm->start_stack) {
c7e548b4
ON
6028 name = "[stack]";
6029 goto cpy_name;
089dd79d
PZ
6030 }
6031
c7e548b4
ON
6032 name = "//anon";
6033 goto cpy_name;
0a4a9391
PZ
6034 }
6035
c7e548b4
ON
6036cpy_name:
6037 strlcpy(tmp, name, sizeof(tmp));
6038 name = tmp;
0a4a9391 6039got_name:
2c42cfbf
PZ
6040 /*
6041 * Since our buffer works in 8 byte units we need to align our string
6042 * size to a multiple of 8. However, we must guarantee the tail end is
6043 * zero'd out to avoid leaking random bits to userspace.
6044 */
6045 size = strlen(name)+1;
6046 while (!IS_ALIGNED(size, sizeof(u64)))
6047 name[size++] = '\0';
0a4a9391
PZ
6048
6049 mmap_event->file_name = name;
6050 mmap_event->file_size = size;
13d7a241
SE
6051 mmap_event->maj = maj;
6052 mmap_event->min = min;
6053 mmap_event->ino = ino;
6054 mmap_event->ino_generation = gen;
f972eb63
PZ
6055 mmap_event->prot = prot;
6056 mmap_event->flags = flags;
0a4a9391 6057
2fe85427
SE
6058 if (!(vma->vm_flags & VM_EXEC))
6059 mmap_event->event_id.header.misc |= PERF_RECORD_MISC_MMAP_DATA;
6060
cdd6c482 6061 mmap_event->event_id.header.size = sizeof(mmap_event->event_id) + size;
0a4a9391 6062
67516844 6063 perf_event_aux(perf_event_mmap_output,
52d857a8
JO
6064 mmap_event,
6065 NULL);
665c2142 6066
0a4a9391
PZ
6067 kfree(buf);
6068}
6069
3af9e859 6070void perf_event_mmap(struct vm_area_struct *vma)
0a4a9391 6071{
9ee318a7
PZ
6072 struct perf_mmap_event mmap_event;
6073
cdd6c482 6074 if (!atomic_read(&nr_mmap_events))
9ee318a7
PZ
6075 return;
6076
6077 mmap_event = (struct perf_mmap_event){
089dd79d 6078 .vma = vma,
573402db
PZ
6079 /* .file_name */
6080 /* .file_size */
cdd6c482 6081 .event_id = {
573402db 6082 .header = {
cdd6c482 6083 .type = PERF_RECORD_MMAP,
39447b38 6084 .misc = PERF_RECORD_MISC_USER,
573402db
PZ
6085 /* .size */
6086 },
6087 /* .pid */
6088 /* .tid */
089dd79d
PZ
6089 .start = vma->vm_start,
6090 .len = vma->vm_end - vma->vm_start,
3a0304e9 6091 .pgoff = (u64)vma->vm_pgoff << PAGE_SHIFT,
0a4a9391 6092 },
13d7a241
SE
6093 /* .maj (attr_mmap2 only) */
6094 /* .min (attr_mmap2 only) */
6095 /* .ino (attr_mmap2 only) */
6096 /* .ino_generation (attr_mmap2 only) */
f972eb63
PZ
6097 /* .prot (attr_mmap2 only) */
6098 /* .flags (attr_mmap2 only) */
0a4a9391
PZ
6099 };
6100
cdd6c482 6101 perf_event_mmap_event(&mmap_event);
0a4a9391
PZ
6102}
6103
68db7e98
AS
6104void perf_event_aux_event(struct perf_event *event, unsigned long head,
6105 unsigned long size, u64 flags)
6106{
6107 struct perf_output_handle handle;
6108 struct perf_sample_data sample;
6109 struct perf_aux_event {
6110 struct perf_event_header header;
6111 u64 offset;
6112 u64 size;
6113 u64 flags;
6114 } rec = {
6115 .header = {
6116 .type = PERF_RECORD_AUX,
6117 .misc = 0,
6118 .size = sizeof(rec),
6119 },
6120 .offset = head,
6121 .size = size,
6122 .flags = flags,
6123 };
6124 int ret;
6125
6126 perf_event_header__init_id(&rec.header, &sample, event);
6127 ret = perf_output_begin(&handle, event, rec.header.size);
6128
6129 if (ret)
6130 return;
6131
6132 perf_output_put(&handle, rec);
6133 perf_event__output_id_sample(event, &handle, &sample);
6134
6135 perf_output_end(&handle);
6136}
6137
f38b0dbb
KL
6138/*
6139 * Lost/dropped samples logging
6140 */
6141void perf_log_lost_samples(struct perf_event *event, u64 lost)
6142{
6143 struct perf_output_handle handle;
6144 struct perf_sample_data sample;
6145 int ret;
6146
6147 struct {
6148 struct perf_event_header header;
6149 u64 lost;
6150 } lost_samples_event = {
6151 .header = {
6152 .type = PERF_RECORD_LOST_SAMPLES,
6153 .misc = 0,
6154 .size = sizeof(lost_samples_event),
6155 },
6156 .lost = lost,
6157 };
6158
6159 perf_event_header__init_id(&lost_samples_event.header, &sample, event);
6160
6161 ret = perf_output_begin(&handle, event,
6162 lost_samples_event.header.size);
6163 if (ret)
6164 return;
6165
6166 perf_output_put(&handle, lost_samples_event);
6167 perf_event__output_id_sample(event, &handle, &sample);
6168 perf_output_end(&handle);
6169}
6170
45ac1403
AH
6171/*
6172 * context_switch tracking
6173 */
6174
6175struct perf_switch_event {
6176 struct task_struct *task;
6177 struct task_struct *next_prev;
6178
6179 struct {
6180 struct perf_event_header header;
6181 u32 next_prev_pid;
6182 u32 next_prev_tid;
6183 } event_id;
6184};
6185
6186static int perf_event_switch_match(struct perf_event *event)
6187{
6188 return event->attr.context_switch;
6189}
6190
6191static void perf_event_switch_output(struct perf_event *event, void *data)
6192{
6193 struct perf_switch_event *se = data;
6194 struct perf_output_handle handle;
6195 struct perf_sample_data sample;
6196 int ret;
6197
6198 if (!perf_event_switch_match(event))
6199 return;
6200
6201 /* Only CPU-wide events are allowed to see next/prev pid/tid */
6202 if (event->ctx->task) {
6203 se->event_id.header.type = PERF_RECORD_SWITCH;
6204 se->event_id.header.size = sizeof(se->event_id.header);
6205 } else {
6206 se->event_id.header.type = PERF_RECORD_SWITCH_CPU_WIDE;
6207 se->event_id.header.size = sizeof(se->event_id);
6208 se->event_id.next_prev_pid =
6209 perf_event_pid(event, se->next_prev);
6210 se->event_id.next_prev_tid =
6211 perf_event_tid(event, se->next_prev);
6212 }
6213
6214 perf_event_header__init_id(&se->event_id.header, &sample, event);
6215
6216 ret = perf_output_begin(&handle, event, se->event_id.header.size);
6217 if (ret)
6218 return;
6219
6220 if (event->ctx->task)
6221 perf_output_put(&handle, se->event_id.header);
6222 else
6223 perf_output_put(&handle, se->event_id);
6224
6225 perf_event__output_id_sample(event, &handle, &sample);
6226
6227 perf_output_end(&handle);
6228}
6229
6230static void perf_event_switch(struct task_struct *task,
6231 struct task_struct *next_prev, bool sched_in)
6232{
6233 struct perf_switch_event switch_event;
6234
6235 /* N.B. caller checks nr_switch_events != 0 */
6236
6237 switch_event = (struct perf_switch_event){
6238 .task = task,
6239 .next_prev = next_prev,
6240 .event_id = {
6241 .header = {
6242 /* .type */
6243 .misc = sched_in ? 0 : PERF_RECORD_MISC_SWITCH_OUT,
6244 /* .size */
6245 },
6246 /* .next_prev_pid */
6247 /* .next_prev_tid */
6248 },
6249 };
6250
6251 perf_event_aux(perf_event_switch_output,
6252 &switch_event,
6253 NULL);
6254}
6255
a78ac325
PZ
6256/*
6257 * IRQ throttle logging
6258 */
6259
cdd6c482 6260static void perf_log_throttle(struct perf_event *event, int enable)
a78ac325
PZ
6261{
6262 struct perf_output_handle handle;
c980d109 6263 struct perf_sample_data sample;
a78ac325
PZ
6264 int ret;
6265
6266 struct {
6267 struct perf_event_header header;
6268 u64 time;
cca3f454 6269 u64 id;
7f453c24 6270 u64 stream_id;
a78ac325
PZ
6271 } throttle_event = {
6272 .header = {
cdd6c482 6273 .type = PERF_RECORD_THROTTLE,
a78ac325
PZ
6274 .misc = 0,
6275 .size = sizeof(throttle_event),
6276 },
34f43927 6277 .time = perf_event_clock(event),
cdd6c482
IM
6278 .id = primary_event_id(event),
6279 .stream_id = event->id,
a78ac325
PZ
6280 };
6281
966ee4d6 6282 if (enable)
cdd6c482 6283 throttle_event.header.type = PERF_RECORD_UNTHROTTLE;
966ee4d6 6284
c980d109
ACM
6285 perf_event_header__init_id(&throttle_event.header, &sample, event);
6286
6287 ret = perf_output_begin(&handle, event,
a7ac67ea 6288 throttle_event.header.size);
a78ac325
PZ
6289 if (ret)
6290 return;
6291
6292 perf_output_put(&handle, throttle_event);
c980d109 6293 perf_event__output_id_sample(event, &handle, &sample);
a78ac325
PZ
6294 perf_output_end(&handle);
6295}
6296
ec0d7729
AS
6297static void perf_log_itrace_start(struct perf_event *event)
6298{
6299 struct perf_output_handle handle;
6300 struct perf_sample_data sample;
6301 struct perf_aux_event {
6302 struct perf_event_header header;
6303 u32 pid;
6304 u32 tid;
6305 } rec;
6306 int ret;
6307
6308 if (event->parent)
6309 event = event->parent;
6310
6311 if (!(event->pmu->capabilities & PERF_PMU_CAP_ITRACE) ||
6312 event->hw.itrace_started)
6313 return;
6314
ec0d7729
AS
6315 rec.header.type = PERF_RECORD_ITRACE_START;
6316 rec.header.misc = 0;
6317 rec.header.size = sizeof(rec);
6318 rec.pid = perf_event_pid(event, current);
6319 rec.tid = perf_event_tid(event, current);
6320
6321 perf_event_header__init_id(&rec.header, &sample, event);
6322 ret = perf_output_begin(&handle, event, rec.header.size);
6323
6324 if (ret)
6325 return;
6326
6327 perf_output_put(&handle, rec);
6328 perf_event__output_id_sample(event, &handle, &sample);
6329
6330 perf_output_end(&handle);
6331}
6332
f6c7d5fe 6333/*
cdd6c482 6334 * Generic event overflow handling, sampling.
f6c7d5fe
PZ
6335 */
6336
a8b0ca17 6337static int __perf_event_overflow(struct perf_event *event,
5622f295
MM
6338 int throttle, struct perf_sample_data *data,
6339 struct pt_regs *regs)
f6c7d5fe 6340{
cdd6c482
IM
6341 int events = atomic_read(&event->event_limit);
6342 struct hw_perf_event *hwc = &event->hw;
e050e3f0 6343 u64 seq;
79f14641
PZ
6344 int ret = 0;
6345
96398826
PZ
6346 /*
6347 * Non-sampling counters might still use the PMI to fold short
6348 * hardware counters, ignore those.
6349 */
6350 if (unlikely(!is_sampling_event(event)))
6351 return 0;
6352
e050e3f0
SE
6353 seq = __this_cpu_read(perf_throttled_seq);
6354 if (seq != hwc->interrupts_seq) {
6355 hwc->interrupts_seq = seq;
6356 hwc->interrupts = 1;
6357 } else {
6358 hwc->interrupts++;
6359 if (unlikely(throttle
6360 && hwc->interrupts >= max_samples_per_tick)) {
6361 __this_cpu_inc(perf_throttled_count);
163ec435
PZ
6362 hwc->interrupts = MAX_INTERRUPTS;
6363 perf_log_throttle(event, 0);
d84153d6 6364 tick_nohz_full_kick();
a78ac325
PZ
6365 ret = 1;
6366 }
e050e3f0 6367 }
60db5e09 6368
cdd6c482 6369 if (event->attr.freq) {
def0a9b2 6370 u64 now = perf_clock();
abd50713 6371 s64 delta = now - hwc->freq_time_stamp;
bd2b5b12 6372
abd50713 6373 hwc->freq_time_stamp = now;
bd2b5b12 6374
abd50713 6375 if (delta > 0 && delta < 2*TICK_NSEC)
f39d47ff 6376 perf_adjust_period(event, delta, hwc->last_period, true);
bd2b5b12
PZ
6377 }
6378
2023b359
PZ
6379 /*
6380 * XXX event_limit might not quite work as expected on inherited
cdd6c482 6381 * events
2023b359
PZ
6382 */
6383
cdd6c482
IM
6384 event->pending_kill = POLL_IN;
6385 if (events && atomic_dec_and_test(&event->event_limit)) {
79f14641 6386 ret = 1;
cdd6c482 6387 event->pending_kill = POLL_HUP;
a8b0ca17
PZ
6388 event->pending_disable = 1;
6389 irq_work_queue(&event->pending);
79f14641
PZ
6390 }
6391
453f19ee 6392 if (event->overflow_handler)
a8b0ca17 6393 event->overflow_handler(event, data, regs);
453f19ee 6394 else
a8b0ca17 6395 perf_event_output(event, data, regs);
453f19ee 6396
fed66e2c 6397 if (*perf_event_fasync(event) && event->pending_kill) {
a8b0ca17
PZ
6398 event->pending_wakeup = 1;
6399 irq_work_queue(&event->pending);
f506b3dc
PZ
6400 }
6401
79f14641 6402 return ret;
f6c7d5fe
PZ
6403}
6404
a8b0ca17 6405int perf_event_overflow(struct perf_event *event,
5622f295
MM
6406 struct perf_sample_data *data,
6407 struct pt_regs *regs)
850bc73f 6408{
a8b0ca17 6409 return __perf_event_overflow(event, 1, data, regs);
850bc73f
PZ
6410}
6411
15dbf27c 6412/*
cdd6c482 6413 * Generic software event infrastructure
15dbf27c
PZ
6414 */
6415
b28ab83c
PZ
6416struct swevent_htable {
6417 struct swevent_hlist *swevent_hlist;
6418 struct mutex hlist_mutex;
6419 int hlist_refcount;
6420
6421 /* Recursion avoidance in each contexts */
6422 int recursion[PERF_NR_CONTEXTS];
6423};
6424
6425static DEFINE_PER_CPU(struct swevent_htable, swevent_htable);
6426
7b4b6658 6427/*
cdd6c482
IM
6428 * We directly increment event->count and keep a second value in
6429 * event->hw.period_left to count intervals. This period event
7b4b6658
PZ
6430 * is kept in the range [-sample_period, 0] so that we can use the
6431 * sign as trigger.
6432 */
6433
ab573844 6434u64 perf_swevent_set_period(struct perf_event *event)
15dbf27c 6435{
cdd6c482 6436 struct hw_perf_event *hwc = &event->hw;
7b4b6658
PZ
6437 u64 period = hwc->last_period;
6438 u64 nr, offset;
6439 s64 old, val;
6440
6441 hwc->last_period = hwc->sample_period;
15dbf27c
PZ
6442
6443again:
e7850595 6444 old = val = local64_read(&hwc->period_left);
7b4b6658
PZ
6445 if (val < 0)
6446 return 0;
15dbf27c 6447
7b4b6658
PZ
6448 nr = div64_u64(period + val, period);
6449 offset = nr * period;
6450 val -= offset;
e7850595 6451 if (local64_cmpxchg(&hwc->period_left, old, val) != old)
7b4b6658 6452 goto again;
15dbf27c 6453
7b4b6658 6454 return nr;
15dbf27c
PZ
6455}
6456
0cff784a 6457static void perf_swevent_overflow(struct perf_event *event, u64 overflow,
a8b0ca17 6458 struct perf_sample_data *data,
5622f295 6459 struct pt_regs *regs)
15dbf27c 6460{
cdd6c482 6461 struct hw_perf_event *hwc = &event->hw;
850bc73f 6462 int throttle = 0;
15dbf27c 6463
0cff784a
PZ
6464 if (!overflow)
6465 overflow = perf_swevent_set_period(event);
15dbf27c 6466
7b4b6658
PZ
6467 if (hwc->interrupts == MAX_INTERRUPTS)
6468 return;
15dbf27c 6469
7b4b6658 6470 for (; overflow; overflow--) {
a8b0ca17 6471 if (__perf_event_overflow(event, throttle,
5622f295 6472 data, regs)) {
7b4b6658
PZ
6473 /*
6474 * We inhibit the overflow from happening when
6475 * hwc->interrupts == MAX_INTERRUPTS.
6476 */
6477 break;
6478 }
cf450a73 6479 throttle = 1;
7b4b6658 6480 }
15dbf27c
PZ
6481}
6482
a4eaf7f1 6483static void perf_swevent_event(struct perf_event *event, u64 nr,
a8b0ca17 6484 struct perf_sample_data *data,
5622f295 6485 struct pt_regs *regs)
7b4b6658 6486{
cdd6c482 6487 struct hw_perf_event *hwc = &event->hw;
d6d020e9 6488
e7850595 6489 local64_add(nr, &event->count);
d6d020e9 6490
0cff784a
PZ
6491 if (!regs)
6492 return;
6493
6c7e550f 6494 if (!is_sampling_event(event))
7b4b6658 6495 return;
d6d020e9 6496
5d81e5cf
AV
6497 if ((event->attr.sample_type & PERF_SAMPLE_PERIOD) && !event->attr.freq) {
6498 data->period = nr;
6499 return perf_swevent_overflow(event, 1, data, regs);
6500 } else
6501 data->period = event->hw.last_period;
6502
0cff784a 6503 if (nr == 1 && hwc->sample_period == 1 && !event->attr.freq)
a8b0ca17 6504 return perf_swevent_overflow(event, 1, data, regs);
0cff784a 6505
e7850595 6506 if (local64_add_negative(nr, &hwc->period_left))
7b4b6658 6507 return;
df1a132b 6508
a8b0ca17 6509 perf_swevent_overflow(event, 0, data, regs);
d6d020e9
PZ
6510}
6511
f5ffe02e
FW
6512static int perf_exclude_event(struct perf_event *event,
6513 struct pt_regs *regs)
6514{
a4eaf7f1 6515 if (event->hw.state & PERF_HES_STOPPED)
91b2f482 6516 return 1;
a4eaf7f1 6517
f5ffe02e
FW
6518 if (regs) {
6519 if (event->attr.exclude_user && user_mode(regs))
6520 return 1;
6521
6522 if (event->attr.exclude_kernel && !user_mode(regs))
6523 return 1;
6524 }
6525
6526 return 0;
6527}
6528
cdd6c482 6529static int perf_swevent_match(struct perf_event *event,
1c432d89 6530 enum perf_type_id type,
6fb2915d
LZ
6531 u32 event_id,
6532 struct perf_sample_data *data,
6533 struct pt_regs *regs)
15dbf27c 6534{
cdd6c482 6535 if (event->attr.type != type)
a21ca2ca 6536 return 0;
f5ffe02e 6537
cdd6c482 6538 if (event->attr.config != event_id)
15dbf27c
PZ
6539 return 0;
6540
f5ffe02e
FW
6541 if (perf_exclude_event(event, regs))
6542 return 0;
15dbf27c
PZ
6543
6544 return 1;
6545}
6546
76e1d904
FW
6547static inline u64 swevent_hash(u64 type, u32 event_id)
6548{
6549 u64 val = event_id | (type << 32);
6550
6551 return hash_64(val, SWEVENT_HLIST_BITS);
6552}
6553
49f135ed
FW
6554static inline struct hlist_head *
6555__find_swevent_head(struct swevent_hlist *hlist, u64 type, u32 event_id)
76e1d904 6556{
49f135ed
FW
6557 u64 hash = swevent_hash(type, event_id);
6558
6559 return &hlist->heads[hash];
6560}
76e1d904 6561
49f135ed
FW
6562/* For the read side: events when they trigger */
6563static inline struct hlist_head *
b28ab83c 6564find_swevent_head_rcu(struct swevent_htable *swhash, u64 type, u32 event_id)
49f135ed
FW
6565{
6566 struct swevent_hlist *hlist;
76e1d904 6567
b28ab83c 6568 hlist = rcu_dereference(swhash->swevent_hlist);
76e1d904
FW
6569 if (!hlist)
6570 return NULL;
6571
49f135ed
FW
6572 return __find_swevent_head(hlist, type, event_id);
6573}
6574
6575/* For the event head insertion and removal in the hlist */
6576static inline struct hlist_head *
b28ab83c 6577find_swevent_head(struct swevent_htable *swhash, struct perf_event *event)
49f135ed
FW
6578{
6579 struct swevent_hlist *hlist;
6580 u32 event_id = event->attr.config;
6581 u64 type = event->attr.type;
6582
6583 /*
6584 * Event scheduling is always serialized against hlist allocation
6585 * and release. Which makes the protected version suitable here.
6586 * The context lock guarantees that.
6587 */
b28ab83c 6588 hlist = rcu_dereference_protected(swhash->swevent_hlist,
49f135ed
FW
6589 lockdep_is_held(&event->ctx->lock));
6590 if (!hlist)
6591 return NULL;
6592
6593 return __find_swevent_head(hlist, type, event_id);
76e1d904
FW
6594}
6595
6596static void do_perf_sw_event(enum perf_type_id type, u32 event_id,
a8b0ca17 6597 u64 nr,
76e1d904
FW
6598 struct perf_sample_data *data,
6599 struct pt_regs *regs)
15dbf27c 6600{
4a32fea9 6601 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6602 struct perf_event *event;
76e1d904 6603 struct hlist_head *head;
15dbf27c 6604
76e1d904 6605 rcu_read_lock();
b28ab83c 6606 head = find_swevent_head_rcu(swhash, type, event_id);
76e1d904
FW
6607 if (!head)
6608 goto end;
6609
b67bfe0d 6610 hlist_for_each_entry_rcu(event, head, hlist_entry) {
6fb2915d 6611 if (perf_swevent_match(event, type, event_id, data, regs))
a8b0ca17 6612 perf_swevent_event(event, nr, data, regs);
15dbf27c 6613 }
76e1d904
FW
6614end:
6615 rcu_read_unlock();
15dbf27c
PZ
6616}
6617
86038c5e
PZI
6618DEFINE_PER_CPU(struct pt_regs, __perf_regs[4]);
6619
4ed7c92d 6620int perf_swevent_get_recursion_context(void)
96f6d444 6621{
4a32fea9 6622 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
96f6d444 6623
b28ab83c 6624 return get_recursion_context(swhash->recursion);
96f6d444 6625}
645e8cc0 6626EXPORT_SYMBOL_GPL(perf_swevent_get_recursion_context);
96f6d444 6627
fa9f90be 6628inline void perf_swevent_put_recursion_context(int rctx)
15dbf27c 6629{
4a32fea9 6630 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
927c7a9e 6631
b28ab83c 6632 put_recursion_context(swhash->recursion, rctx);
ce71b9df 6633}
15dbf27c 6634
86038c5e 6635void ___perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
b8e83514 6636{
a4234bfc 6637 struct perf_sample_data data;
4ed7c92d 6638
86038c5e 6639 if (WARN_ON_ONCE(!regs))
4ed7c92d 6640 return;
a4234bfc 6641
fd0d000b 6642 perf_sample_data_init(&data, addr, 0);
a8b0ca17 6643 do_perf_sw_event(PERF_TYPE_SOFTWARE, event_id, nr, &data, regs);
86038c5e
PZI
6644}
6645
6646void __perf_sw_event(u32 event_id, u64 nr, struct pt_regs *regs, u64 addr)
6647{
6648 int rctx;
6649
6650 preempt_disable_notrace();
6651 rctx = perf_swevent_get_recursion_context();
6652 if (unlikely(rctx < 0))
6653 goto fail;
6654
6655 ___perf_sw_event(event_id, nr, regs, addr);
4ed7c92d
PZ
6656
6657 perf_swevent_put_recursion_context(rctx);
86038c5e 6658fail:
1c024eca 6659 preempt_enable_notrace();
b8e83514
PZ
6660}
6661
cdd6c482 6662static void perf_swevent_read(struct perf_event *event)
15dbf27c 6663{
15dbf27c
PZ
6664}
6665
a4eaf7f1 6666static int perf_swevent_add(struct perf_event *event, int flags)
15dbf27c 6667{
4a32fea9 6668 struct swevent_htable *swhash = this_cpu_ptr(&swevent_htable);
cdd6c482 6669 struct hw_perf_event *hwc = &event->hw;
76e1d904
FW
6670 struct hlist_head *head;
6671
6c7e550f 6672 if (is_sampling_event(event)) {
7b4b6658 6673 hwc->last_period = hwc->sample_period;
cdd6c482 6674 perf_swevent_set_period(event);
7b4b6658 6675 }
76e1d904 6676
a4eaf7f1
PZ
6677 hwc->state = !(flags & PERF_EF_START);
6678
b28ab83c 6679 head = find_swevent_head(swhash, event);
12ca6ad2 6680 if (WARN_ON_ONCE(!head))
76e1d904
FW
6681 return -EINVAL;
6682
6683 hlist_add_head_rcu(&event->hlist_entry, head);
6a694a60 6684 perf_event_update_userpage(event);
76e1d904 6685
15dbf27c
PZ
6686 return 0;
6687}
6688
a4eaf7f1 6689static void perf_swevent_del(struct perf_event *event, int flags)
15dbf27c 6690{
76e1d904 6691 hlist_del_rcu(&event->hlist_entry);
15dbf27c
PZ
6692}
6693
a4eaf7f1 6694static void perf_swevent_start(struct perf_event *event, int flags)
5c92d124 6695{
a4eaf7f1 6696 event->hw.state = 0;
d6d020e9 6697}
aa9c4c0f 6698
a4eaf7f1 6699static void perf_swevent_stop(struct perf_event *event, int flags)
d6d020e9 6700{
a4eaf7f1 6701 event->hw.state = PERF_HES_STOPPED;
bae43c99
IM
6702}
6703
49f135ed
FW
6704/* Deref the hlist from the update side */
6705static inline struct swevent_hlist *
b28ab83c 6706swevent_hlist_deref(struct swevent_htable *swhash)
49f135ed 6707{
b28ab83c
PZ
6708 return rcu_dereference_protected(swhash->swevent_hlist,
6709 lockdep_is_held(&swhash->hlist_mutex));
49f135ed
FW
6710}
6711
b28ab83c 6712static void swevent_hlist_release(struct swevent_htable *swhash)
76e1d904 6713{
b28ab83c 6714 struct swevent_hlist *hlist = swevent_hlist_deref(swhash);
76e1d904 6715
49f135ed 6716 if (!hlist)
76e1d904
FW
6717 return;
6718
70691d4a 6719 RCU_INIT_POINTER(swhash->swevent_hlist, NULL);
fa4bbc4c 6720 kfree_rcu(hlist, rcu_head);
76e1d904
FW
6721}
6722
6723static void swevent_hlist_put_cpu(struct perf_event *event, int cpu)
6724{
b28ab83c 6725 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904 6726
b28ab83c 6727 mutex_lock(&swhash->hlist_mutex);
76e1d904 6728
b28ab83c
PZ
6729 if (!--swhash->hlist_refcount)
6730 swevent_hlist_release(swhash);
76e1d904 6731
b28ab83c 6732 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6733}
6734
6735static void swevent_hlist_put(struct perf_event *event)
6736{
6737 int cpu;
6738
76e1d904
FW
6739 for_each_possible_cpu(cpu)
6740 swevent_hlist_put_cpu(event, cpu);
6741}
6742
6743static int swevent_hlist_get_cpu(struct perf_event *event, int cpu)
6744{
b28ab83c 6745 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
76e1d904
FW
6746 int err = 0;
6747
b28ab83c 6748 mutex_lock(&swhash->hlist_mutex);
b28ab83c 6749 if (!swevent_hlist_deref(swhash) && cpu_online(cpu)) {
76e1d904
FW
6750 struct swevent_hlist *hlist;
6751
6752 hlist = kzalloc(sizeof(*hlist), GFP_KERNEL);
6753 if (!hlist) {
6754 err = -ENOMEM;
6755 goto exit;
6756 }
b28ab83c 6757 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 6758 }
b28ab83c 6759 swhash->hlist_refcount++;
9ed6060d 6760exit:
b28ab83c 6761 mutex_unlock(&swhash->hlist_mutex);
76e1d904
FW
6762
6763 return err;
6764}
6765
6766static int swevent_hlist_get(struct perf_event *event)
6767{
6768 int err;
6769 int cpu, failed_cpu;
6770
76e1d904
FW
6771 get_online_cpus();
6772 for_each_possible_cpu(cpu) {
6773 err = swevent_hlist_get_cpu(event, cpu);
6774 if (err) {
6775 failed_cpu = cpu;
6776 goto fail;
6777 }
6778 }
6779 put_online_cpus();
6780
6781 return 0;
9ed6060d 6782fail:
76e1d904
FW
6783 for_each_possible_cpu(cpu) {
6784 if (cpu == failed_cpu)
6785 break;
6786 swevent_hlist_put_cpu(event, cpu);
6787 }
6788
6789 put_online_cpus();
6790 return err;
6791}
6792
c5905afb 6793struct static_key perf_swevent_enabled[PERF_COUNT_SW_MAX];
95476b64 6794
b0a873eb
PZ
6795static void sw_perf_event_destroy(struct perf_event *event)
6796{
6797 u64 event_id = event->attr.config;
95476b64 6798
b0a873eb
PZ
6799 WARN_ON(event->parent);
6800
c5905afb 6801 static_key_slow_dec(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6802 swevent_hlist_put(event);
6803}
6804
6805static int perf_swevent_init(struct perf_event *event)
6806{
8176cced 6807 u64 event_id = event->attr.config;
b0a873eb
PZ
6808
6809 if (event->attr.type != PERF_TYPE_SOFTWARE)
6810 return -ENOENT;
6811
2481c5fa
SE
6812 /*
6813 * no branch sampling for software events
6814 */
6815 if (has_branch_stack(event))
6816 return -EOPNOTSUPP;
6817
b0a873eb
PZ
6818 switch (event_id) {
6819 case PERF_COUNT_SW_CPU_CLOCK:
6820 case PERF_COUNT_SW_TASK_CLOCK:
6821 return -ENOENT;
6822
6823 default:
6824 break;
6825 }
6826
ce677831 6827 if (event_id >= PERF_COUNT_SW_MAX)
b0a873eb
PZ
6828 return -ENOENT;
6829
6830 if (!event->parent) {
6831 int err;
6832
6833 err = swevent_hlist_get(event);
6834 if (err)
6835 return err;
6836
c5905afb 6837 static_key_slow_inc(&perf_swevent_enabled[event_id]);
b0a873eb
PZ
6838 event->destroy = sw_perf_event_destroy;
6839 }
6840
6841 return 0;
6842}
6843
6844static struct pmu perf_swevent = {
89a1e187 6845 .task_ctx_nr = perf_sw_context,
95476b64 6846
34f43927
PZ
6847 .capabilities = PERF_PMU_CAP_NO_NMI,
6848
b0a873eb 6849 .event_init = perf_swevent_init,
a4eaf7f1
PZ
6850 .add = perf_swevent_add,
6851 .del = perf_swevent_del,
6852 .start = perf_swevent_start,
6853 .stop = perf_swevent_stop,
1c024eca 6854 .read = perf_swevent_read,
1c024eca
PZ
6855};
6856
b0a873eb
PZ
6857#ifdef CONFIG_EVENT_TRACING
6858
1c024eca
PZ
6859static int perf_tp_filter_match(struct perf_event *event,
6860 struct perf_sample_data *data)
6861{
6862 void *record = data->raw->data;
6863
b71b437e
PZ
6864 /* only top level events have filters set */
6865 if (event->parent)
6866 event = event->parent;
6867
1c024eca
PZ
6868 if (likely(!event->filter) || filter_match_preds(event->filter, record))
6869 return 1;
6870 return 0;
6871}
6872
6873static int perf_tp_event_match(struct perf_event *event,
6874 struct perf_sample_data *data,
6875 struct pt_regs *regs)
6876{
a0f7d0f7
FW
6877 if (event->hw.state & PERF_HES_STOPPED)
6878 return 0;
580d607c
PZ
6879 /*
6880 * All tracepoints are from kernel-space.
6881 */
6882 if (event->attr.exclude_kernel)
1c024eca
PZ
6883 return 0;
6884
6885 if (!perf_tp_filter_match(event, data))
6886 return 0;
6887
6888 return 1;
6889}
6890
6891void perf_tp_event(u64 addr, u64 count, void *record, int entry_size,
e6dab5ff
AV
6892 struct pt_regs *regs, struct hlist_head *head, int rctx,
6893 struct task_struct *task)
95476b64
FW
6894{
6895 struct perf_sample_data data;
1c024eca 6896 struct perf_event *event;
1c024eca 6897
95476b64
FW
6898 struct perf_raw_record raw = {
6899 .size = entry_size,
6900 .data = record,
6901 };
6902
fd0d000b 6903 perf_sample_data_init(&data, addr, 0);
95476b64
FW
6904 data.raw = &raw;
6905
b67bfe0d 6906 hlist_for_each_entry_rcu(event, head, hlist_entry) {
1c024eca 6907 if (perf_tp_event_match(event, &data, regs))
a8b0ca17 6908 perf_swevent_event(event, count, &data, regs);
4f41c013 6909 }
ecc55f84 6910
e6dab5ff
AV
6911 /*
6912 * If we got specified a target task, also iterate its context and
6913 * deliver this event there too.
6914 */
6915 if (task && task != current) {
6916 struct perf_event_context *ctx;
6917 struct trace_entry *entry = record;
6918
6919 rcu_read_lock();
6920 ctx = rcu_dereference(task->perf_event_ctxp[perf_sw_context]);
6921 if (!ctx)
6922 goto unlock;
6923
6924 list_for_each_entry_rcu(event, &ctx->event_list, event_entry) {
6925 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6926 continue;
6927 if (event->attr.config != entry->type)
6928 continue;
6929 if (perf_tp_event_match(event, &data, regs))
6930 perf_swevent_event(event, count, &data, regs);
6931 }
6932unlock:
6933 rcu_read_unlock();
6934 }
6935
ecc55f84 6936 perf_swevent_put_recursion_context(rctx);
95476b64
FW
6937}
6938EXPORT_SYMBOL_GPL(perf_tp_event);
6939
cdd6c482 6940static void tp_perf_event_destroy(struct perf_event *event)
e077df4f 6941{
1c024eca 6942 perf_trace_destroy(event);
e077df4f
PZ
6943}
6944
b0a873eb 6945static int perf_tp_event_init(struct perf_event *event)
e077df4f 6946{
76e1d904
FW
6947 int err;
6948
b0a873eb
PZ
6949 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6950 return -ENOENT;
6951
2481c5fa
SE
6952 /*
6953 * no branch sampling for tracepoint events
6954 */
6955 if (has_branch_stack(event))
6956 return -EOPNOTSUPP;
6957
1c024eca
PZ
6958 err = perf_trace_init(event);
6959 if (err)
b0a873eb 6960 return err;
e077df4f 6961
cdd6c482 6962 event->destroy = tp_perf_event_destroy;
e077df4f 6963
b0a873eb
PZ
6964 return 0;
6965}
6966
6967static struct pmu perf_tracepoint = {
89a1e187
PZ
6968 .task_ctx_nr = perf_sw_context,
6969
b0a873eb 6970 .event_init = perf_tp_event_init,
a4eaf7f1
PZ
6971 .add = perf_trace_add,
6972 .del = perf_trace_del,
6973 .start = perf_swevent_start,
6974 .stop = perf_swevent_stop,
b0a873eb 6975 .read = perf_swevent_read,
b0a873eb
PZ
6976};
6977
6978static inline void perf_tp_register(void)
6979{
2e80a82a 6980 perf_pmu_register(&perf_tracepoint, "tracepoint", PERF_TYPE_TRACEPOINT);
e077df4f 6981}
6fb2915d
LZ
6982
6983static int perf_event_set_filter(struct perf_event *event, void __user *arg)
6984{
6985 char *filter_str;
6986 int ret;
6987
6988 if (event->attr.type != PERF_TYPE_TRACEPOINT)
6989 return -EINVAL;
6990
6991 filter_str = strndup_user(arg, PAGE_SIZE);
6992 if (IS_ERR(filter_str))
6993 return PTR_ERR(filter_str);
6994
6995 ret = ftrace_profile_set_filter(event, event->attr.config, filter_str);
6996
6997 kfree(filter_str);
6998 return ret;
6999}
7000
7001static void perf_event_free_filter(struct perf_event *event)
7002{
7003 ftrace_profile_free_filter(event);
7004}
7005
2541517c
AS
7006static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7007{
7008 struct bpf_prog *prog;
7009
7010 if (event->attr.type != PERF_TYPE_TRACEPOINT)
7011 return -EINVAL;
7012
7013 if (event->tp_event->prog)
7014 return -EEXIST;
7015
04a22fae
WN
7016 if (!(event->tp_event->flags & TRACE_EVENT_FL_UKPROBE))
7017 /* bpf programs can only be attached to u/kprobes */
2541517c
AS
7018 return -EINVAL;
7019
7020 prog = bpf_prog_get(prog_fd);
7021 if (IS_ERR(prog))
7022 return PTR_ERR(prog);
7023
6c373ca8 7024 if (prog->type != BPF_PROG_TYPE_KPROBE) {
2541517c
AS
7025 /* valid fd, but invalid bpf program type */
7026 bpf_prog_put(prog);
7027 return -EINVAL;
7028 }
7029
7030 event->tp_event->prog = prog;
7031
7032 return 0;
7033}
7034
7035static void perf_event_free_bpf_prog(struct perf_event *event)
7036{
7037 struct bpf_prog *prog;
7038
7039 if (!event->tp_event)
7040 return;
7041
7042 prog = event->tp_event->prog;
7043 if (prog) {
7044 event->tp_event->prog = NULL;
7045 bpf_prog_put(prog);
7046 }
7047}
7048
e077df4f 7049#else
6fb2915d 7050
b0a873eb 7051static inline void perf_tp_register(void)
e077df4f 7052{
e077df4f 7053}
6fb2915d
LZ
7054
7055static int perf_event_set_filter(struct perf_event *event, void __user *arg)
7056{
7057 return -ENOENT;
7058}
7059
7060static void perf_event_free_filter(struct perf_event *event)
7061{
7062}
7063
2541517c
AS
7064static int perf_event_set_bpf_prog(struct perf_event *event, u32 prog_fd)
7065{
7066 return -ENOENT;
7067}
7068
7069static void perf_event_free_bpf_prog(struct perf_event *event)
7070{
7071}
07b139c8 7072#endif /* CONFIG_EVENT_TRACING */
e077df4f 7073
24f1e32c 7074#ifdef CONFIG_HAVE_HW_BREAKPOINT
f5ffe02e 7075void perf_bp_event(struct perf_event *bp, void *data)
24f1e32c 7076{
f5ffe02e
FW
7077 struct perf_sample_data sample;
7078 struct pt_regs *regs = data;
7079
fd0d000b 7080 perf_sample_data_init(&sample, bp->attr.bp_addr, 0);
f5ffe02e 7081
a4eaf7f1 7082 if (!bp->hw.state && !perf_exclude_event(bp, regs))
a8b0ca17 7083 perf_swevent_event(bp, 1, &sample, regs);
24f1e32c
FW
7084}
7085#endif
7086
b0a873eb
PZ
7087/*
7088 * hrtimer based swevent callback
7089 */
f29ac756 7090
b0a873eb 7091static enum hrtimer_restart perf_swevent_hrtimer(struct hrtimer *hrtimer)
f29ac756 7092{
b0a873eb
PZ
7093 enum hrtimer_restart ret = HRTIMER_RESTART;
7094 struct perf_sample_data data;
7095 struct pt_regs *regs;
7096 struct perf_event *event;
7097 u64 period;
f29ac756 7098
b0a873eb 7099 event = container_of(hrtimer, struct perf_event, hw.hrtimer);
ba3dd36c
PZ
7100
7101 if (event->state != PERF_EVENT_STATE_ACTIVE)
7102 return HRTIMER_NORESTART;
7103
b0a873eb 7104 event->pmu->read(event);
f344011c 7105
fd0d000b 7106 perf_sample_data_init(&data, 0, event->hw.last_period);
b0a873eb
PZ
7107 regs = get_irq_regs();
7108
7109 if (regs && !perf_exclude_event(event, regs)) {
77aeeebd 7110 if (!(event->attr.exclude_idle && is_idle_task(current)))
33b07b8b 7111 if (__perf_event_overflow(event, 1, &data, regs))
b0a873eb
PZ
7112 ret = HRTIMER_NORESTART;
7113 }
24f1e32c 7114
b0a873eb
PZ
7115 period = max_t(u64, 10000, event->hw.sample_period);
7116 hrtimer_forward_now(hrtimer, ns_to_ktime(period));
24f1e32c 7117
b0a873eb 7118 return ret;
f29ac756
PZ
7119}
7120
b0a873eb 7121static void perf_swevent_start_hrtimer(struct perf_event *event)
5c92d124 7122{
b0a873eb 7123 struct hw_perf_event *hwc = &event->hw;
5d508e82
FBH
7124 s64 period;
7125
7126 if (!is_sampling_event(event))
7127 return;
f5ffe02e 7128
5d508e82
FBH
7129 period = local64_read(&hwc->period_left);
7130 if (period) {
7131 if (period < 0)
7132 period = 10000;
fa407f35 7133
5d508e82
FBH
7134 local64_set(&hwc->period_left, 0);
7135 } else {
7136 period = max_t(u64, 10000, hwc->sample_period);
7137 }
3497d206
TG
7138 hrtimer_start(&hwc->hrtimer, ns_to_ktime(period),
7139 HRTIMER_MODE_REL_PINNED);
24f1e32c 7140}
b0a873eb
PZ
7141
7142static void perf_swevent_cancel_hrtimer(struct perf_event *event)
24f1e32c 7143{
b0a873eb
PZ
7144 struct hw_perf_event *hwc = &event->hw;
7145
6c7e550f 7146 if (is_sampling_event(event)) {
b0a873eb 7147 ktime_t remaining = hrtimer_get_remaining(&hwc->hrtimer);
fa407f35 7148 local64_set(&hwc->period_left, ktime_to_ns(remaining));
b0a873eb
PZ
7149
7150 hrtimer_cancel(&hwc->hrtimer);
7151 }
24f1e32c
FW
7152}
7153
ba3dd36c
PZ
7154static void perf_swevent_init_hrtimer(struct perf_event *event)
7155{
7156 struct hw_perf_event *hwc = &event->hw;
7157
7158 if (!is_sampling_event(event))
7159 return;
7160
7161 hrtimer_init(&hwc->hrtimer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
7162 hwc->hrtimer.function = perf_swevent_hrtimer;
7163
7164 /*
7165 * Since hrtimers have a fixed rate, we can do a static freq->period
7166 * mapping and avoid the whole period adjust feedback stuff.
7167 */
7168 if (event->attr.freq) {
7169 long freq = event->attr.sample_freq;
7170
7171 event->attr.sample_period = NSEC_PER_SEC / freq;
7172 hwc->sample_period = event->attr.sample_period;
7173 local64_set(&hwc->period_left, hwc->sample_period);
778141e3 7174 hwc->last_period = hwc->sample_period;
ba3dd36c
PZ
7175 event->attr.freq = 0;
7176 }
7177}
7178
b0a873eb
PZ
7179/*
7180 * Software event: cpu wall time clock
7181 */
7182
7183static void cpu_clock_event_update(struct perf_event *event)
24f1e32c 7184{
b0a873eb
PZ
7185 s64 prev;
7186 u64 now;
7187
a4eaf7f1 7188 now = local_clock();
b0a873eb
PZ
7189 prev = local64_xchg(&event->hw.prev_count, now);
7190 local64_add(now - prev, &event->count);
24f1e32c 7191}
24f1e32c 7192
a4eaf7f1 7193static void cpu_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7194{
a4eaf7f1 7195 local64_set(&event->hw.prev_count, local_clock());
b0a873eb 7196 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7197}
7198
a4eaf7f1 7199static void cpu_clock_event_stop(struct perf_event *event, int flags)
f29ac756 7200{
b0a873eb
PZ
7201 perf_swevent_cancel_hrtimer(event);
7202 cpu_clock_event_update(event);
7203}
f29ac756 7204
a4eaf7f1
PZ
7205static int cpu_clock_event_add(struct perf_event *event, int flags)
7206{
7207 if (flags & PERF_EF_START)
7208 cpu_clock_event_start(event, flags);
6a694a60 7209 perf_event_update_userpage(event);
a4eaf7f1
PZ
7210
7211 return 0;
7212}
7213
7214static void cpu_clock_event_del(struct perf_event *event, int flags)
7215{
7216 cpu_clock_event_stop(event, flags);
7217}
7218
b0a873eb
PZ
7219static void cpu_clock_event_read(struct perf_event *event)
7220{
7221 cpu_clock_event_update(event);
7222}
f344011c 7223
b0a873eb
PZ
7224static int cpu_clock_event_init(struct perf_event *event)
7225{
7226 if (event->attr.type != PERF_TYPE_SOFTWARE)
7227 return -ENOENT;
7228
7229 if (event->attr.config != PERF_COUNT_SW_CPU_CLOCK)
7230 return -ENOENT;
7231
2481c5fa
SE
7232 /*
7233 * no branch sampling for software events
7234 */
7235 if (has_branch_stack(event))
7236 return -EOPNOTSUPP;
7237
ba3dd36c
PZ
7238 perf_swevent_init_hrtimer(event);
7239
b0a873eb 7240 return 0;
f29ac756
PZ
7241}
7242
b0a873eb 7243static struct pmu perf_cpu_clock = {
89a1e187
PZ
7244 .task_ctx_nr = perf_sw_context,
7245
34f43927
PZ
7246 .capabilities = PERF_PMU_CAP_NO_NMI,
7247
b0a873eb 7248 .event_init = cpu_clock_event_init,
a4eaf7f1
PZ
7249 .add = cpu_clock_event_add,
7250 .del = cpu_clock_event_del,
7251 .start = cpu_clock_event_start,
7252 .stop = cpu_clock_event_stop,
b0a873eb
PZ
7253 .read = cpu_clock_event_read,
7254};
7255
7256/*
7257 * Software event: task time clock
7258 */
7259
7260static void task_clock_event_update(struct perf_event *event, u64 now)
5c92d124 7261{
b0a873eb
PZ
7262 u64 prev;
7263 s64 delta;
5c92d124 7264
b0a873eb
PZ
7265 prev = local64_xchg(&event->hw.prev_count, now);
7266 delta = now - prev;
7267 local64_add(delta, &event->count);
7268}
5c92d124 7269
a4eaf7f1 7270static void task_clock_event_start(struct perf_event *event, int flags)
b0a873eb 7271{
a4eaf7f1 7272 local64_set(&event->hw.prev_count, event->ctx->time);
b0a873eb 7273 perf_swevent_start_hrtimer(event);
b0a873eb
PZ
7274}
7275
a4eaf7f1 7276static void task_clock_event_stop(struct perf_event *event, int flags)
b0a873eb
PZ
7277{
7278 perf_swevent_cancel_hrtimer(event);
7279 task_clock_event_update(event, event->ctx->time);
a4eaf7f1
PZ
7280}
7281
7282static int task_clock_event_add(struct perf_event *event, int flags)
7283{
7284 if (flags & PERF_EF_START)
7285 task_clock_event_start(event, flags);
6a694a60 7286 perf_event_update_userpage(event);
b0a873eb 7287
a4eaf7f1
PZ
7288 return 0;
7289}
7290
7291static void task_clock_event_del(struct perf_event *event, int flags)
7292{
7293 task_clock_event_stop(event, PERF_EF_UPDATE);
b0a873eb
PZ
7294}
7295
7296static void task_clock_event_read(struct perf_event *event)
7297{
768a06e2
PZ
7298 u64 now = perf_clock();
7299 u64 delta = now - event->ctx->timestamp;
7300 u64 time = event->ctx->time + delta;
b0a873eb
PZ
7301
7302 task_clock_event_update(event, time);
7303}
7304
7305static int task_clock_event_init(struct perf_event *event)
6fb2915d 7306{
b0a873eb
PZ
7307 if (event->attr.type != PERF_TYPE_SOFTWARE)
7308 return -ENOENT;
7309
7310 if (event->attr.config != PERF_COUNT_SW_TASK_CLOCK)
7311 return -ENOENT;
7312
2481c5fa
SE
7313 /*
7314 * no branch sampling for software events
7315 */
7316 if (has_branch_stack(event))
7317 return -EOPNOTSUPP;
7318
ba3dd36c
PZ
7319 perf_swevent_init_hrtimer(event);
7320
b0a873eb 7321 return 0;
6fb2915d
LZ
7322}
7323
b0a873eb 7324static struct pmu perf_task_clock = {
89a1e187
PZ
7325 .task_ctx_nr = perf_sw_context,
7326
34f43927
PZ
7327 .capabilities = PERF_PMU_CAP_NO_NMI,
7328
b0a873eb 7329 .event_init = task_clock_event_init,
a4eaf7f1
PZ
7330 .add = task_clock_event_add,
7331 .del = task_clock_event_del,
7332 .start = task_clock_event_start,
7333 .stop = task_clock_event_stop,
b0a873eb
PZ
7334 .read = task_clock_event_read,
7335};
6fb2915d 7336
ad5133b7 7337static void perf_pmu_nop_void(struct pmu *pmu)
e077df4f 7338{
e077df4f 7339}
6fb2915d 7340
fbbe0701
SB
7341static void perf_pmu_nop_txn(struct pmu *pmu, unsigned int flags)
7342{
7343}
7344
ad5133b7 7345static int perf_pmu_nop_int(struct pmu *pmu)
6fb2915d 7346{
ad5133b7 7347 return 0;
6fb2915d
LZ
7348}
7349
18ab2cd3 7350static DEFINE_PER_CPU(unsigned int, nop_txn_flags);
fbbe0701
SB
7351
7352static void perf_pmu_start_txn(struct pmu *pmu, unsigned int flags)
6fb2915d 7353{
fbbe0701
SB
7354 __this_cpu_write(nop_txn_flags, flags);
7355
7356 if (flags & ~PERF_PMU_TXN_ADD)
7357 return;
7358
ad5133b7 7359 perf_pmu_disable(pmu);
6fb2915d
LZ
7360}
7361
ad5133b7
PZ
7362static int perf_pmu_commit_txn(struct pmu *pmu)
7363{
fbbe0701
SB
7364 unsigned int flags = __this_cpu_read(nop_txn_flags);
7365
7366 __this_cpu_write(nop_txn_flags, 0);
7367
7368 if (flags & ~PERF_PMU_TXN_ADD)
7369 return 0;
7370
ad5133b7
PZ
7371 perf_pmu_enable(pmu);
7372 return 0;
7373}
e077df4f 7374
ad5133b7 7375static void perf_pmu_cancel_txn(struct pmu *pmu)
24f1e32c 7376{
fbbe0701
SB
7377 unsigned int flags = __this_cpu_read(nop_txn_flags);
7378
7379 __this_cpu_write(nop_txn_flags, 0);
7380
7381 if (flags & ~PERF_PMU_TXN_ADD)
7382 return;
7383
ad5133b7 7384 perf_pmu_enable(pmu);
24f1e32c
FW
7385}
7386
35edc2a5
PZ
7387static int perf_event_idx_default(struct perf_event *event)
7388{
c719f560 7389 return 0;
35edc2a5
PZ
7390}
7391
8dc85d54
PZ
7392/*
7393 * Ensures all contexts with the same task_ctx_nr have the same
7394 * pmu_cpu_context too.
7395 */
9e317041 7396static struct perf_cpu_context __percpu *find_pmu_context(int ctxn)
24f1e32c 7397{
8dc85d54 7398 struct pmu *pmu;
b326e956 7399
8dc85d54
PZ
7400 if (ctxn < 0)
7401 return NULL;
24f1e32c 7402
8dc85d54
PZ
7403 list_for_each_entry(pmu, &pmus, entry) {
7404 if (pmu->task_ctx_nr == ctxn)
7405 return pmu->pmu_cpu_context;
7406 }
24f1e32c 7407
8dc85d54 7408 return NULL;
24f1e32c
FW
7409}
7410
51676957 7411static void update_pmu_context(struct pmu *pmu, struct pmu *old_pmu)
24f1e32c 7412{
51676957
PZ
7413 int cpu;
7414
7415 for_each_possible_cpu(cpu) {
7416 struct perf_cpu_context *cpuctx;
7417
7418 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7419
3f1f3320
PZ
7420 if (cpuctx->unique_pmu == old_pmu)
7421 cpuctx->unique_pmu = pmu;
51676957
PZ
7422 }
7423}
7424
7425static void free_pmu_context(struct pmu *pmu)
7426{
7427 struct pmu *i;
f5ffe02e 7428
8dc85d54 7429 mutex_lock(&pmus_lock);
0475f9ea 7430 /*
8dc85d54 7431 * Like a real lame refcount.
0475f9ea 7432 */
51676957
PZ
7433 list_for_each_entry(i, &pmus, entry) {
7434 if (i->pmu_cpu_context == pmu->pmu_cpu_context) {
7435 update_pmu_context(i, pmu);
8dc85d54 7436 goto out;
51676957 7437 }
8dc85d54 7438 }
d6d020e9 7439
51676957 7440 free_percpu(pmu->pmu_cpu_context);
8dc85d54
PZ
7441out:
7442 mutex_unlock(&pmus_lock);
24f1e32c 7443}
2e80a82a 7444static struct idr pmu_idr;
d6d020e9 7445
abe43400
PZ
7446static ssize_t
7447type_show(struct device *dev, struct device_attribute *attr, char *page)
7448{
7449 struct pmu *pmu = dev_get_drvdata(dev);
7450
7451 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->type);
7452}
90826ca7 7453static DEVICE_ATTR_RO(type);
abe43400 7454
62b85639
SE
7455static ssize_t
7456perf_event_mux_interval_ms_show(struct device *dev,
7457 struct device_attribute *attr,
7458 char *page)
7459{
7460 struct pmu *pmu = dev_get_drvdata(dev);
7461
7462 return snprintf(page, PAGE_SIZE-1, "%d\n", pmu->hrtimer_interval_ms);
7463}
7464
272325c4
PZ
7465static DEFINE_MUTEX(mux_interval_mutex);
7466
62b85639
SE
7467static ssize_t
7468perf_event_mux_interval_ms_store(struct device *dev,
7469 struct device_attribute *attr,
7470 const char *buf, size_t count)
7471{
7472 struct pmu *pmu = dev_get_drvdata(dev);
7473 int timer, cpu, ret;
7474
7475 ret = kstrtoint(buf, 0, &timer);
7476 if (ret)
7477 return ret;
7478
7479 if (timer < 1)
7480 return -EINVAL;
7481
7482 /* same value, noting to do */
7483 if (timer == pmu->hrtimer_interval_ms)
7484 return count;
7485
272325c4 7486 mutex_lock(&mux_interval_mutex);
62b85639
SE
7487 pmu->hrtimer_interval_ms = timer;
7488
7489 /* update all cpuctx for this PMU */
272325c4
PZ
7490 get_online_cpus();
7491 for_each_online_cpu(cpu) {
62b85639
SE
7492 struct perf_cpu_context *cpuctx;
7493 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
7494 cpuctx->hrtimer_interval = ns_to_ktime(NSEC_PER_MSEC * timer);
7495
272325c4
PZ
7496 cpu_function_call(cpu,
7497 (remote_function_f)perf_mux_hrtimer_restart, cpuctx);
62b85639 7498 }
272325c4
PZ
7499 put_online_cpus();
7500 mutex_unlock(&mux_interval_mutex);
62b85639
SE
7501
7502 return count;
7503}
90826ca7 7504static DEVICE_ATTR_RW(perf_event_mux_interval_ms);
62b85639 7505
90826ca7
GKH
7506static struct attribute *pmu_dev_attrs[] = {
7507 &dev_attr_type.attr,
7508 &dev_attr_perf_event_mux_interval_ms.attr,
7509 NULL,
abe43400 7510};
90826ca7 7511ATTRIBUTE_GROUPS(pmu_dev);
abe43400
PZ
7512
7513static int pmu_bus_running;
7514static struct bus_type pmu_bus = {
7515 .name = "event_source",
90826ca7 7516 .dev_groups = pmu_dev_groups,
abe43400
PZ
7517};
7518
7519static void pmu_dev_release(struct device *dev)
7520{
7521 kfree(dev);
7522}
7523
7524static int pmu_dev_alloc(struct pmu *pmu)
7525{
7526 int ret = -ENOMEM;
7527
7528 pmu->dev = kzalloc(sizeof(struct device), GFP_KERNEL);
7529 if (!pmu->dev)
7530 goto out;
7531
0c9d42ed 7532 pmu->dev->groups = pmu->attr_groups;
abe43400
PZ
7533 device_initialize(pmu->dev);
7534 ret = dev_set_name(pmu->dev, "%s", pmu->name);
7535 if (ret)
7536 goto free_dev;
7537
7538 dev_set_drvdata(pmu->dev, pmu);
7539 pmu->dev->bus = &pmu_bus;
7540 pmu->dev->release = pmu_dev_release;
7541 ret = device_add(pmu->dev);
7542 if (ret)
7543 goto free_dev;
7544
7545out:
7546 return ret;
7547
7548free_dev:
7549 put_device(pmu->dev);
7550 goto out;
7551}
7552
547e9fd7 7553static struct lock_class_key cpuctx_mutex;
facc4307 7554static struct lock_class_key cpuctx_lock;
547e9fd7 7555
03d8e80b 7556int perf_pmu_register(struct pmu *pmu, const char *name, int type)
24f1e32c 7557{
108b02cf 7558 int cpu, ret;
24f1e32c 7559
b0a873eb 7560 mutex_lock(&pmus_lock);
33696fc0
PZ
7561 ret = -ENOMEM;
7562 pmu->pmu_disable_count = alloc_percpu(int);
7563 if (!pmu->pmu_disable_count)
7564 goto unlock;
f29ac756 7565
2e80a82a
PZ
7566 pmu->type = -1;
7567 if (!name)
7568 goto skip_type;
7569 pmu->name = name;
7570
7571 if (type < 0) {
0e9c3be2
TH
7572 type = idr_alloc(&pmu_idr, pmu, PERF_TYPE_MAX, 0, GFP_KERNEL);
7573 if (type < 0) {
7574 ret = type;
2e80a82a
PZ
7575 goto free_pdc;
7576 }
7577 }
7578 pmu->type = type;
7579
abe43400
PZ
7580 if (pmu_bus_running) {
7581 ret = pmu_dev_alloc(pmu);
7582 if (ret)
7583 goto free_idr;
7584 }
7585
2e80a82a 7586skip_type:
8dc85d54
PZ
7587 pmu->pmu_cpu_context = find_pmu_context(pmu->task_ctx_nr);
7588 if (pmu->pmu_cpu_context)
7589 goto got_cpu_context;
f29ac756 7590
c4814202 7591 ret = -ENOMEM;
108b02cf
PZ
7592 pmu->pmu_cpu_context = alloc_percpu(struct perf_cpu_context);
7593 if (!pmu->pmu_cpu_context)
abe43400 7594 goto free_dev;
f344011c 7595
108b02cf
PZ
7596 for_each_possible_cpu(cpu) {
7597 struct perf_cpu_context *cpuctx;
7598
7599 cpuctx = per_cpu_ptr(pmu->pmu_cpu_context, cpu);
eb184479 7600 __perf_event_init_context(&cpuctx->ctx);
547e9fd7 7601 lockdep_set_class(&cpuctx->ctx.mutex, &cpuctx_mutex);
facc4307 7602 lockdep_set_class(&cpuctx->ctx.lock, &cpuctx_lock);
108b02cf 7603 cpuctx->ctx.pmu = pmu;
9e630205 7604
272325c4 7605 __perf_mux_hrtimer_init(cpuctx, cpu);
9e630205 7606
3f1f3320 7607 cpuctx->unique_pmu = pmu;
108b02cf 7608 }
76e1d904 7609
8dc85d54 7610got_cpu_context:
ad5133b7
PZ
7611 if (!pmu->start_txn) {
7612 if (pmu->pmu_enable) {
7613 /*
7614 * If we have pmu_enable/pmu_disable calls, install
7615 * transaction stubs that use that to try and batch
7616 * hardware accesses.
7617 */
7618 pmu->start_txn = perf_pmu_start_txn;
7619 pmu->commit_txn = perf_pmu_commit_txn;
7620 pmu->cancel_txn = perf_pmu_cancel_txn;
7621 } else {
fbbe0701 7622 pmu->start_txn = perf_pmu_nop_txn;
ad5133b7
PZ
7623 pmu->commit_txn = perf_pmu_nop_int;
7624 pmu->cancel_txn = perf_pmu_nop_void;
f344011c 7625 }
5c92d124 7626 }
15dbf27c 7627
ad5133b7
PZ
7628 if (!pmu->pmu_enable) {
7629 pmu->pmu_enable = perf_pmu_nop_void;
7630 pmu->pmu_disable = perf_pmu_nop_void;
7631 }
7632
35edc2a5
PZ
7633 if (!pmu->event_idx)
7634 pmu->event_idx = perf_event_idx_default;
7635
b0a873eb 7636 list_add_rcu(&pmu->entry, &pmus);
bed5b25a 7637 atomic_set(&pmu->exclusive_cnt, 0);
33696fc0
PZ
7638 ret = 0;
7639unlock:
b0a873eb
PZ
7640 mutex_unlock(&pmus_lock);
7641
33696fc0 7642 return ret;
108b02cf 7643
abe43400
PZ
7644free_dev:
7645 device_del(pmu->dev);
7646 put_device(pmu->dev);
7647
2e80a82a
PZ
7648free_idr:
7649 if (pmu->type >= PERF_TYPE_MAX)
7650 idr_remove(&pmu_idr, pmu->type);
7651
108b02cf
PZ
7652free_pdc:
7653 free_percpu(pmu->pmu_disable_count);
7654 goto unlock;
f29ac756 7655}
c464c76e 7656EXPORT_SYMBOL_GPL(perf_pmu_register);
f29ac756 7657
b0a873eb 7658void perf_pmu_unregister(struct pmu *pmu)
5c92d124 7659{
b0a873eb
PZ
7660 mutex_lock(&pmus_lock);
7661 list_del_rcu(&pmu->entry);
7662 mutex_unlock(&pmus_lock);
5c92d124 7663
0475f9ea 7664 /*
cde8e884
PZ
7665 * We dereference the pmu list under both SRCU and regular RCU, so
7666 * synchronize against both of those.
0475f9ea 7667 */
b0a873eb 7668 synchronize_srcu(&pmus_srcu);
cde8e884 7669 synchronize_rcu();
d6d020e9 7670
33696fc0 7671 free_percpu(pmu->pmu_disable_count);
2e80a82a
PZ
7672 if (pmu->type >= PERF_TYPE_MAX)
7673 idr_remove(&pmu_idr, pmu->type);
abe43400
PZ
7674 device_del(pmu->dev);
7675 put_device(pmu->dev);
51676957 7676 free_pmu_context(pmu);
b0a873eb 7677}
c464c76e 7678EXPORT_SYMBOL_GPL(perf_pmu_unregister);
d6d020e9 7679
cc34b98b
MR
7680static int perf_try_init_event(struct pmu *pmu, struct perf_event *event)
7681{
ccd41c86 7682 struct perf_event_context *ctx = NULL;
cc34b98b
MR
7683 int ret;
7684
7685 if (!try_module_get(pmu->module))
7686 return -ENODEV;
ccd41c86
PZ
7687
7688 if (event->group_leader != event) {
8b10c5e2
PZ
7689 /*
7690 * This ctx->mutex can nest when we're called through
7691 * inheritance. See the perf_event_ctx_lock_nested() comment.
7692 */
7693 ctx = perf_event_ctx_lock_nested(event->group_leader,
7694 SINGLE_DEPTH_NESTING);
ccd41c86
PZ
7695 BUG_ON(!ctx);
7696 }
7697
cc34b98b
MR
7698 event->pmu = pmu;
7699 ret = pmu->event_init(event);
ccd41c86
PZ
7700
7701 if (ctx)
7702 perf_event_ctx_unlock(event->group_leader, ctx);
7703
cc34b98b
MR
7704 if (ret)
7705 module_put(pmu->module);
7706
7707 return ret;
7708}
7709
18ab2cd3 7710static struct pmu *perf_init_event(struct perf_event *event)
b0a873eb
PZ
7711{
7712 struct pmu *pmu = NULL;
7713 int idx;
940c5b29 7714 int ret;
b0a873eb
PZ
7715
7716 idx = srcu_read_lock(&pmus_srcu);
2e80a82a
PZ
7717
7718 rcu_read_lock();
7719 pmu = idr_find(&pmu_idr, event->attr.type);
7720 rcu_read_unlock();
940c5b29 7721 if (pmu) {
cc34b98b 7722 ret = perf_try_init_event(pmu, event);
940c5b29
LM
7723 if (ret)
7724 pmu = ERR_PTR(ret);
2e80a82a 7725 goto unlock;
940c5b29 7726 }
2e80a82a 7727
b0a873eb 7728 list_for_each_entry_rcu(pmu, &pmus, entry) {
cc34b98b 7729 ret = perf_try_init_event(pmu, event);
b0a873eb 7730 if (!ret)
e5f4d339 7731 goto unlock;
76e1d904 7732
b0a873eb
PZ
7733 if (ret != -ENOENT) {
7734 pmu = ERR_PTR(ret);
e5f4d339 7735 goto unlock;
f344011c 7736 }
5c92d124 7737 }
e5f4d339
PZ
7738 pmu = ERR_PTR(-ENOENT);
7739unlock:
b0a873eb 7740 srcu_read_unlock(&pmus_srcu, idx);
15dbf27c 7741
4aeb0b42 7742 return pmu;
5c92d124
IM
7743}
7744
4beb31f3
FW
7745static void account_event_cpu(struct perf_event *event, int cpu)
7746{
7747 if (event->parent)
7748 return;
7749
4beb31f3
FW
7750 if (is_cgroup_event(event))
7751 atomic_inc(&per_cpu(perf_cgroup_events, cpu));
7752}
7753
766d6c07
FW
7754static void account_event(struct perf_event *event)
7755{
25432ae9
PZ
7756 bool inc = false;
7757
4beb31f3
FW
7758 if (event->parent)
7759 return;
7760
766d6c07 7761 if (event->attach_state & PERF_ATTACH_TASK)
25432ae9 7762 inc = true;
766d6c07
FW
7763 if (event->attr.mmap || event->attr.mmap_data)
7764 atomic_inc(&nr_mmap_events);
7765 if (event->attr.comm)
7766 atomic_inc(&nr_comm_events);
7767 if (event->attr.task)
7768 atomic_inc(&nr_task_events);
948b26b6
FW
7769 if (event->attr.freq) {
7770 if (atomic_inc_return(&nr_freq_events) == 1)
7771 tick_nohz_full_kick_all();
7772 }
45ac1403
AH
7773 if (event->attr.context_switch) {
7774 atomic_inc(&nr_switch_events);
25432ae9 7775 inc = true;
45ac1403 7776 }
4beb31f3 7777 if (has_branch_stack(event))
25432ae9 7778 inc = true;
4beb31f3 7779 if (is_cgroup_event(event))
25432ae9
PZ
7780 inc = true;
7781
7782 if (inc)
766d6c07 7783 static_key_slow_inc(&perf_sched_events.key);
4beb31f3
FW
7784
7785 account_event_cpu(event, event->cpu);
766d6c07
FW
7786}
7787
0793a61d 7788/*
cdd6c482 7789 * Allocate and initialize a event structure
0793a61d 7790 */
cdd6c482 7791static struct perf_event *
c3f00c70 7792perf_event_alloc(struct perf_event_attr *attr, int cpu,
d580ff86
PZ
7793 struct task_struct *task,
7794 struct perf_event *group_leader,
7795 struct perf_event *parent_event,
4dc0da86 7796 perf_overflow_handler_t overflow_handler,
79dff51e 7797 void *context, int cgroup_fd)
0793a61d 7798{
51b0fe39 7799 struct pmu *pmu;
cdd6c482
IM
7800 struct perf_event *event;
7801 struct hw_perf_event *hwc;
90983b16 7802 long err = -EINVAL;
0793a61d 7803
66832eb4
ON
7804 if ((unsigned)cpu >= nr_cpu_ids) {
7805 if (!task || cpu != -1)
7806 return ERR_PTR(-EINVAL);
7807 }
7808
c3f00c70 7809 event = kzalloc(sizeof(*event), GFP_KERNEL);
cdd6c482 7810 if (!event)
d5d2bc0d 7811 return ERR_PTR(-ENOMEM);
0793a61d 7812
04289bb9 7813 /*
cdd6c482 7814 * Single events are their own group leaders, with an
04289bb9
IM
7815 * empty sibling list:
7816 */
7817 if (!group_leader)
cdd6c482 7818 group_leader = event;
04289bb9 7819
cdd6c482
IM
7820 mutex_init(&event->child_mutex);
7821 INIT_LIST_HEAD(&event->child_list);
fccc714b 7822
cdd6c482
IM
7823 INIT_LIST_HEAD(&event->group_entry);
7824 INIT_LIST_HEAD(&event->event_entry);
7825 INIT_LIST_HEAD(&event->sibling_list);
10c6db11 7826 INIT_LIST_HEAD(&event->rb_entry);
71ad88ef 7827 INIT_LIST_HEAD(&event->active_entry);
f3ae75de
SE
7828 INIT_HLIST_NODE(&event->hlist_entry);
7829
10c6db11 7830
cdd6c482 7831 init_waitqueue_head(&event->waitq);
e360adbe 7832 init_irq_work(&event->pending, perf_pending_event);
0793a61d 7833
cdd6c482 7834 mutex_init(&event->mmap_mutex);
7b732a75 7835
a6fa941d 7836 atomic_long_set(&event->refcount, 1);
cdd6c482
IM
7837 event->cpu = cpu;
7838 event->attr = *attr;
7839 event->group_leader = group_leader;
7840 event->pmu = NULL;
cdd6c482 7841 event->oncpu = -1;
a96bbc16 7842
cdd6c482 7843 event->parent = parent_event;
b84fbc9f 7844
17cf22c3 7845 event->ns = get_pid_ns(task_active_pid_ns(current));
cdd6c482 7846 event->id = atomic64_inc_return(&perf_event_id);
a96bbc16 7847
cdd6c482 7848 event->state = PERF_EVENT_STATE_INACTIVE;
329d876d 7849
d580ff86
PZ
7850 if (task) {
7851 event->attach_state = PERF_ATTACH_TASK;
d580ff86 7852 /*
50f16a8b
PZ
7853 * XXX pmu::event_init needs to know what task to account to
7854 * and we cannot use the ctx information because we need the
7855 * pmu before we get a ctx.
d580ff86 7856 */
50f16a8b 7857 event->hw.target = task;
d580ff86
PZ
7858 }
7859
34f43927
PZ
7860 event->clock = &local_clock;
7861 if (parent_event)
7862 event->clock = parent_event->clock;
7863
4dc0da86 7864 if (!overflow_handler && parent_event) {
b326e956 7865 overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
7866 context = parent_event->overflow_handler_context;
7867 }
66832eb4 7868
b326e956 7869 event->overflow_handler = overflow_handler;
4dc0da86 7870 event->overflow_handler_context = context;
97eaf530 7871
0231bb53 7872 perf_event__state_init(event);
a86ed508 7873
4aeb0b42 7874 pmu = NULL;
b8e83514 7875
cdd6c482 7876 hwc = &event->hw;
bd2b5b12 7877 hwc->sample_period = attr->sample_period;
0d48696f 7878 if (attr->freq && attr->sample_freq)
bd2b5b12 7879 hwc->sample_period = 1;
eced1dfc 7880 hwc->last_period = hwc->sample_period;
bd2b5b12 7881
e7850595 7882 local64_set(&hwc->period_left, hwc->sample_period);
60db5e09 7883
2023b359 7884 /*
cdd6c482 7885 * we currently do not support PERF_FORMAT_GROUP on inherited events
2023b359 7886 */
3dab77fb 7887 if (attr->inherit && (attr->read_format & PERF_FORMAT_GROUP))
90983b16 7888 goto err_ns;
a46a2300
YZ
7889
7890 if (!has_branch_stack(event))
7891 event->attr.branch_sample_type = 0;
2023b359 7892
79dff51e
MF
7893 if (cgroup_fd != -1) {
7894 err = perf_cgroup_connect(cgroup_fd, event, attr, group_leader);
7895 if (err)
7896 goto err_ns;
7897 }
7898
b0a873eb 7899 pmu = perf_init_event(event);
4aeb0b42 7900 if (!pmu)
90983b16
FW
7901 goto err_ns;
7902 else if (IS_ERR(pmu)) {
4aeb0b42 7903 err = PTR_ERR(pmu);
90983b16 7904 goto err_ns;
621a01ea 7905 }
d5d2bc0d 7906
bed5b25a
AS
7907 err = exclusive_event_init(event);
7908 if (err)
7909 goto err_pmu;
7910
cdd6c482 7911 if (!event->parent) {
927c7a9e
FW
7912 if (event->attr.sample_type & PERF_SAMPLE_CALLCHAIN) {
7913 err = get_callchain_buffers();
90983b16 7914 if (err)
bed5b25a 7915 goto err_per_task;
d010b332 7916 }
f344011c 7917 }
9ee318a7 7918
cdd6c482 7919 return event;
90983b16 7920
bed5b25a
AS
7921err_per_task:
7922 exclusive_event_destroy(event);
7923
90983b16
FW
7924err_pmu:
7925 if (event->destroy)
7926 event->destroy(event);
c464c76e 7927 module_put(pmu->module);
90983b16 7928err_ns:
79dff51e
MF
7929 if (is_cgroup_event(event))
7930 perf_detach_cgroup(event);
90983b16
FW
7931 if (event->ns)
7932 put_pid_ns(event->ns);
7933 kfree(event);
7934
7935 return ERR_PTR(err);
0793a61d
TG
7936}
7937
cdd6c482
IM
7938static int perf_copy_attr(struct perf_event_attr __user *uattr,
7939 struct perf_event_attr *attr)
974802ea 7940{
974802ea 7941 u32 size;
cdf8073d 7942 int ret;
974802ea
PZ
7943
7944 if (!access_ok(VERIFY_WRITE, uattr, PERF_ATTR_SIZE_VER0))
7945 return -EFAULT;
7946
7947 /*
7948 * zero the full structure, so that a short copy will be nice.
7949 */
7950 memset(attr, 0, sizeof(*attr));
7951
7952 ret = get_user(size, &uattr->size);
7953 if (ret)
7954 return ret;
7955
7956 if (size > PAGE_SIZE) /* silly large */
7957 goto err_size;
7958
7959 if (!size) /* abi compat */
7960 size = PERF_ATTR_SIZE_VER0;
7961
7962 if (size < PERF_ATTR_SIZE_VER0)
7963 goto err_size;
7964
7965 /*
7966 * If we're handed a bigger struct than we know of,
cdf8073d
IS
7967 * ensure all the unknown bits are 0 - i.e. new
7968 * user-space does not rely on any kernel feature
7969 * extensions we dont know about yet.
974802ea
PZ
7970 */
7971 if (size > sizeof(*attr)) {
cdf8073d
IS
7972 unsigned char __user *addr;
7973 unsigned char __user *end;
7974 unsigned char val;
974802ea 7975
cdf8073d
IS
7976 addr = (void __user *)uattr + sizeof(*attr);
7977 end = (void __user *)uattr + size;
974802ea 7978
cdf8073d 7979 for (; addr < end; addr++) {
974802ea
PZ
7980 ret = get_user(val, addr);
7981 if (ret)
7982 return ret;
7983 if (val)
7984 goto err_size;
7985 }
b3e62e35 7986 size = sizeof(*attr);
974802ea
PZ
7987 }
7988
7989 ret = copy_from_user(attr, uattr, size);
7990 if (ret)
7991 return -EFAULT;
7992
cd757645 7993 if (attr->__reserved_1)
974802ea
PZ
7994 return -EINVAL;
7995
7996 if (attr->sample_type & ~(PERF_SAMPLE_MAX-1))
7997 return -EINVAL;
7998
7999 if (attr->read_format & ~(PERF_FORMAT_MAX-1))
8000 return -EINVAL;
8001
bce38cd5
SE
8002 if (attr->sample_type & PERF_SAMPLE_BRANCH_STACK) {
8003 u64 mask = attr->branch_sample_type;
8004
8005 /* only using defined bits */
8006 if (mask & ~(PERF_SAMPLE_BRANCH_MAX-1))
8007 return -EINVAL;
8008
8009 /* at least one branch bit must be set */
8010 if (!(mask & ~PERF_SAMPLE_BRANCH_PLM_ALL))
8011 return -EINVAL;
8012
bce38cd5
SE
8013 /* propagate priv level, when not set for branch */
8014 if (!(mask & PERF_SAMPLE_BRANCH_PLM_ALL)) {
8015
8016 /* exclude_kernel checked on syscall entry */
8017 if (!attr->exclude_kernel)
8018 mask |= PERF_SAMPLE_BRANCH_KERNEL;
8019
8020 if (!attr->exclude_user)
8021 mask |= PERF_SAMPLE_BRANCH_USER;
8022
8023 if (!attr->exclude_hv)
8024 mask |= PERF_SAMPLE_BRANCH_HV;
8025 /*
8026 * adjust user setting (for HW filter setup)
8027 */
8028 attr->branch_sample_type = mask;
8029 }
e712209a
SE
8030 /* privileged levels capture (kernel, hv): check permissions */
8031 if ((mask & PERF_SAMPLE_BRANCH_PERM_PLM)
2b923c8f
SE
8032 && perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8033 return -EACCES;
bce38cd5 8034 }
4018994f 8035
c5ebcedb 8036 if (attr->sample_type & PERF_SAMPLE_REGS_USER) {
4018994f 8037 ret = perf_reg_validate(attr->sample_regs_user);
c5ebcedb
JO
8038 if (ret)
8039 return ret;
8040 }
8041
8042 if (attr->sample_type & PERF_SAMPLE_STACK_USER) {
8043 if (!arch_perf_have_user_stack_dump())
8044 return -ENOSYS;
8045
8046 /*
8047 * We have __u32 type for the size, but so far
8048 * we can only use __u16 as maximum due to the
8049 * __u16 sample size limit.
8050 */
8051 if (attr->sample_stack_user >= USHRT_MAX)
8052 ret = -EINVAL;
8053 else if (!IS_ALIGNED(attr->sample_stack_user, sizeof(u64)))
8054 ret = -EINVAL;
8055 }
4018994f 8056
60e2364e
SE
8057 if (attr->sample_type & PERF_SAMPLE_REGS_INTR)
8058 ret = perf_reg_validate(attr->sample_regs_intr);
974802ea
PZ
8059out:
8060 return ret;
8061
8062err_size:
8063 put_user(sizeof(*attr), &uattr->size);
8064 ret = -E2BIG;
8065 goto out;
8066}
8067
ac9721f3
PZ
8068static int
8069perf_event_set_output(struct perf_event *event, struct perf_event *output_event)
a4be7c27 8070{
b69cf536 8071 struct ring_buffer *rb = NULL;
a4be7c27
PZ
8072 int ret = -EINVAL;
8073
ac9721f3 8074 if (!output_event)
a4be7c27
PZ
8075 goto set;
8076
ac9721f3
PZ
8077 /* don't allow circular references */
8078 if (event == output_event)
a4be7c27
PZ
8079 goto out;
8080
0f139300
PZ
8081 /*
8082 * Don't allow cross-cpu buffers
8083 */
8084 if (output_event->cpu != event->cpu)
8085 goto out;
8086
8087 /*
76369139 8088 * If its not a per-cpu rb, it must be the same task.
0f139300
PZ
8089 */
8090 if (output_event->cpu == -1 && output_event->ctx != event->ctx)
8091 goto out;
8092
34f43927
PZ
8093 /*
8094 * Mixing clocks in the same buffer is trouble you don't need.
8095 */
8096 if (output_event->clock != event->clock)
8097 goto out;
8098
45bfb2e5
PZ
8099 /*
8100 * If both events generate aux data, they must be on the same PMU
8101 */
8102 if (has_aux(event) && has_aux(output_event) &&
8103 event->pmu != output_event->pmu)
8104 goto out;
8105
a4be7c27 8106set:
cdd6c482 8107 mutex_lock(&event->mmap_mutex);
ac9721f3
PZ
8108 /* Can't redirect output if we've got an active mmap() */
8109 if (atomic_read(&event->mmap_count))
8110 goto unlock;
a4be7c27 8111
ac9721f3 8112 if (output_event) {
76369139
FW
8113 /* get the rb we want to redirect to */
8114 rb = ring_buffer_get(output_event);
8115 if (!rb)
ac9721f3 8116 goto unlock;
a4be7c27
PZ
8117 }
8118
b69cf536 8119 ring_buffer_attach(event, rb);
9bb5d40c 8120
a4be7c27 8121 ret = 0;
ac9721f3
PZ
8122unlock:
8123 mutex_unlock(&event->mmap_mutex);
8124
a4be7c27 8125out:
a4be7c27
PZ
8126 return ret;
8127}
8128
f63a8daa
PZ
8129static void mutex_lock_double(struct mutex *a, struct mutex *b)
8130{
8131 if (b < a)
8132 swap(a, b);
8133
8134 mutex_lock(a);
8135 mutex_lock_nested(b, SINGLE_DEPTH_NESTING);
8136}
8137
34f43927
PZ
8138static int perf_event_set_clock(struct perf_event *event, clockid_t clk_id)
8139{
8140 bool nmi_safe = false;
8141
8142 switch (clk_id) {
8143 case CLOCK_MONOTONIC:
8144 event->clock = &ktime_get_mono_fast_ns;
8145 nmi_safe = true;
8146 break;
8147
8148 case CLOCK_MONOTONIC_RAW:
8149 event->clock = &ktime_get_raw_fast_ns;
8150 nmi_safe = true;
8151 break;
8152
8153 case CLOCK_REALTIME:
8154 event->clock = &ktime_get_real_ns;
8155 break;
8156
8157 case CLOCK_BOOTTIME:
8158 event->clock = &ktime_get_boot_ns;
8159 break;
8160
8161 case CLOCK_TAI:
8162 event->clock = &ktime_get_tai_ns;
8163 break;
8164
8165 default:
8166 return -EINVAL;
8167 }
8168
8169 if (!nmi_safe && !(event->pmu->capabilities & PERF_PMU_CAP_NO_NMI))
8170 return -EINVAL;
8171
8172 return 0;
8173}
8174
0793a61d 8175/**
cdd6c482 8176 * sys_perf_event_open - open a performance event, associate it to a task/cpu
9f66a381 8177 *
cdd6c482 8178 * @attr_uptr: event_id type attributes for monitoring/sampling
0793a61d 8179 * @pid: target pid
9f66a381 8180 * @cpu: target cpu
cdd6c482 8181 * @group_fd: group leader event fd
0793a61d 8182 */
cdd6c482
IM
8183SYSCALL_DEFINE5(perf_event_open,
8184 struct perf_event_attr __user *, attr_uptr,
2743a5b0 8185 pid_t, pid, int, cpu, int, group_fd, unsigned long, flags)
0793a61d 8186{
b04243ef
PZ
8187 struct perf_event *group_leader = NULL, *output_event = NULL;
8188 struct perf_event *event, *sibling;
cdd6c482 8189 struct perf_event_attr attr;
f63a8daa 8190 struct perf_event_context *ctx, *uninitialized_var(gctx);
cdd6c482 8191 struct file *event_file = NULL;
2903ff01 8192 struct fd group = {NULL, 0};
38a81da2 8193 struct task_struct *task = NULL;
89a1e187 8194 struct pmu *pmu;
ea635c64 8195 int event_fd;
b04243ef 8196 int move_group = 0;
dc86cabe 8197 int err;
a21b0b35 8198 int f_flags = O_RDWR;
79dff51e 8199 int cgroup_fd = -1;
0793a61d 8200
2743a5b0 8201 /* for future expandability... */
e5d1367f 8202 if (flags & ~PERF_FLAG_ALL)
2743a5b0
PM
8203 return -EINVAL;
8204
dc86cabe
IM
8205 err = perf_copy_attr(attr_uptr, &attr);
8206 if (err)
8207 return err;
eab656ae 8208
0764771d
PZ
8209 if (!attr.exclude_kernel) {
8210 if (perf_paranoid_kernel() && !capable(CAP_SYS_ADMIN))
8211 return -EACCES;
8212 }
8213
df58ab24 8214 if (attr.freq) {
cdd6c482 8215 if (attr.sample_freq > sysctl_perf_event_sample_rate)
df58ab24 8216 return -EINVAL;
0819b2e3
PZ
8217 } else {
8218 if (attr.sample_period & (1ULL << 63))
8219 return -EINVAL;
df58ab24
PZ
8220 }
8221
e5d1367f
SE
8222 /*
8223 * In cgroup mode, the pid argument is used to pass the fd
8224 * opened to the cgroup directory in cgroupfs. The cpu argument
8225 * designates the cpu on which to monitor threads from that
8226 * cgroup.
8227 */
8228 if ((flags & PERF_FLAG_PID_CGROUP) && (pid == -1 || cpu == -1))
8229 return -EINVAL;
8230
a21b0b35
YD
8231 if (flags & PERF_FLAG_FD_CLOEXEC)
8232 f_flags |= O_CLOEXEC;
8233
8234 event_fd = get_unused_fd_flags(f_flags);
ea635c64
AV
8235 if (event_fd < 0)
8236 return event_fd;
8237
ac9721f3 8238 if (group_fd != -1) {
2903ff01
AV
8239 err = perf_fget_light(group_fd, &group);
8240 if (err)
d14b12d7 8241 goto err_fd;
2903ff01 8242 group_leader = group.file->private_data;
ac9721f3
PZ
8243 if (flags & PERF_FLAG_FD_OUTPUT)
8244 output_event = group_leader;
8245 if (flags & PERF_FLAG_FD_NO_GROUP)
8246 group_leader = NULL;
8247 }
8248
e5d1367f 8249 if (pid != -1 && !(flags & PERF_FLAG_PID_CGROUP)) {
c6be5a5c
PZ
8250 task = find_lively_task_by_vpid(pid);
8251 if (IS_ERR(task)) {
8252 err = PTR_ERR(task);
8253 goto err_group_fd;
8254 }
8255 }
8256
1f4ee503
PZ
8257 if (task && group_leader &&
8258 group_leader->attr.inherit != attr.inherit) {
8259 err = -EINVAL;
8260 goto err_task;
8261 }
8262
fbfc623f
YZ
8263 get_online_cpus();
8264
79dff51e
MF
8265 if (flags & PERF_FLAG_PID_CGROUP)
8266 cgroup_fd = pid;
8267
4dc0da86 8268 event = perf_event_alloc(&attr, cpu, task, group_leader, NULL,
79dff51e 8269 NULL, NULL, cgroup_fd);
d14b12d7
SE
8270 if (IS_ERR(event)) {
8271 err = PTR_ERR(event);
1f4ee503 8272 goto err_cpus;
d14b12d7
SE
8273 }
8274
53b25335
VW
8275 if (is_sampling_event(event)) {
8276 if (event->pmu->capabilities & PERF_PMU_CAP_NO_INTERRUPT) {
8277 err = -ENOTSUPP;
8278 goto err_alloc;
8279 }
8280 }
8281
766d6c07
FW
8282 account_event(event);
8283
89a1e187
PZ
8284 /*
8285 * Special case software events and allow them to be part of
8286 * any hardware group.
8287 */
8288 pmu = event->pmu;
b04243ef 8289
34f43927
PZ
8290 if (attr.use_clockid) {
8291 err = perf_event_set_clock(event, attr.clockid);
8292 if (err)
8293 goto err_alloc;
8294 }
8295
b04243ef
PZ
8296 if (group_leader &&
8297 (is_software_event(event) != is_software_event(group_leader))) {
8298 if (is_software_event(event)) {
8299 /*
8300 * If event and group_leader are not both a software
8301 * event, and event is, then group leader is not.
8302 *
8303 * Allow the addition of software events to !software
8304 * groups, this is safe because software events never
8305 * fail to schedule.
8306 */
8307 pmu = group_leader->pmu;
8308 } else if (is_software_event(group_leader) &&
8309 (group_leader->group_flags & PERF_GROUP_SOFTWARE)) {
8310 /*
8311 * In case the group is a pure software group, and we
8312 * try to add a hardware event, move the whole group to
8313 * the hardware context.
8314 */
8315 move_group = 1;
8316 }
8317 }
89a1e187
PZ
8318
8319 /*
8320 * Get the target context (task or percpu):
8321 */
4af57ef2 8322 ctx = find_get_context(pmu, task, event);
89a1e187
PZ
8323 if (IS_ERR(ctx)) {
8324 err = PTR_ERR(ctx);
c6be5a5c 8325 goto err_alloc;
89a1e187
PZ
8326 }
8327
bed5b25a
AS
8328 if ((pmu->capabilities & PERF_PMU_CAP_EXCLUSIVE) && group_leader) {
8329 err = -EBUSY;
8330 goto err_context;
8331 }
8332
fd1edb3a
PZ
8333 if (task) {
8334 put_task_struct(task);
8335 task = NULL;
8336 }
8337
ccff286d 8338 /*
cdd6c482 8339 * Look up the group leader (we will attach this event to it):
04289bb9 8340 */
ac9721f3 8341 if (group_leader) {
dc86cabe 8342 err = -EINVAL;
04289bb9 8343
04289bb9 8344 /*
ccff286d
IM
8345 * Do not allow a recursive hierarchy (this new sibling
8346 * becoming part of another group-sibling):
8347 */
8348 if (group_leader->group_leader != group_leader)
c3f00c70 8349 goto err_context;
34f43927
PZ
8350
8351 /* All events in a group should have the same clock */
8352 if (group_leader->clock != event->clock)
8353 goto err_context;
8354
ccff286d
IM
8355 /*
8356 * Do not allow to attach to a group in a different
8357 * task or CPU context:
04289bb9 8358 */
b04243ef 8359 if (move_group) {
c3c87e77
PZ
8360 /*
8361 * Make sure we're both on the same task, or both
8362 * per-cpu events.
8363 */
8364 if (group_leader->ctx->task != ctx->task)
8365 goto err_context;
8366
8367 /*
8368 * Make sure we're both events for the same CPU;
8369 * grouping events for different CPUs is broken; since
8370 * you can never concurrently schedule them anyhow.
8371 */
8372 if (group_leader->cpu != event->cpu)
b04243ef
PZ
8373 goto err_context;
8374 } else {
8375 if (group_leader->ctx != ctx)
8376 goto err_context;
8377 }
8378
3b6f9e5c
PM
8379 /*
8380 * Only a group leader can be exclusive or pinned
8381 */
0d48696f 8382 if (attr.exclusive || attr.pinned)
c3f00c70 8383 goto err_context;
ac9721f3
PZ
8384 }
8385
8386 if (output_event) {
8387 err = perf_event_set_output(event, output_event);
8388 if (err)
c3f00c70 8389 goto err_context;
ac9721f3 8390 }
0793a61d 8391
a21b0b35
YD
8392 event_file = anon_inode_getfile("[perf_event]", &perf_fops, event,
8393 f_flags);
ea635c64
AV
8394 if (IS_ERR(event_file)) {
8395 err = PTR_ERR(event_file);
c3f00c70 8396 goto err_context;
ea635c64 8397 }
9b51f66d 8398
b04243ef 8399 if (move_group) {
f63a8daa 8400 gctx = group_leader->ctx;
f55fc2a5
PZ
8401 mutex_lock_double(&gctx->mutex, &ctx->mutex);
8402 } else {
8403 mutex_lock(&ctx->mutex);
8404 }
8405
a723968c
PZ
8406 if (!perf_event_validate_size(event)) {
8407 err = -E2BIG;
8408 goto err_locked;
8409 }
8410
f55fc2a5
PZ
8411 /*
8412 * Must be under the same ctx::mutex as perf_install_in_context(),
8413 * because we need to serialize with concurrent event creation.
8414 */
8415 if (!exclusive_event_installable(event, ctx)) {
8416 /* exclusive and group stuff are assumed mutually exclusive */
8417 WARN_ON_ONCE(move_group);
f63a8daa 8418
f55fc2a5
PZ
8419 err = -EBUSY;
8420 goto err_locked;
8421 }
f63a8daa 8422
f55fc2a5
PZ
8423 WARN_ON_ONCE(ctx->parent_ctx);
8424
8425 if (move_group) {
f63a8daa
PZ
8426 /*
8427 * See perf_event_ctx_lock() for comments on the details
8428 * of swizzling perf_event::ctx.
8429 */
46ce0fe9 8430 perf_remove_from_context(group_leader, false);
0231bb53 8431
b04243ef
PZ
8432 list_for_each_entry(sibling, &group_leader->sibling_list,
8433 group_entry) {
46ce0fe9 8434 perf_remove_from_context(sibling, false);
b04243ef
PZ
8435 put_ctx(gctx);
8436 }
b04243ef 8437
f63a8daa
PZ
8438 /*
8439 * Wait for everybody to stop referencing the events through
8440 * the old lists, before installing it on new lists.
8441 */
0cda4c02 8442 synchronize_rcu();
f63a8daa 8443
8f95b435
PZI
8444 /*
8445 * Install the group siblings before the group leader.
8446 *
8447 * Because a group leader will try and install the entire group
8448 * (through the sibling list, which is still in-tact), we can
8449 * end up with siblings installed in the wrong context.
8450 *
8451 * By installing siblings first we NO-OP because they're not
8452 * reachable through the group lists.
8453 */
b04243ef
PZ
8454 list_for_each_entry(sibling, &group_leader->sibling_list,
8455 group_entry) {
8f95b435 8456 perf_event__state_init(sibling);
9fc81d87 8457 perf_install_in_context(ctx, sibling, sibling->cpu);
b04243ef
PZ
8458 get_ctx(ctx);
8459 }
8f95b435
PZI
8460
8461 /*
8462 * Removing from the context ends up with disabled
8463 * event. What we want here is event in the initial
8464 * startup state, ready to be add into new context.
8465 */
8466 perf_event__state_init(group_leader);
8467 perf_install_in_context(ctx, group_leader, group_leader->cpu);
8468 get_ctx(ctx);
b04243ef 8469
f55fc2a5
PZ
8470 /*
8471 * Now that all events are installed in @ctx, nothing
8472 * references @gctx anymore, so drop the last reference we have
8473 * on it.
8474 */
8475 put_ctx(gctx);
bed5b25a
AS
8476 }
8477
f73e22ab
PZ
8478 /*
8479 * Precalculate sample_data sizes; do while holding ctx::mutex such
8480 * that we're serialized against further additions and before
8481 * perf_install_in_context() which is the point the event is active and
8482 * can use these values.
8483 */
8484 perf_event__header_size(event);
8485 perf_event__id_header_size(event);
8486
78cd2c74
PZ
8487 event->owner = current;
8488
e2d37cd2 8489 perf_install_in_context(ctx, event, event->cpu);
fe4b04fa 8490 perf_unpin_context(ctx);
f63a8daa 8491
f55fc2a5 8492 if (move_group)
f63a8daa 8493 mutex_unlock(&gctx->mutex);
d859e29f 8494 mutex_unlock(&ctx->mutex);
9b51f66d 8495
fbfc623f
YZ
8496 put_online_cpus();
8497
cdd6c482
IM
8498 mutex_lock(&current->perf_event_mutex);
8499 list_add_tail(&event->owner_entry, &current->perf_event_list);
8500 mutex_unlock(&current->perf_event_mutex);
082ff5a2 8501
8a49542c
PZ
8502 /*
8503 * Drop the reference on the group_event after placing the
8504 * new event on the sibling_list. This ensures destruction
8505 * of the group leader will find the pointer to itself in
8506 * perf_group_detach().
8507 */
2903ff01 8508 fdput(group);
ea635c64
AV
8509 fd_install(event_fd, event_file);
8510 return event_fd;
0793a61d 8511
f55fc2a5
PZ
8512err_locked:
8513 if (move_group)
8514 mutex_unlock(&gctx->mutex);
8515 mutex_unlock(&ctx->mutex);
8516/* err_file: */
8517 fput(event_file);
c3f00c70 8518err_context:
fe4b04fa 8519 perf_unpin_context(ctx);
ea635c64 8520 put_ctx(ctx);
c6be5a5c 8521err_alloc:
ea635c64 8522 free_event(event);
1f4ee503 8523err_cpus:
fbfc623f 8524 put_online_cpus();
1f4ee503 8525err_task:
e7d0bc04
PZ
8526 if (task)
8527 put_task_struct(task);
89a1e187 8528err_group_fd:
2903ff01 8529 fdput(group);
ea635c64
AV
8530err_fd:
8531 put_unused_fd(event_fd);
dc86cabe 8532 return err;
0793a61d
TG
8533}
8534
fb0459d7
AV
8535/**
8536 * perf_event_create_kernel_counter
8537 *
8538 * @attr: attributes of the counter to create
8539 * @cpu: cpu in which the counter is bound
38a81da2 8540 * @task: task to profile (NULL for percpu)
fb0459d7
AV
8541 */
8542struct perf_event *
8543perf_event_create_kernel_counter(struct perf_event_attr *attr, int cpu,
38a81da2 8544 struct task_struct *task,
4dc0da86
AK
8545 perf_overflow_handler_t overflow_handler,
8546 void *context)
fb0459d7 8547{
fb0459d7 8548 struct perf_event_context *ctx;
c3f00c70 8549 struct perf_event *event;
fb0459d7 8550 int err;
d859e29f 8551
fb0459d7
AV
8552 /*
8553 * Get the target context (task or percpu):
8554 */
d859e29f 8555
4dc0da86 8556 event = perf_event_alloc(attr, cpu, task, NULL, NULL,
79dff51e 8557 overflow_handler, context, -1);
c3f00c70
PZ
8558 if (IS_ERR(event)) {
8559 err = PTR_ERR(event);
8560 goto err;
8561 }
d859e29f 8562
f8697762 8563 /* Mark owner so we could distinguish it from user events. */
63b6da39 8564 event->owner = TASK_TOMBSTONE;
f8697762 8565
766d6c07
FW
8566 account_event(event);
8567
4af57ef2 8568 ctx = find_get_context(event->pmu, task, event);
c6567f64
FW
8569 if (IS_ERR(ctx)) {
8570 err = PTR_ERR(ctx);
c3f00c70 8571 goto err_free;
d859e29f 8572 }
fb0459d7 8573
fb0459d7
AV
8574 WARN_ON_ONCE(ctx->parent_ctx);
8575 mutex_lock(&ctx->mutex);
bed5b25a
AS
8576 if (!exclusive_event_installable(event, ctx)) {
8577 mutex_unlock(&ctx->mutex);
8578 perf_unpin_context(ctx);
8579 put_ctx(ctx);
8580 err = -EBUSY;
8581 goto err_free;
8582 }
8583
fb0459d7 8584 perf_install_in_context(ctx, event, cpu);
fe4b04fa 8585 perf_unpin_context(ctx);
fb0459d7
AV
8586 mutex_unlock(&ctx->mutex);
8587
fb0459d7
AV
8588 return event;
8589
c3f00c70
PZ
8590err_free:
8591 free_event(event);
8592err:
c6567f64 8593 return ERR_PTR(err);
9b51f66d 8594}
fb0459d7 8595EXPORT_SYMBOL_GPL(perf_event_create_kernel_counter);
9b51f66d 8596
0cda4c02
YZ
8597void perf_pmu_migrate_context(struct pmu *pmu, int src_cpu, int dst_cpu)
8598{
8599 struct perf_event_context *src_ctx;
8600 struct perf_event_context *dst_ctx;
8601 struct perf_event *event, *tmp;
8602 LIST_HEAD(events);
8603
8604 src_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, src_cpu)->ctx;
8605 dst_ctx = &per_cpu_ptr(pmu->pmu_cpu_context, dst_cpu)->ctx;
8606
f63a8daa
PZ
8607 /*
8608 * See perf_event_ctx_lock() for comments on the details
8609 * of swizzling perf_event::ctx.
8610 */
8611 mutex_lock_double(&src_ctx->mutex, &dst_ctx->mutex);
0cda4c02
YZ
8612 list_for_each_entry_safe(event, tmp, &src_ctx->event_list,
8613 event_entry) {
46ce0fe9 8614 perf_remove_from_context(event, false);
9a545de0 8615 unaccount_event_cpu(event, src_cpu);
0cda4c02 8616 put_ctx(src_ctx);
9886167d 8617 list_add(&event->migrate_entry, &events);
0cda4c02 8618 }
0cda4c02 8619
8f95b435
PZI
8620 /*
8621 * Wait for the events to quiesce before re-instating them.
8622 */
0cda4c02
YZ
8623 synchronize_rcu();
8624
8f95b435
PZI
8625 /*
8626 * Re-instate events in 2 passes.
8627 *
8628 * Skip over group leaders and only install siblings on this first
8629 * pass, siblings will not get enabled without a leader, however a
8630 * leader will enable its siblings, even if those are still on the old
8631 * context.
8632 */
8633 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8634 if (event->group_leader == event)
8635 continue;
8636
8637 list_del(&event->migrate_entry);
8638 if (event->state >= PERF_EVENT_STATE_OFF)
8639 event->state = PERF_EVENT_STATE_INACTIVE;
8640 account_event_cpu(event, dst_cpu);
8641 perf_install_in_context(dst_ctx, event, dst_cpu);
8642 get_ctx(dst_ctx);
8643 }
8644
8645 /*
8646 * Once all the siblings are setup properly, install the group leaders
8647 * to make it go.
8648 */
9886167d
PZ
8649 list_for_each_entry_safe(event, tmp, &events, migrate_entry) {
8650 list_del(&event->migrate_entry);
0cda4c02
YZ
8651 if (event->state >= PERF_EVENT_STATE_OFF)
8652 event->state = PERF_EVENT_STATE_INACTIVE;
9a545de0 8653 account_event_cpu(event, dst_cpu);
0cda4c02
YZ
8654 perf_install_in_context(dst_ctx, event, dst_cpu);
8655 get_ctx(dst_ctx);
8656 }
8657 mutex_unlock(&dst_ctx->mutex);
f63a8daa 8658 mutex_unlock(&src_ctx->mutex);
0cda4c02
YZ
8659}
8660EXPORT_SYMBOL_GPL(perf_pmu_migrate_context);
8661
cdd6c482 8662static void sync_child_event(struct perf_event *child_event,
38b200d6 8663 struct task_struct *child)
d859e29f 8664{
cdd6c482 8665 struct perf_event *parent_event = child_event->parent;
8bc20959 8666 u64 child_val;
d859e29f 8667
cdd6c482
IM
8668 if (child_event->attr.inherit_stat)
8669 perf_event_read_event(child_event, child);
38b200d6 8670
b5e58793 8671 child_val = perf_event_count(child_event);
d859e29f
PM
8672
8673 /*
8674 * Add back the child's count to the parent's count:
8675 */
a6e6dea6 8676 atomic64_add(child_val, &parent_event->child_count);
cdd6c482
IM
8677 atomic64_add(child_event->total_time_enabled,
8678 &parent_event->child_total_time_enabled);
8679 atomic64_add(child_event->total_time_running,
8680 &parent_event->child_total_time_running);
d859e29f
PM
8681
8682 /*
cdd6c482 8683 * Remove this event from the parent's list
d859e29f 8684 */
cdd6c482
IM
8685 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
8686 mutex_lock(&parent_event->child_mutex);
8687 list_del_init(&child_event->child_list);
8688 mutex_unlock(&parent_event->child_mutex);
d859e29f 8689
dc633982
JO
8690 /*
8691 * Make sure user/parent get notified, that we just
8692 * lost one event.
8693 */
8694 perf_event_wakeup(parent_event);
8695
d859e29f 8696 /*
cdd6c482 8697 * Release the parent event, if this was the last
d859e29f
PM
8698 * reference to it.
8699 */
a6fa941d 8700 put_event(parent_event);
d859e29f
PM
8701}
8702
9b51f66d 8703static void
cdd6c482
IM
8704__perf_event_exit_task(struct perf_event *child_event,
8705 struct perf_event_context *child_ctx,
38b200d6 8706 struct task_struct *child)
9b51f66d 8707{
1903d50c
PZ
8708 /*
8709 * Do not destroy the 'original' grouping; because of the context
8710 * switch optimization the original events could've ended up in a
8711 * random child task.
8712 *
8713 * If we were to destroy the original group, all group related
8714 * operations would cease to function properly after this random
8715 * child dies.
8716 *
8717 * Do destroy all inherited groups, we don't care about those
8718 * and being thorough is better.
8719 */
32132a3d
PZ
8720 raw_spin_lock_irq(&child_ctx->lock);
8721 WARN_ON_ONCE(child_ctx->is_active);
8722
8723 if (!!child_event->parent)
8724 perf_group_detach(child_event);
8725 list_del_event(child_event, child_ctx);
8726 raw_spin_unlock_irq(&child_ctx->lock);
0cc0c027 8727
9b51f66d 8728 /*
38b435b1 8729 * It can happen that the parent exits first, and has events
9b51f66d 8730 * that are still around due to the child reference. These
38b435b1 8731 * events need to be zapped.
9b51f66d 8732 */
38b435b1 8733 if (child_event->parent) {
cdd6c482
IM
8734 sync_child_event(child_event, child);
8735 free_event(child_event);
179033b3
JO
8736 } else {
8737 child_event->state = PERF_EVENT_STATE_EXIT;
8738 perf_event_wakeup(child_event);
4bcf349a 8739 }
9b51f66d
IM
8740}
8741
8dc85d54 8742static void perf_event_exit_task_context(struct task_struct *child, int ctxn)
9b51f66d 8743{
211de6eb 8744 struct perf_event_context *child_ctx, *clone_ctx = NULL;
63b6da39 8745 struct perf_event *child_event, *next;
63b6da39
PZ
8746
8747 WARN_ON_ONCE(child != current);
9b51f66d 8748
6a3351b6 8749 child_ctx = perf_pin_task_context(child, ctxn);
63b6da39 8750 if (!child_ctx)
9b51f66d
IM
8751 return;
8752
6a3351b6
PZ
8753 /*
8754 * In order to reduce the amount of tricky in ctx tear-down, we hold
8755 * ctx::mutex over the entire thing. This serializes against almost
8756 * everything that wants to access the ctx.
8757 *
8758 * The exception is sys_perf_event_open() /
8759 * perf_event_create_kernel_count() which does find_get_context()
8760 * without ctx::mutex (it cannot because of the move_group double mutex
8761 * lock thing). See the comments in perf_install_in_context().
8762 *
8763 * We can recurse on the same lock type through:
8764 *
8765 * __perf_event_exit_task()
8766 * sync_child_event()
8767 * put_event()
8768 * mutex_lock(&ctx->mutex)
8769 *
8770 * But since its the parent context it won't be the same instance.
8771 */
8772 mutex_lock(&child_ctx->mutex);
8773
8774 /*
8775 * In a single ctx::lock section, de-schedule the events and detach the
8776 * context from the task such that we cannot ever get it scheduled back
8777 * in.
8778 */
8779 raw_spin_lock_irq(&child_ctx->lock);
63b6da39 8780 task_ctx_sched_out(__get_cpu_context(child_ctx), child_ctx);
c93f7669
PM
8781
8782 /*
63b6da39
PZ
8783 * Now that the context is inactive, destroy the task <-> ctx relation
8784 * and mark the context dead.
c93f7669 8785 */
63b6da39
PZ
8786 RCU_INIT_POINTER(child->perf_event_ctxp[ctxn], NULL);
8787 put_ctx(child_ctx); /* cannot be last */
8788 WRITE_ONCE(child_ctx->task, TASK_TOMBSTONE);
8789 put_task_struct(current); /* cannot be last */
4a1c0f26 8790
211de6eb 8791 clone_ctx = unclone_ctx(child_ctx);
6a3351b6 8792 raw_spin_unlock_irq(&child_ctx->lock);
9f498cc5 8793
211de6eb
PZ
8794 if (clone_ctx)
8795 put_ctx(clone_ctx);
4a1c0f26 8796
9f498cc5 8797 /*
cdd6c482
IM
8798 * Report the task dead after unscheduling the events so that we
8799 * won't get any samples after PERF_RECORD_EXIT. We can however still
8800 * get a few PERF_RECORD_READ events.
9f498cc5 8801 */
cdd6c482 8802 perf_event_task(child, child_ctx, 0);
a63eaf34 8803
ebf905fc 8804 list_for_each_entry_safe(child_event, next, &child_ctx->event_list, event_entry)
cdd6c482 8805 __perf_event_exit_task(child_event, child_ctx, child);
8bc20959 8806
a63eaf34
PM
8807 mutex_unlock(&child_ctx->mutex);
8808
8809 put_ctx(child_ctx);
9b51f66d
IM
8810}
8811
8dc85d54
PZ
8812/*
8813 * When a child task exits, feed back event values to parent events.
8814 */
8815void perf_event_exit_task(struct task_struct *child)
8816{
8882135b 8817 struct perf_event *event, *tmp;
8dc85d54
PZ
8818 int ctxn;
8819
8882135b
PZ
8820 mutex_lock(&child->perf_event_mutex);
8821 list_for_each_entry_safe(event, tmp, &child->perf_event_list,
8822 owner_entry) {
8823 list_del_init(&event->owner_entry);
8824
8825 /*
8826 * Ensure the list deletion is visible before we clear
8827 * the owner, closes a race against perf_release() where
8828 * we need to serialize on the owner->perf_event_mutex.
8829 */
8830 smp_wmb();
8831 event->owner = NULL;
8832 }
8833 mutex_unlock(&child->perf_event_mutex);
8834
8dc85d54
PZ
8835 for_each_task_context_nr(ctxn)
8836 perf_event_exit_task_context(child, ctxn);
4e93ad60
JO
8837
8838 /*
8839 * The perf_event_exit_task_context calls perf_event_task
8840 * with child's task_ctx, which generates EXIT events for
8841 * child contexts and sets child->perf_event_ctxp[] to NULL.
8842 * At this point we need to send EXIT events to cpu contexts.
8843 */
8844 perf_event_task(child, NULL, 0);
8dc85d54
PZ
8845}
8846
889ff015
FW
8847static void perf_free_event(struct perf_event *event,
8848 struct perf_event_context *ctx)
8849{
8850 struct perf_event *parent = event->parent;
8851
8852 if (WARN_ON_ONCE(!parent))
8853 return;
8854
8855 mutex_lock(&parent->child_mutex);
8856 list_del_init(&event->child_list);
8857 mutex_unlock(&parent->child_mutex);
8858
a6fa941d 8859 put_event(parent);
889ff015 8860
652884fe 8861 raw_spin_lock_irq(&ctx->lock);
8a49542c 8862 perf_group_detach(event);
889ff015 8863 list_del_event(event, ctx);
652884fe 8864 raw_spin_unlock_irq(&ctx->lock);
889ff015
FW
8865 free_event(event);
8866}
8867
bbbee908 8868/*
652884fe 8869 * Free an unexposed, unused context as created by inheritance by
8dc85d54 8870 * perf_event_init_task below, used by fork() in case of fail.
652884fe
PZ
8871 *
8872 * Not all locks are strictly required, but take them anyway to be nice and
8873 * help out with the lockdep assertions.
bbbee908 8874 */
cdd6c482 8875void perf_event_free_task(struct task_struct *task)
bbbee908 8876{
8dc85d54 8877 struct perf_event_context *ctx;
cdd6c482 8878 struct perf_event *event, *tmp;
8dc85d54 8879 int ctxn;
bbbee908 8880
8dc85d54
PZ
8881 for_each_task_context_nr(ctxn) {
8882 ctx = task->perf_event_ctxp[ctxn];
8883 if (!ctx)
8884 continue;
bbbee908 8885
8dc85d54 8886 mutex_lock(&ctx->mutex);
bbbee908 8887again:
8dc85d54
PZ
8888 list_for_each_entry_safe(event, tmp, &ctx->pinned_groups,
8889 group_entry)
8890 perf_free_event(event, ctx);
bbbee908 8891
8dc85d54
PZ
8892 list_for_each_entry_safe(event, tmp, &ctx->flexible_groups,
8893 group_entry)
8894 perf_free_event(event, ctx);
bbbee908 8895
8dc85d54
PZ
8896 if (!list_empty(&ctx->pinned_groups) ||
8897 !list_empty(&ctx->flexible_groups))
8898 goto again;
bbbee908 8899
8dc85d54 8900 mutex_unlock(&ctx->mutex);
bbbee908 8901
8dc85d54
PZ
8902 put_ctx(ctx);
8903 }
889ff015
FW
8904}
8905
4e231c79
PZ
8906void perf_event_delayed_put(struct task_struct *task)
8907{
8908 int ctxn;
8909
8910 for_each_task_context_nr(ctxn)
8911 WARN_ON_ONCE(task->perf_event_ctxp[ctxn]);
8912}
8913
e03e7ee3 8914struct file *perf_event_get(unsigned int fd)
ffe8690c 8915{
e03e7ee3 8916 struct file *file;
ffe8690c 8917
e03e7ee3
AS
8918 file = fget_raw(fd);
8919 if (!file)
8920 return ERR_PTR(-EBADF);
ffe8690c 8921
e03e7ee3
AS
8922 if (file->f_op != &perf_fops) {
8923 fput(file);
8924 return ERR_PTR(-EBADF);
8925 }
ffe8690c 8926
e03e7ee3 8927 return file;
ffe8690c
KX
8928}
8929
8930const struct perf_event_attr *perf_event_attrs(struct perf_event *event)
8931{
8932 if (!event)
8933 return ERR_PTR(-EINVAL);
8934
8935 return &event->attr;
8936}
8937
97dee4f3
PZ
8938/*
8939 * inherit a event from parent task to child task:
8940 */
8941static struct perf_event *
8942inherit_event(struct perf_event *parent_event,
8943 struct task_struct *parent,
8944 struct perf_event_context *parent_ctx,
8945 struct task_struct *child,
8946 struct perf_event *group_leader,
8947 struct perf_event_context *child_ctx)
8948{
1929def9 8949 enum perf_event_active_state parent_state = parent_event->state;
97dee4f3 8950 struct perf_event *child_event;
cee010ec 8951 unsigned long flags;
97dee4f3
PZ
8952
8953 /*
8954 * Instead of creating recursive hierarchies of events,
8955 * we link inherited events back to the original parent,
8956 * which has a filp for sure, which we use as the reference
8957 * count:
8958 */
8959 if (parent_event->parent)
8960 parent_event = parent_event->parent;
8961
8962 child_event = perf_event_alloc(&parent_event->attr,
8963 parent_event->cpu,
d580ff86 8964 child,
97dee4f3 8965 group_leader, parent_event,
79dff51e 8966 NULL, NULL, -1);
97dee4f3
PZ
8967 if (IS_ERR(child_event))
8968 return child_event;
a6fa941d 8969
fadfe7be
JO
8970 if (is_orphaned_event(parent_event) ||
8971 !atomic_long_inc_not_zero(&parent_event->refcount)) {
a6fa941d
AV
8972 free_event(child_event);
8973 return NULL;
8974 }
8975
97dee4f3
PZ
8976 get_ctx(child_ctx);
8977
8978 /*
8979 * Make the child state follow the state of the parent event,
8980 * not its attr.disabled bit. We hold the parent's mutex,
8981 * so we won't race with perf_event_{en, dis}able_family.
8982 */
1929def9 8983 if (parent_state >= PERF_EVENT_STATE_INACTIVE)
97dee4f3
PZ
8984 child_event->state = PERF_EVENT_STATE_INACTIVE;
8985 else
8986 child_event->state = PERF_EVENT_STATE_OFF;
8987
8988 if (parent_event->attr.freq) {
8989 u64 sample_period = parent_event->hw.sample_period;
8990 struct hw_perf_event *hwc = &child_event->hw;
8991
8992 hwc->sample_period = sample_period;
8993 hwc->last_period = sample_period;
8994
8995 local64_set(&hwc->period_left, sample_period);
8996 }
8997
8998 child_event->ctx = child_ctx;
8999 child_event->overflow_handler = parent_event->overflow_handler;
4dc0da86
AK
9000 child_event->overflow_handler_context
9001 = parent_event->overflow_handler_context;
97dee4f3 9002
614b6780
TG
9003 /*
9004 * Precalculate sample_data sizes
9005 */
9006 perf_event__header_size(child_event);
6844c09d 9007 perf_event__id_header_size(child_event);
614b6780 9008
97dee4f3
PZ
9009 /*
9010 * Link it up in the child's context:
9011 */
cee010ec 9012 raw_spin_lock_irqsave(&child_ctx->lock, flags);
97dee4f3 9013 add_event_to_ctx(child_event, child_ctx);
cee010ec 9014 raw_spin_unlock_irqrestore(&child_ctx->lock, flags);
97dee4f3 9015
97dee4f3
PZ
9016 /*
9017 * Link this into the parent event's child list
9018 */
9019 WARN_ON_ONCE(parent_event->ctx->parent_ctx);
9020 mutex_lock(&parent_event->child_mutex);
9021 list_add_tail(&child_event->child_list, &parent_event->child_list);
9022 mutex_unlock(&parent_event->child_mutex);
9023
9024 return child_event;
9025}
9026
9027static int inherit_group(struct perf_event *parent_event,
9028 struct task_struct *parent,
9029 struct perf_event_context *parent_ctx,
9030 struct task_struct *child,
9031 struct perf_event_context *child_ctx)
9032{
9033 struct perf_event *leader;
9034 struct perf_event *sub;
9035 struct perf_event *child_ctr;
9036
9037 leader = inherit_event(parent_event, parent, parent_ctx,
9038 child, NULL, child_ctx);
9039 if (IS_ERR(leader))
9040 return PTR_ERR(leader);
9041 list_for_each_entry(sub, &parent_event->sibling_list, group_entry) {
9042 child_ctr = inherit_event(sub, parent, parent_ctx,
9043 child, leader, child_ctx);
9044 if (IS_ERR(child_ctr))
9045 return PTR_ERR(child_ctr);
9046 }
9047 return 0;
889ff015
FW
9048}
9049
9050static int
9051inherit_task_group(struct perf_event *event, struct task_struct *parent,
9052 struct perf_event_context *parent_ctx,
8dc85d54 9053 struct task_struct *child, int ctxn,
889ff015
FW
9054 int *inherited_all)
9055{
9056 int ret;
8dc85d54 9057 struct perf_event_context *child_ctx;
889ff015
FW
9058
9059 if (!event->attr.inherit) {
9060 *inherited_all = 0;
9061 return 0;
bbbee908
PZ
9062 }
9063
fe4b04fa 9064 child_ctx = child->perf_event_ctxp[ctxn];
889ff015
FW
9065 if (!child_ctx) {
9066 /*
9067 * This is executed from the parent task context, so
9068 * inherit events that have been marked for cloning.
9069 * First allocate and initialize a context for the
9070 * child.
9071 */
bbbee908 9072
734df5ab 9073 child_ctx = alloc_perf_context(parent_ctx->pmu, child);
889ff015
FW
9074 if (!child_ctx)
9075 return -ENOMEM;
bbbee908 9076
8dc85d54 9077 child->perf_event_ctxp[ctxn] = child_ctx;
889ff015
FW
9078 }
9079
9080 ret = inherit_group(event, parent, parent_ctx,
9081 child, child_ctx);
9082
9083 if (ret)
9084 *inherited_all = 0;
9085
9086 return ret;
bbbee908
PZ
9087}
9088
9b51f66d 9089/*
cdd6c482 9090 * Initialize the perf_event context in task_struct
9b51f66d 9091 */
985c8dcb 9092static int perf_event_init_context(struct task_struct *child, int ctxn)
9b51f66d 9093{
889ff015 9094 struct perf_event_context *child_ctx, *parent_ctx;
cdd6c482
IM
9095 struct perf_event_context *cloned_ctx;
9096 struct perf_event *event;
9b51f66d 9097 struct task_struct *parent = current;
564c2b21 9098 int inherited_all = 1;
dddd3379 9099 unsigned long flags;
6ab423e0 9100 int ret = 0;
9b51f66d 9101
8dc85d54 9102 if (likely(!parent->perf_event_ctxp[ctxn]))
6ab423e0
PZ
9103 return 0;
9104
ad3a37de 9105 /*
25346b93
PM
9106 * If the parent's context is a clone, pin it so it won't get
9107 * swapped under us.
ad3a37de 9108 */
8dc85d54 9109 parent_ctx = perf_pin_task_context(parent, ctxn);
ffb4ef21
PZ
9110 if (!parent_ctx)
9111 return 0;
25346b93 9112
ad3a37de
PM
9113 /*
9114 * No need to check if parent_ctx != NULL here; since we saw
9115 * it non-NULL earlier, the only reason for it to become NULL
9116 * is if we exit, and since we're currently in the middle of
9117 * a fork we can't be exiting at the same time.
9118 */
ad3a37de 9119
9b51f66d
IM
9120 /*
9121 * Lock the parent list. No need to lock the child - not PID
9122 * hashed yet and not running, so nobody can access it.
9123 */
d859e29f 9124 mutex_lock(&parent_ctx->mutex);
9b51f66d
IM
9125
9126 /*
9127 * We dont have to disable NMIs - we are only looking at
9128 * the list, not manipulating it:
9129 */
889ff015 9130 list_for_each_entry(event, &parent_ctx->pinned_groups, group_entry) {
8dc85d54
PZ
9131 ret = inherit_task_group(event, parent, parent_ctx,
9132 child, ctxn, &inherited_all);
889ff015
FW
9133 if (ret)
9134 break;
9135 }
b93f7978 9136
dddd3379
TG
9137 /*
9138 * We can't hold ctx->lock when iterating the ->flexible_group list due
9139 * to allocations, but we need to prevent rotation because
9140 * rotate_ctx() will change the list from interrupt context.
9141 */
9142 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9143 parent_ctx->rotate_disable = 1;
9144 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
9145
889ff015 9146 list_for_each_entry(event, &parent_ctx->flexible_groups, group_entry) {
8dc85d54
PZ
9147 ret = inherit_task_group(event, parent, parent_ctx,
9148 child, ctxn, &inherited_all);
889ff015 9149 if (ret)
9b51f66d 9150 break;
564c2b21
PM
9151 }
9152
dddd3379
TG
9153 raw_spin_lock_irqsave(&parent_ctx->lock, flags);
9154 parent_ctx->rotate_disable = 0;
dddd3379 9155
8dc85d54 9156 child_ctx = child->perf_event_ctxp[ctxn];
889ff015 9157
05cbaa28 9158 if (child_ctx && inherited_all) {
564c2b21
PM
9159 /*
9160 * Mark the child context as a clone of the parent
9161 * context, or of whatever the parent is a clone of.
c5ed5145
PZ
9162 *
9163 * Note that if the parent is a clone, the holding of
9164 * parent_ctx->lock avoids it from being uncloned.
564c2b21 9165 */
c5ed5145 9166 cloned_ctx = parent_ctx->parent_ctx;
ad3a37de
PM
9167 if (cloned_ctx) {
9168 child_ctx->parent_ctx = cloned_ctx;
25346b93 9169 child_ctx->parent_gen = parent_ctx->parent_gen;
564c2b21
PM
9170 } else {
9171 child_ctx->parent_ctx = parent_ctx;
9172 child_ctx->parent_gen = parent_ctx->generation;
9173 }
9174 get_ctx(child_ctx->parent_ctx);
9b51f66d
IM
9175 }
9176
c5ed5145 9177 raw_spin_unlock_irqrestore(&parent_ctx->lock, flags);
d859e29f 9178 mutex_unlock(&parent_ctx->mutex);
6ab423e0 9179
25346b93 9180 perf_unpin_context(parent_ctx);
fe4b04fa 9181 put_ctx(parent_ctx);
ad3a37de 9182
6ab423e0 9183 return ret;
9b51f66d
IM
9184}
9185
8dc85d54
PZ
9186/*
9187 * Initialize the perf_event context in task_struct
9188 */
9189int perf_event_init_task(struct task_struct *child)
9190{
9191 int ctxn, ret;
9192
8550d7cb
ON
9193 memset(child->perf_event_ctxp, 0, sizeof(child->perf_event_ctxp));
9194 mutex_init(&child->perf_event_mutex);
9195 INIT_LIST_HEAD(&child->perf_event_list);
9196
8dc85d54
PZ
9197 for_each_task_context_nr(ctxn) {
9198 ret = perf_event_init_context(child, ctxn);
6c72e350
PZ
9199 if (ret) {
9200 perf_event_free_task(child);
8dc85d54 9201 return ret;
6c72e350 9202 }
8dc85d54
PZ
9203 }
9204
9205 return 0;
9206}
9207
220b140b
PM
9208static void __init perf_event_init_all_cpus(void)
9209{
b28ab83c 9210 struct swevent_htable *swhash;
220b140b 9211 int cpu;
220b140b
PM
9212
9213 for_each_possible_cpu(cpu) {
b28ab83c
PZ
9214 swhash = &per_cpu(swevent_htable, cpu);
9215 mutex_init(&swhash->hlist_mutex);
2fde4f94 9216 INIT_LIST_HEAD(&per_cpu(active_ctx_list, cpu));
220b140b
PM
9217 }
9218}
9219
0db0628d 9220static void perf_event_init_cpu(int cpu)
0793a61d 9221{
108b02cf 9222 struct swevent_htable *swhash = &per_cpu(swevent_htable, cpu);
0793a61d 9223
b28ab83c 9224 mutex_lock(&swhash->hlist_mutex);
4536e4d1 9225 if (swhash->hlist_refcount > 0) {
76e1d904
FW
9226 struct swevent_hlist *hlist;
9227
b28ab83c
PZ
9228 hlist = kzalloc_node(sizeof(*hlist), GFP_KERNEL, cpu_to_node(cpu));
9229 WARN_ON(!hlist);
9230 rcu_assign_pointer(swhash->swevent_hlist, hlist);
76e1d904 9231 }
b28ab83c 9232 mutex_unlock(&swhash->hlist_mutex);
0793a61d
TG
9233}
9234
2965faa5 9235#if defined CONFIG_HOTPLUG_CPU || defined CONFIG_KEXEC_CORE
108b02cf 9236static void __perf_event_exit_context(void *__info)
0793a61d 9237{
108b02cf 9238 struct perf_event_context *ctx = __info;
fae3fde6
PZ
9239 struct perf_cpu_context *cpuctx = __get_cpu_context(ctx);
9240 struct perf_event *event;
0793a61d 9241
fae3fde6
PZ
9242 raw_spin_lock(&ctx->lock);
9243 list_for_each_entry(event, &ctx->event_list, event_entry)
9244 __perf_remove_from_context(event, cpuctx, ctx, (void *)(unsigned long)true);
9245 raw_spin_unlock(&ctx->lock);
0793a61d 9246}
108b02cf
PZ
9247
9248static void perf_event_exit_cpu_context(int cpu)
9249{
9250 struct perf_event_context *ctx;
9251 struct pmu *pmu;
9252 int idx;
9253
9254 idx = srcu_read_lock(&pmus_srcu);
9255 list_for_each_entry_rcu(pmu, &pmus, entry) {
917bdd1c 9256 ctx = &per_cpu_ptr(pmu->pmu_cpu_context, cpu)->ctx;
108b02cf
PZ
9257
9258 mutex_lock(&ctx->mutex);
9259 smp_call_function_single(cpu, __perf_event_exit_context, ctx, 1);
9260 mutex_unlock(&ctx->mutex);
9261 }
9262 srcu_read_unlock(&pmus_srcu, idx);
108b02cf
PZ
9263}
9264
cdd6c482 9265static void perf_event_exit_cpu(int cpu)
0793a61d 9266{
e3703f8c 9267 perf_event_exit_cpu_context(cpu);
0793a61d
TG
9268}
9269#else
cdd6c482 9270static inline void perf_event_exit_cpu(int cpu) { }
0793a61d
TG
9271#endif
9272
c277443c
PZ
9273static int
9274perf_reboot(struct notifier_block *notifier, unsigned long val, void *v)
9275{
9276 int cpu;
9277
9278 for_each_online_cpu(cpu)
9279 perf_event_exit_cpu(cpu);
9280
9281 return NOTIFY_OK;
9282}
9283
9284/*
9285 * Run the perf reboot notifier at the very last possible moment so that
9286 * the generic watchdog code runs as long as possible.
9287 */
9288static struct notifier_block perf_reboot_notifier = {
9289 .notifier_call = perf_reboot,
9290 .priority = INT_MIN,
9291};
9292
0db0628d 9293static int
0793a61d
TG
9294perf_cpu_notify(struct notifier_block *self, unsigned long action, void *hcpu)
9295{
9296 unsigned int cpu = (long)hcpu;
9297
4536e4d1 9298 switch (action & ~CPU_TASKS_FROZEN) {
0793a61d
TG
9299
9300 case CPU_UP_PREPARE:
5e11637e 9301 case CPU_DOWN_FAILED:
cdd6c482 9302 perf_event_init_cpu(cpu);
0793a61d
TG
9303 break;
9304
5e11637e 9305 case CPU_UP_CANCELED:
0793a61d 9306 case CPU_DOWN_PREPARE:
cdd6c482 9307 perf_event_exit_cpu(cpu);
0793a61d 9308 break;
0793a61d
TG
9309 default:
9310 break;
9311 }
9312
9313 return NOTIFY_OK;
9314}
9315
cdd6c482 9316void __init perf_event_init(void)
0793a61d 9317{
3c502e7a
JW
9318 int ret;
9319
2e80a82a
PZ
9320 idr_init(&pmu_idr);
9321
220b140b 9322 perf_event_init_all_cpus();
b0a873eb 9323 init_srcu_struct(&pmus_srcu);
2e80a82a
PZ
9324 perf_pmu_register(&perf_swevent, "software", PERF_TYPE_SOFTWARE);
9325 perf_pmu_register(&perf_cpu_clock, NULL, -1);
9326 perf_pmu_register(&perf_task_clock, NULL, -1);
b0a873eb
PZ
9327 perf_tp_register();
9328 perf_cpu_notifier(perf_cpu_notify);
c277443c 9329 register_reboot_notifier(&perf_reboot_notifier);
3c502e7a
JW
9330
9331 ret = init_hw_breakpoint();
9332 WARN(ret, "hw_breakpoint initialization failed with: %d", ret);
b2029520
GN
9333
9334 /* do not patch jump label more than once per second */
9335 jump_label_rate_limit(&perf_sched_events, HZ);
b01c3a00
JO
9336
9337 /*
9338 * Build time assertion that we keep the data_head at the intended
9339 * location. IOW, validation we got the __reserved[] size right.
9340 */
9341 BUILD_BUG_ON((offsetof(struct perf_event_mmap_page, data_head))
9342 != 1024);
0793a61d 9343}
abe43400 9344
fd979c01
CS
9345ssize_t perf_event_sysfs_show(struct device *dev, struct device_attribute *attr,
9346 char *page)
9347{
9348 struct perf_pmu_events_attr *pmu_attr =
9349 container_of(attr, struct perf_pmu_events_attr, attr);
9350
9351 if (pmu_attr->event_str)
9352 return sprintf(page, "%s\n", pmu_attr->event_str);
9353
9354 return 0;
9355}
9356
abe43400
PZ
9357static int __init perf_event_sysfs_init(void)
9358{
9359 struct pmu *pmu;
9360 int ret;
9361
9362 mutex_lock(&pmus_lock);
9363
9364 ret = bus_register(&pmu_bus);
9365 if (ret)
9366 goto unlock;
9367
9368 list_for_each_entry(pmu, &pmus, entry) {
9369 if (!pmu->name || pmu->type < 0)
9370 continue;
9371
9372 ret = pmu_dev_alloc(pmu);
9373 WARN(ret, "Failed to register pmu: %s, reason %d\n", pmu->name, ret);
9374 }
9375 pmu_bus_running = 1;
9376 ret = 0;
9377
9378unlock:
9379 mutex_unlock(&pmus_lock);
9380
9381 return ret;
9382}
9383device_initcall(perf_event_sysfs_init);
e5d1367f
SE
9384
9385#ifdef CONFIG_CGROUP_PERF
eb95419b
TH
9386static struct cgroup_subsys_state *
9387perf_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
e5d1367f
SE
9388{
9389 struct perf_cgroup *jc;
e5d1367f 9390
1b15d055 9391 jc = kzalloc(sizeof(*jc), GFP_KERNEL);
e5d1367f
SE
9392 if (!jc)
9393 return ERR_PTR(-ENOMEM);
9394
e5d1367f
SE
9395 jc->info = alloc_percpu(struct perf_cgroup_info);
9396 if (!jc->info) {
9397 kfree(jc);
9398 return ERR_PTR(-ENOMEM);
9399 }
9400
e5d1367f
SE
9401 return &jc->css;
9402}
9403
eb95419b 9404static void perf_cgroup_css_free(struct cgroup_subsys_state *css)
e5d1367f 9405{
eb95419b
TH
9406 struct perf_cgroup *jc = container_of(css, struct perf_cgroup, css);
9407
e5d1367f
SE
9408 free_percpu(jc->info);
9409 kfree(jc);
9410}
9411
9412static int __perf_cgroup_move(void *info)
9413{
9414 struct task_struct *task = info;
ddaaf4e2 9415 rcu_read_lock();
e5d1367f 9416 perf_cgroup_switch(task, PERF_CGROUP_SWOUT | PERF_CGROUP_SWIN);
ddaaf4e2 9417 rcu_read_unlock();
e5d1367f
SE
9418 return 0;
9419}
9420
1f7dd3e5 9421static void perf_cgroup_attach(struct cgroup_taskset *tset)
e5d1367f 9422{
bb9d97b6 9423 struct task_struct *task;
1f7dd3e5 9424 struct cgroup_subsys_state *css;
bb9d97b6 9425
1f7dd3e5 9426 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 9427 task_function_call(task, __perf_cgroup_move, task);
e5d1367f
SE
9428}
9429
073219e9 9430struct cgroup_subsys perf_event_cgrp_subsys = {
92fb9748
TH
9431 .css_alloc = perf_cgroup_css_alloc,
9432 .css_free = perf_cgroup_css_free,
bb9d97b6 9433 .attach = perf_cgroup_attach,
e5d1367f
SE
9434};
9435#endif /* CONFIG_CGROUP_PERF */
This page took 1.283331 seconds and 5 git commands to generate.