sched: fix fastcall mismatch in completion APIs
[deliverable/linux.git] / kernel / sched.c
CommitLineData
1da177e4
LT
1/*
2 * kernel/sched.c
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
1da177e4
LT
25 */
26
27#include <linux/mm.h>
28#include <linux/module.h>
29#include <linux/nmi.h>
30#include <linux/init.h>
dff06c15 31#include <linux/uaccess.h>
1da177e4
LT
32#include <linux/highmem.h>
33#include <linux/smp_lock.h>
34#include <asm/mmu_context.h>
35#include <linux/interrupt.h>
c59ede7b 36#include <linux/capability.h>
1da177e4
LT
37#include <linux/completion.h>
38#include <linux/kernel_stat.h>
9a11b49a 39#include <linux/debug_locks.h>
1da177e4
LT
40#include <linux/security.h>
41#include <linux/notifier.h>
42#include <linux/profile.h>
7dfb7103 43#include <linux/freezer.h>
198e2f18 44#include <linux/vmalloc.h>
1da177e4
LT
45#include <linux/blkdev.h>
46#include <linux/delay.h>
b488893a 47#include <linux/pid_namespace.h>
1da177e4
LT
48#include <linux/smp.h>
49#include <linux/threads.h>
50#include <linux/timer.h>
51#include <linux/rcupdate.h>
52#include <linux/cpu.h>
53#include <linux/cpuset.h>
54#include <linux/percpu.h>
62d0df64 55#include <linux/cpu_acct.h>
1da177e4
LT
56#include <linux/kthread.h>
57#include <linux/seq_file.h>
e692ab53 58#include <linux/sysctl.h>
1da177e4
LT
59#include <linux/syscalls.h>
60#include <linux/times.h>
8f0ab514 61#include <linux/tsacct_kern.h>
c6fd91f0 62#include <linux/kprobes.h>
0ff92245 63#include <linux/delayacct.h>
5517d86b 64#include <linux/reciprocal_div.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
1da177e4 67
5517d86b 68#include <asm/tlb.h>
1da177e4 69
b035b6de
AD
70/*
71 * Scheduler clock - returns current time in nanosec units.
72 * This is default implementation.
73 * Architectures and sub-architectures can override this.
74 */
75unsigned long long __attribute__((weak)) sched_clock(void)
76{
77 return (unsigned long long)jiffies * (1000000000 / HZ);
78}
79
1da177e4
LT
80/*
81 * Convert user-nice values [ -20 ... 0 ... 19 ]
82 * to static priority [ MAX_RT_PRIO..MAX_PRIO-1 ],
83 * and back.
84 */
85#define NICE_TO_PRIO(nice) (MAX_RT_PRIO + (nice) + 20)
86#define PRIO_TO_NICE(prio) ((prio) - MAX_RT_PRIO - 20)
87#define TASK_NICE(p) PRIO_TO_NICE((p)->static_prio)
88
89/*
90 * 'User priority' is the nice value converted to something we
91 * can work with better when scaling various scheduler parameters,
92 * it's a [ 0 ... 39 ] range.
93 */
94#define USER_PRIO(p) ((p)-MAX_RT_PRIO)
95#define TASK_USER_PRIO(p) USER_PRIO((p)->static_prio)
96#define MAX_USER_PRIO (USER_PRIO(MAX_PRIO))
97
98/*
99 * Some helpers for converting nanosecond timing to jiffy resolution
100 */
a4ec24b4 101#define NS_TO_JIFFIES(TIME) ((unsigned long)(TIME) / (1000000000 / HZ))
1da177e4
LT
102#define JIFFIES_TO_NS(TIME) ((TIME) * (1000000000 / HZ))
103
6aa645ea
IM
104#define NICE_0_LOAD SCHED_LOAD_SCALE
105#define NICE_0_SHIFT SCHED_LOAD_SHIFT
106
1da177e4
LT
107/*
108 * These are the 'tuning knobs' of the scheduler:
109 *
a4ec24b4 110 * default timeslice is 100 msecs (used only for SCHED_RR tasks).
1da177e4
LT
111 * Timeslices get refilled after they expire.
112 */
1da177e4 113#define DEF_TIMESLICE (100 * HZ / 1000)
2dd73a4f 114
5517d86b
ED
115#ifdef CONFIG_SMP
116/*
117 * Divide a load by a sched group cpu_power : (load / sg->__cpu_power)
118 * Since cpu_power is a 'constant', we can use a reciprocal divide.
119 */
120static inline u32 sg_div_cpu_power(const struct sched_group *sg, u32 load)
121{
122 return reciprocal_divide(load, sg->reciprocal_cpu_power);
123}
124
125/*
126 * Each time a sched group cpu_power is changed,
127 * we must compute its reciprocal value
128 */
129static inline void sg_inc_cpu_power(struct sched_group *sg, u32 val)
130{
131 sg->__cpu_power += val;
132 sg->reciprocal_cpu_power = reciprocal_value(sg->__cpu_power);
133}
134#endif
135
e05606d3
IM
136static inline int rt_policy(int policy)
137{
138 if (unlikely(policy == SCHED_FIFO) || unlikely(policy == SCHED_RR))
139 return 1;
140 return 0;
141}
142
143static inline int task_has_rt_policy(struct task_struct *p)
144{
145 return rt_policy(p->policy);
146}
147
1da177e4 148/*
6aa645ea 149 * This is the priority-queue data structure of the RT scheduling class:
1da177e4 150 */
6aa645ea
IM
151struct rt_prio_array {
152 DECLARE_BITMAP(bitmap, MAX_RT_PRIO+1); /* include 1 bit for delimiter */
153 struct list_head queue[MAX_RT_PRIO];
154};
155
29f59db3
SV
156#ifdef CONFIG_FAIR_GROUP_SCHED
157
68318b8e
SV
158#include <linux/cgroup.h>
159
29f59db3
SV
160struct cfs_rq;
161
162/* task group related information */
4cf86d77 163struct task_group {
68318b8e
SV
164#ifdef CONFIG_FAIR_CGROUP_SCHED
165 struct cgroup_subsys_state css;
166#endif
29f59db3
SV
167 /* schedulable entities of this group on each cpu */
168 struct sched_entity **se;
169 /* runqueue "owned" by this group on each cpu */
170 struct cfs_rq **cfs_rq;
171 unsigned long shares;
5cb350ba
DG
172 /* spinlock to serialize modification to shares */
173 spinlock_t lock;
29f59db3
SV
174};
175
176/* Default task group's sched entity on each cpu */
177static DEFINE_PER_CPU(struct sched_entity, init_sched_entity);
178/* Default task group's cfs_rq on each cpu */
179static DEFINE_PER_CPU(struct cfs_rq, init_cfs_rq) ____cacheline_aligned_in_smp;
180
9b5b7751
SV
181static struct sched_entity *init_sched_entity_p[NR_CPUS];
182static struct cfs_rq *init_cfs_rq_p[NR_CPUS];
29f59db3
SV
183
184/* Default task group.
3a252015 185 * Every task in system belong to this group at bootup.
29f59db3 186 */
4cf86d77 187struct task_group init_task_group = {
3a252015
IM
188 .se = init_sched_entity_p,
189 .cfs_rq = init_cfs_rq_p,
190};
9b5b7751 191
24e377a8 192#ifdef CONFIG_FAIR_USER_SCHED
3a252015 193# define INIT_TASK_GRP_LOAD 2*NICE_0_LOAD
24e377a8 194#else
3a252015 195# define INIT_TASK_GRP_LOAD NICE_0_LOAD
24e377a8
SV
196#endif
197
4cf86d77 198static int init_task_group_load = INIT_TASK_GRP_LOAD;
29f59db3
SV
199
200/* return group to which a task belongs */
4cf86d77 201static inline struct task_group *task_group(struct task_struct *p)
29f59db3 202{
4cf86d77 203 struct task_group *tg;
9b5b7751 204
24e377a8
SV
205#ifdef CONFIG_FAIR_USER_SCHED
206 tg = p->user->tg;
68318b8e
SV
207#elif defined(CONFIG_FAIR_CGROUP_SCHED)
208 tg = container_of(task_subsys_state(p, cpu_cgroup_subsys_id),
209 struct task_group, css);
24e377a8 210#else
4cf86d77 211 tg = &init_task_group;
24e377a8 212#endif
9b5b7751
SV
213
214 return tg;
29f59db3
SV
215}
216
217/* Change a task's cfs_rq and parent entity if it moves across CPUs/groups */
218static inline void set_task_cfs_rq(struct task_struct *p)
219{
4cf86d77
IM
220 p->se.cfs_rq = task_group(p)->cfs_rq[task_cpu(p)];
221 p->se.parent = task_group(p)->se[task_cpu(p)];
29f59db3
SV
222}
223
224#else
225
226static inline void set_task_cfs_rq(struct task_struct *p) { }
227
228#endif /* CONFIG_FAIR_GROUP_SCHED */
229
6aa645ea
IM
230/* CFS-related fields in a runqueue */
231struct cfs_rq {
232 struct load_weight load;
233 unsigned long nr_running;
234
6aa645ea 235 u64 exec_clock;
e9acbff6 236 u64 min_vruntime;
6aa645ea
IM
237
238 struct rb_root tasks_timeline;
239 struct rb_node *rb_leftmost;
240 struct rb_node *rb_load_balance_curr;
6aa645ea
IM
241 /* 'curr' points to currently running entity on this cfs_rq.
242 * It is set to NULL otherwise (i.e when none are currently running).
243 */
244 struct sched_entity *curr;
ddc97297
PZ
245
246 unsigned long nr_spread_over;
247
62160e3f 248#ifdef CONFIG_FAIR_GROUP_SCHED
6aa645ea
IM
249 struct rq *rq; /* cpu runqueue to which this cfs_rq is attached */
250
251 /* leaf cfs_rqs are those that hold tasks (lowest schedulable entity in
252 * a hierarchy). Non-leaf lrqs hold other higher schedulable entities
253 * (like users, containers etc.)
254 *
255 * leaf_cfs_rq_list ties together list of leaf cfs_rq's in a cpu. This
256 * list is used during load balance.
257 */
258 struct list_head leaf_cfs_rq_list; /* Better name : task_cfs_rq_list? */
4cf86d77 259 struct task_group *tg; /* group that "owns" this runqueue */
9b5b7751 260 struct rcu_head rcu;
6aa645ea
IM
261#endif
262};
1da177e4 263
6aa645ea
IM
264/* Real-Time classes' related field in a runqueue: */
265struct rt_rq {
266 struct rt_prio_array active;
267 int rt_load_balance_idx;
268 struct list_head *rt_load_balance_head, *rt_load_balance_curr;
269};
270
1da177e4
LT
271/*
272 * This is the main, per-CPU runqueue data structure.
273 *
274 * Locking rule: those places that want to lock multiple runqueues
275 * (such as the load balancing or the thread migration code), lock
276 * acquire operations must be ordered by ascending &runqueue.
277 */
70b97a7f 278struct rq {
d8016491
IM
279 /* runqueue lock: */
280 spinlock_t lock;
1da177e4
LT
281
282 /*
283 * nr_running and cpu_load should be in the same cacheline because
284 * remote CPUs use both these fields when doing load calculation.
285 */
286 unsigned long nr_running;
6aa645ea
IM
287 #define CPU_LOAD_IDX_MAX 5
288 unsigned long cpu_load[CPU_LOAD_IDX_MAX];
bdecea3a 289 unsigned char idle_at_tick;
46cb4b7c
SS
290#ifdef CONFIG_NO_HZ
291 unsigned char in_nohz_recently;
292#endif
d8016491
IM
293 /* capture load from *all* tasks on this cpu: */
294 struct load_weight load;
6aa645ea
IM
295 unsigned long nr_load_updates;
296 u64 nr_switches;
297
298 struct cfs_rq cfs;
299#ifdef CONFIG_FAIR_GROUP_SCHED
d8016491
IM
300 /* list of leaf cfs_rq on this cpu: */
301 struct list_head leaf_cfs_rq_list;
1da177e4 302#endif
6aa645ea 303 struct rt_rq rt;
1da177e4
LT
304
305 /*
306 * This is part of a global counter where only the total sum
307 * over all CPUs matters. A task can increase this counter on
308 * one CPU and if it got migrated afterwards it may decrease
309 * it on another CPU. Always updated under the runqueue lock:
310 */
311 unsigned long nr_uninterruptible;
312
36c8b586 313 struct task_struct *curr, *idle;
c9819f45 314 unsigned long next_balance;
1da177e4 315 struct mm_struct *prev_mm;
6aa645ea 316
6aa645ea
IM
317 u64 clock, prev_clock_raw;
318 s64 clock_max_delta;
319
320 unsigned int clock_warps, clock_overflows;
2aa44d05
IM
321 u64 idle_clock;
322 unsigned int clock_deep_idle_events;
529c7726 323 u64 tick_timestamp;
6aa645ea 324
1da177e4
LT
325 atomic_t nr_iowait;
326
327#ifdef CONFIG_SMP
328 struct sched_domain *sd;
329
330 /* For active balancing */
331 int active_balance;
332 int push_cpu;
d8016491
IM
333 /* cpu of this runqueue: */
334 int cpu;
1da177e4 335
36c8b586 336 struct task_struct *migration_thread;
1da177e4
LT
337 struct list_head migration_queue;
338#endif
339
340#ifdef CONFIG_SCHEDSTATS
341 /* latency stats */
342 struct sched_info rq_sched_info;
343
344 /* sys_sched_yield() stats */
480b9434
KC
345 unsigned int yld_exp_empty;
346 unsigned int yld_act_empty;
347 unsigned int yld_both_empty;
348 unsigned int yld_count;
1da177e4
LT
349
350 /* schedule() stats */
480b9434
KC
351 unsigned int sched_switch;
352 unsigned int sched_count;
353 unsigned int sched_goidle;
1da177e4
LT
354
355 /* try_to_wake_up() stats */
480b9434
KC
356 unsigned int ttwu_count;
357 unsigned int ttwu_local;
b8efb561
IM
358
359 /* BKL stats */
480b9434 360 unsigned int bkl_count;
1da177e4 361#endif
fcb99371 362 struct lock_class_key rq_lock_key;
1da177e4
LT
363};
364
f34e3b61 365static DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
5be9361c 366static DEFINE_MUTEX(sched_hotcpu_mutex);
1da177e4 367
dd41f596
IM
368static inline void check_preempt_curr(struct rq *rq, struct task_struct *p)
369{
370 rq->curr->sched_class->check_preempt_curr(rq, p);
371}
372
0a2966b4
CL
373static inline int cpu_of(struct rq *rq)
374{
375#ifdef CONFIG_SMP
376 return rq->cpu;
377#else
378 return 0;
379#endif
380}
381
20d315d4 382/*
b04a0f4c
IM
383 * Update the per-runqueue clock, as finegrained as the platform can give
384 * us, but without assuming monotonicity, etc.:
20d315d4 385 */
b04a0f4c 386static void __update_rq_clock(struct rq *rq)
20d315d4
IM
387{
388 u64 prev_raw = rq->prev_clock_raw;
389 u64 now = sched_clock();
390 s64 delta = now - prev_raw;
391 u64 clock = rq->clock;
392
b04a0f4c
IM
393#ifdef CONFIG_SCHED_DEBUG
394 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
395#endif
20d315d4
IM
396 /*
397 * Protect against sched_clock() occasionally going backwards:
398 */
399 if (unlikely(delta < 0)) {
400 clock++;
401 rq->clock_warps++;
402 } else {
403 /*
404 * Catch too large forward jumps too:
405 */
529c7726
IM
406 if (unlikely(clock + delta > rq->tick_timestamp + TICK_NSEC)) {
407 if (clock < rq->tick_timestamp + TICK_NSEC)
408 clock = rq->tick_timestamp + TICK_NSEC;
409 else
410 clock++;
20d315d4
IM
411 rq->clock_overflows++;
412 } else {
413 if (unlikely(delta > rq->clock_max_delta))
414 rq->clock_max_delta = delta;
415 clock += delta;
416 }
417 }
418
419 rq->prev_clock_raw = now;
420 rq->clock = clock;
b04a0f4c 421}
20d315d4 422
b04a0f4c
IM
423static void update_rq_clock(struct rq *rq)
424{
425 if (likely(smp_processor_id() == cpu_of(rq)))
426 __update_rq_clock(rq);
20d315d4
IM
427}
428
674311d5
NP
429/*
430 * The domain tree (rq->sd) is protected by RCU's quiescent state transition.
1a20ff27 431 * See detach_destroy_domains: synchronize_sched for details.
674311d5
NP
432 *
433 * The domain tree of any CPU may only be accessed from within
434 * preempt-disabled sections.
435 */
48f24c4d
IM
436#define for_each_domain(cpu, __sd) \
437 for (__sd = rcu_dereference(cpu_rq(cpu)->sd); __sd; __sd = __sd->parent)
1da177e4
LT
438
439#define cpu_rq(cpu) (&per_cpu(runqueues, (cpu)))
440#define this_rq() (&__get_cpu_var(runqueues))
441#define task_rq(p) cpu_rq(task_cpu(p))
442#define cpu_curr(cpu) (cpu_rq(cpu)->curr)
443
bf5c91ba
IM
444/*
445 * Tunables that become constants when CONFIG_SCHED_DEBUG is off:
446 */
447#ifdef CONFIG_SCHED_DEBUG
448# define const_debug __read_mostly
449#else
450# define const_debug static const
451#endif
452
453/*
454 * Debugging: various feature bits
455 */
456enum {
bbdba7c0
IM
457 SCHED_FEAT_NEW_FAIR_SLEEPERS = 1,
458 SCHED_FEAT_START_DEBIT = 2,
06877c33 459 SCHED_FEAT_TREE_AVG = 4,
bbdba7c0 460 SCHED_FEAT_APPROX_AVG = 8,
ce6c1311 461 SCHED_FEAT_WAKEUP_PREEMPT = 16,
95938a35 462 SCHED_FEAT_PREEMPT_RESTRICT = 32,
bf5c91ba
IM
463};
464
465const_debug unsigned int sysctl_sched_features =
8401f775
IM
466 SCHED_FEAT_NEW_FAIR_SLEEPERS * 1 |
467 SCHED_FEAT_START_DEBIT * 1 |
468 SCHED_FEAT_TREE_AVG * 0 |
469 SCHED_FEAT_APPROX_AVG * 0 |
470 SCHED_FEAT_WAKEUP_PREEMPT * 1 |
471 SCHED_FEAT_PREEMPT_RESTRICT * 1;
bf5c91ba
IM
472
473#define sched_feat(x) (sysctl_sched_features & SCHED_FEAT_##x)
474
e436d800
IM
475/*
476 * For kernel-internal use: high-speed (but slightly incorrect) per-cpu
477 * clock constructed from sched_clock():
478 */
479unsigned long long cpu_clock(int cpu)
480{
e436d800
IM
481 unsigned long long now;
482 unsigned long flags;
b04a0f4c 483 struct rq *rq;
e436d800 484
2cd4d0ea 485 local_irq_save(flags);
b04a0f4c
IM
486 rq = cpu_rq(cpu);
487 update_rq_clock(rq);
488 now = rq->clock;
2cd4d0ea 489 local_irq_restore(flags);
e436d800
IM
490
491 return now;
492}
a58f6f25 493EXPORT_SYMBOL_GPL(cpu_clock);
e436d800 494
1da177e4 495#ifndef prepare_arch_switch
4866cde0
NP
496# define prepare_arch_switch(next) do { } while (0)
497#endif
498#ifndef finish_arch_switch
499# define finish_arch_switch(prev) do { } while (0)
500#endif
501
502#ifndef __ARCH_WANT_UNLOCKED_CTXSW
70b97a7f 503static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
504{
505 return rq->curr == p;
506}
507
70b97a7f 508static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
509{
510}
511
70b97a7f 512static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0 513{
da04c035
IM
514#ifdef CONFIG_DEBUG_SPINLOCK
515 /* this is a valid case when another task releases the spinlock */
516 rq->lock.owner = current;
517#endif
8a25d5de
IM
518 /*
519 * If we are tracking spinlock dependencies then we have to
520 * fix up the runqueue lock - which gets 'carried over' from
521 * prev into current:
522 */
523 spin_acquire(&rq->lock.dep_map, 0, 0, _THIS_IP_);
524
4866cde0
NP
525 spin_unlock_irq(&rq->lock);
526}
527
528#else /* __ARCH_WANT_UNLOCKED_CTXSW */
70b97a7f 529static inline int task_running(struct rq *rq, struct task_struct *p)
4866cde0
NP
530{
531#ifdef CONFIG_SMP
532 return p->oncpu;
533#else
534 return rq->curr == p;
535#endif
536}
537
70b97a7f 538static inline void prepare_lock_switch(struct rq *rq, struct task_struct *next)
4866cde0
NP
539{
540#ifdef CONFIG_SMP
541 /*
542 * We can optimise this out completely for !SMP, because the
543 * SMP rebalancing from interrupt is the only thing that cares
544 * here.
545 */
546 next->oncpu = 1;
547#endif
548#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
549 spin_unlock_irq(&rq->lock);
550#else
551 spin_unlock(&rq->lock);
552#endif
553}
554
70b97a7f 555static inline void finish_lock_switch(struct rq *rq, struct task_struct *prev)
4866cde0
NP
556{
557#ifdef CONFIG_SMP
558 /*
559 * After ->oncpu is cleared, the task can be moved to a different CPU.
560 * We must ensure this doesn't happen until the switch is completely
561 * finished.
562 */
563 smp_wmb();
564 prev->oncpu = 0;
565#endif
566#ifndef __ARCH_WANT_INTERRUPTS_ON_CTXSW
567 local_irq_enable();
1da177e4 568#endif
4866cde0
NP
569}
570#endif /* __ARCH_WANT_UNLOCKED_CTXSW */
1da177e4 571
b29739f9
IM
572/*
573 * __task_rq_lock - lock the runqueue a given task resides on.
574 * Must be called interrupts disabled.
575 */
70b97a7f 576static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
577 __acquires(rq->lock)
578{
3a5c359a
AK
579 for (;;) {
580 struct rq *rq = task_rq(p);
581 spin_lock(&rq->lock);
582 if (likely(rq == task_rq(p)))
583 return rq;
b29739f9 584 spin_unlock(&rq->lock);
b29739f9 585 }
b29739f9
IM
586}
587
1da177e4
LT
588/*
589 * task_rq_lock - lock the runqueue a given task resides on and disable
590 * interrupts. Note the ordering: we can safely lookup the task_rq without
591 * explicitly disabling preemption.
592 */
70b97a7f 593static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
1da177e4
LT
594 __acquires(rq->lock)
595{
70b97a7f 596 struct rq *rq;
1da177e4 597
3a5c359a
AK
598 for (;;) {
599 local_irq_save(*flags);
600 rq = task_rq(p);
601 spin_lock(&rq->lock);
602 if (likely(rq == task_rq(p)))
603 return rq;
1da177e4 604 spin_unlock_irqrestore(&rq->lock, *flags);
1da177e4 605 }
1da177e4
LT
606}
607
a9957449 608static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
609 __releases(rq->lock)
610{
611 spin_unlock(&rq->lock);
612}
613
70b97a7f 614static inline void task_rq_unlock(struct rq *rq, unsigned long *flags)
1da177e4
LT
615 __releases(rq->lock)
616{
617 spin_unlock_irqrestore(&rq->lock, *flags);
618}
619
1da177e4 620/*
cc2a73b5 621 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 622 */
a9957449 623static struct rq *this_rq_lock(void)
1da177e4
LT
624 __acquires(rq->lock)
625{
70b97a7f 626 struct rq *rq;
1da177e4
LT
627
628 local_irq_disable();
629 rq = this_rq();
630 spin_lock(&rq->lock);
631
632 return rq;
633}
634
1b9f19c2 635/*
2aa44d05 636 * We are going deep-idle (irqs are disabled):
1b9f19c2 637 */
2aa44d05 638void sched_clock_idle_sleep_event(void)
1b9f19c2 639{
2aa44d05
IM
640 struct rq *rq = cpu_rq(smp_processor_id());
641
642 spin_lock(&rq->lock);
643 __update_rq_clock(rq);
644 spin_unlock(&rq->lock);
645 rq->clock_deep_idle_events++;
646}
647EXPORT_SYMBOL_GPL(sched_clock_idle_sleep_event);
648
649/*
650 * We just idled delta nanoseconds (called with irqs disabled):
651 */
652void sched_clock_idle_wakeup_event(u64 delta_ns)
653{
654 struct rq *rq = cpu_rq(smp_processor_id());
655 u64 now = sched_clock();
1b9f19c2 656
2aa44d05
IM
657 rq->idle_clock += delta_ns;
658 /*
659 * Override the previous timestamp and ignore all
660 * sched_clock() deltas that occured while we idled,
661 * and use the PM-provided delta_ns to advance the
662 * rq clock:
663 */
664 spin_lock(&rq->lock);
665 rq->prev_clock_raw = now;
666 rq->clock += delta_ns;
667 spin_unlock(&rq->lock);
1b9f19c2 668}
2aa44d05 669EXPORT_SYMBOL_GPL(sched_clock_idle_wakeup_event);
1b9f19c2 670
c24d20db
IM
671/*
672 * resched_task - mark a task 'to be rescheduled now'.
673 *
674 * On UP this means the setting of the need_resched flag, on SMP it
675 * might also involve a cross-CPU call to trigger the scheduler on
676 * the target CPU.
677 */
678#ifdef CONFIG_SMP
679
680#ifndef tsk_is_polling
681#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
682#endif
683
684static void resched_task(struct task_struct *p)
685{
686 int cpu;
687
688 assert_spin_locked(&task_rq(p)->lock);
689
690 if (unlikely(test_tsk_thread_flag(p, TIF_NEED_RESCHED)))
691 return;
692
693 set_tsk_thread_flag(p, TIF_NEED_RESCHED);
694
695 cpu = task_cpu(p);
696 if (cpu == smp_processor_id())
697 return;
698
699 /* NEED_RESCHED must be visible before we test polling */
700 smp_mb();
701 if (!tsk_is_polling(p))
702 smp_send_reschedule(cpu);
703}
704
705static void resched_cpu(int cpu)
706{
707 struct rq *rq = cpu_rq(cpu);
708 unsigned long flags;
709
710 if (!spin_trylock_irqsave(&rq->lock, flags))
711 return;
712 resched_task(cpu_curr(cpu));
713 spin_unlock_irqrestore(&rq->lock, flags);
714}
715#else
716static inline void resched_task(struct task_struct *p)
717{
718 assert_spin_locked(&task_rq(p)->lock);
719 set_tsk_need_resched(p);
720}
721#endif
722
45bf76df
IM
723#if BITS_PER_LONG == 32
724# define WMULT_CONST (~0UL)
725#else
726# define WMULT_CONST (1UL << 32)
727#endif
728
729#define WMULT_SHIFT 32
730
194081eb
IM
731/*
732 * Shift right and round:
733 */
cf2ab469 734#define SRR(x, y) (((x) + (1UL << ((y) - 1))) >> (y))
194081eb 735
cb1c4fc9 736static unsigned long
45bf76df
IM
737calc_delta_mine(unsigned long delta_exec, unsigned long weight,
738 struct load_weight *lw)
739{
740 u64 tmp;
741
742 if (unlikely(!lw->inv_weight))
194081eb 743 lw->inv_weight = (WMULT_CONST - lw->weight/2) / lw->weight + 1;
45bf76df
IM
744
745 tmp = (u64)delta_exec * weight;
746 /*
747 * Check whether we'd overflow the 64-bit multiplication:
748 */
194081eb 749 if (unlikely(tmp > WMULT_CONST))
cf2ab469 750 tmp = SRR(SRR(tmp, WMULT_SHIFT/2) * lw->inv_weight,
194081eb
IM
751 WMULT_SHIFT/2);
752 else
cf2ab469 753 tmp = SRR(tmp * lw->inv_weight, WMULT_SHIFT);
45bf76df 754
ecf691da 755 return (unsigned long)min(tmp, (u64)(unsigned long)LONG_MAX);
45bf76df
IM
756}
757
758static inline unsigned long
759calc_delta_fair(unsigned long delta_exec, struct load_weight *lw)
760{
761 return calc_delta_mine(delta_exec, NICE_0_LOAD, lw);
762}
763
1091985b 764static inline void update_load_add(struct load_weight *lw, unsigned long inc)
45bf76df
IM
765{
766 lw->weight += inc;
45bf76df
IM
767}
768
1091985b 769static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
45bf76df
IM
770{
771 lw->weight -= dec;
45bf76df
IM
772}
773
2dd73a4f
PW
774/*
775 * To aid in avoiding the subversion of "niceness" due to uneven distribution
776 * of tasks with abnormal "nice" values across CPUs the contribution that
777 * each task makes to its run queue's load is weighted according to its
778 * scheduling class and "nice" value. For SCHED_NORMAL tasks this is just a
779 * scaled version of the new time slice allocation that they receive on time
780 * slice expiry etc.
781 */
782
dd41f596
IM
783#define WEIGHT_IDLEPRIO 2
784#define WMULT_IDLEPRIO (1 << 31)
785
786/*
787 * Nice levels are multiplicative, with a gentle 10% change for every
788 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
789 * nice 1, it will get ~10% less CPU time than another CPU-bound task
790 * that remained on nice 0.
791 *
792 * The "10% effect" is relative and cumulative: from _any_ nice level,
793 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
f9153ee6
IM
794 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
795 * If a task goes up by ~10% and another task goes down by ~10% then
796 * the relative distance between them is ~25%.)
dd41f596
IM
797 */
798static const int prio_to_weight[40] = {
254753dc
IM
799 /* -20 */ 88761, 71755, 56483, 46273, 36291,
800 /* -15 */ 29154, 23254, 18705, 14949, 11916,
801 /* -10 */ 9548, 7620, 6100, 4904, 3906,
802 /* -5 */ 3121, 2501, 1991, 1586, 1277,
803 /* 0 */ 1024, 820, 655, 526, 423,
804 /* 5 */ 335, 272, 215, 172, 137,
805 /* 10 */ 110, 87, 70, 56, 45,
806 /* 15 */ 36, 29, 23, 18, 15,
dd41f596
IM
807};
808
5714d2de
IM
809/*
810 * Inverse (2^32/x) values of the prio_to_weight[] array, precalculated.
811 *
812 * In cases where the weight does not change often, we can use the
813 * precalculated inverse to speed up arithmetics by turning divisions
814 * into multiplications:
815 */
dd41f596 816static const u32 prio_to_wmult[40] = {
254753dc
IM
817 /* -20 */ 48388, 59856, 76040, 92818, 118348,
818 /* -15 */ 147320, 184698, 229616, 287308, 360437,
819 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
820 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
821 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
822 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
823 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
824 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
dd41f596 825};
2dd73a4f 826
dd41f596
IM
827static void activate_task(struct rq *rq, struct task_struct *p, int wakeup);
828
829/*
830 * runqueue iterator, to support SMP load-balancing between different
831 * scheduling classes, without having to expose their internal data
832 * structures to the load-balancing proper:
833 */
834struct rq_iterator {
835 void *arg;
836 struct task_struct *(*start)(void *);
837 struct task_struct *(*next)(void *);
838};
839
840static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
841 unsigned long max_nr_move, unsigned long max_load_move,
842 struct sched_domain *sd, enum cpu_idle_type idle,
843 int *all_pinned, unsigned long *load_moved,
a4ac01c3 844 int *this_best_prio, struct rq_iterator *iterator);
dd41f596
IM
845
846#include "sched_stats.h"
dd41f596 847#include "sched_idletask.c"
5522d5d5
IM
848#include "sched_fair.c"
849#include "sched_rt.c"
dd41f596
IM
850#ifdef CONFIG_SCHED_DEBUG
851# include "sched_debug.c"
852#endif
853
854#define sched_class_highest (&rt_sched_class)
855
9c217245
IM
856/*
857 * Update delta_exec, delta_fair fields for rq.
858 *
859 * delta_fair clock advances at a rate inversely proportional to
495eca49 860 * total load (rq->load.weight) on the runqueue, while
9c217245
IM
861 * delta_exec advances at the same rate as wall-clock (provided
862 * cpu is not idle).
863 *
864 * delta_exec / delta_fair is a measure of the (smoothened) load on this
865 * runqueue over any given interval. This (smoothened) load is used
866 * during load balance.
867 *
495eca49 868 * This function is called /before/ updating rq->load
9c217245
IM
869 * and when switching tasks.
870 */
29b4b623 871static inline void inc_load(struct rq *rq, const struct task_struct *p)
9c217245 872{
495eca49 873 update_load_add(&rq->load, p->se.load.weight);
9c217245
IM
874}
875
79b5dddf 876static inline void dec_load(struct rq *rq, const struct task_struct *p)
9c217245 877{
495eca49 878 update_load_sub(&rq->load, p->se.load.weight);
9c217245
IM
879}
880
e5fa2237 881static void inc_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
882{
883 rq->nr_running++;
29b4b623 884 inc_load(rq, p);
9c217245
IM
885}
886
db53181e 887static void dec_nr_running(struct task_struct *p, struct rq *rq)
9c217245
IM
888{
889 rq->nr_running--;
79b5dddf 890 dec_load(rq, p);
9c217245
IM
891}
892
45bf76df
IM
893static void set_load_weight(struct task_struct *p)
894{
895 if (task_has_rt_policy(p)) {
dd41f596
IM
896 p->se.load.weight = prio_to_weight[0] * 2;
897 p->se.load.inv_weight = prio_to_wmult[0] >> 1;
898 return;
899 }
45bf76df 900
dd41f596
IM
901 /*
902 * SCHED_IDLE tasks get minimal weight:
903 */
904 if (p->policy == SCHED_IDLE) {
905 p->se.load.weight = WEIGHT_IDLEPRIO;
906 p->se.load.inv_weight = WMULT_IDLEPRIO;
907 return;
908 }
71f8bd46 909
dd41f596
IM
910 p->se.load.weight = prio_to_weight[p->static_prio - MAX_RT_PRIO];
911 p->se.load.inv_weight = prio_to_wmult[p->static_prio - MAX_RT_PRIO];
71f8bd46
IM
912}
913
8159f87e 914static void enqueue_task(struct rq *rq, struct task_struct *p, int wakeup)
71f8bd46 915{
dd41f596 916 sched_info_queued(p);
fd390f6a 917 p->sched_class->enqueue_task(rq, p, wakeup);
dd41f596 918 p->se.on_rq = 1;
71f8bd46
IM
919}
920
69be72c1 921static void dequeue_task(struct rq *rq, struct task_struct *p, int sleep)
71f8bd46 922{
f02231e5 923 p->sched_class->dequeue_task(rq, p, sleep);
dd41f596 924 p->se.on_rq = 0;
71f8bd46
IM
925}
926
14531189 927/*
dd41f596 928 * __normal_prio - return the priority that is based on the static prio
14531189 929 */
14531189
IM
930static inline int __normal_prio(struct task_struct *p)
931{
dd41f596 932 return p->static_prio;
14531189
IM
933}
934
b29739f9
IM
935/*
936 * Calculate the expected normal priority: i.e. priority
937 * without taking RT-inheritance into account. Might be
938 * boosted by interactivity modifiers. Changes upon fork,
939 * setprio syscalls, and whenever the interactivity
940 * estimator recalculates.
941 */
36c8b586 942static inline int normal_prio(struct task_struct *p)
b29739f9
IM
943{
944 int prio;
945
e05606d3 946 if (task_has_rt_policy(p))
b29739f9
IM
947 prio = MAX_RT_PRIO-1 - p->rt_priority;
948 else
949 prio = __normal_prio(p);
950 return prio;
951}
952
953/*
954 * Calculate the current priority, i.e. the priority
955 * taken into account by the scheduler. This value might
956 * be boosted by RT tasks, or might be boosted by
957 * interactivity modifiers. Will be RT if the task got
958 * RT-boosted. If not then it returns p->normal_prio.
959 */
36c8b586 960static int effective_prio(struct task_struct *p)
b29739f9
IM
961{
962 p->normal_prio = normal_prio(p);
963 /*
964 * If we are RT tasks or we were boosted to RT priority,
965 * keep the priority unchanged. Otherwise, update priority
966 * to the normal priority:
967 */
968 if (!rt_prio(p->prio))
969 return p->normal_prio;
970 return p->prio;
971}
972
1da177e4 973/*
dd41f596 974 * activate_task - move a task to the runqueue.
1da177e4 975 */
dd41f596 976static void activate_task(struct rq *rq, struct task_struct *p, int wakeup)
1da177e4 977{
dd41f596
IM
978 if (p->state == TASK_UNINTERRUPTIBLE)
979 rq->nr_uninterruptible--;
1da177e4 980
8159f87e 981 enqueue_task(rq, p, wakeup);
e5fa2237 982 inc_nr_running(p, rq);
1da177e4
LT
983}
984
1da177e4
LT
985/*
986 * deactivate_task - remove a task from the runqueue.
987 */
2e1cb74a 988static void deactivate_task(struct rq *rq, struct task_struct *p, int sleep)
1da177e4 989{
dd41f596
IM
990 if (p->state == TASK_UNINTERRUPTIBLE)
991 rq->nr_uninterruptible++;
992
69be72c1 993 dequeue_task(rq, p, sleep);
db53181e 994 dec_nr_running(p, rq);
1da177e4
LT
995}
996
1da177e4
LT
997/**
998 * task_curr - is this task currently executing on a CPU?
999 * @p: the task in question.
1000 */
36c8b586 1001inline int task_curr(const struct task_struct *p)
1da177e4
LT
1002{
1003 return cpu_curr(task_cpu(p)) == p;
1004}
1005
2dd73a4f
PW
1006/* Used instead of source_load when we know the type == 0 */
1007unsigned long weighted_cpuload(const int cpu)
1008{
495eca49 1009 return cpu_rq(cpu)->load.weight;
dd41f596
IM
1010}
1011
1012static inline void __set_task_cpu(struct task_struct *p, unsigned int cpu)
1013{
1014#ifdef CONFIG_SMP
1015 task_thread_info(p)->cpu = cpu;
dd41f596 1016#endif
29f59db3 1017 set_task_cfs_rq(p);
2dd73a4f
PW
1018}
1019
1da177e4 1020#ifdef CONFIG_SMP
c65cc870 1021
cc367732
IM
1022/*
1023 * Is this task likely cache-hot:
1024 */
1025static inline int
1026task_hot(struct task_struct *p, u64 now, struct sched_domain *sd)
1027{
1028 s64 delta;
1029
1030 if (p->sched_class != &fair_sched_class)
1031 return 0;
1032
6bc1665b
IM
1033 if (sysctl_sched_migration_cost == -1)
1034 return 1;
1035 if (sysctl_sched_migration_cost == 0)
1036 return 0;
1037
cc367732
IM
1038 delta = now - p->se.exec_start;
1039
1040 return delta < (s64)sysctl_sched_migration_cost;
1041}
1042
1043
dd41f596 1044void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1045{
dd41f596
IM
1046 int old_cpu = task_cpu(p);
1047 struct rq *old_rq = cpu_rq(old_cpu), *new_rq = cpu_rq(new_cpu);
2830cf8c
SV
1048 struct cfs_rq *old_cfsrq = task_cfs_rq(p),
1049 *new_cfsrq = cpu_cfs_rq(old_cfsrq, new_cpu);
bbdba7c0 1050 u64 clock_offset;
dd41f596
IM
1051
1052 clock_offset = old_rq->clock - new_rq->clock;
6cfb0d5d
IM
1053
1054#ifdef CONFIG_SCHEDSTATS
1055 if (p->se.wait_start)
1056 p->se.wait_start -= clock_offset;
dd41f596
IM
1057 if (p->se.sleep_start)
1058 p->se.sleep_start -= clock_offset;
1059 if (p->se.block_start)
1060 p->se.block_start -= clock_offset;
cc367732
IM
1061 if (old_cpu != new_cpu) {
1062 schedstat_inc(p, se.nr_migrations);
1063 if (task_hot(p, old_rq->clock, NULL))
1064 schedstat_inc(p, se.nr_forced2_migrations);
1065 }
6cfb0d5d 1066#endif
2830cf8c
SV
1067 p->se.vruntime -= old_cfsrq->min_vruntime -
1068 new_cfsrq->min_vruntime;
dd41f596
IM
1069
1070 __set_task_cpu(p, new_cpu);
c65cc870
IM
1071}
1072
70b97a7f 1073struct migration_req {
1da177e4 1074 struct list_head list;
1da177e4 1075
36c8b586 1076 struct task_struct *task;
1da177e4
LT
1077 int dest_cpu;
1078
1da177e4 1079 struct completion done;
70b97a7f 1080};
1da177e4
LT
1081
1082/*
1083 * The task's runqueue lock must be held.
1084 * Returns true if you have to wait for migration thread.
1085 */
36c8b586 1086static int
70b97a7f 1087migrate_task(struct task_struct *p, int dest_cpu, struct migration_req *req)
1da177e4 1088{
70b97a7f 1089 struct rq *rq = task_rq(p);
1da177e4
LT
1090
1091 /*
1092 * If the task is not on a runqueue (and not running), then
1093 * it is sufficient to simply update the task's cpu field.
1094 */
dd41f596 1095 if (!p->se.on_rq && !task_running(rq, p)) {
1da177e4
LT
1096 set_task_cpu(p, dest_cpu);
1097 return 0;
1098 }
1099
1100 init_completion(&req->done);
1da177e4
LT
1101 req->task = p;
1102 req->dest_cpu = dest_cpu;
1103 list_add(&req->list, &rq->migration_queue);
48f24c4d 1104
1da177e4
LT
1105 return 1;
1106}
1107
1108/*
1109 * wait_task_inactive - wait for a thread to unschedule.
1110 *
1111 * The caller must ensure that the task *will* unschedule sometime soon,
1112 * else this function might spin for a *long* time. This function can't
1113 * be called with interrupts off, or it may introduce deadlock with
1114 * smp_call_function() if an IPI is sent by the same process we are
1115 * waiting to become inactive.
1116 */
36c8b586 1117void wait_task_inactive(struct task_struct *p)
1da177e4
LT
1118{
1119 unsigned long flags;
dd41f596 1120 int running, on_rq;
70b97a7f 1121 struct rq *rq;
1da177e4 1122
3a5c359a
AK
1123 for (;;) {
1124 /*
1125 * We do the initial early heuristics without holding
1126 * any task-queue locks at all. We'll only try to get
1127 * the runqueue lock when things look like they will
1128 * work out!
1129 */
1130 rq = task_rq(p);
fa490cfd 1131
3a5c359a
AK
1132 /*
1133 * If the task is actively running on another CPU
1134 * still, just relax and busy-wait without holding
1135 * any locks.
1136 *
1137 * NOTE! Since we don't hold any locks, it's not
1138 * even sure that "rq" stays as the right runqueue!
1139 * But we don't care, since "task_running()" will
1140 * return false if the runqueue has changed and p
1141 * is actually now running somewhere else!
1142 */
1143 while (task_running(rq, p))
1144 cpu_relax();
fa490cfd 1145
3a5c359a
AK
1146 /*
1147 * Ok, time to look more closely! We need the rq
1148 * lock now, to be *sure*. If we're wrong, we'll
1149 * just go back and repeat.
1150 */
1151 rq = task_rq_lock(p, &flags);
1152 running = task_running(rq, p);
1153 on_rq = p->se.on_rq;
1154 task_rq_unlock(rq, &flags);
fa490cfd 1155
3a5c359a
AK
1156 /*
1157 * Was it really running after all now that we
1158 * checked with the proper locks actually held?
1159 *
1160 * Oops. Go back and try again..
1161 */
1162 if (unlikely(running)) {
1163 cpu_relax();
1164 continue;
1165 }
fa490cfd 1166
3a5c359a
AK
1167 /*
1168 * It's not enough that it's not actively running,
1169 * it must be off the runqueue _entirely_, and not
1170 * preempted!
1171 *
1172 * So if it wa still runnable (but just not actively
1173 * running right now), it's preempted, and we should
1174 * yield - it could be a while.
1175 */
1176 if (unlikely(on_rq)) {
1177 schedule_timeout_uninterruptible(1);
1178 continue;
1179 }
fa490cfd 1180
3a5c359a
AK
1181 /*
1182 * Ahh, all good. It wasn't running, and it wasn't
1183 * runnable, which means that it will never become
1184 * running in the future either. We're all done!
1185 */
1186 break;
1187 }
1da177e4
LT
1188}
1189
1190/***
1191 * kick_process - kick a running thread to enter/exit the kernel
1192 * @p: the to-be-kicked thread
1193 *
1194 * Cause a process which is running on another CPU to enter
1195 * kernel-mode, without any delay. (to get signals handled.)
1196 *
1197 * NOTE: this function doesnt have to take the runqueue lock,
1198 * because all it wants to ensure is that the remote task enters
1199 * the kernel. If the IPI races and the task has been migrated
1200 * to another CPU then no harm is done and the purpose has been
1201 * achieved as well.
1202 */
36c8b586 1203void kick_process(struct task_struct *p)
1da177e4
LT
1204{
1205 int cpu;
1206
1207 preempt_disable();
1208 cpu = task_cpu(p);
1209 if ((cpu != smp_processor_id()) && task_curr(p))
1210 smp_send_reschedule(cpu);
1211 preempt_enable();
1212}
1213
1214/*
2dd73a4f
PW
1215 * Return a low guess at the load of a migration-source cpu weighted
1216 * according to the scheduling class and "nice" value.
1da177e4
LT
1217 *
1218 * We want to under-estimate the load of migration sources, to
1219 * balance conservatively.
1220 */
a9957449 1221static unsigned long source_load(int cpu, int type)
1da177e4 1222{
70b97a7f 1223 struct rq *rq = cpu_rq(cpu);
dd41f596 1224 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1225
3b0bd9bc 1226 if (type == 0)
dd41f596 1227 return total;
b910472d 1228
dd41f596 1229 return min(rq->cpu_load[type-1], total);
1da177e4
LT
1230}
1231
1232/*
2dd73a4f
PW
1233 * Return a high guess at the load of a migration-target cpu weighted
1234 * according to the scheduling class and "nice" value.
1da177e4 1235 */
a9957449 1236static unsigned long target_load(int cpu, int type)
1da177e4 1237{
70b97a7f 1238 struct rq *rq = cpu_rq(cpu);
dd41f596 1239 unsigned long total = weighted_cpuload(cpu);
2dd73a4f 1240
7897986b 1241 if (type == 0)
dd41f596 1242 return total;
3b0bd9bc 1243
dd41f596 1244 return max(rq->cpu_load[type-1], total);
2dd73a4f
PW
1245}
1246
1247/*
1248 * Return the average load per task on the cpu's run queue
1249 */
1250static inline unsigned long cpu_avg_load_per_task(int cpu)
1251{
70b97a7f 1252 struct rq *rq = cpu_rq(cpu);
dd41f596 1253 unsigned long total = weighted_cpuload(cpu);
2dd73a4f
PW
1254 unsigned long n = rq->nr_running;
1255
dd41f596 1256 return n ? total / n : SCHED_LOAD_SCALE;
1da177e4
LT
1257}
1258
147cbb4b
NP
1259/*
1260 * find_idlest_group finds and returns the least busy CPU group within the
1261 * domain.
1262 */
1263static struct sched_group *
1264find_idlest_group(struct sched_domain *sd, struct task_struct *p, int this_cpu)
1265{
1266 struct sched_group *idlest = NULL, *this = NULL, *group = sd->groups;
1267 unsigned long min_load = ULONG_MAX, this_load = 0;
1268 int load_idx = sd->forkexec_idx;
1269 int imbalance = 100 + (sd->imbalance_pct-100)/2;
1270
1271 do {
1272 unsigned long load, avg_load;
1273 int local_group;
1274 int i;
1275
da5a5522
BD
1276 /* Skip over this group if it has no CPUs allowed */
1277 if (!cpus_intersects(group->cpumask, p->cpus_allowed))
3a5c359a 1278 continue;
da5a5522 1279
147cbb4b 1280 local_group = cpu_isset(this_cpu, group->cpumask);
147cbb4b
NP
1281
1282 /* Tally up the load of all CPUs in the group */
1283 avg_load = 0;
1284
1285 for_each_cpu_mask(i, group->cpumask) {
1286 /* Bias balancing toward cpus of our domain */
1287 if (local_group)
1288 load = source_load(i, load_idx);
1289 else
1290 load = target_load(i, load_idx);
1291
1292 avg_load += load;
1293 }
1294
1295 /* Adjust by relative CPU power of the group */
5517d86b
ED
1296 avg_load = sg_div_cpu_power(group,
1297 avg_load * SCHED_LOAD_SCALE);
147cbb4b
NP
1298
1299 if (local_group) {
1300 this_load = avg_load;
1301 this = group;
1302 } else if (avg_load < min_load) {
1303 min_load = avg_load;
1304 idlest = group;
1305 }
3a5c359a 1306 } while (group = group->next, group != sd->groups);
147cbb4b
NP
1307
1308 if (!idlest || 100*this_load < imbalance*min_load)
1309 return NULL;
1310 return idlest;
1311}
1312
1313/*
0feaece9 1314 * find_idlest_cpu - find the idlest cpu among the cpus in group.
147cbb4b 1315 */
95cdf3b7
IM
1316static int
1317find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
147cbb4b 1318{
da5a5522 1319 cpumask_t tmp;
147cbb4b
NP
1320 unsigned long load, min_load = ULONG_MAX;
1321 int idlest = -1;
1322 int i;
1323
da5a5522
BD
1324 /* Traverse only the allowed CPUs */
1325 cpus_and(tmp, group->cpumask, p->cpus_allowed);
1326
1327 for_each_cpu_mask(i, tmp) {
2dd73a4f 1328 load = weighted_cpuload(i);
147cbb4b
NP
1329
1330 if (load < min_load || (load == min_load && i == this_cpu)) {
1331 min_load = load;
1332 idlest = i;
1333 }
1334 }
1335
1336 return idlest;
1337}
1338
476d139c
NP
1339/*
1340 * sched_balance_self: balance the current task (running on cpu) in domains
1341 * that have the 'flag' flag set. In practice, this is SD_BALANCE_FORK and
1342 * SD_BALANCE_EXEC.
1343 *
1344 * Balance, ie. select the least loaded group.
1345 *
1346 * Returns the target CPU number, or the same CPU if no balancing is needed.
1347 *
1348 * preempt must be disabled.
1349 */
1350static int sched_balance_self(int cpu, int flag)
1351{
1352 struct task_struct *t = current;
1353 struct sched_domain *tmp, *sd = NULL;
147cbb4b 1354
c96d145e 1355 for_each_domain(cpu, tmp) {
9761eea8
IM
1356 /*
1357 * If power savings logic is enabled for a domain, stop there.
1358 */
5c45bf27
SS
1359 if (tmp->flags & SD_POWERSAVINGS_BALANCE)
1360 break;
476d139c
NP
1361 if (tmp->flags & flag)
1362 sd = tmp;
c96d145e 1363 }
476d139c
NP
1364
1365 while (sd) {
1366 cpumask_t span;
1367 struct sched_group *group;
1a848870
SS
1368 int new_cpu, weight;
1369
1370 if (!(sd->flags & flag)) {
1371 sd = sd->child;
1372 continue;
1373 }
476d139c
NP
1374
1375 span = sd->span;
1376 group = find_idlest_group(sd, t, cpu);
1a848870
SS
1377 if (!group) {
1378 sd = sd->child;
1379 continue;
1380 }
476d139c 1381
da5a5522 1382 new_cpu = find_idlest_cpu(group, t, cpu);
1a848870
SS
1383 if (new_cpu == -1 || new_cpu == cpu) {
1384 /* Now try balancing at a lower domain level of cpu */
1385 sd = sd->child;
1386 continue;
1387 }
476d139c 1388
1a848870 1389 /* Now try balancing at a lower domain level of new_cpu */
476d139c 1390 cpu = new_cpu;
476d139c
NP
1391 sd = NULL;
1392 weight = cpus_weight(span);
1393 for_each_domain(cpu, tmp) {
1394 if (weight <= cpus_weight(tmp->span))
1395 break;
1396 if (tmp->flags & flag)
1397 sd = tmp;
1398 }
1399 /* while loop will break here if sd == NULL */
1400 }
1401
1402 return cpu;
1403}
1404
1405#endif /* CONFIG_SMP */
1da177e4
LT
1406
1407/*
1408 * wake_idle() will wake a task on an idle cpu if task->cpu is
1409 * not idle and an idle cpu is available. The span of cpus to
1410 * search starts with cpus closest then further out as needed,
1411 * so we always favor a closer, idle cpu.
1412 *
1413 * Returns the CPU we should wake onto.
1414 */
1415#if defined(ARCH_HAS_SCHED_WAKE_IDLE)
36c8b586 1416static int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1417{
1418 cpumask_t tmp;
1419 struct sched_domain *sd;
1420 int i;
1421
4953198b
SS
1422 /*
1423 * If it is idle, then it is the best cpu to run this task.
1424 *
1425 * This cpu is also the best, if it has more than one task already.
1426 * Siblings must be also busy(in most cases) as they didn't already
1427 * pickup the extra load from this cpu and hence we need not check
1428 * sibling runqueue info. This will avoid the checks and cache miss
1429 * penalities associated with that.
1430 */
1431 if (idle_cpu(cpu) || cpu_rq(cpu)->nr_running > 1)
1da177e4
LT
1432 return cpu;
1433
1434 for_each_domain(cpu, sd) {
1435 if (sd->flags & SD_WAKE_IDLE) {
e0f364f4 1436 cpus_and(tmp, sd->span, p->cpus_allowed);
1da177e4 1437 for_each_cpu_mask(i, tmp) {
cc367732
IM
1438 if (idle_cpu(i)) {
1439 if (i != task_cpu(p)) {
1440 schedstat_inc(p,
1441 se.nr_wakeups_idle);
1442 }
1da177e4 1443 return i;
cc367732 1444 }
1da177e4 1445 }
9761eea8 1446 } else {
e0f364f4 1447 break;
9761eea8 1448 }
1da177e4
LT
1449 }
1450 return cpu;
1451}
1452#else
36c8b586 1453static inline int wake_idle(int cpu, struct task_struct *p)
1da177e4
LT
1454{
1455 return cpu;
1456}
1457#endif
1458
1459/***
1460 * try_to_wake_up - wake up a thread
1461 * @p: the to-be-woken-up thread
1462 * @state: the mask of task states that can be woken
1463 * @sync: do a synchronous wakeup?
1464 *
1465 * Put it on the run-queue if it's not already there. The "current"
1466 * thread is always on the run-queue (except when the actual
1467 * re-schedule is in progress), and as such you're allowed to do
1468 * the simpler "current->state = TASK_RUNNING" to mark yourself
1469 * runnable without the overhead of this.
1470 *
1471 * returns failure only if the task is already active.
1472 */
36c8b586 1473static int try_to_wake_up(struct task_struct *p, unsigned int state, int sync)
1da177e4 1474{
cc367732 1475 int cpu, orig_cpu, this_cpu, success = 0;
1da177e4
LT
1476 unsigned long flags;
1477 long old_state;
70b97a7f 1478 struct rq *rq;
1da177e4 1479#ifdef CONFIG_SMP
7897986b 1480 struct sched_domain *sd, *this_sd = NULL;
70b97a7f 1481 unsigned long load, this_load;
1da177e4
LT
1482 int new_cpu;
1483#endif
1484
1485 rq = task_rq_lock(p, &flags);
1486 old_state = p->state;
1487 if (!(old_state & state))
1488 goto out;
1489
dd41f596 1490 if (p->se.on_rq)
1da177e4
LT
1491 goto out_running;
1492
1493 cpu = task_cpu(p);
cc367732 1494 orig_cpu = cpu;
1da177e4
LT
1495 this_cpu = smp_processor_id();
1496
1497#ifdef CONFIG_SMP
1498 if (unlikely(task_running(rq, p)))
1499 goto out_activate;
1500
7897986b
NP
1501 new_cpu = cpu;
1502
2d72376b 1503 schedstat_inc(rq, ttwu_count);
1da177e4
LT
1504 if (cpu == this_cpu) {
1505 schedstat_inc(rq, ttwu_local);
7897986b
NP
1506 goto out_set_cpu;
1507 }
1508
1509 for_each_domain(this_cpu, sd) {
1510 if (cpu_isset(cpu, sd->span)) {
1511 schedstat_inc(sd, ttwu_wake_remote);
1512 this_sd = sd;
1513 break;
1da177e4
LT
1514 }
1515 }
1da177e4 1516
7897986b 1517 if (unlikely(!cpu_isset(this_cpu, p->cpus_allowed)))
1da177e4
LT
1518 goto out_set_cpu;
1519
1da177e4 1520 /*
7897986b 1521 * Check for affine wakeup and passive balancing possibilities.
1da177e4 1522 */
7897986b
NP
1523 if (this_sd) {
1524 int idx = this_sd->wake_idx;
1525 unsigned int imbalance;
1da177e4 1526
a3f21bce
NP
1527 imbalance = 100 + (this_sd->imbalance_pct - 100) / 2;
1528
7897986b
NP
1529 load = source_load(cpu, idx);
1530 this_load = target_load(this_cpu, idx);
1da177e4 1531
7897986b
NP
1532 new_cpu = this_cpu; /* Wake to this CPU if we can */
1533
a3f21bce
NP
1534 if (this_sd->flags & SD_WAKE_AFFINE) {
1535 unsigned long tl = this_load;
33859f7f
MOS
1536 unsigned long tl_per_task;
1537
71e20f18
IM
1538 /*
1539 * Attract cache-cold tasks on sync wakeups:
1540 */
1541 if (sync && !task_hot(p, rq->clock, this_sd))
1542 goto out_set_cpu;
1543
cc367732 1544 schedstat_inc(p, se.nr_wakeups_affine_attempts);
33859f7f 1545 tl_per_task = cpu_avg_load_per_task(this_cpu);
2dd73a4f 1546
1da177e4 1547 /*
a3f21bce
NP
1548 * If sync wakeup then subtract the (maximum possible)
1549 * effect of the currently running task from the load
1550 * of the current CPU:
1da177e4 1551 */
a3f21bce 1552 if (sync)
dd41f596 1553 tl -= current->se.load.weight;
a3f21bce
NP
1554
1555 if ((tl <= load &&
2dd73a4f 1556 tl + target_load(cpu, idx) <= tl_per_task) ||
dd41f596 1557 100*(tl + p->se.load.weight) <= imbalance*load) {
a3f21bce
NP
1558 /*
1559 * This domain has SD_WAKE_AFFINE and
1560 * p is cache cold in this domain, and
1561 * there is no bad imbalance.
1562 */
1563 schedstat_inc(this_sd, ttwu_move_affine);
cc367732 1564 schedstat_inc(p, se.nr_wakeups_affine);
a3f21bce
NP
1565 goto out_set_cpu;
1566 }
1567 }
1568
1569 /*
1570 * Start passive balancing when half the imbalance_pct
1571 * limit is reached.
1572 */
1573 if (this_sd->flags & SD_WAKE_BALANCE) {
1574 if (imbalance*this_load <= 100*load) {
1575 schedstat_inc(this_sd, ttwu_move_balance);
cc367732 1576 schedstat_inc(p, se.nr_wakeups_passive);
a3f21bce
NP
1577 goto out_set_cpu;
1578 }
1da177e4
LT
1579 }
1580 }
1581
1582 new_cpu = cpu; /* Could not wake to this_cpu. Wake to cpu instead */
1583out_set_cpu:
1584 new_cpu = wake_idle(new_cpu, p);
1585 if (new_cpu != cpu) {
1586 set_task_cpu(p, new_cpu);
1587 task_rq_unlock(rq, &flags);
1588 /* might preempt at this point */
1589 rq = task_rq_lock(p, &flags);
1590 old_state = p->state;
1591 if (!(old_state & state))
1592 goto out;
dd41f596 1593 if (p->se.on_rq)
1da177e4
LT
1594 goto out_running;
1595
1596 this_cpu = smp_processor_id();
1597 cpu = task_cpu(p);
1598 }
1599
1600out_activate:
1601#endif /* CONFIG_SMP */
cc367732
IM
1602 schedstat_inc(p, se.nr_wakeups);
1603 if (sync)
1604 schedstat_inc(p, se.nr_wakeups_sync);
1605 if (orig_cpu != cpu)
1606 schedstat_inc(p, se.nr_wakeups_migrate);
1607 if (cpu == this_cpu)
1608 schedstat_inc(p, se.nr_wakeups_local);
1609 else
1610 schedstat_inc(p, se.nr_wakeups_remote);
2daa3577 1611 update_rq_clock(rq);
dd41f596 1612 activate_task(rq, p, 1);
9c63d9c0 1613 check_preempt_curr(rq, p);
1da177e4
LT
1614 success = 1;
1615
1616out_running:
1617 p->state = TASK_RUNNING;
1618out:
1619 task_rq_unlock(rq, &flags);
1620
1621 return success;
1622}
1623
36c8b586 1624int fastcall wake_up_process(struct task_struct *p)
1da177e4
LT
1625{
1626 return try_to_wake_up(p, TASK_STOPPED | TASK_TRACED |
1627 TASK_INTERRUPTIBLE | TASK_UNINTERRUPTIBLE, 0);
1628}
1da177e4
LT
1629EXPORT_SYMBOL(wake_up_process);
1630
36c8b586 1631int fastcall wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1632{
1633 return try_to_wake_up(p, state, 0);
1634}
1635
1da177e4
LT
1636/*
1637 * Perform scheduler related setup for a newly forked process p.
1638 * p is forked by current.
dd41f596
IM
1639 *
1640 * __sched_fork() is basic setup used by init_idle() too:
1641 */
1642static void __sched_fork(struct task_struct *p)
1643{
dd41f596
IM
1644 p->se.exec_start = 0;
1645 p->se.sum_exec_runtime = 0;
f6cf891c 1646 p->se.prev_sum_exec_runtime = 0;
6cfb0d5d
IM
1647
1648#ifdef CONFIG_SCHEDSTATS
1649 p->se.wait_start = 0;
dd41f596
IM
1650 p->se.sum_sleep_runtime = 0;
1651 p->se.sleep_start = 0;
dd41f596
IM
1652 p->se.block_start = 0;
1653 p->se.sleep_max = 0;
1654 p->se.block_max = 0;
1655 p->se.exec_max = 0;
eba1ed4b 1656 p->se.slice_max = 0;
dd41f596 1657 p->se.wait_max = 0;
6cfb0d5d 1658#endif
476d139c 1659
dd41f596
IM
1660 INIT_LIST_HEAD(&p->run_list);
1661 p->se.on_rq = 0;
476d139c 1662
e107be36
AK
1663#ifdef CONFIG_PREEMPT_NOTIFIERS
1664 INIT_HLIST_HEAD(&p->preempt_notifiers);
1665#endif
1666
1da177e4
LT
1667 /*
1668 * We mark the process as running here, but have not actually
1669 * inserted it onto the runqueue yet. This guarantees that
1670 * nobody will actually run it, and a signal or other external
1671 * event cannot wake it up and insert it on the runqueue either.
1672 */
1673 p->state = TASK_RUNNING;
dd41f596
IM
1674}
1675
1676/*
1677 * fork()/clone()-time setup:
1678 */
1679void sched_fork(struct task_struct *p, int clone_flags)
1680{
1681 int cpu = get_cpu();
1682
1683 __sched_fork(p);
1684
1685#ifdef CONFIG_SMP
1686 cpu = sched_balance_self(cpu, SD_BALANCE_FORK);
1687#endif
02e4bac2 1688 set_task_cpu(p, cpu);
b29739f9
IM
1689
1690 /*
1691 * Make sure we do not leak PI boosting priority to the child:
1692 */
1693 p->prio = current->normal_prio;
2ddbf952
HS
1694 if (!rt_prio(p->prio))
1695 p->sched_class = &fair_sched_class;
b29739f9 1696
52f17b6c 1697#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1698 if (likely(sched_info_on()))
52f17b6c 1699 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1700#endif
d6077cb8 1701#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4866cde0
NP
1702 p->oncpu = 0;
1703#endif
1da177e4 1704#ifdef CONFIG_PREEMPT
4866cde0 1705 /* Want to start with kernel preemption disabled. */
a1261f54 1706 task_thread_info(p)->preempt_count = 1;
1da177e4 1707#endif
476d139c 1708 put_cpu();
1da177e4
LT
1709}
1710
1711/*
1712 * wake_up_new_task - wake up a newly created task for the first time.
1713 *
1714 * This function will do some initial scheduler statistics housekeeping
1715 * that must be done for every newly created context, then puts the task
1716 * on the runqueue and wakes it.
1717 */
36c8b586 1718void fastcall wake_up_new_task(struct task_struct *p, unsigned long clone_flags)
1da177e4
LT
1719{
1720 unsigned long flags;
dd41f596 1721 struct rq *rq;
1da177e4
LT
1722
1723 rq = task_rq_lock(p, &flags);
147cbb4b 1724 BUG_ON(p->state != TASK_RUNNING);
a8e504d2 1725 update_rq_clock(rq);
1da177e4
LT
1726
1727 p->prio = effective_prio(p);
1728
b9dca1e0 1729 if (!p->sched_class->task_new || !current->se.on_rq) {
dd41f596 1730 activate_task(rq, p, 0);
1da177e4 1731 } else {
1da177e4 1732 /*
dd41f596
IM
1733 * Let the scheduling class do new task startup
1734 * management (if any):
1da177e4 1735 */
ee0827d8 1736 p->sched_class->task_new(rq, p);
e5fa2237 1737 inc_nr_running(p, rq);
1da177e4 1738 }
dd41f596
IM
1739 check_preempt_curr(rq, p);
1740 task_rq_unlock(rq, &flags);
1da177e4
LT
1741}
1742
e107be36
AK
1743#ifdef CONFIG_PREEMPT_NOTIFIERS
1744
1745/**
421cee29
RD
1746 * preempt_notifier_register - tell me when current is being being preempted & rescheduled
1747 * @notifier: notifier struct to register
e107be36
AK
1748 */
1749void preempt_notifier_register(struct preempt_notifier *notifier)
1750{
1751 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1752}
1753EXPORT_SYMBOL_GPL(preempt_notifier_register);
1754
1755/**
1756 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1757 * @notifier: notifier struct to unregister
e107be36
AK
1758 *
1759 * This is safe to call from within a preemption notifier.
1760 */
1761void preempt_notifier_unregister(struct preempt_notifier *notifier)
1762{
1763 hlist_del(&notifier->link);
1764}
1765EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1766
1767static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1768{
1769 struct preempt_notifier *notifier;
1770 struct hlist_node *node;
1771
1772 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1773 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1774}
1775
1776static void
1777fire_sched_out_preempt_notifiers(struct task_struct *curr,
1778 struct task_struct *next)
1779{
1780 struct preempt_notifier *notifier;
1781 struct hlist_node *node;
1782
1783 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1784 notifier->ops->sched_out(notifier, next);
1785}
1786
1787#else
1788
1789static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1790{
1791}
1792
1793static void
1794fire_sched_out_preempt_notifiers(struct task_struct *curr,
1795 struct task_struct *next)
1796{
1797}
1798
1799#endif
1800
4866cde0
NP
1801/**
1802 * prepare_task_switch - prepare to switch tasks
1803 * @rq: the runqueue preparing to switch
421cee29 1804 * @prev: the current task that is being switched out
4866cde0
NP
1805 * @next: the task we are going to switch to.
1806 *
1807 * This is called with the rq lock held and interrupts off. It must
1808 * be paired with a subsequent finish_task_switch after the context
1809 * switch.
1810 *
1811 * prepare_task_switch sets up locking and calls architecture specific
1812 * hooks.
1813 */
e107be36
AK
1814static inline void
1815prepare_task_switch(struct rq *rq, struct task_struct *prev,
1816 struct task_struct *next)
4866cde0 1817{
e107be36 1818 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1819 prepare_lock_switch(rq, next);
1820 prepare_arch_switch(next);
1821}
1822
1da177e4
LT
1823/**
1824 * finish_task_switch - clean up after a task-switch
344babaa 1825 * @rq: runqueue associated with task-switch
1da177e4
LT
1826 * @prev: the thread we just switched away from.
1827 *
4866cde0
NP
1828 * finish_task_switch must be called after the context switch, paired
1829 * with a prepare_task_switch call before the context switch.
1830 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1831 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1832 *
1833 * Note that we may have delayed dropping an mm in context_switch(). If
1834 * so, we finish that here outside of the runqueue lock. (Doing it
1835 * with the lock held can cause deadlocks; see schedule() for
1836 * details.)
1837 */
a9957449 1838static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1839 __releases(rq->lock)
1840{
1da177e4 1841 struct mm_struct *mm = rq->prev_mm;
55a101f8 1842 long prev_state;
1da177e4
LT
1843
1844 rq->prev_mm = NULL;
1845
1846 /*
1847 * A task struct has one reference for the use as "current".
c394cc9f 1848 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1849 * schedule one last time. The schedule call will never return, and
1850 * the scheduled task must drop that reference.
c394cc9f 1851 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1852 * still held, otherwise prev could be scheduled on another cpu, die
1853 * there before we look at prev->state, and then the reference would
1854 * be dropped twice.
1855 * Manfred Spraul <manfred@colorfullife.com>
1856 */
55a101f8 1857 prev_state = prev->state;
4866cde0
NP
1858 finish_arch_switch(prev);
1859 finish_lock_switch(rq, prev);
e107be36 1860 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1861 if (mm)
1862 mmdrop(mm);
c394cc9f 1863 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1864 /*
1865 * Remove function-return probe instances associated with this
1866 * task and put them back on the free list.
9761eea8 1867 */
c6fd91f0 1868 kprobe_flush_task(prev);
1da177e4 1869 put_task_struct(prev);
c6fd91f0 1870 }
1da177e4
LT
1871}
1872
1873/**
1874 * schedule_tail - first thing a freshly forked thread must call.
1875 * @prev: the thread we just switched away from.
1876 */
36c8b586 1877asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
1878 __releases(rq->lock)
1879{
70b97a7f
IM
1880 struct rq *rq = this_rq();
1881
4866cde0
NP
1882 finish_task_switch(rq, prev);
1883#ifdef __ARCH_WANT_UNLOCKED_CTXSW
1884 /* In this case, finish_task_switch does not reenable preemption */
1885 preempt_enable();
1886#endif
1da177e4 1887 if (current->set_child_tid)
b488893a 1888 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
1889}
1890
1891/*
1892 * context_switch - switch to the new MM and the new
1893 * thread's register state.
1894 */
dd41f596 1895static inline void
70b97a7f 1896context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 1897 struct task_struct *next)
1da177e4 1898{
dd41f596 1899 struct mm_struct *mm, *oldmm;
1da177e4 1900
e107be36 1901 prepare_task_switch(rq, prev, next);
dd41f596
IM
1902 mm = next->mm;
1903 oldmm = prev->active_mm;
9226d125
ZA
1904 /*
1905 * For paravirt, this is coupled with an exit in switch_to to
1906 * combine the page table reload and the switch backend into
1907 * one hypercall.
1908 */
1909 arch_enter_lazy_cpu_mode();
1910
dd41f596 1911 if (unlikely(!mm)) {
1da177e4
LT
1912 next->active_mm = oldmm;
1913 atomic_inc(&oldmm->mm_count);
1914 enter_lazy_tlb(oldmm, next);
1915 } else
1916 switch_mm(oldmm, mm, next);
1917
dd41f596 1918 if (unlikely(!prev->mm)) {
1da177e4 1919 prev->active_mm = NULL;
1da177e4
LT
1920 rq->prev_mm = oldmm;
1921 }
3a5f5e48
IM
1922 /*
1923 * Since the runqueue lock will be released by the next
1924 * task (which is an invalid locking op but in the case
1925 * of the scheduler it's an obvious special-case), so we
1926 * do an early lockdep release here:
1927 */
1928#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 1929 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 1930#endif
1da177e4
LT
1931
1932 /* Here we just switch the register state and the stack. */
1933 switch_to(prev, next, prev);
1934
dd41f596
IM
1935 barrier();
1936 /*
1937 * this_rq must be evaluated again because prev may have moved
1938 * CPUs since it called schedule(), thus the 'rq' on its stack
1939 * frame will be invalid.
1940 */
1941 finish_task_switch(this_rq(), prev);
1da177e4
LT
1942}
1943
1944/*
1945 * nr_running, nr_uninterruptible and nr_context_switches:
1946 *
1947 * externally visible scheduler statistics: current number of runnable
1948 * threads, current number of uninterruptible-sleeping threads, total
1949 * number of context switches performed since bootup.
1950 */
1951unsigned long nr_running(void)
1952{
1953 unsigned long i, sum = 0;
1954
1955 for_each_online_cpu(i)
1956 sum += cpu_rq(i)->nr_running;
1957
1958 return sum;
1959}
1960
1961unsigned long nr_uninterruptible(void)
1962{
1963 unsigned long i, sum = 0;
1964
0a945022 1965 for_each_possible_cpu(i)
1da177e4
LT
1966 sum += cpu_rq(i)->nr_uninterruptible;
1967
1968 /*
1969 * Since we read the counters lockless, it might be slightly
1970 * inaccurate. Do not allow it to go below zero though:
1971 */
1972 if (unlikely((long)sum < 0))
1973 sum = 0;
1974
1975 return sum;
1976}
1977
1978unsigned long long nr_context_switches(void)
1979{
cc94abfc
SR
1980 int i;
1981 unsigned long long sum = 0;
1da177e4 1982
0a945022 1983 for_each_possible_cpu(i)
1da177e4
LT
1984 sum += cpu_rq(i)->nr_switches;
1985
1986 return sum;
1987}
1988
1989unsigned long nr_iowait(void)
1990{
1991 unsigned long i, sum = 0;
1992
0a945022 1993 for_each_possible_cpu(i)
1da177e4
LT
1994 sum += atomic_read(&cpu_rq(i)->nr_iowait);
1995
1996 return sum;
1997}
1998
db1b1fef
JS
1999unsigned long nr_active(void)
2000{
2001 unsigned long i, running = 0, uninterruptible = 0;
2002
2003 for_each_online_cpu(i) {
2004 running += cpu_rq(i)->nr_running;
2005 uninterruptible += cpu_rq(i)->nr_uninterruptible;
2006 }
2007
2008 if (unlikely((long)uninterruptible < 0))
2009 uninterruptible = 0;
2010
2011 return running + uninterruptible;
2012}
2013
48f24c4d 2014/*
dd41f596
IM
2015 * Update rq->cpu_load[] statistics. This function is usually called every
2016 * scheduler tick (TICK_NSEC).
48f24c4d 2017 */
dd41f596 2018static void update_cpu_load(struct rq *this_rq)
48f24c4d 2019{
495eca49 2020 unsigned long this_load = this_rq->load.weight;
dd41f596
IM
2021 int i, scale;
2022
2023 this_rq->nr_load_updates++;
dd41f596
IM
2024
2025 /* Update our load: */
2026 for (i = 0, scale = 1; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
2027 unsigned long old_load, new_load;
2028
2029 /* scale is effectively 1 << i now, and >> i divides by scale */
2030
2031 old_load = this_rq->cpu_load[i];
2032 new_load = this_load;
a25707f3
IM
2033 /*
2034 * Round up the averaging division if load is increasing. This
2035 * prevents us from getting stuck on 9 if the load is 10, for
2036 * example.
2037 */
2038 if (new_load > old_load)
2039 new_load += scale-1;
dd41f596
IM
2040 this_rq->cpu_load[i] = (old_load*(scale-1) + new_load) >> i;
2041 }
48f24c4d
IM
2042}
2043
dd41f596
IM
2044#ifdef CONFIG_SMP
2045
1da177e4
LT
2046/*
2047 * double_rq_lock - safely lock two runqueues
2048 *
2049 * Note this does not disable interrupts like task_rq_lock,
2050 * you need to do so manually before calling.
2051 */
70b97a7f 2052static void double_rq_lock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2053 __acquires(rq1->lock)
2054 __acquires(rq2->lock)
2055{
054b9108 2056 BUG_ON(!irqs_disabled());
1da177e4
LT
2057 if (rq1 == rq2) {
2058 spin_lock(&rq1->lock);
2059 __acquire(rq2->lock); /* Fake it out ;) */
2060 } else {
c96d145e 2061 if (rq1 < rq2) {
1da177e4
LT
2062 spin_lock(&rq1->lock);
2063 spin_lock(&rq2->lock);
2064 } else {
2065 spin_lock(&rq2->lock);
2066 spin_lock(&rq1->lock);
2067 }
2068 }
6e82a3be
IM
2069 update_rq_clock(rq1);
2070 update_rq_clock(rq2);
1da177e4
LT
2071}
2072
2073/*
2074 * double_rq_unlock - safely unlock two runqueues
2075 *
2076 * Note this does not restore interrupts like task_rq_unlock,
2077 * you need to do so manually after calling.
2078 */
70b97a7f 2079static void double_rq_unlock(struct rq *rq1, struct rq *rq2)
1da177e4
LT
2080 __releases(rq1->lock)
2081 __releases(rq2->lock)
2082{
2083 spin_unlock(&rq1->lock);
2084 if (rq1 != rq2)
2085 spin_unlock(&rq2->lock);
2086 else
2087 __release(rq2->lock);
2088}
2089
2090/*
2091 * double_lock_balance - lock the busiest runqueue, this_rq is locked already.
2092 */
70b97a7f 2093static void double_lock_balance(struct rq *this_rq, struct rq *busiest)
1da177e4
LT
2094 __releases(this_rq->lock)
2095 __acquires(busiest->lock)
2096 __acquires(this_rq->lock)
2097{
054b9108
KK
2098 if (unlikely(!irqs_disabled())) {
2099 /* printk() doesn't work good under rq->lock */
2100 spin_unlock(&this_rq->lock);
2101 BUG_ON(1);
2102 }
1da177e4 2103 if (unlikely(!spin_trylock(&busiest->lock))) {
c96d145e 2104 if (busiest < this_rq) {
1da177e4
LT
2105 spin_unlock(&this_rq->lock);
2106 spin_lock(&busiest->lock);
2107 spin_lock(&this_rq->lock);
2108 } else
2109 spin_lock(&busiest->lock);
2110 }
2111}
2112
1da177e4
LT
2113/*
2114 * If dest_cpu is allowed for this process, migrate the task to it.
2115 * This is accomplished by forcing the cpu_allowed mask to only
2116 * allow dest_cpu, which will force the cpu onto dest_cpu. Then
2117 * the cpu_allowed mask is restored.
2118 */
36c8b586 2119static void sched_migrate_task(struct task_struct *p, int dest_cpu)
1da177e4 2120{
70b97a7f 2121 struct migration_req req;
1da177e4 2122 unsigned long flags;
70b97a7f 2123 struct rq *rq;
1da177e4
LT
2124
2125 rq = task_rq_lock(p, &flags);
2126 if (!cpu_isset(dest_cpu, p->cpus_allowed)
2127 || unlikely(cpu_is_offline(dest_cpu)))
2128 goto out;
2129
2130 /* force the process onto the specified CPU */
2131 if (migrate_task(p, dest_cpu, &req)) {
2132 /* Need to wait for migration thread (might exit: take ref). */
2133 struct task_struct *mt = rq->migration_thread;
36c8b586 2134
1da177e4
LT
2135 get_task_struct(mt);
2136 task_rq_unlock(rq, &flags);
2137 wake_up_process(mt);
2138 put_task_struct(mt);
2139 wait_for_completion(&req.done);
36c8b586 2140
1da177e4
LT
2141 return;
2142 }
2143out:
2144 task_rq_unlock(rq, &flags);
2145}
2146
2147/*
476d139c
NP
2148 * sched_exec - execve() is a valuable balancing opportunity, because at
2149 * this point the task has the smallest effective memory and cache footprint.
1da177e4
LT
2150 */
2151void sched_exec(void)
2152{
1da177e4 2153 int new_cpu, this_cpu = get_cpu();
476d139c 2154 new_cpu = sched_balance_self(this_cpu, SD_BALANCE_EXEC);
1da177e4 2155 put_cpu();
476d139c
NP
2156 if (new_cpu != this_cpu)
2157 sched_migrate_task(current, new_cpu);
1da177e4
LT
2158}
2159
2160/*
2161 * pull_task - move a task from a remote runqueue to the local runqueue.
2162 * Both runqueues must be locked.
2163 */
dd41f596
IM
2164static void pull_task(struct rq *src_rq, struct task_struct *p,
2165 struct rq *this_rq, int this_cpu)
1da177e4 2166{
2e1cb74a 2167 deactivate_task(src_rq, p, 0);
1da177e4 2168 set_task_cpu(p, this_cpu);
dd41f596 2169 activate_task(this_rq, p, 0);
1da177e4
LT
2170 /*
2171 * Note that idle threads have a prio of MAX_PRIO, for this test
2172 * to be always true for them.
2173 */
dd41f596 2174 check_preempt_curr(this_rq, p);
1da177e4
LT
2175}
2176
2177/*
2178 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
2179 */
858119e1 2180static
70b97a7f 2181int can_migrate_task(struct task_struct *p, struct rq *rq, int this_cpu,
d15bcfdb 2182 struct sched_domain *sd, enum cpu_idle_type idle,
95cdf3b7 2183 int *all_pinned)
1da177e4
LT
2184{
2185 /*
2186 * We do not migrate tasks that are:
2187 * 1) running (obviously), or
2188 * 2) cannot be migrated to this CPU due to cpus_allowed, or
2189 * 3) are cache-hot on their current CPU.
2190 */
cc367732
IM
2191 if (!cpu_isset(this_cpu, p->cpus_allowed)) {
2192 schedstat_inc(p, se.nr_failed_migrations_affine);
1da177e4 2193 return 0;
cc367732 2194 }
81026794
NP
2195 *all_pinned = 0;
2196
cc367732
IM
2197 if (task_running(rq, p)) {
2198 schedstat_inc(p, se.nr_failed_migrations_running);
81026794 2199 return 0;
cc367732 2200 }
1da177e4 2201
da84d961
IM
2202 /*
2203 * Aggressive migration if:
2204 * 1) task is cache cold, or
2205 * 2) too many balance attempts have failed.
2206 */
2207
6bc1665b
IM
2208 if (!task_hot(p, rq->clock, sd) ||
2209 sd->nr_balance_failed > sd->cache_nice_tries) {
da84d961 2210#ifdef CONFIG_SCHEDSTATS
cc367732 2211 if (task_hot(p, rq->clock, sd)) {
da84d961 2212 schedstat_inc(sd, lb_hot_gained[idle]);
cc367732
IM
2213 schedstat_inc(p, se.nr_forced_migrations);
2214 }
da84d961
IM
2215#endif
2216 return 1;
2217 }
2218
cc367732
IM
2219 if (task_hot(p, rq->clock, sd)) {
2220 schedstat_inc(p, se.nr_failed_migrations_hot);
da84d961 2221 return 0;
cc367732 2222 }
1da177e4
LT
2223 return 1;
2224}
2225
dd41f596 2226static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
2dd73a4f 2227 unsigned long max_nr_move, unsigned long max_load_move,
d15bcfdb 2228 struct sched_domain *sd, enum cpu_idle_type idle,
dd41f596 2229 int *all_pinned, unsigned long *load_moved,
a4ac01c3 2230 int *this_best_prio, struct rq_iterator *iterator)
1da177e4 2231{
dd41f596
IM
2232 int pulled = 0, pinned = 0, skip_for_load;
2233 struct task_struct *p;
2234 long rem_load_move = max_load_move;
1da177e4 2235
2dd73a4f 2236 if (max_nr_move == 0 || max_load_move == 0)
1da177e4
LT
2237 goto out;
2238
81026794
NP
2239 pinned = 1;
2240
1da177e4 2241 /*
dd41f596 2242 * Start the load-balancing iterator:
1da177e4 2243 */
dd41f596
IM
2244 p = iterator->start(iterator->arg);
2245next:
2246 if (!p)
1da177e4 2247 goto out;
50ddd969
PW
2248 /*
2249 * To help distribute high priority tasks accross CPUs we don't
2250 * skip a task if it will be the highest priority task (i.e. smallest
2251 * prio value) on its new queue regardless of its load weight
2252 */
dd41f596
IM
2253 skip_for_load = (p->se.load.weight >> 1) > rem_load_move +
2254 SCHED_LOAD_SCALE_FUZZ;
a4ac01c3 2255 if ((skip_for_load && p->prio >= *this_best_prio) ||
dd41f596 2256 !can_migrate_task(p, busiest, this_cpu, sd, idle, &pinned)) {
dd41f596
IM
2257 p = iterator->next(iterator->arg);
2258 goto next;
1da177e4
LT
2259 }
2260
dd41f596 2261 pull_task(busiest, p, this_rq, this_cpu);
1da177e4 2262 pulled++;
dd41f596 2263 rem_load_move -= p->se.load.weight;
1da177e4 2264
2dd73a4f
PW
2265 /*
2266 * We only want to steal up to the prescribed number of tasks
2267 * and the prescribed amount of weighted load.
2268 */
2269 if (pulled < max_nr_move && rem_load_move > 0) {
a4ac01c3
PW
2270 if (p->prio < *this_best_prio)
2271 *this_best_prio = p->prio;
dd41f596
IM
2272 p = iterator->next(iterator->arg);
2273 goto next;
1da177e4
LT
2274 }
2275out:
2276 /*
2277 * Right now, this is the only place pull_task() is called,
2278 * so we can safely collect pull_task() stats here rather than
2279 * inside pull_task().
2280 */
2281 schedstat_add(sd, lb_gained[idle], pulled);
81026794
NP
2282
2283 if (all_pinned)
2284 *all_pinned = pinned;
dd41f596 2285 *load_moved = max_load_move - rem_load_move;
1da177e4
LT
2286 return pulled;
2287}
2288
dd41f596 2289/*
43010659
PW
2290 * move_tasks tries to move up to max_load_move weighted load from busiest to
2291 * this_rq, as part of a balancing operation within domain "sd".
2292 * Returns 1 if successful and 0 otherwise.
dd41f596
IM
2293 *
2294 * Called with both runqueues locked.
2295 */
2296static int move_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
43010659 2297 unsigned long max_load_move,
dd41f596
IM
2298 struct sched_domain *sd, enum cpu_idle_type idle,
2299 int *all_pinned)
2300{
5522d5d5 2301 const struct sched_class *class = sched_class_highest;
43010659 2302 unsigned long total_load_moved = 0;
a4ac01c3 2303 int this_best_prio = this_rq->curr->prio;
dd41f596
IM
2304
2305 do {
43010659
PW
2306 total_load_moved +=
2307 class->load_balance(this_rq, this_cpu, busiest,
2308 ULONG_MAX, max_load_move - total_load_moved,
a4ac01c3 2309 sd, idle, all_pinned, &this_best_prio);
dd41f596 2310 class = class->next;
43010659 2311 } while (class && max_load_move > total_load_moved);
dd41f596 2312
43010659
PW
2313 return total_load_moved > 0;
2314}
2315
2316/*
2317 * move_one_task tries to move exactly one task from busiest to this_rq, as
2318 * part of active balancing operations within "domain".
2319 * Returns 1 if successful and 0 otherwise.
2320 *
2321 * Called with both runqueues locked.
2322 */
2323static int move_one_task(struct rq *this_rq, int this_cpu, struct rq *busiest,
2324 struct sched_domain *sd, enum cpu_idle_type idle)
2325{
5522d5d5 2326 const struct sched_class *class;
a4ac01c3 2327 int this_best_prio = MAX_PRIO;
43010659
PW
2328
2329 for (class = sched_class_highest; class; class = class->next)
2330 if (class->load_balance(this_rq, this_cpu, busiest,
a4ac01c3
PW
2331 1, ULONG_MAX, sd, idle, NULL,
2332 &this_best_prio))
43010659
PW
2333 return 1;
2334
2335 return 0;
dd41f596
IM
2336}
2337
1da177e4
LT
2338/*
2339 * find_busiest_group finds and returns the busiest CPU group within the
48f24c4d
IM
2340 * domain. It calculates and returns the amount of weighted load which
2341 * should be moved to restore balance via the imbalance parameter.
1da177e4
LT
2342 */
2343static struct sched_group *
2344find_busiest_group(struct sched_domain *sd, int this_cpu,
dd41f596
IM
2345 unsigned long *imbalance, enum cpu_idle_type idle,
2346 int *sd_idle, cpumask_t *cpus, int *balance)
1da177e4
LT
2347{
2348 struct sched_group *busiest = NULL, *this = NULL, *group = sd->groups;
2349 unsigned long max_load, avg_load, total_load, this_load, total_pwr;
0c117f1b 2350 unsigned long max_pull;
2dd73a4f
PW
2351 unsigned long busiest_load_per_task, busiest_nr_running;
2352 unsigned long this_load_per_task, this_nr_running;
908a7c1b 2353 int load_idx, group_imb = 0;
5c45bf27
SS
2354#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2355 int power_savings_balance = 1;
2356 unsigned long leader_nr_running = 0, min_load_per_task = 0;
2357 unsigned long min_nr_running = ULONG_MAX;
2358 struct sched_group *group_min = NULL, *group_leader = NULL;
2359#endif
1da177e4
LT
2360
2361 max_load = this_load = total_load = total_pwr = 0;
2dd73a4f
PW
2362 busiest_load_per_task = busiest_nr_running = 0;
2363 this_load_per_task = this_nr_running = 0;
d15bcfdb 2364 if (idle == CPU_NOT_IDLE)
7897986b 2365 load_idx = sd->busy_idx;
d15bcfdb 2366 else if (idle == CPU_NEWLY_IDLE)
7897986b
NP
2367 load_idx = sd->newidle_idx;
2368 else
2369 load_idx = sd->idle_idx;
1da177e4
LT
2370
2371 do {
908a7c1b 2372 unsigned long load, group_capacity, max_cpu_load, min_cpu_load;
1da177e4
LT
2373 int local_group;
2374 int i;
908a7c1b 2375 int __group_imb = 0;
783609c6 2376 unsigned int balance_cpu = -1, first_idle_cpu = 0;
2dd73a4f 2377 unsigned long sum_nr_running, sum_weighted_load;
1da177e4
LT
2378
2379 local_group = cpu_isset(this_cpu, group->cpumask);
2380
783609c6
SS
2381 if (local_group)
2382 balance_cpu = first_cpu(group->cpumask);
2383
1da177e4 2384 /* Tally up the load of all CPUs in the group */
2dd73a4f 2385 sum_weighted_load = sum_nr_running = avg_load = 0;
908a7c1b
KC
2386 max_cpu_load = 0;
2387 min_cpu_load = ~0UL;
1da177e4
LT
2388
2389 for_each_cpu_mask(i, group->cpumask) {
0a2966b4
CL
2390 struct rq *rq;
2391
2392 if (!cpu_isset(i, *cpus))
2393 continue;
2394
2395 rq = cpu_rq(i);
2dd73a4f 2396
9439aab8 2397 if (*sd_idle && rq->nr_running)
5969fe06
NP
2398 *sd_idle = 0;
2399
1da177e4 2400 /* Bias balancing toward cpus of our domain */
783609c6
SS
2401 if (local_group) {
2402 if (idle_cpu(i) && !first_idle_cpu) {
2403 first_idle_cpu = 1;
2404 balance_cpu = i;
2405 }
2406
a2000572 2407 load = target_load(i, load_idx);
908a7c1b 2408 } else {
a2000572 2409 load = source_load(i, load_idx);
908a7c1b
KC
2410 if (load > max_cpu_load)
2411 max_cpu_load = load;
2412 if (min_cpu_load > load)
2413 min_cpu_load = load;
2414 }
1da177e4
LT
2415
2416 avg_load += load;
2dd73a4f 2417 sum_nr_running += rq->nr_running;
dd41f596 2418 sum_weighted_load += weighted_cpuload(i);
1da177e4
LT
2419 }
2420
783609c6
SS
2421 /*
2422 * First idle cpu or the first cpu(busiest) in this sched group
2423 * is eligible for doing load balancing at this and above
9439aab8
SS
2424 * domains. In the newly idle case, we will allow all the cpu's
2425 * to do the newly idle load balance.
783609c6 2426 */
9439aab8
SS
2427 if (idle != CPU_NEWLY_IDLE && local_group &&
2428 balance_cpu != this_cpu && balance) {
783609c6
SS
2429 *balance = 0;
2430 goto ret;
2431 }
2432
1da177e4 2433 total_load += avg_load;
5517d86b 2434 total_pwr += group->__cpu_power;
1da177e4
LT
2435
2436 /* Adjust by relative CPU power of the group */
5517d86b
ED
2437 avg_load = sg_div_cpu_power(group,
2438 avg_load * SCHED_LOAD_SCALE);
1da177e4 2439
908a7c1b
KC
2440 if ((max_cpu_load - min_cpu_load) > SCHED_LOAD_SCALE)
2441 __group_imb = 1;
2442
5517d86b 2443 group_capacity = group->__cpu_power / SCHED_LOAD_SCALE;
5c45bf27 2444
1da177e4
LT
2445 if (local_group) {
2446 this_load = avg_load;
2447 this = group;
2dd73a4f
PW
2448 this_nr_running = sum_nr_running;
2449 this_load_per_task = sum_weighted_load;
2450 } else if (avg_load > max_load &&
908a7c1b 2451 (sum_nr_running > group_capacity || __group_imb)) {
1da177e4
LT
2452 max_load = avg_load;
2453 busiest = group;
2dd73a4f
PW
2454 busiest_nr_running = sum_nr_running;
2455 busiest_load_per_task = sum_weighted_load;
908a7c1b 2456 group_imb = __group_imb;
1da177e4 2457 }
5c45bf27
SS
2458
2459#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
2460 /*
2461 * Busy processors will not participate in power savings
2462 * balance.
2463 */
dd41f596
IM
2464 if (idle == CPU_NOT_IDLE ||
2465 !(sd->flags & SD_POWERSAVINGS_BALANCE))
2466 goto group_next;
5c45bf27
SS
2467
2468 /*
2469 * If the local group is idle or completely loaded
2470 * no need to do power savings balance at this domain
2471 */
2472 if (local_group && (this_nr_running >= group_capacity ||
2473 !this_nr_running))
2474 power_savings_balance = 0;
2475
dd41f596 2476 /*
5c45bf27
SS
2477 * If a group is already running at full capacity or idle,
2478 * don't include that group in power savings calculations
dd41f596
IM
2479 */
2480 if (!power_savings_balance || sum_nr_running >= group_capacity
5c45bf27 2481 || !sum_nr_running)
dd41f596 2482 goto group_next;
5c45bf27 2483
dd41f596 2484 /*
5c45bf27 2485 * Calculate the group which has the least non-idle load.
dd41f596
IM
2486 * This is the group from where we need to pick up the load
2487 * for saving power
2488 */
2489 if ((sum_nr_running < min_nr_running) ||
2490 (sum_nr_running == min_nr_running &&
5c45bf27
SS
2491 first_cpu(group->cpumask) <
2492 first_cpu(group_min->cpumask))) {
dd41f596
IM
2493 group_min = group;
2494 min_nr_running = sum_nr_running;
5c45bf27
SS
2495 min_load_per_task = sum_weighted_load /
2496 sum_nr_running;
dd41f596 2497 }
5c45bf27 2498
dd41f596 2499 /*
5c45bf27 2500 * Calculate the group which is almost near its
dd41f596
IM
2501 * capacity but still has some space to pick up some load
2502 * from other group and save more power
2503 */
2504 if (sum_nr_running <= group_capacity - 1) {
2505 if (sum_nr_running > leader_nr_running ||
2506 (sum_nr_running == leader_nr_running &&
2507 first_cpu(group->cpumask) >
2508 first_cpu(group_leader->cpumask))) {
2509 group_leader = group;
2510 leader_nr_running = sum_nr_running;
2511 }
48f24c4d 2512 }
5c45bf27
SS
2513group_next:
2514#endif
1da177e4
LT
2515 group = group->next;
2516 } while (group != sd->groups);
2517
2dd73a4f 2518 if (!busiest || this_load >= max_load || busiest_nr_running == 0)
1da177e4
LT
2519 goto out_balanced;
2520
2521 avg_load = (SCHED_LOAD_SCALE * total_load) / total_pwr;
2522
2523 if (this_load >= avg_load ||
2524 100*max_load <= sd->imbalance_pct*this_load)
2525 goto out_balanced;
2526
2dd73a4f 2527 busiest_load_per_task /= busiest_nr_running;
908a7c1b
KC
2528 if (group_imb)
2529 busiest_load_per_task = min(busiest_load_per_task, avg_load);
2530
1da177e4
LT
2531 /*
2532 * We're trying to get all the cpus to the average_load, so we don't
2533 * want to push ourselves above the average load, nor do we wish to
2534 * reduce the max loaded cpu below the average load, as either of these
2535 * actions would just result in more rebalancing later, and ping-pong
2536 * tasks around. Thus we look for the minimum possible imbalance.
2537 * Negative imbalances (*we* are more loaded than anyone else) will
2538 * be counted as no imbalance for these purposes -- we can't fix that
2539 * by pulling tasks to us. Be careful of negative numbers as they'll
2540 * appear as very large values with unsigned longs.
2541 */
2dd73a4f
PW
2542 if (max_load <= busiest_load_per_task)
2543 goto out_balanced;
2544
2545 /*
2546 * In the presence of smp nice balancing, certain scenarios can have
2547 * max load less than avg load(as we skip the groups at or below
2548 * its cpu_power, while calculating max_load..)
2549 */
2550 if (max_load < avg_load) {
2551 *imbalance = 0;
2552 goto small_imbalance;
2553 }
0c117f1b
SS
2554
2555 /* Don't want to pull so many tasks that a group would go idle */
2dd73a4f 2556 max_pull = min(max_load - avg_load, max_load - busiest_load_per_task);
0c117f1b 2557
1da177e4 2558 /* How much load to actually move to equalise the imbalance */
5517d86b
ED
2559 *imbalance = min(max_pull * busiest->__cpu_power,
2560 (avg_load - this_load) * this->__cpu_power)
1da177e4
LT
2561 / SCHED_LOAD_SCALE;
2562
2dd73a4f
PW
2563 /*
2564 * if *imbalance is less than the average load per runnable task
2565 * there is no gaurantee that any tasks will be moved so we'll have
2566 * a think about bumping its value to force at least one task to be
2567 * moved
2568 */
7fd0d2dd 2569 if (*imbalance < busiest_load_per_task) {
48f24c4d 2570 unsigned long tmp, pwr_now, pwr_move;
2dd73a4f
PW
2571 unsigned int imbn;
2572
2573small_imbalance:
2574 pwr_move = pwr_now = 0;
2575 imbn = 2;
2576 if (this_nr_running) {
2577 this_load_per_task /= this_nr_running;
2578 if (busiest_load_per_task > this_load_per_task)
2579 imbn = 1;
2580 } else
2581 this_load_per_task = SCHED_LOAD_SCALE;
1da177e4 2582
dd41f596
IM
2583 if (max_load - this_load + SCHED_LOAD_SCALE_FUZZ >=
2584 busiest_load_per_task * imbn) {
2dd73a4f 2585 *imbalance = busiest_load_per_task;
1da177e4
LT
2586 return busiest;
2587 }
2588
2589 /*
2590 * OK, we don't have enough imbalance to justify moving tasks,
2591 * however we may be able to increase total CPU power used by
2592 * moving them.
2593 */
2594
5517d86b
ED
2595 pwr_now += busiest->__cpu_power *
2596 min(busiest_load_per_task, max_load);
2597 pwr_now += this->__cpu_power *
2598 min(this_load_per_task, this_load);
1da177e4
LT
2599 pwr_now /= SCHED_LOAD_SCALE;
2600
2601 /* Amount of load we'd subtract */
5517d86b
ED
2602 tmp = sg_div_cpu_power(busiest,
2603 busiest_load_per_task * SCHED_LOAD_SCALE);
1da177e4 2604 if (max_load > tmp)
5517d86b 2605 pwr_move += busiest->__cpu_power *
2dd73a4f 2606 min(busiest_load_per_task, max_load - tmp);
1da177e4
LT
2607
2608 /* Amount of load we'd add */
5517d86b 2609 if (max_load * busiest->__cpu_power <
33859f7f 2610 busiest_load_per_task * SCHED_LOAD_SCALE)
5517d86b
ED
2611 tmp = sg_div_cpu_power(this,
2612 max_load * busiest->__cpu_power);
1da177e4 2613 else
5517d86b
ED
2614 tmp = sg_div_cpu_power(this,
2615 busiest_load_per_task * SCHED_LOAD_SCALE);
2616 pwr_move += this->__cpu_power *
2617 min(this_load_per_task, this_load + tmp);
1da177e4
LT
2618 pwr_move /= SCHED_LOAD_SCALE;
2619
2620 /* Move if we gain throughput */
7fd0d2dd
SS
2621 if (pwr_move > pwr_now)
2622 *imbalance = busiest_load_per_task;
1da177e4
LT
2623 }
2624
1da177e4
LT
2625 return busiest;
2626
2627out_balanced:
5c45bf27 2628#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
d15bcfdb 2629 if (idle == CPU_NOT_IDLE || !(sd->flags & SD_POWERSAVINGS_BALANCE))
5c45bf27 2630 goto ret;
1da177e4 2631
5c45bf27
SS
2632 if (this == group_leader && group_leader != group_min) {
2633 *imbalance = min_load_per_task;
2634 return group_min;
2635 }
5c45bf27 2636#endif
783609c6 2637ret:
1da177e4
LT
2638 *imbalance = 0;
2639 return NULL;
2640}
2641
2642/*
2643 * find_busiest_queue - find the busiest runqueue among the cpus in group.
2644 */
70b97a7f 2645static struct rq *
d15bcfdb 2646find_busiest_queue(struct sched_group *group, enum cpu_idle_type idle,
0a2966b4 2647 unsigned long imbalance, cpumask_t *cpus)
1da177e4 2648{
70b97a7f 2649 struct rq *busiest = NULL, *rq;
2dd73a4f 2650 unsigned long max_load = 0;
1da177e4
LT
2651 int i;
2652
2653 for_each_cpu_mask(i, group->cpumask) {
dd41f596 2654 unsigned long wl;
0a2966b4
CL
2655
2656 if (!cpu_isset(i, *cpus))
2657 continue;
2658
48f24c4d 2659 rq = cpu_rq(i);
dd41f596 2660 wl = weighted_cpuload(i);
2dd73a4f 2661
dd41f596 2662 if (rq->nr_running == 1 && wl > imbalance)
2dd73a4f 2663 continue;
1da177e4 2664
dd41f596
IM
2665 if (wl > max_load) {
2666 max_load = wl;
48f24c4d 2667 busiest = rq;
1da177e4
LT
2668 }
2669 }
2670
2671 return busiest;
2672}
2673
77391d71
NP
2674/*
2675 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
2676 * so long as it is large enough.
2677 */
2678#define MAX_PINNED_INTERVAL 512
2679
1da177e4
LT
2680/*
2681 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2682 * tasks if there is an imbalance.
1da177e4 2683 */
70b97a7f 2684static int load_balance(int this_cpu, struct rq *this_rq,
d15bcfdb 2685 struct sched_domain *sd, enum cpu_idle_type idle,
783609c6 2686 int *balance)
1da177e4 2687{
43010659 2688 int ld_moved, all_pinned = 0, active_balance = 0, sd_idle = 0;
1da177e4 2689 struct sched_group *group;
1da177e4 2690 unsigned long imbalance;
70b97a7f 2691 struct rq *busiest;
0a2966b4 2692 cpumask_t cpus = CPU_MASK_ALL;
fe2eea3f 2693 unsigned long flags;
5969fe06 2694
89c4710e
SS
2695 /*
2696 * When power savings policy is enabled for the parent domain, idle
2697 * sibling can pick up load irrespective of busy siblings. In this case,
dd41f596 2698 * let the state of idle sibling percolate up as CPU_IDLE, instead of
d15bcfdb 2699 * portraying it as CPU_NOT_IDLE.
89c4710e 2700 */
d15bcfdb 2701 if (idle != CPU_NOT_IDLE && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2702 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2703 sd_idle = 1;
1da177e4 2704
2d72376b 2705 schedstat_inc(sd, lb_count[idle]);
1da177e4 2706
0a2966b4
CL
2707redo:
2708 group = find_busiest_group(sd, this_cpu, &imbalance, idle, &sd_idle,
783609c6
SS
2709 &cpus, balance);
2710
06066714 2711 if (*balance == 0)
783609c6 2712 goto out_balanced;
783609c6 2713
1da177e4
LT
2714 if (!group) {
2715 schedstat_inc(sd, lb_nobusyg[idle]);
2716 goto out_balanced;
2717 }
2718
0a2966b4 2719 busiest = find_busiest_queue(group, idle, imbalance, &cpus);
1da177e4
LT
2720 if (!busiest) {
2721 schedstat_inc(sd, lb_nobusyq[idle]);
2722 goto out_balanced;
2723 }
2724
db935dbd 2725 BUG_ON(busiest == this_rq);
1da177e4
LT
2726
2727 schedstat_add(sd, lb_imbalance[idle], imbalance);
2728
43010659 2729 ld_moved = 0;
1da177e4
LT
2730 if (busiest->nr_running > 1) {
2731 /*
2732 * Attempt to move tasks. If find_busiest_group has found
2733 * an imbalance but busiest->nr_running <= 1, the group is
43010659 2734 * still unbalanced. ld_moved simply stays zero, so it is
1da177e4
LT
2735 * correctly treated as an imbalance.
2736 */
fe2eea3f 2737 local_irq_save(flags);
e17224bf 2738 double_rq_lock(this_rq, busiest);
43010659 2739 ld_moved = move_tasks(this_rq, this_cpu, busiest,
48f24c4d 2740 imbalance, sd, idle, &all_pinned);
e17224bf 2741 double_rq_unlock(this_rq, busiest);
fe2eea3f 2742 local_irq_restore(flags);
81026794 2743
46cb4b7c
SS
2744 /*
2745 * some other cpu did the load balance for us.
2746 */
43010659 2747 if (ld_moved && this_cpu != smp_processor_id())
46cb4b7c
SS
2748 resched_cpu(this_cpu);
2749
81026794 2750 /* All tasks on this runqueue were pinned by CPU affinity */
0a2966b4
CL
2751 if (unlikely(all_pinned)) {
2752 cpu_clear(cpu_of(busiest), cpus);
2753 if (!cpus_empty(cpus))
2754 goto redo;
81026794 2755 goto out_balanced;
0a2966b4 2756 }
1da177e4 2757 }
81026794 2758
43010659 2759 if (!ld_moved) {
1da177e4
LT
2760 schedstat_inc(sd, lb_failed[idle]);
2761 sd->nr_balance_failed++;
2762
2763 if (unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2)) {
1da177e4 2764
fe2eea3f 2765 spin_lock_irqsave(&busiest->lock, flags);
fa3b6ddc
SS
2766
2767 /* don't kick the migration_thread, if the curr
2768 * task on busiest cpu can't be moved to this_cpu
2769 */
2770 if (!cpu_isset(this_cpu, busiest->curr->cpus_allowed)) {
fe2eea3f 2771 spin_unlock_irqrestore(&busiest->lock, flags);
fa3b6ddc
SS
2772 all_pinned = 1;
2773 goto out_one_pinned;
2774 }
2775
1da177e4
LT
2776 if (!busiest->active_balance) {
2777 busiest->active_balance = 1;
2778 busiest->push_cpu = this_cpu;
81026794 2779 active_balance = 1;
1da177e4 2780 }
fe2eea3f 2781 spin_unlock_irqrestore(&busiest->lock, flags);
81026794 2782 if (active_balance)
1da177e4
LT
2783 wake_up_process(busiest->migration_thread);
2784
2785 /*
2786 * We've kicked active balancing, reset the failure
2787 * counter.
2788 */
39507451 2789 sd->nr_balance_failed = sd->cache_nice_tries+1;
1da177e4 2790 }
81026794 2791 } else
1da177e4
LT
2792 sd->nr_balance_failed = 0;
2793
81026794 2794 if (likely(!active_balance)) {
1da177e4
LT
2795 /* We were unbalanced, so reset the balancing interval */
2796 sd->balance_interval = sd->min_interval;
81026794
NP
2797 } else {
2798 /*
2799 * If we've begun active balancing, start to back off. This
2800 * case may not be covered by the all_pinned logic if there
2801 * is only 1 task on the busy runqueue (because we don't call
2802 * move_tasks).
2803 */
2804 if (sd->balance_interval < sd->max_interval)
2805 sd->balance_interval *= 2;
1da177e4
LT
2806 }
2807
43010659 2808 if (!ld_moved && !sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2809 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2810 return -1;
43010659 2811 return ld_moved;
1da177e4
LT
2812
2813out_balanced:
1da177e4
LT
2814 schedstat_inc(sd, lb_balanced[idle]);
2815
16cfb1c0 2816 sd->nr_balance_failed = 0;
fa3b6ddc
SS
2817
2818out_one_pinned:
1da177e4 2819 /* tune up the balancing interval */
77391d71
NP
2820 if ((all_pinned && sd->balance_interval < MAX_PINNED_INTERVAL) ||
2821 (sd->balance_interval < sd->max_interval))
1da177e4
LT
2822 sd->balance_interval *= 2;
2823
48f24c4d 2824 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2825 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2826 return -1;
1da177e4
LT
2827 return 0;
2828}
2829
2830/*
2831 * Check this_cpu to ensure it is balanced within domain. Attempt to move
2832 * tasks if there is an imbalance.
2833 *
d15bcfdb 2834 * Called from schedule when this_rq is about to become idle (CPU_NEWLY_IDLE).
1da177e4
LT
2835 * this_rq is locked.
2836 */
48f24c4d 2837static int
70b97a7f 2838load_balance_newidle(int this_cpu, struct rq *this_rq, struct sched_domain *sd)
1da177e4
LT
2839{
2840 struct sched_group *group;
70b97a7f 2841 struct rq *busiest = NULL;
1da177e4 2842 unsigned long imbalance;
43010659 2843 int ld_moved = 0;
5969fe06 2844 int sd_idle = 0;
969bb4e4 2845 int all_pinned = 0;
0a2966b4 2846 cpumask_t cpus = CPU_MASK_ALL;
5969fe06 2847
89c4710e
SS
2848 /*
2849 * When power savings policy is enabled for the parent domain, idle
2850 * sibling can pick up load irrespective of busy siblings. In this case,
2851 * let the state of idle sibling percolate up as IDLE, instead of
d15bcfdb 2852 * portraying it as CPU_NOT_IDLE.
89c4710e
SS
2853 */
2854 if (sd->flags & SD_SHARE_CPUPOWER &&
2855 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2856 sd_idle = 1;
1da177e4 2857
2d72376b 2858 schedstat_inc(sd, lb_count[CPU_NEWLY_IDLE]);
0a2966b4 2859redo:
d15bcfdb 2860 group = find_busiest_group(sd, this_cpu, &imbalance, CPU_NEWLY_IDLE,
783609c6 2861 &sd_idle, &cpus, NULL);
1da177e4 2862 if (!group) {
d15bcfdb 2863 schedstat_inc(sd, lb_nobusyg[CPU_NEWLY_IDLE]);
16cfb1c0 2864 goto out_balanced;
1da177e4
LT
2865 }
2866
d15bcfdb 2867 busiest = find_busiest_queue(group, CPU_NEWLY_IDLE, imbalance,
0a2966b4 2868 &cpus);
db935dbd 2869 if (!busiest) {
d15bcfdb 2870 schedstat_inc(sd, lb_nobusyq[CPU_NEWLY_IDLE]);
16cfb1c0 2871 goto out_balanced;
1da177e4
LT
2872 }
2873
db935dbd
NP
2874 BUG_ON(busiest == this_rq);
2875
d15bcfdb 2876 schedstat_add(sd, lb_imbalance[CPU_NEWLY_IDLE], imbalance);
d6d5cfaf 2877
43010659 2878 ld_moved = 0;
d6d5cfaf
NP
2879 if (busiest->nr_running > 1) {
2880 /* Attempt to move tasks */
2881 double_lock_balance(this_rq, busiest);
6e82a3be
IM
2882 /* this_rq->clock is already updated */
2883 update_rq_clock(busiest);
43010659 2884 ld_moved = move_tasks(this_rq, this_cpu, busiest,
969bb4e4
SS
2885 imbalance, sd, CPU_NEWLY_IDLE,
2886 &all_pinned);
d6d5cfaf 2887 spin_unlock(&busiest->lock);
0a2966b4 2888
969bb4e4 2889 if (unlikely(all_pinned)) {
0a2966b4
CL
2890 cpu_clear(cpu_of(busiest), cpus);
2891 if (!cpus_empty(cpus))
2892 goto redo;
2893 }
d6d5cfaf
NP
2894 }
2895
43010659 2896 if (!ld_moved) {
d15bcfdb 2897 schedstat_inc(sd, lb_failed[CPU_NEWLY_IDLE]);
89c4710e
SS
2898 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
2899 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06
NP
2900 return -1;
2901 } else
16cfb1c0 2902 sd->nr_balance_failed = 0;
1da177e4 2903
43010659 2904 return ld_moved;
16cfb1c0
NP
2905
2906out_balanced:
d15bcfdb 2907 schedstat_inc(sd, lb_balanced[CPU_NEWLY_IDLE]);
48f24c4d 2908 if (!sd_idle && sd->flags & SD_SHARE_CPUPOWER &&
89c4710e 2909 !test_sd_parent(sd, SD_POWERSAVINGS_BALANCE))
5969fe06 2910 return -1;
16cfb1c0 2911 sd->nr_balance_failed = 0;
48f24c4d 2912
16cfb1c0 2913 return 0;
1da177e4
LT
2914}
2915
2916/*
2917 * idle_balance is called by schedule() if this_cpu is about to become
2918 * idle. Attempts to pull tasks from other CPUs.
2919 */
70b97a7f 2920static void idle_balance(int this_cpu, struct rq *this_rq)
1da177e4
LT
2921{
2922 struct sched_domain *sd;
dd41f596
IM
2923 int pulled_task = -1;
2924 unsigned long next_balance = jiffies + HZ;
1da177e4
LT
2925
2926 for_each_domain(this_cpu, sd) {
92c4ca5c
CL
2927 unsigned long interval;
2928
2929 if (!(sd->flags & SD_LOAD_BALANCE))
2930 continue;
2931
2932 if (sd->flags & SD_BALANCE_NEWIDLE)
48f24c4d 2933 /* If we've pulled tasks over stop searching: */
1bd77f2d 2934 pulled_task = load_balance_newidle(this_cpu,
92c4ca5c
CL
2935 this_rq, sd);
2936
2937 interval = msecs_to_jiffies(sd->balance_interval);
2938 if (time_after(next_balance, sd->last_balance + interval))
2939 next_balance = sd->last_balance + interval;
2940 if (pulled_task)
2941 break;
1da177e4 2942 }
dd41f596 2943 if (pulled_task || time_after(jiffies, this_rq->next_balance)) {
1bd77f2d
CL
2944 /*
2945 * We are going idle. next_balance may be set based on
2946 * a busy processor. So reset next_balance.
2947 */
2948 this_rq->next_balance = next_balance;
dd41f596 2949 }
1da177e4
LT
2950}
2951
2952/*
2953 * active_load_balance is run by migration threads. It pushes running tasks
2954 * off the busiest CPU onto idle CPUs. It requires at least 1 task to be
2955 * running on each physical CPU where possible, and avoids physical /
2956 * logical imbalances.
2957 *
2958 * Called with busiest_rq locked.
2959 */
70b97a7f 2960static void active_load_balance(struct rq *busiest_rq, int busiest_cpu)
1da177e4 2961{
39507451 2962 int target_cpu = busiest_rq->push_cpu;
70b97a7f
IM
2963 struct sched_domain *sd;
2964 struct rq *target_rq;
39507451 2965
48f24c4d 2966 /* Is there any task to move? */
39507451 2967 if (busiest_rq->nr_running <= 1)
39507451
NP
2968 return;
2969
2970 target_rq = cpu_rq(target_cpu);
1da177e4
LT
2971
2972 /*
39507451
NP
2973 * This condition is "impossible", if it occurs
2974 * we need to fix it. Originally reported by
2975 * Bjorn Helgaas on a 128-cpu setup.
1da177e4 2976 */
39507451 2977 BUG_ON(busiest_rq == target_rq);
1da177e4 2978
39507451
NP
2979 /* move a task from busiest_rq to target_rq */
2980 double_lock_balance(busiest_rq, target_rq);
6e82a3be
IM
2981 update_rq_clock(busiest_rq);
2982 update_rq_clock(target_rq);
39507451
NP
2983
2984 /* Search for an sd spanning us and the target CPU. */
c96d145e 2985 for_each_domain(target_cpu, sd) {
39507451 2986 if ((sd->flags & SD_LOAD_BALANCE) &&
48f24c4d 2987 cpu_isset(busiest_cpu, sd->span))
39507451 2988 break;
c96d145e 2989 }
39507451 2990
48f24c4d 2991 if (likely(sd)) {
2d72376b 2992 schedstat_inc(sd, alb_count);
39507451 2993
43010659
PW
2994 if (move_one_task(target_rq, target_cpu, busiest_rq,
2995 sd, CPU_IDLE))
48f24c4d
IM
2996 schedstat_inc(sd, alb_pushed);
2997 else
2998 schedstat_inc(sd, alb_failed);
2999 }
39507451 3000 spin_unlock(&target_rq->lock);
1da177e4
LT
3001}
3002
46cb4b7c
SS
3003#ifdef CONFIG_NO_HZ
3004static struct {
3005 atomic_t load_balancer;
3006 cpumask_t cpu_mask;
3007} nohz ____cacheline_aligned = {
3008 .load_balancer = ATOMIC_INIT(-1),
3009 .cpu_mask = CPU_MASK_NONE,
3010};
3011
7835b98b 3012/*
46cb4b7c
SS
3013 * This routine will try to nominate the ilb (idle load balancing)
3014 * owner among the cpus whose ticks are stopped. ilb owner will do the idle
3015 * load balancing on behalf of all those cpus. If all the cpus in the system
3016 * go into this tickless mode, then there will be no ilb owner (as there is
3017 * no need for one) and all the cpus will sleep till the next wakeup event
3018 * arrives...
3019 *
3020 * For the ilb owner, tick is not stopped. And this tick will be used
3021 * for idle load balancing. ilb owner will still be part of
3022 * nohz.cpu_mask..
7835b98b 3023 *
46cb4b7c
SS
3024 * While stopping the tick, this cpu will become the ilb owner if there
3025 * is no other owner. And will be the owner till that cpu becomes busy
3026 * or if all cpus in the system stop their ticks at which point
3027 * there is no need for ilb owner.
3028 *
3029 * When the ilb owner becomes busy, it nominates another owner, during the
3030 * next busy scheduler_tick()
3031 */
3032int select_nohz_load_balancer(int stop_tick)
3033{
3034 int cpu = smp_processor_id();
3035
3036 if (stop_tick) {
3037 cpu_set(cpu, nohz.cpu_mask);
3038 cpu_rq(cpu)->in_nohz_recently = 1;
3039
3040 /*
3041 * If we are going offline and still the leader, give up!
3042 */
3043 if (cpu_is_offline(cpu) &&
3044 atomic_read(&nohz.load_balancer) == cpu) {
3045 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3046 BUG();
3047 return 0;
3048 }
3049
3050 /* time for ilb owner also to sleep */
3051 if (cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3052 if (atomic_read(&nohz.load_balancer) == cpu)
3053 atomic_set(&nohz.load_balancer, -1);
3054 return 0;
3055 }
3056
3057 if (atomic_read(&nohz.load_balancer) == -1) {
3058 /* make me the ilb owner */
3059 if (atomic_cmpxchg(&nohz.load_balancer, -1, cpu) == -1)
3060 return 1;
3061 } else if (atomic_read(&nohz.load_balancer) == cpu)
3062 return 1;
3063 } else {
3064 if (!cpu_isset(cpu, nohz.cpu_mask))
3065 return 0;
3066
3067 cpu_clear(cpu, nohz.cpu_mask);
3068
3069 if (atomic_read(&nohz.load_balancer) == cpu)
3070 if (atomic_cmpxchg(&nohz.load_balancer, cpu, -1) != cpu)
3071 BUG();
3072 }
3073 return 0;
3074}
3075#endif
3076
3077static DEFINE_SPINLOCK(balancing);
3078
3079/*
7835b98b
CL
3080 * It checks each scheduling domain to see if it is due to be balanced,
3081 * and initiates a balancing operation if so.
3082 *
3083 * Balancing parameters are set up in arch_init_sched_domains.
3084 */
a9957449 3085static void rebalance_domains(int cpu, enum cpu_idle_type idle)
7835b98b 3086{
46cb4b7c
SS
3087 int balance = 1;
3088 struct rq *rq = cpu_rq(cpu);
7835b98b
CL
3089 unsigned long interval;
3090 struct sched_domain *sd;
46cb4b7c 3091 /* Earliest time when we have to do rebalance again */
c9819f45 3092 unsigned long next_balance = jiffies + 60*HZ;
f549da84 3093 int update_next_balance = 0;
1da177e4 3094
46cb4b7c 3095 for_each_domain(cpu, sd) {
1da177e4
LT
3096 if (!(sd->flags & SD_LOAD_BALANCE))
3097 continue;
3098
3099 interval = sd->balance_interval;
d15bcfdb 3100 if (idle != CPU_IDLE)
1da177e4
LT
3101 interval *= sd->busy_factor;
3102
3103 /* scale ms to jiffies */
3104 interval = msecs_to_jiffies(interval);
3105 if (unlikely(!interval))
3106 interval = 1;
dd41f596
IM
3107 if (interval > HZ*NR_CPUS/10)
3108 interval = HZ*NR_CPUS/10;
3109
1da177e4 3110
08c183f3
CL
3111 if (sd->flags & SD_SERIALIZE) {
3112 if (!spin_trylock(&balancing))
3113 goto out;
3114 }
3115
c9819f45 3116 if (time_after_eq(jiffies, sd->last_balance + interval)) {
46cb4b7c 3117 if (load_balance(cpu, rq, sd, idle, &balance)) {
fa3b6ddc
SS
3118 /*
3119 * We've pulled tasks over so either we're no
5969fe06
NP
3120 * longer idle, or one of our SMT siblings is
3121 * not idle.
3122 */
d15bcfdb 3123 idle = CPU_NOT_IDLE;
1da177e4 3124 }
1bd77f2d 3125 sd->last_balance = jiffies;
1da177e4 3126 }
08c183f3
CL
3127 if (sd->flags & SD_SERIALIZE)
3128 spin_unlock(&balancing);
3129out:
f549da84 3130 if (time_after(next_balance, sd->last_balance + interval)) {
c9819f45 3131 next_balance = sd->last_balance + interval;
f549da84
SS
3132 update_next_balance = 1;
3133 }
783609c6
SS
3134
3135 /*
3136 * Stop the load balance at this level. There is another
3137 * CPU in our sched group which is doing load balancing more
3138 * actively.
3139 */
3140 if (!balance)
3141 break;
1da177e4 3142 }
f549da84
SS
3143
3144 /*
3145 * next_balance will be updated only when there is a need.
3146 * When the cpu is attached to null domain for ex, it will not be
3147 * updated.
3148 */
3149 if (likely(update_next_balance))
3150 rq->next_balance = next_balance;
46cb4b7c
SS
3151}
3152
3153/*
3154 * run_rebalance_domains is triggered when needed from the scheduler tick.
3155 * In CONFIG_NO_HZ case, the idle load balance owner will do the
3156 * rebalancing for all the cpus for whom scheduler ticks are stopped.
3157 */
3158static void run_rebalance_domains(struct softirq_action *h)
3159{
dd41f596
IM
3160 int this_cpu = smp_processor_id();
3161 struct rq *this_rq = cpu_rq(this_cpu);
3162 enum cpu_idle_type idle = this_rq->idle_at_tick ?
3163 CPU_IDLE : CPU_NOT_IDLE;
46cb4b7c 3164
dd41f596 3165 rebalance_domains(this_cpu, idle);
46cb4b7c
SS
3166
3167#ifdef CONFIG_NO_HZ
3168 /*
3169 * If this cpu is the owner for idle load balancing, then do the
3170 * balancing on behalf of the other idle cpus whose ticks are
3171 * stopped.
3172 */
dd41f596
IM
3173 if (this_rq->idle_at_tick &&
3174 atomic_read(&nohz.load_balancer) == this_cpu) {
46cb4b7c
SS
3175 cpumask_t cpus = nohz.cpu_mask;
3176 struct rq *rq;
3177 int balance_cpu;
3178
dd41f596 3179 cpu_clear(this_cpu, cpus);
46cb4b7c
SS
3180 for_each_cpu_mask(balance_cpu, cpus) {
3181 /*
3182 * If this cpu gets work to do, stop the load balancing
3183 * work being done for other cpus. Next load
3184 * balancing owner will pick it up.
3185 */
3186 if (need_resched())
3187 break;
3188
de0cf899 3189 rebalance_domains(balance_cpu, CPU_IDLE);
46cb4b7c
SS
3190
3191 rq = cpu_rq(balance_cpu);
dd41f596
IM
3192 if (time_after(this_rq->next_balance, rq->next_balance))
3193 this_rq->next_balance = rq->next_balance;
46cb4b7c
SS
3194 }
3195 }
3196#endif
3197}
3198
3199/*
3200 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
3201 *
3202 * In case of CONFIG_NO_HZ, this is the place where we nominate a new
3203 * idle load balancing owner or decide to stop the periodic load balancing,
3204 * if the whole system is idle.
3205 */
dd41f596 3206static inline void trigger_load_balance(struct rq *rq, int cpu)
46cb4b7c 3207{
46cb4b7c
SS
3208#ifdef CONFIG_NO_HZ
3209 /*
3210 * If we were in the nohz mode recently and busy at the current
3211 * scheduler tick, then check if we need to nominate new idle
3212 * load balancer.
3213 */
3214 if (rq->in_nohz_recently && !rq->idle_at_tick) {
3215 rq->in_nohz_recently = 0;
3216
3217 if (atomic_read(&nohz.load_balancer) == cpu) {
3218 cpu_clear(cpu, nohz.cpu_mask);
3219 atomic_set(&nohz.load_balancer, -1);
3220 }
3221
3222 if (atomic_read(&nohz.load_balancer) == -1) {
3223 /*
3224 * simple selection for now: Nominate the
3225 * first cpu in the nohz list to be the next
3226 * ilb owner.
3227 *
3228 * TBD: Traverse the sched domains and nominate
3229 * the nearest cpu in the nohz.cpu_mask.
3230 */
3231 int ilb = first_cpu(nohz.cpu_mask);
3232
3233 if (ilb != NR_CPUS)
3234 resched_cpu(ilb);
3235 }
3236 }
3237
3238 /*
3239 * If this cpu is idle and doing idle load balancing for all the
3240 * cpus with ticks stopped, is it time for that to stop?
3241 */
3242 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) == cpu &&
3243 cpus_weight(nohz.cpu_mask) == num_online_cpus()) {
3244 resched_cpu(cpu);
3245 return;
3246 }
3247
3248 /*
3249 * If this cpu is idle and the idle load balancing is done by
3250 * someone else, then no need raise the SCHED_SOFTIRQ
3251 */
3252 if (rq->idle_at_tick && atomic_read(&nohz.load_balancer) != cpu &&
3253 cpu_isset(cpu, nohz.cpu_mask))
3254 return;
3255#endif
3256 if (time_after_eq(jiffies, rq->next_balance))
3257 raise_softirq(SCHED_SOFTIRQ);
1da177e4 3258}
dd41f596
IM
3259
3260#else /* CONFIG_SMP */
3261
1da177e4
LT
3262/*
3263 * on UP we do not need to balance between CPUs:
3264 */
70b97a7f 3265static inline void idle_balance(int cpu, struct rq *rq)
1da177e4
LT
3266{
3267}
dd41f596
IM
3268
3269/* Avoid "used but not defined" warning on UP */
3270static int balance_tasks(struct rq *this_rq, int this_cpu, struct rq *busiest,
3271 unsigned long max_nr_move, unsigned long max_load_move,
3272 struct sched_domain *sd, enum cpu_idle_type idle,
3273 int *all_pinned, unsigned long *load_moved,
a4ac01c3 3274 int *this_best_prio, struct rq_iterator *iterator)
dd41f596
IM
3275{
3276 *load_moved = 0;
3277
3278 return 0;
3279}
3280
1da177e4
LT
3281#endif
3282
1da177e4
LT
3283DEFINE_PER_CPU(struct kernel_stat, kstat);
3284
3285EXPORT_PER_CPU_SYMBOL(kstat);
3286
3287/*
41b86e9c
IM
3288 * Return p->sum_exec_runtime plus any more ns on the sched_clock
3289 * that have not yet been banked in case the task is currently running.
1da177e4 3290 */
41b86e9c 3291unsigned long long task_sched_runtime(struct task_struct *p)
1da177e4 3292{
1da177e4 3293 unsigned long flags;
41b86e9c
IM
3294 u64 ns, delta_exec;
3295 struct rq *rq;
48f24c4d 3296
41b86e9c
IM
3297 rq = task_rq_lock(p, &flags);
3298 ns = p->se.sum_exec_runtime;
3299 if (rq->curr == p) {
a8e504d2
IM
3300 update_rq_clock(rq);
3301 delta_exec = rq->clock - p->se.exec_start;
41b86e9c
IM
3302 if ((s64)delta_exec > 0)
3303 ns += delta_exec;
3304 }
3305 task_rq_unlock(rq, &flags);
48f24c4d 3306
1da177e4
LT
3307 return ns;
3308}
3309
1da177e4
LT
3310/*
3311 * Account user cpu time to a process.
3312 * @p: the process that the cpu time gets accounted to
1da177e4
LT
3313 * @cputime: the cpu time spent in user space since the last update
3314 */
3315void account_user_time(struct task_struct *p, cputime_t cputime)
3316{
3317 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3318 cputime64_t tmp;
62d0df64 3319 struct rq *rq = this_rq();
1da177e4
LT
3320
3321 p->utime = cputime_add(p->utime, cputime);
3322
62d0df64
PM
3323 if (p != rq->idle)
3324 cpuacct_charge(p, cputime);
3325
1da177e4
LT
3326 /* Add user time to cpustat. */
3327 tmp = cputime_to_cputime64(cputime);
3328 if (TASK_NICE(p) > 0)
3329 cpustat->nice = cputime64_add(cpustat->nice, tmp);
3330 else
3331 cpustat->user = cputime64_add(cpustat->user, tmp);
3332}
3333
94886b84
LV
3334/*
3335 * Account guest cpu time to a process.
3336 * @p: the process that the cpu time gets accounted to
3337 * @cputime: the cpu time spent in virtual machine since the last update
3338 */
3339void account_guest_time(struct task_struct *p, cputime_t cputime)
3340{
3341 cputime64_t tmp;
3342 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3343
3344 tmp = cputime_to_cputime64(cputime);
3345
3346 p->utime = cputime_add(p->utime, cputime);
3347 p->gtime = cputime_add(p->gtime, cputime);
3348
3349 cpustat->user = cputime64_add(cpustat->user, tmp);
3350 cpustat->guest = cputime64_add(cpustat->guest, tmp);
3351}
3352
c66f08be
MN
3353/*
3354 * Account scaled user cpu time to a process.
3355 * @p: the process that the cpu time gets accounted to
3356 * @cputime: the cpu time spent in user space since the last update
3357 */
3358void account_user_time_scaled(struct task_struct *p, cputime_t cputime)
3359{
3360 p->utimescaled = cputime_add(p->utimescaled, cputime);
3361}
3362
1da177e4
LT
3363/*
3364 * Account system cpu time to a process.
3365 * @p: the process that the cpu time gets accounted to
3366 * @hardirq_offset: the offset to subtract from hardirq_count()
3367 * @cputime: the cpu time spent in kernel space since the last update
3368 */
3369void account_system_time(struct task_struct *p, int hardirq_offset,
3370 cputime_t cputime)
3371{
3372 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
70b97a7f 3373 struct rq *rq = this_rq();
1da177e4
LT
3374 cputime64_t tmp;
3375
94886b84
LV
3376 if (p->flags & PF_VCPU) {
3377 account_guest_time(p, cputime);
94886b84
LV
3378 return;
3379 }
3380
1da177e4
LT
3381 p->stime = cputime_add(p->stime, cputime);
3382
3383 /* Add system time to cpustat. */
3384 tmp = cputime_to_cputime64(cputime);
3385 if (hardirq_count() - hardirq_offset)
3386 cpustat->irq = cputime64_add(cpustat->irq, tmp);
3387 else if (softirq_count())
3388 cpustat->softirq = cputime64_add(cpustat->softirq, tmp);
62d0df64 3389 else if (p != rq->idle) {
1da177e4 3390 cpustat->system = cputime64_add(cpustat->system, tmp);
62d0df64
PM
3391 cpuacct_charge(p, cputime);
3392 } else if (atomic_read(&rq->nr_iowait) > 0)
1da177e4
LT
3393 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3394 else
3395 cpustat->idle = cputime64_add(cpustat->idle, tmp);
3396 /* Account for system time used */
3397 acct_update_integrals(p);
1da177e4
LT
3398}
3399
c66f08be
MN
3400/*
3401 * Account scaled system cpu time to a process.
3402 * @p: the process that the cpu time gets accounted to
3403 * @hardirq_offset: the offset to subtract from hardirq_count()
3404 * @cputime: the cpu time spent in kernel space since the last update
3405 */
3406void account_system_time_scaled(struct task_struct *p, cputime_t cputime)
3407{
3408 p->stimescaled = cputime_add(p->stimescaled, cputime);
3409}
3410
1da177e4
LT
3411/*
3412 * Account for involuntary wait time.
3413 * @p: the process from which the cpu time has been stolen
3414 * @steal: the cpu time spent in involuntary wait
3415 */
3416void account_steal_time(struct task_struct *p, cputime_t steal)
3417{
3418 struct cpu_usage_stat *cpustat = &kstat_this_cpu.cpustat;
3419 cputime64_t tmp = cputime_to_cputime64(steal);
70b97a7f 3420 struct rq *rq = this_rq();
1da177e4
LT
3421
3422 if (p == rq->idle) {
3423 p->stime = cputime_add(p->stime, steal);
3424 if (atomic_read(&rq->nr_iowait) > 0)
3425 cpustat->iowait = cputime64_add(cpustat->iowait, tmp);
3426 else
3427 cpustat->idle = cputime64_add(cpustat->idle, tmp);
62d0df64 3428 } else {
1da177e4 3429 cpustat->steal = cputime64_add(cpustat->steal, tmp);
62d0df64
PM
3430 cpuacct_charge(p, -tmp);
3431 }
1da177e4
LT
3432}
3433
7835b98b
CL
3434/*
3435 * This function gets called by the timer code, with HZ frequency.
3436 * We call it with interrupts disabled.
3437 *
3438 * It also gets called by the fork code, when changing the parent's
3439 * timeslices.
3440 */
3441void scheduler_tick(void)
3442{
7835b98b
CL
3443 int cpu = smp_processor_id();
3444 struct rq *rq = cpu_rq(cpu);
dd41f596 3445 struct task_struct *curr = rq->curr;
529c7726 3446 u64 next_tick = rq->tick_timestamp + TICK_NSEC;
dd41f596
IM
3447
3448 spin_lock(&rq->lock);
546fe3c9 3449 __update_rq_clock(rq);
529c7726
IM
3450 /*
3451 * Let rq->clock advance by at least TICK_NSEC:
3452 */
3453 if (unlikely(rq->clock < next_tick))
3454 rq->clock = next_tick;
3455 rq->tick_timestamp = rq->clock;
f1a438d8 3456 update_cpu_load(rq);
dd41f596
IM
3457 if (curr != rq->idle) /* FIXME: needed? */
3458 curr->sched_class->task_tick(rq, curr);
dd41f596 3459 spin_unlock(&rq->lock);
7835b98b 3460
e418e1c2 3461#ifdef CONFIG_SMP
dd41f596
IM
3462 rq->idle_at_tick = idle_cpu(cpu);
3463 trigger_load_balance(rq, cpu);
e418e1c2 3464#endif
1da177e4
LT
3465}
3466
1da177e4
LT
3467#if defined(CONFIG_PREEMPT) && defined(CONFIG_DEBUG_PREEMPT)
3468
3469void fastcall add_preempt_count(int val)
3470{
3471 /*
3472 * Underflow?
3473 */
9a11b49a
IM
3474 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3475 return;
1da177e4
LT
3476 preempt_count() += val;
3477 /*
3478 * Spinlock count overflowing soon?
3479 */
33859f7f
MOS
3480 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3481 PREEMPT_MASK - 10);
1da177e4
LT
3482}
3483EXPORT_SYMBOL(add_preempt_count);
3484
3485void fastcall sub_preempt_count(int val)
3486{
3487 /*
3488 * Underflow?
3489 */
9a11b49a
IM
3490 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
3491 return;
1da177e4
LT
3492 /*
3493 * Is the spinlock portion underflowing?
3494 */
9a11b49a
IM
3495 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3496 !(preempt_count() & PREEMPT_MASK)))
3497 return;
3498
1da177e4
LT
3499 preempt_count() -= val;
3500}
3501EXPORT_SYMBOL(sub_preempt_count);
3502
3503#endif
3504
3505/*
dd41f596 3506 * Print scheduling while atomic bug:
1da177e4 3507 */
dd41f596 3508static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3509{
dd41f596 3510 printk(KERN_ERR "BUG: scheduling while atomic: %s/0x%08x/%d\n",
ba25f9dc 3511 prev->comm, preempt_count(), task_pid_nr(prev));
dd41f596
IM
3512 debug_show_held_locks(prev);
3513 if (irqs_disabled())
3514 print_irqtrace_events(prev);
3515 dump_stack();
3516}
1da177e4 3517
dd41f596
IM
3518/*
3519 * Various schedule()-time debugging checks and statistics:
3520 */
3521static inline void schedule_debug(struct task_struct *prev)
3522{
1da177e4
LT
3523 /*
3524 * Test if we are atomic. Since do_exit() needs to call into
3525 * schedule() atomically, we ignore that path for now.
3526 * Otherwise, whine if we are scheduling when we should not be.
3527 */
dd41f596
IM
3528 if (unlikely(in_atomic_preempt_off()) && unlikely(!prev->exit_state))
3529 __schedule_bug(prev);
3530
1da177e4
LT
3531 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3532
2d72376b 3533 schedstat_inc(this_rq(), sched_count);
b8efb561
IM
3534#ifdef CONFIG_SCHEDSTATS
3535 if (unlikely(prev->lock_depth >= 0)) {
2d72376b
IM
3536 schedstat_inc(this_rq(), bkl_count);
3537 schedstat_inc(prev, sched_info.bkl_count);
b8efb561
IM
3538 }
3539#endif
dd41f596
IM
3540}
3541
3542/*
3543 * Pick up the highest-prio task:
3544 */
3545static inline struct task_struct *
ff95f3df 3546pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3547{
5522d5d5 3548 const struct sched_class *class;
dd41f596 3549 struct task_struct *p;
1da177e4
LT
3550
3551 /*
dd41f596
IM
3552 * Optimization: we know that if all tasks are in
3553 * the fair class we can call that function directly:
1da177e4 3554 */
dd41f596 3555 if (likely(rq->nr_running == rq->cfs.nr_running)) {
fb8d4724 3556 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3557 if (likely(p))
3558 return p;
1da177e4
LT
3559 }
3560
dd41f596
IM
3561 class = sched_class_highest;
3562 for ( ; ; ) {
fb8d4724 3563 p = class->pick_next_task(rq);
dd41f596
IM
3564 if (p)
3565 return p;
3566 /*
3567 * Will never be NULL as the idle class always
3568 * returns a non-NULL p:
3569 */
3570 class = class->next;
3571 }
3572}
1da177e4 3573
dd41f596
IM
3574/*
3575 * schedule() is the main scheduler function.
3576 */
3577asmlinkage void __sched schedule(void)
3578{
3579 struct task_struct *prev, *next;
3580 long *switch_count;
3581 struct rq *rq;
dd41f596
IM
3582 int cpu;
3583
3584need_resched:
3585 preempt_disable();
3586 cpu = smp_processor_id();
3587 rq = cpu_rq(cpu);
3588 rcu_qsctr_inc(cpu);
3589 prev = rq->curr;
3590 switch_count = &prev->nivcsw;
3591
3592 release_kernel_lock(prev);
3593need_resched_nonpreemptible:
3594
3595 schedule_debug(prev);
1da177e4 3596
1e819950
IM
3597 /*
3598 * Do the rq-clock update outside the rq lock:
3599 */
3600 local_irq_disable();
c1b3da3e 3601 __update_rq_clock(rq);
1e819950
IM
3602 spin_lock(&rq->lock);
3603 clear_tsk_need_resched(prev);
1da177e4 3604
1da177e4 3605 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
1da177e4 3606 if (unlikely((prev->state & TASK_INTERRUPTIBLE) &&
dd41f596 3607 unlikely(signal_pending(prev)))) {
1da177e4 3608 prev->state = TASK_RUNNING;
dd41f596 3609 } else {
2e1cb74a 3610 deactivate_task(rq, prev, 1);
1da177e4 3611 }
dd41f596 3612 switch_count = &prev->nvcsw;
1da177e4
LT
3613 }
3614
dd41f596 3615 if (unlikely(!rq->nr_running))
1da177e4 3616 idle_balance(cpu, rq);
1da177e4 3617
31ee529c 3618 prev->sched_class->put_prev_task(rq, prev);
ff95f3df 3619 next = pick_next_task(rq, prev);
1da177e4
LT
3620
3621 sched_info_switch(prev, next);
dd41f596 3622
1da177e4 3623 if (likely(prev != next)) {
1da177e4
LT
3624 rq->nr_switches++;
3625 rq->curr = next;
3626 ++*switch_count;
3627
dd41f596 3628 context_switch(rq, prev, next); /* unlocks the rq */
1da177e4
LT
3629 } else
3630 spin_unlock_irq(&rq->lock);
3631
dd41f596
IM
3632 if (unlikely(reacquire_kernel_lock(current) < 0)) {
3633 cpu = smp_processor_id();
3634 rq = cpu_rq(cpu);
1da177e4 3635 goto need_resched_nonpreemptible;
dd41f596 3636 }
1da177e4
LT
3637 preempt_enable_no_resched();
3638 if (unlikely(test_thread_flag(TIF_NEED_RESCHED)))
3639 goto need_resched;
3640}
1da177e4
LT
3641EXPORT_SYMBOL(schedule);
3642
3643#ifdef CONFIG_PREEMPT
3644/*
2ed6e34f 3645 * this is the entry point to schedule() from in-kernel preemption
1da177e4
LT
3646 * off of preempt_enable. Kernel preemptions off return from interrupt
3647 * occur there and call schedule directly.
3648 */
3649asmlinkage void __sched preempt_schedule(void)
3650{
3651 struct thread_info *ti = current_thread_info();
3652#ifdef CONFIG_PREEMPT_BKL
3653 struct task_struct *task = current;
3654 int saved_lock_depth;
3655#endif
3656 /*
3657 * If there is a non-zero preempt_count or interrupts are disabled,
3658 * we do not want to preempt the current task. Just return..
3659 */
beed33a8 3660 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3661 return;
3662
3a5c359a
AK
3663 do {
3664 add_preempt_count(PREEMPT_ACTIVE);
3665
3666 /*
3667 * We keep the big kernel semaphore locked, but we
3668 * clear ->lock_depth so that schedule() doesnt
3669 * auto-release the semaphore:
3670 */
1da177e4 3671#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3672 saved_lock_depth = task->lock_depth;
3673 task->lock_depth = -1;
1da177e4 3674#endif
3a5c359a 3675 schedule();
1da177e4 3676#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3677 task->lock_depth = saved_lock_depth;
1da177e4 3678#endif
3a5c359a 3679 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3680
3a5c359a
AK
3681 /*
3682 * Check again in case we missed a preemption opportunity
3683 * between schedule and now.
3684 */
3685 barrier();
3686 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4 3687}
1da177e4
LT
3688EXPORT_SYMBOL(preempt_schedule);
3689
3690/*
2ed6e34f 3691 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3692 * off of irq context.
3693 * Note, that this is called and return with irqs disabled. This will
3694 * protect us against recursive calling from irq.
3695 */
3696asmlinkage void __sched preempt_schedule_irq(void)
3697{
3698 struct thread_info *ti = current_thread_info();
3699#ifdef CONFIG_PREEMPT_BKL
3700 struct task_struct *task = current;
3701 int saved_lock_depth;
3702#endif
2ed6e34f 3703 /* Catch callers which need to be fixed */
1da177e4
LT
3704 BUG_ON(ti->preempt_count || !irqs_disabled());
3705
3a5c359a
AK
3706 do {
3707 add_preempt_count(PREEMPT_ACTIVE);
3708
3709 /*
3710 * We keep the big kernel semaphore locked, but we
3711 * clear ->lock_depth so that schedule() doesnt
3712 * auto-release the semaphore:
3713 */
1da177e4 3714#ifdef CONFIG_PREEMPT_BKL
3a5c359a
AK
3715 saved_lock_depth = task->lock_depth;
3716 task->lock_depth = -1;
1da177e4 3717#endif
3a5c359a
AK
3718 local_irq_enable();
3719 schedule();
3720 local_irq_disable();
1da177e4 3721#ifdef CONFIG_PREEMPT_BKL
3a5c359a 3722 task->lock_depth = saved_lock_depth;
1da177e4 3723#endif
3a5c359a 3724 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3725
3a5c359a
AK
3726 /*
3727 * Check again in case we missed a preemption opportunity
3728 * between schedule and now.
3729 */
3730 barrier();
3731 } while (unlikely(test_thread_flag(TIF_NEED_RESCHED)));
1da177e4
LT
3732}
3733
3734#endif /* CONFIG_PREEMPT */
3735
95cdf3b7
IM
3736int default_wake_function(wait_queue_t *curr, unsigned mode, int sync,
3737 void *key)
1da177e4 3738{
48f24c4d 3739 return try_to_wake_up(curr->private, mode, sync);
1da177e4 3740}
1da177e4
LT
3741EXPORT_SYMBOL(default_wake_function);
3742
3743/*
3744 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3745 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
3746 * number) then we wake all the non-exclusive tasks and one exclusive task.
3747 *
3748 * There are circumstances in which we can try to wake a task which has already
3749 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
3750 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3751 */
3752static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
3753 int nr_exclusive, int sync, void *key)
3754{
2e45874c 3755 wait_queue_t *curr, *next;
1da177e4 3756
2e45874c 3757 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3758 unsigned flags = curr->flags;
3759
1da177e4 3760 if (curr->func(curr, mode, sync, key) &&
48f24c4d 3761 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3762 break;
3763 }
3764}
3765
3766/**
3767 * __wake_up - wake up threads blocked on a waitqueue.
3768 * @q: the waitqueue
3769 * @mode: which threads
3770 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3771 * @key: is directly passed to the wakeup function
1da177e4
LT
3772 */
3773void fastcall __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3774 int nr_exclusive, void *key)
1da177e4
LT
3775{
3776 unsigned long flags;
3777
3778 spin_lock_irqsave(&q->lock, flags);
3779 __wake_up_common(q, mode, nr_exclusive, 0, key);
3780 spin_unlock_irqrestore(&q->lock, flags);
3781}
1da177e4
LT
3782EXPORT_SYMBOL(__wake_up);
3783
3784/*
3785 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3786 */
3787void fastcall __wake_up_locked(wait_queue_head_t *q, unsigned int mode)
3788{
3789 __wake_up_common(q, mode, 1, 0, NULL);
3790}
3791
3792/**
67be2dd1 3793 * __wake_up_sync - wake up threads blocked on a waitqueue.
1da177e4
LT
3794 * @q: the waitqueue
3795 * @mode: which threads
3796 * @nr_exclusive: how many wake-one or wake-many threads to wake up
3797 *
3798 * The sync wakeup differs that the waker knows that it will schedule
3799 * away soon, so while the target thread will be woken up, it will not
3800 * be migrated to another CPU - ie. the two threads are 'synchronized'
3801 * with each other. This can prevent needless bouncing between CPUs.
3802 *
3803 * On UP it can prevent extra preemption.
3804 */
95cdf3b7
IM
3805void fastcall
3806__wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
1da177e4
LT
3807{
3808 unsigned long flags;
3809 int sync = 1;
3810
3811 if (unlikely(!q))
3812 return;
3813
3814 if (unlikely(!nr_exclusive))
3815 sync = 0;
3816
3817 spin_lock_irqsave(&q->lock, flags);
3818 __wake_up_common(q, mode, nr_exclusive, sync, NULL);
3819 spin_unlock_irqrestore(&q->lock, flags);
3820}
3821EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3822
b15136e9 3823void complete(struct completion *x)
1da177e4
LT
3824{
3825 unsigned long flags;
3826
3827 spin_lock_irqsave(&x->wait.lock, flags);
3828 x->done++;
3829 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3830 1, 0, NULL);
3831 spin_unlock_irqrestore(&x->wait.lock, flags);
3832}
3833EXPORT_SYMBOL(complete);
3834
b15136e9 3835void complete_all(struct completion *x)
1da177e4
LT
3836{
3837 unsigned long flags;
3838
3839 spin_lock_irqsave(&x->wait.lock, flags);
3840 x->done += UINT_MAX/2;
3841 __wake_up_common(&x->wait, TASK_UNINTERRUPTIBLE | TASK_INTERRUPTIBLE,
3842 0, 0, NULL);
3843 spin_unlock_irqrestore(&x->wait.lock, flags);
3844}
3845EXPORT_SYMBOL(complete_all);
3846
8cbbe86d
AK
3847static inline long __sched
3848do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3849{
1da177e4
LT
3850 if (!x->done) {
3851 DECLARE_WAITQUEUE(wait, current);
3852
3853 wait.flags |= WQ_FLAG_EXCLUSIVE;
3854 __add_wait_queue_tail(&x->wait, &wait);
3855 do {
8cbbe86d
AK
3856 if (state == TASK_INTERRUPTIBLE &&
3857 signal_pending(current)) {
3858 __remove_wait_queue(&x->wait, &wait);
3859 return -ERESTARTSYS;
3860 }
3861 __set_current_state(state);
1da177e4
LT
3862 spin_unlock_irq(&x->wait.lock);
3863 timeout = schedule_timeout(timeout);
3864 spin_lock_irq(&x->wait.lock);
3865 if (!timeout) {
3866 __remove_wait_queue(&x->wait, &wait);
8cbbe86d 3867 return timeout;
1da177e4
LT
3868 }
3869 } while (!x->done);
3870 __remove_wait_queue(&x->wait, &wait);
3871 }
3872 x->done--;
1da177e4
LT
3873 return timeout;
3874}
1da177e4 3875
8cbbe86d
AK
3876static long __sched
3877wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3878{
1da177e4
LT
3879 might_sleep();
3880
3881 spin_lock_irq(&x->wait.lock);
8cbbe86d 3882 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3883 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3884 return timeout;
3885}
1da177e4 3886
b15136e9 3887void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3888{
3889 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3890}
8cbbe86d 3891EXPORT_SYMBOL(wait_for_completion);
1da177e4 3892
b15136e9 3893unsigned long __sched
8cbbe86d 3894wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3895{
8cbbe86d 3896 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3897}
8cbbe86d 3898EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3899
8cbbe86d 3900int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3901{
51e97990
AK
3902 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3903 if (t == -ERESTARTSYS)
3904 return t;
3905 return 0;
0fec171c 3906}
8cbbe86d 3907EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3908
b15136e9 3909unsigned long __sched
8cbbe86d
AK
3910wait_for_completion_interruptible_timeout(struct completion *x,
3911 unsigned long timeout)
0fec171c 3912{
8cbbe86d 3913 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3914}
8cbbe86d 3915EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3916
8cbbe86d
AK
3917static long __sched
3918sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3919{
0fec171c
IM
3920 unsigned long flags;
3921 wait_queue_t wait;
3922
3923 init_waitqueue_entry(&wait, current);
1da177e4 3924
8cbbe86d 3925 __set_current_state(state);
1da177e4 3926
8cbbe86d
AK
3927 spin_lock_irqsave(&q->lock, flags);
3928 __add_wait_queue(q, &wait);
3929 spin_unlock(&q->lock);
3930 timeout = schedule_timeout(timeout);
3931 spin_lock_irq(&q->lock);
3932 __remove_wait_queue(q, &wait);
3933 spin_unlock_irqrestore(&q->lock, flags);
3934
3935 return timeout;
3936}
3937
3938void __sched interruptible_sleep_on(wait_queue_head_t *q)
3939{
3940 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3941}
1da177e4
LT
3942EXPORT_SYMBOL(interruptible_sleep_on);
3943
0fec171c 3944long __sched
95cdf3b7 3945interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3946{
8cbbe86d 3947 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3948}
1da177e4
LT
3949EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3950
0fec171c 3951void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3952{
8cbbe86d 3953 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3954}
1da177e4
LT
3955EXPORT_SYMBOL(sleep_on);
3956
0fec171c 3957long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3958{
8cbbe86d 3959 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3960}
1da177e4
LT
3961EXPORT_SYMBOL(sleep_on_timeout);
3962
b29739f9
IM
3963#ifdef CONFIG_RT_MUTEXES
3964
3965/*
3966 * rt_mutex_setprio - set the current priority of a task
3967 * @p: task
3968 * @prio: prio value (kernel-internal form)
3969 *
3970 * This function changes the 'effective' priority of a task. It does
3971 * not touch ->normal_prio like __setscheduler().
3972 *
3973 * Used by the rt_mutex code to implement priority inheritance logic.
3974 */
36c8b586 3975void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9
IM
3976{
3977 unsigned long flags;
83b699ed 3978 int oldprio, on_rq, running;
70b97a7f 3979 struct rq *rq;
b29739f9
IM
3980
3981 BUG_ON(prio < 0 || prio > MAX_PRIO);
3982
3983 rq = task_rq_lock(p, &flags);
a8e504d2 3984 update_rq_clock(rq);
b29739f9 3985
d5f9f942 3986 oldprio = p->prio;
dd41f596 3987 on_rq = p->se.on_rq;
83b699ed
SV
3988 running = task_running(rq, p);
3989 if (on_rq) {
69be72c1 3990 dequeue_task(rq, p, 0);
83b699ed
SV
3991 if (running)
3992 p->sched_class->put_prev_task(rq, p);
3993 }
dd41f596
IM
3994
3995 if (rt_prio(prio))
3996 p->sched_class = &rt_sched_class;
3997 else
3998 p->sched_class = &fair_sched_class;
3999
b29739f9
IM
4000 p->prio = prio;
4001
dd41f596 4002 if (on_rq) {
83b699ed
SV
4003 if (running)
4004 p->sched_class->set_curr_task(rq);
8159f87e 4005 enqueue_task(rq, p, 0);
b29739f9
IM
4006 /*
4007 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4008 * our priority decreased, or if we are not currently running on
4009 * this runqueue and our priority is higher than the current's
b29739f9 4010 */
83b699ed 4011 if (running) {
d5f9f942
AM
4012 if (p->prio > oldprio)
4013 resched_task(rq->curr);
dd41f596
IM
4014 } else {
4015 check_preempt_curr(rq, p);
4016 }
b29739f9
IM
4017 }
4018 task_rq_unlock(rq, &flags);
4019}
4020
4021#endif
4022
36c8b586 4023void set_user_nice(struct task_struct *p, long nice)
1da177e4 4024{
dd41f596 4025 int old_prio, delta, on_rq;
1da177e4 4026 unsigned long flags;
70b97a7f 4027 struct rq *rq;
1da177e4
LT
4028
4029 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
4030 return;
4031 /*
4032 * We have to be careful, if called from sys_setpriority(),
4033 * the task might be in the middle of scheduling on another CPU.
4034 */
4035 rq = task_rq_lock(p, &flags);
a8e504d2 4036 update_rq_clock(rq);
1da177e4
LT
4037 /*
4038 * The RT priorities are set via sched_setscheduler(), but we still
4039 * allow the 'normal' nice value to be set - but as expected
4040 * it wont have any effect on scheduling until the task is
dd41f596 4041 * SCHED_FIFO/SCHED_RR:
1da177e4 4042 */
e05606d3 4043 if (task_has_rt_policy(p)) {
1da177e4
LT
4044 p->static_prio = NICE_TO_PRIO(nice);
4045 goto out_unlock;
4046 }
dd41f596
IM
4047 on_rq = p->se.on_rq;
4048 if (on_rq) {
69be72c1 4049 dequeue_task(rq, p, 0);
79b5dddf 4050 dec_load(rq, p);
2dd73a4f 4051 }
1da177e4 4052
1da177e4 4053 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 4054 set_load_weight(p);
b29739f9
IM
4055 old_prio = p->prio;
4056 p->prio = effective_prio(p);
4057 delta = p->prio - old_prio;
1da177e4 4058
dd41f596 4059 if (on_rq) {
8159f87e 4060 enqueue_task(rq, p, 0);
29b4b623 4061 inc_load(rq, p);
1da177e4 4062 /*
d5f9f942
AM
4063 * If the task increased its priority or is running and
4064 * lowered its priority, then reschedule its CPU:
1da177e4 4065 */
d5f9f942 4066 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
4067 resched_task(rq->curr);
4068 }
4069out_unlock:
4070 task_rq_unlock(rq, &flags);
4071}
1da177e4
LT
4072EXPORT_SYMBOL(set_user_nice);
4073
e43379f1
MM
4074/*
4075 * can_nice - check if a task can reduce its nice value
4076 * @p: task
4077 * @nice: nice value
4078 */
36c8b586 4079int can_nice(const struct task_struct *p, const int nice)
e43379f1 4080{
024f4747
MM
4081 /* convert nice value [19,-20] to rlimit style value [1,40] */
4082 int nice_rlim = 20 - nice;
48f24c4d 4083
e43379f1
MM
4084 return (nice_rlim <= p->signal->rlim[RLIMIT_NICE].rlim_cur ||
4085 capable(CAP_SYS_NICE));
4086}
4087
1da177e4
LT
4088#ifdef __ARCH_WANT_SYS_NICE
4089
4090/*
4091 * sys_nice - change the priority of the current process.
4092 * @increment: priority increment
4093 *
4094 * sys_setpriority is a more generic, but much slower function that
4095 * does similar things.
4096 */
4097asmlinkage long sys_nice(int increment)
4098{
48f24c4d 4099 long nice, retval;
1da177e4
LT
4100
4101 /*
4102 * Setpriority might change our priority at the same moment.
4103 * We don't have to worry. Conceptually one call occurs first
4104 * and we have a single winner.
4105 */
e43379f1
MM
4106 if (increment < -40)
4107 increment = -40;
1da177e4
LT
4108 if (increment > 40)
4109 increment = 40;
4110
4111 nice = PRIO_TO_NICE(current->static_prio) + increment;
4112 if (nice < -20)
4113 nice = -20;
4114 if (nice > 19)
4115 nice = 19;
4116
e43379f1
MM
4117 if (increment < 0 && !can_nice(current, nice))
4118 return -EPERM;
4119
1da177e4
LT
4120 retval = security_task_setnice(current, nice);
4121 if (retval)
4122 return retval;
4123
4124 set_user_nice(current, nice);
4125 return 0;
4126}
4127
4128#endif
4129
4130/**
4131 * task_prio - return the priority value of a given task.
4132 * @p: the task in question.
4133 *
4134 * This is the priority value as seen by users in /proc.
4135 * RT tasks are offset by -200. Normal tasks are centered
4136 * around 0, value goes from -16 to +15.
4137 */
36c8b586 4138int task_prio(const struct task_struct *p)
1da177e4
LT
4139{
4140 return p->prio - MAX_RT_PRIO;
4141}
4142
4143/**
4144 * task_nice - return the nice value of a given task.
4145 * @p: the task in question.
4146 */
36c8b586 4147int task_nice(const struct task_struct *p)
1da177e4
LT
4148{
4149 return TASK_NICE(p);
4150}
1da177e4 4151EXPORT_SYMBOL_GPL(task_nice);
1da177e4
LT
4152
4153/**
4154 * idle_cpu - is a given cpu idle currently?
4155 * @cpu: the processor in question.
4156 */
4157int idle_cpu(int cpu)
4158{
4159 return cpu_curr(cpu) == cpu_rq(cpu)->idle;
4160}
4161
1da177e4
LT
4162/**
4163 * idle_task - return the idle task for a given cpu.
4164 * @cpu: the processor in question.
4165 */
36c8b586 4166struct task_struct *idle_task(int cpu)
1da177e4
LT
4167{
4168 return cpu_rq(cpu)->idle;
4169}
4170
4171/**
4172 * find_process_by_pid - find a process with a matching PID value.
4173 * @pid: the pid in question.
4174 */
a9957449 4175static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4176{
228ebcbe 4177 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4178}
4179
4180/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4181static void
4182__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4183{
dd41f596 4184 BUG_ON(p->se.on_rq);
48f24c4d 4185
1da177e4 4186 p->policy = policy;
dd41f596
IM
4187 switch (p->policy) {
4188 case SCHED_NORMAL:
4189 case SCHED_BATCH:
4190 case SCHED_IDLE:
4191 p->sched_class = &fair_sched_class;
4192 break;
4193 case SCHED_FIFO:
4194 case SCHED_RR:
4195 p->sched_class = &rt_sched_class;
4196 break;
4197 }
4198
1da177e4 4199 p->rt_priority = prio;
b29739f9
IM
4200 p->normal_prio = normal_prio(p);
4201 /* we are holding p->pi_lock already */
4202 p->prio = rt_mutex_getprio(p);
2dd73a4f 4203 set_load_weight(p);
1da177e4
LT
4204}
4205
4206/**
72fd4a35 4207 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
1da177e4
LT
4208 * @p: the task in question.
4209 * @policy: new policy.
4210 * @param: structure containing the new RT priority.
5fe1d75f 4211 *
72fd4a35 4212 * NOTE that the task may be already dead.
1da177e4 4213 */
95cdf3b7
IM
4214int sched_setscheduler(struct task_struct *p, int policy,
4215 struct sched_param *param)
1da177e4 4216{
83b699ed 4217 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4218 unsigned long flags;
70b97a7f 4219 struct rq *rq;
1da177e4 4220
66e5393a
SR
4221 /* may grab non-irq protected spin_locks */
4222 BUG_ON(in_interrupt());
1da177e4
LT
4223recheck:
4224 /* double check policy once rq lock held */
4225 if (policy < 0)
4226 policy = oldpolicy = p->policy;
4227 else if (policy != SCHED_FIFO && policy != SCHED_RR &&
dd41f596
IM
4228 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4229 policy != SCHED_IDLE)
b0a9499c 4230 return -EINVAL;
1da177e4
LT
4231 /*
4232 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4233 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4234 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4235 */
4236 if (param->sched_priority < 0 ||
95cdf3b7 4237 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4238 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4239 return -EINVAL;
e05606d3 4240 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4241 return -EINVAL;
4242
37e4ab3f
OC
4243 /*
4244 * Allow unprivileged RT tasks to decrease priority:
4245 */
4246 if (!capable(CAP_SYS_NICE)) {
e05606d3 4247 if (rt_policy(policy)) {
8dc3e909 4248 unsigned long rlim_rtprio;
8dc3e909
ON
4249
4250 if (!lock_task_sighand(p, &flags))
4251 return -ESRCH;
4252 rlim_rtprio = p->signal->rlim[RLIMIT_RTPRIO].rlim_cur;
4253 unlock_task_sighand(p, &flags);
4254
4255 /* can't set/change the rt policy */
4256 if (policy != p->policy && !rlim_rtprio)
4257 return -EPERM;
4258
4259 /* can't increase priority */
4260 if (param->sched_priority > p->rt_priority &&
4261 param->sched_priority > rlim_rtprio)
4262 return -EPERM;
4263 }
dd41f596
IM
4264 /*
4265 * Like positive nice levels, dont allow tasks to
4266 * move out of SCHED_IDLE either:
4267 */
4268 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE)
4269 return -EPERM;
5fe1d75f 4270
37e4ab3f
OC
4271 /* can't change other user's priorities */
4272 if ((current->euid != p->euid) &&
4273 (current->euid != p->uid))
4274 return -EPERM;
4275 }
1da177e4
LT
4276
4277 retval = security_task_setscheduler(p, policy, param);
4278 if (retval)
4279 return retval;
b29739f9
IM
4280 /*
4281 * make sure no PI-waiters arrive (or leave) while we are
4282 * changing the priority of the task:
4283 */
4284 spin_lock_irqsave(&p->pi_lock, flags);
1da177e4
LT
4285 /*
4286 * To be able to change p->policy safely, the apropriate
4287 * runqueue lock must be held.
4288 */
b29739f9 4289 rq = __task_rq_lock(p);
1da177e4
LT
4290 /* recheck policy now with rq lock held */
4291 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4292 policy = oldpolicy = -1;
b29739f9
IM
4293 __task_rq_unlock(rq);
4294 spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4295 goto recheck;
4296 }
2daa3577 4297 update_rq_clock(rq);
dd41f596 4298 on_rq = p->se.on_rq;
83b699ed
SV
4299 running = task_running(rq, p);
4300 if (on_rq) {
2e1cb74a 4301 deactivate_task(rq, p, 0);
83b699ed
SV
4302 if (running)
4303 p->sched_class->put_prev_task(rq, p);
4304 }
f6b53205 4305
1da177e4 4306 oldprio = p->prio;
dd41f596 4307 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4308
dd41f596 4309 if (on_rq) {
83b699ed
SV
4310 if (running)
4311 p->sched_class->set_curr_task(rq);
dd41f596 4312 activate_task(rq, p, 0);
1da177e4
LT
4313 /*
4314 * Reschedule if we are currently running on this runqueue and
d5f9f942
AM
4315 * our priority decreased, or if we are not currently running on
4316 * this runqueue and our priority is higher than the current's
1da177e4 4317 */
83b699ed 4318 if (running) {
d5f9f942
AM
4319 if (p->prio > oldprio)
4320 resched_task(rq->curr);
dd41f596
IM
4321 } else {
4322 check_preempt_curr(rq, p);
4323 }
1da177e4 4324 }
b29739f9
IM
4325 __task_rq_unlock(rq);
4326 spin_unlock_irqrestore(&p->pi_lock, flags);
4327
95e02ca9
TG
4328 rt_mutex_adjust_pi(p);
4329
1da177e4
LT
4330 return 0;
4331}
4332EXPORT_SYMBOL_GPL(sched_setscheduler);
4333
95cdf3b7
IM
4334static int
4335do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4336{
1da177e4
LT
4337 struct sched_param lparam;
4338 struct task_struct *p;
36c8b586 4339 int retval;
1da177e4
LT
4340
4341 if (!param || pid < 0)
4342 return -EINVAL;
4343 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4344 return -EFAULT;
5fe1d75f
ON
4345
4346 rcu_read_lock();
4347 retval = -ESRCH;
1da177e4 4348 p = find_process_by_pid(pid);
5fe1d75f
ON
4349 if (p != NULL)
4350 retval = sched_setscheduler(p, policy, &lparam);
4351 rcu_read_unlock();
36c8b586 4352
1da177e4
LT
4353 return retval;
4354}
4355
4356/**
4357 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4358 * @pid: the pid in question.
4359 * @policy: new policy.
4360 * @param: structure containing the new RT priority.
4361 */
4362asmlinkage long sys_sched_setscheduler(pid_t pid, int policy,
4363 struct sched_param __user *param)
4364{
c21761f1
JB
4365 /* negative values for policy are not valid */
4366 if (policy < 0)
4367 return -EINVAL;
4368
1da177e4
LT
4369 return do_sched_setscheduler(pid, policy, param);
4370}
4371
4372/**
4373 * sys_sched_setparam - set/change the RT priority of a thread
4374 * @pid: the pid in question.
4375 * @param: structure containing the new RT priority.
4376 */
4377asmlinkage long sys_sched_setparam(pid_t pid, struct sched_param __user *param)
4378{
4379 return do_sched_setscheduler(pid, -1, param);
4380}
4381
4382/**
4383 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4384 * @pid: the pid in question.
4385 */
4386asmlinkage long sys_sched_getscheduler(pid_t pid)
4387{
36c8b586 4388 struct task_struct *p;
3a5c359a 4389 int retval;
1da177e4
LT
4390
4391 if (pid < 0)
3a5c359a 4392 return -EINVAL;
1da177e4
LT
4393
4394 retval = -ESRCH;
4395 read_lock(&tasklist_lock);
4396 p = find_process_by_pid(pid);
4397 if (p) {
4398 retval = security_task_getscheduler(p);
4399 if (!retval)
4400 retval = p->policy;
4401 }
4402 read_unlock(&tasklist_lock);
1da177e4
LT
4403 return retval;
4404}
4405
4406/**
4407 * sys_sched_getscheduler - get the RT priority of a thread
4408 * @pid: the pid in question.
4409 * @param: structure containing the RT priority.
4410 */
4411asmlinkage long sys_sched_getparam(pid_t pid, struct sched_param __user *param)
4412{
4413 struct sched_param lp;
36c8b586 4414 struct task_struct *p;
3a5c359a 4415 int retval;
1da177e4
LT
4416
4417 if (!param || pid < 0)
3a5c359a 4418 return -EINVAL;
1da177e4
LT
4419
4420 read_lock(&tasklist_lock);
4421 p = find_process_by_pid(pid);
4422 retval = -ESRCH;
4423 if (!p)
4424 goto out_unlock;
4425
4426 retval = security_task_getscheduler(p);
4427 if (retval)
4428 goto out_unlock;
4429
4430 lp.sched_priority = p->rt_priority;
4431 read_unlock(&tasklist_lock);
4432
4433 /*
4434 * This one might sleep, we cannot do it with a spinlock held ...
4435 */
4436 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4437
1da177e4
LT
4438 return retval;
4439
4440out_unlock:
4441 read_unlock(&tasklist_lock);
4442 return retval;
4443}
4444
4445long sched_setaffinity(pid_t pid, cpumask_t new_mask)
4446{
1da177e4 4447 cpumask_t cpus_allowed;
36c8b586
IM
4448 struct task_struct *p;
4449 int retval;
1da177e4 4450
5be9361c 4451 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4452 read_lock(&tasklist_lock);
4453
4454 p = find_process_by_pid(pid);
4455 if (!p) {
4456 read_unlock(&tasklist_lock);
5be9361c 4457 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4458 return -ESRCH;
4459 }
4460
4461 /*
4462 * It is not safe to call set_cpus_allowed with the
4463 * tasklist_lock held. We will bump the task_struct's
4464 * usage count and then drop tasklist_lock.
4465 */
4466 get_task_struct(p);
4467 read_unlock(&tasklist_lock);
4468
4469 retval = -EPERM;
4470 if ((current->euid != p->euid) && (current->euid != p->uid) &&
4471 !capable(CAP_SYS_NICE))
4472 goto out_unlock;
4473
e7834f8f
DQ
4474 retval = security_task_setscheduler(p, 0, NULL);
4475 if (retval)
4476 goto out_unlock;
4477
1da177e4
LT
4478 cpus_allowed = cpuset_cpus_allowed(p);
4479 cpus_and(new_mask, new_mask, cpus_allowed);
8707d8b8 4480 again:
1da177e4
LT
4481 retval = set_cpus_allowed(p, new_mask);
4482
8707d8b8
PM
4483 if (!retval) {
4484 cpus_allowed = cpuset_cpus_allowed(p);
4485 if (!cpus_subset(new_mask, cpus_allowed)) {
4486 /*
4487 * We must have raced with a concurrent cpuset
4488 * update. Just reset the cpus_allowed to the
4489 * cpuset's cpus_allowed
4490 */
4491 new_mask = cpus_allowed;
4492 goto again;
4493 }
4494 }
1da177e4
LT
4495out_unlock:
4496 put_task_struct(p);
5be9361c 4497 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
4498 return retval;
4499}
4500
4501static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
4502 cpumask_t *new_mask)
4503{
4504 if (len < sizeof(cpumask_t)) {
4505 memset(new_mask, 0, sizeof(cpumask_t));
4506 } else if (len > sizeof(cpumask_t)) {
4507 len = sizeof(cpumask_t);
4508 }
4509 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4510}
4511
4512/**
4513 * sys_sched_setaffinity - set the cpu affinity of a process
4514 * @pid: pid of the process
4515 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4516 * @user_mask_ptr: user-space pointer to the new cpu mask
4517 */
4518asmlinkage long sys_sched_setaffinity(pid_t pid, unsigned int len,
4519 unsigned long __user *user_mask_ptr)
4520{
4521 cpumask_t new_mask;
4522 int retval;
4523
4524 retval = get_user_cpu_mask(user_mask_ptr, len, &new_mask);
4525 if (retval)
4526 return retval;
4527
4528 return sched_setaffinity(pid, new_mask);
4529}
4530
4531/*
4532 * Represents all cpu's present in the system
4533 * In systems capable of hotplug, this map could dynamically grow
4534 * as new cpu's are detected in the system via any platform specific
4535 * method, such as ACPI for e.g.
4536 */
4537
4cef0c61 4538cpumask_t cpu_present_map __read_mostly;
1da177e4
LT
4539EXPORT_SYMBOL(cpu_present_map);
4540
4541#ifndef CONFIG_SMP
4cef0c61 4542cpumask_t cpu_online_map __read_mostly = CPU_MASK_ALL;
e16b38f7
GB
4543EXPORT_SYMBOL(cpu_online_map);
4544
4cef0c61 4545cpumask_t cpu_possible_map __read_mostly = CPU_MASK_ALL;
e16b38f7 4546EXPORT_SYMBOL(cpu_possible_map);
1da177e4
LT
4547#endif
4548
4549long sched_getaffinity(pid_t pid, cpumask_t *mask)
4550{
36c8b586 4551 struct task_struct *p;
1da177e4 4552 int retval;
1da177e4 4553
5be9361c 4554 mutex_lock(&sched_hotcpu_mutex);
1da177e4
LT
4555 read_lock(&tasklist_lock);
4556
4557 retval = -ESRCH;
4558 p = find_process_by_pid(pid);
4559 if (!p)
4560 goto out_unlock;
4561
e7834f8f
DQ
4562 retval = security_task_getscheduler(p);
4563 if (retval)
4564 goto out_unlock;
4565
2f7016d9 4566 cpus_and(*mask, p->cpus_allowed, cpu_online_map);
1da177e4
LT
4567
4568out_unlock:
4569 read_unlock(&tasklist_lock);
5be9361c 4570 mutex_unlock(&sched_hotcpu_mutex);
1da177e4 4571
9531b62f 4572 return retval;
1da177e4
LT
4573}
4574
4575/**
4576 * sys_sched_getaffinity - get the cpu affinity of a process
4577 * @pid: pid of the process
4578 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4579 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4580 */
4581asmlinkage long sys_sched_getaffinity(pid_t pid, unsigned int len,
4582 unsigned long __user *user_mask_ptr)
4583{
4584 int ret;
4585 cpumask_t mask;
4586
4587 if (len < sizeof(cpumask_t))
4588 return -EINVAL;
4589
4590 ret = sched_getaffinity(pid, &mask);
4591 if (ret < 0)
4592 return ret;
4593
4594 if (copy_to_user(user_mask_ptr, &mask, sizeof(cpumask_t)))
4595 return -EFAULT;
4596
4597 return sizeof(cpumask_t);
4598}
4599
4600/**
4601 * sys_sched_yield - yield the current processor to other threads.
4602 *
dd41f596
IM
4603 * This function yields the current CPU to other tasks. If there are no
4604 * other threads running on this CPU then this function will return.
1da177e4
LT
4605 */
4606asmlinkage long sys_sched_yield(void)
4607{
70b97a7f 4608 struct rq *rq = this_rq_lock();
1da177e4 4609
2d72376b 4610 schedstat_inc(rq, yld_count);
4530d7ab 4611 current->sched_class->yield_task(rq);
1da177e4
LT
4612
4613 /*
4614 * Since we are going to call schedule() anyway, there's
4615 * no need to preempt or enable interrupts:
4616 */
4617 __release(rq->lock);
8a25d5de 4618 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
4619 _raw_spin_unlock(&rq->lock);
4620 preempt_enable_no_resched();
4621
4622 schedule();
4623
4624 return 0;
4625}
4626
e7b38404 4627static void __cond_resched(void)
1da177e4 4628{
8e0a43d8
IM
4629#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
4630 __might_sleep(__FILE__, __LINE__);
4631#endif
5bbcfd90
IM
4632 /*
4633 * The BKS might be reacquired before we have dropped
4634 * PREEMPT_ACTIVE, which could trigger a second
4635 * cond_resched() call.
4636 */
1da177e4
LT
4637 do {
4638 add_preempt_count(PREEMPT_ACTIVE);
4639 schedule();
4640 sub_preempt_count(PREEMPT_ACTIVE);
4641 } while (need_resched());
4642}
4643
4644int __sched cond_resched(void)
4645{
9414232f
IM
4646 if (need_resched() && !(preempt_count() & PREEMPT_ACTIVE) &&
4647 system_state == SYSTEM_RUNNING) {
1da177e4
LT
4648 __cond_resched();
4649 return 1;
4650 }
4651 return 0;
4652}
1da177e4
LT
4653EXPORT_SYMBOL(cond_resched);
4654
4655/*
4656 * cond_resched_lock() - if a reschedule is pending, drop the given lock,
4657 * call schedule, and on return reacquire the lock.
4658 *
4659 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
4660 * operations here to prevent schedule() from being called twice (once via
4661 * spin_unlock(), once by hand).
4662 */
95cdf3b7 4663int cond_resched_lock(spinlock_t *lock)
1da177e4 4664{
6df3cecb
JK
4665 int ret = 0;
4666
1da177e4
LT
4667 if (need_lockbreak(lock)) {
4668 spin_unlock(lock);
4669 cpu_relax();
6df3cecb 4670 ret = 1;
1da177e4
LT
4671 spin_lock(lock);
4672 }
9414232f 4673 if (need_resched() && system_state == SYSTEM_RUNNING) {
8a25d5de 4674 spin_release(&lock->dep_map, 1, _THIS_IP_);
1da177e4
LT
4675 _raw_spin_unlock(lock);
4676 preempt_enable_no_resched();
4677 __cond_resched();
6df3cecb 4678 ret = 1;
1da177e4 4679 spin_lock(lock);
1da177e4 4680 }
6df3cecb 4681 return ret;
1da177e4 4682}
1da177e4
LT
4683EXPORT_SYMBOL(cond_resched_lock);
4684
4685int __sched cond_resched_softirq(void)
4686{
4687 BUG_ON(!in_softirq());
4688
9414232f 4689 if (need_resched() && system_state == SYSTEM_RUNNING) {
98d82567 4690 local_bh_enable();
1da177e4
LT
4691 __cond_resched();
4692 local_bh_disable();
4693 return 1;
4694 }
4695 return 0;
4696}
1da177e4
LT
4697EXPORT_SYMBOL(cond_resched_softirq);
4698
1da177e4
LT
4699/**
4700 * yield - yield the current processor to other threads.
4701 *
72fd4a35 4702 * This is a shortcut for kernel-space yielding - it marks the
1da177e4
LT
4703 * thread runnable and calls sys_sched_yield().
4704 */
4705void __sched yield(void)
4706{
4707 set_current_state(TASK_RUNNING);
4708 sys_sched_yield();
4709}
1da177e4
LT
4710EXPORT_SYMBOL(yield);
4711
4712/*
4713 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
4714 * that process accounting knows that this is a task in IO wait state.
4715 *
4716 * But don't do that if it is a deliberate, throttling IO wait (this task
4717 * has set its backing_dev_info: the queue against which it should throttle)
4718 */
4719void __sched io_schedule(void)
4720{
70b97a7f 4721 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4 4722
0ff92245 4723 delayacct_blkio_start();
1da177e4
LT
4724 atomic_inc(&rq->nr_iowait);
4725 schedule();
4726 atomic_dec(&rq->nr_iowait);
0ff92245 4727 delayacct_blkio_end();
1da177e4 4728}
1da177e4
LT
4729EXPORT_SYMBOL(io_schedule);
4730
4731long __sched io_schedule_timeout(long timeout)
4732{
70b97a7f 4733 struct rq *rq = &__raw_get_cpu_var(runqueues);
1da177e4
LT
4734 long ret;
4735
0ff92245 4736 delayacct_blkio_start();
1da177e4
LT
4737 atomic_inc(&rq->nr_iowait);
4738 ret = schedule_timeout(timeout);
4739 atomic_dec(&rq->nr_iowait);
0ff92245 4740 delayacct_blkio_end();
1da177e4
LT
4741 return ret;
4742}
4743
4744/**
4745 * sys_sched_get_priority_max - return maximum RT priority.
4746 * @policy: scheduling class.
4747 *
4748 * this syscall returns the maximum rt_priority that can be used
4749 * by a given scheduling class.
4750 */
4751asmlinkage long sys_sched_get_priority_max(int policy)
4752{
4753 int ret = -EINVAL;
4754
4755 switch (policy) {
4756 case SCHED_FIFO:
4757 case SCHED_RR:
4758 ret = MAX_USER_RT_PRIO-1;
4759 break;
4760 case SCHED_NORMAL:
b0a9499c 4761 case SCHED_BATCH:
dd41f596 4762 case SCHED_IDLE:
1da177e4
LT
4763 ret = 0;
4764 break;
4765 }
4766 return ret;
4767}
4768
4769/**
4770 * sys_sched_get_priority_min - return minimum RT priority.
4771 * @policy: scheduling class.
4772 *
4773 * this syscall returns the minimum rt_priority that can be used
4774 * by a given scheduling class.
4775 */
4776asmlinkage long sys_sched_get_priority_min(int policy)
4777{
4778 int ret = -EINVAL;
4779
4780 switch (policy) {
4781 case SCHED_FIFO:
4782 case SCHED_RR:
4783 ret = 1;
4784 break;
4785 case SCHED_NORMAL:
b0a9499c 4786 case SCHED_BATCH:
dd41f596 4787 case SCHED_IDLE:
1da177e4
LT
4788 ret = 0;
4789 }
4790 return ret;
4791}
4792
4793/**
4794 * sys_sched_rr_get_interval - return the default timeslice of a process.
4795 * @pid: pid of the process.
4796 * @interval: userspace pointer to the timeslice value.
4797 *
4798 * this syscall writes the default timeslice value of a given process
4799 * into the user-space timespec buffer. A value of '0' means infinity.
4800 */
4801asmlinkage
4802long sys_sched_rr_get_interval(pid_t pid, struct timespec __user *interval)
4803{
36c8b586 4804 struct task_struct *p;
a4ec24b4 4805 unsigned int time_slice;
3a5c359a 4806 int retval;
1da177e4 4807 struct timespec t;
1da177e4
LT
4808
4809 if (pid < 0)
3a5c359a 4810 return -EINVAL;
1da177e4
LT
4811
4812 retval = -ESRCH;
4813 read_lock(&tasklist_lock);
4814 p = find_process_by_pid(pid);
4815 if (!p)
4816 goto out_unlock;
4817
4818 retval = security_task_getscheduler(p);
4819 if (retval)
4820 goto out_unlock;
4821
a4ec24b4
DA
4822 if (p->policy == SCHED_FIFO)
4823 time_slice = 0;
4824 else if (p->policy == SCHED_RR)
4825 time_slice = DEF_TIMESLICE;
4826 else {
4827 struct sched_entity *se = &p->se;
4828 unsigned long flags;
4829 struct rq *rq;
4830
4831 rq = task_rq_lock(p, &flags);
4832 time_slice = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
4833 task_rq_unlock(rq, &flags);
4834 }
1da177e4 4835 read_unlock(&tasklist_lock);
a4ec24b4 4836 jiffies_to_timespec(time_slice, &t);
1da177e4 4837 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4838 return retval;
3a5c359a 4839
1da177e4
LT
4840out_unlock:
4841 read_unlock(&tasklist_lock);
4842 return retval;
4843}
4844
2ed6e34f 4845static const char stat_nam[] = "RSDTtZX";
36c8b586
IM
4846
4847static void show_task(struct task_struct *p)
1da177e4 4848{
1da177e4 4849 unsigned long free = 0;
36c8b586 4850 unsigned state;
1da177e4 4851
1da177e4 4852 state = p->state ? __ffs(p->state) + 1 : 0;
cc4ea795 4853 printk(KERN_INFO "%-13.13s %c", p->comm,
2ed6e34f 4854 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4855#if BITS_PER_LONG == 32
1da177e4 4856 if (state == TASK_RUNNING)
cc4ea795 4857 printk(KERN_CONT " running ");
1da177e4 4858 else
cc4ea795 4859 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4860#else
4861 if (state == TASK_RUNNING)
cc4ea795 4862 printk(KERN_CONT " running task ");
1da177e4 4863 else
cc4ea795 4864 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4865#endif
4866#ifdef CONFIG_DEBUG_STACK_USAGE
4867 {
10ebffde 4868 unsigned long *n = end_of_stack(p);
1da177e4
LT
4869 while (!*n)
4870 n++;
10ebffde 4871 free = (unsigned long)n - (unsigned long)end_of_stack(p);
1da177e4
LT
4872 }
4873#endif
ba25f9dc
PE
4874 printk(KERN_CONT "%5lu %5d %6d\n", free,
4875 task_pid_nr(p), task_pid_nr(p->parent));
1da177e4
LT
4876
4877 if (state != TASK_RUNNING)
4878 show_stack(p, NULL);
4879}
4880
e59e2ae2 4881void show_state_filter(unsigned long state_filter)
1da177e4 4882{
36c8b586 4883 struct task_struct *g, *p;
1da177e4 4884
4bd77321
IM
4885#if BITS_PER_LONG == 32
4886 printk(KERN_INFO
4887 " task PC stack pid father\n");
1da177e4 4888#else
4bd77321
IM
4889 printk(KERN_INFO
4890 " task PC stack pid father\n");
1da177e4
LT
4891#endif
4892 read_lock(&tasklist_lock);
4893 do_each_thread(g, p) {
4894 /*
4895 * reset the NMI-timeout, listing all files on a slow
4896 * console might take alot of time:
4897 */
4898 touch_nmi_watchdog();
39bc89fd 4899 if (!state_filter || (p->state & state_filter))
e59e2ae2 4900 show_task(p);
1da177e4
LT
4901 } while_each_thread(g, p);
4902
04c9167f
JF
4903 touch_all_softlockup_watchdogs();
4904
dd41f596
IM
4905#ifdef CONFIG_SCHED_DEBUG
4906 sysrq_sched_debug_show();
4907#endif
1da177e4 4908 read_unlock(&tasklist_lock);
e59e2ae2
IM
4909 /*
4910 * Only show locks if all tasks are dumped:
4911 */
4912 if (state_filter == -1)
4913 debug_show_all_locks();
1da177e4
LT
4914}
4915
1df21055
IM
4916void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4917{
dd41f596 4918 idle->sched_class = &idle_sched_class;
1df21055
IM
4919}
4920
f340c0d1
IM
4921/**
4922 * init_idle - set up an idle thread for a given CPU
4923 * @idle: task in question
4924 * @cpu: cpu the idle task belongs to
4925 *
4926 * NOTE: this function does not set the idle thread's NEED_RESCHED
4927 * flag, to make booting more robust.
4928 */
5c1e1767 4929void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4930{
70b97a7f 4931 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4932 unsigned long flags;
4933
dd41f596
IM
4934 __sched_fork(idle);
4935 idle->se.exec_start = sched_clock();
4936
b29739f9 4937 idle->prio = idle->normal_prio = MAX_PRIO;
1da177e4 4938 idle->cpus_allowed = cpumask_of_cpu(cpu);
dd41f596 4939 __set_task_cpu(idle, cpu);
1da177e4
LT
4940
4941 spin_lock_irqsave(&rq->lock, flags);
4942 rq->curr = rq->idle = idle;
4866cde0
NP
4943#if defined(CONFIG_SMP) && defined(__ARCH_WANT_UNLOCKED_CTXSW)
4944 idle->oncpu = 1;
4945#endif
1da177e4
LT
4946 spin_unlock_irqrestore(&rq->lock, flags);
4947
4948 /* Set the preempt count _outside_ the spinlocks! */
4949#if defined(CONFIG_PREEMPT) && !defined(CONFIG_PREEMPT_BKL)
a1261f54 4950 task_thread_info(idle)->preempt_count = (idle->lock_depth >= 0);
1da177e4 4951#else
a1261f54 4952 task_thread_info(idle)->preempt_count = 0;
1da177e4 4953#endif
dd41f596
IM
4954 /*
4955 * The idle tasks have their own, simple scheduling class:
4956 */
4957 idle->sched_class = &idle_sched_class;
1da177e4
LT
4958}
4959
4960/*
4961 * In a system that switches off the HZ timer nohz_cpu_mask
4962 * indicates which cpus entered this state. This is used
4963 * in the rcu update to wait only for active cpus. For system
4964 * which do not switch off the HZ timer nohz_cpu_mask should
4965 * always be CPU_MASK_NONE.
4966 */
4967cpumask_t nohz_cpu_mask = CPU_MASK_NONE;
4968
4969#ifdef CONFIG_SMP
4970/*
4971 * This is how migration works:
4972 *
70b97a7f 4973 * 1) we queue a struct migration_req structure in the source CPU's
1da177e4
LT
4974 * runqueue and wake up that CPU's migration thread.
4975 * 2) we down() the locked semaphore => thread blocks.
4976 * 3) migration thread wakes up (implicitly it forces the migrated
4977 * thread off the CPU)
4978 * 4) it gets the migration request and checks whether the migrated
4979 * task is still in the wrong runqueue.
4980 * 5) if it's in the wrong runqueue then the migration thread removes
4981 * it and puts it into the right queue.
4982 * 6) migration thread up()s the semaphore.
4983 * 7) we wake up and the migration is done.
4984 */
4985
4986/*
4987 * Change a given task's CPU affinity. Migrate the thread to a
4988 * proper CPU and schedule it away if the CPU it's executing on
4989 * is removed from the allowed bitmask.
4990 *
4991 * NOTE: the caller must have a valid reference to the task, the
4992 * task must not exit() & deallocate itself prematurely. The
4993 * call is not atomic; no spinlocks may be held.
4994 */
36c8b586 4995int set_cpus_allowed(struct task_struct *p, cpumask_t new_mask)
1da177e4 4996{
70b97a7f 4997 struct migration_req req;
1da177e4 4998 unsigned long flags;
70b97a7f 4999 struct rq *rq;
48f24c4d 5000 int ret = 0;
1da177e4
LT
5001
5002 rq = task_rq_lock(p, &flags);
5003 if (!cpus_intersects(new_mask, cpu_online_map)) {
5004 ret = -EINVAL;
5005 goto out;
5006 }
5007
5008 p->cpus_allowed = new_mask;
5009 /* Can the task run on the task's current CPU? If so, we're done */
5010 if (cpu_isset(task_cpu(p), new_mask))
5011 goto out;
5012
5013 if (migrate_task(p, any_online_cpu(new_mask), &req)) {
5014 /* Need help from migration thread: drop lock and wait. */
5015 task_rq_unlock(rq, &flags);
5016 wake_up_process(rq->migration_thread);
5017 wait_for_completion(&req.done);
5018 tlb_migrate_finish(p->mm);
5019 return 0;
5020 }
5021out:
5022 task_rq_unlock(rq, &flags);
48f24c4d 5023
1da177e4
LT
5024 return ret;
5025}
1da177e4
LT
5026EXPORT_SYMBOL_GPL(set_cpus_allowed);
5027
5028/*
5029 * Move (not current) task off this cpu, onto dest cpu. We're doing
5030 * this because either it can't run here any more (set_cpus_allowed()
5031 * away from this CPU, or CPU going down), or because we're
5032 * attempting to rebalance this task on exec (sched_exec).
5033 *
5034 * So we race with normal scheduler movements, but that's OK, as long
5035 * as the task is no longer on this CPU.
efc30814
KK
5036 *
5037 * Returns non-zero if task was successfully migrated.
1da177e4 5038 */
efc30814 5039static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5040{
70b97a7f 5041 struct rq *rq_dest, *rq_src;
dd41f596 5042 int ret = 0, on_rq;
1da177e4
LT
5043
5044 if (unlikely(cpu_is_offline(dest_cpu)))
efc30814 5045 return ret;
1da177e4
LT
5046
5047 rq_src = cpu_rq(src_cpu);
5048 rq_dest = cpu_rq(dest_cpu);
5049
5050 double_rq_lock(rq_src, rq_dest);
5051 /* Already moved. */
5052 if (task_cpu(p) != src_cpu)
5053 goto out;
5054 /* Affinity changed (again). */
5055 if (!cpu_isset(dest_cpu, p->cpus_allowed))
5056 goto out;
5057
dd41f596 5058 on_rq = p->se.on_rq;
6e82a3be 5059 if (on_rq)
2e1cb74a 5060 deactivate_task(rq_src, p, 0);
6e82a3be 5061
1da177e4 5062 set_task_cpu(p, dest_cpu);
dd41f596
IM
5063 if (on_rq) {
5064 activate_task(rq_dest, p, 0);
5065 check_preempt_curr(rq_dest, p);
1da177e4 5066 }
efc30814 5067 ret = 1;
1da177e4
LT
5068out:
5069 double_rq_unlock(rq_src, rq_dest);
efc30814 5070 return ret;
1da177e4
LT
5071}
5072
5073/*
5074 * migration_thread - this is a highprio system thread that performs
5075 * thread migration by bumping thread off CPU then 'pushing' onto
5076 * another runqueue.
5077 */
95cdf3b7 5078static int migration_thread(void *data)
1da177e4 5079{
1da177e4 5080 int cpu = (long)data;
70b97a7f 5081 struct rq *rq;
1da177e4
LT
5082
5083 rq = cpu_rq(cpu);
5084 BUG_ON(rq->migration_thread != current);
5085
5086 set_current_state(TASK_INTERRUPTIBLE);
5087 while (!kthread_should_stop()) {
70b97a7f 5088 struct migration_req *req;
1da177e4 5089 struct list_head *head;
1da177e4 5090
1da177e4
LT
5091 spin_lock_irq(&rq->lock);
5092
5093 if (cpu_is_offline(cpu)) {
5094 spin_unlock_irq(&rq->lock);
5095 goto wait_to_die;
5096 }
5097
5098 if (rq->active_balance) {
5099 active_load_balance(rq, cpu);
5100 rq->active_balance = 0;
5101 }
5102
5103 head = &rq->migration_queue;
5104
5105 if (list_empty(head)) {
5106 spin_unlock_irq(&rq->lock);
5107 schedule();
5108 set_current_state(TASK_INTERRUPTIBLE);
5109 continue;
5110 }
70b97a7f 5111 req = list_entry(head->next, struct migration_req, list);
1da177e4
LT
5112 list_del_init(head->next);
5113
674311d5
NP
5114 spin_unlock(&rq->lock);
5115 __migrate_task(req->task, cpu, req->dest_cpu);
5116 local_irq_enable();
1da177e4
LT
5117
5118 complete(&req->done);
5119 }
5120 __set_current_state(TASK_RUNNING);
5121 return 0;
5122
5123wait_to_die:
5124 /* Wait for kthread_stop */
5125 set_current_state(TASK_INTERRUPTIBLE);
5126 while (!kthread_should_stop()) {
5127 schedule();
5128 set_current_state(TASK_INTERRUPTIBLE);
5129 }
5130 __set_current_state(TASK_RUNNING);
5131 return 0;
5132}
5133
5134#ifdef CONFIG_HOTPLUG_CPU
f7b4cddc
ON
5135
5136static int __migrate_task_irq(struct task_struct *p, int src_cpu, int dest_cpu)
5137{
5138 int ret;
5139
5140 local_irq_disable();
5141 ret = __migrate_task(p, src_cpu, dest_cpu);
5142 local_irq_enable();
5143 return ret;
5144}
5145
054b9108 5146/*
3a4fa0a2 5147 * Figure out where task on dead CPU should go, use force if necessary.
054b9108
KK
5148 * NOTE: interrupts should be disabled by the caller
5149 */
48f24c4d 5150static void move_task_off_dead_cpu(int dead_cpu, struct task_struct *p)
1da177e4 5151{
efc30814 5152 unsigned long flags;
1da177e4 5153 cpumask_t mask;
70b97a7f
IM
5154 struct rq *rq;
5155 int dest_cpu;
1da177e4 5156
3a5c359a
AK
5157 do {
5158 /* On same node? */
5159 mask = node_to_cpumask(cpu_to_node(dead_cpu));
5160 cpus_and(mask, mask, p->cpus_allowed);
5161 dest_cpu = any_online_cpu(mask);
5162
5163 /* On any allowed CPU? */
5164 if (dest_cpu == NR_CPUS)
5165 dest_cpu = any_online_cpu(p->cpus_allowed);
5166
5167 /* No more Mr. Nice Guy. */
5168 if (dest_cpu == NR_CPUS) {
470fd646
CW
5169 cpumask_t cpus_allowed = cpuset_cpus_allowed_locked(p);
5170 /*
5171 * Try to stay on the same cpuset, where the
5172 * current cpuset may be a subset of all cpus.
5173 * The cpuset_cpus_allowed_locked() variant of
5174 * cpuset_cpus_allowed() will not block. It must be
5175 * called within calls to cpuset_lock/cpuset_unlock.
5176 */
3a5c359a 5177 rq = task_rq_lock(p, &flags);
470fd646 5178 p->cpus_allowed = cpus_allowed;
3a5c359a
AK
5179 dest_cpu = any_online_cpu(p->cpus_allowed);
5180 task_rq_unlock(rq, &flags);
1da177e4 5181
3a5c359a
AK
5182 /*
5183 * Don't tell them about moving exiting tasks or
5184 * kernel threads (both mm NULL), since they never
5185 * leave kernel.
5186 */
5187 if (p->mm && printk_ratelimit())
5188 printk(KERN_INFO "process %d (%s) no "
5189 "longer affine to cpu%d\n",
ba25f9dc 5190 task_pid_nr(p), p->comm, dead_cpu);
3a5c359a 5191 }
f7b4cddc 5192 } while (!__migrate_task_irq(p, dead_cpu, dest_cpu));
1da177e4
LT
5193}
5194
5195/*
5196 * While a dead CPU has no uninterruptible tasks queued at this point,
5197 * it might still have a nonzero ->nr_uninterruptible counter, because
5198 * for performance reasons the counter is not stricly tracking tasks to
5199 * their home CPUs. So we just add the counter to another CPU's counter,
5200 * to keep the global sum constant after CPU-down:
5201 */
70b97a7f 5202static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5203{
70b97a7f 5204 struct rq *rq_dest = cpu_rq(any_online_cpu(CPU_MASK_ALL));
1da177e4
LT
5205 unsigned long flags;
5206
5207 local_irq_save(flags);
5208 double_rq_lock(rq_src, rq_dest);
5209 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5210 rq_src->nr_uninterruptible = 0;
5211 double_rq_unlock(rq_src, rq_dest);
5212 local_irq_restore(flags);
5213}
5214
5215/* Run through task list and migrate tasks from the dead cpu. */
5216static void migrate_live_tasks(int src_cpu)
5217{
48f24c4d 5218 struct task_struct *p, *t;
1da177e4 5219
f7b4cddc 5220 read_lock(&tasklist_lock);
1da177e4 5221
48f24c4d
IM
5222 do_each_thread(t, p) {
5223 if (p == current)
1da177e4
LT
5224 continue;
5225
48f24c4d
IM
5226 if (task_cpu(p) == src_cpu)
5227 move_task_off_dead_cpu(src_cpu, p);
5228 } while_each_thread(t, p);
1da177e4 5229
f7b4cddc 5230 read_unlock(&tasklist_lock);
1da177e4
LT
5231}
5232
a9957449
AD
5233/*
5234 * activate_idle_task - move idle task to the _front_ of runqueue.
5235 */
5236static void activate_idle_task(struct task_struct *p, struct rq *rq)
5237{
5238 update_rq_clock(rq);
5239
5240 if (p->state == TASK_UNINTERRUPTIBLE)
5241 rq->nr_uninterruptible--;
5242
5243 enqueue_task(rq, p, 0);
5244 inc_nr_running(p, rq);
5245}
5246
dd41f596
IM
5247/*
5248 * Schedules idle task to be the next runnable task on current CPU.
1da177e4 5249 * It does so by boosting its priority to highest possible and adding it to
48f24c4d 5250 * the _front_ of the runqueue. Used by CPU offline code.
1da177e4
LT
5251 */
5252void sched_idle_next(void)
5253{
48f24c4d 5254 int this_cpu = smp_processor_id();
70b97a7f 5255 struct rq *rq = cpu_rq(this_cpu);
1da177e4
LT
5256 struct task_struct *p = rq->idle;
5257 unsigned long flags;
5258
5259 /* cpu has to be offline */
48f24c4d 5260 BUG_ON(cpu_online(this_cpu));
1da177e4 5261
48f24c4d
IM
5262 /*
5263 * Strictly not necessary since rest of the CPUs are stopped by now
5264 * and interrupts disabled on the current cpu.
1da177e4
LT
5265 */
5266 spin_lock_irqsave(&rq->lock, flags);
5267
dd41f596 5268 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
48f24c4d
IM
5269
5270 /* Add idle task to the _front_ of its priority queue: */
dd41f596 5271 activate_idle_task(p, rq);
1da177e4
LT
5272
5273 spin_unlock_irqrestore(&rq->lock, flags);
5274}
5275
48f24c4d
IM
5276/*
5277 * Ensures that the idle task is using init_mm right before its cpu goes
1da177e4
LT
5278 * offline.
5279 */
5280void idle_task_exit(void)
5281{
5282 struct mm_struct *mm = current->active_mm;
5283
5284 BUG_ON(cpu_online(smp_processor_id()));
5285
5286 if (mm != &init_mm)
5287 switch_mm(mm, &init_mm, current);
5288 mmdrop(mm);
5289}
5290
054b9108 5291/* called under rq->lock with disabled interrupts */
36c8b586 5292static void migrate_dead(unsigned int dead_cpu, struct task_struct *p)
1da177e4 5293{
70b97a7f 5294 struct rq *rq = cpu_rq(dead_cpu);
1da177e4
LT
5295
5296 /* Must be exiting, otherwise would be on tasklist. */
270f722d 5297 BUG_ON(!p->exit_state);
1da177e4
LT
5298
5299 /* Cannot have done final schedule yet: would have vanished. */
c394cc9f 5300 BUG_ON(p->state == TASK_DEAD);
1da177e4 5301
48f24c4d 5302 get_task_struct(p);
1da177e4
LT
5303
5304 /*
5305 * Drop lock around migration; if someone else moves it,
5306 * that's OK. No task can be added to this CPU, so iteration is
5307 * fine.
5308 */
f7b4cddc 5309 spin_unlock_irq(&rq->lock);
48f24c4d 5310 move_task_off_dead_cpu(dead_cpu, p);
f7b4cddc 5311 spin_lock_irq(&rq->lock);
1da177e4 5312
48f24c4d 5313 put_task_struct(p);
1da177e4
LT
5314}
5315
5316/* release_task() removes task from tasklist, so we won't find dead tasks. */
5317static void migrate_dead_tasks(unsigned int dead_cpu)
5318{
70b97a7f 5319 struct rq *rq = cpu_rq(dead_cpu);
dd41f596 5320 struct task_struct *next;
48f24c4d 5321
dd41f596
IM
5322 for ( ; ; ) {
5323 if (!rq->nr_running)
5324 break;
a8e504d2 5325 update_rq_clock(rq);
ff95f3df 5326 next = pick_next_task(rq, rq->curr);
dd41f596
IM
5327 if (!next)
5328 break;
5329 migrate_dead(dead_cpu, next);
e692ab53 5330
1da177e4
LT
5331 }
5332}
5333#endif /* CONFIG_HOTPLUG_CPU */
5334
e692ab53
NP
5335#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5336
5337static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5338 {
5339 .procname = "sched_domain",
c57baf1e 5340 .mode = 0555,
e0361851 5341 },
e692ab53
NP
5342 {0,},
5343};
5344
5345static struct ctl_table sd_ctl_root[] = {
e0361851 5346 {
c57baf1e 5347 .ctl_name = CTL_KERN,
e0361851 5348 .procname = "kernel",
c57baf1e 5349 .mode = 0555,
e0361851
AD
5350 .child = sd_ctl_dir,
5351 },
e692ab53
NP
5352 {0,},
5353};
5354
5355static struct ctl_table *sd_alloc_ctl_entry(int n)
5356{
5357 struct ctl_table *entry =
5cf9f062 5358 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5359
e692ab53
NP
5360 return entry;
5361}
5362
6382bc90
MM
5363static void sd_free_ctl_entry(struct ctl_table **tablep)
5364{
cd790076 5365 struct ctl_table *entry;
6382bc90 5366
cd790076
MM
5367 /*
5368 * In the intermediate directories, both the child directory and
5369 * procname are dynamically allocated and could fail but the mode
5370 * will always be set. In the lowest directory the names are
5371 * static strings and all have proc handlers.
5372 */
5373 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5374 if (entry->child)
5375 sd_free_ctl_entry(&entry->child);
cd790076
MM
5376 if (entry->proc_handler == NULL)
5377 kfree(entry->procname);
5378 }
6382bc90
MM
5379
5380 kfree(*tablep);
5381 *tablep = NULL;
5382}
5383
e692ab53 5384static void
e0361851 5385set_table_entry(struct ctl_table *entry,
e692ab53
NP
5386 const char *procname, void *data, int maxlen,
5387 mode_t mode, proc_handler *proc_handler)
5388{
e692ab53
NP
5389 entry->procname = procname;
5390 entry->data = data;
5391 entry->maxlen = maxlen;
5392 entry->mode = mode;
5393 entry->proc_handler = proc_handler;
5394}
5395
5396static struct ctl_table *
5397sd_alloc_ctl_domain_table(struct sched_domain *sd)
5398{
ace8b3d6 5399 struct ctl_table *table = sd_alloc_ctl_entry(12);
e692ab53 5400
ad1cdc1d
MM
5401 if (table == NULL)
5402 return NULL;
5403
e0361851 5404 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5405 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5406 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5407 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5408 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5409 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5410 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5411 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5412 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5413 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5414 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5415 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5416 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5417 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5418 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5419 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5420 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5421 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5422 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5423 &sd->cache_nice_tries,
5424 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5425 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5426 sizeof(int), 0644, proc_dointvec_minmax);
6323469f 5427 /* &table[11] is terminator */
e692ab53
NP
5428
5429 return table;
5430}
5431
8401f775 5432static ctl_table * sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5433{
5434 struct ctl_table *entry, *table;
5435 struct sched_domain *sd;
5436 int domain_num = 0, i;
5437 char buf[32];
5438
5439 for_each_domain(cpu, sd)
5440 domain_num++;
5441 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5442 if (table == NULL)
5443 return NULL;
e692ab53
NP
5444
5445 i = 0;
5446 for_each_domain(cpu, sd) {
5447 snprintf(buf, 32, "domain%d", i);
e692ab53 5448 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5449 entry->mode = 0555;
e692ab53
NP
5450 entry->child = sd_alloc_ctl_domain_table(sd);
5451 entry++;
5452 i++;
5453 }
5454 return table;
5455}
5456
5457static struct ctl_table_header *sd_sysctl_header;
6382bc90 5458static void register_sched_domain_sysctl(void)
e692ab53
NP
5459{
5460 int i, cpu_num = num_online_cpus();
5461 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5462 char buf[32];
5463
7378547f
MM
5464 WARN_ON(sd_ctl_dir[0].child);
5465 sd_ctl_dir[0].child = entry;
5466
ad1cdc1d
MM
5467 if (entry == NULL)
5468 return;
5469
97b6ea7b 5470 for_each_online_cpu(i) {
e692ab53 5471 snprintf(buf, 32, "cpu%d", i);
e692ab53 5472 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5473 entry->mode = 0555;
e692ab53 5474 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5475 entry++;
e692ab53 5476 }
7378547f
MM
5477
5478 WARN_ON(sd_sysctl_header);
e692ab53
NP
5479 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5480}
6382bc90 5481
7378547f 5482/* may be called multiple times per register */
6382bc90
MM
5483static void unregister_sched_domain_sysctl(void)
5484{
7378547f
MM
5485 if (sd_sysctl_header)
5486 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5487 sd_sysctl_header = NULL;
7378547f
MM
5488 if (sd_ctl_dir[0].child)
5489 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5490}
e692ab53 5491#else
6382bc90
MM
5492static void register_sched_domain_sysctl(void)
5493{
5494}
5495static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5496{
5497}
5498#endif
5499
1da177e4
LT
5500/*
5501 * migration_call - callback that gets triggered when a CPU is added.
5502 * Here we can start up the necessary migration thread for the new CPU.
5503 */
48f24c4d
IM
5504static int __cpuinit
5505migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5506{
1da177e4 5507 struct task_struct *p;
48f24c4d 5508 int cpu = (long)hcpu;
1da177e4 5509 unsigned long flags;
70b97a7f 5510 struct rq *rq;
1da177e4
LT
5511
5512 switch (action) {
5be9361c
GS
5513 case CPU_LOCK_ACQUIRE:
5514 mutex_lock(&sched_hotcpu_mutex);
5515 break;
5516
1da177e4 5517 case CPU_UP_PREPARE:
8bb78442 5518 case CPU_UP_PREPARE_FROZEN:
dd41f596 5519 p = kthread_create(migration_thread, hcpu, "migration/%d", cpu);
1da177e4
LT
5520 if (IS_ERR(p))
5521 return NOTIFY_BAD;
1da177e4
LT
5522 kthread_bind(p, cpu);
5523 /* Must be high prio: stop_machine expects to yield to it. */
5524 rq = task_rq_lock(p, &flags);
dd41f596 5525 __setscheduler(rq, p, SCHED_FIFO, MAX_RT_PRIO-1);
1da177e4
LT
5526 task_rq_unlock(rq, &flags);
5527 cpu_rq(cpu)->migration_thread = p;
5528 break;
48f24c4d 5529
1da177e4 5530 case CPU_ONLINE:
8bb78442 5531 case CPU_ONLINE_FROZEN:
3a4fa0a2 5532 /* Strictly unnecessary, as first user will wake it. */
1da177e4
LT
5533 wake_up_process(cpu_rq(cpu)->migration_thread);
5534 break;
48f24c4d 5535
1da177e4
LT
5536#ifdef CONFIG_HOTPLUG_CPU
5537 case CPU_UP_CANCELED:
8bb78442 5538 case CPU_UP_CANCELED_FROZEN:
fc75cdfa
HC
5539 if (!cpu_rq(cpu)->migration_thread)
5540 break;
1da177e4 5541 /* Unbind it from offline cpu so it can run. Fall thru. */
a4c4af7c
HC
5542 kthread_bind(cpu_rq(cpu)->migration_thread,
5543 any_online_cpu(cpu_online_map));
1da177e4
LT
5544 kthread_stop(cpu_rq(cpu)->migration_thread);
5545 cpu_rq(cpu)->migration_thread = NULL;
5546 break;
48f24c4d 5547
1da177e4 5548 case CPU_DEAD:
8bb78442 5549 case CPU_DEAD_FROZEN:
470fd646 5550 cpuset_lock(); /* around calls to cpuset_cpus_allowed_lock() */
1da177e4
LT
5551 migrate_live_tasks(cpu);
5552 rq = cpu_rq(cpu);
5553 kthread_stop(rq->migration_thread);
5554 rq->migration_thread = NULL;
5555 /* Idle task back to normal (off runqueue, low prio) */
d2da272a 5556 spin_lock_irq(&rq->lock);
a8e504d2 5557 update_rq_clock(rq);
2e1cb74a 5558 deactivate_task(rq, rq->idle, 0);
1da177e4 5559 rq->idle->static_prio = MAX_PRIO;
dd41f596
IM
5560 __setscheduler(rq, rq->idle, SCHED_NORMAL, 0);
5561 rq->idle->sched_class = &idle_sched_class;
1da177e4 5562 migrate_dead_tasks(cpu);
d2da272a 5563 spin_unlock_irq(&rq->lock);
470fd646 5564 cpuset_unlock();
1da177e4
LT
5565 migrate_nr_uninterruptible(rq);
5566 BUG_ON(rq->nr_running != 0);
5567
5568 /* No need to migrate the tasks: it was best-effort if
5be9361c 5569 * they didn't take sched_hotcpu_mutex. Just wake up
1da177e4
LT
5570 * the requestors. */
5571 spin_lock_irq(&rq->lock);
5572 while (!list_empty(&rq->migration_queue)) {
70b97a7f
IM
5573 struct migration_req *req;
5574
1da177e4 5575 req = list_entry(rq->migration_queue.next,
70b97a7f 5576 struct migration_req, list);
1da177e4
LT
5577 list_del_init(&req->list);
5578 complete(&req->done);
5579 }
5580 spin_unlock_irq(&rq->lock);
5581 break;
5582#endif
5be9361c
GS
5583 case CPU_LOCK_RELEASE:
5584 mutex_unlock(&sched_hotcpu_mutex);
5585 break;
1da177e4
LT
5586 }
5587 return NOTIFY_OK;
5588}
5589
5590/* Register at highest priority so that task migration (migrate_all_tasks)
5591 * happens before everything else.
5592 */
26c2143b 5593static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4
LT
5594 .notifier_call = migration_call,
5595 .priority = 10
5596};
5597
5598int __init migration_init(void)
5599{
5600 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5601 int err;
48f24c4d
IM
5602
5603 /* Start one for the boot CPU: */
07dccf33
AM
5604 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5605 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5606 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5607 register_cpu_notifier(&migration_notifier);
48f24c4d 5608
1da177e4
LT
5609 return 0;
5610}
5611#endif
5612
5613#ifdef CONFIG_SMP
476f3534
CL
5614
5615/* Number of possible processor ids */
5616int nr_cpu_ids __read_mostly = NR_CPUS;
5617EXPORT_SYMBOL(nr_cpu_ids);
5618
3e9830dc 5619#ifdef CONFIG_SCHED_DEBUG
1da177e4
LT
5620static void sched_domain_debug(struct sched_domain *sd, int cpu)
5621{
5622 int level = 0;
5623
41c7ce9a
NP
5624 if (!sd) {
5625 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5626 return;
5627 }
5628
1da177e4
LT
5629 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5630
5631 do {
5632 int i;
5633 char str[NR_CPUS];
5634 struct sched_group *group = sd->groups;
5635 cpumask_t groupmask;
5636
5637 cpumask_scnprintf(str, NR_CPUS, sd->span);
5638 cpus_clear(groupmask);
5639
5640 printk(KERN_DEBUG);
5641 for (i = 0; i < level + 1; i++)
5642 printk(" ");
5643 printk("domain %d: ", level);
5644
5645 if (!(sd->flags & SD_LOAD_BALANCE)) {
5646 printk("does not load-balance\n");
5647 if (sd->parent)
33859f7f
MOS
5648 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5649 " has parent");
1da177e4
LT
5650 break;
5651 }
5652
5653 printk("span %s\n", str);
5654
5655 if (!cpu_isset(cpu, sd->span))
33859f7f
MOS
5656 printk(KERN_ERR "ERROR: domain->span does not contain "
5657 "CPU%d\n", cpu);
1da177e4 5658 if (!cpu_isset(cpu, group->cpumask))
33859f7f
MOS
5659 printk(KERN_ERR "ERROR: domain->groups does not contain"
5660 " CPU%d\n", cpu);
1da177e4
LT
5661
5662 printk(KERN_DEBUG);
5663 for (i = 0; i < level + 2; i++)
5664 printk(" ");
5665 printk("groups:");
5666 do {
5667 if (!group) {
5668 printk("\n");
5669 printk(KERN_ERR "ERROR: group is NULL\n");
5670 break;
5671 }
5672
5517d86b 5673 if (!group->__cpu_power) {
cc4ea795 5674 printk(KERN_CONT "\n");
33859f7f
MOS
5675 printk(KERN_ERR "ERROR: domain->cpu_power not "
5676 "set\n");
26797a34 5677 break;
1da177e4
LT
5678 }
5679
5680 if (!cpus_weight(group->cpumask)) {
cc4ea795 5681 printk(KERN_CONT "\n");
1da177e4 5682 printk(KERN_ERR "ERROR: empty group\n");
26797a34 5683 break;
1da177e4
LT
5684 }
5685
5686 if (cpus_intersects(groupmask, group->cpumask)) {
cc4ea795 5687 printk(KERN_CONT "\n");
1da177e4 5688 printk(KERN_ERR "ERROR: repeated CPUs\n");
26797a34 5689 break;
1da177e4
LT
5690 }
5691
5692 cpus_or(groupmask, groupmask, group->cpumask);
5693
5694 cpumask_scnprintf(str, NR_CPUS, group->cpumask);
cc4ea795 5695 printk(KERN_CONT " %s", str);
1da177e4
LT
5696
5697 group = group->next;
5698 } while (group != sd->groups);
cc4ea795 5699 printk(KERN_CONT "\n");
1da177e4
LT
5700
5701 if (!cpus_equal(sd->span, groupmask))
33859f7f
MOS
5702 printk(KERN_ERR "ERROR: groups don't span "
5703 "domain->span\n");
1da177e4
LT
5704
5705 level++;
5706 sd = sd->parent;
33859f7f
MOS
5707 if (!sd)
5708 continue;
1da177e4 5709
33859f7f
MOS
5710 if (!cpus_subset(groupmask, sd->span))
5711 printk(KERN_ERR "ERROR: parent span is not a superset "
5712 "of domain->span\n");
1da177e4
LT
5713
5714 } while (sd);
5715}
5716#else
48f24c4d 5717# define sched_domain_debug(sd, cpu) do { } while (0)
1da177e4
LT
5718#endif
5719
1a20ff27 5720static int sd_degenerate(struct sched_domain *sd)
245af2c7
SS
5721{
5722 if (cpus_weight(sd->span) == 1)
5723 return 1;
5724
5725 /* Following flags need at least 2 groups */
5726 if (sd->flags & (SD_LOAD_BALANCE |
5727 SD_BALANCE_NEWIDLE |
5728 SD_BALANCE_FORK |
89c4710e
SS
5729 SD_BALANCE_EXEC |
5730 SD_SHARE_CPUPOWER |
5731 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5732 if (sd->groups != sd->groups->next)
5733 return 0;
5734 }
5735
5736 /* Following flags don't use groups */
5737 if (sd->flags & (SD_WAKE_IDLE |
5738 SD_WAKE_AFFINE |
5739 SD_WAKE_BALANCE))
5740 return 0;
5741
5742 return 1;
5743}
5744
48f24c4d
IM
5745static int
5746sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5747{
5748 unsigned long cflags = sd->flags, pflags = parent->flags;
5749
5750 if (sd_degenerate(parent))
5751 return 1;
5752
5753 if (!cpus_equal(sd->span, parent->span))
5754 return 0;
5755
5756 /* Does parent contain flags not in child? */
5757 /* WAKE_BALANCE is a subset of WAKE_AFFINE */
5758 if (cflags & SD_WAKE_AFFINE)
5759 pflags &= ~SD_WAKE_BALANCE;
5760 /* Flags needing groups don't count if only 1 group in parent */
5761 if (parent->groups == parent->groups->next) {
5762 pflags &= ~(SD_LOAD_BALANCE |
5763 SD_BALANCE_NEWIDLE |
5764 SD_BALANCE_FORK |
89c4710e
SS
5765 SD_BALANCE_EXEC |
5766 SD_SHARE_CPUPOWER |
5767 SD_SHARE_PKG_RESOURCES);
245af2c7
SS
5768 }
5769 if (~cflags & pflags)
5770 return 0;
5771
5772 return 1;
5773}
5774
1da177e4
LT
5775/*
5776 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
5777 * hold the hotplug lock.
5778 */
9c1cfda2 5779static void cpu_attach_domain(struct sched_domain *sd, int cpu)
1da177e4 5780{
70b97a7f 5781 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5782 struct sched_domain *tmp;
5783
5784 /* Remove the sched domains which do not contribute to scheduling. */
5785 for (tmp = sd; tmp; tmp = tmp->parent) {
5786 struct sched_domain *parent = tmp->parent;
5787 if (!parent)
5788 break;
1a848870 5789 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5790 tmp->parent = parent->parent;
1a848870
SS
5791 if (parent->parent)
5792 parent->parent->child = tmp;
5793 }
245af2c7
SS
5794 }
5795
1a848870 5796 if (sd && sd_degenerate(sd)) {
245af2c7 5797 sd = sd->parent;
1a848870
SS
5798 if (sd)
5799 sd->child = NULL;
5800 }
1da177e4
LT
5801
5802 sched_domain_debug(sd, cpu);
5803
674311d5 5804 rcu_assign_pointer(rq->sd, sd);
1da177e4
LT
5805}
5806
5807/* cpus with isolated domains */
67af63a6 5808static cpumask_t cpu_isolated_map = CPU_MASK_NONE;
1da177e4
LT
5809
5810/* Setup the mask of cpus configured for isolated domains */
5811static int __init isolated_cpu_setup(char *str)
5812{
5813 int ints[NR_CPUS], i;
5814
5815 str = get_options(str, ARRAY_SIZE(ints), ints);
5816 cpus_clear(cpu_isolated_map);
5817 for (i = 1; i <= ints[0]; i++)
5818 if (ints[i] < NR_CPUS)
5819 cpu_set(ints[i], cpu_isolated_map);
5820 return 1;
5821}
5822
8927f494 5823__setup("isolcpus=", isolated_cpu_setup);
1da177e4
LT
5824
5825/*
6711cab4
SS
5826 * init_sched_build_groups takes the cpumask we wish to span, and a pointer
5827 * to a function which identifies what group(along with sched group) a CPU
5828 * belongs to. The return value of group_fn must be a >= 0 and < NR_CPUS
5829 * (due to the fact that we keep track of groups covered with a cpumask_t).
1da177e4
LT
5830 *
5831 * init_sched_build_groups will build a circular linked list of the groups
5832 * covered by the given span, and will set each group's ->cpumask correctly,
5833 * and ->cpu_power to 0.
5834 */
a616058b 5835static void
6711cab4
SS
5836init_sched_build_groups(cpumask_t span, const cpumask_t *cpu_map,
5837 int (*group_fn)(int cpu, const cpumask_t *cpu_map,
5838 struct sched_group **sg))
1da177e4
LT
5839{
5840 struct sched_group *first = NULL, *last = NULL;
5841 cpumask_t covered = CPU_MASK_NONE;
5842 int i;
5843
5844 for_each_cpu_mask(i, span) {
6711cab4
SS
5845 struct sched_group *sg;
5846 int group = group_fn(i, cpu_map, &sg);
1da177e4
LT
5847 int j;
5848
5849 if (cpu_isset(i, covered))
5850 continue;
5851
5852 sg->cpumask = CPU_MASK_NONE;
5517d86b 5853 sg->__cpu_power = 0;
1da177e4
LT
5854
5855 for_each_cpu_mask(j, span) {
6711cab4 5856 if (group_fn(j, cpu_map, NULL) != group)
1da177e4
LT
5857 continue;
5858
5859 cpu_set(j, covered);
5860 cpu_set(j, sg->cpumask);
5861 }
5862 if (!first)
5863 first = sg;
5864 if (last)
5865 last->next = sg;
5866 last = sg;
5867 }
5868 last->next = first;
5869}
5870
9c1cfda2 5871#define SD_NODES_PER_DOMAIN 16
1da177e4 5872
9c1cfda2 5873#ifdef CONFIG_NUMA
198e2f18 5874
9c1cfda2
JH
5875/**
5876 * find_next_best_node - find the next node to include in a sched_domain
5877 * @node: node whose sched_domain we're building
5878 * @used_nodes: nodes already in the sched_domain
5879 *
5880 * Find the next node to include in a given scheduling domain. Simply
5881 * finds the closest node not already in the @used_nodes map.
5882 *
5883 * Should use nodemask_t.
5884 */
5885static int find_next_best_node(int node, unsigned long *used_nodes)
5886{
5887 int i, n, val, min_val, best_node = 0;
5888
5889 min_val = INT_MAX;
5890
5891 for (i = 0; i < MAX_NUMNODES; i++) {
5892 /* Start at @node */
5893 n = (node + i) % MAX_NUMNODES;
5894
5895 if (!nr_cpus_node(n))
5896 continue;
5897
5898 /* Skip already used nodes */
5899 if (test_bit(n, used_nodes))
5900 continue;
5901
5902 /* Simple min distance search */
5903 val = node_distance(node, n);
5904
5905 if (val < min_val) {
5906 min_val = val;
5907 best_node = n;
5908 }
5909 }
5910
5911 set_bit(best_node, used_nodes);
5912 return best_node;
5913}
5914
5915/**
5916 * sched_domain_node_span - get a cpumask for a node's sched_domain
5917 * @node: node whose cpumask we're constructing
5918 * @size: number of nodes to include in this span
5919 *
5920 * Given a node, construct a good cpumask for its sched_domain to span. It
5921 * should be one that prevents unnecessary balancing, but also spreads tasks
5922 * out optimally.
5923 */
5924static cpumask_t sched_domain_node_span(int node)
5925{
9c1cfda2 5926 DECLARE_BITMAP(used_nodes, MAX_NUMNODES);
48f24c4d
IM
5927 cpumask_t span, nodemask;
5928 int i;
9c1cfda2
JH
5929
5930 cpus_clear(span);
5931 bitmap_zero(used_nodes, MAX_NUMNODES);
5932
5933 nodemask = node_to_cpumask(node);
5934 cpus_or(span, span, nodemask);
5935 set_bit(node, used_nodes);
5936
5937 for (i = 1; i < SD_NODES_PER_DOMAIN; i++) {
5938 int next_node = find_next_best_node(node, used_nodes);
48f24c4d 5939
9c1cfda2
JH
5940 nodemask = node_to_cpumask(next_node);
5941 cpus_or(span, span, nodemask);
5942 }
5943
5944 return span;
5945}
5946#endif
5947
5c45bf27 5948int sched_smt_power_savings = 0, sched_mc_power_savings = 0;
48f24c4d 5949
9c1cfda2 5950/*
48f24c4d 5951 * SMT sched-domains:
9c1cfda2 5952 */
1da177e4
LT
5953#ifdef CONFIG_SCHED_SMT
5954static DEFINE_PER_CPU(struct sched_domain, cpu_domains);
6711cab4 5955static DEFINE_PER_CPU(struct sched_group, sched_group_cpus);
48f24c4d 5956
6711cab4
SS
5957static int cpu_to_cpu_group(int cpu, const cpumask_t *cpu_map,
5958 struct sched_group **sg)
1da177e4 5959{
6711cab4
SS
5960 if (sg)
5961 *sg = &per_cpu(sched_group_cpus, cpu);
1da177e4
LT
5962 return cpu;
5963}
5964#endif
5965
48f24c4d
IM
5966/*
5967 * multi-core sched-domains:
5968 */
1e9f28fa
SS
5969#ifdef CONFIG_SCHED_MC
5970static DEFINE_PER_CPU(struct sched_domain, core_domains);
6711cab4 5971static DEFINE_PER_CPU(struct sched_group, sched_group_core);
1e9f28fa
SS
5972#endif
5973
5974#if defined(CONFIG_SCHED_MC) && defined(CONFIG_SCHED_SMT)
6711cab4
SS
5975static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5976 struct sched_group **sg)
1e9f28fa 5977{
6711cab4 5978 int group;
d5a7430d 5979 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 5980 cpus_and(mask, mask, *cpu_map);
6711cab4
SS
5981 group = first_cpu(mask);
5982 if (sg)
5983 *sg = &per_cpu(sched_group_core, group);
5984 return group;
1e9f28fa
SS
5985}
5986#elif defined(CONFIG_SCHED_MC)
6711cab4
SS
5987static int cpu_to_core_group(int cpu, const cpumask_t *cpu_map,
5988 struct sched_group **sg)
1e9f28fa 5989{
6711cab4
SS
5990 if (sg)
5991 *sg = &per_cpu(sched_group_core, cpu);
1e9f28fa
SS
5992 return cpu;
5993}
5994#endif
5995
1da177e4 5996static DEFINE_PER_CPU(struct sched_domain, phys_domains);
6711cab4 5997static DEFINE_PER_CPU(struct sched_group, sched_group_phys);
48f24c4d 5998
6711cab4
SS
5999static int cpu_to_phys_group(int cpu, const cpumask_t *cpu_map,
6000 struct sched_group **sg)
1da177e4 6001{
6711cab4 6002 int group;
48f24c4d 6003#ifdef CONFIG_SCHED_MC
1e9f28fa 6004 cpumask_t mask = cpu_coregroup_map(cpu);
a616058b 6005 cpus_and(mask, mask, *cpu_map);
6711cab4 6006 group = first_cpu(mask);
1e9f28fa 6007#elif defined(CONFIG_SCHED_SMT)
d5a7430d 6008 cpumask_t mask = per_cpu(cpu_sibling_map, cpu);
a616058b 6009 cpus_and(mask, mask, *cpu_map);
6711cab4 6010 group = first_cpu(mask);
1da177e4 6011#else
6711cab4 6012 group = cpu;
1da177e4 6013#endif
6711cab4
SS
6014 if (sg)
6015 *sg = &per_cpu(sched_group_phys, group);
6016 return group;
1da177e4
LT
6017}
6018
6019#ifdef CONFIG_NUMA
1da177e4 6020/*
9c1cfda2
JH
6021 * The init_sched_build_groups can't handle what we want to do with node
6022 * groups, so roll our own. Now each node has its own list of groups which
6023 * gets dynamically allocated.
1da177e4 6024 */
9c1cfda2 6025static DEFINE_PER_CPU(struct sched_domain, node_domains);
d1b55138 6026static struct sched_group **sched_group_nodes_bycpu[NR_CPUS];
1da177e4 6027
9c1cfda2 6028static DEFINE_PER_CPU(struct sched_domain, allnodes_domains);
6711cab4 6029static DEFINE_PER_CPU(struct sched_group, sched_group_allnodes);
9c1cfda2 6030
6711cab4
SS
6031static int cpu_to_allnodes_group(int cpu, const cpumask_t *cpu_map,
6032 struct sched_group **sg)
9c1cfda2 6033{
6711cab4
SS
6034 cpumask_t nodemask = node_to_cpumask(cpu_to_node(cpu));
6035 int group;
6036
6037 cpus_and(nodemask, nodemask, *cpu_map);
6038 group = first_cpu(nodemask);
6039
6040 if (sg)
6041 *sg = &per_cpu(sched_group_allnodes, group);
6042 return group;
1da177e4 6043}
6711cab4 6044
08069033
SS
6045static void init_numa_sched_groups_power(struct sched_group *group_head)
6046{
6047 struct sched_group *sg = group_head;
6048 int j;
6049
6050 if (!sg)
6051 return;
3a5c359a
AK
6052 do {
6053 for_each_cpu_mask(j, sg->cpumask) {
6054 struct sched_domain *sd;
08069033 6055
3a5c359a
AK
6056 sd = &per_cpu(phys_domains, j);
6057 if (j != first_cpu(sd->groups->cpumask)) {
6058 /*
6059 * Only add "power" once for each
6060 * physical package.
6061 */
6062 continue;
6063 }
08069033 6064
3a5c359a
AK
6065 sg_inc_cpu_power(sg, sd->groups->__cpu_power);
6066 }
6067 sg = sg->next;
6068 } while (sg != group_head);
08069033 6069}
1da177e4
LT
6070#endif
6071
a616058b 6072#ifdef CONFIG_NUMA
51888ca2
SV
6073/* Free memory allocated for various sched_group structures */
6074static void free_sched_groups(const cpumask_t *cpu_map)
6075{
a616058b 6076 int cpu, i;
51888ca2
SV
6077
6078 for_each_cpu_mask(cpu, *cpu_map) {
51888ca2
SV
6079 struct sched_group **sched_group_nodes
6080 = sched_group_nodes_bycpu[cpu];
6081
51888ca2
SV
6082 if (!sched_group_nodes)
6083 continue;
6084
6085 for (i = 0; i < MAX_NUMNODES; i++) {
6086 cpumask_t nodemask = node_to_cpumask(i);
6087 struct sched_group *oldsg, *sg = sched_group_nodes[i];
6088
6089 cpus_and(nodemask, nodemask, *cpu_map);
6090 if (cpus_empty(nodemask))
6091 continue;
6092
6093 if (sg == NULL)
6094 continue;
6095 sg = sg->next;
6096next_sg:
6097 oldsg = sg;
6098 sg = sg->next;
6099 kfree(oldsg);
6100 if (oldsg != sched_group_nodes[i])
6101 goto next_sg;
6102 }
6103 kfree(sched_group_nodes);
6104 sched_group_nodes_bycpu[cpu] = NULL;
6105 }
51888ca2 6106}
a616058b
SS
6107#else
6108static void free_sched_groups(const cpumask_t *cpu_map)
6109{
6110}
6111#endif
51888ca2 6112
89c4710e
SS
6113/*
6114 * Initialize sched groups cpu_power.
6115 *
6116 * cpu_power indicates the capacity of sched group, which is used while
6117 * distributing the load between different sched groups in a sched domain.
6118 * Typically cpu_power for all the groups in a sched domain will be same unless
6119 * there are asymmetries in the topology. If there are asymmetries, group
6120 * having more cpu_power will pickup more load compared to the group having
6121 * less cpu_power.
6122 *
6123 * cpu_power will be a multiple of SCHED_LOAD_SCALE. This multiple represents
6124 * the maximum number of tasks a group can handle in the presence of other idle
6125 * or lightly loaded groups in the same sched domain.
6126 */
6127static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6128{
6129 struct sched_domain *child;
6130 struct sched_group *group;
6131
6132 WARN_ON(!sd || !sd->groups);
6133
6134 if (cpu != first_cpu(sd->groups->cpumask))
6135 return;
6136
6137 child = sd->child;
6138
5517d86b
ED
6139 sd->groups->__cpu_power = 0;
6140
89c4710e
SS
6141 /*
6142 * For perf policy, if the groups in child domain share resources
6143 * (for example cores sharing some portions of the cache hierarchy
6144 * or SMT), then set this domain groups cpu_power such that each group
6145 * can handle only one task, when there are other idle groups in the
6146 * same sched domain.
6147 */
6148 if (!child || (!(sd->flags & SD_POWERSAVINGS_BALANCE) &&
6149 (child->flags &
6150 (SD_SHARE_CPUPOWER | SD_SHARE_PKG_RESOURCES)))) {
5517d86b 6151 sg_inc_cpu_power(sd->groups, SCHED_LOAD_SCALE);
89c4710e
SS
6152 return;
6153 }
6154
89c4710e
SS
6155 /*
6156 * add cpu_power of each child group to this groups cpu_power
6157 */
6158 group = child->groups;
6159 do {
5517d86b 6160 sg_inc_cpu_power(sd->groups, group->__cpu_power);
89c4710e
SS
6161 group = group->next;
6162 } while (group != child->groups);
6163}
6164
1da177e4 6165/*
1a20ff27
DG
6166 * Build sched domains for a given set of cpus and attach the sched domains
6167 * to the individual cpus
1da177e4 6168 */
51888ca2 6169static int build_sched_domains(const cpumask_t *cpu_map)
1da177e4
LT
6170{
6171 int i;
d1b55138
JH
6172#ifdef CONFIG_NUMA
6173 struct sched_group **sched_group_nodes = NULL;
6711cab4 6174 int sd_allnodes = 0;
d1b55138
JH
6175
6176 /*
6177 * Allocate the per-node list of sched groups
6178 */
5cf9f062 6179 sched_group_nodes = kcalloc(MAX_NUMNODES, sizeof(struct sched_group *),
d3a5aa98 6180 GFP_KERNEL);
d1b55138
JH
6181 if (!sched_group_nodes) {
6182 printk(KERN_WARNING "Can not alloc sched group node list\n");
51888ca2 6183 return -ENOMEM;
d1b55138
JH
6184 }
6185 sched_group_nodes_bycpu[first_cpu(*cpu_map)] = sched_group_nodes;
6186#endif
1da177e4
LT
6187
6188 /*
1a20ff27 6189 * Set up domains for cpus specified by the cpu_map.
1da177e4 6190 */
1a20ff27 6191 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6192 struct sched_domain *sd = NULL, *p;
6193 cpumask_t nodemask = node_to_cpumask(cpu_to_node(i));
6194
1a20ff27 6195 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6196
6197#ifdef CONFIG_NUMA
dd41f596
IM
6198 if (cpus_weight(*cpu_map) >
6199 SD_NODES_PER_DOMAIN*cpus_weight(nodemask)) {
9c1cfda2
JH
6200 sd = &per_cpu(allnodes_domains, i);
6201 *sd = SD_ALLNODES_INIT;
6202 sd->span = *cpu_map;
6711cab4 6203 cpu_to_allnodes_group(i, cpu_map, &sd->groups);
9c1cfda2 6204 p = sd;
6711cab4 6205 sd_allnodes = 1;
9c1cfda2
JH
6206 } else
6207 p = NULL;
6208
1da177e4 6209 sd = &per_cpu(node_domains, i);
1da177e4 6210 *sd = SD_NODE_INIT;
9c1cfda2
JH
6211 sd->span = sched_domain_node_span(cpu_to_node(i));
6212 sd->parent = p;
1a848870
SS
6213 if (p)
6214 p->child = sd;
9c1cfda2 6215 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4
LT
6216#endif
6217
6218 p = sd;
6219 sd = &per_cpu(phys_domains, i);
1da177e4
LT
6220 *sd = SD_CPU_INIT;
6221 sd->span = nodemask;
6222 sd->parent = p;
1a848870
SS
6223 if (p)
6224 p->child = sd;
6711cab4 6225 cpu_to_phys_group(i, cpu_map, &sd->groups);
1da177e4 6226
1e9f28fa
SS
6227#ifdef CONFIG_SCHED_MC
6228 p = sd;
6229 sd = &per_cpu(core_domains, i);
1e9f28fa
SS
6230 *sd = SD_MC_INIT;
6231 sd->span = cpu_coregroup_map(i);
6232 cpus_and(sd->span, sd->span, *cpu_map);
6233 sd->parent = p;
1a848870 6234 p->child = sd;
6711cab4 6235 cpu_to_core_group(i, cpu_map, &sd->groups);
1e9f28fa
SS
6236#endif
6237
1da177e4
LT
6238#ifdef CONFIG_SCHED_SMT
6239 p = sd;
6240 sd = &per_cpu(cpu_domains, i);
1da177e4 6241 *sd = SD_SIBLING_INIT;
d5a7430d 6242 sd->span = per_cpu(cpu_sibling_map, i);
1a20ff27 6243 cpus_and(sd->span, sd->span, *cpu_map);
1da177e4 6244 sd->parent = p;
1a848870 6245 p->child = sd;
6711cab4 6246 cpu_to_cpu_group(i, cpu_map, &sd->groups);
1da177e4
LT
6247#endif
6248 }
6249
6250#ifdef CONFIG_SCHED_SMT
6251 /* Set up CPU (sibling) groups */
9c1cfda2 6252 for_each_cpu_mask(i, *cpu_map) {
d5a7430d 6253 cpumask_t this_sibling_map = per_cpu(cpu_sibling_map, i);
1a20ff27 6254 cpus_and(this_sibling_map, this_sibling_map, *cpu_map);
1da177e4
LT
6255 if (i != first_cpu(this_sibling_map))
6256 continue;
6257
dd41f596
IM
6258 init_sched_build_groups(this_sibling_map, cpu_map,
6259 &cpu_to_cpu_group);
1da177e4
LT
6260 }
6261#endif
6262
1e9f28fa
SS
6263#ifdef CONFIG_SCHED_MC
6264 /* Set up multi-core groups */
6265 for_each_cpu_mask(i, *cpu_map) {
6266 cpumask_t this_core_map = cpu_coregroup_map(i);
6267 cpus_and(this_core_map, this_core_map, *cpu_map);
6268 if (i != first_cpu(this_core_map))
6269 continue;
dd41f596
IM
6270 init_sched_build_groups(this_core_map, cpu_map,
6271 &cpu_to_core_group);
1e9f28fa
SS
6272 }
6273#endif
6274
1da177e4
LT
6275 /* Set up physical groups */
6276 for (i = 0; i < MAX_NUMNODES; i++) {
6277 cpumask_t nodemask = node_to_cpumask(i);
6278
1a20ff27 6279 cpus_and(nodemask, nodemask, *cpu_map);
1da177e4
LT
6280 if (cpus_empty(nodemask))
6281 continue;
6282
6711cab4 6283 init_sched_build_groups(nodemask, cpu_map, &cpu_to_phys_group);
1da177e4
LT
6284 }
6285
6286#ifdef CONFIG_NUMA
6287 /* Set up node groups */
6711cab4 6288 if (sd_allnodes)
dd41f596
IM
6289 init_sched_build_groups(*cpu_map, cpu_map,
6290 &cpu_to_allnodes_group);
9c1cfda2
JH
6291
6292 for (i = 0; i < MAX_NUMNODES; i++) {
6293 /* Set up node groups */
6294 struct sched_group *sg, *prev;
6295 cpumask_t nodemask = node_to_cpumask(i);
6296 cpumask_t domainspan;
6297 cpumask_t covered = CPU_MASK_NONE;
6298 int j;
6299
6300 cpus_and(nodemask, nodemask, *cpu_map);
d1b55138
JH
6301 if (cpus_empty(nodemask)) {
6302 sched_group_nodes[i] = NULL;
9c1cfda2 6303 continue;
d1b55138 6304 }
9c1cfda2
JH
6305
6306 domainspan = sched_domain_node_span(i);
6307 cpus_and(domainspan, domainspan, *cpu_map);
6308
15f0b676 6309 sg = kmalloc_node(sizeof(struct sched_group), GFP_KERNEL, i);
51888ca2
SV
6310 if (!sg) {
6311 printk(KERN_WARNING "Can not alloc domain group for "
6312 "node %d\n", i);
6313 goto error;
6314 }
9c1cfda2
JH
6315 sched_group_nodes[i] = sg;
6316 for_each_cpu_mask(j, nodemask) {
6317 struct sched_domain *sd;
9761eea8 6318
9c1cfda2
JH
6319 sd = &per_cpu(node_domains, j);
6320 sd->groups = sg;
9c1cfda2 6321 }
5517d86b 6322 sg->__cpu_power = 0;
9c1cfda2 6323 sg->cpumask = nodemask;
51888ca2 6324 sg->next = sg;
9c1cfda2
JH
6325 cpus_or(covered, covered, nodemask);
6326 prev = sg;
6327
6328 for (j = 0; j < MAX_NUMNODES; j++) {
6329 cpumask_t tmp, notcovered;
6330 int n = (i + j) % MAX_NUMNODES;
6331
6332 cpus_complement(notcovered, covered);
6333 cpus_and(tmp, notcovered, *cpu_map);
6334 cpus_and(tmp, tmp, domainspan);
6335 if (cpus_empty(tmp))
6336 break;
6337
6338 nodemask = node_to_cpumask(n);
6339 cpus_and(tmp, tmp, nodemask);
6340 if (cpus_empty(tmp))
6341 continue;
6342
15f0b676
SV
6343 sg = kmalloc_node(sizeof(struct sched_group),
6344 GFP_KERNEL, i);
9c1cfda2
JH
6345 if (!sg) {
6346 printk(KERN_WARNING
6347 "Can not alloc domain group for node %d\n", j);
51888ca2 6348 goto error;
9c1cfda2 6349 }
5517d86b 6350 sg->__cpu_power = 0;
9c1cfda2 6351 sg->cpumask = tmp;
51888ca2 6352 sg->next = prev->next;
9c1cfda2
JH
6353 cpus_or(covered, covered, tmp);
6354 prev->next = sg;
6355 prev = sg;
6356 }
9c1cfda2 6357 }
1da177e4
LT
6358#endif
6359
6360 /* Calculate CPU power for physical packages and nodes */
5c45bf27 6361#ifdef CONFIG_SCHED_SMT
1a20ff27 6362 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6363 struct sched_domain *sd = &per_cpu(cpu_domains, i);
6364
89c4710e 6365 init_sched_groups_power(i, sd);
5c45bf27 6366 }
1da177e4 6367#endif
1e9f28fa 6368#ifdef CONFIG_SCHED_MC
5c45bf27 6369 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6370 struct sched_domain *sd = &per_cpu(core_domains, i);
6371
89c4710e 6372 init_sched_groups_power(i, sd);
5c45bf27
SS
6373 }
6374#endif
1e9f28fa 6375
5c45bf27 6376 for_each_cpu_mask(i, *cpu_map) {
dd41f596
IM
6377 struct sched_domain *sd = &per_cpu(phys_domains, i);
6378
89c4710e 6379 init_sched_groups_power(i, sd);
1da177e4
LT
6380 }
6381
9c1cfda2 6382#ifdef CONFIG_NUMA
08069033
SS
6383 for (i = 0; i < MAX_NUMNODES; i++)
6384 init_numa_sched_groups_power(sched_group_nodes[i]);
9c1cfda2 6385
6711cab4
SS
6386 if (sd_allnodes) {
6387 struct sched_group *sg;
f712c0c7 6388
6711cab4 6389 cpu_to_allnodes_group(first_cpu(*cpu_map), cpu_map, &sg);
f712c0c7
SS
6390 init_numa_sched_groups_power(sg);
6391 }
9c1cfda2
JH
6392#endif
6393
1da177e4 6394 /* Attach the domains */
1a20ff27 6395 for_each_cpu_mask(i, *cpu_map) {
1da177e4
LT
6396 struct sched_domain *sd;
6397#ifdef CONFIG_SCHED_SMT
6398 sd = &per_cpu(cpu_domains, i);
1e9f28fa
SS
6399#elif defined(CONFIG_SCHED_MC)
6400 sd = &per_cpu(core_domains, i);
1da177e4
LT
6401#else
6402 sd = &per_cpu(phys_domains, i);
6403#endif
6404 cpu_attach_domain(sd, i);
6405 }
51888ca2
SV
6406
6407 return 0;
6408
a616058b 6409#ifdef CONFIG_NUMA
51888ca2
SV
6410error:
6411 free_sched_groups(cpu_map);
6412 return -ENOMEM;
a616058b 6413#endif
1da177e4 6414}
029190c5
PJ
6415
6416static cpumask_t *doms_cur; /* current sched domains */
6417static int ndoms_cur; /* number of sched domains in 'doms_cur' */
6418
6419/*
6420 * Special case: If a kmalloc of a doms_cur partition (array of
6421 * cpumask_t) fails, then fallback to a single sched domain,
6422 * as determined by the single cpumask_t fallback_doms.
6423 */
6424static cpumask_t fallback_doms;
6425
1a20ff27
DG
6426/*
6427 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6428 * For now this just excludes isolated cpus, but could be used to
6429 * exclude other special cases in the future.
1a20ff27 6430 */
51888ca2 6431static int arch_init_sched_domains(const cpumask_t *cpu_map)
1a20ff27 6432{
7378547f
MM
6433 int err;
6434
029190c5
PJ
6435 ndoms_cur = 1;
6436 doms_cur = kmalloc(sizeof(cpumask_t), GFP_KERNEL);
6437 if (!doms_cur)
6438 doms_cur = &fallback_doms;
6439 cpus_andnot(*doms_cur, *cpu_map, cpu_isolated_map);
7378547f 6440 err = build_sched_domains(doms_cur);
6382bc90 6441 register_sched_domain_sysctl();
7378547f
MM
6442
6443 return err;
1a20ff27
DG
6444}
6445
6446static void arch_destroy_sched_domains(const cpumask_t *cpu_map)
1da177e4 6447{
51888ca2 6448 free_sched_groups(cpu_map);
9c1cfda2 6449}
1da177e4 6450
1a20ff27
DG
6451/*
6452 * Detach sched domains from a group of cpus specified in cpu_map
6453 * These cpus will now be attached to the NULL domain
6454 */
858119e1 6455static void detach_destroy_domains(const cpumask_t *cpu_map)
1a20ff27
DG
6456{
6457 int i;
6458
6382bc90
MM
6459 unregister_sched_domain_sysctl();
6460
1a20ff27
DG
6461 for_each_cpu_mask(i, *cpu_map)
6462 cpu_attach_domain(NULL, i);
6463 synchronize_sched();
6464 arch_destroy_sched_domains(cpu_map);
6465}
6466
029190c5
PJ
6467/*
6468 * Partition sched domains as specified by the 'ndoms_new'
6469 * cpumasks in the array doms_new[] of cpumasks. This compares
6470 * doms_new[] to the current sched domain partitioning, doms_cur[].
6471 * It destroys each deleted domain and builds each new domain.
6472 *
6473 * 'doms_new' is an array of cpumask_t's of length 'ndoms_new'.
6474 * The masks don't intersect (don't overlap.) We should setup one
6475 * sched domain for each mask. CPUs not in any of the cpumasks will
6476 * not be load balanced. If the same cpumask appears both in the
6477 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6478 * it as it is.
6479 *
6480 * The passed in 'doms_new' should be kmalloc'd. This routine takes
6481 * ownership of it and will kfree it when done with it. If the caller
6482 * failed the kmalloc call, then it can pass in doms_new == NULL,
6483 * and partition_sched_domains() will fallback to the single partition
6484 * 'fallback_doms'.
6485 *
6486 * Call with hotplug lock held
6487 */
6488void partition_sched_domains(int ndoms_new, cpumask_t *doms_new)
6489{
6490 int i, j;
6491
7378547f
MM
6492 /* always unregister in case we don't destroy any domains */
6493 unregister_sched_domain_sysctl();
6494
029190c5
PJ
6495 if (doms_new == NULL) {
6496 ndoms_new = 1;
6497 doms_new = &fallback_doms;
6498 cpus_andnot(doms_new[0], cpu_online_map, cpu_isolated_map);
6499 }
6500
6501 /* Destroy deleted domains */
6502 for (i = 0; i < ndoms_cur; i++) {
6503 for (j = 0; j < ndoms_new; j++) {
6504 if (cpus_equal(doms_cur[i], doms_new[j]))
6505 goto match1;
6506 }
6507 /* no match - a current sched domain not in new doms_new[] */
6508 detach_destroy_domains(doms_cur + i);
6509match1:
6510 ;
6511 }
6512
6513 /* Build new domains */
6514 for (i = 0; i < ndoms_new; i++) {
6515 for (j = 0; j < ndoms_cur; j++) {
6516 if (cpus_equal(doms_new[i], doms_cur[j]))
6517 goto match2;
6518 }
6519 /* no match - add a new doms_new */
6520 build_sched_domains(doms_new + i);
6521match2:
6522 ;
6523 }
6524
6525 /* Remember the new sched domains */
6526 if (doms_cur != &fallback_doms)
6527 kfree(doms_cur);
6528 doms_cur = doms_new;
6529 ndoms_cur = ndoms_new;
7378547f
MM
6530
6531 register_sched_domain_sysctl();
029190c5
PJ
6532}
6533
5c45bf27 6534#if defined(CONFIG_SCHED_MC) || defined(CONFIG_SCHED_SMT)
6707de00 6535static int arch_reinit_sched_domains(void)
5c45bf27
SS
6536{
6537 int err;
6538
5be9361c 6539 mutex_lock(&sched_hotcpu_mutex);
5c45bf27
SS
6540 detach_destroy_domains(&cpu_online_map);
6541 err = arch_init_sched_domains(&cpu_online_map);
5be9361c 6542 mutex_unlock(&sched_hotcpu_mutex);
5c45bf27
SS
6543
6544 return err;
6545}
6546
6547static ssize_t sched_power_savings_store(const char *buf, size_t count, int smt)
6548{
6549 int ret;
6550
6551 if (buf[0] != '0' && buf[0] != '1')
6552 return -EINVAL;
6553
6554 if (smt)
6555 sched_smt_power_savings = (buf[0] == '1');
6556 else
6557 sched_mc_power_savings = (buf[0] == '1');
6558
6559 ret = arch_reinit_sched_domains();
6560
6561 return ret ? ret : count;
6562}
6563
5c45bf27
SS
6564#ifdef CONFIG_SCHED_MC
6565static ssize_t sched_mc_power_savings_show(struct sys_device *dev, char *page)
6566{
6567 return sprintf(page, "%u\n", sched_mc_power_savings);
6568}
48f24c4d
IM
6569static ssize_t sched_mc_power_savings_store(struct sys_device *dev,
6570 const char *buf, size_t count)
5c45bf27
SS
6571{
6572 return sched_power_savings_store(buf, count, 0);
6573}
6707de00
AB
6574static SYSDEV_ATTR(sched_mc_power_savings, 0644, sched_mc_power_savings_show,
6575 sched_mc_power_savings_store);
5c45bf27
SS
6576#endif
6577
6578#ifdef CONFIG_SCHED_SMT
6579static ssize_t sched_smt_power_savings_show(struct sys_device *dev, char *page)
6580{
6581 return sprintf(page, "%u\n", sched_smt_power_savings);
6582}
48f24c4d
IM
6583static ssize_t sched_smt_power_savings_store(struct sys_device *dev,
6584 const char *buf, size_t count)
5c45bf27
SS
6585{
6586 return sched_power_savings_store(buf, count, 1);
6587}
6707de00
AB
6588static SYSDEV_ATTR(sched_smt_power_savings, 0644, sched_smt_power_savings_show,
6589 sched_smt_power_savings_store);
6590#endif
6591
6592int sched_create_sysfs_power_savings_entries(struct sysdev_class *cls)
6593{
6594 int err = 0;
6595
6596#ifdef CONFIG_SCHED_SMT
6597 if (smt_capable())
6598 err = sysfs_create_file(&cls->kset.kobj,
6599 &attr_sched_smt_power_savings.attr);
6600#endif
6601#ifdef CONFIG_SCHED_MC
6602 if (!err && mc_capable())
6603 err = sysfs_create_file(&cls->kset.kobj,
6604 &attr_sched_mc_power_savings.attr);
6605#endif
6606 return err;
6607}
5c45bf27
SS
6608#endif
6609
1da177e4
LT
6610/*
6611 * Force a reinitialization of the sched domains hierarchy. The domains
6612 * and groups cannot be updated in place without racing with the balancing
41c7ce9a 6613 * code, so we temporarily attach all running cpus to the NULL domain
1da177e4
LT
6614 * which will prevent rebalancing while the sched domains are recalculated.
6615 */
6616static int update_sched_domains(struct notifier_block *nfb,
6617 unsigned long action, void *hcpu)
6618{
1da177e4
LT
6619 switch (action) {
6620 case CPU_UP_PREPARE:
8bb78442 6621 case CPU_UP_PREPARE_FROZEN:
1da177e4 6622 case CPU_DOWN_PREPARE:
8bb78442 6623 case CPU_DOWN_PREPARE_FROZEN:
1a20ff27 6624 detach_destroy_domains(&cpu_online_map);
1da177e4
LT
6625 return NOTIFY_OK;
6626
6627 case CPU_UP_CANCELED:
8bb78442 6628 case CPU_UP_CANCELED_FROZEN:
1da177e4 6629 case CPU_DOWN_FAILED:
8bb78442 6630 case CPU_DOWN_FAILED_FROZEN:
1da177e4 6631 case CPU_ONLINE:
8bb78442 6632 case CPU_ONLINE_FROZEN:
1da177e4 6633 case CPU_DEAD:
8bb78442 6634 case CPU_DEAD_FROZEN:
1da177e4
LT
6635 /*
6636 * Fall through and re-initialise the domains.
6637 */
6638 break;
6639 default:
6640 return NOTIFY_DONE;
6641 }
6642
6643 /* The hotplug lock is already held by cpu_up/cpu_down */
1a20ff27 6644 arch_init_sched_domains(&cpu_online_map);
1da177e4
LT
6645
6646 return NOTIFY_OK;
6647}
1da177e4
LT
6648
6649void __init sched_init_smp(void)
6650{
5c1e1767
NP
6651 cpumask_t non_isolated_cpus;
6652
5be9361c 6653 mutex_lock(&sched_hotcpu_mutex);
1a20ff27 6654 arch_init_sched_domains(&cpu_online_map);
e5e5673f 6655 cpus_andnot(non_isolated_cpus, cpu_possible_map, cpu_isolated_map);
5c1e1767
NP
6656 if (cpus_empty(non_isolated_cpus))
6657 cpu_set(smp_processor_id(), non_isolated_cpus);
5be9361c 6658 mutex_unlock(&sched_hotcpu_mutex);
1da177e4
LT
6659 /* XXX: Theoretical race here - CPU may be hotplugged now */
6660 hotcpu_notifier(update_sched_domains, 0);
5c1e1767
NP
6661
6662 /* Move init over to a non-isolated CPU */
6663 if (set_cpus_allowed(current, non_isolated_cpus) < 0)
6664 BUG();
1da177e4
LT
6665}
6666#else
6667void __init sched_init_smp(void)
6668{
6669}
6670#endif /* CONFIG_SMP */
6671
6672int in_sched_functions(unsigned long addr)
6673{
6674 /* Linker adds these: start and end of __sched functions */
6675 extern char __sched_text_start[], __sched_text_end[];
48f24c4d 6676
1da177e4
LT
6677 return in_lock_functions(addr) ||
6678 (addr >= (unsigned long)__sched_text_start
6679 && addr < (unsigned long)__sched_text_end);
6680}
6681
a9957449 6682static void init_cfs_rq(struct cfs_rq *cfs_rq, struct rq *rq)
dd41f596
IM
6683{
6684 cfs_rq->tasks_timeline = RB_ROOT;
dd41f596
IM
6685#ifdef CONFIG_FAIR_GROUP_SCHED
6686 cfs_rq->rq = rq;
6687#endif
67e9fb2a 6688 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
dd41f596
IM
6689}
6690
1da177e4
LT
6691void __init sched_init(void)
6692{
476f3534 6693 int highest_cpu = 0;
dd41f596
IM
6694 int i, j;
6695
0a945022 6696 for_each_possible_cpu(i) {
dd41f596 6697 struct rt_prio_array *array;
70b97a7f 6698 struct rq *rq;
1da177e4
LT
6699
6700 rq = cpu_rq(i);
6701 spin_lock_init(&rq->lock);
fcb99371 6702 lockdep_set_class(&rq->lock, &rq->rq_lock_key);
7897986b 6703 rq->nr_running = 0;
dd41f596
IM
6704 rq->clock = 1;
6705 init_cfs_rq(&rq->cfs, rq);
6706#ifdef CONFIG_FAIR_GROUP_SCHED
6707 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
3a252015
IM
6708 {
6709 struct cfs_rq *cfs_rq = &per_cpu(init_cfs_rq, i);
6710 struct sched_entity *se =
6711 &per_cpu(init_sched_entity, i);
6712
6713 init_cfs_rq_p[i] = cfs_rq;
6714 init_cfs_rq(cfs_rq, rq);
4cf86d77 6715 cfs_rq->tg = &init_task_group;
3a252015 6716 list_add(&cfs_rq->leaf_cfs_rq_list,
29f59db3
SV
6717 &rq->leaf_cfs_rq_list);
6718
3a252015
IM
6719 init_sched_entity_p[i] = se;
6720 se->cfs_rq = &rq->cfs;
6721 se->my_q = cfs_rq;
4cf86d77 6722 se->load.weight = init_task_group_load;
9b5b7751 6723 se->load.inv_weight =
4cf86d77 6724 div64_64(1ULL<<32, init_task_group_load);
3a252015
IM
6725 se->parent = NULL;
6726 }
4cf86d77 6727 init_task_group.shares = init_task_group_load;
5cb350ba 6728 spin_lock_init(&init_task_group.lock);
dd41f596 6729#endif
1da177e4 6730
dd41f596
IM
6731 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
6732 rq->cpu_load[j] = 0;
1da177e4 6733#ifdef CONFIG_SMP
41c7ce9a 6734 rq->sd = NULL;
1da177e4 6735 rq->active_balance = 0;
dd41f596 6736 rq->next_balance = jiffies;
1da177e4 6737 rq->push_cpu = 0;
0a2966b4 6738 rq->cpu = i;
1da177e4
LT
6739 rq->migration_thread = NULL;
6740 INIT_LIST_HEAD(&rq->migration_queue);
6741#endif
6742 atomic_set(&rq->nr_iowait, 0);
6743
dd41f596
IM
6744 array = &rq->rt.active;
6745 for (j = 0; j < MAX_RT_PRIO; j++) {
6746 INIT_LIST_HEAD(array->queue + j);
6747 __clear_bit(j, array->bitmap);
1da177e4 6748 }
476f3534 6749 highest_cpu = i;
dd41f596
IM
6750 /* delimiter for bitsearch: */
6751 __set_bit(MAX_RT_PRIO, array->bitmap);
1da177e4
LT
6752 }
6753
2dd73a4f 6754 set_load_weight(&init_task);
b50f60ce 6755
e107be36
AK
6756#ifdef CONFIG_PREEMPT_NOTIFIERS
6757 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
6758#endif
6759
c9819f45 6760#ifdef CONFIG_SMP
476f3534 6761 nr_cpu_ids = highest_cpu + 1;
c9819f45
CL
6762 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains, NULL);
6763#endif
6764
b50f60ce
HC
6765#ifdef CONFIG_RT_MUTEXES
6766 plist_head_init(&init_task.pi_waiters, &init_task.pi_lock);
6767#endif
6768
1da177e4
LT
6769 /*
6770 * The boot idle thread does lazy MMU switching as well:
6771 */
6772 atomic_inc(&init_mm.mm_count);
6773 enter_lazy_tlb(&init_mm, current);
6774
6775 /*
6776 * Make us the idle thread. Technically, schedule() should not be
6777 * called from this thread, however somewhere below it might be,
6778 * but because we are the idle thread, we just pick up running again
6779 * when this runqueue becomes "idle".
6780 */
6781 init_idle(current, smp_processor_id());
dd41f596
IM
6782 /*
6783 * During early bootup we pretend to be a normal task:
6784 */
6785 current->sched_class = &fair_sched_class;
1da177e4
LT
6786}
6787
6788#ifdef CONFIG_DEBUG_SPINLOCK_SLEEP
6789void __might_sleep(char *file, int line)
6790{
48f24c4d 6791#ifdef in_atomic
1da177e4
LT
6792 static unsigned long prev_jiffy; /* ratelimiting */
6793
6794 if ((in_atomic() || irqs_disabled()) &&
6795 system_state == SYSTEM_RUNNING && !oops_in_progress) {
6796 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
6797 return;
6798 prev_jiffy = jiffies;
91368d73 6799 printk(KERN_ERR "BUG: sleeping function called from invalid"
1da177e4
LT
6800 " context at %s:%d\n", file, line);
6801 printk("in_atomic():%d, irqs_disabled():%d\n",
6802 in_atomic(), irqs_disabled());
a4c410f0 6803 debug_show_held_locks(current);
3117df04
IM
6804 if (irqs_disabled())
6805 print_irqtrace_events(current);
1da177e4
LT
6806 dump_stack();
6807 }
6808#endif
6809}
6810EXPORT_SYMBOL(__might_sleep);
6811#endif
6812
6813#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
6814static void normalize_task(struct rq *rq, struct task_struct *p)
6815{
6816 int on_rq;
6817 update_rq_clock(rq);
6818 on_rq = p->se.on_rq;
6819 if (on_rq)
6820 deactivate_task(rq, p, 0);
6821 __setscheduler(rq, p, SCHED_NORMAL, 0);
6822 if (on_rq) {
6823 activate_task(rq, p, 0);
6824 resched_task(rq->curr);
6825 }
6826}
6827
1da177e4
LT
6828void normalize_rt_tasks(void)
6829{
a0f98a1c 6830 struct task_struct *g, *p;
1da177e4 6831 unsigned long flags;
70b97a7f 6832 struct rq *rq;
1da177e4
LT
6833
6834 read_lock_irq(&tasklist_lock);
a0f98a1c 6835 do_each_thread(g, p) {
178be793
IM
6836 /*
6837 * Only normalize user tasks:
6838 */
6839 if (!p->mm)
6840 continue;
6841
6cfb0d5d 6842 p->se.exec_start = 0;
6cfb0d5d 6843#ifdef CONFIG_SCHEDSTATS
dd41f596 6844 p->se.wait_start = 0;
dd41f596 6845 p->se.sleep_start = 0;
dd41f596 6846 p->se.block_start = 0;
6cfb0d5d 6847#endif
dd41f596
IM
6848 task_rq(p)->clock = 0;
6849
6850 if (!rt_task(p)) {
6851 /*
6852 * Renice negative nice level userspace
6853 * tasks back to 0:
6854 */
6855 if (TASK_NICE(p) < 0 && p->mm)
6856 set_user_nice(p, 0);
1da177e4 6857 continue;
dd41f596 6858 }
1da177e4 6859
b29739f9
IM
6860 spin_lock_irqsave(&p->pi_lock, flags);
6861 rq = __task_rq_lock(p);
1da177e4 6862
178be793 6863 normalize_task(rq, p);
3a5e4dc1 6864
b29739f9
IM
6865 __task_rq_unlock(rq);
6866 spin_unlock_irqrestore(&p->pi_lock, flags);
a0f98a1c
IM
6867 } while_each_thread(g, p);
6868
1da177e4
LT
6869 read_unlock_irq(&tasklist_lock);
6870}
6871
6872#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a
LT
6873
6874#ifdef CONFIG_IA64
6875/*
6876 * These functions are only useful for the IA64 MCA handling.
6877 *
6878 * They can only be called when the whole system has been
6879 * stopped - every CPU needs to be quiescent, and no scheduling
6880 * activity can take place. Using them for anything else would
6881 * be a serious bug, and as a result, they aren't even visible
6882 * under any other configuration.
6883 */
6884
6885/**
6886 * curr_task - return the current task for a given cpu.
6887 * @cpu: the processor in question.
6888 *
6889 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6890 */
36c8b586 6891struct task_struct *curr_task(int cpu)
1df5c10a
LT
6892{
6893 return cpu_curr(cpu);
6894}
6895
6896/**
6897 * set_curr_task - set the current task for a given cpu.
6898 * @cpu: the processor in question.
6899 * @p: the task pointer to set.
6900 *
6901 * Description: This function must only be used when non-maskable interrupts
6902 * are serviced on a separate stack. It allows the architecture to switch the
6903 * notion of the current task on a cpu in a non-blocking manner. This function
6904 * must be called with all CPU's synchronized, and interrupts disabled, the
6905 * and caller must save the original value of the current task (see
6906 * curr_task() above) and restore that value before reenabling interrupts and
6907 * re-starting the system.
6908 *
6909 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
6910 */
36c8b586 6911void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
6912{
6913 cpu_curr(cpu) = p;
6914}
6915
6916#endif
29f59db3
SV
6917
6918#ifdef CONFIG_FAIR_GROUP_SCHED
6919
29f59db3 6920/* allocate runqueue etc for a new task group */
4cf86d77 6921struct task_group *sched_create_group(void)
29f59db3 6922{
4cf86d77 6923 struct task_group *tg;
29f59db3
SV
6924 struct cfs_rq *cfs_rq;
6925 struct sched_entity *se;
9b5b7751 6926 struct rq *rq;
29f59db3
SV
6927 int i;
6928
29f59db3
SV
6929 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
6930 if (!tg)
6931 return ERR_PTR(-ENOMEM);
6932
9b5b7751 6933 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6934 if (!tg->cfs_rq)
6935 goto err;
9b5b7751 6936 tg->se = kzalloc(sizeof(se) * NR_CPUS, GFP_KERNEL);
29f59db3
SV
6937 if (!tg->se)
6938 goto err;
6939
6940 for_each_possible_cpu(i) {
9b5b7751 6941 rq = cpu_rq(i);
29f59db3
SV
6942
6943 cfs_rq = kmalloc_node(sizeof(struct cfs_rq), GFP_KERNEL,
6944 cpu_to_node(i));
6945 if (!cfs_rq)
6946 goto err;
6947
6948 se = kmalloc_node(sizeof(struct sched_entity), GFP_KERNEL,
6949 cpu_to_node(i));
6950 if (!se)
6951 goto err;
6952
6953 memset(cfs_rq, 0, sizeof(struct cfs_rq));
6954 memset(se, 0, sizeof(struct sched_entity));
6955
6956 tg->cfs_rq[i] = cfs_rq;
6957 init_cfs_rq(cfs_rq, rq);
6958 cfs_rq->tg = tg;
29f59db3
SV
6959
6960 tg->se[i] = se;
6961 se->cfs_rq = &rq->cfs;
6962 se->my_q = cfs_rq;
6963 se->load.weight = NICE_0_LOAD;
6964 se->load.inv_weight = div64_64(1ULL<<32, NICE_0_LOAD);
6965 se->parent = NULL;
6966 }
6967
9b5b7751
SV
6968 for_each_possible_cpu(i) {
6969 rq = cpu_rq(i);
6970 cfs_rq = tg->cfs_rq[i];
6971 list_add_rcu(&cfs_rq->leaf_cfs_rq_list, &rq->leaf_cfs_rq_list);
6972 }
29f59db3 6973
9b5b7751 6974 tg->shares = NICE_0_LOAD;
5cb350ba 6975 spin_lock_init(&tg->lock);
29f59db3 6976
9b5b7751 6977 return tg;
29f59db3
SV
6978
6979err:
6980 for_each_possible_cpu(i) {
a65914b3 6981 if (tg->cfs_rq)
29f59db3 6982 kfree(tg->cfs_rq[i]);
a65914b3 6983 if (tg->se)
29f59db3
SV
6984 kfree(tg->se[i]);
6985 }
a65914b3
IM
6986 kfree(tg->cfs_rq);
6987 kfree(tg->se);
6988 kfree(tg);
29f59db3
SV
6989
6990 return ERR_PTR(-ENOMEM);
6991}
6992
9b5b7751
SV
6993/* rcu callback to free various structures associated with a task group */
6994static void free_sched_group(struct rcu_head *rhp)
29f59db3 6995{
9b5b7751 6996 struct cfs_rq *cfs_rq = container_of(rhp, struct cfs_rq, rcu);
4cf86d77 6997 struct task_group *tg = cfs_rq->tg;
29f59db3
SV
6998 struct sched_entity *se;
6999 int i;
7000
29f59db3
SV
7001 /* now it should be safe to free those cfs_rqs */
7002 for_each_possible_cpu(i) {
7003 cfs_rq = tg->cfs_rq[i];
7004 kfree(cfs_rq);
7005
7006 se = tg->se[i];
7007 kfree(se);
7008 }
7009
7010 kfree(tg->cfs_rq);
7011 kfree(tg->se);
7012 kfree(tg);
7013}
7014
9b5b7751 7015/* Destroy runqueue etc associated with a task group */
4cf86d77 7016void sched_destroy_group(struct task_group *tg)
29f59db3 7017{
9b5b7751
SV
7018 struct cfs_rq *cfs_rq;
7019 int i;
29f59db3 7020
9b5b7751
SV
7021 for_each_possible_cpu(i) {
7022 cfs_rq = tg->cfs_rq[i];
7023 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
7024 }
7025
7026 cfs_rq = tg->cfs_rq[0];
7027
7028 /* wait for possible concurrent references to cfs_rqs complete */
7029 call_rcu(&cfs_rq->rcu, free_sched_group);
29f59db3
SV
7030}
7031
9b5b7751 7032/* change task's runqueue when it moves between groups.
3a252015
IM
7033 * The caller of this function should have put the task in its new group
7034 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7035 * reflect its new group.
9b5b7751
SV
7036 */
7037void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7038{
7039 int on_rq, running;
7040 unsigned long flags;
7041 struct rq *rq;
7042
7043 rq = task_rq_lock(tsk, &flags);
7044
7045 if (tsk->sched_class != &fair_sched_class)
7046 goto done;
7047
7048 update_rq_clock(rq);
7049
7050 running = task_running(rq, tsk);
7051 on_rq = tsk->se.on_rq;
7052
83b699ed 7053 if (on_rq) {
29f59db3 7054 dequeue_task(rq, tsk, 0);
83b699ed
SV
7055 if (unlikely(running))
7056 tsk->sched_class->put_prev_task(rq, tsk);
7057 }
29f59db3
SV
7058
7059 set_task_cfs_rq(tsk);
7060
83b699ed
SV
7061 if (on_rq) {
7062 if (unlikely(running))
7063 tsk->sched_class->set_curr_task(rq);
7074badb 7064 enqueue_task(rq, tsk, 0);
83b699ed 7065 }
29f59db3
SV
7066
7067done:
7068 task_rq_unlock(rq, &flags);
7069}
7070
7071static void set_se_shares(struct sched_entity *se, unsigned long shares)
7072{
7073 struct cfs_rq *cfs_rq = se->cfs_rq;
7074 struct rq *rq = cfs_rq->rq;
7075 int on_rq;
7076
7077 spin_lock_irq(&rq->lock);
7078
7079 on_rq = se->on_rq;
7080 if (on_rq)
7081 dequeue_entity(cfs_rq, se, 0);
7082
7083 se->load.weight = shares;
7084 se->load.inv_weight = div64_64((1ULL<<32), shares);
7085
7086 if (on_rq)
7087 enqueue_entity(cfs_rq, se, 0);
7088
7089 spin_unlock_irq(&rq->lock);
7090}
7091
4cf86d77 7092int sched_group_set_shares(struct task_group *tg, unsigned long shares)
29f59db3
SV
7093{
7094 int i;
29f59db3 7095
5cb350ba 7096 spin_lock(&tg->lock);
9b5b7751 7097 if (tg->shares == shares)
5cb350ba 7098 goto done;
29f59db3 7099
9b5b7751 7100 tg->shares = shares;
29f59db3 7101 for_each_possible_cpu(i)
9b5b7751 7102 set_se_shares(tg->se[i], shares);
29f59db3 7103
5cb350ba
DG
7104done:
7105 spin_unlock(&tg->lock);
9b5b7751 7106 return 0;
29f59db3
SV
7107}
7108
5cb350ba
DG
7109unsigned long sched_group_shares(struct task_group *tg)
7110{
7111 return tg->shares;
7112}
7113
3a252015 7114#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e
SV
7115
7116#ifdef CONFIG_FAIR_CGROUP_SCHED
7117
7118/* return corresponding task_group object of a cgroup */
7119static inline struct task_group *cgroup_tg(struct cgroup *cont)
7120{
7121 return container_of(cgroup_subsys_state(cont, cpu_cgroup_subsys_id),
7122 struct task_group, css);
7123}
7124
7125static struct cgroup_subsys_state *
7126cpu_cgroup_create(struct cgroup_subsys *ss, struct cgroup *cont)
7127{
7128 struct task_group *tg;
7129
7130 if (!cont->parent) {
7131 /* This is early initialization for the top cgroup */
7132 init_task_group.css.cgroup = cont;
7133 return &init_task_group.css;
7134 }
7135
7136 /* we support only 1-level deep hierarchical scheduler atm */
7137 if (cont->parent->parent)
7138 return ERR_PTR(-EINVAL);
7139
7140 tg = sched_create_group();
7141 if (IS_ERR(tg))
7142 return ERR_PTR(-ENOMEM);
7143
7144 /* Bind the cgroup to task_group object we just created */
7145 tg->css.cgroup = cont;
7146
7147 return &tg->css;
7148}
7149
7150static void cpu_cgroup_destroy(struct cgroup_subsys *ss,
7151 struct cgroup *cont)
7152{
7153 struct task_group *tg = cgroup_tg(cont);
7154
7155 sched_destroy_group(tg);
7156}
7157
7158static int cpu_cgroup_can_attach(struct cgroup_subsys *ss,
7159 struct cgroup *cont, struct task_struct *tsk)
7160{
7161 /* We don't support RT-tasks being in separate groups */
7162 if (tsk->sched_class != &fair_sched_class)
7163 return -EINVAL;
7164
7165 return 0;
7166}
7167
7168static void
7169cpu_cgroup_attach(struct cgroup_subsys *ss, struct cgroup *cont,
7170 struct cgroup *old_cont, struct task_struct *tsk)
7171{
7172 sched_move_task(tsk);
7173}
7174
7175static ssize_t cpu_shares_write(struct cgroup *cont, struct cftype *cftype,
7176 struct file *file, const char __user *userbuf,
7177 size_t nbytes, loff_t *ppos)
7178{
7179 unsigned long shareval;
7180 struct task_group *tg = cgroup_tg(cont);
7181 char buffer[2*sizeof(unsigned long) + 1];
7182 int rc;
7183
7184 if (nbytes > 2*sizeof(unsigned long)) /* safety check */
7185 return -E2BIG;
7186
7187 if (copy_from_user(buffer, userbuf, nbytes))
7188 return -EFAULT;
7189
7190 buffer[nbytes] = 0; /* nul-terminate */
7191 shareval = simple_strtoul(buffer, NULL, 10);
7192
7193 rc = sched_group_set_shares(tg, shareval);
7194
7195 return (rc < 0 ? rc : nbytes);
7196}
7197
7198static u64 cpu_shares_read_uint(struct cgroup *cont, struct cftype *cft)
7199{
7200 struct task_group *tg = cgroup_tg(cont);
7201
7202 return (u64) tg->shares;
7203}
7204
7205static struct cftype cpu_shares = {
7206 .name = "shares",
7207 .read_uint = cpu_shares_read_uint,
7208 .write = cpu_shares_write,
7209};
7210
7211static int cpu_cgroup_populate(struct cgroup_subsys *ss, struct cgroup *cont)
7212{
7213 return cgroup_add_file(cont, ss, &cpu_shares);
7214}
7215
7216struct cgroup_subsys cpu_cgroup_subsys = {
7217 .name = "cpu",
7218 .create = cpu_cgroup_create,
7219 .destroy = cpu_cgroup_destroy,
7220 .can_attach = cpu_cgroup_can_attach,
7221 .attach = cpu_cgroup_attach,
7222 .populate = cpu_cgroup_populate,
7223 .subsys_id = cpu_cgroup_subsys_id,
7224 .early_init = 1,
7225};
7226
7227#endif /* CONFIG_FAIR_CGROUP_SCHED */
This page took 0.880671 seconds and 5 git commands to generate.