sched: Handle priority boosted tasks proper in setscheduler()
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
91d1aa43 75#include <linux/context_tracking.h>
52f5684c 76#include <linux/compiler.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb 93void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 94{
58088ad0
PT
95 unsigned long delta;
96 ktime_t soft, hard, now;
d0b27fa7 97
58088ad0
PT
98 for (;;) {
99 if (hrtimer_active(period_timer))
100 break;
101
102 now = hrtimer_cb_get_time(period_timer);
103 hrtimer_forward(period_timer, now, period);
d0b27fa7 104
58088ad0
PT
105 soft = hrtimer_get_softexpires(period_timer);
106 hard = hrtimer_get_expires(period_timer);
107 delta = ktime_to_ns(ktime_sub(hard, soft));
108 __hrtimer_start_range_ns(period_timer, soft, delta,
109 HRTIMER_MODE_ABS_PINNED, 0);
110 }
111}
112
029632fb
PZ
113DEFINE_MUTEX(sched_domains_mutex);
114DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 115
fe44d621 116static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 117
029632fb 118void update_rq_clock(struct rq *rq)
3e51f33f 119{
fe44d621 120 s64 delta;
305e6835 121
9edfbfed
PZ
122 lockdep_assert_held(&rq->lock);
123
124 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 125 return;
aa483808 126
fe44d621 127 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
128 if (delta < 0)
129 return;
fe44d621
PZ
130 rq->clock += delta;
131 update_rq_clock_task(rq, delta);
3e51f33f
PZ
132}
133
bf5c91ba
IM
134/*
135 * Debugging: various feature bits
136 */
f00b45c1 137
f00b45c1
PZ
138#define SCHED_FEAT(name, enabled) \
139 (1UL << __SCHED_FEAT_##name) * enabled |
140
bf5c91ba 141const_debug unsigned int sysctl_sched_features =
391e43da 142#include "features.h"
f00b45c1
PZ
143 0;
144
145#undef SCHED_FEAT
146
147#ifdef CONFIG_SCHED_DEBUG
148#define SCHED_FEAT(name, enabled) \
149 #name ,
150
1292531f 151static const char * const sched_feat_names[] = {
391e43da 152#include "features.h"
f00b45c1
PZ
153};
154
155#undef SCHED_FEAT
156
34f3a814 157static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 158{
f00b45c1
PZ
159 int i;
160
f8b6d1cc 161 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
162 if (!(sysctl_sched_features & (1UL << i)))
163 seq_puts(m, "NO_");
164 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 165 }
34f3a814 166 seq_puts(m, "\n");
f00b45c1 167
34f3a814 168 return 0;
f00b45c1
PZ
169}
170
f8b6d1cc
PZ
171#ifdef HAVE_JUMP_LABEL
172
c5905afb
IM
173#define jump_label_key__true STATIC_KEY_INIT_TRUE
174#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
175
176#define SCHED_FEAT(name, enabled) \
177 jump_label_key__##enabled ,
178
c5905afb 179struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
180#include "features.h"
181};
182
183#undef SCHED_FEAT
184
185static void sched_feat_disable(int i)
186{
c5905afb
IM
187 if (static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
189}
190
191static void sched_feat_enable(int i)
192{
c5905afb
IM
193 if (!static_key_enabled(&sched_feat_keys[i]))
194 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
195}
196#else
197static void sched_feat_disable(int i) { };
198static void sched_feat_enable(int i) { };
199#endif /* HAVE_JUMP_LABEL */
200
1a687c2e 201static int sched_feat_set(char *cmp)
f00b45c1 202{
f00b45c1 203 int i;
1a687c2e 204 int neg = 0;
f00b45c1 205
524429c3 206 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
207 neg = 1;
208 cmp += 3;
209 }
210
f8b6d1cc 211 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 212 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 213 if (neg) {
f00b45c1 214 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
215 sched_feat_disable(i);
216 } else {
f00b45c1 217 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
218 sched_feat_enable(i);
219 }
f00b45c1
PZ
220 break;
221 }
222 }
223
1a687c2e
MG
224 return i;
225}
226
227static ssize_t
228sched_feat_write(struct file *filp, const char __user *ubuf,
229 size_t cnt, loff_t *ppos)
230{
231 char buf[64];
232 char *cmp;
233 int i;
5cd08fbf 234 struct inode *inode;
1a687c2e
MG
235
236 if (cnt > 63)
237 cnt = 63;
238
239 if (copy_from_user(&buf, ubuf, cnt))
240 return -EFAULT;
241
242 buf[cnt] = 0;
243 cmp = strstrip(buf);
244
5cd08fbf
JB
245 /* Ensure the static_key remains in a consistent state */
246 inode = file_inode(filp);
247 mutex_lock(&inode->i_mutex);
1a687c2e 248 i = sched_feat_set(cmp);
5cd08fbf 249 mutex_unlock(&inode->i_mutex);
f8b6d1cc 250 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
251 return -EINVAL;
252
42994724 253 *ppos += cnt;
f00b45c1
PZ
254
255 return cnt;
256}
257
34f3a814
LZ
258static int sched_feat_open(struct inode *inode, struct file *filp)
259{
260 return single_open(filp, sched_feat_show, NULL);
261}
262
828c0950 263static const struct file_operations sched_feat_fops = {
34f3a814
LZ
264 .open = sched_feat_open,
265 .write = sched_feat_write,
266 .read = seq_read,
267 .llseek = seq_lseek,
268 .release = single_release,
f00b45c1
PZ
269};
270
271static __init int sched_init_debug(void)
272{
f00b45c1
PZ
273 debugfs_create_file("sched_features", 0644, NULL, NULL,
274 &sched_feat_fops);
275
276 return 0;
277}
278late_initcall(sched_init_debug);
f8b6d1cc 279#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 280
b82d9fdd
PZ
281/*
282 * Number of tasks to iterate in a single balance run.
283 * Limited because this is done with IRQs disabled.
284 */
285const_debug unsigned int sysctl_sched_nr_migrate = 32;
286
e9e9250b
PZ
287/*
288 * period over which we average the RT time consumption, measured
289 * in ms.
290 *
291 * default: 1s
292 */
293const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
294
fa85ae24 295/*
9f0c1e56 296 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
297 * default: 1s
298 */
9f0c1e56 299unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 300
029632fb 301__read_mostly int scheduler_running;
6892b75e 302
9f0c1e56
PZ
303/*
304 * part of the period that we allow rt tasks to run in us.
305 * default: 0.95s
306 */
307int sysctl_sched_rt_runtime = 950000;
fa85ae24 308
3fa0818b
RR
309/* cpus with isolated domains */
310cpumask_var_t cpu_isolated_map;
311
1da177e4 312/*
cc2a73b5 313 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 314 */
a9957449 315static struct rq *this_rq_lock(void)
1da177e4
LT
316 __acquires(rq->lock)
317{
70b97a7f 318 struct rq *rq;
1da177e4
LT
319
320 local_irq_disable();
321 rq = this_rq();
05fa785c 322 raw_spin_lock(&rq->lock);
1da177e4
LT
323
324 return rq;
325}
326
8f4d37ec
PZ
327#ifdef CONFIG_SCHED_HRTICK
328/*
329 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 330 */
8f4d37ec 331
8f4d37ec
PZ
332static void hrtick_clear(struct rq *rq)
333{
334 if (hrtimer_active(&rq->hrtick_timer))
335 hrtimer_cancel(&rq->hrtick_timer);
336}
337
8f4d37ec
PZ
338/*
339 * High-resolution timer tick.
340 * Runs from hardirq context with interrupts disabled.
341 */
342static enum hrtimer_restart hrtick(struct hrtimer *timer)
343{
344 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
345
346 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
347
05fa785c 348 raw_spin_lock(&rq->lock);
3e51f33f 349 update_rq_clock(rq);
8f4d37ec 350 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 351 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
352
353 return HRTIMER_NORESTART;
354}
355
95e904c7 356#ifdef CONFIG_SMP
971ee28c
PZ
357
358static int __hrtick_restart(struct rq *rq)
359{
360 struct hrtimer *timer = &rq->hrtick_timer;
361 ktime_t time = hrtimer_get_softexpires(timer);
362
363 return __hrtimer_start_range_ns(timer, time, 0, HRTIMER_MODE_ABS_PINNED, 0);
364}
365
31656519
PZ
366/*
367 * called from hardirq (IPI) context
368 */
369static void __hrtick_start(void *arg)
b328ca18 370{
31656519 371 struct rq *rq = arg;
b328ca18 372
05fa785c 373 raw_spin_lock(&rq->lock);
971ee28c 374 __hrtick_restart(rq);
31656519 375 rq->hrtick_csd_pending = 0;
05fa785c 376 raw_spin_unlock(&rq->lock);
b328ca18
PZ
377}
378
31656519
PZ
379/*
380 * Called to set the hrtick timer state.
381 *
382 * called with rq->lock held and irqs disabled
383 */
029632fb 384void hrtick_start(struct rq *rq, u64 delay)
b328ca18 385{
31656519 386 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 387 ktime_t time;
388 s64 delta;
389
390 /*
391 * Don't schedule slices shorter than 10000ns, that just
392 * doesn't make sense and can cause timer DoS.
393 */
394 delta = max_t(s64, delay, 10000LL);
395 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 396
cc584b21 397 hrtimer_set_expires(timer, time);
31656519
PZ
398
399 if (rq == this_rq()) {
971ee28c 400 __hrtick_restart(rq);
31656519 401 } else if (!rq->hrtick_csd_pending) {
c46fff2a 402 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
403 rq->hrtick_csd_pending = 1;
404 }
b328ca18
PZ
405}
406
407static int
408hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
409{
410 int cpu = (int)(long)hcpu;
411
412 switch (action) {
413 case CPU_UP_CANCELED:
414 case CPU_UP_CANCELED_FROZEN:
415 case CPU_DOWN_PREPARE:
416 case CPU_DOWN_PREPARE_FROZEN:
417 case CPU_DEAD:
418 case CPU_DEAD_FROZEN:
31656519 419 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
420 return NOTIFY_OK;
421 }
422
423 return NOTIFY_DONE;
424}
425
fa748203 426static __init void init_hrtick(void)
b328ca18
PZ
427{
428 hotcpu_notifier(hotplug_hrtick, 0);
429}
31656519
PZ
430#else
431/*
432 * Called to set the hrtick timer state.
433 *
434 * called with rq->lock held and irqs disabled
435 */
029632fb 436void hrtick_start(struct rq *rq, u64 delay)
31656519 437{
86893335
WL
438 /*
439 * Don't schedule slices shorter than 10000ns, that just
440 * doesn't make sense. Rely on vruntime for fairness.
441 */
442 delay = max_t(u64, delay, 10000LL);
7f1e2ca9 443 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 444 HRTIMER_MODE_REL_PINNED, 0);
31656519 445}
b328ca18 446
006c75f1 447static inline void init_hrtick(void)
8f4d37ec 448{
8f4d37ec 449}
31656519 450#endif /* CONFIG_SMP */
8f4d37ec 451
31656519 452static void init_rq_hrtick(struct rq *rq)
8f4d37ec 453{
31656519
PZ
454#ifdef CONFIG_SMP
455 rq->hrtick_csd_pending = 0;
8f4d37ec 456
31656519
PZ
457 rq->hrtick_csd.flags = 0;
458 rq->hrtick_csd.func = __hrtick_start;
459 rq->hrtick_csd.info = rq;
460#endif
8f4d37ec 461
31656519
PZ
462 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
463 rq->hrtick_timer.function = hrtick;
8f4d37ec 464}
006c75f1 465#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
466static inline void hrtick_clear(struct rq *rq)
467{
468}
469
8f4d37ec
PZ
470static inline void init_rq_hrtick(struct rq *rq)
471{
472}
473
b328ca18
PZ
474static inline void init_hrtick(void)
475{
476}
006c75f1 477#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 478
fd99f91a
PZ
479/*
480 * cmpxchg based fetch_or, macro so it works for different integer types
481 */
482#define fetch_or(ptr, val) \
483({ typeof(*(ptr)) __old, __val = *(ptr); \
484 for (;;) { \
485 __old = cmpxchg((ptr), __val, __val | (val)); \
486 if (__old == __val) \
487 break; \
488 __val = __old; \
489 } \
490 __old; \
491})
492
e3baac47 493#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
494/*
495 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
496 * this avoids any races wrt polling state changes and thereby avoids
497 * spurious IPIs.
498 */
499static bool set_nr_and_not_polling(struct task_struct *p)
500{
501 struct thread_info *ti = task_thread_info(p);
502 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
503}
e3baac47
PZ
504
505/*
506 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
507 *
508 * If this returns true, then the idle task promises to call
509 * sched_ttwu_pending() and reschedule soon.
510 */
511static bool set_nr_if_polling(struct task_struct *p)
512{
513 struct thread_info *ti = task_thread_info(p);
514 typeof(ti->flags) old, val = ACCESS_ONCE(ti->flags);
515
516 for (;;) {
517 if (!(val & _TIF_POLLING_NRFLAG))
518 return false;
519 if (val & _TIF_NEED_RESCHED)
520 return true;
521 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
522 if (old == val)
523 break;
524 val = old;
525 }
526 return true;
527}
528
fd99f91a
PZ
529#else
530static bool set_nr_and_not_polling(struct task_struct *p)
531{
532 set_tsk_need_resched(p);
533 return true;
534}
e3baac47
PZ
535
536#ifdef CONFIG_SMP
537static bool set_nr_if_polling(struct task_struct *p)
538{
539 return false;
540}
541#endif
fd99f91a
PZ
542#endif
543
c24d20db 544/*
8875125e 545 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
546 *
547 * On UP this means the setting of the need_resched flag, on SMP it
548 * might also involve a cross-CPU call to trigger the scheduler on
549 * the target CPU.
550 */
8875125e 551void resched_curr(struct rq *rq)
c24d20db 552{
8875125e 553 struct task_struct *curr = rq->curr;
c24d20db
IM
554 int cpu;
555
8875125e 556 lockdep_assert_held(&rq->lock);
c24d20db 557
8875125e 558 if (test_tsk_need_resched(curr))
c24d20db
IM
559 return;
560
8875125e 561 cpu = cpu_of(rq);
fd99f91a 562
f27dde8d 563 if (cpu == smp_processor_id()) {
8875125e 564 set_tsk_need_resched(curr);
f27dde8d 565 set_preempt_need_resched();
c24d20db 566 return;
f27dde8d 567 }
c24d20db 568
8875125e 569 if (set_nr_and_not_polling(curr))
c24d20db 570 smp_send_reschedule(cpu);
dfc68f29
AL
571 else
572 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
573}
574
029632fb 575void resched_cpu(int cpu)
c24d20db
IM
576{
577 struct rq *rq = cpu_rq(cpu);
578 unsigned long flags;
579
05fa785c 580 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 581 return;
8875125e 582 resched_curr(rq);
05fa785c 583 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 584}
06d8308c 585
b021fe3e 586#ifdef CONFIG_SMP
3451d024 587#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
588/*
589 * In the semi idle case, use the nearest busy cpu for migrating timers
590 * from an idle cpu. This is good for power-savings.
591 *
592 * We don't do similar optimization for completely idle system, as
593 * selecting an idle cpu will add more delays to the timers than intended
594 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
595 */
6201b4d6 596int get_nohz_timer_target(int pinned)
83cd4fe2
VP
597{
598 int cpu = smp_processor_id();
599 int i;
600 struct sched_domain *sd;
601
6201b4d6
VK
602 if (pinned || !get_sysctl_timer_migration() || !idle_cpu(cpu))
603 return cpu;
604
057f3fad 605 rcu_read_lock();
83cd4fe2 606 for_each_domain(cpu, sd) {
057f3fad
PZ
607 for_each_cpu(i, sched_domain_span(sd)) {
608 if (!idle_cpu(i)) {
609 cpu = i;
610 goto unlock;
611 }
612 }
83cd4fe2 613 }
057f3fad
PZ
614unlock:
615 rcu_read_unlock();
83cd4fe2
VP
616 return cpu;
617}
06d8308c
TG
618/*
619 * When add_timer_on() enqueues a timer into the timer wheel of an
620 * idle CPU then this timer might expire before the next timer event
621 * which is scheduled to wake up that CPU. In case of a completely
622 * idle system the next event might even be infinite time into the
623 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
624 * leaves the inner idle loop so the newly added timer is taken into
625 * account when the CPU goes back to idle and evaluates the timer
626 * wheel for the next timer event.
627 */
1c20091e 628static void wake_up_idle_cpu(int cpu)
06d8308c
TG
629{
630 struct rq *rq = cpu_rq(cpu);
631
632 if (cpu == smp_processor_id())
633 return;
634
67b9ca70 635 if (set_nr_and_not_polling(rq->idle))
06d8308c 636 smp_send_reschedule(cpu);
dfc68f29
AL
637 else
638 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
639}
640
c5bfece2 641static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 642{
53c5fa16
FW
643 /*
644 * We just need the target to call irq_exit() and re-evaluate
645 * the next tick. The nohz full kick at least implies that.
646 * If needed we can still optimize that later with an
647 * empty IRQ.
648 */
c5bfece2 649 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
650 if (cpu != smp_processor_id() ||
651 tick_nohz_tick_stopped())
53c5fa16 652 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
653 return true;
654 }
655
656 return false;
657}
658
659void wake_up_nohz_cpu(int cpu)
660{
c5bfece2 661 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
662 wake_up_idle_cpu(cpu);
663}
664
ca38062e 665static inline bool got_nohz_idle_kick(void)
45bf76df 666{
1c792db7 667 int cpu = smp_processor_id();
873b4c65
VG
668
669 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
670 return false;
671
672 if (idle_cpu(cpu) && !need_resched())
673 return true;
674
675 /*
676 * We can't run Idle Load Balance on this CPU for this time so we
677 * cancel it and clear NOHZ_BALANCE_KICK
678 */
679 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
680 return false;
45bf76df
IM
681}
682
3451d024 683#else /* CONFIG_NO_HZ_COMMON */
45bf76df 684
ca38062e 685static inline bool got_nohz_idle_kick(void)
2069dd75 686{
ca38062e 687 return false;
2069dd75
PZ
688}
689
3451d024 690#endif /* CONFIG_NO_HZ_COMMON */
d842de87 691
ce831b38
FW
692#ifdef CONFIG_NO_HZ_FULL
693bool sched_can_stop_tick(void)
694{
1e78cdbd
RR
695 /*
696 * FIFO realtime policy runs the highest priority task. Other runnable
697 * tasks are of a lower priority. The scheduler tick does nothing.
698 */
699 if (current->policy == SCHED_FIFO)
700 return true;
701
702 /*
703 * Round-robin realtime tasks time slice with other tasks at the same
704 * realtime priority. Is this task the only one at this priority?
705 */
706 if (current->policy == SCHED_RR) {
707 struct sched_rt_entity *rt_se = &current->rt;
708
709 return rt_se->run_list.prev == rt_se->run_list.next;
710 }
711
3882ec64
FW
712 /*
713 * More than one running task need preemption.
714 * nr_running update is assumed to be visible
715 * after IPI is sent from wakers.
716 */
541b8264
VK
717 if (this_rq()->nr_running > 1)
718 return false;
ce831b38 719
541b8264 720 return true;
ce831b38
FW
721}
722#endif /* CONFIG_NO_HZ_FULL */
d842de87 723
029632fb 724void sched_avg_update(struct rq *rq)
18d95a28 725{
e9e9250b
PZ
726 s64 period = sched_avg_period();
727
78becc27 728 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
729 /*
730 * Inline assembly required to prevent the compiler
731 * optimising this loop into a divmod call.
732 * See __iter_div_u64_rem() for another example of this.
733 */
734 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
735 rq->age_stamp += period;
736 rq->rt_avg /= 2;
737 }
18d95a28
PZ
738}
739
6d6bc0ad 740#endif /* CONFIG_SMP */
18d95a28 741
a790de99
PT
742#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
743 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 744/*
8277434e
PT
745 * Iterate task_group tree rooted at *from, calling @down when first entering a
746 * node and @up when leaving it for the final time.
747 *
748 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 749 */
029632fb 750int walk_tg_tree_from(struct task_group *from,
8277434e 751 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
752{
753 struct task_group *parent, *child;
eb755805 754 int ret;
c09595f6 755
8277434e
PT
756 parent = from;
757
c09595f6 758down:
eb755805
PZ
759 ret = (*down)(parent, data);
760 if (ret)
8277434e 761 goto out;
c09595f6
PZ
762 list_for_each_entry_rcu(child, &parent->children, siblings) {
763 parent = child;
764 goto down;
765
766up:
767 continue;
768 }
eb755805 769 ret = (*up)(parent, data);
8277434e
PT
770 if (ret || parent == from)
771 goto out;
c09595f6
PZ
772
773 child = parent;
774 parent = parent->parent;
775 if (parent)
776 goto up;
8277434e 777out:
eb755805 778 return ret;
c09595f6
PZ
779}
780
029632fb 781int tg_nop(struct task_group *tg, void *data)
eb755805 782{
e2b245f8 783 return 0;
eb755805 784}
18d95a28
PZ
785#endif
786
45bf76df
IM
787static void set_load_weight(struct task_struct *p)
788{
f05998d4
NR
789 int prio = p->static_prio - MAX_RT_PRIO;
790 struct load_weight *load = &p->se.load;
791
dd41f596
IM
792 /*
793 * SCHED_IDLE tasks get minimal weight:
794 */
795 if (p->policy == SCHED_IDLE) {
c8b28116 796 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 797 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
798 return;
799 }
71f8bd46 800
c8b28116 801 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 802 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
803}
804
371fd7e7 805static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 806{
a64692a3 807 update_rq_clock(rq);
43148951 808 sched_info_queued(rq, p);
371fd7e7 809 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
810}
811
371fd7e7 812static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 813{
a64692a3 814 update_rq_clock(rq);
43148951 815 sched_info_dequeued(rq, p);
371fd7e7 816 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
817}
818
029632fb 819void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
820{
821 if (task_contributes_to_load(p))
822 rq->nr_uninterruptible--;
823
371fd7e7 824 enqueue_task(rq, p, flags);
1e3c88bd
PZ
825}
826
029632fb 827void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
828{
829 if (task_contributes_to_load(p))
830 rq->nr_uninterruptible++;
831
371fd7e7 832 dequeue_task(rq, p, flags);
1e3c88bd
PZ
833}
834
fe44d621 835static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 836{
095c0aa8
GC
837/*
838 * In theory, the compile should just see 0 here, and optimize out the call
839 * to sched_rt_avg_update. But I don't trust it...
840 */
841#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
842 s64 steal = 0, irq_delta = 0;
843#endif
844#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 845 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
846
847 /*
848 * Since irq_time is only updated on {soft,}irq_exit, we might run into
849 * this case when a previous update_rq_clock() happened inside a
850 * {soft,}irq region.
851 *
852 * When this happens, we stop ->clock_task and only update the
853 * prev_irq_time stamp to account for the part that fit, so that a next
854 * update will consume the rest. This ensures ->clock_task is
855 * monotonic.
856 *
857 * It does however cause some slight miss-attribution of {soft,}irq
858 * time, a more accurate solution would be to update the irq_time using
859 * the current rq->clock timestamp, except that would require using
860 * atomic ops.
861 */
862 if (irq_delta > delta)
863 irq_delta = delta;
864
865 rq->prev_irq_time += irq_delta;
866 delta -= irq_delta;
095c0aa8
GC
867#endif
868#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 869 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
870 steal = paravirt_steal_clock(cpu_of(rq));
871 steal -= rq->prev_steal_time_rq;
872
873 if (unlikely(steal > delta))
874 steal = delta;
875
095c0aa8 876 rq->prev_steal_time_rq += steal;
095c0aa8
GC
877 delta -= steal;
878 }
879#endif
880
fe44d621
PZ
881 rq->clock_task += delta;
882
095c0aa8 883#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 884 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
885 sched_rt_avg_update(rq, irq_delta + steal);
886#endif
aa483808
VP
887}
888
34f971f6
PZ
889void sched_set_stop_task(int cpu, struct task_struct *stop)
890{
891 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
892 struct task_struct *old_stop = cpu_rq(cpu)->stop;
893
894 if (stop) {
895 /*
896 * Make it appear like a SCHED_FIFO task, its something
897 * userspace knows about and won't get confused about.
898 *
899 * Also, it will make PI more or less work without too
900 * much confusion -- but then, stop work should not
901 * rely on PI working anyway.
902 */
903 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
904
905 stop->sched_class = &stop_sched_class;
906 }
907
908 cpu_rq(cpu)->stop = stop;
909
910 if (old_stop) {
911 /*
912 * Reset it back to a normal scheduling class so that
913 * it can die in pieces.
914 */
915 old_stop->sched_class = &rt_sched_class;
916 }
917}
918
14531189 919/*
dd41f596 920 * __normal_prio - return the priority that is based on the static prio
14531189 921 */
14531189
IM
922static inline int __normal_prio(struct task_struct *p)
923{
dd41f596 924 return p->static_prio;
14531189
IM
925}
926
b29739f9
IM
927/*
928 * Calculate the expected normal priority: i.e. priority
929 * without taking RT-inheritance into account. Might be
930 * boosted by interactivity modifiers. Changes upon fork,
931 * setprio syscalls, and whenever the interactivity
932 * estimator recalculates.
933 */
36c8b586 934static inline int normal_prio(struct task_struct *p)
b29739f9
IM
935{
936 int prio;
937
aab03e05
DF
938 if (task_has_dl_policy(p))
939 prio = MAX_DL_PRIO-1;
940 else if (task_has_rt_policy(p))
b29739f9
IM
941 prio = MAX_RT_PRIO-1 - p->rt_priority;
942 else
943 prio = __normal_prio(p);
944 return prio;
945}
946
947/*
948 * Calculate the current priority, i.e. the priority
949 * taken into account by the scheduler. This value might
950 * be boosted by RT tasks, or might be boosted by
951 * interactivity modifiers. Will be RT if the task got
952 * RT-boosted. If not then it returns p->normal_prio.
953 */
36c8b586 954static int effective_prio(struct task_struct *p)
b29739f9
IM
955{
956 p->normal_prio = normal_prio(p);
957 /*
958 * If we are RT tasks or we were boosted to RT priority,
959 * keep the priority unchanged. Otherwise, update priority
960 * to the normal priority:
961 */
962 if (!rt_prio(p->prio))
963 return p->normal_prio;
964 return p->prio;
965}
966
1da177e4
LT
967/**
968 * task_curr - is this task currently executing on a CPU?
969 * @p: the task in question.
e69f6186
YB
970 *
971 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 972 */
36c8b586 973inline int task_curr(const struct task_struct *p)
1da177e4
LT
974{
975 return cpu_curr(task_cpu(p)) == p;
976}
977
67dfa1b7
KT
978/*
979 * Can drop rq->lock because from sched_class::switched_from() methods drop it.
980 */
cb469845
SR
981static inline void check_class_changed(struct rq *rq, struct task_struct *p,
982 const struct sched_class *prev_class,
da7a735e 983 int oldprio)
cb469845
SR
984{
985 if (prev_class != p->sched_class) {
986 if (prev_class->switched_from)
da7a735e 987 prev_class->switched_from(rq, p);
67dfa1b7 988 /* Possble rq->lock 'hole'. */
da7a735e 989 p->sched_class->switched_to(rq, p);
2d3d891d 990 } else if (oldprio != p->prio || dl_task(p))
da7a735e 991 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
992}
993
029632fb 994void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
995{
996 const struct sched_class *class;
997
998 if (p->sched_class == rq->curr->sched_class) {
999 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1000 } else {
1001 for_each_class(class) {
1002 if (class == rq->curr->sched_class)
1003 break;
1004 if (class == p->sched_class) {
8875125e 1005 resched_curr(rq);
1e5a7405
PZ
1006 break;
1007 }
1008 }
1009 }
1010
1011 /*
1012 * A queue event has occurred, and we're going to schedule. In
1013 * this case, we can save a useless back to back clock update.
1014 */
da0c1e65 1015 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 1016 rq_clock_skip_update(rq, true);
1e5a7405
PZ
1017}
1018
1da177e4 1019#ifdef CONFIG_SMP
dd41f596 1020void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1021{
e2912009
PZ
1022#ifdef CONFIG_SCHED_DEBUG
1023 /*
1024 * We should never call set_task_cpu() on a blocked task,
1025 * ttwu() will sort out the placement.
1026 */
077614ee 1027 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1028 !p->on_rq);
0122ec5b
PZ
1029
1030#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1031 /*
1032 * The caller should hold either p->pi_lock or rq->lock, when changing
1033 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1034 *
1035 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1036 * see task_group().
6c6c54e1
PZ
1037 *
1038 * Furthermore, all task_rq users should acquire both locks, see
1039 * task_rq_lock().
1040 */
0122ec5b
PZ
1041 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1042 lockdep_is_held(&task_rq(p)->lock)));
1043#endif
e2912009
PZ
1044#endif
1045
de1d7286 1046 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1047
0c69774e 1048 if (task_cpu(p) != new_cpu) {
0a74bef8
PT
1049 if (p->sched_class->migrate_task_rq)
1050 p->sched_class->migrate_task_rq(p, new_cpu);
0c69774e 1051 p->se.nr_migrations++;
86038c5e 1052 perf_sw_event_sched(PERF_COUNT_SW_CPU_MIGRATIONS, 1, 0);
0c69774e 1053 }
dd41f596
IM
1054
1055 __set_task_cpu(p, new_cpu);
c65cc870
IM
1056}
1057
ac66f547
PZ
1058static void __migrate_swap_task(struct task_struct *p, int cpu)
1059{
da0c1e65 1060 if (task_on_rq_queued(p)) {
ac66f547
PZ
1061 struct rq *src_rq, *dst_rq;
1062
1063 src_rq = task_rq(p);
1064 dst_rq = cpu_rq(cpu);
1065
1066 deactivate_task(src_rq, p, 0);
1067 set_task_cpu(p, cpu);
1068 activate_task(dst_rq, p, 0);
1069 check_preempt_curr(dst_rq, p, 0);
1070 } else {
1071 /*
1072 * Task isn't running anymore; make it appear like we migrated
1073 * it before it went to sleep. This means on wakeup we make the
1074 * previous cpu our targer instead of where it really is.
1075 */
1076 p->wake_cpu = cpu;
1077 }
1078}
1079
1080struct migration_swap_arg {
1081 struct task_struct *src_task, *dst_task;
1082 int src_cpu, dst_cpu;
1083};
1084
1085static int migrate_swap_stop(void *data)
1086{
1087 struct migration_swap_arg *arg = data;
1088 struct rq *src_rq, *dst_rq;
1089 int ret = -EAGAIN;
1090
1091 src_rq = cpu_rq(arg->src_cpu);
1092 dst_rq = cpu_rq(arg->dst_cpu);
1093
74602315
PZ
1094 double_raw_lock(&arg->src_task->pi_lock,
1095 &arg->dst_task->pi_lock);
ac66f547
PZ
1096 double_rq_lock(src_rq, dst_rq);
1097 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1098 goto unlock;
1099
1100 if (task_cpu(arg->src_task) != arg->src_cpu)
1101 goto unlock;
1102
1103 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1104 goto unlock;
1105
1106 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1107 goto unlock;
1108
1109 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1110 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1111
1112 ret = 0;
1113
1114unlock:
1115 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1116 raw_spin_unlock(&arg->dst_task->pi_lock);
1117 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1118
1119 return ret;
1120}
1121
1122/*
1123 * Cross migrate two tasks
1124 */
1125int migrate_swap(struct task_struct *cur, struct task_struct *p)
1126{
1127 struct migration_swap_arg arg;
1128 int ret = -EINVAL;
1129
ac66f547
PZ
1130 arg = (struct migration_swap_arg){
1131 .src_task = cur,
1132 .src_cpu = task_cpu(cur),
1133 .dst_task = p,
1134 .dst_cpu = task_cpu(p),
1135 };
1136
1137 if (arg.src_cpu == arg.dst_cpu)
1138 goto out;
1139
6acce3ef
PZ
1140 /*
1141 * These three tests are all lockless; this is OK since all of them
1142 * will be re-checked with proper locks held further down the line.
1143 */
ac66f547
PZ
1144 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1145 goto out;
1146
1147 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1148 goto out;
1149
1150 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1151 goto out;
1152
286549dc 1153 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1154 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1155
1156out:
ac66f547
PZ
1157 return ret;
1158}
1159
969c7921 1160struct migration_arg {
36c8b586 1161 struct task_struct *task;
1da177e4 1162 int dest_cpu;
70b97a7f 1163};
1da177e4 1164
969c7921
TH
1165static int migration_cpu_stop(void *data);
1166
1da177e4
LT
1167/*
1168 * wait_task_inactive - wait for a thread to unschedule.
1169 *
85ba2d86
RM
1170 * If @match_state is nonzero, it's the @p->state value just checked and
1171 * not expected to change. If it changes, i.e. @p might have woken up,
1172 * then return zero. When we succeed in waiting for @p to be off its CPU,
1173 * we return a positive number (its total switch count). If a second call
1174 * a short while later returns the same number, the caller can be sure that
1175 * @p has remained unscheduled the whole time.
1176 *
1da177e4
LT
1177 * The caller must ensure that the task *will* unschedule sometime soon,
1178 * else this function might spin for a *long* time. This function can't
1179 * be called with interrupts off, or it may introduce deadlock with
1180 * smp_call_function() if an IPI is sent by the same process we are
1181 * waiting to become inactive.
1182 */
85ba2d86 1183unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1184{
1185 unsigned long flags;
da0c1e65 1186 int running, queued;
85ba2d86 1187 unsigned long ncsw;
70b97a7f 1188 struct rq *rq;
1da177e4 1189
3a5c359a
AK
1190 for (;;) {
1191 /*
1192 * We do the initial early heuristics without holding
1193 * any task-queue locks at all. We'll only try to get
1194 * the runqueue lock when things look like they will
1195 * work out!
1196 */
1197 rq = task_rq(p);
fa490cfd 1198
3a5c359a
AK
1199 /*
1200 * If the task is actively running on another CPU
1201 * still, just relax and busy-wait without holding
1202 * any locks.
1203 *
1204 * NOTE! Since we don't hold any locks, it's not
1205 * even sure that "rq" stays as the right runqueue!
1206 * But we don't care, since "task_running()" will
1207 * return false if the runqueue has changed and p
1208 * is actually now running somewhere else!
1209 */
85ba2d86
RM
1210 while (task_running(rq, p)) {
1211 if (match_state && unlikely(p->state != match_state))
1212 return 0;
3a5c359a 1213 cpu_relax();
85ba2d86 1214 }
fa490cfd 1215
3a5c359a
AK
1216 /*
1217 * Ok, time to look more closely! We need the rq
1218 * lock now, to be *sure*. If we're wrong, we'll
1219 * just go back and repeat.
1220 */
1221 rq = task_rq_lock(p, &flags);
27a9da65 1222 trace_sched_wait_task(p);
3a5c359a 1223 running = task_running(rq, p);
da0c1e65 1224 queued = task_on_rq_queued(p);
85ba2d86 1225 ncsw = 0;
f31e11d8 1226 if (!match_state || p->state == match_state)
93dcf55f 1227 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1228 task_rq_unlock(rq, p, &flags);
fa490cfd 1229
85ba2d86
RM
1230 /*
1231 * If it changed from the expected state, bail out now.
1232 */
1233 if (unlikely(!ncsw))
1234 break;
1235
3a5c359a
AK
1236 /*
1237 * Was it really running after all now that we
1238 * checked with the proper locks actually held?
1239 *
1240 * Oops. Go back and try again..
1241 */
1242 if (unlikely(running)) {
1243 cpu_relax();
1244 continue;
1245 }
fa490cfd 1246
3a5c359a
AK
1247 /*
1248 * It's not enough that it's not actively running,
1249 * it must be off the runqueue _entirely_, and not
1250 * preempted!
1251 *
80dd99b3 1252 * So if it was still runnable (but just not actively
3a5c359a
AK
1253 * running right now), it's preempted, and we should
1254 * yield - it could be a while.
1255 */
da0c1e65 1256 if (unlikely(queued)) {
8eb90c30
TG
1257 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1258
1259 set_current_state(TASK_UNINTERRUPTIBLE);
1260 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1261 continue;
1262 }
fa490cfd 1263
3a5c359a
AK
1264 /*
1265 * Ahh, all good. It wasn't running, and it wasn't
1266 * runnable, which means that it will never become
1267 * running in the future either. We're all done!
1268 */
1269 break;
1270 }
85ba2d86
RM
1271
1272 return ncsw;
1da177e4
LT
1273}
1274
1275/***
1276 * kick_process - kick a running thread to enter/exit the kernel
1277 * @p: the to-be-kicked thread
1278 *
1279 * Cause a process which is running on another CPU to enter
1280 * kernel-mode, without any delay. (to get signals handled.)
1281 *
25985edc 1282 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1283 * because all it wants to ensure is that the remote task enters
1284 * the kernel. If the IPI races and the task has been migrated
1285 * to another CPU then no harm is done and the purpose has been
1286 * achieved as well.
1287 */
36c8b586 1288void kick_process(struct task_struct *p)
1da177e4
LT
1289{
1290 int cpu;
1291
1292 preempt_disable();
1293 cpu = task_cpu(p);
1294 if ((cpu != smp_processor_id()) && task_curr(p))
1295 smp_send_reschedule(cpu);
1296 preempt_enable();
1297}
b43e3521 1298EXPORT_SYMBOL_GPL(kick_process);
476d139c 1299#endif /* CONFIG_SMP */
1da177e4 1300
970b13ba 1301#ifdef CONFIG_SMP
30da688e 1302/*
013fdb80 1303 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1304 */
5da9a0fb
PZ
1305static int select_fallback_rq(int cpu, struct task_struct *p)
1306{
aa00d89c
TC
1307 int nid = cpu_to_node(cpu);
1308 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1309 enum { cpuset, possible, fail } state = cpuset;
1310 int dest_cpu;
5da9a0fb 1311
aa00d89c
TC
1312 /*
1313 * If the node that the cpu is on has been offlined, cpu_to_node()
1314 * will return -1. There is no cpu on the node, and we should
1315 * select the cpu on the other node.
1316 */
1317 if (nid != -1) {
1318 nodemask = cpumask_of_node(nid);
1319
1320 /* Look for allowed, online CPU in same node. */
1321 for_each_cpu(dest_cpu, nodemask) {
1322 if (!cpu_online(dest_cpu))
1323 continue;
1324 if (!cpu_active(dest_cpu))
1325 continue;
1326 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1327 return dest_cpu;
1328 }
2baab4e9 1329 }
5da9a0fb 1330
2baab4e9
PZ
1331 for (;;) {
1332 /* Any allowed, online CPU? */
e3831edd 1333 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1334 if (!cpu_online(dest_cpu))
1335 continue;
1336 if (!cpu_active(dest_cpu))
1337 continue;
1338 goto out;
1339 }
5da9a0fb 1340
2baab4e9
PZ
1341 switch (state) {
1342 case cpuset:
1343 /* No more Mr. Nice Guy. */
1344 cpuset_cpus_allowed_fallback(p);
1345 state = possible;
1346 break;
1347
1348 case possible:
1349 do_set_cpus_allowed(p, cpu_possible_mask);
1350 state = fail;
1351 break;
1352
1353 case fail:
1354 BUG();
1355 break;
1356 }
1357 }
1358
1359out:
1360 if (state != cpuset) {
1361 /*
1362 * Don't tell them about moving exiting tasks or
1363 * kernel threads (both mm NULL), since they never
1364 * leave kernel.
1365 */
1366 if (p->mm && printk_ratelimit()) {
aac74dc4 1367 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1368 task_pid_nr(p), p->comm, cpu);
1369 }
5da9a0fb
PZ
1370 }
1371
1372 return dest_cpu;
1373}
1374
e2912009 1375/*
013fdb80 1376 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1377 */
970b13ba 1378static inline
ac66f547 1379int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1380{
6c1d9410
WL
1381 if (p->nr_cpus_allowed > 1)
1382 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1383
1384 /*
1385 * In order not to call set_task_cpu() on a blocking task we need
1386 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1387 * cpu.
1388 *
1389 * Since this is common to all placement strategies, this lives here.
1390 *
1391 * [ this allows ->select_task() to simply return task_cpu(p) and
1392 * not worry about this generic constraint ]
1393 */
fa17b507 1394 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1395 !cpu_online(cpu)))
5da9a0fb 1396 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1397
1398 return cpu;
970b13ba 1399}
09a40af5
MG
1400
1401static void update_avg(u64 *avg, u64 sample)
1402{
1403 s64 diff = sample - *avg;
1404 *avg += diff >> 3;
1405}
970b13ba
PZ
1406#endif
1407
d7c01d27 1408static void
b84cb5df 1409ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1410{
d7c01d27 1411#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1412 struct rq *rq = this_rq();
1413
d7c01d27
PZ
1414#ifdef CONFIG_SMP
1415 int this_cpu = smp_processor_id();
1416
1417 if (cpu == this_cpu) {
1418 schedstat_inc(rq, ttwu_local);
1419 schedstat_inc(p, se.statistics.nr_wakeups_local);
1420 } else {
1421 struct sched_domain *sd;
1422
1423 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1424 rcu_read_lock();
d7c01d27
PZ
1425 for_each_domain(this_cpu, sd) {
1426 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1427 schedstat_inc(sd, ttwu_wake_remote);
1428 break;
1429 }
1430 }
057f3fad 1431 rcu_read_unlock();
d7c01d27 1432 }
f339b9dc
PZ
1433
1434 if (wake_flags & WF_MIGRATED)
1435 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1436
d7c01d27
PZ
1437#endif /* CONFIG_SMP */
1438
1439 schedstat_inc(rq, ttwu_count);
9ed3811a 1440 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1441
1442 if (wake_flags & WF_SYNC)
9ed3811a 1443 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1444
d7c01d27
PZ
1445#endif /* CONFIG_SCHEDSTATS */
1446}
1447
1448static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1449{
9ed3811a 1450 activate_task(rq, p, en_flags);
da0c1e65 1451 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1452
1453 /* if a worker is waking up, notify workqueue */
1454 if (p->flags & PF_WQ_WORKER)
1455 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1456}
1457
23f41eeb
PZ
1458/*
1459 * Mark the task runnable and perform wakeup-preemption.
1460 */
89363381 1461static void
23f41eeb 1462ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1463{
9ed3811a 1464 check_preempt_curr(rq, p, wake_flags);
a8d7ad52 1465 trace_sched_wakeup(p, true);
9ed3811a
TH
1466
1467 p->state = TASK_RUNNING;
1468#ifdef CONFIG_SMP
1469 if (p->sched_class->task_woken)
1470 p->sched_class->task_woken(rq, p);
1471
e69c6341 1472 if (rq->idle_stamp) {
78becc27 1473 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1474 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1475
abfafa54
JL
1476 update_avg(&rq->avg_idle, delta);
1477
1478 if (rq->avg_idle > max)
9ed3811a 1479 rq->avg_idle = max;
abfafa54 1480
9ed3811a
TH
1481 rq->idle_stamp = 0;
1482 }
1483#endif
1484}
1485
c05fbafb
PZ
1486static void
1487ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1488{
1489#ifdef CONFIG_SMP
1490 if (p->sched_contributes_to_load)
1491 rq->nr_uninterruptible--;
1492#endif
1493
1494 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1495 ttwu_do_wakeup(rq, p, wake_flags);
1496}
1497
1498/*
1499 * Called in case the task @p isn't fully descheduled from its runqueue,
1500 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1501 * since all we need to do is flip p->state to TASK_RUNNING, since
1502 * the task is still ->on_rq.
1503 */
1504static int ttwu_remote(struct task_struct *p, int wake_flags)
1505{
1506 struct rq *rq;
1507 int ret = 0;
1508
1509 rq = __task_rq_lock(p);
da0c1e65 1510 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1511 /* check_preempt_curr() may use rq clock */
1512 update_rq_clock(rq);
c05fbafb
PZ
1513 ttwu_do_wakeup(rq, p, wake_flags);
1514 ret = 1;
1515 }
1516 __task_rq_unlock(rq);
1517
1518 return ret;
1519}
1520
317f3941 1521#ifdef CONFIG_SMP
e3baac47 1522void sched_ttwu_pending(void)
317f3941
PZ
1523{
1524 struct rq *rq = this_rq();
fa14ff4a
PZ
1525 struct llist_node *llist = llist_del_all(&rq->wake_list);
1526 struct task_struct *p;
e3baac47 1527 unsigned long flags;
317f3941 1528
e3baac47
PZ
1529 if (!llist)
1530 return;
1531
1532 raw_spin_lock_irqsave(&rq->lock, flags);
317f3941 1533
fa14ff4a
PZ
1534 while (llist) {
1535 p = llist_entry(llist, struct task_struct, wake_entry);
1536 llist = llist_next(llist);
317f3941
PZ
1537 ttwu_do_activate(rq, p, 0);
1538 }
1539
e3baac47 1540 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1541}
1542
1543void scheduler_ipi(void)
1544{
f27dde8d
PZ
1545 /*
1546 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1547 * TIF_NEED_RESCHED remotely (for the first time) will also send
1548 * this IPI.
1549 */
8cb75e0c 1550 preempt_fold_need_resched();
f27dde8d 1551
fd2ac4f4 1552 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1553 return;
1554
1555 /*
1556 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1557 * traditionally all their work was done from the interrupt return
1558 * path. Now that we actually do some work, we need to make sure
1559 * we do call them.
1560 *
1561 * Some archs already do call them, luckily irq_enter/exit nest
1562 * properly.
1563 *
1564 * Arguably we should visit all archs and update all handlers,
1565 * however a fair share of IPIs are still resched only so this would
1566 * somewhat pessimize the simple resched case.
1567 */
1568 irq_enter();
fa14ff4a 1569 sched_ttwu_pending();
ca38062e
SS
1570
1571 /*
1572 * Check if someone kicked us for doing the nohz idle load balance.
1573 */
873b4c65 1574 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1575 this_rq()->idle_balance = 1;
ca38062e 1576 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1577 }
c5d753a5 1578 irq_exit();
317f3941
PZ
1579}
1580
1581static void ttwu_queue_remote(struct task_struct *p, int cpu)
1582{
e3baac47
PZ
1583 struct rq *rq = cpu_rq(cpu);
1584
1585 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1586 if (!set_nr_if_polling(rq->idle))
1587 smp_send_reschedule(cpu);
1588 else
1589 trace_sched_wake_idle_without_ipi(cpu);
1590 }
317f3941 1591}
d6aa8f85 1592
f6be8af1
CL
1593void wake_up_if_idle(int cpu)
1594{
1595 struct rq *rq = cpu_rq(cpu);
1596 unsigned long flags;
1597
fd7de1e8
AL
1598 rcu_read_lock();
1599
1600 if (!is_idle_task(rcu_dereference(rq->curr)))
1601 goto out;
f6be8af1
CL
1602
1603 if (set_nr_if_polling(rq->idle)) {
1604 trace_sched_wake_idle_without_ipi(cpu);
1605 } else {
1606 raw_spin_lock_irqsave(&rq->lock, flags);
1607 if (is_idle_task(rq->curr))
1608 smp_send_reschedule(cpu);
1609 /* Else cpu is not in idle, do nothing here */
1610 raw_spin_unlock_irqrestore(&rq->lock, flags);
1611 }
fd7de1e8
AL
1612
1613out:
1614 rcu_read_unlock();
f6be8af1
CL
1615}
1616
39be3501 1617bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1618{
1619 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1620}
d6aa8f85 1621#endif /* CONFIG_SMP */
317f3941 1622
c05fbafb
PZ
1623static void ttwu_queue(struct task_struct *p, int cpu)
1624{
1625 struct rq *rq = cpu_rq(cpu);
1626
17d9f311 1627#if defined(CONFIG_SMP)
39be3501 1628 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1629 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1630 ttwu_queue_remote(p, cpu);
1631 return;
1632 }
1633#endif
1634
c05fbafb
PZ
1635 raw_spin_lock(&rq->lock);
1636 ttwu_do_activate(rq, p, 0);
1637 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1638}
1639
1640/**
1da177e4 1641 * try_to_wake_up - wake up a thread
9ed3811a 1642 * @p: the thread to be awakened
1da177e4 1643 * @state: the mask of task states that can be woken
9ed3811a 1644 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1645 *
1646 * Put it on the run-queue if it's not already there. The "current"
1647 * thread is always on the run-queue (except when the actual
1648 * re-schedule is in progress), and as such you're allowed to do
1649 * the simpler "current->state = TASK_RUNNING" to mark yourself
1650 * runnable without the overhead of this.
1651 *
e69f6186 1652 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1653 * or @state didn't match @p's state.
1da177e4 1654 */
e4a52bcb
PZ
1655static int
1656try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1657{
1da177e4 1658 unsigned long flags;
c05fbafb 1659 int cpu, success = 0;
2398f2c6 1660
e0acd0a6
ON
1661 /*
1662 * If we are going to wake up a thread waiting for CONDITION we
1663 * need to ensure that CONDITION=1 done by the caller can not be
1664 * reordered with p->state check below. This pairs with mb() in
1665 * set_current_state() the waiting thread does.
1666 */
1667 smp_mb__before_spinlock();
013fdb80 1668 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1669 if (!(p->state & state))
1da177e4
LT
1670 goto out;
1671
c05fbafb 1672 success = 1; /* we're going to change ->state */
1da177e4 1673 cpu = task_cpu(p);
1da177e4 1674
c05fbafb
PZ
1675 if (p->on_rq && ttwu_remote(p, wake_flags))
1676 goto stat;
1da177e4 1677
1da177e4 1678#ifdef CONFIG_SMP
e9c84311 1679 /*
c05fbafb
PZ
1680 * If the owning (remote) cpu is still in the middle of schedule() with
1681 * this task as prev, wait until its done referencing the task.
e9c84311 1682 */
f3e94786 1683 while (p->on_cpu)
e4a52bcb 1684 cpu_relax();
0970d299 1685 /*
e4a52bcb 1686 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1687 */
e4a52bcb 1688 smp_rmb();
1da177e4 1689
a8e4f2ea 1690 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1691 p->state = TASK_WAKING;
e7693a36 1692
e4a52bcb 1693 if (p->sched_class->task_waking)
74f8e4b2 1694 p->sched_class->task_waking(p);
efbbd05a 1695
ac66f547 1696 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1697 if (task_cpu(p) != cpu) {
1698 wake_flags |= WF_MIGRATED;
e4a52bcb 1699 set_task_cpu(p, cpu);
f339b9dc 1700 }
1da177e4 1701#endif /* CONFIG_SMP */
1da177e4 1702
c05fbafb
PZ
1703 ttwu_queue(p, cpu);
1704stat:
b84cb5df 1705 ttwu_stat(p, cpu, wake_flags);
1da177e4 1706out:
013fdb80 1707 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1708
1709 return success;
1710}
1711
21aa9af0
TH
1712/**
1713 * try_to_wake_up_local - try to wake up a local task with rq lock held
1714 * @p: the thread to be awakened
1715 *
2acca55e 1716 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1717 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1718 * the current task.
21aa9af0
TH
1719 */
1720static void try_to_wake_up_local(struct task_struct *p)
1721{
1722 struct rq *rq = task_rq(p);
21aa9af0 1723
383efcd0
TH
1724 if (WARN_ON_ONCE(rq != this_rq()) ||
1725 WARN_ON_ONCE(p == current))
1726 return;
1727
21aa9af0
TH
1728 lockdep_assert_held(&rq->lock);
1729
2acca55e
PZ
1730 if (!raw_spin_trylock(&p->pi_lock)) {
1731 raw_spin_unlock(&rq->lock);
1732 raw_spin_lock(&p->pi_lock);
1733 raw_spin_lock(&rq->lock);
1734 }
1735
21aa9af0 1736 if (!(p->state & TASK_NORMAL))
2acca55e 1737 goto out;
21aa9af0 1738
da0c1e65 1739 if (!task_on_rq_queued(p))
d7c01d27
PZ
1740 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1741
23f41eeb 1742 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1743 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1744out:
1745 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1746}
1747
50fa610a
DH
1748/**
1749 * wake_up_process - Wake up a specific process
1750 * @p: The process to be woken up.
1751 *
1752 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
1753 * processes.
1754 *
1755 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
1756 *
1757 * It may be assumed that this function implies a write memory barrier before
1758 * changing the task state if and only if any tasks are woken up.
1759 */
7ad5b3a5 1760int wake_up_process(struct task_struct *p)
1da177e4 1761{
9067ac85
ON
1762 WARN_ON(task_is_stopped_or_traced(p));
1763 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 1764}
1da177e4
LT
1765EXPORT_SYMBOL(wake_up_process);
1766
7ad5b3a5 1767int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1768{
1769 return try_to_wake_up(p, state, 0);
1770}
1771
a5e7be3b
JL
1772/*
1773 * This function clears the sched_dl_entity static params.
1774 */
1775void __dl_clear_params(struct task_struct *p)
1776{
1777 struct sched_dl_entity *dl_se = &p->dl;
1778
1779 dl_se->dl_runtime = 0;
1780 dl_se->dl_deadline = 0;
1781 dl_se->dl_period = 0;
1782 dl_se->flags = 0;
1783 dl_se->dl_bw = 0;
40767b0d
PZ
1784
1785 dl_se->dl_throttled = 0;
1786 dl_se->dl_new = 1;
1787 dl_se->dl_yielded = 0;
a5e7be3b
JL
1788}
1789
1da177e4
LT
1790/*
1791 * Perform scheduler related setup for a newly forked process p.
1792 * p is forked by current.
dd41f596
IM
1793 *
1794 * __sched_fork() is basic setup used by init_idle() too:
1795 */
5e1576ed 1796static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1797{
fd2f4419
PZ
1798 p->on_rq = 0;
1799
1800 p->se.on_rq = 0;
dd41f596
IM
1801 p->se.exec_start = 0;
1802 p->se.sum_exec_runtime = 0;
f6cf891c 1803 p->se.prev_sum_exec_runtime = 0;
6c594c21 1804 p->se.nr_migrations = 0;
da7a735e 1805 p->se.vruntime = 0;
bb04159d
KT
1806#ifdef CONFIG_SMP
1807 p->se.avg.decay_count = 0;
1808#endif
fd2f4419 1809 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1810
1811#ifdef CONFIG_SCHEDSTATS
41acab88 1812 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1813#endif
476d139c 1814
aab03e05 1815 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 1816 init_dl_task_timer(&p->dl);
a5e7be3b 1817 __dl_clear_params(p);
aab03e05 1818
fa717060 1819 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1820
e107be36
AK
1821#ifdef CONFIG_PREEMPT_NOTIFIERS
1822 INIT_HLIST_HEAD(&p->preempt_notifiers);
1823#endif
cbee9f88
PZ
1824
1825#ifdef CONFIG_NUMA_BALANCING
1826 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 1827 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
1828 p->mm->numa_scan_seq = 0;
1829 }
1830
5e1576ed
RR
1831 if (clone_flags & CLONE_VM)
1832 p->numa_preferred_nid = current->numa_preferred_nid;
1833 else
1834 p->numa_preferred_nid = -1;
1835
cbee9f88
PZ
1836 p->node_stamp = 0ULL;
1837 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 1838 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 1839 p->numa_work.next = &p->numa_work;
44dba3d5 1840 p->numa_faults = NULL;
7e2703e6
RR
1841 p->last_task_numa_placement = 0;
1842 p->last_sum_exec_runtime = 0;
8c8a743c 1843
8c8a743c 1844 p->numa_group = NULL;
cbee9f88 1845#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
1846}
1847
1a687c2e 1848#ifdef CONFIG_NUMA_BALANCING
3105b86a 1849#ifdef CONFIG_SCHED_DEBUG
1a687c2e
MG
1850void set_numabalancing_state(bool enabled)
1851{
1852 if (enabled)
1853 sched_feat_set("NUMA");
1854 else
1855 sched_feat_set("NO_NUMA");
1856}
3105b86a
MG
1857#else
1858__read_mostly bool numabalancing_enabled;
1859
1860void set_numabalancing_state(bool enabled)
1861{
1862 numabalancing_enabled = enabled;
dd41f596 1863}
3105b86a 1864#endif /* CONFIG_SCHED_DEBUG */
54a43d54
AK
1865
1866#ifdef CONFIG_PROC_SYSCTL
1867int sysctl_numa_balancing(struct ctl_table *table, int write,
1868 void __user *buffer, size_t *lenp, loff_t *ppos)
1869{
1870 struct ctl_table t;
1871 int err;
1872 int state = numabalancing_enabled;
1873
1874 if (write && !capable(CAP_SYS_ADMIN))
1875 return -EPERM;
1876
1877 t = *table;
1878 t.data = &state;
1879 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
1880 if (err < 0)
1881 return err;
1882 if (write)
1883 set_numabalancing_state(state);
1884 return err;
1885}
1886#endif
1887#endif
dd41f596
IM
1888
1889/*
1890 * fork()/clone()-time setup:
1891 */
aab03e05 1892int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 1893{
0122ec5b 1894 unsigned long flags;
dd41f596
IM
1895 int cpu = get_cpu();
1896
5e1576ed 1897 __sched_fork(clone_flags, p);
06b83b5f 1898 /*
0017d735 1899 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1900 * nobody will actually run it, and a signal or other external
1901 * event cannot wake it up and insert it on the runqueue either.
1902 */
0017d735 1903 p->state = TASK_RUNNING;
dd41f596 1904
c350a04e
MG
1905 /*
1906 * Make sure we do not leak PI boosting priority to the child.
1907 */
1908 p->prio = current->normal_prio;
1909
b9dc29e7
MG
1910 /*
1911 * Revert to default priority/policy on fork if requested.
1912 */
1913 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 1914 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 1915 p->policy = SCHED_NORMAL;
6c697bdf 1916 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1917 p->rt_priority = 0;
1918 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1919 p->static_prio = NICE_TO_PRIO(0);
1920
1921 p->prio = p->normal_prio = __normal_prio(p);
1922 set_load_weight(p);
6c697bdf 1923
b9dc29e7
MG
1924 /*
1925 * We don't need the reset flag anymore after the fork. It has
1926 * fulfilled its duty:
1927 */
1928 p->sched_reset_on_fork = 0;
1929 }
ca94c442 1930
aab03e05
DF
1931 if (dl_prio(p->prio)) {
1932 put_cpu();
1933 return -EAGAIN;
1934 } else if (rt_prio(p->prio)) {
1935 p->sched_class = &rt_sched_class;
1936 } else {
2ddbf952 1937 p->sched_class = &fair_sched_class;
aab03e05 1938 }
b29739f9 1939
cd29fe6f
PZ
1940 if (p->sched_class->task_fork)
1941 p->sched_class->task_fork(p);
1942
86951599
PZ
1943 /*
1944 * The child is not yet in the pid-hash so no cgroup attach races,
1945 * and the cgroup is pinned to this child due to cgroup_fork()
1946 * is ran before sched_fork().
1947 *
1948 * Silence PROVE_RCU.
1949 */
0122ec5b 1950 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1951 set_task_cpu(p, cpu);
0122ec5b 1952 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1953
52f17b6c 1954#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1955 if (likely(sched_info_on()))
52f17b6c 1956 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1957#endif
3ca7a440
PZ
1958#if defined(CONFIG_SMP)
1959 p->on_cpu = 0;
4866cde0 1960#endif
01028747 1961 init_task_preempt_count(p);
806c09a7 1962#ifdef CONFIG_SMP
917b627d 1963 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 1964 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 1965#endif
917b627d 1966
476d139c 1967 put_cpu();
aab03e05 1968 return 0;
1da177e4
LT
1969}
1970
332ac17e
DF
1971unsigned long to_ratio(u64 period, u64 runtime)
1972{
1973 if (runtime == RUNTIME_INF)
1974 return 1ULL << 20;
1975
1976 /*
1977 * Doing this here saves a lot of checks in all
1978 * the calling paths, and returning zero seems
1979 * safe for them anyway.
1980 */
1981 if (period == 0)
1982 return 0;
1983
1984 return div64_u64(runtime << 20, period);
1985}
1986
1987#ifdef CONFIG_SMP
1988inline struct dl_bw *dl_bw_of(int i)
1989{
66339c31
KT
1990 rcu_lockdep_assert(rcu_read_lock_sched_held(),
1991 "sched RCU must be held");
332ac17e
DF
1992 return &cpu_rq(i)->rd->dl_bw;
1993}
1994
de212f18 1995static inline int dl_bw_cpus(int i)
332ac17e 1996{
de212f18
PZ
1997 struct root_domain *rd = cpu_rq(i)->rd;
1998 int cpus = 0;
1999
66339c31
KT
2000 rcu_lockdep_assert(rcu_read_lock_sched_held(),
2001 "sched RCU must be held");
de212f18
PZ
2002 for_each_cpu_and(i, rd->span, cpu_active_mask)
2003 cpus++;
2004
2005 return cpus;
332ac17e
DF
2006}
2007#else
2008inline struct dl_bw *dl_bw_of(int i)
2009{
2010 return &cpu_rq(i)->dl.dl_bw;
2011}
2012
de212f18 2013static inline int dl_bw_cpus(int i)
332ac17e
DF
2014{
2015 return 1;
2016}
2017#endif
2018
332ac17e
DF
2019/*
2020 * We must be sure that accepting a new task (or allowing changing the
2021 * parameters of an existing one) is consistent with the bandwidth
2022 * constraints. If yes, this function also accordingly updates the currently
2023 * allocated bandwidth to reflect the new situation.
2024 *
2025 * This function is called while holding p's rq->lock.
40767b0d
PZ
2026 *
2027 * XXX we should delay bw change until the task's 0-lag point, see
2028 * __setparam_dl().
332ac17e
DF
2029 */
2030static int dl_overflow(struct task_struct *p, int policy,
2031 const struct sched_attr *attr)
2032{
2033
2034 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2035 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2036 u64 runtime = attr->sched_runtime;
2037 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2038 int cpus, err = -1;
332ac17e
DF
2039
2040 if (new_bw == p->dl.dl_bw)
2041 return 0;
2042
2043 /*
2044 * Either if a task, enters, leave, or stays -deadline but changes
2045 * its parameters, we may need to update accordingly the total
2046 * allocated bandwidth of the container.
2047 */
2048 raw_spin_lock(&dl_b->lock);
de212f18 2049 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2050 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2051 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2052 __dl_add(dl_b, new_bw);
2053 err = 0;
2054 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2055 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2056 __dl_clear(dl_b, p->dl.dl_bw);
2057 __dl_add(dl_b, new_bw);
2058 err = 0;
2059 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2060 __dl_clear(dl_b, p->dl.dl_bw);
2061 err = 0;
2062 }
2063 raw_spin_unlock(&dl_b->lock);
2064
2065 return err;
2066}
2067
2068extern void init_dl_bw(struct dl_bw *dl_b);
2069
1da177e4
LT
2070/*
2071 * wake_up_new_task - wake up a newly created task for the first time.
2072 *
2073 * This function will do some initial scheduler statistics housekeeping
2074 * that must be done for every newly created context, then puts the task
2075 * on the runqueue and wakes it.
2076 */
3e51e3ed 2077void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2078{
2079 unsigned long flags;
dd41f596 2080 struct rq *rq;
fabf318e 2081
ab2515c4 2082 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
2083#ifdef CONFIG_SMP
2084 /*
2085 * Fork balancing, do it here and not earlier because:
2086 * - cpus_allowed can change in the fork path
2087 * - any previously selected cpu might disappear through hotplug
fabf318e 2088 */
ac66f547 2089 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2090#endif
2091
a75cdaa9
AS
2092 /* Initialize new task's runnable average */
2093 init_task_runnable_average(p);
ab2515c4 2094 rq = __task_rq_lock(p);
cd29fe6f 2095 activate_task(rq, p, 0);
da0c1e65 2096 p->on_rq = TASK_ON_RQ_QUEUED;
89363381 2097 trace_sched_wakeup_new(p, true);
a7558e01 2098 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2099#ifdef CONFIG_SMP
efbbd05a
PZ
2100 if (p->sched_class->task_woken)
2101 p->sched_class->task_woken(rq, p);
9a897c5a 2102#endif
0122ec5b 2103 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2104}
2105
e107be36
AK
2106#ifdef CONFIG_PREEMPT_NOTIFIERS
2107
2108/**
80dd99b3 2109 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2110 * @notifier: notifier struct to register
e107be36
AK
2111 */
2112void preempt_notifier_register(struct preempt_notifier *notifier)
2113{
2114 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2115}
2116EXPORT_SYMBOL_GPL(preempt_notifier_register);
2117
2118/**
2119 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2120 * @notifier: notifier struct to unregister
e107be36
AK
2121 *
2122 * This is safe to call from within a preemption notifier.
2123 */
2124void preempt_notifier_unregister(struct preempt_notifier *notifier)
2125{
2126 hlist_del(&notifier->link);
2127}
2128EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2129
2130static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2131{
2132 struct preempt_notifier *notifier;
e107be36 2133
b67bfe0d 2134 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2135 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2136}
2137
2138static void
2139fire_sched_out_preempt_notifiers(struct task_struct *curr,
2140 struct task_struct *next)
2141{
2142 struct preempt_notifier *notifier;
e107be36 2143
b67bfe0d 2144 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2145 notifier->ops->sched_out(notifier, next);
2146}
2147
6d6bc0ad 2148#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
2149
2150static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2151{
2152}
2153
2154static void
2155fire_sched_out_preempt_notifiers(struct task_struct *curr,
2156 struct task_struct *next)
2157{
2158}
2159
6d6bc0ad 2160#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2161
4866cde0
NP
2162/**
2163 * prepare_task_switch - prepare to switch tasks
2164 * @rq: the runqueue preparing to switch
421cee29 2165 * @prev: the current task that is being switched out
4866cde0
NP
2166 * @next: the task we are going to switch to.
2167 *
2168 * This is called with the rq lock held and interrupts off. It must
2169 * be paired with a subsequent finish_task_switch after the context
2170 * switch.
2171 *
2172 * prepare_task_switch sets up locking and calls architecture specific
2173 * hooks.
2174 */
e107be36
AK
2175static inline void
2176prepare_task_switch(struct rq *rq, struct task_struct *prev,
2177 struct task_struct *next)
4866cde0 2178{
895dd92c 2179 trace_sched_switch(prev, next);
43148951 2180 sched_info_switch(rq, prev, next);
fe4b04fa 2181 perf_event_task_sched_out(prev, next);
e107be36 2182 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2183 prepare_lock_switch(rq, next);
2184 prepare_arch_switch(next);
2185}
2186
1da177e4
LT
2187/**
2188 * finish_task_switch - clean up after a task-switch
2189 * @prev: the thread we just switched away from.
2190 *
4866cde0
NP
2191 * finish_task_switch must be called after the context switch, paired
2192 * with a prepare_task_switch call before the context switch.
2193 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2194 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2195 *
2196 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2197 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2198 * with the lock held can cause deadlocks; see schedule() for
2199 * details.)
dfa50b60
ON
2200 *
2201 * The context switch have flipped the stack from under us and restored the
2202 * local variables which were saved when this task called schedule() in the
2203 * past. prev == current is still correct but we need to recalculate this_rq
2204 * because prev may have moved to another CPU.
1da177e4 2205 */
dfa50b60 2206static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2207 __releases(rq->lock)
2208{
dfa50b60 2209 struct rq *rq = this_rq();
1da177e4 2210 struct mm_struct *mm = rq->prev_mm;
55a101f8 2211 long prev_state;
1da177e4
LT
2212
2213 rq->prev_mm = NULL;
2214
2215 /*
2216 * A task struct has one reference for the use as "current".
c394cc9f 2217 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2218 * schedule one last time. The schedule call will never return, and
2219 * the scheduled task must drop that reference.
c394cc9f 2220 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
2221 * still held, otherwise prev could be scheduled on another cpu, die
2222 * there before we look at prev->state, and then the reference would
2223 * be dropped twice.
2224 * Manfred Spraul <manfred@colorfullife.com>
2225 */
55a101f8 2226 prev_state = prev->state;
bf9fae9f 2227 vtime_task_switch(prev);
4866cde0 2228 finish_arch_switch(prev);
a8d757ef 2229 perf_event_task_sched_in(prev, current);
4866cde0 2230 finish_lock_switch(rq, prev);
01f23e16 2231 finish_arch_post_lock_switch();
e8fa1362 2232
e107be36 2233 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2234 if (mm)
2235 mmdrop(mm);
c394cc9f 2236 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2237 if (prev->sched_class->task_dead)
2238 prev->sched_class->task_dead(prev);
2239
c6fd91f0 2240 /*
2241 * Remove function-return probe instances associated with this
2242 * task and put them back on the free list.
9761eea8 2243 */
c6fd91f0 2244 kprobe_flush_task(prev);
1da177e4 2245 put_task_struct(prev);
c6fd91f0 2246 }
99e5ada9
FW
2247
2248 tick_nohz_task_switch(current);
dfa50b60 2249 return rq;
1da177e4
LT
2250}
2251
3f029d3c
GH
2252#ifdef CONFIG_SMP
2253
3f029d3c
GH
2254/* rq->lock is NOT held, but preemption is disabled */
2255static inline void post_schedule(struct rq *rq)
2256{
2257 if (rq->post_schedule) {
2258 unsigned long flags;
2259
05fa785c 2260 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
2261 if (rq->curr->sched_class->post_schedule)
2262 rq->curr->sched_class->post_schedule(rq);
05fa785c 2263 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
2264
2265 rq->post_schedule = 0;
2266 }
2267}
2268
2269#else
da19ab51 2270
3f029d3c
GH
2271static inline void post_schedule(struct rq *rq)
2272{
1da177e4
LT
2273}
2274
3f029d3c
GH
2275#endif
2276
1da177e4
LT
2277/**
2278 * schedule_tail - first thing a freshly forked thread must call.
2279 * @prev: the thread we just switched away from.
2280 */
722a9f92 2281asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2282 __releases(rq->lock)
2283{
1a43a14a 2284 struct rq *rq;
da19ab51 2285
1a43a14a
ON
2286 /* finish_task_switch() drops rq->lock and enables preemtion */
2287 preempt_disable();
dfa50b60 2288 rq = finish_task_switch(prev);
3f029d3c 2289 post_schedule(rq);
1a43a14a 2290 preempt_enable();
70b97a7f 2291
1da177e4 2292 if (current->set_child_tid)
b488893a 2293 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2294}
2295
2296/*
dfa50b60 2297 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2298 */
dfa50b60 2299static inline struct rq *
70b97a7f 2300context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2301 struct task_struct *next)
1da177e4 2302{
dd41f596 2303 struct mm_struct *mm, *oldmm;
1da177e4 2304
e107be36 2305 prepare_task_switch(rq, prev, next);
fe4b04fa 2306
dd41f596
IM
2307 mm = next->mm;
2308 oldmm = prev->active_mm;
9226d125
ZA
2309 /*
2310 * For paravirt, this is coupled with an exit in switch_to to
2311 * combine the page table reload and the switch backend into
2312 * one hypercall.
2313 */
224101ed 2314 arch_start_context_switch(prev);
9226d125 2315
31915ab4 2316 if (!mm) {
1da177e4
LT
2317 next->active_mm = oldmm;
2318 atomic_inc(&oldmm->mm_count);
2319 enter_lazy_tlb(oldmm, next);
2320 } else
2321 switch_mm(oldmm, mm, next);
2322
31915ab4 2323 if (!prev->mm) {
1da177e4 2324 prev->active_mm = NULL;
1da177e4
LT
2325 rq->prev_mm = oldmm;
2326 }
3a5f5e48
IM
2327 /*
2328 * Since the runqueue lock will be released by the next
2329 * task (which is an invalid locking op but in the case
2330 * of the scheduler it's an obvious special-case), so we
2331 * do an early lockdep release here:
2332 */
8a25d5de 2333 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4 2334
91d1aa43 2335 context_tracking_task_switch(prev, next);
1da177e4
LT
2336 /* Here we just switch the register state and the stack. */
2337 switch_to(prev, next, prev);
dd41f596 2338 barrier();
dfa50b60
ON
2339
2340 return finish_task_switch(prev);
1da177e4
LT
2341}
2342
2343/*
1c3e8264 2344 * nr_running and nr_context_switches:
1da177e4
LT
2345 *
2346 * externally visible scheduler statistics: current number of runnable
1c3e8264 2347 * threads, total number of context switches performed since bootup.
1da177e4
LT
2348 */
2349unsigned long nr_running(void)
2350{
2351 unsigned long i, sum = 0;
2352
2353 for_each_online_cpu(i)
2354 sum += cpu_rq(i)->nr_running;
2355
2356 return sum;
f711f609 2357}
1da177e4 2358
2ee507c4
TC
2359/*
2360 * Check if only the current task is running on the cpu.
2361 */
2362bool single_task_running(void)
2363{
2364 if (cpu_rq(smp_processor_id())->nr_running == 1)
2365 return true;
2366 else
2367 return false;
2368}
2369EXPORT_SYMBOL(single_task_running);
2370
1da177e4 2371unsigned long long nr_context_switches(void)
46cb4b7c 2372{
cc94abfc
SR
2373 int i;
2374 unsigned long long sum = 0;
46cb4b7c 2375
0a945022 2376 for_each_possible_cpu(i)
1da177e4 2377 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2378
1da177e4
LT
2379 return sum;
2380}
483b4ee6 2381
1da177e4
LT
2382unsigned long nr_iowait(void)
2383{
2384 unsigned long i, sum = 0;
483b4ee6 2385
0a945022 2386 for_each_possible_cpu(i)
1da177e4 2387 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2388
1da177e4
LT
2389 return sum;
2390}
483b4ee6 2391
8c215bd3 2392unsigned long nr_iowait_cpu(int cpu)
69d25870 2393{
8c215bd3 2394 struct rq *this = cpu_rq(cpu);
69d25870
AV
2395 return atomic_read(&this->nr_iowait);
2396}
46cb4b7c 2397
372ba8cb
MG
2398void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2399{
2400 struct rq *this = this_rq();
2401 *nr_waiters = atomic_read(&this->nr_iowait);
2402 *load = this->cpu_load[0];
2403}
2404
dd41f596 2405#ifdef CONFIG_SMP
8a0be9ef 2406
46cb4b7c 2407/*
38022906
PZ
2408 * sched_exec - execve() is a valuable balancing opportunity, because at
2409 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2410 */
38022906 2411void sched_exec(void)
46cb4b7c 2412{
38022906 2413 struct task_struct *p = current;
1da177e4 2414 unsigned long flags;
0017d735 2415 int dest_cpu;
46cb4b7c 2416
8f42ced9 2417 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2418 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2419 if (dest_cpu == smp_processor_id())
2420 goto unlock;
38022906 2421
8f42ced9 2422 if (likely(cpu_active(dest_cpu))) {
969c7921 2423 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2424
8f42ced9
PZ
2425 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2426 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2427 return;
2428 }
0017d735 2429unlock:
8f42ced9 2430 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2431}
dd41f596 2432
1da177e4
LT
2433#endif
2434
1da177e4 2435DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2436DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2437
2438EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2439EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2440
c5f8d995
HS
2441/*
2442 * Return accounted runtime for the task.
2443 * In case the task is currently running, return the runtime plus current's
2444 * pending runtime that have not been accounted yet.
2445 */
2446unsigned long long task_sched_runtime(struct task_struct *p)
2447{
2448 unsigned long flags;
2449 struct rq *rq;
6e998916 2450 u64 ns;
c5f8d995 2451
911b2898
PZ
2452#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2453 /*
2454 * 64-bit doesn't need locks to atomically read a 64bit value.
2455 * So we have a optimization chance when the task's delta_exec is 0.
2456 * Reading ->on_cpu is racy, but this is ok.
2457 *
2458 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2459 * If we race with it entering cpu, unaccounted time is 0. This is
2460 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2461 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2462 * been accounted, so we're correct here as well.
911b2898 2463 */
da0c1e65 2464 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2465 return p->se.sum_exec_runtime;
2466#endif
2467
c5f8d995 2468 rq = task_rq_lock(p, &flags);
6e998916
SG
2469 /*
2470 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2471 * project cycles that may never be accounted to this
2472 * thread, breaking clock_gettime().
2473 */
2474 if (task_current(rq, p) && task_on_rq_queued(p)) {
2475 update_rq_clock(rq);
2476 p->sched_class->update_curr(rq);
2477 }
2478 ns = p->se.sum_exec_runtime;
0122ec5b 2479 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2480
2481 return ns;
2482}
48f24c4d 2483
7835b98b
CL
2484/*
2485 * This function gets called by the timer code, with HZ frequency.
2486 * We call it with interrupts disabled.
7835b98b
CL
2487 */
2488void scheduler_tick(void)
2489{
7835b98b
CL
2490 int cpu = smp_processor_id();
2491 struct rq *rq = cpu_rq(cpu);
dd41f596 2492 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2493
2494 sched_clock_tick();
dd41f596 2495
05fa785c 2496 raw_spin_lock(&rq->lock);
3e51f33f 2497 update_rq_clock(rq);
fa85ae24 2498 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2499 update_cpu_load_active(rq);
05fa785c 2500 raw_spin_unlock(&rq->lock);
7835b98b 2501
e9d2b064 2502 perf_event_task_tick();
e220d2dc 2503
e418e1c2 2504#ifdef CONFIG_SMP
6eb57e0d 2505 rq->idle_balance = idle_cpu(cpu);
7caff66f 2506 trigger_load_balance(rq);
e418e1c2 2507#endif
265f22a9 2508 rq_last_tick_reset(rq);
1da177e4
LT
2509}
2510
265f22a9
FW
2511#ifdef CONFIG_NO_HZ_FULL
2512/**
2513 * scheduler_tick_max_deferment
2514 *
2515 * Keep at least one tick per second when a single
2516 * active task is running because the scheduler doesn't
2517 * yet completely support full dynticks environment.
2518 *
2519 * This makes sure that uptime, CFS vruntime, load
2520 * balancing, etc... continue to move forward, even
2521 * with a very low granularity.
e69f6186
YB
2522 *
2523 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2524 */
2525u64 scheduler_tick_max_deferment(void)
2526{
2527 struct rq *rq = this_rq();
2528 unsigned long next, now = ACCESS_ONCE(jiffies);
2529
2530 next = rq->last_sched_tick + HZ;
2531
2532 if (time_before_eq(next, now))
2533 return 0;
2534
8fe8ff09 2535 return jiffies_to_nsecs(next - now);
1da177e4 2536}
265f22a9 2537#endif
1da177e4 2538
132380a0 2539notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
2540{
2541 if (in_lock_functions(addr)) {
2542 addr = CALLER_ADDR2;
2543 if (in_lock_functions(addr))
2544 addr = CALLER_ADDR3;
2545 }
2546 return addr;
2547}
1da177e4 2548
7e49fcce
SR
2549#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2550 defined(CONFIG_PREEMPT_TRACER))
2551
edafe3a5 2552void preempt_count_add(int val)
1da177e4 2553{
6cd8a4bb 2554#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2555 /*
2556 * Underflow?
2557 */
9a11b49a
IM
2558 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2559 return;
6cd8a4bb 2560#endif
bdb43806 2561 __preempt_count_add(val);
6cd8a4bb 2562#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2563 /*
2564 * Spinlock count overflowing soon?
2565 */
33859f7f
MOS
2566 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2567 PREEMPT_MASK - 10);
6cd8a4bb 2568#endif
8f47b187
TG
2569 if (preempt_count() == val) {
2570 unsigned long ip = get_parent_ip(CALLER_ADDR1);
2571#ifdef CONFIG_DEBUG_PREEMPT
2572 current->preempt_disable_ip = ip;
2573#endif
2574 trace_preempt_off(CALLER_ADDR0, ip);
2575 }
1da177e4 2576}
bdb43806 2577EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2578NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2579
edafe3a5 2580void preempt_count_sub(int val)
1da177e4 2581{
6cd8a4bb 2582#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2583 /*
2584 * Underflow?
2585 */
01e3eb82 2586 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 2587 return;
1da177e4
LT
2588 /*
2589 * Is the spinlock portion underflowing?
2590 */
9a11b49a
IM
2591 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
2592 !(preempt_count() & PREEMPT_MASK)))
2593 return;
6cd8a4bb 2594#endif
9a11b49a 2595
6cd8a4bb
SR
2596 if (preempt_count() == val)
2597 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
bdb43806 2598 __preempt_count_sub(val);
1da177e4 2599}
bdb43806 2600EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 2601NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
2602
2603#endif
2604
2605/*
dd41f596 2606 * Print scheduling while atomic bug:
1da177e4 2607 */
dd41f596 2608static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 2609{
664dfa65
DJ
2610 if (oops_in_progress)
2611 return;
2612
3df0fc5b
PZ
2613 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
2614 prev->comm, prev->pid, preempt_count());
838225b4 2615
dd41f596 2616 debug_show_held_locks(prev);
e21f5b15 2617 print_modules();
dd41f596
IM
2618 if (irqs_disabled())
2619 print_irqtrace_events(prev);
8f47b187
TG
2620#ifdef CONFIG_DEBUG_PREEMPT
2621 if (in_atomic_preempt_off()) {
2622 pr_err("Preemption disabled at:");
2623 print_ip_sym(current->preempt_disable_ip);
2624 pr_cont("\n");
2625 }
2626#endif
6135fc1e 2627 dump_stack();
373d4d09 2628 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 2629}
1da177e4 2630
dd41f596
IM
2631/*
2632 * Various schedule()-time debugging checks and statistics:
2633 */
2634static inline void schedule_debug(struct task_struct *prev)
2635{
0d9e2632
AT
2636#ifdef CONFIG_SCHED_STACK_END_CHECK
2637 BUG_ON(unlikely(task_stack_end_corrupted(prev)));
2638#endif
1da177e4 2639 /*
41a2d6cf 2640 * Test if we are atomic. Since do_exit() needs to call into
192301e7
ON
2641 * schedule() atomically, we ignore that path. Otherwise whine
2642 * if we are scheduling when we should not.
1da177e4 2643 */
192301e7 2644 if (unlikely(in_atomic_preempt_off() && prev->state != TASK_DEAD))
dd41f596 2645 __schedule_bug(prev);
b3fbab05 2646 rcu_sleep_check();
dd41f596 2647
1da177e4
LT
2648 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
2649
2d72376b 2650 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
2651}
2652
2653/*
2654 * Pick up the highest-prio task:
2655 */
2656static inline struct task_struct *
606dba2e 2657pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 2658{
37e117c0 2659 const struct sched_class *class = &fair_sched_class;
dd41f596 2660 struct task_struct *p;
1da177e4
LT
2661
2662 /*
dd41f596
IM
2663 * Optimization: we know that if all tasks are in
2664 * the fair class we can call that function directly:
1da177e4 2665 */
37e117c0 2666 if (likely(prev->sched_class == class &&
38033c37 2667 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 2668 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
2669 if (unlikely(p == RETRY_TASK))
2670 goto again;
2671
2672 /* assumes fair_sched_class->next == idle_sched_class */
2673 if (unlikely(!p))
2674 p = idle_sched_class.pick_next_task(rq, prev);
2675
2676 return p;
1da177e4
LT
2677 }
2678
37e117c0 2679again:
34f971f6 2680 for_each_class(class) {
606dba2e 2681 p = class->pick_next_task(rq, prev);
37e117c0
PZ
2682 if (p) {
2683 if (unlikely(p == RETRY_TASK))
2684 goto again;
dd41f596 2685 return p;
37e117c0 2686 }
dd41f596 2687 }
34f971f6
PZ
2688
2689 BUG(); /* the idle class will always have a runnable task */
dd41f596 2690}
1da177e4 2691
dd41f596 2692/*
c259e01a 2693 * __schedule() is the main scheduler function.
edde96ea
PE
2694 *
2695 * The main means of driving the scheduler and thus entering this function are:
2696 *
2697 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
2698 *
2699 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
2700 * paths. For example, see arch/x86/entry_64.S.
2701 *
2702 * To drive preemption between tasks, the scheduler sets the flag in timer
2703 * interrupt handler scheduler_tick().
2704 *
2705 * 3. Wakeups don't really cause entry into schedule(). They add a
2706 * task to the run-queue and that's it.
2707 *
2708 * Now, if the new task added to the run-queue preempts the current
2709 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
2710 * called on the nearest possible occasion:
2711 *
2712 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
2713 *
2714 * - in syscall or exception context, at the next outmost
2715 * preempt_enable(). (this might be as soon as the wake_up()'s
2716 * spin_unlock()!)
2717 *
2718 * - in IRQ context, return from interrupt-handler to
2719 * preemptible context
2720 *
2721 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
2722 * then at the next:
2723 *
2724 * - cond_resched() call
2725 * - explicit schedule() call
2726 * - return from syscall or exception to user-space
2727 * - return from interrupt-handler to user-space
bfd9b2b5
FW
2728 *
2729 * WARNING: all callers must re-check need_resched() afterward and reschedule
2730 * accordingly in case an event triggered the need for rescheduling (such as
2731 * an interrupt waking up a task) while preemption was disabled in __schedule().
dd41f596 2732 */
c259e01a 2733static void __sched __schedule(void)
dd41f596
IM
2734{
2735 struct task_struct *prev, *next;
67ca7bde 2736 unsigned long *switch_count;
dd41f596 2737 struct rq *rq;
31656519 2738 int cpu;
dd41f596 2739
ff743345 2740 preempt_disable();
dd41f596
IM
2741 cpu = smp_processor_id();
2742 rq = cpu_rq(cpu);
38200cf2 2743 rcu_note_context_switch();
dd41f596 2744 prev = rq->curr;
dd41f596 2745
dd41f596 2746 schedule_debug(prev);
1da177e4 2747
31656519 2748 if (sched_feat(HRTICK))
f333fdc9 2749 hrtick_clear(rq);
8f4d37ec 2750
e0acd0a6
ON
2751 /*
2752 * Make sure that signal_pending_state()->signal_pending() below
2753 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
2754 * done by the caller to avoid the race with signal_wake_up().
2755 */
2756 smp_mb__before_spinlock();
05fa785c 2757 raw_spin_lock_irq(&rq->lock);
1da177e4 2758
9edfbfed
PZ
2759 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
2760
246d86b5 2761 switch_count = &prev->nivcsw;
1da177e4 2762 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 2763 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 2764 prev->state = TASK_RUNNING;
21aa9af0 2765 } else {
2acca55e
PZ
2766 deactivate_task(rq, prev, DEQUEUE_SLEEP);
2767 prev->on_rq = 0;
2768
21aa9af0 2769 /*
2acca55e
PZ
2770 * If a worker went to sleep, notify and ask workqueue
2771 * whether it wants to wake up a task to maintain
2772 * concurrency.
21aa9af0
TH
2773 */
2774 if (prev->flags & PF_WQ_WORKER) {
2775 struct task_struct *to_wakeup;
2776
2777 to_wakeup = wq_worker_sleeping(prev, cpu);
2778 if (to_wakeup)
2779 try_to_wake_up_local(to_wakeup);
2780 }
21aa9af0 2781 }
dd41f596 2782 switch_count = &prev->nvcsw;
1da177e4
LT
2783 }
2784
9edfbfed 2785 if (task_on_rq_queued(prev))
606dba2e
PZ
2786 update_rq_clock(rq);
2787
2788 next = pick_next_task(rq, prev);
f26f9aff 2789 clear_tsk_need_resched(prev);
f27dde8d 2790 clear_preempt_need_resched();
9edfbfed 2791 rq->clock_skip_update = 0;
1da177e4 2792
1da177e4 2793 if (likely(prev != next)) {
1da177e4
LT
2794 rq->nr_switches++;
2795 rq->curr = next;
2796 ++*switch_count;
2797
dfa50b60
ON
2798 rq = context_switch(rq, prev, next); /* unlocks the rq */
2799 cpu = cpu_of(rq);
1da177e4 2800 } else
05fa785c 2801 raw_spin_unlock_irq(&rq->lock);
1da177e4 2802
3f029d3c 2803 post_schedule(rq);
1da177e4 2804
ba74c144 2805 sched_preempt_enable_no_resched();
1da177e4 2806}
c259e01a 2807
9c40cef2
TG
2808static inline void sched_submit_work(struct task_struct *tsk)
2809{
3c7d5184 2810 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
2811 return;
2812 /*
2813 * If we are going to sleep and we have plugged IO queued,
2814 * make sure to submit it to avoid deadlocks.
2815 */
2816 if (blk_needs_flush_plug(tsk))
2817 blk_schedule_flush_plug(tsk);
2818}
2819
722a9f92 2820asmlinkage __visible void __sched schedule(void)
c259e01a 2821{
9c40cef2
TG
2822 struct task_struct *tsk = current;
2823
2824 sched_submit_work(tsk);
bfd9b2b5
FW
2825 do {
2826 __schedule();
2827 } while (need_resched());
c259e01a 2828}
1da177e4
LT
2829EXPORT_SYMBOL(schedule);
2830
91d1aa43 2831#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 2832asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
2833{
2834 /*
2835 * If we come here after a random call to set_need_resched(),
2836 * or we have been woken up remotely but the IPI has not yet arrived,
2837 * we haven't yet exited the RCU idle mode. Do it here manually until
2838 * we find a better solution.
7cc78f8f
AL
2839 *
2840 * NB: There are buggy callers of this function. Ideally we
c467ea76 2841 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 2842 * too frequently to make sense yet.
20ab65e3 2843 */
7cc78f8f 2844 enum ctx_state prev_state = exception_enter();
20ab65e3 2845 schedule();
7cc78f8f 2846 exception_exit(prev_state);
20ab65e3
FW
2847}
2848#endif
2849
c5491ea7
TG
2850/**
2851 * schedule_preempt_disabled - called with preemption disabled
2852 *
2853 * Returns with preemption disabled. Note: preempt_count must be 1
2854 */
2855void __sched schedule_preempt_disabled(void)
2856{
ba74c144 2857 sched_preempt_enable_no_resched();
c5491ea7
TG
2858 schedule();
2859 preempt_disable();
2860}
2861
06b1f808 2862static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
2863{
2864 do {
2865 __preempt_count_add(PREEMPT_ACTIVE);
2866 __schedule();
2867 __preempt_count_sub(PREEMPT_ACTIVE);
2868
2869 /*
2870 * Check again in case we missed a preemption opportunity
2871 * between schedule and now.
2872 */
2873 barrier();
2874 } while (need_resched());
2875}
2876
1da177e4
LT
2877#ifdef CONFIG_PREEMPT
2878/*
2ed6e34f 2879 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 2880 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
2881 * occur there and call schedule directly.
2882 */
722a9f92 2883asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 2884{
1da177e4
LT
2885 /*
2886 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 2887 * we do not want to preempt the current task. Just return..
1da177e4 2888 */
fbb00b56 2889 if (likely(!preemptible()))
1da177e4
LT
2890 return;
2891
a18b5d01 2892 preempt_schedule_common();
1da177e4 2893}
376e2424 2894NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 2895EXPORT_SYMBOL(preempt_schedule);
009f60e2
ON
2896
2897#ifdef CONFIG_CONTEXT_TRACKING
2898/**
2899 * preempt_schedule_context - preempt_schedule called by tracing
2900 *
2901 * The tracing infrastructure uses preempt_enable_notrace to prevent
2902 * recursion and tracing preempt enabling caused by the tracing
2903 * infrastructure itself. But as tracing can happen in areas coming
2904 * from userspace or just about to enter userspace, a preempt enable
2905 * can occur before user_exit() is called. This will cause the scheduler
2906 * to be called when the system is still in usermode.
2907 *
2908 * To prevent this, the preempt_enable_notrace will use this function
2909 * instead of preempt_schedule() to exit user context if needed before
2910 * calling the scheduler.
2911 */
2912asmlinkage __visible void __sched notrace preempt_schedule_context(void)
2913{
2914 enum ctx_state prev_ctx;
2915
2916 if (likely(!preemptible()))
2917 return;
2918
2919 do {
2920 __preempt_count_add(PREEMPT_ACTIVE);
2921 /*
2922 * Needs preempt disabled in case user_exit() is traced
2923 * and the tracer calls preempt_enable_notrace() causing
2924 * an infinite recursion.
2925 */
2926 prev_ctx = exception_enter();
2927 __schedule();
2928 exception_exit(prev_ctx);
2929
2930 __preempt_count_sub(PREEMPT_ACTIVE);
2931 barrier();
2932 } while (need_resched());
2933}
2934EXPORT_SYMBOL_GPL(preempt_schedule_context);
2935#endif /* CONFIG_CONTEXT_TRACKING */
2936
32e475d7 2937#endif /* CONFIG_PREEMPT */
1da177e4
LT
2938
2939/*
2ed6e34f 2940 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
2941 * off of irq context.
2942 * Note, that this is called and return with irqs disabled. This will
2943 * protect us against recursive calling from irq.
2944 */
722a9f92 2945asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 2946{
b22366cd 2947 enum ctx_state prev_state;
6478d880 2948
2ed6e34f 2949 /* Catch callers which need to be fixed */
f27dde8d 2950 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 2951
b22366cd
FW
2952 prev_state = exception_enter();
2953
3a5c359a 2954 do {
bdb43806 2955 __preempt_count_add(PREEMPT_ACTIVE);
3a5c359a 2956 local_irq_enable();
c259e01a 2957 __schedule();
3a5c359a 2958 local_irq_disable();
bdb43806 2959 __preempt_count_sub(PREEMPT_ACTIVE);
1da177e4 2960
3a5c359a
AK
2961 /*
2962 * Check again in case we missed a preemption opportunity
2963 * between schedule and now.
2964 */
2965 barrier();
5ed0cec0 2966 } while (need_resched());
b22366cd
FW
2967
2968 exception_exit(prev_state);
1da177e4
LT
2969}
2970
63859d4f 2971int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 2972 void *key)
1da177e4 2973{
63859d4f 2974 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 2975}
1da177e4
LT
2976EXPORT_SYMBOL(default_wake_function);
2977
b29739f9
IM
2978#ifdef CONFIG_RT_MUTEXES
2979
2980/*
2981 * rt_mutex_setprio - set the current priority of a task
2982 * @p: task
2983 * @prio: prio value (kernel-internal form)
2984 *
2985 * This function changes the 'effective' priority of a task. It does
2986 * not touch ->normal_prio like __setscheduler().
2987 *
c365c292
TG
2988 * Used by the rt_mutex code to implement priority inheritance
2989 * logic. Call site only calls if the priority of the task changed.
b29739f9 2990 */
36c8b586 2991void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 2992{
da0c1e65 2993 int oldprio, queued, running, enqueue_flag = 0;
70b97a7f 2994 struct rq *rq;
83ab0aa0 2995 const struct sched_class *prev_class;
b29739f9 2996
aab03e05 2997 BUG_ON(prio > MAX_PRIO);
b29739f9 2998
0122ec5b 2999 rq = __task_rq_lock(p);
b29739f9 3000
1c4dd99b
TG
3001 /*
3002 * Idle task boosting is a nono in general. There is one
3003 * exception, when PREEMPT_RT and NOHZ is active:
3004 *
3005 * The idle task calls get_next_timer_interrupt() and holds
3006 * the timer wheel base->lock on the CPU and another CPU wants
3007 * to access the timer (probably to cancel it). We can safely
3008 * ignore the boosting request, as the idle CPU runs this code
3009 * with interrupts disabled and will complete the lock
3010 * protected section without being interrupted. So there is no
3011 * real need to boost.
3012 */
3013 if (unlikely(p == rq->idle)) {
3014 WARN_ON(p != rq->curr);
3015 WARN_ON(p->pi_blocked_on);
3016 goto out_unlock;
3017 }
3018
a8027073 3019 trace_sched_pi_setprio(p, prio);
d5f9f942 3020 oldprio = p->prio;
83ab0aa0 3021 prev_class = p->sched_class;
da0c1e65 3022 queued = task_on_rq_queued(p);
051a1d1a 3023 running = task_current(rq, p);
da0c1e65 3024 if (queued)
69be72c1 3025 dequeue_task(rq, p, 0);
0e1f3483 3026 if (running)
f3cd1c4e 3027 put_prev_task(rq, p);
dd41f596 3028
2d3d891d
DF
3029 /*
3030 * Boosting condition are:
3031 * 1. -rt task is running and holds mutex A
3032 * --> -dl task blocks on mutex A
3033 *
3034 * 2. -dl task is running and holds mutex A
3035 * --> -dl task blocks on mutex A and could preempt the
3036 * running task
3037 */
3038 if (dl_prio(prio)) {
466af29b
ON
3039 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3040 if (!dl_prio(p->normal_prio) ||
3041 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d
DF
3042 p->dl.dl_boosted = 1;
3043 p->dl.dl_throttled = 0;
3044 enqueue_flag = ENQUEUE_REPLENISH;
3045 } else
3046 p->dl.dl_boosted = 0;
aab03e05 3047 p->sched_class = &dl_sched_class;
2d3d891d
DF
3048 } else if (rt_prio(prio)) {
3049 if (dl_prio(oldprio))
3050 p->dl.dl_boosted = 0;
3051 if (oldprio < prio)
3052 enqueue_flag = ENQUEUE_HEAD;
dd41f596 3053 p->sched_class = &rt_sched_class;
2d3d891d
DF
3054 } else {
3055 if (dl_prio(oldprio))
3056 p->dl.dl_boosted = 0;
746db944
BS
3057 if (rt_prio(oldprio))
3058 p->rt.timeout = 0;
dd41f596 3059 p->sched_class = &fair_sched_class;
2d3d891d 3060 }
dd41f596 3061
b29739f9
IM
3062 p->prio = prio;
3063
0e1f3483
HS
3064 if (running)
3065 p->sched_class->set_curr_task(rq);
da0c1e65 3066 if (queued)
2d3d891d 3067 enqueue_task(rq, p, enqueue_flag);
cb469845 3068
da7a735e 3069 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3070out_unlock:
0122ec5b 3071 __task_rq_unlock(rq);
b29739f9 3072}
b29739f9 3073#endif
d50dde5a 3074
36c8b586 3075void set_user_nice(struct task_struct *p, long nice)
1da177e4 3076{
da0c1e65 3077 int old_prio, delta, queued;
1da177e4 3078 unsigned long flags;
70b97a7f 3079 struct rq *rq;
1da177e4 3080
75e45d51 3081 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3082 return;
3083 /*
3084 * We have to be careful, if called from sys_setpriority(),
3085 * the task might be in the middle of scheduling on another CPU.
3086 */
3087 rq = task_rq_lock(p, &flags);
3088 /*
3089 * The RT priorities are set via sched_setscheduler(), but we still
3090 * allow the 'normal' nice value to be set - but as expected
3091 * it wont have any effect on scheduling until the task is
aab03e05 3092 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3093 */
aab03e05 3094 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3095 p->static_prio = NICE_TO_PRIO(nice);
3096 goto out_unlock;
3097 }
da0c1e65
KT
3098 queued = task_on_rq_queued(p);
3099 if (queued)
69be72c1 3100 dequeue_task(rq, p, 0);
1da177e4 3101
1da177e4 3102 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3103 set_load_weight(p);
b29739f9
IM
3104 old_prio = p->prio;
3105 p->prio = effective_prio(p);
3106 delta = p->prio - old_prio;
1da177e4 3107
da0c1e65 3108 if (queued) {
371fd7e7 3109 enqueue_task(rq, p, 0);
1da177e4 3110 /*
d5f9f942
AM
3111 * If the task increased its priority or is running and
3112 * lowered its priority, then reschedule its CPU:
1da177e4 3113 */
d5f9f942 3114 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3115 resched_curr(rq);
1da177e4
LT
3116 }
3117out_unlock:
0122ec5b 3118 task_rq_unlock(rq, p, &flags);
1da177e4 3119}
1da177e4
LT
3120EXPORT_SYMBOL(set_user_nice);
3121
e43379f1
MM
3122/*
3123 * can_nice - check if a task can reduce its nice value
3124 * @p: task
3125 * @nice: nice value
3126 */
36c8b586 3127int can_nice(const struct task_struct *p, const int nice)
e43379f1 3128{
024f4747 3129 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3130 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3131
78d7d407 3132 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3133 capable(CAP_SYS_NICE));
3134}
3135
1da177e4
LT
3136#ifdef __ARCH_WANT_SYS_NICE
3137
3138/*
3139 * sys_nice - change the priority of the current process.
3140 * @increment: priority increment
3141 *
3142 * sys_setpriority is a more generic, but much slower function that
3143 * does similar things.
3144 */
5add95d4 3145SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3146{
48f24c4d 3147 long nice, retval;
1da177e4
LT
3148
3149 /*
3150 * Setpriority might change our priority at the same moment.
3151 * We don't have to worry. Conceptually one call occurs first
3152 * and we have a single winner.
3153 */
a9467fa3 3154 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3155 nice = task_nice(current) + increment;
1da177e4 3156
a9467fa3 3157 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3158 if (increment < 0 && !can_nice(current, nice))
3159 return -EPERM;
3160
1da177e4
LT
3161 retval = security_task_setnice(current, nice);
3162 if (retval)
3163 return retval;
3164
3165 set_user_nice(current, nice);
3166 return 0;
3167}
3168
3169#endif
3170
3171/**
3172 * task_prio - return the priority value of a given task.
3173 * @p: the task in question.
3174 *
e69f6186 3175 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3176 * RT tasks are offset by -200. Normal tasks are centered
3177 * around 0, value goes from -16 to +15.
3178 */
36c8b586 3179int task_prio(const struct task_struct *p)
1da177e4
LT
3180{
3181 return p->prio - MAX_RT_PRIO;
3182}
3183
1da177e4
LT
3184/**
3185 * idle_cpu - is a given cpu idle currently?
3186 * @cpu: the processor in question.
e69f6186
YB
3187 *
3188 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3189 */
3190int idle_cpu(int cpu)
3191{
908a3283
TG
3192 struct rq *rq = cpu_rq(cpu);
3193
3194 if (rq->curr != rq->idle)
3195 return 0;
3196
3197 if (rq->nr_running)
3198 return 0;
3199
3200#ifdef CONFIG_SMP
3201 if (!llist_empty(&rq->wake_list))
3202 return 0;
3203#endif
3204
3205 return 1;
1da177e4
LT
3206}
3207
1da177e4
LT
3208/**
3209 * idle_task - return the idle task for a given cpu.
3210 * @cpu: the processor in question.
e69f6186
YB
3211 *
3212 * Return: The idle task for the cpu @cpu.
1da177e4 3213 */
36c8b586 3214struct task_struct *idle_task(int cpu)
1da177e4
LT
3215{
3216 return cpu_rq(cpu)->idle;
3217}
3218
3219/**
3220 * find_process_by_pid - find a process with a matching PID value.
3221 * @pid: the pid in question.
e69f6186
YB
3222 *
3223 * The task of @pid, if found. %NULL otherwise.
1da177e4 3224 */
a9957449 3225static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3226{
228ebcbe 3227 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3228}
3229
aab03e05
DF
3230/*
3231 * This function initializes the sched_dl_entity of a newly becoming
3232 * SCHED_DEADLINE task.
3233 *
3234 * Only the static values are considered here, the actual runtime and the
3235 * absolute deadline will be properly calculated when the task is enqueued
3236 * for the first time with its new policy.
3237 */
3238static void
3239__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3240{
3241 struct sched_dl_entity *dl_se = &p->dl;
3242
aab03e05
DF
3243 dl_se->dl_runtime = attr->sched_runtime;
3244 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3245 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3246 dl_se->flags = attr->sched_flags;
332ac17e 3247 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3248
3249 /*
3250 * Changing the parameters of a task is 'tricky' and we're not doing
3251 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3252 *
3253 * What we SHOULD do is delay the bandwidth release until the 0-lag
3254 * point. This would include retaining the task_struct until that time
3255 * and change dl_overflow() to not immediately decrement the current
3256 * amount.
3257 *
3258 * Instead we retain the current runtime/deadline and let the new
3259 * parameters take effect after the current reservation period lapses.
3260 * This is safe (albeit pessimistic) because the 0-lag point is always
3261 * before the current scheduling deadline.
3262 *
3263 * We can still have temporary overloads because we do not delay the
3264 * change in bandwidth until that time; so admission control is
3265 * not on the safe side. It does however guarantee tasks will never
3266 * consume more than promised.
3267 */
aab03e05
DF
3268}
3269
c13db6b1
SR
3270/*
3271 * sched_setparam() passes in -1 for its policy, to let the functions
3272 * it calls know not to change it.
3273 */
3274#define SETPARAM_POLICY -1
3275
c365c292
TG
3276static void __setscheduler_params(struct task_struct *p,
3277 const struct sched_attr *attr)
1da177e4 3278{
d50dde5a
DF
3279 int policy = attr->sched_policy;
3280
c13db6b1 3281 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3282 policy = p->policy;
3283
1da177e4 3284 p->policy = policy;
d50dde5a 3285
aab03e05
DF
3286 if (dl_policy(policy))
3287 __setparam_dl(p, attr);
39fd8fd2 3288 else if (fair_policy(policy))
d50dde5a
DF
3289 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3290
39fd8fd2
PZ
3291 /*
3292 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3293 * !rt_policy. Always setting this ensures that things like
3294 * getparam()/getattr() don't report silly values for !rt tasks.
3295 */
3296 p->rt_priority = attr->sched_priority;
383afd09 3297 p->normal_prio = normal_prio(p);
c365c292
TG
3298 set_load_weight(p);
3299}
39fd8fd2 3300
c365c292
TG
3301/* Actually do priority change: must hold pi & rq lock. */
3302static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3303 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3304{
3305 __setscheduler_params(p, attr);
d50dde5a 3306
383afd09 3307 /*
0782e63b
TG
3308 * Keep a potential priority boosting if called from
3309 * sched_setscheduler().
383afd09 3310 */
0782e63b
TG
3311 if (keep_boost)
3312 p->prio = rt_mutex_get_effective_prio(p, normal_prio(p));
3313 else
3314 p->prio = normal_prio(p);
383afd09 3315
aab03e05
DF
3316 if (dl_prio(p->prio))
3317 p->sched_class = &dl_sched_class;
3318 else if (rt_prio(p->prio))
ffd44db5
PZ
3319 p->sched_class = &rt_sched_class;
3320 else
3321 p->sched_class = &fair_sched_class;
1da177e4 3322}
aab03e05
DF
3323
3324static void
3325__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3326{
3327 struct sched_dl_entity *dl_se = &p->dl;
3328
3329 attr->sched_priority = p->rt_priority;
3330 attr->sched_runtime = dl_se->dl_runtime;
3331 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3332 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3333 attr->sched_flags = dl_se->flags;
3334}
3335
3336/*
3337 * This function validates the new parameters of a -deadline task.
3338 * We ask for the deadline not being zero, and greater or equal
755378a4 3339 * than the runtime, as well as the period of being zero or
332ac17e 3340 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3341 * user parameters are above the internal resolution of 1us (we
3342 * check sched_runtime only since it is always the smaller one) and
3343 * below 2^63 ns (we have to check both sched_deadline and
3344 * sched_period, as the latter can be zero).
aab03e05
DF
3345 */
3346static bool
3347__checkparam_dl(const struct sched_attr *attr)
3348{
b0827819
JL
3349 /* deadline != 0 */
3350 if (attr->sched_deadline == 0)
3351 return false;
3352
3353 /*
3354 * Since we truncate DL_SCALE bits, make sure we're at least
3355 * that big.
3356 */
3357 if (attr->sched_runtime < (1ULL << DL_SCALE))
3358 return false;
3359
3360 /*
3361 * Since we use the MSB for wrap-around and sign issues, make
3362 * sure it's not set (mind that period can be equal to zero).
3363 */
3364 if (attr->sched_deadline & (1ULL << 63) ||
3365 attr->sched_period & (1ULL << 63))
3366 return false;
3367
3368 /* runtime <= deadline <= period (if period != 0) */
3369 if ((attr->sched_period != 0 &&
3370 attr->sched_period < attr->sched_deadline) ||
3371 attr->sched_deadline < attr->sched_runtime)
3372 return false;
3373
3374 return true;
aab03e05
DF
3375}
3376
c69e8d9c
DH
3377/*
3378 * check the target process has a UID that matches the current process's
3379 */
3380static bool check_same_owner(struct task_struct *p)
3381{
3382 const struct cred *cred = current_cred(), *pcred;
3383 bool match;
3384
3385 rcu_read_lock();
3386 pcred = __task_cred(p);
9c806aa0
EB
3387 match = (uid_eq(cred->euid, pcred->euid) ||
3388 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3389 rcu_read_unlock();
3390 return match;
3391}
3392
75381608
WL
3393static bool dl_param_changed(struct task_struct *p,
3394 const struct sched_attr *attr)
3395{
3396 struct sched_dl_entity *dl_se = &p->dl;
3397
3398 if (dl_se->dl_runtime != attr->sched_runtime ||
3399 dl_se->dl_deadline != attr->sched_deadline ||
3400 dl_se->dl_period != attr->sched_period ||
3401 dl_se->flags != attr->sched_flags)
3402 return true;
3403
3404 return false;
3405}
3406
d50dde5a
DF
3407static int __sched_setscheduler(struct task_struct *p,
3408 const struct sched_attr *attr,
3409 bool user)
1da177e4 3410{
383afd09
SR
3411 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3412 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3413 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3414 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3415 unsigned long flags;
83ab0aa0 3416 const struct sched_class *prev_class;
70b97a7f 3417 struct rq *rq;
ca94c442 3418 int reset_on_fork;
1da177e4 3419
66e5393a
SR
3420 /* may grab non-irq protected spin_locks */
3421 BUG_ON(in_interrupt());
1da177e4
LT
3422recheck:
3423 /* double check policy once rq lock held */
ca94c442
LP
3424 if (policy < 0) {
3425 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3426 policy = oldpolicy = p->policy;
ca94c442 3427 } else {
7479f3c9 3428 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3429
aab03e05
DF
3430 if (policy != SCHED_DEADLINE &&
3431 policy != SCHED_FIFO && policy != SCHED_RR &&
ca94c442
LP
3432 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
3433 policy != SCHED_IDLE)
3434 return -EINVAL;
3435 }
3436
7479f3c9
PZ
3437 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3438 return -EINVAL;
3439
1da177e4
LT
3440 /*
3441 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3442 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3443 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3444 */
0bb040a4 3445 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3446 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3447 return -EINVAL;
aab03e05
DF
3448 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3449 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3450 return -EINVAL;
3451
37e4ab3f
OC
3452 /*
3453 * Allow unprivileged RT tasks to decrease priority:
3454 */
961ccddd 3455 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3456 if (fair_policy(policy)) {
d0ea0268 3457 if (attr->sched_nice < task_nice(p) &&
eaad4513 3458 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3459 return -EPERM;
3460 }
3461
e05606d3 3462 if (rt_policy(policy)) {
a44702e8
ON
3463 unsigned long rlim_rtprio =
3464 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3465
3466 /* can't set/change the rt policy */
3467 if (policy != p->policy && !rlim_rtprio)
3468 return -EPERM;
3469
3470 /* can't increase priority */
d50dde5a
DF
3471 if (attr->sched_priority > p->rt_priority &&
3472 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3473 return -EPERM;
3474 }
c02aa73b 3475
d44753b8
JL
3476 /*
3477 * Can't set/change SCHED_DEADLINE policy at all for now
3478 * (safest behavior); in the future we would like to allow
3479 * unprivileged DL tasks to increase their relative deadline
3480 * or reduce their runtime (both ways reducing utilization)
3481 */
3482 if (dl_policy(policy))
3483 return -EPERM;
3484
dd41f596 3485 /*
c02aa73b
DH
3486 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3487 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3488 */
c02aa73b 3489 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
d0ea0268 3490 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3491 return -EPERM;
3492 }
5fe1d75f 3493
37e4ab3f 3494 /* can't change other user's priorities */
c69e8d9c 3495 if (!check_same_owner(p))
37e4ab3f 3496 return -EPERM;
ca94c442
LP
3497
3498 /* Normal users shall not reset the sched_reset_on_fork flag */
3499 if (p->sched_reset_on_fork && !reset_on_fork)
3500 return -EPERM;
37e4ab3f 3501 }
1da177e4 3502
725aad24 3503 if (user) {
b0ae1981 3504 retval = security_task_setscheduler(p);
725aad24
JF
3505 if (retval)
3506 return retval;
3507 }
3508
b29739f9
IM
3509 /*
3510 * make sure no PI-waiters arrive (or leave) while we are
3511 * changing the priority of the task:
0122ec5b 3512 *
25985edc 3513 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3514 * runqueue lock must be held.
3515 */
0122ec5b 3516 rq = task_rq_lock(p, &flags);
dc61b1d6 3517
34f971f6
PZ
3518 /*
3519 * Changing the policy of the stop threads its a very bad idea
3520 */
3521 if (p == rq->stop) {
0122ec5b 3522 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3523 return -EINVAL;
3524 }
3525
a51e9198 3526 /*
d6b1e911
TG
3527 * If not changing anything there's no need to proceed further,
3528 * but store a possible modification of reset_on_fork.
a51e9198 3529 */
d50dde5a 3530 if (unlikely(policy == p->policy)) {
d0ea0268 3531 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3532 goto change;
3533 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3534 goto change;
75381608 3535 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3536 goto change;
d50dde5a 3537
d6b1e911 3538 p->sched_reset_on_fork = reset_on_fork;
45afb173 3539 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3540 return 0;
3541 }
d50dde5a 3542change:
a51e9198 3543
dc61b1d6 3544 if (user) {
332ac17e 3545#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3546 /*
3547 * Do not allow realtime tasks into groups that have no runtime
3548 * assigned.
3549 */
3550 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3551 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3552 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3553 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3554 return -EPERM;
3555 }
dc61b1d6 3556#endif
332ac17e
DF
3557#ifdef CONFIG_SMP
3558 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3559 cpumask_t *span = rq->rd->span;
332ac17e
DF
3560
3561 /*
3562 * Don't allow tasks with an affinity mask smaller than
3563 * the entire root_domain to become SCHED_DEADLINE. We
3564 * will also fail if there's no bandwidth available.
3565 */
e4099a5e
PZ
3566 if (!cpumask_subset(span, &p->cpus_allowed) ||
3567 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3568 task_rq_unlock(rq, p, &flags);
3569 return -EPERM;
3570 }
3571 }
3572#endif
3573 }
dc61b1d6 3574
1da177e4
LT
3575 /* recheck policy now with rq lock held */
3576 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
3577 policy = oldpolicy = -1;
0122ec5b 3578 task_rq_unlock(rq, p, &flags);
1da177e4
LT
3579 goto recheck;
3580 }
332ac17e
DF
3581
3582 /*
3583 * If setscheduling to SCHED_DEADLINE (or changing the parameters
3584 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
3585 * is available.
3586 */
e4099a5e 3587 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
3588 task_rq_unlock(rq, p, &flags);
3589 return -EBUSY;
3590 }
3591
c365c292
TG
3592 p->sched_reset_on_fork = reset_on_fork;
3593 oldprio = p->prio;
3594
3595 /*
0782e63b
TG
3596 * Take priority boosted tasks into account. If the new
3597 * effective priority is unchanged, we just store the new
c365c292
TG
3598 * normal parameters and do not touch the scheduler class and
3599 * the runqueue. This will be done when the task deboost
3600 * itself.
3601 */
0782e63b
TG
3602 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
3603 if (new_effective_prio == oldprio) {
c365c292
TG
3604 __setscheduler_params(p, attr);
3605 task_rq_unlock(rq, p, &flags);
3606 return 0;
3607 }
3608
da0c1e65 3609 queued = task_on_rq_queued(p);
051a1d1a 3610 running = task_current(rq, p);
da0c1e65 3611 if (queued)
4ca9b72b 3612 dequeue_task(rq, p, 0);
0e1f3483 3613 if (running)
f3cd1c4e 3614 put_prev_task(rq, p);
f6b53205 3615
83ab0aa0 3616 prev_class = p->sched_class;
0782e63b 3617 __setscheduler(rq, p, attr, true);
f6b53205 3618
0e1f3483
HS
3619 if (running)
3620 p->sched_class->set_curr_task(rq);
da0c1e65 3621 if (queued) {
81a44c54
TG
3622 /*
3623 * We enqueue to tail when the priority of a task is
3624 * increased (user space view).
3625 */
3626 enqueue_task(rq, p, oldprio <= p->prio ? ENQUEUE_HEAD : 0);
3627 }
cb469845 3628
da7a735e 3629 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 3630 task_rq_unlock(rq, p, &flags);
b29739f9 3631
95e02ca9
TG
3632 rt_mutex_adjust_pi(p);
3633
1da177e4
LT
3634 return 0;
3635}
961ccddd 3636
7479f3c9
PZ
3637static int _sched_setscheduler(struct task_struct *p, int policy,
3638 const struct sched_param *param, bool check)
3639{
3640 struct sched_attr attr = {
3641 .sched_policy = policy,
3642 .sched_priority = param->sched_priority,
3643 .sched_nice = PRIO_TO_NICE(p->static_prio),
3644 };
3645
c13db6b1
SR
3646 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
3647 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
3648 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
3649 policy &= ~SCHED_RESET_ON_FORK;
3650 attr.sched_policy = policy;
3651 }
3652
3653 return __sched_setscheduler(p, &attr, check);
3654}
961ccddd
RR
3655/**
3656 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
3657 * @p: the task in question.
3658 * @policy: new policy.
3659 * @param: structure containing the new RT priority.
3660 *
e69f6186
YB
3661 * Return: 0 on success. An error code otherwise.
3662 *
961ccddd
RR
3663 * NOTE that the task may be already dead.
3664 */
3665int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 3666 const struct sched_param *param)
961ccddd 3667{
7479f3c9 3668 return _sched_setscheduler(p, policy, param, true);
961ccddd 3669}
1da177e4
LT
3670EXPORT_SYMBOL_GPL(sched_setscheduler);
3671
d50dde5a
DF
3672int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
3673{
3674 return __sched_setscheduler(p, attr, true);
3675}
3676EXPORT_SYMBOL_GPL(sched_setattr);
3677
961ccddd
RR
3678/**
3679 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
3680 * @p: the task in question.
3681 * @policy: new policy.
3682 * @param: structure containing the new RT priority.
3683 *
3684 * Just like sched_setscheduler, only don't bother checking if the
3685 * current context has permission. For example, this is needed in
3686 * stop_machine(): we create temporary high priority worker threads,
3687 * but our caller might not have that capability.
e69f6186
YB
3688 *
3689 * Return: 0 on success. An error code otherwise.
961ccddd
RR
3690 */
3691int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 3692 const struct sched_param *param)
961ccddd 3693{
7479f3c9 3694 return _sched_setscheduler(p, policy, param, false);
961ccddd
RR
3695}
3696
95cdf3b7
IM
3697static int
3698do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 3699{
1da177e4
LT
3700 struct sched_param lparam;
3701 struct task_struct *p;
36c8b586 3702 int retval;
1da177e4
LT
3703
3704 if (!param || pid < 0)
3705 return -EINVAL;
3706 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
3707 return -EFAULT;
5fe1d75f
ON
3708
3709 rcu_read_lock();
3710 retval = -ESRCH;
1da177e4 3711 p = find_process_by_pid(pid);
5fe1d75f
ON
3712 if (p != NULL)
3713 retval = sched_setscheduler(p, policy, &lparam);
3714 rcu_read_unlock();
36c8b586 3715
1da177e4
LT
3716 return retval;
3717}
3718
d50dde5a
DF
3719/*
3720 * Mimics kernel/events/core.c perf_copy_attr().
3721 */
3722static int sched_copy_attr(struct sched_attr __user *uattr,
3723 struct sched_attr *attr)
3724{
3725 u32 size;
3726 int ret;
3727
3728 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
3729 return -EFAULT;
3730
3731 /*
3732 * zero the full structure, so that a short copy will be nice.
3733 */
3734 memset(attr, 0, sizeof(*attr));
3735
3736 ret = get_user(size, &uattr->size);
3737 if (ret)
3738 return ret;
3739
3740 if (size > PAGE_SIZE) /* silly large */
3741 goto err_size;
3742
3743 if (!size) /* abi compat */
3744 size = SCHED_ATTR_SIZE_VER0;
3745
3746 if (size < SCHED_ATTR_SIZE_VER0)
3747 goto err_size;
3748
3749 /*
3750 * If we're handed a bigger struct than we know of,
3751 * ensure all the unknown bits are 0 - i.e. new
3752 * user-space does not rely on any kernel feature
3753 * extensions we dont know about yet.
3754 */
3755 if (size > sizeof(*attr)) {
3756 unsigned char __user *addr;
3757 unsigned char __user *end;
3758 unsigned char val;
3759
3760 addr = (void __user *)uattr + sizeof(*attr);
3761 end = (void __user *)uattr + size;
3762
3763 for (; addr < end; addr++) {
3764 ret = get_user(val, addr);
3765 if (ret)
3766 return ret;
3767 if (val)
3768 goto err_size;
3769 }
3770 size = sizeof(*attr);
3771 }
3772
3773 ret = copy_from_user(attr, uattr, size);
3774 if (ret)
3775 return -EFAULT;
3776
3777 /*
3778 * XXX: do we want to be lenient like existing syscalls; or do we want
3779 * to be strict and return an error on out-of-bounds values?
3780 */
75e45d51 3781 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 3782
e78c7bca 3783 return 0;
d50dde5a
DF
3784
3785err_size:
3786 put_user(sizeof(*attr), &uattr->size);
e78c7bca 3787 return -E2BIG;
d50dde5a
DF
3788}
3789
1da177e4
LT
3790/**
3791 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
3792 * @pid: the pid in question.
3793 * @policy: new policy.
3794 * @param: structure containing the new RT priority.
e69f6186
YB
3795 *
3796 * Return: 0 on success. An error code otherwise.
1da177e4 3797 */
5add95d4
HC
3798SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
3799 struct sched_param __user *, param)
1da177e4 3800{
c21761f1
JB
3801 /* negative values for policy are not valid */
3802 if (policy < 0)
3803 return -EINVAL;
3804
1da177e4
LT
3805 return do_sched_setscheduler(pid, policy, param);
3806}
3807
3808/**
3809 * sys_sched_setparam - set/change the RT priority of a thread
3810 * @pid: the pid in question.
3811 * @param: structure containing the new RT priority.
e69f6186
YB
3812 *
3813 * Return: 0 on success. An error code otherwise.
1da177e4 3814 */
5add95d4 3815SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3816{
c13db6b1 3817 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
3818}
3819
d50dde5a
DF
3820/**
3821 * sys_sched_setattr - same as above, but with extended sched_attr
3822 * @pid: the pid in question.
5778fccf 3823 * @uattr: structure containing the extended parameters.
db66d756 3824 * @flags: for future extension.
d50dde5a 3825 */
6d35ab48
PZ
3826SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
3827 unsigned int, flags)
d50dde5a
DF
3828{
3829 struct sched_attr attr;
3830 struct task_struct *p;
3831 int retval;
3832
6d35ab48 3833 if (!uattr || pid < 0 || flags)
d50dde5a
DF
3834 return -EINVAL;
3835
143cf23d
MK
3836 retval = sched_copy_attr(uattr, &attr);
3837 if (retval)
3838 return retval;
d50dde5a 3839
b14ed2c2 3840 if ((int)attr.sched_policy < 0)
dbdb2275 3841 return -EINVAL;
d50dde5a
DF
3842
3843 rcu_read_lock();
3844 retval = -ESRCH;
3845 p = find_process_by_pid(pid);
3846 if (p != NULL)
3847 retval = sched_setattr(p, &attr);
3848 rcu_read_unlock();
3849
3850 return retval;
3851}
3852
1da177e4
LT
3853/**
3854 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
3855 * @pid: the pid in question.
e69f6186
YB
3856 *
3857 * Return: On success, the policy of the thread. Otherwise, a negative error
3858 * code.
1da177e4 3859 */
5add95d4 3860SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 3861{
36c8b586 3862 struct task_struct *p;
3a5c359a 3863 int retval;
1da177e4
LT
3864
3865 if (pid < 0)
3a5c359a 3866 return -EINVAL;
1da177e4
LT
3867
3868 retval = -ESRCH;
5fe85be0 3869 rcu_read_lock();
1da177e4
LT
3870 p = find_process_by_pid(pid);
3871 if (p) {
3872 retval = security_task_getscheduler(p);
3873 if (!retval)
ca94c442
LP
3874 retval = p->policy
3875 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 3876 }
5fe85be0 3877 rcu_read_unlock();
1da177e4
LT
3878 return retval;
3879}
3880
3881/**
ca94c442 3882 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
3883 * @pid: the pid in question.
3884 * @param: structure containing the RT priority.
e69f6186
YB
3885 *
3886 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
3887 * code.
1da177e4 3888 */
5add95d4 3889SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 3890{
ce5f7f82 3891 struct sched_param lp = { .sched_priority = 0 };
36c8b586 3892 struct task_struct *p;
3a5c359a 3893 int retval;
1da177e4
LT
3894
3895 if (!param || pid < 0)
3a5c359a 3896 return -EINVAL;
1da177e4 3897
5fe85be0 3898 rcu_read_lock();
1da177e4
LT
3899 p = find_process_by_pid(pid);
3900 retval = -ESRCH;
3901 if (!p)
3902 goto out_unlock;
3903
3904 retval = security_task_getscheduler(p);
3905 if (retval)
3906 goto out_unlock;
3907
ce5f7f82
PZ
3908 if (task_has_rt_policy(p))
3909 lp.sched_priority = p->rt_priority;
5fe85be0 3910 rcu_read_unlock();
1da177e4
LT
3911
3912 /*
3913 * This one might sleep, we cannot do it with a spinlock held ...
3914 */
3915 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
3916
1da177e4
LT
3917 return retval;
3918
3919out_unlock:
5fe85be0 3920 rcu_read_unlock();
1da177e4
LT
3921 return retval;
3922}
3923
d50dde5a
DF
3924static int sched_read_attr(struct sched_attr __user *uattr,
3925 struct sched_attr *attr,
3926 unsigned int usize)
3927{
3928 int ret;
3929
3930 if (!access_ok(VERIFY_WRITE, uattr, usize))
3931 return -EFAULT;
3932
3933 /*
3934 * If we're handed a smaller struct than we know of,
3935 * ensure all the unknown bits are 0 - i.e. old
3936 * user-space does not get uncomplete information.
3937 */
3938 if (usize < sizeof(*attr)) {
3939 unsigned char *addr;
3940 unsigned char *end;
3941
3942 addr = (void *)attr + usize;
3943 end = (void *)attr + sizeof(*attr);
3944
3945 for (; addr < end; addr++) {
3946 if (*addr)
22400674 3947 return -EFBIG;
d50dde5a
DF
3948 }
3949
3950 attr->size = usize;
3951 }
3952
4efbc454 3953 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
3954 if (ret)
3955 return -EFAULT;
3956
22400674 3957 return 0;
d50dde5a
DF
3958}
3959
3960/**
aab03e05 3961 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 3962 * @pid: the pid in question.
5778fccf 3963 * @uattr: structure containing the extended parameters.
d50dde5a 3964 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 3965 * @flags: for future extension.
d50dde5a 3966 */
6d35ab48
PZ
3967SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
3968 unsigned int, size, unsigned int, flags)
d50dde5a
DF
3969{
3970 struct sched_attr attr = {
3971 .size = sizeof(struct sched_attr),
3972 };
3973 struct task_struct *p;
3974 int retval;
3975
3976 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 3977 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
3978 return -EINVAL;
3979
3980 rcu_read_lock();
3981 p = find_process_by_pid(pid);
3982 retval = -ESRCH;
3983 if (!p)
3984 goto out_unlock;
3985
3986 retval = security_task_getscheduler(p);
3987 if (retval)
3988 goto out_unlock;
3989
3990 attr.sched_policy = p->policy;
7479f3c9
PZ
3991 if (p->sched_reset_on_fork)
3992 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
3993 if (task_has_dl_policy(p))
3994 __getparam_dl(p, &attr);
3995 else if (task_has_rt_policy(p))
d50dde5a
DF
3996 attr.sched_priority = p->rt_priority;
3997 else
d0ea0268 3998 attr.sched_nice = task_nice(p);
d50dde5a
DF
3999
4000 rcu_read_unlock();
4001
4002 retval = sched_read_attr(uattr, &attr, size);
4003 return retval;
4004
4005out_unlock:
4006 rcu_read_unlock();
4007 return retval;
4008}
4009
96f874e2 4010long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4011{
5a16f3d3 4012 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4013 struct task_struct *p;
4014 int retval;
1da177e4 4015
23f5d142 4016 rcu_read_lock();
1da177e4
LT
4017
4018 p = find_process_by_pid(pid);
4019 if (!p) {
23f5d142 4020 rcu_read_unlock();
1da177e4
LT
4021 return -ESRCH;
4022 }
4023
23f5d142 4024 /* Prevent p going away */
1da177e4 4025 get_task_struct(p);
23f5d142 4026 rcu_read_unlock();
1da177e4 4027
14a40ffc
TH
4028 if (p->flags & PF_NO_SETAFFINITY) {
4029 retval = -EINVAL;
4030 goto out_put_task;
4031 }
5a16f3d3
RR
4032 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4033 retval = -ENOMEM;
4034 goto out_put_task;
4035 }
4036 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4037 retval = -ENOMEM;
4038 goto out_free_cpus_allowed;
4039 }
1da177e4 4040 retval = -EPERM;
4c44aaaf
EB
4041 if (!check_same_owner(p)) {
4042 rcu_read_lock();
4043 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4044 rcu_read_unlock();
16303ab2 4045 goto out_free_new_mask;
4c44aaaf
EB
4046 }
4047 rcu_read_unlock();
4048 }
1da177e4 4049
b0ae1981 4050 retval = security_task_setscheduler(p);
e7834f8f 4051 if (retval)
16303ab2 4052 goto out_free_new_mask;
e7834f8f 4053
e4099a5e
PZ
4054
4055 cpuset_cpus_allowed(p, cpus_allowed);
4056 cpumask_and(new_mask, in_mask, cpus_allowed);
4057
332ac17e
DF
4058 /*
4059 * Since bandwidth control happens on root_domain basis,
4060 * if admission test is enabled, we only admit -deadline
4061 * tasks allowed to run on all the CPUs in the task's
4062 * root_domain.
4063 */
4064#ifdef CONFIG_SMP
f1e3a093
KT
4065 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4066 rcu_read_lock();
4067 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4068 retval = -EBUSY;
f1e3a093 4069 rcu_read_unlock();
16303ab2 4070 goto out_free_new_mask;
332ac17e 4071 }
f1e3a093 4072 rcu_read_unlock();
332ac17e
DF
4073 }
4074#endif
49246274 4075again:
5a16f3d3 4076 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4077
8707d8b8 4078 if (!retval) {
5a16f3d3
RR
4079 cpuset_cpus_allowed(p, cpus_allowed);
4080 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4081 /*
4082 * We must have raced with a concurrent cpuset
4083 * update. Just reset the cpus_allowed to the
4084 * cpuset's cpus_allowed
4085 */
5a16f3d3 4086 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4087 goto again;
4088 }
4089 }
16303ab2 4090out_free_new_mask:
5a16f3d3
RR
4091 free_cpumask_var(new_mask);
4092out_free_cpus_allowed:
4093 free_cpumask_var(cpus_allowed);
4094out_put_task:
1da177e4 4095 put_task_struct(p);
1da177e4
LT
4096 return retval;
4097}
4098
4099static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4100 struct cpumask *new_mask)
1da177e4 4101{
96f874e2
RR
4102 if (len < cpumask_size())
4103 cpumask_clear(new_mask);
4104 else if (len > cpumask_size())
4105 len = cpumask_size();
4106
1da177e4
LT
4107 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4108}
4109
4110/**
4111 * sys_sched_setaffinity - set the cpu affinity of a process
4112 * @pid: pid of the process
4113 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4114 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4115 *
4116 * Return: 0 on success. An error code otherwise.
1da177e4 4117 */
5add95d4
HC
4118SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4119 unsigned long __user *, user_mask_ptr)
1da177e4 4120{
5a16f3d3 4121 cpumask_var_t new_mask;
1da177e4
LT
4122 int retval;
4123
5a16f3d3
RR
4124 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4125 return -ENOMEM;
1da177e4 4126
5a16f3d3
RR
4127 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4128 if (retval == 0)
4129 retval = sched_setaffinity(pid, new_mask);
4130 free_cpumask_var(new_mask);
4131 return retval;
1da177e4
LT
4132}
4133
96f874e2 4134long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4135{
36c8b586 4136 struct task_struct *p;
31605683 4137 unsigned long flags;
1da177e4 4138 int retval;
1da177e4 4139
23f5d142 4140 rcu_read_lock();
1da177e4
LT
4141
4142 retval = -ESRCH;
4143 p = find_process_by_pid(pid);
4144 if (!p)
4145 goto out_unlock;
4146
e7834f8f
DQ
4147 retval = security_task_getscheduler(p);
4148 if (retval)
4149 goto out_unlock;
4150
013fdb80 4151 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4152 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4153 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4154
4155out_unlock:
23f5d142 4156 rcu_read_unlock();
1da177e4 4157
9531b62f 4158 return retval;
1da177e4
LT
4159}
4160
4161/**
4162 * sys_sched_getaffinity - get the cpu affinity of a process
4163 * @pid: pid of the process
4164 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4165 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4166 *
4167 * Return: 0 on success. An error code otherwise.
1da177e4 4168 */
5add95d4
HC
4169SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4170 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4171{
4172 int ret;
f17c8607 4173 cpumask_var_t mask;
1da177e4 4174
84fba5ec 4175 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4176 return -EINVAL;
4177 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4178 return -EINVAL;
4179
f17c8607
RR
4180 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4181 return -ENOMEM;
1da177e4 4182
f17c8607
RR
4183 ret = sched_getaffinity(pid, mask);
4184 if (ret == 0) {
8bc037fb 4185 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4186
4187 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4188 ret = -EFAULT;
4189 else
cd3d8031 4190 ret = retlen;
f17c8607
RR
4191 }
4192 free_cpumask_var(mask);
1da177e4 4193
f17c8607 4194 return ret;
1da177e4
LT
4195}
4196
4197/**
4198 * sys_sched_yield - yield the current processor to other threads.
4199 *
dd41f596
IM
4200 * This function yields the current CPU to other tasks. If there are no
4201 * other threads running on this CPU then this function will return.
e69f6186
YB
4202 *
4203 * Return: 0.
1da177e4 4204 */
5add95d4 4205SYSCALL_DEFINE0(sched_yield)
1da177e4 4206{
70b97a7f 4207 struct rq *rq = this_rq_lock();
1da177e4 4208
2d72376b 4209 schedstat_inc(rq, yld_count);
4530d7ab 4210 current->sched_class->yield_task(rq);
1da177e4
LT
4211
4212 /*
4213 * Since we are going to call schedule() anyway, there's
4214 * no need to preempt or enable interrupts:
4215 */
4216 __release(rq->lock);
8a25d5de 4217 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4218 do_raw_spin_unlock(&rq->lock);
ba74c144 4219 sched_preempt_enable_no_resched();
1da177e4
LT
4220
4221 schedule();
4222
4223 return 0;
4224}
4225
02b67cc3 4226int __sched _cond_resched(void)
1da177e4 4227{
d86ee480 4228 if (should_resched()) {
a18b5d01 4229 preempt_schedule_common();
1da177e4
LT
4230 return 1;
4231 }
4232 return 0;
4233}
02b67cc3 4234EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4235
4236/*
613afbf8 4237 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4238 * call schedule, and on return reacquire the lock.
4239 *
41a2d6cf 4240 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4241 * operations here to prevent schedule() from being called twice (once via
4242 * spin_unlock(), once by hand).
4243 */
613afbf8 4244int __cond_resched_lock(spinlock_t *lock)
1da177e4 4245{
d86ee480 4246 int resched = should_resched();
6df3cecb
JK
4247 int ret = 0;
4248
f607c668
PZ
4249 lockdep_assert_held(lock);
4250
4a81e832 4251 if (spin_needbreak(lock) || resched) {
1da177e4 4252 spin_unlock(lock);
d86ee480 4253 if (resched)
a18b5d01 4254 preempt_schedule_common();
95c354fe
NP
4255 else
4256 cpu_relax();
6df3cecb 4257 ret = 1;
1da177e4 4258 spin_lock(lock);
1da177e4 4259 }
6df3cecb 4260 return ret;
1da177e4 4261}
613afbf8 4262EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4263
613afbf8 4264int __sched __cond_resched_softirq(void)
1da177e4
LT
4265{
4266 BUG_ON(!in_softirq());
4267
d86ee480 4268 if (should_resched()) {
98d82567 4269 local_bh_enable();
a18b5d01 4270 preempt_schedule_common();
1da177e4
LT
4271 local_bh_disable();
4272 return 1;
4273 }
4274 return 0;
4275}
613afbf8 4276EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4277
1da177e4
LT
4278/**
4279 * yield - yield the current processor to other threads.
4280 *
8e3fabfd
PZ
4281 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4282 *
4283 * The scheduler is at all times free to pick the calling task as the most
4284 * eligible task to run, if removing the yield() call from your code breaks
4285 * it, its already broken.
4286 *
4287 * Typical broken usage is:
4288 *
4289 * while (!event)
4290 * yield();
4291 *
4292 * where one assumes that yield() will let 'the other' process run that will
4293 * make event true. If the current task is a SCHED_FIFO task that will never
4294 * happen. Never use yield() as a progress guarantee!!
4295 *
4296 * If you want to use yield() to wait for something, use wait_event().
4297 * If you want to use yield() to be 'nice' for others, use cond_resched().
4298 * If you still want to use yield(), do not!
1da177e4
LT
4299 */
4300void __sched yield(void)
4301{
4302 set_current_state(TASK_RUNNING);
4303 sys_sched_yield();
4304}
1da177e4
LT
4305EXPORT_SYMBOL(yield);
4306
d95f4122
MG
4307/**
4308 * yield_to - yield the current processor to another thread in
4309 * your thread group, or accelerate that thread toward the
4310 * processor it's on.
16addf95
RD
4311 * @p: target task
4312 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4313 *
4314 * It's the caller's job to ensure that the target task struct
4315 * can't go away on us before we can do any checks.
4316 *
e69f6186 4317 * Return:
7b270f60
PZ
4318 * true (>0) if we indeed boosted the target task.
4319 * false (0) if we failed to boost the target.
4320 * -ESRCH if there's no task to yield to.
d95f4122 4321 */
fa93384f 4322int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4323{
4324 struct task_struct *curr = current;
4325 struct rq *rq, *p_rq;
4326 unsigned long flags;
c3c18640 4327 int yielded = 0;
d95f4122
MG
4328
4329 local_irq_save(flags);
4330 rq = this_rq();
4331
4332again:
4333 p_rq = task_rq(p);
7b270f60
PZ
4334 /*
4335 * If we're the only runnable task on the rq and target rq also
4336 * has only one task, there's absolutely no point in yielding.
4337 */
4338 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4339 yielded = -ESRCH;
4340 goto out_irq;
4341 }
4342
d95f4122 4343 double_rq_lock(rq, p_rq);
39e24d8f 4344 if (task_rq(p) != p_rq) {
d95f4122
MG
4345 double_rq_unlock(rq, p_rq);
4346 goto again;
4347 }
4348
4349 if (!curr->sched_class->yield_to_task)
7b270f60 4350 goto out_unlock;
d95f4122
MG
4351
4352 if (curr->sched_class != p->sched_class)
7b270f60 4353 goto out_unlock;
d95f4122
MG
4354
4355 if (task_running(p_rq, p) || p->state)
7b270f60 4356 goto out_unlock;
d95f4122
MG
4357
4358 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4359 if (yielded) {
d95f4122 4360 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4361 /*
4362 * Make p's CPU reschedule; pick_next_entity takes care of
4363 * fairness.
4364 */
4365 if (preempt && rq != p_rq)
8875125e 4366 resched_curr(p_rq);
6d1cafd8 4367 }
d95f4122 4368
7b270f60 4369out_unlock:
d95f4122 4370 double_rq_unlock(rq, p_rq);
7b270f60 4371out_irq:
d95f4122
MG
4372 local_irq_restore(flags);
4373
7b270f60 4374 if (yielded > 0)
d95f4122
MG
4375 schedule();
4376
4377 return yielded;
4378}
4379EXPORT_SYMBOL_GPL(yield_to);
4380
1da177e4 4381/*
41a2d6cf 4382 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4383 * that process accounting knows that this is a task in IO wait state.
1da177e4 4384 */
1da177e4
LT
4385long __sched io_schedule_timeout(long timeout)
4386{
9cff8ade
N
4387 int old_iowait = current->in_iowait;
4388 struct rq *rq;
1da177e4
LT
4389 long ret;
4390
9cff8ade
N
4391 current->in_iowait = 1;
4392 if (old_iowait)
4393 blk_schedule_flush_plug(current);
4394 else
4395 blk_flush_plug(current);
4396
0ff92245 4397 delayacct_blkio_start();
9cff8ade 4398 rq = raw_rq();
1da177e4
LT
4399 atomic_inc(&rq->nr_iowait);
4400 ret = schedule_timeout(timeout);
9cff8ade 4401 current->in_iowait = old_iowait;
1da177e4 4402 atomic_dec(&rq->nr_iowait);
0ff92245 4403 delayacct_blkio_end();
9cff8ade 4404
1da177e4
LT
4405 return ret;
4406}
9cff8ade 4407EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4408
4409/**
4410 * sys_sched_get_priority_max - return maximum RT priority.
4411 * @policy: scheduling class.
4412 *
e69f6186
YB
4413 * Return: On success, this syscall returns the maximum
4414 * rt_priority that can be used by a given scheduling class.
4415 * On failure, a negative error code is returned.
1da177e4 4416 */
5add95d4 4417SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4418{
4419 int ret = -EINVAL;
4420
4421 switch (policy) {
4422 case SCHED_FIFO:
4423 case SCHED_RR:
4424 ret = MAX_USER_RT_PRIO-1;
4425 break;
aab03e05 4426 case SCHED_DEADLINE:
1da177e4 4427 case SCHED_NORMAL:
b0a9499c 4428 case SCHED_BATCH:
dd41f596 4429 case SCHED_IDLE:
1da177e4
LT
4430 ret = 0;
4431 break;
4432 }
4433 return ret;
4434}
4435
4436/**
4437 * sys_sched_get_priority_min - return minimum RT priority.
4438 * @policy: scheduling class.
4439 *
e69f6186
YB
4440 * Return: On success, this syscall returns the minimum
4441 * rt_priority that can be used by a given scheduling class.
4442 * On failure, a negative error code is returned.
1da177e4 4443 */
5add95d4 4444SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4445{
4446 int ret = -EINVAL;
4447
4448 switch (policy) {
4449 case SCHED_FIFO:
4450 case SCHED_RR:
4451 ret = 1;
4452 break;
aab03e05 4453 case SCHED_DEADLINE:
1da177e4 4454 case SCHED_NORMAL:
b0a9499c 4455 case SCHED_BATCH:
dd41f596 4456 case SCHED_IDLE:
1da177e4
LT
4457 ret = 0;
4458 }
4459 return ret;
4460}
4461
4462/**
4463 * sys_sched_rr_get_interval - return the default timeslice of a process.
4464 * @pid: pid of the process.
4465 * @interval: userspace pointer to the timeslice value.
4466 *
4467 * this syscall writes the default timeslice value of a given process
4468 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4469 *
4470 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4471 * an error code.
1da177e4 4472 */
17da2bd9 4473SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4474 struct timespec __user *, interval)
1da177e4 4475{
36c8b586 4476 struct task_struct *p;
a4ec24b4 4477 unsigned int time_slice;
dba091b9
TG
4478 unsigned long flags;
4479 struct rq *rq;
3a5c359a 4480 int retval;
1da177e4 4481 struct timespec t;
1da177e4
LT
4482
4483 if (pid < 0)
3a5c359a 4484 return -EINVAL;
1da177e4
LT
4485
4486 retval = -ESRCH;
1a551ae7 4487 rcu_read_lock();
1da177e4
LT
4488 p = find_process_by_pid(pid);
4489 if (!p)
4490 goto out_unlock;
4491
4492 retval = security_task_getscheduler(p);
4493 if (retval)
4494 goto out_unlock;
4495
dba091b9 4496 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4497 time_slice = 0;
4498 if (p->sched_class->get_rr_interval)
4499 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4500 task_rq_unlock(rq, p, &flags);
a4ec24b4 4501
1a551ae7 4502 rcu_read_unlock();
a4ec24b4 4503 jiffies_to_timespec(time_slice, &t);
1da177e4 4504 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4505 return retval;
3a5c359a 4506
1da177e4 4507out_unlock:
1a551ae7 4508 rcu_read_unlock();
1da177e4
LT
4509 return retval;
4510}
4511
7c731e0a 4512static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4513
82a1fcb9 4514void sched_show_task(struct task_struct *p)
1da177e4 4515{
1da177e4 4516 unsigned long free = 0;
4e79752c 4517 int ppid;
1f8a7633 4518 unsigned long state = p->state;
1da177e4 4519
1f8a7633
TH
4520 if (state)
4521 state = __ffs(state) + 1;
28d0686c 4522 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4523 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4524#if BITS_PER_LONG == 32
1da177e4 4525 if (state == TASK_RUNNING)
3df0fc5b 4526 printk(KERN_CONT " running ");
1da177e4 4527 else
3df0fc5b 4528 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4529#else
4530 if (state == TASK_RUNNING)
3df0fc5b 4531 printk(KERN_CONT " running task ");
1da177e4 4532 else
3df0fc5b 4533 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4534#endif
4535#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4536 free = stack_not_used(p);
1da177e4 4537#endif
a90e984c 4538 ppid = 0;
4e79752c 4539 rcu_read_lock();
a90e984c
ON
4540 if (pid_alive(p))
4541 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4542 rcu_read_unlock();
3df0fc5b 4543 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4544 task_pid_nr(p), ppid,
aa47b7e0 4545 (unsigned long)task_thread_info(p)->flags);
1da177e4 4546
3d1cb205 4547 print_worker_info(KERN_INFO, p);
5fb5e6de 4548 show_stack(p, NULL);
1da177e4
LT
4549}
4550
e59e2ae2 4551void show_state_filter(unsigned long state_filter)
1da177e4 4552{
36c8b586 4553 struct task_struct *g, *p;
1da177e4 4554
4bd77321 4555#if BITS_PER_LONG == 32
3df0fc5b
PZ
4556 printk(KERN_INFO
4557 " task PC stack pid father\n");
1da177e4 4558#else
3df0fc5b
PZ
4559 printk(KERN_INFO
4560 " task PC stack pid father\n");
1da177e4 4561#endif
510f5acc 4562 rcu_read_lock();
5d07f420 4563 for_each_process_thread(g, p) {
1da177e4
LT
4564 /*
4565 * reset the NMI-timeout, listing all files on a slow
25985edc 4566 * console might take a lot of time:
1da177e4
LT
4567 */
4568 touch_nmi_watchdog();
39bc89fd 4569 if (!state_filter || (p->state & state_filter))
82a1fcb9 4570 sched_show_task(p);
5d07f420 4571 }
1da177e4 4572
04c9167f
JF
4573 touch_all_softlockup_watchdogs();
4574
dd41f596
IM
4575#ifdef CONFIG_SCHED_DEBUG
4576 sysrq_sched_debug_show();
4577#endif
510f5acc 4578 rcu_read_unlock();
e59e2ae2
IM
4579 /*
4580 * Only show locks if all tasks are dumped:
4581 */
93335a21 4582 if (!state_filter)
e59e2ae2 4583 debug_show_all_locks();
1da177e4
LT
4584}
4585
0db0628d 4586void init_idle_bootup_task(struct task_struct *idle)
1df21055 4587{
dd41f596 4588 idle->sched_class = &idle_sched_class;
1df21055
IM
4589}
4590
f340c0d1
IM
4591/**
4592 * init_idle - set up an idle thread for a given CPU
4593 * @idle: task in question
4594 * @cpu: cpu the idle task belongs to
4595 *
4596 * NOTE: this function does not set the idle thread's NEED_RESCHED
4597 * flag, to make booting more robust.
4598 */
0db0628d 4599void init_idle(struct task_struct *idle, int cpu)
1da177e4 4600{
70b97a7f 4601 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4602 unsigned long flags;
4603
05fa785c 4604 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4605
5e1576ed 4606 __sched_fork(0, idle);
06b83b5f 4607 idle->state = TASK_RUNNING;
dd41f596
IM
4608 idle->se.exec_start = sched_clock();
4609
1e1b6c51 4610 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4611 /*
4612 * We're having a chicken and egg problem, even though we are
4613 * holding rq->lock, the cpu isn't yet set to this cpu so the
4614 * lockdep check in task_group() will fail.
4615 *
4616 * Similar case to sched_fork(). / Alternatively we could
4617 * use task_rq_lock() here and obtain the other rq->lock.
4618 *
4619 * Silence PROVE_RCU
4620 */
4621 rcu_read_lock();
dd41f596 4622 __set_task_cpu(idle, cpu);
6506cf6c 4623 rcu_read_unlock();
1da177e4 4624
1da177e4 4625 rq->curr = rq->idle = idle;
da0c1e65 4626 idle->on_rq = TASK_ON_RQ_QUEUED;
3ca7a440
PZ
4627#if defined(CONFIG_SMP)
4628 idle->on_cpu = 1;
4866cde0 4629#endif
05fa785c 4630 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4631
4632 /* Set the preempt count _outside_ the spinlocks! */
01028747 4633 init_idle_preempt_count(idle, cpu);
55cd5340 4634
dd41f596
IM
4635 /*
4636 * The idle tasks have their own, simple scheduling class:
4637 */
4638 idle->sched_class = &idle_sched_class;
868baf07 4639 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 4640 vtime_init_idle(idle, cpu);
f1c6f1a7
CE
4641#if defined(CONFIG_SMP)
4642 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
4643#endif
19978ca6
IM
4644}
4645
f82f8042
JL
4646int cpuset_cpumask_can_shrink(const struct cpumask *cur,
4647 const struct cpumask *trial)
4648{
4649 int ret = 1, trial_cpus;
4650 struct dl_bw *cur_dl_b;
4651 unsigned long flags;
4652
bb2bc55a
MG
4653 if (!cpumask_weight(cur))
4654 return ret;
4655
75e23e49 4656 rcu_read_lock_sched();
f82f8042
JL
4657 cur_dl_b = dl_bw_of(cpumask_any(cur));
4658 trial_cpus = cpumask_weight(trial);
4659
4660 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
4661 if (cur_dl_b->bw != -1 &&
4662 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
4663 ret = 0;
4664 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 4665 rcu_read_unlock_sched();
f82f8042
JL
4666
4667 return ret;
4668}
4669
7f51412a
JL
4670int task_can_attach(struct task_struct *p,
4671 const struct cpumask *cs_cpus_allowed)
4672{
4673 int ret = 0;
4674
4675 /*
4676 * Kthreads which disallow setaffinity shouldn't be moved
4677 * to a new cpuset; we don't want to change their cpu
4678 * affinity and isolating such threads by their set of
4679 * allowed nodes is unnecessary. Thus, cpusets are not
4680 * applicable for such threads. This prevents checking for
4681 * success of set_cpus_allowed_ptr() on all attached tasks
4682 * before cpus_allowed may be changed.
4683 */
4684 if (p->flags & PF_NO_SETAFFINITY) {
4685 ret = -EINVAL;
4686 goto out;
4687 }
4688
4689#ifdef CONFIG_SMP
4690 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
4691 cs_cpus_allowed)) {
4692 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
4693 cs_cpus_allowed);
75e23e49 4694 struct dl_bw *dl_b;
7f51412a
JL
4695 bool overflow;
4696 int cpus;
4697 unsigned long flags;
4698
75e23e49
JL
4699 rcu_read_lock_sched();
4700 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
4701 raw_spin_lock_irqsave(&dl_b->lock, flags);
4702 cpus = dl_bw_cpus(dest_cpu);
4703 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
4704 if (overflow)
4705 ret = -EBUSY;
4706 else {
4707 /*
4708 * We reserve space for this task in the destination
4709 * root_domain, as we can't fail after this point.
4710 * We will free resources in the source root_domain
4711 * later on (see set_cpus_allowed_dl()).
4712 */
4713 __dl_add(dl_b, p->dl.dl_bw);
4714 }
4715 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 4716 rcu_read_unlock_sched();
7f51412a
JL
4717
4718 }
4719#endif
4720out:
4721 return ret;
4722}
4723
1da177e4 4724#ifdef CONFIG_SMP
a15b12ac
KT
4725/*
4726 * move_queued_task - move a queued task to new rq.
4727 *
4728 * Returns (locked) new rq. Old rq's lock is released.
4729 */
4730static struct rq *move_queued_task(struct task_struct *p, int new_cpu)
4731{
4732 struct rq *rq = task_rq(p);
4733
4734 lockdep_assert_held(&rq->lock);
4735
4736 dequeue_task(rq, p, 0);
4737 p->on_rq = TASK_ON_RQ_MIGRATING;
4738 set_task_cpu(p, new_cpu);
4739 raw_spin_unlock(&rq->lock);
4740
4741 rq = cpu_rq(new_cpu);
4742
4743 raw_spin_lock(&rq->lock);
4744 BUG_ON(task_cpu(p) != new_cpu);
4745 p->on_rq = TASK_ON_RQ_QUEUED;
4746 enqueue_task(rq, p, 0);
4747 check_preempt_curr(rq, p, 0);
4748
4749 return rq;
4750}
4751
1e1b6c51
KM
4752void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
4753{
1b537c7d 4754 if (p->sched_class->set_cpus_allowed)
1e1b6c51 4755 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
4756
4757 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 4758 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
4759}
4760
1da177e4
LT
4761/*
4762 * This is how migration works:
4763 *
969c7921
TH
4764 * 1) we invoke migration_cpu_stop() on the target CPU using
4765 * stop_one_cpu().
4766 * 2) stopper starts to run (implicitly forcing the migrated thread
4767 * off the CPU)
4768 * 3) it checks whether the migrated task is still in the wrong runqueue.
4769 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 4770 * it and puts it into the right queue.
969c7921
TH
4771 * 5) stopper completes and stop_one_cpu() returns and the migration
4772 * is done.
1da177e4
LT
4773 */
4774
4775/*
4776 * Change a given task's CPU affinity. Migrate the thread to a
4777 * proper CPU and schedule it away if the CPU it's executing on
4778 * is removed from the allowed bitmask.
4779 *
4780 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 4781 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
4782 * call is not atomic; no spinlocks may be held.
4783 */
96f874e2 4784int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
4785{
4786 unsigned long flags;
70b97a7f 4787 struct rq *rq;
969c7921 4788 unsigned int dest_cpu;
48f24c4d 4789 int ret = 0;
1da177e4
LT
4790
4791 rq = task_rq_lock(p, &flags);
e2912009 4792
db44fc01
YZ
4793 if (cpumask_equal(&p->cpus_allowed, new_mask))
4794 goto out;
4795
6ad4c188 4796 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
4797 ret = -EINVAL;
4798 goto out;
4799 }
4800
1e1b6c51 4801 do_set_cpus_allowed(p, new_mask);
73fe6aae 4802
1da177e4 4803 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 4804 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
4805 goto out;
4806
969c7921 4807 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
a15b12ac 4808 if (task_running(rq, p) || p->state == TASK_WAKING) {
969c7921 4809 struct migration_arg arg = { p, dest_cpu };
1da177e4 4810 /* Need help from migration thread: drop lock and wait. */
0122ec5b 4811 task_rq_unlock(rq, p, &flags);
969c7921 4812 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
4813 tlb_migrate_finish(p->mm);
4814 return 0;
a15b12ac
KT
4815 } else if (task_on_rq_queued(p))
4816 rq = move_queued_task(p, dest_cpu);
1da177e4 4817out:
0122ec5b 4818 task_rq_unlock(rq, p, &flags);
48f24c4d 4819
1da177e4
LT
4820 return ret;
4821}
cd8ba7cd 4822EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
4823
4824/*
41a2d6cf 4825 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
4826 * this because either it can't run here any more (set_cpus_allowed()
4827 * away from this CPU, or CPU going down), or because we're
4828 * attempting to rebalance this task on exec (sched_exec).
4829 *
4830 * So we race with normal scheduler movements, but that's OK, as long
4831 * as the task is no longer on this CPU.
efc30814
KK
4832 *
4833 * Returns non-zero if task was successfully migrated.
1da177e4 4834 */
efc30814 4835static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 4836{
a1e01829 4837 struct rq *rq;
e2912009 4838 int ret = 0;
1da177e4 4839
e761b772 4840 if (unlikely(!cpu_active(dest_cpu)))
efc30814 4841 return ret;
1da177e4 4842
a1e01829 4843 rq = cpu_rq(src_cpu);
1da177e4 4844
0122ec5b 4845 raw_spin_lock(&p->pi_lock);
a1e01829 4846 raw_spin_lock(&rq->lock);
1da177e4
LT
4847 /* Already moved. */
4848 if (task_cpu(p) != src_cpu)
b1e38734 4849 goto done;
a1e01829 4850
1da177e4 4851 /* Affinity changed (again). */
fa17b507 4852 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 4853 goto fail;
1da177e4 4854
e2912009
PZ
4855 /*
4856 * If we're not on a rq, the next wake-up will ensure we're
4857 * placed properly.
4858 */
a15b12ac
KT
4859 if (task_on_rq_queued(p))
4860 rq = move_queued_task(p, dest_cpu);
b1e38734 4861done:
efc30814 4862 ret = 1;
b1e38734 4863fail:
a1e01829 4864 raw_spin_unlock(&rq->lock);
0122ec5b 4865 raw_spin_unlock(&p->pi_lock);
efc30814 4866 return ret;
1da177e4
LT
4867}
4868
e6628d5b
MG
4869#ifdef CONFIG_NUMA_BALANCING
4870/* Migrate current task p to target_cpu */
4871int migrate_task_to(struct task_struct *p, int target_cpu)
4872{
4873 struct migration_arg arg = { p, target_cpu };
4874 int curr_cpu = task_cpu(p);
4875
4876 if (curr_cpu == target_cpu)
4877 return 0;
4878
4879 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
4880 return -EINVAL;
4881
4882 /* TODO: This is not properly updating schedstats */
4883
286549dc 4884 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
4885 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
4886}
0ec8aa00
PZ
4887
4888/*
4889 * Requeue a task on a given node and accurately track the number of NUMA
4890 * tasks on the runqueues
4891 */
4892void sched_setnuma(struct task_struct *p, int nid)
4893{
4894 struct rq *rq;
4895 unsigned long flags;
da0c1e65 4896 bool queued, running;
0ec8aa00
PZ
4897
4898 rq = task_rq_lock(p, &flags);
da0c1e65 4899 queued = task_on_rq_queued(p);
0ec8aa00
PZ
4900 running = task_current(rq, p);
4901
da0c1e65 4902 if (queued)
0ec8aa00
PZ
4903 dequeue_task(rq, p, 0);
4904 if (running)
f3cd1c4e 4905 put_prev_task(rq, p);
0ec8aa00
PZ
4906
4907 p->numa_preferred_nid = nid;
0ec8aa00
PZ
4908
4909 if (running)
4910 p->sched_class->set_curr_task(rq);
da0c1e65 4911 if (queued)
0ec8aa00
PZ
4912 enqueue_task(rq, p, 0);
4913 task_rq_unlock(rq, p, &flags);
4914}
e6628d5b
MG
4915#endif
4916
1da177e4 4917/*
969c7921
TH
4918 * migration_cpu_stop - this will be executed by a highprio stopper thread
4919 * and performs thread migration by bumping thread off CPU then
4920 * 'pushing' onto another runqueue.
1da177e4 4921 */
969c7921 4922static int migration_cpu_stop(void *data)
1da177e4 4923{
969c7921 4924 struct migration_arg *arg = data;
f7b4cddc 4925
969c7921
TH
4926 /*
4927 * The original target cpu might have gone down and we might
4928 * be on another cpu but it doesn't matter.
4929 */
f7b4cddc 4930 local_irq_disable();
5cd038f5
LJ
4931 /*
4932 * We need to explicitly wake pending tasks before running
4933 * __migrate_task() such that we will not miss enforcing cpus_allowed
4934 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
4935 */
4936 sched_ttwu_pending();
969c7921 4937 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 4938 local_irq_enable();
1da177e4 4939 return 0;
f7b4cddc
ON
4940}
4941
1da177e4 4942#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 4943
054b9108 4944/*
48c5ccae
PZ
4945 * Ensures that the idle task is using init_mm right before its cpu goes
4946 * offline.
054b9108 4947 */
48c5ccae 4948void idle_task_exit(void)
1da177e4 4949{
48c5ccae 4950 struct mm_struct *mm = current->active_mm;
e76bd8d9 4951
48c5ccae 4952 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 4953
a53efe5f 4954 if (mm != &init_mm) {
48c5ccae 4955 switch_mm(mm, &init_mm, current);
a53efe5f
MS
4956 finish_arch_post_lock_switch();
4957 }
48c5ccae 4958 mmdrop(mm);
1da177e4
LT
4959}
4960
4961/*
5d180232
PZ
4962 * Since this CPU is going 'away' for a while, fold any nr_active delta
4963 * we might have. Assumes we're called after migrate_tasks() so that the
4964 * nr_active count is stable.
4965 *
4966 * Also see the comment "Global load-average calculations".
1da177e4 4967 */
5d180232 4968static void calc_load_migrate(struct rq *rq)
1da177e4 4969{
5d180232
PZ
4970 long delta = calc_load_fold_active(rq);
4971 if (delta)
4972 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
4973}
4974
3f1d2a31
PZ
4975static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
4976{
4977}
4978
4979static const struct sched_class fake_sched_class = {
4980 .put_prev_task = put_prev_task_fake,
4981};
4982
4983static struct task_struct fake_task = {
4984 /*
4985 * Avoid pull_{rt,dl}_task()
4986 */
4987 .prio = MAX_PRIO + 1,
4988 .sched_class = &fake_sched_class,
4989};
4990
48f24c4d 4991/*
48c5ccae
PZ
4992 * Migrate all tasks from the rq, sleeping tasks will be migrated by
4993 * try_to_wake_up()->select_task_rq().
4994 *
4995 * Called with rq->lock held even though we'er in stop_machine() and
4996 * there's no concurrency possible, we hold the required locks anyway
4997 * because of lock validation efforts.
1da177e4 4998 */
48c5ccae 4999static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5000{
70b97a7f 5001 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5002 struct task_struct *next, *stop = rq->stop;
5003 int dest_cpu;
1da177e4
LT
5004
5005 /*
48c5ccae
PZ
5006 * Fudge the rq selection such that the below task selection loop
5007 * doesn't get stuck on the currently eligible stop task.
5008 *
5009 * We're currently inside stop_machine() and the rq is either stuck
5010 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5011 * either way we should never end up calling schedule() until we're
5012 * done here.
1da177e4 5013 */
48c5ccae 5014 rq->stop = NULL;
48f24c4d 5015
77bd3970
FW
5016 /*
5017 * put_prev_task() and pick_next_task() sched
5018 * class method both need to have an up-to-date
5019 * value of rq->clock[_task]
5020 */
5021 update_rq_clock(rq);
5022
dd41f596 5023 for ( ; ; ) {
48c5ccae
PZ
5024 /*
5025 * There's this thread running, bail when that's the only
5026 * remaining thread.
5027 */
5028 if (rq->nr_running == 1)
dd41f596 5029 break;
48c5ccae 5030
3f1d2a31 5031 next = pick_next_task(rq, &fake_task);
48c5ccae 5032 BUG_ON(!next);
79c53799 5033 next->sched_class->put_prev_task(rq, next);
e692ab53 5034
48c5ccae
PZ
5035 /* Find suitable destination for @next, with force if needed. */
5036 dest_cpu = select_fallback_rq(dead_cpu, next);
5037 raw_spin_unlock(&rq->lock);
5038
5039 __migrate_task(next, dead_cpu, dest_cpu);
5040
5041 raw_spin_lock(&rq->lock);
1da177e4 5042 }
dce48a84 5043
48c5ccae 5044 rq->stop = stop;
dce48a84 5045}
48c5ccae 5046
1da177e4
LT
5047#endif /* CONFIG_HOTPLUG_CPU */
5048
e692ab53
NP
5049#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5050
5051static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5052 {
5053 .procname = "sched_domain",
c57baf1e 5054 .mode = 0555,
e0361851 5055 },
56992309 5056 {}
e692ab53
NP
5057};
5058
5059static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5060 {
5061 .procname = "kernel",
c57baf1e 5062 .mode = 0555,
e0361851
AD
5063 .child = sd_ctl_dir,
5064 },
56992309 5065 {}
e692ab53
NP
5066};
5067
5068static struct ctl_table *sd_alloc_ctl_entry(int n)
5069{
5070 struct ctl_table *entry =
5cf9f062 5071 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5072
e692ab53
NP
5073 return entry;
5074}
5075
6382bc90
MM
5076static void sd_free_ctl_entry(struct ctl_table **tablep)
5077{
cd790076 5078 struct ctl_table *entry;
6382bc90 5079
cd790076
MM
5080 /*
5081 * In the intermediate directories, both the child directory and
5082 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5083 * will always be set. In the lowest directory the names are
cd790076
MM
5084 * static strings and all have proc handlers.
5085 */
5086 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5087 if (entry->child)
5088 sd_free_ctl_entry(&entry->child);
cd790076
MM
5089 if (entry->proc_handler == NULL)
5090 kfree(entry->procname);
5091 }
6382bc90
MM
5092
5093 kfree(*tablep);
5094 *tablep = NULL;
5095}
5096
201c373e 5097static int min_load_idx = 0;
fd9b86d3 5098static int max_load_idx = CPU_LOAD_IDX_MAX-1;
201c373e 5099
e692ab53 5100static void
e0361851 5101set_table_entry(struct ctl_table *entry,
e692ab53 5102 const char *procname, void *data, int maxlen,
201c373e
NK
5103 umode_t mode, proc_handler *proc_handler,
5104 bool load_idx)
e692ab53 5105{
e692ab53
NP
5106 entry->procname = procname;
5107 entry->data = data;
5108 entry->maxlen = maxlen;
5109 entry->mode = mode;
5110 entry->proc_handler = proc_handler;
201c373e
NK
5111
5112 if (load_idx) {
5113 entry->extra1 = &min_load_idx;
5114 entry->extra2 = &max_load_idx;
5115 }
e692ab53
NP
5116}
5117
5118static struct ctl_table *
5119sd_alloc_ctl_domain_table(struct sched_domain *sd)
5120{
37e6bae8 5121 struct ctl_table *table = sd_alloc_ctl_entry(14);
e692ab53 5122
ad1cdc1d
MM
5123 if (table == NULL)
5124 return NULL;
5125
e0361851 5126 set_table_entry(&table[0], "min_interval", &sd->min_interval,
201c373e 5127 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5128 set_table_entry(&table[1], "max_interval", &sd->max_interval,
201c373e 5129 sizeof(long), 0644, proc_doulongvec_minmax, false);
e0361851 5130 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
201c373e 5131 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5132 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
201c373e 5133 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5134 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
201c373e 5135 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5136 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
201c373e 5137 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5138 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
201c373e 5139 sizeof(int), 0644, proc_dointvec_minmax, true);
e0361851 5140 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
201c373e 5141 sizeof(int), 0644, proc_dointvec_minmax, false);
e0361851 5142 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
201c373e 5143 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5144 set_table_entry(&table[9], "cache_nice_tries",
e692ab53 5145 &sd->cache_nice_tries,
201c373e 5146 sizeof(int), 0644, proc_dointvec_minmax, false);
ace8b3d6 5147 set_table_entry(&table[10], "flags", &sd->flags,
201c373e 5148 sizeof(int), 0644, proc_dointvec_minmax, false);
37e6bae8
AS
5149 set_table_entry(&table[11], "max_newidle_lb_cost",
5150 &sd->max_newidle_lb_cost,
5151 sizeof(long), 0644, proc_doulongvec_minmax, false);
5152 set_table_entry(&table[12], "name", sd->name,
201c373e 5153 CORENAME_MAX_SIZE, 0444, proc_dostring, false);
37e6bae8 5154 /* &table[13] is terminator */
e692ab53
NP
5155
5156 return table;
5157}
5158
be7002e6 5159static struct ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5160{
5161 struct ctl_table *entry, *table;
5162 struct sched_domain *sd;
5163 int domain_num = 0, i;
5164 char buf[32];
5165
5166 for_each_domain(cpu, sd)
5167 domain_num++;
5168 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5169 if (table == NULL)
5170 return NULL;
e692ab53
NP
5171
5172 i = 0;
5173 for_each_domain(cpu, sd) {
5174 snprintf(buf, 32, "domain%d", i);
e692ab53 5175 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5176 entry->mode = 0555;
e692ab53
NP
5177 entry->child = sd_alloc_ctl_domain_table(sd);
5178 entry++;
5179 i++;
5180 }
5181 return table;
5182}
5183
5184static struct ctl_table_header *sd_sysctl_header;
6382bc90 5185static void register_sched_domain_sysctl(void)
e692ab53 5186{
6ad4c188 5187 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5188 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5189 char buf[32];
5190
7378547f
MM
5191 WARN_ON(sd_ctl_dir[0].child);
5192 sd_ctl_dir[0].child = entry;
5193
ad1cdc1d
MM
5194 if (entry == NULL)
5195 return;
5196
6ad4c188 5197 for_each_possible_cpu(i) {
e692ab53 5198 snprintf(buf, 32, "cpu%d", i);
e692ab53 5199 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5200 entry->mode = 0555;
e692ab53 5201 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5202 entry++;
e692ab53 5203 }
7378547f
MM
5204
5205 WARN_ON(sd_sysctl_header);
e692ab53
NP
5206 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5207}
6382bc90 5208
7378547f 5209/* may be called multiple times per register */
6382bc90
MM
5210static void unregister_sched_domain_sysctl(void)
5211{
7378547f
MM
5212 if (sd_sysctl_header)
5213 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5214 sd_sysctl_header = NULL;
7378547f
MM
5215 if (sd_ctl_dir[0].child)
5216 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5217}
e692ab53 5218#else
6382bc90
MM
5219static void register_sched_domain_sysctl(void)
5220{
5221}
5222static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5223{
5224}
5225#endif
5226
1f11eb6a
GH
5227static void set_rq_online(struct rq *rq)
5228{
5229 if (!rq->online) {
5230 const struct sched_class *class;
5231
c6c4927b 5232 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5233 rq->online = 1;
5234
5235 for_each_class(class) {
5236 if (class->rq_online)
5237 class->rq_online(rq);
5238 }
5239 }
5240}
5241
5242static void set_rq_offline(struct rq *rq)
5243{
5244 if (rq->online) {
5245 const struct sched_class *class;
5246
5247 for_each_class(class) {
5248 if (class->rq_offline)
5249 class->rq_offline(rq);
5250 }
5251
c6c4927b 5252 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5253 rq->online = 0;
5254 }
5255}
5256
1da177e4
LT
5257/*
5258 * migration_call - callback that gets triggered when a CPU is added.
5259 * Here we can start up the necessary migration thread for the new CPU.
5260 */
0db0628d 5261static int
48f24c4d 5262migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5263{
48f24c4d 5264 int cpu = (long)hcpu;
1da177e4 5265 unsigned long flags;
969c7921 5266 struct rq *rq = cpu_rq(cpu);
1da177e4 5267
48c5ccae 5268 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5269
1da177e4 5270 case CPU_UP_PREPARE:
a468d389 5271 rq->calc_load_update = calc_load_update;
1da177e4 5272 break;
48f24c4d 5273
1da177e4 5274 case CPU_ONLINE:
1f94ef59 5275 /* Update our root-domain */
05fa785c 5276 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5277 if (rq->rd) {
c6c4927b 5278 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5279
5280 set_rq_online(rq);
1f94ef59 5281 }
05fa785c 5282 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5283 break;
48f24c4d 5284
1da177e4 5285#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5286 case CPU_DYING:
317f3941 5287 sched_ttwu_pending();
57d885fe 5288 /* Update our root-domain */
05fa785c 5289 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5290 if (rq->rd) {
c6c4927b 5291 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5292 set_rq_offline(rq);
57d885fe 5293 }
48c5ccae
PZ
5294 migrate_tasks(cpu);
5295 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5296 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5297 break;
48c5ccae 5298
5d180232 5299 case CPU_DEAD:
f319da0c 5300 calc_load_migrate(rq);
57d885fe 5301 break;
1da177e4
LT
5302#endif
5303 }
49c022e6
PZ
5304
5305 update_max_interval();
5306
1da177e4
LT
5307 return NOTIFY_OK;
5308}
5309
f38b0820
PM
5310/*
5311 * Register at high priority so that task migration (migrate_all_tasks)
5312 * happens before everything else. This has to be lower priority than
cdd6c482 5313 * the notifier in the perf_event subsystem, though.
1da177e4 5314 */
0db0628d 5315static struct notifier_block migration_notifier = {
1da177e4 5316 .notifier_call = migration_call,
50a323b7 5317 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5318};
5319
a803f026
CM
5320static void __cpuinit set_cpu_rq_start_time(void)
5321{
5322 int cpu = smp_processor_id();
5323 struct rq *rq = cpu_rq(cpu);
5324 rq->age_stamp = sched_clock_cpu(cpu);
5325}
5326
0db0628d 5327static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5328 unsigned long action, void *hcpu)
5329{
5330 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5331 case CPU_STARTING:
5332 set_cpu_rq_start_time();
5333 return NOTIFY_OK;
3a101d05
TH
5334 case CPU_DOWN_FAILED:
5335 set_cpu_active((long)hcpu, true);
5336 return NOTIFY_OK;
5337 default:
5338 return NOTIFY_DONE;
5339 }
5340}
5341
0db0628d 5342static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5343 unsigned long action, void *hcpu)
5344{
5345 switch (action & ~CPU_TASKS_FROZEN) {
5346 case CPU_DOWN_PREPARE:
3c18d447 5347 set_cpu_active((long)hcpu, false);
3a101d05 5348 return NOTIFY_OK;
3c18d447
JL
5349 default:
5350 return NOTIFY_DONE;
3a101d05
TH
5351 }
5352}
5353
7babe8db 5354static int __init migration_init(void)
1da177e4
LT
5355{
5356 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5357 int err;
48f24c4d 5358
3a101d05 5359 /* Initialize migration for the boot CPU */
07dccf33
AM
5360 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5361 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5362 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5363 register_cpu_notifier(&migration_notifier);
7babe8db 5364
3a101d05
TH
5365 /* Register cpu active notifiers */
5366 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5367 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5368
a004cd42 5369 return 0;
1da177e4 5370}
7babe8db 5371early_initcall(migration_init);
1da177e4
LT
5372#endif
5373
5374#ifdef CONFIG_SMP
476f3534 5375
4cb98839
PZ
5376static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5377
3e9830dc 5378#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5379
d039ac60 5380static __read_mostly int sched_debug_enabled;
f6630114 5381
d039ac60 5382static int __init sched_debug_setup(char *str)
f6630114 5383{
d039ac60 5384 sched_debug_enabled = 1;
f6630114
MT
5385
5386 return 0;
5387}
d039ac60
PZ
5388early_param("sched_debug", sched_debug_setup);
5389
5390static inline bool sched_debug(void)
5391{
5392 return sched_debug_enabled;
5393}
f6630114 5394
7c16ec58 5395static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5396 struct cpumask *groupmask)
1da177e4 5397{
4dcf6aff 5398 struct sched_group *group = sd->groups;
1da177e4 5399
96f874e2 5400 cpumask_clear(groupmask);
4dcf6aff
IM
5401
5402 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5403
5404 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5405 printk("does not load-balance\n");
4dcf6aff 5406 if (sd->parent)
3df0fc5b
PZ
5407 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5408 " has parent");
4dcf6aff 5409 return -1;
41c7ce9a
NP
5410 }
5411
333470ee
TH
5412 printk(KERN_CONT "span %*pbl level %s\n",
5413 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5414
758b2cdc 5415 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5416 printk(KERN_ERR "ERROR: domain->span does not contain "
5417 "CPU%d\n", cpu);
4dcf6aff 5418 }
758b2cdc 5419 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5420 printk(KERN_ERR "ERROR: domain->groups does not contain"
5421 " CPU%d\n", cpu);
4dcf6aff 5422 }
1da177e4 5423
4dcf6aff 5424 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5425 do {
4dcf6aff 5426 if (!group) {
3df0fc5b
PZ
5427 printk("\n");
5428 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5429 break;
5430 }
5431
758b2cdc 5432 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5433 printk(KERN_CONT "\n");
5434 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5435 break;
5436 }
1da177e4 5437
cb83b629
PZ
5438 if (!(sd->flags & SD_OVERLAP) &&
5439 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5440 printk(KERN_CONT "\n");
5441 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5442 break;
5443 }
1da177e4 5444
758b2cdc 5445 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5446
333470ee
TH
5447 printk(KERN_CONT " %*pbl",
5448 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5449 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5450 printk(KERN_CONT " (cpu_capacity = %d)",
5451 group->sgc->capacity);
381512cf 5452 }
1da177e4 5453
4dcf6aff
IM
5454 group = group->next;
5455 } while (group != sd->groups);
3df0fc5b 5456 printk(KERN_CONT "\n");
1da177e4 5457
758b2cdc 5458 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5459 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5460
758b2cdc
RR
5461 if (sd->parent &&
5462 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5463 printk(KERN_ERR "ERROR: parent span is not a superset "
5464 "of domain->span\n");
4dcf6aff
IM
5465 return 0;
5466}
1da177e4 5467
4dcf6aff
IM
5468static void sched_domain_debug(struct sched_domain *sd, int cpu)
5469{
5470 int level = 0;
1da177e4 5471
d039ac60 5472 if (!sched_debug_enabled)
f6630114
MT
5473 return;
5474
4dcf6aff
IM
5475 if (!sd) {
5476 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5477 return;
5478 }
1da177e4 5479
4dcf6aff
IM
5480 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5481
5482 for (;;) {
4cb98839 5483 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5484 break;
1da177e4
LT
5485 level++;
5486 sd = sd->parent;
33859f7f 5487 if (!sd)
4dcf6aff
IM
5488 break;
5489 }
1da177e4 5490}
6d6bc0ad 5491#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5492# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5493static inline bool sched_debug(void)
5494{
5495 return false;
5496}
6d6bc0ad 5497#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5498
1a20ff27 5499static int sd_degenerate(struct sched_domain *sd)
245af2c7 5500{
758b2cdc 5501 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5502 return 1;
5503
5504 /* Following flags need at least 2 groups */
5505 if (sd->flags & (SD_LOAD_BALANCE |
5506 SD_BALANCE_NEWIDLE |
5507 SD_BALANCE_FORK |
89c4710e 5508 SD_BALANCE_EXEC |
5d4dfddd 5509 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5510 SD_SHARE_PKG_RESOURCES |
5511 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5512 if (sd->groups != sd->groups->next)
5513 return 0;
5514 }
5515
5516 /* Following flags don't use groups */
c88d5910 5517 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5518 return 0;
5519
5520 return 1;
5521}
5522
48f24c4d
IM
5523static int
5524sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5525{
5526 unsigned long cflags = sd->flags, pflags = parent->flags;
5527
5528 if (sd_degenerate(parent))
5529 return 1;
5530
758b2cdc 5531 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5532 return 0;
5533
245af2c7
SS
5534 /* Flags needing groups don't count if only 1 group in parent */
5535 if (parent->groups == parent->groups->next) {
5536 pflags &= ~(SD_LOAD_BALANCE |
5537 SD_BALANCE_NEWIDLE |
5538 SD_BALANCE_FORK |
89c4710e 5539 SD_BALANCE_EXEC |
5d4dfddd 5540 SD_SHARE_CPUCAPACITY |
10866e62 5541 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5542 SD_PREFER_SIBLING |
5543 SD_SHARE_POWERDOMAIN);
5436499e
KC
5544 if (nr_node_ids == 1)
5545 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5546 }
5547 if (~cflags & pflags)
5548 return 0;
5549
5550 return 1;
5551}
5552
dce840a0 5553static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5554{
dce840a0 5555 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5556
68e74568 5557 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5558 cpudl_cleanup(&rd->cpudl);
1baca4ce 5559 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5560 free_cpumask_var(rd->rto_mask);
5561 free_cpumask_var(rd->online);
5562 free_cpumask_var(rd->span);
5563 kfree(rd);
5564}
5565
57d885fe
GH
5566static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5567{
a0490fa3 5568 struct root_domain *old_rd = NULL;
57d885fe 5569 unsigned long flags;
57d885fe 5570
05fa785c 5571 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5572
5573 if (rq->rd) {
a0490fa3 5574 old_rd = rq->rd;
57d885fe 5575
c6c4927b 5576 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5577 set_rq_offline(rq);
57d885fe 5578
c6c4927b 5579 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5580
a0490fa3 5581 /*
0515973f 5582 * If we dont want to free the old_rd yet then
a0490fa3
IM
5583 * set old_rd to NULL to skip the freeing later
5584 * in this function:
5585 */
5586 if (!atomic_dec_and_test(&old_rd->refcount))
5587 old_rd = NULL;
57d885fe
GH
5588 }
5589
5590 atomic_inc(&rd->refcount);
5591 rq->rd = rd;
5592
c6c4927b 5593 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5594 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5595 set_rq_online(rq);
57d885fe 5596
05fa785c 5597 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5598
5599 if (old_rd)
dce840a0 5600 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5601}
5602
68c38fc3 5603static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5604{
5605 memset(rd, 0, sizeof(*rd));
5606
68c38fc3 5607 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5608 goto out;
68c38fc3 5609 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5610 goto free_span;
1baca4ce 5611 if (!alloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5612 goto free_online;
1baca4ce
JL
5613 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
5614 goto free_dlo_mask;
6e0534f2 5615
332ac17e 5616 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5617 if (cpudl_init(&rd->cpudl) != 0)
5618 goto free_dlo_mask;
332ac17e 5619
68c38fc3 5620 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5621 goto free_rto_mask;
c6c4927b 5622 return 0;
6e0534f2 5623
68e74568
RR
5624free_rto_mask:
5625 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5626free_dlo_mask:
5627 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5628free_online:
5629 free_cpumask_var(rd->online);
5630free_span:
5631 free_cpumask_var(rd->span);
0c910d28 5632out:
c6c4927b 5633 return -ENOMEM;
57d885fe
GH
5634}
5635
029632fb
PZ
5636/*
5637 * By default the system creates a single root-domain with all cpus as
5638 * members (mimicking the global state we have today).
5639 */
5640struct root_domain def_root_domain;
5641
57d885fe
GH
5642static void init_defrootdomain(void)
5643{
68c38fc3 5644 init_rootdomain(&def_root_domain);
c6c4927b 5645
57d885fe
GH
5646 atomic_set(&def_root_domain.refcount, 1);
5647}
5648
dc938520 5649static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5650{
5651 struct root_domain *rd;
5652
5653 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5654 if (!rd)
5655 return NULL;
5656
68c38fc3 5657 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5658 kfree(rd);
5659 return NULL;
5660 }
57d885fe
GH
5661
5662 return rd;
5663}
5664
63b2ca30 5665static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5666{
5667 struct sched_group *tmp, *first;
5668
5669 if (!sg)
5670 return;
5671
5672 first = sg;
5673 do {
5674 tmp = sg->next;
5675
63b2ca30
NP
5676 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5677 kfree(sg->sgc);
e3589f6c
PZ
5678
5679 kfree(sg);
5680 sg = tmp;
5681 } while (sg != first);
5682}
5683
dce840a0
PZ
5684static void free_sched_domain(struct rcu_head *rcu)
5685{
5686 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5687
5688 /*
5689 * If its an overlapping domain it has private groups, iterate and
5690 * nuke them all.
5691 */
5692 if (sd->flags & SD_OVERLAP) {
5693 free_sched_groups(sd->groups, 1);
5694 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5695 kfree(sd->groups->sgc);
dce840a0 5696 kfree(sd->groups);
9c3f75cb 5697 }
dce840a0
PZ
5698 kfree(sd);
5699}
5700
5701static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5702{
5703 call_rcu(&sd->rcu, free_sched_domain);
5704}
5705
5706static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5707{
5708 for (; sd; sd = sd->parent)
5709 destroy_sched_domain(sd, cpu);
5710}
5711
518cd623
PZ
5712/*
5713 * Keep a special pointer to the highest sched_domain that has
5714 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5715 * allows us to avoid some pointer chasing select_idle_sibling().
5716 *
5717 * Also keep a unique ID per domain (we use the first cpu number in
5718 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5719 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5720 */
5721DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5722DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5723DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5724DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5725DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5726DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5727
5728static void update_top_cache_domain(int cpu)
5729{
5730 struct sched_domain *sd;
5d4cf996 5731 struct sched_domain *busy_sd = NULL;
518cd623 5732 int id = cpu;
7d9ffa89 5733 int size = 1;
518cd623
PZ
5734
5735 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5736 if (sd) {
518cd623 5737 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5738 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5739 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5740 }
5d4cf996 5741 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5742
5743 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5744 per_cpu(sd_llc_size, cpu) = size;
518cd623 5745 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5746
5747 sd = lowest_flag_domain(cpu, SD_NUMA);
5748 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5749
5750 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5751 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5752}
5753
1da177e4 5754/*
0eab9146 5755 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5756 * hold the hotplug lock.
5757 */
0eab9146
IM
5758static void
5759cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5760{
70b97a7f 5761 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5762 struct sched_domain *tmp;
5763
5764 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5765 for (tmp = sd; tmp; ) {
245af2c7
SS
5766 struct sched_domain *parent = tmp->parent;
5767 if (!parent)
5768 break;
f29c9b1c 5769
1a848870 5770 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5771 tmp->parent = parent->parent;
1a848870
SS
5772 if (parent->parent)
5773 parent->parent->child = tmp;
10866e62
PZ
5774 /*
5775 * Transfer SD_PREFER_SIBLING down in case of a
5776 * degenerate parent; the spans match for this
5777 * so the property transfers.
5778 */
5779 if (parent->flags & SD_PREFER_SIBLING)
5780 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5781 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5782 } else
5783 tmp = tmp->parent;
245af2c7
SS
5784 }
5785
1a848870 5786 if (sd && sd_degenerate(sd)) {
dce840a0 5787 tmp = sd;
245af2c7 5788 sd = sd->parent;
dce840a0 5789 destroy_sched_domain(tmp, cpu);
1a848870
SS
5790 if (sd)
5791 sd->child = NULL;
5792 }
1da177e4 5793
4cb98839 5794 sched_domain_debug(sd, cpu);
1da177e4 5795
57d885fe 5796 rq_attach_root(rq, rd);
dce840a0 5797 tmp = rq->sd;
674311d5 5798 rcu_assign_pointer(rq->sd, sd);
dce840a0 5799 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5800
5801 update_top_cache_domain(cpu);
1da177e4
LT
5802}
5803
1da177e4
LT
5804/* Setup the mask of cpus configured for isolated domains */
5805static int __init isolated_cpu_setup(char *str)
5806{
bdddd296 5807 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5808 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5809 return 1;
5810}
5811
8927f494 5812__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5813
49a02c51 5814struct s_data {
21d42ccf 5815 struct sched_domain ** __percpu sd;
49a02c51
AH
5816 struct root_domain *rd;
5817};
5818
2109b99e 5819enum s_alloc {
2109b99e 5820 sa_rootdomain,
21d42ccf 5821 sa_sd,
dce840a0 5822 sa_sd_storage,
2109b99e
AH
5823 sa_none,
5824};
5825
c1174876
PZ
5826/*
5827 * Build an iteration mask that can exclude certain CPUs from the upwards
5828 * domain traversal.
5829 *
5830 * Asymmetric node setups can result in situations where the domain tree is of
5831 * unequal depth, make sure to skip domains that already cover the entire
5832 * range.
5833 *
5834 * In that case build_sched_domains() will have terminated the iteration early
5835 * and our sibling sd spans will be empty. Domains should always include the
5836 * cpu they're built on, so check that.
5837 *
5838 */
5839static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5840{
5841 const struct cpumask *span = sched_domain_span(sd);
5842 struct sd_data *sdd = sd->private;
5843 struct sched_domain *sibling;
5844 int i;
5845
5846 for_each_cpu(i, span) {
5847 sibling = *per_cpu_ptr(sdd->sd, i);
5848 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5849 continue;
5850
5851 cpumask_set_cpu(i, sched_group_mask(sg));
5852 }
5853}
5854
5855/*
5856 * Return the canonical balance cpu for this group, this is the first cpu
5857 * of this group that's also in the iteration mask.
5858 */
5859int group_balance_cpu(struct sched_group *sg)
5860{
5861 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5862}
5863
e3589f6c
PZ
5864static int
5865build_overlap_sched_groups(struct sched_domain *sd, int cpu)
5866{
5867 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
5868 const struct cpumask *span = sched_domain_span(sd);
5869 struct cpumask *covered = sched_domains_tmpmask;
5870 struct sd_data *sdd = sd->private;
aaecac4a 5871 struct sched_domain *sibling;
e3589f6c
PZ
5872 int i;
5873
5874 cpumask_clear(covered);
5875
5876 for_each_cpu(i, span) {
5877 struct cpumask *sg_span;
5878
5879 if (cpumask_test_cpu(i, covered))
5880 continue;
5881
aaecac4a 5882 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
5883
5884 /* See the comment near build_group_mask(). */
aaecac4a 5885 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
5886 continue;
5887
e3589f6c 5888 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 5889 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
5890
5891 if (!sg)
5892 goto fail;
5893
5894 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
5895 if (sibling->child)
5896 cpumask_copy(sg_span, sched_domain_span(sibling->child));
5897 else
e3589f6c
PZ
5898 cpumask_set_cpu(i, sg_span);
5899
5900 cpumask_or(covered, covered, sg_span);
5901
63b2ca30
NP
5902 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
5903 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
5904 build_group_mask(sd, sg);
5905
c3decf0d 5906 /*
63b2ca30 5907 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
5908 * domains and no possible iteration will get us here, we won't
5909 * die on a /0 trap.
5910 */
ca8ce3d0 5911 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 5912
c1174876
PZ
5913 /*
5914 * Make sure the first group of this domain contains the
5915 * canonical balance cpu. Otherwise the sched_domain iteration
5916 * breaks. See update_sg_lb_stats().
5917 */
74a5ce20 5918 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 5919 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
5920 groups = sg;
5921
5922 if (!first)
5923 first = sg;
5924 if (last)
5925 last->next = sg;
5926 last = sg;
5927 last->next = first;
5928 }
5929 sd->groups = groups;
5930
5931 return 0;
5932
5933fail:
5934 free_sched_groups(first, 0);
5935
5936 return -ENOMEM;
5937}
5938
dce840a0 5939static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 5940{
dce840a0
PZ
5941 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
5942 struct sched_domain *child = sd->child;
1da177e4 5943
dce840a0
PZ
5944 if (child)
5945 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 5946
9c3f75cb 5947 if (sg) {
dce840a0 5948 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
5949 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
5950 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 5951 }
dce840a0
PZ
5952
5953 return cpu;
1e9f28fa 5954}
1e9f28fa 5955
01a08546 5956/*
dce840a0
PZ
5957 * build_sched_groups will build a circular linked list of the groups
5958 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 5959 * and ->cpu_capacity to 0.
e3589f6c
PZ
5960 *
5961 * Assumes the sched_domain tree is fully constructed
01a08546 5962 */
e3589f6c
PZ
5963static int
5964build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 5965{
dce840a0
PZ
5966 struct sched_group *first = NULL, *last = NULL;
5967 struct sd_data *sdd = sd->private;
5968 const struct cpumask *span = sched_domain_span(sd);
f96225fd 5969 struct cpumask *covered;
dce840a0 5970 int i;
9c1cfda2 5971
e3589f6c
PZ
5972 get_group(cpu, sdd, &sd->groups);
5973 atomic_inc(&sd->groups->ref);
5974
0936629f 5975 if (cpu != cpumask_first(span))
e3589f6c
PZ
5976 return 0;
5977
f96225fd
PZ
5978 lockdep_assert_held(&sched_domains_mutex);
5979 covered = sched_domains_tmpmask;
5980
dce840a0 5981 cpumask_clear(covered);
6711cab4 5982
dce840a0
PZ
5983 for_each_cpu(i, span) {
5984 struct sched_group *sg;
cd08e923 5985 int group, j;
6711cab4 5986
dce840a0
PZ
5987 if (cpumask_test_cpu(i, covered))
5988 continue;
6711cab4 5989
cd08e923 5990 group = get_group(i, sdd, &sg);
c1174876 5991 cpumask_setall(sched_group_mask(sg));
0601a88d 5992
dce840a0
PZ
5993 for_each_cpu(j, span) {
5994 if (get_group(j, sdd, NULL) != group)
5995 continue;
0601a88d 5996
dce840a0
PZ
5997 cpumask_set_cpu(j, covered);
5998 cpumask_set_cpu(j, sched_group_cpus(sg));
5999 }
0601a88d 6000
dce840a0
PZ
6001 if (!first)
6002 first = sg;
6003 if (last)
6004 last->next = sg;
6005 last = sg;
6006 }
6007 last->next = first;
e3589f6c
PZ
6008
6009 return 0;
0601a88d 6010}
51888ca2 6011
89c4710e 6012/*
63b2ca30 6013 * Initialize sched groups cpu_capacity.
89c4710e 6014 *
63b2ca30 6015 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6016 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6017 * Typically cpu_capacity for all the groups in a sched domain will be same
6018 * unless there are asymmetries in the topology. If there are asymmetries,
6019 * group having more cpu_capacity will pickup more load compared to the
6020 * group having less cpu_capacity.
89c4710e 6021 */
63b2ca30 6022static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6023{
e3589f6c 6024 struct sched_group *sg = sd->groups;
89c4710e 6025
94c95ba6 6026 WARN_ON(!sg);
e3589f6c
PZ
6027
6028 do {
6029 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6030 sg = sg->next;
6031 } while (sg != sd->groups);
89c4710e 6032
c1174876 6033 if (cpu != group_balance_cpu(sg))
e3589f6c 6034 return;
aae6d3dd 6035
63b2ca30
NP
6036 update_group_capacity(sd, cpu);
6037 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6038}
6039
7c16ec58
MT
6040/*
6041 * Initializers for schedule domains
6042 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6043 */
6044
1d3504fc 6045static int default_relax_domain_level = -1;
60495e77 6046int sched_domain_level_max;
1d3504fc
HS
6047
6048static int __init setup_relax_domain_level(char *str)
6049{
a841f8ce
DS
6050 if (kstrtoint(str, 0, &default_relax_domain_level))
6051 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6052
1d3504fc
HS
6053 return 1;
6054}
6055__setup("relax_domain_level=", setup_relax_domain_level);
6056
6057static void set_domain_attribute(struct sched_domain *sd,
6058 struct sched_domain_attr *attr)
6059{
6060 int request;
6061
6062 if (!attr || attr->relax_domain_level < 0) {
6063 if (default_relax_domain_level < 0)
6064 return;
6065 else
6066 request = default_relax_domain_level;
6067 } else
6068 request = attr->relax_domain_level;
6069 if (request < sd->level) {
6070 /* turn off idle balance on this domain */
c88d5910 6071 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6072 } else {
6073 /* turn on idle balance on this domain */
c88d5910 6074 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6075 }
6076}
6077
54ab4ff4
PZ
6078static void __sdt_free(const struct cpumask *cpu_map);
6079static int __sdt_alloc(const struct cpumask *cpu_map);
6080
2109b99e
AH
6081static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6082 const struct cpumask *cpu_map)
6083{
6084 switch (what) {
2109b99e 6085 case sa_rootdomain:
822ff793
PZ
6086 if (!atomic_read(&d->rd->refcount))
6087 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6088 case sa_sd:
6089 free_percpu(d->sd); /* fall through */
dce840a0 6090 case sa_sd_storage:
54ab4ff4 6091 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6092 case sa_none:
6093 break;
6094 }
6095}
3404c8d9 6096
2109b99e
AH
6097static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6098 const struct cpumask *cpu_map)
6099{
dce840a0
PZ
6100 memset(d, 0, sizeof(*d));
6101
54ab4ff4
PZ
6102 if (__sdt_alloc(cpu_map))
6103 return sa_sd_storage;
dce840a0
PZ
6104 d->sd = alloc_percpu(struct sched_domain *);
6105 if (!d->sd)
6106 return sa_sd_storage;
2109b99e 6107 d->rd = alloc_rootdomain();
dce840a0 6108 if (!d->rd)
21d42ccf 6109 return sa_sd;
2109b99e
AH
6110 return sa_rootdomain;
6111}
57d885fe 6112
dce840a0
PZ
6113/*
6114 * NULL the sd_data elements we've used to build the sched_domain and
6115 * sched_group structure so that the subsequent __free_domain_allocs()
6116 * will not free the data we're using.
6117 */
6118static void claim_allocations(int cpu, struct sched_domain *sd)
6119{
6120 struct sd_data *sdd = sd->private;
dce840a0
PZ
6121
6122 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6123 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6124
e3589f6c 6125 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6126 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6127
63b2ca30
NP
6128 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6129 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6130}
6131
cb83b629 6132#ifdef CONFIG_NUMA
cb83b629 6133static int sched_domains_numa_levels;
e3fe70b1 6134enum numa_topology_type sched_numa_topology_type;
cb83b629 6135static int *sched_domains_numa_distance;
9942f79b 6136int sched_max_numa_distance;
cb83b629
PZ
6137static struct cpumask ***sched_domains_numa_masks;
6138static int sched_domains_curr_level;
143e1e28 6139#endif
cb83b629 6140
143e1e28
VG
6141/*
6142 * SD_flags allowed in topology descriptions.
6143 *
5d4dfddd 6144 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6145 * SD_SHARE_PKG_RESOURCES - describes shared caches
6146 * SD_NUMA - describes NUMA topologies
d77b3ed5 6147 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6148 *
6149 * Odd one out:
6150 * SD_ASYM_PACKING - describes SMT quirks
6151 */
6152#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6153 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6154 SD_SHARE_PKG_RESOURCES | \
6155 SD_NUMA | \
d77b3ed5
VG
6156 SD_ASYM_PACKING | \
6157 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6158
6159static struct sched_domain *
143e1e28 6160sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6161{
6162 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6163 int sd_weight, sd_flags = 0;
6164
6165#ifdef CONFIG_NUMA
6166 /*
6167 * Ugly hack to pass state to sd_numa_mask()...
6168 */
6169 sched_domains_curr_level = tl->numa_level;
6170#endif
6171
6172 sd_weight = cpumask_weight(tl->mask(cpu));
6173
6174 if (tl->sd_flags)
6175 sd_flags = (*tl->sd_flags)();
6176 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6177 "wrong sd_flags in topology description\n"))
6178 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6179
6180 *sd = (struct sched_domain){
6181 .min_interval = sd_weight,
6182 .max_interval = 2*sd_weight,
6183 .busy_factor = 32,
870a0bb5 6184 .imbalance_pct = 125,
143e1e28
VG
6185
6186 .cache_nice_tries = 0,
6187 .busy_idx = 0,
6188 .idle_idx = 0,
cb83b629
PZ
6189 .newidle_idx = 0,
6190 .wake_idx = 0,
6191 .forkexec_idx = 0,
6192
6193 .flags = 1*SD_LOAD_BALANCE
6194 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6195 | 1*SD_BALANCE_EXEC
6196 | 1*SD_BALANCE_FORK
cb83b629 6197 | 0*SD_BALANCE_WAKE
143e1e28 6198 | 1*SD_WAKE_AFFINE
5d4dfddd 6199 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6200 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6201 | 0*SD_SERIALIZE
cb83b629 6202 | 0*SD_PREFER_SIBLING
143e1e28
VG
6203 | 0*SD_NUMA
6204 | sd_flags
cb83b629 6205 ,
143e1e28 6206
cb83b629
PZ
6207 .last_balance = jiffies,
6208 .balance_interval = sd_weight,
143e1e28 6209 .smt_gain = 0,
2b4cfe64
JL
6210 .max_newidle_lb_cost = 0,
6211 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6212#ifdef CONFIG_SCHED_DEBUG
6213 .name = tl->name,
6214#endif
cb83b629 6215 };
cb83b629
PZ
6216
6217 /*
143e1e28 6218 * Convert topological properties into behaviour.
cb83b629 6219 */
143e1e28 6220
5d4dfddd 6221 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6222 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6223 sd->imbalance_pct = 110;
6224 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6225
6226 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6227 sd->imbalance_pct = 117;
6228 sd->cache_nice_tries = 1;
6229 sd->busy_idx = 2;
6230
6231#ifdef CONFIG_NUMA
6232 } else if (sd->flags & SD_NUMA) {
6233 sd->cache_nice_tries = 2;
6234 sd->busy_idx = 3;
6235 sd->idle_idx = 2;
6236
6237 sd->flags |= SD_SERIALIZE;
6238 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6239 sd->flags &= ~(SD_BALANCE_EXEC |
6240 SD_BALANCE_FORK |
6241 SD_WAKE_AFFINE);
6242 }
6243
6244#endif
6245 } else {
6246 sd->flags |= SD_PREFER_SIBLING;
6247 sd->cache_nice_tries = 1;
6248 sd->busy_idx = 2;
6249 sd->idle_idx = 1;
6250 }
6251
6252 sd->private = &tl->data;
cb83b629
PZ
6253
6254 return sd;
6255}
6256
143e1e28
VG
6257/*
6258 * Topology list, bottom-up.
6259 */
6260static struct sched_domain_topology_level default_topology[] = {
6261#ifdef CONFIG_SCHED_SMT
6262 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6263#endif
6264#ifdef CONFIG_SCHED_MC
6265 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6266#endif
6267 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6268 { NULL, },
6269};
6270
6271struct sched_domain_topology_level *sched_domain_topology = default_topology;
6272
6273#define for_each_sd_topology(tl) \
6274 for (tl = sched_domain_topology; tl->mask; tl++)
6275
6276void set_sched_topology(struct sched_domain_topology_level *tl)
6277{
6278 sched_domain_topology = tl;
6279}
6280
6281#ifdef CONFIG_NUMA
6282
cb83b629
PZ
6283static const struct cpumask *sd_numa_mask(int cpu)
6284{
6285 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6286}
6287
d039ac60
PZ
6288static void sched_numa_warn(const char *str)
6289{
6290 static int done = false;
6291 int i,j;
6292
6293 if (done)
6294 return;
6295
6296 done = true;
6297
6298 printk(KERN_WARNING "ERROR: %s\n\n", str);
6299
6300 for (i = 0; i < nr_node_ids; i++) {
6301 printk(KERN_WARNING " ");
6302 for (j = 0; j < nr_node_ids; j++)
6303 printk(KERN_CONT "%02d ", node_distance(i,j));
6304 printk(KERN_CONT "\n");
6305 }
6306 printk(KERN_WARNING "\n");
6307}
6308
9942f79b 6309bool find_numa_distance(int distance)
d039ac60
PZ
6310{
6311 int i;
6312
6313 if (distance == node_distance(0, 0))
6314 return true;
6315
6316 for (i = 0; i < sched_domains_numa_levels; i++) {
6317 if (sched_domains_numa_distance[i] == distance)
6318 return true;
6319 }
6320
6321 return false;
6322}
6323
e3fe70b1
RR
6324/*
6325 * A system can have three types of NUMA topology:
6326 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6327 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6328 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6329 *
6330 * The difference between a glueless mesh topology and a backplane
6331 * topology lies in whether communication between not directly
6332 * connected nodes goes through intermediary nodes (where programs
6333 * could run), or through backplane controllers. This affects
6334 * placement of programs.
6335 *
6336 * The type of topology can be discerned with the following tests:
6337 * - If the maximum distance between any nodes is 1 hop, the system
6338 * is directly connected.
6339 * - If for two nodes A and B, located N > 1 hops away from each other,
6340 * there is an intermediary node C, which is < N hops away from both
6341 * nodes A and B, the system is a glueless mesh.
6342 */
6343static void init_numa_topology_type(void)
6344{
6345 int a, b, c, n;
6346
6347 n = sched_max_numa_distance;
6348
6349 if (n <= 1)
6350 sched_numa_topology_type = NUMA_DIRECT;
6351
6352 for_each_online_node(a) {
6353 for_each_online_node(b) {
6354 /* Find two nodes furthest removed from each other. */
6355 if (node_distance(a, b) < n)
6356 continue;
6357
6358 /* Is there an intermediary node between a and b? */
6359 for_each_online_node(c) {
6360 if (node_distance(a, c) < n &&
6361 node_distance(b, c) < n) {
6362 sched_numa_topology_type =
6363 NUMA_GLUELESS_MESH;
6364 return;
6365 }
6366 }
6367
6368 sched_numa_topology_type = NUMA_BACKPLANE;
6369 return;
6370 }
6371 }
6372}
6373
cb83b629
PZ
6374static void sched_init_numa(void)
6375{
6376 int next_distance, curr_distance = node_distance(0, 0);
6377 struct sched_domain_topology_level *tl;
6378 int level = 0;
6379 int i, j, k;
6380
cb83b629
PZ
6381 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6382 if (!sched_domains_numa_distance)
6383 return;
6384
6385 /*
6386 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6387 * unique distances in the node_distance() table.
6388 *
6389 * Assumes node_distance(0,j) includes all distances in
6390 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6391 */
6392 next_distance = curr_distance;
6393 for (i = 0; i < nr_node_ids; i++) {
6394 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6395 for (k = 0; k < nr_node_ids; k++) {
6396 int distance = node_distance(i, k);
6397
6398 if (distance > curr_distance &&
6399 (distance < next_distance ||
6400 next_distance == curr_distance))
6401 next_distance = distance;
6402
6403 /*
6404 * While not a strong assumption it would be nice to know
6405 * about cases where if node A is connected to B, B is not
6406 * equally connected to A.
6407 */
6408 if (sched_debug() && node_distance(k, i) != distance)
6409 sched_numa_warn("Node-distance not symmetric");
6410
6411 if (sched_debug() && i && !find_numa_distance(distance))
6412 sched_numa_warn("Node-0 not representative");
6413 }
6414 if (next_distance != curr_distance) {
6415 sched_domains_numa_distance[level++] = next_distance;
6416 sched_domains_numa_levels = level;
6417 curr_distance = next_distance;
6418 } else break;
cb83b629 6419 }
d039ac60
PZ
6420
6421 /*
6422 * In case of sched_debug() we verify the above assumption.
6423 */
6424 if (!sched_debug())
6425 break;
cb83b629 6426 }
c123588b
AR
6427
6428 if (!level)
6429 return;
6430
cb83b629
PZ
6431 /*
6432 * 'level' contains the number of unique distances, excluding the
6433 * identity distance node_distance(i,i).
6434 *
28b4a521 6435 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6436 * numbers.
6437 */
6438
5f7865f3
TC
6439 /*
6440 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6441 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6442 * the array will contain less then 'level' members. This could be
6443 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6444 * in other functions.
6445 *
6446 * We reset it to 'level' at the end of this function.
6447 */
6448 sched_domains_numa_levels = 0;
6449
cb83b629
PZ
6450 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6451 if (!sched_domains_numa_masks)
6452 return;
6453
6454 /*
6455 * Now for each level, construct a mask per node which contains all
6456 * cpus of nodes that are that many hops away from us.
6457 */
6458 for (i = 0; i < level; i++) {
6459 sched_domains_numa_masks[i] =
6460 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6461 if (!sched_domains_numa_masks[i])
6462 return;
6463
6464 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6465 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6466 if (!mask)
6467 return;
6468
6469 sched_domains_numa_masks[i][j] = mask;
6470
6471 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6472 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6473 continue;
6474
6475 cpumask_or(mask, mask, cpumask_of_node(k));
6476 }
6477 }
6478 }
6479
143e1e28
VG
6480 /* Compute default topology size */
6481 for (i = 0; sched_domain_topology[i].mask; i++);
6482
c515db8c 6483 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6484 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6485 if (!tl)
6486 return;
6487
6488 /*
6489 * Copy the default topology bits..
6490 */
143e1e28
VG
6491 for (i = 0; sched_domain_topology[i].mask; i++)
6492 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6493
6494 /*
6495 * .. and append 'j' levels of NUMA goodness.
6496 */
6497 for (j = 0; j < level; i++, j++) {
6498 tl[i] = (struct sched_domain_topology_level){
cb83b629 6499 .mask = sd_numa_mask,
143e1e28 6500 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6501 .flags = SDTL_OVERLAP,
6502 .numa_level = j,
143e1e28 6503 SD_INIT_NAME(NUMA)
cb83b629
PZ
6504 };
6505 }
6506
6507 sched_domain_topology = tl;
5f7865f3
TC
6508
6509 sched_domains_numa_levels = level;
9942f79b 6510 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6511
6512 init_numa_topology_type();
cb83b629 6513}
301a5cba
TC
6514
6515static void sched_domains_numa_masks_set(int cpu)
6516{
6517 int i, j;
6518 int node = cpu_to_node(cpu);
6519
6520 for (i = 0; i < sched_domains_numa_levels; i++) {
6521 for (j = 0; j < nr_node_ids; j++) {
6522 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6523 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6524 }
6525 }
6526}
6527
6528static void sched_domains_numa_masks_clear(int cpu)
6529{
6530 int i, j;
6531 for (i = 0; i < sched_domains_numa_levels; i++) {
6532 for (j = 0; j < nr_node_ids; j++)
6533 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6534 }
6535}
6536
6537/*
6538 * Update sched_domains_numa_masks[level][node] array when new cpus
6539 * are onlined.
6540 */
6541static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6542 unsigned long action,
6543 void *hcpu)
6544{
6545 int cpu = (long)hcpu;
6546
6547 switch (action & ~CPU_TASKS_FROZEN) {
6548 case CPU_ONLINE:
6549 sched_domains_numa_masks_set(cpu);
6550 break;
6551
6552 case CPU_DEAD:
6553 sched_domains_numa_masks_clear(cpu);
6554 break;
6555
6556 default:
6557 return NOTIFY_DONE;
6558 }
6559
6560 return NOTIFY_OK;
cb83b629
PZ
6561}
6562#else
6563static inline void sched_init_numa(void)
6564{
6565}
301a5cba
TC
6566
6567static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6568 unsigned long action,
6569 void *hcpu)
6570{
6571 return 0;
6572}
cb83b629
PZ
6573#endif /* CONFIG_NUMA */
6574
54ab4ff4
PZ
6575static int __sdt_alloc(const struct cpumask *cpu_map)
6576{
6577 struct sched_domain_topology_level *tl;
6578 int j;
6579
27723a68 6580 for_each_sd_topology(tl) {
54ab4ff4
PZ
6581 struct sd_data *sdd = &tl->data;
6582
6583 sdd->sd = alloc_percpu(struct sched_domain *);
6584 if (!sdd->sd)
6585 return -ENOMEM;
6586
6587 sdd->sg = alloc_percpu(struct sched_group *);
6588 if (!sdd->sg)
6589 return -ENOMEM;
6590
63b2ca30
NP
6591 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6592 if (!sdd->sgc)
9c3f75cb
PZ
6593 return -ENOMEM;
6594
54ab4ff4
PZ
6595 for_each_cpu(j, cpu_map) {
6596 struct sched_domain *sd;
6597 struct sched_group *sg;
63b2ca30 6598 struct sched_group_capacity *sgc;
54ab4ff4
PZ
6599
6600 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6601 GFP_KERNEL, cpu_to_node(j));
6602 if (!sd)
6603 return -ENOMEM;
6604
6605 *per_cpu_ptr(sdd->sd, j) = sd;
6606
6607 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6608 GFP_KERNEL, cpu_to_node(j));
6609 if (!sg)
6610 return -ENOMEM;
6611
30b4e9eb
IM
6612 sg->next = sg;
6613
54ab4ff4 6614 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6615
63b2ca30 6616 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6617 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6618 if (!sgc)
9c3f75cb
PZ
6619 return -ENOMEM;
6620
63b2ca30 6621 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6622 }
6623 }
6624
6625 return 0;
6626}
6627
6628static void __sdt_free(const struct cpumask *cpu_map)
6629{
6630 struct sched_domain_topology_level *tl;
6631 int j;
6632
27723a68 6633 for_each_sd_topology(tl) {
54ab4ff4
PZ
6634 struct sd_data *sdd = &tl->data;
6635
6636 for_each_cpu(j, cpu_map) {
fb2cf2c6 6637 struct sched_domain *sd;
6638
6639 if (sdd->sd) {
6640 sd = *per_cpu_ptr(sdd->sd, j);
6641 if (sd && (sd->flags & SD_OVERLAP))
6642 free_sched_groups(sd->groups, 0);
6643 kfree(*per_cpu_ptr(sdd->sd, j));
6644 }
6645
6646 if (sdd->sg)
6647 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6648 if (sdd->sgc)
6649 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6650 }
6651 free_percpu(sdd->sd);
fb2cf2c6 6652 sdd->sd = NULL;
54ab4ff4 6653 free_percpu(sdd->sg);
fb2cf2c6 6654 sdd->sg = NULL;
63b2ca30
NP
6655 free_percpu(sdd->sgc);
6656 sdd->sgc = NULL;
54ab4ff4
PZ
6657 }
6658}
6659
2c402dc3 6660struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6661 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6662 struct sched_domain *child, int cpu)
2c402dc3 6663{
143e1e28 6664 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6665 if (!sd)
d069b916 6666 return child;
2c402dc3 6667
2c402dc3 6668 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6669 if (child) {
6670 sd->level = child->level + 1;
6671 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6672 child->parent = sd;
c75e0128 6673 sd->child = child;
6ae72dff
PZ
6674
6675 if (!cpumask_subset(sched_domain_span(child),
6676 sched_domain_span(sd))) {
6677 pr_err("BUG: arch topology borken\n");
6678#ifdef CONFIG_SCHED_DEBUG
6679 pr_err(" the %s domain not a subset of the %s domain\n",
6680 child->name, sd->name);
6681#endif
6682 /* Fixup, ensure @sd has at least @child cpus. */
6683 cpumask_or(sched_domain_span(sd),
6684 sched_domain_span(sd),
6685 sched_domain_span(child));
6686 }
6687
60495e77 6688 }
a841f8ce 6689 set_domain_attribute(sd, attr);
2c402dc3
PZ
6690
6691 return sd;
6692}
6693
2109b99e
AH
6694/*
6695 * Build sched domains for a given set of cpus and attach the sched domains
6696 * to the individual cpus
6697 */
dce840a0
PZ
6698static int build_sched_domains(const struct cpumask *cpu_map,
6699 struct sched_domain_attr *attr)
2109b99e 6700{
1c632169 6701 enum s_alloc alloc_state;
dce840a0 6702 struct sched_domain *sd;
2109b99e 6703 struct s_data d;
822ff793 6704 int i, ret = -ENOMEM;
9c1cfda2 6705
2109b99e
AH
6706 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6707 if (alloc_state != sa_rootdomain)
6708 goto error;
9c1cfda2 6709
dce840a0 6710 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6711 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6712 struct sched_domain_topology_level *tl;
6713
3bd65a80 6714 sd = NULL;
27723a68 6715 for_each_sd_topology(tl) {
4a850cbe 6716 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6717 if (tl == sched_domain_topology)
6718 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6719 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6720 sd->flags |= SD_OVERLAP;
d110235d
PZ
6721 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6722 break;
e3589f6c 6723 }
dce840a0
PZ
6724 }
6725
6726 /* Build the groups for the domains */
6727 for_each_cpu(i, cpu_map) {
6728 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6729 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6730 if (sd->flags & SD_OVERLAP) {
6731 if (build_overlap_sched_groups(sd, i))
6732 goto error;
6733 } else {
6734 if (build_sched_groups(sd, i))
6735 goto error;
6736 }
1cf51902 6737 }
a06dadbe 6738 }
9c1cfda2 6739
ced549fa 6740 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6741 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6742 if (!cpumask_test_cpu(i, cpu_map))
6743 continue;
9c1cfda2 6744
dce840a0
PZ
6745 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6746 claim_allocations(i, sd);
63b2ca30 6747 init_sched_groups_capacity(i, sd);
dce840a0 6748 }
f712c0c7 6749 }
9c1cfda2 6750
1da177e4 6751 /* Attach the domains */
dce840a0 6752 rcu_read_lock();
abcd083a 6753 for_each_cpu(i, cpu_map) {
21d42ccf 6754 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6755 cpu_attach_domain(sd, d.rd, i);
1da177e4 6756 }
dce840a0 6757 rcu_read_unlock();
51888ca2 6758
822ff793 6759 ret = 0;
51888ca2 6760error:
2109b99e 6761 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6762 return ret;
1da177e4 6763}
029190c5 6764
acc3f5d7 6765static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6766static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6767static struct sched_domain_attr *dattr_cur;
6768 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6769
6770/*
6771 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6772 * cpumask) fails, then fallback to a single sched domain,
6773 * as determined by the single cpumask fallback_doms.
029190c5 6774 */
4212823f 6775static cpumask_var_t fallback_doms;
029190c5 6776
ee79d1bd
HC
6777/*
6778 * arch_update_cpu_topology lets virtualized architectures update the
6779 * cpu core maps. It is supposed to return 1 if the topology changed
6780 * or 0 if it stayed the same.
6781 */
52f5684c 6782int __weak arch_update_cpu_topology(void)
22e52b07 6783{
ee79d1bd 6784 return 0;
22e52b07
HC
6785}
6786
acc3f5d7
RR
6787cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6788{
6789 int i;
6790 cpumask_var_t *doms;
6791
6792 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6793 if (!doms)
6794 return NULL;
6795 for (i = 0; i < ndoms; i++) {
6796 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6797 free_sched_domains(doms, i);
6798 return NULL;
6799 }
6800 }
6801 return doms;
6802}
6803
6804void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6805{
6806 unsigned int i;
6807 for (i = 0; i < ndoms; i++)
6808 free_cpumask_var(doms[i]);
6809 kfree(doms);
6810}
6811
1a20ff27 6812/*
41a2d6cf 6813 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6814 * For now this just excludes isolated cpus, but could be used to
6815 * exclude other special cases in the future.
1a20ff27 6816 */
c4a8849a 6817static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6818{
7378547f
MM
6819 int err;
6820
22e52b07 6821 arch_update_cpu_topology();
029190c5 6822 ndoms_cur = 1;
acc3f5d7 6823 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6824 if (!doms_cur)
acc3f5d7
RR
6825 doms_cur = &fallback_doms;
6826 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6827 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6828 register_sched_domain_sysctl();
7378547f
MM
6829
6830 return err;
1a20ff27
DG
6831}
6832
1a20ff27
DG
6833/*
6834 * Detach sched domains from a group of cpus specified in cpu_map
6835 * These cpus will now be attached to the NULL domain
6836 */
96f874e2 6837static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6838{
6839 int i;
6840
dce840a0 6841 rcu_read_lock();
abcd083a 6842 for_each_cpu(i, cpu_map)
57d885fe 6843 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6844 rcu_read_unlock();
1a20ff27
DG
6845}
6846
1d3504fc
HS
6847/* handle null as "default" */
6848static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6849 struct sched_domain_attr *new, int idx_new)
6850{
6851 struct sched_domain_attr tmp;
6852
6853 /* fast path */
6854 if (!new && !cur)
6855 return 1;
6856
6857 tmp = SD_ATTR_INIT;
6858 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6859 new ? (new + idx_new) : &tmp,
6860 sizeof(struct sched_domain_attr));
6861}
6862
029190c5
PJ
6863/*
6864 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6865 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6866 * doms_new[] to the current sched domain partitioning, doms_cur[].
6867 * It destroys each deleted domain and builds each new domain.
6868 *
acc3f5d7 6869 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6870 * The masks don't intersect (don't overlap.) We should setup one
6871 * sched domain for each mask. CPUs not in any of the cpumasks will
6872 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6873 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6874 * it as it is.
6875 *
acc3f5d7
RR
6876 * The passed in 'doms_new' should be allocated using
6877 * alloc_sched_domains. This routine takes ownership of it and will
6878 * free_sched_domains it when done with it. If the caller failed the
6879 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6880 * and partition_sched_domains() will fallback to the single partition
6881 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6882 *
96f874e2 6883 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6884 * ndoms_new == 0 is a special case for destroying existing domains,
6885 * and it will not create the default domain.
dfb512ec 6886 *
029190c5
PJ
6887 * Call with hotplug lock held
6888 */
acc3f5d7 6889void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6890 struct sched_domain_attr *dattr_new)
029190c5 6891{
dfb512ec 6892 int i, j, n;
d65bd5ec 6893 int new_topology;
029190c5 6894
712555ee 6895 mutex_lock(&sched_domains_mutex);
a1835615 6896
7378547f
MM
6897 /* always unregister in case we don't destroy any domains */
6898 unregister_sched_domain_sysctl();
6899
d65bd5ec
HC
6900 /* Let architecture update cpu core mappings. */
6901 new_topology = arch_update_cpu_topology();
6902
dfb512ec 6903 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6904
6905 /* Destroy deleted domains */
6906 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6907 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6908 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6909 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6910 goto match1;
6911 }
6912 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6913 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6914match1:
6915 ;
6916 }
6917
c8d2d47a 6918 n = ndoms_cur;
e761b772 6919 if (doms_new == NULL) {
c8d2d47a 6920 n = 0;
acc3f5d7 6921 doms_new = &fallback_doms;
6ad4c188 6922 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6923 WARN_ON_ONCE(dattr_new);
e761b772
MK
6924 }
6925
029190c5
PJ
6926 /* Build new domains */
6927 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 6928 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6929 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6930 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6931 goto match2;
6932 }
6933 /* no match - add a new doms_new */
dce840a0 6934 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6935match2:
6936 ;
6937 }
6938
6939 /* Remember the new sched domains */
acc3f5d7
RR
6940 if (doms_cur != &fallback_doms)
6941 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6942 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6943 doms_cur = doms_new;
1d3504fc 6944 dattr_cur = dattr_new;
029190c5 6945 ndoms_cur = ndoms_new;
7378547f
MM
6946
6947 register_sched_domain_sysctl();
a1835615 6948
712555ee 6949 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6950}
6951
d35be8ba
SB
6952static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
6953
1da177e4 6954/*
3a101d05
TH
6955 * Update cpusets according to cpu_active mask. If cpusets are
6956 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6957 * around partition_sched_domains().
d35be8ba
SB
6958 *
6959 * If we come here as part of a suspend/resume, don't touch cpusets because we
6960 * want to restore it back to its original state upon resume anyway.
1da177e4 6961 */
0b2e918a
TH
6962static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6963 void *hcpu)
e761b772 6964{
d35be8ba
SB
6965 switch (action) {
6966 case CPU_ONLINE_FROZEN:
6967 case CPU_DOWN_FAILED_FROZEN:
6968
6969 /*
6970 * num_cpus_frozen tracks how many CPUs are involved in suspend
6971 * resume sequence. As long as this is not the last online
6972 * operation in the resume sequence, just build a single sched
6973 * domain, ignoring cpusets.
6974 */
6975 num_cpus_frozen--;
6976 if (likely(num_cpus_frozen)) {
6977 partition_sched_domains(1, NULL, NULL);
6978 break;
6979 }
6980
6981 /*
6982 * This is the last CPU online operation. So fall through and
6983 * restore the original sched domains by considering the
6984 * cpuset configurations.
6985 */
6986
e761b772 6987 case CPU_ONLINE:
7ddf96b0 6988 cpuset_update_active_cpus(true);
d35be8ba 6989 break;
3a101d05
TH
6990 default:
6991 return NOTIFY_DONE;
6992 }
d35be8ba 6993 return NOTIFY_OK;
3a101d05 6994}
e761b772 6995
0b2e918a
TH
6996static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6997 void *hcpu)
3a101d05 6998{
3c18d447
JL
6999 unsigned long flags;
7000 long cpu = (long)hcpu;
7001 struct dl_bw *dl_b;
7002
7003 switch (action & ~CPU_TASKS_FROZEN) {
3a101d05 7004 case CPU_DOWN_PREPARE:
3c18d447
JL
7005 /* explicitly allow suspend */
7006 if (!(action & CPU_TASKS_FROZEN)) {
7007 bool overflow;
7008 int cpus;
7009
7010 rcu_read_lock_sched();
7011 dl_b = dl_bw_of(cpu);
7012
7013 raw_spin_lock_irqsave(&dl_b->lock, flags);
7014 cpus = dl_bw_cpus(cpu);
7015 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7016 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
7017
7018 rcu_read_unlock_sched();
7019
62a935b2 7020 if (overflow)
3c18d447 7021 return notifier_from_errno(-EBUSY);
3c18d447 7022 }
7ddf96b0 7023 cpuset_update_active_cpus(false);
d35be8ba
SB
7024 break;
7025 case CPU_DOWN_PREPARE_FROZEN:
7026 num_cpus_frozen++;
7027 partition_sched_domains(1, NULL, NULL);
7028 break;
e761b772
MK
7029 default:
7030 return NOTIFY_DONE;
7031 }
d35be8ba 7032 return NOTIFY_OK;
e761b772 7033}
e761b772 7034
1da177e4
LT
7035void __init sched_init_smp(void)
7036{
dcc30a35
RR
7037 cpumask_var_t non_isolated_cpus;
7038
7039 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7040 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7041
cb83b629
PZ
7042 sched_init_numa();
7043
6acce3ef
PZ
7044 /*
7045 * There's no userspace yet to cause hotplug operations; hence all the
7046 * cpu masks are stable and all blatant races in the below code cannot
7047 * happen.
7048 */
712555ee 7049 mutex_lock(&sched_domains_mutex);
c4a8849a 7050 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7051 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7052 if (cpumask_empty(non_isolated_cpus))
7053 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7054 mutex_unlock(&sched_domains_mutex);
e761b772 7055
301a5cba 7056 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7057 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7058 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7059
b328ca18 7060 init_hrtick();
5c1e1767
NP
7061
7062 /* Move init over to a non-isolated CPU */
dcc30a35 7063 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7064 BUG();
19978ca6 7065 sched_init_granularity();
dcc30a35 7066 free_cpumask_var(non_isolated_cpus);
4212823f 7067
0e3900e6 7068 init_sched_rt_class();
1baca4ce 7069 init_sched_dl_class();
1da177e4
LT
7070}
7071#else
7072void __init sched_init_smp(void)
7073{
19978ca6 7074 sched_init_granularity();
1da177e4
LT
7075}
7076#endif /* CONFIG_SMP */
7077
cd1bb94b
AB
7078const_debug unsigned int sysctl_timer_migration = 1;
7079
1da177e4
LT
7080int in_sched_functions(unsigned long addr)
7081{
1da177e4
LT
7082 return in_lock_functions(addr) ||
7083 (addr >= (unsigned long)__sched_text_start
7084 && addr < (unsigned long)__sched_text_end);
7085}
7086
029632fb 7087#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7088/*
7089 * Default task group.
7090 * Every task in system belongs to this group at bootup.
7091 */
029632fb 7092struct task_group root_task_group;
35cf4e50 7093LIST_HEAD(task_groups);
052f1dc7 7094#endif
6f505b16 7095
e6252c3e 7096DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7097
1da177e4
LT
7098void __init sched_init(void)
7099{
dd41f596 7100 int i, j;
434d53b0
MT
7101 unsigned long alloc_size = 0, ptr;
7102
7103#ifdef CONFIG_FAIR_GROUP_SCHED
7104 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7105#endif
7106#ifdef CONFIG_RT_GROUP_SCHED
7107 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7108#endif
434d53b0 7109 if (alloc_size) {
36b7b6d4 7110 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7111
7112#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7113 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7114 ptr += nr_cpu_ids * sizeof(void **);
7115
07e06b01 7116 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7117 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7118
6d6bc0ad 7119#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7120#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7121 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7122 ptr += nr_cpu_ids * sizeof(void **);
7123
07e06b01 7124 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7125 ptr += nr_cpu_ids * sizeof(void **);
7126
6d6bc0ad 7127#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7128 }
df7c8e84 7129#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7130 for_each_possible_cpu(i) {
7131 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7132 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7133 }
b74e6278 7134#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7135
332ac17e
DF
7136 init_rt_bandwidth(&def_rt_bandwidth,
7137 global_rt_period(), global_rt_runtime());
7138 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7139 global_rt_period(), global_rt_runtime());
332ac17e 7140
57d885fe
GH
7141#ifdef CONFIG_SMP
7142 init_defrootdomain();
7143#endif
7144
d0b27fa7 7145#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7146 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7147 global_rt_period(), global_rt_runtime());
6d6bc0ad 7148#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7149
7c941438 7150#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7151 list_add(&root_task_group.list, &task_groups);
7152 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7153 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7154 autogroup_init(&init_task);
54c707e9 7155
7c941438 7156#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7157
0a945022 7158 for_each_possible_cpu(i) {
70b97a7f 7159 struct rq *rq;
1da177e4
LT
7160
7161 rq = cpu_rq(i);
05fa785c 7162 raw_spin_lock_init(&rq->lock);
7897986b 7163 rq->nr_running = 0;
dce48a84
TG
7164 rq->calc_load_active = 0;
7165 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7166 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7167 init_rt_rq(&rq->rt);
7168 init_dl_rq(&rq->dl);
dd41f596 7169#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7170 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7171 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7172 /*
07e06b01 7173 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7174 *
7175 * In case of task-groups formed thr' the cgroup filesystem, it
7176 * gets 100% of the cpu resources in the system. This overall
7177 * system cpu resource is divided among the tasks of
07e06b01 7178 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7179 * based on each entity's (task or task-group's) weight
7180 * (se->load.weight).
7181 *
07e06b01 7182 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7183 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7184 * then A0's share of the cpu resource is:
7185 *
0d905bca 7186 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7187 *
07e06b01
YZ
7188 * We achieve this by letting root_task_group's tasks sit
7189 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7190 */
ab84d31e 7191 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7192 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7193#endif /* CONFIG_FAIR_GROUP_SCHED */
7194
7195 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7196#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7197 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7198#endif
1da177e4 7199
dd41f596
IM
7200 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7201 rq->cpu_load[j] = 0;
fdf3e95d
VP
7202
7203 rq->last_load_update_tick = jiffies;
7204
1da177e4 7205#ifdef CONFIG_SMP
41c7ce9a 7206 rq->sd = NULL;
57d885fe 7207 rq->rd = NULL;
ca6d75e6 7208 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
3f029d3c 7209 rq->post_schedule = 0;
1da177e4 7210 rq->active_balance = 0;
dd41f596 7211 rq->next_balance = jiffies;
1da177e4 7212 rq->push_cpu = 0;
0a2966b4 7213 rq->cpu = i;
1f11eb6a 7214 rq->online = 0;
eae0c9df
MG
7215 rq->idle_stamp = 0;
7216 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7217 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7218
7219 INIT_LIST_HEAD(&rq->cfs_tasks);
7220
dc938520 7221 rq_attach_root(rq, &def_root_domain);
3451d024 7222#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7223 rq->nohz_flags = 0;
83cd4fe2 7224#endif
265f22a9
FW
7225#ifdef CONFIG_NO_HZ_FULL
7226 rq->last_sched_tick = 0;
7227#endif
1da177e4 7228#endif
8f4d37ec 7229 init_rq_hrtick(rq);
1da177e4 7230 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7231 }
7232
2dd73a4f 7233 set_load_weight(&init_task);
b50f60ce 7234
e107be36
AK
7235#ifdef CONFIG_PREEMPT_NOTIFIERS
7236 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7237#endif
7238
1da177e4
LT
7239 /*
7240 * The boot idle thread does lazy MMU switching as well:
7241 */
7242 atomic_inc(&init_mm.mm_count);
7243 enter_lazy_tlb(&init_mm, current);
7244
1b537c7d
YD
7245 /*
7246 * During early bootup we pretend to be a normal task:
7247 */
7248 current->sched_class = &fair_sched_class;
7249
1da177e4
LT
7250 /*
7251 * Make us the idle thread. Technically, schedule() should not be
7252 * called from this thread, however somewhere below it might be,
7253 * but because we are the idle thread, we just pick up running again
7254 * when this runqueue becomes "idle".
7255 */
7256 init_idle(current, smp_processor_id());
dce48a84
TG
7257
7258 calc_load_update = jiffies + LOAD_FREQ;
7259
bf4d83f6 7260#ifdef CONFIG_SMP
4cb98839 7261 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7262 /* May be allocated at isolcpus cmdline parse time */
7263 if (cpu_isolated_map == NULL)
7264 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7265 idle_thread_set_boot_cpu();
a803f026 7266 set_cpu_rq_start_time();
029632fb
PZ
7267#endif
7268 init_sched_fair_class();
6a7b3dc3 7269
6892b75e 7270 scheduler_running = 1;
1da177e4
LT
7271}
7272
d902db1e 7273#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7274static inline int preempt_count_equals(int preempt_offset)
7275{
234da7bc 7276 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7277
4ba8216c 7278 return (nested == preempt_offset);
e4aafea2
FW
7279}
7280
d894837f 7281void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7282{
8eb23b9f
PZ
7283 /*
7284 * Blocking primitives will set (and therefore destroy) current->state,
7285 * since we will exit with TASK_RUNNING make sure we enter with it,
7286 * otherwise we will destroy state.
7287 */
00845eb9 7288 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7289 "do not call blocking ops when !TASK_RUNNING; "
7290 "state=%lx set at [<%p>] %pS\n",
7291 current->state,
7292 (void *)current->task_state_change,
00845eb9 7293 (void *)current->task_state_change);
8eb23b9f 7294
3427445a
PZ
7295 ___might_sleep(file, line, preempt_offset);
7296}
7297EXPORT_SYMBOL(__might_sleep);
7298
7299void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7300{
1da177e4
LT
7301 static unsigned long prev_jiffy; /* ratelimiting */
7302
b3fbab05 7303 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7304 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7305 !is_idle_task(current)) ||
e4aafea2 7306 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7307 return;
7308 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7309 return;
7310 prev_jiffy = jiffies;
7311
3df0fc5b
PZ
7312 printk(KERN_ERR
7313 "BUG: sleeping function called from invalid context at %s:%d\n",
7314 file, line);
7315 printk(KERN_ERR
7316 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7317 in_atomic(), irqs_disabled(),
7318 current->pid, current->comm);
aef745fc 7319
a8b686b3
ES
7320 if (task_stack_end_corrupted(current))
7321 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7322
aef745fc
IM
7323 debug_show_held_locks(current);
7324 if (irqs_disabled())
7325 print_irqtrace_events(current);
8f47b187
TG
7326#ifdef CONFIG_DEBUG_PREEMPT
7327 if (!preempt_count_equals(preempt_offset)) {
7328 pr_err("Preemption disabled at:");
7329 print_ip_sym(current->preempt_disable_ip);
7330 pr_cont("\n");
7331 }
7332#endif
aef745fc 7333 dump_stack();
1da177e4 7334}
3427445a 7335EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7336#endif
7337
7338#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7339static void normalize_task(struct rq *rq, struct task_struct *p)
7340{
da7a735e 7341 const struct sched_class *prev_class = p->sched_class;
d50dde5a
DF
7342 struct sched_attr attr = {
7343 .sched_policy = SCHED_NORMAL,
7344 };
da7a735e 7345 int old_prio = p->prio;
da0c1e65 7346 int queued;
3e51f33f 7347
da0c1e65
KT
7348 queued = task_on_rq_queued(p);
7349 if (queued)
4ca9b72b 7350 dequeue_task(rq, p, 0);
0782e63b 7351 __setscheduler(rq, p, &attr, false);
da0c1e65 7352 if (queued) {
4ca9b72b 7353 enqueue_task(rq, p, 0);
8875125e 7354 resched_curr(rq);
3a5e4dc1 7355 }
da7a735e
PZ
7356
7357 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7358}
7359
1da177e4
LT
7360void normalize_rt_tasks(void)
7361{
a0f98a1c 7362 struct task_struct *g, *p;
1da177e4 7363 unsigned long flags;
70b97a7f 7364 struct rq *rq;
1da177e4 7365
3472eaa1 7366 read_lock(&tasklist_lock);
5d07f420 7367 for_each_process_thread(g, p) {
178be793
IM
7368 /*
7369 * Only normalize user tasks:
7370 */
3472eaa1 7371 if (p->flags & PF_KTHREAD)
178be793
IM
7372 continue;
7373
6cfb0d5d 7374 p->se.exec_start = 0;
6cfb0d5d 7375#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7376 p->se.statistics.wait_start = 0;
7377 p->se.statistics.sleep_start = 0;
7378 p->se.statistics.block_start = 0;
6cfb0d5d 7379#endif
dd41f596 7380
aab03e05 7381 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7382 /*
7383 * Renice negative nice level userspace
7384 * tasks back to 0:
7385 */
3472eaa1 7386 if (task_nice(p) < 0)
dd41f596 7387 set_user_nice(p, 0);
1da177e4 7388 continue;
dd41f596 7389 }
1da177e4 7390
3472eaa1 7391 rq = task_rq_lock(p, &flags);
178be793 7392 normalize_task(rq, p);
3472eaa1 7393 task_rq_unlock(rq, p, &flags);
5d07f420 7394 }
3472eaa1 7395 read_unlock(&tasklist_lock);
1da177e4
LT
7396}
7397
7398#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7399
67fc4e0c 7400#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7401/*
67fc4e0c 7402 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7403 *
7404 * They can only be called when the whole system has been
7405 * stopped - every CPU needs to be quiescent, and no scheduling
7406 * activity can take place. Using them for anything else would
7407 * be a serious bug, and as a result, they aren't even visible
7408 * under any other configuration.
7409 */
7410
7411/**
7412 * curr_task - return the current task for a given cpu.
7413 * @cpu: the processor in question.
7414 *
7415 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7416 *
7417 * Return: The current task for @cpu.
1df5c10a 7418 */
36c8b586 7419struct task_struct *curr_task(int cpu)
1df5c10a
LT
7420{
7421 return cpu_curr(cpu);
7422}
7423
67fc4e0c
JW
7424#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7425
7426#ifdef CONFIG_IA64
1df5c10a
LT
7427/**
7428 * set_curr_task - set the current task for a given cpu.
7429 * @cpu: the processor in question.
7430 * @p: the task pointer to set.
7431 *
7432 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7433 * are serviced on a separate stack. It allows the architecture to switch the
7434 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7435 * must be called with all CPU's synchronized, and interrupts disabled, the
7436 * and caller must save the original value of the current task (see
7437 * curr_task() above) and restore that value before reenabling interrupts and
7438 * re-starting the system.
7439 *
7440 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7441 */
36c8b586 7442void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7443{
7444 cpu_curr(cpu) = p;
7445}
7446
7447#endif
29f59db3 7448
7c941438 7449#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7450/* task_group_lock serializes the addition/removal of task groups */
7451static DEFINE_SPINLOCK(task_group_lock);
7452
bccbe08a
PZ
7453static void free_sched_group(struct task_group *tg)
7454{
7455 free_fair_sched_group(tg);
7456 free_rt_sched_group(tg);
e9aa1dd1 7457 autogroup_free(tg);
bccbe08a
PZ
7458 kfree(tg);
7459}
7460
7461/* allocate runqueue etc for a new task group */
ec7dc8ac 7462struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7463{
7464 struct task_group *tg;
bccbe08a
PZ
7465
7466 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7467 if (!tg)
7468 return ERR_PTR(-ENOMEM);
7469
ec7dc8ac 7470 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7471 goto err;
7472
ec7dc8ac 7473 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7474 goto err;
7475
ace783b9
LZ
7476 return tg;
7477
7478err:
7479 free_sched_group(tg);
7480 return ERR_PTR(-ENOMEM);
7481}
7482
7483void sched_online_group(struct task_group *tg, struct task_group *parent)
7484{
7485 unsigned long flags;
7486
8ed36996 7487 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7488 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7489
7490 WARN_ON(!parent); /* root should already exist */
7491
7492 tg->parent = parent;
f473aa5e 7493 INIT_LIST_HEAD(&tg->children);
09f2724a 7494 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7495 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7496}
7497
9b5b7751 7498/* rcu callback to free various structures associated with a task group */
6f505b16 7499static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7500{
29f59db3 7501 /* now it should be safe to free those cfs_rqs */
6f505b16 7502 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7503}
7504
9b5b7751 7505/* Destroy runqueue etc associated with a task group */
4cf86d77 7506void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7507{
7508 /* wait for possible concurrent references to cfs_rqs complete */
7509 call_rcu(&tg->rcu, free_sched_group_rcu);
7510}
7511
7512void sched_offline_group(struct task_group *tg)
29f59db3 7513{
8ed36996 7514 unsigned long flags;
9b5b7751 7515 int i;
29f59db3 7516
3d4b47b4
PZ
7517 /* end participation in shares distribution */
7518 for_each_possible_cpu(i)
bccbe08a 7519 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7520
7521 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7522 list_del_rcu(&tg->list);
f473aa5e 7523 list_del_rcu(&tg->siblings);
8ed36996 7524 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7525}
7526
9b5b7751 7527/* change task's runqueue when it moves between groups.
3a252015
IM
7528 * The caller of this function should have put the task in its new group
7529 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7530 * reflect its new group.
9b5b7751
SV
7531 */
7532void sched_move_task(struct task_struct *tsk)
29f59db3 7533{
8323f26c 7534 struct task_group *tg;
da0c1e65 7535 int queued, running;
29f59db3
SV
7536 unsigned long flags;
7537 struct rq *rq;
7538
7539 rq = task_rq_lock(tsk, &flags);
7540
051a1d1a 7541 running = task_current(rq, tsk);
da0c1e65 7542 queued = task_on_rq_queued(tsk);
29f59db3 7543
da0c1e65 7544 if (queued)
29f59db3 7545 dequeue_task(rq, tsk, 0);
0e1f3483 7546 if (unlikely(running))
f3cd1c4e 7547 put_prev_task(rq, tsk);
29f59db3 7548
f7b8a47d
KT
7549 /*
7550 * All callers are synchronized by task_rq_lock(); we do not use RCU
7551 * which is pointless here. Thus, we pass "true" to task_css_check()
7552 * to prevent lockdep warnings.
7553 */
7554 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7555 struct task_group, css);
7556 tg = autogroup_task_group(tsk, tg);
7557 tsk->sched_task_group = tg;
7558
810b3817 7559#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7560 if (tsk->sched_class->task_move_group)
da0c1e65 7561 tsk->sched_class->task_move_group(tsk, queued);
b2b5ce02 7562 else
810b3817 7563#endif
b2b5ce02 7564 set_task_rq(tsk, task_cpu(tsk));
810b3817 7565
0e1f3483
HS
7566 if (unlikely(running))
7567 tsk->sched_class->set_curr_task(rq);
da0c1e65 7568 if (queued)
371fd7e7 7569 enqueue_task(rq, tsk, 0);
29f59db3 7570
0122ec5b 7571 task_rq_unlock(rq, tsk, &flags);
29f59db3 7572}
7c941438 7573#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7574
a790de99
PT
7575#ifdef CONFIG_RT_GROUP_SCHED
7576/*
7577 * Ensure that the real time constraints are schedulable.
7578 */
7579static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7580
9a7e0b18
PZ
7581/* Must be called with tasklist_lock held */
7582static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7583{
9a7e0b18 7584 struct task_struct *g, *p;
b40b2e8e 7585
1fe89e1b
PZ
7586 /*
7587 * Autogroups do not have RT tasks; see autogroup_create().
7588 */
7589 if (task_group_is_autogroup(tg))
7590 return 0;
7591
5d07f420 7592 for_each_process_thread(g, p) {
8651c658 7593 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7594 return 1;
5d07f420 7595 }
b40b2e8e 7596
9a7e0b18
PZ
7597 return 0;
7598}
b40b2e8e 7599
9a7e0b18
PZ
7600struct rt_schedulable_data {
7601 struct task_group *tg;
7602 u64 rt_period;
7603 u64 rt_runtime;
7604};
b40b2e8e 7605
a790de99 7606static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7607{
7608 struct rt_schedulable_data *d = data;
7609 struct task_group *child;
7610 unsigned long total, sum = 0;
7611 u64 period, runtime;
b40b2e8e 7612
9a7e0b18
PZ
7613 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7614 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7615
9a7e0b18
PZ
7616 if (tg == d->tg) {
7617 period = d->rt_period;
7618 runtime = d->rt_runtime;
b40b2e8e 7619 }
b40b2e8e 7620
4653f803
PZ
7621 /*
7622 * Cannot have more runtime than the period.
7623 */
7624 if (runtime > period && runtime != RUNTIME_INF)
7625 return -EINVAL;
6f505b16 7626
4653f803
PZ
7627 /*
7628 * Ensure we don't starve existing RT tasks.
7629 */
9a7e0b18
PZ
7630 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7631 return -EBUSY;
6f505b16 7632
9a7e0b18 7633 total = to_ratio(period, runtime);
6f505b16 7634
4653f803
PZ
7635 /*
7636 * Nobody can have more than the global setting allows.
7637 */
7638 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7639 return -EINVAL;
6f505b16 7640
4653f803
PZ
7641 /*
7642 * The sum of our children's runtime should not exceed our own.
7643 */
9a7e0b18
PZ
7644 list_for_each_entry_rcu(child, &tg->children, siblings) {
7645 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7646 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7647
9a7e0b18
PZ
7648 if (child == d->tg) {
7649 period = d->rt_period;
7650 runtime = d->rt_runtime;
7651 }
6f505b16 7652
9a7e0b18 7653 sum += to_ratio(period, runtime);
9f0c1e56 7654 }
6f505b16 7655
9a7e0b18
PZ
7656 if (sum > total)
7657 return -EINVAL;
7658
7659 return 0;
6f505b16
PZ
7660}
7661
9a7e0b18 7662static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7663{
8277434e
PT
7664 int ret;
7665
9a7e0b18
PZ
7666 struct rt_schedulable_data data = {
7667 .tg = tg,
7668 .rt_period = period,
7669 .rt_runtime = runtime,
7670 };
7671
8277434e
PT
7672 rcu_read_lock();
7673 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7674 rcu_read_unlock();
7675
7676 return ret;
521f1a24
DG
7677}
7678
ab84d31e 7679static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7680 u64 rt_period, u64 rt_runtime)
6f505b16 7681{
ac086bc2 7682 int i, err = 0;
9f0c1e56 7683
2636ed5f
PZ
7684 /*
7685 * Disallowing the root group RT runtime is BAD, it would disallow the
7686 * kernel creating (and or operating) RT threads.
7687 */
7688 if (tg == &root_task_group && rt_runtime == 0)
7689 return -EINVAL;
7690
7691 /* No period doesn't make any sense. */
7692 if (rt_period == 0)
7693 return -EINVAL;
7694
9f0c1e56 7695 mutex_lock(&rt_constraints_mutex);
521f1a24 7696 read_lock(&tasklist_lock);
9a7e0b18
PZ
7697 err = __rt_schedulable(tg, rt_period, rt_runtime);
7698 if (err)
9f0c1e56 7699 goto unlock;
ac086bc2 7700
0986b11b 7701 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7702 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7703 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7704
7705 for_each_possible_cpu(i) {
7706 struct rt_rq *rt_rq = tg->rt_rq[i];
7707
0986b11b 7708 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7709 rt_rq->rt_runtime = rt_runtime;
0986b11b 7710 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7711 }
0986b11b 7712 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7713unlock:
521f1a24 7714 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7715 mutex_unlock(&rt_constraints_mutex);
7716
7717 return err;
6f505b16
PZ
7718}
7719
25cc7da7 7720static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7721{
7722 u64 rt_runtime, rt_period;
7723
7724 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7725 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7726 if (rt_runtime_us < 0)
7727 rt_runtime = RUNTIME_INF;
7728
ab84d31e 7729 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7730}
7731
25cc7da7 7732static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7733{
7734 u64 rt_runtime_us;
7735
d0b27fa7 7736 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7737 return -1;
7738
d0b27fa7 7739 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7740 do_div(rt_runtime_us, NSEC_PER_USEC);
7741 return rt_runtime_us;
7742}
d0b27fa7 7743
25cc7da7 7744static int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
d0b27fa7
PZ
7745{
7746 u64 rt_runtime, rt_period;
7747
7748 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7749 rt_runtime = tg->rt_bandwidth.rt_runtime;
7750
ab84d31e 7751 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7752}
7753
25cc7da7 7754static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7755{
7756 u64 rt_period_us;
7757
7758 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7759 do_div(rt_period_us, NSEC_PER_USEC);
7760 return rt_period_us;
7761}
332ac17e 7762#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7763
332ac17e 7764#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7765static int sched_rt_global_constraints(void)
7766{
7767 int ret = 0;
7768
7769 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7770 read_lock(&tasklist_lock);
4653f803 7771 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7772 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7773 mutex_unlock(&rt_constraints_mutex);
7774
7775 return ret;
7776}
54e99124 7777
25cc7da7 7778static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7779{
7780 /* Don't accept realtime tasks when there is no way for them to run */
7781 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7782 return 0;
7783
7784 return 1;
7785}
7786
6d6bc0ad 7787#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7788static int sched_rt_global_constraints(void)
7789{
ac086bc2 7790 unsigned long flags;
332ac17e 7791 int i, ret = 0;
ec5d4989 7792
0986b11b 7793 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7794 for_each_possible_cpu(i) {
7795 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7796
0986b11b 7797 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7798 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7799 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7800 }
0986b11b 7801 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7802
332ac17e 7803 return ret;
d0b27fa7 7804}
6d6bc0ad 7805#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7806
a1963b81 7807static int sched_dl_global_validate(void)
332ac17e 7808{
1724813d
PZ
7809 u64 runtime = global_rt_runtime();
7810 u64 period = global_rt_period();
332ac17e 7811 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7812 struct dl_bw *dl_b;
1724813d 7813 int cpu, ret = 0;
49516342 7814 unsigned long flags;
332ac17e
DF
7815
7816 /*
7817 * Here we want to check the bandwidth not being set to some
7818 * value smaller than the currently allocated bandwidth in
7819 * any of the root_domains.
7820 *
7821 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7822 * cycling on root_domains... Discussion on different/better
7823 * solutions is welcome!
7824 */
1724813d 7825 for_each_possible_cpu(cpu) {
f10e00f4
KT
7826 rcu_read_lock_sched();
7827 dl_b = dl_bw_of(cpu);
332ac17e 7828
49516342 7829 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7830 if (new_bw < dl_b->total_bw)
7831 ret = -EBUSY;
49516342 7832 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7833
f10e00f4
KT
7834 rcu_read_unlock_sched();
7835
1724813d
PZ
7836 if (ret)
7837 break;
332ac17e
DF
7838 }
7839
1724813d 7840 return ret;
332ac17e
DF
7841}
7842
1724813d 7843static void sched_dl_do_global(void)
ce0dbbbb 7844{
1724813d 7845 u64 new_bw = -1;
f10e00f4 7846 struct dl_bw *dl_b;
1724813d 7847 int cpu;
49516342 7848 unsigned long flags;
ce0dbbbb 7849
1724813d
PZ
7850 def_dl_bandwidth.dl_period = global_rt_period();
7851 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7852
7853 if (global_rt_runtime() != RUNTIME_INF)
7854 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7855
7856 /*
7857 * FIXME: As above...
7858 */
7859 for_each_possible_cpu(cpu) {
f10e00f4
KT
7860 rcu_read_lock_sched();
7861 dl_b = dl_bw_of(cpu);
1724813d 7862
49516342 7863 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7864 dl_b->bw = new_bw;
49516342 7865 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7866
7867 rcu_read_unlock_sched();
ce0dbbbb 7868 }
1724813d
PZ
7869}
7870
7871static int sched_rt_global_validate(void)
7872{
7873 if (sysctl_sched_rt_period <= 0)
7874 return -EINVAL;
7875
e9e7cb38
JL
7876 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7877 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7878 return -EINVAL;
7879
7880 return 0;
7881}
7882
7883static void sched_rt_do_global(void)
7884{
7885 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7886 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
7887}
7888
d0b27fa7 7889int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7890 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7891 loff_t *ppos)
7892{
d0b27fa7
PZ
7893 int old_period, old_runtime;
7894 static DEFINE_MUTEX(mutex);
1724813d 7895 int ret;
d0b27fa7
PZ
7896
7897 mutex_lock(&mutex);
7898 old_period = sysctl_sched_rt_period;
7899 old_runtime = sysctl_sched_rt_runtime;
7900
8d65af78 7901 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7902
7903 if (!ret && write) {
1724813d
PZ
7904 ret = sched_rt_global_validate();
7905 if (ret)
7906 goto undo;
7907
a1963b81 7908 ret = sched_dl_global_validate();
1724813d
PZ
7909 if (ret)
7910 goto undo;
7911
a1963b81 7912 ret = sched_rt_global_constraints();
1724813d
PZ
7913 if (ret)
7914 goto undo;
7915
7916 sched_rt_do_global();
7917 sched_dl_do_global();
7918 }
7919 if (0) {
7920undo:
7921 sysctl_sched_rt_period = old_period;
7922 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
7923 }
7924 mutex_unlock(&mutex);
7925
7926 return ret;
7927}
68318b8e 7928
1724813d 7929int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
7930 void __user *buffer, size_t *lenp,
7931 loff_t *ppos)
7932{
7933 int ret;
332ac17e 7934 static DEFINE_MUTEX(mutex);
332ac17e
DF
7935
7936 mutex_lock(&mutex);
332ac17e 7937 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
7938 /* make sure that internally we keep jiffies */
7939 /* also, writing zero resets timeslice to default */
332ac17e 7940 if (!ret && write) {
1724813d
PZ
7941 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
7942 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
7943 }
7944 mutex_unlock(&mutex);
332ac17e
DF
7945 return ret;
7946}
7947
052f1dc7 7948#ifdef CONFIG_CGROUP_SCHED
68318b8e 7949
a7c6d554 7950static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 7951{
a7c6d554 7952 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
7953}
7954
eb95419b
TH
7955static struct cgroup_subsys_state *
7956cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 7957{
eb95419b
TH
7958 struct task_group *parent = css_tg(parent_css);
7959 struct task_group *tg;
68318b8e 7960
eb95419b 7961 if (!parent) {
68318b8e 7962 /* This is early initialization for the top cgroup */
07e06b01 7963 return &root_task_group.css;
68318b8e
SV
7964 }
7965
ec7dc8ac 7966 tg = sched_create_group(parent);
68318b8e
SV
7967 if (IS_ERR(tg))
7968 return ERR_PTR(-ENOMEM);
7969
68318b8e
SV
7970 return &tg->css;
7971}
7972
eb95419b 7973static int cpu_cgroup_css_online(struct cgroup_subsys_state *css)
ace783b9 7974{
eb95419b 7975 struct task_group *tg = css_tg(css);
5c9d535b 7976 struct task_group *parent = css_tg(css->parent);
ace783b9 7977
63876986
TH
7978 if (parent)
7979 sched_online_group(tg, parent);
ace783b9
LZ
7980 return 0;
7981}
7982
eb95419b 7983static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 7984{
eb95419b 7985 struct task_group *tg = css_tg(css);
68318b8e
SV
7986
7987 sched_destroy_group(tg);
7988}
7989
eb95419b 7990static void cpu_cgroup_css_offline(struct cgroup_subsys_state *css)
ace783b9 7991{
eb95419b 7992 struct task_group *tg = css_tg(css);
ace783b9
LZ
7993
7994 sched_offline_group(tg);
7995}
7996
eeb61e53
KT
7997static void cpu_cgroup_fork(struct task_struct *task)
7998{
7999 sched_move_task(task);
8000}
8001
eb95419b 8002static int cpu_cgroup_can_attach(struct cgroup_subsys_state *css,
bb9d97b6 8003 struct cgroup_taskset *tset)
68318b8e 8004{
bb9d97b6
TH
8005 struct task_struct *task;
8006
924f0d9a 8007 cgroup_taskset_for_each(task, tset) {
b68aa230 8008#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8009 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8010 return -EINVAL;
b68aa230 8011#else
bb9d97b6
TH
8012 /* We don't support RT-tasks being in separate groups */
8013 if (task->sched_class != &fair_sched_class)
8014 return -EINVAL;
b68aa230 8015#endif
bb9d97b6 8016 }
be367d09
BB
8017 return 0;
8018}
68318b8e 8019
eb95419b 8020static void cpu_cgroup_attach(struct cgroup_subsys_state *css,
bb9d97b6 8021 struct cgroup_taskset *tset)
68318b8e 8022{
bb9d97b6
TH
8023 struct task_struct *task;
8024
924f0d9a 8025 cgroup_taskset_for_each(task, tset)
bb9d97b6 8026 sched_move_task(task);
68318b8e
SV
8027}
8028
eb95419b
TH
8029static void cpu_cgroup_exit(struct cgroup_subsys_state *css,
8030 struct cgroup_subsys_state *old_css,
8031 struct task_struct *task)
068c5cc5
PZ
8032{
8033 /*
8034 * cgroup_exit() is called in the copy_process() failure path.
8035 * Ignore this case since the task hasn't ran yet, this avoids
8036 * trying to poke a half freed task state from generic code.
8037 */
8038 if (!(task->flags & PF_EXITING))
8039 return;
8040
8041 sched_move_task(task);
8042}
8043
052f1dc7 8044#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8045static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8046 struct cftype *cftype, u64 shareval)
68318b8e 8047{
182446d0 8048 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8049}
8050
182446d0
TH
8051static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8052 struct cftype *cft)
68318b8e 8053{
182446d0 8054 struct task_group *tg = css_tg(css);
68318b8e 8055
c8b28116 8056 return (u64) scale_load_down(tg->shares);
68318b8e 8057}
ab84d31e
PT
8058
8059#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8060static DEFINE_MUTEX(cfs_constraints_mutex);
8061
ab84d31e
PT
8062const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8063const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8064
a790de99
PT
8065static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8066
ab84d31e
PT
8067static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8068{
56f570e5 8069 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8070 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8071
8072 if (tg == &root_task_group)
8073 return -EINVAL;
8074
8075 /*
8076 * Ensure we have at some amount of bandwidth every period. This is
8077 * to prevent reaching a state of large arrears when throttled via
8078 * entity_tick() resulting in prolonged exit starvation.
8079 */
8080 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8081 return -EINVAL;
8082
8083 /*
8084 * Likewise, bound things on the otherside by preventing insane quota
8085 * periods. This also allows us to normalize in computing quota
8086 * feasibility.
8087 */
8088 if (period > max_cfs_quota_period)
8089 return -EINVAL;
8090
0e59bdae
KT
8091 /*
8092 * Prevent race between setting of cfs_rq->runtime_enabled and
8093 * unthrottle_offline_cfs_rqs().
8094 */
8095 get_online_cpus();
a790de99
PT
8096 mutex_lock(&cfs_constraints_mutex);
8097 ret = __cfs_schedulable(tg, period, quota);
8098 if (ret)
8099 goto out_unlock;
8100
58088ad0 8101 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8102 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8103 /*
8104 * If we need to toggle cfs_bandwidth_used, off->on must occur
8105 * before making related changes, and on->off must occur afterwards
8106 */
8107 if (runtime_enabled && !runtime_was_enabled)
8108 cfs_bandwidth_usage_inc();
ab84d31e
PT
8109 raw_spin_lock_irq(&cfs_b->lock);
8110 cfs_b->period = ns_to_ktime(period);
8111 cfs_b->quota = quota;
58088ad0 8112
a9cf55b2 8113 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
8114 /* restart the period timer (if active) to handle new period expiry */
8115 if (runtime_enabled && cfs_b->timer_active) {
8116 /* force a reprogram */
09dc4ab0 8117 __start_cfs_bandwidth(cfs_b, true);
58088ad0 8118 }
ab84d31e
PT
8119 raw_spin_unlock_irq(&cfs_b->lock);
8120
0e59bdae 8121 for_each_online_cpu(i) {
ab84d31e 8122 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8123 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8124
8125 raw_spin_lock_irq(&rq->lock);
58088ad0 8126 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8127 cfs_rq->runtime_remaining = 0;
671fd9da 8128
029632fb 8129 if (cfs_rq->throttled)
671fd9da 8130 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8131 raw_spin_unlock_irq(&rq->lock);
8132 }
1ee14e6c
BS
8133 if (runtime_was_enabled && !runtime_enabled)
8134 cfs_bandwidth_usage_dec();
a790de99
PT
8135out_unlock:
8136 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8137 put_online_cpus();
ab84d31e 8138
a790de99 8139 return ret;
ab84d31e
PT
8140}
8141
8142int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8143{
8144 u64 quota, period;
8145
029632fb 8146 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8147 if (cfs_quota_us < 0)
8148 quota = RUNTIME_INF;
8149 else
8150 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8151
8152 return tg_set_cfs_bandwidth(tg, period, quota);
8153}
8154
8155long tg_get_cfs_quota(struct task_group *tg)
8156{
8157 u64 quota_us;
8158
029632fb 8159 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8160 return -1;
8161
029632fb 8162 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8163 do_div(quota_us, NSEC_PER_USEC);
8164
8165 return quota_us;
8166}
8167
8168int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8169{
8170 u64 quota, period;
8171
8172 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8173 quota = tg->cfs_bandwidth.quota;
ab84d31e 8174
ab84d31e
PT
8175 return tg_set_cfs_bandwidth(tg, period, quota);
8176}
8177
8178long tg_get_cfs_period(struct task_group *tg)
8179{
8180 u64 cfs_period_us;
8181
029632fb 8182 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8183 do_div(cfs_period_us, NSEC_PER_USEC);
8184
8185 return cfs_period_us;
8186}
8187
182446d0
TH
8188static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8189 struct cftype *cft)
ab84d31e 8190{
182446d0 8191 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8192}
8193
182446d0
TH
8194static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8195 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8196{
182446d0 8197 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8198}
8199
182446d0
TH
8200static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8201 struct cftype *cft)
ab84d31e 8202{
182446d0 8203 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8204}
8205
182446d0
TH
8206static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8207 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8208{
182446d0 8209 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8210}
8211
a790de99
PT
8212struct cfs_schedulable_data {
8213 struct task_group *tg;
8214 u64 period, quota;
8215};
8216
8217/*
8218 * normalize group quota/period to be quota/max_period
8219 * note: units are usecs
8220 */
8221static u64 normalize_cfs_quota(struct task_group *tg,
8222 struct cfs_schedulable_data *d)
8223{
8224 u64 quota, period;
8225
8226 if (tg == d->tg) {
8227 period = d->period;
8228 quota = d->quota;
8229 } else {
8230 period = tg_get_cfs_period(tg);
8231 quota = tg_get_cfs_quota(tg);
8232 }
8233
8234 /* note: these should typically be equivalent */
8235 if (quota == RUNTIME_INF || quota == -1)
8236 return RUNTIME_INF;
8237
8238 return to_ratio(period, quota);
8239}
8240
8241static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8242{
8243 struct cfs_schedulable_data *d = data;
029632fb 8244 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8245 s64 quota = 0, parent_quota = -1;
8246
8247 if (!tg->parent) {
8248 quota = RUNTIME_INF;
8249 } else {
029632fb 8250 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8251
8252 quota = normalize_cfs_quota(tg, d);
9c58c79a 8253 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8254
8255 /*
8256 * ensure max(child_quota) <= parent_quota, inherit when no
8257 * limit is set
8258 */
8259 if (quota == RUNTIME_INF)
8260 quota = parent_quota;
8261 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8262 return -EINVAL;
8263 }
9c58c79a 8264 cfs_b->hierarchical_quota = quota;
a790de99
PT
8265
8266 return 0;
8267}
8268
8269static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8270{
8277434e 8271 int ret;
a790de99
PT
8272 struct cfs_schedulable_data data = {
8273 .tg = tg,
8274 .period = period,
8275 .quota = quota,
8276 };
8277
8278 if (quota != RUNTIME_INF) {
8279 do_div(data.period, NSEC_PER_USEC);
8280 do_div(data.quota, NSEC_PER_USEC);
8281 }
8282
8277434e
PT
8283 rcu_read_lock();
8284 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8285 rcu_read_unlock();
8286
8287 return ret;
a790de99 8288}
e8da1b18 8289
2da8ca82 8290static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8291{
2da8ca82 8292 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8293 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8294
44ffc75b
TH
8295 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8296 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8297 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8298
8299 return 0;
8300}
ab84d31e 8301#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8302#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8303
052f1dc7 8304#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8305static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8306 struct cftype *cft, s64 val)
6f505b16 8307{
182446d0 8308 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8309}
8310
182446d0
TH
8311static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8312 struct cftype *cft)
6f505b16 8313{
182446d0 8314 return sched_group_rt_runtime(css_tg(css));
6f505b16 8315}
d0b27fa7 8316
182446d0
TH
8317static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8318 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8319{
182446d0 8320 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8321}
8322
182446d0
TH
8323static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8324 struct cftype *cft)
d0b27fa7 8325{
182446d0 8326 return sched_group_rt_period(css_tg(css));
d0b27fa7 8327}
6d6bc0ad 8328#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8329
fe5c7cc2 8330static struct cftype cpu_files[] = {
052f1dc7 8331#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8332 {
8333 .name = "shares",
f4c753b7
PM
8334 .read_u64 = cpu_shares_read_u64,
8335 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8336 },
052f1dc7 8337#endif
ab84d31e
PT
8338#ifdef CONFIG_CFS_BANDWIDTH
8339 {
8340 .name = "cfs_quota_us",
8341 .read_s64 = cpu_cfs_quota_read_s64,
8342 .write_s64 = cpu_cfs_quota_write_s64,
8343 },
8344 {
8345 .name = "cfs_period_us",
8346 .read_u64 = cpu_cfs_period_read_u64,
8347 .write_u64 = cpu_cfs_period_write_u64,
8348 },
e8da1b18
NR
8349 {
8350 .name = "stat",
2da8ca82 8351 .seq_show = cpu_stats_show,
e8da1b18 8352 },
ab84d31e 8353#endif
052f1dc7 8354#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8355 {
9f0c1e56 8356 .name = "rt_runtime_us",
06ecb27c
PM
8357 .read_s64 = cpu_rt_runtime_read,
8358 .write_s64 = cpu_rt_runtime_write,
6f505b16 8359 },
d0b27fa7
PZ
8360 {
8361 .name = "rt_period_us",
f4c753b7
PM
8362 .read_u64 = cpu_rt_period_read_uint,
8363 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8364 },
052f1dc7 8365#endif
4baf6e33 8366 { } /* terminate */
68318b8e
SV
8367};
8368
073219e9 8369struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748
TH
8370 .css_alloc = cpu_cgroup_css_alloc,
8371 .css_free = cpu_cgroup_css_free,
ace783b9
LZ
8372 .css_online = cpu_cgroup_css_online,
8373 .css_offline = cpu_cgroup_css_offline,
eeb61e53 8374 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8375 .can_attach = cpu_cgroup_can_attach,
8376 .attach = cpu_cgroup_attach,
068c5cc5 8377 .exit = cpu_cgroup_exit,
5577964e 8378 .legacy_cftypes = cpu_files,
68318b8e
SV
8379 .early_init = 1,
8380};
8381
052f1dc7 8382#endif /* CONFIG_CGROUP_SCHED */
d842de87 8383
b637a328
PM
8384void dump_cpu_task(int cpu)
8385{
8386 pr_info("Task dump for CPU %d:\n", cpu);
8387 sched_show_task(cpu_curr(cpu));
8388}
This page took 2.731085 seconds and 5 git commands to generate.