sched: encapsulate priority changes in a sched_set_prio static function
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
e1b77c92 29#include <linux/kasan.h>
1da177e4
LT
30#include <linux/mm.h>
31#include <linux/module.h>
32#include <linux/nmi.h>
33#include <linux/init.h>
dff06c15 34#include <linux/uaccess.h>
1da177e4 35#include <linux/highmem.h>
1da177e4
LT
36#include <asm/mmu_context.h>
37#include <linux/interrupt.h>
c59ede7b 38#include <linux/capability.h>
1da177e4
LT
39#include <linux/completion.h>
40#include <linux/kernel_stat.h>
9a11b49a 41#include <linux/debug_locks.h>
cdd6c482 42#include <linux/perf_event.h>
1da177e4
LT
43#include <linux/security.h>
44#include <linux/notifier.h>
45#include <linux/profile.h>
7dfb7103 46#include <linux/freezer.h>
198e2f18 47#include <linux/vmalloc.h>
1da177e4
LT
48#include <linux/blkdev.h>
49#include <linux/delay.h>
b488893a 50#include <linux/pid_namespace.h>
1da177e4
LT
51#include <linux/smp.h>
52#include <linux/threads.h>
53#include <linux/timer.h>
54#include <linux/rcupdate.h>
55#include <linux/cpu.h>
56#include <linux/cpuset.h>
57#include <linux/percpu.h>
b5aadf7f 58#include <linux/proc_fs.h>
1da177e4 59#include <linux/seq_file.h>
e692ab53 60#include <linux/sysctl.h>
1da177e4
LT
61#include <linux/syscalls.h>
62#include <linux/times.h>
8f0ab514 63#include <linux/tsacct_kern.h>
c6fd91f0 64#include <linux/kprobes.h>
0ff92245 65#include <linux/delayacct.h>
dff06c15 66#include <linux/unistd.h>
f5ff8422 67#include <linux/pagemap.h>
8f4d37ec 68#include <linux/hrtimer.h>
30914a58 69#include <linux/tick.h>
f00b45c1 70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
91d1aa43 74#include <linux/context_tracking.h>
52f5684c 75#include <linux/compiler.h>
8e05e96a 76#include <linux/frame.h>
1da177e4 77
96f951ed 78#include <asm/switch_to.h>
5517d86b 79#include <asm/tlb.h>
838225b4 80#include <asm/irq_regs.h>
db7e527d 81#include <asm/mutex.h>
e6e6685a
GC
82#ifdef CONFIG_PARAVIRT
83#include <asm/paravirt.h>
84#endif
1da177e4 85
029632fb 86#include "sched.h"
ea138446 87#include "../workqueue_internal.h"
29d5e047 88#include "../smpboot.h"
6e0534f2 89
a8d154b0 90#define CREATE_TRACE_POINTS
ad8d75ff 91#include <trace/events/sched.h>
a8d154b0 92
029632fb
PZ
93DEFINE_MUTEX(sched_domains_mutex);
94DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 95
fe44d621 96static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 97
029632fb 98void update_rq_clock(struct rq *rq)
3e51f33f 99{
fe44d621 100 s64 delta;
305e6835 101
9edfbfed
PZ
102 lockdep_assert_held(&rq->lock);
103
104 if (rq->clock_skip_update & RQCF_ACT_SKIP)
f26f9aff 105 return;
aa483808 106
fe44d621 107 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
4036ac15
MG
108 if (delta < 0)
109 return;
fe44d621
PZ
110 rq->clock += delta;
111 update_rq_clock_task(rq, delta);
3e51f33f
PZ
112}
113
bf5c91ba
IM
114/*
115 * Debugging: various feature bits
116 */
f00b45c1 117
f00b45c1
PZ
118#define SCHED_FEAT(name, enabled) \
119 (1UL << __SCHED_FEAT_##name) * enabled |
120
bf5c91ba 121const_debug unsigned int sysctl_sched_features =
391e43da 122#include "features.h"
f00b45c1
PZ
123 0;
124
125#undef SCHED_FEAT
126
b82d9fdd
PZ
127/*
128 * Number of tasks to iterate in a single balance run.
129 * Limited because this is done with IRQs disabled.
130 */
131const_debug unsigned int sysctl_sched_nr_migrate = 32;
132
e9e9250b
PZ
133/*
134 * period over which we average the RT time consumption, measured
135 * in ms.
136 *
137 * default: 1s
138 */
139const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
140
fa85ae24 141/*
9f0c1e56 142 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
143 * default: 1s
144 */
9f0c1e56 145unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 146
029632fb 147__read_mostly int scheduler_running;
6892b75e 148
9f0c1e56
PZ
149/*
150 * part of the period that we allow rt tasks to run in us.
151 * default: 0.95s
152 */
153int sysctl_sched_rt_runtime = 950000;
fa85ae24 154
3fa0818b
RR
155/* cpus with isolated domains */
156cpumask_var_t cpu_isolated_map;
157
1da177e4 158/*
cc2a73b5 159 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 160 */
a9957449 161static struct rq *this_rq_lock(void)
1da177e4
LT
162 __acquires(rq->lock)
163{
70b97a7f 164 struct rq *rq;
1da177e4
LT
165
166 local_irq_disable();
167 rq = this_rq();
05fa785c 168 raw_spin_lock(&rq->lock);
1da177e4
LT
169
170 return rq;
171}
172
8f4d37ec
PZ
173#ifdef CONFIG_SCHED_HRTICK
174/*
175 * Use HR-timers to deliver accurate preemption points.
8f4d37ec 176 */
8f4d37ec 177
8f4d37ec
PZ
178static void hrtick_clear(struct rq *rq)
179{
180 if (hrtimer_active(&rq->hrtick_timer))
181 hrtimer_cancel(&rq->hrtick_timer);
182}
183
8f4d37ec
PZ
184/*
185 * High-resolution timer tick.
186 * Runs from hardirq context with interrupts disabled.
187 */
188static enum hrtimer_restart hrtick(struct hrtimer *timer)
189{
190 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
191
192 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
193
05fa785c 194 raw_spin_lock(&rq->lock);
3e51f33f 195 update_rq_clock(rq);
8f4d37ec 196 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 197 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
198
199 return HRTIMER_NORESTART;
200}
201
95e904c7 202#ifdef CONFIG_SMP
971ee28c 203
4961b6e1 204static void __hrtick_restart(struct rq *rq)
971ee28c
PZ
205{
206 struct hrtimer *timer = &rq->hrtick_timer;
971ee28c 207
4961b6e1 208 hrtimer_start_expires(timer, HRTIMER_MODE_ABS_PINNED);
971ee28c
PZ
209}
210
31656519
PZ
211/*
212 * called from hardirq (IPI) context
213 */
214static void __hrtick_start(void *arg)
b328ca18 215{
31656519 216 struct rq *rq = arg;
b328ca18 217
05fa785c 218 raw_spin_lock(&rq->lock);
971ee28c 219 __hrtick_restart(rq);
31656519 220 rq->hrtick_csd_pending = 0;
05fa785c 221 raw_spin_unlock(&rq->lock);
b328ca18
PZ
222}
223
31656519
PZ
224/*
225 * Called to set the hrtick timer state.
226 *
227 * called with rq->lock held and irqs disabled
228 */
029632fb 229void hrtick_start(struct rq *rq, u64 delay)
b328ca18 230{
31656519 231 struct hrtimer *timer = &rq->hrtick_timer;
177ef2a6 232 ktime_t time;
233 s64 delta;
234
235 /*
236 * Don't schedule slices shorter than 10000ns, that just
237 * doesn't make sense and can cause timer DoS.
238 */
239 delta = max_t(s64, delay, 10000LL);
240 time = ktime_add_ns(timer->base->get_time(), delta);
b328ca18 241
cc584b21 242 hrtimer_set_expires(timer, time);
31656519
PZ
243
244 if (rq == this_rq()) {
971ee28c 245 __hrtick_restart(rq);
31656519 246 } else if (!rq->hrtick_csd_pending) {
c46fff2a 247 smp_call_function_single_async(cpu_of(rq), &rq->hrtick_csd);
31656519
PZ
248 rq->hrtick_csd_pending = 1;
249 }
b328ca18
PZ
250}
251
252static int
253hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
254{
255 int cpu = (int)(long)hcpu;
256
257 switch (action) {
258 case CPU_UP_CANCELED:
259 case CPU_UP_CANCELED_FROZEN:
260 case CPU_DOWN_PREPARE:
261 case CPU_DOWN_PREPARE_FROZEN:
262 case CPU_DEAD:
263 case CPU_DEAD_FROZEN:
31656519 264 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
265 return NOTIFY_OK;
266 }
267
268 return NOTIFY_DONE;
269}
270
fa748203 271static __init void init_hrtick(void)
b328ca18
PZ
272{
273 hotcpu_notifier(hotplug_hrtick, 0);
274}
31656519
PZ
275#else
276/*
277 * Called to set the hrtick timer state.
278 *
279 * called with rq->lock held and irqs disabled
280 */
029632fb 281void hrtick_start(struct rq *rq, u64 delay)
31656519 282{
86893335
WL
283 /*
284 * Don't schedule slices shorter than 10000ns, that just
285 * doesn't make sense. Rely on vruntime for fairness.
286 */
287 delay = max_t(u64, delay, 10000LL);
4961b6e1
TG
288 hrtimer_start(&rq->hrtick_timer, ns_to_ktime(delay),
289 HRTIMER_MODE_REL_PINNED);
31656519 290}
b328ca18 291
006c75f1 292static inline void init_hrtick(void)
8f4d37ec 293{
8f4d37ec 294}
31656519 295#endif /* CONFIG_SMP */
8f4d37ec 296
31656519 297static void init_rq_hrtick(struct rq *rq)
8f4d37ec 298{
31656519
PZ
299#ifdef CONFIG_SMP
300 rq->hrtick_csd_pending = 0;
8f4d37ec 301
31656519
PZ
302 rq->hrtick_csd.flags = 0;
303 rq->hrtick_csd.func = __hrtick_start;
304 rq->hrtick_csd.info = rq;
305#endif
8f4d37ec 306
31656519
PZ
307 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
308 rq->hrtick_timer.function = hrtick;
8f4d37ec 309}
006c75f1 310#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
311static inline void hrtick_clear(struct rq *rq)
312{
313}
314
8f4d37ec
PZ
315static inline void init_rq_hrtick(struct rq *rq)
316{
317}
318
b328ca18
PZ
319static inline void init_hrtick(void)
320{
321}
006c75f1 322#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 323
5529578a
FW
324/*
325 * cmpxchg based fetch_or, macro so it works for different integer types
326 */
327#define fetch_or(ptr, mask) \
328 ({ \
329 typeof(ptr) _ptr = (ptr); \
330 typeof(mask) _mask = (mask); \
331 typeof(*_ptr) _old, _val = *_ptr; \
332 \
333 for (;;) { \
334 _old = cmpxchg(_ptr, _val, _val | _mask); \
335 if (_old == _val) \
336 break; \
337 _val = _old; \
338 } \
339 _old; \
340})
341
e3baac47 342#if defined(CONFIG_SMP) && defined(TIF_POLLING_NRFLAG)
fd99f91a
PZ
343/*
344 * Atomically set TIF_NEED_RESCHED and test for TIF_POLLING_NRFLAG,
345 * this avoids any races wrt polling state changes and thereby avoids
346 * spurious IPIs.
347 */
348static bool set_nr_and_not_polling(struct task_struct *p)
349{
350 struct thread_info *ti = task_thread_info(p);
351 return !(fetch_or(&ti->flags, _TIF_NEED_RESCHED) & _TIF_POLLING_NRFLAG);
352}
e3baac47
PZ
353
354/*
355 * Atomically set TIF_NEED_RESCHED if TIF_POLLING_NRFLAG is set.
356 *
357 * If this returns true, then the idle task promises to call
358 * sched_ttwu_pending() and reschedule soon.
359 */
360static bool set_nr_if_polling(struct task_struct *p)
361{
362 struct thread_info *ti = task_thread_info(p);
316c1608 363 typeof(ti->flags) old, val = READ_ONCE(ti->flags);
e3baac47
PZ
364
365 for (;;) {
366 if (!(val & _TIF_POLLING_NRFLAG))
367 return false;
368 if (val & _TIF_NEED_RESCHED)
369 return true;
370 old = cmpxchg(&ti->flags, val, val | _TIF_NEED_RESCHED);
371 if (old == val)
372 break;
373 val = old;
374 }
375 return true;
376}
377
fd99f91a
PZ
378#else
379static bool set_nr_and_not_polling(struct task_struct *p)
380{
381 set_tsk_need_resched(p);
382 return true;
383}
e3baac47
PZ
384
385#ifdef CONFIG_SMP
386static bool set_nr_if_polling(struct task_struct *p)
387{
388 return false;
389}
390#endif
fd99f91a
PZ
391#endif
392
76751049
PZ
393void wake_q_add(struct wake_q_head *head, struct task_struct *task)
394{
395 struct wake_q_node *node = &task->wake_q;
396
397 /*
398 * Atomically grab the task, if ->wake_q is !nil already it means
399 * its already queued (either by us or someone else) and will get the
400 * wakeup due to that.
401 *
402 * This cmpxchg() implies a full barrier, which pairs with the write
403 * barrier implied by the wakeup in wake_up_list().
404 */
405 if (cmpxchg(&node->next, NULL, WAKE_Q_TAIL))
406 return;
407
408 get_task_struct(task);
409
410 /*
411 * The head is context local, there can be no concurrency.
412 */
413 *head->lastp = node;
414 head->lastp = &node->next;
415}
416
417void wake_up_q(struct wake_q_head *head)
418{
419 struct wake_q_node *node = head->first;
420
421 while (node != WAKE_Q_TAIL) {
422 struct task_struct *task;
423
424 task = container_of(node, struct task_struct, wake_q);
425 BUG_ON(!task);
426 /* task can safely be re-inserted now */
427 node = node->next;
428 task->wake_q.next = NULL;
429
430 /*
431 * wake_up_process() implies a wmb() to pair with the queueing
432 * in wake_q_add() so as not to miss wakeups.
433 */
434 wake_up_process(task);
435 put_task_struct(task);
436 }
437}
438
c24d20db 439/*
8875125e 440 * resched_curr - mark rq's current task 'to be rescheduled now'.
c24d20db
IM
441 *
442 * On UP this means the setting of the need_resched flag, on SMP it
443 * might also involve a cross-CPU call to trigger the scheduler on
444 * the target CPU.
445 */
8875125e 446void resched_curr(struct rq *rq)
c24d20db 447{
8875125e 448 struct task_struct *curr = rq->curr;
c24d20db
IM
449 int cpu;
450
8875125e 451 lockdep_assert_held(&rq->lock);
c24d20db 452
8875125e 453 if (test_tsk_need_resched(curr))
c24d20db
IM
454 return;
455
8875125e 456 cpu = cpu_of(rq);
fd99f91a 457
f27dde8d 458 if (cpu == smp_processor_id()) {
8875125e 459 set_tsk_need_resched(curr);
f27dde8d 460 set_preempt_need_resched();
c24d20db 461 return;
f27dde8d 462 }
c24d20db 463
8875125e 464 if (set_nr_and_not_polling(curr))
c24d20db 465 smp_send_reschedule(cpu);
dfc68f29
AL
466 else
467 trace_sched_wake_idle_without_ipi(cpu);
c24d20db
IM
468}
469
029632fb 470void resched_cpu(int cpu)
c24d20db
IM
471{
472 struct rq *rq = cpu_rq(cpu);
473 unsigned long flags;
474
05fa785c 475 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db 476 return;
8875125e 477 resched_curr(rq);
05fa785c 478 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 479}
06d8308c 480
b021fe3e 481#ifdef CONFIG_SMP
3451d024 482#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
483/*
484 * In the semi idle case, use the nearest busy cpu for migrating timers
485 * from an idle cpu. This is good for power-savings.
486 *
487 * We don't do similar optimization for completely idle system, as
488 * selecting an idle cpu will add more delays to the timers than intended
489 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
490 */
bc7a34b8 491int get_nohz_timer_target(void)
83cd4fe2 492{
bc7a34b8 493 int i, cpu = smp_processor_id();
83cd4fe2
VP
494 struct sched_domain *sd;
495
9642d18e 496 if (!idle_cpu(cpu) && is_housekeeping_cpu(cpu))
6201b4d6
VK
497 return cpu;
498
057f3fad 499 rcu_read_lock();
83cd4fe2 500 for_each_domain(cpu, sd) {
057f3fad 501 for_each_cpu(i, sched_domain_span(sd)) {
9642d18e 502 if (!idle_cpu(i) && is_housekeeping_cpu(cpu)) {
057f3fad
PZ
503 cpu = i;
504 goto unlock;
505 }
506 }
83cd4fe2 507 }
9642d18e
VH
508
509 if (!is_housekeeping_cpu(cpu))
510 cpu = housekeeping_any_cpu();
057f3fad
PZ
511unlock:
512 rcu_read_unlock();
83cd4fe2
VP
513 return cpu;
514}
06d8308c
TG
515/*
516 * When add_timer_on() enqueues a timer into the timer wheel of an
517 * idle CPU then this timer might expire before the next timer event
518 * which is scheduled to wake up that CPU. In case of a completely
519 * idle system the next event might even be infinite time into the
520 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
521 * leaves the inner idle loop so the newly added timer is taken into
522 * account when the CPU goes back to idle and evaluates the timer
523 * wheel for the next timer event.
524 */
1c20091e 525static void wake_up_idle_cpu(int cpu)
06d8308c
TG
526{
527 struct rq *rq = cpu_rq(cpu);
528
529 if (cpu == smp_processor_id())
530 return;
531
67b9ca70 532 if (set_nr_and_not_polling(rq->idle))
06d8308c 533 smp_send_reschedule(cpu);
dfc68f29
AL
534 else
535 trace_sched_wake_idle_without_ipi(cpu);
45bf76df
IM
536}
537
c5bfece2 538static bool wake_up_full_nohz_cpu(int cpu)
1c20091e 539{
53c5fa16
FW
540 /*
541 * We just need the target to call irq_exit() and re-evaluate
542 * the next tick. The nohz full kick at least implies that.
543 * If needed we can still optimize that later with an
544 * empty IRQ.
545 */
c5bfece2 546 if (tick_nohz_full_cpu(cpu)) {
1c20091e
FW
547 if (cpu != smp_processor_id() ||
548 tick_nohz_tick_stopped())
53c5fa16 549 tick_nohz_full_kick_cpu(cpu);
1c20091e
FW
550 return true;
551 }
552
553 return false;
554}
555
556void wake_up_nohz_cpu(int cpu)
557{
c5bfece2 558 if (!wake_up_full_nohz_cpu(cpu))
1c20091e
FW
559 wake_up_idle_cpu(cpu);
560}
561
ca38062e 562static inline bool got_nohz_idle_kick(void)
45bf76df 563{
1c792db7 564 int cpu = smp_processor_id();
873b4c65
VG
565
566 if (!test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu)))
567 return false;
568
569 if (idle_cpu(cpu) && !need_resched())
570 return true;
571
572 /*
573 * We can't run Idle Load Balance on this CPU for this time so we
574 * cancel it and clear NOHZ_BALANCE_KICK
575 */
576 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
577 return false;
45bf76df
IM
578}
579
3451d024 580#else /* CONFIG_NO_HZ_COMMON */
45bf76df 581
ca38062e 582static inline bool got_nohz_idle_kick(void)
2069dd75 583{
ca38062e 584 return false;
2069dd75
PZ
585}
586
3451d024 587#endif /* CONFIG_NO_HZ_COMMON */
d842de87 588
ce831b38 589#ifdef CONFIG_NO_HZ_FULL
76d92ac3 590bool sched_can_stop_tick(struct rq *rq)
ce831b38 591{
76d92ac3
FW
592 int fifo_nr_running;
593
594 /* Deadline tasks, even if single, need the tick */
595 if (rq->dl.dl_nr_running)
596 return false;
597
1e78cdbd 598 /*
2548d546
PZ
599 * If there are more than one RR tasks, we need the tick to effect the
600 * actual RR behaviour.
1e78cdbd 601 */
76d92ac3
FW
602 if (rq->rt.rr_nr_running) {
603 if (rq->rt.rr_nr_running == 1)
604 return true;
605 else
606 return false;
1e78cdbd
RR
607 }
608
2548d546
PZ
609 /*
610 * If there's no RR tasks, but FIFO tasks, we can skip the tick, no
611 * forced preemption between FIFO tasks.
612 */
613 fifo_nr_running = rq->rt.rt_nr_running - rq->rt.rr_nr_running;
614 if (fifo_nr_running)
615 return true;
616
617 /*
618 * If there are no DL,RR/FIFO tasks, there must only be CFS tasks left;
619 * if there's more than one we need the tick for involuntary
620 * preemption.
621 */
622 if (rq->nr_running > 1)
541b8264 623 return false;
ce831b38 624
541b8264 625 return true;
ce831b38
FW
626}
627#endif /* CONFIG_NO_HZ_FULL */
d842de87 628
029632fb 629void sched_avg_update(struct rq *rq)
18d95a28 630{
e9e9250b
PZ
631 s64 period = sched_avg_period();
632
78becc27 633 while ((s64)(rq_clock(rq) - rq->age_stamp) > period) {
0d98bb26
WD
634 /*
635 * Inline assembly required to prevent the compiler
636 * optimising this loop into a divmod call.
637 * See __iter_div_u64_rem() for another example of this.
638 */
639 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
640 rq->age_stamp += period;
641 rq->rt_avg /= 2;
642 }
18d95a28
PZ
643}
644
6d6bc0ad 645#endif /* CONFIG_SMP */
18d95a28 646
a790de99
PT
647#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
648 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 649/*
8277434e
PT
650 * Iterate task_group tree rooted at *from, calling @down when first entering a
651 * node and @up when leaving it for the final time.
652 *
653 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 654 */
029632fb 655int walk_tg_tree_from(struct task_group *from,
8277434e 656 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
657{
658 struct task_group *parent, *child;
eb755805 659 int ret;
c09595f6 660
8277434e
PT
661 parent = from;
662
c09595f6 663down:
eb755805
PZ
664 ret = (*down)(parent, data);
665 if (ret)
8277434e 666 goto out;
c09595f6
PZ
667 list_for_each_entry_rcu(child, &parent->children, siblings) {
668 parent = child;
669 goto down;
670
671up:
672 continue;
673 }
eb755805 674 ret = (*up)(parent, data);
8277434e
PT
675 if (ret || parent == from)
676 goto out;
c09595f6
PZ
677
678 child = parent;
679 parent = parent->parent;
680 if (parent)
681 goto up;
8277434e 682out:
eb755805 683 return ret;
c09595f6
PZ
684}
685
029632fb 686int tg_nop(struct task_group *tg, void *data)
eb755805 687{
e2b245f8 688 return 0;
eb755805 689}
18d95a28
PZ
690#endif
691
45bf76df
IM
692static void set_load_weight(struct task_struct *p)
693{
f05998d4
NR
694 int prio = p->static_prio - MAX_RT_PRIO;
695 struct load_weight *load = &p->se.load;
696
dd41f596
IM
697 /*
698 * SCHED_IDLE tasks get minimal weight:
699 */
20f9cd2a 700 if (idle_policy(p->policy)) {
c8b28116 701 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 702 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
703 return;
704 }
71f8bd46 705
ed82b8a1
AK
706 load->weight = scale_load(sched_prio_to_weight[prio]);
707 load->inv_weight = sched_prio_to_wmult[prio];
71f8bd46
IM
708}
709
1de64443 710static inline void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 711{
a64692a3 712 update_rq_clock(rq);
1de64443
PZ
713 if (!(flags & ENQUEUE_RESTORE))
714 sched_info_queued(rq, p);
371fd7e7 715 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
716}
717
1de64443 718static inline void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 719{
a64692a3 720 update_rq_clock(rq);
1de64443
PZ
721 if (!(flags & DEQUEUE_SAVE))
722 sched_info_dequeued(rq, p);
371fd7e7 723 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
724}
725
029632fb 726void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
727{
728 if (task_contributes_to_load(p))
729 rq->nr_uninterruptible--;
730
371fd7e7 731 enqueue_task(rq, p, flags);
1e3c88bd
PZ
732}
733
029632fb 734void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
735{
736 if (task_contributes_to_load(p))
737 rq->nr_uninterruptible++;
738
371fd7e7 739 dequeue_task(rq, p, flags);
1e3c88bd
PZ
740}
741
fe44d621 742static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 743{
095c0aa8
GC
744/*
745 * In theory, the compile should just see 0 here, and optimize out the call
746 * to sched_rt_avg_update. But I don't trust it...
747 */
748#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
749 s64 steal = 0, irq_delta = 0;
750#endif
751#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 752 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
753
754 /*
755 * Since irq_time is only updated on {soft,}irq_exit, we might run into
756 * this case when a previous update_rq_clock() happened inside a
757 * {soft,}irq region.
758 *
759 * When this happens, we stop ->clock_task and only update the
760 * prev_irq_time stamp to account for the part that fit, so that a next
761 * update will consume the rest. This ensures ->clock_task is
762 * monotonic.
763 *
764 * It does however cause some slight miss-attribution of {soft,}irq
765 * time, a more accurate solution would be to update the irq_time using
766 * the current rq->clock timestamp, except that would require using
767 * atomic ops.
768 */
769 if (irq_delta > delta)
770 irq_delta = delta;
771
772 rq->prev_irq_time += irq_delta;
773 delta -= irq_delta;
095c0aa8
GC
774#endif
775#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 776 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
777 steal = paravirt_steal_clock(cpu_of(rq));
778 steal -= rq->prev_steal_time_rq;
779
780 if (unlikely(steal > delta))
781 steal = delta;
782
095c0aa8 783 rq->prev_steal_time_rq += steal;
095c0aa8
GC
784 delta -= steal;
785 }
786#endif
787
fe44d621
PZ
788 rq->clock_task += delta;
789
095c0aa8 790#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
5d4dfddd 791 if ((irq_delta + steal) && sched_feat(NONTASK_CAPACITY))
095c0aa8
GC
792 sched_rt_avg_update(rq, irq_delta + steal);
793#endif
aa483808
VP
794}
795
34f971f6
PZ
796void sched_set_stop_task(int cpu, struct task_struct *stop)
797{
798 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
799 struct task_struct *old_stop = cpu_rq(cpu)->stop;
800
801 if (stop) {
802 /*
803 * Make it appear like a SCHED_FIFO task, its something
804 * userspace knows about and won't get confused about.
805 *
806 * Also, it will make PI more or less work without too
807 * much confusion -- but then, stop work should not
808 * rely on PI working anyway.
809 */
810 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
811
812 stop->sched_class = &stop_sched_class;
813 }
814
815 cpu_rq(cpu)->stop = stop;
816
817 if (old_stop) {
818 /*
819 * Reset it back to a normal scheduling class so that
820 * it can die in pieces.
821 */
822 old_stop->sched_class = &rt_sched_class;
823 }
824}
825
14531189 826/*
dd41f596 827 * __normal_prio - return the priority that is based on the static prio
14531189 828 */
14531189
IM
829static inline int __normal_prio(struct task_struct *p)
830{
dd41f596 831 return p->static_prio;
14531189
IM
832}
833
b29739f9
IM
834/*
835 * Calculate the expected normal priority: i.e. priority
836 * without taking RT-inheritance into account. Might be
837 * boosted by interactivity modifiers. Changes upon fork,
838 * setprio syscalls, and whenever the interactivity
839 * estimator recalculates.
840 */
36c8b586 841static inline int normal_prio(struct task_struct *p)
b29739f9
IM
842{
843 int prio;
844
aab03e05
DF
845 if (task_has_dl_policy(p))
846 prio = MAX_DL_PRIO-1;
847 else if (task_has_rt_policy(p))
b29739f9
IM
848 prio = MAX_RT_PRIO-1 - p->rt_priority;
849 else
850 prio = __normal_prio(p);
851 return prio;
852}
853
854/*
855 * Calculate the current priority, i.e. the priority
856 * taken into account by the scheduler. This value might
857 * be boosted by RT tasks, or might be boosted by
858 * interactivity modifiers. Will be RT if the task got
859 * RT-boosted. If not then it returns p->normal_prio.
860 */
36c8b586 861static int effective_prio(struct task_struct *p)
b29739f9
IM
862{
863 p->normal_prio = normal_prio(p);
864 /*
865 * If we are RT tasks or we were boosted to RT priority,
866 * keep the priority unchanged. Otherwise, update priority
867 * to the normal priority:
868 */
869 if (!rt_prio(p->prio))
870 return p->normal_prio;
871 return p->prio;
872}
873
1da177e4
LT
874/**
875 * task_curr - is this task currently executing on a CPU?
876 * @p: the task in question.
e69f6186
YB
877 *
878 * Return: 1 if the task is currently executing. 0 otherwise.
1da177e4 879 */
36c8b586 880inline int task_curr(const struct task_struct *p)
1da177e4
LT
881{
882 return cpu_curr(task_cpu(p)) == p;
883}
884
67dfa1b7 885/*
4c9a4bc8
PZ
886 * switched_from, switched_to and prio_changed must _NOT_ drop rq->lock,
887 * use the balance_callback list if you want balancing.
888 *
889 * this means any call to check_class_changed() must be followed by a call to
890 * balance_callback().
67dfa1b7 891 */
cb469845
SR
892static inline void check_class_changed(struct rq *rq, struct task_struct *p,
893 const struct sched_class *prev_class,
da7a735e 894 int oldprio)
cb469845
SR
895{
896 if (prev_class != p->sched_class) {
897 if (prev_class->switched_from)
da7a735e 898 prev_class->switched_from(rq, p);
4c9a4bc8 899
da7a735e 900 p->sched_class->switched_to(rq, p);
2d3d891d 901 } else if (oldprio != p->prio || dl_task(p))
da7a735e 902 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
903}
904
029632fb 905void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
906{
907 const struct sched_class *class;
908
909 if (p->sched_class == rq->curr->sched_class) {
910 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
911 } else {
912 for_each_class(class) {
913 if (class == rq->curr->sched_class)
914 break;
915 if (class == p->sched_class) {
8875125e 916 resched_curr(rq);
1e5a7405
PZ
917 break;
918 }
919 }
920 }
921
922 /*
923 * A queue event has occurred, and we're going to schedule. In
924 * this case, we can save a useless back to back clock update.
925 */
da0c1e65 926 if (task_on_rq_queued(rq->curr) && test_tsk_need_resched(rq->curr))
9edfbfed 927 rq_clock_skip_update(rq, true);
1e5a7405
PZ
928}
929
1da177e4 930#ifdef CONFIG_SMP
5cc389bc
PZ
931/*
932 * This is how migration works:
933 *
934 * 1) we invoke migration_cpu_stop() on the target CPU using
935 * stop_one_cpu().
936 * 2) stopper starts to run (implicitly forcing the migrated thread
937 * off the CPU)
938 * 3) it checks whether the migrated task is still in the wrong runqueue.
939 * 4) if it's in the wrong runqueue then the migration thread removes
940 * it and puts it into the right queue.
941 * 5) stopper completes and stop_one_cpu() returns and the migration
942 * is done.
943 */
944
945/*
946 * move_queued_task - move a queued task to new rq.
947 *
948 * Returns (locked) new rq. Old rq's lock is released.
949 */
5e16bbc2 950static struct rq *move_queued_task(struct rq *rq, struct task_struct *p, int new_cpu)
5cc389bc 951{
5cc389bc
PZ
952 lockdep_assert_held(&rq->lock);
953
5cc389bc 954 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 955 dequeue_task(rq, p, 0);
5cc389bc
PZ
956 set_task_cpu(p, new_cpu);
957 raw_spin_unlock(&rq->lock);
958
959 rq = cpu_rq(new_cpu);
960
961 raw_spin_lock(&rq->lock);
962 BUG_ON(task_cpu(p) != new_cpu);
5cc389bc 963 enqueue_task(rq, p, 0);
3ea94de1 964 p->on_rq = TASK_ON_RQ_QUEUED;
5cc389bc
PZ
965 check_preempt_curr(rq, p, 0);
966
967 return rq;
968}
969
970struct migration_arg {
971 struct task_struct *task;
972 int dest_cpu;
973};
974
975/*
976 * Move (not current) task off this cpu, onto dest cpu. We're doing
977 * this because either it can't run here any more (set_cpus_allowed()
978 * away from this CPU, or CPU going down), or because we're
979 * attempting to rebalance this task on exec (sched_exec).
980 *
981 * So we race with normal scheduler movements, but that's OK, as long
982 * as the task is no longer on this CPU.
5cc389bc 983 */
5e16bbc2 984static struct rq *__migrate_task(struct rq *rq, struct task_struct *p, int dest_cpu)
5cc389bc 985{
5cc389bc 986 if (unlikely(!cpu_active(dest_cpu)))
5e16bbc2 987 return rq;
5cc389bc
PZ
988
989 /* Affinity changed (again). */
990 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5e16bbc2 991 return rq;
5cc389bc 992
5e16bbc2
PZ
993 rq = move_queued_task(rq, p, dest_cpu);
994
995 return rq;
5cc389bc
PZ
996}
997
998/*
999 * migration_cpu_stop - this will be executed by a highprio stopper thread
1000 * and performs thread migration by bumping thread off CPU then
1001 * 'pushing' onto another runqueue.
1002 */
1003static int migration_cpu_stop(void *data)
1004{
1005 struct migration_arg *arg = data;
5e16bbc2
PZ
1006 struct task_struct *p = arg->task;
1007 struct rq *rq = this_rq();
5cc389bc
PZ
1008
1009 /*
1010 * The original target cpu might have gone down and we might
1011 * be on another cpu but it doesn't matter.
1012 */
1013 local_irq_disable();
1014 /*
1015 * We need to explicitly wake pending tasks before running
1016 * __migrate_task() such that we will not miss enforcing cpus_allowed
1017 * during wakeups, see set_cpus_allowed_ptr()'s TASK_WAKING test.
1018 */
1019 sched_ttwu_pending();
5e16bbc2
PZ
1020
1021 raw_spin_lock(&p->pi_lock);
1022 raw_spin_lock(&rq->lock);
1023 /*
1024 * If task_rq(p) != rq, it cannot be migrated here, because we're
1025 * holding rq->lock, if p->on_rq == 0 it cannot get enqueued because
1026 * we're holding p->pi_lock.
1027 */
1028 if (task_rq(p) == rq && task_on_rq_queued(p))
1029 rq = __migrate_task(rq, p, arg->dest_cpu);
1030 raw_spin_unlock(&rq->lock);
1031 raw_spin_unlock(&p->pi_lock);
1032
5cc389bc
PZ
1033 local_irq_enable();
1034 return 0;
1035}
1036
c5b28038
PZ
1037/*
1038 * sched_class::set_cpus_allowed must do the below, but is not required to
1039 * actually call this function.
1040 */
1041void set_cpus_allowed_common(struct task_struct *p, const struct cpumask *new_mask)
5cc389bc 1042{
5cc389bc
PZ
1043 cpumask_copy(&p->cpus_allowed, new_mask);
1044 p->nr_cpus_allowed = cpumask_weight(new_mask);
1045}
1046
c5b28038
PZ
1047void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
1048{
6c37067e
PZ
1049 struct rq *rq = task_rq(p);
1050 bool queued, running;
1051
c5b28038 1052 lockdep_assert_held(&p->pi_lock);
6c37067e
PZ
1053
1054 queued = task_on_rq_queued(p);
1055 running = task_current(rq, p);
1056
1057 if (queued) {
1058 /*
1059 * Because __kthread_bind() calls this on blocked tasks without
1060 * holding rq->lock.
1061 */
1062 lockdep_assert_held(&rq->lock);
1de64443 1063 dequeue_task(rq, p, DEQUEUE_SAVE);
6c37067e
PZ
1064 }
1065 if (running)
1066 put_prev_task(rq, p);
1067
c5b28038 1068 p->sched_class->set_cpus_allowed(p, new_mask);
6c37067e
PZ
1069
1070 if (running)
1071 p->sched_class->set_curr_task(rq);
1072 if (queued)
1de64443 1073 enqueue_task(rq, p, ENQUEUE_RESTORE);
c5b28038
PZ
1074}
1075
5cc389bc
PZ
1076/*
1077 * Change a given task's CPU affinity. Migrate the thread to a
1078 * proper CPU and schedule it away if the CPU it's executing on
1079 * is removed from the allowed bitmask.
1080 *
1081 * NOTE: the caller must have a valid reference to the task, the
1082 * task must not exit() & deallocate itself prematurely. The
1083 * call is not atomic; no spinlocks may be held.
1084 */
25834c73
PZ
1085static int __set_cpus_allowed_ptr(struct task_struct *p,
1086 const struct cpumask *new_mask, bool check)
5cc389bc
PZ
1087{
1088 unsigned long flags;
1089 struct rq *rq;
1090 unsigned int dest_cpu;
1091 int ret = 0;
1092
1093 rq = task_rq_lock(p, &flags);
1094
25834c73
PZ
1095 /*
1096 * Must re-check here, to close a race against __kthread_bind(),
1097 * sched_setaffinity() is not guaranteed to observe the flag.
1098 */
1099 if (check && (p->flags & PF_NO_SETAFFINITY)) {
1100 ret = -EINVAL;
1101 goto out;
1102 }
1103
5cc389bc
PZ
1104 if (cpumask_equal(&p->cpus_allowed, new_mask))
1105 goto out;
1106
1107 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1108 ret = -EINVAL;
1109 goto out;
1110 }
1111
1112 do_set_cpus_allowed(p, new_mask);
1113
1114 /* Can the task run on the task's current CPU? If so, we're done */
1115 if (cpumask_test_cpu(task_cpu(p), new_mask))
1116 goto out;
1117
1118 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
1119 if (task_running(rq, p) || p->state == TASK_WAKING) {
1120 struct migration_arg arg = { p, dest_cpu };
1121 /* Need help from migration thread: drop lock and wait. */
1122 task_rq_unlock(rq, p, &flags);
1123 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1124 tlb_migrate_finish(p->mm);
1125 return 0;
cbce1a68
PZ
1126 } else if (task_on_rq_queued(p)) {
1127 /*
1128 * OK, since we're going to drop the lock immediately
1129 * afterwards anyway.
1130 */
1131 lockdep_unpin_lock(&rq->lock);
5e16bbc2 1132 rq = move_queued_task(rq, p, dest_cpu);
cbce1a68
PZ
1133 lockdep_pin_lock(&rq->lock);
1134 }
5cc389bc
PZ
1135out:
1136 task_rq_unlock(rq, p, &flags);
1137
1138 return ret;
1139}
25834c73
PZ
1140
1141int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1142{
1143 return __set_cpus_allowed_ptr(p, new_mask, false);
1144}
5cc389bc
PZ
1145EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1146
dd41f596 1147void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1148{
e2912009
PZ
1149#ifdef CONFIG_SCHED_DEBUG
1150 /*
1151 * We should never call set_task_cpu() on a blocked task,
1152 * ttwu() will sort out the placement.
1153 */
077614ee 1154 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
e2336f6e 1155 !p->on_rq);
0122ec5b 1156
3ea94de1
JP
1157 /*
1158 * Migrating fair class task must have p->on_rq = TASK_ON_RQ_MIGRATING,
1159 * because schedstat_wait_{start,end} rebase migrating task's wait_start
1160 * time relying on p->on_rq.
1161 */
1162 WARN_ON_ONCE(p->state == TASK_RUNNING &&
1163 p->sched_class == &fair_sched_class &&
1164 (p->on_rq && !task_on_rq_migrating(p)));
1165
0122ec5b 1166#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1167 /*
1168 * The caller should hold either p->pi_lock or rq->lock, when changing
1169 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1170 *
1171 * sched_move_task() holds both and thus holding either pins the cgroup,
8323f26c 1172 * see task_group().
6c6c54e1
PZ
1173 *
1174 * Furthermore, all task_rq users should acquire both locks, see
1175 * task_rq_lock().
1176 */
0122ec5b
PZ
1177 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1178 lockdep_is_held(&task_rq(p)->lock)));
1179#endif
e2912009
PZ
1180#endif
1181
de1d7286 1182 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1183
0c69774e 1184 if (task_cpu(p) != new_cpu) {
0a74bef8 1185 if (p->sched_class->migrate_task_rq)
5a4fd036 1186 p->sched_class->migrate_task_rq(p);
0c69774e 1187 p->se.nr_migrations++;
ff303e66 1188 perf_event_task_migrate(p);
0c69774e 1189 }
dd41f596
IM
1190
1191 __set_task_cpu(p, new_cpu);
c65cc870
IM
1192}
1193
ac66f547
PZ
1194static void __migrate_swap_task(struct task_struct *p, int cpu)
1195{
da0c1e65 1196 if (task_on_rq_queued(p)) {
ac66f547
PZ
1197 struct rq *src_rq, *dst_rq;
1198
1199 src_rq = task_rq(p);
1200 dst_rq = cpu_rq(cpu);
1201
3ea94de1 1202 p->on_rq = TASK_ON_RQ_MIGRATING;
ac66f547
PZ
1203 deactivate_task(src_rq, p, 0);
1204 set_task_cpu(p, cpu);
1205 activate_task(dst_rq, p, 0);
3ea94de1 1206 p->on_rq = TASK_ON_RQ_QUEUED;
ac66f547
PZ
1207 check_preempt_curr(dst_rq, p, 0);
1208 } else {
1209 /*
1210 * Task isn't running anymore; make it appear like we migrated
1211 * it before it went to sleep. This means on wakeup we make the
1212 * previous cpu our targer instead of where it really is.
1213 */
1214 p->wake_cpu = cpu;
1215 }
1216}
1217
1218struct migration_swap_arg {
1219 struct task_struct *src_task, *dst_task;
1220 int src_cpu, dst_cpu;
1221};
1222
1223static int migrate_swap_stop(void *data)
1224{
1225 struct migration_swap_arg *arg = data;
1226 struct rq *src_rq, *dst_rq;
1227 int ret = -EAGAIN;
1228
62694cd5
PZ
1229 if (!cpu_active(arg->src_cpu) || !cpu_active(arg->dst_cpu))
1230 return -EAGAIN;
1231
ac66f547
PZ
1232 src_rq = cpu_rq(arg->src_cpu);
1233 dst_rq = cpu_rq(arg->dst_cpu);
1234
74602315
PZ
1235 double_raw_lock(&arg->src_task->pi_lock,
1236 &arg->dst_task->pi_lock);
ac66f547 1237 double_rq_lock(src_rq, dst_rq);
62694cd5 1238
ac66f547
PZ
1239 if (task_cpu(arg->dst_task) != arg->dst_cpu)
1240 goto unlock;
1241
1242 if (task_cpu(arg->src_task) != arg->src_cpu)
1243 goto unlock;
1244
1245 if (!cpumask_test_cpu(arg->dst_cpu, tsk_cpus_allowed(arg->src_task)))
1246 goto unlock;
1247
1248 if (!cpumask_test_cpu(arg->src_cpu, tsk_cpus_allowed(arg->dst_task)))
1249 goto unlock;
1250
1251 __migrate_swap_task(arg->src_task, arg->dst_cpu);
1252 __migrate_swap_task(arg->dst_task, arg->src_cpu);
1253
1254 ret = 0;
1255
1256unlock:
1257 double_rq_unlock(src_rq, dst_rq);
74602315
PZ
1258 raw_spin_unlock(&arg->dst_task->pi_lock);
1259 raw_spin_unlock(&arg->src_task->pi_lock);
ac66f547
PZ
1260
1261 return ret;
1262}
1263
1264/*
1265 * Cross migrate two tasks
1266 */
1267int migrate_swap(struct task_struct *cur, struct task_struct *p)
1268{
1269 struct migration_swap_arg arg;
1270 int ret = -EINVAL;
1271
ac66f547
PZ
1272 arg = (struct migration_swap_arg){
1273 .src_task = cur,
1274 .src_cpu = task_cpu(cur),
1275 .dst_task = p,
1276 .dst_cpu = task_cpu(p),
1277 };
1278
1279 if (arg.src_cpu == arg.dst_cpu)
1280 goto out;
1281
6acce3ef
PZ
1282 /*
1283 * These three tests are all lockless; this is OK since all of them
1284 * will be re-checked with proper locks held further down the line.
1285 */
ac66f547
PZ
1286 if (!cpu_active(arg.src_cpu) || !cpu_active(arg.dst_cpu))
1287 goto out;
1288
1289 if (!cpumask_test_cpu(arg.dst_cpu, tsk_cpus_allowed(arg.src_task)))
1290 goto out;
1291
1292 if (!cpumask_test_cpu(arg.src_cpu, tsk_cpus_allowed(arg.dst_task)))
1293 goto out;
1294
286549dc 1295 trace_sched_swap_numa(cur, arg.src_cpu, p, arg.dst_cpu);
ac66f547
PZ
1296 ret = stop_two_cpus(arg.dst_cpu, arg.src_cpu, migrate_swap_stop, &arg);
1297
1298out:
ac66f547
PZ
1299 return ret;
1300}
1301
1da177e4
LT
1302/*
1303 * wait_task_inactive - wait for a thread to unschedule.
1304 *
85ba2d86
RM
1305 * If @match_state is nonzero, it's the @p->state value just checked and
1306 * not expected to change. If it changes, i.e. @p might have woken up,
1307 * then return zero. When we succeed in waiting for @p to be off its CPU,
1308 * we return a positive number (its total switch count). If a second call
1309 * a short while later returns the same number, the caller can be sure that
1310 * @p has remained unscheduled the whole time.
1311 *
1da177e4
LT
1312 * The caller must ensure that the task *will* unschedule sometime soon,
1313 * else this function might spin for a *long* time. This function can't
1314 * be called with interrupts off, or it may introduce deadlock with
1315 * smp_call_function() if an IPI is sent by the same process we are
1316 * waiting to become inactive.
1317 */
85ba2d86 1318unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1319{
1320 unsigned long flags;
da0c1e65 1321 int running, queued;
85ba2d86 1322 unsigned long ncsw;
70b97a7f 1323 struct rq *rq;
1da177e4 1324
3a5c359a
AK
1325 for (;;) {
1326 /*
1327 * We do the initial early heuristics without holding
1328 * any task-queue locks at all. We'll only try to get
1329 * the runqueue lock when things look like they will
1330 * work out!
1331 */
1332 rq = task_rq(p);
fa490cfd 1333
3a5c359a
AK
1334 /*
1335 * If the task is actively running on another CPU
1336 * still, just relax and busy-wait without holding
1337 * any locks.
1338 *
1339 * NOTE! Since we don't hold any locks, it's not
1340 * even sure that "rq" stays as the right runqueue!
1341 * But we don't care, since "task_running()" will
1342 * return false if the runqueue has changed and p
1343 * is actually now running somewhere else!
1344 */
85ba2d86
RM
1345 while (task_running(rq, p)) {
1346 if (match_state && unlikely(p->state != match_state))
1347 return 0;
3a5c359a 1348 cpu_relax();
85ba2d86 1349 }
fa490cfd 1350
3a5c359a
AK
1351 /*
1352 * Ok, time to look more closely! We need the rq
1353 * lock now, to be *sure*. If we're wrong, we'll
1354 * just go back and repeat.
1355 */
1356 rq = task_rq_lock(p, &flags);
27a9da65 1357 trace_sched_wait_task(p);
3a5c359a 1358 running = task_running(rq, p);
da0c1e65 1359 queued = task_on_rq_queued(p);
85ba2d86 1360 ncsw = 0;
f31e11d8 1361 if (!match_state || p->state == match_state)
93dcf55f 1362 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1363 task_rq_unlock(rq, p, &flags);
fa490cfd 1364
85ba2d86
RM
1365 /*
1366 * If it changed from the expected state, bail out now.
1367 */
1368 if (unlikely(!ncsw))
1369 break;
1370
3a5c359a
AK
1371 /*
1372 * Was it really running after all now that we
1373 * checked with the proper locks actually held?
1374 *
1375 * Oops. Go back and try again..
1376 */
1377 if (unlikely(running)) {
1378 cpu_relax();
1379 continue;
1380 }
fa490cfd 1381
3a5c359a
AK
1382 /*
1383 * It's not enough that it's not actively running,
1384 * it must be off the runqueue _entirely_, and not
1385 * preempted!
1386 *
80dd99b3 1387 * So if it was still runnable (but just not actively
3a5c359a
AK
1388 * running right now), it's preempted, and we should
1389 * yield - it could be a while.
1390 */
da0c1e65 1391 if (unlikely(queued)) {
8eb90c30
TG
1392 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1393
1394 set_current_state(TASK_UNINTERRUPTIBLE);
1395 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1396 continue;
1397 }
fa490cfd 1398
3a5c359a
AK
1399 /*
1400 * Ahh, all good. It wasn't running, and it wasn't
1401 * runnable, which means that it will never become
1402 * running in the future either. We're all done!
1403 */
1404 break;
1405 }
85ba2d86
RM
1406
1407 return ncsw;
1da177e4
LT
1408}
1409
1410/***
1411 * kick_process - kick a running thread to enter/exit the kernel
1412 * @p: the to-be-kicked thread
1413 *
1414 * Cause a process which is running on another CPU to enter
1415 * kernel-mode, without any delay. (to get signals handled.)
1416 *
25985edc 1417 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1418 * because all it wants to ensure is that the remote task enters
1419 * the kernel. If the IPI races and the task has been migrated
1420 * to another CPU then no harm is done and the purpose has been
1421 * achieved as well.
1422 */
36c8b586 1423void kick_process(struct task_struct *p)
1da177e4
LT
1424{
1425 int cpu;
1426
1427 preempt_disable();
1428 cpu = task_cpu(p);
1429 if ((cpu != smp_processor_id()) && task_curr(p))
1430 smp_send_reschedule(cpu);
1431 preempt_enable();
1432}
b43e3521 1433EXPORT_SYMBOL_GPL(kick_process);
1da177e4 1434
30da688e 1435/*
013fdb80 1436 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1437 */
5da9a0fb
PZ
1438static int select_fallback_rq(int cpu, struct task_struct *p)
1439{
aa00d89c
TC
1440 int nid = cpu_to_node(cpu);
1441 const struct cpumask *nodemask = NULL;
2baab4e9
PZ
1442 enum { cpuset, possible, fail } state = cpuset;
1443 int dest_cpu;
5da9a0fb 1444
aa00d89c
TC
1445 /*
1446 * If the node that the cpu is on has been offlined, cpu_to_node()
1447 * will return -1. There is no cpu on the node, and we should
1448 * select the cpu on the other node.
1449 */
1450 if (nid != -1) {
1451 nodemask = cpumask_of_node(nid);
1452
1453 /* Look for allowed, online CPU in same node. */
1454 for_each_cpu(dest_cpu, nodemask) {
1455 if (!cpu_online(dest_cpu))
1456 continue;
1457 if (!cpu_active(dest_cpu))
1458 continue;
1459 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
1460 return dest_cpu;
1461 }
2baab4e9 1462 }
5da9a0fb 1463
2baab4e9
PZ
1464 for (;;) {
1465 /* Any allowed, online CPU? */
e3831edd 1466 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1467 if (!cpu_online(dest_cpu))
1468 continue;
1469 if (!cpu_active(dest_cpu))
1470 continue;
1471 goto out;
1472 }
5da9a0fb 1473
e73e85f0 1474 /* No more Mr. Nice Guy. */
2baab4e9
PZ
1475 switch (state) {
1476 case cpuset:
e73e85f0
ON
1477 if (IS_ENABLED(CONFIG_CPUSETS)) {
1478 cpuset_cpus_allowed_fallback(p);
1479 state = possible;
1480 break;
1481 }
1482 /* fall-through */
2baab4e9
PZ
1483 case possible:
1484 do_set_cpus_allowed(p, cpu_possible_mask);
1485 state = fail;
1486 break;
1487
1488 case fail:
1489 BUG();
1490 break;
1491 }
1492 }
1493
1494out:
1495 if (state != cpuset) {
1496 /*
1497 * Don't tell them about moving exiting tasks or
1498 * kernel threads (both mm NULL), since they never
1499 * leave kernel.
1500 */
1501 if (p->mm && printk_ratelimit()) {
aac74dc4 1502 printk_deferred("process %d (%s) no longer affine to cpu%d\n",
2baab4e9
PZ
1503 task_pid_nr(p), p->comm, cpu);
1504 }
5da9a0fb
PZ
1505 }
1506
1507 return dest_cpu;
1508}
1509
e2912009 1510/*
013fdb80 1511 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1512 */
970b13ba 1513static inline
ac66f547 1514int select_task_rq(struct task_struct *p, int cpu, int sd_flags, int wake_flags)
970b13ba 1515{
cbce1a68
PZ
1516 lockdep_assert_held(&p->pi_lock);
1517
6c1d9410
WL
1518 if (p->nr_cpus_allowed > 1)
1519 cpu = p->sched_class->select_task_rq(p, cpu, sd_flags, wake_flags);
e2912009
PZ
1520
1521 /*
1522 * In order not to call set_task_cpu() on a blocking task we need
1523 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1524 * cpu.
1525 *
1526 * Since this is common to all placement strategies, this lives here.
1527 *
1528 * [ this allows ->select_task() to simply return task_cpu(p) and
1529 * not worry about this generic constraint ]
1530 */
fa17b507 1531 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1532 !cpu_online(cpu)))
5da9a0fb 1533 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1534
1535 return cpu;
970b13ba 1536}
09a40af5
MG
1537
1538static void update_avg(u64 *avg, u64 sample)
1539{
1540 s64 diff = sample - *avg;
1541 *avg += diff >> 3;
1542}
25834c73
PZ
1543
1544#else
1545
1546static inline int __set_cpus_allowed_ptr(struct task_struct *p,
1547 const struct cpumask *new_mask, bool check)
1548{
1549 return set_cpus_allowed_ptr(p, new_mask);
1550}
1551
5cc389bc 1552#endif /* CONFIG_SMP */
970b13ba 1553
d7c01d27 1554static void
b84cb5df 1555ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1556{
d7c01d27 1557#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1558 struct rq *rq = this_rq();
1559
d7c01d27
PZ
1560#ifdef CONFIG_SMP
1561 int this_cpu = smp_processor_id();
1562
1563 if (cpu == this_cpu) {
1564 schedstat_inc(rq, ttwu_local);
1565 schedstat_inc(p, se.statistics.nr_wakeups_local);
1566 } else {
1567 struct sched_domain *sd;
1568
1569 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1570 rcu_read_lock();
d7c01d27
PZ
1571 for_each_domain(this_cpu, sd) {
1572 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1573 schedstat_inc(sd, ttwu_wake_remote);
1574 break;
1575 }
1576 }
057f3fad 1577 rcu_read_unlock();
d7c01d27 1578 }
f339b9dc
PZ
1579
1580 if (wake_flags & WF_MIGRATED)
1581 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1582
d7c01d27
PZ
1583#endif /* CONFIG_SMP */
1584
1585 schedstat_inc(rq, ttwu_count);
9ed3811a 1586 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1587
1588 if (wake_flags & WF_SYNC)
9ed3811a 1589 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1590
d7c01d27
PZ
1591#endif /* CONFIG_SCHEDSTATS */
1592}
1593
1de64443 1594static inline void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
d7c01d27 1595{
9ed3811a 1596 activate_task(rq, p, en_flags);
da0c1e65 1597 p->on_rq = TASK_ON_RQ_QUEUED;
c2f7115e
PZ
1598
1599 /* if a worker is waking up, notify workqueue */
1600 if (p->flags & PF_WQ_WORKER)
1601 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1602}
1603
23f41eeb
PZ
1604/*
1605 * Mark the task runnable and perform wakeup-preemption.
1606 */
89363381 1607static void
23f41eeb 1608ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1609{
9ed3811a 1610 check_preempt_curr(rq, p, wake_flags);
9ed3811a 1611 p->state = TASK_RUNNING;
fbd705a0
PZ
1612 trace_sched_wakeup(p);
1613
9ed3811a 1614#ifdef CONFIG_SMP
4c9a4bc8
PZ
1615 if (p->sched_class->task_woken) {
1616 /*
cbce1a68
PZ
1617 * Our task @p is fully woken up and running; so its safe to
1618 * drop the rq->lock, hereafter rq is only used for statistics.
4c9a4bc8 1619 */
cbce1a68 1620 lockdep_unpin_lock(&rq->lock);
9ed3811a 1621 p->sched_class->task_woken(rq, p);
cbce1a68 1622 lockdep_pin_lock(&rq->lock);
4c9a4bc8 1623 }
9ed3811a 1624
e69c6341 1625 if (rq->idle_stamp) {
78becc27 1626 u64 delta = rq_clock(rq) - rq->idle_stamp;
9bd721c5 1627 u64 max = 2*rq->max_idle_balance_cost;
9ed3811a 1628
abfafa54
JL
1629 update_avg(&rq->avg_idle, delta);
1630
1631 if (rq->avg_idle > max)
9ed3811a 1632 rq->avg_idle = max;
abfafa54 1633
9ed3811a
TH
1634 rq->idle_stamp = 0;
1635 }
1636#endif
1637}
1638
c05fbafb
PZ
1639static void
1640ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1641{
cbce1a68
PZ
1642 lockdep_assert_held(&rq->lock);
1643
c05fbafb
PZ
1644#ifdef CONFIG_SMP
1645 if (p->sched_contributes_to_load)
1646 rq->nr_uninterruptible--;
1647#endif
1648
1649 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1650 ttwu_do_wakeup(rq, p, wake_flags);
1651}
1652
1653/*
1654 * Called in case the task @p isn't fully descheduled from its runqueue,
1655 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1656 * since all we need to do is flip p->state to TASK_RUNNING, since
1657 * the task is still ->on_rq.
1658 */
1659static int ttwu_remote(struct task_struct *p, int wake_flags)
1660{
1661 struct rq *rq;
1662 int ret = 0;
1663
1664 rq = __task_rq_lock(p);
da0c1e65 1665 if (task_on_rq_queued(p)) {
1ad4ec0d
FW
1666 /* check_preempt_curr() may use rq clock */
1667 update_rq_clock(rq);
c05fbafb
PZ
1668 ttwu_do_wakeup(rq, p, wake_flags);
1669 ret = 1;
1670 }
1671 __task_rq_unlock(rq);
1672
1673 return ret;
1674}
1675
317f3941 1676#ifdef CONFIG_SMP
e3baac47 1677void sched_ttwu_pending(void)
317f3941
PZ
1678{
1679 struct rq *rq = this_rq();
fa14ff4a
PZ
1680 struct llist_node *llist = llist_del_all(&rq->wake_list);
1681 struct task_struct *p;
e3baac47 1682 unsigned long flags;
317f3941 1683
e3baac47
PZ
1684 if (!llist)
1685 return;
1686
1687 raw_spin_lock_irqsave(&rq->lock, flags);
cbce1a68 1688 lockdep_pin_lock(&rq->lock);
317f3941 1689
fa14ff4a
PZ
1690 while (llist) {
1691 p = llist_entry(llist, struct task_struct, wake_entry);
1692 llist = llist_next(llist);
317f3941
PZ
1693 ttwu_do_activate(rq, p, 0);
1694 }
1695
cbce1a68 1696 lockdep_unpin_lock(&rq->lock);
e3baac47 1697 raw_spin_unlock_irqrestore(&rq->lock, flags);
317f3941
PZ
1698}
1699
1700void scheduler_ipi(void)
1701{
f27dde8d
PZ
1702 /*
1703 * Fold TIF_NEED_RESCHED into the preempt_count; anybody setting
1704 * TIF_NEED_RESCHED remotely (for the first time) will also send
1705 * this IPI.
1706 */
8cb75e0c 1707 preempt_fold_need_resched();
f27dde8d 1708
fd2ac4f4 1709 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1710 return;
1711
1712 /*
1713 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1714 * traditionally all their work was done from the interrupt return
1715 * path. Now that we actually do some work, we need to make sure
1716 * we do call them.
1717 *
1718 * Some archs already do call them, luckily irq_enter/exit nest
1719 * properly.
1720 *
1721 * Arguably we should visit all archs and update all handlers,
1722 * however a fair share of IPIs are still resched only so this would
1723 * somewhat pessimize the simple resched case.
1724 */
1725 irq_enter();
fa14ff4a 1726 sched_ttwu_pending();
ca38062e
SS
1727
1728 /*
1729 * Check if someone kicked us for doing the nohz idle load balance.
1730 */
873b4c65 1731 if (unlikely(got_nohz_idle_kick())) {
6eb57e0d 1732 this_rq()->idle_balance = 1;
ca38062e 1733 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1734 }
c5d753a5 1735 irq_exit();
317f3941
PZ
1736}
1737
1738static void ttwu_queue_remote(struct task_struct *p, int cpu)
1739{
e3baac47
PZ
1740 struct rq *rq = cpu_rq(cpu);
1741
1742 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list)) {
1743 if (!set_nr_if_polling(rq->idle))
1744 smp_send_reschedule(cpu);
1745 else
1746 trace_sched_wake_idle_without_ipi(cpu);
1747 }
317f3941 1748}
d6aa8f85 1749
f6be8af1
CL
1750void wake_up_if_idle(int cpu)
1751{
1752 struct rq *rq = cpu_rq(cpu);
1753 unsigned long flags;
1754
fd7de1e8
AL
1755 rcu_read_lock();
1756
1757 if (!is_idle_task(rcu_dereference(rq->curr)))
1758 goto out;
f6be8af1
CL
1759
1760 if (set_nr_if_polling(rq->idle)) {
1761 trace_sched_wake_idle_without_ipi(cpu);
1762 } else {
1763 raw_spin_lock_irqsave(&rq->lock, flags);
1764 if (is_idle_task(rq->curr))
1765 smp_send_reschedule(cpu);
1766 /* Else cpu is not in idle, do nothing here */
1767 raw_spin_unlock_irqrestore(&rq->lock, flags);
1768 }
fd7de1e8
AL
1769
1770out:
1771 rcu_read_unlock();
f6be8af1
CL
1772}
1773
39be3501 1774bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1775{
1776 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1777}
d6aa8f85 1778#endif /* CONFIG_SMP */
317f3941 1779
c05fbafb
PZ
1780static void ttwu_queue(struct task_struct *p, int cpu)
1781{
1782 struct rq *rq = cpu_rq(cpu);
1783
17d9f311 1784#if defined(CONFIG_SMP)
39be3501 1785 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1786 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1787 ttwu_queue_remote(p, cpu);
1788 return;
1789 }
1790#endif
1791
c05fbafb 1792 raw_spin_lock(&rq->lock);
cbce1a68 1793 lockdep_pin_lock(&rq->lock);
c05fbafb 1794 ttwu_do_activate(rq, p, 0);
cbce1a68 1795 lockdep_unpin_lock(&rq->lock);
c05fbafb 1796 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1797}
1798
8643cda5
PZ
1799/*
1800 * Notes on Program-Order guarantees on SMP systems.
1801 *
1802 * MIGRATION
1803 *
1804 * The basic program-order guarantee on SMP systems is that when a task [t]
1805 * migrates, all its activity on its old cpu [c0] happens-before any subsequent
1806 * execution on its new cpu [c1].
1807 *
1808 * For migration (of runnable tasks) this is provided by the following means:
1809 *
1810 * A) UNLOCK of the rq(c0)->lock scheduling out task t
1811 * B) migration for t is required to synchronize *both* rq(c0)->lock and
1812 * rq(c1)->lock (if not at the same time, then in that order).
1813 * C) LOCK of the rq(c1)->lock scheduling in task
1814 *
1815 * Transitivity guarantees that B happens after A and C after B.
1816 * Note: we only require RCpc transitivity.
1817 * Note: the cpu doing B need not be c0 or c1
1818 *
1819 * Example:
1820 *
1821 * CPU0 CPU1 CPU2
1822 *
1823 * LOCK rq(0)->lock
1824 * sched-out X
1825 * sched-in Y
1826 * UNLOCK rq(0)->lock
1827 *
1828 * LOCK rq(0)->lock // orders against CPU0
1829 * dequeue X
1830 * UNLOCK rq(0)->lock
1831 *
1832 * LOCK rq(1)->lock
1833 * enqueue X
1834 * UNLOCK rq(1)->lock
1835 *
1836 * LOCK rq(1)->lock // orders against CPU2
1837 * sched-out Z
1838 * sched-in X
1839 * UNLOCK rq(1)->lock
1840 *
1841 *
1842 * BLOCKING -- aka. SLEEP + WAKEUP
1843 *
1844 * For blocking we (obviously) need to provide the same guarantee as for
1845 * migration. However the means are completely different as there is no lock
1846 * chain to provide order. Instead we do:
1847 *
1848 * 1) smp_store_release(X->on_cpu, 0)
1849 * 2) smp_cond_acquire(!X->on_cpu)
1850 *
1851 * Example:
1852 *
1853 * CPU0 (schedule) CPU1 (try_to_wake_up) CPU2 (schedule)
1854 *
1855 * LOCK rq(0)->lock LOCK X->pi_lock
1856 * dequeue X
1857 * sched-out X
1858 * smp_store_release(X->on_cpu, 0);
1859 *
1860 * smp_cond_acquire(!X->on_cpu);
1861 * X->state = WAKING
1862 * set_task_cpu(X,2)
1863 *
1864 * LOCK rq(2)->lock
1865 * enqueue X
1866 * X->state = RUNNING
1867 * UNLOCK rq(2)->lock
1868 *
1869 * LOCK rq(2)->lock // orders against CPU1
1870 * sched-out Z
1871 * sched-in X
1872 * UNLOCK rq(2)->lock
1873 *
1874 * UNLOCK X->pi_lock
1875 * UNLOCK rq(0)->lock
1876 *
1877 *
1878 * However; for wakeups there is a second guarantee we must provide, namely we
1879 * must observe the state that lead to our wakeup. That is, not only must our
1880 * task observe its own prior state, it must also observe the stores prior to
1881 * its wakeup.
1882 *
1883 * This means that any means of doing remote wakeups must order the CPU doing
1884 * the wakeup against the CPU the task is going to end up running on. This,
1885 * however, is already required for the regular Program-Order guarantee above,
1886 * since the waking CPU is the one issueing the ACQUIRE (smp_cond_acquire).
1887 *
1888 */
1889
9ed3811a 1890/**
1da177e4 1891 * try_to_wake_up - wake up a thread
9ed3811a 1892 * @p: the thread to be awakened
1da177e4 1893 * @state: the mask of task states that can be woken
9ed3811a 1894 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1895 *
1896 * Put it on the run-queue if it's not already there. The "current"
1897 * thread is always on the run-queue (except when the actual
1898 * re-schedule is in progress), and as such you're allowed to do
1899 * the simpler "current->state = TASK_RUNNING" to mark yourself
1900 * runnable without the overhead of this.
1901 *
e69f6186 1902 * Return: %true if @p was woken up, %false if it was already running.
9ed3811a 1903 * or @state didn't match @p's state.
1da177e4 1904 */
e4a52bcb
PZ
1905static int
1906try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1907{
1da177e4 1908 unsigned long flags;
c05fbafb 1909 int cpu, success = 0;
2398f2c6 1910
e0acd0a6
ON
1911 /*
1912 * If we are going to wake up a thread waiting for CONDITION we
1913 * need to ensure that CONDITION=1 done by the caller can not be
1914 * reordered with p->state check below. This pairs with mb() in
1915 * set_current_state() the waiting thread does.
1916 */
1917 smp_mb__before_spinlock();
013fdb80 1918 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1919 if (!(p->state & state))
1da177e4
LT
1920 goto out;
1921
fbd705a0
PZ
1922 trace_sched_waking(p);
1923
c05fbafb 1924 success = 1; /* we're going to change ->state */
1da177e4 1925 cpu = task_cpu(p);
1da177e4 1926
c05fbafb
PZ
1927 if (p->on_rq && ttwu_remote(p, wake_flags))
1928 goto stat;
1da177e4 1929
1da177e4 1930#ifdef CONFIG_SMP
ecf7d01c
PZ
1931 /*
1932 * Ensure we load p->on_cpu _after_ p->on_rq, otherwise it would be
1933 * possible to, falsely, observe p->on_cpu == 0.
1934 *
1935 * One must be running (->on_cpu == 1) in order to remove oneself
1936 * from the runqueue.
1937 *
1938 * [S] ->on_cpu = 1; [L] ->on_rq
1939 * UNLOCK rq->lock
1940 * RMB
1941 * LOCK rq->lock
1942 * [S] ->on_rq = 0; [L] ->on_cpu
1943 *
1944 * Pairs with the full barrier implied in the UNLOCK+LOCK on rq->lock
1945 * from the consecutive calls to schedule(); the first switching to our
1946 * task, the second putting it to sleep.
1947 */
1948 smp_rmb();
1949
e9c84311 1950 /*
c05fbafb
PZ
1951 * If the owning (remote) cpu is still in the middle of schedule() with
1952 * this task as prev, wait until its done referencing the task.
b75a2253
PZ
1953 *
1954 * Pairs with the smp_store_release() in finish_lock_switch().
1955 *
1956 * This ensures that tasks getting woken will be fully ordered against
1957 * their previous state and preserve Program Order.
0970d299 1958 */
b3e0b1b6 1959 smp_cond_acquire(!p->on_cpu);
1da177e4 1960
a8e4f2ea 1961 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1962 p->state = TASK_WAKING;
e7693a36 1963
e4a52bcb 1964 if (p->sched_class->task_waking)
74f8e4b2 1965 p->sched_class->task_waking(p);
efbbd05a 1966
ac66f547 1967 cpu = select_task_rq(p, p->wake_cpu, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1968 if (task_cpu(p) != cpu) {
1969 wake_flags |= WF_MIGRATED;
e4a52bcb 1970 set_task_cpu(p, cpu);
f339b9dc 1971 }
1da177e4 1972#endif /* CONFIG_SMP */
1da177e4 1973
c05fbafb
PZ
1974 ttwu_queue(p, cpu);
1975stat:
cb251765
MG
1976 if (schedstat_enabled())
1977 ttwu_stat(p, cpu, wake_flags);
1da177e4 1978out:
013fdb80 1979 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1980
1981 return success;
1982}
1983
21aa9af0
TH
1984/**
1985 * try_to_wake_up_local - try to wake up a local task with rq lock held
1986 * @p: the thread to be awakened
1987 *
2acca55e 1988 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1989 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1990 * the current task.
21aa9af0
TH
1991 */
1992static void try_to_wake_up_local(struct task_struct *p)
1993{
1994 struct rq *rq = task_rq(p);
21aa9af0 1995
383efcd0
TH
1996 if (WARN_ON_ONCE(rq != this_rq()) ||
1997 WARN_ON_ONCE(p == current))
1998 return;
1999
21aa9af0
TH
2000 lockdep_assert_held(&rq->lock);
2001
2acca55e 2002 if (!raw_spin_trylock(&p->pi_lock)) {
cbce1a68
PZ
2003 /*
2004 * This is OK, because current is on_cpu, which avoids it being
2005 * picked for load-balance and preemption/IRQs are still
2006 * disabled avoiding further scheduler activity on it and we've
2007 * not yet picked a replacement task.
2008 */
2009 lockdep_unpin_lock(&rq->lock);
2acca55e
PZ
2010 raw_spin_unlock(&rq->lock);
2011 raw_spin_lock(&p->pi_lock);
2012 raw_spin_lock(&rq->lock);
cbce1a68 2013 lockdep_pin_lock(&rq->lock);
2acca55e
PZ
2014 }
2015
21aa9af0 2016 if (!(p->state & TASK_NORMAL))
2acca55e 2017 goto out;
21aa9af0 2018
fbd705a0
PZ
2019 trace_sched_waking(p);
2020
da0c1e65 2021 if (!task_on_rq_queued(p))
d7c01d27
PZ
2022 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
2023
23f41eeb 2024 ttwu_do_wakeup(rq, p, 0);
cb251765
MG
2025 if (schedstat_enabled())
2026 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
2027out:
2028 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
2029}
2030
50fa610a
DH
2031/**
2032 * wake_up_process - Wake up a specific process
2033 * @p: The process to be woken up.
2034 *
2035 * Attempt to wake up the nominated process and move it to the set of runnable
e69f6186
YB
2036 * processes.
2037 *
2038 * Return: 1 if the process was woken up, 0 if it was already running.
50fa610a
DH
2039 *
2040 * It may be assumed that this function implies a write memory barrier before
2041 * changing the task state if and only if any tasks are woken up.
2042 */
7ad5b3a5 2043int wake_up_process(struct task_struct *p)
1da177e4 2044{
9067ac85 2045 return try_to_wake_up(p, TASK_NORMAL, 0);
1da177e4 2046}
1da177e4
LT
2047EXPORT_SYMBOL(wake_up_process);
2048
7ad5b3a5 2049int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
2050{
2051 return try_to_wake_up(p, state, 0);
2052}
2053
a5e7be3b
JL
2054/*
2055 * This function clears the sched_dl_entity static params.
2056 */
2057void __dl_clear_params(struct task_struct *p)
2058{
2059 struct sched_dl_entity *dl_se = &p->dl;
2060
2061 dl_se->dl_runtime = 0;
2062 dl_se->dl_deadline = 0;
2063 dl_se->dl_period = 0;
2064 dl_se->flags = 0;
2065 dl_se->dl_bw = 0;
40767b0d
PZ
2066
2067 dl_se->dl_throttled = 0;
40767b0d 2068 dl_se->dl_yielded = 0;
a5e7be3b
JL
2069}
2070
1da177e4
LT
2071/*
2072 * Perform scheduler related setup for a newly forked process p.
2073 * p is forked by current.
dd41f596
IM
2074 *
2075 * __sched_fork() is basic setup used by init_idle() too:
2076 */
5e1576ed 2077static void __sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2078{
fd2f4419
PZ
2079 p->on_rq = 0;
2080
2081 p->se.on_rq = 0;
dd41f596
IM
2082 p->se.exec_start = 0;
2083 p->se.sum_exec_runtime = 0;
f6cf891c 2084 p->se.prev_sum_exec_runtime = 0;
6c594c21 2085 p->se.nr_migrations = 0;
da7a735e 2086 p->se.vruntime = 0;
fd2f4419 2087 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d 2088
ad936d86
BP
2089#ifdef CONFIG_FAIR_GROUP_SCHED
2090 p->se.cfs_rq = NULL;
2091#endif
2092
6cfb0d5d 2093#ifdef CONFIG_SCHEDSTATS
cb251765 2094 /* Even if schedstat is disabled, there should not be garbage */
41acab88 2095 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 2096#endif
476d139c 2097
aab03e05 2098 RB_CLEAR_NODE(&p->dl.rb_node);
40767b0d 2099 init_dl_task_timer(&p->dl);
a5e7be3b 2100 __dl_clear_params(p);
aab03e05 2101
fa717060 2102 INIT_LIST_HEAD(&p->rt.run_list);
ff77e468
PZ
2103 p->rt.timeout = 0;
2104 p->rt.time_slice = sched_rr_timeslice;
2105 p->rt.on_rq = 0;
2106 p->rt.on_list = 0;
476d139c 2107
e107be36
AK
2108#ifdef CONFIG_PREEMPT_NOTIFIERS
2109 INIT_HLIST_HEAD(&p->preempt_notifiers);
2110#endif
cbee9f88
PZ
2111
2112#ifdef CONFIG_NUMA_BALANCING
2113 if (p->mm && atomic_read(&p->mm->mm_users) == 1) {
7e8d16b6 2114 p->mm->numa_next_scan = jiffies + msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
cbee9f88
PZ
2115 p->mm->numa_scan_seq = 0;
2116 }
2117
5e1576ed
RR
2118 if (clone_flags & CLONE_VM)
2119 p->numa_preferred_nid = current->numa_preferred_nid;
2120 else
2121 p->numa_preferred_nid = -1;
2122
cbee9f88
PZ
2123 p->node_stamp = 0ULL;
2124 p->numa_scan_seq = p->mm ? p->mm->numa_scan_seq : 0;
4b96a29b 2125 p->numa_scan_period = sysctl_numa_balancing_scan_delay;
cbee9f88 2126 p->numa_work.next = &p->numa_work;
44dba3d5 2127 p->numa_faults = NULL;
7e2703e6
RR
2128 p->last_task_numa_placement = 0;
2129 p->last_sum_exec_runtime = 0;
8c8a743c 2130
8c8a743c 2131 p->numa_group = NULL;
cbee9f88 2132#endif /* CONFIG_NUMA_BALANCING */
dd41f596
IM
2133}
2134
2a595721
SD
2135DEFINE_STATIC_KEY_FALSE(sched_numa_balancing);
2136
1a687c2e 2137#ifdef CONFIG_NUMA_BALANCING
c3b9bc5b 2138
1a687c2e
MG
2139void set_numabalancing_state(bool enabled)
2140{
2141 if (enabled)
2a595721 2142 static_branch_enable(&sched_numa_balancing);
1a687c2e 2143 else
2a595721 2144 static_branch_disable(&sched_numa_balancing);
1a687c2e 2145}
54a43d54
AK
2146
2147#ifdef CONFIG_PROC_SYSCTL
2148int sysctl_numa_balancing(struct ctl_table *table, int write,
2149 void __user *buffer, size_t *lenp, loff_t *ppos)
2150{
2151 struct ctl_table t;
2152 int err;
2a595721 2153 int state = static_branch_likely(&sched_numa_balancing);
54a43d54
AK
2154
2155 if (write && !capable(CAP_SYS_ADMIN))
2156 return -EPERM;
2157
2158 t = *table;
2159 t.data = &state;
2160 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2161 if (err < 0)
2162 return err;
2163 if (write)
2164 set_numabalancing_state(state);
2165 return err;
2166}
2167#endif
2168#endif
dd41f596 2169
cb251765
MG
2170DEFINE_STATIC_KEY_FALSE(sched_schedstats);
2171
2172#ifdef CONFIG_SCHEDSTATS
2173static void set_schedstats(bool enabled)
2174{
2175 if (enabled)
2176 static_branch_enable(&sched_schedstats);
2177 else
2178 static_branch_disable(&sched_schedstats);
2179}
2180
2181void force_schedstat_enabled(void)
2182{
2183 if (!schedstat_enabled()) {
2184 pr_info("kernel profiling enabled schedstats, disable via kernel.sched_schedstats.\n");
2185 static_branch_enable(&sched_schedstats);
2186 }
2187}
2188
2189static int __init setup_schedstats(char *str)
2190{
2191 int ret = 0;
2192 if (!str)
2193 goto out;
2194
2195 if (!strcmp(str, "enable")) {
2196 set_schedstats(true);
2197 ret = 1;
2198 } else if (!strcmp(str, "disable")) {
2199 set_schedstats(false);
2200 ret = 1;
2201 }
2202out:
2203 if (!ret)
2204 pr_warn("Unable to parse schedstats=\n");
2205
2206 return ret;
2207}
2208__setup("schedstats=", setup_schedstats);
2209
2210#ifdef CONFIG_PROC_SYSCTL
2211int sysctl_schedstats(struct ctl_table *table, int write,
2212 void __user *buffer, size_t *lenp, loff_t *ppos)
2213{
2214 struct ctl_table t;
2215 int err;
2216 int state = static_branch_likely(&sched_schedstats);
2217
2218 if (write && !capable(CAP_SYS_ADMIN))
2219 return -EPERM;
2220
2221 t = *table;
2222 t.data = &state;
2223 err = proc_dointvec_minmax(&t, write, buffer, lenp, ppos);
2224 if (err < 0)
2225 return err;
2226 if (write)
2227 set_schedstats(state);
2228 return err;
2229}
2230#endif
2231#endif
dd41f596 2232
9908df2e
JD
2233static void sched_set_prio(struct task_struct *p, int prio)
2234{
2235 p->prio = prio;
2236}
2237
dd41f596
IM
2238/*
2239 * fork()/clone()-time setup:
2240 */
aab03e05 2241int sched_fork(unsigned long clone_flags, struct task_struct *p)
dd41f596 2242{
0122ec5b 2243 unsigned long flags;
dd41f596
IM
2244 int cpu = get_cpu();
2245
5e1576ed 2246 __sched_fork(clone_flags, p);
06b83b5f 2247 /*
0017d735 2248 * We mark the process as running here. This guarantees that
06b83b5f
PZ
2249 * nobody will actually run it, and a signal or other external
2250 * event cannot wake it up and insert it on the runqueue either.
2251 */
0017d735 2252 p->state = TASK_RUNNING;
dd41f596 2253
c350a04e
MG
2254 /*
2255 * Make sure we do not leak PI boosting priority to the child.
2256 */
9908df2e 2257 sched_set_prio(p, current->normal_prio);
c350a04e 2258
b9dc29e7
MG
2259 /*
2260 * Revert to default priority/policy on fork if requested.
2261 */
2262 if (unlikely(p->sched_reset_on_fork)) {
aab03e05 2263 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
b9dc29e7 2264 p->policy = SCHED_NORMAL;
6c697bdf 2265 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
2266 p->rt_priority = 0;
2267 } else if (PRIO_TO_NICE(p->static_prio) < 0)
2268 p->static_prio = NICE_TO_PRIO(0);
2269
9908df2e
JD
2270 p->normal_prio = __normal_prio(p);
2271 sched_set_prio(p, p->normal_prio);
c350a04e 2272 set_load_weight(p);
6c697bdf 2273
b9dc29e7
MG
2274 /*
2275 * We don't need the reset flag anymore after the fork. It has
2276 * fulfilled its duty:
2277 */
2278 p->sched_reset_on_fork = 0;
2279 }
ca94c442 2280
aab03e05
DF
2281 if (dl_prio(p->prio)) {
2282 put_cpu();
2283 return -EAGAIN;
2284 } else if (rt_prio(p->prio)) {
2285 p->sched_class = &rt_sched_class;
2286 } else {
2ddbf952 2287 p->sched_class = &fair_sched_class;
aab03e05 2288 }
b29739f9 2289
cd29fe6f
PZ
2290 if (p->sched_class->task_fork)
2291 p->sched_class->task_fork(p);
2292
86951599
PZ
2293 /*
2294 * The child is not yet in the pid-hash so no cgroup attach races,
2295 * and the cgroup is pinned to this child due to cgroup_fork()
2296 * is ran before sched_fork().
2297 *
2298 * Silence PROVE_RCU.
2299 */
0122ec5b 2300 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 2301 set_task_cpu(p, cpu);
0122ec5b 2302 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 2303
f6db8347 2304#ifdef CONFIG_SCHED_INFO
dd41f596 2305 if (likely(sched_info_on()))
52f17b6c 2306 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 2307#endif
3ca7a440
PZ
2308#if defined(CONFIG_SMP)
2309 p->on_cpu = 0;
4866cde0 2310#endif
01028747 2311 init_task_preempt_count(p);
806c09a7 2312#ifdef CONFIG_SMP
917b627d 2313 plist_node_init(&p->pushable_tasks, MAX_PRIO);
1baca4ce 2314 RB_CLEAR_NODE(&p->pushable_dl_tasks);
806c09a7 2315#endif
917b627d 2316
476d139c 2317 put_cpu();
aab03e05 2318 return 0;
1da177e4
LT
2319}
2320
332ac17e
DF
2321unsigned long to_ratio(u64 period, u64 runtime)
2322{
2323 if (runtime == RUNTIME_INF)
2324 return 1ULL << 20;
2325
2326 /*
2327 * Doing this here saves a lot of checks in all
2328 * the calling paths, and returning zero seems
2329 * safe for them anyway.
2330 */
2331 if (period == 0)
2332 return 0;
2333
2334 return div64_u64(runtime << 20, period);
2335}
2336
2337#ifdef CONFIG_SMP
2338inline struct dl_bw *dl_bw_of(int i)
2339{
f78f5b90
PM
2340 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2341 "sched RCU must be held");
332ac17e
DF
2342 return &cpu_rq(i)->rd->dl_bw;
2343}
2344
de212f18 2345static inline int dl_bw_cpus(int i)
332ac17e 2346{
de212f18
PZ
2347 struct root_domain *rd = cpu_rq(i)->rd;
2348 int cpus = 0;
2349
f78f5b90
PM
2350 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held(),
2351 "sched RCU must be held");
de212f18
PZ
2352 for_each_cpu_and(i, rd->span, cpu_active_mask)
2353 cpus++;
2354
2355 return cpus;
332ac17e
DF
2356}
2357#else
2358inline struct dl_bw *dl_bw_of(int i)
2359{
2360 return &cpu_rq(i)->dl.dl_bw;
2361}
2362
de212f18 2363static inline int dl_bw_cpus(int i)
332ac17e
DF
2364{
2365 return 1;
2366}
2367#endif
2368
332ac17e
DF
2369/*
2370 * We must be sure that accepting a new task (or allowing changing the
2371 * parameters of an existing one) is consistent with the bandwidth
2372 * constraints. If yes, this function also accordingly updates the currently
2373 * allocated bandwidth to reflect the new situation.
2374 *
2375 * This function is called while holding p's rq->lock.
40767b0d
PZ
2376 *
2377 * XXX we should delay bw change until the task's 0-lag point, see
2378 * __setparam_dl().
332ac17e
DF
2379 */
2380static int dl_overflow(struct task_struct *p, int policy,
2381 const struct sched_attr *attr)
2382{
2383
2384 struct dl_bw *dl_b = dl_bw_of(task_cpu(p));
4df1638c 2385 u64 period = attr->sched_period ?: attr->sched_deadline;
332ac17e
DF
2386 u64 runtime = attr->sched_runtime;
2387 u64 new_bw = dl_policy(policy) ? to_ratio(period, runtime) : 0;
de212f18 2388 int cpus, err = -1;
332ac17e
DF
2389
2390 if (new_bw == p->dl.dl_bw)
2391 return 0;
2392
2393 /*
2394 * Either if a task, enters, leave, or stays -deadline but changes
2395 * its parameters, we may need to update accordingly the total
2396 * allocated bandwidth of the container.
2397 */
2398 raw_spin_lock(&dl_b->lock);
de212f18 2399 cpus = dl_bw_cpus(task_cpu(p));
332ac17e
DF
2400 if (dl_policy(policy) && !task_has_dl_policy(p) &&
2401 !__dl_overflow(dl_b, cpus, 0, new_bw)) {
2402 __dl_add(dl_b, new_bw);
2403 err = 0;
2404 } else if (dl_policy(policy) && task_has_dl_policy(p) &&
2405 !__dl_overflow(dl_b, cpus, p->dl.dl_bw, new_bw)) {
2406 __dl_clear(dl_b, p->dl.dl_bw);
2407 __dl_add(dl_b, new_bw);
2408 err = 0;
2409 } else if (!dl_policy(policy) && task_has_dl_policy(p)) {
2410 __dl_clear(dl_b, p->dl.dl_bw);
2411 err = 0;
2412 }
2413 raw_spin_unlock(&dl_b->lock);
2414
2415 return err;
2416}
2417
2418extern void init_dl_bw(struct dl_bw *dl_b);
2419
1da177e4
LT
2420/*
2421 * wake_up_new_task - wake up a newly created task for the first time.
2422 *
2423 * This function will do some initial scheduler statistics housekeeping
2424 * that must be done for every newly created context, then puts the task
2425 * on the runqueue and wakes it.
2426 */
3e51e3ed 2427void wake_up_new_task(struct task_struct *p)
1da177e4
LT
2428{
2429 unsigned long flags;
dd41f596 2430 struct rq *rq;
fabf318e 2431
ab2515c4 2432 raw_spin_lock_irqsave(&p->pi_lock, flags);
98d8fd81
MR
2433 /* Initialize new task's runnable average */
2434 init_entity_runnable_average(&p->se);
fabf318e
PZ
2435#ifdef CONFIG_SMP
2436 /*
2437 * Fork balancing, do it here and not earlier because:
2438 * - cpus_allowed can change in the fork path
2439 * - any previously selected cpu might disappear through hotplug
fabf318e 2440 */
ac66f547 2441 set_task_cpu(p, select_task_rq(p, task_cpu(p), SD_BALANCE_FORK, 0));
0017d735
PZ
2442#endif
2443
ab2515c4 2444 rq = __task_rq_lock(p);
cd29fe6f 2445 activate_task(rq, p, 0);
da0c1e65 2446 p->on_rq = TASK_ON_RQ_QUEUED;
fbd705a0 2447 trace_sched_wakeup_new(p);
a7558e01 2448 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 2449#ifdef CONFIG_SMP
0aaafaab
PZ
2450 if (p->sched_class->task_woken) {
2451 /*
2452 * Nothing relies on rq->lock after this, so its fine to
2453 * drop it.
2454 */
2455 lockdep_unpin_lock(&rq->lock);
efbbd05a 2456 p->sched_class->task_woken(rq, p);
0aaafaab
PZ
2457 lockdep_pin_lock(&rq->lock);
2458 }
9a897c5a 2459#endif
0122ec5b 2460 task_rq_unlock(rq, p, &flags);
1da177e4
LT
2461}
2462
e107be36
AK
2463#ifdef CONFIG_PREEMPT_NOTIFIERS
2464
1cde2930
PZ
2465static struct static_key preempt_notifier_key = STATIC_KEY_INIT_FALSE;
2466
2ecd9d29
PZ
2467void preempt_notifier_inc(void)
2468{
2469 static_key_slow_inc(&preempt_notifier_key);
2470}
2471EXPORT_SYMBOL_GPL(preempt_notifier_inc);
2472
2473void preempt_notifier_dec(void)
2474{
2475 static_key_slow_dec(&preempt_notifier_key);
2476}
2477EXPORT_SYMBOL_GPL(preempt_notifier_dec);
2478
e107be36 2479/**
80dd99b3 2480 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 2481 * @notifier: notifier struct to register
e107be36
AK
2482 */
2483void preempt_notifier_register(struct preempt_notifier *notifier)
2484{
2ecd9d29
PZ
2485 if (!static_key_false(&preempt_notifier_key))
2486 WARN(1, "registering preempt_notifier while notifiers disabled\n");
2487
e107be36
AK
2488 hlist_add_head(&notifier->link, &current->preempt_notifiers);
2489}
2490EXPORT_SYMBOL_GPL(preempt_notifier_register);
2491
2492/**
2493 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 2494 * @notifier: notifier struct to unregister
e107be36 2495 *
d84525a8 2496 * This is *not* safe to call from within a preemption notifier.
e107be36
AK
2497 */
2498void preempt_notifier_unregister(struct preempt_notifier *notifier)
2499{
2500 hlist_del(&notifier->link);
2501}
2502EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
2503
1cde2930 2504static void __fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2505{
2506 struct preempt_notifier *notifier;
e107be36 2507
b67bfe0d 2508 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2509 notifier->ops->sched_in(notifier, raw_smp_processor_id());
2510}
2511
1cde2930
PZ
2512static __always_inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
2513{
2514 if (static_key_false(&preempt_notifier_key))
2515 __fire_sched_in_preempt_notifiers(curr);
2516}
2517
e107be36 2518static void
1cde2930
PZ
2519__fire_sched_out_preempt_notifiers(struct task_struct *curr,
2520 struct task_struct *next)
e107be36
AK
2521{
2522 struct preempt_notifier *notifier;
e107be36 2523
b67bfe0d 2524 hlist_for_each_entry(notifier, &curr->preempt_notifiers, link)
e107be36
AK
2525 notifier->ops->sched_out(notifier, next);
2526}
2527
1cde2930
PZ
2528static __always_inline void
2529fire_sched_out_preempt_notifiers(struct task_struct *curr,
2530 struct task_struct *next)
2531{
2532 if (static_key_false(&preempt_notifier_key))
2533 __fire_sched_out_preempt_notifiers(curr, next);
2534}
2535
6d6bc0ad 2536#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36 2537
1cde2930 2538static inline void fire_sched_in_preempt_notifiers(struct task_struct *curr)
e107be36
AK
2539{
2540}
2541
1cde2930 2542static inline void
e107be36
AK
2543fire_sched_out_preempt_notifiers(struct task_struct *curr,
2544 struct task_struct *next)
2545{
2546}
2547
6d6bc0ad 2548#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 2549
4866cde0
NP
2550/**
2551 * prepare_task_switch - prepare to switch tasks
2552 * @rq: the runqueue preparing to switch
421cee29 2553 * @prev: the current task that is being switched out
4866cde0
NP
2554 * @next: the task we are going to switch to.
2555 *
2556 * This is called with the rq lock held and interrupts off. It must
2557 * be paired with a subsequent finish_task_switch after the context
2558 * switch.
2559 *
2560 * prepare_task_switch sets up locking and calls architecture specific
2561 * hooks.
2562 */
e107be36
AK
2563static inline void
2564prepare_task_switch(struct rq *rq, struct task_struct *prev,
2565 struct task_struct *next)
4866cde0 2566{
43148951 2567 sched_info_switch(rq, prev, next);
fe4b04fa 2568 perf_event_task_sched_out(prev, next);
e107be36 2569 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
2570 prepare_lock_switch(rq, next);
2571 prepare_arch_switch(next);
2572}
2573
1da177e4
LT
2574/**
2575 * finish_task_switch - clean up after a task-switch
2576 * @prev: the thread we just switched away from.
2577 *
4866cde0
NP
2578 * finish_task_switch must be called after the context switch, paired
2579 * with a prepare_task_switch call before the context switch.
2580 * finish_task_switch will reconcile locking set up by prepare_task_switch,
2581 * and do any other architecture-specific cleanup actions.
1da177e4
LT
2582 *
2583 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 2584 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
2585 * with the lock held can cause deadlocks; see schedule() for
2586 * details.)
dfa50b60
ON
2587 *
2588 * The context switch have flipped the stack from under us and restored the
2589 * local variables which were saved when this task called schedule() in the
2590 * past. prev == current is still correct but we need to recalculate this_rq
2591 * because prev may have moved to another CPU.
1da177e4 2592 */
dfa50b60 2593static struct rq *finish_task_switch(struct task_struct *prev)
1da177e4
LT
2594 __releases(rq->lock)
2595{
dfa50b60 2596 struct rq *rq = this_rq();
1da177e4 2597 struct mm_struct *mm = rq->prev_mm;
55a101f8 2598 long prev_state;
1da177e4 2599
609ca066
PZ
2600 /*
2601 * The previous task will have left us with a preempt_count of 2
2602 * because it left us after:
2603 *
2604 * schedule()
2605 * preempt_disable(); // 1
2606 * __schedule()
2607 * raw_spin_lock_irq(&rq->lock) // 2
2608 *
2609 * Also, see FORK_PREEMPT_COUNT.
2610 */
e2bf1c4b
PZ
2611 if (WARN_ONCE(preempt_count() != 2*PREEMPT_DISABLE_OFFSET,
2612 "corrupted preempt_count: %s/%d/0x%x\n",
2613 current->comm, current->pid, preempt_count()))
2614 preempt_count_set(FORK_PREEMPT_COUNT);
609ca066 2615
1da177e4
LT
2616 rq->prev_mm = NULL;
2617
2618 /*
2619 * A task struct has one reference for the use as "current".
c394cc9f 2620 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
2621 * schedule one last time. The schedule call will never return, and
2622 * the scheduled task must drop that reference.
95913d97
PZ
2623 *
2624 * We must observe prev->state before clearing prev->on_cpu (in
2625 * finish_lock_switch), otherwise a concurrent wakeup can get prev
2626 * running on another CPU and we could rave with its RUNNING -> DEAD
2627 * transition, resulting in a double drop.
1da177e4 2628 */
55a101f8 2629 prev_state = prev->state;
bf9fae9f 2630 vtime_task_switch(prev);
a8d757ef 2631 perf_event_task_sched_in(prev, current);
4866cde0 2632 finish_lock_switch(rq, prev);
01f23e16 2633 finish_arch_post_lock_switch();
e8fa1362 2634
e107be36 2635 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
2636 if (mm)
2637 mmdrop(mm);
c394cc9f 2638 if (unlikely(prev_state == TASK_DEAD)) {
e6c390f2
DF
2639 if (prev->sched_class->task_dead)
2640 prev->sched_class->task_dead(prev);
2641
c6fd91f0 2642 /*
2643 * Remove function-return probe instances associated with this
2644 * task and put them back on the free list.
9761eea8 2645 */
c6fd91f0 2646 kprobe_flush_task(prev);
1da177e4 2647 put_task_struct(prev);
c6fd91f0 2648 }
99e5ada9 2649
de734f89 2650 tick_nohz_task_switch();
dfa50b60 2651 return rq;
1da177e4
LT
2652}
2653
3f029d3c
GH
2654#ifdef CONFIG_SMP
2655
3f029d3c 2656/* rq->lock is NOT held, but preemption is disabled */
e3fca9e7 2657static void __balance_callback(struct rq *rq)
3f029d3c 2658{
e3fca9e7
PZ
2659 struct callback_head *head, *next;
2660 void (*func)(struct rq *rq);
2661 unsigned long flags;
3f029d3c 2662
e3fca9e7
PZ
2663 raw_spin_lock_irqsave(&rq->lock, flags);
2664 head = rq->balance_callback;
2665 rq->balance_callback = NULL;
2666 while (head) {
2667 func = (void (*)(struct rq *))head->func;
2668 next = head->next;
2669 head->next = NULL;
2670 head = next;
3f029d3c 2671
e3fca9e7 2672 func(rq);
3f029d3c 2673 }
e3fca9e7
PZ
2674 raw_spin_unlock_irqrestore(&rq->lock, flags);
2675}
2676
2677static inline void balance_callback(struct rq *rq)
2678{
2679 if (unlikely(rq->balance_callback))
2680 __balance_callback(rq);
3f029d3c
GH
2681}
2682
2683#else
da19ab51 2684
e3fca9e7 2685static inline void balance_callback(struct rq *rq)
3f029d3c 2686{
1da177e4
LT
2687}
2688
3f029d3c
GH
2689#endif
2690
1da177e4
LT
2691/**
2692 * schedule_tail - first thing a freshly forked thread must call.
2693 * @prev: the thread we just switched away from.
2694 */
722a9f92 2695asmlinkage __visible void schedule_tail(struct task_struct *prev)
1da177e4
LT
2696 __releases(rq->lock)
2697{
1a43a14a 2698 struct rq *rq;
da19ab51 2699
609ca066
PZ
2700 /*
2701 * New tasks start with FORK_PREEMPT_COUNT, see there and
2702 * finish_task_switch() for details.
2703 *
2704 * finish_task_switch() will drop rq->lock() and lower preempt_count
2705 * and the preempt_enable() will end up enabling preemption (on
2706 * PREEMPT_COUNT kernels).
2707 */
2708
dfa50b60 2709 rq = finish_task_switch(prev);
e3fca9e7 2710 balance_callback(rq);
1a43a14a 2711 preempt_enable();
70b97a7f 2712
1da177e4 2713 if (current->set_child_tid)
b488893a 2714 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2715}
2716
2717/*
dfa50b60 2718 * context_switch - switch to the new MM and the new thread's register state.
1da177e4 2719 */
04936948 2720static __always_inline struct rq *
70b97a7f 2721context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2722 struct task_struct *next)
1da177e4 2723{
dd41f596 2724 struct mm_struct *mm, *oldmm;
1da177e4 2725
e107be36 2726 prepare_task_switch(rq, prev, next);
fe4b04fa 2727
dd41f596
IM
2728 mm = next->mm;
2729 oldmm = prev->active_mm;
9226d125
ZA
2730 /*
2731 * For paravirt, this is coupled with an exit in switch_to to
2732 * combine the page table reload and the switch backend into
2733 * one hypercall.
2734 */
224101ed 2735 arch_start_context_switch(prev);
9226d125 2736
31915ab4 2737 if (!mm) {
1da177e4
LT
2738 next->active_mm = oldmm;
2739 atomic_inc(&oldmm->mm_count);
2740 enter_lazy_tlb(oldmm, next);
2741 } else
2742 switch_mm(oldmm, mm, next);
2743
31915ab4 2744 if (!prev->mm) {
1da177e4 2745 prev->active_mm = NULL;
1da177e4
LT
2746 rq->prev_mm = oldmm;
2747 }
3a5f5e48
IM
2748 /*
2749 * Since the runqueue lock will be released by the next
2750 * task (which is an invalid locking op but in the case
2751 * of the scheduler it's an obvious special-case), so we
2752 * do an early lockdep release here:
2753 */
cbce1a68 2754 lockdep_unpin_lock(&rq->lock);
8a25d5de 2755 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
1da177e4
LT
2756
2757 /* Here we just switch the register state and the stack. */
2758 switch_to(prev, next, prev);
dd41f596 2759 barrier();
dfa50b60
ON
2760
2761 return finish_task_switch(prev);
1da177e4
LT
2762}
2763
2764/*
1c3e8264 2765 * nr_running and nr_context_switches:
1da177e4
LT
2766 *
2767 * externally visible scheduler statistics: current number of runnable
1c3e8264 2768 * threads, total number of context switches performed since bootup.
1da177e4
LT
2769 */
2770unsigned long nr_running(void)
2771{
2772 unsigned long i, sum = 0;
2773
2774 for_each_online_cpu(i)
2775 sum += cpu_rq(i)->nr_running;
2776
2777 return sum;
f711f609 2778}
1da177e4 2779
2ee507c4
TC
2780/*
2781 * Check if only the current task is running on the cpu.
00cc1633
DD
2782 *
2783 * Caution: this function does not check that the caller has disabled
2784 * preemption, thus the result might have a time-of-check-to-time-of-use
2785 * race. The caller is responsible to use it correctly, for example:
2786 *
2787 * - from a non-preemptable section (of course)
2788 *
2789 * - from a thread that is bound to a single CPU
2790 *
2791 * - in a loop with very short iterations (e.g. a polling loop)
2ee507c4
TC
2792 */
2793bool single_task_running(void)
2794{
00cc1633 2795 return raw_rq()->nr_running == 1;
2ee507c4
TC
2796}
2797EXPORT_SYMBOL(single_task_running);
2798
1da177e4 2799unsigned long long nr_context_switches(void)
46cb4b7c 2800{
cc94abfc
SR
2801 int i;
2802 unsigned long long sum = 0;
46cb4b7c 2803
0a945022 2804 for_each_possible_cpu(i)
1da177e4 2805 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2806
1da177e4
LT
2807 return sum;
2808}
483b4ee6 2809
1da177e4
LT
2810unsigned long nr_iowait(void)
2811{
2812 unsigned long i, sum = 0;
483b4ee6 2813
0a945022 2814 for_each_possible_cpu(i)
1da177e4 2815 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2816
1da177e4
LT
2817 return sum;
2818}
483b4ee6 2819
8c215bd3 2820unsigned long nr_iowait_cpu(int cpu)
69d25870 2821{
8c215bd3 2822 struct rq *this = cpu_rq(cpu);
69d25870
AV
2823 return atomic_read(&this->nr_iowait);
2824}
46cb4b7c 2825
372ba8cb
MG
2826void get_iowait_load(unsigned long *nr_waiters, unsigned long *load)
2827{
3289bdb4
PZ
2828 struct rq *rq = this_rq();
2829 *nr_waiters = atomic_read(&rq->nr_iowait);
2830 *load = rq->load.weight;
372ba8cb
MG
2831}
2832
dd41f596 2833#ifdef CONFIG_SMP
8a0be9ef 2834
46cb4b7c 2835/*
38022906
PZ
2836 * sched_exec - execve() is a valuable balancing opportunity, because at
2837 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2838 */
38022906 2839void sched_exec(void)
46cb4b7c 2840{
38022906 2841 struct task_struct *p = current;
1da177e4 2842 unsigned long flags;
0017d735 2843 int dest_cpu;
46cb4b7c 2844
8f42ced9 2845 raw_spin_lock_irqsave(&p->pi_lock, flags);
ac66f547 2846 dest_cpu = p->sched_class->select_task_rq(p, task_cpu(p), SD_BALANCE_EXEC, 0);
0017d735
PZ
2847 if (dest_cpu == smp_processor_id())
2848 goto unlock;
38022906 2849
8f42ced9 2850 if (likely(cpu_active(dest_cpu))) {
969c7921 2851 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2852
8f42ced9
PZ
2853 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2854 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2855 return;
2856 }
0017d735 2857unlock:
8f42ced9 2858 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2859}
dd41f596 2860
1da177e4
LT
2861#endif
2862
1da177e4 2863DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2864DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2865
2866EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2867EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4 2868
c5f8d995
HS
2869/*
2870 * Return accounted runtime for the task.
2871 * In case the task is currently running, return the runtime plus current's
2872 * pending runtime that have not been accounted yet.
2873 */
2874unsigned long long task_sched_runtime(struct task_struct *p)
2875{
2876 unsigned long flags;
2877 struct rq *rq;
6e998916 2878 u64 ns;
c5f8d995 2879
911b2898
PZ
2880#if defined(CONFIG_64BIT) && defined(CONFIG_SMP)
2881 /*
2882 * 64-bit doesn't need locks to atomically read a 64bit value.
2883 * So we have a optimization chance when the task's delta_exec is 0.
2884 * Reading ->on_cpu is racy, but this is ok.
2885 *
2886 * If we race with it leaving cpu, we'll take a lock. So we're correct.
2887 * If we race with it entering cpu, unaccounted time is 0. This is
2888 * indistinguishable from the read occurring a few cycles earlier.
4036ac15
MG
2889 * If we see ->on_cpu without ->on_rq, the task is leaving, and has
2890 * been accounted, so we're correct here as well.
911b2898 2891 */
da0c1e65 2892 if (!p->on_cpu || !task_on_rq_queued(p))
911b2898
PZ
2893 return p->se.sum_exec_runtime;
2894#endif
2895
c5f8d995 2896 rq = task_rq_lock(p, &flags);
6e998916
SG
2897 /*
2898 * Must be ->curr _and_ ->on_rq. If dequeued, we would
2899 * project cycles that may never be accounted to this
2900 * thread, breaking clock_gettime().
2901 */
2902 if (task_current(rq, p) && task_on_rq_queued(p)) {
2903 update_rq_clock(rq);
2904 p->sched_class->update_curr(rq);
2905 }
2906 ns = p->se.sum_exec_runtime;
0122ec5b 2907 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2908
2909 return ns;
2910}
48f24c4d 2911
7835b98b
CL
2912/*
2913 * This function gets called by the timer code, with HZ frequency.
2914 * We call it with interrupts disabled.
7835b98b
CL
2915 */
2916void scheduler_tick(void)
2917{
7835b98b
CL
2918 int cpu = smp_processor_id();
2919 struct rq *rq = cpu_rq(cpu);
dd41f596 2920 struct task_struct *curr = rq->curr;
3e51f33f
PZ
2921
2922 sched_clock_tick();
dd41f596 2923
05fa785c 2924 raw_spin_lock(&rq->lock);
3e51f33f 2925 update_rq_clock(rq);
fa85ae24 2926 curr->sched_class->task_tick(rq, curr, 0);
83dfd523 2927 update_cpu_load_active(rq);
3289bdb4 2928 calc_global_load_tick(rq);
05fa785c 2929 raw_spin_unlock(&rq->lock);
7835b98b 2930
e9d2b064 2931 perf_event_task_tick();
e220d2dc 2932
e418e1c2 2933#ifdef CONFIG_SMP
6eb57e0d 2934 rq->idle_balance = idle_cpu(cpu);
7caff66f 2935 trigger_load_balance(rq);
e418e1c2 2936#endif
265f22a9 2937 rq_last_tick_reset(rq);
1da177e4
LT
2938}
2939
265f22a9
FW
2940#ifdef CONFIG_NO_HZ_FULL
2941/**
2942 * scheduler_tick_max_deferment
2943 *
2944 * Keep at least one tick per second when a single
2945 * active task is running because the scheduler doesn't
2946 * yet completely support full dynticks environment.
2947 *
2948 * This makes sure that uptime, CFS vruntime, load
2949 * balancing, etc... continue to move forward, even
2950 * with a very low granularity.
e69f6186
YB
2951 *
2952 * Return: Maximum deferment in nanoseconds.
265f22a9
FW
2953 */
2954u64 scheduler_tick_max_deferment(void)
2955{
2956 struct rq *rq = this_rq();
316c1608 2957 unsigned long next, now = READ_ONCE(jiffies);
265f22a9
FW
2958
2959 next = rq->last_sched_tick + HZ;
2960
2961 if (time_before_eq(next, now))
2962 return 0;
2963
8fe8ff09 2964 return jiffies_to_nsecs(next - now);
1da177e4 2965}
265f22a9 2966#endif
1da177e4 2967
7e49fcce
SR
2968#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
2969 defined(CONFIG_PREEMPT_TRACER))
2970
edafe3a5 2971void preempt_count_add(int val)
1da177e4 2972{
6cd8a4bb 2973#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2974 /*
2975 * Underflow?
2976 */
9a11b49a
IM
2977 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
2978 return;
6cd8a4bb 2979#endif
bdb43806 2980 __preempt_count_add(val);
6cd8a4bb 2981#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
2982 /*
2983 * Spinlock count overflowing soon?
2984 */
33859f7f
MOS
2985 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
2986 PREEMPT_MASK - 10);
6cd8a4bb 2987#endif
8f47b187 2988 if (preempt_count() == val) {
f904f582 2989 unsigned long ip = get_lock_parent_ip();
8f47b187
TG
2990#ifdef CONFIG_DEBUG_PREEMPT
2991 current->preempt_disable_ip = ip;
2992#endif
2993 trace_preempt_off(CALLER_ADDR0, ip);
2994 }
1da177e4 2995}
bdb43806 2996EXPORT_SYMBOL(preempt_count_add);
edafe3a5 2997NOKPROBE_SYMBOL(preempt_count_add);
1da177e4 2998
edafe3a5 2999void preempt_count_sub(int val)
1da177e4 3000{
6cd8a4bb 3001#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3002 /*
3003 * Underflow?
3004 */
01e3eb82 3005 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3006 return;
1da177e4
LT
3007 /*
3008 * Is the spinlock portion underflowing?
3009 */
9a11b49a
IM
3010 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3011 !(preempt_count() & PREEMPT_MASK)))
3012 return;
6cd8a4bb 3013#endif
9a11b49a 3014
6cd8a4bb 3015 if (preempt_count() == val)
f904f582 3016 trace_preempt_on(CALLER_ADDR0, get_lock_parent_ip());
bdb43806 3017 __preempt_count_sub(val);
1da177e4 3018}
bdb43806 3019EXPORT_SYMBOL(preempt_count_sub);
edafe3a5 3020NOKPROBE_SYMBOL(preempt_count_sub);
1da177e4
LT
3021
3022#endif
3023
3024/*
dd41f596 3025 * Print scheduling while atomic bug:
1da177e4 3026 */
dd41f596 3027static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3028{
664dfa65
DJ
3029 if (oops_in_progress)
3030 return;
3031
3df0fc5b
PZ
3032 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3033 prev->comm, prev->pid, preempt_count());
838225b4 3034
dd41f596 3035 debug_show_held_locks(prev);
e21f5b15 3036 print_modules();
dd41f596
IM
3037 if (irqs_disabled())
3038 print_irqtrace_events(prev);
8f47b187
TG
3039#ifdef CONFIG_DEBUG_PREEMPT
3040 if (in_atomic_preempt_off()) {
3041 pr_err("Preemption disabled at:");
3042 print_ip_sym(current->preempt_disable_ip);
3043 pr_cont("\n");
3044 }
3045#endif
6135fc1e 3046 dump_stack();
373d4d09 3047 add_taint(TAINT_WARN, LOCKDEP_STILL_OK);
dd41f596 3048}
1da177e4 3049
dd41f596
IM
3050/*
3051 * Various schedule()-time debugging checks and statistics:
3052 */
3053static inline void schedule_debug(struct task_struct *prev)
3054{
0d9e2632 3055#ifdef CONFIG_SCHED_STACK_END_CHECK
ce03e413 3056 BUG_ON(task_stack_end_corrupted(prev));
0d9e2632 3057#endif
b99def8b 3058
1dc0fffc 3059 if (unlikely(in_atomic_preempt_off())) {
dd41f596 3060 __schedule_bug(prev);
1dc0fffc
PZ
3061 preempt_count_set(PREEMPT_DISABLED);
3062 }
b3fbab05 3063 rcu_sleep_check();
dd41f596 3064
1da177e4
LT
3065 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3066
2d72376b 3067 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3068}
3069
3070/*
3071 * Pick up the highest-prio task:
3072 */
3073static inline struct task_struct *
606dba2e 3074pick_next_task(struct rq *rq, struct task_struct *prev)
dd41f596 3075{
37e117c0 3076 const struct sched_class *class = &fair_sched_class;
dd41f596 3077 struct task_struct *p;
1da177e4
LT
3078
3079 /*
dd41f596
IM
3080 * Optimization: we know that if all tasks are in
3081 * the fair class we can call that function directly:
1da177e4 3082 */
37e117c0 3083 if (likely(prev->sched_class == class &&
38033c37 3084 rq->nr_running == rq->cfs.h_nr_running)) {
606dba2e 3085 p = fair_sched_class.pick_next_task(rq, prev);
6ccdc84b
PZ
3086 if (unlikely(p == RETRY_TASK))
3087 goto again;
3088
3089 /* assumes fair_sched_class->next == idle_sched_class */
3090 if (unlikely(!p))
3091 p = idle_sched_class.pick_next_task(rq, prev);
3092
3093 return p;
1da177e4
LT
3094 }
3095
37e117c0 3096again:
34f971f6 3097 for_each_class(class) {
606dba2e 3098 p = class->pick_next_task(rq, prev);
37e117c0
PZ
3099 if (p) {
3100 if (unlikely(p == RETRY_TASK))
3101 goto again;
dd41f596 3102 return p;
37e117c0 3103 }
dd41f596 3104 }
34f971f6
PZ
3105
3106 BUG(); /* the idle class will always have a runnable task */
dd41f596 3107}
1da177e4 3108
dd41f596 3109/*
c259e01a 3110 * __schedule() is the main scheduler function.
edde96ea
PE
3111 *
3112 * The main means of driving the scheduler and thus entering this function are:
3113 *
3114 * 1. Explicit blocking: mutex, semaphore, waitqueue, etc.
3115 *
3116 * 2. TIF_NEED_RESCHED flag is checked on interrupt and userspace return
3117 * paths. For example, see arch/x86/entry_64.S.
3118 *
3119 * To drive preemption between tasks, the scheduler sets the flag in timer
3120 * interrupt handler scheduler_tick().
3121 *
3122 * 3. Wakeups don't really cause entry into schedule(). They add a
3123 * task to the run-queue and that's it.
3124 *
3125 * Now, if the new task added to the run-queue preempts the current
3126 * task, then the wakeup sets TIF_NEED_RESCHED and schedule() gets
3127 * called on the nearest possible occasion:
3128 *
3129 * - If the kernel is preemptible (CONFIG_PREEMPT=y):
3130 *
3131 * - in syscall or exception context, at the next outmost
3132 * preempt_enable(). (this might be as soon as the wake_up()'s
3133 * spin_unlock()!)
3134 *
3135 * - in IRQ context, return from interrupt-handler to
3136 * preemptible context
3137 *
3138 * - If the kernel is not preemptible (CONFIG_PREEMPT is not set)
3139 * then at the next:
3140 *
3141 * - cond_resched() call
3142 * - explicit schedule() call
3143 * - return from syscall or exception to user-space
3144 * - return from interrupt-handler to user-space
bfd9b2b5 3145 *
b30f0e3f 3146 * WARNING: must be called with preemption disabled!
dd41f596 3147 */
499d7955 3148static void __sched notrace __schedule(bool preempt)
dd41f596
IM
3149{
3150 struct task_struct *prev, *next;
67ca7bde 3151 unsigned long *switch_count;
dd41f596 3152 struct rq *rq;
31656519 3153 int cpu;
dd41f596 3154
dd41f596
IM
3155 cpu = smp_processor_id();
3156 rq = cpu_rq(cpu);
dd41f596 3157 prev = rq->curr;
dd41f596 3158
b99def8b
PZ
3159 /*
3160 * do_exit() calls schedule() with preemption disabled as an exception;
3161 * however we must fix that up, otherwise the next task will see an
3162 * inconsistent (higher) preempt count.
3163 *
3164 * It also avoids the below schedule_debug() test from complaining
3165 * about this.
3166 */
3167 if (unlikely(prev->state == TASK_DEAD))
3168 preempt_enable_no_resched_notrace();
3169
dd41f596 3170 schedule_debug(prev);
1da177e4 3171
31656519 3172 if (sched_feat(HRTICK))
f333fdc9 3173 hrtick_clear(rq);
8f4d37ec 3174
46a5d164
PM
3175 local_irq_disable();
3176 rcu_note_context_switch();
3177
e0acd0a6
ON
3178 /*
3179 * Make sure that signal_pending_state()->signal_pending() below
3180 * can't be reordered with __set_current_state(TASK_INTERRUPTIBLE)
3181 * done by the caller to avoid the race with signal_wake_up().
3182 */
3183 smp_mb__before_spinlock();
46a5d164 3184 raw_spin_lock(&rq->lock);
cbce1a68 3185 lockdep_pin_lock(&rq->lock);
1da177e4 3186
9edfbfed
PZ
3187 rq->clock_skip_update <<= 1; /* promote REQ to ACT */
3188
246d86b5 3189 switch_count = &prev->nivcsw;
fc13aeba 3190 if (!preempt && prev->state) {
21aa9af0 3191 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3192 prev->state = TASK_RUNNING;
21aa9af0 3193 } else {
2acca55e
PZ
3194 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3195 prev->on_rq = 0;
3196
21aa9af0 3197 /*
2acca55e
PZ
3198 * If a worker went to sleep, notify and ask workqueue
3199 * whether it wants to wake up a task to maintain
3200 * concurrency.
21aa9af0
TH
3201 */
3202 if (prev->flags & PF_WQ_WORKER) {
3203 struct task_struct *to_wakeup;
3204
9b7f6597 3205 to_wakeup = wq_worker_sleeping(prev);
21aa9af0
TH
3206 if (to_wakeup)
3207 try_to_wake_up_local(to_wakeup);
3208 }
21aa9af0 3209 }
dd41f596 3210 switch_count = &prev->nvcsw;
1da177e4
LT
3211 }
3212
9edfbfed 3213 if (task_on_rq_queued(prev))
606dba2e
PZ
3214 update_rq_clock(rq);
3215
3216 next = pick_next_task(rq, prev);
f26f9aff 3217 clear_tsk_need_resched(prev);
f27dde8d 3218 clear_preempt_need_resched();
9edfbfed 3219 rq->clock_skip_update = 0;
1da177e4 3220
1da177e4 3221 if (likely(prev != next)) {
1da177e4
LT
3222 rq->nr_switches++;
3223 rq->curr = next;
3224 ++*switch_count;
3225
c73464b1 3226 trace_sched_switch(preempt, prev, next);
dfa50b60 3227 rq = context_switch(rq, prev, next); /* unlocks the rq */
cbce1a68
PZ
3228 } else {
3229 lockdep_unpin_lock(&rq->lock);
05fa785c 3230 raw_spin_unlock_irq(&rq->lock);
cbce1a68 3231 }
1da177e4 3232
e3fca9e7 3233 balance_callback(rq);
1da177e4 3234}
8e05e96a 3235STACK_FRAME_NON_STANDARD(__schedule); /* switch_to() */
c259e01a 3236
9c40cef2
TG
3237static inline void sched_submit_work(struct task_struct *tsk)
3238{
3c7d5184 3239 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3240 return;
3241 /*
3242 * If we are going to sleep and we have plugged IO queued,
3243 * make sure to submit it to avoid deadlocks.
3244 */
3245 if (blk_needs_flush_plug(tsk))
3246 blk_schedule_flush_plug(tsk);
3247}
3248
722a9f92 3249asmlinkage __visible void __sched schedule(void)
c259e01a 3250{
9c40cef2
TG
3251 struct task_struct *tsk = current;
3252
3253 sched_submit_work(tsk);
bfd9b2b5 3254 do {
b30f0e3f 3255 preempt_disable();
fc13aeba 3256 __schedule(false);
b30f0e3f 3257 sched_preempt_enable_no_resched();
bfd9b2b5 3258 } while (need_resched());
c259e01a 3259}
1da177e4
LT
3260EXPORT_SYMBOL(schedule);
3261
91d1aa43 3262#ifdef CONFIG_CONTEXT_TRACKING
722a9f92 3263asmlinkage __visible void __sched schedule_user(void)
20ab65e3
FW
3264{
3265 /*
3266 * If we come here after a random call to set_need_resched(),
3267 * or we have been woken up remotely but the IPI has not yet arrived,
3268 * we haven't yet exited the RCU idle mode. Do it here manually until
3269 * we find a better solution.
7cc78f8f
AL
3270 *
3271 * NB: There are buggy callers of this function. Ideally we
c467ea76 3272 * should warn if prev_state != CONTEXT_USER, but that will trigger
7cc78f8f 3273 * too frequently to make sense yet.
20ab65e3 3274 */
7cc78f8f 3275 enum ctx_state prev_state = exception_enter();
20ab65e3 3276 schedule();
7cc78f8f 3277 exception_exit(prev_state);
20ab65e3
FW
3278}
3279#endif
3280
c5491ea7
TG
3281/**
3282 * schedule_preempt_disabled - called with preemption disabled
3283 *
3284 * Returns with preemption disabled. Note: preempt_count must be 1
3285 */
3286void __sched schedule_preempt_disabled(void)
3287{
ba74c144 3288 sched_preempt_enable_no_resched();
c5491ea7
TG
3289 schedule();
3290 preempt_disable();
3291}
3292
06b1f808 3293static void __sched notrace preempt_schedule_common(void)
a18b5d01
FW
3294{
3295 do {
499d7955 3296 preempt_disable_notrace();
fc13aeba 3297 __schedule(true);
499d7955 3298 preempt_enable_no_resched_notrace();
a18b5d01
FW
3299
3300 /*
3301 * Check again in case we missed a preemption opportunity
3302 * between schedule and now.
3303 */
a18b5d01
FW
3304 } while (need_resched());
3305}
3306
1da177e4
LT
3307#ifdef CONFIG_PREEMPT
3308/*
2ed6e34f 3309 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3310 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3311 * occur there and call schedule directly.
3312 */
722a9f92 3313asmlinkage __visible void __sched notrace preempt_schedule(void)
1da177e4 3314{
1da177e4
LT
3315 /*
3316 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3317 * we do not want to preempt the current task. Just return..
1da177e4 3318 */
fbb00b56 3319 if (likely(!preemptible()))
1da177e4
LT
3320 return;
3321
a18b5d01 3322 preempt_schedule_common();
1da177e4 3323}
376e2424 3324NOKPROBE_SYMBOL(preempt_schedule);
1da177e4 3325EXPORT_SYMBOL(preempt_schedule);
009f60e2 3326
009f60e2 3327/**
4eaca0a8 3328 * preempt_schedule_notrace - preempt_schedule called by tracing
009f60e2
ON
3329 *
3330 * The tracing infrastructure uses preempt_enable_notrace to prevent
3331 * recursion and tracing preempt enabling caused by the tracing
3332 * infrastructure itself. But as tracing can happen in areas coming
3333 * from userspace or just about to enter userspace, a preempt enable
3334 * can occur before user_exit() is called. This will cause the scheduler
3335 * to be called when the system is still in usermode.
3336 *
3337 * To prevent this, the preempt_enable_notrace will use this function
3338 * instead of preempt_schedule() to exit user context if needed before
3339 * calling the scheduler.
3340 */
4eaca0a8 3341asmlinkage __visible void __sched notrace preempt_schedule_notrace(void)
009f60e2
ON
3342{
3343 enum ctx_state prev_ctx;
3344
3345 if (likely(!preemptible()))
3346 return;
3347
3348 do {
3d8f74dd 3349 preempt_disable_notrace();
009f60e2
ON
3350 /*
3351 * Needs preempt disabled in case user_exit() is traced
3352 * and the tracer calls preempt_enable_notrace() causing
3353 * an infinite recursion.
3354 */
3355 prev_ctx = exception_enter();
fc13aeba 3356 __schedule(true);
009f60e2
ON
3357 exception_exit(prev_ctx);
3358
3d8f74dd 3359 preempt_enable_no_resched_notrace();
009f60e2
ON
3360 } while (need_resched());
3361}
4eaca0a8 3362EXPORT_SYMBOL_GPL(preempt_schedule_notrace);
009f60e2 3363
32e475d7 3364#endif /* CONFIG_PREEMPT */
1da177e4
LT
3365
3366/*
2ed6e34f 3367 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3368 * off of irq context.
3369 * Note, that this is called and return with irqs disabled. This will
3370 * protect us against recursive calling from irq.
3371 */
722a9f92 3372asmlinkage __visible void __sched preempt_schedule_irq(void)
1da177e4 3373{
b22366cd 3374 enum ctx_state prev_state;
6478d880 3375
2ed6e34f 3376 /* Catch callers which need to be fixed */
f27dde8d 3377 BUG_ON(preempt_count() || !irqs_disabled());
1da177e4 3378
b22366cd
FW
3379 prev_state = exception_enter();
3380
3a5c359a 3381 do {
3d8f74dd 3382 preempt_disable();
3a5c359a 3383 local_irq_enable();
fc13aeba 3384 __schedule(true);
3a5c359a 3385 local_irq_disable();
3d8f74dd 3386 sched_preempt_enable_no_resched();
5ed0cec0 3387 } while (need_resched());
b22366cd
FW
3388
3389 exception_exit(prev_state);
1da177e4
LT
3390}
3391
63859d4f 3392int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3393 void *key)
1da177e4 3394{
63859d4f 3395 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3396}
1da177e4
LT
3397EXPORT_SYMBOL(default_wake_function);
3398
b29739f9
IM
3399#ifdef CONFIG_RT_MUTEXES
3400
3401/*
3402 * rt_mutex_setprio - set the current priority of a task
3403 * @p: task
3404 * @prio: prio value (kernel-internal form)
3405 *
3406 * This function changes the 'effective' priority of a task. It does
3407 * not touch ->normal_prio like __setscheduler().
3408 *
c365c292
TG
3409 * Used by the rt_mutex code to implement priority inheritance
3410 * logic. Call site only calls if the priority of the task changed.
b29739f9 3411 */
36c8b586 3412void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3413{
ff77e468 3414 int oldprio, queued, running, queue_flag = DEQUEUE_SAVE | DEQUEUE_MOVE;
70b97a7f 3415 struct rq *rq;
83ab0aa0 3416 const struct sched_class *prev_class;
b29739f9 3417
aab03e05 3418 BUG_ON(prio > MAX_PRIO);
b29739f9 3419
0122ec5b 3420 rq = __task_rq_lock(p);
b29739f9 3421
1c4dd99b
TG
3422 /*
3423 * Idle task boosting is a nono in general. There is one
3424 * exception, when PREEMPT_RT and NOHZ is active:
3425 *
3426 * The idle task calls get_next_timer_interrupt() and holds
3427 * the timer wheel base->lock on the CPU and another CPU wants
3428 * to access the timer (probably to cancel it). We can safely
3429 * ignore the boosting request, as the idle CPU runs this code
3430 * with interrupts disabled and will complete the lock
3431 * protected section without being interrupted. So there is no
3432 * real need to boost.
3433 */
3434 if (unlikely(p == rq->idle)) {
3435 WARN_ON(p != rq->curr);
3436 WARN_ON(p->pi_blocked_on);
3437 goto out_unlock;
3438 }
3439
a8027073 3440 trace_sched_pi_setprio(p, prio);
d5f9f942 3441 oldprio = p->prio;
ff77e468
PZ
3442
3443 if (oldprio == prio)
3444 queue_flag &= ~DEQUEUE_MOVE;
3445
83ab0aa0 3446 prev_class = p->sched_class;
da0c1e65 3447 queued = task_on_rq_queued(p);
051a1d1a 3448 running = task_current(rq, p);
da0c1e65 3449 if (queued)
ff77e468 3450 dequeue_task(rq, p, queue_flag);
0e1f3483 3451 if (running)
f3cd1c4e 3452 put_prev_task(rq, p);
dd41f596 3453
2d3d891d
DF
3454 /*
3455 * Boosting condition are:
3456 * 1. -rt task is running and holds mutex A
3457 * --> -dl task blocks on mutex A
3458 *
3459 * 2. -dl task is running and holds mutex A
3460 * --> -dl task blocks on mutex A and could preempt the
3461 * running task
3462 */
3463 if (dl_prio(prio)) {
466af29b
ON
3464 struct task_struct *pi_task = rt_mutex_get_top_task(p);
3465 if (!dl_prio(p->normal_prio) ||
3466 (pi_task && dl_entity_preempt(&pi_task->dl, &p->dl))) {
2d3d891d 3467 p->dl.dl_boosted = 1;
ff77e468 3468 queue_flag |= ENQUEUE_REPLENISH;
2d3d891d
DF
3469 } else
3470 p->dl.dl_boosted = 0;
aab03e05 3471 p->sched_class = &dl_sched_class;
2d3d891d
DF
3472 } else if (rt_prio(prio)) {
3473 if (dl_prio(oldprio))
3474 p->dl.dl_boosted = 0;
3475 if (oldprio < prio)
ff77e468 3476 queue_flag |= ENQUEUE_HEAD;
dd41f596 3477 p->sched_class = &rt_sched_class;
2d3d891d
DF
3478 } else {
3479 if (dl_prio(oldprio))
3480 p->dl.dl_boosted = 0;
746db944
BS
3481 if (rt_prio(oldprio))
3482 p->rt.timeout = 0;
dd41f596 3483 p->sched_class = &fair_sched_class;
2d3d891d 3484 }
dd41f596 3485
9908df2e 3486 sched_set_prio(p, prio);
b29739f9 3487
0e1f3483
HS
3488 if (running)
3489 p->sched_class->set_curr_task(rq);
da0c1e65 3490 if (queued)
ff77e468 3491 enqueue_task(rq, p, queue_flag);
cb469845 3492
da7a735e 3493 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3494out_unlock:
4c9a4bc8 3495 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 3496 __task_rq_unlock(rq);
4c9a4bc8
PZ
3497
3498 balance_callback(rq);
3499 preempt_enable();
b29739f9 3500}
b29739f9 3501#endif
d50dde5a 3502
36c8b586 3503void set_user_nice(struct task_struct *p, long nice)
1da177e4 3504{
da0c1e65 3505 int old_prio, delta, queued;
1da177e4 3506 unsigned long flags;
70b97a7f 3507 struct rq *rq;
1da177e4 3508
75e45d51 3509 if (task_nice(p) == nice || nice < MIN_NICE || nice > MAX_NICE)
1da177e4
LT
3510 return;
3511 /*
3512 * We have to be careful, if called from sys_setpriority(),
3513 * the task might be in the middle of scheduling on another CPU.
3514 */
3515 rq = task_rq_lock(p, &flags);
3516 /*
3517 * The RT priorities are set via sched_setscheduler(), but we still
3518 * allow the 'normal' nice value to be set - but as expected
3519 * it wont have any effect on scheduling until the task is
aab03e05 3520 * SCHED_DEADLINE, SCHED_FIFO or SCHED_RR:
1da177e4 3521 */
aab03e05 3522 if (task_has_dl_policy(p) || task_has_rt_policy(p)) {
1da177e4
LT
3523 p->static_prio = NICE_TO_PRIO(nice);
3524 goto out_unlock;
3525 }
da0c1e65
KT
3526 queued = task_on_rq_queued(p);
3527 if (queued)
1de64443 3528 dequeue_task(rq, p, DEQUEUE_SAVE);
1da177e4 3529
1da177e4 3530 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3531 set_load_weight(p);
b29739f9 3532 old_prio = p->prio;
9908df2e 3533 sched_set_prio(p, effective_prio(p));
b29739f9 3534 delta = p->prio - old_prio;
1da177e4 3535
da0c1e65 3536 if (queued) {
1de64443 3537 enqueue_task(rq, p, ENQUEUE_RESTORE);
1da177e4 3538 /*
d5f9f942
AM
3539 * If the task increased its priority or is running and
3540 * lowered its priority, then reschedule its CPU:
1da177e4 3541 */
d5f9f942 3542 if (delta < 0 || (delta > 0 && task_running(rq, p)))
8875125e 3543 resched_curr(rq);
1da177e4
LT
3544 }
3545out_unlock:
0122ec5b 3546 task_rq_unlock(rq, p, &flags);
1da177e4 3547}
1da177e4
LT
3548EXPORT_SYMBOL(set_user_nice);
3549
e43379f1
MM
3550/*
3551 * can_nice - check if a task can reduce its nice value
3552 * @p: task
3553 * @nice: nice value
3554 */
36c8b586 3555int can_nice(const struct task_struct *p, const int nice)
e43379f1 3556{
024f4747 3557 /* convert nice value [19,-20] to rlimit style value [1,40] */
7aa2c016 3558 int nice_rlim = nice_to_rlimit(nice);
48f24c4d 3559
78d7d407 3560 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3561 capable(CAP_SYS_NICE));
3562}
3563
1da177e4
LT
3564#ifdef __ARCH_WANT_SYS_NICE
3565
3566/*
3567 * sys_nice - change the priority of the current process.
3568 * @increment: priority increment
3569 *
3570 * sys_setpriority is a more generic, but much slower function that
3571 * does similar things.
3572 */
5add95d4 3573SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3574{
48f24c4d 3575 long nice, retval;
1da177e4
LT
3576
3577 /*
3578 * Setpriority might change our priority at the same moment.
3579 * We don't have to worry. Conceptually one call occurs first
3580 * and we have a single winner.
3581 */
a9467fa3 3582 increment = clamp(increment, -NICE_WIDTH, NICE_WIDTH);
d0ea0268 3583 nice = task_nice(current) + increment;
1da177e4 3584
a9467fa3 3585 nice = clamp_val(nice, MIN_NICE, MAX_NICE);
e43379f1
MM
3586 if (increment < 0 && !can_nice(current, nice))
3587 return -EPERM;
3588
1da177e4
LT
3589 retval = security_task_setnice(current, nice);
3590 if (retval)
3591 return retval;
3592
3593 set_user_nice(current, nice);
3594 return 0;
3595}
3596
3597#endif
3598
3599/**
3600 * task_prio - return the priority value of a given task.
3601 * @p: the task in question.
3602 *
e69f6186 3603 * Return: The priority value as seen by users in /proc.
1da177e4
LT
3604 * RT tasks are offset by -200. Normal tasks are centered
3605 * around 0, value goes from -16 to +15.
3606 */
36c8b586 3607int task_prio(const struct task_struct *p)
1da177e4
LT
3608{
3609 return p->prio - MAX_RT_PRIO;
3610}
3611
1da177e4
LT
3612/**
3613 * idle_cpu - is a given cpu idle currently?
3614 * @cpu: the processor in question.
e69f6186
YB
3615 *
3616 * Return: 1 if the CPU is currently idle. 0 otherwise.
1da177e4
LT
3617 */
3618int idle_cpu(int cpu)
3619{
908a3283
TG
3620 struct rq *rq = cpu_rq(cpu);
3621
3622 if (rq->curr != rq->idle)
3623 return 0;
3624
3625 if (rq->nr_running)
3626 return 0;
3627
3628#ifdef CONFIG_SMP
3629 if (!llist_empty(&rq->wake_list))
3630 return 0;
3631#endif
3632
3633 return 1;
1da177e4
LT
3634}
3635
1da177e4
LT
3636/**
3637 * idle_task - return the idle task for a given cpu.
3638 * @cpu: the processor in question.
e69f6186
YB
3639 *
3640 * Return: The idle task for the cpu @cpu.
1da177e4 3641 */
36c8b586 3642struct task_struct *idle_task(int cpu)
1da177e4
LT
3643{
3644 return cpu_rq(cpu)->idle;
3645}
3646
3647/**
3648 * find_process_by_pid - find a process with a matching PID value.
3649 * @pid: the pid in question.
e69f6186
YB
3650 *
3651 * The task of @pid, if found. %NULL otherwise.
1da177e4 3652 */
a9957449 3653static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 3654{
228ebcbe 3655 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
3656}
3657
aab03e05
DF
3658/*
3659 * This function initializes the sched_dl_entity of a newly becoming
3660 * SCHED_DEADLINE task.
3661 *
3662 * Only the static values are considered here, the actual runtime and the
3663 * absolute deadline will be properly calculated when the task is enqueued
3664 * for the first time with its new policy.
3665 */
3666static void
3667__setparam_dl(struct task_struct *p, const struct sched_attr *attr)
3668{
3669 struct sched_dl_entity *dl_se = &p->dl;
3670
aab03e05
DF
3671 dl_se->dl_runtime = attr->sched_runtime;
3672 dl_se->dl_deadline = attr->sched_deadline;
755378a4 3673 dl_se->dl_period = attr->sched_period ?: dl_se->dl_deadline;
aab03e05 3674 dl_se->flags = attr->sched_flags;
332ac17e 3675 dl_se->dl_bw = to_ratio(dl_se->dl_period, dl_se->dl_runtime);
40767b0d
PZ
3676
3677 /*
3678 * Changing the parameters of a task is 'tricky' and we're not doing
3679 * the correct thing -- also see task_dead_dl() and switched_from_dl().
3680 *
3681 * What we SHOULD do is delay the bandwidth release until the 0-lag
3682 * point. This would include retaining the task_struct until that time
3683 * and change dl_overflow() to not immediately decrement the current
3684 * amount.
3685 *
3686 * Instead we retain the current runtime/deadline and let the new
3687 * parameters take effect after the current reservation period lapses.
3688 * This is safe (albeit pessimistic) because the 0-lag point is always
3689 * before the current scheduling deadline.
3690 *
3691 * We can still have temporary overloads because we do not delay the
3692 * change in bandwidth until that time; so admission control is
3693 * not on the safe side. It does however guarantee tasks will never
3694 * consume more than promised.
3695 */
aab03e05
DF
3696}
3697
c13db6b1
SR
3698/*
3699 * sched_setparam() passes in -1 for its policy, to let the functions
3700 * it calls know not to change it.
3701 */
3702#define SETPARAM_POLICY -1
3703
c365c292
TG
3704static void __setscheduler_params(struct task_struct *p,
3705 const struct sched_attr *attr)
1da177e4 3706{
d50dde5a
DF
3707 int policy = attr->sched_policy;
3708
c13db6b1 3709 if (policy == SETPARAM_POLICY)
39fd8fd2
PZ
3710 policy = p->policy;
3711
1da177e4 3712 p->policy = policy;
d50dde5a 3713
aab03e05
DF
3714 if (dl_policy(policy))
3715 __setparam_dl(p, attr);
39fd8fd2 3716 else if (fair_policy(policy))
d50dde5a
DF
3717 p->static_prio = NICE_TO_PRIO(attr->sched_nice);
3718
39fd8fd2
PZ
3719 /*
3720 * __sched_setscheduler() ensures attr->sched_priority == 0 when
3721 * !rt_policy. Always setting this ensures that things like
3722 * getparam()/getattr() don't report silly values for !rt tasks.
3723 */
3724 p->rt_priority = attr->sched_priority;
383afd09 3725 p->normal_prio = normal_prio(p);
c365c292
TG
3726 set_load_weight(p);
3727}
39fd8fd2 3728
c365c292
TG
3729/* Actually do priority change: must hold pi & rq lock. */
3730static void __setscheduler(struct rq *rq, struct task_struct *p,
0782e63b 3731 const struct sched_attr *attr, bool keep_boost)
c365c292
TG
3732{
3733 __setscheduler_params(p, attr);
d50dde5a 3734
383afd09 3735 /*
0782e63b
TG
3736 * Keep a potential priority boosting if called from
3737 * sched_setscheduler().
383afd09 3738 */
0782e63b 3739 if (keep_boost)
9908df2e
JD
3740 sched_set_prio(p, rt_mutex_get_effective_prio(p,
3741 normal_prio(p)));
0782e63b 3742 else
9908df2e 3743 sched_set_prio(p, normal_prio(p));
383afd09 3744
aab03e05
DF
3745 if (dl_prio(p->prio))
3746 p->sched_class = &dl_sched_class;
3747 else if (rt_prio(p->prio))
ffd44db5
PZ
3748 p->sched_class = &rt_sched_class;
3749 else
3750 p->sched_class = &fair_sched_class;
1da177e4 3751}
aab03e05
DF
3752
3753static void
3754__getparam_dl(struct task_struct *p, struct sched_attr *attr)
3755{
3756 struct sched_dl_entity *dl_se = &p->dl;
3757
3758 attr->sched_priority = p->rt_priority;
3759 attr->sched_runtime = dl_se->dl_runtime;
3760 attr->sched_deadline = dl_se->dl_deadline;
755378a4 3761 attr->sched_period = dl_se->dl_period;
aab03e05
DF
3762 attr->sched_flags = dl_se->flags;
3763}
3764
3765/*
3766 * This function validates the new parameters of a -deadline task.
3767 * We ask for the deadline not being zero, and greater or equal
755378a4 3768 * than the runtime, as well as the period of being zero or
332ac17e 3769 * greater than deadline. Furthermore, we have to be sure that
b0827819
JL
3770 * user parameters are above the internal resolution of 1us (we
3771 * check sched_runtime only since it is always the smaller one) and
3772 * below 2^63 ns (we have to check both sched_deadline and
3773 * sched_period, as the latter can be zero).
aab03e05
DF
3774 */
3775static bool
3776__checkparam_dl(const struct sched_attr *attr)
3777{
b0827819
JL
3778 /* deadline != 0 */
3779 if (attr->sched_deadline == 0)
3780 return false;
3781
3782 /*
3783 * Since we truncate DL_SCALE bits, make sure we're at least
3784 * that big.
3785 */
3786 if (attr->sched_runtime < (1ULL << DL_SCALE))
3787 return false;
3788
3789 /*
3790 * Since we use the MSB for wrap-around and sign issues, make
3791 * sure it's not set (mind that period can be equal to zero).
3792 */
3793 if (attr->sched_deadline & (1ULL << 63) ||
3794 attr->sched_period & (1ULL << 63))
3795 return false;
3796
3797 /* runtime <= deadline <= period (if period != 0) */
3798 if ((attr->sched_period != 0 &&
3799 attr->sched_period < attr->sched_deadline) ||
3800 attr->sched_deadline < attr->sched_runtime)
3801 return false;
3802
3803 return true;
aab03e05
DF
3804}
3805
c69e8d9c
DH
3806/*
3807 * check the target process has a UID that matches the current process's
3808 */
3809static bool check_same_owner(struct task_struct *p)
3810{
3811 const struct cred *cred = current_cred(), *pcred;
3812 bool match;
3813
3814 rcu_read_lock();
3815 pcred = __task_cred(p);
9c806aa0
EB
3816 match = (uid_eq(cred->euid, pcred->euid) ||
3817 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
3818 rcu_read_unlock();
3819 return match;
3820}
3821
75381608
WL
3822static bool dl_param_changed(struct task_struct *p,
3823 const struct sched_attr *attr)
3824{
3825 struct sched_dl_entity *dl_se = &p->dl;
3826
3827 if (dl_se->dl_runtime != attr->sched_runtime ||
3828 dl_se->dl_deadline != attr->sched_deadline ||
3829 dl_se->dl_period != attr->sched_period ||
3830 dl_se->flags != attr->sched_flags)
3831 return true;
3832
3833 return false;
3834}
3835
d50dde5a
DF
3836static int __sched_setscheduler(struct task_struct *p,
3837 const struct sched_attr *attr,
dbc7f069 3838 bool user, bool pi)
1da177e4 3839{
383afd09
SR
3840 int newprio = dl_policy(attr->sched_policy) ? MAX_DL_PRIO - 1 :
3841 MAX_RT_PRIO - 1 - attr->sched_priority;
da0c1e65 3842 int retval, oldprio, oldpolicy = -1, queued, running;
0782e63b 3843 int new_effective_prio, policy = attr->sched_policy;
1da177e4 3844 unsigned long flags;
83ab0aa0 3845 const struct sched_class *prev_class;
70b97a7f 3846 struct rq *rq;
ca94c442 3847 int reset_on_fork;
ff77e468 3848 int queue_flags = DEQUEUE_SAVE | DEQUEUE_MOVE;
1da177e4 3849
66e5393a
SR
3850 /* may grab non-irq protected spin_locks */
3851 BUG_ON(in_interrupt());
1da177e4
LT
3852recheck:
3853 /* double check policy once rq lock held */
ca94c442
LP
3854 if (policy < 0) {
3855 reset_on_fork = p->sched_reset_on_fork;
1da177e4 3856 policy = oldpolicy = p->policy;
ca94c442 3857 } else {
7479f3c9 3858 reset_on_fork = !!(attr->sched_flags & SCHED_FLAG_RESET_ON_FORK);
ca94c442 3859
20f9cd2a 3860 if (!valid_policy(policy))
ca94c442
LP
3861 return -EINVAL;
3862 }
3863
7479f3c9
PZ
3864 if (attr->sched_flags & ~(SCHED_FLAG_RESET_ON_FORK))
3865 return -EINVAL;
3866
1da177e4
LT
3867 /*
3868 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
3869 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
3870 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4 3871 */
0bb040a4 3872 if ((p->mm && attr->sched_priority > MAX_USER_RT_PRIO-1) ||
d50dde5a 3873 (!p->mm && attr->sched_priority > MAX_RT_PRIO-1))
1da177e4 3874 return -EINVAL;
aab03e05
DF
3875 if ((dl_policy(policy) && !__checkparam_dl(attr)) ||
3876 (rt_policy(policy) != (attr->sched_priority != 0)))
1da177e4
LT
3877 return -EINVAL;
3878
37e4ab3f
OC
3879 /*
3880 * Allow unprivileged RT tasks to decrease priority:
3881 */
961ccddd 3882 if (user && !capable(CAP_SYS_NICE)) {
d50dde5a 3883 if (fair_policy(policy)) {
d0ea0268 3884 if (attr->sched_nice < task_nice(p) &&
eaad4513 3885 !can_nice(p, attr->sched_nice))
d50dde5a
DF
3886 return -EPERM;
3887 }
3888
e05606d3 3889 if (rt_policy(policy)) {
a44702e8
ON
3890 unsigned long rlim_rtprio =
3891 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
3892
3893 /* can't set/change the rt policy */
3894 if (policy != p->policy && !rlim_rtprio)
3895 return -EPERM;
3896
3897 /* can't increase priority */
d50dde5a
DF
3898 if (attr->sched_priority > p->rt_priority &&
3899 attr->sched_priority > rlim_rtprio)
8dc3e909
ON
3900 return -EPERM;
3901 }
c02aa73b 3902
d44753b8
JL
3903 /*
3904 * Can't set/change SCHED_DEADLINE policy at all for now
3905 * (safest behavior); in the future we would like to allow
3906 * unprivileged DL tasks to increase their relative deadline
3907 * or reduce their runtime (both ways reducing utilization)
3908 */
3909 if (dl_policy(policy))
3910 return -EPERM;
3911
dd41f596 3912 /*
c02aa73b
DH
3913 * Treat SCHED_IDLE as nice 20. Only allow a switch to
3914 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 3915 */
20f9cd2a 3916 if (idle_policy(p->policy) && !idle_policy(policy)) {
d0ea0268 3917 if (!can_nice(p, task_nice(p)))
c02aa73b
DH
3918 return -EPERM;
3919 }
5fe1d75f 3920
37e4ab3f 3921 /* can't change other user's priorities */
c69e8d9c 3922 if (!check_same_owner(p))
37e4ab3f 3923 return -EPERM;
ca94c442
LP
3924
3925 /* Normal users shall not reset the sched_reset_on_fork flag */
3926 if (p->sched_reset_on_fork && !reset_on_fork)
3927 return -EPERM;
37e4ab3f 3928 }
1da177e4 3929
725aad24 3930 if (user) {
b0ae1981 3931 retval = security_task_setscheduler(p);
725aad24
JF
3932 if (retval)
3933 return retval;
3934 }
3935
b29739f9
IM
3936 /*
3937 * make sure no PI-waiters arrive (or leave) while we are
3938 * changing the priority of the task:
0122ec5b 3939 *
25985edc 3940 * To be able to change p->policy safely, the appropriate
1da177e4
LT
3941 * runqueue lock must be held.
3942 */
0122ec5b 3943 rq = task_rq_lock(p, &flags);
dc61b1d6 3944
34f971f6
PZ
3945 /*
3946 * Changing the policy of the stop threads its a very bad idea
3947 */
3948 if (p == rq->stop) {
0122ec5b 3949 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
3950 return -EINVAL;
3951 }
3952
a51e9198 3953 /*
d6b1e911
TG
3954 * If not changing anything there's no need to proceed further,
3955 * but store a possible modification of reset_on_fork.
a51e9198 3956 */
d50dde5a 3957 if (unlikely(policy == p->policy)) {
d0ea0268 3958 if (fair_policy(policy) && attr->sched_nice != task_nice(p))
d50dde5a
DF
3959 goto change;
3960 if (rt_policy(policy) && attr->sched_priority != p->rt_priority)
3961 goto change;
75381608 3962 if (dl_policy(policy) && dl_param_changed(p, attr))
aab03e05 3963 goto change;
d50dde5a 3964
d6b1e911 3965 p->sched_reset_on_fork = reset_on_fork;
45afb173 3966 task_rq_unlock(rq, p, &flags);
a51e9198
DF
3967 return 0;
3968 }
d50dde5a 3969change:
a51e9198 3970
dc61b1d6 3971 if (user) {
332ac17e 3972#ifdef CONFIG_RT_GROUP_SCHED
dc61b1d6
PZ
3973 /*
3974 * Do not allow realtime tasks into groups that have no runtime
3975 * assigned.
3976 */
3977 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
3978 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
3979 !task_group_is_autogroup(task_group(p))) {
0122ec5b 3980 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
3981 return -EPERM;
3982 }
dc61b1d6 3983#endif
332ac17e
DF
3984#ifdef CONFIG_SMP
3985 if (dl_bandwidth_enabled() && dl_policy(policy)) {
3986 cpumask_t *span = rq->rd->span;
332ac17e
DF
3987
3988 /*
3989 * Don't allow tasks with an affinity mask smaller than
3990 * the entire root_domain to become SCHED_DEADLINE. We
3991 * will also fail if there's no bandwidth available.
3992 */
e4099a5e
PZ
3993 if (!cpumask_subset(span, &p->cpus_allowed) ||
3994 rq->rd->dl_bw.bw == 0) {
332ac17e
DF
3995 task_rq_unlock(rq, p, &flags);
3996 return -EPERM;
3997 }
3998 }
3999#endif
4000 }
dc61b1d6 4001
1da177e4
LT
4002 /* recheck policy now with rq lock held */
4003 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4004 policy = oldpolicy = -1;
0122ec5b 4005 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4006 goto recheck;
4007 }
332ac17e
DF
4008
4009 /*
4010 * If setscheduling to SCHED_DEADLINE (or changing the parameters
4011 * of a SCHED_DEADLINE task) we need to check if enough bandwidth
4012 * is available.
4013 */
e4099a5e 4014 if ((dl_policy(policy) || dl_task(p)) && dl_overflow(p, policy, attr)) {
332ac17e
DF
4015 task_rq_unlock(rq, p, &flags);
4016 return -EBUSY;
4017 }
4018
c365c292
TG
4019 p->sched_reset_on_fork = reset_on_fork;
4020 oldprio = p->prio;
4021
dbc7f069
PZ
4022 if (pi) {
4023 /*
4024 * Take priority boosted tasks into account. If the new
4025 * effective priority is unchanged, we just store the new
4026 * normal parameters and do not touch the scheduler class and
4027 * the runqueue. This will be done when the task deboost
4028 * itself.
4029 */
4030 new_effective_prio = rt_mutex_get_effective_prio(p, newprio);
ff77e468
PZ
4031 if (new_effective_prio == oldprio)
4032 queue_flags &= ~DEQUEUE_MOVE;
c365c292
TG
4033 }
4034
da0c1e65 4035 queued = task_on_rq_queued(p);
051a1d1a 4036 running = task_current(rq, p);
da0c1e65 4037 if (queued)
ff77e468 4038 dequeue_task(rq, p, queue_flags);
0e1f3483 4039 if (running)
f3cd1c4e 4040 put_prev_task(rq, p);
f6b53205 4041
83ab0aa0 4042 prev_class = p->sched_class;
dbc7f069 4043 __setscheduler(rq, p, attr, pi);
f6b53205 4044
0e1f3483
HS
4045 if (running)
4046 p->sched_class->set_curr_task(rq);
da0c1e65 4047 if (queued) {
81a44c54
TG
4048 /*
4049 * We enqueue to tail when the priority of a task is
4050 * increased (user space view).
4051 */
ff77e468
PZ
4052 if (oldprio < p->prio)
4053 queue_flags |= ENQUEUE_HEAD;
1de64443 4054
ff77e468 4055 enqueue_task(rq, p, queue_flags);
81a44c54 4056 }
cb469845 4057
da7a735e 4058 check_class_changed(rq, p, prev_class, oldprio);
4c9a4bc8 4059 preempt_disable(); /* avoid rq from going away on us */
0122ec5b 4060 task_rq_unlock(rq, p, &flags);
b29739f9 4061
dbc7f069
PZ
4062 if (pi)
4063 rt_mutex_adjust_pi(p);
95e02ca9 4064
4c9a4bc8
PZ
4065 /*
4066 * Run balance callbacks after we've adjusted the PI chain.
4067 */
4068 balance_callback(rq);
4069 preempt_enable();
95e02ca9 4070
1da177e4
LT
4071 return 0;
4072}
961ccddd 4073
7479f3c9
PZ
4074static int _sched_setscheduler(struct task_struct *p, int policy,
4075 const struct sched_param *param, bool check)
4076{
4077 struct sched_attr attr = {
4078 .sched_policy = policy,
4079 .sched_priority = param->sched_priority,
4080 .sched_nice = PRIO_TO_NICE(p->static_prio),
4081 };
4082
c13db6b1
SR
4083 /* Fixup the legacy SCHED_RESET_ON_FORK hack. */
4084 if ((policy != SETPARAM_POLICY) && (policy & SCHED_RESET_ON_FORK)) {
7479f3c9
PZ
4085 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
4086 policy &= ~SCHED_RESET_ON_FORK;
4087 attr.sched_policy = policy;
4088 }
4089
dbc7f069 4090 return __sched_setscheduler(p, &attr, check, true);
7479f3c9 4091}
961ccddd
RR
4092/**
4093 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4094 * @p: the task in question.
4095 * @policy: new policy.
4096 * @param: structure containing the new RT priority.
4097 *
e69f6186
YB
4098 * Return: 0 on success. An error code otherwise.
4099 *
961ccddd
RR
4100 * NOTE that the task may be already dead.
4101 */
4102int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4103 const struct sched_param *param)
961ccddd 4104{
7479f3c9 4105 return _sched_setscheduler(p, policy, param, true);
961ccddd 4106}
1da177e4
LT
4107EXPORT_SYMBOL_GPL(sched_setscheduler);
4108
d50dde5a
DF
4109int sched_setattr(struct task_struct *p, const struct sched_attr *attr)
4110{
dbc7f069 4111 return __sched_setscheduler(p, attr, true, true);
d50dde5a
DF
4112}
4113EXPORT_SYMBOL_GPL(sched_setattr);
4114
961ccddd
RR
4115/**
4116 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4117 * @p: the task in question.
4118 * @policy: new policy.
4119 * @param: structure containing the new RT priority.
4120 *
4121 * Just like sched_setscheduler, only don't bother checking if the
4122 * current context has permission. For example, this is needed in
4123 * stop_machine(): we create temporary high priority worker threads,
4124 * but our caller might not have that capability.
e69f6186
YB
4125 *
4126 * Return: 0 on success. An error code otherwise.
961ccddd
RR
4127 */
4128int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4129 const struct sched_param *param)
961ccddd 4130{
7479f3c9 4131 return _sched_setscheduler(p, policy, param, false);
961ccddd 4132}
84778472 4133EXPORT_SYMBOL_GPL(sched_setscheduler_nocheck);
961ccddd 4134
95cdf3b7
IM
4135static int
4136do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4137{
1da177e4
LT
4138 struct sched_param lparam;
4139 struct task_struct *p;
36c8b586 4140 int retval;
1da177e4
LT
4141
4142 if (!param || pid < 0)
4143 return -EINVAL;
4144 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4145 return -EFAULT;
5fe1d75f
ON
4146
4147 rcu_read_lock();
4148 retval = -ESRCH;
1da177e4 4149 p = find_process_by_pid(pid);
5fe1d75f
ON
4150 if (p != NULL)
4151 retval = sched_setscheduler(p, policy, &lparam);
4152 rcu_read_unlock();
36c8b586 4153
1da177e4
LT
4154 return retval;
4155}
4156
d50dde5a
DF
4157/*
4158 * Mimics kernel/events/core.c perf_copy_attr().
4159 */
4160static int sched_copy_attr(struct sched_attr __user *uattr,
4161 struct sched_attr *attr)
4162{
4163 u32 size;
4164 int ret;
4165
4166 if (!access_ok(VERIFY_WRITE, uattr, SCHED_ATTR_SIZE_VER0))
4167 return -EFAULT;
4168
4169 /*
4170 * zero the full structure, so that a short copy will be nice.
4171 */
4172 memset(attr, 0, sizeof(*attr));
4173
4174 ret = get_user(size, &uattr->size);
4175 if (ret)
4176 return ret;
4177
4178 if (size > PAGE_SIZE) /* silly large */
4179 goto err_size;
4180
4181 if (!size) /* abi compat */
4182 size = SCHED_ATTR_SIZE_VER0;
4183
4184 if (size < SCHED_ATTR_SIZE_VER0)
4185 goto err_size;
4186
4187 /*
4188 * If we're handed a bigger struct than we know of,
4189 * ensure all the unknown bits are 0 - i.e. new
4190 * user-space does not rely on any kernel feature
4191 * extensions we dont know about yet.
4192 */
4193 if (size > sizeof(*attr)) {
4194 unsigned char __user *addr;
4195 unsigned char __user *end;
4196 unsigned char val;
4197
4198 addr = (void __user *)uattr + sizeof(*attr);
4199 end = (void __user *)uattr + size;
4200
4201 for (; addr < end; addr++) {
4202 ret = get_user(val, addr);
4203 if (ret)
4204 return ret;
4205 if (val)
4206 goto err_size;
4207 }
4208 size = sizeof(*attr);
4209 }
4210
4211 ret = copy_from_user(attr, uattr, size);
4212 if (ret)
4213 return -EFAULT;
4214
4215 /*
4216 * XXX: do we want to be lenient like existing syscalls; or do we want
4217 * to be strict and return an error on out-of-bounds values?
4218 */
75e45d51 4219 attr->sched_nice = clamp(attr->sched_nice, MIN_NICE, MAX_NICE);
d50dde5a 4220
e78c7bca 4221 return 0;
d50dde5a
DF
4222
4223err_size:
4224 put_user(sizeof(*attr), &uattr->size);
e78c7bca 4225 return -E2BIG;
d50dde5a
DF
4226}
4227
1da177e4
LT
4228/**
4229 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4230 * @pid: the pid in question.
4231 * @policy: new policy.
4232 * @param: structure containing the new RT priority.
e69f6186
YB
4233 *
4234 * Return: 0 on success. An error code otherwise.
1da177e4 4235 */
5add95d4
HC
4236SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4237 struct sched_param __user *, param)
1da177e4 4238{
c21761f1
JB
4239 /* negative values for policy are not valid */
4240 if (policy < 0)
4241 return -EINVAL;
4242
1da177e4
LT
4243 return do_sched_setscheduler(pid, policy, param);
4244}
4245
4246/**
4247 * sys_sched_setparam - set/change the RT priority of a thread
4248 * @pid: the pid in question.
4249 * @param: structure containing the new RT priority.
e69f6186
YB
4250 *
4251 * Return: 0 on success. An error code otherwise.
1da177e4 4252 */
5add95d4 4253SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4254{
c13db6b1 4255 return do_sched_setscheduler(pid, SETPARAM_POLICY, param);
1da177e4
LT
4256}
4257
d50dde5a
DF
4258/**
4259 * sys_sched_setattr - same as above, but with extended sched_attr
4260 * @pid: the pid in question.
5778fccf 4261 * @uattr: structure containing the extended parameters.
db66d756 4262 * @flags: for future extension.
d50dde5a 4263 */
6d35ab48
PZ
4264SYSCALL_DEFINE3(sched_setattr, pid_t, pid, struct sched_attr __user *, uattr,
4265 unsigned int, flags)
d50dde5a
DF
4266{
4267 struct sched_attr attr;
4268 struct task_struct *p;
4269 int retval;
4270
6d35ab48 4271 if (!uattr || pid < 0 || flags)
d50dde5a
DF
4272 return -EINVAL;
4273
143cf23d
MK
4274 retval = sched_copy_attr(uattr, &attr);
4275 if (retval)
4276 return retval;
d50dde5a 4277
b14ed2c2 4278 if ((int)attr.sched_policy < 0)
dbdb2275 4279 return -EINVAL;
d50dde5a
DF
4280
4281 rcu_read_lock();
4282 retval = -ESRCH;
4283 p = find_process_by_pid(pid);
4284 if (p != NULL)
4285 retval = sched_setattr(p, &attr);
4286 rcu_read_unlock();
4287
4288 return retval;
4289}
4290
1da177e4
LT
4291/**
4292 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4293 * @pid: the pid in question.
e69f6186
YB
4294 *
4295 * Return: On success, the policy of the thread. Otherwise, a negative error
4296 * code.
1da177e4 4297 */
5add95d4 4298SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4299{
36c8b586 4300 struct task_struct *p;
3a5c359a 4301 int retval;
1da177e4
LT
4302
4303 if (pid < 0)
3a5c359a 4304 return -EINVAL;
1da177e4
LT
4305
4306 retval = -ESRCH;
5fe85be0 4307 rcu_read_lock();
1da177e4
LT
4308 p = find_process_by_pid(pid);
4309 if (p) {
4310 retval = security_task_getscheduler(p);
4311 if (!retval)
ca94c442
LP
4312 retval = p->policy
4313 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4314 }
5fe85be0 4315 rcu_read_unlock();
1da177e4
LT
4316 return retval;
4317}
4318
4319/**
ca94c442 4320 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4321 * @pid: the pid in question.
4322 * @param: structure containing the RT priority.
e69f6186
YB
4323 *
4324 * Return: On success, 0 and the RT priority is in @param. Otherwise, an error
4325 * code.
1da177e4 4326 */
5add95d4 4327SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4 4328{
ce5f7f82 4329 struct sched_param lp = { .sched_priority = 0 };
36c8b586 4330 struct task_struct *p;
3a5c359a 4331 int retval;
1da177e4
LT
4332
4333 if (!param || pid < 0)
3a5c359a 4334 return -EINVAL;
1da177e4 4335
5fe85be0 4336 rcu_read_lock();
1da177e4
LT
4337 p = find_process_by_pid(pid);
4338 retval = -ESRCH;
4339 if (!p)
4340 goto out_unlock;
4341
4342 retval = security_task_getscheduler(p);
4343 if (retval)
4344 goto out_unlock;
4345
ce5f7f82
PZ
4346 if (task_has_rt_policy(p))
4347 lp.sched_priority = p->rt_priority;
5fe85be0 4348 rcu_read_unlock();
1da177e4
LT
4349
4350 /*
4351 * This one might sleep, we cannot do it with a spinlock held ...
4352 */
4353 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4354
1da177e4
LT
4355 return retval;
4356
4357out_unlock:
5fe85be0 4358 rcu_read_unlock();
1da177e4
LT
4359 return retval;
4360}
4361
d50dde5a
DF
4362static int sched_read_attr(struct sched_attr __user *uattr,
4363 struct sched_attr *attr,
4364 unsigned int usize)
4365{
4366 int ret;
4367
4368 if (!access_ok(VERIFY_WRITE, uattr, usize))
4369 return -EFAULT;
4370
4371 /*
4372 * If we're handed a smaller struct than we know of,
4373 * ensure all the unknown bits are 0 - i.e. old
4374 * user-space does not get uncomplete information.
4375 */
4376 if (usize < sizeof(*attr)) {
4377 unsigned char *addr;
4378 unsigned char *end;
4379
4380 addr = (void *)attr + usize;
4381 end = (void *)attr + sizeof(*attr);
4382
4383 for (; addr < end; addr++) {
4384 if (*addr)
22400674 4385 return -EFBIG;
d50dde5a
DF
4386 }
4387
4388 attr->size = usize;
4389 }
4390
4efbc454 4391 ret = copy_to_user(uattr, attr, attr->size);
d50dde5a
DF
4392 if (ret)
4393 return -EFAULT;
4394
22400674 4395 return 0;
d50dde5a
DF
4396}
4397
4398/**
aab03e05 4399 * sys_sched_getattr - similar to sched_getparam, but with sched_attr
d50dde5a 4400 * @pid: the pid in question.
5778fccf 4401 * @uattr: structure containing the extended parameters.
d50dde5a 4402 * @size: sizeof(attr) for fwd/bwd comp.
db66d756 4403 * @flags: for future extension.
d50dde5a 4404 */
6d35ab48
PZ
4405SYSCALL_DEFINE4(sched_getattr, pid_t, pid, struct sched_attr __user *, uattr,
4406 unsigned int, size, unsigned int, flags)
d50dde5a
DF
4407{
4408 struct sched_attr attr = {
4409 .size = sizeof(struct sched_attr),
4410 };
4411 struct task_struct *p;
4412 int retval;
4413
4414 if (!uattr || pid < 0 || size > PAGE_SIZE ||
6d35ab48 4415 size < SCHED_ATTR_SIZE_VER0 || flags)
d50dde5a
DF
4416 return -EINVAL;
4417
4418 rcu_read_lock();
4419 p = find_process_by_pid(pid);
4420 retval = -ESRCH;
4421 if (!p)
4422 goto out_unlock;
4423
4424 retval = security_task_getscheduler(p);
4425 if (retval)
4426 goto out_unlock;
4427
4428 attr.sched_policy = p->policy;
7479f3c9
PZ
4429 if (p->sched_reset_on_fork)
4430 attr.sched_flags |= SCHED_FLAG_RESET_ON_FORK;
aab03e05
DF
4431 if (task_has_dl_policy(p))
4432 __getparam_dl(p, &attr);
4433 else if (task_has_rt_policy(p))
d50dde5a
DF
4434 attr.sched_priority = p->rt_priority;
4435 else
d0ea0268 4436 attr.sched_nice = task_nice(p);
d50dde5a
DF
4437
4438 rcu_read_unlock();
4439
4440 retval = sched_read_attr(uattr, &attr, size);
4441 return retval;
4442
4443out_unlock:
4444 rcu_read_unlock();
4445 return retval;
4446}
4447
96f874e2 4448long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4449{
5a16f3d3 4450 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4451 struct task_struct *p;
4452 int retval;
1da177e4 4453
23f5d142 4454 rcu_read_lock();
1da177e4
LT
4455
4456 p = find_process_by_pid(pid);
4457 if (!p) {
23f5d142 4458 rcu_read_unlock();
1da177e4
LT
4459 return -ESRCH;
4460 }
4461
23f5d142 4462 /* Prevent p going away */
1da177e4 4463 get_task_struct(p);
23f5d142 4464 rcu_read_unlock();
1da177e4 4465
14a40ffc
TH
4466 if (p->flags & PF_NO_SETAFFINITY) {
4467 retval = -EINVAL;
4468 goto out_put_task;
4469 }
5a16f3d3
RR
4470 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4471 retval = -ENOMEM;
4472 goto out_put_task;
4473 }
4474 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4475 retval = -ENOMEM;
4476 goto out_free_cpus_allowed;
4477 }
1da177e4 4478 retval = -EPERM;
4c44aaaf
EB
4479 if (!check_same_owner(p)) {
4480 rcu_read_lock();
4481 if (!ns_capable(__task_cred(p)->user_ns, CAP_SYS_NICE)) {
4482 rcu_read_unlock();
16303ab2 4483 goto out_free_new_mask;
4c44aaaf
EB
4484 }
4485 rcu_read_unlock();
4486 }
1da177e4 4487
b0ae1981 4488 retval = security_task_setscheduler(p);
e7834f8f 4489 if (retval)
16303ab2 4490 goto out_free_new_mask;
e7834f8f 4491
e4099a5e
PZ
4492
4493 cpuset_cpus_allowed(p, cpus_allowed);
4494 cpumask_and(new_mask, in_mask, cpus_allowed);
4495
332ac17e
DF
4496 /*
4497 * Since bandwidth control happens on root_domain basis,
4498 * if admission test is enabled, we only admit -deadline
4499 * tasks allowed to run on all the CPUs in the task's
4500 * root_domain.
4501 */
4502#ifdef CONFIG_SMP
f1e3a093
KT
4503 if (task_has_dl_policy(p) && dl_bandwidth_enabled()) {
4504 rcu_read_lock();
4505 if (!cpumask_subset(task_rq(p)->rd->span, new_mask)) {
332ac17e 4506 retval = -EBUSY;
f1e3a093 4507 rcu_read_unlock();
16303ab2 4508 goto out_free_new_mask;
332ac17e 4509 }
f1e3a093 4510 rcu_read_unlock();
332ac17e
DF
4511 }
4512#endif
49246274 4513again:
25834c73 4514 retval = __set_cpus_allowed_ptr(p, new_mask, true);
1da177e4 4515
8707d8b8 4516 if (!retval) {
5a16f3d3
RR
4517 cpuset_cpus_allowed(p, cpus_allowed);
4518 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4519 /*
4520 * We must have raced with a concurrent cpuset
4521 * update. Just reset the cpus_allowed to the
4522 * cpuset's cpus_allowed
4523 */
5a16f3d3 4524 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4525 goto again;
4526 }
4527 }
16303ab2 4528out_free_new_mask:
5a16f3d3
RR
4529 free_cpumask_var(new_mask);
4530out_free_cpus_allowed:
4531 free_cpumask_var(cpus_allowed);
4532out_put_task:
1da177e4 4533 put_task_struct(p);
1da177e4
LT
4534 return retval;
4535}
4536
4537static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4538 struct cpumask *new_mask)
1da177e4 4539{
96f874e2
RR
4540 if (len < cpumask_size())
4541 cpumask_clear(new_mask);
4542 else if (len > cpumask_size())
4543 len = cpumask_size();
4544
1da177e4
LT
4545 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4546}
4547
4548/**
4549 * sys_sched_setaffinity - set the cpu affinity of a process
4550 * @pid: pid of the process
4551 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4552 * @user_mask_ptr: user-space pointer to the new cpu mask
e69f6186
YB
4553 *
4554 * Return: 0 on success. An error code otherwise.
1da177e4 4555 */
5add95d4
HC
4556SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4557 unsigned long __user *, user_mask_ptr)
1da177e4 4558{
5a16f3d3 4559 cpumask_var_t new_mask;
1da177e4
LT
4560 int retval;
4561
5a16f3d3
RR
4562 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4563 return -ENOMEM;
1da177e4 4564
5a16f3d3
RR
4565 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4566 if (retval == 0)
4567 retval = sched_setaffinity(pid, new_mask);
4568 free_cpumask_var(new_mask);
4569 return retval;
1da177e4
LT
4570}
4571
96f874e2 4572long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4573{
36c8b586 4574 struct task_struct *p;
31605683 4575 unsigned long flags;
1da177e4 4576 int retval;
1da177e4 4577
23f5d142 4578 rcu_read_lock();
1da177e4
LT
4579
4580 retval = -ESRCH;
4581 p = find_process_by_pid(pid);
4582 if (!p)
4583 goto out_unlock;
4584
e7834f8f
DQ
4585 retval = security_task_getscheduler(p);
4586 if (retval)
4587 goto out_unlock;
4588
013fdb80 4589 raw_spin_lock_irqsave(&p->pi_lock, flags);
6acce3ef 4590 cpumask_and(mask, &p->cpus_allowed, cpu_active_mask);
013fdb80 4591 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4592
4593out_unlock:
23f5d142 4594 rcu_read_unlock();
1da177e4 4595
9531b62f 4596 return retval;
1da177e4
LT
4597}
4598
4599/**
4600 * sys_sched_getaffinity - get the cpu affinity of a process
4601 * @pid: pid of the process
4602 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4603 * @user_mask_ptr: user-space pointer to hold the current cpu mask
e69f6186
YB
4604 *
4605 * Return: 0 on success. An error code otherwise.
1da177e4 4606 */
5add95d4
HC
4607SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4608 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4609{
4610 int ret;
f17c8607 4611 cpumask_var_t mask;
1da177e4 4612
84fba5ec 4613 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4614 return -EINVAL;
4615 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4616 return -EINVAL;
4617
f17c8607
RR
4618 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4619 return -ENOMEM;
1da177e4 4620
f17c8607
RR
4621 ret = sched_getaffinity(pid, mask);
4622 if (ret == 0) {
8bc037fb 4623 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4624
4625 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4626 ret = -EFAULT;
4627 else
cd3d8031 4628 ret = retlen;
f17c8607
RR
4629 }
4630 free_cpumask_var(mask);
1da177e4 4631
f17c8607 4632 return ret;
1da177e4
LT
4633}
4634
4635/**
4636 * sys_sched_yield - yield the current processor to other threads.
4637 *
dd41f596
IM
4638 * This function yields the current CPU to other tasks. If there are no
4639 * other threads running on this CPU then this function will return.
e69f6186
YB
4640 *
4641 * Return: 0.
1da177e4 4642 */
5add95d4 4643SYSCALL_DEFINE0(sched_yield)
1da177e4 4644{
70b97a7f 4645 struct rq *rq = this_rq_lock();
1da177e4 4646
2d72376b 4647 schedstat_inc(rq, yld_count);
4530d7ab 4648 current->sched_class->yield_task(rq);
1da177e4
LT
4649
4650 /*
4651 * Since we are going to call schedule() anyway, there's
4652 * no need to preempt or enable interrupts:
4653 */
4654 __release(rq->lock);
8a25d5de 4655 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4656 do_raw_spin_unlock(&rq->lock);
ba74c144 4657 sched_preempt_enable_no_resched();
1da177e4
LT
4658
4659 schedule();
4660
4661 return 0;
4662}
4663
02b67cc3 4664int __sched _cond_resched(void)
1da177e4 4665{
fe32d3cd 4666 if (should_resched(0)) {
a18b5d01 4667 preempt_schedule_common();
1da177e4
LT
4668 return 1;
4669 }
4670 return 0;
4671}
02b67cc3 4672EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4673
4674/*
613afbf8 4675 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4676 * call schedule, and on return reacquire the lock.
4677 *
41a2d6cf 4678 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4679 * operations here to prevent schedule() from being called twice (once via
4680 * spin_unlock(), once by hand).
4681 */
613afbf8 4682int __cond_resched_lock(spinlock_t *lock)
1da177e4 4683{
fe32d3cd 4684 int resched = should_resched(PREEMPT_LOCK_OFFSET);
6df3cecb
JK
4685 int ret = 0;
4686
f607c668
PZ
4687 lockdep_assert_held(lock);
4688
4a81e832 4689 if (spin_needbreak(lock) || resched) {
1da177e4 4690 spin_unlock(lock);
d86ee480 4691 if (resched)
a18b5d01 4692 preempt_schedule_common();
95c354fe
NP
4693 else
4694 cpu_relax();
6df3cecb 4695 ret = 1;
1da177e4 4696 spin_lock(lock);
1da177e4 4697 }
6df3cecb 4698 return ret;
1da177e4 4699}
613afbf8 4700EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4701
613afbf8 4702int __sched __cond_resched_softirq(void)
1da177e4
LT
4703{
4704 BUG_ON(!in_softirq());
4705
fe32d3cd 4706 if (should_resched(SOFTIRQ_DISABLE_OFFSET)) {
98d82567 4707 local_bh_enable();
a18b5d01 4708 preempt_schedule_common();
1da177e4
LT
4709 local_bh_disable();
4710 return 1;
4711 }
4712 return 0;
4713}
613afbf8 4714EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4715
1da177e4
LT
4716/**
4717 * yield - yield the current processor to other threads.
4718 *
8e3fabfd
PZ
4719 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4720 *
4721 * The scheduler is at all times free to pick the calling task as the most
4722 * eligible task to run, if removing the yield() call from your code breaks
4723 * it, its already broken.
4724 *
4725 * Typical broken usage is:
4726 *
4727 * while (!event)
4728 * yield();
4729 *
4730 * where one assumes that yield() will let 'the other' process run that will
4731 * make event true. If the current task is a SCHED_FIFO task that will never
4732 * happen. Never use yield() as a progress guarantee!!
4733 *
4734 * If you want to use yield() to wait for something, use wait_event().
4735 * If you want to use yield() to be 'nice' for others, use cond_resched().
4736 * If you still want to use yield(), do not!
1da177e4
LT
4737 */
4738void __sched yield(void)
4739{
4740 set_current_state(TASK_RUNNING);
4741 sys_sched_yield();
4742}
1da177e4
LT
4743EXPORT_SYMBOL(yield);
4744
d95f4122
MG
4745/**
4746 * yield_to - yield the current processor to another thread in
4747 * your thread group, or accelerate that thread toward the
4748 * processor it's on.
16addf95
RD
4749 * @p: target task
4750 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4751 *
4752 * It's the caller's job to ensure that the target task struct
4753 * can't go away on us before we can do any checks.
4754 *
e69f6186 4755 * Return:
7b270f60
PZ
4756 * true (>0) if we indeed boosted the target task.
4757 * false (0) if we failed to boost the target.
4758 * -ESRCH if there's no task to yield to.
d95f4122 4759 */
fa93384f 4760int __sched yield_to(struct task_struct *p, bool preempt)
d95f4122
MG
4761{
4762 struct task_struct *curr = current;
4763 struct rq *rq, *p_rq;
4764 unsigned long flags;
c3c18640 4765 int yielded = 0;
d95f4122
MG
4766
4767 local_irq_save(flags);
4768 rq = this_rq();
4769
4770again:
4771 p_rq = task_rq(p);
7b270f60
PZ
4772 /*
4773 * If we're the only runnable task on the rq and target rq also
4774 * has only one task, there's absolutely no point in yielding.
4775 */
4776 if (rq->nr_running == 1 && p_rq->nr_running == 1) {
4777 yielded = -ESRCH;
4778 goto out_irq;
4779 }
4780
d95f4122 4781 double_rq_lock(rq, p_rq);
39e24d8f 4782 if (task_rq(p) != p_rq) {
d95f4122
MG
4783 double_rq_unlock(rq, p_rq);
4784 goto again;
4785 }
4786
4787 if (!curr->sched_class->yield_to_task)
7b270f60 4788 goto out_unlock;
d95f4122
MG
4789
4790 if (curr->sched_class != p->sched_class)
7b270f60 4791 goto out_unlock;
d95f4122
MG
4792
4793 if (task_running(p_rq, p) || p->state)
7b270f60 4794 goto out_unlock;
d95f4122
MG
4795
4796 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4797 if (yielded) {
d95f4122 4798 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4799 /*
4800 * Make p's CPU reschedule; pick_next_entity takes care of
4801 * fairness.
4802 */
4803 if (preempt && rq != p_rq)
8875125e 4804 resched_curr(p_rq);
6d1cafd8 4805 }
d95f4122 4806
7b270f60 4807out_unlock:
d95f4122 4808 double_rq_unlock(rq, p_rq);
7b270f60 4809out_irq:
d95f4122
MG
4810 local_irq_restore(flags);
4811
7b270f60 4812 if (yielded > 0)
d95f4122
MG
4813 schedule();
4814
4815 return yielded;
4816}
4817EXPORT_SYMBOL_GPL(yield_to);
4818
1da177e4 4819/*
41a2d6cf 4820 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4821 * that process accounting knows that this is a task in IO wait state.
1da177e4 4822 */
1da177e4
LT
4823long __sched io_schedule_timeout(long timeout)
4824{
9cff8ade
N
4825 int old_iowait = current->in_iowait;
4826 struct rq *rq;
1da177e4
LT
4827 long ret;
4828
9cff8ade 4829 current->in_iowait = 1;
10d784ea 4830 blk_schedule_flush_plug(current);
9cff8ade 4831
0ff92245 4832 delayacct_blkio_start();
9cff8ade 4833 rq = raw_rq();
1da177e4
LT
4834 atomic_inc(&rq->nr_iowait);
4835 ret = schedule_timeout(timeout);
9cff8ade 4836 current->in_iowait = old_iowait;
1da177e4 4837 atomic_dec(&rq->nr_iowait);
0ff92245 4838 delayacct_blkio_end();
9cff8ade 4839
1da177e4
LT
4840 return ret;
4841}
9cff8ade 4842EXPORT_SYMBOL(io_schedule_timeout);
1da177e4
LT
4843
4844/**
4845 * sys_sched_get_priority_max - return maximum RT priority.
4846 * @policy: scheduling class.
4847 *
e69f6186
YB
4848 * Return: On success, this syscall returns the maximum
4849 * rt_priority that can be used by a given scheduling class.
4850 * On failure, a negative error code is returned.
1da177e4 4851 */
5add95d4 4852SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4853{
4854 int ret = -EINVAL;
4855
4856 switch (policy) {
4857 case SCHED_FIFO:
4858 case SCHED_RR:
4859 ret = MAX_USER_RT_PRIO-1;
4860 break;
aab03e05 4861 case SCHED_DEADLINE:
1da177e4 4862 case SCHED_NORMAL:
b0a9499c 4863 case SCHED_BATCH:
dd41f596 4864 case SCHED_IDLE:
1da177e4
LT
4865 ret = 0;
4866 break;
4867 }
4868 return ret;
4869}
4870
4871/**
4872 * sys_sched_get_priority_min - return minimum RT priority.
4873 * @policy: scheduling class.
4874 *
e69f6186
YB
4875 * Return: On success, this syscall returns the minimum
4876 * rt_priority that can be used by a given scheduling class.
4877 * On failure, a negative error code is returned.
1da177e4 4878 */
5add95d4 4879SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4880{
4881 int ret = -EINVAL;
4882
4883 switch (policy) {
4884 case SCHED_FIFO:
4885 case SCHED_RR:
4886 ret = 1;
4887 break;
aab03e05 4888 case SCHED_DEADLINE:
1da177e4 4889 case SCHED_NORMAL:
b0a9499c 4890 case SCHED_BATCH:
dd41f596 4891 case SCHED_IDLE:
1da177e4
LT
4892 ret = 0;
4893 }
4894 return ret;
4895}
4896
4897/**
4898 * sys_sched_rr_get_interval - return the default timeslice of a process.
4899 * @pid: pid of the process.
4900 * @interval: userspace pointer to the timeslice value.
4901 *
4902 * this syscall writes the default timeslice value of a given process
4903 * into the user-space timespec buffer. A value of '0' means infinity.
e69f6186
YB
4904 *
4905 * Return: On success, 0 and the timeslice is in @interval. Otherwise,
4906 * an error code.
1da177e4 4907 */
17da2bd9 4908SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4909 struct timespec __user *, interval)
1da177e4 4910{
36c8b586 4911 struct task_struct *p;
a4ec24b4 4912 unsigned int time_slice;
dba091b9
TG
4913 unsigned long flags;
4914 struct rq *rq;
3a5c359a 4915 int retval;
1da177e4 4916 struct timespec t;
1da177e4
LT
4917
4918 if (pid < 0)
3a5c359a 4919 return -EINVAL;
1da177e4
LT
4920
4921 retval = -ESRCH;
1a551ae7 4922 rcu_read_lock();
1da177e4
LT
4923 p = find_process_by_pid(pid);
4924 if (!p)
4925 goto out_unlock;
4926
4927 retval = security_task_getscheduler(p);
4928 if (retval)
4929 goto out_unlock;
4930
dba091b9 4931 rq = task_rq_lock(p, &flags);
a57beec5
PZ
4932 time_slice = 0;
4933 if (p->sched_class->get_rr_interval)
4934 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4935 task_rq_unlock(rq, p, &flags);
a4ec24b4 4936
1a551ae7 4937 rcu_read_unlock();
a4ec24b4 4938 jiffies_to_timespec(time_slice, &t);
1da177e4 4939 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4940 return retval;
3a5c359a 4941
1da177e4 4942out_unlock:
1a551ae7 4943 rcu_read_unlock();
1da177e4
LT
4944 return retval;
4945}
4946
7c731e0a 4947static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4948
82a1fcb9 4949void sched_show_task(struct task_struct *p)
1da177e4 4950{
1da177e4 4951 unsigned long free = 0;
4e79752c 4952 int ppid;
1f8a7633 4953 unsigned long state = p->state;
1da177e4 4954
1f8a7633
TH
4955 if (state)
4956 state = __ffs(state) + 1;
28d0686c 4957 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4958 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4959#if BITS_PER_LONG == 32
1da177e4 4960 if (state == TASK_RUNNING)
3df0fc5b 4961 printk(KERN_CONT " running ");
1da177e4 4962 else
3df0fc5b 4963 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4964#else
4965 if (state == TASK_RUNNING)
3df0fc5b 4966 printk(KERN_CONT " running task ");
1da177e4 4967 else
3df0fc5b 4968 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4969#endif
4970#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4971 free = stack_not_used(p);
1da177e4 4972#endif
a90e984c 4973 ppid = 0;
4e79752c 4974 rcu_read_lock();
a90e984c
ON
4975 if (pid_alive(p))
4976 ppid = task_pid_nr(rcu_dereference(p->real_parent));
4e79752c 4977 rcu_read_unlock();
3df0fc5b 4978 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
4e79752c 4979 task_pid_nr(p), ppid,
aa47b7e0 4980 (unsigned long)task_thread_info(p)->flags);
1da177e4 4981
3d1cb205 4982 print_worker_info(KERN_INFO, p);
5fb5e6de 4983 show_stack(p, NULL);
1da177e4
LT
4984}
4985
e59e2ae2 4986void show_state_filter(unsigned long state_filter)
1da177e4 4987{
36c8b586 4988 struct task_struct *g, *p;
1da177e4 4989
4bd77321 4990#if BITS_PER_LONG == 32
3df0fc5b
PZ
4991 printk(KERN_INFO
4992 " task PC stack pid father\n");
1da177e4 4993#else
3df0fc5b
PZ
4994 printk(KERN_INFO
4995 " task PC stack pid father\n");
1da177e4 4996#endif
510f5acc 4997 rcu_read_lock();
5d07f420 4998 for_each_process_thread(g, p) {
1da177e4
LT
4999 /*
5000 * reset the NMI-timeout, listing all files on a slow
25985edc 5001 * console might take a lot of time:
1da177e4
LT
5002 */
5003 touch_nmi_watchdog();
39bc89fd 5004 if (!state_filter || (p->state & state_filter))
82a1fcb9 5005 sched_show_task(p);
5d07f420 5006 }
1da177e4 5007
04c9167f
JF
5008 touch_all_softlockup_watchdogs();
5009
dd41f596
IM
5010#ifdef CONFIG_SCHED_DEBUG
5011 sysrq_sched_debug_show();
5012#endif
510f5acc 5013 rcu_read_unlock();
e59e2ae2
IM
5014 /*
5015 * Only show locks if all tasks are dumped:
5016 */
93335a21 5017 if (!state_filter)
e59e2ae2 5018 debug_show_all_locks();
1da177e4
LT
5019}
5020
0db0628d 5021void init_idle_bootup_task(struct task_struct *idle)
1df21055 5022{
dd41f596 5023 idle->sched_class = &idle_sched_class;
1df21055
IM
5024}
5025
f340c0d1
IM
5026/**
5027 * init_idle - set up an idle thread for a given CPU
5028 * @idle: task in question
5029 * @cpu: cpu the idle task belongs to
5030 *
5031 * NOTE: this function does not set the idle thread's NEED_RESCHED
5032 * flag, to make booting more robust.
5033 */
0db0628d 5034void init_idle(struct task_struct *idle, int cpu)
1da177e4 5035{
70b97a7f 5036 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
5037 unsigned long flags;
5038
25834c73
PZ
5039 raw_spin_lock_irqsave(&idle->pi_lock, flags);
5040 raw_spin_lock(&rq->lock);
5cbd54ef 5041
5e1576ed 5042 __sched_fork(0, idle);
06b83b5f 5043 idle->state = TASK_RUNNING;
dd41f596
IM
5044 idle->se.exec_start = sched_clock();
5045
e1b77c92
MR
5046 kasan_unpoison_task_stack(idle);
5047
de9b8f5d
PZ
5048#ifdef CONFIG_SMP
5049 /*
5050 * Its possible that init_idle() gets called multiple times on a task,
5051 * in that case do_set_cpus_allowed() will not do the right thing.
5052 *
5053 * And since this is boot we can forgo the serialization.
5054 */
5055 set_cpus_allowed_common(idle, cpumask_of(cpu));
5056#endif
6506cf6c
PZ
5057 /*
5058 * We're having a chicken and egg problem, even though we are
5059 * holding rq->lock, the cpu isn't yet set to this cpu so the
5060 * lockdep check in task_group() will fail.
5061 *
5062 * Similar case to sched_fork(). / Alternatively we could
5063 * use task_rq_lock() here and obtain the other rq->lock.
5064 *
5065 * Silence PROVE_RCU
5066 */
5067 rcu_read_lock();
dd41f596 5068 __set_task_cpu(idle, cpu);
6506cf6c 5069 rcu_read_unlock();
1da177e4 5070
1da177e4 5071 rq->curr = rq->idle = idle;
da0c1e65 5072 idle->on_rq = TASK_ON_RQ_QUEUED;
de9b8f5d 5073#ifdef CONFIG_SMP
3ca7a440 5074 idle->on_cpu = 1;
4866cde0 5075#endif
25834c73
PZ
5076 raw_spin_unlock(&rq->lock);
5077 raw_spin_unlock_irqrestore(&idle->pi_lock, flags);
1da177e4
LT
5078
5079 /* Set the preempt count _outside_ the spinlocks! */
01028747 5080 init_idle_preempt_count(idle, cpu);
55cd5340 5081
dd41f596
IM
5082 /*
5083 * The idle tasks have their own, simple scheduling class:
5084 */
5085 idle->sched_class = &idle_sched_class;
868baf07 5086 ftrace_graph_init_idle_task(idle, cpu);
45eacc69 5087 vtime_init_idle(idle, cpu);
de9b8f5d 5088#ifdef CONFIG_SMP
f1c6f1a7
CE
5089 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5090#endif
19978ca6
IM
5091}
5092
f82f8042
JL
5093int cpuset_cpumask_can_shrink(const struct cpumask *cur,
5094 const struct cpumask *trial)
5095{
5096 int ret = 1, trial_cpus;
5097 struct dl_bw *cur_dl_b;
5098 unsigned long flags;
5099
bb2bc55a
MG
5100 if (!cpumask_weight(cur))
5101 return ret;
5102
75e23e49 5103 rcu_read_lock_sched();
f82f8042
JL
5104 cur_dl_b = dl_bw_of(cpumask_any(cur));
5105 trial_cpus = cpumask_weight(trial);
5106
5107 raw_spin_lock_irqsave(&cur_dl_b->lock, flags);
5108 if (cur_dl_b->bw != -1 &&
5109 cur_dl_b->bw * trial_cpus < cur_dl_b->total_bw)
5110 ret = 0;
5111 raw_spin_unlock_irqrestore(&cur_dl_b->lock, flags);
75e23e49 5112 rcu_read_unlock_sched();
f82f8042
JL
5113
5114 return ret;
5115}
5116
7f51412a
JL
5117int task_can_attach(struct task_struct *p,
5118 const struct cpumask *cs_cpus_allowed)
5119{
5120 int ret = 0;
5121
5122 /*
5123 * Kthreads which disallow setaffinity shouldn't be moved
5124 * to a new cpuset; we don't want to change their cpu
5125 * affinity and isolating such threads by their set of
5126 * allowed nodes is unnecessary. Thus, cpusets are not
5127 * applicable for such threads. This prevents checking for
5128 * success of set_cpus_allowed_ptr() on all attached tasks
5129 * before cpus_allowed may be changed.
5130 */
5131 if (p->flags & PF_NO_SETAFFINITY) {
5132 ret = -EINVAL;
5133 goto out;
5134 }
5135
5136#ifdef CONFIG_SMP
5137 if (dl_task(p) && !cpumask_intersects(task_rq(p)->rd->span,
5138 cs_cpus_allowed)) {
5139 unsigned int dest_cpu = cpumask_any_and(cpu_active_mask,
5140 cs_cpus_allowed);
75e23e49 5141 struct dl_bw *dl_b;
7f51412a
JL
5142 bool overflow;
5143 int cpus;
5144 unsigned long flags;
5145
75e23e49
JL
5146 rcu_read_lock_sched();
5147 dl_b = dl_bw_of(dest_cpu);
7f51412a
JL
5148 raw_spin_lock_irqsave(&dl_b->lock, flags);
5149 cpus = dl_bw_cpus(dest_cpu);
5150 overflow = __dl_overflow(dl_b, cpus, 0, p->dl.dl_bw);
5151 if (overflow)
5152 ret = -EBUSY;
5153 else {
5154 /*
5155 * We reserve space for this task in the destination
5156 * root_domain, as we can't fail after this point.
5157 * We will free resources in the source root_domain
5158 * later on (see set_cpus_allowed_dl()).
5159 */
5160 __dl_add(dl_b, p->dl.dl_bw);
5161 }
5162 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
75e23e49 5163 rcu_read_unlock_sched();
7f51412a
JL
5164
5165 }
5166#endif
5167out:
5168 return ret;
5169}
5170
1da177e4 5171#ifdef CONFIG_SMP
1da177e4 5172
e6628d5b
MG
5173#ifdef CONFIG_NUMA_BALANCING
5174/* Migrate current task p to target_cpu */
5175int migrate_task_to(struct task_struct *p, int target_cpu)
5176{
5177 struct migration_arg arg = { p, target_cpu };
5178 int curr_cpu = task_cpu(p);
5179
5180 if (curr_cpu == target_cpu)
5181 return 0;
5182
5183 if (!cpumask_test_cpu(target_cpu, tsk_cpus_allowed(p)))
5184 return -EINVAL;
5185
5186 /* TODO: This is not properly updating schedstats */
5187
286549dc 5188 trace_sched_move_numa(p, curr_cpu, target_cpu);
e6628d5b
MG
5189 return stop_one_cpu(curr_cpu, migration_cpu_stop, &arg);
5190}
0ec8aa00
PZ
5191
5192/*
5193 * Requeue a task on a given node and accurately track the number of NUMA
5194 * tasks on the runqueues
5195 */
5196void sched_setnuma(struct task_struct *p, int nid)
5197{
5198 struct rq *rq;
5199 unsigned long flags;
da0c1e65 5200 bool queued, running;
0ec8aa00
PZ
5201
5202 rq = task_rq_lock(p, &flags);
da0c1e65 5203 queued = task_on_rq_queued(p);
0ec8aa00
PZ
5204 running = task_current(rq, p);
5205
da0c1e65 5206 if (queued)
1de64443 5207 dequeue_task(rq, p, DEQUEUE_SAVE);
0ec8aa00 5208 if (running)
f3cd1c4e 5209 put_prev_task(rq, p);
0ec8aa00
PZ
5210
5211 p->numa_preferred_nid = nid;
0ec8aa00
PZ
5212
5213 if (running)
5214 p->sched_class->set_curr_task(rq);
da0c1e65 5215 if (queued)
1de64443 5216 enqueue_task(rq, p, ENQUEUE_RESTORE);
0ec8aa00
PZ
5217 task_rq_unlock(rq, p, &flags);
5218}
5cc389bc 5219#endif /* CONFIG_NUMA_BALANCING */
f7b4cddc 5220
1da177e4 5221#ifdef CONFIG_HOTPLUG_CPU
054b9108 5222/*
48c5ccae
PZ
5223 * Ensures that the idle task is using init_mm right before its cpu goes
5224 * offline.
054b9108 5225 */
48c5ccae 5226void idle_task_exit(void)
1da177e4 5227{
48c5ccae 5228 struct mm_struct *mm = current->active_mm;
e76bd8d9 5229
48c5ccae 5230 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5231
a53efe5f 5232 if (mm != &init_mm) {
48c5ccae 5233 switch_mm(mm, &init_mm, current);
a53efe5f
MS
5234 finish_arch_post_lock_switch();
5235 }
48c5ccae 5236 mmdrop(mm);
1da177e4
LT
5237}
5238
5239/*
5d180232
PZ
5240 * Since this CPU is going 'away' for a while, fold any nr_active delta
5241 * we might have. Assumes we're called after migrate_tasks() so that the
5242 * nr_active count is stable.
5243 *
5244 * Also see the comment "Global load-average calculations".
1da177e4 5245 */
5d180232 5246static void calc_load_migrate(struct rq *rq)
1da177e4 5247{
5d180232
PZ
5248 long delta = calc_load_fold_active(rq);
5249 if (delta)
5250 atomic_long_add(delta, &calc_load_tasks);
1da177e4
LT
5251}
5252
3f1d2a31
PZ
5253static void put_prev_task_fake(struct rq *rq, struct task_struct *prev)
5254{
5255}
5256
5257static const struct sched_class fake_sched_class = {
5258 .put_prev_task = put_prev_task_fake,
5259};
5260
5261static struct task_struct fake_task = {
5262 /*
5263 * Avoid pull_{rt,dl}_task()
5264 */
5265 .prio = MAX_PRIO + 1,
5266 .sched_class = &fake_sched_class,
5267};
5268
48f24c4d 5269/*
48c5ccae
PZ
5270 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5271 * try_to_wake_up()->select_task_rq().
5272 *
5273 * Called with rq->lock held even though we'er in stop_machine() and
5274 * there's no concurrency possible, we hold the required locks anyway
5275 * because of lock validation efforts.
1da177e4 5276 */
5e16bbc2 5277static void migrate_tasks(struct rq *dead_rq)
1da177e4 5278{
5e16bbc2 5279 struct rq *rq = dead_rq;
48c5ccae
PZ
5280 struct task_struct *next, *stop = rq->stop;
5281 int dest_cpu;
1da177e4
LT
5282
5283 /*
48c5ccae
PZ
5284 * Fudge the rq selection such that the below task selection loop
5285 * doesn't get stuck on the currently eligible stop task.
5286 *
5287 * We're currently inside stop_machine() and the rq is either stuck
5288 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5289 * either way we should never end up calling schedule() until we're
5290 * done here.
1da177e4 5291 */
48c5ccae 5292 rq->stop = NULL;
48f24c4d 5293
77bd3970
FW
5294 /*
5295 * put_prev_task() and pick_next_task() sched
5296 * class method both need to have an up-to-date
5297 * value of rq->clock[_task]
5298 */
5299 update_rq_clock(rq);
5300
5e16bbc2 5301 for (;;) {
48c5ccae
PZ
5302 /*
5303 * There's this thread running, bail when that's the only
5304 * remaining thread.
5305 */
5306 if (rq->nr_running == 1)
dd41f596 5307 break;
48c5ccae 5308
cbce1a68 5309 /*
5473e0cc 5310 * pick_next_task assumes pinned rq->lock.
cbce1a68
PZ
5311 */
5312 lockdep_pin_lock(&rq->lock);
3f1d2a31 5313 next = pick_next_task(rq, &fake_task);
48c5ccae 5314 BUG_ON(!next);
79c53799 5315 next->sched_class->put_prev_task(rq, next);
e692ab53 5316
5473e0cc
WL
5317 /*
5318 * Rules for changing task_struct::cpus_allowed are holding
5319 * both pi_lock and rq->lock, such that holding either
5320 * stabilizes the mask.
5321 *
5322 * Drop rq->lock is not quite as disastrous as it usually is
5323 * because !cpu_active at this point, which means load-balance
5324 * will not interfere. Also, stop-machine.
5325 */
5326 lockdep_unpin_lock(&rq->lock);
5327 raw_spin_unlock(&rq->lock);
5328 raw_spin_lock(&next->pi_lock);
5329 raw_spin_lock(&rq->lock);
5330
5331 /*
5332 * Since we're inside stop-machine, _nothing_ should have
5333 * changed the task, WARN if weird stuff happened, because in
5334 * that case the above rq->lock drop is a fail too.
5335 */
5336 if (WARN_ON(task_rq(next) != rq || !task_on_rq_queued(next))) {
5337 raw_spin_unlock(&next->pi_lock);
5338 continue;
5339 }
5340
48c5ccae 5341 /* Find suitable destination for @next, with force if needed. */
5e16bbc2 5342 dest_cpu = select_fallback_rq(dead_rq->cpu, next);
48c5ccae 5343
5e16bbc2
PZ
5344 rq = __migrate_task(rq, next, dest_cpu);
5345 if (rq != dead_rq) {
5346 raw_spin_unlock(&rq->lock);
5347 rq = dead_rq;
5348 raw_spin_lock(&rq->lock);
5349 }
5473e0cc 5350 raw_spin_unlock(&next->pi_lock);
1da177e4 5351 }
dce48a84 5352
48c5ccae 5353 rq->stop = stop;
dce48a84 5354}
1da177e4
LT
5355#endif /* CONFIG_HOTPLUG_CPU */
5356
1f11eb6a
GH
5357static void set_rq_online(struct rq *rq)
5358{
5359 if (!rq->online) {
5360 const struct sched_class *class;
5361
c6c4927b 5362 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5363 rq->online = 1;
5364
5365 for_each_class(class) {
5366 if (class->rq_online)
5367 class->rq_online(rq);
5368 }
5369 }
5370}
5371
5372static void set_rq_offline(struct rq *rq)
5373{
5374 if (rq->online) {
5375 const struct sched_class *class;
5376
5377 for_each_class(class) {
5378 if (class->rq_offline)
5379 class->rq_offline(rq);
5380 }
5381
c6c4927b 5382 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5383 rq->online = 0;
5384 }
5385}
5386
1da177e4
LT
5387/*
5388 * migration_call - callback that gets triggered when a CPU is added.
5389 * Here we can start up the necessary migration thread for the new CPU.
5390 */
0db0628d 5391static int
48f24c4d 5392migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5393{
48f24c4d 5394 int cpu = (long)hcpu;
1da177e4 5395 unsigned long flags;
969c7921 5396 struct rq *rq = cpu_rq(cpu);
1da177e4 5397
48c5ccae 5398 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5399
1da177e4 5400 case CPU_UP_PREPARE:
a468d389 5401 rq->calc_load_update = calc_load_update;
e9532e69 5402 account_reset_rq(rq);
1da177e4 5403 break;
48f24c4d 5404
1da177e4 5405 case CPU_ONLINE:
1f94ef59 5406 /* Update our root-domain */
05fa785c 5407 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5408 if (rq->rd) {
c6c4927b 5409 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5410
5411 set_rq_online(rq);
1f94ef59 5412 }
05fa785c 5413 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5414 break;
48f24c4d 5415
1da177e4 5416#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5417 case CPU_DYING:
317f3941 5418 sched_ttwu_pending();
57d885fe 5419 /* Update our root-domain */
05fa785c 5420 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5421 if (rq->rd) {
c6c4927b 5422 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5423 set_rq_offline(rq);
57d885fe 5424 }
5e16bbc2 5425 migrate_tasks(rq);
48c5ccae 5426 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5427 raw_spin_unlock_irqrestore(&rq->lock, flags);
5d180232 5428 break;
48c5ccae 5429
5d180232 5430 case CPU_DEAD:
f319da0c 5431 calc_load_migrate(rq);
57d885fe 5432 break;
1da177e4
LT
5433#endif
5434 }
49c022e6
PZ
5435
5436 update_max_interval();
5437
1da177e4
LT
5438 return NOTIFY_OK;
5439}
5440
f38b0820
PM
5441/*
5442 * Register at high priority so that task migration (migrate_all_tasks)
5443 * happens before everything else. This has to be lower priority than
cdd6c482 5444 * the notifier in the perf_event subsystem, though.
1da177e4 5445 */
0db0628d 5446static struct notifier_block migration_notifier = {
1da177e4 5447 .notifier_call = migration_call,
50a323b7 5448 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5449};
5450
6a82b60d 5451static void set_cpu_rq_start_time(void)
a803f026
CM
5452{
5453 int cpu = smp_processor_id();
5454 struct rq *rq = cpu_rq(cpu);
5455 rq->age_stamp = sched_clock_cpu(cpu);
5456}
5457
0db0628d 5458static int sched_cpu_active(struct notifier_block *nfb,
3a101d05
TH
5459 unsigned long action, void *hcpu)
5460{
07f06cb3
PZ
5461 int cpu = (long)hcpu;
5462
3a101d05 5463 switch (action & ~CPU_TASKS_FROZEN) {
a803f026
CM
5464 case CPU_STARTING:
5465 set_cpu_rq_start_time();
5466 return NOTIFY_OK;
07f06cb3 5467
3a101d05 5468 case CPU_DOWN_FAILED:
07f06cb3 5469 set_cpu_active(cpu, true);
3a101d05 5470 return NOTIFY_OK;
07f06cb3 5471
3a101d05
TH
5472 default:
5473 return NOTIFY_DONE;
5474 }
5475}
5476
0db0628d 5477static int sched_cpu_inactive(struct notifier_block *nfb,
3a101d05
TH
5478 unsigned long action, void *hcpu)
5479{
5480 switch (action & ~CPU_TASKS_FROZEN) {
5481 case CPU_DOWN_PREPARE:
3c18d447 5482 set_cpu_active((long)hcpu, false);
3a101d05 5483 return NOTIFY_OK;
3c18d447
JL
5484 default:
5485 return NOTIFY_DONE;
3a101d05
TH
5486 }
5487}
5488
7babe8db 5489static int __init migration_init(void)
1da177e4
LT
5490{
5491 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5492 int err;
48f24c4d 5493
3a101d05 5494 /* Initialize migration for the boot CPU */
07dccf33
AM
5495 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5496 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5497 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5498 register_cpu_notifier(&migration_notifier);
7babe8db 5499
3a101d05
TH
5500 /* Register cpu active notifiers */
5501 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5502 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5503
a004cd42 5504 return 0;
1da177e4 5505}
7babe8db 5506early_initcall(migration_init);
476f3534 5507
4cb98839
PZ
5508static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5509
3e9830dc 5510#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5511
d039ac60 5512static __read_mostly int sched_debug_enabled;
f6630114 5513
d039ac60 5514static int __init sched_debug_setup(char *str)
f6630114 5515{
d039ac60 5516 sched_debug_enabled = 1;
f6630114
MT
5517
5518 return 0;
5519}
d039ac60
PZ
5520early_param("sched_debug", sched_debug_setup);
5521
5522static inline bool sched_debug(void)
5523{
5524 return sched_debug_enabled;
5525}
f6630114 5526
7c16ec58 5527static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5528 struct cpumask *groupmask)
1da177e4 5529{
4dcf6aff 5530 struct sched_group *group = sd->groups;
1da177e4 5531
96f874e2 5532 cpumask_clear(groupmask);
4dcf6aff
IM
5533
5534 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5535
5536 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5537 printk("does not load-balance\n");
4dcf6aff 5538 if (sd->parent)
3df0fc5b
PZ
5539 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5540 " has parent");
4dcf6aff 5541 return -1;
41c7ce9a
NP
5542 }
5543
333470ee
TH
5544 printk(KERN_CONT "span %*pbl level %s\n",
5545 cpumask_pr_args(sched_domain_span(sd)), sd->name);
4dcf6aff 5546
758b2cdc 5547 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5548 printk(KERN_ERR "ERROR: domain->span does not contain "
5549 "CPU%d\n", cpu);
4dcf6aff 5550 }
758b2cdc 5551 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5552 printk(KERN_ERR "ERROR: domain->groups does not contain"
5553 " CPU%d\n", cpu);
4dcf6aff 5554 }
1da177e4 5555
4dcf6aff 5556 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5557 do {
4dcf6aff 5558 if (!group) {
3df0fc5b
PZ
5559 printk("\n");
5560 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5561 break;
5562 }
5563
758b2cdc 5564 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5565 printk(KERN_CONT "\n");
5566 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5567 break;
5568 }
1da177e4 5569
cb83b629
PZ
5570 if (!(sd->flags & SD_OVERLAP) &&
5571 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5572 printk(KERN_CONT "\n");
5573 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5574 break;
5575 }
1da177e4 5576
758b2cdc 5577 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5578
333470ee
TH
5579 printk(KERN_CONT " %*pbl",
5580 cpumask_pr_args(sched_group_cpus(group)));
ca8ce3d0 5581 if (group->sgc->capacity != SCHED_CAPACITY_SCALE) {
63b2ca30
NP
5582 printk(KERN_CONT " (cpu_capacity = %d)",
5583 group->sgc->capacity);
381512cf 5584 }
1da177e4 5585
4dcf6aff
IM
5586 group = group->next;
5587 } while (group != sd->groups);
3df0fc5b 5588 printk(KERN_CONT "\n");
1da177e4 5589
758b2cdc 5590 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5591 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5592
758b2cdc
RR
5593 if (sd->parent &&
5594 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5595 printk(KERN_ERR "ERROR: parent span is not a superset "
5596 "of domain->span\n");
4dcf6aff
IM
5597 return 0;
5598}
1da177e4 5599
4dcf6aff
IM
5600static void sched_domain_debug(struct sched_domain *sd, int cpu)
5601{
5602 int level = 0;
1da177e4 5603
d039ac60 5604 if (!sched_debug_enabled)
f6630114
MT
5605 return;
5606
4dcf6aff
IM
5607 if (!sd) {
5608 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5609 return;
5610 }
1da177e4 5611
4dcf6aff
IM
5612 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5613
5614 for (;;) {
4cb98839 5615 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5616 break;
1da177e4
LT
5617 level++;
5618 sd = sd->parent;
33859f7f 5619 if (!sd)
4dcf6aff
IM
5620 break;
5621 }
1da177e4 5622}
6d6bc0ad 5623#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5624# define sched_domain_debug(sd, cpu) do { } while (0)
d039ac60
PZ
5625static inline bool sched_debug(void)
5626{
5627 return false;
5628}
6d6bc0ad 5629#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5630
1a20ff27 5631static int sd_degenerate(struct sched_domain *sd)
245af2c7 5632{
758b2cdc 5633 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5634 return 1;
5635
5636 /* Following flags need at least 2 groups */
5637 if (sd->flags & (SD_LOAD_BALANCE |
5638 SD_BALANCE_NEWIDLE |
5639 SD_BALANCE_FORK |
89c4710e 5640 SD_BALANCE_EXEC |
5d4dfddd 5641 SD_SHARE_CPUCAPACITY |
d77b3ed5
VG
5642 SD_SHARE_PKG_RESOURCES |
5643 SD_SHARE_POWERDOMAIN)) {
245af2c7
SS
5644 if (sd->groups != sd->groups->next)
5645 return 0;
5646 }
5647
5648 /* Following flags don't use groups */
c88d5910 5649 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5650 return 0;
5651
5652 return 1;
5653}
5654
48f24c4d
IM
5655static int
5656sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5657{
5658 unsigned long cflags = sd->flags, pflags = parent->flags;
5659
5660 if (sd_degenerate(parent))
5661 return 1;
5662
758b2cdc 5663 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5664 return 0;
5665
245af2c7
SS
5666 /* Flags needing groups don't count if only 1 group in parent */
5667 if (parent->groups == parent->groups->next) {
5668 pflags &= ~(SD_LOAD_BALANCE |
5669 SD_BALANCE_NEWIDLE |
5670 SD_BALANCE_FORK |
89c4710e 5671 SD_BALANCE_EXEC |
5d4dfddd 5672 SD_SHARE_CPUCAPACITY |
10866e62 5673 SD_SHARE_PKG_RESOURCES |
d77b3ed5
VG
5674 SD_PREFER_SIBLING |
5675 SD_SHARE_POWERDOMAIN);
5436499e
KC
5676 if (nr_node_ids == 1)
5677 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5678 }
5679 if (~cflags & pflags)
5680 return 0;
5681
5682 return 1;
5683}
5684
dce840a0 5685static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5686{
dce840a0 5687 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5688
68e74568 5689 cpupri_cleanup(&rd->cpupri);
6bfd6d72 5690 cpudl_cleanup(&rd->cpudl);
1baca4ce 5691 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5692 free_cpumask_var(rd->rto_mask);
5693 free_cpumask_var(rd->online);
5694 free_cpumask_var(rd->span);
5695 kfree(rd);
5696}
5697
57d885fe
GH
5698static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5699{
a0490fa3 5700 struct root_domain *old_rd = NULL;
57d885fe 5701 unsigned long flags;
57d885fe 5702
05fa785c 5703 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5704
5705 if (rq->rd) {
a0490fa3 5706 old_rd = rq->rd;
57d885fe 5707
c6c4927b 5708 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5709 set_rq_offline(rq);
57d885fe 5710
c6c4927b 5711 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5712
a0490fa3 5713 /*
0515973f 5714 * If we dont want to free the old_rd yet then
a0490fa3
IM
5715 * set old_rd to NULL to skip the freeing later
5716 * in this function:
5717 */
5718 if (!atomic_dec_and_test(&old_rd->refcount))
5719 old_rd = NULL;
57d885fe
GH
5720 }
5721
5722 atomic_inc(&rd->refcount);
5723 rq->rd = rd;
5724
c6c4927b 5725 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5726 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5727 set_rq_online(rq);
57d885fe 5728
05fa785c 5729 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5730
5731 if (old_rd)
dce840a0 5732 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5733}
5734
68c38fc3 5735static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5736{
5737 memset(rd, 0, sizeof(*rd));
5738
8295c699 5739 if (!zalloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5740 goto out;
8295c699 5741 if (!zalloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5742 goto free_span;
8295c699 5743 if (!zalloc_cpumask_var(&rd->dlo_mask, GFP_KERNEL))
c6c4927b 5744 goto free_online;
8295c699 5745 if (!zalloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
1baca4ce 5746 goto free_dlo_mask;
6e0534f2 5747
332ac17e 5748 init_dl_bw(&rd->dl_bw);
6bfd6d72
JL
5749 if (cpudl_init(&rd->cpudl) != 0)
5750 goto free_dlo_mask;
332ac17e 5751
68c38fc3 5752 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5753 goto free_rto_mask;
c6c4927b 5754 return 0;
6e0534f2 5755
68e74568
RR
5756free_rto_mask:
5757 free_cpumask_var(rd->rto_mask);
1baca4ce
JL
5758free_dlo_mask:
5759 free_cpumask_var(rd->dlo_mask);
c6c4927b
RR
5760free_online:
5761 free_cpumask_var(rd->online);
5762free_span:
5763 free_cpumask_var(rd->span);
0c910d28 5764out:
c6c4927b 5765 return -ENOMEM;
57d885fe
GH
5766}
5767
029632fb
PZ
5768/*
5769 * By default the system creates a single root-domain with all cpus as
5770 * members (mimicking the global state we have today).
5771 */
5772struct root_domain def_root_domain;
5773
57d885fe
GH
5774static void init_defrootdomain(void)
5775{
68c38fc3 5776 init_rootdomain(&def_root_domain);
c6c4927b 5777
57d885fe
GH
5778 atomic_set(&def_root_domain.refcount, 1);
5779}
5780
dc938520 5781static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5782{
5783 struct root_domain *rd;
5784
5785 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5786 if (!rd)
5787 return NULL;
5788
68c38fc3 5789 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5790 kfree(rd);
5791 return NULL;
5792 }
57d885fe
GH
5793
5794 return rd;
5795}
5796
63b2ca30 5797static void free_sched_groups(struct sched_group *sg, int free_sgc)
e3589f6c
PZ
5798{
5799 struct sched_group *tmp, *first;
5800
5801 if (!sg)
5802 return;
5803
5804 first = sg;
5805 do {
5806 tmp = sg->next;
5807
63b2ca30
NP
5808 if (free_sgc && atomic_dec_and_test(&sg->sgc->ref))
5809 kfree(sg->sgc);
e3589f6c
PZ
5810
5811 kfree(sg);
5812 sg = tmp;
5813 } while (sg != first);
5814}
5815
dce840a0
PZ
5816static void free_sched_domain(struct rcu_head *rcu)
5817{
5818 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5819
5820 /*
5821 * If its an overlapping domain it has private groups, iterate and
5822 * nuke them all.
5823 */
5824 if (sd->flags & SD_OVERLAP) {
5825 free_sched_groups(sd->groups, 1);
5826 } else if (atomic_dec_and_test(&sd->groups->ref)) {
63b2ca30 5827 kfree(sd->groups->sgc);
dce840a0 5828 kfree(sd->groups);
9c3f75cb 5829 }
dce840a0
PZ
5830 kfree(sd);
5831}
5832
5833static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5834{
5835 call_rcu(&sd->rcu, free_sched_domain);
5836}
5837
5838static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5839{
5840 for (; sd; sd = sd->parent)
5841 destroy_sched_domain(sd, cpu);
5842}
5843
518cd623
PZ
5844/*
5845 * Keep a special pointer to the highest sched_domain that has
5846 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5847 * allows us to avoid some pointer chasing select_idle_sibling().
5848 *
5849 * Also keep a unique ID per domain (we use the first cpu number in
5850 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5851 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5852 */
5853DEFINE_PER_CPU(struct sched_domain *, sd_llc);
7d9ffa89 5854DEFINE_PER_CPU(int, sd_llc_size);
518cd623 5855DEFINE_PER_CPU(int, sd_llc_id);
fb13c7ee 5856DEFINE_PER_CPU(struct sched_domain *, sd_numa);
37dc6b50
PM
5857DEFINE_PER_CPU(struct sched_domain *, sd_busy);
5858DEFINE_PER_CPU(struct sched_domain *, sd_asym);
518cd623
PZ
5859
5860static void update_top_cache_domain(int cpu)
5861{
5862 struct sched_domain *sd;
5d4cf996 5863 struct sched_domain *busy_sd = NULL;
518cd623 5864 int id = cpu;
7d9ffa89 5865 int size = 1;
518cd623
PZ
5866
5867 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
7d9ffa89 5868 if (sd) {
518cd623 5869 id = cpumask_first(sched_domain_span(sd));
7d9ffa89 5870 size = cpumask_weight(sched_domain_span(sd));
5d4cf996 5871 busy_sd = sd->parent; /* sd_busy */
7d9ffa89 5872 }
5d4cf996 5873 rcu_assign_pointer(per_cpu(sd_busy, cpu), busy_sd);
518cd623
PZ
5874
5875 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
7d9ffa89 5876 per_cpu(sd_llc_size, cpu) = size;
518cd623 5877 per_cpu(sd_llc_id, cpu) = id;
fb13c7ee
MG
5878
5879 sd = lowest_flag_domain(cpu, SD_NUMA);
5880 rcu_assign_pointer(per_cpu(sd_numa, cpu), sd);
37dc6b50
PM
5881
5882 sd = highest_flag_domain(cpu, SD_ASYM_PACKING);
5883 rcu_assign_pointer(per_cpu(sd_asym, cpu), sd);
518cd623
PZ
5884}
5885
1da177e4 5886/*
0eab9146 5887 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5888 * hold the hotplug lock.
5889 */
0eab9146
IM
5890static void
5891cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5892{
70b97a7f 5893 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5894 struct sched_domain *tmp;
5895
5896 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5897 for (tmp = sd; tmp; ) {
245af2c7
SS
5898 struct sched_domain *parent = tmp->parent;
5899 if (!parent)
5900 break;
f29c9b1c 5901
1a848870 5902 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5903 tmp->parent = parent->parent;
1a848870
SS
5904 if (parent->parent)
5905 parent->parent->child = tmp;
10866e62
PZ
5906 /*
5907 * Transfer SD_PREFER_SIBLING down in case of a
5908 * degenerate parent; the spans match for this
5909 * so the property transfers.
5910 */
5911 if (parent->flags & SD_PREFER_SIBLING)
5912 tmp->flags |= SD_PREFER_SIBLING;
dce840a0 5913 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5914 } else
5915 tmp = tmp->parent;
245af2c7
SS
5916 }
5917
1a848870 5918 if (sd && sd_degenerate(sd)) {
dce840a0 5919 tmp = sd;
245af2c7 5920 sd = sd->parent;
dce840a0 5921 destroy_sched_domain(tmp, cpu);
1a848870
SS
5922 if (sd)
5923 sd->child = NULL;
5924 }
1da177e4 5925
4cb98839 5926 sched_domain_debug(sd, cpu);
1da177e4 5927
57d885fe 5928 rq_attach_root(rq, rd);
dce840a0 5929 tmp = rq->sd;
674311d5 5930 rcu_assign_pointer(rq->sd, sd);
dce840a0 5931 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5932
5933 update_top_cache_domain(cpu);
1da177e4
LT
5934}
5935
1da177e4
LT
5936/* Setup the mask of cpus configured for isolated domains */
5937static int __init isolated_cpu_setup(char *str)
5938{
a6e4491c
PB
5939 int ret;
5940
bdddd296 5941 alloc_bootmem_cpumask_var(&cpu_isolated_map);
a6e4491c
PB
5942 ret = cpulist_parse(str, cpu_isolated_map);
5943 if (ret) {
5944 pr_err("sched: Error, all isolcpus= values must be between 0 and %d\n", nr_cpu_ids);
5945 return 0;
5946 }
1da177e4
LT
5947 return 1;
5948}
8927f494 5949__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5950
49a02c51 5951struct s_data {
21d42ccf 5952 struct sched_domain ** __percpu sd;
49a02c51
AH
5953 struct root_domain *rd;
5954};
5955
2109b99e 5956enum s_alloc {
2109b99e 5957 sa_rootdomain,
21d42ccf 5958 sa_sd,
dce840a0 5959 sa_sd_storage,
2109b99e
AH
5960 sa_none,
5961};
5962
c1174876
PZ
5963/*
5964 * Build an iteration mask that can exclude certain CPUs from the upwards
5965 * domain traversal.
5966 *
5967 * Asymmetric node setups can result in situations where the domain tree is of
5968 * unequal depth, make sure to skip domains that already cover the entire
5969 * range.
5970 *
5971 * In that case build_sched_domains() will have terminated the iteration early
5972 * and our sibling sd spans will be empty. Domains should always include the
5973 * cpu they're built on, so check that.
5974 *
5975 */
5976static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
5977{
5978 const struct cpumask *span = sched_domain_span(sd);
5979 struct sd_data *sdd = sd->private;
5980 struct sched_domain *sibling;
5981 int i;
5982
5983 for_each_cpu(i, span) {
5984 sibling = *per_cpu_ptr(sdd->sd, i);
5985 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
5986 continue;
5987
5988 cpumask_set_cpu(i, sched_group_mask(sg));
5989 }
5990}
5991
5992/*
5993 * Return the canonical balance cpu for this group, this is the first cpu
5994 * of this group that's also in the iteration mask.
5995 */
5996int group_balance_cpu(struct sched_group *sg)
5997{
5998 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
5999}
6000
e3589f6c
PZ
6001static int
6002build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6003{
6004 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6005 const struct cpumask *span = sched_domain_span(sd);
6006 struct cpumask *covered = sched_domains_tmpmask;
6007 struct sd_data *sdd = sd->private;
aaecac4a 6008 struct sched_domain *sibling;
e3589f6c
PZ
6009 int i;
6010
6011 cpumask_clear(covered);
6012
6013 for_each_cpu(i, span) {
6014 struct cpumask *sg_span;
6015
6016 if (cpumask_test_cpu(i, covered))
6017 continue;
6018
aaecac4a 6019 sibling = *per_cpu_ptr(sdd->sd, i);
c1174876
PZ
6020
6021 /* See the comment near build_group_mask(). */
aaecac4a 6022 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
c1174876
PZ
6023 continue;
6024
e3589f6c 6025 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6026 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6027
6028 if (!sg)
6029 goto fail;
6030
6031 sg_span = sched_group_cpus(sg);
aaecac4a
ZZ
6032 if (sibling->child)
6033 cpumask_copy(sg_span, sched_domain_span(sibling->child));
6034 else
e3589f6c
PZ
6035 cpumask_set_cpu(i, sg_span);
6036
6037 cpumask_or(covered, covered, sg_span);
6038
63b2ca30
NP
6039 sg->sgc = *per_cpu_ptr(sdd->sgc, i);
6040 if (atomic_inc_return(&sg->sgc->ref) == 1)
c1174876
PZ
6041 build_group_mask(sd, sg);
6042
c3decf0d 6043 /*
63b2ca30 6044 * Initialize sgc->capacity such that even if we mess up the
c3decf0d
PZ
6045 * domains and no possible iteration will get us here, we won't
6046 * die on a /0 trap.
6047 */
ca8ce3d0 6048 sg->sgc->capacity = SCHED_CAPACITY_SCALE * cpumask_weight(sg_span);
e3589f6c 6049
c1174876
PZ
6050 /*
6051 * Make sure the first group of this domain contains the
6052 * canonical balance cpu. Otherwise the sched_domain iteration
6053 * breaks. See update_sg_lb_stats().
6054 */
74a5ce20 6055 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6056 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6057 groups = sg;
6058
6059 if (!first)
6060 first = sg;
6061 if (last)
6062 last->next = sg;
6063 last = sg;
6064 last->next = first;
6065 }
6066 sd->groups = groups;
6067
6068 return 0;
6069
6070fail:
6071 free_sched_groups(first, 0);
6072
6073 return -ENOMEM;
6074}
6075
dce840a0 6076static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6077{
dce840a0
PZ
6078 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6079 struct sched_domain *child = sd->child;
1da177e4 6080
dce840a0
PZ
6081 if (child)
6082 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6083
9c3f75cb 6084 if (sg) {
dce840a0 6085 *sg = *per_cpu_ptr(sdd->sg, cpu);
63b2ca30
NP
6086 (*sg)->sgc = *per_cpu_ptr(sdd->sgc, cpu);
6087 atomic_set(&(*sg)->sgc->ref, 1); /* for claim_allocations */
9c3f75cb 6088 }
dce840a0
PZ
6089
6090 return cpu;
1e9f28fa 6091}
1e9f28fa 6092
01a08546 6093/*
dce840a0
PZ
6094 * build_sched_groups will build a circular linked list of the groups
6095 * covered by the given span, and will set each group's ->cpumask correctly,
ced549fa 6096 * and ->cpu_capacity to 0.
e3589f6c
PZ
6097 *
6098 * Assumes the sched_domain tree is fully constructed
01a08546 6099 */
e3589f6c
PZ
6100static int
6101build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6102{
dce840a0
PZ
6103 struct sched_group *first = NULL, *last = NULL;
6104 struct sd_data *sdd = sd->private;
6105 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6106 struct cpumask *covered;
dce840a0 6107 int i;
9c1cfda2 6108
e3589f6c
PZ
6109 get_group(cpu, sdd, &sd->groups);
6110 atomic_inc(&sd->groups->ref);
6111
0936629f 6112 if (cpu != cpumask_first(span))
e3589f6c
PZ
6113 return 0;
6114
f96225fd
PZ
6115 lockdep_assert_held(&sched_domains_mutex);
6116 covered = sched_domains_tmpmask;
6117
dce840a0 6118 cpumask_clear(covered);
6711cab4 6119
dce840a0
PZ
6120 for_each_cpu(i, span) {
6121 struct sched_group *sg;
cd08e923 6122 int group, j;
6711cab4 6123
dce840a0
PZ
6124 if (cpumask_test_cpu(i, covered))
6125 continue;
6711cab4 6126
cd08e923 6127 group = get_group(i, sdd, &sg);
c1174876 6128 cpumask_setall(sched_group_mask(sg));
0601a88d 6129
dce840a0
PZ
6130 for_each_cpu(j, span) {
6131 if (get_group(j, sdd, NULL) != group)
6132 continue;
0601a88d 6133
dce840a0
PZ
6134 cpumask_set_cpu(j, covered);
6135 cpumask_set_cpu(j, sched_group_cpus(sg));
6136 }
0601a88d 6137
dce840a0
PZ
6138 if (!first)
6139 first = sg;
6140 if (last)
6141 last->next = sg;
6142 last = sg;
6143 }
6144 last->next = first;
e3589f6c
PZ
6145
6146 return 0;
0601a88d 6147}
51888ca2 6148
89c4710e 6149/*
63b2ca30 6150 * Initialize sched groups cpu_capacity.
89c4710e 6151 *
63b2ca30 6152 * cpu_capacity indicates the capacity of sched group, which is used while
89c4710e 6153 * distributing the load between different sched groups in a sched domain.
63b2ca30
NP
6154 * Typically cpu_capacity for all the groups in a sched domain will be same
6155 * unless there are asymmetries in the topology. If there are asymmetries,
6156 * group having more cpu_capacity will pickup more load compared to the
6157 * group having less cpu_capacity.
89c4710e 6158 */
63b2ca30 6159static void init_sched_groups_capacity(int cpu, struct sched_domain *sd)
89c4710e 6160{
e3589f6c 6161 struct sched_group *sg = sd->groups;
89c4710e 6162
94c95ba6 6163 WARN_ON(!sg);
e3589f6c
PZ
6164
6165 do {
6166 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6167 sg = sg->next;
6168 } while (sg != sd->groups);
89c4710e 6169
c1174876 6170 if (cpu != group_balance_cpu(sg))
e3589f6c 6171 return;
aae6d3dd 6172
63b2ca30
NP
6173 update_group_capacity(sd, cpu);
6174 atomic_set(&sg->sgc->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6175}
6176
7c16ec58
MT
6177/*
6178 * Initializers for schedule domains
6179 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6180 */
6181
1d3504fc 6182static int default_relax_domain_level = -1;
60495e77 6183int sched_domain_level_max;
1d3504fc
HS
6184
6185static int __init setup_relax_domain_level(char *str)
6186{
a841f8ce
DS
6187 if (kstrtoint(str, 0, &default_relax_domain_level))
6188 pr_warn("Unable to set relax_domain_level\n");
30e0e178 6189
1d3504fc
HS
6190 return 1;
6191}
6192__setup("relax_domain_level=", setup_relax_domain_level);
6193
6194static void set_domain_attribute(struct sched_domain *sd,
6195 struct sched_domain_attr *attr)
6196{
6197 int request;
6198
6199 if (!attr || attr->relax_domain_level < 0) {
6200 if (default_relax_domain_level < 0)
6201 return;
6202 else
6203 request = default_relax_domain_level;
6204 } else
6205 request = attr->relax_domain_level;
6206 if (request < sd->level) {
6207 /* turn off idle balance on this domain */
c88d5910 6208 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6209 } else {
6210 /* turn on idle balance on this domain */
c88d5910 6211 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6212 }
6213}
6214
54ab4ff4
PZ
6215static void __sdt_free(const struct cpumask *cpu_map);
6216static int __sdt_alloc(const struct cpumask *cpu_map);
6217
2109b99e
AH
6218static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6219 const struct cpumask *cpu_map)
6220{
6221 switch (what) {
2109b99e 6222 case sa_rootdomain:
822ff793
PZ
6223 if (!atomic_read(&d->rd->refcount))
6224 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6225 case sa_sd:
6226 free_percpu(d->sd); /* fall through */
dce840a0 6227 case sa_sd_storage:
54ab4ff4 6228 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6229 case sa_none:
6230 break;
6231 }
6232}
3404c8d9 6233
2109b99e
AH
6234static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6235 const struct cpumask *cpu_map)
6236{
dce840a0
PZ
6237 memset(d, 0, sizeof(*d));
6238
54ab4ff4
PZ
6239 if (__sdt_alloc(cpu_map))
6240 return sa_sd_storage;
dce840a0
PZ
6241 d->sd = alloc_percpu(struct sched_domain *);
6242 if (!d->sd)
6243 return sa_sd_storage;
2109b99e 6244 d->rd = alloc_rootdomain();
dce840a0 6245 if (!d->rd)
21d42ccf 6246 return sa_sd;
2109b99e
AH
6247 return sa_rootdomain;
6248}
57d885fe 6249
dce840a0
PZ
6250/*
6251 * NULL the sd_data elements we've used to build the sched_domain and
6252 * sched_group structure so that the subsequent __free_domain_allocs()
6253 * will not free the data we're using.
6254 */
6255static void claim_allocations(int cpu, struct sched_domain *sd)
6256{
6257 struct sd_data *sdd = sd->private;
dce840a0
PZ
6258
6259 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6260 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6261
e3589f6c 6262 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6263 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c 6264
63b2ca30
NP
6265 if (atomic_read(&(*per_cpu_ptr(sdd->sgc, cpu))->ref))
6266 *per_cpu_ptr(sdd->sgc, cpu) = NULL;
dce840a0
PZ
6267}
6268
cb83b629 6269#ifdef CONFIG_NUMA
cb83b629 6270static int sched_domains_numa_levels;
e3fe70b1 6271enum numa_topology_type sched_numa_topology_type;
cb83b629 6272static int *sched_domains_numa_distance;
9942f79b 6273int sched_max_numa_distance;
cb83b629
PZ
6274static struct cpumask ***sched_domains_numa_masks;
6275static int sched_domains_curr_level;
143e1e28 6276#endif
cb83b629 6277
143e1e28
VG
6278/*
6279 * SD_flags allowed in topology descriptions.
6280 *
5d4dfddd 6281 * SD_SHARE_CPUCAPACITY - describes SMT topologies
143e1e28
VG
6282 * SD_SHARE_PKG_RESOURCES - describes shared caches
6283 * SD_NUMA - describes NUMA topologies
d77b3ed5 6284 * SD_SHARE_POWERDOMAIN - describes shared power domain
143e1e28
VG
6285 *
6286 * Odd one out:
6287 * SD_ASYM_PACKING - describes SMT quirks
6288 */
6289#define TOPOLOGY_SD_FLAGS \
5d4dfddd 6290 (SD_SHARE_CPUCAPACITY | \
143e1e28
VG
6291 SD_SHARE_PKG_RESOURCES | \
6292 SD_NUMA | \
d77b3ed5
VG
6293 SD_ASYM_PACKING | \
6294 SD_SHARE_POWERDOMAIN)
cb83b629
PZ
6295
6296static struct sched_domain *
143e1e28 6297sd_init(struct sched_domain_topology_level *tl, int cpu)
cb83b629
PZ
6298{
6299 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
143e1e28
VG
6300 int sd_weight, sd_flags = 0;
6301
6302#ifdef CONFIG_NUMA
6303 /*
6304 * Ugly hack to pass state to sd_numa_mask()...
6305 */
6306 sched_domains_curr_level = tl->numa_level;
6307#endif
6308
6309 sd_weight = cpumask_weight(tl->mask(cpu));
6310
6311 if (tl->sd_flags)
6312 sd_flags = (*tl->sd_flags)();
6313 if (WARN_ONCE(sd_flags & ~TOPOLOGY_SD_FLAGS,
6314 "wrong sd_flags in topology description\n"))
6315 sd_flags &= ~TOPOLOGY_SD_FLAGS;
cb83b629
PZ
6316
6317 *sd = (struct sched_domain){
6318 .min_interval = sd_weight,
6319 .max_interval = 2*sd_weight,
6320 .busy_factor = 32,
870a0bb5 6321 .imbalance_pct = 125,
143e1e28
VG
6322
6323 .cache_nice_tries = 0,
6324 .busy_idx = 0,
6325 .idle_idx = 0,
cb83b629
PZ
6326 .newidle_idx = 0,
6327 .wake_idx = 0,
6328 .forkexec_idx = 0,
6329
6330 .flags = 1*SD_LOAD_BALANCE
6331 | 1*SD_BALANCE_NEWIDLE
143e1e28
VG
6332 | 1*SD_BALANCE_EXEC
6333 | 1*SD_BALANCE_FORK
cb83b629 6334 | 0*SD_BALANCE_WAKE
143e1e28 6335 | 1*SD_WAKE_AFFINE
5d4dfddd 6336 | 0*SD_SHARE_CPUCAPACITY
cb83b629 6337 | 0*SD_SHARE_PKG_RESOURCES
143e1e28 6338 | 0*SD_SERIALIZE
cb83b629 6339 | 0*SD_PREFER_SIBLING
143e1e28
VG
6340 | 0*SD_NUMA
6341 | sd_flags
cb83b629 6342 ,
143e1e28 6343
cb83b629
PZ
6344 .last_balance = jiffies,
6345 .balance_interval = sd_weight,
143e1e28 6346 .smt_gain = 0,
2b4cfe64
JL
6347 .max_newidle_lb_cost = 0,
6348 .next_decay_max_lb_cost = jiffies,
143e1e28
VG
6349#ifdef CONFIG_SCHED_DEBUG
6350 .name = tl->name,
6351#endif
cb83b629 6352 };
cb83b629
PZ
6353
6354 /*
143e1e28 6355 * Convert topological properties into behaviour.
cb83b629 6356 */
143e1e28 6357
5d4dfddd 6358 if (sd->flags & SD_SHARE_CPUCAPACITY) {
caff37ef 6359 sd->flags |= SD_PREFER_SIBLING;
143e1e28
VG
6360 sd->imbalance_pct = 110;
6361 sd->smt_gain = 1178; /* ~15% */
143e1e28
VG
6362
6363 } else if (sd->flags & SD_SHARE_PKG_RESOURCES) {
6364 sd->imbalance_pct = 117;
6365 sd->cache_nice_tries = 1;
6366 sd->busy_idx = 2;
6367
6368#ifdef CONFIG_NUMA
6369 } else if (sd->flags & SD_NUMA) {
6370 sd->cache_nice_tries = 2;
6371 sd->busy_idx = 3;
6372 sd->idle_idx = 2;
6373
6374 sd->flags |= SD_SERIALIZE;
6375 if (sched_domains_numa_distance[tl->numa_level] > RECLAIM_DISTANCE) {
6376 sd->flags &= ~(SD_BALANCE_EXEC |
6377 SD_BALANCE_FORK |
6378 SD_WAKE_AFFINE);
6379 }
6380
6381#endif
6382 } else {
6383 sd->flags |= SD_PREFER_SIBLING;
6384 sd->cache_nice_tries = 1;
6385 sd->busy_idx = 2;
6386 sd->idle_idx = 1;
6387 }
6388
6389 sd->private = &tl->data;
cb83b629
PZ
6390
6391 return sd;
6392}
6393
143e1e28
VG
6394/*
6395 * Topology list, bottom-up.
6396 */
6397static struct sched_domain_topology_level default_topology[] = {
6398#ifdef CONFIG_SCHED_SMT
6399 { cpu_smt_mask, cpu_smt_flags, SD_INIT_NAME(SMT) },
6400#endif
6401#ifdef CONFIG_SCHED_MC
6402 { cpu_coregroup_mask, cpu_core_flags, SD_INIT_NAME(MC) },
143e1e28
VG
6403#endif
6404 { cpu_cpu_mask, SD_INIT_NAME(DIE) },
6405 { NULL, },
6406};
6407
c6e1e7b5
JG
6408static struct sched_domain_topology_level *sched_domain_topology =
6409 default_topology;
143e1e28
VG
6410
6411#define for_each_sd_topology(tl) \
6412 for (tl = sched_domain_topology; tl->mask; tl++)
6413
6414void set_sched_topology(struct sched_domain_topology_level *tl)
6415{
6416 sched_domain_topology = tl;
6417}
6418
6419#ifdef CONFIG_NUMA
6420
cb83b629
PZ
6421static const struct cpumask *sd_numa_mask(int cpu)
6422{
6423 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6424}
6425
d039ac60
PZ
6426static void sched_numa_warn(const char *str)
6427{
6428 static int done = false;
6429 int i,j;
6430
6431 if (done)
6432 return;
6433
6434 done = true;
6435
6436 printk(KERN_WARNING "ERROR: %s\n\n", str);
6437
6438 for (i = 0; i < nr_node_ids; i++) {
6439 printk(KERN_WARNING " ");
6440 for (j = 0; j < nr_node_ids; j++)
6441 printk(KERN_CONT "%02d ", node_distance(i,j));
6442 printk(KERN_CONT "\n");
6443 }
6444 printk(KERN_WARNING "\n");
6445}
6446
9942f79b 6447bool find_numa_distance(int distance)
d039ac60
PZ
6448{
6449 int i;
6450
6451 if (distance == node_distance(0, 0))
6452 return true;
6453
6454 for (i = 0; i < sched_domains_numa_levels; i++) {
6455 if (sched_domains_numa_distance[i] == distance)
6456 return true;
6457 }
6458
6459 return false;
6460}
6461
e3fe70b1
RR
6462/*
6463 * A system can have three types of NUMA topology:
6464 * NUMA_DIRECT: all nodes are directly connected, or not a NUMA system
6465 * NUMA_GLUELESS_MESH: some nodes reachable through intermediary nodes
6466 * NUMA_BACKPLANE: nodes can reach other nodes through a backplane
6467 *
6468 * The difference between a glueless mesh topology and a backplane
6469 * topology lies in whether communication between not directly
6470 * connected nodes goes through intermediary nodes (where programs
6471 * could run), or through backplane controllers. This affects
6472 * placement of programs.
6473 *
6474 * The type of topology can be discerned with the following tests:
6475 * - If the maximum distance between any nodes is 1 hop, the system
6476 * is directly connected.
6477 * - If for two nodes A and B, located N > 1 hops away from each other,
6478 * there is an intermediary node C, which is < N hops away from both
6479 * nodes A and B, the system is a glueless mesh.
6480 */
6481static void init_numa_topology_type(void)
6482{
6483 int a, b, c, n;
6484
6485 n = sched_max_numa_distance;
6486
e237882b 6487 if (sched_domains_numa_levels <= 1) {
e3fe70b1 6488 sched_numa_topology_type = NUMA_DIRECT;
e237882b
AG
6489 return;
6490 }
e3fe70b1
RR
6491
6492 for_each_online_node(a) {
6493 for_each_online_node(b) {
6494 /* Find two nodes furthest removed from each other. */
6495 if (node_distance(a, b) < n)
6496 continue;
6497
6498 /* Is there an intermediary node between a and b? */
6499 for_each_online_node(c) {
6500 if (node_distance(a, c) < n &&
6501 node_distance(b, c) < n) {
6502 sched_numa_topology_type =
6503 NUMA_GLUELESS_MESH;
6504 return;
6505 }
6506 }
6507
6508 sched_numa_topology_type = NUMA_BACKPLANE;
6509 return;
6510 }
6511 }
6512}
6513
cb83b629
PZ
6514static void sched_init_numa(void)
6515{
6516 int next_distance, curr_distance = node_distance(0, 0);
6517 struct sched_domain_topology_level *tl;
6518 int level = 0;
6519 int i, j, k;
6520
cb83b629
PZ
6521 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6522 if (!sched_domains_numa_distance)
6523 return;
6524
6525 /*
6526 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6527 * unique distances in the node_distance() table.
6528 *
6529 * Assumes node_distance(0,j) includes all distances in
6530 * node_distance(i,j) in order to avoid cubic time.
cb83b629
PZ
6531 */
6532 next_distance = curr_distance;
6533 for (i = 0; i < nr_node_ids; i++) {
6534 for (j = 0; j < nr_node_ids; j++) {
d039ac60
PZ
6535 for (k = 0; k < nr_node_ids; k++) {
6536 int distance = node_distance(i, k);
6537
6538 if (distance > curr_distance &&
6539 (distance < next_distance ||
6540 next_distance == curr_distance))
6541 next_distance = distance;
6542
6543 /*
6544 * While not a strong assumption it would be nice to know
6545 * about cases where if node A is connected to B, B is not
6546 * equally connected to A.
6547 */
6548 if (sched_debug() && node_distance(k, i) != distance)
6549 sched_numa_warn("Node-distance not symmetric");
6550
6551 if (sched_debug() && i && !find_numa_distance(distance))
6552 sched_numa_warn("Node-0 not representative");
6553 }
6554 if (next_distance != curr_distance) {
6555 sched_domains_numa_distance[level++] = next_distance;
6556 sched_domains_numa_levels = level;
6557 curr_distance = next_distance;
6558 } else break;
cb83b629 6559 }
d039ac60
PZ
6560
6561 /*
6562 * In case of sched_debug() we verify the above assumption.
6563 */
6564 if (!sched_debug())
6565 break;
cb83b629 6566 }
c123588b
AR
6567
6568 if (!level)
6569 return;
6570
cb83b629
PZ
6571 /*
6572 * 'level' contains the number of unique distances, excluding the
6573 * identity distance node_distance(i,i).
6574 *
28b4a521 6575 * The sched_domains_numa_distance[] array includes the actual distance
cb83b629
PZ
6576 * numbers.
6577 */
6578
5f7865f3
TC
6579 /*
6580 * Here, we should temporarily reset sched_domains_numa_levels to 0.
6581 * If it fails to allocate memory for array sched_domains_numa_masks[][],
6582 * the array will contain less then 'level' members. This could be
6583 * dangerous when we use it to iterate array sched_domains_numa_masks[][]
6584 * in other functions.
6585 *
6586 * We reset it to 'level' at the end of this function.
6587 */
6588 sched_domains_numa_levels = 0;
6589
cb83b629
PZ
6590 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6591 if (!sched_domains_numa_masks)
6592 return;
6593
6594 /*
6595 * Now for each level, construct a mask per node which contains all
6596 * cpus of nodes that are that many hops away from us.
6597 */
6598 for (i = 0; i < level; i++) {
6599 sched_domains_numa_masks[i] =
6600 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6601 if (!sched_domains_numa_masks[i])
6602 return;
6603
6604 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6605 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6606 if (!mask)
6607 return;
6608
6609 sched_domains_numa_masks[i][j] = mask;
6610
9c03ee14 6611 for_each_node(k) {
dd7d8634 6612 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6613 continue;
6614
6615 cpumask_or(mask, mask, cpumask_of_node(k));
6616 }
6617 }
6618 }
6619
143e1e28
VG
6620 /* Compute default topology size */
6621 for (i = 0; sched_domain_topology[i].mask; i++);
6622
c515db8c 6623 tl = kzalloc((i + level + 1) *
cb83b629
PZ
6624 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6625 if (!tl)
6626 return;
6627
6628 /*
6629 * Copy the default topology bits..
6630 */
143e1e28
VG
6631 for (i = 0; sched_domain_topology[i].mask; i++)
6632 tl[i] = sched_domain_topology[i];
cb83b629
PZ
6633
6634 /*
6635 * .. and append 'j' levels of NUMA goodness.
6636 */
6637 for (j = 0; j < level; i++, j++) {
6638 tl[i] = (struct sched_domain_topology_level){
cb83b629 6639 .mask = sd_numa_mask,
143e1e28 6640 .sd_flags = cpu_numa_flags,
cb83b629
PZ
6641 .flags = SDTL_OVERLAP,
6642 .numa_level = j,
143e1e28 6643 SD_INIT_NAME(NUMA)
cb83b629
PZ
6644 };
6645 }
6646
6647 sched_domain_topology = tl;
5f7865f3
TC
6648
6649 sched_domains_numa_levels = level;
9942f79b 6650 sched_max_numa_distance = sched_domains_numa_distance[level - 1];
e3fe70b1
RR
6651
6652 init_numa_topology_type();
cb83b629 6653}
301a5cba
TC
6654
6655static void sched_domains_numa_masks_set(int cpu)
6656{
6657 int i, j;
6658 int node = cpu_to_node(cpu);
6659
6660 for (i = 0; i < sched_domains_numa_levels; i++) {
6661 for (j = 0; j < nr_node_ids; j++) {
6662 if (node_distance(j, node) <= sched_domains_numa_distance[i])
6663 cpumask_set_cpu(cpu, sched_domains_numa_masks[i][j]);
6664 }
6665 }
6666}
6667
6668static void sched_domains_numa_masks_clear(int cpu)
6669{
6670 int i, j;
6671 for (i = 0; i < sched_domains_numa_levels; i++) {
6672 for (j = 0; j < nr_node_ids; j++)
6673 cpumask_clear_cpu(cpu, sched_domains_numa_masks[i][j]);
6674 }
6675}
6676
6677/*
6678 * Update sched_domains_numa_masks[level][node] array when new cpus
6679 * are onlined.
6680 */
6681static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6682 unsigned long action,
6683 void *hcpu)
6684{
6685 int cpu = (long)hcpu;
6686
6687 switch (action & ~CPU_TASKS_FROZEN) {
6688 case CPU_ONLINE:
6689 sched_domains_numa_masks_set(cpu);
6690 break;
6691
6692 case CPU_DEAD:
6693 sched_domains_numa_masks_clear(cpu);
6694 break;
6695
6696 default:
6697 return NOTIFY_DONE;
6698 }
6699
6700 return NOTIFY_OK;
cb83b629
PZ
6701}
6702#else
6703static inline void sched_init_numa(void)
6704{
6705}
301a5cba
TC
6706
6707static int sched_domains_numa_masks_update(struct notifier_block *nfb,
6708 unsigned long action,
6709 void *hcpu)
6710{
6711 return 0;
6712}
cb83b629
PZ
6713#endif /* CONFIG_NUMA */
6714
54ab4ff4
PZ
6715static int __sdt_alloc(const struct cpumask *cpu_map)
6716{
6717 struct sched_domain_topology_level *tl;
6718 int j;
6719
27723a68 6720 for_each_sd_topology(tl) {
54ab4ff4
PZ
6721 struct sd_data *sdd = &tl->data;
6722
6723 sdd->sd = alloc_percpu(struct sched_domain *);
6724 if (!sdd->sd)
6725 return -ENOMEM;
6726
6727 sdd->sg = alloc_percpu(struct sched_group *);
6728 if (!sdd->sg)
6729 return -ENOMEM;
6730
63b2ca30
NP
6731 sdd->sgc = alloc_percpu(struct sched_group_capacity *);
6732 if (!sdd->sgc)
9c3f75cb
PZ
6733 return -ENOMEM;
6734
54ab4ff4
PZ
6735 for_each_cpu(j, cpu_map) {
6736 struct sched_domain *sd;
6737 struct sched_group *sg;
63b2ca30 6738 struct sched_group_capacity *sgc;
54ab4ff4 6739
5cc389bc 6740 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
54ab4ff4
PZ
6741 GFP_KERNEL, cpu_to_node(j));
6742 if (!sd)
6743 return -ENOMEM;
6744
6745 *per_cpu_ptr(sdd->sd, j) = sd;
6746
6747 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6748 GFP_KERNEL, cpu_to_node(j));
6749 if (!sg)
6750 return -ENOMEM;
6751
30b4e9eb
IM
6752 sg->next = sg;
6753
54ab4ff4 6754 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6755
63b2ca30 6756 sgc = kzalloc_node(sizeof(struct sched_group_capacity) + cpumask_size(),
9c3f75cb 6757 GFP_KERNEL, cpu_to_node(j));
63b2ca30 6758 if (!sgc)
9c3f75cb
PZ
6759 return -ENOMEM;
6760
63b2ca30 6761 *per_cpu_ptr(sdd->sgc, j) = sgc;
54ab4ff4
PZ
6762 }
6763 }
6764
6765 return 0;
6766}
6767
6768static void __sdt_free(const struct cpumask *cpu_map)
6769{
6770 struct sched_domain_topology_level *tl;
6771 int j;
6772
27723a68 6773 for_each_sd_topology(tl) {
54ab4ff4
PZ
6774 struct sd_data *sdd = &tl->data;
6775
6776 for_each_cpu(j, cpu_map) {
fb2cf2c6 6777 struct sched_domain *sd;
6778
6779 if (sdd->sd) {
6780 sd = *per_cpu_ptr(sdd->sd, j);
6781 if (sd && (sd->flags & SD_OVERLAP))
6782 free_sched_groups(sd->groups, 0);
6783 kfree(*per_cpu_ptr(sdd->sd, j));
6784 }
6785
6786 if (sdd->sg)
6787 kfree(*per_cpu_ptr(sdd->sg, j));
63b2ca30
NP
6788 if (sdd->sgc)
6789 kfree(*per_cpu_ptr(sdd->sgc, j));
54ab4ff4
PZ
6790 }
6791 free_percpu(sdd->sd);
fb2cf2c6 6792 sdd->sd = NULL;
54ab4ff4 6793 free_percpu(sdd->sg);
fb2cf2c6 6794 sdd->sg = NULL;
63b2ca30
NP
6795 free_percpu(sdd->sgc);
6796 sdd->sgc = NULL;
54ab4ff4
PZ
6797 }
6798}
6799
2c402dc3 6800struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
4a850cbe
VK
6801 const struct cpumask *cpu_map, struct sched_domain_attr *attr,
6802 struct sched_domain *child, int cpu)
2c402dc3 6803{
143e1e28 6804 struct sched_domain *sd = sd_init(tl, cpu);
2c402dc3 6805 if (!sd)
d069b916 6806 return child;
2c402dc3 6807
2c402dc3 6808 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6809 if (child) {
6810 sd->level = child->level + 1;
6811 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6812 child->parent = sd;
c75e0128 6813 sd->child = child;
6ae72dff
PZ
6814
6815 if (!cpumask_subset(sched_domain_span(child),
6816 sched_domain_span(sd))) {
6817 pr_err("BUG: arch topology borken\n");
6818#ifdef CONFIG_SCHED_DEBUG
6819 pr_err(" the %s domain not a subset of the %s domain\n",
6820 child->name, sd->name);
6821#endif
6822 /* Fixup, ensure @sd has at least @child cpus. */
6823 cpumask_or(sched_domain_span(sd),
6824 sched_domain_span(sd),
6825 sched_domain_span(child));
6826 }
6827
60495e77 6828 }
a841f8ce 6829 set_domain_attribute(sd, attr);
2c402dc3
PZ
6830
6831 return sd;
6832}
6833
2109b99e
AH
6834/*
6835 * Build sched domains for a given set of cpus and attach the sched domains
6836 * to the individual cpus
6837 */
dce840a0
PZ
6838static int build_sched_domains(const struct cpumask *cpu_map,
6839 struct sched_domain_attr *attr)
2109b99e 6840{
1c632169 6841 enum s_alloc alloc_state;
dce840a0 6842 struct sched_domain *sd;
2109b99e 6843 struct s_data d;
822ff793 6844 int i, ret = -ENOMEM;
9c1cfda2 6845
2109b99e
AH
6846 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6847 if (alloc_state != sa_rootdomain)
6848 goto error;
9c1cfda2 6849
dce840a0 6850 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6851 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6852 struct sched_domain_topology_level *tl;
6853
3bd65a80 6854 sd = NULL;
27723a68 6855 for_each_sd_topology(tl) {
4a850cbe 6856 sd = build_sched_domain(tl, cpu_map, attr, sd, i);
22da9569
VK
6857 if (tl == sched_domain_topology)
6858 *per_cpu_ptr(d.sd, i) = sd;
e3589f6c
PZ
6859 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6860 sd->flags |= SD_OVERLAP;
d110235d
PZ
6861 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6862 break;
e3589f6c 6863 }
dce840a0
PZ
6864 }
6865
6866 /* Build the groups for the domains */
6867 for_each_cpu(i, cpu_map) {
6868 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6869 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6870 if (sd->flags & SD_OVERLAP) {
6871 if (build_overlap_sched_groups(sd, i))
6872 goto error;
6873 } else {
6874 if (build_sched_groups(sd, i))
6875 goto error;
6876 }
1cf51902 6877 }
a06dadbe 6878 }
9c1cfda2 6879
ced549fa 6880 /* Calculate CPU capacity for physical packages and nodes */
a9c9a9b6
PZ
6881 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6882 if (!cpumask_test_cpu(i, cpu_map))
6883 continue;
9c1cfda2 6884
dce840a0
PZ
6885 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6886 claim_allocations(i, sd);
63b2ca30 6887 init_sched_groups_capacity(i, sd);
dce840a0 6888 }
f712c0c7 6889 }
9c1cfda2 6890
1da177e4 6891 /* Attach the domains */
dce840a0 6892 rcu_read_lock();
abcd083a 6893 for_each_cpu(i, cpu_map) {
21d42ccf 6894 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6895 cpu_attach_domain(sd, d.rd, i);
1da177e4 6896 }
dce840a0 6897 rcu_read_unlock();
51888ca2 6898
822ff793 6899 ret = 0;
51888ca2 6900error:
2109b99e 6901 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6902 return ret;
1da177e4 6903}
029190c5 6904
acc3f5d7 6905static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6906static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6907static struct sched_domain_attr *dattr_cur;
6908 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6909
6910/*
6911 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6912 * cpumask) fails, then fallback to a single sched domain,
6913 * as determined by the single cpumask fallback_doms.
029190c5 6914 */
4212823f 6915static cpumask_var_t fallback_doms;
029190c5 6916
ee79d1bd
HC
6917/*
6918 * arch_update_cpu_topology lets virtualized architectures update the
6919 * cpu core maps. It is supposed to return 1 if the topology changed
6920 * or 0 if it stayed the same.
6921 */
52f5684c 6922int __weak arch_update_cpu_topology(void)
22e52b07 6923{
ee79d1bd 6924 return 0;
22e52b07
HC
6925}
6926
acc3f5d7
RR
6927cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6928{
6929 int i;
6930 cpumask_var_t *doms;
6931
6932 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6933 if (!doms)
6934 return NULL;
6935 for (i = 0; i < ndoms; i++) {
6936 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6937 free_sched_domains(doms, i);
6938 return NULL;
6939 }
6940 }
6941 return doms;
6942}
6943
6944void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6945{
6946 unsigned int i;
6947 for (i = 0; i < ndoms; i++)
6948 free_cpumask_var(doms[i]);
6949 kfree(doms);
6950}
6951
1a20ff27 6952/*
41a2d6cf 6953 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6954 * For now this just excludes isolated cpus, but could be used to
6955 * exclude other special cases in the future.
1a20ff27 6956 */
c4a8849a 6957static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6958{
7378547f
MM
6959 int err;
6960
22e52b07 6961 arch_update_cpu_topology();
029190c5 6962 ndoms_cur = 1;
acc3f5d7 6963 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6964 if (!doms_cur)
acc3f5d7
RR
6965 doms_cur = &fallback_doms;
6966 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6967 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6968 register_sched_domain_sysctl();
7378547f
MM
6969
6970 return err;
1a20ff27
DG
6971}
6972
1a20ff27
DG
6973/*
6974 * Detach sched domains from a group of cpus specified in cpu_map
6975 * These cpus will now be attached to the NULL domain
6976 */
96f874e2 6977static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6978{
6979 int i;
6980
dce840a0 6981 rcu_read_lock();
abcd083a 6982 for_each_cpu(i, cpu_map)
57d885fe 6983 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6984 rcu_read_unlock();
1a20ff27
DG
6985}
6986
1d3504fc
HS
6987/* handle null as "default" */
6988static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6989 struct sched_domain_attr *new, int idx_new)
6990{
6991 struct sched_domain_attr tmp;
6992
6993 /* fast path */
6994 if (!new && !cur)
6995 return 1;
6996
6997 tmp = SD_ATTR_INIT;
6998 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6999 new ? (new + idx_new) : &tmp,
7000 sizeof(struct sched_domain_attr));
7001}
7002
029190c5
PJ
7003/*
7004 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 7005 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
7006 * doms_new[] to the current sched domain partitioning, doms_cur[].
7007 * It destroys each deleted domain and builds each new domain.
7008 *
acc3f5d7 7009 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
7010 * The masks don't intersect (don't overlap.) We should setup one
7011 * sched domain for each mask. CPUs not in any of the cpumasks will
7012 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
7013 * current 'doms_cur' domains and in the new 'doms_new', we can leave
7014 * it as it is.
7015 *
acc3f5d7
RR
7016 * The passed in 'doms_new' should be allocated using
7017 * alloc_sched_domains. This routine takes ownership of it and will
7018 * free_sched_domains it when done with it. If the caller failed the
7019 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
7020 * and partition_sched_domains() will fallback to the single partition
7021 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 7022 *
96f874e2 7023 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
7024 * ndoms_new == 0 is a special case for destroying existing domains,
7025 * and it will not create the default domain.
dfb512ec 7026 *
029190c5
PJ
7027 * Call with hotplug lock held
7028 */
acc3f5d7 7029void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 7030 struct sched_domain_attr *dattr_new)
029190c5 7031{
dfb512ec 7032 int i, j, n;
d65bd5ec 7033 int new_topology;
029190c5 7034
712555ee 7035 mutex_lock(&sched_domains_mutex);
a1835615 7036
7378547f
MM
7037 /* always unregister in case we don't destroy any domains */
7038 unregister_sched_domain_sysctl();
7039
d65bd5ec
HC
7040 /* Let architecture update cpu core mappings. */
7041 new_topology = arch_update_cpu_topology();
7042
dfb512ec 7043 n = doms_new ? ndoms_new : 0;
029190c5
PJ
7044
7045 /* Destroy deleted domains */
7046 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 7047 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7048 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 7049 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
7050 goto match1;
7051 }
7052 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 7053 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
7054match1:
7055 ;
7056 }
7057
c8d2d47a 7058 n = ndoms_cur;
e761b772 7059 if (doms_new == NULL) {
c8d2d47a 7060 n = 0;
acc3f5d7 7061 doms_new = &fallback_doms;
6ad4c188 7062 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 7063 WARN_ON_ONCE(dattr_new);
e761b772
MK
7064 }
7065
029190c5
PJ
7066 /* Build new domains */
7067 for (i = 0; i < ndoms_new; i++) {
c8d2d47a 7068 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 7069 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 7070 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
7071 goto match2;
7072 }
7073 /* no match - add a new doms_new */
dce840a0 7074 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
7075match2:
7076 ;
7077 }
7078
7079 /* Remember the new sched domains */
acc3f5d7
RR
7080 if (doms_cur != &fallback_doms)
7081 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 7082 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 7083 doms_cur = doms_new;
1d3504fc 7084 dattr_cur = dattr_new;
029190c5 7085 ndoms_cur = ndoms_new;
7378547f
MM
7086
7087 register_sched_domain_sysctl();
a1835615 7088
712555ee 7089 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
7090}
7091
d35be8ba
SB
7092static int num_cpus_frozen; /* used to mark begin/end of suspend/resume */
7093
1da177e4 7094/*
3a101d05
TH
7095 * Update cpusets according to cpu_active mask. If cpusets are
7096 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
7097 * around partition_sched_domains().
d35be8ba
SB
7098 *
7099 * If we come here as part of a suspend/resume, don't touch cpusets because we
7100 * want to restore it back to its original state upon resume anyway.
1da177e4 7101 */
0b2e918a
TH
7102static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
7103 void *hcpu)
e761b772 7104{
d35be8ba
SB
7105 switch (action) {
7106 case CPU_ONLINE_FROZEN:
7107 case CPU_DOWN_FAILED_FROZEN:
7108
7109 /*
7110 * num_cpus_frozen tracks how many CPUs are involved in suspend
7111 * resume sequence. As long as this is not the last online
7112 * operation in the resume sequence, just build a single sched
7113 * domain, ignoring cpusets.
7114 */
7115 num_cpus_frozen--;
7116 if (likely(num_cpus_frozen)) {
7117 partition_sched_domains(1, NULL, NULL);
7118 break;
7119 }
7120
7121 /*
7122 * This is the last CPU online operation. So fall through and
7123 * restore the original sched domains by considering the
7124 * cpuset configurations.
7125 */
7126
e761b772 7127 case CPU_ONLINE:
7ddf96b0 7128 cpuset_update_active_cpus(true);
d35be8ba 7129 break;
3a101d05
TH
7130 default:
7131 return NOTIFY_DONE;
7132 }
d35be8ba 7133 return NOTIFY_OK;
3a101d05 7134}
e761b772 7135
0b2e918a
TH
7136static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
7137 void *hcpu)
3a101d05 7138{
3c18d447
JL
7139 unsigned long flags;
7140 long cpu = (long)hcpu;
7141 struct dl_bw *dl_b;
533445c6
OS
7142 bool overflow;
7143 int cpus;
3c18d447 7144
533445c6 7145 switch (action) {
3a101d05 7146 case CPU_DOWN_PREPARE:
533445c6
OS
7147 rcu_read_lock_sched();
7148 dl_b = dl_bw_of(cpu);
3c18d447 7149
533445c6
OS
7150 raw_spin_lock_irqsave(&dl_b->lock, flags);
7151 cpus = dl_bw_cpus(cpu);
7152 overflow = __dl_overflow(dl_b, cpus, 0, 0);
7153 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
3c18d447 7154
533445c6 7155 rcu_read_unlock_sched();
3c18d447 7156
533445c6
OS
7157 if (overflow)
7158 return notifier_from_errno(-EBUSY);
7ddf96b0 7159 cpuset_update_active_cpus(false);
d35be8ba
SB
7160 break;
7161 case CPU_DOWN_PREPARE_FROZEN:
7162 num_cpus_frozen++;
7163 partition_sched_domains(1, NULL, NULL);
7164 break;
e761b772
MK
7165 default:
7166 return NOTIFY_DONE;
7167 }
d35be8ba 7168 return NOTIFY_OK;
e761b772 7169}
e761b772 7170
1da177e4
LT
7171void __init sched_init_smp(void)
7172{
dcc30a35
RR
7173 cpumask_var_t non_isolated_cpus;
7174
7175 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 7176 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 7177
cb83b629
PZ
7178 sched_init_numa();
7179
6acce3ef
PZ
7180 /*
7181 * There's no userspace yet to cause hotplug operations; hence all the
7182 * cpu masks are stable and all blatant races in the below code cannot
7183 * happen.
7184 */
712555ee 7185 mutex_lock(&sched_domains_mutex);
c4a8849a 7186 init_sched_domains(cpu_active_mask);
dcc30a35
RR
7187 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
7188 if (cpumask_empty(non_isolated_cpus))
7189 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 7190 mutex_unlock(&sched_domains_mutex);
e761b772 7191
301a5cba 7192 hotcpu_notifier(sched_domains_numa_masks_update, CPU_PRI_SCHED_ACTIVE);
3a101d05
TH
7193 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
7194 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772 7195
b328ca18 7196 init_hrtick();
5c1e1767
NP
7197
7198 /* Move init over to a non-isolated CPU */
dcc30a35 7199 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 7200 BUG();
19978ca6 7201 sched_init_granularity();
dcc30a35 7202 free_cpumask_var(non_isolated_cpus);
4212823f 7203
0e3900e6 7204 init_sched_rt_class();
1baca4ce 7205 init_sched_dl_class();
1da177e4
LT
7206}
7207#else
7208void __init sched_init_smp(void)
7209{
19978ca6 7210 sched_init_granularity();
1da177e4
LT
7211}
7212#endif /* CONFIG_SMP */
7213
7214int in_sched_functions(unsigned long addr)
7215{
1da177e4
LT
7216 return in_lock_functions(addr) ||
7217 (addr >= (unsigned long)__sched_text_start
7218 && addr < (unsigned long)__sched_text_end);
7219}
7220
029632fb 7221#ifdef CONFIG_CGROUP_SCHED
27b4b931
LZ
7222/*
7223 * Default task group.
7224 * Every task in system belongs to this group at bootup.
7225 */
029632fb 7226struct task_group root_task_group;
35cf4e50 7227LIST_HEAD(task_groups);
b0367629
WL
7228
7229/* Cacheline aligned slab cache for task_group */
7230static struct kmem_cache *task_group_cache __read_mostly;
052f1dc7 7231#endif
6f505b16 7232
e6252c3e 7233DECLARE_PER_CPU(cpumask_var_t, load_balance_mask);
6f505b16 7234
1da177e4
LT
7235void __init sched_init(void)
7236{
dd41f596 7237 int i, j;
434d53b0
MT
7238 unsigned long alloc_size = 0, ptr;
7239
7240#ifdef CONFIG_FAIR_GROUP_SCHED
7241 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7242#endif
7243#ifdef CONFIG_RT_GROUP_SCHED
7244 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7245#endif
434d53b0 7246 if (alloc_size) {
36b7b6d4 7247 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7248
7249#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7250 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7251 ptr += nr_cpu_ids * sizeof(void **);
7252
07e06b01 7253 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7254 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7255
6d6bc0ad 7256#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7257#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7258 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7259 ptr += nr_cpu_ids * sizeof(void **);
7260
07e06b01 7261 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7262 ptr += nr_cpu_ids * sizeof(void **);
7263
6d6bc0ad 7264#endif /* CONFIG_RT_GROUP_SCHED */
b74e6278 7265 }
df7c8e84 7266#ifdef CONFIG_CPUMASK_OFFSTACK
b74e6278
AT
7267 for_each_possible_cpu(i) {
7268 per_cpu(load_balance_mask, i) = (cpumask_var_t)kzalloc_node(
7269 cpumask_size(), GFP_KERNEL, cpu_to_node(i));
434d53b0 7270 }
b74e6278 7271#endif /* CONFIG_CPUMASK_OFFSTACK */
dd41f596 7272
332ac17e
DF
7273 init_rt_bandwidth(&def_rt_bandwidth,
7274 global_rt_period(), global_rt_runtime());
7275 init_dl_bandwidth(&def_dl_bandwidth,
1724813d 7276 global_rt_period(), global_rt_runtime());
332ac17e 7277
57d885fe
GH
7278#ifdef CONFIG_SMP
7279 init_defrootdomain();
7280#endif
7281
d0b27fa7 7282#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7283 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7284 global_rt_period(), global_rt_runtime());
6d6bc0ad 7285#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7286
7c941438 7287#ifdef CONFIG_CGROUP_SCHED
b0367629
WL
7288 task_group_cache = KMEM_CACHE(task_group, 0);
7289
07e06b01
YZ
7290 list_add(&root_task_group.list, &task_groups);
7291 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7292 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7293 autogroup_init(&init_task);
7c941438 7294#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7295
0a945022 7296 for_each_possible_cpu(i) {
70b97a7f 7297 struct rq *rq;
1da177e4
LT
7298
7299 rq = cpu_rq(i);
05fa785c 7300 raw_spin_lock_init(&rq->lock);
7897986b 7301 rq->nr_running = 0;
dce48a84
TG
7302 rq->calc_load_active = 0;
7303 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7304 init_cfs_rq(&rq->cfs);
07c54f7a
AV
7305 init_rt_rq(&rq->rt);
7306 init_dl_rq(&rq->dl);
dd41f596 7307#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7308 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7309 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7310 /*
07e06b01 7311 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7312 *
7313 * In case of task-groups formed thr' the cgroup filesystem, it
7314 * gets 100% of the cpu resources in the system. This overall
7315 * system cpu resource is divided among the tasks of
07e06b01 7316 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7317 * based on each entity's (task or task-group's) weight
7318 * (se->load.weight).
7319 *
07e06b01 7320 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7321 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7322 * then A0's share of the cpu resource is:
7323 *
0d905bca 7324 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7325 *
07e06b01
YZ
7326 * We achieve this by letting root_task_group's tasks sit
7327 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7328 */
ab84d31e 7329 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7330 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7331#endif /* CONFIG_FAIR_GROUP_SCHED */
7332
7333 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7334#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7335 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7336#endif
1da177e4 7337
dd41f596
IM
7338 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7339 rq->cpu_load[j] = 0;
fdf3e95d
VP
7340
7341 rq->last_load_update_tick = jiffies;
7342
1da177e4 7343#ifdef CONFIG_SMP
41c7ce9a 7344 rq->sd = NULL;
57d885fe 7345 rq->rd = NULL;
ca6d75e6 7346 rq->cpu_capacity = rq->cpu_capacity_orig = SCHED_CAPACITY_SCALE;
e3fca9e7 7347 rq->balance_callback = NULL;
1da177e4 7348 rq->active_balance = 0;
dd41f596 7349 rq->next_balance = jiffies;
1da177e4 7350 rq->push_cpu = 0;
0a2966b4 7351 rq->cpu = i;
1f11eb6a 7352 rq->online = 0;
eae0c9df
MG
7353 rq->idle_stamp = 0;
7354 rq->avg_idle = 2*sysctl_sched_migration_cost;
9bd721c5 7355 rq->max_idle_balance_cost = sysctl_sched_migration_cost;
367456c7
PZ
7356
7357 INIT_LIST_HEAD(&rq->cfs_tasks);
7358
dc938520 7359 rq_attach_root(rq, &def_root_domain);
3451d024 7360#ifdef CONFIG_NO_HZ_COMMON
1c792db7 7361 rq->nohz_flags = 0;
83cd4fe2 7362#endif
265f22a9
FW
7363#ifdef CONFIG_NO_HZ_FULL
7364 rq->last_sched_tick = 0;
7365#endif
1da177e4 7366#endif
8f4d37ec 7367 init_rq_hrtick(rq);
1da177e4 7368 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7369 }
7370
2dd73a4f 7371 set_load_weight(&init_task);
b50f60ce 7372
e107be36
AK
7373#ifdef CONFIG_PREEMPT_NOTIFIERS
7374 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7375#endif
7376
1da177e4
LT
7377 /*
7378 * The boot idle thread does lazy MMU switching as well:
7379 */
7380 atomic_inc(&init_mm.mm_count);
7381 enter_lazy_tlb(&init_mm, current);
7382
1b537c7d
YD
7383 /*
7384 * During early bootup we pretend to be a normal task:
7385 */
7386 current->sched_class = &fair_sched_class;
7387
1da177e4
LT
7388 /*
7389 * Make us the idle thread. Technically, schedule() should not be
7390 * called from this thread, however somewhere below it might be,
7391 * but because we are the idle thread, we just pick up running again
7392 * when this runqueue becomes "idle".
7393 */
7394 init_idle(current, smp_processor_id());
dce48a84
TG
7395
7396 calc_load_update = jiffies + LOAD_FREQ;
7397
bf4d83f6 7398#ifdef CONFIG_SMP
4cb98839 7399 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7400 /* May be allocated at isolcpus cmdline parse time */
7401 if (cpu_isolated_map == NULL)
7402 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7403 idle_thread_set_boot_cpu();
a803f026 7404 set_cpu_rq_start_time();
029632fb
PZ
7405#endif
7406 init_sched_fair_class();
6a7b3dc3 7407
6892b75e 7408 scheduler_running = 1;
1da177e4
LT
7409}
7410
d902db1e 7411#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7412static inline int preempt_count_equals(int preempt_offset)
7413{
da7142e2 7414 int nested = preempt_count() + rcu_preempt_depth();
e4aafea2 7415
4ba8216c 7416 return (nested == preempt_offset);
e4aafea2
FW
7417}
7418
d894837f 7419void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7420{
8eb23b9f
PZ
7421 /*
7422 * Blocking primitives will set (and therefore destroy) current->state,
7423 * since we will exit with TASK_RUNNING make sure we enter with it,
7424 * otherwise we will destroy state.
7425 */
00845eb9 7426 WARN_ONCE(current->state != TASK_RUNNING && current->task_state_change,
8eb23b9f
PZ
7427 "do not call blocking ops when !TASK_RUNNING; "
7428 "state=%lx set at [<%p>] %pS\n",
7429 current->state,
7430 (void *)current->task_state_change,
00845eb9 7431 (void *)current->task_state_change);
8eb23b9f 7432
3427445a
PZ
7433 ___might_sleep(file, line, preempt_offset);
7434}
7435EXPORT_SYMBOL(__might_sleep);
7436
7437void ___might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7438{
1da177e4
LT
7439 static unsigned long prev_jiffy; /* ratelimiting */
7440
b3fbab05 7441 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
db273be2
TG
7442 if ((preempt_count_equals(preempt_offset) && !irqs_disabled() &&
7443 !is_idle_task(current)) ||
e4aafea2 7444 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7445 return;
7446 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7447 return;
7448 prev_jiffy = jiffies;
7449
3df0fc5b
PZ
7450 printk(KERN_ERR
7451 "BUG: sleeping function called from invalid context at %s:%d\n",
7452 file, line);
7453 printk(KERN_ERR
7454 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7455 in_atomic(), irqs_disabled(),
7456 current->pid, current->comm);
aef745fc 7457
a8b686b3
ES
7458 if (task_stack_end_corrupted(current))
7459 printk(KERN_EMERG "Thread overran stack, or stack corrupted\n");
7460
aef745fc
IM
7461 debug_show_held_locks(current);
7462 if (irqs_disabled())
7463 print_irqtrace_events(current);
8f47b187
TG
7464#ifdef CONFIG_DEBUG_PREEMPT
7465 if (!preempt_count_equals(preempt_offset)) {
7466 pr_err("Preemption disabled at:");
7467 print_ip_sym(current->preempt_disable_ip);
7468 pr_cont("\n");
7469 }
7470#endif
aef745fc 7471 dump_stack();
1da177e4 7472}
3427445a 7473EXPORT_SYMBOL(___might_sleep);
1da177e4
LT
7474#endif
7475
7476#ifdef CONFIG_MAGIC_SYSRQ
dbc7f069 7477void normalize_rt_tasks(void)
3a5e4dc1 7478{
dbc7f069 7479 struct task_struct *g, *p;
d50dde5a
DF
7480 struct sched_attr attr = {
7481 .sched_policy = SCHED_NORMAL,
7482 };
1da177e4 7483
3472eaa1 7484 read_lock(&tasklist_lock);
5d07f420 7485 for_each_process_thread(g, p) {
178be793
IM
7486 /*
7487 * Only normalize user tasks:
7488 */
3472eaa1 7489 if (p->flags & PF_KTHREAD)
178be793
IM
7490 continue;
7491
6cfb0d5d 7492 p->se.exec_start = 0;
6cfb0d5d 7493#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7494 p->se.statistics.wait_start = 0;
7495 p->se.statistics.sleep_start = 0;
7496 p->se.statistics.block_start = 0;
6cfb0d5d 7497#endif
dd41f596 7498
aab03e05 7499 if (!dl_task(p) && !rt_task(p)) {
dd41f596
IM
7500 /*
7501 * Renice negative nice level userspace
7502 * tasks back to 0:
7503 */
3472eaa1 7504 if (task_nice(p) < 0)
dd41f596 7505 set_user_nice(p, 0);
1da177e4 7506 continue;
dd41f596 7507 }
1da177e4 7508
dbc7f069 7509 __sched_setscheduler(p, &attr, false, false);
5d07f420 7510 }
3472eaa1 7511 read_unlock(&tasklist_lock);
1da177e4
LT
7512}
7513
7514#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7515
67fc4e0c 7516#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7517/*
67fc4e0c 7518 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7519 *
7520 * They can only be called when the whole system has been
7521 * stopped - every CPU needs to be quiescent, and no scheduling
7522 * activity can take place. Using them for anything else would
7523 * be a serious bug, and as a result, they aren't even visible
7524 * under any other configuration.
7525 */
7526
7527/**
7528 * curr_task - return the current task for a given cpu.
7529 * @cpu: the processor in question.
7530 *
7531 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
e69f6186
YB
7532 *
7533 * Return: The current task for @cpu.
1df5c10a 7534 */
36c8b586 7535struct task_struct *curr_task(int cpu)
1df5c10a
LT
7536{
7537 return cpu_curr(cpu);
7538}
7539
67fc4e0c
JW
7540#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7541
7542#ifdef CONFIG_IA64
1df5c10a
LT
7543/**
7544 * set_curr_task - set the current task for a given cpu.
7545 * @cpu: the processor in question.
7546 * @p: the task pointer to set.
7547 *
7548 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7549 * are serviced on a separate stack. It allows the architecture to switch the
7550 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7551 * must be called with all CPU's synchronized, and interrupts disabled, the
7552 * and caller must save the original value of the current task (see
7553 * curr_task() above) and restore that value before reenabling interrupts and
7554 * re-starting the system.
7555 *
7556 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7557 */
36c8b586 7558void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7559{
7560 cpu_curr(cpu) = p;
7561}
7562
7563#endif
29f59db3 7564
7c941438 7565#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7566/* task_group_lock serializes the addition/removal of task groups */
7567static DEFINE_SPINLOCK(task_group_lock);
7568
2f5177f0 7569static void sched_free_group(struct task_group *tg)
bccbe08a
PZ
7570{
7571 free_fair_sched_group(tg);
7572 free_rt_sched_group(tg);
e9aa1dd1 7573 autogroup_free(tg);
b0367629 7574 kmem_cache_free(task_group_cache, tg);
bccbe08a
PZ
7575}
7576
7577/* allocate runqueue etc for a new task group */
ec7dc8ac 7578struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7579{
7580 struct task_group *tg;
bccbe08a 7581
b0367629 7582 tg = kmem_cache_alloc(task_group_cache, GFP_KERNEL | __GFP_ZERO);
bccbe08a
PZ
7583 if (!tg)
7584 return ERR_PTR(-ENOMEM);
7585
ec7dc8ac 7586 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7587 goto err;
7588
ec7dc8ac 7589 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7590 goto err;
7591
ace783b9
LZ
7592 return tg;
7593
7594err:
2f5177f0 7595 sched_free_group(tg);
ace783b9
LZ
7596 return ERR_PTR(-ENOMEM);
7597}
7598
7599void sched_online_group(struct task_group *tg, struct task_group *parent)
7600{
7601 unsigned long flags;
7602
8ed36996 7603 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7604 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7605
7606 WARN_ON(!parent); /* root should already exist */
7607
7608 tg->parent = parent;
f473aa5e 7609 INIT_LIST_HEAD(&tg->children);
09f2724a 7610 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7611 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7612}
7613
9b5b7751 7614/* rcu callback to free various structures associated with a task group */
2f5177f0 7615static void sched_free_group_rcu(struct rcu_head *rhp)
29f59db3 7616{
29f59db3 7617 /* now it should be safe to free those cfs_rqs */
2f5177f0 7618 sched_free_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7619}
7620
4cf86d77 7621void sched_destroy_group(struct task_group *tg)
ace783b9
LZ
7622{
7623 /* wait for possible concurrent references to cfs_rqs complete */
2f5177f0 7624 call_rcu(&tg->rcu, sched_free_group_rcu);
ace783b9
LZ
7625}
7626
7627void sched_offline_group(struct task_group *tg)
29f59db3 7628{
8ed36996 7629 unsigned long flags;
29f59db3 7630
3d4b47b4 7631 /* end participation in shares distribution */
6fe1f348 7632 unregister_fair_sched_group(tg);
3d4b47b4
PZ
7633
7634 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7635 list_del_rcu(&tg->list);
f473aa5e 7636 list_del_rcu(&tg->siblings);
8ed36996 7637 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3
SV
7638}
7639
9b5b7751 7640/* change task's runqueue when it moves between groups.
3a252015
IM
7641 * The caller of this function should have put the task in its new group
7642 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7643 * reflect its new group.
9b5b7751
SV
7644 */
7645void sched_move_task(struct task_struct *tsk)
29f59db3 7646{
8323f26c 7647 struct task_group *tg;
da0c1e65 7648 int queued, running;
29f59db3
SV
7649 unsigned long flags;
7650 struct rq *rq;
7651
7652 rq = task_rq_lock(tsk, &flags);
7653
051a1d1a 7654 running = task_current(rq, tsk);
da0c1e65 7655 queued = task_on_rq_queued(tsk);
29f59db3 7656
da0c1e65 7657 if (queued)
ff77e468 7658 dequeue_task(rq, tsk, DEQUEUE_SAVE | DEQUEUE_MOVE);
0e1f3483 7659 if (unlikely(running))
f3cd1c4e 7660 put_prev_task(rq, tsk);
29f59db3 7661
f7b8a47d
KT
7662 /*
7663 * All callers are synchronized by task_rq_lock(); we do not use RCU
7664 * which is pointless here. Thus, we pass "true" to task_css_check()
7665 * to prevent lockdep warnings.
7666 */
7667 tg = container_of(task_css_check(tsk, cpu_cgrp_id, true),
8323f26c
PZ
7668 struct task_group, css);
7669 tg = autogroup_task_group(tsk, tg);
7670 tsk->sched_task_group = tg;
7671
810b3817 7672#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02 7673 if (tsk->sched_class->task_move_group)
bc54da21 7674 tsk->sched_class->task_move_group(tsk);
b2b5ce02 7675 else
810b3817 7676#endif
b2b5ce02 7677 set_task_rq(tsk, task_cpu(tsk));
810b3817 7678
0e1f3483
HS
7679 if (unlikely(running))
7680 tsk->sched_class->set_curr_task(rq);
da0c1e65 7681 if (queued)
ff77e468 7682 enqueue_task(rq, tsk, ENQUEUE_RESTORE | ENQUEUE_MOVE);
29f59db3 7683
0122ec5b 7684 task_rq_unlock(rq, tsk, &flags);
29f59db3 7685}
7c941438 7686#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7687
a790de99
PT
7688#ifdef CONFIG_RT_GROUP_SCHED
7689/*
7690 * Ensure that the real time constraints are schedulable.
7691 */
7692static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7693
9a7e0b18
PZ
7694/* Must be called with tasklist_lock held */
7695static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7696{
9a7e0b18 7697 struct task_struct *g, *p;
b40b2e8e 7698
1fe89e1b
PZ
7699 /*
7700 * Autogroups do not have RT tasks; see autogroup_create().
7701 */
7702 if (task_group_is_autogroup(tg))
7703 return 0;
7704
5d07f420 7705 for_each_process_thread(g, p) {
8651c658 7706 if (rt_task(p) && task_group(p) == tg)
9a7e0b18 7707 return 1;
5d07f420 7708 }
b40b2e8e 7709
9a7e0b18
PZ
7710 return 0;
7711}
b40b2e8e 7712
9a7e0b18
PZ
7713struct rt_schedulable_data {
7714 struct task_group *tg;
7715 u64 rt_period;
7716 u64 rt_runtime;
7717};
b40b2e8e 7718
a790de99 7719static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7720{
7721 struct rt_schedulable_data *d = data;
7722 struct task_group *child;
7723 unsigned long total, sum = 0;
7724 u64 period, runtime;
b40b2e8e 7725
9a7e0b18
PZ
7726 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7727 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7728
9a7e0b18
PZ
7729 if (tg == d->tg) {
7730 period = d->rt_period;
7731 runtime = d->rt_runtime;
b40b2e8e 7732 }
b40b2e8e 7733
4653f803
PZ
7734 /*
7735 * Cannot have more runtime than the period.
7736 */
7737 if (runtime > period && runtime != RUNTIME_INF)
7738 return -EINVAL;
6f505b16 7739
4653f803
PZ
7740 /*
7741 * Ensure we don't starve existing RT tasks.
7742 */
9a7e0b18
PZ
7743 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7744 return -EBUSY;
6f505b16 7745
9a7e0b18 7746 total = to_ratio(period, runtime);
6f505b16 7747
4653f803
PZ
7748 /*
7749 * Nobody can have more than the global setting allows.
7750 */
7751 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7752 return -EINVAL;
6f505b16 7753
4653f803
PZ
7754 /*
7755 * The sum of our children's runtime should not exceed our own.
7756 */
9a7e0b18
PZ
7757 list_for_each_entry_rcu(child, &tg->children, siblings) {
7758 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7759 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7760
9a7e0b18
PZ
7761 if (child == d->tg) {
7762 period = d->rt_period;
7763 runtime = d->rt_runtime;
7764 }
6f505b16 7765
9a7e0b18 7766 sum += to_ratio(period, runtime);
9f0c1e56 7767 }
6f505b16 7768
9a7e0b18
PZ
7769 if (sum > total)
7770 return -EINVAL;
7771
7772 return 0;
6f505b16
PZ
7773}
7774
9a7e0b18 7775static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7776{
8277434e
PT
7777 int ret;
7778
9a7e0b18
PZ
7779 struct rt_schedulable_data data = {
7780 .tg = tg,
7781 .rt_period = period,
7782 .rt_runtime = runtime,
7783 };
7784
8277434e
PT
7785 rcu_read_lock();
7786 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7787 rcu_read_unlock();
7788
7789 return ret;
521f1a24
DG
7790}
7791
ab84d31e 7792static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7793 u64 rt_period, u64 rt_runtime)
6f505b16 7794{
ac086bc2 7795 int i, err = 0;
9f0c1e56 7796
2636ed5f
PZ
7797 /*
7798 * Disallowing the root group RT runtime is BAD, it would disallow the
7799 * kernel creating (and or operating) RT threads.
7800 */
7801 if (tg == &root_task_group && rt_runtime == 0)
7802 return -EINVAL;
7803
7804 /* No period doesn't make any sense. */
7805 if (rt_period == 0)
7806 return -EINVAL;
7807
9f0c1e56 7808 mutex_lock(&rt_constraints_mutex);
521f1a24 7809 read_lock(&tasklist_lock);
9a7e0b18
PZ
7810 err = __rt_schedulable(tg, rt_period, rt_runtime);
7811 if (err)
9f0c1e56 7812 goto unlock;
ac086bc2 7813
0986b11b 7814 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7815 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7816 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7817
7818 for_each_possible_cpu(i) {
7819 struct rt_rq *rt_rq = tg->rt_rq[i];
7820
0986b11b 7821 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7822 rt_rq->rt_runtime = rt_runtime;
0986b11b 7823 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7824 }
0986b11b 7825 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7826unlock:
521f1a24 7827 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7828 mutex_unlock(&rt_constraints_mutex);
7829
7830 return err;
6f505b16
PZ
7831}
7832
25cc7da7 7833static int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
d0b27fa7
PZ
7834{
7835 u64 rt_runtime, rt_period;
7836
7837 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7838 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7839 if (rt_runtime_us < 0)
7840 rt_runtime = RUNTIME_INF;
7841
ab84d31e 7842 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7843}
7844
25cc7da7 7845static long sched_group_rt_runtime(struct task_group *tg)
9f0c1e56
PZ
7846{
7847 u64 rt_runtime_us;
7848
d0b27fa7 7849 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7850 return -1;
7851
d0b27fa7 7852 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7853 do_div(rt_runtime_us, NSEC_PER_USEC);
7854 return rt_runtime_us;
7855}
d0b27fa7 7856
ce2f5fe4 7857static int sched_group_set_rt_period(struct task_group *tg, u64 rt_period_us)
d0b27fa7
PZ
7858{
7859 u64 rt_runtime, rt_period;
7860
ce2f5fe4 7861 rt_period = rt_period_us * NSEC_PER_USEC;
d0b27fa7
PZ
7862 rt_runtime = tg->rt_bandwidth.rt_runtime;
7863
ab84d31e 7864 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7865}
7866
25cc7da7 7867static long sched_group_rt_period(struct task_group *tg)
d0b27fa7
PZ
7868{
7869 u64 rt_period_us;
7870
7871 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7872 do_div(rt_period_us, NSEC_PER_USEC);
7873 return rt_period_us;
7874}
332ac17e 7875#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7876
332ac17e 7877#ifdef CONFIG_RT_GROUP_SCHED
d0b27fa7
PZ
7878static int sched_rt_global_constraints(void)
7879{
7880 int ret = 0;
7881
7882 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7883 read_lock(&tasklist_lock);
4653f803 7884 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7885 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7886 mutex_unlock(&rt_constraints_mutex);
7887
7888 return ret;
7889}
54e99124 7890
25cc7da7 7891static int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
54e99124
DG
7892{
7893 /* Don't accept realtime tasks when there is no way for them to run */
7894 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7895 return 0;
7896
7897 return 1;
7898}
7899
6d6bc0ad 7900#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7901static int sched_rt_global_constraints(void)
7902{
ac086bc2 7903 unsigned long flags;
332ac17e 7904 int i, ret = 0;
ec5d4989 7905
0986b11b 7906 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7907 for_each_possible_cpu(i) {
7908 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7909
0986b11b 7910 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7911 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7912 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7913 }
0986b11b 7914 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7915
332ac17e 7916 return ret;
d0b27fa7 7917}
6d6bc0ad 7918#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7919
a1963b81 7920static int sched_dl_global_validate(void)
332ac17e 7921{
1724813d
PZ
7922 u64 runtime = global_rt_runtime();
7923 u64 period = global_rt_period();
332ac17e 7924 u64 new_bw = to_ratio(period, runtime);
f10e00f4 7925 struct dl_bw *dl_b;
1724813d 7926 int cpu, ret = 0;
49516342 7927 unsigned long flags;
332ac17e
DF
7928
7929 /*
7930 * Here we want to check the bandwidth not being set to some
7931 * value smaller than the currently allocated bandwidth in
7932 * any of the root_domains.
7933 *
7934 * FIXME: Cycling on all the CPUs is overdoing, but simpler than
7935 * cycling on root_domains... Discussion on different/better
7936 * solutions is welcome!
7937 */
1724813d 7938 for_each_possible_cpu(cpu) {
f10e00f4
KT
7939 rcu_read_lock_sched();
7940 dl_b = dl_bw_of(cpu);
332ac17e 7941
49516342 7942 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d
PZ
7943 if (new_bw < dl_b->total_bw)
7944 ret = -EBUSY;
49516342 7945 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
1724813d 7946
f10e00f4
KT
7947 rcu_read_unlock_sched();
7948
1724813d
PZ
7949 if (ret)
7950 break;
332ac17e
DF
7951 }
7952
1724813d 7953 return ret;
332ac17e
DF
7954}
7955
1724813d 7956static void sched_dl_do_global(void)
ce0dbbbb 7957{
1724813d 7958 u64 new_bw = -1;
f10e00f4 7959 struct dl_bw *dl_b;
1724813d 7960 int cpu;
49516342 7961 unsigned long flags;
ce0dbbbb 7962
1724813d
PZ
7963 def_dl_bandwidth.dl_period = global_rt_period();
7964 def_dl_bandwidth.dl_runtime = global_rt_runtime();
7965
7966 if (global_rt_runtime() != RUNTIME_INF)
7967 new_bw = to_ratio(global_rt_period(), global_rt_runtime());
7968
7969 /*
7970 * FIXME: As above...
7971 */
7972 for_each_possible_cpu(cpu) {
f10e00f4
KT
7973 rcu_read_lock_sched();
7974 dl_b = dl_bw_of(cpu);
1724813d 7975
49516342 7976 raw_spin_lock_irqsave(&dl_b->lock, flags);
1724813d 7977 dl_b->bw = new_bw;
49516342 7978 raw_spin_unlock_irqrestore(&dl_b->lock, flags);
f10e00f4
KT
7979
7980 rcu_read_unlock_sched();
ce0dbbbb 7981 }
1724813d
PZ
7982}
7983
7984static int sched_rt_global_validate(void)
7985{
7986 if (sysctl_sched_rt_period <= 0)
7987 return -EINVAL;
7988
e9e7cb38
JL
7989 if ((sysctl_sched_rt_runtime != RUNTIME_INF) &&
7990 (sysctl_sched_rt_runtime > sysctl_sched_rt_period))
1724813d
PZ
7991 return -EINVAL;
7992
7993 return 0;
7994}
7995
7996static void sched_rt_do_global(void)
7997{
7998 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7999 def_rt_bandwidth.rt_period = ns_to_ktime(global_rt_period());
ce0dbbbb
CW
8000}
8001
d0b27fa7 8002int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 8003 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
8004 loff_t *ppos)
8005{
d0b27fa7
PZ
8006 int old_period, old_runtime;
8007 static DEFINE_MUTEX(mutex);
1724813d 8008 int ret;
d0b27fa7
PZ
8009
8010 mutex_lock(&mutex);
8011 old_period = sysctl_sched_rt_period;
8012 old_runtime = sysctl_sched_rt_runtime;
8013
8d65af78 8014 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
8015
8016 if (!ret && write) {
1724813d
PZ
8017 ret = sched_rt_global_validate();
8018 if (ret)
8019 goto undo;
8020
a1963b81 8021 ret = sched_dl_global_validate();
1724813d
PZ
8022 if (ret)
8023 goto undo;
8024
a1963b81 8025 ret = sched_rt_global_constraints();
1724813d
PZ
8026 if (ret)
8027 goto undo;
8028
8029 sched_rt_do_global();
8030 sched_dl_do_global();
8031 }
8032 if (0) {
8033undo:
8034 sysctl_sched_rt_period = old_period;
8035 sysctl_sched_rt_runtime = old_runtime;
d0b27fa7
PZ
8036 }
8037 mutex_unlock(&mutex);
8038
8039 return ret;
8040}
68318b8e 8041
1724813d 8042int sched_rr_handler(struct ctl_table *table, int write,
332ac17e
DF
8043 void __user *buffer, size_t *lenp,
8044 loff_t *ppos)
8045{
8046 int ret;
332ac17e 8047 static DEFINE_MUTEX(mutex);
332ac17e
DF
8048
8049 mutex_lock(&mutex);
332ac17e 8050 ret = proc_dointvec(table, write, buffer, lenp, ppos);
1724813d
PZ
8051 /* make sure that internally we keep jiffies */
8052 /* also, writing zero resets timeslice to default */
332ac17e 8053 if (!ret && write) {
1724813d
PZ
8054 sched_rr_timeslice = sched_rr_timeslice <= 0 ?
8055 RR_TIMESLICE : msecs_to_jiffies(sched_rr_timeslice);
332ac17e
DF
8056 }
8057 mutex_unlock(&mutex);
332ac17e
DF
8058 return ret;
8059}
8060
052f1dc7 8061#ifdef CONFIG_CGROUP_SCHED
68318b8e 8062
a7c6d554 8063static inline struct task_group *css_tg(struct cgroup_subsys_state *css)
68318b8e 8064{
a7c6d554 8065 return css ? container_of(css, struct task_group, css) : NULL;
68318b8e
SV
8066}
8067
eb95419b
TH
8068static struct cgroup_subsys_state *
8069cpu_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
68318b8e 8070{
eb95419b
TH
8071 struct task_group *parent = css_tg(parent_css);
8072 struct task_group *tg;
68318b8e 8073
eb95419b 8074 if (!parent) {
68318b8e 8075 /* This is early initialization for the top cgroup */
07e06b01 8076 return &root_task_group.css;
68318b8e
SV
8077 }
8078
ec7dc8ac 8079 tg = sched_create_group(parent);
68318b8e
SV
8080 if (IS_ERR(tg))
8081 return ERR_PTR(-ENOMEM);
8082
2f5177f0
PZ
8083 sched_online_group(tg, parent);
8084
68318b8e
SV
8085 return &tg->css;
8086}
8087
2f5177f0 8088static void cpu_cgroup_css_released(struct cgroup_subsys_state *css)
ace783b9 8089{
eb95419b 8090 struct task_group *tg = css_tg(css);
ace783b9 8091
2f5177f0 8092 sched_offline_group(tg);
ace783b9
LZ
8093}
8094
eb95419b 8095static void cpu_cgroup_css_free(struct cgroup_subsys_state *css)
68318b8e 8096{
eb95419b 8097 struct task_group *tg = css_tg(css);
68318b8e 8098
2f5177f0
PZ
8099 /*
8100 * Relies on the RCU grace period between css_released() and this.
8101 */
8102 sched_free_group(tg);
ace783b9
LZ
8103}
8104
b53202e6 8105static void cpu_cgroup_fork(struct task_struct *task)
eeb61e53
KT
8106{
8107 sched_move_task(task);
8108}
8109
1f7dd3e5 8110static int cpu_cgroup_can_attach(struct cgroup_taskset *tset)
68318b8e 8111{
bb9d97b6 8112 struct task_struct *task;
1f7dd3e5 8113 struct cgroup_subsys_state *css;
bb9d97b6 8114
1f7dd3e5 8115 cgroup_taskset_for_each(task, css, tset) {
b68aa230 8116#ifdef CONFIG_RT_GROUP_SCHED
eb95419b 8117 if (!sched_rt_can_attach(css_tg(css), task))
bb9d97b6 8118 return -EINVAL;
b68aa230 8119#else
bb9d97b6
TH
8120 /* We don't support RT-tasks being in separate groups */
8121 if (task->sched_class != &fair_sched_class)
8122 return -EINVAL;
b68aa230 8123#endif
bb9d97b6 8124 }
be367d09
BB
8125 return 0;
8126}
68318b8e 8127
1f7dd3e5 8128static void cpu_cgroup_attach(struct cgroup_taskset *tset)
68318b8e 8129{
bb9d97b6 8130 struct task_struct *task;
1f7dd3e5 8131 struct cgroup_subsys_state *css;
bb9d97b6 8132
1f7dd3e5 8133 cgroup_taskset_for_each(task, css, tset)
bb9d97b6 8134 sched_move_task(task);
68318b8e
SV
8135}
8136
052f1dc7 8137#ifdef CONFIG_FAIR_GROUP_SCHED
182446d0
TH
8138static int cpu_shares_write_u64(struct cgroup_subsys_state *css,
8139 struct cftype *cftype, u64 shareval)
68318b8e 8140{
182446d0 8141 return sched_group_set_shares(css_tg(css), scale_load(shareval));
68318b8e
SV
8142}
8143
182446d0
TH
8144static u64 cpu_shares_read_u64(struct cgroup_subsys_state *css,
8145 struct cftype *cft)
68318b8e 8146{
182446d0 8147 struct task_group *tg = css_tg(css);
68318b8e 8148
c8b28116 8149 return (u64) scale_load_down(tg->shares);
68318b8e 8150}
ab84d31e
PT
8151
8152#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
8153static DEFINE_MUTEX(cfs_constraints_mutex);
8154
ab84d31e
PT
8155const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
8156const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
8157
a790de99
PT
8158static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
8159
ab84d31e
PT
8160static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
8161{
56f570e5 8162 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 8163 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
8164
8165 if (tg == &root_task_group)
8166 return -EINVAL;
8167
8168 /*
8169 * Ensure we have at some amount of bandwidth every period. This is
8170 * to prevent reaching a state of large arrears when throttled via
8171 * entity_tick() resulting in prolonged exit starvation.
8172 */
8173 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
8174 return -EINVAL;
8175
8176 /*
8177 * Likewise, bound things on the otherside by preventing insane quota
8178 * periods. This also allows us to normalize in computing quota
8179 * feasibility.
8180 */
8181 if (period > max_cfs_quota_period)
8182 return -EINVAL;
8183
0e59bdae
KT
8184 /*
8185 * Prevent race between setting of cfs_rq->runtime_enabled and
8186 * unthrottle_offline_cfs_rqs().
8187 */
8188 get_online_cpus();
a790de99
PT
8189 mutex_lock(&cfs_constraints_mutex);
8190 ret = __cfs_schedulable(tg, period, quota);
8191 if (ret)
8192 goto out_unlock;
8193
58088ad0 8194 runtime_enabled = quota != RUNTIME_INF;
56f570e5 8195 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
1ee14e6c
BS
8196 /*
8197 * If we need to toggle cfs_bandwidth_used, off->on must occur
8198 * before making related changes, and on->off must occur afterwards
8199 */
8200 if (runtime_enabled && !runtime_was_enabled)
8201 cfs_bandwidth_usage_inc();
ab84d31e
PT
8202 raw_spin_lock_irq(&cfs_b->lock);
8203 cfs_b->period = ns_to_ktime(period);
8204 cfs_b->quota = quota;
58088ad0 8205
a9cf55b2 8206 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0 8207 /* restart the period timer (if active) to handle new period expiry */
77a4d1a1
PZ
8208 if (runtime_enabled)
8209 start_cfs_bandwidth(cfs_b);
ab84d31e
PT
8210 raw_spin_unlock_irq(&cfs_b->lock);
8211
0e59bdae 8212 for_each_online_cpu(i) {
ab84d31e 8213 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 8214 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
8215
8216 raw_spin_lock_irq(&rq->lock);
58088ad0 8217 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 8218 cfs_rq->runtime_remaining = 0;
671fd9da 8219
029632fb 8220 if (cfs_rq->throttled)
671fd9da 8221 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
8222 raw_spin_unlock_irq(&rq->lock);
8223 }
1ee14e6c
BS
8224 if (runtime_was_enabled && !runtime_enabled)
8225 cfs_bandwidth_usage_dec();
a790de99
PT
8226out_unlock:
8227 mutex_unlock(&cfs_constraints_mutex);
0e59bdae 8228 put_online_cpus();
ab84d31e 8229
a790de99 8230 return ret;
ab84d31e
PT
8231}
8232
8233int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
8234{
8235 u64 quota, period;
8236
029632fb 8237 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8238 if (cfs_quota_us < 0)
8239 quota = RUNTIME_INF;
8240 else
8241 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
8242
8243 return tg_set_cfs_bandwidth(tg, period, quota);
8244}
8245
8246long tg_get_cfs_quota(struct task_group *tg)
8247{
8248 u64 quota_us;
8249
029632fb 8250 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
8251 return -1;
8252
029632fb 8253 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
8254 do_div(quota_us, NSEC_PER_USEC);
8255
8256 return quota_us;
8257}
8258
8259int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
8260{
8261 u64 quota, period;
8262
8263 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 8264 quota = tg->cfs_bandwidth.quota;
ab84d31e 8265
ab84d31e
PT
8266 return tg_set_cfs_bandwidth(tg, period, quota);
8267}
8268
8269long tg_get_cfs_period(struct task_group *tg)
8270{
8271 u64 cfs_period_us;
8272
029632fb 8273 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
8274 do_div(cfs_period_us, NSEC_PER_USEC);
8275
8276 return cfs_period_us;
8277}
8278
182446d0
TH
8279static s64 cpu_cfs_quota_read_s64(struct cgroup_subsys_state *css,
8280 struct cftype *cft)
ab84d31e 8281{
182446d0 8282 return tg_get_cfs_quota(css_tg(css));
ab84d31e
PT
8283}
8284
182446d0
TH
8285static int cpu_cfs_quota_write_s64(struct cgroup_subsys_state *css,
8286 struct cftype *cftype, s64 cfs_quota_us)
ab84d31e 8287{
182446d0 8288 return tg_set_cfs_quota(css_tg(css), cfs_quota_us);
ab84d31e
PT
8289}
8290
182446d0
TH
8291static u64 cpu_cfs_period_read_u64(struct cgroup_subsys_state *css,
8292 struct cftype *cft)
ab84d31e 8293{
182446d0 8294 return tg_get_cfs_period(css_tg(css));
ab84d31e
PT
8295}
8296
182446d0
TH
8297static int cpu_cfs_period_write_u64(struct cgroup_subsys_state *css,
8298 struct cftype *cftype, u64 cfs_period_us)
ab84d31e 8299{
182446d0 8300 return tg_set_cfs_period(css_tg(css), cfs_period_us);
ab84d31e
PT
8301}
8302
a790de99
PT
8303struct cfs_schedulable_data {
8304 struct task_group *tg;
8305 u64 period, quota;
8306};
8307
8308/*
8309 * normalize group quota/period to be quota/max_period
8310 * note: units are usecs
8311 */
8312static u64 normalize_cfs_quota(struct task_group *tg,
8313 struct cfs_schedulable_data *d)
8314{
8315 u64 quota, period;
8316
8317 if (tg == d->tg) {
8318 period = d->period;
8319 quota = d->quota;
8320 } else {
8321 period = tg_get_cfs_period(tg);
8322 quota = tg_get_cfs_quota(tg);
8323 }
8324
8325 /* note: these should typically be equivalent */
8326 if (quota == RUNTIME_INF || quota == -1)
8327 return RUNTIME_INF;
8328
8329 return to_ratio(period, quota);
8330}
8331
8332static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
8333{
8334 struct cfs_schedulable_data *d = data;
029632fb 8335 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
8336 s64 quota = 0, parent_quota = -1;
8337
8338 if (!tg->parent) {
8339 quota = RUNTIME_INF;
8340 } else {
029632fb 8341 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
8342
8343 quota = normalize_cfs_quota(tg, d);
9c58c79a 8344 parent_quota = parent_b->hierarchical_quota;
a790de99
PT
8345
8346 /*
8347 * ensure max(child_quota) <= parent_quota, inherit when no
8348 * limit is set
8349 */
8350 if (quota == RUNTIME_INF)
8351 quota = parent_quota;
8352 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
8353 return -EINVAL;
8354 }
9c58c79a 8355 cfs_b->hierarchical_quota = quota;
a790de99
PT
8356
8357 return 0;
8358}
8359
8360static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
8361{
8277434e 8362 int ret;
a790de99
PT
8363 struct cfs_schedulable_data data = {
8364 .tg = tg,
8365 .period = period,
8366 .quota = quota,
8367 };
8368
8369 if (quota != RUNTIME_INF) {
8370 do_div(data.period, NSEC_PER_USEC);
8371 do_div(data.quota, NSEC_PER_USEC);
8372 }
8373
8277434e
PT
8374 rcu_read_lock();
8375 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8376 rcu_read_unlock();
8377
8378 return ret;
a790de99 8379}
e8da1b18 8380
2da8ca82 8381static int cpu_stats_show(struct seq_file *sf, void *v)
e8da1b18 8382{
2da8ca82 8383 struct task_group *tg = css_tg(seq_css(sf));
029632fb 8384 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18 8385
44ffc75b
TH
8386 seq_printf(sf, "nr_periods %d\n", cfs_b->nr_periods);
8387 seq_printf(sf, "nr_throttled %d\n", cfs_b->nr_throttled);
8388 seq_printf(sf, "throttled_time %llu\n", cfs_b->throttled_time);
e8da1b18
NR
8389
8390 return 0;
8391}
ab84d31e 8392#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8393#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8394
052f1dc7 8395#ifdef CONFIG_RT_GROUP_SCHED
182446d0
TH
8396static int cpu_rt_runtime_write(struct cgroup_subsys_state *css,
8397 struct cftype *cft, s64 val)
6f505b16 8398{
182446d0 8399 return sched_group_set_rt_runtime(css_tg(css), val);
6f505b16
PZ
8400}
8401
182446d0
TH
8402static s64 cpu_rt_runtime_read(struct cgroup_subsys_state *css,
8403 struct cftype *cft)
6f505b16 8404{
182446d0 8405 return sched_group_rt_runtime(css_tg(css));
6f505b16 8406}
d0b27fa7 8407
182446d0
TH
8408static int cpu_rt_period_write_uint(struct cgroup_subsys_state *css,
8409 struct cftype *cftype, u64 rt_period_us)
d0b27fa7 8410{
182446d0 8411 return sched_group_set_rt_period(css_tg(css), rt_period_us);
d0b27fa7
PZ
8412}
8413
182446d0
TH
8414static u64 cpu_rt_period_read_uint(struct cgroup_subsys_state *css,
8415 struct cftype *cft)
d0b27fa7 8416{
182446d0 8417 return sched_group_rt_period(css_tg(css));
d0b27fa7 8418}
6d6bc0ad 8419#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8420
fe5c7cc2 8421static struct cftype cpu_files[] = {
052f1dc7 8422#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8423 {
8424 .name = "shares",
f4c753b7
PM
8425 .read_u64 = cpu_shares_read_u64,
8426 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8427 },
052f1dc7 8428#endif
ab84d31e
PT
8429#ifdef CONFIG_CFS_BANDWIDTH
8430 {
8431 .name = "cfs_quota_us",
8432 .read_s64 = cpu_cfs_quota_read_s64,
8433 .write_s64 = cpu_cfs_quota_write_s64,
8434 },
8435 {
8436 .name = "cfs_period_us",
8437 .read_u64 = cpu_cfs_period_read_u64,
8438 .write_u64 = cpu_cfs_period_write_u64,
8439 },
e8da1b18
NR
8440 {
8441 .name = "stat",
2da8ca82 8442 .seq_show = cpu_stats_show,
e8da1b18 8443 },
ab84d31e 8444#endif
052f1dc7 8445#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8446 {
9f0c1e56 8447 .name = "rt_runtime_us",
06ecb27c
PM
8448 .read_s64 = cpu_rt_runtime_read,
8449 .write_s64 = cpu_rt_runtime_write,
6f505b16 8450 },
d0b27fa7
PZ
8451 {
8452 .name = "rt_period_us",
f4c753b7
PM
8453 .read_u64 = cpu_rt_period_read_uint,
8454 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8455 },
052f1dc7 8456#endif
4baf6e33 8457 { } /* terminate */
68318b8e
SV
8458};
8459
073219e9 8460struct cgroup_subsys cpu_cgrp_subsys = {
92fb9748 8461 .css_alloc = cpu_cgroup_css_alloc,
2f5177f0 8462 .css_released = cpu_cgroup_css_released,
92fb9748 8463 .css_free = cpu_cgroup_css_free,
eeb61e53 8464 .fork = cpu_cgroup_fork,
bb9d97b6
TH
8465 .can_attach = cpu_cgroup_can_attach,
8466 .attach = cpu_cgroup_attach,
5577964e 8467 .legacy_cftypes = cpu_files,
b38e42e9 8468 .early_init = true,
68318b8e
SV
8469};
8470
052f1dc7 8471#endif /* CONFIG_CGROUP_SCHED */
d842de87 8472
b637a328
PM
8473void dump_cpu_task(int cpu)
8474{
8475 pr_info("Task dump for CPU %d:\n", cpu);
8476 sched_show_task(cpu_curr(cpu));
8477}
ed82b8a1
AK
8478
8479/*
8480 * Nice levels are multiplicative, with a gentle 10% change for every
8481 * nice level changed. I.e. when a CPU-bound task goes from nice 0 to
8482 * nice 1, it will get ~10% less CPU time than another CPU-bound task
8483 * that remained on nice 0.
8484 *
8485 * The "10% effect" is relative and cumulative: from _any_ nice level,
8486 * if you go up 1 level, it's -10% CPU usage, if you go down 1 level
8487 * it's +10% CPU usage. (to achieve that we use a multiplier of 1.25.
8488 * If a task goes up by ~10% and another task goes down by ~10% then
8489 * the relative distance between them is ~25%.)
8490 */
8491const int sched_prio_to_weight[40] = {
8492 /* -20 */ 88761, 71755, 56483, 46273, 36291,
8493 /* -15 */ 29154, 23254, 18705, 14949, 11916,
8494 /* -10 */ 9548, 7620, 6100, 4904, 3906,
8495 /* -5 */ 3121, 2501, 1991, 1586, 1277,
8496 /* 0 */ 1024, 820, 655, 526, 423,
8497 /* 5 */ 335, 272, 215, 172, 137,
8498 /* 10 */ 110, 87, 70, 56, 45,
8499 /* 15 */ 36, 29, 23, 18, 15,
8500};
8501
8502/*
8503 * Inverse (2^32/x) values of the sched_prio_to_weight[] array, precalculated.
8504 *
8505 * In cases where the weight does not change often, we can use the
8506 * precalculated inverse to speed up arithmetics by turning divisions
8507 * into multiplications:
8508 */
8509const u32 sched_prio_to_wmult[40] = {
8510 /* -20 */ 48388, 59856, 76040, 92818, 118348,
8511 /* -15 */ 147320, 184698, 229616, 287308, 360437,
8512 /* -10 */ 449829, 563644, 704093, 875809, 1099582,
8513 /* -5 */ 1376151, 1717300, 2157191, 2708050, 3363326,
8514 /* 0 */ 4194304, 5237765, 6557202, 8165337, 10153587,
8515 /* 5 */ 12820798, 15790321, 19976592, 24970740, 31350126,
8516 /* 10 */ 39045157, 49367440, 61356676, 76695844, 95443717,
8517 /* 15 */ 119304647, 148102320, 186737708, 238609294, 286331153,
8518};
This page took 2.882827 seconds and 5 git commands to generate.