sched: Always initialize cpu-power
[deliverable/linux.git] / kernel / sched / core.c
CommitLineData
1da177e4 1/*
391e43da 2 * kernel/sched/core.c
1da177e4
LT
3 *
4 * Kernel scheduler and related syscalls
5 *
6 * Copyright (C) 1991-2002 Linus Torvalds
7 *
8 * 1996-12-23 Modified by Dave Grothe to fix bugs in semaphores and
9 * make semaphores SMP safe
10 * 1998-11-19 Implemented schedule_timeout() and related stuff
11 * by Andrea Arcangeli
12 * 2002-01-04 New ultra-scalable O(1) scheduler by Ingo Molnar:
13 * hybrid priority-list and round-robin design with
14 * an array-switch method of distributing timeslices
15 * and per-CPU runqueues. Cleanups and useful suggestions
16 * by Davide Libenzi, preemptible kernel bits by Robert Love.
17 * 2003-09-03 Interactivity tuning by Con Kolivas.
18 * 2004-04-02 Scheduler domains code by Nick Piggin
c31f2e8a
IM
19 * 2007-04-15 Work begun on replacing all interactivity tuning with a
20 * fair scheduling design by Con Kolivas.
21 * 2007-05-05 Load balancing (smp-nice) and other improvements
22 * by Peter Williams
23 * 2007-05-06 Interactivity improvements to CFS by Mike Galbraith
24 * 2007-07-01 Group scheduling enhancements by Srivatsa Vaddagiri
b9131769
IM
25 * 2007-11-29 RT balancing improvements by Steven Rostedt, Gregory Haskins,
26 * Thomas Gleixner, Mike Kravetz
1da177e4
LT
27 */
28
29#include <linux/mm.h>
30#include <linux/module.h>
31#include <linux/nmi.h>
32#include <linux/init.h>
dff06c15 33#include <linux/uaccess.h>
1da177e4 34#include <linux/highmem.h>
1da177e4
LT
35#include <asm/mmu_context.h>
36#include <linux/interrupt.h>
c59ede7b 37#include <linux/capability.h>
1da177e4
LT
38#include <linux/completion.h>
39#include <linux/kernel_stat.h>
9a11b49a 40#include <linux/debug_locks.h>
cdd6c482 41#include <linux/perf_event.h>
1da177e4
LT
42#include <linux/security.h>
43#include <linux/notifier.h>
44#include <linux/profile.h>
7dfb7103 45#include <linux/freezer.h>
198e2f18 46#include <linux/vmalloc.h>
1da177e4
LT
47#include <linux/blkdev.h>
48#include <linux/delay.h>
b488893a 49#include <linux/pid_namespace.h>
1da177e4
LT
50#include <linux/smp.h>
51#include <linux/threads.h>
52#include <linux/timer.h>
53#include <linux/rcupdate.h>
54#include <linux/cpu.h>
55#include <linux/cpuset.h>
56#include <linux/percpu.h>
b5aadf7f 57#include <linux/proc_fs.h>
1da177e4 58#include <linux/seq_file.h>
e692ab53 59#include <linux/sysctl.h>
1da177e4
LT
60#include <linux/syscalls.h>
61#include <linux/times.h>
8f0ab514 62#include <linux/tsacct_kern.h>
c6fd91f0 63#include <linux/kprobes.h>
0ff92245 64#include <linux/delayacct.h>
dff06c15 65#include <linux/unistd.h>
f5ff8422 66#include <linux/pagemap.h>
8f4d37ec 67#include <linux/hrtimer.h>
30914a58 68#include <linux/tick.h>
f00b45c1
PZ
69#include <linux/debugfs.h>
70#include <linux/ctype.h>
6cd8a4bb 71#include <linux/ftrace.h>
5a0e3ad6 72#include <linux/slab.h>
f1c6f1a7 73#include <linux/init_task.h>
40401530 74#include <linux/binfmts.h>
1da177e4 75
96f951ed 76#include <asm/switch_to.h>
5517d86b 77#include <asm/tlb.h>
838225b4 78#include <asm/irq_regs.h>
db7e527d 79#include <asm/mutex.h>
e6e6685a
GC
80#ifdef CONFIG_PARAVIRT
81#include <asm/paravirt.h>
82#endif
1da177e4 83
029632fb 84#include "sched.h"
391e43da 85#include "../workqueue_sched.h"
29d5e047 86#include "../smpboot.h"
6e0534f2 87
a8d154b0 88#define CREATE_TRACE_POINTS
ad8d75ff 89#include <trace/events/sched.h>
a8d154b0 90
029632fb 91void start_bandwidth_timer(struct hrtimer *period_timer, ktime_t period)
d0b27fa7 92{
58088ad0
PT
93 unsigned long delta;
94 ktime_t soft, hard, now;
d0b27fa7 95
58088ad0
PT
96 for (;;) {
97 if (hrtimer_active(period_timer))
98 break;
99
100 now = hrtimer_cb_get_time(period_timer);
101 hrtimer_forward(period_timer, now, period);
d0b27fa7 102
58088ad0
PT
103 soft = hrtimer_get_softexpires(period_timer);
104 hard = hrtimer_get_expires(period_timer);
105 delta = ktime_to_ns(ktime_sub(hard, soft));
106 __hrtimer_start_range_ns(period_timer, soft, delta,
107 HRTIMER_MODE_ABS_PINNED, 0);
108 }
109}
110
029632fb
PZ
111DEFINE_MUTEX(sched_domains_mutex);
112DEFINE_PER_CPU_SHARED_ALIGNED(struct rq, runqueues);
dc61b1d6 113
fe44d621 114static void update_rq_clock_task(struct rq *rq, s64 delta);
305e6835 115
029632fb 116void update_rq_clock(struct rq *rq)
3e51f33f 117{
fe44d621 118 s64 delta;
305e6835 119
61eadef6 120 if (rq->skip_clock_update > 0)
f26f9aff 121 return;
aa483808 122
fe44d621
PZ
123 delta = sched_clock_cpu(cpu_of(rq)) - rq->clock;
124 rq->clock += delta;
125 update_rq_clock_task(rq, delta);
3e51f33f
PZ
126}
127
bf5c91ba
IM
128/*
129 * Debugging: various feature bits
130 */
f00b45c1 131
f00b45c1
PZ
132#define SCHED_FEAT(name, enabled) \
133 (1UL << __SCHED_FEAT_##name) * enabled |
134
bf5c91ba 135const_debug unsigned int sysctl_sched_features =
391e43da 136#include "features.h"
f00b45c1
PZ
137 0;
138
139#undef SCHED_FEAT
140
141#ifdef CONFIG_SCHED_DEBUG
142#define SCHED_FEAT(name, enabled) \
143 #name ,
144
1292531f 145static const char * const sched_feat_names[] = {
391e43da 146#include "features.h"
f00b45c1
PZ
147};
148
149#undef SCHED_FEAT
150
34f3a814 151static int sched_feat_show(struct seq_file *m, void *v)
f00b45c1 152{
f00b45c1
PZ
153 int i;
154
f8b6d1cc 155 for (i = 0; i < __SCHED_FEAT_NR; i++) {
34f3a814
LZ
156 if (!(sysctl_sched_features & (1UL << i)))
157 seq_puts(m, "NO_");
158 seq_printf(m, "%s ", sched_feat_names[i]);
f00b45c1 159 }
34f3a814 160 seq_puts(m, "\n");
f00b45c1 161
34f3a814 162 return 0;
f00b45c1
PZ
163}
164
f8b6d1cc
PZ
165#ifdef HAVE_JUMP_LABEL
166
c5905afb
IM
167#define jump_label_key__true STATIC_KEY_INIT_TRUE
168#define jump_label_key__false STATIC_KEY_INIT_FALSE
f8b6d1cc
PZ
169
170#define SCHED_FEAT(name, enabled) \
171 jump_label_key__##enabled ,
172
c5905afb 173struct static_key sched_feat_keys[__SCHED_FEAT_NR] = {
f8b6d1cc
PZ
174#include "features.h"
175};
176
177#undef SCHED_FEAT
178
179static void sched_feat_disable(int i)
180{
c5905afb
IM
181 if (static_key_enabled(&sched_feat_keys[i]))
182 static_key_slow_dec(&sched_feat_keys[i]);
f8b6d1cc
PZ
183}
184
185static void sched_feat_enable(int i)
186{
c5905afb
IM
187 if (!static_key_enabled(&sched_feat_keys[i]))
188 static_key_slow_inc(&sched_feat_keys[i]);
f8b6d1cc
PZ
189}
190#else
191static void sched_feat_disable(int i) { };
192static void sched_feat_enable(int i) { };
193#endif /* HAVE_JUMP_LABEL */
194
f00b45c1
PZ
195static ssize_t
196sched_feat_write(struct file *filp, const char __user *ubuf,
197 size_t cnt, loff_t *ppos)
198{
199 char buf[64];
7740191c 200 char *cmp;
f00b45c1
PZ
201 int neg = 0;
202 int i;
203
204 if (cnt > 63)
205 cnt = 63;
206
207 if (copy_from_user(&buf, ubuf, cnt))
208 return -EFAULT;
209
210 buf[cnt] = 0;
7740191c 211 cmp = strstrip(buf);
f00b45c1 212
524429c3 213 if (strncmp(cmp, "NO_", 3) == 0) {
f00b45c1
PZ
214 neg = 1;
215 cmp += 3;
216 }
217
f8b6d1cc 218 for (i = 0; i < __SCHED_FEAT_NR; i++) {
7740191c 219 if (strcmp(cmp, sched_feat_names[i]) == 0) {
f8b6d1cc 220 if (neg) {
f00b45c1 221 sysctl_sched_features &= ~(1UL << i);
f8b6d1cc
PZ
222 sched_feat_disable(i);
223 } else {
f00b45c1 224 sysctl_sched_features |= (1UL << i);
f8b6d1cc
PZ
225 sched_feat_enable(i);
226 }
f00b45c1
PZ
227 break;
228 }
229 }
230
f8b6d1cc 231 if (i == __SCHED_FEAT_NR)
f00b45c1
PZ
232 return -EINVAL;
233
42994724 234 *ppos += cnt;
f00b45c1
PZ
235
236 return cnt;
237}
238
34f3a814
LZ
239static int sched_feat_open(struct inode *inode, struct file *filp)
240{
241 return single_open(filp, sched_feat_show, NULL);
242}
243
828c0950 244static const struct file_operations sched_feat_fops = {
34f3a814
LZ
245 .open = sched_feat_open,
246 .write = sched_feat_write,
247 .read = seq_read,
248 .llseek = seq_lseek,
249 .release = single_release,
f00b45c1
PZ
250};
251
252static __init int sched_init_debug(void)
253{
f00b45c1
PZ
254 debugfs_create_file("sched_features", 0644, NULL, NULL,
255 &sched_feat_fops);
256
257 return 0;
258}
259late_initcall(sched_init_debug);
f8b6d1cc 260#endif /* CONFIG_SCHED_DEBUG */
bf5c91ba 261
b82d9fdd
PZ
262/*
263 * Number of tasks to iterate in a single balance run.
264 * Limited because this is done with IRQs disabled.
265 */
266const_debug unsigned int sysctl_sched_nr_migrate = 32;
267
e9e9250b
PZ
268/*
269 * period over which we average the RT time consumption, measured
270 * in ms.
271 *
272 * default: 1s
273 */
274const_debug unsigned int sysctl_sched_time_avg = MSEC_PER_SEC;
275
fa85ae24 276/*
9f0c1e56 277 * period over which we measure -rt task cpu usage in us.
fa85ae24
PZ
278 * default: 1s
279 */
9f0c1e56 280unsigned int sysctl_sched_rt_period = 1000000;
fa85ae24 281
029632fb 282__read_mostly int scheduler_running;
6892b75e 283
9f0c1e56
PZ
284/*
285 * part of the period that we allow rt tasks to run in us.
286 * default: 0.95s
287 */
288int sysctl_sched_rt_runtime = 950000;
fa85ae24 289
fa85ae24 290
1da177e4 291
0970d299 292/*
0122ec5b 293 * __task_rq_lock - lock the rq @p resides on.
b29739f9 294 */
70b97a7f 295static inline struct rq *__task_rq_lock(struct task_struct *p)
b29739f9
IM
296 __acquires(rq->lock)
297{
0970d299
PZ
298 struct rq *rq;
299
0122ec5b
PZ
300 lockdep_assert_held(&p->pi_lock);
301
3a5c359a 302 for (;;) {
0970d299 303 rq = task_rq(p);
05fa785c 304 raw_spin_lock(&rq->lock);
65cc8e48 305 if (likely(rq == task_rq(p)))
3a5c359a 306 return rq;
05fa785c 307 raw_spin_unlock(&rq->lock);
b29739f9 308 }
b29739f9
IM
309}
310
1da177e4 311/*
0122ec5b 312 * task_rq_lock - lock p->pi_lock and lock the rq @p resides on.
1da177e4 313 */
70b97a7f 314static struct rq *task_rq_lock(struct task_struct *p, unsigned long *flags)
0122ec5b 315 __acquires(p->pi_lock)
1da177e4
LT
316 __acquires(rq->lock)
317{
70b97a7f 318 struct rq *rq;
1da177e4 319
3a5c359a 320 for (;;) {
0122ec5b 321 raw_spin_lock_irqsave(&p->pi_lock, *flags);
3a5c359a 322 rq = task_rq(p);
05fa785c 323 raw_spin_lock(&rq->lock);
65cc8e48 324 if (likely(rq == task_rq(p)))
3a5c359a 325 return rq;
0122ec5b
PZ
326 raw_spin_unlock(&rq->lock);
327 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4 328 }
1da177e4
LT
329}
330
a9957449 331static void __task_rq_unlock(struct rq *rq)
b29739f9
IM
332 __releases(rq->lock)
333{
05fa785c 334 raw_spin_unlock(&rq->lock);
b29739f9
IM
335}
336
0122ec5b
PZ
337static inline void
338task_rq_unlock(struct rq *rq, struct task_struct *p, unsigned long *flags)
1da177e4 339 __releases(rq->lock)
0122ec5b 340 __releases(p->pi_lock)
1da177e4 341{
0122ec5b
PZ
342 raw_spin_unlock(&rq->lock);
343 raw_spin_unlock_irqrestore(&p->pi_lock, *flags);
1da177e4
LT
344}
345
1da177e4 346/*
cc2a73b5 347 * this_rq_lock - lock this runqueue and disable interrupts.
1da177e4 348 */
a9957449 349static struct rq *this_rq_lock(void)
1da177e4
LT
350 __acquires(rq->lock)
351{
70b97a7f 352 struct rq *rq;
1da177e4
LT
353
354 local_irq_disable();
355 rq = this_rq();
05fa785c 356 raw_spin_lock(&rq->lock);
1da177e4
LT
357
358 return rq;
359}
360
8f4d37ec
PZ
361#ifdef CONFIG_SCHED_HRTICK
362/*
363 * Use HR-timers to deliver accurate preemption points.
364 *
365 * Its all a bit involved since we cannot program an hrt while holding the
366 * rq->lock. So what we do is store a state in in rq->hrtick_* and ask for a
367 * reschedule event.
368 *
369 * When we get rescheduled we reprogram the hrtick_timer outside of the
370 * rq->lock.
371 */
8f4d37ec 372
8f4d37ec
PZ
373static void hrtick_clear(struct rq *rq)
374{
375 if (hrtimer_active(&rq->hrtick_timer))
376 hrtimer_cancel(&rq->hrtick_timer);
377}
378
8f4d37ec
PZ
379/*
380 * High-resolution timer tick.
381 * Runs from hardirq context with interrupts disabled.
382 */
383static enum hrtimer_restart hrtick(struct hrtimer *timer)
384{
385 struct rq *rq = container_of(timer, struct rq, hrtick_timer);
386
387 WARN_ON_ONCE(cpu_of(rq) != smp_processor_id());
388
05fa785c 389 raw_spin_lock(&rq->lock);
3e51f33f 390 update_rq_clock(rq);
8f4d37ec 391 rq->curr->sched_class->task_tick(rq, rq->curr, 1);
05fa785c 392 raw_spin_unlock(&rq->lock);
8f4d37ec
PZ
393
394 return HRTIMER_NORESTART;
395}
396
95e904c7 397#ifdef CONFIG_SMP
31656519
PZ
398/*
399 * called from hardirq (IPI) context
400 */
401static void __hrtick_start(void *arg)
b328ca18 402{
31656519 403 struct rq *rq = arg;
b328ca18 404
05fa785c 405 raw_spin_lock(&rq->lock);
31656519
PZ
406 hrtimer_restart(&rq->hrtick_timer);
407 rq->hrtick_csd_pending = 0;
05fa785c 408 raw_spin_unlock(&rq->lock);
b328ca18
PZ
409}
410
31656519
PZ
411/*
412 * Called to set the hrtick timer state.
413 *
414 * called with rq->lock held and irqs disabled
415 */
029632fb 416void hrtick_start(struct rq *rq, u64 delay)
b328ca18 417{
31656519
PZ
418 struct hrtimer *timer = &rq->hrtick_timer;
419 ktime_t time = ktime_add_ns(timer->base->get_time(), delay);
b328ca18 420
cc584b21 421 hrtimer_set_expires(timer, time);
31656519
PZ
422
423 if (rq == this_rq()) {
424 hrtimer_restart(timer);
425 } else if (!rq->hrtick_csd_pending) {
6e275637 426 __smp_call_function_single(cpu_of(rq), &rq->hrtick_csd, 0);
31656519
PZ
427 rq->hrtick_csd_pending = 1;
428 }
b328ca18
PZ
429}
430
431static int
432hotplug_hrtick(struct notifier_block *nfb, unsigned long action, void *hcpu)
433{
434 int cpu = (int)(long)hcpu;
435
436 switch (action) {
437 case CPU_UP_CANCELED:
438 case CPU_UP_CANCELED_FROZEN:
439 case CPU_DOWN_PREPARE:
440 case CPU_DOWN_PREPARE_FROZEN:
441 case CPU_DEAD:
442 case CPU_DEAD_FROZEN:
31656519 443 hrtick_clear(cpu_rq(cpu));
b328ca18
PZ
444 return NOTIFY_OK;
445 }
446
447 return NOTIFY_DONE;
448}
449
fa748203 450static __init void init_hrtick(void)
b328ca18
PZ
451{
452 hotcpu_notifier(hotplug_hrtick, 0);
453}
31656519
PZ
454#else
455/*
456 * Called to set the hrtick timer state.
457 *
458 * called with rq->lock held and irqs disabled
459 */
029632fb 460void hrtick_start(struct rq *rq, u64 delay)
31656519 461{
7f1e2ca9 462 __hrtimer_start_range_ns(&rq->hrtick_timer, ns_to_ktime(delay), 0,
5c333864 463 HRTIMER_MODE_REL_PINNED, 0);
31656519 464}
b328ca18 465
006c75f1 466static inline void init_hrtick(void)
8f4d37ec 467{
8f4d37ec 468}
31656519 469#endif /* CONFIG_SMP */
8f4d37ec 470
31656519 471static void init_rq_hrtick(struct rq *rq)
8f4d37ec 472{
31656519
PZ
473#ifdef CONFIG_SMP
474 rq->hrtick_csd_pending = 0;
8f4d37ec 475
31656519
PZ
476 rq->hrtick_csd.flags = 0;
477 rq->hrtick_csd.func = __hrtick_start;
478 rq->hrtick_csd.info = rq;
479#endif
8f4d37ec 480
31656519
PZ
481 hrtimer_init(&rq->hrtick_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
482 rq->hrtick_timer.function = hrtick;
8f4d37ec 483}
006c75f1 484#else /* CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
485static inline void hrtick_clear(struct rq *rq)
486{
487}
488
8f4d37ec
PZ
489static inline void init_rq_hrtick(struct rq *rq)
490{
491}
492
b328ca18
PZ
493static inline void init_hrtick(void)
494{
495}
006c75f1 496#endif /* CONFIG_SCHED_HRTICK */
8f4d37ec 497
c24d20db
IM
498/*
499 * resched_task - mark a task 'to be rescheduled now'.
500 *
501 * On UP this means the setting of the need_resched flag, on SMP it
502 * might also involve a cross-CPU call to trigger the scheduler on
503 * the target CPU.
504 */
505#ifdef CONFIG_SMP
506
507#ifndef tsk_is_polling
508#define tsk_is_polling(t) test_tsk_thread_flag(t, TIF_POLLING_NRFLAG)
509#endif
510
029632fb 511void resched_task(struct task_struct *p)
c24d20db
IM
512{
513 int cpu;
514
05fa785c 515 assert_raw_spin_locked(&task_rq(p)->lock);
c24d20db 516
5ed0cec0 517 if (test_tsk_need_resched(p))
c24d20db
IM
518 return;
519
5ed0cec0 520 set_tsk_need_resched(p);
c24d20db
IM
521
522 cpu = task_cpu(p);
523 if (cpu == smp_processor_id())
524 return;
525
526 /* NEED_RESCHED must be visible before we test polling */
527 smp_mb();
528 if (!tsk_is_polling(p))
529 smp_send_reschedule(cpu);
530}
531
029632fb 532void resched_cpu(int cpu)
c24d20db
IM
533{
534 struct rq *rq = cpu_rq(cpu);
535 unsigned long flags;
536
05fa785c 537 if (!raw_spin_trylock_irqsave(&rq->lock, flags))
c24d20db
IM
538 return;
539 resched_task(cpu_curr(cpu));
05fa785c 540 raw_spin_unlock_irqrestore(&rq->lock, flags);
c24d20db 541}
06d8308c
TG
542
543#ifdef CONFIG_NO_HZ
83cd4fe2
VP
544/*
545 * In the semi idle case, use the nearest busy cpu for migrating timers
546 * from an idle cpu. This is good for power-savings.
547 *
548 * We don't do similar optimization for completely idle system, as
549 * selecting an idle cpu will add more delays to the timers than intended
550 * (as that cpu's timer base may not be uptodate wrt jiffies etc).
551 */
552int get_nohz_timer_target(void)
553{
554 int cpu = smp_processor_id();
555 int i;
556 struct sched_domain *sd;
557
057f3fad 558 rcu_read_lock();
83cd4fe2 559 for_each_domain(cpu, sd) {
057f3fad
PZ
560 for_each_cpu(i, sched_domain_span(sd)) {
561 if (!idle_cpu(i)) {
562 cpu = i;
563 goto unlock;
564 }
565 }
83cd4fe2 566 }
057f3fad
PZ
567unlock:
568 rcu_read_unlock();
83cd4fe2
VP
569 return cpu;
570}
06d8308c
TG
571/*
572 * When add_timer_on() enqueues a timer into the timer wheel of an
573 * idle CPU then this timer might expire before the next timer event
574 * which is scheduled to wake up that CPU. In case of a completely
575 * idle system the next event might even be infinite time into the
576 * future. wake_up_idle_cpu() ensures that the CPU is woken up and
577 * leaves the inner idle loop so the newly added timer is taken into
578 * account when the CPU goes back to idle and evaluates the timer
579 * wheel for the next timer event.
580 */
581void wake_up_idle_cpu(int cpu)
582{
583 struct rq *rq = cpu_rq(cpu);
584
585 if (cpu == smp_processor_id())
586 return;
587
588 /*
589 * This is safe, as this function is called with the timer
590 * wheel base lock of (cpu) held. When the CPU is on the way
591 * to idle and has not yet set rq->curr to idle then it will
592 * be serialized on the timer wheel base lock and take the new
593 * timer into account automatically.
594 */
595 if (rq->curr != rq->idle)
596 return;
45bf76df 597
45bf76df 598 /*
06d8308c
TG
599 * We can set TIF_RESCHED on the idle task of the other CPU
600 * lockless. The worst case is that the other CPU runs the
601 * idle task through an additional NOOP schedule()
45bf76df 602 */
5ed0cec0 603 set_tsk_need_resched(rq->idle);
45bf76df 604
06d8308c
TG
605 /* NEED_RESCHED must be visible before we test polling */
606 smp_mb();
607 if (!tsk_is_polling(rq->idle))
608 smp_send_reschedule(cpu);
45bf76df
IM
609}
610
ca38062e 611static inline bool got_nohz_idle_kick(void)
45bf76df 612{
1c792db7
SS
613 int cpu = smp_processor_id();
614 return idle_cpu(cpu) && test_bit(NOHZ_BALANCE_KICK, nohz_flags(cpu));
45bf76df
IM
615}
616
ca38062e 617#else /* CONFIG_NO_HZ */
45bf76df 618
ca38062e 619static inline bool got_nohz_idle_kick(void)
2069dd75 620{
ca38062e 621 return false;
2069dd75
PZ
622}
623
6d6bc0ad 624#endif /* CONFIG_NO_HZ */
d842de87 625
029632fb 626void sched_avg_update(struct rq *rq)
18d95a28 627{
e9e9250b
PZ
628 s64 period = sched_avg_period();
629
630 while ((s64)(rq->clock - rq->age_stamp) > period) {
0d98bb26
WD
631 /*
632 * Inline assembly required to prevent the compiler
633 * optimising this loop into a divmod call.
634 * See __iter_div_u64_rem() for another example of this.
635 */
636 asm("" : "+rm" (rq->age_stamp));
e9e9250b
PZ
637 rq->age_stamp += period;
638 rq->rt_avg /= 2;
639 }
18d95a28
PZ
640}
641
6d6bc0ad 642#else /* !CONFIG_SMP */
029632fb 643void resched_task(struct task_struct *p)
18d95a28 644{
05fa785c 645 assert_raw_spin_locked(&task_rq(p)->lock);
31656519 646 set_tsk_need_resched(p);
18d95a28 647}
6d6bc0ad 648#endif /* CONFIG_SMP */
18d95a28 649
a790de99
PT
650#if defined(CONFIG_RT_GROUP_SCHED) || (defined(CONFIG_FAIR_GROUP_SCHED) && \
651 (defined(CONFIG_SMP) || defined(CONFIG_CFS_BANDWIDTH)))
c09595f6 652/*
8277434e
PT
653 * Iterate task_group tree rooted at *from, calling @down when first entering a
654 * node and @up when leaving it for the final time.
655 *
656 * Caller must hold rcu_lock or sufficient equivalent.
c09595f6 657 */
029632fb 658int walk_tg_tree_from(struct task_group *from,
8277434e 659 tg_visitor down, tg_visitor up, void *data)
c09595f6
PZ
660{
661 struct task_group *parent, *child;
eb755805 662 int ret;
c09595f6 663
8277434e
PT
664 parent = from;
665
c09595f6 666down:
eb755805
PZ
667 ret = (*down)(parent, data);
668 if (ret)
8277434e 669 goto out;
c09595f6
PZ
670 list_for_each_entry_rcu(child, &parent->children, siblings) {
671 parent = child;
672 goto down;
673
674up:
675 continue;
676 }
eb755805 677 ret = (*up)(parent, data);
8277434e
PT
678 if (ret || parent == from)
679 goto out;
c09595f6
PZ
680
681 child = parent;
682 parent = parent->parent;
683 if (parent)
684 goto up;
8277434e 685out:
eb755805 686 return ret;
c09595f6
PZ
687}
688
029632fb 689int tg_nop(struct task_group *tg, void *data)
eb755805 690{
e2b245f8 691 return 0;
eb755805 692}
18d95a28
PZ
693#endif
694
45bf76df
IM
695static void set_load_weight(struct task_struct *p)
696{
f05998d4
NR
697 int prio = p->static_prio - MAX_RT_PRIO;
698 struct load_weight *load = &p->se.load;
699
dd41f596
IM
700 /*
701 * SCHED_IDLE tasks get minimal weight:
702 */
703 if (p->policy == SCHED_IDLE) {
c8b28116 704 load->weight = scale_load(WEIGHT_IDLEPRIO);
f05998d4 705 load->inv_weight = WMULT_IDLEPRIO;
dd41f596
IM
706 return;
707 }
71f8bd46 708
c8b28116 709 load->weight = scale_load(prio_to_weight[prio]);
f05998d4 710 load->inv_weight = prio_to_wmult[prio];
71f8bd46
IM
711}
712
371fd7e7 713static void enqueue_task(struct rq *rq, struct task_struct *p, int flags)
2087a1ad 714{
a64692a3 715 update_rq_clock(rq);
dd41f596 716 sched_info_queued(p);
371fd7e7 717 p->sched_class->enqueue_task(rq, p, flags);
71f8bd46
IM
718}
719
371fd7e7 720static void dequeue_task(struct rq *rq, struct task_struct *p, int flags)
71f8bd46 721{
a64692a3 722 update_rq_clock(rq);
46ac22ba 723 sched_info_dequeued(p);
371fd7e7 724 p->sched_class->dequeue_task(rq, p, flags);
71f8bd46
IM
725}
726
029632fb 727void activate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
728{
729 if (task_contributes_to_load(p))
730 rq->nr_uninterruptible--;
731
371fd7e7 732 enqueue_task(rq, p, flags);
1e3c88bd
PZ
733}
734
029632fb 735void deactivate_task(struct rq *rq, struct task_struct *p, int flags)
1e3c88bd
PZ
736{
737 if (task_contributes_to_load(p))
738 rq->nr_uninterruptible++;
739
371fd7e7 740 dequeue_task(rq, p, flags);
1e3c88bd
PZ
741}
742
b52bfee4
VP
743#ifdef CONFIG_IRQ_TIME_ACCOUNTING
744
305e6835
VP
745/*
746 * There are no locks covering percpu hardirq/softirq time.
747 * They are only modified in account_system_vtime, on corresponding CPU
748 * with interrupts disabled. So, writes are safe.
749 * They are read and saved off onto struct rq in update_rq_clock().
750 * This may result in other CPU reading this CPU's irq time and can
751 * race with irq/account_system_vtime on this CPU. We would either get old
8e92c201
PZ
752 * or new value with a side effect of accounting a slice of irq time to wrong
753 * task when irq is in progress while we read rq->clock. That is a worthy
754 * compromise in place of having locks on each irq in account_system_time.
305e6835 755 */
b52bfee4
VP
756static DEFINE_PER_CPU(u64, cpu_hardirq_time);
757static DEFINE_PER_CPU(u64, cpu_softirq_time);
758
759static DEFINE_PER_CPU(u64, irq_start_time);
760static int sched_clock_irqtime;
761
762void enable_sched_clock_irqtime(void)
763{
764 sched_clock_irqtime = 1;
765}
766
767void disable_sched_clock_irqtime(void)
768{
769 sched_clock_irqtime = 0;
770}
771
8e92c201
PZ
772#ifndef CONFIG_64BIT
773static DEFINE_PER_CPU(seqcount_t, irq_time_seq);
774
775static inline void irq_time_write_begin(void)
776{
777 __this_cpu_inc(irq_time_seq.sequence);
778 smp_wmb();
779}
780
781static inline void irq_time_write_end(void)
782{
783 smp_wmb();
784 __this_cpu_inc(irq_time_seq.sequence);
785}
786
787static inline u64 irq_time_read(int cpu)
788{
789 u64 irq_time;
790 unsigned seq;
791
792 do {
793 seq = read_seqcount_begin(&per_cpu(irq_time_seq, cpu));
794 irq_time = per_cpu(cpu_softirq_time, cpu) +
795 per_cpu(cpu_hardirq_time, cpu);
796 } while (read_seqcount_retry(&per_cpu(irq_time_seq, cpu), seq));
797
798 return irq_time;
799}
800#else /* CONFIG_64BIT */
801static inline void irq_time_write_begin(void)
802{
803}
804
805static inline void irq_time_write_end(void)
806{
807}
808
809static inline u64 irq_time_read(int cpu)
305e6835 810{
305e6835
VP
811 return per_cpu(cpu_softirq_time, cpu) + per_cpu(cpu_hardirq_time, cpu);
812}
8e92c201 813#endif /* CONFIG_64BIT */
305e6835 814
fe44d621
PZ
815/*
816 * Called before incrementing preempt_count on {soft,}irq_enter
817 * and before decrementing preempt_count on {soft,}irq_exit.
818 */
b52bfee4
VP
819void account_system_vtime(struct task_struct *curr)
820{
821 unsigned long flags;
fe44d621 822 s64 delta;
b52bfee4 823 int cpu;
b52bfee4
VP
824
825 if (!sched_clock_irqtime)
826 return;
827
828 local_irq_save(flags);
829
b52bfee4 830 cpu = smp_processor_id();
fe44d621
PZ
831 delta = sched_clock_cpu(cpu) - __this_cpu_read(irq_start_time);
832 __this_cpu_add(irq_start_time, delta);
833
8e92c201 834 irq_time_write_begin();
b52bfee4
VP
835 /*
836 * We do not account for softirq time from ksoftirqd here.
837 * We want to continue accounting softirq time to ksoftirqd thread
838 * in that case, so as not to confuse scheduler with a special task
839 * that do not consume any time, but still wants to run.
840 */
841 if (hardirq_count())
fe44d621 842 __this_cpu_add(cpu_hardirq_time, delta);
4dd53d89 843 else if (in_serving_softirq() && curr != this_cpu_ksoftirqd())
fe44d621 844 __this_cpu_add(cpu_softirq_time, delta);
b52bfee4 845
8e92c201 846 irq_time_write_end();
b52bfee4
VP
847 local_irq_restore(flags);
848}
b7dadc38 849EXPORT_SYMBOL_GPL(account_system_vtime);
b52bfee4 850
e6e6685a
GC
851#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
852
853#ifdef CONFIG_PARAVIRT
854static inline u64 steal_ticks(u64 steal)
aa483808 855{
e6e6685a
GC
856 if (unlikely(steal > NSEC_PER_SEC))
857 return div_u64(steal, TICK_NSEC);
fe44d621 858
e6e6685a
GC
859 return __iter_div_u64_rem(steal, TICK_NSEC, &steal);
860}
861#endif
862
fe44d621 863static void update_rq_clock_task(struct rq *rq, s64 delta)
aa483808 864{
095c0aa8
GC
865/*
866 * In theory, the compile should just see 0 here, and optimize out the call
867 * to sched_rt_avg_update. But I don't trust it...
868 */
869#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
870 s64 steal = 0, irq_delta = 0;
871#endif
872#ifdef CONFIG_IRQ_TIME_ACCOUNTING
8e92c201 873 irq_delta = irq_time_read(cpu_of(rq)) - rq->prev_irq_time;
fe44d621
PZ
874
875 /*
876 * Since irq_time is only updated on {soft,}irq_exit, we might run into
877 * this case when a previous update_rq_clock() happened inside a
878 * {soft,}irq region.
879 *
880 * When this happens, we stop ->clock_task and only update the
881 * prev_irq_time stamp to account for the part that fit, so that a next
882 * update will consume the rest. This ensures ->clock_task is
883 * monotonic.
884 *
885 * It does however cause some slight miss-attribution of {soft,}irq
886 * time, a more accurate solution would be to update the irq_time using
887 * the current rq->clock timestamp, except that would require using
888 * atomic ops.
889 */
890 if (irq_delta > delta)
891 irq_delta = delta;
892
893 rq->prev_irq_time += irq_delta;
894 delta -= irq_delta;
095c0aa8
GC
895#endif
896#ifdef CONFIG_PARAVIRT_TIME_ACCOUNTING
c5905afb 897 if (static_key_false((&paravirt_steal_rq_enabled))) {
095c0aa8
GC
898 u64 st;
899
900 steal = paravirt_steal_clock(cpu_of(rq));
901 steal -= rq->prev_steal_time_rq;
902
903 if (unlikely(steal > delta))
904 steal = delta;
905
906 st = steal_ticks(steal);
907 steal = st * TICK_NSEC;
908
909 rq->prev_steal_time_rq += steal;
910
911 delta -= steal;
912 }
913#endif
914
fe44d621
PZ
915 rq->clock_task += delta;
916
095c0aa8
GC
917#if defined(CONFIG_IRQ_TIME_ACCOUNTING) || defined(CONFIG_PARAVIRT_TIME_ACCOUNTING)
918 if ((irq_delta + steal) && sched_feat(NONTASK_POWER))
919 sched_rt_avg_update(rq, irq_delta + steal);
920#endif
aa483808
VP
921}
922
095c0aa8 923#ifdef CONFIG_IRQ_TIME_ACCOUNTING
abb74cef
VP
924static int irqtime_account_hi_update(void)
925{
3292beb3 926 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
927 unsigned long flags;
928 u64 latest_ns;
929 int ret = 0;
930
931 local_irq_save(flags);
932 latest_ns = this_cpu_read(cpu_hardirq_time);
612ef28a 933 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_IRQ])
abb74cef
VP
934 ret = 1;
935 local_irq_restore(flags);
936 return ret;
937}
938
939static int irqtime_account_si_update(void)
940{
3292beb3 941 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef
VP
942 unsigned long flags;
943 u64 latest_ns;
944 int ret = 0;
945
946 local_irq_save(flags);
947 latest_ns = this_cpu_read(cpu_softirq_time);
612ef28a 948 if (nsecs_to_cputime64(latest_ns) > cpustat[CPUTIME_SOFTIRQ])
abb74cef
VP
949 ret = 1;
950 local_irq_restore(flags);
951 return ret;
952}
953
fe44d621 954#else /* CONFIG_IRQ_TIME_ACCOUNTING */
305e6835 955
abb74cef
VP
956#define sched_clock_irqtime (0)
957
095c0aa8 958#endif
b52bfee4 959
34f971f6
PZ
960void sched_set_stop_task(int cpu, struct task_struct *stop)
961{
962 struct sched_param param = { .sched_priority = MAX_RT_PRIO - 1 };
963 struct task_struct *old_stop = cpu_rq(cpu)->stop;
964
965 if (stop) {
966 /*
967 * Make it appear like a SCHED_FIFO task, its something
968 * userspace knows about and won't get confused about.
969 *
970 * Also, it will make PI more or less work without too
971 * much confusion -- but then, stop work should not
972 * rely on PI working anyway.
973 */
974 sched_setscheduler_nocheck(stop, SCHED_FIFO, &param);
975
976 stop->sched_class = &stop_sched_class;
977 }
978
979 cpu_rq(cpu)->stop = stop;
980
981 if (old_stop) {
982 /*
983 * Reset it back to a normal scheduling class so that
984 * it can die in pieces.
985 */
986 old_stop->sched_class = &rt_sched_class;
987 }
988}
989
14531189 990/*
dd41f596 991 * __normal_prio - return the priority that is based on the static prio
14531189 992 */
14531189
IM
993static inline int __normal_prio(struct task_struct *p)
994{
dd41f596 995 return p->static_prio;
14531189
IM
996}
997
b29739f9
IM
998/*
999 * Calculate the expected normal priority: i.e. priority
1000 * without taking RT-inheritance into account. Might be
1001 * boosted by interactivity modifiers. Changes upon fork,
1002 * setprio syscalls, and whenever the interactivity
1003 * estimator recalculates.
1004 */
36c8b586 1005static inline int normal_prio(struct task_struct *p)
b29739f9
IM
1006{
1007 int prio;
1008
e05606d3 1009 if (task_has_rt_policy(p))
b29739f9
IM
1010 prio = MAX_RT_PRIO-1 - p->rt_priority;
1011 else
1012 prio = __normal_prio(p);
1013 return prio;
1014}
1015
1016/*
1017 * Calculate the current priority, i.e. the priority
1018 * taken into account by the scheduler. This value might
1019 * be boosted by RT tasks, or might be boosted by
1020 * interactivity modifiers. Will be RT if the task got
1021 * RT-boosted. If not then it returns p->normal_prio.
1022 */
36c8b586 1023static int effective_prio(struct task_struct *p)
b29739f9
IM
1024{
1025 p->normal_prio = normal_prio(p);
1026 /*
1027 * If we are RT tasks or we were boosted to RT priority,
1028 * keep the priority unchanged. Otherwise, update priority
1029 * to the normal priority:
1030 */
1031 if (!rt_prio(p->prio))
1032 return p->normal_prio;
1033 return p->prio;
1034}
1035
1da177e4
LT
1036/**
1037 * task_curr - is this task currently executing on a CPU?
1038 * @p: the task in question.
1039 */
36c8b586 1040inline int task_curr(const struct task_struct *p)
1da177e4
LT
1041{
1042 return cpu_curr(task_cpu(p)) == p;
1043}
1044
cb469845
SR
1045static inline void check_class_changed(struct rq *rq, struct task_struct *p,
1046 const struct sched_class *prev_class,
da7a735e 1047 int oldprio)
cb469845
SR
1048{
1049 if (prev_class != p->sched_class) {
1050 if (prev_class->switched_from)
da7a735e
PZ
1051 prev_class->switched_from(rq, p);
1052 p->sched_class->switched_to(rq, p);
1053 } else if (oldprio != p->prio)
1054 p->sched_class->prio_changed(rq, p, oldprio);
cb469845
SR
1055}
1056
029632fb 1057void check_preempt_curr(struct rq *rq, struct task_struct *p, int flags)
1e5a7405
PZ
1058{
1059 const struct sched_class *class;
1060
1061 if (p->sched_class == rq->curr->sched_class) {
1062 rq->curr->sched_class->check_preempt_curr(rq, p, flags);
1063 } else {
1064 for_each_class(class) {
1065 if (class == rq->curr->sched_class)
1066 break;
1067 if (class == p->sched_class) {
1068 resched_task(rq->curr);
1069 break;
1070 }
1071 }
1072 }
1073
1074 /*
1075 * A queue event has occurred, and we're going to schedule. In
1076 * this case, we can save a useless back to back clock update.
1077 */
fd2f4419 1078 if (rq->curr->on_rq && test_tsk_need_resched(rq->curr))
1e5a7405
PZ
1079 rq->skip_clock_update = 1;
1080}
1081
1da177e4 1082#ifdef CONFIG_SMP
dd41f596 1083void set_task_cpu(struct task_struct *p, unsigned int new_cpu)
c65cc870 1084{
e2912009
PZ
1085#ifdef CONFIG_SCHED_DEBUG
1086 /*
1087 * We should never call set_task_cpu() on a blocked task,
1088 * ttwu() will sort out the placement.
1089 */
077614ee
PZ
1090 WARN_ON_ONCE(p->state != TASK_RUNNING && p->state != TASK_WAKING &&
1091 !(task_thread_info(p)->preempt_count & PREEMPT_ACTIVE));
0122ec5b
PZ
1092
1093#ifdef CONFIG_LOCKDEP
6c6c54e1
PZ
1094 /*
1095 * The caller should hold either p->pi_lock or rq->lock, when changing
1096 * a task's CPU. ->pi_lock for waking tasks, rq->lock for runnable tasks.
1097 *
1098 * sched_move_task() holds both and thus holding either pins the cgroup,
1099 * see set_task_rq().
1100 *
1101 * Furthermore, all task_rq users should acquire both locks, see
1102 * task_rq_lock().
1103 */
0122ec5b
PZ
1104 WARN_ON_ONCE(debug_locks && !(lockdep_is_held(&p->pi_lock) ||
1105 lockdep_is_held(&task_rq(p)->lock)));
1106#endif
e2912009
PZ
1107#endif
1108
de1d7286 1109 trace_sched_migrate_task(p, new_cpu);
cbc34ed1 1110
0c69774e
PZ
1111 if (task_cpu(p) != new_cpu) {
1112 p->se.nr_migrations++;
a8b0ca17 1113 perf_sw_event(PERF_COUNT_SW_CPU_MIGRATIONS, 1, NULL, 0);
0c69774e 1114 }
dd41f596
IM
1115
1116 __set_task_cpu(p, new_cpu);
c65cc870
IM
1117}
1118
969c7921 1119struct migration_arg {
36c8b586 1120 struct task_struct *task;
1da177e4 1121 int dest_cpu;
70b97a7f 1122};
1da177e4 1123
969c7921
TH
1124static int migration_cpu_stop(void *data);
1125
1da177e4
LT
1126/*
1127 * wait_task_inactive - wait for a thread to unschedule.
1128 *
85ba2d86
RM
1129 * If @match_state is nonzero, it's the @p->state value just checked and
1130 * not expected to change. If it changes, i.e. @p might have woken up,
1131 * then return zero. When we succeed in waiting for @p to be off its CPU,
1132 * we return a positive number (its total switch count). If a second call
1133 * a short while later returns the same number, the caller can be sure that
1134 * @p has remained unscheduled the whole time.
1135 *
1da177e4
LT
1136 * The caller must ensure that the task *will* unschedule sometime soon,
1137 * else this function might spin for a *long* time. This function can't
1138 * be called with interrupts off, or it may introduce deadlock with
1139 * smp_call_function() if an IPI is sent by the same process we are
1140 * waiting to become inactive.
1141 */
85ba2d86 1142unsigned long wait_task_inactive(struct task_struct *p, long match_state)
1da177e4
LT
1143{
1144 unsigned long flags;
dd41f596 1145 int running, on_rq;
85ba2d86 1146 unsigned long ncsw;
70b97a7f 1147 struct rq *rq;
1da177e4 1148
3a5c359a
AK
1149 for (;;) {
1150 /*
1151 * We do the initial early heuristics without holding
1152 * any task-queue locks at all. We'll only try to get
1153 * the runqueue lock when things look like they will
1154 * work out!
1155 */
1156 rq = task_rq(p);
fa490cfd 1157
3a5c359a
AK
1158 /*
1159 * If the task is actively running on another CPU
1160 * still, just relax and busy-wait without holding
1161 * any locks.
1162 *
1163 * NOTE! Since we don't hold any locks, it's not
1164 * even sure that "rq" stays as the right runqueue!
1165 * But we don't care, since "task_running()" will
1166 * return false if the runqueue has changed and p
1167 * is actually now running somewhere else!
1168 */
85ba2d86
RM
1169 while (task_running(rq, p)) {
1170 if (match_state && unlikely(p->state != match_state))
1171 return 0;
3a5c359a 1172 cpu_relax();
85ba2d86 1173 }
fa490cfd 1174
3a5c359a
AK
1175 /*
1176 * Ok, time to look more closely! We need the rq
1177 * lock now, to be *sure*. If we're wrong, we'll
1178 * just go back and repeat.
1179 */
1180 rq = task_rq_lock(p, &flags);
27a9da65 1181 trace_sched_wait_task(p);
3a5c359a 1182 running = task_running(rq, p);
fd2f4419 1183 on_rq = p->on_rq;
85ba2d86 1184 ncsw = 0;
f31e11d8 1185 if (!match_state || p->state == match_state)
93dcf55f 1186 ncsw = p->nvcsw | LONG_MIN; /* sets MSB */
0122ec5b 1187 task_rq_unlock(rq, p, &flags);
fa490cfd 1188
85ba2d86
RM
1189 /*
1190 * If it changed from the expected state, bail out now.
1191 */
1192 if (unlikely(!ncsw))
1193 break;
1194
3a5c359a
AK
1195 /*
1196 * Was it really running after all now that we
1197 * checked with the proper locks actually held?
1198 *
1199 * Oops. Go back and try again..
1200 */
1201 if (unlikely(running)) {
1202 cpu_relax();
1203 continue;
1204 }
fa490cfd 1205
3a5c359a
AK
1206 /*
1207 * It's not enough that it's not actively running,
1208 * it must be off the runqueue _entirely_, and not
1209 * preempted!
1210 *
80dd99b3 1211 * So if it was still runnable (but just not actively
3a5c359a
AK
1212 * running right now), it's preempted, and we should
1213 * yield - it could be a while.
1214 */
1215 if (unlikely(on_rq)) {
8eb90c30
TG
1216 ktime_t to = ktime_set(0, NSEC_PER_SEC/HZ);
1217
1218 set_current_state(TASK_UNINTERRUPTIBLE);
1219 schedule_hrtimeout(&to, HRTIMER_MODE_REL);
3a5c359a
AK
1220 continue;
1221 }
fa490cfd 1222
3a5c359a
AK
1223 /*
1224 * Ahh, all good. It wasn't running, and it wasn't
1225 * runnable, which means that it will never become
1226 * running in the future either. We're all done!
1227 */
1228 break;
1229 }
85ba2d86
RM
1230
1231 return ncsw;
1da177e4
LT
1232}
1233
1234/***
1235 * kick_process - kick a running thread to enter/exit the kernel
1236 * @p: the to-be-kicked thread
1237 *
1238 * Cause a process which is running on another CPU to enter
1239 * kernel-mode, without any delay. (to get signals handled.)
1240 *
25985edc 1241 * NOTE: this function doesn't have to take the runqueue lock,
1da177e4
LT
1242 * because all it wants to ensure is that the remote task enters
1243 * the kernel. If the IPI races and the task has been migrated
1244 * to another CPU then no harm is done and the purpose has been
1245 * achieved as well.
1246 */
36c8b586 1247void kick_process(struct task_struct *p)
1da177e4
LT
1248{
1249 int cpu;
1250
1251 preempt_disable();
1252 cpu = task_cpu(p);
1253 if ((cpu != smp_processor_id()) && task_curr(p))
1254 smp_send_reschedule(cpu);
1255 preempt_enable();
1256}
b43e3521 1257EXPORT_SYMBOL_GPL(kick_process);
476d139c 1258#endif /* CONFIG_SMP */
1da177e4 1259
970b13ba 1260#ifdef CONFIG_SMP
30da688e 1261/*
013fdb80 1262 * ->cpus_allowed is protected by both rq->lock and p->pi_lock
30da688e 1263 */
5da9a0fb
PZ
1264static int select_fallback_rq(int cpu, struct task_struct *p)
1265{
5da9a0fb 1266 const struct cpumask *nodemask = cpumask_of_node(cpu_to_node(cpu));
2baab4e9
PZ
1267 enum { cpuset, possible, fail } state = cpuset;
1268 int dest_cpu;
5da9a0fb
PZ
1269
1270 /* Look for allowed, online CPU in same node. */
e3831edd 1271 for_each_cpu(dest_cpu, nodemask) {
2baab4e9
PZ
1272 if (!cpu_online(dest_cpu))
1273 continue;
1274 if (!cpu_active(dest_cpu))
1275 continue;
fa17b507 1276 if (cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
5da9a0fb 1277 return dest_cpu;
2baab4e9 1278 }
5da9a0fb 1279
2baab4e9
PZ
1280 for (;;) {
1281 /* Any allowed, online CPU? */
e3831edd 1282 for_each_cpu(dest_cpu, tsk_cpus_allowed(p)) {
2baab4e9
PZ
1283 if (!cpu_online(dest_cpu))
1284 continue;
1285 if (!cpu_active(dest_cpu))
1286 continue;
1287 goto out;
1288 }
5da9a0fb 1289
2baab4e9
PZ
1290 switch (state) {
1291 case cpuset:
1292 /* No more Mr. Nice Guy. */
1293 cpuset_cpus_allowed_fallback(p);
1294 state = possible;
1295 break;
1296
1297 case possible:
1298 do_set_cpus_allowed(p, cpu_possible_mask);
1299 state = fail;
1300 break;
1301
1302 case fail:
1303 BUG();
1304 break;
1305 }
1306 }
1307
1308out:
1309 if (state != cpuset) {
1310 /*
1311 * Don't tell them about moving exiting tasks or
1312 * kernel threads (both mm NULL), since they never
1313 * leave kernel.
1314 */
1315 if (p->mm && printk_ratelimit()) {
1316 printk_sched("process %d (%s) no longer affine to cpu%d\n",
1317 task_pid_nr(p), p->comm, cpu);
1318 }
5da9a0fb
PZ
1319 }
1320
1321 return dest_cpu;
1322}
1323
e2912009 1324/*
013fdb80 1325 * The caller (fork, wakeup) owns p->pi_lock, ->cpus_allowed is stable.
e2912009 1326 */
970b13ba 1327static inline
7608dec2 1328int select_task_rq(struct task_struct *p, int sd_flags, int wake_flags)
970b13ba 1329{
7608dec2 1330 int cpu = p->sched_class->select_task_rq(p, sd_flags, wake_flags);
e2912009
PZ
1331
1332 /*
1333 * In order not to call set_task_cpu() on a blocking task we need
1334 * to rely on ttwu() to place the task on a valid ->cpus_allowed
1335 * cpu.
1336 *
1337 * Since this is common to all placement strategies, this lives here.
1338 *
1339 * [ this allows ->select_task() to simply return task_cpu(p) and
1340 * not worry about this generic constraint ]
1341 */
fa17b507 1342 if (unlikely(!cpumask_test_cpu(cpu, tsk_cpus_allowed(p)) ||
70f11205 1343 !cpu_online(cpu)))
5da9a0fb 1344 cpu = select_fallback_rq(task_cpu(p), p);
e2912009
PZ
1345
1346 return cpu;
970b13ba 1347}
09a40af5
MG
1348
1349static void update_avg(u64 *avg, u64 sample)
1350{
1351 s64 diff = sample - *avg;
1352 *avg += diff >> 3;
1353}
970b13ba
PZ
1354#endif
1355
d7c01d27 1356static void
b84cb5df 1357ttwu_stat(struct task_struct *p, int cpu, int wake_flags)
9ed3811a 1358{
d7c01d27 1359#ifdef CONFIG_SCHEDSTATS
b84cb5df
PZ
1360 struct rq *rq = this_rq();
1361
d7c01d27
PZ
1362#ifdef CONFIG_SMP
1363 int this_cpu = smp_processor_id();
1364
1365 if (cpu == this_cpu) {
1366 schedstat_inc(rq, ttwu_local);
1367 schedstat_inc(p, se.statistics.nr_wakeups_local);
1368 } else {
1369 struct sched_domain *sd;
1370
1371 schedstat_inc(p, se.statistics.nr_wakeups_remote);
057f3fad 1372 rcu_read_lock();
d7c01d27
PZ
1373 for_each_domain(this_cpu, sd) {
1374 if (cpumask_test_cpu(cpu, sched_domain_span(sd))) {
1375 schedstat_inc(sd, ttwu_wake_remote);
1376 break;
1377 }
1378 }
057f3fad 1379 rcu_read_unlock();
d7c01d27 1380 }
f339b9dc
PZ
1381
1382 if (wake_flags & WF_MIGRATED)
1383 schedstat_inc(p, se.statistics.nr_wakeups_migrate);
1384
d7c01d27
PZ
1385#endif /* CONFIG_SMP */
1386
1387 schedstat_inc(rq, ttwu_count);
9ed3811a 1388 schedstat_inc(p, se.statistics.nr_wakeups);
d7c01d27
PZ
1389
1390 if (wake_flags & WF_SYNC)
9ed3811a 1391 schedstat_inc(p, se.statistics.nr_wakeups_sync);
d7c01d27 1392
d7c01d27
PZ
1393#endif /* CONFIG_SCHEDSTATS */
1394}
1395
1396static void ttwu_activate(struct rq *rq, struct task_struct *p, int en_flags)
1397{
9ed3811a 1398 activate_task(rq, p, en_flags);
fd2f4419 1399 p->on_rq = 1;
c2f7115e
PZ
1400
1401 /* if a worker is waking up, notify workqueue */
1402 if (p->flags & PF_WQ_WORKER)
1403 wq_worker_waking_up(p, cpu_of(rq));
9ed3811a
TH
1404}
1405
23f41eeb
PZ
1406/*
1407 * Mark the task runnable and perform wakeup-preemption.
1408 */
89363381 1409static void
23f41eeb 1410ttwu_do_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
9ed3811a 1411{
89363381 1412 trace_sched_wakeup(p, true);
9ed3811a
TH
1413 check_preempt_curr(rq, p, wake_flags);
1414
1415 p->state = TASK_RUNNING;
1416#ifdef CONFIG_SMP
1417 if (p->sched_class->task_woken)
1418 p->sched_class->task_woken(rq, p);
1419
e69c6341 1420 if (rq->idle_stamp) {
9ed3811a
TH
1421 u64 delta = rq->clock - rq->idle_stamp;
1422 u64 max = 2*sysctl_sched_migration_cost;
1423
1424 if (delta > max)
1425 rq->avg_idle = max;
1426 else
1427 update_avg(&rq->avg_idle, delta);
1428 rq->idle_stamp = 0;
1429 }
1430#endif
1431}
1432
c05fbafb
PZ
1433static void
1434ttwu_do_activate(struct rq *rq, struct task_struct *p, int wake_flags)
1435{
1436#ifdef CONFIG_SMP
1437 if (p->sched_contributes_to_load)
1438 rq->nr_uninterruptible--;
1439#endif
1440
1441 ttwu_activate(rq, p, ENQUEUE_WAKEUP | ENQUEUE_WAKING);
1442 ttwu_do_wakeup(rq, p, wake_flags);
1443}
1444
1445/*
1446 * Called in case the task @p isn't fully descheduled from its runqueue,
1447 * in this case we must do a remote wakeup. Its a 'light' wakeup though,
1448 * since all we need to do is flip p->state to TASK_RUNNING, since
1449 * the task is still ->on_rq.
1450 */
1451static int ttwu_remote(struct task_struct *p, int wake_flags)
1452{
1453 struct rq *rq;
1454 int ret = 0;
1455
1456 rq = __task_rq_lock(p);
1457 if (p->on_rq) {
1458 ttwu_do_wakeup(rq, p, wake_flags);
1459 ret = 1;
1460 }
1461 __task_rq_unlock(rq);
1462
1463 return ret;
1464}
1465
317f3941 1466#ifdef CONFIG_SMP
fa14ff4a 1467static void sched_ttwu_pending(void)
317f3941
PZ
1468{
1469 struct rq *rq = this_rq();
fa14ff4a
PZ
1470 struct llist_node *llist = llist_del_all(&rq->wake_list);
1471 struct task_struct *p;
317f3941
PZ
1472
1473 raw_spin_lock(&rq->lock);
1474
fa14ff4a
PZ
1475 while (llist) {
1476 p = llist_entry(llist, struct task_struct, wake_entry);
1477 llist = llist_next(llist);
317f3941
PZ
1478 ttwu_do_activate(rq, p, 0);
1479 }
1480
1481 raw_spin_unlock(&rq->lock);
1482}
1483
1484void scheduler_ipi(void)
1485{
ca38062e 1486 if (llist_empty(&this_rq()->wake_list) && !got_nohz_idle_kick())
c5d753a5
PZ
1487 return;
1488
1489 /*
1490 * Not all reschedule IPI handlers call irq_enter/irq_exit, since
1491 * traditionally all their work was done from the interrupt return
1492 * path. Now that we actually do some work, we need to make sure
1493 * we do call them.
1494 *
1495 * Some archs already do call them, luckily irq_enter/exit nest
1496 * properly.
1497 *
1498 * Arguably we should visit all archs and update all handlers,
1499 * however a fair share of IPIs are still resched only so this would
1500 * somewhat pessimize the simple resched case.
1501 */
1502 irq_enter();
fa14ff4a 1503 sched_ttwu_pending();
ca38062e
SS
1504
1505 /*
1506 * Check if someone kicked us for doing the nohz idle load balance.
1507 */
6eb57e0d
SS
1508 if (unlikely(got_nohz_idle_kick() && !need_resched())) {
1509 this_rq()->idle_balance = 1;
ca38062e 1510 raise_softirq_irqoff(SCHED_SOFTIRQ);
6eb57e0d 1511 }
c5d753a5 1512 irq_exit();
317f3941
PZ
1513}
1514
1515static void ttwu_queue_remote(struct task_struct *p, int cpu)
1516{
fa14ff4a 1517 if (llist_add(&p->wake_entry, &cpu_rq(cpu)->wake_list))
317f3941
PZ
1518 smp_send_reschedule(cpu);
1519}
d6aa8f85
PZ
1520
1521#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1522static int ttwu_activate_remote(struct task_struct *p, int wake_flags)
1523{
1524 struct rq *rq;
1525 int ret = 0;
1526
1527 rq = __task_rq_lock(p);
1528 if (p->on_cpu) {
1529 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1530 ttwu_do_wakeup(rq, p, wake_flags);
1531 ret = 1;
1532 }
1533 __task_rq_unlock(rq);
1534
1535 return ret;
1536
1537}
1538#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
518cd623 1539
39be3501 1540bool cpus_share_cache(int this_cpu, int that_cpu)
518cd623
PZ
1541{
1542 return per_cpu(sd_llc_id, this_cpu) == per_cpu(sd_llc_id, that_cpu);
1543}
d6aa8f85 1544#endif /* CONFIG_SMP */
317f3941 1545
c05fbafb
PZ
1546static void ttwu_queue(struct task_struct *p, int cpu)
1547{
1548 struct rq *rq = cpu_rq(cpu);
1549
17d9f311 1550#if defined(CONFIG_SMP)
39be3501 1551 if (sched_feat(TTWU_QUEUE) && !cpus_share_cache(smp_processor_id(), cpu)) {
f01114cb 1552 sched_clock_cpu(cpu); /* sync clocks x-cpu */
317f3941
PZ
1553 ttwu_queue_remote(p, cpu);
1554 return;
1555 }
1556#endif
1557
c05fbafb
PZ
1558 raw_spin_lock(&rq->lock);
1559 ttwu_do_activate(rq, p, 0);
1560 raw_spin_unlock(&rq->lock);
9ed3811a
TH
1561}
1562
1563/**
1da177e4 1564 * try_to_wake_up - wake up a thread
9ed3811a 1565 * @p: the thread to be awakened
1da177e4 1566 * @state: the mask of task states that can be woken
9ed3811a 1567 * @wake_flags: wake modifier flags (WF_*)
1da177e4
LT
1568 *
1569 * Put it on the run-queue if it's not already there. The "current"
1570 * thread is always on the run-queue (except when the actual
1571 * re-schedule is in progress), and as such you're allowed to do
1572 * the simpler "current->state = TASK_RUNNING" to mark yourself
1573 * runnable without the overhead of this.
1574 *
9ed3811a
TH
1575 * Returns %true if @p was woken up, %false if it was already running
1576 * or @state didn't match @p's state.
1da177e4 1577 */
e4a52bcb
PZ
1578static int
1579try_to_wake_up(struct task_struct *p, unsigned int state, int wake_flags)
1da177e4 1580{
1da177e4 1581 unsigned long flags;
c05fbafb 1582 int cpu, success = 0;
2398f2c6 1583
04e2f174 1584 smp_wmb();
013fdb80 1585 raw_spin_lock_irqsave(&p->pi_lock, flags);
e9c84311 1586 if (!(p->state & state))
1da177e4
LT
1587 goto out;
1588
c05fbafb 1589 success = 1; /* we're going to change ->state */
1da177e4 1590 cpu = task_cpu(p);
1da177e4 1591
c05fbafb
PZ
1592 if (p->on_rq && ttwu_remote(p, wake_flags))
1593 goto stat;
1da177e4 1594
1da177e4 1595#ifdef CONFIG_SMP
e9c84311 1596 /*
c05fbafb
PZ
1597 * If the owning (remote) cpu is still in the middle of schedule() with
1598 * this task as prev, wait until its done referencing the task.
e9c84311 1599 */
e4a52bcb
PZ
1600 while (p->on_cpu) {
1601#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1602 /*
d6aa8f85
PZ
1603 * In case the architecture enables interrupts in
1604 * context_switch(), we cannot busy wait, since that
1605 * would lead to deadlocks when an interrupt hits and
1606 * tries to wake up @prev. So bail and do a complete
1607 * remote wakeup.
e4a52bcb 1608 */
d6aa8f85 1609 if (ttwu_activate_remote(p, wake_flags))
c05fbafb 1610 goto stat;
d6aa8f85 1611#else
e4a52bcb 1612 cpu_relax();
d6aa8f85 1613#endif
371fd7e7 1614 }
0970d299 1615 /*
e4a52bcb 1616 * Pairs with the smp_wmb() in finish_lock_switch().
0970d299 1617 */
e4a52bcb 1618 smp_rmb();
1da177e4 1619
a8e4f2ea 1620 p->sched_contributes_to_load = !!task_contributes_to_load(p);
e9c84311 1621 p->state = TASK_WAKING;
e7693a36 1622
e4a52bcb 1623 if (p->sched_class->task_waking)
74f8e4b2 1624 p->sched_class->task_waking(p);
efbbd05a 1625
7608dec2 1626 cpu = select_task_rq(p, SD_BALANCE_WAKE, wake_flags);
f339b9dc
PZ
1627 if (task_cpu(p) != cpu) {
1628 wake_flags |= WF_MIGRATED;
e4a52bcb 1629 set_task_cpu(p, cpu);
f339b9dc 1630 }
1da177e4 1631#endif /* CONFIG_SMP */
1da177e4 1632
c05fbafb
PZ
1633 ttwu_queue(p, cpu);
1634stat:
b84cb5df 1635 ttwu_stat(p, cpu, wake_flags);
1da177e4 1636out:
013fdb80 1637 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
1638
1639 return success;
1640}
1641
21aa9af0
TH
1642/**
1643 * try_to_wake_up_local - try to wake up a local task with rq lock held
1644 * @p: the thread to be awakened
1645 *
2acca55e 1646 * Put @p on the run-queue if it's not already there. The caller must
21aa9af0 1647 * ensure that this_rq() is locked, @p is bound to this_rq() and not
2acca55e 1648 * the current task.
21aa9af0
TH
1649 */
1650static void try_to_wake_up_local(struct task_struct *p)
1651{
1652 struct rq *rq = task_rq(p);
21aa9af0
TH
1653
1654 BUG_ON(rq != this_rq());
1655 BUG_ON(p == current);
1656 lockdep_assert_held(&rq->lock);
1657
2acca55e
PZ
1658 if (!raw_spin_trylock(&p->pi_lock)) {
1659 raw_spin_unlock(&rq->lock);
1660 raw_spin_lock(&p->pi_lock);
1661 raw_spin_lock(&rq->lock);
1662 }
1663
21aa9af0 1664 if (!(p->state & TASK_NORMAL))
2acca55e 1665 goto out;
21aa9af0 1666
fd2f4419 1667 if (!p->on_rq)
d7c01d27
PZ
1668 ttwu_activate(rq, p, ENQUEUE_WAKEUP);
1669
23f41eeb 1670 ttwu_do_wakeup(rq, p, 0);
b84cb5df 1671 ttwu_stat(p, smp_processor_id(), 0);
2acca55e
PZ
1672out:
1673 raw_spin_unlock(&p->pi_lock);
21aa9af0
TH
1674}
1675
50fa610a
DH
1676/**
1677 * wake_up_process - Wake up a specific process
1678 * @p: The process to be woken up.
1679 *
1680 * Attempt to wake up the nominated process and move it to the set of runnable
1681 * processes. Returns 1 if the process was woken up, 0 if it was already
1682 * running.
1683 *
1684 * It may be assumed that this function implies a write memory barrier before
1685 * changing the task state if and only if any tasks are woken up.
1686 */
7ad5b3a5 1687int wake_up_process(struct task_struct *p)
1da177e4 1688{
d9514f6c 1689 return try_to_wake_up(p, TASK_ALL, 0);
1da177e4 1690}
1da177e4
LT
1691EXPORT_SYMBOL(wake_up_process);
1692
7ad5b3a5 1693int wake_up_state(struct task_struct *p, unsigned int state)
1da177e4
LT
1694{
1695 return try_to_wake_up(p, state, 0);
1696}
1697
1da177e4
LT
1698/*
1699 * Perform scheduler related setup for a newly forked process p.
1700 * p is forked by current.
dd41f596
IM
1701 *
1702 * __sched_fork() is basic setup used by init_idle() too:
1703 */
1704static void __sched_fork(struct task_struct *p)
1705{
fd2f4419
PZ
1706 p->on_rq = 0;
1707
1708 p->se.on_rq = 0;
dd41f596
IM
1709 p->se.exec_start = 0;
1710 p->se.sum_exec_runtime = 0;
f6cf891c 1711 p->se.prev_sum_exec_runtime = 0;
6c594c21 1712 p->se.nr_migrations = 0;
da7a735e 1713 p->se.vruntime = 0;
fd2f4419 1714 INIT_LIST_HEAD(&p->se.group_node);
6cfb0d5d
IM
1715
1716#ifdef CONFIG_SCHEDSTATS
41acab88 1717 memset(&p->se.statistics, 0, sizeof(p->se.statistics));
6cfb0d5d 1718#endif
476d139c 1719
fa717060 1720 INIT_LIST_HEAD(&p->rt.run_list);
476d139c 1721
e107be36
AK
1722#ifdef CONFIG_PREEMPT_NOTIFIERS
1723 INIT_HLIST_HEAD(&p->preempt_notifiers);
1724#endif
dd41f596
IM
1725}
1726
1727/*
1728 * fork()/clone()-time setup:
1729 */
3e51e3ed 1730void sched_fork(struct task_struct *p)
dd41f596 1731{
0122ec5b 1732 unsigned long flags;
dd41f596
IM
1733 int cpu = get_cpu();
1734
1735 __sched_fork(p);
06b83b5f 1736 /*
0017d735 1737 * We mark the process as running here. This guarantees that
06b83b5f
PZ
1738 * nobody will actually run it, and a signal or other external
1739 * event cannot wake it up and insert it on the runqueue either.
1740 */
0017d735 1741 p->state = TASK_RUNNING;
dd41f596 1742
c350a04e
MG
1743 /*
1744 * Make sure we do not leak PI boosting priority to the child.
1745 */
1746 p->prio = current->normal_prio;
1747
b9dc29e7
MG
1748 /*
1749 * Revert to default priority/policy on fork if requested.
1750 */
1751 if (unlikely(p->sched_reset_on_fork)) {
c350a04e 1752 if (task_has_rt_policy(p)) {
b9dc29e7 1753 p->policy = SCHED_NORMAL;
6c697bdf 1754 p->static_prio = NICE_TO_PRIO(0);
c350a04e
MG
1755 p->rt_priority = 0;
1756 } else if (PRIO_TO_NICE(p->static_prio) < 0)
1757 p->static_prio = NICE_TO_PRIO(0);
1758
1759 p->prio = p->normal_prio = __normal_prio(p);
1760 set_load_weight(p);
6c697bdf 1761
b9dc29e7
MG
1762 /*
1763 * We don't need the reset flag anymore after the fork. It has
1764 * fulfilled its duty:
1765 */
1766 p->sched_reset_on_fork = 0;
1767 }
ca94c442 1768
2ddbf952
HS
1769 if (!rt_prio(p->prio))
1770 p->sched_class = &fair_sched_class;
b29739f9 1771
cd29fe6f
PZ
1772 if (p->sched_class->task_fork)
1773 p->sched_class->task_fork(p);
1774
86951599
PZ
1775 /*
1776 * The child is not yet in the pid-hash so no cgroup attach races,
1777 * and the cgroup is pinned to this child due to cgroup_fork()
1778 * is ran before sched_fork().
1779 *
1780 * Silence PROVE_RCU.
1781 */
0122ec5b 1782 raw_spin_lock_irqsave(&p->pi_lock, flags);
5f3edc1b 1783 set_task_cpu(p, cpu);
0122ec5b 1784 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
5f3edc1b 1785
52f17b6c 1786#if defined(CONFIG_SCHEDSTATS) || defined(CONFIG_TASK_DELAY_ACCT)
dd41f596 1787 if (likely(sched_info_on()))
52f17b6c 1788 memset(&p->sched_info, 0, sizeof(p->sched_info));
1da177e4 1789#endif
3ca7a440
PZ
1790#if defined(CONFIG_SMP)
1791 p->on_cpu = 0;
4866cde0 1792#endif
bdd4e85d 1793#ifdef CONFIG_PREEMPT_COUNT
4866cde0 1794 /* Want to start with kernel preemption disabled. */
a1261f54 1795 task_thread_info(p)->preempt_count = 1;
1da177e4 1796#endif
806c09a7 1797#ifdef CONFIG_SMP
917b627d 1798 plist_node_init(&p->pushable_tasks, MAX_PRIO);
806c09a7 1799#endif
917b627d 1800
476d139c 1801 put_cpu();
1da177e4
LT
1802}
1803
1804/*
1805 * wake_up_new_task - wake up a newly created task for the first time.
1806 *
1807 * This function will do some initial scheduler statistics housekeeping
1808 * that must be done for every newly created context, then puts the task
1809 * on the runqueue and wakes it.
1810 */
3e51e3ed 1811void wake_up_new_task(struct task_struct *p)
1da177e4
LT
1812{
1813 unsigned long flags;
dd41f596 1814 struct rq *rq;
fabf318e 1815
ab2515c4 1816 raw_spin_lock_irqsave(&p->pi_lock, flags);
fabf318e
PZ
1817#ifdef CONFIG_SMP
1818 /*
1819 * Fork balancing, do it here and not earlier because:
1820 * - cpus_allowed can change in the fork path
1821 * - any previously selected cpu might disappear through hotplug
fabf318e 1822 */
ab2515c4 1823 set_task_cpu(p, select_task_rq(p, SD_BALANCE_FORK, 0));
0017d735
PZ
1824#endif
1825
ab2515c4 1826 rq = __task_rq_lock(p);
cd29fe6f 1827 activate_task(rq, p, 0);
fd2f4419 1828 p->on_rq = 1;
89363381 1829 trace_sched_wakeup_new(p, true);
a7558e01 1830 check_preempt_curr(rq, p, WF_FORK);
9a897c5a 1831#ifdef CONFIG_SMP
efbbd05a
PZ
1832 if (p->sched_class->task_woken)
1833 p->sched_class->task_woken(rq, p);
9a897c5a 1834#endif
0122ec5b 1835 task_rq_unlock(rq, p, &flags);
1da177e4
LT
1836}
1837
e107be36
AK
1838#ifdef CONFIG_PREEMPT_NOTIFIERS
1839
1840/**
80dd99b3 1841 * preempt_notifier_register - tell me when current is being preempted & rescheduled
421cee29 1842 * @notifier: notifier struct to register
e107be36
AK
1843 */
1844void preempt_notifier_register(struct preempt_notifier *notifier)
1845{
1846 hlist_add_head(&notifier->link, &current->preempt_notifiers);
1847}
1848EXPORT_SYMBOL_GPL(preempt_notifier_register);
1849
1850/**
1851 * preempt_notifier_unregister - no longer interested in preemption notifications
421cee29 1852 * @notifier: notifier struct to unregister
e107be36
AK
1853 *
1854 * This is safe to call from within a preemption notifier.
1855 */
1856void preempt_notifier_unregister(struct preempt_notifier *notifier)
1857{
1858 hlist_del(&notifier->link);
1859}
1860EXPORT_SYMBOL_GPL(preempt_notifier_unregister);
1861
1862static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1863{
1864 struct preempt_notifier *notifier;
1865 struct hlist_node *node;
1866
1867 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1868 notifier->ops->sched_in(notifier, raw_smp_processor_id());
1869}
1870
1871static void
1872fire_sched_out_preempt_notifiers(struct task_struct *curr,
1873 struct task_struct *next)
1874{
1875 struct preempt_notifier *notifier;
1876 struct hlist_node *node;
1877
1878 hlist_for_each_entry(notifier, node, &curr->preempt_notifiers, link)
1879 notifier->ops->sched_out(notifier, next);
1880}
1881
6d6bc0ad 1882#else /* !CONFIG_PREEMPT_NOTIFIERS */
e107be36
AK
1883
1884static void fire_sched_in_preempt_notifiers(struct task_struct *curr)
1885{
1886}
1887
1888static void
1889fire_sched_out_preempt_notifiers(struct task_struct *curr,
1890 struct task_struct *next)
1891{
1892}
1893
6d6bc0ad 1894#endif /* CONFIG_PREEMPT_NOTIFIERS */
e107be36 1895
4866cde0
NP
1896/**
1897 * prepare_task_switch - prepare to switch tasks
1898 * @rq: the runqueue preparing to switch
421cee29 1899 * @prev: the current task that is being switched out
4866cde0
NP
1900 * @next: the task we are going to switch to.
1901 *
1902 * This is called with the rq lock held and interrupts off. It must
1903 * be paired with a subsequent finish_task_switch after the context
1904 * switch.
1905 *
1906 * prepare_task_switch sets up locking and calls architecture specific
1907 * hooks.
1908 */
e107be36
AK
1909static inline void
1910prepare_task_switch(struct rq *rq, struct task_struct *prev,
1911 struct task_struct *next)
4866cde0 1912{
fe4b04fa
PZ
1913 sched_info_switch(prev, next);
1914 perf_event_task_sched_out(prev, next);
e107be36 1915 fire_sched_out_preempt_notifiers(prev, next);
4866cde0
NP
1916 prepare_lock_switch(rq, next);
1917 prepare_arch_switch(next);
fe4b04fa 1918 trace_sched_switch(prev, next);
4866cde0
NP
1919}
1920
1da177e4
LT
1921/**
1922 * finish_task_switch - clean up after a task-switch
344babaa 1923 * @rq: runqueue associated with task-switch
1da177e4
LT
1924 * @prev: the thread we just switched away from.
1925 *
4866cde0
NP
1926 * finish_task_switch must be called after the context switch, paired
1927 * with a prepare_task_switch call before the context switch.
1928 * finish_task_switch will reconcile locking set up by prepare_task_switch,
1929 * and do any other architecture-specific cleanup actions.
1da177e4
LT
1930 *
1931 * Note that we may have delayed dropping an mm in context_switch(). If
41a2d6cf 1932 * so, we finish that here outside of the runqueue lock. (Doing it
1da177e4
LT
1933 * with the lock held can cause deadlocks; see schedule() for
1934 * details.)
1935 */
a9957449 1936static void finish_task_switch(struct rq *rq, struct task_struct *prev)
1da177e4
LT
1937 __releases(rq->lock)
1938{
1da177e4 1939 struct mm_struct *mm = rq->prev_mm;
55a101f8 1940 long prev_state;
1da177e4
LT
1941
1942 rq->prev_mm = NULL;
1943
1944 /*
1945 * A task struct has one reference for the use as "current".
c394cc9f 1946 * If a task dies, then it sets TASK_DEAD in tsk->state and calls
55a101f8
ON
1947 * schedule one last time. The schedule call will never return, and
1948 * the scheduled task must drop that reference.
c394cc9f 1949 * The test for TASK_DEAD must occur while the runqueue locks are
1da177e4
LT
1950 * still held, otherwise prev could be scheduled on another cpu, die
1951 * there before we look at prev->state, and then the reference would
1952 * be dropped twice.
1953 * Manfred Spraul <manfred@colorfullife.com>
1954 */
55a101f8 1955 prev_state = prev->state;
4866cde0 1956 finish_arch_switch(prev);
8381f65d
JI
1957#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1958 local_irq_disable();
1959#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
a8d757ef 1960 perf_event_task_sched_in(prev, current);
8381f65d
JI
1961#ifdef __ARCH_WANT_INTERRUPTS_ON_CTXSW
1962 local_irq_enable();
1963#endif /* __ARCH_WANT_INTERRUPTS_ON_CTXSW */
4866cde0 1964 finish_lock_switch(rq, prev);
01f23e16 1965 finish_arch_post_lock_switch();
e8fa1362 1966
e107be36 1967 fire_sched_in_preempt_notifiers(current);
1da177e4
LT
1968 if (mm)
1969 mmdrop(mm);
c394cc9f 1970 if (unlikely(prev_state == TASK_DEAD)) {
c6fd91f0 1971 /*
1972 * Remove function-return probe instances associated with this
1973 * task and put them back on the free list.
9761eea8 1974 */
c6fd91f0 1975 kprobe_flush_task(prev);
1da177e4 1976 put_task_struct(prev);
c6fd91f0 1977 }
1da177e4
LT
1978}
1979
3f029d3c
GH
1980#ifdef CONFIG_SMP
1981
1982/* assumes rq->lock is held */
1983static inline void pre_schedule(struct rq *rq, struct task_struct *prev)
1984{
1985 if (prev->sched_class->pre_schedule)
1986 prev->sched_class->pre_schedule(rq, prev);
1987}
1988
1989/* rq->lock is NOT held, but preemption is disabled */
1990static inline void post_schedule(struct rq *rq)
1991{
1992 if (rq->post_schedule) {
1993 unsigned long flags;
1994
05fa785c 1995 raw_spin_lock_irqsave(&rq->lock, flags);
3f029d3c
GH
1996 if (rq->curr->sched_class->post_schedule)
1997 rq->curr->sched_class->post_schedule(rq);
05fa785c 1998 raw_spin_unlock_irqrestore(&rq->lock, flags);
3f029d3c
GH
1999
2000 rq->post_schedule = 0;
2001 }
2002}
2003
2004#else
da19ab51 2005
3f029d3c
GH
2006static inline void pre_schedule(struct rq *rq, struct task_struct *p)
2007{
2008}
2009
2010static inline void post_schedule(struct rq *rq)
2011{
1da177e4
LT
2012}
2013
3f029d3c
GH
2014#endif
2015
1da177e4
LT
2016/**
2017 * schedule_tail - first thing a freshly forked thread must call.
2018 * @prev: the thread we just switched away from.
2019 */
36c8b586 2020asmlinkage void schedule_tail(struct task_struct *prev)
1da177e4
LT
2021 __releases(rq->lock)
2022{
70b97a7f
IM
2023 struct rq *rq = this_rq();
2024
4866cde0 2025 finish_task_switch(rq, prev);
da19ab51 2026
3f029d3c
GH
2027 /*
2028 * FIXME: do we need to worry about rq being invalidated by the
2029 * task_switch?
2030 */
2031 post_schedule(rq);
70b97a7f 2032
4866cde0
NP
2033#ifdef __ARCH_WANT_UNLOCKED_CTXSW
2034 /* In this case, finish_task_switch does not reenable preemption */
2035 preempt_enable();
2036#endif
1da177e4 2037 if (current->set_child_tid)
b488893a 2038 put_user(task_pid_vnr(current), current->set_child_tid);
1da177e4
LT
2039}
2040
2041/*
2042 * context_switch - switch to the new MM and the new
2043 * thread's register state.
2044 */
dd41f596 2045static inline void
70b97a7f 2046context_switch(struct rq *rq, struct task_struct *prev,
36c8b586 2047 struct task_struct *next)
1da177e4 2048{
dd41f596 2049 struct mm_struct *mm, *oldmm;
1da177e4 2050
e107be36 2051 prepare_task_switch(rq, prev, next);
fe4b04fa 2052
dd41f596
IM
2053 mm = next->mm;
2054 oldmm = prev->active_mm;
9226d125
ZA
2055 /*
2056 * For paravirt, this is coupled with an exit in switch_to to
2057 * combine the page table reload and the switch backend into
2058 * one hypercall.
2059 */
224101ed 2060 arch_start_context_switch(prev);
9226d125 2061
31915ab4 2062 if (!mm) {
1da177e4
LT
2063 next->active_mm = oldmm;
2064 atomic_inc(&oldmm->mm_count);
2065 enter_lazy_tlb(oldmm, next);
2066 } else
2067 switch_mm(oldmm, mm, next);
2068
31915ab4 2069 if (!prev->mm) {
1da177e4 2070 prev->active_mm = NULL;
1da177e4
LT
2071 rq->prev_mm = oldmm;
2072 }
3a5f5e48
IM
2073 /*
2074 * Since the runqueue lock will be released by the next
2075 * task (which is an invalid locking op but in the case
2076 * of the scheduler it's an obvious special-case), so we
2077 * do an early lockdep release here:
2078 */
2079#ifndef __ARCH_WANT_UNLOCKED_CTXSW
8a25d5de 2080 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
3a5f5e48 2081#endif
1da177e4
LT
2082
2083 /* Here we just switch the register state and the stack. */
616c310e 2084 rcu_switch_from(prev);
1da177e4
LT
2085 switch_to(prev, next, prev);
2086
dd41f596
IM
2087 barrier();
2088 /*
2089 * this_rq must be evaluated again because prev may have moved
2090 * CPUs since it called schedule(), thus the 'rq' on its stack
2091 * frame will be invalid.
2092 */
2093 finish_task_switch(this_rq(), prev);
1da177e4
LT
2094}
2095
2096/*
2097 * nr_running, nr_uninterruptible and nr_context_switches:
2098 *
2099 * externally visible scheduler statistics: current number of runnable
2100 * threads, current number of uninterruptible-sleeping threads, total
2101 * number of context switches performed since bootup.
2102 */
2103unsigned long nr_running(void)
2104{
2105 unsigned long i, sum = 0;
2106
2107 for_each_online_cpu(i)
2108 sum += cpu_rq(i)->nr_running;
2109
2110 return sum;
f711f609 2111}
1da177e4
LT
2112
2113unsigned long nr_uninterruptible(void)
f711f609 2114{
1da177e4 2115 unsigned long i, sum = 0;
f711f609 2116
0a945022 2117 for_each_possible_cpu(i)
1da177e4 2118 sum += cpu_rq(i)->nr_uninterruptible;
f711f609
GS
2119
2120 /*
1da177e4
LT
2121 * Since we read the counters lockless, it might be slightly
2122 * inaccurate. Do not allow it to go below zero though:
f711f609 2123 */
1da177e4
LT
2124 if (unlikely((long)sum < 0))
2125 sum = 0;
f711f609 2126
1da177e4 2127 return sum;
f711f609 2128}
f711f609 2129
1da177e4 2130unsigned long long nr_context_switches(void)
46cb4b7c 2131{
cc94abfc
SR
2132 int i;
2133 unsigned long long sum = 0;
46cb4b7c 2134
0a945022 2135 for_each_possible_cpu(i)
1da177e4 2136 sum += cpu_rq(i)->nr_switches;
46cb4b7c 2137
1da177e4
LT
2138 return sum;
2139}
483b4ee6 2140
1da177e4
LT
2141unsigned long nr_iowait(void)
2142{
2143 unsigned long i, sum = 0;
483b4ee6 2144
0a945022 2145 for_each_possible_cpu(i)
1da177e4 2146 sum += atomic_read(&cpu_rq(i)->nr_iowait);
46cb4b7c 2147
1da177e4
LT
2148 return sum;
2149}
483b4ee6 2150
8c215bd3 2151unsigned long nr_iowait_cpu(int cpu)
69d25870 2152{
8c215bd3 2153 struct rq *this = cpu_rq(cpu);
69d25870
AV
2154 return atomic_read(&this->nr_iowait);
2155}
46cb4b7c 2156
69d25870
AV
2157unsigned long this_cpu_load(void)
2158{
2159 struct rq *this = this_rq();
2160 return this->cpu_load[0];
2161}
e790fb0b 2162
46cb4b7c 2163
dce48a84
TG
2164/* Variables and functions for calc_load */
2165static atomic_long_t calc_load_tasks;
2166static unsigned long calc_load_update;
2167unsigned long avenrun[3];
2168EXPORT_SYMBOL(avenrun);
46cb4b7c 2169
74f5187a
PZ
2170static long calc_load_fold_active(struct rq *this_rq)
2171{
2172 long nr_active, delta = 0;
2173
2174 nr_active = this_rq->nr_running;
2175 nr_active += (long) this_rq->nr_uninterruptible;
2176
2177 if (nr_active != this_rq->calc_load_active) {
2178 delta = nr_active - this_rq->calc_load_active;
2179 this_rq->calc_load_active = nr_active;
2180 }
2181
2182 return delta;
2183}
2184
0f004f5a
PZ
2185static unsigned long
2186calc_load(unsigned long load, unsigned long exp, unsigned long active)
2187{
2188 load *= exp;
2189 load += active * (FIXED_1 - exp);
2190 load += 1UL << (FSHIFT - 1);
2191 return load >> FSHIFT;
2192}
2193
74f5187a
PZ
2194#ifdef CONFIG_NO_HZ
2195/*
2196 * For NO_HZ we delay the active fold to the next LOAD_FREQ update.
2197 *
2198 * When making the ILB scale, we should try to pull this in as well.
2199 */
2200static atomic_long_t calc_load_tasks_idle;
2201
029632fb 2202void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2203{
2204 long delta;
2205
2206 delta = calc_load_fold_active(this_rq);
2207 if (delta)
2208 atomic_long_add(delta, &calc_load_tasks_idle);
2209}
2210
2211static long calc_load_fold_idle(void)
2212{
2213 long delta = 0;
2214
2215 /*
2216 * Its got a race, we don't care...
2217 */
2218 if (atomic_long_read(&calc_load_tasks_idle))
2219 delta = atomic_long_xchg(&calc_load_tasks_idle, 0);
2220
2221 return delta;
2222}
0f004f5a
PZ
2223
2224/**
2225 * fixed_power_int - compute: x^n, in O(log n) time
2226 *
2227 * @x: base of the power
2228 * @frac_bits: fractional bits of @x
2229 * @n: power to raise @x to.
2230 *
2231 * By exploiting the relation between the definition of the natural power
2232 * function: x^n := x*x*...*x (x multiplied by itself for n times), and
2233 * the binary encoding of numbers used by computers: n := \Sum n_i * 2^i,
2234 * (where: n_i \elem {0, 1}, the binary vector representing n),
2235 * we find: x^n := x^(\Sum n_i * 2^i) := \Prod x^(n_i * 2^i), which is
2236 * of course trivially computable in O(log_2 n), the length of our binary
2237 * vector.
2238 */
2239static unsigned long
2240fixed_power_int(unsigned long x, unsigned int frac_bits, unsigned int n)
2241{
2242 unsigned long result = 1UL << frac_bits;
2243
2244 if (n) for (;;) {
2245 if (n & 1) {
2246 result *= x;
2247 result += 1UL << (frac_bits - 1);
2248 result >>= frac_bits;
2249 }
2250 n >>= 1;
2251 if (!n)
2252 break;
2253 x *= x;
2254 x += 1UL << (frac_bits - 1);
2255 x >>= frac_bits;
2256 }
2257
2258 return result;
2259}
2260
2261/*
2262 * a1 = a0 * e + a * (1 - e)
2263 *
2264 * a2 = a1 * e + a * (1 - e)
2265 * = (a0 * e + a * (1 - e)) * e + a * (1 - e)
2266 * = a0 * e^2 + a * (1 - e) * (1 + e)
2267 *
2268 * a3 = a2 * e + a * (1 - e)
2269 * = (a0 * e^2 + a * (1 - e) * (1 + e)) * e + a * (1 - e)
2270 * = a0 * e^3 + a * (1 - e) * (1 + e + e^2)
2271 *
2272 * ...
2273 *
2274 * an = a0 * e^n + a * (1 - e) * (1 + e + ... + e^n-1) [1]
2275 * = a0 * e^n + a * (1 - e) * (1 - e^n)/(1 - e)
2276 * = a0 * e^n + a * (1 - e^n)
2277 *
2278 * [1] application of the geometric series:
2279 *
2280 * n 1 - x^(n+1)
2281 * S_n := \Sum x^i = -------------
2282 * i=0 1 - x
2283 */
2284static unsigned long
2285calc_load_n(unsigned long load, unsigned long exp,
2286 unsigned long active, unsigned int n)
2287{
2288
2289 return calc_load(load, fixed_power_int(exp, FSHIFT, n), active);
2290}
2291
2292/*
2293 * NO_HZ can leave us missing all per-cpu ticks calling
2294 * calc_load_account_active(), but since an idle CPU folds its delta into
2295 * calc_load_tasks_idle per calc_load_account_idle(), all we need to do is fold
2296 * in the pending idle delta if our idle period crossed a load cycle boundary.
2297 *
2298 * Once we've updated the global active value, we need to apply the exponential
2299 * weights adjusted to the number of cycles missed.
2300 */
c308b56b 2301static void calc_global_nohz(void)
0f004f5a
PZ
2302{
2303 long delta, active, n;
2304
0f004f5a
PZ
2305 /*
2306 * If we crossed a calc_load_update boundary, make sure to fold
2307 * any pending idle changes, the respective CPUs might have
2308 * missed the tick driven calc_load_account_active() update
2309 * due to NO_HZ.
2310 */
2311 delta = calc_load_fold_idle();
2312 if (delta)
2313 atomic_long_add(delta, &calc_load_tasks);
2314
2315 /*
c308b56b 2316 * It could be the one fold was all it took, we done!
0f004f5a 2317 */
c308b56b
PZ
2318 if (time_before(jiffies, calc_load_update + 10))
2319 return;
0f004f5a 2320
c308b56b
PZ
2321 /*
2322 * Catch-up, fold however many we are behind still
2323 */
2324 delta = jiffies - calc_load_update - 10;
2325 n = 1 + (delta / LOAD_FREQ);
0f004f5a 2326
c308b56b
PZ
2327 active = atomic_long_read(&calc_load_tasks);
2328 active = active > 0 ? active * FIXED_1 : 0;
0f004f5a 2329
c308b56b
PZ
2330 avenrun[0] = calc_load_n(avenrun[0], EXP_1, active, n);
2331 avenrun[1] = calc_load_n(avenrun[1], EXP_5, active, n);
2332 avenrun[2] = calc_load_n(avenrun[2], EXP_15, active, n);
0f004f5a 2333
c308b56b 2334 calc_load_update += n * LOAD_FREQ;
0f004f5a 2335}
74f5187a 2336#else
029632fb 2337void calc_load_account_idle(struct rq *this_rq)
74f5187a
PZ
2338{
2339}
2340
2341static inline long calc_load_fold_idle(void)
2342{
2343 return 0;
2344}
0f004f5a 2345
c308b56b 2346static void calc_global_nohz(void)
0f004f5a
PZ
2347{
2348}
74f5187a
PZ
2349#endif
2350
2d02494f
TG
2351/**
2352 * get_avenrun - get the load average array
2353 * @loads: pointer to dest load array
2354 * @offset: offset to add
2355 * @shift: shift count to shift the result left
2356 *
2357 * These values are estimates at best, so no need for locking.
2358 */
2359void get_avenrun(unsigned long *loads, unsigned long offset, int shift)
2360{
2361 loads[0] = (avenrun[0] + offset) << shift;
2362 loads[1] = (avenrun[1] + offset) << shift;
2363 loads[2] = (avenrun[2] + offset) << shift;
46cb4b7c 2364}
46cb4b7c 2365
46cb4b7c 2366/*
dce48a84
TG
2367 * calc_load - update the avenrun load estimates 10 ticks after the
2368 * CPUs have updated calc_load_tasks.
7835b98b 2369 */
0f004f5a 2370void calc_global_load(unsigned long ticks)
7835b98b 2371{
dce48a84 2372 long active;
1da177e4 2373
0f004f5a 2374 if (time_before(jiffies, calc_load_update + 10))
dce48a84 2375 return;
1da177e4 2376
dce48a84
TG
2377 active = atomic_long_read(&calc_load_tasks);
2378 active = active > 0 ? active * FIXED_1 : 0;
1da177e4 2379
dce48a84
TG
2380 avenrun[0] = calc_load(avenrun[0], EXP_1, active);
2381 avenrun[1] = calc_load(avenrun[1], EXP_5, active);
2382 avenrun[2] = calc_load(avenrun[2], EXP_15, active);
dd41f596 2383
dce48a84 2384 calc_load_update += LOAD_FREQ;
c308b56b
PZ
2385
2386 /*
2387 * Account one period with whatever state we found before
2388 * folding in the nohz state and ageing the entire idle period.
2389 *
2390 * This avoids loosing a sample when we go idle between
2391 * calc_load_account_active() (10 ticks ago) and now and thus
2392 * under-accounting.
2393 */
2394 calc_global_nohz();
dce48a84 2395}
1da177e4 2396
dce48a84 2397/*
74f5187a
PZ
2398 * Called from update_cpu_load() to periodically update this CPU's
2399 * active count.
dce48a84
TG
2400 */
2401static void calc_load_account_active(struct rq *this_rq)
2402{
74f5187a 2403 long delta;
08c183f3 2404
74f5187a
PZ
2405 if (time_before(jiffies, this_rq->calc_load_update))
2406 return;
783609c6 2407
74f5187a
PZ
2408 delta = calc_load_fold_active(this_rq);
2409 delta += calc_load_fold_idle();
2410 if (delta)
dce48a84 2411 atomic_long_add(delta, &calc_load_tasks);
74f5187a
PZ
2412
2413 this_rq->calc_load_update += LOAD_FREQ;
46cb4b7c
SS
2414}
2415
fdf3e95d
VP
2416/*
2417 * The exact cpuload at various idx values, calculated at every tick would be
2418 * load = (2^idx - 1) / 2^idx * load + 1 / 2^idx * cur_load
2419 *
2420 * If a cpu misses updates for n-1 ticks (as it was idle) and update gets called
2421 * on nth tick when cpu may be busy, then we have:
2422 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2423 * load = (2^idx - 1) / 2^idx) * load + 1 / 2^idx * cur_load
2424 *
2425 * decay_load_missed() below does efficient calculation of
2426 * load = ((2^idx - 1) / 2^idx)^(n-1) * load
2427 * avoiding 0..n-1 loop doing load = ((2^idx - 1) / 2^idx) * load
2428 *
2429 * The calculation is approximated on a 128 point scale.
2430 * degrade_zero_ticks is the number of ticks after which load at any
2431 * particular idx is approximated to be zero.
2432 * degrade_factor is a precomputed table, a row for each load idx.
2433 * Each column corresponds to degradation factor for a power of two ticks,
2434 * based on 128 point scale.
2435 * Example:
2436 * row 2, col 3 (=12) says that the degradation at load idx 2 after
2437 * 8 ticks is 12/128 (which is an approximation of exact factor 3^8/4^8).
2438 *
2439 * With this power of 2 load factors, we can degrade the load n times
2440 * by looking at 1 bits in n and doing as many mult/shift instead of
2441 * n mult/shifts needed by the exact degradation.
2442 */
2443#define DEGRADE_SHIFT 7
2444static const unsigned char
2445 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
2446static const unsigned char
2447 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
2448 {0, 0, 0, 0, 0, 0, 0, 0},
2449 {64, 32, 8, 0, 0, 0, 0, 0},
2450 {96, 72, 40, 12, 1, 0, 0},
2451 {112, 98, 75, 43, 15, 1, 0},
2452 {120, 112, 98, 76, 45, 16, 2} };
2453
2454/*
2455 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
2456 * would be when CPU is idle and so we just decay the old load without
2457 * adding any new load.
2458 */
2459static unsigned long
2460decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
2461{
2462 int j = 0;
2463
2464 if (!missed_updates)
2465 return load;
2466
2467 if (missed_updates >= degrade_zero_ticks[idx])
2468 return 0;
2469
2470 if (idx == 1)
2471 return load >> missed_updates;
2472
2473 while (missed_updates) {
2474 if (missed_updates % 2)
2475 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
2476
2477 missed_updates >>= 1;
2478 j++;
2479 }
2480 return load;
2481}
2482
46cb4b7c 2483/*
dd41f596 2484 * Update rq->cpu_load[] statistics. This function is usually called every
fdf3e95d
VP
2485 * scheduler tick (TICK_NSEC). With tickless idle this will not be called
2486 * every tick. We fix it up based on jiffies.
46cb4b7c 2487 */
556061b0
PZ
2488static void __update_cpu_load(struct rq *this_rq, unsigned long this_load,
2489 unsigned long pending_updates)
46cb4b7c 2490{
dd41f596 2491 int i, scale;
46cb4b7c 2492
dd41f596 2493 this_rq->nr_load_updates++;
46cb4b7c 2494
dd41f596 2495 /* Update our load: */
fdf3e95d
VP
2496 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
2497 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
dd41f596 2498 unsigned long old_load, new_load;
7d1e6a9b 2499
dd41f596 2500 /* scale is effectively 1 << i now, and >> i divides by scale */
46cb4b7c 2501
dd41f596 2502 old_load = this_rq->cpu_load[i];
fdf3e95d 2503 old_load = decay_load_missed(old_load, pending_updates - 1, i);
dd41f596 2504 new_load = this_load;
a25707f3
IM
2505 /*
2506 * Round up the averaging division if load is increasing. This
2507 * prevents us from getting stuck on 9 if the load is 10, for
2508 * example.
2509 */
2510 if (new_load > old_load)
fdf3e95d
VP
2511 new_load += scale - 1;
2512
2513 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
dd41f596 2514 }
da2b71ed
SS
2515
2516 sched_avg_update(this_rq);
fdf3e95d
VP
2517}
2518
5aaa0b7a
PZ
2519#ifdef CONFIG_NO_HZ
2520/*
2521 * There is no sane way to deal with nohz on smp when using jiffies because the
2522 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
2523 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
2524 *
2525 * Therefore we cannot use the delta approach from the regular tick since that
2526 * would seriously skew the load calculation. However we'll make do for those
2527 * updates happening while idle (nohz_idle_balance) or coming out of idle
2528 * (tick_nohz_idle_exit).
2529 *
2530 * This means we might still be one tick off for nohz periods.
2531 */
2532
556061b0
PZ
2533/*
2534 * Called from nohz_idle_balance() to update the load ratings before doing the
2535 * idle balance.
2536 */
2537void update_idle_cpu_load(struct rq *this_rq)
2538{
5aaa0b7a 2539 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
556061b0
PZ
2540 unsigned long load = this_rq->load.weight;
2541 unsigned long pending_updates;
2542
2543 /*
5aaa0b7a 2544 * bail if there's load or we're actually up-to-date.
556061b0
PZ
2545 */
2546 if (load || curr_jiffies == this_rq->last_load_update_tick)
2547 return;
2548
2549 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2550 this_rq->last_load_update_tick = curr_jiffies;
2551
2552 __update_cpu_load(this_rq, load, pending_updates);
2553}
2554
5aaa0b7a
PZ
2555/*
2556 * Called from tick_nohz_idle_exit() -- try and fix up the ticks we missed.
2557 */
2558void update_cpu_load_nohz(void)
2559{
2560 struct rq *this_rq = this_rq();
2561 unsigned long curr_jiffies = ACCESS_ONCE(jiffies);
2562 unsigned long pending_updates;
2563
2564 if (curr_jiffies == this_rq->last_load_update_tick)
2565 return;
2566
2567 raw_spin_lock(&this_rq->lock);
2568 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
2569 if (pending_updates) {
2570 this_rq->last_load_update_tick = curr_jiffies;
2571 /*
2572 * We were idle, this means load 0, the current load might be
2573 * !0 due to remote wakeups and the sort.
2574 */
2575 __update_cpu_load(this_rq, 0, pending_updates);
2576 }
2577 raw_spin_unlock(&this_rq->lock);
2578}
2579#endif /* CONFIG_NO_HZ */
2580
556061b0
PZ
2581/*
2582 * Called from scheduler_tick()
2583 */
fdf3e95d
VP
2584static void update_cpu_load_active(struct rq *this_rq)
2585{
556061b0 2586 /*
5aaa0b7a 2587 * See the mess around update_idle_cpu_load() / update_cpu_load_nohz().
556061b0
PZ
2588 */
2589 this_rq->last_load_update_tick = jiffies;
2590 __update_cpu_load(this_rq, this_rq->load.weight, 1);
46cb4b7c 2591
74f5187a 2592 calc_load_account_active(this_rq);
46cb4b7c
SS
2593}
2594
dd41f596 2595#ifdef CONFIG_SMP
8a0be9ef 2596
46cb4b7c 2597/*
38022906
PZ
2598 * sched_exec - execve() is a valuable balancing opportunity, because at
2599 * this point the task has the smallest effective memory and cache footprint.
46cb4b7c 2600 */
38022906 2601void sched_exec(void)
46cb4b7c 2602{
38022906 2603 struct task_struct *p = current;
1da177e4 2604 unsigned long flags;
0017d735 2605 int dest_cpu;
46cb4b7c 2606
8f42ced9 2607 raw_spin_lock_irqsave(&p->pi_lock, flags);
7608dec2 2608 dest_cpu = p->sched_class->select_task_rq(p, SD_BALANCE_EXEC, 0);
0017d735
PZ
2609 if (dest_cpu == smp_processor_id())
2610 goto unlock;
38022906 2611
8f42ced9 2612 if (likely(cpu_active(dest_cpu))) {
969c7921 2613 struct migration_arg arg = { p, dest_cpu };
46cb4b7c 2614
8f42ced9
PZ
2615 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
2616 stop_one_cpu(task_cpu(p), migration_cpu_stop, &arg);
1da177e4
LT
2617 return;
2618 }
0017d735 2619unlock:
8f42ced9 2620 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4 2621}
dd41f596 2622
1da177e4
LT
2623#endif
2624
1da177e4 2625DEFINE_PER_CPU(struct kernel_stat, kstat);
3292beb3 2626DEFINE_PER_CPU(struct kernel_cpustat, kernel_cpustat);
1da177e4
LT
2627
2628EXPORT_PER_CPU_SYMBOL(kstat);
3292beb3 2629EXPORT_PER_CPU_SYMBOL(kernel_cpustat);
1da177e4
LT
2630
2631/*
c5f8d995 2632 * Return any ns on the sched_clock that have not yet been accounted in
f06febc9 2633 * @p in case that task is currently running.
c5f8d995
HS
2634 *
2635 * Called with task_rq_lock() held on @rq.
1da177e4 2636 */
c5f8d995
HS
2637static u64 do_task_delta_exec(struct task_struct *p, struct rq *rq)
2638{
2639 u64 ns = 0;
2640
2641 if (task_current(rq, p)) {
2642 update_rq_clock(rq);
305e6835 2643 ns = rq->clock_task - p->se.exec_start;
c5f8d995
HS
2644 if ((s64)ns < 0)
2645 ns = 0;
2646 }
2647
2648 return ns;
2649}
2650
bb34d92f 2651unsigned long long task_delta_exec(struct task_struct *p)
1da177e4 2652{
1da177e4 2653 unsigned long flags;
41b86e9c 2654 struct rq *rq;
bb34d92f 2655 u64 ns = 0;
48f24c4d 2656
41b86e9c 2657 rq = task_rq_lock(p, &flags);
c5f8d995 2658 ns = do_task_delta_exec(p, rq);
0122ec5b 2659 task_rq_unlock(rq, p, &flags);
1508487e 2660
c5f8d995
HS
2661 return ns;
2662}
f06febc9 2663
c5f8d995
HS
2664/*
2665 * Return accounted runtime for the task.
2666 * In case the task is currently running, return the runtime plus current's
2667 * pending runtime that have not been accounted yet.
2668 */
2669unsigned long long task_sched_runtime(struct task_struct *p)
2670{
2671 unsigned long flags;
2672 struct rq *rq;
2673 u64 ns = 0;
2674
2675 rq = task_rq_lock(p, &flags);
2676 ns = p->se.sum_exec_runtime + do_task_delta_exec(p, rq);
0122ec5b 2677 task_rq_unlock(rq, p, &flags);
c5f8d995
HS
2678
2679 return ns;
2680}
48f24c4d 2681
54c707e9
GC
2682#ifdef CONFIG_CGROUP_CPUACCT
2683struct cgroup_subsys cpuacct_subsys;
2684struct cpuacct root_cpuacct;
2685#endif
2686
be726ffd
GC
2687static inline void task_group_account_field(struct task_struct *p, int index,
2688 u64 tmp)
54c707e9
GC
2689{
2690#ifdef CONFIG_CGROUP_CPUACCT
2691 struct kernel_cpustat *kcpustat;
2692 struct cpuacct *ca;
2693#endif
2694 /*
2695 * Since all updates are sure to touch the root cgroup, we
2696 * get ourselves ahead and touch it first. If the root cgroup
2697 * is the only cgroup, then nothing else should be necessary.
2698 *
2699 */
2700 __get_cpu_var(kernel_cpustat).cpustat[index] += tmp;
2701
2702#ifdef CONFIG_CGROUP_CPUACCT
2703 if (unlikely(!cpuacct_subsys.active))
2704 return;
2705
2706 rcu_read_lock();
2707 ca = task_ca(p);
2708 while (ca && (ca != &root_cpuacct)) {
2709 kcpustat = this_cpu_ptr(ca->cpustat);
2710 kcpustat->cpustat[index] += tmp;
2711 ca = parent_ca(ca);
2712 }
2713 rcu_read_unlock();
2714#endif
2715}
2716
2717
1da177e4
LT
2718/*
2719 * Account user cpu time to a process.
2720 * @p: the process that the cpu time gets accounted to
1da177e4 2721 * @cputime: the cpu time spent in user space since the last update
457533a7 2722 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4 2723 */
457533a7
MS
2724void account_user_time(struct task_struct *p, cputime_t cputime,
2725 cputime_t cputime_scaled)
1da177e4 2726{
3292beb3 2727 int index;
1da177e4 2728
457533a7 2729 /* Add user time to process. */
64861634
MS
2730 p->utime += cputime;
2731 p->utimescaled += cputime_scaled;
f06febc9 2732 account_group_user_time(p, cputime);
1da177e4 2733
3292beb3 2734 index = (TASK_NICE(p) > 0) ? CPUTIME_NICE : CPUTIME_USER;
ef12fefa 2735
1da177e4 2736 /* Add user time to cpustat. */
612ef28a 2737 task_group_account_field(p, index, (__force u64) cputime);
ef12fefa 2738
49b5cf34
JL
2739 /* Account for user time used */
2740 acct_update_integrals(p);
1da177e4
LT
2741}
2742
94886b84
LV
2743/*
2744 * Account guest cpu time to a process.
2745 * @p: the process that the cpu time gets accounted to
2746 * @cputime: the cpu time spent in virtual machine since the last update
457533a7 2747 * @cputime_scaled: cputime scaled by cpu frequency
94886b84 2748 */
457533a7
MS
2749static void account_guest_time(struct task_struct *p, cputime_t cputime,
2750 cputime_t cputime_scaled)
94886b84 2751{
3292beb3 2752 u64 *cpustat = kcpustat_this_cpu->cpustat;
94886b84 2753
457533a7 2754 /* Add guest time to process. */
64861634
MS
2755 p->utime += cputime;
2756 p->utimescaled += cputime_scaled;
f06febc9 2757 account_group_user_time(p, cputime);
64861634 2758 p->gtime += cputime;
94886b84 2759
457533a7 2760 /* Add guest time to cpustat. */
ce0e7b28 2761 if (TASK_NICE(p) > 0) {
612ef28a
MS
2762 cpustat[CPUTIME_NICE] += (__force u64) cputime;
2763 cpustat[CPUTIME_GUEST_NICE] += (__force u64) cputime;
ce0e7b28 2764 } else {
612ef28a
MS
2765 cpustat[CPUTIME_USER] += (__force u64) cputime;
2766 cpustat[CPUTIME_GUEST] += (__force u64) cputime;
ce0e7b28 2767 }
94886b84
LV
2768}
2769
70a89a66
VP
2770/*
2771 * Account system cpu time to a process and desired cpustat field
2772 * @p: the process that the cpu time gets accounted to
2773 * @cputime: the cpu time spent in kernel space since the last update
2774 * @cputime_scaled: cputime scaled by cpu frequency
2775 * @target_cputime64: pointer to cpustat field that has to be updated
2776 */
2777static inline
2778void __account_system_time(struct task_struct *p, cputime_t cputime,
3292beb3 2779 cputime_t cputime_scaled, int index)
70a89a66 2780{
70a89a66 2781 /* Add system time to process. */
64861634
MS
2782 p->stime += cputime;
2783 p->stimescaled += cputime_scaled;
70a89a66
VP
2784 account_group_system_time(p, cputime);
2785
2786 /* Add system time to cpustat. */
612ef28a 2787 task_group_account_field(p, index, (__force u64) cputime);
70a89a66
VP
2788
2789 /* Account for system time used */
2790 acct_update_integrals(p);
2791}
2792
1da177e4
LT
2793/*
2794 * Account system cpu time to a process.
2795 * @p: the process that the cpu time gets accounted to
2796 * @hardirq_offset: the offset to subtract from hardirq_count()
2797 * @cputime: the cpu time spent in kernel space since the last update
457533a7 2798 * @cputime_scaled: cputime scaled by cpu frequency
1da177e4
LT
2799 */
2800void account_system_time(struct task_struct *p, int hardirq_offset,
457533a7 2801 cputime_t cputime, cputime_t cputime_scaled)
1da177e4 2802{
3292beb3 2803 int index;
1da177e4 2804
983ed7a6 2805 if ((p->flags & PF_VCPU) && (irq_count() - hardirq_offset == 0)) {
457533a7 2806 account_guest_time(p, cputime, cputime_scaled);
983ed7a6
HH
2807 return;
2808 }
94886b84 2809
1da177e4 2810 if (hardirq_count() - hardirq_offset)
3292beb3 2811 index = CPUTIME_IRQ;
75e1056f 2812 else if (in_serving_softirq())
3292beb3 2813 index = CPUTIME_SOFTIRQ;
1da177e4 2814 else
3292beb3 2815 index = CPUTIME_SYSTEM;
ef12fefa 2816
3292beb3 2817 __account_system_time(p, cputime, cputime_scaled, index);
1da177e4
LT
2818}
2819
c66f08be 2820/*
1da177e4 2821 * Account for involuntary wait time.
544b4a1f 2822 * @cputime: the cpu time spent in involuntary wait
c66f08be 2823 */
79741dd3 2824void account_steal_time(cputime_t cputime)
c66f08be 2825{
3292beb3 2826 u64 *cpustat = kcpustat_this_cpu->cpustat;
79741dd3 2827
612ef28a 2828 cpustat[CPUTIME_STEAL] += (__force u64) cputime;
c66f08be
MN
2829}
2830
1da177e4 2831/*
79741dd3
MS
2832 * Account for idle time.
2833 * @cputime: the cpu time spent in idle wait
1da177e4 2834 */
79741dd3 2835void account_idle_time(cputime_t cputime)
1da177e4 2836{
3292beb3 2837 u64 *cpustat = kcpustat_this_cpu->cpustat;
70b97a7f 2838 struct rq *rq = this_rq();
1da177e4 2839
79741dd3 2840 if (atomic_read(&rq->nr_iowait) > 0)
612ef28a 2841 cpustat[CPUTIME_IOWAIT] += (__force u64) cputime;
79741dd3 2842 else
612ef28a 2843 cpustat[CPUTIME_IDLE] += (__force u64) cputime;
1da177e4
LT
2844}
2845
e6e6685a
GC
2846static __always_inline bool steal_account_process_tick(void)
2847{
2848#ifdef CONFIG_PARAVIRT
c5905afb 2849 if (static_key_false(&paravirt_steal_enabled)) {
e6e6685a
GC
2850 u64 steal, st = 0;
2851
2852 steal = paravirt_steal_clock(smp_processor_id());
2853 steal -= this_rq()->prev_steal_time;
2854
2855 st = steal_ticks(steal);
2856 this_rq()->prev_steal_time += st * TICK_NSEC;
2857
2858 account_steal_time(st);
2859 return st;
2860 }
2861#endif
2862 return false;
2863}
2864
79741dd3
MS
2865#ifndef CONFIG_VIRT_CPU_ACCOUNTING
2866
abb74cef
VP
2867#ifdef CONFIG_IRQ_TIME_ACCOUNTING
2868/*
2869 * Account a tick to a process and cpustat
2870 * @p: the process that the cpu time gets accounted to
2871 * @user_tick: is the tick from userspace
2872 * @rq: the pointer to rq
2873 *
2874 * Tick demultiplexing follows the order
2875 * - pending hardirq update
2876 * - pending softirq update
2877 * - user_time
2878 * - idle_time
2879 * - system time
2880 * - check for guest_time
2881 * - else account as system_time
2882 *
2883 * Check for hardirq is done both for system and user time as there is
2884 * no timer going off while we are on hardirq and hence we may never get an
2885 * opportunity to update it solely in system time.
2886 * p->stime and friends are only updated on system time and not on irq
2887 * softirq as those do not count in task exec_runtime any more.
2888 */
2889static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2890 struct rq *rq)
2891{
2892 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
3292beb3 2893 u64 *cpustat = kcpustat_this_cpu->cpustat;
abb74cef 2894
e6e6685a
GC
2895 if (steal_account_process_tick())
2896 return;
2897
abb74cef 2898 if (irqtime_account_hi_update()) {
612ef28a 2899 cpustat[CPUTIME_IRQ] += (__force u64) cputime_one_jiffy;
abb74cef 2900 } else if (irqtime_account_si_update()) {
612ef28a 2901 cpustat[CPUTIME_SOFTIRQ] += (__force u64) cputime_one_jiffy;
414bee9b
VP
2902 } else if (this_cpu_ksoftirqd() == p) {
2903 /*
2904 * ksoftirqd time do not get accounted in cpu_softirq_time.
2905 * So, we have to handle it separately here.
2906 * Also, p->stime needs to be updated for ksoftirqd.
2907 */
2908 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2909 CPUTIME_SOFTIRQ);
abb74cef
VP
2910 } else if (user_tick) {
2911 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
2912 } else if (p == rq->idle) {
2913 account_idle_time(cputime_one_jiffy);
2914 } else if (p->flags & PF_VCPU) { /* System time or guest time */
2915 account_guest_time(p, cputime_one_jiffy, one_jiffy_scaled);
2916 } else {
2917 __account_system_time(p, cputime_one_jiffy, one_jiffy_scaled,
3292beb3 2918 CPUTIME_SYSTEM);
abb74cef
VP
2919 }
2920}
2921
2922static void irqtime_account_idle_ticks(int ticks)
2923{
2924 int i;
2925 struct rq *rq = this_rq();
2926
2927 for (i = 0; i < ticks; i++)
2928 irqtime_account_process_tick(current, 0, rq);
2929}
544b4a1f 2930#else /* CONFIG_IRQ_TIME_ACCOUNTING */
abb74cef
VP
2931static void irqtime_account_idle_ticks(int ticks) {}
2932static void irqtime_account_process_tick(struct task_struct *p, int user_tick,
2933 struct rq *rq) {}
544b4a1f 2934#endif /* CONFIG_IRQ_TIME_ACCOUNTING */
79741dd3
MS
2935
2936/*
2937 * Account a single tick of cpu time.
2938 * @p: the process that the cpu time gets accounted to
2939 * @user_tick: indicates if the tick is a user or a system tick
2940 */
2941void account_process_tick(struct task_struct *p, int user_tick)
2942{
a42548a1 2943 cputime_t one_jiffy_scaled = cputime_to_scaled(cputime_one_jiffy);
79741dd3
MS
2944 struct rq *rq = this_rq();
2945
abb74cef
VP
2946 if (sched_clock_irqtime) {
2947 irqtime_account_process_tick(p, user_tick, rq);
2948 return;
2949 }
2950
e6e6685a
GC
2951 if (steal_account_process_tick())
2952 return;
2953
79741dd3 2954 if (user_tick)
a42548a1 2955 account_user_time(p, cputime_one_jiffy, one_jiffy_scaled);
f5f293a4 2956 else if ((p != rq->idle) || (irq_count() != HARDIRQ_OFFSET))
a42548a1 2957 account_system_time(p, HARDIRQ_OFFSET, cputime_one_jiffy,
79741dd3
MS
2958 one_jiffy_scaled);
2959 else
a42548a1 2960 account_idle_time(cputime_one_jiffy);
79741dd3
MS
2961}
2962
2963/*
2964 * Account multiple ticks of steal time.
2965 * @p: the process from which the cpu time has been stolen
2966 * @ticks: number of stolen ticks
2967 */
2968void account_steal_ticks(unsigned long ticks)
2969{
2970 account_steal_time(jiffies_to_cputime(ticks));
2971}
2972
2973/*
2974 * Account multiple ticks of idle time.
2975 * @ticks: number of stolen ticks
2976 */
2977void account_idle_ticks(unsigned long ticks)
2978{
abb74cef
VP
2979
2980 if (sched_clock_irqtime) {
2981 irqtime_account_idle_ticks(ticks);
2982 return;
2983 }
2984
79741dd3 2985 account_idle_time(jiffies_to_cputime(ticks));
1da177e4
LT
2986}
2987
79741dd3
MS
2988#endif
2989
49048622
BS
2990/*
2991 * Use precise platform statistics if available:
2992 */
2993#ifdef CONFIG_VIRT_CPU_ACCOUNTING
d180c5bc 2994void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 2995{
d99ca3b9
HS
2996 *ut = p->utime;
2997 *st = p->stime;
49048622
BS
2998}
2999
0cf55e1e 3000void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3001{
0cf55e1e
HS
3002 struct task_cputime cputime;
3003
3004 thread_group_cputime(p, &cputime);
3005
3006 *ut = cputime.utime;
3007 *st = cputime.stime;
49048622
BS
3008}
3009#else
761b1d26
HS
3010
3011#ifndef nsecs_to_cputime
b7b20df9 3012# define nsecs_to_cputime(__nsecs) nsecs_to_jiffies(__nsecs)
761b1d26
HS
3013#endif
3014
d180c5bc 3015void task_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3016{
64861634 3017 cputime_t rtime, utime = p->utime, total = utime + p->stime;
49048622
BS
3018
3019 /*
3020 * Use CFS's precise accounting:
3021 */
d180c5bc 3022 rtime = nsecs_to_cputime(p->se.sum_exec_runtime);
49048622
BS
3023
3024 if (total) {
64861634 3025 u64 temp = (__force u64) rtime;
d180c5bc 3026
64861634
MS
3027 temp *= (__force u64) utime;
3028 do_div(temp, (__force u32) total);
3029 utime = (__force cputime_t) temp;
d180c5bc
HS
3030 } else
3031 utime = rtime;
49048622 3032
d180c5bc
HS
3033 /*
3034 * Compare with previous values, to keep monotonicity:
3035 */
761b1d26 3036 p->prev_utime = max(p->prev_utime, utime);
64861634 3037 p->prev_stime = max(p->prev_stime, rtime - p->prev_utime);
49048622 3038
d99ca3b9
HS
3039 *ut = p->prev_utime;
3040 *st = p->prev_stime;
49048622
BS
3041}
3042
0cf55e1e
HS
3043/*
3044 * Must be called with siglock held.
3045 */
3046void thread_group_times(struct task_struct *p, cputime_t *ut, cputime_t *st)
49048622 3047{
0cf55e1e
HS
3048 struct signal_struct *sig = p->signal;
3049 struct task_cputime cputime;
3050 cputime_t rtime, utime, total;
49048622 3051
0cf55e1e 3052 thread_group_cputime(p, &cputime);
49048622 3053
64861634 3054 total = cputime.utime + cputime.stime;
0cf55e1e 3055 rtime = nsecs_to_cputime(cputime.sum_exec_runtime);
49048622 3056
0cf55e1e 3057 if (total) {
64861634 3058 u64 temp = (__force u64) rtime;
49048622 3059
64861634
MS
3060 temp *= (__force u64) cputime.utime;
3061 do_div(temp, (__force u32) total);
3062 utime = (__force cputime_t) temp;
0cf55e1e
HS
3063 } else
3064 utime = rtime;
3065
3066 sig->prev_utime = max(sig->prev_utime, utime);
64861634 3067 sig->prev_stime = max(sig->prev_stime, rtime - sig->prev_utime);
0cf55e1e
HS
3068
3069 *ut = sig->prev_utime;
3070 *st = sig->prev_stime;
49048622 3071}
49048622 3072#endif
49048622 3073
7835b98b
CL
3074/*
3075 * This function gets called by the timer code, with HZ frequency.
3076 * We call it with interrupts disabled.
7835b98b
CL
3077 */
3078void scheduler_tick(void)
3079{
7835b98b
CL
3080 int cpu = smp_processor_id();
3081 struct rq *rq = cpu_rq(cpu);
dd41f596 3082 struct task_struct *curr = rq->curr;
3e51f33f
PZ
3083
3084 sched_clock_tick();
dd41f596 3085
05fa785c 3086 raw_spin_lock(&rq->lock);
3e51f33f 3087 update_rq_clock(rq);
fdf3e95d 3088 update_cpu_load_active(rq);
fa85ae24 3089 curr->sched_class->task_tick(rq, curr, 0);
05fa785c 3090 raw_spin_unlock(&rq->lock);
7835b98b 3091
e9d2b064 3092 perf_event_task_tick();
e220d2dc 3093
e418e1c2 3094#ifdef CONFIG_SMP
6eb57e0d 3095 rq->idle_balance = idle_cpu(cpu);
dd41f596 3096 trigger_load_balance(rq, cpu);
e418e1c2 3097#endif
1da177e4
LT
3098}
3099
132380a0 3100notrace unsigned long get_parent_ip(unsigned long addr)
6cd8a4bb
SR
3101{
3102 if (in_lock_functions(addr)) {
3103 addr = CALLER_ADDR2;
3104 if (in_lock_functions(addr))
3105 addr = CALLER_ADDR3;
3106 }
3107 return addr;
3108}
1da177e4 3109
7e49fcce
SR
3110#if defined(CONFIG_PREEMPT) && (defined(CONFIG_DEBUG_PREEMPT) || \
3111 defined(CONFIG_PREEMPT_TRACER))
3112
43627582 3113void __kprobes add_preempt_count(int val)
1da177e4 3114{
6cd8a4bb 3115#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3116 /*
3117 * Underflow?
3118 */
9a11b49a
IM
3119 if (DEBUG_LOCKS_WARN_ON((preempt_count() < 0)))
3120 return;
6cd8a4bb 3121#endif
1da177e4 3122 preempt_count() += val;
6cd8a4bb 3123#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3124 /*
3125 * Spinlock count overflowing soon?
3126 */
33859f7f
MOS
3127 DEBUG_LOCKS_WARN_ON((preempt_count() & PREEMPT_MASK) >=
3128 PREEMPT_MASK - 10);
6cd8a4bb
SR
3129#endif
3130 if (preempt_count() == val)
3131 trace_preempt_off(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3132}
3133EXPORT_SYMBOL(add_preempt_count);
3134
43627582 3135void __kprobes sub_preempt_count(int val)
1da177e4 3136{
6cd8a4bb 3137#ifdef CONFIG_DEBUG_PREEMPT
1da177e4
LT
3138 /*
3139 * Underflow?
3140 */
01e3eb82 3141 if (DEBUG_LOCKS_WARN_ON(val > preempt_count()))
9a11b49a 3142 return;
1da177e4
LT
3143 /*
3144 * Is the spinlock portion underflowing?
3145 */
9a11b49a
IM
3146 if (DEBUG_LOCKS_WARN_ON((val < PREEMPT_MASK) &&
3147 !(preempt_count() & PREEMPT_MASK)))
3148 return;
6cd8a4bb 3149#endif
9a11b49a 3150
6cd8a4bb
SR
3151 if (preempt_count() == val)
3152 trace_preempt_on(CALLER_ADDR0, get_parent_ip(CALLER_ADDR1));
1da177e4
LT
3153 preempt_count() -= val;
3154}
3155EXPORT_SYMBOL(sub_preempt_count);
3156
3157#endif
3158
3159/*
dd41f596 3160 * Print scheduling while atomic bug:
1da177e4 3161 */
dd41f596 3162static noinline void __schedule_bug(struct task_struct *prev)
1da177e4 3163{
664dfa65
DJ
3164 if (oops_in_progress)
3165 return;
3166
3df0fc5b
PZ
3167 printk(KERN_ERR "BUG: scheduling while atomic: %s/%d/0x%08x\n",
3168 prev->comm, prev->pid, preempt_count());
838225b4 3169
dd41f596 3170 debug_show_held_locks(prev);
e21f5b15 3171 print_modules();
dd41f596
IM
3172 if (irqs_disabled())
3173 print_irqtrace_events(prev);
6135fc1e 3174 dump_stack();
1c2927f1 3175 add_taint(TAINT_WARN);
dd41f596 3176}
1da177e4 3177
dd41f596
IM
3178/*
3179 * Various schedule()-time debugging checks and statistics:
3180 */
3181static inline void schedule_debug(struct task_struct *prev)
3182{
1da177e4 3183 /*
41a2d6cf 3184 * Test if we are atomic. Since do_exit() needs to call into
1da177e4
LT
3185 * schedule() atomically, we ignore that path for now.
3186 * Otherwise, whine if we are scheduling when we should not be.
3187 */
3f33a7ce 3188 if (unlikely(in_atomic_preempt_off() && !prev->exit_state))
dd41f596 3189 __schedule_bug(prev);
b3fbab05 3190 rcu_sleep_check();
dd41f596 3191
1da177e4
LT
3192 profile_hit(SCHED_PROFILING, __builtin_return_address(0));
3193
2d72376b 3194 schedstat_inc(this_rq(), sched_count);
dd41f596
IM
3195}
3196
6cecd084 3197static void put_prev_task(struct rq *rq, struct task_struct *prev)
df1c99d4 3198{
61eadef6 3199 if (prev->on_rq || rq->skip_clock_update < 0)
a64692a3 3200 update_rq_clock(rq);
6cecd084 3201 prev->sched_class->put_prev_task(rq, prev);
df1c99d4
MG
3202}
3203
dd41f596
IM
3204/*
3205 * Pick up the highest-prio task:
3206 */
3207static inline struct task_struct *
b67802ea 3208pick_next_task(struct rq *rq)
dd41f596 3209{
5522d5d5 3210 const struct sched_class *class;
dd41f596 3211 struct task_struct *p;
1da177e4
LT
3212
3213 /*
dd41f596
IM
3214 * Optimization: we know that if all tasks are in
3215 * the fair class we can call that function directly:
1da177e4 3216 */
953bfcd1 3217 if (likely(rq->nr_running == rq->cfs.h_nr_running)) {
fb8d4724 3218 p = fair_sched_class.pick_next_task(rq);
dd41f596
IM
3219 if (likely(p))
3220 return p;
1da177e4
LT
3221 }
3222
34f971f6 3223 for_each_class(class) {
fb8d4724 3224 p = class->pick_next_task(rq);
dd41f596
IM
3225 if (p)
3226 return p;
dd41f596 3227 }
34f971f6
PZ
3228
3229 BUG(); /* the idle class will always have a runnable task */
dd41f596 3230}
1da177e4 3231
dd41f596 3232/*
c259e01a 3233 * __schedule() is the main scheduler function.
dd41f596 3234 */
c259e01a 3235static void __sched __schedule(void)
dd41f596
IM
3236{
3237 struct task_struct *prev, *next;
67ca7bde 3238 unsigned long *switch_count;
dd41f596 3239 struct rq *rq;
31656519 3240 int cpu;
dd41f596 3241
ff743345
PZ
3242need_resched:
3243 preempt_disable();
dd41f596
IM
3244 cpu = smp_processor_id();
3245 rq = cpu_rq(cpu);
25502a6c 3246 rcu_note_context_switch(cpu);
dd41f596 3247 prev = rq->curr;
dd41f596 3248
dd41f596 3249 schedule_debug(prev);
1da177e4 3250
31656519 3251 if (sched_feat(HRTICK))
f333fdc9 3252 hrtick_clear(rq);
8f4d37ec 3253
05fa785c 3254 raw_spin_lock_irq(&rq->lock);
1da177e4 3255
246d86b5 3256 switch_count = &prev->nivcsw;
1da177e4 3257 if (prev->state && !(preempt_count() & PREEMPT_ACTIVE)) {
21aa9af0 3258 if (unlikely(signal_pending_state(prev->state, prev))) {
1da177e4 3259 prev->state = TASK_RUNNING;
21aa9af0 3260 } else {
2acca55e
PZ
3261 deactivate_task(rq, prev, DEQUEUE_SLEEP);
3262 prev->on_rq = 0;
3263
21aa9af0 3264 /*
2acca55e
PZ
3265 * If a worker went to sleep, notify and ask workqueue
3266 * whether it wants to wake up a task to maintain
3267 * concurrency.
21aa9af0
TH
3268 */
3269 if (prev->flags & PF_WQ_WORKER) {
3270 struct task_struct *to_wakeup;
3271
3272 to_wakeup = wq_worker_sleeping(prev, cpu);
3273 if (to_wakeup)
3274 try_to_wake_up_local(to_wakeup);
3275 }
21aa9af0 3276 }
dd41f596 3277 switch_count = &prev->nvcsw;
1da177e4
LT
3278 }
3279
3f029d3c 3280 pre_schedule(rq, prev);
f65eda4f 3281
dd41f596 3282 if (unlikely(!rq->nr_running))
1da177e4 3283 idle_balance(cpu, rq);
1da177e4 3284
df1c99d4 3285 put_prev_task(rq, prev);
b67802ea 3286 next = pick_next_task(rq);
f26f9aff
MG
3287 clear_tsk_need_resched(prev);
3288 rq->skip_clock_update = 0;
1da177e4 3289
1da177e4 3290 if (likely(prev != next)) {
1da177e4
LT
3291 rq->nr_switches++;
3292 rq->curr = next;
3293 ++*switch_count;
3294
dd41f596 3295 context_switch(rq, prev, next); /* unlocks the rq */
8f4d37ec 3296 /*
246d86b5
ON
3297 * The context switch have flipped the stack from under us
3298 * and restored the local variables which were saved when
3299 * this task called schedule() in the past. prev == current
3300 * is still correct, but it can be moved to another cpu/rq.
8f4d37ec
PZ
3301 */
3302 cpu = smp_processor_id();
3303 rq = cpu_rq(cpu);
1da177e4 3304 } else
05fa785c 3305 raw_spin_unlock_irq(&rq->lock);
1da177e4 3306
3f029d3c 3307 post_schedule(rq);
1da177e4 3308
ba74c144 3309 sched_preempt_enable_no_resched();
ff743345 3310 if (need_resched())
1da177e4
LT
3311 goto need_resched;
3312}
c259e01a 3313
9c40cef2
TG
3314static inline void sched_submit_work(struct task_struct *tsk)
3315{
3c7d5184 3316 if (!tsk->state || tsk_is_pi_blocked(tsk))
9c40cef2
TG
3317 return;
3318 /*
3319 * If we are going to sleep and we have plugged IO queued,
3320 * make sure to submit it to avoid deadlocks.
3321 */
3322 if (blk_needs_flush_plug(tsk))
3323 blk_schedule_flush_plug(tsk);
3324}
3325
6ebbe7a0 3326asmlinkage void __sched schedule(void)
c259e01a 3327{
9c40cef2
TG
3328 struct task_struct *tsk = current;
3329
3330 sched_submit_work(tsk);
c259e01a
TG
3331 __schedule();
3332}
1da177e4
LT
3333EXPORT_SYMBOL(schedule);
3334
c5491ea7
TG
3335/**
3336 * schedule_preempt_disabled - called with preemption disabled
3337 *
3338 * Returns with preemption disabled. Note: preempt_count must be 1
3339 */
3340void __sched schedule_preempt_disabled(void)
3341{
ba74c144 3342 sched_preempt_enable_no_resched();
c5491ea7
TG
3343 schedule();
3344 preempt_disable();
3345}
3346
c08f7829 3347#ifdef CONFIG_MUTEX_SPIN_ON_OWNER
0d66bf6d 3348
c6eb3dda
PZ
3349static inline bool owner_running(struct mutex *lock, struct task_struct *owner)
3350{
c6eb3dda 3351 if (lock->owner != owner)
307bf980 3352 return false;
0d66bf6d
PZ
3353
3354 /*
c6eb3dda
PZ
3355 * Ensure we emit the owner->on_cpu, dereference _after_ checking
3356 * lock->owner still matches owner, if that fails, owner might
3357 * point to free()d memory, if it still matches, the rcu_read_lock()
3358 * ensures the memory stays valid.
0d66bf6d 3359 */
c6eb3dda 3360 barrier();
0d66bf6d 3361
307bf980 3362 return owner->on_cpu;
c6eb3dda 3363}
0d66bf6d 3364
c6eb3dda
PZ
3365/*
3366 * Look out! "owner" is an entirely speculative pointer
3367 * access and not reliable.
3368 */
3369int mutex_spin_on_owner(struct mutex *lock, struct task_struct *owner)
3370{
3371 if (!sched_feat(OWNER_SPIN))
3372 return 0;
0d66bf6d 3373
307bf980 3374 rcu_read_lock();
c6eb3dda
PZ
3375 while (owner_running(lock, owner)) {
3376 if (need_resched())
307bf980 3377 break;
0d66bf6d 3378
335d7afb 3379 arch_mutex_cpu_relax();
0d66bf6d 3380 }
307bf980 3381 rcu_read_unlock();
4b402210 3382
c6eb3dda 3383 /*
307bf980
TG
3384 * We break out the loop above on need_resched() and when the
3385 * owner changed, which is a sign for heavy contention. Return
3386 * success only when lock->owner is NULL.
c6eb3dda 3387 */
307bf980 3388 return lock->owner == NULL;
0d66bf6d
PZ
3389}
3390#endif
3391
1da177e4
LT
3392#ifdef CONFIG_PREEMPT
3393/*
2ed6e34f 3394 * this is the entry point to schedule() from in-kernel preemption
41a2d6cf 3395 * off of preempt_enable. Kernel preemptions off return from interrupt
1da177e4
LT
3396 * occur there and call schedule directly.
3397 */
d1f74e20 3398asmlinkage void __sched notrace preempt_schedule(void)
1da177e4
LT
3399{
3400 struct thread_info *ti = current_thread_info();
6478d880 3401
1da177e4
LT
3402 /*
3403 * If there is a non-zero preempt_count or interrupts are disabled,
41a2d6cf 3404 * we do not want to preempt the current task. Just return..
1da177e4 3405 */
beed33a8 3406 if (likely(ti->preempt_count || irqs_disabled()))
1da177e4
LT
3407 return;
3408
3a5c359a 3409 do {
d1f74e20 3410 add_preempt_count_notrace(PREEMPT_ACTIVE);
c259e01a 3411 __schedule();
d1f74e20 3412 sub_preempt_count_notrace(PREEMPT_ACTIVE);
1da177e4 3413
3a5c359a
AK
3414 /*
3415 * Check again in case we missed a preemption opportunity
3416 * between schedule and now.
3417 */
3418 barrier();
5ed0cec0 3419 } while (need_resched());
1da177e4 3420}
1da177e4
LT
3421EXPORT_SYMBOL(preempt_schedule);
3422
3423/*
2ed6e34f 3424 * this is the entry point to schedule() from kernel preemption
1da177e4
LT
3425 * off of irq context.
3426 * Note, that this is called and return with irqs disabled. This will
3427 * protect us against recursive calling from irq.
3428 */
3429asmlinkage void __sched preempt_schedule_irq(void)
3430{
3431 struct thread_info *ti = current_thread_info();
6478d880 3432
2ed6e34f 3433 /* Catch callers which need to be fixed */
1da177e4
LT
3434 BUG_ON(ti->preempt_count || !irqs_disabled());
3435
3a5c359a
AK
3436 do {
3437 add_preempt_count(PREEMPT_ACTIVE);
3a5c359a 3438 local_irq_enable();
c259e01a 3439 __schedule();
3a5c359a 3440 local_irq_disable();
3a5c359a 3441 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4 3442
3a5c359a
AK
3443 /*
3444 * Check again in case we missed a preemption opportunity
3445 * between schedule and now.
3446 */
3447 barrier();
5ed0cec0 3448 } while (need_resched());
1da177e4
LT
3449}
3450
3451#endif /* CONFIG_PREEMPT */
3452
63859d4f 3453int default_wake_function(wait_queue_t *curr, unsigned mode, int wake_flags,
95cdf3b7 3454 void *key)
1da177e4 3455{
63859d4f 3456 return try_to_wake_up(curr->private, mode, wake_flags);
1da177e4 3457}
1da177e4
LT
3458EXPORT_SYMBOL(default_wake_function);
3459
3460/*
41a2d6cf
IM
3461 * The core wakeup function. Non-exclusive wakeups (nr_exclusive == 0) just
3462 * wake everything up. If it's an exclusive wakeup (nr_exclusive == small +ve
1da177e4
LT
3463 * number) then we wake all the non-exclusive tasks and one exclusive task.
3464 *
3465 * There are circumstances in which we can try to wake a task which has already
41a2d6cf 3466 * started to run but is not in state TASK_RUNNING. try_to_wake_up() returns
1da177e4
LT
3467 * zero in this (rare) case, and we handle it by continuing to scan the queue.
3468 */
78ddb08f 3469static void __wake_up_common(wait_queue_head_t *q, unsigned int mode,
63859d4f 3470 int nr_exclusive, int wake_flags, void *key)
1da177e4 3471{
2e45874c 3472 wait_queue_t *curr, *next;
1da177e4 3473
2e45874c 3474 list_for_each_entry_safe(curr, next, &q->task_list, task_list) {
48f24c4d
IM
3475 unsigned flags = curr->flags;
3476
63859d4f 3477 if (curr->func(curr, mode, wake_flags, key) &&
48f24c4d 3478 (flags & WQ_FLAG_EXCLUSIVE) && !--nr_exclusive)
1da177e4
LT
3479 break;
3480 }
3481}
3482
3483/**
3484 * __wake_up - wake up threads blocked on a waitqueue.
3485 * @q: the waitqueue
3486 * @mode: which threads
3487 * @nr_exclusive: how many wake-one or wake-many threads to wake up
67be2dd1 3488 * @key: is directly passed to the wakeup function
50fa610a
DH
3489 *
3490 * It may be assumed that this function implies a write memory barrier before
3491 * changing the task state if and only if any tasks are woken up.
1da177e4 3492 */
7ad5b3a5 3493void __wake_up(wait_queue_head_t *q, unsigned int mode,
95cdf3b7 3494 int nr_exclusive, void *key)
1da177e4
LT
3495{
3496 unsigned long flags;
3497
3498 spin_lock_irqsave(&q->lock, flags);
3499 __wake_up_common(q, mode, nr_exclusive, 0, key);
3500 spin_unlock_irqrestore(&q->lock, flags);
3501}
1da177e4
LT
3502EXPORT_SYMBOL(__wake_up);
3503
3504/*
3505 * Same as __wake_up but called with the spinlock in wait_queue_head_t held.
3506 */
63b20011 3507void __wake_up_locked(wait_queue_head_t *q, unsigned int mode, int nr)
1da177e4 3508{
63b20011 3509 __wake_up_common(q, mode, nr, 0, NULL);
1da177e4 3510}
22c43c81 3511EXPORT_SYMBOL_GPL(__wake_up_locked);
1da177e4 3512
4ede816a
DL
3513void __wake_up_locked_key(wait_queue_head_t *q, unsigned int mode, void *key)
3514{
3515 __wake_up_common(q, mode, 1, 0, key);
3516}
bf294b41 3517EXPORT_SYMBOL_GPL(__wake_up_locked_key);
4ede816a 3518
1da177e4 3519/**
4ede816a 3520 * __wake_up_sync_key - wake up threads blocked on a waitqueue.
1da177e4
LT
3521 * @q: the waitqueue
3522 * @mode: which threads
3523 * @nr_exclusive: how many wake-one or wake-many threads to wake up
4ede816a 3524 * @key: opaque value to be passed to wakeup targets
1da177e4
LT
3525 *
3526 * The sync wakeup differs that the waker knows that it will schedule
3527 * away soon, so while the target thread will be woken up, it will not
3528 * be migrated to another CPU - ie. the two threads are 'synchronized'
3529 * with each other. This can prevent needless bouncing between CPUs.
3530 *
3531 * On UP it can prevent extra preemption.
50fa610a
DH
3532 *
3533 * It may be assumed that this function implies a write memory barrier before
3534 * changing the task state if and only if any tasks are woken up.
1da177e4 3535 */
4ede816a
DL
3536void __wake_up_sync_key(wait_queue_head_t *q, unsigned int mode,
3537 int nr_exclusive, void *key)
1da177e4
LT
3538{
3539 unsigned long flags;
7d478721 3540 int wake_flags = WF_SYNC;
1da177e4
LT
3541
3542 if (unlikely(!q))
3543 return;
3544
3545 if (unlikely(!nr_exclusive))
7d478721 3546 wake_flags = 0;
1da177e4
LT
3547
3548 spin_lock_irqsave(&q->lock, flags);
7d478721 3549 __wake_up_common(q, mode, nr_exclusive, wake_flags, key);
1da177e4
LT
3550 spin_unlock_irqrestore(&q->lock, flags);
3551}
4ede816a
DL
3552EXPORT_SYMBOL_GPL(__wake_up_sync_key);
3553
3554/*
3555 * __wake_up_sync - see __wake_up_sync_key()
3556 */
3557void __wake_up_sync(wait_queue_head_t *q, unsigned int mode, int nr_exclusive)
3558{
3559 __wake_up_sync_key(q, mode, nr_exclusive, NULL);
3560}
1da177e4
LT
3561EXPORT_SYMBOL_GPL(__wake_up_sync); /* For internal use only */
3562
65eb3dc6
KD
3563/**
3564 * complete: - signals a single thread waiting on this completion
3565 * @x: holds the state of this particular completion
3566 *
3567 * This will wake up a single thread waiting on this completion. Threads will be
3568 * awakened in the same order in which they were queued.
3569 *
3570 * See also complete_all(), wait_for_completion() and related routines.
50fa610a
DH
3571 *
3572 * It may be assumed that this function implies a write memory barrier before
3573 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3574 */
b15136e9 3575void complete(struct completion *x)
1da177e4
LT
3576{
3577 unsigned long flags;
3578
3579 spin_lock_irqsave(&x->wait.lock, flags);
3580 x->done++;
d9514f6c 3581 __wake_up_common(&x->wait, TASK_NORMAL, 1, 0, NULL);
1da177e4
LT
3582 spin_unlock_irqrestore(&x->wait.lock, flags);
3583}
3584EXPORT_SYMBOL(complete);
3585
65eb3dc6
KD
3586/**
3587 * complete_all: - signals all threads waiting on this completion
3588 * @x: holds the state of this particular completion
3589 *
3590 * This will wake up all threads waiting on this particular completion event.
50fa610a
DH
3591 *
3592 * It may be assumed that this function implies a write memory barrier before
3593 * changing the task state if and only if any tasks are woken up.
65eb3dc6 3594 */
b15136e9 3595void complete_all(struct completion *x)
1da177e4
LT
3596{
3597 unsigned long flags;
3598
3599 spin_lock_irqsave(&x->wait.lock, flags);
3600 x->done += UINT_MAX/2;
d9514f6c 3601 __wake_up_common(&x->wait, TASK_NORMAL, 0, 0, NULL);
1da177e4
LT
3602 spin_unlock_irqrestore(&x->wait.lock, flags);
3603}
3604EXPORT_SYMBOL(complete_all);
3605
8cbbe86d
AK
3606static inline long __sched
3607do_wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3608{
1da177e4
LT
3609 if (!x->done) {
3610 DECLARE_WAITQUEUE(wait, current);
3611
a93d2f17 3612 __add_wait_queue_tail_exclusive(&x->wait, &wait);
1da177e4 3613 do {
94d3d824 3614 if (signal_pending_state(state, current)) {
ea71a546
ON
3615 timeout = -ERESTARTSYS;
3616 break;
8cbbe86d
AK
3617 }
3618 __set_current_state(state);
1da177e4
LT
3619 spin_unlock_irq(&x->wait.lock);
3620 timeout = schedule_timeout(timeout);
3621 spin_lock_irq(&x->wait.lock);
ea71a546 3622 } while (!x->done && timeout);
1da177e4 3623 __remove_wait_queue(&x->wait, &wait);
ea71a546
ON
3624 if (!x->done)
3625 return timeout;
1da177e4
LT
3626 }
3627 x->done--;
ea71a546 3628 return timeout ?: 1;
1da177e4 3629}
1da177e4 3630
8cbbe86d
AK
3631static long __sched
3632wait_for_common(struct completion *x, long timeout, int state)
1da177e4 3633{
1da177e4
LT
3634 might_sleep();
3635
3636 spin_lock_irq(&x->wait.lock);
8cbbe86d 3637 timeout = do_wait_for_common(x, timeout, state);
1da177e4 3638 spin_unlock_irq(&x->wait.lock);
8cbbe86d
AK
3639 return timeout;
3640}
1da177e4 3641
65eb3dc6
KD
3642/**
3643 * wait_for_completion: - waits for completion of a task
3644 * @x: holds the state of this particular completion
3645 *
3646 * This waits to be signaled for completion of a specific task. It is NOT
3647 * interruptible and there is no timeout.
3648 *
3649 * See also similar routines (i.e. wait_for_completion_timeout()) with timeout
3650 * and interrupt capability. Also see complete().
3651 */
b15136e9 3652void __sched wait_for_completion(struct completion *x)
8cbbe86d
AK
3653{
3654 wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_UNINTERRUPTIBLE);
1da177e4 3655}
8cbbe86d 3656EXPORT_SYMBOL(wait_for_completion);
1da177e4 3657
65eb3dc6
KD
3658/**
3659 * wait_for_completion_timeout: - waits for completion of a task (w/timeout)
3660 * @x: holds the state of this particular completion
3661 * @timeout: timeout value in jiffies
3662 *
3663 * This waits for either a completion of a specific task to be signaled or for a
3664 * specified timeout to expire. The timeout is in jiffies. It is not
3665 * interruptible.
c6dc7f05
BF
3666 *
3667 * The return value is 0 if timed out, and positive (at least 1, or number of
3668 * jiffies left till timeout) if completed.
65eb3dc6 3669 */
b15136e9 3670unsigned long __sched
8cbbe86d 3671wait_for_completion_timeout(struct completion *x, unsigned long timeout)
1da177e4 3672{
8cbbe86d 3673 return wait_for_common(x, timeout, TASK_UNINTERRUPTIBLE);
1da177e4 3674}
8cbbe86d 3675EXPORT_SYMBOL(wait_for_completion_timeout);
1da177e4 3676
65eb3dc6
KD
3677/**
3678 * wait_for_completion_interruptible: - waits for completion of a task (w/intr)
3679 * @x: holds the state of this particular completion
3680 *
3681 * This waits for completion of a specific task to be signaled. It is
3682 * interruptible.
c6dc7f05
BF
3683 *
3684 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3685 */
8cbbe86d 3686int __sched wait_for_completion_interruptible(struct completion *x)
0fec171c 3687{
51e97990
AK
3688 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_INTERRUPTIBLE);
3689 if (t == -ERESTARTSYS)
3690 return t;
3691 return 0;
0fec171c 3692}
8cbbe86d 3693EXPORT_SYMBOL(wait_for_completion_interruptible);
1da177e4 3694
65eb3dc6
KD
3695/**
3696 * wait_for_completion_interruptible_timeout: - waits for completion (w/(to,intr))
3697 * @x: holds the state of this particular completion
3698 * @timeout: timeout value in jiffies
3699 *
3700 * This waits for either a completion of a specific task to be signaled or for a
3701 * specified timeout to expire. It is interruptible. The timeout is in jiffies.
c6dc7f05
BF
3702 *
3703 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3704 * positive (at least 1, or number of jiffies left till timeout) if completed.
65eb3dc6 3705 */
6bf41237 3706long __sched
8cbbe86d
AK
3707wait_for_completion_interruptible_timeout(struct completion *x,
3708 unsigned long timeout)
0fec171c 3709{
8cbbe86d 3710 return wait_for_common(x, timeout, TASK_INTERRUPTIBLE);
0fec171c 3711}
8cbbe86d 3712EXPORT_SYMBOL(wait_for_completion_interruptible_timeout);
1da177e4 3713
65eb3dc6
KD
3714/**
3715 * wait_for_completion_killable: - waits for completion of a task (killable)
3716 * @x: holds the state of this particular completion
3717 *
3718 * This waits to be signaled for completion of a specific task. It can be
3719 * interrupted by a kill signal.
c6dc7f05
BF
3720 *
3721 * The return value is -ERESTARTSYS if interrupted, 0 if completed.
65eb3dc6 3722 */
009e577e
MW
3723int __sched wait_for_completion_killable(struct completion *x)
3724{
3725 long t = wait_for_common(x, MAX_SCHEDULE_TIMEOUT, TASK_KILLABLE);
3726 if (t == -ERESTARTSYS)
3727 return t;
3728 return 0;
3729}
3730EXPORT_SYMBOL(wait_for_completion_killable);
3731
0aa12fb4
SW
3732/**
3733 * wait_for_completion_killable_timeout: - waits for completion of a task (w/(to,killable))
3734 * @x: holds the state of this particular completion
3735 * @timeout: timeout value in jiffies
3736 *
3737 * This waits for either a completion of a specific task to be
3738 * signaled or for a specified timeout to expire. It can be
3739 * interrupted by a kill signal. The timeout is in jiffies.
c6dc7f05
BF
3740 *
3741 * The return value is -ERESTARTSYS if interrupted, 0 if timed out,
3742 * positive (at least 1, or number of jiffies left till timeout) if completed.
0aa12fb4 3743 */
6bf41237 3744long __sched
0aa12fb4
SW
3745wait_for_completion_killable_timeout(struct completion *x,
3746 unsigned long timeout)
3747{
3748 return wait_for_common(x, timeout, TASK_KILLABLE);
3749}
3750EXPORT_SYMBOL(wait_for_completion_killable_timeout);
3751
be4de352
DC
3752/**
3753 * try_wait_for_completion - try to decrement a completion without blocking
3754 * @x: completion structure
3755 *
3756 * Returns: 0 if a decrement cannot be done without blocking
3757 * 1 if a decrement succeeded.
3758 *
3759 * If a completion is being used as a counting completion,
3760 * attempt to decrement the counter without blocking. This
3761 * enables us to avoid waiting if the resource the completion
3762 * is protecting is not available.
3763 */
3764bool try_wait_for_completion(struct completion *x)
3765{
7539a3b3 3766 unsigned long flags;
be4de352
DC
3767 int ret = 1;
3768
7539a3b3 3769 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3770 if (!x->done)
3771 ret = 0;
3772 else
3773 x->done--;
7539a3b3 3774 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3775 return ret;
3776}
3777EXPORT_SYMBOL(try_wait_for_completion);
3778
3779/**
3780 * completion_done - Test to see if a completion has any waiters
3781 * @x: completion structure
3782 *
3783 * Returns: 0 if there are waiters (wait_for_completion() in progress)
3784 * 1 if there are no waiters.
3785 *
3786 */
3787bool completion_done(struct completion *x)
3788{
7539a3b3 3789 unsigned long flags;
be4de352
DC
3790 int ret = 1;
3791
7539a3b3 3792 spin_lock_irqsave(&x->wait.lock, flags);
be4de352
DC
3793 if (!x->done)
3794 ret = 0;
7539a3b3 3795 spin_unlock_irqrestore(&x->wait.lock, flags);
be4de352
DC
3796 return ret;
3797}
3798EXPORT_SYMBOL(completion_done);
3799
8cbbe86d
AK
3800static long __sched
3801sleep_on_common(wait_queue_head_t *q, int state, long timeout)
1da177e4 3802{
0fec171c
IM
3803 unsigned long flags;
3804 wait_queue_t wait;
3805
3806 init_waitqueue_entry(&wait, current);
1da177e4 3807
8cbbe86d 3808 __set_current_state(state);
1da177e4 3809
8cbbe86d
AK
3810 spin_lock_irqsave(&q->lock, flags);
3811 __add_wait_queue(q, &wait);
3812 spin_unlock(&q->lock);
3813 timeout = schedule_timeout(timeout);
3814 spin_lock_irq(&q->lock);
3815 __remove_wait_queue(q, &wait);
3816 spin_unlock_irqrestore(&q->lock, flags);
3817
3818 return timeout;
3819}
3820
3821void __sched interruptible_sleep_on(wait_queue_head_t *q)
3822{
3823 sleep_on_common(q, TASK_INTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3824}
1da177e4
LT
3825EXPORT_SYMBOL(interruptible_sleep_on);
3826
0fec171c 3827long __sched
95cdf3b7 3828interruptible_sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3829{
8cbbe86d 3830 return sleep_on_common(q, TASK_INTERRUPTIBLE, timeout);
1da177e4 3831}
1da177e4
LT
3832EXPORT_SYMBOL(interruptible_sleep_on_timeout);
3833
0fec171c 3834void __sched sleep_on(wait_queue_head_t *q)
1da177e4 3835{
8cbbe86d 3836 sleep_on_common(q, TASK_UNINTERRUPTIBLE, MAX_SCHEDULE_TIMEOUT);
1da177e4 3837}
1da177e4
LT
3838EXPORT_SYMBOL(sleep_on);
3839
0fec171c 3840long __sched sleep_on_timeout(wait_queue_head_t *q, long timeout)
1da177e4 3841{
8cbbe86d 3842 return sleep_on_common(q, TASK_UNINTERRUPTIBLE, timeout);
1da177e4 3843}
1da177e4
LT
3844EXPORT_SYMBOL(sleep_on_timeout);
3845
b29739f9
IM
3846#ifdef CONFIG_RT_MUTEXES
3847
3848/*
3849 * rt_mutex_setprio - set the current priority of a task
3850 * @p: task
3851 * @prio: prio value (kernel-internal form)
3852 *
3853 * This function changes the 'effective' priority of a task. It does
3854 * not touch ->normal_prio like __setscheduler().
3855 *
3856 * Used by the rt_mutex code to implement priority inheritance logic.
3857 */
36c8b586 3858void rt_mutex_setprio(struct task_struct *p, int prio)
b29739f9 3859{
83b699ed 3860 int oldprio, on_rq, running;
70b97a7f 3861 struct rq *rq;
83ab0aa0 3862 const struct sched_class *prev_class;
b29739f9
IM
3863
3864 BUG_ON(prio < 0 || prio > MAX_PRIO);
3865
0122ec5b 3866 rq = __task_rq_lock(p);
b29739f9 3867
1c4dd99b
TG
3868 /*
3869 * Idle task boosting is a nono in general. There is one
3870 * exception, when PREEMPT_RT and NOHZ is active:
3871 *
3872 * The idle task calls get_next_timer_interrupt() and holds
3873 * the timer wheel base->lock on the CPU and another CPU wants
3874 * to access the timer (probably to cancel it). We can safely
3875 * ignore the boosting request, as the idle CPU runs this code
3876 * with interrupts disabled and will complete the lock
3877 * protected section without being interrupted. So there is no
3878 * real need to boost.
3879 */
3880 if (unlikely(p == rq->idle)) {
3881 WARN_ON(p != rq->curr);
3882 WARN_ON(p->pi_blocked_on);
3883 goto out_unlock;
3884 }
3885
a8027073 3886 trace_sched_pi_setprio(p, prio);
d5f9f942 3887 oldprio = p->prio;
83ab0aa0 3888 prev_class = p->sched_class;
fd2f4419 3889 on_rq = p->on_rq;
051a1d1a 3890 running = task_current(rq, p);
0e1f3483 3891 if (on_rq)
69be72c1 3892 dequeue_task(rq, p, 0);
0e1f3483
HS
3893 if (running)
3894 p->sched_class->put_prev_task(rq, p);
dd41f596
IM
3895
3896 if (rt_prio(prio))
3897 p->sched_class = &rt_sched_class;
3898 else
3899 p->sched_class = &fair_sched_class;
3900
b29739f9
IM
3901 p->prio = prio;
3902
0e1f3483
HS
3903 if (running)
3904 p->sched_class->set_curr_task(rq);
da7a735e 3905 if (on_rq)
371fd7e7 3906 enqueue_task(rq, p, oldprio < prio ? ENQUEUE_HEAD : 0);
cb469845 3907
da7a735e 3908 check_class_changed(rq, p, prev_class, oldprio);
1c4dd99b 3909out_unlock:
0122ec5b 3910 __task_rq_unlock(rq);
b29739f9 3911}
b29739f9 3912#endif
36c8b586 3913void set_user_nice(struct task_struct *p, long nice)
1da177e4 3914{
dd41f596 3915 int old_prio, delta, on_rq;
1da177e4 3916 unsigned long flags;
70b97a7f 3917 struct rq *rq;
1da177e4
LT
3918
3919 if (TASK_NICE(p) == nice || nice < -20 || nice > 19)
3920 return;
3921 /*
3922 * We have to be careful, if called from sys_setpriority(),
3923 * the task might be in the middle of scheduling on another CPU.
3924 */
3925 rq = task_rq_lock(p, &flags);
3926 /*
3927 * The RT priorities are set via sched_setscheduler(), but we still
3928 * allow the 'normal' nice value to be set - but as expected
3929 * it wont have any effect on scheduling until the task is
dd41f596 3930 * SCHED_FIFO/SCHED_RR:
1da177e4 3931 */
e05606d3 3932 if (task_has_rt_policy(p)) {
1da177e4
LT
3933 p->static_prio = NICE_TO_PRIO(nice);
3934 goto out_unlock;
3935 }
fd2f4419 3936 on_rq = p->on_rq;
c09595f6 3937 if (on_rq)
69be72c1 3938 dequeue_task(rq, p, 0);
1da177e4 3939
1da177e4 3940 p->static_prio = NICE_TO_PRIO(nice);
2dd73a4f 3941 set_load_weight(p);
b29739f9
IM
3942 old_prio = p->prio;
3943 p->prio = effective_prio(p);
3944 delta = p->prio - old_prio;
1da177e4 3945
dd41f596 3946 if (on_rq) {
371fd7e7 3947 enqueue_task(rq, p, 0);
1da177e4 3948 /*
d5f9f942
AM
3949 * If the task increased its priority or is running and
3950 * lowered its priority, then reschedule its CPU:
1da177e4 3951 */
d5f9f942 3952 if (delta < 0 || (delta > 0 && task_running(rq, p)))
1da177e4
LT
3953 resched_task(rq->curr);
3954 }
3955out_unlock:
0122ec5b 3956 task_rq_unlock(rq, p, &flags);
1da177e4 3957}
1da177e4
LT
3958EXPORT_SYMBOL(set_user_nice);
3959
e43379f1
MM
3960/*
3961 * can_nice - check if a task can reduce its nice value
3962 * @p: task
3963 * @nice: nice value
3964 */
36c8b586 3965int can_nice(const struct task_struct *p, const int nice)
e43379f1 3966{
024f4747
MM
3967 /* convert nice value [19,-20] to rlimit style value [1,40] */
3968 int nice_rlim = 20 - nice;
48f24c4d 3969
78d7d407 3970 return (nice_rlim <= task_rlimit(p, RLIMIT_NICE) ||
e43379f1
MM
3971 capable(CAP_SYS_NICE));
3972}
3973
1da177e4
LT
3974#ifdef __ARCH_WANT_SYS_NICE
3975
3976/*
3977 * sys_nice - change the priority of the current process.
3978 * @increment: priority increment
3979 *
3980 * sys_setpriority is a more generic, but much slower function that
3981 * does similar things.
3982 */
5add95d4 3983SYSCALL_DEFINE1(nice, int, increment)
1da177e4 3984{
48f24c4d 3985 long nice, retval;
1da177e4
LT
3986
3987 /*
3988 * Setpriority might change our priority at the same moment.
3989 * We don't have to worry. Conceptually one call occurs first
3990 * and we have a single winner.
3991 */
e43379f1
MM
3992 if (increment < -40)
3993 increment = -40;
1da177e4
LT
3994 if (increment > 40)
3995 increment = 40;
3996
2b8f836f 3997 nice = TASK_NICE(current) + increment;
1da177e4
LT
3998 if (nice < -20)
3999 nice = -20;
4000 if (nice > 19)
4001 nice = 19;
4002
e43379f1
MM
4003 if (increment < 0 && !can_nice(current, nice))
4004 return -EPERM;
4005
1da177e4
LT
4006 retval = security_task_setnice(current, nice);
4007 if (retval)
4008 return retval;
4009
4010 set_user_nice(current, nice);
4011 return 0;
4012}
4013
4014#endif
4015
4016/**
4017 * task_prio - return the priority value of a given task.
4018 * @p: the task in question.
4019 *
4020 * This is the priority value as seen by users in /proc.
4021 * RT tasks are offset by -200. Normal tasks are centered
4022 * around 0, value goes from -16 to +15.
4023 */
36c8b586 4024int task_prio(const struct task_struct *p)
1da177e4
LT
4025{
4026 return p->prio - MAX_RT_PRIO;
4027}
4028
4029/**
4030 * task_nice - return the nice value of a given task.
4031 * @p: the task in question.
4032 */
36c8b586 4033int task_nice(const struct task_struct *p)
1da177e4
LT
4034{
4035 return TASK_NICE(p);
4036}
150d8bed 4037EXPORT_SYMBOL(task_nice);
1da177e4
LT
4038
4039/**
4040 * idle_cpu - is a given cpu idle currently?
4041 * @cpu: the processor in question.
4042 */
4043int idle_cpu(int cpu)
4044{
908a3283
TG
4045 struct rq *rq = cpu_rq(cpu);
4046
4047 if (rq->curr != rq->idle)
4048 return 0;
4049
4050 if (rq->nr_running)
4051 return 0;
4052
4053#ifdef CONFIG_SMP
4054 if (!llist_empty(&rq->wake_list))
4055 return 0;
4056#endif
4057
4058 return 1;
1da177e4
LT
4059}
4060
1da177e4
LT
4061/**
4062 * idle_task - return the idle task for a given cpu.
4063 * @cpu: the processor in question.
4064 */
36c8b586 4065struct task_struct *idle_task(int cpu)
1da177e4
LT
4066{
4067 return cpu_rq(cpu)->idle;
4068}
4069
4070/**
4071 * find_process_by_pid - find a process with a matching PID value.
4072 * @pid: the pid in question.
4073 */
a9957449 4074static struct task_struct *find_process_by_pid(pid_t pid)
1da177e4 4075{
228ebcbe 4076 return pid ? find_task_by_vpid(pid) : current;
1da177e4
LT
4077}
4078
4079/* Actually do priority change: must hold rq lock. */
dd41f596
IM
4080static void
4081__setscheduler(struct rq *rq, struct task_struct *p, int policy, int prio)
1da177e4 4082{
1da177e4
LT
4083 p->policy = policy;
4084 p->rt_priority = prio;
b29739f9
IM
4085 p->normal_prio = normal_prio(p);
4086 /* we are holding p->pi_lock already */
4087 p->prio = rt_mutex_getprio(p);
ffd44db5
PZ
4088 if (rt_prio(p->prio))
4089 p->sched_class = &rt_sched_class;
4090 else
4091 p->sched_class = &fair_sched_class;
2dd73a4f 4092 set_load_weight(p);
1da177e4
LT
4093}
4094
c69e8d9c
DH
4095/*
4096 * check the target process has a UID that matches the current process's
4097 */
4098static bool check_same_owner(struct task_struct *p)
4099{
4100 const struct cred *cred = current_cred(), *pcred;
4101 bool match;
4102
4103 rcu_read_lock();
4104 pcred = __task_cred(p);
9c806aa0
EB
4105 match = (uid_eq(cred->euid, pcred->euid) ||
4106 uid_eq(cred->euid, pcred->uid));
c69e8d9c
DH
4107 rcu_read_unlock();
4108 return match;
4109}
4110
961ccddd 4111static int __sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4112 const struct sched_param *param, bool user)
1da177e4 4113{
83b699ed 4114 int retval, oldprio, oldpolicy = -1, on_rq, running;
1da177e4 4115 unsigned long flags;
83ab0aa0 4116 const struct sched_class *prev_class;
70b97a7f 4117 struct rq *rq;
ca94c442 4118 int reset_on_fork;
1da177e4 4119
66e5393a
SR
4120 /* may grab non-irq protected spin_locks */
4121 BUG_ON(in_interrupt());
1da177e4
LT
4122recheck:
4123 /* double check policy once rq lock held */
ca94c442
LP
4124 if (policy < 0) {
4125 reset_on_fork = p->sched_reset_on_fork;
1da177e4 4126 policy = oldpolicy = p->policy;
ca94c442
LP
4127 } else {
4128 reset_on_fork = !!(policy & SCHED_RESET_ON_FORK);
4129 policy &= ~SCHED_RESET_ON_FORK;
4130
4131 if (policy != SCHED_FIFO && policy != SCHED_RR &&
4132 policy != SCHED_NORMAL && policy != SCHED_BATCH &&
4133 policy != SCHED_IDLE)
4134 return -EINVAL;
4135 }
4136
1da177e4
LT
4137 /*
4138 * Valid priorities for SCHED_FIFO and SCHED_RR are
dd41f596
IM
4139 * 1..MAX_USER_RT_PRIO-1, valid priority for SCHED_NORMAL,
4140 * SCHED_BATCH and SCHED_IDLE is 0.
1da177e4
LT
4141 */
4142 if (param->sched_priority < 0 ||
95cdf3b7 4143 (p->mm && param->sched_priority > MAX_USER_RT_PRIO-1) ||
d46523ea 4144 (!p->mm && param->sched_priority > MAX_RT_PRIO-1))
1da177e4 4145 return -EINVAL;
e05606d3 4146 if (rt_policy(policy) != (param->sched_priority != 0))
1da177e4
LT
4147 return -EINVAL;
4148
37e4ab3f
OC
4149 /*
4150 * Allow unprivileged RT tasks to decrease priority:
4151 */
961ccddd 4152 if (user && !capable(CAP_SYS_NICE)) {
e05606d3 4153 if (rt_policy(policy)) {
a44702e8
ON
4154 unsigned long rlim_rtprio =
4155 task_rlimit(p, RLIMIT_RTPRIO);
8dc3e909
ON
4156
4157 /* can't set/change the rt policy */
4158 if (policy != p->policy && !rlim_rtprio)
4159 return -EPERM;
4160
4161 /* can't increase priority */
4162 if (param->sched_priority > p->rt_priority &&
4163 param->sched_priority > rlim_rtprio)
4164 return -EPERM;
4165 }
c02aa73b 4166
dd41f596 4167 /*
c02aa73b
DH
4168 * Treat SCHED_IDLE as nice 20. Only allow a switch to
4169 * SCHED_NORMAL if the RLIMIT_NICE would normally permit it.
dd41f596 4170 */
c02aa73b
DH
4171 if (p->policy == SCHED_IDLE && policy != SCHED_IDLE) {
4172 if (!can_nice(p, TASK_NICE(p)))
4173 return -EPERM;
4174 }
5fe1d75f 4175
37e4ab3f 4176 /* can't change other user's priorities */
c69e8d9c 4177 if (!check_same_owner(p))
37e4ab3f 4178 return -EPERM;
ca94c442
LP
4179
4180 /* Normal users shall not reset the sched_reset_on_fork flag */
4181 if (p->sched_reset_on_fork && !reset_on_fork)
4182 return -EPERM;
37e4ab3f 4183 }
1da177e4 4184
725aad24 4185 if (user) {
b0ae1981 4186 retval = security_task_setscheduler(p);
725aad24
JF
4187 if (retval)
4188 return retval;
4189 }
4190
b29739f9
IM
4191 /*
4192 * make sure no PI-waiters arrive (or leave) while we are
4193 * changing the priority of the task:
0122ec5b 4194 *
25985edc 4195 * To be able to change p->policy safely, the appropriate
1da177e4
LT
4196 * runqueue lock must be held.
4197 */
0122ec5b 4198 rq = task_rq_lock(p, &flags);
dc61b1d6 4199
34f971f6
PZ
4200 /*
4201 * Changing the policy of the stop threads its a very bad idea
4202 */
4203 if (p == rq->stop) {
0122ec5b 4204 task_rq_unlock(rq, p, &flags);
34f971f6
PZ
4205 return -EINVAL;
4206 }
4207
a51e9198
DF
4208 /*
4209 * If not changing anything there's no need to proceed further:
4210 */
4211 if (unlikely(policy == p->policy && (!rt_policy(policy) ||
4212 param->sched_priority == p->rt_priority))) {
4213
4214 __task_rq_unlock(rq);
4215 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
4216 return 0;
4217 }
4218
dc61b1d6
PZ
4219#ifdef CONFIG_RT_GROUP_SCHED
4220 if (user) {
4221 /*
4222 * Do not allow realtime tasks into groups that have no runtime
4223 * assigned.
4224 */
4225 if (rt_bandwidth_enabled() && rt_policy(policy) &&
f4493771
MG
4226 task_group(p)->rt_bandwidth.rt_runtime == 0 &&
4227 !task_group_is_autogroup(task_group(p))) {
0122ec5b 4228 task_rq_unlock(rq, p, &flags);
dc61b1d6
PZ
4229 return -EPERM;
4230 }
4231 }
4232#endif
4233
1da177e4
LT
4234 /* recheck policy now with rq lock held */
4235 if (unlikely(oldpolicy != -1 && oldpolicy != p->policy)) {
4236 policy = oldpolicy = -1;
0122ec5b 4237 task_rq_unlock(rq, p, &flags);
1da177e4
LT
4238 goto recheck;
4239 }
fd2f4419 4240 on_rq = p->on_rq;
051a1d1a 4241 running = task_current(rq, p);
0e1f3483 4242 if (on_rq)
4ca9b72b 4243 dequeue_task(rq, p, 0);
0e1f3483
HS
4244 if (running)
4245 p->sched_class->put_prev_task(rq, p);
f6b53205 4246
ca94c442
LP
4247 p->sched_reset_on_fork = reset_on_fork;
4248
1da177e4 4249 oldprio = p->prio;
83ab0aa0 4250 prev_class = p->sched_class;
dd41f596 4251 __setscheduler(rq, p, policy, param->sched_priority);
f6b53205 4252
0e1f3483
HS
4253 if (running)
4254 p->sched_class->set_curr_task(rq);
da7a735e 4255 if (on_rq)
4ca9b72b 4256 enqueue_task(rq, p, 0);
cb469845 4257
da7a735e 4258 check_class_changed(rq, p, prev_class, oldprio);
0122ec5b 4259 task_rq_unlock(rq, p, &flags);
b29739f9 4260
95e02ca9
TG
4261 rt_mutex_adjust_pi(p);
4262
1da177e4
LT
4263 return 0;
4264}
961ccddd
RR
4265
4266/**
4267 * sched_setscheduler - change the scheduling policy and/or RT priority of a thread.
4268 * @p: the task in question.
4269 * @policy: new policy.
4270 * @param: structure containing the new RT priority.
4271 *
4272 * NOTE that the task may be already dead.
4273 */
4274int sched_setscheduler(struct task_struct *p, int policy,
fe7de49f 4275 const struct sched_param *param)
961ccddd
RR
4276{
4277 return __sched_setscheduler(p, policy, param, true);
4278}
1da177e4
LT
4279EXPORT_SYMBOL_GPL(sched_setscheduler);
4280
961ccddd
RR
4281/**
4282 * sched_setscheduler_nocheck - change the scheduling policy and/or RT priority of a thread from kernelspace.
4283 * @p: the task in question.
4284 * @policy: new policy.
4285 * @param: structure containing the new RT priority.
4286 *
4287 * Just like sched_setscheduler, only don't bother checking if the
4288 * current context has permission. For example, this is needed in
4289 * stop_machine(): we create temporary high priority worker threads,
4290 * but our caller might not have that capability.
4291 */
4292int sched_setscheduler_nocheck(struct task_struct *p, int policy,
fe7de49f 4293 const struct sched_param *param)
961ccddd
RR
4294{
4295 return __sched_setscheduler(p, policy, param, false);
4296}
4297
95cdf3b7
IM
4298static int
4299do_sched_setscheduler(pid_t pid, int policy, struct sched_param __user *param)
1da177e4 4300{
1da177e4
LT
4301 struct sched_param lparam;
4302 struct task_struct *p;
36c8b586 4303 int retval;
1da177e4
LT
4304
4305 if (!param || pid < 0)
4306 return -EINVAL;
4307 if (copy_from_user(&lparam, param, sizeof(struct sched_param)))
4308 return -EFAULT;
5fe1d75f
ON
4309
4310 rcu_read_lock();
4311 retval = -ESRCH;
1da177e4 4312 p = find_process_by_pid(pid);
5fe1d75f
ON
4313 if (p != NULL)
4314 retval = sched_setscheduler(p, policy, &lparam);
4315 rcu_read_unlock();
36c8b586 4316
1da177e4
LT
4317 return retval;
4318}
4319
4320/**
4321 * sys_sched_setscheduler - set/change the scheduler policy and RT priority
4322 * @pid: the pid in question.
4323 * @policy: new policy.
4324 * @param: structure containing the new RT priority.
4325 */
5add95d4
HC
4326SYSCALL_DEFINE3(sched_setscheduler, pid_t, pid, int, policy,
4327 struct sched_param __user *, param)
1da177e4 4328{
c21761f1
JB
4329 /* negative values for policy are not valid */
4330 if (policy < 0)
4331 return -EINVAL;
4332
1da177e4
LT
4333 return do_sched_setscheduler(pid, policy, param);
4334}
4335
4336/**
4337 * sys_sched_setparam - set/change the RT priority of a thread
4338 * @pid: the pid in question.
4339 * @param: structure containing the new RT priority.
4340 */
5add95d4 4341SYSCALL_DEFINE2(sched_setparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4342{
4343 return do_sched_setscheduler(pid, -1, param);
4344}
4345
4346/**
4347 * sys_sched_getscheduler - get the policy (scheduling class) of a thread
4348 * @pid: the pid in question.
4349 */
5add95d4 4350SYSCALL_DEFINE1(sched_getscheduler, pid_t, pid)
1da177e4 4351{
36c8b586 4352 struct task_struct *p;
3a5c359a 4353 int retval;
1da177e4
LT
4354
4355 if (pid < 0)
3a5c359a 4356 return -EINVAL;
1da177e4
LT
4357
4358 retval = -ESRCH;
5fe85be0 4359 rcu_read_lock();
1da177e4
LT
4360 p = find_process_by_pid(pid);
4361 if (p) {
4362 retval = security_task_getscheduler(p);
4363 if (!retval)
ca94c442
LP
4364 retval = p->policy
4365 | (p->sched_reset_on_fork ? SCHED_RESET_ON_FORK : 0);
1da177e4 4366 }
5fe85be0 4367 rcu_read_unlock();
1da177e4
LT
4368 return retval;
4369}
4370
4371/**
ca94c442 4372 * sys_sched_getparam - get the RT priority of a thread
1da177e4
LT
4373 * @pid: the pid in question.
4374 * @param: structure containing the RT priority.
4375 */
5add95d4 4376SYSCALL_DEFINE2(sched_getparam, pid_t, pid, struct sched_param __user *, param)
1da177e4
LT
4377{
4378 struct sched_param lp;
36c8b586 4379 struct task_struct *p;
3a5c359a 4380 int retval;
1da177e4
LT
4381
4382 if (!param || pid < 0)
3a5c359a 4383 return -EINVAL;
1da177e4 4384
5fe85be0 4385 rcu_read_lock();
1da177e4
LT
4386 p = find_process_by_pid(pid);
4387 retval = -ESRCH;
4388 if (!p)
4389 goto out_unlock;
4390
4391 retval = security_task_getscheduler(p);
4392 if (retval)
4393 goto out_unlock;
4394
4395 lp.sched_priority = p->rt_priority;
5fe85be0 4396 rcu_read_unlock();
1da177e4
LT
4397
4398 /*
4399 * This one might sleep, we cannot do it with a spinlock held ...
4400 */
4401 retval = copy_to_user(param, &lp, sizeof(*param)) ? -EFAULT : 0;
4402
1da177e4
LT
4403 return retval;
4404
4405out_unlock:
5fe85be0 4406 rcu_read_unlock();
1da177e4
LT
4407 return retval;
4408}
4409
96f874e2 4410long sched_setaffinity(pid_t pid, const struct cpumask *in_mask)
1da177e4 4411{
5a16f3d3 4412 cpumask_var_t cpus_allowed, new_mask;
36c8b586
IM
4413 struct task_struct *p;
4414 int retval;
1da177e4 4415
95402b38 4416 get_online_cpus();
23f5d142 4417 rcu_read_lock();
1da177e4
LT
4418
4419 p = find_process_by_pid(pid);
4420 if (!p) {
23f5d142 4421 rcu_read_unlock();
95402b38 4422 put_online_cpus();
1da177e4
LT
4423 return -ESRCH;
4424 }
4425
23f5d142 4426 /* Prevent p going away */
1da177e4 4427 get_task_struct(p);
23f5d142 4428 rcu_read_unlock();
1da177e4 4429
5a16f3d3
RR
4430 if (!alloc_cpumask_var(&cpus_allowed, GFP_KERNEL)) {
4431 retval = -ENOMEM;
4432 goto out_put_task;
4433 }
4434 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL)) {
4435 retval = -ENOMEM;
4436 goto out_free_cpus_allowed;
4437 }
1da177e4 4438 retval = -EPERM;
f1c84dae 4439 if (!check_same_owner(p) && !ns_capable(task_user_ns(p), CAP_SYS_NICE))
1da177e4
LT
4440 goto out_unlock;
4441
b0ae1981 4442 retval = security_task_setscheduler(p);
e7834f8f
DQ
4443 if (retval)
4444 goto out_unlock;
4445
5a16f3d3
RR
4446 cpuset_cpus_allowed(p, cpus_allowed);
4447 cpumask_and(new_mask, in_mask, cpus_allowed);
49246274 4448again:
5a16f3d3 4449 retval = set_cpus_allowed_ptr(p, new_mask);
1da177e4 4450
8707d8b8 4451 if (!retval) {
5a16f3d3
RR
4452 cpuset_cpus_allowed(p, cpus_allowed);
4453 if (!cpumask_subset(new_mask, cpus_allowed)) {
8707d8b8
PM
4454 /*
4455 * We must have raced with a concurrent cpuset
4456 * update. Just reset the cpus_allowed to the
4457 * cpuset's cpus_allowed
4458 */
5a16f3d3 4459 cpumask_copy(new_mask, cpus_allowed);
8707d8b8
PM
4460 goto again;
4461 }
4462 }
1da177e4 4463out_unlock:
5a16f3d3
RR
4464 free_cpumask_var(new_mask);
4465out_free_cpus_allowed:
4466 free_cpumask_var(cpus_allowed);
4467out_put_task:
1da177e4 4468 put_task_struct(p);
95402b38 4469 put_online_cpus();
1da177e4
LT
4470 return retval;
4471}
4472
4473static int get_user_cpu_mask(unsigned long __user *user_mask_ptr, unsigned len,
96f874e2 4474 struct cpumask *new_mask)
1da177e4 4475{
96f874e2
RR
4476 if (len < cpumask_size())
4477 cpumask_clear(new_mask);
4478 else if (len > cpumask_size())
4479 len = cpumask_size();
4480
1da177e4
LT
4481 return copy_from_user(new_mask, user_mask_ptr, len) ? -EFAULT : 0;
4482}
4483
4484/**
4485 * sys_sched_setaffinity - set the cpu affinity of a process
4486 * @pid: pid of the process
4487 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4488 * @user_mask_ptr: user-space pointer to the new cpu mask
4489 */
5add95d4
HC
4490SYSCALL_DEFINE3(sched_setaffinity, pid_t, pid, unsigned int, len,
4491 unsigned long __user *, user_mask_ptr)
1da177e4 4492{
5a16f3d3 4493 cpumask_var_t new_mask;
1da177e4
LT
4494 int retval;
4495
5a16f3d3
RR
4496 if (!alloc_cpumask_var(&new_mask, GFP_KERNEL))
4497 return -ENOMEM;
1da177e4 4498
5a16f3d3
RR
4499 retval = get_user_cpu_mask(user_mask_ptr, len, new_mask);
4500 if (retval == 0)
4501 retval = sched_setaffinity(pid, new_mask);
4502 free_cpumask_var(new_mask);
4503 return retval;
1da177e4
LT
4504}
4505
96f874e2 4506long sched_getaffinity(pid_t pid, struct cpumask *mask)
1da177e4 4507{
36c8b586 4508 struct task_struct *p;
31605683 4509 unsigned long flags;
1da177e4 4510 int retval;
1da177e4 4511
95402b38 4512 get_online_cpus();
23f5d142 4513 rcu_read_lock();
1da177e4
LT
4514
4515 retval = -ESRCH;
4516 p = find_process_by_pid(pid);
4517 if (!p)
4518 goto out_unlock;
4519
e7834f8f
DQ
4520 retval = security_task_getscheduler(p);
4521 if (retval)
4522 goto out_unlock;
4523
013fdb80 4524 raw_spin_lock_irqsave(&p->pi_lock, flags);
96f874e2 4525 cpumask_and(mask, &p->cpus_allowed, cpu_online_mask);
013fdb80 4526 raw_spin_unlock_irqrestore(&p->pi_lock, flags);
1da177e4
LT
4527
4528out_unlock:
23f5d142 4529 rcu_read_unlock();
95402b38 4530 put_online_cpus();
1da177e4 4531
9531b62f 4532 return retval;
1da177e4
LT
4533}
4534
4535/**
4536 * sys_sched_getaffinity - get the cpu affinity of a process
4537 * @pid: pid of the process
4538 * @len: length in bytes of the bitmask pointed to by user_mask_ptr
4539 * @user_mask_ptr: user-space pointer to hold the current cpu mask
4540 */
5add95d4
HC
4541SYSCALL_DEFINE3(sched_getaffinity, pid_t, pid, unsigned int, len,
4542 unsigned long __user *, user_mask_ptr)
1da177e4
LT
4543{
4544 int ret;
f17c8607 4545 cpumask_var_t mask;
1da177e4 4546
84fba5ec 4547 if ((len * BITS_PER_BYTE) < nr_cpu_ids)
cd3d8031
KM
4548 return -EINVAL;
4549 if (len & (sizeof(unsigned long)-1))
1da177e4
LT
4550 return -EINVAL;
4551
f17c8607
RR
4552 if (!alloc_cpumask_var(&mask, GFP_KERNEL))
4553 return -ENOMEM;
1da177e4 4554
f17c8607
RR
4555 ret = sched_getaffinity(pid, mask);
4556 if (ret == 0) {
8bc037fb 4557 size_t retlen = min_t(size_t, len, cpumask_size());
cd3d8031
KM
4558
4559 if (copy_to_user(user_mask_ptr, mask, retlen))
f17c8607
RR
4560 ret = -EFAULT;
4561 else
cd3d8031 4562 ret = retlen;
f17c8607
RR
4563 }
4564 free_cpumask_var(mask);
1da177e4 4565
f17c8607 4566 return ret;
1da177e4
LT
4567}
4568
4569/**
4570 * sys_sched_yield - yield the current processor to other threads.
4571 *
dd41f596
IM
4572 * This function yields the current CPU to other tasks. If there are no
4573 * other threads running on this CPU then this function will return.
1da177e4 4574 */
5add95d4 4575SYSCALL_DEFINE0(sched_yield)
1da177e4 4576{
70b97a7f 4577 struct rq *rq = this_rq_lock();
1da177e4 4578
2d72376b 4579 schedstat_inc(rq, yld_count);
4530d7ab 4580 current->sched_class->yield_task(rq);
1da177e4
LT
4581
4582 /*
4583 * Since we are going to call schedule() anyway, there's
4584 * no need to preempt or enable interrupts:
4585 */
4586 __release(rq->lock);
8a25d5de 4587 spin_release(&rq->lock.dep_map, 1, _THIS_IP_);
9828ea9d 4588 do_raw_spin_unlock(&rq->lock);
ba74c144 4589 sched_preempt_enable_no_resched();
1da177e4
LT
4590
4591 schedule();
4592
4593 return 0;
4594}
4595
d86ee480
PZ
4596static inline int should_resched(void)
4597{
4598 return need_resched() && !(preempt_count() & PREEMPT_ACTIVE);
4599}
4600
e7b38404 4601static void __cond_resched(void)
1da177e4 4602{
e7aaaa69 4603 add_preempt_count(PREEMPT_ACTIVE);
c259e01a 4604 __schedule();
e7aaaa69 4605 sub_preempt_count(PREEMPT_ACTIVE);
1da177e4
LT
4606}
4607
02b67cc3 4608int __sched _cond_resched(void)
1da177e4 4609{
d86ee480 4610 if (should_resched()) {
1da177e4
LT
4611 __cond_resched();
4612 return 1;
4613 }
4614 return 0;
4615}
02b67cc3 4616EXPORT_SYMBOL(_cond_resched);
1da177e4
LT
4617
4618/*
613afbf8 4619 * __cond_resched_lock() - if a reschedule is pending, drop the given lock,
1da177e4
LT
4620 * call schedule, and on return reacquire the lock.
4621 *
41a2d6cf 4622 * This works OK both with and without CONFIG_PREEMPT. We do strange low-level
1da177e4
LT
4623 * operations here to prevent schedule() from being called twice (once via
4624 * spin_unlock(), once by hand).
4625 */
613afbf8 4626int __cond_resched_lock(spinlock_t *lock)
1da177e4 4627{
d86ee480 4628 int resched = should_resched();
6df3cecb
JK
4629 int ret = 0;
4630
f607c668
PZ
4631 lockdep_assert_held(lock);
4632
95c354fe 4633 if (spin_needbreak(lock) || resched) {
1da177e4 4634 spin_unlock(lock);
d86ee480 4635 if (resched)
95c354fe
NP
4636 __cond_resched();
4637 else
4638 cpu_relax();
6df3cecb 4639 ret = 1;
1da177e4 4640 spin_lock(lock);
1da177e4 4641 }
6df3cecb 4642 return ret;
1da177e4 4643}
613afbf8 4644EXPORT_SYMBOL(__cond_resched_lock);
1da177e4 4645
613afbf8 4646int __sched __cond_resched_softirq(void)
1da177e4
LT
4647{
4648 BUG_ON(!in_softirq());
4649
d86ee480 4650 if (should_resched()) {
98d82567 4651 local_bh_enable();
1da177e4
LT
4652 __cond_resched();
4653 local_bh_disable();
4654 return 1;
4655 }
4656 return 0;
4657}
613afbf8 4658EXPORT_SYMBOL(__cond_resched_softirq);
1da177e4 4659
1da177e4
LT
4660/**
4661 * yield - yield the current processor to other threads.
4662 *
8e3fabfd
PZ
4663 * Do not ever use this function, there's a 99% chance you're doing it wrong.
4664 *
4665 * The scheduler is at all times free to pick the calling task as the most
4666 * eligible task to run, if removing the yield() call from your code breaks
4667 * it, its already broken.
4668 *
4669 * Typical broken usage is:
4670 *
4671 * while (!event)
4672 * yield();
4673 *
4674 * where one assumes that yield() will let 'the other' process run that will
4675 * make event true. If the current task is a SCHED_FIFO task that will never
4676 * happen. Never use yield() as a progress guarantee!!
4677 *
4678 * If you want to use yield() to wait for something, use wait_event().
4679 * If you want to use yield() to be 'nice' for others, use cond_resched().
4680 * If you still want to use yield(), do not!
1da177e4
LT
4681 */
4682void __sched yield(void)
4683{
4684 set_current_state(TASK_RUNNING);
4685 sys_sched_yield();
4686}
1da177e4
LT
4687EXPORT_SYMBOL(yield);
4688
d95f4122
MG
4689/**
4690 * yield_to - yield the current processor to another thread in
4691 * your thread group, or accelerate that thread toward the
4692 * processor it's on.
16addf95
RD
4693 * @p: target task
4694 * @preempt: whether task preemption is allowed or not
d95f4122
MG
4695 *
4696 * It's the caller's job to ensure that the target task struct
4697 * can't go away on us before we can do any checks.
4698 *
4699 * Returns true if we indeed boosted the target task.
4700 */
4701bool __sched yield_to(struct task_struct *p, bool preempt)
4702{
4703 struct task_struct *curr = current;
4704 struct rq *rq, *p_rq;
4705 unsigned long flags;
4706 bool yielded = 0;
4707
4708 local_irq_save(flags);
4709 rq = this_rq();
4710
4711again:
4712 p_rq = task_rq(p);
4713 double_rq_lock(rq, p_rq);
4714 while (task_rq(p) != p_rq) {
4715 double_rq_unlock(rq, p_rq);
4716 goto again;
4717 }
4718
4719 if (!curr->sched_class->yield_to_task)
4720 goto out;
4721
4722 if (curr->sched_class != p->sched_class)
4723 goto out;
4724
4725 if (task_running(p_rq, p) || p->state)
4726 goto out;
4727
4728 yielded = curr->sched_class->yield_to_task(rq, p, preempt);
6d1cafd8 4729 if (yielded) {
d95f4122 4730 schedstat_inc(rq, yld_count);
6d1cafd8
VP
4731 /*
4732 * Make p's CPU reschedule; pick_next_entity takes care of
4733 * fairness.
4734 */
4735 if (preempt && rq != p_rq)
4736 resched_task(p_rq->curr);
916671c0
MG
4737 } else {
4738 /*
4739 * We might have set it in task_yield_fair(), but are
4740 * not going to schedule(), so don't want to skip
4741 * the next update.
4742 */
4743 rq->skip_clock_update = 0;
6d1cafd8 4744 }
d95f4122
MG
4745
4746out:
4747 double_rq_unlock(rq, p_rq);
4748 local_irq_restore(flags);
4749
4750 if (yielded)
4751 schedule();
4752
4753 return yielded;
4754}
4755EXPORT_SYMBOL_GPL(yield_to);
4756
1da177e4 4757/*
41a2d6cf 4758 * This task is about to go to sleep on IO. Increment rq->nr_iowait so
1da177e4 4759 * that process accounting knows that this is a task in IO wait state.
1da177e4
LT
4760 */
4761void __sched io_schedule(void)
4762{
54d35f29 4763 struct rq *rq = raw_rq();
1da177e4 4764
0ff92245 4765 delayacct_blkio_start();
1da177e4 4766 atomic_inc(&rq->nr_iowait);
73c10101 4767 blk_flush_plug(current);
8f0dfc34 4768 current->in_iowait = 1;
1da177e4 4769 schedule();
8f0dfc34 4770 current->in_iowait = 0;
1da177e4 4771 atomic_dec(&rq->nr_iowait);
0ff92245 4772 delayacct_blkio_end();
1da177e4 4773}
1da177e4
LT
4774EXPORT_SYMBOL(io_schedule);
4775
4776long __sched io_schedule_timeout(long timeout)
4777{
54d35f29 4778 struct rq *rq = raw_rq();
1da177e4
LT
4779 long ret;
4780
0ff92245 4781 delayacct_blkio_start();
1da177e4 4782 atomic_inc(&rq->nr_iowait);
73c10101 4783 blk_flush_plug(current);
8f0dfc34 4784 current->in_iowait = 1;
1da177e4 4785 ret = schedule_timeout(timeout);
8f0dfc34 4786 current->in_iowait = 0;
1da177e4 4787 atomic_dec(&rq->nr_iowait);
0ff92245 4788 delayacct_blkio_end();
1da177e4
LT
4789 return ret;
4790}
4791
4792/**
4793 * sys_sched_get_priority_max - return maximum RT priority.
4794 * @policy: scheduling class.
4795 *
4796 * this syscall returns the maximum rt_priority that can be used
4797 * by a given scheduling class.
4798 */
5add95d4 4799SYSCALL_DEFINE1(sched_get_priority_max, int, policy)
1da177e4
LT
4800{
4801 int ret = -EINVAL;
4802
4803 switch (policy) {
4804 case SCHED_FIFO:
4805 case SCHED_RR:
4806 ret = MAX_USER_RT_PRIO-1;
4807 break;
4808 case SCHED_NORMAL:
b0a9499c 4809 case SCHED_BATCH:
dd41f596 4810 case SCHED_IDLE:
1da177e4
LT
4811 ret = 0;
4812 break;
4813 }
4814 return ret;
4815}
4816
4817/**
4818 * sys_sched_get_priority_min - return minimum RT priority.
4819 * @policy: scheduling class.
4820 *
4821 * this syscall returns the minimum rt_priority that can be used
4822 * by a given scheduling class.
4823 */
5add95d4 4824SYSCALL_DEFINE1(sched_get_priority_min, int, policy)
1da177e4
LT
4825{
4826 int ret = -EINVAL;
4827
4828 switch (policy) {
4829 case SCHED_FIFO:
4830 case SCHED_RR:
4831 ret = 1;
4832 break;
4833 case SCHED_NORMAL:
b0a9499c 4834 case SCHED_BATCH:
dd41f596 4835 case SCHED_IDLE:
1da177e4
LT
4836 ret = 0;
4837 }
4838 return ret;
4839}
4840
4841/**
4842 * sys_sched_rr_get_interval - return the default timeslice of a process.
4843 * @pid: pid of the process.
4844 * @interval: userspace pointer to the timeslice value.
4845 *
4846 * this syscall writes the default timeslice value of a given process
4847 * into the user-space timespec buffer. A value of '0' means infinity.
4848 */
17da2bd9 4849SYSCALL_DEFINE2(sched_rr_get_interval, pid_t, pid,
754fe8d2 4850 struct timespec __user *, interval)
1da177e4 4851{
36c8b586 4852 struct task_struct *p;
a4ec24b4 4853 unsigned int time_slice;
dba091b9
TG
4854 unsigned long flags;
4855 struct rq *rq;
3a5c359a 4856 int retval;
1da177e4 4857 struct timespec t;
1da177e4
LT
4858
4859 if (pid < 0)
3a5c359a 4860 return -EINVAL;
1da177e4
LT
4861
4862 retval = -ESRCH;
1a551ae7 4863 rcu_read_lock();
1da177e4
LT
4864 p = find_process_by_pid(pid);
4865 if (!p)
4866 goto out_unlock;
4867
4868 retval = security_task_getscheduler(p);
4869 if (retval)
4870 goto out_unlock;
4871
dba091b9
TG
4872 rq = task_rq_lock(p, &flags);
4873 time_slice = p->sched_class->get_rr_interval(rq, p);
0122ec5b 4874 task_rq_unlock(rq, p, &flags);
a4ec24b4 4875
1a551ae7 4876 rcu_read_unlock();
a4ec24b4 4877 jiffies_to_timespec(time_slice, &t);
1da177e4 4878 retval = copy_to_user(interval, &t, sizeof(t)) ? -EFAULT : 0;
1da177e4 4879 return retval;
3a5c359a 4880
1da177e4 4881out_unlock:
1a551ae7 4882 rcu_read_unlock();
1da177e4
LT
4883 return retval;
4884}
4885
7c731e0a 4886static const char stat_nam[] = TASK_STATE_TO_CHAR_STR;
36c8b586 4887
82a1fcb9 4888void sched_show_task(struct task_struct *p)
1da177e4 4889{
1da177e4 4890 unsigned long free = 0;
36c8b586 4891 unsigned state;
1da177e4 4892
1da177e4 4893 state = p->state ? __ffs(p->state) + 1 : 0;
28d0686c 4894 printk(KERN_INFO "%-15.15s %c", p->comm,
2ed6e34f 4895 state < sizeof(stat_nam) - 1 ? stat_nam[state] : '?');
4bd77321 4896#if BITS_PER_LONG == 32
1da177e4 4897 if (state == TASK_RUNNING)
3df0fc5b 4898 printk(KERN_CONT " running ");
1da177e4 4899 else
3df0fc5b 4900 printk(KERN_CONT " %08lx ", thread_saved_pc(p));
1da177e4
LT
4901#else
4902 if (state == TASK_RUNNING)
3df0fc5b 4903 printk(KERN_CONT " running task ");
1da177e4 4904 else
3df0fc5b 4905 printk(KERN_CONT " %016lx ", thread_saved_pc(p));
1da177e4
LT
4906#endif
4907#ifdef CONFIG_DEBUG_STACK_USAGE
7c9f8861 4908 free = stack_not_used(p);
1da177e4 4909#endif
3df0fc5b 4910 printk(KERN_CONT "%5lu %5d %6d 0x%08lx\n", free,
07cde260 4911 task_pid_nr(p), task_pid_nr(rcu_dereference(p->real_parent)),
aa47b7e0 4912 (unsigned long)task_thread_info(p)->flags);
1da177e4 4913
5fb5e6de 4914 show_stack(p, NULL);
1da177e4
LT
4915}
4916
e59e2ae2 4917void show_state_filter(unsigned long state_filter)
1da177e4 4918{
36c8b586 4919 struct task_struct *g, *p;
1da177e4 4920
4bd77321 4921#if BITS_PER_LONG == 32
3df0fc5b
PZ
4922 printk(KERN_INFO
4923 " task PC stack pid father\n");
1da177e4 4924#else
3df0fc5b
PZ
4925 printk(KERN_INFO
4926 " task PC stack pid father\n");
1da177e4 4927#endif
510f5acc 4928 rcu_read_lock();
1da177e4
LT
4929 do_each_thread(g, p) {
4930 /*
4931 * reset the NMI-timeout, listing all files on a slow
25985edc 4932 * console might take a lot of time:
1da177e4
LT
4933 */
4934 touch_nmi_watchdog();
39bc89fd 4935 if (!state_filter || (p->state & state_filter))
82a1fcb9 4936 sched_show_task(p);
1da177e4
LT
4937 } while_each_thread(g, p);
4938
04c9167f
JF
4939 touch_all_softlockup_watchdogs();
4940
dd41f596
IM
4941#ifdef CONFIG_SCHED_DEBUG
4942 sysrq_sched_debug_show();
4943#endif
510f5acc 4944 rcu_read_unlock();
e59e2ae2
IM
4945 /*
4946 * Only show locks if all tasks are dumped:
4947 */
93335a21 4948 if (!state_filter)
e59e2ae2 4949 debug_show_all_locks();
1da177e4
LT
4950}
4951
1df21055
IM
4952void __cpuinit init_idle_bootup_task(struct task_struct *idle)
4953{
dd41f596 4954 idle->sched_class = &idle_sched_class;
1df21055
IM
4955}
4956
f340c0d1
IM
4957/**
4958 * init_idle - set up an idle thread for a given CPU
4959 * @idle: task in question
4960 * @cpu: cpu the idle task belongs to
4961 *
4962 * NOTE: this function does not set the idle thread's NEED_RESCHED
4963 * flag, to make booting more robust.
4964 */
5c1e1767 4965void __cpuinit init_idle(struct task_struct *idle, int cpu)
1da177e4 4966{
70b97a7f 4967 struct rq *rq = cpu_rq(cpu);
1da177e4
LT
4968 unsigned long flags;
4969
05fa785c 4970 raw_spin_lock_irqsave(&rq->lock, flags);
5cbd54ef 4971
dd41f596 4972 __sched_fork(idle);
06b83b5f 4973 idle->state = TASK_RUNNING;
dd41f596
IM
4974 idle->se.exec_start = sched_clock();
4975
1e1b6c51 4976 do_set_cpus_allowed(idle, cpumask_of(cpu));
6506cf6c
PZ
4977 /*
4978 * We're having a chicken and egg problem, even though we are
4979 * holding rq->lock, the cpu isn't yet set to this cpu so the
4980 * lockdep check in task_group() will fail.
4981 *
4982 * Similar case to sched_fork(). / Alternatively we could
4983 * use task_rq_lock() here and obtain the other rq->lock.
4984 *
4985 * Silence PROVE_RCU
4986 */
4987 rcu_read_lock();
dd41f596 4988 __set_task_cpu(idle, cpu);
6506cf6c 4989 rcu_read_unlock();
1da177e4 4990
1da177e4 4991 rq->curr = rq->idle = idle;
3ca7a440
PZ
4992#if defined(CONFIG_SMP)
4993 idle->on_cpu = 1;
4866cde0 4994#endif
05fa785c 4995 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4
LT
4996
4997 /* Set the preempt count _outside_ the spinlocks! */
a1261f54 4998 task_thread_info(idle)->preempt_count = 0;
55cd5340 4999
dd41f596
IM
5000 /*
5001 * The idle tasks have their own, simple scheduling class:
5002 */
5003 idle->sched_class = &idle_sched_class;
868baf07 5004 ftrace_graph_init_idle_task(idle, cpu);
f1c6f1a7
CE
5005#if defined(CONFIG_SMP)
5006 sprintf(idle->comm, "%s/%d", INIT_TASK_COMM, cpu);
5007#endif
19978ca6
IM
5008}
5009
1da177e4 5010#ifdef CONFIG_SMP
1e1b6c51
KM
5011void do_set_cpus_allowed(struct task_struct *p, const struct cpumask *new_mask)
5012{
5013 if (p->sched_class && p->sched_class->set_cpus_allowed)
5014 p->sched_class->set_cpus_allowed(p, new_mask);
4939602a
PZ
5015
5016 cpumask_copy(&p->cpus_allowed, new_mask);
29baa747 5017 p->nr_cpus_allowed = cpumask_weight(new_mask);
1e1b6c51
KM
5018}
5019
1da177e4
LT
5020/*
5021 * This is how migration works:
5022 *
969c7921
TH
5023 * 1) we invoke migration_cpu_stop() on the target CPU using
5024 * stop_one_cpu().
5025 * 2) stopper starts to run (implicitly forcing the migrated thread
5026 * off the CPU)
5027 * 3) it checks whether the migrated task is still in the wrong runqueue.
5028 * 4) if it's in the wrong runqueue then the migration thread removes
1da177e4 5029 * it and puts it into the right queue.
969c7921
TH
5030 * 5) stopper completes and stop_one_cpu() returns and the migration
5031 * is done.
1da177e4
LT
5032 */
5033
5034/*
5035 * Change a given task's CPU affinity. Migrate the thread to a
5036 * proper CPU and schedule it away if the CPU it's executing on
5037 * is removed from the allowed bitmask.
5038 *
5039 * NOTE: the caller must have a valid reference to the task, the
41a2d6cf 5040 * task must not exit() & deallocate itself prematurely. The
1da177e4
LT
5041 * call is not atomic; no spinlocks may be held.
5042 */
96f874e2 5043int set_cpus_allowed_ptr(struct task_struct *p, const struct cpumask *new_mask)
1da177e4
LT
5044{
5045 unsigned long flags;
70b97a7f 5046 struct rq *rq;
969c7921 5047 unsigned int dest_cpu;
48f24c4d 5048 int ret = 0;
1da177e4
LT
5049
5050 rq = task_rq_lock(p, &flags);
e2912009 5051
db44fc01
YZ
5052 if (cpumask_equal(&p->cpus_allowed, new_mask))
5053 goto out;
5054
6ad4c188 5055 if (!cpumask_intersects(new_mask, cpu_active_mask)) {
1da177e4
LT
5056 ret = -EINVAL;
5057 goto out;
5058 }
5059
db44fc01 5060 if (unlikely((p->flags & PF_THREAD_BOUND) && p != current)) {
9985b0ba
DR
5061 ret = -EINVAL;
5062 goto out;
5063 }
5064
1e1b6c51 5065 do_set_cpus_allowed(p, new_mask);
73fe6aae 5066
1da177e4 5067 /* Can the task run on the task's current CPU? If so, we're done */
96f874e2 5068 if (cpumask_test_cpu(task_cpu(p), new_mask))
1da177e4
LT
5069 goto out;
5070
969c7921 5071 dest_cpu = cpumask_any_and(cpu_active_mask, new_mask);
bd8e7dde 5072 if (p->on_rq) {
969c7921 5073 struct migration_arg arg = { p, dest_cpu };
1da177e4 5074 /* Need help from migration thread: drop lock and wait. */
0122ec5b 5075 task_rq_unlock(rq, p, &flags);
969c7921 5076 stop_one_cpu(cpu_of(rq), migration_cpu_stop, &arg);
1da177e4
LT
5077 tlb_migrate_finish(p->mm);
5078 return 0;
5079 }
5080out:
0122ec5b 5081 task_rq_unlock(rq, p, &flags);
48f24c4d 5082
1da177e4
LT
5083 return ret;
5084}
cd8ba7cd 5085EXPORT_SYMBOL_GPL(set_cpus_allowed_ptr);
1da177e4
LT
5086
5087/*
41a2d6cf 5088 * Move (not current) task off this cpu, onto dest cpu. We're doing
1da177e4
LT
5089 * this because either it can't run here any more (set_cpus_allowed()
5090 * away from this CPU, or CPU going down), or because we're
5091 * attempting to rebalance this task on exec (sched_exec).
5092 *
5093 * So we race with normal scheduler movements, but that's OK, as long
5094 * as the task is no longer on this CPU.
efc30814
KK
5095 *
5096 * Returns non-zero if task was successfully migrated.
1da177e4 5097 */
efc30814 5098static int __migrate_task(struct task_struct *p, int src_cpu, int dest_cpu)
1da177e4 5099{
70b97a7f 5100 struct rq *rq_dest, *rq_src;
e2912009 5101 int ret = 0;
1da177e4 5102
e761b772 5103 if (unlikely(!cpu_active(dest_cpu)))
efc30814 5104 return ret;
1da177e4
LT
5105
5106 rq_src = cpu_rq(src_cpu);
5107 rq_dest = cpu_rq(dest_cpu);
5108
0122ec5b 5109 raw_spin_lock(&p->pi_lock);
1da177e4
LT
5110 double_rq_lock(rq_src, rq_dest);
5111 /* Already moved. */
5112 if (task_cpu(p) != src_cpu)
b1e38734 5113 goto done;
1da177e4 5114 /* Affinity changed (again). */
fa17b507 5115 if (!cpumask_test_cpu(dest_cpu, tsk_cpus_allowed(p)))
b1e38734 5116 goto fail;
1da177e4 5117
e2912009
PZ
5118 /*
5119 * If we're not on a rq, the next wake-up will ensure we're
5120 * placed properly.
5121 */
fd2f4419 5122 if (p->on_rq) {
4ca9b72b 5123 dequeue_task(rq_src, p, 0);
e2912009 5124 set_task_cpu(p, dest_cpu);
4ca9b72b 5125 enqueue_task(rq_dest, p, 0);
15afe09b 5126 check_preempt_curr(rq_dest, p, 0);
1da177e4 5127 }
b1e38734 5128done:
efc30814 5129 ret = 1;
b1e38734 5130fail:
1da177e4 5131 double_rq_unlock(rq_src, rq_dest);
0122ec5b 5132 raw_spin_unlock(&p->pi_lock);
efc30814 5133 return ret;
1da177e4
LT
5134}
5135
5136/*
969c7921
TH
5137 * migration_cpu_stop - this will be executed by a highprio stopper thread
5138 * and performs thread migration by bumping thread off CPU then
5139 * 'pushing' onto another runqueue.
1da177e4 5140 */
969c7921 5141static int migration_cpu_stop(void *data)
1da177e4 5142{
969c7921 5143 struct migration_arg *arg = data;
f7b4cddc 5144
969c7921
TH
5145 /*
5146 * The original target cpu might have gone down and we might
5147 * be on another cpu but it doesn't matter.
5148 */
f7b4cddc 5149 local_irq_disable();
969c7921 5150 __migrate_task(arg->task, raw_smp_processor_id(), arg->dest_cpu);
f7b4cddc 5151 local_irq_enable();
1da177e4 5152 return 0;
f7b4cddc
ON
5153}
5154
1da177e4 5155#ifdef CONFIG_HOTPLUG_CPU
48c5ccae 5156
054b9108 5157/*
48c5ccae
PZ
5158 * Ensures that the idle task is using init_mm right before its cpu goes
5159 * offline.
054b9108 5160 */
48c5ccae 5161void idle_task_exit(void)
1da177e4 5162{
48c5ccae 5163 struct mm_struct *mm = current->active_mm;
e76bd8d9 5164
48c5ccae 5165 BUG_ON(cpu_online(smp_processor_id()));
e76bd8d9 5166
48c5ccae
PZ
5167 if (mm != &init_mm)
5168 switch_mm(mm, &init_mm, current);
5169 mmdrop(mm);
1da177e4
LT
5170}
5171
5172/*
5173 * While a dead CPU has no uninterruptible tasks queued at this point,
5174 * it might still have a nonzero ->nr_uninterruptible counter, because
5175 * for performance reasons the counter is not stricly tracking tasks to
5176 * their home CPUs. So we just add the counter to another CPU's counter,
5177 * to keep the global sum constant after CPU-down:
5178 */
70b97a7f 5179static void migrate_nr_uninterruptible(struct rq *rq_src)
1da177e4 5180{
6ad4c188 5181 struct rq *rq_dest = cpu_rq(cpumask_any(cpu_active_mask));
1da177e4 5182
1da177e4
LT
5183 rq_dest->nr_uninterruptible += rq_src->nr_uninterruptible;
5184 rq_src->nr_uninterruptible = 0;
1da177e4
LT
5185}
5186
dd41f596 5187/*
48c5ccae 5188 * remove the tasks which were accounted by rq from calc_load_tasks.
1da177e4 5189 */
48c5ccae 5190static void calc_global_load_remove(struct rq *rq)
1da177e4 5191{
48c5ccae
PZ
5192 atomic_long_sub(rq->calc_load_active, &calc_load_tasks);
5193 rq->calc_load_active = 0;
1da177e4
LT
5194}
5195
48f24c4d 5196/*
48c5ccae
PZ
5197 * Migrate all tasks from the rq, sleeping tasks will be migrated by
5198 * try_to_wake_up()->select_task_rq().
5199 *
5200 * Called with rq->lock held even though we'er in stop_machine() and
5201 * there's no concurrency possible, we hold the required locks anyway
5202 * because of lock validation efforts.
1da177e4 5203 */
48c5ccae 5204static void migrate_tasks(unsigned int dead_cpu)
1da177e4 5205{
70b97a7f 5206 struct rq *rq = cpu_rq(dead_cpu);
48c5ccae
PZ
5207 struct task_struct *next, *stop = rq->stop;
5208 int dest_cpu;
1da177e4
LT
5209
5210 /*
48c5ccae
PZ
5211 * Fudge the rq selection such that the below task selection loop
5212 * doesn't get stuck on the currently eligible stop task.
5213 *
5214 * We're currently inside stop_machine() and the rq is either stuck
5215 * in the stop_machine_cpu_stop() loop, or we're executing this code,
5216 * either way we should never end up calling schedule() until we're
5217 * done here.
1da177e4 5218 */
48c5ccae 5219 rq->stop = NULL;
48f24c4d 5220
8cb120d3
PT
5221 /* Ensure any throttled groups are reachable by pick_next_task */
5222 unthrottle_offline_cfs_rqs(rq);
5223
dd41f596 5224 for ( ; ; ) {
48c5ccae
PZ
5225 /*
5226 * There's this thread running, bail when that's the only
5227 * remaining thread.
5228 */
5229 if (rq->nr_running == 1)
dd41f596 5230 break;
48c5ccae 5231
b67802ea 5232 next = pick_next_task(rq);
48c5ccae 5233 BUG_ON(!next);
79c53799 5234 next->sched_class->put_prev_task(rq, next);
e692ab53 5235
48c5ccae
PZ
5236 /* Find suitable destination for @next, with force if needed. */
5237 dest_cpu = select_fallback_rq(dead_cpu, next);
5238 raw_spin_unlock(&rq->lock);
5239
5240 __migrate_task(next, dead_cpu, dest_cpu);
5241
5242 raw_spin_lock(&rq->lock);
1da177e4 5243 }
dce48a84 5244
48c5ccae 5245 rq->stop = stop;
dce48a84 5246}
48c5ccae 5247
1da177e4
LT
5248#endif /* CONFIG_HOTPLUG_CPU */
5249
e692ab53
NP
5250#if defined(CONFIG_SCHED_DEBUG) && defined(CONFIG_SYSCTL)
5251
5252static struct ctl_table sd_ctl_dir[] = {
e0361851
AD
5253 {
5254 .procname = "sched_domain",
c57baf1e 5255 .mode = 0555,
e0361851 5256 },
56992309 5257 {}
e692ab53
NP
5258};
5259
5260static struct ctl_table sd_ctl_root[] = {
e0361851
AD
5261 {
5262 .procname = "kernel",
c57baf1e 5263 .mode = 0555,
e0361851
AD
5264 .child = sd_ctl_dir,
5265 },
56992309 5266 {}
e692ab53
NP
5267};
5268
5269static struct ctl_table *sd_alloc_ctl_entry(int n)
5270{
5271 struct ctl_table *entry =
5cf9f062 5272 kcalloc(n, sizeof(struct ctl_table), GFP_KERNEL);
e692ab53 5273
e692ab53
NP
5274 return entry;
5275}
5276
6382bc90
MM
5277static void sd_free_ctl_entry(struct ctl_table **tablep)
5278{
cd790076 5279 struct ctl_table *entry;
6382bc90 5280
cd790076
MM
5281 /*
5282 * In the intermediate directories, both the child directory and
5283 * procname are dynamically allocated and could fail but the mode
41a2d6cf 5284 * will always be set. In the lowest directory the names are
cd790076
MM
5285 * static strings and all have proc handlers.
5286 */
5287 for (entry = *tablep; entry->mode; entry++) {
6382bc90
MM
5288 if (entry->child)
5289 sd_free_ctl_entry(&entry->child);
cd790076
MM
5290 if (entry->proc_handler == NULL)
5291 kfree(entry->procname);
5292 }
6382bc90
MM
5293
5294 kfree(*tablep);
5295 *tablep = NULL;
5296}
5297
e692ab53 5298static void
e0361851 5299set_table_entry(struct ctl_table *entry,
e692ab53 5300 const char *procname, void *data, int maxlen,
36fcb589 5301 umode_t mode, proc_handler *proc_handler)
e692ab53 5302{
e692ab53
NP
5303 entry->procname = procname;
5304 entry->data = data;
5305 entry->maxlen = maxlen;
5306 entry->mode = mode;
5307 entry->proc_handler = proc_handler;
5308}
5309
5310static struct ctl_table *
5311sd_alloc_ctl_domain_table(struct sched_domain *sd)
5312{
a5d8c348 5313 struct ctl_table *table = sd_alloc_ctl_entry(13);
e692ab53 5314
ad1cdc1d
MM
5315 if (table == NULL)
5316 return NULL;
5317
e0361851 5318 set_table_entry(&table[0], "min_interval", &sd->min_interval,
e692ab53 5319 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5320 set_table_entry(&table[1], "max_interval", &sd->max_interval,
e692ab53 5321 sizeof(long), 0644, proc_doulongvec_minmax);
e0361851 5322 set_table_entry(&table[2], "busy_idx", &sd->busy_idx,
e692ab53 5323 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5324 set_table_entry(&table[3], "idle_idx", &sd->idle_idx,
e692ab53 5325 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5326 set_table_entry(&table[4], "newidle_idx", &sd->newidle_idx,
e692ab53 5327 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5328 set_table_entry(&table[5], "wake_idx", &sd->wake_idx,
e692ab53 5329 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5330 set_table_entry(&table[6], "forkexec_idx", &sd->forkexec_idx,
e692ab53 5331 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5332 set_table_entry(&table[7], "busy_factor", &sd->busy_factor,
e692ab53 5333 sizeof(int), 0644, proc_dointvec_minmax);
e0361851 5334 set_table_entry(&table[8], "imbalance_pct", &sd->imbalance_pct,
e692ab53 5335 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5336 set_table_entry(&table[9], "cache_nice_tries",
e692ab53
NP
5337 &sd->cache_nice_tries,
5338 sizeof(int), 0644, proc_dointvec_minmax);
ace8b3d6 5339 set_table_entry(&table[10], "flags", &sd->flags,
e692ab53 5340 sizeof(int), 0644, proc_dointvec_minmax);
a5d8c348
IM
5341 set_table_entry(&table[11], "name", sd->name,
5342 CORENAME_MAX_SIZE, 0444, proc_dostring);
5343 /* &table[12] is terminator */
e692ab53
NP
5344
5345 return table;
5346}
5347
9a4e7159 5348static ctl_table *sd_alloc_ctl_cpu_table(int cpu)
e692ab53
NP
5349{
5350 struct ctl_table *entry, *table;
5351 struct sched_domain *sd;
5352 int domain_num = 0, i;
5353 char buf[32];
5354
5355 for_each_domain(cpu, sd)
5356 domain_num++;
5357 entry = table = sd_alloc_ctl_entry(domain_num + 1);
ad1cdc1d
MM
5358 if (table == NULL)
5359 return NULL;
e692ab53
NP
5360
5361 i = 0;
5362 for_each_domain(cpu, sd) {
5363 snprintf(buf, 32, "domain%d", i);
e692ab53 5364 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5365 entry->mode = 0555;
e692ab53
NP
5366 entry->child = sd_alloc_ctl_domain_table(sd);
5367 entry++;
5368 i++;
5369 }
5370 return table;
5371}
5372
5373static struct ctl_table_header *sd_sysctl_header;
6382bc90 5374static void register_sched_domain_sysctl(void)
e692ab53 5375{
6ad4c188 5376 int i, cpu_num = num_possible_cpus();
e692ab53
NP
5377 struct ctl_table *entry = sd_alloc_ctl_entry(cpu_num + 1);
5378 char buf[32];
5379
7378547f
MM
5380 WARN_ON(sd_ctl_dir[0].child);
5381 sd_ctl_dir[0].child = entry;
5382
ad1cdc1d
MM
5383 if (entry == NULL)
5384 return;
5385
6ad4c188 5386 for_each_possible_cpu(i) {
e692ab53 5387 snprintf(buf, 32, "cpu%d", i);
e692ab53 5388 entry->procname = kstrdup(buf, GFP_KERNEL);
c57baf1e 5389 entry->mode = 0555;
e692ab53 5390 entry->child = sd_alloc_ctl_cpu_table(i);
97b6ea7b 5391 entry++;
e692ab53 5392 }
7378547f
MM
5393
5394 WARN_ON(sd_sysctl_header);
e692ab53
NP
5395 sd_sysctl_header = register_sysctl_table(sd_ctl_root);
5396}
6382bc90 5397
7378547f 5398/* may be called multiple times per register */
6382bc90
MM
5399static void unregister_sched_domain_sysctl(void)
5400{
7378547f
MM
5401 if (sd_sysctl_header)
5402 unregister_sysctl_table(sd_sysctl_header);
6382bc90 5403 sd_sysctl_header = NULL;
7378547f
MM
5404 if (sd_ctl_dir[0].child)
5405 sd_free_ctl_entry(&sd_ctl_dir[0].child);
6382bc90 5406}
e692ab53 5407#else
6382bc90
MM
5408static void register_sched_domain_sysctl(void)
5409{
5410}
5411static void unregister_sched_domain_sysctl(void)
e692ab53
NP
5412{
5413}
5414#endif
5415
1f11eb6a
GH
5416static void set_rq_online(struct rq *rq)
5417{
5418 if (!rq->online) {
5419 const struct sched_class *class;
5420
c6c4927b 5421 cpumask_set_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5422 rq->online = 1;
5423
5424 for_each_class(class) {
5425 if (class->rq_online)
5426 class->rq_online(rq);
5427 }
5428 }
5429}
5430
5431static void set_rq_offline(struct rq *rq)
5432{
5433 if (rq->online) {
5434 const struct sched_class *class;
5435
5436 for_each_class(class) {
5437 if (class->rq_offline)
5438 class->rq_offline(rq);
5439 }
5440
c6c4927b 5441 cpumask_clear_cpu(rq->cpu, rq->rd->online);
1f11eb6a
GH
5442 rq->online = 0;
5443 }
5444}
5445
1da177e4
LT
5446/*
5447 * migration_call - callback that gets triggered when a CPU is added.
5448 * Here we can start up the necessary migration thread for the new CPU.
5449 */
48f24c4d
IM
5450static int __cpuinit
5451migration_call(struct notifier_block *nfb, unsigned long action, void *hcpu)
1da177e4 5452{
48f24c4d 5453 int cpu = (long)hcpu;
1da177e4 5454 unsigned long flags;
969c7921 5455 struct rq *rq = cpu_rq(cpu);
1da177e4 5456
48c5ccae 5457 switch (action & ~CPU_TASKS_FROZEN) {
5be9361c 5458
1da177e4 5459 case CPU_UP_PREPARE:
a468d389 5460 rq->calc_load_update = calc_load_update;
1da177e4 5461 break;
48f24c4d 5462
1da177e4 5463 case CPU_ONLINE:
1f94ef59 5464 /* Update our root-domain */
05fa785c 5465 raw_spin_lock_irqsave(&rq->lock, flags);
1f94ef59 5466 if (rq->rd) {
c6c4927b 5467 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a
GH
5468
5469 set_rq_online(rq);
1f94ef59 5470 }
05fa785c 5471 raw_spin_unlock_irqrestore(&rq->lock, flags);
1da177e4 5472 break;
48f24c4d 5473
1da177e4 5474#ifdef CONFIG_HOTPLUG_CPU
08f503b0 5475 case CPU_DYING:
317f3941 5476 sched_ttwu_pending();
57d885fe 5477 /* Update our root-domain */
05fa785c 5478 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe 5479 if (rq->rd) {
c6c4927b 5480 BUG_ON(!cpumask_test_cpu(cpu, rq->rd->span));
1f11eb6a 5481 set_rq_offline(rq);
57d885fe 5482 }
48c5ccae
PZ
5483 migrate_tasks(cpu);
5484 BUG_ON(rq->nr_running != 1); /* the migration thread */
05fa785c 5485 raw_spin_unlock_irqrestore(&rq->lock, flags);
48c5ccae
PZ
5486
5487 migrate_nr_uninterruptible(rq);
5488 calc_global_load_remove(rq);
57d885fe 5489 break;
1da177e4
LT
5490#endif
5491 }
49c022e6
PZ
5492
5493 update_max_interval();
5494
1da177e4
LT
5495 return NOTIFY_OK;
5496}
5497
f38b0820
PM
5498/*
5499 * Register at high priority so that task migration (migrate_all_tasks)
5500 * happens before everything else. This has to be lower priority than
cdd6c482 5501 * the notifier in the perf_event subsystem, though.
1da177e4 5502 */
26c2143b 5503static struct notifier_block __cpuinitdata migration_notifier = {
1da177e4 5504 .notifier_call = migration_call,
50a323b7 5505 .priority = CPU_PRI_MIGRATION,
1da177e4
LT
5506};
5507
3a101d05
TH
5508static int __cpuinit sched_cpu_active(struct notifier_block *nfb,
5509 unsigned long action, void *hcpu)
5510{
5511 switch (action & ~CPU_TASKS_FROZEN) {
5fbd036b 5512 case CPU_STARTING:
3a101d05
TH
5513 case CPU_DOWN_FAILED:
5514 set_cpu_active((long)hcpu, true);
5515 return NOTIFY_OK;
5516 default:
5517 return NOTIFY_DONE;
5518 }
5519}
5520
5521static int __cpuinit sched_cpu_inactive(struct notifier_block *nfb,
5522 unsigned long action, void *hcpu)
5523{
5524 switch (action & ~CPU_TASKS_FROZEN) {
5525 case CPU_DOWN_PREPARE:
5526 set_cpu_active((long)hcpu, false);
5527 return NOTIFY_OK;
5528 default:
5529 return NOTIFY_DONE;
5530 }
5531}
5532
7babe8db 5533static int __init migration_init(void)
1da177e4
LT
5534{
5535 void *cpu = (void *)(long)smp_processor_id();
07dccf33 5536 int err;
48f24c4d 5537
3a101d05 5538 /* Initialize migration for the boot CPU */
07dccf33
AM
5539 err = migration_call(&migration_notifier, CPU_UP_PREPARE, cpu);
5540 BUG_ON(err == NOTIFY_BAD);
1da177e4
LT
5541 migration_call(&migration_notifier, CPU_ONLINE, cpu);
5542 register_cpu_notifier(&migration_notifier);
7babe8db 5543
3a101d05
TH
5544 /* Register cpu active notifiers */
5545 cpu_notifier(sched_cpu_active, CPU_PRI_SCHED_ACTIVE);
5546 cpu_notifier(sched_cpu_inactive, CPU_PRI_SCHED_INACTIVE);
5547
a004cd42 5548 return 0;
1da177e4 5549}
7babe8db 5550early_initcall(migration_init);
1da177e4
LT
5551#endif
5552
5553#ifdef CONFIG_SMP
476f3534 5554
4cb98839
PZ
5555static cpumask_var_t sched_domains_tmpmask; /* sched_domains_mutex */
5556
3e9830dc 5557#ifdef CONFIG_SCHED_DEBUG
4dcf6aff 5558
f6630114
MT
5559static __read_mostly int sched_domain_debug_enabled;
5560
5561static int __init sched_domain_debug_setup(char *str)
5562{
5563 sched_domain_debug_enabled = 1;
5564
5565 return 0;
5566}
5567early_param("sched_debug", sched_domain_debug_setup);
5568
7c16ec58 5569static int sched_domain_debug_one(struct sched_domain *sd, int cpu, int level,
96f874e2 5570 struct cpumask *groupmask)
1da177e4 5571{
4dcf6aff 5572 struct sched_group *group = sd->groups;
434d53b0 5573 char str[256];
1da177e4 5574
968ea6d8 5575 cpulist_scnprintf(str, sizeof(str), sched_domain_span(sd));
96f874e2 5576 cpumask_clear(groupmask);
4dcf6aff
IM
5577
5578 printk(KERN_DEBUG "%*s domain %d: ", level, "", level);
5579
5580 if (!(sd->flags & SD_LOAD_BALANCE)) {
3df0fc5b 5581 printk("does not load-balance\n");
4dcf6aff 5582 if (sd->parent)
3df0fc5b
PZ
5583 printk(KERN_ERR "ERROR: !SD_LOAD_BALANCE domain"
5584 " has parent");
4dcf6aff 5585 return -1;
41c7ce9a
NP
5586 }
5587
3df0fc5b 5588 printk(KERN_CONT "span %s level %s\n", str, sd->name);
4dcf6aff 5589
758b2cdc 5590 if (!cpumask_test_cpu(cpu, sched_domain_span(sd))) {
3df0fc5b
PZ
5591 printk(KERN_ERR "ERROR: domain->span does not contain "
5592 "CPU%d\n", cpu);
4dcf6aff 5593 }
758b2cdc 5594 if (!cpumask_test_cpu(cpu, sched_group_cpus(group))) {
3df0fc5b
PZ
5595 printk(KERN_ERR "ERROR: domain->groups does not contain"
5596 " CPU%d\n", cpu);
4dcf6aff 5597 }
1da177e4 5598
4dcf6aff 5599 printk(KERN_DEBUG "%*s groups:", level + 1, "");
1da177e4 5600 do {
4dcf6aff 5601 if (!group) {
3df0fc5b
PZ
5602 printk("\n");
5603 printk(KERN_ERR "ERROR: group is NULL\n");
1da177e4
LT
5604 break;
5605 }
5606
c3decf0d
PZ
5607 /*
5608 * Even though we initialize ->power to something semi-sane,
5609 * we leave power_orig unset. This allows us to detect if
5610 * domain iteration is still funny without causing /0 traps.
5611 */
5612 if (!group->sgp->power_orig) {
3df0fc5b
PZ
5613 printk(KERN_CONT "\n");
5614 printk(KERN_ERR "ERROR: domain->cpu_power not "
5615 "set\n");
4dcf6aff
IM
5616 break;
5617 }
1da177e4 5618
758b2cdc 5619 if (!cpumask_weight(sched_group_cpus(group))) {
3df0fc5b
PZ
5620 printk(KERN_CONT "\n");
5621 printk(KERN_ERR "ERROR: empty group\n");
4dcf6aff
IM
5622 break;
5623 }
1da177e4 5624
cb83b629
PZ
5625 if (!(sd->flags & SD_OVERLAP) &&
5626 cpumask_intersects(groupmask, sched_group_cpus(group))) {
3df0fc5b
PZ
5627 printk(KERN_CONT "\n");
5628 printk(KERN_ERR "ERROR: repeated CPUs\n");
4dcf6aff
IM
5629 break;
5630 }
1da177e4 5631
758b2cdc 5632 cpumask_or(groupmask, groupmask, sched_group_cpus(group));
1da177e4 5633
968ea6d8 5634 cpulist_scnprintf(str, sizeof(str), sched_group_cpus(group));
381512cf 5635
3df0fc5b 5636 printk(KERN_CONT " %s", str);
9c3f75cb 5637 if (group->sgp->power != SCHED_POWER_SCALE) {
3df0fc5b 5638 printk(KERN_CONT " (cpu_power = %d)",
9c3f75cb 5639 group->sgp->power);
381512cf 5640 }
1da177e4 5641
4dcf6aff
IM
5642 group = group->next;
5643 } while (group != sd->groups);
3df0fc5b 5644 printk(KERN_CONT "\n");
1da177e4 5645
758b2cdc 5646 if (!cpumask_equal(sched_domain_span(sd), groupmask))
3df0fc5b 5647 printk(KERN_ERR "ERROR: groups don't span domain->span\n");
1da177e4 5648
758b2cdc
RR
5649 if (sd->parent &&
5650 !cpumask_subset(groupmask, sched_domain_span(sd->parent)))
3df0fc5b
PZ
5651 printk(KERN_ERR "ERROR: parent span is not a superset "
5652 "of domain->span\n");
4dcf6aff
IM
5653 return 0;
5654}
1da177e4 5655
4dcf6aff
IM
5656static void sched_domain_debug(struct sched_domain *sd, int cpu)
5657{
5658 int level = 0;
1da177e4 5659
f6630114
MT
5660 if (!sched_domain_debug_enabled)
5661 return;
5662
4dcf6aff
IM
5663 if (!sd) {
5664 printk(KERN_DEBUG "CPU%d attaching NULL sched-domain.\n", cpu);
5665 return;
5666 }
1da177e4 5667
4dcf6aff
IM
5668 printk(KERN_DEBUG "CPU%d attaching sched-domain:\n", cpu);
5669
5670 for (;;) {
4cb98839 5671 if (sched_domain_debug_one(sd, cpu, level, sched_domains_tmpmask))
4dcf6aff 5672 break;
1da177e4
LT
5673 level++;
5674 sd = sd->parent;
33859f7f 5675 if (!sd)
4dcf6aff
IM
5676 break;
5677 }
1da177e4 5678}
6d6bc0ad 5679#else /* !CONFIG_SCHED_DEBUG */
48f24c4d 5680# define sched_domain_debug(sd, cpu) do { } while (0)
6d6bc0ad 5681#endif /* CONFIG_SCHED_DEBUG */
1da177e4 5682
1a20ff27 5683static int sd_degenerate(struct sched_domain *sd)
245af2c7 5684{
758b2cdc 5685 if (cpumask_weight(sched_domain_span(sd)) == 1)
245af2c7
SS
5686 return 1;
5687
5688 /* Following flags need at least 2 groups */
5689 if (sd->flags & (SD_LOAD_BALANCE |
5690 SD_BALANCE_NEWIDLE |
5691 SD_BALANCE_FORK |
89c4710e
SS
5692 SD_BALANCE_EXEC |
5693 SD_SHARE_CPUPOWER |
5694 SD_SHARE_PKG_RESOURCES)) {
245af2c7
SS
5695 if (sd->groups != sd->groups->next)
5696 return 0;
5697 }
5698
5699 /* Following flags don't use groups */
c88d5910 5700 if (sd->flags & (SD_WAKE_AFFINE))
245af2c7
SS
5701 return 0;
5702
5703 return 1;
5704}
5705
48f24c4d
IM
5706static int
5707sd_parent_degenerate(struct sched_domain *sd, struct sched_domain *parent)
245af2c7
SS
5708{
5709 unsigned long cflags = sd->flags, pflags = parent->flags;
5710
5711 if (sd_degenerate(parent))
5712 return 1;
5713
758b2cdc 5714 if (!cpumask_equal(sched_domain_span(sd), sched_domain_span(parent)))
245af2c7
SS
5715 return 0;
5716
245af2c7
SS
5717 /* Flags needing groups don't count if only 1 group in parent */
5718 if (parent->groups == parent->groups->next) {
5719 pflags &= ~(SD_LOAD_BALANCE |
5720 SD_BALANCE_NEWIDLE |
5721 SD_BALANCE_FORK |
89c4710e
SS
5722 SD_BALANCE_EXEC |
5723 SD_SHARE_CPUPOWER |
5724 SD_SHARE_PKG_RESOURCES);
5436499e
KC
5725 if (nr_node_ids == 1)
5726 pflags &= ~SD_SERIALIZE;
245af2c7
SS
5727 }
5728 if (~cflags & pflags)
5729 return 0;
5730
5731 return 1;
5732}
5733
dce840a0 5734static void free_rootdomain(struct rcu_head *rcu)
c6c4927b 5735{
dce840a0 5736 struct root_domain *rd = container_of(rcu, struct root_domain, rcu);
047106ad 5737
68e74568 5738 cpupri_cleanup(&rd->cpupri);
c6c4927b
RR
5739 free_cpumask_var(rd->rto_mask);
5740 free_cpumask_var(rd->online);
5741 free_cpumask_var(rd->span);
5742 kfree(rd);
5743}
5744
57d885fe
GH
5745static void rq_attach_root(struct rq *rq, struct root_domain *rd)
5746{
a0490fa3 5747 struct root_domain *old_rd = NULL;
57d885fe 5748 unsigned long flags;
57d885fe 5749
05fa785c 5750 raw_spin_lock_irqsave(&rq->lock, flags);
57d885fe
GH
5751
5752 if (rq->rd) {
a0490fa3 5753 old_rd = rq->rd;
57d885fe 5754
c6c4927b 5755 if (cpumask_test_cpu(rq->cpu, old_rd->online))
1f11eb6a 5756 set_rq_offline(rq);
57d885fe 5757
c6c4927b 5758 cpumask_clear_cpu(rq->cpu, old_rd->span);
dc938520 5759
a0490fa3
IM
5760 /*
5761 * If we dont want to free the old_rt yet then
5762 * set old_rd to NULL to skip the freeing later
5763 * in this function:
5764 */
5765 if (!atomic_dec_and_test(&old_rd->refcount))
5766 old_rd = NULL;
57d885fe
GH
5767 }
5768
5769 atomic_inc(&rd->refcount);
5770 rq->rd = rd;
5771
c6c4927b 5772 cpumask_set_cpu(rq->cpu, rd->span);
00aec93d 5773 if (cpumask_test_cpu(rq->cpu, cpu_active_mask))
1f11eb6a 5774 set_rq_online(rq);
57d885fe 5775
05fa785c 5776 raw_spin_unlock_irqrestore(&rq->lock, flags);
a0490fa3
IM
5777
5778 if (old_rd)
dce840a0 5779 call_rcu_sched(&old_rd->rcu, free_rootdomain);
57d885fe
GH
5780}
5781
68c38fc3 5782static int init_rootdomain(struct root_domain *rd)
57d885fe
GH
5783{
5784 memset(rd, 0, sizeof(*rd));
5785
68c38fc3 5786 if (!alloc_cpumask_var(&rd->span, GFP_KERNEL))
0c910d28 5787 goto out;
68c38fc3 5788 if (!alloc_cpumask_var(&rd->online, GFP_KERNEL))
c6c4927b 5789 goto free_span;
68c38fc3 5790 if (!alloc_cpumask_var(&rd->rto_mask, GFP_KERNEL))
c6c4927b 5791 goto free_online;
6e0534f2 5792
68c38fc3 5793 if (cpupri_init(&rd->cpupri) != 0)
68e74568 5794 goto free_rto_mask;
c6c4927b 5795 return 0;
6e0534f2 5796
68e74568
RR
5797free_rto_mask:
5798 free_cpumask_var(rd->rto_mask);
c6c4927b
RR
5799free_online:
5800 free_cpumask_var(rd->online);
5801free_span:
5802 free_cpumask_var(rd->span);
0c910d28 5803out:
c6c4927b 5804 return -ENOMEM;
57d885fe
GH
5805}
5806
029632fb
PZ
5807/*
5808 * By default the system creates a single root-domain with all cpus as
5809 * members (mimicking the global state we have today).
5810 */
5811struct root_domain def_root_domain;
5812
57d885fe
GH
5813static void init_defrootdomain(void)
5814{
68c38fc3 5815 init_rootdomain(&def_root_domain);
c6c4927b 5816
57d885fe
GH
5817 atomic_set(&def_root_domain.refcount, 1);
5818}
5819
dc938520 5820static struct root_domain *alloc_rootdomain(void)
57d885fe
GH
5821{
5822 struct root_domain *rd;
5823
5824 rd = kmalloc(sizeof(*rd), GFP_KERNEL);
5825 if (!rd)
5826 return NULL;
5827
68c38fc3 5828 if (init_rootdomain(rd) != 0) {
c6c4927b
RR
5829 kfree(rd);
5830 return NULL;
5831 }
57d885fe
GH
5832
5833 return rd;
5834}
5835
e3589f6c
PZ
5836static void free_sched_groups(struct sched_group *sg, int free_sgp)
5837{
5838 struct sched_group *tmp, *first;
5839
5840 if (!sg)
5841 return;
5842
5843 first = sg;
5844 do {
5845 tmp = sg->next;
5846
5847 if (free_sgp && atomic_dec_and_test(&sg->sgp->ref))
5848 kfree(sg->sgp);
5849
5850 kfree(sg);
5851 sg = tmp;
5852 } while (sg != first);
5853}
5854
dce840a0
PZ
5855static void free_sched_domain(struct rcu_head *rcu)
5856{
5857 struct sched_domain *sd = container_of(rcu, struct sched_domain, rcu);
e3589f6c
PZ
5858
5859 /*
5860 * If its an overlapping domain it has private groups, iterate and
5861 * nuke them all.
5862 */
5863 if (sd->flags & SD_OVERLAP) {
5864 free_sched_groups(sd->groups, 1);
5865 } else if (atomic_dec_and_test(&sd->groups->ref)) {
9c3f75cb 5866 kfree(sd->groups->sgp);
dce840a0 5867 kfree(sd->groups);
9c3f75cb 5868 }
dce840a0
PZ
5869 kfree(sd);
5870}
5871
5872static void destroy_sched_domain(struct sched_domain *sd, int cpu)
5873{
5874 call_rcu(&sd->rcu, free_sched_domain);
5875}
5876
5877static void destroy_sched_domains(struct sched_domain *sd, int cpu)
5878{
5879 for (; sd; sd = sd->parent)
5880 destroy_sched_domain(sd, cpu);
5881}
5882
518cd623
PZ
5883/*
5884 * Keep a special pointer to the highest sched_domain that has
5885 * SD_SHARE_PKG_RESOURCE set (Last Level Cache Domain) for this
5886 * allows us to avoid some pointer chasing select_idle_sibling().
5887 *
5888 * Also keep a unique ID per domain (we use the first cpu number in
5889 * the cpumask of the domain), this allows us to quickly tell if
39be3501 5890 * two cpus are in the same cache domain, see cpus_share_cache().
518cd623
PZ
5891 */
5892DEFINE_PER_CPU(struct sched_domain *, sd_llc);
5893DEFINE_PER_CPU(int, sd_llc_id);
5894
5895static void update_top_cache_domain(int cpu)
5896{
5897 struct sched_domain *sd;
5898 int id = cpu;
5899
5900 sd = highest_flag_domain(cpu, SD_SHARE_PKG_RESOURCES);
5901 if (sd)
5902 id = cpumask_first(sched_domain_span(sd));
5903
5904 rcu_assign_pointer(per_cpu(sd_llc, cpu), sd);
5905 per_cpu(sd_llc_id, cpu) = id;
5906}
5907
1da177e4 5908/*
0eab9146 5909 * Attach the domain 'sd' to 'cpu' as its base domain. Callers must
1da177e4
LT
5910 * hold the hotplug lock.
5911 */
0eab9146
IM
5912static void
5913cpu_attach_domain(struct sched_domain *sd, struct root_domain *rd, int cpu)
1da177e4 5914{
70b97a7f 5915 struct rq *rq = cpu_rq(cpu);
245af2c7
SS
5916 struct sched_domain *tmp;
5917
5918 /* Remove the sched domains which do not contribute to scheduling. */
f29c9b1c 5919 for (tmp = sd; tmp; ) {
245af2c7
SS
5920 struct sched_domain *parent = tmp->parent;
5921 if (!parent)
5922 break;
f29c9b1c 5923
1a848870 5924 if (sd_parent_degenerate(tmp, parent)) {
245af2c7 5925 tmp->parent = parent->parent;
1a848870
SS
5926 if (parent->parent)
5927 parent->parent->child = tmp;
dce840a0 5928 destroy_sched_domain(parent, cpu);
f29c9b1c
LZ
5929 } else
5930 tmp = tmp->parent;
245af2c7
SS
5931 }
5932
1a848870 5933 if (sd && sd_degenerate(sd)) {
dce840a0 5934 tmp = sd;
245af2c7 5935 sd = sd->parent;
dce840a0 5936 destroy_sched_domain(tmp, cpu);
1a848870
SS
5937 if (sd)
5938 sd->child = NULL;
5939 }
1da177e4 5940
4cb98839 5941 sched_domain_debug(sd, cpu);
1da177e4 5942
57d885fe 5943 rq_attach_root(rq, rd);
dce840a0 5944 tmp = rq->sd;
674311d5 5945 rcu_assign_pointer(rq->sd, sd);
dce840a0 5946 destroy_sched_domains(tmp, cpu);
518cd623
PZ
5947
5948 update_top_cache_domain(cpu);
1da177e4
LT
5949}
5950
5951/* cpus with isolated domains */
dcc30a35 5952static cpumask_var_t cpu_isolated_map;
1da177e4
LT
5953
5954/* Setup the mask of cpus configured for isolated domains */
5955static int __init isolated_cpu_setup(char *str)
5956{
bdddd296 5957 alloc_bootmem_cpumask_var(&cpu_isolated_map);
968ea6d8 5958 cpulist_parse(str, cpu_isolated_map);
1da177e4
LT
5959 return 1;
5960}
5961
8927f494 5962__setup("isolcpus=", isolated_cpu_setup);
1da177e4 5963
d3081f52
PZ
5964static const struct cpumask *cpu_cpu_mask(int cpu)
5965{
5966 return cpumask_of_node(cpu_to_node(cpu));
5967}
5968
dce840a0
PZ
5969struct sd_data {
5970 struct sched_domain **__percpu sd;
5971 struct sched_group **__percpu sg;
9c3f75cb 5972 struct sched_group_power **__percpu sgp;
dce840a0
PZ
5973};
5974
49a02c51 5975struct s_data {
21d42ccf 5976 struct sched_domain ** __percpu sd;
49a02c51
AH
5977 struct root_domain *rd;
5978};
5979
2109b99e 5980enum s_alloc {
2109b99e 5981 sa_rootdomain,
21d42ccf 5982 sa_sd,
dce840a0 5983 sa_sd_storage,
2109b99e
AH
5984 sa_none,
5985};
5986
54ab4ff4
PZ
5987struct sched_domain_topology_level;
5988
5989typedef struct sched_domain *(*sched_domain_init_f)(struct sched_domain_topology_level *tl, int cpu);
eb7a74e6
PZ
5990typedef const struct cpumask *(*sched_domain_mask_f)(int cpu);
5991
e3589f6c
PZ
5992#define SDTL_OVERLAP 0x01
5993
eb7a74e6 5994struct sched_domain_topology_level {
2c402dc3
PZ
5995 sched_domain_init_f init;
5996 sched_domain_mask_f mask;
e3589f6c 5997 int flags;
cb83b629 5998 int numa_level;
54ab4ff4 5999 struct sd_data data;
eb7a74e6
PZ
6000};
6001
c1174876
PZ
6002/*
6003 * Build an iteration mask that can exclude certain CPUs from the upwards
6004 * domain traversal.
6005 *
6006 * Asymmetric node setups can result in situations where the domain tree is of
6007 * unequal depth, make sure to skip domains that already cover the entire
6008 * range.
6009 *
6010 * In that case build_sched_domains() will have terminated the iteration early
6011 * and our sibling sd spans will be empty. Domains should always include the
6012 * cpu they're built on, so check that.
6013 *
6014 */
6015static void build_group_mask(struct sched_domain *sd, struct sched_group *sg)
6016{
6017 const struct cpumask *span = sched_domain_span(sd);
6018 struct sd_data *sdd = sd->private;
6019 struct sched_domain *sibling;
6020 int i;
6021
6022 for_each_cpu(i, span) {
6023 sibling = *per_cpu_ptr(sdd->sd, i);
6024 if (!cpumask_test_cpu(i, sched_domain_span(sibling)))
6025 continue;
6026
6027 cpumask_set_cpu(i, sched_group_mask(sg));
6028 }
6029}
6030
6031/*
6032 * Return the canonical balance cpu for this group, this is the first cpu
6033 * of this group that's also in the iteration mask.
6034 */
6035int group_balance_cpu(struct sched_group *sg)
6036{
6037 return cpumask_first_and(sched_group_cpus(sg), sched_group_mask(sg));
6038}
6039
e3589f6c
PZ
6040static int
6041build_overlap_sched_groups(struct sched_domain *sd, int cpu)
6042{
6043 struct sched_group *first = NULL, *last = NULL, *groups = NULL, *sg;
6044 const struct cpumask *span = sched_domain_span(sd);
6045 struct cpumask *covered = sched_domains_tmpmask;
6046 struct sd_data *sdd = sd->private;
6047 struct sched_domain *child;
6048 int i;
6049
6050 cpumask_clear(covered);
6051
6052 for_each_cpu(i, span) {
6053 struct cpumask *sg_span;
6054
6055 if (cpumask_test_cpu(i, covered))
6056 continue;
6057
c1174876
PZ
6058 child = *per_cpu_ptr(sdd->sd, i);
6059
6060 /* See the comment near build_group_mask(). */
6061 if (!cpumask_test_cpu(i, sched_domain_span(child)))
6062 continue;
6063
e3589f6c 6064 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
4d78a223 6065 GFP_KERNEL, cpu_to_node(cpu));
e3589f6c
PZ
6066
6067 if (!sg)
6068 goto fail;
6069
6070 sg_span = sched_group_cpus(sg);
e3589f6c
PZ
6071 if (child->child) {
6072 child = child->child;
6073 cpumask_copy(sg_span, sched_domain_span(child));
6074 } else
6075 cpumask_set_cpu(i, sg_span);
6076
6077 cpumask_or(covered, covered, sg_span);
6078
74a5ce20 6079 sg->sgp = *per_cpu_ptr(sdd->sgp, i);
c1174876
PZ
6080 if (atomic_inc_return(&sg->sgp->ref) == 1)
6081 build_group_mask(sd, sg);
6082
c3decf0d
PZ
6083 /*
6084 * Initialize sgp->power such that even if we mess up the
6085 * domains and no possible iteration will get us here, we won't
6086 * die on a /0 trap.
6087 */
6088 sg->sgp->power = SCHED_POWER_SCALE * cpumask_weight(sg_span);
e3589f6c 6089
c1174876
PZ
6090 /*
6091 * Make sure the first group of this domain contains the
6092 * canonical balance cpu. Otherwise the sched_domain iteration
6093 * breaks. See update_sg_lb_stats().
6094 */
74a5ce20 6095 if ((!groups && cpumask_test_cpu(cpu, sg_span)) ||
c1174876 6096 group_balance_cpu(sg) == cpu)
e3589f6c
PZ
6097 groups = sg;
6098
6099 if (!first)
6100 first = sg;
6101 if (last)
6102 last->next = sg;
6103 last = sg;
6104 last->next = first;
6105 }
6106 sd->groups = groups;
6107
6108 return 0;
6109
6110fail:
6111 free_sched_groups(first, 0);
6112
6113 return -ENOMEM;
6114}
6115
dce840a0 6116static int get_group(int cpu, struct sd_data *sdd, struct sched_group **sg)
1da177e4 6117{
dce840a0
PZ
6118 struct sched_domain *sd = *per_cpu_ptr(sdd->sd, cpu);
6119 struct sched_domain *child = sd->child;
1da177e4 6120
dce840a0
PZ
6121 if (child)
6122 cpu = cpumask_first(sched_domain_span(child));
1e9f28fa 6123
9c3f75cb 6124 if (sg) {
dce840a0 6125 *sg = *per_cpu_ptr(sdd->sg, cpu);
9c3f75cb 6126 (*sg)->sgp = *per_cpu_ptr(sdd->sgp, cpu);
e3589f6c 6127 atomic_set(&(*sg)->sgp->ref, 1); /* for claim_allocations */
9c3f75cb 6128 }
dce840a0
PZ
6129
6130 return cpu;
1e9f28fa 6131}
1e9f28fa 6132
01a08546 6133/*
dce840a0
PZ
6134 * build_sched_groups will build a circular linked list of the groups
6135 * covered by the given span, and will set each group's ->cpumask correctly,
6136 * and ->cpu_power to 0.
e3589f6c
PZ
6137 *
6138 * Assumes the sched_domain tree is fully constructed
01a08546 6139 */
e3589f6c
PZ
6140static int
6141build_sched_groups(struct sched_domain *sd, int cpu)
1da177e4 6142{
dce840a0
PZ
6143 struct sched_group *first = NULL, *last = NULL;
6144 struct sd_data *sdd = sd->private;
6145 const struct cpumask *span = sched_domain_span(sd);
f96225fd 6146 struct cpumask *covered;
dce840a0 6147 int i;
9c1cfda2 6148
e3589f6c
PZ
6149 get_group(cpu, sdd, &sd->groups);
6150 atomic_inc(&sd->groups->ref);
6151
6152 if (cpu != cpumask_first(sched_domain_span(sd)))
6153 return 0;
6154
f96225fd
PZ
6155 lockdep_assert_held(&sched_domains_mutex);
6156 covered = sched_domains_tmpmask;
6157
dce840a0 6158 cpumask_clear(covered);
6711cab4 6159
dce840a0
PZ
6160 for_each_cpu(i, span) {
6161 struct sched_group *sg;
6162 int group = get_group(i, sdd, &sg);
6163 int j;
6711cab4 6164
dce840a0
PZ
6165 if (cpumask_test_cpu(i, covered))
6166 continue;
6711cab4 6167
dce840a0 6168 cpumask_clear(sched_group_cpus(sg));
9c3f75cb 6169 sg->sgp->power = 0;
c1174876 6170 cpumask_setall(sched_group_mask(sg));
0601a88d 6171
dce840a0
PZ
6172 for_each_cpu(j, span) {
6173 if (get_group(j, sdd, NULL) != group)
6174 continue;
0601a88d 6175
dce840a0
PZ
6176 cpumask_set_cpu(j, covered);
6177 cpumask_set_cpu(j, sched_group_cpus(sg));
6178 }
0601a88d 6179
dce840a0
PZ
6180 if (!first)
6181 first = sg;
6182 if (last)
6183 last->next = sg;
6184 last = sg;
6185 }
6186 last->next = first;
e3589f6c
PZ
6187
6188 return 0;
0601a88d 6189}
51888ca2 6190
89c4710e
SS
6191/*
6192 * Initialize sched groups cpu_power.
6193 *
6194 * cpu_power indicates the capacity of sched group, which is used while
6195 * distributing the load between different sched groups in a sched domain.
6196 * Typically cpu_power for all the groups in a sched domain will be same unless
6197 * there are asymmetries in the topology. If there are asymmetries, group
6198 * having more cpu_power will pickup more load compared to the group having
6199 * less cpu_power.
89c4710e
SS
6200 */
6201static void init_sched_groups_power(int cpu, struct sched_domain *sd)
6202{
e3589f6c 6203 struct sched_group *sg = sd->groups;
89c4710e 6204
e3589f6c
PZ
6205 WARN_ON(!sd || !sg);
6206
6207 do {
6208 sg->group_weight = cpumask_weight(sched_group_cpus(sg));
6209 sg = sg->next;
6210 } while (sg != sd->groups);
89c4710e 6211
c1174876 6212 if (cpu != group_balance_cpu(sg))
e3589f6c 6213 return;
aae6d3dd 6214
d274cb30 6215 update_group_power(sd, cpu);
69e1e811 6216 atomic_set(&sg->sgp->nr_busy_cpus, sg->group_weight);
89c4710e
SS
6217}
6218
029632fb
PZ
6219int __weak arch_sd_sibling_asym_packing(void)
6220{
6221 return 0*SD_ASYM_PACKING;
89c4710e
SS
6222}
6223
7c16ec58
MT
6224/*
6225 * Initializers for schedule domains
6226 * Non-inlined to reduce accumulated stack pressure in build_sched_domains()
6227 */
6228
a5d8c348
IM
6229#ifdef CONFIG_SCHED_DEBUG
6230# define SD_INIT_NAME(sd, type) sd->name = #type
6231#else
6232# define SD_INIT_NAME(sd, type) do { } while (0)
6233#endif
6234
54ab4ff4
PZ
6235#define SD_INIT_FUNC(type) \
6236static noinline struct sched_domain * \
6237sd_init_##type(struct sched_domain_topology_level *tl, int cpu) \
6238{ \
6239 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu); \
6240 *sd = SD_##type##_INIT; \
54ab4ff4
PZ
6241 SD_INIT_NAME(sd, type); \
6242 sd->private = &tl->data; \
6243 return sd; \
7c16ec58
MT
6244}
6245
6246SD_INIT_FUNC(CPU)
7c16ec58
MT
6247#ifdef CONFIG_SCHED_SMT
6248 SD_INIT_FUNC(SIBLING)
6249#endif
6250#ifdef CONFIG_SCHED_MC
6251 SD_INIT_FUNC(MC)
6252#endif
01a08546
HC
6253#ifdef CONFIG_SCHED_BOOK
6254 SD_INIT_FUNC(BOOK)
6255#endif
7c16ec58 6256
1d3504fc 6257static int default_relax_domain_level = -1;
60495e77 6258int sched_domain_level_max;
1d3504fc
HS
6259
6260static int __init setup_relax_domain_level(char *str)
6261{
30e0e178
LZ
6262 unsigned long val;
6263
6264 val = simple_strtoul(str, NULL, 0);
60495e77 6265 if (val < sched_domain_level_max)
30e0e178
LZ
6266 default_relax_domain_level = val;
6267
1d3504fc
HS
6268 return 1;
6269}
6270__setup("relax_domain_level=", setup_relax_domain_level);
6271
6272static void set_domain_attribute(struct sched_domain *sd,
6273 struct sched_domain_attr *attr)
6274{
6275 int request;
6276
6277 if (!attr || attr->relax_domain_level < 0) {
6278 if (default_relax_domain_level < 0)
6279 return;
6280 else
6281 request = default_relax_domain_level;
6282 } else
6283 request = attr->relax_domain_level;
6284 if (request < sd->level) {
6285 /* turn off idle balance on this domain */
c88d5910 6286 sd->flags &= ~(SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6287 } else {
6288 /* turn on idle balance on this domain */
c88d5910 6289 sd->flags |= (SD_BALANCE_WAKE|SD_BALANCE_NEWIDLE);
1d3504fc
HS
6290 }
6291}
6292
54ab4ff4
PZ
6293static void __sdt_free(const struct cpumask *cpu_map);
6294static int __sdt_alloc(const struct cpumask *cpu_map);
6295
2109b99e
AH
6296static void __free_domain_allocs(struct s_data *d, enum s_alloc what,
6297 const struct cpumask *cpu_map)
6298{
6299 switch (what) {
2109b99e 6300 case sa_rootdomain:
822ff793
PZ
6301 if (!atomic_read(&d->rd->refcount))
6302 free_rootdomain(&d->rd->rcu); /* fall through */
21d42ccf
PZ
6303 case sa_sd:
6304 free_percpu(d->sd); /* fall through */
dce840a0 6305 case sa_sd_storage:
54ab4ff4 6306 __sdt_free(cpu_map); /* fall through */
2109b99e
AH
6307 case sa_none:
6308 break;
6309 }
6310}
3404c8d9 6311
2109b99e
AH
6312static enum s_alloc __visit_domain_allocation_hell(struct s_data *d,
6313 const struct cpumask *cpu_map)
6314{
dce840a0
PZ
6315 memset(d, 0, sizeof(*d));
6316
54ab4ff4
PZ
6317 if (__sdt_alloc(cpu_map))
6318 return sa_sd_storage;
dce840a0
PZ
6319 d->sd = alloc_percpu(struct sched_domain *);
6320 if (!d->sd)
6321 return sa_sd_storage;
2109b99e 6322 d->rd = alloc_rootdomain();
dce840a0 6323 if (!d->rd)
21d42ccf 6324 return sa_sd;
2109b99e
AH
6325 return sa_rootdomain;
6326}
57d885fe 6327
dce840a0
PZ
6328/*
6329 * NULL the sd_data elements we've used to build the sched_domain and
6330 * sched_group structure so that the subsequent __free_domain_allocs()
6331 * will not free the data we're using.
6332 */
6333static void claim_allocations(int cpu, struct sched_domain *sd)
6334{
6335 struct sd_data *sdd = sd->private;
dce840a0
PZ
6336
6337 WARN_ON_ONCE(*per_cpu_ptr(sdd->sd, cpu) != sd);
6338 *per_cpu_ptr(sdd->sd, cpu) = NULL;
6339
e3589f6c 6340 if (atomic_read(&(*per_cpu_ptr(sdd->sg, cpu))->ref))
dce840a0 6341 *per_cpu_ptr(sdd->sg, cpu) = NULL;
e3589f6c
PZ
6342
6343 if (atomic_read(&(*per_cpu_ptr(sdd->sgp, cpu))->ref))
9c3f75cb 6344 *per_cpu_ptr(sdd->sgp, cpu) = NULL;
dce840a0
PZ
6345}
6346
2c402dc3
PZ
6347#ifdef CONFIG_SCHED_SMT
6348static const struct cpumask *cpu_smt_mask(int cpu)
7f4588f3 6349{
2c402dc3 6350 return topology_thread_cpumask(cpu);
3bd65a80 6351}
2c402dc3 6352#endif
7f4588f3 6353
d069b916
PZ
6354/*
6355 * Topology list, bottom-up.
6356 */
2c402dc3 6357static struct sched_domain_topology_level default_topology[] = {
d069b916
PZ
6358#ifdef CONFIG_SCHED_SMT
6359 { sd_init_SIBLING, cpu_smt_mask, },
01a08546 6360#endif
1e9f28fa 6361#ifdef CONFIG_SCHED_MC
2c402dc3 6362 { sd_init_MC, cpu_coregroup_mask, },
1e9f28fa 6363#endif
d069b916
PZ
6364#ifdef CONFIG_SCHED_BOOK
6365 { sd_init_BOOK, cpu_book_mask, },
6366#endif
6367 { sd_init_CPU, cpu_cpu_mask, },
eb7a74e6
PZ
6368 { NULL, },
6369};
6370
6371static struct sched_domain_topology_level *sched_domain_topology = default_topology;
6372
cb83b629
PZ
6373#ifdef CONFIG_NUMA
6374
6375static int sched_domains_numa_levels;
6376static int sched_domains_numa_scale;
6377static int *sched_domains_numa_distance;
6378static struct cpumask ***sched_domains_numa_masks;
6379static int sched_domains_curr_level;
6380
cb83b629
PZ
6381static inline int sd_local_flags(int level)
6382{
10717dcd 6383 if (sched_domains_numa_distance[level] > RECLAIM_DISTANCE)
cb83b629
PZ
6384 return 0;
6385
6386 return SD_BALANCE_EXEC | SD_BALANCE_FORK | SD_WAKE_AFFINE;
6387}
6388
6389static struct sched_domain *
6390sd_numa_init(struct sched_domain_topology_level *tl, int cpu)
6391{
6392 struct sched_domain *sd = *per_cpu_ptr(tl->data.sd, cpu);
6393 int level = tl->numa_level;
6394 int sd_weight = cpumask_weight(
6395 sched_domains_numa_masks[level][cpu_to_node(cpu)]);
6396
6397 *sd = (struct sched_domain){
6398 .min_interval = sd_weight,
6399 .max_interval = 2*sd_weight,
6400 .busy_factor = 32,
870a0bb5 6401 .imbalance_pct = 125,
cb83b629
PZ
6402 .cache_nice_tries = 2,
6403 .busy_idx = 3,
6404 .idle_idx = 2,
6405 .newidle_idx = 0,
6406 .wake_idx = 0,
6407 .forkexec_idx = 0,
6408
6409 .flags = 1*SD_LOAD_BALANCE
6410 | 1*SD_BALANCE_NEWIDLE
6411 | 0*SD_BALANCE_EXEC
6412 | 0*SD_BALANCE_FORK
6413 | 0*SD_BALANCE_WAKE
6414 | 0*SD_WAKE_AFFINE
6415 | 0*SD_PREFER_LOCAL
6416 | 0*SD_SHARE_CPUPOWER
cb83b629
PZ
6417 | 0*SD_SHARE_PKG_RESOURCES
6418 | 1*SD_SERIALIZE
6419 | 0*SD_PREFER_SIBLING
6420 | sd_local_flags(level)
6421 ,
6422 .last_balance = jiffies,
6423 .balance_interval = sd_weight,
6424 };
6425 SD_INIT_NAME(sd, NUMA);
6426 sd->private = &tl->data;
6427
6428 /*
6429 * Ugly hack to pass state to sd_numa_mask()...
6430 */
6431 sched_domains_curr_level = tl->numa_level;
6432
6433 return sd;
6434}
6435
6436static const struct cpumask *sd_numa_mask(int cpu)
6437{
6438 return sched_domains_numa_masks[sched_domains_curr_level][cpu_to_node(cpu)];
6439}
6440
6441static void sched_init_numa(void)
6442{
6443 int next_distance, curr_distance = node_distance(0, 0);
6444 struct sched_domain_topology_level *tl;
6445 int level = 0;
6446 int i, j, k;
6447
6448 sched_domains_numa_scale = curr_distance;
6449 sched_domains_numa_distance = kzalloc(sizeof(int) * nr_node_ids, GFP_KERNEL);
6450 if (!sched_domains_numa_distance)
6451 return;
6452
6453 /*
6454 * O(nr_nodes^2) deduplicating selection sort -- in order to find the
6455 * unique distances in the node_distance() table.
6456 *
6457 * Assumes node_distance(0,j) includes all distances in
6458 * node_distance(i,j) in order to avoid cubic time.
6459 *
6460 * XXX: could be optimized to O(n log n) by using sort()
6461 */
6462 next_distance = curr_distance;
6463 for (i = 0; i < nr_node_ids; i++) {
6464 for (j = 0; j < nr_node_ids; j++) {
6465 int distance = node_distance(0, j);
6466 if (distance > curr_distance &&
6467 (distance < next_distance ||
6468 next_distance == curr_distance))
6469 next_distance = distance;
6470 }
6471 if (next_distance != curr_distance) {
6472 sched_domains_numa_distance[level++] = next_distance;
6473 sched_domains_numa_levels = level;
6474 curr_distance = next_distance;
6475 } else break;
6476 }
6477 /*
6478 * 'level' contains the number of unique distances, excluding the
6479 * identity distance node_distance(i,i).
6480 *
6481 * The sched_domains_nume_distance[] array includes the actual distance
6482 * numbers.
6483 */
6484
6485 sched_domains_numa_masks = kzalloc(sizeof(void *) * level, GFP_KERNEL);
6486 if (!sched_domains_numa_masks)
6487 return;
6488
6489 /*
6490 * Now for each level, construct a mask per node which contains all
6491 * cpus of nodes that are that many hops away from us.
6492 */
6493 for (i = 0; i < level; i++) {
6494 sched_domains_numa_masks[i] =
6495 kzalloc(nr_node_ids * sizeof(void *), GFP_KERNEL);
6496 if (!sched_domains_numa_masks[i])
6497 return;
6498
6499 for (j = 0; j < nr_node_ids; j++) {
2ea45800 6500 struct cpumask *mask = kzalloc(cpumask_size(), GFP_KERNEL);
cb83b629
PZ
6501 if (!mask)
6502 return;
6503
6504 sched_domains_numa_masks[i][j] = mask;
6505
6506 for (k = 0; k < nr_node_ids; k++) {
dd7d8634 6507 if (node_distance(j, k) > sched_domains_numa_distance[i])
cb83b629
PZ
6508 continue;
6509
6510 cpumask_or(mask, mask, cpumask_of_node(k));
6511 }
6512 }
6513 }
6514
6515 tl = kzalloc((ARRAY_SIZE(default_topology) + level) *
6516 sizeof(struct sched_domain_topology_level), GFP_KERNEL);
6517 if (!tl)
6518 return;
6519
6520 /*
6521 * Copy the default topology bits..
6522 */
6523 for (i = 0; default_topology[i].init; i++)
6524 tl[i] = default_topology[i];
6525
6526 /*
6527 * .. and append 'j' levels of NUMA goodness.
6528 */
6529 for (j = 0; j < level; i++, j++) {
6530 tl[i] = (struct sched_domain_topology_level){
6531 .init = sd_numa_init,
6532 .mask = sd_numa_mask,
6533 .flags = SDTL_OVERLAP,
6534 .numa_level = j,
6535 };
6536 }
6537
6538 sched_domain_topology = tl;
6539}
6540#else
6541static inline void sched_init_numa(void)
6542{
6543}
6544#endif /* CONFIG_NUMA */
6545
54ab4ff4
PZ
6546static int __sdt_alloc(const struct cpumask *cpu_map)
6547{
6548 struct sched_domain_topology_level *tl;
6549 int j;
6550
6551 for (tl = sched_domain_topology; tl->init; tl++) {
6552 struct sd_data *sdd = &tl->data;
6553
6554 sdd->sd = alloc_percpu(struct sched_domain *);
6555 if (!sdd->sd)
6556 return -ENOMEM;
6557
6558 sdd->sg = alloc_percpu(struct sched_group *);
6559 if (!sdd->sg)
6560 return -ENOMEM;
6561
9c3f75cb
PZ
6562 sdd->sgp = alloc_percpu(struct sched_group_power *);
6563 if (!sdd->sgp)
6564 return -ENOMEM;
6565
54ab4ff4
PZ
6566 for_each_cpu(j, cpu_map) {
6567 struct sched_domain *sd;
6568 struct sched_group *sg;
9c3f75cb 6569 struct sched_group_power *sgp;
54ab4ff4
PZ
6570
6571 sd = kzalloc_node(sizeof(struct sched_domain) + cpumask_size(),
6572 GFP_KERNEL, cpu_to_node(j));
6573 if (!sd)
6574 return -ENOMEM;
6575
6576 *per_cpu_ptr(sdd->sd, j) = sd;
6577
6578 sg = kzalloc_node(sizeof(struct sched_group) + cpumask_size(),
6579 GFP_KERNEL, cpu_to_node(j));
6580 if (!sg)
6581 return -ENOMEM;
6582
30b4e9eb
IM
6583 sg->next = sg;
6584
54ab4ff4 6585 *per_cpu_ptr(sdd->sg, j) = sg;
9c3f75cb 6586
c1174876 6587 sgp = kzalloc_node(sizeof(struct sched_group_power) + cpumask_size(),
9c3f75cb
PZ
6588 GFP_KERNEL, cpu_to_node(j));
6589 if (!sgp)
6590 return -ENOMEM;
6591
6592 *per_cpu_ptr(sdd->sgp, j) = sgp;
54ab4ff4
PZ
6593 }
6594 }
6595
6596 return 0;
6597}
6598
6599static void __sdt_free(const struct cpumask *cpu_map)
6600{
6601 struct sched_domain_topology_level *tl;
6602 int j;
6603
6604 for (tl = sched_domain_topology; tl->init; tl++) {
6605 struct sd_data *sdd = &tl->data;
6606
6607 for_each_cpu(j, cpu_map) {
fb2cf2c6 6608 struct sched_domain *sd;
6609
6610 if (sdd->sd) {
6611 sd = *per_cpu_ptr(sdd->sd, j);
6612 if (sd && (sd->flags & SD_OVERLAP))
6613 free_sched_groups(sd->groups, 0);
6614 kfree(*per_cpu_ptr(sdd->sd, j));
6615 }
6616
6617 if (sdd->sg)
6618 kfree(*per_cpu_ptr(sdd->sg, j));
6619 if (sdd->sgp)
6620 kfree(*per_cpu_ptr(sdd->sgp, j));
54ab4ff4
PZ
6621 }
6622 free_percpu(sdd->sd);
fb2cf2c6 6623 sdd->sd = NULL;
54ab4ff4 6624 free_percpu(sdd->sg);
fb2cf2c6 6625 sdd->sg = NULL;
9c3f75cb 6626 free_percpu(sdd->sgp);
fb2cf2c6 6627 sdd->sgp = NULL;
54ab4ff4
PZ
6628 }
6629}
6630
2c402dc3
PZ
6631struct sched_domain *build_sched_domain(struct sched_domain_topology_level *tl,
6632 struct s_data *d, const struct cpumask *cpu_map,
d069b916 6633 struct sched_domain_attr *attr, struct sched_domain *child,
2c402dc3
PZ
6634 int cpu)
6635{
54ab4ff4 6636 struct sched_domain *sd = tl->init(tl, cpu);
2c402dc3 6637 if (!sd)
d069b916 6638 return child;
2c402dc3
PZ
6639
6640 set_domain_attribute(sd, attr);
6641 cpumask_and(sched_domain_span(sd), cpu_map, tl->mask(cpu));
60495e77
PZ
6642 if (child) {
6643 sd->level = child->level + 1;
6644 sched_domain_level_max = max(sched_domain_level_max, sd->level);
d069b916 6645 child->parent = sd;
60495e77 6646 }
d069b916 6647 sd->child = child;
2c402dc3
PZ
6648
6649 return sd;
6650}
6651
2109b99e
AH
6652/*
6653 * Build sched domains for a given set of cpus and attach the sched domains
6654 * to the individual cpus
6655 */
dce840a0
PZ
6656static int build_sched_domains(const struct cpumask *cpu_map,
6657 struct sched_domain_attr *attr)
2109b99e
AH
6658{
6659 enum s_alloc alloc_state = sa_none;
dce840a0 6660 struct sched_domain *sd;
2109b99e 6661 struct s_data d;
822ff793 6662 int i, ret = -ENOMEM;
9c1cfda2 6663
2109b99e
AH
6664 alloc_state = __visit_domain_allocation_hell(&d, cpu_map);
6665 if (alloc_state != sa_rootdomain)
6666 goto error;
9c1cfda2 6667
dce840a0 6668 /* Set up domains for cpus specified by the cpu_map. */
abcd083a 6669 for_each_cpu(i, cpu_map) {
eb7a74e6
PZ
6670 struct sched_domain_topology_level *tl;
6671
3bd65a80 6672 sd = NULL;
e3589f6c 6673 for (tl = sched_domain_topology; tl->init; tl++) {
2c402dc3 6674 sd = build_sched_domain(tl, &d, cpu_map, attr, sd, i);
e3589f6c
PZ
6675 if (tl->flags & SDTL_OVERLAP || sched_feat(FORCE_SD_OVERLAP))
6676 sd->flags |= SD_OVERLAP;
d110235d
PZ
6677 if (cpumask_equal(cpu_map, sched_domain_span(sd)))
6678 break;
e3589f6c 6679 }
d274cb30 6680
d069b916
PZ
6681 while (sd->child)
6682 sd = sd->child;
6683
21d42ccf 6684 *per_cpu_ptr(d.sd, i) = sd;
dce840a0
PZ
6685 }
6686
6687 /* Build the groups for the domains */
6688 for_each_cpu(i, cpu_map) {
6689 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6690 sd->span_weight = cpumask_weight(sched_domain_span(sd));
e3589f6c
PZ
6691 if (sd->flags & SD_OVERLAP) {
6692 if (build_overlap_sched_groups(sd, i))
6693 goto error;
6694 } else {
6695 if (build_sched_groups(sd, i))
6696 goto error;
6697 }
1cf51902 6698 }
a06dadbe 6699 }
9c1cfda2 6700
1da177e4 6701 /* Calculate CPU power for physical packages and nodes */
a9c9a9b6
PZ
6702 for (i = nr_cpumask_bits-1; i >= 0; i--) {
6703 if (!cpumask_test_cpu(i, cpu_map))
6704 continue;
9c1cfda2 6705
dce840a0
PZ
6706 for (sd = *per_cpu_ptr(d.sd, i); sd; sd = sd->parent) {
6707 claim_allocations(i, sd);
cd4ea6ae 6708 init_sched_groups_power(i, sd);
dce840a0 6709 }
f712c0c7 6710 }
9c1cfda2 6711
1da177e4 6712 /* Attach the domains */
dce840a0 6713 rcu_read_lock();
abcd083a 6714 for_each_cpu(i, cpu_map) {
21d42ccf 6715 sd = *per_cpu_ptr(d.sd, i);
49a02c51 6716 cpu_attach_domain(sd, d.rd, i);
1da177e4 6717 }
dce840a0 6718 rcu_read_unlock();
51888ca2 6719
822ff793 6720 ret = 0;
51888ca2 6721error:
2109b99e 6722 __free_domain_allocs(&d, alloc_state, cpu_map);
822ff793 6723 return ret;
1da177e4 6724}
029190c5 6725
acc3f5d7 6726static cpumask_var_t *doms_cur; /* current sched domains */
029190c5 6727static int ndoms_cur; /* number of sched domains in 'doms_cur' */
4285f594
IM
6728static struct sched_domain_attr *dattr_cur;
6729 /* attribues of custom domains in 'doms_cur' */
029190c5
PJ
6730
6731/*
6732 * Special case: If a kmalloc of a doms_cur partition (array of
4212823f
RR
6733 * cpumask) fails, then fallback to a single sched domain,
6734 * as determined by the single cpumask fallback_doms.
029190c5 6735 */
4212823f 6736static cpumask_var_t fallback_doms;
029190c5 6737
ee79d1bd
HC
6738/*
6739 * arch_update_cpu_topology lets virtualized architectures update the
6740 * cpu core maps. It is supposed to return 1 if the topology changed
6741 * or 0 if it stayed the same.
6742 */
6743int __attribute__((weak)) arch_update_cpu_topology(void)
22e52b07 6744{
ee79d1bd 6745 return 0;
22e52b07
HC
6746}
6747
acc3f5d7
RR
6748cpumask_var_t *alloc_sched_domains(unsigned int ndoms)
6749{
6750 int i;
6751 cpumask_var_t *doms;
6752
6753 doms = kmalloc(sizeof(*doms) * ndoms, GFP_KERNEL);
6754 if (!doms)
6755 return NULL;
6756 for (i = 0; i < ndoms; i++) {
6757 if (!alloc_cpumask_var(&doms[i], GFP_KERNEL)) {
6758 free_sched_domains(doms, i);
6759 return NULL;
6760 }
6761 }
6762 return doms;
6763}
6764
6765void free_sched_domains(cpumask_var_t doms[], unsigned int ndoms)
6766{
6767 unsigned int i;
6768 for (i = 0; i < ndoms; i++)
6769 free_cpumask_var(doms[i]);
6770 kfree(doms);
6771}
6772
1a20ff27 6773/*
41a2d6cf 6774 * Set up scheduler domains and groups. Callers must hold the hotplug lock.
029190c5
PJ
6775 * For now this just excludes isolated cpus, but could be used to
6776 * exclude other special cases in the future.
1a20ff27 6777 */
c4a8849a 6778static int init_sched_domains(const struct cpumask *cpu_map)
1a20ff27 6779{
7378547f
MM
6780 int err;
6781
22e52b07 6782 arch_update_cpu_topology();
029190c5 6783 ndoms_cur = 1;
acc3f5d7 6784 doms_cur = alloc_sched_domains(ndoms_cur);
029190c5 6785 if (!doms_cur)
acc3f5d7
RR
6786 doms_cur = &fallback_doms;
6787 cpumask_andnot(doms_cur[0], cpu_map, cpu_isolated_map);
dce840a0 6788 err = build_sched_domains(doms_cur[0], NULL);
6382bc90 6789 register_sched_domain_sysctl();
7378547f
MM
6790
6791 return err;
1a20ff27
DG
6792}
6793
1a20ff27
DG
6794/*
6795 * Detach sched domains from a group of cpus specified in cpu_map
6796 * These cpus will now be attached to the NULL domain
6797 */
96f874e2 6798static void detach_destroy_domains(const struct cpumask *cpu_map)
1a20ff27
DG
6799{
6800 int i;
6801
dce840a0 6802 rcu_read_lock();
abcd083a 6803 for_each_cpu(i, cpu_map)
57d885fe 6804 cpu_attach_domain(NULL, &def_root_domain, i);
dce840a0 6805 rcu_read_unlock();
1a20ff27
DG
6806}
6807
1d3504fc
HS
6808/* handle null as "default" */
6809static int dattrs_equal(struct sched_domain_attr *cur, int idx_cur,
6810 struct sched_domain_attr *new, int idx_new)
6811{
6812 struct sched_domain_attr tmp;
6813
6814 /* fast path */
6815 if (!new && !cur)
6816 return 1;
6817
6818 tmp = SD_ATTR_INIT;
6819 return !memcmp(cur ? (cur + idx_cur) : &tmp,
6820 new ? (new + idx_new) : &tmp,
6821 sizeof(struct sched_domain_attr));
6822}
6823
029190c5
PJ
6824/*
6825 * Partition sched domains as specified by the 'ndoms_new'
41a2d6cf 6826 * cpumasks in the array doms_new[] of cpumasks. This compares
029190c5
PJ
6827 * doms_new[] to the current sched domain partitioning, doms_cur[].
6828 * It destroys each deleted domain and builds each new domain.
6829 *
acc3f5d7 6830 * 'doms_new' is an array of cpumask_var_t's of length 'ndoms_new'.
41a2d6cf
IM
6831 * The masks don't intersect (don't overlap.) We should setup one
6832 * sched domain for each mask. CPUs not in any of the cpumasks will
6833 * not be load balanced. If the same cpumask appears both in the
029190c5
PJ
6834 * current 'doms_cur' domains and in the new 'doms_new', we can leave
6835 * it as it is.
6836 *
acc3f5d7
RR
6837 * The passed in 'doms_new' should be allocated using
6838 * alloc_sched_domains. This routine takes ownership of it and will
6839 * free_sched_domains it when done with it. If the caller failed the
6840 * alloc call, then it can pass in doms_new == NULL && ndoms_new == 1,
6841 * and partition_sched_domains() will fallback to the single partition
6842 * 'fallback_doms', it also forces the domains to be rebuilt.
029190c5 6843 *
96f874e2 6844 * If doms_new == NULL it will be replaced with cpu_online_mask.
700018e0
LZ
6845 * ndoms_new == 0 is a special case for destroying existing domains,
6846 * and it will not create the default domain.
dfb512ec 6847 *
029190c5
PJ
6848 * Call with hotplug lock held
6849 */
acc3f5d7 6850void partition_sched_domains(int ndoms_new, cpumask_var_t doms_new[],
1d3504fc 6851 struct sched_domain_attr *dattr_new)
029190c5 6852{
dfb512ec 6853 int i, j, n;
d65bd5ec 6854 int new_topology;
029190c5 6855
712555ee 6856 mutex_lock(&sched_domains_mutex);
a1835615 6857
7378547f
MM
6858 /* always unregister in case we don't destroy any domains */
6859 unregister_sched_domain_sysctl();
6860
d65bd5ec
HC
6861 /* Let architecture update cpu core mappings. */
6862 new_topology = arch_update_cpu_topology();
6863
dfb512ec 6864 n = doms_new ? ndoms_new : 0;
029190c5
PJ
6865
6866 /* Destroy deleted domains */
6867 for (i = 0; i < ndoms_cur; i++) {
d65bd5ec 6868 for (j = 0; j < n && !new_topology; j++) {
acc3f5d7 6869 if (cpumask_equal(doms_cur[i], doms_new[j])
1d3504fc 6870 && dattrs_equal(dattr_cur, i, dattr_new, j))
029190c5
PJ
6871 goto match1;
6872 }
6873 /* no match - a current sched domain not in new doms_new[] */
acc3f5d7 6874 detach_destroy_domains(doms_cur[i]);
029190c5
PJ
6875match1:
6876 ;
6877 }
6878
e761b772
MK
6879 if (doms_new == NULL) {
6880 ndoms_cur = 0;
acc3f5d7 6881 doms_new = &fallback_doms;
6ad4c188 6882 cpumask_andnot(doms_new[0], cpu_active_mask, cpu_isolated_map);
faa2f98f 6883 WARN_ON_ONCE(dattr_new);
e761b772
MK
6884 }
6885
029190c5
PJ
6886 /* Build new domains */
6887 for (i = 0; i < ndoms_new; i++) {
d65bd5ec 6888 for (j = 0; j < ndoms_cur && !new_topology; j++) {
acc3f5d7 6889 if (cpumask_equal(doms_new[i], doms_cur[j])
1d3504fc 6890 && dattrs_equal(dattr_new, i, dattr_cur, j))
029190c5
PJ
6891 goto match2;
6892 }
6893 /* no match - add a new doms_new */
dce840a0 6894 build_sched_domains(doms_new[i], dattr_new ? dattr_new + i : NULL);
029190c5
PJ
6895match2:
6896 ;
6897 }
6898
6899 /* Remember the new sched domains */
acc3f5d7
RR
6900 if (doms_cur != &fallback_doms)
6901 free_sched_domains(doms_cur, ndoms_cur);
1d3504fc 6902 kfree(dattr_cur); /* kfree(NULL) is safe */
029190c5 6903 doms_cur = doms_new;
1d3504fc 6904 dattr_cur = dattr_new;
029190c5 6905 ndoms_cur = ndoms_new;
7378547f
MM
6906
6907 register_sched_domain_sysctl();
a1835615 6908
712555ee 6909 mutex_unlock(&sched_domains_mutex);
029190c5
PJ
6910}
6911
1da177e4 6912/*
3a101d05
TH
6913 * Update cpusets according to cpu_active mask. If cpusets are
6914 * disabled, cpuset_update_active_cpus() becomes a simple wrapper
6915 * around partition_sched_domains().
1da177e4 6916 */
0b2e918a
TH
6917static int cpuset_cpu_active(struct notifier_block *nfb, unsigned long action,
6918 void *hcpu)
e761b772 6919{
3a101d05 6920 switch (action & ~CPU_TASKS_FROZEN) {
e761b772 6921 case CPU_ONLINE:
6ad4c188 6922 case CPU_DOWN_FAILED:
3a101d05 6923 cpuset_update_active_cpus();
e761b772 6924 return NOTIFY_OK;
3a101d05
TH
6925 default:
6926 return NOTIFY_DONE;
6927 }
6928}
e761b772 6929
0b2e918a
TH
6930static int cpuset_cpu_inactive(struct notifier_block *nfb, unsigned long action,
6931 void *hcpu)
3a101d05
TH
6932{
6933 switch (action & ~CPU_TASKS_FROZEN) {
6934 case CPU_DOWN_PREPARE:
6935 cpuset_update_active_cpus();
6936 return NOTIFY_OK;
e761b772
MK
6937 default:
6938 return NOTIFY_DONE;
6939 }
6940}
e761b772 6941
1da177e4
LT
6942void __init sched_init_smp(void)
6943{
dcc30a35
RR
6944 cpumask_var_t non_isolated_cpus;
6945
6946 alloc_cpumask_var(&non_isolated_cpus, GFP_KERNEL);
cb5fd13f 6947 alloc_cpumask_var(&fallback_doms, GFP_KERNEL);
5c1e1767 6948
cb83b629
PZ
6949 sched_init_numa();
6950
95402b38 6951 get_online_cpus();
712555ee 6952 mutex_lock(&sched_domains_mutex);
c4a8849a 6953 init_sched_domains(cpu_active_mask);
dcc30a35
RR
6954 cpumask_andnot(non_isolated_cpus, cpu_possible_mask, cpu_isolated_map);
6955 if (cpumask_empty(non_isolated_cpus))
6956 cpumask_set_cpu(smp_processor_id(), non_isolated_cpus);
712555ee 6957 mutex_unlock(&sched_domains_mutex);
95402b38 6958 put_online_cpus();
e761b772 6959
3a101d05
TH
6960 hotcpu_notifier(cpuset_cpu_active, CPU_PRI_CPUSET_ACTIVE);
6961 hotcpu_notifier(cpuset_cpu_inactive, CPU_PRI_CPUSET_INACTIVE);
e761b772
MK
6962
6963 /* RT runtime code needs to handle some hotplug events */
6964 hotcpu_notifier(update_runtime, 0);
6965
b328ca18 6966 init_hrtick();
5c1e1767
NP
6967
6968 /* Move init over to a non-isolated CPU */
dcc30a35 6969 if (set_cpus_allowed_ptr(current, non_isolated_cpus) < 0)
5c1e1767 6970 BUG();
19978ca6 6971 sched_init_granularity();
dcc30a35 6972 free_cpumask_var(non_isolated_cpus);
4212823f 6973
0e3900e6 6974 init_sched_rt_class();
1da177e4
LT
6975}
6976#else
6977void __init sched_init_smp(void)
6978{
19978ca6 6979 sched_init_granularity();
1da177e4
LT
6980}
6981#endif /* CONFIG_SMP */
6982
cd1bb94b
AB
6983const_debug unsigned int sysctl_timer_migration = 1;
6984
1da177e4
LT
6985int in_sched_functions(unsigned long addr)
6986{
1da177e4
LT
6987 return in_lock_functions(addr) ||
6988 (addr >= (unsigned long)__sched_text_start
6989 && addr < (unsigned long)__sched_text_end);
6990}
6991
029632fb
PZ
6992#ifdef CONFIG_CGROUP_SCHED
6993struct task_group root_task_group;
052f1dc7 6994#endif
6f505b16 6995
029632fb 6996DECLARE_PER_CPU(cpumask_var_t, load_balance_tmpmask);
6f505b16 6997
1da177e4
LT
6998void __init sched_init(void)
6999{
dd41f596 7000 int i, j;
434d53b0
MT
7001 unsigned long alloc_size = 0, ptr;
7002
7003#ifdef CONFIG_FAIR_GROUP_SCHED
7004 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
7005#endif
7006#ifdef CONFIG_RT_GROUP_SCHED
7007 alloc_size += 2 * nr_cpu_ids * sizeof(void **);
eff766a6 7008#endif
df7c8e84 7009#ifdef CONFIG_CPUMASK_OFFSTACK
8c083f08 7010 alloc_size += num_possible_cpus() * cpumask_size();
434d53b0 7011#endif
434d53b0 7012 if (alloc_size) {
36b7b6d4 7013 ptr = (unsigned long)kzalloc(alloc_size, GFP_NOWAIT);
434d53b0
MT
7014
7015#ifdef CONFIG_FAIR_GROUP_SCHED
07e06b01 7016 root_task_group.se = (struct sched_entity **)ptr;
434d53b0
MT
7017 ptr += nr_cpu_ids * sizeof(void **);
7018
07e06b01 7019 root_task_group.cfs_rq = (struct cfs_rq **)ptr;
434d53b0 7020 ptr += nr_cpu_ids * sizeof(void **);
eff766a6 7021
6d6bc0ad 7022#endif /* CONFIG_FAIR_GROUP_SCHED */
434d53b0 7023#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7024 root_task_group.rt_se = (struct sched_rt_entity **)ptr;
434d53b0
MT
7025 ptr += nr_cpu_ids * sizeof(void **);
7026
07e06b01 7027 root_task_group.rt_rq = (struct rt_rq **)ptr;
eff766a6
PZ
7028 ptr += nr_cpu_ids * sizeof(void **);
7029
6d6bc0ad 7030#endif /* CONFIG_RT_GROUP_SCHED */
df7c8e84
RR
7031#ifdef CONFIG_CPUMASK_OFFSTACK
7032 for_each_possible_cpu(i) {
7033 per_cpu(load_balance_tmpmask, i) = (void *)ptr;
7034 ptr += cpumask_size();
7035 }
7036#endif /* CONFIG_CPUMASK_OFFSTACK */
434d53b0 7037 }
dd41f596 7038
57d885fe
GH
7039#ifdef CONFIG_SMP
7040 init_defrootdomain();
7041#endif
7042
d0b27fa7
PZ
7043 init_rt_bandwidth(&def_rt_bandwidth,
7044 global_rt_period(), global_rt_runtime());
7045
7046#ifdef CONFIG_RT_GROUP_SCHED
07e06b01 7047 init_rt_bandwidth(&root_task_group.rt_bandwidth,
d0b27fa7 7048 global_rt_period(), global_rt_runtime());
6d6bc0ad 7049#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7 7050
7c941438 7051#ifdef CONFIG_CGROUP_SCHED
07e06b01
YZ
7052 list_add(&root_task_group.list, &task_groups);
7053 INIT_LIST_HEAD(&root_task_group.children);
f4d6f6c2 7054 INIT_LIST_HEAD(&root_task_group.siblings);
5091faa4 7055 autogroup_init(&init_task);
54c707e9 7056
7c941438 7057#endif /* CONFIG_CGROUP_SCHED */
6f505b16 7058
54c707e9
GC
7059#ifdef CONFIG_CGROUP_CPUACCT
7060 root_cpuacct.cpustat = &kernel_cpustat;
7061 root_cpuacct.cpuusage = alloc_percpu(u64);
7062 /* Too early, not expected to fail */
7063 BUG_ON(!root_cpuacct.cpuusage);
7064#endif
0a945022 7065 for_each_possible_cpu(i) {
70b97a7f 7066 struct rq *rq;
1da177e4
LT
7067
7068 rq = cpu_rq(i);
05fa785c 7069 raw_spin_lock_init(&rq->lock);
7897986b 7070 rq->nr_running = 0;
dce48a84
TG
7071 rq->calc_load_active = 0;
7072 rq->calc_load_update = jiffies + LOAD_FREQ;
acb5a9ba 7073 init_cfs_rq(&rq->cfs);
6f505b16 7074 init_rt_rq(&rq->rt, rq);
dd41f596 7075#ifdef CONFIG_FAIR_GROUP_SCHED
029632fb 7076 root_task_group.shares = ROOT_TASK_GROUP_LOAD;
6f505b16 7077 INIT_LIST_HEAD(&rq->leaf_cfs_rq_list);
354d60c2 7078 /*
07e06b01 7079 * How much cpu bandwidth does root_task_group get?
354d60c2
DG
7080 *
7081 * In case of task-groups formed thr' the cgroup filesystem, it
7082 * gets 100% of the cpu resources in the system. This overall
7083 * system cpu resource is divided among the tasks of
07e06b01 7084 * root_task_group and its child task-groups in a fair manner,
354d60c2
DG
7085 * based on each entity's (task or task-group's) weight
7086 * (se->load.weight).
7087 *
07e06b01 7088 * In other words, if root_task_group has 10 tasks of weight
354d60c2
DG
7089 * 1024) and two child groups A0 and A1 (of weight 1024 each),
7090 * then A0's share of the cpu resource is:
7091 *
0d905bca 7092 * A0's bandwidth = 1024 / (10*1024 + 1024 + 1024) = 8.33%
354d60c2 7093 *
07e06b01
YZ
7094 * We achieve this by letting root_task_group's tasks sit
7095 * directly in rq->cfs (i.e root_task_group->se[] = NULL).
354d60c2 7096 */
ab84d31e 7097 init_cfs_bandwidth(&root_task_group.cfs_bandwidth);
07e06b01 7098 init_tg_cfs_entry(&root_task_group, &rq->cfs, NULL, i, NULL);
354d60c2
DG
7099#endif /* CONFIG_FAIR_GROUP_SCHED */
7100
7101 rq->rt.rt_runtime = def_rt_bandwidth.rt_runtime;
052f1dc7 7102#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 7103 INIT_LIST_HEAD(&rq->leaf_rt_rq_list);
07e06b01 7104 init_tg_rt_entry(&root_task_group, &rq->rt, NULL, i, NULL);
dd41f596 7105#endif
1da177e4 7106
dd41f596
IM
7107 for (j = 0; j < CPU_LOAD_IDX_MAX; j++)
7108 rq->cpu_load[j] = 0;
fdf3e95d
VP
7109
7110 rq->last_load_update_tick = jiffies;
7111
1da177e4 7112#ifdef CONFIG_SMP
41c7ce9a 7113 rq->sd = NULL;
57d885fe 7114 rq->rd = NULL;
1399fa78 7115 rq->cpu_power = SCHED_POWER_SCALE;
3f029d3c 7116 rq->post_schedule = 0;
1da177e4 7117 rq->active_balance = 0;
dd41f596 7118 rq->next_balance = jiffies;
1da177e4 7119 rq->push_cpu = 0;
0a2966b4 7120 rq->cpu = i;
1f11eb6a 7121 rq->online = 0;
eae0c9df
MG
7122 rq->idle_stamp = 0;
7123 rq->avg_idle = 2*sysctl_sched_migration_cost;
367456c7
PZ
7124
7125 INIT_LIST_HEAD(&rq->cfs_tasks);
7126
dc938520 7127 rq_attach_root(rq, &def_root_domain);
83cd4fe2 7128#ifdef CONFIG_NO_HZ
1c792db7 7129 rq->nohz_flags = 0;
83cd4fe2 7130#endif
1da177e4 7131#endif
8f4d37ec 7132 init_rq_hrtick(rq);
1da177e4 7133 atomic_set(&rq->nr_iowait, 0);
1da177e4
LT
7134 }
7135
2dd73a4f 7136 set_load_weight(&init_task);
b50f60ce 7137
e107be36
AK
7138#ifdef CONFIG_PREEMPT_NOTIFIERS
7139 INIT_HLIST_HEAD(&init_task.preempt_notifiers);
7140#endif
7141
b50f60ce 7142#ifdef CONFIG_RT_MUTEXES
732375c6 7143 plist_head_init(&init_task.pi_waiters);
b50f60ce
HC
7144#endif
7145
1da177e4
LT
7146 /*
7147 * The boot idle thread does lazy MMU switching as well:
7148 */
7149 atomic_inc(&init_mm.mm_count);
7150 enter_lazy_tlb(&init_mm, current);
7151
7152 /*
7153 * Make us the idle thread. Technically, schedule() should not be
7154 * called from this thread, however somewhere below it might be,
7155 * but because we are the idle thread, we just pick up running again
7156 * when this runqueue becomes "idle".
7157 */
7158 init_idle(current, smp_processor_id());
dce48a84
TG
7159
7160 calc_load_update = jiffies + LOAD_FREQ;
7161
dd41f596
IM
7162 /*
7163 * During early bootup we pretend to be a normal task:
7164 */
7165 current->sched_class = &fair_sched_class;
6892b75e 7166
bf4d83f6 7167#ifdef CONFIG_SMP
4cb98839 7168 zalloc_cpumask_var(&sched_domains_tmpmask, GFP_NOWAIT);
bdddd296
RR
7169 /* May be allocated at isolcpus cmdline parse time */
7170 if (cpu_isolated_map == NULL)
7171 zalloc_cpumask_var(&cpu_isolated_map, GFP_NOWAIT);
29d5e047 7172 idle_thread_set_boot_cpu();
029632fb
PZ
7173#endif
7174 init_sched_fair_class();
6a7b3dc3 7175
6892b75e 7176 scheduler_running = 1;
1da177e4
LT
7177}
7178
d902db1e 7179#ifdef CONFIG_DEBUG_ATOMIC_SLEEP
e4aafea2
FW
7180static inline int preempt_count_equals(int preempt_offset)
7181{
234da7bc 7182 int nested = (preempt_count() & ~PREEMPT_ACTIVE) + rcu_preempt_depth();
e4aafea2 7183
4ba8216c 7184 return (nested == preempt_offset);
e4aafea2
FW
7185}
7186
d894837f 7187void __might_sleep(const char *file, int line, int preempt_offset)
1da177e4 7188{
1da177e4
LT
7189 static unsigned long prev_jiffy; /* ratelimiting */
7190
b3fbab05 7191 rcu_sleep_check(); /* WARN_ON_ONCE() by default, no rate limit reqd. */
e4aafea2
FW
7192 if ((preempt_count_equals(preempt_offset) && !irqs_disabled()) ||
7193 system_state != SYSTEM_RUNNING || oops_in_progress)
aef745fc
IM
7194 return;
7195 if (time_before(jiffies, prev_jiffy + HZ) && prev_jiffy)
7196 return;
7197 prev_jiffy = jiffies;
7198
3df0fc5b
PZ
7199 printk(KERN_ERR
7200 "BUG: sleeping function called from invalid context at %s:%d\n",
7201 file, line);
7202 printk(KERN_ERR
7203 "in_atomic(): %d, irqs_disabled(): %d, pid: %d, name: %s\n",
7204 in_atomic(), irqs_disabled(),
7205 current->pid, current->comm);
aef745fc
IM
7206
7207 debug_show_held_locks(current);
7208 if (irqs_disabled())
7209 print_irqtrace_events(current);
7210 dump_stack();
1da177e4
LT
7211}
7212EXPORT_SYMBOL(__might_sleep);
7213#endif
7214
7215#ifdef CONFIG_MAGIC_SYSRQ
3a5e4dc1
AK
7216static void normalize_task(struct rq *rq, struct task_struct *p)
7217{
da7a735e
PZ
7218 const struct sched_class *prev_class = p->sched_class;
7219 int old_prio = p->prio;
3a5e4dc1 7220 int on_rq;
3e51f33f 7221
fd2f4419 7222 on_rq = p->on_rq;
3a5e4dc1 7223 if (on_rq)
4ca9b72b 7224 dequeue_task(rq, p, 0);
3a5e4dc1
AK
7225 __setscheduler(rq, p, SCHED_NORMAL, 0);
7226 if (on_rq) {
4ca9b72b 7227 enqueue_task(rq, p, 0);
3a5e4dc1
AK
7228 resched_task(rq->curr);
7229 }
da7a735e
PZ
7230
7231 check_class_changed(rq, p, prev_class, old_prio);
3a5e4dc1
AK
7232}
7233
1da177e4
LT
7234void normalize_rt_tasks(void)
7235{
a0f98a1c 7236 struct task_struct *g, *p;
1da177e4 7237 unsigned long flags;
70b97a7f 7238 struct rq *rq;
1da177e4 7239
4cf5d77a 7240 read_lock_irqsave(&tasklist_lock, flags);
a0f98a1c 7241 do_each_thread(g, p) {
178be793
IM
7242 /*
7243 * Only normalize user tasks:
7244 */
7245 if (!p->mm)
7246 continue;
7247
6cfb0d5d 7248 p->se.exec_start = 0;
6cfb0d5d 7249#ifdef CONFIG_SCHEDSTATS
41acab88
LDM
7250 p->se.statistics.wait_start = 0;
7251 p->se.statistics.sleep_start = 0;
7252 p->se.statistics.block_start = 0;
6cfb0d5d 7253#endif
dd41f596
IM
7254
7255 if (!rt_task(p)) {
7256 /*
7257 * Renice negative nice level userspace
7258 * tasks back to 0:
7259 */
7260 if (TASK_NICE(p) < 0 && p->mm)
7261 set_user_nice(p, 0);
1da177e4 7262 continue;
dd41f596 7263 }
1da177e4 7264
1d615482 7265 raw_spin_lock(&p->pi_lock);
b29739f9 7266 rq = __task_rq_lock(p);
1da177e4 7267
178be793 7268 normalize_task(rq, p);
3a5e4dc1 7269
b29739f9 7270 __task_rq_unlock(rq);
1d615482 7271 raw_spin_unlock(&p->pi_lock);
a0f98a1c
IM
7272 } while_each_thread(g, p);
7273
4cf5d77a 7274 read_unlock_irqrestore(&tasklist_lock, flags);
1da177e4
LT
7275}
7276
7277#endif /* CONFIG_MAGIC_SYSRQ */
1df5c10a 7278
67fc4e0c 7279#if defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB)
1df5c10a 7280/*
67fc4e0c 7281 * These functions are only useful for the IA64 MCA handling, or kdb.
1df5c10a
LT
7282 *
7283 * They can only be called when the whole system has been
7284 * stopped - every CPU needs to be quiescent, and no scheduling
7285 * activity can take place. Using them for anything else would
7286 * be a serious bug, and as a result, they aren't even visible
7287 * under any other configuration.
7288 */
7289
7290/**
7291 * curr_task - return the current task for a given cpu.
7292 * @cpu: the processor in question.
7293 *
7294 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7295 */
36c8b586 7296struct task_struct *curr_task(int cpu)
1df5c10a
LT
7297{
7298 return cpu_curr(cpu);
7299}
7300
67fc4e0c
JW
7301#endif /* defined(CONFIG_IA64) || defined(CONFIG_KGDB_KDB) */
7302
7303#ifdef CONFIG_IA64
1df5c10a
LT
7304/**
7305 * set_curr_task - set the current task for a given cpu.
7306 * @cpu: the processor in question.
7307 * @p: the task pointer to set.
7308 *
7309 * Description: This function must only be used when non-maskable interrupts
41a2d6cf
IM
7310 * are serviced on a separate stack. It allows the architecture to switch the
7311 * notion of the current task on a cpu in a non-blocking manner. This function
1df5c10a
LT
7312 * must be called with all CPU's synchronized, and interrupts disabled, the
7313 * and caller must save the original value of the current task (see
7314 * curr_task() above) and restore that value before reenabling interrupts and
7315 * re-starting the system.
7316 *
7317 * ONLY VALID WHEN THE WHOLE SYSTEM IS STOPPED!
7318 */
36c8b586 7319void set_curr_task(int cpu, struct task_struct *p)
1df5c10a
LT
7320{
7321 cpu_curr(cpu) = p;
7322}
7323
7324#endif
29f59db3 7325
7c941438 7326#ifdef CONFIG_CGROUP_SCHED
029632fb
PZ
7327/* task_group_lock serializes the addition/removal of task groups */
7328static DEFINE_SPINLOCK(task_group_lock);
7329
bccbe08a
PZ
7330static void free_sched_group(struct task_group *tg)
7331{
7332 free_fair_sched_group(tg);
7333 free_rt_sched_group(tg);
e9aa1dd1 7334 autogroup_free(tg);
bccbe08a
PZ
7335 kfree(tg);
7336}
7337
7338/* allocate runqueue etc for a new task group */
ec7dc8ac 7339struct task_group *sched_create_group(struct task_group *parent)
bccbe08a
PZ
7340{
7341 struct task_group *tg;
7342 unsigned long flags;
bccbe08a
PZ
7343
7344 tg = kzalloc(sizeof(*tg), GFP_KERNEL);
7345 if (!tg)
7346 return ERR_PTR(-ENOMEM);
7347
ec7dc8ac 7348 if (!alloc_fair_sched_group(tg, parent))
bccbe08a
PZ
7349 goto err;
7350
ec7dc8ac 7351 if (!alloc_rt_sched_group(tg, parent))
bccbe08a
PZ
7352 goto err;
7353
8ed36996 7354 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7355 list_add_rcu(&tg->list, &task_groups);
f473aa5e
PZ
7356
7357 WARN_ON(!parent); /* root should already exist */
7358
7359 tg->parent = parent;
f473aa5e 7360 INIT_LIST_HEAD(&tg->children);
09f2724a 7361 list_add_rcu(&tg->siblings, &parent->children);
8ed36996 7362 spin_unlock_irqrestore(&task_group_lock, flags);
29f59db3 7363
9b5b7751 7364 return tg;
29f59db3
SV
7365
7366err:
6f505b16 7367 free_sched_group(tg);
29f59db3
SV
7368 return ERR_PTR(-ENOMEM);
7369}
7370
9b5b7751 7371/* rcu callback to free various structures associated with a task group */
6f505b16 7372static void free_sched_group_rcu(struct rcu_head *rhp)
29f59db3 7373{
29f59db3 7374 /* now it should be safe to free those cfs_rqs */
6f505b16 7375 free_sched_group(container_of(rhp, struct task_group, rcu));
29f59db3
SV
7376}
7377
9b5b7751 7378/* Destroy runqueue etc associated with a task group */
4cf86d77 7379void sched_destroy_group(struct task_group *tg)
29f59db3 7380{
8ed36996 7381 unsigned long flags;
9b5b7751 7382 int i;
29f59db3 7383
3d4b47b4
PZ
7384 /* end participation in shares distribution */
7385 for_each_possible_cpu(i)
bccbe08a 7386 unregister_fair_sched_group(tg, i);
3d4b47b4
PZ
7387
7388 spin_lock_irqsave(&task_group_lock, flags);
6f505b16 7389 list_del_rcu(&tg->list);
f473aa5e 7390 list_del_rcu(&tg->siblings);
8ed36996 7391 spin_unlock_irqrestore(&task_group_lock, flags);
9b5b7751 7392
9b5b7751 7393 /* wait for possible concurrent references to cfs_rqs complete */
6f505b16 7394 call_rcu(&tg->rcu, free_sched_group_rcu);
29f59db3
SV
7395}
7396
9b5b7751 7397/* change task's runqueue when it moves between groups.
3a252015
IM
7398 * The caller of this function should have put the task in its new group
7399 * by now. This function just updates tsk->se.cfs_rq and tsk->se.parent to
7400 * reflect its new group.
9b5b7751
SV
7401 */
7402void sched_move_task(struct task_struct *tsk)
29f59db3
SV
7403{
7404 int on_rq, running;
7405 unsigned long flags;
7406 struct rq *rq;
7407
7408 rq = task_rq_lock(tsk, &flags);
7409
051a1d1a 7410 running = task_current(rq, tsk);
fd2f4419 7411 on_rq = tsk->on_rq;
29f59db3 7412
0e1f3483 7413 if (on_rq)
29f59db3 7414 dequeue_task(rq, tsk, 0);
0e1f3483
HS
7415 if (unlikely(running))
7416 tsk->sched_class->put_prev_task(rq, tsk);
29f59db3 7417
810b3817 7418#ifdef CONFIG_FAIR_GROUP_SCHED
b2b5ce02
PZ
7419 if (tsk->sched_class->task_move_group)
7420 tsk->sched_class->task_move_group(tsk, on_rq);
7421 else
810b3817 7422#endif
b2b5ce02 7423 set_task_rq(tsk, task_cpu(tsk));
810b3817 7424
0e1f3483
HS
7425 if (unlikely(running))
7426 tsk->sched_class->set_curr_task(rq);
7427 if (on_rq)
371fd7e7 7428 enqueue_task(rq, tsk, 0);
29f59db3 7429
0122ec5b 7430 task_rq_unlock(rq, tsk, &flags);
29f59db3 7431}
7c941438 7432#endif /* CONFIG_CGROUP_SCHED */
29f59db3 7433
a790de99 7434#if defined(CONFIG_RT_GROUP_SCHED) || defined(CONFIG_CFS_BANDWIDTH)
9f0c1e56
PZ
7435static unsigned long to_ratio(u64 period, u64 runtime)
7436{
7437 if (runtime == RUNTIME_INF)
9a7e0b18 7438 return 1ULL << 20;
9f0c1e56 7439
9a7e0b18 7440 return div64_u64(runtime << 20, period);
9f0c1e56 7441}
a790de99
PT
7442#endif
7443
7444#ifdef CONFIG_RT_GROUP_SCHED
7445/*
7446 * Ensure that the real time constraints are schedulable.
7447 */
7448static DEFINE_MUTEX(rt_constraints_mutex);
9f0c1e56 7449
9a7e0b18
PZ
7450/* Must be called with tasklist_lock held */
7451static inline int tg_has_rt_tasks(struct task_group *tg)
b40b2e8e 7452{
9a7e0b18 7453 struct task_struct *g, *p;
b40b2e8e 7454
9a7e0b18 7455 do_each_thread(g, p) {
029632fb 7456 if (rt_task(p) && task_rq(p)->rt.tg == tg)
9a7e0b18
PZ
7457 return 1;
7458 } while_each_thread(g, p);
b40b2e8e 7459
9a7e0b18
PZ
7460 return 0;
7461}
b40b2e8e 7462
9a7e0b18
PZ
7463struct rt_schedulable_data {
7464 struct task_group *tg;
7465 u64 rt_period;
7466 u64 rt_runtime;
7467};
b40b2e8e 7468
a790de99 7469static int tg_rt_schedulable(struct task_group *tg, void *data)
9a7e0b18
PZ
7470{
7471 struct rt_schedulable_data *d = data;
7472 struct task_group *child;
7473 unsigned long total, sum = 0;
7474 u64 period, runtime;
b40b2e8e 7475
9a7e0b18
PZ
7476 period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7477 runtime = tg->rt_bandwidth.rt_runtime;
b40b2e8e 7478
9a7e0b18
PZ
7479 if (tg == d->tg) {
7480 period = d->rt_period;
7481 runtime = d->rt_runtime;
b40b2e8e 7482 }
b40b2e8e 7483
4653f803
PZ
7484 /*
7485 * Cannot have more runtime than the period.
7486 */
7487 if (runtime > period && runtime != RUNTIME_INF)
7488 return -EINVAL;
6f505b16 7489
4653f803
PZ
7490 /*
7491 * Ensure we don't starve existing RT tasks.
7492 */
9a7e0b18
PZ
7493 if (rt_bandwidth_enabled() && !runtime && tg_has_rt_tasks(tg))
7494 return -EBUSY;
6f505b16 7495
9a7e0b18 7496 total = to_ratio(period, runtime);
6f505b16 7497
4653f803
PZ
7498 /*
7499 * Nobody can have more than the global setting allows.
7500 */
7501 if (total > to_ratio(global_rt_period(), global_rt_runtime()))
7502 return -EINVAL;
6f505b16 7503
4653f803
PZ
7504 /*
7505 * The sum of our children's runtime should not exceed our own.
7506 */
9a7e0b18
PZ
7507 list_for_each_entry_rcu(child, &tg->children, siblings) {
7508 period = ktime_to_ns(child->rt_bandwidth.rt_period);
7509 runtime = child->rt_bandwidth.rt_runtime;
6f505b16 7510
9a7e0b18
PZ
7511 if (child == d->tg) {
7512 period = d->rt_period;
7513 runtime = d->rt_runtime;
7514 }
6f505b16 7515
9a7e0b18 7516 sum += to_ratio(period, runtime);
9f0c1e56 7517 }
6f505b16 7518
9a7e0b18
PZ
7519 if (sum > total)
7520 return -EINVAL;
7521
7522 return 0;
6f505b16
PZ
7523}
7524
9a7e0b18 7525static int __rt_schedulable(struct task_group *tg, u64 period, u64 runtime)
521f1a24 7526{
8277434e
PT
7527 int ret;
7528
9a7e0b18
PZ
7529 struct rt_schedulable_data data = {
7530 .tg = tg,
7531 .rt_period = period,
7532 .rt_runtime = runtime,
7533 };
7534
8277434e
PT
7535 rcu_read_lock();
7536 ret = walk_tg_tree(tg_rt_schedulable, tg_nop, &data);
7537 rcu_read_unlock();
7538
7539 return ret;
521f1a24
DG
7540}
7541
ab84d31e 7542static int tg_set_rt_bandwidth(struct task_group *tg,
d0b27fa7 7543 u64 rt_period, u64 rt_runtime)
6f505b16 7544{
ac086bc2 7545 int i, err = 0;
9f0c1e56 7546
9f0c1e56 7547 mutex_lock(&rt_constraints_mutex);
521f1a24 7548 read_lock(&tasklist_lock);
9a7e0b18
PZ
7549 err = __rt_schedulable(tg, rt_period, rt_runtime);
7550 if (err)
9f0c1e56 7551 goto unlock;
ac086bc2 7552
0986b11b 7553 raw_spin_lock_irq(&tg->rt_bandwidth.rt_runtime_lock);
d0b27fa7
PZ
7554 tg->rt_bandwidth.rt_period = ns_to_ktime(rt_period);
7555 tg->rt_bandwidth.rt_runtime = rt_runtime;
ac086bc2
PZ
7556
7557 for_each_possible_cpu(i) {
7558 struct rt_rq *rt_rq = tg->rt_rq[i];
7559
0986b11b 7560 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7561 rt_rq->rt_runtime = rt_runtime;
0986b11b 7562 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7563 }
0986b11b 7564 raw_spin_unlock_irq(&tg->rt_bandwidth.rt_runtime_lock);
49246274 7565unlock:
521f1a24 7566 read_unlock(&tasklist_lock);
9f0c1e56
PZ
7567 mutex_unlock(&rt_constraints_mutex);
7568
7569 return err;
6f505b16
PZ
7570}
7571
d0b27fa7
PZ
7572int sched_group_set_rt_runtime(struct task_group *tg, long rt_runtime_us)
7573{
7574 u64 rt_runtime, rt_period;
7575
7576 rt_period = ktime_to_ns(tg->rt_bandwidth.rt_period);
7577 rt_runtime = (u64)rt_runtime_us * NSEC_PER_USEC;
7578 if (rt_runtime_us < 0)
7579 rt_runtime = RUNTIME_INF;
7580
ab84d31e 7581 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7582}
7583
9f0c1e56
PZ
7584long sched_group_rt_runtime(struct task_group *tg)
7585{
7586 u64 rt_runtime_us;
7587
d0b27fa7 7588 if (tg->rt_bandwidth.rt_runtime == RUNTIME_INF)
9f0c1e56
PZ
7589 return -1;
7590
d0b27fa7 7591 rt_runtime_us = tg->rt_bandwidth.rt_runtime;
9f0c1e56
PZ
7592 do_div(rt_runtime_us, NSEC_PER_USEC);
7593 return rt_runtime_us;
7594}
d0b27fa7
PZ
7595
7596int sched_group_set_rt_period(struct task_group *tg, long rt_period_us)
7597{
7598 u64 rt_runtime, rt_period;
7599
7600 rt_period = (u64)rt_period_us * NSEC_PER_USEC;
7601 rt_runtime = tg->rt_bandwidth.rt_runtime;
7602
619b0488
R
7603 if (rt_period == 0)
7604 return -EINVAL;
7605
ab84d31e 7606 return tg_set_rt_bandwidth(tg, rt_period, rt_runtime);
d0b27fa7
PZ
7607}
7608
7609long sched_group_rt_period(struct task_group *tg)
7610{
7611 u64 rt_period_us;
7612
7613 rt_period_us = ktime_to_ns(tg->rt_bandwidth.rt_period);
7614 do_div(rt_period_us, NSEC_PER_USEC);
7615 return rt_period_us;
7616}
7617
7618static int sched_rt_global_constraints(void)
7619{
4653f803 7620 u64 runtime, period;
d0b27fa7
PZ
7621 int ret = 0;
7622
ec5d4989
HS
7623 if (sysctl_sched_rt_period <= 0)
7624 return -EINVAL;
7625
4653f803
PZ
7626 runtime = global_rt_runtime();
7627 period = global_rt_period();
7628
7629 /*
7630 * Sanity check on the sysctl variables.
7631 */
7632 if (runtime > period && runtime != RUNTIME_INF)
7633 return -EINVAL;
10b612f4 7634
d0b27fa7 7635 mutex_lock(&rt_constraints_mutex);
9a7e0b18 7636 read_lock(&tasklist_lock);
4653f803 7637 ret = __rt_schedulable(NULL, 0, 0);
9a7e0b18 7638 read_unlock(&tasklist_lock);
d0b27fa7
PZ
7639 mutex_unlock(&rt_constraints_mutex);
7640
7641 return ret;
7642}
54e99124
DG
7643
7644int sched_rt_can_attach(struct task_group *tg, struct task_struct *tsk)
7645{
7646 /* Don't accept realtime tasks when there is no way for them to run */
7647 if (rt_task(tsk) && tg->rt_bandwidth.rt_runtime == 0)
7648 return 0;
7649
7650 return 1;
7651}
7652
6d6bc0ad 7653#else /* !CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7654static int sched_rt_global_constraints(void)
7655{
ac086bc2
PZ
7656 unsigned long flags;
7657 int i;
7658
ec5d4989
HS
7659 if (sysctl_sched_rt_period <= 0)
7660 return -EINVAL;
7661
60aa605d
PZ
7662 /*
7663 * There's always some RT tasks in the root group
7664 * -- migration, kstopmachine etc..
7665 */
7666 if (sysctl_sched_rt_runtime == 0)
7667 return -EBUSY;
7668
0986b11b 7669 raw_spin_lock_irqsave(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2
PZ
7670 for_each_possible_cpu(i) {
7671 struct rt_rq *rt_rq = &cpu_rq(i)->rt;
7672
0986b11b 7673 raw_spin_lock(&rt_rq->rt_runtime_lock);
ac086bc2 7674 rt_rq->rt_runtime = global_rt_runtime();
0986b11b 7675 raw_spin_unlock(&rt_rq->rt_runtime_lock);
ac086bc2 7676 }
0986b11b 7677 raw_spin_unlock_irqrestore(&def_rt_bandwidth.rt_runtime_lock, flags);
ac086bc2 7678
d0b27fa7
PZ
7679 return 0;
7680}
6d6bc0ad 7681#endif /* CONFIG_RT_GROUP_SCHED */
d0b27fa7
PZ
7682
7683int sched_rt_handler(struct ctl_table *table, int write,
8d65af78 7684 void __user *buffer, size_t *lenp,
d0b27fa7
PZ
7685 loff_t *ppos)
7686{
7687 int ret;
7688 int old_period, old_runtime;
7689 static DEFINE_MUTEX(mutex);
7690
7691 mutex_lock(&mutex);
7692 old_period = sysctl_sched_rt_period;
7693 old_runtime = sysctl_sched_rt_runtime;
7694
8d65af78 7695 ret = proc_dointvec(table, write, buffer, lenp, ppos);
d0b27fa7
PZ
7696
7697 if (!ret && write) {
7698 ret = sched_rt_global_constraints();
7699 if (ret) {
7700 sysctl_sched_rt_period = old_period;
7701 sysctl_sched_rt_runtime = old_runtime;
7702 } else {
7703 def_rt_bandwidth.rt_runtime = global_rt_runtime();
7704 def_rt_bandwidth.rt_period =
7705 ns_to_ktime(global_rt_period());
7706 }
7707 }
7708 mutex_unlock(&mutex);
7709
7710 return ret;
7711}
68318b8e 7712
052f1dc7 7713#ifdef CONFIG_CGROUP_SCHED
68318b8e
SV
7714
7715/* return corresponding task_group object of a cgroup */
2b01dfe3 7716static inline struct task_group *cgroup_tg(struct cgroup *cgrp)
68318b8e 7717{
2b01dfe3
PM
7718 return container_of(cgroup_subsys_state(cgrp, cpu_cgroup_subsys_id),
7719 struct task_group, css);
68318b8e
SV
7720}
7721
761b3ef5 7722static struct cgroup_subsys_state *cpu_cgroup_create(struct cgroup *cgrp)
68318b8e 7723{
ec7dc8ac 7724 struct task_group *tg, *parent;
68318b8e 7725
2b01dfe3 7726 if (!cgrp->parent) {
68318b8e 7727 /* This is early initialization for the top cgroup */
07e06b01 7728 return &root_task_group.css;
68318b8e
SV
7729 }
7730
ec7dc8ac
DG
7731 parent = cgroup_tg(cgrp->parent);
7732 tg = sched_create_group(parent);
68318b8e
SV
7733 if (IS_ERR(tg))
7734 return ERR_PTR(-ENOMEM);
7735
68318b8e
SV
7736 return &tg->css;
7737}
7738
761b3ef5 7739static void cpu_cgroup_destroy(struct cgroup *cgrp)
68318b8e 7740{
2b01dfe3 7741 struct task_group *tg = cgroup_tg(cgrp);
68318b8e
SV
7742
7743 sched_destroy_group(tg);
7744}
7745
761b3ef5 7746static int cpu_cgroup_can_attach(struct cgroup *cgrp,
bb9d97b6 7747 struct cgroup_taskset *tset)
68318b8e 7748{
bb9d97b6
TH
7749 struct task_struct *task;
7750
7751 cgroup_taskset_for_each(task, cgrp, tset) {
b68aa230 7752#ifdef CONFIG_RT_GROUP_SCHED
bb9d97b6
TH
7753 if (!sched_rt_can_attach(cgroup_tg(cgrp), task))
7754 return -EINVAL;
b68aa230 7755#else
bb9d97b6
TH
7756 /* We don't support RT-tasks being in separate groups */
7757 if (task->sched_class != &fair_sched_class)
7758 return -EINVAL;
b68aa230 7759#endif
bb9d97b6 7760 }
be367d09
BB
7761 return 0;
7762}
68318b8e 7763
761b3ef5 7764static void cpu_cgroup_attach(struct cgroup *cgrp,
bb9d97b6 7765 struct cgroup_taskset *tset)
68318b8e 7766{
bb9d97b6
TH
7767 struct task_struct *task;
7768
7769 cgroup_taskset_for_each(task, cgrp, tset)
7770 sched_move_task(task);
68318b8e
SV
7771}
7772
068c5cc5 7773static void
761b3ef5
LZ
7774cpu_cgroup_exit(struct cgroup *cgrp, struct cgroup *old_cgrp,
7775 struct task_struct *task)
068c5cc5
PZ
7776{
7777 /*
7778 * cgroup_exit() is called in the copy_process() failure path.
7779 * Ignore this case since the task hasn't ran yet, this avoids
7780 * trying to poke a half freed task state from generic code.
7781 */
7782 if (!(task->flags & PF_EXITING))
7783 return;
7784
7785 sched_move_task(task);
7786}
7787
052f1dc7 7788#ifdef CONFIG_FAIR_GROUP_SCHED
f4c753b7 7789static int cpu_shares_write_u64(struct cgroup *cgrp, struct cftype *cftype,
2b01dfe3 7790 u64 shareval)
68318b8e 7791{
c8b28116 7792 return sched_group_set_shares(cgroup_tg(cgrp), scale_load(shareval));
68318b8e
SV
7793}
7794
f4c753b7 7795static u64 cpu_shares_read_u64(struct cgroup *cgrp, struct cftype *cft)
68318b8e 7796{
2b01dfe3 7797 struct task_group *tg = cgroup_tg(cgrp);
68318b8e 7798
c8b28116 7799 return (u64) scale_load_down(tg->shares);
68318b8e 7800}
ab84d31e
PT
7801
7802#ifdef CONFIG_CFS_BANDWIDTH
a790de99
PT
7803static DEFINE_MUTEX(cfs_constraints_mutex);
7804
ab84d31e
PT
7805const u64 max_cfs_quota_period = 1 * NSEC_PER_SEC; /* 1s */
7806const u64 min_cfs_quota_period = 1 * NSEC_PER_MSEC; /* 1ms */
7807
a790de99
PT
7808static int __cfs_schedulable(struct task_group *tg, u64 period, u64 runtime);
7809
ab84d31e
PT
7810static int tg_set_cfs_bandwidth(struct task_group *tg, u64 period, u64 quota)
7811{
56f570e5 7812 int i, ret = 0, runtime_enabled, runtime_was_enabled;
029632fb 7813 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
ab84d31e
PT
7814
7815 if (tg == &root_task_group)
7816 return -EINVAL;
7817
7818 /*
7819 * Ensure we have at some amount of bandwidth every period. This is
7820 * to prevent reaching a state of large arrears when throttled via
7821 * entity_tick() resulting in prolonged exit starvation.
7822 */
7823 if (quota < min_cfs_quota_period || period < min_cfs_quota_period)
7824 return -EINVAL;
7825
7826 /*
7827 * Likewise, bound things on the otherside by preventing insane quota
7828 * periods. This also allows us to normalize in computing quota
7829 * feasibility.
7830 */
7831 if (period > max_cfs_quota_period)
7832 return -EINVAL;
7833
a790de99
PT
7834 mutex_lock(&cfs_constraints_mutex);
7835 ret = __cfs_schedulable(tg, period, quota);
7836 if (ret)
7837 goto out_unlock;
7838
58088ad0 7839 runtime_enabled = quota != RUNTIME_INF;
56f570e5
PT
7840 runtime_was_enabled = cfs_b->quota != RUNTIME_INF;
7841 account_cfs_bandwidth_used(runtime_enabled, runtime_was_enabled);
ab84d31e
PT
7842 raw_spin_lock_irq(&cfs_b->lock);
7843 cfs_b->period = ns_to_ktime(period);
7844 cfs_b->quota = quota;
58088ad0 7845
a9cf55b2 7846 __refill_cfs_bandwidth_runtime(cfs_b);
58088ad0
PT
7847 /* restart the period timer (if active) to handle new period expiry */
7848 if (runtime_enabled && cfs_b->timer_active) {
7849 /* force a reprogram */
7850 cfs_b->timer_active = 0;
7851 __start_cfs_bandwidth(cfs_b);
7852 }
ab84d31e
PT
7853 raw_spin_unlock_irq(&cfs_b->lock);
7854
7855 for_each_possible_cpu(i) {
7856 struct cfs_rq *cfs_rq = tg->cfs_rq[i];
029632fb 7857 struct rq *rq = cfs_rq->rq;
ab84d31e
PT
7858
7859 raw_spin_lock_irq(&rq->lock);
58088ad0 7860 cfs_rq->runtime_enabled = runtime_enabled;
ab84d31e 7861 cfs_rq->runtime_remaining = 0;
671fd9da 7862
029632fb 7863 if (cfs_rq->throttled)
671fd9da 7864 unthrottle_cfs_rq(cfs_rq);
ab84d31e
PT
7865 raw_spin_unlock_irq(&rq->lock);
7866 }
a790de99
PT
7867out_unlock:
7868 mutex_unlock(&cfs_constraints_mutex);
ab84d31e 7869
a790de99 7870 return ret;
ab84d31e
PT
7871}
7872
7873int tg_set_cfs_quota(struct task_group *tg, long cfs_quota_us)
7874{
7875 u64 quota, period;
7876
029632fb 7877 period = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7878 if (cfs_quota_us < 0)
7879 quota = RUNTIME_INF;
7880 else
7881 quota = (u64)cfs_quota_us * NSEC_PER_USEC;
7882
7883 return tg_set_cfs_bandwidth(tg, period, quota);
7884}
7885
7886long tg_get_cfs_quota(struct task_group *tg)
7887{
7888 u64 quota_us;
7889
029632fb 7890 if (tg->cfs_bandwidth.quota == RUNTIME_INF)
ab84d31e
PT
7891 return -1;
7892
029632fb 7893 quota_us = tg->cfs_bandwidth.quota;
ab84d31e
PT
7894 do_div(quota_us, NSEC_PER_USEC);
7895
7896 return quota_us;
7897}
7898
7899int tg_set_cfs_period(struct task_group *tg, long cfs_period_us)
7900{
7901 u64 quota, period;
7902
7903 period = (u64)cfs_period_us * NSEC_PER_USEC;
029632fb 7904 quota = tg->cfs_bandwidth.quota;
ab84d31e 7905
ab84d31e
PT
7906 return tg_set_cfs_bandwidth(tg, period, quota);
7907}
7908
7909long tg_get_cfs_period(struct task_group *tg)
7910{
7911 u64 cfs_period_us;
7912
029632fb 7913 cfs_period_us = ktime_to_ns(tg->cfs_bandwidth.period);
ab84d31e
PT
7914 do_div(cfs_period_us, NSEC_PER_USEC);
7915
7916 return cfs_period_us;
7917}
7918
7919static s64 cpu_cfs_quota_read_s64(struct cgroup *cgrp, struct cftype *cft)
7920{
7921 return tg_get_cfs_quota(cgroup_tg(cgrp));
7922}
7923
7924static int cpu_cfs_quota_write_s64(struct cgroup *cgrp, struct cftype *cftype,
7925 s64 cfs_quota_us)
7926{
7927 return tg_set_cfs_quota(cgroup_tg(cgrp), cfs_quota_us);
7928}
7929
7930static u64 cpu_cfs_period_read_u64(struct cgroup *cgrp, struct cftype *cft)
7931{
7932 return tg_get_cfs_period(cgroup_tg(cgrp));
7933}
7934
7935static int cpu_cfs_period_write_u64(struct cgroup *cgrp, struct cftype *cftype,
7936 u64 cfs_period_us)
7937{
7938 return tg_set_cfs_period(cgroup_tg(cgrp), cfs_period_us);
7939}
7940
a790de99
PT
7941struct cfs_schedulable_data {
7942 struct task_group *tg;
7943 u64 period, quota;
7944};
7945
7946/*
7947 * normalize group quota/period to be quota/max_period
7948 * note: units are usecs
7949 */
7950static u64 normalize_cfs_quota(struct task_group *tg,
7951 struct cfs_schedulable_data *d)
7952{
7953 u64 quota, period;
7954
7955 if (tg == d->tg) {
7956 period = d->period;
7957 quota = d->quota;
7958 } else {
7959 period = tg_get_cfs_period(tg);
7960 quota = tg_get_cfs_quota(tg);
7961 }
7962
7963 /* note: these should typically be equivalent */
7964 if (quota == RUNTIME_INF || quota == -1)
7965 return RUNTIME_INF;
7966
7967 return to_ratio(period, quota);
7968}
7969
7970static int tg_cfs_schedulable_down(struct task_group *tg, void *data)
7971{
7972 struct cfs_schedulable_data *d = data;
029632fb 7973 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
a790de99
PT
7974 s64 quota = 0, parent_quota = -1;
7975
7976 if (!tg->parent) {
7977 quota = RUNTIME_INF;
7978 } else {
029632fb 7979 struct cfs_bandwidth *parent_b = &tg->parent->cfs_bandwidth;
a790de99
PT
7980
7981 quota = normalize_cfs_quota(tg, d);
7982 parent_quota = parent_b->hierarchal_quota;
7983
7984 /*
7985 * ensure max(child_quota) <= parent_quota, inherit when no
7986 * limit is set
7987 */
7988 if (quota == RUNTIME_INF)
7989 quota = parent_quota;
7990 else if (parent_quota != RUNTIME_INF && quota > parent_quota)
7991 return -EINVAL;
7992 }
7993 cfs_b->hierarchal_quota = quota;
7994
7995 return 0;
7996}
7997
7998static int __cfs_schedulable(struct task_group *tg, u64 period, u64 quota)
7999{
8277434e 8000 int ret;
a790de99
PT
8001 struct cfs_schedulable_data data = {
8002 .tg = tg,
8003 .period = period,
8004 .quota = quota,
8005 };
8006
8007 if (quota != RUNTIME_INF) {
8008 do_div(data.period, NSEC_PER_USEC);
8009 do_div(data.quota, NSEC_PER_USEC);
8010 }
8011
8277434e
PT
8012 rcu_read_lock();
8013 ret = walk_tg_tree(tg_cfs_schedulable_down, tg_nop, &data);
8014 rcu_read_unlock();
8015
8016 return ret;
a790de99 8017}
e8da1b18
NR
8018
8019static int cpu_stats_show(struct cgroup *cgrp, struct cftype *cft,
8020 struct cgroup_map_cb *cb)
8021{
8022 struct task_group *tg = cgroup_tg(cgrp);
029632fb 8023 struct cfs_bandwidth *cfs_b = &tg->cfs_bandwidth;
e8da1b18
NR
8024
8025 cb->fill(cb, "nr_periods", cfs_b->nr_periods);
8026 cb->fill(cb, "nr_throttled", cfs_b->nr_throttled);
8027 cb->fill(cb, "throttled_time", cfs_b->throttled_time);
8028
8029 return 0;
8030}
ab84d31e 8031#endif /* CONFIG_CFS_BANDWIDTH */
6d6bc0ad 8032#endif /* CONFIG_FAIR_GROUP_SCHED */
68318b8e 8033
052f1dc7 8034#ifdef CONFIG_RT_GROUP_SCHED
0c70814c 8035static int cpu_rt_runtime_write(struct cgroup *cgrp, struct cftype *cft,
06ecb27c 8036 s64 val)
6f505b16 8037{
06ecb27c 8038 return sched_group_set_rt_runtime(cgroup_tg(cgrp), val);
6f505b16
PZ
8039}
8040
06ecb27c 8041static s64 cpu_rt_runtime_read(struct cgroup *cgrp, struct cftype *cft)
6f505b16 8042{
06ecb27c 8043 return sched_group_rt_runtime(cgroup_tg(cgrp));
6f505b16 8044}
d0b27fa7
PZ
8045
8046static int cpu_rt_period_write_uint(struct cgroup *cgrp, struct cftype *cftype,
8047 u64 rt_period_us)
8048{
8049 return sched_group_set_rt_period(cgroup_tg(cgrp), rt_period_us);
8050}
8051
8052static u64 cpu_rt_period_read_uint(struct cgroup *cgrp, struct cftype *cft)
8053{
8054 return sched_group_rt_period(cgroup_tg(cgrp));
8055}
6d6bc0ad 8056#endif /* CONFIG_RT_GROUP_SCHED */
6f505b16 8057
fe5c7cc2 8058static struct cftype cpu_files[] = {
052f1dc7 8059#ifdef CONFIG_FAIR_GROUP_SCHED
fe5c7cc2
PM
8060 {
8061 .name = "shares",
f4c753b7
PM
8062 .read_u64 = cpu_shares_read_u64,
8063 .write_u64 = cpu_shares_write_u64,
fe5c7cc2 8064 },
052f1dc7 8065#endif
ab84d31e
PT
8066#ifdef CONFIG_CFS_BANDWIDTH
8067 {
8068 .name = "cfs_quota_us",
8069 .read_s64 = cpu_cfs_quota_read_s64,
8070 .write_s64 = cpu_cfs_quota_write_s64,
8071 },
8072 {
8073 .name = "cfs_period_us",
8074 .read_u64 = cpu_cfs_period_read_u64,
8075 .write_u64 = cpu_cfs_period_write_u64,
8076 },
e8da1b18
NR
8077 {
8078 .name = "stat",
8079 .read_map = cpu_stats_show,
8080 },
ab84d31e 8081#endif
052f1dc7 8082#ifdef CONFIG_RT_GROUP_SCHED
6f505b16 8083 {
9f0c1e56 8084 .name = "rt_runtime_us",
06ecb27c
PM
8085 .read_s64 = cpu_rt_runtime_read,
8086 .write_s64 = cpu_rt_runtime_write,
6f505b16 8087 },
d0b27fa7
PZ
8088 {
8089 .name = "rt_period_us",
f4c753b7
PM
8090 .read_u64 = cpu_rt_period_read_uint,
8091 .write_u64 = cpu_rt_period_write_uint,
d0b27fa7 8092 },
052f1dc7 8093#endif
4baf6e33 8094 { } /* terminate */
68318b8e
SV
8095};
8096
68318b8e 8097struct cgroup_subsys cpu_cgroup_subsys = {
38605cae
IM
8098 .name = "cpu",
8099 .create = cpu_cgroup_create,
8100 .destroy = cpu_cgroup_destroy,
bb9d97b6
TH
8101 .can_attach = cpu_cgroup_can_attach,
8102 .attach = cpu_cgroup_attach,
068c5cc5 8103 .exit = cpu_cgroup_exit,
38605cae 8104 .subsys_id = cpu_cgroup_subsys_id,
4baf6e33 8105 .base_cftypes = cpu_files,
68318b8e
SV
8106 .early_init = 1,
8107};
8108
052f1dc7 8109#endif /* CONFIG_CGROUP_SCHED */
d842de87
SV
8110
8111#ifdef CONFIG_CGROUP_CPUACCT
8112
8113/*
8114 * CPU accounting code for task groups.
8115 *
8116 * Based on the work by Paul Menage (menage@google.com) and Balbir Singh
8117 * (balbir@in.ibm.com).
8118 */
8119
d842de87 8120/* create a new cpu accounting group */
761b3ef5 8121static struct cgroup_subsys_state *cpuacct_create(struct cgroup *cgrp)
d842de87 8122{
54c707e9 8123 struct cpuacct *ca;
d842de87 8124
54c707e9
GC
8125 if (!cgrp->parent)
8126 return &root_cpuacct.css;
8127
8128 ca = kzalloc(sizeof(*ca), GFP_KERNEL);
d842de87 8129 if (!ca)
ef12fefa 8130 goto out;
d842de87
SV
8131
8132 ca->cpuusage = alloc_percpu(u64);
ef12fefa
BR
8133 if (!ca->cpuusage)
8134 goto out_free_ca;
8135
54c707e9
GC
8136 ca->cpustat = alloc_percpu(struct kernel_cpustat);
8137 if (!ca->cpustat)
8138 goto out_free_cpuusage;
934352f2 8139
d842de87 8140 return &ca->css;
ef12fefa 8141
54c707e9 8142out_free_cpuusage:
ef12fefa
BR
8143 free_percpu(ca->cpuusage);
8144out_free_ca:
8145 kfree(ca);
8146out:
8147 return ERR_PTR(-ENOMEM);
d842de87
SV
8148}
8149
8150/* destroy an existing cpu accounting group */
761b3ef5 8151static void cpuacct_destroy(struct cgroup *cgrp)
d842de87 8152{
32cd756a 8153 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87 8154
54c707e9 8155 free_percpu(ca->cpustat);
d842de87
SV
8156 free_percpu(ca->cpuusage);
8157 kfree(ca);
8158}
8159
720f5498
KC
8160static u64 cpuacct_cpuusage_read(struct cpuacct *ca, int cpu)
8161{
b36128c8 8162 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8163 u64 data;
8164
8165#ifndef CONFIG_64BIT
8166 /*
8167 * Take rq->lock to make 64-bit read safe on 32-bit platforms.
8168 */
05fa785c 8169 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8170 data = *cpuusage;
05fa785c 8171 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8172#else
8173 data = *cpuusage;
8174#endif
8175
8176 return data;
8177}
8178
8179static void cpuacct_cpuusage_write(struct cpuacct *ca, int cpu, u64 val)
8180{
b36128c8 8181 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
720f5498
KC
8182
8183#ifndef CONFIG_64BIT
8184 /*
8185 * Take rq->lock to make 64-bit write safe on 32-bit platforms.
8186 */
05fa785c 8187 raw_spin_lock_irq(&cpu_rq(cpu)->lock);
720f5498 8188 *cpuusage = val;
05fa785c 8189 raw_spin_unlock_irq(&cpu_rq(cpu)->lock);
720f5498
KC
8190#else
8191 *cpuusage = val;
8192#endif
8193}
8194
d842de87 8195/* return total cpu usage (in nanoseconds) of a group */
32cd756a 8196static u64 cpuusage_read(struct cgroup *cgrp, struct cftype *cft)
d842de87 8197{
32cd756a 8198 struct cpuacct *ca = cgroup_ca(cgrp);
d842de87
SV
8199 u64 totalcpuusage = 0;
8200 int i;
8201
720f5498
KC
8202 for_each_present_cpu(i)
8203 totalcpuusage += cpuacct_cpuusage_read(ca, i);
d842de87
SV
8204
8205 return totalcpuusage;
8206}
8207
0297b803
DG
8208static int cpuusage_write(struct cgroup *cgrp, struct cftype *cftype,
8209 u64 reset)
8210{
8211 struct cpuacct *ca = cgroup_ca(cgrp);
8212 int err = 0;
8213 int i;
8214
8215 if (reset) {
8216 err = -EINVAL;
8217 goto out;
8218 }
8219
720f5498
KC
8220 for_each_present_cpu(i)
8221 cpuacct_cpuusage_write(ca, i, 0);
0297b803 8222
0297b803
DG
8223out:
8224 return err;
8225}
8226
e9515c3c
KC
8227static int cpuacct_percpu_seq_read(struct cgroup *cgroup, struct cftype *cft,
8228 struct seq_file *m)
8229{
8230 struct cpuacct *ca = cgroup_ca(cgroup);
8231 u64 percpu;
8232 int i;
8233
8234 for_each_present_cpu(i) {
8235 percpu = cpuacct_cpuusage_read(ca, i);
8236 seq_printf(m, "%llu ", (unsigned long long) percpu);
8237 }
8238 seq_printf(m, "\n");
8239 return 0;
8240}
8241
ef12fefa
BR
8242static const char *cpuacct_stat_desc[] = {
8243 [CPUACCT_STAT_USER] = "user",
8244 [CPUACCT_STAT_SYSTEM] = "system",
8245};
8246
8247static int cpuacct_stats_show(struct cgroup *cgrp, struct cftype *cft,
54c707e9 8248 struct cgroup_map_cb *cb)
ef12fefa
BR
8249{
8250 struct cpuacct *ca = cgroup_ca(cgrp);
54c707e9
GC
8251 int cpu;
8252 s64 val = 0;
ef12fefa 8253
54c707e9
GC
8254 for_each_online_cpu(cpu) {
8255 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8256 val += kcpustat->cpustat[CPUTIME_USER];
8257 val += kcpustat->cpustat[CPUTIME_NICE];
ef12fefa 8258 }
54c707e9
GC
8259 val = cputime64_to_clock_t(val);
8260 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_USER], val);
ef12fefa 8261
54c707e9
GC
8262 val = 0;
8263 for_each_online_cpu(cpu) {
8264 struct kernel_cpustat *kcpustat = per_cpu_ptr(ca->cpustat, cpu);
8265 val += kcpustat->cpustat[CPUTIME_SYSTEM];
8266 val += kcpustat->cpustat[CPUTIME_IRQ];
8267 val += kcpustat->cpustat[CPUTIME_SOFTIRQ];
ef12fefa 8268 }
54c707e9
GC
8269
8270 val = cputime64_to_clock_t(val);
8271 cb->fill(cb, cpuacct_stat_desc[CPUACCT_STAT_SYSTEM], val);
8272
ef12fefa
BR
8273 return 0;
8274}
8275
d842de87
SV
8276static struct cftype files[] = {
8277 {
8278 .name = "usage",
f4c753b7
PM
8279 .read_u64 = cpuusage_read,
8280 .write_u64 = cpuusage_write,
d842de87 8281 },
e9515c3c
KC
8282 {
8283 .name = "usage_percpu",
8284 .read_seq_string = cpuacct_percpu_seq_read,
8285 },
ef12fefa
BR
8286 {
8287 .name = "stat",
8288 .read_map = cpuacct_stats_show,
8289 },
4baf6e33 8290 { } /* terminate */
d842de87
SV
8291};
8292
d842de87
SV
8293/*
8294 * charge this task's execution time to its accounting group.
8295 *
8296 * called with rq->lock held.
8297 */
029632fb 8298void cpuacct_charge(struct task_struct *tsk, u64 cputime)
d842de87
SV
8299{
8300 struct cpuacct *ca;
934352f2 8301 int cpu;
d842de87 8302
c40c6f85 8303 if (unlikely(!cpuacct_subsys.active))
d842de87
SV
8304 return;
8305
934352f2 8306 cpu = task_cpu(tsk);
a18b83b7
BR
8307
8308 rcu_read_lock();
8309
d842de87 8310 ca = task_ca(tsk);
d842de87 8311
44252e42 8312 for (; ca; ca = parent_ca(ca)) {
b36128c8 8313 u64 *cpuusage = per_cpu_ptr(ca->cpuusage, cpu);
d842de87
SV
8314 *cpuusage += cputime;
8315 }
a18b83b7
BR
8316
8317 rcu_read_unlock();
d842de87
SV
8318}
8319
8320struct cgroup_subsys cpuacct_subsys = {
8321 .name = "cpuacct",
8322 .create = cpuacct_create,
8323 .destroy = cpuacct_destroy,
d842de87 8324 .subsys_id = cpuacct_subsys_id,
4baf6e33 8325 .base_cftypes = files,
d842de87
SV
8326};
8327#endif /* CONFIG_CGROUP_CPUACCT */
This page took 2.194522 seconds and 5 git commands to generate.