sched/fair: check_preempt_wakeup: Fix assumption on the default policy
[deliverable/linux.git] / kernel / sched / fair.c
CommitLineData
bf0f6f24
IM
1/*
2 * Completely Fair Scheduling (CFS) Class (SCHED_NORMAL/SCHED_BATCH)
3 *
4 * Copyright (C) 2007 Red Hat, Inc., Ingo Molnar <mingo@redhat.com>
5 *
6 * Interactivity improvements by Mike Galbraith
7 * (C) 2007 Mike Galbraith <efault@gmx.de>
8 *
9 * Various enhancements by Dmitry Adamushko.
10 * (C) 2007 Dmitry Adamushko <dmitry.adamushko@gmail.com>
11 *
12 * Group scheduling enhancements by Srivatsa Vaddagiri
13 * Copyright IBM Corporation, 2007
14 * Author: Srivatsa Vaddagiri <vatsa@linux.vnet.ibm.com>
15 *
16 * Scaled math optimizations by Thomas Gleixner
17 * Copyright (C) 2007, Thomas Gleixner <tglx@linutronix.de>
21805085
PZ
18 *
19 * Adaptive scheduling granularity, math enhancements by Peter Zijlstra
90eec103 20 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra
bf0f6f24
IM
21 */
22
1983a922 23#include <linux/sched.h>
cb251765 24#include <linux/latencytop.h>
3436ae12 25#include <linux/cpumask.h>
83a0a96a 26#include <linux/cpuidle.h>
029632fb
PZ
27#include <linux/slab.h>
28#include <linux/profile.h>
29#include <linux/interrupt.h>
cbee9f88 30#include <linux/mempolicy.h>
e14808b4 31#include <linux/migrate.h>
cbee9f88 32#include <linux/task_work.h>
029632fb
PZ
33
34#include <trace/events/sched.h>
35
36#include "sched.h"
9745512c 37
bf0f6f24 38/*
21805085 39 * Targeted preemption latency for CPU-bound tasks:
864616ee 40 * (default: 6ms * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24 41 *
21805085 42 * NOTE: this latency value is not the same as the concept of
d274a4ce
IM
43 * 'timeslice length' - timeslices in CFS are of variable length
44 * and have no persistent notion like in traditional, time-slice
45 * based scheduling concepts.
bf0f6f24 46 *
d274a4ce
IM
47 * (to see the precise effective timeslice length of your workload,
48 * run vmstat and monitor the context-switches (cs) field)
bf0f6f24 49 */
21406928
MG
50unsigned int sysctl_sched_latency = 6000000ULL;
51unsigned int normalized_sysctl_sched_latency = 6000000ULL;
2bd8e6d4 52
1983a922
CE
53/*
54 * The initial- and re-scaling of tunables is configurable
55 * (default SCHED_TUNABLESCALING_LOG = *(1+ilog(ncpus))
56 *
57 * Options are:
58 * SCHED_TUNABLESCALING_NONE - unscaled, always *1
59 * SCHED_TUNABLESCALING_LOG - scaled logarithmical, *1+ilog(ncpus)
60 * SCHED_TUNABLESCALING_LINEAR - scaled linear, *ncpus
61 */
62enum sched_tunable_scaling sysctl_sched_tunable_scaling
63 = SCHED_TUNABLESCALING_LOG;
64
2bd8e6d4 65/*
b2be5e96 66 * Minimal preemption granularity for CPU-bound tasks:
864616ee 67 * (default: 0.75 msec * (1 + ilog(ncpus)), units: nanoseconds)
2bd8e6d4 68 */
0bf377bb
IM
69unsigned int sysctl_sched_min_granularity = 750000ULL;
70unsigned int normalized_sysctl_sched_min_granularity = 750000ULL;
21805085
PZ
71
72/*
b2be5e96
PZ
73 * is kept at sysctl_sched_latency / sysctl_sched_min_granularity
74 */
0bf377bb 75static unsigned int sched_nr_latency = 8;
b2be5e96
PZ
76
77/*
2bba22c5 78 * After fork, child runs first. If set to 0 (default) then
b2be5e96 79 * parent will (try to) run first.
21805085 80 */
2bba22c5 81unsigned int sysctl_sched_child_runs_first __read_mostly;
bf0f6f24 82
bf0f6f24
IM
83/*
84 * SCHED_OTHER wake-up granularity.
172e082a 85 * (default: 1 msec * (1 + ilog(ncpus)), units: nanoseconds)
bf0f6f24
IM
86 *
87 * This option delays the preemption effects of decoupled workloads
88 * and reduces their over-scheduling. Synchronous workloads will still
89 * have immediate wakeup/sleep latencies.
90 */
172e082a 91unsigned int sysctl_sched_wakeup_granularity = 1000000UL;
0bcdcf28 92unsigned int normalized_sysctl_sched_wakeup_granularity = 1000000UL;
bf0f6f24 93
da84d961
IM
94const_debug unsigned int sysctl_sched_migration_cost = 500000UL;
95
a7a4f8a7
PT
96/*
97 * The exponential sliding window over which load is averaged for shares
98 * distribution.
99 * (default: 10msec)
100 */
101unsigned int __read_mostly sysctl_sched_shares_window = 10000000UL;
102
ec12cb7f
PT
103#ifdef CONFIG_CFS_BANDWIDTH
104/*
105 * Amount of runtime to allocate from global (tg) to local (per-cfs_rq) pool
106 * each time a cfs_rq requests quota.
107 *
108 * Note: in the case that the slice exceeds the runtime remaining (either due
109 * to consumption or the quota being specified to be smaller than the slice)
110 * we will always only issue the remaining available time.
111 *
112 * default: 5 msec, units: microseconds
113 */
114unsigned int sysctl_sched_cfs_bandwidth_slice = 5000UL;
115#endif
116
3273163c
MR
117/*
118 * The margin used when comparing utilization with CPU capacity:
119 * util * 1024 < capacity * margin
120 */
121unsigned int capacity_margin = 1280; /* ~20% */
122
8527632d
PG
123static inline void update_load_add(struct load_weight *lw, unsigned long inc)
124{
125 lw->weight += inc;
126 lw->inv_weight = 0;
127}
128
129static inline void update_load_sub(struct load_weight *lw, unsigned long dec)
130{
131 lw->weight -= dec;
132 lw->inv_weight = 0;
133}
134
135static inline void update_load_set(struct load_weight *lw, unsigned long w)
136{
137 lw->weight = w;
138 lw->inv_weight = 0;
139}
140
029632fb
PZ
141/*
142 * Increase the granularity value when there are more CPUs,
143 * because with more CPUs the 'effective latency' as visible
144 * to users decreases. But the relationship is not linear,
145 * so pick a second-best guess by going with the log2 of the
146 * number of CPUs.
147 *
148 * This idea comes from the SD scheduler of Con Kolivas:
149 */
58ac93e4 150static unsigned int get_update_sysctl_factor(void)
029632fb 151{
58ac93e4 152 unsigned int cpus = min_t(unsigned int, num_online_cpus(), 8);
029632fb
PZ
153 unsigned int factor;
154
155 switch (sysctl_sched_tunable_scaling) {
156 case SCHED_TUNABLESCALING_NONE:
157 factor = 1;
158 break;
159 case SCHED_TUNABLESCALING_LINEAR:
160 factor = cpus;
161 break;
162 case SCHED_TUNABLESCALING_LOG:
163 default:
164 factor = 1 + ilog2(cpus);
165 break;
166 }
167
168 return factor;
169}
170
171static void update_sysctl(void)
172{
173 unsigned int factor = get_update_sysctl_factor();
174
175#define SET_SYSCTL(name) \
176 (sysctl_##name = (factor) * normalized_sysctl_##name)
177 SET_SYSCTL(sched_min_granularity);
178 SET_SYSCTL(sched_latency);
179 SET_SYSCTL(sched_wakeup_granularity);
180#undef SET_SYSCTL
181}
182
183void sched_init_granularity(void)
184{
185 update_sysctl();
186}
187
9dbdb155 188#define WMULT_CONST (~0U)
029632fb
PZ
189#define WMULT_SHIFT 32
190
9dbdb155
PZ
191static void __update_inv_weight(struct load_weight *lw)
192{
193 unsigned long w;
194
195 if (likely(lw->inv_weight))
196 return;
197
198 w = scale_load_down(lw->weight);
199
200 if (BITS_PER_LONG > 32 && unlikely(w >= WMULT_CONST))
201 lw->inv_weight = 1;
202 else if (unlikely(!w))
203 lw->inv_weight = WMULT_CONST;
204 else
205 lw->inv_weight = WMULT_CONST / w;
206}
029632fb
PZ
207
208/*
9dbdb155
PZ
209 * delta_exec * weight / lw.weight
210 * OR
211 * (delta_exec * (weight * lw->inv_weight)) >> WMULT_SHIFT
212 *
1c3de5e1 213 * Either weight := NICE_0_LOAD and lw \e sched_prio_to_wmult[], in which case
9dbdb155
PZ
214 * we're guaranteed shift stays positive because inv_weight is guaranteed to
215 * fit 32 bits, and NICE_0_LOAD gives another 10 bits; therefore shift >= 22.
216 *
217 * Or, weight =< lw.weight (because lw.weight is the runqueue weight), thus
218 * weight/lw.weight <= 1, and therefore our shift will also be positive.
029632fb 219 */
9dbdb155 220static u64 __calc_delta(u64 delta_exec, unsigned long weight, struct load_weight *lw)
029632fb 221{
9dbdb155
PZ
222 u64 fact = scale_load_down(weight);
223 int shift = WMULT_SHIFT;
029632fb 224
9dbdb155 225 __update_inv_weight(lw);
029632fb 226
9dbdb155
PZ
227 if (unlikely(fact >> 32)) {
228 while (fact >> 32) {
229 fact >>= 1;
230 shift--;
231 }
029632fb
PZ
232 }
233
9dbdb155
PZ
234 /* hint to use a 32x32->64 mul */
235 fact = (u64)(u32)fact * lw->inv_weight;
029632fb 236
9dbdb155
PZ
237 while (fact >> 32) {
238 fact >>= 1;
239 shift--;
240 }
029632fb 241
9dbdb155 242 return mul_u64_u32_shr(delta_exec, fact, shift);
029632fb
PZ
243}
244
245
246const struct sched_class fair_sched_class;
a4c2f00f 247
bf0f6f24
IM
248/**************************************************************
249 * CFS operations on generic schedulable entities:
250 */
251
62160e3f 252#ifdef CONFIG_FAIR_GROUP_SCHED
bf0f6f24 253
62160e3f 254/* cpu runqueue to which this cfs_rq is attached */
bf0f6f24
IM
255static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
256{
62160e3f 257 return cfs_rq->rq;
bf0f6f24
IM
258}
259
62160e3f
IM
260/* An entity is a task if it doesn't "own" a runqueue */
261#define entity_is_task(se) (!se->my_q)
bf0f6f24 262
8f48894f
PZ
263static inline struct task_struct *task_of(struct sched_entity *se)
264{
265#ifdef CONFIG_SCHED_DEBUG
266 WARN_ON_ONCE(!entity_is_task(se));
267#endif
268 return container_of(se, struct task_struct, se);
269}
270
b758149c
PZ
271/* Walk up scheduling entities hierarchy */
272#define for_each_sched_entity(se) \
273 for (; se; se = se->parent)
274
275static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
276{
277 return p->se.cfs_rq;
278}
279
280/* runqueue on which this entity is (to be) queued */
281static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
282{
283 return se->cfs_rq;
284}
285
286/* runqueue "owned" by this group */
287static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
288{
289 return grp->my_q;
290}
291
3d4b47b4
PZ
292static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
293{
294 if (!cfs_rq->on_list) {
67e86250
PT
295 /*
296 * Ensure we either appear before our parent (if already
297 * enqueued) or force our parent to appear after us when it is
298 * enqueued. The fact that we always enqueue bottom-up
299 * reduces this to two cases.
300 */
301 if (cfs_rq->tg->parent &&
302 cfs_rq->tg->parent->cfs_rq[cpu_of(rq_of(cfs_rq))]->on_list) {
303 list_add_rcu(&cfs_rq->leaf_cfs_rq_list,
304 &rq_of(cfs_rq)->leaf_cfs_rq_list);
305 } else {
306 list_add_tail_rcu(&cfs_rq->leaf_cfs_rq_list,
3d4b47b4 307 &rq_of(cfs_rq)->leaf_cfs_rq_list);
67e86250 308 }
3d4b47b4
PZ
309
310 cfs_rq->on_list = 1;
311 }
312}
313
314static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
315{
316 if (cfs_rq->on_list) {
317 list_del_rcu(&cfs_rq->leaf_cfs_rq_list);
318 cfs_rq->on_list = 0;
319 }
320}
321
b758149c
PZ
322/* Iterate thr' all leaf cfs_rq's on a runqueue */
323#define for_each_leaf_cfs_rq(rq, cfs_rq) \
324 list_for_each_entry_rcu(cfs_rq, &rq->leaf_cfs_rq_list, leaf_cfs_rq_list)
325
326/* Do the two (enqueued) entities belong to the same group ? */
fed14d45 327static inline struct cfs_rq *
b758149c
PZ
328is_same_group(struct sched_entity *se, struct sched_entity *pse)
329{
330 if (se->cfs_rq == pse->cfs_rq)
fed14d45 331 return se->cfs_rq;
b758149c 332
fed14d45 333 return NULL;
b758149c
PZ
334}
335
336static inline struct sched_entity *parent_entity(struct sched_entity *se)
337{
338 return se->parent;
339}
340
464b7527
PZ
341static void
342find_matching_se(struct sched_entity **se, struct sched_entity **pse)
343{
344 int se_depth, pse_depth;
345
346 /*
347 * preemption test can be made between sibling entities who are in the
348 * same cfs_rq i.e who have a common parent. Walk up the hierarchy of
349 * both tasks until we find their ancestors who are siblings of common
350 * parent.
351 */
352
353 /* First walk up until both entities are at same depth */
fed14d45
PZ
354 se_depth = (*se)->depth;
355 pse_depth = (*pse)->depth;
464b7527
PZ
356
357 while (se_depth > pse_depth) {
358 se_depth--;
359 *se = parent_entity(*se);
360 }
361
362 while (pse_depth > se_depth) {
363 pse_depth--;
364 *pse = parent_entity(*pse);
365 }
366
367 while (!is_same_group(*se, *pse)) {
368 *se = parent_entity(*se);
369 *pse = parent_entity(*pse);
370 }
371}
372
8f48894f
PZ
373#else /* !CONFIG_FAIR_GROUP_SCHED */
374
375static inline struct task_struct *task_of(struct sched_entity *se)
376{
377 return container_of(se, struct task_struct, se);
378}
bf0f6f24 379
62160e3f
IM
380static inline struct rq *rq_of(struct cfs_rq *cfs_rq)
381{
382 return container_of(cfs_rq, struct rq, cfs);
bf0f6f24
IM
383}
384
385#define entity_is_task(se) 1
386
b758149c
PZ
387#define for_each_sched_entity(se) \
388 for (; se; se = NULL)
bf0f6f24 389
b758149c 390static inline struct cfs_rq *task_cfs_rq(struct task_struct *p)
bf0f6f24 391{
b758149c 392 return &task_rq(p)->cfs;
bf0f6f24
IM
393}
394
b758149c
PZ
395static inline struct cfs_rq *cfs_rq_of(struct sched_entity *se)
396{
397 struct task_struct *p = task_of(se);
398 struct rq *rq = task_rq(p);
399
400 return &rq->cfs;
401}
402
403/* runqueue "owned" by this group */
404static inline struct cfs_rq *group_cfs_rq(struct sched_entity *grp)
405{
406 return NULL;
407}
408
3d4b47b4
PZ
409static inline void list_add_leaf_cfs_rq(struct cfs_rq *cfs_rq)
410{
411}
412
413static inline void list_del_leaf_cfs_rq(struct cfs_rq *cfs_rq)
414{
415}
416
b758149c
PZ
417#define for_each_leaf_cfs_rq(rq, cfs_rq) \
418 for (cfs_rq = &rq->cfs; cfs_rq; cfs_rq = NULL)
419
b758149c
PZ
420static inline struct sched_entity *parent_entity(struct sched_entity *se)
421{
422 return NULL;
423}
424
464b7527
PZ
425static inline void
426find_matching_se(struct sched_entity **se, struct sched_entity **pse)
427{
428}
429
b758149c
PZ
430#endif /* CONFIG_FAIR_GROUP_SCHED */
431
6c16a6dc 432static __always_inline
9dbdb155 433void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec);
bf0f6f24
IM
434
435/**************************************************************
436 * Scheduling class tree data structure manipulation methods:
437 */
438
1bf08230 439static inline u64 max_vruntime(u64 max_vruntime, u64 vruntime)
02e0431a 440{
1bf08230 441 s64 delta = (s64)(vruntime - max_vruntime);
368059a9 442 if (delta > 0)
1bf08230 443 max_vruntime = vruntime;
02e0431a 444
1bf08230 445 return max_vruntime;
02e0431a
PZ
446}
447
0702e3eb 448static inline u64 min_vruntime(u64 min_vruntime, u64 vruntime)
b0ffd246
PZ
449{
450 s64 delta = (s64)(vruntime - min_vruntime);
451 if (delta < 0)
452 min_vruntime = vruntime;
453
454 return min_vruntime;
455}
456
54fdc581
FC
457static inline int entity_before(struct sched_entity *a,
458 struct sched_entity *b)
459{
460 return (s64)(a->vruntime - b->vruntime) < 0;
461}
462
1af5f730
PZ
463static void update_min_vruntime(struct cfs_rq *cfs_rq)
464{
465 u64 vruntime = cfs_rq->min_vruntime;
466
467 if (cfs_rq->curr)
468 vruntime = cfs_rq->curr->vruntime;
469
470 if (cfs_rq->rb_leftmost) {
471 struct sched_entity *se = rb_entry(cfs_rq->rb_leftmost,
472 struct sched_entity,
473 run_node);
474
e17036da 475 if (!cfs_rq->curr)
1af5f730
PZ
476 vruntime = se->vruntime;
477 else
478 vruntime = min_vruntime(vruntime, se->vruntime);
479 }
480
1bf08230 481 /* ensure we never gain time by being placed backwards. */
1af5f730 482 cfs_rq->min_vruntime = max_vruntime(cfs_rq->min_vruntime, vruntime);
3fe1698b
PZ
483#ifndef CONFIG_64BIT
484 smp_wmb();
485 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
486#endif
1af5f730
PZ
487}
488
bf0f6f24
IM
489/*
490 * Enqueue an entity into the rb-tree:
491 */
0702e3eb 492static void __enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
493{
494 struct rb_node **link = &cfs_rq->tasks_timeline.rb_node;
495 struct rb_node *parent = NULL;
496 struct sched_entity *entry;
bf0f6f24
IM
497 int leftmost = 1;
498
499 /*
500 * Find the right place in the rbtree:
501 */
502 while (*link) {
503 parent = *link;
504 entry = rb_entry(parent, struct sched_entity, run_node);
505 /*
506 * We dont care about collisions. Nodes with
507 * the same key stay together.
508 */
2bd2d6f2 509 if (entity_before(se, entry)) {
bf0f6f24
IM
510 link = &parent->rb_left;
511 } else {
512 link = &parent->rb_right;
513 leftmost = 0;
514 }
515 }
516
517 /*
518 * Maintain a cache of leftmost tree entries (it is frequently
519 * used):
520 */
1af5f730 521 if (leftmost)
57cb499d 522 cfs_rq->rb_leftmost = &se->run_node;
bf0f6f24
IM
523
524 rb_link_node(&se->run_node, parent, link);
525 rb_insert_color(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
526}
527
0702e3eb 528static void __dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 529{
3fe69747
PZ
530 if (cfs_rq->rb_leftmost == &se->run_node) {
531 struct rb_node *next_node;
3fe69747
PZ
532
533 next_node = rb_next(&se->run_node);
534 cfs_rq->rb_leftmost = next_node;
3fe69747 535 }
e9acbff6 536
bf0f6f24 537 rb_erase(&se->run_node, &cfs_rq->tasks_timeline);
bf0f6f24
IM
538}
539
029632fb 540struct sched_entity *__pick_first_entity(struct cfs_rq *cfs_rq)
bf0f6f24 541{
f4b6755f
PZ
542 struct rb_node *left = cfs_rq->rb_leftmost;
543
544 if (!left)
545 return NULL;
546
547 return rb_entry(left, struct sched_entity, run_node);
bf0f6f24
IM
548}
549
ac53db59
RR
550static struct sched_entity *__pick_next_entity(struct sched_entity *se)
551{
552 struct rb_node *next = rb_next(&se->run_node);
553
554 if (!next)
555 return NULL;
556
557 return rb_entry(next, struct sched_entity, run_node);
558}
559
560#ifdef CONFIG_SCHED_DEBUG
029632fb 561struct sched_entity *__pick_last_entity(struct cfs_rq *cfs_rq)
aeb73b04 562{
7eee3e67 563 struct rb_node *last = rb_last(&cfs_rq->tasks_timeline);
aeb73b04 564
70eee74b
BS
565 if (!last)
566 return NULL;
7eee3e67
IM
567
568 return rb_entry(last, struct sched_entity, run_node);
aeb73b04
PZ
569}
570
bf0f6f24
IM
571/**************************************************************
572 * Scheduling class statistics methods:
573 */
574
acb4a848 575int sched_proc_update_handler(struct ctl_table *table, int write,
8d65af78 576 void __user *buffer, size_t *lenp,
b2be5e96
PZ
577 loff_t *ppos)
578{
8d65af78 579 int ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
58ac93e4 580 unsigned int factor = get_update_sysctl_factor();
b2be5e96
PZ
581
582 if (ret || !write)
583 return ret;
584
585 sched_nr_latency = DIV_ROUND_UP(sysctl_sched_latency,
586 sysctl_sched_min_granularity);
587
acb4a848
CE
588#define WRT_SYSCTL(name) \
589 (normalized_sysctl_##name = sysctl_##name / (factor))
590 WRT_SYSCTL(sched_min_granularity);
591 WRT_SYSCTL(sched_latency);
592 WRT_SYSCTL(sched_wakeup_granularity);
acb4a848
CE
593#undef WRT_SYSCTL
594
b2be5e96
PZ
595 return 0;
596}
597#endif
647e7cac 598
a7be37ac 599/*
f9c0b095 600 * delta /= w
a7be37ac 601 */
9dbdb155 602static inline u64 calc_delta_fair(u64 delta, struct sched_entity *se)
a7be37ac 603{
f9c0b095 604 if (unlikely(se->load.weight != NICE_0_LOAD))
9dbdb155 605 delta = __calc_delta(delta, NICE_0_LOAD, &se->load);
a7be37ac
PZ
606
607 return delta;
608}
609
647e7cac
IM
610/*
611 * The idea is to set a period in which each task runs once.
612 *
532b1858 613 * When there are too many tasks (sched_nr_latency) we have to stretch
647e7cac
IM
614 * this period because otherwise the slices get too small.
615 *
616 * p = (nr <= nl) ? l : l*nr/nl
617 */
4d78e7b6
PZ
618static u64 __sched_period(unsigned long nr_running)
619{
8e2b0bf3
BF
620 if (unlikely(nr_running > sched_nr_latency))
621 return nr_running * sysctl_sched_min_granularity;
622 else
623 return sysctl_sched_latency;
4d78e7b6
PZ
624}
625
647e7cac
IM
626/*
627 * We calculate the wall-time slice from the period by taking a part
628 * proportional to the weight.
629 *
f9c0b095 630 * s = p*P[w/rw]
647e7cac 631 */
6d0f0ebd 632static u64 sched_slice(struct cfs_rq *cfs_rq, struct sched_entity *se)
21805085 633{
0a582440 634 u64 slice = __sched_period(cfs_rq->nr_running + !se->on_rq);
f9c0b095 635
0a582440 636 for_each_sched_entity(se) {
6272d68c 637 struct load_weight *load;
3104bf03 638 struct load_weight lw;
6272d68c
LM
639
640 cfs_rq = cfs_rq_of(se);
641 load = &cfs_rq->load;
f9c0b095 642
0a582440 643 if (unlikely(!se->on_rq)) {
3104bf03 644 lw = cfs_rq->load;
0a582440
MG
645
646 update_load_add(&lw, se->load.weight);
647 load = &lw;
648 }
9dbdb155 649 slice = __calc_delta(slice, se->load.weight, load);
0a582440
MG
650 }
651 return slice;
bf0f6f24
IM
652}
653
647e7cac 654/*
660cc00f 655 * We calculate the vruntime slice of a to-be-inserted task.
647e7cac 656 *
f9c0b095 657 * vs = s/w
647e7cac 658 */
f9c0b095 659static u64 sched_vslice(struct cfs_rq *cfs_rq, struct sched_entity *se)
67e9fb2a 660{
f9c0b095 661 return calc_delta_fair(sched_slice(cfs_rq, se), se);
a7be37ac
PZ
662}
663
a75cdaa9 664#ifdef CONFIG_SMP
772bd008 665static int select_idle_sibling(struct task_struct *p, int prev_cpu, int cpu);
fb13c7ee
MG
666static unsigned long task_h_load(struct task_struct *p);
667
9d89c257
YD
668/*
669 * We choose a half-life close to 1 scheduling period.
84fb5a18
LY
670 * Note: The tables runnable_avg_yN_inv and runnable_avg_yN_sum are
671 * dependent on this value.
9d89c257
YD
672 */
673#define LOAD_AVG_PERIOD 32
674#define LOAD_AVG_MAX 47742 /* maximum possible load avg */
84fb5a18 675#define LOAD_AVG_MAX_N 345 /* number of full periods to produce LOAD_AVG_MAX */
a75cdaa9 676
540247fb
YD
677/* Give new sched_entity start runnable values to heavy its load in infant time */
678void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9 679{
540247fb 680 struct sched_avg *sa = &se->avg;
a75cdaa9 681
9d89c257
YD
682 sa->last_update_time = 0;
683 /*
684 * sched_avg's period_contrib should be strictly less then 1024, so
685 * we give it 1023 to make sure it is almost a period (1024us), and
686 * will definitely be update (after enqueue).
687 */
688 sa->period_contrib = 1023;
540247fb 689 sa->load_avg = scale_load_down(se->load.weight);
9d89c257 690 sa->load_sum = sa->load_avg * LOAD_AVG_MAX;
2b8c41da
YD
691 /*
692 * At this point, util_avg won't be used in select_task_rq_fair anyway
693 */
694 sa->util_avg = 0;
695 sa->util_sum = 0;
9d89c257 696 /* when this task enqueue'ed, it will contribute to its cfs_rq's load_avg */
a75cdaa9 697}
7ea241af 698
7dc603c9
PZ
699static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq);
700static int update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq);
3d30544f 701static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force);
7dc603c9
PZ
702static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se);
703
2b8c41da
YD
704/*
705 * With new tasks being created, their initial util_avgs are extrapolated
706 * based on the cfs_rq's current util_avg:
707 *
708 * util_avg = cfs_rq->util_avg / (cfs_rq->load_avg + 1) * se.load.weight
709 *
710 * However, in many cases, the above util_avg does not give a desired
711 * value. Moreover, the sum of the util_avgs may be divergent, such
712 * as when the series is a harmonic series.
713 *
714 * To solve this problem, we also cap the util_avg of successive tasks to
715 * only 1/2 of the left utilization budget:
716 *
717 * util_avg_cap = (1024 - cfs_rq->avg.util_avg) / 2^n
718 *
719 * where n denotes the nth task.
720 *
721 * For example, a simplest series from the beginning would be like:
722 *
723 * task util_avg: 512, 256, 128, 64, 32, 16, 8, ...
724 * cfs_rq util_avg: 512, 768, 896, 960, 992, 1008, 1016, ...
725 *
726 * Finally, that extrapolated util_avg is clamped to the cap (util_avg_cap)
727 * if util_avg > util_avg_cap.
728 */
729void post_init_entity_util_avg(struct sched_entity *se)
730{
731 struct cfs_rq *cfs_rq = cfs_rq_of(se);
732 struct sched_avg *sa = &se->avg;
172895e6 733 long cap = (long)(SCHED_CAPACITY_SCALE - cfs_rq->avg.util_avg) / 2;
7dc603c9 734 u64 now = cfs_rq_clock_task(cfs_rq);
2b8c41da
YD
735
736 if (cap > 0) {
737 if (cfs_rq->avg.util_avg != 0) {
738 sa->util_avg = cfs_rq->avg.util_avg * se->load.weight;
739 sa->util_avg /= (cfs_rq->avg.load_avg + 1);
740
741 if (sa->util_avg > cap)
742 sa->util_avg = cap;
743 } else {
744 sa->util_avg = cap;
745 }
746 sa->util_sum = sa->util_avg * LOAD_AVG_MAX;
747 }
7dc603c9
PZ
748
749 if (entity_is_task(se)) {
750 struct task_struct *p = task_of(se);
751 if (p->sched_class != &fair_sched_class) {
752 /*
753 * For !fair tasks do:
754 *
755 update_cfs_rq_load_avg(now, cfs_rq, false);
756 attach_entity_load_avg(cfs_rq, se);
757 switched_from_fair(rq, p);
758 *
759 * such that the next switched_to_fair() has the
760 * expected state.
761 */
762 se->avg.last_update_time = now;
763 return;
764 }
765 }
766
7c3edd2c 767 update_cfs_rq_load_avg(now, cfs_rq, false);
7dc603c9 768 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 769 update_tg_load_avg(cfs_rq, false);
2b8c41da
YD
770}
771
7dc603c9 772#else /* !CONFIG_SMP */
540247fb 773void init_entity_runnable_average(struct sched_entity *se)
a75cdaa9
AS
774{
775}
2b8c41da
YD
776void post_init_entity_util_avg(struct sched_entity *se)
777{
778}
3d30544f
PZ
779static void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
780{
781}
7dc603c9 782#endif /* CONFIG_SMP */
a75cdaa9 783
bf0f6f24 784/*
9dbdb155 785 * Update the current task's runtime statistics.
bf0f6f24 786 */
b7cc0896 787static void update_curr(struct cfs_rq *cfs_rq)
bf0f6f24 788{
429d43bc 789 struct sched_entity *curr = cfs_rq->curr;
78becc27 790 u64 now = rq_clock_task(rq_of(cfs_rq));
9dbdb155 791 u64 delta_exec;
bf0f6f24
IM
792
793 if (unlikely(!curr))
794 return;
795
9dbdb155
PZ
796 delta_exec = now - curr->exec_start;
797 if (unlikely((s64)delta_exec <= 0))
34f28ecd 798 return;
bf0f6f24 799
8ebc91d9 800 curr->exec_start = now;
d842de87 801
9dbdb155
PZ
802 schedstat_set(curr->statistics.exec_max,
803 max(delta_exec, curr->statistics.exec_max));
804
805 curr->sum_exec_runtime += delta_exec;
ae92882e 806 schedstat_add(cfs_rq->exec_clock, delta_exec);
9dbdb155
PZ
807
808 curr->vruntime += calc_delta_fair(delta_exec, curr);
809 update_min_vruntime(cfs_rq);
810
d842de87
SV
811 if (entity_is_task(curr)) {
812 struct task_struct *curtask = task_of(curr);
813
f977bb49 814 trace_sched_stat_runtime(curtask, delta_exec, curr->vruntime);
d842de87 815 cpuacct_charge(curtask, delta_exec);
f06febc9 816 account_group_exec_runtime(curtask, delta_exec);
d842de87 817 }
ec12cb7f
PT
818
819 account_cfs_rq_runtime(cfs_rq, delta_exec);
bf0f6f24
IM
820}
821
6e998916
SG
822static void update_curr_fair(struct rq *rq)
823{
824 update_curr(cfs_rq_of(&rq->curr->se));
825}
826
bf0f6f24 827static inline void
5870db5b 828update_stats_wait_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 829{
4fa8d299
JP
830 u64 wait_start, prev_wait_start;
831
832 if (!schedstat_enabled())
833 return;
834
835 wait_start = rq_clock(rq_of(cfs_rq));
836 prev_wait_start = schedstat_val(se->statistics.wait_start);
3ea94de1
JP
837
838 if (entity_is_task(se) && task_on_rq_migrating(task_of(se)) &&
4fa8d299
JP
839 likely(wait_start > prev_wait_start))
840 wait_start -= prev_wait_start;
3ea94de1 841
4fa8d299 842 schedstat_set(se->statistics.wait_start, wait_start);
bf0f6f24
IM
843}
844
4fa8d299 845static inline void
3ea94de1
JP
846update_stats_wait_end(struct cfs_rq *cfs_rq, struct sched_entity *se)
847{
848 struct task_struct *p;
cb251765
MG
849 u64 delta;
850
4fa8d299
JP
851 if (!schedstat_enabled())
852 return;
853
854 delta = rq_clock(rq_of(cfs_rq)) - schedstat_val(se->statistics.wait_start);
3ea94de1
JP
855
856 if (entity_is_task(se)) {
857 p = task_of(se);
858 if (task_on_rq_migrating(p)) {
859 /*
860 * Preserve migrating task's wait time so wait_start
861 * time stamp can be adjusted to accumulate wait time
862 * prior to migration.
863 */
4fa8d299 864 schedstat_set(se->statistics.wait_start, delta);
3ea94de1
JP
865 return;
866 }
867 trace_sched_stat_wait(p, delta);
868 }
869
4fa8d299
JP
870 schedstat_set(se->statistics.wait_max,
871 max(schedstat_val(se->statistics.wait_max), delta));
872 schedstat_inc(se->statistics.wait_count);
873 schedstat_add(se->statistics.wait_sum, delta);
874 schedstat_set(se->statistics.wait_start, 0);
3ea94de1 875}
3ea94de1 876
4fa8d299 877static inline void
1a3d027c
JP
878update_stats_enqueue_sleeper(struct cfs_rq *cfs_rq, struct sched_entity *se)
879{
880 struct task_struct *tsk = NULL;
4fa8d299
JP
881 u64 sleep_start, block_start;
882
883 if (!schedstat_enabled())
884 return;
885
886 sleep_start = schedstat_val(se->statistics.sleep_start);
887 block_start = schedstat_val(se->statistics.block_start);
1a3d027c
JP
888
889 if (entity_is_task(se))
890 tsk = task_of(se);
891
4fa8d299
JP
892 if (sleep_start) {
893 u64 delta = rq_clock(rq_of(cfs_rq)) - sleep_start;
1a3d027c
JP
894
895 if ((s64)delta < 0)
896 delta = 0;
897
4fa8d299
JP
898 if (unlikely(delta > schedstat_val(se->statistics.sleep_max)))
899 schedstat_set(se->statistics.sleep_max, delta);
1a3d027c 900
4fa8d299
JP
901 schedstat_set(se->statistics.sleep_start, 0);
902 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
903
904 if (tsk) {
905 account_scheduler_latency(tsk, delta >> 10, 1);
906 trace_sched_stat_sleep(tsk, delta);
907 }
908 }
4fa8d299
JP
909 if (block_start) {
910 u64 delta = rq_clock(rq_of(cfs_rq)) - block_start;
1a3d027c
JP
911
912 if ((s64)delta < 0)
913 delta = 0;
914
4fa8d299
JP
915 if (unlikely(delta > schedstat_val(se->statistics.block_max)))
916 schedstat_set(se->statistics.block_max, delta);
1a3d027c 917
4fa8d299
JP
918 schedstat_set(se->statistics.block_start, 0);
919 schedstat_add(se->statistics.sum_sleep_runtime, delta);
1a3d027c
JP
920
921 if (tsk) {
922 if (tsk->in_iowait) {
4fa8d299
JP
923 schedstat_add(se->statistics.iowait_sum, delta);
924 schedstat_inc(se->statistics.iowait_count);
1a3d027c
JP
925 trace_sched_stat_iowait(tsk, delta);
926 }
927
928 trace_sched_stat_blocked(tsk, delta);
929
930 /*
931 * Blocking time is in units of nanosecs, so shift by
932 * 20 to get a milliseconds-range estimation of the
933 * amount of time that the task spent sleeping:
934 */
935 if (unlikely(prof_on == SLEEP_PROFILING)) {
936 profile_hits(SLEEP_PROFILING,
937 (void *)get_wchan(tsk),
938 delta >> 20);
939 }
940 account_scheduler_latency(tsk, delta >> 10, 0);
941 }
942 }
3ea94de1 943}
3ea94de1 944
bf0f6f24
IM
945/*
946 * Task is being enqueued - update stats:
947 */
cb251765 948static inline void
1a3d027c 949update_stats_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 950{
4fa8d299
JP
951 if (!schedstat_enabled())
952 return;
953
bf0f6f24
IM
954 /*
955 * Are we enqueueing a waiting task? (for current tasks
956 * a dequeue/enqueue event is a NOP)
957 */
429d43bc 958 if (se != cfs_rq->curr)
5870db5b 959 update_stats_wait_start(cfs_rq, se);
1a3d027c
JP
960
961 if (flags & ENQUEUE_WAKEUP)
962 update_stats_enqueue_sleeper(cfs_rq, se);
bf0f6f24
IM
963}
964
bf0f6f24 965static inline void
cb251765 966update_stats_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 967{
4fa8d299
JP
968
969 if (!schedstat_enabled())
970 return;
971
bf0f6f24
IM
972 /*
973 * Mark the end of the wait period if dequeueing a
974 * waiting task:
975 */
429d43bc 976 if (se != cfs_rq->curr)
9ef0a961 977 update_stats_wait_end(cfs_rq, se);
cb251765 978
4fa8d299
JP
979 if ((flags & DEQUEUE_SLEEP) && entity_is_task(se)) {
980 struct task_struct *tsk = task_of(se);
cb251765 981
4fa8d299
JP
982 if (tsk->state & TASK_INTERRUPTIBLE)
983 schedstat_set(se->statistics.sleep_start,
984 rq_clock(rq_of(cfs_rq)));
985 if (tsk->state & TASK_UNINTERRUPTIBLE)
986 schedstat_set(se->statistics.block_start,
987 rq_clock(rq_of(cfs_rq)));
cb251765 988 }
cb251765
MG
989}
990
bf0f6f24
IM
991/*
992 * We are picking a new current task - update its stats:
993 */
994static inline void
79303e9e 995update_stats_curr_start(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24
IM
996{
997 /*
998 * We are starting a new run period:
999 */
78becc27 1000 se->exec_start = rq_clock_task(rq_of(cfs_rq));
bf0f6f24
IM
1001}
1002
bf0f6f24
IM
1003/**************************************************
1004 * Scheduling class queueing methods:
1005 */
1006
cbee9f88
PZ
1007#ifdef CONFIG_NUMA_BALANCING
1008/*
598f0ec0
MG
1009 * Approximate time to scan a full NUMA task in ms. The task scan period is
1010 * calculated based on the tasks virtual memory size and
1011 * numa_balancing_scan_size.
cbee9f88 1012 */
598f0ec0
MG
1013unsigned int sysctl_numa_balancing_scan_period_min = 1000;
1014unsigned int sysctl_numa_balancing_scan_period_max = 60000;
6e5fb223
PZ
1015
1016/* Portion of address space to scan in MB */
1017unsigned int sysctl_numa_balancing_scan_size = 256;
cbee9f88 1018
4b96a29b
PZ
1019/* Scan @scan_size MB every @scan_period after an initial @scan_delay in ms */
1020unsigned int sysctl_numa_balancing_scan_delay = 1000;
1021
598f0ec0
MG
1022static unsigned int task_nr_scan_windows(struct task_struct *p)
1023{
1024 unsigned long rss = 0;
1025 unsigned long nr_scan_pages;
1026
1027 /*
1028 * Calculations based on RSS as non-present and empty pages are skipped
1029 * by the PTE scanner and NUMA hinting faults should be trapped based
1030 * on resident pages
1031 */
1032 nr_scan_pages = sysctl_numa_balancing_scan_size << (20 - PAGE_SHIFT);
1033 rss = get_mm_rss(p->mm);
1034 if (!rss)
1035 rss = nr_scan_pages;
1036
1037 rss = round_up(rss, nr_scan_pages);
1038 return rss / nr_scan_pages;
1039}
1040
1041/* For sanitys sake, never scan more PTEs than MAX_SCAN_WINDOW MB/sec. */
1042#define MAX_SCAN_WINDOW 2560
1043
1044static unsigned int task_scan_min(struct task_struct *p)
1045{
316c1608 1046 unsigned int scan_size = READ_ONCE(sysctl_numa_balancing_scan_size);
598f0ec0
MG
1047 unsigned int scan, floor;
1048 unsigned int windows = 1;
1049
64192658
KT
1050 if (scan_size < MAX_SCAN_WINDOW)
1051 windows = MAX_SCAN_WINDOW / scan_size;
598f0ec0
MG
1052 floor = 1000 / windows;
1053
1054 scan = sysctl_numa_balancing_scan_period_min / task_nr_scan_windows(p);
1055 return max_t(unsigned int, floor, scan);
1056}
1057
1058static unsigned int task_scan_max(struct task_struct *p)
1059{
1060 unsigned int smin = task_scan_min(p);
1061 unsigned int smax;
1062
1063 /* Watch for min being lower than max due to floor calculations */
1064 smax = sysctl_numa_balancing_scan_period_max / task_nr_scan_windows(p);
1065 return max(smin, smax);
1066}
1067
0ec8aa00
PZ
1068static void account_numa_enqueue(struct rq *rq, struct task_struct *p)
1069{
1070 rq->nr_numa_running += (p->numa_preferred_nid != -1);
1071 rq->nr_preferred_running += (p->numa_preferred_nid == task_node(p));
1072}
1073
1074static void account_numa_dequeue(struct rq *rq, struct task_struct *p)
1075{
1076 rq->nr_numa_running -= (p->numa_preferred_nid != -1);
1077 rq->nr_preferred_running -= (p->numa_preferred_nid == task_node(p));
1078}
1079
8c8a743c
PZ
1080struct numa_group {
1081 atomic_t refcount;
1082
1083 spinlock_t lock; /* nr_tasks, tasks */
1084 int nr_tasks;
e29cf08b 1085 pid_t gid;
4142c3eb 1086 int active_nodes;
8c8a743c
PZ
1087
1088 struct rcu_head rcu;
989348b5 1089 unsigned long total_faults;
4142c3eb 1090 unsigned long max_faults_cpu;
7e2703e6
RR
1091 /*
1092 * Faults_cpu is used to decide whether memory should move
1093 * towards the CPU. As a consequence, these stats are weighted
1094 * more by CPU use than by memory faults.
1095 */
50ec8a40 1096 unsigned long *faults_cpu;
989348b5 1097 unsigned long faults[0];
8c8a743c
PZ
1098};
1099
be1e4e76
RR
1100/* Shared or private faults. */
1101#define NR_NUMA_HINT_FAULT_TYPES 2
1102
1103/* Memory and CPU locality */
1104#define NR_NUMA_HINT_FAULT_STATS (NR_NUMA_HINT_FAULT_TYPES * 2)
1105
1106/* Averaged statistics, and temporary buffers. */
1107#define NR_NUMA_HINT_FAULT_BUCKETS (NR_NUMA_HINT_FAULT_STATS * 2)
1108
e29cf08b
MG
1109pid_t task_numa_group_id(struct task_struct *p)
1110{
1111 return p->numa_group ? p->numa_group->gid : 0;
1112}
1113
44dba3d5
IM
1114/*
1115 * The averaged statistics, shared & private, memory & cpu,
1116 * occupy the first half of the array. The second half of the
1117 * array is for current counters, which are averaged into the
1118 * first set by task_numa_placement.
1119 */
1120static inline int task_faults_idx(enum numa_faults_stats s, int nid, int priv)
ac8e895b 1121{
44dba3d5 1122 return NR_NUMA_HINT_FAULT_TYPES * (s * nr_node_ids + nid) + priv;
ac8e895b
MG
1123}
1124
1125static inline unsigned long task_faults(struct task_struct *p, int nid)
1126{
44dba3d5 1127 if (!p->numa_faults)
ac8e895b
MG
1128 return 0;
1129
44dba3d5
IM
1130 return p->numa_faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1131 p->numa_faults[task_faults_idx(NUMA_MEM, nid, 1)];
ac8e895b
MG
1132}
1133
83e1d2cd
MG
1134static inline unsigned long group_faults(struct task_struct *p, int nid)
1135{
1136 if (!p->numa_group)
1137 return 0;
1138
44dba3d5
IM
1139 return p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 0)] +
1140 p->numa_group->faults[task_faults_idx(NUMA_MEM, nid, 1)];
83e1d2cd
MG
1141}
1142
20e07dea
RR
1143static inline unsigned long group_faults_cpu(struct numa_group *group, int nid)
1144{
44dba3d5
IM
1145 return group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 0)] +
1146 group->faults_cpu[task_faults_idx(NUMA_MEM, nid, 1)];
20e07dea
RR
1147}
1148
4142c3eb
RR
1149/*
1150 * A node triggering more than 1/3 as many NUMA faults as the maximum is
1151 * considered part of a numa group's pseudo-interleaving set. Migrations
1152 * between these nodes are slowed down, to allow things to settle down.
1153 */
1154#define ACTIVE_NODE_FRACTION 3
1155
1156static bool numa_is_active_node(int nid, struct numa_group *ng)
1157{
1158 return group_faults_cpu(ng, nid) * ACTIVE_NODE_FRACTION > ng->max_faults_cpu;
1159}
1160
6c6b1193
RR
1161/* Handle placement on systems where not all nodes are directly connected. */
1162static unsigned long score_nearby_nodes(struct task_struct *p, int nid,
1163 int maxdist, bool task)
1164{
1165 unsigned long score = 0;
1166 int node;
1167
1168 /*
1169 * All nodes are directly connected, and the same distance
1170 * from each other. No need for fancy placement algorithms.
1171 */
1172 if (sched_numa_topology_type == NUMA_DIRECT)
1173 return 0;
1174
1175 /*
1176 * This code is called for each node, introducing N^2 complexity,
1177 * which should be ok given the number of nodes rarely exceeds 8.
1178 */
1179 for_each_online_node(node) {
1180 unsigned long faults;
1181 int dist = node_distance(nid, node);
1182
1183 /*
1184 * The furthest away nodes in the system are not interesting
1185 * for placement; nid was already counted.
1186 */
1187 if (dist == sched_max_numa_distance || node == nid)
1188 continue;
1189
1190 /*
1191 * On systems with a backplane NUMA topology, compare groups
1192 * of nodes, and move tasks towards the group with the most
1193 * memory accesses. When comparing two nodes at distance
1194 * "hoplimit", only nodes closer by than "hoplimit" are part
1195 * of each group. Skip other nodes.
1196 */
1197 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1198 dist > maxdist)
1199 continue;
1200
1201 /* Add up the faults from nearby nodes. */
1202 if (task)
1203 faults = task_faults(p, node);
1204 else
1205 faults = group_faults(p, node);
1206
1207 /*
1208 * On systems with a glueless mesh NUMA topology, there are
1209 * no fixed "groups of nodes". Instead, nodes that are not
1210 * directly connected bounce traffic through intermediate
1211 * nodes; a numa_group can occupy any set of nodes.
1212 * The further away a node is, the less the faults count.
1213 * This seems to result in good task placement.
1214 */
1215 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1216 faults *= (sched_max_numa_distance - dist);
1217 faults /= (sched_max_numa_distance - LOCAL_DISTANCE);
1218 }
1219
1220 score += faults;
1221 }
1222
1223 return score;
1224}
1225
83e1d2cd
MG
1226/*
1227 * These return the fraction of accesses done by a particular task, or
1228 * task group, on a particular numa node. The group weight is given a
1229 * larger multiplier, in order to group tasks together that are almost
1230 * evenly spread out between numa nodes.
1231 */
7bd95320
RR
1232static inline unsigned long task_weight(struct task_struct *p, int nid,
1233 int dist)
83e1d2cd 1234{
7bd95320 1235 unsigned long faults, total_faults;
83e1d2cd 1236
44dba3d5 1237 if (!p->numa_faults)
83e1d2cd
MG
1238 return 0;
1239
1240 total_faults = p->total_numa_faults;
1241
1242 if (!total_faults)
1243 return 0;
1244
7bd95320 1245 faults = task_faults(p, nid);
6c6b1193
RR
1246 faults += score_nearby_nodes(p, nid, dist, true);
1247
7bd95320 1248 return 1000 * faults / total_faults;
83e1d2cd
MG
1249}
1250
7bd95320
RR
1251static inline unsigned long group_weight(struct task_struct *p, int nid,
1252 int dist)
83e1d2cd 1253{
7bd95320
RR
1254 unsigned long faults, total_faults;
1255
1256 if (!p->numa_group)
1257 return 0;
1258
1259 total_faults = p->numa_group->total_faults;
1260
1261 if (!total_faults)
83e1d2cd
MG
1262 return 0;
1263
7bd95320 1264 faults = group_faults(p, nid);
6c6b1193
RR
1265 faults += score_nearby_nodes(p, nid, dist, false);
1266
7bd95320 1267 return 1000 * faults / total_faults;
83e1d2cd
MG
1268}
1269
10f39042
RR
1270bool should_numa_migrate_memory(struct task_struct *p, struct page * page,
1271 int src_nid, int dst_cpu)
1272{
1273 struct numa_group *ng = p->numa_group;
1274 int dst_nid = cpu_to_node(dst_cpu);
1275 int last_cpupid, this_cpupid;
1276
1277 this_cpupid = cpu_pid_to_cpupid(dst_cpu, current->pid);
1278
1279 /*
1280 * Multi-stage node selection is used in conjunction with a periodic
1281 * migration fault to build a temporal task<->page relation. By using
1282 * a two-stage filter we remove short/unlikely relations.
1283 *
1284 * Using P(p) ~ n_p / n_t as per frequentist probability, we can equate
1285 * a task's usage of a particular page (n_p) per total usage of this
1286 * page (n_t) (in a given time-span) to a probability.
1287 *
1288 * Our periodic faults will sample this probability and getting the
1289 * same result twice in a row, given these samples are fully
1290 * independent, is then given by P(n)^2, provided our sample period
1291 * is sufficiently short compared to the usage pattern.
1292 *
1293 * This quadric squishes small probabilities, making it less likely we
1294 * act on an unlikely task<->page relation.
1295 */
1296 last_cpupid = page_cpupid_xchg_last(page, this_cpupid);
1297 if (!cpupid_pid_unset(last_cpupid) &&
1298 cpupid_to_nid(last_cpupid) != dst_nid)
1299 return false;
1300
1301 /* Always allow migrate on private faults */
1302 if (cpupid_match_pid(p, last_cpupid))
1303 return true;
1304
1305 /* A shared fault, but p->numa_group has not been set up yet. */
1306 if (!ng)
1307 return true;
1308
1309 /*
4142c3eb
RR
1310 * Destination node is much more heavily used than the source
1311 * node? Allow migration.
10f39042 1312 */
4142c3eb
RR
1313 if (group_faults_cpu(ng, dst_nid) > group_faults_cpu(ng, src_nid) *
1314 ACTIVE_NODE_FRACTION)
10f39042
RR
1315 return true;
1316
1317 /*
4142c3eb
RR
1318 * Distribute memory according to CPU & memory use on each node,
1319 * with 3/4 hysteresis to avoid unnecessary memory migrations:
1320 *
1321 * faults_cpu(dst) 3 faults_cpu(src)
1322 * --------------- * - > ---------------
1323 * faults_mem(dst) 4 faults_mem(src)
10f39042 1324 */
4142c3eb
RR
1325 return group_faults_cpu(ng, dst_nid) * group_faults(p, src_nid) * 3 >
1326 group_faults_cpu(ng, src_nid) * group_faults(p, dst_nid) * 4;
10f39042
RR
1327}
1328
e6628d5b 1329static unsigned long weighted_cpuload(const int cpu);
58d081b5
MG
1330static unsigned long source_load(int cpu, int type);
1331static unsigned long target_load(int cpu, int type);
ced549fa 1332static unsigned long capacity_of(int cpu);
58d081b5
MG
1333static long effective_load(struct task_group *tg, int cpu, long wl, long wg);
1334
fb13c7ee 1335/* Cached statistics for all CPUs within a node */
58d081b5 1336struct numa_stats {
fb13c7ee 1337 unsigned long nr_running;
58d081b5 1338 unsigned long load;
fb13c7ee
MG
1339
1340 /* Total compute capacity of CPUs on a node */
5ef20ca1 1341 unsigned long compute_capacity;
fb13c7ee
MG
1342
1343 /* Approximate capacity in terms of runnable tasks on a node */
5ef20ca1 1344 unsigned long task_capacity;
1b6a7495 1345 int has_free_capacity;
58d081b5 1346};
e6628d5b 1347
fb13c7ee
MG
1348/*
1349 * XXX borrowed from update_sg_lb_stats
1350 */
1351static void update_numa_stats(struct numa_stats *ns, int nid)
1352{
83d7f242
RR
1353 int smt, cpu, cpus = 0;
1354 unsigned long capacity;
fb13c7ee
MG
1355
1356 memset(ns, 0, sizeof(*ns));
1357 for_each_cpu(cpu, cpumask_of_node(nid)) {
1358 struct rq *rq = cpu_rq(cpu);
1359
1360 ns->nr_running += rq->nr_running;
1361 ns->load += weighted_cpuload(cpu);
ced549fa 1362 ns->compute_capacity += capacity_of(cpu);
5eca82a9
PZ
1363
1364 cpus++;
fb13c7ee
MG
1365 }
1366
5eca82a9
PZ
1367 /*
1368 * If we raced with hotplug and there are no CPUs left in our mask
1369 * the @ns structure is NULL'ed and task_numa_compare() will
1370 * not find this node attractive.
1371 *
1b6a7495
NP
1372 * We'll either bail at !has_free_capacity, or we'll detect a huge
1373 * imbalance and bail there.
5eca82a9
PZ
1374 */
1375 if (!cpus)
1376 return;
1377
83d7f242
RR
1378 /* smt := ceil(cpus / capacity), assumes: 1 < smt_power < 2 */
1379 smt = DIV_ROUND_UP(SCHED_CAPACITY_SCALE * cpus, ns->compute_capacity);
1380 capacity = cpus / smt; /* cores */
1381
1382 ns->task_capacity = min_t(unsigned, capacity,
1383 DIV_ROUND_CLOSEST(ns->compute_capacity, SCHED_CAPACITY_SCALE));
1b6a7495 1384 ns->has_free_capacity = (ns->nr_running < ns->task_capacity);
fb13c7ee
MG
1385}
1386
58d081b5
MG
1387struct task_numa_env {
1388 struct task_struct *p;
e6628d5b 1389
58d081b5
MG
1390 int src_cpu, src_nid;
1391 int dst_cpu, dst_nid;
e6628d5b 1392
58d081b5 1393 struct numa_stats src_stats, dst_stats;
e6628d5b 1394
40ea2b42 1395 int imbalance_pct;
7bd95320 1396 int dist;
fb13c7ee
MG
1397
1398 struct task_struct *best_task;
1399 long best_imp;
58d081b5
MG
1400 int best_cpu;
1401};
1402
fb13c7ee
MG
1403static void task_numa_assign(struct task_numa_env *env,
1404 struct task_struct *p, long imp)
1405{
1406 if (env->best_task)
1407 put_task_struct(env->best_task);
bac78573
ON
1408 if (p)
1409 get_task_struct(p);
fb13c7ee
MG
1410
1411 env->best_task = p;
1412 env->best_imp = imp;
1413 env->best_cpu = env->dst_cpu;
1414}
1415
28a21745 1416static bool load_too_imbalanced(long src_load, long dst_load,
e63da036
RR
1417 struct task_numa_env *env)
1418{
e4991b24
RR
1419 long imb, old_imb;
1420 long orig_src_load, orig_dst_load;
28a21745
RR
1421 long src_capacity, dst_capacity;
1422
1423 /*
1424 * The load is corrected for the CPU capacity available on each node.
1425 *
1426 * src_load dst_load
1427 * ------------ vs ---------
1428 * src_capacity dst_capacity
1429 */
1430 src_capacity = env->src_stats.compute_capacity;
1431 dst_capacity = env->dst_stats.compute_capacity;
e63da036
RR
1432
1433 /* We care about the slope of the imbalance, not the direction. */
e4991b24
RR
1434 if (dst_load < src_load)
1435 swap(dst_load, src_load);
e63da036
RR
1436
1437 /* Is the difference below the threshold? */
e4991b24
RR
1438 imb = dst_load * src_capacity * 100 -
1439 src_load * dst_capacity * env->imbalance_pct;
e63da036
RR
1440 if (imb <= 0)
1441 return false;
1442
1443 /*
1444 * The imbalance is above the allowed threshold.
e4991b24 1445 * Compare it with the old imbalance.
e63da036 1446 */
28a21745 1447 orig_src_load = env->src_stats.load;
e4991b24 1448 orig_dst_load = env->dst_stats.load;
28a21745 1449
e4991b24
RR
1450 if (orig_dst_load < orig_src_load)
1451 swap(orig_dst_load, orig_src_load);
e63da036 1452
e4991b24
RR
1453 old_imb = orig_dst_load * src_capacity * 100 -
1454 orig_src_load * dst_capacity * env->imbalance_pct;
1455
1456 /* Would this change make things worse? */
1457 return (imb > old_imb);
e63da036
RR
1458}
1459
fb13c7ee
MG
1460/*
1461 * This checks if the overall compute and NUMA accesses of the system would
1462 * be improved if the source tasks was migrated to the target dst_cpu taking
1463 * into account that it might be best if task running on the dst_cpu should
1464 * be exchanged with the source task
1465 */
887c290e
RR
1466static void task_numa_compare(struct task_numa_env *env,
1467 long taskimp, long groupimp)
fb13c7ee
MG
1468{
1469 struct rq *src_rq = cpu_rq(env->src_cpu);
1470 struct rq *dst_rq = cpu_rq(env->dst_cpu);
1471 struct task_struct *cur;
28a21745 1472 long src_load, dst_load;
fb13c7ee 1473 long load;
1c5d3eb3 1474 long imp = env->p->numa_group ? groupimp : taskimp;
0132c3e1 1475 long moveimp = imp;
7bd95320 1476 int dist = env->dist;
fb13c7ee
MG
1477
1478 rcu_read_lock();
bac78573
ON
1479 cur = task_rcu_dereference(&dst_rq->curr);
1480 if (cur && ((cur->flags & PF_EXITING) || is_idle_task(cur)))
fb13c7ee
MG
1481 cur = NULL;
1482
7af68335
PZ
1483 /*
1484 * Because we have preemption enabled we can get migrated around and
1485 * end try selecting ourselves (current == env->p) as a swap candidate.
1486 */
1487 if (cur == env->p)
1488 goto unlock;
1489
fb13c7ee
MG
1490 /*
1491 * "imp" is the fault differential for the source task between the
1492 * source and destination node. Calculate the total differential for
1493 * the source task and potential destination task. The more negative
1494 * the value is, the more rmeote accesses that would be expected to
1495 * be incurred if the tasks were swapped.
1496 */
1497 if (cur) {
1498 /* Skip this swap candidate if cannot move to the source cpu */
1499 if (!cpumask_test_cpu(env->src_cpu, tsk_cpus_allowed(cur)))
1500 goto unlock;
1501
887c290e
RR
1502 /*
1503 * If dst and source tasks are in the same NUMA group, or not
ca28aa53 1504 * in any group then look only at task weights.
887c290e 1505 */
ca28aa53 1506 if (cur->numa_group == env->p->numa_group) {
7bd95320
RR
1507 imp = taskimp + task_weight(cur, env->src_nid, dist) -
1508 task_weight(cur, env->dst_nid, dist);
ca28aa53
RR
1509 /*
1510 * Add some hysteresis to prevent swapping the
1511 * tasks within a group over tiny differences.
1512 */
1513 if (cur->numa_group)
1514 imp -= imp/16;
887c290e 1515 } else {
ca28aa53
RR
1516 /*
1517 * Compare the group weights. If a task is all by
1518 * itself (not part of a group), use the task weight
1519 * instead.
1520 */
ca28aa53 1521 if (cur->numa_group)
7bd95320
RR
1522 imp += group_weight(cur, env->src_nid, dist) -
1523 group_weight(cur, env->dst_nid, dist);
ca28aa53 1524 else
7bd95320
RR
1525 imp += task_weight(cur, env->src_nid, dist) -
1526 task_weight(cur, env->dst_nid, dist);
887c290e 1527 }
fb13c7ee
MG
1528 }
1529
0132c3e1 1530 if (imp <= env->best_imp && moveimp <= env->best_imp)
fb13c7ee
MG
1531 goto unlock;
1532
1533 if (!cur) {
1534 /* Is there capacity at our destination? */
b932c03c 1535 if (env->src_stats.nr_running <= env->src_stats.task_capacity &&
1b6a7495 1536 !env->dst_stats.has_free_capacity)
fb13c7ee
MG
1537 goto unlock;
1538
1539 goto balance;
1540 }
1541
1542 /* Balance doesn't matter much if we're running a task per cpu */
0132c3e1
RR
1543 if (imp > env->best_imp && src_rq->nr_running == 1 &&
1544 dst_rq->nr_running == 1)
fb13c7ee
MG
1545 goto assign;
1546
1547 /*
1548 * In the overloaded case, try and keep the load balanced.
1549 */
1550balance:
e720fff6
PZ
1551 load = task_h_load(env->p);
1552 dst_load = env->dst_stats.load + load;
1553 src_load = env->src_stats.load - load;
fb13c7ee 1554
0132c3e1
RR
1555 if (moveimp > imp && moveimp > env->best_imp) {
1556 /*
1557 * If the improvement from just moving env->p direction is
1558 * better than swapping tasks around, check if a move is
1559 * possible. Store a slightly smaller score than moveimp,
1560 * so an actually idle CPU will win.
1561 */
1562 if (!load_too_imbalanced(src_load, dst_load, env)) {
1563 imp = moveimp - 1;
1564 cur = NULL;
1565 goto assign;
1566 }
1567 }
1568
1569 if (imp <= env->best_imp)
1570 goto unlock;
1571
fb13c7ee 1572 if (cur) {
e720fff6
PZ
1573 load = task_h_load(cur);
1574 dst_load -= load;
1575 src_load += load;
fb13c7ee
MG
1576 }
1577
28a21745 1578 if (load_too_imbalanced(src_load, dst_load, env))
fb13c7ee
MG
1579 goto unlock;
1580
ba7e5a27
RR
1581 /*
1582 * One idle CPU per node is evaluated for a task numa move.
1583 * Call select_idle_sibling to maybe find a better one.
1584 */
1585 if (!cur)
772bd008
MR
1586 env->dst_cpu = select_idle_sibling(env->p, env->src_cpu,
1587 env->dst_cpu);
ba7e5a27 1588
fb13c7ee
MG
1589assign:
1590 task_numa_assign(env, cur, imp);
1591unlock:
1592 rcu_read_unlock();
1593}
1594
887c290e
RR
1595static void task_numa_find_cpu(struct task_numa_env *env,
1596 long taskimp, long groupimp)
2c8a50aa
MG
1597{
1598 int cpu;
1599
1600 for_each_cpu(cpu, cpumask_of_node(env->dst_nid)) {
1601 /* Skip this CPU if the source task cannot migrate */
1602 if (!cpumask_test_cpu(cpu, tsk_cpus_allowed(env->p)))
1603 continue;
1604
1605 env->dst_cpu = cpu;
887c290e 1606 task_numa_compare(env, taskimp, groupimp);
2c8a50aa
MG
1607 }
1608}
1609
6f9aad0b
RR
1610/* Only move tasks to a NUMA node less busy than the current node. */
1611static bool numa_has_capacity(struct task_numa_env *env)
1612{
1613 struct numa_stats *src = &env->src_stats;
1614 struct numa_stats *dst = &env->dst_stats;
1615
1616 if (src->has_free_capacity && !dst->has_free_capacity)
1617 return false;
1618
1619 /*
1620 * Only consider a task move if the source has a higher load
1621 * than the destination, corrected for CPU capacity on each node.
1622 *
1623 * src->load dst->load
1624 * --------------------- vs ---------------------
1625 * src->compute_capacity dst->compute_capacity
1626 */
44dcb04f
SD
1627 if (src->load * dst->compute_capacity * env->imbalance_pct >
1628
1629 dst->load * src->compute_capacity * 100)
6f9aad0b
RR
1630 return true;
1631
1632 return false;
1633}
1634
58d081b5
MG
1635static int task_numa_migrate(struct task_struct *p)
1636{
58d081b5
MG
1637 struct task_numa_env env = {
1638 .p = p,
fb13c7ee 1639
58d081b5 1640 .src_cpu = task_cpu(p),
b32e86b4 1641 .src_nid = task_node(p),
fb13c7ee
MG
1642
1643 .imbalance_pct = 112,
1644
1645 .best_task = NULL,
1646 .best_imp = 0,
4142c3eb 1647 .best_cpu = -1,
58d081b5
MG
1648 };
1649 struct sched_domain *sd;
887c290e 1650 unsigned long taskweight, groupweight;
7bd95320 1651 int nid, ret, dist;
887c290e 1652 long taskimp, groupimp;
e6628d5b 1653
58d081b5 1654 /*
fb13c7ee
MG
1655 * Pick the lowest SD_NUMA domain, as that would have the smallest
1656 * imbalance and would be the first to start moving tasks about.
1657 *
1658 * And we want to avoid any moving of tasks about, as that would create
1659 * random movement of tasks -- counter the numa conditions we're trying
1660 * to satisfy here.
58d081b5
MG
1661 */
1662 rcu_read_lock();
fb13c7ee 1663 sd = rcu_dereference(per_cpu(sd_numa, env.src_cpu));
46a73e8a
RR
1664 if (sd)
1665 env.imbalance_pct = 100 + (sd->imbalance_pct - 100) / 2;
e6628d5b
MG
1666 rcu_read_unlock();
1667
46a73e8a
RR
1668 /*
1669 * Cpusets can break the scheduler domain tree into smaller
1670 * balance domains, some of which do not cross NUMA boundaries.
1671 * Tasks that are "trapped" in such domains cannot be migrated
1672 * elsewhere, so there is no point in (re)trying.
1673 */
1674 if (unlikely(!sd)) {
de1b301a 1675 p->numa_preferred_nid = task_node(p);
46a73e8a
RR
1676 return -EINVAL;
1677 }
1678
2c8a50aa 1679 env.dst_nid = p->numa_preferred_nid;
7bd95320
RR
1680 dist = env.dist = node_distance(env.src_nid, env.dst_nid);
1681 taskweight = task_weight(p, env.src_nid, dist);
1682 groupweight = group_weight(p, env.src_nid, dist);
1683 update_numa_stats(&env.src_stats, env.src_nid);
1684 taskimp = task_weight(p, env.dst_nid, dist) - taskweight;
1685 groupimp = group_weight(p, env.dst_nid, dist) - groupweight;
2c8a50aa 1686 update_numa_stats(&env.dst_stats, env.dst_nid);
58d081b5 1687
a43455a1 1688 /* Try to find a spot on the preferred nid. */
6f9aad0b
RR
1689 if (numa_has_capacity(&env))
1690 task_numa_find_cpu(&env, taskimp, groupimp);
e1dda8a7 1691
9de05d48
RR
1692 /*
1693 * Look at other nodes in these cases:
1694 * - there is no space available on the preferred_nid
1695 * - the task is part of a numa_group that is interleaved across
1696 * multiple NUMA nodes; in order to better consolidate the group,
1697 * we need to check other locations.
1698 */
4142c3eb 1699 if (env.best_cpu == -1 || (p->numa_group && p->numa_group->active_nodes > 1)) {
2c8a50aa
MG
1700 for_each_online_node(nid) {
1701 if (nid == env.src_nid || nid == p->numa_preferred_nid)
1702 continue;
58d081b5 1703
7bd95320 1704 dist = node_distance(env.src_nid, env.dst_nid);
6c6b1193
RR
1705 if (sched_numa_topology_type == NUMA_BACKPLANE &&
1706 dist != env.dist) {
1707 taskweight = task_weight(p, env.src_nid, dist);
1708 groupweight = group_weight(p, env.src_nid, dist);
1709 }
7bd95320 1710
83e1d2cd 1711 /* Only consider nodes where both task and groups benefit */
7bd95320
RR
1712 taskimp = task_weight(p, nid, dist) - taskweight;
1713 groupimp = group_weight(p, nid, dist) - groupweight;
887c290e 1714 if (taskimp < 0 && groupimp < 0)
fb13c7ee
MG
1715 continue;
1716
7bd95320 1717 env.dist = dist;
2c8a50aa
MG
1718 env.dst_nid = nid;
1719 update_numa_stats(&env.dst_stats, env.dst_nid);
6f9aad0b
RR
1720 if (numa_has_capacity(&env))
1721 task_numa_find_cpu(&env, taskimp, groupimp);
58d081b5
MG
1722 }
1723 }
1724
68d1b02a
RR
1725 /*
1726 * If the task is part of a workload that spans multiple NUMA nodes,
1727 * and is migrating into one of the workload's active nodes, remember
1728 * this node as the task's preferred numa node, so the workload can
1729 * settle down.
1730 * A task that migrated to a second choice node will be better off
1731 * trying for a better one later. Do not set the preferred node here.
1732 */
db015dae 1733 if (p->numa_group) {
4142c3eb
RR
1734 struct numa_group *ng = p->numa_group;
1735
db015dae
RR
1736 if (env.best_cpu == -1)
1737 nid = env.src_nid;
1738 else
1739 nid = env.dst_nid;
1740
4142c3eb 1741 if (ng->active_nodes > 1 && numa_is_active_node(env.dst_nid, ng))
db015dae
RR
1742 sched_setnuma(p, env.dst_nid);
1743 }
1744
1745 /* No better CPU than the current one was found. */
1746 if (env.best_cpu == -1)
1747 return -EAGAIN;
0ec8aa00 1748
04bb2f94
RR
1749 /*
1750 * Reset the scan period if the task is being rescheduled on an
1751 * alternative node to recheck if the tasks is now properly placed.
1752 */
1753 p->numa_scan_period = task_scan_min(p);
1754
fb13c7ee 1755 if (env.best_task == NULL) {
286549dc
MG
1756 ret = migrate_task_to(p, env.best_cpu);
1757 if (ret != 0)
1758 trace_sched_stick_numa(p, env.src_cpu, env.best_cpu);
fb13c7ee
MG
1759 return ret;
1760 }
1761
1762 ret = migrate_swap(p, env.best_task);
286549dc
MG
1763 if (ret != 0)
1764 trace_sched_stick_numa(p, env.src_cpu, task_cpu(env.best_task));
fb13c7ee
MG
1765 put_task_struct(env.best_task);
1766 return ret;
e6628d5b
MG
1767}
1768
6b9a7460
MG
1769/* Attempt to migrate a task to a CPU on the preferred node. */
1770static void numa_migrate_preferred(struct task_struct *p)
1771{
5085e2a3
RR
1772 unsigned long interval = HZ;
1773
2739d3ee 1774 /* This task has no NUMA fault statistics yet */
44dba3d5 1775 if (unlikely(p->numa_preferred_nid == -1 || !p->numa_faults))
6b9a7460
MG
1776 return;
1777
2739d3ee 1778 /* Periodically retry migrating the task to the preferred node */
5085e2a3
RR
1779 interval = min(interval, msecs_to_jiffies(p->numa_scan_period) / 16);
1780 p->numa_migrate_retry = jiffies + interval;
2739d3ee
RR
1781
1782 /* Success if task is already running on preferred CPU */
de1b301a 1783 if (task_node(p) == p->numa_preferred_nid)
6b9a7460
MG
1784 return;
1785
1786 /* Otherwise, try migrate to a CPU on the preferred node */
2739d3ee 1787 task_numa_migrate(p);
6b9a7460
MG
1788}
1789
20e07dea 1790/*
4142c3eb 1791 * Find out how many nodes on the workload is actively running on. Do this by
20e07dea
RR
1792 * tracking the nodes from which NUMA hinting faults are triggered. This can
1793 * be different from the set of nodes where the workload's memory is currently
1794 * located.
20e07dea 1795 */
4142c3eb 1796static void numa_group_count_active_nodes(struct numa_group *numa_group)
20e07dea
RR
1797{
1798 unsigned long faults, max_faults = 0;
4142c3eb 1799 int nid, active_nodes = 0;
20e07dea
RR
1800
1801 for_each_online_node(nid) {
1802 faults = group_faults_cpu(numa_group, nid);
1803 if (faults > max_faults)
1804 max_faults = faults;
1805 }
1806
1807 for_each_online_node(nid) {
1808 faults = group_faults_cpu(numa_group, nid);
4142c3eb
RR
1809 if (faults * ACTIVE_NODE_FRACTION > max_faults)
1810 active_nodes++;
20e07dea 1811 }
4142c3eb
RR
1812
1813 numa_group->max_faults_cpu = max_faults;
1814 numa_group->active_nodes = active_nodes;
20e07dea
RR
1815}
1816
04bb2f94
RR
1817/*
1818 * When adapting the scan rate, the period is divided into NUMA_PERIOD_SLOTS
1819 * increments. The more local the fault statistics are, the higher the scan
a22b4b01
RR
1820 * period will be for the next scan window. If local/(local+remote) ratio is
1821 * below NUMA_PERIOD_THRESHOLD (where range of ratio is 1..NUMA_PERIOD_SLOTS)
1822 * the scan period will decrease. Aim for 70% local accesses.
04bb2f94
RR
1823 */
1824#define NUMA_PERIOD_SLOTS 10
a22b4b01 1825#define NUMA_PERIOD_THRESHOLD 7
04bb2f94
RR
1826
1827/*
1828 * Increase the scan period (slow down scanning) if the majority of
1829 * our memory is already on our local node, or if the majority of
1830 * the page accesses are shared with other processes.
1831 * Otherwise, decrease the scan period.
1832 */
1833static void update_task_scan_period(struct task_struct *p,
1834 unsigned long shared, unsigned long private)
1835{
1836 unsigned int period_slot;
1837 int ratio;
1838 int diff;
1839
1840 unsigned long remote = p->numa_faults_locality[0];
1841 unsigned long local = p->numa_faults_locality[1];
1842
1843 /*
1844 * If there were no record hinting faults then either the task is
1845 * completely idle or all activity is areas that are not of interest
074c2381
MG
1846 * to automatic numa balancing. Related to that, if there were failed
1847 * migration then it implies we are migrating too quickly or the local
1848 * node is overloaded. In either case, scan slower
04bb2f94 1849 */
074c2381 1850 if (local + shared == 0 || p->numa_faults_locality[2]) {
04bb2f94
RR
1851 p->numa_scan_period = min(p->numa_scan_period_max,
1852 p->numa_scan_period << 1);
1853
1854 p->mm->numa_next_scan = jiffies +
1855 msecs_to_jiffies(p->numa_scan_period);
1856
1857 return;
1858 }
1859
1860 /*
1861 * Prepare to scale scan period relative to the current period.
1862 * == NUMA_PERIOD_THRESHOLD scan period stays the same
1863 * < NUMA_PERIOD_THRESHOLD scan period decreases (scan faster)
1864 * >= NUMA_PERIOD_THRESHOLD scan period increases (scan slower)
1865 */
1866 period_slot = DIV_ROUND_UP(p->numa_scan_period, NUMA_PERIOD_SLOTS);
1867 ratio = (local * NUMA_PERIOD_SLOTS) / (local + remote);
1868 if (ratio >= NUMA_PERIOD_THRESHOLD) {
1869 int slot = ratio - NUMA_PERIOD_THRESHOLD;
1870 if (!slot)
1871 slot = 1;
1872 diff = slot * period_slot;
1873 } else {
1874 diff = -(NUMA_PERIOD_THRESHOLD - ratio) * period_slot;
1875
1876 /*
1877 * Scale scan rate increases based on sharing. There is an
1878 * inverse relationship between the degree of sharing and
1879 * the adjustment made to the scanning period. Broadly
1880 * speaking the intent is that there is little point
1881 * scanning faster if shared accesses dominate as it may
1882 * simply bounce migrations uselessly
1883 */
2847c90e 1884 ratio = DIV_ROUND_UP(private * NUMA_PERIOD_SLOTS, (private + shared + 1));
04bb2f94
RR
1885 diff = (diff * ratio) / NUMA_PERIOD_SLOTS;
1886 }
1887
1888 p->numa_scan_period = clamp(p->numa_scan_period + diff,
1889 task_scan_min(p), task_scan_max(p));
1890 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
1891}
1892
7e2703e6
RR
1893/*
1894 * Get the fraction of time the task has been running since the last
1895 * NUMA placement cycle. The scheduler keeps similar statistics, but
1896 * decays those on a 32ms period, which is orders of magnitude off
1897 * from the dozens-of-seconds NUMA balancing period. Use the scheduler
1898 * stats only if the task is so new there are no NUMA statistics yet.
1899 */
1900static u64 numa_get_avg_runtime(struct task_struct *p, u64 *period)
1901{
1902 u64 runtime, delta, now;
1903 /* Use the start of this time slice to avoid calculations. */
1904 now = p->se.exec_start;
1905 runtime = p->se.sum_exec_runtime;
1906
1907 if (p->last_task_numa_placement) {
1908 delta = runtime - p->last_sum_exec_runtime;
1909 *period = now - p->last_task_numa_placement;
1910 } else {
9d89c257
YD
1911 delta = p->se.avg.load_sum / p->se.load.weight;
1912 *period = LOAD_AVG_MAX;
7e2703e6
RR
1913 }
1914
1915 p->last_sum_exec_runtime = runtime;
1916 p->last_task_numa_placement = now;
1917
1918 return delta;
1919}
1920
54009416
RR
1921/*
1922 * Determine the preferred nid for a task in a numa_group. This needs to
1923 * be done in a way that produces consistent results with group_weight,
1924 * otherwise workloads might not converge.
1925 */
1926static int preferred_group_nid(struct task_struct *p, int nid)
1927{
1928 nodemask_t nodes;
1929 int dist;
1930
1931 /* Direct connections between all NUMA nodes. */
1932 if (sched_numa_topology_type == NUMA_DIRECT)
1933 return nid;
1934
1935 /*
1936 * On a system with glueless mesh NUMA topology, group_weight
1937 * scores nodes according to the number of NUMA hinting faults on
1938 * both the node itself, and on nearby nodes.
1939 */
1940 if (sched_numa_topology_type == NUMA_GLUELESS_MESH) {
1941 unsigned long score, max_score = 0;
1942 int node, max_node = nid;
1943
1944 dist = sched_max_numa_distance;
1945
1946 for_each_online_node(node) {
1947 score = group_weight(p, node, dist);
1948 if (score > max_score) {
1949 max_score = score;
1950 max_node = node;
1951 }
1952 }
1953 return max_node;
1954 }
1955
1956 /*
1957 * Finding the preferred nid in a system with NUMA backplane
1958 * interconnect topology is more involved. The goal is to locate
1959 * tasks from numa_groups near each other in the system, and
1960 * untangle workloads from different sides of the system. This requires
1961 * searching down the hierarchy of node groups, recursively searching
1962 * inside the highest scoring group of nodes. The nodemask tricks
1963 * keep the complexity of the search down.
1964 */
1965 nodes = node_online_map;
1966 for (dist = sched_max_numa_distance; dist > LOCAL_DISTANCE; dist--) {
1967 unsigned long max_faults = 0;
81907478 1968 nodemask_t max_group = NODE_MASK_NONE;
54009416
RR
1969 int a, b;
1970
1971 /* Are there nodes at this distance from each other? */
1972 if (!find_numa_distance(dist))
1973 continue;
1974
1975 for_each_node_mask(a, nodes) {
1976 unsigned long faults = 0;
1977 nodemask_t this_group;
1978 nodes_clear(this_group);
1979
1980 /* Sum group's NUMA faults; includes a==b case. */
1981 for_each_node_mask(b, nodes) {
1982 if (node_distance(a, b) < dist) {
1983 faults += group_faults(p, b);
1984 node_set(b, this_group);
1985 node_clear(b, nodes);
1986 }
1987 }
1988
1989 /* Remember the top group. */
1990 if (faults > max_faults) {
1991 max_faults = faults;
1992 max_group = this_group;
1993 /*
1994 * subtle: at the smallest distance there is
1995 * just one node left in each "group", the
1996 * winner is the preferred nid.
1997 */
1998 nid = a;
1999 }
2000 }
2001 /* Next round, evaluate the nodes within max_group. */
890a5409
JB
2002 if (!max_faults)
2003 break;
54009416
RR
2004 nodes = max_group;
2005 }
2006 return nid;
2007}
2008
cbee9f88
PZ
2009static void task_numa_placement(struct task_struct *p)
2010{
83e1d2cd
MG
2011 int seq, nid, max_nid = -1, max_group_nid = -1;
2012 unsigned long max_faults = 0, max_group_faults = 0;
04bb2f94 2013 unsigned long fault_types[2] = { 0, 0 };
7e2703e6
RR
2014 unsigned long total_faults;
2015 u64 runtime, period;
7dbd13ed 2016 spinlock_t *group_lock = NULL;
cbee9f88 2017
7e5a2c17
JL
2018 /*
2019 * The p->mm->numa_scan_seq field gets updated without
2020 * exclusive access. Use READ_ONCE() here to ensure
2021 * that the field is read in a single access:
2022 */
316c1608 2023 seq = READ_ONCE(p->mm->numa_scan_seq);
cbee9f88
PZ
2024 if (p->numa_scan_seq == seq)
2025 return;
2026 p->numa_scan_seq = seq;
598f0ec0 2027 p->numa_scan_period_max = task_scan_max(p);
cbee9f88 2028
7e2703e6
RR
2029 total_faults = p->numa_faults_locality[0] +
2030 p->numa_faults_locality[1];
2031 runtime = numa_get_avg_runtime(p, &period);
2032
7dbd13ed
MG
2033 /* If the task is part of a group prevent parallel updates to group stats */
2034 if (p->numa_group) {
2035 group_lock = &p->numa_group->lock;
60e69eed 2036 spin_lock_irq(group_lock);
7dbd13ed
MG
2037 }
2038
688b7585
MG
2039 /* Find the node with the highest number of faults */
2040 for_each_online_node(nid) {
44dba3d5
IM
2041 /* Keep track of the offsets in numa_faults array */
2042 int mem_idx, membuf_idx, cpu_idx, cpubuf_idx;
83e1d2cd 2043 unsigned long faults = 0, group_faults = 0;
44dba3d5 2044 int priv;
745d6147 2045
be1e4e76 2046 for (priv = 0; priv < NR_NUMA_HINT_FAULT_TYPES; priv++) {
7e2703e6 2047 long diff, f_diff, f_weight;
8c8a743c 2048
44dba3d5
IM
2049 mem_idx = task_faults_idx(NUMA_MEM, nid, priv);
2050 membuf_idx = task_faults_idx(NUMA_MEMBUF, nid, priv);
2051 cpu_idx = task_faults_idx(NUMA_CPU, nid, priv);
2052 cpubuf_idx = task_faults_idx(NUMA_CPUBUF, nid, priv);
745d6147 2053
ac8e895b 2054 /* Decay existing window, copy faults since last scan */
44dba3d5
IM
2055 diff = p->numa_faults[membuf_idx] - p->numa_faults[mem_idx] / 2;
2056 fault_types[priv] += p->numa_faults[membuf_idx];
2057 p->numa_faults[membuf_idx] = 0;
fb13c7ee 2058
7e2703e6
RR
2059 /*
2060 * Normalize the faults_from, so all tasks in a group
2061 * count according to CPU use, instead of by the raw
2062 * number of faults. Tasks with little runtime have
2063 * little over-all impact on throughput, and thus their
2064 * faults are less important.
2065 */
2066 f_weight = div64_u64(runtime << 16, period + 1);
44dba3d5 2067 f_weight = (f_weight * p->numa_faults[cpubuf_idx]) /
7e2703e6 2068 (total_faults + 1);
44dba3d5
IM
2069 f_diff = f_weight - p->numa_faults[cpu_idx] / 2;
2070 p->numa_faults[cpubuf_idx] = 0;
50ec8a40 2071
44dba3d5
IM
2072 p->numa_faults[mem_idx] += diff;
2073 p->numa_faults[cpu_idx] += f_diff;
2074 faults += p->numa_faults[mem_idx];
83e1d2cd 2075 p->total_numa_faults += diff;
8c8a743c 2076 if (p->numa_group) {
44dba3d5
IM
2077 /*
2078 * safe because we can only change our own group
2079 *
2080 * mem_idx represents the offset for a given
2081 * nid and priv in a specific region because it
2082 * is at the beginning of the numa_faults array.
2083 */
2084 p->numa_group->faults[mem_idx] += diff;
2085 p->numa_group->faults_cpu[mem_idx] += f_diff;
989348b5 2086 p->numa_group->total_faults += diff;
44dba3d5 2087 group_faults += p->numa_group->faults[mem_idx];
8c8a743c 2088 }
ac8e895b
MG
2089 }
2090
688b7585
MG
2091 if (faults > max_faults) {
2092 max_faults = faults;
2093 max_nid = nid;
2094 }
83e1d2cd
MG
2095
2096 if (group_faults > max_group_faults) {
2097 max_group_faults = group_faults;
2098 max_group_nid = nid;
2099 }
2100 }
2101
04bb2f94
RR
2102 update_task_scan_period(p, fault_types[0], fault_types[1]);
2103
7dbd13ed 2104 if (p->numa_group) {
4142c3eb 2105 numa_group_count_active_nodes(p->numa_group);
60e69eed 2106 spin_unlock_irq(group_lock);
54009416 2107 max_nid = preferred_group_nid(p, max_group_nid);
688b7585
MG
2108 }
2109
bb97fc31
RR
2110 if (max_faults) {
2111 /* Set the new preferred node */
2112 if (max_nid != p->numa_preferred_nid)
2113 sched_setnuma(p, max_nid);
2114
2115 if (task_node(p) != p->numa_preferred_nid)
2116 numa_migrate_preferred(p);
3a7053b3 2117 }
cbee9f88
PZ
2118}
2119
8c8a743c
PZ
2120static inline int get_numa_group(struct numa_group *grp)
2121{
2122 return atomic_inc_not_zero(&grp->refcount);
2123}
2124
2125static inline void put_numa_group(struct numa_group *grp)
2126{
2127 if (atomic_dec_and_test(&grp->refcount))
2128 kfree_rcu(grp, rcu);
2129}
2130
3e6a9418
MG
2131static void task_numa_group(struct task_struct *p, int cpupid, int flags,
2132 int *priv)
8c8a743c
PZ
2133{
2134 struct numa_group *grp, *my_grp;
2135 struct task_struct *tsk;
2136 bool join = false;
2137 int cpu = cpupid_to_cpu(cpupid);
2138 int i;
2139
2140 if (unlikely(!p->numa_group)) {
2141 unsigned int size = sizeof(struct numa_group) +
50ec8a40 2142 4*nr_node_ids*sizeof(unsigned long);
8c8a743c
PZ
2143
2144 grp = kzalloc(size, GFP_KERNEL | __GFP_NOWARN);
2145 if (!grp)
2146 return;
2147
2148 atomic_set(&grp->refcount, 1);
4142c3eb
RR
2149 grp->active_nodes = 1;
2150 grp->max_faults_cpu = 0;
8c8a743c 2151 spin_lock_init(&grp->lock);
e29cf08b 2152 grp->gid = p->pid;
50ec8a40 2153 /* Second half of the array tracks nids where faults happen */
be1e4e76
RR
2154 grp->faults_cpu = grp->faults + NR_NUMA_HINT_FAULT_TYPES *
2155 nr_node_ids;
8c8a743c 2156
be1e4e76 2157 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2158 grp->faults[i] = p->numa_faults[i];
8c8a743c 2159
989348b5 2160 grp->total_faults = p->total_numa_faults;
83e1d2cd 2161
8c8a743c
PZ
2162 grp->nr_tasks++;
2163 rcu_assign_pointer(p->numa_group, grp);
2164 }
2165
2166 rcu_read_lock();
316c1608 2167 tsk = READ_ONCE(cpu_rq(cpu)->curr);
8c8a743c
PZ
2168
2169 if (!cpupid_match_pid(tsk, cpupid))
3354781a 2170 goto no_join;
8c8a743c
PZ
2171
2172 grp = rcu_dereference(tsk->numa_group);
2173 if (!grp)
3354781a 2174 goto no_join;
8c8a743c
PZ
2175
2176 my_grp = p->numa_group;
2177 if (grp == my_grp)
3354781a 2178 goto no_join;
8c8a743c
PZ
2179
2180 /*
2181 * Only join the other group if its bigger; if we're the bigger group,
2182 * the other task will join us.
2183 */
2184 if (my_grp->nr_tasks > grp->nr_tasks)
3354781a 2185 goto no_join;
8c8a743c
PZ
2186
2187 /*
2188 * Tie-break on the grp address.
2189 */
2190 if (my_grp->nr_tasks == grp->nr_tasks && my_grp > grp)
3354781a 2191 goto no_join;
8c8a743c 2192
dabe1d99
RR
2193 /* Always join threads in the same process. */
2194 if (tsk->mm == current->mm)
2195 join = true;
2196
2197 /* Simple filter to avoid false positives due to PID collisions */
2198 if (flags & TNF_SHARED)
2199 join = true;
8c8a743c 2200
3e6a9418
MG
2201 /* Update priv based on whether false sharing was detected */
2202 *priv = !join;
2203
dabe1d99 2204 if (join && !get_numa_group(grp))
3354781a 2205 goto no_join;
8c8a743c 2206
8c8a743c
PZ
2207 rcu_read_unlock();
2208
2209 if (!join)
2210 return;
2211
60e69eed
MG
2212 BUG_ON(irqs_disabled());
2213 double_lock_irq(&my_grp->lock, &grp->lock);
989348b5 2214
be1e4e76 2215 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++) {
44dba3d5
IM
2216 my_grp->faults[i] -= p->numa_faults[i];
2217 grp->faults[i] += p->numa_faults[i];
8c8a743c 2218 }
989348b5
MG
2219 my_grp->total_faults -= p->total_numa_faults;
2220 grp->total_faults += p->total_numa_faults;
8c8a743c 2221
8c8a743c
PZ
2222 my_grp->nr_tasks--;
2223 grp->nr_tasks++;
2224
2225 spin_unlock(&my_grp->lock);
60e69eed 2226 spin_unlock_irq(&grp->lock);
8c8a743c
PZ
2227
2228 rcu_assign_pointer(p->numa_group, grp);
2229
2230 put_numa_group(my_grp);
3354781a
PZ
2231 return;
2232
2233no_join:
2234 rcu_read_unlock();
2235 return;
8c8a743c
PZ
2236}
2237
2238void task_numa_free(struct task_struct *p)
2239{
2240 struct numa_group *grp = p->numa_group;
44dba3d5 2241 void *numa_faults = p->numa_faults;
e9dd685c
SR
2242 unsigned long flags;
2243 int i;
8c8a743c
PZ
2244
2245 if (grp) {
e9dd685c 2246 spin_lock_irqsave(&grp->lock, flags);
be1e4e76 2247 for (i = 0; i < NR_NUMA_HINT_FAULT_STATS * nr_node_ids; i++)
44dba3d5 2248 grp->faults[i] -= p->numa_faults[i];
989348b5 2249 grp->total_faults -= p->total_numa_faults;
83e1d2cd 2250
8c8a743c 2251 grp->nr_tasks--;
e9dd685c 2252 spin_unlock_irqrestore(&grp->lock, flags);
35b123e2 2253 RCU_INIT_POINTER(p->numa_group, NULL);
8c8a743c
PZ
2254 put_numa_group(grp);
2255 }
2256
44dba3d5 2257 p->numa_faults = NULL;
82727018 2258 kfree(numa_faults);
8c8a743c
PZ
2259}
2260
cbee9f88
PZ
2261/*
2262 * Got a PROT_NONE fault for a page on @node.
2263 */
58b46da3 2264void task_numa_fault(int last_cpupid, int mem_node, int pages, int flags)
cbee9f88
PZ
2265{
2266 struct task_struct *p = current;
6688cc05 2267 bool migrated = flags & TNF_MIGRATED;
58b46da3 2268 int cpu_node = task_node(current);
792568ec 2269 int local = !!(flags & TNF_FAULT_LOCAL);
4142c3eb 2270 struct numa_group *ng;
ac8e895b 2271 int priv;
cbee9f88 2272
2a595721 2273 if (!static_branch_likely(&sched_numa_balancing))
1a687c2e
MG
2274 return;
2275
9ff1d9ff
MG
2276 /* for example, ksmd faulting in a user's mm */
2277 if (!p->mm)
2278 return;
2279
f809ca9a 2280 /* Allocate buffer to track faults on a per-node basis */
44dba3d5
IM
2281 if (unlikely(!p->numa_faults)) {
2282 int size = sizeof(*p->numa_faults) *
be1e4e76 2283 NR_NUMA_HINT_FAULT_BUCKETS * nr_node_ids;
f809ca9a 2284
44dba3d5
IM
2285 p->numa_faults = kzalloc(size, GFP_KERNEL|__GFP_NOWARN);
2286 if (!p->numa_faults)
f809ca9a 2287 return;
745d6147 2288
83e1d2cd 2289 p->total_numa_faults = 0;
04bb2f94 2290 memset(p->numa_faults_locality, 0, sizeof(p->numa_faults_locality));
f809ca9a 2291 }
cbee9f88 2292
8c8a743c
PZ
2293 /*
2294 * First accesses are treated as private, otherwise consider accesses
2295 * to be private if the accessing pid has not changed
2296 */
2297 if (unlikely(last_cpupid == (-1 & LAST_CPUPID_MASK))) {
2298 priv = 1;
2299 } else {
2300 priv = cpupid_match_pid(p, last_cpupid);
6688cc05 2301 if (!priv && !(flags & TNF_NO_GROUP))
3e6a9418 2302 task_numa_group(p, last_cpupid, flags, &priv);
8c8a743c
PZ
2303 }
2304
792568ec
RR
2305 /*
2306 * If a workload spans multiple NUMA nodes, a shared fault that
2307 * occurs wholly within the set of nodes that the workload is
2308 * actively using should be counted as local. This allows the
2309 * scan rate to slow down when a workload has settled down.
2310 */
4142c3eb
RR
2311 ng = p->numa_group;
2312 if (!priv && !local && ng && ng->active_nodes > 1 &&
2313 numa_is_active_node(cpu_node, ng) &&
2314 numa_is_active_node(mem_node, ng))
792568ec
RR
2315 local = 1;
2316
cbee9f88 2317 task_numa_placement(p);
f809ca9a 2318
2739d3ee
RR
2319 /*
2320 * Retry task to preferred node migration periodically, in case it
2321 * case it previously failed, or the scheduler moved us.
2322 */
2323 if (time_after(jiffies, p->numa_migrate_retry))
6b9a7460
MG
2324 numa_migrate_preferred(p);
2325
b32e86b4
IM
2326 if (migrated)
2327 p->numa_pages_migrated += pages;
074c2381
MG
2328 if (flags & TNF_MIGRATE_FAIL)
2329 p->numa_faults_locality[2] += pages;
b32e86b4 2330
44dba3d5
IM
2331 p->numa_faults[task_faults_idx(NUMA_MEMBUF, mem_node, priv)] += pages;
2332 p->numa_faults[task_faults_idx(NUMA_CPUBUF, cpu_node, priv)] += pages;
792568ec 2333 p->numa_faults_locality[local] += pages;
cbee9f88
PZ
2334}
2335
6e5fb223
PZ
2336static void reset_ptenuma_scan(struct task_struct *p)
2337{
7e5a2c17
JL
2338 /*
2339 * We only did a read acquisition of the mmap sem, so
2340 * p->mm->numa_scan_seq is written to without exclusive access
2341 * and the update is not guaranteed to be atomic. That's not
2342 * much of an issue though, since this is just used for
2343 * statistical sampling. Use READ_ONCE/WRITE_ONCE, which are not
2344 * expensive, to avoid any form of compiler optimizations:
2345 */
316c1608 2346 WRITE_ONCE(p->mm->numa_scan_seq, READ_ONCE(p->mm->numa_scan_seq) + 1);
6e5fb223
PZ
2347 p->mm->numa_scan_offset = 0;
2348}
2349
cbee9f88
PZ
2350/*
2351 * The expensive part of numa migration is done from task_work context.
2352 * Triggered from task_tick_numa().
2353 */
2354void task_numa_work(struct callback_head *work)
2355{
2356 unsigned long migrate, next_scan, now = jiffies;
2357 struct task_struct *p = current;
2358 struct mm_struct *mm = p->mm;
51170840 2359 u64 runtime = p->se.sum_exec_runtime;
6e5fb223 2360 struct vm_area_struct *vma;
9f40604c 2361 unsigned long start, end;
598f0ec0 2362 unsigned long nr_pte_updates = 0;
4620f8c1 2363 long pages, virtpages;
cbee9f88
PZ
2364
2365 WARN_ON_ONCE(p != container_of(work, struct task_struct, numa_work));
2366
2367 work->next = work; /* protect against double add */
2368 /*
2369 * Who cares about NUMA placement when they're dying.
2370 *
2371 * NOTE: make sure not to dereference p->mm before this check,
2372 * exit_task_work() happens _after_ exit_mm() so we could be called
2373 * without p->mm even though we still had it when we enqueued this
2374 * work.
2375 */
2376 if (p->flags & PF_EXITING)
2377 return;
2378
930aa174 2379 if (!mm->numa_next_scan) {
7e8d16b6
MG
2380 mm->numa_next_scan = now +
2381 msecs_to_jiffies(sysctl_numa_balancing_scan_delay);
b8593bfd
MG
2382 }
2383
cbee9f88
PZ
2384 /*
2385 * Enforce maximal scan/migration frequency..
2386 */
2387 migrate = mm->numa_next_scan;
2388 if (time_before(now, migrate))
2389 return;
2390
598f0ec0
MG
2391 if (p->numa_scan_period == 0) {
2392 p->numa_scan_period_max = task_scan_max(p);
2393 p->numa_scan_period = task_scan_min(p);
2394 }
cbee9f88 2395
fb003b80 2396 next_scan = now + msecs_to_jiffies(p->numa_scan_period);
cbee9f88
PZ
2397 if (cmpxchg(&mm->numa_next_scan, migrate, next_scan) != migrate)
2398 return;
2399
19a78d11
PZ
2400 /*
2401 * Delay this task enough that another task of this mm will likely win
2402 * the next time around.
2403 */
2404 p->node_stamp += 2 * TICK_NSEC;
2405
9f40604c
MG
2406 start = mm->numa_scan_offset;
2407 pages = sysctl_numa_balancing_scan_size;
2408 pages <<= 20 - PAGE_SHIFT; /* MB in pages */
4620f8c1 2409 virtpages = pages * 8; /* Scan up to this much virtual space */
9f40604c
MG
2410 if (!pages)
2411 return;
cbee9f88 2412
4620f8c1 2413
6e5fb223 2414 down_read(&mm->mmap_sem);
9f40604c 2415 vma = find_vma(mm, start);
6e5fb223
PZ
2416 if (!vma) {
2417 reset_ptenuma_scan(p);
9f40604c 2418 start = 0;
6e5fb223
PZ
2419 vma = mm->mmap;
2420 }
9f40604c 2421 for (; vma; vma = vma->vm_next) {
6b79c57b 2422 if (!vma_migratable(vma) || !vma_policy_mof(vma) ||
8e76d4ee 2423 is_vm_hugetlb_page(vma) || (vma->vm_flags & VM_MIXEDMAP)) {
6e5fb223 2424 continue;
6b79c57b 2425 }
6e5fb223 2426
4591ce4f
MG
2427 /*
2428 * Shared library pages mapped by multiple processes are not
2429 * migrated as it is expected they are cache replicated. Avoid
2430 * hinting faults in read-only file-backed mappings or the vdso
2431 * as migrating the pages will be of marginal benefit.
2432 */
2433 if (!vma->vm_mm ||
2434 (vma->vm_file && (vma->vm_flags & (VM_READ|VM_WRITE)) == (VM_READ)))
2435 continue;
2436
3c67f474
MG
2437 /*
2438 * Skip inaccessible VMAs to avoid any confusion between
2439 * PROT_NONE and NUMA hinting ptes
2440 */
2441 if (!(vma->vm_flags & (VM_READ | VM_EXEC | VM_WRITE)))
2442 continue;
4591ce4f 2443
9f40604c
MG
2444 do {
2445 start = max(start, vma->vm_start);
2446 end = ALIGN(start + (pages << PAGE_SHIFT), HPAGE_SIZE);
2447 end = min(end, vma->vm_end);
4620f8c1 2448 nr_pte_updates = change_prot_numa(vma, start, end);
598f0ec0
MG
2449
2450 /*
4620f8c1
RR
2451 * Try to scan sysctl_numa_balancing_size worth of
2452 * hpages that have at least one present PTE that
2453 * is not already pte-numa. If the VMA contains
2454 * areas that are unused or already full of prot_numa
2455 * PTEs, scan up to virtpages, to skip through those
2456 * areas faster.
598f0ec0
MG
2457 */
2458 if (nr_pte_updates)
2459 pages -= (end - start) >> PAGE_SHIFT;
4620f8c1 2460 virtpages -= (end - start) >> PAGE_SHIFT;
6e5fb223 2461
9f40604c 2462 start = end;
4620f8c1 2463 if (pages <= 0 || virtpages <= 0)
9f40604c 2464 goto out;
3cf1962c
RR
2465
2466 cond_resched();
9f40604c 2467 } while (end != vma->vm_end);
cbee9f88 2468 }
6e5fb223 2469
9f40604c 2470out:
6e5fb223 2471 /*
c69307d5
PZ
2472 * It is possible to reach the end of the VMA list but the last few
2473 * VMAs are not guaranteed to the vma_migratable. If they are not, we
2474 * would find the !migratable VMA on the next scan but not reset the
2475 * scanner to the start so check it now.
6e5fb223
PZ
2476 */
2477 if (vma)
9f40604c 2478 mm->numa_scan_offset = start;
6e5fb223
PZ
2479 else
2480 reset_ptenuma_scan(p);
2481 up_read(&mm->mmap_sem);
51170840
RR
2482
2483 /*
2484 * Make sure tasks use at least 32x as much time to run other code
2485 * than they used here, to limit NUMA PTE scanning overhead to 3% max.
2486 * Usually update_task_scan_period slows down scanning enough; on an
2487 * overloaded system we need to limit overhead on a per task basis.
2488 */
2489 if (unlikely(p->se.sum_exec_runtime != runtime)) {
2490 u64 diff = p->se.sum_exec_runtime - runtime;
2491 p->node_stamp += 32 * diff;
2492 }
cbee9f88
PZ
2493}
2494
2495/*
2496 * Drive the periodic memory faults..
2497 */
2498void task_tick_numa(struct rq *rq, struct task_struct *curr)
2499{
2500 struct callback_head *work = &curr->numa_work;
2501 u64 period, now;
2502
2503 /*
2504 * We don't care about NUMA placement if we don't have memory.
2505 */
2506 if (!curr->mm || (curr->flags & PF_EXITING) || work->next != work)
2507 return;
2508
2509 /*
2510 * Using runtime rather than walltime has the dual advantage that
2511 * we (mostly) drive the selection from busy threads and that the
2512 * task needs to have done some actual work before we bother with
2513 * NUMA placement.
2514 */
2515 now = curr->se.sum_exec_runtime;
2516 period = (u64)curr->numa_scan_period * NSEC_PER_MSEC;
2517
25b3e5a3 2518 if (now > curr->node_stamp + period) {
4b96a29b 2519 if (!curr->node_stamp)
598f0ec0 2520 curr->numa_scan_period = task_scan_min(curr);
19a78d11 2521 curr->node_stamp += period;
cbee9f88
PZ
2522
2523 if (!time_before(jiffies, curr->mm->numa_next_scan)) {
2524 init_task_work(work, task_numa_work); /* TODO: move this into sched_fork() */
2525 task_work_add(curr, work, true);
2526 }
2527 }
2528}
2529#else
2530static void task_tick_numa(struct rq *rq, struct task_struct *curr)
2531{
2532}
0ec8aa00
PZ
2533
2534static inline void account_numa_enqueue(struct rq *rq, struct task_struct *p)
2535{
2536}
2537
2538static inline void account_numa_dequeue(struct rq *rq, struct task_struct *p)
2539{
2540}
cbee9f88
PZ
2541#endif /* CONFIG_NUMA_BALANCING */
2542
30cfdcfc
DA
2543static void
2544account_entity_enqueue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2545{
2546 update_load_add(&cfs_rq->load, se->load.weight);
c09595f6 2547 if (!parent_entity(se))
029632fb 2548 update_load_add(&rq_of(cfs_rq)->load, se->load.weight);
367456c7 2549#ifdef CONFIG_SMP
0ec8aa00
PZ
2550 if (entity_is_task(se)) {
2551 struct rq *rq = rq_of(cfs_rq);
2552
2553 account_numa_enqueue(rq, task_of(se));
2554 list_add(&se->group_node, &rq->cfs_tasks);
2555 }
367456c7 2556#endif
30cfdcfc 2557 cfs_rq->nr_running++;
30cfdcfc
DA
2558}
2559
2560static void
2561account_entity_dequeue(struct cfs_rq *cfs_rq, struct sched_entity *se)
2562{
2563 update_load_sub(&cfs_rq->load, se->load.weight);
c09595f6 2564 if (!parent_entity(se))
029632fb 2565 update_load_sub(&rq_of(cfs_rq)->load, se->load.weight);
bfdb198c 2566#ifdef CONFIG_SMP
0ec8aa00
PZ
2567 if (entity_is_task(se)) {
2568 account_numa_dequeue(rq_of(cfs_rq), task_of(se));
b87f1724 2569 list_del_init(&se->group_node);
0ec8aa00 2570 }
bfdb198c 2571#endif
30cfdcfc 2572 cfs_rq->nr_running--;
30cfdcfc
DA
2573}
2574
3ff6dcac
YZ
2575#ifdef CONFIG_FAIR_GROUP_SCHED
2576# ifdef CONFIG_SMP
ea1dc6fc 2577static long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
cf5f0acf 2578{
ea1dc6fc 2579 long tg_weight, load, shares;
cf5f0acf
PZ
2580
2581 /*
ea1dc6fc
PZ
2582 * This really should be: cfs_rq->avg.load_avg, but instead we use
2583 * cfs_rq->load.weight, which is its upper bound. This helps ramp up
2584 * the shares for small weight interactive tasks.
cf5f0acf 2585 */
ea1dc6fc 2586 load = scale_load_down(cfs_rq->load.weight);
cf5f0acf 2587
ea1dc6fc 2588 tg_weight = atomic_long_read(&tg->load_avg);
3ff6dcac 2589
ea1dc6fc
PZ
2590 /* Ensure tg_weight >= load */
2591 tg_weight -= cfs_rq->tg_load_avg_contrib;
2592 tg_weight += load;
3ff6dcac 2593
3ff6dcac 2594 shares = (tg->shares * load);
cf5f0acf
PZ
2595 if (tg_weight)
2596 shares /= tg_weight;
3ff6dcac
YZ
2597
2598 if (shares < MIN_SHARES)
2599 shares = MIN_SHARES;
2600 if (shares > tg->shares)
2601 shares = tg->shares;
2602
2603 return shares;
2604}
3ff6dcac 2605# else /* CONFIG_SMP */
6d5ab293 2606static inline long calc_cfs_shares(struct cfs_rq *cfs_rq, struct task_group *tg)
3ff6dcac
YZ
2607{
2608 return tg->shares;
2609}
3ff6dcac 2610# endif /* CONFIG_SMP */
ea1dc6fc 2611
2069dd75
PZ
2612static void reweight_entity(struct cfs_rq *cfs_rq, struct sched_entity *se,
2613 unsigned long weight)
2614{
19e5eebb
PT
2615 if (se->on_rq) {
2616 /* commit outstanding execution time */
2617 if (cfs_rq->curr == se)
2618 update_curr(cfs_rq);
2069dd75 2619 account_entity_dequeue(cfs_rq, se);
19e5eebb 2620 }
2069dd75
PZ
2621
2622 update_load_set(&se->load, weight);
2623
2624 if (se->on_rq)
2625 account_entity_enqueue(cfs_rq, se);
2626}
2627
82958366
PT
2628static inline int throttled_hierarchy(struct cfs_rq *cfs_rq);
2629
6d5ab293 2630static void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2631{
2632 struct task_group *tg;
2633 struct sched_entity *se;
3ff6dcac 2634 long shares;
2069dd75 2635
2069dd75
PZ
2636 tg = cfs_rq->tg;
2637 se = tg->se[cpu_of(rq_of(cfs_rq))];
64660c86 2638 if (!se || throttled_hierarchy(cfs_rq))
2069dd75 2639 return;
3ff6dcac
YZ
2640#ifndef CONFIG_SMP
2641 if (likely(se->load.weight == tg->shares))
2642 return;
2643#endif
6d5ab293 2644 shares = calc_cfs_shares(cfs_rq, tg);
2069dd75
PZ
2645
2646 reweight_entity(cfs_rq_of(se), se, shares);
2647}
2648#else /* CONFIG_FAIR_GROUP_SCHED */
6d5ab293 2649static inline void update_cfs_shares(struct cfs_rq *cfs_rq)
2069dd75
PZ
2650{
2651}
2652#endif /* CONFIG_FAIR_GROUP_SCHED */
2653
141965c7 2654#ifdef CONFIG_SMP
5b51f2f8
PT
2655/* Precomputed fixed inverse multiplies for multiplication by y^n */
2656static const u32 runnable_avg_yN_inv[] = {
2657 0xffffffff, 0xfa83b2da, 0xf5257d14, 0xefe4b99a, 0xeac0c6e6, 0xe5b906e6,
2658 0xe0ccdeeb, 0xdbfbb796, 0xd744fcc9, 0xd2a81d91, 0xce248c14, 0xc9b9bd85,
2659 0xc5672a10, 0xc12c4cc9, 0xbd08a39e, 0xb8fbaf46, 0xb504f333, 0xb123f581,
2660 0xad583ee9, 0xa9a15ab4, 0xa5fed6a9, 0xa2704302, 0x9ef5325f, 0x9b8d39b9,
2661 0x9837f050, 0x94f4efa8, 0x91c3d373, 0x8ea4398a, 0x8b95c1e3, 0x88980e80,
2662 0x85aac367, 0x82cd8698,
2663};
2664
2665/*
2666 * Precomputed \Sum y^k { 1<=k<=n }. These are floor(true_value) to prevent
2667 * over-estimates when re-combining.
2668 */
2669static const u32 runnable_avg_yN_sum[] = {
2670 0, 1002, 1982, 2941, 3880, 4798, 5697, 6576, 7437, 8279, 9103,
2671 9909,10698,11470,12226,12966,13690,14398,15091,15769,16433,17082,
2672 17718,18340,18949,19545,20128,20698,21256,21802,22336,22859,23371,
2673};
2674
7b20b916
YD
2675/*
2676 * Precomputed \Sum y^k { 1<=k<=n, where n%32=0). Values are rolled down to
2677 * lower integers. See Documentation/scheduler/sched-avg.txt how these
2678 * were generated:
2679 */
2680static const u32 __accumulated_sum_N32[] = {
2681 0, 23371, 35056, 40899, 43820, 45281,
2682 46011, 46376, 46559, 46650, 46696, 46719,
2683};
2684
9d85f21c
PT
2685/*
2686 * Approximate:
2687 * val * y^n, where y^32 ~= 0.5 (~1 scheduling period)
2688 */
2689static __always_inline u64 decay_load(u64 val, u64 n)
2690{
5b51f2f8
PT
2691 unsigned int local_n;
2692
2693 if (!n)
2694 return val;
2695 else if (unlikely(n > LOAD_AVG_PERIOD * 63))
2696 return 0;
2697
2698 /* after bounds checking we can collapse to 32-bit */
2699 local_n = n;
2700
2701 /*
2702 * As y^PERIOD = 1/2, we can combine
9c58c79a
ZZ
2703 * y^n = 1/2^(n/PERIOD) * y^(n%PERIOD)
2704 * With a look-up table which covers y^n (n<PERIOD)
5b51f2f8
PT
2705 *
2706 * To achieve constant time decay_load.
2707 */
2708 if (unlikely(local_n >= LOAD_AVG_PERIOD)) {
2709 val >>= local_n / LOAD_AVG_PERIOD;
2710 local_n %= LOAD_AVG_PERIOD;
9d85f21c
PT
2711 }
2712
9d89c257
YD
2713 val = mul_u64_u32_shr(val, runnable_avg_yN_inv[local_n], 32);
2714 return val;
5b51f2f8
PT
2715}
2716
2717/*
2718 * For updates fully spanning n periods, the contribution to runnable
2719 * average will be: \Sum 1024*y^n
2720 *
2721 * We can compute this reasonably efficiently by combining:
2722 * y^PERIOD = 1/2 with precomputed \Sum 1024*y^n {for n <PERIOD}
2723 */
2724static u32 __compute_runnable_contrib(u64 n)
2725{
2726 u32 contrib = 0;
2727
2728 if (likely(n <= LOAD_AVG_PERIOD))
2729 return runnable_avg_yN_sum[n];
2730 else if (unlikely(n >= LOAD_AVG_MAX_N))
2731 return LOAD_AVG_MAX;
2732
7b20b916
YD
2733 /* Since n < LOAD_AVG_MAX_N, n/LOAD_AVG_PERIOD < 11 */
2734 contrib = __accumulated_sum_N32[n/LOAD_AVG_PERIOD];
2735 n %= LOAD_AVG_PERIOD;
5b51f2f8
PT
2736 contrib = decay_load(contrib, n);
2737 return contrib + runnable_avg_yN_sum[n];
9d85f21c
PT
2738}
2739
54a21385 2740#define cap_scale(v, s) ((v)*(s) >> SCHED_CAPACITY_SHIFT)
e0f5f3af 2741
9d85f21c
PT
2742/*
2743 * We can represent the historical contribution to runnable average as the
2744 * coefficients of a geometric series. To do this we sub-divide our runnable
2745 * history into segments of approximately 1ms (1024us); label the segment that
2746 * occurred N-ms ago p_N, with p_0 corresponding to the current period, e.g.
2747 *
2748 * [<- 1024us ->|<- 1024us ->|<- 1024us ->| ...
2749 * p0 p1 p2
2750 * (now) (~1ms ago) (~2ms ago)
2751 *
2752 * Let u_i denote the fraction of p_i that the entity was runnable.
2753 *
2754 * We then designate the fractions u_i as our co-efficients, yielding the
2755 * following representation of historical load:
2756 * u_0 + u_1*y + u_2*y^2 + u_3*y^3 + ...
2757 *
2758 * We choose y based on the with of a reasonably scheduling period, fixing:
2759 * y^32 = 0.5
2760 *
2761 * This means that the contribution to load ~32ms ago (u_32) will be weighted
2762 * approximately half as much as the contribution to load within the last ms
2763 * (u_0).
2764 *
2765 * When a period "rolls over" and we have new u_0`, multiplying the previous
2766 * sum again by y is sufficient to update:
2767 * load_avg = u_0` + y*(u_0 + u_1*y + u_2*y^2 + ... )
2768 * = u_0 + u_1*y + u_2*y^2 + ... [re-labeling u_i --> u_{i+1}]
2769 */
9d89c257
YD
2770static __always_inline int
2771__update_load_avg(u64 now, int cpu, struct sched_avg *sa,
13962234 2772 unsigned long weight, int running, struct cfs_rq *cfs_rq)
9d85f21c 2773{
e0f5f3af 2774 u64 delta, scaled_delta, periods;
9d89c257 2775 u32 contrib;
6115c793 2776 unsigned int delta_w, scaled_delta_w, decayed = 0;
6f2b0452 2777 unsigned long scale_freq, scale_cpu;
9d85f21c 2778
9d89c257 2779 delta = now - sa->last_update_time;
9d85f21c
PT
2780 /*
2781 * This should only happen when time goes backwards, which it
2782 * unfortunately does during sched clock init when we swap over to TSC.
2783 */
2784 if ((s64)delta < 0) {
9d89c257 2785 sa->last_update_time = now;
9d85f21c
PT
2786 return 0;
2787 }
2788
2789 /*
2790 * Use 1024ns as the unit of measurement since it's a reasonable
2791 * approximation of 1us and fast to compute.
2792 */
2793 delta >>= 10;
2794 if (!delta)
2795 return 0;
9d89c257 2796 sa->last_update_time = now;
9d85f21c 2797
6f2b0452
DE
2798 scale_freq = arch_scale_freq_capacity(NULL, cpu);
2799 scale_cpu = arch_scale_cpu_capacity(NULL, cpu);
2800
9d85f21c 2801 /* delta_w is the amount already accumulated against our next period */
9d89c257 2802 delta_w = sa->period_contrib;
9d85f21c 2803 if (delta + delta_w >= 1024) {
9d85f21c
PT
2804 decayed = 1;
2805
9d89c257
YD
2806 /* how much left for next period will start over, we don't know yet */
2807 sa->period_contrib = 0;
2808
9d85f21c
PT
2809 /*
2810 * Now that we know we're crossing a period boundary, figure
2811 * out how much from delta we need to complete the current
2812 * period and accrue it.
2813 */
2814 delta_w = 1024 - delta_w;
54a21385 2815 scaled_delta_w = cap_scale(delta_w, scale_freq);
13962234 2816 if (weight) {
e0f5f3af
DE
2817 sa->load_sum += weight * scaled_delta_w;
2818 if (cfs_rq) {
2819 cfs_rq->runnable_load_sum +=
2820 weight * scaled_delta_w;
2821 }
13962234 2822 }
36ee28e4 2823 if (running)
006cdf02 2824 sa->util_sum += scaled_delta_w * scale_cpu;
5b51f2f8
PT
2825
2826 delta -= delta_w;
2827
2828 /* Figure out how many additional periods this update spans */
2829 periods = delta / 1024;
2830 delta %= 1024;
2831
9d89c257 2832 sa->load_sum = decay_load(sa->load_sum, periods + 1);
13962234
YD
2833 if (cfs_rq) {
2834 cfs_rq->runnable_load_sum =
2835 decay_load(cfs_rq->runnable_load_sum, periods + 1);
2836 }
9d89c257 2837 sa->util_sum = decay_load((u64)(sa->util_sum), periods + 1);
5b51f2f8
PT
2838
2839 /* Efficiently calculate \sum (1..n_period) 1024*y^i */
9d89c257 2840 contrib = __compute_runnable_contrib(periods);
54a21385 2841 contrib = cap_scale(contrib, scale_freq);
13962234 2842 if (weight) {
9d89c257 2843 sa->load_sum += weight * contrib;
13962234
YD
2844 if (cfs_rq)
2845 cfs_rq->runnable_load_sum += weight * contrib;
2846 }
36ee28e4 2847 if (running)
006cdf02 2848 sa->util_sum += contrib * scale_cpu;
9d85f21c
PT
2849 }
2850
2851 /* Remainder of delta accrued against u_0` */
54a21385 2852 scaled_delta = cap_scale(delta, scale_freq);
13962234 2853 if (weight) {
e0f5f3af 2854 sa->load_sum += weight * scaled_delta;
13962234 2855 if (cfs_rq)
e0f5f3af 2856 cfs_rq->runnable_load_sum += weight * scaled_delta;
13962234 2857 }
36ee28e4 2858 if (running)
006cdf02 2859 sa->util_sum += scaled_delta * scale_cpu;
9ee474f5 2860
9d89c257 2861 sa->period_contrib += delta;
9ee474f5 2862
9d89c257
YD
2863 if (decayed) {
2864 sa->load_avg = div_u64(sa->load_sum, LOAD_AVG_MAX);
13962234
YD
2865 if (cfs_rq) {
2866 cfs_rq->runnable_load_avg =
2867 div_u64(cfs_rq->runnable_load_sum, LOAD_AVG_MAX);
2868 }
006cdf02 2869 sa->util_avg = sa->util_sum / LOAD_AVG_MAX;
9d89c257 2870 }
aff3e498 2871
9d89c257 2872 return decayed;
9ee474f5
PT
2873}
2874
c566e8e9 2875#ifdef CONFIG_FAIR_GROUP_SCHED
7c3edd2c
PZ
2876/**
2877 * update_tg_load_avg - update the tg's load avg
2878 * @cfs_rq: the cfs_rq whose avg changed
2879 * @force: update regardless of how small the difference
2880 *
2881 * This function 'ensures': tg->load_avg := \Sum tg->cfs_rq[]->avg.load.
2882 * However, because tg->load_avg is a global value there are performance
2883 * considerations.
2884 *
2885 * In order to avoid having to look at the other cfs_rq's, we use a
2886 * differential update where we store the last value we propagated. This in
2887 * turn allows skipping updates if the differential is 'small'.
2888 *
2889 * Updating tg's load_avg is necessary before update_cfs_share() (which is
2890 * done) and effective_load() (which is not done because it is too costly).
bb17f655 2891 */
9d89c257 2892static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force)
bb17f655 2893{
9d89c257 2894 long delta = cfs_rq->avg.load_avg - cfs_rq->tg_load_avg_contrib;
bb17f655 2895
aa0b7ae0
WL
2896 /*
2897 * No need to update load_avg for root_task_group as it is not used.
2898 */
2899 if (cfs_rq->tg == &root_task_group)
2900 return;
2901
9d89c257
YD
2902 if (force || abs(delta) > cfs_rq->tg_load_avg_contrib / 64) {
2903 atomic_long_add(delta, &cfs_rq->tg->load_avg);
2904 cfs_rq->tg_load_avg_contrib = cfs_rq->avg.load_avg;
bb17f655 2905 }
8165e145 2906}
f5f9739d 2907
ad936d86
BP
2908/*
2909 * Called within set_task_rq() right before setting a task's cpu. The
2910 * caller only guarantees p->pi_lock is held; no other assumptions,
2911 * including the state of rq->lock, should be made.
2912 */
2913void set_task_rq_fair(struct sched_entity *se,
2914 struct cfs_rq *prev, struct cfs_rq *next)
2915{
2916 if (!sched_feat(ATTACH_AGE_LOAD))
2917 return;
2918
2919 /*
2920 * We are supposed to update the task to "current" time, then its up to
2921 * date and ready to go to new CPU/cfs_rq. But we have difficulty in
2922 * getting what current time is, so simply throw away the out-of-date
2923 * time. This will result in the wakee task is less decayed, but giving
2924 * the wakee more load sounds not bad.
2925 */
2926 if (se->avg.last_update_time && prev) {
2927 u64 p_last_update_time;
2928 u64 n_last_update_time;
2929
2930#ifndef CONFIG_64BIT
2931 u64 p_last_update_time_copy;
2932 u64 n_last_update_time_copy;
2933
2934 do {
2935 p_last_update_time_copy = prev->load_last_update_time_copy;
2936 n_last_update_time_copy = next->load_last_update_time_copy;
2937
2938 smp_rmb();
2939
2940 p_last_update_time = prev->avg.last_update_time;
2941 n_last_update_time = next->avg.last_update_time;
2942
2943 } while (p_last_update_time != p_last_update_time_copy ||
2944 n_last_update_time != n_last_update_time_copy);
2945#else
2946 p_last_update_time = prev->avg.last_update_time;
2947 n_last_update_time = next->avg.last_update_time;
2948#endif
2949 __update_load_avg(p_last_update_time, cpu_of(rq_of(prev)),
2950 &se->avg, 0, 0, NULL);
2951 se->avg.last_update_time = n_last_update_time;
2952 }
2953}
6e83125c 2954#else /* CONFIG_FAIR_GROUP_SCHED */
9d89c257 2955static inline void update_tg_load_avg(struct cfs_rq *cfs_rq, int force) {}
6e83125c 2956#endif /* CONFIG_FAIR_GROUP_SCHED */
c566e8e9 2957
a2c6c91f
SM
2958static inline void cfs_rq_util_change(struct cfs_rq *cfs_rq)
2959{
58919e83 2960 if (&this_rq()->cfs == cfs_rq) {
a2c6c91f
SM
2961 /*
2962 * There are a few boundary cases this might miss but it should
2963 * get called often enough that that should (hopefully) not be
2964 * a real problem -- added to that it only calls on the local
2965 * CPU, so if we enqueue remotely we'll miss an update, but
2966 * the next tick/schedule should update.
2967 *
2968 * It will not get called when we go idle, because the idle
2969 * thread is a different class (!fair), nor will the utilization
2970 * number include things like RT tasks.
2971 *
2972 * As is, the util number is not freq-invariant (we'd have to
2973 * implement arch_scale_freq_capacity() for that).
2974 *
2975 * See cpu_util().
2976 */
12bde33d 2977 cpufreq_update_util(rq_of(cfs_rq), 0);
a2c6c91f
SM
2978 }
2979}
2980
89741892
PZ
2981/*
2982 * Unsigned subtract and clamp on underflow.
2983 *
2984 * Explicitly do a load-store to ensure the intermediate value never hits
2985 * memory. This allows lockless observations without ever seeing the negative
2986 * values.
2987 */
2988#define sub_positive(_ptr, _val) do { \
2989 typeof(_ptr) ptr = (_ptr); \
2990 typeof(*ptr) val = (_val); \
2991 typeof(*ptr) res, var = READ_ONCE(*ptr); \
2992 res = var - val; \
2993 if (res > var) \
2994 res = 0; \
2995 WRITE_ONCE(*ptr, res); \
2996} while (0)
2997
3d30544f
PZ
2998/**
2999 * update_cfs_rq_load_avg - update the cfs_rq's load/util averages
3000 * @now: current time, as per cfs_rq_clock_task()
3001 * @cfs_rq: cfs_rq to update
3002 * @update_freq: should we call cfs_rq_util_change() or will the call do so
3003 *
3004 * The cfs_rq avg is the direct sum of all its entities (blocked and runnable)
3005 * avg. The immediate corollary is that all (fair) tasks must be attached, see
3006 * post_init_entity_util_avg().
3007 *
3008 * cfs_rq->avg is used for task_h_load() and update_cfs_share() for example.
3009 *
7c3edd2c
PZ
3010 * Returns true if the load decayed or we removed load.
3011 *
3012 * Since both these conditions indicate a changed cfs_rq->avg.load we should
3013 * call update_tg_load_avg() when this function returns true.
3d30544f 3014 */
a2c6c91f
SM
3015static inline int
3016update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
2dac754e 3017{
9d89c257 3018 struct sched_avg *sa = &cfs_rq->avg;
41e0d37f 3019 int decayed, removed_load = 0, removed_util = 0;
2dac754e 3020
9d89c257 3021 if (atomic_long_read(&cfs_rq->removed_load_avg)) {
9e0e83a1 3022 s64 r = atomic_long_xchg(&cfs_rq->removed_load_avg, 0);
89741892
PZ
3023 sub_positive(&sa->load_avg, r);
3024 sub_positive(&sa->load_sum, r * LOAD_AVG_MAX);
41e0d37f 3025 removed_load = 1;
8165e145 3026 }
2dac754e 3027
9d89c257
YD
3028 if (atomic_long_read(&cfs_rq->removed_util_avg)) {
3029 long r = atomic_long_xchg(&cfs_rq->removed_util_avg, 0);
89741892
PZ
3030 sub_positive(&sa->util_avg, r);
3031 sub_positive(&sa->util_sum, r * LOAD_AVG_MAX);
41e0d37f 3032 removed_util = 1;
9d89c257 3033 }
36ee28e4 3034
a2c6c91f 3035 decayed = __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234 3036 scale_load_down(cfs_rq->load.weight), cfs_rq->curr != NULL, cfs_rq);
36ee28e4 3037
9d89c257
YD
3038#ifndef CONFIG_64BIT
3039 smp_wmb();
3040 cfs_rq->load_last_update_time_copy = sa->last_update_time;
3041#endif
36ee28e4 3042
a2c6c91f
SM
3043 if (update_freq && (decayed || removed_util))
3044 cfs_rq_util_change(cfs_rq);
21e96f88 3045
41e0d37f 3046 return decayed || removed_load;
21e96f88
SM
3047}
3048
3049/* Update task and its cfs_rq load average */
3050static inline void update_load_avg(struct sched_entity *se, int update_tg)
3051{
3052 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3053 u64 now = cfs_rq_clock_task(cfs_rq);
3054 struct rq *rq = rq_of(cfs_rq);
3055 int cpu = cpu_of(rq);
3056
3057 /*
3058 * Track task load average for carrying it to new CPU after migrated, and
3059 * track group sched_entity load average for task_h_load calc in migration
3060 */
3061 __update_load_avg(now, cpu, &se->avg,
3062 se->on_rq * scale_load_down(se->load.weight),
3063 cfs_rq->curr == se, NULL);
3064
a2c6c91f 3065 if (update_cfs_rq_load_avg(now, cfs_rq, true) && update_tg)
21e96f88 3066 update_tg_load_avg(cfs_rq, 0);
9ee474f5
PT
3067}
3068
3d30544f
PZ
3069/**
3070 * attach_entity_load_avg - attach this entity to its cfs_rq load avg
3071 * @cfs_rq: cfs_rq to attach to
3072 * @se: sched_entity to attach
3073 *
3074 * Must call update_cfs_rq_load_avg() before this, since we rely on
3075 * cfs_rq->avg.last_update_time being current.
3076 */
a05e8c51
BP
3077static void attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3078{
a9280514
PZ
3079 if (!sched_feat(ATTACH_AGE_LOAD))
3080 goto skip_aging;
3081
6efdb105
BP
3082 /*
3083 * If we got migrated (either between CPUs or between cgroups) we'll
3084 * have aged the average right before clearing @last_update_time.
7dc603c9
PZ
3085 *
3086 * Or we're fresh through post_init_entity_util_avg().
6efdb105
BP
3087 */
3088 if (se->avg.last_update_time) {
3089 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3090 &se->avg, 0, 0, NULL);
3091
3092 /*
3093 * XXX: we could have just aged the entire load away if we've been
3094 * absent from the fair class for too long.
3095 */
3096 }
3097
a9280514 3098skip_aging:
a05e8c51
BP
3099 se->avg.last_update_time = cfs_rq->avg.last_update_time;
3100 cfs_rq->avg.load_avg += se->avg.load_avg;
3101 cfs_rq->avg.load_sum += se->avg.load_sum;
3102 cfs_rq->avg.util_avg += se->avg.util_avg;
3103 cfs_rq->avg.util_sum += se->avg.util_sum;
a2c6c91f
SM
3104
3105 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3106}
3107
3d30544f
PZ
3108/**
3109 * detach_entity_load_avg - detach this entity from its cfs_rq load avg
3110 * @cfs_rq: cfs_rq to detach from
3111 * @se: sched_entity to detach
3112 *
3113 * Must call update_cfs_rq_load_avg() before this, since we rely on
3114 * cfs_rq->avg.last_update_time being current.
3115 */
a05e8c51
BP
3116static void detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3117{
3118 __update_load_avg(cfs_rq->avg.last_update_time, cpu_of(rq_of(cfs_rq)),
3119 &se->avg, se->on_rq * scale_load_down(se->load.weight),
3120 cfs_rq->curr == se, NULL);
3121
89741892
PZ
3122 sub_positive(&cfs_rq->avg.load_avg, se->avg.load_avg);
3123 sub_positive(&cfs_rq->avg.load_sum, se->avg.load_sum);
3124 sub_positive(&cfs_rq->avg.util_avg, se->avg.util_avg);
3125 sub_positive(&cfs_rq->avg.util_sum, se->avg.util_sum);
a2c6c91f
SM
3126
3127 cfs_rq_util_change(cfs_rq);
a05e8c51
BP
3128}
3129
9d89c257
YD
3130/* Add the load generated by se into cfs_rq's load average */
3131static inline void
3132enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
9ee474f5 3133{
9d89c257
YD
3134 struct sched_avg *sa = &se->avg;
3135 u64 now = cfs_rq_clock_task(cfs_rq);
a05e8c51 3136 int migrated, decayed;
9ee474f5 3137
a05e8c51
BP
3138 migrated = !sa->last_update_time;
3139 if (!migrated) {
9d89c257 3140 __update_load_avg(now, cpu_of(rq_of(cfs_rq)), sa,
13962234
YD
3141 se->on_rq * scale_load_down(se->load.weight),
3142 cfs_rq->curr == se, NULL);
aff3e498 3143 }
c566e8e9 3144
a2c6c91f 3145 decayed = update_cfs_rq_load_avg(now, cfs_rq, !migrated);
18bf2805 3146
13962234
YD
3147 cfs_rq->runnable_load_avg += sa->load_avg;
3148 cfs_rq->runnable_load_sum += sa->load_sum;
3149
a05e8c51
BP
3150 if (migrated)
3151 attach_entity_load_avg(cfs_rq, se);
9ee474f5 3152
9d89c257
YD
3153 if (decayed || migrated)
3154 update_tg_load_avg(cfs_rq, 0);
2dac754e
PT
3155}
3156
13962234
YD
3157/* Remove the runnable load generated by se from cfs_rq's runnable load average */
3158static inline void
3159dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se)
3160{
3161 update_load_avg(se, 1);
3162
3163 cfs_rq->runnable_load_avg =
3164 max_t(long, cfs_rq->runnable_load_avg - se->avg.load_avg, 0);
3165 cfs_rq->runnable_load_sum =
a05e8c51 3166 max_t(s64, cfs_rq->runnable_load_sum - se->avg.load_sum, 0);
13962234
YD
3167}
3168
9d89c257 3169#ifndef CONFIG_64BIT
0905f04e
YD
3170static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3171{
9d89c257 3172 u64 last_update_time_copy;
0905f04e 3173 u64 last_update_time;
9ee474f5 3174
9d89c257
YD
3175 do {
3176 last_update_time_copy = cfs_rq->load_last_update_time_copy;
3177 smp_rmb();
3178 last_update_time = cfs_rq->avg.last_update_time;
3179 } while (last_update_time != last_update_time_copy);
0905f04e
YD
3180
3181 return last_update_time;
3182}
9d89c257 3183#else
0905f04e
YD
3184static inline u64 cfs_rq_last_update_time(struct cfs_rq *cfs_rq)
3185{
3186 return cfs_rq->avg.last_update_time;
3187}
9d89c257
YD
3188#endif
3189
0905f04e
YD
3190/*
3191 * Task first catches up with cfs_rq, and then subtract
3192 * itself from the cfs_rq (task must be off the queue now).
3193 */
3194void remove_entity_load_avg(struct sched_entity *se)
3195{
3196 struct cfs_rq *cfs_rq = cfs_rq_of(se);
3197 u64 last_update_time;
3198
3199 /*
7dc603c9
PZ
3200 * tasks cannot exit without having gone through wake_up_new_task() ->
3201 * post_init_entity_util_avg() which will have added things to the
3202 * cfs_rq, so we can remove unconditionally.
3203 *
3204 * Similarly for groups, they will have passed through
3205 * post_init_entity_util_avg() before unregister_sched_fair_group()
3206 * calls this.
0905f04e 3207 */
0905f04e
YD
3208
3209 last_update_time = cfs_rq_last_update_time(cfs_rq);
3210
13962234 3211 __update_load_avg(last_update_time, cpu_of(rq_of(cfs_rq)), &se->avg, 0, 0, NULL);
9d89c257
YD
3212 atomic_long_add(se->avg.load_avg, &cfs_rq->removed_load_avg);
3213 atomic_long_add(se->avg.util_avg, &cfs_rq->removed_util_avg);
2dac754e 3214}
642dbc39 3215
7ea241af
YD
3216static inline unsigned long cfs_rq_runnable_load_avg(struct cfs_rq *cfs_rq)
3217{
3218 return cfs_rq->runnable_load_avg;
3219}
3220
3221static inline unsigned long cfs_rq_load_avg(struct cfs_rq *cfs_rq)
3222{
3223 return cfs_rq->avg.load_avg;
3224}
3225
6e83125c
PZ
3226static int idle_balance(struct rq *this_rq);
3227
38033c37
PZ
3228#else /* CONFIG_SMP */
3229
01011473
PZ
3230static inline int
3231update_cfs_rq_load_avg(u64 now, struct cfs_rq *cfs_rq, bool update_freq)
3232{
3233 return 0;
3234}
3235
536bd00c
RW
3236static inline void update_load_avg(struct sched_entity *se, int not_used)
3237{
12bde33d 3238 cpufreq_update_util(rq_of(cfs_rq_of(se)), 0);
536bd00c
RW
3239}
3240
9d89c257
YD
3241static inline void
3242enqueue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
13962234
YD
3243static inline void
3244dequeue_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
9d89c257 3245static inline void remove_entity_load_avg(struct sched_entity *se) {}
6e83125c 3246
a05e8c51
BP
3247static inline void
3248attach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3249static inline void
3250detach_entity_load_avg(struct cfs_rq *cfs_rq, struct sched_entity *se) {}
3251
6e83125c
PZ
3252static inline int idle_balance(struct rq *rq)
3253{
3254 return 0;
3255}
3256
38033c37 3257#endif /* CONFIG_SMP */
9d85f21c 3258
ddc97297
PZ
3259static void check_spread(struct cfs_rq *cfs_rq, struct sched_entity *se)
3260{
3261#ifdef CONFIG_SCHED_DEBUG
3262 s64 d = se->vruntime - cfs_rq->min_vruntime;
3263
3264 if (d < 0)
3265 d = -d;
3266
3267 if (d > 3*sysctl_sched_latency)
ae92882e 3268 schedstat_inc(cfs_rq->nr_spread_over);
ddc97297
PZ
3269#endif
3270}
3271
aeb73b04
PZ
3272static void
3273place_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int initial)
3274{
1af5f730 3275 u64 vruntime = cfs_rq->min_vruntime;
94dfb5e7 3276
2cb8600e
PZ
3277 /*
3278 * The 'current' period is already promised to the current tasks,
3279 * however the extra weight of the new task will slow them down a
3280 * little, place the new task so that it fits in the slot that
3281 * stays open at the end.
3282 */
94dfb5e7 3283 if (initial && sched_feat(START_DEBIT))
f9c0b095 3284 vruntime += sched_vslice(cfs_rq, se);
aeb73b04 3285
a2e7a7eb 3286 /* sleeps up to a single latency don't count. */
5ca9880c 3287 if (!initial) {
a2e7a7eb 3288 unsigned long thresh = sysctl_sched_latency;
a7be37ac 3289
a2e7a7eb
MG
3290 /*
3291 * Halve their sleep time's effect, to allow
3292 * for a gentler effect of sleepers:
3293 */
3294 if (sched_feat(GENTLE_FAIR_SLEEPERS))
3295 thresh >>= 1;
51e0304c 3296
a2e7a7eb 3297 vruntime -= thresh;
aeb73b04
PZ
3298 }
3299
b5d9d734 3300 /* ensure we never gain time by being placed backwards. */
16c8f1c7 3301 se->vruntime = max_vruntime(se->vruntime, vruntime);
aeb73b04
PZ
3302}
3303
d3d9dc33
PT
3304static void check_enqueue_throttle(struct cfs_rq *cfs_rq);
3305
cb251765
MG
3306static inline void check_schedstat_required(void)
3307{
3308#ifdef CONFIG_SCHEDSTATS
3309 if (schedstat_enabled())
3310 return;
3311
3312 /* Force schedstat enabled if a dependent tracepoint is active */
3313 if (trace_sched_stat_wait_enabled() ||
3314 trace_sched_stat_sleep_enabled() ||
3315 trace_sched_stat_iowait_enabled() ||
3316 trace_sched_stat_blocked_enabled() ||
3317 trace_sched_stat_runtime_enabled()) {
eda8dca5 3318 printk_deferred_once("Scheduler tracepoints stat_sleep, stat_iowait, "
cb251765
MG
3319 "stat_blocked and stat_runtime require the "
3320 "kernel parameter schedstats=enabled or "
3321 "kernel.sched_schedstats=1\n");
3322 }
3323#endif
3324}
3325
b5179ac7
PZ
3326
3327/*
3328 * MIGRATION
3329 *
3330 * dequeue
3331 * update_curr()
3332 * update_min_vruntime()
3333 * vruntime -= min_vruntime
3334 *
3335 * enqueue
3336 * update_curr()
3337 * update_min_vruntime()
3338 * vruntime += min_vruntime
3339 *
3340 * this way the vruntime transition between RQs is done when both
3341 * min_vruntime are up-to-date.
3342 *
3343 * WAKEUP (remote)
3344 *
59efa0ba 3345 * ->migrate_task_rq_fair() (p->state == TASK_WAKING)
b5179ac7
PZ
3346 * vruntime -= min_vruntime
3347 *
3348 * enqueue
3349 * update_curr()
3350 * update_min_vruntime()
3351 * vruntime += min_vruntime
3352 *
3353 * this way we don't have the most up-to-date min_vruntime on the originating
3354 * CPU and an up-to-date min_vruntime on the destination CPU.
3355 */
3356
bf0f6f24 3357static void
88ec22d3 3358enqueue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3359{
2f950354
PZ
3360 bool renorm = !(flags & ENQUEUE_WAKEUP) || (flags & ENQUEUE_MIGRATED);
3361 bool curr = cfs_rq->curr == se;
3362
88ec22d3 3363 /*
2f950354
PZ
3364 * If we're the current task, we must renormalise before calling
3365 * update_curr().
88ec22d3 3366 */
2f950354 3367 if (renorm && curr)
88ec22d3
PZ
3368 se->vruntime += cfs_rq->min_vruntime;
3369
2f950354
PZ
3370 update_curr(cfs_rq);
3371
bf0f6f24 3372 /*
2f950354
PZ
3373 * Otherwise, renormalise after, such that we're placed at the current
3374 * moment in time, instead of some random moment in the past. Being
3375 * placed in the past could significantly boost this task to the
3376 * fairness detriment of existing tasks.
bf0f6f24 3377 */
2f950354
PZ
3378 if (renorm && !curr)
3379 se->vruntime += cfs_rq->min_vruntime;
3380
9d89c257 3381 enqueue_entity_load_avg(cfs_rq, se);
17bc14b7
LT
3382 account_entity_enqueue(cfs_rq, se);
3383 update_cfs_shares(cfs_rq);
bf0f6f24 3384
1a3d027c 3385 if (flags & ENQUEUE_WAKEUP)
aeb73b04 3386 place_entity(cfs_rq, se, 0);
bf0f6f24 3387
cb251765 3388 check_schedstat_required();
4fa8d299
JP
3389 update_stats_enqueue(cfs_rq, se, flags);
3390 check_spread(cfs_rq, se);
2f950354 3391 if (!curr)
83b699ed 3392 __enqueue_entity(cfs_rq, se);
2069dd75 3393 se->on_rq = 1;
3d4b47b4 3394
d3d9dc33 3395 if (cfs_rq->nr_running == 1) {
3d4b47b4 3396 list_add_leaf_cfs_rq(cfs_rq);
d3d9dc33
PT
3397 check_enqueue_throttle(cfs_rq);
3398 }
bf0f6f24
IM
3399}
3400
2c13c919 3401static void __clear_buddies_last(struct sched_entity *se)
2002c695 3402{
2c13c919
RR
3403 for_each_sched_entity(se) {
3404 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3405 if (cfs_rq->last != se)
2c13c919 3406 break;
f1044799
PZ
3407
3408 cfs_rq->last = NULL;
2c13c919
RR
3409 }
3410}
2002c695 3411
2c13c919
RR
3412static void __clear_buddies_next(struct sched_entity *se)
3413{
3414 for_each_sched_entity(se) {
3415 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3416 if (cfs_rq->next != se)
2c13c919 3417 break;
f1044799
PZ
3418
3419 cfs_rq->next = NULL;
2c13c919 3420 }
2002c695
PZ
3421}
3422
ac53db59
RR
3423static void __clear_buddies_skip(struct sched_entity *se)
3424{
3425 for_each_sched_entity(se) {
3426 struct cfs_rq *cfs_rq = cfs_rq_of(se);
f1044799 3427 if (cfs_rq->skip != se)
ac53db59 3428 break;
f1044799
PZ
3429
3430 cfs_rq->skip = NULL;
ac53db59
RR
3431 }
3432}
3433
a571bbea
PZ
3434static void clear_buddies(struct cfs_rq *cfs_rq, struct sched_entity *se)
3435{
2c13c919
RR
3436 if (cfs_rq->last == se)
3437 __clear_buddies_last(se);
3438
3439 if (cfs_rq->next == se)
3440 __clear_buddies_next(se);
ac53db59
RR
3441
3442 if (cfs_rq->skip == se)
3443 __clear_buddies_skip(se);
a571bbea
PZ
3444}
3445
6c16a6dc 3446static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d8b4986d 3447
bf0f6f24 3448static void
371fd7e7 3449dequeue_entity(struct cfs_rq *cfs_rq, struct sched_entity *se, int flags)
bf0f6f24 3450{
a2a2d680
DA
3451 /*
3452 * Update run-time statistics of the 'current'.
3453 */
3454 update_curr(cfs_rq);
13962234 3455 dequeue_entity_load_avg(cfs_rq, se);
a2a2d680 3456
4fa8d299 3457 update_stats_dequeue(cfs_rq, se, flags);
67e9fb2a 3458
2002c695 3459 clear_buddies(cfs_rq, se);
4793241b 3460
83b699ed 3461 if (se != cfs_rq->curr)
30cfdcfc 3462 __dequeue_entity(cfs_rq, se);
17bc14b7 3463 se->on_rq = 0;
30cfdcfc 3464 account_entity_dequeue(cfs_rq, se);
88ec22d3
PZ
3465
3466 /*
3467 * Normalize the entity after updating the min_vruntime because the
3468 * update can refer to the ->curr item and we need to reflect this
3469 * movement in our normalized position.
3470 */
371fd7e7 3471 if (!(flags & DEQUEUE_SLEEP))
88ec22d3 3472 se->vruntime -= cfs_rq->min_vruntime;
1e876231 3473
d8b4986d
PT
3474 /* return excess runtime on last dequeue */
3475 return_cfs_rq_runtime(cfs_rq);
3476
1e876231 3477 update_min_vruntime(cfs_rq);
17bc14b7 3478 update_cfs_shares(cfs_rq);
bf0f6f24
IM
3479}
3480
3481/*
3482 * Preempt the current task with a newly woken task if needed:
3483 */
7c92e54f 3484static void
2e09bf55 3485check_preempt_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr)
bf0f6f24 3486{
11697830 3487 unsigned long ideal_runtime, delta_exec;
f4cfb33e
WX
3488 struct sched_entity *se;
3489 s64 delta;
11697830 3490
6d0f0ebd 3491 ideal_runtime = sched_slice(cfs_rq, curr);
11697830 3492 delta_exec = curr->sum_exec_runtime - curr->prev_sum_exec_runtime;
a9f3e2b5 3493 if (delta_exec > ideal_runtime) {
8875125e 3494 resched_curr(rq_of(cfs_rq));
a9f3e2b5
MG
3495 /*
3496 * The current task ran long enough, ensure it doesn't get
3497 * re-elected due to buddy favours.
3498 */
3499 clear_buddies(cfs_rq, curr);
f685ceac
MG
3500 return;
3501 }
3502
3503 /*
3504 * Ensure that a task that missed wakeup preemption by a
3505 * narrow margin doesn't have to wait for a full slice.
3506 * This also mitigates buddy induced latencies under load.
3507 */
f685ceac
MG
3508 if (delta_exec < sysctl_sched_min_granularity)
3509 return;
3510
f4cfb33e
WX
3511 se = __pick_first_entity(cfs_rq);
3512 delta = curr->vruntime - se->vruntime;
f685ceac 3513
f4cfb33e
WX
3514 if (delta < 0)
3515 return;
d7d82944 3516
f4cfb33e 3517 if (delta > ideal_runtime)
8875125e 3518 resched_curr(rq_of(cfs_rq));
bf0f6f24
IM
3519}
3520
83b699ed 3521static void
8494f412 3522set_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *se)
bf0f6f24 3523{
83b699ed
SV
3524 /* 'current' is not kept within the tree. */
3525 if (se->on_rq) {
3526 /*
3527 * Any task has to be enqueued before it get to execute on
3528 * a CPU. So account for the time it spent waiting on the
3529 * runqueue.
3530 */
4fa8d299 3531 update_stats_wait_end(cfs_rq, se);
83b699ed 3532 __dequeue_entity(cfs_rq, se);
9d89c257 3533 update_load_avg(se, 1);
83b699ed
SV
3534 }
3535
79303e9e 3536 update_stats_curr_start(cfs_rq, se);
429d43bc 3537 cfs_rq->curr = se;
4fa8d299 3538
eba1ed4b
IM
3539 /*
3540 * Track our maximum slice length, if the CPU's load is at
3541 * least twice that of our own weight (i.e. dont track it
3542 * when there are only lesser-weight tasks around):
3543 */
cb251765 3544 if (schedstat_enabled() && rq_of(cfs_rq)->load.weight >= 2*se->load.weight) {
4fa8d299
JP
3545 schedstat_set(se->statistics.slice_max,
3546 max((u64)schedstat_val(se->statistics.slice_max),
3547 se->sum_exec_runtime - se->prev_sum_exec_runtime));
eba1ed4b 3548 }
4fa8d299 3549
4a55b450 3550 se->prev_sum_exec_runtime = se->sum_exec_runtime;
bf0f6f24
IM
3551}
3552
3f3a4904
PZ
3553static int
3554wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se);
3555
ac53db59
RR
3556/*
3557 * Pick the next process, keeping these things in mind, in this order:
3558 * 1) keep things fair between processes/task groups
3559 * 2) pick the "next" process, since someone really wants that to run
3560 * 3) pick the "last" process, for cache locality
3561 * 4) do not run the "skip" process, if something else is available
3562 */
678d5718
PZ
3563static struct sched_entity *
3564pick_next_entity(struct cfs_rq *cfs_rq, struct sched_entity *curr)
aa2ac252 3565{
678d5718
PZ
3566 struct sched_entity *left = __pick_first_entity(cfs_rq);
3567 struct sched_entity *se;
3568
3569 /*
3570 * If curr is set we have to see if its left of the leftmost entity
3571 * still in the tree, provided there was anything in the tree at all.
3572 */
3573 if (!left || (curr && entity_before(curr, left)))
3574 left = curr;
3575
3576 se = left; /* ideally we run the leftmost entity */
f4b6755f 3577
ac53db59
RR
3578 /*
3579 * Avoid running the skip buddy, if running something else can
3580 * be done without getting too unfair.
3581 */
3582 if (cfs_rq->skip == se) {
678d5718
PZ
3583 struct sched_entity *second;
3584
3585 if (se == curr) {
3586 second = __pick_first_entity(cfs_rq);
3587 } else {
3588 second = __pick_next_entity(se);
3589 if (!second || (curr && entity_before(curr, second)))
3590 second = curr;
3591 }
3592
ac53db59
RR
3593 if (second && wakeup_preempt_entity(second, left) < 1)
3594 se = second;
3595 }
aa2ac252 3596
f685ceac
MG
3597 /*
3598 * Prefer last buddy, try to return the CPU to a preempted task.
3599 */
3600 if (cfs_rq->last && wakeup_preempt_entity(cfs_rq->last, left) < 1)
3601 se = cfs_rq->last;
3602
ac53db59
RR
3603 /*
3604 * Someone really wants this to run. If it's not unfair, run it.
3605 */
3606 if (cfs_rq->next && wakeup_preempt_entity(cfs_rq->next, left) < 1)
3607 se = cfs_rq->next;
3608
f685ceac 3609 clear_buddies(cfs_rq, se);
4793241b
PZ
3610
3611 return se;
aa2ac252
PZ
3612}
3613
678d5718 3614static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq);
d3d9dc33 3615
ab6cde26 3616static void put_prev_entity(struct cfs_rq *cfs_rq, struct sched_entity *prev)
bf0f6f24
IM
3617{
3618 /*
3619 * If still on the runqueue then deactivate_task()
3620 * was not called and update_curr() has to be done:
3621 */
3622 if (prev->on_rq)
b7cc0896 3623 update_curr(cfs_rq);
bf0f6f24 3624
d3d9dc33
PT
3625 /* throttle cfs_rqs exceeding runtime */
3626 check_cfs_rq_runtime(cfs_rq);
3627
4fa8d299 3628 check_spread(cfs_rq, prev);
cb251765 3629
30cfdcfc 3630 if (prev->on_rq) {
4fa8d299 3631 update_stats_wait_start(cfs_rq, prev);
30cfdcfc
DA
3632 /* Put 'current' back into the tree. */
3633 __enqueue_entity(cfs_rq, prev);
9d85f21c 3634 /* in !on_rq case, update occurred at dequeue */
9d89c257 3635 update_load_avg(prev, 0);
30cfdcfc 3636 }
429d43bc 3637 cfs_rq->curr = NULL;
bf0f6f24
IM
3638}
3639
8f4d37ec
PZ
3640static void
3641entity_tick(struct cfs_rq *cfs_rq, struct sched_entity *curr, int queued)
bf0f6f24 3642{
bf0f6f24 3643 /*
30cfdcfc 3644 * Update run-time statistics of the 'current'.
bf0f6f24 3645 */
30cfdcfc 3646 update_curr(cfs_rq);
bf0f6f24 3647
9d85f21c
PT
3648 /*
3649 * Ensure that runnable average is periodically updated.
3650 */
9d89c257 3651 update_load_avg(curr, 1);
bf0bd948 3652 update_cfs_shares(cfs_rq);
9d85f21c 3653
8f4d37ec
PZ
3654#ifdef CONFIG_SCHED_HRTICK
3655 /*
3656 * queued ticks are scheduled to match the slice, so don't bother
3657 * validating it and just reschedule.
3658 */
983ed7a6 3659 if (queued) {
8875125e 3660 resched_curr(rq_of(cfs_rq));
983ed7a6
HH
3661 return;
3662 }
8f4d37ec
PZ
3663 /*
3664 * don't let the period tick interfere with the hrtick preemption
3665 */
3666 if (!sched_feat(DOUBLE_TICK) &&
3667 hrtimer_active(&rq_of(cfs_rq)->hrtick_timer))
3668 return;
3669#endif
3670
2c2efaed 3671 if (cfs_rq->nr_running > 1)
2e09bf55 3672 check_preempt_tick(cfs_rq, curr);
bf0f6f24
IM
3673}
3674
ab84d31e
PT
3675
3676/**************************************************
3677 * CFS bandwidth control machinery
3678 */
3679
3680#ifdef CONFIG_CFS_BANDWIDTH
029632fb
PZ
3681
3682#ifdef HAVE_JUMP_LABEL
c5905afb 3683static struct static_key __cfs_bandwidth_used;
029632fb
PZ
3684
3685static inline bool cfs_bandwidth_used(void)
3686{
c5905afb 3687 return static_key_false(&__cfs_bandwidth_used);
029632fb
PZ
3688}
3689
1ee14e6c 3690void cfs_bandwidth_usage_inc(void)
029632fb 3691{
1ee14e6c
BS
3692 static_key_slow_inc(&__cfs_bandwidth_used);
3693}
3694
3695void cfs_bandwidth_usage_dec(void)
3696{
3697 static_key_slow_dec(&__cfs_bandwidth_used);
029632fb
PZ
3698}
3699#else /* HAVE_JUMP_LABEL */
3700static bool cfs_bandwidth_used(void)
3701{
3702 return true;
3703}
3704
1ee14e6c
BS
3705void cfs_bandwidth_usage_inc(void) {}
3706void cfs_bandwidth_usage_dec(void) {}
029632fb
PZ
3707#endif /* HAVE_JUMP_LABEL */
3708
ab84d31e
PT
3709/*
3710 * default period for cfs group bandwidth.
3711 * default: 0.1s, units: nanoseconds
3712 */
3713static inline u64 default_cfs_period(void)
3714{
3715 return 100000000ULL;
3716}
ec12cb7f
PT
3717
3718static inline u64 sched_cfs_bandwidth_slice(void)
3719{
3720 return (u64)sysctl_sched_cfs_bandwidth_slice * NSEC_PER_USEC;
3721}
3722
a9cf55b2
PT
3723/*
3724 * Replenish runtime according to assigned quota and update expiration time.
3725 * We use sched_clock_cpu directly instead of rq->clock to avoid adding
3726 * additional synchronization around rq->lock.
3727 *
3728 * requires cfs_b->lock
3729 */
029632fb 3730void __refill_cfs_bandwidth_runtime(struct cfs_bandwidth *cfs_b)
a9cf55b2
PT
3731{
3732 u64 now;
3733
3734 if (cfs_b->quota == RUNTIME_INF)
3735 return;
3736
3737 now = sched_clock_cpu(smp_processor_id());
3738 cfs_b->runtime = cfs_b->quota;
3739 cfs_b->runtime_expires = now + ktime_to_ns(cfs_b->period);
3740}
3741
029632fb
PZ
3742static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
3743{
3744 return &tg->cfs_bandwidth;
3745}
3746
f1b17280
PT
3747/* rq->task_clock normalized against any time this cfs_rq has spent throttled */
3748static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
3749{
3750 if (unlikely(cfs_rq->throttle_count))
1a99ae3f 3751 return cfs_rq->throttled_clock_task - cfs_rq->throttled_clock_task_time;
f1b17280 3752
78becc27 3753 return rq_clock_task(rq_of(cfs_rq)) - cfs_rq->throttled_clock_task_time;
f1b17280
PT
3754}
3755
85dac906
PT
3756/* returns 0 on failure to allocate runtime */
3757static int assign_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f
PT
3758{
3759 struct task_group *tg = cfs_rq->tg;
3760 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(tg);
a9cf55b2 3761 u64 amount = 0, min_amount, expires;
ec12cb7f
PT
3762
3763 /* note: this is a positive sum as runtime_remaining <= 0 */
3764 min_amount = sched_cfs_bandwidth_slice() - cfs_rq->runtime_remaining;
3765
3766 raw_spin_lock(&cfs_b->lock);
3767 if (cfs_b->quota == RUNTIME_INF)
3768 amount = min_amount;
58088ad0 3769 else {
77a4d1a1 3770 start_cfs_bandwidth(cfs_b);
58088ad0
PT
3771
3772 if (cfs_b->runtime > 0) {
3773 amount = min(cfs_b->runtime, min_amount);
3774 cfs_b->runtime -= amount;
3775 cfs_b->idle = 0;
3776 }
ec12cb7f 3777 }
a9cf55b2 3778 expires = cfs_b->runtime_expires;
ec12cb7f
PT
3779 raw_spin_unlock(&cfs_b->lock);
3780
3781 cfs_rq->runtime_remaining += amount;
a9cf55b2
PT
3782 /*
3783 * we may have advanced our local expiration to account for allowed
3784 * spread between our sched_clock and the one on which runtime was
3785 * issued.
3786 */
3787 if ((s64)(expires - cfs_rq->runtime_expires) > 0)
3788 cfs_rq->runtime_expires = expires;
85dac906
PT
3789
3790 return cfs_rq->runtime_remaining > 0;
ec12cb7f
PT
3791}
3792
a9cf55b2
PT
3793/*
3794 * Note: This depends on the synchronization provided by sched_clock and the
3795 * fact that rq->clock snapshots this value.
3796 */
3797static void expire_cfs_rq_runtime(struct cfs_rq *cfs_rq)
ec12cb7f 3798{
a9cf55b2 3799 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
a9cf55b2
PT
3800
3801 /* if the deadline is ahead of our clock, nothing to do */
78becc27 3802 if (likely((s64)(rq_clock(rq_of(cfs_rq)) - cfs_rq->runtime_expires) < 0))
ec12cb7f
PT
3803 return;
3804
a9cf55b2
PT
3805 if (cfs_rq->runtime_remaining < 0)
3806 return;
3807
3808 /*
3809 * If the local deadline has passed we have to consider the
3810 * possibility that our sched_clock is 'fast' and the global deadline
3811 * has not truly expired.
3812 *
3813 * Fortunately we can check determine whether this the case by checking
51f2176d
BS
3814 * whether the global deadline has advanced. It is valid to compare
3815 * cfs_b->runtime_expires without any locks since we only care about
3816 * exact equality, so a partial write will still work.
a9cf55b2
PT
3817 */
3818
51f2176d 3819 if (cfs_rq->runtime_expires != cfs_b->runtime_expires) {
a9cf55b2
PT
3820 /* extend local deadline, drift is bounded above by 2 ticks */
3821 cfs_rq->runtime_expires += TICK_NSEC;
3822 } else {
3823 /* global deadline is ahead, expiration has passed */
3824 cfs_rq->runtime_remaining = 0;
3825 }
3826}
3827
9dbdb155 3828static void __account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
a9cf55b2
PT
3829{
3830 /* dock delta_exec before expiring quota (as it could span periods) */
ec12cb7f 3831 cfs_rq->runtime_remaining -= delta_exec;
a9cf55b2
PT
3832 expire_cfs_rq_runtime(cfs_rq);
3833
3834 if (likely(cfs_rq->runtime_remaining > 0))
ec12cb7f
PT
3835 return;
3836
85dac906
PT
3837 /*
3838 * if we're unable to extend our runtime we resched so that the active
3839 * hierarchy can be throttled
3840 */
3841 if (!assign_cfs_rq_runtime(cfs_rq) && likely(cfs_rq->curr))
8875125e 3842 resched_curr(rq_of(cfs_rq));
ec12cb7f
PT
3843}
3844
6c16a6dc 3845static __always_inline
9dbdb155 3846void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec)
ec12cb7f 3847{
56f570e5 3848 if (!cfs_bandwidth_used() || !cfs_rq->runtime_enabled)
ec12cb7f
PT
3849 return;
3850
3851 __account_cfs_rq_runtime(cfs_rq, delta_exec);
3852}
3853
85dac906
PT
3854static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
3855{
56f570e5 3856 return cfs_bandwidth_used() && cfs_rq->throttled;
85dac906
PT
3857}
3858
64660c86
PT
3859/* check whether cfs_rq, or any parent, is throttled */
3860static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
3861{
56f570e5 3862 return cfs_bandwidth_used() && cfs_rq->throttle_count;
64660c86
PT
3863}
3864
3865/*
3866 * Ensure that neither of the group entities corresponding to src_cpu or
3867 * dest_cpu are members of a throttled hierarchy when performing group
3868 * load-balance operations.
3869 */
3870static inline int throttled_lb_pair(struct task_group *tg,
3871 int src_cpu, int dest_cpu)
3872{
3873 struct cfs_rq *src_cfs_rq, *dest_cfs_rq;
3874
3875 src_cfs_rq = tg->cfs_rq[src_cpu];
3876 dest_cfs_rq = tg->cfs_rq[dest_cpu];
3877
3878 return throttled_hierarchy(src_cfs_rq) ||
3879 throttled_hierarchy(dest_cfs_rq);
3880}
3881
3882/* updated child weight may affect parent so we have to do this bottom up */
3883static int tg_unthrottle_up(struct task_group *tg, void *data)
3884{
3885 struct rq *rq = data;
3886 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3887
3888 cfs_rq->throttle_count--;
64660c86 3889 if (!cfs_rq->throttle_count) {
f1b17280 3890 /* adjust cfs_rq_clock_task() */
78becc27 3891 cfs_rq->throttled_clock_task_time += rq_clock_task(rq) -
f1b17280 3892 cfs_rq->throttled_clock_task;
64660c86 3893 }
64660c86
PT
3894
3895 return 0;
3896}
3897
3898static int tg_throttle_down(struct task_group *tg, void *data)
3899{
3900 struct rq *rq = data;
3901 struct cfs_rq *cfs_rq = tg->cfs_rq[cpu_of(rq)];
3902
82958366
PT
3903 /* group is entering throttled state, stop time */
3904 if (!cfs_rq->throttle_count)
78becc27 3905 cfs_rq->throttled_clock_task = rq_clock_task(rq);
64660c86
PT
3906 cfs_rq->throttle_count++;
3907
3908 return 0;
3909}
3910
d3d9dc33 3911static void throttle_cfs_rq(struct cfs_rq *cfs_rq)
85dac906
PT
3912{
3913 struct rq *rq = rq_of(cfs_rq);
3914 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3915 struct sched_entity *se;
3916 long task_delta, dequeue = 1;
77a4d1a1 3917 bool empty;
85dac906
PT
3918
3919 se = cfs_rq->tg->se[cpu_of(rq_of(cfs_rq))];
3920
f1b17280 3921 /* freeze hierarchy runnable averages while throttled */
64660c86
PT
3922 rcu_read_lock();
3923 walk_tg_tree_from(cfs_rq->tg, tg_throttle_down, tg_nop, (void *)rq);
3924 rcu_read_unlock();
85dac906
PT
3925
3926 task_delta = cfs_rq->h_nr_running;
3927 for_each_sched_entity(se) {
3928 struct cfs_rq *qcfs_rq = cfs_rq_of(se);
3929 /* throttled entity or throttle-on-deactivate */
3930 if (!se->on_rq)
3931 break;
3932
3933 if (dequeue)
3934 dequeue_entity(qcfs_rq, se, DEQUEUE_SLEEP);
3935 qcfs_rq->h_nr_running -= task_delta;
3936
3937 if (qcfs_rq->load.weight)
3938 dequeue = 0;
3939 }
3940
3941 if (!se)
72465447 3942 sub_nr_running(rq, task_delta);
85dac906
PT
3943
3944 cfs_rq->throttled = 1;
78becc27 3945 cfs_rq->throttled_clock = rq_clock(rq);
85dac906 3946 raw_spin_lock(&cfs_b->lock);
d49db342 3947 empty = list_empty(&cfs_b->throttled_cfs_rq);
77a4d1a1 3948
c06f04c7
BS
3949 /*
3950 * Add to the _head_ of the list, so that an already-started
3951 * distribute_cfs_runtime will not see us
3952 */
3953 list_add_rcu(&cfs_rq->throttled_list, &cfs_b->throttled_cfs_rq);
77a4d1a1
PZ
3954
3955 /*
3956 * If we're the first throttled task, make sure the bandwidth
3957 * timer is running.
3958 */
3959 if (empty)
3960 start_cfs_bandwidth(cfs_b);
3961
85dac906
PT
3962 raw_spin_unlock(&cfs_b->lock);
3963}
3964
029632fb 3965void unthrottle_cfs_rq(struct cfs_rq *cfs_rq)
671fd9da
PT
3966{
3967 struct rq *rq = rq_of(cfs_rq);
3968 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
3969 struct sched_entity *se;
3970 int enqueue = 1;
3971 long task_delta;
3972
22b958d8 3973 se = cfs_rq->tg->se[cpu_of(rq)];
671fd9da
PT
3974
3975 cfs_rq->throttled = 0;
1a55af2e
FW
3976
3977 update_rq_clock(rq);
3978
671fd9da 3979 raw_spin_lock(&cfs_b->lock);
78becc27 3980 cfs_b->throttled_time += rq_clock(rq) - cfs_rq->throttled_clock;
671fd9da
PT
3981 list_del_rcu(&cfs_rq->throttled_list);
3982 raw_spin_unlock(&cfs_b->lock);
3983
64660c86
PT
3984 /* update hierarchical throttle state */
3985 walk_tg_tree_from(cfs_rq->tg, tg_nop, tg_unthrottle_up, (void *)rq);
3986
671fd9da
PT
3987 if (!cfs_rq->load.weight)
3988 return;
3989
3990 task_delta = cfs_rq->h_nr_running;
3991 for_each_sched_entity(se) {
3992 if (se->on_rq)
3993 enqueue = 0;
3994
3995 cfs_rq = cfs_rq_of(se);
3996 if (enqueue)
3997 enqueue_entity(cfs_rq, se, ENQUEUE_WAKEUP);
3998 cfs_rq->h_nr_running += task_delta;
3999
4000 if (cfs_rq_throttled(cfs_rq))
4001 break;
4002 }
4003
4004 if (!se)
72465447 4005 add_nr_running(rq, task_delta);
671fd9da
PT
4006
4007 /* determine whether we need to wake up potentially idle cpu */
4008 if (rq->curr == rq->idle && rq->cfs.nr_running)
8875125e 4009 resched_curr(rq);
671fd9da
PT
4010}
4011
4012static u64 distribute_cfs_runtime(struct cfs_bandwidth *cfs_b,
4013 u64 remaining, u64 expires)
4014{
4015 struct cfs_rq *cfs_rq;
c06f04c7
BS
4016 u64 runtime;
4017 u64 starting_runtime = remaining;
671fd9da
PT
4018
4019 rcu_read_lock();
4020 list_for_each_entry_rcu(cfs_rq, &cfs_b->throttled_cfs_rq,
4021 throttled_list) {
4022 struct rq *rq = rq_of(cfs_rq);
4023
4024 raw_spin_lock(&rq->lock);
4025 if (!cfs_rq_throttled(cfs_rq))
4026 goto next;
4027
4028 runtime = -cfs_rq->runtime_remaining + 1;
4029 if (runtime > remaining)
4030 runtime = remaining;
4031 remaining -= runtime;
4032
4033 cfs_rq->runtime_remaining += runtime;
4034 cfs_rq->runtime_expires = expires;
4035
4036 /* we check whether we're throttled above */
4037 if (cfs_rq->runtime_remaining > 0)
4038 unthrottle_cfs_rq(cfs_rq);
4039
4040next:
4041 raw_spin_unlock(&rq->lock);
4042
4043 if (!remaining)
4044 break;
4045 }
4046 rcu_read_unlock();
4047
c06f04c7 4048 return starting_runtime - remaining;
671fd9da
PT
4049}
4050
58088ad0
PT
4051/*
4052 * Responsible for refilling a task_group's bandwidth and unthrottling its
4053 * cfs_rqs as appropriate. If there has been no activity within the last
4054 * period the timer is deactivated until scheduling resumes; cfs_b->idle is
4055 * used to track this state.
4056 */
4057static int do_sched_cfs_period_timer(struct cfs_bandwidth *cfs_b, int overrun)
4058{
671fd9da 4059 u64 runtime, runtime_expires;
51f2176d 4060 int throttled;
58088ad0 4061
58088ad0
PT
4062 /* no need to continue the timer with no bandwidth constraint */
4063 if (cfs_b->quota == RUNTIME_INF)
51f2176d 4064 goto out_deactivate;
58088ad0 4065
671fd9da 4066 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
e8da1b18 4067 cfs_b->nr_periods += overrun;
671fd9da 4068
51f2176d
BS
4069 /*
4070 * idle depends on !throttled (for the case of a large deficit), and if
4071 * we're going inactive then everything else can be deferred
4072 */
4073 if (cfs_b->idle && !throttled)
4074 goto out_deactivate;
a9cf55b2
PT
4075
4076 __refill_cfs_bandwidth_runtime(cfs_b);
4077
671fd9da
PT
4078 if (!throttled) {
4079 /* mark as potentially idle for the upcoming period */
4080 cfs_b->idle = 1;
51f2176d 4081 return 0;
671fd9da
PT
4082 }
4083
e8da1b18
NR
4084 /* account preceding periods in which throttling occurred */
4085 cfs_b->nr_throttled += overrun;
4086
671fd9da 4087 runtime_expires = cfs_b->runtime_expires;
671fd9da
PT
4088
4089 /*
c06f04c7
BS
4090 * This check is repeated as we are holding onto the new bandwidth while
4091 * we unthrottle. This can potentially race with an unthrottled group
4092 * trying to acquire new bandwidth from the global pool. This can result
4093 * in us over-using our runtime if it is all used during this loop, but
4094 * only by limited amounts in that extreme case.
671fd9da 4095 */
c06f04c7
BS
4096 while (throttled && cfs_b->runtime > 0) {
4097 runtime = cfs_b->runtime;
671fd9da
PT
4098 raw_spin_unlock(&cfs_b->lock);
4099 /* we can't nest cfs_b->lock while distributing bandwidth */
4100 runtime = distribute_cfs_runtime(cfs_b, runtime,
4101 runtime_expires);
4102 raw_spin_lock(&cfs_b->lock);
4103
4104 throttled = !list_empty(&cfs_b->throttled_cfs_rq);
c06f04c7
BS
4105
4106 cfs_b->runtime -= min(runtime, cfs_b->runtime);
671fd9da 4107 }
58088ad0 4108
671fd9da
PT
4109 /*
4110 * While we are ensured activity in the period following an
4111 * unthrottle, this also covers the case in which the new bandwidth is
4112 * insufficient to cover the existing bandwidth deficit. (Forcing the
4113 * timer to remain active while there are any throttled entities.)
4114 */
4115 cfs_b->idle = 0;
58088ad0 4116
51f2176d
BS
4117 return 0;
4118
4119out_deactivate:
51f2176d 4120 return 1;
58088ad0 4121}
d3d9dc33 4122
d8b4986d
PT
4123/* a cfs_rq won't donate quota below this amount */
4124static const u64 min_cfs_rq_runtime = 1 * NSEC_PER_MSEC;
4125/* minimum remaining period time to redistribute slack quota */
4126static const u64 min_bandwidth_expiration = 2 * NSEC_PER_MSEC;
4127/* how long we wait to gather additional slack before distributing */
4128static const u64 cfs_bandwidth_slack_period = 5 * NSEC_PER_MSEC;
4129
db06e78c
BS
4130/*
4131 * Are we near the end of the current quota period?
4132 *
4133 * Requires cfs_b->lock for hrtimer_expires_remaining to be safe against the
4961b6e1 4134 * hrtimer base being cleared by hrtimer_start. In the case of
db06e78c
BS
4135 * migrate_hrtimers, base is never cleared, so we are fine.
4136 */
d8b4986d
PT
4137static int runtime_refresh_within(struct cfs_bandwidth *cfs_b, u64 min_expire)
4138{
4139 struct hrtimer *refresh_timer = &cfs_b->period_timer;
4140 u64 remaining;
4141
4142 /* if the call-back is running a quota refresh is already occurring */
4143 if (hrtimer_callback_running(refresh_timer))
4144 return 1;
4145
4146 /* is a quota refresh about to occur? */
4147 remaining = ktime_to_ns(hrtimer_expires_remaining(refresh_timer));
4148 if (remaining < min_expire)
4149 return 1;
4150
4151 return 0;
4152}
4153
4154static void start_cfs_slack_bandwidth(struct cfs_bandwidth *cfs_b)
4155{
4156 u64 min_left = cfs_bandwidth_slack_period + min_bandwidth_expiration;
4157
4158 /* if there's a quota refresh soon don't bother with slack */
4159 if (runtime_refresh_within(cfs_b, min_left))
4160 return;
4161
4cfafd30
PZ
4162 hrtimer_start(&cfs_b->slack_timer,
4163 ns_to_ktime(cfs_bandwidth_slack_period),
4164 HRTIMER_MODE_REL);
d8b4986d
PT
4165}
4166
4167/* we know any runtime found here is valid as update_curr() precedes return */
4168static void __return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4169{
4170 struct cfs_bandwidth *cfs_b = tg_cfs_bandwidth(cfs_rq->tg);
4171 s64 slack_runtime = cfs_rq->runtime_remaining - min_cfs_rq_runtime;
4172
4173 if (slack_runtime <= 0)
4174 return;
4175
4176 raw_spin_lock(&cfs_b->lock);
4177 if (cfs_b->quota != RUNTIME_INF &&
4178 cfs_rq->runtime_expires == cfs_b->runtime_expires) {
4179 cfs_b->runtime += slack_runtime;
4180
4181 /* we are under rq->lock, defer unthrottling using a timer */
4182 if (cfs_b->runtime > sched_cfs_bandwidth_slice() &&
4183 !list_empty(&cfs_b->throttled_cfs_rq))
4184 start_cfs_slack_bandwidth(cfs_b);
4185 }
4186 raw_spin_unlock(&cfs_b->lock);
4187
4188 /* even if it's not valid for return we don't want to try again */
4189 cfs_rq->runtime_remaining -= slack_runtime;
4190}
4191
4192static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4193{
56f570e5
PT
4194 if (!cfs_bandwidth_used())
4195 return;
4196
fccfdc6f 4197 if (!cfs_rq->runtime_enabled || cfs_rq->nr_running)
d8b4986d
PT
4198 return;
4199
4200 __return_cfs_rq_runtime(cfs_rq);
4201}
4202
4203/*
4204 * This is done with a timer (instead of inline with bandwidth return) since
4205 * it's necessary to juggle rq->locks to unthrottle their respective cfs_rqs.
4206 */
4207static void do_sched_cfs_slack_timer(struct cfs_bandwidth *cfs_b)
4208{
4209 u64 runtime = 0, slice = sched_cfs_bandwidth_slice();
4210 u64 expires;
4211
4212 /* confirm we're still not at a refresh boundary */
db06e78c
BS
4213 raw_spin_lock(&cfs_b->lock);
4214 if (runtime_refresh_within(cfs_b, min_bandwidth_expiration)) {
4215 raw_spin_unlock(&cfs_b->lock);
d8b4986d 4216 return;
db06e78c 4217 }
d8b4986d 4218
c06f04c7 4219 if (cfs_b->quota != RUNTIME_INF && cfs_b->runtime > slice)
d8b4986d 4220 runtime = cfs_b->runtime;
c06f04c7 4221
d8b4986d
PT
4222 expires = cfs_b->runtime_expires;
4223 raw_spin_unlock(&cfs_b->lock);
4224
4225 if (!runtime)
4226 return;
4227
4228 runtime = distribute_cfs_runtime(cfs_b, runtime, expires);
4229
4230 raw_spin_lock(&cfs_b->lock);
4231 if (expires == cfs_b->runtime_expires)
c06f04c7 4232 cfs_b->runtime -= min(runtime, cfs_b->runtime);
d8b4986d
PT
4233 raw_spin_unlock(&cfs_b->lock);
4234}
4235
d3d9dc33
PT
4236/*
4237 * When a group wakes up we want to make sure that its quota is not already
4238 * expired/exceeded, otherwise it may be allowed to steal additional ticks of
4239 * runtime as update_curr() throttling can not not trigger until it's on-rq.
4240 */
4241static void check_enqueue_throttle(struct cfs_rq *cfs_rq)
4242{
56f570e5
PT
4243 if (!cfs_bandwidth_used())
4244 return;
4245
d3d9dc33
PT
4246 /* an active group must be handled by the update_curr()->put() path */
4247 if (!cfs_rq->runtime_enabled || cfs_rq->curr)
4248 return;
4249
4250 /* ensure the group is not already throttled */
4251 if (cfs_rq_throttled(cfs_rq))
4252 return;
4253
4254 /* update runtime allocation */
4255 account_cfs_rq_runtime(cfs_rq, 0);
4256 if (cfs_rq->runtime_remaining <= 0)
4257 throttle_cfs_rq(cfs_rq);
4258}
4259
55e16d30
PZ
4260static void sync_throttle(struct task_group *tg, int cpu)
4261{
4262 struct cfs_rq *pcfs_rq, *cfs_rq;
4263
4264 if (!cfs_bandwidth_used())
4265 return;
4266
4267 if (!tg->parent)
4268 return;
4269
4270 cfs_rq = tg->cfs_rq[cpu];
4271 pcfs_rq = tg->parent->cfs_rq[cpu];
4272
4273 cfs_rq->throttle_count = pcfs_rq->throttle_count;
b8922125 4274 cfs_rq->throttled_clock_task = rq_clock_task(cpu_rq(cpu));
55e16d30
PZ
4275}
4276
d3d9dc33 4277/* conditionally throttle active cfs_rq's from put_prev_entity() */
678d5718 4278static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq)
d3d9dc33 4279{
56f570e5 4280 if (!cfs_bandwidth_used())
678d5718 4281 return false;
56f570e5 4282
d3d9dc33 4283 if (likely(!cfs_rq->runtime_enabled || cfs_rq->runtime_remaining > 0))
678d5718 4284 return false;
d3d9dc33
PT
4285
4286 /*
4287 * it's possible for a throttled entity to be forced into a running
4288 * state (e.g. set_curr_task), in this case we're finished.
4289 */
4290 if (cfs_rq_throttled(cfs_rq))
678d5718 4291 return true;
d3d9dc33
PT
4292
4293 throttle_cfs_rq(cfs_rq);
678d5718 4294 return true;
d3d9dc33 4295}
029632fb 4296
029632fb
PZ
4297static enum hrtimer_restart sched_cfs_slack_timer(struct hrtimer *timer)
4298{
4299 struct cfs_bandwidth *cfs_b =
4300 container_of(timer, struct cfs_bandwidth, slack_timer);
77a4d1a1 4301
029632fb
PZ
4302 do_sched_cfs_slack_timer(cfs_b);
4303
4304 return HRTIMER_NORESTART;
4305}
4306
4307static enum hrtimer_restart sched_cfs_period_timer(struct hrtimer *timer)
4308{
4309 struct cfs_bandwidth *cfs_b =
4310 container_of(timer, struct cfs_bandwidth, period_timer);
029632fb
PZ
4311 int overrun;
4312 int idle = 0;
4313
51f2176d 4314 raw_spin_lock(&cfs_b->lock);
029632fb 4315 for (;;) {
77a4d1a1 4316 overrun = hrtimer_forward_now(timer, cfs_b->period);
029632fb
PZ
4317 if (!overrun)
4318 break;
4319
4320 idle = do_sched_cfs_period_timer(cfs_b, overrun);
4321 }
4cfafd30
PZ
4322 if (idle)
4323 cfs_b->period_active = 0;
51f2176d 4324 raw_spin_unlock(&cfs_b->lock);
029632fb
PZ
4325
4326 return idle ? HRTIMER_NORESTART : HRTIMER_RESTART;
4327}
4328
4329void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4330{
4331 raw_spin_lock_init(&cfs_b->lock);
4332 cfs_b->runtime = 0;
4333 cfs_b->quota = RUNTIME_INF;
4334 cfs_b->period = ns_to_ktime(default_cfs_period());
4335
4336 INIT_LIST_HEAD(&cfs_b->throttled_cfs_rq);
4cfafd30 4337 hrtimer_init(&cfs_b->period_timer, CLOCK_MONOTONIC, HRTIMER_MODE_ABS_PINNED);
029632fb
PZ
4338 cfs_b->period_timer.function = sched_cfs_period_timer;
4339 hrtimer_init(&cfs_b->slack_timer, CLOCK_MONOTONIC, HRTIMER_MODE_REL);
4340 cfs_b->slack_timer.function = sched_cfs_slack_timer;
4341}
4342
4343static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq)
4344{
4345 cfs_rq->runtime_enabled = 0;
4346 INIT_LIST_HEAD(&cfs_rq->throttled_list);
4347}
4348
77a4d1a1 4349void start_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
029632fb 4350{
4cfafd30 4351 lockdep_assert_held(&cfs_b->lock);
029632fb 4352
4cfafd30
PZ
4353 if (!cfs_b->period_active) {
4354 cfs_b->period_active = 1;
4355 hrtimer_forward_now(&cfs_b->period_timer, cfs_b->period);
4356 hrtimer_start_expires(&cfs_b->period_timer, HRTIMER_MODE_ABS_PINNED);
4357 }
029632fb
PZ
4358}
4359
4360static void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b)
4361{
7f1a169b
TH
4362 /* init_cfs_bandwidth() was not called */
4363 if (!cfs_b->throttled_cfs_rq.next)
4364 return;
4365
029632fb
PZ
4366 hrtimer_cancel(&cfs_b->period_timer);
4367 hrtimer_cancel(&cfs_b->slack_timer);
4368}
4369
0e59bdae
KT
4370static void __maybe_unused update_runtime_enabled(struct rq *rq)
4371{
4372 struct cfs_rq *cfs_rq;
4373
4374 for_each_leaf_cfs_rq(rq, cfs_rq) {
4375 struct cfs_bandwidth *cfs_b = &cfs_rq->tg->cfs_bandwidth;
4376
4377 raw_spin_lock(&cfs_b->lock);
4378 cfs_rq->runtime_enabled = cfs_b->quota != RUNTIME_INF;
4379 raw_spin_unlock(&cfs_b->lock);
4380 }
4381}
4382
38dc3348 4383static void __maybe_unused unthrottle_offline_cfs_rqs(struct rq *rq)
029632fb
PZ
4384{
4385 struct cfs_rq *cfs_rq;
4386
4387 for_each_leaf_cfs_rq(rq, cfs_rq) {
029632fb
PZ
4388 if (!cfs_rq->runtime_enabled)
4389 continue;
4390
4391 /*
4392 * clock_task is not advancing so we just need to make sure
4393 * there's some valid quota amount
4394 */
51f2176d 4395 cfs_rq->runtime_remaining = 1;
0e59bdae
KT
4396 /*
4397 * Offline rq is schedulable till cpu is completely disabled
4398 * in take_cpu_down(), so we prevent new cfs throttling here.
4399 */
4400 cfs_rq->runtime_enabled = 0;
4401
029632fb
PZ
4402 if (cfs_rq_throttled(cfs_rq))
4403 unthrottle_cfs_rq(cfs_rq);
4404 }
4405}
4406
4407#else /* CONFIG_CFS_BANDWIDTH */
f1b17280
PT
4408static inline u64 cfs_rq_clock_task(struct cfs_rq *cfs_rq)
4409{
78becc27 4410 return rq_clock_task(rq_of(cfs_rq));
f1b17280
PT
4411}
4412
9dbdb155 4413static void account_cfs_rq_runtime(struct cfs_rq *cfs_rq, u64 delta_exec) {}
678d5718 4414static bool check_cfs_rq_runtime(struct cfs_rq *cfs_rq) { return false; }
d3d9dc33 4415static void check_enqueue_throttle(struct cfs_rq *cfs_rq) {}
55e16d30 4416static inline void sync_throttle(struct task_group *tg, int cpu) {}
6c16a6dc 4417static __always_inline void return_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
85dac906
PT
4418
4419static inline int cfs_rq_throttled(struct cfs_rq *cfs_rq)
4420{
4421 return 0;
4422}
64660c86
PT
4423
4424static inline int throttled_hierarchy(struct cfs_rq *cfs_rq)
4425{
4426 return 0;
4427}
4428
4429static inline int throttled_lb_pair(struct task_group *tg,
4430 int src_cpu, int dest_cpu)
4431{
4432 return 0;
4433}
029632fb
PZ
4434
4435void init_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
4436
4437#ifdef CONFIG_FAIR_GROUP_SCHED
4438static void init_cfs_rq_runtime(struct cfs_rq *cfs_rq) {}
ab84d31e
PT
4439#endif
4440
029632fb
PZ
4441static inline struct cfs_bandwidth *tg_cfs_bandwidth(struct task_group *tg)
4442{
4443 return NULL;
4444}
4445static inline void destroy_cfs_bandwidth(struct cfs_bandwidth *cfs_b) {}
0e59bdae 4446static inline void update_runtime_enabled(struct rq *rq) {}
a4c96ae3 4447static inline void unthrottle_offline_cfs_rqs(struct rq *rq) {}
029632fb
PZ
4448
4449#endif /* CONFIG_CFS_BANDWIDTH */
4450
bf0f6f24
IM
4451/**************************************************
4452 * CFS operations on tasks:
4453 */
4454
8f4d37ec
PZ
4455#ifdef CONFIG_SCHED_HRTICK
4456static void hrtick_start_fair(struct rq *rq, struct task_struct *p)
4457{
8f4d37ec
PZ
4458 struct sched_entity *se = &p->se;
4459 struct cfs_rq *cfs_rq = cfs_rq_of(se);
4460
4461 WARN_ON(task_rq(p) != rq);
4462
b39e66ea 4463 if (cfs_rq->nr_running > 1) {
8f4d37ec
PZ
4464 u64 slice = sched_slice(cfs_rq, se);
4465 u64 ran = se->sum_exec_runtime - se->prev_sum_exec_runtime;
4466 s64 delta = slice - ran;
4467
4468 if (delta < 0) {
4469 if (rq->curr == p)
8875125e 4470 resched_curr(rq);
8f4d37ec
PZ
4471 return;
4472 }
31656519 4473 hrtick_start(rq, delta);
8f4d37ec
PZ
4474 }
4475}
a4c2f00f
PZ
4476
4477/*
4478 * called from enqueue/dequeue and updates the hrtick when the
4479 * current task is from our class and nr_running is low enough
4480 * to matter.
4481 */
4482static void hrtick_update(struct rq *rq)
4483{
4484 struct task_struct *curr = rq->curr;
4485
b39e66ea 4486 if (!hrtick_enabled(rq) || curr->sched_class != &fair_sched_class)
a4c2f00f
PZ
4487 return;
4488
4489 if (cfs_rq_of(&curr->se)->nr_running < sched_nr_latency)
4490 hrtick_start_fair(rq, curr);
4491}
55e12e5e 4492#else /* !CONFIG_SCHED_HRTICK */
8f4d37ec
PZ
4493static inline void
4494hrtick_start_fair(struct rq *rq, struct task_struct *p)
4495{
4496}
a4c2f00f
PZ
4497
4498static inline void hrtick_update(struct rq *rq)
4499{
4500}
8f4d37ec
PZ
4501#endif
4502
bf0f6f24
IM
4503/*
4504 * The enqueue_task method is called before nr_running is
4505 * increased. Here we update the fair scheduling stats and
4506 * then put the task into the rbtree:
4507 */
ea87bb78 4508static void
371fd7e7 4509enqueue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4510{
4511 struct cfs_rq *cfs_rq;
62fb1851 4512 struct sched_entity *se = &p->se;
bf0f6f24
IM
4513
4514 for_each_sched_entity(se) {
62fb1851 4515 if (se->on_rq)
bf0f6f24
IM
4516 break;
4517 cfs_rq = cfs_rq_of(se);
88ec22d3 4518 enqueue_entity(cfs_rq, se, flags);
85dac906
PT
4519
4520 /*
4521 * end evaluation on encountering a throttled cfs_rq
4522 *
4523 * note: in the case of encountering a throttled cfs_rq we will
4524 * post the final h_nr_running increment below.
e210bffd 4525 */
85dac906
PT
4526 if (cfs_rq_throttled(cfs_rq))
4527 break;
953bfcd1 4528 cfs_rq->h_nr_running++;
85dac906 4529
88ec22d3 4530 flags = ENQUEUE_WAKEUP;
bf0f6f24 4531 }
8f4d37ec 4532
2069dd75 4533 for_each_sched_entity(se) {
0f317143 4534 cfs_rq = cfs_rq_of(se);
953bfcd1 4535 cfs_rq->h_nr_running++;
2069dd75 4536
85dac906
PT
4537 if (cfs_rq_throttled(cfs_rq))
4538 break;
4539
9d89c257 4540 update_load_avg(se, 1);
17bc14b7 4541 update_cfs_shares(cfs_rq);
2069dd75
PZ
4542 }
4543
cd126afe 4544 if (!se)
72465447 4545 add_nr_running(rq, 1);
cd126afe 4546
a4c2f00f 4547 hrtick_update(rq);
bf0f6f24
IM
4548}
4549
2f36825b
VP
4550static void set_next_buddy(struct sched_entity *se);
4551
bf0f6f24
IM
4552/*
4553 * The dequeue_task method is called before nr_running is
4554 * decreased. We remove the task from the rbtree and
4555 * update the fair scheduling stats:
4556 */
371fd7e7 4557static void dequeue_task_fair(struct rq *rq, struct task_struct *p, int flags)
bf0f6f24
IM
4558{
4559 struct cfs_rq *cfs_rq;
62fb1851 4560 struct sched_entity *se = &p->se;
2f36825b 4561 int task_sleep = flags & DEQUEUE_SLEEP;
bf0f6f24
IM
4562
4563 for_each_sched_entity(se) {
4564 cfs_rq = cfs_rq_of(se);
371fd7e7 4565 dequeue_entity(cfs_rq, se, flags);
85dac906
PT
4566
4567 /*
4568 * end evaluation on encountering a throttled cfs_rq
4569 *
4570 * note: in the case of encountering a throttled cfs_rq we will
4571 * post the final h_nr_running decrement below.
4572 */
4573 if (cfs_rq_throttled(cfs_rq))
4574 break;
953bfcd1 4575 cfs_rq->h_nr_running--;
2069dd75 4576
bf0f6f24 4577 /* Don't dequeue parent if it has other entities besides us */
2f36825b 4578 if (cfs_rq->load.weight) {
754bd598
KK
4579 /* Avoid re-evaluating load for this entity: */
4580 se = parent_entity(se);
2f36825b
VP
4581 /*
4582 * Bias pick_next to pick a task from this cfs_rq, as
4583 * p is sleeping when it is within its sched_slice.
4584 */
754bd598
KK
4585 if (task_sleep && se && !throttled_hierarchy(cfs_rq))
4586 set_next_buddy(se);
bf0f6f24 4587 break;
2f36825b 4588 }
371fd7e7 4589 flags |= DEQUEUE_SLEEP;
bf0f6f24 4590 }
8f4d37ec 4591
2069dd75 4592 for_each_sched_entity(se) {
0f317143 4593 cfs_rq = cfs_rq_of(se);
953bfcd1 4594 cfs_rq->h_nr_running--;
2069dd75 4595
85dac906
PT
4596 if (cfs_rq_throttled(cfs_rq))
4597 break;
4598
9d89c257 4599 update_load_avg(se, 1);
17bc14b7 4600 update_cfs_shares(cfs_rq);
2069dd75
PZ
4601 }
4602
cd126afe 4603 if (!se)
72465447 4604 sub_nr_running(rq, 1);
cd126afe 4605
a4c2f00f 4606 hrtick_update(rq);
bf0f6f24
IM
4607}
4608
e7693a36 4609#ifdef CONFIG_SMP
9fd81dd5 4610#ifdef CONFIG_NO_HZ_COMMON
3289bdb4
PZ
4611/*
4612 * per rq 'load' arrray crap; XXX kill this.
4613 */
4614
4615/*
d937cdc5 4616 * The exact cpuload calculated at every tick would be:
3289bdb4 4617 *
d937cdc5
PZ
4618 * load' = (1 - 1/2^i) * load + (1/2^i) * cur_load
4619 *
4620 * If a cpu misses updates for n ticks (as it was idle) and update gets
4621 * called on the n+1-th tick when cpu may be busy, then we have:
4622 *
4623 * load_n = (1 - 1/2^i)^n * load_0
4624 * load_n+1 = (1 - 1/2^i) * load_n + (1/2^i) * cur_load
3289bdb4
PZ
4625 *
4626 * decay_load_missed() below does efficient calculation of
3289bdb4 4627 *
d937cdc5
PZ
4628 * load' = (1 - 1/2^i)^n * load
4629 *
4630 * Because x^(n+m) := x^n * x^m we can decompose any x^n in power-of-2 factors.
4631 * This allows us to precompute the above in said factors, thereby allowing the
4632 * reduction of an arbitrary n in O(log_2 n) steps. (See also
4633 * fixed_power_int())
3289bdb4 4634 *
d937cdc5 4635 * The calculation is approximated on a 128 point scale.
3289bdb4
PZ
4636 */
4637#define DEGRADE_SHIFT 7
d937cdc5
PZ
4638
4639static const u8 degrade_zero_ticks[CPU_LOAD_IDX_MAX] = {0, 8, 32, 64, 128};
4640static const u8 degrade_factor[CPU_LOAD_IDX_MAX][DEGRADE_SHIFT + 1] = {
4641 { 0, 0, 0, 0, 0, 0, 0, 0 },
4642 { 64, 32, 8, 0, 0, 0, 0, 0 },
4643 { 96, 72, 40, 12, 1, 0, 0, 0 },
4644 { 112, 98, 75, 43, 15, 1, 0, 0 },
4645 { 120, 112, 98, 76, 45, 16, 2, 0 }
4646};
3289bdb4
PZ
4647
4648/*
4649 * Update cpu_load for any missed ticks, due to tickless idle. The backlog
4650 * would be when CPU is idle and so we just decay the old load without
4651 * adding any new load.
4652 */
4653static unsigned long
4654decay_load_missed(unsigned long load, unsigned long missed_updates, int idx)
4655{
4656 int j = 0;
4657
4658 if (!missed_updates)
4659 return load;
4660
4661 if (missed_updates >= degrade_zero_ticks[idx])
4662 return 0;
4663
4664 if (idx == 1)
4665 return load >> missed_updates;
4666
4667 while (missed_updates) {
4668 if (missed_updates % 2)
4669 load = (load * degrade_factor[idx][j]) >> DEGRADE_SHIFT;
4670
4671 missed_updates >>= 1;
4672 j++;
4673 }
4674 return load;
4675}
9fd81dd5 4676#endif /* CONFIG_NO_HZ_COMMON */
3289bdb4 4677
59543275 4678/**
cee1afce 4679 * __cpu_load_update - update the rq->cpu_load[] statistics
59543275
BP
4680 * @this_rq: The rq to update statistics for
4681 * @this_load: The current load
4682 * @pending_updates: The number of missed updates
59543275 4683 *
3289bdb4 4684 * Update rq->cpu_load[] statistics. This function is usually called every
59543275
BP
4685 * scheduler tick (TICK_NSEC).
4686 *
4687 * This function computes a decaying average:
4688 *
4689 * load[i]' = (1 - 1/2^i) * load[i] + (1/2^i) * load
4690 *
4691 * Because of NOHZ it might not get called on every tick which gives need for
4692 * the @pending_updates argument.
4693 *
4694 * load[i]_n = (1 - 1/2^i) * load[i]_n-1 + (1/2^i) * load_n-1
4695 * = A * load[i]_n-1 + B ; A := (1 - 1/2^i), B := (1/2^i) * load
4696 * = A * (A * load[i]_n-2 + B) + B
4697 * = A * (A * (A * load[i]_n-3 + B) + B) + B
4698 * = A^3 * load[i]_n-3 + (A^2 + A + 1) * B
4699 * = A^n * load[i]_0 + (A^(n-1) + A^(n-2) + ... + 1) * B
4700 * = A^n * load[i]_0 + ((1 - A^n) / (1 - A)) * B
4701 * = (1 - 1/2^i)^n * (load[i]_0 - load) + load
4702 *
4703 * In the above we've assumed load_n := load, which is true for NOHZ_FULL as
4704 * any change in load would have resulted in the tick being turned back on.
4705 *
4706 * For regular NOHZ, this reduces to:
4707 *
4708 * load[i]_n = (1 - 1/2^i)^n * load[i]_0
4709 *
4710 * see decay_load_misses(). For NOHZ_FULL we get to subtract and add the extra
1f41906a 4711 * term.
3289bdb4 4712 */
1f41906a
FW
4713static void cpu_load_update(struct rq *this_rq, unsigned long this_load,
4714 unsigned long pending_updates)
3289bdb4 4715{
9fd81dd5 4716 unsigned long __maybe_unused tickless_load = this_rq->cpu_load[0];
3289bdb4
PZ
4717 int i, scale;
4718
4719 this_rq->nr_load_updates++;
4720
4721 /* Update our load: */
4722 this_rq->cpu_load[0] = this_load; /* Fasttrack for idx 0 */
4723 for (i = 1, scale = 2; i < CPU_LOAD_IDX_MAX; i++, scale += scale) {
4724 unsigned long old_load, new_load;
4725
4726 /* scale is effectively 1 << i now, and >> i divides by scale */
4727
7400d3bb 4728 old_load = this_rq->cpu_load[i];
9fd81dd5 4729#ifdef CONFIG_NO_HZ_COMMON
3289bdb4 4730 old_load = decay_load_missed(old_load, pending_updates - 1, i);
7400d3bb
BP
4731 if (tickless_load) {
4732 old_load -= decay_load_missed(tickless_load, pending_updates - 1, i);
4733 /*
4734 * old_load can never be a negative value because a
4735 * decayed tickless_load cannot be greater than the
4736 * original tickless_load.
4737 */
4738 old_load += tickless_load;
4739 }
9fd81dd5 4740#endif
3289bdb4
PZ
4741 new_load = this_load;
4742 /*
4743 * Round up the averaging division if load is increasing. This
4744 * prevents us from getting stuck on 9 if the load is 10, for
4745 * example.
4746 */
4747 if (new_load > old_load)
4748 new_load += scale - 1;
4749
4750 this_rq->cpu_load[i] = (old_load * (scale - 1) + new_load) >> i;
4751 }
4752
4753 sched_avg_update(this_rq);
4754}
4755
7ea241af
YD
4756/* Used instead of source_load when we know the type == 0 */
4757static unsigned long weighted_cpuload(const int cpu)
4758{
4759 return cfs_rq_runnable_load_avg(&cpu_rq(cpu)->cfs);
4760}
4761
3289bdb4 4762#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4763/*
4764 * There is no sane way to deal with nohz on smp when using jiffies because the
4765 * cpu doing the jiffies update might drift wrt the cpu doing the jiffy reading
4766 * causing off-by-one errors in observed deltas; {0,2} instead of {1,1}.
4767 *
4768 * Therefore we need to avoid the delta approach from the regular tick when
4769 * possible since that would seriously skew the load calculation. This is why we
4770 * use cpu_load_update_periodic() for CPUs out of nohz. However we'll rely on
4771 * jiffies deltas for updates happening while in nohz mode (idle ticks, idle
4772 * loop exit, nohz_idle_balance, nohz full exit...)
4773 *
4774 * This means we might still be one tick off for nohz periods.
4775 */
4776
4777static void cpu_load_update_nohz(struct rq *this_rq,
4778 unsigned long curr_jiffies,
4779 unsigned long load)
be68a682
FW
4780{
4781 unsigned long pending_updates;
4782
4783 pending_updates = curr_jiffies - this_rq->last_load_update_tick;
4784 if (pending_updates) {
4785 this_rq->last_load_update_tick = curr_jiffies;
4786 /*
4787 * In the regular NOHZ case, we were idle, this means load 0.
4788 * In the NOHZ_FULL case, we were non-idle, we should consider
4789 * its weighted load.
4790 */
1f41906a 4791 cpu_load_update(this_rq, load, pending_updates);
be68a682
FW
4792 }
4793}
4794
3289bdb4
PZ
4795/*
4796 * Called from nohz_idle_balance() to update the load ratings before doing the
4797 * idle balance.
4798 */
cee1afce 4799static void cpu_load_update_idle(struct rq *this_rq)
3289bdb4 4800{
3289bdb4
PZ
4801 /*
4802 * bail if there's load or we're actually up-to-date.
4803 */
be68a682 4804 if (weighted_cpuload(cpu_of(this_rq)))
3289bdb4
PZ
4805 return;
4806
1f41906a 4807 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), 0);
3289bdb4
PZ
4808}
4809
4810/*
1f41906a
FW
4811 * Record CPU load on nohz entry so we know the tickless load to account
4812 * on nohz exit. cpu_load[0] happens then to be updated more frequently
4813 * than other cpu_load[idx] but it should be fine as cpu_load readers
4814 * shouldn't rely into synchronized cpu_load[*] updates.
3289bdb4 4815 */
1f41906a 4816void cpu_load_update_nohz_start(void)
3289bdb4
PZ
4817{
4818 struct rq *this_rq = this_rq();
1f41906a
FW
4819
4820 /*
4821 * This is all lockless but should be fine. If weighted_cpuload changes
4822 * concurrently we'll exit nohz. And cpu_load write can race with
4823 * cpu_load_update_idle() but both updater would be writing the same.
4824 */
4825 this_rq->cpu_load[0] = weighted_cpuload(cpu_of(this_rq));
4826}
4827
4828/*
4829 * Account the tickless load in the end of a nohz frame.
4830 */
4831void cpu_load_update_nohz_stop(void)
4832{
316c1608 4833 unsigned long curr_jiffies = READ_ONCE(jiffies);
1f41906a
FW
4834 struct rq *this_rq = this_rq();
4835 unsigned long load;
3289bdb4
PZ
4836
4837 if (curr_jiffies == this_rq->last_load_update_tick)
4838 return;
4839
1f41906a 4840 load = weighted_cpuload(cpu_of(this_rq));
3289bdb4 4841 raw_spin_lock(&this_rq->lock);
b52fad2d 4842 update_rq_clock(this_rq);
1f41906a 4843 cpu_load_update_nohz(this_rq, curr_jiffies, load);
3289bdb4
PZ
4844 raw_spin_unlock(&this_rq->lock);
4845}
1f41906a
FW
4846#else /* !CONFIG_NO_HZ_COMMON */
4847static inline void cpu_load_update_nohz(struct rq *this_rq,
4848 unsigned long curr_jiffies,
4849 unsigned long load) { }
4850#endif /* CONFIG_NO_HZ_COMMON */
4851
4852static void cpu_load_update_periodic(struct rq *this_rq, unsigned long load)
4853{
9fd81dd5 4854#ifdef CONFIG_NO_HZ_COMMON
1f41906a
FW
4855 /* See the mess around cpu_load_update_nohz(). */
4856 this_rq->last_load_update_tick = READ_ONCE(jiffies);
9fd81dd5 4857#endif
1f41906a
FW
4858 cpu_load_update(this_rq, load, 1);
4859}
3289bdb4
PZ
4860
4861/*
4862 * Called from scheduler_tick()
4863 */
cee1afce 4864void cpu_load_update_active(struct rq *this_rq)
3289bdb4 4865{
7ea241af 4866 unsigned long load = weighted_cpuload(cpu_of(this_rq));
1f41906a
FW
4867
4868 if (tick_nohz_tick_stopped())
4869 cpu_load_update_nohz(this_rq, READ_ONCE(jiffies), load);
4870 else
4871 cpu_load_update_periodic(this_rq, load);
3289bdb4
PZ
4872}
4873
029632fb
PZ
4874/*
4875 * Return a low guess at the load of a migration-source cpu weighted
4876 * according to the scheduling class and "nice" value.
4877 *
4878 * We want to under-estimate the load of migration sources, to
4879 * balance conservatively.
4880 */
4881static unsigned long source_load(int cpu, int type)
4882{
4883 struct rq *rq = cpu_rq(cpu);
4884 unsigned long total = weighted_cpuload(cpu);
4885
4886 if (type == 0 || !sched_feat(LB_BIAS))
4887 return total;
4888
4889 return min(rq->cpu_load[type-1], total);
4890}
4891
4892/*
4893 * Return a high guess at the load of a migration-target cpu weighted
4894 * according to the scheduling class and "nice" value.
4895 */
4896static unsigned long target_load(int cpu, int type)
4897{
4898 struct rq *rq = cpu_rq(cpu);
4899 unsigned long total = weighted_cpuload(cpu);
4900
4901 if (type == 0 || !sched_feat(LB_BIAS))
4902 return total;
4903
4904 return max(rq->cpu_load[type-1], total);
4905}
4906
ced549fa 4907static unsigned long capacity_of(int cpu)
029632fb 4908{
ced549fa 4909 return cpu_rq(cpu)->cpu_capacity;
029632fb
PZ
4910}
4911
ca6d75e6
VG
4912static unsigned long capacity_orig_of(int cpu)
4913{
4914 return cpu_rq(cpu)->cpu_capacity_orig;
4915}
4916
029632fb
PZ
4917static unsigned long cpu_avg_load_per_task(int cpu)
4918{
4919 struct rq *rq = cpu_rq(cpu);
316c1608 4920 unsigned long nr_running = READ_ONCE(rq->cfs.h_nr_running);
7ea241af 4921 unsigned long load_avg = weighted_cpuload(cpu);
029632fb
PZ
4922
4923 if (nr_running)
b92486cb 4924 return load_avg / nr_running;
029632fb
PZ
4925
4926 return 0;
4927}
4928
bb3469ac 4929#ifdef CONFIG_FAIR_GROUP_SCHED
f5bfb7d9
PZ
4930/*
4931 * effective_load() calculates the load change as seen from the root_task_group
4932 *
4933 * Adding load to a group doesn't make a group heavier, but can cause movement
4934 * of group shares between cpus. Assuming the shares were perfectly aligned one
4935 * can calculate the shift in shares.
cf5f0acf
PZ
4936 *
4937 * Calculate the effective load difference if @wl is added (subtracted) to @tg
4938 * on this @cpu and results in a total addition (subtraction) of @wg to the
4939 * total group weight.
4940 *
4941 * Given a runqueue weight distribution (rw_i) we can compute a shares
4942 * distribution (s_i) using:
4943 *
4944 * s_i = rw_i / \Sum rw_j (1)
4945 *
4946 * Suppose we have 4 CPUs and our @tg is a direct child of the root group and
4947 * has 7 equal weight tasks, distributed as below (rw_i), with the resulting
4948 * shares distribution (s_i):
4949 *
4950 * rw_i = { 2, 4, 1, 0 }
4951 * s_i = { 2/7, 4/7, 1/7, 0 }
4952 *
4953 * As per wake_affine() we're interested in the load of two CPUs (the CPU the
4954 * task used to run on and the CPU the waker is running on), we need to
4955 * compute the effect of waking a task on either CPU and, in case of a sync
4956 * wakeup, compute the effect of the current task going to sleep.
4957 *
4958 * So for a change of @wl to the local @cpu with an overall group weight change
4959 * of @wl we can compute the new shares distribution (s'_i) using:
4960 *
4961 * s'_i = (rw_i + @wl) / (@wg + \Sum rw_j) (2)
4962 *
4963 * Suppose we're interested in CPUs 0 and 1, and want to compute the load
4964 * differences in waking a task to CPU 0. The additional task changes the
4965 * weight and shares distributions like:
4966 *
4967 * rw'_i = { 3, 4, 1, 0 }
4968 * s'_i = { 3/8, 4/8, 1/8, 0 }
4969 *
4970 * We can then compute the difference in effective weight by using:
4971 *
4972 * dw_i = S * (s'_i - s_i) (3)
4973 *
4974 * Where 'S' is the group weight as seen by its parent.
4975 *
4976 * Therefore the effective change in loads on CPU 0 would be 5/56 (3/8 - 2/7)
4977 * times the weight of the group. The effect on CPU 1 would be -4/56 (4/8 -
4978 * 4/7) times the weight of the group.
f5bfb7d9 4979 */
2069dd75 4980static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
bb3469ac 4981{
4be9daaa 4982 struct sched_entity *se = tg->se[cpu];
f1d239f7 4983
9722c2da 4984 if (!tg->parent) /* the trivial, non-cgroup case */
f1d239f7
PZ
4985 return wl;
4986
4be9daaa 4987 for_each_sched_entity(se) {
7dd49125
PZ
4988 struct cfs_rq *cfs_rq = se->my_q;
4989 long W, w = cfs_rq_load_avg(cfs_rq);
4be9daaa 4990
7dd49125 4991 tg = cfs_rq->tg;
bb3469ac 4992
cf5f0acf
PZ
4993 /*
4994 * W = @wg + \Sum rw_j
4995 */
7dd49125
PZ
4996 W = wg + atomic_long_read(&tg->load_avg);
4997
4998 /* Ensure \Sum rw_j >= rw_i */
4999 W -= cfs_rq->tg_load_avg_contrib;
5000 W += w;
4be9daaa 5001
cf5f0acf
PZ
5002 /*
5003 * w = rw_i + @wl
5004 */
7dd49125 5005 w += wl;
940959e9 5006
cf5f0acf
PZ
5007 /*
5008 * wl = S * s'_i; see (2)
5009 */
5010 if (W > 0 && w < W)
32a8df4e 5011 wl = (w * (long)tg->shares) / W;
977dda7c
PT
5012 else
5013 wl = tg->shares;
940959e9 5014
cf5f0acf
PZ
5015 /*
5016 * Per the above, wl is the new se->load.weight value; since
5017 * those are clipped to [MIN_SHARES, ...) do so now. See
5018 * calc_cfs_shares().
5019 */
977dda7c
PT
5020 if (wl < MIN_SHARES)
5021 wl = MIN_SHARES;
cf5f0acf
PZ
5022
5023 /*
5024 * wl = dw_i = S * (s'_i - s_i); see (3)
5025 */
9d89c257 5026 wl -= se->avg.load_avg;
cf5f0acf
PZ
5027
5028 /*
5029 * Recursively apply this logic to all parent groups to compute
5030 * the final effective load change on the root group. Since
5031 * only the @tg group gets extra weight, all parent groups can
5032 * only redistribute existing shares. @wl is the shift in shares
5033 * resulting from this level per the above.
5034 */
4be9daaa 5035 wg = 0;
4be9daaa 5036 }
bb3469ac 5037
4be9daaa 5038 return wl;
bb3469ac
PZ
5039}
5040#else
4be9daaa 5041
58d081b5 5042static long effective_load(struct task_group *tg, int cpu, long wl, long wg)
4be9daaa 5043{
83378269 5044 return wl;
bb3469ac 5045}
4be9daaa 5046
bb3469ac
PZ
5047#endif
5048
c58d25f3
PZ
5049static void record_wakee(struct task_struct *p)
5050{
5051 /*
5052 * Only decay a single time; tasks that have less then 1 wakeup per
5053 * jiffy will not have built up many flips.
5054 */
5055 if (time_after(jiffies, current->wakee_flip_decay_ts + HZ)) {
5056 current->wakee_flips >>= 1;
5057 current->wakee_flip_decay_ts = jiffies;
5058 }
5059
5060 if (current->last_wakee != p) {
5061 current->last_wakee = p;
5062 current->wakee_flips++;
5063 }
5064}
5065
63b0e9ed
MG
5066/*
5067 * Detect M:N waker/wakee relationships via a switching-frequency heuristic.
c58d25f3 5068 *
63b0e9ed 5069 * A waker of many should wake a different task than the one last awakened
c58d25f3
PZ
5070 * at a frequency roughly N times higher than one of its wakees.
5071 *
5072 * In order to determine whether we should let the load spread vs consolidating
5073 * to shared cache, we look for a minimum 'flip' frequency of llc_size in one
5074 * partner, and a factor of lls_size higher frequency in the other.
5075 *
5076 * With both conditions met, we can be relatively sure that the relationship is
5077 * non-monogamous, with partner count exceeding socket size.
5078 *
5079 * Waker/wakee being client/server, worker/dispatcher, interrupt source or
5080 * whatever is irrelevant, spread criteria is apparent partner count exceeds
5081 * socket size.
63b0e9ed 5082 */
62470419
MW
5083static int wake_wide(struct task_struct *p)
5084{
63b0e9ed
MG
5085 unsigned int master = current->wakee_flips;
5086 unsigned int slave = p->wakee_flips;
7d9ffa89 5087 int factor = this_cpu_read(sd_llc_size);
62470419 5088
63b0e9ed
MG
5089 if (master < slave)
5090 swap(master, slave);
5091 if (slave < factor || master < slave * factor)
5092 return 0;
5093 return 1;
62470419
MW
5094}
5095
772bd008
MR
5096static int wake_affine(struct sched_domain *sd, struct task_struct *p,
5097 int prev_cpu, int sync)
098fb9db 5098{
e37b6a7b 5099 s64 this_load, load;
bd61c98f 5100 s64 this_eff_load, prev_eff_load;
772bd008 5101 int idx, this_cpu;
c88d5910 5102 struct task_group *tg;
83378269 5103 unsigned long weight;
b3137bc8 5104 int balanced;
098fb9db 5105
c88d5910
PZ
5106 idx = sd->wake_idx;
5107 this_cpu = smp_processor_id();
c88d5910
PZ
5108 load = source_load(prev_cpu, idx);
5109 this_load = target_load(this_cpu, idx);
098fb9db 5110
b3137bc8
MG
5111 /*
5112 * If sync wakeup then subtract the (maximum possible)
5113 * effect of the currently running task from the load
5114 * of the current CPU:
5115 */
83378269
PZ
5116 if (sync) {
5117 tg = task_group(current);
9d89c257 5118 weight = current->se.avg.load_avg;
83378269 5119
c88d5910 5120 this_load += effective_load(tg, this_cpu, -weight, -weight);
83378269
PZ
5121 load += effective_load(tg, prev_cpu, 0, -weight);
5122 }
b3137bc8 5123
83378269 5124 tg = task_group(p);
9d89c257 5125 weight = p->se.avg.load_avg;
b3137bc8 5126
71a29aa7
PZ
5127 /*
5128 * In low-load situations, where prev_cpu is idle and this_cpu is idle
c88d5910
PZ
5129 * due to the sync cause above having dropped this_load to 0, we'll
5130 * always have an imbalance, but there's really nothing you can do
5131 * about that, so that's good too.
71a29aa7
PZ
5132 *
5133 * Otherwise check if either cpus are near enough in load to allow this
5134 * task to be woken on this_cpu.
5135 */
bd61c98f
VG
5136 this_eff_load = 100;
5137 this_eff_load *= capacity_of(prev_cpu);
e51fd5e2 5138
bd61c98f
VG
5139 prev_eff_load = 100 + (sd->imbalance_pct - 100) / 2;
5140 prev_eff_load *= capacity_of(this_cpu);
e51fd5e2 5141
bd61c98f 5142 if (this_load > 0) {
e51fd5e2
PZ
5143 this_eff_load *= this_load +
5144 effective_load(tg, this_cpu, weight, weight);
5145
e51fd5e2 5146 prev_eff_load *= load + effective_load(tg, prev_cpu, 0, weight);
bd61c98f 5147 }
e51fd5e2 5148
bd61c98f 5149 balanced = this_eff_load <= prev_eff_load;
098fb9db 5150
ae92882e 5151 schedstat_inc(p->se.statistics.nr_wakeups_affine_attempts);
098fb9db 5152
05bfb65f
VG
5153 if (!balanced)
5154 return 0;
098fb9db 5155
ae92882e
JP
5156 schedstat_inc(sd->ttwu_move_affine);
5157 schedstat_inc(p->se.statistics.nr_wakeups_affine);
05bfb65f
VG
5158
5159 return 1;
098fb9db
IM
5160}
5161
aaee1203
PZ
5162/*
5163 * find_idlest_group finds and returns the least busy CPU group within the
5164 * domain.
5165 */
5166static struct sched_group *
78e7ed53 5167find_idlest_group(struct sched_domain *sd, struct task_struct *p,
c44f2a02 5168 int this_cpu, int sd_flag)
e7693a36 5169{
b3bd3de6 5170 struct sched_group *idlest = NULL, *group = sd->groups;
aaee1203 5171 unsigned long min_load = ULONG_MAX, this_load = 0;
c44f2a02 5172 int load_idx = sd->forkexec_idx;
aaee1203 5173 int imbalance = 100 + (sd->imbalance_pct-100)/2;
e7693a36 5174
c44f2a02
VG
5175 if (sd_flag & SD_BALANCE_WAKE)
5176 load_idx = sd->wake_idx;
5177
aaee1203
PZ
5178 do {
5179 unsigned long load, avg_load;
5180 int local_group;
5181 int i;
e7693a36 5182
aaee1203
PZ
5183 /* Skip over this group if it has no CPUs allowed */
5184 if (!cpumask_intersects(sched_group_cpus(group),
fa17b507 5185 tsk_cpus_allowed(p)))
aaee1203
PZ
5186 continue;
5187
5188 local_group = cpumask_test_cpu(this_cpu,
5189 sched_group_cpus(group));
5190
5191 /* Tally up the load of all CPUs in the group */
5192 avg_load = 0;
5193
5194 for_each_cpu(i, sched_group_cpus(group)) {
5195 /* Bias balancing toward cpus of our domain */
5196 if (local_group)
5197 load = source_load(i, load_idx);
5198 else
5199 load = target_load(i, load_idx);
5200
5201 avg_load += load;
5202 }
5203
63b2ca30 5204 /* Adjust by relative CPU capacity of the group */
ca8ce3d0 5205 avg_load = (avg_load * SCHED_CAPACITY_SCALE) / group->sgc->capacity;
aaee1203
PZ
5206
5207 if (local_group) {
5208 this_load = avg_load;
aaee1203
PZ
5209 } else if (avg_load < min_load) {
5210 min_load = avg_load;
5211 idlest = group;
5212 }
5213 } while (group = group->next, group != sd->groups);
5214
5215 if (!idlest || 100*this_load < imbalance*min_load)
5216 return NULL;
5217 return idlest;
5218}
5219
5220/*
5221 * find_idlest_cpu - find the idlest cpu among the cpus in group.
5222 */
5223static int
5224find_idlest_cpu(struct sched_group *group, struct task_struct *p, int this_cpu)
5225{
5226 unsigned long load, min_load = ULONG_MAX;
83a0a96a
NP
5227 unsigned int min_exit_latency = UINT_MAX;
5228 u64 latest_idle_timestamp = 0;
5229 int least_loaded_cpu = this_cpu;
5230 int shallowest_idle_cpu = -1;
aaee1203
PZ
5231 int i;
5232
eaecf41f
MR
5233 /* Check if we have any choice: */
5234 if (group->group_weight == 1)
5235 return cpumask_first(sched_group_cpus(group));
5236
aaee1203 5237 /* Traverse only the allowed CPUs */
fa17b507 5238 for_each_cpu_and(i, sched_group_cpus(group), tsk_cpus_allowed(p)) {
83a0a96a
NP
5239 if (idle_cpu(i)) {
5240 struct rq *rq = cpu_rq(i);
5241 struct cpuidle_state *idle = idle_get_state(rq);
5242 if (idle && idle->exit_latency < min_exit_latency) {
5243 /*
5244 * We give priority to a CPU whose idle state
5245 * has the smallest exit latency irrespective
5246 * of any idle timestamp.
5247 */
5248 min_exit_latency = idle->exit_latency;
5249 latest_idle_timestamp = rq->idle_stamp;
5250 shallowest_idle_cpu = i;
5251 } else if ((!idle || idle->exit_latency == min_exit_latency) &&
5252 rq->idle_stamp > latest_idle_timestamp) {
5253 /*
5254 * If equal or no active idle state, then
5255 * the most recently idled CPU might have
5256 * a warmer cache.
5257 */
5258 latest_idle_timestamp = rq->idle_stamp;
5259 shallowest_idle_cpu = i;
5260 }
9f96742a 5261 } else if (shallowest_idle_cpu == -1) {
83a0a96a
NP
5262 load = weighted_cpuload(i);
5263 if (load < min_load || (load == min_load && i == this_cpu)) {
5264 min_load = load;
5265 least_loaded_cpu = i;
5266 }
e7693a36
GH
5267 }
5268 }
5269
83a0a96a 5270 return shallowest_idle_cpu != -1 ? shallowest_idle_cpu : least_loaded_cpu;
aaee1203 5271}
e7693a36 5272
a50bde51
PZ
5273/*
5274 * Try and locate an idle CPU in the sched_domain.
5275 */
772bd008 5276static int select_idle_sibling(struct task_struct *p, int prev, int target)
a50bde51 5277{
99bd5e2f 5278 struct sched_domain *sd;
37407ea7 5279 struct sched_group *sg;
a50bde51 5280
e0a79f52
MG
5281 if (idle_cpu(target))
5282 return target;
99bd5e2f
SS
5283
5284 /*
e0a79f52 5285 * If the prevous cpu is cache affine and idle, don't be stupid.
99bd5e2f 5286 */
772bd008
MR
5287 if (prev != target && cpus_share_cache(prev, target) && idle_cpu(prev))
5288 return prev;
a50bde51
PZ
5289
5290 /*
d4335581
MF
5291 * Otherwise, iterate the domains and find an eligible idle cpu.
5292 *
5293 * A completely idle sched group at higher domains is more
5294 * desirable than an idle group at a lower level, because lower
5295 * domains have smaller groups and usually share hardware
5296 * resources which causes tasks to contend on them, e.g. x86
5297 * hyperthread siblings in the lowest domain (SMT) can contend
5298 * on the shared cpu pipeline.
5299 *
5300 * However, while we prefer idle groups at higher domains
5301 * finding an idle cpu at the lowest domain is still better than
5302 * returning 'target', which we've already established, isn't
5303 * idle.
a50bde51 5304 */
518cd623 5305 sd = rcu_dereference(per_cpu(sd_llc, target));
970e1789 5306 for_each_lower_domain(sd) {
37407ea7
LT
5307 sg = sd->groups;
5308 do {
772bd008
MR
5309 int i;
5310
37407ea7
LT
5311 if (!cpumask_intersects(sched_group_cpus(sg),
5312 tsk_cpus_allowed(p)))
5313 goto next;
5314
d4335581 5315 /* Ensure the entire group is idle */
37407ea7 5316 for_each_cpu(i, sched_group_cpus(sg)) {
e0a79f52 5317 if (i == target || !idle_cpu(i))
37407ea7
LT
5318 goto next;
5319 }
970e1789 5320
d4335581
MF
5321 /*
5322 * It doesn't matter which cpu we pick, the
5323 * whole group is idle.
5324 */
37407ea7
LT
5325 target = cpumask_first_and(sched_group_cpus(sg),
5326 tsk_cpus_allowed(p));
5327 goto done;
5328next:
5329 sg = sg->next;
5330 } while (sg != sd->groups);
5331 }
5332done:
a50bde51
PZ
5333 return target;
5334}
231678b7 5335
8bb5b00c 5336/*
9e91d61d 5337 * cpu_util returns the amount of capacity of a CPU that is used by CFS
8bb5b00c 5338 * tasks. The unit of the return value must be the one of capacity so we can
9e91d61d
DE
5339 * compare the utilization with the capacity of the CPU that is available for
5340 * CFS task (ie cpu_capacity).
231678b7
DE
5341 *
5342 * cfs_rq.avg.util_avg is the sum of running time of runnable tasks plus the
5343 * recent utilization of currently non-runnable tasks on a CPU. It represents
5344 * the amount of utilization of a CPU in the range [0..capacity_orig] where
5345 * capacity_orig is the cpu_capacity available at the highest frequency
5346 * (arch_scale_freq_capacity()).
5347 * The utilization of a CPU converges towards a sum equal to or less than the
5348 * current capacity (capacity_curr <= capacity_orig) of the CPU because it is
5349 * the running time on this CPU scaled by capacity_curr.
5350 *
5351 * Nevertheless, cfs_rq.avg.util_avg can be higher than capacity_curr or even
5352 * higher than capacity_orig because of unfortunate rounding in
5353 * cfs.avg.util_avg or just after migrating tasks and new task wakeups until
5354 * the average stabilizes with the new running time. We need to check that the
5355 * utilization stays within the range of [0..capacity_orig] and cap it if
5356 * necessary. Without utilization capping, a group could be seen as overloaded
5357 * (CPU0 utilization at 121% + CPU1 utilization at 80%) whereas CPU1 has 20% of
5358 * available capacity. We allow utilization to overshoot capacity_curr (but not
5359 * capacity_orig) as it useful for predicting the capacity required after task
5360 * migrations (scheduler-driven DVFS).
8bb5b00c 5361 */
9e91d61d 5362static int cpu_util(int cpu)
8bb5b00c 5363{
9e91d61d 5364 unsigned long util = cpu_rq(cpu)->cfs.avg.util_avg;
8bb5b00c
VG
5365 unsigned long capacity = capacity_orig_of(cpu);
5366
231678b7 5367 return (util >= capacity) ? capacity : util;
8bb5b00c 5368}
a50bde51 5369
3273163c
MR
5370static inline int task_util(struct task_struct *p)
5371{
5372 return p->se.avg.util_avg;
5373}
5374
5375/*
5376 * Disable WAKE_AFFINE in the case where task @p doesn't fit in the
5377 * capacity of either the waking CPU @cpu or the previous CPU @prev_cpu.
5378 *
5379 * In that case WAKE_AFFINE doesn't make sense and we'll let
5380 * BALANCE_WAKE sort things out.
5381 */
5382static int wake_cap(struct task_struct *p, int cpu, int prev_cpu)
5383{
5384 long min_cap, max_cap;
5385
5386 min_cap = min(capacity_orig_of(prev_cpu), capacity_orig_of(cpu));
5387 max_cap = cpu_rq(cpu)->rd->max_cpu_capacity;
5388
5389 /* Minimum capacity is close to max, no need to abort wake_affine */
5390 if (max_cap - min_cap < max_cap >> 3)
5391 return 0;
5392
5393 return min_cap * 1024 < task_util(p) * capacity_margin;
5394}
5395
aaee1203 5396/*
de91b9cb
MR
5397 * select_task_rq_fair: Select target runqueue for the waking task in domains
5398 * that have the 'sd_flag' flag set. In practice, this is SD_BALANCE_WAKE,
5399 * SD_BALANCE_FORK, or SD_BALANCE_EXEC.
aaee1203 5400 *
de91b9cb
MR
5401 * Balances load by selecting the idlest cpu in the idlest group, or under
5402 * certain conditions an idle sibling cpu if the domain has SD_WAKE_AFFINE set.
aaee1203 5403 *
de91b9cb 5404 * Returns the target cpu number.
aaee1203
PZ
5405 *
5406 * preempt must be disabled.
5407 */
0017d735 5408static int
ac66f547 5409select_task_rq_fair(struct task_struct *p, int prev_cpu, int sd_flag, int wake_flags)
aaee1203 5410{
29cd8bae 5411 struct sched_domain *tmp, *affine_sd = NULL, *sd = NULL;
c88d5910 5412 int cpu = smp_processor_id();
63b0e9ed 5413 int new_cpu = prev_cpu;
99bd5e2f 5414 int want_affine = 0;
5158f4e4 5415 int sync = wake_flags & WF_SYNC;
c88d5910 5416
c58d25f3
PZ
5417 if (sd_flag & SD_BALANCE_WAKE) {
5418 record_wakee(p);
3273163c
MR
5419 want_affine = !wake_wide(p) && !wake_cap(p, cpu, prev_cpu)
5420 && cpumask_test_cpu(cpu, tsk_cpus_allowed(p));
c58d25f3 5421 }
aaee1203 5422
dce840a0 5423 rcu_read_lock();
aaee1203 5424 for_each_domain(cpu, tmp) {
e4f42888 5425 if (!(tmp->flags & SD_LOAD_BALANCE))
63b0e9ed 5426 break;
e4f42888 5427
fe3bcfe1 5428 /*
99bd5e2f
SS
5429 * If both cpu and prev_cpu are part of this domain,
5430 * cpu is a valid SD_WAKE_AFFINE target.
fe3bcfe1 5431 */
99bd5e2f
SS
5432 if (want_affine && (tmp->flags & SD_WAKE_AFFINE) &&
5433 cpumask_test_cpu(prev_cpu, sched_domain_span(tmp))) {
5434 affine_sd = tmp;
29cd8bae 5435 break;
f03542a7 5436 }
29cd8bae 5437
f03542a7 5438 if (tmp->flags & sd_flag)
29cd8bae 5439 sd = tmp;
63b0e9ed
MG
5440 else if (!want_affine)
5441 break;
29cd8bae
PZ
5442 }
5443
63b0e9ed
MG
5444 if (affine_sd) {
5445 sd = NULL; /* Prefer wake_affine over balance flags */
772bd008 5446 if (cpu != prev_cpu && wake_affine(affine_sd, p, prev_cpu, sync))
63b0e9ed 5447 new_cpu = cpu;
8b911acd 5448 }
e7693a36 5449
63b0e9ed
MG
5450 if (!sd) {
5451 if (sd_flag & SD_BALANCE_WAKE) /* XXX always ? */
772bd008 5452 new_cpu = select_idle_sibling(p, prev_cpu, new_cpu);
63b0e9ed
MG
5453
5454 } else while (sd) {
aaee1203 5455 struct sched_group *group;
c88d5910 5456 int weight;
098fb9db 5457
0763a660 5458 if (!(sd->flags & sd_flag)) {
aaee1203
PZ
5459 sd = sd->child;
5460 continue;
5461 }
098fb9db 5462
c44f2a02 5463 group = find_idlest_group(sd, p, cpu, sd_flag);
aaee1203
PZ
5464 if (!group) {
5465 sd = sd->child;
5466 continue;
5467 }
4ae7d5ce 5468
d7c33c49 5469 new_cpu = find_idlest_cpu(group, p, cpu);
aaee1203
PZ
5470 if (new_cpu == -1 || new_cpu == cpu) {
5471 /* Now try balancing at a lower domain level of cpu */
5472 sd = sd->child;
5473 continue;
e7693a36 5474 }
aaee1203
PZ
5475
5476 /* Now try balancing at a lower domain level of new_cpu */
5477 cpu = new_cpu;
669c55e9 5478 weight = sd->span_weight;
aaee1203
PZ
5479 sd = NULL;
5480 for_each_domain(cpu, tmp) {
669c55e9 5481 if (weight <= tmp->span_weight)
aaee1203 5482 break;
0763a660 5483 if (tmp->flags & sd_flag)
aaee1203
PZ
5484 sd = tmp;
5485 }
5486 /* while loop will break here if sd == NULL */
e7693a36 5487 }
dce840a0 5488 rcu_read_unlock();
e7693a36 5489
c88d5910 5490 return new_cpu;
e7693a36 5491}
0a74bef8
PT
5492
5493/*
5494 * Called immediately before a task is migrated to a new cpu; task_cpu(p) and
5495 * cfs_rq_of(p) references at time of call are still valid and identify the
525628c7 5496 * previous cpu. The caller guarantees p->pi_lock or task_rq(p)->lock is held.
0a74bef8 5497 */
5a4fd036 5498static void migrate_task_rq_fair(struct task_struct *p)
0a74bef8 5499{
59efa0ba
PZ
5500 /*
5501 * As blocked tasks retain absolute vruntime the migration needs to
5502 * deal with this by subtracting the old and adding the new
5503 * min_vruntime -- the latter is done by enqueue_entity() when placing
5504 * the task on the new runqueue.
5505 */
5506 if (p->state == TASK_WAKING) {
5507 struct sched_entity *se = &p->se;
5508 struct cfs_rq *cfs_rq = cfs_rq_of(se);
5509 u64 min_vruntime;
5510
5511#ifndef CONFIG_64BIT
5512 u64 min_vruntime_copy;
5513
5514 do {
5515 min_vruntime_copy = cfs_rq->min_vruntime_copy;
5516 smp_rmb();
5517 min_vruntime = cfs_rq->min_vruntime;
5518 } while (min_vruntime != min_vruntime_copy);
5519#else
5520 min_vruntime = cfs_rq->min_vruntime;
5521#endif
5522
5523 se->vruntime -= min_vruntime;
5524 }
5525
aff3e498 5526 /*
9d89c257
YD
5527 * We are supposed to update the task to "current" time, then its up to date
5528 * and ready to go to new CPU/cfs_rq. But we have difficulty in getting
5529 * what current time is, so simply throw away the out-of-date time. This
5530 * will result in the wakee task is less decayed, but giving the wakee more
5531 * load sounds not bad.
aff3e498 5532 */
9d89c257
YD
5533 remove_entity_load_avg(&p->se);
5534
5535 /* Tell new CPU we are migrated */
5536 p->se.avg.last_update_time = 0;
3944a927
BS
5537
5538 /* We have migrated, no longer consider this task hot */
9d89c257 5539 p->se.exec_start = 0;
0a74bef8 5540}
12695578
YD
5541
5542static void task_dead_fair(struct task_struct *p)
5543{
5544 remove_entity_load_avg(&p->se);
5545}
e7693a36
GH
5546#endif /* CONFIG_SMP */
5547
e52fb7c0
PZ
5548static unsigned long
5549wakeup_gran(struct sched_entity *curr, struct sched_entity *se)
0bbd3336
PZ
5550{
5551 unsigned long gran = sysctl_sched_wakeup_granularity;
5552
5553 /*
e52fb7c0
PZ
5554 * Since its curr running now, convert the gran from real-time
5555 * to virtual-time in his units.
13814d42
MG
5556 *
5557 * By using 'se' instead of 'curr' we penalize light tasks, so
5558 * they get preempted easier. That is, if 'se' < 'curr' then
5559 * the resulting gran will be larger, therefore penalizing the
5560 * lighter, if otoh 'se' > 'curr' then the resulting gran will
5561 * be smaller, again penalizing the lighter task.
5562 *
5563 * This is especially important for buddies when the leftmost
5564 * task is higher priority than the buddy.
0bbd3336 5565 */
f4ad9bd2 5566 return calc_delta_fair(gran, se);
0bbd3336
PZ
5567}
5568
464b7527
PZ
5569/*
5570 * Should 'se' preempt 'curr'.
5571 *
5572 * |s1
5573 * |s2
5574 * |s3
5575 * g
5576 * |<--->|c
5577 *
5578 * w(c, s1) = -1
5579 * w(c, s2) = 0
5580 * w(c, s3) = 1
5581 *
5582 */
5583static int
5584wakeup_preempt_entity(struct sched_entity *curr, struct sched_entity *se)
5585{
5586 s64 gran, vdiff = curr->vruntime - se->vruntime;
5587
5588 if (vdiff <= 0)
5589 return -1;
5590
e52fb7c0 5591 gran = wakeup_gran(curr, se);
464b7527
PZ
5592 if (vdiff > gran)
5593 return 1;
5594
5595 return 0;
5596}
5597
02479099
PZ
5598static void set_last_buddy(struct sched_entity *se)
5599{
69c80f3e
VP
5600 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5601 return;
5602
5603 for_each_sched_entity(se)
5604 cfs_rq_of(se)->last = se;
02479099
PZ
5605}
5606
5607static void set_next_buddy(struct sched_entity *se)
5608{
69c80f3e
VP
5609 if (entity_is_task(se) && unlikely(task_of(se)->policy == SCHED_IDLE))
5610 return;
5611
5612 for_each_sched_entity(se)
5613 cfs_rq_of(se)->next = se;
02479099
PZ
5614}
5615
ac53db59
RR
5616static void set_skip_buddy(struct sched_entity *se)
5617{
69c80f3e
VP
5618 for_each_sched_entity(se)
5619 cfs_rq_of(se)->skip = se;
ac53db59
RR
5620}
5621
bf0f6f24
IM
5622/*
5623 * Preempt the current task with a newly woken task if needed:
5624 */
5a9b86f6 5625static void check_preempt_wakeup(struct rq *rq, struct task_struct *p, int wake_flags)
bf0f6f24
IM
5626{
5627 struct task_struct *curr = rq->curr;
8651a86c 5628 struct sched_entity *se = &curr->se, *pse = &p->se;
03e89e45 5629 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
f685ceac 5630 int scale = cfs_rq->nr_running >= sched_nr_latency;
2f36825b 5631 int next_buddy_marked = 0;
bf0f6f24 5632
4ae7d5ce
IM
5633 if (unlikely(se == pse))
5634 return;
5635
5238cdd3 5636 /*
163122b7 5637 * This is possible from callers such as attach_tasks(), in which we
5238cdd3
PT
5638 * unconditionally check_prempt_curr() after an enqueue (which may have
5639 * lead to a throttle). This both saves work and prevents false
5640 * next-buddy nomination below.
5641 */
5642 if (unlikely(throttled_hierarchy(cfs_rq_of(pse))))
5643 return;
5644
2f36825b 5645 if (sched_feat(NEXT_BUDDY) && scale && !(wake_flags & WF_FORK)) {
3cb63d52 5646 set_next_buddy(pse);
2f36825b
VP
5647 next_buddy_marked = 1;
5648 }
57fdc26d 5649
aec0a514
BR
5650 /*
5651 * We can come here with TIF_NEED_RESCHED already set from new task
5652 * wake up path.
5238cdd3
PT
5653 *
5654 * Note: this also catches the edge-case of curr being in a throttled
5655 * group (e.g. via set_curr_task), since update_curr() (in the
5656 * enqueue of curr) will have resulted in resched being set. This
5657 * prevents us from potentially nominating it as a false LAST_BUDDY
5658 * below.
aec0a514
BR
5659 */
5660 if (test_tsk_need_resched(curr))
5661 return;
5662
a2f5c9ab
DH
5663 /* Idle tasks are by definition preempted by non-idle tasks. */
5664 if (unlikely(curr->policy == SCHED_IDLE) &&
5665 likely(p->policy != SCHED_IDLE))
5666 goto preempt;
5667
91c234b4 5668 /*
a2f5c9ab
DH
5669 * Batch and idle tasks do not preempt non-idle tasks (their preemption
5670 * is driven by the tick):
91c234b4 5671 */
f14bf141
JD
5672 if (unlikely(p->policy == SCHED_BATCH || p->policy == SCHED_IDLE) ||
5673 !sched_feat(WAKEUP_PREEMPTION))
91c234b4 5674 return;
bf0f6f24 5675
464b7527 5676 find_matching_se(&se, &pse);
9bbd7374 5677 update_curr(cfs_rq_of(se));
002f128b 5678 BUG_ON(!pse);
2f36825b
VP
5679 if (wakeup_preempt_entity(se, pse) == 1) {
5680 /*
5681 * Bias pick_next to pick the sched entity that is
5682 * triggering this preemption.
5683 */
5684 if (!next_buddy_marked)
5685 set_next_buddy(pse);
3a7e73a2 5686 goto preempt;
2f36825b 5687 }
464b7527 5688
3a7e73a2 5689 return;
a65ac745 5690
3a7e73a2 5691preempt:
8875125e 5692 resched_curr(rq);
3a7e73a2
PZ
5693 /*
5694 * Only set the backward buddy when the current task is still
5695 * on the rq. This can happen when a wakeup gets interleaved
5696 * with schedule on the ->pre_schedule() or idle_balance()
5697 * point, either of which can * drop the rq lock.
5698 *
5699 * Also, during early boot the idle thread is in the fair class,
5700 * for obvious reasons its a bad idea to schedule back to it.
5701 */
5702 if (unlikely(!se->on_rq || curr == rq->idle))
5703 return;
5704
5705 if (sched_feat(LAST_BUDDY) && scale && entity_is_task(se))
5706 set_last_buddy(se);
bf0f6f24
IM
5707}
5708
606dba2e 5709static struct task_struct *
e7904a28 5710pick_next_task_fair(struct rq *rq, struct task_struct *prev, struct pin_cookie cookie)
bf0f6f24
IM
5711{
5712 struct cfs_rq *cfs_rq = &rq->cfs;
5713 struct sched_entity *se;
678d5718 5714 struct task_struct *p;
37e117c0 5715 int new_tasks;
678d5718 5716
6e83125c 5717again:
678d5718
PZ
5718#ifdef CONFIG_FAIR_GROUP_SCHED
5719 if (!cfs_rq->nr_running)
38033c37 5720 goto idle;
678d5718 5721
3f1d2a31 5722 if (prev->sched_class != &fair_sched_class)
678d5718
PZ
5723 goto simple;
5724
5725 /*
5726 * Because of the set_next_buddy() in dequeue_task_fair() it is rather
5727 * likely that a next task is from the same cgroup as the current.
5728 *
5729 * Therefore attempt to avoid putting and setting the entire cgroup
5730 * hierarchy, only change the part that actually changes.
5731 */
5732
5733 do {
5734 struct sched_entity *curr = cfs_rq->curr;
5735
5736 /*
5737 * Since we got here without doing put_prev_entity() we also
5738 * have to consider cfs_rq->curr. If it is still a runnable
5739 * entity, update_curr() will update its vruntime, otherwise
5740 * forget we've ever seen it.
5741 */
54d27365
BS
5742 if (curr) {
5743 if (curr->on_rq)
5744 update_curr(cfs_rq);
5745 else
5746 curr = NULL;
678d5718 5747
54d27365
BS
5748 /*
5749 * This call to check_cfs_rq_runtime() will do the
5750 * throttle and dequeue its entity in the parent(s).
5751 * Therefore the 'simple' nr_running test will indeed
5752 * be correct.
5753 */
5754 if (unlikely(check_cfs_rq_runtime(cfs_rq)))
5755 goto simple;
5756 }
678d5718
PZ
5757
5758 se = pick_next_entity(cfs_rq, curr);
5759 cfs_rq = group_cfs_rq(se);
5760 } while (cfs_rq);
5761
5762 p = task_of(se);
5763
5764 /*
5765 * Since we haven't yet done put_prev_entity and if the selected task
5766 * is a different task than we started out with, try and touch the
5767 * least amount of cfs_rqs.
5768 */
5769 if (prev != p) {
5770 struct sched_entity *pse = &prev->se;
5771
5772 while (!(cfs_rq = is_same_group(se, pse))) {
5773 int se_depth = se->depth;
5774 int pse_depth = pse->depth;
5775
5776 if (se_depth <= pse_depth) {
5777 put_prev_entity(cfs_rq_of(pse), pse);
5778 pse = parent_entity(pse);
5779 }
5780 if (se_depth >= pse_depth) {
5781 set_next_entity(cfs_rq_of(se), se);
5782 se = parent_entity(se);
5783 }
5784 }
5785
5786 put_prev_entity(cfs_rq, pse);
5787 set_next_entity(cfs_rq, se);
5788 }
5789
5790 if (hrtick_enabled(rq))
5791 hrtick_start_fair(rq, p);
5792
5793 return p;
5794simple:
5795 cfs_rq = &rq->cfs;
5796#endif
bf0f6f24 5797
36ace27e 5798 if (!cfs_rq->nr_running)
38033c37 5799 goto idle;
bf0f6f24 5800
3f1d2a31 5801 put_prev_task(rq, prev);
606dba2e 5802
bf0f6f24 5803 do {
678d5718 5804 se = pick_next_entity(cfs_rq, NULL);
f4b6755f 5805 set_next_entity(cfs_rq, se);
bf0f6f24
IM
5806 cfs_rq = group_cfs_rq(se);
5807 } while (cfs_rq);
5808
8f4d37ec 5809 p = task_of(se);
678d5718 5810
b39e66ea
MG
5811 if (hrtick_enabled(rq))
5812 hrtick_start_fair(rq, p);
8f4d37ec
PZ
5813
5814 return p;
38033c37
PZ
5815
5816idle:
cbce1a68
PZ
5817 /*
5818 * This is OK, because current is on_cpu, which avoids it being picked
5819 * for load-balance and preemption/IRQs are still disabled avoiding
5820 * further scheduler activity on it and we're being very careful to
5821 * re-start the picking loop.
5822 */
e7904a28 5823 lockdep_unpin_lock(&rq->lock, cookie);
e4aa358b 5824 new_tasks = idle_balance(rq);
e7904a28 5825 lockdep_repin_lock(&rq->lock, cookie);
37e117c0
PZ
5826 /*
5827 * Because idle_balance() releases (and re-acquires) rq->lock, it is
5828 * possible for any higher priority task to appear. In that case we
5829 * must re-start the pick_next_entity() loop.
5830 */
e4aa358b 5831 if (new_tasks < 0)
37e117c0
PZ
5832 return RETRY_TASK;
5833
e4aa358b 5834 if (new_tasks > 0)
38033c37 5835 goto again;
38033c37
PZ
5836
5837 return NULL;
bf0f6f24
IM
5838}
5839
5840/*
5841 * Account for a descheduled task:
5842 */
31ee529c 5843static void put_prev_task_fair(struct rq *rq, struct task_struct *prev)
bf0f6f24
IM
5844{
5845 struct sched_entity *se = &prev->se;
5846 struct cfs_rq *cfs_rq;
5847
5848 for_each_sched_entity(se) {
5849 cfs_rq = cfs_rq_of(se);
ab6cde26 5850 put_prev_entity(cfs_rq, se);
bf0f6f24
IM
5851 }
5852}
5853
ac53db59
RR
5854/*
5855 * sched_yield() is very simple
5856 *
5857 * The magic of dealing with the ->skip buddy is in pick_next_entity.
5858 */
5859static void yield_task_fair(struct rq *rq)
5860{
5861 struct task_struct *curr = rq->curr;
5862 struct cfs_rq *cfs_rq = task_cfs_rq(curr);
5863 struct sched_entity *se = &curr->se;
5864
5865 /*
5866 * Are we the only task in the tree?
5867 */
5868 if (unlikely(rq->nr_running == 1))
5869 return;
5870
5871 clear_buddies(cfs_rq, se);
5872
5873 if (curr->policy != SCHED_BATCH) {
5874 update_rq_clock(rq);
5875 /*
5876 * Update run-time statistics of the 'current'.
5877 */
5878 update_curr(cfs_rq);
916671c0
MG
5879 /*
5880 * Tell update_rq_clock() that we've just updated,
5881 * so we don't do microscopic update in schedule()
5882 * and double the fastpath cost.
5883 */
9edfbfed 5884 rq_clock_skip_update(rq, true);
ac53db59
RR
5885 }
5886
5887 set_skip_buddy(se);
5888}
5889
d95f4122
MG
5890static bool yield_to_task_fair(struct rq *rq, struct task_struct *p, bool preempt)
5891{
5892 struct sched_entity *se = &p->se;
5893
5238cdd3
PT
5894 /* throttled hierarchies are not runnable */
5895 if (!se->on_rq || throttled_hierarchy(cfs_rq_of(se)))
d95f4122
MG
5896 return false;
5897
5898 /* Tell the scheduler that we'd really like pse to run next. */
5899 set_next_buddy(se);
5900
d95f4122
MG
5901 yield_task_fair(rq);
5902
5903 return true;
5904}
5905
681f3e68 5906#ifdef CONFIG_SMP
bf0f6f24 5907/**************************************************
e9c84cb8
PZ
5908 * Fair scheduling class load-balancing methods.
5909 *
5910 * BASICS
5911 *
5912 * The purpose of load-balancing is to achieve the same basic fairness the
5913 * per-cpu scheduler provides, namely provide a proportional amount of compute
5914 * time to each task. This is expressed in the following equation:
5915 *
5916 * W_i,n/P_i == W_j,n/P_j for all i,j (1)
5917 *
5918 * Where W_i,n is the n-th weight average for cpu i. The instantaneous weight
5919 * W_i,0 is defined as:
5920 *
5921 * W_i,0 = \Sum_j w_i,j (2)
5922 *
5923 * Where w_i,j is the weight of the j-th runnable task on cpu i. This weight
1c3de5e1 5924 * is derived from the nice value as per sched_prio_to_weight[].
e9c84cb8
PZ
5925 *
5926 * The weight average is an exponential decay average of the instantaneous
5927 * weight:
5928 *
5929 * W'_i,n = (2^n - 1) / 2^n * W_i,n + 1 / 2^n * W_i,0 (3)
5930 *
ced549fa 5931 * C_i is the compute capacity of cpu i, typically it is the
e9c84cb8
PZ
5932 * fraction of 'recent' time available for SCHED_OTHER task execution. But it
5933 * can also include other factors [XXX].
5934 *
5935 * To achieve this balance we define a measure of imbalance which follows
5936 * directly from (1):
5937 *
ced549fa 5938 * imb_i,j = max{ avg(W/C), W_i/C_i } - min{ avg(W/C), W_j/C_j } (4)
e9c84cb8
PZ
5939 *
5940 * We them move tasks around to minimize the imbalance. In the continuous
5941 * function space it is obvious this converges, in the discrete case we get
5942 * a few fun cases generally called infeasible weight scenarios.
5943 *
5944 * [XXX expand on:
5945 * - infeasible weights;
5946 * - local vs global optima in the discrete case. ]
5947 *
5948 *
5949 * SCHED DOMAINS
5950 *
5951 * In order to solve the imbalance equation (4), and avoid the obvious O(n^2)
5952 * for all i,j solution, we create a tree of cpus that follows the hardware
5953 * topology where each level pairs two lower groups (or better). This results
5954 * in O(log n) layers. Furthermore we reduce the number of cpus going up the
5955 * tree to only the first of the previous level and we decrease the frequency
5956 * of load-balance at each level inv. proportional to the number of cpus in
5957 * the groups.
5958 *
5959 * This yields:
5960 *
5961 * log_2 n 1 n
5962 * \Sum { --- * --- * 2^i } = O(n) (5)
5963 * i = 0 2^i 2^i
5964 * `- size of each group
5965 * | | `- number of cpus doing load-balance
5966 * | `- freq
5967 * `- sum over all levels
5968 *
5969 * Coupled with a limit on how many tasks we can migrate every balance pass,
5970 * this makes (5) the runtime complexity of the balancer.
5971 *
5972 * An important property here is that each CPU is still (indirectly) connected
5973 * to every other cpu in at most O(log n) steps:
5974 *
5975 * The adjacency matrix of the resulting graph is given by:
5976 *
97a7142f 5977 * log_2 n
e9c84cb8
PZ
5978 * A_i,j = \Union (i % 2^k == 0) && i / 2^(k+1) == j / 2^(k+1) (6)
5979 * k = 0
5980 *
5981 * And you'll find that:
5982 *
5983 * A^(log_2 n)_i,j != 0 for all i,j (7)
5984 *
5985 * Showing there's indeed a path between every cpu in at most O(log n) steps.
5986 * The task movement gives a factor of O(m), giving a convergence complexity
5987 * of:
5988 *
5989 * O(nm log n), n := nr_cpus, m := nr_tasks (8)
5990 *
5991 *
5992 * WORK CONSERVING
5993 *
5994 * In order to avoid CPUs going idle while there's still work to do, new idle
5995 * balancing is more aggressive and has the newly idle cpu iterate up the domain
5996 * tree itself instead of relying on other CPUs to bring it work.
5997 *
5998 * This adds some complexity to both (5) and (8) but it reduces the total idle
5999 * time.
6000 *
6001 * [XXX more?]
6002 *
6003 *
6004 * CGROUPS
6005 *
6006 * Cgroups make a horror show out of (2), instead of a simple sum we get:
6007 *
6008 * s_k,i
6009 * W_i,0 = \Sum_j \Prod_k w_k * ----- (9)
6010 * S_k
6011 *
6012 * Where
6013 *
6014 * s_k,i = \Sum_j w_i,j,k and S_k = \Sum_i s_k,i (10)
6015 *
6016 * w_i,j,k is the weight of the j-th runnable task in the k-th cgroup on cpu i.
6017 *
6018 * The big problem is S_k, its a global sum needed to compute a local (W_i)
6019 * property.
6020 *
6021 * [XXX write more on how we solve this.. _after_ merging pjt's patches that
6022 * rewrite all of this once again.]
97a7142f 6023 */
bf0f6f24 6024
ed387b78
HS
6025static unsigned long __read_mostly max_load_balance_interval = HZ/10;
6026
0ec8aa00
PZ
6027enum fbq_type { regular, remote, all };
6028
ddcdf6e7 6029#define LBF_ALL_PINNED 0x01
367456c7 6030#define LBF_NEED_BREAK 0x02
6263322c
PZ
6031#define LBF_DST_PINNED 0x04
6032#define LBF_SOME_PINNED 0x08
ddcdf6e7
PZ
6033
6034struct lb_env {
6035 struct sched_domain *sd;
6036
ddcdf6e7 6037 struct rq *src_rq;
85c1e7da 6038 int src_cpu;
ddcdf6e7
PZ
6039
6040 int dst_cpu;
6041 struct rq *dst_rq;
6042
88b8dac0
SV
6043 struct cpumask *dst_grpmask;
6044 int new_dst_cpu;
ddcdf6e7 6045 enum cpu_idle_type idle;
bd939f45 6046 long imbalance;
b9403130
MW
6047 /* The set of CPUs under consideration for load-balancing */
6048 struct cpumask *cpus;
6049
ddcdf6e7 6050 unsigned int flags;
367456c7
PZ
6051
6052 unsigned int loop;
6053 unsigned int loop_break;
6054 unsigned int loop_max;
0ec8aa00
PZ
6055
6056 enum fbq_type fbq_type;
163122b7 6057 struct list_head tasks;
ddcdf6e7
PZ
6058};
6059
029632fb
PZ
6060/*
6061 * Is this task likely cache-hot:
6062 */
5d5e2b1b 6063static int task_hot(struct task_struct *p, struct lb_env *env)
029632fb
PZ
6064{
6065 s64 delta;
6066
e5673f28
KT
6067 lockdep_assert_held(&env->src_rq->lock);
6068
029632fb
PZ
6069 if (p->sched_class != &fair_sched_class)
6070 return 0;
6071
6072 if (unlikely(p->policy == SCHED_IDLE))
6073 return 0;
6074
6075 /*
6076 * Buddy candidates are cache hot:
6077 */
5d5e2b1b 6078 if (sched_feat(CACHE_HOT_BUDDY) && env->dst_rq->nr_running &&
029632fb
PZ
6079 (&p->se == cfs_rq_of(&p->se)->next ||
6080 &p->se == cfs_rq_of(&p->se)->last))
6081 return 1;
6082
6083 if (sysctl_sched_migration_cost == -1)
6084 return 1;
6085 if (sysctl_sched_migration_cost == 0)
6086 return 0;
6087
5d5e2b1b 6088 delta = rq_clock_task(env->src_rq) - p->se.exec_start;
029632fb
PZ
6089
6090 return delta < (s64)sysctl_sched_migration_cost;
6091}
6092
3a7053b3 6093#ifdef CONFIG_NUMA_BALANCING
c1ceac62 6094/*
2a1ed24c
SD
6095 * Returns 1, if task migration degrades locality
6096 * Returns 0, if task migration improves locality i.e migration preferred.
6097 * Returns -1, if task migration is not affected by locality.
c1ceac62 6098 */
2a1ed24c 6099static int migrate_degrades_locality(struct task_struct *p, struct lb_env *env)
3a7053b3 6100{
b1ad065e 6101 struct numa_group *numa_group = rcu_dereference(p->numa_group);
c1ceac62 6102 unsigned long src_faults, dst_faults;
3a7053b3
MG
6103 int src_nid, dst_nid;
6104
2a595721 6105 if (!static_branch_likely(&sched_numa_balancing))
2a1ed24c
SD
6106 return -1;
6107
c3b9bc5b 6108 if (!p->numa_faults || !(env->sd->flags & SD_NUMA))
2a1ed24c 6109 return -1;
7a0f3083
MG
6110
6111 src_nid = cpu_to_node(env->src_cpu);
6112 dst_nid = cpu_to_node(env->dst_cpu);
6113
83e1d2cd 6114 if (src_nid == dst_nid)
2a1ed24c 6115 return -1;
7a0f3083 6116
2a1ed24c
SD
6117 /* Migrating away from the preferred node is always bad. */
6118 if (src_nid == p->numa_preferred_nid) {
6119 if (env->src_rq->nr_running > env->src_rq->nr_preferred_running)
6120 return 1;
6121 else
6122 return -1;
6123 }
b1ad065e 6124
c1ceac62
RR
6125 /* Encourage migration to the preferred node. */
6126 if (dst_nid == p->numa_preferred_nid)
2a1ed24c 6127 return 0;
b1ad065e 6128
c1ceac62
RR
6129 if (numa_group) {
6130 src_faults = group_faults(p, src_nid);
6131 dst_faults = group_faults(p, dst_nid);
6132 } else {
6133 src_faults = task_faults(p, src_nid);
6134 dst_faults = task_faults(p, dst_nid);
b1ad065e
RR
6135 }
6136
c1ceac62 6137 return dst_faults < src_faults;
7a0f3083
MG
6138}
6139
3a7053b3 6140#else
2a1ed24c 6141static inline int migrate_degrades_locality(struct task_struct *p,
3a7053b3
MG
6142 struct lb_env *env)
6143{
2a1ed24c 6144 return -1;
7a0f3083 6145}
3a7053b3
MG
6146#endif
6147
1e3c88bd
PZ
6148/*
6149 * can_migrate_task - may task p from runqueue rq be migrated to this_cpu?
6150 */
6151static
8e45cb54 6152int can_migrate_task(struct task_struct *p, struct lb_env *env)
1e3c88bd 6153{
2a1ed24c 6154 int tsk_cache_hot;
e5673f28
KT
6155
6156 lockdep_assert_held(&env->src_rq->lock);
6157
1e3c88bd
PZ
6158 /*
6159 * We do not migrate tasks that are:
d3198084 6160 * 1) throttled_lb_pair, or
1e3c88bd 6161 * 2) cannot be migrated to this CPU due to cpus_allowed, or
d3198084
JK
6162 * 3) running (obviously), or
6163 * 4) are cache-hot on their current CPU.
1e3c88bd 6164 */
d3198084
JK
6165 if (throttled_lb_pair(task_group(p), env->src_cpu, env->dst_cpu))
6166 return 0;
6167
ddcdf6e7 6168 if (!cpumask_test_cpu(env->dst_cpu, tsk_cpus_allowed(p))) {
e02e60c1 6169 int cpu;
88b8dac0 6170
ae92882e 6171 schedstat_inc(p->se.statistics.nr_failed_migrations_affine);
88b8dac0 6172
6263322c
PZ
6173 env->flags |= LBF_SOME_PINNED;
6174
88b8dac0
SV
6175 /*
6176 * Remember if this task can be migrated to any other cpu in
6177 * our sched_group. We may want to revisit it if we couldn't
6178 * meet load balance goals by pulling other tasks on src_cpu.
6179 *
6180 * Also avoid computing new_dst_cpu if we have already computed
6181 * one in current iteration.
6182 */
6263322c 6183 if (!env->dst_grpmask || (env->flags & LBF_DST_PINNED))
88b8dac0
SV
6184 return 0;
6185
e02e60c1
JK
6186 /* Prevent to re-select dst_cpu via env's cpus */
6187 for_each_cpu_and(cpu, env->dst_grpmask, env->cpus) {
6188 if (cpumask_test_cpu(cpu, tsk_cpus_allowed(p))) {
6263322c 6189 env->flags |= LBF_DST_PINNED;
e02e60c1
JK
6190 env->new_dst_cpu = cpu;
6191 break;
6192 }
88b8dac0 6193 }
e02e60c1 6194
1e3c88bd
PZ
6195 return 0;
6196 }
88b8dac0
SV
6197
6198 /* Record that we found atleast one task that could run on dst_cpu */
8e45cb54 6199 env->flags &= ~LBF_ALL_PINNED;
1e3c88bd 6200
ddcdf6e7 6201 if (task_running(env->src_rq, p)) {
ae92882e 6202 schedstat_inc(p->se.statistics.nr_failed_migrations_running);
1e3c88bd
PZ
6203 return 0;
6204 }
6205
6206 /*
6207 * Aggressive migration if:
3a7053b3
MG
6208 * 1) destination numa is preferred
6209 * 2) task is cache cold, or
6210 * 3) too many balance attempts have failed.
1e3c88bd 6211 */
2a1ed24c
SD
6212 tsk_cache_hot = migrate_degrades_locality(p, env);
6213 if (tsk_cache_hot == -1)
6214 tsk_cache_hot = task_hot(p, env);
3a7053b3 6215
2a1ed24c 6216 if (tsk_cache_hot <= 0 ||
7a96c231 6217 env->sd->nr_balance_failed > env->sd->cache_nice_tries) {
2a1ed24c 6218 if (tsk_cache_hot == 1) {
ae92882e
JP
6219 schedstat_inc(env->sd->lb_hot_gained[env->idle]);
6220 schedstat_inc(p->se.statistics.nr_forced_migrations);
3a7053b3 6221 }
1e3c88bd
PZ
6222 return 1;
6223 }
6224
ae92882e 6225 schedstat_inc(p->se.statistics.nr_failed_migrations_hot);
4e2dcb73 6226 return 0;
1e3c88bd
PZ
6227}
6228
897c395f 6229/*
163122b7
KT
6230 * detach_task() -- detach the task for the migration specified in env
6231 */
6232static void detach_task(struct task_struct *p, struct lb_env *env)
6233{
6234 lockdep_assert_held(&env->src_rq->lock);
6235
163122b7 6236 p->on_rq = TASK_ON_RQ_MIGRATING;
3ea94de1 6237 deactivate_task(env->src_rq, p, 0);
163122b7
KT
6238 set_task_cpu(p, env->dst_cpu);
6239}
6240
897c395f 6241/*
e5673f28 6242 * detach_one_task() -- tries to dequeue exactly one task from env->src_rq, as
897c395f 6243 * part of active balancing operations within "domain".
897c395f 6244 *
e5673f28 6245 * Returns a task if successful and NULL otherwise.
897c395f 6246 */
e5673f28 6247static struct task_struct *detach_one_task(struct lb_env *env)
897c395f
PZ
6248{
6249 struct task_struct *p, *n;
897c395f 6250
e5673f28
KT
6251 lockdep_assert_held(&env->src_rq->lock);
6252
367456c7 6253 list_for_each_entry_safe(p, n, &env->src_rq->cfs_tasks, se.group_node) {
367456c7
PZ
6254 if (!can_migrate_task(p, env))
6255 continue;
897c395f 6256
163122b7 6257 detach_task(p, env);
e5673f28 6258
367456c7 6259 /*
e5673f28 6260 * Right now, this is only the second place where
163122b7 6261 * lb_gained[env->idle] is updated (other is detach_tasks)
e5673f28 6262 * so we can safely collect stats here rather than
163122b7 6263 * inside detach_tasks().
367456c7 6264 */
ae92882e 6265 schedstat_inc(env->sd->lb_gained[env->idle]);
e5673f28 6266 return p;
897c395f 6267 }
e5673f28 6268 return NULL;
897c395f
PZ
6269}
6270
eb95308e
PZ
6271static const unsigned int sched_nr_migrate_break = 32;
6272
5d6523eb 6273/*
163122b7
KT
6274 * detach_tasks() -- tries to detach up to imbalance weighted load from
6275 * busiest_rq, as part of a balancing operation within domain "sd".
5d6523eb 6276 *
163122b7 6277 * Returns number of detached tasks if successful and 0 otherwise.
5d6523eb 6278 */
163122b7 6279static int detach_tasks(struct lb_env *env)
1e3c88bd 6280{
5d6523eb
PZ
6281 struct list_head *tasks = &env->src_rq->cfs_tasks;
6282 struct task_struct *p;
367456c7 6283 unsigned long load;
163122b7
KT
6284 int detached = 0;
6285
6286 lockdep_assert_held(&env->src_rq->lock);
1e3c88bd 6287
bd939f45 6288 if (env->imbalance <= 0)
5d6523eb 6289 return 0;
1e3c88bd 6290
5d6523eb 6291 while (!list_empty(tasks)) {
985d3a4c
YD
6292 /*
6293 * We don't want to steal all, otherwise we may be treated likewise,
6294 * which could at worst lead to a livelock crash.
6295 */
6296 if (env->idle != CPU_NOT_IDLE && env->src_rq->nr_running <= 1)
6297 break;
6298
5d6523eb 6299 p = list_first_entry(tasks, struct task_struct, se.group_node);
1e3c88bd 6300
367456c7
PZ
6301 env->loop++;
6302 /* We've more or less seen every task there is, call it quits */
5d6523eb 6303 if (env->loop > env->loop_max)
367456c7 6304 break;
5d6523eb
PZ
6305
6306 /* take a breather every nr_migrate tasks */
367456c7 6307 if (env->loop > env->loop_break) {
eb95308e 6308 env->loop_break += sched_nr_migrate_break;
8e45cb54 6309 env->flags |= LBF_NEED_BREAK;
ee00e66f 6310 break;
a195f004 6311 }
1e3c88bd 6312
d3198084 6313 if (!can_migrate_task(p, env))
367456c7
PZ
6314 goto next;
6315
6316 load = task_h_load(p);
5d6523eb 6317
eb95308e 6318 if (sched_feat(LB_MIN) && load < 16 && !env->sd->nr_balance_failed)
367456c7
PZ
6319 goto next;
6320
bd939f45 6321 if ((load / 2) > env->imbalance)
367456c7 6322 goto next;
1e3c88bd 6323
163122b7
KT
6324 detach_task(p, env);
6325 list_add(&p->se.group_node, &env->tasks);
6326
6327 detached++;
bd939f45 6328 env->imbalance -= load;
1e3c88bd
PZ
6329
6330#ifdef CONFIG_PREEMPT
ee00e66f
PZ
6331 /*
6332 * NEWIDLE balancing is a source of latency, so preemptible
163122b7 6333 * kernels will stop after the first task is detached to minimize
ee00e66f
PZ
6334 * the critical section.
6335 */
5d6523eb 6336 if (env->idle == CPU_NEWLY_IDLE)
ee00e66f 6337 break;
1e3c88bd
PZ
6338#endif
6339
ee00e66f
PZ
6340 /*
6341 * We only want to steal up to the prescribed amount of
6342 * weighted load.
6343 */
bd939f45 6344 if (env->imbalance <= 0)
ee00e66f 6345 break;
367456c7
PZ
6346
6347 continue;
6348next:
5d6523eb 6349 list_move_tail(&p->se.group_node, tasks);
1e3c88bd 6350 }
5d6523eb 6351
1e3c88bd 6352 /*
163122b7
KT
6353 * Right now, this is one of only two places we collect this stat
6354 * so we can safely collect detach_one_task() stats here rather
6355 * than inside detach_one_task().
1e3c88bd 6356 */
ae92882e 6357 schedstat_add(env->sd->lb_gained[env->idle], detached);
1e3c88bd 6358
163122b7
KT
6359 return detached;
6360}
6361
6362/*
6363 * attach_task() -- attach the task detached by detach_task() to its new rq.
6364 */
6365static void attach_task(struct rq *rq, struct task_struct *p)
6366{
6367 lockdep_assert_held(&rq->lock);
6368
6369 BUG_ON(task_rq(p) != rq);
163122b7 6370 activate_task(rq, p, 0);
3ea94de1 6371 p->on_rq = TASK_ON_RQ_QUEUED;
163122b7
KT
6372 check_preempt_curr(rq, p, 0);
6373}
6374
6375/*
6376 * attach_one_task() -- attaches the task returned from detach_one_task() to
6377 * its new rq.
6378 */
6379static void attach_one_task(struct rq *rq, struct task_struct *p)
6380{
6381 raw_spin_lock(&rq->lock);
6382 attach_task(rq, p);
6383 raw_spin_unlock(&rq->lock);
6384}
6385
6386/*
6387 * attach_tasks() -- attaches all tasks detached by detach_tasks() to their
6388 * new rq.
6389 */
6390static void attach_tasks(struct lb_env *env)
6391{
6392 struct list_head *tasks = &env->tasks;
6393 struct task_struct *p;
6394
6395 raw_spin_lock(&env->dst_rq->lock);
6396
6397 while (!list_empty(tasks)) {
6398 p = list_first_entry(tasks, struct task_struct, se.group_node);
6399 list_del_init(&p->se.group_node);
1e3c88bd 6400
163122b7
KT
6401 attach_task(env->dst_rq, p);
6402 }
6403
6404 raw_spin_unlock(&env->dst_rq->lock);
1e3c88bd
PZ
6405}
6406
230059de 6407#ifdef CONFIG_FAIR_GROUP_SCHED
48a16753 6408static void update_blocked_averages(int cpu)
9e3081ca 6409{
9e3081ca 6410 struct rq *rq = cpu_rq(cpu);
48a16753
PT
6411 struct cfs_rq *cfs_rq;
6412 unsigned long flags;
9e3081ca 6413
48a16753
PT
6414 raw_spin_lock_irqsave(&rq->lock, flags);
6415 update_rq_clock(rq);
9d89c257 6416
9763b67f
PZ
6417 /*
6418 * Iterates the task_group tree in a bottom up fashion, see
6419 * list_add_leaf_cfs_rq() for details.
6420 */
64660c86 6421 for_each_leaf_cfs_rq(rq, cfs_rq) {
9d89c257
YD
6422 /* throttled entities do not contribute to load */
6423 if (throttled_hierarchy(cfs_rq))
6424 continue;
48a16753 6425
a2c6c91f 6426 if (update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true))
9d89c257
YD
6427 update_tg_load_avg(cfs_rq, 0);
6428 }
48a16753 6429 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6430}
6431
9763b67f 6432/*
68520796 6433 * Compute the hierarchical load factor for cfs_rq and all its ascendants.
9763b67f
PZ
6434 * This needs to be done in a top-down fashion because the load of a child
6435 * group is a fraction of its parents load.
6436 */
68520796 6437static void update_cfs_rq_h_load(struct cfs_rq *cfs_rq)
9763b67f 6438{
68520796
VD
6439 struct rq *rq = rq_of(cfs_rq);
6440 struct sched_entity *se = cfs_rq->tg->se[cpu_of(rq)];
a35b6466 6441 unsigned long now = jiffies;
68520796 6442 unsigned long load;
a35b6466 6443
68520796 6444 if (cfs_rq->last_h_load_update == now)
a35b6466
PZ
6445 return;
6446
68520796
VD
6447 cfs_rq->h_load_next = NULL;
6448 for_each_sched_entity(se) {
6449 cfs_rq = cfs_rq_of(se);
6450 cfs_rq->h_load_next = se;
6451 if (cfs_rq->last_h_load_update == now)
6452 break;
6453 }
a35b6466 6454
68520796 6455 if (!se) {
7ea241af 6456 cfs_rq->h_load = cfs_rq_load_avg(cfs_rq);
68520796
VD
6457 cfs_rq->last_h_load_update = now;
6458 }
6459
6460 while ((se = cfs_rq->h_load_next) != NULL) {
6461 load = cfs_rq->h_load;
7ea241af
YD
6462 load = div64_ul(load * se->avg.load_avg,
6463 cfs_rq_load_avg(cfs_rq) + 1);
68520796
VD
6464 cfs_rq = group_cfs_rq(se);
6465 cfs_rq->h_load = load;
6466 cfs_rq->last_h_load_update = now;
6467 }
9763b67f
PZ
6468}
6469
367456c7 6470static unsigned long task_h_load(struct task_struct *p)
230059de 6471{
367456c7 6472 struct cfs_rq *cfs_rq = task_cfs_rq(p);
230059de 6473
68520796 6474 update_cfs_rq_h_load(cfs_rq);
9d89c257 6475 return div64_ul(p->se.avg.load_avg * cfs_rq->h_load,
7ea241af 6476 cfs_rq_load_avg(cfs_rq) + 1);
230059de
PZ
6477}
6478#else
48a16753 6479static inline void update_blocked_averages(int cpu)
9e3081ca 6480{
6c1d47c0
VG
6481 struct rq *rq = cpu_rq(cpu);
6482 struct cfs_rq *cfs_rq = &rq->cfs;
6483 unsigned long flags;
6484
6485 raw_spin_lock_irqsave(&rq->lock, flags);
6486 update_rq_clock(rq);
a2c6c91f 6487 update_cfs_rq_load_avg(cfs_rq_clock_task(cfs_rq), cfs_rq, true);
6c1d47c0 6488 raw_spin_unlock_irqrestore(&rq->lock, flags);
9e3081ca
PZ
6489}
6490
367456c7 6491static unsigned long task_h_load(struct task_struct *p)
1e3c88bd 6492{
9d89c257 6493 return p->se.avg.load_avg;
1e3c88bd 6494}
230059de 6495#endif
1e3c88bd 6496
1e3c88bd 6497/********** Helpers for find_busiest_group ************************/
caeb178c
RR
6498
6499enum group_type {
6500 group_other = 0,
6501 group_imbalanced,
6502 group_overloaded,
6503};
6504
1e3c88bd
PZ
6505/*
6506 * sg_lb_stats - stats of a sched_group required for load_balancing
6507 */
6508struct sg_lb_stats {
6509 unsigned long avg_load; /*Avg load across the CPUs of the group */
6510 unsigned long group_load; /* Total load over the CPUs of the group */
1e3c88bd 6511 unsigned long sum_weighted_load; /* Weighted load of group's tasks */
56cf515b 6512 unsigned long load_per_task;
63b2ca30 6513 unsigned long group_capacity;
9e91d61d 6514 unsigned long group_util; /* Total utilization of the group */
147c5fc2 6515 unsigned int sum_nr_running; /* Nr tasks running in the group */
147c5fc2
PZ
6516 unsigned int idle_cpus;
6517 unsigned int group_weight;
caeb178c 6518 enum group_type group_type;
ea67821b 6519 int group_no_capacity;
0ec8aa00
PZ
6520#ifdef CONFIG_NUMA_BALANCING
6521 unsigned int nr_numa_running;
6522 unsigned int nr_preferred_running;
6523#endif
1e3c88bd
PZ
6524};
6525
56cf515b
JK
6526/*
6527 * sd_lb_stats - Structure to store the statistics of a sched_domain
6528 * during load balancing.
6529 */
6530struct sd_lb_stats {
6531 struct sched_group *busiest; /* Busiest group in this sd */
6532 struct sched_group *local; /* Local group in this sd */
6533 unsigned long total_load; /* Total load of all groups in sd */
63b2ca30 6534 unsigned long total_capacity; /* Total capacity of all groups in sd */
56cf515b
JK
6535 unsigned long avg_load; /* Average load across all groups in sd */
6536
56cf515b 6537 struct sg_lb_stats busiest_stat;/* Statistics of the busiest group */
147c5fc2 6538 struct sg_lb_stats local_stat; /* Statistics of the local group */
56cf515b
JK
6539};
6540
147c5fc2
PZ
6541static inline void init_sd_lb_stats(struct sd_lb_stats *sds)
6542{
6543 /*
6544 * Skimp on the clearing to avoid duplicate work. We can avoid clearing
6545 * local_stat because update_sg_lb_stats() does a full clear/assignment.
6546 * We must however clear busiest_stat::avg_load because
6547 * update_sd_pick_busiest() reads this before assignment.
6548 */
6549 *sds = (struct sd_lb_stats){
6550 .busiest = NULL,
6551 .local = NULL,
6552 .total_load = 0UL,
63b2ca30 6553 .total_capacity = 0UL,
147c5fc2
PZ
6554 .busiest_stat = {
6555 .avg_load = 0UL,
caeb178c
RR
6556 .sum_nr_running = 0,
6557 .group_type = group_other,
147c5fc2
PZ
6558 },
6559 };
6560}
6561
1e3c88bd
PZ
6562/**
6563 * get_sd_load_idx - Obtain the load index for a given sched domain.
6564 * @sd: The sched_domain whose load_idx is to be obtained.
ed1b7732 6565 * @idle: The idle status of the CPU for whose sd load_idx is obtained.
e69f6186
YB
6566 *
6567 * Return: The load index.
1e3c88bd
PZ
6568 */
6569static inline int get_sd_load_idx(struct sched_domain *sd,
6570 enum cpu_idle_type idle)
6571{
6572 int load_idx;
6573
6574 switch (idle) {
6575 case CPU_NOT_IDLE:
6576 load_idx = sd->busy_idx;
6577 break;
6578
6579 case CPU_NEWLY_IDLE:
6580 load_idx = sd->newidle_idx;
6581 break;
6582 default:
6583 load_idx = sd->idle_idx;
6584 break;
6585 }
6586
6587 return load_idx;
6588}
6589
ced549fa 6590static unsigned long scale_rt_capacity(int cpu)
1e3c88bd
PZ
6591{
6592 struct rq *rq = cpu_rq(cpu);
b5b4860d 6593 u64 total, used, age_stamp, avg;
cadefd3d 6594 s64 delta;
1e3c88bd 6595
b654f7de
PZ
6596 /*
6597 * Since we're reading these variables without serialization make sure
6598 * we read them once before doing sanity checks on them.
6599 */
316c1608
JL
6600 age_stamp = READ_ONCE(rq->age_stamp);
6601 avg = READ_ONCE(rq->rt_avg);
cebde6d6 6602 delta = __rq_clock_broken(rq) - age_stamp;
b654f7de 6603
cadefd3d
PZ
6604 if (unlikely(delta < 0))
6605 delta = 0;
6606
6607 total = sched_avg_period() + delta;
aa483808 6608
b5b4860d 6609 used = div_u64(avg, total);
1e3c88bd 6610
b5b4860d
VG
6611 if (likely(used < SCHED_CAPACITY_SCALE))
6612 return SCHED_CAPACITY_SCALE - used;
1e3c88bd 6613
b5b4860d 6614 return 1;
1e3c88bd
PZ
6615}
6616
ced549fa 6617static void update_cpu_capacity(struct sched_domain *sd, int cpu)
1e3c88bd 6618{
8cd5601c 6619 unsigned long capacity = arch_scale_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6620 struct sched_group *sdg = sd->groups;
6621
ca6d75e6 6622 cpu_rq(cpu)->cpu_capacity_orig = capacity;
9d5efe05 6623
ced549fa 6624 capacity *= scale_rt_capacity(cpu);
ca8ce3d0 6625 capacity >>= SCHED_CAPACITY_SHIFT;
1e3c88bd 6626
ced549fa
NP
6627 if (!capacity)
6628 capacity = 1;
1e3c88bd 6629
ced549fa
NP
6630 cpu_rq(cpu)->cpu_capacity = capacity;
6631 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6632}
6633
63b2ca30 6634void update_group_capacity(struct sched_domain *sd, int cpu)
1e3c88bd
PZ
6635{
6636 struct sched_domain *child = sd->child;
6637 struct sched_group *group, *sdg = sd->groups;
dc7ff76e 6638 unsigned long capacity;
4ec4412e
VG
6639 unsigned long interval;
6640
6641 interval = msecs_to_jiffies(sd->balance_interval);
6642 interval = clamp(interval, 1UL, max_load_balance_interval);
63b2ca30 6643 sdg->sgc->next_update = jiffies + interval;
1e3c88bd
PZ
6644
6645 if (!child) {
ced549fa 6646 update_cpu_capacity(sd, cpu);
1e3c88bd
PZ
6647 return;
6648 }
6649
dc7ff76e 6650 capacity = 0;
1e3c88bd 6651
74a5ce20
PZ
6652 if (child->flags & SD_OVERLAP) {
6653 /*
6654 * SD_OVERLAP domains cannot assume that child groups
6655 * span the current group.
6656 */
6657
863bffc8 6658 for_each_cpu(cpu, sched_group_cpus(sdg)) {
63b2ca30 6659 struct sched_group_capacity *sgc;
9abf24d4 6660 struct rq *rq = cpu_rq(cpu);
863bffc8 6661
9abf24d4 6662 /*
63b2ca30 6663 * build_sched_domains() -> init_sched_groups_capacity()
9abf24d4
SD
6664 * gets here before we've attached the domains to the
6665 * runqueues.
6666 *
ced549fa
NP
6667 * Use capacity_of(), which is set irrespective of domains
6668 * in update_cpu_capacity().
9abf24d4 6669 *
dc7ff76e 6670 * This avoids capacity from being 0 and
9abf24d4 6671 * causing divide-by-zero issues on boot.
9abf24d4
SD
6672 */
6673 if (unlikely(!rq->sd)) {
ced549fa 6674 capacity += capacity_of(cpu);
9abf24d4
SD
6675 continue;
6676 }
863bffc8 6677
63b2ca30 6678 sgc = rq->sd->groups->sgc;
63b2ca30 6679 capacity += sgc->capacity;
863bffc8 6680 }
74a5ce20
PZ
6681 } else {
6682 /*
6683 * !SD_OVERLAP domains can assume that child groups
6684 * span the current group.
97a7142f 6685 */
74a5ce20
PZ
6686
6687 group = child->groups;
6688 do {
63b2ca30 6689 capacity += group->sgc->capacity;
74a5ce20
PZ
6690 group = group->next;
6691 } while (group != child->groups);
6692 }
1e3c88bd 6693
63b2ca30 6694 sdg->sgc->capacity = capacity;
1e3c88bd
PZ
6695}
6696
9d5efe05 6697/*
ea67821b
VG
6698 * Check whether the capacity of the rq has been noticeably reduced by side
6699 * activity. The imbalance_pct is used for the threshold.
6700 * Return true is the capacity is reduced
9d5efe05
SV
6701 */
6702static inline int
ea67821b 6703check_cpu_capacity(struct rq *rq, struct sched_domain *sd)
9d5efe05 6704{
ea67821b
VG
6705 return ((rq->cpu_capacity * sd->imbalance_pct) <
6706 (rq->cpu_capacity_orig * 100));
9d5efe05
SV
6707}
6708
30ce5dab
PZ
6709/*
6710 * Group imbalance indicates (and tries to solve) the problem where balancing
6711 * groups is inadequate due to tsk_cpus_allowed() constraints.
6712 *
6713 * Imagine a situation of two groups of 4 cpus each and 4 tasks each with a
6714 * cpumask covering 1 cpu of the first group and 3 cpus of the second group.
6715 * Something like:
6716 *
6717 * { 0 1 2 3 } { 4 5 6 7 }
6718 * * * * *
6719 *
6720 * If we were to balance group-wise we'd place two tasks in the first group and
6721 * two tasks in the second group. Clearly this is undesired as it will overload
6722 * cpu 3 and leave one of the cpus in the second group unused.
6723 *
6724 * The current solution to this issue is detecting the skew in the first group
6263322c
PZ
6725 * by noticing the lower domain failed to reach balance and had difficulty
6726 * moving tasks due to affinity constraints.
30ce5dab
PZ
6727 *
6728 * When this is so detected; this group becomes a candidate for busiest; see
ed1b7732 6729 * update_sd_pick_busiest(). And calculate_imbalance() and
6263322c 6730 * find_busiest_group() avoid some of the usual balance conditions to allow it
30ce5dab
PZ
6731 * to create an effective group imbalance.
6732 *
6733 * This is a somewhat tricky proposition since the next run might not find the
6734 * group imbalance and decide the groups need to be balanced again. A most
6735 * subtle and fragile situation.
6736 */
6737
6263322c 6738static inline int sg_imbalanced(struct sched_group *group)
30ce5dab 6739{
63b2ca30 6740 return group->sgc->imbalance;
30ce5dab
PZ
6741}
6742
b37d9316 6743/*
ea67821b
VG
6744 * group_has_capacity returns true if the group has spare capacity that could
6745 * be used by some tasks.
6746 * We consider that a group has spare capacity if the * number of task is
9e91d61d
DE
6747 * smaller than the number of CPUs or if the utilization is lower than the
6748 * available capacity for CFS tasks.
ea67821b
VG
6749 * For the latter, we use a threshold to stabilize the state, to take into
6750 * account the variance of the tasks' load and to return true if the available
6751 * capacity in meaningful for the load balancer.
6752 * As an example, an available capacity of 1% can appear but it doesn't make
6753 * any benefit for the load balance.
b37d9316 6754 */
ea67821b
VG
6755static inline bool
6756group_has_capacity(struct lb_env *env, struct sg_lb_stats *sgs)
b37d9316 6757{
ea67821b
VG
6758 if (sgs->sum_nr_running < sgs->group_weight)
6759 return true;
c61037e9 6760
ea67821b 6761 if ((sgs->group_capacity * 100) >
9e91d61d 6762 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6763 return true;
b37d9316 6764
ea67821b
VG
6765 return false;
6766}
6767
6768/*
6769 * group_is_overloaded returns true if the group has more tasks than it can
6770 * handle.
6771 * group_is_overloaded is not equals to !group_has_capacity because a group
6772 * with the exact right number of tasks, has no more spare capacity but is not
6773 * overloaded so both group_has_capacity and group_is_overloaded return
6774 * false.
6775 */
6776static inline bool
6777group_is_overloaded(struct lb_env *env, struct sg_lb_stats *sgs)
6778{
6779 if (sgs->sum_nr_running <= sgs->group_weight)
6780 return false;
b37d9316 6781
ea67821b 6782 if ((sgs->group_capacity * 100) <
9e91d61d 6783 (sgs->group_util * env->sd->imbalance_pct))
ea67821b 6784 return true;
b37d9316 6785
ea67821b 6786 return false;
b37d9316
PZ
6787}
6788
79a89f92
LY
6789static inline enum
6790group_type group_classify(struct sched_group *group,
6791 struct sg_lb_stats *sgs)
caeb178c 6792{
ea67821b 6793 if (sgs->group_no_capacity)
caeb178c
RR
6794 return group_overloaded;
6795
6796 if (sg_imbalanced(group))
6797 return group_imbalanced;
6798
6799 return group_other;
6800}
6801
1e3c88bd
PZ
6802/**
6803 * update_sg_lb_stats - Update sched_group's statistics for load balancing.
cd96891d 6804 * @env: The load balancing environment.
1e3c88bd 6805 * @group: sched_group whose statistics are to be updated.
1e3c88bd 6806 * @load_idx: Load index of sched_domain of this_cpu for load calc.
1e3c88bd 6807 * @local_group: Does group contain this_cpu.
1e3c88bd 6808 * @sgs: variable to hold the statistics for this group.
cd3bd4e6 6809 * @overload: Indicate more than one runnable task for any CPU.
1e3c88bd 6810 */
bd939f45
PZ
6811static inline void update_sg_lb_stats(struct lb_env *env,
6812 struct sched_group *group, int load_idx,
4486edd1
TC
6813 int local_group, struct sg_lb_stats *sgs,
6814 bool *overload)
1e3c88bd 6815{
30ce5dab 6816 unsigned long load;
a426f99c 6817 int i, nr_running;
1e3c88bd 6818
b72ff13c
PZ
6819 memset(sgs, 0, sizeof(*sgs));
6820
b9403130 6821 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
1e3c88bd
PZ
6822 struct rq *rq = cpu_rq(i);
6823
1e3c88bd 6824 /* Bias balancing toward cpus of our domain */
6263322c 6825 if (local_group)
04f733b4 6826 load = target_load(i, load_idx);
6263322c 6827 else
1e3c88bd 6828 load = source_load(i, load_idx);
1e3c88bd
PZ
6829
6830 sgs->group_load += load;
9e91d61d 6831 sgs->group_util += cpu_util(i);
65fdac08 6832 sgs->sum_nr_running += rq->cfs.h_nr_running;
4486edd1 6833
a426f99c
WL
6834 nr_running = rq->nr_running;
6835 if (nr_running > 1)
4486edd1
TC
6836 *overload = true;
6837
0ec8aa00
PZ
6838#ifdef CONFIG_NUMA_BALANCING
6839 sgs->nr_numa_running += rq->nr_numa_running;
6840 sgs->nr_preferred_running += rq->nr_preferred_running;
6841#endif
1e3c88bd 6842 sgs->sum_weighted_load += weighted_cpuload(i);
a426f99c
WL
6843 /*
6844 * No need to call idle_cpu() if nr_running is not 0
6845 */
6846 if (!nr_running && idle_cpu(i))
aae6d3dd 6847 sgs->idle_cpus++;
1e3c88bd
PZ
6848 }
6849
63b2ca30
NP
6850 /* Adjust by relative CPU capacity of the group */
6851 sgs->group_capacity = group->sgc->capacity;
ca8ce3d0 6852 sgs->avg_load = (sgs->group_load*SCHED_CAPACITY_SCALE) / sgs->group_capacity;
1e3c88bd 6853
dd5feea1 6854 if (sgs->sum_nr_running)
38d0f770 6855 sgs->load_per_task = sgs->sum_weighted_load / sgs->sum_nr_running;
1e3c88bd 6856
aae6d3dd 6857 sgs->group_weight = group->group_weight;
b37d9316 6858
ea67821b 6859 sgs->group_no_capacity = group_is_overloaded(env, sgs);
79a89f92 6860 sgs->group_type = group_classify(group, sgs);
1e3c88bd
PZ
6861}
6862
532cb4c4
MN
6863/**
6864 * update_sd_pick_busiest - return 1 on busiest group
cd96891d 6865 * @env: The load balancing environment.
532cb4c4
MN
6866 * @sds: sched_domain statistics
6867 * @sg: sched_group candidate to be checked for being the busiest
b6b12294 6868 * @sgs: sched_group statistics
532cb4c4
MN
6869 *
6870 * Determine if @sg is a busier group than the previously selected
6871 * busiest group.
e69f6186
YB
6872 *
6873 * Return: %true if @sg is a busier group than the previously selected
6874 * busiest group. %false otherwise.
532cb4c4 6875 */
bd939f45 6876static bool update_sd_pick_busiest(struct lb_env *env,
532cb4c4
MN
6877 struct sd_lb_stats *sds,
6878 struct sched_group *sg,
bd939f45 6879 struct sg_lb_stats *sgs)
532cb4c4 6880{
caeb178c 6881 struct sg_lb_stats *busiest = &sds->busiest_stat;
532cb4c4 6882
caeb178c 6883 if (sgs->group_type > busiest->group_type)
532cb4c4
MN
6884 return true;
6885
caeb178c
RR
6886 if (sgs->group_type < busiest->group_type)
6887 return false;
6888
6889 if (sgs->avg_load <= busiest->avg_load)
6890 return false;
6891
6892 /* This is the busiest node in its class. */
6893 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
6894 return true;
6895
1f621e02
SD
6896 /* No ASYM_PACKING if target cpu is already busy */
6897 if (env->idle == CPU_NOT_IDLE)
6898 return true;
532cb4c4
MN
6899 /*
6900 * ASYM_PACKING needs to move all the work to the lowest
6901 * numbered CPUs in the group, therefore mark all groups
6902 * higher than ourself as busy.
6903 */
caeb178c 6904 if (sgs->sum_nr_running && env->dst_cpu < group_first_cpu(sg)) {
532cb4c4
MN
6905 if (!sds->busiest)
6906 return true;
6907
1f621e02
SD
6908 /* Prefer to move from highest possible cpu's work */
6909 if (group_first_cpu(sds->busiest) < group_first_cpu(sg))
532cb4c4
MN
6910 return true;
6911 }
6912
6913 return false;
6914}
6915
0ec8aa00
PZ
6916#ifdef CONFIG_NUMA_BALANCING
6917static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6918{
6919 if (sgs->sum_nr_running > sgs->nr_numa_running)
6920 return regular;
6921 if (sgs->sum_nr_running > sgs->nr_preferred_running)
6922 return remote;
6923 return all;
6924}
6925
6926static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6927{
6928 if (rq->nr_running > rq->nr_numa_running)
6929 return regular;
6930 if (rq->nr_running > rq->nr_preferred_running)
6931 return remote;
6932 return all;
6933}
6934#else
6935static inline enum fbq_type fbq_classify_group(struct sg_lb_stats *sgs)
6936{
6937 return all;
6938}
6939
6940static inline enum fbq_type fbq_classify_rq(struct rq *rq)
6941{
6942 return regular;
6943}
6944#endif /* CONFIG_NUMA_BALANCING */
6945
1e3c88bd 6946/**
461819ac 6947 * update_sd_lb_stats - Update sched_domain's statistics for load balancing.
cd96891d 6948 * @env: The load balancing environment.
1e3c88bd
PZ
6949 * @sds: variable to hold the statistics for this sched_domain.
6950 */
0ec8aa00 6951static inline void update_sd_lb_stats(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 6952{
bd939f45
PZ
6953 struct sched_domain *child = env->sd->child;
6954 struct sched_group *sg = env->sd->groups;
56cf515b 6955 struct sg_lb_stats tmp_sgs;
1e3c88bd 6956 int load_idx, prefer_sibling = 0;
4486edd1 6957 bool overload = false;
1e3c88bd
PZ
6958
6959 if (child && child->flags & SD_PREFER_SIBLING)
6960 prefer_sibling = 1;
6961
bd939f45 6962 load_idx = get_sd_load_idx(env->sd, env->idle);
1e3c88bd
PZ
6963
6964 do {
56cf515b 6965 struct sg_lb_stats *sgs = &tmp_sgs;
1e3c88bd
PZ
6966 int local_group;
6967
bd939f45 6968 local_group = cpumask_test_cpu(env->dst_cpu, sched_group_cpus(sg));
56cf515b
JK
6969 if (local_group) {
6970 sds->local = sg;
6971 sgs = &sds->local_stat;
b72ff13c
PZ
6972
6973 if (env->idle != CPU_NEWLY_IDLE ||
63b2ca30
NP
6974 time_after_eq(jiffies, sg->sgc->next_update))
6975 update_group_capacity(env->sd, env->dst_cpu);
56cf515b 6976 }
1e3c88bd 6977
4486edd1
TC
6978 update_sg_lb_stats(env, sg, load_idx, local_group, sgs,
6979 &overload);
1e3c88bd 6980
b72ff13c
PZ
6981 if (local_group)
6982 goto next_group;
6983
1e3c88bd
PZ
6984 /*
6985 * In case the child domain prefers tasks go to siblings
ea67821b 6986 * first, lower the sg capacity so that we'll try
75dd321d
NR
6987 * and move all the excess tasks away. We lower the capacity
6988 * of a group only if the local group has the capacity to fit
ea67821b
VG
6989 * these excess tasks. The extra check prevents the case where
6990 * you always pull from the heaviest group when it is already
6991 * under-utilized (possible with a large weight task outweighs
6992 * the tasks on the system).
1e3c88bd 6993 */
b72ff13c 6994 if (prefer_sibling && sds->local &&
ea67821b
VG
6995 group_has_capacity(env, &sds->local_stat) &&
6996 (sgs->sum_nr_running > 1)) {
6997 sgs->group_no_capacity = 1;
79a89f92 6998 sgs->group_type = group_classify(sg, sgs);
cb0b9f24 6999 }
1e3c88bd 7000
b72ff13c 7001 if (update_sd_pick_busiest(env, sds, sg, sgs)) {
532cb4c4 7002 sds->busiest = sg;
56cf515b 7003 sds->busiest_stat = *sgs;
1e3c88bd
PZ
7004 }
7005
b72ff13c
PZ
7006next_group:
7007 /* Now, start updating sd_lb_stats */
7008 sds->total_load += sgs->group_load;
63b2ca30 7009 sds->total_capacity += sgs->group_capacity;
b72ff13c 7010
532cb4c4 7011 sg = sg->next;
bd939f45 7012 } while (sg != env->sd->groups);
0ec8aa00
PZ
7013
7014 if (env->sd->flags & SD_NUMA)
7015 env->fbq_type = fbq_classify_group(&sds->busiest_stat);
4486edd1
TC
7016
7017 if (!env->sd->parent) {
7018 /* update overload indicator if we are at root domain */
7019 if (env->dst_rq->rd->overload != overload)
7020 env->dst_rq->rd->overload = overload;
7021 }
7022
532cb4c4
MN
7023}
7024
532cb4c4
MN
7025/**
7026 * check_asym_packing - Check to see if the group is packed into the
7027 * sched doman.
7028 *
7029 * This is primarily intended to used at the sibling level. Some
7030 * cores like POWER7 prefer to use lower numbered SMT threads. In the
7031 * case of POWER7, it can move to lower SMT modes only when higher
7032 * threads are idle. When in lower SMT modes, the threads will
7033 * perform better since they share less core resources. Hence when we
7034 * have idle threads, we want them to be the higher ones.
7035 *
7036 * This packing function is run on idle threads. It checks to see if
7037 * the busiest CPU in this domain (core in the P7 case) has a higher
7038 * CPU number than the packing function is being run on. Here we are
7039 * assuming lower CPU number will be equivalent to lower a SMT thread
7040 * number.
7041 *
e69f6186 7042 * Return: 1 when packing is required and a task should be moved to
b6b12294
MN
7043 * this CPU. The amount of the imbalance is returned in *imbalance.
7044 *
cd96891d 7045 * @env: The load balancing environment.
532cb4c4 7046 * @sds: Statistics of the sched_domain which is to be packed
532cb4c4 7047 */
bd939f45 7048static int check_asym_packing(struct lb_env *env, struct sd_lb_stats *sds)
532cb4c4
MN
7049{
7050 int busiest_cpu;
7051
bd939f45 7052 if (!(env->sd->flags & SD_ASYM_PACKING))
532cb4c4
MN
7053 return 0;
7054
1f621e02
SD
7055 if (env->idle == CPU_NOT_IDLE)
7056 return 0;
7057
532cb4c4
MN
7058 if (!sds->busiest)
7059 return 0;
7060
7061 busiest_cpu = group_first_cpu(sds->busiest);
bd939f45 7062 if (env->dst_cpu > busiest_cpu)
532cb4c4
MN
7063 return 0;
7064
bd939f45 7065 env->imbalance = DIV_ROUND_CLOSEST(
63b2ca30 7066 sds->busiest_stat.avg_load * sds->busiest_stat.group_capacity,
ca8ce3d0 7067 SCHED_CAPACITY_SCALE);
bd939f45 7068
532cb4c4 7069 return 1;
1e3c88bd
PZ
7070}
7071
7072/**
7073 * fix_small_imbalance - Calculate the minor imbalance that exists
7074 * amongst the groups of a sched_domain, during
7075 * load balancing.
cd96891d 7076 * @env: The load balancing environment.
1e3c88bd 7077 * @sds: Statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7078 */
bd939f45
PZ
7079static inline
7080void fix_small_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7081{
63b2ca30 7082 unsigned long tmp, capa_now = 0, capa_move = 0;
1e3c88bd 7083 unsigned int imbn = 2;
dd5feea1 7084 unsigned long scaled_busy_load_per_task;
56cf515b 7085 struct sg_lb_stats *local, *busiest;
1e3c88bd 7086
56cf515b
JK
7087 local = &sds->local_stat;
7088 busiest = &sds->busiest_stat;
1e3c88bd 7089
56cf515b
JK
7090 if (!local->sum_nr_running)
7091 local->load_per_task = cpu_avg_load_per_task(env->dst_cpu);
7092 else if (busiest->load_per_task > local->load_per_task)
7093 imbn = 1;
dd5feea1 7094
56cf515b 7095 scaled_busy_load_per_task =
ca8ce3d0 7096 (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7097 busiest->group_capacity;
56cf515b 7098
3029ede3
VD
7099 if (busiest->avg_load + scaled_busy_load_per_task >=
7100 local->avg_load + (scaled_busy_load_per_task * imbn)) {
56cf515b 7101 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7102 return;
7103 }
7104
7105 /*
7106 * OK, we don't have enough imbalance to justify moving tasks,
ced549fa 7107 * however we may be able to increase total CPU capacity used by
1e3c88bd
PZ
7108 * moving them.
7109 */
7110
63b2ca30 7111 capa_now += busiest->group_capacity *
56cf515b 7112 min(busiest->load_per_task, busiest->avg_load);
63b2ca30 7113 capa_now += local->group_capacity *
56cf515b 7114 min(local->load_per_task, local->avg_load);
ca8ce3d0 7115 capa_now /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7116
7117 /* Amount of load we'd subtract */
a2cd4260 7118 if (busiest->avg_load > scaled_busy_load_per_task) {
63b2ca30 7119 capa_move += busiest->group_capacity *
56cf515b 7120 min(busiest->load_per_task,
a2cd4260 7121 busiest->avg_load - scaled_busy_load_per_task);
56cf515b 7122 }
1e3c88bd
PZ
7123
7124 /* Amount of load we'd add */
63b2ca30 7125 if (busiest->avg_load * busiest->group_capacity <
ca8ce3d0 7126 busiest->load_per_task * SCHED_CAPACITY_SCALE) {
63b2ca30
NP
7127 tmp = (busiest->avg_load * busiest->group_capacity) /
7128 local->group_capacity;
56cf515b 7129 } else {
ca8ce3d0 7130 tmp = (busiest->load_per_task * SCHED_CAPACITY_SCALE) /
63b2ca30 7131 local->group_capacity;
56cf515b 7132 }
63b2ca30 7133 capa_move += local->group_capacity *
3ae11c90 7134 min(local->load_per_task, local->avg_load + tmp);
ca8ce3d0 7135 capa_move /= SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7136
7137 /* Move if we gain throughput */
63b2ca30 7138 if (capa_move > capa_now)
56cf515b 7139 env->imbalance = busiest->load_per_task;
1e3c88bd
PZ
7140}
7141
7142/**
7143 * calculate_imbalance - Calculate the amount of imbalance present within the
7144 * groups of a given sched_domain during load balance.
bd939f45 7145 * @env: load balance environment
1e3c88bd 7146 * @sds: statistics of the sched_domain whose imbalance is to be calculated.
1e3c88bd 7147 */
bd939f45 7148static inline void calculate_imbalance(struct lb_env *env, struct sd_lb_stats *sds)
1e3c88bd 7149{
dd5feea1 7150 unsigned long max_pull, load_above_capacity = ~0UL;
56cf515b
JK
7151 struct sg_lb_stats *local, *busiest;
7152
7153 local = &sds->local_stat;
56cf515b 7154 busiest = &sds->busiest_stat;
dd5feea1 7155
caeb178c 7156 if (busiest->group_type == group_imbalanced) {
30ce5dab
PZ
7157 /*
7158 * In the group_imb case we cannot rely on group-wide averages
7159 * to ensure cpu-load equilibrium, look at wider averages. XXX
7160 */
56cf515b
JK
7161 busiest->load_per_task =
7162 min(busiest->load_per_task, sds->avg_load);
dd5feea1
SS
7163 }
7164
1e3c88bd 7165 /*
885e542c
DE
7166 * Avg load of busiest sg can be less and avg load of local sg can
7167 * be greater than avg load across all sgs of sd because avg load
7168 * factors in sg capacity and sgs with smaller group_type are
7169 * skipped when updating the busiest sg:
1e3c88bd 7170 */
b1885550
VD
7171 if (busiest->avg_load <= sds->avg_load ||
7172 local->avg_load >= sds->avg_load) {
bd939f45
PZ
7173 env->imbalance = 0;
7174 return fix_small_imbalance(env, sds);
1e3c88bd
PZ
7175 }
7176
9a5d9ba6
PZ
7177 /*
7178 * If there aren't any idle cpus, avoid creating some.
7179 */
7180 if (busiest->group_type == group_overloaded &&
7181 local->group_type == group_overloaded) {
1be0eb2a 7182 load_above_capacity = busiest->sum_nr_running * SCHED_CAPACITY_SCALE;
cfa10334 7183 if (load_above_capacity > busiest->group_capacity) {
ea67821b 7184 load_above_capacity -= busiest->group_capacity;
26656215 7185 load_above_capacity *= scale_load_down(NICE_0_LOAD);
cfa10334
MR
7186 load_above_capacity /= busiest->group_capacity;
7187 } else
ea67821b 7188 load_above_capacity = ~0UL;
dd5feea1
SS
7189 }
7190
7191 /*
7192 * We're trying to get all the cpus to the average_load, so we don't
7193 * want to push ourselves above the average load, nor do we wish to
7194 * reduce the max loaded cpu below the average load. At the same time,
0a9b23ce
DE
7195 * we also don't want to reduce the group load below the group
7196 * capacity. Thus we look for the minimum possible imbalance.
dd5feea1 7197 */
30ce5dab 7198 max_pull = min(busiest->avg_load - sds->avg_load, load_above_capacity);
1e3c88bd
PZ
7199
7200 /* How much load to actually move to equalise the imbalance */
56cf515b 7201 env->imbalance = min(
63b2ca30
NP
7202 max_pull * busiest->group_capacity,
7203 (sds->avg_load - local->avg_load) * local->group_capacity
ca8ce3d0 7204 ) / SCHED_CAPACITY_SCALE;
1e3c88bd
PZ
7205
7206 /*
7207 * if *imbalance is less than the average load per runnable task
25985edc 7208 * there is no guarantee that any tasks will be moved so we'll have
1e3c88bd
PZ
7209 * a think about bumping its value to force at least one task to be
7210 * moved
7211 */
56cf515b 7212 if (env->imbalance < busiest->load_per_task)
bd939f45 7213 return fix_small_imbalance(env, sds);
1e3c88bd 7214}
fab47622 7215
1e3c88bd
PZ
7216/******* find_busiest_group() helpers end here *********************/
7217
7218/**
7219 * find_busiest_group - Returns the busiest group within the sched_domain
0a9b23ce 7220 * if there is an imbalance.
1e3c88bd
PZ
7221 *
7222 * Also calculates the amount of weighted load which should be moved
7223 * to restore balance.
7224 *
cd96891d 7225 * @env: The load balancing environment.
1e3c88bd 7226 *
e69f6186 7227 * Return: - The busiest group if imbalance exists.
1e3c88bd 7228 */
56cf515b 7229static struct sched_group *find_busiest_group(struct lb_env *env)
1e3c88bd 7230{
56cf515b 7231 struct sg_lb_stats *local, *busiest;
1e3c88bd
PZ
7232 struct sd_lb_stats sds;
7233
147c5fc2 7234 init_sd_lb_stats(&sds);
1e3c88bd
PZ
7235
7236 /*
7237 * Compute the various statistics relavent for load balancing at
7238 * this level.
7239 */
23f0d209 7240 update_sd_lb_stats(env, &sds);
56cf515b
JK
7241 local = &sds.local_stat;
7242 busiest = &sds.busiest_stat;
1e3c88bd 7243
ea67821b 7244 /* ASYM feature bypasses nice load balance check */
1f621e02 7245 if (check_asym_packing(env, &sds))
532cb4c4
MN
7246 return sds.busiest;
7247
cc57aa8f 7248 /* There is no busy sibling group to pull tasks from */
56cf515b 7249 if (!sds.busiest || busiest->sum_nr_running == 0)
1e3c88bd
PZ
7250 goto out_balanced;
7251
ca8ce3d0
NP
7252 sds.avg_load = (SCHED_CAPACITY_SCALE * sds.total_load)
7253 / sds.total_capacity;
b0432d8f 7254
866ab43e
PZ
7255 /*
7256 * If the busiest group is imbalanced the below checks don't
30ce5dab 7257 * work because they assume all things are equal, which typically
866ab43e
PZ
7258 * isn't true due to cpus_allowed constraints and the like.
7259 */
caeb178c 7260 if (busiest->group_type == group_imbalanced)
866ab43e
PZ
7261 goto force_balance;
7262
cc57aa8f 7263 /* SD_BALANCE_NEWIDLE trumps SMP nice when underutilized */
ea67821b
VG
7264 if (env->idle == CPU_NEWLY_IDLE && group_has_capacity(env, local) &&
7265 busiest->group_no_capacity)
fab47622
NR
7266 goto force_balance;
7267
cc57aa8f 7268 /*
9c58c79a 7269 * If the local group is busier than the selected busiest group
cc57aa8f
PZ
7270 * don't try and pull any tasks.
7271 */
56cf515b 7272 if (local->avg_load >= busiest->avg_load)
1e3c88bd
PZ
7273 goto out_balanced;
7274
cc57aa8f
PZ
7275 /*
7276 * Don't pull any tasks if this group is already above the domain
7277 * average load.
7278 */
56cf515b 7279 if (local->avg_load >= sds.avg_load)
1e3c88bd
PZ
7280 goto out_balanced;
7281
bd939f45 7282 if (env->idle == CPU_IDLE) {
aae6d3dd 7283 /*
43f4d666
VG
7284 * This cpu is idle. If the busiest group is not overloaded
7285 * and there is no imbalance between this and busiest group
7286 * wrt idle cpus, it is balanced. The imbalance becomes
7287 * significant if the diff is greater than 1 otherwise we
7288 * might end up to just move the imbalance on another group
aae6d3dd 7289 */
43f4d666
VG
7290 if ((busiest->group_type != group_overloaded) &&
7291 (local->idle_cpus <= (busiest->idle_cpus + 1)))
aae6d3dd 7292 goto out_balanced;
c186fafe
PZ
7293 } else {
7294 /*
7295 * In the CPU_NEWLY_IDLE, CPU_NOT_IDLE cases, use
7296 * imbalance_pct to be conservative.
7297 */
56cf515b
JK
7298 if (100 * busiest->avg_load <=
7299 env->sd->imbalance_pct * local->avg_load)
c186fafe 7300 goto out_balanced;
aae6d3dd 7301 }
1e3c88bd 7302
fab47622 7303force_balance:
1e3c88bd 7304 /* Looks like there is an imbalance. Compute it */
bd939f45 7305 calculate_imbalance(env, &sds);
1e3c88bd
PZ
7306 return sds.busiest;
7307
7308out_balanced:
bd939f45 7309 env->imbalance = 0;
1e3c88bd
PZ
7310 return NULL;
7311}
7312
7313/*
7314 * find_busiest_queue - find the busiest runqueue among the cpus in group.
7315 */
bd939f45 7316static struct rq *find_busiest_queue(struct lb_env *env,
b9403130 7317 struct sched_group *group)
1e3c88bd
PZ
7318{
7319 struct rq *busiest = NULL, *rq;
ced549fa 7320 unsigned long busiest_load = 0, busiest_capacity = 1;
1e3c88bd
PZ
7321 int i;
7322
6906a408 7323 for_each_cpu_and(i, sched_group_cpus(group), env->cpus) {
ea67821b 7324 unsigned long capacity, wl;
0ec8aa00
PZ
7325 enum fbq_type rt;
7326
7327 rq = cpu_rq(i);
7328 rt = fbq_classify_rq(rq);
1e3c88bd 7329
0ec8aa00
PZ
7330 /*
7331 * We classify groups/runqueues into three groups:
7332 * - regular: there are !numa tasks
7333 * - remote: there are numa tasks that run on the 'wrong' node
7334 * - all: there is no distinction
7335 *
7336 * In order to avoid migrating ideally placed numa tasks,
7337 * ignore those when there's better options.
7338 *
7339 * If we ignore the actual busiest queue to migrate another
7340 * task, the next balance pass can still reduce the busiest
7341 * queue by moving tasks around inside the node.
7342 *
7343 * If we cannot move enough load due to this classification
7344 * the next pass will adjust the group classification and
7345 * allow migration of more tasks.
7346 *
7347 * Both cases only affect the total convergence complexity.
7348 */
7349 if (rt > env->fbq_type)
7350 continue;
7351
ced549fa 7352 capacity = capacity_of(i);
9d5efe05 7353
6e40f5bb 7354 wl = weighted_cpuload(i);
1e3c88bd 7355
6e40f5bb
TG
7356 /*
7357 * When comparing with imbalance, use weighted_cpuload()
ced549fa 7358 * which is not scaled with the cpu capacity.
6e40f5bb 7359 */
ea67821b
VG
7360
7361 if (rq->nr_running == 1 && wl > env->imbalance &&
7362 !check_cpu_capacity(rq, env->sd))
1e3c88bd
PZ
7363 continue;
7364
6e40f5bb
TG
7365 /*
7366 * For the load comparisons with the other cpu's, consider
ced549fa
NP
7367 * the weighted_cpuload() scaled with the cpu capacity, so
7368 * that the load can be moved away from the cpu that is
7369 * potentially running at a lower capacity.
95a79b80 7370 *
ced549fa 7371 * Thus we're looking for max(wl_i / capacity_i), crosswise
95a79b80 7372 * multiplication to rid ourselves of the division works out
ced549fa
NP
7373 * to: wl_i * capacity_j > wl_j * capacity_i; where j is
7374 * our previous maximum.
6e40f5bb 7375 */
ced549fa 7376 if (wl * busiest_capacity > busiest_load * capacity) {
95a79b80 7377 busiest_load = wl;
ced549fa 7378 busiest_capacity = capacity;
1e3c88bd
PZ
7379 busiest = rq;
7380 }
7381 }
7382
7383 return busiest;
7384}
7385
7386/*
7387 * Max backoff if we encounter pinned tasks. Pretty arbitrary value, but
7388 * so long as it is large enough.
7389 */
7390#define MAX_PINNED_INTERVAL 512
7391
7392/* Working cpumask for load_balance and load_balance_newidle. */
e6252c3e 7393DEFINE_PER_CPU(cpumask_var_t, load_balance_mask);
1e3c88bd 7394
bd939f45 7395static int need_active_balance(struct lb_env *env)
1af3ed3d 7396{
bd939f45
PZ
7397 struct sched_domain *sd = env->sd;
7398
7399 if (env->idle == CPU_NEWLY_IDLE) {
532cb4c4
MN
7400
7401 /*
7402 * ASYM_PACKING needs to force migrate tasks from busy but
7403 * higher numbered CPUs in order to pack all tasks in the
7404 * lowest numbered CPUs.
7405 */
bd939f45 7406 if ((sd->flags & SD_ASYM_PACKING) && env->src_cpu > env->dst_cpu)
532cb4c4 7407 return 1;
1af3ed3d
PZ
7408 }
7409
1aaf90a4
VG
7410 /*
7411 * The dst_cpu is idle and the src_cpu CPU has only 1 CFS task.
7412 * It's worth migrating the task if the src_cpu's capacity is reduced
7413 * because of other sched_class or IRQs if more capacity stays
7414 * available on dst_cpu.
7415 */
7416 if ((env->idle != CPU_NOT_IDLE) &&
7417 (env->src_rq->cfs.h_nr_running == 1)) {
7418 if ((check_cpu_capacity(env->src_rq, sd)) &&
7419 (capacity_of(env->src_cpu)*sd->imbalance_pct < capacity_of(env->dst_cpu)*100))
7420 return 1;
7421 }
7422
1af3ed3d
PZ
7423 return unlikely(sd->nr_balance_failed > sd->cache_nice_tries+2);
7424}
7425
969c7921
TH
7426static int active_load_balance_cpu_stop(void *data);
7427
23f0d209
JK
7428static int should_we_balance(struct lb_env *env)
7429{
7430 struct sched_group *sg = env->sd->groups;
7431 struct cpumask *sg_cpus, *sg_mask;
7432 int cpu, balance_cpu = -1;
7433
7434 /*
7435 * In the newly idle case, we will allow all the cpu's
7436 * to do the newly idle load balance.
7437 */
7438 if (env->idle == CPU_NEWLY_IDLE)
7439 return 1;
7440
7441 sg_cpus = sched_group_cpus(sg);
7442 sg_mask = sched_group_mask(sg);
7443 /* Try to find first idle cpu */
7444 for_each_cpu_and(cpu, sg_cpus, env->cpus) {
7445 if (!cpumask_test_cpu(cpu, sg_mask) || !idle_cpu(cpu))
7446 continue;
7447
7448 balance_cpu = cpu;
7449 break;
7450 }
7451
7452 if (balance_cpu == -1)
7453 balance_cpu = group_balance_cpu(sg);
7454
7455 /*
7456 * First idle cpu or the first cpu(busiest) in this sched group
7457 * is eligible for doing load balancing at this and above domains.
7458 */
b0cff9d8 7459 return balance_cpu == env->dst_cpu;
23f0d209
JK
7460}
7461
1e3c88bd
PZ
7462/*
7463 * Check this_cpu to ensure it is balanced within domain. Attempt to move
7464 * tasks if there is an imbalance.
7465 */
7466static int load_balance(int this_cpu, struct rq *this_rq,
7467 struct sched_domain *sd, enum cpu_idle_type idle,
23f0d209 7468 int *continue_balancing)
1e3c88bd 7469{
88b8dac0 7470 int ld_moved, cur_ld_moved, active_balance = 0;
6263322c 7471 struct sched_domain *sd_parent = sd->parent;
1e3c88bd 7472 struct sched_group *group;
1e3c88bd
PZ
7473 struct rq *busiest;
7474 unsigned long flags;
4ba29684 7475 struct cpumask *cpus = this_cpu_cpumask_var_ptr(load_balance_mask);
1e3c88bd 7476
8e45cb54
PZ
7477 struct lb_env env = {
7478 .sd = sd,
ddcdf6e7
PZ
7479 .dst_cpu = this_cpu,
7480 .dst_rq = this_rq,
88b8dac0 7481 .dst_grpmask = sched_group_cpus(sd->groups),
8e45cb54 7482 .idle = idle,
eb95308e 7483 .loop_break = sched_nr_migrate_break,
b9403130 7484 .cpus = cpus,
0ec8aa00 7485 .fbq_type = all,
163122b7 7486 .tasks = LIST_HEAD_INIT(env.tasks),
8e45cb54
PZ
7487 };
7488
cfc03118
JK
7489 /*
7490 * For NEWLY_IDLE load_balancing, we don't need to consider
7491 * other cpus in our group
7492 */
e02e60c1 7493 if (idle == CPU_NEWLY_IDLE)
cfc03118 7494 env.dst_grpmask = NULL;
cfc03118 7495
1e3c88bd
PZ
7496 cpumask_copy(cpus, cpu_active_mask);
7497
ae92882e 7498 schedstat_inc(sd->lb_count[idle]);
1e3c88bd
PZ
7499
7500redo:
23f0d209
JK
7501 if (!should_we_balance(&env)) {
7502 *continue_balancing = 0;
1e3c88bd 7503 goto out_balanced;
23f0d209 7504 }
1e3c88bd 7505
23f0d209 7506 group = find_busiest_group(&env);
1e3c88bd 7507 if (!group) {
ae92882e 7508 schedstat_inc(sd->lb_nobusyg[idle]);
1e3c88bd
PZ
7509 goto out_balanced;
7510 }
7511
b9403130 7512 busiest = find_busiest_queue(&env, group);
1e3c88bd 7513 if (!busiest) {
ae92882e 7514 schedstat_inc(sd->lb_nobusyq[idle]);
1e3c88bd
PZ
7515 goto out_balanced;
7516 }
7517
78feefc5 7518 BUG_ON(busiest == env.dst_rq);
1e3c88bd 7519
ae92882e 7520 schedstat_add(sd->lb_imbalance[idle], env.imbalance);
1e3c88bd 7521
1aaf90a4
VG
7522 env.src_cpu = busiest->cpu;
7523 env.src_rq = busiest;
7524
1e3c88bd
PZ
7525 ld_moved = 0;
7526 if (busiest->nr_running > 1) {
7527 /*
7528 * Attempt to move tasks. If find_busiest_group has found
7529 * an imbalance but busiest->nr_running <= 1, the group is
7530 * still unbalanced. ld_moved simply stays zero, so it is
7531 * correctly treated as an imbalance.
7532 */
8e45cb54 7533 env.flags |= LBF_ALL_PINNED;
c82513e5 7534 env.loop_max = min(sysctl_sched_nr_migrate, busiest->nr_running);
8e45cb54 7535
5d6523eb 7536more_balance:
163122b7 7537 raw_spin_lock_irqsave(&busiest->lock, flags);
88b8dac0
SV
7538
7539 /*
7540 * cur_ld_moved - load moved in current iteration
7541 * ld_moved - cumulative load moved across iterations
7542 */
163122b7 7543 cur_ld_moved = detach_tasks(&env);
1e3c88bd
PZ
7544
7545 /*
163122b7
KT
7546 * We've detached some tasks from busiest_rq. Every
7547 * task is masked "TASK_ON_RQ_MIGRATING", so we can safely
7548 * unlock busiest->lock, and we are able to be sure
7549 * that nobody can manipulate the tasks in parallel.
7550 * See task_rq_lock() family for the details.
1e3c88bd 7551 */
163122b7
KT
7552
7553 raw_spin_unlock(&busiest->lock);
7554
7555 if (cur_ld_moved) {
7556 attach_tasks(&env);
7557 ld_moved += cur_ld_moved;
7558 }
7559
1e3c88bd 7560 local_irq_restore(flags);
88b8dac0 7561
f1cd0858
JK
7562 if (env.flags & LBF_NEED_BREAK) {
7563 env.flags &= ~LBF_NEED_BREAK;
7564 goto more_balance;
7565 }
7566
88b8dac0
SV
7567 /*
7568 * Revisit (affine) tasks on src_cpu that couldn't be moved to
7569 * us and move them to an alternate dst_cpu in our sched_group
7570 * where they can run. The upper limit on how many times we
7571 * iterate on same src_cpu is dependent on number of cpus in our
7572 * sched_group.
7573 *
7574 * This changes load balance semantics a bit on who can move
7575 * load to a given_cpu. In addition to the given_cpu itself
7576 * (or a ilb_cpu acting on its behalf where given_cpu is
7577 * nohz-idle), we now have balance_cpu in a position to move
7578 * load to given_cpu. In rare situations, this may cause
7579 * conflicts (balance_cpu and given_cpu/ilb_cpu deciding
7580 * _independently_ and at _same_ time to move some load to
7581 * given_cpu) causing exceess load to be moved to given_cpu.
7582 * This however should not happen so much in practice and
7583 * moreover subsequent load balance cycles should correct the
7584 * excess load moved.
7585 */
6263322c 7586 if ((env.flags & LBF_DST_PINNED) && env.imbalance > 0) {
88b8dac0 7587
7aff2e3a
VD
7588 /* Prevent to re-select dst_cpu via env's cpus */
7589 cpumask_clear_cpu(env.dst_cpu, env.cpus);
7590
78feefc5 7591 env.dst_rq = cpu_rq(env.new_dst_cpu);
88b8dac0 7592 env.dst_cpu = env.new_dst_cpu;
6263322c 7593 env.flags &= ~LBF_DST_PINNED;
88b8dac0
SV
7594 env.loop = 0;
7595 env.loop_break = sched_nr_migrate_break;
e02e60c1 7596
88b8dac0
SV
7597 /*
7598 * Go back to "more_balance" rather than "redo" since we
7599 * need to continue with same src_cpu.
7600 */
7601 goto more_balance;
7602 }
1e3c88bd 7603
6263322c
PZ
7604 /*
7605 * We failed to reach balance because of affinity.
7606 */
7607 if (sd_parent) {
63b2ca30 7608 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
6263322c 7609
afdeee05 7610 if ((env.flags & LBF_SOME_PINNED) && env.imbalance > 0)
6263322c 7611 *group_imbalance = 1;
6263322c
PZ
7612 }
7613
1e3c88bd 7614 /* All tasks on this runqueue were pinned by CPU affinity */
8e45cb54 7615 if (unlikely(env.flags & LBF_ALL_PINNED)) {
1e3c88bd 7616 cpumask_clear_cpu(cpu_of(busiest), cpus);
bbf18b19
PN
7617 if (!cpumask_empty(cpus)) {
7618 env.loop = 0;
7619 env.loop_break = sched_nr_migrate_break;
1e3c88bd 7620 goto redo;
bbf18b19 7621 }
afdeee05 7622 goto out_all_pinned;
1e3c88bd
PZ
7623 }
7624 }
7625
7626 if (!ld_moved) {
ae92882e 7627 schedstat_inc(sd->lb_failed[idle]);
58b26c4c
VP
7628 /*
7629 * Increment the failure counter only on periodic balance.
7630 * We do not want newidle balance, which can be very
7631 * frequent, pollute the failure counter causing
7632 * excessive cache_hot migrations and active balances.
7633 */
7634 if (idle != CPU_NEWLY_IDLE)
7635 sd->nr_balance_failed++;
1e3c88bd 7636
bd939f45 7637 if (need_active_balance(&env)) {
1e3c88bd
PZ
7638 raw_spin_lock_irqsave(&busiest->lock, flags);
7639
969c7921
TH
7640 /* don't kick the active_load_balance_cpu_stop,
7641 * if the curr task on busiest cpu can't be
7642 * moved to this_cpu
1e3c88bd
PZ
7643 */
7644 if (!cpumask_test_cpu(this_cpu,
fa17b507 7645 tsk_cpus_allowed(busiest->curr))) {
1e3c88bd
PZ
7646 raw_spin_unlock_irqrestore(&busiest->lock,
7647 flags);
8e45cb54 7648 env.flags |= LBF_ALL_PINNED;
1e3c88bd
PZ
7649 goto out_one_pinned;
7650 }
7651
969c7921
TH
7652 /*
7653 * ->active_balance synchronizes accesses to
7654 * ->active_balance_work. Once set, it's cleared
7655 * only after active load balance is finished.
7656 */
1e3c88bd
PZ
7657 if (!busiest->active_balance) {
7658 busiest->active_balance = 1;
7659 busiest->push_cpu = this_cpu;
7660 active_balance = 1;
7661 }
7662 raw_spin_unlock_irqrestore(&busiest->lock, flags);
969c7921 7663
bd939f45 7664 if (active_balance) {
969c7921
TH
7665 stop_one_cpu_nowait(cpu_of(busiest),
7666 active_load_balance_cpu_stop, busiest,
7667 &busiest->active_balance_work);
bd939f45 7668 }
1e3c88bd 7669
d02c0711 7670 /* We've kicked active balancing, force task migration. */
1e3c88bd
PZ
7671 sd->nr_balance_failed = sd->cache_nice_tries+1;
7672 }
7673 } else
7674 sd->nr_balance_failed = 0;
7675
7676 if (likely(!active_balance)) {
7677 /* We were unbalanced, so reset the balancing interval */
7678 sd->balance_interval = sd->min_interval;
7679 } else {
7680 /*
7681 * If we've begun active balancing, start to back off. This
7682 * case may not be covered by the all_pinned logic if there
7683 * is only 1 task on the busy runqueue (because we don't call
163122b7 7684 * detach_tasks).
1e3c88bd
PZ
7685 */
7686 if (sd->balance_interval < sd->max_interval)
7687 sd->balance_interval *= 2;
7688 }
7689
1e3c88bd
PZ
7690 goto out;
7691
7692out_balanced:
afdeee05
VG
7693 /*
7694 * We reach balance although we may have faced some affinity
7695 * constraints. Clear the imbalance flag if it was set.
7696 */
7697 if (sd_parent) {
7698 int *group_imbalance = &sd_parent->groups->sgc->imbalance;
7699
7700 if (*group_imbalance)
7701 *group_imbalance = 0;
7702 }
7703
7704out_all_pinned:
7705 /*
7706 * We reach balance because all tasks are pinned at this level so
7707 * we can't migrate them. Let the imbalance flag set so parent level
7708 * can try to migrate them.
7709 */
ae92882e 7710 schedstat_inc(sd->lb_balanced[idle]);
1e3c88bd
PZ
7711
7712 sd->nr_balance_failed = 0;
7713
7714out_one_pinned:
7715 /* tune up the balancing interval */
8e45cb54 7716 if (((env.flags & LBF_ALL_PINNED) &&
5b54b56b 7717 sd->balance_interval < MAX_PINNED_INTERVAL) ||
1e3c88bd
PZ
7718 (sd->balance_interval < sd->max_interval))
7719 sd->balance_interval *= 2;
7720
46e49b38 7721 ld_moved = 0;
1e3c88bd 7722out:
1e3c88bd
PZ
7723 return ld_moved;
7724}
7725
52a08ef1
JL
7726static inline unsigned long
7727get_sd_balance_interval(struct sched_domain *sd, int cpu_busy)
7728{
7729 unsigned long interval = sd->balance_interval;
7730
7731 if (cpu_busy)
7732 interval *= sd->busy_factor;
7733
7734 /* scale ms to jiffies */
7735 interval = msecs_to_jiffies(interval);
7736 interval = clamp(interval, 1UL, max_load_balance_interval);
7737
7738 return interval;
7739}
7740
7741static inline void
31851a98 7742update_next_balance(struct sched_domain *sd, unsigned long *next_balance)
52a08ef1
JL
7743{
7744 unsigned long interval, next;
7745
31851a98
LY
7746 /* used by idle balance, so cpu_busy = 0 */
7747 interval = get_sd_balance_interval(sd, 0);
52a08ef1
JL
7748 next = sd->last_balance + interval;
7749
7750 if (time_after(*next_balance, next))
7751 *next_balance = next;
7752}
7753
1e3c88bd
PZ
7754/*
7755 * idle_balance is called by schedule() if this_cpu is about to become
7756 * idle. Attempts to pull tasks from other CPUs.
7757 */
6e83125c 7758static int idle_balance(struct rq *this_rq)
1e3c88bd 7759{
52a08ef1
JL
7760 unsigned long next_balance = jiffies + HZ;
7761 int this_cpu = this_rq->cpu;
1e3c88bd
PZ
7762 struct sched_domain *sd;
7763 int pulled_task = 0;
9bd721c5 7764 u64 curr_cost = 0;
1e3c88bd 7765
6e83125c
PZ
7766 /*
7767 * We must set idle_stamp _before_ calling idle_balance(), such that we
7768 * measure the duration of idle_balance() as idle time.
7769 */
7770 this_rq->idle_stamp = rq_clock(this_rq);
7771
4486edd1
TC
7772 if (this_rq->avg_idle < sysctl_sched_migration_cost ||
7773 !this_rq->rd->overload) {
52a08ef1
JL
7774 rcu_read_lock();
7775 sd = rcu_dereference_check_sched_domain(this_rq->sd);
7776 if (sd)
31851a98 7777 update_next_balance(sd, &next_balance);
52a08ef1
JL
7778 rcu_read_unlock();
7779
6e83125c 7780 goto out;
52a08ef1 7781 }
1e3c88bd 7782
f492e12e
PZ
7783 raw_spin_unlock(&this_rq->lock);
7784
48a16753 7785 update_blocked_averages(this_cpu);
dce840a0 7786 rcu_read_lock();
1e3c88bd 7787 for_each_domain(this_cpu, sd) {
23f0d209 7788 int continue_balancing = 1;
9bd721c5 7789 u64 t0, domain_cost;
1e3c88bd
PZ
7790
7791 if (!(sd->flags & SD_LOAD_BALANCE))
7792 continue;
7793
52a08ef1 7794 if (this_rq->avg_idle < curr_cost + sd->max_newidle_lb_cost) {
31851a98 7795 update_next_balance(sd, &next_balance);
9bd721c5 7796 break;
52a08ef1 7797 }
9bd721c5 7798
f492e12e 7799 if (sd->flags & SD_BALANCE_NEWIDLE) {
9bd721c5
JL
7800 t0 = sched_clock_cpu(this_cpu);
7801
f492e12e 7802 pulled_task = load_balance(this_cpu, this_rq,
23f0d209
JK
7803 sd, CPU_NEWLY_IDLE,
7804 &continue_balancing);
9bd721c5
JL
7805
7806 domain_cost = sched_clock_cpu(this_cpu) - t0;
7807 if (domain_cost > sd->max_newidle_lb_cost)
7808 sd->max_newidle_lb_cost = domain_cost;
7809
7810 curr_cost += domain_cost;
f492e12e 7811 }
1e3c88bd 7812
31851a98 7813 update_next_balance(sd, &next_balance);
39a4d9ca
JL
7814
7815 /*
7816 * Stop searching for tasks to pull if there are
7817 * now runnable tasks on this rq.
7818 */
7819 if (pulled_task || this_rq->nr_running > 0)
1e3c88bd 7820 break;
1e3c88bd 7821 }
dce840a0 7822 rcu_read_unlock();
f492e12e
PZ
7823
7824 raw_spin_lock(&this_rq->lock);
7825
0e5b5337
JL
7826 if (curr_cost > this_rq->max_idle_balance_cost)
7827 this_rq->max_idle_balance_cost = curr_cost;
7828
e5fc6611 7829 /*
0e5b5337
JL
7830 * While browsing the domains, we released the rq lock, a task could
7831 * have been enqueued in the meantime. Since we're not going idle,
7832 * pretend we pulled a task.
e5fc6611 7833 */
0e5b5337 7834 if (this_rq->cfs.h_nr_running && !pulled_task)
6e83125c 7835 pulled_task = 1;
e5fc6611 7836
52a08ef1
JL
7837out:
7838 /* Move the next balance forward */
7839 if (time_after(this_rq->next_balance, next_balance))
1e3c88bd 7840 this_rq->next_balance = next_balance;
9bd721c5 7841
e4aa358b 7842 /* Is there a task of a high priority class? */
46383648 7843 if (this_rq->nr_running != this_rq->cfs.h_nr_running)
e4aa358b
KT
7844 pulled_task = -1;
7845
38c6ade2 7846 if (pulled_task)
6e83125c
PZ
7847 this_rq->idle_stamp = 0;
7848
3c4017c1 7849 return pulled_task;
1e3c88bd
PZ
7850}
7851
7852/*
969c7921
TH
7853 * active_load_balance_cpu_stop is run by cpu stopper. It pushes
7854 * running tasks off the busiest CPU onto idle CPUs. It requires at
7855 * least 1 task to be running on each physical CPU where possible, and
7856 * avoids physical / logical imbalances.
1e3c88bd 7857 */
969c7921 7858static int active_load_balance_cpu_stop(void *data)
1e3c88bd 7859{
969c7921
TH
7860 struct rq *busiest_rq = data;
7861 int busiest_cpu = cpu_of(busiest_rq);
1e3c88bd 7862 int target_cpu = busiest_rq->push_cpu;
969c7921 7863 struct rq *target_rq = cpu_rq(target_cpu);
1e3c88bd 7864 struct sched_domain *sd;
e5673f28 7865 struct task_struct *p = NULL;
969c7921
TH
7866
7867 raw_spin_lock_irq(&busiest_rq->lock);
7868
7869 /* make sure the requested cpu hasn't gone down in the meantime */
7870 if (unlikely(busiest_cpu != smp_processor_id() ||
7871 !busiest_rq->active_balance))
7872 goto out_unlock;
1e3c88bd
PZ
7873
7874 /* Is there any task to move? */
7875 if (busiest_rq->nr_running <= 1)
969c7921 7876 goto out_unlock;
1e3c88bd
PZ
7877
7878 /*
7879 * This condition is "impossible", if it occurs
7880 * we need to fix it. Originally reported by
7881 * Bjorn Helgaas on a 128-cpu setup.
7882 */
7883 BUG_ON(busiest_rq == target_rq);
7884
1e3c88bd 7885 /* Search for an sd spanning us and the target CPU. */
dce840a0 7886 rcu_read_lock();
1e3c88bd
PZ
7887 for_each_domain(target_cpu, sd) {
7888 if ((sd->flags & SD_LOAD_BALANCE) &&
7889 cpumask_test_cpu(busiest_cpu, sched_domain_span(sd)))
7890 break;
7891 }
7892
7893 if (likely(sd)) {
8e45cb54
PZ
7894 struct lb_env env = {
7895 .sd = sd,
ddcdf6e7
PZ
7896 .dst_cpu = target_cpu,
7897 .dst_rq = target_rq,
7898 .src_cpu = busiest_rq->cpu,
7899 .src_rq = busiest_rq,
8e45cb54
PZ
7900 .idle = CPU_IDLE,
7901 };
7902
ae92882e 7903 schedstat_inc(sd->alb_count);
1e3c88bd 7904
e5673f28 7905 p = detach_one_task(&env);
d02c0711 7906 if (p) {
ae92882e 7907 schedstat_inc(sd->alb_pushed);
d02c0711
SD
7908 /* Active balancing done, reset the failure counter. */
7909 sd->nr_balance_failed = 0;
7910 } else {
ae92882e 7911 schedstat_inc(sd->alb_failed);
d02c0711 7912 }
1e3c88bd 7913 }
dce840a0 7914 rcu_read_unlock();
969c7921
TH
7915out_unlock:
7916 busiest_rq->active_balance = 0;
e5673f28
KT
7917 raw_spin_unlock(&busiest_rq->lock);
7918
7919 if (p)
7920 attach_one_task(target_rq, p);
7921
7922 local_irq_enable();
7923
969c7921 7924 return 0;
1e3c88bd
PZ
7925}
7926
d987fc7f
MG
7927static inline int on_null_domain(struct rq *rq)
7928{
7929 return unlikely(!rcu_dereference_sched(rq->sd));
7930}
7931
3451d024 7932#ifdef CONFIG_NO_HZ_COMMON
83cd4fe2
VP
7933/*
7934 * idle load balancing details
83cd4fe2
VP
7935 * - When one of the busy CPUs notice that there may be an idle rebalancing
7936 * needed, they will kick the idle load balancer, which then does idle
7937 * load balancing for all the idle CPUs.
7938 */
1e3c88bd 7939static struct {
83cd4fe2 7940 cpumask_var_t idle_cpus_mask;
0b005cf5 7941 atomic_t nr_cpus;
83cd4fe2
VP
7942 unsigned long next_balance; /* in jiffy units */
7943} nohz ____cacheline_aligned;
1e3c88bd 7944
3dd0337d 7945static inline int find_new_ilb(void)
1e3c88bd 7946{
0b005cf5 7947 int ilb = cpumask_first(nohz.idle_cpus_mask);
1e3c88bd 7948
786d6dc7
SS
7949 if (ilb < nr_cpu_ids && idle_cpu(ilb))
7950 return ilb;
7951
7952 return nr_cpu_ids;
1e3c88bd 7953}
1e3c88bd 7954
83cd4fe2
VP
7955/*
7956 * Kick a CPU to do the nohz balancing, if it is time for it. We pick the
7957 * nohz_load_balancer CPU (if there is one) otherwise fallback to any idle
7958 * CPU (if there is one).
7959 */
0aeeeeba 7960static void nohz_balancer_kick(void)
83cd4fe2
VP
7961{
7962 int ilb_cpu;
7963
7964 nohz.next_balance++;
7965
3dd0337d 7966 ilb_cpu = find_new_ilb();
83cd4fe2 7967
0b005cf5
SS
7968 if (ilb_cpu >= nr_cpu_ids)
7969 return;
83cd4fe2 7970
cd490c5b 7971 if (test_and_set_bit(NOHZ_BALANCE_KICK, nohz_flags(ilb_cpu)))
1c792db7
SS
7972 return;
7973 /*
7974 * Use smp_send_reschedule() instead of resched_cpu().
7975 * This way we generate a sched IPI on the target cpu which
7976 * is idle. And the softirq performing nohz idle load balance
7977 * will be run before returning from the IPI.
7978 */
7979 smp_send_reschedule(ilb_cpu);
83cd4fe2
VP
7980 return;
7981}
7982
20a5c8cc 7983void nohz_balance_exit_idle(unsigned int cpu)
71325960
SS
7984{
7985 if (unlikely(test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))) {
d987fc7f
MG
7986 /*
7987 * Completely isolated CPUs don't ever set, so we must test.
7988 */
7989 if (likely(cpumask_test_cpu(cpu, nohz.idle_cpus_mask))) {
7990 cpumask_clear_cpu(cpu, nohz.idle_cpus_mask);
7991 atomic_dec(&nohz.nr_cpus);
7992 }
71325960
SS
7993 clear_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
7994 }
7995}
7996
69e1e811
SS
7997static inline void set_cpu_sd_state_busy(void)
7998{
7999 struct sched_domain *sd;
37dc6b50 8000 int cpu = smp_processor_id();
69e1e811 8001
69e1e811 8002 rcu_read_lock();
37dc6b50 8003 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
8004
8005 if (!sd || !sd->nohz_idle)
8006 goto unlock;
8007 sd->nohz_idle = 0;
8008
63b2ca30 8009 atomic_inc(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 8010unlock:
69e1e811
SS
8011 rcu_read_unlock();
8012}
8013
8014void set_cpu_sd_state_idle(void)
8015{
8016 struct sched_domain *sd;
37dc6b50 8017 int cpu = smp_processor_id();
69e1e811 8018
69e1e811 8019 rcu_read_lock();
37dc6b50 8020 sd = rcu_dereference(per_cpu(sd_busy, cpu));
25f55d9d
VG
8021
8022 if (!sd || sd->nohz_idle)
8023 goto unlock;
8024 sd->nohz_idle = 1;
8025
63b2ca30 8026 atomic_dec(&sd->groups->sgc->nr_busy_cpus);
25f55d9d 8027unlock:
69e1e811
SS
8028 rcu_read_unlock();
8029}
8030
1e3c88bd 8031/*
c1cc017c 8032 * This routine will record that the cpu is going idle with tick stopped.
0b005cf5 8033 * This info will be used in performing idle load balancing in the future.
1e3c88bd 8034 */
c1cc017c 8035void nohz_balance_enter_idle(int cpu)
1e3c88bd 8036{
71325960
SS
8037 /*
8038 * If this cpu is going down, then nothing needs to be done.
8039 */
8040 if (!cpu_active(cpu))
8041 return;
8042
c1cc017c
AS
8043 if (test_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu)))
8044 return;
1e3c88bd 8045
d987fc7f
MG
8046 /*
8047 * If we're a completely isolated CPU, we don't play.
8048 */
8049 if (on_null_domain(cpu_rq(cpu)))
8050 return;
8051
c1cc017c
AS
8052 cpumask_set_cpu(cpu, nohz.idle_cpus_mask);
8053 atomic_inc(&nohz.nr_cpus);
8054 set_bit(NOHZ_TICK_STOPPED, nohz_flags(cpu));
1e3c88bd
PZ
8055}
8056#endif
8057
8058static DEFINE_SPINLOCK(balancing);
8059
49c022e6
PZ
8060/*
8061 * Scale the max load_balance interval with the number of CPUs in the system.
8062 * This trades load-balance latency on larger machines for less cross talk.
8063 */
029632fb 8064void update_max_interval(void)
49c022e6
PZ
8065{
8066 max_load_balance_interval = HZ*num_online_cpus()/10;
8067}
8068
1e3c88bd
PZ
8069/*
8070 * It checks each scheduling domain to see if it is due to be balanced,
8071 * and initiates a balancing operation if so.
8072 *
b9b0853a 8073 * Balancing parameters are set up in init_sched_domains.
1e3c88bd 8074 */
f7ed0a89 8075static void rebalance_domains(struct rq *rq, enum cpu_idle_type idle)
1e3c88bd 8076{
23f0d209 8077 int continue_balancing = 1;
f7ed0a89 8078 int cpu = rq->cpu;
1e3c88bd 8079 unsigned long interval;
04f733b4 8080 struct sched_domain *sd;
1e3c88bd
PZ
8081 /* Earliest time when we have to do rebalance again */
8082 unsigned long next_balance = jiffies + 60*HZ;
8083 int update_next_balance = 0;
f48627e6
JL
8084 int need_serialize, need_decay = 0;
8085 u64 max_cost = 0;
1e3c88bd 8086
48a16753 8087 update_blocked_averages(cpu);
2069dd75 8088
dce840a0 8089 rcu_read_lock();
1e3c88bd 8090 for_each_domain(cpu, sd) {
f48627e6
JL
8091 /*
8092 * Decay the newidle max times here because this is a regular
8093 * visit to all the domains. Decay ~1% per second.
8094 */
8095 if (time_after(jiffies, sd->next_decay_max_lb_cost)) {
8096 sd->max_newidle_lb_cost =
8097 (sd->max_newidle_lb_cost * 253) / 256;
8098 sd->next_decay_max_lb_cost = jiffies + HZ;
8099 need_decay = 1;
8100 }
8101 max_cost += sd->max_newidle_lb_cost;
8102
1e3c88bd
PZ
8103 if (!(sd->flags & SD_LOAD_BALANCE))
8104 continue;
8105
f48627e6
JL
8106 /*
8107 * Stop the load balance at this level. There is another
8108 * CPU in our sched group which is doing load balancing more
8109 * actively.
8110 */
8111 if (!continue_balancing) {
8112 if (need_decay)
8113 continue;
8114 break;
8115 }
8116
52a08ef1 8117 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8118
8119 need_serialize = sd->flags & SD_SERIALIZE;
1e3c88bd
PZ
8120 if (need_serialize) {
8121 if (!spin_trylock(&balancing))
8122 goto out;
8123 }
8124
8125 if (time_after_eq(jiffies, sd->last_balance + interval)) {
23f0d209 8126 if (load_balance(cpu, rq, sd, idle, &continue_balancing)) {
1e3c88bd 8127 /*
6263322c 8128 * The LBF_DST_PINNED logic could have changed
de5eb2dd
JK
8129 * env->dst_cpu, so we can't know our idle
8130 * state even if we migrated tasks. Update it.
1e3c88bd 8131 */
de5eb2dd 8132 idle = idle_cpu(cpu) ? CPU_IDLE : CPU_NOT_IDLE;
1e3c88bd
PZ
8133 }
8134 sd->last_balance = jiffies;
52a08ef1 8135 interval = get_sd_balance_interval(sd, idle != CPU_IDLE);
1e3c88bd
PZ
8136 }
8137 if (need_serialize)
8138 spin_unlock(&balancing);
8139out:
8140 if (time_after(next_balance, sd->last_balance + interval)) {
8141 next_balance = sd->last_balance + interval;
8142 update_next_balance = 1;
8143 }
f48627e6
JL
8144 }
8145 if (need_decay) {
1e3c88bd 8146 /*
f48627e6
JL
8147 * Ensure the rq-wide value also decays but keep it at a
8148 * reasonable floor to avoid funnies with rq->avg_idle.
1e3c88bd 8149 */
f48627e6
JL
8150 rq->max_idle_balance_cost =
8151 max((u64)sysctl_sched_migration_cost, max_cost);
1e3c88bd 8152 }
dce840a0 8153 rcu_read_unlock();
1e3c88bd
PZ
8154
8155 /*
8156 * next_balance will be updated only when there is a need.
8157 * When the cpu is attached to null domain for ex, it will not be
8158 * updated.
8159 */
c5afb6a8 8160 if (likely(update_next_balance)) {
1e3c88bd 8161 rq->next_balance = next_balance;
c5afb6a8
VG
8162
8163#ifdef CONFIG_NO_HZ_COMMON
8164 /*
8165 * If this CPU has been elected to perform the nohz idle
8166 * balance. Other idle CPUs have already rebalanced with
8167 * nohz_idle_balance() and nohz.next_balance has been
8168 * updated accordingly. This CPU is now running the idle load
8169 * balance for itself and we need to update the
8170 * nohz.next_balance accordingly.
8171 */
8172 if ((idle == CPU_IDLE) && time_after(nohz.next_balance, rq->next_balance))
8173 nohz.next_balance = rq->next_balance;
8174#endif
8175 }
1e3c88bd
PZ
8176}
8177
3451d024 8178#ifdef CONFIG_NO_HZ_COMMON
1e3c88bd 8179/*
3451d024 8180 * In CONFIG_NO_HZ_COMMON case, the idle balance kickee will do the
1e3c88bd
PZ
8181 * rebalancing for all the cpus for whom scheduler ticks are stopped.
8182 */
208cb16b 8183static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle)
83cd4fe2 8184{
208cb16b 8185 int this_cpu = this_rq->cpu;
83cd4fe2
VP
8186 struct rq *rq;
8187 int balance_cpu;
c5afb6a8
VG
8188 /* Earliest time when we have to do rebalance again */
8189 unsigned long next_balance = jiffies + 60*HZ;
8190 int update_next_balance = 0;
83cd4fe2 8191
1c792db7
SS
8192 if (idle != CPU_IDLE ||
8193 !test_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu)))
8194 goto end;
83cd4fe2
VP
8195
8196 for_each_cpu(balance_cpu, nohz.idle_cpus_mask) {
8a6d42d1 8197 if (balance_cpu == this_cpu || !idle_cpu(balance_cpu))
83cd4fe2
VP
8198 continue;
8199
8200 /*
8201 * If this cpu gets work to do, stop the load balancing
8202 * work being done for other cpus. Next load
8203 * balancing owner will pick it up.
8204 */
1c792db7 8205 if (need_resched())
83cd4fe2 8206 break;
83cd4fe2 8207
5ed4f1d9
VG
8208 rq = cpu_rq(balance_cpu);
8209
ed61bbc6
TC
8210 /*
8211 * If time for next balance is due,
8212 * do the balance.
8213 */
8214 if (time_after_eq(jiffies, rq->next_balance)) {
8215 raw_spin_lock_irq(&rq->lock);
8216 update_rq_clock(rq);
cee1afce 8217 cpu_load_update_idle(rq);
ed61bbc6
TC
8218 raw_spin_unlock_irq(&rq->lock);
8219 rebalance_domains(rq, CPU_IDLE);
8220 }
83cd4fe2 8221
c5afb6a8
VG
8222 if (time_after(next_balance, rq->next_balance)) {
8223 next_balance = rq->next_balance;
8224 update_next_balance = 1;
8225 }
83cd4fe2 8226 }
c5afb6a8
VG
8227
8228 /*
8229 * next_balance will be updated only when there is a need.
8230 * When the CPU is attached to null domain for ex, it will not be
8231 * updated.
8232 */
8233 if (likely(update_next_balance))
8234 nohz.next_balance = next_balance;
1c792db7
SS
8235end:
8236 clear_bit(NOHZ_BALANCE_KICK, nohz_flags(this_cpu));
83cd4fe2
VP
8237}
8238
8239/*
0b005cf5 8240 * Current heuristic for kicking the idle load balancer in the presence
1aaf90a4 8241 * of an idle cpu in the system.
0b005cf5 8242 * - This rq has more than one task.
1aaf90a4
VG
8243 * - This rq has at least one CFS task and the capacity of the CPU is
8244 * significantly reduced because of RT tasks or IRQs.
8245 * - At parent of LLC scheduler domain level, this cpu's scheduler group has
8246 * multiple busy cpu.
0b005cf5
SS
8247 * - For SD_ASYM_PACKING, if the lower numbered cpu's in the scheduler
8248 * domain span are idle.
83cd4fe2 8249 */
1aaf90a4 8250static inline bool nohz_kick_needed(struct rq *rq)
83cd4fe2
VP
8251{
8252 unsigned long now = jiffies;
0b005cf5 8253 struct sched_domain *sd;
63b2ca30 8254 struct sched_group_capacity *sgc;
4a725627 8255 int nr_busy, cpu = rq->cpu;
1aaf90a4 8256 bool kick = false;
83cd4fe2 8257
4a725627 8258 if (unlikely(rq->idle_balance))
1aaf90a4 8259 return false;
83cd4fe2 8260
1c792db7
SS
8261 /*
8262 * We may be recently in ticked or tickless idle mode. At the first
8263 * busy tick after returning from idle, we will update the busy stats.
8264 */
69e1e811 8265 set_cpu_sd_state_busy();
c1cc017c 8266 nohz_balance_exit_idle(cpu);
0b005cf5
SS
8267
8268 /*
8269 * None are in tickless mode and hence no need for NOHZ idle load
8270 * balancing.
8271 */
8272 if (likely(!atomic_read(&nohz.nr_cpus)))
1aaf90a4 8273 return false;
1c792db7
SS
8274
8275 if (time_before(now, nohz.next_balance))
1aaf90a4 8276 return false;
83cd4fe2 8277
0b005cf5 8278 if (rq->nr_running >= 2)
1aaf90a4 8279 return true;
83cd4fe2 8280
067491b7 8281 rcu_read_lock();
37dc6b50 8282 sd = rcu_dereference(per_cpu(sd_busy, cpu));
37dc6b50 8283 if (sd) {
63b2ca30
NP
8284 sgc = sd->groups->sgc;
8285 nr_busy = atomic_read(&sgc->nr_busy_cpus);
0b005cf5 8286
1aaf90a4
VG
8287 if (nr_busy > 1) {
8288 kick = true;
8289 goto unlock;
8290 }
8291
83cd4fe2 8292 }
37dc6b50 8293
1aaf90a4
VG
8294 sd = rcu_dereference(rq->sd);
8295 if (sd) {
8296 if ((rq->cfs.h_nr_running >= 1) &&
8297 check_cpu_capacity(rq, sd)) {
8298 kick = true;
8299 goto unlock;
8300 }
8301 }
37dc6b50 8302
1aaf90a4 8303 sd = rcu_dereference(per_cpu(sd_asym, cpu));
37dc6b50 8304 if (sd && (cpumask_first_and(nohz.idle_cpus_mask,
1aaf90a4
VG
8305 sched_domain_span(sd)) < cpu)) {
8306 kick = true;
8307 goto unlock;
8308 }
067491b7 8309
1aaf90a4 8310unlock:
067491b7 8311 rcu_read_unlock();
1aaf90a4 8312 return kick;
83cd4fe2
VP
8313}
8314#else
208cb16b 8315static void nohz_idle_balance(struct rq *this_rq, enum cpu_idle_type idle) { }
83cd4fe2
VP
8316#endif
8317
8318/*
8319 * run_rebalance_domains is triggered when needed from the scheduler tick.
8320 * Also triggered for nohz idle balancing (with nohz_balancing_kick set).
8321 */
09dd109d 8322static __latent_entropy void run_rebalance_domains(struct softirq_action *h)
1e3c88bd 8323{
208cb16b 8324 struct rq *this_rq = this_rq();
6eb57e0d 8325 enum cpu_idle_type idle = this_rq->idle_balance ?
1e3c88bd
PZ
8326 CPU_IDLE : CPU_NOT_IDLE;
8327
1e3c88bd 8328 /*
83cd4fe2 8329 * If this cpu has a pending nohz_balance_kick, then do the
1e3c88bd 8330 * balancing on behalf of the other idle cpus whose ticks are
d4573c3e
PM
8331 * stopped. Do nohz_idle_balance *before* rebalance_domains to
8332 * give the idle cpus a chance to load balance. Else we may
8333 * load balance only within the local sched_domain hierarchy
8334 * and abort nohz_idle_balance altogether if we pull some load.
1e3c88bd 8335 */
208cb16b 8336 nohz_idle_balance(this_rq, idle);
d4573c3e 8337 rebalance_domains(this_rq, idle);
1e3c88bd
PZ
8338}
8339
1e3c88bd
PZ
8340/*
8341 * Trigger the SCHED_SOFTIRQ if it is time to do periodic load balancing.
1e3c88bd 8342 */
7caff66f 8343void trigger_load_balance(struct rq *rq)
1e3c88bd 8344{
1e3c88bd 8345 /* Don't need to rebalance while attached to NULL domain */
c726099e
DL
8346 if (unlikely(on_null_domain(rq)))
8347 return;
8348
8349 if (time_after_eq(jiffies, rq->next_balance))
1e3c88bd 8350 raise_softirq(SCHED_SOFTIRQ);
3451d024 8351#ifdef CONFIG_NO_HZ_COMMON
c726099e 8352 if (nohz_kick_needed(rq))
0aeeeeba 8353 nohz_balancer_kick();
83cd4fe2 8354#endif
1e3c88bd
PZ
8355}
8356
0bcdcf28
CE
8357static void rq_online_fair(struct rq *rq)
8358{
8359 update_sysctl();
0e59bdae
KT
8360
8361 update_runtime_enabled(rq);
0bcdcf28
CE
8362}
8363
8364static void rq_offline_fair(struct rq *rq)
8365{
8366 update_sysctl();
a4c96ae3
PB
8367
8368 /* Ensure any throttled groups are reachable by pick_next_task */
8369 unthrottle_offline_cfs_rqs(rq);
0bcdcf28
CE
8370}
8371
55e12e5e 8372#endif /* CONFIG_SMP */
e1d1484f 8373
bf0f6f24
IM
8374/*
8375 * scheduler tick hitting a task of our scheduling class:
8376 */
8f4d37ec 8377static void task_tick_fair(struct rq *rq, struct task_struct *curr, int queued)
bf0f6f24
IM
8378{
8379 struct cfs_rq *cfs_rq;
8380 struct sched_entity *se = &curr->se;
8381
8382 for_each_sched_entity(se) {
8383 cfs_rq = cfs_rq_of(se);
8f4d37ec 8384 entity_tick(cfs_rq, se, queued);
bf0f6f24 8385 }
18bf2805 8386
b52da86e 8387 if (static_branch_unlikely(&sched_numa_balancing))
cbee9f88 8388 task_tick_numa(rq, curr);
bf0f6f24
IM
8389}
8390
8391/*
cd29fe6f
PZ
8392 * called on fork with the child task as argument from the parent's context
8393 * - child not yet on the tasklist
8394 * - preemption disabled
bf0f6f24 8395 */
cd29fe6f 8396static void task_fork_fair(struct task_struct *p)
bf0f6f24 8397{
4fc420c9
DN
8398 struct cfs_rq *cfs_rq;
8399 struct sched_entity *se = &p->se, *curr;
cd29fe6f 8400 struct rq *rq = this_rq();
bf0f6f24 8401
e210bffd 8402 raw_spin_lock(&rq->lock);
861d034e
PZ
8403 update_rq_clock(rq);
8404
4fc420c9
DN
8405 cfs_rq = task_cfs_rq(current);
8406 curr = cfs_rq->curr;
e210bffd
PZ
8407 if (curr) {
8408 update_curr(cfs_rq);
b5d9d734 8409 se->vruntime = curr->vruntime;
e210bffd 8410 }
aeb73b04 8411 place_entity(cfs_rq, se, 1);
4d78e7b6 8412
cd29fe6f 8413 if (sysctl_sched_child_runs_first && curr && entity_before(curr, se)) {
87fefa38 8414 /*
edcb60a3
IM
8415 * Upon rescheduling, sched_class::put_prev_task() will place
8416 * 'current' within the tree based on its new key value.
8417 */
4d78e7b6 8418 swap(curr->vruntime, se->vruntime);
8875125e 8419 resched_curr(rq);
4d78e7b6 8420 }
bf0f6f24 8421
88ec22d3 8422 se->vruntime -= cfs_rq->min_vruntime;
e210bffd 8423 raw_spin_unlock(&rq->lock);
bf0f6f24
IM
8424}
8425
cb469845
SR
8426/*
8427 * Priority of the task has changed. Check to see if we preempt
8428 * the current task.
8429 */
da7a735e
PZ
8430static void
8431prio_changed_fair(struct rq *rq, struct task_struct *p, int oldprio)
cb469845 8432{
da0c1e65 8433 if (!task_on_rq_queued(p))
da7a735e
PZ
8434 return;
8435
cb469845
SR
8436 /*
8437 * Reschedule if we are currently running on this runqueue and
8438 * our priority decreased, or if we are not currently running on
8439 * this runqueue and our priority is higher than the current's
8440 */
da7a735e 8441 if (rq->curr == p) {
cb469845 8442 if (p->prio > oldprio)
8875125e 8443 resched_curr(rq);
cb469845 8444 } else
15afe09b 8445 check_preempt_curr(rq, p, 0);
cb469845
SR
8446}
8447
daa59407 8448static inline bool vruntime_normalized(struct task_struct *p)
da7a735e
PZ
8449{
8450 struct sched_entity *se = &p->se;
da7a735e
PZ
8451
8452 /*
daa59407
BP
8453 * In both the TASK_ON_RQ_QUEUED and TASK_ON_RQ_MIGRATING cases,
8454 * the dequeue_entity(.flags=0) will already have normalized the
8455 * vruntime.
8456 */
8457 if (p->on_rq)
8458 return true;
8459
8460 /*
8461 * When !on_rq, vruntime of the task has usually NOT been normalized.
8462 * But there are some cases where it has already been normalized:
da7a735e 8463 *
daa59407
BP
8464 * - A forked child which is waiting for being woken up by
8465 * wake_up_new_task().
8466 * - A task which has been woken up by try_to_wake_up() and
8467 * waiting for actually being woken up by sched_ttwu_pending().
da7a735e 8468 */
daa59407
BP
8469 if (!se->sum_exec_runtime || p->state == TASK_WAKING)
8470 return true;
8471
8472 return false;
8473}
8474
8475static void detach_task_cfs_rq(struct task_struct *p)
8476{
8477 struct sched_entity *se = &p->se;
8478 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8479 u64 now = cfs_rq_clock_task(cfs_rq);
daa59407
BP
8480
8481 if (!vruntime_normalized(p)) {
da7a735e
PZ
8482 /*
8483 * Fix up our vruntime so that the current sleep doesn't
8484 * cause 'unlimited' sleep bonus.
8485 */
8486 place_entity(cfs_rq, se, 0);
8487 se->vruntime -= cfs_rq->min_vruntime;
8488 }
9ee474f5 8489
9d89c257 8490 /* Catch up with the cfs_rq and remove our load when we leave */
7c3edd2c 8491 update_cfs_rq_load_avg(now, cfs_rq, false);
a05e8c51 8492 detach_entity_load_avg(cfs_rq, se);
7c3edd2c 8493 update_tg_load_avg(cfs_rq, false);
da7a735e
PZ
8494}
8495
daa59407 8496static void attach_task_cfs_rq(struct task_struct *p)
cb469845 8497{
f36c019c 8498 struct sched_entity *se = &p->se;
daa59407 8499 struct cfs_rq *cfs_rq = cfs_rq_of(se);
01011473 8500 u64 now = cfs_rq_clock_task(cfs_rq);
7855a35a
BP
8501
8502#ifdef CONFIG_FAIR_GROUP_SCHED
eb7a59b2
M
8503 /*
8504 * Since the real-depth could have been changed (only FAIR
8505 * class maintain depth value), reset depth properly.
8506 */
8507 se->depth = se->parent ? se->parent->depth + 1 : 0;
8508#endif
7855a35a 8509
6efdb105 8510 /* Synchronize task with its cfs_rq */
7c3edd2c 8511 update_cfs_rq_load_avg(now, cfs_rq, false);
daa59407 8512 attach_entity_load_avg(cfs_rq, se);
7c3edd2c 8513 update_tg_load_avg(cfs_rq, false);
daa59407
BP
8514
8515 if (!vruntime_normalized(p))
8516 se->vruntime += cfs_rq->min_vruntime;
8517}
6efdb105 8518
daa59407
BP
8519static void switched_from_fair(struct rq *rq, struct task_struct *p)
8520{
8521 detach_task_cfs_rq(p);
8522}
8523
8524static void switched_to_fair(struct rq *rq, struct task_struct *p)
8525{
8526 attach_task_cfs_rq(p);
7855a35a 8527
daa59407 8528 if (task_on_rq_queued(p)) {
7855a35a 8529 /*
daa59407
BP
8530 * We were most likely switched from sched_rt, so
8531 * kick off the schedule if running, otherwise just see
8532 * if we can still preempt the current task.
7855a35a 8533 */
daa59407
BP
8534 if (rq->curr == p)
8535 resched_curr(rq);
8536 else
8537 check_preempt_curr(rq, p, 0);
7855a35a 8538 }
cb469845
SR
8539}
8540
83b699ed
SV
8541/* Account for a task changing its policy or group.
8542 *
8543 * This routine is mostly called to set cfs_rq->curr field when a task
8544 * migrates between groups/classes.
8545 */
8546static void set_curr_task_fair(struct rq *rq)
8547{
8548 struct sched_entity *se = &rq->curr->se;
8549
ec12cb7f
PT
8550 for_each_sched_entity(se) {
8551 struct cfs_rq *cfs_rq = cfs_rq_of(se);
8552
8553 set_next_entity(cfs_rq, se);
8554 /* ensure bandwidth has been allocated on our new cfs_rq */
8555 account_cfs_rq_runtime(cfs_rq, 0);
8556 }
83b699ed
SV
8557}
8558
029632fb
PZ
8559void init_cfs_rq(struct cfs_rq *cfs_rq)
8560{
8561 cfs_rq->tasks_timeline = RB_ROOT;
029632fb
PZ
8562 cfs_rq->min_vruntime = (u64)(-(1LL << 20));
8563#ifndef CONFIG_64BIT
8564 cfs_rq->min_vruntime_copy = cfs_rq->min_vruntime;
8565#endif
141965c7 8566#ifdef CONFIG_SMP
9d89c257
YD
8567 atomic_long_set(&cfs_rq->removed_load_avg, 0);
8568 atomic_long_set(&cfs_rq->removed_util_avg, 0);
9ee474f5 8569#endif
029632fb
PZ
8570}
8571
810b3817 8572#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b
VG
8573static void task_set_group_fair(struct task_struct *p)
8574{
8575 struct sched_entity *se = &p->se;
8576
8577 set_task_rq(p, task_cpu(p));
8578 se->depth = se->parent ? se->parent->depth + 1 : 0;
8579}
8580
bc54da21 8581static void task_move_group_fair(struct task_struct *p)
810b3817 8582{
daa59407 8583 detach_task_cfs_rq(p);
b2b5ce02 8584 set_task_rq(p, task_cpu(p));
6efdb105
BP
8585
8586#ifdef CONFIG_SMP
8587 /* Tell se's cfs_rq has been changed -- migrated */
8588 p->se.avg.last_update_time = 0;
8589#endif
daa59407 8590 attach_task_cfs_rq(p);
810b3817 8591}
029632fb 8592
ea86cb4b
VG
8593static void task_change_group_fair(struct task_struct *p, int type)
8594{
8595 switch (type) {
8596 case TASK_SET_GROUP:
8597 task_set_group_fair(p);
8598 break;
8599
8600 case TASK_MOVE_GROUP:
8601 task_move_group_fair(p);
8602 break;
8603 }
8604}
8605
029632fb
PZ
8606void free_fair_sched_group(struct task_group *tg)
8607{
8608 int i;
8609
8610 destroy_cfs_bandwidth(tg_cfs_bandwidth(tg));
8611
8612 for_each_possible_cpu(i) {
8613 if (tg->cfs_rq)
8614 kfree(tg->cfs_rq[i]);
6fe1f348 8615 if (tg->se)
029632fb
PZ
8616 kfree(tg->se[i]);
8617 }
8618
8619 kfree(tg->cfs_rq);
8620 kfree(tg->se);
8621}
8622
8623int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8624{
029632fb 8625 struct sched_entity *se;
b7fa30c9
PZ
8626 struct cfs_rq *cfs_rq;
8627 struct rq *rq;
029632fb
PZ
8628 int i;
8629
8630 tg->cfs_rq = kzalloc(sizeof(cfs_rq) * nr_cpu_ids, GFP_KERNEL);
8631 if (!tg->cfs_rq)
8632 goto err;
8633 tg->se = kzalloc(sizeof(se) * nr_cpu_ids, GFP_KERNEL);
8634 if (!tg->se)
8635 goto err;
8636
8637 tg->shares = NICE_0_LOAD;
8638
8639 init_cfs_bandwidth(tg_cfs_bandwidth(tg));
8640
8641 for_each_possible_cpu(i) {
b7fa30c9
PZ
8642 rq = cpu_rq(i);
8643
029632fb
PZ
8644 cfs_rq = kzalloc_node(sizeof(struct cfs_rq),
8645 GFP_KERNEL, cpu_to_node(i));
8646 if (!cfs_rq)
8647 goto err;
8648
8649 se = kzalloc_node(sizeof(struct sched_entity),
8650 GFP_KERNEL, cpu_to_node(i));
8651 if (!se)
8652 goto err_free_rq;
8653
8654 init_cfs_rq(cfs_rq);
8655 init_tg_cfs_entry(tg, cfs_rq, se, i, parent->se[i]);
540247fb 8656 init_entity_runnable_average(se);
029632fb
PZ
8657 }
8658
8659 return 1;
8660
8661err_free_rq:
8662 kfree(cfs_rq);
8663err:
8664 return 0;
8665}
8666
8663e24d
PZ
8667void online_fair_sched_group(struct task_group *tg)
8668{
8669 struct sched_entity *se;
8670 struct rq *rq;
8671 int i;
8672
8673 for_each_possible_cpu(i) {
8674 rq = cpu_rq(i);
8675 se = tg->se[i];
8676
8677 raw_spin_lock_irq(&rq->lock);
8678 post_init_entity_util_avg(se);
55e16d30 8679 sync_throttle(tg, i);
8663e24d
PZ
8680 raw_spin_unlock_irq(&rq->lock);
8681 }
8682}
8683
6fe1f348 8684void unregister_fair_sched_group(struct task_group *tg)
029632fb 8685{
029632fb 8686 unsigned long flags;
6fe1f348
PZ
8687 struct rq *rq;
8688 int cpu;
029632fb 8689
6fe1f348
PZ
8690 for_each_possible_cpu(cpu) {
8691 if (tg->se[cpu])
8692 remove_entity_load_avg(tg->se[cpu]);
029632fb 8693
6fe1f348
PZ
8694 /*
8695 * Only empty task groups can be destroyed; so we can speculatively
8696 * check on_list without danger of it being re-added.
8697 */
8698 if (!tg->cfs_rq[cpu]->on_list)
8699 continue;
8700
8701 rq = cpu_rq(cpu);
8702
8703 raw_spin_lock_irqsave(&rq->lock, flags);
8704 list_del_leaf_cfs_rq(tg->cfs_rq[cpu]);
8705 raw_spin_unlock_irqrestore(&rq->lock, flags);
8706 }
029632fb
PZ
8707}
8708
8709void init_tg_cfs_entry(struct task_group *tg, struct cfs_rq *cfs_rq,
8710 struct sched_entity *se, int cpu,
8711 struct sched_entity *parent)
8712{
8713 struct rq *rq = cpu_rq(cpu);
8714
8715 cfs_rq->tg = tg;
8716 cfs_rq->rq = rq;
029632fb
PZ
8717 init_cfs_rq_runtime(cfs_rq);
8718
8719 tg->cfs_rq[cpu] = cfs_rq;
8720 tg->se[cpu] = se;
8721
8722 /* se could be NULL for root_task_group */
8723 if (!se)
8724 return;
8725
fed14d45 8726 if (!parent) {
029632fb 8727 se->cfs_rq = &rq->cfs;
fed14d45
PZ
8728 se->depth = 0;
8729 } else {
029632fb 8730 se->cfs_rq = parent->my_q;
fed14d45
PZ
8731 se->depth = parent->depth + 1;
8732 }
029632fb
PZ
8733
8734 se->my_q = cfs_rq;
0ac9b1c2
PT
8735 /* guarantee group entities always have weight */
8736 update_load_set(&se->load, NICE_0_LOAD);
029632fb
PZ
8737 se->parent = parent;
8738}
8739
8740static DEFINE_MUTEX(shares_mutex);
8741
8742int sched_group_set_shares(struct task_group *tg, unsigned long shares)
8743{
8744 int i;
8745 unsigned long flags;
8746
8747 /*
8748 * We can't change the weight of the root cgroup.
8749 */
8750 if (!tg->se[0])
8751 return -EINVAL;
8752
8753 shares = clamp(shares, scale_load(MIN_SHARES), scale_load(MAX_SHARES));
8754
8755 mutex_lock(&shares_mutex);
8756 if (tg->shares == shares)
8757 goto done;
8758
8759 tg->shares = shares;
8760 for_each_possible_cpu(i) {
8761 struct rq *rq = cpu_rq(i);
8762 struct sched_entity *se;
8763
8764 se = tg->se[i];
8765 /* Propagate contribution to hierarchy */
8766 raw_spin_lock_irqsave(&rq->lock, flags);
71b1da46
FW
8767
8768 /* Possible calls to update_curr() need rq clock */
8769 update_rq_clock(rq);
17bc14b7 8770 for_each_sched_entity(se)
029632fb
PZ
8771 update_cfs_shares(group_cfs_rq(se));
8772 raw_spin_unlock_irqrestore(&rq->lock, flags);
8773 }
8774
8775done:
8776 mutex_unlock(&shares_mutex);
8777 return 0;
8778}
8779#else /* CONFIG_FAIR_GROUP_SCHED */
8780
8781void free_fair_sched_group(struct task_group *tg) { }
8782
8783int alloc_fair_sched_group(struct task_group *tg, struct task_group *parent)
8784{
8785 return 1;
8786}
8787
8663e24d
PZ
8788void online_fair_sched_group(struct task_group *tg) { }
8789
6fe1f348 8790void unregister_fair_sched_group(struct task_group *tg) { }
029632fb
PZ
8791
8792#endif /* CONFIG_FAIR_GROUP_SCHED */
8793
810b3817 8794
6d686f45 8795static unsigned int get_rr_interval_fair(struct rq *rq, struct task_struct *task)
0d721cea
PW
8796{
8797 struct sched_entity *se = &task->se;
0d721cea
PW
8798 unsigned int rr_interval = 0;
8799
8800 /*
8801 * Time slice is 0 for SCHED_OTHER tasks that are on an otherwise
8802 * idle runqueue:
8803 */
0d721cea 8804 if (rq->cfs.load.weight)
a59f4e07 8805 rr_interval = NS_TO_JIFFIES(sched_slice(cfs_rq_of(se), se));
0d721cea
PW
8806
8807 return rr_interval;
8808}
8809
bf0f6f24
IM
8810/*
8811 * All the scheduling class methods:
8812 */
029632fb 8813const struct sched_class fair_sched_class = {
5522d5d5 8814 .next = &idle_sched_class,
bf0f6f24
IM
8815 .enqueue_task = enqueue_task_fair,
8816 .dequeue_task = dequeue_task_fair,
8817 .yield_task = yield_task_fair,
d95f4122 8818 .yield_to_task = yield_to_task_fair,
bf0f6f24 8819
2e09bf55 8820 .check_preempt_curr = check_preempt_wakeup,
bf0f6f24
IM
8821
8822 .pick_next_task = pick_next_task_fair,
8823 .put_prev_task = put_prev_task_fair,
8824
681f3e68 8825#ifdef CONFIG_SMP
4ce72a2c 8826 .select_task_rq = select_task_rq_fair,
0a74bef8 8827 .migrate_task_rq = migrate_task_rq_fair,
141965c7 8828
0bcdcf28
CE
8829 .rq_online = rq_online_fair,
8830 .rq_offline = rq_offline_fair,
88ec22d3 8831
12695578 8832 .task_dead = task_dead_fair,
c5b28038 8833 .set_cpus_allowed = set_cpus_allowed_common,
681f3e68 8834#endif
bf0f6f24 8835
83b699ed 8836 .set_curr_task = set_curr_task_fair,
bf0f6f24 8837 .task_tick = task_tick_fair,
cd29fe6f 8838 .task_fork = task_fork_fair,
cb469845
SR
8839
8840 .prio_changed = prio_changed_fair,
da7a735e 8841 .switched_from = switched_from_fair,
cb469845 8842 .switched_to = switched_to_fair,
810b3817 8843
0d721cea
PW
8844 .get_rr_interval = get_rr_interval_fair,
8845
6e998916
SG
8846 .update_curr = update_curr_fair,
8847
810b3817 8848#ifdef CONFIG_FAIR_GROUP_SCHED
ea86cb4b 8849 .task_change_group = task_change_group_fair,
810b3817 8850#endif
bf0f6f24
IM
8851};
8852
8853#ifdef CONFIG_SCHED_DEBUG
029632fb 8854void print_cfs_stats(struct seq_file *m, int cpu)
bf0f6f24 8855{
bf0f6f24
IM
8856 struct cfs_rq *cfs_rq;
8857
5973e5b9 8858 rcu_read_lock();
c3b64f1e 8859 for_each_leaf_cfs_rq(cpu_rq(cpu), cfs_rq)
5cef9eca 8860 print_cfs_rq(m, cpu, cfs_rq);
5973e5b9 8861 rcu_read_unlock();
bf0f6f24 8862}
397f2378
SD
8863
8864#ifdef CONFIG_NUMA_BALANCING
8865void show_numa_stats(struct task_struct *p, struct seq_file *m)
8866{
8867 int node;
8868 unsigned long tsf = 0, tpf = 0, gsf = 0, gpf = 0;
8869
8870 for_each_online_node(node) {
8871 if (p->numa_faults) {
8872 tsf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 0)];
8873 tpf = p->numa_faults[task_faults_idx(NUMA_MEM, node, 1)];
8874 }
8875 if (p->numa_group) {
8876 gsf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 0)],
8877 gpf = p->numa_group->faults[task_faults_idx(NUMA_MEM, node, 1)];
8878 }
8879 print_numa_stats(m, node, tsf, tpf, gsf, gpf);
8880 }
8881}
8882#endif /* CONFIG_NUMA_BALANCING */
8883#endif /* CONFIG_SCHED_DEBUG */
029632fb
PZ
8884
8885__init void init_sched_fair_class(void)
8886{
8887#ifdef CONFIG_SMP
8888 open_softirq(SCHED_SOFTIRQ, run_rebalance_domains);
8889
3451d024 8890#ifdef CONFIG_NO_HZ_COMMON
554cecaf 8891 nohz.next_balance = jiffies;
029632fb 8892 zalloc_cpumask_var(&nohz.idle_cpus_mask, GFP_NOWAIT);
029632fb
PZ
8893#endif
8894#endif /* SMP */
8895
8896}
This page took 1.463778 seconds and 5 git commands to generate.