timekeeping: Fix __ktime_get_fast_ns() regression
[deliverable/linux.git] / kernel / time / timekeeping.c
CommitLineData
8524070b 1/*
2 * linux/kernel/time/timekeeping.c
3 *
4 * Kernel timekeeping code and accessor functions
5 *
6 * This code was moved from linux/kernel/timer.c.
7 * Please see that file for copyright and history logs.
8 *
9 */
10
d7b4202e 11#include <linux/timekeeper_internal.h>
8524070b 12#include <linux/module.h>
13#include <linux/interrupt.h>
14#include <linux/percpu.h>
15#include <linux/init.h>
16#include <linux/mm.h>
d43c36dc 17#include <linux/sched.h>
e1a85b2c 18#include <linux/syscore_ops.h>
8524070b 19#include <linux/clocksource.h>
20#include <linux/jiffies.h>
21#include <linux/time.h>
22#include <linux/tick.h>
75c5158f 23#include <linux/stop_machine.h>
e0b306fe 24#include <linux/pvclock_gtod.h>
52f5684c 25#include <linux/compiler.h>
8524070b 26
eb93e4d9 27#include "tick-internal.h"
aa6f9c59 28#include "ntp_internal.h"
5c83545f 29#include "timekeeping_internal.h"
155ec602 30
04397fe9
DV
31#define TK_CLEAR_NTP (1 << 0)
32#define TK_MIRROR (1 << 1)
780427f0 33#define TK_CLOCK_WAS_SET (1 << 2)
04397fe9 34
3fdb14fd
TG
35/*
36 * The most important data for readout fits into a single 64 byte
37 * cache line.
38 */
39static struct {
40 seqcount_t seq;
41 struct timekeeper timekeeper;
42} tk_core ____cacheline_aligned;
43
9a7a71b1 44static DEFINE_RAW_SPINLOCK(timekeeper_lock);
48cdc135 45static struct timekeeper shadow_timekeeper;
155ec602 46
4396e058
TG
47/**
48 * struct tk_fast - NMI safe timekeeper
49 * @seq: Sequence counter for protecting updates. The lowest bit
50 * is the index for the tk_read_base array
51 * @base: tk_read_base array. Access is indexed by the lowest bit of
52 * @seq.
53 *
54 * See @update_fast_timekeeper() below.
55 */
56struct tk_fast {
57 seqcount_t seq;
58 struct tk_read_base base[2];
59};
60
61static struct tk_fast tk_fast_mono ____cacheline_aligned;
f09cb9a1 62static struct tk_fast tk_fast_raw ____cacheline_aligned;
4396e058 63
8fcce546
JS
64/* flag for if timekeeping is suspended */
65int __read_mostly timekeeping_suspended;
66
1e75fa8b
JS
67static inline void tk_normalize_xtime(struct timekeeper *tk)
68{
876e7881
PZ
69 while (tk->tkr_mono.xtime_nsec >= ((u64)NSEC_PER_SEC << tk->tkr_mono.shift)) {
70 tk->tkr_mono.xtime_nsec -= (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
1e75fa8b
JS
71 tk->xtime_sec++;
72 }
73}
74
c905fae4
TG
75static inline struct timespec64 tk_xtime(struct timekeeper *tk)
76{
77 struct timespec64 ts;
78
79 ts.tv_sec = tk->xtime_sec;
876e7881 80 ts.tv_nsec = (long)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
c905fae4
TG
81 return ts;
82}
83
7d489d15 84static void tk_set_xtime(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
85{
86 tk->xtime_sec = ts->tv_sec;
876e7881 87 tk->tkr_mono.xtime_nsec = (u64)ts->tv_nsec << tk->tkr_mono.shift;
1e75fa8b
JS
88}
89
7d489d15 90static void tk_xtime_add(struct timekeeper *tk, const struct timespec64 *ts)
1e75fa8b
JS
91{
92 tk->xtime_sec += ts->tv_sec;
876e7881 93 tk->tkr_mono.xtime_nsec += (u64)ts->tv_nsec << tk->tkr_mono.shift;
784ffcbb 94 tk_normalize_xtime(tk);
1e75fa8b 95}
8fcce546 96
7d489d15 97static void tk_set_wall_to_mono(struct timekeeper *tk, struct timespec64 wtm)
6d0ef903 98{
7d489d15 99 struct timespec64 tmp;
6d0ef903
JS
100
101 /*
102 * Verify consistency of: offset_real = -wall_to_monotonic
103 * before modifying anything
104 */
7d489d15 105 set_normalized_timespec64(&tmp, -tk->wall_to_monotonic.tv_sec,
6d0ef903 106 -tk->wall_to_monotonic.tv_nsec);
7d489d15 107 WARN_ON_ONCE(tk->offs_real.tv64 != timespec64_to_ktime(tmp).tv64);
6d0ef903 108 tk->wall_to_monotonic = wtm;
7d489d15
JS
109 set_normalized_timespec64(&tmp, -wtm.tv_sec, -wtm.tv_nsec);
110 tk->offs_real = timespec64_to_ktime(tmp);
04005f60 111 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tk->tai_offset, 0));
6d0ef903
JS
112}
113
47da70d3 114static inline void tk_update_sleep_time(struct timekeeper *tk, ktime_t delta)
6d0ef903 115{
47da70d3 116 tk->offs_boot = ktime_add(tk->offs_boot, delta);
6d0ef903
JS
117}
118
3c17ad19 119#ifdef CONFIG_DEBUG_TIMEKEEPING
4ca22c26 120#define WARNING_FREQ (HZ*300) /* 5 minute rate-limiting */
4ca22c26 121
3c17ad19
JS
122static void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
123{
124
876e7881
PZ
125 cycle_t max_cycles = tk->tkr_mono.clock->max_cycles;
126 const char *name = tk->tkr_mono.clock->name;
3c17ad19
JS
127
128 if (offset > max_cycles) {
a558cd02 129 printk_deferred("WARNING: timekeeping: Cycle offset (%lld) is larger than allowed by the '%s' clock's max_cycles value (%lld): time overflow danger\n",
3c17ad19 130 offset, name, max_cycles);
a558cd02 131 printk_deferred(" timekeeping: Your kernel is sick, but tries to cope by capping time updates\n");
3c17ad19
JS
132 } else {
133 if (offset > (max_cycles >> 1)) {
fc4fa6e1 134 printk_deferred("INFO: timekeeping: Cycle offset (%lld) is larger than the '%s' clock's 50%% safety margin (%lld)\n",
3c17ad19
JS
135 offset, name, max_cycles >> 1);
136 printk_deferred(" timekeeping: Your kernel is still fine, but is feeling a bit nervous\n");
137 }
138 }
4ca22c26 139
57d05a93
JS
140 if (tk->underflow_seen) {
141 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
142 printk_deferred("WARNING: Underflow in clocksource '%s' observed, time update ignored.\n", name);
143 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
144 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 145 tk->last_warning = jiffies;
4ca22c26 146 }
57d05a93 147 tk->underflow_seen = 0;
4ca22c26
JS
148 }
149
57d05a93
JS
150 if (tk->overflow_seen) {
151 if (jiffies - tk->last_warning > WARNING_FREQ) {
4ca22c26
JS
152 printk_deferred("WARNING: Overflow in clocksource '%s' observed, time update capped.\n", name);
153 printk_deferred(" Please report this, consider using a different clocksource, if possible.\n");
154 printk_deferred(" Your kernel is probably still fine.\n");
57d05a93 155 tk->last_warning = jiffies;
4ca22c26 156 }
57d05a93 157 tk->overflow_seen = 0;
4ca22c26 158 }
3c17ad19 159}
a558cd02
JS
160
161static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
162{
57d05a93 163 struct timekeeper *tk = &tk_core.timekeeper;
4ca22c26
JS
164 cycle_t now, last, mask, max, delta;
165 unsigned int seq;
a558cd02 166
4ca22c26
JS
167 /*
168 * Since we're called holding a seqlock, the data may shift
169 * under us while we're doing the calculation. This can cause
170 * false positives, since we'd note a problem but throw the
171 * results away. So nest another seqlock here to atomically
172 * grab the points we are checking with.
173 */
174 do {
175 seq = read_seqcount_begin(&tk_core.seq);
176 now = tkr->read(tkr->clock);
177 last = tkr->cycle_last;
178 mask = tkr->mask;
179 max = tkr->clock->max_cycles;
180 } while (read_seqcount_retry(&tk_core.seq, seq));
a558cd02 181
4ca22c26 182 delta = clocksource_delta(now, last, mask);
a558cd02 183
057b87e3
JS
184 /*
185 * Try to catch underflows by checking if we are seeing small
186 * mask-relative negative values.
187 */
4ca22c26 188 if (unlikely((~delta & mask) < (mask >> 3))) {
57d05a93 189 tk->underflow_seen = 1;
057b87e3 190 delta = 0;
4ca22c26 191 }
057b87e3 192
a558cd02 193 /* Cap delta value to the max_cycles values to avoid mult overflows */
4ca22c26 194 if (unlikely(delta > max)) {
57d05a93 195 tk->overflow_seen = 1;
a558cd02 196 delta = tkr->clock->max_cycles;
4ca22c26 197 }
a558cd02
JS
198
199 return delta;
200}
3c17ad19
JS
201#else
202static inline void timekeeping_check_update(struct timekeeper *tk, cycle_t offset)
203{
204}
a558cd02
JS
205static inline cycle_t timekeeping_get_delta(struct tk_read_base *tkr)
206{
207 cycle_t cycle_now, delta;
208
209 /* read clocksource */
210 cycle_now = tkr->read(tkr->clock);
211
212 /* calculate the delta since the last update_wall_time */
213 delta = clocksource_delta(cycle_now, tkr->cycle_last, tkr->mask);
214
215 return delta;
216}
3c17ad19
JS
217#endif
218
155ec602 219/**
d26e4fe0 220 * tk_setup_internals - Set up internals to use clocksource clock.
155ec602 221 *
d26e4fe0 222 * @tk: The target timekeeper to setup.
155ec602
MS
223 * @clock: Pointer to clocksource.
224 *
225 * Calculates a fixed cycle/nsec interval for a given clocksource/adjustment
226 * pair and interval request.
227 *
228 * Unless you're the timekeeping code, you should not be using this!
229 */
f726a697 230static void tk_setup_internals(struct timekeeper *tk, struct clocksource *clock)
155ec602
MS
231{
232 cycle_t interval;
a386b5af 233 u64 tmp, ntpinterval;
1e75fa8b 234 struct clocksource *old_clock;
155ec602 235
2c756feb 236 ++tk->cs_was_changed_seq;
876e7881
PZ
237 old_clock = tk->tkr_mono.clock;
238 tk->tkr_mono.clock = clock;
239 tk->tkr_mono.read = clock->read;
240 tk->tkr_mono.mask = clock->mask;
241 tk->tkr_mono.cycle_last = tk->tkr_mono.read(clock);
155ec602 242
4a4ad80d
PZ
243 tk->tkr_raw.clock = clock;
244 tk->tkr_raw.read = clock->read;
245 tk->tkr_raw.mask = clock->mask;
246 tk->tkr_raw.cycle_last = tk->tkr_mono.cycle_last;
247
155ec602
MS
248 /* Do the ns -> cycle conversion first, using original mult */
249 tmp = NTP_INTERVAL_LENGTH;
250 tmp <<= clock->shift;
a386b5af 251 ntpinterval = tmp;
0a544198
MS
252 tmp += clock->mult/2;
253 do_div(tmp, clock->mult);
155ec602
MS
254 if (tmp == 0)
255 tmp = 1;
256
257 interval = (cycle_t) tmp;
f726a697 258 tk->cycle_interval = interval;
155ec602
MS
259
260 /* Go back from cycles -> shifted ns */
f726a697
JS
261 tk->xtime_interval = (u64) interval * clock->mult;
262 tk->xtime_remainder = ntpinterval - tk->xtime_interval;
263 tk->raw_interval =
0a544198 264 ((u64) interval * clock->mult) >> clock->shift;
155ec602 265
1e75fa8b
JS
266 /* if changing clocks, convert xtime_nsec shift units */
267 if (old_clock) {
268 int shift_change = clock->shift - old_clock->shift;
269 if (shift_change < 0)
876e7881 270 tk->tkr_mono.xtime_nsec >>= -shift_change;
1e75fa8b 271 else
876e7881 272 tk->tkr_mono.xtime_nsec <<= shift_change;
1e75fa8b 273 }
4a4ad80d
PZ
274 tk->tkr_raw.xtime_nsec = 0;
275
876e7881 276 tk->tkr_mono.shift = clock->shift;
4a4ad80d 277 tk->tkr_raw.shift = clock->shift;
155ec602 278
f726a697
JS
279 tk->ntp_error = 0;
280 tk->ntp_error_shift = NTP_SCALE_SHIFT - clock->shift;
375f45b5 281 tk->ntp_tick = ntpinterval << tk->ntp_error_shift;
0a544198
MS
282
283 /*
284 * The timekeeper keeps its own mult values for the currently
285 * active clocksource. These value will be adjusted via NTP
286 * to counteract clock drifting.
287 */
876e7881 288 tk->tkr_mono.mult = clock->mult;
4a4ad80d 289 tk->tkr_raw.mult = clock->mult;
dc491596 290 tk->ntp_err_mult = 0;
155ec602 291}
8524070b 292
2ba2a305 293/* Timekeeper helper functions. */
7b1f6207
SW
294
295#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
e06fde37
TG
296static u32 default_arch_gettimeoffset(void) { return 0; }
297u32 (*arch_gettimeoffset)(void) = default_arch_gettimeoffset;
7b1f6207 298#else
e06fde37 299static inline u32 arch_gettimeoffset(void) { return 0; }
7b1f6207
SW
300#endif
301
6bd58f09
CH
302static inline s64 timekeeping_delta_to_ns(struct tk_read_base *tkr,
303 cycle_t delta)
304{
305 s64 nsec;
306
307 nsec = delta * tkr->mult + tkr->xtime_nsec;
308 nsec >>= tkr->shift;
309
310 /* If arch requires, add in get_arch_timeoffset() */
311 return nsec + arch_gettimeoffset();
312}
313
0e5ac3a8 314static inline s64 timekeeping_get_ns(struct tk_read_base *tkr)
2ba2a305 315{
a558cd02 316 cycle_t delta;
2ba2a305 317
a558cd02 318 delta = timekeeping_get_delta(tkr);
6bd58f09
CH
319 return timekeeping_delta_to_ns(tkr, delta);
320}
2ba2a305 321
6bd58f09
CH
322static inline s64 timekeeping_cycles_to_ns(struct tk_read_base *tkr,
323 cycle_t cycles)
324{
325 cycle_t delta;
f2a5a085 326
6bd58f09
CH
327 /* calculate the delta since the last update_wall_time */
328 delta = clocksource_delta(cycles, tkr->cycle_last, tkr->mask);
329 return timekeeping_delta_to_ns(tkr, delta);
2ba2a305
MS
330}
331
4396e058
TG
332/**
333 * update_fast_timekeeper - Update the fast and NMI safe monotonic timekeeper.
affe3e85 334 * @tkr: Timekeeping readout base from which we take the update
4396e058
TG
335 *
336 * We want to use this from any context including NMI and tracing /
337 * instrumenting the timekeeping code itself.
338 *
6695b92a 339 * Employ the latch technique; see @raw_write_seqcount_latch.
4396e058
TG
340 *
341 * So if a NMI hits the update of base[0] then it will use base[1]
342 * which is still consistent. In the worst case this can result is a
343 * slightly wrong timestamp (a few nanoseconds). See
344 * @ktime_get_mono_fast_ns.
345 */
4498e746 346static void update_fast_timekeeper(struct tk_read_base *tkr, struct tk_fast *tkf)
4396e058 347{
4498e746 348 struct tk_read_base *base = tkf->base;
4396e058
TG
349
350 /* Force readers off to base[1] */
4498e746 351 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
352
353 /* Update base[0] */
affe3e85 354 memcpy(base, tkr, sizeof(*base));
4396e058
TG
355
356 /* Force readers back to base[0] */
4498e746 357 raw_write_seqcount_latch(&tkf->seq);
4396e058
TG
358
359 /* Update base[1] */
360 memcpy(base + 1, base, sizeof(*base));
361}
362
363/**
364 * ktime_get_mono_fast_ns - Fast NMI safe access to clock monotonic
365 *
366 * This timestamp is not guaranteed to be monotonic across an update.
367 * The timestamp is calculated by:
368 *
369 * now = base_mono + clock_delta * slope
370 *
371 * So if the update lowers the slope, readers who are forced to the
372 * not yet updated second array are still using the old steeper slope.
373 *
374 * tmono
375 * ^
376 * | o n
377 * | o n
378 * | u
379 * | o
380 * |o
381 * |12345678---> reader order
382 *
383 * o = old slope
384 * u = update
385 * n = new slope
386 *
387 * So reader 6 will observe time going backwards versus reader 5.
388 *
389 * While other CPUs are likely to be able observe that, the only way
390 * for a CPU local observation is when an NMI hits in the middle of
391 * the update. Timestamps taken from that NMI context might be ahead
392 * of the following timestamps. Callers need to be aware of that and
393 * deal with it.
394 */
4498e746 395static __always_inline u64 __ktime_get_fast_ns(struct tk_fast *tkf)
4396e058
TG
396{
397 struct tk_read_base *tkr;
398 unsigned int seq;
399 u64 now;
400
401 do {
7fc26327 402 seq = raw_read_seqcount_latch(&tkf->seq);
4498e746 403 tkr = tkf->base + (seq & 0x01);
27727df2
JS
404 now = ktime_to_ns(tkr->base);
405
4e584cfe
JS
406 now += timekeeping_delta_to_ns(tkr,
407 clocksource_delta(
408 tkr->read(tkr->clock),
409 tkr->cycle_last,
410 tkr->mask));
4498e746 411 } while (read_seqcount_retry(&tkf->seq, seq));
4396e058 412
4396e058
TG
413 return now;
414}
4498e746
PZ
415
416u64 ktime_get_mono_fast_ns(void)
417{
418 return __ktime_get_fast_ns(&tk_fast_mono);
419}
4396e058
TG
420EXPORT_SYMBOL_GPL(ktime_get_mono_fast_ns);
421
f09cb9a1
PZ
422u64 ktime_get_raw_fast_ns(void)
423{
424 return __ktime_get_fast_ns(&tk_fast_raw);
425}
426EXPORT_SYMBOL_GPL(ktime_get_raw_fast_ns);
427
060407ae
RW
428/* Suspend-time cycles value for halted fast timekeeper. */
429static cycle_t cycles_at_suspend;
430
431static cycle_t dummy_clock_read(struct clocksource *cs)
432{
433 return cycles_at_suspend;
434}
435
436/**
437 * halt_fast_timekeeper - Prevent fast timekeeper from accessing clocksource.
438 * @tk: Timekeeper to snapshot.
439 *
440 * It generally is unsafe to access the clocksource after timekeeping has been
441 * suspended, so take a snapshot of the readout base of @tk and use it as the
442 * fast timekeeper's readout base while suspended. It will return the same
443 * number of cycles every time until timekeeping is resumed at which time the
444 * proper readout base for the fast timekeeper will be restored automatically.
445 */
446static void halt_fast_timekeeper(struct timekeeper *tk)
447{
448 static struct tk_read_base tkr_dummy;
876e7881 449 struct tk_read_base *tkr = &tk->tkr_mono;
060407ae
RW
450
451 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
452 cycles_at_suspend = tkr->read(tkr->clock);
453 tkr_dummy.read = dummy_clock_read;
4498e746 454 update_fast_timekeeper(&tkr_dummy, &tk_fast_mono);
f09cb9a1
PZ
455
456 tkr = &tk->tkr_raw;
457 memcpy(&tkr_dummy, tkr, sizeof(tkr_dummy));
458 tkr_dummy.read = dummy_clock_read;
459 update_fast_timekeeper(&tkr_dummy, &tk_fast_raw);
060407ae
RW
460}
461
c905fae4
TG
462#ifdef CONFIG_GENERIC_TIME_VSYSCALL_OLD
463
464static inline void update_vsyscall(struct timekeeper *tk)
465{
0680eb1f 466 struct timespec xt, wm;
c905fae4 467
e2dff1ec 468 xt = timespec64_to_timespec(tk_xtime(tk));
0680eb1f 469 wm = timespec64_to_timespec(tk->wall_to_monotonic);
876e7881
PZ
470 update_vsyscall_old(&xt, &wm, tk->tkr_mono.clock, tk->tkr_mono.mult,
471 tk->tkr_mono.cycle_last);
c905fae4
TG
472}
473
474static inline void old_vsyscall_fixup(struct timekeeper *tk)
475{
476 s64 remainder;
477
478 /*
479 * Store only full nanoseconds into xtime_nsec after rounding
480 * it up and add the remainder to the error difference.
481 * XXX - This is necessary to avoid small 1ns inconsistnecies caused
482 * by truncating the remainder in vsyscalls. However, it causes
483 * additional work to be done in timekeeping_adjust(). Once
484 * the vsyscall implementations are converted to use xtime_nsec
485 * (shifted nanoseconds), and CONFIG_GENERIC_TIME_VSYSCALL_OLD
486 * users are removed, this can be killed.
487 */
876e7881 488 remainder = tk->tkr_mono.xtime_nsec & ((1ULL << tk->tkr_mono.shift) - 1);
0209b937
TG
489 if (remainder != 0) {
490 tk->tkr_mono.xtime_nsec -= remainder;
491 tk->tkr_mono.xtime_nsec += 1ULL << tk->tkr_mono.shift;
492 tk->ntp_error += remainder << tk->ntp_error_shift;
493 tk->ntp_error -= (1ULL << tk->tkr_mono.shift) << tk->ntp_error_shift;
494 }
c905fae4
TG
495}
496#else
497#define old_vsyscall_fixup(tk)
498#endif
499
e0b306fe
MT
500static RAW_NOTIFIER_HEAD(pvclock_gtod_chain);
501
780427f0 502static void update_pvclock_gtod(struct timekeeper *tk, bool was_set)
e0b306fe 503{
780427f0 504 raw_notifier_call_chain(&pvclock_gtod_chain, was_set, tk);
e0b306fe
MT
505}
506
507/**
508 * pvclock_gtod_register_notifier - register a pvclock timedata update listener
e0b306fe
MT
509 */
510int pvclock_gtod_register_notifier(struct notifier_block *nb)
511{
3fdb14fd 512 struct timekeeper *tk = &tk_core.timekeeper;
e0b306fe
MT
513 unsigned long flags;
514 int ret;
515
9a7a71b1 516 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 517 ret = raw_notifier_chain_register(&pvclock_gtod_chain, nb);
780427f0 518 update_pvclock_gtod(tk, true);
9a7a71b1 519 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
520
521 return ret;
522}
523EXPORT_SYMBOL_GPL(pvclock_gtod_register_notifier);
524
525/**
526 * pvclock_gtod_unregister_notifier - unregister a pvclock
527 * timedata update listener
e0b306fe
MT
528 */
529int pvclock_gtod_unregister_notifier(struct notifier_block *nb)
530{
e0b306fe
MT
531 unsigned long flags;
532 int ret;
533
9a7a71b1 534 raw_spin_lock_irqsave(&timekeeper_lock, flags);
e0b306fe 535 ret = raw_notifier_chain_unregister(&pvclock_gtod_chain, nb);
9a7a71b1 536 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
e0b306fe
MT
537
538 return ret;
539}
540EXPORT_SYMBOL_GPL(pvclock_gtod_unregister_notifier);
541
833f32d7
JS
542/*
543 * tk_update_leap_state - helper to update the next_leap_ktime
544 */
545static inline void tk_update_leap_state(struct timekeeper *tk)
546{
547 tk->next_leap_ktime = ntp_get_next_leap();
548 if (tk->next_leap_ktime.tv64 != KTIME_MAX)
549 /* Convert to monotonic time */
550 tk->next_leap_ktime = ktime_sub(tk->next_leap_ktime, tk->offs_real);
551}
552
7c032df5
TG
553/*
554 * Update the ktime_t based scalar nsec members of the timekeeper
555 */
556static inline void tk_update_ktime_data(struct timekeeper *tk)
557{
9e3680b1
HS
558 u64 seconds;
559 u32 nsec;
7c032df5
TG
560
561 /*
562 * The xtime based monotonic readout is:
563 * nsec = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec + now();
564 * The ktime based monotonic readout is:
565 * nsec = base_mono + now();
566 * ==> base_mono = (xtime_sec + wtm_sec) * 1e9 + wtm_nsec
567 */
9e3680b1
HS
568 seconds = (u64)(tk->xtime_sec + tk->wall_to_monotonic.tv_sec);
569 nsec = (u32) tk->wall_to_monotonic.tv_nsec;
876e7881 570 tk->tkr_mono.base = ns_to_ktime(seconds * NSEC_PER_SEC + nsec);
f519b1a2
TG
571
572 /* Update the monotonic raw base */
4a4ad80d 573 tk->tkr_raw.base = timespec64_to_ktime(tk->raw_time);
9e3680b1
HS
574
575 /*
576 * The sum of the nanoseconds portions of xtime and
577 * wall_to_monotonic can be greater/equal one second. Take
578 * this into account before updating tk->ktime_sec.
579 */
876e7881 580 nsec += (u32)(tk->tkr_mono.xtime_nsec >> tk->tkr_mono.shift);
9e3680b1
HS
581 if (nsec >= NSEC_PER_SEC)
582 seconds++;
583 tk->ktime_sec = seconds;
7c032df5
TG
584}
585
9a7a71b1 586/* must hold timekeeper_lock */
04397fe9 587static void timekeeping_update(struct timekeeper *tk, unsigned int action)
cc06268c 588{
04397fe9 589 if (action & TK_CLEAR_NTP) {
f726a697 590 tk->ntp_error = 0;
cc06268c
TG
591 ntp_clear();
592 }
48cdc135 593
833f32d7 594 tk_update_leap_state(tk);
7c032df5
TG
595 tk_update_ktime_data(tk);
596
9bf2419f
TG
597 update_vsyscall(tk);
598 update_pvclock_gtod(tk, action & TK_CLOCK_WAS_SET);
599
4498e746 600 update_fast_timekeeper(&tk->tkr_mono, &tk_fast_mono);
f09cb9a1 601 update_fast_timekeeper(&tk->tkr_raw, &tk_fast_raw);
868a3e91
TG
602
603 if (action & TK_CLOCK_WAS_SET)
604 tk->clock_was_set_seq++;
d1518326
JS
605 /*
606 * The mirroring of the data to the shadow-timekeeper needs
607 * to happen last here to ensure we don't over-write the
608 * timekeeper structure on the next update with stale data
609 */
610 if (action & TK_MIRROR)
611 memcpy(&shadow_timekeeper, &tk_core.timekeeper,
612 sizeof(tk_core.timekeeper));
cc06268c
TG
613}
614
8524070b 615/**
155ec602 616 * timekeeping_forward_now - update clock to the current time
8524070b 617 *
9a055117
RZ
618 * Forward the current clock to update its state since the last call to
619 * update_wall_time(). This is useful before significant clock changes,
620 * as it avoids having to deal with this time offset explicitly.
8524070b 621 */
f726a697 622static void timekeeping_forward_now(struct timekeeper *tk)
8524070b 623{
876e7881 624 struct clocksource *clock = tk->tkr_mono.clock;
3a978377 625 cycle_t cycle_now, delta;
9a055117 626 s64 nsec;
8524070b 627
876e7881
PZ
628 cycle_now = tk->tkr_mono.read(clock);
629 delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
630 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d 631 tk->tkr_raw.cycle_last = cycle_now;
8524070b 632
876e7881 633 tk->tkr_mono.xtime_nsec += delta * tk->tkr_mono.mult;
7d27558c 634
7b1f6207 635 /* If arch requires, add in get_arch_timeoffset() */
876e7881 636 tk->tkr_mono.xtime_nsec += (u64)arch_gettimeoffset() << tk->tkr_mono.shift;
7d27558c 637
f726a697 638 tk_normalize_xtime(tk);
2d42244a 639
4a4ad80d 640 nsec = clocksource_cyc2ns(delta, tk->tkr_raw.mult, tk->tkr_raw.shift);
7d489d15 641 timespec64_add_ns(&tk->raw_time, nsec);
8524070b 642}
643
644/**
d6d29896 645 * __getnstimeofday64 - Returns the time of day in a timespec64.
8524070b 646 * @ts: pointer to the timespec to be set
647 *
1e817fb6
KC
648 * Updates the time of day in the timespec.
649 * Returns 0 on success, or -ve when suspended (timespec will be undefined).
8524070b 650 */
d6d29896 651int __getnstimeofday64(struct timespec64 *ts)
8524070b 652{
3fdb14fd 653 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 654 unsigned long seq;
1e75fa8b 655 s64 nsecs = 0;
8524070b 656
657 do {
3fdb14fd 658 seq = read_seqcount_begin(&tk_core.seq);
8524070b 659
4e250fdd 660 ts->tv_sec = tk->xtime_sec;
876e7881 661 nsecs = timekeeping_get_ns(&tk->tkr_mono);
8524070b 662
3fdb14fd 663 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 664
ec145bab 665 ts->tv_nsec = 0;
d6d29896 666 timespec64_add_ns(ts, nsecs);
1e817fb6
KC
667
668 /*
669 * Do not bail out early, in case there were callers still using
670 * the value, even in the face of the WARN_ON.
671 */
672 if (unlikely(timekeeping_suspended))
673 return -EAGAIN;
674 return 0;
675}
d6d29896 676EXPORT_SYMBOL(__getnstimeofday64);
1e817fb6
KC
677
678/**
d6d29896 679 * getnstimeofday64 - Returns the time of day in a timespec64.
5322e4c2 680 * @ts: pointer to the timespec64 to be set
1e817fb6 681 *
5322e4c2 682 * Returns the time of day in a timespec64 (WARN if suspended).
1e817fb6 683 */
d6d29896 684void getnstimeofday64(struct timespec64 *ts)
1e817fb6 685{
d6d29896 686 WARN_ON(__getnstimeofday64(ts));
8524070b 687}
d6d29896 688EXPORT_SYMBOL(getnstimeofday64);
8524070b 689
951ed4d3
MS
690ktime_t ktime_get(void)
691{
3fdb14fd 692 struct timekeeper *tk = &tk_core.timekeeper;
951ed4d3 693 unsigned int seq;
a016a5bd
TG
694 ktime_t base;
695 s64 nsecs;
951ed4d3
MS
696
697 WARN_ON(timekeeping_suspended);
698
699 do {
3fdb14fd 700 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
701 base = tk->tkr_mono.base;
702 nsecs = timekeeping_get_ns(&tk->tkr_mono);
951ed4d3 703
3fdb14fd 704 } while (read_seqcount_retry(&tk_core.seq, seq));
24e4a8c3 705
a016a5bd 706 return ktime_add_ns(base, nsecs);
951ed4d3
MS
707}
708EXPORT_SYMBOL_GPL(ktime_get);
709
6374f912
HG
710u32 ktime_get_resolution_ns(void)
711{
712 struct timekeeper *tk = &tk_core.timekeeper;
713 unsigned int seq;
714 u32 nsecs;
715
716 WARN_ON(timekeeping_suspended);
717
718 do {
719 seq = read_seqcount_begin(&tk_core.seq);
720 nsecs = tk->tkr_mono.mult >> tk->tkr_mono.shift;
721 } while (read_seqcount_retry(&tk_core.seq, seq));
722
723 return nsecs;
724}
725EXPORT_SYMBOL_GPL(ktime_get_resolution_ns);
726
0077dc60
TG
727static ktime_t *offsets[TK_OFFS_MAX] = {
728 [TK_OFFS_REAL] = &tk_core.timekeeper.offs_real,
729 [TK_OFFS_BOOT] = &tk_core.timekeeper.offs_boot,
730 [TK_OFFS_TAI] = &tk_core.timekeeper.offs_tai,
731};
732
733ktime_t ktime_get_with_offset(enum tk_offsets offs)
734{
735 struct timekeeper *tk = &tk_core.timekeeper;
736 unsigned int seq;
737 ktime_t base, *offset = offsets[offs];
738 s64 nsecs;
739
740 WARN_ON(timekeeping_suspended);
741
742 do {
743 seq = read_seqcount_begin(&tk_core.seq);
876e7881
PZ
744 base = ktime_add(tk->tkr_mono.base, *offset);
745 nsecs = timekeeping_get_ns(&tk->tkr_mono);
0077dc60
TG
746
747 } while (read_seqcount_retry(&tk_core.seq, seq));
748
749 return ktime_add_ns(base, nsecs);
750
751}
752EXPORT_SYMBOL_GPL(ktime_get_with_offset);
753
9a6b5197
TG
754/**
755 * ktime_mono_to_any() - convert mononotic time to any other time
756 * @tmono: time to convert.
757 * @offs: which offset to use
758 */
759ktime_t ktime_mono_to_any(ktime_t tmono, enum tk_offsets offs)
760{
761 ktime_t *offset = offsets[offs];
762 unsigned long seq;
763 ktime_t tconv;
764
765 do {
766 seq = read_seqcount_begin(&tk_core.seq);
767 tconv = ktime_add(tmono, *offset);
768 } while (read_seqcount_retry(&tk_core.seq, seq));
769
770 return tconv;
771}
772EXPORT_SYMBOL_GPL(ktime_mono_to_any);
773
f519b1a2
TG
774/**
775 * ktime_get_raw - Returns the raw monotonic time in ktime_t format
776 */
777ktime_t ktime_get_raw(void)
778{
779 struct timekeeper *tk = &tk_core.timekeeper;
780 unsigned int seq;
781 ktime_t base;
782 s64 nsecs;
783
784 do {
785 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d
PZ
786 base = tk->tkr_raw.base;
787 nsecs = timekeeping_get_ns(&tk->tkr_raw);
f519b1a2
TG
788
789 } while (read_seqcount_retry(&tk_core.seq, seq));
790
791 return ktime_add_ns(base, nsecs);
792}
793EXPORT_SYMBOL_GPL(ktime_get_raw);
794
951ed4d3 795/**
d6d29896 796 * ktime_get_ts64 - get the monotonic clock in timespec64 format
951ed4d3
MS
797 * @ts: pointer to timespec variable
798 *
799 * The function calculates the monotonic clock from the realtime
800 * clock and the wall_to_monotonic offset and stores the result
5322e4c2 801 * in normalized timespec64 format in the variable pointed to by @ts.
951ed4d3 802 */
d6d29896 803void ktime_get_ts64(struct timespec64 *ts)
951ed4d3 804{
3fdb14fd 805 struct timekeeper *tk = &tk_core.timekeeper;
d6d29896 806 struct timespec64 tomono;
ec145bab 807 s64 nsec;
951ed4d3 808 unsigned int seq;
951ed4d3
MS
809
810 WARN_ON(timekeeping_suspended);
811
812 do {
3fdb14fd 813 seq = read_seqcount_begin(&tk_core.seq);
d6d29896 814 ts->tv_sec = tk->xtime_sec;
876e7881 815 nsec = timekeeping_get_ns(&tk->tkr_mono);
4e250fdd 816 tomono = tk->wall_to_monotonic;
951ed4d3 817
3fdb14fd 818 } while (read_seqcount_retry(&tk_core.seq, seq));
951ed4d3 819
d6d29896
TG
820 ts->tv_sec += tomono.tv_sec;
821 ts->tv_nsec = 0;
822 timespec64_add_ns(ts, nsec + tomono.tv_nsec);
951ed4d3 823}
d6d29896 824EXPORT_SYMBOL_GPL(ktime_get_ts64);
951ed4d3 825
9e3680b1
HS
826/**
827 * ktime_get_seconds - Get the seconds portion of CLOCK_MONOTONIC
828 *
829 * Returns the seconds portion of CLOCK_MONOTONIC with a single non
830 * serialized read. tk->ktime_sec is of type 'unsigned long' so this
831 * works on both 32 and 64 bit systems. On 32 bit systems the readout
832 * covers ~136 years of uptime which should be enough to prevent
833 * premature wrap arounds.
834 */
835time64_t ktime_get_seconds(void)
836{
837 struct timekeeper *tk = &tk_core.timekeeper;
838
839 WARN_ON(timekeeping_suspended);
840 return tk->ktime_sec;
841}
842EXPORT_SYMBOL_GPL(ktime_get_seconds);
843
dbe7aa62
HS
844/**
845 * ktime_get_real_seconds - Get the seconds portion of CLOCK_REALTIME
846 *
847 * Returns the wall clock seconds since 1970. This replaces the
848 * get_seconds() interface which is not y2038 safe on 32bit systems.
849 *
850 * For 64bit systems the fast access to tk->xtime_sec is preserved. On
851 * 32bit systems the access must be protected with the sequence
852 * counter to provide "atomic" access to the 64bit tk->xtime_sec
853 * value.
854 */
855time64_t ktime_get_real_seconds(void)
856{
857 struct timekeeper *tk = &tk_core.timekeeper;
858 time64_t seconds;
859 unsigned int seq;
860
861 if (IS_ENABLED(CONFIG_64BIT))
862 return tk->xtime_sec;
863
864 do {
865 seq = read_seqcount_begin(&tk_core.seq);
866 seconds = tk->xtime_sec;
867
868 } while (read_seqcount_retry(&tk_core.seq, seq));
869
870 return seconds;
871}
872EXPORT_SYMBOL_GPL(ktime_get_real_seconds);
873
dee36654
D
874/**
875 * __ktime_get_real_seconds - The same as ktime_get_real_seconds
876 * but without the sequence counter protect. This internal function
877 * is called just when timekeeping lock is already held.
878 */
879time64_t __ktime_get_real_seconds(void)
880{
881 struct timekeeper *tk = &tk_core.timekeeper;
882
883 return tk->xtime_sec;
884}
885
9da0f49c
CH
886/**
887 * ktime_get_snapshot - snapshots the realtime/monotonic raw clocks with counter
888 * @systime_snapshot: pointer to struct receiving the system time snapshot
889 */
890void ktime_get_snapshot(struct system_time_snapshot *systime_snapshot)
891{
892 struct timekeeper *tk = &tk_core.timekeeper;
893 unsigned long seq;
894 ktime_t base_raw;
895 ktime_t base_real;
896 s64 nsec_raw;
897 s64 nsec_real;
898 cycle_t now;
899
ba26621e
CH
900 WARN_ON_ONCE(timekeeping_suspended);
901
9da0f49c
CH
902 do {
903 seq = read_seqcount_begin(&tk_core.seq);
904
905 now = tk->tkr_mono.read(tk->tkr_mono.clock);
2c756feb
CH
906 systime_snapshot->cs_was_changed_seq = tk->cs_was_changed_seq;
907 systime_snapshot->clock_was_set_seq = tk->clock_was_set_seq;
9da0f49c
CH
908 base_real = ktime_add(tk->tkr_mono.base,
909 tk_core.timekeeper.offs_real);
910 base_raw = tk->tkr_raw.base;
911 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono, now);
912 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw, now);
913 } while (read_seqcount_retry(&tk_core.seq, seq));
914
915 systime_snapshot->cycles = now;
916 systime_snapshot->real = ktime_add_ns(base_real, nsec_real);
917 systime_snapshot->raw = ktime_add_ns(base_raw, nsec_raw);
918}
919EXPORT_SYMBOL_GPL(ktime_get_snapshot);
dee36654 920
2c756feb
CH
921/* Scale base by mult/div checking for overflow */
922static int scale64_check_overflow(u64 mult, u64 div, u64 *base)
923{
924 u64 tmp, rem;
925
926 tmp = div64_u64_rem(*base, div, &rem);
927
928 if (((int)sizeof(u64)*8 - fls64(mult) < fls64(tmp)) ||
929 ((int)sizeof(u64)*8 - fls64(mult) < fls64(rem)))
930 return -EOVERFLOW;
931 tmp *= mult;
932 rem *= mult;
933
934 do_div(rem, div);
935 *base = tmp + rem;
936 return 0;
937}
938
939/**
940 * adjust_historical_crosststamp - adjust crosstimestamp previous to current interval
941 * @history: Snapshot representing start of history
942 * @partial_history_cycles: Cycle offset into history (fractional part)
943 * @total_history_cycles: Total history length in cycles
944 * @discontinuity: True indicates clock was set on history period
945 * @ts: Cross timestamp that should be adjusted using
946 * partial/total ratio
947 *
948 * Helper function used by get_device_system_crosststamp() to correct the
949 * crosstimestamp corresponding to the start of the current interval to the
950 * system counter value (timestamp point) provided by the driver. The
951 * total_history_* quantities are the total history starting at the provided
952 * reference point and ending at the start of the current interval. The cycle
953 * count between the driver timestamp point and the start of the current
954 * interval is partial_history_cycles.
955 */
956static int adjust_historical_crosststamp(struct system_time_snapshot *history,
957 cycle_t partial_history_cycles,
958 cycle_t total_history_cycles,
959 bool discontinuity,
960 struct system_device_crosststamp *ts)
961{
962 struct timekeeper *tk = &tk_core.timekeeper;
963 u64 corr_raw, corr_real;
964 bool interp_forward;
965 int ret;
966
967 if (total_history_cycles == 0 || partial_history_cycles == 0)
968 return 0;
969
970 /* Interpolate shortest distance from beginning or end of history */
971 interp_forward = partial_history_cycles > total_history_cycles/2 ?
972 true : false;
973 partial_history_cycles = interp_forward ?
974 total_history_cycles - partial_history_cycles :
975 partial_history_cycles;
976
977 /*
978 * Scale the monotonic raw time delta by:
979 * partial_history_cycles / total_history_cycles
980 */
981 corr_raw = (u64)ktime_to_ns(
982 ktime_sub(ts->sys_monoraw, history->raw));
983 ret = scale64_check_overflow(partial_history_cycles,
984 total_history_cycles, &corr_raw);
985 if (ret)
986 return ret;
987
988 /*
989 * If there is a discontinuity in the history, scale monotonic raw
990 * correction by:
991 * mult(real)/mult(raw) yielding the realtime correction
992 * Otherwise, calculate the realtime correction similar to monotonic
993 * raw calculation
994 */
995 if (discontinuity) {
996 corr_real = mul_u64_u32_div
997 (corr_raw, tk->tkr_mono.mult, tk->tkr_raw.mult);
998 } else {
999 corr_real = (u64)ktime_to_ns(
1000 ktime_sub(ts->sys_realtime, history->real));
1001 ret = scale64_check_overflow(partial_history_cycles,
1002 total_history_cycles, &corr_real);
1003 if (ret)
1004 return ret;
1005 }
1006
1007 /* Fixup monotonic raw and real time time values */
1008 if (interp_forward) {
1009 ts->sys_monoraw = ktime_add_ns(history->raw, corr_raw);
1010 ts->sys_realtime = ktime_add_ns(history->real, corr_real);
1011 } else {
1012 ts->sys_monoraw = ktime_sub_ns(ts->sys_monoraw, corr_raw);
1013 ts->sys_realtime = ktime_sub_ns(ts->sys_realtime, corr_real);
1014 }
1015
1016 return 0;
1017}
1018
1019/*
1020 * cycle_between - true if test occurs chronologically between before and after
1021 */
1022static bool cycle_between(cycle_t before, cycle_t test, cycle_t after)
1023{
1024 if (test > before && test < after)
1025 return true;
1026 if (test < before && before > after)
1027 return true;
1028 return false;
1029}
1030
8006c245
CH
1031/**
1032 * get_device_system_crosststamp - Synchronously capture system/device timestamp
2c756feb 1033 * @get_time_fn: Callback to get simultaneous device time and
8006c245 1034 * system counter from the device driver
2c756feb
CH
1035 * @ctx: Context passed to get_time_fn()
1036 * @history_begin: Historical reference point used to interpolate system
1037 * time when counter provided by the driver is before the current interval
8006c245
CH
1038 * @xtstamp: Receives simultaneously captured system and device time
1039 *
1040 * Reads a timestamp from a device and correlates it to system time
1041 */
1042int get_device_system_crosststamp(int (*get_time_fn)
1043 (ktime_t *device_time,
1044 struct system_counterval_t *sys_counterval,
1045 void *ctx),
1046 void *ctx,
2c756feb 1047 struct system_time_snapshot *history_begin,
8006c245
CH
1048 struct system_device_crosststamp *xtstamp)
1049{
1050 struct system_counterval_t system_counterval;
1051 struct timekeeper *tk = &tk_core.timekeeper;
2c756feb 1052 cycle_t cycles, now, interval_start;
6436257b 1053 unsigned int clock_was_set_seq = 0;
8006c245
CH
1054 ktime_t base_real, base_raw;
1055 s64 nsec_real, nsec_raw;
2c756feb 1056 u8 cs_was_changed_seq;
8006c245 1057 unsigned long seq;
2c756feb 1058 bool do_interp;
8006c245
CH
1059 int ret;
1060
1061 do {
1062 seq = read_seqcount_begin(&tk_core.seq);
1063 /*
1064 * Try to synchronously capture device time and a system
1065 * counter value calling back into the device driver
1066 */
1067 ret = get_time_fn(&xtstamp->device, &system_counterval, ctx);
1068 if (ret)
1069 return ret;
1070
1071 /*
1072 * Verify that the clocksource associated with the captured
1073 * system counter value is the same as the currently installed
1074 * timekeeper clocksource
1075 */
1076 if (tk->tkr_mono.clock != system_counterval.cs)
1077 return -ENODEV;
2c756feb
CH
1078 cycles = system_counterval.cycles;
1079
1080 /*
1081 * Check whether the system counter value provided by the
1082 * device driver is on the current timekeeping interval.
1083 */
1084 now = tk->tkr_mono.read(tk->tkr_mono.clock);
1085 interval_start = tk->tkr_mono.cycle_last;
1086 if (!cycle_between(interval_start, cycles, now)) {
1087 clock_was_set_seq = tk->clock_was_set_seq;
1088 cs_was_changed_seq = tk->cs_was_changed_seq;
1089 cycles = interval_start;
1090 do_interp = true;
1091 } else {
1092 do_interp = false;
1093 }
8006c245
CH
1094
1095 base_real = ktime_add(tk->tkr_mono.base,
1096 tk_core.timekeeper.offs_real);
1097 base_raw = tk->tkr_raw.base;
1098
1099 nsec_real = timekeeping_cycles_to_ns(&tk->tkr_mono,
1100 system_counterval.cycles);
1101 nsec_raw = timekeeping_cycles_to_ns(&tk->tkr_raw,
1102 system_counterval.cycles);
1103 } while (read_seqcount_retry(&tk_core.seq, seq));
1104
1105 xtstamp->sys_realtime = ktime_add_ns(base_real, nsec_real);
1106 xtstamp->sys_monoraw = ktime_add_ns(base_raw, nsec_raw);
2c756feb
CH
1107
1108 /*
1109 * Interpolate if necessary, adjusting back from the start of the
1110 * current interval
1111 */
1112 if (do_interp) {
1113 cycle_t partial_history_cycles, total_history_cycles;
1114 bool discontinuity;
1115
1116 /*
1117 * Check that the counter value occurs after the provided
1118 * history reference and that the history doesn't cross a
1119 * clocksource change
1120 */
1121 if (!history_begin ||
1122 !cycle_between(history_begin->cycles,
1123 system_counterval.cycles, cycles) ||
1124 history_begin->cs_was_changed_seq != cs_was_changed_seq)
1125 return -EINVAL;
1126 partial_history_cycles = cycles - system_counterval.cycles;
1127 total_history_cycles = cycles - history_begin->cycles;
1128 discontinuity =
1129 history_begin->clock_was_set_seq != clock_was_set_seq;
1130
1131 ret = adjust_historical_crosststamp(history_begin,
1132 partial_history_cycles,
1133 total_history_cycles,
1134 discontinuity, xtstamp);
1135 if (ret)
1136 return ret;
1137 }
1138
8006c245
CH
1139 return 0;
1140}
1141EXPORT_SYMBOL_GPL(get_device_system_crosststamp);
1142
8524070b 1143/**
1144 * do_gettimeofday - Returns the time of day in a timeval
1145 * @tv: pointer to the timeval to be set
1146 *
efd9ac86 1147 * NOTE: Users should be converted to using getnstimeofday()
8524070b 1148 */
1149void do_gettimeofday(struct timeval *tv)
1150{
d6d29896 1151 struct timespec64 now;
8524070b 1152
d6d29896 1153 getnstimeofday64(&now);
8524070b 1154 tv->tv_sec = now.tv_sec;
1155 tv->tv_usec = now.tv_nsec/1000;
1156}
8524070b 1157EXPORT_SYMBOL(do_gettimeofday);
d239f49d 1158
8524070b 1159/**
21f7eca5 1160 * do_settimeofday64 - Sets the time of day.
1161 * @ts: pointer to the timespec64 variable containing the new time
8524070b 1162 *
1163 * Sets the time of day to the new time and update NTP and notify hrtimers
1164 */
21f7eca5 1165int do_settimeofday64(const struct timespec64 *ts)
8524070b 1166{
3fdb14fd 1167 struct timekeeper *tk = &tk_core.timekeeper;
21f7eca5 1168 struct timespec64 ts_delta, xt;
92c1d3ed 1169 unsigned long flags;
e1d7ba87 1170 int ret = 0;
8524070b 1171
21f7eca5 1172 if (!timespec64_valid_strict(ts))
8524070b 1173 return -EINVAL;
1174
9a7a71b1 1175 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1176 write_seqcount_begin(&tk_core.seq);
8524070b 1177
4e250fdd 1178 timekeeping_forward_now(tk);
9a055117 1179
4e250fdd 1180 xt = tk_xtime(tk);
21f7eca5 1181 ts_delta.tv_sec = ts->tv_sec - xt.tv_sec;
1182 ts_delta.tv_nsec = ts->tv_nsec - xt.tv_nsec;
1e75fa8b 1183
e1d7ba87
WY
1184 if (timespec64_compare(&tk->wall_to_monotonic, &ts_delta) > 0) {
1185 ret = -EINVAL;
1186 goto out;
1187 }
1188
7d489d15 1189 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts_delta));
8524070b 1190
21f7eca5 1191 tk_set_xtime(tk, ts);
e1d7ba87 1192out:
780427f0 1193 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
8524070b 1194
3fdb14fd 1195 write_seqcount_end(&tk_core.seq);
9a7a71b1 1196 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1197
1198 /* signal hrtimers about time change */
1199 clock_was_set();
1200
e1d7ba87 1201 return ret;
8524070b 1202}
21f7eca5 1203EXPORT_SYMBOL(do_settimeofday64);
8524070b 1204
c528f7c6
JS
1205/**
1206 * timekeeping_inject_offset - Adds or subtracts from the current time.
1207 * @tv: pointer to the timespec variable containing the offset
1208 *
1209 * Adds or subtracts an offset value from the current time.
1210 */
1211int timekeeping_inject_offset(struct timespec *ts)
1212{
3fdb14fd 1213 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1214 unsigned long flags;
7d489d15 1215 struct timespec64 ts64, tmp;
4e8b1452 1216 int ret = 0;
c528f7c6 1217
37cf4dc3 1218 if (!timespec_inject_offset_valid(ts))
c528f7c6
JS
1219 return -EINVAL;
1220
7d489d15
JS
1221 ts64 = timespec_to_timespec64(*ts);
1222
9a7a71b1 1223 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1224 write_seqcount_begin(&tk_core.seq);
c528f7c6 1225
4e250fdd 1226 timekeeping_forward_now(tk);
c528f7c6 1227
4e8b1452 1228 /* Make sure the proposed value is valid */
7d489d15 1229 tmp = timespec64_add(tk_xtime(tk), ts64);
e1d7ba87
WY
1230 if (timespec64_compare(&tk->wall_to_monotonic, &ts64) > 0 ||
1231 !timespec64_valid_strict(&tmp)) {
4e8b1452
JS
1232 ret = -EINVAL;
1233 goto error;
1234 }
1e75fa8b 1235
7d489d15
JS
1236 tk_xtime_add(tk, &ts64);
1237 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, ts64));
c528f7c6 1238
4e8b1452 1239error: /* even if we error out, we forwarded the time, so call update */
780427f0 1240 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
c528f7c6 1241
3fdb14fd 1242 write_seqcount_end(&tk_core.seq);
9a7a71b1 1243 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
c528f7c6
JS
1244
1245 /* signal hrtimers about time change */
1246 clock_was_set();
1247
4e8b1452 1248 return ret;
c528f7c6
JS
1249}
1250EXPORT_SYMBOL(timekeeping_inject_offset);
1251
cc244dda
JS
1252
1253/**
1254 * timekeeping_get_tai_offset - Returns current TAI offset from UTC
1255 *
1256 */
1257s32 timekeeping_get_tai_offset(void)
1258{
3fdb14fd 1259 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
1260 unsigned int seq;
1261 s32 ret;
1262
1263 do {
3fdb14fd 1264 seq = read_seqcount_begin(&tk_core.seq);
cc244dda 1265 ret = tk->tai_offset;
3fdb14fd 1266 } while (read_seqcount_retry(&tk_core.seq, seq));
cc244dda
JS
1267
1268 return ret;
1269}
1270
1271/**
1272 * __timekeeping_set_tai_offset - Lock free worker function
1273 *
1274 */
dd5d70e8 1275static void __timekeeping_set_tai_offset(struct timekeeper *tk, s32 tai_offset)
cc244dda
JS
1276{
1277 tk->tai_offset = tai_offset;
04005f60 1278 tk->offs_tai = ktime_add(tk->offs_real, ktime_set(tai_offset, 0));
cc244dda
JS
1279}
1280
1281/**
1282 * timekeeping_set_tai_offset - Sets the current TAI offset from UTC
1283 *
1284 */
1285void timekeeping_set_tai_offset(s32 tai_offset)
1286{
3fdb14fd 1287 struct timekeeper *tk = &tk_core.timekeeper;
cc244dda
JS
1288 unsigned long flags;
1289
9a7a71b1 1290 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1291 write_seqcount_begin(&tk_core.seq);
cc244dda 1292 __timekeeping_set_tai_offset(tk, tai_offset);
f55c0760 1293 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1294 write_seqcount_end(&tk_core.seq);
9a7a71b1 1295 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
4e8f8b34 1296 clock_was_set();
cc244dda
JS
1297}
1298
8524070b 1299/**
1300 * change_clocksource - Swaps clocksources if a new one is available
1301 *
1302 * Accumulates current time interval and initializes new clocksource
1303 */
75c5158f 1304static int change_clocksource(void *data)
8524070b 1305{
3fdb14fd 1306 struct timekeeper *tk = &tk_core.timekeeper;
4614e6ad 1307 struct clocksource *new, *old;
f695cf94 1308 unsigned long flags;
8524070b 1309
75c5158f 1310 new = (struct clocksource *) data;
8524070b 1311
9a7a71b1 1312 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1313 write_seqcount_begin(&tk_core.seq);
f695cf94 1314
4e250fdd 1315 timekeeping_forward_now(tk);
09ac369c
TG
1316 /*
1317 * If the cs is in module, get a module reference. Succeeds
1318 * for built-in code (owner == NULL) as well.
1319 */
1320 if (try_module_get(new->owner)) {
1321 if (!new->enable || new->enable(new) == 0) {
876e7881 1322 old = tk->tkr_mono.clock;
09ac369c
TG
1323 tk_setup_internals(tk, new);
1324 if (old->disable)
1325 old->disable(old);
1326 module_put(old->owner);
1327 } else {
1328 module_put(new->owner);
1329 }
75c5158f 1330 }
780427f0 1331 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
f695cf94 1332
3fdb14fd 1333 write_seqcount_end(&tk_core.seq);
9a7a71b1 1334 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
f695cf94 1335
75c5158f
MS
1336 return 0;
1337}
8524070b 1338
75c5158f
MS
1339/**
1340 * timekeeping_notify - Install a new clock source
1341 * @clock: pointer to the clock source
1342 *
1343 * This function is called from clocksource.c after a new, better clock
1344 * source has been registered. The caller holds the clocksource_mutex.
1345 */
ba919d1c 1346int timekeeping_notify(struct clocksource *clock)
75c5158f 1347{
3fdb14fd 1348 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 1349
876e7881 1350 if (tk->tkr_mono.clock == clock)
ba919d1c 1351 return 0;
75c5158f 1352 stop_machine(change_clocksource, clock, NULL);
8524070b 1353 tick_clock_notify();
876e7881 1354 return tk->tkr_mono.clock == clock ? 0 : -1;
8524070b 1355}
75c5158f 1356
2d42244a 1357/**
cdba2ec5
JS
1358 * getrawmonotonic64 - Returns the raw monotonic time in a timespec
1359 * @ts: pointer to the timespec64 to be set
2d42244a
JS
1360 *
1361 * Returns the raw monotonic time (completely un-modified by ntp)
1362 */
cdba2ec5 1363void getrawmonotonic64(struct timespec64 *ts)
2d42244a 1364{
3fdb14fd 1365 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 1366 struct timespec64 ts64;
2d42244a
JS
1367 unsigned long seq;
1368 s64 nsecs;
2d42244a
JS
1369
1370 do {
3fdb14fd 1371 seq = read_seqcount_begin(&tk_core.seq);
4a4ad80d 1372 nsecs = timekeeping_get_ns(&tk->tkr_raw);
7d489d15 1373 ts64 = tk->raw_time;
2d42244a 1374
3fdb14fd 1375 } while (read_seqcount_retry(&tk_core.seq, seq));
2d42244a 1376
7d489d15 1377 timespec64_add_ns(&ts64, nsecs);
cdba2ec5 1378 *ts = ts64;
2d42244a 1379}
cdba2ec5
JS
1380EXPORT_SYMBOL(getrawmonotonic64);
1381
2d42244a 1382
8524070b 1383/**
cf4fc6cb 1384 * timekeeping_valid_for_hres - Check if timekeeping is suitable for hres
8524070b 1385 */
cf4fc6cb 1386int timekeeping_valid_for_hres(void)
8524070b 1387{
3fdb14fd 1388 struct timekeeper *tk = &tk_core.timekeeper;
8524070b 1389 unsigned long seq;
1390 int ret;
1391
1392 do {
3fdb14fd 1393 seq = read_seqcount_begin(&tk_core.seq);
8524070b 1394
876e7881 1395 ret = tk->tkr_mono.clock->flags & CLOCK_SOURCE_VALID_FOR_HRES;
8524070b 1396
3fdb14fd 1397 } while (read_seqcount_retry(&tk_core.seq, seq));
8524070b 1398
1399 return ret;
1400}
1401
98962465
JH
1402/**
1403 * timekeeping_max_deferment - Returns max time the clocksource can be deferred
98962465
JH
1404 */
1405u64 timekeeping_max_deferment(void)
1406{
3fdb14fd 1407 struct timekeeper *tk = &tk_core.timekeeper;
70471f2f
JS
1408 unsigned long seq;
1409 u64 ret;
42e71e81 1410
70471f2f 1411 do {
3fdb14fd 1412 seq = read_seqcount_begin(&tk_core.seq);
70471f2f 1413
876e7881 1414 ret = tk->tkr_mono.clock->max_idle_ns;
70471f2f 1415
3fdb14fd 1416 } while (read_seqcount_retry(&tk_core.seq, seq));
70471f2f
JS
1417
1418 return ret;
98962465
JH
1419}
1420
8524070b 1421/**
d4f587c6 1422 * read_persistent_clock - Return time from the persistent clock.
8524070b 1423 *
1424 * Weak dummy function for arches that do not yet support it.
d4f587c6
MS
1425 * Reads the time from the battery backed persistent clock.
1426 * Returns a timespec with tv_sec=0 and tv_nsec=0 if unsupported.
8524070b 1427 *
1428 * XXX - Do be sure to remove it once all arches implement it.
1429 */
52f5684c 1430void __weak read_persistent_clock(struct timespec *ts)
8524070b 1431{
d4f587c6
MS
1432 ts->tv_sec = 0;
1433 ts->tv_nsec = 0;
8524070b 1434}
1435
2ee96632
XP
1436void __weak read_persistent_clock64(struct timespec64 *ts64)
1437{
1438 struct timespec ts;
1439
1440 read_persistent_clock(&ts);
1441 *ts64 = timespec_to_timespec64(ts);
1442}
1443
23970e38 1444/**
e83d0a41 1445 * read_boot_clock64 - Return time of the system start.
23970e38
MS
1446 *
1447 * Weak dummy function for arches that do not yet support it.
1448 * Function to read the exact time the system has been started.
e83d0a41 1449 * Returns a timespec64 with tv_sec=0 and tv_nsec=0 if unsupported.
23970e38
MS
1450 *
1451 * XXX - Do be sure to remove it once all arches implement it.
1452 */
e83d0a41 1453void __weak read_boot_clock64(struct timespec64 *ts)
23970e38
MS
1454{
1455 ts->tv_sec = 0;
1456 ts->tv_nsec = 0;
1457}
1458
0fa88cb4
XP
1459/* Flag for if timekeeping_resume() has injected sleeptime */
1460static bool sleeptime_injected;
1461
1462/* Flag for if there is a persistent clock on this platform */
1463static bool persistent_clock_exists;
1464
8524070b 1465/*
1466 * timekeeping_init - Initializes the clocksource and common timekeeping values
1467 */
1468void __init timekeeping_init(void)
1469{
3fdb14fd 1470 struct timekeeper *tk = &tk_core.timekeeper;
155ec602 1471 struct clocksource *clock;
8524070b 1472 unsigned long flags;
7d489d15 1473 struct timespec64 now, boot, tmp;
31ade306 1474
2ee96632 1475 read_persistent_clock64(&now);
7d489d15 1476 if (!timespec64_valid_strict(&now)) {
4e8b1452
JS
1477 pr_warn("WARNING: Persistent clock returned invalid value!\n"
1478 " Check your CMOS/BIOS settings.\n");
1479 now.tv_sec = 0;
1480 now.tv_nsec = 0;
31ade306 1481 } else if (now.tv_sec || now.tv_nsec)
0fa88cb4 1482 persistent_clock_exists = true;
4e8b1452 1483
9a806ddb 1484 read_boot_clock64(&boot);
7d489d15 1485 if (!timespec64_valid_strict(&boot)) {
4e8b1452
JS
1486 pr_warn("WARNING: Boot clock returned invalid value!\n"
1487 " Check your CMOS/BIOS settings.\n");
1488 boot.tv_sec = 0;
1489 boot.tv_nsec = 0;
1490 }
8524070b 1491
9a7a71b1 1492 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1493 write_seqcount_begin(&tk_core.seq);
06c017fd
JS
1494 ntp_init();
1495
f1b82746 1496 clock = clocksource_default_clock();
a0f7d48b
MS
1497 if (clock->enable)
1498 clock->enable(clock);
4e250fdd 1499 tk_setup_internals(tk, clock);
8524070b 1500
4e250fdd
JS
1501 tk_set_xtime(tk, &now);
1502 tk->raw_time.tv_sec = 0;
1503 tk->raw_time.tv_nsec = 0;
1e75fa8b 1504 if (boot.tv_sec == 0 && boot.tv_nsec == 0)
4e250fdd 1505 boot = tk_xtime(tk);
1e75fa8b 1506
7d489d15 1507 set_normalized_timespec64(&tmp, -boot.tv_sec, -boot.tv_nsec);
4e250fdd 1508 tk_set_wall_to_mono(tk, tmp);
6d0ef903 1509
56fd16ca 1510 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
48cdc135 1511
3fdb14fd 1512 write_seqcount_end(&tk_core.seq);
9a7a71b1 1513 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1514}
1515
264bb3f7 1516/* time in seconds when suspend began for persistent clock */
7d489d15 1517static struct timespec64 timekeeping_suspend_time;
8524070b 1518
304529b1
JS
1519/**
1520 * __timekeeping_inject_sleeptime - Internal function to add sleep interval
1521 * @delta: pointer to a timespec delta value
1522 *
1523 * Takes a timespec offset measuring a suspend interval and properly
1524 * adds the sleep offset to the timekeeping variables.
1525 */
f726a697 1526static void __timekeeping_inject_sleeptime(struct timekeeper *tk,
7d489d15 1527 struct timespec64 *delta)
304529b1 1528{
7d489d15 1529 if (!timespec64_valid_strict(delta)) {
6d9bcb62
JS
1530 printk_deferred(KERN_WARNING
1531 "__timekeeping_inject_sleeptime: Invalid "
1532 "sleep delta value!\n");
cb5de2f8
JS
1533 return;
1534 }
f726a697 1535 tk_xtime_add(tk, delta);
7d489d15 1536 tk_set_wall_to_mono(tk, timespec64_sub(tk->wall_to_monotonic, *delta));
47da70d3 1537 tk_update_sleep_time(tk, timespec64_to_ktime(*delta));
5c83545f 1538 tk_debug_account_sleep_time(delta);
304529b1
JS
1539}
1540
7f298139 1541#if defined(CONFIG_PM_SLEEP) && defined(CONFIG_RTC_HCTOSYS_DEVICE)
0fa88cb4
XP
1542/**
1543 * We have three kinds of time sources to use for sleep time
1544 * injection, the preference order is:
1545 * 1) non-stop clocksource
1546 * 2) persistent clock (ie: RTC accessible when irqs are off)
1547 * 3) RTC
1548 *
1549 * 1) and 2) are used by timekeeping, 3) by RTC subsystem.
1550 * If system has neither 1) nor 2), 3) will be used finally.
1551 *
1552 *
1553 * If timekeeping has injected sleeptime via either 1) or 2),
1554 * 3) becomes needless, so in this case we don't need to call
1555 * rtc_resume(), and this is what timekeeping_rtc_skipresume()
1556 * means.
1557 */
1558bool timekeeping_rtc_skipresume(void)
1559{
1560 return sleeptime_injected;
1561}
1562
1563/**
1564 * 1) can be determined whether to use or not only when doing
1565 * timekeeping_resume() which is invoked after rtc_suspend(),
1566 * so we can't skip rtc_suspend() surely if system has 1).
1567 *
1568 * But if system has 2), 2) will definitely be used, so in this
1569 * case we don't need to call rtc_suspend(), and this is what
1570 * timekeeping_rtc_skipsuspend() means.
1571 */
1572bool timekeeping_rtc_skipsuspend(void)
1573{
1574 return persistent_clock_exists;
1575}
1576
304529b1 1577/**
04d90890 1578 * timekeeping_inject_sleeptime64 - Adds suspend interval to timeekeeping values
1579 * @delta: pointer to a timespec64 delta value
304529b1 1580 *
2ee96632 1581 * This hook is for architectures that cannot support read_persistent_clock64
304529b1 1582 * because their RTC/persistent clock is only accessible when irqs are enabled.
0fa88cb4 1583 * and also don't have an effective nonstop clocksource.
304529b1
JS
1584 *
1585 * This function should only be called by rtc_resume(), and allows
1586 * a suspend offset to be injected into the timekeeping values.
1587 */
04d90890 1588void timekeeping_inject_sleeptime64(struct timespec64 *delta)
304529b1 1589{
3fdb14fd 1590 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1591 unsigned long flags;
304529b1 1592
9a7a71b1 1593 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1594 write_seqcount_begin(&tk_core.seq);
70471f2f 1595
4e250fdd 1596 timekeeping_forward_now(tk);
304529b1 1597
04d90890 1598 __timekeeping_inject_sleeptime(tk, delta);
304529b1 1599
780427f0 1600 timekeeping_update(tk, TK_CLEAR_NTP | TK_MIRROR | TK_CLOCK_WAS_SET);
304529b1 1601
3fdb14fd 1602 write_seqcount_end(&tk_core.seq);
9a7a71b1 1603 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
304529b1
JS
1604
1605 /* signal hrtimers about time change */
1606 clock_was_set();
1607}
7f298139 1608#endif
304529b1 1609
8524070b 1610/**
1611 * timekeeping_resume - Resumes the generic timekeeping subsystem.
8524070b 1612 */
124cf911 1613void timekeeping_resume(void)
8524070b 1614{
3fdb14fd 1615 struct timekeeper *tk = &tk_core.timekeeper;
876e7881 1616 struct clocksource *clock = tk->tkr_mono.clock;
92c1d3ed 1617 unsigned long flags;
7d489d15 1618 struct timespec64 ts_new, ts_delta;
e445cf1c 1619 cycle_t cycle_now, cycle_delta;
d4f587c6 1620
0fa88cb4 1621 sleeptime_injected = false;
2ee96632 1622 read_persistent_clock64(&ts_new);
8524070b 1623
adc78e6b 1624 clockevents_resume();
d10ff3fb
TG
1625 clocksource_resume();
1626
9a7a71b1 1627 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1628 write_seqcount_begin(&tk_core.seq);
8524070b 1629
e445cf1c
FT
1630 /*
1631 * After system resumes, we need to calculate the suspended time and
1632 * compensate it for the OS time. There are 3 sources that could be
1633 * used: Nonstop clocksource during suspend, persistent clock and rtc
1634 * device.
1635 *
1636 * One specific platform may have 1 or 2 or all of them, and the
1637 * preference will be:
1638 * suspend-nonstop clocksource -> persistent clock -> rtc
1639 * The less preferred source will only be tried if there is no better
1640 * usable source. The rtc part is handled separately in rtc core code.
1641 */
876e7881 1642 cycle_now = tk->tkr_mono.read(clock);
e445cf1c 1643 if ((clock->flags & CLOCK_SOURCE_SUSPEND_NONSTOP) &&
876e7881 1644 cycle_now > tk->tkr_mono.cycle_last) {
e445cf1c
FT
1645 u64 num, max = ULLONG_MAX;
1646 u32 mult = clock->mult;
1647 u32 shift = clock->shift;
1648 s64 nsec = 0;
1649
876e7881
PZ
1650 cycle_delta = clocksource_delta(cycle_now, tk->tkr_mono.cycle_last,
1651 tk->tkr_mono.mask);
e445cf1c
FT
1652
1653 /*
1654 * "cycle_delta * mutl" may cause 64 bits overflow, if the
1655 * suspended time is too long. In that case we need do the
1656 * 64 bits math carefully
1657 */
1658 do_div(max, mult);
1659 if (cycle_delta > max) {
1660 num = div64_u64(cycle_delta, max);
1661 nsec = (((u64) max * mult) >> shift) * num;
1662 cycle_delta -= num * max;
1663 }
1664 nsec += ((u64) cycle_delta * mult) >> shift;
1665
7d489d15 1666 ts_delta = ns_to_timespec64(nsec);
0fa88cb4 1667 sleeptime_injected = true;
7d489d15
JS
1668 } else if (timespec64_compare(&ts_new, &timekeeping_suspend_time) > 0) {
1669 ts_delta = timespec64_sub(ts_new, timekeeping_suspend_time);
0fa88cb4 1670 sleeptime_injected = true;
8524070b 1671 }
e445cf1c 1672
0fa88cb4 1673 if (sleeptime_injected)
e445cf1c
FT
1674 __timekeeping_inject_sleeptime(tk, &ts_delta);
1675
1676 /* Re-base the last cycle value */
876e7881 1677 tk->tkr_mono.cycle_last = cycle_now;
4a4ad80d
PZ
1678 tk->tkr_raw.cycle_last = cycle_now;
1679
4e250fdd 1680 tk->ntp_error = 0;
8524070b 1681 timekeeping_suspended = 0;
780427f0 1682 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
3fdb14fd 1683 write_seqcount_end(&tk_core.seq);
9a7a71b1 1684 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1685
1686 touch_softlockup_watchdog();
1687
4ffee521 1688 tick_resume();
b12a03ce 1689 hrtimers_resume();
8524070b 1690}
1691
124cf911 1692int timekeeping_suspend(void)
8524070b 1693{
3fdb14fd 1694 struct timekeeper *tk = &tk_core.timekeeper;
92c1d3ed 1695 unsigned long flags;
7d489d15
JS
1696 struct timespec64 delta, delta_delta;
1697 static struct timespec64 old_delta;
8524070b 1698
2ee96632 1699 read_persistent_clock64(&timekeeping_suspend_time);
3be90950 1700
0d6bd995
ZM
1701 /*
1702 * On some systems the persistent_clock can not be detected at
1703 * timekeeping_init by its return value, so if we see a valid
1704 * value returned, update the persistent_clock_exists flag.
1705 */
1706 if (timekeeping_suspend_time.tv_sec || timekeeping_suspend_time.tv_nsec)
0fa88cb4 1707 persistent_clock_exists = true;
0d6bd995 1708
9a7a71b1 1709 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 1710 write_seqcount_begin(&tk_core.seq);
4e250fdd 1711 timekeeping_forward_now(tk);
8524070b 1712 timekeeping_suspended = 1;
cb33217b 1713
0fa88cb4 1714 if (persistent_clock_exists) {
cb33217b 1715 /*
264bb3f7
XP
1716 * To avoid drift caused by repeated suspend/resumes,
1717 * which each can add ~1 second drift error,
1718 * try to compensate so the difference in system time
1719 * and persistent_clock time stays close to constant.
cb33217b 1720 */
264bb3f7
XP
1721 delta = timespec64_sub(tk_xtime(tk), timekeeping_suspend_time);
1722 delta_delta = timespec64_sub(delta, old_delta);
1723 if (abs(delta_delta.tv_sec) >= 2) {
1724 /*
1725 * if delta_delta is too large, assume time correction
1726 * has occurred and set old_delta to the current delta.
1727 */
1728 old_delta = delta;
1729 } else {
1730 /* Otherwise try to adjust old_system to compensate */
1731 timekeeping_suspend_time =
1732 timespec64_add(timekeeping_suspend_time, delta_delta);
1733 }
cb33217b 1734 }
330a1617
JS
1735
1736 timekeeping_update(tk, TK_MIRROR);
060407ae 1737 halt_fast_timekeeper(tk);
3fdb14fd 1738 write_seqcount_end(&tk_core.seq);
9a7a71b1 1739 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
8524070b 1740
4ffee521 1741 tick_suspend();
c54a42b1 1742 clocksource_suspend();
adc78e6b 1743 clockevents_suspend();
8524070b 1744
1745 return 0;
1746}
1747
1748/* sysfs resume/suspend bits for timekeeping */
e1a85b2c 1749static struct syscore_ops timekeeping_syscore_ops = {
8524070b 1750 .resume = timekeeping_resume,
1751 .suspend = timekeeping_suspend,
8524070b 1752};
1753
e1a85b2c 1754static int __init timekeeping_init_ops(void)
8524070b 1755{
e1a85b2c
RW
1756 register_syscore_ops(&timekeeping_syscore_ops);
1757 return 0;
8524070b 1758}
e1a85b2c 1759device_initcall(timekeeping_init_ops);
8524070b 1760
1761/*
dc491596 1762 * Apply a multiplier adjustment to the timekeeper
8524070b 1763 */
dc491596
JS
1764static __always_inline void timekeeping_apply_adjustment(struct timekeeper *tk,
1765 s64 offset,
1766 bool negative,
1767 int adj_scale)
8524070b 1768{
dc491596
JS
1769 s64 interval = tk->cycle_interval;
1770 s32 mult_adj = 1;
8524070b 1771
dc491596
JS
1772 if (negative) {
1773 mult_adj = -mult_adj;
1774 interval = -interval;
1775 offset = -offset;
1d17d174 1776 }
dc491596
JS
1777 mult_adj <<= adj_scale;
1778 interval <<= adj_scale;
1779 offset <<= adj_scale;
8524070b 1780
c2bc1111
JS
1781 /*
1782 * So the following can be confusing.
1783 *
dc491596 1784 * To keep things simple, lets assume mult_adj == 1 for now.
c2bc1111 1785 *
dc491596 1786 * When mult_adj != 1, remember that the interval and offset values
c2bc1111
JS
1787 * have been appropriately scaled so the math is the same.
1788 *
1789 * The basic idea here is that we're increasing the multiplier
1790 * by one, this causes the xtime_interval to be incremented by
1791 * one cycle_interval. This is because:
1792 * xtime_interval = cycle_interval * mult
1793 * So if mult is being incremented by one:
1794 * xtime_interval = cycle_interval * (mult + 1)
1795 * Its the same as:
1796 * xtime_interval = (cycle_interval * mult) + cycle_interval
1797 * Which can be shortened to:
1798 * xtime_interval += cycle_interval
1799 *
1800 * So offset stores the non-accumulated cycles. Thus the current
1801 * time (in shifted nanoseconds) is:
1802 * now = (offset * adj) + xtime_nsec
1803 * Now, even though we're adjusting the clock frequency, we have
1804 * to keep time consistent. In other words, we can't jump back
1805 * in time, and we also want to avoid jumping forward in time.
1806 *
1807 * So given the same offset value, we need the time to be the same
1808 * both before and after the freq adjustment.
1809 * now = (offset * adj_1) + xtime_nsec_1
1810 * now = (offset * adj_2) + xtime_nsec_2
1811 * So:
1812 * (offset * adj_1) + xtime_nsec_1 =
1813 * (offset * adj_2) + xtime_nsec_2
1814 * And we know:
1815 * adj_2 = adj_1 + 1
1816 * So:
1817 * (offset * adj_1) + xtime_nsec_1 =
1818 * (offset * (adj_1+1)) + xtime_nsec_2
1819 * (offset * adj_1) + xtime_nsec_1 =
1820 * (offset * adj_1) + offset + xtime_nsec_2
1821 * Canceling the sides:
1822 * xtime_nsec_1 = offset + xtime_nsec_2
1823 * Which gives us:
1824 * xtime_nsec_2 = xtime_nsec_1 - offset
1825 * Which simplfies to:
1826 * xtime_nsec -= offset
1827 *
1828 * XXX - TODO: Doc ntp_error calculation.
1829 */
876e7881 1830 if ((mult_adj > 0) && (tk->tkr_mono.mult + mult_adj < mult_adj)) {
6067dc5a 1831 /* NTP adjustment caused clocksource mult overflow */
1832 WARN_ON_ONCE(1);
1833 return;
1834 }
1835
876e7881 1836 tk->tkr_mono.mult += mult_adj;
f726a697 1837 tk->xtime_interval += interval;
876e7881 1838 tk->tkr_mono.xtime_nsec -= offset;
f726a697 1839 tk->ntp_error -= (interval - offset) << tk->ntp_error_shift;
dc491596
JS
1840}
1841
1842/*
1843 * Calculate the multiplier adjustment needed to match the frequency
1844 * specified by NTP
1845 */
1846static __always_inline void timekeeping_freqadjust(struct timekeeper *tk,
1847 s64 offset)
1848{
1849 s64 interval = tk->cycle_interval;
1850 s64 xinterval = tk->xtime_interval;
ec02b076
JS
1851 u32 base = tk->tkr_mono.clock->mult;
1852 u32 max = tk->tkr_mono.clock->maxadj;
1853 u32 cur_adj = tk->tkr_mono.mult;
dc491596
JS
1854 s64 tick_error;
1855 bool negative;
ec02b076 1856 u32 adj_scale;
dc491596
JS
1857
1858 /* Remove any current error adj from freq calculation */
1859 if (tk->ntp_err_mult)
1860 xinterval -= tk->cycle_interval;
1861
375f45b5
JS
1862 tk->ntp_tick = ntp_tick_length();
1863
dc491596
JS
1864 /* Calculate current error per tick */
1865 tick_error = ntp_tick_length() >> tk->ntp_error_shift;
1866 tick_error -= (xinterval + tk->xtime_remainder);
1867
1868 /* Don't worry about correcting it if its small */
1869 if (likely((tick_error >= 0) && (tick_error <= interval)))
1870 return;
1871
1872 /* preserve the direction of correction */
1873 negative = (tick_error < 0);
1874
ec02b076
JS
1875 /* If any adjustment would pass the max, just return */
1876 if (negative && (cur_adj - 1) <= (base - max))
1877 return;
1878 if (!negative && (cur_adj + 1) >= (base + max))
1879 return;
1880 /*
1881 * Sort out the magnitude of the correction, but
1882 * avoid making so large a correction that we go
1883 * over the max adjustment.
1884 */
1885 adj_scale = 0;
79211c8e 1886 tick_error = abs(tick_error);
ec02b076
JS
1887 while (tick_error > interval) {
1888 u32 adj = 1 << (adj_scale + 1);
1889
1890 /* Check if adjustment gets us within 1 unit from the max */
1891 if (negative && (cur_adj - adj) <= (base - max))
1892 break;
1893 if (!negative && (cur_adj + adj) >= (base + max))
1894 break;
1895
1896 adj_scale++;
dc491596 1897 tick_error >>= 1;
ec02b076 1898 }
dc491596
JS
1899
1900 /* scale the corrections */
ec02b076 1901 timekeeping_apply_adjustment(tk, offset, negative, adj_scale);
dc491596
JS
1902}
1903
1904/*
1905 * Adjust the timekeeper's multiplier to the correct frequency
1906 * and also to reduce the accumulated error value.
1907 */
1908static void timekeeping_adjust(struct timekeeper *tk, s64 offset)
1909{
1910 /* Correct for the current frequency error */
1911 timekeeping_freqadjust(tk, offset);
1912
1913 /* Next make a small adjustment to fix any cumulative error */
1914 if (!tk->ntp_err_mult && (tk->ntp_error > 0)) {
1915 tk->ntp_err_mult = 1;
1916 timekeeping_apply_adjustment(tk, offset, 0, 0);
1917 } else if (tk->ntp_err_mult && (tk->ntp_error <= 0)) {
1918 /* Undo any existing error adjustment */
1919 timekeeping_apply_adjustment(tk, offset, 1, 0);
1920 tk->ntp_err_mult = 0;
1921 }
1922
876e7881
PZ
1923 if (unlikely(tk->tkr_mono.clock->maxadj &&
1924 (abs(tk->tkr_mono.mult - tk->tkr_mono.clock->mult)
1925 > tk->tkr_mono.clock->maxadj))) {
dc491596
JS
1926 printk_once(KERN_WARNING
1927 "Adjusting %s more than 11%% (%ld vs %ld)\n",
876e7881
PZ
1928 tk->tkr_mono.clock->name, (long)tk->tkr_mono.mult,
1929 (long)tk->tkr_mono.clock->mult + tk->tkr_mono.clock->maxadj);
dc491596 1930 }
2a8c0883
JS
1931
1932 /*
1933 * It may be possible that when we entered this function, xtime_nsec
1934 * was very small. Further, if we're slightly speeding the clocksource
1935 * in the code above, its possible the required corrective factor to
1936 * xtime_nsec could cause it to underflow.
1937 *
1938 * Now, since we already accumulated the second, cannot simply roll
1939 * the accumulated second back, since the NTP subsystem has been
1940 * notified via second_overflow. So instead we push xtime_nsec forward
1941 * by the amount we underflowed, and add that amount into the error.
1942 *
1943 * We'll correct this error next time through this function, when
1944 * xtime_nsec is not as small.
1945 */
876e7881
PZ
1946 if (unlikely((s64)tk->tkr_mono.xtime_nsec < 0)) {
1947 s64 neg = -(s64)tk->tkr_mono.xtime_nsec;
1948 tk->tkr_mono.xtime_nsec = 0;
f726a697 1949 tk->ntp_error += neg << tk->ntp_error_shift;
2a8c0883 1950 }
8524070b 1951}
1952
1f4f9487
JS
1953/**
1954 * accumulate_nsecs_to_secs - Accumulates nsecs into secs
1955 *
571af55a 1956 * Helper function that accumulates the nsecs greater than a second
1f4f9487
JS
1957 * from the xtime_nsec field to the xtime_secs field.
1958 * It also calls into the NTP code to handle leapsecond processing.
1959 *
1960 */
780427f0 1961static inline unsigned int accumulate_nsecs_to_secs(struct timekeeper *tk)
1f4f9487 1962{
876e7881 1963 u64 nsecps = (u64)NSEC_PER_SEC << tk->tkr_mono.shift;
5258d3f2 1964 unsigned int clock_set = 0;
1f4f9487 1965
876e7881 1966 while (tk->tkr_mono.xtime_nsec >= nsecps) {
1f4f9487
JS
1967 int leap;
1968
876e7881 1969 tk->tkr_mono.xtime_nsec -= nsecps;
1f4f9487
JS
1970 tk->xtime_sec++;
1971
1972 /* Figure out if its a leap sec and apply if needed */
1973 leap = second_overflow(tk->xtime_sec);
6d0ef903 1974 if (unlikely(leap)) {
7d489d15 1975 struct timespec64 ts;
6d0ef903
JS
1976
1977 tk->xtime_sec += leap;
1f4f9487 1978
6d0ef903
JS
1979 ts.tv_sec = leap;
1980 ts.tv_nsec = 0;
1981 tk_set_wall_to_mono(tk,
7d489d15 1982 timespec64_sub(tk->wall_to_monotonic, ts));
6d0ef903 1983
cc244dda
JS
1984 __timekeeping_set_tai_offset(tk, tk->tai_offset - leap);
1985
5258d3f2 1986 clock_set = TK_CLOCK_WAS_SET;
6d0ef903 1987 }
1f4f9487 1988 }
5258d3f2 1989 return clock_set;
1f4f9487
JS
1990}
1991
a092ff0f 1992/**
1993 * logarithmic_accumulation - shifted accumulation of cycles
1994 *
1995 * This functions accumulates a shifted interval of cycles into
1996 * into a shifted interval nanoseconds. Allows for O(log) accumulation
1997 * loop.
1998 *
1999 * Returns the unconsumed cycles.
2000 */
f726a697 2001static cycle_t logarithmic_accumulation(struct timekeeper *tk, cycle_t offset,
5258d3f2
JS
2002 u32 shift,
2003 unsigned int *clock_set)
a092ff0f 2004{
23a9537a 2005 cycle_t interval = tk->cycle_interval << shift;
deda2e81 2006 u64 raw_nsecs;
a092ff0f 2007
571af55a 2008 /* If the offset is smaller than a shifted interval, do nothing */
23a9537a 2009 if (offset < interval)
a092ff0f 2010 return offset;
2011
2012 /* Accumulate one shifted interval */
23a9537a 2013 offset -= interval;
876e7881 2014 tk->tkr_mono.cycle_last += interval;
4a4ad80d 2015 tk->tkr_raw.cycle_last += interval;
a092ff0f 2016
876e7881 2017 tk->tkr_mono.xtime_nsec += tk->xtime_interval << shift;
5258d3f2 2018 *clock_set |= accumulate_nsecs_to_secs(tk);
a092ff0f 2019
deda2e81 2020 /* Accumulate raw time */
5b3900cd 2021 raw_nsecs = (u64)tk->raw_interval << shift;
f726a697 2022 raw_nsecs += tk->raw_time.tv_nsec;
c7dcf87a
JS
2023 if (raw_nsecs >= NSEC_PER_SEC) {
2024 u64 raw_secs = raw_nsecs;
2025 raw_nsecs = do_div(raw_secs, NSEC_PER_SEC);
f726a697 2026 tk->raw_time.tv_sec += raw_secs;
a092ff0f 2027 }
f726a697 2028 tk->raw_time.tv_nsec = raw_nsecs;
a092ff0f 2029
2030 /* Accumulate error between NTP and clock interval */
375f45b5 2031 tk->ntp_error += tk->ntp_tick << shift;
f726a697
JS
2032 tk->ntp_error -= (tk->xtime_interval + tk->xtime_remainder) <<
2033 (tk->ntp_error_shift + shift);
a092ff0f 2034
2035 return offset;
2036}
2037
8524070b 2038/**
2039 * update_wall_time - Uses the current clocksource to increment the wall time
2040 *
8524070b 2041 */
47a1b796 2042void update_wall_time(void)
8524070b 2043{
3fdb14fd 2044 struct timekeeper *real_tk = &tk_core.timekeeper;
48cdc135 2045 struct timekeeper *tk = &shadow_timekeeper;
8524070b 2046 cycle_t offset;
a092ff0f 2047 int shift = 0, maxshift;
5258d3f2 2048 unsigned int clock_set = 0;
70471f2f
JS
2049 unsigned long flags;
2050
9a7a71b1 2051 raw_spin_lock_irqsave(&timekeeper_lock, flags);
8524070b 2052
2053 /* Make sure we're fully resumed: */
2054 if (unlikely(timekeeping_suspended))
70471f2f 2055 goto out;
8524070b 2056
592913ec 2057#ifdef CONFIG_ARCH_USES_GETTIMEOFFSET
48cdc135 2058 offset = real_tk->cycle_interval;
592913ec 2059#else
876e7881
PZ
2060 offset = clocksource_delta(tk->tkr_mono.read(tk->tkr_mono.clock),
2061 tk->tkr_mono.cycle_last, tk->tkr_mono.mask);
8524070b 2062#endif
8524070b 2063
bf2ac312 2064 /* Check if there's really nothing to do */
48cdc135 2065 if (offset < real_tk->cycle_interval)
bf2ac312
JS
2066 goto out;
2067
3c17ad19
JS
2068 /* Do some additional sanity checking */
2069 timekeeping_check_update(real_tk, offset);
2070
a092ff0f 2071 /*
2072 * With NO_HZ we may have to accumulate many cycle_intervals
2073 * (think "ticks") worth of time at once. To do this efficiently,
2074 * we calculate the largest doubling multiple of cycle_intervals
88b28adf 2075 * that is smaller than the offset. We then accumulate that
a092ff0f 2076 * chunk in one go, and then try to consume the next smaller
2077 * doubled multiple.
8524070b 2078 */
4e250fdd 2079 shift = ilog2(offset) - ilog2(tk->cycle_interval);
a092ff0f 2080 shift = max(0, shift);
88b28adf 2081 /* Bound shift to one less than what overflows tick_length */
ea7cf49a 2082 maxshift = (64 - (ilog2(ntp_tick_length())+1)) - 1;
a092ff0f 2083 shift = min(shift, maxshift);
4e250fdd 2084 while (offset >= tk->cycle_interval) {
5258d3f2
JS
2085 offset = logarithmic_accumulation(tk, offset, shift,
2086 &clock_set);
4e250fdd 2087 if (offset < tk->cycle_interval<<shift)
830ec045 2088 shift--;
8524070b 2089 }
2090
2091 /* correct the clock when NTP error is too big */
4e250fdd 2092 timekeeping_adjust(tk, offset);
8524070b 2093
6a867a39 2094 /*
92bb1fcf
JS
2095 * XXX This can be killed once everyone converts
2096 * to the new update_vsyscall.
2097 */
2098 old_vsyscall_fixup(tk);
8524070b 2099
6a867a39
JS
2100 /*
2101 * Finally, make sure that after the rounding
1e75fa8b 2102 * xtime_nsec isn't larger than NSEC_PER_SEC
6a867a39 2103 */
5258d3f2 2104 clock_set |= accumulate_nsecs_to_secs(tk);
83f57a11 2105
3fdb14fd 2106 write_seqcount_begin(&tk_core.seq);
48cdc135
TG
2107 /*
2108 * Update the real timekeeper.
2109 *
2110 * We could avoid this memcpy by switching pointers, but that
2111 * requires changes to all other timekeeper usage sites as
2112 * well, i.e. move the timekeeper pointer getter into the
2113 * spinlocked/seqcount protected sections. And we trade this
3fdb14fd 2114 * memcpy under the tk_core.seq against one before we start
48cdc135
TG
2115 * updating.
2116 */
906c5557 2117 timekeeping_update(tk, clock_set);
48cdc135 2118 memcpy(real_tk, tk, sizeof(*tk));
906c5557 2119 /* The memcpy must come last. Do not put anything here! */
3fdb14fd 2120 write_seqcount_end(&tk_core.seq);
ca4523cd 2121out:
9a7a71b1 2122 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
47a1b796 2123 if (clock_set)
cab5e127
JS
2124 /* Have to call _delayed version, since in irq context*/
2125 clock_was_set_delayed();
8524070b 2126}
7c3f1a57
TJ
2127
2128/**
d08c0cdd
JS
2129 * getboottime64 - Return the real time of system boot.
2130 * @ts: pointer to the timespec64 to be set
7c3f1a57 2131 *
d08c0cdd 2132 * Returns the wall-time of boot in a timespec64.
7c3f1a57
TJ
2133 *
2134 * This is based on the wall_to_monotonic offset and the total suspend
2135 * time. Calls to settimeofday will affect the value returned (which
2136 * basically means that however wrong your real time clock is at boot time,
2137 * you get the right time here).
2138 */
d08c0cdd 2139void getboottime64(struct timespec64 *ts)
7c3f1a57 2140{
3fdb14fd 2141 struct timekeeper *tk = &tk_core.timekeeper;
02cba159
TG
2142 ktime_t t = ktime_sub(tk->offs_real, tk->offs_boot);
2143
d08c0cdd 2144 *ts = ktime_to_timespec64(t);
7c3f1a57 2145}
d08c0cdd 2146EXPORT_SYMBOL_GPL(getboottime64);
7c3f1a57 2147
17c38b74 2148unsigned long get_seconds(void)
2149{
3fdb14fd 2150 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd
JS
2151
2152 return tk->xtime_sec;
17c38b74 2153}
2154EXPORT_SYMBOL(get_seconds);
2155
da15cfda 2156struct timespec __current_kernel_time(void)
2157{
3fdb14fd 2158 struct timekeeper *tk = &tk_core.timekeeper;
4e250fdd 2159
7d489d15 2160 return timespec64_to_timespec(tk_xtime(tk));
da15cfda 2161}
17c38b74 2162
8758a240 2163struct timespec64 current_kernel_time64(void)
2c6b47de 2164{
3fdb14fd 2165 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 2166 struct timespec64 now;
2c6b47de 2167 unsigned long seq;
2168
2169 do {
3fdb14fd 2170 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 2171
4e250fdd 2172 now = tk_xtime(tk);
3fdb14fd 2173 } while (read_seqcount_retry(&tk_core.seq, seq));
2c6b47de 2174
8758a240 2175 return now;
2c6b47de 2176}
8758a240 2177EXPORT_SYMBOL(current_kernel_time64);
da15cfda 2178
334334b5 2179struct timespec64 get_monotonic_coarse64(void)
da15cfda 2180{
3fdb14fd 2181 struct timekeeper *tk = &tk_core.timekeeper;
7d489d15 2182 struct timespec64 now, mono;
da15cfda 2183 unsigned long seq;
2184
2185 do {
3fdb14fd 2186 seq = read_seqcount_begin(&tk_core.seq);
83f57a11 2187
4e250fdd
JS
2188 now = tk_xtime(tk);
2189 mono = tk->wall_to_monotonic;
3fdb14fd 2190 } while (read_seqcount_retry(&tk_core.seq, seq));
da15cfda 2191
7d489d15 2192 set_normalized_timespec64(&now, now.tv_sec + mono.tv_sec,
da15cfda 2193 now.tv_nsec + mono.tv_nsec);
7d489d15 2194
334334b5 2195 return now;
da15cfda 2196}
eaaa7ec7 2197EXPORT_SYMBOL(get_monotonic_coarse64);
871cf1e5
TH
2198
2199/*
d6ad4187 2200 * Must hold jiffies_lock
871cf1e5
TH
2201 */
2202void do_timer(unsigned long ticks)
2203{
2204 jiffies_64 += ticks;
871cf1e5
TH
2205 calc_global_load(ticks);
2206}
48cf76f7 2207
f6c06abf 2208/**
76f41088 2209 * ktime_get_update_offsets_now - hrtimer helper
868a3e91 2210 * @cwsseq: pointer to check and store the clock was set sequence number
f6c06abf
TG
2211 * @offs_real: pointer to storage for monotonic -> realtime offset
2212 * @offs_boot: pointer to storage for monotonic -> boottime offset
b7bc50e4 2213 * @offs_tai: pointer to storage for monotonic -> clock tai offset
f6c06abf 2214 *
868a3e91
TG
2215 * Returns current monotonic time and updates the offsets if the
2216 * sequence number in @cwsseq and timekeeper.clock_was_set_seq are
2217 * different.
2218 *
b7bc50e4 2219 * Called from hrtimer_interrupt() or retrigger_next_event()
f6c06abf 2220 */
868a3e91
TG
2221ktime_t ktime_get_update_offsets_now(unsigned int *cwsseq, ktime_t *offs_real,
2222 ktime_t *offs_boot, ktime_t *offs_tai)
f6c06abf 2223{
3fdb14fd 2224 struct timekeeper *tk = &tk_core.timekeeper;
f6c06abf 2225 unsigned int seq;
a37c0aad
TG
2226 ktime_t base;
2227 u64 nsecs;
f6c06abf
TG
2228
2229 do {
3fdb14fd 2230 seq = read_seqcount_begin(&tk_core.seq);
f6c06abf 2231
876e7881
PZ
2232 base = tk->tkr_mono.base;
2233 nsecs = timekeeping_get_ns(&tk->tkr_mono);
833f32d7
JS
2234 base = ktime_add_ns(base, nsecs);
2235
868a3e91
TG
2236 if (*cwsseq != tk->clock_was_set_seq) {
2237 *cwsseq = tk->clock_was_set_seq;
2238 *offs_real = tk->offs_real;
2239 *offs_boot = tk->offs_boot;
2240 *offs_tai = tk->offs_tai;
2241 }
833f32d7
JS
2242
2243 /* Handle leapsecond insertion adjustments */
2244 if (unlikely(base.tv64 >= tk->next_leap_ktime.tv64))
2245 *offs_real = ktime_sub(tk->offs_real, ktime_set(1, 0));
2246
3fdb14fd 2247 } while (read_seqcount_retry(&tk_core.seq, seq));
f6c06abf 2248
833f32d7 2249 return base;
f6c06abf 2250}
f6c06abf 2251
aa6f9c59
JS
2252/**
2253 * do_adjtimex() - Accessor function to NTP __do_adjtimex function
2254 */
2255int do_adjtimex(struct timex *txc)
2256{
3fdb14fd 2257 struct timekeeper *tk = &tk_core.timekeeper;
06c017fd 2258 unsigned long flags;
7d489d15 2259 struct timespec64 ts;
4e8f8b34 2260 s32 orig_tai, tai;
e4085693
JS
2261 int ret;
2262
2263 /* Validate the data before disabling interrupts */
2264 ret = ntp_validate_timex(txc);
2265 if (ret)
2266 return ret;
2267
cef90377
JS
2268 if (txc->modes & ADJ_SETOFFSET) {
2269 struct timespec delta;
2270 delta.tv_sec = txc->time.tv_sec;
2271 delta.tv_nsec = txc->time.tv_usec;
2272 if (!(txc->modes & ADJ_NANO))
2273 delta.tv_nsec *= 1000;
2274 ret = timekeeping_inject_offset(&delta);
2275 if (ret)
2276 return ret;
2277 }
2278
d6d29896 2279 getnstimeofday64(&ts);
87ace39b 2280
06c017fd 2281 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2282 write_seqcount_begin(&tk_core.seq);
06c017fd 2283
4e8f8b34 2284 orig_tai = tai = tk->tai_offset;
87ace39b 2285 ret = __do_adjtimex(txc, &ts, &tai);
aa6f9c59 2286
4e8f8b34
JS
2287 if (tai != orig_tai) {
2288 __timekeeping_set_tai_offset(tk, tai);
f55c0760 2289 timekeeping_update(tk, TK_MIRROR | TK_CLOCK_WAS_SET);
4e8f8b34 2290 }
833f32d7
JS
2291 tk_update_leap_state(tk);
2292
3fdb14fd 2293 write_seqcount_end(&tk_core.seq);
06c017fd
JS
2294 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
2295
6fdda9a9
JS
2296 if (tai != orig_tai)
2297 clock_was_set();
2298
7bd36014
JS
2299 ntp_notify_cmos_timer();
2300
87ace39b
JS
2301 return ret;
2302}
aa6f9c59
JS
2303
2304#ifdef CONFIG_NTP_PPS
2305/**
2306 * hardpps() - Accessor function to NTP __hardpps function
2307 */
7ec88e4b 2308void hardpps(const struct timespec64 *phase_ts, const struct timespec64 *raw_ts)
aa6f9c59 2309{
06c017fd
JS
2310 unsigned long flags;
2311
2312 raw_spin_lock_irqsave(&timekeeper_lock, flags);
3fdb14fd 2313 write_seqcount_begin(&tk_core.seq);
06c017fd 2314
aa6f9c59 2315 __hardpps(phase_ts, raw_ts);
06c017fd 2316
3fdb14fd 2317 write_seqcount_end(&tk_core.seq);
06c017fd 2318 raw_spin_unlock_irqrestore(&timekeeper_lock, flags);
aa6f9c59
JS
2319}
2320EXPORT_SYMBOL(hardpps);
2321#endif
2322
f0af911a
TH
2323/**
2324 * xtime_update() - advances the timekeeping infrastructure
2325 * @ticks: number of ticks, that have elapsed since the last call.
2326 *
2327 * Must be called with interrupts disabled.
2328 */
2329void xtime_update(unsigned long ticks)
2330{
d6ad4187 2331 write_seqlock(&jiffies_lock);
f0af911a 2332 do_timer(ticks);
d6ad4187 2333 write_sequnlock(&jiffies_lock);
47a1b796 2334 update_wall_time();
f0af911a 2335}
This page took 0.719289 seconds and 5 git commands to generate.