[media] media-device: fix builds when USB or PCI is compiled as module
[deliverable/linux.git] / kernel / workqueue.c
CommitLineData
1da177e4 1/*
c54fce6e 2 * kernel/workqueue.c - generic async execution with shared worker pool
1da177e4 3 *
c54fce6e 4 * Copyright (C) 2002 Ingo Molnar
1da177e4 5 *
c54fce6e
TH
6 * Derived from the taskqueue/keventd code by:
7 * David Woodhouse <dwmw2@infradead.org>
8 * Andrew Morton
9 * Kai Petzke <wpp@marie.physik.tu-berlin.de>
10 * Theodore Ts'o <tytso@mit.edu>
1da177e4 11 *
c54fce6e 12 * Made to use alloc_percpu by Christoph Lameter.
1da177e4 13 *
c54fce6e
TH
14 * Copyright (C) 2010 SUSE Linux Products GmbH
15 * Copyright (C) 2010 Tejun Heo <tj@kernel.org>
89ada679 16 *
c54fce6e
TH
17 * This is the generic async execution mechanism. Work items as are
18 * executed in process context. The worker pool is shared and
b11895c4
L
19 * automatically managed. There are two worker pools for each CPU (one for
20 * normal work items and the other for high priority ones) and some extra
21 * pools for workqueues which are not bound to any specific CPU - the
22 * number of these backing pools is dynamic.
c54fce6e
TH
23 *
24 * Please read Documentation/workqueue.txt for details.
1da177e4
LT
25 */
26
9984de1a 27#include <linux/export.h>
1da177e4
LT
28#include <linux/kernel.h>
29#include <linux/sched.h>
30#include <linux/init.h>
31#include <linux/signal.h>
32#include <linux/completion.h>
33#include <linux/workqueue.h>
34#include <linux/slab.h>
35#include <linux/cpu.h>
36#include <linux/notifier.h>
37#include <linux/kthread.h>
1fa44eca 38#include <linux/hardirq.h>
46934023 39#include <linux/mempolicy.h>
341a5958 40#include <linux/freezer.h>
d5abe669
PZ
41#include <linux/kallsyms.h>
42#include <linux/debug_locks.h>
4e6045f1 43#include <linux/lockdep.h>
c34056a3 44#include <linux/idr.h>
29c91e99 45#include <linux/jhash.h>
42f8570f 46#include <linux/hashtable.h>
76af4d93 47#include <linux/rculist.h>
bce90380 48#include <linux/nodemask.h>
4c16bd32 49#include <linux/moduleparam.h>
3d1cb205 50#include <linux/uaccess.h>
e22bee78 51
ea138446 52#include "workqueue_internal.h"
1da177e4 53
c8e55f36 54enum {
24647570
TH
55 /*
56 * worker_pool flags
bc2ae0f5 57 *
24647570 58 * A bound pool is either associated or disassociated with its CPU.
bc2ae0f5
TH
59 * While associated (!DISASSOCIATED), all workers are bound to the
60 * CPU and none has %WORKER_UNBOUND set and concurrency management
61 * is in effect.
62 *
63 * While DISASSOCIATED, the cpu may be offline and all workers have
64 * %WORKER_UNBOUND set and concurrency management disabled, and may
24647570 65 * be executing on any CPU. The pool behaves as an unbound one.
bc2ae0f5 66 *
bc3a1afc 67 * Note that DISASSOCIATED should be flipped only while holding
92f9c5c4 68 * attach_mutex to avoid changing binding state while
4736cbf7 69 * worker_attach_to_pool() is in progress.
bc2ae0f5 70 */
24647570 71 POOL_DISASSOCIATED = 1 << 2, /* cpu can't serve workers */
db7bccf4 72
c8e55f36 73 /* worker flags */
c8e55f36
TH
74 WORKER_DIE = 1 << 1, /* die die die */
75 WORKER_IDLE = 1 << 2, /* is idle */
e22bee78 76 WORKER_PREP = 1 << 3, /* preparing to run works */
fb0e7beb 77 WORKER_CPU_INTENSIVE = 1 << 6, /* cpu intensive */
f3421797 78 WORKER_UNBOUND = 1 << 7, /* worker is unbound */
a9ab775b 79 WORKER_REBOUND = 1 << 8, /* worker was rebound */
e22bee78 80
a9ab775b
TH
81 WORKER_NOT_RUNNING = WORKER_PREP | WORKER_CPU_INTENSIVE |
82 WORKER_UNBOUND | WORKER_REBOUND,
db7bccf4 83
e34cdddb 84 NR_STD_WORKER_POOLS = 2, /* # standard pools per cpu */
4ce62e9e 85
29c91e99 86 UNBOUND_POOL_HASH_ORDER = 6, /* hashed by pool->attrs */
c8e55f36 87 BUSY_WORKER_HASH_ORDER = 6, /* 64 pointers */
db7bccf4 88
e22bee78
TH
89 MAX_IDLE_WORKERS_RATIO = 4, /* 1/4 of busy can be idle */
90 IDLE_WORKER_TIMEOUT = 300 * HZ, /* keep idle ones for 5 mins */
91
3233cdbd
TH
92 MAYDAY_INITIAL_TIMEOUT = HZ / 100 >= 2 ? HZ / 100 : 2,
93 /* call for help after 10ms
94 (min two ticks) */
e22bee78
TH
95 MAYDAY_INTERVAL = HZ / 10, /* and then every 100ms */
96 CREATE_COOLDOWN = HZ, /* time to breath after fail */
e22bee78
TH
97
98 /*
99 * Rescue workers are used only on emergencies and shared by
8698a745 100 * all cpus. Give MIN_NICE.
e22bee78 101 */
8698a745
DY
102 RESCUER_NICE_LEVEL = MIN_NICE,
103 HIGHPRI_NICE_LEVEL = MIN_NICE,
ecf6881f
TH
104
105 WQ_NAME_LEN = 24,
c8e55f36 106};
1da177e4
LT
107
108/*
4690c4ab
TH
109 * Structure fields follow one of the following exclusion rules.
110 *
e41e704b
TH
111 * I: Modifiable by initialization/destruction paths and read-only for
112 * everyone else.
4690c4ab 113 *
e22bee78
TH
114 * P: Preemption protected. Disabling preemption is enough and should
115 * only be modified and accessed from the local cpu.
116 *
d565ed63 117 * L: pool->lock protected. Access with pool->lock held.
4690c4ab 118 *
d565ed63
TH
119 * X: During normal operation, modification requires pool->lock and should
120 * be done only from local cpu. Either disabling preemption on local
121 * cpu or grabbing pool->lock is enough for read access. If
122 * POOL_DISASSOCIATED is set, it's identical to L.
e22bee78 123 *
92f9c5c4 124 * A: pool->attach_mutex protected.
822d8405 125 *
68e13a67 126 * PL: wq_pool_mutex protected.
5bcab335 127 *
68e13a67 128 * PR: wq_pool_mutex protected for writes. Sched-RCU protected for reads.
76af4d93 129 *
5b95e1af
LJ
130 * PW: wq_pool_mutex and wq->mutex protected for writes. Either for reads.
131 *
132 * PWR: wq_pool_mutex and wq->mutex protected for writes. Either or
133 * sched-RCU for reads.
134 *
3c25a55d
LJ
135 * WQ: wq->mutex protected.
136 *
b5927605 137 * WR: wq->mutex protected for writes. Sched-RCU protected for reads.
2e109a28
TH
138 *
139 * MD: wq_mayday_lock protected.
1da177e4 140 */
1da177e4 141
2eaebdb3 142/* struct worker is defined in workqueue_internal.h */
c34056a3 143
bd7bdd43 144struct worker_pool {
d565ed63 145 spinlock_t lock; /* the pool lock */
d84ff051 146 int cpu; /* I: the associated cpu */
f3f90ad4 147 int node; /* I: the associated node ID */
9daf9e67 148 int id; /* I: pool ID */
11ebea50 149 unsigned int flags; /* X: flags */
bd7bdd43 150
82607adc
TH
151 unsigned long watchdog_ts; /* L: watchdog timestamp */
152
bd7bdd43
TH
153 struct list_head worklist; /* L: list of pending works */
154 int nr_workers; /* L: total number of workers */
ea1abd61
LJ
155
156 /* nr_idle includes the ones off idle_list for rebinding */
bd7bdd43
TH
157 int nr_idle; /* L: currently idle ones */
158
159 struct list_head idle_list; /* X: list of idle workers */
160 struct timer_list idle_timer; /* L: worker idle timeout */
161 struct timer_list mayday_timer; /* L: SOS timer for workers */
162
c5aa87bb 163 /* a workers is either on busy_hash or idle_list, or the manager */
c9e7cf27
TH
164 DECLARE_HASHTABLE(busy_hash, BUSY_WORKER_HASH_ORDER);
165 /* L: hash of busy workers */
166
bc3a1afc 167 /* see manage_workers() for details on the two manager mutexes */
34a06bd6 168 struct mutex manager_arb; /* manager arbitration */
2607d7a6 169 struct worker *manager; /* L: purely informational */
92f9c5c4
LJ
170 struct mutex attach_mutex; /* attach/detach exclusion */
171 struct list_head workers; /* A: attached workers */
60f5a4bc 172 struct completion *detach_completion; /* all workers detached */
e19e397a 173
7cda9aae 174 struct ida worker_ida; /* worker IDs for task name */
e19e397a 175
7a4e344c 176 struct workqueue_attrs *attrs; /* I: worker attributes */
68e13a67
LJ
177 struct hlist_node hash_node; /* PL: unbound_pool_hash node */
178 int refcnt; /* PL: refcnt for unbound pools */
7a4e344c 179
e19e397a
TH
180 /*
181 * The current concurrency level. As it's likely to be accessed
182 * from other CPUs during try_to_wake_up(), put it in a separate
183 * cacheline.
184 */
185 atomic_t nr_running ____cacheline_aligned_in_smp;
29c91e99
TH
186
187 /*
188 * Destruction of pool is sched-RCU protected to allow dereferences
189 * from get_work_pool().
190 */
191 struct rcu_head rcu;
8b03ae3c
TH
192} ____cacheline_aligned_in_smp;
193
1da177e4 194/*
112202d9
TH
195 * The per-pool workqueue. While queued, the lower WORK_STRUCT_FLAG_BITS
196 * of work_struct->data are used for flags and the remaining high bits
197 * point to the pwq; thus, pwqs need to be aligned at two's power of the
198 * number of flag bits.
1da177e4 199 */
112202d9 200struct pool_workqueue {
bd7bdd43 201 struct worker_pool *pool; /* I: the associated pool */
4690c4ab 202 struct workqueue_struct *wq; /* I: the owning workqueue */
73f53c4a
TH
203 int work_color; /* L: current color */
204 int flush_color; /* L: flushing color */
8864b4e5 205 int refcnt; /* L: reference count */
73f53c4a
TH
206 int nr_in_flight[WORK_NR_COLORS];
207 /* L: nr of in_flight works */
1e19ffc6 208 int nr_active; /* L: nr of active works */
a0a1a5fd 209 int max_active; /* L: max active works */
1e19ffc6 210 struct list_head delayed_works; /* L: delayed works */
3c25a55d 211 struct list_head pwqs_node; /* WR: node on wq->pwqs */
2e109a28 212 struct list_head mayday_node; /* MD: node on wq->maydays */
8864b4e5
TH
213
214 /*
215 * Release of unbound pwq is punted to system_wq. See put_pwq()
216 * and pwq_unbound_release_workfn() for details. pool_workqueue
217 * itself is also sched-RCU protected so that the first pwq can be
b09f4fd3 218 * determined without grabbing wq->mutex.
8864b4e5
TH
219 */
220 struct work_struct unbound_release_work;
221 struct rcu_head rcu;
e904e6c2 222} __aligned(1 << WORK_STRUCT_FLAG_BITS);
1da177e4 223
73f53c4a
TH
224/*
225 * Structure used to wait for workqueue flush.
226 */
227struct wq_flusher {
3c25a55d
LJ
228 struct list_head list; /* WQ: list of flushers */
229 int flush_color; /* WQ: flush color waiting for */
73f53c4a
TH
230 struct completion done; /* flush completion */
231};
232
226223ab
TH
233struct wq_device;
234
1da177e4 235/*
c5aa87bb
TH
236 * The externally visible workqueue. It relays the issued work items to
237 * the appropriate worker_pool through its pool_workqueues.
1da177e4
LT
238 */
239struct workqueue_struct {
3c25a55d 240 struct list_head pwqs; /* WR: all pwqs of this wq */
e2dca7ad 241 struct list_head list; /* PR: list of all workqueues */
73f53c4a 242
3c25a55d
LJ
243 struct mutex mutex; /* protects this wq */
244 int work_color; /* WQ: current work color */
245 int flush_color; /* WQ: current flush color */
112202d9 246 atomic_t nr_pwqs_to_flush; /* flush in progress */
3c25a55d
LJ
247 struct wq_flusher *first_flusher; /* WQ: first flusher */
248 struct list_head flusher_queue; /* WQ: flush waiters */
249 struct list_head flusher_overflow; /* WQ: flush overflow list */
73f53c4a 250
2e109a28 251 struct list_head maydays; /* MD: pwqs requesting rescue */
e22bee78
TH
252 struct worker *rescuer; /* I: rescue worker */
253
87fc741e 254 int nr_drainers; /* WQ: drain in progress */
a357fc03 255 int saved_max_active; /* WQ: saved pwq max_active */
226223ab 256
5b95e1af
LJ
257 struct workqueue_attrs *unbound_attrs; /* PW: only for unbound wqs */
258 struct pool_workqueue *dfl_pwq; /* PW: only for unbound wqs */
6029a918 259
226223ab
TH
260#ifdef CONFIG_SYSFS
261 struct wq_device *wq_dev; /* I: for sysfs interface */
262#endif
4e6045f1 263#ifdef CONFIG_LOCKDEP
4690c4ab 264 struct lockdep_map lockdep_map;
4e6045f1 265#endif
ecf6881f 266 char name[WQ_NAME_LEN]; /* I: workqueue name */
2728fd2f 267
e2dca7ad
TH
268 /*
269 * Destruction of workqueue_struct is sched-RCU protected to allow
270 * walking the workqueues list without grabbing wq_pool_mutex.
271 * This is used to dump all workqueues from sysrq.
272 */
273 struct rcu_head rcu;
274
2728fd2f
TH
275 /* hot fields used during command issue, aligned to cacheline */
276 unsigned int flags ____cacheline_aligned; /* WQ: WQ_* flags */
277 struct pool_workqueue __percpu *cpu_pwqs; /* I: per-cpu pwqs */
5b95e1af 278 struct pool_workqueue __rcu *numa_pwq_tbl[]; /* PWR: unbound pwqs indexed by node */
1da177e4
LT
279};
280
e904e6c2
TH
281static struct kmem_cache *pwq_cache;
282
bce90380
TH
283static cpumask_var_t *wq_numa_possible_cpumask;
284 /* possible CPUs of each node */
285
d55262c4
TH
286static bool wq_disable_numa;
287module_param_named(disable_numa, wq_disable_numa, bool, 0444);
288
cee22a15 289/* see the comment above the definition of WQ_POWER_EFFICIENT */
552f530c 290static bool wq_power_efficient = IS_ENABLED(CONFIG_WQ_POWER_EFFICIENT_DEFAULT);
cee22a15
VK
291module_param_named(power_efficient, wq_power_efficient, bool, 0444);
292
bce90380
TH
293static bool wq_numa_enabled; /* unbound NUMA affinity enabled */
294
4c16bd32
TH
295/* buf for wq_update_unbound_numa_attrs(), protected by CPU hotplug exclusion */
296static struct workqueue_attrs *wq_update_unbound_numa_attrs_buf;
297
68e13a67 298static DEFINE_MUTEX(wq_pool_mutex); /* protects pools and workqueues list */
2e109a28 299static DEFINE_SPINLOCK(wq_mayday_lock); /* protects wq->maydays list */
5bcab335 300
e2dca7ad 301static LIST_HEAD(workqueues); /* PR: list of all workqueues */
68e13a67 302static bool workqueue_freezing; /* PL: have wqs started freezing? */
7d19c5ce 303
ef557180
MG
304/* PL: allowable cpus for unbound wqs and work items */
305static cpumask_var_t wq_unbound_cpumask;
306
307/* CPU where unbound work was last round robin scheduled from this CPU */
308static DEFINE_PER_CPU(int, wq_rr_cpu_last);
b05a7928 309
f303fccb
TH
310/*
311 * Local execution of unbound work items is no longer guaranteed. The
312 * following always forces round-robin CPU selection on unbound work items
313 * to uncover usages which depend on it.
314 */
315#ifdef CONFIG_DEBUG_WQ_FORCE_RR_CPU
316static bool wq_debug_force_rr_cpu = true;
317#else
318static bool wq_debug_force_rr_cpu = false;
319#endif
320module_param_named(debug_force_rr_cpu, wq_debug_force_rr_cpu, bool, 0644);
321
7d19c5ce 322/* the per-cpu worker pools */
25528213 323static DEFINE_PER_CPU_SHARED_ALIGNED(struct worker_pool [NR_STD_WORKER_POOLS], cpu_worker_pools);
7d19c5ce 324
68e13a67 325static DEFINE_IDR(worker_pool_idr); /* PR: idr of all pools */
7d19c5ce 326
68e13a67 327/* PL: hash of all unbound pools keyed by pool->attrs */
29c91e99
TH
328static DEFINE_HASHTABLE(unbound_pool_hash, UNBOUND_POOL_HASH_ORDER);
329
c5aa87bb 330/* I: attributes used when instantiating standard unbound pools on demand */
29c91e99
TH
331static struct workqueue_attrs *unbound_std_wq_attrs[NR_STD_WORKER_POOLS];
332
8a2b7538
TH
333/* I: attributes used when instantiating ordered pools on demand */
334static struct workqueue_attrs *ordered_wq_attrs[NR_STD_WORKER_POOLS];
335
d320c038 336struct workqueue_struct *system_wq __read_mostly;
ad7b1f84 337EXPORT_SYMBOL(system_wq);
044c782c 338struct workqueue_struct *system_highpri_wq __read_mostly;
1aabe902 339EXPORT_SYMBOL_GPL(system_highpri_wq);
044c782c 340struct workqueue_struct *system_long_wq __read_mostly;
d320c038 341EXPORT_SYMBOL_GPL(system_long_wq);
044c782c 342struct workqueue_struct *system_unbound_wq __read_mostly;
f3421797 343EXPORT_SYMBOL_GPL(system_unbound_wq);
044c782c 344struct workqueue_struct *system_freezable_wq __read_mostly;
24d51add 345EXPORT_SYMBOL_GPL(system_freezable_wq);
0668106c
VK
346struct workqueue_struct *system_power_efficient_wq __read_mostly;
347EXPORT_SYMBOL_GPL(system_power_efficient_wq);
348struct workqueue_struct *system_freezable_power_efficient_wq __read_mostly;
349EXPORT_SYMBOL_GPL(system_freezable_power_efficient_wq);
d320c038 350
7d19c5ce 351static int worker_thread(void *__worker);
6ba94429 352static void workqueue_sysfs_unregister(struct workqueue_struct *wq);
7d19c5ce 353
97bd2347
TH
354#define CREATE_TRACE_POINTS
355#include <trace/events/workqueue.h>
356
68e13a67 357#define assert_rcu_or_pool_mutex() \
f78f5b90
PM
358 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
359 !lockdep_is_held(&wq_pool_mutex), \
360 "sched RCU or wq_pool_mutex should be held")
5bcab335 361
b09f4fd3 362#define assert_rcu_or_wq_mutex(wq) \
f78f5b90
PM
363 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
364 !lockdep_is_held(&wq->mutex), \
365 "sched RCU or wq->mutex should be held")
76af4d93 366
5b95e1af 367#define assert_rcu_or_wq_mutex_or_pool_mutex(wq) \
f78f5b90
PM
368 RCU_LOCKDEP_WARN(!rcu_read_lock_sched_held() && \
369 !lockdep_is_held(&wq->mutex) && \
370 !lockdep_is_held(&wq_pool_mutex), \
371 "sched RCU, wq->mutex or wq_pool_mutex should be held")
5b95e1af 372
f02ae73a
TH
373#define for_each_cpu_worker_pool(pool, cpu) \
374 for ((pool) = &per_cpu(cpu_worker_pools, cpu)[0]; \
375 (pool) < &per_cpu(cpu_worker_pools, cpu)[NR_STD_WORKER_POOLS]; \
7a62c2c8 376 (pool)++)
4ce62e9e 377
17116969
TH
378/**
379 * for_each_pool - iterate through all worker_pools in the system
380 * @pool: iteration cursor
611c92a0 381 * @pi: integer used for iteration
fa1b54e6 382 *
68e13a67
LJ
383 * This must be called either with wq_pool_mutex held or sched RCU read
384 * locked. If the pool needs to be used beyond the locking in effect, the
385 * caller is responsible for guaranteeing that the pool stays online.
fa1b54e6
TH
386 *
387 * The if/else clause exists only for the lockdep assertion and can be
388 * ignored.
17116969 389 */
611c92a0
TH
390#define for_each_pool(pool, pi) \
391 idr_for_each_entry(&worker_pool_idr, pool, pi) \
68e13a67 392 if (({ assert_rcu_or_pool_mutex(); false; })) { } \
fa1b54e6 393 else
17116969 394
822d8405
TH
395/**
396 * for_each_pool_worker - iterate through all workers of a worker_pool
397 * @worker: iteration cursor
822d8405
TH
398 * @pool: worker_pool to iterate workers of
399 *
92f9c5c4 400 * This must be called with @pool->attach_mutex.
822d8405
TH
401 *
402 * The if/else clause exists only for the lockdep assertion and can be
403 * ignored.
404 */
da028469
LJ
405#define for_each_pool_worker(worker, pool) \
406 list_for_each_entry((worker), &(pool)->workers, node) \
92f9c5c4 407 if (({ lockdep_assert_held(&pool->attach_mutex); false; })) { } \
822d8405
TH
408 else
409
49e3cf44
TH
410/**
411 * for_each_pwq - iterate through all pool_workqueues of the specified workqueue
412 * @pwq: iteration cursor
413 * @wq: the target workqueue
76af4d93 414 *
b09f4fd3 415 * This must be called either with wq->mutex held or sched RCU read locked.
794b18bc
TH
416 * If the pwq needs to be used beyond the locking in effect, the caller is
417 * responsible for guaranteeing that the pwq stays online.
76af4d93
TH
418 *
419 * The if/else clause exists only for the lockdep assertion and can be
420 * ignored.
49e3cf44
TH
421 */
422#define for_each_pwq(pwq, wq) \
76af4d93 423 list_for_each_entry_rcu((pwq), &(wq)->pwqs, pwqs_node) \
b09f4fd3 424 if (({ assert_rcu_or_wq_mutex(wq); false; })) { } \
76af4d93 425 else
f3421797 426
dc186ad7
TG
427#ifdef CONFIG_DEBUG_OBJECTS_WORK
428
429static struct debug_obj_descr work_debug_descr;
430
99777288
SG
431static void *work_debug_hint(void *addr)
432{
433 return ((struct work_struct *) addr)->func;
434}
435
dc186ad7
TG
436/*
437 * fixup_init is called when:
438 * - an active object is initialized
439 */
440static int work_fixup_init(void *addr, enum debug_obj_state state)
441{
442 struct work_struct *work = addr;
443
444 switch (state) {
445 case ODEBUG_STATE_ACTIVE:
446 cancel_work_sync(work);
447 debug_object_init(work, &work_debug_descr);
448 return 1;
449 default:
450 return 0;
451 }
452}
453
454/*
455 * fixup_activate is called when:
456 * - an active object is activated
457 * - an unknown object is activated (might be a statically initialized object)
458 */
459static int work_fixup_activate(void *addr, enum debug_obj_state state)
460{
461 struct work_struct *work = addr;
462
463 switch (state) {
464
465 case ODEBUG_STATE_NOTAVAILABLE:
466 /*
467 * This is not really a fixup. The work struct was
468 * statically initialized. We just make sure that it
469 * is tracked in the object tracker.
470 */
22df02bb 471 if (test_bit(WORK_STRUCT_STATIC_BIT, work_data_bits(work))) {
dc186ad7
TG
472 debug_object_init(work, &work_debug_descr);
473 debug_object_activate(work, &work_debug_descr);
474 return 0;
475 }
476 WARN_ON_ONCE(1);
477 return 0;
478
479 case ODEBUG_STATE_ACTIVE:
480 WARN_ON(1);
481
482 default:
483 return 0;
484 }
485}
486
487/*
488 * fixup_free is called when:
489 * - an active object is freed
490 */
491static int work_fixup_free(void *addr, enum debug_obj_state state)
492{
493 struct work_struct *work = addr;
494
495 switch (state) {
496 case ODEBUG_STATE_ACTIVE:
497 cancel_work_sync(work);
498 debug_object_free(work, &work_debug_descr);
499 return 1;
500 default:
501 return 0;
502 }
503}
504
505static struct debug_obj_descr work_debug_descr = {
506 .name = "work_struct",
99777288 507 .debug_hint = work_debug_hint,
dc186ad7
TG
508 .fixup_init = work_fixup_init,
509 .fixup_activate = work_fixup_activate,
510 .fixup_free = work_fixup_free,
511};
512
513static inline void debug_work_activate(struct work_struct *work)
514{
515 debug_object_activate(work, &work_debug_descr);
516}
517
518static inline void debug_work_deactivate(struct work_struct *work)
519{
520 debug_object_deactivate(work, &work_debug_descr);
521}
522
523void __init_work(struct work_struct *work, int onstack)
524{
525 if (onstack)
526 debug_object_init_on_stack(work, &work_debug_descr);
527 else
528 debug_object_init(work, &work_debug_descr);
529}
530EXPORT_SYMBOL_GPL(__init_work);
531
532void destroy_work_on_stack(struct work_struct *work)
533{
534 debug_object_free(work, &work_debug_descr);
535}
536EXPORT_SYMBOL_GPL(destroy_work_on_stack);
537
ea2e64f2
TG
538void destroy_delayed_work_on_stack(struct delayed_work *work)
539{
540 destroy_timer_on_stack(&work->timer);
541 debug_object_free(&work->work, &work_debug_descr);
542}
543EXPORT_SYMBOL_GPL(destroy_delayed_work_on_stack);
544
dc186ad7
TG
545#else
546static inline void debug_work_activate(struct work_struct *work) { }
547static inline void debug_work_deactivate(struct work_struct *work) { }
548#endif
549
4e8b22bd
LB
550/**
551 * worker_pool_assign_id - allocate ID and assing it to @pool
552 * @pool: the pool pointer of interest
553 *
554 * Returns 0 if ID in [0, WORK_OFFQ_POOL_NONE) is allocated and assigned
555 * successfully, -errno on failure.
556 */
9daf9e67
TH
557static int worker_pool_assign_id(struct worker_pool *pool)
558{
559 int ret;
560
68e13a67 561 lockdep_assert_held(&wq_pool_mutex);
5bcab335 562
4e8b22bd
LB
563 ret = idr_alloc(&worker_pool_idr, pool, 0, WORK_OFFQ_POOL_NONE,
564 GFP_KERNEL);
229641a6 565 if (ret >= 0) {
e68035fb 566 pool->id = ret;
229641a6
TH
567 return 0;
568 }
fa1b54e6 569 return ret;
7c3eed5c
TH
570}
571
df2d5ae4
TH
572/**
573 * unbound_pwq_by_node - return the unbound pool_workqueue for the given node
574 * @wq: the target workqueue
575 * @node: the node ID
576 *
5b95e1af
LJ
577 * This must be called with any of wq_pool_mutex, wq->mutex or sched RCU
578 * read locked.
df2d5ae4
TH
579 * If the pwq needs to be used beyond the locking in effect, the caller is
580 * responsible for guaranteeing that the pwq stays online.
d185af30
YB
581 *
582 * Return: The unbound pool_workqueue for @node.
df2d5ae4
TH
583 */
584static struct pool_workqueue *unbound_pwq_by_node(struct workqueue_struct *wq,
585 int node)
586{
5b95e1af 587 assert_rcu_or_wq_mutex_or_pool_mutex(wq);
d6e022f1
TH
588
589 /*
590 * XXX: @node can be NUMA_NO_NODE if CPU goes offline while a
591 * delayed item is pending. The plan is to keep CPU -> NODE
592 * mapping valid and stable across CPU on/offlines. Once that
593 * happens, this workaround can be removed.
594 */
595 if (unlikely(node == NUMA_NO_NODE))
596 return wq->dfl_pwq;
597
df2d5ae4
TH
598 return rcu_dereference_raw(wq->numa_pwq_tbl[node]);
599}
600
73f53c4a
TH
601static unsigned int work_color_to_flags(int color)
602{
603 return color << WORK_STRUCT_COLOR_SHIFT;
604}
605
606static int get_work_color(struct work_struct *work)
607{
608 return (*work_data_bits(work) >> WORK_STRUCT_COLOR_SHIFT) &
609 ((1 << WORK_STRUCT_COLOR_BITS) - 1);
610}
611
612static int work_next_color(int color)
613{
614 return (color + 1) % WORK_NR_COLORS;
615}
1da177e4 616
14441960 617/*
112202d9
TH
618 * While queued, %WORK_STRUCT_PWQ is set and non flag bits of a work's data
619 * contain the pointer to the queued pwq. Once execution starts, the flag
7c3eed5c 620 * is cleared and the high bits contain OFFQ flags and pool ID.
7a22ad75 621 *
112202d9
TH
622 * set_work_pwq(), set_work_pool_and_clear_pending(), mark_work_canceling()
623 * and clear_work_data() can be used to set the pwq, pool or clear
bbb68dfa
TH
624 * work->data. These functions should only be called while the work is
625 * owned - ie. while the PENDING bit is set.
7a22ad75 626 *
112202d9 627 * get_work_pool() and get_work_pwq() can be used to obtain the pool or pwq
7c3eed5c 628 * corresponding to a work. Pool is available once the work has been
112202d9 629 * queued anywhere after initialization until it is sync canceled. pwq is
7c3eed5c 630 * available only while the work item is queued.
7a22ad75 631 *
bbb68dfa
TH
632 * %WORK_OFFQ_CANCELING is used to mark a work item which is being
633 * canceled. While being canceled, a work item may have its PENDING set
634 * but stay off timer and worklist for arbitrarily long and nobody should
635 * try to steal the PENDING bit.
14441960 636 */
7a22ad75
TH
637static inline void set_work_data(struct work_struct *work, unsigned long data,
638 unsigned long flags)
365970a1 639{
6183c009 640 WARN_ON_ONCE(!work_pending(work));
7a22ad75
TH
641 atomic_long_set(&work->data, data | flags | work_static(work));
642}
365970a1 643
112202d9 644static void set_work_pwq(struct work_struct *work, struct pool_workqueue *pwq,
7a22ad75
TH
645 unsigned long extra_flags)
646{
112202d9
TH
647 set_work_data(work, (unsigned long)pwq,
648 WORK_STRUCT_PENDING | WORK_STRUCT_PWQ | extra_flags);
365970a1
DH
649}
650
4468a00f
LJ
651static void set_work_pool_and_keep_pending(struct work_struct *work,
652 int pool_id)
653{
654 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT,
655 WORK_STRUCT_PENDING);
656}
657
7c3eed5c
TH
658static void set_work_pool_and_clear_pending(struct work_struct *work,
659 int pool_id)
7a22ad75 660{
23657bb1
TH
661 /*
662 * The following wmb is paired with the implied mb in
663 * test_and_set_bit(PENDING) and ensures all updates to @work made
664 * here are visible to and precede any updates by the next PENDING
665 * owner.
666 */
667 smp_wmb();
7c3eed5c 668 set_work_data(work, (unsigned long)pool_id << WORK_OFFQ_POOL_SHIFT, 0);
7a22ad75 669}
f756d5e2 670
7a22ad75 671static void clear_work_data(struct work_struct *work)
1da177e4 672{
7c3eed5c
TH
673 smp_wmb(); /* see set_work_pool_and_clear_pending() */
674 set_work_data(work, WORK_STRUCT_NO_POOL, 0);
1da177e4
LT
675}
676
112202d9 677static struct pool_workqueue *get_work_pwq(struct work_struct *work)
b1f4ec17 678{
e120153d 679 unsigned long data = atomic_long_read(&work->data);
7a22ad75 680
112202d9 681 if (data & WORK_STRUCT_PWQ)
e120153d
TH
682 return (void *)(data & WORK_STRUCT_WQ_DATA_MASK);
683 else
684 return NULL;
4d707b9f
ON
685}
686
7c3eed5c
TH
687/**
688 * get_work_pool - return the worker_pool a given work was associated with
689 * @work: the work item of interest
690 *
68e13a67
LJ
691 * Pools are created and destroyed under wq_pool_mutex, and allows read
692 * access under sched-RCU read lock. As such, this function should be
693 * called under wq_pool_mutex or with preemption disabled.
fa1b54e6
TH
694 *
695 * All fields of the returned pool are accessible as long as the above
696 * mentioned locking is in effect. If the returned pool needs to be used
697 * beyond the critical section, the caller is responsible for ensuring the
698 * returned pool is and stays online.
d185af30
YB
699 *
700 * Return: The worker_pool @work was last associated with. %NULL if none.
7c3eed5c
TH
701 */
702static struct worker_pool *get_work_pool(struct work_struct *work)
365970a1 703{
e120153d 704 unsigned long data = atomic_long_read(&work->data);
7c3eed5c 705 int pool_id;
7a22ad75 706
68e13a67 707 assert_rcu_or_pool_mutex();
fa1b54e6 708
112202d9
TH
709 if (data & WORK_STRUCT_PWQ)
710 return ((struct pool_workqueue *)
7c3eed5c 711 (data & WORK_STRUCT_WQ_DATA_MASK))->pool;
7a22ad75 712
7c3eed5c
TH
713 pool_id = data >> WORK_OFFQ_POOL_SHIFT;
714 if (pool_id == WORK_OFFQ_POOL_NONE)
7a22ad75
TH
715 return NULL;
716
fa1b54e6 717 return idr_find(&worker_pool_idr, pool_id);
7c3eed5c
TH
718}
719
720/**
721 * get_work_pool_id - return the worker pool ID a given work is associated with
722 * @work: the work item of interest
723 *
d185af30 724 * Return: The worker_pool ID @work was last associated with.
7c3eed5c
TH
725 * %WORK_OFFQ_POOL_NONE if none.
726 */
727static int get_work_pool_id(struct work_struct *work)
728{
54d5b7d0
LJ
729 unsigned long data = atomic_long_read(&work->data);
730
112202d9
TH
731 if (data & WORK_STRUCT_PWQ)
732 return ((struct pool_workqueue *)
54d5b7d0 733 (data & WORK_STRUCT_WQ_DATA_MASK))->pool->id;
7c3eed5c 734
54d5b7d0 735 return data >> WORK_OFFQ_POOL_SHIFT;
7c3eed5c
TH
736}
737
bbb68dfa
TH
738static void mark_work_canceling(struct work_struct *work)
739{
7c3eed5c 740 unsigned long pool_id = get_work_pool_id(work);
bbb68dfa 741
7c3eed5c
TH
742 pool_id <<= WORK_OFFQ_POOL_SHIFT;
743 set_work_data(work, pool_id | WORK_OFFQ_CANCELING, WORK_STRUCT_PENDING);
bbb68dfa
TH
744}
745
746static bool work_is_canceling(struct work_struct *work)
747{
748 unsigned long data = atomic_long_read(&work->data);
749
112202d9 750 return !(data & WORK_STRUCT_PWQ) && (data & WORK_OFFQ_CANCELING);
bbb68dfa
TH
751}
752
e22bee78 753/*
3270476a
TH
754 * Policy functions. These define the policies on how the global worker
755 * pools are managed. Unless noted otherwise, these functions assume that
d565ed63 756 * they're being called with pool->lock held.
e22bee78
TH
757 */
758
63d95a91 759static bool __need_more_worker(struct worker_pool *pool)
a848e3b6 760{
e19e397a 761 return !atomic_read(&pool->nr_running);
a848e3b6
ON
762}
763
4594bf15 764/*
e22bee78
TH
765 * Need to wake up a worker? Called from anything but currently
766 * running workers.
974271c4
TH
767 *
768 * Note that, because unbound workers never contribute to nr_running, this
706026c2 769 * function will always return %true for unbound pools as long as the
974271c4 770 * worklist isn't empty.
4594bf15 771 */
63d95a91 772static bool need_more_worker(struct worker_pool *pool)
365970a1 773{
63d95a91 774 return !list_empty(&pool->worklist) && __need_more_worker(pool);
e22bee78 775}
4594bf15 776
e22bee78 777/* Can I start working? Called from busy but !running workers. */
63d95a91 778static bool may_start_working(struct worker_pool *pool)
e22bee78 779{
63d95a91 780 return pool->nr_idle;
e22bee78
TH
781}
782
783/* Do I need to keep working? Called from currently running workers. */
63d95a91 784static bool keep_working(struct worker_pool *pool)
e22bee78 785{
e19e397a
TH
786 return !list_empty(&pool->worklist) &&
787 atomic_read(&pool->nr_running) <= 1;
e22bee78
TH
788}
789
790/* Do we need a new worker? Called from manager. */
63d95a91 791static bool need_to_create_worker(struct worker_pool *pool)
e22bee78 792{
63d95a91 793 return need_more_worker(pool) && !may_start_working(pool);
e22bee78 794}
365970a1 795
e22bee78 796/* Do we have too many workers and should some go away? */
63d95a91 797static bool too_many_workers(struct worker_pool *pool)
e22bee78 798{
34a06bd6 799 bool managing = mutex_is_locked(&pool->manager_arb);
63d95a91
TH
800 int nr_idle = pool->nr_idle + managing; /* manager is considered idle */
801 int nr_busy = pool->nr_workers - nr_idle;
e22bee78
TH
802
803 return nr_idle > 2 && (nr_idle - 2) * MAX_IDLE_WORKERS_RATIO >= nr_busy;
365970a1
DH
804}
805
4d707b9f 806/*
e22bee78
TH
807 * Wake up functions.
808 */
809
1037de36
LJ
810/* Return the first idle worker. Safe with preemption disabled */
811static struct worker *first_idle_worker(struct worker_pool *pool)
7e11629d 812{
63d95a91 813 if (unlikely(list_empty(&pool->idle_list)))
7e11629d
TH
814 return NULL;
815
63d95a91 816 return list_first_entry(&pool->idle_list, struct worker, entry);
7e11629d
TH
817}
818
819/**
820 * wake_up_worker - wake up an idle worker
63d95a91 821 * @pool: worker pool to wake worker from
7e11629d 822 *
63d95a91 823 * Wake up the first idle worker of @pool.
7e11629d
TH
824 *
825 * CONTEXT:
d565ed63 826 * spin_lock_irq(pool->lock).
7e11629d 827 */
63d95a91 828static void wake_up_worker(struct worker_pool *pool)
7e11629d 829{
1037de36 830 struct worker *worker = first_idle_worker(pool);
7e11629d
TH
831
832 if (likely(worker))
833 wake_up_process(worker->task);
834}
835
d302f017 836/**
e22bee78
TH
837 * wq_worker_waking_up - a worker is waking up
838 * @task: task waking up
839 * @cpu: CPU @task is waking up to
840 *
841 * This function is called during try_to_wake_up() when a worker is
842 * being awoken.
843 *
844 * CONTEXT:
845 * spin_lock_irq(rq->lock)
846 */
d84ff051 847void wq_worker_waking_up(struct task_struct *task, int cpu)
e22bee78
TH
848{
849 struct worker *worker = kthread_data(task);
850
36576000 851 if (!(worker->flags & WORKER_NOT_RUNNING)) {
ec22ca5e 852 WARN_ON_ONCE(worker->pool->cpu != cpu);
e19e397a 853 atomic_inc(&worker->pool->nr_running);
36576000 854 }
e22bee78
TH
855}
856
857/**
858 * wq_worker_sleeping - a worker is going to sleep
859 * @task: task going to sleep
e22bee78
TH
860 *
861 * This function is called during schedule() when a busy worker is
862 * going to sleep. Worker on the same cpu can be woken up by
863 * returning pointer to its task.
864 *
865 * CONTEXT:
866 * spin_lock_irq(rq->lock)
867 *
d185af30 868 * Return:
e22bee78
TH
869 * Worker task on @cpu to wake up, %NULL if none.
870 */
9b7f6597 871struct task_struct *wq_worker_sleeping(struct task_struct *task)
e22bee78
TH
872{
873 struct worker *worker = kthread_data(task), *to_wakeup = NULL;
111c225a 874 struct worker_pool *pool;
e22bee78 875
111c225a
TH
876 /*
877 * Rescuers, which may not have all the fields set up like normal
878 * workers, also reach here, let's not access anything before
879 * checking NOT_RUNNING.
880 */
2d64672e 881 if (worker->flags & WORKER_NOT_RUNNING)
e22bee78
TH
882 return NULL;
883
111c225a 884 pool = worker->pool;
111c225a 885
e22bee78 886 /* this can only happen on the local cpu */
9b7f6597 887 if (WARN_ON_ONCE(pool->cpu != raw_smp_processor_id()))
6183c009 888 return NULL;
e22bee78
TH
889
890 /*
891 * The counterpart of the following dec_and_test, implied mb,
892 * worklist not empty test sequence is in insert_work().
893 * Please read comment there.
894 *
628c78e7
TH
895 * NOT_RUNNING is clear. This means that we're bound to and
896 * running on the local cpu w/ rq lock held and preemption
897 * disabled, which in turn means that none else could be
d565ed63 898 * manipulating idle_list, so dereferencing idle_list without pool
628c78e7 899 * lock is safe.
e22bee78 900 */
e19e397a
TH
901 if (atomic_dec_and_test(&pool->nr_running) &&
902 !list_empty(&pool->worklist))
1037de36 903 to_wakeup = first_idle_worker(pool);
e22bee78
TH
904 return to_wakeup ? to_wakeup->task : NULL;
905}
906
907/**
908 * worker_set_flags - set worker flags and adjust nr_running accordingly
cb444766 909 * @worker: self
d302f017 910 * @flags: flags to set
d302f017 911 *
228f1d00 912 * Set @flags in @worker->flags and adjust nr_running accordingly.
d302f017 913 *
cb444766 914 * CONTEXT:
d565ed63 915 * spin_lock_irq(pool->lock)
d302f017 916 */
228f1d00 917static inline void worker_set_flags(struct worker *worker, unsigned int flags)
d302f017 918{
bd7bdd43 919 struct worker_pool *pool = worker->pool;
e22bee78 920
cb444766
TH
921 WARN_ON_ONCE(worker->task != current);
922
228f1d00 923 /* If transitioning into NOT_RUNNING, adjust nr_running. */
e22bee78
TH
924 if ((flags & WORKER_NOT_RUNNING) &&
925 !(worker->flags & WORKER_NOT_RUNNING)) {
228f1d00 926 atomic_dec(&pool->nr_running);
e22bee78
TH
927 }
928
d302f017
TH
929 worker->flags |= flags;
930}
931
932/**
e22bee78 933 * worker_clr_flags - clear worker flags and adjust nr_running accordingly
cb444766 934 * @worker: self
d302f017
TH
935 * @flags: flags to clear
936 *
e22bee78 937 * Clear @flags in @worker->flags and adjust nr_running accordingly.
d302f017 938 *
cb444766 939 * CONTEXT:
d565ed63 940 * spin_lock_irq(pool->lock)
d302f017
TH
941 */
942static inline void worker_clr_flags(struct worker *worker, unsigned int flags)
943{
63d95a91 944 struct worker_pool *pool = worker->pool;
e22bee78
TH
945 unsigned int oflags = worker->flags;
946
cb444766
TH
947 WARN_ON_ONCE(worker->task != current);
948
d302f017 949 worker->flags &= ~flags;
e22bee78 950
42c025f3
TH
951 /*
952 * If transitioning out of NOT_RUNNING, increment nr_running. Note
953 * that the nested NOT_RUNNING is not a noop. NOT_RUNNING is mask
954 * of multiple flags, not a single flag.
955 */
e22bee78
TH
956 if ((flags & WORKER_NOT_RUNNING) && (oflags & WORKER_NOT_RUNNING))
957 if (!(worker->flags & WORKER_NOT_RUNNING))
e19e397a 958 atomic_inc(&pool->nr_running);
d302f017
TH
959}
960
8cca0eea
TH
961/**
962 * find_worker_executing_work - find worker which is executing a work
c9e7cf27 963 * @pool: pool of interest
8cca0eea
TH
964 * @work: work to find worker for
965 *
c9e7cf27
TH
966 * Find a worker which is executing @work on @pool by searching
967 * @pool->busy_hash which is keyed by the address of @work. For a worker
a2c1c57b
TH
968 * to match, its current execution should match the address of @work and
969 * its work function. This is to avoid unwanted dependency between
970 * unrelated work executions through a work item being recycled while still
971 * being executed.
972 *
973 * This is a bit tricky. A work item may be freed once its execution
974 * starts and nothing prevents the freed area from being recycled for
975 * another work item. If the same work item address ends up being reused
976 * before the original execution finishes, workqueue will identify the
977 * recycled work item as currently executing and make it wait until the
978 * current execution finishes, introducing an unwanted dependency.
979 *
c5aa87bb
TH
980 * This function checks the work item address and work function to avoid
981 * false positives. Note that this isn't complete as one may construct a
982 * work function which can introduce dependency onto itself through a
983 * recycled work item. Well, if somebody wants to shoot oneself in the
984 * foot that badly, there's only so much we can do, and if such deadlock
985 * actually occurs, it should be easy to locate the culprit work function.
8cca0eea
TH
986 *
987 * CONTEXT:
d565ed63 988 * spin_lock_irq(pool->lock).
8cca0eea 989 *
d185af30
YB
990 * Return:
991 * Pointer to worker which is executing @work if found, %NULL
8cca0eea 992 * otherwise.
4d707b9f 993 */
c9e7cf27 994static struct worker *find_worker_executing_work(struct worker_pool *pool,
8cca0eea 995 struct work_struct *work)
4d707b9f 996{
42f8570f 997 struct worker *worker;
42f8570f 998
b67bfe0d 999 hash_for_each_possible(pool->busy_hash, worker, hentry,
a2c1c57b
TH
1000 (unsigned long)work)
1001 if (worker->current_work == work &&
1002 worker->current_func == work->func)
42f8570f
SL
1003 return worker;
1004
1005 return NULL;
4d707b9f
ON
1006}
1007
bf4ede01
TH
1008/**
1009 * move_linked_works - move linked works to a list
1010 * @work: start of series of works to be scheduled
1011 * @head: target list to append @work to
402dd89d 1012 * @nextp: out parameter for nested worklist walking
bf4ede01
TH
1013 *
1014 * Schedule linked works starting from @work to @head. Work series to
1015 * be scheduled starts at @work and includes any consecutive work with
1016 * WORK_STRUCT_LINKED set in its predecessor.
1017 *
1018 * If @nextp is not NULL, it's updated to point to the next work of
1019 * the last scheduled work. This allows move_linked_works() to be
1020 * nested inside outer list_for_each_entry_safe().
1021 *
1022 * CONTEXT:
d565ed63 1023 * spin_lock_irq(pool->lock).
bf4ede01
TH
1024 */
1025static void move_linked_works(struct work_struct *work, struct list_head *head,
1026 struct work_struct **nextp)
1027{
1028 struct work_struct *n;
1029
1030 /*
1031 * Linked worklist will always end before the end of the list,
1032 * use NULL for list head.
1033 */
1034 list_for_each_entry_safe_from(work, n, NULL, entry) {
1035 list_move_tail(&work->entry, head);
1036 if (!(*work_data_bits(work) & WORK_STRUCT_LINKED))
1037 break;
1038 }
1039
1040 /*
1041 * If we're already inside safe list traversal and have moved
1042 * multiple works to the scheduled queue, the next position
1043 * needs to be updated.
1044 */
1045 if (nextp)
1046 *nextp = n;
1047}
1048
8864b4e5
TH
1049/**
1050 * get_pwq - get an extra reference on the specified pool_workqueue
1051 * @pwq: pool_workqueue to get
1052 *
1053 * Obtain an extra reference on @pwq. The caller should guarantee that
1054 * @pwq has positive refcnt and be holding the matching pool->lock.
1055 */
1056static void get_pwq(struct pool_workqueue *pwq)
1057{
1058 lockdep_assert_held(&pwq->pool->lock);
1059 WARN_ON_ONCE(pwq->refcnt <= 0);
1060 pwq->refcnt++;
1061}
1062
1063/**
1064 * put_pwq - put a pool_workqueue reference
1065 * @pwq: pool_workqueue to put
1066 *
1067 * Drop a reference of @pwq. If its refcnt reaches zero, schedule its
1068 * destruction. The caller should be holding the matching pool->lock.
1069 */
1070static void put_pwq(struct pool_workqueue *pwq)
1071{
1072 lockdep_assert_held(&pwq->pool->lock);
1073 if (likely(--pwq->refcnt))
1074 return;
1075 if (WARN_ON_ONCE(!(pwq->wq->flags & WQ_UNBOUND)))
1076 return;
1077 /*
1078 * @pwq can't be released under pool->lock, bounce to
1079 * pwq_unbound_release_workfn(). This never recurses on the same
1080 * pool->lock as this path is taken only for unbound workqueues and
1081 * the release work item is scheduled on a per-cpu workqueue. To
1082 * avoid lockdep warning, unbound pool->locks are given lockdep
1083 * subclass of 1 in get_unbound_pool().
1084 */
1085 schedule_work(&pwq->unbound_release_work);
1086}
1087
dce90d47
TH
1088/**
1089 * put_pwq_unlocked - put_pwq() with surrounding pool lock/unlock
1090 * @pwq: pool_workqueue to put (can be %NULL)
1091 *
1092 * put_pwq() with locking. This function also allows %NULL @pwq.
1093 */
1094static void put_pwq_unlocked(struct pool_workqueue *pwq)
1095{
1096 if (pwq) {
1097 /*
1098 * As both pwqs and pools are sched-RCU protected, the
1099 * following lock operations are safe.
1100 */
1101 spin_lock_irq(&pwq->pool->lock);
1102 put_pwq(pwq);
1103 spin_unlock_irq(&pwq->pool->lock);
1104 }
1105}
1106
112202d9 1107static void pwq_activate_delayed_work(struct work_struct *work)
bf4ede01 1108{
112202d9 1109 struct pool_workqueue *pwq = get_work_pwq(work);
bf4ede01
TH
1110
1111 trace_workqueue_activate_work(work);
82607adc
TH
1112 if (list_empty(&pwq->pool->worklist))
1113 pwq->pool->watchdog_ts = jiffies;
112202d9 1114 move_linked_works(work, &pwq->pool->worklist, NULL);
bf4ede01 1115 __clear_bit(WORK_STRUCT_DELAYED_BIT, work_data_bits(work));
112202d9 1116 pwq->nr_active++;
bf4ede01
TH
1117}
1118
112202d9 1119static void pwq_activate_first_delayed(struct pool_workqueue *pwq)
3aa62497 1120{
112202d9 1121 struct work_struct *work = list_first_entry(&pwq->delayed_works,
3aa62497
LJ
1122 struct work_struct, entry);
1123
112202d9 1124 pwq_activate_delayed_work(work);
3aa62497
LJ
1125}
1126
bf4ede01 1127/**
112202d9
TH
1128 * pwq_dec_nr_in_flight - decrement pwq's nr_in_flight
1129 * @pwq: pwq of interest
bf4ede01 1130 * @color: color of work which left the queue
bf4ede01
TH
1131 *
1132 * A work either has completed or is removed from pending queue,
112202d9 1133 * decrement nr_in_flight of its pwq and handle workqueue flushing.
bf4ede01
TH
1134 *
1135 * CONTEXT:
d565ed63 1136 * spin_lock_irq(pool->lock).
bf4ede01 1137 */
112202d9 1138static void pwq_dec_nr_in_flight(struct pool_workqueue *pwq, int color)
bf4ede01 1139{
8864b4e5 1140 /* uncolored work items don't participate in flushing or nr_active */
bf4ede01 1141 if (color == WORK_NO_COLOR)
8864b4e5 1142 goto out_put;
bf4ede01 1143
112202d9 1144 pwq->nr_in_flight[color]--;
bf4ede01 1145
112202d9
TH
1146 pwq->nr_active--;
1147 if (!list_empty(&pwq->delayed_works)) {
b3f9f405 1148 /* one down, submit a delayed one */
112202d9
TH
1149 if (pwq->nr_active < pwq->max_active)
1150 pwq_activate_first_delayed(pwq);
bf4ede01
TH
1151 }
1152
1153 /* is flush in progress and are we at the flushing tip? */
112202d9 1154 if (likely(pwq->flush_color != color))
8864b4e5 1155 goto out_put;
bf4ede01
TH
1156
1157 /* are there still in-flight works? */
112202d9 1158 if (pwq->nr_in_flight[color])
8864b4e5 1159 goto out_put;
bf4ede01 1160
112202d9
TH
1161 /* this pwq is done, clear flush_color */
1162 pwq->flush_color = -1;
bf4ede01
TH
1163
1164 /*
112202d9 1165 * If this was the last pwq, wake up the first flusher. It
bf4ede01
TH
1166 * will handle the rest.
1167 */
112202d9
TH
1168 if (atomic_dec_and_test(&pwq->wq->nr_pwqs_to_flush))
1169 complete(&pwq->wq->first_flusher->done);
8864b4e5
TH
1170out_put:
1171 put_pwq(pwq);
bf4ede01
TH
1172}
1173
36e227d2 1174/**
bbb68dfa 1175 * try_to_grab_pending - steal work item from worklist and disable irq
36e227d2
TH
1176 * @work: work item to steal
1177 * @is_dwork: @work is a delayed_work
bbb68dfa 1178 * @flags: place to store irq state
36e227d2
TH
1179 *
1180 * Try to grab PENDING bit of @work. This function can handle @work in any
d185af30 1181 * stable state - idle, on timer or on worklist.
36e227d2 1182 *
d185af30 1183 * Return:
36e227d2
TH
1184 * 1 if @work was pending and we successfully stole PENDING
1185 * 0 if @work was idle and we claimed PENDING
1186 * -EAGAIN if PENDING couldn't be grabbed at the moment, safe to busy-retry
bbb68dfa
TH
1187 * -ENOENT if someone else is canceling @work, this state may persist
1188 * for arbitrarily long
36e227d2 1189 *
d185af30 1190 * Note:
bbb68dfa 1191 * On >= 0 return, the caller owns @work's PENDING bit. To avoid getting
e0aecdd8
TH
1192 * interrupted while holding PENDING and @work off queue, irq must be
1193 * disabled on entry. This, combined with delayed_work->timer being
1194 * irqsafe, ensures that we return -EAGAIN for finite short period of time.
bbb68dfa
TH
1195 *
1196 * On successful return, >= 0, irq is disabled and the caller is
1197 * responsible for releasing it using local_irq_restore(*@flags).
1198 *
e0aecdd8 1199 * This function is safe to call from any context including IRQ handler.
bf4ede01 1200 */
bbb68dfa
TH
1201static int try_to_grab_pending(struct work_struct *work, bool is_dwork,
1202 unsigned long *flags)
bf4ede01 1203{
d565ed63 1204 struct worker_pool *pool;
112202d9 1205 struct pool_workqueue *pwq;
bf4ede01 1206
bbb68dfa
TH
1207 local_irq_save(*flags);
1208
36e227d2
TH
1209 /* try to steal the timer if it exists */
1210 if (is_dwork) {
1211 struct delayed_work *dwork = to_delayed_work(work);
1212
e0aecdd8
TH
1213 /*
1214 * dwork->timer is irqsafe. If del_timer() fails, it's
1215 * guaranteed that the timer is not queued anywhere and not
1216 * running on the local CPU.
1217 */
36e227d2
TH
1218 if (likely(del_timer(&dwork->timer)))
1219 return 1;
1220 }
1221
1222 /* try to claim PENDING the normal way */
bf4ede01
TH
1223 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work)))
1224 return 0;
1225
1226 /*
1227 * The queueing is in progress, or it is already queued. Try to
1228 * steal it from ->worklist without clearing WORK_STRUCT_PENDING.
1229 */
d565ed63
TH
1230 pool = get_work_pool(work);
1231 if (!pool)
bbb68dfa 1232 goto fail;
bf4ede01 1233
d565ed63 1234 spin_lock(&pool->lock);
0b3dae68 1235 /*
112202d9
TH
1236 * work->data is guaranteed to point to pwq only while the work
1237 * item is queued on pwq->wq, and both updating work->data to point
1238 * to pwq on queueing and to pool on dequeueing are done under
1239 * pwq->pool->lock. This in turn guarantees that, if work->data
1240 * points to pwq which is associated with a locked pool, the work
0b3dae68
LJ
1241 * item is currently queued on that pool.
1242 */
112202d9
TH
1243 pwq = get_work_pwq(work);
1244 if (pwq && pwq->pool == pool) {
16062836
TH
1245 debug_work_deactivate(work);
1246
1247 /*
1248 * A delayed work item cannot be grabbed directly because
1249 * it might have linked NO_COLOR work items which, if left
112202d9 1250 * on the delayed_list, will confuse pwq->nr_active
16062836
TH
1251 * management later on and cause stall. Make sure the work
1252 * item is activated before grabbing.
1253 */
1254 if (*work_data_bits(work) & WORK_STRUCT_DELAYED)
112202d9 1255 pwq_activate_delayed_work(work);
16062836
TH
1256
1257 list_del_init(&work->entry);
9c34a704 1258 pwq_dec_nr_in_flight(pwq, get_work_color(work));
16062836 1259
112202d9 1260 /* work->data points to pwq iff queued, point to pool */
16062836
TH
1261 set_work_pool_and_keep_pending(work, pool->id);
1262
1263 spin_unlock(&pool->lock);
1264 return 1;
bf4ede01 1265 }
d565ed63 1266 spin_unlock(&pool->lock);
bbb68dfa
TH
1267fail:
1268 local_irq_restore(*flags);
1269 if (work_is_canceling(work))
1270 return -ENOENT;
1271 cpu_relax();
36e227d2 1272 return -EAGAIN;
bf4ede01
TH
1273}
1274
4690c4ab 1275/**
706026c2 1276 * insert_work - insert a work into a pool
112202d9 1277 * @pwq: pwq @work belongs to
4690c4ab
TH
1278 * @work: work to insert
1279 * @head: insertion point
1280 * @extra_flags: extra WORK_STRUCT_* flags to set
1281 *
112202d9 1282 * Insert @work which belongs to @pwq after @head. @extra_flags is or'd to
706026c2 1283 * work_struct flags.
4690c4ab
TH
1284 *
1285 * CONTEXT:
d565ed63 1286 * spin_lock_irq(pool->lock).
4690c4ab 1287 */
112202d9
TH
1288static void insert_work(struct pool_workqueue *pwq, struct work_struct *work,
1289 struct list_head *head, unsigned int extra_flags)
b89deed3 1290{
112202d9 1291 struct worker_pool *pool = pwq->pool;
e22bee78 1292
4690c4ab 1293 /* we own @work, set data and link */
112202d9 1294 set_work_pwq(work, pwq, extra_flags);
1a4d9b0a 1295 list_add_tail(&work->entry, head);
8864b4e5 1296 get_pwq(pwq);
e22bee78
TH
1297
1298 /*
c5aa87bb
TH
1299 * Ensure either wq_worker_sleeping() sees the above
1300 * list_add_tail() or we see zero nr_running to avoid workers lying
1301 * around lazily while there are works to be processed.
e22bee78
TH
1302 */
1303 smp_mb();
1304
63d95a91
TH
1305 if (__need_more_worker(pool))
1306 wake_up_worker(pool);
b89deed3
ON
1307}
1308
c8efcc25
TH
1309/*
1310 * Test whether @work is being queued from another work executing on the
8d03ecfe 1311 * same workqueue.
c8efcc25
TH
1312 */
1313static bool is_chained_work(struct workqueue_struct *wq)
1314{
8d03ecfe
TH
1315 struct worker *worker;
1316
1317 worker = current_wq_worker();
1318 /*
1319 * Return %true iff I'm a worker execuing a work item on @wq. If
1320 * I'm @worker, it's safe to dereference it without locking.
1321 */
112202d9 1322 return worker && worker->current_pwq->wq == wq;
c8efcc25
TH
1323}
1324
ef557180
MG
1325/*
1326 * When queueing an unbound work item to a wq, prefer local CPU if allowed
1327 * by wq_unbound_cpumask. Otherwise, round robin among the allowed ones to
1328 * avoid perturbing sensitive tasks.
1329 */
1330static int wq_select_unbound_cpu(int cpu)
1331{
f303fccb 1332 static bool printed_dbg_warning;
ef557180
MG
1333 int new_cpu;
1334
f303fccb
TH
1335 if (likely(!wq_debug_force_rr_cpu)) {
1336 if (cpumask_test_cpu(cpu, wq_unbound_cpumask))
1337 return cpu;
1338 } else if (!printed_dbg_warning) {
1339 pr_warn("workqueue: round-robin CPU selection forced, expect performance impact\n");
1340 printed_dbg_warning = true;
1341 }
1342
ef557180
MG
1343 if (cpumask_empty(wq_unbound_cpumask))
1344 return cpu;
1345
1346 new_cpu = __this_cpu_read(wq_rr_cpu_last);
1347 new_cpu = cpumask_next_and(new_cpu, wq_unbound_cpumask, cpu_online_mask);
1348 if (unlikely(new_cpu >= nr_cpu_ids)) {
1349 new_cpu = cpumask_first_and(wq_unbound_cpumask, cpu_online_mask);
1350 if (unlikely(new_cpu >= nr_cpu_ids))
1351 return cpu;
1352 }
1353 __this_cpu_write(wq_rr_cpu_last, new_cpu);
1354
1355 return new_cpu;
1356}
1357
d84ff051 1358static void __queue_work(int cpu, struct workqueue_struct *wq,
1da177e4
LT
1359 struct work_struct *work)
1360{
112202d9 1361 struct pool_workqueue *pwq;
c9178087 1362 struct worker_pool *last_pool;
1e19ffc6 1363 struct list_head *worklist;
8a2e8e5d 1364 unsigned int work_flags;
b75cac93 1365 unsigned int req_cpu = cpu;
8930caba
TH
1366
1367 /*
1368 * While a work item is PENDING && off queue, a task trying to
1369 * steal the PENDING will busy-loop waiting for it to either get
1370 * queued or lose PENDING. Grabbing PENDING and queueing should
1371 * happen with IRQ disabled.
1372 */
1373 WARN_ON_ONCE(!irqs_disabled());
1da177e4 1374
dc186ad7 1375 debug_work_activate(work);
1e19ffc6 1376
9ef28a73 1377 /* if draining, only works from the same workqueue are allowed */
618b01eb 1378 if (unlikely(wq->flags & __WQ_DRAINING) &&
c8efcc25 1379 WARN_ON_ONCE(!is_chained_work(wq)))
e41e704b 1380 return;
9e8cd2f5 1381retry:
df2d5ae4 1382 if (req_cpu == WORK_CPU_UNBOUND)
ef557180 1383 cpu = wq_select_unbound_cpu(raw_smp_processor_id());
df2d5ae4 1384
c9178087 1385 /* pwq which will be used unless @work is executing elsewhere */
df2d5ae4 1386 if (!(wq->flags & WQ_UNBOUND))
7fb98ea7 1387 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
df2d5ae4
TH
1388 else
1389 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dbf2576e 1390
c9178087
TH
1391 /*
1392 * If @work was previously on a different pool, it might still be
1393 * running there, in which case the work needs to be queued on that
1394 * pool to guarantee non-reentrancy.
1395 */
1396 last_pool = get_work_pool(work);
1397 if (last_pool && last_pool != pwq->pool) {
1398 struct worker *worker;
18aa9eff 1399
c9178087 1400 spin_lock(&last_pool->lock);
18aa9eff 1401
c9178087 1402 worker = find_worker_executing_work(last_pool, work);
18aa9eff 1403
c9178087
TH
1404 if (worker && worker->current_pwq->wq == wq) {
1405 pwq = worker->current_pwq;
8930caba 1406 } else {
c9178087
TH
1407 /* meh... not running there, queue here */
1408 spin_unlock(&last_pool->lock);
112202d9 1409 spin_lock(&pwq->pool->lock);
8930caba 1410 }
f3421797 1411 } else {
112202d9 1412 spin_lock(&pwq->pool->lock);
502ca9d8
TH
1413 }
1414
9e8cd2f5
TH
1415 /*
1416 * pwq is determined and locked. For unbound pools, we could have
1417 * raced with pwq release and it could already be dead. If its
1418 * refcnt is zero, repeat pwq selection. Note that pwqs never die
df2d5ae4
TH
1419 * without another pwq replacing it in the numa_pwq_tbl or while
1420 * work items are executing on it, so the retrying is guaranteed to
9e8cd2f5
TH
1421 * make forward-progress.
1422 */
1423 if (unlikely(!pwq->refcnt)) {
1424 if (wq->flags & WQ_UNBOUND) {
1425 spin_unlock(&pwq->pool->lock);
1426 cpu_relax();
1427 goto retry;
1428 }
1429 /* oops */
1430 WARN_ONCE(true, "workqueue: per-cpu pwq for %s on cpu%d has 0 refcnt",
1431 wq->name, cpu);
1432 }
1433
112202d9
TH
1434 /* pwq determined, queue */
1435 trace_workqueue_queue_work(req_cpu, pwq, work);
502ca9d8 1436
f5b2552b 1437 if (WARN_ON(!list_empty(&work->entry))) {
112202d9 1438 spin_unlock(&pwq->pool->lock);
f5b2552b
DC
1439 return;
1440 }
1e19ffc6 1441
112202d9
TH
1442 pwq->nr_in_flight[pwq->work_color]++;
1443 work_flags = work_color_to_flags(pwq->work_color);
1e19ffc6 1444
112202d9 1445 if (likely(pwq->nr_active < pwq->max_active)) {
cdadf009 1446 trace_workqueue_activate_work(work);
112202d9
TH
1447 pwq->nr_active++;
1448 worklist = &pwq->pool->worklist;
82607adc
TH
1449 if (list_empty(worklist))
1450 pwq->pool->watchdog_ts = jiffies;
8a2e8e5d
TH
1451 } else {
1452 work_flags |= WORK_STRUCT_DELAYED;
112202d9 1453 worklist = &pwq->delayed_works;
8a2e8e5d 1454 }
1e19ffc6 1455
112202d9 1456 insert_work(pwq, work, worklist, work_flags);
1e19ffc6 1457
112202d9 1458 spin_unlock(&pwq->pool->lock);
1da177e4
LT
1459}
1460
0fcb78c2 1461/**
c1a220e7
ZR
1462 * queue_work_on - queue work on specific cpu
1463 * @cpu: CPU number to execute work on
0fcb78c2
REB
1464 * @wq: workqueue to use
1465 * @work: work to queue
1466 *
c1a220e7
ZR
1467 * We queue the work to a specific CPU, the caller must ensure it
1468 * can't go away.
d185af30
YB
1469 *
1470 * Return: %false if @work was already on a queue, %true otherwise.
1da177e4 1471 */
d4283e93
TH
1472bool queue_work_on(int cpu, struct workqueue_struct *wq,
1473 struct work_struct *work)
1da177e4 1474{
d4283e93 1475 bool ret = false;
8930caba 1476 unsigned long flags;
ef1ca236 1477
8930caba 1478 local_irq_save(flags);
c1a220e7 1479
22df02bb 1480 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
4690c4ab 1481 __queue_work(cpu, wq, work);
d4283e93 1482 ret = true;
c1a220e7 1483 }
ef1ca236 1484
8930caba 1485 local_irq_restore(flags);
1da177e4
LT
1486 return ret;
1487}
ad7b1f84 1488EXPORT_SYMBOL(queue_work_on);
1da177e4 1489
d8e794df 1490void delayed_work_timer_fn(unsigned long __data)
1da177e4 1491{
52bad64d 1492 struct delayed_work *dwork = (struct delayed_work *)__data;
1da177e4 1493
e0aecdd8 1494 /* should have been called from irqsafe timer with irq already off */
60c057bc 1495 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
1da177e4 1496}
1438ade5 1497EXPORT_SYMBOL(delayed_work_timer_fn);
1da177e4 1498
7beb2edf
TH
1499static void __queue_delayed_work(int cpu, struct workqueue_struct *wq,
1500 struct delayed_work *dwork, unsigned long delay)
1da177e4 1501{
7beb2edf
TH
1502 struct timer_list *timer = &dwork->timer;
1503 struct work_struct *work = &dwork->work;
7beb2edf
TH
1504
1505 WARN_ON_ONCE(timer->function != delayed_work_timer_fn ||
1506 timer->data != (unsigned long)dwork);
fc4b514f
TH
1507 WARN_ON_ONCE(timer_pending(timer));
1508 WARN_ON_ONCE(!list_empty(&work->entry));
7beb2edf 1509
8852aac2
TH
1510 /*
1511 * If @delay is 0, queue @dwork->work immediately. This is for
1512 * both optimization and correctness. The earliest @timer can
1513 * expire is on the closest next tick and delayed_work users depend
1514 * on that there's no such delay when @delay is 0.
1515 */
1516 if (!delay) {
1517 __queue_work(cpu, wq, &dwork->work);
1518 return;
1519 }
1520
7beb2edf 1521 timer_stats_timer_set_start_info(&dwork->timer);
1da177e4 1522
60c057bc 1523 dwork->wq = wq;
1265057f 1524 dwork->cpu = cpu;
7beb2edf
TH
1525 timer->expires = jiffies + delay;
1526
041bd12e
TH
1527 if (unlikely(cpu != WORK_CPU_UNBOUND))
1528 add_timer_on(timer, cpu);
1529 else
1530 add_timer(timer);
1da177e4
LT
1531}
1532
0fcb78c2
REB
1533/**
1534 * queue_delayed_work_on - queue work on specific CPU after delay
1535 * @cpu: CPU number to execute work on
1536 * @wq: workqueue to use
af9997e4 1537 * @dwork: work to queue
0fcb78c2
REB
1538 * @delay: number of jiffies to wait before queueing
1539 *
d185af30 1540 * Return: %false if @work was already on a queue, %true otherwise. If
715f1300
TH
1541 * @delay is zero and @dwork is idle, it will be scheduled for immediate
1542 * execution.
0fcb78c2 1543 */
d4283e93
TH
1544bool queue_delayed_work_on(int cpu, struct workqueue_struct *wq,
1545 struct delayed_work *dwork, unsigned long delay)
7a6bc1cd 1546{
52bad64d 1547 struct work_struct *work = &dwork->work;
d4283e93 1548 bool ret = false;
8930caba 1549 unsigned long flags;
7a6bc1cd 1550
8930caba
TH
1551 /* read the comment in __queue_work() */
1552 local_irq_save(flags);
7a6bc1cd 1553
22df02bb 1554 if (!test_and_set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(work))) {
7beb2edf 1555 __queue_delayed_work(cpu, wq, dwork, delay);
d4283e93 1556 ret = true;
7a6bc1cd 1557 }
8a3e77cc 1558
8930caba 1559 local_irq_restore(flags);
7a6bc1cd
VP
1560 return ret;
1561}
ad7b1f84 1562EXPORT_SYMBOL(queue_delayed_work_on);
c7fc77f7 1563
8376fe22
TH
1564/**
1565 * mod_delayed_work_on - modify delay of or queue a delayed work on specific CPU
1566 * @cpu: CPU number to execute work on
1567 * @wq: workqueue to use
1568 * @dwork: work to queue
1569 * @delay: number of jiffies to wait before queueing
1570 *
1571 * If @dwork is idle, equivalent to queue_delayed_work_on(); otherwise,
1572 * modify @dwork's timer so that it expires after @delay. If @delay is
1573 * zero, @work is guaranteed to be scheduled immediately regardless of its
1574 * current state.
1575 *
d185af30 1576 * Return: %false if @dwork was idle and queued, %true if @dwork was
8376fe22
TH
1577 * pending and its timer was modified.
1578 *
e0aecdd8 1579 * This function is safe to call from any context including IRQ handler.
8376fe22
TH
1580 * See try_to_grab_pending() for details.
1581 */
1582bool mod_delayed_work_on(int cpu, struct workqueue_struct *wq,
1583 struct delayed_work *dwork, unsigned long delay)
1584{
1585 unsigned long flags;
1586 int ret;
c7fc77f7 1587
8376fe22
TH
1588 do {
1589 ret = try_to_grab_pending(&dwork->work, true, &flags);
1590 } while (unlikely(ret == -EAGAIN));
63bc0362 1591
8376fe22
TH
1592 if (likely(ret >= 0)) {
1593 __queue_delayed_work(cpu, wq, dwork, delay);
1594 local_irq_restore(flags);
7a6bc1cd 1595 }
8376fe22
TH
1596
1597 /* -ENOENT from try_to_grab_pending() becomes %true */
7a6bc1cd
VP
1598 return ret;
1599}
8376fe22
TH
1600EXPORT_SYMBOL_GPL(mod_delayed_work_on);
1601
c8e55f36
TH
1602/**
1603 * worker_enter_idle - enter idle state
1604 * @worker: worker which is entering idle state
1605 *
1606 * @worker is entering idle state. Update stats and idle timer if
1607 * necessary.
1608 *
1609 * LOCKING:
d565ed63 1610 * spin_lock_irq(pool->lock).
c8e55f36
TH
1611 */
1612static void worker_enter_idle(struct worker *worker)
1da177e4 1613{
bd7bdd43 1614 struct worker_pool *pool = worker->pool;
c8e55f36 1615
6183c009
TH
1616 if (WARN_ON_ONCE(worker->flags & WORKER_IDLE) ||
1617 WARN_ON_ONCE(!list_empty(&worker->entry) &&
1618 (worker->hentry.next || worker->hentry.pprev)))
1619 return;
c8e55f36 1620
051e1850 1621 /* can't use worker_set_flags(), also called from create_worker() */
cb444766 1622 worker->flags |= WORKER_IDLE;
bd7bdd43 1623 pool->nr_idle++;
e22bee78 1624 worker->last_active = jiffies;
c8e55f36
TH
1625
1626 /* idle_list is LIFO */
bd7bdd43 1627 list_add(&worker->entry, &pool->idle_list);
db7bccf4 1628
628c78e7
TH
1629 if (too_many_workers(pool) && !timer_pending(&pool->idle_timer))
1630 mod_timer(&pool->idle_timer, jiffies + IDLE_WORKER_TIMEOUT);
cb444766 1631
544ecf31 1632 /*
706026c2 1633 * Sanity check nr_running. Because wq_unbind_fn() releases
d565ed63 1634 * pool->lock between setting %WORKER_UNBOUND and zapping
628c78e7
TH
1635 * nr_running, the warning may trigger spuriously. Check iff
1636 * unbind is not in progress.
544ecf31 1637 */
24647570 1638 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
bd7bdd43 1639 pool->nr_workers == pool->nr_idle &&
e19e397a 1640 atomic_read(&pool->nr_running));
c8e55f36
TH
1641}
1642
1643/**
1644 * worker_leave_idle - leave idle state
1645 * @worker: worker which is leaving idle state
1646 *
1647 * @worker is leaving idle state. Update stats.
1648 *
1649 * LOCKING:
d565ed63 1650 * spin_lock_irq(pool->lock).
c8e55f36
TH
1651 */
1652static void worker_leave_idle(struct worker *worker)
1653{
bd7bdd43 1654 struct worker_pool *pool = worker->pool;
c8e55f36 1655
6183c009
TH
1656 if (WARN_ON_ONCE(!(worker->flags & WORKER_IDLE)))
1657 return;
d302f017 1658 worker_clr_flags(worker, WORKER_IDLE);
bd7bdd43 1659 pool->nr_idle--;
c8e55f36
TH
1660 list_del_init(&worker->entry);
1661}
1662
f7537df5 1663static struct worker *alloc_worker(int node)
c34056a3
TH
1664{
1665 struct worker *worker;
1666
f7537df5 1667 worker = kzalloc_node(sizeof(*worker), GFP_KERNEL, node);
c8e55f36
TH
1668 if (worker) {
1669 INIT_LIST_HEAD(&worker->entry);
affee4b2 1670 INIT_LIST_HEAD(&worker->scheduled);
da028469 1671 INIT_LIST_HEAD(&worker->node);
e22bee78
TH
1672 /* on creation a worker is in !idle && prep state */
1673 worker->flags = WORKER_PREP;
c8e55f36 1674 }
c34056a3
TH
1675 return worker;
1676}
1677
4736cbf7
LJ
1678/**
1679 * worker_attach_to_pool() - attach a worker to a pool
1680 * @worker: worker to be attached
1681 * @pool: the target pool
1682 *
1683 * Attach @worker to @pool. Once attached, the %WORKER_UNBOUND flag and
1684 * cpu-binding of @worker are kept coordinated with the pool across
1685 * cpu-[un]hotplugs.
1686 */
1687static void worker_attach_to_pool(struct worker *worker,
1688 struct worker_pool *pool)
1689{
1690 mutex_lock(&pool->attach_mutex);
1691
1692 /*
1693 * set_cpus_allowed_ptr() will fail if the cpumask doesn't have any
1694 * online CPUs. It'll be re-applied when any of the CPUs come up.
1695 */
1696 set_cpus_allowed_ptr(worker->task, pool->attrs->cpumask);
1697
1698 /*
1699 * The pool->attach_mutex ensures %POOL_DISASSOCIATED remains
1700 * stable across this function. See the comments above the
1701 * flag definition for details.
1702 */
1703 if (pool->flags & POOL_DISASSOCIATED)
1704 worker->flags |= WORKER_UNBOUND;
1705
1706 list_add_tail(&worker->node, &pool->workers);
1707
1708 mutex_unlock(&pool->attach_mutex);
1709}
1710
60f5a4bc
LJ
1711/**
1712 * worker_detach_from_pool() - detach a worker from its pool
1713 * @worker: worker which is attached to its pool
1714 * @pool: the pool @worker is attached to
1715 *
4736cbf7
LJ
1716 * Undo the attaching which had been done in worker_attach_to_pool(). The
1717 * caller worker shouldn't access to the pool after detached except it has
1718 * other reference to the pool.
60f5a4bc
LJ
1719 */
1720static void worker_detach_from_pool(struct worker *worker,
1721 struct worker_pool *pool)
1722{
1723 struct completion *detach_completion = NULL;
1724
92f9c5c4 1725 mutex_lock(&pool->attach_mutex);
da028469
LJ
1726 list_del(&worker->node);
1727 if (list_empty(&pool->workers))
60f5a4bc 1728 detach_completion = pool->detach_completion;
92f9c5c4 1729 mutex_unlock(&pool->attach_mutex);
60f5a4bc 1730
b62c0751
LJ
1731 /* clear leftover flags without pool->lock after it is detached */
1732 worker->flags &= ~(WORKER_UNBOUND | WORKER_REBOUND);
1733
60f5a4bc
LJ
1734 if (detach_completion)
1735 complete(detach_completion);
1736}
1737
c34056a3
TH
1738/**
1739 * create_worker - create a new workqueue worker
63d95a91 1740 * @pool: pool the new worker will belong to
c34056a3 1741 *
051e1850 1742 * Create and start a new worker which is attached to @pool.
c34056a3
TH
1743 *
1744 * CONTEXT:
1745 * Might sleep. Does GFP_KERNEL allocations.
1746 *
d185af30 1747 * Return:
c34056a3
TH
1748 * Pointer to the newly created worker.
1749 */
bc2ae0f5 1750static struct worker *create_worker(struct worker_pool *pool)
c34056a3 1751{
c34056a3 1752 struct worker *worker = NULL;
f3421797 1753 int id = -1;
e3c916a4 1754 char id_buf[16];
c34056a3 1755
7cda9aae
LJ
1756 /* ID is needed to determine kthread name */
1757 id = ida_simple_get(&pool->worker_ida, 0, 0, GFP_KERNEL);
822d8405
TH
1758 if (id < 0)
1759 goto fail;
c34056a3 1760
f7537df5 1761 worker = alloc_worker(pool->node);
c34056a3
TH
1762 if (!worker)
1763 goto fail;
1764
bd7bdd43 1765 worker->pool = pool;
c34056a3
TH
1766 worker->id = id;
1767
29c91e99 1768 if (pool->cpu >= 0)
e3c916a4
TH
1769 snprintf(id_buf, sizeof(id_buf), "%d:%d%s", pool->cpu, id,
1770 pool->attrs->nice < 0 ? "H" : "");
f3421797 1771 else
e3c916a4
TH
1772 snprintf(id_buf, sizeof(id_buf), "u%d:%d", pool->id, id);
1773
f3f90ad4 1774 worker->task = kthread_create_on_node(worker_thread, worker, pool->node,
e3c916a4 1775 "kworker/%s", id_buf);
c34056a3
TH
1776 if (IS_ERR(worker->task))
1777 goto fail;
1778
91151228 1779 set_user_nice(worker->task, pool->attrs->nice);
25834c73 1780 kthread_bind_mask(worker->task, pool->attrs->cpumask);
91151228 1781
da028469 1782 /* successful, attach the worker to the pool */
4736cbf7 1783 worker_attach_to_pool(worker, pool);
822d8405 1784
051e1850
LJ
1785 /* start the newly created worker */
1786 spin_lock_irq(&pool->lock);
1787 worker->pool->nr_workers++;
1788 worker_enter_idle(worker);
1789 wake_up_process(worker->task);
1790 spin_unlock_irq(&pool->lock);
1791
c34056a3 1792 return worker;
822d8405 1793
c34056a3 1794fail:
9625ab17 1795 if (id >= 0)
7cda9aae 1796 ida_simple_remove(&pool->worker_ida, id);
c34056a3
TH
1797 kfree(worker);
1798 return NULL;
1799}
1800
c34056a3
TH
1801/**
1802 * destroy_worker - destroy a workqueue worker
1803 * @worker: worker to be destroyed
1804 *
73eb7fe7
LJ
1805 * Destroy @worker and adjust @pool stats accordingly. The worker should
1806 * be idle.
c8e55f36
TH
1807 *
1808 * CONTEXT:
60f5a4bc 1809 * spin_lock_irq(pool->lock).
c34056a3
TH
1810 */
1811static void destroy_worker(struct worker *worker)
1812{
bd7bdd43 1813 struct worker_pool *pool = worker->pool;
c34056a3 1814
cd549687
TH
1815 lockdep_assert_held(&pool->lock);
1816
c34056a3 1817 /* sanity check frenzy */
6183c009 1818 if (WARN_ON(worker->current_work) ||
73eb7fe7
LJ
1819 WARN_ON(!list_empty(&worker->scheduled)) ||
1820 WARN_ON(!(worker->flags & WORKER_IDLE)))
6183c009 1821 return;
c34056a3 1822
73eb7fe7
LJ
1823 pool->nr_workers--;
1824 pool->nr_idle--;
5bdfff96 1825
c8e55f36 1826 list_del_init(&worker->entry);
cb444766 1827 worker->flags |= WORKER_DIE;
60f5a4bc 1828 wake_up_process(worker->task);
c34056a3
TH
1829}
1830
63d95a91 1831static void idle_worker_timeout(unsigned long __pool)
e22bee78 1832{
63d95a91 1833 struct worker_pool *pool = (void *)__pool;
e22bee78 1834
d565ed63 1835 spin_lock_irq(&pool->lock);
e22bee78 1836
3347fc9f 1837 while (too_many_workers(pool)) {
e22bee78
TH
1838 struct worker *worker;
1839 unsigned long expires;
1840
1841 /* idle_list is kept in LIFO order, check the last one */
63d95a91 1842 worker = list_entry(pool->idle_list.prev, struct worker, entry);
e22bee78
TH
1843 expires = worker->last_active + IDLE_WORKER_TIMEOUT;
1844
3347fc9f 1845 if (time_before(jiffies, expires)) {
63d95a91 1846 mod_timer(&pool->idle_timer, expires);
3347fc9f 1847 break;
d5abe669 1848 }
3347fc9f
LJ
1849
1850 destroy_worker(worker);
e22bee78
TH
1851 }
1852
d565ed63 1853 spin_unlock_irq(&pool->lock);
e22bee78 1854}
d5abe669 1855
493a1724 1856static void send_mayday(struct work_struct *work)
e22bee78 1857{
112202d9
TH
1858 struct pool_workqueue *pwq = get_work_pwq(work);
1859 struct workqueue_struct *wq = pwq->wq;
493a1724 1860
2e109a28 1861 lockdep_assert_held(&wq_mayday_lock);
e22bee78 1862
493008a8 1863 if (!wq->rescuer)
493a1724 1864 return;
e22bee78
TH
1865
1866 /* mayday mayday mayday */
493a1724 1867 if (list_empty(&pwq->mayday_node)) {
77668c8b
LJ
1868 /*
1869 * If @pwq is for an unbound wq, its base ref may be put at
1870 * any time due to an attribute change. Pin @pwq until the
1871 * rescuer is done with it.
1872 */
1873 get_pwq(pwq);
493a1724 1874 list_add_tail(&pwq->mayday_node, &wq->maydays);
e22bee78 1875 wake_up_process(wq->rescuer->task);
493a1724 1876 }
e22bee78
TH
1877}
1878
706026c2 1879static void pool_mayday_timeout(unsigned long __pool)
e22bee78 1880{
63d95a91 1881 struct worker_pool *pool = (void *)__pool;
e22bee78
TH
1882 struct work_struct *work;
1883
b2d82909
TH
1884 spin_lock_irq(&pool->lock);
1885 spin_lock(&wq_mayday_lock); /* for wq->maydays */
e22bee78 1886
63d95a91 1887 if (need_to_create_worker(pool)) {
e22bee78
TH
1888 /*
1889 * We've been trying to create a new worker but
1890 * haven't been successful. We might be hitting an
1891 * allocation deadlock. Send distress signals to
1892 * rescuers.
1893 */
63d95a91 1894 list_for_each_entry(work, &pool->worklist, entry)
e22bee78 1895 send_mayday(work);
1da177e4 1896 }
e22bee78 1897
b2d82909
TH
1898 spin_unlock(&wq_mayday_lock);
1899 spin_unlock_irq(&pool->lock);
e22bee78 1900
63d95a91 1901 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INTERVAL);
1da177e4
LT
1902}
1903
e22bee78
TH
1904/**
1905 * maybe_create_worker - create a new worker if necessary
63d95a91 1906 * @pool: pool to create a new worker for
e22bee78 1907 *
63d95a91 1908 * Create a new worker for @pool if necessary. @pool is guaranteed to
e22bee78
TH
1909 * have at least one idle worker on return from this function. If
1910 * creating a new worker takes longer than MAYDAY_INTERVAL, mayday is
63d95a91 1911 * sent to all rescuers with works scheduled on @pool to resolve
e22bee78
TH
1912 * possible allocation deadlock.
1913 *
c5aa87bb
TH
1914 * On return, need_to_create_worker() is guaranteed to be %false and
1915 * may_start_working() %true.
e22bee78
TH
1916 *
1917 * LOCKING:
d565ed63 1918 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1919 * multiple times. Does GFP_KERNEL allocations. Called only from
1920 * manager.
e22bee78 1921 */
29187a9e 1922static void maybe_create_worker(struct worker_pool *pool)
d565ed63
TH
1923__releases(&pool->lock)
1924__acquires(&pool->lock)
1da177e4 1925{
e22bee78 1926restart:
d565ed63 1927 spin_unlock_irq(&pool->lock);
9f9c2364 1928
e22bee78 1929 /* if we don't make progress in MAYDAY_INITIAL_TIMEOUT, call for help */
63d95a91 1930 mod_timer(&pool->mayday_timer, jiffies + MAYDAY_INITIAL_TIMEOUT);
e22bee78
TH
1931
1932 while (true) {
051e1850 1933 if (create_worker(pool) || !need_to_create_worker(pool))
e22bee78 1934 break;
1da177e4 1935
e212f361 1936 schedule_timeout_interruptible(CREATE_COOLDOWN);
9f9c2364 1937
63d95a91 1938 if (!need_to_create_worker(pool))
e22bee78
TH
1939 break;
1940 }
1941
63d95a91 1942 del_timer_sync(&pool->mayday_timer);
d565ed63 1943 spin_lock_irq(&pool->lock);
051e1850
LJ
1944 /*
1945 * This is necessary even after a new worker was just successfully
1946 * created as @pool->lock was dropped and the new worker might have
1947 * already become busy.
1948 */
63d95a91 1949 if (need_to_create_worker(pool))
e22bee78 1950 goto restart;
e22bee78
TH
1951}
1952
73f53c4a 1953/**
e22bee78
TH
1954 * manage_workers - manage worker pool
1955 * @worker: self
73f53c4a 1956 *
706026c2 1957 * Assume the manager role and manage the worker pool @worker belongs
e22bee78 1958 * to. At any given time, there can be only zero or one manager per
706026c2 1959 * pool. The exclusion is handled automatically by this function.
e22bee78
TH
1960 *
1961 * The caller can safely start processing works on false return. On
1962 * true return, it's guaranteed that need_to_create_worker() is false
1963 * and may_start_working() is true.
73f53c4a
TH
1964 *
1965 * CONTEXT:
d565ed63 1966 * spin_lock_irq(pool->lock) which may be released and regrabbed
e22bee78
TH
1967 * multiple times. Does GFP_KERNEL allocations.
1968 *
d185af30 1969 * Return:
29187a9e
TH
1970 * %false if the pool doesn't need management and the caller can safely
1971 * start processing works, %true if management function was performed and
1972 * the conditions that the caller verified before calling the function may
1973 * no longer be true.
73f53c4a 1974 */
e22bee78 1975static bool manage_workers(struct worker *worker)
73f53c4a 1976{
63d95a91 1977 struct worker_pool *pool = worker->pool;
73f53c4a 1978
bc3a1afc 1979 /*
bc3a1afc
TH
1980 * Anyone who successfully grabs manager_arb wins the arbitration
1981 * and becomes the manager. mutex_trylock() on pool->manager_arb
1982 * failure while holding pool->lock reliably indicates that someone
1983 * else is managing the pool and the worker which failed trylock
1984 * can proceed to executing work items. This means that anyone
1985 * grabbing manager_arb is responsible for actually performing
1986 * manager duties. If manager_arb is grabbed and released without
1987 * actual management, the pool may stall indefinitely.
bc3a1afc 1988 */
34a06bd6 1989 if (!mutex_trylock(&pool->manager_arb))
29187a9e 1990 return false;
2607d7a6 1991 pool->manager = worker;
1e19ffc6 1992
29187a9e 1993 maybe_create_worker(pool);
e22bee78 1994
2607d7a6 1995 pool->manager = NULL;
34a06bd6 1996 mutex_unlock(&pool->manager_arb);
29187a9e 1997 return true;
73f53c4a
TH
1998}
1999
a62428c0
TH
2000/**
2001 * process_one_work - process single work
c34056a3 2002 * @worker: self
a62428c0
TH
2003 * @work: work to process
2004 *
2005 * Process @work. This function contains all the logics necessary to
2006 * process a single work including synchronization against and
2007 * interaction with other workers on the same cpu, queueing and
2008 * flushing. As long as context requirement is met, any worker can
2009 * call this function to process a work.
2010 *
2011 * CONTEXT:
d565ed63 2012 * spin_lock_irq(pool->lock) which is released and regrabbed.
a62428c0 2013 */
c34056a3 2014static void process_one_work(struct worker *worker, struct work_struct *work)
d565ed63
TH
2015__releases(&pool->lock)
2016__acquires(&pool->lock)
a62428c0 2017{
112202d9 2018 struct pool_workqueue *pwq = get_work_pwq(work);
bd7bdd43 2019 struct worker_pool *pool = worker->pool;
112202d9 2020 bool cpu_intensive = pwq->wq->flags & WQ_CPU_INTENSIVE;
73f53c4a 2021 int work_color;
7e11629d 2022 struct worker *collision;
a62428c0
TH
2023#ifdef CONFIG_LOCKDEP
2024 /*
2025 * It is permissible to free the struct work_struct from
2026 * inside the function that is called from it, this we need to
2027 * take into account for lockdep too. To avoid bogus "held
2028 * lock freed" warnings as well as problems when looking into
2029 * work->lockdep_map, make a copy and use that here.
2030 */
4d82a1de
PZ
2031 struct lockdep_map lockdep_map;
2032
2033 lockdep_copy_map(&lockdep_map, &work->lockdep_map);
a62428c0 2034#endif
807407c0 2035 /* ensure we're on the correct CPU */
85327af6 2036 WARN_ON_ONCE(!(pool->flags & POOL_DISASSOCIATED) &&
ec22ca5e 2037 raw_smp_processor_id() != pool->cpu);
25511a47 2038
7e11629d
TH
2039 /*
2040 * A single work shouldn't be executed concurrently by
2041 * multiple workers on a single cpu. Check whether anyone is
2042 * already processing the work. If so, defer the work to the
2043 * currently executing one.
2044 */
c9e7cf27 2045 collision = find_worker_executing_work(pool, work);
7e11629d
TH
2046 if (unlikely(collision)) {
2047 move_linked_works(work, &collision->scheduled, NULL);
2048 return;
2049 }
2050
8930caba 2051 /* claim and dequeue */
a62428c0 2052 debug_work_deactivate(work);
c9e7cf27 2053 hash_add(pool->busy_hash, &worker->hentry, (unsigned long)work);
c34056a3 2054 worker->current_work = work;
a2c1c57b 2055 worker->current_func = work->func;
112202d9 2056 worker->current_pwq = pwq;
73f53c4a 2057 work_color = get_work_color(work);
7a22ad75 2058
a62428c0
TH
2059 list_del_init(&work->entry);
2060
fb0e7beb 2061 /*
228f1d00
LJ
2062 * CPU intensive works don't participate in concurrency management.
2063 * They're the scheduler's responsibility. This takes @worker out
2064 * of concurrency management and the next code block will chain
2065 * execution of the pending work items.
fb0e7beb
TH
2066 */
2067 if (unlikely(cpu_intensive))
228f1d00 2068 worker_set_flags(worker, WORKER_CPU_INTENSIVE);
fb0e7beb 2069
974271c4 2070 /*
a489a03e
LJ
2071 * Wake up another worker if necessary. The condition is always
2072 * false for normal per-cpu workers since nr_running would always
2073 * be >= 1 at this point. This is used to chain execution of the
2074 * pending work items for WORKER_NOT_RUNNING workers such as the
228f1d00 2075 * UNBOUND and CPU_INTENSIVE ones.
974271c4 2076 */
a489a03e 2077 if (need_more_worker(pool))
63d95a91 2078 wake_up_worker(pool);
974271c4 2079
8930caba 2080 /*
7c3eed5c 2081 * Record the last pool and clear PENDING which should be the last
d565ed63 2082 * update to @work. Also, do this inside @pool->lock so that
23657bb1
TH
2083 * PENDING and queued state changes happen together while IRQ is
2084 * disabled.
8930caba 2085 */
7c3eed5c 2086 set_work_pool_and_clear_pending(work, pool->id);
a62428c0 2087
d565ed63 2088 spin_unlock_irq(&pool->lock);
a62428c0 2089
112202d9 2090 lock_map_acquire_read(&pwq->wq->lockdep_map);
a62428c0 2091 lock_map_acquire(&lockdep_map);
e36c886a 2092 trace_workqueue_execute_start(work);
a2c1c57b 2093 worker->current_func(work);
e36c886a
AV
2094 /*
2095 * While we must be careful to not use "work" after this, the trace
2096 * point will only record its address.
2097 */
2098 trace_workqueue_execute_end(work);
a62428c0 2099 lock_map_release(&lockdep_map);
112202d9 2100 lock_map_release(&pwq->wq->lockdep_map);
a62428c0
TH
2101
2102 if (unlikely(in_atomic() || lockdep_depth(current) > 0)) {
044c782c
VI
2103 pr_err("BUG: workqueue leaked lock or atomic: %s/0x%08x/%d\n"
2104 " last function: %pf\n",
a2c1c57b
TH
2105 current->comm, preempt_count(), task_pid_nr(current),
2106 worker->current_func);
a62428c0
TH
2107 debug_show_held_locks(current);
2108 dump_stack();
2109 }
2110
b22ce278
TH
2111 /*
2112 * The following prevents a kworker from hogging CPU on !PREEMPT
2113 * kernels, where a requeueing work item waiting for something to
2114 * happen could deadlock with stop_machine as such work item could
2115 * indefinitely requeue itself while all other CPUs are trapped in
789cbbec
JL
2116 * stop_machine. At the same time, report a quiescent RCU state so
2117 * the same condition doesn't freeze RCU.
b22ce278 2118 */
3e28e377 2119 cond_resched_rcu_qs();
b22ce278 2120
d565ed63 2121 spin_lock_irq(&pool->lock);
a62428c0 2122
fb0e7beb
TH
2123 /* clear cpu intensive status */
2124 if (unlikely(cpu_intensive))
2125 worker_clr_flags(worker, WORKER_CPU_INTENSIVE);
2126
a62428c0 2127 /* we're done with it, release */
42f8570f 2128 hash_del(&worker->hentry);
c34056a3 2129 worker->current_work = NULL;
a2c1c57b 2130 worker->current_func = NULL;
112202d9 2131 worker->current_pwq = NULL;
3d1cb205 2132 worker->desc_valid = false;
112202d9 2133 pwq_dec_nr_in_flight(pwq, work_color);
a62428c0
TH
2134}
2135
affee4b2
TH
2136/**
2137 * process_scheduled_works - process scheduled works
2138 * @worker: self
2139 *
2140 * Process all scheduled works. Please note that the scheduled list
2141 * may change while processing a work, so this function repeatedly
2142 * fetches a work from the top and executes it.
2143 *
2144 * CONTEXT:
d565ed63 2145 * spin_lock_irq(pool->lock) which may be released and regrabbed
affee4b2
TH
2146 * multiple times.
2147 */
2148static void process_scheduled_works(struct worker *worker)
1da177e4 2149{
affee4b2
TH
2150 while (!list_empty(&worker->scheduled)) {
2151 struct work_struct *work = list_first_entry(&worker->scheduled,
1da177e4 2152 struct work_struct, entry);
c34056a3 2153 process_one_work(worker, work);
1da177e4 2154 }
1da177e4
LT
2155}
2156
4690c4ab
TH
2157/**
2158 * worker_thread - the worker thread function
c34056a3 2159 * @__worker: self
4690c4ab 2160 *
c5aa87bb
TH
2161 * The worker thread function. All workers belong to a worker_pool -
2162 * either a per-cpu one or dynamic unbound one. These workers process all
2163 * work items regardless of their specific target workqueue. The only
2164 * exception is work items which belong to workqueues with a rescuer which
2165 * will be explained in rescuer_thread().
d185af30
YB
2166 *
2167 * Return: 0
4690c4ab 2168 */
c34056a3 2169static int worker_thread(void *__worker)
1da177e4 2170{
c34056a3 2171 struct worker *worker = __worker;
bd7bdd43 2172 struct worker_pool *pool = worker->pool;
1da177e4 2173
e22bee78
TH
2174 /* tell the scheduler that this is a workqueue worker */
2175 worker->task->flags |= PF_WQ_WORKER;
c8e55f36 2176woke_up:
d565ed63 2177 spin_lock_irq(&pool->lock);
1da177e4 2178
a9ab775b
TH
2179 /* am I supposed to die? */
2180 if (unlikely(worker->flags & WORKER_DIE)) {
d565ed63 2181 spin_unlock_irq(&pool->lock);
a9ab775b
TH
2182 WARN_ON_ONCE(!list_empty(&worker->entry));
2183 worker->task->flags &= ~PF_WQ_WORKER;
60f5a4bc
LJ
2184
2185 set_task_comm(worker->task, "kworker/dying");
7cda9aae 2186 ida_simple_remove(&pool->worker_ida, worker->id);
60f5a4bc
LJ
2187 worker_detach_from_pool(worker, pool);
2188 kfree(worker);
a9ab775b 2189 return 0;
c8e55f36 2190 }
affee4b2 2191
c8e55f36 2192 worker_leave_idle(worker);
db7bccf4 2193recheck:
e22bee78 2194 /* no more worker necessary? */
63d95a91 2195 if (!need_more_worker(pool))
e22bee78
TH
2196 goto sleep;
2197
2198 /* do we need to manage? */
63d95a91 2199 if (unlikely(!may_start_working(pool)) && manage_workers(worker))
e22bee78
TH
2200 goto recheck;
2201
c8e55f36
TH
2202 /*
2203 * ->scheduled list can only be filled while a worker is
2204 * preparing to process a work or actually processing it.
2205 * Make sure nobody diddled with it while I was sleeping.
2206 */
6183c009 2207 WARN_ON_ONCE(!list_empty(&worker->scheduled));
c8e55f36 2208
e22bee78 2209 /*
a9ab775b
TH
2210 * Finish PREP stage. We're guaranteed to have at least one idle
2211 * worker or that someone else has already assumed the manager
2212 * role. This is where @worker starts participating in concurrency
2213 * management if applicable and concurrency management is restored
2214 * after being rebound. See rebind_workers() for details.
e22bee78 2215 */
a9ab775b 2216 worker_clr_flags(worker, WORKER_PREP | WORKER_REBOUND);
e22bee78
TH
2217
2218 do {
c8e55f36 2219 struct work_struct *work =
bd7bdd43 2220 list_first_entry(&pool->worklist,
c8e55f36
TH
2221 struct work_struct, entry);
2222
82607adc
TH
2223 pool->watchdog_ts = jiffies;
2224
c8e55f36
TH
2225 if (likely(!(*work_data_bits(work) & WORK_STRUCT_LINKED))) {
2226 /* optimization path, not strictly necessary */
2227 process_one_work(worker, work);
2228 if (unlikely(!list_empty(&worker->scheduled)))
affee4b2 2229 process_scheduled_works(worker);
c8e55f36
TH
2230 } else {
2231 move_linked_works(work, &worker->scheduled, NULL);
2232 process_scheduled_works(worker);
affee4b2 2233 }
63d95a91 2234 } while (keep_working(pool));
e22bee78 2235
228f1d00 2236 worker_set_flags(worker, WORKER_PREP);
d313dd85 2237sleep:
c8e55f36 2238 /*
d565ed63
TH
2239 * pool->lock is held and there's no work to process and no need to
2240 * manage, sleep. Workers are woken up only while holding
2241 * pool->lock or from local cpu, so setting the current state
2242 * before releasing pool->lock is enough to prevent losing any
2243 * event.
c8e55f36
TH
2244 */
2245 worker_enter_idle(worker);
2246 __set_current_state(TASK_INTERRUPTIBLE);
d565ed63 2247 spin_unlock_irq(&pool->lock);
c8e55f36
TH
2248 schedule();
2249 goto woke_up;
1da177e4
LT
2250}
2251
e22bee78
TH
2252/**
2253 * rescuer_thread - the rescuer thread function
111c225a 2254 * @__rescuer: self
e22bee78
TH
2255 *
2256 * Workqueue rescuer thread function. There's one rescuer for each
493008a8 2257 * workqueue which has WQ_MEM_RECLAIM set.
e22bee78 2258 *
706026c2 2259 * Regular work processing on a pool may block trying to create a new
e22bee78
TH
2260 * worker which uses GFP_KERNEL allocation which has slight chance of
2261 * developing into deadlock if some works currently on the same queue
2262 * need to be processed to satisfy the GFP_KERNEL allocation. This is
2263 * the problem rescuer solves.
2264 *
706026c2
TH
2265 * When such condition is possible, the pool summons rescuers of all
2266 * workqueues which have works queued on the pool and let them process
e22bee78
TH
2267 * those works so that forward progress can be guaranteed.
2268 *
2269 * This should happen rarely.
d185af30
YB
2270 *
2271 * Return: 0
e22bee78 2272 */
111c225a 2273static int rescuer_thread(void *__rescuer)
e22bee78 2274{
111c225a
TH
2275 struct worker *rescuer = __rescuer;
2276 struct workqueue_struct *wq = rescuer->rescue_wq;
e22bee78 2277 struct list_head *scheduled = &rescuer->scheduled;
4d595b86 2278 bool should_stop;
e22bee78
TH
2279
2280 set_user_nice(current, RESCUER_NICE_LEVEL);
111c225a
TH
2281
2282 /*
2283 * Mark rescuer as worker too. As WORKER_PREP is never cleared, it
2284 * doesn't participate in concurrency management.
2285 */
2286 rescuer->task->flags |= PF_WQ_WORKER;
e22bee78
TH
2287repeat:
2288 set_current_state(TASK_INTERRUPTIBLE);
2289
4d595b86
LJ
2290 /*
2291 * By the time the rescuer is requested to stop, the workqueue
2292 * shouldn't have any work pending, but @wq->maydays may still have
2293 * pwq(s) queued. This can happen by non-rescuer workers consuming
2294 * all the work items before the rescuer got to them. Go through
2295 * @wq->maydays processing before acting on should_stop so that the
2296 * list is always empty on exit.
2297 */
2298 should_stop = kthread_should_stop();
e22bee78 2299
493a1724 2300 /* see whether any pwq is asking for help */
2e109a28 2301 spin_lock_irq(&wq_mayday_lock);
493a1724
TH
2302
2303 while (!list_empty(&wq->maydays)) {
2304 struct pool_workqueue *pwq = list_first_entry(&wq->maydays,
2305 struct pool_workqueue, mayday_node);
112202d9 2306 struct worker_pool *pool = pwq->pool;
e22bee78 2307 struct work_struct *work, *n;
82607adc 2308 bool first = true;
e22bee78
TH
2309
2310 __set_current_state(TASK_RUNNING);
493a1724
TH
2311 list_del_init(&pwq->mayday_node);
2312
2e109a28 2313 spin_unlock_irq(&wq_mayday_lock);
e22bee78 2314
51697d39
LJ
2315 worker_attach_to_pool(rescuer, pool);
2316
2317 spin_lock_irq(&pool->lock);
b3104104 2318 rescuer->pool = pool;
e22bee78
TH
2319
2320 /*
2321 * Slurp in all works issued via this workqueue and
2322 * process'em.
2323 */
0479c8c5 2324 WARN_ON_ONCE(!list_empty(scheduled));
82607adc
TH
2325 list_for_each_entry_safe(work, n, &pool->worklist, entry) {
2326 if (get_work_pwq(work) == pwq) {
2327 if (first)
2328 pool->watchdog_ts = jiffies;
e22bee78 2329 move_linked_works(work, scheduled, &n);
82607adc
TH
2330 }
2331 first = false;
2332 }
e22bee78 2333
008847f6
N
2334 if (!list_empty(scheduled)) {
2335 process_scheduled_works(rescuer);
2336
2337 /*
2338 * The above execution of rescued work items could
2339 * have created more to rescue through
2340 * pwq_activate_first_delayed() or chained
2341 * queueing. Let's put @pwq back on mayday list so
2342 * that such back-to-back work items, which may be
2343 * being used to relieve memory pressure, don't
2344 * incur MAYDAY_INTERVAL delay inbetween.
2345 */
2346 if (need_to_create_worker(pool)) {
2347 spin_lock(&wq_mayday_lock);
2348 get_pwq(pwq);
2349 list_move_tail(&pwq->mayday_node, &wq->maydays);
2350 spin_unlock(&wq_mayday_lock);
2351 }
2352 }
7576958a 2353
77668c8b
LJ
2354 /*
2355 * Put the reference grabbed by send_mayday(). @pool won't
13b1d625 2356 * go away while we're still attached to it.
77668c8b
LJ
2357 */
2358 put_pwq(pwq);
2359
7576958a 2360 /*
d8ca83e6 2361 * Leave this pool. If need_more_worker() is %true, notify a
7576958a
TH
2362 * regular worker; otherwise, we end up with 0 concurrency
2363 * and stalling the execution.
2364 */
d8ca83e6 2365 if (need_more_worker(pool))
63d95a91 2366 wake_up_worker(pool);
7576958a 2367
b3104104 2368 rescuer->pool = NULL;
13b1d625
LJ
2369 spin_unlock_irq(&pool->lock);
2370
2371 worker_detach_from_pool(rescuer, pool);
2372
2373 spin_lock_irq(&wq_mayday_lock);
e22bee78
TH
2374 }
2375
2e109a28 2376 spin_unlock_irq(&wq_mayday_lock);
493a1724 2377
4d595b86
LJ
2378 if (should_stop) {
2379 __set_current_state(TASK_RUNNING);
2380 rescuer->task->flags &= ~PF_WQ_WORKER;
2381 return 0;
2382 }
2383
111c225a
TH
2384 /* rescuers should never participate in concurrency management */
2385 WARN_ON_ONCE(!(rescuer->flags & WORKER_NOT_RUNNING));
e22bee78
TH
2386 schedule();
2387 goto repeat;
1da177e4
LT
2388}
2389
fca839c0
TH
2390/**
2391 * check_flush_dependency - check for flush dependency sanity
2392 * @target_wq: workqueue being flushed
2393 * @target_work: work item being flushed (NULL for workqueue flushes)
2394 *
2395 * %current is trying to flush the whole @target_wq or @target_work on it.
2396 * If @target_wq doesn't have %WQ_MEM_RECLAIM, verify that %current is not
2397 * reclaiming memory or running on a workqueue which doesn't have
2398 * %WQ_MEM_RECLAIM as that can break forward-progress guarantee leading to
2399 * a deadlock.
2400 */
2401static void check_flush_dependency(struct workqueue_struct *target_wq,
2402 struct work_struct *target_work)
2403{
2404 work_func_t target_func = target_work ? target_work->func : NULL;
2405 struct worker *worker;
2406
2407 if (target_wq->flags & WQ_MEM_RECLAIM)
2408 return;
2409
2410 worker = current_wq_worker();
2411
2412 WARN_ONCE(current->flags & PF_MEMALLOC,
2413 "workqueue: PF_MEMALLOC task %d(%s) is flushing !WQ_MEM_RECLAIM %s:%pf",
2414 current->pid, current->comm, target_wq->name, target_func);
23d11a58
TH
2415 WARN_ONCE(worker && ((worker->current_pwq->wq->flags &
2416 (WQ_MEM_RECLAIM | __WQ_LEGACY)) == WQ_MEM_RECLAIM),
fca839c0
TH
2417 "workqueue: WQ_MEM_RECLAIM %s:%pf is flushing !WQ_MEM_RECLAIM %s:%pf",
2418 worker->current_pwq->wq->name, worker->current_func,
2419 target_wq->name, target_func);
2420}
2421
fc2e4d70
ON
2422struct wq_barrier {
2423 struct work_struct work;
2424 struct completion done;
2607d7a6 2425 struct task_struct *task; /* purely informational */
fc2e4d70
ON
2426};
2427
2428static void wq_barrier_func(struct work_struct *work)
2429{
2430 struct wq_barrier *barr = container_of(work, struct wq_barrier, work);
2431 complete(&barr->done);
2432}
2433
4690c4ab
TH
2434/**
2435 * insert_wq_barrier - insert a barrier work
112202d9 2436 * @pwq: pwq to insert barrier into
4690c4ab 2437 * @barr: wq_barrier to insert
affee4b2
TH
2438 * @target: target work to attach @barr to
2439 * @worker: worker currently executing @target, NULL if @target is not executing
4690c4ab 2440 *
affee4b2
TH
2441 * @barr is linked to @target such that @barr is completed only after
2442 * @target finishes execution. Please note that the ordering
2443 * guarantee is observed only with respect to @target and on the local
2444 * cpu.
2445 *
2446 * Currently, a queued barrier can't be canceled. This is because
2447 * try_to_grab_pending() can't determine whether the work to be
2448 * grabbed is at the head of the queue and thus can't clear LINKED
2449 * flag of the previous work while there must be a valid next work
2450 * after a work with LINKED flag set.
2451 *
2452 * Note that when @worker is non-NULL, @target may be modified
112202d9 2453 * underneath us, so we can't reliably determine pwq from @target.
4690c4ab
TH
2454 *
2455 * CONTEXT:
d565ed63 2456 * spin_lock_irq(pool->lock).
4690c4ab 2457 */
112202d9 2458static void insert_wq_barrier(struct pool_workqueue *pwq,
affee4b2
TH
2459 struct wq_barrier *barr,
2460 struct work_struct *target, struct worker *worker)
fc2e4d70 2461{
affee4b2
TH
2462 struct list_head *head;
2463 unsigned int linked = 0;
2464
dc186ad7 2465 /*
d565ed63 2466 * debugobject calls are safe here even with pool->lock locked
dc186ad7
TG
2467 * as we know for sure that this will not trigger any of the
2468 * checks and call back into the fixup functions where we
2469 * might deadlock.
2470 */
ca1cab37 2471 INIT_WORK_ONSTACK(&barr->work, wq_barrier_func);
22df02bb 2472 __set_bit(WORK_STRUCT_PENDING_BIT, work_data_bits(&barr->work));
fc2e4d70 2473 init_completion(&barr->done);
2607d7a6 2474 barr->task = current;
83c22520 2475
affee4b2
TH
2476 /*
2477 * If @target is currently being executed, schedule the
2478 * barrier to the worker; otherwise, put it after @target.
2479 */
2480 if (worker)
2481 head = worker->scheduled.next;
2482 else {
2483 unsigned long *bits = work_data_bits(target);
2484
2485 head = target->entry.next;
2486 /* there can already be other linked works, inherit and set */
2487 linked = *bits & WORK_STRUCT_LINKED;
2488 __set_bit(WORK_STRUCT_LINKED_BIT, bits);
2489 }
2490
dc186ad7 2491 debug_work_activate(&barr->work);
112202d9 2492 insert_work(pwq, &barr->work, head,
affee4b2 2493 work_color_to_flags(WORK_NO_COLOR) | linked);
fc2e4d70
ON
2494}
2495
73f53c4a 2496/**
112202d9 2497 * flush_workqueue_prep_pwqs - prepare pwqs for workqueue flushing
73f53c4a
TH
2498 * @wq: workqueue being flushed
2499 * @flush_color: new flush color, < 0 for no-op
2500 * @work_color: new work color, < 0 for no-op
2501 *
112202d9 2502 * Prepare pwqs for workqueue flushing.
73f53c4a 2503 *
112202d9
TH
2504 * If @flush_color is non-negative, flush_color on all pwqs should be
2505 * -1. If no pwq has in-flight commands at the specified color, all
2506 * pwq->flush_color's stay at -1 and %false is returned. If any pwq
2507 * has in flight commands, its pwq->flush_color is set to
2508 * @flush_color, @wq->nr_pwqs_to_flush is updated accordingly, pwq
73f53c4a
TH
2509 * wakeup logic is armed and %true is returned.
2510 *
2511 * The caller should have initialized @wq->first_flusher prior to
2512 * calling this function with non-negative @flush_color. If
2513 * @flush_color is negative, no flush color update is done and %false
2514 * is returned.
2515 *
112202d9 2516 * If @work_color is non-negative, all pwqs should have the same
73f53c4a
TH
2517 * work_color which is previous to @work_color and all will be
2518 * advanced to @work_color.
2519 *
2520 * CONTEXT:
3c25a55d 2521 * mutex_lock(wq->mutex).
73f53c4a 2522 *
d185af30 2523 * Return:
73f53c4a
TH
2524 * %true if @flush_color >= 0 and there's something to flush. %false
2525 * otherwise.
2526 */
112202d9 2527static bool flush_workqueue_prep_pwqs(struct workqueue_struct *wq,
73f53c4a 2528 int flush_color, int work_color)
1da177e4 2529{
73f53c4a 2530 bool wait = false;
49e3cf44 2531 struct pool_workqueue *pwq;
1da177e4 2532
73f53c4a 2533 if (flush_color >= 0) {
6183c009 2534 WARN_ON_ONCE(atomic_read(&wq->nr_pwqs_to_flush));
112202d9 2535 atomic_set(&wq->nr_pwqs_to_flush, 1);
1da177e4 2536 }
2355b70f 2537
49e3cf44 2538 for_each_pwq(pwq, wq) {
112202d9 2539 struct worker_pool *pool = pwq->pool;
fc2e4d70 2540
b09f4fd3 2541 spin_lock_irq(&pool->lock);
83c22520 2542
73f53c4a 2543 if (flush_color >= 0) {
6183c009 2544 WARN_ON_ONCE(pwq->flush_color != -1);
fc2e4d70 2545
112202d9
TH
2546 if (pwq->nr_in_flight[flush_color]) {
2547 pwq->flush_color = flush_color;
2548 atomic_inc(&wq->nr_pwqs_to_flush);
73f53c4a
TH
2549 wait = true;
2550 }
2551 }
1da177e4 2552
73f53c4a 2553 if (work_color >= 0) {
6183c009 2554 WARN_ON_ONCE(work_color != work_next_color(pwq->work_color));
112202d9 2555 pwq->work_color = work_color;
73f53c4a 2556 }
1da177e4 2557
b09f4fd3 2558 spin_unlock_irq(&pool->lock);
1da177e4 2559 }
2355b70f 2560
112202d9 2561 if (flush_color >= 0 && atomic_dec_and_test(&wq->nr_pwqs_to_flush))
73f53c4a 2562 complete(&wq->first_flusher->done);
14441960 2563
73f53c4a 2564 return wait;
1da177e4
LT
2565}
2566
0fcb78c2 2567/**
1da177e4 2568 * flush_workqueue - ensure that any scheduled work has run to completion.
0fcb78c2 2569 * @wq: workqueue to flush
1da177e4 2570 *
c5aa87bb
TH
2571 * This function sleeps until all work items which were queued on entry
2572 * have finished execution, but it is not livelocked by new incoming ones.
1da177e4 2573 */
7ad5b3a5 2574void flush_workqueue(struct workqueue_struct *wq)
1da177e4 2575{
73f53c4a
TH
2576 struct wq_flusher this_flusher = {
2577 .list = LIST_HEAD_INIT(this_flusher.list),
2578 .flush_color = -1,
2579 .done = COMPLETION_INITIALIZER_ONSTACK(this_flusher.done),
2580 };
2581 int next_color;
1da177e4 2582
3295f0ef
IM
2583 lock_map_acquire(&wq->lockdep_map);
2584 lock_map_release(&wq->lockdep_map);
73f53c4a 2585
3c25a55d 2586 mutex_lock(&wq->mutex);
73f53c4a
TH
2587
2588 /*
2589 * Start-to-wait phase
2590 */
2591 next_color = work_next_color(wq->work_color);
2592
2593 if (next_color != wq->flush_color) {
2594 /*
2595 * Color space is not full. The current work_color
2596 * becomes our flush_color and work_color is advanced
2597 * by one.
2598 */
6183c009 2599 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow));
73f53c4a
TH
2600 this_flusher.flush_color = wq->work_color;
2601 wq->work_color = next_color;
2602
2603 if (!wq->first_flusher) {
2604 /* no flush in progress, become the first flusher */
6183c009 2605 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2606
2607 wq->first_flusher = &this_flusher;
2608
112202d9 2609 if (!flush_workqueue_prep_pwqs(wq, wq->flush_color,
73f53c4a
TH
2610 wq->work_color)) {
2611 /* nothing to flush, done */
2612 wq->flush_color = next_color;
2613 wq->first_flusher = NULL;
2614 goto out_unlock;
2615 }
2616 } else {
2617 /* wait in queue */
6183c009 2618 WARN_ON_ONCE(wq->flush_color == this_flusher.flush_color);
73f53c4a 2619 list_add_tail(&this_flusher.list, &wq->flusher_queue);
112202d9 2620 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2621 }
2622 } else {
2623 /*
2624 * Oops, color space is full, wait on overflow queue.
2625 * The next flush completion will assign us
2626 * flush_color and transfer to flusher_queue.
2627 */
2628 list_add_tail(&this_flusher.list, &wq->flusher_overflow);
2629 }
2630
fca839c0
TH
2631 check_flush_dependency(wq, NULL);
2632
3c25a55d 2633 mutex_unlock(&wq->mutex);
73f53c4a
TH
2634
2635 wait_for_completion(&this_flusher.done);
2636
2637 /*
2638 * Wake-up-and-cascade phase
2639 *
2640 * First flushers are responsible for cascading flushes and
2641 * handling overflow. Non-first flushers can simply return.
2642 */
2643 if (wq->first_flusher != &this_flusher)
2644 return;
2645
3c25a55d 2646 mutex_lock(&wq->mutex);
73f53c4a 2647
4ce48b37
TH
2648 /* we might have raced, check again with mutex held */
2649 if (wq->first_flusher != &this_flusher)
2650 goto out_unlock;
2651
73f53c4a
TH
2652 wq->first_flusher = NULL;
2653
6183c009
TH
2654 WARN_ON_ONCE(!list_empty(&this_flusher.list));
2655 WARN_ON_ONCE(wq->flush_color != this_flusher.flush_color);
73f53c4a
TH
2656
2657 while (true) {
2658 struct wq_flusher *next, *tmp;
2659
2660 /* complete all the flushers sharing the current flush color */
2661 list_for_each_entry_safe(next, tmp, &wq->flusher_queue, list) {
2662 if (next->flush_color != wq->flush_color)
2663 break;
2664 list_del_init(&next->list);
2665 complete(&next->done);
2666 }
2667
6183c009
TH
2668 WARN_ON_ONCE(!list_empty(&wq->flusher_overflow) &&
2669 wq->flush_color != work_next_color(wq->work_color));
73f53c4a
TH
2670
2671 /* this flush_color is finished, advance by one */
2672 wq->flush_color = work_next_color(wq->flush_color);
2673
2674 /* one color has been freed, handle overflow queue */
2675 if (!list_empty(&wq->flusher_overflow)) {
2676 /*
2677 * Assign the same color to all overflowed
2678 * flushers, advance work_color and append to
2679 * flusher_queue. This is the start-to-wait
2680 * phase for these overflowed flushers.
2681 */
2682 list_for_each_entry(tmp, &wq->flusher_overflow, list)
2683 tmp->flush_color = wq->work_color;
2684
2685 wq->work_color = work_next_color(wq->work_color);
2686
2687 list_splice_tail_init(&wq->flusher_overflow,
2688 &wq->flusher_queue);
112202d9 2689 flush_workqueue_prep_pwqs(wq, -1, wq->work_color);
73f53c4a
TH
2690 }
2691
2692 if (list_empty(&wq->flusher_queue)) {
6183c009 2693 WARN_ON_ONCE(wq->flush_color != wq->work_color);
73f53c4a
TH
2694 break;
2695 }
2696
2697 /*
2698 * Need to flush more colors. Make the next flusher
112202d9 2699 * the new first flusher and arm pwqs.
73f53c4a 2700 */
6183c009
TH
2701 WARN_ON_ONCE(wq->flush_color == wq->work_color);
2702 WARN_ON_ONCE(wq->flush_color != next->flush_color);
73f53c4a
TH
2703
2704 list_del_init(&next->list);
2705 wq->first_flusher = next;
2706
112202d9 2707 if (flush_workqueue_prep_pwqs(wq, wq->flush_color, -1))
73f53c4a
TH
2708 break;
2709
2710 /*
2711 * Meh... this color is already done, clear first
2712 * flusher and repeat cascading.
2713 */
2714 wq->first_flusher = NULL;
2715 }
2716
2717out_unlock:
3c25a55d 2718 mutex_unlock(&wq->mutex);
1da177e4 2719}
1dadafa8 2720EXPORT_SYMBOL(flush_workqueue);
1da177e4 2721
9c5a2ba7
TH
2722/**
2723 * drain_workqueue - drain a workqueue
2724 * @wq: workqueue to drain
2725 *
2726 * Wait until the workqueue becomes empty. While draining is in progress,
2727 * only chain queueing is allowed. IOW, only currently pending or running
2728 * work items on @wq can queue further work items on it. @wq is flushed
b749b1b6 2729 * repeatedly until it becomes empty. The number of flushing is determined
9c5a2ba7
TH
2730 * by the depth of chaining and should be relatively short. Whine if it
2731 * takes too long.
2732 */
2733void drain_workqueue(struct workqueue_struct *wq)
2734{
2735 unsigned int flush_cnt = 0;
49e3cf44 2736 struct pool_workqueue *pwq;
9c5a2ba7
TH
2737
2738 /*
2739 * __queue_work() needs to test whether there are drainers, is much
2740 * hotter than drain_workqueue() and already looks at @wq->flags.
618b01eb 2741 * Use __WQ_DRAINING so that queue doesn't have to check nr_drainers.
9c5a2ba7 2742 */
87fc741e 2743 mutex_lock(&wq->mutex);
9c5a2ba7 2744 if (!wq->nr_drainers++)
618b01eb 2745 wq->flags |= __WQ_DRAINING;
87fc741e 2746 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2747reflush:
2748 flush_workqueue(wq);
2749
b09f4fd3 2750 mutex_lock(&wq->mutex);
76af4d93 2751
49e3cf44 2752 for_each_pwq(pwq, wq) {
fa2563e4 2753 bool drained;
9c5a2ba7 2754
b09f4fd3 2755 spin_lock_irq(&pwq->pool->lock);
112202d9 2756 drained = !pwq->nr_active && list_empty(&pwq->delayed_works);
b09f4fd3 2757 spin_unlock_irq(&pwq->pool->lock);
fa2563e4
TT
2758
2759 if (drained)
9c5a2ba7
TH
2760 continue;
2761
2762 if (++flush_cnt == 10 ||
2763 (flush_cnt % 100 == 0 && flush_cnt <= 1000))
c5aa87bb 2764 pr_warn("workqueue %s: drain_workqueue() isn't complete after %u tries\n",
044c782c 2765 wq->name, flush_cnt);
76af4d93 2766
b09f4fd3 2767 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2768 goto reflush;
2769 }
2770
9c5a2ba7 2771 if (!--wq->nr_drainers)
618b01eb 2772 wq->flags &= ~__WQ_DRAINING;
87fc741e 2773 mutex_unlock(&wq->mutex);
9c5a2ba7
TH
2774}
2775EXPORT_SYMBOL_GPL(drain_workqueue);
2776
606a5020 2777static bool start_flush_work(struct work_struct *work, struct wq_barrier *barr)
db700897 2778{
affee4b2 2779 struct worker *worker = NULL;
c9e7cf27 2780 struct worker_pool *pool;
112202d9 2781 struct pool_workqueue *pwq;
db700897
ON
2782
2783 might_sleep();
fa1b54e6
TH
2784
2785 local_irq_disable();
c9e7cf27 2786 pool = get_work_pool(work);
fa1b54e6
TH
2787 if (!pool) {
2788 local_irq_enable();
baf59022 2789 return false;
fa1b54e6 2790 }
db700897 2791
fa1b54e6 2792 spin_lock(&pool->lock);
0b3dae68 2793 /* see the comment in try_to_grab_pending() with the same code */
112202d9
TH
2794 pwq = get_work_pwq(work);
2795 if (pwq) {
2796 if (unlikely(pwq->pool != pool))
4690c4ab 2797 goto already_gone;
606a5020 2798 } else {
c9e7cf27 2799 worker = find_worker_executing_work(pool, work);
affee4b2 2800 if (!worker)
4690c4ab 2801 goto already_gone;
112202d9 2802 pwq = worker->current_pwq;
606a5020 2803 }
db700897 2804
fca839c0
TH
2805 check_flush_dependency(pwq->wq, work);
2806
112202d9 2807 insert_wq_barrier(pwq, barr, work, worker);
d565ed63 2808 spin_unlock_irq(&pool->lock);
7a22ad75 2809
e159489b
TH
2810 /*
2811 * If @max_active is 1 or rescuer is in use, flushing another work
2812 * item on the same workqueue may lead to deadlock. Make sure the
2813 * flusher is not running on the same workqueue by verifying write
2814 * access.
2815 */
493008a8 2816 if (pwq->wq->saved_max_active == 1 || pwq->wq->rescuer)
112202d9 2817 lock_map_acquire(&pwq->wq->lockdep_map);
e159489b 2818 else
112202d9
TH
2819 lock_map_acquire_read(&pwq->wq->lockdep_map);
2820 lock_map_release(&pwq->wq->lockdep_map);
e159489b 2821
401a8d04 2822 return true;
4690c4ab 2823already_gone:
d565ed63 2824 spin_unlock_irq(&pool->lock);
401a8d04 2825 return false;
db700897 2826}
baf59022
TH
2827
2828/**
2829 * flush_work - wait for a work to finish executing the last queueing instance
2830 * @work: the work to flush
2831 *
606a5020
TH
2832 * Wait until @work has finished execution. @work is guaranteed to be idle
2833 * on return if it hasn't been requeued since flush started.
baf59022 2834 *
d185af30 2835 * Return:
baf59022
TH
2836 * %true if flush_work() waited for the work to finish execution,
2837 * %false if it was already idle.
2838 */
2839bool flush_work(struct work_struct *work)
2840{
12997d1a
BH
2841 struct wq_barrier barr;
2842
0976dfc1
SB
2843 lock_map_acquire(&work->lockdep_map);
2844 lock_map_release(&work->lockdep_map);
2845
12997d1a
BH
2846 if (start_flush_work(work, &barr)) {
2847 wait_for_completion(&barr.done);
2848 destroy_work_on_stack(&barr.work);
2849 return true;
2850 } else {
2851 return false;
2852 }
6e84d644 2853}
606a5020 2854EXPORT_SYMBOL_GPL(flush_work);
6e84d644 2855
8603e1b3
TH
2856struct cwt_wait {
2857 wait_queue_t wait;
2858 struct work_struct *work;
2859};
2860
2861static int cwt_wakefn(wait_queue_t *wait, unsigned mode, int sync, void *key)
2862{
2863 struct cwt_wait *cwait = container_of(wait, struct cwt_wait, wait);
2864
2865 if (cwait->work != key)
2866 return 0;
2867 return autoremove_wake_function(wait, mode, sync, key);
2868}
2869
36e227d2 2870static bool __cancel_work_timer(struct work_struct *work, bool is_dwork)
1f1f642e 2871{
8603e1b3 2872 static DECLARE_WAIT_QUEUE_HEAD(cancel_waitq);
bbb68dfa 2873 unsigned long flags;
1f1f642e
ON
2874 int ret;
2875
2876 do {
bbb68dfa
TH
2877 ret = try_to_grab_pending(work, is_dwork, &flags);
2878 /*
8603e1b3
TH
2879 * If someone else is already canceling, wait for it to
2880 * finish. flush_work() doesn't work for PREEMPT_NONE
2881 * because we may get scheduled between @work's completion
2882 * and the other canceling task resuming and clearing
2883 * CANCELING - flush_work() will return false immediately
2884 * as @work is no longer busy, try_to_grab_pending() will
2885 * return -ENOENT as @work is still being canceled and the
2886 * other canceling task won't be able to clear CANCELING as
2887 * we're hogging the CPU.
2888 *
2889 * Let's wait for completion using a waitqueue. As this
2890 * may lead to the thundering herd problem, use a custom
2891 * wake function which matches @work along with exclusive
2892 * wait and wakeup.
bbb68dfa 2893 */
8603e1b3
TH
2894 if (unlikely(ret == -ENOENT)) {
2895 struct cwt_wait cwait;
2896
2897 init_wait(&cwait.wait);
2898 cwait.wait.func = cwt_wakefn;
2899 cwait.work = work;
2900
2901 prepare_to_wait_exclusive(&cancel_waitq, &cwait.wait,
2902 TASK_UNINTERRUPTIBLE);
2903 if (work_is_canceling(work))
2904 schedule();
2905 finish_wait(&cancel_waitq, &cwait.wait);
2906 }
1f1f642e
ON
2907 } while (unlikely(ret < 0));
2908
bbb68dfa
TH
2909 /* tell other tasks trying to grab @work to back off */
2910 mark_work_canceling(work);
2911 local_irq_restore(flags);
2912
606a5020 2913 flush_work(work);
7a22ad75 2914 clear_work_data(work);
8603e1b3
TH
2915
2916 /*
2917 * Paired with prepare_to_wait() above so that either
2918 * waitqueue_active() is visible here or !work_is_canceling() is
2919 * visible there.
2920 */
2921 smp_mb();
2922 if (waitqueue_active(&cancel_waitq))
2923 __wake_up(&cancel_waitq, TASK_NORMAL, 1, work);
2924
1f1f642e
ON
2925 return ret;
2926}
2927
6e84d644 2928/**
401a8d04
TH
2929 * cancel_work_sync - cancel a work and wait for it to finish
2930 * @work: the work to cancel
6e84d644 2931 *
401a8d04
TH
2932 * Cancel @work and wait for its execution to finish. This function
2933 * can be used even if the work re-queues itself or migrates to
2934 * another workqueue. On return from this function, @work is
2935 * guaranteed to be not pending or executing on any CPU.
1f1f642e 2936 *
401a8d04
TH
2937 * cancel_work_sync(&delayed_work->work) must not be used for
2938 * delayed_work's. Use cancel_delayed_work_sync() instead.
6e84d644 2939 *
401a8d04 2940 * The caller must ensure that the workqueue on which @work was last
6e84d644 2941 * queued can't be destroyed before this function returns.
401a8d04 2942 *
d185af30 2943 * Return:
401a8d04 2944 * %true if @work was pending, %false otherwise.
6e84d644 2945 */
401a8d04 2946bool cancel_work_sync(struct work_struct *work)
6e84d644 2947{
36e227d2 2948 return __cancel_work_timer(work, false);
b89deed3 2949}
28e53bdd 2950EXPORT_SYMBOL_GPL(cancel_work_sync);
b89deed3 2951
6e84d644 2952/**
401a8d04
TH
2953 * flush_delayed_work - wait for a dwork to finish executing the last queueing
2954 * @dwork: the delayed work to flush
6e84d644 2955 *
401a8d04
TH
2956 * Delayed timer is cancelled and the pending work is queued for
2957 * immediate execution. Like flush_work(), this function only
2958 * considers the last queueing instance of @dwork.
1f1f642e 2959 *
d185af30 2960 * Return:
401a8d04
TH
2961 * %true if flush_work() waited for the work to finish execution,
2962 * %false if it was already idle.
6e84d644 2963 */
401a8d04
TH
2964bool flush_delayed_work(struct delayed_work *dwork)
2965{
8930caba 2966 local_irq_disable();
401a8d04 2967 if (del_timer_sync(&dwork->timer))
60c057bc 2968 __queue_work(dwork->cpu, dwork->wq, &dwork->work);
8930caba 2969 local_irq_enable();
401a8d04
TH
2970 return flush_work(&dwork->work);
2971}
2972EXPORT_SYMBOL(flush_delayed_work);
2973
09383498 2974/**
57b30ae7
TH
2975 * cancel_delayed_work - cancel a delayed work
2976 * @dwork: delayed_work to cancel
09383498 2977 *
d185af30
YB
2978 * Kill off a pending delayed_work.
2979 *
2980 * Return: %true if @dwork was pending and canceled; %false if it wasn't
2981 * pending.
2982 *
2983 * Note:
2984 * The work callback function may still be running on return, unless
2985 * it returns %true and the work doesn't re-arm itself. Explicitly flush or
2986 * use cancel_delayed_work_sync() to wait on it.
09383498 2987 *
57b30ae7 2988 * This function is safe to call from any context including IRQ handler.
09383498 2989 */
57b30ae7 2990bool cancel_delayed_work(struct delayed_work *dwork)
09383498 2991{
57b30ae7
TH
2992 unsigned long flags;
2993 int ret;
2994
2995 do {
2996 ret = try_to_grab_pending(&dwork->work, true, &flags);
2997 } while (unlikely(ret == -EAGAIN));
2998
2999 if (unlikely(ret < 0))
3000 return false;
3001
7c3eed5c
TH
3002 set_work_pool_and_clear_pending(&dwork->work,
3003 get_work_pool_id(&dwork->work));
57b30ae7 3004 local_irq_restore(flags);
c0158ca6 3005 return ret;
09383498 3006}
57b30ae7 3007EXPORT_SYMBOL(cancel_delayed_work);
09383498 3008
401a8d04
TH
3009/**
3010 * cancel_delayed_work_sync - cancel a delayed work and wait for it to finish
3011 * @dwork: the delayed work cancel
3012 *
3013 * This is cancel_work_sync() for delayed works.
3014 *
d185af30 3015 * Return:
401a8d04
TH
3016 * %true if @dwork was pending, %false otherwise.
3017 */
3018bool cancel_delayed_work_sync(struct delayed_work *dwork)
6e84d644 3019{
36e227d2 3020 return __cancel_work_timer(&dwork->work, true);
6e84d644 3021}
f5a421a4 3022EXPORT_SYMBOL(cancel_delayed_work_sync);
1da177e4 3023
b6136773 3024/**
31ddd871 3025 * schedule_on_each_cpu - execute a function synchronously on each online CPU
b6136773 3026 * @func: the function to call
b6136773 3027 *
31ddd871
TH
3028 * schedule_on_each_cpu() executes @func on each online CPU using the
3029 * system workqueue and blocks until all CPUs have completed.
b6136773 3030 * schedule_on_each_cpu() is very slow.
31ddd871 3031 *
d185af30 3032 * Return:
31ddd871 3033 * 0 on success, -errno on failure.
b6136773 3034 */
65f27f38 3035int schedule_on_each_cpu(work_func_t func)
15316ba8
CL
3036{
3037 int cpu;
38f51568 3038 struct work_struct __percpu *works;
15316ba8 3039
b6136773
AM
3040 works = alloc_percpu(struct work_struct);
3041 if (!works)
15316ba8 3042 return -ENOMEM;
b6136773 3043
93981800
TH
3044 get_online_cpus();
3045
15316ba8 3046 for_each_online_cpu(cpu) {
9bfb1839
IM
3047 struct work_struct *work = per_cpu_ptr(works, cpu);
3048
3049 INIT_WORK(work, func);
b71ab8c2 3050 schedule_work_on(cpu, work);
65a64464 3051 }
93981800
TH
3052
3053 for_each_online_cpu(cpu)
3054 flush_work(per_cpu_ptr(works, cpu));
3055
95402b38 3056 put_online_cpus();
b6136773 3057 free_percpu(works);
15316ba8
CL
3058 return 0;
3059}
3060
1fa44eca
JB
3061/**
3062 * execute_in_process_context - reliably execute the routine with user context
3063 * @fn: the function to execute
1fa44eca
JB
3064 * @ew: guaranteed storage for the execute work structure (must
3065 * be available when the work executes)
3066 *
3067 * Executes the function immediately if process context is available,
3068 * otherwise schedules the function for delayed execution.
3069 *
d185af30 3070 * Return: 0 - function was executed
1fa44eca
JB
3071 * 1 - function was scheduled for execution
3072 */
65f27f38 3073int execute_in_process_context(work_func_t fn, struct execute_work *ew)
1fa44eca
JB
3074{
3075 if (!in_interrupt()) {
65f27f38 3076 fn(&ew->work);
1fa44eca
JB
3077 return 0;
3078 }
3079
65f27f38 3080 INIT_WORK(&ew->work, fn);
1fa44eca
JB
3081 schedule_work(&ew->work);
3082
3083 return 1;
3084}
3085EXPORT_SYMBOL_GPL(execute_in_process_context);
3086
6ba94429
FW
3087/**
3088 * free_workqueue_attrs - free a workqueue_attrs
3089 * @attrs: workqueue_attrs to free
226223ab 3090 *
6ba94429 3091 * Undo alloc_workqueue_attrs().
226223ab 3092 */
6ba94429 3093void free_workqueue_attrs(struct workqueue_attrs *attrs)
226223ab 3094{
6ba94429
FW
3095 if (attrs) {
3096 free_cpumask_var(attrs->cpumask);
3097 kfree(attrs);
3098 }
226223ab
TH
3099}
3100
6ba94429
FW
3101/**
3102 * alloc_workqueue_attrs - allocate a workqueue_attrs
3103 * @gfp_mask: allocation mask to use
3104 *
3105 * Allocate a new workqueue_attrs, initialize with default settings and
3106 * return it.
3107 *
3108 * Return: The allocated new workqueue_attr on success. %NULL on failure.
3109 */
3110struct workqueue_attrs *alloc_workqueue_attrs(gfp_t gfp_mask)
226223ab 3111{
6ba94429 3112 struct workqueue_attrs *attrs;
226223ab 3113
6ba94429
FW
3114 attrs = kzalloc(sizeof(*attrs), gfp_mask);
3115 if (!attrs)
3116 goto fail;
3117 if (!alloc_cpumask_var(&attrs->cpumask, gfp_mask))
3118 goto fail;
3119
3120 cpumask_copy(attrs->cpumask, cpu_possible_mask);
3121 return attrs;
3122fail:
3123 free_workqueue_attrs(attrs);
3124 return NULL;
226223ab
TH
3125}
3126
6ba94429
FW
3127static void copy_workqueue_attrs(struct workqueue_attrs *to,
3128 const struct workqueue_attrs *from)
226223ab 3129{
6ba94429
FW
3130 to->nice = from->nice;
3131 cpumask_copy(to->cpumask, from->cpumask);
3132 /*
3133 * Unlike hash and equality test, this function doesn't ignore
3134 * ->no_numa as it is used for both pool and wq attrs. Instead,
3135 * get_unbound_pool() explicitly clears ->no_numa after copying.
3136 */
3137 to->no_numa = from->no_numa;
226223ab
TH
3138}
3139
6ba94429
FW
3140/* hash value of the content of @attr */
3141static u32 wqattrs_hash(const struct workqueue_attrs *attrs)
226223ab 3142{
6ba94429 3143 u32 hash = 0;
226223ab 3144
6ba94429
FW
3145 hash = jhash_1word(attrs->nice, hash);
3146 hash = jhash(cpumask_bits(attrs->cpumask),
3147 BITS_TO_LONGS(nr_cpumask_bits) * sizeof(long), hash);
3148 return hash;
226223ab 3149}
226223ab 3150
6ba94429
FW
3151/* content equality test */
3152static bool wqattrs_equal(const struct workqueue_attrs *a,
3153 const struct workqueue_attrs *b)
226223ab 3154{
6ba94429
FW
3155 if (a->nice != b->nice)
3156 return false;
3157 if (!cpumask_equal(a->cpumask, b->cpumask))
3158 return false;
3159 return true;
226223ab
TH
3160}
3161
6ba94429
FW
3162/**
3163 * init_worker_pool - initialize a newly zalloc'd worker_pool
3164 * @pool: worker_pool to initialize
3165 *
402dd89d 3166 * Initialize a newly zalloc'd @pool. It also allocates @pool->attrs.
6ba94429
FW
3167 *
3168 * Return: 0 on success, -errno on failure. Even on failure, all fields
3169 * inside @pool proper are initialized and put_unbound_pool() can be called
3170 * on @pool safely to release it.
3171 */
3172static int init_worker_pool(struct worker_pool *pool)
226223ab 3173{
6ba94429
FW
3174 spin_lock_init(&pool->lock);
3175 pool->id = -1;
3176 pool->cpu = -1;
3177 pool->node = NUMA_NO_NODE;
3178 pool->flags |= POOL_DISASSOCIATED;
82607adc 3179 pool->watchdog_ts = jiffies;
6ba94429
FW
3180 INIT_LIST_HEAD(&pool->worklist);
3181 INIT_LIST_HEAD(&pool->idle_list);
3182 hash_init(pool->busy_hash);
226223ab 3183
6ba94429
FW
3184 init_timer_deferrable(&pool->idle_timer);
3185 pool->idle_timer.function = idle_worker_timeout;
3186 pool->idle_timer.data = (unsigned long)pool;
226223ab 3187
6ba94429
FW
3188 setup_timer(&pool->mayday_timer, pool_mayday_timeout,
3189 (unsigned long)pool);
226223ab 3190
6ba94429
FW
3191 mutex_init(&pool->manager_arb);
3192 mutex_init(&pool->attach_mutex);
3193 INIT_LIST_HEAD(&pool->workers);
226223ab 3194
6ba94429
FW
3195 ida_init(&pool->worker_ida);
3196 INIT_HLIST_NODE(&pool->hash_node);
3197 pool->refcnt = 1;
226223ab 3198
6ba94429
FW
3199 /* shouldn't fail above this point */
3200 pool->attrs = alloc_workqueue_attrs(GFP_KERNEL);
3201 if (!pool->attrs)
3202 return -ENOMEM;
3203 return 0;
226223ab
TH
3204}
3205
6ba94429 3206static void rcu_free_wq(struct rcu_head *rcu)
226223ab 3207{
6ba94429
FW
3208 struct workqueue_struct *wq =
3209 container_of(rcu, struct workqueue_struct, rcu);
226223ab 3210
6ba94429
FW
3211 if (!(wq->flags & WQ_UNBOUND))
3212 free_percpu(wq->cpu_pwqs);
226223ab 3213 else
6ba94429 3214 free_workqueue_attrs(wq->unbound_attrs);
226223ab 3215
6ba94429
FW
3216 kfree(wq->rescuer);
3217 kfree(wq);
226223ab
TH
3218}
3219
6ba94429 3220static void rcu_free_pool(struct rcu_head *rcu)
226223ab 3221{
6ba94429 3222 struct worker_pool *pool = container_of(rcu, struct worker_pool, rcu);
226223ab 3223
6ba94429
FW
3224 ida_destroy(&pool->worker_ida);
3225 free_workqueue_attrs(pool->attrs);
3226 kfree(pool);
226223ab
TH
3227}
3228
6ba94429
FW
3229/**
3230 * put_unbound_pool - put a worker_pool
3231 * @pool: worker_pool to put
3232 *
3233 * Put @pool. If its refcnt reaches zero, it gets destroyed in sched-RCU
3234 * safe manner. get_unbound_pool() calls this function on its failure path
3235 * and this function should be able to release pools which went through,
3236 * successfully or not, init_worker_pool().
3237 *
3238 * Should be called with wq_pool_mutex held.
3239 */
3240static void put_unbound_pool(struct worker_pool *pool)
226223ab 3241{
6ba94429
FW
3242 DECLARE_COMPLETION_ONSTACK(detach_completion);
3243 struct worker *worker;
226223ab 3244
6ba94429 3245 lockdep_assert_held(&wq_pool_mutex);
226223ab 3246
6ba94429
FW
3247 if (--pool->refcnt)
3248 return;
226223ab 3249
6ba94429
FW
3250 /* sanity checks */
3251 if (WARN_ON(!(pool->cpu < 0)) ||
3252 WARN_ON(!list_empty(&pool->worklist)))
3253 return;
226223ab 3254
6ba94429
FW
3255 /* release id and unhash */
3256 if (pool->id >= 0)
3257 idr_remove(&worker_pool_idr, pool->id);
3258 hash_del(&pool->hash_node);
d55262c4 3259
6ba94429
FW
3260 /*
3261 * Become the manager and destroy all workers. Grabbing
3262 * manager_arb prevents @pool's workers from blocking on
3263 * attach_mutex.
3264 */
3265 mutex_lock(&pool->manager_arb);
d55262c4 3266
6ba94429
FW
3267 spin_lock_irq(&pool->lock);
3268 while ((worker = first_idle_worker(pool)))
3269 destroy_worker(worker);
3270 WARN_ON(pool->nr_workers || pool->nr_idle);
3271 spin_unlock_irq(&pool->lock);
d55262c4 3272
6ba94429
FW
3273 mutex_lock(&pool->attach_mutex);
3274 if (!list_empty(&pool->workers))
3275 pool->detach_completion = &detach_completion;
3276 mutex_unlock(&pool->attach_mutex);
226223ab 3277
6ba94429
FW
3278 if (pool->detach_completion)
3279 wait_for_completion(pool->detach_completion);
226223ab 3280
6ba94429 3281 mutex_unlock(&pool->manager_arb);
226223ab 3282
6ba94429
FW
3283 /* shut down the timers */
3284 del_timer_sync(&pool->idle_timer);
3285 del_timer_sync(&pool->mayday_timer);
226223ab 3286
6ba94429
FW
3287 /* sched-RCU protected to allow dereferences from get_work_pool() */
3288 call_rcu_sched(&pool->rcu, rcu_free_pool);
226223ab
TH
3289}
3290
3291/**
6ba94429
FW
3292 * get_unbound_pool - get a worker_pool with the specified attributes
3293 * @attrs: the attributes of the worker_pool to get
226223ab 3294 *
6ba94429
FW
3295 * Obtain a worker_pool which has the same attributes as @attrs, bump the
3296 * reference count and return it. If there already is a matching
3297 * worker_pool, it will be used; otherwise, this function attempts to
3298 * create a new one.
226223ab 3299 *
6ba94429 3300 * Should be called with wq_pool_mutex held.
226223ab 3301 *
6ba94429
FW
3302 * Return: On success, a worker_pool with the same attributes as @attrs.
3303 * On failure, %NULL.
226223ab 3304 */
6ba94429 3305static struct worker_pool *get_unbound_pool(const struct workqueue_attrs *attrs)
226223ab 3306{
6ba94429
FW
3307 u32 hash = wqattrs_hash(attrs);
3308 struct worker_pool *pool;
3309 int node;
e2273584 3310 int target_node = NUMA_NO_NODE;
226223ab 3311
6ba94429 3312 lockdep_assert_held(&wq_pool_mutex);
226223ab 3313
6ba94429
FW
3314 /* do we already have a matching pool? */
3315 hash_for_each_possible(unbound_pool_hash, pool, hash_node, hash) {
3316 if (wqattrs_equal(pool->attrs, attrs)) {
3317 pool->refcnt++;
3318 return pool;
3319 }
3320 }
226223ab 3321
e2273584
XP
3322 /* if cpumask is contained inside a NUMA node, we belong to that node */
3323 if (wq_numa_enabled) {
3324 for_each_node(node) {
3325 if (cpumask_subset(attrs->cpumask,
3326 wq_numa_possible_cpumask[node])) {
3327 target_node = node;
3328 break;
3329 }
3330 }
3331 }
3332
6ba94429 3333 /* nope, create a new one */
e2273584 3334 pool = kzalloc_node(sizeof(*pool), GFP_KERNEL, target_node);
6ba94429
FW
3335 if (!pool || init_worker_pool(pool) < 0)
3336 goto fail;
3337
3338 lockdep_set_subclass(&pool->lock, 1); /* see put_pwq() */
3339 copy_workqueue_attrs(pool->attrs, attrs);
e2273584 3340 pool->node = target_node;
226223ab
TH
3341
3342 /*
6ba94429
FW
3343 * no_numa isn't a worker_pool attribute, always clear it. See
3344 * 'struct workqueue_attrs' comments for detail.
226223ab 3345 */
6ba94429 3346 pool->attrs->no_numa = false;
226223ab 3347
6ba94429
FW
3348 if (worker_pool_assign_id(pool) < 0)
3349 goto fail;
226223ab 3350
6ba94429
FW
3351 /* create and start the initial worker */
3352 if (!create_worker(pool))
3353 goto fail;
226223ab 3354
6ba94429
FW
3355 /* install */
3356 hash_add(unbound_pool_hash, &pool->hash_node, hash);
226223ab 3357
6ba94429
FW
3358 return pool;
3359fail:
3360 if (pool)
3361 put_unbound_pool(pool);
3362 return NULL;
226223ab 3363}
226223ab 3364
6ba94429 3365static void rcu_free_pwq(struct rcu_head *rcu)
7a4e344c 3366{
6ba94429
FW
3367 kmem_cache_free(pwq_cache,
3368 container_of(rcu, struct pool_workqueue, rcu));
7a4e344c
TH
3369}
3370
6ba94429
FW
3371/*
3372 * Scheduled on system_wq by put_pwq() when an unbound pwq hits zero refcnt
3373 * and needs to be destroyed.
7a4e344c 3374 */
6ba94429 3375static void pwq_unbound_release_workfn(struct work_struct *work)
7a4e344c 3376{
6ba94429
FW
3377 struct pool_workqueue *pwq = container_of(work, struct pool_workqueue,
3378 unbound_release_work);
3379 struct workqueue_struct *wq = pwq->wq;
3380 struct worker_pool *pool = pwq->pool;
3381 bool is_last;
7a4e344c 3382
6ba94429
FW
3383 if (WARN_ON_ONCE(!(wq->flags & WQ_UNBOUND)))
3384 return;
7a4e344c 3385
6ba94429
FW
3386 mutex_lock(&wq->mutex);
3387 list_del_rcu(&pwq->pwqs_node);
3388 is_last = list_empty(&wq->pwqs);
3389 mutex_unlock(&wq->mutex);
3390
3391 mutex_lock(&wq_pool_mutex);
3392 put_unbound_pool(pool);
3393 mutex_unlock(&wq_pool_mutex);
3394
3395 call_rcu_sched(&pwq->rcu, rcu_free_pwq);
7a4e344c 3396
2865a8fb 3397 /*
6ba94429
FW
3398 * If we're the last pwq going away, @wq is already dead and no one
3399 * is gonna access it anymore. Schedule RCU free.
2865a8fb 3400 */
6ba94429
FW
3401 if (is_last)
3402 call_rcu_sched(&wq->rcu, rcu_free_wq);
29c91e99
TH
3403}
3404
7a4e344c 3405/**
6ba94429
FW
3406 * pwq_adjust_max_active - update a pwq's max_active to the current setting
3407 * @pwq: target pool_workqueue
d185af30 3408 *
6ba94429
FW
3409 * If @pwq isn't freezing, set @pwq->max_active to the associated
3410 * workqueue's saved_max_active and activate delayed work items
3411 * accordingly. If @pwq is freezing, clear @pwq->max_active to zero.
7a4e344c 3412 */
6ba94429 3413static void pwq_adjust_max_active(struct pool_workqueue *pwq)
4e1a1f9a 3414{
6ba94429
FW
3415 struct workqueue_struct *wq = pwq->wq;
3416 bool freezable = wq->flags & WQ_FREEZABLE;
4e1a1f9a 3417
6ba94429
FW
3418 /* for @wq->saved_max_active */
3419 lockdep_assert_held(&wq->mutex);
4e1a1f9a 3420
6ba94429
FW
3421 /* fast exit for non-freezable wqs */
3422 if (!freezable && pwq->max_active == wq->saved_max_active)
3423 return;
7a4e344c 3424
6ba94429 3425 spin_lock_irq(&pwq->pool->lock);
29c91e99 3426
6ba94429
FW
3427 /*
3428 * During [un]freezing, the caller is responsible for ensuring that
3429 * this function is called at least once after @workqueue_freezing
3430 * is updated and visible.
3431 */
3432 if (!freezable || !workqueue_freezing) {
3433 pwq->max_active = wq->saved_max_active;
4e1a1f9a 3434
6ba94429
FW
3435 while (!list_empty(&pwq->delayed_works) &&
3436 pwq->nr_active < pwq->max_active)
3437 pwq_activate_first_delayed(pwq);
e2dca7ad 3438
6ba94429
FW
3439 /*
3440 * Need to kick a worker after thawed or an unbound wq's
3441 * max_active is bumped. It's a slow path. Do it always.
3442 */
3443 wake_up_worker(pwq->pool);
3444 } else {
3445 pwq->max_active = 0;
3446 }
e2dca7ad 3447
6ba94429 3448 spin_unlock_irq(&pwq->pool->lock);
e2dca7ad
TH
3449}
3450
6ba94429
FW
3451/* initialize newly alloced @pwq which is associated with @wq and @pool */
3452static void init_pwq(struct pool_workqueue *pwq, struct workqueue_struct *wq,
3453 struct worker_pool *pool)
29c91e99 3454{
6ba94429 3455 BUG_ON((unsigned long)pwq & WORK_STRUCT_FLAG_MASK);
29c91e99 3456
6ba94429
FW
3457 memset(pwq, 0, sizeof(*pwq));
3458
3459 pwq->pool = pool;
3460 pwq->wq = wq;
3461 pwq->flush_color = -1;
3462 pwq->refcnt = 1;
3463 INIT_LIST_HEAD(&pwq->delayed_works);
3464 INIT_LIST_HEAD(&pwq->pwqs_node);
3465 INIT_LIST_HEAD(&pwq->mayday_node);
3466 INIT_WORK(&pwq->unbound_release_work, pwq_unbound_release_workfn);
29c91e99
TH
3467}
3468
6ba94429
FW
3469/* sync @pwq with the current state of its associated wq and link it */
3470static void link_pwq(struct pool_workqueue *pwq)
29c91e99 3471{
6ba94429 3472 struct workqueue_struct *wq = pwq->wq;
29c91e99 3473
6ba94429 3474 lockdep_assert_held(&wq->mutex);
a892cacc 3475
6ba94429
FW
3476 /* may be called multiple times, ignore if already linked */
3477 if (!list_empty(&pwq->pwqs_node))
29c91e99 3478 return;
29c91e99 3479
6ba94429
FW
3480 /* set the matching work_color */
3481 pwq->work_color = wq->work_color;
29c91e99 3482
6ba94429
FW
3483 /* sync max_active to the current setting */
3484 pwq_adjust_max_active(pwq);
29c91e99 3485
6ba94429
FW
3486 /* link in @pwq */
3487 list_add_rcu(&pwq->pwqs_node, &wq->pwqs);
3488}
29c91e99 3489
6ba94429
FW
3490/* obtain a pool matching @attr and create a pwq associating the pool and @wq */
3491static struct pool_workqueue *alloc_unbound_pwq(struct workqueue_struct *wq,
3492 const struct workqueue_attrs *attrs)
3493{
3494 struct worker_pool *pool;
3495 struct pool_workqueue *pwq;
60f5a4bc 3496
6ba94429 3497 lockdep_assert_held(&wq_pool_mutex);
60f5a4bc 3498
6ba94429
FW
3499 pool = get_unbound_pool(attrs);
3500 if (!pool)
3501 return NULL;
60f5a4bc 3502
6ba94429
FW
3503 pwq = kmem_cache_alloc_node(pwq_cache, GFP_KERNEL, pool->node);
3504 if (!pwq) {
3505 put_unbound_pool(pool);
3506 return NULL;
3507 }
29c91e99 3508
6ba94429
FW
3509 init_pwq(pwq, wq, pool);
3510 return pwq;
3511}
29c91e99 3512
29c91e99 3513/**
30186c6f 3514 * wq_calc_node_cpumask - calculate a wq_attrs' cpumask for the specified node
042f7df1 3515 * @attrs: the wq_attrs of the default pwq of the target workqueue
6ba94429
FW
3516 * @node: the target NUMA node
3517 * @cpu_going_down: if >= 0, the CPU to consider as offline
3518 * @cpumask: outarg, the resulting cpumask
29c91e99 3519 *
6ba94429
FW
3520 * Calculate the cpumask a workqueue with @attrs should use on @node. If
3521 * @cpu_going_down is >= 0, that cpu is considered offline during
3522 * calculation. The result is stored in @cpumask.
a892cacc 3523 *
6ba94429
FW
3524 * If NUMA affinity is not enabled, @attrs->cpumask is always used. If
3525 * enabled and @node has online CPUs requested by @attrs, the returned
3526 * cpumask is the intersection of the possible CPUs of @node and
3527 * @attrs->cpumask.
d185af30 3528 *
6ba94429
FW
3529 * The caller is responsible for ensuring that the cpumask of @node stays
3530 * stable.
3531 *
3532 * Return: %true if the resulting @cpumask is different from @attrs->cpumask,
3533 * %false if equal.
29c91e99 3534 */
6ba94429
FW
3535static bool wq_calc_node_cpumask(const struct workqueue_attrs *attrs, int node,
3536 int cpu_going_down, cpumask_t *cpumask)
29c91e99 3537{
6ba94429
FW
3538 if (!wq_numa_enabled || attrs->no_numa)
3539 goto use_dfl;
29c91e99 3540
6ba94429
FW
3541 /* does @node have any online CPUs @attrs wants? */
3542 cpumask_and(cpumask, cpumask_of_node(node), attrs->cpumask);
3543 if (cpu_going_down >= 0)
3544 cpumask_clear_cpu(cpu_going_down, cpumask);
29c91e99 3545
6ba94429
FW
3546 if (cpumask_empty(cpumask))
3547 goto use_dfl;
4c16bd32
TH
3548
3549 /* yeap, return possible CPUs in @node that @attrs wants */
3550 cpumask_and(cpumask, attrs->cpumask, wq_numa_possible_cpumask[node]);
3551 return !cpumask_equal(cpumask, attrs->cpumask);
3552
3553use_dfl:
3554 cpumask_copy(cpumask, attrs->cpumask);
3555 return false;
3556}
3557
1befcf30
TH
3558/* install @pwq into @wq's numa_pwq_tbl[] for @node and return the old pwq */
3559static struct pool_workqueue *numa_pwq_tbl_install(struct workqueue_struct *wq,
3560 int node,
3561 struct pool_workqueue *pwq)
3562{
3563 struct pool_workqueue *old_pwq;
3564
5b95e1af 3565 lockdep_assert_held(&wq_pool_mutex);
1befcf30
TH
3566 lockdep_assert_held(&wq->mutex);
3567
3568 /* link_pwq() can handle duplicate calls */
3569 link_pwq(pwq);
3570
3571 old_pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
3572 rcu_assign_pointer(wq->numa_pwq_tbl[node], pwq);
3573 return old_pwq;
3574}
3575
2d5f0764
LJ
3576/* context to store the prepared attrs & pwqs before applying */
3577struct apply_wqattrs_ctx {
3578 struct workqueue_struct *wq; /* target workqueue */
3579 struct workqueue_attrs *attrs; /* attrs to apply */
042f7df1 3580 struct list_head list; /* queued for batching commit */
2d5f0764
LJ
3581 struct pool_workqueue *dfl_pwq;
3582 struct pool_workqueue *pwq_tbl[];
3583};
3584
3585/* free the resources after success or abort */
3586static void apply_wqattrs_cleanup(struct apply_wqattrs_ctx *ctx)
3587{
3588 if (ctx) {
3589 int node;
3590
3591 for_each_node(node)
3592 put_pwq_unlocked(ctx->pwq_tbl[node]);
3593 put_pwq_unlocked(ctx->dfl_pwq);
3594
3595 free_workqueue_attrs(ctx->attrs);
3596
3597 kfree(ctx);
3598 }
3599}
3600
3601/* allocate the attrs and pwqs for later installation */
3602static struct apply_wqattrs_ctx *
3603apply_wqattrs_prepare(struct workqueue_struct *wq,
3604 const struct workqueue_attrs *attrs)
9e8cd2f5 3605{
2d5f0764 3606 struct apply_wqattrs_ctx *ctx;
4c16bd32 3607 struct workqueue_attrs *new_attrs, *tmp_attrs;
2d5f0764 3608 int node;
9e8cd2f5 3609
2d5f0764 3610 lockdep_assert_held(&wq_pool_mutex);
9e8cd2f5 3611
2d5f0764
LJ
3612 ctx = kzalloc(sizeof(*ctx) + nr_node_ids * sizeof(ctx->pwq_tbl[0]),
3613 GFP_KERNEL);
8719dcea 3614
13e2e556 3615 new_attrs = alloc_workqueue_attrs(GFP_KERNEL);
4c16bd32 3616 tmp_attrs = alloc_workqueue_attrs(GFP_KERNEL);
2d5f0764
LJ
3617 if (!ctx || !new_attrs || !tmp_attrs)
3618 goto out_free;
13e2e556 3619
042f7df1
LJ
3620 /*
3621 * Calculate the attrs of the default pwq.
3622 * If the user configured cpumask doesn't overlap with the
3623 * wq_unbound_cpumask, we fallback to the wq_unbound_cpumask.
3624 */
13e2e556 3625 copy_workqueue_attrs(new_attrs, attrs);
b05a7928 3626 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, wq_unbound_cpumask);
042f7df1
LJ
3627 if (unlikely(cpumask_empty(new_attrs->cpumask)))
3628 cpumask_copy(new_attrs->cpumask, wq_unbound_cpumask);
13e2e556 3629
4c16bd32
TH
3630 /*
3631 * We may create multiple pwqs with differing cpumasks. Make a
3632 * copy of @new_attrs which will be modified and used to obtain
3633 * pools.
3634 */
3635 copy_workqueue_attrs(tmp_attrs, new_attrs);
3636
4c16bd32
TH
3637 /*
3638 * If something goes wrong during CPU up/down, we'll fall back to
3639 * the default pwq covering whole @attrs->cpumask. Always create
3640 * it even if we don't use it immediately.
3641 */
2d5f0764
LJ
3642 ctx->dfl_pwq = alloc_unbound_pwq(wq, new_attrs);
3643 if (!ctx->dfl_pwq)
3644 goto out_free;
4c16bd32
TH
3645
3646 for_each_node(node) {
042f7df1 3647 if (wq_calc_node_cpumask(new_attrs, node, -1, tmp_attrs->cpumask)) {
2d5f0764
LJ
3648 ctx->pwq_tbl[node] = alloc_unbound_pwq(wq, tmp_attrs);
3649 if (!ctx->pwq_tbl[node])
3650 goto out_free;
4c16bd32 3651 } else {
2d5f0764
LJ
3652 ctx->dfl_pwq->refcnt++;
3653 ctx->pwq_tbl[node] = ctx->dfl_pwq;
4c16bd32
TH
3654 }
3655 }
3656
042f7df1
LJ
3657 /* save the user configured attrs and sanitize it. */
3658 copy_workqueue_attrs(new_attrs, attrs);
3659 cpumask_and(new_attrs->cpumask, new_attrs->cpumask, cpu_possible_mask);
2d5f0764 3660 ctx->attrs = new_attrs;
042f7df1 3661
2d5f0764
LJ
3662 ctx->wq = wq;
3663 free_workqueue_attrs(tmp_attrs);
3664 return ctx;
3665
3666out_free:
3667 free_workqueue_attrs(tmp_attrs);
3668 free_workqueue_attrs(new_attrs);
3669 apply_wqattrs_cleanup(ctx);
3670 return NULL;
3671}
3672
3673/* set attrs and install prepared pwqs, @ctx points to old pwqs on return */
3674static void apply_wqattrs_commit(struct apply_wqattrs_ctx *ctx)
3675{
3676 int node;
9e8cd2f5 3677
4c16bd32 3678 /* all pwqs have been created successfully, let's install'em */
2d5f0764 3679 mutex_lock(&ctx->wq->mutex);
a892cacc 3680
2d5f0764 3681 copy_workqueue_attrs(ctx->wq->unbound_attrs, ctx->attrs);
4c16bd32
TH
3682
3683 /* save the previous pwq and install the new one */
f147f29e 3684 for_each_node(node)
2d5f0764
LJ
3685 ctx->pwq_tbl[node] = numa_pwq_tbl_install(ctx->wq, node,
3686 ctx->pwq_tbl[node]);
4c16bd32
TH
3687
3688 /* @dfl_pwq might not have been used, ensure it's linked */
2d5f0764
LJ
3689 link_pwq(ctx->dfl_pwq);
3690 swap(ctx->wq->dfl_pwq, ctx->dfl_pwq);
f147f29e 3691
2d5f0764
LJ
3692 mutex_unlock(&ctx->wq->mutex);
3693}
9e8cd2f5 3694
a0111cf6
LJ
3695static void apply_wqattrs_lock(void)
3696{
3697 /* CPUs should stay stable across pwq creations and installations */
3698 get_online_cpus();
3699 mutex_lock(&wq_pool_mutex);
3700}
3701
3702static void apply_wqattrs_unlock(void)
3703{
3704 mutex_unlock(&wq_pool_mutex);
3705 put_online_cpus();
3706}
3707
3708static int apply_workqueue_attrs_locked(struct workqueue_struct *wq,
3709 const struct workqueue_attrs *attrs)
2d5f0764
LJ
3710{
3711 struct apply_wqattrs_ctx *ctx;
4c16bd32 3712
2d5f0764
LJ
3713 /* only unbound workqueues can change attributes */
3714 if (WARN_ON(!(wq->flags & WQ_UNBOUND)))
3715 return -EINVAL;
13e2e556 3716
2d5f0764
LJ
3717 /* creating multiple pwqs breaks ordering guarantee */
3718 if (WARN_ON((wq->flags & __WQ_ORDERED) && !list_empty(&wq->pwqs)))
3719 return -EINVAL;
3720
2d5f0764 3721 ctx = apply_wqattrs_prepare(wq, attrs);
6201171e 3722 if (!ctx)
3723 return -ENOMEM;
2d5f0764
LJ
3724
3725 /* the ctx has been prepared successfully, let's commit it */
6201171e 3726 apply_wqattrs_commit(ctx);
2d5f0764
LJ
3727 apply_wqattrs_cleanup(ctx);
3728
6201171e 3729 return 0;
9e8cd2f5
TH
3730}
3731
a0111cf6
LJ
3732/**
3733 * apply_workqueue_attrs - apply new workqueue_attrs to an unbound workqueue
3734 * @wq: the target workqueue
3735 * @attrs: the workqueue_attrs to apply, allocated with alloc_workqueue_attrs()
3736 *
3737 * Apply @attrs to an unbound workqueue @wq. Unless disabled, on NUMA
3738 * machines, this function maps a separate pwq to each NUMA node with
3739 * possibles CPUs in @attrs->cpumask so that work items are affine to the
3740 * NUMA node it was issued on. Older pwqs are released as in-flight work
3741 * items finish. Note that a work item which repeatedly requeues itself
3742 * back-to-back will stay on its current pwq.
3743 *
3744 * Performs GFP_KERNEL allocations.
3745 *
3746 * Return: 0 on success and -errno on failure.
3747 */
3748int apply_workqueue_attrs(struct workqueue_struct *wq,
3749 const struct workqueue_attrs *attrs)
3750{
3751 int ret;
3752
3753 apply_wqattrs_lock();
3754 ret = apply_workqueue_attrs_locked(wq, attrs);
3755 apply_wqattrs_unlock();
3756
3757 return ret;
3758}
3759
4c16bd32
TH
3760/**
3761 * wq_update_unbound_numa - update NUMA affinity of a wq for CPU hot[un]plug
3762 * @wq: the target workqueue
3763 * @cpu: the CPU coming up or going down
3764 * @online: whether @cpu is coming up or going down
3765 *
3766 * This function is to be called from %CPU_DOWN_PREPARE, %CPU_ONLINE and
3767 * %CPU_DOWN_FAILED. @cpu is being hot[un]plugged, update NUMA affinity of
3768 * @wq accordingly.
3769 *
3770 * If NUMA affinity can't be adjusted due to memory allocation failure, it
3771 * falls back to @wq->dfl_pwq which may not be optimal but is always
3772 * correct.
3773 *
3774 * Note that when the last allowed CPU of a NUMA node goes offline for a
3775 * workqueue with a cpumask spanning multiple nodes, the workers which were
3776 * already executing the work items for the workqueue will lose their CPU
3777 * affinity and may execute on any CPU. This is similar to how per-cpu
3778 * workqueues behave on CPU_DOWN. If a workqueue user wants strict
3779 * affinity, it's the user's responsibility to flush the work item from
3780 * CPU_DOWN_PREPARE.
3781 */
3782static void wq_update_unbound_numa(struct workqueue_struct *wq, int cpu,
3783 bool online)
3784{
3785 int node = cpu_to_node(cpu);
3786 int cpu_off = online ? -1 : cpu;
3787 struct pool_workqueue *old_pwq = NULL, *pwq;
3788 struct workqueue_attrs *target_attrs;
3789 cpumask_t *cpumask;
3790
3791 lockdep_assert_held(&wq_pool_mutex);
3792
f7142ed4
LJ
3793 if (!wq_numa_enabled || !(wq->flags & WQ_UNBOUND) ||
3794 wq->unbound_attrs->no_numa)
4c16bd32
TH
3795 return;
3796
3797 /*
3798 * We don't wanna alloc/free wq_attrs for each wq for each CPU.
3799 * Let's use a preallocated one. The following buf is protected by
3800 * CPU hotplug exclusion.
3801 */
3802 target_attrs = wq_update_unbound_numa_attrs_buf;
3803 cpumask = target_attrs->cpumask;
3804
4c16bd32
TH
3805 copy_workqueue_attrs(target_attrs, wq->unbound_attrs);
3806 pwq = unbound_pwq_by_node(wq, node);
3807
3808 /*
3809 * Let's determine what needs to be done. If the target cpumask is
042f7df1
LJ
3810 * different from the default pwq's, we need to compare it to @pwq's
3811 * and create a new one if they don't match. If the target cpumask
3812 * equals the default pwq's, the default pwq should be used.
4c16bd32 3813 */
042f7df1 3814 if (wq_calc_node_cpumask(wq->dfl_pwq->pool->attrs, node, cpu_off, cpumask)) {
4c16bd32 3815 if (cpumask_equal(cpumask, pwq->pool->attrs->cpumask))
f7142ed4 3816 return;
4c16bd32 3817 } else {
534a3fbb 3818 goto use_dfl_pwq;
4c16bd32
TH
3819 }
3820
4c16bd32
TH
3821 /* create a new pwq */
3822 pwq = alloc_unbound_pwq(wq, target_attrs);
3823 if (!pwq) {
2d916033
FF
3824 pr_warn("workqueue: allocation failed while updating NUMA affinity of \"%s\"\n",
3825 wq->name);
77f300b1 3826 goto use_dfl_pwq;
4c16bd32
TH
3827 }
3828
f7142ed4 3829 /* Install the new pwq. */
4c16bd32
TH
3830 mutex_lock(&wq->mutex);
3831 old_pwq = numa_pwq_tbl_install(wq, node, pwq);
3832 goto out_unlock;
3833
3834use_dfl_pwq:
f7142ed4 3835 mutex_lock(&wq->mutex);
4c16bd32
TH
3836 spin_lock_irq(&wq->dfl_pwq->pool->lock);
3837 get_pwq(wq->dfl_pwq);
3838 spin_unlock_irq(&wq->dfl_pwq->pool->lock);
3839 old_pwq = numa_pwq_tbl_install(wq, node, wq->dfl_pwq);
3840out_unlock:
3841 mutex_unlock(&wq->mutex);
3842 put_pwq_unlocked(old_pwq);
3843}
3844
30cdf249 3845static int alloc_and_link_pwqs(struct workqueue_struct *wq)
0f900049 3846{
49e3cf44 3847 bool highpri = wq->flags & WQ_HIGHPRI;
8a2b7538 3848 int cpu, ret;
30cdf249
TH
3849
3850 if (!(wq->flags & WQ_UNBOUND)) {
420c0ddb
TH
3851 wq->cpu_pwqs = alloc_percpu(struct pool_workqueue);
3852 if (!wq->cpu_pwqs)
30cdf249
TH
3853 return -ENOMEM;
3854
3855 for_each_possible_cpu(cpu) {
7fb98ea7
TH
3856 struct pool_workqueue *pwq =
3857 per_cpu_ptr(wq->cpu_pwqs, cpu);
7a62c2c8 3858 struct worker_pool *cpu_pools =
f02ae73a 3859 per_cpu(cpu_worker_pools, cpu);
f3421797 3860
f147f29e
TH
3861 init_pwq(pwq, wq, &cpu_pools[highpri]);
3862
3863 mutex_lock(&wq->mutex);
1befcf30 3864 link_pwq(pwq);
f147f29e 3865 mutex_unlock(&wq->mutex);
30cdf249 3866 }
9e8cd2f5 3867 return 0;
8a2b7538
TH
3868 } else if (wq->flags & __WQ_ORDERED) {
3869 ret = apply_workqueue_attrs(wq, ordered_wq_attrs[highpri]);
3870 /* there should only be single pwq for ordering guarantee */
3871 WARN(!ret && (wq->pwqs.next != &wq->dfl_pwq->pwqs_node ||
3872 wq->pwqs.prev != &wq->dfl_pwq->pwqs_node),
3873 "ordering guarantee broken for workqueue %s\n", wq->name);
3874 return ret;
30cdf249 3875 } else {
9e8cd2f5 3876 return apply_workqueue_attrs(wq, unbound_std_wq_attrs[highpri]);
30cdf249 3877 }
0f900049
TH
3878}
3879
f3421797
TH
3880static int wq_clamp_max_active(int max_active, unsigned int flags,
3881 const char *name)
b71ab8c2 3882{
f3421797
TH
3883 int lim = flags & WQ_UNBOUND ? WQ_UNBOUND_MAX_ACTIVE : WQ_MAX_ACTIVE;
3884
3885 if (max_active < 1 || max_active > lim)
044c782c
VI
3886 pr_warn("workqueue: max_active %d requested for %s is out of range, clamping between %d and %d\n",
3887 max_active, name, 1, lim);
b71ab8c2 3888
f3421797 3889 return clamp_val(max_active, 1, lim);
b71ab8c2
TH
3890}
3891
b196be89 3892struct workqueue_struct *__alloc_workqueue_key(const char *fmt,
d320c038
TH
3893 unsigned int flags,
3894 int max_active,
3895 struct lock_class_key *key,
b196be89 3896 const char *lock_name, ...)
1da177e4 3897{
df2d5ae4 3898 size_t tbl_size = 0;
ecf6881f 3899 va_list args;
1da177e4 3900 struct workqueue_struct *wq;
49e3cf44 3901 struct pool_workqueue *pwq;
b196be89 3902
cee22a15
VK
3903 /* see the comment above the definition of WQ_POWER_EFFICIENT */
3904 if ((flags & WQ_POWER_EFFICIENT) && wq_power_efficient)
3905 flags |= WQ_UNBOUND;
3906
ecf6881f 3907 /* allocate wq and format name */
df2d5ae4 3908 if (flags & WQ_UNBOUND)
ddcb57e2 3909 tbl_size = nr_node_ids * sizeof(wq->numa_pwq_tbl[0]);
df2d5ae4
TH
3910
3911 wq = kzalloc(sizeof(*wq) + tbl_size, GFP_KERNEL);
b196be89 3912 if (!wq)
d2c1d404 3913 return NULL;
b196be89 3914
6029a918
TH
3915 if (flags & WQ_UNBOUND) {
3916 wq->unbound_attrs = alloc_workqueue_attrs(GFP_KERNEL);
3917 if (!wq->unbound_attrs)
3918 goto err_free_wq;
3919 }
3920
ecf6881f
TH
3921 va_start(args, lock_name);
3922 vsnprintf(wq->name, sizeof(wq->name), fmt, args);
b196be89 3923 va_end(args);
1da177e4 3924
d320c038 3925 max_active = max_active ?: WQ_DFL_ACTIVE;
b196be89 3926 max_active = wq_clamp_max_active(max_active, flags, wq->name);
3af24433 3927
b196be89 3928 /* init wq */
97e37d7b 3929 wq->flags = flags;
a0a1a5fd 3930 wq->saved_max_active = max_active;
3c25a55d 3931 mutex_init(&wq->mutex);
112202d9 3932 atomic_set(&wq->nr_pwqs_to_flush, 0);
30cdf249 3933 INIT_LIST_HEAD(&wq->pwqs);
73f53c4a
TH
3934 INIT_LIST_HEAD(&wq->flusher_queue);
3935 INIT_LIST_HEAD(&wq->flusher_overflow);
493a1724 3936 INIT_LIST_HEAD(&wq->maydays);
502ca9d8 3937
eb13ba87 3938 lockdep_init_map(&wq->lockdep_map, lock_name, key, 0);
cce1a165 3939 INIT_LIST_HEAD(&wq->list);
3af24433 3940
30cdf249 3941 if (alloc_and_link_pwqs(wq) < 0)
d2c1d404 3942 goto err_free_wq;
1537663f 3943
493008a8
TH
3944 /*
3945 * Workqueues which may be used during memory reclaim should
3946 * have a rescuer to guarantee forward progress.
3947 */
3948 if (flags & WQ_MEM_RECLAIM) {
e22bee78
TH
3949 struct worker *rescuer;
3950
f7537df5 3951 rescuer = alloc_worker(NUMA_NO_NODE);
e22bee78 3952 if (!rescuer)
d2c1d404 3953 goto err_destroy;
e22bee78 3954
111c225a
TH
3955 rescuer->rescue_wq = wq;
3956 rescuer->task = kthread_create(rescuer_thread, rescuer, "%s",
b196be89 3957 wq->name);
d2c1d404
TH
3958 if (IS_ERR(rescuer->task)) {
3959 kfree(rescuer);
3960 goto err_destroy;
3961 }
e22bee78 3962
d2c1d404 3963 wq->rescuer = rescuer;
25834c73 3964 kthread_bind_mask(rescuer->task, cpu_possible_mask);
e22bee78 3965 wake_up_process(rescuer->task);
3af24433
ON
3966 }
3967
226223ab
TH
3968 if ((wq->flags & WQ_SYSFS) && workqueue_sysfs_register(wq))
3969 goto err_destroy;
3970
a0a1a5fd 3971 /*
68e13a67
LJ
3972 * wq_pool_mutex protects global freeze state and workqueues list.
3973 * Grab it, adjust max_active and add the new @wq to workqueues
3974 * list.
a0a1a5fd 3975 */
68e13a67 3976 mutex_lock(&wq_pool_mutex);
a0a1a5fd 3977
a357fc03 3978 mutex_lock(&wq->mutex);
699ce097
TH
3979 for_each_pwq(pwq, wq)
3980 pwq_adjust_max_active(pwq);
a357fc03 3981 mutex_unlock(&wq->mutex);
a0a1a5fd 3982
e2dca7ad 3983 list_add_tail_rcu(&wq->list, &workqueues);
a0a1a5fd 3984
68e13a67 3985 mutex_unlock(&wq_pool_mutex);
1537663f 3986
3af24433 3987 return wq;
d2c1d404
TH
3988
3989err_free_wq:
6029a918 3990 free_workqueue_attrs(wq->unbound_attrs);
d2c1d404
TH
3991 kfree(wq);
3992 return NULL;
3993err_destroy:
3994 destroy_workqueue(wq);
4690c4ab 3995 return NULL;
3af24433 3996}
d320c038 3997EXPORT_SYMBOL_GPL(__alloc_workqueue_key);
1da177e4 3998
3af24433
ON
3999/**
4000 * destroy_workqueue - safely terminate a workqueue
4001 * @wq: target workqueue
4002 *
4003 * Safely destroy a workqueue. All work currently pending will be done first.
4004 */
4005void destroy_workqueue(struct workqueue_struct *wq)
4006{
49e3cf44 4007 struct pool_workqueue *pwq;
4c16bd32 4008 int node;
3af24433 4009
9c5a2ba7
TH
4010 /* drain it before proceeding with destruction */
4011 drain_workqueue(wq);
c8efcc25 4012
6183c009 4013 /* sanity checks */
b09f4fd3 4014 mutex_lock(&wq->mutex);
49e3cf44 4015 for_each_pwq(pwq, wq) {
6183c009
TH
4016 int i;
4017
76af4d93
TH
4018 for (i = 0; i < WORK_NR_COLORS; i++) {
4019 if (WARN_ON(pwq->nr_in_flight[i])) {
b09f4fd3 4020 mutex_unlock(&wq->mutex);
6183c009 4021 return;
76af4d93
TH
4022 }
4023 }
4024
5c529597 4025 if (WARN_ON((pwq != wq->dfl_pwq) && (pwq->refcnt > 1)) ||
8864b4e5 4026 WARN_ON(pwq->nr_active) ||
76af4d93 4027 WARN_ON(!list_empty(&pwq->delayed_works))) {
b09f4fd3 4028 mutex_unlock(&wq->mutex);
6183c009 4029 return;
76af4d93 4030 }
6183c009 4031 }
b09f4fd3 4032 mutex_unlock(&wq->mutex);
6183c009 4033
a0a1a5fd
TH
4034 /*
4035 * wq list is used to freeze wq, remove from list after
4036 * flushing is complete in case freeze races us.
4037 */
68e13a67 4038 mutex_lock(&wq_pool_mutex);
e2dca7ad 4039 list_del_rcu(&wq->list);
68e13a67 4040 mutex_unlock(&wq_pool_mutex);
3af24433 4041
226223ab
TH
4042 workqueue_sysfs_unregister(wq);
4043
e2dca7ad 4044 if (wq->rescuer)
e22bee78 4045 kthread_stop(wq->rescuer->task);
e22bee78 4046
8864b4e5
TH
4047 if (!(wq->flags & WQ_UNBOUND)) {
4048 /*
4049 * The base ref is never dropped on per-cpu pwqs. Directly
e2dca7ad 4050 * schedule RCU free.
8864b4e5 4051 */
e2dca7ad 4052 call_rcu_sched(&wq->rcu, rcu_free_wq);
8864b4e5
TH
4053 } else {
4054 /*
4055 * We're the sole accessor of @wq at this point. Directly
4c16bd32
TH
4056 * access numa_pwq_tbl[] and dfl_pwq to put the base refs.
4057 * @wq will be freed when the last pwq is released.
8864b4e5 4058 */
4c16bd32
TH
4059 for_each_node(node) {
4060 pwq = rcu_access_pointer(wq->numa_pwq_tbl[node]);
4061 RCU_INIT_POINTER(wq->numa_pwq_tbl[node], NULL);
4062 put_pwq_unlocked(pwq);
4063 }
4064
4065 /*
4066 * Put dfl_pwq. @wq may be freed any time after dfl_pwq is
4067 * put. Don't access it afterwards.
4068 */
4069 pwq = wq->dfl_pwq;
4070 wq->dfl_pwq = NULL;
dce90d47 4071 put_pwq_unlocked(pwq);
29c91e99 4072 }
3af24433
ON
4073}
4074EXPORT_SYMBOL_GPL(destroy_workqueue);
4075
dcd989cb
TH
4076/**
4077 * workqueue_set_max_active - adjust max_active of a workqueue
4078 * @wq: target workqueue
4079 * @max_active: new max_active value.
4080 *
4081 * Set max_active of @wq to @max_active.
4082 *
4083 * CONTEXT:
4084 * Don't call from IRQ context.
4085 */
4086void workqueue_set_max_active(struct workqueue_struct *wq, int max_active)
4087{
49e3cf44 4088 struct pool_workqueue *pwq;
dcd989cb 4089
8719dcea
TH
4090 /* disallow meddling with max_active for ordered workqueues */
4091 if (WARN_ON(wq->flags & __WQ_ORDERED))
4092 return;
4093
f3421797 4094 max_active = wq_clamp_max_active(max_active, wq->flags, wq->name);
dcd989cb 4095
a357fc03 4096 mutex_lock(&wq->mutex);
dcd989cb
TH
4097
4098 wq->saved_max_active = max_active;
4099
699ce097
TH
4100 for_each_pwq(pwq, wq)
4101 pwq_adjust_max_active(pwq);
93981800 4102
a357fc03 4103 mutex_unlock(&wq->mutex);
15316ba8 4104}
dcd989cb 4105EXPORT_SYMBOL_GPL(workqueue_set_max_active);
15316ba8 4106
e6267616
TH
4107/**
4108 * current_is_workqueue_rescuer - is %current workqueue rescuer?
4109 *
4110 * Determine whether %current is a workqueue rescuer. Can be used from
4111 * work functions to determine whether it's being run off the rescuer task.
d185af30
YB
4112 *
4113 * Return: %true if %current is a workqueue rescuer. %false otherwise.
e6267616
TH
4114 */
4115bool current_is_workqueue_rescuer(void)
4116{
4117 struct worker *worker = current_wq_worker();
4118
6a092dfd 4119 return worker && worker->rescue_wq;
e6267616
TH
4120}
4121
eef6a7d5 4122/**
dcd989cb
TH
4123 * workqueue_congested - test whether a workqueue is congested
4124 * @cpu: CPU in question
4125 * @wq: target workqueue
eef6a7d5 4126 *
dcd989cb
TH
4127 * Test whether @wq's cpu workqueue for @cpu is congested. There is
4128 * no synchronization around this function and the test result is
4129 * unreliable and only useful as advisory hints or for debugging.
eef6a7d5 4130 *
d3251859
TH
4131 * If @cpu is WORK_CPU_UNBOUND, the test is performed on the local CPU.
4132 * Note that both per-cpu and unbound workqueues may be associated with
4133 * multiple pool_workqueues which have separate congested states. A
4134 * workqueue being congested on one CPU doesn't mean the workqueue is also
4135 * contested on other CPUs / NUMA nodes.
4136 *
d185af30 4137 * Return:
dcd989cb 4138 * %true if congested, %false otherwise.
eef6a7d5 4139 */
d84ff051 4140bool workqueue_congested(int cpu, struct workqueue_struct *wq)
1da177e4 4141{
7fb98ea7 4142 struct pool_workqueue *pwq;
76af4d93
TH
4143 bool ret;
4144
88109453 4145 rcu_read_lock_sched();
7fb98ea7 4146
d3251859
TH
4147 if (cpu == WORK_CPU_UNBOUND)
4148 cpu = smp_processor_id();
4149
7fb98ea7
TH
4150 if (!(wq->flags & WQ_UNBOUND))
4151 pwq = per_cpu_ptr(wq->cpu_pwqs, cpu);
4152 else
df2d5ae4 4153 pwq = unbound_pwq_by_node(wq, cpu_to_node(cpu));
dcd989cb 4154
76af4d93 4155 ret = !list_empty(&pwq->delayed_works);
88109453 4156 rcu_read_unlock_sched();
76af4d93
TH
4157
4158 return ret;
1da177e4 4159}
dcd989cb 4160EXPORT_SYMBOL_GPL(workqueue_congested);
1da177e4 4161
dcd989cb
TH
4162/**
4163 * work_busy - test whether a work is currently pending or running
4164 * @work: the work to be tested
4165 *
4166 * Test whether @work is currently pending or running. There is no
4167 * synchronization around this function and the test result is
4168 * unreliable and only useful as advisory hints or for debugging.
dcd989cb 4169 *
d185af30 4170 * Return:
dcd989cb
TH
4171 * OR'd bitmask of WORK_BUSY_* bits.
4172 */
4173unsigned int work_busy(struct work_struct *work)
1da177e4 4174{
fa1b54e6 4175 struct worker_pool *pool;
dcd989cb
TH
4176 unsigned long flags;
4177 unsigned int ret = 0;
1da177e4 4178
dcd989cb
TH
4179 if (work_pending(work))
4180 ret |= WORK_BUSY_PENDING;
1da177e4 4181
fa1b54e6
TH
4182 local_irq_save(flags);
4183 pool = get_work_pool(work);
038366c5 4184 if (pool) {
fa1b54e6 4185 spin_lock(&pool->lock);
038366c5
LJ
4186 if (find_worker_executing_work(pool, work))
4187 ret |= WORK_BUSY_RUNNING;
fa1b54e6 4188 spin_unlock(&pool->lock);
038366c5 4189 }
fa1b54e6 4190 local_irq_restore(flags);
1da177e4 4191
dcd989cb 4192 return ret;
1da177e4 4193}
dcd989cb 4194EXPORT_SYMBOL_GPL(work_busy);
1da177e4 4195
3d1cb205
TH
4196/**
4197 * set_worker_desc - set description for the current work item
4198 * @fmt: printf-style format string
4199 * @...: arguments for the format string
4200 *
4201 * This function can be called by a running work function to describe what
4202 * the work item is about. If the worker task gets dumped, this
4203 * information will be printed out together to help debugging. The
4204 * description can be at most WORKER_DESC_LEN including the trailing '\0'.
4205 */
4206void set_worker_desc(const char *fmt, ...)
4207{
4208 struct worker *worker = current_wq_worker();
4209 va_list args;
4210
4211 if (worker) {
4212 va_start(args, fmt);
4213 vsnprintf(worker->desc, sizeof(worker->desc), fmt, args);
4214 va_end(args);
4215 worker->desc_valid = true;
4216 }
4217}
4218
4219/**
4220 * print_worker_info - print out worker information and description
4221 * @log_lvl: the log level to use when printing
4222 * @task: target task
4223 *
4224 * If @task is a worker and currently executing a work item, print out the
4225 * name of the workqueue being serviced and worker description set with
4226 * set_worker_desc() by the currently executing work item.
4227 *
4228 * This function can be safely called on any task as long as the
4229 * task_struct itself is accessible. While safe, this function isn't
4230 * synchronized and may print out mixups or garbages of limited length.
4231 */
4232void print_worker_info(const char *log_lvl, struct task_struct *task)
4233{
4234 work_func_t *fn = NULL;
4235 char name[WQ_NAME_LEN] = { };
4236 char desc[WORKER_DESC_LEN] = { };
4237 struct pool_workqueue *pwq = NULL;
4238 struct workqueue_struct *wq = NULL;
4239 bool desc_valid = false;
4240 struct worker *worker;
4241
4242 if (!(task->flags & PF_WQ_WORKER))
4243 return;
4244
4245 /*
4246 * This function is called without any synchronization and @task
4247 * could be in any state. Be careful with dereferences.
4248 */
4249 worker = probe_kthread_data(task);
4250
4251 /*
4252 * Carefully copy the associated workqueue's workfn and name. Keep
4253 * the original last '\0' in case the original contains garbage.
4254 */
4255 probe_kernel_read(&fn, &worker->current_func, sizeof(fn));
4256 probe_kernel_read(&pwq, &worker->current_pwq, sizeof(pwq));
4257 probe_kernel_read(&wq, &pwq->wq, sizeof(wq));
4258 probe_kernel_read(name, wq->name, sizeof(name) - 1);
4259
4260 /* copy worker description */
4261 probe_kernel_read(&desc_valid, &worker->desc_valid, sizeof(desc_valid));
4262 if (desc_valid)
4263 probe_kernel_read(desc, worker->desc, sizeof(desc) - 1);
4264
4265 if (fn || name[0] || desc[0]) {
4266 printk("%sWorkqueue: %s %pf", log_lvl, name, fn);
4267 if (desc[0])
4268 pr_cont(" (%s)", desc);
4269 pr_cont("\n");
4270 }
4271}
4272
3494fc30
TH
4273static void pr_cont_pool_info(struct worker_pool *pool)
4274{
4275 pr_cont(" cpus=%*pbl", nr_cpumask_bits, pool->attrs->cpumask);
4276 if (pool->node != NUMA_NO_NODE)
4277 pr_cont(" node=%d", pool->node);
4278 pr_cont(" flags=0x%x nice=%d", pool->flags, pool->attrs->nice);
4279}
4280
4281static void pr_cont_work(bool comma, struct work_struct *work)
4282{
4283 if (work->func == wq_barrier_func) {
4284 struct wq_barrier *barr;
4285
4286 barr = container_of(work, struct wq_barrier, work);
4287
4288 pr_cont("%s BAR(%d)", comma ? "," : "",
4289 task_pid_nr(barr->task));
4290 } else {
4291 pr_cont("%s %pf", comma ? "," : "", work->func);
4292 }
4293}
4294
4295static void show_pwq(struct pool_workqueue *pwq)
4296{
4297 struct worker_pool *pool = pwq->pool;
4298 struct work_struct *work;
4299 struct worker *worker;
4300 bool has_in_flight = false, has_pending = false;
4301 int bkt;
4302
4303 pr_info(" pwq %d:", pool->id);
4304 pr_cont_pool_info(pool);
4305
4306 pr_cont(" active=%d/%d%s\n", pwq->nr_active, pwq->max_active,
4307 !list_empty(&pwq->mayday_node) ? " MAYDAY" : "");
4308
4309 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4310 if (worker->current_pwq == pwq) {
4311 has_in_flight = true;
4312 break;
4313 }
4314 }
4315 if (has_in_flight) {
4316 bool comma = false;
4317
4318 pr_info(" in-flight:");
4319 hash_for_each(pool->busy_hash, bkt, worker, hentry) {
4320 if (worker->current_pwq != pwq)
4321 continue;
4322
4323 pr_cont("%s %d%s:%pf", comma ? "," : "",
4324 task_pid_nr(worker->task),
4325 worker == pwq->wq->rescuer ? "(RESCUER)" : "",
4326 worker->current_func);
4327 list_for_each_entry(work, &worker->scheduled, entry)
4328 pr_cont_work(false, work);
4329 comma = true;
4330 }
4331 pr_cont("\n");
4332 }
4333
4334 list_for_each_entry(work, &pool->worklist, entry) {
4335 if (get_work_pwq(work) == pwq) {
4336 has_pending = true;
4337 break;
4338 }
4339 }
4340 if (has_pending) {
4341 bool comma = false;
4342
4343 pr_info(" pending:");
4344 list_for_each_entry(work, &pool->worklist, entry) {
4345 if (get_work_pwq(work) != pwq)
4346 continue;
4347
4348 pr_cont_work(comma, work);
4349 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4350 }
4351 pr_cont("\n");
4352 }
4353
4354 if (!list_empty(&pwq->delayed_works)) {
4355 bool comma = false;
4356
4357 pr_info(" delayed:");
4358 list_for_each_entry(work, &pwq->delayed_works, entry) {
4359 pr_cont_work(comma, work);
4360 comma = !(*work_data_bits(work) & WORK_STRUCT_LINKED);
4361 }
4362 pr_cont("\n");
4363 }
4364}
4365
4366/**
4367 * show_workqueue_state - dump workqueue state
4368 *
4369 * Called from a sysrq handler and prints out all busy workqueues and
4370 * pools.
4371 */
4372void show_workqueue_state(void)
4373{
4374 struct workqueue_struct *wq;
4375 struct worker_pool *pool;
4376 unsigned long flags;
4377 int pi;
4378
4379 rcu_read_lock_sched();
4380
4381 pr_info("Showing busy workqueues and worker pools:\n");
4382
4383 list_for_each_entry_rcu(wq, &workqueues, list) {
4384 struct pool_workqueue *pwq;
4385 bool idle = true;
4386
4387 for_each_pwq(pwq, wq) {
4388 if (pwq->nr_active || !list_empty(&pwq->delayed_works)) {
4389 idle = false;
4390 break;
4391 }
4392 }
4393 if (idle)
4394 continue;
4395
4396 pr_info("workqueue %s: flags=0x%x\n", wq->name, wq->flags);
4397
4398 for_each_pwq(pwq, wq) {
4399 spin_lock_irqsave(&pwq->pool->lock, flags);
4400 if (pwq->nr_active || !list_empty(&pwq->delayed_works))
4401 show_pwq(pwq);
4402 spin_unlock_irqrestore(&pwq->pool->lock, flags);
4403 }
4404 }
4405
4406 for_each_pool(pool, pi) {
4407 struct worker *worker;
4408 bool first = true;
4409
4410 spin_lock_irqsave(&pool->lock, flags);
4411 if (pool->nr_workers == pool->nr_idle)
4412 goto next_pool;
4413
4414 pr_info("pool %d:", pool->id);
4415 pr_cont_pool_info(pool);
82607adc
TH
4416 pr_cont(" hung=%us workers=%d",
4417 jiffies_to_msecs(jiffies - pool->watchdog_ts) / 1000,
4418 pool->nr_workers);
3494fc30
TH
4419 if (pool->manager)
4420 pr_cont(" manager: %d",
4421 task_pid_nr(pool->manager->task));
4422 list_for_each_entry(worker, &pool->idle_list, entry) {
4423 pr_cont(" %s%d", first ? "idle: " : "",
4424 task_pid_nr(worker->task));
4425 first = false;
4426 }
4427 pr_cont("\n");
4428 next_pool:
4429 spin_unlock_irqrestore(&pool->lock, flags);
4430 }
4431
4432 rcu_read_unlock_sched();
4433}
4434
db7bccf4
TH
4435/*
4436 * CPU hotplug.
4437 *
e22bee78 4438 * There are two challenges in supporting CPU hotplug. Firstly, there
112202d9 4439 * are a lot of assumptions on strong associations among work, pwq and
706026c2 4440 * pool which make migrating pending and scheduled works very
e22bee78 4441 * difficult to implement without impacting hot paths. Secondly,
94cf58bb 4442 * worker pools serve mix of short, long and very long running works making
e22bee78
TH
4443 * blocked draining impractical.
4444 *
24647570 4445 * This is solved by allowing the pools to be disassociated from the CPU
628c78e7
TH
4446 * running as an unbound one and allowing it to be reattached later if the
4447 * cpu comes back online.
db7bccf4 4448 */
1da177e4 4449
706026c2 4450static void wq_unbind_fn(struct work_struct *work)
3af24433 4451{
38db41d9 4452 int cpu = smp_processor_id();
4ce62e9e 4453 struct worker_pool *pool;
db7bccf4 4454 struct worker *worker;
3af24433 4455
f02ae73a 4456 for_each_cpu_worker_pool(pool, cpu) {
92f9c5c4 4457 mutex_lock(&pool->attach_mutex);
94cf58bb 4458 spin_lock_irq(&pool->lock);
3af24433 4459
94cf58bb 4460 /*
92f9c5c4 4461 * We've blocked all attach/detach operations. Make all workers
94cf58bb
TH
4462 * unbound and set DISASSOCIATED. Before this, all workers
4463 * except for the ones which are still executing works from
4464 * before the last CPU down must be on the cpu. After
4465 * this, they may become diasporas.
4466 */
da028469 4467 for_each_pool_worker(worker, pool)
c9e7cf27 4468 worker->flags |= WORKER_UNBOUND;
06ba38a9 4469
24647570 4470 pool->flags |= POOL_DISASSOCIATED;
f2d5a0ee 4471
94cf58bb 4472 spin_unlock_irq(&pool->lock);
92f9c5c4 4473 mutex_unlock(&pool->attach_mutex);
628c78e7 4474
eb283428
LJ
4475 /*
4476 * Call schedule() so that we cross rq->lock and thus can
4477 * guarantee sched callbacks see the %WORKER_UNBOUND flag.
4478 * This is necessary as scheduler callbacks may be invoked
4479 * from other cpus.
4480 */
4481 schedule();
06ba38a9 4482
eb283428
LJ
4483 /*
4484 * Sched callbacks are disabled now. Zap nr_running.
4485 * After this, nr_running stays zero and need_more_worker()
4486 * and keep_working() are always true as long as the
4487 * worklist is not empty. This pool now behaves as an
4488 * unbound (in terms of concurrency management) pool which
4489 * are served by workers tied to the pool.
4490 */
e19e397a 4491 atomic_set(&pool->nr_running, 0);
eb283428
LJ
4492
4493 /*
4494 * With concurrency management just turned off, a busy
4495 * worker blocking could lead to lengthy stalls. Kick off
4496 * unbound chain execution of currently pending work items.
4497 */
4498 spin_lock_irq(&pool->lock);
4499 wake_up_worker(pool);
4500 spin_unlock_irq(&pool->lock);
4501 }
3af24433 4502}
3af24433 4503
bd7c089e
TH
4504/**
4505 * rebind_workers - rebind all workers of a pool to the associated CPU
4506 * @pool: pool of interest
4507 *
a9ab775b 4508 * @pool->cpu is coming online. Rebind all workers to the CPU.
bd7c089e
TH
4509 */
4510static void rebind_workers(struct worker_pool *pool)
4511{
a9ab775b 4512 struct worker *worker;
bd7c089e 4513
92f9c5c4 4514 lockdep_assert_held(&pool->attach_mutex);
bd7c089e 4515
a9ab775b
TH
4516 /*
4517 * Restore CPU affinity of all workers. As all idle workers should
4518 * be on the run-queue of the associated CPU before any local
402dd89d 4519 * wake-ups for concurrency management happen, restore CPU affinity
a9ab775b
TH
4520 * of all workers first and then clear UNBOUND. As we're called
4521 * from CPU_ONLINE, the following shouldn't fail.
4522 */
da028469 4523 for_each_pool_worker(worker, pool)
a9ab775b
TH
4524 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4525 pool->attrs->cpumask) < 0);
bd7c089e 4526
a9ab775b 4527 spin_lock_irq(&pool->lock);
3de5e884 4528 pool->flags &= ~POOL_DISASSOCIATED;
bd7c089e 4529
da028469 4530 for_each_pool_worker(worker, pool) {
a9ab775b 4531 unsigned int worker_flags = worker->flags;
bd7c089e
TH
4532
4533 /*
a9ab775b
TH
4534 * A bound idle worker should actually be on the runqueue
4535 * of the associated CPU for local wake-ups targeting it to
4536 * work. Kick all idle workers so that they migrate to the
4537 * associated CPU. Doing this in the same loop as
4538 * replacing UNBOUND with REBOUND is safe as no worker will
4539 * be bound before @pool->lock is released.
bd7c089e 4540 */
a9ab775b
TH
4541 if (worker_flags & WORKER_IDLE)
4542 wake_up_process(worker->task);
bd7c089e 4543
a9ab775b
TH
4544 /*
4545 * We want to clear UNBOUND but can't directly call
4546 * worker_clr_flags() or adjust nr_running. Atomically
4547 * replace UNBOUND with another NOT_RUNNING flag REBOUND.
4548 * @worker will clear REBOUND using worker_clr_flags() when
4549 * it initiates the next execution cycle thus restoring
4550 * concurrency management. Note that when or whether
4551 * @worker clears REBOUND doesn't affect correctness.
4552 *
4553 * ACCESS_ONCE() is necessary because @worker->flags may be
4554 * tested without holding any lock in
4555 * wq_worker_waking_up(). Without it, NOT_RUNNING test may
4556 * fail incorrectly leading to premature concurrency
4557 * management operations.
4558 */
4559 WARN_ON_ONCE(!(worker_flags & WORKER_UNBOUND));
4560 worker_flags |= WORKER_REBOUND;
4561 worker_flags &= ~WORKER_UNBOUND;
4562 ACCESS_ONCE(worker->flags) = worker_flags;
bd7c089e 4563 }
a9ab775b
TH
4564
4565 spin_unlock_irq(&pool->lock);
bd7c089e
TH
4566}
4567
7dbc725e
TH
4568/**
4569 * restore_unbound_workers_cpumask - restore cpumask of unbound workers
4570 * @pool: unbound pool of interest
4571 * @cpu: the CPU which is coming up
4572 *
4573 * An unbound pool may end up with a cpumask which doesn't have any online
4574 * CPUs. When a worker of such pool get scheduled, the scheduler resets
4575 * its cpus_allowed. If @cpu is in @pool's cpumask which didn't have any
4576 * online CPU before, cpus_allowed of all its workers should be restored.
4577 */
4578static void restore_unbound_workers_cpumask(struct worker_pool *pool, int cpu)
4579{
4580 static cpumask_t cpumask;
4581 struct worker *worker;
7dbc725e 4582
92f9c5c4 4583 lockdep_assert_held(&pool->attach_mutex);
7dbc725e
TH
4584
4585 /* is @cpu allowed for @pool? */
4586 if (!cpumask_test_cpu(cpu, pool->attrs->cpumask))
4587 return;
4588
4589 /* is @cpu the only online CPU? */
4590 cpumask_and(&cpumask, pool->attrs->cpumask, cpu_online_mask);
4591 if (cpumask_weight(&cpumask) != 1)
4592 return;
4593
4594 /* as we're called from CPU_ONLINE, the following shouldn't fail */
da028469 4595 for_each_pool_worker(worker, pool)
7dbc725e
TH
4596 WARN_ON_ONCE(set_cpus_allowed_ptr(worker->task,
4597 pool->attrs->cpumask) < 0);
4598}
4599
8db25e78
TH
4600/*
4601 * Workqueues should be brought up before normal priority CPU notifiers.
4602 * This will be registered high priority CPU notifier.
4603 */
0db0628d 4604static int workqueue_cpu_up_callback(struct notifier_block *nfb,
8db25e78
TH
4605 unsigned long action,
4606 void *hcpu)
3af24433 4607{
d84ff051 4608 int cpu = (unsigned long)hcpu;
4ce62e9e 4609 struct worker_pool *pool;
4c16bd32 4610 struct workqueue_struct *wq;
7dbc725e 4611 int pi;
3ce63377 4612
8db25e78 4613 switch (action & ~CPU_TASKS_FROZEN) {
3af24433 4614 case CPU_UP_PREPARE:
f02ae73a 4615 for_each_cpu_worker_pool(pool, cpu) {
3ce63377
TH
4616 if (pool->nr_workers)
4617 continue;
051e1850 4618 if (!create_worker(pool))
3ce63377 4619 return NOTIFY_BAD;
3af24433 4620 }
8db25e78 4621 break;
3af24433 4622
db7bccf4
TH
4623 case CPU_DOWN_FAILED:
4624 case CPU_ONLINE:
68e13a67 4625 mutex_lock(&wq_pool_mutex);
7dbc725e
TH
4626
4627 for_each_pool(pool, pi) {
92f9c5c4 4628 mutex_lock(&pool->attach_mutex);
94cf58bb 4629
f05b558d 4630 if (pool->cpu == cpu)
7dbc725e 4631 rebind_workers(pool);
f05b558d 4632 else if (pool->cpu < 0)
7dbc725e 4633 restore_unbound_workers_cpumask(pool, cpu);
94cf58bb 4634
6ba94429
FW
4635 mutex_unlock(&pool->attach_mutex);
4636 }
4637
4638 /* update NUMA affinity of unbound workqueues */
4639 list_for_each_entry(wq, &workqueues, list)
4640 wq_update_unbound_numa(wq, cpu, true);
4641
4642 mutex_unlock(&wq_pool_mutex);
4643 break;
4644 }
4645 return NOTIFY_OK;
4646}
4647
4648/*
4649 * Workqueues should be brought down after normal priority CPU notifiers.
4650 * This will be registered as low priority CPU notifier.
4651 */
4652static int workqueue_cpu_down_callback(struct notifier_block *nfb,
4653 unsigned long action,
4654 void *hcpu)
4655{
4656 int cpu = (unsigned long)hcpu;
4657 struct work_struct unbind_work;
4658 struct workqueue_struct *wq;
4659
4660 switch (action & ~CPU_TASKS_FROZEN) {
4661 case CPU_DOWN_PREPARE:
4662 /* unbinding per-cpu workers should happen on the local CPU */
4663 INIT_WORK_ONSTACK(&unbind_work, wq_unbind_fn);
4664 queue_work_on(cpu, system_highpri_wq, &unbind_work);
4665
4666 /* update NUMA affinity of unbound workqueues */
4667 mutex_lock(&wq_pool_mutex);
4668 list_for_each_entry(wq, &workqueues, list)
4669 wq_update_unbound_numa(wq, cpu, false);
4670 mutex_unlock(&wq_pool_mutex);
4671
4672 /* wait for per-cpu unbinding to finish */
4673 flush_work(&unbind_work);
4674 destroy_work_on_stack(&unbind_work);
4675 break;
4676 }
4677 return NOTIFY_OK;
4678}
4679
4680#ifdef CONFIG_SMP
4681
4682struct work_for_cpu {
4683 struct work_struct work;
4684 long (*fn)(void *);
4685 void *arg;
4686 long ret;
4687};
4688
4689static void work_for_cpu_fn(struct work_struct *work)
4690{
4691 struct work_for_cpu *wfc = container_of(work, struct work_for_cpu, work);
4692
4693 wfc->ret = wfc->fn(wfc->arg);
4694}
4695
4696/**
22aceb31 4697 * work_on_cpu - run a function in thread context on a particular cpu
6ba94429
FW
4698 * @cpu: the cpu to run on
4699 * @fn: the function to run
4700 * @arg: the function arg
4701 *
4702 * It is up to the caller to ensure that the cpu doesn't go offline.
4703 * The caller must not hold any locks which would prevent @fn from completing.
4704 *
4705 * Return: The value @fn returns.
4706 */
4707long work_on_cpu(int cpu, long (*fn)(void *), void *arg)
4708{
4709 struct work_for_cpu wfc = { .fn = fn, .arg = arg };
4710
4711 INIT_WORK_ONSTACK(&wfc.work, work_for_cpu_fn);
4712 schedule_work_on(cpu, &wfc.work);
4713 flush_work(&wfc.work);
4714 destroy_work_on_stack(&wfc.work);
4715 return wfc.ret;
4716}
4717EXPORT_SYMBOL_GPL(work_on_cpu);
4718#endif /* CONFIG_SMP */
4719
4720#ifdef CONFIG_FREEZER
4721
4722/**
4723 * freeze_workqueues_begin - begin freezing workqueues
4724 *
4725 * Start freezing workqueues. After this function returns, all freezable
4726 * workqueues will queue new works to their delayed_works list instead of
4727 * pool->worklist.
4728 *
4729 * CONTEXT:
4730 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4731 */
4732void freeze_workqueues_begin(void)
4733{
4734 struct workqueue_struct *wq;
4735 struct pool_workqueue *pwq;
4736
4737 mutex_lock(&wq_pool_mutex);
4738
4739 WARN_ON_ONCE(workqueue_freezing);
4740 workqueue_freezing = true;
4741
4742 list_for_each_entry(wq, &workqueues, list) {
4743 mutex_lock(&wq->mutex);
4744 for_each_pwq(pwq, wq)
4745 pwq_adjust_max_active(pwq);
4746 mutex_unlock(&wq->mutex);
4747 }
4748
4749 mutex_unlock(&wq_pool_mutex);
4750}
4751
4752/**
4753 * freeze_workqueues_busy - are freezable workqueues still busy?
4754 *
4755 * Check whether freezing is complete. This function must be called
4756 * between freeze_workqueues_begin() and thaw_workqueues().
4757 *
4758 * CONTEXT:
4759 * Grabs and releases wq_pool_mutex.
4760 *
4761 * Return:
4762 * %true if some freezable workqueues are still busy. %false if freezing
4763 * is complete.
4764 */
4765bool freeze_workqueues_busy(void)
4766{
4767 bool busy = false;
4768 struct workqueue_struct *wq;
4769 struct pool_workqueue *pwq;
4770
4771 mutex_lock(&wq_pool_mutex);
4772
4773 WARN_ON_ONCE(!workqueue_freezing);
4774
4775 list_for_each_entry(wq, &workqueues, list) {
4776 if (!(wq->flags & WQ_FREEZABLE))
4777 continue;
4778 /*
4779 * nr_active is monotonically decreasing. It's safe
4780 * to peek without lock.
4781 */
4782 rcu_read_lock_sched();
4783 for_each_pwq(pwq, wq) {
4784 WARN_ON_ONCE(pwq->nr_active < 0);
4785 if (pwq->nr_active) {
4786 busy = true;
4787 rcu_read_unlock_sched();
4788 goto out_unlock;
4789 }
4790 }
4791 rcu_read_unlock_sched();
4792 }
4793out_unlock:
4794 mutex_unlock(&wq_pool_mutex);
4795 return busy;
4796}
4797
4798/**
4799 * thaw_workqueues - thaw workqueues
4800 *
4801 * Thaw workqueues. Normal queueing is restored and all collected
4802 * frozen works are transferred to their respective pool worklists.
4803 *
4804 * CONTEXT:
4805 * Grabs and releases wq_pool_mutex, wq->mutex and pool->lock's.
4806 */
4807void thaw_workqueues(void)
4808{
4809 struct workqueue_struct *wq;
4810 struct pool_workqueue *pwq;
4811
4812 mutex_lock(&wq_pool_mutex);
4813
4814 if (!workqueue_freezing)
4815 goto out_unlock;
4816
4817 workqueue_freezing = false;
4818
4819 /* restore max_active and repopulate worklist */
4820 list_for_each_entry(wq, &workqueues, list) {
4821 mutex_lock(&wq->mutex);
4822 for_each_pwq(pwq, wq)
4823 pwq_adjust_max_active(pwq);
4824 mutex_unlock(&wq->mutex);
4825 }
4826
4827out_unlock:
4828 mutex_unlock(&wq_pool_mutex);
4829}
4830#endif /* CONFIG_FREEZER */
4831
042f7df1
LJ
4832static int workqueue_apply_unbound_cpumask(void)
4833{
4834 LIST_HEAD(ctxs);
4835 int ret = 0;
4836 struct workqueue_struct *wq;
4837 struct apply_wqattrs_ctx *ctx, *n;
4838
4839 lockdep_assert_held(&wq_pool_mutex);
4840
4841 list_for_each_entry(wq, &workqueues, list) {
4842 if (!(wq->flags & WQ_UNBOUND))
4843 continue;
4844 /* creating multiple pwqs breaks ordering guarantee */
4845 if (wq->flags & __WQ_ORDERED)
4846 continue;
4847
4848 ctx = apply_wqattrs_prepare(wq, wq->unbound_attrs);
4849 if (!ctx) {
4850 ret = -ENOMEM;
4851 break;
4852 }
4853
4854 list_add_tail(&ctx->list, &ctxs);
4855 }
4856
4857 list_for_each_entry_safe(ctx, n, &ctxs, list) {
4858 if (!ret)
4859 apply_wqattrs_commit(ctx);
4860 apply_wqattrs_cleanup(ctx);
4861 }
4862
4863 return ret;
4864}
4865
4866/**
4867 * workqueue_set_unbound_cpumask - Set the low-level unbound cpumask
4868 * @cpumask: the cpumask to set
4869 *
4870 * The low-level workqueues cpumask is a global cpumask that limits
4871 * the affinity of all unbound workqueues. This function check the @cpumask
4872 * and apply it to all unbound workqueues and updates all pwqs of them.
4873 *
4874 * Retun: 0 - Success
4875 * -EINVAL - Invalid @cpumask
4876 * -ENOMEM - Failed to allocate memory for attrs or pwqs.
4877 */
4878int workqueue_set_unbound_cpumask(cpumask_var_t cpumask)
4879{
4880 int ret = -EINVAL;
4881 cpumask_var_t saved_cpumask;
4882
4883 if (!zalloc_cpumask_var(&saved_cpumask, GFP_KERNEL))
4884 return -ENOMEM;
4885
042f7df1
LJ
4886 cpumask_and(cpumask, cpumask, cpu_possible_mask);
4887 if (!cpumask_empty(cpumask)) {
a0111cf6 4888 apply_wqattrs_lock();
042f7df1
LJ
4889
4890 /* save the old wq_unbound_cpumask. */
4891 cpumask_copy(saved_cpumask, wq_unbound_cpumask);
4892
4893 /* update wq_unbound_cpumask at first and apply it to wqs. */
4894 cpumask_copy(wq_unbound_cpumask, cpumask);
4895 ret = workqueue_apply_unbound_cpumask();
4896
4897 /* restore the wq_unbound_cpumask when failed. */
4898 if (ret < 0)
4899 cpumask_copy(wq_unbound_cpumask, saved_cpumask);
4900
a0111cf6 4901 apply_wqattrs_unlock();
042f7df1 4902 }
042f7df1
LJ
4903
4904 free_cpumask_var(saved_cpumask);
4905 return ret;
4906}
4907
6ba94429
FW
4908#ifdef CONFIG_SYSFS
4909/*
4910 * Workqueues with WQ_SYSFS flag set is visible to userland via
4911 * /sys/bus/workqueue/devices/WQ_NAME. All visible workqueues have the
4912 * following attributes.
4913 *
4914 * per_cpu RO bool : whether the workqueue is per-cpu or unbound
4915 * max_active RW int : maximum number of in-flight work items
4916 *
4917 * Unbound workqueues have the following extra attributes.
4918 *
4919 * id RO int : the associated pool ID
4920 * nice RW int : nice value of the workers
4921 * cpumask RW mask : bitmask of allowed CPUs for the workers
4922 */
4923struct wq_device {
4924 struct workqueue_struct *wq;
4925 struct device dev;
4926};
4927
4928static struct workqueue_struct *dev_to_wq(struct device *dev)
4929{
4930 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
4931
4932 return wq_dev->wq;
4933}
4934
4935static ssize_t per_cpu_show(struct device *dev, struct device_attribute *attr,
4936 char *buf)
4937{
4938 struct workqueue_struct *wq = dev_to_wq(dev);
4939
4940 return scnprintf(buf, PAGE_SIZE, "%d\n", (bool)!(wq->flags & WQ_UNBOUND));
4941}
4942static DEVICE_ATTR_RO(per_cpu);
4943
4944static ssize_t max_active_show(struct device *dev,
4945 struct device_attribute *attr, char *buf)
4946{
4947 struct workqueue_struct *wq = dev_to_wq(dev);
4948
4949 return scnprintf(buf, PAGE_SIZE, "%d\n", wq->saved_max_active);
4950}
4951
4952static ssize_t max_active_store(struct device *dev,
4953 struct device_attribute *attr, const char *buf,
4954 size_t count)
4955{
4956 struct workqueue_struct *wq = dev_to_wq(dev);
4957 int val;
4958
4959 if (sscanf(buf, "%d", &val) != 1 || val <= 0)
4960 return -EINVAL;
4961
4962 workqueue_set_max_active(wq, val);
4963 return count;
4964}
4965static DEVICE_ATTR_RW(max_active);
4966
4967static struct attribute *wq_sysfs_attrs[] = {
4968 &dev_attr_per_cpu.attr,
4969 &dev_attr_max_active.attr,
4970 NULL,
4971};
4972ATTRIBUTE_GROUPS(wq_sysfs);
4973
4974static ssize_t wq_pool_ids_show(struct device *dev,
4975 struct device_attribute *attr, char *buf)
4976{
4977 struct workqueue_struct *wq = dev_to_wq(dev);
4978 const char *delim = "";
4979 int node, written = 0;
4980
4981 rcu_read_lock_sched();
4982 for_each_node(node) {
4983 written += scnprintf(buf + written, PAGE_SIZE - written,
4984 "%s%d:%d", delim, node,
4985 unbound_pwq_by_node(wq, node)->pool->id);
4986 delim = " ";
4987 }
4988 written += scnprintf(buf + written, PAGE_SIZE - written, "\n");
4989 rcu_read_unlock_sched();
4990
4991 return written;
4992}
4993
4994static ssize_t wq_nice_show(struct device *dev, struct device_attribute *attr,
4995 char *buf)
4996{
4997 struct workqueue_struct *wq = dev_to_wq(dev);
4998 int written;
4999
5000 mutex_lock(&wq->mutex);
5001 written = scnprintf(buf, PAGE_SIZE, "%d\n", wq->unbound_attrs->nice);
5002 mutex_unlock(&wq->mutex);
5003
5004 return written;
5005}
5006
5007/* prepare workqueue_attrs for sysfs store operations */
5008static struct workqueue_attrs *wq_sysfs_prep_attrs(struct workqueue_struct *wq)
5009{
5010 struct workqueue_attrs *attrs;
5011
899a94fe
LJ
5012 lockdep_assert_held(&wq_pool_mutex);
5013
6ba94429
FW
5014 attrs = alloc_workqueue_attrs(GFP_KERNEL);
5015 if (!attrs)
5016 return NULL;
5017
6ba94429 5018 copy_workqueue_attrs(attrs, wq->unbound_attrs);
6ba94429
FW
5019 return attrs;
5020}
5021
5022static ssize_t wq_nice_store(struct device *dev, struct device_attribute *attr,
5023 const char *buf, size_t count)
5024{
5025 struct workqueue_struct *wq = dev_to_wq(dev);
5026 struct workqueue_attrs *attrs;
d4d3e257
LJ
5027 int ret = -ENOMEM;
5028
5029 apply_wqattrs_lock();
6ba94429
FW
5030
5031 attrs = wq_sysfs_prep_attrs(wq);
5032 if (!attrs)
d4d3e257 5033 goto out_unlock;
6ba94429
FW
5034
5035 if (sscanf(buf, "%d", &attrs->nice) == 1 &&
5036 attrs->nice >= MIN_NICE && attrs->nice <= MAX_NICE)
d4d3e257 5037 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429
FW
5038 else
5039 ret = -EINVAL;
5040
d4d3e257
LJ
5041out_unlock:
5042 apply_wqattrs_unlock();
6ba94429
FW
5043 free_workqueue_attrs(attrs);
5044 return ret ?: count;
5045}
5046
5047static ssize_t wq_cpumask_show(struct device *dev,
5048 struct device_attribute *attr, char *buf)
5049{
5050 struct workqueue_struct *wq = dev_to_wq(dev);
5051 int written;
5052
5053 mutex_lock(&wq->mutex);
5054 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5055 cpumask_pr_args(wq->unbound_attrs->cpumask));
5056 mutex_unlock(&wq->mutex);
5057 return written;
5058}
5059
5060static ssize_t wq_cpumask_store(struct device *dev,
5061 struct device_attribute *attr,
5062 const char *buf, size_t count)
5063{
5064 struct workqueue_struct *wq = dev_to_wq(dev);
5065 struct workqueue_attrs *attrs;
d4d3e257
LJ
5066 int ret = -ENOMEM;
5067
5068 apply_wqattrs_lock();
6ba94429
FW
5069
5070 attrs = wq_sysfs_prep_attrs(wq);
5071 if (!attrs)
d4d3e257 5072 goto out_unlock;
6ba94429
FW
5073
5074 ret = cpumask_parse(buf, attrs->cpumask);
5075 if (!ret)
d4d3e257 5076 ret = apply_workqueue_attrs_locked(wq, attrs);
6ba94429 5077
d4d3e257
LJ
5078out_unlock:
5079 apply_wqattrs_unlock();
6ba94429
FW
5080 free_workqueue_attrs(attrs);
5081 return ret ?: count;
5082}
5083
5084static ssize_t wq_numa_show(struct device *dev, struct device_attribute *attr,
5085 char *buf)
5086{
5087 struct workqueue_struct *wq = dev_to_wq(dev);
5088 int written;
7dbc725e 5089
6ba94429
FW
5090 mutex_lock(&wq->mutex);
5091 written = scnprintf(buf, PAGE_SIZE, "%d\n",
5092 !wq->unbound_attrs->no_numa);
5093 mutex_unlock(&wq->mutex);
4c16bd32 5094
6ba94429 5095 return written;
65758202
TH
5096}
5097
6ba94429
FW
5098static ssize_t wq_numa_store(struct device *dev, struct device_attribute *attr,
5099 const char *buf, size_t count)
65758202 5100{
6ba94429
FW
5101 struct workqueue_struct *wq = dev_to_wq(dev);
5102 struct workqueue_attrs *attrs;
d4d3e257
LJ
5103 int v, ret = -ENOMEM;
5104
5105 apply_wqattrs_lock();
4c16bd32 5106
6ba94429
FW
5107 attrs = wq_sysfs_prep_attrs(wq);
5108 if (!attrs)
d4d3e257 5109 goto out_unlock;
4c16bd32 5110
6ba94429
FW
5111 ret = -EINVAL;
5112 if (sscanf(buf, "%d", &v) == 1) {
5113 attrs->no_numa = !v;
d4d3e257 5114 ret = apply_workqueue_attrs_locked(wq, attrs);
65758202 5115 }
6ba94429 5116
d4d3e257
LJ
5117out_unlock:
5118 apply_wqattrs_unlock();
6ba94429
FW
5119 free_workqueue_attrs(attrs);
5120 return ret ?: count;
65758202
TH
5121}
5122
6ba94429
FW
5123static struct device_attribute wq_sysfs_unbound_attrs[] = {
5124 __ATTR(pool_ids, 0444, wq_pool_ids_show, NULL),
5125 __ATTR(nice, 0644, wq_nice_show, wq_nice_store),
5126 __ATTR(cpumask, 0644, wq_cpumask_show, wq_cpumask_store),
5127 __ATTR(numa, 0644, wq_numa_show, wq_numa_store),
5128 __ATTR_NULL,
5129};
8ccad40d 5130
6ba94429
FW
5131static struct bus_type wq_subsys = {
5132 .name = "workqueue",
5133 .dev_groups = wq_sysfs_groups,
2d3854a3
RR
5134};
5135
b05a7928
FW
5136static ssize_t wq_unbound_cpumask_show(struct device *dev,
5137 struct device_attribute *attr, char *buf)
5138{
5139 int written;
5140
042f7df1 5141 mutex_lock(&wq_pool_mutex);
b05a7928
FW
5142 written = scnprintf(buf, PAGE_SIZE, "%*pb\n",
5143 cpumask_pr_args(wq_unbound_cpumask));
042f7df1 5144 mutex_unlock(&wq_pool_mutex);
b05a7928
FW
5145
5146 return written;
5147}
5148
042f7df1
LJ
5149static ssize_t wq_unbound_cpumask_store(struct device *dev,
5150 struct device_attribute *attr, const char *buf, size_t count)
5151{
5152 cpumask_var_t cpumask;
5153 int ret;
5154
5155 if (!zalloc_cpumask_var(&cpumask, GFP_KERNEL))
5156 return -ENOMEM;
5157
5158 ret = cpumask_parse(buf, cpumask);
5159 if (!ret)
5160 ret = workqueue_set_unbound_cpumask(cpumask);
5161
5162 free_cpumask_var(cpumask);
5163 return ret ? ret : count;
5164}
5165
b05a7928 5166static struct device_attribute wq_sysfs_cpumask_attr =
042f7df1
LJ
5167 __ATTR(cpumask, 0644, wq_unbound_cpumask_show,
5168 wq_unbound_cpumask_store);
b05a7928 5169
6ba94429 5170static int __init wq_sysfs_init(void)
2d3854a3 5171{
b05a7928
FW
5172 int err;
5173
5174 err = subsys_virtual_register(&wq_subsys, NULL);
5175 if (err)
5176 return err;
5177
5178 return device_create_file(wq_subsys.dev_root, &wq_sysfs_cpumask_attr);
2d3854a3 5179}
6ba94429 5180core_initcall(wq_sysfs_init);
2d3854a3 5181
6ba94429 5182static void wq_device_release(struct device *dev)
2d3854a3 5183{
6ba94429 5184 struct wq_device *wq_dev = container_of(dev, struct wq_device, dev);
6b44003e 5185
6ba94429 5186 kfree(wq_dev);
2d3854a3 5187}
a0a1a5fd
TH
5188
5189/**
6ba94429
FW
5190 * workqueue_sysfs_register - make a workqueue visible in sysfs
5191 * @wq: the workqueue to register
a0a1a5fd 5192 *
6ba94429
FW
5193 * Expose @wq in sysfs under /sys/bus/workqueue/devices.
5194 * alloc_workqueue*() automatically calls this function if WQ_SYSFS is set
5195 * which is the preferred method.
a0a1a5fd 5196 *
6ba94429
FW
5197 * Workqueue user should use this function directly iff it wants to apply
5198 * workqueue_attrs before making the workqueue visible in sysfs; otherwise,
5199 * apply_workqueue_attrs() may race against userland updating the
5200 * attributes.
5201 *
5202 * Return: 0 on success, -errno on failure.
a0a1a5fd 5203 */
6ba94429 5204int workqueue_sysfs_register(struct workqueue_struct *wq)
a0a1a5fd 5205{
6ba94429
FW
5206 struct wq_device *wq_dev;
5207 int ret;
a0a1a5fd 5208
6ba94429 5209 /*
402dd89d 5210 * Adjusting max_active or creating new pwqs by applying
6ba94429
FW
5211 * attributes breaks ordering guarantee. Disallow exposing ordered
5212 * workqueues.
5213 */
5214 if (WARN_ON(wq->flags & __WQ_ORDERED))
5215 return -EINVAL;
a0a1a5fd 5216
6ba94429
FW
5217 wq->wq_dev = wq_dev = kzalloc(sizeof(*wq_dev), GFP_KERNEL);
5218 if (!wq_dev)
5219 return -ENOMEM;
5bcab335 5220
6ba94429
FW
5221 wq_dev->wq = wq;
5222 wq_dev->dev.bus = &wq_subsys;
6ba94429 5223 wq_dev->dev.release = wq_device_release;
23217b44 5224 dev_set_name(&wq_dev->dev, "%s", wq->name);
a0a1a5fd 5225
6ba94429
FW
5226 /*
5227 * unbound_attrs are created separately. Suppress uevent until
5228 * everything is ready.
5229 */
5230 dev_set_uevent_suppress(&wq_dev->dev, true);
a0a1a5fd 5231
6ba94429
FW
5232 ret = device_register(&wq_dev->dev);
5233 if (ret) {
5234 kfree(wq_dev);
5235 wq->wq_dev = NULL;
5236 return ret;
5237 }
a0a1a5fd 5238
6ba94429
FW
5239 if (wq->flags & WQ_UNBOUND) {
5240 struct device_attribute *attr;
a0a1a5fd 5241
6ba94429
FW
5242 for (attr = wq_sysfs_unbound_attrs; attr->attr.name; attr++) {
5243 ret = device_create_file(&wq_dev->dev, attr);
5244 if (ret) {
5245 device_unregister(&wq_dev->dev);
5246 wq->wq_dev = NULL;
5247 return ret;
a0a1a5fd
TH
5248 }
5249 }
5250 }
6ba94429
FW
5251
5252 dev_set_uevent_suppress(&wq_dev->dev, false);
5253 kobject_uevent(&wq_dev->dev.kobj, KOBJ_ADD);
5254 return 0;
a0a1a5fd
TH
5255}
5256
5257/**
6ba94429
FW
5258 * workqueue_sysfs_unregister - undo workqueue_sysfs_register()
5259 * @wq: the workqueue to unregister
a0a1a5fd 5260 *
6ba94429 5261 * If @wq is registered to sysfs by workqueue_sysfs_register(), unregister.
a0a1a5fd 5262 */
6ba94429 5263static void workqueue_sysfs_unregister(struct workqueue_struct *wq)
a0a1a5fd 5264{
6ba94429 5265 struct wq_device *wq_dev = wq->wq_dev;
8b03ae3c 5266
6ba94429
FW
5267 if (!wq->wq_dev)
5268 return;
a0a1a5fd 5269
6ba94429
FW
5270 wq->wq_dev = NULL;
5271 device_unregister(&wq_dev->dev);
a0a1a5fd 5272}
6ba94429
FW
5273#else /* CONFIG_SYSFS */
5274static void workqueue_sysfs_unregister(struct workqueue_struct *wq) { }
5275#endif /* CONFIG_SYSFS */
a0a1a5fd 5276
82607adc
TH
5277/*
5278 * Workqueue watchdog.
5279 *
5280 * Stall may be caused by various bugs - missing WQ_MEM_RECLAIM, illegal
5281 * flush dependency, a concurrency managed work item which stays RUNNING
5282 * indefinitely. Workqueue stalls can be very difficult to debug as the
5283 * usual warning mechanisms don't trigger and internal workqueue state is
5284 * largely opaque.
5285 *
5286 * Workqueue watchdog monitors all worker pools periodically and dumps
5287 * state if some pools failed to make forward progress for a while where
5288 * forward progress is defined as the first item on ->worklist changing.
5289 *
5290 * This mechanism is controlled through the kernel parameter
5291 * "workqueue.watchdog_thresh" which can be updated at runtime through the
5292 * corresponding sysfs parameter file.
5293 */
5294#ifdef CONFIG_WQ_WATCHDOG
5295
5296static void wq_watchdog_timer_fn(unsigned long data);
5297
5298static unsigned long wq_watchdog_thresh = 30;
5299static struct timer_list wq_watchdog_timer =
5300 TIMER_DEFERRED_INITIALIZER(wq_watchdog_timer_fn, 0, 0);
5301
5302static unsigned long wq_watchdog_touched = INITIAL_JIFFIES;
5303static DEFINE_PER_CPU(unsigned long, wq_watchdog_touched_cpu) = INITIAL_JIFFIES;
5304
5305static void wq_watchdog_reset_touched(void)
5306{
5307 int cpu;
5308
5309 wq_watchdog_touched = jiffies;
5310 for_each_possible_cpu(cpu)
5311 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5312}
5313
5314static void wq_watchdog_timer_fn(unsigned long data)
5315{
5316 unsigned long thresh = READ_ONCE(wq_watchdog_thresh) * HZ;
5317 bool lockup_detected = false;
5318 struct worker_pool *pool;
5319 int pi;
5320
5321 if (!thresh)
5322 return;
5323
5324 rcu_read_lock();
5325
5326 for_each_pool(pool, pi) {
5327 unsigned long pool_ts, touched, ts;
5328
5329 if (list_empty(&pool->worklist))
5330 continue;
5331
5332 /* get the latest of pool and touched timestamps */
5333 pool_ts = READ_ONCE(pool->watchdog_ts);
5334 touched = READ_ONCE(wq_watchdog_touched);
5335
5336 if (time_after(pool_ts, touched))
5337 ts = pool_ts;
5338 else
5339 ts = touched;
5340
5341 if (pool->cpu >= 0) {
5342 unsigned long cpu_touched =
5343 READ_ONCE(per_cpu(wq_watchdog_touched_cpu,
5344 pool->cpu));
5345 if (time_after(cpu_touched, ts))
5346 ts = cpu_touched;
5347 }
5348
5349 /* did we stall? */
5350 if (time_after(jiffies, ts + thresh)) {
5351 lockup_detected = true;
5352 pr_emerg("BUG: workqueue lockup - pool");
5353 pr_cont_pool_info(pool);
5354 pr_cont(" stuck for %us!\n",
5355 jiffies_to_msecs(jiffies - pool_ts) / 1000);
5356 }
5357 }
5358
5359 rcu_read_unlock();
5360
5361 if (lockup_detected)
5362 show_workqueue_state();
5363
5364 wq_watchdog_reset_touched();
5365 mod_timer(&wq_watchdog_timer, jiffies + thresh);
5366}
5367
5368void wq_watchdog_touch(int cpu)
5369{
5370 if (cpu >= 0)
5371 per_cpu(wq_watchdog_touched_cpu, cpu) = jiffies;
5372 else
5373 wq_watchdog_touched = jiffies;
5374}
5375
5376static void wq_watchdog_set_thresh(unsigned long thresh)
5377{
5378 wq_watchdog_thresh = 0;
5379 del_timer_sync(&wq_watchdog_timer);
5380
5381 if (thresh) {
5382 wq_watchdog_thresh = thresh;
5383 wq_watchdog_reset_touched();
5384 mod_timer(&wq_watchdog_timer, jiffies + thresh * HZ);
5385 }
5386}
5387
5388static int wq_watchdog_param_set_thresh(const char *val,
5389 const struct kernel_param *kp)
5390{
5391 unsigned long thresh;
5392 int ret;
5393
5394 ret = kstrtoul(val, 0, &thresh);
5395 if (ret)
5396 return ret;
5397
5398 if (system_wq)
5399 wq_watchdog_set_thresh(thresh);
5400 else
5401 wq_watchdog_thresh = thresh;
5402
5403 return 0;
5404}
5405
5406static const struct kernel_param_ops wq_watchdog_thresh_ops = {
5407 .set = wq_watchdog_param_set_thresh,
5408 .get = param_get_ulong,
5409};
5410
5411module_param_cb(watchdog_thresh, &wq_watchdog_thresh_ops, &wq_watchdog_thresh,
5412 0644);
5413
5414static void wq_watchdog_init(void)
5415{
5416 wq_watchdog_set_thresh(wq_watchdog_thresh);
5417}
5418
5419#else /* CONFIG_WQ_WATCHDOG */
5420
5421static inline void wq_watchdog_init(void) { }
5422
5423#endif /* CONFIG_WQ_WATCHDOG */
5424
bce90380
TH
5425static void __init wq_numa_init(void)
5426{
5427 cpumask_var_t *tbl;
5428 int node, cpu;
5429
bce90380
TH
5430 if (num_possible_nodes() <= 1)
5431 return;
5432
d55262c4
TH
5433 if (wq_disable_numa) {
5434 pr_info("workqueue: NUMA affinity support disabled\n");
5435 return;
5436 }
5437
4c16bd32
TH
5438 wq_update_unbound_numa_attrs_buf = alloc_workqueue_attrs(GFP_KERNEL);
5439 BUG_ON(!wq_update_unbound_numa_attrs_buf);
5440
bce90380
TH
5441 /*
5442 * We want masks of possible CPUs of each node which isn't readily
5443 * available. Build one from cpu_to_node() which should have been
5444 * fully initialized by now.
5445 */
ddcb57e2 5446 tbl = kzalloc(nr_node_ids * sizeof(tbl[0]), GFP_KERNEL);
bce90380
TH
5447 BUG_ON(!tbl);
5448
5449 for_each_node(node)
5a6024f1 5450 BUG_ON(!zalloc_cpumask_var_node(&tbl[node], GFP_KERNEL,
1be0c25d 5451 node_online(node) ? node : NUMA_NO_NODE));
bce90380
TH
5452
5453 for_each_possible_cpu(cpu) {
5454 node = cpu_to_node(cpu);
5455 if (WARN_ON(node == NUMA_NO_NODE)) {
5456 pr_warn("workqueue: NUMA node mapping not available for cpu%d, disabling NUMA support\n", cpu);
5457 /* happens iff arch is bonkers, let's just proceed */
5458 return;
5459 }
5460 cpumask_set_cpu(cpu, tbl[node]);
5461 }
5462
5463 wq_numa_possible_cpumask = tbl;
5464 wq_numa_enabled = true;
5465}
5466
6ee0578b 5467static int __init init_workqueues(void)
1da177e4 5468{
7a4e344c
TH
5469 int std_nice[NR_STD_WORKER_POOLS] = { 0, HIGHPRI_NICE_LEVEL };
5470 int i, cpu;
c34056a3 5471
e904e6c2
TH
5472 WARN_ON(__alignof__(struct pool_workqueue) < __alignof__(long long));
5473
b05a7928
FW
5474 BUG_ON(!alloc_cpumask_var(&wq_unbound_cpumask, GFP_KERNEL));
5475 cpumask_copy(wq_unbound_cpumask, cpu_possible_mask);
5476
e904e6c2
TH
5477 pwq_cache = KMEM_CACHE(pool_workqueue, SLAB_PANIC);
5478
65758202 5479 cpu_notifier(workqueue_cpu_up_callback, CPU_PRI_WORKQUEUE_UP);
a5b4e57d 5480 hotcpu_notifier(workqueue_cpu_down_callback, CPU_PRI_WORKQUEUE_DOWN);
8b03ae3c 5481
bce90380
TH
5482 wq_numa_init();
5483
706026c2 5484 /* initialize CPU pools */
29c91e99 5485 for_each_possible_cpu(cpu) {
4ce62e9e 5486 struct worker_pool *pool;
8b03ae3c 5487
7a4e344c 5488 i = 0;
f02ae73a 5489 for_each_cpu_worker_pool(pool, cpu) {
7a4e344c 5490 BUG_ON(init_worker_pool(pool));
ec22ca5e 5491 pool->cpu = cpu;
29c91e99 5492 cpumask_copy(pool->attrs->cpumask, cpumask_of(cpu));
7a4e344c 5493 pool->attrs->nice = std_nice[i++];
f3f90ad4 5494 pool->node = cpu_to_node(cpu);
7a4e344c 5495
9daf9e67 5496 /* alloc pool ID */
68e13a67 5497 mutex_lock(&wq_pool_mutex);
9daf9e67 5498 BUG_ON(worker_pool_assign_id(pool));
68e13a67 5499 mutex_unlock(&wq_pool_mutex);
4ce62e9e 5500 }
8b03ae3c
TH
5501 }
5502
e22bee78 5503 /* create the initial worker */
29c91e99 5504 for_each_online_cpu(cpu) {
4ce62e9e 5505 struct worker_pool *pool;
e22bee78 5506
f02ae73a 5507 for_each_cpu_worker_pool(pool, cpu) {
29c91e99 5508 pool->flags &= ~POOL_DISASSOCIATED;
051e1850 5509 BUG_ON(!create_worker(pool));
4ce62e9e 5510 }
e22bee78
TH
5511 }
5512
8a2b7538 5513 /* create default unbound and ordered wq attrs */
29c91e99
TH
5514 for (i = 0; i < NR_STD_WORKER_POOLS; i++) {
5515 struct workqueue_attrs *attrs;
5516
5517 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
29c91e99 5518 attrs->nice = std_nice[i];
29c91e99 5519 unbound_std_wq_attrs[i] = attrs;
8a2b7538
TH
5520
5521 /*
5522 * An ordered wq should have only one pwq as ordering is
5523 * guaranteed by max_active which is enforced by pwqs.
5524 * Turn off NUMA so that dfl_pwq is used for all nodes.
5525 */
5526 BUG_ON(!(attrs = alloc_workqueue_attrs(GFP_KERNEL)));
5527 attrs->nice = std_nice[i];
5528 attrs->no_numa = true;
5529 ordered_wq_attrs[i] = attrs;
29c91e99
TH
5530 }
5531
d320c038 5532 system_wq = alloc_workqueue("events", 0, 0);
1aabe902 5533 system_highpri_wq = alloc_workqueue("events_highpri", WQ_HIGHPRI, 0);
d320c038 5534 system_long_wq = alloc_workqueue("events_long", 0, 0);
f3421797
TH
5535 system_unbound_wq = alloc_workqueue("events_unbound", WQ_UNBOUND,
5536 WQ_UNBOUND_MAX_ACTIVE);
24d51add
TH
5537 system_freezable_wq = alloc_workqueue("events_freezable",
5538 WQ_FREEZABLE, 0);
0668106c
VK
5539 system_power_efficient_wq = alloc_workqueue("events_power_efficient",
5540 WQ_POWER_EFFICIENT, 0);
5541 system_freezable_power_efficient_wq = alloc_workqueue("events_freezable_power_efficient",
5542 WQ_FREEZABLE | WQ_POWER_EFFICIENT,
5543 0);
1aabe902 5544 BUG_ON(!system_wq || !system_highpri_wq || !system_long_wq ||
0668106c
VK
5545 !system_unbound_wq || !system_freezable_wq ||
5546 !system_power_efficient_wq ||
5547 !system_freezable_power_efficient_wq);
82607adc
TH
5548
5549 wq_watchdog_init();
5550
6ee0578b 5551 return 0;
1da177e4 5552}
6ee0578b 5553early_initcall(init_workqueues);
This page took 1.12912 seconds and 5 git commands to generate.