Restartable sequences: tests: introduce simple rseq start/finish
[deliverable/linux.git] / mm / gup.c
CommitLineData
4bbd4c77
KS
1#include <linux/kernel.h>
2#include <linux/errno.h>
3#include <linux/err.h>
4#include <linux/spinlock.h>
5
4bbd4c77 6#include <linux/mm.h>
3565fce3 7#include <linux/memremap.h>
4bbd4c77
KS
8#include <linux/pagemap.h>
9#include <linux/rmap.h>
10#include <linux/swap.h>
11#include <linux/swapops.h>
12
2667f50e
SC
13#include <linux/sched.h>
14#include <linux/rwsem.h>
f30c59e9 15#include <linux/hugetlb.h>
1027e443 16
33a709b2 17#include <asm/mmu_context.h>
2667f50e 18#include <asm/pgtable.h>
1027e443 19#include <asm/tlbflush.h>
2667f50e 20
4bbd4c77
KS
21#include "internal.h"
22
69e68b4f
KS
23static struct page *no_page_table(struct vm_area_struct *vma,
24 unsigned int flags)
4bbd4c77 25{
69e68b4f
KS
26 /*
27 * When core dumping an enormous anonymous area that nobody
28 * has touched so far, we don't want to allocate unnecessary pages or
29 * page tables. Return error instead of NULL to skip handle_mm_fault,
30 * then get_dump_page() will return NULL to leave a hole in the dump.
31 * But we can only make this optimization where a hole would surely
32 * be zero-filled if handle_mm_fault() actually did handle it.
33 */
34 if ((flags & FOLL_DUMP) && (!vma->vm_ops || !vma->vm_ops->fault))
35 return ERR_PTR(-EFAULT);
36 return NULL;
37}
4bbd4c77 38
1027e443
KS
39static int follow_pfn_pte(struct vm_area_struct *vma, unsigned long address,
40 pte_t *pte, unsigned int flags)
41{
42 /* No page to get reference */
43 if (flags & FOLL_GET)
44 return -EFAULT;
45
46 if (flags & FOLL_TOUCH) {
47 pte_t entry = *pte;
48
49 if (flags & FOLL_WRITE)
50 entry = pte_mkdirty(entry);
51 entry = pte_mkyoung(entry);
52
53 if (!pte_same(*pte, entry)) {
54 set_pte_at(vma->vm_mm, address, pte, entry);
55 update_mmu_cache(vma, address, pte);
56 }
57 }
58
59 /* Proper page table entry exists, but no corresponding struct page */
60 return -EEXIST;
61}
62
89eeba15
LT
63/*
64 * FOLL_FORCE can write to even unwritable pte's, but only
65 * after we've gone through a COW cycle and they are dirty.
66 */
67static inline bool can_follow_write_pte(pte_t pte, unsigned int flags)
68{
69 return pte_write(pte) ||
70 ((flags & FOLL_FORCE) && (flags & FOLL_COW) && pte_dirty(pte));
71}
72
69e68b4f
KS
73static struct page *follow_page_pte(struct vm_area_struct *vma,
74 unsigned long address, pmd_t *pmd, unsigned int flags)
75{
76 struct mm_struct *mm = vma->vm_mm;
3565fce3 77 struct dev_pagemap *pgmap = NULL;
69e68b4f
KS
78 struct page *page;
79 spinlock_t *ptl;
80 pte_t *ptep, pte;
4bbd4c77 81
69e68b4f 82retry:
4bbd4c77 83 if (unlikely(pmd_bad(*pmd)))
69e68b4f 84 return no_page_table(vma, flags);
4bbd4c77
KS
85
86 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
4bbd4c77
KS
87 pte = *ptep;
88 if (!pte_present(pte)) {
89 swp_entry_t entry;
90 /*
91 * KSM's break_ksm() relies upon recognizing a ksm page
92 * even while it is being migrated, so for that case we
93 * need migration_entry_wait().
94 */
95 if (likely(!(flags & FOLL_MIGRATION)))
96 goto no_page;
0661a336 97 if (pte_none(pte))
4bbd4c77
KS
98 goto no_page;
99 entry = pte_to_swp_entry(pte);
100 if (!is_migration_entry(entry))
101 goto no_page;
102 pte_unmap_unlock(ptep, ptl);
103 migration_entry_wait(mm, pmd, address);
69e68b4f 104 goto retry;
4bbd4c77 105 }
8a0516ed 106 if ((flags & FOLL_NUMA) && pte_protnone(pte))
4bbd4c77 107 goto no_page;
89eeba15 108 if ((flags & FOLL_WRITE) && !can_follow_write_pte(pte, flags)) {
69e68b4f
KS
109 pte_unmap_unlock(ptep, ptl);
110 return NULL;
111 }
4bbd4c77
KS
112
113 page = vm_normal_page(vma, address, pte);
3565fce3
DW
114 if (!page && pte_devmap(pte) && (flags & FOLL_GET)) {
115 /*
116 * Only return device mapping pages in the FOLL_GET case since
117 * they are only valid while holding the pgmap reference.
118 */
119 pgmap = get_dev_pagemap(pte_pfn(pte), NULL);
120 if (pgmap)
121 page = pte_page(pte);
122 else
123 goto no_page;
124 } else if (unlikely(!page)) {
1027e443
KS
125 if (flags & FOLL_DUMP) {
126 /* Avoid special (like zero) pages in core dumps */
127 page = ERR_PTR(-EFAULT);
128 goto out;
129 }
130
131 if (is_zero_pfn(pte_pfn(pte))) {
132 page = pte_page(pte);
133 } else {
134 int ret;
135
136 ret = follow_pfn_pte(vma, address, ptep, flags);
137 page = ERR_PTR(ret);
138 goto out;
139 }
4bbd4c77
KS
140 }
141
6742d293
KS
142 if (flags & FOLL_SPLIT && PageTransCompound(page)) {
143 int ret;
144 get_page(page);
145 pte_unmap_unlock(ptep, ptl);
146 lock_page(page);
147 ret = split_huge_page(page);
148 unlock_page(page);
149 put_page(page);
150 if (ret)
151 return ERR_PTR(ret);
152 goto retry;
153 }
154
3565fce3 155 if (flags & FOLL_GET) {
ddc58f27 156 get_page(page);
3565fce3
DW
157
158 /* drop the pgmap reference now that we hold the page */
159 if (pgmap) {
160 put_dev_pagemap(pgmap);
161 pgmap = NULL;
162 }
163 }
4bbd4c77
KS
164 if (flags & FOLL_TOUCH) {
165 if ((flags & FOLL_WRITE) &&
166 !pte_dirty(pte) && !PageDirty(page))
167 set_page_dirty(page);
168 /*
169 * pte_mkyoung() would be more correct here, but atomic care
170 * is needed to avoid losing the dirty bit: it is easier to use
171 * mark_page_accessed().
172 */
173 mark_page_accessed(page);
174 }
de60f5f1 175 if ((flags & FOLL_MLOCK) && (vma->vm_flags & VM_LOCKED)) {
e90309c9
KS
176 /* Do not mlock pte-mapped THP */
177 if (PageTransCompound(page))
178 goto out;
179
4bbd4c77
KS
180 /*
181 * The preliminary mapping check is mainly to avoid the
182 * pointless overhead of lock_page on the ZERO_PAGE
183 * which might bounce very badly if there is contention.
184 *
185 * If the page is already locked, we don't need to
186 * handle it now - vmscan will handle it later if and
187 * when it attempts to reclaim the page.
188 */
189 if (page->mapping && trylock_page(page)) {
190 lru_add_drain(); /* push cached pages to LRU */
191 /*
192 * Because we lock page here, and migration is
193 * blocked by the pte's page reference, and we
194 * know the page is still mapped, we don't even
195 * need to check for file-cache page truncation.
196 */
197 mlock_vma_page(page);
198 unlock_page(page);
199 }
200 }
1027e443 201out:
4bbd4c77 202 pte_unmap_unlock(ptep, ptl);
4bbd4c77 203 return page;
4bbd4c77
KS
204no_page:
205 pte_unmap_unlock(ptep, ptl);
206 if (!pte_none(pte))
69e68b4f
KS
207 return NULL;
208 return no_page_table(vma, flags);
209}
210
211/**
212 * follow_page_mask - look up a page descriptor from a user-virtual address
213 * @vma: vm_area_struct mapping @address
214 * @address: virtual address to look up
215 * @flags: flags modifying lookup behaviour
216 * @page_mask: on output, *page_mask is set according to the size of the page
217 *
218 * @flags can have FOLL_ flags set, defined in <linux/mm.h>
219 *
220 * Returns the mapped (struct page *), %NULL if no mapping exists, or
221 * an error pointer if there is a mapping to something not represented
222 * by a page descriptor (see also vm_normal_page()).
223 */
224struct page *follow_page_mask(struct vm_area_struct *vma,
225 unsigned long address, unsigned int flags,
226 unsigned int *page_mask)
227{
228 pgd_t *pgd;
229 pud_t *pud;
230 pmd_t *pmd;
231 spinlock_t *ptl;
232 struct page *page;
233 struct mm_struct *mm = vma->vm_mm;
234
235 *page_mask = 0;
236
237 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
238 if (!IS_ERR(page)) {
239 BUG_ON(flags & FOLL_GET);
4bbd4c77 240 return page;
69e68b4f 241 }
4bbd4c77 242
69e68b4f
KS
243 pgd = pgd_offset(mm, address);
244 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
245 return no_page_table(vma, flags);
246
247 pud = pud_offset(pgd, address);
248 if (pud_none(*pud))
249 return no_page_table(vma, flags);
250 if (pud_huge(*pud) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
251 page = follow_huge_pud(mm, address, pud, flags);
252 if (page)
253 return page;
254 return no_page_table(vma, flags);
69e68b4f
KS
255 }
256 if (unlikely(pud_bad(*pud)))
257 return no_page_table(vma, flags);
258
259 pmd = pmd_offset(pud, address);
260 if (pmd_none(*pmd))
261 return no_page_table(vma, flags);
262 if (pmd_huge(*pmd) && vma->vm_flags & VM_HUGETLB) {
e66f17ff
NH
263 page = follow_huge_pmd(mm, address, pmd, flags);
264 if (page)
265 return page;
266 return no_page_table(vma, flags);
69e68b4f 267 }
8a0516ed 268 if ((flags & FOLL_NUMA) && pmd_protnone(*pmd))
69e68b4f 269 return no_page_table(vma, flags);
3565fce3
DW
270 if (pmd_devmap(*pmd)) {
271 ptl = pmd_lock(mm, pmd);
272 page = follow_devmap_pmd(vma, address, pmd, flags);
273 spin_unlock(ptl);
274 if (page)
275 return page;
276 }
6742d293
KS
277 if (likely(!pmd_trans_huge(*pmd)))
278 return follow_page_pte(vma, address, pmd, flags);
279
280 ptl = pmd_lock(mm, pmd);
281 if (unlikely(!pmd_trans_huge(*pmd))) {
282 spin_unlock(ptl);
283 return follow_page_pte(vma, address, pmd, flags);
284 }
6742d293
KS
285 if (flags & FOLL_SPLIT) {
286 int ret;
287 page = pmd_page(*pmd);
288 if (is_huge_zero_page(page)) {
289 spin_unlock(ptl);
290 ret = 0;
78ddc534 291 split_huge_pmd(vma, pmd, address);
337d9abf
NH
292 if (pmd_trans_unstable(pmd))
293 ret = -EBUSY;
6742d293
KS
294 } else {
295 get_page(page);
69e68b4f 296 spin_unlock(ptl);
6742d293
KS
297 lock_page(page);
298 ret = split_huge_page(page);
299 unlock_page(page);
300 put_page(page);
baa355fd
KS
301 if (pmd_none(*pmd))
302 return no_page_table(vma, flags);
6742d293
KS
303 }
304
305 return ret ? ERR_PTR(ret) :
306 follow_page_pte(vma, address, pmd, flags);
69e68b4f 307 }
6742d293
KS
308
309 page = follow_trans_huge_pmd(vma, address, pmd, flags);
310 spin_unlock(ptl);
311 *page_mask = HPAGE_PMD_NR - 1;
312 return page;
4bbd4c77
KS
313}
314
f2b495ca
KS
315static int get_gate_page(struct mm_struct *mm, unsigned long address,
316 unsigned int gup_flags, struct vm_area_struct **vma,
317 struct page **page)
318{
319 pgd_t *pgd;
320 pud_t *pud;
321 pmd_t *pmd;
322 pte_t *pte;
323 int ret = -EFAULT;
324
325 /* user gate pages are read-only */
326 if (gup_flags & FOLL_WRITE)
327 return -EFAULT;
328 if (address > TASK_SIZE)
329 pgd = pgd_offset_k(address);
330 else
331 pgd = pgd_offset_gate(mm, address);
332 BUG_ON(pgd_none(*pgd));
333 pud = pud_offset(pgd, address);
334 BUG_ON(pud_none(*pud));
335 pmd = pmd_offset(pud, address);
336 if (pmd_none(*pmd))
337 return -EFAULT;
338 VM_BUG_ON(pmd_trans_huge(*pmd));
339 pte = pte_offset_map(pmd, address);
340 if (pte_none(*pte))
341 goto unmap;
342 *vma = get_gate_vma(mm);
343 if (!page)
344 goto out;
345 *page = vm_normal_page(*vma, address, *pte);
346 if (!*page) {
347 if ((gup_flags & FOLL_DUMP) || !is_zero_pfn(pte_pfn(*pte)))
348 goto unmap;
349 *page = pte_page(*pte);
350 }
351 get_page(*page);
352out:
353 ret = 0;
354unmap:
355 pte_unmap(pte);
356 return ret;
357}
358
9a95f3cf
PC
359/*
360 * mmap_sem must be held on entry. If @nonblocking != NULL and
361 * *@flags does not include FOLL_NOWAIT, the mmap_sem may be released.
362 * If it is, *@nonblocking will be set to 0 and -EBUSY returned.
363 */
16744483
KS
364static int faultin_page(struct task_struct *tsk, struct vm_area_struct *vma,
365 unsigned long address, unsigned int *flags, int *nonblocking)
366{
16744483
KS
367 unsigned int fault_flags = 0;
368 int ret;
369
de60f5f1
EM
370 /* mlock all present pages, but do not fault in new pages */
371 if ((*flags & (FOLL_POPULATE | FOLL_MLOCK)) == FOLL_MLOCK)
372 return -ENOENT;
84d33df2
KS
373 /* For mm_populate(), just skip the stack guard page. */
374 if ((*flags & FOLL_POPULATE) &&
16744483
KS
375 (stack_guard_page_start(vma, address) ||
376 stack_guard_page_end(vma, address + PAGE_SIZE)))
377 return -ENOENT;
378 if (*flags & FOLL_WRITE)
379 fault_flags |= FAULT_FLAG_WRITE;
1b2ee126
DH
380 if (*flags & FOLL_REMOTE)
381 fault_flags |= FAULT_FLAG_REMOTE;
16744483
KS
382 if (nonblocking)
383 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
384 if (*flags & FOLL_NOWAIT)
385 fault_flags |= FAULT_FLAG_ALLOW_RETRY | FAULT_FLAG_RETRY_NOWAIT;
234b239b
ALC
386 if (*flags & FOLL_TRIED) {
387 VM_WARN_ON_ONCE(fault_flags & FAULT_FLAG_ALLOW_RETRY);
388 fault_flags |= FAULT_FLAG_TRIED;
389 }
16744483 390
dcddffd4 391 ret = handle_mm_fault(vma, address, fault_flags);
16744483
KS
392 if (ret & VM_FAULT_ERROR) {
393 if (ret & VM_FAULT_OOM)
394 return -ENOMEM;
395 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
396 return *flags & FOLL_HWPOISON ? -EHWPOISON : -EFAULT;
33692f27 397 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
16744483
KS
398 return -EFAULT;
399 BUG();
400 }
401
402 if (tsk) {
403 if (ret & VM_FAULT_MAJOR)
404 tsk->maj_flt++;
405 else
406 tsk->min_flt++;
407 }
408
409 if (ret & VM_FAULT_RETRY) {
410 if (nonblocking)
411 *nonblocking = 0;
412 return -EBUSY;
413 }
414
415 /*
416 * The VM_FAULT_WRITE bit tells us that do_wp_page has broken COW when
417 * necessary, even if maybe_mkwrite decided not to set pte_write. We
418 * can thus safely do subsequent page lookups as if they were reads.
419 * But only do so when looping for pte_write is futile: in some cases
420 * userspace may also be wanting to write to the gotten user page,
421 * which a read fault here might prevent (a readonly page might get
422 * reCOWed by userspace write).
423 */
424 if ((ret & VM_FAULT_WRITE) && !(vma->vm_flags & VM_WRITE))
89eeba15 425 *flags |= FOLL_COW;
16744483
KS
426 return 0;
427}
428
fa5bb209
KS
429static int check_vma_flags(struct vm_area_struct *vma, unsigned long gup_flags)
430{
431 vm_flags_t vm_flags = vma->vm_flags;
1b2ee126
DH
432 int write = (gup_flags & FOLL_WRITE);
433 int foreign = (gup_flags & FOLL_REMOTE);
fa5bb209
KS
434
435 if (vm_flags & (VM_IO | VM_PFNMAP))
436 return -EFAULT;
437
1b2ee126 438 if (write) {
fa5bb209
KS
439 if (!(vm_flags & VM_WRITE)) {
440 if (!(gup_flags & FOLL_FORCE))
441 return -EFAULT;
442 /*
443 * We used to let the write,force case do COW in a
444 * VM_MAYWRITE VM_SHARED !VM_WRITE vma, so ptrace could
445 * set a breakpoint in a read-only mapping of an
446 * executable, without corrupting the file (yet only
447 * when that file had been opened for writing!).
448 * Anon pages in shared mappings are surprising: now
449 * just reject it.
450 */
46435364 451 if (!is_cow_mapping(vm_flags))
fa5bb209 452 return -EFAULT;
fa5bb209
KS
453 }
454 } else if (!(vm_flags & VM_READ)) {
455 if (!(gup_flags & FOLL_FORCE))
456 return -EFAULT;
457 /*
458 * Is there actually any vma we can reach here which does not
459 * have VM_MAYREAD set?
460 */
461 if (!(vm_flags & VM_MAYREAD))
462 return -EFAULT;
463 }
d61172b4
DH
464 /*
465 * gups are always data accesses, not instruction
466 * fetches, so execute=false here
467 */
468 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2 469 return -EFAULT;
fa5bb209
KS
470 return 0;
471}
472
4bbd4c77
KS
473/**
474 * __get_user_pages() - pin user pages in memory
475 * @tsk: task_struct of target task
476 * @mm: mm_struct of target mm
477 * @start: starting user address
478 * @nr_pages: number of pages from start to pin
479 * @gup_flags: flags modifying pin behaviour
480 * @pages: array that receives pointers to the pages pinned.
481 * Should be at least nr_pages long. Or NULL, if caller
482 * only intends to ensure the pages are faulted in.
483 * @vmas: array of pointers to vmas corresponding to each page.
484 * Or NULL if the caller does not require them.
485 * @nonblocking: whether waiting for disk IO or mmap_sem contention
486 *
487 * Returns number of pages pinned. This may be fewer than the number
488 * requested. If nr_pages is 0 or negative, returns 0. If no pages
489 * were pinned, returns -errno. Each page returned must be released
490 * with a put_page() call when it is finished with. vmas will only
491 * remain valid while mmap_sem is held.
492 *
9a95f3cf 493 * Must be called with mmap_sem held. It may be released. See below.
4bbd4c77
KS
494 *
495 * __get_user_pages walks a process's page tables and takes a reference to
496 * each struct page that each user address corresponds to at a given
497 * instant. That is, it takes the page that would be accessed if a user
498 * thread accesses the given user virtual address at that instant.
499 *
500 * This does not guarantee that the page exists in the user mappings when
501 * __get_user_pages returns, and there may even be a completely different
502 * page there in some cases (eg. if mmapped pagecache has been invalidated
503 * and subsequently re faulted). However it does guarantee that the page
504 * won't be freed completely. And mostly callers simply care that the page
505 * contains data that was valid *at some point in time*. Typically, an IO
506 * or similar operation cannot guarantee anything stronger anyway because
507 * locks can't be held over the syscall boundary.
508 *
509 * If @gup_flags & FOLL_WRITE == 0, the page must not be written to. If
510 * the page is written to, set_page_dirty (or set_page_dirty_lock, as
511 * appropriate) must be called after the page is finished with, and
512 * before put_page is called.
513 *
514 * If @nonblocking != NULL, __get_user_pages will not wait for disk IO
515 * or mmap_sem contention, and if waiting is needed to pin all pages,
9a95f3cf
PC
516 * *@nonblocking will be set to 0. Further, if @gup_flags does not
517 * include FOLL_NOWAIT, the mmap_sem will be released via up_read() in
518 * this case.
519 *
520 * A caller using such a combination of @nonblocking and @gup_flags
521 * must therefore hold the mmap_sem for reading only, and recognize
522 * when it's been released. Otherwise, it must be held for either
523 * reading or writing and will not be released.
4bbd4c77
KS
524 *
525 * In most cases, get_user_pages or get_user_pages_fast should be used
526 * instead of __get_user_pages. __get_user_pages should be used only if
527 * you need some special @gup_flags.
528 */
529long __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
530 unsigned long start, unsigned long nr_pages,
531 unsigned int gup_flags, struct page **pages,
532 struct vm_area_struct **vmas, int *nonblocking)
533{
fa5bb209 534 long i = 0;
4bbd4c77 535 unsigned int page_mask;
fa5bb209 536 struct vm_area_struct *vma = NULL;
4bbd4c77
KS
537
538 if (!nr_pages)
539 return 0;
540
541 VM_BUG_ON(!!pages != !!(gup_flags & FOLL_GET));
542
543 /*
544 * If FOLL_FORCE is set then do not force a full fault as the hinting
545 * fault information is unrelated to the reference behaviour of a task
546 * using the address space
547 */
548 if (!(gup_flags & FOLL_FORCE))
549 gup_flags |= FOLL_NUMA;
550
4bbd4c77 551 do {
fa5bb209
KS
552 struct page *page;
553 unsigned int foll_flags = gup_flags;
554 unsigned int page_increm;
555
556 /* first iteration or cross vma bound */
557 if (!vma || start >= vma->vm_end) {
558 vma = find_extend_vma(mm, start);
559 if (!vma && in_gate_area(mm, start)) {
560 int ret;
561 ret = get_gate_page(mm, start & PAGE_MASK,
562 gup_flags, &vma,
563 pages ? &pages[i] : NULL);
564 if (ret)
565 return i ? : ret;
566 page_mask = 0;
567 goto next_page;
568 }
4bbd4c77 569
fa5bb209
KS
570 if (!vma || check_vma_flags(vma, gup_flags))
571 return i ? : -EFAULT;
572 if (is_vm_hugetlb_page(vma)) {
573 i = follow_hugetlb_page(mm, vma, pages, vmas,
574 &start, &nr_pages, i,
575 gup_flags);
576 continue;
4bbd4c77 577 }
fa5bb209
KS
578 }
579retry:
580 /*
581 * If we have a pending SIGKILL, don't keep faulting pages and
582 * potentially allocating memory.
583 */
584 if (unlikely(fatal_signal_pending(current)))
585 return i ? i : -ERESTARTSYS;
586 cond_resched();
587 page = follow_page_mask(vma, start, foll_flags, &page_mask);
588 if (!page) {
589 int ret;
590 ret = faultin_page(tsk, vma, start, &foll_flags,
591 nonblocking);
592 switch (ret) {
593 case 0:
594 goto retry;
595 case -EFAULT:
596 case -ENOMEM:
597 case -EHWPOISON:
598 return i ? i : ret;
599 case -EBUSY:
600 return i;
601 case -ENOENT:
602 goto next_page;
4bbd4c77 603 }
fa5bb209 604 BUG();
1027e443
KS
605 } else if (PTR_ERR(page) == -EEXIST) {
606 /*
607 * Proper page table entry exists, but no corresponding
608 * struct page.
609 */
610 goto next_page;
611 } else if (IS_ERR(page)) {
fa5bb209 612 return i ? i : PTR_ERR(page);
1027e443 613 }
fa5bb209
KS
614 if (pages) {
615 pages[i] = page;
616 flush_anon_page(vma, page, start);
617 flush_dcache_page(page);
618 page_mask = 0;
4bbd4c77 619 }
4bbd4c77 620next_page:
fa5bb209
KS
621 if (vmas) {
622 vmas[i] = vma;
623 page_mask = 0;
624 }
625 page_increm = 1 + (~(start >> PAGE_SHIFT) & page_mask);
626 if (page_increm > nr_pages)
627 page_increm = nr_pages;
628 i += page_increm;
629 start += page_increm * PAGE_SIZE;
630 nr_pages -= page_increm;
4bbd4c77
KS
631 } while (nr_pages);
632 return i;
4bbd4c77
KS
633}
634EXPORT_SYMBOL(__get_user_pages);
635
d4925e00
DH
636bool vma_permits_fault(struct vm_area_struct *vma, unsigned int fault_flags)
637{
1b2ee126
DH
638 bool write = !!(fault_flags & FAULT_FLAG_WRITE);
639 bool foreign = !!(fault_flags & FAULT_FLAG_REMOTE);
33a709b2 640 vm_flags_t vm_flags = write ? VM_WRITE : VM_READ;
d4925e00
DH
641
642 if (!(vm_flags & vma->vm_flags))
643 return false;
644
33a709b2
DH
645 /*
646 * The architecture might have a hardware protection
1b2ee126 647 * mechanism other than read/write that can deny access.
d61172b4
DH
648 *
649 * gup always represents data access, not instruction
650 * fetches, so execute=false here:
33a709b2 651 */
d61172b4 652 if (!arch_vma_access_permitted(vma, write, false, foreign))
33a709b2
DH
653 return false;
654
d4925e00
DH
655 return true;
656}
657
4bbd4c77
KS
658/*
659 * fixup_user_fault() - manually resolve a user page fault
660 * @tsk: the task_struct to use for page fault accounting, or
661 * NULL if faults are not to be recorded.
662 * @mm: mm_struct of target mm
663 * @address: user address
664 * @fault_flags:flags to pass down to handle_mm_fault()
4a9e1cda
DD
665 * @unlocked: did we unlock the mmap_sem while retrying, maybe NULL if caller
666 * does not allow retry
4bbd4c77
KS
667 *
668 * This is meant to be called in the specific scenario where for locking reasons
669 * we try to access user memory in atomic context (within a pagefault_disable()
670 * section), this returns -EFAULT, and we want to resolve the user fault before
671 * trying again.
672 *
673 * Typically this is meant to be used by the futex code.
674 *
675 * The main difference with get_user_pages() is that this function will
676 * unconditionally call handle_mm_fault() which will in turn perform all the
677 * necessary SW fixup of the dirty and young bits in the PTE, while
4a9e1cda 678 * get_user_pages() only guarantees to update these in the struct page.
4bbd4c77
KS
679 *
680 * This is important for some architectures where those bits also gate the
681 * access permission to the page because they are maintained in software. On
682 * such architectures, gup() will not be enough to make a subsequent access
683 * succeed.
684 *
4a9e1cda
DD
685 * This function will not return with an unlocked mmap_sem. So it has not the
686 * same semantics wrt the @mm->mmap_sem as does filemap_fault().
4bbd4c77
KS
687 */
688int fixup_user_fault(struct task_struct *tsk, struct mm_struct *mm,
4a9e1cda
DD
689 unsigned long address, unsigned int fault_flags,
690 bool *unlocked)
4bbd4c77
KS
691{
692 struct vm_area_struct *vma;
4a9e1cda
DD
693 int ret, major = 0;
694
695 if (unlocked)
696 fault_flags |= FAULT_FLAG_ALLOW_RETRY;
4bbd4c77 697
4a9e1cda 698retry:
4bbd4c77
KS
699 vma = find_extend_vma(mm, address);
700 if (!vma || address < vma->vm_start)
701 return -EFAULT;
702
d4925e00 703 if (!vma_permits_fault(vma, fault_flags))
4bbd4c77
KS
704 return -EFAULT;
705
dcddffd4 706 ret = handle_mm_fault(vma, address, fault_flags);
4a9e1cda 707 major |= ret & VM_FAULT_MAJOR;
4bbd4c77
KS
708 if (ret & VM_FAULT_ERROR) {
709 if (ret & VM_FAULT_OOM)
710 return -ENOMEM;
711 if (ret & (VM_FAULT_HWPOISON | VM_FAULT_HWPOISON_LARGE))
712 return -EHWPOISON;
33692f27 713 if (ret & (VM_FAULT_SIGBUS | VM_FAULT_SIGSEGV))
4bbd4c77
KS
714 return -EFAULT;
715 BUG();
716 }
4a9e1cda
DD
717
718 if (ret & VM_FAULT_RETRY) {
719 down_read(&mm->mmap_sem);
720 if (!(fault_flags & FAULT_FLAG_TRIED)) {
721 *unlocked = true;
722 fault_flags &= ~FAULT_FLAG_ALLOW_RETRY;
723 fault_flags |= FAULT_FLAG_TRIED;
724 goto retry;
725 }
726 }
727
4bbd4c77 728 if (tsk) {
4a9e1cda 729 if (major)
4bbd4c77
KS
730 tsk->maj_flt++;
731 else
732 tsk->min_flt++;
733 }
734 return 0;
735}
add6a0cd 736EXPORT_SYMBOL_GPL(fixup_user_fault);
4bbd4c77 737
f0818f47
AA
738static __always_inline long __get_user_pages_locked(struct task_struct *tsk,
739 struct mm_struct *mm,
740 unsigned long start,
741 unsigned long nr_pages,
742 int write, int force,
743 struct page **pages,
744 struct vm_area_struct **vmas,
0fd71a56
AA
745 int *locked, bool notify_drop,
746 unsigned int flags)
f0818f47 747{
f0818f47
AA
748 long ret, pages_done;
749 bool lock_dropped;
750
751 if (locked) {
752 /* if VM_FAULT_RETRY can be returned, vmas become invalid */
753 BUG_ON(vmas);
754 /* check caller initialized locked */
755 BUG_ON(*locked != 1);
756 }
757
758 if (pages)
759 flags |= FOLL_GET;
760 if (write)
761 flags |= FOLL_WRITE;
762 if (force)
763 flags |= FOLL_FORCE;
764
765 pages_done = 0;
766 lock_dropped = false;
767 for (;;) {
768 ret = __get_user_pages(tsk, mm, start, nr_pages, flags, pages,
769 vmas, locked);
770 if (!locked)
771 /* VM_FAULT_RETRY couldn't trigger, bypass */
772 return ret;
773
774 /* VM_FAULT_RETRY cannot return errors */
775 if (!*locked) {
776 BUG_ON(ret < 0);
777 BUG_ON(ret >= nr_pages);
778 }
779
780 if (!pages)
781 /* If it's a prefault don't insist harder */
782 return ret;
783
784 if (ret > 0) {
785 nr_pages -= ret;
786 pages_done += ret;
787 if (!nr_pages)
788 break;
789 }
790 if (*locked) {
791 /* VM_FAULT_RETRY didn't trigger */
792 if (!pages_done)
793 pages_done = ret;
794 break;
795 }
796 /* VM_FAULT_RETRY triggered, so seek to the faulting offset */
797 pages += ret;
798 start += ret << PAGE_SHIFT;
799
800 /*
801 * Repeat on the address that fired VM_FAULT_RETRY
802 * without FAULT_FLAG_ALLOW_RETRY but with
803 * FAULT_FLAG_TRIED.
804 */
805 *locked = 1;
806 lock_dropped = true;
807 down_read(&mm->mmap_sem);
808 ret = __get_user_pages(tsk, mm, start, 1, flags | FOLL_TRIED,
809 pages, NULL, NULL);
810 if (ret != 1) {
811 BUG_ON(ret > 1);
812 if (!pages_done)
813 pages_done = ret;
814 break;
815 }
816 nr_pages--;
817 pages_done++;
818 if (!nr_pages)
819 break;
820 pages++;
821 start += PAGE_SIZE;
822 }
823 if (notify_drop && lock_dropped && *locked) {
824 /*
825 * We must let the caller know we temporarily dropped the lock
826 * and so the critical section protected by it was lost.
827 */
828 up_read(&mm->mmap_sem);
829 *locked = 0;
830 }
831 return pages_done;
832}
833
834/*
835 * We can leverage the VM_FAULT_RETRY functionality in the page fault
836 * paths better by using either get_user_pages_locked() or
837 * get_user_pages_unlocked().
838 *
839 * get_user_pages_locked() is suitable to replace the form:
840 *
841 * down_read(&mm->mmap_sem);
842 * do_something()
843 * get_user_pages(tsk, mm, ..., pages, NULL);
844 * up_read(&mm->mmap_sem);
845 *
846 * to:
847 *
848 * int locked = 1;
849 * down_read(&mm->mmap_sem);
850 * do_something()
851 * get_user_pages_locked(tsk, mm, ..., pages, &locked);
852 * if (locked)
853 * up_read(&mm->mmap_sem);
854 */
c12d2da5 855long get_user_pages_locked(unsigned long start, unsigned long nr_pages,
f0818f47
AA
856 int write, int force, struct page **pages,
857 int *locked)
858{
cde70140
DH
859 return __get_user_pages_locked(current, current->mm, start, nr_pages,
860 write, force, pages, NULL, locked, true,
861 FOLL_TOUCH);
f0818f47 862}
c12d2da5 863EXPORT_SYMBOL(get_user_pages_locked);
f0818f47 864
0fd71a56
AA
865/*
866 * Same as get_user_pages_unlocked(...., FOLL_TOUCH) but it allows to
867 * pass additional gup_flags as last parameter (like FOLL_HWPOISON).
868 *
869 * NOTE: here FOLL_TOUCH is not set implicitly and must be set by the
870 * caller if required (just like with __get_user_pages). "FOLL_GET",
871 * "FOLL_WRITE" and "FOLL_FORCE" are set implicitly as needed
872 * according to the parameters "pages", "write", "force"
873 * respectively.
874 */
875__always_inline long __get_user_pages_unlocked(struct task_struct *tsk, struct mm_struct *mm,
876 unsigned long start, unsigned long nr_pages,
877 int write, int force, struct page **pages,
878 unsigned int gup_flags)
879{
880 long ret;
881 int locked = 1;
882 down_read(&mm->mmap_sem);
883 ret = __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
884 pages, NULL, &locked, false, gup_flags);
885 if (locked)
886 up_read(&mm->mmap_sem);
887 return ret;
888}
889EXPORT_SYMBOL(__get_user_pages_unlocked);
890
f0818f47
AA
891/*
892 * get_user_pages_unlocked() is suitable to replace the form:
893 *
894 * down_read(&mm->mmap_sem);
895 * get_user_pages(tsk, mm, ..., pages, NULL);
896 * up_read(&mm->mmap_sem);
897 *
898 * with:
899 *
900 * get_user_pages_unlocked(tsk, mm, ..., pages);
901 *
902 * It is functionally equivalent to get_user_pages_fast so
903 * get_user_pages_fast should be used instead, if the two parameters
904 * "tsk" and "mm" are respectively equal to current and current->mm,
905 * or if "force" shall be set to 1 (get_user_pages_fast misses the
906 * "force" parameter).
907 */
c12d2da5 908long get_user_pages_unlocked(unsigned long start, unsigned long nr_pages,
f0818f47
AA
909 int write, int force, struct page **pages)
910{
cde70140
DH
911 return __get_user_pages_unlocked(current, current->mm, start, nr_pages,
912 write, force, pages, FOLL_TOUCH);
f0818f47 913}
c12d2da5 914EXPORT_SYMBOL(get_user_pages_unlocked);
f0818f47 915
4bbd4c77 916/*
1e987790 917 * get_user_pages_remote() - pin user pages in memory
4bbd4c77
KS
918 * @tsk: the task_struct to use for page fault accounting, or
919 * NULL if faults are not to be recorded.
920 * @mm: mm_struct of target mm
921 * @start: starting user address
922 * @nr_pages: number of pages from start to pin
923 * @write: whether pages will be written to by the caller
924 * @force: whether to force access even when user mapping is currently
925 * protected (but never forces write access to shared mapping).
926 * @pages: array that receives pointers to the pages pinned.
927 * Should be at least nr_pages long. Or NULL, if caller
928 * only intends to ensure the pages are faulted in.
929 * @vmas: array of pointers to vmas corresponding to each page.
930 * Or NULL if the caller does not require them.
931 *
932 * Returns number of pages pinned. This may be fewer than the number
933 * requested. If nr_pages is 0 or negative, returns 0. If no pages
934 * were pinned, returns -errno. Each page returned must be released
935 * with a put_page() call when it is finished with. vmas will only
936 * remain valid while mmap_sem is held.
937 *
938 * Must be called with mmap_sem held for read or write.
939 *
940 * get_user_pages walks a process's page tables and takes a reference to
941 * each struct page that each user address corresponds to at a given
942 * instant. That is, it takes the page that would be accessed if a user
943 * thread accesses the given user virtual address at that instant.
944 *
945 * This does not guarantee that the page exists in the user mappings when
946 * get_user_pages returns, and there may even be a completely different
947 * page there in some cases (eg. if mmapped pagecache has been invalidated
948 * and subsequently re faulted). However it does guarantee that the page
949 * won't be freed completely. And mostly callers simply care that the page
950 * contains data that was valid *at some point in time*. Typically, an IO
951 * or similar operation cannot guarantee anything stronger anyway because
952 * locks can't be held over the syscall boundary.
953 *
954 * If write=0, the page must not be written to. If the page is written to,
955 * set_page_dirty (or set_page_dirty_lock, as appropriate) must be called
956 * after the page is finished with, and before put_page is called.
957 *
958 * get_user_pages is typically used for fewer-copy IO operations, to get a
959 * handle on the memory by some means other than accesses via the user virtual
960 * addresses. The pages may be submitted for DMA to devices or accessed via
961 * their kernel linear mapping (via the kmap APIs). Care should be taken to
962 * use the correct cache flushing APIs.
963 *
964 * See also get_user_pages_fast, for performance critical applications.
f0818f47
AA
965 *
966 * get_user_pages should be phased out in favor of
967 * get_user_pages_locked|unlocked or get_user_pages_fast. Nothing
968 * should use get_user_pages because it cannot pass
969 * FAULT_FLAG_ALLOW_RETRY to handle_mm_fault.
4bbd4c77 970 */
1e987790
DH
971long get_user_pages_remote(struct task_struct *tsk, struct mm_struct *mm,
972 unsigned long start, unsigned long nr_pages,
973 int write, int force, struct page **pages,
974 struct vm_area_struct **vmas)
4bbd4c77 975{
f0818f47 976 return __get_user_pages_locked(tsk, mm, start, nr_pages, write, force,
1e987790
DH
977 pages, vmas, NULL, false,
978 FOLL_TOUCH | FOLL_REMOTE);
979}
980EXPORT_SYMBOL(get_user_pages_remote);
981
982/*
d4edcf0d
DH
983 * This is the same as get_user_pages_remote(), just with a
984 * less-flexible calling convention where we assume that the task
985 * and mm being operated on are the current task's. We also
986 * obviously don't pass FOLL_REMOTE in here.
1e987790 987 */
c12d2da5 988long get_user_pages(unsigned long start, unsigned long nr_pages,
1e987790
DH
989 int write, int force, struct page **pages,
990 struct vm_area_struct **vmas)
991{
cde70140 992 return __get_user_pages_locked(current, current->mm, start, nr_pages,
1e987790
DH
993 write, force, pages, vmas, NULL, false,
994 FOLL_TOUCH);
4bbd4c77 995}
c12d2da5 996EXPORT_SYMBOL(get_user_pages);
4bbd4c77 997
acc3c8d1
KS
998/**
999 * populate_vma_page_range() - populate a range of pages in the vma.
1000 * @vma: target vma
1001 * @start: start address
1002 * @end: end address
1003 * @nonblocking:
1004 *
1005 * This takes care of mlocking the pages too if VM_LOCKED is set.
1006 *
1007 * return 0 on success, negative error code on error.
1008 *
1009 * vma->vm_mm->mmap_sem must be held.
1010 *
1011 * If @nonblocking is NULL, it may be held for read or write and will
1012 * be unperturbed.
1013 *
1014 * If @nonblocking is non-NULL, it must held for read only and may be
1015 * released. If it's released, *@nonblocking will be set to 0.
1016 */
1017long populate_vma_page_range(struct vm_area_struct *vma,
1018 unsigned long start, unsigned long end, int *nonblocking)
1019{
1020 struct mm_struct *mm = vma->vm_mm;
1021 unsigned long nr_pages = (end - start) / PAGE_SIZE;
1022 int gup_flags;
1023
1024 VM_BUG_ON(start & ~PAGE_MASK);
1025 VM_BUG_ON(end & ~PAGE_MASK);
1026 VM_BUG_ON_VMA(start < vma->vm_start, vma);
1027 VM_BUG_ON_VMA(end > vma->vm_end, vma);
1028 VM_BUG_ON_MM(!rwsem_is_locked(&mm->mmap_sem), mm);
1029
de60f5f1
EM
1030 gup_flags = FOLL_TOUCH | FOLL_POPULATE | FOLL_MLOCK;
1031 if (vma->vm_flags & VM_LOCKONFAULT)
1032 gup_flags &= ~FOLL_POPULATE;
acc3c8d1
KS
1033 /*
1034 * We want to touch writable mappings with a write fault in order
1035 * to break COW, except for shared mappings because these don't COW
1036 * and we would not want to dirty them for nothing.
1037 */
1038 if ((vma->vm_flags & (VM_WRITE | VM_SHARED)) == VM_WRITE)
1039 gup_flags |= FOLL_WRITE;
1040
1041 /*
1042 * We want mlock to succeed for regions that have any permissions
1043 * other than PROT_NONE.
1044 */
1045 if (vma->vm_flags & (VM_READ | VM_WRITE | VM_EXEC))
1046 gup_flags |= FOLL_FORCE;
1047
1048 /*
1049 * We made sure addr is within a VMA, so the following will
1050 * not result in a stack expansion that recurses back here.
1051 */
1052 return __get_user_pages(current, mm, start, nr_pages, gup_flags,
1053 NULL, NULL, nonblocking);
1054}
1055
1056/*
1057 * __mm_populate - populate and/or mlock pages within a range of address space.
1058 *
1059 * This is used to implement mlock() and the MAP_POPULATE / MAP_LOCKED mmap
1060 * flags. VMAs must be already marked with the desired vm_flags, and
1061 * mmap_sem must not be held.
1062 */
1063int __mm_populate(unsigned long start, unsigned long len, int ignore_errors)
1064{
1065 struct mm_struct *mm = current->mm;
1066 unsigned long end, nstart, nend;
1067 struct vm_area_struct *vma = NULL;
1068 int locked = 0;
1069 long ret = 0;
1070
1071 VM_BUG_ON(start & ~PAGE_MASK);
1072 VM_BUG_ON(len != PAGE_ALIGN(len));
1073 end = start + len;
1074
1075 for (nstart = start; nstart < end; nstart = nend) {
1076 /*
1077 * We want to fault in pages for [nstart; end) address range.
1078 * Find first corresponding VMA.
1079 */
1080 if (!locked) {
1081 locked = 1;
1082 down_read(&mm->mmap_sem);
1083 vma = find_vma(mm, nstart);
1084 } else if (nstart >= vma->vm_end)
1085 vma = vma->vm_next;
1086 if (!vma || vma->vm_start >= end)
1087 break;
1088 /*
1089 * Set [nstart; nend) to intersection of desired address
1090 * range with the first VMA. Also, skip undesirable VMA types.
1091 */
1092 nend = min(end, vma->vm_end);
1093 if (vma->vm_flags & (VM_IO | VM_PFNMAP))
1094 continue;
1095 if (nstart < vma->vm_start)
1096 nstart = vma->vm_start;
1097 /*
1098 * Now fault in a range of pages. populate_vma_page_range()
1099 * double checks the vma flags, so that it won't mlock pages
1100 * if the vma was already munlocked.
1101 */
1102 ret = populate_vma_page_range(vma, nstart, nend, &locked);
1103 if (ret < 0) {
1104 if (ignore_errors) {
1105 ret = 0;
1106 continue; /* continue at next VMA */
1107 }
1108 break;
1109 }
1110 nend = nstart + ret * PAGE_SIZE;
1111 ret = 0;
1112 }
1113 if (locked)
1114 up_read(&mm->mmap_sem);
1115 return ret; /* 0 or negative error code */
1116}
1117
4bbd4c77
KS
1118/**
1119 * get_dump_page() - pin user page in memory while writing it to core dump
1120 * @addr: user address
1121 *
1122 * Returns struct page pointer of user page pinned for dump,
ea1754a0 1123 * to be freed afterwards by put_page().
4bbd4c77
KS
1124 *
1125 * Returns NULL on any kind of failure - a hole must then be inserted into
1126 * the corefile, to preserve alignment with its headers; and also returns
1127 * NULL wherever the ZERO_PAGE, or an anonymous pte_none, has been found -
1128 * allowing a hole to be left in the corefile to save diskspace.
1129 *
1130 * Called without mmap_sem, but after all other threads have been killed.
1131 */
1132#ifdef CONFIG_ELF_CORE
1133struct page *get_dump_page(unsigned long addr)
1134{
1135 struct vm_area_struct *vma;
1136 struct page *page;
1137
1138 if (__get_user_pages(current, current->mm, addr, 1,
1139 FOLL_FORCE | FOLL_DUMP | FOLL_GET, &page, &vma,
1140 NULL) < 1)
1141 return NULL;
1142 flush_cache_page(vma, addr, page_to_pfn(page));
1143 return page;
1144}
1145#endif /* CONFIG_ELF_CORE */
2667f50e
SC
1146
1147/*
1148 * Generic RCU Fast GUP
1149 *
1150 * get_user_pages_fast attempts to pin user pages by walking the page
1151 * tables directly and avoids taking locks. Thus the walker needs to be
1152 * protected from page table pages being freed from under it, and should
1153 * block any THP splits.
1154 *
1155 * One way to achieve this is to have the walker disable interrupts, and
1156 * rely on IPIs from the TLB flushing code blocking before the page table
1157 * pages are freed. This is unsuitable for architectures that do not need
1158 * to broadcast an IPI when invalidating TLBs.
1159 *
1160 * Another way to achieve this is to batch up page table containing pages
1161 * belonging to more than one mm_user, then rcu_sched a callback to free those
1162 * pages. Disabling interrupts will allow the fast_gup walker to both block
1163 * the rcu_sched callback, and an IPI that we broadcast for splitting THPs
1164 * (which is a relatively rare event). The code below adopts this strategy.
1165 *
1166 * Before activating this code, please be aware that the following assumptions
1167 * are currently made:
1168 *
1169 * *) HAVE_RCU_TABLE_FREE is enabled, and tlb_remove_table is used to free
1170 * pages containing page tables.
1171 *
2667f50e
SC
1172 * *) ptes can be read atomically by the architecture.
1173 *
1174 * *) access_ok is sufficient to validate userspace address ranges.
1175 *
1176 * The last two assumptions can be relaxed by the addition of helper functions.
1177 *
1178 * This code is based heavily on the PowerPC implementation by Nick Piggin.
1179 */
1180#ifdef CONFIG_HAVE_GENERIC_RCU_GUP
1181
1182#ifdef __HAVE_ARCH_PTE_SPECIAL
1183static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1184 int write, struct page **pages, int *nr)
1185{
1186 pte_t *ptep, *ptem;
1187 int ret = 0;
1188
1189 ptem = ptep = pte_offset_map(&pmd, addr);
1190 do {
1191 /*
1192 * In the line below we are assuming that the pte can be read
1193 * atomically. If this is not the case for your architecture,
1194 * please wrap this in a helper function!
1195 *
1196 * for an example see gup_get_pte in arch/x86/mm/gup.c
1197 */
9d8c47e4 1198 pte_t pte = READ_ONCE(*ptep);
7aef4172 1199 struct page *head, *page;
2667f50e
SC
1200
1201 /*
1202 * Similar to the PMD case below, NUMA hinting must take slow
8a0516ed 1203 * path using the pte_protnone check.
2667f50e
SC
1204 */
1205 if (!pte_present(pte) || pte_special(pte) ||
8a0516ed 1206 pte_protnone(pte) || (write && !pte_write(pte)))
2667f50e
SC
1207 goto pte_unmap;
1208
33a709b2
DH
1209 if (!arch_pte_access_permitted(pte, write))
1210 goto pte_unmap;
1211
2667f50e
SC
1212 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
1213 page = pte_page(pte);
7aef4172 1214 head = compound_head(page);
2667f50e 1215
7aef4172 1216 if (!page_cache_get_speculative(head))
2667f50e
SC
1217 goto pte_unmap;
1218
1219 if (unlikely(pte_val(pte) != pte_val(*ptep))) {
7aef4172 1220 put_page(head);
2667f50e
SC
1221 goto pte_unmap;
1222 }
1223
7aef4172 1224 VM_BUG_ON_PAGE(compound_head(page) != head, page);
2667f50e
SC
1225 pages[*nr] = page;
1226 (*nr)++;
1227
1228 } while (ptep++, addr += PAGE_SIZE, addr != end);
1229
1230 ret = 1;
1231
1232pte_unmap:
1233 pte_unmap(ptem);
1234 return ret;
1235}
1236#else
1237
1238/*
1239 * If we can't determine whether or not a pte is special, then fail immediately
1240 * for ptes. Note, we can still pin HugeTLB and THP as these are guaranteed not
1241 * to be special.
1242 *
1243 * For a futex to be placed on a THP tail page, get_futex_key requires a
1244 * __get_user_pages_fast implementation that can pin pages. Thus it's still
1245 * useful to have gup_huge_pmd even if we can't operate on ptes.
1246 */
1247static int gup_pte_range(pmd_t pmd, unsigned long addr, unsigned long end,
1248 int write, struct page **pages, int *nr)
1249{
1250 return 0;
1251}
1252#endif /* __HAVE_ARCH_PTE_SPECIAL */
1253
1254static int gup_huge_pmd(pmd_t orig, pmd_t *pmdp, unsigned long addr,
1255 unsigned long end, int write, struct page **pages, int *nr)
1256{
ddc58f27 1257 struct page *head, *page;
2667f50e
SC
1258 int refs;
1259
1260 if (write && !pmd_write(orig))
1261 return 0;
1262
1263 refs = 0;
1264 head = pmd_page(orig);
1265 page = head + ((addr & ~PMD_MASK) >> PAGE_SHIFT);
2667f50e
SC
1266 do {
1267 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1268 pages[*nr] = page;
1269 (*nr)++;
1270 page++;
1271 refs++;
1272 } while (addr += PAGE_SIZE, addr != end);
1273
1274 if (!page_cache_add_speculative(head, refs)) {
1275 *nr -= refs;
1276 return 0;
1277 }
1278
1279 if (unlikely(pmd_val(orig) != pmd_val(*pmdp))) {
1280 *nr -= refs;
1281 while (refs--)
1282 put_page(head);
1283 return 0;
1284 }
1285
2667f50e
SC
1286 return 1;
1287}
1288
1289static int gup_huge_pud(pud_t orig, pud_t *pudp, unsigned long addr,
1290 unsigned long end, int write, struct page **pages, int *nr)
1291{
ddc58f27 1292 struct page *head, *page;
2667f50e
SC
1293 int refs;
1294
1295 if (write && !pud_write(orig))
1296 return 0;
1297
1298 refs = 0;
1299 head = pud_page(orig);
1300 page = head + ((addr & ~PUD_MASK) >> PAGE_SHIFT);
2667f50e
SC
1301 do {
1302 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1303 pages[*nr] = page;
1304 (*nr)++;
1305 page++;
1306 refs++;
1307 } while (addr += PAGE_SIZE, addr != end);
1308
1309 if (!page_cache_add_speculative(head, refs)) {
1310 *nr -= refs;
1311 return 0;
1312 }
1313
1314 if (unlikely(pud_val(orig) != pud_val(*pudp))) {
1315 *nr -= refs;
1316 while (refs--)
1317 put_page(head);
1318 return 0;
1319 }
1320
2667f50e
SC
1321 return 1;
1322}
1323
f30c59e9
AK
1324static int gup_huge_pgd(pgd_t orig, pgd_t *pgdp, unsigned long addr,
1325 unsigned long end, int write,
1326 struct page **pages, int *nr)
1327{
1328 int refs;
ddc58f27 1329 struct page *head, *page;
f30c59e9
AK
1330
1331 if (write && !pgd_write(orig))
1332 return 0;
1333
1334 refs = 0;
1335 head = pgd_page(orig);
1336 page = head + ((addr & ~PGDIR_MASK) >> PAGE_SHIFT);
f30c59e9
AK
1337 do {
1338 VM_BUG_ON_PAGE(compound_head(page) != head, page);
1339 pages[*nr] = page;
1340 (*nr)++;
1341 page++;
1342 refs++;
1343 } while (addr += PAGE_SIZE, addr != end);
1344
1345 if (!page_cache_add_speculative(head, refs)) {
1346 *nr -= refs;
1347 return 0;
1348 }
1349
1350 if (unlikely(pgd_val(orig) != pgd_val(*pgdp))) {
1351 *nr -= refs;
1352 while (refs--)
1353 put_page(head);
1354 return 0;
1355 }
1356
f30c59e9
AK
1357 return 1;
1358}
1359
2667f50e
SC
1360static int gup_pmd_range(pud_t pud, unsigned long addr, unsigned long end,
1361 int write, struct page **pages, int *nr)
1362{
1363 unsigned long next;
1364 pmd_t *pmdp;
1365
1366 pmdp = pmd_offset(&pud, addr);
1367 do {
38c5ce93 1368 pmd_t pmd = READ_ONCE(*pmdp);
2667f50e
SC
1369
1370 next = pmd_addr_end(addr, end);
4b471e88 1371 if (pmd_none(pmd))
2667f50e
SC
1372 return 0;
1373
1374 if (unlikely(pmd_trans_huge(pmd) || pmd_huge(pmd))) {
1375 /*
1376 * NUMA hinting faults need to be handled in the GUP
1377 * slowpath for accounting purposes and so that they
1378 * can be serialised against THP migration.
1379 */
8a0516ed 1380 if (pmd_protnone(pmd))
2667f50e
SC
1381 return 0;
1382
1383 if (!gup_huge_pmd(pmd, pmdp, addr, next, write,
1384 pages, nr))
1385 return 0;
1386
f30c59e9
AK
1387 } else if (unlikely(is_hugepd(__hugepd(pmd_val(pmd))))) {
1388 /*
1389 * architecture have different format for hugetlbfs
1390 * pmd format and THP pmd format
1391 */
1392 if (!gup_huge_pd(__hugepd(pmd_val(pmd)), addr,
1393 PMD_SHIFT, next, write, pages, nr))
1394 return 0;
2667f50e
SC
1395 } else if (!gup_pte_range(pmd, addr, next, write, pages, nr))
1396 return 0;
1397 } while (pmdp++, addr = next, addr != end);
1398
1399 return 1;
1400}
1401
f30c59e9
AK
1402static int gup_pud_range(pgd_t pgd, unsigned long addr, unsigned long end,
1403 int write, struct page **pages, int *nr)
2667f50e
SC
1404{
1405 unsigned long next;
1406 pud_t *pudp;
1407
f30c59e9 1408 pudp = pud_offset(&pgd, addr);
2667f50e 1409 do {
e37c6982 1410 pud_t pud = READ_ONCE(*pudp);
2667f50e
SC
1411
1412 next = pud_addr_end(addr, end);
1413 if (pud_none(pud))
1414 return 0;
f30c59e9 1415 if (unlikely(pud_huge(pud))) {
2667f50e 1416 if (!gup_huge_pud(pud, pudp, addr, next, write,
f30c59e9
AK
1417 pages, nr))
1418 return 0;
1419 } else if (unlikely(is_hugepd(__hugepd(pud_val(pud))))) {
1420 if (!gup_huge_pd(__hugepd(pud_val(pud)), addr,
1421 PUD_SHIFT, next, write, pages, nr))
2667f50e
SC
1422 return 0;
1423 } else if (!gup_pmd_range(pud, addr, next, write, pages, nr))
1424 return 0;
1425 } while (pudp++, addr = next, addr != end);
1426
1427 return 1;
1428}
1429
1430/*
1431 * Like get_user_pages_fast() except it's IRQ-safe in that it won't fall back to
1432 * the regular GUP. It will only return non-negative values.
1433 */
1434int __get_user_pages_fast(unsigned long start, int nr_pages, int write,
1435 struct page **pages)
1436{
1437 struct mm_struct *mm = current->mm;
1438 unsigned long addr, len, end;
1439 unsigned long next, flags;
1440 pgd_t *pgdp;
1441 int nr = 0;
1442
1443 start &= PAGE_MASK;
1444 addr = start;
1445 len = (unsigned long) nr_pages << PAGE_SHIFT;
1446 end = start + len;
1447
1448 if (unlikely(!access_ok(write ? VERIFY_WRITE : VERIFY_READ,
1449 start, len)))
1450 return 0;
1451
1452 /*
1453 * Disable interrupts. We use the nested form as we can already have
1454 * interrupts disabled by get_futex_key.
1455 *
1456 * With interrupts disabled, we block page table pages from being
1457 * freed from under us. See mmu_gather_tlb in asm-generic/tlb.h
1458 * for more details.
1459 *
1460 * We do not adopt an rcu_read_lock(.) here as we also want to
1461 * block IPIs that come from THPs splitting.
1462 */
1463
1464 local_irq_save(flags);
1465 pgdp = pgd_offset(mm, addr);
1466 do {
9d8c47e4 1467 pgd_t pgd = READ_ONCE(*pgdp);
f30c59e9 1468
2667f50e 1469 next = pgd_addr_end(addr, end);
f30c59e9 1470 if (pgd_none(pgd))
2667f50e 1471 break;
f30c59e9
AK
1472 if (unlikely(pgd_huge(pgd))) {
1473 if (!gup_huge_pgd(pgd, pgdp, addr, next, write,
1474 pages, &nr))
1475 break;
1476 } else if (unlikely(is_hugepd(__hugepd(pgd_val(pgd))))) {
1477 if (!gup_huge_pd(__hugepd(pgd_val(pgd)), addr,
1478 PGDIR_SHIFT, next, write, pages, &nr))
1479 break;
1480 } else if (!gup_pud_range(pgd, addr, next, write, pages, &nr))
2667f50e
SC
1481 break;
1482 } while (pgdp++, addr = next, addr != end);
1483 local_irq_restore(flags);
1484
1485 return nr;
1486}
1487
1488/**
1489 * get_user_pages_fast() - pin user pages in memory
1490 * @start: starting user address
1491 * @nr_pages: number of pages from start to pin
1492 * @write: whether pages will be written to
1493 * @pages: array that receives pointers to the pages pinned.
1494 * Should be at least nr_pages long.
1495 *
1496 * Attempt to pin user pages in memory without taking mm->mmap_sem.
1497 * If not successful, it will fall back to taking the lock and
1498 * calling get_user_pages().
1499 *
1500 * Returns number of pages pinned. This may be fewer than the number
1501 * requested. If nr_pages is 0 or negative, returns 0. If no pages
1502 * were pinned, returns -errno.
1503 */
1504int get_user_pages_fast(unsigned long start, int nr_pages, int write,
1505 struct page **pages)
1506{
2667f50e
SC
1507 int nr, ret;
1508
1509 start &= PAGE_MASK;
1510 nr = __get_user_pages_fast(start, nr_pages, write, pages);
1511 ret = nr;
1512
1513 if (nr < nr_pages) {
1514 /* Try to get the remaining pages with get_user_pages */
1515 start += nr << PAGE_SHIFT;
1516 pages += nr;
1517
c12d2da5 1518 ret = get_user_pages_unlocked(start, nr_pages - nr, write, 0, pages);
2667f50e
SC
1519
1520 /* Have to be a bit careful with return values */
1521 if (nr > 0) {
1522 if (ret < 0)
1523 ret = nr;
1524 else
1525 ret += nr;
1526 }
1527 }
1528
1529 return ret;
1530}
1531
1532#endif /* CONFIG_HAVE_GENERIC_RCU_GUP */
This page took 0.194566 seconds and 5 git commands to generate.