mm, cma: prevent nr_isolated_* counters from going negative
[deliverable/linux.git] / mm / hugetlb.c
CommitLineData
1da177e4
LT
1/*
2 * Generic hugetlb support.
6d49e352 3 * (C) Nadia Yvette Chambers, April 2004
1da177e4 4 */
1da177e4
LT
5#include <linux/list.h>
6#include <linux/init.h>
1da177e4 7#include <linux/mm.h>
e1759c21 8#include <linux/seq_file.h>
1da177e4
LT
9#include <linux/sysctl.h>
10#include <linux/highmem.h>
cddb8a5c 11#include <linux/mmu_notifier.h>
1da177e4 12#include <linux/nodemask.h>
63551ae0 13#include <linux/pagemap.h>
5da7ca86 14#include <linux/mempolicy.h>
3b32123d 15#include <linux/compiler.h>
aea47ff3 16#include <linux/cpuset.h>
3935baa9 17#include <linux/mutex.h>
aa888a74 18#include <linux/bootmem.h>
a3437870 19#include <linux/sysfs.h>
5a0e3ad6 20#include <linux/slab.h>
0fe6e20b 21#include <linux/rmap.h>
fd6a03ed
NH
22#include <linux/swap.h>
23#include <linux/swapops.h>
c8721bbb 24#include <linux/page-isolation.h>
8382d914 25#include <linux/jhash.h>
d6606683 26
63551ae0
DG
27#include <asm/page.h>
28#include <asm/pgtable.h>
24669e58 29#include <asm/tlb.h>
63551ae0 30
24669e58 31#include <linux/io.h>
63551ae0 32#include <linux/hugetlb.h>
9dd540e2 33#include <linux/hugetlb_cgroup.h>
9a305230 34#include <linux/node.h>
7835e98b 35#include "internal.h"
1da177e4 36
753162cd 37int hugepages_treat_as_movable;
a5516438 38
c3f38a38 39int hugetlb_max_hstate __read_mostly;
e5ff2159
AK
40unsigned int default_hstate_idx;
41struct hstate hstates[HUGE_MAX_HSTATE];
641844f5
NH
42/*
43 * Minimum page order among possible hugepage sizes, set to a proper value
44 * at boot time.
45 */
46static unsigned int minimum_order __read_mostly = UINT_MAX;
e5ff2159 47
53ba51d2
JT
48__initdata LIST_HEAD(huge_boot_pages);
49
e5ff2159
AK
50/* for command line parsing */
51static struct hstate * __initdata parsed_hstate;
52static unsigned long __initdata default_hstate_max_huge_pages;
e11bfbfc 53static unsigned long __initdata default_hstate_size;
e5ff2159 54
3935baa9 55/*
31caf665
NH
56 * Protects updates to hugepage_freelists, hugepage_activelist, nr_huge_pages,
57 * free_huge_pages, and surplus_huge_pages.
3935baa9 58 */
c3f38a38 59DEFINE_SPINLOCK(hugetlb_lock);
0bd0f9fb 60
8382d914
DB
61/*
62 * Serializes faults on the same logical page. This is used to
63 * prevent spurious OOMs when the hugepage pool is fully utilized.
64 */
65static int num_fault_mutexes;
c672c7f2 66struct mutex *hugetlb_fault_mutex_table ____cacheline_aligned_in_smp;
8382d914 67
7ca02d0a
MK
68/* Forward declaration */
69static int hugetlb_acct_memory(struct hstate *h, long delta);
70
90481622
DG
71static inline void unlock_or_release_subpool(struct hugepage_subpool *spool)
72{
73 bool free = (spool->count == 0) && (spool->used_hpages == 0);
74
75 spin_unlock(&spool->lock);
76
77 /* If no pages are used, and no other handles to the subpool
7ca02d0a
MK
78 * remain, give up any reservations mased on minimum size and
79 * free the subpool */
80 if (free) {
81 if (spool->min_hpages != -1)
82 hugetlb_acct_memory(spool->hstate,
83 -spool->min_hpages);
90481622 84 kfree(spool);
7ca02d0a 85 }
90481622
DG
86}
87
7ca02d0a
MK
88struct hugepage_subpool *hugepage_new_subpool(struct hstate *h, long max_hpages,
89 long min_hpages)
90481622
DG
90{
91 struct hugepage_subpool *spool;
92
c6a91820 93 spool = kzalloc(sizeof(*spool), GFP_KERNEL);
90481622
DG
94 if (!spool)
95 return NULL;
96
97 spin_lock_init(&spool->lock);
98 spool->count = 1;
7ca02d0a
MK
99 spool->max_hpages = max_hpages;
100 spool->hstate = h;
101 spool->min_hpages = min_hpages;
102
103 if (min_hpages != -1 && hugetlb_acct_memory(h, min_hpages)) {
104 kfree(spool);
105 return NULL;
106 }
107 spool->rsv_hpages = min_hpages;
90481622
DG
108
109 return spool;
110}
111
112void hugepage_put_subpool(struct hugepage_subpool *spool)
113{
114 spin_lock(&spool->lock);
115 BUG_ON(!spool->count);
116 spool->count--;
117 unlock_or_release_subpool(spool);
118}
119
1c5ecae3
MK
120/*
121 * Subpool accounting for allocating and reserving pages.
122 * Return -ENOMEM if there are not enough resources to satisfy the
123 * the request. Otherwise, return the number of pages by which the
124 * global pools must be adjusted (upward). The returned value may
125 * only be different than the passed value (delta) in the case where
126 * a subpool minimum size must be manitained.
127 */
128static long hugepage_subpool_get_pages(struct hugepage_subpool *spool,
90481622
DG
129 long delta)
130{
1c5ecae3 131 long ret = delta;
90481622
DG
132
133 if (!spool)
1c5ecae3 134 return ret;
90481622
DG
135
136 spin_lock(&spool->lock);
1c5ecae3
MK
137
138 if (spool->max_hpages != -1) { /* maximum size accounting */
139 if ((spool->used_hpages + delta) <= spool->max_hpages)
140 spool->used_hpages += delta;
141 else {
142 ret = -ENOMEM;
143 goto unlock_ret;
144 }
90481622 145 }
90481622 146
1c5ecae3
MK
147 if (spool->min_hpages != -1) { /* minimum size accounting */
148 if (delta > spool->rsv_hpages) {
149 /*
150 * Asking for more reserves than those already taken on
151 * behalf of subpool. Return difference.
152 */
153 ret = delta - spool->rsv_hpages;
154 spool->rsv_hpages = 0;
155 } else {
156 ret = 0; /* reserves already accounted for */
157 spool->rsv_hpages -= delta;
158 }
159 }
160
161unlock_ret:
162 spin_unlock(&spool->lock);
90481622
DG
163 return ret;
164}
165
1c5ecae3
MK
166/*
167 * Subpool accounting for freeing and unreserving pages.
168 * Return the number of global page reservations that must be dropped.
169 * The return value may only be different than the passed value (delta)
170 * in the case where a subpool minimum size must be maintained.
171 */
172static long hugepage_subpool_put_pages(struct hugepage_subpool *spool,
90481622
DG
173 long delta)
174{
1c5ecae3
MK
175 long ret = delta;
176
90481622 177 if (!spool)
1c5ecae3 178 return delta;
90481622
DG
179
180 spin_lock(&spool->lock);
1c5ecae3
MK
181
182 if (spool->max_hpages != -1) /* maximum size accounting */
183 spool->used_hpages -= delta;
184
185 if (spool->min_hpages != -1) { /* minimum size accounting */
186 if (spool->rsv_hpages + delta <= spool->min_hpages)
187 ret = 0;
188 else
189 ret = spool->rsv_hpages + delta - spool->min_hpages;
190
191 spool->rsv_hpages += delta;
192 if (spool->rsv_hpages > spool->min_hpages)
193 spool->rsv_hpages = spool->min_hpages;
194 }
195
196 /*
197 * If hugetlbfs_put_super couldn't free spool due to an outstanding
198 * quota reference, free it now.
199 */
90481622 200 unlock_or_release_subpool(spool);
1c5ecae3
MK
201
202 return ret;
90481622
DG
203}
204
205static inline struct hugepage_subpool *subpool_inode(struct inode *inode)
206{
207 return HUGETLBFS_SB(inode->i_sb)->spool;
208}
209
210static inline struct hugepage_subpool *subpool_vma(struct vm_area_struct *vma)
211{
496ad9aa 212 return subpool_inode(file_inode(vma->vm_file));
90481622
DG
213}
214
96822904
AW
215/*
216 * Region tracking -- allows tracking of reservations and instantiated pages
217 * across the pages in a mapping.
84afd99b 218 *
1dd308a7
MK
219 * The region data structures are embedded into a resv_map and protected
220 * by a resv_map's lock. The set of regions within the resv_map represent
221 * reservations for huge pages, or huge pages that have already been
222 * instantiated within the map. The from and to elements are huge page
223 * indicies into the associated mapping. from indicates the starting index
224 * of the region. to represents the first index past the end of the region.
225 *
226 * For example, a file region structure with from == 0 and to == 4 represents
227 * four huge pages in a mapping. It is important to note that the to element
228 * represents the first element past the end of the region. This is used in
229 * arithmetic as 4(to) - 0(from) = 4 huge pages in the region.
230 *
231 * Interval notation of the form [from, to) will be used to indicate that
232 * the endpoint from is inclusive and to is exclusive.
96822904
AW
233 */
234struct file_region {
235 struct list_head link;
236 long from;
237 long to;
238};
239
1dd308a7
MK
240/*
241 * Add the huge page range represented by [f, t) to the reserve
5e911373
MK
242 * map. In the normal case, existing regions will be expanded
243 * to accommodate the specified range. Sufficient regions should
244 * exist for expansion due to the previous call to region_chg
245 * with the same range. However, it is possible that region_del
246 * could have been called after region_chg and modifed the map
247 * in such a way that no region exists to be expanded. In this
248 * case, pull a region descriptor from the cache associated with
249 * the map and use that for the new range.
cf3ad20b
MK
250 *
251 * Return the number of new huge pages added to the map. This
252 * number is greater than or equal to zero.
1dd308a7 253 */
1406ec9b 254static long region_add(struct resv_map *resv, long f, long t)
96822904 255{
1406ec9b 256 struct list_head *head = &resv->regions;
96822904 257 struct file_region *rg, *nrg, *trg;
cf3ad20b 258 long add = 0;
96822904 259
7b24d861 260 spin_lock(&resv->lock);
96822904
AW
261 /* Locate the region we are either in or before. */
262 list_for_each_entry(rg, head, link)
263 if (f <= rg->to)
264 break;
265
5e911373
MK
266 /*
267 * If no region exists which can be expanded to include the
268 * specified range, the list must have been modified by an
269 * interleving call to region_del(). Pull a region descriptor
270 * from the cache and use it for this range.
271 */
272 if (&rg->link == head || t < rg->from) {
273 VM_BUG_ON(resv->region_cache_count <= 0);
274
275 resv->region_cache_count--;
276 nrg = list_first_entry(&resv->region_cache, struct file_region,
277 link);
278 list_del(&nrg->link);
279
280 nrg->from = f;
281 nrg->to = t;
282 list_add(&nrg->link, rg->link.prev);
283
284 add += t - f;
285 goto out_locked;
286 }
287
96822904
AW
288 /* Round our left edge to the current segment if it encloses us. */
289 if (f > rg->from)
290 f = rg->from;
291
292 /* Check for and consume any regions we now overlap with. */
293 nrg = rg;
294 list_for_each_entry_safe(rg, trg, rg->link.prev, link) {
295 if (&rg->link == head)
296 break;
297 if (rg->from > t)
298 break;
299
300 /* If this area reaches higher then extend our area to
301 * include it completely. If this is not the first area
302 * which we intend to reuse, free it. */
303 if (rg->to > t)
304 t = rg->to;
305 if (rg != nrg) {
cf3ad20b
MK
306 /* Decrement return value by the deleted range.
307 * Another range will span this area so that by
308 * end of routine add will be >= zero
309 */
310 add -= (rg->to - rg->from);
96822904
AW
311 list_del(&rg->link);
312 kfree(rg);
313 }
314 }
cf3ad20b
MK
315
316 add += (nrg->from - f); /* Added to beginning of region */
96822904 317 nrg->from = f;
cf3ad20b 318 add += t - nrg->to; /* Added to end of region */
96822904 319 nrg->to = t;
cf3ad20b 320
5e911373
MK
321out_locked:
322 resv->adds_in_progress--;
7b24d861 323 spin_unlock(&resv->lock);
cf3ad20b
MK
324 VM_BUG_ON(add < 0);
325 return add;
96822904
AW
326}
327
1dd308a7
MK
328/*
329 * Examine the existing reserve map and determine how many
330 * huge pages in the specified range [f, t) are NOT currently
331 * represented. This routine is called before a subsequent
332 * call to region_add that will actually modify the reserve
333 * map to add the specified range [f, t). region_chg does
334 * not change the number of huge pages represented by the
335 * map. However, if the existing regions in the map can not
336 * be expanded to represent the new range, a new file_region
337 * structure is added to the map as a placeholder. This is
338 * so that the subsequent region_add call will have all the
339 * regions it needs and will not fail.
340 *
5e911373
MK
341 * Upon entry, region_chg will also examine the cache of region descriptors
342 * associated with the map. If there are not enough descriptors cached, one
343 * will be allocated for the in progress add operation.
344 *
345 * Returns the number of huge pages that need to be added to the existing
346 * reservation map for the range [f, t). This number is greater or equal to
347 * zero. -ENOMEM is returned if a new file_region structure or cache entry
348 * is needed and can not be allocated.
1dd308a7 349 */
1406ec9b 350static long region_chg(struct resv_map *resv, long f, long t)
96822904 351{
1406ec9b 352 struct list_head *head = &resv->regions;
7b24d861 353 struct file_region *rg, *nrg = NULL;
96822904
AW
354 long chg = 0;
355
7b24d861
DB
356retry:
357 spin_lock(&resv->lock);
5e911373
MK
358retry_locked:
359 resv->adds_in_progress++;
360
361 /*
362 * Check for sufficient descriptors in the cache to accommodate
363 * the number of in progress add operations.
364 */
365 if (resv->adds_in_progress > resv->region_cache_count) {
366 struct file_region *trg;
367
368 VM_BUG_ON(resv->adds_in_progress - resv->region_cache_count > 1);
369 /* Must drop lock to allocate a new descriptor. */
370 resv->adds_in_progress--;
371 spin_unlock(&resv->lock);
372
373 trg = kmalloc(sizeof(*trg), GFP_KERNEL);
dbe409e4
MK
374 if (!trg) {
375 kfree(nrg);
5e911373 376 return -ENOMEM;
dbe409e4 377 }
5e911373
MK
378
379 spin_lock(&resv->lock);
380 list_add(&trg->link, &resv->region_cache);
381 resv->region_cache_count++;
382 goto retry_locked;
383 }
384
96822904
AW
385 /* Locate the region we are before or in. */
386 list_for_each_entry(rg, head, link)
387 if (f <= rg->to)
388 break;
389
390 /* If we are below the current region then a new region is required.
391 * Subtle, allocate a new region at the position but make it zero
392 * size such that we can guarantee to record the reservation. */
393 if (&rg->link == head || t < rg->from) {
7b24d861 394 if (!nrg) {
5e911373 395 resv->adds_in_progress--;
7b24d861
DB
396 spin_unlock(&resv->lock);
397 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
398 if (!nrg)
399 return -ENOMEM;
400
401 nrg->from = f;
402 nrg->to = f;
403 INIT_LIST_HEAD(&nrg->link);
404 goto retry;
405 }
96822904 406
7b24d861
DB
407 list_add(&nrg->link, rg->link.prev);
408 chg = t - f;
409 goto out_nrg;
96822904
AW
410 }
411
412 /* Round our left edge to the current segment if it encloses us. */
413 if (f > rg->from)
414 f = rg->from;
415 chg = t - f;
416
417 /* Check for and consume any regions we now overlap with. */
418 list_for_each_entry(rg, rg->link.prev, link) {
419 if (&rg->link == head)
420 break;
421 if (rg->from > t)
7b24d861 422 goto out;
96822904 423
25985edc 424 /* We overlap with this area, if it extends further than
96822904
AW
425 * us then we must extend ourselves. Account for its
426 * existing reservation. */
427 if (rg->to > t) {
428 chg += rg->to - t;
429 t = rg->to;
430 }
431 chg -= rg->to - rg->from;
432 }
7b24d861
DB
433
434out:
435 spin_unlock(&resv->lock);
436 /* We already know we raced and no longer need the new region */
437 kfree(nrg);
438 return chg;
439out_nrg:
440 spin_unlock(&resv->lock);
96822904
AW
441 return chg;
442}
443
5e911373
MK
444/*
445 * Abort the in progress add operation. The adds_in_progress field
446 * of the resv_map keeps track of the operations in progress between
447 * calls to region_chg and region_add. Operations are sometimes
448 * aborted after the call to region_chg. In such cases, region_abort
449 * is called to decrement the adds_in_progress counter.
450 *
451 * NOTE: The range arguments [f, t) are not needed or used in this
452 * routine. They are kept to make reading the calling code easier as
453 * arguments will match the associated region_chg call.
454 */
455static void region_abort(struct resv_map *resv, long f, long t)
456{
457 spin_lock(&resv->lock);
458 VM_BUG_ON(!resv->region_cache_count);
459 resv->adds_in_progress--;
460 spin_unlock(&resv->lock);
461}
462
1dd308a7 463/*
feba16e2
MK
464 * Delete the specified range [f, t) from the reserve map. If the
465 * t parameter is LONG_MAX, this indicates that ALL regions after f
466 * should be deleted. Locate the regions which intersect [f, t)
467 * and either trim, delete or split the existing regions.
468 *
469 * Returns the number of huge pages deleted from the reserve map.
470 * In the normal case, the return value is zero or more. In the
471 * case where a region must be split, a new region descriptor must
472 * be allocated. If the allocation fails, -ENOMEM will be returned.
473 * NOTE: If the parameter t == LONG_MAX, then we will never split
474 * a region and possibly return -ENOMEM. Callers specifying
475 * t == LONG_MAX do not need to check for -ENOMEM error.
1dd308a7 476 */
feba16e2 477static long region_del(struct resv_map *resv, long f, long t)
96822904 478{
1406ec9b 479 struct list_head *head = &resv->regions;
96822904 480 struct file_region *rg, *trg;
feba16e2
MK
481 struct file_region *nrg = NULL;
482 long del = 0;
96822904 483
feba16e2 484retry:
7b24d861 485 spin_lock(&resv->lock);
feba16e2 486 list_for_each_entry_safe(rg, trg, head, link) {
dbe409e4
MK
487 /*
488 * Skip regions before the range to be deleted. file_region
489 * ranges are normally of the form [from, to). However, there
490 * may be a "placeholder" entry in the map which is of the form
491 * (from, to) with from == to. Check for placeholder entries
492 * at the beginning of the range to be deleted.
493 */
494 if (rg->to <= f && (rg->to != rg->from || rg->to != f))
feba16e2 495 continue;
dbe409e4 496
feba16e2 497 if (rg->from >= t)
96822904 498 break;
96822904 499
feba16e2
MK
500 if (f > rg->from && t < rg->to) { /* Must split region */
501 /*
502 * Check for an entry in the cache before dropping
503 * lock and attempting allocation.
504 */
505 if (!nrg &&
506 resv->region_cache_count > resv->adds_in_progress) {
507 nrg = list_first_entry(&resv->region_cache,
508 struct file_region,
509 link);
510 list_del(&nrg->link);
511 resv->region_cache_count--;
512 }
96822904 513
feba16e2
MK
514 if (!nrg) {
515 spin_unlock(&resv->lock);
516 nrg = kmalloc(sizeof(*nrg), GFP_KERNEL);
517 if (!nrg)
518 return -ENOMEM;
519 goto retry;
520 }
521
522 del += t - f;
523
524 /* New entry for end of split region */
525 nrg->from = t;
526 nrg->to = rg->to;
527 INIT_LIST_HEAD(&nrg->link);
528
529 /* Original entry is trimmed */
530 rg->to = f;
531
532 list_add(&nrg->link, &rg->link);
533 nrg = NULL;
96822904 534 break;
feba16e2
MK
535 }
536
537 if (f <= rg->from && t >= rg->to) { /* Remove entire region */
538 del += rg->to - rg->from;
539 list_del(&rg->link);
540 kfree(rg);
541 continue;
542 }
543
544 if (f <= rg->from) { /* Trim beginning of region */
545 del += t - rg->from;
546 rg->from = t;
547 } else { /* Trim end of region */
548 del += rg->to - f;
549 rg->to = f;
550 }
96822904 551 }
7b24d861 552
7b24d861 553 spin_unlock(&resv->lock);
feba16e2
MK
554 kfree(nrg);
555 return del;
96822904
AW
556}
557
b5cec28d
MK
558/*
559 * A rare out of memory error was encountered which prevented removal of
560 * the reserve map region for a page. The huge page itself was free'ed
561 * and removed from the page cache. This routine will adjust the subpool
562 * usage count, and the global reserve count if needed. By incrementing
563 * these counts, the reserve map entry which could not be deleted will
564 * appear as a "reserved" entry instead of simply dangling with incorrect
565 * counts.
566 */
567void hugetlb_fix_reserve_counts(struct inode *inode, bool restore_reserve)
568{
569 struct hugepage_subpool *spool = subpool_inode(inode);
570 long rsv_adjust;
571
572 rsv_adjust = hugepage_subpool_get_pages(spool, 1);
573 if (restore_reserve && rsv_adjust) {
574 struct hstate *h = hstate_inode(inode);
575
576 hugetlb_acct_memory(h, 1);
577 }
578}
579
1dd308a7
MK
580/*
581 * Count and return the number of huge pages in the reserve map
582 * that intersect with the range [f, t).
583 */
1406ec9b 584static long region_count(struct resv_map *resv, long f, long t)
84afd99b 585{
1406ec9b 586 struct list_head *head = &resv->regions;
84afd99b
AW
587 struct file_region *rg;
588 long chg = 0;
589
7b24d861 590 spin_lock(&resv->lock);
84afd99b
AW
591 /* Locate each segment we overlap with, and count that overlap. */
592 list_for_each_entry(rg, head, link) {
f2135a4a
WSH
593 long seg_from;
594 long seg_to;
84afd99b
AW
595
596 if (rg->to <= f)
597 continue;
598 if (rg->from >= t)
599 break;
600
601 seg_from = max(rg->from, f);
602 seg_to = min(rg->to, t);
603
604 chg += seg_to - seg_from;
605 }
7b24d861 606 spin_unlock(&resv->lock);
84afd99b
AW
607
608 return chg;
609}
610
e7c4b0bf
AW
611/*
612 * Convert the address within this vma to the page offset within
613 * the mapping, in pagecache page units; huge pages here.
614 */
a5516438
AK
615static pgoff_t vma_hugecache_offset(struct hstate *h,
616 struct vm_area_struct *vma, unsigned long address)
e7c4b0bf 617{
a5516438
AK
618 return ((address - vma->vm_start) >> huge_page_shift(h)) +
619 (vma->vm_pgoff >> huge_page_order(h));
e7c4b0bf
AW
620}
621
0fe6e20b
NH
622pgoff_t linear_hugepage_index(struct vm_area_struct *vma,
623 unsigned long address)
624{
625 return vma_hugecache_offset(hstate_vma(vma), vma, address);
626}
627
08fba699
MG
628/*
629 * Return the size of the pages allocated when backing a VMA. In the majority
630 * cases this will be same size as used by the page table entries.
631 */
632unsigned long vma_kernel_pagesize(struct vm_area_struct *vma)
633{
634 struct hstate *hstate;
635
636 if (!is_vm_hugetlb_page(vma))
637 return PAGE_SIZE;
638
639 hstate = hstate_vma(vma);
640
2415cf12 641 return 1UL << huge_page_shift(hstate);
08fba699 642}
f340ca0f 643EXPORT_SYMBOL_GPL(vma_kernel_pagesize);
08fba699 644
3340289d
MG
645/*
646 * Return the page size being used by the MMU to back a VMA. In the majority
647 * of cases, the page size used by the kernel matches the MMU size. On
648 * architectures where it differs, an architecture-specific version of this
649 * function is required.
650 */
651#ifndef vma_mmu_pagesize
652unsigned long vma_mmu_pagesize(struct vm_area_struct *vma)
653{
654 return vma_kernel_pagesize(vma);
655}
656#endif
657
84afd99b
AW
658/*
659 * Flags for MAP_PRIVATE reservations. These are stored in the bottom
660 * bits of the reservation map pointer, which are always clear due to
661 * alignment.
662 */
663#define HPAGE_RESV_OWNER (1UL << 0)
664#define HPAGE_RESV_UNMAPPED (1UL << 1)
04f2cbe3 665#define HPAGE_RESV_MASK (HPAGE_RESV_OWNER | HPAGE_RESV_UNMAPPED)
84afd99b 666
a1e78772
MG
667/*
668 * These helpers are used to track how many pages are reserved for
669 * faults in a MAP_PRIVATE mapping. Only the process that called mmap()
670 * is guaranteed to have their future faults succeed.
671 *
672 * With the exception of reset_vma_resv_huge_pages() which is called at fork(),
673 * the reserve counters are updated with the hugetlb_lock held. It is safe
674 * to reset the VMA at fork() time as it is not in use yet and there is no
675 * chance of the global counters getting corrupted as a result of the values.
84afd99b
AW
676 *
677 * The private mapping reservation is represented in a subtly different
678 * manner to a shared mapping. A shared mapping has a region map associated
679 * with the underlying file, this region map represents the backing file
680 * pages which have ever had a reservation assigned which this persists even
681 * after the page is instantiated. A private mapping has a region map
682 * associated with the original mmap which is attached to all VMAs which
683 * reference it, this region map represents those offsets which have consumed
684 * reservation ie. where pages have been instantiated.
a1e78772 685 */
e7c4b0bf
AW
686static unsigned long get_vma_private_data(struct vm_area_struct *vma)
687{
688 return (unsigned long)vma->vm_private_data;
689}
690
691static void set_vma_private_data(struct vm_area_struct *vma,
692 unsigned long value)
693{
694 vma->vm_private_data = (void *)value;
695}
696
9119a41e 697struct resv_map *resv_map_alloc(void)
84afd99b
AW
698{
699 struct resv_map *resv_map = kmalloc(sizeof(*resv_map), GFP_KERNEL);
5e911373
MK
700 struct file_region *rg = kmalloc(sizeof(*rg), GFP_KERNEL);
701
702 if (!resv_map || !rg) {
703 kfree(resv_map);
704 kfree(rg);
84afd99b 705 return NULL;
5e911373 706 }
84afd99b
AW
707
708 kref_init(&resv_map->refs);
7b24d861 709 spin_lock_init(&resv_map->lock);
84afd99b
AW
710 INIT_LIST_HEAD(&resv_map->regions);
711
5e911373
MK
712 resv_map->adds_in_progress = 0;
713
714 INIT_LIST_HEAD(&resv_map->region_cache);
715 list_add(&rg->link, &resv_map->region_cache);
716 resv_map->region_cache_count = 1;
717
84afd99b
AW
718 return resv_map;
719}
720
9119a41e 721void resv_map_release(struct kref *ref)
84afd99b
AW
722{
723 struct resv_map *resv_map = container_of(ref, struct resv_map, refs);
5e911373
MK
724 struct list_head *head = &resv_map->region_cache;
725 struct file_region *rg, *trg;
84afd99b
AW
726
727 /* Clear out any active regions before we release the map. */
feba16e2 728 region_del(resv_map, 0, LONG_MAX);
5e911373
MK
729
730 /* ... and any entries left in the cache */
731 list_for_each_entry_safe(rg, trg, head, link) {
732 list_del(&rg->link);
733 kfree(rg);
734 }
735
736 VM_BUG_ON(resv_map->adds_in_progress);
737
84afd99b
AW
738 kfree(resv_map);
739}
740
4e35f483
JK
741static inline struct resv_map *inode_resv_map(struct inode *inode)
742{
743 return inode->i_mapping->private_data;
744}
745
84afd99b 746static struct resv_map *vma_resv_map(struct vm_area_struct *vma)
a1e78772 747{
81d1b09c 748 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
4e35f483
JK
749 if (vma->vm_flags & VM_MAYSHARE) {
750 struct address_space *mapping = vma->vm_file->f_mapping;
751 struct inode *inode = mapping->host;
752
753 return inode_resv_map(inode);
754
755 } else {
84afd99b
AW
756 return (struct resv_map *)(get_vma_private_data(vma) &
757 ~HPAGE_RESV_MASK);
4e35f483 758 }
a1e78772
MG
759}
760
84afd99b 761static void set_vma_resv_map(struct vm_area_struct *vma, struct resv_map *map)
a1e78772 762{
81d1b09c
SL
763 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
764 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
a1e78772 765
84afd99b
AW
766 set_vma_private_data(vma, (get_vma_private_data(vma) &
767 HPAGE_RESV_MASK) | (unsigned long)map);
04f2cbe3
MG
768}
769
770static void set_vma_resv_flags(struct vm_area_struct *vma, unsigned long flags)
771{
81d1b09c
SL
772 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
773 VM_BUG_ON_VMA(vma->vm_flags & VM_MAYSHARE, vma);
e7c4b0bf
AW
774
775 set_vma_private_data(vma, get_vma_private_data(vma) | flags);
04f2cbe3
MG
776}
777
778static int is_vma_resv_set(struct vm_area_struct *vma, unsigned long flag)
779{
81d1b09c 780 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
e7c4b0bf
AW
781
782 return (get_vma_private_data(vma) & flag) != 0;
a1e78772
MG
783}
784
04f2cbe3 785/* Reset counters to 0 and clear all HPAGE_RESV_* flags */
a1e78772
MG
786void reset_vma_resv_huge_pages(struct vm_area_struct *vma)
787{
81d1b09c 788 VM_BUG_ON_VMA(!is_vm_hugetlb_page(vma), vma);
f83a275d 789 if (!(vma->vm_flags & VM_MAYSHARE))
a1e78772
MG
790 vma->vm_private_data = (void *)0;
791}
792
793/* Returns true if the VMA has associated reserve pages */
559ec2f8 794static bool vma_has_reserves(struct vm_area_struct *vma, long chg)
a1e78772 795{
af0ed73e
JK
796 if (vma->vm_flags & VM_NORESERVE) {
797 /*
798 * This address is already reserved by other process(chg == 0),
799 * so, we should decrement reserved count. Without decrementing,
800 * reserve count remains after releasing inode, because this
801 * allocated page will go into page cache and is regarded as
802 * coming from reserved pool in releasing step. Currently, we
803 * don't have any other solution to deal with this situation
804 * properly, so add work-around here.
805 */
806 if (vma->vm_flags & VM_MAYSHARE && chg == 0)
559ec2f8 807 return true;
af0ed73e 808 else
559ec2f8 809 return false;
af0ed73e 810 }
a63884e9
JK
811
812 /* Shared mappings always use reserves */
1fb1b0e9
MK
813 if (vma->vm_flags & VM_MAYSHARE) {
814 /*
815 * We know VM_NORESERVE is not set. Therefore, there SHOULD
816 * be a region map for all pages. The only situation where
817 * there is no region map is if a hole was punched via
818 * fallocate. In this case, there really are no reverves to
819 * use. This situation is indicated if chg != 0.
820 */
821 if (chg)
822 return false;
823 else
824 return true;
825 }
a63884e9
JK
826
827 /*
828 * Only the process that called mmap() has reserves for
829 * private mappings.
830 */
7f09ca51 831 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER))
559ec2f8 832 return true;
a63884e9 833
559ec2f8 834 return false;
a1e78772
MG
835}
836
a5516438 837static void enqueue_huge_page(struct hstate *h, struct page *page)
1da177e4
LT
838{
839 int nid = page_to_nid(page);
0edaecfa 840 list_move(&page->lru, &h->hugepage_freelists[nid]);
a5516438
AK
841 h->free_huge_pages++;
842 h->free_huge_pages_node[nid]++;
1da177e4
LT
843}
844
bf50bab2
NH
845static struct page *dequeue_huge_page_node(struct hstate *h, int nid)
846{
847 struct page *page;
848
c8721bbb
NH
849 list_for_each_entry(page, &h->hugepage_freelists[nid], lru)
850 if (!is_migrate_isolate_page(page))
851 break;
852 /*
853 * if 'non-isolated free hugepage' not found on the list,
854 * the allocation fails.
855 */
856 if (&h->hugepage_freelists[nid] == &page->lru)
bf50bab2 857 return NULL;
0edaecfa 858 list_move(&page->lru, &h->hugepage_activelist);
a9869b83 859 set_page_refcounted(page);
bf50bab2
NH
860 h->free_huge_pages--;
861 h->free_huge_pages_node[nid]--;
862 return page;
863}
864
86cdb465
NH
865/* Movability of hugepages depends on migration support. */
866static inline gfp_t htlb_alloc_mask(struct hstate *h)
867{
100873d7 868 if (hugepages_treat_as_movable || hugepage_migration_supported(h))
86cdb465
NH
869 return GFP_HIGHUSER_MOVABLE;
870 else
871 return GFP_HIGHUSER;
872}
873
a5516438
AK
874static struct page *dequeue_huge_page_vma(struct hstate *h,
875 struct vm_area_struct *vma,
af0ed73e
JK
876 unsigned long address, int avoid_reserve,
877 long chg)
1da177e4 878{
b1c12cbc 879 struct page *page = NULL;
480eccf9 880 struct mempolicy *mpol;
19770b32 881 nodemask_t *nodemask;
c0ff7453 882 struct zonelist *zonelist;
dd1a239f
MG
883 struct zone *zone;
884 struct zoneref *z;
cc9a6c87 885 unsigned int cpuset_mems_cookie;
1da177e4 886
a1e78772
MG
887 /*
888 * A child process with MAP_PRIVATE mappings created by their parent
889 * have no page reserves. This check ensures that reservations are
890 * not "stolen". The child may still get SIGKILLed
891 */
af0ed73e 892 if (!vma_has_reserves(vma, chg) &&
a5516438 893 h->free_huge_pages - h->resv_huge_pages == 0)
c0ff7453 894 goto err;
a1e78772 895
04f2cbe3 896 /* If reserves cannot be used, ensure enough pages are in the pool */
a5516438 897 if (avoid_reserve && h->free_huge_pages - h->resv_huge_pages == 0)
6eab04a8 898 goto err;
04f2cbe3 899
9966c4bb 900retry_cpuset:
d26914d1 901 cpuset_mems_cookie = read_mems_allowed_begin();
9966c4bb 902 zonelist = huge_zonelist(vma, address,
86cdb465 903 htlb_alloc_mask(h), &mpol, &nodemask);
9966c4bb 904
19770b32
MG
905 for_each_zone_zonelist_nodemask(zone, z, zonelist,
906 MAX_NR_ZONES - 1, nodemask) {
344736f2 907 if (cpuset_zone_allowed(zone, htlb_alloc_mask(h))) {
bf50bab2
NH
908 page = dequeue_huge_page_node(h, zone_to_nid(zone));
909 if (page) {
af0ed73e
JK
910 if (avoid_reserve)
911 break;
912 if (!vma_has_reserves(vma, chg))
913 break;
914
07443a85 915 SetPagePrivate(page);
af0ed73e 916 h->resv_huge_pages--;
bf50bab2
NH
917 break;
918 }
3abf7afd 919 }
1da177e4 920 }
cc9a6c87 921
52cd3b07 922 mpol_cond_put(mpol);
d26914d1 923 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie)))
cc9a6c87 924 goto retry_cpuset;
1da177e4 925 return page;
cc9a6c87
MG
926
927err:
cc9a6c87 928 return NULL;
1da177e4
LT
929}
930
1cac6f2c
LC
931/*
932 * common helper functions for hstate_next_node_to_{alloc|free}.
933 * We may have allocated or freed a huge page based on a different
934 * nodes_allowed previously, so h->next_node_to_{alloc|free} might
935 * be outside of *nodes_allowed. Ensure that we use an allowed
936 * node for alloc or free.
937 */
938static int next_node_allowed(int nid, nodemask_t *nodes_allowed)
939{
940 nid = next_node(nid, *nodes_allowed);
941 if (nid == MAX_NUMNODES)
942 nid = first_node(*nodes_allowed);
943 VM_BUG_ON(nid >= MAX_NUMNODES);
944
945 return nid;
946}
947
948static int get_valid_node_allowed(int nid, nodemask_t *nodes_allowed)
949{
950 if (!node_isset(nid, *nodes_allowed))
951 nid = next_node_allowed(nid, nodes_allowed);
952 return nid;
953}
954
955/*
956 * returns the previously saved node ["this node"] from which to
957 * allocate a persistent huge page for the pool and advance the
958 * next node from which to allocate, handling wrap at end of node
959 * mask.
960 */
961static int hstate_next_node_to_alloc(struct hstate *h,
962 nodemask_t *nodes_allowed)
963{
964 int nid;
965
966 VM_BUG_ON(!nodes_allowed);
967
968 nid = get_valid_node_allowed(h->next_nid_to_alloc, nodes_allowed);
969 h->next_nid_to_alloc = next_node_allowed(nid, nodes_allowed);
970
971 return nid;
972}
973
974/*
975 * helper for free_pool_huge_page() - return the previously saved
976 * node ["this node"] from which to free a huge page. Advance the
977 * next node id whether or not we find a free huge page to free so
978 * that the next attempt to free addresses the next node.
979 */
980static int hstate_next_node_to_free(struct hstate *h, nodemask_t *nodes_allowed)
981{
982 int nid;
983
984 VM_BUG_ON(!nodes_allowed);
985
986 nid = get_valid_node_allowed(h->next_nid_to_free, nodes_allowed);
987 h->next_nid_to_free = next_node_allowed(nid, nodes_allowed);
988
989 return nid;
990}
991
992#define for_each_node_mask_to_alloc(hs, nr_nodes, node, mask) \
993 for (nr_nodes = nodes_weight(*mask); \
994 nr_nodes > 0 && \
995 ((node = hstate_next_node_to_alloc(hs, mask)) || 1); \
996 nr_nodes--)
997
998#define for_each_node_mask_to_free(hs, nr_nodes, node, mask) \
999 for (nr_nodes = nodes_weight(*mask); \
1000 nr_nodes > 0 && \
1001 ((node = hstate_next_node_to_free(hs, mask)) || 1); \
1002 nr_nodes--)
1003
080fe206 1004#if defined(CONFIG_X86_64) && ((defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA))
944d9fec 1005static void destroy_compound_gigantic_page(struct page *page,
d00181b9 1006 unsigned int order)
944d9fec
LC
1007{
1008 int i;
1009 int nr_pages = 1 << order;
1010 struct page *p = page + 1;
1011
1012 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
1d798ca3 1013 clear_compound_head(p);
944d9fec 1014 set_page_refcounted(p);
944d9fec
LC
1015 }
1016
1017 set_compound_order(page, 0);
1018 __ClearPageHead(page);
1019}
1020
d00181b9 1021static void free_gigantic_page(struct page *page, unsigned int order)
944d9fec
LC
1022{
1023 free_contig_range(page_to_pfn(page), 1 << order);
1024}
1025
1026static int __alloc_gigantic_page(unsigned long start_pfn,
1027 unsigned long nr_pages)
1028{
1029 unsigned long end_pfn = start_pfn + nr_pages;
1030 return alloc_contig_range(start_pfn, end_pfn, MIGRATE_MOVABLE);
1031}
1032
1033static bool pfn_range_valid_gigantic(unsigned long start_pfn,
1034 unsigned long nr_pages)
1035{
1036 unsigned long i, end_pfn = start_pfn + nr_pages;
1037 struct page *page;
1038
1039 for (i = start_pfn; i < end_pfn; i++) {
1040 if (!pfn_valid(i))
1041 return false;
1042
1043 page = pfn_to_page(i);
1044
1045 if (PageReserved(page))
1046 return false;
1047
1048 if (page_count(page) > 0)
1049 return false;
1050
1051 if (PageHuge(page))
1052 return false;
1053 }
1054
1055 return true;
1056}
1057
1058static bool zone_spans_last_pfn(const struct zone *zone,
1059 unsigned long start_pfn, unsigned long nr_pages)
1060{
1061 unsigned long last_pfn = start_pfn + nr_pages - 1;
1062 return zone_spans_pfn(zone, last_pfn);
1063}
1064
d00181b9 1065static struct page *alloc_gigantic_page(int nid, unsigned int order)
944d9fec
LC
1066{
1067 unsigned long nr_pages = 1 << order;
1068 unsigned long ret, pfn, flags;
1069 struct zone *z;
1070
1071 z = NODE_DATA(nid)->node_zones;
1072 for (; z - NODE_DATA(nid)->node_zones < MAX_NR_ZONES; z++) {
1073 spin_lock_irqsave(&z->lock, flags);
1074
1075 pfn = ALIGN(z->zone_start_pfn, nr_pages);
1076 while (zone_spans_last_pfn(z, pfn, nr_pages)) {
1077 if (pfn_range_valid_gigantic(pfn, nr_pages)) {
1078 /*
1079 * We release the zone lock here because
1080 * alloc_contig_range() will also lock the zone
1081 * at some point. If there's an allocation
1082 * spinning on this lock, it may win the race
1083 * and cause alloc_contig_range() to fail...
1084 */
1085 spin_unlock_irqrestore(&z->lock, flags);
1086 ret = __alloc_gigantic_page(pfn, nr_pages);
1087 if (!ret)
1088 return pfn_to_page(pfn);
1089 spin_lock_irqsave(&z->lock, flags);
1090 }
1091 pfn += nr_pages;
1092 }
1093
1094 spin_unlock_irqrestore(&z->lock, flags);
1095 }
1096
1097 return NULL;
1098}
1099
1100static void prep_new_huge_page(struct hstate *h, struct page *page, int nid);
d00181b9 1101static void prep_compound_gigantic_page(struct page *page, unsigned int order);
944d9fec
LC
1102
1103static struct page *alloc_fresh_gigantic_page_node(struct hstate *h, int nid)
1104{
1105 struct page *page;
1106
1107 page = alloc_gigantic_page(nid, huge_page_order(h));
1108 if (page) {
1109 prep_compound_gigantic_page(page, huge_page_order(h));
1110 prep_new_huge_page(h, page, nid);
1111 }
1112
1113 return page;
1114}
1115
1116static int alloc_fresh_gigantic_page(struct hstate *h,
1117 nodemask_t *nodes_allowed)
1118{
1119 struct page *page = NULL;
1120 int nr_nodes, node;
1121
1122 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1123 page = alloc_fresh_gigantic_page_node(h, node);
1124 if (page)
1125 return 1;
1126 }
1127
1128 return 0;
1129}
1130
1131static inline bool gigantic_page_supported(void) { return true; }
1132#else
1133static inline bool gigantic_page_supported(void) { return false; }
d00181b9 1134static inline void free_gigantic_page(struct page *page, unsigned int order) { }
944d9fec 1135static inline void destroy_compound_gigantic_page(struct page *page,
d00181b9 1136 unsigned int order) { }
944d9fec
LC
1137static inline int alloc_fresh_gigantic_page(struct hstate *h,
1138 nodemask_t *nodes_allowed) { return 0; }
1139#endif
1140
a5516438 1141static void update_and_free_page(struct hstate *h, struct page *page)
6af2acb6
AL
1142{
1143 int i;
a5516438 1144
944d9fec
LC
1145 if (hstate_is_gigantic(h) && !gigantic_page_supported())
1146 return;
18229df5 1147
a5516438
AK
1148 h->nr_huge_pages--;
1149 h->nr_huge_pages_node[page_to_nid(page)]--;
1150 for (i = 0; i < pages_per_huge_page(h); i++) {
32f84528
CF
1151 page[i].flags &= ~(1 << PG_locked | 1 << PG_error |
1152 1 << PG_referenced | 1 << PG_dirty |
a7407a27
LC
1153 1 << PG_active | 1 << PG_private |
1154 1 << PG_writeback);
6af2acb6 1155 }
309381fe 1156 VM_BUG_ON_PAGE(hugetlb_cgroup_from_page(page), page);
f1e61557 1157 set_compound_page_dtor(page, NULL_COMPOUND_DTOR);
6af2acb6 1158 set_page_refcounted(page);
944d9fec
LC
1159 if (hstate_is_gigantic(h)) {
1160 destroy_compound_gigantic_page(page, huge_page_order(h));
1161 free_gigantic_page(page, huge_page_order(h));
1162 } else {
944d9fec
LC
1163 __free_pages(page, huge_page_order(h));
1164 }
6af2acb6
AL
1165}
1166
e5ff2159
AK
1167struct hstate *size_to_hstate(unsigned long size)
1168{
1169 struct hstate *h;
1170
1171 for_each_hstate(h) {
1172 if (huge_page_size(h) == size)
1173 return h;
1174 }
1175 return NULL;
1176}
1177
bcc54222
NH
1178/*
1179 * Test to determine whether the hugepage is "active/in-use" (i.e. being linked
1180 * to hstate->hugepage_activelist.)
1181 *
1182 * This function can be called for tail pages, but never returns true for them.
1183 */
1184bool page_huge_active(struct page *page)
1185{
1186 VM_BUG_ON_PAGE(!PageHuge(page), page);
1187 return PageHead(page) && PagePrivate(&page[1]);
1188}
1189
1190/* never called for tail page */
1191static void set_page_huge_active(struct page *page)
1192{
1193 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1194 SetPagePrivate(&page[1]);
1195}
1196
1197static void clear_page_huge_active(struct page *page)
1198{
1199 VM_BUG_ON_PAGE(!PageHeadHuge(page), page);
1200 ClearPagePrivate(&page[1]);
1201}
1202
8f1d26d0 1203void free_huge_page(struct page *page)
27a85ef1 1204{
a5516438
AK
1205 /*
1206 * Can't pass hstate in here because it is called from the
1207 * compound page destructor.
1208 */
e5ff2159 1209 struct hstate *h = page_hstate(page);
7893d1d5 1210 int nid = page_to_nid(page);
90481622
DG
1211 struct hugepage_subpool *spool =
1212 (struct hugepage_subpool *)page_private(page);
07443a85 1213 bool restore_reserve;
27a85ef1 1214
e5df70ab 1215 set_page_private(page, 0);
23be7468 1216 page->mapping = NULL;
b4330afb
MK
1217 VM_BUG_ON_PAGE(page_count(page), page);
1218 VM_BUG_ON_PAGE(page_mapcount(page), page);
07443a85 1219 restore_reserve = PagePrivate(page);
16c794b4 1220 ClearPagePrivate(page);
27a85ef1 1221
1c5ecae3
MK
1222 /*
1223 * A return code of zero implies that the subpool will be under its
1224 * minimum size if the reservation is not restored after page is free.
1225 * Therefore, force restore_reserve operation.
1226 */
1227 if (hugepage_subpool_put_pages(spool, 1) == 0)
1228 restore_reserve = true;
1229
27a85ef1 1230 spin_lock(&hugetlb_lock);
bcc54222 1231 clear_page_huge_active(page);
6d76dcf4
AK
1232 hugetlb_cgroup_uncharge_page(hstate_index(h),
1233 pages_per_huge_page(h), page);
07443a85
JK
1234 if (restore_reserve)
1235 h->resv_huge_pages++;
1236
944d9fec 1237 if (h->surplus_huge_pages_node[nid]) {
0edaecfa
AK
1238 /* remove the page from active list */
1239 list_del(&page->lru);
a5516438
AK
1240 update_and_free_page(h, page);
1241 h->surplus_huge_pages--;
1242 h->surplus_huge_pages_node[nid]--;
7893d1d5 1243 } else {
5d3a551c 1244 arch_clear_hugepage_flags(page);
a5516438 1245 enqueue_huge_page(h, page);
7893d1d5 1246 }
27a85ef1
DG
1247 spin_unlock(&hugetlb_lock);
1248}
1249
a5516438 1250static void prep_new_huge_page(struct hstate *h, struct page *page, int nid)
b7ba30c6 1251{
0edaecfa 1252 INIT_LIST_HEAD(&page->lru);
f1e61557 1253 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
b7ba30c6 1254 spin_lock(&hugetlb_lock);
9dd540e2 1255 set_hugetlb_cgroup(page, NULL);
a5516438
AK
1256 h->nr_huge_pages++;
1257 h->nr_huge_pages_node[nid]++;
b7ba30c6
AK
1258 spin_unlock(&hugetlb_lock);
1259 put_page(page); /* free it into the hugepage allocator */
1260}
1261
d00181b9 1262static void prep_compound_gigantic_page(struct page *page, unsigned int order)
20a0307c
WF
1263{
1264 int i;
1265 int nr_pages = 1 << order;
1266 struct page *p = page + 1;
1267
1268 /* we rely on prep_new_huge_page to set the destructor */
1269 set_compound_order(page, order);
ef5a22be 1270 __ClearPageReserved(page);
de09d31d 1271 __SetPageHead(page);
20a0307c 1272 for (i = 1; i < nr_pages; i++, p = mem_map_next(p, page, i)) {
ef5a22be
AA
1273 /*
1274 * For gigantic hugepages allocated through bootmem at
1275 * boot, it's safer to be consistent with the not-gigantic
1276 * hugepages and clear the PG_reserved bit from all tail pages
1277 * too. Otherwse drivers using get_user_pages() to access tail
1278 * pages may get the reference counting wrong if they see
1279 * PG_reserved set on a tail page (despite the head page not
1280 * having PG_reserved set). Enforcing this consistency between
1281 * head and tail pages allows drivers to optimize away a check
1282 * on the head page when they need know if put_page() is needed
1283 * after get_user_pages().
1284 */
1285 __ClearPageReserved(p);
58a84aa9 1286 set_page_count(p, 0);
1d798ca3 1287 set_compound_head(p, page);
20a0307c 1288 }
b4330afb 1289 atomic_set(compound_mapcount_ptr(page), -1);
20a0307c
WF
1290}
1291
7795912c
AM
1292/*
1293 * PageHuge() only returns true for hugetlbfs pages, but not for normal or
1294 * transparent huge pages. See the PageTransHuge() documentation for more
1295 * details.
1296 */
20a0307c
WF
1297int PageHuge(struct page *page)
1298{
20a0307c
WF
1299 if (!PageCompound(page))
1300 return 0;
1301
1302 page = compound_head(page);
f1e61557 1303 return page[1].compound_dtor == HUGETLB_PAGE_DTOR;
20a0307c 1304}
43131e14
NH
1305EXPORT_SYMBOL_GPL(PageHuge);
1306
27c73ae7
AA
1307/*
1308 * PageHeadHuge() only returns true for hugetlbfs head page, but not for
1309 * normal or transparent huge pages.
1310 */
1311int PageHeadHuge(struct page *page_head)
1312{
27c73ae7
AA
1313 if (!PageHead(page_head))
1314 return 0;
1315
758f66a2 1316 return get_compound_page_dtor(page_head) == free_huge_page;
27c73ae7 1317}
27c73ae7 1318
13d60f4b
ZY
1319pgoff_t __basepage_index(struct page *page)
1320{
1321 struct page *page_head = compound_head(page);
1322 pgoff_t index = page_index(page_head);
1323 unsigned long compound_idx;
1324
1325 if (!PageHuge(page_head))
1326 return page_index(page);
1327
1328 if (compound_order(page_head) >= MAX_ORDER)
1329 compound_idx = page_to_pfn(page) - page_to_pfn(page_head);
1330 else
1331 compound_idx = page - page_head;
1332
1333 return (index << compound_order(page_head)) + compound_idx;
1334}
1335
a5516438 1336static struct page *alloc_fresh_huge_page_node(struct hstate *h, int nid)
1da177e4 1337{
1da177e4 1338 struct page *page;
f96efd58 1339
96db800f 1340 page = __alloc_pages_node(nid,
86cdb465 1341 htlb_alloc_mask(h)|__GFP_COMP|__GFP_THISNODE|
551883ae 1342 __GFP_REPEAT|__GFP_NOWARN,
a5516438 1343 huge_page_order(h));
1da177e4 1344 if (page) {
a5516438 1345 prep_new_huge_page(h, page, nid);
1da177e4 1346 }
63b4613c
NA
1347
1348 return page;
1349}
1350
b2261026
JK
1351static int alloc_fresh_huge_page(struct hstate *h, nodemask_t *nodes_allowed)
1352{
1353 struct page *page;
1354 int nr_nodes, node;
1355 int ret = 0;
1356
1357 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
1358 page = alloc_fresh_huge_page_node(h, node);
1359 if (page) {
1360 ret = 1;
1361 break;
1362 }
1363 }
1364
1365 if (ret)
1366 count_vm_event(HTLB_BUDDY_PGALLOC);
1367 else
1368 count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
1369
1370 return ret;
1371}
1372
e8c5c824
LS
1373/*
1374 * Free huge page from pool from next node to free.
1375 * Attempt to keep persistent huge pages more or less
1376 * balanced over allowed nodes.
1377 * Called with hugetlb_lock locked.
1378 */
6ae11b27
LS
1379static int free_pool_huge_page(struct hstate *h, nodemask_t *nodes_allowed,
1380 bool acct_surplus)
e8c5c824 1381{
b2261026 1382 int nr_nodes, node;
e8c5c824
LS
1383 int ret = 0;
1384
b2261026 1385 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
685f3457
LS
1386 /*
1387 * If we're returning unused surplus pages, only examine
1388 * nodes with surplus pages.
1389 */
b2261026
JK
1390 if ((!acct_surplus || h->surplus_huge_pages_node[node]) &&
1391 !list_empty(&h->hugepage_freelists[node])) {
e8c5c824 1392 struct page *page =
b2261026 1393 list_entry(h->hugepage_freelists[node].next,
e8c5c824
LS
1394 struct page, lru);
1395 list_del(&page->lru);
1396 h->free_huge_pages--;
b2261026 1397 h->free_huge_pages_node[node]--;
685f3457
LS
1398 if (acct_surplus) {
1399 h->surplus_huge_pages--;
b2261026 1400 h->surplus_huge_pages_node[node]--;
685f3457 1401 }
e8c5c824
LS
1402 update_and_free_page(h, page);
1403 ret = 1;
9a76db09 1404 break;
e8c5c824 1405 }
b2261026 1406 }
e8c5c824
LS
1407
1408 return ret;
1409}
1410
c8721bbb
NH
1411/*
1412 * Dissolve a given free hugepage into free buddy pages. This function does
1413 * nothing for in-use (including surplus) hugepages.
1414 */
1415static void dissolve_free_huge_page(struct page *page)
1416{
1417 spin_lock(&hugetlb_lock);
1418 if (PageHuge(page) && !page_count(page)) {
1419 struct hstate *h = page_hstate(page);
1420 int nid = page_to_nid(page);
1421 list_del(&page->lru);
1422 h->free_huge_pages--;
1423 h->free_huge_pages_node[nid]--;
1424 update_and_free_page(h, page);
1425 }
1426 spin_unlock(&hugetlb_lock);
1427}
1428
1429/*
1430 * Dissolve free hugepages in a given pfn range. Used by memory hotplug to
1431 * make specified memory blocks removable from the system.
1432 * Note that start_pfn should aligned with (minimum) hugepage size.
1433 */
1434void dissolve_free_huge_pages(unsigned long start_pfn, unsigned long end_pfn)
1435{
c8721bbb 1436 unsigned long pfn;
c8721bbb 1437
d0177639
LZ
1438 if (!hugepages_supported())
1439 return;
1440
641844f5
NH
1441 VM_BUG_ON(!IS_ALIGNED(start_pfn, 1 << minimum_order));
1442 for (pfn = start_pfn; pfn < end_pfn; pfn += 1 << minimum_order)
c8721bbb
NH
1443 dissolve_free_huge_page(pfn_to_page(pfn));
1444}
1445
099730d6
DH
1446/*
1447 * There are 3 ways this can get called:
1448 * 1. With vma+addr: we use the VMA's memory policy
1449 * 2. With !vma, but nid=NUMA_NO_NODE: We try to allocate a huge
1450 * page from any node, and let the buddy allocator itself figure
1451 * it out.
1452 * 3. With !vma, but nid!=NUMA_NO_NODE. We allocate a huge page
1453 * strictly from 'nid'
1454 */
1455static struct page *__hugetlb_alloc_buddy_huge_page(struct hstate *h,
1456 struct vm_area_struct *vma, unsigned long addr, int nid)
1457{
1458 int order = huge_page_order(h);
1459 gfp_t gfp = htlb_alloc_mask(h)|__GFP_COMP|__GFP_REPEAT|__GFP_NOWARN;
1460 unsigned int cpuset_mems_cookie;
1461
1462 /*
1463 * We need a VMA to get a memory policy. If we do not
e0ec90ee
DH
1464 * have one, we use the 'nid' argument.
1465 *
1466 * The mempolicy stuff below has some non-inlined bits
1467 * and calls ->vm_ops. That makes it hard to optimize at
1468 * compile-time, even when NUMA is off and it does
1469 * nothing. This helps the compiler optimize it out.
099730d6 1470 */
e0ec90ee 1471 if (!IS_ENABLED(CONFIG_NUMA) || !vma) {
099730d6
DH
1472 /*
1473 * If a specific node is requested, make sure to
1474 * get memory from there, but only when a node
1475 * is explicitly specified.
1476 */
1477 if (nid != NUMA_NO_NODE)
1478 gfp |= __GFP_THISNODE;
1479 /*
1480 * Make sure to call something that can handle
1481 * nid=NUMA_NO_NODE
1482 */
1483 return alloc_pages_node(nid, gfp, order);
1484 }
1485
1486 /*
1487 * OK, so we have a VMA. Fetch the mempolicy and try to
e0ec90ee
DH
1488 * allocate a huge page with it. We will only reach this
1489 * when CONFIG_NUMA=y.
099730d6
DH
1490 */
1491 do {
1492 struct page *page;
1493 struct mempolicy *mpol;
1494 struct zonelist *zl;
1495 nodemask_t *nodemask;
1496
1497 cpuset_mems_cookie = read_mems_allowed_begin();
1498 zl = huge_zonelist(vma, addr, gfp, &mpol, &nodemask);
1499 mpol_cond_put(mpol);
1500 page = __alloc_pages_nodemask(gfp, order, zl, nodemask);
1501 if (page)
1502 return page;
1503 } while (read_mems_allowed_retry(cpuset_mems_cookie));
1504
1505 return NULL;
1506}
1507
1508/*
1509 * There are two ways to allocate a huge page:
1510 * 1. When you have a VMA and an address (like a fault)
1511 * 2. When you have no VMA (like when setting /proc/.../nr_hugepages)
1512 *
1513 * 'vma' and 'addr' are only for (1). 'nid' is always NUMA_NO_NODE in
1514 * this case which signifies that the allocation should be done with
1515 * respect for the VMA's memory policy.
1516 *
1517 * For (2), we ignore 'vma' and 'addr' and use 'nid' exclusively. This
1518 * implies that memory policies will not be taken in to account.
1519 */
1520static struct page *__alloc_buddy_huge_page(struct hstate *h,
1521 struct vm_area_struct *vma, unsigned long addr, int nid)
7893d1d5
AL
1522{
1523 struct page *page;
bf50bab2 1524 unsigned int r_nid;
7893d1d5 1525
bae7f4ae 1526 if (hstate_is_gigantic(h))
aa888a74
AK
1527 return NULL;
1528
099730d6
DH
1529 /*
1530 * Make sure that anyone specifying 'nid' is not also specifying a VMA.
1531 * This makes sure the caller is picking _one_ of the modes with which
1532 * we can call this function, not both.
1533 */
1534 if (vma || (addr != -1)) {
e0ec90ee
DH
1535 VM_WARN_ON_ONCE(addr == -1);
1536 VM_WARN_ON_ONCE(nid != NUMA_NO_NODE);
099730d6 1537 }
d1c3fb1f
NA
1538 /*
1539 * Assume we will successfully allocate the surplus page to
1540 * prevent racing processes from causing the surplus to exceed
1541 * overcommit
1542 *
1543 * This however introduces a different race, where a process B
1544 * tries to grow the static hugepage pool while alloc_pages() is
1545 * called by process A. B will only examine the per-node
1546 * counters in determining if surplus huge pages can be
1547 * converted to normal huge pages in adjust_pool_surplus(). A
1548 * won't be able to increment the per-node counter, until the
1549 * lock is dropped by B, but B doesn't drop hugetlb_lock until
1550 * no more huge pages can be converted from surplus to normal
1551 * state (and doesn't try to convert again). Thus, we have a
1552 * case where a surplus huge page exists, the pool is grown, and
1553 * the surplus huge page still exists after, even though it
1554 * should just have been converted to a normal huge page. This
1555 * does not leak memory, though, as the hugepage will be freed
1556 * once it is out of use. It also does not allow the counters to
1557 * go out of whack in adjust_pool_surplus() as we don't modify
1558 * the node values until we've gotten the hugepage and only the
1559 * per-node value is checked there.
1560 */
1561 spin_lock(&hugetlb_lock);
a5516438 1562 if (h->surplus_huge_pages >= h->nr_overcommit_huge_pages) {
d1c3fb1f
NA
1563 spin_unlock(&hugetlb_lock);
1564 return NULL;
1565 } else {
a5516438
AK
1566 h->nr_huge_pages++;
1567 h->surplus_huge_pages++;
d1c3fb1f
NA
1568 }
1569 spin_unlock(&hugetlb_lock);
1570
099730d6 1571 page = __hugetlb_alloc_buddy_huge_page(h, vma, addr, nid);
d1c3fb1f
NA
1572
1573 spin_lock(&hugetlb_lock);
7893d1d5 1574 if (page) {
0edaecfa 1575 INIT_LIST_HEAD(&page->lru);
bf50bab2 1576 r_nid = page_to_nid(page);
f1e61557 1577 set_compound_page_dtor(page, HUGETLB_PAGE_DTOR);
9dd540e2 1578 set_hugetlb_cgroup(page, NULL);
d1c3fb1f
NA
1579 /*
1580 * We incremented the global counters already
1581 */
bf50bab2
NH
1582 h->nr_huge_pages_node[r_nid]++;
1583 h->surplus_huge_pages_node[r_nid]++;
3b116300 1584 __count_vm_event(HTLB_BUDDY_PGALLOC);
d1c3fb1f 1585 } else {
a5516438
AK
1586 h->nr_huge_pages--;
1587 h->surplus_huge_pages--;
3b116300 1588 __count_vm_event(HTLB_BUDDY_PGALLOC_FAIL);
7893d1d5 1589 }
d1c3fb1f 1590 spin_unlock(&hugetlb_lock);
7893d1d5
AL
1591
1592 return page;
1593}
1594
099730d6
DH
1595/*
1596 * Allocate a huge page from 'nid'. Note, 'nid' may be
1597 * NUMA_NO_NODE, which means that it may be allocated
1598 * anywhere.
1599 */
e0ec90ee 1600static
099730d6
DH
1601struct page *__alloc_buddy_huge_page_no_mpol(struct hstate *h, int nid)
1602{
1603 unsigned long addr = -1;
1604
1605 return __alloc_buddy_huge_page(h, NULL, addr, nid);
1606}
1607
1608/*
1609 * Use the VMA's mpolicy to allocate a huge page from the buddy.
1610 */
e0ec90ee 1611static
099730d6
DH
1612struct page *__alloc_buddy_huge_page_with_mpol(struct hstate *h,
1613 struct vm_area_struct *vma, unsigned long addr)
1614{
1615 return __alloc_buddy_huge_page(h, vma, addr, NUMA_NO_NODE);
1616}
1617
bf50bab2
NH
1618/*
1619 * This allocation function is useful in the context where vma is irrelevant.
1620 * E.g. soft-offlining uses this function because it only cares physical
1621 * address of error page.
1622 */
1623struct page *alloc_huge_page_node(struct hstate *h, int nid)
1624{
4ef91848 1625 struct page *page = NULL;
bf50bab2
NH
1626
1627 spin_lock(&hugetlb_lock);
4ef91848
JK
1628 if (h->free_huge_pages - h->resv_huge_pages > 0)
1629 page = dequeue_huge_page_node(h, nid);
bf50bab2
NH
1630 spin_unlock(&hugetlb_lock);
1631
94ae8ba7 1632 if (!page)
099730d6 1633 page = __alloc_buddy_huge_page_no_mpol(h, nid);
bf50bab2
NH
1634
1635 return page;
1636}
1637
e4e574b7 1638/*
25985edc 1639 * Increase the hugetlb pool such that it can accommodate a reservation
e4e574b7
AL
1640 * of size 'delta'.
1641 */
a5516438 1642static int gather_surplus_pages(struct hstate *h, int delta)
e4e574b7
AL
1643{
1644 struct list_head surplus_list;
1645 struct page *page, *tmp;
1646 int ret, i;
1647 int needed, allocated;
28073b02 1648 bool alloc_ok = true;
e4e574b7 1649
a5516438 1650 needed = (h->resv_huge_pages + delta) - h->free_huge_pages;
ac09b3a1 1651 if (needed <= 0) {
a5516438 1652 h->resv_huge_pages += delta;
e4e574b7 1653 return 0;
ac09b3a1 1654 }
e4e574b7
AL
1655
1656 allocated = 0;
1657 INIT_LIST_HEAD(&surplus_list);
1658
1659 ret = -ENOMEM;
1660retry:
1661 spin_unlock(&hugetlb_lock);
1662 for (i = 0; i < needed; i++) {
099730d6 1663 page = __alloc_buddy_huge_page_no_mpol(h, NUMA_NO_NODE);
28073b02
HD
1664 if (!page) {
1665 alloc_ok = false;
1666 break;
1667 }
e4e574b7
AL
1668 list_add(&page->lru, &surplus_list);
1669 }
28073b02 1670 allocated += i;
e4e574b7
AL
1671
1672 /*
1673 * After retaking hugetlb_lock, we need to recalculate 'needed'
1674 * because either resv_huge_pages or free_huge_pages may have changed.
1675 */
1676 spin_lock(&hugetlb_lock);
a5516438
AK
1677 needed = (h->resv_huge_pages + delta) -
1678 (h->free_huge_pages + allocated);
28073b02
HD
1679 if (needed > 0) {
1680 if (alloc_ok)
1681 goto retry;
1682 /*
1683 * We were not able to allocate enough pages to
1684 * satisfy the entire reservation so we free what
1685 * we've allocated so far.
1686 */
1687 goto free;
1688 }
e4e574b7
AL
1689 /*
1690 * The surplus_list now contains _at_least_ the number of extra pages
25985edc 1691 * needed to accommodate the reservation. Add the appropriate number
e4e574b7 1692 * of pages to the hugetlb pool and free the extras back to the buddy
ac09b3a1
AL
1693 * allocator. Commit the entire reservation here to prevent another
1694 * process from stealing the pages as they are added to the pool but
1695 * before they are reserved.
e4e574b7
AL
1696 */
1697 needed += allocated;
a5516438 1698 h->resv_huge_pages += delta;
e4e574b7 1699 ret = 0;
a9869b83 1700
19fc3f0a 1701 /* Free the needed pages to the hugetlb pool */
e4e574b7 1702 list_for_each_entry_safe(page, tmp, &surplus_list, lru) {
19fc3f0a
AL
1703 if ((--needed) < 0)
1704 break;
a9869b83
NH
1705 /*
1706 * This page is now managed by the hugetlb allocator and has
1707 * no users -- drop the buddy allocator's reference.
1708 */
1709 put_page_testzero(page);
309381fe 1710 VM_BUG_ON_PAGE(page_count(page), page);
a5516438 1711 enqueue_huge_page(h, page);
19fc3f0a 1712 }
28073b02 1713free:
b0365c8d 1714 spin_unlock(&hugetlb_lock);
19fc3f0a
AL
1715
1716 /* Free unnecessary surplus pages to the buddy allocator */
c0d934ba
JK
1717 list_for_each_entry_safe(page, tmp, &surplus_list, lru)
1718 put_page(page);
a9869b83 1719 spin_lock(&hugetlb_lock);
e4e574b7
AL
1720
1721 return ret;
1722}
1723
1724/*
1725 * When releasing a hugetlb pool reservation, any surplus pages that were
1726 * allocated to satisfy the reservation must be explicitly freed if they were
1727 * never used.
685f3457 1728 * Called with hugetlb_lock held.
e4e574b7 1729 */
a5516438
AK
1730static void return_unused_surplus_pages(struct hstate *h,
1731 unsigned long unused_resv_pages)
e4e574b7 1732{
e4e574b7
AL
1733 unsigned long nr_pages;
1734
ac09b3a1 1735 /* Uncommit the reservation */
a5516438 1736 h->resv_huge_pages -= unused_resv_pages;
ac09b3a1 1737
aa888a74 1738 /* Cannot return gigantic pages currently */
bae7f4ae 1739 if (hstate_is_gigantic(h))
aa888a74
AK
1740 return;
1741
a5516438 1742 nr_pages = min(unused_resv_pages, h->surplus_huge_pages);
e4e574b7 1743
685f3457
LS
1744 /*
1745 * We want to release as many surplus pages as possible, spread
9b5e5d0f
LS
1746 * evenly across all nodes with memory. Iterate across these nodes
1747 * until we can no longer free unreserved surplus pages. This occurs
1748 * when the nodes with surplus pages have no free pages.
1749 * free_pool_huge_page() will balance the the freed pages across the
1750 * on-line nodes with memory and will handle the hstate accounting.
685f3457
LS
1751 */
1752 while (nr_pages--) {
8cebfcd0 1753 if (!free_pool_huge_page(h, &node_states[N_MEMORY], 1))
685f3457 1754 break;
7848a4bf 1755 cond_resched_lock(&hugetlb_lock);
e4e574b7
AL
1756 }
1757}
1758
5e911373 1759
c37f9fb1 1760/*
feba16e2 1761 * vma_needs_reservation, vma_commit_reservation and vma_end_reservation
5e911373 1762 * are used by the huge page allocation routines to manage reservations.
cf3ad20b
MK
1763 *
1764 * vma_needs_reservation is called to determine if the huge page at addr
1765 * within the vma has an associated reservation. If a reservation is
1766 * needed, the value 1 is returned. The caller is then responsible for
1767 * managing the global reservation and subpool usage counts. After
1768 * the huge page has been allocated, vma_commit_reservation is called
feba16e2
MK
1769 * to add the page to the reservation map. If the page allocation fails,
1770 * the reservation must be ended instead of committed. vma_end_reservation
1771 * is called in such cases.
cf3ad20b
MK
1772 *
1773 * In the normal case, vma_commit_reservation returns the same value
1774 * as the preceding vma_needs_reservation call. The only time this
1775 * is not the case is if a reserve map was changed between calls. It
1776 * is the responsibility of the caller to notice the difference and
1777 * take appropriate action.
c37f9fb1 1778 */
5e911373
MK
1779enum vma_resv_mode {
1780 VMA_NEEDS_RESV,
1781 VMA_COMMIT_RESV,
feba16e2 1782 VMA_END_RESV,
5e911373 1783};
cf3ad20b
MK
1784static long __vma_reservation_common(struct hstate *h,
1785 struct vm_area_struct *vma, unsigned long addr,
5e911373 1786 enum vma_resv_mode mode)
c37f9fb1 1787{
4e35f483
JK
1788 struct resv_map *resv;
1789 pgoff_t idx;
cf3ad20b 1790 long ret;
c37f9fb1 1791
4e35f483
JK
1792 resv = vma_resv_map(vma);
1793 if (!resv)
84afd99b 1794 return 1;
c37f9fb1 1795
4e35f483 1796 idx = vma_hugecache_offset(h, vma, addr);
5e911373
MK
1797 switch (mode) {
1798 case VMA_NEEDS_RESV:
cf3ad20b 1799 ret = region_chg(resv, idx, idx + 1);
5e911373
MK
1800 break;
1801 case VMA_COMMIT_RESV:
1802 ret = region_add(resv, idx, idx + 1);
1803 break;
feba16e2 1804 case VMA_END_RESV:
5e911373
MK
1805 region_abort(resv, idx, idx + 1);
1806 ret = 0;
1807 break;
1808 default:
1809 BUG();
1810 }
84afd99b 1811
4e35f483 1812 if (vma->vm_flags & VM_MAYSHARE)
cf3ad20b 1813 return ret;
4e35f483 1814 else
cf3ad20b 1815 return ret < 0 ? ret : 0;
c37f9fb1 1816}
cf3ad20b
MK
1817
1818static long vma_needs_reservation(struct hstate *h,
a5516438 1819 struct vm_area_struct *vma, unsigned long addr)
c37f9fb1 1820{
5e911373 1821 return __vma_reservation_common(h, vma, addr, VMA_NEEDS_RESV);
cf3ad20b 1822}
84afd99b 1823
cf3ad20b
MK
1824static long vma_commit_reservation(struct hstate *h,
1825 struct vm_area_struct *vma, unsigned long addr)
1826{
5e911373
MK
1827 return __vma_reservation_common(h, vma, addr, VMA_COMMIT_RESV);
1828}
1829
feba16e2 1830static void vma_end_reservation(struct hstate *h,
5e911373
MK
1831 struct vm_area_struct *vma, unsigned long addr)
1832{
feba16e2 1833 (void)__vma_reservation_common(h, vma, addr, VMA_END_RESV);
c37f9fb1
AW
1834}
1835
70c3547e 1836struct page *alloc_huge_page(struct vm_area_struct *vma,
04f2cbe3 1837 unsigned long addr, int avoid_reserve)
1da177e4 1838{
90481622 1839 struct hugepage_subpool *spool = subpool_vma(vma);
a5516438 1840 struct hstate *h = hstate_vma(vma);
348ea204 1841 struct page *page;
d85f69b0
MK
1842 long map_chg, map_commit;
1843 long gbl_chg;
6d76dcf4
AK
1844 int ret, idx;
1845 struct hugetlb_cgroup *h_cg;
a1e78772 1846
6d76dcf4 1847 idx = hstate_index(h);
a1e78772 1848 /*
d85f69b0
MK
1849 * Examine the region/reserve map to determine if the process
1850 * has a reservation for the page to be allocated. A return
1851 * code of zero indicates a reservation exists (no change).
a1e78772 1852 */
d85f69b0
MK
1853 map_chg = gbl_chg = vma_needs_reservation(h, vma, addr);
1854 if (map_chg < 0)
76dcee75 1855 return ERR_PTR(-ENOMEM);
d85f69b0
MK
1856
1857 /*
1858 * Processes that did not create the mapping will have no
1859 * reserves as indicated by the region/reserve map. Check
1860 * that the allocation will not exceed the subpool limit.
1861 * Allocations for MAP_NORESERVE mappings also need to be
1862 * checked against any subpool limit.
1863 */
1864 if (map_chg || avoid_reserve) {
1865 gbl_chg = hugepage_subpool_get_pages(spool, 1);
1866 if (gbl_chg < 0) {
feba16e2 1867 vma_end_reservation(h, vma, addr);
76dcee75 1868 return ERR_PTR(-ENOSPC);
5e911373 1869 }
1da177e4 1870
d85f69b0
MK
1871 /*
1872 * Even though there was no reservation in the region/reserve
1873 * map, there could be reservations associated with the
1874 * subpool that can be used. This would be indicated if the
1875 * return value of hugepage_subpool_get_pages() is zero.
1876 * However, if avoid_reserve is specified we still avoid even
1877 * the subpool reservations.
1878 */
1879 if (avoid_reserve)
1880 gbl_chg = 1;
1881 }
1882
6d76dcf4 1883 ret = hugetlb_cgroup_charge_cgroup(idx, pages_per_huge_page(h), &h_cg);
8f34af6f
JZ
1884 if (ret)
1885 goto out_subpool_put;
1886
1da177e4 1887 spin_lock(&hugetlb_lock);
d85f69b0
MK
1888 /*
1889 * glb_chg is passed to indicate whether or not a page must be taken
1890 * from the global free pool (global change). gbl_chg == 0 indicates
1891 * a reservation exists for the allocation.
1892 */
1893 page = dequeue_huge_page_vma(h, vma, addr, avoid_reserve, gbl_chg);
81a6fcae 1894 if (!page) {
94ae8ba7 1895 spin_unlock(&hugetlb_lock);
099730d6 1896 page = __alloc_buddy_huge_page_with_mpol(h, vma, addr);
8f34af6f
JZ
1897 if (!page)
1898 goto out_uncharge_cgroup;
a88c7695
NH
1899 if (!avoid_reserve && vma_has_reserves(vma, gbl_chg)) {
1900 SetPagePrivate(page);
1901 h->resv_huge_pages--;
1902 }
79dbb236
AK
1903 spin_lock(&hugetlb_lock);
1904 list_move(&page->lru, &h->hugepage_activelist);
81a6fcae 1905 /* Fall through */
68842c9b 1906 }
81a6fcae
JK
1907 hugetlb_cgroup_commit_charge(idx, pages_per_huge_page(h), h_cg, page);
1908 spin_unlock(&hugetlb_lock);
348ea204 1909
90481622 1910 set_page_private(page, (unsigned long)spool);
90d8b7e6 1911
d85f69b0
MK
1912 map_commit = vma_commit_reservation(h, vma, addr);
1913 if (unlikely(map_chg > map_commit)) {
33039678
MK
1914 /*
1915 * The page was added to the reservation map between
1916 * vma_needs_reservation and vma_commit_reservation.
1917 * This indicates a race with hugetlb_reserve_pages.
1918 * Adjust for the subpool count incremented above AND
1919 * in hugetlb_reserve_pages for the same page. Also,
1920 * the reservation count added in hugetlb_reserve_pages
1921 * no longer applies.
1922 */
1923 long rsv_adjust;
1924
1925 rsv_adjust = hugepage_subpool_put_pages(spool, 1);
1926 hugetlb_acct_memory(h, -rsv_adjust);
1927 }
90d8b7e6 1928 return page;
8f34af6f
JZ
1929
1930out_uncharge_cgroup:
1931 hugetlb_cgroup_uncharge_cgroup(idx, pages_per_huge_page(h), h_cg);
1932out_subpool_put:
d85f69b0 1933 if (map_chg || avoid_reserve)
8f34af6f 1934 hugepage_subpool_put_pages(spool, 1);
feba16e2 1935 vma_end_reservation(h, vma, addr);
8f34af6f 1936 return ERR_PTR(-ENOSPC);
b45b5bd6
DG
1937}
1938
74060e4d
NH
1939/*
1940 * alloc_huge_page()'s wrapper which simply returns the page if allocation
1941 * succeeds, otherwise NULL. This function is called from new_vma_page(),
1942 * where no ERR_VALUE is expected to be returned.
1943 */
1944struct page *alloc_huge_page_noerr(struct vm_area_struct *vma,
1945 unsigned long addr, int avoid_reserve)
1946{
1947 struct page *page = alloc_huge_page(vma, addr, avoid_reserve);
1948 if (IS_ERR(page))
1949 page = NULL;
1950 return page;
1951}
1952
91f47662 1953int __weak alloc_bootmem_huge_page(struct hstate *h)
aa888a74
AK
1954{
1955 struct huge_bootmem_page *m;
b2261026 1956 int nr_nodes, node;
aa888a74 1957
b2261026 1958 for_each_node_mask_to_alloc(h, nr_nodes, node, &node_states[N_MEMORY]) {
aa888a74
AK
1959 void *addr;
1960
8b89a116
GS
1961 addr = memblock_virt_alloc_try_nid_nopanic(
1962 huge_page_size(h), huge_page_size(h),
1963 0, BOOTMEM_ALLOC_ACCESSIBLE, node);
aa888a74
AK
1964 if (addr) {
1965 /*
1966 * Use the beginning of the huge page to store the
1967 * huge_bootmem_page struct (until gather_bootmem
1968 * puts them into the mem_map).
1969 */
1970 m = addr;
91f47662 1971 goto found;
aa888a74 1972 }
aa888a74
AK
1973 }
1974 return 0;
1975
1976found:
df994ead 1977 BUG_ON(!IS_ALIGNED(virt_to_phys(m), huge_page_size(h)));
aa888a74
AK
1978 /* Put them into a private list first because mem_map is not up yet */
1979 list_add(&m->list, &huge_boot_pages);
1980 m->hstate = h;
1981 return 1;
1982}
1983
d00181b9
KS
1984static void __init prep_compound_huge_page(struct page *page,
1985 unsigned int order)
18229df5
AW
1986{
1987 if (unlikely(order > (MAX_ORDER - 1)))
1988 prep_compound_gigantic_page(page, order);
1989 else
1990 prep_compound_page(page, order);
1991}
1992
aa888a74
AK
1993/* Put bootmem huge pages into the standard lists after mem_map is up */
1994static void __init gather_bootmem_prealloc(void)
1995{
1996 struct huge_bootmem_page *m;
1997
1998 list_for_each_entry(m, &huge_boot_pages, list) {
aa888a74 1999 struct hstate *h = m->hstate;
ee8f248d
BB
2000 struct page *page;
2001
2002#ifdef CONFIG_HIGHMEM
2003 page = pfn_to_page(m->phys >> PAGE_SHIFT);
8b89a116
GS
2004 memblock_free_late(__pa(m),
2005 sizeof(struct huge_bootmem_page));
ee8f248d
BB
2006#else
2007 page = virt_to_page(m);
2008#endif
aa888a74 2009 WARN_ON(page_count(page) != 1);
18229df5 2010 prep_compound_huge_page(page, h->order);
ef5a22be 2011 WARN_ON(PageReserved(page));
aa888a74 2012 prep_new_huge_page(h, page, page_to_nid(page));
b0320c7b
RA
2013 /*
2014 * If we had gigantic hugepages allocated at boot time, we need
2015 * to restore the 'stolen' pages to totalram_pages in order to
2016 * fix confusing memory reports from free(1) and another
2017 * side-effects, like CommitLimit going negative.
2018 */
bae7f4ae 2019 if (hstate_is_gigantic(h))
3dcc0571 2020 adjust_managed_page_count(page, 1 << h->order);
aa888a74
AK
2021 }
2022}
2023
8faa8b07 2024static void __init hugetlb_hstate_alloc_pages(struct hstate *h)
1da177e4
LT
2025{
2026 unsigned long i;
a5516438 2027
e5ff2159 2028 for (i = 0; i < h->max_huge_pages; ++i) {
bae7f4ae 2029 if (hstate_is_gigantic(h)) {
aa888a74
AK
2030 if (!alloc_bootmem_huge_page(h))
2031 break;
9b5e5d0f 2032 } else if (!alloc_fresh_huge_page(h,
8cebfcd0 2033 &node_states[N_MEMORY]))
1da177e4 2034 break;
1da177e4 2035 }
8faa8b07 2036 h->max_huge_pages = i;
e5ff2159
AK
2037}
2038
2039static void __init hugetlb_init_hstates(void)
2040{
2041 struct hstate *h;
2042
2043 for_each_hstate(h) {
641844f5
NH
2044 if (minimum_order > huge_page_order(h))
2045 minimum_order = huge_page_order(h);
2046
8faa8b07 2047 /* oversize hugepages were init'ed in early boot */
bae7f4ae 2048 if (!hstate_is_gigantic(h))
8faa8b07 2049 hugetlb_hstate_alloc_pages(h);
e5ff2159 2050 }
641844f5 2051 VM_BUG_ON(minimum_order == UINT_MAX);
e5ff2159
AK
2052}
2053
4abd32db
AK
2054static char * __init memfmt(char *buf, unsigned long n)
2055{
2056 if (n >= (1UL << 30))
2057 sprintf(buf, "%lu GB", n >> 30);
2058 else if (n >= (1UL << 20))
2059 sprintf(buf, "%lu MB", n >> 20);
2060 else
2061 sprintf(buf, "%lu KB", n >> 10);
2062 return buf;
2063}
2064
e5ff2159
AK
2065static void __init report_hugepages(void)
2066{
2067 struct hstate *h;
2068
2069 for_each_hstate(h) {
4abd32db 2070 char buf[32];
ffb22af5 2071 pr_info("HugeTLB registered %s page size, pre-allocated %ld pages\n",
4abd32db
AK
2072 memfmt(buf, huge_page_size(h)),
2073 h->free_huge_pages);
e5ff2159
AK
2074 }
2075}
2076
1da177e4 2077#ifdef CONFIG_HIGHMEM
6ae11b27
LS
2078static void try_to_free_low(struct hstate *h, unsigned long count,
2079 nodemask_t *nodes_allowed)
1da177e4 2080{
4415cc8d
CL
2081 int i;
2082
bae7f4ae 2083 if (hstate_is_gigantic(h))
aa888a74
AK
2084 return;
2085
6ae11b27 2086 for_each_node_mask(i, *nodes_allowed) {
1da177e4 2087 struct page *page, *next;
a5516438
AK
2088 struct list_head *freel = &h->hugepage_freelists[i];
2089 list_for_each_entry_safe(page, next, freel, lru) {
2090 if (count >= h->nr_huge_pages)
6b0c880d 2091 return;
1da177e4
LT
2092 if (PageHighMem(page))
2093 continue;
2094 list_del(&page->lru);
e5ff2159 2095 update_and_free_page(h, page);
a5516438
AK
2096 h->free_huge_pages--;
2097 h->free_huge_pages_node[page_to_nid(page)]--;
1da177e4
LT
2098 }
2099 }
2100}
2101#else
6ae11b27
LS
2102static inline void try_to_free_low(struct hstate *h, unsigned long count,
2103 nodemask_t *nodes_allowed)
1da177e4
LT
2104{
2105}
2106#endif
2107
20a0307c
WF
2108/*
2109 * Increment or decrement surplus_huge_pages. Keep node-specific counters
2110 * balanced by operating on them in a round-robin fashion.
2111 * Returns 1 if an adjustment was made.
2112 */
6ae11b27
LS
2113static int adjust_pool_surplus(struct hstate *h, nodemask_t *nodes_allowed,
2114 int delta)
20a0307c 2115{
b2261026 2116 int nr_nodes, node;
20a0307c
WF
2117
2118 VM_BUG_ON(delta != -1 && delta != 1);
20a0307c 2119
b2261026
JK
2120 if (delta < 0) {
2121 for_each_node_mask_to_alloc(h, nr_nodes, node, nodes_allowed) {
2122 if (h->surplus_huge_pages_node[node])
2123 goto found;
e8c5c824 2124 }
b2261026
JK
2125 } else {
2126 for_each_node_mask_to_free(h, nr_nodes, node, nodes_allowed) {
2127 if (h->surplus_huge_pages_node[node] <
2128 h->nr_huge_pages_node[node])
2129 goto found;
e8c5c824 2130 }
b2261026
JK
2131 }
2132 return 0;
20a0307c 2133
b2261026
JK
2134found:
2135 h->surplus_huge_pages += delta;
2136 h->surplus_huge_pages_node[node] += delta;
2137 return 1;
20a0307c
WF
2138}
2139
a5516438 2140#define persistent_huge_pages(h) (h->nr_huge_pages - h->surplus_huge_pages)
6ae11b27
LS
2141static unsigned long set_max_huge_pages(struct hstate *h, unsigned long count,
2142 nodemask_t *nodes_allowed)
1da177e4 2143{
7893d1d5 2144 unsigned long min_count, ret;
1da177e4 2145
944d9fec 2146 if (hstate_is_gigantic(h) && !gigantic_page_supported())
aa888a74
AK
2147 return h->max_huge_pages;
2148
7893d1d5
AL
2149 /*
2150 * Increase the pool size
2151 * First take pages out of surplus state. Then make up the
2152 * remaining difference by allocating fresh huge pages.
d1c3fb1f 2153 *
d15c7c09 2154 * We might race with __alloc_buddy_huge_page() here and be unable
d1c3fb1f
NA
2155 * to convert a surplus huge page to a normal huge page. That is
2156 * not critical, though, it just means the overall size of the
2157 * pool might be one hugepage larger than it needs to be, but
2158 * within all the constraints specified by the sysctls.
7893d1d5 2159 */
1da177e4 2160 spin_lock(&hugetlb_lock);
a5516438 2161 while (h->surplus_huge_pages && count > persistent_huge_pages(h)) {
6ae11b27 2162 if (!adjust_pool_surplus(h, nodes_allowed, -1))
7893d1d5
AL
2163 break;
2164 }
2165
a5516438 2166 while (count > persistent_huge_pages(h)) {
7893d1d5
AL
2167 /*
2168 * If this allocation races such that we no longer need the
2169 * page, free_huge_page will handle it by freeing the page
2170 * and reducing the surplus.
2171 */
2172 spin_unlock(&hugetlb_lock);
944d9fec
LC
2173 if (hstate_is_gigantic(h))
2174 ret = alloc_fresh_gigantic_page(h, nodes_allowed);
2175 else
2176 ret = alloc_fresh_huge_page(h, nodes_allowed);
7893d1d5
AL
2177 spin_lock(&hugetlb_lock);
2178 if (!ret)
2179 goto out;
2180
536240f2
MG
2181 /* Bail for signals. Probably ctrl-c from user */
2182 if (signal_pending(current))
2183 goto out;
7893d1d5 2184 }
7893d1d5
AL
2185
2186 /*
2187 * Decrease the pool size
2188 * First return free pages to the buddy allocator (being careful
2189 * to keep enough around to satisfy reservations). Then place
2190 * pages into surplus state as needed so the pool will shrink
2191 * to the desired size as pages become free.
d1c3fb1f
NA
2192 *
2193 * By placing pages into the surplus state independent of the
2194 * overcommit value, we are allowing the surplus pool size to
2195 * exceed overcommit. There are few sane options here. Since
d15c7c09 2196 * __alloc_buddy_huge_page() is checking the global counter,
d1c3fb1f
NA
2197 * though, we'll note that we're not allowed to exceed surplus
2198 * and won't grow the pool anywhere else. Not until one of the
2199 * sysctls are changed, or the surplus pages go out of use.
7893d1d5 2200 */
a5516438 2201 min_count = h->resv_huge_pages + h->nr_huge_pages - h->free_huge_pages;
6b0c880d 2202 min_count = max(count, min_count);
6ae11b27 2203 try_to_free_low(h, min_count, nodes_allowed);
a5516438 2204 while (min_count < persistent_huge_pages(h)) {
6ae11b27 2205 if (!free_pool_huge_page(h, nodes_allowed, 0))
1da177e4 2206 break;
55f67141 2207 cond_resched_lock(&hugetlb_lock);
1da177e4 2208 }
a5516438 2209 while (count < persistent_huge_pages(h)) {
6ae11b27 2210 if (!adjust_pool_surplus(h, nodes_allowed, 1))
7893d1d5
AL
2211 break;
2212 }
2213out:
a5516438 2214 ret = persistent_huge_pages(h);
1da177e4 2215 spin_unlock(&hugetlb_lock);
7893d1d5 2216 return ret;
1da177e4
LT
2217}
2218
a3437870
NA
2219#define HSTATE_ATTR_RO(_name) \
2220 static struct kobj_attribute _name##_attr = __ATTR_RO(_name)
2221
2222#define HSTATE_ATTR(_name) \
2223 static struct kobj_attribute _name##_attr = \
2224 __ATTR(_name, 0644, _name##_show, _name##_store)
2225
2226static struct kobject *hugepages_kobj;
2227static struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2228
9a305230
LS
2229static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp);
2230
2231static struct hstate *kobj_to_hstate(struct kobject *kobj, int *nidp)
a3437870
NA
2232{
2233 int i;
9a305230 2234
a3437870 2235 for (i = 0; i < HUGE_MAX_HSTATE; i++)
9a305230
LS
2236 if (hstate_kobjs[i] == kobj) {
2237 if (nidp)
2238 *nidp = NUMA_NO_NODE;
a3437870 2239 return &hstates[i];
9a305230
LS
2240 }
2241
2242 return kobj_to_node_hstate(kobj, nidp);
a3437870
NA
2243}
2244
06808b08 2245static ssize_t nr_hugepages_show_common(struct kobject *kobj,
a3437870
NA
2246 struct kobj_attribute *attr, char *buf)
2247{
9a305230
LS
2248 struct hstate *h;
2249 unsigned long nr_huge_pages;
2250 int nid;
2251
2252 h = kobj_to_hstate(kobj, &nid);
2253 if (nid == NUMA_NO_NODE)
2254 nr_huge_pages = h->nr_huge_pages;
2255 else
2256 nr_huge_pages = h->nr_huge_pages_node[nid];
2257
2258 return sprintf(buf, "%lu\n", nr_huge_pages);
a3437870 2259}
adbe8726 2260
238d3c13
DR
2261static ssize_t __nr_hugepages_store_common(bool obey_mempolicy,
2262 struct hstate *h, int nid,
2263 unsigned long count, size_t len)
a3437870
NA
2264{
2265 int err;
bad44b5b 2266 NODEMASK_ALLOC(nodemask_t, nodes_allowed, GFP_KERNEL | __GFP_NORETRY);
a3437870 2267
944d9fec 2268 if (hstate_is_gigantic(h) && !gigantic_page_supported()) {
adbe8726
EM
2269 err = -EINVAL;
2270 goto out;
2271 }
2272
9a305230
LS
2273 if (nid == NUMA_NO_NODE) {
2274 /*
2275 * global hstate attribute
2276 */
2277 if (!(obey_mempolicy &&
2278 init_nodemask_of_mempolicy(nodes_allowed))) {
2279 NODEMASK_FREE(nodes_allowed);
8cebfcd0 2280 nodes_allowed = &node_states[N_MEMORY];
9a305230
LS
2281 }
2282 } else if (nodes_allowed) {
2283 /*
2284 * per node hstate attribute: adjust count to global,
2285 * but restrict alloc/free to the specified node.
2286 */
2287 count += h->nr_huge_pages - h->nr_huge_pages_node[nid];
2288 init_nodemask_of_node(nodes_allowed, nid);
2289 } else
8cebfcd0 2290 nodes_allowed = &node_states[N_MEMORY];
9a305230 2291
06808b08 2292 h->max_huge_pages = set_max_huge_pages(h, count, nodes_allowed);
a3437870 2293
8cebfcd0 2294 if (nodes_allowed != &node_states[N_MEMORY])
06808b08
LS
2295 NODEMASK_FREE(nodes_allowed);
2296
2297 return len;
adbe8726
EM
2298out:
2299 NODEMASK_FREE(nodes_allowed);
2300 return err;
06808b08
LS
2301}
2302
238d3c13
DR
2303static ssize_t nr_hugepages_store_common(bool obey_mempolicy,
2304 struct kobject *kobj, const char *buf,
2305 size_t len)
2306{
2307 struct hstate *h;
2308 unsigned long count;
2309 int nid;
2310 int err;
2311
2312 err = kstrtoul(buf, 10, &count);
2313 if (err)
2314 return err;
2315
2316 h = kobj_to_hstate(kobj, &nid);
2317 return __nr_hugepages_store_common(obey_mempolicy, h, nid, count, len);
2318}
2319
06808b08
LS
2320static ssize_t nr_hugepages_show(struct kobject *kobj,
2321 struct kobj_attribute *attr, char *buf)
2322{
2323 return nr_hugepages_show_common(kobj, attr, buf);
2324}
2325
2326static ssize_t nr_hugepages_store(struct kobject *kobj,
2327 struct kobj_attribute *attr, const char *buf, size_t len)
2328{
238d3c13 2329 return nr_hugepages_store_common(false, kobj, buf, len);
a3437870
NA
2330}
2331HSTATE_ATTR(nr_hugepages);
2332
06808b08
LS
2333#ifdef CONFIG_NUMA
2334
2335/*
2336 * hstate attribute for optionally mempolicy-based constraint on persistent
2337 * huge page alloc/free.
2338 */
2339static ssize_t nr_hugepages_mempolicy_show(struct kobject *kobj,
2340 struct kobj_attribute *attr, char *buf)
2341{
2342 return nr_hugepages_show_common(kobj, attr, buf);
2343}
2344
2345static ssize_t nr_hugepages_mempolicy_store(struct kobject *kobj,
2346 struct kobj_attribute *attr, const char *buf, size_t len)
2347{
238d3c13 2348 return nr_hugepages_store_common(true, kobj, buf, len);
06808b08
LS
2349}
2350HSTATE_ATTR(nr_hugepages_mempolicy);
2351#endif
2352
2353
a3437870
NA
2354static ssize_t nr_overcommit_hugepages_show(struct kobject *kobj,
2355 struct kobj_attribute *attr, char *buf)
2356{
9a305230 2357 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2358 return sprintf(buf, "%lu\n", h->nr_overcommit_huge_pages);
2359}
adbe8726 2360
a3437870
NA
2361static ssize_t nr_overcommit_hugepages_store(struct kobject *kobj,
2362 struct kobj_attribute *attr, const char *buf, size_t count)
2363{
2364 int err;
2365 unsigned long input;
9a305230 2366 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870 2367
bae7f4ae 2368 if (hstate_is_gigantic(h))
adbe8726
EM
2369 return -EINVAL;
2370
3dbb95f7 2371 err = kstrtoul(buf, 10, &input);
a3437870 2372 if (err)
73ae31e5 2373 return err;
a3437870
NA
2374
2375 spin_lock(&hugetlb_lock);
2376 h->nr_overcommit_huge_pages = input;
2377 spin_unlock(&hugetlb_lock);
2378
2379 return count;
2380}
2381HSTATE_ATTR(nr_overcommit_hugepages);
2382
2383static ssize_t free_hugepages_show(struct kobject *kobj,
2384 struct kobj_attribute *attr, char *buf)
2385{
9a305230
LS
2386 struct hstate *h;
2387 unsigned long free_huge_pages;
2388 int nid;
2389
2390 h = kobj_to_hstate(kobj, &nid);
2391 if (nid == NUMA_NO_NODE)
2392 free_huge_pages = h->free_huge_pages;
2393 else
2394 free_huge_pages = h->free_huge_pages_node[nid];
2395
2396 return sprintf(buf, "%lu\n", free_huge_pages);
a3437870
NA
2397}
2398HSTATE_ATTR_RO(free_hugepages);
2399
2400static ssize_t resv_hugepages_show(struct kobject *kobj,
2401 struct kobj_attribute *attr, char *buf)
2402{
9a305230 2403 struct hstate *h = kobj_to_hstate(kobj, NULL);
a3437870
NA
2404 return sprintf(buf, "%lu\n", h->resv_huge_pages);
2405}
2406HSTATE_ATTR_RO(resv_hugepages);
2407
2408static ssize_t surplus_hugepages_show(struct kobject *kobj,
2409 struct kobj_attribute *attr, char *buf)
2410{
9a305230
LS
2411 struct hstate *h;
2412 unsigned long surplus_huge_pages;
2413 int nid;
2414
2415 h = kobj_to_hstate(kobj, &nid);
2416 if (nid == NUMA_NO_NODE)
2417 surplus_huge_pages = h->surplus_huge_pages;
2418 else
2419 surplus_huge_pages = h->surplus_huge_pages_node[nid];
2420
2421 return sprintf(buf, "%lu\n", surplus_huge_pages);
a3437870
NA
2422}
2423HSTATE_ATTR_RO(surplus_hugepages);
2424
2425static struct attribute *hstate_attrs[] = {
2426 &nr_hugepages_attr.attr,
2427 &nr_overcommit_hugepages_attr.attr,
2428 &free_hugepages_attr.attr,
2429 &resv_hugepages_attr.attr,
2430 &surplus_hugepages_attr.attr,
06808b08
LS
2431#ifdef CONFIG_NUMA
2432 &nr_hugepages_mempolicy_attr.attr,
2433#endif
a3437870
NA
2434 NULL,
2435};
2436
2437static struct attribute_group hstate_attr_group = {
2438 .attrs = hstate_attrs,
2439};
2440
094e9539
JM
2441static int hugetlb_sysfs_add_hstate(struct hstate *h, struct kobject *parent,
2442 struct kobject **hstate_kobjs,
2443 struct attribute_group *hstate_attr_group)
a3437870
NA
2444{
2445 int retval;
972dc4de 2446 int hi = hstate_index(h);
a3437870 2447
9a305230
LS
2448 hstate_kobjs[hi] = kobject_create_and_add(h->name, parent);
2449 if (!hstate_kobjs[hi])
a3437870
NA
2450 return -ENOMEM;
2451
9a305230 2452 retval = sysfs_create_group(hstate_kobjs[hi], hstate_attr_group);
a3437870 2453 if (retval)
9a305230 2454 kobject_put(hstate_kobjs[hi]);
a3437870
NA
2455
2456 return retval;
2457}
2458
2459static void __init hugetlb_sysfs_init(void)
2460{
2461 struct hstate *h;
2462 int err;
2463
2464 hugepages_kobj = kobject_create_and_add("hugepages", mm_kobj);
2465 if (!hugepages_kobj)
2466 return;
2467
2468 for_each_hstate(h) {
9a305230
LS
2469 err = hugetlb_sysfs_add_hstate(h, hugepages_kobj,
2470 hstate_kobjs, &hstate_attr_group);
a3437870 2471 if (err)
ffb22af5 2472 pr_err("Hugetlb: Unable to add hstate %s", h->name);
a3437870
NA
2473 }
2474}
2475
9a305230
LS
2476#ifdef CONFIG_NUMA
2477
2478/*
2479 * node_hstate/s - associate per node hstate attributes, via their kobjects,
10fbcf4c
KS
2480 * with node devices in node_devices[] using a parallel array. The array
2481 * index of a node device or _hstate == node id.
2482 * This is here to avoid any static dependency of the node device driver, in
9a305230
LS
2483 * the base kernel, on the hugetlb module.
2484 */
2485struct node_hstate {
2486 struct kobject *hugepages_kobj;
2487 struct kobject *hstate_kobjs[HUGE_MAX_HSTATE];
2488};
b4e289a6 2489static struct node_hstate node_hstates[MAX_NUMNODES];
9a305230
LS
2490
2491/*
10fbcf4c 2492 * A subset of global hstate attributes for node devices
9a305230
LS
2493 */
2494static struct attribute *per_node_hstate_attrs[] = {
2495 &nr_hugepages_attr.attr,
2496 &free_hugepages_attr.attr,
2497 &surplus_hugepages_attr.attr,
2498 NULL,
2499};
2500
2501static struct attribute_group per_node_hstate_attr_group = {
2502 .attrs = per_node_hstate_attrs,
2503};
2504
2505/*
10fbcf4c 2506 * kobj_to_node_hstate - lookup global hstate for node device hstate attr kobj.
9a305230
LS
2507 * Returns node id via non-NULL nidp.
2508 */
2509static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2510{
2511 int nid;
2512
2513 for (nid = 0; nid < nr_node_ids; nid++) {
2514 struct node_hstate *nhs = &node_hstates[nid];
2515 int i;
2516 for (i = 0; i < HUGE_MAX_HSTATE; i++)
2517 if (nhs->hstate_kobjs[i] == kobj) {
2518 if (nidp)
2519 *nidp = nid;
2520 return &hstates[i];
2521 }
2522 }
2523
2524 BUG();
2525 return NULL;
2526}
2527
2528/*
10fbcf4c 2529 * Unregister hstate attributes from a single node device.
9a305230
LS
2530 * No-op if no hstate attributes attached.
2531 */
3cd8b44f 2532static void hugetlb_unregister_node(struct node *node)
9a305230
LS
2533{
2534 struct hstate *h;
10fbcf4c 2535 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2536
2537 if (!nhs->hugepages_kobj)
9b5e5d0f 2538 return; /* no hstate attributes */
9a305230 2539
972dc4de
AK
2540 for_each_hstate(h) {
2541 int idx = hstate_index(h);
2542 if (nhs->hstate_kobjs[idx]) {
2543 kobject_put(nhs->hstate_kobjs[idx]);
2544 nhs->hstate_kobjs[idx] = NULL;
9a305230 2545 }
972dc4de 2546 }
9a305230
LS
2547
2548 kobject_put(nhs->hugepages_kobj);
2549 nhs->hugepages_kobj = NULL;
2550}
2551
9a305230
LS
2552
2553/*
10fbcf4c 2554 * Register hstate attributes for a single node device.
9a305230
LS
2555 * No-op if attributes already registered.
2556 */
3cd8b44f 2557static void hugetlb_register_node(struct node *node)
9a305230
LS
2558{
2559 struct hstate *h;
10fbcf4c 2560 struct node_hstate *nhs = &node_hstates[node->dev.id];
9a305230
LS
2561 int err;
2562
2563 if (nhs->hugepages_kobj)
2564 return; /* already allocated */
2565
2566 nhs->hugepages_kobj = kobject_create_and_add("hugepages",
10fbcf4c 2567 &node->dev.kobj);
9a305230
LS
2568 if (!nhs->hugepages_kobj)
2569 return;
2570
2571 for_each_hstate(h) {
2572 err = hugetlb_sysfs_add_hstate(h, nhs->hugepages_kobj,
2573 nhs->hstate_kobjs,
2574 &per_node_hstate_attr_group);
2575 if (err) {
ffb22af5
AM
2576 pr_err("Hugetlb: Unable to add hstate %s for node %d\n",
2577 h->name, node->dev.id);
9a305230
LS
2578 hugetlb_unregister_node(node);
2579 break;
2580 }
2581 }
2582}
2583
2584/*
9b5e5d0f 2585 * hugetlb init time: register hstate attributes for all registered node
10fbcf4c
KS
2586 * devices of nodes that have memory. All on-line nodes should have
2587 * registered their associated device by this time.
9a305230 2588 */
7d9ca000 2589static void __init hugetlb_register_all_nodes(void)
9a305230
LS
2590{
2591 int nid;
2592
8cebfcd0 2593 for_each_node_state(nid, N_MEMORY) {
8732794b 2594 struct node *node = node_devices[nid];
10fbcf4c 2595 if (node->dev.id == nid)
9a305230
LS
2596 hugetlb_register_node(node);
2597 }
2598
2599 /*
10fbcf4c 2600 * Let the node device driver know we're here so it can
9a305230
LS
2601 * [un]register hstate attributes on node hotplug.
2602 */
2603 register_hugetlbfs_with_node(hugetlb_register_node,
2604 hugetlb_unregister_node);
2605}
2606#else /* !CONFIG_NUMA */
2607
2608static struct hstate *kobj_to_node_hstate(struct kobject *kobj, int *nidp)
2609{
2610 BUG();
2611 if (nidp)
2612 *nidp = -1;
2613 return NULL;
2614}
2615
9a305230
LS
2616static void hugetlb_register_all_nodes(void) { }
2617
2618#endif
2619
a3437870
NA
2620static int __init hugetlb_init(void)
2621{
8382d914
DB
2622 int i;
2623
457c1b27 2624 if (!hugepages_supported())
0ef89d25 2625 return 0;
a3437870 2626
e11bfbfc
NP
2627 if (!size_to_hstate(default_hstate_size)) {
2628 default_hstate_size = HPAGE_SIZE;
2629 if (!size_to_hstate(default_hstate_size))
2630 hugetlb_add_hstate(HUGETLB_PAGE_ORDER);
a3437870 2631 }
972dc4de 2632 default_hstate_idx = hstate_index(size_to_hstate(default_hstate_size));
f8b74815
VT
2633 if (default_hstate_max_huge_pages) {
2634 if (!default_hstate.max_huge_pages)
2635 default_hstate.max_huge_pages = default_hstate_max_huge_pages;
2636 }
a3437870
NA
2637
2638 hugetlb_init_hstates();
aa888a74 2639 gather_bootmem_prealloc();
a3437870
NA
2640 report_hugepages();
2641
2642 hugetlb_sysfs_init();
9a305230 2643 hugetlb_register_all_nodes();
7179e7bf 2644 hugetlb_cgroup_file_init();
9a305230 2645
8382d914
DB
2646#ifdef CONFIG_SMP
2647 num_fault_mutexes = roundup_pow_of_two(8 * num_possible_cpus());
2648#else
2649 num_fault_mutexes = 1;
2650#endif
c672c7f2 2651 hugetlb_fault_mutex_table =
8382d914 2652 kmalloc(sizeof(struct mutex) * num_fault_mutexes, GFP_KERNEL);
c672c7f2 2653 BUG_ON(!hugetlb_fault_mutex_table);
8382d914
DB
2654
2655 for (i = 0; i < num_fault_mutexes; i++)
c672c7f2 2656 mutex_init(&hugetlb_fault_mutex_table[i]);
a3437870
NA
2657 return 0;
2658}
3e89e1c5 2659subsys_initcall(hugetlb_init);
a3437870
NA
2660
2661/* Should be called on processing a hugepagesz=... option */
d00181b9 2662void __init hugetlb_add_hstate(unsigned int order)
a3437870
NA
2663{
2664 struct hstate *h;
8faa8b07
AK
2665 unsigned long i;
2666
a3437870 2667 if (size_to_hstate(PAGE_SIZE << order)) {
598d8091 2668 pr_warn("hugepagesz= specified twice, ignoring\n");
a3437870
NA
2669 return;
2670 }
47d38344 2671 BUG_ON(hugetlb_max_hstate >= HUGE_MAX_HSTATE);
a3437870 2672 BUG_ON(order == 0);
47d38344 2673 h = &hstates[hugetlb_max_hstate++];
a3437870
NA
2674 h->order = order;
2675 h->mask = ~((1ULL << (order + PAGE_SHIFT)) - 1);
8faa8b07
AK
2676 h->nr_huge_pages = 0;
2677 h->free_huge_pages = 0;
2678 for (i = 0; i < MAX_NUMNODES; ++i)
2679 INIT_LIST_HEAD(&h->hugepage_freelists[i]);
0edaecfa 2680 INIT_LIST_HEAD(&h->hugepage_activelist);
8cebfcd0
LJ
2681 h->next_nid_to_alloc = first_node(node_states[N_MEMORY]);
2682 h->next_nid_to_free = first_node(node_states[N_MEMORY]);
a3437870
NA
2683 snprintf(h->name, HSTATE_NAME_LEN, "hugepages-%lukB",
2684 huge_page_size(h)/1024);
8faa8b07 2685
a3437870
NA
2686 parsed_hstate = h;
2687}
2688
e11bfbfc 2689static int __init hugetlb_nrpages_setup(char *s)
a3437870
NA
2690{
2691 unsigned long *mhp;
8faa8b07 2692 static unsigned long *last_mhp;
a3437870
NA
2693
2694 /*
47d38344 2695 * !hugetlb_max_hstate means we haven't parsed a hugepagesz= parameter yet,
a3437870
NA
2696 * so this hugepages= parameter goes to the "default hstate".
2697 */
47d38344 2698 if (!hugetlb_max_hstate)
a3437870
NA
2699 mhp = &default_hstate_max_huge_pages;
2700 else
2701 mhp = &parsed_hstate->max_huge_pages;
2702
8faa8b07 2703 if (mhp == last_mhp) {
598d8091 2704 pr_warn("hugepages= specified twice without interleaving hugepagesz=, ignoring\n");
8faa8b07
AK
2705 return 1;
2706 }
2707
a3437870
NA
2708 if (sscanf(s, "%lu", mhp) <= 0)
2709 *mhp = 0;
2710
8faa8b07
AK
2711 /*
2712 * Global state is always initialized later in hugetlb_init.
2713 * But we need to allocate >= MAX_ORDER hstates here early to still
2714 * use the bootmem allocator.
2715 */
47d38344 2716 if (hugetlb_max_hstate && parsed_hstate->order >= MAX_ORDER)
8faa8b07
AK
2717 hugetlb_hstate_alloc_pages(parsed_hstate);
2718
2719 last_mhp = mhp;
2720
a3437870
NA
2721 return 1;
2722}
e11bfbfc
NP
2723__setup("hugepages=", hugetlb_nrpages_setup);
2724
2725static int __init hugetlb_default_setup(char *s)
2726{
2727 default_hstate_size = memparse(s, &s);
2728 return 1;
2729}
2730__setup("default_hugepagesz=", hugetlb_default_setup);
a3437870 2731
8a213460
NA
2732static unsigned int cpuset_mems_nr(unsigned int *array)
2733{
2734 int node;
2735 unsigned int nr = 0;
2736
2737 for_each_node_mask(node, cpuset_current_mems_allowed)
2738 nr += array[node];
2739
2740 return nr;
2741}
2742
2743#ifdef CONFIG_SYSCTL
06808b08
LS
2744static int hugetlb_sysctl_handler_common(bool obey_mempolicy,
2745 struct ctl_table *table, int write,
2746 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 2747{
e5ff2159 2748 struct hstate *h = &default_hstate;
238d3c13 2749 unsigned long tmp = h->max_huge_pages;
08d4a246 2750 int ret;
e5ff2159 2751
457c1b27 2752 if (!hugepages_supported())
86613628 2753 return -EOPNOTSUPP;
457c1b27 2754
e5ff2159
AK
2755 table->data = &tmp;
2756 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2757 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2758 if (ret)
2759 goto out;
e5ff2159 2760
238d3c13
DR
2761 if (write)
2762 ret = __nr_hugepages_store_common(obey_mempolicy, h,
2763 NUMA_NO_NODE, tmp, *length);
08d4a246
MH
2764out:
2765 return ret;
1da177e4 2766}
396faf03 2767
06808b08
LS
2768int hugetlb_sysctl_handler(struct ctl_table *table, int write,
2769 void __user *buffer, size_t *length, loff_t *ppos)
2770{
2771
2772 return hugetlb_sysctl_handler_common(false, table, write,
2773 buffer, length, ppos);
2774}
2775
2776#ifdef CONFIG_NUMA
2777int hugetlb_mempolicy_sysctl_handler(struct ctl_table *table, int write,
2778 void __user *buffer, size_t *length, loff_t *ppos)
2779{
2780 return hugetlb_sysctl_handler_common(true, table, write,
2781 buffer, length, ppos);
2782}
2783#endif /* CONFIG_NUMA */
2784
a3d0c6aa 2785int hugetlb_overcommit_handler(struct ctl_table *table, int write,
8d65af78 2786 void __user *buffer,
a3d0c6aa
NA
2787 size_t *length, loff_t *ppos)
2788{
a5516438 2789 struct hstate *h = &default_hstate;
e5ff2159 2790 unsigned long tmp;
08d4a246 2791 int ret;
e5ff2159 2792
457c1b27 2793 if (!hugepages_supported())
86613628 2794 return -EOPNOTSUPP;
457c1b27 2795
c033a93c 2796 tmp = h->nr_overcommit_huge_pages;
e5ff2159 2797
bae7f4ae 2798 if (write && hstate_is_gigantic(h))
adbe8726
EM
2799 return -EINVAL;
2800
e5ff2159
AK
2801 table->data = &tmp;
2802 table->maxlen = sizeof(unsigned long);
08d4a246
MH
2803 ret = proc_doulongvec_minmax(table, write, buffer, length, ppos);
2804 if (ret)
2805 goto out;
e5ff2159
AK
2806
2807 if (write) {
2808 spin_lock(&hugetlb_lock);
2809 h->nr_overcommit_huge_pages = tmp;
2810 spin_unlock(&hugetlb_lock);
2811 }
08d4a246
MH
2812out:
2813 return ret;
a3d0c6aa
NA
2814}
2815
1da177e4
LT
2816#endif /* CONFIG_SYSCTL */
2817
e1759c21 2818void hugetlb_report_meminfo(struct seq_file *m)
1da177e4 2819{
a5516438 2820 struct hstate *h = &default_hstate;
457c1b27
NA
2821 if (!hugepages_supported())
2822 return;
e1759c21 2823 seq_printf(m,
4f98a2fe
RR
2824 "HugePages_Total: %5lu\n"
2825 "HugePages_Free: %5lu\n"
2826 "HugePages_Rsvd: %5lu\n"
2827 "HugePages_Surp: %5lu\n"
2828 "Hugepagesize: %8lu kB\n",
a5516438
AK
2829 h->nr_huge_pages,
2830 h->free_huge_pages,
2831 h->resv_huge_pages,
2832 h->surplus_huge_pages,
2833 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
1da177e4
LT
2834}
2835
2836int hugetlb_report_node_meminfo(int nid, char *buf)
2837{
a5516438 2838 struct hstate *h = &default_hstate;
457c1b27
NA
2839 if (!hugepages_supported())
2840 return 0;
1da177e4
LT
2841 return sprintf(buf,
2842 "Node %d HugePages_Total: %5u\n"
a1de0919
NA
2843 "Node %d HugePages_Free: %5u\n"
2844 "Node %d HugePages_Surp: %5u\n",
a5516438
AK
2845 nid, h->nr_huge_pages_node[nid],
2846 nid, h->free_huge_pages_node[nid],
2847 nid, h->surplus_huge_pages_node[nid]);
1da177e4
LT
2848}
2849
949f7ec5
DR
2850void hugetlb_show_meminfo(void)
2851{
2852 struct hstate *h;
2853 int nid;
2854
457c1b27
NA
2855 if (!hugepages_supported())
2856 return;
2857
949f7ec5
DR
2858 for_each_node_state(nid, N_MEMORY)
2859 for_each_hstate(h)
2860 pr_info("Node %d hugepages_total=%u hugepages_free=%u hugepages_surp=%u hugepages_size=%lukB\n",
2861 nid,
2862 h->nr_huge_pages_node[nid],
2863 h->free_huge_pages_node[nid],
2864 h->surplus_huge_pages_node[nid],
2865 1UL << (huge_page_order(h) + PAGE_SHIFT - 10));
2866}
2867
5d317b2b
NH
2868void hugetlb_report_usage(struct seq_file *m, struct mm_struct *mm)
2869{
2870 seq_printf(m, "HugetlbPages:\t%8lu kB\n",
2871 atomic_long_read(&mm->hugetlb_usage) << (PAGE_SHIFT - 10));
2872}
2873
1da177e4
LT
2874/* Return the number pages of memory we physically have, in PAGE_SIZE units. */
2875unsigned long hugetlb_total_pages(void)
2876{
d0028588
WL
2877 struct hstate *h;
2878 unsigned long nr_total_pages = 0;
2879
2880 for_each_hstate(h)
2881 nr_total_pages += h->nr_huge_pages * pages_per_huge_page(h);
2882 return nr_total_pages;
1da177e4 2883}
1da177e4 2884
a5516438 2885static int hugetlb_acct_memory(struct hstate *h, long delta)
fc1b8a73
MG
2886{
2887 int ret = -ENOMEM;
2888
2889 spin_lock(&hugetlb_lock);
2890 /*
2891 * When cpuset is configured, it breaks the strict hugetlb page
2892 * reservation as the accounting is done on a global variable. Such
2893 * reservation is completely rubbish in the presence of cpuset because
2894 * the reservation is not checked against page availability for the
2895 * current cpuset. Application can still potentially OOM'ed by kernel
2896 * with lack of free htlb page in cpuset that the task is in.
2897 * Attempt to enforce strict accounting with cpuset is almost
2898 * impossible (or too ugly) because cpuset is too fluid that
2899 * task or memory node can be dynamically moved between cpusets.
2900 *
2901 * The change of semantics for shared hugetlb mapping with cpuset is
2902 * undesirable. However, in order to preserve some of the semantics,
2903 * we fall back to check against current free page availability as
2904 * a best attempt and hopefully to minimize the impact of changing
2905 * semantics that cpuset has.
2906 */
2907 if (delta > 0) {
a5516438 2908 if (gather_surplus_pages(h, delta) < 0)
fc1b8a73
MG
2909 goto out;
2910
a5516438
AK
2911 if (delta > cpuset_mems_nr(h->free_huge_pages_node)) {
2912 return_unused_surplus_pages(h, delta);
fc1b8a73
MG
2913 goto out;
2914 }
2915 }
2916
2917 ret = 0;
2918 if (delta < 0)
a5516438 2919 return_unused_surplus_pages(h, (unsigned long) -delta);
fc1b8a73
MG
2920
2921out:
2922 spin_unlock(&hugetlb_lock);
2923 return ret;
2924}
2925
84afd99b
AW
2926static void hugetlb_vm_op_open(struct vm_area_struct *vma)
2927{
f522c3ac 2928 struct resv_map *resv = vma_resv_map(vma);
84afd99b
AW
2929
2930 /*
2931 * This new VMA should share its siblings reservation map if present.
2932 * The VMA will only ever have a valid reservation map pointer where
2933 * it is being copied for another still existing VMA. As that VMA
25985edc 2934 * has a reference to the reservation map it cannot disappear until
84afd99b
AW
2935 * after this open call completes. It is therefore safe to take a
2936 * new reference here without additional locking.
2937 */
4e35f483 2938 if (resv && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
f522c3ac 2939 kref_get(&resv->refs);
84afd99b
AW
2940}
2941
a1e78772
MG
2942static void hugetlb_vm_op_close(struct vm_area_struct *vma)
2943{
a5516438 2944 struct hstate *h = hstate_vma(vma);
f522c3ac 2945 struct resv_map *resv = vma_resv_map(vma);
90481622 2946 struct hugepage_subpool *spool = subpool_vma(vma);
4e35f483 2947 unsigned long reserve, start, end;
1c5ecae3 2948 long gbl_reserve;
84afd99b 2949
4e35f483
JK
2950 if (!resv || !is_vma_resv_set(vma, HPAGE_RESV_OWNER))
2951 return;
84afd99b 2952
4e35f483
JK
2953 start = vma_hugecache_offset(h, vma, vma->vm_start);
2954 end = vma_hugecache_offset(h, vma, vma->vm_end);
84afd99b 2955
4e35f483 2956 reserve = (end - start) - region_count(resv, start, end);
84afd99b 2957
4e35f483
JK
2958 kref_put(&resv->refs, resv_map_release);
2959
2960 if (reserve) {
1c5ecae3
MK
2961 /*
2962 * Decrement reserve counts. The global reserve count may be
2963 * adjusted if the subpool has a minimum size.
2964 */
2965 gbl_reserve = hugepage_subpool_put_pages(spool, reserve);
2966 hugetlb_acct_memory(h, -gbl_reserve);
84afd99b 2967 }
a1e78772
MG
2968}
2969
1da177e4
LT
2970/*
2971 * We cannot handle pagefaults against hugetlb pages at all. They cause
2972 * handle_mm_fault() to try to instantiate regular-sized pages in the
2973 * hugegpage VMA. do_page_fault() is supposed to trap this, so BUG is we get
2974 * this far.
2975 */
d0217ac0 2976static int hugetlb_vm_op_fault(struct vm_area_struct *vma, struct vm_fault *vmf)
1da177e4
LT
2977{
2978 BUG();
d0217ac0 2979 return 0;
1da177e4
LT
2980}
2981
f0f37e2f 2982const struct vm_operations_struct hugetlb_vm_ops = {
d0217ac0 2983 .fault = hugetlb_vm_op_fault,
84afd99b 2984 .open = hugetlb_vm_op_open,
a1e78772 2985 .close = hugetlb_vm_op_close,
1da177e4
LT
2986};
2987
1e8f889b
DG
2988static pte_t make_huge_pte(struct vm_area_struct *vma, struct page *page,
2989 int writable)
63551ae0
DG
2990{
2991 pte_t entry;
2992
1e8f889b 2993 if (writable) {
106c992a
GS
2994 entry = huge_pte_mkwrite(huge_pte_mkdirty(mk_huge_pte(page,
2995 vma->vm_page_prot)));
63551ae0 2996 } else {
106c992a
GS
2997 entry = huge_pte_wrprotect(mk_huge_pte(page,
2998 vma->vm_page_prot));
63551ae0
DG
2999 }
3000 entry = pte_mkyoung(entry);
3001 entry = pte_mkhuge(entry);
d9ed9faa 3002 entry = arch_make_huge_pte(entry, vma, page, writable);
63551ae0
DG
3003
3004 return entry;
3005}
3006
1e8f889b
DG
3007static void set_huge_ptep_writable(struct vm_area_struct *vma,
3008 unsigned long address, pte_t *ptep)
3009{
3010 pte_t entry;
3011
106c992a 3012 entry = huge_pte_mkwrite(huge_pte_mkdirty(huge_ptep_get(ptep)));
32f84528 3013 if (huge_ptep_set_access_flags(vma, address, ptep, entry, 1))
4b3073e1 3014 update_mmu_cache(vma, address, ptep);
1e8f889b
DG
3015}
3016
4a705fef
NH
3017static int is_hugetlb_entry_migration(pte_t pte)
3018{
3019 swp_entry_t swp;
3020
3021 if (huge_pte_none(pte) || pte_present(pte))
3022 return 0;
3023 swp = pte_to_swp_entry(pte);
3024 if (non_swap_entry(swp) && is_migration_entry(swp))
3025 return 1;
3026 else
3027 return 0;
3028}
3029
3030static int is_hugetlb_entry_hwpoisoned(pte_t pte)
3031{
3032 swp_entry_t swp;
3033
3034 if (huge_pte_none(pte) || pte_present(pte))
3035 return 0;
3036 swp = pte_to_swp_entry(pte);
3037 if (non_swap_entry(swp) && is_hwpoison_entry(swp))
3038 return 1;
3039 else
3040 return 0;
3041}
1e8f889b 3042
63551ae0
DG
3043int copy_hugetlb_page_range(struct mm_struct *dst, struct mm_struct *src,
3044 struct vm_area_struct *vma)
3045{
3046 pte_t *src_pte, *dst_pte, entry;
3047 struct page *ptepage;
1c59827d 3048 unsigned long addr;
1e8f889b 3049 int cow;
a5516438
AK
3050 struct hstate *h = hstate_vma(vma);
3051 unsigned long sz = huge_page_size(h);
e8569dd2
AS
3052 unsigned long mmun_start; /* For mmu_notifiers */
3053 unsigned long mmun_end; /* For mmu_notifiers */
3054 int ret = 0;
1e8f889b
DG
3055
3056 cow = (vma->vm_flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
63551ae0 3057
e8569dd2
AS
3058 mmun_start = vma->vm_start;
3059 mmun_end = vma->vm_end;
3060 if (cow)
3061 mmu_notifier_invalidate_range_start(src, mmun_start, mmun_end);
3062
a5516438 3063 for (addr = vma->vm_start; addr < vma->vm_end; addr += sz) {
cb900f41 3064 spinlock_t *src_ptl, *dst_ptl;
c74df32c
HD
3065 src_pte = huge_pte_offset(src, addr);
3066 if (!src_pte)
3067 continue;
a5516438 3068 dst_pte = huge_pte_alloc(dst, addr, sz);
e8569dd2
AS
3069 if (!dst_pte) {
3070 ret = -ENOMEM;
3071 break;
3072 }
c5c99429
LW
3073
3074 /* If the pagetables are shared don't copy or take references */
3075 if (dst_pte == src_pte)
3076 continue;
3077
cb900f41
KS
3078 dst_ptl = huge_pte_lock(h, dst, dst_pte);
3079 src_ptl = huge_pte_lockptr(h, src, src_pte);
3080 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
4a705fef
NH
3081 entry = huge_ptep_get(src_pte);
3082 if (huge_pte_none(entry)) { /* skip none entry */
3083 ;
3084 } else if (unlikely(is_hugetlb_entry_migration(entry) ||
3085 is_hugetlb_entry_hwpoisoned(entry))) {
3086 swp_entry_t swp_entry = pte_to_swp_entry(entry);
3087
3088 if (is_write_migration_entry(swp_entry) && cow) {
3089 /*
3090 * COW mappings require pages in both
3091 * parent and child to be set to read.
3092 */
3093 make_migration_entry_read(&swp_entry);
3094 entry = swp_entry_to_pte(swp_entry);
3095 set_huge_pte_at(src, addr, src_pte, entry);
3096 }
3097 set_huge_pte_at(dst, addr, dst_pte, entry);
3098 } else {
34ee645e 3099 if (cow) {
7f2e9525 3100 huge_ptep_set_wrprotect(src, addr, src_pte);
34ee645e
JR
3101 mmu_notifier_invalidate_range(src, mmun_start,
3102 mmun_end);
3103 }
0253d634 3104 entry = huge_ptep_get(src_pte);
1c59827d
HD
3105 ptepage = pte_page(entry);
3106 get_page(ptepage);
53f9263b 3107 page_dup_rmap(ptepage, true);
1c59827d 3108 set_huge_pte_at(dst, addr, dst_pte, entry);
5d317b2b 3109 hugetlb_count_add(pages_per_huge_page(h), dst);
1c59827d 3110 }
cb900f41
KS
3111 spin_unlock(src_ptl);
3112 spin_unlock(dst_ptl);
63551ae0 3113 }
63551ae0 3114
e8569dd2
AS
3115 if (cow)
3116 mmu_notifier_invalidate_range_end(src, mmun_start, mmun_end);
3117
3118 return ret;
63551ae0
DG
3119}
3120
24669e58
AK
3121void __unmap_hugepage_range(struct mmu_gather *tlb, struct vm_area_struct *vma,
3122 unsigned long start, unsigned long end,
3123 struct page *ref_page)
63551ae0 3124{
24669e58 3125 int force_flush = 0;
63551ae0
DG
3126 struct mm_struct *mm = vma->vm_mm;
3127 unsigned long address;
c7546f8f 3128 pte_t *ptep;
63551ae0 3129 pte_t pte;
cb900f41 3130 spinlock_t *ptl;
63551ae0 3131 struct page *page;
a5516438
AK
3132 struct hstate *h = hstate_vma(vma);
3133 unsigned long sz = huge_page_size(h);
2ec74c3e
SG
3134 const unsigned long mmun_start = start; /* For mmu_notifiers */
3135 const unsigned long mmun_end = end; /* For mmu_notifiers */
a5516438 3136
63551ae0 3137 WARN_ON(!is_vm_hugetlb_page(vma));
a5516438
AK
3138 BUG_ON(start & ~huge_page_mask(h));
3139 BUG_ON(end & ~huge_page_mask(h));
63551ae0 3140
24669e58 3141 tlb_start_vma(tlb, vma);
2ec74c3e 3142 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
569f48b8 3143 address = start;
24669e58 3144again:
569f48b8 3145 for (; address < end; address += sz) {
c7546f8f 3146 ptep = huge_pte_offset(mm, address);
4c887265 3147 if (!ptep)
c7546f8f
DG
3148 continue;
3149
cb900f41 3150 ptl = huge_pte_lock(h, mm, ptep);
39dde65c 3151 if (huge_pmd_unshare(mm, &address, ptep))
cb900f41 3152 goto unlock;
39dde65c 3153
6629326b
HD
3154 pte = huge_ptep_get(ptep);
3155 if (huge_pte_none(pte))
cb900f41 3156 goto unlock;
6629326b
HD
3157
3158 /*
9fbc1f63
NH
3159 * Migrating hugepage or HWPoisoned hugepage is already
3160 * unmapped and its refcount is dropped, so just clear pte here.
6629326b 3161 */
9fbc1f63 3162 if (unlikely(!pte_present(pte))) {
106c992a 3163 huge_pte_clear(mm, address, ptep);
cb900f41 3164 goto unlock;
8c4894c6 3165 }
6629326b
HD
3166
3167 page = pte_page(pte);
04f2cbe3
MG
3168 /*
3169 * If a reference page is supplied, it is because a specific
3170 * page is being unmapped, not a range. Ensure the page we
3171 * are about to unmap is the actual page of interest.
3172 */
3173 if (ref_page) {
04f2cbe3 3174 if (page != ref_page)
cb900f41 3175 goto unlock;
04f2cbe3
MG
3176
3177 /*
3178 * Mark the VMA as having unmapped its page so that
3179 * future faults in this VMA will fail rather than
3180 * looking like data was lost
3181 */
3182 set_vma_resv_flags(vma, HPAGE_RESV_UNMAPPED);
3183 }
3184
c7546f8f 3185 pte = huge_ptep_get_and_clear(mm, address, ptep);
24669e58 3186 tlb_remove_tlb_entry(tlb, ptep, address);
106c992a 3187 if (huge_pte_dirty(pte))
6649a386 3188 set_page_dirty(page);
9e81130b 3189
5d317b2b 3190 hugetlb_count_sub(pages_per_huge_page(h), mm);
d281ee61 3191 page_remove_rmap(page, true);
24669e58 3192 force_flush = !__tlb_remove_page(tlb, page);
cb900f41 3193 if (force_flush) {
569f48b8 3194 address += sz;
cb900f41 3195 spin_unlock(ptl);
24669e58 3196 break;
cb900f41 3197 }
9e81130b 3198 /* Bail out after unmapping reference page if supplied */
cb900f41
KS
3199 if (ref_page) {
3200 spin_unlock(ptl);
9e81130b 3201 break;
cb900f41
KS
3202 }
3203unlock:
3204 spin_unlock(ptl);
63551ae0 3205 }
24669e58
AK
3206 /*
3207 * mmu_gather ran out of room to batch pages, we break out of
3208 * the PTE lock to avoid doing the potential expensive TLB invalidate
3209 * and page-free while holding it.
3210 */
3211 if (force_flush) {
3212 force_flush = 0;
3213 tlb_flush_mmu(tlb);
3214 if (address < end && !ref_page)
3215 goto again;
fe1668ae 3216 }
2ec74c3e 3217 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
24669e58 3218 tlb_end_vma(tlb, vma);
1da177e4 3219}
63551ae0 3220
d833352a
MG
3221void __unmap_hugepage_range_final(struct mmu_gather *tlb,
3222 struct vm_area_struct *vma, unsigned long start,
3223 unsigned long end, struct page *ref_page)
3224{
3225 __unmap_hugepage_range(tlb, vma, start, end, ref_page);
3226
3227 /*
3228 * Clear this flag so that x86's huge_pmd_share page_table_shareable
3229 * test will fail on a vma being torn down, and not grab a page table
3230 * on its way out. We're lucky that the flag has such an appropriate
3231 * name, and can in fact be safely cleared here. We could clear it
3232 * before the __unmap_hugepage_range above, but all that's necessary
c8c06efa 3233 * is to clear it before releasing the i_mmap_rwsem. This works
d833352a 3234 * because in the context this is called, the VMA is about to be
c8c06efa 3235 * destroyed and the i_mmap_rwsem is held.
d833352a
MG
3236 */
3237 vma->vm_flags &= ~VM_MAYSHARE;
3238}
3239
502717f4 3240void unmap_hugepage_range(struct vm_area_struct *vma, unsigned long start,
04f2cbe3 3241 unsigned long end, struct page *ref_page)
502717f4 3242{
24669e58
AK
3243 struct mm_struct *mm;
3244 struct mmu_gather tlb;
3245
3246 mm = vma->vm_mm;
3247
2b047252 3248 tlb_gather_mmu(&tlb, mm, start, end);
24669e58
AK
3249 __unmap_hugepage_range(&tlb, vma, start, end, ref_page);
3250 tlb_finish_mmu(&tlb, start, end);
502717f4
CK
3251}
3252
04f2cbe3
MG
3253/*
3254 * This is called when the original mapper is failing to COW a MAP_PRIVATE
3255 * mappping it owns the reserve page for. The intention is to unmap the page
3256 * from other VMAs and let the children be SIGKILLed if they are faulting the
3257 * same region.
3258 */
2f4612af
DB
3259static void unmap_ref_private(struct mm_struct *mm, struct vm_area_struct *vma,
3260 struct page *page, unsigned long address)
04f2cbe3 3261{
7526674d 3262 struct hstate *h = hstate_vma(vma);
04f2cbe3
MG
3263 struct vm_area_struct *iter_vma;
3264 struct address_space *mapping;
04f2cbe3
MG
3265 pgoff_t pgoff;
3266
3267 /*
3268 * vm_pgoff is in PAGE_SIZE units, hence the different calculation
3269 * from page cache lookup which is in HPAGE_SIZE units.
3270 */
7526674d 3271 address = address & huge_page_mask(h);
36e4f20a
MH
3272 pgoff = ((address - vma->vm_start) >> PAGE_SHIFT) +
3273 vma->vm_pgoff;
496ad9aa 3274 mapping = file_inode(vma->vm_file)->i_mapping;
04f2cbe3 3275
4eb2b1dc
MG
3276 /*
3277 * Take the mapping lock for the duration of the table walk. As
3278 * this mapping should be shared between all the VMAs,
3279 * __unmap_hugepage_range() is called as the lock is already held
3280 */
83cde9e8 3281 i_mmap_lock_write(mapping);
6b2dbba8 3282 vma_interval_tree_foreach(iter_vma, &mapping->i_mmap, pgoff, pgoff) {
04f2cbe3
MG
3283 /* Do not unmap the current VMA */
3284 if (iter_vma == vma)
3285 continue;
3286
2f84a899
MG
3287 /*
3288 * Shared VMAs have their own reserves and do not affect
3289 * MAP_PRIVATE accounting but it is possible that a shared
3290 * VMA is using the same page so check and skip such VMAs.
3291 */
3292 if (iter_vma->vm_flags & VM_MAYSHARE)
3293 continue;
3294
04f2cbe3
MG
3295 /*
3296 * Unmap the page from other VMAs without their own reserves.
3297 * They get marked to be SIGKILLed if they fault in these
3298 * areas. This is because a future no-page fault on this VMA
3299 * could insert a zeroed page instead of the data existing
3300 * from the time of fork. This would look like data corruption
3301 */
3302 if (!is_vma_resv_set(iter_vma, HPAGE_RESV_OWNER))
24669e58
AK
3303 unmap_hugepage_range(iter_vma, address,
3304 address + huge_page_size(h), page);
04f2cbe3 3305 }
83cde9e8 3306 i_mmap_unlock_write(mapping);
04f2cbe3
MG
3307}
3308
0fe6e20b
NH
3309/*
3310 * Hugetlb_cow() should be called with page lock of the original hugepage held.
ef009b25
MH
3311 * Called with hugetlb_instantiation_mutex held and pte_page locked so we
3312 * cannot race with other handlers or page migration.
3313 * Keep the pte_same checks anyway to make transition from the mutex easier.
0fe6e20b 3314 */
1e8f889b 3315static int hugetlb_cow(struct mm_struct *mm, struct vm_area_struct *vma,
04f2cbe3 3316 unsigned long address, pte_t *ptep, pte_t pte,
cb900f41 3317 struct page *pagecache_page, spinlock_t *ptl)
1e8f889b 3318{
a5516438 3319 struct hstate *h = hstate_vma(vma);
1e8f889b 3320 struct page *old_page, *new_page;
ad4404a2 3321 int ret = 0, outside_reserve = 0;
2ec74c3e
SG
3322 unsigned long mmun_start; /* For mmu_notifiers */
3323 unsigned long mmun_end; /* For mmu_notifiers */
1e8f889b
DG
3324
3325 old_page = pte_page(pte);
3326
04f2cbe3 3327retry_avoidcopy:
1e8f889b
DG
3328 /* If no-one else is actually using this page, avoid the copy
3329 * and just make the page writable */
37a2140d
JK
3330 if (page_mapcount(old_page) == 1 && PageAnon(old_page)) {
3331 page_move_anon_rmap(old_page, vma, address);
1e8f889b 3332 set_huge_ptep_writable(vma, address, ptep);
83c54070 3333 return 0;
1e8f889b
DG
3334 }
3335
04f2cbe3
MG
3336 /*
3337 * If the process that created a MAP_PRIVATE mapping is about to
3338 * perform a COW due to a shared page count, attempt to satisfy
3339 * the allocation without using the existing reserves. The pagecache
3340 * page is used to determine if the reserve at this address was
3341 * consumed or not. If reserves were used, a partial faulted mapping
3342 * at the time of fork() could consume its reserves on COW instead
3343 * of the full address range.
3344 */
5944d011 3345 if (is_vma_resv_set(vma, HPAGE_RESV_OWNER) &&
04f2cbe3
MG
3346 old_page != pagecache_page)
3347 outside_reserve = 1;
3348
09cbfeaf 3349 get_page(old_page);
b76c8cfb 3350
ad4404a2
DB
3351 /*
3352 * Drop page table lock as buddy allocator may be called. It will
3353 * be acquired again before returning to the caller, as expected.
3354 */
cb900f41 3355 spin_unlock(ptl);
04f2cbe3 3356 new_page = alloc_huge_page(vma, address, outside_reserve);
1e8f889b 3357
2fc39cec 3358 if (IS_ERR(new_page)) {
04f2cbe3
MG
3359 /*
3360 * If a process owning a MAP_PRIVATE mapping fails to COW,
3361 * it is due to references held by a child and an insufficient
3362 * huge page pool. To guarantee the original mappers
3363 * reliability, unmap the page from child processes. The child
3364 * may get SIGKILLed if it later faults.
3365 */
3366 if (outside_reserve) {
09cbfeaf 3367 put_page(old_page);
04f2cbe3 3368 BUG_ON(huge_pte_none(pte));
2f4612af
DB
3369 unmap_ref_private(mm, vma, old_page, address);
3370 BUG_ON(huge_pte_none(pte));
3371 spin_lock(ptl);
3372 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
3373 if (likely(ptep &&
3374 pte_same(huge_ptep_get(ptep), pte)))
3375 goto retry_avoidcopy;
3376 /*
3377 * race occurs while re-acquiring page table
3378 * lock, and our job is done.
3379 */
3380 return 0;
04f2cbe3
MG
3381 }
3382
ad4404a2
DB
3383 ret = (PTR_ERR(new_page) == -ENOMEM) ?
3384 VM_FAULT_OOM : VM_FAULT_SIGBUS;
3385 goto out_release_old;
1e8f889b
DG
3386 }
3387
0fe6e20b
NH
3388 /*
3389 * When the original hugepage is shared one, it does not have
3390 * anon_vma prepared.
3391 */
44e2aa93 3392 if (unlikely(anon_vma_prepare(vma))) {
ad4404a2
DB
3393 ret = VM_FAULT_OOM;
3394 goto out_release_all;
44e2aa93 3395 }
0fe6e20b 3396
47ad8475
AA
3397 copy_user_huge_page(new_page, old_page, address, vma,
3398 pages_per_huge_page(h));
0ed361de 3399 __SetPageUptodate(new_page);
bcc54222 3400 set_page_huge_active(new_page);
1e8f889b 3401
2ec74c3e
SG
3402 mmun_start = address & huge_page_mask(h);
3403 mmun_end = mmun_start + huge_page_size(h);
3404 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
ad4404a2 3405
b76c8cfb 3406 /*
cb900f41 3407 * Retake the page table lock to check for racing updates
b76c8cfb
LW
3408 * before the page tables are altered
3409 */
cb900f41 3410 spin_lock(ptl);
a5516438 3411 ptep = huge_pte_offset(mm, address & huge_page_mask(h));
a9af0c5d 3412 if (likely(ptep && pte_same(huge_ptep_get(ptep), pte))) {
07443a85
JK
3413 ClearPagePrivate(new_page);
3414
1e8f889b 3415 /* Break COW */
8fe627ec 3416 huge_ptep_clear_flush(vma, address, ptep);
34ee645e 3417 mmu_notifier_invalidate_range(mm, mmun_start, mmun_end);
1e8f889b
DG
3418 set_huge_pte_at(mm, address, ptep,
3419 make_huge_pte(vma, new_page, 1));
d281ee61 3420 page_remove_rmap(old_page, true);
cd67f0d2 3421 hugepage_add_new_anon_rmap(new_page, vma, address);
1e8f889b
DG
3422 /* Make the old page be freed below */
3423 new_page = old_page;
3424 }
cb900f41 3425 spin_unlock(ptl);
2ec74c3e 3426 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
ad4404a2 3427out_release_all:
09cbfeaf 3428 put_page(new_page);
ad4404a2 3429out_release_old:
09cbfeaf 3430 put_page(old_page);
8312034f 3431
ad4404a2
DB
3432 spin_lock(ptl); /* Caller expects lock to be held */
3433 return ret;
1e8f889b
DG
3434}
3435
04f2cbe3 3436/* Return the pagecache page at a given address within a VMA */
a5516438
AK
3437static struct page *hugetlbfs_pagecache_page(struct hstate *h,
3438 struct vm_area_struct *vma, unsigned long address)
04f2cbe3
MG
3439{
3440 struct address_space *mapping;
e7c4b0bf 3441 pgoff_t idx;
04f2cbe3
MG
3442
3443 mapping = vma->vm_file->f_mapping;
a5516438 3444 idx = vma_hugecache_offset(h, vma, address);
04f2cbe3
MG
3445
3446 return find_lock_page(mapping, idx);
3447}
3448
3ae77f43
HD
3449/*
3450 * Return whether there is a pagecache page to back given address within VMA.
3451 * Caller follow_hugetlb_page() holds page_table_lock so we cannot lock_page.
3452 */
3453static bool hugetlbfs_pagecache_present(struct hstate *h,
2a15efc9
HD
3454 struct vm_area_struct *vma, unsigned long address)
3455{
3456 struct address_space *mapping;
3457 pgoff_t idx;
3458 struct page *page;
3459
3460 mapping = vma->vm_file->f_mapping;
3461 idx = vma_hugecache_offset(h, vma, address);
3462
3463 page = find_get_page(mapping, idx);
3464 if (page)
3465 put_page(page);
3466 return page != NULL;
3467}
3468
ab76ad54
MK
3469int huge_add_to_page_cache(struct page *page, struct address_space *mapping,
3470 pgoff_t idx)
3471{
3472 struct inode *inode = mapping->host;
3473 struct hstate *h = hstate_inode(inode);
3474 int err = add_to_page_cache(page, mapping, idx, GFP_KERNEL);
3475
3476 if (err)
3477 return err;
3478 ClearPagePrivate(page);
3479
3480 spin_lock(&inode->i_lock);
3481 inode->i_blocks += blocks_per_huge_page(h);
3482 spin_unlock(&inode->i_lock);
3483 return 0;
3484}
3485
a1ed3dda 3486static int hugetlb_no_page(struct mm_struct *mm, struct vm_area_struct *vma,
8382d914
DB
3487 struct address_space *mapping, pgoff_t idx,
3488 unsigned long address, pte_t *ptep, unsigned int flags)
ac9b9c66 3489{
a5516438 3490 struct hstate *h = hstate_vma(vma);
ac9b9c66 3491 int ret = VM_FAULT_SIGBUS;
409eb8c2 3492 int anon_rmap = 0;
4c887265 3493 unsigned long size;
4c887265 3494 struct page *page;
1e8f889b 3495 pte_t new_pte;
cb900f41 3496 spinlock_t *ptl;
4c887265 3497
04f2cbe3
MG
3498 /*
3499 * Currently, we are forced to kill the process in the event the
3500 * original mapper has unmapped pages from the child due to a failed
25985edc 3501 * COW. Warn that such a situation has occurred as it may not be obvious
04f2cbe3
MG
3502 */
3503 if (is_vma_resv_set(vma, HPAGE_RESV_UNMAPPED)) {
910154d5 3504 pr_warn_ratelimited("PID %d killed due to inadequate hugepage pool\n",
ffb22af5 3505 current->pid);
04f2cbe3
MG
3506 return ret;
3507 }
3508
4c887265
AL
3509 /*
3510 * Use page lock to guard against racing truncation
3511 * before we get page_table_lock.
3512 */
6bda666a
CL
3513retry:
3514 page = find_lock_page(mapping, idx);
3515 if (!page) {
a5516438 3516 size = i_size_read(mapping->host) >> huge_page_shift(h);
ebed4bfc
HD
3517 if (idx >= size)
3518 goto out;
04f2cbe3 3519 page = alloc_huge_page(vma, address, 0);
2fc39cec 3520 if (IS_ERR(page)) {
76dcee75
AK
3521 ret = PTR_ERR(page);
3522 if (ret == -ENOMEM)
3523 ret = VM_FAULT_OOM;
3524 else
3525 ret = VM_FAULT_SIGBUS;
6bda666a
CL
3526 goto out;
3527 }
47ad8475 3528 clear_huge_page(page, address, pages_per_huge_page(h));
0ed361de 3529 __SetPageUptodate(page);
bcc54222 3530 set_page_huge_active(page);
ac9b9c66 3531
f83a275d 3532 if (vma->vm_flags & VM_MAYSHARE) {
ab76ad54 3533 int err = huge_add_to_page_cache(page, mapping, idx);
6bda666a
CL
3534 if (err) {
3535 put_page(page);
6bda666a
CL
3536 if (err == -EEXIST)
3537 goto retry;
3538 goto out;
3539 }
23be7468 3540 } else {
6bda666a 3541 lock_page(page);
0fe6e20b
NH
3542 if (unlikely(anon_vma_prepare(vma))) {
3543 ret = VM_FAULT_OOM;
3544 goto backout_unlocked;
3545 }
409eb8c2 3546 anon_rmap = 1;
23be7468 3547 }
0fe6e20b 3548 } else {
998b4382
NH
3549 /*
3550 * If memory error occurs between mmap() and fault, some process
3551 * don't have hwpoisoned swap entry for errored virtual address.
3552 * So we need to block hugepage fault by PG_hwpoison bit check.
3553 */
3554 if (unlikely(PageHWPoison(page))) {
32f84528 3555 ret = VM_FAULT_HWPOISON |
972dc4de 3556 VM_FAULT_SET_HINDEX(hstate_index(h));
998b4382
NH
3557 goto backout_unlocked;
3558 }
6bda666a 3559 }
1e8f889b 3560
57303d80
AW
3561 /*
3562 * If we are going to COW a private mapping later, we examine the
3563 * pending reservations for this page now. This will ensure that
3564 * any allocations necessary to record that reservation occur outside
3565 * the spinlock.
3566 */
5e911373 3567 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
2b26736c
AW
3568 if (vma_needs_reservation(h, vma, address) < 0) {
3569 ret = VM_FAULT_OOM;
3570 goto backout_unlocked;
3571 }
5e911373 3572 /* Just decrements count, does not deallocate */
feba16e2 3573 vma_end_reservation(h, vma, address);
5e911373 3574 }
57303d80 3575
cb900f41
KS
3576 ptl = huge_pte_lockptr(h, mm, ptep);
3577 spin_lock(ptl);
a5516438 3578 size = i_size_read(mapping->host) >> huge_page_shift(h);
4c887265
AL
3579 if (idx >= size)
3580 goto backout;
3581
83c54070 3582 ret = 0;
7f2e9525 3583 if (!huge_pte_none(huge_ptep_get(ptep)))
4c887265
AL
3584 goto backout;
3585
07443a85
JK
3586 if (anon_rmap) {
3587 ClearPagePrivate(page);
409eb8c2 3588 hugepage_add_new_anon_rmap(page, vma, address);
ac714904 3589 } else
53f9263b 3590 page_dup_rmap(page, true);
1e8f889b
DG
3591 new_pte = make_huge_pte(vma, page, ((vma->vm_flags & VM_WRITE)
3592 && (vma->vm_flags & VM_SHARED)));
3593 set_huge_pte_at(mm, address, ptep, new_pte);
3594
5d317b2b 3595 hugetlb_count_add(pages_per_huge_page(h), mm);
788c7df4 3596 if ((flags & FAULT_FLAG_WRITE) && !(vma->vm_flags & VM_SHARED)) {
1e8f889b 3597 /* Optimization, do the COW without a second fault */
cb900f41 3598 ret = hugetlb_cow(mm, vma, address, ptep, new_pte, page, ptl);
1e8f889b
DG
3599 }
3600
cb900f41 3601 spin_unlock(ptl);
4c887265
AL
3602 unlock_page(page);
3603out:
ac9b9c66 3604 return ret;
4c887265
AL
3605
3606backout:
cb900f41 3607 spin_unlock(ptl);
2b26736c 3608backout_unlocked:
4c887265
AL
3609 unlock_page(page);
3610 put_page(page);
3611 goto out;
ac9b9c66
HD
3612}
3613
8382d914 3614#ifdef CONFIG_SMP
c672c7f2 3615u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3616 struct vm_area_struct *vma,
3617 struct address_space *mapping,
3618 pgoff_t idx, unsigned long address)
3619{
3620 unsigned long key[2];
3621 u32 hash;
3622
3623 if (vma->vm_flags & VM_SHARED) {
3624 key[0] = (unsigned long) mapping;
3625 key[1] = idx;
3626 } else {
3627 key[0] = (unsigned long) mm;
3628 key[1] = address >> huge_page_shift(h);
3629 }
3630
3631 hash = jhash2((u32 *)&key, sizeof(key)/sizeof(u32), 0);
3632
3633 return hash & (num_fault_mutexes - 1);
3634}
3635#else
3636/*
3637 * For uniprocesor systems we always use a single mutex, so just
3638 * return 0 and avoid the hashing overhead.
3639 */
c672c7f2 3640u32 hugetlb_fault_mutex_hash(struct hstate *h, struct mm_struct *mm,
8382d914
DB
3641 struct vm_area_struct *vma,
3642 struct address_space *mapping,
3643 pgoff_t idx, unsigned long address)
3644{
3645 return 0;
3646}
3647#endif
3648
86e5216f 3649int hugetlb_fault(struct mm_struct *mm, struct vm_area_struct *vma,
788c7df4 3650 unsigned long address, unsigned int flags)
86e5216f 3651{
8382d914 3652 pte_t *ptep, entry;
cb900f41 3653 spinlock_t *ptl;
1e8f889b 3654 int ret;
8382d914
DB
3655 u32 hash;
3656 pgoff_t idx;
0fe6e20b 3657 struct page *page = NULL;
57303d80 3658 struct page *pagecache_page = NULL;
a5516438 3659 struct hstate *h = hstate_vma(vma);
8382d914 3660 struct address_space *mapping;
0f792cf9 3661 int need_wait_lock = 0;
86e5216f 3662
1e16a539
KH
3663 address &= huge_page_mask(h);
3664
fd6a03ed
NH
3665 ptep = huge_pte_offset(mm, address);
3666 if (ptep) {
3667 entry = huge_ptep_get(ptep);
290408d4 3668 if (unlikely(is_hugetlb_entry_migration(entry))) {
cb900f41 3669 migration_entry_wait_huge(vma, mm, ptep);
290408d4
NH
3670 return 0;
3671 } else if (unlikely(is_hugetlb_entry_hwpoisoned(entry)))
32f84528 3672 return VM_FAULT_HWPOISON_LARGE |
972dc4de 3673 VM_FAULT_SET_HINDEX(hstate_index(h));
0d777df5
NH
3674 } else {
3675 ptep = huge_pte_alloc(mm, address, huge_page_size(h));
3676 if (!ptep)
3677 return VM_FAULT_OOM;
fd6a03ed
NH
3678 }
3679
8382d914
DB
3680 mapping = vma->vm_file->f_mapping;
3681 idx = vma_hugecache_offset(h, vma, address);
3682
3935baa9
DG
3683 /*
3684 * Serialize hugepage allocation and instantiation, so that we don't
3685 * get spurious allocation failures if two CPUs race to instantiate
3686 * the same page in the page cache.
3687 */
c672c7f2
MK
3688 hash = hugetlb_fault_mutex_hash(h, mm, vma, mapping, idx, address);
3689 mutex_lock(&hugetlb_fault_mutex_table[hash]);
8382d914 3690
7f2e9525
GS
3691 entry = huge_ptep_get(ptep);
3692 if (huge_pte_none(entry)) {
8382d914 3693 ret = hugetlb_no_page(mm, vma, mapping, idx, address, ptep, flags);
b4d1d99f 3694 goto out_mutex;
3935baa9 3695 }
86e5216f 3696
83c54070 3697 ret = 0;
1e8f889b 3698
0f792cf9
NH
3699 /*
3700 * entry could be a migration/hwpoison entry at this point, so this
3701 * check prevents the kernel from going below assuming that we have
3702 * a active hugepage in pagecache. This goto expects the 2nd page fault,
3703 * and is_hugetlb_entry_(migration|hwpoisoned) check will properly
3704 * handle it.
3705 */
3706 if (!pte_present(entry))
3707 goto out_mutex;
3708
57303d80
AW
3709 /*
3710 * If we are going to COW the mapping later, we examine the pending
3711 * reservations for this page now. This will ensure that any
3712 * allocations necessary to record that reservation occur outside the
3713 * spinlock. For private mappings, we also lookup the pagecache
3714 * page now as it is used to determine if a reservation has been
3715 * consumed.
3716 */
106c992a 3717 if ((flags & FAULT_FLAG_WRITE) && !huge_pte_write(entry)) {
2b26736c
AW
3718 if (vma_needs_reservation(h, vma, address) < 0) {
3719 ret = VM_FAULT_OOM;
b4d1d99f 3720 goto out_mutex;
2b26736c 3721 }
5e911373 3722 /* Just decrements count, does not deallocate */
feba16e2 3723 vma_end_reservation(h, vma, address);
57303d80 3724
f83a275d 3725 if (!(vma->vm_flags & VM_MAYSHARE))
57303d80
AW
3726 pagecache_page = hugetlbfs_pagecache_page(h,
3727 vma, address);
3728 }
3729
0f792cf9
NH
3730 ptl = huge_pte_lock(h, mm, ptep);
3731
3732 /* Check for a racing update before calling hugetlb_cow */
3733 if (unlikely(!pte_same(entry, huge_ptep_get(ptep))))
3734 goto out_ptl;
3735
56c9cfb1
NH
3736 /*
3737 * hugetlb_cow() requires page locks of pte_page(entry) and
3738 * pagecache_page, so here we need take the former one
3739 * when page != pagecache_page or !pagecache_page.
56c9cfb1
NH
3740 */
3741 page = pte_page(entry);
3742 if (page != pagecache_page)
0f792cf9
NH
3743 if (!trylock_page(page)) {
3744 need_wait_lock = 1;
3745 goto out_ptl;
3746 }
b4d1d99f 3747
0f792cf9 3748 get_page(page);
b4d1d99f 3749
788c7df4 3750 if (flags & FAULT_FLAG_WRITE) {
106c992a 3751 if (!huge_pte_write(entry)) {
57303d80 3752 ret = hugetlb_cow(mm, vma, address, ptep, entry,
cb900f41 3753 pagecache_page, ptl);
0f792cf9 3754 goto out_put_page;
b4d1d99f 3755 }
106c992a 3756 entry = huge_pte_mkdirty(entry);
b4d1d99f
DG
3757 }
3758 entry = pte_mkyoung(entry);
788c7df4
HD
3759 if (huge_ptep_set_access_flags(vma, address, ptep, entry,
3760 flags & FAULT_FLAG_WRITE))
4b3073e1 3761 update_mmu_cache(vma, address, ptep);
0f792cf9
NH
3762out_put_page:
3763 if (page != pagecache_page)
3764 unlock_page(page);
3765 put_page(page);
cb900f41
KS
3766out_ptl:
3767 spin_unlock(ptl);
57303d80
AW
3768
3769 if (pagecache_page) {
3770 unlock_page(pagecache_page);
3771 put_page(pagecache_page);
3772 }
b4d1d99f 3773out_mutex:
c672c7f2 3774 mutex_unlock(&hugetlb_fault_mutex_table[hash]);
0f792cf9
NH
3775 /*
3776 * Generally it's safe to hold refcount during waiting page lock. But
3777 * here we just wait to defer the next page fault to avoid busy loop and
3778 * the page is not used after unlocked before returning from the current
3779 * page fault. So we are safe from accessing freed page, even if we wait
3780 * here without taking refcount.
3781 */
3782 if (need_wait_lock)
3783 wait_on_page_locked(page);
1e8f889b 3784 return ret;
86e5216f
AL
3785}
3786
28a35716
ML
3787long follow_hugetlb_page(struct mm_struct *mm, struct vm_area_struct *vma,
3788 struct page **pages, struct vm_area_struct **vmas,
3789 unsigned long *position, unsigned long *nr_pages,
3790 long i, unsigned int flags)
63551ae0 3791{
d5d4b0aa
CK
3792 unsigned long pfn_offset;
3793 unsigned long vaddr = *position;
28a35716 3794 unsigned long remainder = *nr_pages;
a5516438 3795 struct hstate *h = hstate_vma(vma);
63551ae0 3796
63551ae0 3797 while (vaddr < vma->vm_end && remainder) {
4c887265 3798 pte_t *pte;
cb900f41 3799 spinlock_t *ptl = NULL;
2a15efc9 3800 int absent;
4c887265 3801 struct page *page;
63551ae0 3802
02057967
DR
3803 /*
3804 * If we have a pending SIGKILL, don't keep faulting pages and
3805 * potentially allocating memory.
3806 */
3807 if (unlikely(fatal_signal_pending(current))) {
3808 remainder = 0;
3809 break;
3810 }
3811
4c887265
AL
3812 /*
3813 * Some archs (sparc64, sh*) have multiple pte_ts to
2a15efc9 3814 * each hugepage. We have to make sure we get the
4c887265 3815 * first, for the page indexing below to work.
cb900f41
KS
3816 *
3817 * Note that page table lock is not held when pte is null.
4c887265 3818 */
a5516438 3819 pte = huge_pte_offset(mm, vaddr & huge_page_mask(h));
cb900f41
KS
3820 if (pte)
3821 ptl = huge_pte_lock(h, mm, pte);
2a15efc9
HD
3822 absent = !pte || huge_pte_none(huge_ptep_get(pte));
3823
3824 /*
3825 * When coredumping, it suits get_dump_page if we just return
3ae77f43
HD
3826 * an error where there's an empty slot with no huge pagecache
3827 * to back it. This way, we avoid allocating a hugepage, and
3828 * the sparse dumpfile avoids allocating disk blocks, but its
3829 * huge holes still show up with zeroes where they need to be.
2a15efc9 3830 */
3ae77f43
HD
3831 if (absent && (flags & FOLL_DUMP) &&
3832 !hugetlbfs_pagecache_present(h, vma, vaddr)) {
cb900f41
KS
3833 if (pte)
3834 spin_unlock(ptl);
2a15efc9
HD
3835 remainder = 0;
3836 break;
3837 }
63551ae0 3838
9cc3a5bd
NH
3839 /*
3840 * We need call hugetlb_fault for both hugepages under migration
3841 * (in which case hugetlb_fault waits for the migration,) and
3842 * hwpoisoned hugepages (in which case we need to prevent the
3843 * caller from accessing to them.) In order to do this, we use
3844 * here is_swap_pte instead of is_hugetlb_entry_migration and
3845 * is_hugetlb_entry_hwpoisoned. This is because it simply covers
3846 * both cases, and because we can't follow correct pages
3847 * directly from any kind of swap entries.
3848 */
3849 if (absent || is_swap_pte(huge_ptep_get(pte)) ||
106c992a
GS
3850 ((flags & FOLL_WRITE) &&
3851 !huge_pte_write(huge_ptep_get(pte)))) {
4c887265 3852 int ret;
63551ae0 3853
cb900f41
KS
3854 if (pte)
3855 spin_unlock(ptl);
2a15efc9
HD
3856 ret = hugetlb_fault(mm, vma, vaddr,
3857 (flags & FOLL_WRITE) ? FAULT_FLAG_WRITE : 0);
a89182c7 3858 if (!(ret & VM_FAULT_ERROR))
4c887265 3859 continue;
63551ae0 3860
4c887265 3861 remainder = 0;
4c887265
AL
3862 break;
3863 }
3864
a5516438 3865 pfn_offset = (vaddr & ~huge_page_mask(h)) >> PAGE_SHIFT;
7f2e9525 3866 page = pte_page(huge_ptep_get(pte));
d5d4b0aa 3867same_page:
d6692183 3868 if (pages) {
2a15efc9 3869 pages[i] = mem_map_offset(page, pfn_offset);
ddc58f27 3870 get_page(pages[i]);
d6692183 3871 }
63551ae0
DG
3872
3873 if (vmas)
3874 vmas[i] = vma;
3875
3876 vaddr += PAGE_SIZE;
d5d4b0aa 3877 ++pfn_offset;
63551ae0
DG
3878 --remainder;
3879 ++i;
d5d4b0aa 3880 if (vaddr < vma->vm_end && remainder &&
a5516438 3881 pfn_offset < pages_per_huge_page(h)) {
d5d4b0aa
CK
3882 /*
3883 * We use pfn_offset to avoid touching the pageframes
3884 * of this compound page.
3885 */
3886 goto same_page;
3887 }
cb900f41 3888 spin_unlock(ptl);
63551ae0 3889 }
28a35716 3890 *nr_pages = remainder;
63551ae0
DG
3891 *position = vaddr;
3892
2a15efc9 3893 return i ? i : -EFAULT;
63551ae0 3894}
8f860591 3895
7da4d641 3896unsigned long hugetlb_change_protection(struct vm_area_struct *vma,
8f860591
ZY
3897 unsigned long address, unsigned long end, pgprot_t newprot)
3898{
3899 struct mm_struct *mm = vma->vm_mm;
3900 unsigned long start = address;
3901 pte_t *ptep;
3902 pte_t pte;
a5516438 3903 struct hstate *h = hstate_vma(vma);
7da4d641 3904 unsigned long pages = 0;
8f860591
ZY
3905
3906 BUG_ON(address >= end);
3907 flush_cache_range(vma, address, end);
3908
a5338093 3909 mmu_notifier_invalidate_range_start(mm, start, end);
83cde9e8 3910 i_mmap_lock_write(vma->vm_file->f_mapping);
a5516438 3911 for (; address < end; address += huge_page_size(h)) {
cb900f41 3912 spinlock_t *ptl;
8f860591
ZY
3913 ptep = huge_pte_offset(mm, address);
3914 if (!ptep)
3915 continue;
cb900f41 3916 ptl = huge_pte_lock(h, mm, ptep);
7da4d641
PZ
3917 if (huge_pmd_unshare(mm, &address, ptep)) {
3918 pages++;
cb900f41 3919 spin_unlock(ptl);
39dde65c 3920 continue;
7da4d641 3921 }
a8bda28d
NH
3922 pte = huge_ptep_get(ptep);
3923 if (unlikely(is_hugetlb_entry_hwpoisoned(pte))) {
3924 spin_unlock(ptl);
3925 continue;
3926 }
3927 if (unlikely(is_hugetlb_entry_migration(pte))) {
3928 swp_entry_t entry = pte_to_swp_entry(pte);
3929
3930 if (is_write_migration_entry(entry)) {
3931 pte_t newpte;
3932
3933 make_migration_entry_read(&entry);
3934 newpte = swp_entry_to_pte(entry);
3935 set_huge_pte_at(mm, address, ptep, newpte);
3936 pages++;
3937 }
3938 spin_unlock(ptl);
3939 continue;
3940 }
3941 if (!huge_pte_none(pte)) {
8f860591 3942 pte = huge_ptep_get_and_clear(mm, address, ptep);
106c992a 3943 pte = pte_mkhuge(huge_pte_modify(pte, newprot));
be7517d6 3944 pte = arch_make_huge_pte(pte, vma, NULL, 0);
8f860591 3945 set_huge_pte_at(mm, address, ptep, pte);
7da4d641 3946 pages++;
8f860591 3947 }
cb900f41 3948 spin_unlock(ptl);
8f860591 3949 }
d833352a 3950 /*
c8c06efa 3951 * Must flush TLB before releasing i_mmap_rwsem: x86's huge_pmd_unshare
d833352a 3952 * may have cleared our pud entry and done put_page on the page table:
c8c06efa 3953 * once we release i_mmap_rwsem, another task can do the final put_page
d833352a
MG
3954 * and that page table be reused and filled with junk.
3955 */
8f860591 3956 flush_tlb_range(vma, start, end);
34ee645e 3957 mmu_notifier_invalidate_range(mm, start, end);
83cde9e8 3958 i_mmap_unlock_write(vma->vm_file->f_mapping);
a5338093 3959 mmu_notifier_invalidate_range_end(mm, start, end);
7da4d641
PZ
3960
3961 return pages << h->order;
8f860591
ZY
3962}
3963
a1e78772
MG
3964int hugetlb_reserve_pages(struct inode *inode,
3965 long from, long to,
5a6fe125 3966 struct vm_area_struct *vma,
ca16d140 3967 vm_flags_t vm_flags)
e4e574b7 3968{
17c9d12e 3969 long ret, chg;
a5516438 3970 struct hstate *h = hstate_inode(inode);
90481622 3971 struct hugepage_subpool *spool = subpool_inode(inode);
9119a41e 3972 struct resv_map *resv_map;
1c5ecae3 3973 long gbl_reserve;
e4e574b7 3974
17c9d12e
MG
3975 /*
3976 * Only apply hugepage reservation if asked. At fault time, an
3977 * attempt will be made for VM_NORESERVE to allocate a page
90481622 3978 * without using reserves
17c9d12e 3979 */
ca16d140 3980 if (vm_flags & VM_NORESERVE)
17c9d12e
MG
3981 return 0;
3982
a1e78772
MG
3983 /*
3984 * Shared mappings base their reservation on the number of pages that
3985 * are already allocated on behalf of the file. Private mappings need
3986 * to reserve the full area even if read-only as mprotect() may be
3987 * called to make the mapping read-write. Assume !vma is a shm mapping
3988 */
9119a41e 3989 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4e35f483 3990 resv_map = inode_resv_map(inode);
9119a41e 3991
1406ec9b 3992 chg = region_chg(resv_map, from, to);
9119a41e
JK
3993
3994 } else {
3995 resv_map = resv_map_alloc();
17c9d12e
MG
3996 if (!resv_map)
3997 return -ENOMEM;
3998
a1e78772 3999 chg = to - from;
84afd99b 4000
17c9d12e
MG
4001 set_vma_resv_map(vma, resv_map);
4002 set_vma_resv_flags(vma, HPAGE_RESV_OWNER);
4003 }
4004
c50ac050
DH
4005 if (chg < 0) {
4006 ret = chg;
4007 goto out_err;
4008 }
8a630112 4009
1c5ecae3
MK
4010 /*
4011 * There must be enough pages in the subpool for the mapping. If
4012 * the subpool has a minimum size, there may be some global
4013 * reservations already in place (gbl_reserve).
4014 */
4015 gbl_reserve = hugepage_subpool_get_pages(spool, chg);
4016 if (gbl_reserve < 0) {
c50ac050
DH
4017 ret = -ENOSPC;
4018 goto out_err;
4019 }
5a6fe125
MG
4020
4021 /*
17c9d12e 4022 * Check enough hugepages are available for the reservation.
90481622 4023 * Hand the pages back to the subpool if there are not
5a6fe125 4024 */
1c5ecae3 4025 ret = hugetlb_acct_memory(h, gbl_reserve);
68842c9b 4026 if (ret < 0) {
1c5ecae3
MK
4027 /* put back original number of pages, chg */
4028 (void)hugepage_subpool_put_pages(spool, chg);
c50ac050 4029 goto out_err;
68842c9b 4030 }
17c9d12e
MG
4031
4032 /*
4033 * Account for the reservations made. Shared mappings record regions
4034 * that have reservations as they are shared by multiple VMAs.
4035 * When the last VMA disappears, the region map says how much
4036 * the reservation was and the page cache tells how much of
4037 * the reservation was consumed. Private mappings are per-VMA and
4038 * only the consumed reservations are tracked. When the VMA
4039 * disappears, the original reservation is the VMA size and the
4040 * consumed reservations are stored in the map. Hence, nothing
4041 * else has to be done for private mappings here
4042 */
33039678
MK
4043 if (!vma || vma->vm_flags & VM_MAYSHARE) {
4044 long add = region_add(resv_map, from, to);
4045
4046 if (unlikely(chg > add)) {
4047 /*
4048 * pages in this range were added to the reserve
4049 * map between region_chg and region_add. This
4050 * indicates a race with alloc_huge_page. Adjust
4051 * the subpool and reserve counts modified above
4052 * based on the difference.
4053 */
4054 long rsv_adjust;
4055
4056 rsv_adjust = hugepage_subpool_put_pages(spool,
4057 chg - add);
4058 hugetlb_acct_memory(h, -rsv_adjust);
4059 }
4060 }
a43a8c39 4061 return 0;
c50ac050 4062out_err:
5e911373
MK
4063 if (!vma || vma->vm_flags & VM_MAYSHARE)
4064 region_abort(resv_map, from, to);
f031dd27
JK
4065 if (vma && is_vma_resv_set(vma, HPAGE_RESV_OWNER))
4066 kref_put(&resv_map->refs, resv_map_release);
c50ac050 4067 return ret;
a43a8c39
CK
4068}
4069
b5cec28d
MK
4070long hugetlb_unreserve_pages(struct inode *inode, long start, long end,
4071 long freed)
a43a8c39 4072{
a5516438 4073 struct hstate *h = hstate_inode(inode);
4e35f483 4074 struct resv_map *resv_map = inode_resv_map(inode);
9119a41e 4075 long chg = 0;
90481622 4076 struct hugepage_subpool *spool = subpool_inode(inode);
1c5ecae3 4077 long gbl_reserve;
45c682a6 4078
b5cec28d
MK
4079 if (resv_map) {
4080 chg = region_del(resv_map, start, end);
4081 /*
4082 * region_del() can fail in the rare case where a region
4083 * must be split and another region descriptor can not be
4084 * allocated. If end == LONG_MAX, it will not fail.
4085 */
4086 if (chg < 0)
4087 return chg;
4088 }
4089
45c682a6 4090 spin_lock(&inode->i_lock);
e4c6f8be 4091 inode->i_blocks -= (blocks_per_huge_page(h) * freed);
45c682a6
KC
4092 spin_unlock(&inode->i_lock);
4093
1c5ecae3
MK
4094 /*
4095 * If the subpool has a minimum size, the number of global
4096 * reservations to be released may be adjusted.
4097 */
4098 gbl_reserve = hugepage_subpool_put_pages(spool, (chg - freed));
4099 hugetlb_acct_memory(h, -gbl_reserve);
b5cec28d
MK
4100
4101 return 0;
a43a8c39 4102}
93f70f90 4103
3212b535
SC
4104#ifdef CONFIG_ARCH_WANT_HUGE_PMD_SHARE
4105static unsigned long page_table_shareable(struct vm_area_struct *svma,
4106 struct vm_area_struct *vma,
4107 unsigned long addr, pgoff_t idx)
4108{
4109 unsigned long saddr = ((idx - svma->vm_pgoff) << PAGE_SHIFT) +
4110 svma->vm_start;
4111 unsigned long sbase = saddr & PUD_MASK;
4112 unsigned long s_end = sbase + PUD_SIZE;
4113
4114 /* Allow segments to share if only one is marked locked */
de60f5f1
EM
4115 unsigned long vm_flags = vma->vm_flags & VM_LOCKED_CLEAR_MASK;
4116 unsigned long svm_flags = svma->vm_flags & VM_LOCKED_CLEAR_MASK;
3212b535
SC
4117
4118 /*
4119 * match the virtual addresses, permission and the alignment of the
4120 * page table page.
4121 */
4122 if (pmd_index(addr) != pmd_index(saddr) ||
4123 vm_flags != svm_flags ||
4124 sbase < svma->vm_start || svma->vm_end < s_end)
4125 return 0;
4126
4127 return saddr;
4128}
4129
31aafb45 4130static bool vma_shareable(struct vm_area_struct *vma, unsigned long addr)
3212b535
SC
4131{
4132 unsigned long base = addr & PUD_MASK;
4133 unsigned long end = base + PUD_SIZE;
4134
4135 /*
4136 * check on proper vm_flags and page table alignment
4137 */
4138 if (vma->vm_flags & VM_MAYSHARE &&
4139 vma->vm_start <= base && end <= vma->vm_end)
31aafb45
NK
4140 return true;
4141 return false;
3212b535
SC
4142}
4143
4144/*
4145 * Search for a shareable pmd page for hugetlb. In any case calls pmd_alloc()
4146 * and returns the corresponding pte. While this is not necessary for the
4147 * !shared pmd case because we can allocate the pmd later as well, it makes the
4148 * code much cleaner. pmd allocation is essential for the shared case because
c8c06efa 4149 * pud has to be populated inside the same i_mmap_rwsem section - otherwise
3212b535
SC
4150 * racing tasks could either miss the sharing (see huge_pte_offset) or select a
4151 * bad pmd for sharing.
4152 */
4153pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4154{
4155 struct vm_area_struct *vma = find_vma(mm, addr);
4156 struct address_space *mapping = vma->vm_file->f_mapping;
4157 pgoff_t idx = ((addr - vma->vm_start) >> PAGE_SHIFT) +
4158 vma->vm_pgoff;
4159 struct vm_area_struct *svma;
4160 unsigned long saddr;
4161 pte_t *spte = NULL;
4162 pte_t *pte;
cb900f41 4163 spinlock_t *ptl;
3212b535
SC
4164
4165 if (!vma_shareable(vma, addr))
4166 return (pte_t *)pmd_alloc(mm, pud, addr);
4167
83cde9e8 4168 i_mmap_lock_write(mapping);
3212b535
SC
4169 vma_interval_tree_foreach(svma, &mapping->i_mmap, idx, idx) {
4170 if (svma == vma)
4171 continue;
4172
4173 saddr = page_table_shareable(svma, vma, addr, idx);
4174 if (saddr) {
4175 spte = huge_pte_offset(svma->vm_mm, saddr);
4176 if (spte) {
dc6c9a35 4177 mm_inc_nr_pmds(mm);
3212b535
SC
4178 get_page(virt_to_page(spte));
4179 break;
4180 }
4181 }
4182 }
4183
4184 if (!spte)
4185 goto out;
4186
cb900f41
KS
4187 ptl = huge_pte_lockptr(hstate_vma(vma), mm, spte);
4188 spin_lock(ptl);
dc6c9a35 4189 if (pud_none(*pud)) {
3212b535
SC
4190 pud_populate(mm, pud,
4191 (pmd_t *)((unsigned long)spte & PAGE_MASK));
dc6c9a35 4192 } else {
3212b535 4193 put_page(virt_to_page(spte));
dc6c9a35
KS
4194 mm_inc_nr_pmds(mm);
4195 }
cb900f41 4196 spin_unlock(ptl);
3212b535
SC
4197out:
4198 pte = (pte_t *)pmd_alloc(mm, pud, addr);
83cde9e8 4199 i_mmap_unlock_write(mapping);
3212b535
SC
4200 return pte;
4201}
4202
4203/*
4204 * unmap huge page backed by shared pte.
4205 *
4206 * Hugetlb pte page is ref counted at the time of mapping. If pte is shared
4207 * indicated by page_count > 1, unmap is achieved by clearing pud and
4208 * decrementing the ref count. If count == 1, the pte page is not shared.
4209 *
cb900f41 4210 * called with page table lock held.
3212b535
SC
4211 *
4212 * returns: 1 successfully unmapped a shared pte page
4213 * 0 the underlying pte page is not shared, or it is the last user
4214 */
4215int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4216{
4217 pgd_t *pgd = pgd_offset(mm, *addr);
4218 pud_t *pud = pud_offset(pgd, *addr);
4219
4220 BUG_ON(page_count(virt_to_page(ptep)) == 0);
4221 if (page_count(virt_to_page(ptep)) == 1)
4222 return 0;
4223
4224 pud_clear(pud);
4225 put_page(virt_to_page(ptep));
dc6c9a35 4226 mm_dec_nr_pmds(mm);
3212b535
SC
4227 *addr = ALIGN(*addr, HPAGE_SIZE * PTRS_PER_PTE) - HPAGE_SIZE;
4228 return 1;
4229}
9e5fc74c
SC
4230#define want_pmd_share() (1)
4231#else /* !CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4232pte_t *huge_pmd_share(struct mm_struct *mm, unsigned long addr, pud_t *pud)
4233{
4234 return NULL;
4235}
e81f2d22
ZZ
4236
4237int huge_pmd_unshare(struct mm_struct *mm, unsigned long *addr, pte_t *ptep)
4238{
4239 return 0;
4240}
9e5fc74c 4241#define want_pmd_share() (0)
3212b535
SC
4242#endif /* CONFIG_ARCH_WANT_HUGE_PMD_SHARE */
4243
9e5fc74c
SC
4244#ifdef CONFIG_ARCH_WANT_GENERAL_HUGETLB
4245pte_t *huge_pte_alloc(struct mm_struct *mm,
4246 unsigned long addr, unsigned long sz)
4247{
4248 pgd_t *pgd;
4249 pud_t *pud;
4250 pte_t *pte = NULL;
4251
4252 pgd = pgd_offset(mm, addr);
4253 pud = pud_alloc(mm, pgd, addr);
4254 if (pud) {
4255 if (sz == PUD_SIZE) {
4256 pte = (pte_t *)pud;
4257 } else {
4258 BUG_ON(sz != PMD_SIZE);
4259 if (want_pmd_share() && pud_none(*pud))
4260 pte = huge_pmd_share(mm, addr, pud);
4261 else
4262 pte = (pte_t *)pmd_alloc(mm, pud, addr);
4263 }
4264 }
4265 BUG_ON(pte && !pte_none(*pte) && !pte_huge(*pte));
4266
4267 return pte;
4268}
4269
4270pte_t *huge_pte_offset(struct mm_struct *mm, unsigned long addr)
4271{
4272 pgd_t *pgd;
4273 pud_t *pud;
4274 pmd_t *pmd = NULL;
4275
4276 pgd = pgd_offset(mm, addr);
4277 if (pgd_present(*pgd)) {
4278 pud = pud_offset(pgd, addr);
4279 if (pud_present(*pud)) {
4280 if (pud_huge(*pud))
4281 return (pte_t *)pud;
4282 pmd = pmd_offset(pud, addr);
4283 }
4284 }
4285 return (pte_t *) pmd;
4286}
4287
61f77eda
NH
4288#endif /* CONFIG_ARCH_WANT_GENERAL_HUGETLB */
4289
4290/*
4291 * These functions are overwritable if your architecture needs its own
4292 * behavior.
4293 */
4294struct page * __weak
4295follow_huge_addr(struct mm_struct *mm, unsigned long address,
4296 int write)
4297{
4298 return ERR_PTR(-EINVAL);
4299}
4300
4301struct page * __weak
9e5fc74c 4302follow_huge_pmd(struct mm_struct *mm, unsigned long address,
e66f17ff 4303 pmd_t *pmd, int flags)
9e5fc74c 4304{
e66f17ff
NH
4305 struct page *page = NULL;
4306 spinlock_t *ptl;
4307retry:
4308 ptl = pmd_lockptr(mm, pmd);
4309 spin_lock(ptl);
4310 /*
4311 * make sure that the address range covered by this pmd is not
4312 * unmapped from other threads.
4313 */
4314 if (!pmd_huge(*pmd))
4315 goto out;
4316 if (pmd_present(*pmd)) {
97534127 4317 page = pmd_page(*pmd) + ((address & ~PMD_MASK) >> PAGE_SHIFT);
e66f17ff
NH
4318 if (flags & FOLL_GET)
4319 get_page(page);
4320 } else {
4321 if (is_hugetlb_entry_migration(huge_ptep_get((pte_t *)pmd))) {
4322 spin_unlock(ptl);
4323 __migration_entry_wait(mm, (pte_t *)pmd, ptl);
4324 goto retry;
4325 }
4326 /*
4327 * hwpoisoned entry is treated as no_page_table in
4328 * follow_page_mask().
4329 */
4330 }
4331out:
4332 spin_unlock(ptl);
9e5fc74c
SC
4333 return page;
4334}
4335
61f77eda 4336struct page * __weak
9e5fc74c 4337follow_huge_pud(struct mm_struct *mm, unsigned long address,
e66f17ff 4338 pud_t *pud, int flags)
9e5fc74c 4339{
e66f17ff
NH
4340 if (flags & FOLL_GET)
4341 return NULL;
9e5fc74c 4342
e66f17ff 4343 return pte_page(*(pte_t *)pud) + ((address & ~PUD_MASK) >> PAGE_SHIFT);
9e5fc74c
SC
4344}
4345
d5bd9106
AK
4346#ifdef CONFIG_MEMORY_FAILURE
4347
93f70f90
NH
4348/*
4349 * This function is called from memory failure code.
4350 * Assume the caller holds page lock of the head page.
4351 */
6de2b1aa 4352int dequeue_hwpoisoned_huge_page(struct page *hpage)
93f70f90
NH
4353{
4354 struct hstate *h = page_hstate(hpage);
4355 int nid = page_to_nid(hpage);
6de2b1aa 4356 int ret = -EBUSY;
93f70f90
NH
4357
4358 spin_lock(&hugetlb_lock);
7e1f049e
NH
4359 /*
4360 * Just checking !page_huge_active is not enough, because that could be
4361 * an isolated/hwpoisoned hugepage (which have >0 refcount).
4362 */
4363 if (!page_huge_active(hpage) && !page_count(hpage)) {
56f2fb14
NH
4364 /*
4365 * Hwpoisoned hugepage isn't linked to activelist or freelist,
4366 * but dangling hpage->lru can trigger list-debug warnings
4367 * (this happens when we call unpoison_memory() on it),
4368 * so let it point to itself with list_del_init().
4369 */
4370 list_del_init(&hpage->lru);
8c6c2ecb 4371 set_page_refcounted(hpage);
6de2b1aa
NH
4372 h->free_huge_pages--;
4373 h->free_huge_pages_node[nid]--;
4374 ret = 0;
4375 }
93f70f90 4376 spin_unlock(&hugetlb_lock);
6de2b1aa 4377 return ret;
93f70f90 4378}
6de2b1aa 4379#endif
31caf665
NH
4380
4381bool isolate_huge_page(struct page *page, struct list_head *list)
4382{
bcc54222
NH
4383 bool ret = true;
4384
309381fe 4385 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4386 spin_lock(&hugetlb_lock);
bcc54222
NH
4387 if (!page_huge_active(page) || !get_page_unless_zero(page)) {
4388 ret = false;
4389 goto unlock;
4390 }
4391 clear_page_huge_active(page);
31caf665 4392 list_move_tail(&page->lru, list);
bcc54222 4393unlock:
31caf665 4394 spin_unlock(&hugetlb_lock);
bcc54222 4395 return ret;
31caf665
NH
4396}
4397
4398void putback_active_hugepage(struct page *page)
4399{
309381fe 4400 VM_BUG_ON_PAGE(!PageHead(page), page);
31caf665 4401 spin_lock(&hugetlb_lock);
bcc54222 4402 set_page_huge_active(page);
31caf665
NH
4403 list_move_tail(&page->lru, &(page_hstate(page))->hugepage_activelist);
4404 spin_unlock(&hugetlb_lock);
4405 put_page(page);
4406}
This page took 1.169682 seconds and 5 git commands to generate.