mm: memcontrol: reclaim when shrinking memory.high below usage
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
1575e68b
JW
17 * Native page reclaim
18 * Charge lifetime sanitation
19 * Lockless page tracking & accounting
20 * Unified hierarchy configuration model
21 * Copyright (C) 2015 Red Hat, Inc., Johannes Weiner
22 *
8cdea7c0
BS
23 * This program is free software; you can redistribute it and/or modify
24 * it under the terms of the GNU General Public License as published by
25 * the Free Software Foundation; either version 2 of the License, or
26 * (at your option) any later version.
27 *
28 * This program is distributed in the hope that it will be useful,
29 * but WITHOUT ANY WARRANTY; without even the implied warranty of
30 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
31 * GNU General Public License for more details.
32 */
33
3e32cb2e 34#include <linux/page_counter.h>
8cdea7c0
BS
35#include <linux/memcontrol.h>
36#include <linux/cgroup.h>
78fb7466 37#include <linux/mm.h>
4ffef5fe 38#include <linux/hugetlb.h>
d13d1443 39#include <linux/pagemap.h>
d52aa412 40#include <linux/smp.h>
8a9f3ccd 41#include <linux/page-flags.h>
66e1707b 42#include <linux/backing-dev.h>
8a9f3ccd
BS
43#include <linux/bit_spinlock.h>
44#include <linux/rcupdate.h>
e222432b 45#include <linux/limits.h>
b9e15baf 46#include <linux/export.h>
8c7c6e34 47#include <linux/mutex.h>
bb4cc1a8 48#include <linux/rbtree.h>
b6ac57d5 49#include <linux/slab.h>
66e1707b 50#include <linux/swap.h>
02491447 51#include <linux/swapops.h>
66e1707b 52#include <linux/spinlock.h>
2e72b634 53#include <linux/eventfd.h>
79bd9814 54#include <linux/poll.h>
2e72b634 55#include <linux/sort.h>
66e1707b 56#include <linux/fs.h>
d2ceb9b7 57#include <linux/seq_file.h>
70ddf637 58#include <linux/vmpressure.h>
b69408e8 59#include <linux/mm_inline.h>
5d1ea48b 60#include <linux/swap_cgroup.h>
cdec2e42 61#include <linux/cpu.h>
158e0a2d 62#include <linux/oom.h>
0056f4e6 63#include <linux/lockdep.h>
79bd9814 64#include <linux/file.h>
b23afb93 65#include <linux/tracehook.h>
08e552c6 66#include "internal.h"
d1a4c0b3 67#include <net/sock.h>
4bd2c1ee 68#include <net/ip.h>
f35c3a8e 69#include "slab.h"
8cdea7c0 70
8697d331
BS
71#include <asm/uaccess.h>
72
cc8e970c
KM
73#include <trace/events/vmscan.h>
74
073219e9
TH
75struct cgroup_subsys memory_cgrp_subsys __read_mostly;
76EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 77
7d828602
JW
78struct mem_cgroup *root_mem_cgroup __read_mostly;
79
a181b0e8 80#define MEM_CGROUP_RECLAIM_RETRIES 5
8cdea7c0 81
f7e1cb6e
JW
82/* Socket memory accounting disabled? */
83static bool cgroup_memory_nosocket;
84
04823c83
VD
85/* Kernel memory accounting disabled? */
86static bool cgroup_memory_nokmem;
87
21afa38e 88/* Whether the swap controller is active */
c255a458 89#ifdef CONFIG_MEMCG_SWAP
c077719b 90int do_swap_account __read_mostly;
c077719b 91#else
a0db00fc 92#define do_swap_account 0
c077719b
KH
93#endif
94
7941d214
JW
95/* Whether legacy memory+swap accounting is active */
96static bool do_memsw_account(void)
97{
98 return !cgroup_subsys_on_dfl(memory_cgrp_subsys) && do_swap_account;
99}
100
af7c4b0e
JW
101static const char * const mem_cgroup_stat_names[] = {
102 "cache",
103 "rss",
b070e65c 104 "rss_huge",
af7c4b0e 105 "mapped_file",
c4843a75 106 "dirty",
3ea67d06 107 "writeback",
af7c4b0e
JW
108 "swap",
109};
110
af7c4b0e
JW
111static const char * const mem_cgroup_events_names[] = {
112 "pgpgin",
113 "pgpgout",
114 "pgfault",
115 "pgmajfault",
116};
117
58cf188e
SZ
118static const char * const mem_cgroup_lru_names[] = {
119 "inactive_anon",
120 "active_anon",
121 "inactive_file",
122 "active_file",
123 "unevictable",
124};
125
a0db00fc
KS
126#define THRESHOLDS_EVENTS_TARGET 128
127#define SOFTLIMIT_EVENTS_TARGET 1024
128#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 129
bb4cc1a8
AM
130/*
131 * Cgroups above their limits are maintained in a RB-Tree, independent of
132 * their hierarchy representation
133 */
134
135struct mem_cgroup_tree_per_zone {
136 struct rb_root rb_root;
137 spinlock_t lock;
138};
139
140struct mem_cgroup_tree_per_node {
141 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
142};
143
144struct mem_cgroup_tree {
145 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
146};
147
148static struct mem_cgroup_tree soft_limit_tree __read_mostly;
149
9490ff27
KH
150/* for OOM */
151struct mem_cgroup_eventfd_list {
152 struct list_head list;
153 struct eventfd_ctx *eventfd;
154};
2e72b634 155
79bd9814
TH
156/*
157 * cgroup_event represents events which userspace want to receive.
158 */
3bc942f3 159struct mem_cgroup_event {
79bd9814 160 /*
59b6f873 161 * memcg which the event belongs to.
79bd9814 162 */
59b6f873 163 struct mem_cgroup *memcg;
79bd9814
TH
164 /*
165 * eventfd to signal userspace about the event.
166 */
167 struct eventfd_ctx *eventfd;
168 /*
169 * Each of these stored in a list by the cgroup.
170 */
171 struct list_head list;
fba94807
TH
172 /*
173 * register_event() callback will be used to add new userspace
174 * waiter for changes related to this event. Use eventfd_signal()
175 * on eventfd to send notification to userspace.
176 */
59b6f873 177 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 178 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
179 /*
180 * unregister_event() callback will be called when userspace closes
181 * the eventfd or on cgroup removing. This callback must be set,
182 * if you want provide notification functionality.
183 */
59b6f873 184 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 185 struct eventfd_ctx *eventfd);
79bd9814
TH
186 /*
187 * All fields below needed to unregister event when
188 * userspace closes eventfd.
189 */
190 poll_table pt;
191 wait_queue_head_t *wqh;
192 wait_queue_t wait;
193 struct work_struct remove;
194};
195
c0ff4b85
R
196static void mem_cgroup_threshold(struct mem_cgroup *memcg);
197static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 198
7dc74be0
DN
199/* Stuffs for move charges at task migration. */
200/*
1dfab5ab 201 * Types of charges to be moved.
7dc74be0 202 */
1dfab5ab
JW
203#define MOVE_ANON 0x1U
204#define MOVE_FILE 0x2U
205#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 206
4ffef5fe
DN
207/* "mc" and its members are protected by cgroup_mutex */
208static struct move_charge_struct {
b1dd693e 209 spinlock_t lock; /* for from, to */
4ffef5fe
DN
210 struct mem_cgroup *from;
211 struct mem_cgroup *to;
1dfab5ab 212 unsigned long flags;
4ffef5fe 213 unsigned long precharge;
854ffa8d 214 unsigned long moved_charge;
483c30b5 215 unsigned long moved_swap;
8033b97c
DN
216 struct task_struct *moving_task; /* a task moving charges */
217 wait_queue_head_t waitq; /* a waitq for other context */
218} mc = {
2bd9bb20 219 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
220 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
221};
4ffef5fe 222
4e416953
BS
223/*
224 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
225 * limit reclaim to prevent infinite loops, if they ever occur.
226 */
a0db00fc 227#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 228#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 229
217bc319
KH
230enum charge_type {
231 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 232 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 233 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 234 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
235 NR_CHARGE_TYPE,
236};
237
8c7c6e34 238/* for encoding cft->private value on file */
86ae53e1
GC
239enum res_type {
240 _MEM,
241 _MEMSWAP,
242 _OOM_TYPE,
510fc4e1 243 _KMEM,
d55f90bf 244 _TCP,
86ae53e1
GC
245};
246
a0db00fc
KS
247#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
248#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 249#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
250/* Used for OOM nofiier */
251#define OOM_CONTROL (0)
8c7c6e34 252
70ddf637
AV
253/* Some nice accessors for the vmpressure. */
254struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
255{
256 if (!memcg)
257 memcg = root_mem_cgroup;
258 return &memcg->vmpressure;
259}
260
261struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
262{
263 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
264}
265
7ffc0edc
MH
266static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
267{
268 return (memcg == root_mem_cgroup);
269}
270
127424c8 271#ifndef CONFIG_SLOB
55007d84 272/*
f7ce3190 273 * This will be the memcg's index in each cache's ->memcg_params.memcg_caches.
b8627835
LZ
274 * The main reason for not using cgroup id for this:
275 * this works better in sparse environments, where we have a lot of memcgs,
276 * but only a few kmem-limited. Or also, if we have, for instance, 200
277 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
278 * 200 entry array for that.
55007d84 279 *
dbcf73e2
VD
280 * The current size of the caches array is stored in memcg_nr_cache_ids. It
281 * will double each time we have to increase it.
55007d84 282 */
dbcf73e2
VD
283static DEFINE_IDA(memcg_cache_ida);
284int memcg_nr_cache_ids;
749c5415 285
05257a1a
VD
286/* Protects memcg_nr_cache_ids */
287static DECLARE_RWSEM(memcg_cache_ids_sem);
288
289void memcg_get_cache_ids(void)
290{
291 down_read(&memcg_cache_ids_sem);
292}
293
294void memcg_put_cache_ids(void)
295{
296 up_read(&memcg_cache_ids_sem);
297}
298
55007d84
GC
299/*
300 * MIN_SIZE is different than 1, because we would like to avoid going through
301 * the alloc/free process all the time. In a small machine, 4 kmem-limited
302 * cgroups is a reasonable guess. In the future, it could be a parameter or
303 * tunable, but that is strictly not necessary.
304 *
b8627835 305 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
306 * this constant directly from cgroup, but it is understandable that this is
307 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 308 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
309 * increase ours as well if it increases.
310 */
311#define MEMCG_CACHES_MIN_SIZE 4
b8627835 312#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 313
d7f25f8a
GC
314/*
315 * A lot of the calls to the cache allocation functions are expected to be
316 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
317 * conditional to this static branch, we'll have to allow modules that does
318 * kmem_cache_alloc and the such to see this symbol as well
319 */
ef12947c 320DEFINE_STATIC_KEY_FALSE(memcg_kmem_enabled_key);
d7f25f8a 321EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 322
127424c8 323#endif /* !CONFIG_SLOB */
a8964b9b 324
f64c3f54 325static struct mem_cgroup_per_zone *
e231875b 326mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 327{
e231875b
JZ
328 int nid = zone_to_nid(zone);
329 int zid = zone_idx(zone);
330
54f72fe0 331 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
332}
333
ad7fa852
TH
334/**
335 * mem_cgroup_css_from_page - css of the memcg associated with a page
336 * @page: page of interest
337 *
338 * If memcg is bound to the default hierarchy, css of the memcg associated
339 * with @page is returned. The returned css remains associated with @page
340 * until it is released.
341 *
342 * If memcg is bound to a traditional hierarchy, the css of root_mem_cgroup
343 * is returned.
ad7fa852
TH
344 */
345struct cgroup_subsys_state *mem_cgroup_css_from_page(struct page *page)
346{
347 struct mem_cgroup *memcg;
348
ad7fa852
TH
349 memcg = page->mem_cgroup;
350
9e10a130 351 if (!memcg || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
ad7fa852
TH
352 memcg = root_mem_cgroup;
353
ad7fa852
TH
354 return &memcg->css;
355}
356
2fc04524
VD
357/**
358 * page_cgroup_ino - return inode number of the memcg a page is charged to
359 * @page: the page
360 *
361 * Look up the closest online ancestor of the memory cgroup @page is charged to
362 * and return its inode number or 0 if @page is not charged to any cgroup. It
363 * is safe to call this function without holding a reference to @page.
364 *
365 * Note, this function is inherently racy, because there is nothing to prevent
366 * the cgroup inode from getting torn down and potentially reallocated a moment
367 * after page_cgroup_ino() returns, so it only should be used by callers that
368 * do not care (such as procfs interfaces).
369 */
370ino_t page_cgroup_ino(struct page *page)
371{
372 struct mem_cgroup *memcg;
373 unsigned long ino = 0;
374
375 rcu_read_lock();
376 memcg = READ_ONCE(page->mem_cgroup);
377 while (memcg && !(memcg->css.flags & CSS_ONLINE))
378 memcg = parent_mem_cgroup(memcg);
379 if (memcg)
380 ino = cgroup_ino(memcg->css.cgroup);
381 rcu_read_unlock();
382 return ino;
383}
384
f64c3f54 385static struct mem_cgroup_per_zone *
e231875b 386mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 387{
97a6c37b
JW
388 int nid = page_to_nid(page);
389 int zid = page_zonenum(page);
f64c3f54 390
e231875b 391 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
392}
393
bb4cc1a8
AM
394static struct mem_cgroup_tree_per_zone *
395soft_limit_tree_node_zone(int nid, int zid)
396{
397 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
398}
399
400static struct mem_cgroup_tree_per_zone *
401soft_limit_tree_from_page(struct page *page)
402{
403 int nid = page_to_nid(page);
404 int zid = page_zonenum(page);
405
406 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
407}
408
cf2c8127
JW
409static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
410 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 411 unsigned long new_usage_in_excess)
bb4cc1a8
AM
412{
413 struct rb_node **p = &mctz->rb_root.rb_node;
414 struct rb_node *parent = NULL;
415 struct mem_cgroup_per_zone *mz_node;
416
417 if (mz->on_tree)
418 return;
419
420 mz->usage_in_excess = new_usage_in_excess;
421 if (!mz->usage_in_excess)
422 return;
423 while (*p) {
424 parent = *p;
425 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
426 tree_node);
427 if (mz->usage_in_excess < mz_node->usage_in_excess)
428 p = &(*p)->rb_left;
429 /*
430 * We can't avoid mem cgroups that are over their soft
431 * limit by the same amount
432 */
433 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
434 p = &(*p)->rb_right;
435 }
436 rb_link_node(&mz->tree_node, parent, p);
437 rb_insert_color(&mz->tree_node, &mctz->rb_root);
438 mz->on_tree = true;
439}
440
cf2c8127
JW
441static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
442 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
443{
444 if (!mz->on_tree)
445 return;
446 rb_erase(&mz->tree_node, &mctz->rb_root);
447 mz->on_tree = false;
448}
449
cf2c8127
JW
450static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
451 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 452{
0a31bc97
JW
453 unsigned long flags;
454
455 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 456 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 457 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
458}
459
3e32cb2e
JW
460static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
461{
462 unsigned long nr_pages = page_counter_read(&memcg->memory);
4db0c3c2 463 unsigned long soft_limit = READ_ONCE(memcg->soft_limit);
3e32cb2e
JW
464 unsigned long excess = 0;
465
466 if (nr_pages > soft_limit)
467 excess = nr_pages - soft_limit;
468
469 return excess;
470}
bb4cc1a8
AM
471
472static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
473{
3e32cb2e 474 unsigned long excess;
bb4cc1a8
AM
475 struct mem_cgroup_per_zone *mz;
476 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 477
e231875b 478 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
479 /*
480 * Necessary to update all ancestors when hierarchy is used.
481 * because their event counter is not touched.
482 */
483 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 484 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 485 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
486 /*
487 * We have to update the tree if mz is on RB-tree or
488 * mem is over its softlimit.
489 */
490 if (excess || mz->on_tree) {
0a31bc97
JW
491 unsigned long flags;
492
493 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
494 /* if on-tree, remove it */
495 if (mz->on_tree)
cf2c8127 496 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
497 /*
498 * Insert again. mz->usage_in_excess will be updated.
499 * If excess is 0, no tree ops.
500 */
cf2c8127 501 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 502 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
503 }
504 }
505}
506
507static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
508{
bb4cc1a8 509 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
510 struct mem_cgroup_per_zone *mz;
511 int nid, zid;
bb4cc1a8 512
e231875b
JZ
513 for_each_node(nid) {
514 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
515 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
516 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 517 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
518 }
519 }
520}
521
522static struct mem_cgroup_per_zone *
523__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
524{
525 struct rb_node *rightmost = NULL;
526 struct mem_cgroup_per_zone *mz;
527
528retry:
529 mz = NULL;
530 rightmost = rb_last(&mctz->rb_root);
531 if (!rightmost)
532 goto done; /* Nothing to reclaim from */
533
534 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
535 /*
536 * Remove the node now but someone else can add it back,
537 * we will to add it back at the end of reclaim to its correct
538 * position in the tree.
539 */
cf2c8127 540 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 541 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 542 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
543 goto retry;
544done:
545 return mz;
546}
547
548static struct mem_cgroup_per_zone *
549mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
550{
551 struct mem_cgroup_per_zone *mz;
552
0a31bc97 553 spin_lock_irq(&mctz->lock);
bb4cc1a8 554 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 555 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
556 return mz;
557}
558
711d3d2c 559/*
484ebb3b
GT
560 * Return page count for single (non recursive) @memcg.
561 *
711d3d2c
KH
562 * Implementation Note: reading percpu statistics for memcg.
563 *
564 * Both of vmstat[] and percpu_counter has threshold and do periodic
565 * synchronization to implement "quick" read. There are trade-off between
566 * reading cost and precision of value. Then, we may have a chance to implement
484ebb3b 567 * a periodic synchronization of counter in memcg's counter.
711d3d2c
KH
568 *
569 * But this _read() function is used for user interface now. The user accounts
570 * memory usage by memory cgroup and he _always_ requires exact value because
571 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
572 * have to visit all online cpus and make sum. So, for now, unnecessary
573 * synchronization is not implemented. (just implemented for cpu hotplug)
574 *
575 * If there are kernel internal actions which can make use of some not-exact
576 * value, and reading all cpu value can be performance bottleneck in some
484ebb3b 577 * common workload, threshold and synchronization as vmstat[] should be
711d3d2c
KH
578 * implemented.
579 */
484ebb3b
GT
580static unsigned long
581mem_cgroup_read_stat(struct mem_cgroup *memcg, enum mem_cgroup_stat_index idx)
c62b1a3b 582{
7a159cc9 583 long val = 0;
c62b1a3b 584 int cpu;
c62b1a3b 585
484ebb3b 586 /* Per-cpu values can be negative, use a signed accumulator */
733a572e 587 for_each_possible_cpu(cpu)
c0ff4b85 588 val += per_cpu(memcg->stat->count[idx], cpu);
484ebb3b
GT
589 /*
590 * Summing races with updates, so val may be negative. Avoid exposing
591 * transient negative values.
592 */
593 if (val < 0)
594 val = 0;
c62b1a3b
KH
595 return val;
596}
597
c0ff4b85 598static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
599 enum mem_cgroup_events_index idx)
600{
601 unsigned long val = 0;
602 int cpu;
603
733a572e 604 for_each_possible_cpu(cpu)
c0ff4b85 605 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f
JW
606 return val;
607}
608
c0ff4b85 609static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 610 struct page *page,
f627c2f5 611 bool compound, int nr_pages)
d52aa412 612{
b2402857
KH
613 /*
614 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
615 * counted as CACHE even if it's on ANON LRU.
616 */
0a31bc97 617 if (PageAnon(page))
b2402857 618 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 619 nr_pages);
d52aa412 620 else
b2402857 621 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 622 nr_pages);
55e462b0 623
f627c2f5
KS
624 if (compound) {
625 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
b070e65c
DR
626 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
627 nr_pages);
f627c2f5 628 }
b070e65c 629
e401f176
KH
630 /* pagein of a big page is an event. So, ignore page size */
631 if (nr_pages > 0)
c0ff4b85 632 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 633 else {
c0ff4b85 634 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
635 nr_pages = -nr_pages; /* for event */
636 }
e401f176 637
13114716 638 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
639}
640
0a6b76dd
VD
641unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
642 int nid, unsigned int lru_mask)
bb2a0de9 643{
e231875b 644 unsigned long nr = 0;
889976db
YH
645 int zid;
646
e231875b 647 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 648
e231875b
JZ
649 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
650 struct mem_cgroup_per_zone *mz;
651 enum lru_list lru;
652
653 for_each_lru(lru) {
654 if (!(BIT(lru) & lru_mask))
655 continue;
656 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
657 nr += mz->lru_size[lru];
658 }
659 }
660 return nr;
889976db 661}
bb2a0de9 662
c0ff4b85 663static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 664 unsigned int lru_mask)
6d12e2d8 665{
e231875b 666 unsigned long nr = 0;
889976db 667 int nid;
6d12e2d8 668
31aaea4a 669 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
670 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
671 return nr;
d52aa412
KH
672}
673
f53d7ce3
JW
674static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
675 enum mem_cgroup_events_target target)
7a159cc9
JW
676{
677 unsigned long val, next;
678
13114716 679 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 680 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 681 /* from time_after() in jiffies.h */
f53d7ce3
JW
682 if ((long)next - (long)val < 0) {
683 switch (target) {
684 case MEM_CGROUP_TARGET_THRESH:
685 next = val + THRESHOLDS_EVENTS_TARGET;
686 break;
bb4cc1a8
AM
687 case MEM_CGROUP_TARGET_SOFTLIMIT:
688 next = val + SOFTLIMIT_EVENTS_TARGET;
689 break;
f53d7ce3
JW
690 case MEM_CGROUP_TARGET_NUMAINFO:
691 next = val + NUMAINFO_EVENTS_TARGET;
692 break;
693 default:
694 break;
695 }
696 __this_cpu_write(memcg->stat->targets[target], next);
697 return true;
7a159cc9 698 }
f53d7ce3 699 return false;
d2265e6f
KH
700}
701
702/*
703 * Check events in order.
704 *
705 */
c0ff4b85 706static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
707{
708 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
709 if (unlikely(mem_cgroup_event_ratelimit(memcg,
710 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 711 bool do_softlimit;
82b3f2a7 712 bool do_numainfo __maybe_unused;
f53d7ce3 713
bb4cc1a8
AM
714 do_softlimit = mem_cgroup_event_ratelimit(memcg,
715 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
716#if MAX_NUMNODES > 1
717 do_numainfo = mem_cgroup_event_ratelimit(memcg,
718 MEM_CGROUP_TARGET_NUMAINFO);
719#endif
c0ff4b85 720 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
721 if (unlikely(do_softlimit))
722 mem_cgroup_update_tree(memcg, page);
453a9bf3 723#if MAX_NUMNODES > 1
f53d7ce3 724 if (unlikely(do_numainfo))
c0ff4b85 725 atomic_inc(&memcg->numainfo_events);
453a9bf3 726#endif
0a31bc97 727 }
d2265e6f
KH
728}
729
cf475ad2 730struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 731{
31a78f23
BS
732 /*
733 * mm_update_next_owner() may clear mm->owner to NULL
734 * if it races with swapoff, page migration, etc.
735 * So this can be called with p == NULL.
736 */
737 if (unlikely(!p))
738 return NULL;
739
073219e9 740 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466 741}
33398cf2 742EXPORT_SYMBOL(mem_cgroup_from_task);
78fb7466 743
df381975 744static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 745{
c0ff4b85 746 struct mem_cgroup *memcg = NULL;
0b7f569e 747
54595fe2
KH
748 rcu_read_lock();
749 do {
6f6acb00
MH
750 /*
751 * Page cache insertions can happen withou an
752 * actual mm context, e.g. during disk probing
753 * on boot, loopback IO, acct() writes etc.
754 */
755 if (unlikely(!mm))
df381975 756 memcg = root_mem_cgroup;
6f6acb00
MH
757 else {
758 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
759 if (unlikely(!memcg))
760 memcg = root_mem_cgroup;
761 }
ec903c0c 762 } while (!css_tryget_online(&memcg->css));
54595fe2 763 rcu_read_unlock();
c0ff4b85 764 return memcg;
54595fe2
KH
765}
766
5660048c
JW
767/**
768 * mem_cgroup_iter - iterate over memory cgroup hierarchy
769 * @root: hierarchy root
770 * @prev: previously returned memcg, NULL on first invocation
771 * @reclaim: cookie for shared reclaim walks, NULL for full walks
772 *
773 * Returns references to children of the hierarchy below @root, or
774 * @root itself, or %NULL after a full round-trip.
775 *
776 * Caller must pass the return value in @prev on subsequent
777 * invocations for reference counting, or use mem_cgroup_iter_break()
778 * to cancel a hierarchy walk before the round-trip is complete.
779 *
780 * Reclaimers can specify a zone and a priority level in @reclaim to
781 * divide up the memcgs in the hierarchy among all concurrent
782 * reclaimers operating on the same zone and priority.
783 */
694fbc0f 784struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 785 struct mem_cgroup *prev,
694fbc0f 786 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 787{
33398cf2 788 struct mem_cgroup_reclaim_iter *uninitialized_var(iter);
5ac8fb31 789 struct cgroup_subsys_state *css = NULL;
9f3a0d09 790 struct mem_cgroup *memcg = NULL;
5ac8fb31 791 struct mem_cgroup *pos = NULL;
711d3d2c 792
694fbc0f
AM
793 if (mem_cgroup_disabled())
794 return NULL;
5660048c 795
9f3a0d09
JW
796 if (!root)
797 root = root_mem_cgroup;
7d74b06f 798
9f3a0d09 799 if (prev && !reclaim)
5ac8fb31 800 pos = prev;
14067bb3 801
9f3a0d09
JW
802 if (!root->use_hierarchy && root != root_mem_cgroup) {
803 if (prev)
5ac8fb31 804 goto out;
694fbc0f 805 return root;
9f3a0d09 806 }
14067bb3 807
542f85f9 808 rcu_read_lock();
5f578161 809
5ac8fb31
JW
810 if (reclaim) {
811 struct mem_cgroup_per_zone *mz;
812
813 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
814 iter = &mz->iter[reclaim->priority];
815
816 if (prev && reclaim->generation != iter->generation)
817 goto out_unlock;
818
6df38689 819 while (1) {
4db0c3c2 820 pos = READ_ONCE(iter->position);
6df38689
VD
821 if (!pos || css_tryget(&pos->css))
822 break;
5ac8fb31 823 /*
6df38689
VD
824 * css reference reached zero, so iter->position will
825 * be cleared by ->css_released. However, we should not
826 * rely on this happening soon, because ->css_released
827 * is called from a work queue, and by busy-waiting we
828 * might block it. So we clear iter->position right
829 * away.
5ac8fb31 830 */
6df38689
VD
831 (void)cmpxchg(&iter->position, pos, NULL);
832 }
5ac8fb31
JW
833 }
834
835 if (pos)
836 css = &pos->css;
837
838 for (;;) {
839 css = css_next_descendant_pre(css, &root->css);
840 if (!css) {
841 /*
842 * Reclaimers share the hierarchy walk, and a
843 * new one might jump in right at the end of
844 * the hierarchy - make sure they see at least
845 * one group and restart from the beginning.
846 */
847 if (!prev)
848 continue;
849 break;
527a5ec9 850 }
7d74b06f 851
5ac8fb31
JW
852 /*
853 * Verify the css and acquire a reference. The root
854 * is provided by the caller, so we know it's alive
855 * and kicking, and don't take an extra reference.
856 */
857 memcg = mem_cgroup_from_css(css);
14067bb3 858
5ac8fb31
JW
859 if (css == &root->css)
860 break;
14067bb3 861
0b8f73e1
JW
862 if (css_tryget(css))
863 break;
9f3a0d09 864
5ac8fb31 865 memcg = NULL;
9f3a0d09 866 }
5ac8fb31
JW
867
868 if (reclaim) {
5ac8fb31 869 /*
6df38689
VD
870 * The position could have already been updated by a competing
871 * thread, so check that the value hasn't changed since we read
872 * it to avoid reclaiming from the same cgroup twice.
5ac8fb31 873 */
6df38689
VD
874 (void)cmpxchg(&iter->position, pos, memcg);
875
5ac8fb31
JW
876 if (pos)
877 css_put(&pos->css);
878
879 if (!memcg)
880 iter->generation++;
881 else if (!prev)
882 reclaim->generation = iter->generation;
9f3a0d09 883 }
5ac8fb31 884
542f85f9
MH
885out_unlock:
886 rcu_read_unlock();
5ac8fb31 887out:
c40046f3
MH
888 if (prev && prev != root)
889 css_put(&prev->css);
890
9f3a0d09 891 return memcg;
14067bb3 892}
7d74b06f 893
5660048c
JW
894/**
895 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
896 * @root: hierarchy root
897 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
898 */
899void mem_cgroup_iter_break(struct mem_cgroup *root,
900 struct mem_cgroup *prev)
9f3a0d09
JW
901{
902 if (!root)
903 root = root_mem_cgroup;
904 if (prev && prev != root)
905 css_put(&prev->css);
906}
7d74b06f 907
6df38689
VD
908static void invalidate_reclaim_iterators(struct mem_cgroup *dead_memcg)
909{
910 struct mem_cgroup *memcg = dead_memcg;
911 struct mem_cgroup_reclaim_iter *iter;
912 struct mem_cgroup_per_zone *mz;
913 int nid, zid;
914 int i;
915
916 while ((memcg = parent_mem_cgroup(memcg))) {
917 for_each_node(nid) {
918 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
919 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
920 for (i = 0; i <= DEF_PRIORITY; i++) {
921 iter = &mz->iter[i];
922 cmpxchg(&iter->position,
923 dead_memcg, NULL);
924 }
925 }
926 }
927 }
928}
929
9f3a0d09
JW
930/*
931 * Iteration constructs for visiting all cgroups (under a tree). If
932 * loops are exited prematurely (break), mem_cgroup_iter_break() must
933 * be used for reference counting.
934 */
935#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 936 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 937 iter != NULL; \
527a5ec9 938 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 939
9f3a0d09 940#define for_each_mem_cgroup(iter) \
527a5ec9 941 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 942 iter != NULL; \
527a5ec9 943 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 944
925b7673
JW
945/**
946 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
947 * @zone: zone of the wanted lruvec
fa9add64 948 * @memcg: memcg of the wanted lruvec
925b7673
JW
949 *
950 * Returns the lru list vector holding pages for the given @zone and
951 * @mem. This can be the global zone lruvec, if the memory controller
952 * is disabled.
953 */
954struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
955 struct mem_cgroup *memcg)
956{
957 struct mem_cgroup_per_zone *mz;
bea8c150 958 struct lruvec *lruvec;
925b7673 959
bea8c150
HD
960 if (mem_cgroup_disabled()) {
961 lruvec = &zone->lruvec;
962 goto out;
963 }
925b7673 964
e231875b 965 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
966 lruvec = &mz->lruvec;
967out:
968 /*
969 * Since a node can be onlined after the mem_cgroup was created,
970 * we have to be prepared to initialize lruvec->zone here;
971 * and if offlined then reonlined, we need to reinitialize it.
972 */
973 if (unlikely(lruvec->zone != zone))
974 lruvec->zone = zone;
975 return lruvec;
925b7673
JW
976}
977
925b7673 978/**
dfe0e773 979 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 980 * @page: the page
fa9add64 981 * @zone: zone of the page
dfe0e773
JW
982 *
983 * This function is only safe when following the LRU page isolation
984 * and putback protocol: the LRU lock must be held, and the page must
985 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 986 */
fa9add64 987struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 988{
08e552c6 989 struct mem_cgroup_per_zone *mz;
925b7673 990 struct mem_cgroup *memcg;
bea8c150 991 struct lruvec *lruvec;
6d12e2d8 992
bea8c150
HD
993 if (mem_cgroup_disabled()) {
994 lruvec = &zone->lruvec;
995 goto out;
996 }
925b7673 997
1306a85a 998 memcg = page->mem_cgroup;
7512102c 999 /*
dfe0e773 1000 * Swapcache readahead pages are added to the LRU - and
29833315 1001 * possibly migrated - before they are charged.
7512102c 1002 */
29833315
JW
1003 if (!memcg)
1004 memcg = root_mem_cgroup;
7512102c 1005
e231875b 1006 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1007 lruvec = &mz->lruvec;
1008out:
1009 /*
1010 * Since a node can be onlined after the mem_cgroup was created,
1011 * we have to be prepared to initialize lruvec->zone here;
1012 * and if offlined then reonlined, we need to reinitialize it.
1013 */
1014 if (unlikely(lruvec->zone != zone))
1015 lruvec->zone = zone;
1016 return lruvec;
08e552c6 1017}
b69408e8 1018
925b7673 1019/**
fa9add64
HD
1020 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1021 * @lruvec: mem_cgroup per zone lru vector
1022 * @lru: index of lru list the page is sitting on
1023 * @nr_pages: positive when adding or negative when removing
925b7673 1024 *
fa9add64
HD
1025 * This function must be called when a page is added to or removed from an
1026 * lru list.
3f58a829 1027 */
fa9add64
HD
1028void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1029 int nr_pages)
3f58a829
MK
1030{
1031 struct mem_cgroup_per_zone *mz;
fa9add64 1032 unsigned long *lru_size;
3f58a829
MK
1033
1034 if (mem_cgroup_disabled())
1035 return;
1036
fa9add64
HD
1037 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1038 lru_size = mz->lru_size + lru;
1039 *lru_size += nr_pages;
1040 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1041}
544122e5 1042
2314b42d 1043bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1044{
2314b42d 1045 struct mem_cgroup *task_memcg;
158e0a2d 1046 struct task_struct *p;
ffbdccf5 1047 bool ret;
4c4a2214 1048
158e0a2d 1049 p = find_lock_task_mm(task);
de077d22 1050 if (p) {
2314b42d 1051 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1052 task_unlock(p);
1053 } else {
1054 /*
1055 * All threads may have already detached their mm's, but the oom
1056 * killer still needs to detect if they have already been oom
1057 * killed to prevent needlessly killing additional tasks.
1058 */
ffbdccf5 1059 rcu_read_lock();
2314b42d
JW
1060 task_memcg = mem_cgroup_from_task(task);
1061 css_get(&task_memcg->css);
ffbdccf5 1062 rcu_read_unlock();
de077d22 1063 }
2314b42d
JW
1064 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1065 css_put(&task_memcg->css);
4c4a2214
DR
1066 return ret;
1067}
1068
19942822 1069/**
9d11ea9f 1070 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1071 * @memcg: the memory cgroup
19942822 1072 *
9d11ea9f 1073 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1074 * pages.
19942822 1075 */
c0ff4b85 1076static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1077{
3e32cb2e
JW
1078 unsigned long margin = 0;
1079 unsigned long count;
1080 unsigned long limit;
9d11ea9f 1081
3e32cb2e 1082 count = page_counter_read(&memcg->memory);
4db0c3c2 1083 limit = READ_ONCE(memcg->memory.limit);
3e32cb2e
JW
1084 if (count < limit)
1085 margin = limit - count;
1086
7941d214 1087 if (do_memsw_account()) {
3e32cb2e 1088 count = page_counter_read(&memcg->memsw);
4db0c3c2 1089 limit = READ_ONCE(memcg->memsw.limit);
3e32cb2e
JW
1090 if (count <= limit)
1091 margin = min(margin, limit - count);
1092 }
1093
1094 return margin;
19942822
JW
1095}
1096
32047e2a 1097/*
bdcbb659 1098 * A routine for checking "mem" is under move_account() or not.
32047e2a 1099 *
bdcbb659
QH
1100 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1101 * moving cgroups. This is for waiting at high-memory pressure
1102 * caused by "move".
32047e2a 1103 */
c0ff4b85 1104static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1105{
2bd9bb20
KH
1106 struct mem_cgroup *from;
1107 struct mem_cgroup *to;
4b534334 1108 bool ret = false;
2bd9bb20
KH
1109 /*
1110 * Unlike task_move routines, we access mc.to, mc.from not under
1111 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1112 */
1113 spin_lock(&mc.lock);
1114 from = mc.from;
1115 to = mc.to;
1116 if (!from)
1117 goto unlock;
3e92041d 1118
2314b42d
JW
1119 ret = mem_cgroup_is_descendant(from, memcg) ||
1120 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1121unlock:
1122 spin_unlock(&mc.lock);
4b534334
KH
1123 return ret;
1124}
1125
c0ff4b85 1126static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1127{
1128 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1129 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1130 DEFINE_WAIT(wait);
1131 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1132 /* moving charge context might have finished. */
1133 if (mc.moving_task)
1134 schedule();
1135 finish_wait(&mc.waitq, &wait);
1136 return true;
1137 }
1138 }
1139 return false;
1140}
1141
58cf188e 1142#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1143/**
58cf188e 1144 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1145 * @memcg: The memory cgroup that went over limit
1146 * @p: Task that is going to be killed
1147 *
1148 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1149 * enabled
1150 */
1151void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1152{
e61734c5 1153 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1154 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1155 struct mem_cgroup *iter;
1156 unsigned int i;
e222432b 1157
08088cb9 1158 mutex_lock(&oom_info_lock);
e222432b
BS
1159 rcu_read_lock();
1160
2415b9f5
BV
1161 if (p) {
1162 pr_info("Task in ");
1163 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
1164 pr_cont(" killed as a result of limit of ");
1165 } else {
1166 pr_info("Memory limit reached of cgroup ");
1167 }
1168
e61734c5 1169 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1170 pr_cont("\n");
e222432b 1171
e222432b
BS
1172 rcu_read_unlock();
1173
3e32cb2e
JW
1174 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1175 K((u64)page_counter_read(&memcg->memory)),
1176 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1177 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1178 K((u64)page_counter_read(&memcg->memsw)),
1179 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1180 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1181 K((u64)page_counter_read(&memcg->kmem)),
1182 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1183
1184 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1185 pr_info("Memory cgroup stats for ");
1186 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1187 pr_cont(":");
1188
1189 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
37e84351 1190 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
58cf188e 1191 continue;
484ebb3b 1192 pr_cont(" %s:%luKB", mem_cgroup_stat_names[i],
58cf188e
SZ
1193 K(mem_cgroup_read_stat(iter, i)));
1194 }
1195
1196 for (i = 0; i < NR_LRU_LISTS; i++)
1197 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1198 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1199
1200 pr_cont("\n");
1201 }
08088cb9 1202 mutex_unlock(&oom_info_lock);
e222432b
BS
1203}
1204
81d39c20
KH
1205/*
1206 * This function returns the number of memcg under hierarchy tree. Returns
1207 * 1(self count) if no children.
1208 */
c0ff4b85 1209static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1210{
1211 int num = 0;
7d74b06f
KH
1212 struct mem_cgroup *iter;
1213
c0ff4b85 1214 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1215 num++;
81d39c20
KH
1216 return num;
1217}
1218
a63d83f4
DR
1219/*
1220 * Return the memory (and swap, if configured) limit for a memcg.
1221 */
3e32cb2e 1222static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1223{
3e32cb2e 1224 unsigned long limit;
f3e8eb70 1225
3e32cb2e 1226 limit = memcg->memory.limit;
9a5a8f19 1227 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1228 unsigned long memsw_limit;
37e84351 1229 unsigned long swap_limit;
9a5a8f19 1230
3e32cb2e 1231 memsw_limit = memcg->memsw.limit;
37e84351
VD
1232 swap_limit = memcg->swap.limit;
1233 swap_limit = min(swap_limit, (unsigned long)total_swap_pages);
1234 limit = min(limit + swap_limit, memsw_limit);
9a5a8f19 1235 }
9a5a8f19 1236 return limit;
a63d83f4
DR
1237}
1238
19965460
DR
1239static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1240 int order)
9cbb78bb 1241{
6e0fc46d
DR
1242 struct oom_control oc = {
1243 .zonelist = NULL,
1244 .nodemask = NULL,
1245 .gfp_mask = gfp_mask,
1246 .order = order,
6e0fc46d 1247 };
9cbb78bb
DR
1248 struct mem_cgroup *iter;
1249 unsigned long chosen_points = 0;
1250 unsigned long totalpages;
1251 unsigned int points = 0;
1252 struct task_struct *chosen = NULL;
1253
dc56401f
JW
1254 mutex_lock(&oom_lock);
1255
876aafbf 1256 /*
465adcf1
DR
1257 * If current has a pending SIGKILL or is exiting, then automatically
1258 * select it. The goal is to allow it to allocate so that it may
1259 * quickly exit and free its memory.
876aafbf 1260 */
d003f371 1261 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
16e95196 1262 mark_oom_victim(current);
dc56401f 1263 goto unlock;
876aafbf
DR
1264 }
1265
6e0fc46d 1266 check_panic_on_oom(&oc, CONSTRAINT_MEMCG, memcg);
3e32cb2e 1267 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1268 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1269 struct css_task_iter it;
9cbb78bb
DR
1270 struct task_struct *task;
1271
72ec7029
TH
1272 css_task_iter_start(&iter->css, &it);
1273 while ((task = css_task_iter_next(&it))) {
6e0fc46d 1274 switch (oom_scan_process_thread(&oc, task, totalpages)) {
9cbb78bb
DR
1275 case OOM_SCAN_SELECT:
1276 if (chosen)
1277 put_task_struct(chosen);
1278 chosen = task;
1279 chosen_points = ULONG_MAX;
1280 get_task_struct(chosen);
1281 /* fall through */
1282 case OOM_SCAN_CONTINUE:
1283 continue;
1284 case OOM_SCAN_ABORT:
72ec7029 1285 css_task_iter_end(&it);
9cbb78bb
DR
1286 mem_cgroup_iter_break(memcg, iter);
1287 if (chosen)
1288 put_task_struct(chosen);
dc56401f 1289 goto unlock;
9cbb78bb
DR
1290 case OOM_SCAN_OK:
1291 break;
1292 };
1293 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1294 if (!points || points < chosen_points)
1295 continue;
1296 /* Prefer thread group leaders for display purposes */
1297 if (points == chosen_points &&
1298 thread_group_leader(chosen))
1299 continue;
1300
1301 if (chosen)
1302 put_task_struct(chosen);
1303 chosen = task;
1304 chosen_points = points;
1305 get_task_struct(chosen);
9cbb78bb 1306 }
72ec7029 1307 css_task_iter_end(&it);
9cbb78bb
DR
1308 }
1309
dc56401f
JW
1310 if (chosen) {
1311 points = chosen_points * 1000 / totalpages;
6e0fc46d
DR
1312 oom_kill_process(&oc, chosen, points, totalpages, memcg,
1313 "Memory cgroup out of memory");
dc56401f
JW
1314 }
1315unlock:
1316 mutex_unlock(&oom_lock);
9cbb78bb
DR
1317}
1318
ae6e71d3
MC
1319#if MAX_NUMNODES > 1
1320
4d0c066d
KH
1321/**
1322 * test_mem_cgroup_node_reclaimable
dad7557e 1323 * @memcg: the target memcg
4d0c066d
KH
1324 * @nid: the node ID to be checked.
1325 * @noswap : specify true here if the user wants flle only information.
1326 *
1327 * This function returns whether the specified memcg contains any
1328 * reclaimable pages on a node. Returns true if there are any reclaimable
1329 * pages in the node.
1330 */
c0ff4b85 1331static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1332 int nid, bool noswap)
1333{
c0ff4b85 1334 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1335 return true;
1336 if (noswap || !total_swap_pages)
1337 return false;
c0ff4b85 1338 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1339 return true;
1340 return false;
1341
1342}
889976db
YH
1343
1344/*
1345 * Always updating the nodemask is not very good - even if we have an empty
1346 * list or the wrong list here, we can start from some node and traverse all
1347 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1348 *
1349 */
c0ff4b85 1350static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1351{
1352 int nid;
453a9bf3
KH
1353 /*
1354 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1355 * pagein/pageout changes since the last update.
1356 */
c0ff4b85 1357 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1358 return;
c0ff4b85 1359 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1360 return;
1361
889976db 1362 /* make a nodemask where this memcg uses memory from */
31aaea4a 1363 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1364
31aaea4a 1365 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1366
c0ff4b85
R
1367 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1368 node_clear(nid, memcg->scan_nodes);
889976db 1369 }
453a9bf3 1370
c0ff4b85
R
1371 atomic_set(&memcg->numainfo_events, 0);
1372 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1373}
1374
1375/*
1376 * Selecting a node where we start reclaim from. Because what we need is just
1377 * reducing usage counter, start from anywhere is O,K. Considering
1378 * memory reclaim from current node, there are pros. and cons.
1379 *
1380 * Freeing memory from current node means freeing memory from a node which
1381 * we'll use or we've used. So, it may make LRU bad. And if several threads
1382 * hit limits, it will see a contention on a node. But freeing from remote
1383 * node means more costs for memory reclaim because of memory latency.
1384 *
1385 * Now, we use round-robin. Better algorithm is welcomed.
1386 */
c0ff4b85 1387int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1388{
1389 int node;
1390
c0ff4b85
R
1391 mem_cgroup_may_update_nodemask(memcg);
1392 node = memcg->last_scanned_node;
889976db 1393
c0ff4b85 1394 node = next_node(node, memcg->scan_nodes);
889976db 1395 if (node == MAX_NUMNODES)
c0ff4b85 1396 node = first_node(memcg->scan_nodes);
889976db
YH
1397 /*
1398 * We call this when we hit limit, not when pages are added to LRU.
1399 * No LRU may hold pages because all pages are UNEVICTABLE or
1400 * memcg is too small and all pages are not on LRU. In that case,
1401 * we use curret node.
1402 */
1403 if (unlikely(node == MAX_NUMNODES))
1404 node = numa_node_id();
1405
c0ff4b85 1406 memcg->last_scanned_node = node;
889976db
YH
1407 return node;
1408}
889976db 1409#else
c0ff4b85 1410int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1411{
1412 return 0;
1413}
1414#endif
1415
0608f43d
AM
1416static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1417 struct zone *zone,
1418 gfp_t gfp_mask,
1419 unsigned long *total_scanned)
1420{
1421 struct mem_cgroup *victim = NULL;
1422 int total = 0;
1423 int loop = 0;
1424 unsigned long excess;
1425 unsigned long nr_scanned;
1426 struct mem_cgroup_reclaim_cookie reclaim = {
1427 .zone = zone,
1428 .priority = 0,
1429 };
1430
3e32cb2e 1431 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1432
1433 while (1) {
1434 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1435 if (!victim) {
1436 loop++;
1437 if (loop >= 2) {
1438 /*
1439 * If we have not been able to reclaim
1440 * anything, it might because there are
1441 * no reclaimable pages under this hierarchy
1442 */
1443 if (!total)
1444 break;
1445 /*
1446 * We want to do more targeted reclaim.
1447 * excess >> 2 is not to excessive so as to
1448 * reclaim too much, nor too less that we keep
1449 * coming back to reclaim from this cgroup
1450 */
1451 if (total >= (excess >> 2) ||
1452 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1453 break;
1454 }
1455 continue;
1456 }
0608f43d
AM
1457 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1458 zone, &nr_scanned);
1459 *total_scanned += nr_scanned;
3e32cb2e 1460 if (!soft_limit_excess(root_memcg))
0608f43d 1461 break;
6d61ef40 1462 }
0608f43d
AM
1463 mem_cgroup_iter_break(root_memcg, victim);
1464 return total;
6d61ef40
BS
1465}
1466
0056f4e6
JW
1467#ifdef CONFIG_LOCKDEP
1468static struct lockdep_map memcg_oom_lock_dep_map = {
1469 .name = "memcg_oom_lock",
1470};
1471#endif
1472
fb2a6fc5
JW
1473static DEFINE_SPINLOCK(memcg_oom_lock);
1474
867578cb
KH
1475/*
1476 * Check OOM-Killer is already running under our hierarchy.
1477 * If someone is running, return false.
1478 */
fb2a6fc5 1479static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1480{
79dfdacc 1481 struct mem_cgroup *iter, *failed = NULL;
a636b327 1482
fb2a6fc5
JW
1483 spin_lock(&memcg_oom_lock);
1484
9f3a0d09 1485 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1486 if (iter->oom_lock) {
79dfdacc
MH
1487 /*
1488 * this subtree of our hierarchy is already locked
1489 * so we cannot give a lock.
1490 */
79dfdacc 1491 failed = iter;
9f3a0d09
JW
1492 mem_cgroup_iter_break(memcg, iter);
1493 break;
23751be0
JW
1494 } else
1495 iter->oom_lock = true;
7d74b06f 1496 }
867578cb 1497
fb2a6fc5
JW
1498 if (failed) {
1499 /*
1500 * OK, we failed to lock the whole subtree so we have
1501 * to clean up what we set up to the failing subtree
1502 */
1503 for_each_mem_cgroup_tree(iter, memcg) {
1504 if (iter == failed) {
1505 mem_cgroup_iter_break(memcg, iter);
1506 break;
1507 }
1508 iter->oom_lock = false;
79dfdacc 1509 }
0056f4e6
JW
1510 } else
1511 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1512
1513 spin_unlock(&memcg_oom_lock);
1514
1515 return !failed;
a636b327 1516}
0b7f569e 1517
fb2a6fc5 1518static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1519{
7d74b06f
KH
1520 struct mem_cgroup *iter;
1521
fb2a6fc5 1522 spin_lock(&memcg_oom_lock);
0056f4e6 1523 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1524 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1525 iter->oom_lock = false;
fb2a6fc5 1526 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1527}
1528
c0ff4b85 1529static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1530{
1531 struct mem_cgroup *iter;
1532
c2b42d3c 1533 spin_lock(&memcg_oom_lock);
c0ff4b85 1534 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1535 iter->under_oom++;
1536 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1537}
1538
c0ff4b85 1539static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1540{
1541 struct mem_cgroup *iter;
1542
867578cb
KH
1543 /*
1544 * When a new child is created while the hierarchy is under oom,
c2b42d3c 1545 * mem_cgroup_oom_lock() may not be called. Watch for underflow.
867578cb 1546 */
c2b42d3c 1547 spin_lock(&memcg_oom_lock);
c0ff4b85 1548 for_each_mem_cgroup_tree(iter, memcg)
c2b42d3c
TH
1549 if (iter->under_oom > 0)
1550 iter->under_oom--;
1551 spin_unlock(&memcg_oom_lock);
0b7f569e
KH
1552}
1553
867578cb
KH
1554static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1555
dc98df5a 1556struct oom_wait_info {
d79154bb 1557 struct mem_cgroup *memcg;
dc98df5a
KH
1558 wait_queue_t wait;
1559};
1560
1561static int memcg_oom_wake_function(wait_queue_t *wait,
1562 unsigned mode, int sync, void *arg)
1563{
d79154bb
HD
1564 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1565 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1566 struct oom_wait_info *oom_wait_info;
1567
1568 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1569 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1570
2314b42d
JW
1571 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1572 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1573 return 0;
dc98df5a
KH
1574 return autoremove_wake_function(wait, mode, sync, arg);
1575}
1576
c0ff4b85 1577static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1578{
c2b42d3c
TH
1579 /*
1580 * For the following lockless ->under_oom test, the only required
1581 * guarantee is that it must see the state asserted by an OOM when
1582 * this function is called as a result of userland actions
1583 * triggered by the notification of the OOM. This is trivially
1584 * achieved by invoking mem_cgroup_mark_under_oom() before
1585 * triggering notification.
1586 */
1587 if (memcg && memcg->under_oom)
f4b90b70 1588 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
3c11ecf4
KH
1589}
1590
3812c8c8 1591static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1592{
626ebc41 1593 if (!current->memcg_may_oom)
3812c8c8 1594 return;
867578cb 1595 /*
49426420
JW
1596 * We are in the middle of the charge context here, so we
1597 * don't want to block when potentially sitting on a callstack
1598 * that holds all kinds of filesystem and mm locks.
1599 *
1600 * Also, the caller may handle a failed allocation gracefully
1601 * (like optional page cache readahead) and so an OOM killer
1602 * invocation might not even be necessary.
1603 *
1604 * That's why we don't do anything here except remember the
1605 * OOM context and then deal with it at the end of the page
1606 * fault when the stack is unwound, the locks are released,
1607 * and when we know whether the fault was overall successful.
867578cb 1608 */
49426420 1609 css_get(&memcg->css);
626ebc41
TH
1610 current->memcg_in_oom = memcg;
1611 current->memcg_oom_gfp_mask = mask;
1612 current->memcg_oom_order = order;
3812c8c8
JW
1613}
1614
1615/**
1616 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1617 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1618 *
49426420
JW
1619 * This has to be called at the end of a page fault if the memcg OOM
1620 * handler was enabled.
3812c8c8 1621 *
49426420 1622 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1623 * sleep on a waitqueue until the userspace task resolves the
1624 * situation. Sleeping directly in the charge context with all kinds
1625 * of locks held is not a good idea, instead we remember an OOM state
1626 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1627 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1628 *
1629 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1630 * completed, %false otherwise.
3812c8c8 1631 */
49426420 1632bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1633{
626ebc41 1634 struct mem_cgroup *memcg = current->memcg_in_oom;
3812c8c8 1635 struct oom_wait_info owait;
49426420 1636 bool locked;
3812c8c8
JW
1637
1638 /* OOM is global, do not handle */
3812c8c8 1639 if (!memcg)
49426420 1640 return false;
3812c8c8 1641
c32b3cbe 1642 if (!handle || oom_killer_disabled)
49426420 1643 goto cleanup;
3812c8c8
JW
1644
1645 owait.memcg = memcg;
1646 owait.wait.flags = 0;
1647 owait.wait.func = memcg_oom_wake_function;
1648 owait.wait.private = current;
1649 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1650
3812c8c8 1651 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1652 mem_cgroup_mark_under_oom(memcg);
1653
1654 locked = mem_cgroup_oom_trylock(memcg);
1655
1656 if (locked)
1657 mem_cgroup_oom_notify(memcg);
1658
1659 if (locked && !memcg->oom_kill_disable) {
1660 mem_cgroup_unmark_under_oom(memcg);
1661 finish_wait(&memcg_oom_waitq, &owait.wait);
626ebc41
TH
1662 mem_cgroup_out_of_memory(memcg, current->memcg_oom_gfp_mask,
1663 current->memcg_oom_order);
49426420 1664 } else {
3812c8c8 1665 schedule();
49426420
JW
1666 mem_cgroup_unmark_under_oom(memcg);
1667 finish_wait(&memcg_oom_waitq, &owait.wait);
1668 }
1669
1670 if (locked) {
fb2a6fc5
JW
1671 mem_cgroup_oom_unlock(memcg);
1672 /*
1673 * There is no guarantee that an OOM-lock contender
1674 * sees the wakeups triggered by the OOM kill
1675 * uncharges. Wake any sleepers explicitely.
1676 */
1677 memcg_oom_recover(memcg);
1678 }
49426420 1679cleanup:
626ebc41 1680 current->memcg_in_oom = NULL;
3812c8c8 1681 css_put(&memcg->css);
867578cb 1682 return true;
0b7f569e
KH
1683}
1684
d7365e78 1685/**
81f8c3a4
JW
1686 * lock_page_memcg - lock a page->mem_cgroup binding
1687 * @page: the page
32047e2a 1688 *
81f8c3a4
JW
1689 * This function protects unlocked LRU pages from being moved to
1690 * another cgroup and stabilizes their page->mem_cgroup binding.
d69b042f 1691 */
62cccb8c 1692void lock_page_memcg(struct page *page)
89c06bd5
KH
1693{
1694 struct mem_cgroup *memcg;
6de22619 1695 unsigned long flags;
89c06bd5 1696
6de22619
JW
1697 /*
1698 * The RCU lock is held throughout the transaction. The fast
1699 * path can get away without acquiring the memcg->move_lock
1700 * because page moving starts with an RCU grace period.
6de22619 1701 */
d7365e78
JW
1702 rcu_read_lock();
1703
1704 if (mem_cgroup_disabled())
62cccb8c 1705 return;
89c06bd5 1706again:
1306a85a 1707 memcg = page->mem_cgroup;
29833315 1708 if (unlikely(!memcg))
62cccb8c 1709 return;
d7365e78 1710
bdcbb659 1711 if (atomic_read(&memcg->moving_account) <= 0)
62cccb8c 1712 return;
89c06bd5 1713
6de22619 1714 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 1715 if (memcg != page->mem_cgroup) {
6de22619 1716 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
1717 goto again;
1718 }
6de22619
JW
1719
1720 /*
1721 * When charge migration first begins, we can have locked and
1722 * unlocked page stat updates happening concurrently. Track
81f8c3a4 1723 * the task who has the lock for unlock_page_memcg().
6de22619
JW
1724 */
1725 memcg->move_lock_task = current;
1726 memcg->move_lock_flags = flags;
d7365e78 1727
62cccb8c 1728 return;
89c06bd5 1729}
81f8c3a4 1730EXPORT_SYMBOL(lock_page_memcg);
89c06bd5 1731
d7365e78 1732/**
81f8c3a4 1733 * unlock_page_memcg - unlock a page->mem_cgroup binding
62cccb8c 1734 * @page: the page
d7365e78 1735 */
62cccb8c 1736void unlock_page_memcg(struct page *page)
89c06bd5 1737{
62cccb8c
JW
1738 struct mem_cgroup *memcg = page->mem_cgroup;
1739
6de22619
JW
1740 if (memcg && memcg->move_lock_task == current) {
1741 unsigned long flags = memcg->move_lock_flags;
1742
1743 memcg->move_lock_task = NULL;
1744 memcg->move_lock_flags = 0;
1745
1746 spin_unlock_irqrestore(&memcg->move_lock, flags);
1747 }
89c06bd5 1748
d7365e78 1749 rcu_read_unlock();
89c06bd5 1750}
81f8c3a4 1751EXPORT_SYMBOL(unlock_page_memcg);
89c06bd5 1752
cdec2e42
KH
1753/*
1754 * size of first charge trial. "32" comes from vmscan.c's magic value.
1755 * TODO: maybe necessary to use big numbers in big irons.
1756 */
7ec99d62 1757#define CHARGE_BATCH 32U
cdec2e42
KH
1758struct memcg_stock_pcp {
1759 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 1760 unsigned int nr_pages;
cdec2e42 1761 struct work_struct work;
26fe6168 1762 unsigned long flags;
a0db00fc 1763#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
1764};
1765static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 1766static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 1767
a0956d54
SS
1768/**
1769 * consume_stock: Try to consume stocked charge on this cpu.
1770 * @memcg: memcg to consume from.
1771 * @nr_pages: how many pages to charge.
1772 *
1773 * The charges will only happen if @memcg matches the current cpu's memcg
1774 * stock, and at least @nr_pages are available in that stock. Failure to
1775 * service an allocation will refill the stock.
1776 *
1777 * returns true if successful, false otherwise.
cdec2e42 1778 */
a0956d54 1779static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1780{
1781 struct memcg_stock_pcp *stock;
3e32cb2e 1782 bool ret = false;
cdec2e42 1783
a0956d54 1784 if (nr_pages > CHARGE_BATCH)
3e32cb2e 1785 return ret;
a0956d54 1786
cdec2e42 1787 stock = &get_cpu_var(memcg_stock);
3e32cb2e 1788 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 1789 stock->nr_pages -= nr_pages;
3e32cb2e
JW
1790 ret = true;
1791 }
cdec2e42
KH
1792 put_cpu_var(memcg_stock);
1793 return ret;
1794}
1795
1796/*
3e32cb2e 1797 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
1798 */
1799static void drain_stock(struct memcg_stock_pcp *stock)
1800{
1801 struct mem_cgroup *old = stock->cached;
1802
11c9ea4e 1803 if (stock->nr_pages) {
3e32cb2e 1804 page_counter_uncharge(&old->memory, stock->nr_pages);
7941d214 1805 if (do_memsw_account())
3e32cb2e 1806 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 1807 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 1808 stock->nr_pages = 0;
cdec2e42
KH
1809 }
1810 stock->cached = NULL;
cdec2e42
KH
1811}
1812
1813/*
1814 * This must be called under preempt disabled or must be called by
1815 * a thread which is pinned to local cpu.
1816 */
1817static void drain_local_stock(struct work_struct *dummy)
1818{
7c8e0181 1819 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 1820 drain_stock(stock);
26fe6168 1821 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
1822}
1823
1824/*
3e32cb2e 1825 * Cache charges(val) to local per_cpu area.
320cc51d 1826 * This will be consumed by consume_stock() function, later.
cdec2e42 1827 */
c0ff4b85 1828static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
1829{
1830 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
1831
c0ff4b85 1832 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 1833 drain_stock(stock);
c0ff4b85 1834 stock->cached = memcg;
cdec2e42 1835 }
11c9ea4e 1836 stock->nr_pages += nr_pages;
cdec2e42
KH
1837 put_cpu_var(memcg_stock);
1838}
1839
1840/*
c0ff4b85 1841 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 1842 * of the hierarchy under it.
cdec2e42 1843 */
6d3d6aa2 1844static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 1845{
26fe6168 1846 int cpu, curcpu;
d38144b7 1847
6d3d6aa2
JW
1848 /* If someone's already draining, avoid adding running more workers. */
1849 if (!mutex_trylock(&percpu_charge_mutex))
1850 return;
cdec2e42 1851 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 1852 get_online_cpus();
5af12d0e 1853 curcpu = get_cpu();
cdec2e42
KH
1854 for_each_online_cpu(cpu) {
1855 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 1856 struct mem_cgroup *memcg;
26fe6168 1857
c0ff4b85
R
1858 memcg = stock->cached;
1859 if (!memcg || !stock->nr_pages)
26fe6168 1860 continue;
2314b42d 1861 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 1862 continue;
d1a05b69
MH
1863 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
1864 if (cpu == curcpu)
1865 drain_local_stock(&stock->work);
1866 else
1867 schedule_work_on(cpu, &stock->work);
1868 }
cdec2e42 1869 }
5af12d0e 1870 put_cpu();
f894ffa8 1871 put_online_cpus();
9f50fad6 1872 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
1873}
1874
0db0628d 1875static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
1876 unsigned long action,
1877 void *hcpu)
1878{
1879 int cpu = (unsigned long)hcpu;
1880 struct memcg_stock_pcp *stock;
1881
619d094b 1882 if (action == CPU_ONLINE)
1489ebad 1883 return NOTIFY_OK;
1489ebad 1884
d833049b 1885 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 1886 return NOTIFY_OK;
711d3d2c 1887
cdec2e42
KH
1888 stock = &per_cpu(memcg_stock, cpu);
1889 drain_stock(stock);
1890 return NOTIFY_OK;
1891}
1892
f7e1cb6e
JW
1893static void reclaim_high(struct mem_cgroup *memcg,
1894 unsigned int nr_pages,
1895 gfp_t gfp_mask)
1896{
1897 do {
1898 if (page_counter_read(&memcg->memory) <= memcg->high)
1899 continue;
1900 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
1901 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
1902 } while ((memcg = parent_mem_cgroup(memcg)));
1903}
1904
1905static void high_work_func(struct work_struct *work)
1906{
1907 struct mem_cgroup *memcg;
1908
1909 memcg = container_of(work, struct mem_cgroup, high_work);
1910 reclaim_high(memcg, CHARGE_BATCH, GFP_KERNEL);
1911}
1912
b23afb93
TH
1913/*
1914 * Scheduled by try_charge() to be executed from the userland return path
1915 * and reclaims memory over the high limit.
1916 */
1917void mem_cgroup_handle_over_high(void)
1918{
1919 unsigned int nr_pages = current->memcg_nr_pages_over_high;
f7e1cb6e 1920 struct mem_cgroup *memcg;
b23afb93
TH
1921
1922 if (likely(!nr_pages))
1923 return;
1924
f7e1cb6e
JW
1925 memcg = get_mem_cgroup_from_mm(current->mm);
1926 reclaim_high(memcg, nr_pages, GFP_KERNEL);
b23afb93
TH
1927 css_put(&memcg->css);
1928 current->memcg_nr_pages_over_high = 0;
1929}
1930
00501b53
JW
1931static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
1932 unsigned int nr_pages)
8a9f3ccd 1933{
7ec99d62 1934 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 1935 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 1936 struct mem_cgroup *mem_over_limit;
3e32cb2e 1937 struct page_counter *counter;
6539cc05 1938 unsigned long nr_reclaimed;
b70a2a21
JW
1939 bool may_swap = true;
1940 bool drained = false;
a636b327 1941
ce00a967 1942 if (mem_cgroup_is_root(memcg))
10d53c74 1943 return 0;
6539cc05 1944retry:
b6b6cc72 1945 if (consume_stock(memcg, nr_pages))
10d53c74 1946 return 0;
8a9f3ccd 1947
7941d214 1948 if (!do_memsw_account() ||
6071ca52
JW
1949 page_counter_try_charge(&memcg->memsw, batch, &counter)) {
1950 if (page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 1951 goto done_restock;
7941d214 1952 if (do_memsw_account())
3e32cb2e
JW
1953 page_counter_uncharge(&memcg->memsw, batch);
1954 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 1955 } else {
3e32cb2e 1956 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 1957 may_swap = false;
3fbe7244 1958 }
7a81b88c 1959
6539cc05
JW
1960 if (batch > nr_pages) {
1961 batch = nr_pages;
1962 goto retry;
1963 }
6d61ef40 1964
06b078fc
JW
1965 /*
1966 * Unlike in global OOM situations, memcg is not in a physical
1967 * memory shortage. Allow dying and OOM-killed tasks to
1968 * bypass the last charges so that they can exit quickly and
1969 * free their memory.
1970 */
1971 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
1972 fatal_signal_pending(current) ||
1973 current->flags & PF_EXITING))
10d53c74 1974 goto force;
06b078fc
JW
1975
1976 if (unlikely(task_in_memcg_oom(current)))
1977 goto nomem;
1978
d0164adc 1979 if (!gfpflags_allow_blocking(gfp_mask))
6539cc05 1980 goto nomem;
4b534334 1981
241994ed
JW
1982 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
1983
b70a2a21
JW
1984 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
1985 gfp_mask, may_swap);
6539cc05 1986
61e02c74 1987 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 1988 goto retry;
28c34c29 1989
b70a2a21 1990 if (!drained) {
6d3d6aa2 1991 drain_all_stock(mem_over_limit);
b70a2a21
JW
1992 drained = true;
1993 goto retry;
1994 }
1995
28c34c29
JW
1996 if (gfp_mask & __GFP_NORETRY)
1997 goto nomem;
6539cc05
JW
1998 /*
1999 * Even though the limit is exceeded at this point, reclaim
2000 * may have been able to free some pages. Retry the charge
2001 * before killing the task.
2002 *
2003 * Only for regular pages, though: huge pages are rather
2004 * unlikely to succeed so close to the limit, and we fall back
2005 * to regular pages anyway in case of failure.
2006 */
61e02c74 2007 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2008 goto retry;
2009 /*
2010 * At task move, charge accounts can be doubly counted. So, it's
2011 * better to wait until the end of task_move if something is going on.
2012 */
2013 if (mem_cgroup_wait_acct_move(mem_over_limit))
2014 goto retry;
2015
9b130619
JW
2016 if (nr_retries--)
2017 goto retry;
2018
06b078fc 2019 if (gfp_mask & __GFP_NOFAIL)
10d53c74 2020 goto force;
06b078fc 2021
6539cc05 2022 if (fatal_signal_pending(current))
10d53c74 2023 goto force;
6539cc05 2024
241994ed
JW
2025 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2026
3608de07
JM
2027 mem_cgroup_oom(mem_over_limit, gfp_mask,
2028 get_order(nr_pages * PAGE_SIZE));
7a81b88c 2029nomem:
6d1fdc48 2030 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2031 return -ENOMEM;
10d53c74
TH
2032force:
2033 /*
2034 * The allocation either can't fail or will lead to more memory
2035 * being freed very soon. Allow memory usage go over the limit
2036 * temporarily by force charging it.
2037 */
2038 page_counter_charge(&memcg->memory, nr_pages);
7941d214 2039 if (do_memsw_account())
10d53c74
TH
2040 page_counter_charge(&memcg->memsw, nr_pages);
2041 css_get_many(&memcg->css, nr_pages);
2042
2043 return 0;
6539cc05
JW
2044
2045done_restock:
e8ea14cc 2046 css_get_many(&memcg->css, batch);
6539cc05
JW
2047 if (batch > nr_pages)
2048 refill_stock(memcg, batch - nr_pages);
b23afb93 2049
241994ed 2050 /*
b23afb93
TH
2051 * If the hierarchy is above the normal consumption range, schedule
2052 * reclaim on returning to userland. We can perform reclaim here
71baba4b 2053 * if __GFP_RECLAIM but let's always punt for simplicity and so that
b23afb93
TH
2054 * GFP_KERNEL can consistently be used during reclaim. @memcg is
2055 * not recorded as it most likely matches current's and won't
2056 * change in the meantime. As high limit is checked again before
2057 * reclaim, the cost of mismatch is negligible.
241994ed
JW
2058 */
2059 do {
b23afb93 2060 if (page_counter_read(&memcg->memory) > memcg->high) {
f7e1cb6e
JW
2061 /* Don't bother a random interrupted task */
2062 if (in_interrupt()) {
2063 schedule_work(&memcg->high_work);
2064 break;
2065 }
9516a18a 2066 current->memcg_nr_pages_over_high += batch;
b23afb93
TH
2067 set_notify_resume(current);
2068 break;
2069 }
241994ed 2070 } while ((memcg = parent_mem_cgroup(memcg)));
10d53c74
TH
2071
2072 return 0;
7a81b88c 2073}
8a9f3ccd 2074
00501b53 2075static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2076{
ce00a967
JW
2077 if (mem_cgroup_is_root(memcg))
2078 return;
2079
3e32cb2e 2080 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2081 if (do_memsw_account())
3e32cb2e 2082 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2083
e8ea14cc 2084 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2085}
2086
0a31bc97
JW
2087static void lock_page_lru(struct page *page, int *isolated)
2088{
2089 struct zone *zone = page_zone(page);
2090
2091 spin_lock_irq(&zone->lru_lock);
2092 if (PageLRU(page)) {
2093 struct lruvec *lruvec;
2094
2095 lruvec = mem_cgroup_page_lruvec(page, zone);
2096 ClearPageLRU(page);
2097 del_page_from_lru_list(page, lruvec, page_lru(page));
2098 *isolated = 1;
2099 } else
2100 *isolated = 0;
2101}
2102
2103static void unlock_page_lru(struct page *page, int isolated)
2104{
2105 struct zone *zone = page_zone(page);
2106
2107 if (isolated) {
2108 struct lruvec *lruvec;
2109
2110 lruvec = mem_cgroup_page_lruvec(page, zone);
2111 VM_BUG_ON_PAGE(PageLRU(page), page);
2112 SetPageLRU(page);
2113 add_page_to_lru_list(page, lruvec, page_lru(page));
2114 }
2115 spin_unlock_irq(&zone->lru_lock);
2116}
2117
00501b53 2118static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2119 bool lrucare)
7a81b88c 2120{
0a31bc97 2121 int isolated;
9ce70c02 2122
1306a85a 2123 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2124
2125 /*
2126 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2127 * may already be on some other mem_cgroup's LRU. Take care of it.
2128 */
0a31bc97
JW
2129 if (lrucare)
2130 lock_page_lru(page, &isolated);
9ce70c02 2131
0a31bc97
JW
2132 /*
2133 * Nobody should be changing or seriously looking at
1306a85a 2134 * page->mem_cgroup at this point:
0a31bc97
JW
2135 *
2136 * - the page is uncharged
2137 *
2138 * - the page is off-LRU
2139 *
2140 * - an anonymous fault has exclusive page access, except for
2141 * a locked page table
2142 *
2143 * - a page cache insertion, a swapin fault, or a migration
2144 * have the page locked
2145 */
1306a85a 2146 page->mem_cgroup = memcg;
9ce70c02 2147
0a31bc97
JW
2148 if (lrucare)
2149 unlock_page_lru(page, isolated);
7a81b88c 2150}
66e1707b 2151
127424c8 2152#ifndef CONFIG_SLOB
f3bb3043 2153static int memcg_alloc_cache_id(void)
55007d84 2154{
f3bb3043
VD
2155 int id, size;
2156 int err;
2157
dbcf73e2 2158 id = ida_simple_get(&memcg_cache_ida,
f3bb3043
VD
2159 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2160 if (id < 0)
2161 return id;
55007d84 2162
dbcf73e2 2163 if (id < memcg_nr_cache_ids)
f3bb3043
VD
2164 return id;
2165
2166 /*
2167 * There's no space for the new id in memcg_caches arrays,
2168 * so we have to grow them.
2169 */
05257a1a 2170 down_write(&memcg_cache_ids_sem);
f3bb3043
VD
2171
2172 size = 2 * (id + 1);
55007d84
GC
2173 if (size < MEMCG_CACHES_MIN_SIZE)
2174 size = MEMCG_CACHES_MIN_SIZE;
2175 else if (size > MEMCG_CACHES_MAX_SIZE)
2176 size = MEMCG_CACHES_MAX_SIZE;
2177
f3bb3043 2178 err = memcg_update_all_caches(size);
60d3fd32
VD
2179 if (!err)
2180 err = memcg_update_all_list_lrus(size);
05257a1a
VD
2181 if (!err)
2182 memcg_nr_cache_ids = size;
2183
2184 up_write(&memcg_cache_ids_sem);
2185
f3bb3043 2186 if (err) {
dbcf73e2 2187 ida_simple_remove(&memcg_cache_ida, id);
f3bb3043
VD
2188 return err;
2189 }
2190 return id;
2191}
2192
2193static void memcg_free_cache_id(int id)
2194{
dbcf73e2 2195 ida_simple_remove(&memcg_cache_ida, id);
55007d84
GC
2196}
2197
d5b3cf71 2198struct memcg_kmem_cache_create_work {
5722d094
VD
2199 struct mem_cgroup *memcg;
2200 struct kmem_cache *cachep;
2201 struct work_struct work;
2202};
2203
d5b3cf71 2204static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2205{
d5b3cf71
VD
2206 struct memcg_kmem_cache_create_work *cw =
2207 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2208 struct mem_cgroup *memcg = cw->memcg;
2209 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2210
d5b3cf71 2211 memcg_create_kmem_cache(memcg, cachep);
bd673145 2212
5722d094 2213 css_put(&memcg->css);
d7f25f8a
GC
2214 kfree(cw);
2215}
2216
2217/*
2218 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2219 */
d5b3cf71
VD
2220static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2221 struct kmem_cache *cachep)
d7f25f8a 2222{
d5b3cf71 2223 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2224
776ed0f0 2225 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2226 if (!cw)
d7f25f8a 2227 return;
8135be5a
VD
2228
2229 css_get(&memcg->css);
d7f25f8a
GC
2230
2231 cw->memcg = memcg;
2232 cw->cachep = cachep;
d5b3cf71 2233 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2234
d7f25f8a
GC
2235 schedule_work(&cw->work);
2236}
2237
d5b3cf71
VD
2238static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2239 struct kmem_cache *cachep)
0e9d92f2
GC
2240{
2241 /*
2242 * We need to stop accounting when we kmalloc, because if the
2243 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2244 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2245 *
2246 * However, it is better to enclose the whole function. Depending on
2247 * the debugging options enabled, INIT_WORK(), for instance, can
2248 * trigger an allocation. This too, will make us recurse. Because at
2249 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2250 * the safest choice is to do it like this, wrapping the whole function.
2251 */
6f185c29 2252 current->memcg_kmem_skip_account = 1;
d5b3cf71 2253 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2254 current->memcg_kmem_skip_account = 0;
0e9d92f2 2255}
c67a8a68 2256
d7f25f8a
GC
2257/*
2258 * Return the kmem_cache we're supposed to use for a slab allocation.
2259 * We try to use the current memcg's version of the cache.
2260 *
2261 * If the cache does not exist yet, if we are the first user of it,
2262 * we either create it immediately, if possible, or create it asynchronously
2263 * in a workqueue.
2264 * In the latter case, we will let the current allocation go through with
2265 * the original cache.
2266 *
2267 * Can't be called in interrupt context or from kernel threads.
2268 * This function needs to be called with rcu_read_lock() held.
2269 */
230e9fc2 2270struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep, gfp_t gfp)
d7f25f8a
GC
2271{
2272 struct mem_cgroup *memcg;
959c8963 2273 struct kmem_cache *memcg_cachep;
2a4db7eb 2274 int kmemcg_id;
d7f25f8a 2275
f7ce3190 2276 VM_BUG_ON(!is_root_cache(cachep));
d7f25f8a 2277
230e9fc2
VD
2278 if (cachep->flags & SLAB_ACCOUNT)
2279 gfp |= __GFP_ACCOUNT;
2280
2281 if (!(gfp & __GFP_ACCOUNT))
2282 return cachep;
2283
9d100c5e 2284 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2285 return cachep;
2286
8135be5a 2287 memcg = get_mem_cgroup_from_mm(current->mm);
4db0c3c2 2288 kmemcg_id = READ_ONCE(memcg->kmemcg_id);
2a4db7eb 2289 if (kmemcg_id < 0)
ca0dde97 2290 goto out;
d7f25f8a 2291
2a4db7eb 2292 memcg_cachep = cache_from_memcg_idx(cachep, kmemcg_id);
8135be5a
VD
2293 if (likely(memcg_cachep))
2294 return memcg_cachep;
ca0dde97
LZ
2295
2296 /*
2297 * If we are in a safe context (can wait, and not in interrupt
2298 * context), we could be be predictable and return right away.
2299 * This would guarantee that the allocation being performed
2300 * already belongs in the new cache.
2301 *
2302 * However, there are some clashes that can arrive from locking.
2303 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2304 * memcg_create_kmem_cache, this means no further allocation
2305 * could happen with the slab_mutex held. So it's better to
2306 * defer everything.
ca0dde97 2307 */
d5b3cf71 2308 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2309out:
8135be5a 2310 css_put(&memcg->css);
ca0dde97 2311 return cachep;
d7f25f8a 2312}
d7f25f8a 2313
8135be5a
VD
2314void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2315{
2316 if (!is_root_cache(cachep))
f7ce3190 2317 css_put(&cachep->memcg_params.memcg->css);
8135be5a
VD
2318}
2319
f3ccb2c4
VD
2320int __memcg_kmem_charge_memcg(struct page *page, gfp_t gfp, int order,
2321 struct mem_cgroup *memcg)
7ae1e1d0 2322{
f3ccb2c4
VD
2323 unsigned int nr_pages = 1 << order;
2324 struct page_counter *counter;
7ae1e1d0
GC
2325 int ret;
2326
f3ccb2c4 2327 ret = try_charge(memcg, gfp, nr_pages);
52c29b04 2328 if (ret)
f3ccb2c4 2329 return ret;
52c29b04
JW
2330
2331 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) &&
2332 !page_counter_try_charge(&memcg->kmem, nr_pages, &counter)) {
2333 cancel_charge(memcg, nr_pages);
2334 return -ENOMEM;
7ae1e1d0
GC
2335 }
2336
f3ccb2c4 2337 page->mem_cgroup = memcg;
7ae1e1d0 2338
f3ccb2c4 2339 return 0;
7ae1e1d0
GC
2340}
2341
f3ccb2c4 2342int __memcg_kmem_charge(struct page *page, gfp_t gfp, int order)
7ae1e1d0 2343{
f3ccb2c4 2344 struct mem_cgroup *memcg;
fcff7d7e 2345 int ret = 0;
7ae1e1d0 2346
f3ccb2c4 2347 memcg = get_mem_cgroup_from_mm(current->mm);
b6ecd2de 2348 if (!mem_cgroup_is_root(memcg))
fcff7d7e 2349 ret = __memcg_kmem_charge_memcg(page, gfp, order, memcg);
7ae1e1d0 2350 css_put(&memcg->css);
d05e83a6 2351 return ret;
7ae1e1d0
GC
2352}
2353
d05e83a6 2354void __memcg_kmem_uncharge(struct page *page, int order)
7ae1e1d0 2355{
1306a85a 2356 struct mem_cgroup *memcg = page->mem_cgroup;
f3ccb2c4 2357 unsigned int nr_pages = 1 << order;
7ae1e1d0 2358
7ae1e1d0
GC
2359 if (!memcg)
2360 return;
2361
309381fe 2362 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2363
52c29b04
JW
2364 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys))
2365 page_counter_uncharge(&memcg->kmem, nr_pages);
2366
f3ccb2c4 2367 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 2368 if (do_memsw_account())
f3ccb2c4 2369 page_counter_uncharge(&memcg->memsw, nr_pages);
60d3fd32 2370
1306a85a 2371 page->mem_cgroup = NULL;
f3ccb2c4 2372 css_put_many(&memcg->css, nr_pages);
60d3fd32 2373}
127424c8 2374#endif /* !CONFIG_SLOB */
7ae1e1d0 2375
ca3e0214
KH
2376#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2377
ca3e0214
KH
2378/*
2379 * Because tail pages are not marked as "used", set it. We're under
3ac808fd 2380 * zone->lru_lock and migration entries setup in all page mappings.
ca3e0214 2381 */
e94c8a9c 2382void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2383{
e94c8a9c 2384 int i;
ca3e0214 2385
3d37c4a9
KH
2386 if (mem_cgroup_disabled())
2387 return;
b070e65c 2388
29833315 2389 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2390 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2391
1306a85a 2392 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2393 HPAGE_PMD_NR);
ca3e0214 2394}
12d27107 2395#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2396
c255a458 2397#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2398static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2399 bool charge)
d13d1443 2400{
0a31bc97
JW
2401 int val = (charge) ? 1 : -1;
2402 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2403}
02491447
DN
2404
2405/**
2406 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2407 * @entry: swap entry to be moved
2408 * @from: mem_cgroup which the entry is moved from
2409 * @to: mem_cgroup which the entry is moved to
2410 *
2411 * It succeeds only when the swap_cgroup's record for this entry is the same
2412 * as the mem_cgroup's id of @from.
2413 *
2414 * Returns 0 on success, -EINVAL on failure.
2415 *
3e32cb2e 2416 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2417 * both res and memsw, and called css_get().
2418 */
2419static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2420 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2421{
2422 unsigned short old_id, new_id;
2423
34c00c31
LZ
2424 old_id = mem_cgroup_id(from);
2425 new_id = mem_cgroup_id(to);
02491447
DN
2426
2427 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2428 mem_cgroup_swap_statistics(from, false);
483c30b5 2429 mem_cgroup_swap_statistics(to, true);
02491447
DN
2430 return 0;
2431 }
2432 return -EINVAL;
2433}
2434#else
2435static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2436 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2437{
2438 return -EINVAL;
2439}
8c7c6e34 2440#endif
d13d1443 2441
3e32cb2e 2442static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2443
d38d2a75 2444static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2445 unsigned long limit)
628f4235 2446{
3e32cb2e
JW
2447 unsigned long curusage;
2448 unsigned long oldusage;
2449 bool enlarge = false;
81d39c20 2450 int retry_count;
3e32cb2e 2451 int ret;
81d39c20
KH
2452
2453 /*
2454 * For keeping hierarchical_reclaim simple, how long we should retry
2455 * is depends on callers. We set our retry-count to be function
2456 * of # of children which we should visit in this loop.
2457 */
3e32cb2e
JW
2458 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2459 mem_cgroup_count_children(memcg);
81d39c20 2460
3e32cb2e 2461 oldusage = page_counter_read(&memcg->memory);
628f4235 2462
3e32cb2e 2463 do {
628f4235
KH
2464 if (signal_pending(current)) {
2465 ret = -EINTR;
2466 break;
2467 }
3e32cb2e
JW
2468
2469 mutex_lock(&memcg_limit_mutex);
2470 if (limit > memcg->memsw.limit) {
2471 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2472 ret = -EINVAL;
628f4235
KH
2473 break;
2474 }
3e32cb2e
JW
2475 if (limit > memcg->memory.limit)
2476 enlarge = true;
2477 ret = page_counter_limit(&memcg->memory, limit);
2478 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2479
2480 if (!ret)
2481 break;
2482
b70a2a21
JW
2483 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2484
3e32cb2e 2485 curusage = page_counter_read(&memcg->memory);
81d39c20 2486 /* Usage is reduced ? */
f894ffa8 2487 if (curusage >= oldusage)
81d39c20
KH
2488 retry_count--;
2489 else
2490 oldusage = curusage;
3e32cb2e
JW
2491 } while (retry_count);
2492
3c11ecf4
KH
2493 if (!ret && enlarge)
2494 memcg_oom_recover(memcg);
14797e23 2495
8c7c6e34
KH
2496 return ret;
2497}
2498
338c8431 2499static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2500 unsigned long limit)
8c7c6e34 2501{
3e32cb2e
JW
2502 unsigned long curusage;
2503 unsigned long oldusage;
2504 bool enlarge = false;
81d39c20 2505 int retry_count;
3e32cb2e 2506 int ret;
8c7c6e34 2507
81d39c20 2508 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
2509 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2510 mem_cgroup_count_children(memcg);
2511
2512 oldusage = page_counter_read(&memcg->memsw);
2513
2514 do {
8c7c6e34
KH
2515 if (signal_pending(current)) {
2516 ret = -EINTR;
2517 break;
2518 }
3e32cb2e
JW
2519
2520 mutex_lock(&memcg_limit_mutex);
2521 if (limit < memcg->memory.limit) {
2522 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2523 ret = -EINVAL;
8c7c6e34
KH
2524 break;
2525 }
3e32cb2e
JW
2526 if (limit > memcg->memsw.limit)
2527 enlarge = true;
2528 ret = page_counter_limit(&memcg->memsw, limit);
2529 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2530
2531 if (!ret)
2532 break;
2533
b70a2a21
JW
2534 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
2535
3e32cb2e 2536 curusage = page_counter_read(&memcg->memsw);
81d39c20 2537 /* Usage is reduced ? */
8c7c6e34 2538 if (curusage >= oldusage)
628f4235 2539 retry_count--;
81d39c20
KH
2540 else
2541 oldusage = curusage;
3e32cb2e
JW
2542 } while (retry_count);
2543
3c11ecf4
KH
2544 if (!ret && enlarge)
2545 memcg_oom_recover(memcg);
3e32cb2e 2546
628f4235
KH
2547 return ret;
2548}
2549
0608f43d
AM
2550unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
2551 gfp_t gfp_mask,
2552 unsigned long *total_scanned)
2553{
2554 unsigned long nr_reclaimed = 0;
2555 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
2556 unsigned long reclaimed;
2557 int loop = 0;
2558 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 2559 unsigned long excess;
0608f43d
AM
2560 unsigned long nr_scanned;
2561
2562 if (order > 0)
2563 return 0;
2564
2565 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
2566 /*
2567 * This loop can run a while, specially if mem_cgroup's continuously
2568 * keep exceeding their soft limit and putting the system under
2569 * pressure
2570 */
2571 do {
2572 if (next_mz)
2573 mz = next_mz;
2574 else
2575 mz = mem_cgroup_largest_soft_limit_node(mctz);
2576 if (!mz)
2577 break;
2578
2579 nr_scanned = 0;
2580 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
2581 gfp_mask, &nr_scanned);
2582 nr_reclaimed += reclaimed;
2583 *total_scanned += nr_scanned;
0a31bc97 2584 spin_lock_irq(&mctz->lock);
bc2f2e7f 2585 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
2586
2587 /*
2588 * If we failed to reclaim anything from this memory cgroup
2589 * it is time to move on to the next cgroup
2590 */
2591 next_mz = NULL;
bc2f2e7f
VD
2592 if (!reclaimed)
2593 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
2594
3e32cb2e 2595 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
2596 /*
2597 * One school of thought says that we should not add
2598 * back the node to the tree if reclaim returns 0.
2599 * But our reclaim could return 0, simply because due
2600 * to priority we are exposing a smaller subset of
2601 * memory to reclaim from. Consider this as a longer
2602 * term TODO.
2603 */
2604 /* If excess == 0, no tree ops */
cf2c8127 2605 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 2606 spin_unlock_irq(&mctz->lock);
0608f43d
AM
2607 css_put(&mz->memcg->css);
2608 loop++;
2609 /*
2610 * Could not reclaim anything and there are no more
2611 * mem cgroups to try or we seem to be looping without
2612 * reclaiming anything.
2613 */
2614 if (!nr_reclaimed &&
2615 (next_mz == NULL ||
2616 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
2617 break;
2618 } while (!nr_reclaimed);
2619 if (next_mz)
2620 css_put(&next_mz->memcg->css);
2621 return nr_reclaimed;
2622}
2623
ea280e7b
TH
2624/*
2625 * Test whether @memcg has children, dead or alive. Note that this
2626 * function doesn't care whether @memcg has use_hierarchy enabled and
2627 * returns %true if there are child csses according to the cgroup
2628 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
2629 */
b5f99b53
GC
2630static inline bool memcg_has_children(struct mem_cgroup *memcg)
2631{
ea280e7b
TH
2632 bool ret;
2633
ea280e7b
TH
2634 rcu_read_lock();
2635 ret = css_next_child(NULL, &memcg->css);
2636 rcu_read_unlock();
2637 return ret;
b5f99b53
GC
2638}
2639
c26251f9
MH
2640/*
2641 * Reclaims as many pages from the given memcg as possible and moves
2642 * the rest to the parent.
2643 *
2644 * Caller is responsible for holding css reference for memcg.
2645 */
2646static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
2647{
2648 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 2649
c1e862c1
KH
2650 /* we call try-to-free pages for make this cgroup empty */
2651 lru_add_drain_all();
f817ed48 2652 /* try to free all pages in this cgroup */
3e32cb2e 2653 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 2654 int progress;
c1e862c1 2655
c26251f9
MH
2656 if (signal_pending(current))
2657 return -EINTR;
2658
b70a2a21
JW
2659 progress = try_to_free_mem_cgroup_pages(memcg, 1,
2660 GFP_KERNEL, true);
c1e862c1 2661 if (!progress) {
f817ed48 2662 nr_retries--;
c1e862c1 2663 /* maybe some writeback is necessary */
8aa7e847 2664 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 2665 }
f817ed48
KH
2666
2667 }
ab5196c2
MH
2668
2669 return 0;
cc847582
KH
2670}
2671
6770c64e
TH
2672static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
2673 char *buf, size_t nbytes,
2674 loff_t off)
c1e862c1 2675{
6770c64e 2676 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 2677
d8423011
MH
2678 if (mem_cgroup_is_root(memcg))
2679 return -EINVAL;
6770c64e 2680 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
2681}
2682
182446d0
TH
2683static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
2684 struct cftype *cft)
18f59ea7 2685{
182446d0 2686 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
2687}
2688
182446d0
TH
2689static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
2690 struct cftype *cft, u64 val)
18f59ea7
BS
2691{
2692 int retval = 0;
182446d0 2693 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 2694 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 2695
567fb435 2696 if (memcg->use_hierarchy == val)
0b8f73e1 2697 return 0;
567fb435 2698
18f59ea7 2699 /*
af901ca1 2700 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
2701 * in the child subtrees. If it is unset, then the change can
2702 * occur, provided the current cgroup has no children.
2703 *
2704 * For the root cgroup, parent_mem is NULL, we allow value to be
2705 * set if there are no children.
2706 */
c0ff4b85 2707 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 2708 (val == 1 || val == 0)) {
ea280e7b 2709 if (!memcg_has_children(memcg))
c0ff4b85 2710 memcg->use_hierarchy = val;
18f59ea7
BS
2711 else
2712 retval = -EBUSY;
2713 } else
2714 retval = -EINVAL;
567fb435 2715
18f59ea7
BS
2716 return retval;
2717}
2718
72b54e73 2719static void tree_stat(struct mem_cgroup *memcg, unsigned long *stat)
ce00a967
JW
2720{
2721 struct mem_cgroup *iter;
72b54e73 2722 int i;
ce00a967 2723
72b54e73 2724 memset(stat, 0, sizeof(*stat) * MEMCG_NR_STAT);
ce00a967 2725
72b54e73
VD
2726 for_each_mem_cgroup_tree(iter, memcg) {
2727 for (i = 0; i < MEMCG_NR_STAT; i++)
2728 stat[i] += mem_cgroup_read_stat(iter, i);
2729 }
ce00a967
JW
2730}
2731
72b54e73 2732static void tree_events(struct mem_cgroup *memcg, unsigned long *events)
587d9f72
JW
2733{
2734 struct mem_cgroup *iter;
72b54e73 2735 int i;
587d9f72 2736
72b54e73 2737 memset(events, 0, sizeof(*events) * MEMCG_NR_EVENTS);
587d9f72 2738
72b54e73
VD
2739 for_each_mem_cgroup_tree(iter, memcg) {
2740 for (i = 0; i < MEMCG_NR_EVENTS; i++)
2741 events[i] += mem_cgroup_read_events(iter, i);
2742 }
587d9f72
JW
2743}
2744
6f646156 2745static unsigned long mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
ce00a967 2746{
72b54e73 2747 unsigned long val = 0;
ce00a967 2748
3e32cb2e 2749 if (mem_cgroup_is_root(memcg)) {
72b54e73
VD
2750 struct mem_cgroup *iter;
2751
2752 for_each_mem_cgroup_tree(iter, memcg) {
2753 val += mem_cgroup_read_stat(iter,
2754 MEM_CGROUP_STAT_CACHE);
2755 val += mem_cgroup_read_stat(iter,
2756 MEM_CGROUP_STAT_RSS);
2757 if (swap)
2758 val += mem_cgroup_read_stat(iter,
2759 MEM_CGROUP_STAT_SWAP);
2760 }
3e32cb2e 2761 } else {
ce00a967 2762 if (!swap)
3e32cb2e 2763 val = page_counter_read(&memcg->memory);
ce00a967 2764 else
3e32cb2e 2765 val = page_counter_read(&memcg->memsw);
ce00a967 2766 }
c12176d3 2767 return val;
ce00a967
JW
2768}
2769
3e32cb2e
JW
2770enum {
2771 RES_USAGE,
2772 RES_LIMIT,
2773 RES_MAX_USAGE,
2774 RES_FAILCNT,
2775 RES_SOFT_LIMIT,
2776};
ce00a967 2777
791badbd 2778static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 2779 struct cftype *cft)
8cdea7c0 2780{
182446d0 2781 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 2782 struct page_counter *counter;
af36f906 2783
3e32cb2e 2784 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 2785 case _MEM:
3e32cb2e
JW
2786 counter = &memcg->memory;
2787 break;
8c7c6e34 2788 case _MEMSWAP:
3e32cb2e
JW
2789 counter = &memcg->memsw;
2790 break;
510fc4e1 2791 case _KMEM:
3e32cb2e 2792 counter = &memcg->kmem;
510fc4e1 2793 break;
d55f90bf 2794 case _TCP:
0db15298 2795 counter = &memcg->tcpmem;
d55f90bf 2796 break;
8c7c6e34
KH
2797 default:
2798 BUG();
8c7c6e34 2799 }
3e32cb2e
JW
2800
2801 switch (MEMFILE_ATTR(cft->private)) {
2802 case RES_USAGE:
2803 if (counter == &memcg->memory)
c12176d3 2804 return (u64)mem_cgroup_usage(memcg, false) * PAGE_SIZE;
3e32cb2e 2805 if (counter == &memcg->memsw)
c12176d3 2806 return (u64)mem_cgroup_usage(memcg, true) * PAGE_SIZE;
3e32cb2e
JW
2807 return (u64)page_counter_read(counter) * PAGE_SIZE;
2808 case RES_LIMIT:
2809 return (u64)counter->limit * PAGE_SIZE;
2810 case RES_MAX_USAGE:
2811 return (u64)counter->watermark * PAGE_SIZE;
2812 case RES_FAILCNT:
2813 return counter->failcnt;
2814 case RES_SOFT_LIMIT:
2815 return (u64)memcg->soft_limit * PAGE_SIZE;
2816 default:
2817 BUG();
2818 }
8cdea7c0 2819}
510fc4e1 2820
127424c8 2821#ifndef CONFIG_SLOB
567e9ab2 2822static int memcg_online_kmem(struct mem_cgroup *memcg)
d6441637 2823{
d6441637
VD
2824 int memcg_id;
2825
b313aeee
VD
2826 if (cgroup_memory_nokmem)
2827 return 0;
2828
2a4db7eb 2829 BUG_ON(memcg->kmemcg_id >= 0);
567e9ab2 2830 BUG_ON(memcg->kmem_state);
d6441637 2831
f3bb3043 2832 memcg_id = memcg_alloc_cache_id();
0b8f73e1
JW
2833 if (memcg_id < 0)
2834 return memcg_id;
d6441637 2835
ef12947c 2836 static_branch_inc(&memcg_kmem_enabled_key);
d6441637 2837 /*
567e9ab2 2838 * A memory cgroup is considered kmem-online as soon as it gets
900a38f0 2839 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
2840 * guarantee no one starts accounting before all call sites are
2841 * patched.
2842 */
900a38f0 2843 memcg->kmemcg_id = memcg_id;
567e9ab2 2844 memcg->kmem_state = KMEM_ONLINE;
0b8f73e1
JW
2845
2846 return 0;
d6441637
VD
2847}
2848
8e0a8912
JW
2849static void memcg_offline_kmem(struct mem_cgroup *memcg)
2850{
2851 struct cgroup_subsys_state *css;
2852 struct mem_cgroup *parent, *child;
2853 int kmemcg_id;
2854
2855 if (memcg->kmem_state != KMEM_ONLINE)
2856 return;
2857 /*
2858 * Clear the online state before clearing memcg_caches array
2859 * entries. The slab_mutex in memcg_deactivate_kmem_caches()
2860 * guarantees that no cache will be created for this cgroup
2861 * after we are done (see memcg_create_kmem_cache()).
2862 */
2863 memcg->kmem_state = KMEM_ALLOCATED;
2864
2865 memcg_deactivate_kmem_caches(memcg);
2866
2867 kmemcg_id = memcg->kmemcg_id;
2868 BUG_ON(kmemcg_id < 0);
2869
2870 parent = parent_mem_cgroup(memcg);
2871 if (!parent)
2872 parent = root_mem_cgroup;
2873
2874 /*
2875 * Change kmemcg_id of this cgroup and all its descendants to the
2876 * parent's id, and then move all entries from this cgroup's list_lrus
2877 * to ones of the parent. After we have finished, all list_lrus
2878 * corresponding to this cgroup are guaranteed to remain empty. The
2879 * ordering is imposed by list_lru_node->lock taken by
2880 * memcg_drain_all_list_lrus().
2881 */
2882 css_for_each_descendant_pre(css, &memcg->css) {
2883 child = mem_cgroup_from_css(css);
2884 BUG_ON(child->kmemcg_id != kmemcg_id);
2885 child->kmemcg_id = parent->kmemcg_id;
2886 if (!memcg->use_hierarchy)
2887 break;
2888 }
2889 memcg_drain_all_list_lrus(kmemcg_id, parent->kmemcg_id);
2890
2891 memcg_free_cache_id(kmemcg_id);
2892}
2893
2894static void memcg_free_kmem(struct mem_cgroup *memcg)
2895{
0b8f73e1
JW
2896 /* css_alloc() failed, offlining didn't happen */
2897 if (unlikely(memcg->kmem_state == KMEM_ONLINE))
2898 memcg_offline_kmem(memcg);
2899
8e0a8912
JW
2900 if (memcg->kmem_state == KMEM_ALLOCATED) {
2901 memcg_destroy_kmem_caches(memcg);
2902 static_branch_dec(&memcg_kmem_enabled_key);
2903 WARN_ON(page_counter_read(&memcg->kmem));
2904 }
8e0a8912 2905}
d6441637 2906#else
0b8f73e1 2907static int memcg_online_kmem(struct mem_cgroup *memcg)
127424c8
JW
2908{
2909 return 0;
2910}
2911static void memcg_offline_kmem(struct mem_cgroup *memcg)
2912{
2913}
2914static void memcg_free_kmem(struct mem_cgroup *memcg)
2915{
2916}
2917#endif /* !CONFIG_SLOB */
2918
d6441637 2919static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 2920 unsigned long limit)
d6441637 2921{
b313aeee 2922 int ret;
127424c8
JW
2923
2924 mutex_lock(&memcg_limit_mutex);
127424c8 2925 ret = page_counter_limit(&memcg->kmem, limit);
127424c8
JW
2926 mutex_unlock(&memcg_limit_mutex);
2927 return ret;
d6441637 2928}
510fc4e1 2929
d55f90bf
VD
2930static int memcg_update_tcp_limit(struct mem_cgroup *memcg, unsigned long limit)
2931{
2932 int ret;
2933
2934 mutex_lock(&memcg_limit_mutex);
2935
0db15298 2936 ret = page_counter_limit(&memcg->tcpmem, limit);
d55f90bf
VD
2937 if (ret)
2938 goto out;
2939
0db15298 2940 if (!memcg->tcpmem_active) {
d55f90bf
VD
2941 /*
2942 * The active flag needs to be written after the static_key
2943 * update. This is what guarantees that the socket activation
2944 * function is the last one to run. See sock_update_memcg() for
2945 * details, and note that we don't mark any socket as belonging
2946 * to this memcg until that flag is up.
2947 *
2948 * We need to do this, because static_keys will span multiple
2949 * sites, but we can't control their order. If we mark a socket
2950 * as accounted, but the accounting functions are not patched in
2951 * yet, we'll lose accounting.
2952 *
2953 * We never race with the readers in sock_update_memcg(),
2954 * because when this value change, the code to process it is not
2955 * patched in yet.
2956 */
2957 static_branch_inc(&memcg_sockets_enabled_key);
0db15298 2958 memcg->tcpmem_active = true;
d55f90bf
VD
2959 }
2960out:
2961 mutex_unlock(&memcg_limit_mutex);
2962 return ret;
2963}
d55f90bf 2964
628f4235
KH
2965/*
2966 * The user of this function is...
2967 * RES_LIMIT.
2968 */
451af504
TH
2969static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
2970 char *buf, size_t nbytes, loff_t off)
8cdea7c0 2971{
451af504 2972 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 2973 unsigned long nr_pages;
628f4235
KH
2974 int ret;
2975
451af504 2976 buf = strstrip(buf);
650c5e56 2977 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
2978 if (ret)
2979 return ret;
af36f906 2980
3e32cb2e 2981 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 2982 case RES_LIMIT:
4b3bde4c
BS
2983 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
2984 ret = -EINVAL;
2985 break;
2986 }
3e32cb2e
JW
2987 switch (MEMFILE_TYPE(of_cft(of)->private)) {
2988 case _MEM:
2989 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 2990 break;
3e32cb2e
JW
2991 case _MEMSWAP:
2992 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 2993 break;
3e32cb2e
JW
2994 case _KMEM:
2995 ret = memcg_update_kmem_limit(memcg, nr_pages);
2996 break;
d55f90bf
VD
2997 case _TCP:
2998 ret = memcg_update_tcp_limit(memcg, nr_pages);
2999 break;
3e32cb2e 3000 }
296c81d8 3001 break;
3e32cb2e
JW
3002 case RES_SOFT_LIMIT:
3003 memcg->soft_limit = nr_pages;
3004 ret = 0;
628f4235
KH
3005 break;
3006 }
451af504 3007 return ret ?: nbytes;
8cdea7c0
BS
3008}
3009
6770c64e
TH
3010static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3011 size_t nbytes, loff_t off)
c84872e1 3012{
6770c64e 3013 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3014 struct page_counter *counter;
c84872e1 3015
3e32cb2e
JW
3016 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3017 case _MEM:
3018 counter = &memcg->memory;
3019 break;
3020 case _MEMSWAP:
3021 counter = &memcg->memsw;
3022 break;
3023 case _KMEM:
3024 counter = &memcg->kmem;
3025 break;
d55f90bf 3026 case _TCP:
0db15298 3027 counter = &memcg->tcpmem;
d55f90bf 3028 break;
3e32cb2e
JW
3029 default:
3030 BUG();
3031 }
af36f906 3032
3e32cb2e 3033 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3034 case RES_MAX_USAGE:
3e32cb2e 3035 page_counter_reset_watermark(counter);
29f2a4da
PE
3036 break;
3037 case RES_FAILCNT:
3e32cb2e 3038 counter->failcnt = 0;
29f2a4da 3039 break;
3e32cb2e
JW
3040 default:
3041 BUG();
29f2a4da 3042 }
f64c3f54 3043
6770c64e 3044 return nbytes;
c84872e1
PE
3045}
3046
182446d0 3047static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3048 struct cftype *cft)
3049{
182446d0 3050 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3051}
3052
02491447 3053#ifdef CONFIG_MMU
182446d0 3054static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3055 struct cftype *cft, u64 val)
3056{
182446d0 3057 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3058
1dfab5ab 3059 if (val & ~MOVE_MASK)
7dc74be0 3060 return -EINVAL;
ee5e8472 3061
7dc74be0 3062 /*
ee5e8472
GC
3063 * No kind of locking is needed in here, because ->can_attach() will
3064 * check this value once in the beginning of the process, and then carry
3065 * on with stale data. This means that changes to this value will only
3066 * affect task migrations starting after the change.
7dc74be0 3067 */
c0ff4b85 3068 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3069 return 0;
3070}
02491447 3071#else
182446d0 3072static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3073 struct cftype *cft, u64 val)
3074{
3075 return -ENOSYS;
3076}
3077#endif
7dc74be0 3078
406eb0c9 3079#ifdef CONFIG_NUMA
2da8ca82 3080static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3081{
25485de6
GT
3082 struct numa_stat {
3083 const char *name;
3084 unsigned int lru_mask;
3085 };
3086
3087 static const struct numa_stat stats[] = {
3088 { "total", LRU_ALL },
3089 { "file", LRU_ALL_FILE },
3090 { "anon", LRU_ALL_ANON },
3091 { "unevictable", BIT(LRU_UNEVICTABLE) },
3092 };
3093 const struct numa_stat *stat;
406eb0c9 3094 int nid;
25485de6 3095 unsigned long nr;
2da8ca82 3096 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3097
25485de6
GT
3098 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3099 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3100 seq_printf(m, "%s=%lu", stat->name, nr);
3101 for_each_node_state(nid, N_MEMORY) {
3102 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3103 stat->lru_mask);
3104 seq_printf(m, " N%d=%lu", nid, nr);
3105 }
3106 seq_putc(m, '\n');
406eb0c9 3107 }
406eb0c9 3108
071aee13
YH
3109 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3110 struct mem_cgroup *iter;
3111
3112 nr = 0;
3113 for_each_mem_cgroup_tree(iter, memcg)
3114 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3115 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3116 for_each_node_state(nid, N_MEMORY) {
3117 nr = 0;
3118 for_each_mem_cgroup_tree(iter, memcg)
3119 nr += mem_cgroup_node_nr_lru_pages(
3120 iter, nid, stat->lru_mask);
3121 seq_printf(m, " N%d=%lu", nid, nr);
3122 }
3123 seq_putc(m, '\n');
406eb0c9 3124 }
406eb0c9 3125
406eb0c9
YH
3126 return 0;
3127}
3128#endif /* CONFIG_NUMA */
3129
2da8ca82 3130static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3131{
2da8ca82 3132 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3133 unsigned long memory, memsw;
af7c4b0e
JW
3134 struct mem_cgroup *mi;
3135 unsigned int i;
406eb0c9 3136
0ca44b14
GT
3137 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3138 MEM_CGROUP_STAT_NSTATS);
3139 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3140 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3141 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3142
af7c4b0e 3143 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
7941d214 3144 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3145 continue;
484ebb3b 3146 seq_printf(m, "%s %lu\n", mem_cgroup_stat_names[i],
af7c4b0e 3147 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3148 }
7b854121 3149
af7c4b0e
JW
3150 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3151 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3152 mem_cgroup_read_events(memcg, i));
3153
3154 for (i = 0; i < NR_LRU_LISTS; i++)
3155 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3156 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3157
14067bb3 3158 /* Hierarchical information */
3e32cb2e
JW
3159 memory = memsw = PAGE_COUNTER_MAX;
3160 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3161 memory = min(memory, mi->memory.limit);
3162 memsw = min(memsw, mi->memsw.limit);
fee7b548 3163 }
3e32cb2e
JW
3164 seq_printf(m, "hierarchical_memory_limit %llu\n",
3165 (u64)memory * PAGE_SIZE);
7941d214 3166 if (do_memsw_account())
3e32cb2e
JW
3167 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3168 (u64)memsw * PAGE_SIZE);
7f016ee8 3169
af7c4b0e 3170 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
484ebb3b 3171 unsigned long long val = 0;
af7c4b0e 3172
7941d214 3173 if (i == MEM_CGROUP_STAT_SWAP && !do_memsw_account())
1dd3a273 3174 continue;
af7c4b0e
JW
3175 for_each_mem_cgroup_tree(mi, memcg)
3176 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
484ebb3b 3177 seq_printf(m, "total_%s %llu\n", mem_cgroup_stat_names[i], val);
af7c4b0e
JW
3178 }
3179
3180 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3181 unsigned long long val = 0;
3182
3183 for_each_mem_cgroup_tree(mi, memcg)
3184 val += mem_cgroup_read_events(mi, i);
3185 seq_printf(m, "total_%s %llu\n",
3186 mem_cgroup_events_names[i], val);
3187 }
3188
3189 for (i = 0; i < NR_LRU_LISTS; i++) {
3190 unsigned long long val = 0;
3191
3192 for_each_mem_cgroup_tree(mi, memcg)
3193 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3194 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3195 }
14067bb3 3196
7f016ee8 3197#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3198 {
3199 int nid, zid;
3200 struct mem_cgroup_per_zone *mz;
89abfab1 3201 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3202 unsigned long recent_rotated[2] = {0, 0};
3203 unsigned long recent_scanned[2] = {0, 0};
3204
3205 for_each_online_node(nid)
3206 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3207 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3208 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3209
89abfab1
HD
3210 recent_rotated[0] += rstat->recent_rotated[0];
3211 recent_rotated[1] += rstat->recent_rotated[1];
3212 recent_scanned[0] += rstat->recent_scanned[0];
3213 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3214 }
78ccf5b5
JW
3215 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3216 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3217 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3218 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3219 }
3220#endif
3221
d2ceb9b7
KH
3222 return 0;
3223}
3224
182446d0
TH
3225static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3226 struct cftype *cft)
a7885eb8 3227{
182446d0 3228 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3229
1f4c025b 3230 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3231}
3232
182446d0
TH
3233static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3234 struct cftype *cft, u64 val)
a7885eb8 3235{
182446d0 3236 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3237
3dae7fec 3238 if (val > 100)
a7885eb8
KM
3239 return -EINVAL;
3240
14208b0e 3241 if (css->parent)
3dae7fec
JW
3242 memcg->swappiness = val;
3243 else
3244 vm_swappiness = val;
068b38c1 3245
a7885eb8
KM
3246 return 0;
3247}
3248
2e72b634
KS
3249static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3250{
3251 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3252 unsigned long usage;
2e72b634
KS
3253 int i;
3254
3255 rcu_read_lock();
3256 if (!swap)
2c488db2 3257 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3258 else
2c488db2 3259 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3260
3261 if (!t)
3262 goto unlock;
3263
ce00a967 3264 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3265
3266 /*
748dad36 3267 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3268 * If it's not true, a threshold was crossed after last
3269 * call of __mem_cgroup_threshold().
3270 */
5407a562 3271 i = t->current_threshold;
2e72b634
KS
3272
3273 /*
3274 * Iterate backward over array of thresholds starting from
3275 * current_threshold and check if a threshold is crossed.
3276 * If none of thresholds below usage is crossed, we read
3277 * only one element of the array here.
3278 */
3279 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3280 eventfd_signal(t->entries[i].eventfd, 1);
3281
3282 /* i = current_threshold + 1 */
3283 i++;
3284
3285 /*
3286 * Iterate forward over array of thresholds starting from
3287 * current_threshold+1 and check if a threshold is crossed.
3288 * If none of thresholds above usage is crossed, we read
3289 * only one element of the array here.
3290 */
3291 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3292 eventfd_signal(t->entries[i].eventfd, 1);
3293
3294 /* Update current_threshold */
5407a562 3295 t->current_threshold = i - 1;
2e72b634
KS
3296unlock:
3297 rcu_read_unlock();
3298}
3299
3300static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3301{
ad4ca5f4
KS
3302 while (memcg) {
3303 __mem_cgroup_threshold(memcg, false);
7941d214 3304 if (do_memsw_account())
ad4ca5f4
KS
3305 __mem_cgroup_threshold(memcg, true);
3306
3307 memcg = parent_mem_cgroup(memcg);
3308 }
2e72b634
KS
3309}
3310
3311static int compare_thresholds(const void *a, const void *b)
3312{
3313 const struct mem_cgroup_threshold *_a = a;
3314 const struct mem_cgroup_threshold *_b = b;
3315
2bff24a3
GT
3316 if (_a->threshold > _b->threshold)
3317 return 1;
3318
3319 if (_a->threshold < _b->threshold)
3320 return -1;
3321
3322 return 0;
2e72b634
KS
3323}
3324
c0ff4b85 3325static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3326{
3327 struct mem_cgroup_eventfd_list *ev;
3328
2bcf2e92
MH
3329 spin_lock(&memcg_oom_lock);
3330
c0ff4b85 3331 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3332 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3333
3334 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3335 return 0;
3336}
3337
c0ff4b85 3338static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3339{
7d74b06f
KH
3340 struct mem_cgroup *iter;
3341
c0ff4b85 3342 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3343 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3344}
3345
59b6f873 3346static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3347 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3348{
2c488db2
KS
3349 struct mem_cgroup_thresholds *thresholds;
3350 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3351 unsigned long threshold;
3352 unsigned long usage;
2c488db2 3353 int i, size, ret;
2e72b634 3354
650c5e56 3355 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3356 if (ret)
3357 return ret;
3358
3359 mutex_lock(&memcg->thresholds_lock);
2c488db2 3360
05b84301 3361 if (type == _MEM) {
2c488db2 3362 thresholds = &memcg->thresholds;
ce00a967 3363 usage = mem_cgroup_usage(memcg, false);
05b84301 3364 } else if (type == _MEMSWAP) {
2c488db2 3365 thresholds = &memcg->memsw_thresholds;
ce00a967 3366 usage = mem_cgroup_usage(memcg, true);
05b84301 3367 } else
2e72b634
KS
3368 BUG();
3369
2e72b634 3370 /* Check if a threshold crossed before adding a new one */
2c488db2 3371 if (thresholds->primary)
2e72b634
KS
3372 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3373
2c488db2 3374 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3375
3376 /* Allocate memory for new array of thresholds */
2c488db2 3377 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3378 GFP_KERNEL);
2c488db2 3379 if (!new) {
2e72b634
KS
3380 ret = -ENOMEM;
3381 goto unlock;
3382 }
2c488db2 3383 new->size = size;
2e72b634
KS
3384
3385 /* Copy thresholds (if any) to new array */
2c488db2
KS
3386 if (thresholds->primary) {
3387 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3388 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3389 }
3390
2e72b634 3391 /* Add new threshold */
2c488db2
KS
3392 new->entries[size - 1].eventfd = eventfd;
3393 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3394
3395 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3396 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3397 compare_thresholds, NULL);
3398
3399 /* Find current threshold */
2c488db2 3400 new->current_threshold = -1;
2e72b634 3401 for (i = 0; i < size; i++) {
748dad36 3402 if (new->entries[i].threshold <= usage) {
2e72b634 3403 /*
2c488db2
KS
3404 * new->current_threshold will not be used until
3405 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3406 * it here.
3407 */
2c488db2 3408 ++new->current_threshold;
748dad36
SZ
3409 } else
3410 break;
2e72b634
KS
3411 }
3412
2c488db2
KS
3413 /* Free old spare buffer and save old primary buffer as spare */
3414 kfree(thresholds->spare);
3415 thresholds->spare = thresholds->primary;
3416
3417 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3418
907860ed 3419 /* To be sure that nobody uses thresholds */
2e72b634
KS
3420 synchronize_rcu();
3421
2e72b634
KS
3422unlock:
3423 mutex_unlock(&memcg->thresholds_lock);
3424
3425 return ret;
3426}
3427
59b6f873 3428static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3429 struct eventfd_ctx *eventfd, const char *args)
3430{
59b6f873 3431 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3432}
3433
59b6f873 3434static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3435 struct eventfd_ctx *eventfd, const char *args)
3436{
59b6f873 3437 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3438}
3439
59b6f873 3440static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3441 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3442{
2c488db2
KS
3443 struct mem_cgroup_thresholds *thresholds;
3444 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3445 unsigned long usage;
2c488db2 3446 int i, j, size;
2e72b634
KS
3447
3448 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3449
3450 if (type == _MEM) {
2c488db2 3451 thresholds = &memcg->thresholds;
ce00a967 3452 usage = mem_cgroup_usage(memcg, false);
05b84301 3453 } else if (type == _MEMSWAP) {
2c488db2 3454 thresholds = &memcg->memsw_thresholds;
ce00a967 3455 usage = mem_cgroup_usage(memcg, true);
05b84301 3456 } else
2e72b634
KS
3457 BUG();
3458
371528ca
AV
3459 if (!thresholds->primary)
3460 goto unlock;
3461
2e72b634
KS
3462 /* Check if a threshold crossed before removing */
3463 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3464
3465 /* Calculate new number of threshold */
2c488db2
KS
3466 size = 0;
3467 for (i = 0; i < thresholds->primary->size; i++) {
3468 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3469 size++;
3470 }
3471
2c488db2 3472 new = thresholds->spare;
907860ed 3473
2e72b634
KS
3474 /* Set thresholds array to NULL if we don't have thresholds */
3475 if (!size) {
2c488db2
KS
3476 kfree(new);
3477 new = NULL;
907860ed 3478 goto swap_buffers;
2e72b634
KS
3479 }
3480
2c488db2 3481 new->size = size;
2e72b634
KS
3482
3483 /* Copy thresholds and find current threshold */
2c488db2
KS
3484 new->current_threshold = -1;
3485 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3486 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3487 continue;
3488
2c488db2 3489 new->entries[j] = thresholds->primary->entries[i];
748dad36 3490 if (new->entries[j].threshold <= usage) {
2e72b634 3491 /*
2c488db2 3492 * new->current_threshold will not be used
2e72b634
KS
3493 * until rcu_assign_pointer(), so it's safe to increment
3494 * it here.
3495 */
2c488db2 3496 ++new->current_threshold;
2e72b634
KS
3497 }
3498 j++;
3499 }
3500
907860ed 3501swap_buffers:
2c488db2
KS
3502 /* Swap primary and spare array */
3503 thresholds->spare = thresholds->primary;
8c757763 3504
2c488db2 3505 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3506
907860ed 3507 /* To be sure that nobody uses thresholds */
2e72b634 3508 synchronize_rcu();
6611d8d7
MC
3509
3510 /* If all events are unregistered, free the spare array */
3511 if (!new) {
3512 kfree(thresholds->spare);
3513 thresholds->spare = NULL;
3514 }
371528ca 3515unlock:
2e72b634 3516 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3517}
c1e862c1 3518
59b6f873 3519static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3520 struct eventfd_ctx *eventfd)
3521{
59b6f873 3522 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3523}
3524
59b6f873 3525static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3526 struct eventfd_ctx *eventfd)
3527{
59b6f873 3528 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3529}
3530
59b6f873 3531static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3532 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3533{
9490ff27 3534 struct mem_cgroup_eventfd_list *event;
9490ff27 3535
9490ff27
KH
3536 event = kmalloc(sizeof(*event), GFP_KERNEL);
3537 if (!event)
3538 return -ENOMEM;
3539
1af8efe9 3540 spin_lock(&memcg_oom_lock);
9490ff27
KH
3541
3542 event->eventfd = eventfd;
3543 list_add(&event->list, &memcg->oom_notify);
3544
3545 /* already in OOM ? */
c2b42d3c 3546 if (memcg->under_oom)
9490ff27 3547 eventfd_signal(eventfd, 1);
1af8efe9 3548 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3549
3550 return 0;
3551}
3552
59b6f873 3553static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3554 struct eventfd_ctx *eventfd)
9490ff27 3555{
9490ff27 3556 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3557
1af8efe9 3558 spin_lock(&memcg_oom_lock);
9490ff27 3559
c0ff4b85 3560 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3561 if (ev->eventfd == eventfd) {
3562 list_del(&ev->list);
3563 kfree(ev);
3564 }
3565 }
3566
1af8efe9 3567 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3568}
3569
2da8ca82 3570static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 3571{
2da8ca82 3572 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 3573
791badbd 3574 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
c2b42d3c 3575 seq_printf(sf, "under_oom %d\n", (bool)memcg->under_oom);
3c11ecf4
KH
3576 return 0;
3577}
3578
182446d0 3579static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
3580 struct cftype *cft, u64 val)
3581{
182446d0 3582 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
3583
3584 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 3585 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
3586 return -EINVAL;
3587
c0ff4b85 3588 memcg->oom_kill_disable = val;
4d845ebf 3589 if (!val)
c0ff4b85 3590 memcg_oom_recover(memcg);
3dae7fec 3591
3c11ecf4
KH
3592 return 0;
3593}
3594
52ebea74
TH
3595#ifdef CONFIG_CGROUP_WRITEBACK
3596
3597struct list_head *mem_cgroup_cgwb_list(struct mem_cgroup *memcg)
3598{
3599 return &memcg->cgwb_list;
3600}
3601
841710aa
TH
3602static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3603{
3604 return wb_domain_init(&memcg->cgwb_domain, gfp);
3605}
3606
3607static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3608{
3609 wb_domain_exit(&memcg->cgwb_domain);
3610}
3611
2529bb3a
TH
3612static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3613{
3614 wb_domain_size_changed(&memcg->cgwb_domain);
3615}
3616
841710aa
TH
3617struct wb_domain *mem_cgroup_wb_domain(struct bdi_writeback *wb)
3618{
3619 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3620
3621 if (!memcg->css.parent)
3622 return NULL;
3623
3624 return &memcg->cgwb_domain;
3625}
3626
c2aa723a
TH
3627/**
3628 * mem_cgroup_wb_stats - retrieve writeback related stats from its memcg
3629 * @wb: bdi_writeback in question
c5edf9cd
TH
3630 * @pfilepages: out parameter for number of file pages
3631 * @pheadroom: out parameter for number of allocatable pages according to memcg
c2aa723a
TH
3632 * @pdirty: out parameter for number of dirty pages
3633 * @pwriteback: out parameter for number of pages under writeback
3634 *
c5edf9cd
TH
3635 * Determine the numbers of file, headroom, dirty, and writeback pages in
3636 * @wb's memcg. File, dirty and writeback are self-explanatory. Headroom
3637 * is a bit more involved.
c2aa723a 3638 *
c5edf9cd
TH
3639 * A memcg's headroom is "min(max, high) - used". In the hierarchy, the
3640 * headroom is calculated as the lowest headroom of itself and the
3641 * ancestors. Note that this doesn't consider the actual amount of
3642 * available memory in the system. The caller should further cap
3643 * *@pheadroom accordingly.
c2aa723a 3644 */
c5edf9cd
TH
3645void mem_cgroup_wb_stats(struct bdi_writeback *wb, unsigned long *pfilepages,
3646 unsigned long *pheadroom, unsigned long *pdirty,
3647 unsigned long *pwriteback)
c2aa723a
TH
3648{
3649 struct mem_cgroup *memcg = mem_cgroup_from_css(wb->memcg_css);
3650 struct mem_cgroup *parent;
c2aa723a
TH
3651
3652 *pdirty = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_DIRTY);
3653
3654 /* this should eventually include NR_UNSTABLE_NFS */
3655 *pwriteback = mem_cgroup_read_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
c5edf9cd
TH
3656 *pfilepages = mem_cgroup_nr_lru_pages(memcg, (1 << LRU_INACTIVE_FILE) |
3657 (1 << LRU_ACTIVE_FILE));
3658 *pheadroom = PAGE_COUNTER_MAX;
c2aa723a 3659
c2aa723a
TH
3660 while ((parent = parent_mem_cgroup(memcg))) {
3661 unsigned long ceiling = min(memcg->memory.limit, memcg->high);
3662 unsigned long used = page_counter_read(&memcg->memory);
3663
c5edf9cd 3664 *pheadroom = min(*pheadroom, ceiling - min(ceiling, used));
c2aa723a
TH
3665 memcg = parent;
3666 }
c2aa723a
TH
3667}
3668
841710aa
TH
3669#else /* CONFIG_CGROUP_WRITEBACK */
3670
3671static int memcg_wb_domain_init(struct mem_cgroup *memcg, gfp_t gfp)
3672{
3673 return 0;
3674}
3675
3676static void memcg_wb_domain_exit(struct mem_cgroup *memcg)
3677{
3678}
3679
2529bb3a
TH
3680static void memcg_wb_domain_size_changed(struct mem_cgroup *memcg)
3681{
3682}
3683
52ebea74
TH
3684#endif /* CONFIG_CGROUP_WRITEBACK */
3685
3bc942f3
TH
3686/*
3687 * DO NOT USE IN NEW FILES.
3688 *
3689 * "cgroup.event_control" implementation.
3690 *
3691 * This is way over-engineered. It tries to support fully configurable
3692 * events for each user. Such level of flexibility is completely
3693 * unnecessary especially in the light of the planned unified hierarchy.
3694 *
3695 * Please deprecate this and replace with something simpler if at all
3696 * possible.
3697 */
3698
79bd9814
TH
3699/*
3700 * Unregister event and free resources.
3701 *
3702 * Gets called from workqueue.
3703 */
3bc942f3 3704static void memcg_event_remove(struct work_struct *work)
79bd9814 3705{
3bc942f3
TH
3706 struct mem_cgroup_event *event =
3707 container_of(work, struct mem_cgroup_event, remove);
59b6f873 3708 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3709
3710 remove_wait_queue(event->wqh, &event->wait);
3711
59b6f873 3712 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
3713
3714 /* Notify userspace the event is going away. */
3715 eventfd_signal(event->eventfd, 1);
3716
3717 eventfd_ctx_put(event->eventfd);
3718 kfree(event);
59b6f873 3719 css_put(&memcg->css);
79bd9814
TH
3720}
3721
3722/*
3723 * Gets called on POLLHUP on eventfd when user closes it.
3724 *
3725 * Called with wqh->lock held and interrupts disabled.
3726 */
3bc942f3
TH
3727static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
3728 int sync, void *key)
79bd9814 3729{
3bc942f3
TH
3730 struct mem_cgroup_event *event =
3731 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 3732 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
3733 unsigned long flags = (unsigned long)key;
3734
3735 if (flags & POLLHUP) {
3736 /*
3737 * If the event has been detached at cgroup removal, we
3738 * can simply return knowing the other side will cleanup
3739 * for us.
3740 *
3741 * We can't race against event freeing since the other
3742 * side will require wqh->lock via remove_wait_queue(),
3743 * which we hold.
3744 */
fba94807 3745 spin_lock(&memcg->event_list_lock);
79bd9814
TH
3746 if (!list_empty(&event->list)) {
3747 list_del_init(&event->list);
3748 /*
3749 * We are in atomic context, but cgroup_event_remove()
3750 * may sleep, so we have to call it in workqueue.
3751 */
3752 schedule_work(&event->remove);
3753 }
fba94807 3754 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3755 }
3756
3757 return 0;
3758}
3759
3bc942f3 3760static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
3761 wait_queue_head_t *wqh, poll_table *pt)
3762{
3bc942f3
TH
3763 struct mem_cgroup_event *event =
3764 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
3765
3766 event->wqh = wqh;
3767 add_wait_queue(wqh, &event->wait);
3768}
3769
3770/*
3bc942f3
TH
3771 * DO NOT USE IN NEW FILES.
3772 *
79bd9814
TH
3773 * Parse input and register new cgroup event handler.
3774 *
3775 * Input must be in format '<event_fd> <control_fd> <args>'.
3776 * Interpretation of args is defined by control file implementation.
3777 */
451af504
TH
3778static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
3779 char *buf, size_t nbytes, loff_t off)
79bd9814 3780{
451af504 3781 struct cgroup_subsys_state *css = of_css(of);
fba94807 3782 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 3783 struct mem_cgroup_event *event;
79bd9814
TH
3784 struct cgroup_subsys_state *cfile_css;
3785 unsigned int efd, cfd;
3786 struct fd efile;
3787 struct fd cfile;
fba94807 3788 const char *name;
79bd9814
TH
3789 char *endp;
3790 int ret;
3791
451af504
TH
3792 buf = strstrip(buf);
3793
3794 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3795 if (*endp != ' ')
3796 return -EINVAL;
451af504 3797 buf = endp + 1;
79bd9814 3798
451af504 3799 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
3800 if ((*endp != ' ') && (*endp != '\0'))
3801 return -EINVAL;
451af504 3802 buf = endp + 1;
79bd9814
TH
3803
3804 event = kzalloc(sizeof(*event), GFP_KERNEL);
3805 if (!event)
3806 return -ENOMEM;
3807
59b6f873 3808 event->memcg = memcg;
79bd9814 3809 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
3810 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
3811 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
3812 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
3813
3814 efile = fdget(efd);
3815 if (!efile.file) {
3816 ret = -EBADF;
3817 goto out_kfree;
3818 }
3819
3820 event->eventfd = eventfd_ctx_fileget(efile.file);
3821 if (IS_ERR(event->eventfd)) {
3822 ret = PTR_ERR(event->eventfd);
3823 goto out_put_efile;
3824 }
3825
3826 cfile = fdget(cfd);
3827 if (!cfile.file) {
3828 ret = -EBADF;
3829 goto out_put_eventfd;
3830 }
3831
3832 /* the process need read permission on control file */
3833 /* AV: shouldn't we check that it's been opened for read instead? */
3834 ret = inode_permission(file_inode(cfile.file), MAY_READ);
3835 if (ret < 0)
3836 goto out_put_cfile;
3837
fba94807
TH
3838 /*
3839 * Determine the event callbacks and set them in @event. This used
3840 * to be done via struct cftype but cgroup core no longer knows
3841 * about these events. The following is crude but the whole thing
3842 * is for compatibility anyway.
3bc942f3
TH
3843 *
3844 * DO NOT ADD NEW FILES.
fba94807 3845 */
b583043e 3846 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
3847
3848 if (!strcmp(name, "memory.usage_in_bytes")) {
3849 event->register_event = mem_cgroup_usage_register_event;
3850 event->unregister_event = mem_cgroup_usage_unregister_event;
3851 } else if (!strcmp(name, "memory.oom_control")) {
3852 event->register_event = mem_cgroup_oom_register_event;
3853 event->unregister_event = mem_cgroup_oom_unregister_event;
3854 } else if (!strcmp(name, "memory.pressure_level")) {
3855 event->register_event = vmpressure_register_event;
3856 event->unregister_event = vmpressure_unregister_event;
3857 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
3858 event->register_event = memsw_cgroup_usage_register_event;
3859 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
3860 } else {
3861 ret = -EINVAL;
3862 goto out_put_cfile;
3863 }
3864
79bd9814 3865 /*
b5557c4c
TH
3866 * Verify @cfile should belong to @css. Also, remaining events are
3867 * automatically removed on cgroup destruction but the removal is
3868 * asynchronous, so take an extra ref on @css.
79bd9814 3869 */
b583043e 3870 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 3871 &memory_cgrp_subsys);
79bd9814 3872 ret = -EINVAL;
5a17f543 3873 if (IS_ERR(cfile_css))
79bd9814 3874 goto out_put_cfile;
5a17f543
TH
3875 if (cfile_css != css) {
3876 css_put(cfile_css);
79bd9814 3877 goto out_put_cfile;
5a17f543 3878 }
79bd9814 3879
451af504 3880 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
3881 if (ret)
3882 goto out_put_css;
3883
3884 efile.file->f_op->poll(efile.file, &event->pt);
3885
fba94807
TH
3886 spin_lock(&memcg->event_list_lock);
3887 list_add(&event->list, &memcg->event_list);
3888 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
3889
3890 fdput(cfile);
3891 fdput(efile);
3892
451af504 3893 return nbytes;
79bd9814
TH
3894
3895out_put_css:
b5557c4c 3896 css_put(css);
79bd9814
TH
3897out_put_cfile:
3898 fdput(cfile);
3899out_put_eventfd:
3900 eventfd_ctx_put(event->eventfd);
3901out_put_efile:
3902 fdput(efile);
3903out_kfree:
3904 kfree(event);
3905
3906 return ret;
3907}
3908
241994ed 3909static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 3910 {
0eea1030 3911 .name = "usage_in_bytes",
8c7c6e34 3912 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 3913 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3914 },
c84872e1
PE
3915 {
3916 .name = "max_usage_in_bytes",
8c7c6e34 3917 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 3918 .write = mem_cgroup_reset,
791badbd 3919 .read_u64 = mem_cgroup_read_u64,
c84872e1 3920 },
8cdea7c0 3921 {
0eea1030 3922 .name = "limit_in_bytes",
8c7c6e34 3923 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 3924 .write = mem_cgroup_write,
791badbd 3925 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3926 },
296c81d8
BS
3927 {
3928 .name = "soft_limit_in_bytes",
3929 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 3930 .write = mem_cgroup_write,
791badbd 3931 .read_u64 = mem_cgroup_read_u64,
296c81d8 3932 },
8cdea7c0
BS
3933 {
3934 .name = "failcnt",
8c7c6e34 3935 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 3936 .write = mem_cgroup_reset,
791badbd 3937 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 3938 },
d2ceb9b7
KH
3939 {
3940 .name = "stat",
2da8ca82 3941 .seq_show = memcg_stat_show,
d2ceb9b7 3942 },
c1e862c1
KH
3943 {
3944 .name = "force_empty",
6770c64e 3945 .write = mem_cgroup_force_empty_write,
c1e862c1 3946 },
18f59ea7
BS
3947 {
3948 .name = "use_hierarchy",
3949 .write_u64 = mem_cgroup_hierarchy_write,
3950 .read_u64 = mem_cgroup_hierarchy_read,
3951 },
79bd9814 3952 {
3bc942f3 3953 .name = "cgroup.event_control", /* XXX: for compat */
451af504 3954 .write = memcg_write_event_control,
7dbdb199 3955 .flags = CFTYPE_NO_PREFIX | CFTYPE_WORLD_WRITABLE,
79bd9814 3956 },
a7885eb8
KM
3957 {
3958 .name = "swappiness",
3959 .read_u64 = mem_cgroup_swappiness_read,
3960 .write_u64 = mem_cgroup_swappiness_write,
3961 },
7dc74be0
DN
3962 {
3963 .name = "move_charge_at_immigrate",
3964 .read_u64 = mem_cgroup_move_charge_read,
3965 .write_u64 = mem_cgroup_move_charge_write,
3966 },
9490ff27
KH
3967 {
3968 .name = "oom_control",
2da8ca82 3969 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 3970 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
3971 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
3972 },
70ddf637
AV
3973 {
3974 .name = "pressure_level",
70ddf637 3975 },
406eb0c9
YH
3976#ifdef CONFIG_NUMA
3977 {
3978 .name = "numa_stat",
2da8ca82 3979 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
3980 },
3981#endif
510fc4e1
GC
3982 {
3983 .name = "kmem.limit_in_bytes",
3984 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 3985 .write = mem_cgroup_write,
791badbd 3986 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3987 },
3988 {
3989 .name = "kmem.usage_in_bytes",
3990 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 3991 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3992 },
3993 {
3994 .name = "kmem.failcnt",
3995 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 3996 .write = mem_cgroup_reset,
791badbd 3997 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
3998 },
3999 {
4000 .name = "kmem.max_usage_in_bytes",
4001 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4002 .write = mem_cgroup_reset,
791badbd 4003 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4004 },
749c5415
GC
4005#ifdef CONFIG_SLABINFO
4006 {
4007 .name = "kmem.slabinfo",
b047501c
VD
4008 .seq_start = slab_start,
4009 .seq_next = slab_next,
4010 .seq_stop = slab_stop,
4011 .seq_show = memcg_slab_show,
749c5415
GC
4012 },
4013#endif
d55f90bf
VD
4014 {
4015 .name = "kmem.tcp.limit_in_bytes",
4016 .private = MEMFILE_PRIVATE(_TCP, RES_LIMIT),
4017 .write = mem_cgroup_write,
4018 .read_u64 = mem_cgroup_read_u64,
4019 },
4020 {
4021 .name = "kmem.tcp.usage_in_bytes",
4022 .private = MEMFILE_PRIVATE(_TCP, RES_USAGE),
4023 .read_u64 = mem_cgroup_read_u64,
4024 },
4025 {
4026 .name = "kmem.tcp.failcnt",
4027 .private = MEMFILE_PRIVATE(_TCP, RES_FAILCNT),
4028 .write = mem_cgroup_reset,
4029 .read_u64 = mem_cgroup_read_u64,
4030 },
4031 {
4032 .name = "kmem.tcp.max_usage_in_bytes",
4033 .private = MEMFILE_PRIVATE(_TCP, RES_MAX_USAGE),
4034 .write = mem_cgroup_reset,
4035 .read_u64 = mem_cgroup_read_u64,
4036 },
6bc10349 4037 { }, /* terminate */
af36f906 4038};
8c7c6e34 4039
c0ff4b85 4040static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4041{
4042 struct mem_cgroup_per_node *pn;
1ecaab2b 4043 struct mem_cgroup_per_zone *mz;
41e3355d 4044 int zone, tmp = node;
1ecaab2b
KH
4045 /*
4046 * This routine is called against possible nodes.
4047 * But it's BUG to call kmalloc() against offline node.
4048 *
4049 * TODO: this routine can waste much memory for nodes which will
4050 * never be onlined. It's better to use memory hotplug callback
4051 * function.
4052 */
41e3355d
KH
4053 if (!node_state(node, N_NORMAL_MEMORY))
4054 tmp = -1;
17295c88 4055 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4056 if (!pn)
4057 return 1;
1ecaab2b 4058
1ecaab2b
KH
4059 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4060 mz = &pn->zoneinfo[zone];
bea8c150 4061 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4062 mz->usage_in_excess = 0;
4063 mz->on_tree = false;
d79154bb 4064 mz->memcg = memcg;
1ecaab2b 4065 }
54f72fe0 4066 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4067 return 0;
4068}
4069
c0ff4b85 4070static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4071{
54f72fe0 4072 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4073}
4074
0b8f73e1 4075static void mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4076{
c8b2a36f 4077 int node;
59927fb9 4078
0b8f73e1 4079 memcg_wb_domain_exit(memcg);
c8b2a36f
GC
4080 for_each_node(node)
4081 free_mem_cgroup_per_zone_info(memcg, node);
c8b2a36f 4082 free_percpu(memcg->stat);
8ff69e2c 4083 kfree(memcg);
59927fb9 4084}
3afe36b1 4085
0b8f73e1 4086static struct mem_cgroup *mem_cgroup_alloc(void)
8cdea7c0 4087{
d142e3e6 4088 struct mem_cgroup *memcg;
0b8f73e1 4089 size_t size;
6d12e2d8 4090 int node;
8cdea7c0 4091
0b8f73e1
JW
4092 size = sizeof(struct mem_cgroup);
4093 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
4094
4095 memcg = kzalloc(size, GFP_KERNEL);
c0ff4b85 4096 if (!memcg)
0b8f73e1
JW
4097 return NULL;
4098
4099 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4100 if (!memcg->stat)
4101 goto fail;
78fb7466 4102
3ed28fa1 4103 for_each_node(node)
c0ff4b85 4104 if (alloc_mem_cgroup_per_zone_info(memcg, node))
0b8f73e1 4105 goto fail;
f64c3f54 4106
0b8f73e1
JW
4107 if (memcg_wb_domain_init(memcg, GFP_KERNEL))
4108 goto fail;
28dbc4b6 4109
f7e1cb6e 4110 INIT_WORK(&memcg->high_work, high_work_func);
d142e3e6
GC
4111 memcg->last_scanned_node = MAX_NUMNODES;
4112 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4113 mutex_init(&memcg->thresholds_lock);
4114 spin_lock_init(&memcg->move_lock);
70ddf637 4115 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4116 INIT_LIST_HEAD(&memcg->event_list);
4117 spin_lock_init(&memcg->event_list_lock);
d886f4e4 4118 memcg->socket_pressure = jiffies;
127424c8 4119#ifndef CONFIG_SLOB
900a38f0 4120 memcg->kmemcg_id = -1;
900a38f0 4121#endif
52ebea74
TH
4122#ifdef CONFIG_CGROUP_WRITEBACK
4123 INIT_LIST_HEAD(&memcg->cgwb_list);
4124#endif
0b8f73e1
JW
4125 return memcg;
4126fail:
4127 mem_cgroup_free(memcg);
4128 return NULL;
d142e3e6
GC
4129}
4130
0b8f73e1
JW
4131static struct cgroup_subsys_state * __ref
4132mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
d142e3e6 4133{
0b8f73e1
JW
4134 struct mem_cgroup *parent = mem_cgroup_from_css(parent_css);
4135 struct mem_cgroup *memcg;
4136 long error = -ENOMEM;
d142e3e6 4137
0b8f73e1
JW
4138 memcg = mem_cgroup_alloc();
4139 if (!memcg)
4140 return ERR_PTR(error);
d142e3e6 4141
0b8f73e1
JW
4142 memcg->high = PAGE_COUNTER_MAX;
4143 memcg->soft_limit = PAGE_COUNTER_MAX;
4144 if (parent) {
4145 memcg->swappiness = mem_cgroup_swappiness(parent);
4146 memcg->oom_kill_disable = parent->oom_kill_disable;
4147 }
4148 if (parent && parent->use_hierarchy) {
4149 memcg->use_hierarchy = true;
3e32cb2e 4150 page_counter_init(&memcg->memory, &parent->memory);
37e84351 4151 page_counter_init(&memcg->swap, &parent->swap);
3e32cb2e
JW
4152 page_counter_init(&memcg->memsw, &parent->memsw);
4153 page_counter_init(&memcg->kmem, &parent->kmem);
0db15298 4154 page_counter_init(&memcg->tcpmem, &parent->tcpmem);
18f59ea7 4155 } else {
3e32cb2e 4156 page_counter_init(&memcg->memory, NULL);
37e84351 4157 page_counter_init(&memcg->swap, NULL);
3e32cb2e
JW
4158 page_counter_init(&memcg->memsw, NULL);
4159 page_counter_init(&memcg->kmem, NULL);
0db15298 4160 page_counter_init(&memcg->tcpmem, NULL);
8c7f6edb
TH
4161 /*
4162 * Deeper hierachy with use_hierarchy == false doesn't make
4163 * much sense so let cgroup subsystem know about this
4164 * unfortunate state in our controller.
4165 */
d142e3e6 4166 if (parent != root_mem_cgroup)
073219e9 4167 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4168 }
d6441637 4169
0b8f73e1
JW
4170 /* The following stuff does not apply to the root */
4171 if (!parent) {
4172 root_mem_cgroup = memcg;
4173 return &memcg->css;
4174 }
4175
b313aeee 4176 error = memcg_online_kmem(memcg);
0b8f73e1
JW
4177 if (error)
4178 goto fail;
127424c8 4179
f7e1cb6e 4180 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4181 static_branch_inc(&memcg_sockets_enabled_key);
f7e1cb6e 4182
0b8f73e1
JW
4183 return &memcg->css;
4184fail:
4185 mem_cgroup_free(memcg);
4186 return NULL;
4187}
4188
4189static int
4190mem_cgroup_css_online(struct cgroup_subsys_state *css)
4191{
4192 if (css->id > MEM_CGROUP_ID_MAX)
4193 return -ENOSPC;
2f7dd7a4
JW
4194
4195 return 0;
8cdea7c0
BS
4196}
4197
eb95419b 4198static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4199{
eb95419b 4200 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4201 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4202
4203 /*
4204 * Unregister events and notify userspace.
4205 * Notify userspace about cgroup removing only after rmdir of cgroup
4206 * directory to avoid race between userspace and kernelspace.
4207 */
fba94807
TH
4208 spin_lock(&memcg->event_list_lock);
4209 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4210 list_del_init(&event->list);
4211 schedule_work(&event->remove);
4212 }
fba94807 4213 spin_unlock(&memcg->event_list_lock);
ec64f515 4214
567e9ab2 4215 memcg_offline_kmem(memcg);
52ebea74 4216 wb_memcg_offline(memcg);
df878fb0
KH
4217}
4218
6df38689
VD
4219static void mem_cgroup_css_released(struct cgroup_subsys_state *css)
4220{
4221 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4222
4223 invalidate_reclaim_iterators(memcg);
4224}
4225
eb95419b 4226static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4227{
eb95419b 4228 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4229
f7e1cb6e 4230 if (cgroup_subsys_on_dfl(memory_cgrp_subsys) && !cgroup_memory_nosocket)
ef12947c 4231 static_branch_dec(&memcg_sockets_enabled_key);
127424c8 4232
0db15298 4233 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && memcg->tcpmem_active)
d55f90bf 4234 static_branch_dec(&memcg_sockets_enabled_key);
3893e302 4235
0b8f73e1
JW
4236 vmpressure_cleanup(&memcg->vmpressure);
4237 cancel_work_sync(&memcg->high_work);
4238 mem_cgroup_remove_from_trees(memcg);
d886f4e4 4239 memcg_free_kmem(memcg);
0b8f73e1 4240 mem_cgroup_free(memcg);
8cdea7c0
BS
4241}
4242
1ced953b
TH
4243/**
4244 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4245 * @css: the target css
4246 *
4247 * Reset the states of the mem_cgroup associated with @css. This is
4248 * invoked when the userland requests disabling on the default hierarchy
4249 * but the memcg is pinned through dependency. The memcg should stop
4250 * applying policies and should revert to the vanilla state as it may be
4251 * made visible again.
4252 *
4253 * The current implementation only resets the essential configurations.
4254 * This needs to be expanded to cover all the visible parts.
4255 */
4256static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4257{
4258 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4259
d334c9bc
VD
4260 page_counter_limit(&memcg->memory, PAGE_COUNTER_MAX);
4261 page_counter_limit(&memcg->swap, PAGE_COUNTER_MAX);
4262 page_counter_limit(&memcg->memsw, PAGE_COUNTER_MAX);
4263 page_counter_limit(&memcg->kmem, PAGE_COUNTER_MAX);
4264 page_counter_limit(&memcg->tcpmem, PAGE_COUNTER_MAX);
241994ed
JW
4265 memcg->low = 0;
4266 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4267 memcg->soft_limit = PAGE_COUNTER_MAX;
2529bb3a 4268 memcg_wb_domain_size_changed(memcg);
1ced953b
TH
4269}
4270
02491447 4271#ifdef CONFIG_MMU
7dc74be0 4272/* Handlers for move charge at task migration. */
854ffa8d 4273static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4274{
05b84301 4275 int ret;
9476db97 4276
d0164adc
MG
4277 /* Try a single bulk charge without reclaim first, kswapd may wake */
4278 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_DIRECT_RECLAIM, count);
9476db97 4279 if (!ret) {
854ffa8d 4280 mc.precharge += count;
854ffa8d
DN
4281 return ret;
4282 }
9476db97
JW
4283
4284 /* Try charges one by one with reclaim */
854ffa8d 4285 while (count--) {
00501b53 4286 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
38c5d72f 4287 if (ret)
38c5d72f 4288 return ret;
854ffa8d 4289 mc.precharge++;
9476db97 4290 cond_resched();
854ffa8d 4291 }
9476db97 4292 return 0;
4ffef5fe
DN
4293}
4294
4295/**
8d32ff84 4296 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4297 * @vma: the vma the pte to be checked belongs
4298 * @addr: the address corresponding to the pte to be checked
4299 * @ptent: the pte to be checked
02491447 4300 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4301 *
4302 * Returns
4303 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4304 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4305 * move charge. if @target is not NULL, the page is stored in target->page
4306 * with extra refcnt got(Callers should handle it).
02491447
DN
4307 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4308 * target for charge migration. if @target is not NULL, the entry is stored
4309 * in target->ent.
4ffef5fe
DN
4310 *
4311 * Called with pte lock held.
4312 */
4ffef5fe
DN
4313union mc_target {
4314 struct page *page;
02491447 4315 swp_entry_t ent;
4ffef5fe
DN
4316};
4317
4ffef5fe 4318enum mc_target_type {
8d32ff84 4319 MC_TARGET_NONE = 0,
4ffef5fe 4320 MC_TARGET_PAGE,
02491447 4321 MC_TARGET_SWAP,
4ffef5fe
DN
4322};
4323
90254a65
DN
4324static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4325 unsigned long addr, pte_t ptent)
4ffef5fe 4326{
90254a65 4327 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4328
90254a65
DN
4329 if (!page || !page_mapped(page))
4330 return NULL;
4331 if (PageAnon(page)) {
1dfab5ab 4332 if (!(mc.flags & MOVE_ANON))
90254a65 4333 return NULL;
1dfab5ab
JW
4334 } else {
4335 if (!(mc.flags & MOVE_FILE))
4336 return NULL;
4337 }
90254a65
DN
4338 if (!get_page_unless_zero(page))
4339 return NULL;
4340
4341 return page;
4342}
4343
4b91355e 4344#ifdef CONFIG_SWAP
90254a65
DN
4345static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4346 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4347{
90254a65
DN
4348 struct page *page = NULL;
4349 swp_entry_t ent = pte_to_swp_entry(ptent);
4350
1dfab5ab 4351 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4352 return NULL;
4b91355e
KH
4353 /*
4354 * Because lookup_swap_cache() updates some statistics counter,
4355 * we call find_get_page() with swapper_space directly.
4356 */
33806f06 4357 page = find_get_page(swap_address_space(ent), ent.val);
7941d214 4358 if (do_memsw_account())
90254a65
DN
4359 entry->val = ent.val;
4360
4361 return page;
4362}
4b91355e
KH
4363#else
4364static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4365 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4366{
4367 return NULL;
4368}
4369#endif
90254a65 4370
87946a72
DN
4371static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4372 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4373{
4374 struct page *page = NULL;
87946a72
DN
4375 struct address_space *mapping;
4376 pgoff_t pgoff;
4377
4378 if (!vma->vm_file) /* anonymous vma */
4379 return NULL;
1dfab5ab 4380 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4381 return NULL;
4382
87946a72 4383 mapping = vma->vm_file->f_mapping;
0661a336 4384 pgoff = linear_page_index(vma, addr);
87946a72
DN
4385
4386 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4387#ifdef CONFIG_SWAP
4388 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4389 if (shmem_mapping(mapping)) {
4390 page = find_get_entry(mapping, pgoff);
4391 if (radix_tree_exceptional_entry(page)) {
4392 swp_entry_t swp = radix_to_swp_entry(page);
7941d214 4393 if (do_memsw_account())
139b6a6f
JW
4394 *entry = swp;
4395 page = find_get_page(swap_address_space(swp), swp.val);
4396 }
4397 } else
4398 page = find_get_page(mapping, pgoff);
4399#else
4400 page = find_get_page(mapping, pgoff);
aa3b1895 4401#endif
87946a72
DN
4402 return page;
4403}
4404
b1b0deab
CG
4405/**
4406 * mem_cgroup_move_account - move account of the page
4407 * @page: the page
4408 * @nr_pages: number of regular pages (>1 for huge pages)
4409 * @from: mem_cgroup which the page is moved from.
4410 * @to: mem_cgroup which the page is moved to. @from != @to.
4411 *
3ac808fd 4412 * The caller must make sure the page is not on LRU (isolate_page() is useful.)
b1b0deab
CG
4413 *
4414 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
4415 * from old cgroup.
4416 */
4417static int mem_cgroup_move_account(struct page *page,
f627c2f5 4418 bool compound,
b1b0deab
CG
4419 struct mem_cgroup *from,
4420 struct mem_cgroup *to)
4421{
4422 unsigned long flags;
f627c2f5 4423 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
b1b0deab 4424 int ret;
c4843a75 4425 bool anon;
b1b0deab
CG
4426
4427 VM_BUG_ON(from == to);
4428 VM_BUG_ON_PAGE(PageLRU(page), page);
f627c2f5 4429 VM_BUG_ON(compound && !PageTransHuge(page));
b1b0deab
CG
4430
4431 /*
6a93ca8f 4432 * Prevent mem_cgroup_migrate() from looking at
45637bab 4433 * page->mem_cgroup of its source page while we change it.
b1b0deab 4434 */
f627c2f5 4435 ret = -EBUSY;
b1b0deab
CG
4436 if (!trylock_page(page))
4437 goto out;
4438
4439 ret = -EINVAL;
4440 if (page->mem_cgroup != from)
4441 goto out_unlock;
4442
c4843a75
GT
4443 anon = PageAnon(page);
4444
b1b0deab
CG
4445 spin_lock_irqsave(&from->move_lock, flags);
4446
c4843a75 4447 if (!anon && page_mapped(page)) {
b1b0deab
CG
4448 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4449 nr_pages);
4450 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
4451 nr_pages);
4452 }
4453
c4843a75
GT
4454 /*
4455 * move_lock grabbed above and caller set from->moving_account, so
4456 * mem_cgroup_update_page_stat() will serialize updates to PageDirty.
4457 * So mapping should be stable for dirty pages.
4458 */
4459 if (!anon && PageDirty(page)) {
4460 struct address_space *mapping = page_mapping(page);
4461
4462 if (mapping_cap_account_dirty(mapping)) {
4463 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_DIRTY],
4464 nr_pages);
4465 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_DIRTY],
4466 nr_pages);
4467 }
4468 }
4469
b1b0deab
CG
4470 if (PageWriteback(page)) {
4471 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4472 nr_pages);
4473 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
4474 nr_pages);
4475 }
4476
4477 /*
4478 * It is safe to change page->mem_cgroup here because the page
4479 * is referenced, charged, and isolated - we can't race with
4480 * uncharging, charging, migration, or LRU putback.
4481 */
4482
4483 /* caller should have done css_get */
4484 page->mem_cgroup = to;
4485 spin_unlock_irqrestore(&from->move_lock, flags);
4486
4487 ret = 0;
4488
4489 local_irq_disable();
f627c2f5 4490 mem_cgroup_charge_statistics(to, page, compound, nr_pages);
b1b0deab 4491 memcg_check_events(to, page);
f627c2f5 4492 mem_cgroup_charge_statistics(from, page, compound, -nr_pages);
b1b0deab
CG
4493 memcg_check_events(from, page);
4494 local_irq_enable();
4495out_unlock:
4496 unlock_page(page);
4497out:
4498 return ret;
4499}
4500
8d32ff84 4501static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4502 unsigned long addr, pte_t ptent, union mc_target *target)
4503{
4504 struct page *page = NULL;
8d32ff84 4505 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4506 swp_entry_t ent = { .val = 0 };
4507
4508 if (pte_present(ptent))
4509 page = mc_handle_present_pte(vma, addr, ptent);
4510 else if (is_swap_pte(ptent))
4511 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4512 else if (pte_none(ptent))
87946a72 4513 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4514
4515 if (!page && !ent.val)
8d32ff84 4516 return ret;
02491447 4517 if (page) {
02491447 4518 /*
0a31bc97 4519 * Do only loose check w/o serialization.
1306a85a 4520 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4521 * not under LRU exclusion.
02491447 4522 */
1306a85a 4523 if (page->mem_cgroup == mc.from) {
02491447
DN
4524 ret = MC_TARGET_PAGE;
4525 if (target)
4526 target->page = page;
4527 }
4528 if (!ret || !target)
4529 put_page(page);
4530 }
90254a65
DN
4531 /* There is a swap entry and a page doesn't exist or isn't charged */
4532 if (ent.val && !ret &&
34c00c31 4533 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4534 ret = MC_TARGET_SWAP;
4535 if (target)
4536 target->ent = ent;
4ffef5fe 4537 }
4ffef5fe
DN
4538 return ret;
4539}
4540
12724850
NH
4541#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4542/*
4543 * We don't consider swapping or file mapped pages because THP does not
4544 * support them for now.
4545 * Caller should make sure that pmd_trans_huge(pmd) is true.
4546 */
4547static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4548 unsigned long addr, pmd_t pmd, union mc_target *target)
4549{
4550 struct page *page = NULL;
12724850
NH
4551 enum mc_target_type ret = MC_TARGET_NONE;
4552
4553 page = pmd_page(pmd);
309381fe 4554 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4555 if (!(mc.flags & MOVE_ANON))
12724850 4556 return ret;
1306a85a 4557 if (page->mem_cgroup == mc.from) {
12724850
NH
4558 ret = MC_TARGET_PAGE;
4559 if (target) {
4560 get_page(page);
4561 target->page = page;
4562 }
4563 }
4564 return ret;
4565}
4566#else
4567static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4568 unsigned long addr, pmd_t pmd, union mc_target *target)
4569{
4570 return MC_TARGET_NONE;
4571}
4572#endif
4573
4ffef5fe
DN
4574static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4575 unsigned long addr, unsigned long end,
4576 struct mm_walk *walk)
4577{
26bcd64a 4578 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4579 pte_t *pte;
4580 spinlock_t *ptl;
4581
b6ec57f4
KS
4582 ptl = pmd_trans_huge_lock(pmd, vma);
4583 if (ptl) {
12724850
NH
4584 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4585 mc.precharge += HPAGE_PMD_NR;
bf929152 4586 spin_unlock(ptl);
1a5a9906 4587 return 0;
12724850 4588 }
03319327 4589
45f83cef
AA
4590 if (pmd_trans_unstable(pmd))
4591 return 0;
4ffef5fe
DN
4592 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4593 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4594 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4595 mc.precharge++; /* increment precharge temporarily */
4596 pte_unmap_unlock(pte - 1, ptl);
4597 cond_resched();
4598
7dc74be0
DN
4599 return 0;
4600}
4601
4ffef5fe
DN
4602static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4603{
4604 unsigned long precharge;
4ffef5fe 4605
26bcd64a
NH
4606 struct mm_walk mem_cgroup_count_precharge_walk = {
4607 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4608 .mm = mm,
4609 };
dfe076b0 4610 down_read(&mm->mmap_sem);
26bcd64a 4611 walk_page_range(0, ~0UL, &mem_cgroup_count_precharge_walk);
dfe076b0 4612 up_read(&mm->mmap_sem);
4ffef5fe
DN
4613
4614 precharge = mc.precharge;
4615 mc.precharge = 0;
4616
4617 return precharge;
4618}
4619
4ffef5fe
DN
4620static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4621{
dfe076b0
DN
4622 unsigned long precharge = mem_cgroup_count_precharge(mm);
4623
4624 VM_BUG_ON(mc.moving_task);
4625 mc.moving_task = current;
4626 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4627}
4628
dfe076b0
DN
4629/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4630static void __mem_cgroup_clear_mc(void)
4ffef5fe 4631{
2bd9bb20
KH
4632 struct mem_cgroup *from = mc.from;
4633 struct mem_cgroup *to = mc.to;
4634
4ffef5fe 4635 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4636 if (mc.precharge) {
00501b53 4637 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4638 mc.precharge = 0;
4639 }
4640 /*
4641 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4642 * we must uncharge here.
4643 */
4644 if (mc.moved_charge) {
00501b53 4645 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4646 mc.moved_charge = 0;
4ffef5fe 4647 }
483c30b5
DN
4648 /* we must fixup refcnts and charges */
4649 if (mc.moved_swap) {
483c30b5 4650 /* uncharge swap account from the old cgroup */
ce00a967 4651 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4652 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4653
05b84301 4654 /*
3e32cb2e
JW
4655 * we charged both to->memory and to->memsw, so we
4656 * should uncharge to->memory.
05b84301 4657 */
ce00a967 4658 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4659 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
4660
e8ea14cc 4661 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 4662
4050377b 4663 /* we've already done css_get(mc.to) */
483c30b5
DN
4664 mc.moved_swap = 0;
4665 }
dfe076b0
DN
4666 memcg_oom_recover(from);
4667 memcg_oom_recover(to);
4668 wake_up_all(&mc.waitq);
4669}
4670
4671static void mem_cgroup_clear_mc(void)
4672{
dfe076b0
DN
4673 /*
4674 * we must clear moving_task before waking up waiters at the end of
4675 * task migration.
4676 */
4677 mc.moving_task = NULL;
4678 __mem_cgroup_clear_mc();
2bd9bb20 4679 spin_lock(&mc.lock);
4ffef5fe
DN
4680 mc.from = NULL;
4681 mc.to = NULL;
2bd9bb20 4682 spin_unlock(&mc.lock);
4ffef5fe
DN
4683}
4684
1f7dd3e5 4685static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
7dc74be0 4686{
1f7dd3e5 4687 struct cgroup_subsys_state *css;
eed67d75 4688 struct mem_cgroup *memcg = NULL; /* unneeded init to make gcc happy */
9f2115f9 4689 struct mem_cgroup *from;
4530eddb 4690 struct task_struct *leader, *p;
9f2115f9 4691 struct mm_struct *mm;
1dfab5ab 4692 unsigned long move_flags;
9f2115f9 4693 int ret = 0;
7dc74be0 4694
1f7dd3e5
TH
4695 /* charge immigration isn't supported on the default hierarchy */
4696 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
9f2115f9
TH
4697 return 0;
4698
4530eddb
TH
4699 /*
4700 * Multi-process migrations only happen on the default hierarchy
4701 * where charge immigration is not used. Perform charge
4702 * immigration if @tset contains a leader and whine if there are
4703 * multiple.
4704 */
4705 p = NULL;
1f7dd3e5 4706 cgroup_taskset_for_each_leader(leader, css, tset) {
4530eddb
TH
4707 WARN_ON_ONCE(p);
4708 p = leader;
1f7dd3e5 4709 memcg = mem_cgroup_from_css(css);
4530eddb
TH
4710 }
4711 if (!p)
4712 return 0;
4713
1f7dd3e5
TH
4714 /*
4715 * We are now commited to this value whatever it is. Changes in this
4716 * tunable will only affect upcoming migrations, not the current one.
4717 * So we need to save it, and keep it going.
4718 */
4719 move_flags = READ_ONCE(memcg->move_charge_at_immigrate);
4720 if (!move_flags)
4721 return 0;
4722
9f2115f9
TH
4723 from = mem_cgroup_from_task(p);
4724
4725 VM_BUG_ON(from == memcg);
4726
4727 mm = get_task_mm(p);
4728 if (!mm)
4729 return 0;
4730 /* We move charges only when we move a owner of the mm */
4731 if (mm->owner == p) {
4732 VM_BUG_ON(mc.from);
4733 VM_BUG_ON(mc.to);
4734 VM_BUG_ON(mc.precharge);
4735 VM_BUG_ON(mc.moved_charge);
4736 VM_BUG_ON(mc.moved_swap);
4737
4738 spin_lock(&mc.lock);
4739 mc.from = from;
4740 mc.to = memcg;
4741 mc.flags = move_flags;
4742 spin_unlock(&mc.lock);
4743 /* We set mc.moving_task later */
4744
4745 ret = mem_cgroup_precharge_mc(mm);
4746 if (ret)
4747 mem_cgroup_clear_mc();
7dc74be0 4748 }
9f2115f9 4749 mmput(mm);
7dc74be0
DN
4750 return ret;
4751}
4752
1f7dd3e5 4753static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
7dc74be0 4754{
4e2f245d
JW
4755 if (mc.to)
4756 mem_cgroup_clear_mc();
7dc74be0
DN
4757}
4758
4ffef5fe
DN
4759static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
4760 unsigned long addr, unsigned long end,
4761 struct mm_walk *walk)
7dc74be0 4762{
4ffef5fe 4763 int ret = 0;
26bcd64a 4764 struct vm_area_struct *vma = walk->vma;
4ffef5fe
DN
4765 pte_t *pte;
4766 spinlock_t *ptl;
12724850
NH
4767 enum mc_target_type target_type;
4768 union mc_target target;
4769 struct page *page;
4ffef5fe 4770
b6ec57f4
KS
4771 ptl = pmd_trans_huge_lock(pmd, vma);
4772 if (ptl) {
62ade86a 4773 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 4774 spin_unlock(ptl);
12724850
NH
4775 return 0;
4776 }
4777 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
4778 if (target_type == MC_TARGET_PAGE) {
4779 page = target.page;
4780 if (!isolate_lru_page(page)) {
f627c2f5 4781 if (!mem_cgroup_move_account(page, true,
1306a85a 4782 mc.from, mc.to)) {
12724850
NH
4783 mc.precharge -= HPAGE_PMD_NR;
4784 mc.moved_charge += HPAGE_PMD_NR;
4785 }
4786 putback_lru_page(page);
4787 }
4788 put_page(page);
4789 }
bf929152 4790 spin_unlock(ptl);
1a5a9906 4791 return 0;
12724850
NH
4792 }
4793
45f83cef
AA
4794 if (pmd_trans_unstable(pmd))
4795 return 0;
4ffef5fe
DN
4796retry:
4797 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4798 for (; addr != end; addr += PAGE_SIZE) {
4799 pte_t ptent = *(pte++);
02491447 4800 swp_entry_t ent;
4ffef5fe
DN
4801
4802 if (!mc.precharge)
4803 break;
4804
8d32ff84 4805 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
4806 case MC_TARGET_PAGE:
4807 page = target.page;
53f9263b
KS
4808 /*
4809 * We can have a part of the split pmd here. Moving it
4810 * can be done but it would be too convoluted so simply
4811 * ignore such a partial THP and keep it in original
4812 * memcg. There should be somebody mapping the head.
4813 */
4814 if (PageTransCompound(page))
4815 goto put;
4ffef5fe
DN
4816 if (isolate_lru_page(page))
4817 goto put;
f627c2f5
KS
4818 if (!mem_cgroup_move_account(page, false,
4819 mc.from, mc.to)) {
4ffef5fe 4820 mc.precharge--;
854ffa8d
DN
4821 /* we uncharge from mc.from later. */
4822 mc.moved_charge++;
4ffef5fe
DN
4823 }
4824 putback_lru_page(page);
8d32ff84 4825put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
4826 put_page(page);
4827 break;
02491447
DN
4828 case MC_TARGET_SWAP:
4829 ent = target.ent;
e91cbb42 4830 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 4831 mc.precharge--;
483c30b5
DN
4832 /* we fixup refcnts and charges later. */
4833 mc.moved_swap++;
4834 }
02491447 4835 break;
4ffef5fe
DN
4836 default:
4837 break;
4838 }
4839 }
4840 pte_unmap_unlock(pte - 1, ptl);
4841 cond_resched();
4842
4843 if (addr != end) {
4844 /*
4845 * We have consumed all precharges we got in can_attach().
4846 * We try charge one by one, but don't do any additional
4847 * charges to mc.to if we have failed in charge once in attach()
4848 * phase.
4849 */
854ffa8d 4850 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
4851 if (!ret)
4852 goto retry;
4853 }
4854
4855 return ret;
4856}
4857
4858static void mem_cgroup_move_charge(struct mm_struct *mm)
4859{
26bcd64a
NH
4860 struct mm_walk mem_cgroup_move_charge_walk = {
4861 .pmd_entry = mem_cgroup_move_charge_pte_range,
4862 .mm = mm,
4863 };
4ffef5fe
DN
4864
4865 lru_add_drain_all();
312722cb 4866 /*
81f8c3a4
JW
4867 * Signal lock_page_memcg() to take the memcg's move_lock
4868 * while we're moving its pages to another memcg. Then wait
4869 * for already started RCU-only updates to finish.
312722cb
JW
4870 */
4871 atomic_inc(&mc.from->moving_account);
4872 synchronize_rcu();
dfe076b0
DN
4873retry:
4874 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
4875 /*
4876 * Someone who are holding the mmap_sem might be waiting in
4877 * waitq. So we cancel all extra charges, wake up all waiters,
4878 * and retry. Because we cancel precharges, we might not be able
4879 * to move enough charges, but moving charge is a best-effort
4880 * feature anyway, so it wouldn't be a big problem.
4881 */
4882 __mem_cgroup_clear_mc();
4883 cond_resched();
4884 goto retry;
4885 }
26bcd64a
NH
4886 /*
4887 * When we have consumed all precharges and failed in doing
4888 * additional charge, the page walk just aborts.
4889 */
4890 walk_page_range(0, ~0UL, &mem_cgroup_move_charge_walk);
dfe076b0 4891 up_read(&mm->mmap_sem);
312722cb 4892 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
4893}
4894
1f7dd3e5 4895static void mem_cgroup_move_task(struct cgroup_taskset *tset)
67e465a7 4896{
1f7dd3e5
TH
4897 struct cgroup_subsys_state *css;
4898 struct task_struct *p = cgroup_taskset_first(tset, &css);
a433658c 4899 struct mm_struct *mm = get_task_mm(p);
dfe076b0 4900
dfe076b0 4901 if (mm) {
a433658c
KM
4902 if (mc.to)
4903 mem_cgroup_move_charge(mm);
dfe076b0
DN
4904 mmput(mm);
4905 }
a433658c
KM
4906 if (mc.to)
4907 mem_cgroup_clear_mc();
67e465a7 4908}
5cfb80a7 4909#else /* !CONFIG_MMU */
1f7dd3e5 4910static int mem_cgroup_can_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4911{
4912 return 0;
4913}
1f7dd3e5 4914static void mem_cgroup_cancel_attach(struct cgroup_taskset *tset)
5cfb80a7
DN
4915{
4916}
1f7dd3e5 4917static void mem_cgroup_move_task(struct cgroup_taskset *tset)
5cfb80a7
DN
4918{
4919}
4920#endif
67e465a7 4921
f00baae7
TH
4922/*
4923 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
4924 * to verify whether we're attached to the default hierarchy on each mount
4925 * attempt.
f00baae7 4926 */
eb95419b 4927static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
4928{
4929 /*
aa6ec29b 4930 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
4931 * guarantees that @root doesn't have any children, so turning it
4932 * on for the root memcg is enough.
4933 */
9e10a130 4934 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
7feee590
VD
4935 root_mem_cgroup->use_hierarchy = true;
4936 else
4937 root_mem_cgroup->use_hierarchy = false;
f00baae7
TH
4938}
4939
241994ed
JW
4940static u64 memory_current_read(struct cgroup_subsys_state *css,
4941 struct cftype *cft)
4942{
f5fc3c5d
JW
4943 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4944
4945 return (u64)page_counter_read(&memcg->memory) * PAGE_SIZE;
241994ed
JW
4946}
4947
4948static int memory_low_show(struct seq_file *m, void *v)
4949{
4950 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 4951 unsigned long low = READ_ONCE(memcg->low);
241994ed
JW
4952
4953 if (low == PAGE_COUNTER_MAX)
d2973697 4954 seq_puts(m, "max\n");
241994ed
JW
4955 else
4956 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
4957
4958 return 0;
4959}
4960
4961static ssize_t memory_low_write(struct kernfs_open_file *of,
4962 char *buf, size_t nbytes, loff_t off)
4963{
4964 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
4965 unsigned long low;
4966 int err;
4967
4968 buf = strstrip(buf);
d2973697 4969 err = page_counter_memparse(buf, "max", &low);
241994ed
JW
4970 if (err)
4971 return err;
4972
4973 memcg->low = low;
4974
4975 return nbytes;
4976}
4977
4978static int memory_high_show(struct seq_file *m, void *v)
4979{
4980 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 4981 unsigned long high = READ_ONCE(memcg->high);
241994ed
JW
4982
4983 if (high == PAGE_COUNTER_MAX)
d2973697 4984 seq_puts(m, "max\n");
241994ed
JW
4985 else
4986 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
4987
4988 return 0;
4989}
4990
4991static ssize_t memory_high_write(struct kernfs_open_file *of,
4992 char *buf, size_t nbytes, loff_t off)
4993{
4994 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
588083bb 4995 unsigned long nr_pages;
241994ed
JW
4996 unsigned long high;
4997 int err;
4998
4999 buf = strstrip(buf);
d2973697 5000 err = page_counter_memparse(buf, "max", &high);
241994ed
JW
5001 if (err)
5002 return err;
5003
5004 memcg->high = high;
5005
588083bb
JW
5006 nr_pages = page_counter_read(&memcg->memory);
5007 if (nr_pages > high)
5008 try_to_free_mem_cgroup_pages(memcg, nr_pages - high,
5009 GFP_KERNEL, true);
5010
2529bb3a 5011 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5012 return nbytes;
5013}
5014
5015static int memory_max_show(struct seq_file *m, void *v)
5016{
5017 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
4db0c3c2 5018 unsigned long max = READ_ONCE(memcg->memory.limit);
241994ed
JW
5019
5020 if (max == PAGE_COUNTER_MAX)
d2973697 5021 seq_puts(m, "max\n");
241994ed
JW
5022 else
5023 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5024
5025 return 0;
5026}
5027
5028static ssize_t memory_max_write(struct kernfs_open_file *of,
5029 char *buf, size_t nbytes, loff_t off)
5030{
5031 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5032 unsigned long max;
5033 int err;
5034
5035 buf = strstrip(buf);
d2973697 5036 err = page_counter_memparse(buf, "max", &max);
241994ed
JW
5037 if (err)
5038 return err;
5039
5040 err = mem_cgroup_resize_limit(memcg, max);
5041 if (err)
5042 return err;
5043
2529bb3a 5044 memcg_wb_domain_size_changed(memcg);
241994ed
JW
5045 return nbytes;
5046}
5047
5048static int memory_events_show(struct seq_file *m, void *v)
5049{
5050 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5051
5052 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5053 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5054 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5055 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5056
5057 return 0;
5058}
5059
587d9f72
JW
5060static int memory_stat_show(struct seq_file *m, void *v)
5061{
5062 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
72b54e73
VD
5063 unsigned long stat[MEMCG_NR_STAT];
5064 unsigned long events[MEMCG_NR_EVENTS];
587d9f72
JW
5065 int i;
5066
5067 /*
5068 * Provide statistics on the state of the memory subsystem as
5069 * well as cumulative event counters that show past behavior.
5070 *
5071 * This list is ordered following a combination of these gradients:
5072 * 1) generic big picture -> specifics and details
5073 * 2) reflecting userspace activity -> reflecting kernel heuristics
5074 *
5075 * Current memory state:
5076 */
5077
72b54e73
VD
5078 tree_stat(memcg, stat);
5079 tree_events(memcg, events);
5080
587d9f72 5081 seq_printf(m, "anon %llu\n",
72b54e73 5082 (u64)stat[MEM_CGROUP_STAT_RSS] * PAGE_SIZE);
587d9f72 5083 seq_printf(m, "file %llu\n",
72b54e73 5084 (u64)stat[MEM_CGROUP_STAT_CACHE] * PAGE_SIZE);
12580e4b
VD
5085 seq_printf(m, "kernel_stack %llu\n",
5086 (u64)stat[MEMCG_KERNEL_STACK] * PAGE_SIZE);
27ee57c9
VD
5087 seq_printf(m, "slab %llu\n",
5088 (u64)(stat[MEMCG_SLAB_RECLAIMABLE] +
5089 stat[MEMCG_SLAB_UNRECLAIMABLE]) * PAGE_SIZE);
b2807f07 5090 seq_printf(m, "sock %llu\n",
72b54e73 5091 (u64)stat[MEMCG_SOCK] * PAGE_SIZE);
587d9f72
JW
5092
5093 seq_printf(m, "file_mapped %llu\n",
72b54e73 5094 (u64)stat[MEM_CGROUP_STAT_FILE_MAPPED] * PAGE_SIZE);
587d9f72 5095 seq_printf(m, "file_dirty %llu\n",
72b54e73 5096 (u64)stat[MEM_CGROUP_STAT_DIRTY] * PAGE_SIZE);
587d9f72 5097 seq_printf(m, "file_writeback %llu\n",
72b54e73 5098 (u64)stat[MEM_CGROUP_STAT_WRITEBACK] * PAGE_SIZE);
587d9f72
JW
5099
5100 for (i = 0; i < NR_LRU_LISTS; i++) {
5101 struct mem_cgroup *mi;
5102 unsigned long val = 0;
5103
5104 for_each_mem_cgroup_tree(mi, memcg)
5105 val += mem_cgroup_nr_lru_pages(mi, BIT(i));
5106 seq_printf(m, "%s %llu\n",
5107 mem_cgroup_lru_names[i], (u64)val * PAGE_SIZE);
5108 }
5109
27ee57c9
VD
5110 seq_printf(m, "slab_reclaimable %llu\n",
5111 (u64)stat[MEMCG_SLAB_RECLAIMABLE] * PAGE_SIZE);
5112 seq_printf(m, "slab_unreclaimable %llu\n",
5113 (u64)stat[MEMCG_SLAB_UNRECLAIMABLE] * PAGE_SIZE);
5114
587d9f72
JW
5115 /* Accumulated memory events */
5116
5117 seq_printf(m, "pgfault %lu\n",
72b54e73 5118 events[MEM_CGROUP_EVENTS_PGFAULT]);
587d9f72 5119 seq_printf(m, "pgmajfault %lu\n",
72b54e73 5120 events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
587d9f72
JW
5121
5122 return 0;
5123}
5124
241994ed
JW
5125static struct cftype memory_files[] = {
5126 {
5127 .name = "current",
f5fc3c5d 5128 .flags = CFTYPE_NOT_ON_ROOT,
241994ed
JW
5129 .read_u64 = memory_current_read,
5130 },
5131 {
5132 .name = "low",
5133 .flags = CFTYPE_NOT_ON_ROOT,
5134 .seq_show = memory_low_show,
5135 .write = memory_low_write,
5136 },
5137 {
5138 .name = "high",
5139 .flags = CFTYPE_NOT_ON_ROOT,
5140 .seq_show = memory_high_show,
5141 .write = memory_high_write,
5142 },
5143 {
5144 .name = "max",
5145 .flags = CFTYPE_NOT_ON_ROOT,
5146 .seq_show = memory_max_show,
5147 .write = memory_max_write,
5148 },
5149 {
5150 .name = "events",
5151 .flags = CFTYPE_NOT_ON_ROOT,
472912a2 5152 .file_offset = offsetof(struct mem_cgroup, events_file),
241994ed
JW
5153 .seq_show = memory_events_show,
5154 },
587d9f72
JW
5155 {
5156 .name = "stat",
5157 .flags = CFTYPE_NOT_ON_ROOT,
5158 .seq_show = memory_stat_show,
5159 },
241994ed
JW
5160 { } /* terminate */
5161};
5162
073219e9 5163struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5164 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5165 .css_online = mem_cgroup_css_online,
92fb9748 5166 .css_offline = mem_cgroup_css_offline,
6df38689 5167 .css_released = mem_cgroup_css_released,
92fb9748 5168 .css_free = mem_cgroup_css_free,
1ced953b 5169 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5170 .can_attach = mem_cgroup_can_attach,
5171 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5172 .attach = mem_cgroup_move_task,
f00baae7 5173 .bind = mem_cgroup_bind,
241994ed
JW
5174 .dfl_cftypes = memory_files,
5175 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5176 .early_init = 0,
8cdea7c0 5177};
c077719b 5178
241994ed
JW
5179/**
5180 * mem_cgroup_low - check if memory consumption is below the normal range
5181 * @root: the highest ancestor to consider
5182 * @memcg: the memory cgroup to check
5183 *
5184 * Returns %true if memory consumption of @memcg, and that of all
5185 * configurable ancestors up to @root, is below the normal range.
5186 */
5187bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5188{
5189 if (mem_cgroup_disabled())
5190 return false;
5191
5192 /*
5193 * The toplevel group doesn't have a configurable range, so
5194 * it's never low when looked at directly, and it is not
5195 * considered an ancestor when assessing the hierarchy.
5196 */
5197
5198 if (memcg == root_mem_cgroup)
5199 return false;
5200
4e54dede 5201 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5202 return false;
5203
5204 while (memcg != root) {
5205 memcg = parent_mem_cgroup(memcg);
5206
5207 if (memcg == root_mem_cgroup)
5208 break;
5209
4e54dede 5210 if (page_counter_read(&memcg->memory) >= memcg->low)
241994ed
JW
5211 return false;
5212 }
5213 return true;
5214}
5215
00501b53
JW
5216/**
5217 * mem_cgroup_try_charge - try charging a page
5218 * @page: page to charge
5219 * @mm: mm context of the victim
5220 * @gfp_mask: reclaim mode
5221 * @memcgp: charged memcg return
5222 *
5223 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5224 * pages according to @gfp_mask if necessary.
5225 *
5226 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5227 * Otherwise, an error code is returned.
5228 *
5229 * After page->mapping has been set up, the caller must finalize the
5230 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5231 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5232 */
5233int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
f627c2f5
KS
5234 gfp_t gfp_mask, struct mem_cgroup **memcgp,
5235 bool compound)
00501b53
JW
5236{
5237 struct mem_cgroup *memcg = NULL;
f627c2f5 5238 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5239 int ret = 0;
5240
5241 if (mem_cgroup_disabled())
5242 goto out;
5243
5244 if (PageSwapCache(page)) {
00501b53
JW
5245 /*
5246 * Every swap fault against a single page tries to charge the
5247 * page, bail as early as possible. shmem_unuse() encounters
5248 * already charged pages, too. The USED bit is protected by
5249 * the page lock, which serializes swap cache removal, which
5250 * in turn serializes uncharging.
5251 */
e993d905 5252 VM_BUG_ON_PAGE(!PageLocked(page), page);
1306a85a 5253 if (page->mem_cgroup)
00501b53 5254 goto out;
e993d905 5255
37e84351 5256 if (do_swap_account) {
e993d905
VD
5257 swp_entry_t ent = { .val = page_private(page), };
5258 unsigned short id = lookup_swap_cgroup_id(ent);
5259
5260 rcu_read_lock();
5261 memcg = mem_cgroup_from_id(id);
5262 if (memcg && !css_tryget_online(&memcg->css))
5263 memcg = NULL;
5264 rcu_read_unlock();
5265 }
00501b53
JW
5266 }
5267
00501b53
JW
5268 if (!memcg)
5269 memcg = get_mem_cgroup_from_mm(mm);
5270
5271 ret = try_charge(memcg, gfp_mask, nr_pages);
5272
5273 css_put(&memcg->css);
00501b53
JW
5274out:
5275 *memcgp = memcg;
5276 return ret;
5277}
5278
5279/**
5280 * mem_cgroup_commit_charge - commit a page charge
5281 * @page: page to charge
5282 * @memcg: memcg to charge the page to
5283 * @lrucare: page might be on LRU already
5284 *
5285 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5286 * after page->mapping has been set up. This must happen atomically
5287 * as part of the page instantiation, i.e. under the page table lock
5288 * for anonymous pages, under the page lock for page and swap cache.
5289 *
5290 * In addition, the page must not be on the LRU during the commit, to
5291 * prevent racing with task migration. If it might be, use @lrucare.
5292 *
5293 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5294 */
5295void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
f627c2f5 5296 bool lrucare, bool compound)
00501b53 5297{
f627c2f5 5298 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5299
5300 VM_BUG_ON_PAGE(!page->mapping, page);
5301 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5302
5303 if (mem_cgroup_disabled())
5304 return;
5305 /*
5306 * Swap faults will attempt to charge the same page multiple
5307 * times. But reuse_swap_page() might have removed the page
5308 * from swapcache already, so we can't check PageSwapCache().
5309 */
5310 if (!memcg)
5311 return;
5312
6abb5a86
JW
5313 commit_charge(page, memcg, lrucare);
5314
6abb5a86 5315 local_irq_disable();
f627c2f5 5316 mem_cgroup_charge_statistics(memcg, page, compound, nr_pages);
6abb5a86
JW
5317 memcg_check_events(memcg, page);
5318 local_irq_enable();
00501b53 5319
7941d214 5320 if (do_memsw_account() && PageSwapCache(page)) {
00501b53
JW
5321 swp_entry_t entry = { .val = page_private(page) };
5322 /*
5323 * The swap entry might not get freed for a long time,
5324 * let's not wait for it. The page already received a
5325 * memory+swap charge, drop the swap entry duplicate.
5326 */
5327 mem_cgroup_uncharge_swap(entry);
5328 }
5329}
5330
5331/**
5332 * mem_cgroup_cancel_charge - cancel a page charge
5333 * @page: page to charge
5334 * @memcg: memcg to charge the page to
5335 *
5336 * Cancel a charge transaction started by mem_cgroup_try_charge().
5337 */
f627c2f5
KS
5338void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg,
5339 bool compound)
00501b53 5340{
f627c2f5 5341 unsigned int nr_pages = compound ? hpage_nr_pages(page) : 1;
00501b53
JW
5342
5343 if (mem_cgroup_disabled())
5344 return;
5345 /*
5346 * Swap faults will attempt to charge the same page multiple
5347 * times. But reuse_swap_page() might have removed the page
5348 * from swapcache already, so we can't check PageSwapCache().
5349 */
5350 if (!memcg)
5351 return;
5352
00501b53
JW
5353 cancel_charge(memcg, nr_pages);
5354}
5355
747db954 5356static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5357 unsigned long nr_anon, unsigned long nr_file,
5358 unsigned long nr_huge, struct page *dummy_page)
5359{
18eca2e6 5360 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5361 unsigned long flags;
5362
ce00a967 5363 if (!mem_cgroup_is_root(memcg)) {
18eca2e6 5364 page_counter_uncharge(&memcg->memory, nr_pages);
7941d214 5365 if (do_memsw_account())
18eca2e6 5366 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5367 memcg_oom_recover(memcg);
5368 }
747db954
JW
5369
5370 local_irq_save(flags);
5371 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5372 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5373 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5374 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5375 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5376 memcg_check_events(memcg, dummy_page);
5377 local_irq_restore(flags);
e8ea14cc
JW
5378
5379 if (!mem_cgroup_is_root(memcg))
18eca2e6 5380 css_put_many(&memcg->css, nr_pages);
747db954
JW
5381}
5382
5383static void uncharge_list(struct list_head *page_list)
5384{
5385 struct mem_cgroup *memcg = NULL;
747db954
JW
5386 unsigned long nr_anon = 0;
5387 unsigned long nr_file = 0;
5388 unsigned long nr_huge = 0;
5389 unsigned long pgpgout = 0;
747db954
JW
5390 struct list_head *next;
5391 struct page *page;
5392
5393 next = page_list->next;
5394 do {
5395 unsigned int nr_pages = 1;
747db954
JW
5396
5397 page = list_entry(next, struct page, lru);
5398 next = page->lru.next;
5399
5400 VM_BUG_ON_PAGE(PageLRU(page), page);
5401 VM_BUG_ON_PAGE(page_count(page), page);
5402
1306a85a 5403 if (!page->mem_cgroup)
747db954
JW
5404 continue;
5405
5406 /*
5407 * Nobody should be changing or seriously looking at
1306a85a 5408 * page->mem_cgroup at this point, we have fully
29833315 5409 * exclusive access to the page.
747db954
JW
5410 */
5411
1306a85a 5412 if (memcg != page->mem_cgroup) {
747db954 5413 if (memcg) {
18eca2e6
JW
5414 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5415 nr_huge, page);
5416 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5417 }
1306a85a 5418 memcg = page->mem_cgroup;
747db954
JW
5419 }
5420
5421 if (PageTransHuge(page)) {
5422 nr_pages <<= compound_order(page);
5423 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5424 nr_huge += nr_pages;
5425 }
5426
5427 if (PageAnon(page))
5428 nr_anon += nr_pages;
5429 else
5430 nr_file += nr_pages;
5431
1306a85a 5432 page->mem_cgroup = NULL;
747db954
JW
5433
5434 pgpgout++;
5435 } while (next != page_list);
5436
5437 if (memcg)
18eca2e6
JW
5438 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5439 nr_huge, page);
747db954
JW
5440}
5441
0a31bc97
JW
5442/**
5443 * mem_cgroup_uncharge - uncharge a page
5444 * @page: page to uncharge
5445 *
5446 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5447 * mem_cgroup_commit_charge().
5448 */
5449void mem_cgroup_uncharge(struct page *page)
5450{
0a31bc97
JW
5451 if (mem_cgroup_disabled())
5452 return;
5453
747db954 5454 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5455 if (!page->mem_cgroup)
0a31bc97
JW
5456 return;
5457
747db954
JW
5458 INIT_LIST_HEAD(&page->lru);
5459 uncharge_list(&page->lru);
5460}
0a31bc97 5461
747db954
JW
5462/**
5463 * mem_cgroup_uncharge_list - uncharge a list of page
5464 * @page_list: list of pages to uncharge
5465 *
5466 * Uncharge a list of pages previously charged with
5467 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5468 */
5469void mem_cgroup_uncharge_list(struct list_head *page_list)
5470{
5471 if (mem_cgroup_disabled())
5472 return;
0a31bc97 5473
747db954
JW
5474 if (!list_empty(page_list))
5475 uncharge_list(page_list);
0a31bc97
JW
5476}
5477
5478/**
6a93ca8f
JW
5479 * mem_cgroup_migrate - charge a page's replacement
5480 * @oldpage: currently circulating page
5481 * @newpage: replacement page
0a31bc97 5482 *
6a93ca8f
JW
5483 * Charge @newpage as a replacement page for @oldpage. @oldpage will
5484 * be uncharged upon free.
0a31bc97
JW
5485 *
5486 * Both pages must be locked, @newpage->mapping must be set up.
5487 */
6a93ca8f 5488void mem_cgroup_migrate(struct page *oldpage, struct page *newpage)
0a31bc97 5489{
29833315 5490 struct mem_cgroup *memcg;
44b7a8d3
JW
5491 unsigned int nr_pages;
5492 bool compound;
0a31bc97
JW
5493
5494 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5495 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
0a31bc97 5496 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5497 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5498 newpage);
0a31bc97
JW
5499
5500 if (mem_cgroup_disabled())
5501 return;
5502
5503 /* Page cache replacement: new page already charged? */
1306a85a 5504 if (newpage->mem_cgroup)
0a31bc97
JW
5505 return;
5506
45637bab 5507 /* Swapcache readahead pages can get replaced before being charged */
1306a85a 5508 memcg = oldpage->mem_cgroup;
29833315 5509 if (!memcg)
0a31bc97
JW
5510 return;
5511
44b7a8d3
JW
5512 /* Force-charge the new page. The old one will be freed soon */
5513 compound = PageTransHuge(newpage);
5514 nr_pages = compound ? hpage_nr_pages(newpage) : 1;
5515
5516 page_counter_charge(&memcg->memory, nr_pages);
5517 if (do_memsw_account())
5518 page_counter_charge(&memcg->memsw, nr_pages);
5519 css_get_many(&memcg->css, nr_pages);
0a31bc97 5520
9cf7666a 5521 commit_charge(newpage, memcg, false);
44b7a8d3
JW
5522
5523 local_irq_disable();
5524 mem_cgroup_charge_statistics(memcg, newpage, compound, nr_pages);
5525 memcg_check_events(memcg, newpage);
5526 local_irq_enable();
0a31bc97
JW
5527}
5528
ef12947c 5529DEFINE_STATIC_KEY_FALSE(memcg_sockets_enabled_key);
11092087
JW
5530EXPORT_SYMBOL(memcg_sockets_enabled_key);
5531
5532void sock_update_memcg(struct sock *sk)
5533{
5534 struct mem_cgroup *memcg;
5535
5536 /* Socket cloning can throw us here with sk_cgrp already
5537 * filled. It won't however, necessarily happen from
5538 * process context. So the test for root memcg given
5539 * the current task's memcg won't help us in this case.
5540 *
5541 * Respecting the original socket's memcg is a better
5542 * decision in this case.
5543 */
5544 if (sk->sk_memcg) {
5545 BUG_ON(mem_cgroup_is_root(sk->sk_memcg));
5546 css_get(&sk->sk_memcg->css);
5547 return;
5548 }
5549
5550 rcu_read_lock();
5551 memcg = mem_cgroup_from_task(current);
f7e1cb6e
JW
5552 if (memcg == root_mem_cgroup)
5553 goto out;
0db15298 5554 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) && !memcg->tcpmem_active)
f7e1cb6e 5555 goto out;
f7e1cb6e 5556 if (css_tryget_online(&memcg->css))
11092087 5557 sk->sk_memcg = memcg;
f7e1cb6e 5558out:
11092087
JW
5559 rcu_read_unlock();
5560}
5561EXPORT_SYMBOL(sock_update_memcg);
5562
5563void sock_release_memcg(struct sock *sk)
5564{
5565 WARN_ON(!sk->sk_memcg);
5566 css_put(&sk->sk_memcg->css);
5567}
5568
5569/**
5570 * mem_cgroup_charge_skmem - charge socket memory
5571 * @memcg: memcg to charge
5572 * @nr_pages: number of pages to charge
5573 *
5574 * Charges @nr_pages to @memcg. Returns %true if the charge fit within
5575 * @memcg's configured limit, %false if the charge had to be forced.
5576 */
5577bool mem_cgroup_charge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5578{
f7e1cb6e 5579 gfp_t gfp_mask = GFP_KERNEL;
11092087 5580
f7e1cb6e 5581 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5582 struct page_counter *fail;
f7e1cb6e 5583
0db15298
JW
5584 if (page_counter_try_charge(&memcg->tcpmem, nr_pages, &fail)) {
5585 memcg->tcpmem_pressure = 0;
f7e1cb6e
JW
5586 return true;
5587 }
0db15298
JW
5588 page_counter_charge(&memcg->tcpmem, nr_pages);
5589 memcg->tcpmem_pressure = 1;
f7e1cb6e 5590 return false;
11092087 5591 }
d886f4e4 5592
f7e1cb6e
JW
5593 /* Don't block in the packet receive path */
5594 if (in_softirq())
5595 gfp_mask = GFP_NOWAIT;
5596
b2807f07
JW
5597 this_cpu_add(memcg->stat->count[MEMCG_SOCK], nr_pages);
5598
f7e1cb6e
JW
5599 if (try_charge(memcg, gfp_mask, nr_pages) == 0)
5600 return true;
5601
5602 try_charge(memcg, gfp_mask|__GFP_NOFAIL, nr_pages);
11092087
JW
5603 return false;
5604}
5605
5606/**
5607 * mem_cgroup_uncharge_skmem - uncharge socket memory
5608 * @memcg - memcg to uncharge
5609 * @nr_pages - number of pages to uncharge
5610 */
5611void mem_cgroup_uncharge_skmem(struct mem_cgroup *memcg, unsigned int nr_pages)
5612{
f7e1cb6e 5613 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys)) {
0db15298 5614 page_counter_uncharge(&memcg->tcpmem, nr_pages);
f7e1cb6e
JW
5615 return;
5616 }
d886f4e4 5617
b2807f07
JW
5618 this_cpu_sub(memcg->stat->count[MEMCG_SOCK], nr_pages);
5619
f7e1cb6e
JW
5620 page_counter_uncharge(&memcg->memory, nr_pages);
5621 css_put_many(&memcg->css, nr_pages);
11092087
JW
5622}
5623
f7e1cb6e
JW
5624static int __init cgroup_memory(char *s)
5625{
5626 char *token;
5627
5628 while ((token = strsep(&s, ",")) != NULL) {
5629 if (!*token)
5630 continue;
5631 if (!strcmp(token, "nosocket"))
5632 cgroup_memory_nosocket = true;
04823c83
VD
5633 if (!strcmp(token, "nokmem"))
5634 cgroup_memory_nokmem = true;
f7e1cb6e
JW
5635 }
5636 return 0;
5637}
5638__setup("cgroup.memory=", cgroup_memory);
11092087 5639
2d11085e 5640/*
1081312f
MH
5641 * subsys_initcall() for memory controller.
5642 *
5643 * Some parts like hotcpu_notifier() have to be initialized from this context
5644 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5645 * everything that doesn't depend on a specific mem_cgroup structure should
5646 * be initialized from here.
2d11085e
MH
5647 */
5648static int __init mem_cgroup_init(void)
5649{
95a045f6
JW
5650 int cpu, node;
5651
2d11085e 5652 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
95a045f6
JW
5653
5654 for_each_possible_cpu(cpu)
5655 INIT_WORK(&per_cpu_ptr(&memcg_stock, cpu)->work,
5656 drain_local_stock);
5657
5658 for_each_node(node) {
5659 struct mem_cgroup_tree_per_node *rtpn;
5660 int zone;
5661
5662 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
5663 node_online(node) ? node : NUMA_NO_NODE);
5664
5665 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
5666 struct mem_cgroup_tree_per_zone *rtpz;
5667
5668 rtpz = &rtpn->rb_tree_per_zone[zone];
5669 rtpz->rb_root = RB_ROOT;
5670 spin_lock_init(&rtpz->lock);
5671 }
5672 soft_limit_tree.rb_tree_per_node[node] = rtpn;
5673 }
5674
2d11085e
MH
5675 return 0;
5676}
5677subsys_initcall(mem_cgroup_init);
21afa38e
JW
5678
5679#ifdef CONFIG_MEMCG_SWAP
5680/**
5681 * mem_cgroup_swapout - transfer a memsw charge to swap
5682 * @page: page whose memsw charge to transfer
5683 * @entry: swap entry to move the charge to
5684 *
5685 * Transfer the memsw charge of @page to @entry.
5686 */
5687void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5688{
5689 struct mem_cgroup *memcg;
5690 unsigned short oldid;
5691
5692 VM_BUG_ON_PAGE(PageLRU(page), page);
5693 VM_BUG_ON_PAGE(page_count(page), page);
5694
7941d214 5695 if (!do_memsw_account())
21afa38e
JW
5696 return;
5697
5698 memcg = page->mem_cgroup;
5699
5700 /* Readahead page, never charged */
5701 if (!memcg)
5702 return;
5703
5704 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5705 VM_BUG_ON_PAGE(oldid, page);
5706 mem_cgroup_swap_statistics(memcg, true);
5707
5708 page->mem_cgroup = NULL;
5709
5710 if (!mem_cgroup_is_root(memcg))
5711 page_counter_uncharge(&memcg->memory, 1);
5712
ce9ce665
SAS
5713 /*
5714 * Interrupts should be disabled here because the caller holds the
5715 * mapping->tree_lock lock which is taken with interrupts-off. It is
5716 * important here to have the interrupts disabled because it is the
5717 * only synchronisation we have for udpating the per-CPU variables.
5718 */
5719 VM_BUG_ON(!irqs_disabled());
f627c2f5 5720 mem_cgroup_charge_statistics(memcg, page, false, -1);
21afa38e
JW
5721 memcg_check_events(memcg, page);
5722}
5723
37e84351
VD
5724/*
5725 * mem_cgroup_try_charge_swap - try charging a swap entry
5726 * @page: page being added to swap
5727 * @entry: swap entry to charge
5728 *
5729 * Try to charge @entry to the memcg that @page belongs to.
5730 *
5731 * Returns 0 on success, -ENOMEM on failure.
5732 */
5733int mem_cgroup_try_charge_swap(struct page *page, swp_entry_t entry)
5734{
5735 struct mem_cgroup *memcg;
5736 struct page_counter *counter;
5737 unsigned short oldid;
5738
5739 if (!cgroup_subsys_on_dfl(memory_cgrp_subsys) || !do_swap_account)
5740 return 0;
5741
5742 memcg = page->mem_cgroup;
5743
5744 /* Readahead page, never charged */
5745 if (!memcg)
5746 return 0;
5747
5748 if (!mem_cgroup_is_root(memcg) &&
5749 !page_counter_try_charge(&memcg->swap, 1, &counter))
5750 return -ENOMEM;
5751
5752 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
5753 VM_BUG_ON_PAGE(oldid, page);
5754 mem_cgroup_swap_statistics(memcg, true);
5755
5756 css_get(&memcg->css);
5757 return 0;
5758}
5759
21afa38e
JW
5760/**
5761 * mem_cgroup_uncharge_swap - uncharge a swap entry
5762 * @entry: swap entry to uncharge
5763 *
37e84351 5764 * Drop the swap charge associated with @entry.
21afa38e
JW
5765 */
5766void mem_cgroup_uncharge_swap(swp_entry_t entry)
5767{
5768 struct mem_cgroup *memcg;
5769 unsigned short id;
5770
37e84351 5771 if (!do_swap_account)
21afa38e
JW
5772 return;
5773
5774 id = swap_cgroup_record(entry, 0);
5775 rcu_read_lock();
adbe427b 5776 memcg = mem_cgroup_from_id(id);
21afa38e 5777 if (memcg) {
37e84351
VD
5778 if (!mem_cgroup_is_root(memcg)) {
5779 if (cgroup_subsys_on_dfl(memory_cgrp_subsys))
5780 page_counter_uncharge(&memcg->swap, 1);
5781 else
5782 page_counter_uncharge(&memcg->memsw, 1);
5783 }
21afa38e
JW
5784 mem_cgroup_swap_statistics(memcg, false);
5785 css_put(&memcg->css);
5786 }
5787 rcu_read_unlock();
5788}
5789
d8b38438
VD
5790long mem_cgroup_get_nr_swap_pages(struct mem_cgroup *memcg)
5791{
5792 long nr_swap_pages = get_nr_swap_pages();
5793
5794 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5795 return nr_swap_pages;
5796 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5797 nr_swap_pages = min_t(long, nr_swap_pages,
5798 READ_ONCE(memcg->swap.limit) -
5799 page_counter_read(&memcg->swap));
5800 return nr_swap_pages;
5801}
5802
5ccc5aba
VD
5803bool mem_cgroup_swap_full(struct page *page)
5804{
5805 struct mem_cgroup *memcg;
5806
5807 VM_BUG_ON_PAGE(!PageLocked(page), page);
5808
5809 if (vm_swap_full())
5810 return true;
5811 if (!do_swap_account || !cgroup_subsys_on_dfl(memory_cgrp_subsys))
5812 return false;
5813
5814 memcg = page->mem_cgroup;
5815 if (!memcg)
5816 return false;
5817
5818 for (; memcg != root_mem_cgroup; memcg = parent_mem_cgroup(memcg))
5819 if (page_counter_read(&memcg->swap) * 2 >= memcg->swap.limit)
5820 return true;
5821
5822 return false;
5823}
5824
21afa38e
JW
5825/* for remember boot option*/
5826#ifdef CONFIG_MEMCG_SWAP_ENABLED
5827static int really_do_swap_account __initdata = 1;
5828#else
5829static int really_do_swap_account __initdata;
5830#endif
5831
5832static int __init enable_swap_account(char *s)
5833{
5834 if (!strcmp(s, "1"))
5835 really_do_swap_account = 1;
5836 else if (!strcmp(s, "0"))
5837 really_do_swap_account = 0;
5838 return 1;
5839}
5840__setup("swapaccount=", enable_swap_account);
5841
37e84351
VD
5842static u64 swap_current_read(struct cgroup_subsys_state *css,
5843 struct cftype *cft)
5844{
5845 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5846
5847 return (u64)page_counter_read(&memcg->swap) * PAGE_SIZE;
5848}
5849
5850static int swap_max_show(struct seq_file *m, void *v)
5851{
5852 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5853 unsigned long max = READ_ONCE(memcg->swap.limit);
5854
5855 if (max == PAGE_COUNTER_MAX)
5856 seq_puts(m, "max\n");
5857 else
5858 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5859
5860 return 0;
5861}
5862
5863static ssize_t swap_max_write(struct kernfs_open_file *of,
5864 char *buf, size_t nbytes, loff_t off)
5865{
5866 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5867 unsigned long max;
5868 int err;
5869
5870 buf = strstrip(buf);
5871 err = page_counter_memparse(buf, "max", &max);
5872 if (err)
5873 return err;
5874
5875 mutex_lock(&memcg_limit_mutex);
5876 err = page_counter_limit(&memcg->swap, max);
5877 mutex_unlock(&memcg_limit_mutex);
5878 if (err)
5879 return err;
5880
5881 return nbytes;
5882}
5883
5884static struct cftype swap_files[] = {
5885 {
5886 .name = "swap.current",
5887 .flags = CFTYPE_NOT_ON_ROOT,
5888 .read_u64 = swap_current_read,
5889 },
5890 {
5891 .name = "swap.max",
5892 .flags = CFTYPE_NOT_ON_ROOT,
5893 .seq_show = swap_max_show,
5894 .write = swap_max_write,
5895 },
5896 { } /* terminate */
5897};
5898
21afa38e
JW
5899static struct cftype memsw_cgroup_files[] = {
5900 {
5901 .name = "memsw.usage_in_bytes",
5902 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
5903 .read_u64 = mem_cgroup_read_u64,
5904 },
5905 {
5906 .name = "memsw.max_usage_in_bytes",
5907 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
5908 .write = mem_cgroup_reset,
5909 .read_u64 = mem_cgroup_read_u64,
5910 },
5911 {
5912 .name = "memsw.limit_in_bytes",
5913 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
5914 .write = mem_cgroup_write,
5915 .read_u64 = mem_cgroup_read_u64,
5916 },
5917 {
5918 .name = "memsw.failcnt",
5919 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
5920 .write = mem_cgroup_reset,
5921 .read_u64 = mem_cgroup_read_u64,
5922 },
5923 { }, /* terminate */
5924};
5925
5926static int __init mem_cgroup_swap_init(void)
5927{
5928 if (!mem_cgroup_disabled() && really_do_swap_account) {
5929 do_swap_account = 1;
37e84351
VD
5930 WARN_ON(cgroup_add_dfl_cftypes(&memory_cgrp_subsys,
5931 swap_files));
21afa38e
JW
5932 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5933 memsw_cgroup_files));
5934 }
5935 return 0;
5936}
5937subsys_initcall(mem_cgroup_swap_init);
5938
5939#endif /* CONFIG_MEMCG_SWAP */
This page took 1.268841 seconds and 5 git commands to generate.