mm: memcontrol: simplify soft limit tree init code
[deliverable/linux.git] / mm / memcontrol.c
CommitLineData
8cdea7c0
BS
1/* memcontrol.c - Memory Controller
2 *
3 * Copyright IBM Corporation, 2007
4 * Author Balbir Singh <balbir@linux.vnet.ibm.com>
5 *
78fb7466
PE
6 * Copyright 2007 OpenVZ SWsoft Inc
7 * Author: Pavel Emelianov <xemul@openvz.org>
8 *
2e72b634
KS
9 * Memory thresholds
10 * Copyright (C) 2009 Nokia Corporation
11 * Author: Kirill A. Shutemov
12 *
7ae1e1d0
GC
13 * Kernel Memory Controller
14 * Copyright (C) 2012 Parallels Inc. and Google Inc.
15 * Authors: Glauber Costa and Suleiman Souhlal
16 *
8cdea7c0
BS
17 * This program is free software; you can redistribute it and/or modify
18 * it under the terms of the GNU General Public License as published by
19 * the Free Software Foundation; either version 2 of the License, or
20 * (at your option) any later version.
21 *
22 * This program is distributed in the hope that it will be useful,
23 * but WITHOUT ANY WARRANTY; without even the implied warranty of
24 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
25 * GNU General Public License for more details.
26 */
27
3e32cb2e 28#include <linux/page_counter.h>
8cdea7c0
BS
29#include <linux/memcontrol.h>
30#include <linux/cgroup.h>
78fb7466 31#include <linux/mm.h>
4ffef5fe 32#include <linux/hugetlb.h>
d13d1443 33#include <linux/pagemap.h>
d52aa412 34#include <linux/smp.h>
8a9f3ccd 35#include <linux/page-flags.h>
66e1707b 36#include <linux/backing-dev.h>
8a9f3ccd
BS
37#include <linux/bit_spinlock.h>
38#include <linux/rcupdate.h>
e222432b 39#include <linux/limits.h>
b9e15baf 40#include <linux/export.h>
8c7c6e34 41#include <linux/mutex.h>
bb4cc1a8 42#include <linux/rbtree.h>
b6ac57d5 43#include <linux/slab.h>
66e1707b 44#include <linux/swap.h>
02491447 45#include <linux/swapops.h>
66e1707b 46#include <linux/spinlock.h>
2e72b634 47#include <linux/eventfd.h>
79bd9814 48#include <linux/poll.h>
2e72b634 49#include <linux/sort.h>
66e1707b 50#include <linux/fs.h>
d2ceb9b7 51#include <linux/seq_file.h>
70ddf637 52#include <linux/vmpressure.h>
b69408e8 53#include <linux/mm_inline.h>
5d1ea48b 54#include <linux/swap_cgroup.h>
cdec2e42 55#include <linux/cpu.h>
158e0a2d 56#include <linux/oom.h>
0056f4e6 57#include <linux/lockdep.h>
79bd9814 58#include <linux/file.h>
08e552c6 59#include "internal.h"
d1a4c0b3 60#include <net/sock.h>
4bd2c1ee 61#include <net/ip.h>
d1a4c0b3 62#include <net/tcp_memcontrol.h>
f35c3a8e 63#include "slab.h"
8cdea7c0 64
8697d331
BS
65#include <asm/uaccess.h>
66
cc8e970c
KM
67#include <trace/events/vmscan.h>
68
073219e9
TH
69struct cgroup_subsys memory_cgrp_subsys __read_mostly;
70EXPORT_SYMBOL(memory_cgrp_subsys);
68ae564b 71
a181b0e8 72#define MEM_CGROUP_RECLAIM_RETRIES 5
6bbda35c 73static struct mem_cgroup *root_mem_cgroup __read_mostly;
8cdea7c0 74
c255a458 75#ifdef CONFIG_MEMCG_SWAP
338c8431 76/* Turned on only when memory cgroup is enabled && really_do_swap_account = 1 */
c077719b 77int do_swap_account __read_mostly;
a42c390c
MH
78
79/* for remember boot option*/
c255a458 80#ifdef CONFIG_MEMCG_SWAP_ENABLED
a42c390c
MH
81static int really_do_swap_account __initdata = 1;
82#else
ada4ba59 83static int really_do_swap_account __initdata;
a42c390c
MH
84#endif
85
c077719b 86#else
a0db00fc 87#define do_swap_account 0
c077719b
KH
88#endif
89
90
af7c4b0e
JW
91static const char * const mem_cgroup_stat_names[] = {
92 "cache",
93 "rss",
b070e65c 94 "rss_huge",
af7c4b0e 95 "mapped_file",
3ea67d06 96 "writeback",
af7c4b0e
JW
97 "swap",
98};
99
af7c4b0e
JW
100static const char * const mem_cgroup_events_names[] = {
101 "pgpgin",
102 "pgpgout",
103 "pgfault",
104 "pgmajfault",
105};
106
58cf188e
SZ
107static const char * const mem_cgroup_lru_names[] = {
108 "inactive_anon",
109 "active_anon",
110 "inactive_file",
111 "active_file",
112 "unevictable",
113};
114
7a159cc9
JW
115/*
116 * Per memcg event counter is incremented at every pagein/pageout. With THP,
117 * it will be incremated by the number of pages. This counter is used for
118 * for trigger some periodic events. This is straightforward and better
119 * than using jiffies etc. to handle periodic memcg event.
120 */
121enum mem_cgroup_events_target {
122 MEM_CGROUP_TARGET_THRESH,
bb4cc1a8 123 MEM_CGROUP_TARGET_SOFTLIMIT,
453a9bf3 124 MEM_CGROUP_TARGET_NUMAINFO,
7a159cc9
JW
125 MEM_CGROUP_NTARGETS,
126};
a0db00fc
KS
127#define THRESHOLDS_EVENTS_TARGET 128
128#define SOFTLIMIT_EVENTS_TARGET 1024
129#define NUMAINFO_EVENTS_TARGET 1024
e9f8974f 130
d52aa412 131struct mem_cgroup_stat_cpu {
7a159cc9 132 long count[MEM_CGROUP_STAT_NSTATS];
241994ed 133 unsigned long events[MEMCG_NR_EVENTS];
13114716 134 unsigned long nr_page_events;
7a159cc9 135 unsigned long targets[MEM_CGROUP_NTARGETS];
d52aa412
KH
136};
137
5ac8fb31
JW
138struct reclaim_iter {
139 struct mem_cgroup *position;
527a5ec9
JW
140 /* scan generation, increased every round-trip */
141 unsigned int generation;
142};
143
6d12e2d8
KH
144/*
145 * per-zone information in memory controller.
146 */
6d12e2d8 147struct mem_cgroup_per_zone {
6290df54 148 struct lruvec lruvec;
1eb49272 149 unsigned long lru_size[NR_LRU_LISTS];
3e2f41f1 150
5ac8fb31 151 struct reclaim_iter iter[DEF_PRIORITY + 1];
527a5ec9 152
bb4cc1a8 153 struct rb_node tree_node; /* RB tree node */
3e32cb2e 154 unsigned long usage_in_excess;/* Set to the value by which */
bb4cc1a8
AM
155 /* the soft limit is exceeded*/
156 bool on_tree;
d79154bb 157 struct mem_cgroup *memcg; /* Back pointer, we cannot */
4e416953 158 /* use container_of */
6d12e2d8 159};
6d12e2d8
KH
160
161struct mem_cgroup_per_node {
162 struct mem_cgroup_per_zone zoneinfo[MAX_NR_ZONES];
163};
164
bb4cc1a8
AM
165/*
166 * Cgroups above their limits are maintained in a RB-Tree, independent of
167 * their hierarchy representation
168 */
169
170struct mem_cgroup_tree_per_zone {
171 struct rb_root rb_root;
172 spinlock_t lock;
173};
174
175struct mem_cgroup_tree_per_node {
176 struct mem_cgroup_tree_per_zone rb_tree_per_zone[MAX_NR_ZONES];
177};
178
179struct mem_cgroup_tree {
180 struct mem_cgroup_tree_per_node *rb_tree_per_node[MAX_NUMNODES];
181};
182
183static struct mem_cgroup_tree soft_limit_tree __read_mostly;
184
2e72b634
KS
185struct mem_cgroup_threshold {
186 struct eventfd_ctx *eventfd;
3e32cb2e 187 unsigned long threshold;
2e72b634
KS
188};
189
9490ff27 190/* For threshold */
2e72b634 191struct mem_cgroup_threshold_ary {
748dad36 192 /* An array index points to threshold just below or equal to usage. */
5407a562 193 int current_threshold;
2e72b634
KS
194 /* Size of entries[] */
195 unsigned int size;
196 /* Array of thresholds */
197 struct mem_cgroup_threshold entries[0];
198};
2c488db2
KS
199
200struct mem_cgroup_thresholds {
201 /* Primary thresholds array */
202 struct mem_cgroup_threshold_ary *primary;
203 /*
204 * Spare threshold array.
205 * This is needed to make mem_cgroup_unregister_event() "never fail".
206 * It must be able to store at least primary->size - 1 entries.
207 */
208 struct mem_cgroup_threshold_ary *spare;
209};
210
9490ff27
KH
211/* for OOM */
212struct mem_cgroup_eventfd_list {
213 struct list_head list;
214 struct eventfd_ctx *eventfd;
215};
2e72b634 216
79bd9814
TH
217/*
218 * cgroup_event represents events which userspace want to receive.
219 */
3bc942f3 220struct mem_cgroup_event {
79bd9814 221 /*
59b6f873 222 * memcg which the event belongs to.
79bd9814 223 */
59b6f873 224 struct mem_cgroup *memcg;
79bd9814
TH
225 /*
226 * eventfd to signal userspace about the event.
227 */
228 struct eventfd_ctx *eventfd;
229 /*
230 * Each of these stored in a list by the cgroup.
231 */
232 struct list_head list;
fba94807
TH
233 /*
234 * register_event() callback will be used to add new userspace
235 * waiter for changes related to this event. Use eventfd_signal()
236 * on eventfd to send notification to userspace.
237 */
59b6f873 238 int (*register_event)(struct mem_cgroup *memcg,
347c4a87 239 struct eventfd_ctx *eventfd, const char *args);
fba94807
TH
240 /*
241 * unregister_event() callback will be called when userspace closes
242 * the eventfd or on cgroup removing. This callback must be set,
243 * if you want provide notification functionality.
244 */
59b6f873 245 void (*unregister_event)(struct mem_cgroup *memcg,
fba94807 246 struct eventfd_ctx *eventfd);
79bd9814
TH
247 /*
248 * All fields below needed to unregister event when
249 * userspace closes eventfd.
250 */
251 poll_table pt;
252 wait_queue_head_t *wqh;
253 wait_queue_t wait;
254 struct work_struct remove;
255};
256
c0ff4b85
R
257static void mem_cgroup_threshold(struct mem_cgroup *memcg);
258static void mem_cgroup_oom_notify(struct mem_cgroup *memcg);
2e72b634 259
8cdea7c0
BS
260/*
261 * The memory controller data structure. The memory controller controls both
262 * page cache and RSS per cgroup. We would eventually like to provide
263 * statistics based on the statistics developed by Rik Van Riel for clock-pro,
264 * to help the administrator determine what knobs to tune.
265 *
266 * TODO: Add a water mark for the memory controller. Reclaim will begin when
8a9f3ccd
BS
267 * we hit the water mark. May be even add a low water mark, such that
268 * no reclaim occurs from a cgroup at it's low water mark, this is
269 * a feature that will be implemented much later in the future.
8cdea7c0
BS
270 */
271struct mem_cgroup {
272 struct cgroup_subsys_state css;
3e32cb2e
JW
273
274 /* Accounted resources */
275 struct page_counter memory;
276 struct page_counter memsw;
277 struct page_counter kmem;
278
241994ed
JW
279 /* Normal memory consumption range */
280 unsigned long low;
281 unsigned long high;
282
3e32cb2e 283 unsigned long soft_limit;
59927fb9 284
70ddf637
AV
285 /* vmpressure notifications */
286 struct vmpressure vmpressure;
287
2f7dd7a4
JW
288 /* css_online() has been completed */
289 int initialized;
290
18f59ea7
BS
291 /*
292 * Should the accounting and control be hierarchical, per subtree?
293 */
294 bool use_hierarchy;
79dfdacc
MH
295
296 bool oom_lock;
297 atomic_t under_oom;
3812c8c8 298 atomic_t oom_wakeups;
79dfdacc 299
1f4c025b 300 int swappiness;
3c11ecf4
KH
301 /* OOM-Killer disable */
302 int oom_kill_disable;
a7885eb8 303
2e72b634
KS
304 /* protect arrays of thresholds */
305 struct mutex thresholds_lock;
306
307 /* thresholds for memory usage. RCU-protected */
2c488db2 308 struct mem_cgroup_thresholds thresholds;
907860ed 309
2e72b634 310 /* thresholds for mem+swap usage. RCU-protected */
2c488db2 311 struct mem_cgroup_thresholds memsw_thresholds;
907860ed 312
9490ff27
KH
313 /* For oom notifier event fd */
314 struct list_head oom_notify;
185efc0f 315
7dc74be0
DN
316 /*
317 * Should we move charges of a task when a task is moved into this
318 * mem_cgroup ? And what type of charges should we move ?
319 */
f894ffa8 320 unsigned long move_charge_at_immigrate;
619d094b
KH
321 /*
322 * set > 0 if pages under this cgroup are moving to other cgroup.
323 */
6de22619 324 atomic_t moving_account;
312734c0 325 /* taken only while moving_account > 0 */
6de22619
JW
326 spinlock_t move_lock;
327 struct task_struct *move_lock_task;
328 unsigned long move_lock_flags;
d52aa412 329 /*
c62b1a3b 330 * percpu counter.
d52aa412 331 */
3a7951b4 332 struct mem_cgroup_stat_cpu __percpu *stat;
711d3d2c
KH
333 /*
334 * used when a cpu is offlined or other synchronizations
335 * See mem_cgroup_read_stat().
336 */
337 struct mem_cgroup_stat_cpu nocpu_base;
338 spinlock_t pcp_counter_lock;
d1a4c0b3 339
4bd2c1ee 340#if defined(CONFIG_MEMCG_KMEM) && defined(CONFIG_INET)
2e685cad 341 struct cg_proto tcp_mem;
d1a4c0b3 342#endif
2633d7a0 343#if defined(CONFIG_MEMCG_KMEM)
2633d7a0
GC
344 /* Index in the kmem_cache->memcg_params->memcg_caches array */
345 int kmemcg_id;
346#endif
45cf7ebd
GC
347
348 int last_scanned_node;
349#if MAX_NUMNODES > 1
350 nodemask_t scan_nodes;
351 atomic_t numainfo_events;
352 atomic_t numainfo_updating;
353#endif
70ddf637 354
fba94807
TH
355 /* List of events which userspace want to receive */
356 struct list_head event_list;
357 spinlock_t event_list_lock;
358
54f72fe0
JW
359 struct mem_cgroup_per_node *nodeinfo[0];
360 /* WARNING: nodeinfo must be the last member here */
8cdea7c0
BS
361};
362
510fc4e1 363#ifdef CONFIG_MEMCG_KMEM
7de37682
GC
364static bool memcg_kmem_is_active(struct mem_cgroup *memcg)
365{
900a38f0 366 return memcg->kmemcg_id >= 0;
7de37682 367}
510fc4e1
GC
368#endif
369
7dc74be0
DN
370/* Stuffs for move charges at task migration. */
371/*
1dfab5ab 372 * Types of charges to be moved.
7dc74be0 373 */
1dfab5ab
JW
374#define MOVE_ANON 0x1U
375#define MOVE_FILE 0x2U
376#define MOVE_MASK (MOVE_ANON | MOVE_FILE)
7dc74be0 377
4ffef5fe
DN
378/* "mc" and its members are protected by cgroup_mutex */
379static struct move_charge_struct {
b1dd693e 380 spinlock_t lock; /* for from, to */
4ffef5fe
DN
381 struct mem_cgroup *from;
382 struct mem_cgroup *to;
1dfab5ab 383 unsigned long flags;
4ffef5fe 384 unsigned long precharge;
854ffa8d 385 unsigned long moved_charge;
483c30b5 386 unsigned long moved_swap;
8033b97c
DN
387 struct task_struct *moving_task; /* a task moving charges */
388 wait_queue_head_t waitq; /* a waitq for other context */
389} mc = {
2bd9bb20 390 .lock = __SPIN_LOCK_UNLOCKED(mc.lock),
8033b97c
DN
391 .waitq = __WAIT_QUEUE_HEAD_INITIALIZER(mc.waitq),
392};
4ffef5fe 393
4e416953
BS
394/*
395 * Maximum loops in mem_cgroup_hierarchical_reclaim(), used for soft
396 * limit reclaim to prevent infinite loops, if they ever occur.
397 */
a0db00fc 398#define MEM_CGROUP_MAX_RECLAIM_LOOPS 100
bb4cc1a8 399#define MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS 2
4e416953 400
217bc319
KH
401enum charge_type {
402 MEM_CGROUP_CHARGE_TYPE_CACHE = 0,
41326c17 403 MEM_CGROUP_CHARGE_TYPE_ANON,
d13d1443 404 MEM_CGROUP_CHARGE_TYPE_SWAPOUT, /* for accounting swapcache */
8a9478ca 405 MEM_CGROUP_CHARGE_TYPE_DROP, /* a page was unused swap cache */
c05555b5
KH
406 NR_CHARGE_TYPE,
407};
408
8c7c6e34 409/* for encoding cft->private value on file */
86ae53e1
GC
410enum res_type {
411 _MEM,
412 _MEMSWAP,
413 _OOM_TYPE,
510fc4e1 414 _KMEM,
86ae53e1
GC
415};
416
a0db00fc
KS
417#define MEMFILE_PRIVATE(x, val) ((x) << 16 | (val))
418#define MEMFILE_TYPE(val) ((val) >> 16 & 0xffff)
8c7c6e34 419#define MEMFILE_ATTR(val) ((val) & 0xffff)
9490ff27
KH
420/* Used for OOM nofiier */
421#define OOM_CONTROL (0)
8c7c6e34 422
0999821b
GC
423/*
424 * The memcg_create_mutex will be held whenever a new cgroup is created.
425 * As a consequence, any change that needs to protect against new child cgroups
426 * appearing has to hold it as well.
427 */
428static DEFINE_MUTEX(memcg_create_mutex);
429
b2145145
WL
430struct mem_cgroup *mem_cgroup_from_css(struct cgroup_subsys_state *s)
431{
a7c6d554 432 return s ? container_of(s, struct mem_cgroup, css) : NULL;
b2145145
WL
433}
434
70ddf637
AV
435/* Some nice accessors for the vmpressure. */
436struct vmpressure *memcg_to_vmpressure(struct mem_cgroup *memcg)
437{
438 if (!memcg)
439 memcg = root_mem_cgroup;
440 return &memcg->vmpressure;
441}
442
443struct cgroup_subsys_state *vmpressure_to_css(struct vmpressure *vmpr)
444{
445 return &container_of(vmpr, struct mem_cgroup, vmpressure)->css;
446}
447
7ffc0edc
MH
448static inline bool mem_cgroup_is_root(struct mem_cgroup *memcg)
449{
450 return (memcg == root_mem_cgroup);
451}
452
4219b2da
LZ
453/*
454 * We restrict the id in the range of [1, 65535], so it can fit into
455 * an unsigned short.
456 */
457#define MEM_CGROUP_ID_MAX USHRT_MAX
458
34c00c31
LZ
459static inline unsigned short mem_cgroup_id(struct mem_cgroup *memcg)
460{
15a4c835 461 return memcg->css.id;
34c00c31
LZ
462}
463
464static inline struct mem_cgroup *mem_cgroup_from_id(unsigned short id)
465{
466 struct cgroup_subsys_state *css;
467
7d699ddb 468 css = css_from_id(id, &memory_cgrp_subsys);
34c00c31
LZ
469 return mem_cgroup_from_css(css);
470}
471
e1aab161 472/* Writing them here to avoid exposing memcg's inner layout */
4bd2c1ee 473#if defined(CONFIG_INET) && defined(CONFIG_MEMCG_KMEM)
e1aab161 474
e1aab161
GC
475void sock_update_memcg(struct sock *sk)
476{
376be5ff 477 if (mem_cgroup_sockets_enabled) {
e1aab161 478 struct mem_cgroup *memcg;
3f134619 479 struct cg_proto *cg_proto;
e1aab161
GC
480
481 BUG_ON(!sk->sk_prot->proto_cgroup);
482
f3f511e1
GC
483 /* Socket cloning can throw us here with sk_cgrp already
484 * filled. It won't however, necessarily happen from
485 * process context. So the test for root memcg given
486 * the current task's memcg won't help us in this case.
487 *
488 * Respecting the original socket's memcg is a better
489 * decision in this case.
490 */
491 if (sk->sk_cgrp) {
492 BUG_ON(mem_cgroup_is_root(sk->sk_cgrp->memcg));
5347e5ae 493 css_get(&sk->sk_cgrp->memcg->css);
f3f511e1
GC
494 return;
495 }
496
e1aab161
GC
497 rcu_read_lock();
498 memcg = mem_cgroup_from_task(current);
3f134619 499 cg_proto = sk->sk_prot->proto_cgroup(memcg);
5347e5ae 500 if (!mem_cgroup_is_root(memcg) &&
ec903c0c
TH
501 memcg_proto_active(cg_proto) &&
502 css_tryget_online(&memcg->css)) {
3f134619 503 sk->sk_cgrp = cg_proto;
e1aab161
GC
504 }
505 rcu_read_unlock();
506 }
507}
508EXPORT_SYMBOL(sock_update_memcg);
509
510void sock_release_memcg(struct sock *sk)
511{
376be5ff 512 if (mem_cgroup_sockets_enabled && sk->sk_cgrp) {
e1aab161
GC
513 struct mem_cgroup *memcg;
514 WARN_ON(!sk->sk_cgrp->memcg);
515 memcg = sk->sk_cgrp->memcg;
5347e5ae 516 css_put(&sk->sk_cgrp->memcg->css);
e1aab161
GC
517 }
518}
d1a4c0b3
GC
519
520struct cg_proto *tcp_proto_cgroup(struct mem_cgroup *memcg)
521{
522 if (!memcg || mem_cgroup_is_root(memcg))
523 return NULL;
524
2e685cad 525 return &memcg->tcp_mem;
d1a4c0b3
GC
526}
527EXPORT_SYMBOL(tcp_proto_cgroup);
e1aab161 528
3f134619
GC
529static void disarm_sock_keys(struct mem_cgroup *memcg)
530{
2e685cad 531 if (!memcg_proto_activated(&memcg->tcp_mem))
3f134619
GC
532 return;
533 static_key_slow_dec(&memcg_socket_limit_enabled);
534}
535#else
536static void disarm_sock_keys(struct mem_cgroup *memcg)
537{
538}
539#endif
540
a8964b9b 541#ifdef CONFIG_MEMCG_KMEM
55007d84
GC
542/*
543 * This will be the memcg's index in each cache's ->memcg_params->memcg_caches.
b8627835
LZ
544 * The main reason for not using cgroup id for this:
545 * this works better in sparse environments, where we have a lot of memcgs,
546 * but only a few kmem-limited. Or also, if we have, for instance, 200
547 * memcgs, and none but the 200th is kmem-limited, we'd have to have a
548 * 200 entry array for that.
55007d84
GC
549 *
550 * The current size of the caches array is stored in
551 * memcg_limited_groups_array_size. It will double each time we have to
552 * increase it.
553 */
554static DEFINE_IDA(kmem_limited_groups);
749c5415
GC
555int memcg_limited_groups_array_size;
556
55007d84
GC
557/*
558 * MIN_SIZE is different than 1, because we would like to avoid going through
559 * the alloc/free process all the time. In a small machine, 4 kmem-limited
560 * cgroups is a reasonable guess. In the future, it could be a parameter or
561 * tunable, but that is strictly not necessary.
562 *
b8627835 563 * MAX_SIZE should be as large as the number of cgrp_ids. Ideally, we could get
55007d84
GC
564 * this constant directly from cgroup, but it is understandable that this is
565 * better kept as an internal representation in cgroup.c. In any case, the
b8627835 566 * cgrp_id space is not getting any smaller, and we don't have to necessarily
55007d84
GC
567 * increase ours as well if it increases.
568 */
569#define MEMCG_CACHES_MIN_SIZE 4
b8627835 570#define MEMCG_CACHES_MAX_SIZE MEM_CGROUP_ID_MAX
55007d84 571
d7f25f8a
GC
572/*
573 * A lot of the calls to the cache allocation functions are expected to be
574 * inlined by the compiler. Since the calls to memcg_kmem_get_cache are
575 * conditional to this static branch, we'll have to allow modules that does
576 * kmem_cache_alloc and the such to see this symbol as well
577 */
a8964b9b 578struct static_key memcg_kmem_enabled_key;
d7f25f8a 579EXPORT_SYMBOL(memcg_kmem_enabled_key);
a8964b9b 580
f3bb3043
VD
581static void memcg_free_cache_id(int id);
582
a8964b9b
GC
583static void disarm_kmem_keys(struct mem_cgroup *memcg)
584{
55007d84 585 if (memcg_kmem_is_active(memcg)) {
a8964b9b 586 static_key_slow_dec(&memcg_kmem_enabled_key);
f3bb3043 587 memcg_free_cache_id(memcg->kmemcg_id);
55007d84 588 }
bea207c8
GC
589 /*
590 * This check can't live in kmem destruction function,
591 * since the charges will outlive the cgroup
592 */
3e32cb2e 593 WARN_ON(page_counter_read(&memcg->kmem));
a8964b9b
GC
594}
595#else
596static void disarm_kmem_keys(struct mem_cgroup *memcg)
597{
598}
599#endif /* CONFIG_MEMCG_KMEM */
600
601static void disarm_static_keys(struct mem_cgroup *memcg)
602{
603 disarm_sock_keys(memcg);
604 disarm_kmem_keys(memcg);
605}
606
f64c3f54 607static struct mem_cgroup_per_zone *
e231875b 608mem_cgroup_zone_zoneinfo(struct mem_cgroup *memcg, struct zone *zone)
f64c3f54 609{
e231875b
JZ
610 int nid = zone_to_nid(zone);
611 int zid = zone_idx(zone);
612
54f72fe0 613 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
614}
615
c0ff4b85 616struct cgroup_subsys_state *mem_cgroup_css(struct mem_cgroup *memcg)
d324236b 617{
c0ff4b85 618 return &memcg->css;
d324236b
WF
619}
620
f64c3f54 621static struct mem_cgroup_per_zone *
e231875b 622mem_cgroup_page_zoneinfo(struct mem_cgroup *memcg, struct page *page)
f64c3f54 623{
97a6c37b
JW
624 int nid = page_to_nid(page);
625 int zid = page_zonenum(page);
f64c3f54 626
e231875b 627 return &memcg->nodeinfo[nid]->zoneinfo[zid];
f64c3f54
BS
628}
629
bb4cc1a8
AM
630static struct mem_cgroup_tree_per_zone *
631soft_limit_tree_node_zone(int nid, int zid)
632{
633 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
634}
635
636static struct mem_cgroup_tree_per_zone *
637soft_limit_tree_from_page(struct page *page)
638{
639 int nid = page_to_nid(page);
640 int zid = page_zonenum(page);
641
642 return &soft_limit_tree.rb_tree_per_node[nid]->rb_tree_per_zone[zid];
643}
644
cf2c8127
JW
645static void __mem_cgroup_insert_exceeded(struct mem_cgroup_per_zone *mz,
646 struct mem_cgroup_tree_per_zone *mctz,
3e32cb2e 647 unsigned long new_usage_in_excess)
bb4cc1a8
AM
648{
649 struct rb_node **p = &mctz->rb_root.rb_node;
650 struct rb_node *parent = NULL;
651 struct mem_cgroup_per_zone *mz_node;
652
653 if (mz->on_tree)
654 return;
655
656 mz->usage_in_excess = new_usage_in_excess;
657 if (!mz->usage_in_excess)
658 return;
659 while (*p) {
660 parent = *p;
661 mz_node = rb_entry(parent, struct mem_cgroup_per_zone,
662 tree_node);
663 if (mz->usage_in_excess < mz_node->usage_in_excess)
664 p = &(*p)->rb_left;
665 /*
666 * We can't avoid mem cgroups that are over their soft
667 * limit by the same amount
668 */
669 else if (mz->usage_in_excess >= mz_node->usage_in_excess)
670 p = &(*p)->rb_right;
671 }
672 rb_link_node(&mz->tree_node, parent, p);
673 rb_insert_color(&mz->tree_node, &mctz->rb_root);
674 mz->on_tree = true;
675}
676
cf2c8127
JW
677static void __mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
678 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8
AM
679{
680 if (!mz->on_tree)
681 return;
682 rb_erase(&mz->tree_node, &mctz->rb_root);
683 mz->on_tree = false;
684}
685
cf2c8127
JW
686static void mem_cgroup_remove_exceeded(struct mem_cgroup_per_zone *mz,
687 struct mem_cgroup_tree_per_zone *mctz)
bb4cc1a8 688{
0a31bc97
JW
689 unsigned long flags;
690
691 spin_lock_irqsave(&mctz->lock, flags);
cf2c8127 692 __mem_cgroup_remove_exceeded(mz, mctz);
0a31bc97 693 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
694}
695
3e32cb2e
JW
696static unsigned long soft_limit_excess(struct mem_cgroup *memcg)
697{
698 unsigned long nr_pages = page_counter_read(&memcg->memory);
699 unsigned long soft_limit = ACCESS_ONCE(memcg->soft_limit);
700 unsigned long excess = 0;
701
702 if (nr_pages > soft_limit)
703 excess = nr_pages - soft_limit;
704
705 return excess;
706}
bb4cc1a8
AM
707
708static void mem_cgroup_update_tree(struct mem_cgroup *memcg, struct page *page)
709{
3e32cb2e 710 unsigned long excess;
bb4cc1a8
AM
711 struct mem_cgroup_per_zone *mz;
712 struct mem_cgroup_tree_per_zone *mctz;
bb4cc1a8 713
e231875b 714 mctz = soft_limit_tree_from_page(page);
bb4cc1a8
AM
715 /*
716 * Necessary to update all ancestors when hierarchy is used.
717 * because their event counter is not touched.
718 */
719 for (; memcg; memcg = parent_mem_cgroup(memcg)) {
e231875b 720 mz = mem_cgroup_page_zoneinfo(memcg, page);
3e32cb2e 721 excess = soft_limit_excess(memcg);
bb4cc1a8
AM
722 /*
723 * We have to update the tree if mz is on RB-tree or
724 * mem is over its softlimit.
725 */
726 if (excess || mz->on_tree) {
0a31bc97
JW
727 unsigned long flags;
728
729 spin_lock_irqsave(&mctz->lock, flags);
bb4cc1a8
AM
730 /* if on-tree, remove it */
731 if (mz->on_tree)
cf2c8127 732 __mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
733 /*
734 * Insert again. mz->usage_in_excess will be updated.
735 * If excess is 0, no tree ops.
736 */
cf2c8127 737 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 738 spin_unlock_irqrestore(&mctz->lock, flags);
bb4cc1a8
AM
739 }
740 }
741}
742
743static void mem_cgroup_remove_from_trees(struct mem_cgroup *memcg)
744{
bb4cc1a8 745 struct mem_cgroup_tree_per_zone *mctz;
e231875b
JZ
746 struct mem_cgroup_per_zone *mz;
747 int nid, zid;
bb4cc1a8 748
e231875b
JZ
749 for_each_node(nid) {
750 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
751 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
752 mctz = soft_limit_tree_node_zone(nid, zid);
cf2c8127 753 mem_cgroup_remove_exceeded(mz, mctz);
bb4cc1a8
AM
754 }
755 }
756}
757
758static struct mem_cgroup_per_zone *
759__mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
760{
761 struct rb_node *rightmost = NULL;
762 struct mem_cgroup_per_zone *mz;
763
764retry:
765 mz = NULL;
766 rightmost = rb_last(&mctz->rb_root);
767 if (!rightmost)
768 goto done; /* Nothing to reclaim from */
769
770 mz = rb_entry(rightmost, struct mem_cgroup_per_zone, tree_node);
771 /*
772 * Remove the node now but someone else can add it back,
773 * we will to add it back at the end of reclaim to its correct
774 * position in the tree.
775 */
cf2c8127 776 __mem_cgroup_remove_exceeded(mz, mctz);
3e32cb2e 777 if (!soft_limit_excess(mz->memcg) ||
ec903c0c 778 !css_tryget_online(&mz->memcg->css))
bb4cc1a8
AM
779 goto retry;
780done:
781 return mz;
782}
783
784static struct mem_cgroup_per_zone *
785mem_cgroup_largest_soft_limit_node(struct mem_cgroup_tree_per_zone *mctz)
786{
787 struct mem_cgroup_per_zone *mz;
788
0a31bc97 789 spin_lock_irq(&mctz->lock);
bb4cc1a8 790 mz = __mem_cgroup_largest_soft_limit_node(mctz);
0a31bc97 791 spin_unlock_irq(&mctz->lock);
bb4cc1a8
AM
792 return mz;
793}
794
711d3d2c
KH
795/*
796 * Implementation Note: reading percpu statistics for memcg.
797 *
798 * Both of vmstat[] and percpu_counter has threshold and do periodic
799 * synchronization to implement "quick" read. There are trade-off between
800 * reading cost and precision of value. Then, we may have a chance to implement
801 * a periodic synchronizion of counter in memcg's counter.
802 *
803 * But this _read() function is used for user interface now. The user accounts
804 * memory usage by memory cgroup and he _always_ requires exact value because
805 * he accounts memory. Even if we provide quick-and-fuzzy read, we always
806 * have to visit all online cpus and make sum. So, for now, unnecessary
807 * synchronization is not implemented. (just implemented for cpu hotplug)
808 *
809 * If there are kernel internal actions which can make use of some not-exact
810 * value, and reading all cpu value can be performance bottleneck in some
811 * common workload, threashold and synchonization as vmstat[] should be
812 * implemented.
813 */
c0ff4b85 814static long mem_cgroup_read_stat(struct mem_cgroup *memcg,
7a159cc9 815 enum mem_cgroup_stat_index idx)
c62b1a3b 816{
7a159cc9 817 long val = 0;
c62b1a3b 818 int cpu;
c62b1a3b 819
711d3d2c
KH
820 get_online_cpus();
821 for_each_online_cpu(cpu)
c0ff4b85 822 val += per_cpu(memcg->stat->count[idx], cpu);
711d3d2c 823#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
824 spin_lock(&memcg->pcp_counter_lock);
825 val += memcg->nocpu_base.count[idx];
826 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
827#endif
828 put_online_cpus();
c62b1a3b
KH
829 return val;
830}
831
c0ff4b85 832static unsigned long mem_cgroup_read_events(struct mem_cgroup *memcg,
e9f8974f
JW
833 enum mem_cgroup_events_index idx)
834{
835 unsigned long val = 0;
836 int cpu;
837
9c567512 838 get_online_cpus();
e9f8974f 839 for_each_online_cpu(cpu)
c0ff4b85 840 val += per_cpu(memcg->stat->events[idx], cpu);
e9f8974f 841#ifdef CONFIG_HOTPLUG_CPU
c0ff4b85
R
842 spin_lock(&memcg->pcp_counter_lock);
843 val += memcg->nocpu_base.events[idx];
844 spin_unlock(&memcg->pcp_counter_lock);
e9f8974f 845#endif
9c567512 846 put_online_cpus();
e9f8974f
JW
847 return val;
848}
849
c0ff4b85 850static void mem_cgroup_charge_statistics(struct mem_cgroup *memcg,
b070e65c 851 struct page *page,
0a31bc97 852 int nr_pages)
d52aa412 853{
b2402857
KH
854 /*
855 * Here, RSS means 'mapped anon' and anon's SwapCache. Shmem/tmpfs is
856 * counted as CACHE even if it's on ANON LRU.
857 */
0a31bc97 858 if (PageAnon(page))
b2402857 859 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS],
c0ff4b85 860 nr_pages);
d52aa412 861 else
b2402857 862 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_CACHE],
c0ff4b85 863 nr_pages);
55e462b0 864
b070e65c
DR
865 if (PageTransHuge(page))
866 __this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
867 nr_pages);
868
e401f176
KH
869 /* pagein of a big page is an event. So, ignore page size */
870 if (nr_pages > 0)
c0ff4b85 871 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGIN]);
3751d604 872 else {
c0ff4b85 873 __this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT]);
3751d604
KH
874 nr_pages = -nr_pages; /* for event */
875 }
e401f176 876
13114716 877 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
6d12e2d8
KH
878}
879
e231875b 880unsigned long mem_cgroup_get_lru_size(struct lruvec *lruvec, enum lru_list lru)
074291fe
KK
881{
882 struct mem_cgroup_per_zone *mz;
883
884 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
885 return mz->lru_size[lru];
886}
887
e231875b
JZ
888static unsigned long mem_cgroup_node_nr_lru_pages(struct mem_cgroup *memcg,
889 int nid,
890 unsigned int lru_mask)
bb2a0de9 891{
e231875b 892 unsigned long nr = 0;
889976db
YH
893 int zid;
894
e231875b 895 VM_BUG_ON((unsigned)nid >= nr_node_ids);
bb2a0de9 896
e231875b
JZ
897 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
898 struct mem_cgroup_per_zone *mz;
899 enum lru_list lru;
900
901 for_each_lru(lru) {
902 if (!(BIT(lru) & lru_mask))
903 continue;
904 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
905 nr += mz->lru_size[lru];
906 }
907 }
908 return nr;
889976db 909}
bb2a0de9 910
c0ff4b85 911static unsigned long mem_cgroup_nr_lru_pages(struct mem_cgroup *memcg,
bb2a0de9 912 unsigned int lru_mask)
6d12e2d8 913{
e231875b 914 unsigned long nr = 0;
889976db 915 int nid;
6d12e2d8 916
31aaea4a 917 for_each_node_state(nid, N_MEMORY)
e231875b
JZ
918 nr += mem_cgroup_node_nr_lru_pages(memcg, nid, lru_mask);
919 return nr;
d52aa412
KH
920}
921
f53d7ce3
JW
922static bool mem_cgroup_event_ratelimit(struct mem_cgroup *memcg,
923 enum mem_cgroup_events_target target)
7a159cc9
JW
924{
925 unsigned long val, next;
926
13114716 927 val = __this_cpu_read(memcg->stat->nr_page_events);
4799401f 928 next = __this_cpu_read(memcg->stat->targets[target]);
7a159cc9 929 /* from time_after() in jiffies.h */
f53d7ce3
JW
930 if ((long)next - (long)val < 0) {
931 switch (target) {
932 case MEM_CGROUP_TARGET_THRESH:
933 next = val + THRESHOLDS_EVENTS_TARGET;
934 break;
bb4cc1a8
AM
935 case MEM_CGROUP_TARGET_SOFTLIMIT:
936 next = val + SOFTLIMIT_EVENTS_TARGET;
937 break;
f53d7ce3
JW
938 case MEM_CGROUP_TARGET_NUMAINFO:
939 next = val + NUMAINFO_EVENTS_TARGET;
940 break;
941 default:
942 break;
943 }
944 __this_cpu_write(memcg->stat->targets[target], next);
945 return true;
7a159cc9 946 }
f53d7ce3 947 return false;
d2265e6f
KH
948}
949
950/*
951 * Check events in order.
952 *
953 */
c0ff4b85 954static void memcg_check_events(struct mem_cgroup *memcg, struct page *page)
d2265e6f
KH
955{
956 /* threshold event is triggered in finer grain than soft limit */
f53d7ce3
JW
957 if (unlikely(mem_cgroup_event_ratelimit(memcg,
958 MEM_CGROUP_TARGET_THRESH))) {
bb4cc1a8 959 bool do_softlimit;
82b3f2a7 960 bool do_numainfo __maybe_unused;
f53d7ce3 961
bb4cc1a8
AM
962 do_softlimit = mem_cgroup_event_ratelimit(memcg,
963 MEM_CGROUP_TARGET_SOFTLIMIT);
f53d7ce3
JW
964#if MAX_NUMNODES > 1
965 do_numainfo = mem_cgroup_event_ratelimit(memcg,
966 MEM_CGROUP_TARGET_NUMAINFO);
967#endif
c0ff4b85 968 mem_cgroup_threshold(memcg);
bb4cc1a8
AM
969 if (unlikely(do_softlimit))
970 mem_cgroup_update_tree(memcg, page);
453a9bf3 971#if MAX_NUMNODES > 1
f53d7ce3 972 if (unlikely(do_numainfo))
c0ff4b85 973 atomic_inc(&memcg->numainfo_events);
453a9bf3 974#endif
0a31bc97 975 }
d2265e6f
KH
976}
977
cf475ad2 978struct mem_cgroup *mem_cgroup_from_task(struct task_struct *p)
78fb7466 979{
31a78f23
BS
980 /*
981 * mm_update_next_owner() may clear mm->owner to NULL
982 * if it races with swapoff, page migration, etc.
983 * So this can be called with p == NULL.
984 */
985 if (unlikely(!p))
986 return NULL;
987
073219e9 988 return mem_cgroup_from_css(task_css(p, memory_cgrp_id));
78fb7466
PE
989}
990
df381975 991static struct mem_cgroup *get_mem_cgroup_from_mm(struct mm_struct *mm)
54595fe2 992{
c0ff4b85 993 struct mem_cgroup *memcg = NULL;
0b7f569e 994
54595fe2
KH
995 rcu_read_lock();
996 do {
6f6acb00
MH
997 /*
998 * Page cache insertions can happen withou an
999 * actual mm context, e.g. during disk probing
1000 * on boot, loopback IO, acct() writes etc.
1001 */
1002 if (unlikely(!mm))
df381975 1003 memcg = root_mem_cgroup;
6f6acb00
MH
1004 else {
1005 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1006 if (unlikely(!memcg))
1007 memcg = root_mem_cgroup;
1008 }
ec903c0c 1009 } while (!css_tryget_online(&memcg->css));
54595fe2 1010 rcu_read_unlock();
c0ff4b85 1011 return memcg;
54595fe2
KH
1012}
1013
5660048c
JW
1014/**
1015 * mem_cgroup_iter - iterate over memory cgroup hierarchy
1016 * @root: hierarchy root
1017 * @prev: previously returned memcg, NULL on first invocation
1018 * @reclaim: cookie for shared reclaim walks, NULL for full walks
1019 *
1020 * Returns references to children of the hierarchy below @root, or
1021 * @root itself, or %NULL after a full round-trip.
1022 *
1023 * Caller must pass the return value in @prev on subsequent
1024 * invocations for reference counting, or use mem_cgroup_iter_break()
1025 * to cancel a hierarchy walk before the round-trip is complete.
1026 *
1027 * Reclaimers can specify a zone and a priority level in @reclaim to
1028 * divide up the memcgs in the hierarchy among all concurrent
1029 * reclaimers operating on the same zone and priority.
1030 */
694fbc0f 1031struct mem_cgroup *mem_cgroup_iter(struct mem_cgroup *root,
5660048c 1032 struct mem_cgroup *prev,
694fbc0f 1033 struct mem_cgroup_reclaim_cookie *reclaim)
14067bb3 1034{
5ac8fb31
JW
1035 struct reclaim_iter *uninitialized_var(iter);
1036 struct cgroup_subsys_state *css = NULL;
9f3a0d09 1037 struct mem_cgroup *memcg = NULL;
5ac8fb31 1038 struct mem_cgroup *pos = NULL;
711d3d2c 1039
694fbc0f
AM
1040 if (mem_cgroup_disabled())
1041 return NULL;
5660048c 1042
9f3a0d09
JW
1043 if (!root)
1044 root = root_mem_cgroup;
7d74b06f 1045
9f3a0d09 1046 if (prev && !reclaim)
5ac8fb31 1047 pos = prev;
14067bb3 1048
9f3a0d09
JW
1049 if (!root->use_hierarchy && root != root_mem_cgroup) {
1050 if (prev)
5ac8fb31 1051 goto out;
694fbc0f 1052 return root;
9f3a0d09 1053 }
14067bb3 1054
542f85f9 1055 rcu_read_lock();
5f578161 1056
5ac8fb31
JW
1057 if (reclaim) {
1058 struct mem_cgroup_per_zone *mz;
1059
1060 mz = mem_cgroup_zone_zoneinfo(root, reclaim->zone);
1061 iter = &mz->iter[reclaim->priority];
1062
1063 if (prev && reclaim->generation != iter->generation)
1064 goto out_unlock;
1065
1066 do {
1067 pos = ACCESS_ONCE(iter->position);
1068 /*
1069 * A racing update may change the position and
1070 * put the last reference, hence css_tryget(),
1071 * or retry to see the updated position.
1072 */
1073 } while (pos && !css_tryget(&pos->css));
1074 }
1075
1076 if (pos)
1077 css = &pos->css;
1078
1079 for (;;) {
1080 css = css_next_descendant_pre(css, &root->css);
1081 if (!css) {
1082 /*
1083 * Reclaimers share the hierarchy walk, and a
1084 * new one might jump in right at the end of
1085 * the hierarchy - make sure they see at least
1086 * one group and restart from the beginning.
1087 */
1088 if (!prev)
1089 continue;
1090 break;
527a5ec9 1091 }
7d74b06f 1092
5ac8fb31
JW
1093 /*
1094 * Verify the css and acquire a reference. The root
1095 * is provided by the caller, so we know it's alive
1096 * and kicking, and don't take an extra reference.
1097 */
1098 memcg = mem_cgroup_from_css(css);
14067bb3 1099
5ac8fb31
JW
1100 if (css == &root->css)
1101 break;
14067bb3 1102
b2052564 1103 if (css_tryget(css)) {
5ac8fb31
JW
1104 /*
1105 * Make sure the memcg is initialized:
1106 * mem_cgroup_css_online() orders the the
1107 * initialization against setting the flag.
1108 */
1109 if (smp_load_acquire(&memcg->initialized))
1110 break;
542f85f9 1111
5ac8fb31 1112 css_put(css);
527a5ec9 1113 }
9f3a0d09 1114
5ac8fb31 1115 memcg = NULL;
9f3a0d09 1116 }
5ac8fb31
JW
1117
1118 if (reclaim) {
1119 if (cmpxchg(&iter->position, pos, memcg) == pos) {
1120 if (memcg)
1121 css_get(&memcg->css);
1122 if (pos)
1123 css_put(&pos->css);
1124 }
1125
1126 /*
1127 * pairs with css_tryget when dereferencing iter->position
1128 * above.
1129 */
1130 if (pos)
1131 css_put(&pos->css);
1132
1133 if (!memcg)
1134 iter->generation++;
1135 else if (!prev)
1136 reclaim->generation = iter->generation;
9f3a0d09 1137 }
5ac8fb31 1138
542f85f9
MH
1139out_unlock:
1140 rcu_read_unlock();
5ac8fb31 1141out:
c40046f3
MH
1142 if (prev && prev != root)
1143 css_put(&prev->css);
1144
9f3a0d09 1145 return memcg;
14067bb3 1146}
7d74b06f 1147
5660048c
JW
1148/**
1149 * mem_cgroup_iter_break - abort a hierarchy walk prematurely
1150 * @root: hierarchy root
1151 * @prev: last visited hierarchy member as returned by mem_cgroup_iter()
1152 */
1153void mem_cgroup_iter_break(struct mem_cgroup *root,
1154 struct mem_cgroup *prev)
9f3a0d09
JW
1155{
1156 if (!root)
1157 root = root_mem_cgroup;
1158 if (prev && prev != root)
1159 css_put(&prev->css);
1160}
7d74b06f 1161
9f3a0d09
JW
1162/*
1163 * Iteration constructs for visiting all cgroups (under a tree). If
1164 * loops are exited prematurely (break), mem_cgroup_iter_break() must
1165 * be used for reference counting.
1166 */
1167#define for_each_mem_cgroup_tree(iter, root) \
527a5ec9 1168 for (iter = mem_cgroup_iter(root, NULL, NULL); \
9f3a0d09 1169 iter != NULL; \
527a5ec9 1170 iter = mem_cgroup_iter(root, iter, NULL))
711d3d2c 1171
9f3a0d09 1172#define for_each_mem_cgroup(iter) \
527a5ec9 1173 for (iter = mem_cgroup_iter(NULL, NULL, NULL); \
9f3a0d09 1174 iter != NULL; \
527a5ec9 1175 iter = mem_cgroup_iter(NULL, iter, NULL))
14067bb3 1176
68ae564b 1177void __mem_cgroup_count_vm_event(struct mm_struct *mm, enum vm_event_item idx)
456f998e 1178{
c0ff4b85 1179 struct mem_cgroup *memcg;
456f998e 1180
456f998e 1181 rcu_read_lock();
c0ff4b85
R
1182 memcg = mem_cgroup_from_task(rcu_dereference(mm->owner));
1183 if (unlikely(!memcg))
456f998e
YH
1184 goto out;
1185
1186 switch (idx) {
456f998e 1187 case PGFAULT:
0e574a93
JW
1188 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGFAULT]);
1189 break;
1190 case PGMAJFAULT:
1191 this_cpu_inc(memcg->stat->events[MEM_CGROUP_EVENTS_PGMAJFAULT]);
456f998e
YH
1192 break;
1193 default:
1194 BUG();
1195 }
1196out:
1197 rcu_read_unlock();
1198}
68ae564b 1199EXPORT_SYMBOL(__mem_cgroup_count_vm_event);
456f998e 1200
925b7673
JW
1201/**
1202 * mem_cgroup_zone_lruvec - get the lru list vector for a zone and memcg
1203 * @zone: zone of the wanted lruvec
fa9add64 1204 * @memcg: memcg of the wanted lruvec
925b7673
JW
1205 *
1206 * Returns the lru list vector holding pages for the given @zone and
1207 * @mem. This can be the global zone lruvec, if the memory controller
1208 * is disabled.
1209 */
1210struct lruvec *mem_cgroup_zone_lruvec(struct zone *zone,
1211 struct mem_cgroup *memcg)
1212{
1213 struct mem_cgroup_per_zone *mz;
bea8c150 1214 struct lruvec *lruvec;
925b7673 1215
bea8c150
HD
1216 if (mem_cgroup_disabled()) {
1217 lruvec = &zone->lruvec;
1218 goto out;
1219 }
925b7673 1220
e231875b 1221 mz = mem_cgroup_zone_zoneinfo(memcg, zone);
bea8c150
HD
1222 lruvec = &mz->lruvec;
1223out:
1224 /*
1225 * Since a node can be onlined after the mem_cgroup was created,
1226 * we have to be prepared to initialize lruvec->zone here;
1227 * and if offlined then reonlined, we need to reinitialize it.
1228 */
1229 if (unlikely(lruvec->zone != zone))
1230 lruvec->zone = zone;
1231 return lruvec;
925b7673
JW
1232}
1233
925b7673 1234/**
dfe0e773 1235 * mem_cgroup_page_lruvec - return lruvec for isolating/putting an LRU page
925b7673 1236 * @page: the page
fa9add64 1237 * @zone: zone of the page
dfe0e773
JW
1238 *
1239 * This function is only safe when following the LRU page isolation
1240 * and putback protocol: the LRU lock must be held, and the page must
1241 * either be PageLRU() or the caller must have isolated/allocated it.
925b7673 1242 */
fa9add64 1243struct lruvec *mem_cgroup_page_lruvec(struct page *page, struct zone *zone)
08e552c6 1244{
08e552c6 1245 struct mem_cgroup_per_zone *mz;
925b7673 1246 struct mem_cgroup *memcg;
bea8c150 1247 struct lruvec *lruvec;
6d12e2d8 1248
bea8c150
HD
1249 if (mem_cgroup_disabled()) {
1250 lruvec = &zone->lruvec;
1251 goto out;
1252 }
925b7673 1253
1306a85a 1254 memcg = page->mem_cgroup;
7512102c 1255 /*
dfe0e773 1256 * Swapcache readahead pages are added to the LRU - and
29833315 1257 * possibly migrated - before they are charged.
7512102c 1258 */
29833315
JW
1259 if (!memcg)
1260 memcg = root_mem_cgroup;
7512102c 1261
e231875b 1262 mz = mem_cgroup_page_zoneinfo(memcg, page);
bea8c150
HD
1263 lruvec = &mz->lruvec;
1264out:
1265 /*
1266 * Since a node can be onlined after the mem_cgroup was created,
1267 * we have to be prepared to initialize lruvec->zone here;
1268 * and if offlined then reonlined, we need to reinitialize it.
1269 */
1270 if (unlikely(lruvec->zone != zone))
1271 lruvec->zone = zone;
1272 return lruvec;
08e552c6 1273}
b69408e8 1274
925b7673 1275/**
fa9add64
HD
1276 * mem_cgroup_update_lru_size - account for adding or removing an lru page
1277 * @lruvec: mem_cgroup per zone lru vector
1278 * @lru: index of lru list the page is sitting on
1279 * @nr_pages: positive when adding or negative when removing
925b7673 1280 *
fa9add64
HD
1281 * This function must be called when a page is added to or removed from an
1282 * lru list.
3f58a829 1283 */
fa9add64
HD
1284void mem_cgroup_update_lru_size(struct lruvec *lruvec, enum lru_list lru,
1285 int nr_pages)
3f58a829
MK
1286{
1287 struct mem_cgroup_per_zone *mz;
fa9add64 1288 unsigned long *lru_size;
3f58a829
MK
1289
1290 if (mem_cgroup_disabled())
1291 return;
1292
fa9add64
HD
1293 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1294 lru_size = mz->lru_size + lru;
1295 *lru_size += nr_pages;
1296 VM_BUG_ON((long)(*lru_size) < 0);
08e552c6 1297}
544122e5 1298
2314b42d 1299bool mem_cgroup_is_descendant(struct mem_cgroup *memcg, struct mem_cgroup *root)
3e92041d 1300{
2314b42d 1301 if (root == memcg)
91c63734 1302 return true;
2314b42d 1303 if (!root->use_hierarchy)
91c63734 1304 return false;
2314b42d 1305 return cgroup_is_descendant(memcg->css.cgroup, root->css.cgroup);
c3ac9a8a
JW
1306}
1307
2314b42d 1308bool task_in_mem_cgroup(struct task_struct *task, struct mem_cgroup *memcg)
c3ac9a8a 1309{
2314b42d 1310 struct mem_cgroup *task_memcg;
158e0a2d 1311 struct task_struct *p;
ffbdccf5 1312 bool ret;
4c4a2214 1313
158e0a2d 1314 p = find_lock_task_mm(task);
de077d22 1315 if (p) {
2314b42d 1316 task_memcg = get_mem_cgroup_from_mm(p->mm);
de077d22
DR
1317 task_unlock(p);
1318 } else {
1319 /*
1320 * All threads may have already detached their mm's, but the oom
1321 * killer still needs to detect if they have already been oom
1322 * killed to prevent needlessly killing additional tasks.
1323 */
ffbdccf5 1324 rcu_read_lock();
2314b42d
JW
1325 task_memcg = mem_cgroup_from_task(task);
1326 css_get(&task_memcg->css);
ffbdccf5 1327 rcu_read_unlock();
de077d22 1328 }
2314b42d
JW
1329 ret = mem_cgroup_is_descendant(task_memcg, memcg);
1330 css_put(&task_memcg->css);
4c4a2214
DR
1331 return ret;
1332}
1333
c56d5c7d 1334int mem_cgroup_inactive_anon_is_low(struct lruvec *lruvec)
14797e23 1335{
9b272977 1336 unsigned long inactive_ratio;
14797e23 1337 unsigned long inactive;
9b272977 1338 unsigned long active;
c772be93 1339 unsigned long gb;
14797e23 1340
4d7dcca2
HD
1341 inactive = mem_cgroup_get_lru_size(lruvec, LRU_INACTIVE_ANON);
1342 active = mem_cgroup_get_lru_size(lruvec, LRU_ACTIVE_ANON);
14797e23 1343
c772be93
KM
1344 gb = (inactive + active) >> (30 - PAGE_SHIFT);
1345 if (gb)
1346 inactive_ratio = int_sqrt(10 * gb);
1347 else
1348 inactive_ratio = 1;
1349
9b272977 1350 return inactive * inactive_ratio < active;
14797e23
KM
1351}
1352
90cbc250
VD
1353bool mem_cgroup_lruvec_online(struct lruvec *lruvec)
1354{
1355 struct mem_cgroup_per_zone *mz;
1356 struct mem_cgroup *memcg;
1357
1358 if (mem_cgroup_disabled())
1359 return true;
1360
1361 mz = container_of(lruvec, struct mem_cgroup_per_zone, lruvec);
1362 memcg = mz->memcg;
1363
1364 return !!(memcg->css.flags & CSS_ONLINE);
1365}
1366
3e32cb2e 1367#define mem_cgroup_from_counter(counter, member) \
6d61ef40
BS
1368 container_of(counter, struct mem_cgroup, member)
1369
19942822 1370/**
9d11ea9f 1371 * mem_cgroup_margin - calculate chargeable space of a memory cgroup
dad7557e 1372 * @memcg: the memory cgroup
19942822 1373 *
9d11ea9f 1374 * Returns the maximum amount of memory @mem can be charged with, in
7ec99d62 1375 * pages.
19942822 1376 */
c0ff4b85 1377static unsigned long mem_cgroup_margin(struct mem_cgroup *memcg)
19942822 1378{
3e32cb2e
JW
1379 unsigned long margin = 0;
1380 unsigned long count;
1381 unsigned long limit;
9d11ea9f 1382
3e32cb2e
JW
1383 count = page_counter_read(&memcg->memory);
1384 limit = ACCESS_ONCE(memcg->memory.limit);
1385 if (count < limit)
1386 margin = limit - count;
1387
1388 if (do_swap_account) {
1389 count = page_counter_read(&memcg->memsw);
1390 limit = ACCESS_ONCE(memcg->memsw.limit);
1391 if (count <= limit)
1392 margin = min(margin, limit - count);
1393 }
1394
1395 return margin;
19942822
JW
1396}
1397
1f4c025b 1398int mem_cgroup_swappiness(struct mem_cgroup *memcg)
a7885eb8 1399{
a7885eb8 1400 /* root ? */
14208b0e 1401 if (mem_cgroup_disabled() || !memcg->css.parent)
a7885eb8
KM
1402 return vm_swappiness;
1403
bf1ff263 1404 return memcg->swappiness;
a7885eb8
KM
1405}
1406
32047e2a 1407/*
bdcbb659 1408 * A routine for checking "mem" is under move_account() or not.
32047e2a 1409 *
bdcbb659
QH
1410 * Checking a cgroup is mc.from or mc.to or under hierarchy of
1411 * moving cgroups. This is for waiting at high-memory pressure
1412 * caused by "move".
32047e2a 1413 */
c0ff4b85 1414static bool mem_cgroup_under_move(struct mem_cgroup *memcg)
4b534334 1415{
2bd9bb20
KH
1416 struct mem_cgroup *from;
1417 struct mem_cgroup *to;
4b534334 1418 bool ret = false;
2bd9bb20
KH
1419 /*
1420 * Unlike task_move routines, we access mc.to, mc.from not under
1421 * mutual exclusion by cgroup_mutex. Here, we take spinlock instead.
1422 */
1423 spin_lock(&mc.lock);
1424 from = mc.from;
1425 to = mc.to;
1426 if (!from)
1427 goto unlock;
3e92041d 1428
2314b42d
JW
1429 ret = mem_cgroup_is_descendant(from, memcg) ||
1430 mem_cgroup_is_descendant(to, memcg);
2bd9bb20
KH
1431unlock:
1432 spin_unlock(&mc.lock);
4b534334
KH
1433 return ret;
1434}
1435
c0ff4b85 1436static bool mem_cgroup_wait_acct_move(struct mem_cgroup *memcg)
4b534334
KH
1437{
1438 if (mc.moving_task && current != mc.moving_task) {
c0ff4b85 1439 if (mem_cgroup_under_move(memcg)) {
4b534334
KH
1440 DEFINE_WAIT(wait);
1441 prepare_to_wait(&mc.waitq, &wait, TASK_INTERRUPTIBLE);
1442 /* moving charge context might have finished. */
1443 if (mc.moving_task)
1444 schedule();
1445 finish_wait(&mc.waitq, &wait);
1446 return true;
1447 }
1448 }
1449 return false;
1450}
1451
58cf188e 1452#define K(x) ((x) << (PAGE_SHIFT-10))
e222432b 1453/**
58cf188e 1454 * mem_cgroup_print_oom_info: Print OOM information relevant to memory controller.
e222432b
BS
1455 * @memcg: The memory cgroup that went over limit
1456 * @p: Task that is going to be killed
1457 *
1458 * NOTE: @memcg and @p's mem_cgroup can be different when hierarchy is
1459 * enabled
1460 */
1461void mem_cgroup_print_oom_info(struct mem_cgroup *memcg, struct task_struct *p)
1462{
e61734c5 1463 /* oom_info_lock ensures that parallel ooms do not interleave */
08088cb9 1464 static DEFINE_MUTEX(oom_info_lock);
58cf188e
SZ
1465 struct mem_cgroup *iter;
1466 unsigned int i;
e222432b 1467
58cf188e 1468 if (!p)
e222432b
BS
1469 return;
1470
08088cb9 1471 mutex_lock(&oom_info_lock);
e222432b
BS
1472 rcu_read_lock();
1473
e61734c5
TH
1474 pr_info("Task in ");
1475 pr_cont_cgroup_path(task_cgroup(p, memory_cgrp_id));
0346dadb 1476 pr_cont(" killed as a result of limit of ");
e61734c5 1477 pr_cont_cgroup_path(memcg->css.cgroup);
0346dadb 1478 pr_cont("\n");
e222432b 1479
e222432b
BS
1480 rcu_read_unlock();
1481
3e32cb2e
JW
1482 pr_info("memory: usage %llukB, limit %llukB, failcnt %lu\n",
1483 K((u64)page_counter_read(&memcg->memory)),
1484 K((u64)memcg->memory.limit), memcg->memory.failcnt);
1485 pr_info("memory+swap: usage %llukB, limit %llukB, failcnt %lu\n",
1486 K((u64)page_counter_read(&memcg->memsw)),
1487 K((u64)memcg->memsw.limit), memcg->memsw.failcnt);
1488 pr_info("kmem: usage %llukB, limit %llukB, failcnt %lu\n",
1489 K((u64)page_counter_read(&memcg->kmem)),
1490 K((u64)memcg->kmem.limit), memcg->kmem.failcnt);
58cf188e
SZ
1491
1492 for_each_mem_cgroup_tree(iter, memcg) {
e61734c5
TH
1493 pr_info("Memory cgroup stats for ");
1494 pr_cont_cgroup_path(iter->css.cgroup);
58cf188e
SZ
1495 pr_cont(":");
1496
1497 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
1498 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1499 continue;
1500 pr_cont(" %s:%ldKB", mem_cgroup_stat_names[i],
1501 K(mem_cgroup_read_stat(iter, i)));
1502 }
1503
1504 for (i = 0; i < NR_LRU_LISTS; i++)
1505 pr_cont(" %s:%luKB", mem_cgroup_lru_names[i],
1506 K(mem_cgroup_nr_lru_pages(iter, BIT(i))));
1507
1508 pr_cont("\n");
1509 }
08088cb9 1510 mutex_unlock(&oom_info_lock);
e222432b
BS
1511}
1512
81d39c20
KH
1513/*
1514 * This function returns the number of memcg under hierarchy tree. Returns
1515 * 1(self count) if no children.
1516 */
c0ff4b85 1517static int mem_cgroup_count_children(struct mem_cgroup *memcg)
81d39c20
KH
1518{
1519 int num = 0;
7d74b06f
KH
1520 struct mem_cgroup *iter;
1521
c0ff4b85 1522 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 1523 num++;
81d39c20
KH
1524 return num;
1525}
1526
a63d83f4
DR
1527/*
1528 * Return the memory (and swap, if configured) limit for a memcg.
1529 */
3e32cb2e 1530static unsigned long mem_cgroup_get_limit(struct mem_cgroup *memcg)
a63d83f4 1531{
3e32cb2e 1532 unsigned long limit;
f3e8eb70 1533
3e32cb2e 1534 limit = memcg->memory.limit;
9a5a8f19 1535 if (mem_cgroup_swappiness(memcg)) {
3e32cb2e 1536 unsigned long memsw_limit;
9a5a8f19 1537
3e32cb2e
JW
1538 memsw_limit = memcg->memsw.limit;
1539 limit = min(limit + total_swap_pages, memsw_limit);
9a5a8f19 1540 }
9a5a8f19 1541 return limit;
a63d83f4
DR
1542}
1543
19965460
DR
1544static void mem_cgroup_out_of_memory(struct mem_cgroup *memcg, gfp_t gfp_mask,
1545 int order)
9cbb78bb
DR
1546{
1547 struct mem_cgroup *iter;
1548 unsigned long chosen_points = 0;
1549 unsigned long totalpages;
1550 unsigned int points = 0;
1551 struct task_struct *chosen = NULL;
1552
876aafbf 1553 /*
465adcf1
DR
1554 * If current has a pending SIGKILL or is exiting, then automatically
1555 * select it. The goal is to allow it to allocate so that it may
1556 * quickly exit and free its memory.
876aafbf 1557 */
d003f371 1558 if (fatal_signal_pending(current) || task_will_free_mem(current)) {
49550b60 1559 mark_tsk_oom_victim(current);
876aafbf
DR
1560 return;
1561 }
1562
1563 check_panic_on_oom(CONSTRAINT_MEMCG, gfp_mask, order, NULL);
3e32cb2e 1564 totalpages = mem_cgroup_get_limit(memcg) ? : 1;
9cbb78bb 1565 for_each_mem_cgroup_tree(iter, memcg) {
72ec7029 1566 struct css_task_iter it;
9cbb78bb
DR
1567 struct task_struct *task;
1568
72ec7029
TH
1569 css_task_iter_start(&iter->css, &it);
1570 while ((task = css_task_iter_next(&it))) {
9cbb78bb
DR
1571 switch (oom_scan_process_thread(task, totalpages, NULL,
1572 false)) {
1573 case OOM_SCAN_SELECT:
1574 if (chosen)
1575 put_task_struct(chosen);
1576 chosen = task;
1577 chosen_points = ULONG_MAX;
1578 get_task_struct(chosen);
1579 /* fall through */
1580 case OOM_SCAN_CONTINUE:
1581 continue;
1582 case OOM_SCAN_ABORT:
72ec7029 1583 css_task_iter_end(&it);
9cbb78bb
DR
1584 mem_cgroup_iter_break(memcg, iter);
1585 if (chosen)
1586 put_task_struct(chosen);
1587 return;
1588 case OOM_SCAN_OK:
1589 break;
1590 };
1591 points = oom_badness(task, memcg, NULL, totalpages);
d49ad935
DR
1592 if (!points || points < chosen_points)
1593 continue;
1594 /* Prefer thread group leaders for display purposes */
1595 if (points == chosen_points &&
1596 thread_group_leader(chosen))
1597 continue;
1598
1599 if (chosen)
1600 put_task_struct(chosen);
1601 chosen = task;
1602 chosen_points = points;
1603 get_task_struct(chosen);
9cbb78bb 1604 }
72ec7029 1605 css_task_iter_end(&it);
9cbb78bb
DR
1606 }
1607
1608 if (!chosen)
1609 return;
1610 points = chosen_points * 1000 / totalpages;
9cbb78bb
DR
1611 oom_kill_process(chosen, gfp_mask, order, points, totalpages, memcg,
1612 NULL, "Memory cgroup out of memory");
9cbb78bb
DR
1613}
1614
ae6e71d3
MC
1615#if MAX_NUMNODES > 1
1616
4d0c066d
KH
1617/**
1618 * test_mem_cgroup_node_reclaimable
dad7557e 1619 * @memcg: the target memcg
4d0c066d
KH
1620 * @nid: the node ID to be checked.
1621 * @noswap : specify true here if the user wants flle only information.
1622 *
1623 * This function returns whether the specified memcg contains any
1624 * reclaimable pages on a node. Returns true if there are any reclaimable
1625 * pages in the node.
1626 */
c0ff4b85 1627static bool test_mem_cgroup_node_reclaimable(struct mem_cgroup *memcg,
4d0c066d
KH
1628 int nid, bool noswap)
1629{
c0ff4b85 1630 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_FILE))
4d0c066d
KH
1631 return true;
1632 if (noswap || !total_swap_pages)
1633 return false;
c0ff4b85 1634 if (mem_cgroup_node_nr_lru_pages(memcg, nid, LRU_ALL_ANON))
4d0c066d
KH
1635 return true;
1636 return false;
1637
1638}
889976db
YH
1639
1640/*
1641 * Always updating the nodemask is not very good - even if we have an empty
1642 * list or the wrong list here, we can start from some node and traverse all
1643 * nodes based on the zonelist. So update the list loosely once per 10 secs.
1644 *
1645 */
c0ff4b85 1646static void mem_cgroup_may_update_nodemask(struct mem_cgroup *memcg)
889976db
YH
1647{
1648 int nid;
453a9bf3
KH
1649 /*
1650 * numainfo_events > 0 means there was at least NUMAINFO_EVENTS_TARGET
1651 * pagein/pageout changes since the last update.
1652 */
c0ff4b85 1653 if (!atomic_read(&memcg->numainfo_events))
453a9bf3 1654 return;
c0ff4b85 1655 if (atomic_inc_return(&memcg->numainfo_updating) > 1)
889976db
YH
1656 return;
1657
889976db 1658 /* make a nodemask where this memcg uses memory from */
31aaea4a 1659 memcg->scan_nodes = node_states[N_MEMORY];
889976db 1660
31aaea4a 1661 for_each_node_mask(nid, node_states[N_MEMORY]) {
889976db 1662
c0ff4b85
R
1663 if (!test_mem_cgroup_node_reclaimable(memcg, nid, false))
1664 node_clear(nid, memcg->scan_nodes);
889976db 1665 }
453a9bf3 1666
c0ff4b85
R
1667 atomic_set(&memcg->numainfo_events, 0);
1668 atomic_set(&memcg->numainfo_updating, 0);
889976db
YH
1669}
1670
1671/*
1672 * Selecting a node where we start reclaim from. Because what we need is just
1673 * reducing usage counter, start from anywhere is O,K. Considering
1674 * memory reclaim from current node, there are pros. and cons.
1675 *
1676 * Freeing memory from current node means freeing memory from a node which
1677 * we'll use or we've used. So, it may make LRU bad. And if several threads
1678 * hit limits, it will see a contention on a node. But freeing from remote
1679 * node means more costs for memory reclaim because of memory latency.
1680 *
1681 * Now, we use round-robin. Better algorithm is welcomed.
1682 */
c0ff4b85 1683int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1684{
1685 int node;
1686
c0ff4b85
R
1687 mem_cgroup_may_update_nodemask(memcg);
1688 node = memcg->last_scanned_node;
889976db 1689
c0ff4b85 1690 node = next_node(node, memcg->scan_nodes);
889976db 1691 if (node == MAX_NUMNODES)
c0ff4b85 1692 node = first_node(memcg->scan_nodes);
889976db
YH
1693 /*
1694 * We call this when we hit limit, not when pages are added to LRU.
1695 * No LRU may hold pages because all pages are UNEVICTABLE or
1696 * memcg is too small and all pages are not on LRU. In that case,
1697 * we use curret node.
1698 */
1699 if (unlikely(node == MAX_NUMNODES))
1700 node = numa_node_id();
1701
c0ff4b85 1702 memcg->last_scanned_node = node;
889976db
YH
1703 return node;
1704}
889976db 1705#else
c0ff4b85 1706int mem_cgroup_select_victim_node(struct mem_cgroup *memcg)
889976db
YH
1707{
1708 return 0;
1709}
1710#endif
1711
0608f43d
AM
1712static int mem_cgroup_soft_reclaim(struct mem_cgroup *root_memcg,
1713 struct zone *zone,
1714 gfp_t gfp_mask,
1715 unsigned long *total_scanned)
1716{
1717 struct mem_cgroup *victim = NULL;
1718 int total = 0;
1719 int loop = 0;
1720 unsigned long excess;
1721 unsigned long nr_scanned;
1722 struct mem_cgroup_reclaim_cookie reclaim = {
1723 .zone = zone,
1724 .priority = 0,
1725 };
1726
3e32cb2e 1727 excess = soft_limit_excess(root_memcg);
0608f43d
AM
1728
1729 while (1) {
1730 victim = mem_cgroup_iter(root_memcg, victim, &reclaim);
1731 if (!victim) {
1732 loop++;
1733 if (loop >= 2) {
1734 /*
1735 * If we have not been able to reclaim
1736 * anything, it might because there are
1737 * no reclaimable pages under this hierarchy
1738 */
1739 if (!total)
1740 break;
1741 /*
1742 * We want to do more targeted reclaim.
1743 * excess >> 2 is not to excessive so as to
1744 * reclaim too much, nor too less that we keep
1745 * coming back to reclaim from this cgroup
1746 */
1747 if (total >= (excess >> 2) ||
1748 (loop > MEM_CGROUP_MAX_RECLAIM_LOOPS))
1749 break;
1750 }
1751 continue;
1752 }
0608f43d
AM
1753 total += mem_cgroup_shrink_node_zone(victim, gfp_mask, false,
1754 zone, &nr_scanned);
1755 *total_scanned += nr_scanned;
3e32cb2e 1756 if (!soft_limit_excess(root_memcg))
0608f43d 1757 break;
6d61ef40 1758 }
0608f43d
AM
1759 mem_cgroup_iter_break(root_memcg, victim);
1760 return total;
6d61ef40
BS
1761}
1762
0056f4e6
JW
1763#ifdef CONFIG_LOCKDEP
1764static struct lockdep_map memcg_oom_lock_dep_map = {
1765 .name = "memcg_oom_lock",
1766};
1767#endif
1768
fb2a6fc5
JW
1769static DEFINE_SPINLOCK(memcg_oom_lock);
1770
867578cb
KH
1771/*
1772 * Check OOM-Killer is already running under our hierarchy.
1773 * If someone is running, return false.
1774 */
fb2a6fc5 1775static bool mem_cgroup_oom_trylock(struct mem_cgroup *memcg)
867578cb 1776{
79dfdacc 1777 struct mem_cgroup *iter, *failed = NULL;
a636b327 1778
fb2a6fc5
JW
1779 spin_lock(&memcg_oom_lock);
1780
9f3a0d09 1781 for_each_mem_cgroup_tree(iter, memcg) {
23751be0 1782 if (iter->oom_lock) {
79dfdacc
MH
1783 /*
1784 * this subtree of our hierarchy is already locked
1785 * so we cannot give a lock.
1786 */
79dfdacc 1787 failed = iter;
9f3a0d09
JW
1788 mem_cgroup_iter_break(memcg, iter);
1789 break;
23751be0
JW
1790 } else
1791 iter->oom_lock = true;
7d74b06f 1792 }
867578cb 1793
fb2a6fc5
JW
1794 if (failed) {
1795 /*
1796 * OK, we failed to lock the whole subtree so we have
1797 * to clean up what we set up to the failing subtree
1798 */
1799 for_each_mem_cgroup_tree(iter, memcg) {
1800 if (iter == failed) {
1801 mem_cgroup_iter_break(memcg, iter);
1802 break;
1803 }
1804 iter->oom_lock = false;
79dfdacc 1805 }
0056f4e6
JW
1806 } else
1807 mutex_acquire(&memcg_oom_lock_dep_map, 0, 1, _RET_IP_);
fb2a6fc5
JW
1808
1809 spin_unlock(&memcg_oom_lock);
1810
1811 return !failed;
a636b327 1812}
0b7f569e 1813
fb2a6fc5 1814static void mem_cgroup_oom_unlock(struct mem_cgroup *memcg)
0b7f569e 1815{
7d74b06f
KH
1816 struct mem_cgroup *iter;
1817
fb2a6fc5 1818 spin_lock(&memcg_oom_lock);
0056f4e6 1819 mutex_release(&memcg_oom_lock_dep_map, 1, _RET_IP_);
c0ff4b85 1820 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1821 iter->oom_lock = false;
fb2a6fc5 1822 spin_unlock(&memcg_oom_lock);
79dfdacc
MH
1823}
1824
c0ff4b85 1825static void mem_cgroup_mark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1826{
1827 struct mem_cgroup *iter;
1828
c0ff4b85 1829 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc
MH
1830 atomic_inc(&iter->under_oom);
1831}
1832
c0ff4b85 1833static void mem_cgroup_unmark_under_oom(struct mem_cgroup *memcg)
79dfdacc
MH
1834{
1835 struct mem_cgroup *iter;
1836
867578cb
KH
1837 /*
1838 * When a new child is created while the hierarchy is under oom,
1839 * mem_cgroup_oom_lock() may not be called. We have to use
1840 * atomic_add_unless() here.
1841 */
c0ff4b85 1842 for_each_mem_cgroup_tree(iter, memcg)
79dfdacc 1843 atomic_add_unless(&iter->under_oom, -1, 0);
0b7f569e
KH
1844}
1845
867578cb
KH
1846static DECLARE_WAIT_QUEUE_HEAD(memcg_oom_waitq);
1847
dc98df5a 1848struct oom_wait_info {
d79154bb 1849 struct mem_cgroup *memcg;
dc98df5a
KH
1850 wait_queue_t wait;
1851};
1852
1853static int memcg_oom_wake_function(wait_queue_t *wait,
1854 unsigned mode, int sync, void *arg)
1855{
d79154bb
HD
1856 struct mem_cgroup *wake_memcg = (struct mem_cgroup *)arg;
1857 struct mem_cgroup *oom_wait_memcg;
dc98df5a
KH
1858 struct oom_wait_info *oom_wait_info;
1859
1860 oom_wait_info = container_of(wait, struct oom_wait_info, wait);
d79154bb 1861 oom_wait_memcg = oom_wait_info->memcg;
dc98df5a 1862
2314b42d
JW
1863 if (!mem_cgroup_is_descendant(wake_memcg, oom_wait_memcg) &&
1864 !mem_cgroup_is_descendant(oom_wait_memcg, wake_memcg))
dc98df5a 1865 return 0;
dc98df5a
KH
1866 return autoremove_wake_function(wait, mode, sync, arg);
1867}
1868
c0ff4b85 1869static void memcg_wakeup_oom(struct mem_cgroup *memcg)
dc98df5a 1870{
3812c8c8 1871 atomic_inc(&memcg->oom_wakeups);
c0ff4b85
R
1872 /* for filtering, pass "memcg" as argument. */
1873 __wake_up(&memcg_oom_waitq, TASK_NORMAL, 0, memcg);
dc98df5a
KH
1874}
1875
c0ff4b85 1876static void memcg_oom_recover(struct mem_cgroup *memcg)
3c11ecf4 1877{
c0ff4b85
R
1878 if (memcg && atomic_read(&memcg->under_oom))
1879 memcg_wakeup_oom(memcg);
3c11ecf4
KH
1880}
1881
3812c8c8 1882static void mem_cgroup_oom(struct mem_cgroup *memcg, gfp_t mask, int order)
0b7f569e 1883{
3812c8c8
JW
1884 if (!current->memcg_oom.may_oom)
1885 return;
867578cb 1886 /*
49426420
JW
1887 * We are in the middle of the charge context here, so we
1888 * don't want to block when potentially sitting on a callstack
1889 * that holds all kinds of filesystem and mm locks.
1890 *
1891 * Also, the caller may handle a failed allocation gracefully
1892 * (like optional page cache readahead) and so an OOM killer
1893 * invocation might not even be necessary.
1894 *
1895 * That's why we don't do anything here except remember the
1896 * OOM context and then deal with it at the end of the page
1897 * fault when the stack is unwound, the locks are released,
1898 * and when we know whether the fault was overall successful.
867578cb 1899 */
49426420
JW
1900 css_get(&memcg->css);
1901 current->memcg_oom.memcg = memcg;
1902 current->memcg_oom.gfp_mask = mask;
1903 current->memcg_oom.order = order;
3812c8c8
JW
1904}
1905
1906/**
1907 * mem_cgroup_oom_synchronize - complete memcg OOM handling
49426420 1908 * @handle: actually kill/wait or just clean up the OOM state
3812c8c8 1909 *
49426420
JW
1910 * This has to be called at the end of a page fault if the memcg OOM
1911 * handler was enabled.
3812c8c8 1912 *
49426420 1913 * Memcg supports userspace OOM handling where failed allocations must
3812c8c8
JW
1914 * sleep on a waitqueue until the userspace task resolves the
1915 * situation. Sleeping directly in the charge context with all kinds
1916 * of locks held is not a good idea, instead we remember an OOM state
1917 * in the task and mem_cgroup_oom_synchronize() has to be called at
49426420 1918 * the end of the page fault to complete the OOM handling.
3812c8c8
JW
1919 *
1920 * Returns %true if an ongoing memcg OOM situation was detected and
49426420 1921 * completed, %false otherwise.
3812c8c8 1922 */
49426420 1923bool mem_cgroup_oom_synchronize(bool handle)
3812c8c8 1924{
49426420 1925 struct mem_cgroup *memcg = current->memcg_oom.memcg;
3812c8c8 1926 struct oom_wait_info owait;
49426420 1927 bool locked;
3812c8c8
JW
1928
1929 /* OOM is global, do not handle */
3812c8c8 1930 if (!memcg)
49426420 1931 return false;
3812c8c8 1932
c32b3cbe 1933 if (!handle || oom_killer_disabled)
49426420 1934 goto cleanup;
3812c8c8
JW
1935
1936 owait.memcg = memcg;
1937 owait.wait.flags = 0;
1938 owait.wait.func = memcg_oom_wake_function;
1939 owait.wait.private = current;
1940 INIT_LIST_HEAD(&owait.wait.task_list);
867578cb 1941
3812c8c8 1942 prepare_to_wait(&memcg_oom_waitq, &owait.wait, TASK_KILLABLE);
49426420
JW
1943 mem_cgroup_mark_under_oom(memcg);
1944
1945 locked = mem_cgroup_oom_trylock(memcg);
1946
1947 if (locked)
1948 mem_cgroup_oom_notify(memcg);
1949
1950 if (locked && !memcg->oom_kill_disable) {
1951 mem_cgroup_unmark_under_oom(memcg);
1952 finish_wait(&memcg_oom_waitq, &owait.wait);
1953 mem_cgroup_out_of_memory(memcg, current->memcg_oom.gfp_mask,
1954 current->memcg_oom.order);
1955 } else {
3812c8c8 1956 schedule();
49426420
JW
1957 mem_cgroup_unmark_under_oom(memcg);
1958 finish_wait(&memcg_oom_waitq, &owait.wait);
1959 }
1960
1961 if (locked) {
fb2a6fc5
JW
1962 mem_cgroup_oom_unlock(memcg);
1963 /*
1964 * There is no guarantee that an OOM-lock contender
1965 * sees the wakeups triggered by the OOM kill
1966 * uncharges. Wake any sleepers explicitely.
1967 */
1968 memcg_oom_recover(memcg);
1969 }
49426420
JW
1970cleanup:
1971 current->memcg_oom.memcg = NULL;
3812c8c8 1972 css_put(&memcg->css);
867578cb 1973 return true;
0b7f569e
KH
1974}
1975
d7365e78
JW
1976/**
1977 * mem_cgroup_begin_page_stat - begin a page state statistics transaction
1978 * @page: page that is going to change accounted state
32047e2a 1979 *
d7365e78
JW
1980 * This function must mark the beginning of an accounted page state
1981 * change to prevent double accounting when the page is concurrently
1982 * being moved to another memcg:
32047e2a 1983 *
6de22619 1984 * memcg = mem_cgroup_begin_page_stat(page);
d7365e78
JW
1985 * if (TestClearPageState(page))
1986 * mem_cgroup_update_page_stat(memcg, state, -1);
6de22619 1987 * mem_cgroup_end_page_stat(memcg);
d69b042f 1988 */
6de22619 1989struct mem_cgroup *mem_cgroup_begin_page_stat(struct page *page)
89c06bd5
KH
1990{
1991 struct mem_cgroup *memcg;
6de22619 1992 unsigned long flags;
89c06bd5 1993
6de22619
JW
1994 /*
1995 * The RCU lock is held throughout the transaction. The fast
1996 * path can get away without acquiring the memcg->move_lock
1997 * because page moving starts with an RCU grace period.
1998 *
1999 * The RCU lock also protects the memcg from being freed when
2000 * the page state that is going to change is the only thing
2001 * preventing the page from being uncharged.
2002 * E.g. end-writeback clearing PageWriteback(), which allows
2003 * migration to go ahead and uncharge the page before the
2004 * account transaction might be complete.
2005 */
d7365e78
JW
2006 rcu_read_lock();
2007
2008 if (mem_cgroup_disabled())
2009 return NULL;
89c06bd5 2010again:
1306a85a 2011 memcg = page->mem_cgroup;
29833315 2012 if (unlikely(!memcg))
d7365e78
JW
2013 return NULL;
2014
bdcbb659 2015 if (atomic_read(&memcg->moving_account) <= 0)
d7365e78 2016 return memcg;
89c06bd5 2017
6de22619 2018 spin_lock_irqsave(&memcg->move_lock, flags);
1306a85a 2019 if (memcg != page->mem_cgroup) {
6de22619 2020 spin_unlock_irqrestore(&memcg->move_lock, flags);
89c06bd5
KH
2021 goto again;
2022 }
6de22619
JW
2023
2024 /*
2025 * When charge migration first begins, we can have locked and
2026 * unlocked page stat updates happening concurrently. Track
2027 * the task who has the lock for mem_cgroup_end_page_stat().
2028 */
2029 memcg->move_lock_task = current;
2030 memcg->move_lock_flags = flags;
d7365e78
JW
2031
2032 return memcg;
89c06bd5
KH
2033}
2034
d7365e78
JW
2035/**
2036 * mem_cgroup_end_page_stat - finish a page state statistics transaction
2037 * @memcg: the memcg that was accounted against
d7365e78 2038 */
6de22619 2039void mem_cgroup_end_page_stat(struct mem_cgroup *memcg)
89c06bd5 2040{
6de22619
JW
2041 if (memcg && memcg->move_lock_task == current) {
2042 unsigned long flags = memcg->move_lock_flags;
2043
2044 memcg->move_lock_task = NULL;
2045 memcg->move_lock_flags = 0;
2046
2047 spin_unlock_irqrestore(&memcg->move_lock, flags);
2048 }
89c06bd5 2049
d7365e78 2050 rcu_read_unlock();
89c06bd5
KH
2051}
2052
d7365e78
JW
2053/**
2054 * mem_cgroup_update_page_stat - update page state statistics
2055 * @memcg: memcg to account against
2056 * @idx: page state item to account
2057 * @val: number of pages (positive or negative)
2058 *
2059 * See mem_cgroup_begin_page_stat() for locking requirements.
2060 */
2061void mem_cgroup_update_page_stat(struct mem_cgroup *memcg,
68b4876d 2062 enum mem_cgroup_stat_index idx, int val)
d69b042f 2063{
658b72c5 2064 VM_BUG_ON(!rcu_read_lock_held());
26174efd 2065
d7365e78
JW
2066 if (memcg)
2067 this_cpu_add(memcg->stat->count[idx], val);
d69b042f 2068}
26174efd 2069
cdec2e42
KH
2070/*
2071 * size of first charge trial. "32" comes from vmscan.c's magic value.
2072 * TODO: maybe necessary to use big numbers in big irons.
2073 */
7ec99d62 2074#define CHARGE_BATCH 32U
cdec2e42
KH
2075struct memcg_stock_pcp {
2076 struct mem_cgroup *cached; /* this never be root cgroup */
11c9ea4e 2077 unsigned int nr_pages;
cdec2e42 2078 struct work_struct work;
26fe6168 2079 unsigned long flags;
a0db00fc 2080#define FLUSHING_CACHED_CHARGE 0
cdec2e42
KH
2081};
2082static DEFINE_PER_CPU(struct memcg_stock_pcp, memcg_stock);
9f50fad6 2083static DEFINE_MUTEX(percpu_charge_mutex);
cdec2e42 2084
a0956d54
SS
2085/**
2086 * consume_stock: Try to consume stocked charge on this cpu.
2087 * @memcg: memcg to consume from.
2088 * @nr_pages: how many pages to charge.
2089 *
2090 * The charges will only happen if @memcg matches the current cpu's memcg
2091 * stock, and at least @nr_pages are available in that stock. Failure to
2092 * service an allocation will refill the stock.
2093 *
2094 * returns true if successful, false otherwise.
cdec2e42 2095 */
a0956d54 2096static bool consume_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2097{
2098 struct memcg_stock_pcp *stock;
3e32cb2e 2099 bool ret = false;
cdec2e42 2100
a0956d54 2101 if (nr_pages > CHARGE_BATCH)
3e32cb2e 2102 return ret;
a0956d54 2103
cdec2e42 2104 stock = &get_cpu_var(memcg_stock);
3e32cb2e 2105 if (memcg == stock->cached && stock->nr_pages >= nr_pages) {
a0956d54 2106 stock->nr_pages -= nr_pages;
3e32cb2e
JW
2107 ret = true;
2108 }
cdec2e42
KH
2109 put_cpu_var(memcg_stock);
2110 return ret;
2111}
2112
2113/*
3e32cb2e 2114 * Returns stocks cached in percpu and reset cached information.
cdec2e42
KH
2115 */
2116static void drain_stock(struct memcg_stock_pcp *stock)
2117{
2118 struct mem_cgroup *old = stock->cached;
2119
11c9ea4e 2120 if (stock->nr_pages) {
3e32cb2e 2121 page_counter_uncharge(&old->memory, stock->nr_pages);
cdec2e42 2122 if (do_swap_account)
3e32cb2e 2123 page_counter_uncharge(&old->memsw, stock->nr_pages);
e8ea14cc 2124 css_put_many(&old->css, stock->nr_pages);
11c9ea4e 2125 stock->nr_pages = 0;
cdec2e42
KH
2126 }
2127 stock->cached = NULL;
cdec2e42
KH
2128}
2129
2130/*
2131 * This must be called under preempt disabled or must be called by
2132 * a thread which is pinned to local cpu.
2133 */
2134static void drain_local_stock(struct work_struct *dummy)
2135{
7c8e0181 2136 struct memcg_stock_pcp *stock = this_cpu_ptr(&memcg_stock);
cdec2e42 2137 drain_stock(stock);
26fe6168 2138 clear_bit(FLUSHING_CACHED_CHARGE, &stock->flags);
cdec2e42
KH
2139}
2140
e4777496
MH
2141static void __init memcg_stock_init(void)
2142{
2143 int cpu;
2144
2145 for_each_possible_cpu(cpu) {
2146 struct memcg_stock_pcp *stock =
2147 &per_cpu(memcg_stock, cpu);
2148 INIT_WORK(&stock->work, drain_local_stock);
2149 }
2150}
2151
cdec2e42 2152/*
3e32cb2e 2153 * Cache charges(val) to local per_cpu area.
320cc51d 2154 * This will be consumed by consume_stock() function, later.
cdec2e42 2155 */
c0ff4b85 2156static void refill_stock(struct mem_cgroup *memcg, unsigned int nr_pages)
cdec2e42
KH
2157{
2158 struct memcg_stock_pcp *stock = &get_cpu_var(memcg_stock);
2159
c0ff4b85 2160 if (stock->cached != memcg) { /* reset if necessary */
cdec2e42 2161 drain_stock(stock);
c0ff4b85 2162 stock->cached = memcg;
cdec2e42 2163 }
11c9ea4e 2164 stock->nr_pages += nr_pages;
cdec2e42
KH
2165 put_cpu_var(memcg_stock);
2166}
2167
2168/*
c0ff4b85 2169 * Drains all per-CPU charge caches for given root_memcg resp. subtree
6d3d6aa2 2170 * of the hierarchy under it.
cdec2e42 2171 */
6d3d6aa2 2172static void drain_all_stock(struct mem_cgroup *root_memcg)
cdec2e42 2173{
26fe6168 2174 int cpu, curcpu;
d38144b7 2175
6d3d6aa2
JW
2176 /* If someone's already draining, avoid adding running more workers. */
2177 if (!mutex_trylock(&percpu_charge_mutex))
2178 return;
cdec2e42 2179 /* Notify other cpus that system-wide "drain" is running */
cdec2e42 2180 get_online_cpus();
5af12d0e 2181 curcpu = get_cpu();
cdec2e42
KH
2182 for_each_online_cpu(cpu) {
2183 struct memcg_stock_pcp *stock = &per_cpu(memcg_stock, cpu);
c0ff4b85 2184 struct mem_cgroup *memcg;
26fe6168 2185
c0ff4b85
R
2186 memcg = stock->cached;
2187 if (!memcg || !stock->nr_pages)
26fe6168 2188 continue;
2314b42d 2189 if (!mem_cgroup_is_descendant(memcg, root_memcg))
3e92041d 2190 continue;
d1a05b69
MH
2191 if (!test_and_set_bit(FLUSHING_CACHED_CHARGE, &stock->flags)) {
2192 if (cpu == curcpu)
2193 drain_local_stock(&stock->work);
2194 else
2195 schedule_work_on(cpu, &stock->work);
2196 }
cdec2e42 2197 }
5af12d0e 2198 put_cpu();
f894ffa8 2199 put_online_cpus();
9f50fad6 2200 mutex_unlock(&percpu_charge_mutex);
cdec2e42
KH
2201}
2202
711d3d2c
KH
2203/*
2204 * This function drains percpu counter value from DEAD cpu and
2205 * move it to local cpu. Note that this function can be preempted.
2206 */
c0ff4b85 2207static void mem_cgroup_drain_pcp_counter(struct mem_cgroup *memcg, int cpu)
711d3d2c
KH
2208{
2209 int i;
2210
c0ff4b85 2211 spin_lock(&memcg->pcp_counter_lock);
6104621d 2212 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
c0ff4b85 2213 long x = per_cpu(memcg->stat->count[i], cpu);
711d3d2c 2214
c0ff4b85
R
2215 per_cpu(memcg->stat->count[i], cpu) = 0;
2216 memcg->nocpu_base.count[i] += x;
711d3d2c 2217 }
e9f8974f 2218 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
c0ff4b85 2219 unsigned long x = per_cpu(memcg->stat->events[i], cpu);
e9f8974f 2220
c0ff4b85
R
2221 per_cpu(memcg->stat->events[i], cpu) = 0;
2222 memcg->nocpu_base.events[i] += x;
e9f8974f 2223 }
c0ff4b85 2224 spin_unlock(&memcg->pcp_counter_lock);
711d3d2c
KH
2225}
2226
0db0628d 2227static int memcg_cpu_hotplug_callback(struct notifier_block *nb,
cdec2e42
KH
2228 unsigned long action,
2229 void *hcpu)
2230{
2231 int cpu = (unsigned long)hcpu;
2232 struct memcg_stock_pcp *stock;
711d3d2c 2233 struct mem_cgroup *iter;
cdec2e42 2234
619d094b 2235 if (action == CPU_ONLINE)
1489ebad 2236 return NOTIFY_OK;
1489ebad 2237
d833049b 2238 if (action != CPU_DEAD && action != CPU_DEAD_FROZEN)
cdec2e42 2239 return NOTIFY_OK;
711d3d2c 2240
9f3a0d09 2241 for_each_mem_cgroup(iter)
711d3d2c
KH
2242 mem_cgroup_drain_pcp_counter(iter, cpu);
2243
cdec2e42
KH
2244 stock = &per_cpu(memcg_stock, cpu);
2245 drain_stock(stock);
2246 return NOTIFY_OK;
2247}
2248
00501b53
JW
2249static int try_charge(struct mem_cgroup *memcg, gfp_t gfp_mask,
2250 unsigned int nr_pages)
8a9f3ccd 2251{
7ec99d62 2252 unsigned int batch = max(CHARGE_BATCH, nr_pages);
9b130619 2253 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
6539cc05 2254 struct mem_cgroup *mem_over_limit;
3e32cb2e 2255 struct page_counter *counter;
6539cc05 2256 unsigned long nr_reclaimed;
b70a2a21
JW
2257 bool may_swap = true;
2258 bool drained = false;
05b84301 2259 int ret = 0;
a636b327 2260
ce00a967
JW
2261 if (mem_cgroup_is_root(memcg))
2262 goto done;
6539cc05 2263retry:
b6b6cc72
MH
2264 if (consume_stock(memcg, nr_pages))
2265 goto done;
8a9f3ccd 2266
3fbe7244 2267 if (!do_swap_account ||
3e32cb2e
JW
2268 !page_counter_try_charge(&memcg->memsw, batch, &counter)) {
2269 if (!page_counter_try_charge(&memcg->memory, batch, &counter))
6539cc05 2270 goto done_restock;
3fbe7244 2271 if (do_swap_account)
3e32cb2e
JW
2272 page_counter_uncharge(&memcg->memsw, batch);
2273 mem_over_limit = mem_cgroup_from_counter(counter, memory);
3fbe7244 2274 } else {
3e32cb2e 2275 mem_over_limit = mem_cgroup_from_counter(counter, memsw);
b70a2a21 2276 may_swap = false;
3fbe7244 2277 }
7a81b88c 2278
6539cc05
JW
2279 if (batch > nr_pages) {
2280 batch = nr_pages;
2281 goto retry;
2282 }
6d61ef40 2283
06b078fc
JW
2284 /*
2285 * Unlike in global OOM situations, memcg is not in a physical
2286 * memory shortage. Allow dying and OOM-killed tasks to
2287 * bypass the last charges so that they can exit quickly and
2288 * free their memory.
2289 */
2290 if (unlikely(test_thread_flag(TIF_MEMDIE) ||
2291 fatal_signal_pending(current) ||
2292 current->flags & PF_EXITING))
2293 goto bypass;
2294
2295 if (unlikely(task_in_memcg_oom(current)))
2296 goto nomem;
2297
6539cc05
JW
2298 if (!(gfp_mask & __GFP_WAIT))
2299 goto nomem;
4b534334 2300
241994ed
JW
2301 mem_cgroup_events(mem_over_limit, MEMCG_MAX, 1);
2302
b70a2a21
JW
2303 nr_reclaimed = try_to_free_mem_cgroup_pages(mem_over_limit, nr_pages,
2304 gfp_mask, may_swap);
6539cc05 2305
61e02c74 2306 if (mem_cgroup_margin(mem_over_limit) >= nr_pages)
6539cc05 2307 goto retry;
28c34c29 2308
b70a2a21 2309 if (!drained) {
6d3d6aa2 2310 drain_all_stock(mem_over_limit);
b70a2a21
JW
2311 drained = true;
2312 goto retry;
2313 }
2314
28c34c29
JW
2315 if (gfp_mask & __GFP_NORETRY)
2316 goto nomem;
6539cc05
JW
2317 /*
2318 * Even though the limit is exceeded at this point, reclaim
2319 * may have been able to free some pages. Retry the charge
2320 * before killing the task.
2321 *
2322 * Only for regular pages, though: huge pages are rather
2323 * unlikely to succeed so close to the limit, and we fall back
2324 * to regular pages anyway in case of failure.
2325 */
61e02c74 2326 if (nr_reclaimed && nr_pages <= (1 << PAGE_ALLOC_COSTLY_ORDER))
6539cc05
JW
2327 goto retry;
2328 /*
2329 * At task move, charge accounts can be doubly counted. So, it's
2330 * better to wait until the end of task_move if something is going on.
2331 */
2332 if (mem_cgroup_wait_acct_move(mem_over_limit))
2333 goto retry;
2334
9b130619
JW
2335 if (nr_retries--)
2336 goto retry;
2337
06b078fc
JW
2338 if (gfp_mask & __GFP_NOFAIL)
2339 goto bypass;
2340
6539cc05
JW
2341 if (fatal_signal_pending(current))
2342 goto bypass;
2343
241994ed
JW
2344 mem_cgroup_events(mem_over_limit, MEMCG_OOM, 1);
2345
61e02c74 2346 mem_cgroup_oom(mem_over_limit, gfp_mask, get_order(nr_pages));
7a81b88c 2347nomem:
6d1fdc48 2348 if (!(gfp_mask & __GFP_NOFAIL))
3168ecbe 2349 return -ENOMEM;
867578cb 2350bypass:
ce00a967 2351 return -EINTR;
6539cc05
JW
2352
2353done_restock:
e8ea14cc 2354 css_get_many(&memcg->css, batch);
6539cc05
JW
2355 if (batch > nr_pages)
2356 refill_stock(memcg, batch - nr_pages);
241994ed
JW
2357 /*
2358 * If the hierarchy is above the normal consumption range,
2359 * make the charging task trim their excess contribution.
2360 */
2361 do {
2362 if (page_counter_read(&memcg->memory) <= memcg->high)
2363 continue;
2364 mem_cgroup_events(memcg, MEMCG_HIGH, 1);
2365 try_to_free_mem_cgroup_pages(memcg, nr_pages, gfp_mask, true);
2366 } while ((memcg = parent_mem_cgroup(memcg)));
6539cc05 2367done:
05b84301 2368 return ret;
7a81b88c 2369}
8a9f3ccd 2370
00501b53 2371static void cancel_charge(struct mem_cgroup *memcg, unsigned int nr_pages)
a3032a2c 2372{
ce00a967
JW
2373 if (mem_cgroup_is_root(memcg))
2374 return;
2375
3e32cb2e 2376 page_counter_uncharge(&memcg->memory, nr_pages);
05b84301 2377 if (do_swap_account)
3e32cb2e 2378 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967 2379
e8ea14cc 2380 css_put_many(&memcg->css, nr_pages);
d01dd17f
KH
2381}
2382
a3b2d692
KH
2383/*
2384 * A helper function to get mem_cgroup from ID. must be called under
ec903c0c
TH
2385 * rcu_read_lock(). The caller is responsible for calling
2386 * css_tryget_online() if the mem_cgroup is used for charging. (dropping
2387 * refcnt from swap can be called against removed memcg.)
a3b2d692
KH
2388 */
2389static struct mem_cgroup *mem_cgroup_lookup(unsigned short id)
2390{
a3b2d692
KH
2391 /* ID 0 is unused ID */
2392 if (!id)
2393 return NULL;
34c00c31 2394 return mem_cgroup_from_id(id);
a3b2d692
KH
2395}
2396
0a31bc97
JW
2397/*
2398 * try_get_mem_cgroup_from_page - look up page's memcg association
2399 * @page: the page
2400 *
2401 * Look up, get a css reference, and return the memcg that owns @page.
2402 *
2403 * The page must be locked to prevent racing with swap-in and page
2404 * cache charges. If coming from an unlocked page table, the caller
2405 * must ensure the page is on the LRU or this can race with charging.
2406 */
e42d9d5d 2407struct mem_cgroup *try_get_mem_cgroup_from_page(struct page *page)
b5a84319 2408{
29833315 2409 struct mem_cgroup *memcg;
a3b2d692 2410 unsigned short id;
b5a84319
KH
2411 swp_entry_t ent;
2412
309381fe 2413 VM_BUG_ON_PAGE(!PageLocked(page), page);
3c776e64 2414
1306a85a 2415 memcg = page->mem_cgroup;
29833315
JW
2416 if (memcg) {
2417 if (!css_tryget_online(&memcg->css))
c0ff4b85 2418 memcg = NULL;
e42d9d5d 2419 } else if (PageSwapCache(page)) {
3c776e64 2420 ent.val = page_private(page);
9fb4b7cc 2421 id = lookup_swap_cgroup_id(ent);
a3b2d692 2422 rcu_read_lock();
c0ff4b85 2423 memcg = mem_cgroup_lookup(id);
ec903c0c 2424 if (memcg && !css_tryget_online(&memcg->css))
c0ff4b85 2425 memcg = NULL;
a3b2d692 2426 rcu_read_unlock();
3c776e64 2427 }
c0ff4b85 2428 return memcg;
b5a84319
KH
2429}
2430
0a31bc97
JW
2431static void lock_page_lru(struct page *page, int *isolated)
2432{
2433 struct zone *zone = page_zone(page);
2434
2435 spin_lock_irq(&zone->lru_lock);
2436 if (PageLRU(page)) {
2437 struct lruvec *lruvec;
2438
2439 lruvec = mem_cgroup_page_lruvec(page, zone);
2440 ClearPageLRU(page);
2441 del_page_from_lru_list(page, lruvec, page_lru(page));
2442 *isolated = 1;
2443 } else
2444 *isolated = 0;
2445}
2446
2447static void unlock_page_lru(struct page *page, int isolated)
2448{
2449 struct zone *zone = page_zone(page);
2450
2451 if (isolated) {
2452 struct lruvec *lruvec;
2453
2454 lruvec = mem_cgroup_page_lruvec(page, zone);
2455 VM_BUG_ON_PAGE(PageLRU(page), page);
2456 SetPageLRU(page);
2457 add_page_to_lru_list(page, lruvec, page_lru(page));
2458 }
2459 spin_unlock_irq(&zone->lru_lock);
2460}
2461
00501b53 2462static void commit_charge(struct page *page, struct mem_cgroup *memcg,
6abb5a86 2463 bool lrucare)
7a81b88c 2464{
0a31bc97 2465 int isolated;
9ce70c02 2466
1306a85a 2467 VM_BUG_ON_PAGE(page->mem_cgroup, page);
9ce70c02
HD
2468
2469 /*
2470 * In some cases, SwapCache and FUSE(splice_buf->radixtree), the page
2471 * may already be on some other mem_cgroup's LRU. Take care of it.
2472 */
0a31bc97
JW
2473 if (lrucare)
2474 lock_page_lru(page, &isolated);
9ce70c02 2475
0a31bc97
JW
2476 /*
2477 * Nobody should be changing or seriously looking at
1306a85a 2478 * page->mem_cgroup at this point:
0a31bc97
JW
2479 *
2480 * - the page is uncharged
2481 *
2482 * - the page is off-LRU
2483 *
2484 * - an anonymous fault has exclusive page access, except for
2485 * a locked page table
2486 *
2487 * - a page cache insertion, a swapin fault, or a migration
2488 * have the page locked
2489 */
1306a85a 2490 page->mem_cgroup = memcg;
9ce70c02 2491
0a31bc97
JW
2492 if (lrucare)
2493 unlock_page_lru(page, isolated);
7a81b88c 2494}
66e1707b 2495
7ae1e1d0 2496#ifdef CONFIG_MEMCG_KMEM
dbf22eb6
VD
2497int memcg_charge_kmem(struct mem_cgroup *memcg, gfp_t gfp,
2498 unsigned long nr_pages)
7ae1e1d0 2499{
3e32cb2e 2500 struct page_counter *counter;
7ae1e1d0 2501 int ret = 0;
7ae1e1d0 2502
3e32cb2e
JW
2503 ret = page_counter_try_charge(&memcg->kmem, nr_pages, &counter);
2504 if (ret < 0)
7ae1e1d0
GC
2505 return ret;
2506
3e32cb2e 2507 ret = try_charge(memcg, gfp, nr_pages);
7ae1e1d0
GC
2508 if (ret == -EINTR) {
2509 /*
00501b53
JW
2510 * try_charge() chose to bypass to root due to OOM kill or
2511 * fatal signal. Since our only options are to either fail
2512 * the allocation or charge it to this cgroup, do it as a
2513 * temporary condition. But we can't fail. From a kmem/slab
2514 * perspective, the cache has already been selected, by
2515 * mem_cgroup_kmem_get_cache(), so it is too late to change
7ae1e1d0
GC
2516 * our minds.
2517 *
2518 * This condition will only trigger if the task entered
00501b53
JW
2519 * memcg_charge_kmem in a sane state, but was OOM-killed
2520 * during try_charge() above. Tasks that were already dying
2521 * when the allocation triggers should have been already
7ae1e1d0
GC
2522 * directed to the root cgroup in memcontrol.h
2523 */
3e32cb2e 2524 page_counter_charge(&memcg->memory, nr_pages);
7ae1e1d0 2525 if (do_swap_account)
3e32cb2e 2526 page_counter_charge(&memcg->memsw, nr_pages);
e8ea14cc 2527 css_get_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2528 ret = 0;
2529 } else if (ret)
3e32cb2e 2530 page_counter_uncharge(&memcg->kmem, nr_pages);
7ae1e1d0
GC
2531
2532 return ret;
2533}
2534
dbf22eb6 2535void memcg_uncharge_kmem(struct mem_cgroup *memcg, unsigned long nr_pages)
7ae1e1d0 2536{
3e32cb2e 2537 page_counter_uncharge(&memcg->memory, nr_pages);
7ae1e1d0 2538 if (do_swap_account)
3e32cb2e 2539 page_counter_uncharge(&memcg->memsw, nr_pages);
7de37682 2540
64f21993 2541 page_counter_uncharge(&memcg->kmem, nr_pages);
7de37682 2542
e8ea14cc 2543 css_put_many(&memcg->css, nr_pages);
7ae1e1d0
GC
2544}
2545
2633d7a0
GC
2546/*
2547 * helper for acessing a memcg's index. It will be used as an index in the
2548 * child cache array in kmem_cache, and also to derive its name. This function
2549 * will return -1 when this is not a kmem-limited memcg.
2550 */
2551int memcg_cache_id(struct mem_cgroup *memcg)
2552{
2553 return memcg ? memcg->kmemcg_id : -1;
2554}
2555
f3bb3043 2556static int memcg_alloc_cache_id(void)
55007d84 2557{
f3bb3043
VD
2558 int id, size;
2559 int err;
2560
2561 id = ida_simple_get(&kmem_limited_groups,
2562 0, MEMCG_CACHES_MAX_SIZE, GFP_KERNEL);
2563 if (id < 0)
2564 return id;
55007d84 2565
f3bb3043
VD
2566 if (id < memcg_limited_groups_array_size)
2567 return id;
2568
2569 /*
2570 * There's no space for the new id in memcg_caches arrays,
2571 * so we have to grow them.
2572 */
2573
2574 size = 2 * (id + 1);
55007d84
GC
2575 if (size < MEMCG_CACHES_MIN_SIZE)
2576 size = MEMCG_CACHES_MIN_SIZE;
2577 else if (size > MEMCG_CACHES_MAX_SIZE)
2578 size = MEMCG_CACHES_MAX_SIZE;
2579
f3bb3043 2580 err = memcg_update_all_caches(size);
f3bb3043
VD
2581 if (err) {
2582 ida_simple_remove(&kmem_limited_groups, id);
2583 return err;
2584 }
2585 return id;
2586}
2587
2588static void memcg_free_cache_id(int id)
2589{
2590 ida_simple_remove(&kmem_limited_groups, id);
55007d84
GC
2591}
2592
2593/*
2594 * We should update the current array size iff all caches updates succeed. This
2595 * can only be done from the slab side. The slab mutex needs to be held when
2596 * calling this.
2597 */
2598void memcg_update_array_size(int num)
2599{
f3bb3043 2600 memcg_limited_groups_array_size = num;
55007d84
GC
2601}
2602
d5b3cf71 2603struct memcg_kmem_cache_create_work {
5722d094
VD
2604 struct mem_cgroup *memcg;
2605 struct kmem_cache *cachep;
2606 struct work_struct work;
2607};
2608
d5b3cf71 2609static void memcg_kmem_cache_create_func(struct work_struct *w)
d7f25f8a 2610{
d5b3cf71
VD
2611 struct memcg_kmem_cache_create_work *cw =
2612 container_of(w, struct memcg_kmem_cache_create_work, work);
5722d094
VD
2613 struct mem_cgroup *memcg = cw->memcg;
2614 struct kmem_cache *cachep = cw->cachep;
d7f25f8a 2615
d5b3cf71 2616 memcg_create_kmem_cache(memcg, cachep);
bd673145 2617
5722d094 2618 css_put(&memcg->css);
d7f25f8a
GC
2619 kfree(cw);
2620}
2621
2622/*
2623 * Enqueue the creation of a per-memcg kmem_cache.
d7f25f8a 2624 */
d5b3cf71
VD
2625static void __memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2626 struct kmem_cache *cachep)
d7f25f8a 2627{
d5b3cf71 2628 struct memcg_kmem_cache_create_work *cw;
d7f25f8a 2629
776ed0f0 2630 cw = kmalloc(sizeof(*cw), GFP_NOWAIT);
8135be5a 2631 if (!cw)
d7f25f8a 2632 return;
8135be5a
VD
2633
2634 css_get(&memcg->css);
d7f25f8a
GC
2635
2636 cw->memcg = memcg;
2637 cw->cachep = cachep;
d5b3cf71 2638 INIT_WORK(&cw->work, memcg_kmem_cache_create_func);
d7f25f8a 2639
d7f25f8a
GC
2640 schedule_work(&cw->work);
2641}
2642
d5b3cf71
VD
2643static void memcg_schedule_kmem_cache_create(struct mem_cgroup *memcg,
2644 struct kmem_cache *cachep)
0e9d92f2
GC
2645{
2646 /*
2647 * We need to stop accounting when we kmalloc, because if the
2648 * corresponding kmalloc cache is not yet created, the first allocation
d5b3cf71 2649 * in __memcg_schedule_kmem_cache_create will recurse.
0e9d92f2
GC
2650 *
2651 * However, it is better to enclose the whole function. Depending on
2652 * the debugging options enabled, INIT_WORK(), for instance, can
2653 * trigger an allocation. This too, will make us recurse. Because at
2654 * this point we can't allow ourselves back into memcg_kmem_get_cache,
2655 * the safest choice is to do it like this, wrapping the whole function.
2656 */
6f185c29 2657 current->memcg_kmem_skip_account = 1;
d5b3cf71 2658 __memcg_schedule_kmem_cache_create(memcg, cachep);
6f185c29 2659 current->memcg_kmem_skip_account = 0;
0e9d92f2 2660}
c67a8a68 2661
d7f25f8a
GC
2662/*
2663 * Return the kmem_cache we're supposed to use for a slab allocation.
2664 * We try to use the current memcg's version of the cache.
2665 *
2666 * If the cache does not exist yet, if we are the first user of it,
2667 * we either create it immediately, if possible, or create it asynchronously
2668 * in a workqueue.
2669 * In the latter case, we will let the current allocation go through with
2670 * the original cache.
2671 *
2672 * Can't be called in interrupt context or from kernel threads.
2673 * This function needs to be called with rcu_read_lock() held.
2674 */
056b7cce 2675struct kmem_cache *__memcg_kmem_get_cache(struct kmem_cache *cachep)
d7f25f8a
GC
2676{
2677 struct mem_cgroup *memcg;
959c8963 2678 struct kmem_cache *memcg_cachep;
d7f25f8a
GC
2679
2680 VM_BUG_ON(!cachep->memcg_params);
2681 VM_BUG_ON(!cachep->memcg_params->is_root_cache);
2682
9d100c5e 2683 if (current->memcg_kmem_skip_account)
0e9d92f2
GC
2684 return cachep;
2685
8135be5a 2686 memcg = get_mem_cgroup_from_mm(current->mm);
cf2b8fbf 2687 if (!memcg_kmem_is_active(memcg))
ca0dde97 2688 goto out;
d7f25f8a 2689
959c8963 2690 memcg_cachep = cache_from_memcg_idx(cachep, memcg_cache_id(memcg));
8135be5a
VD
2691 if (likely(memcg_cachep))
2692 return memcg_cachep;
ca0dde97
LZ
2693
2694 /*
2695 * If we are in a safe context (can wait, and not in interrupt
2696 * context), we could be be predictable and return right away.
2697 * This would guarantee that the allocation being performed
2698 * already belongs in the new cache.
2699 *
2700 * However, there are some clashes that can arrive from locking.
2701 * For instance, because we acquire the slab_mutex while doing
776ed0f0
VD
2702 * memcg_create_kmem_cache, this means no further allocation
2703 * could happen with the slab_mutex held. So it's better to
2704 * defer everything.
ca0dde97 2705 */
d5b3cf71 2706 memcg_schedule_kmem_cache_create(memcg, cachep);
ca0dde97 2707out:
8135be5a 2708 css_put(&memcg->css);
ca0dde97 2709 return cachep;
d7f25f8a 2710}
d7f25f8a 2711
8135be5a
VD
2712void __memcg_kmem_put_cache(struct kmem_cache *cachep)
2713{
2714 if (!is_root_cache(cachep))
2715 css_put(&cachep->memcg_params->memcg->css);
2716}
2717
7ae1e1d0
GC
2718/*
2719 * We need to verify if the allocation against current->mm->owner's memcg is
2720 * possible for the given order. But the page is not allocated yet, so we'll
2721 * need a further commit step to do the final arrangements.
2722 *
2723 * It is possible for the task to switch cgroups in this mean time, so at
2724 * commit time, we can't rely on task conversion any longer. We'll then use
2725 * the handle argument to return to the caller which cgroup we should commit
2726 * against. We could also return the memcg directly and avoid the pointer
2727 * passing, but a boolean return value gives better semantics considering
2728 * the compiled-out case as well.
2729 *
2730 * Returning true means the allocation is possible.
2731 */
2732bool
2733__memcg_kmem_newpage_charge(gfp_t gfp, struct mem_cgroup **_memcg, int order)
2734{
2735 struct mem_cgroup *memcg;
2736 int ret;
2737
2738 *_memcg = NULL;
6d42c232 2739
df381975 2740 memcg = get_mem_cgroup_from_mm(current->mm);
7ae1e1d0 2741
cf2b8fbf 2742 if (!memcg_kmem_is_active(memcg)) {
7ae1e1d0
GC
2743 css_put(&memcg->css);
2744 return true;
2745 }
2746
3e32cb2e 2747 ret = memcg_charge_kmem(memcg, gfp, 1 << order);
7ae1e1d0
GC
2748 if (!ret)
2749 *_memcg = memcg;
7ae1e1d0
GC
2750
2751 css_put(&memcg->css);
2752 return (ret == 0);
2753}
2754
2755void __memcg_kmem_commit_charge(struct page *page, struct mem_cgroup *memcg,
2756 int order)
2757{
7ae1e1d0
GC
2758 VM_BUG_ON(mem_cgroup_is_root(memcg));
2759
2760 /* The page allocation failed. Revert */
2761 if (!page) {
3e32cb2e 2762 memcg_uncharge_kmem(memcg, 1 << order);
7ae1e1d0
GC
2763 return;
2764 }
1306a85a 2765 page->mem_cgroup = memcg;
7ae1e1d0
GC
2766}
2767
2768void __memcg_kmem_uncharge_pages(struct page *page, int order)
2769{
1306a85a 2770 struct mem_cgroup *memcg = page->mem_cgroup;
7ae1e1d0 2771
7ae1e1d0
GC
2772 if (!memcg)
2773 return;
2774
309381fe 2775 VM_BUG_ON_PAGE(mem_cgroup_is_root(memcg), page);
29833315 2776
3e32cb2e 2777 memcg_uncharge_kmem(memcg, 1 << order);
1306a85a 2778 page->mem_cgroup = NULL;
7ae1e1d0
GC
2779}
2780#endif /* CONFIG_MEMCG_KMEM */
2781
ca3e0214
KH
2782#ifdef CONFIG_TRANSPARENT_HUGEPAGE
2783
ca3e0214
KH
2784/*
2785 * Because tail pages are not marked as "used", set it. We're under
e94c8a9c
KH
2786 * zone->lru_lock, 'splitting on pmd' and compound_lock.
2787 * charge/uncharge will be never happen and move_account() is done under
2788 * compound_lock(), so we don't have to take care of races.
ca3e0214 2789 */
e94c8a9c 2790void mem_cgroup_split_huge_fixup(struct page *head)
ca3e0214 2791{
e94c8a9c 2792 int i;
ca3e0214 2793
3d37c4a9
KH
2794 if (mem_cgroup_disabled())
2795 return;
b070e65c 2796
29833315 2797 for (i = 1; i < HPAGE_PMD_NR; i++)
1306a85a 2798 head[i].mem_cgroup = head->mem_cgroup;
b9982f8d 2799
1306a85a 2800 __this_cpu_sub(head->mem_cgroup->stat->count[MEM_CGROUP_STAT_RSS_HUGE],
b070e65c 2801 HPAGE_PMD_NR);
ca3e0214 2802}
12d27107 2803#endif /* CONFIG_TRANSPARENT_HUGEPAGE */
ca3e0214 2804
f817ed48 2805/**
de3638d9 2806 * mem_cgroup_move_account - move account of the page
5564e88b 2807 * @page: the page
7ec99d62 2808 * @nr_pages: number of regular pages (>1 for huge pages)
f817ed48
KH
2809 * @from: mem_cgroup which the page is moved from.
2810 * @to: mem_cgroup which the page is moved to. @from != @to.
2811 *
2812 * The caller must confirm following.
08e552c6 2813 * - page is not on LRU (isolate_page() is useful.)
7ec99d62 2814 * - compound_lock is held when nr_pages > 1
f817ed48 2815 *
2f3479b1
KH
2816 * This function doesn't do "charge" to new cgroup and doesn't do "uncharge"
2817 * from old cgroup.
f817ed48 2818 */
7ec99d62
JW
2819static int mem_cgroup_move_account(struct page *page,
2820 unsigned int nr_pages,
7ec99d62 2821 struct mem_cgroup *from,
2f3479b1 2822 struct mem_cgroup *to)
f817ed48 2823{
de3638d9
JW
2824 unsigned long flags;
2825 int ret;
987eba66 2826
f817ed48 2827 VM_BUG_ON(from == to);
309381fe 2828 VM_BUG_ON_PAGE(PageLRU(page), page);
de3638d9
JW
2829 /*
2830 * The page is isolated from LRU. So, collapse function
2831 * will not handle this page. But page splitting can happen.
2832 * Do this check under compound_page_lock(). The caller should
2833 * hold it.
2834 */
2835 ret = -EBUSY;
7ec99d62 2836 if (nr_pages > 1 && !PageTransHuge(page))
de3638d9
JW
2837 goto out;
2838
0a31bc97 2839 /*
1306a85a 2840 * Prevent mem_cgroup_migrate() from looking at page->mem_cgroup
0a31bc97
JW
2841 * of its source page while we change it: page migration takes
2842 * both pages off the LRU, but page cache replacement doesn't.
2843 */
2844 if (!trylock_page(page))
2845 goto out;
de3638d9
JW
2846
2847 ret = -EINVAL;
1306a85a 2848 if (page->mem_cgroup != from)
0a31bc97 2849 goto out_unlock;
de3638d9 2850
354a4783 2851 spin_lock_irqsave(&from->move_lock, flags);
f817ed48 2852
0a31bc97 2853 if (!PageAnon(page) && page_mapped(page)) {
59d1d256
JW
2854 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2855 nr_pages);
2856 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_FILE_MAPPED],
2857 nr_pages);
2858 }
3ea67d06 2859
59d1d256
JW
2860 if (PageWriteback(page)) {
2861 __this_cpu_sub(from->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2862 nr_pages);
2863 __this_cpu_add(to->stat->count[MEM_CGROUP_STAT_WRITEBACK],
2864 nr_pages);
2865 }
3ea67d06 2866
0a31bc97 2867 /*
1306a85a 2868 * It is safe to change page->mem_cgroup here because the page
0a31bc97
JW
2869 * is referenced, charged, and isolated - we can't race with
2870 * uncharging, charging, migration, or LRU putback.
2871 */
d69b042f 2872
854ffa8d 2873 /* caller should have done css_get */
1306a85a 2874 page->mem_cgroup = to;
354a4783
JW
2875 spin_unlock_irqrestore(&from->move_lock, flags);
2876
de3638d9 2877 ret = 0;
0a31bc97
JW
2878
2879 local_irq_disable();
2880 mem_cgroup_charge_statistics(to, page, nr_pages);
5564e88b 2881 memcg_check_events(to, page);
0a31bc97 2882 mem_cgroup_charge_statistics(from, page, -nr_pages);
5564e88b 2883 memcg_check_events(from, page);
0a31bc97
JW
2884 local_irq_enable();
2885out_unlock:
2886 unlock_page(page);
de3638d9 2887out:
f817ed48
KH
2888 return ret;
2889}
2890
c255a458 2891#ifdef CONFIG_MEMCG_SWAP
0a31bc97
JW
2892static void mem_cgroup_swap_statistics(struct mem_cgroup *memcg,
2893 bool charge)
d13d1443 2894{
0a31bc97
JW
2895 int val = (charge) ? 1 : -1;
2896 this_cpu_add(memcg->stat->count[MEM_CGROUP_STAT_SWAP], val);
d13d1443 2897}
02491447
DN
2898
2899/**
2900 * mem_cgroup_move_swap_account - move swap charge and swap_cgroup's record.
2901 * @entry: swap entry to be moved
2902 * @from: mem_cgroup which the entry is moved from
2903 * @to: mem_cgroup which the entry is moved to
2904 *
2905 * It succeeds only when the swap_cgroup's record for this entry is the same
2906 * as the mem_cgroup's id of @from.
2907 *
2908 * Returns 0 on success, -EINVAL on failure.
2909 *
3e32cb2e 2910 * The caller must have charged to @to, IOW, called page_counter_charge() about
02491447
DN
2911 * both res and memsw, and called css_get().
2912 */
2913static int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2914 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2915{
2916 unsigned short old_id, new_id;
2917
34c00c31
LZ
2918 old_id = mem_cgroup_id(from);
2919 new_id = mem_cgroup_id(to);
02491447
DN
2920
2921 if (swap_cgroup_cmpxchg(entry, old_id, new_id) == old_id) {
02491447 2922 mem_cgroup_swap_statistics(from, false);
483c30b5 2923 mem_cgroup_swap_statistics(to, true);
02491447
DN
2924 return 0;
2925 }
2926 return -EINVAL;
2927}
2928#else
2929static inline int mem_cgroup_move_swap_account(swp_entry_t entry,
e91cbb42 2930 struct mem_cgroup *from, struct mem_cgroup *to)
02491447
DN
2931{
2932 return -EINVAL;
2933}
8c7c6e34 2934#endif
d13d1443 2935
3e32cb2e 2936static DEFINE_MUTEX(memcg_limit_mutex);
f212ad7c 2937
d38d2a75 2938static int mem_cgroup_resize_limit(struct mem_cgroup *memcg,
3e32cb2e 2939 unsigned long limit)
628f4235 2940{
3e32cb2e
JW
2941 unsigned long curusage;
2942 unsigned long oldusage;
2943 bool enlarge = false;
81d39c20 2944 int retry_count;
3e32cb2e 2945 int ret;
81d39c20
KH
2946
2947 /*
2948 * For keeping hierarchical_reclaim simple, how long we should retry
2949 * is depends on callers. We set our retry-count to be function
2950 * of # of children which we should visit in this loop.
2951 */
3e32cb2e
JW
2952 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
2953 mem_cgroup_count_children(memcg);
81d39c20 2954
3e32cb2e 2955 oldusage = page_counter_read(&memcg->memory);
628f4235 2956
3e32cb2e 2957 do {
628f4235
KH
2958 if (signal_pending(current)) {
2959 ret = -EINTR;
2960 break;
2961 }
3e32cb2e
JW
2962
2963 mutex_lock(&memcg_limit_mutex);
2964 if (limit > memcg->memsw.limit) {
2965 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 2966 ret = -EINVAL;
628f4235
KH
2967 break;
2968 }
3e32cb2e
JW
2969 if (limit > memcg->memory.limit)
2970 enlarge = true;
2971 ret = page_counter_limit(&memcg->memory, limit);
2972 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
2973
2974 if (!ret)
2975 break;
2976
b70a2a21
JW
2977 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, true);
2978
3e32cb2e 2979 curusage = page_counter_read(&memcg->memory);
81d39c20 2980 /* Usage is reduced ? */
f894ffa8 2981 if (curusage >= oldusage)
81d39c20
KH
2982 retry_count--;
2983 else
2984 oldusage = curusage;
3e32cb2e
JW
2985 } while (retry_count);
2986
3c11ecf4
KH
2987 if (!ret && enlarge)
2988 memcg_oom_recover(memcg);
14797e23 2989
8c7c6e34
KH
2990 return ret;
2991}
2992
338c8431 2993static int mem_cgroup_resize_memsw_limit(struct mem_cgroup *memcg,
3e32cb2e 2994 unsigned long limit)
8c7c6e34 2995{
3e32cb2e
JW
2996 unsigned long curusage;
2997 unsigned long oldusage;
2998 bool enlarge = false;
81d39c20 2999 int retry_count;
3e32cb2e 3000 int ret;
8c7c6e34 3001
81d39c20 3002 /* see mem_cgroup_resize_res_limit */
3e32cb2e
JW
3003 retry_count = MEM_CGROUP_RECLAIM_RETRIES *
3004 mem_cgroup_count_children(memcg);
3005
3006 oldusage = page_counter_read(&memcg->memsw);
3007
3008 do {
8c7c6e34
KH
3009 if (signal_pending(current)) {
3010 ret = -EINTR;
3011 break;
3012 }
3e32cb2e
JW
3013
3014 mutex_lock(&memcg_limit_mutex);
3015 if (limit < memcg->memory.limit) {
3016 mutex_unlock(&memcg_limit_mutex);
8c7c6e34 3017 ret = -EINVAL;
8c7c6e34
KH
3018 break;
3019 }
3e32cb2e
JW
3020 if (limit > memcg->memsw.limit)
3021 enlarge = true;
3022 ret = page_counter_limit(&memcg->memsw, limit);
3023 mutex_unlock(&memcg_limit_mutex);
8c7c6e34
KH
3024
3025 if (!ret)
3026 break;
3027
b70a2a21
JW
3028 try_to_free_mem_cgroup_pages(memcg, 1, GFP_KERNEL, false);
3029
3e32cb2e 3030 curusage = page_counter_read(&memcg->memsw);
81d39c20 3031 /* Usage is reduced ? */
8c7c6e34 3032 if (curusage >= oldusage)
628f4235 3033 retry_count--;
81d39c20
KH
3034 else
3035 oldusage = curusage;
3e32cb2e
JW
3036 } while (retry_count);
3037
3c11ecf4
KH
3038 if (!ret && enlarge)
3039 memcg_oom_recover(memcg);
3e32cb2e 3040
628f4235
KH
3041 return ret;
3042}
3043
0608f43d
AM
3044unsigned long mem_cgroup_soft_limit_reclaim(struct zone *zone, int order,
3045 gfp_t gfp_mask,
3046 unsigned long *total_scanned)
3047{
3048 unsigned long nr_reclaimed = 0;
3049 struct mem_cgroup_per_zone *mz, *next_mz = NULL;
3050 unsigned long reclaimed;
3051 int loop = 0;
3052 struct mem_cgroup_tree_per_zone *mctz;
3e32cb2e 3053 unsigned long excess;
0608f43d
AM
3054 unsigned long nr_scanned;
3055
3056 if (order > 0)
3057 return 0;
3058
3059 mctz = soft_limit_tree_node_zone(zone_to_nid(zone), zone_idx(zone));
3060 /*
3061 * This loop can run a while, specially if mem_cgroup's continuously
3062 * keep exceeding their soft limit and putting the system under
3063 * pressure
3064 */
3065 do {
3066 if (next_mz)
3067 mz = next_mz;
3068 else
3069 mz = mem_cgroup_largest_soft_limit_node(mctz);
3070 if (!mz)
3071 break;
3072
3073 nr_scanned = 0;
3074 reclaimed = mem_cgroup_soft_reclaim(mz->memcg, zone,
3075 gfp_mask, &nr_scanned);
3076 nr_reclaimed += reclaimed;
3077 *total_scanned += nr_scanned;
0a31bc97 3078 spin_lock_irq(&mctz->lock);
bc2f2e7f 3079 __mem_cgroup_remove_exceeded(mz, mctz);
0608f43d
AM
3080
3081 /*
3082 * If we failed to reclaim anything from this memory cgroup
3083 * it is time to move on to the next cgroup
3084 */
3085 next_mz = NULL;
bc2f2e7f
VD
3086 if (!reclaimed)
3087 next_mz = __mem_cgroup_largest_soft_limit_node(mctz);
3088
3e32cb2e 3089 excess = soft_limit_excess(mz->memcg);
0608f43d
AM
3090 /*
3091 * One school of thought says that we should not add
3092 * back the node to the tree if reclaim returns 0.
3093 * But our reclaim could return 0, simply because due
3094 * to priority we are exposing a smaller subset of
3095 * memory to reclaim from. Consider this as a longer
3096 * term TODO.
3097 */
3098 /* If excess == 0, no tree ops */
cf2c8127 3099 __mem_cgroup_insert_exceeded(mz, mctz, excess);
0a31bc97 3100 spin_unlock_irq(&mctz->lock);
0608f43d
AM
3101 css_put(&mz->memcg->css);
3102 loop++;
3103 /*
3104 * Could not reclaim anything and there are no more
3105 * mem cgroups to try or we seem to be looping without
3106 * reclaiming anything.
3107 */
3108 if (!nr_reclaimed &&
3109 (next_mz == NULL ||
3110 loop > MEM_CGROUP_MAX_SOFT_LIMIT_RECLAIM_LOOPS))
3111 break;
3112 } while (!nr_reclaimed);
3113 if (next_mz)
3114 css_put(&next_mz->memcg->css);
3115 return nr_reclaimed;
3116}
3117
ea280e7b
TH
3118/*
3119 * Test whether @memcg has children, dead or alive. Note that this
3120 * function doesn't care whether @memcg has use_hierarchy enabled and
3121 * returns %true if there are child csses according to the cgroup
3122 * hierarchy. Testing use_hierarchy is the caller's responsiblity.
3123 */
b5f99b53
GC
3124static inline bool memcg_has_children(struct mem_cgroup *memcg)
3125{
ea280e7b
TH
3126 bool ret;
3127
696ac172 3128 /*
ea280e7b
TH
3129 * The lock does not prevent addition or deletion of children, but
3130 * it prevents a new child from being initialized based on this
3131 * parent in css_online(), so it's enough to decide whether
3132 * hierarchically inherited attributes can still be changed or not.
696ac172 3133 */
ea280e7b
TH
3134 lockdep_assert_held(&memcg_create_mutex);
3135
3136 rcu_read_lock();
3137 ret = css_next_child(NULL, &memcg->css);
3138 rcu_read_unlock();
3139 return ret;
b5f99b53
GC
3140}
3141
c26251f9
MH
3142/*
3143 * Reclaims as many pages from the given memcg as possible and moves
3144 * the rest to the parent.
3145 *
3146 * Caller is responsible for holding css reference for memcg.
3147 */
3148static int mem_cgroup_force_empty(struct mem_cgroup *memcg)
3149{
3150 int nr_retries = MEM_CGROUP_RECLAIM_RETRIES;
c26251f9 3151
c1e862c1
KH
3152 /* we call try-to-free pages for make this cgroup empty */
3153 lru_add_drain_all();
f817ed48 3154 /* try to free all pages in this cgroup */
3e32cb2e 3155 while (nr_retries && page_counter_read(&memcg->memory)) {
f817ed48 3156 int progress;
c1e862c1 3157
c26251f9
MH
3158 if (signal_pending(current))
3159 return -EINTR;
3160
b70a2a21
JW
3161 progress = try_to_free_mem_cgroup_pages(memcg, 1,
3162 GFP_KERNEL, true);
c1e862c1 3163 if (!progress) {
f817ed48 3164 nr_retries--;
c1e862c1 3165 /* maybe some writeback is necessary */
8aa7e847 3166 congestion_wait(BLK_RW_ASYNC, HZ/10);
c1e862c1 3167 }
f817ed48
KH
3168
3169 }
ab5196c2
MH
3170
3171 return 0;
cc847582
KH
3172}
3173
6770c64e
TH
3174static ssize_t mem_cgroup_force_empty_write(struct kernfs_open_file *of,
3175 char *buf, size_t nbytes,
3176 loff_t off)
c1e862c1 3177{
6770c64e 3178 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
c26251f9 3179
d8423011
MH
3180 if (mem_cgroup_is_root(memcg))
3181 return -EINVAL;
6770c64e 3182 return mem_cgroup_force_empty(memcg) ?: nbytes;
c1e862c1
KH
3183}
3184
182446d0
TH
3185static u64 mem_cgroup_hierarchy_read(struct cgroup_subsys_state *css,
3186 struct cftype *cft)
18f59ea7 3187{
182446d0 3188 return mem_cgroup_from_css(css)->use_hierarchy;
18f59ea7
BS
3189}
3190
182446d0
TH
3191static int mem_cgroup_hierarchy_write(struct cgroup_subsys_state *css,
3192 struct cftype *cft, u64 val)
18f59ea7
BS
3193{
3194 int retval = 0;
182446d0 3195 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 3196 struct mem_cgroup *parent_memcg = mem_cgroup_from_css(memcg->css.parent);
18f59ea7 3197
0999821b 3198 mutex_lock(&memcg_create_mutex);
567fb435
GC
3199
3200 if (memcg->use_hierarchy == val)
3201 goto out;
3202
18f59ea7 3203 /*
af901ca1 3204 * If parent's use_hierarchy is set, we can't make any modifications
18f59ea7
BS
3205 * in the child subtrees. If it is unset, then the change can
3206 * occur, provided the current cgroup has no children.
3207 *
3208 * For the root cgroup, parent_mem is NULL, we allow value to be
3209 * set if there are no children.
3210 */
c0ff4b85 3211 if ((!parent_memcg || !parent_memcg->use_hierarchy) &&
18f59ea7 3212 (val == 1 || val == 0)) {
ea280e7b 3213 if (!memcg_has_children(memcg))
c0ff4b85 3214 memcg->use_hierarchy = val;
18f59ea7
BS
3215 else
3216 retval = -EBUSY;
3217 } else
3218 retval = -EINVAL;
567fb435
GC
3219
3220out:
0999821b 3221 mutex_unlock(&memcg_create_mutex);
18f59ea7
BS
3222
3223 return retval;
3224}
3225
3e32cb2e
JW
3226static unsigned long tree_stat(struct mem_cgroup *memcg,
3227 enum mem_cgroup_stat_index idx)
ce00a967
JW
3228{
3229 struct mem_cgroup *iter;
3230 long val = 0;
3231
3232 /* Per-cpu values can be negative, use a signed accumulator */
3233 for_each_mem_cgroup_tree(iter, memcg)
3234 val += mem_cgroup_read_stat(iter, idx);
3235
3236 if (val < 0) /* race ? */
3237 val = 0;
3238 return val;
3239}
3240
3241static inline u64 mem_cgroup_usage(struct mem_cgroup *memcg, bool swap)
3242{
3243 u64 val;
3244
3e32cb2e
JW
3245 if (mem_cgroup_is_root(memcg)) {
3246 val = tree_stat(memcg, MEM_CGROUP_STAT_CACHE);
3247 val += tree_stat(memcg, MEM_CGROUP_STAT_RSS);
3248 if (swap)
3249 val += tree_stat(memcg, MEM_CGROUP_STAT_SWAP);
3250 } else {
ce00a967 3251 if (!swap)
3e32cb2e 3252 val = page_counter_read(&memcg->memory);
ce00a967 3253 else
3e32cb2e 3254 val = page_counter_read(&memcg->memsw);
ce00a967 3255 }
ce00a967
JW
3256 return val << PAGE_SHIFT;
3257}
3258
3e32cb2e
JW
3259enum {
3260 RES_USAGE,
3261 RES_LIMIT,
3262 RES_MAX_USAGE,
3263 RES_FAILCNT,
3264 RES_SOFT_LIMIT,
3265};
ce00a967 3266
791badbd 3267static u64 mem_cgroup_read_u64(struct cgroup_subsys_state *css,
05b84301 3268 struct cftype *cft)
8cdea7c0 3269{
182446d0 3270 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3e32cb2e 3271 struct page_counter *counter;
af36f906 3272
3e32cb2e 3273 switch (MEMFILE_TYPE(cft->private)) {
8c7c6e34 3274 case _MEM:
3e32cb2e
JW
3275 counter = &memcg->memory;
3276 break;
8c7c6e34 3277 case _MEMSWAP:
3e32cb2e
JW
3278 counter = &memcg->memsw;
3279 break;
510fc4e1 3280 case _KMEM:
3e32cb2e 3281 counter = &memcg->kmem;
510fc4e1 3282 break;
8c7c6e34
KH
3283 default:
3284 BUG();
8c7c6e34 3285 }
3e32cb2e
JW
3286
3287 switch (MEMFILE_ATTR(cft->private)) {
3288 case RES_USAGE:
3289 if (counter == &memcg->memory)
3290 return mem_cgroup_usage(memcg, false);
3291 if (counter == &memcg->memsw)
3292 return mem_cgroup_usage(memcg, true);
3293 return (u64)page_counter_read(counter) * PAGE_SIZE;
3294 case RES_LIMIT:
3295 return (u64)counter->limit * PAGE_SIZE;
3296 case RES_MAX_USAGE:
3297 return (u64)counter->watermark * PAGE_SIZE;
3298 case RES_FAILCNT:
3299 return counter->failcnt;
3300 case RES_SOFT_LIMIT:
3301 return (u64)memcg->soft_limit * PAGE_SIZE;
3302 default:
3303 BUG();
3304 }
8cdea7c0 3305}
510fc4e1 3306
510fc4e1 3307#ifdef CONFIG_MEMCG_KMEM
8c0145b6
VD
3308static int memcg_activate_kmem(struct mem_cgroup *memcg,
3309 unsigned long nr_pages)
d6441637
VD
3310{
3311 int err = 0;
3312 int memcg_id;
3313
3314 if (memcg_kmem_is_active(memcg))
3315 return 0;
3316
510fc4e1
GC
3317 /*
3318 * For simplicity, we won't allow this to be disabled. It also can't
3319 * be changed if the cgroup has children already, or if tasks had
3320 * already joined.
3321 *
3322 * If tasks join before we set the limit, a person looking at
3323 * kmem.usage_in_bytes will have no way to determine when it took
3324 * place, which makes the value quite meaningless.
3325 *
3326 * After it first became limited, changes in the value of the limit are
3327 * of course permitted.
510fc4e1 3328 */
0999821b 3329 mutex_lock(&memcg_create_mutex);
ea280e7b
TH
3330 if (cgroup_has_tasks(memcg->css.cgroup) ||
3331 (memcg->use_hierarchy && memcg_has_children(memcg)))
d6441637
VD
3332 err = -EBUSY;
3333 mutex_unlock(&memcg_create_mutex);
3334 if (err)
3335 goto out;
510fc4e1 3336
f3bb3043 3337 memcg_id = memcg_alloc_cache_id();
d6441637
VD
3338 if (memcg_id < 0) {
3339 err = memcg_id;
3340 goto out;
3341 }
3342
d6441637 3343 /*
900a38f0
VD
3344 * We couldn't have accounted to this cgroup, because it hasn't got
3345 * activated yet, so this should succeed.
d6441637 3346 */
3e32cb2e 3347 err = page_counter_limit(&memcg->kmem, nr_pages);
d6441637
VD
3348 VM_BUG_ON(err);
3349
3350 static_key_slow_inc(&memcg_kmem_enabled_key);
3351 /*
900a38f0
VD
3352 * A memory cgroup is considered kmem-active as soon as it gets
3353 * kmemcg_id. Setting the id after enabling static branching will
d6441637
VD
3354 * guarantee no one starts accounting before all call sites are
3355 * patched.
3356 */
900a38f0 3357 memcg->kmemcg_id = memcg_id;
510fc4e1 3358out:
d6441637 3359 return err;
d6441637
VD
3360}
3361
d6441637 3362static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3363 unsigned long limit)
d6441637
VD
3364{
3365 int ret;
3366
3e32cb2e 3367 mutex_lock(&memcg_limit_mutex);
d6441637 3368 if (!memcg_kmem_is_active(memcg))
3e32cb2e 3369 ret = memcg_activate_kmem(memcg, limit);
d6441637 3370 else
3e32cb2e
JW
3371 ret = page_counter_limit(&memcg->kmem, limit);
3372 mutex_unlock(&memcg_limit_mutex);
510fc4e1
GC
3373 return ret;
3374}
3375
55007d84 3376static int memcg_propagate_kmem(struct mem_cgroup *memcg)
510fc4e1 3377{
55007d84 3378 int ret = 0;
510fc4e1 3379 struct mem_cgroup *parent = parent_mem_cgroup(memcg);
55007d84 3380
d6441637
VD
3381 if (!parent)
3382 return 0;
55007d84 3383
8c0145b6 3384 mutex_lock(&memcg_limit_mutex);
55007d84 3385 /*
d6441637
VD
3386 * If the parent cgroup is not kmem-active now, it cannot be activated
3387 * after this point, because it has at least one child already.
55007d84 3388 */
d6441637 3389 if (memcg_kmem_is_active(parent))
8c0145b6
VD
3390 ret = memcg_activate_kmem(memcg, PAGE_COUNTER_MAX);
3391 mutex_unlock(&memcg_limit_mutex);
55007d84 3392 return ret;
510fc4e1 3393}
d6441637
VD
3394#else
3395static int memcg_update_kmem_limit(struct mem_cgroup *memcg,
3e32cb2e 3396 unsigned long limit)
d6441637
VD
3397{
3398 return -EINVAL;
3399}
6d043990 3400#endif /* CONFIG_MEMCG_KMEM */
510fc4e1 3401
628f4235
KH
3402/*
3403 * The user of this function is...
3404 * RES_LIMIT.
3405 */
451af504
TH
3406static ssize_t mem_cgroup_write(struct kernfs_open_file *of,
3407 char *buf, size_t nbytes, loff_t off)
8cdea7c0 3408{
451af504 3409 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3410 unsigned long nr_pages;
628f4235
KH
3411 int ret;
3412
451af504 3413 buf = strstrip(buf);
650c5e56 3414 ret = page_counter_memparse(buf, "-1", &nr_pages);
3e32cb2e
JW
3415 if (ret)
3416 return ret;
af36f906 3417
3e32cb2e 3418 switch (MEMFILE_ATTR(of_cft(of)->private)) {
628f4235 3419 case RES_LIMIT:
4b3bde4c
BS
3420 if (mem_cgroup_is_root(memcg)) { /* Can't set limit on root */
3421 ret = -EINVAL;
3422 break;
3423 }
3e32cb2e
JW
3424 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3425 case _MEM:
3426 ret = mem_cgroup_resize_limit(memcg, nr_pages);
8c7c6e34 3427 break;
3e32cb2e
JW
3428 case _MEMSWAP:
3429 ret = mem_cgroup_resize_memsw_limit(memcg, nr_pages);
296c81d8 3430 break;
3e32cb2e
JW
3431 case _KMEM:
3432 ret = memcg_update_kmem_limit(memcg, nr_pages);
3433 break;
3434 }
296c81d8 3435 break;
3e32cb2e
JW
3436 case RES_SOFT_LIMIT:
3437 memcg->soft_limit = nr_pages;
3438 ret = 0;
628f4235
KH
3439 break;
3440 }
451af504 3441 return ret ?: nbytes;
8cdea7c0
BS
3442}
3443
6770c64e
TH
3444static ssize_t mem_cgroup_reset(struct kernfs_open_file *of, char *buf,
3445 size_t nbytes, loff_t off)
c84872e1 3446{
6770c64e 3447 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
3e32cb2e 3448 struct page_counter *counter;
c84872e1 3449
3e32cb2e
JW
3450 switch (MEMFILE_TYPE(of_cft(of)->private)) {
3451 case _MEM:
3452 counter = &memcg->memory;
3453 break;
3454 case _MEMSWAP:
3455 counter = &memcg->memsw;
3456 break;
3457 case _KMEM:
3458 counter = &memcg->kmem;
3459 break;
3460 default:
3461 BUG();
3462 }
af36f906 3463
3e32cb2e 3464 switch (MEMFILE_ATTR(of_cft(of)->private)) {
29f2a4da 3465 case RES_MAX_USAGE:
3e32cb2e 3466 page_counter_reset_watermark(counter);
29f2a4da
PE
3467 break;
3468 case RES_FAILCNT:
3e32cb2e 3469 counter->failcnt = 0;
29f2a4da 3470 break;
3e32cb2e
JW
3471 default:
3472 BUG();
29f2a4da 3473 }
f64c3f54 3474
6770c64e 3475 return nbytes;
c84872e1
PE
3476}
3477
182446d0 3478static u64 mem_cgroup_move_charge_read(struct cgroup_subsys_state *css,
7dc74be0
DN
3479 struct cftype *cft)
3480{
182446d0 3481 return mem_cgroup_from_css(css)->move_charge_at_immigrate;
7dc74be0
DN
3482}
3483
02491447 3484#ifdef CONFIG_MMU
182446d0 3485static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
7dc74be0
DN
3486 struct cftype *cft, u64 val)
3487{
182446d0 3488 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
7dc74be0 3489
1dfab5ab 3490 if (val & ~MOVE_MASK)
7dc74be0 3491 return -EINVAL;
ee5e8472 3492
7dc74be0 3493 /*
ee5e8472
GC
3494 * No kind of locking is needed in here, because ->can_attach() will
3495 * check this value once in the beginning of the process, and then carry
3496 * on with stale data. This means that changes to this value will only
3497 * affect task migrations starting after the change.
7dc74be0 3498 */
c0ff4b85 3499 memcg->move_charge_at_immigrate = val;
7dc74be0
DN
3500 return 0;
3501}
02491447 3502#else
182446d0 3503static int mem_cgroup_move_charge_write(struct cgroup_subsys_state *css,
02491447
DN
3504 struct cftype *cft, u64 val)
3505{
3506 return -ENOSYS;
3507}
3508#endif
7dc74be0 3509
406eb0c9 3510#ifdef CONFIG_NUMA
2da8ca82 3511static int memcg_numa_stat_show(struct seq_file *m, void *v)
406eb0c9 3512{
25485de6
GT
3513 struct numa_stat {
3514 const char *name;
3515 unsigned int lru_mask;
3516 };
3517
3518 static const struct numa_stat stats[] = {
3519 { "total", LRU_ALL },
3520 { "file", LRU_ALL_FILE },
3521 { "anon", LRU_ALL_ANON },
3522 { "unevictable", BIT(LRU_UNEVICTABLE) },
3523 };
3524 const struct numa_stat *stat;
406eb0c9 3525 int nid;
25485de6 3526 unsigned long nr;
2da8ca82 3527 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
406eb0c9 3528
25485de6
GT
3529 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3530 nr = mem_cgroup_nr_lru_pages(memcg, stat->lru_mask);
3531 seq_printf(m, "%s=%lu", stat->name, nr);
3532 for_each_node_state(nid, N_MEMORY) {
3533 nr = mem_cgroup_node_nr_lru_pages(memcg, nid,
3534 stat->lru_mask);
3535 seq_printf(m, " N%d=%lu", nid, nr);
3536 }
3537 seq_putc(m, '\n');
406eb0c9 3538 }
406eb0c9 3539
071aee13
YH
3540 for (stat = stats; stat < stats + ARRAY_SIZE(stats); stat++) {
3541 struct mem_cgroup *iter;
3542
3543 nr = 0;
3544 for_each_mem_cgroup_tree(iter, memcg)
3545 nr += mem_cgroup_nr_lru_pages(iter, stat->lru_mask);
3546 seq_printf(m, "hierarchical_%s=%lu", stat->name, nr);
3547 for_each_node_state(nid, N_MEMORY) {
3548 nr = 0;
3549 for_each_mem_cgroup_tree(iter, memcg)
3550 nr += mem_cgroup_node_nr_lru_pages(
3551 iter, nid, stat->lru_mask);
3552 seq_printf(m, " N%d=%lu", nid, nr);
3553 }
3554 seq_putc(m, '\n');
406eb0c9 3555 }
406eb0c9 3556
406eb0c9
YH
3557 return 0;
3558}
3559#endif /* CONFIG_NUMA */
3560
2da8ca82 3561static int memcg_stat_show(struct seq_file *m, void *v)
d2ceb9b7 3562{
2da8ca82 3563 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
3e32cb2e 3564 unsigned long memory, memsw;
af7c4b0e
JW
3565 struct mem_cgroup *mi;
3566 unsigned int i;
406eb0c9 3567
0ca44b14
GT
3568 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_stat_names) !=
3569 MEM_CGROUP_STAT_NSTATS);
3570 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_events_names) !=
3571 MEM_CGROUP_EVENTS_NSTATS);
70bc068c
RS
3572 BUILD_BUG_ON(ARRAY_SIZE(mem_cgroup_lru_names) != NR_LRU_LISTS);
3573
af7c4b0e 3574 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
bff6bb83 3575 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3576 continue;
af7c4b0e
JW
3577 seq_printf(m, "%s %ld\n", mem_cgroup_stat_names[i],
3578 mem_cgroup_read_stat(memcg, i) * PAGE_SIZE);
1dd3a273 3579 }
7b854121 3580
af7c4b0e
JW
3581 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++)
3582 seq_printf(m, "%s %lu\n", mem_cgroup_events_names[i],
3583 mem_cgroup_read_events(memcg, i));
3584
3585 for (i = 0; i < NR_LRU_LISTS; i++)
3586 seq_printf(m, "%s %lu\n", mem_cgroup_lru_names[i],
3587 mem_cgroup_nr_lru_pages(memcg, BIT(i)) * PAGE_SIZE);
3588
14067bb3 3589 /* Hierarchical information */
3e32cb2e
JW
3590 memory = memsw = PAGE_COUNTER_MAX;
3591 for (mi = memcg; mi; mi = parent_mem_cgroup(mi)) {
3592 memory = min(memory, mi->memory.limit);
3593 memsw = min(memsw, mi->memsw.limit);
fee7b548 3594 }
3e32cb2e
JW
3595 seq_printf(m, "hierarchical_memory_limit %llu\n",
3596 (u64)memory * PAGE_SIZE);
3597 if (do_swap_account)
3598 seq_printf(m, "hierarchical_memsw_limit %llu\n",
3599 (u64)memsw * PAGE_SIZE);
7f016ee8 3600
af7c4b0e
JW
3601 for (i = 0; i < MEM_CGROUP_STAT_NSTATS; i++) {
3602 long long val = 0;
3603
bff6bb83 3604 if (i == MEM_CGROUP_STAT_SWAP && !do_swap_account)
1dd3a273 3605 continue;
af7c4b0e
JW
3606 for_each_mem_cgroup_tree(mi, memcg)
3607 val += mem_cgroup_read_stat(mi, i) * PAGE_SIZE;
3608 seq_printf(m, "total_%s %lld\n", mem_cgroup_stat_names[i], val);
3609 }
3610
3611 for (i = 0; i < MEM_CGROUP_EVENTS_NSTATS; i++) {
3612 unsigned long long val = 0;
3613
3614 for_each_mem_cgroup_tree(mi, memcg)
3615 val += mem_cgroup_read_events(mi, i);
3616 seq_printf(m, "total_%s %llu\n",
3617 mem_cgroup_events_names[i], val);
3618 }
3619
3620 for (i = 0; i < NR_LRU_LISTS; i++) {
3621 unsigned long long val = 0;
3622
3623 for_each_mem_cgroup_tree(mi, memcg)
3624 val += mem_cgroup_nr_lru_pages(mi, BIT(i)) * PAGE_SIZE;
3625 seq_printf(m, "total_%s %llu\n", mem_cgroup_lru_names[i], val);
1dd3a273 3626 }
14067bb3 3627
7f016ee8 3628#ifdef CONFIG_DEBUG_VM
7f016ee8
KM
3629 {
3630 int nid, zid;
3631 struct mem_cgroup_per_zone *mz;
89abfab1 3632 struct zone_reclaim_stat *rstat;
7f016ee8
KM
3633 unsigned long recent_rotated[2] = {0, 0};
3634 unsigned long recent_scanned[2] = {0, 0};
3635
3636 for_each_online_node(nid)
3637 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
e231875b 3638 mz = &memcg->nodeinfo[nid]->zoneinfo[zid];
89abfab1 3639 rstat = &mz->lruvec.reclaim_stat;
7f016ee8 3640
89abfab1
HD
3641 recent_rotated[0] += rstat->recent_rotated[0];
3642 recent_rotated[1] += rstat->recent_rotated[1];
3643 recent_scanned[0] += rstat->recent_scanned[0];
3644 recent_scanned[1] += rstat->recent_scanned[1];
7f016ee8 3645 }
78ccf5b5
JW
3646 seq_printf(m, "recent_rotated_anon %lu\n", recent_rotated[0]);
3647 seq_printf(m, "recent_rotated_file %lu\n", recent_rotated[1]);
3648 seq_printf(m, "recent_scanned_anon %lu\n", recent_scanned[0]);
3649 seq_printf(m, "recent_scanned_file %lu\n", recent_scanned[1]);
7f016ee8
KM
3650 }
3651#endif
3652
d2ceb9b7
KH
3653 return 0;
3654}
3655
182446d0
TH
3656static u64 mem_cgroup_swappiness_read(struct cgroup_subsys_state *css,
3657 struct cftype *cft)
a7885eb8 3658{
182446d0 3659 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3660
1f4c025b 3661 return mem_cgroup_swappiness(memcg);
a7885eb8
KM
3662}
3663
182446d0
TH
3664static int mem_cgroup_swappiness_write(struct cgroup_subsys_state *css,
3665 struct cftype *cft, u64 val)
a7885eb8 3666{
182446d0 3667 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
a7885eb8 3668
3dae7fec 3669 if (val > 100)
a7885eb8
KM
3670 return -EINVAL;
3671
14208b0e 3672 if (css->parent)
3dae7fec
JW
3673 memcg->swappiness = val;
3674 else
3675 vm_swappiness = val;
068b38c1 3676
a7885eb8
KM
3677 return 0;
3678}
3679
2e72b634
KS
3680static void __mem_cgroup_threshold(struct mem_cgroup *memcg, bool swap)
3681{
3682 struct mem_cgroup_threshold_ary *t;
3e32cb2e 3683 unsigned long usage;
2e72b634
KS
3684 int i;
3685
3686 rcu_read_lock();
3687 if (!swap)
2c488db2 3688 t = rcu_dereference(memcg->thresholds.primary);
2e72b634 3689 else
2c488db2 3690 t = rcu_dereference(memcg->memsw_thresholds.primary);
2e72b634
KS
3691
3692 if (!t)
3693 goto unlock;
3694
ce00a967 3695 usage = mem_cgroup_usage(memcg, swap);
2e72b634
KS
3696
3697 /*
748dad36 3698 * current_threshold points to threshold just below or equal to usage.
2e72b634
KS
3699 * If it's not true, a threshold was crossed after last
3700 * call of __mem_cgroup_threshold().
3701 */
5407a562 3702 i = t->current_threshold;
2e72b634
KS
3703
3704 /*
3705 * Iterate backward over array of thresholds starting from
3706 * current_threshold and check if a threshold is crossed.
3707 * If none of thresholds below usage is crossed, we read
3708 * only one element of the array here.
3709 */
3710 for (; i >= 0 && unlikely(t->entries[i].threshold > usage); i--)
3711 eventfd_signal(t->entries[i].eventfd, 1);
3712
3713 /* i = current_threshold + 1 */
3714 i++;
3715
3716 /*
3717 * Iterate forward over array of thresholds starting from
3718 * current_threshold+1 and check if a threshold is crossed.
3719 * If none of thresholds above usage is crossed, we read
3720 * only one element of the array here.
3721 */
3722 for (; i < t->size && unlikely(t->entries[i].threshold <= usage); i++)
3723 eventfd_signal(t->entries[i].eventfd, 1);
3724
3725 /* Update current_threshold */
5407a562 3726 t->current_threshold = i - 1;
2e72b634
KS
3727unlock:
3728 rcu_read_unlock();
3729}
3730
3731static void mem_cgroup_threshold(struct mem_cgroup *memcg)
3732{
ad4ca5f4
KS
3733 while (memcg) {
3734 __mem_cgroup_threshold(memcg, false);
3735 if (do_swap_account)
3736 __mem_cgroup_threshold(memcg, true);
3737
3738 memcg = parent_mem_cgroup(memcg);
3739 }
2e72b634
KS
3740}
3741
3742static int compare_thresholds(const void *a, const void *b)
3743{
3744 const struct mem_cgroup_threshold *_a = a;
3745 const struct mem_cgroup_threshold *_b = b;
3746
2bff24a3
GT
3747 if (_a->threshold > _b->threshold)
3748 return 1;
3749
3750 if (_a->threshold < _b->threshold)
3751 return -1;
3752
3753 return 0;
2e72b634
KS
3754}
3755
c0ff4b85 3756static int mem_cgroup_oom_notify_cb(struct mem_cgroup *memcg)
9490ff27
KH
3757{
3758 struct mem_cgroup_eventfd_list *ev;
3759
2bcf2e92
MH
3760 spin_lock(&memcg_oom_lock);
3761
c0ff4b85 3762 list_for_each_entry(ev, &memcg->oom_notify, list)
9490ff27 3763 eventfd_signal(ev->eventfd, 1);
2bcf2e92
MH
3764
3765 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3766 return 0;
3767}
3768
c0ff4b85 3769static void mem_cgroup_oom_notify(struct mem_cgroup *memcg)
9490ff27 3770{
7d74b06f
KH
3771 struct mem_cgroup *iter;
3772
c0ff4b85 3773 for_each_mem_cgroup_tree(iter, memcg)
7d74b06f 3774 mem_cgroup_oom_notify_cb(iter);
9490ff27
KH
3775}
3776
59b6f873 3777static int __mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87 3778 struct eventfd_ctx *eventfd, const char *args, enum res_type type)
2e72b634 3779{
2c488db2
KS
3780 struct mem_cgroup_thresholds *thresholds;
3781 struct mem_cgroup_threshold_ary *new;
3e32cb2e
JW
3782 unsigned long threshold;
3783 unsigned long usage;
2c488db2 3784 int i, size, ret;
2e72b634 3785
650c5e56 3786 ret = page_counter_memparse(args, "-1", &threshold);
2e72b634
KS
3787 if (ret)
3788 return ret;
3789
3790 mutex_lock(&memcg->thresholds_lock);
2c488db2 3791
05b84301 3792 if (type == _MEM) {
2c488db2 3793 thresholds = &memcg->thresholds;
ce00a967 3794 usage = mem_cgroup_usage(memcg, false);
05b84301 3795 } else if (type == _MEMSWAP) {
2c488db2 3796 thresholds = &memcg->memsw_thresholds;
ce00a967 3797 usage = mem_cgroup_usage(memcg, true);
05b84301 3798 } else
2e72b634
KS
3799 BUG();
3800
2e72b634 3801 /* Check if a threshold crossed before adding a new one */
2c488db2 3802 if (thresholds->primary)
2e72b634
KS
3803 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3804
2c488db2 3805 size = thresholds->primary ? thresholds->primary->size + 1 : 1;
2e72b634
KS
3806
3807 /* Allocate memory for new array of thresholds */
2c488db2 3808 new = kmalloc(sizeof(*new) + size * sizeof(struct mem_cgroup_threshold),
2e72b634 3809 GFP_KERNEL);
2c488db2 3810 if (!new) {
2e72b634
KS
3811 ret = -ENOMEM;
3812 goto unlock;
3813 }
2c488db2 3814 new->size = size;
2e72b634
KS
3815
3816 /* Copy thresholds (if any) to new array */
2c488db2
KS
3817 if (thresholds->primary) {
3818 memcpy(new->entries, thresholds->primary->entries, (size - 1) *
2e72b634 3819 sizeof(struct mem_cgroup_threshold));
2c488db2
KS
3820 }
3821
2e72b634 3822 /* Add new threshold */
2c488db2
KS
3823 new->entries[size - 1].eventfd = eventfd;
3824 new->entries[size - 1].threshold = threshold;
2e72b634
KS
3825
3826 /* Sort thresholds. Registering of new threshold isn't time-critical */
2c488db2 3827 sort(new->entries, size, sizeof(struct mem_cgroup_threshold),
2e72b634
KS
3828 compare_thresholds, NULL);
3829
3830 /* Find current threshold */
2c488db2 3831 new->current_threshold = -1;
2e72b634 3832 for (i = 0; i < size; i++) {
748dad36 3833 if (new->entries[i].threshold <= usage) {
2e72b634 3834 /*
2c488db2
KS
3835 * new->current_threshold will not be used until
3836 * rcu_assign_pointer(), so it's safe to increment
2e72b634
KS
3837 * it here.
3838 */
2c488db2 3839 ++new->current_threshold;
748dad36
SZ
3840 } else
3841 break;
2e72b634
KS
3842 }
3843
2c488db2
KS
3844 /* Free old spare buffer and save old primary buffer as spare */
3845 kfree(thresholds->spare);
3846 thresholds->spare = thresholds->primary;
3847
3848 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3849
907860ed 3850 /* To be sure that nobody uses thresholds */
2e72b634
KS
3851 synchronize_rcu();
3852
2e72b634
KS
3853unlock:
3854 mutex_unlock(&memcg->thresholds_lock);
3855
3856 return ret;
3857}
3858
59b6f873 3859static int mem_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3860 struct eventfd_ctx *eventfd, const char *args)
3861{
59b6f873 3862 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEM);
347c4a87
TH
3863}
3864
59b6f873 3865static int memsw_cgroup_usage_register_event(struct mem_cgroup *memcg,
347c4a87
TH
3866 struct eventfd_ctx *eventfd, const char *args)
3867{
59b6f873 3868 return __mem_cgroup_usage_register_event(memcg, eventfd, args, _MEMSWAP);
347c4a87
TH
3869}
3870
59b6f873 3871static void __mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87 3872 struct eventfd_ctx *eventfd, enum res_type type)
2e72b634 3873{
2c488db2
KS
3874 struct mem_cgroup_thresholds *thresholds;
3875 struct mem_cgroup_threshold_ary *new;
3e32cb2e 3876 unsigned long usage;
2c488db2 3877 int i, j, size;
2e72b634
KS
3878
3879 mutex_lock(&memcg->thresholds_lock);
05b84301
JW
3880
3881 if (type == _MEM) {
2c488db2 3882 thresholds = &memcg->thresholds;
ce00a967 3883 usage = mem_cgroup_usage(memcg, false);
05b84301 3884 } else if (type == _MEMSWAP) {
2c488db2 3885 thresholds = &memcg->memsw_thresholds;
ce00a967 3886 usage = mem_cgroup_usage(memcg, true);
05b84301 3887 } else
2e72b634
KS
3888 BUG();
3889
371528ca
AV
3890 if (!thresholds->primary)
3891 goto unlock;
3892
2e72b634
KS
3893 /* Check if a threshold crossed before removing */
3894 __mem_cgroup_threshold(memcg, type == _MEMSWAP);
3895
3896 /* Calculate new number of threshold */
2c488db2
KS
3897 size = 0;
3898 for (i = 0; i < thresholds->primary->size; i++) {
3899 if (thresholds->primary->entries[i].eventfd != eventfd)
2e72b634
KS
3900 size++;
3901 }
3902
2c488db2 3903 new = thresholds->spare;
907860ed 3904
2e72b634
KS
3905 /* Set thresholds array to NULL if we don't have thresholds */
3906 if (!size) {
2c488db2
KS
3907 kfree(new);
3908 new = NULL;
907860ed 3909 goto swap_buffers;
2e72b634
KS
3910 }
3911
2c488db2 3912 new->size = size;
2e72b634
KS
3913
3914 /* Copy thresholds and find current threshold */
2c488db2
KS
3915 new->current_threshold = -1;
3916 for (i = 0, j = 0; i < thresholds->primary->size; i++) {
3917 if (thresholds->primary->entries[i].eventfd == eventfd)
2e72b634
KS
3918 continue;
3919
2c488db2 3920 new->entries[j] = thresholds->primary->entries[i];
748dad36 3921 if (new->entries[j].threshold <= usage) {
2e72b634 3922 /*
2c488db2 3923 * new->current_threshold will not be used
2e72b634
KS
3924 * until rcu_assign_pointer(), so it's safe to increment
3925 * it here.
3926 */
2c488db2 3927 ++new->current_threshold;
2e72b634
KS
3928 }
3929 j++;
3930 }
3931
907860ed 3932swap_buffers:
2c488db2
KS
3933 /* Swap primary and spare array */
3934 thresholds->spare = thresholds->primary;
8c757763
SZ
3935 /* If all events are unregistered, free the spare array */
3936 if (!new) {
3937 kfree(thresholds->spare);
3938 thresholds->spare = NULL;
3939 }
3940
2c488db2 3941 rcu_assign_pointer(thresholds->primary, new);
2e72b634 3942
907860ed 3943 /* To be sure that nobody uses thresholds */
2e72b634 3944 synchronize_rcu();
371528ca 3945unlock:
2e72b634 3946 mutex_unlock(&memcg->thresholds_lock);
2e72b634 3947}
c1e862c1 3948
59b6f873 3949static void mem_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3950 struct eventfd_ctx *eventfd)
3951{
59b6f873 3952 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEM);
347c4a87
TH
3953}
3954
59b6f873 3955static void memsw_cgroup_usage_unregister_event(struct mem_cgroup *memcg,
347c4a87
TH
3956 struct eventfd_ctx *eventfd)
3957{
59b6f873 3958 return __mem_cgroup_usage_unregister_event(memcg, eventfd, _MEMSWAP);
347c4a87
TH
3959}
3960
59b6f873 3961static int mem_cgroup_oom_register_event(struct mem_cgroup *memcg,
347c4a87 3962 struct eventfd_ctx *eventfd, const char *args)
9490ff27 3963{
9490ff27 3964 struct mem_cgroup_eventfd_list *event;
9490ff27 3965
9490ff27
KH
3966 event = kmalloc(sizeof(*event), GFP_KERNEL);
3967 if (!event)
3968 return -ENOMEM;
3969
1af8efe9 3970 spin_lock(&memcg_oom_lock);
9490ff27
KH
3971
3972 event->eventfd = eventfd;
3973 list_add(&event->list, &memcg->oom_notify);
3974
3975 /* already in OOM ? */
79dfdacc 3976 if (atomic_read(&memcg->under_oom))
9490ff27 3977 eventfd_signal(eventfd, 1);
1af8efe9 3978 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3979
3980 return 0;
3981}
3982
59b6f873 3983static void mem_cgroup_oom_unregister_event(struct mem_cgroup *memcg,
347c4a87 3984 struct eventfd_ctx *eventfd)
9490ff27 3985{
9490ff27 3986 struct mem_cgroup_eventfd_list *ev, *tmp;
9490ff27 3987
1af8efe9 3988 spin_lock(&memcg_oom_lock);
9490ff27 3989
c0ff4b85 3990 list_for_each_entry_safe(ev, tmp, &memcg->oom_notify, list) {
9490ff27
KH
3991 if (ev->eventfd == eventfd) {
3992 list_del(&ev->list);
3993 kfree(ev);
3994 }
3995 }
3996
1af8efe9 3997 spin_unlock(&memcg_oom_lock);
9490ff27
KH
3998}
3999
2da8ca82 4000static int mem_cgroup_oom_control_read(struct seq_file *sf, void *v)
3c11ecf4 4001{
2da8ca82 4002 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(sf));
3c11ecf4 4003
791badbd
TH
4004 seq_printf(sf, "oom_kill_disable %d\n", memcg->oom_kill_disable);
4005 seq_printf(sf, "under_oom %d\n", (bool)atomic_read(&memcg->under_oom));
3c11ecf4
KH
4006 return 0;
4007}
4008
182446d0 4009static int mem_cgroup_oom_control_write(struct cgroup_subsys_state *css,
3c11ecf4
KH
4010 struct cftype *cft, u64 val)
4011{
182446d0 4012 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3c11ecf4
KH
4013
4014 /* cannot set to root cgroup and only 0 and 1 are allowed */
14208b0e 4015 if (!css->parent || !((val == 0) || (val == 1)))
3c11ecf4
KH
4016 return -EINVAL;
4017
c0ff4b85 4018 memcg->oom_kill_disable = val;
4d845ebf 4019 if (!val)
c0ff4b85 4020 memcg_oom_recover(memcg);
3dae7fec 4021
3c11ecf4
KH
4022 return 0;
4023}
4024
c255a458 4025#ifdef CONFIG_MEMCG_KMEM
cbe128e3 4026static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa 4027{
55007d84
GC
4028 int ret;
4029
55007d84
GC
4030 ret = memcg_propagate_kmem(memcg);
4031 if (ret)
4032 return ret;
2633d7a0 4033
1d62e436 4034 return mem_cgroup_sockets_init(memcg, ss);
573b400d 4035}
e5671dfa 4036
10d5ebf4 4037static void memcg_destroy_kmem(struct mem_cgroup *memcg)
d1a4c0b3 4038{
d5b3cf71 4039 memcg_destroy_kmem_caches(memcg);
1d62e436 4040 mem_cgroup_sockets_destroy(memcg);
10d5ebf4 4041}
e5671dfa 4042#else
cbe128e3 4043static int memcg_init_kmem(struct mem_cgroup *memcg, struct cgroup_subsys *ss)
e5671dfa
GC
4044{
4045 return 0;
4046}
d1a4c0b3 4047
10d5ebf4
LZ
4048static void memcg_destroy_kmem(struct mem_cgroup *memcg)
4049{
4050}
e5671dfa
GC
4051#endif
4052
3bc942f3
TH
4053/*
4054 * DO NOT USE IN NEW FILES.
4055 *
4056 * "cgroup.event_control" implementation.
4057 *
4058 * This is way over-engineered. It tries to support fully configurable
4059 * events for each user. Such level of flexibility is completely
4060 * unnecessary especially in the light of the planned unified hierarchy.
4061 *
4062 * Please deprecate this and replace with something simpler if at all
4063 * possible.
4064 */
4065
79bd9814
TH
4066/*
4067 * Unregister event and free resources.
4068 *
4069 * Gets called from workqueue.
4070 */
3bc942f3 4071static void memcg_event_remove(struct work_struct *work)
79bd9814 4072{
3bc942f3
TH
4073 struct mem_cgroup_event *event =
4074 container_of(work, struct mem_cgroup_event, remove);
59b6f873 4075 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4076
4077 remove_wait_queue(event->wqh, &event->wait);
4078
59b6f873 4079 event->unregister_event(memcg, event->eventfd);
79bd9814
TH
4080
4081 /* Notify userspace the event is going away. */
4082 eventfd_signal(event->eventfd, 1);
4083
4084 eventfd_ctx_put(event->eventfd);
4085 kfree(event);
59b6f873 4086 css_put(&memcg->css);
79bd9814
TH
4087}
4088
4089/*
4090 * Gets called on POLLHUP on eventfd when user closes it.
4091 *
4092 * Called with wqh->lock held and interrupts disabled.
4093 */
3bc942f3
TH
4094static int memcg_event_wake(wait_queue_t *wait, unsigned mode,
4095 int sync, void *key)
79bd9814 4096{
3bc942f3
TH
4097 struct mem_cgroup_event *event =
4098 container_of(wait, struct mem_cgroup_event, wait);
59b6f873 4099 struct mem_cgroup *memcg = event->memcg;
79bd9814
TH
4100 unsigned long flags = (unsigned long)key;
4101
4102 if (flags & POLLHUP) {
4103 /*
4104 * If the event has been detached at cgroup removal, we
4105 * can simply return knowing the other side will cleanup
4106 * for us.
4107 *
4108 * We can't race against event freeing since the other
4109 * side will require wqh->lock via remove_wait_queue(),
4110 * which we hold.
4111 */
fba94807 4112 spin_lock(&memcg->event_list_lock);
79bd9814
TH
4113 if (!list_empty(&event->list)) {
4114 list_del_init(&event->list);
4115 /*
4116 * We are in atomic context, but cgroup_event_remove()
4117 * may sleep, so we have to call it in workqueue.
4118 */
4119 schedule_work(&event->remove);
4120 }
fba94807 4121 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4122 }
4123
4124 return 0;
4125}
4126
3bc942f3 4127static void memcg_event_ptable_queue_proc(struct file *file,
79bd9814
TH
4128 wait_queue_head_t *wqh, poll_table *pt)
4129{
3bc942f3
TH
4130 struct mem_cgroup_event *event =
4131 container_of(pt, struct mem_cgroup_event, pt);
79bd9814
TH
4132
4133 event->wqh = wqh;
4134 add_wait_queue(wqh, &event->wait);
4135}
4136
4137/*
3bc942f3
TH
4138 * DO NOT USE IN NEW FILES.
4139 *
79bd9814
TH
4140 * Parse input and register new cgroup event handler.
4141 *
4142 * Input must be in format '<event_fd> <control_fd> <args>'.
4143 * Interpretation of args is defined by control file implementation.
4144 */
451af504
TH
4145static ssize_t memcg_write_event_control(struct kernfs_open_file *of,
4146 char *buf, size_t nbytes, loff_t off)
79bd9814 4147{
451af504 4148 struct cgroup_subsys_state *css = of_css(of);
fba94807 4149 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4150 struct mem_cgroup_event *event;
79bd9814
TH
4151 struct cgroup_subsys_state *cfile_css;
4152 unsigned int efd, cfd;
4153 struct fd efile;
4154 struct fd cfile;
fba94807 4155 const char *name;
79bd9814
TH
4156 char *endp;
4157 int ret;
4158
451af504
TH
4159 buf = strstrip(buf);
4160
4161 efd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4162 if (*endp != ' ')
4163 return -EINVAL;
451af504 4164 buf = endp + 1;
79bd9814 4165
451af504 4166 cfd = simple_strtoul(buf, &endp, 10);
79bd9814
TH
4167 if ((*endp != ' ') && (*endp != '\0'))
4168 return -EINVAL;
451af504 4169 buf = endp + 1;
79bd9814
TH
4170
4171 event = kzalloc(sizeof(*event), GFP_KERNEL);
4172 if (!event)
4173 return -ENOMEM;
4174
59b6f873 4175 event->memcg = memcg;
79bd9814 4176 INIT_LIST_HEAD(&event->list);
3bc942f3
TH
4177 init_poll_funcptr(&event->pt, memcg_event_ptable_queue_proc);
4178 init_waitqueue_func_entry(&event->wait, memcg_event_wake);
4179 INIT_WORK(&event->remove, memcg_event_remove);
79bd9814
TH
4180
4181 efile = fdget(efd);
4182 if (!efile.file) {
4183 ret = -EBADF;
4184 goto out_kfree;
4185 }
4186
4187 event->eventfd = eventfd_ctx_fileget(efile.file);
4188 if (IS_ERR(event->eventfd)) {
4189 ret = PTR_ERR(event->eventfd);
4190 goto out_put_efile;
4191 }
4192
4193 cfile = fdget(cfd);
4194 if (!cfile.file) {
4195 ret = -EBADF;
4196 goto out_put_eventfd;
4197 }
4198
4199 /* the process need read permission on control file */
4200 /* AV: shouldn't we check that it's been opened for read instead? */
4201 ret = inode_permission(file_inode(cfile.file), MAY_READ);
4202 if (ret < 0)
4203 goto out_put_cfile;
4204
fba94807
TH
4205 /*
4206 * Determine the event callbacks and set them in @event. This used
4207 * to be done via struct cftype but cgroup core no longer knows
4208 * about these events. The following is crude but the whole thing
4209 * is for compatibility anyway.
3bc942f3
TH
4210 *
4211 * DO NOT ADD NEW FILES.
fba94807 4212 */
b583043e 4213 name = cfile.file->f_path.dentry->d_name.name;
fba94807
TH
4214
4215 if (!strcmp(name, "memory.usage_in_bytes")) {
4216 event->register_event = mem_cgroup_usage_register_event;
4217 event->unregister_event = mem_cgroup_usage_unregister_event;
4218 } else if (!strcmp(name, "memory.oom_control")) {
4219 event->register_event = mem_cgroup_oom_register_event;
4220 event->unregister_event = mem_cgroup_oom_unregister_event;
4221 } else if (!strcmp(name, "memory.pressure_level")) {
4222 event->register_event = vmpressure_register_event;
4223 event->unregister_event = vmpressure_unregister_event;
4224 } else if (!strcmp(name, "memory.memsw.usage_in_bytes")) {
347c4a87
TH
4225 event->register_event = memsw_cgroup_usage_register_event;
4226 event->unregister_event = memsw_cgroup_usage_unregister_event;
fba94807
TH
4227 } else {
4228 ret = -EINVAL;
4229 goto out_put_cfile;
4230 }
4231
79bd9814 4232 /*
b5557c4c
TH
4233 * Verify @cfile should belong to @css. Also, remaining events are
4234 * automatically removed on cgroup destruction but the removal is
4235 * asynchronous, so take an extra ref on @css.
79bd9814 4236 */
b583043e 4237 cfile_css = css_tryget_online_from_dir(cfile.file->f_path.dentry->d_parent,
ec903c0c 4238 &memory_cgrp_subsys);
79bd9814 4239 ret = -EINVAL;
5a17f543 4240 if (IS_ERR(cfile_css))
79bd9814 4241 goto out_put_cfile;
5a17f543
TH
4242 if (cfile_css != css) {
4243 css_put(cfile_css);
79bd9814 4244 goto out_put_cfile;
5a17f543 4245 }
79bd9814 4246
451af504 4247 ret = event->register_event(memcg, event->eventfd, buf);
79bd9814
TH
4248 if (ret)
4249 goto out_put_css;
4250
4251 efile.file->f_op->poll(efile.file, &event->pt);
4252
fba94807
TH
4253 spin_lock(&memcg->event_list_lock);
4254 list_add(&event->list, &memcg->event_list);
4255 spin_unlock(&memcg->event_list_lock);
79bd9814
TH
4256
4257 fdput(cfile);
4258 fdput(efile);
4259
451af504 4260 return nbytes;
79bd9814
TH
4261
4262out_put_css:
b5557c4c 4263 css_put(css);
79bd9814
TH
4264out_put_cfile:
4265 fdput(cfile);
4266out_put_eventfd:
4267 eventfd_ctx_put(event->eventfd);
4268out_put_efile:
4269 fdput(efile);
4270out_kfree:
4271 kfree(event);
4272
4273 return ret;
4274}
4275
241994ed 4276static struct cftype mem_cgroup_legacy_files[] = {
8cdea7c0 4277 {
0eea1030 4278 .name = "usage_in_bytes",
8c7c6e34 4279 .private = MEMFILE_PRIVATE(_MEM, RES_USAGE),
791badbd 4280 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4281 },
c84872e1
PE
4282 {
4283 .name = "max_usage_in_bytes",
8c7c6e34 4284 .private = MEMFILE_PRIVATE(_MEM, RES_MAX_USAGE),
6770c64e 4285 .write = mem_cgroup_reset,
791badbd 4286 .read_u64 = mem_cgroup_read_u64,
c84872e1 4287 },
8cdea7c0 4288 {
0eea1030 4289 .name = "limit_in_bytes",
8c7c6e34 4290 .private = MEMFILE_PRIVATE(_MEM, RES_LIMIT),
451af504 4291 .write = mem_cgroup_write,
791badbd 4292 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4293 },
296c81d8
BS
4294 {
4295 .name = "soft_limit_in_bytes",
4296 .private = MEMFILE_PRIVATE(_MEM, RES_SOFT_LIMIT),
451af504 4297 .write = mem_cgroup_write,
791badbd 4298 .read_u64 = mem_cgroup_read_u64,
296c81d8 4299 },
8cdea7c0
BS
4300 {
4301 .name = "failcnt",
8c7c6e34 4302 .private = MEMFILE_PRIVATE(_MEM, RES_FAILCNT),
6770c64e 4303 .write = mem_cgroup_reset,
791badbd 4304 .read_u64 = mem_cgroup_read_u64,
8cdea7c0 4305 },
d2ceb9b7
KH
4306 {
4307 .name = "stat",
2da8ca82 4308 .seq_show = memcg_stat_show,
d2ceb9b7 4309 },
c1e862c1
KH
4310 {
4311 .name = "force_empty",
6770c64e 4312 .write = mem_cgroup_force_empty_write,
c1e862c1 4313 },
18f59ea7
BS
4314 {
4315 .name = "use_hierarchy",
4316 .write_u64 = mem_cgroup_hierarchy_write,
4317 .read_u64 = mem_cgroup_hierarchy_read,
4318 },
79bd9814 4319 {
3bc942f3 4320 .name = "cgroup.event_control", /* XXX: for compat */
451af504 4321 .write = memcg_write_event_control,
79bd9814
TH
4322 .flags = CFTYPE_NO_PREFIX,
4323 .mode = S_IWUGO,
4324 },
a7885eb8
KM
4325 {
4326 .name = "swappiness",
4327 .read_u64 = mem_cgroup_swappiness_read,
4328 .write_u64 = mem_cgroup_swappiness_write,
4329 },
7dc74be0
DN
4330 {
4331 .name = "move_charge_at_immigrate",
4332 .read_u64 = mem_cgroup_move_charge_read,
4333 .write_u64 = mem_cgroup_move_charge_write,
4334 },
9490ff27
KH
4335 {
4336 .name = "oom_control",
2da8ca82 4337 .seq_show = mem_cgroup_oom_control_read,
3c11ecf4 4338 .write_u64 = mem_cgroup_oom_control_write,
9490ff27
KH
4339 .private = MEMFILE_PRIVATE(_OOM_TYPE, OOM_CONTROL),
4340 },
70ddf637
AV
4341 {
4342 .name = "pressure_level",
70ddf637 4343 },
406eb0c9
YH
4344#ifdef CONFIG_NUMA
4345 {
4346 .name = "numa_stat",
2da8ca82 4347 .seq_show = memcg_numa_stat_show,
406eb0c9
YH
4348 },
4349#endif
510fc4e1
GC
4350#ifdef CONFIG_MEMCG_KMEM
4351 {
4352 .name = "kmem.limit_in_bytes",
4353 .private = MEMFILE_PRIVATE(_KMEM, RES_LIMIT),
451af504 4354 .write = mem_cgroup_write,
791badbd 4355 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4356 },
4357 {
4358 .name = "kmem.usage_in_bytes",
4359 .private = MEMFILE_PRIVATE(_KMEM, RES_USAGE),
791badbd 4360 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4361 },
4362 {
4363 .name = "kmem.failcnt",
4364 .private = MEMFILE_PRIVATE(_KMEM, RES_FAILCNT),
6770c64e 4365 .write = mem_cgroup_reset,
791badbd 4366 .read_u64 = mem_cgroup_read_u64,
510fc4e1
GC
4367 },
4368 {
4369 .name = "kmem.max_usage_in_bytes",
4370 .private = MEMFILE_PRIVATE(_KMEM, RES_MAX_USAGE),
6770c64e 4371 .write = mem_cgroup_reset,
791badbd 4372 .read_u64 = mem_cgroup_read_u64,
510fc4e1 4373 },
749c5415
GC
4374#ifdef CONFIG_SLABINFO
4375 {
4376 .name = "kmem.slabinfo",
b047501c
VD
4377 .seq_start = slab_start,
4378 .seq_next = slab_next,
4379 .seq_stop = slab_stop,
4380 .seq_show = memcg_slab_show,
749c5415
GC
4381 },
4382#endif
8c7c6e34 4383#endif
6bc10349 4384 { }, /* terminate */
af36f906 4385};
8c7c6e34 4386
2d11085e
MH
4387#ifdef CONFIG_MEMCG_SWAP
4388static struct cftype memsw_cgroup_files[] = {
4389 {
4390 .name = "memsw.usage_in_bytes",
4391 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_USAGE),
791badbd 4392 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4393 },
4394 {
4395 .name = "memsw.max_usage_in_bytes",
4396 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_MAX_USAGE),
6770c64e 4397 .write = mem_cgroup_reset,
791badbd 4398 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4399 },
4400 {
4401 .name = "memsw.limit_in_bytes",
4402 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_LIMIT),
451af504 4403 .write = mem_cgroup_write,
791badbd 4404 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4405 },
4406 {
4407 .name = "memsw.failcnt",
4408 .private = MEMFILE_PRIVATE(_MEMSWAP, RES_FAILCNT),
6770c64e 4409 .write = mem_cgroup_reset,
791badbd 4410 .read_u64 = mem_cgroup_read_u64,
2d11085e
MH
4411 },
4412 { }, /* terminate */
4413};
4414#endif
c0ff4b85 4415static int alloc_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
6d12e2d8
KH
4416{
4417 struct mem_cgroup_per_node *pn;
1ecaab2b 4418 struct mem_cgroup_per_zone *mz;
41e3355d 4419 int zone, tmp = node;
1ecaab2b
KH
4420 /*
4421 * This routine is called against possible nodes.
4422 * But it's BUG to call kmalloc() against offline node.
4423 *
4424 * TODO: this routine can waste much memory for nodes which will
4425 * never be onlined. It's better to use memory hotplug callback
4426 * function.
4427 */
41e3355d
KH
4428 if (!node_state(node, N_NORMAL_MEMORY))
4429 tmp = -1;
17295c88 4430 pn = kzalloc_node(sizeof(*pn), GFP_KERNEL, tmp);
6d12e2d8
KH
4431 if (!pn)
4432 return 1;
1ecaab2b 4433
1ecaab2b
KH
4434 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
4435 mz = &pn->zoneinfo[zone];
bea8c150 4436 lruvec_init(&mz->lruvec);
bb4cc1a8
AM
4437 mz->usage_in_excess = 0;
4438 mz->on_tree = false;
d79154bb 4439 mz->memcg = memcg;
1ecaab2b 4440 }
54f72fe0 4441 memcg->nodeinfo[node] = pn;
6d12e2d8
KH
4442 return 0;
4443}
4444
c0ff4b85 4445static void free_mem_cgroup_per_zone_info(struct mem_cgroup *memcg, int node)
1ecaab2b 4446{
54f72fe0 4447 kfree(memcg->nodeinfo[node]);
1ecaab2b
KH
4448}
4449
33327948
KH
4450static struct mem_cgroup *mem_cgroup_alloc(void)
4451{
d79154bb 4452 struct mem_cgroup *memcg;
8ff69e2c 4453 size_t size;
33327948 4454
8ff69e2c
VD
4455 size = sizeof(struct mem_cgroup);
4456 size += nr_node_ids * sizeof(struct mem_cgroup_per_node *);
33327948 4457
8ff69e2c 4458 memcg = kzalloc(size, GFP_KERNEL);
d79154bb 4459 if (!memcg)
e7bbcdf3
DC
4460 return NULL;
4461
d79154bb
HD
4462 memcg->stat = alloc_percpu(struct mem_cgroup_stat_cpu);
4463 if (!memcg->stat)
d2e61b8d 4464 goto out_free;
d79154bb
HD
4465 spin_lock_init(&memcg->pcp_counter_lock);
4466 return memcg;
d2e61b8d
DC
4467
4468out_free:
8ff69e2c 4469 kfree(memcg);
d2e61b8d 4470 return NULL;
33327948
KH
4471}
4472
59927fb9 4473/*
c8b2a36f
GC
4474 * At destroying mem_cgroup, references from swap_cgroup can remain.
4475 * (scanning all at force_empty is too costly...)
4476 *
4477 * Instead of clearing all references at force_empty, we remember
4478 * the number of reference from swap_cgroup and free mem_cgroup when
4479 * it goes down to 0.
4480 *
4481 * Removal of cgroup itself succeeds regardless of refs from swap.
59927fb9 4482 */
c8b2a36f
GC
4483
4484static void __mem_cgroup_free(struct mem_cgroup *memcg)
59927fb9 4485{
c8b2a36f 4486 int node;
59927fb9 4487
bb4cc1a8 4488 mem_cgroup_remove_from_trees(memcg);
c8b2a36f
GC
4489
4490 for_each_node(node)
4491 free_mem_cgroup_per_zone_info(memcg, node);
4492
4493 free_percpu(memcg->stat);
4494
a8964b9b 4495 disarm_static_keys(memcg);
8ff69e2c 4496 kfree(memcg);
59927fb9 4497}
3afe36b1 4498
7bcc1bb1
DN
4499/*
4500 * Returns the parent mem_cgroup in memcgroup hierarchy with hierarchy enabled.
4501 */
e1aab161 4502struct mem_cgroup *parent_mem_cgroup(struct mem_cgroup *memcg)
7bcc1bb1 4503{
3e32cb2e 4504 if (!memcg->memory.parent)
7bcc1bb1 4505 return NULL;
3e32cb2e 4506 return mem_cgroup_from_counter(memcg->memory.parent, memory);
7bcc1bb1 4507}
e1aab161 4508EXPORT_SYMBOL(parent_mem_cgroup);
33327948 4509
bb4cc1a8
AM
4510static void __init mem_cgroup_soft_limit_tree_init(void)
4511{
9c608dbe 4512 int node;
bb4cc1a8
AM
4513
4514 for_each_node(node) {
9c608dbe
JW
4515 struct mem_cgroup_tree_per_node *rtpn;
4516 int zone;
bb4cc1a8 4517
9c608dbe
JW
4518 rtpn = kzalloc_node(sizeof(*rtpn), GFP_KERNEL,
4519 node_online(node) ? node : NUMA_NO_NODE);
bb4cc1a8
AM
4520
4521 for (zone = 0; zone < MAX_NR_ZONES; zone++) {
9c608dbe
JW
4522 struct mem_cgroup_tree_per_zone *rtpz;
4523
bb4cc1a8
AM
4524 rtpz = &rtpn->rb_tree_per_zone[zone];
4525 rtpz->rb_root = RB_ROOT;
4526 spin_lock_init(&rtpz->lock);
4527 }
9c608dbe 4528 soft_limit_tree.rb_tree_per_node[node] = rtpn;
bb4cc1a8
AM
4529 }
4530}
4531
0eb253e2 4532static struct cgroup_subsys_state * __ref
eb95419b 4533mem_cgroup_css_alloc(struct cgroup_subsys_state *parent_css)
8cdea7c0 4534{
d142e3e6 4535 struct mem_cgroup *memcg;
04046e1a 4536 long error = -ENOMEM;
6d12e2d8 4537 int node;
8cdea7c0 4538
c0ff4b85
R
4539 memcg = mem_cgroup_alloc();
4540 if (!memcg)
04046e1a 4541 return ERR_PTR(error);
78fb7466 4542
3ed28fa1 4543 for_each_node(node)
c0ff4b85 4544 if (alloc_mem_cgroup_per_zone_info(memcg, node))
6d12e2d8 4545 goto free_out;
f64c3f54 4546
c077719b 4547 /* root ? */
eb95419b 4548 if (parent_css == NULL) {
a41c58a6 4549 root_mem_cgroup = memcg;
3e32cb2e 4550 page_counter_init(&memcg->memory, NULL);
241994ed 4551 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4552 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4553 page_counter_init(&memcg->memsw, NULL);
4554 page_counter_init(&memcg->kmem, NULL);
18f59ea7 4555 }
28dbc4b6 4556
d142e3e6
GC
4557 memcg->last_scanned_node = MAX_NUMNODES;
4558 INIT_LIST_HEAD(&memcg->oom_notify);
d142e3e6
GC
4559 memcg->move_charge_at_immigrate = 0;
4560 mutex_init(&memcg->thresholds_lock);
4561 spin_lock_init(&memcg->move_lock);
70ddf637 4562 vmpressure_init(&memcg->vmpressure);
fba94807
TH
4563 INIT_LIST_HEAD(&memcg->event_list);
4564 spin_lock_init(&memcg->event_list_lock);
900a38f0
VD
4565#ifdef CONFIG_MEMCG_KMEM
4566 memcg->kmemcg_id = -1;
900a38f0 4567#endif
d142e3e6
GC
4568
4569 return &memcg->css;
4570
4571free_out:
4572 __mem_cgroup_free(memcg);
4573 return ERR_PTR(error);
4574}
4575
4576static int
eb95419b 4577mem_cgroup_css_online(struct cgroup_subsys_state *css)
d142e3e6 4578{
eb95419b 4579 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
5c9d535b 4580 struct mem_cgroup *parent = mem_cgroup_from_css(css->parent);
2f7dd7a4 4581 int ret;
d142e3e6 4582
15a4c835 4583 if (css->id > MEM_CGROUP_ID_MAX)
4219b2da
LZ
4584 return -ENOSPC;
4585
63876986 4586 if (!parent)
d142e3e6
GC
4587 return 0;
4588
0999821b 4589 mutex_lock(&memcg_create_mutex);
d142e3e6
GC
4590
4591 memcg->use_hierarchy = parent->use_hierarchy;
4592 memcg->oom_kill_disable = parent->oom_kill_disable;
4593 memcg->swappiness = mem_cgroup_swappiness(parent);
4594
4595 if (parent->use_hierarchy) {
3e32cb2e 4596 page_counter_init(&memcg->memory, &parent->memory);
241994ed 4597 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4598 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4599 page_counter_init(&memcg->memsw, &parent->memsw);
4600 page_counter_init(&memcg->kmem, &parent->kmem);
55007d84 4601
7bcc1bb1 4602 /*
8d76a979
LZ
4603 * No need to take a reference to the parent because cgroup
4604 * core guarantees its existence.
7bcc1bb1 4605 */
18f59ea7 4606 } else {
3e32cb2e 4607 page_counter_init(&memcg->memory, NULL);
241994ed 4608 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4609 memcg->soft_limit = PAGE_COUNTER_MAX;
3e32cb2e
JW
4610 page_counter_init(&memcg->memsw, NULL);
4611 page_counter_init(&memcg->kmem, NULL);
8c7f6edb
TH
4612 /*
4613 * Deeper hierachy with use_hierarchy == false doesn't make
4614 * much sense so let cgroup subsystem know about this
4615 * unfortunate state in our controller.
4616 */
d142e3e6 4617 if (parent != root_mem_cgroup)
073219e9 4618 memory_cgrp_subsys.broken_hierarchy = true;
18f59ea7 4619 }
0999821b 4620 mutex_unlock(&memcg_create_mutex);
d6441637 4621
2f7dd7a4
JW
4622 ret = memcg_init_kmem(memcg, &memory_cgrp_subsys);
4623 if (ret)
4624 return ret;
4625
4626 /*
4627 * Make sure the memcg is initialized: mem_cgroup_iter()
4628 * orders reading memcg->initialized against its callers
4629 * reading the memcg members.
4630 */
4631 smp_store_release(&memcg->initialized, 1);
4632
4633 return 0;
8cdea7c0
BS
4634}
4635
eb95419b 4636static void mem_cgroup_css_offline(struct cgroup_subsys_state *css)
df878fb0 4637{
eb95419b 4638 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
3bc942f3 4639 struct mem_cgroup_event *event, *tmp;
79bd9814
TH
4640
4641 /*
4642 * Unregister events and notify userspace.
4643 * Notify userspace about cgroup removing only after rmdir of cgroup
4644 * directory to avoid race between userspace and kernelspace.
4645 */
fba94807
TH
4646 spin_lock(&memcg->event_list_lock);
4647 list_for_each_entry_safe(event, tmp, &memcg->event_list, list) {
79bd9814
TH
4648 list_del_init(&event->list);
4649 schedule_work(&event->remove);
4650 }
fba94807 4651 spin_unlock(&memcg->event_list_lock);
ec64f515 4652
33cb876e 4653 vmpressure_cleanup(&memcg->vmpressure);
df878fb0
KH
4654}
4655
eb95419b 4656static void mem_cgroup_css_free(struct cgroup_subsys_state *css)
8cdea7c0 4657{
eb95419b 4658 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
c268e994 4659
10d5ebf4 4660 memcg_destroy_kmem(memcg);
465939a1 4661 __mem_cgroup_free(memcg);
8cdea7c0
BS
4662}
4663
1ced953b
TH
4664/**
4665 * mem_cgroup_css_reset - reset the states of a mem_cgroup
4666 * @css: the target css
4667 *
4668 * Reset the states of the mem_cgroup associated with @css. This is
4669 * invoked when the userland requests disabling on the default hierarchy
4670 * but the memcg is pinned through dependency. The memcg should stop
4671 * applying policies and should revert to the vanilla state as it may be
4672 * made visible again.
4673 *
4674 * The current implementation only resets the essential configurations.
4675 * This needs to be expanded to cover all the visible parts.
4676 */
4677static void mem_cgroup_css_reset(struct cgroup_subsys_state *css)
4678{
4679 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
4680
3e32cb2e
JW
4681 mem_cgroup_resize_limit(memcg, PAGE_COUNTER_MAX);
4682 mem_cgroup_resize_memsw_limit(memcg, PAGE_COUNTER_MAX);
4683 memcg_update_kmem_limit(memcg, PAGE_COUNTER_MAX);
241994ed
JW
4684 memcg->low = 0;
4685 memcg->high = PAGE_COUNTER_MAX;
24d404dc 4686 memcg->soft_limit = PAGE_COUNTER_MAX;
1ced953b
TH
4687}
4688
02491447 4689#ifdef CONFIG_MMU
7dc74be0 4690/* Handlers for move charge at task migration. */
854ffa8d 4691static int mem_cgroup_do_precharge(unsigned long count)
7dc74be0 4692{
05b84301 4693 int ret;
9476db97
JW
4694
4695 /* Try a single bulk charge without reclaim first */
00501b53 4696 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_WAIT, count);
9476db97 4697 if (!ret) {
854ffa8d 4698 mc.precharge += count;
854ffa8d
DN
4699 return ret;
4700 }
692e7c45 4701 if (ret == -EINTR) {
00501b53 4702 cancel_charge(root_mem_cgroup, count);
692e7c45
JW
4703 return ret;
4704 }
9476db97
JW
4705
4706 /* Try charges one by one with reclaim */
854ffa8d 4707 while (count--) {
00501b53 4708 ret = try_charge(mc.to, GFP_KERNEL & ~__GFP_NORETRY, 1);
9476db97
JW
4709 /*
4710 * In case of failure, any residual charges against
4711 * mc.to will be dropped by mem_cgroup_clear_mc()
692e7c45
JW
4712 * later on. However, cancel any charges that are
4713 * bypassed to root right away or they'll be lost.
9476db97 4714 */
692e7c45 4715 if (ret == -EINTR)
00501b53 4716 cancel_charge(root_mem_cgroup, 1);
38c5d72f 4717 if (ret)
38c5d72f 4718 return ret;
854ffa8d 4719 mc.precharge++;
9476db97 4720 cond_resched();
854ffa8d 4721 }
9476db97 4722 return 0;
4ffef5fe
DN
4723}
4724
4725/**
8d32ff84 4726 * get_mctgt_type - get target type of moving charge
4ffef5fe
DN
4727 * @vma: the vma the pte to be checked belongs
4728 * @addr: the address corresponding to the pte to be checked
4729 * @ptent: the pte to be checked
02491447 4730 * @target: the pointer the target page or swap ent will be stored(can be NULL)
4ffef5fe
DN
4731 *
4732 * Returns
4733 * 0(MC_TARGET_NONE): if the pte is not a target for move charge.
4734 * 1(MC_TARGET_PAGE): if the page corresponding to this pte is a target for
4735 * move charge. if @target is not NULL, the page is stored in target->page
4736 * with extra refcnt got(Callers should handle it).
02491447
DN
4737 * 2(MC_TARGET_SWAP): if the swap entry corresponding to this pte is a
4738 * target for charge migration. if @target is not NULL, the entry is stored
4739 * in target->ent.
4ffef5fe
DN
4740 *
4741 * Called with pte lock held.
4742 */
4ffef5fe
DN
4743union mc_target {
4744 struct page *page;
02491447 4745 swp_entry_t ent;
4ffef5fe
DN
4746};
4747
4ffef5fe 4748enum mc_target_type {
8d32ff84 4749 MC_TARGET_NONE = 0,
4ffef5fe 4750 MC_TARGET_PAGE,
02491447 4751 MC_TARGET_SWAP,
4ffef5fe
DN
4752};
4753
90254a65
DN
4754static struct page *mc_handle_present_pte(struct vm_area_struct *vma,
4755 unsigned long addr, pte_t ptent)
4ffef5fe 4756{
90254a65 4757 struct page *page = vm_normal_page(vma, addr, ptent);
4ffef5fe 4758
90254a65
DN
4759 if (!page || !page_mapped(page))
4760 return NULL;
4761 if (PageAnon(page)) {
1dfab5ab 4762 if (!(mc.flags & MOVE_ANON))
90254a65 4763 return NULL;
1dfab5ab
JW
4764 } else {
4765 if (!(mc.flags & MOVE_FILE))
4766 return NULL;
4767 }
90254a65
DN
4768 if (!get_page_unless_zero(page))
4769 return NULL;
4770
4771 return page;
4772}
4773
4b91355e 4774#ifdef CONFIG_SWAP
90254a65
DN
4775static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4776 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4777{
90254a65
DN
4778 struct page *page = NULL;
4779 swp_entry_t ent = pte_to_swp_entry(ptent);
4780
1dfab5ab 4781 if (!(mc.flags & MOVE_ANON) || non_swap_entry(ent))
90254a65 4782 return NULL;
4b91355e
KH
4783 /*
4784 * Because lookup_swap_cache() updates some statistics counter,
4785 * we call find_get_page() with swapper_space directly.
4786 */
33806f06 4787 page = find_get_page(swap_address_space(ent), ent.val);
90254a65
DN
4788 if (do_swap_account)
4789 entry->val = ent.val;
4790
4791 return page;
4792}
4b91355e
KH
4793#else
4794static struct page *mc_handle_swap_pte(struct vm_area_struct *vma,
4795 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4796{
4797 return NULL;
4798}
4799#endif
90254a65 4800
87946a72
DN
4801static struct page *mc_handle_file_pte(struct vm_area_struct *vma,
4802 unsigned long addr, pte_t ptent, swp_entry_t *entry)
4803{
4804 struct page *page = NULL;
87946a72
DN
4805 struct address_space *mapping;
4806 pgoff_t pgoff;
4807
4808 if (!vma->vm_file) /* anonymous vma */
4809 return NULL;
1dfab5ab 4810 if (!(mc.flags & MOVE_FILE))
87946a72
DN
4811 return NULL;
4812
87946a72 4813 mapping = vma->vm_file->f_mapping;
0661a336 4814 pgoff = linear_page_index(vma, addr);
87946a72
DN
4815
4816 /* page is moved even if it's not RSS of this task(page-faulted). */
aa3b1895
HD
4817#ifdef CONFIG_SWAP
4818 /* shmem/tmpfs may report page out on swap: account for that too. */
139b6a6f
JW
4819 if (shmem_mapping(mapping)) {
4820 page = find_get_entry(mapping, pgoff);
4821 if (radix_tree_exceptional_entry(page)) {
4822 swp_entry_t swp = radix_to_swp_entry(page);
4823 if (do_swap_account)
4824 *entry = swp;
4825 page = find_get_page(swap_address_space(swp), swp.val);
4826 }
4827 } else
4828 page = find_get_page(mapping, pgoff);
4829#else
4830 page = find_get_page(mapping, pgoff);
aa3b1895 4831#endif
87946a72
DN
4832 return page;
4833}
4834
8d32ff84 4835static enum mc_target_type get_mctgt_type(struct vm_area_struct *vma,
90254a65
DN
4836 unsigned long addr, pte_t ptent, union mc_target *target)
4837{
4838 struct page *page = NULL;
8d32ff84 4839 enum mc_target_type ret = MC_TARGET_NONE;
90254a65
DN
4840 swp_entry_t ent = { .val = 0 };
4841
4842 if (pte_present(ptent))
4843 page = mc_handle_present_pte(vma, addr, ptent);
4844 else if (is_swap_pte(ptent))
4845 page = mc_handle_swap_pte(vma, addr, ptent, &ent);
0661a336 4846 else if (pte_none(ptent))
87946a72 4847 page = mc_handle_file_pte(vma, addr, ptent, &ent);
90254a65
DN
4848
4849 if (!page && !ent.val)
8d32ff84 4850 return ret;
02491447 4851 if (page) {
02491447 4852 /*
0a31bc97 4853 * Do only loose check w/o serialization.
1306a85a 4854 * mem_cgroup_move_account() checks the page is valid or
0a31bc97 4855 * not under LRU exclusion.
02491447 4856 */
1306a85a 4857 if (page->mem_cgroup == mc.from) {
02491447
DN
4858 ret = MC_TARGET_PAGE;
4859 if (target)
4860 target->page = page;
4861 }
4862 if (!ret || !target)
4863 put_page(page);
4864 }
90254a65
DN
4865 /* There is a swap entry and a page doesn't exist or isn't charged */
4866 if (ent.val && !ret &&
34c00c31 4867 mem_cgroup_id(mc.from) == lookup_swap_cgroup_id(ent)) {
7f0f1546
KH
4868 ret = MC_TARGET_SWAP;
4869 if (target)
4870 target->ent = ent;
4ffef5fe 4871 }
4ffef5fe
DN
4872 return ret;
4873}
4874
12724850
NH
4875#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4876/*
4877 * We don't consider swapping or file mapped pages because THP does not
4878 * support them for now.
4879 * Caller should make sure that pmd_trans_huge(pmd) is true.
4880 */
4881static enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4882 unsigned long addr, pmd_t pmd, union mc_target *target)
4883{
4884 struct page *page = NULL;
12724850
NH
4885 enum mc_target_type ret = MC_TARGET_NONE;
4886
4887 page = pmd_page(pmd);
309381fe 4888 VM_BUG_ON_PAGE(!page || !PageHead(page), page);
1dfab5ab 4889 if (!(mc.flags & MOVE_ANON))
12724850 4890 return ret;
1306a85a 4891 if (page->mem_cgroup == mc.from) {
12724850
NH
4892 ret = MC_TARGET_PAGE;
4893 if (target) {
4894 get_page(page);
4895 target->page = page;
4896 }
4897 }
4898 return ret;
4899}
4900#else
4901static inline enum mc_target_type get_mctgt_type_thp(struct vm_area_struct *vma,
4902 unsigned long addr, pmd_t pmd, union mc_target *target)
4903{
4904 return MC_TARGET_NONE;
4905}
4906#endif
4907
4ffef5fe
DN
4908static int mem_cgroup_count_precharge_pte_range(pmd_t *pmd,
4909 unsigned long addr, unsigned long end,
4910 struct mm_walk *walk)
4911{
4912 struct vm_area_struct *vma = walk->private;
4913 pte_t *pte;
4914 spinlock_t *ptl;
4915
bf929152 4916 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
12724850
NH
4917 if (get_mctgt_type_thp(vma, addr, *pmd, NULL) == MC_TARGET_PAGE)
4918 mc.precharge += HPAGE_PMD_NR;
bf929152 4919 spin_unlock(ptl);
1a5a9906 4920 return 0;
12724850 4921 }
03319327 4922
45f83cef
AA
4923 if (pmd_trans_unstable(pmd))
4924 return 0;
4ffef5fe
DN
4925 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
4926 for (; addr != end; pte++, addr += PAGE_SIZE)
8d32ff84 4927 if (get_mctgt_type(vma, addr, *pte, NULL))
4ffef5fe
DN
4928 mc.precharge++; /* increment precharge temporarily */
4929 pte_unmap_unlock(pte - 1, ptl);
4930 cond_resched();
4931
7dc74be0
DN
4932 return 0;
4933}
4934
4ffef5fe
DN
4935static unsigned long mem_cgroup_count_precharge(struct mm_struct *mm)
4936{
4937 unsigned long precharge;
4938 struct vm_area_struct *vma;
4939
dfe076b0 4940 down_read(&mm->mmap_sem);
4ffef5fe
DN
4941 for (vma = mm->mmap; vma; vma = vma->vm_next) {
4942 struct mm_walk mem_cgroup_count_precharge_walk = {
4943 .pmd_entry = mem_cgroup_count_precharge_pte_range,
4944 .mm = mm,
4945 .private = vma,
4946 };
4947 if (is_vm_hugetlb_page(vma))
4948 continue;
4ffef5fe
DN
4949 walk_page_range(vma->vm_start, vma->vm_end,
4950 &mem_cgroup_count_precharge_walk);
4951 }
dfe076b0 4952 up_read(&mm->mmap_sem);
4ffef5fe
DN
4953
4954 precharge = mc.precharge;
4955 mc.precharge = 0;
4956
4957 return precharge;
4958}
4959
4ffef5fe
DN
4960static int mem_cgroup_precharge_mc(struct mm_struct *mm)
4961{
dfe076b0
DN
4962 unsigned long precharge = mem_cgroup_count_precharge(mm);
4963
4964 VM_BUG_ON(mc.moving_task);
4965 mc.moving_task = current;
4966 return mem_cgroup_do_precharge(precharge);
4ffef5fe
DN
4967}
4968
dfe076b0
DN
4969/* cancels all extra charges on mc.from and mc.to, and wakes up all waiters. */
4970static void __mem_cgroup_clear_mc(void)
4ffef5fe 4971{
2bd9bb20
KH
4972 struct mem_cgroup *from = mc.from;
4973 struct mem_cgroup *to = mc.to;
4974
4ffef5fe 4975 /* we must uncharge all the leftover precharges from mc.to */
854ffa8d 4976 if (mc.precharge) {
00501b53 4977 cancel_charge(mc.to, mc.precharge);
854ffa8d
DN
4978 mc.precharge = 0;
4979 }
4980 /*
4981 * we didn't uncharge from mc.from at mem_cgroup_move_account(), so
4982 * we must uncharge here.
4983 */
4984 if (mc.moved_charge) {
00501b53 4985 cancel_charge(mc.from, mc.moved_charge);
854ffa8d 4986 mc.moved_charge = 0;
4ffef5fe 4987 }
483c30b5
DN
4988 /* we must fixup refcnts and charges */
4989 if (mc.moved_swap) {
483c30b5 4990 /* uncharge swap account from the old cgroup */
ce00a967 4991 if (!mem_cgroup_is_root(mc.from))
3e32cb2e 4992 page_counter_uncharge(&mc.from->memsw, mc.moved_swap);
483c30b5 4993
05b84301 4994 /*
3e32cb2e
JW
4995 * we charged both to->memory and to->memsw, so we
4996 * should uncharge to->memory.
05b84301 4997 */
ce00a967 4998 if (!mem_cgroup_is_root(mc.to))
3e32cb2e
JW
4999 page_counter_uncharge(&mc.to->memory, mc.moved_swap);
5000
e8ea14cc 5001 css_put_many(&mc.from->css, mc.moved_swap);
3e32cb2e 5002
4050377b 5003 /* we've already done css_get(mc.to) */
483c30b5
DN
5004 mc.moved_swap = 0;
5005 }
dfe076b0
DN
5006 memcg_oom_recover(from);
5007 memcg_oom_recover(to);
5008 wake_up_all(&mc.waitq);
5009}
5010
5011static void mem_cgroup_clear_mc(void)
5012{
dfe076b0
DN
5013 /*
5014 * we must clear moving_task before waking up waiters at the end of
5015 * task migration.
5016 */
5017 mc.moving_task = NULL;
5018 __mem_cgroup_clear_mc();
2bd9bb20 5019 spin_lock(&mc.lock);
4ffef5fe
DN
5020 mc.from = NULL;
5021 mc.to = NULL;
2bd9bb20 5022 spin_unlock(&mc.lock);
4ffef5fe
DN
5023}
5024
eb95419b 5025static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5026 struct cgroup_taskset *tset)
7dc74be0 5027{
2f7ee569 5028 struct task_struct *p = cgroup_taskset_first(tset);
7dc74be0 5029 int ret = 0;
eb95419b 5030 struct mem_cgroup *memcg = mem_cgroup_from_css(css);
1dfab5ab 5031 unsigned long move_flags;
7dc74be0 5032
ee5e8472
GC
5033 /*
5034 * We are now commited to this value whatever it is. Changes in this
5035 * tunable will only affect upcoming migrations, not the current one.
5036 * So we need to save it, and keep it going.
5037 */
1dfab5ab
JW
5038 move_flags = ACCESS_ONCE(memcg->move_charge_at_immigrate);
5039 if (move_flags) {
7dc74be0
DN
5040 struct mm_struct *mm;
5041 struct mem_cgroup *from = mem_cgroup_from_task(p);
5042
c0ff4b85 5043 VM_BUG_ON(from == memcg);
7dc74be0
DN
5044
5045 mm = get_task_mm(p);
5046 if (!mm)
5047 return 0;
7dc74be0 5048 /* We move charges only when we move a owner of the mm */
4ffef5fe
DN
5049 if (mm->owner == p) {
5050 VM_BUG_ON(mc.from);
5051 VM_BUG_ON(mc.to);
5052 VM_BUG_ON(mc.precharge);
854ffa8d 5053 VM_BUG_ON(mc.moved_charge);
483c30b5 5054 VM_BUG_ON(mc.moved_swap);
247b1447 5055
2bd9bb20 5056 spin_lock(&mc.lock);
4ffef5fe 5057 mc.from = from;
c0ff4b85 5058 mc.to = memcg;
1dfab5ab 5059 mc.flags = move_flags;
2bd9bb20 5060 spin_unlock(&mc.lock);
dfe076b0 5061 /* We set mc.moving_task later */
4ffef5fe
DN
5062
5063 ret = mem_cgroup_precharge_mc(mm);
5064 if (ret)
5065 mem_cgroup_clear_mc();
dfe076b0
DN
5066 }
5067 mmput(mm);
7dc74be0
DN
5068 }
5069 return ret;
5070}
5071
eb95419b 5072static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5073 struct cgroup_taskset *tset)
7dc74be0 5074{
4e2f245d
JW
5075 if (mc.to)
5076 mem_cgroup_clear_mc();
7dc74be0
DN
5077}
5078
4ffef5fe
DN
5079static int mem_cgroup_move_charge_pte_range(pmd_t *pmd,
5080 unsigned long addr, unsigned long end,
5081 struct mm_walk *walk)
7dc74be0 5082{
4ffef5fe
DN
5083 int ret = 0;
5084 struct vm_area_struct *vma = walk->private;
5085 pte_t *pte;
5086 spinlock_t *ptl;
12724850
NH
5087 enum mc_target_type target_type;
5088 union mc_target target;
5089 struct page *page;
4ffef5fe 5090
12724850
NH
5091 /*
5092 * We don't take compound_lock() here but no race with splitting thp
5093 * happens because:
5094 * - if pmd_trans_huge_lock() returns 1, the relevant thp is not
5095 * under splitting, which means there's no concurrent thp split,
5096 * - if another thread runs into split_huge_page() just after we
5097 * entered this if-block, the thread must wait for page table lock
5098 * to be unlocked in __split_huge_page_splitting(), where the main
5099 * part of thp split is not executed yet.
5100 */
bf929152 5101 if (pmd_trans_huge_lock(pmd, vma, &ptl) == 1) {
62ade86a 5102 if (mc.precharge < HPAGE_PMD_NR) {
bf929152 5103 spin_unlock(ptl);
12724850
NH
5104 return 0;
5105 }
5106 target_type = get_mctgt_type_thp(vma, addr, *pmd, &target);
5107 if (target_type == MC_TARGET_PAGE) {
5108 page = target.page;
5109 if (!isolate_lru_page(page)) {
12724850 5110 if (!mem_cgroup_move_account(page, HPAGE_PMD_NR,
1306a85a 5111 mc.from, mc.to)) {
12724850
NH
5112 mc.precharge -= HPAGE_PMD_NR;
5113 mc.moved_charge += HPAGE_PMD_NR;
5114 }
5115 putback_lru_page(page);
5116 }
5117 put_page(page);
5118 }
bf929152 5119 spin_unlock(ptl);
1a5a9906 5120 return 0;
12724850
NH
5121 }
5122
45f83cef
AA
5123 if (pmd_trans_unstable(pmd))
5124 return 0;
4ffef5fe
DN
5125retry:
5126 pte = pte_offset_map_lock(vma->vm_mm, pmd, addr, &ptl);
5127 for (; addr != end; addr += PAGE_SIZE) {
5128 pte_t ptent = *(pte++);
02491447 5129 swp_entry_t ent;
4ffef5fe
DN
5130
5131 if (!mc.precharge)
5132 break;
5133
8d32ff84 5134 switch (get_mctgt_type(vma, addr, ptent, &target)) {
4ffef5fe
DN
5135 case MC_TARGET_PAGE:
5136 page = target.page;
5137 if (isolate_lru_page(page))
5138 goto put;
1306a85a 5139 if (!mem_cgroup_move_account(page, 1, mc.from, mc.to)) {
4ffef5fe 5140 mc.precharge--;
854ffa8d
DN
5141 /* we uncharge from mc.from later. */
5142 mc.moved_charge++;
4ffef5fe
DN
5143 }
5144 putback_lru_page(page);
8d32ff84 5145put: /* get_mctgt_type() gets the page */
4ffef5fe
DN
5146 put_page(page);
5147 break;
02491447
DN
5148 case MC_TARGET_SWAP:
5149 ent = target.ent;
e91cbb42 5150 if (!mem_cgroup_move_swap_account(ent, mc.from, mc.to)) {
02491447 5151 mc.precharge--;
483c30b5
DN
5152 /* we fixup refcnts and charges later. */
5153 mc.moved_swap++;
5154 }
02491447 5155 break;
4ffef5fe
DN
5156 default:
5157 break;
5158 }
5159 }
5160 pte_unmap_unlock(pte - 1, ptl);
5161 cond_resched();
5162
5163 if (addr != end) {
5164 /*
5165 * We have consumed all precharges we got in can_attach().
5166 * We try charge one by one, but don't do any additional
5167 * charges to mc.to if we have failed in charge once in attach()
5168 * phase.
5169 */
854ffa8d 5170 ret = mem_cgroup_do_precharge(1);
4ffef5fe
DN
5171 if (!ret)
5172 goto retry;
5173 }
5174
5175 return ret;
5176}
5177
5178static void mem_cgroup_move_charge(struct mm_struct *mm)
5179{
5180 struct vm_area_struct *vma;
5181
5182 lru_add_drain_all();
312722cb
JW
5183 /*
5184 * Signal mem_cgroup_begin_page_stat() to take the memcg's
5185 * move_lock while we're moving its pages to another memcg.
5186 * Then wait for already started RCU-only updates to finish.
5187 */
5188 atomic_inc(&mc.from->moving_account);
5189 synchronize_rcu();
dfe076b0
DN
5190retry:
5191 if (unlikely(!down_read_trylock(&mm->mmap_sem))) {
5192 /*
5193 * Someone who are holding the mmap_sem might be waiting in
5194 * waitq. So we cancel all extra charges, wake up all waiters,
5195 * and retry. Because we cancel precharges, we might not be able
5196 * to move enough charges, but moving charge is a best-effort
5197 * feature anyway, so it wouldn't be a big problem.
5198 */
5199 __mem_cgroup_clear_mc();
5200 cond_resched();
5201 goto retry;
5202 }
4ffef5fe
DN
5203 for (vma = mm->mmap; vma; vma = vma->vm_next) {
5204 int ret;
5205 struct mm_walk mem_cgroup_move_charge_walk = {
5206 .pmd_entry = mem_cgroup_move_charge_pte_range,
5207 .mm = mm,
5208 .private = vma,
5209 };
5210 if (is_vm_hugetlb_page(vma))
5211 continue;
4ffef5fe
DN
5212 ret = walk_page_range(vma->vm_start, vma->vm_end,
5213 &mem_cgroup_move_charge_walk);
5214 if (ret)
5215 /*
5216 * means we have consumed all precharges and failed in
5217 * doing additional charge. Just abandon here.
5218 */
5219 break;
5220 }
dfe076b0 5221 up_read(&mm->mmap_sem);
312722cb 5222 atomic_dec(&mc.from->moving_account);
7dc74be0
DN
5223}
5224
eb95419b 5225static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5226 struct cgroup_taskset *tset)
67e465a7 5227{
2f7ee569 5228 struct task_struct *p = cgroup_taskset_first(tset);
a433658c 5229 struct mm_struct *mm = get_task_mm(p);
dfe076b0 5230
dfe076b0 5231 if (mm) {
a433658c
KM
5232 if (mc.to)
5233 mem_cgroup_move_charge(mm);
dfe076b0
DN
5234 mmput(mm);
5235 }
a433658c
KM
5236 if (mc.to)
5237 mem_cgroup_clear_mc();
67e465a7 5238}
5cfb80a7 5239#else /* !CONFIG_MMU */
eb95419b 5240static int mem_cgroup_can_attach(struct cgroup_subsys_state *css,
761b3ef5 5241 struct cgroup_taskset *tset)
5cfb80a7
DN
5242{
5243 return 0;
5244}
eb95419b 5245static void mem_cgroup_cancel_attach(struct cgroup_subsys_state *css,
761b3ef5 5246 struct cgroup_taskset *tset)
5cfb80a7
DN
5247{
5248}
eb95419b 5249static void mem_cgroup_move_task(struct cgroup_subsys_state *css,
761b3ef5 5250 struct cgroup_taskset *tset)
5cfb80a7
DN
5251{
5252}
5253#endif
67e465a7 5254
f00baae7
TH
5255/*
5256 * Cgroup retains root cgroups across [un]mount cycles making it necessary
aa6ec29b
TH
5257 * to verify whether we're attached to the default hierarchy on each mount
5258 * attempt.
f00baae7 5259 */
eb95419b 5260static void mem_cgroup_bind(struct cgroup_subsys_state *root_css)
f00baae7
TH
5261{
5262 /*
aa6ec29b 5263 * use_hierarchy is forced on the default hierarchy. cgroup core
f00baae7
TH
5264 * guarantees that @root doesn't have any children, so turning it
5265 * on for the root memcg is enough.
5266 */
aa6ec29b 5267 if (cgroup_on_dfl(root_css->cgroup))
eb95419b 5268 mem_cgroup_from_css(root_css)->use_hierarchy = true;
f00baae7
TH
5269}
5270
241994ed
JW
5271static u64 memory_current_read(struct cgroup_subsys_state *css,
5272 struct cftype *cft)
5273{
5274 return mem_cgroup_usage(mem_cgroup_from_css(css), false);
5275}
5276
5277static int memory_low_show(struct seq_file *m, void *v)
5278{
5279 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5280 unsigned long low = ACCESS_ONCE(memcg->low);
5281
5282 if (low == PAGE_COUNTER_MAX)
5283 seq_puts(m, "infinity\n");
5284 else
5285 seq_printf(m, "%llu\n", (u64)low * PAGE_SIZE);
5286
5287 return 0;
5288}
5289
5290static ssize_t memory_low_write(struct kernfs_open_file *of,
5291 char *buf, size_t nbytes, loff_t off)
5292{
5293 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5294 unsigned long low;
5295 int err;
5296
5297 buf = strstrip(buf);
5298 err = page_counter_memparse(buf, "infinity", &low);
5299 if (err)
5300 return err;
5301
5302 memcg->low = low;
5303
5304 return nbytes;
5305}
5306
5307static int memory_high_show(struct seq_file *m, void *v)
5308{
5309 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5310 unsigned long high = ACCESS_ONCE(memcg->high);
5311
5312 if (high == PAGE_COUNTER_MAX)
5313 seq_puts(m, "infinity\n");
5314 else
5315 seq_printf(m, "%llu\n", (u64)high * PAGE_SIZE);
5316
5317 return 0;
5318}
5319
5320static ssize_t memory_high_write(struct kernfs_open_file *of,
5321 char *buf, size_t nbytes, loff_t off)
5322{
5323 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5324 unsigned long high;
5325 int err;
5326
5327 buf = strstrip(buf);
5328 err = page_counter_memparse(buf, "infinity", &high);
5329 if (err)
5330 return err;
5331
5332 memcg->high = high;
5333
5334 return nbytes;
5335}
5336
5337static int memory_max_show(struct seq_file *m, void *v)
5338{
5339 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5340 unsigned long max = ACCESS_ONCE(memcg->memory.limit);
5341
5342 if (max == PAGE_COUNTER_MAX)
5343 seq_puts(m, "infinity\n");
5344 else
5345 seq_printf(m, "%llu\n", (u64)max * PAGE_SIZE);
5346
5347 return 0;
5348}
5349
5350static ssize_t memory_max_write(struct kernfs_open_file *of,
5351 char *buf, size_t nbytes, loff_t off)
5352{
5353 struct mem_cgroup *memcg = mem_cgroup_from_css(of_css(of));
5354 unsigned long max;
5355 int err;
5356
5357 buf = strstrip(buf);
5358 err = page_counter_memparse(buf, "infinity", &max);
5359 if (err)
5360 return err;
5361
5362 err = mem_cgroup_resize_limit(memcg, max);
5363 if (err)
5364 return err;
5365
5366 return nbytes;
5367}
5368
5369static int memory_events_show(struct seq_file *m, void *v)
5370{
5371 struct mem_cgroup *memcg = mem_cgroup_from_css(seq_css(m));
5372
5373 seq_printf(m, "low %lu\n", mem_cgroup_read_events(memcg, MEMCG_LOW));
5374 seq_printf(m, "high %lu\n", mem_cgroup_read_events(memcg, MEMCG_HIGH));
5375 seq_printf(m, "max %lu\n", mem_cgroup_read_events(memcg, MEMCG_MAX));
5376 seq_printf(m, "oom %lu\n", mem_cgroup_read_events(memcg, MEMCG_OOM));
5377
5378 return 0;
5379}
5380
5381static struct cftype memory_files[] = {
5382 {
5383 .name = "current",
5384 .read_u64 = memory_current_read,
5385 },
5386 {
5387 .name = "low",
5388 .flags = CFTYPE_NOT_ON_ROOT,
5389 .seq_show = memory_low_show,
5390 .write = memory_low_write,
5391 },
5392 {
5393 .name = "high",
5394 .flags = CFTYPE_NOT_ON_ROOT,
5395 .seq_show = memory_high_show,
5396 .write = memory_high_write,
5397 },
5398 {
5399 .name = "max",
5400 .flags = CFTYPE_NOT_ON_ROOT,
5401 .seq_show = memory_max_show,
5402 .write = memory_max_write,
5403 },
5404 {
5405 .name = "events",
5406 .flags = CFTYPE_NOT_ON_ROOT,
5407 .seq_show = memory_events_show,
5408 },
5409 { } /* terminate */
5410};
5411
073219e9 5412struct cgroup_subsys memory_cgrp_subsys = {
92fb9748 5413 .css_alloc = mem_cgroup_css_alloc,
d142e3e6 5414 .css_online = mem_cgroup_css_online,
92fb9748
TH
5415 .css_offline = mem_cgroup_css_offline,
5416 .css_free = mem_cgroup_css_free,
1ced953b 5417 .css_reset = mem_cgroup_css_reset,
7dc74be0
DN
5418 .can_attach = mem_cgroup_can_attach,
5419 .cancel_attach = mem_cgroup_cancel_attach,
67e465a7 5420 .attach = mem_cgroup_move_task,
f00baae7 5421 .bind = mem_cgroup_bind,
241994ed
JW
5422 .dfl_cftypes = memory_files,
5423 .legacy_cftypes = mem_cgroup_legacy_files,
6d12e2d8 5424 .early_init = 0,
8cdea7c0 5425};
c077719b 5426
c255a458 5427#ifdef CONFIG_MEMCG_SWAP
a42c390c
MH
5428static int __init enable_swap_account(char *s)
5429{
a2c8990a 5430 if (!strcmp(s, "1"))
a42c390c 5431 really_do_swap_account = 1;
a2c8990a 5432 else if (!strcmp(s, "0"))
a42c390c
MH
5433 really_do_swap_account = 0;
5434 return 1;
5435}
a2c8990a 5436__setup("swapaccount=", enable_swap_account);
c077719b 5437
2d11085e
MH
5438static void __init memsw_file_init(void)
5439{
2cf669a5
TH
5440 WARN_ON(cgroup_add_legacy_cftypes(&memory_cgrp_subsys,
5441 memsw_cgroup_files));
6acc8b02
MH
5442}
5443
5444static void __init enable_swap_cgroup(void)
5445{
5446 if (!mem_cgroup_disabled() && really_do_swap_account) {
5447 do_swap_account = 1;
5448 memsw_file_init();
5449 }
2d11085e 5450}
6acc8b02 5451
2d11085e 5452#else
6acc8b02 5453static void __init enable_swap_cgroup(void)
2d11085e
MH
5454{
5455}
c077719b 5456#endif
2d11085e 5457
241994ed
JW
5458/**
5459 * mem_cgroup_events - count memory events against a cgroup
5460 * @memcg: the memory cgroup
5461 * @idx: the event index
5462 * @nr: the number of events to account for
5463 */
5464void mem_cgroup_events(struct mem_cgroup *memcg,
5465 enum mem_cgroup_events_index idx,
5466 unsigned int nr)
5467{
5468 this_cpu_add(memcg->stat->events[idx], nr);
5469}
5470
5471/**
5472 * mem_cgroup_low - check if memory consumption is below the normal range
5473 * @root: the highest ancestor to consider
5474 * @memcg: the memory cgroup to check
5475 *
5476 * Returns %true if memory consumption of @memcg, and that of all
5477 * configurable ancestors up to @root, is below the normal range.
5478 */
5479bool mem_cgroup_low(struct mem_cgroup *root, struct mem_cgroup *memcg)
5480{
5481 if (mem_cgroup_disabled())
5482 return false;
5483
5484 /*
5485 * The toplevel group doesn't have a configurable range, so
5486 * it's never low when looked at directly, and it is not
5487 * considered an ancestor when assessing the hierarchy.
5488 */
5489
5490 if (memcg == root_mem_cgroup)
5491 return false;
5492
5493 if (page_counter_read(&memcg->memory) > memcg->low)
5494 return false;
5495
5496 while (memcg != root) {
5497 memcg = parent_mem_cgroup(memcg);
5498
5499 if (memcg == root_mem_cgroup)
5500 break;
5501
5502 if (page_counter_read(&memcg->memory) > memcg->low)
5503 return false;
5504 }
5505 return true;
5506}
5507
0a31bc97
JW
5508#ifdef CONFIG_MEMCG_SWAP
5509/**
5510 * mem_cgroup_swapout - transfer a memsw charge to swap
5511 * @page: page whose memsw charge to transfer
5512 * @entry: swap entry to move the charge to
5513 *
5514 * Transfer the memsw charge of @page to @entry.
5515 */
5516void mem_cgroup_swapout(struct page *page, swp_entry_t entry)
5517{
7bdd143c 5518 struct mem_cgroup *memcg;
0a31bc97
JW
5519 unsigned short oldid;
5520
5521 VM_BUG_ON_PAGE(PageLRU(page), page);
5522 VM_BUG_ON_PAGE(page_count(page), page);
5523
5524 if (!do_swap_account)
5525 return;
5526
1306a85a 5527 memcg = page->mem_cgroup;
0a31bc97
JW
5528
5529 /* Readahead page, never charged */
29833315 5530 if (!memcg)
0a31bc97
JW
5531 return;
5532
7bdd143c 5533 oldid = swap_cgroup_record(entry, mem_cgroup_id(memcg));
0a31bc97 5534 VM_BUG_ON_PAGE(oldid, page);
7bdd143c
JW
5535 mem_cgroup_swap_statistics(memcg, true);
5536
1306a85a 5537 page->mem_cgroup = NULL;
0a31bc97 5538
7bdd143c
JW
5539 if (!mem_cgroup_is_root(memcg))
5540 page_counter_uncharge(&memcg->memory, 1);
5541
5542 /* XXX: caller holds IRQ-safe mapping->tree_lock */
5543 VM_BUG_ON(!irqs_disabled());
0a31bc97 5544
7bdd143c
JW
5545 mem_cgroup_charge_statistics(memcg, page, -1);
5546 memcg_check_events(memcg, page);
0a31bc97
JW
5547}
5548
5549/**
5550 * mem_cgroup_uncharge_swap - uncharge a swap entry
5551 * @entry: swap entry to uncharge
5552 *
5553 * Drop the memsw charge associated with @entry.
5554 */
5555void mem_cgroup_uncharge_swap(swp_entry_t entry)
5556{
5557 struct mem_cgroup *memcg;
5558 unsigned short id;
5559
5560 if (!do_swap_account)
5561 return;
5562
5563 id = swap_cgroup_record(entry, 0);
5564 rcu_read_lock();
5565 memcg = mem_cgroup_lookup(id);
5566 if (memcg) {
ce00a967 5567 if (!mem_cgroup_is_root(memcg))
3e32cb2e 5568 page_counter_uncharge(&memcg->memsw, 1);
0a31bc97
JW
5569 mem_cgroup_swap_statistics(memcg, false);
5570 css_put(&memcg->css);
5571 }
5572 rcu_read_unlock();
5573}
5574#endif
5575
00501b53
JW
5576/**
5577 * mem_cgroup_try_charge - try charging a page
5578 * @page: page to charge
5579 * @mm: mm context of the victim
5580 * @gfp_mask: reclaim mode
5581 * @memcgp: charged memcg return
5582 *
5583 * Try to charge @page to the memcg that @mm belongs to, reclaiming
5584 * pages according to @gfp_mask if necessary.
5585 *
5586 * Returns 0 on success, with *@memcgp pointing to the charged memcg.
5587 * Otherwise, an error code is returned.
5588 *
5589 * After page->mapping has been set up, the caller must finalize the
5590 * charge with mem_cgroup_commit_charge(). Or abort the transaction
5591 * with mem_cgroup_cancel_charge() in case page instantiation fails.
5592 */
5593int mem_cgroup_try_charge(struct page *page, struct mm_struct *mm,
5594 gfp_t gfp_mask, struct mem_cgroup **memcgp)
5595{
5596 struct mem_cgroup *memcg = NULL;
5597 unsigned int nr_pages = 1;
5598 int ret = 0;
5599
5600 if (mem_cgroup_disabled())
5601 goto out;
5602
5603 if (PageSwapCache(page)) {
00501b53
JW
5604 /*
5605 * Every swap fault against a single page tries to charge the
5606 * page, bail as early as possible. shmem_unuse() encounters
5607 * already charged pages, too. The USED bit is protected by
5608 * the page lock, which serializes swap cache removal, which
5609 * in turn serializes uncharging.
5610 */
1306a85a 5611 if (page->mem_cgroup)
00501b53
JW
5612 goto out;
5613 }
5614
5615 if (PageTransHuge(page)) {
5616 nr_pages <<= compound_order(page);
5617 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5618 }
5619
5620 if (do_swap_account && PageSwapCache(page))
5621 memcg = try_get_mem_cgroup_from_page(page);
5622 if (!memcg)
5623 memcg = get_mem_cgroup_from_mm(mm);
5624
5625 ret = try_charge(memcg, gfp_mask, nr_pages);
5626
5627 css_put(&memcg->css);
5628
5629 if (ret == -EINTR) {
5630 memcg = root_mem_cgroup;
5631 ret = 0;
5632 }
5633out:
5634 *memcgp = memcg;
5635 return ret;
5636}
5637
5638/**
5639 * mem_cgroup_commit_charge - commit a page charge
5640 * @page: page to charge
5641 * @memcg: memcg to charge the page to
5642 * @lrucare: page might be on LRU already
5643 *
5644 * Finalize a charge transaction started by mem_cgroup_try_charge(),
5645 * after page->mapping has been set up. This must happen atomically
5646 * as part of the page instantiation, i.e. under the page table lock
5647 * for anonymous pages, under the page lock for page and swap cache.
5648 *
5649 * In addition, the page must not be on the LRU during the commit, to
5650 * prevent racing with task migration. If it might be, use @lrucare.
5651 *
5652 * Use mem_cgroup_cancel_charge() to cancel the transaction instead.
5653 */
5654void mem_cgroup_commit_charge(struct page *page, struct mem_cgroup *memcg,
5655 bool lrucare)
5656{
5657 unsigned int nr_pages = 1;
5658
5659 VM_BUG_ON_PAGE(!page->mapping, page);
5660 VM_BUG_ON_PAGE(PageLRU(page) && !lrucare, page);
5661
5662 if (mem_cgroup_disabled())
5663 return;
5664 /*
5665 * Swap faults will attempt to charge the same page multiple
5666 * times. But reuse_swap_page() might have removed the page
5667 * from swapcache already, so we can't check PageSwapCache().
5668 */
5669 if (!memcg)
5670 return;
5671
6abb5a86
JW
5672 commit_charge(page, memcg, lrucare);
5673
00501b53
JW
5674 if (PageTransHuge(page)) {
5675 nr_pages <<= compound_order(page);
5676 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5677 }
5678
6abb5a86
JW
5679 local_irq_disable();
5680 mem_cgroup_charge_statistics(memcg, page, nr_pages);
5681 memcg_check_events(memcg, page);
5682 local_irq_enable();
00501b53
JW
5683
5684 if (do_swap_account && PageSwapCache(page)) {
5685 swp_entry_t entry = { .val = page_private(page) };
5686 /*
5687 * The swap entry might not get freed for a long time,
5688 * let's not wait for it. The page already received a
5689 * memory+swap charge, drop the swap entry duplicate.
5690 */
5691 mem_cgroup_uncharge_swap(entry);
5692 }
5693}
5694
5695/**
5696 * mem_cgroup_cancel_charge - cancel a page charge
5697 * @page: page to charge
5698 * @memcg: memcg to charge the page to
5699 *
5700 * Cancel a charge transaction started by mem_cgroup_try_charge().
5701 */
5702void mem_cgroup_cancel_charge(struct page *page, struct mem_cgroup *memcg)
5703{
5704 unsigned int nr_pages = 1;
5705
5706 if (mem_cgroup_disabled())
5707 return;
5708 /*
5709 * Swap faults will attempt to charge the same page multiple
5710 * times. But reuse_swap_page() might have removed the page
5711 * from swapcache already, so we can't check PageSwapCache().
5712 */
5713 if (!memcg)
5714 return;
5715
5716 if (PageTransHuge(page)) {
5717 nr_pages <<= compound_order(page);
5718 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5719 }
5720
5721 cancel_charge(memcg, nr_pages);
5722}
5723
747db954 5724static void uncharge_batch(struct mem_cgroup *memcg, unsigned long pgpgout,
747db954
JW
5725 unsigned long nr_anon, unsigned long nr_file,
5726 unsigned long nr_huge, struct page *dummy_page)
5727{
18eca2e6 5728 unsigned long nr_pages = nr_anon + nr_file;
747db954
JW
5729 unsigned long flags;
5730
ce00a967 5731 if (!mem_cgroup_is_root(memcg)) {
18eca2e6
JW
5732 page_counter_uncharge(&memcg->memory, nr_pages);
5733 if (do_swap_account)
5734 page_counter_uncharge(&memcg->memsw, nr_pages);
ce00a967
JW
5735 memcg_oom_recover(memcg);
5736 }
747db954
JW
5737
5738 local_irq_save(flags);
5739 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS], nr_anon);
5740 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_CACHE], nr_file);
5741 __this_cpu_sub(memcg->stat->count[MEM_CGROUP_STAT_RSS_HUGE], nr_huge);
5742 __this_cpu_add(memcg->stat->events[MEM_CGROUP_EVENTS_PGPGOUT], pgpgout);
18eca2e6 5743 __this_cpu_add(memcg->stat->nr_page_events, nr_pages);
747db954
JW
5744 memcg_check_events(memcg, dummy_page);
5745 local_irq_restore(flags);
e8ea14cc
JW
5746
5747 if (!mem_cgroup_is_root(memcg))
18eca2e6 5748 css_put_many(&memcg->css, nr_pages);
747db954
JW
5749}
5750
5751static void uncharge_list(struct list_head *page_list)
5752{
5753 struct mem_cgroup *memcg = NULL;
747db954
JW
5754 unsigned long nr_anon = 0;
5755 unsigned long nr_file = 0;
5756 unsigned long nr_huge = 0;
5757 unsigned long pgpgout = 0;
747db954
JW
5758 struct list_head *next;
5759 struct page *page;
5760
5761 next = page_list->next;
5762 do {
5763 unsigned int nr_pages = 1;
747db954
JW
5764
5765 page = list_entry(next, struct page, lru);
5766 next = page->lru.next;
5767
5768 VM_BUG_ON_PAGE(PageLRU(page), page);
5769 VM_BUG_ON_PAGE(page_count(page), page);
5770
1306a85a 5771 if (!page->mem_cgroup)
747db954
JW
5772 continue;
5773
5774 /*
5775 * Nobody should be changing or seriously looking at
1306a85a 5776 * page->mem_cgroup at this point, we have fully
29833315 5777 * exclusive access to the page.
747db954
JW
5778 */
5779
1306a85a 5780 if (memcg != page->mem_cgroup) {
747db954 5781 if (memcg) {
18eca2e6
JW
5782 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5783 nr_huge, page);
5784 pgpgout = nr_anon = nr_file = nr_huge = 0;
747db954 5785 }
1306a85a 5786 memcg = page->mem_cgroup;
747db954
JW
5787 }
5788
5789 if (PageTransHuge(page)) {
5790 nr_pages <<= compound_order(page);
5791 VM_BUG_ON_PAGE(!PageTransHuge(page), page);
5792 nr_huge += nr_pages;
5793 }
5794
5795 if (PageAnon(page))
5796 nr_anon += nr_pages;
5797 else
5798 nr_file += nr_pages;
5799
1306a85a 5800 page->mem_cgroup = NULL;
747db954
JW
5801
5802 pgpgout++;
5803 } while (next != page_list);
5804
5805 if (memcg)
18eca2e6
JW
5806 uncharge_batch(memcg, pgpgout, nr_anon, nr_file,
5807 nr_huge, page);
747db954
JW
5808}
5809
0a31bc97
JW
5810/**
5811 * mem_cgroup_uncharge - uncharge a page
5812 * @page: page to uncharge
5813 *
5814 * Uncharge a page previously charged with mem_cgroup_try_charge() and
5815 * mem_cgroup_commit_charge().
5816 */
5817void mem_cgroup_uncharge(struct page *page)
5818{
0a31bc97
JW
5819 if (mem_cgroup_disabled())
5820 return;
5821
747db954 5822 /* Don't touch page->lru of any random page, pre-check: */
1306a85a 5823 if (!page->mem_cgroup)
0a31bc97
JW
5824 return;
5825
747db954
JW
5826 INIT_LIST_HEAD(&page->lru);
5827 uncharge_list(&page->lru);
5828}
0a31bc97 5829
747db954
JW
5830/**
5831 * mem_cgroup_uncharge_list - uncharge a list of page
5832 * @page_list: list of pages to uncharge
5833 *
5834 * Uncharge a list of pages previously charged with
5835 * mem_cgroup_try_charge() and mem_cgroup_commit_charge().
5836 */
5837void mem_cgroup_uncharge_list(struct list_head *page_list)
5838{
5839 if (mem_cgroup_disabled())
5840 return;
0a31bc97 5841
747db954
JW
5842 if (!list_empty(page_list))
5843 uncharge_list(page_list);
0a31bc97
JW
5844}
5845
5846/**
5847 * mem_cgroup_migrate - migrate a charge to another page
5848 * @oldpage: currently charged page
5849 * @newpage: page to transfer the charge to
f5e03a49 5850 * @lrucare: either or both pages might be on the LRU already
0a31bc97
JW
5851 *
5852 * Migrate the charge from @oldpage to @newpage.
5853 *
5854 * Both pages must be locked, @newpage->mapping must be set up.
5855 */
5856void mem_cgroup_migrate(struct page *oldpage, struct page *newpage,
5857 bool lrucare)
5858{
29833315 5859 struct mem_cgroup *memcg;
0a31bc97
JW
5860 int isolated;
5861
5862 VM_BUG_ON_PAGE(!PageLocked(oldpage), oldpage);
5863 VM_BUG_ON_PAGE(!PageLocked(newpage), newpage);
5864 VM_BUG_ON_PAGE(!lrucare && PageLRU(oldpage), oldpage);
5865 VM_BUG_ON_PAGE(!lrucare && PageLRU(newpage), newpage);
5866 VM_BUG_ON_PAGE(PageAnon(oldpage) != PageAnon(newpage), newpage);
6abb5a86
JW
5867 VM_BUG_ON_PAGE(PageTransHuge(oldpage) != PageTransHuge(newpage),
5868 newpage);
0a31bc97
JW
5869
5870 if (mem_cgroup_disabled())
5871 return;
5872
5873 /* Page cache replacement: new page already charged? */
1306a85a 5874 if (newpage->mem_cgroup)
0a31bc97
JW
5875 return;
5876
7d5e3245
JW
5877 /*
5878 * Swapcache readahead pages can get migrated before being
5879 * charged, and migration from compaction can happen to an
5880 * uncharged page when the PFN walker finds a page that
5881 * reclaim just put back on the LRU but has not released yet.
5882 */
1306a85a 5883 memcg = oldpage->mem_cgroup;
29833315 5884 if (!memcg)
0a31bc97
JW
5885 return;
5886
0a31bc97
JW
5887 if (lrucare)
5888 lock_page_lru(oldpage, &isolated);
5889
1306a85a 5890 oldpage->mem_cgroup = NULL;
0a31bc97
JW
5891
5892 if (lrucare)
5893 unlock_page_lru(oldpage, isolated);
5894
29833315 5895 commit_charge(newpage, memcg, lrucare);
0a31bc97
JW
5896}
5897
2d11085e 5898/*
1081312f
MH
5899 * subsys_initcall() for memory controller.
5900 *
5901 * Some parts like hotcpu_notifier() have to be initialized from this context
5902 * because of lock dependencies (cgroup_lock -> cpu hotplug) but basically
5903 * everything that doesn't depend on a specific mem_cgroup structure should
5904 * be initialized from here.
2d11085e
MH
5905 */
5906static int __init mem_cgroup_init(void)
5907{
5908 hotcpu_notifier(memcg_cpu_hotplug_callback, 0);
6acc8b02 5909 enable_swap_cgroup();
bb4cc1a8 5910 mem_cgroup_soft_limit_tree_init();
e4777496 5911 memcg_stock_init();
2d11085e
MH
5912 return 0;
5913}
5914subsys_initcall(mem_cgroup_init);
This page took 1.153994 seconds and 5 git commands to generate.