mm: fix swapoff hang after page migration and fork
[deliverable/linux.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
9a840895 48#include <linux/ksm.h>
1da177e4 49#include <linux/rmap.h>
b95f1b31 50#include <linux/export.h>
0ff92245 51#include <linux/delayacct.h>
1da177e4 52#include <linux/init.h>
edc79b2a 53#include <linux/writeback.h>
8a9f3ccd 54#include <linux/memcontrol.h>
cddb8a5c 55#include <linux/mmu_notifier.h>
3dc14741
HD
56#include <linux/kallsyms.h>
57#include <linux/swapops.h>
58#include <linux/elf.h>
5a0e3ad6 59#include <linux/gfp.h>
4daae3b4 60#include <linux/migrate.h>
2fbc57c5 61#include <linux/string.h>
0abdd7a8 62#include <linux/dma-debug.h>
1592eef0 63#include <linux/debugfs.h>
1da177e4 64
6952b61d 65#include <asm/io.h>
1da177e4
LT
66#include <asm/pgalloc.h>
67#include <asm/uaccess.h>
68#include <asm/tlb.h>
69#include <asm/tlbflush.h>
70#include <asm/pgtable.h>
71
42b77728
JB
72#include "internal.h"
73
90572890
PZ
74#ifdef LAST_CPUPID_NOT_IN_PAGE_FLAGS
75#warning Unfortunate NUMA and NUMA Balancing config, growing page-frame for last_cpupid.
75980e97
PZ
76#endif
77
d41dee36 78#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
79/* use the per-pgdat data instead for discontigmem - mbligh */
80unsigned long max_mapnr;
81struct page *mem_map;
82
83EXPORT_SYMBOL(max_mapnr);
84EXPORT_SYMBOL(mem_map);
85#endif
86
1da177e4
LT
87/*
88 * A number of key systems in x86 including ioremap() rely on the assumption
89 * that high_memory defines the upper bound on direct map memory, then end
90 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
91 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
92 * and ZONE_HIGHMEM.
93 */
94void * high_memory;
1da177e4 95
1da177e4 96EXPORT_SYMBOL(high_memory);
1da177e4 97
32a93233
IM
98/*
99 * Randomize the address space (stacks, mmaps, brk, etc.).
100 *
101 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
102 * as ancient (libc5 based) binaries can segfault. )
103 */
104int randomize_va_space __read_mostly =
105#ifdef CONFIG_COMPAT_BRK
106 1;
107#else
108 2;
109#endif
a62eaf15
AK
110
111static int __init disable_randmaps(char *s)
112{
113 randomize_va_space = 0;
9b41046c 114 return 1;
a62eaf15
AK
115}
116__setup("norandmaps", disable_randmaps);
117
62eede62 118unsigned long zero_pfn __read_mostly;
03f6462a 119unsigned long highest_memmap_pfn __read_mostly;
a13ea5b7 120
0b70068e
AB
121EXPORT_SYMBOL(zero_pfn);
122
a13ea5b7
HD
123/*
124 * CONFIG_MMU architectures set up ZERO_PAGE in their paging_init()
125 */
126static int __init init_zero_pfn(void)
127{
128 zero_pfn = page_to_pfn(ZERO_PAGE(0));
129 return 0;
130}
131core_initcall(init_zero_pfn);
a62eaf15 132
d559db08 133
34e55232
KH
134#if defined(SPLIT_RSS_COUNTING)
135
ea48cf78 136void sync_mm_rss(struct mm_struct *mm)
34e55232
KH
137{
138 int i;
139
140 for (i = 0; i < NR_MM_COUNTERS; i++) {
05af2e10
DR
141 if (current->rss_stat.count[i]) {
142 add_mm_counter(mm, i, current->rss_stat.count[i]);
143 current->rss_stat.count[i] = 0;
34e55232
KH
144 }
145 }
05af2e10 146 current->rss_stat.events = 0;
34e55232
KH
147}
148
149static void add_mm_counter_fast(struct mm_struct *mm, int member, int val)
150{
151 struct task_struct *task = current;
152
153 if (likely(task->mm == mm))
154 task->rss_stat.count[member] += val;
155 else
156 add_mm_counter(mm, member, val);
157}
158#define inc_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, 1)
159#define dec_mm_counter_fast(mm, member) add_mm_counter_fast(mm, member, -1)
160
161/* sync counter once per 64 page faults */
162#define TASK_RSS_EVENTS_THRESH (64)
163static void check_sync_rss_stat(struct task_struct *task)
164{
165 if (unlikely(task != current))
166 return;
167 if (unlikely(task->rss_stat.events++ > TASK_RSS_EVENTS_THRESH))
ea48cf78 168 sync_mm_rss(task->mm);
34e55232 169}
9547d01b 170#else /* SPLIT_RSS_COUNTING */
34e55232
KH
171
172#define inc_mm_counter_fast(mm, member) inc_mm_counter(mm, member)
173#define dec_mm_counter_fast(mm, member) dec_mm_counter(mm, member)
174
175static void check_sync_rss_stat(struct task_struct *task)
176{
177}
178
9547d01b
PZ
179#endif /* SPLIT_RSS_COUNTING */
180
181#ifdef HAVE_GENERIC_MMU_GATHER
182
183static int tlb_next_batch(struct mmu_gather *tlb)
184{
185 struct mmu_gather_batch *batch;
186
187 batch = tlb->active;
188 if (batch->next) {
189 tlb->active = batch->next;
190 return 1;
191 }
192
53a59fc6
MH
193 if (tlb->batch_count == MAX_GATHER_BATCH_COUNT)
194 return 0;
195
9547d01b
PZ
196 batch = (void *)__get_free_pages(GFP_NOWAIT | __GFP_NOWARN, 0);
197 if (!batch)
198 return 0;
199
53a59fc6 200 tlb->batch_count++;
9547d01b
PZ
201 batch->next = NULL;
202 batch->nr = 0;
203 batch->max = MAX_GATHER_BATCH;
204
205 tlb->active->next = batch;
206 tlb->active = batch;
207
208 return 1;
209}
210
211/* tlb_gather_mmu
212 * Called to initialize an (on-stack) mmu_gather structure for page-table
213 * tear-down from @mm. The @fullmm argument is used when @mm is without
214 * users and we're going to destroy the full address space (exit/execve).
215 */
2b047252 216void tlb_gather_mmu(struct mmu_gather *tlb, struct mm_struct *mm, unsigned long start, unsigned long end)
9547d01b
PZ
217{
218 tlb->mm = mm;
219
2b047252
LT
220 /* Is it from 0 to ~0? */
221 tlb->fullmm = !(start | (end+1));
1de14c3c 222 tlb->need_flush_all = 0;
2b047252
LT
223 tlb->start = start;
224 tlb->end = end;
9547d01b 225 tlb->need_flush = 0;
9547d01b
PZ
226 tlb->local.next = NULL;
227 tlb->local.nr = 0;
228 tlb->local.max = ARRAY_SIZE(tlb->__pages);
229 tlb->active = &tlb->local;
53a59fc6 230 tlb->batch_count = 0;
9547d01b
PZ
231
232#ifdef CONFIG_HAVE_RCU_TABLE_FREE
233 tlb->batch = NULL;
234#endif
235}
236
1cf35d47 237static void tlb_flush_mmu_tlbonly(struct mmu_gather *tlb)
9547d01b 238{
9547d01b
PZ
239 tlb->need_flush = 0;
240 tlb_flush(tlb);
241#ifdef CONFIG_HAVE_RCU_TABLE_FREE
242 tlb_table_flush(tlb);
34e55232 243#endif
1cf35d47
LT
244}
245
246static void tlb_flush_mmu_free(struct mmu_gather *tlb)
247{
248 struct mmu_gather_batch *batch;
34e55232 249
9547d01b
PZ
250 for (batch = &tlb->local; batch; batch = batch->next) {
251 free_pages_and_swap_cache(batch->pages, batch->nr);
252 batch->nr = 0;
253 }
254 tlb->active = &tlb->local;
255}
256
1cf35d47
LT
257void tlb_flush_mmu(struct mmu_gather *tlb)
258{
259 if (!tlb->need_flush)
260 return;
261 tlb_flush_mmu_tlbonly(tlb);
262 tlb_flush_mmu_free(tlb);
263}
264
9547d01b
PZ
265/* tlb_finish_mmu
266 * Called at the end of the shootdown operation to free up any resources
267 * that were required.
268 */
269void tlb_finish_mmu(struct mmu_gather *tlb, unsigned long start, unsigned long end)
270{
271 struct mmu_gather_batch *batch, *next;
272
273 tlb_flush_mmu(tlb);
274
275 /* keep the page table cache within bounds */
276 check_pgt_cache();
277
278 for (batch = tlb->local.next; batch; batch = next) {
279 next = batch->next;
280 free_pages((unsigned long)batch, 0);
281 }
282 tlb->local.next = NULL;
283}
284
285/* __tlb_remove_page
286 * Must perform the equivalent to __free_pte(pte_get_and_clear(ptep)), while
287 * handling the additional races in SMP caused by other CPUs caching valid
288 * mappings in their TLBs. Returns the number of free page slots left.
289 * When out of page slots we must call tlb_flush_mmu().
290 */
291int __tlb_remove_page(struct mmu_gather *tlb, struct page *page)
292{
293 struct mmu_gather_batch *batch;
294
f21760b1 295 VM_BUG_ON(!tlb->need_flush);
9547d01b 296
9547d01b
PZ
297 batch = tlb->active;
298 batch->pages[batch->nr++] = page;
299 if (batch->nr == batch->max) {
300 if (!tlb_next_batch(tlb))
301 return 0;
0b43c3aa 302 batch = tlb->active;
9547d01b 303 }
309381fe 304 VM_BUG_ON_PAGE(batch->nr > batch->max, page);
9547d01b
PZ
305
306 return batch->max - batch->nr;
307}
308
309#endif /* HAVE_GENERIC_MMU_GATHER */
310
26723911
PZ
311#ifdef CONFIG_HAVE_RCU_TABLE_FREE
312
313/*
314 * See the comment near struct mmu_table_batch.
315 */
316
317static void tlb_remove_table_smp_sync(void *arg)
318{
319 /* Simply deliver the interrupt */
320}
321
322static void tlb_remove_table_one(void *table)
323{
324 /*
325 * This isn't an RCU grace period and hence the page-tables cannot be
326 * assumed to be actually RCU-freed.
327 *
328 * It is however sufficient for software page-table walkers that rely on
329 * IRQ disabling. See the comment near struct mmu_table_batch.
330 */
331 smp_call_function(tlb_remove_table_smp_sync, NULL, 1);
332 __tlb_remove_table(table);
333}
334
335static void tlb_remove_table_rcu(struct rcu_head *head)
336{
337 struct mmu_table_batch *batch;
338 int i;
339
340 batch = container_of(head, struct mmu_table_batch, rcu);
341
342 for (i = 0; i < batch->nr; i++)
343 __tlb_remove_table(batch->tables[i]);
344
345 free_page((unsigned long)batch);
346}
347
348void tlb_table_flush(struct mmu_gather *tlb)
349{
350 struct mmu_table_batch **batch = &tlb->batch;
351
352 if (*batch) {
353 call_rcu_sched(&(*batch)->rcu, tlb_remove_table_rcu);
354 *batch = NULL;
355 }
356}
357
358void tlb_remove_table(struct mmu_gather *tlb, void *table)
359{
360 struct mmu_table_batch **batch = &tlb->batch;
361
362 tlb->need_flush = 1;
363
364 /*
365 * When there's less then two users of this mm there cannot be a
366 * concurrent page-table walk.
367 */
368 if (atomic_read(&tlb->mm->mm_users) < 2) {
369 __tlb_remove_table(table);
370 return;
371 }
372
373 if (*batch == NULL) {
374 *batch = (struct mmu_table_batch *)__get_free_page(GFP_NOWAIT | __GFP_NOWARN);
375 if (*batch == NULL) {
376 tlb_remove_table_one(table);
377 return;
378 }
379 (*batch)->nr = 0;
380 }
381 (*batch)->tables[(*batch)->nr++] = table;
382 if ((*batch)->nr == MAX_TABLE_BATCH)
383 tlb_table_flush(tlb);
384}
385
9547d01b 386#endif /* CONFIG_HAVE_RCU_TABLE_FREE */
26723911 387
1da177e4
LT
388/*
389 * Note: this doesn't free the actual pages themselves. That
390 * has been handled earlier when unmapping all the memory regions.
391 */
9e1b32ca
BH
392static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd,
393 unsigned long addr)
1da177e4 394{
2f569afd 395 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 396 pmd_clear(pmd);
9e1b32ca 397 pte_free_tlb(tlb, token, addr);
e1f56c89 398 atomic_long_dec(&tlb->mm->nr_ptes);
1da177e4
LT
399}
400
e0da382c
HD
401static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
402 unsigned long addr, unsigned long end,
403 unsigned long floor, unsigned long ceiling)
1da177e4
LT
404{
405 pmd_t *pmd;
406 unsigned long next;
e0da382c 407 unsigned long start;
1da177e4 408
e0da382c 409 start = addr;
1da177e4 410 pmd = pmd_offset(pud, addr);
1da177e4
LT
411 do {
412 next = pmd_addr_end(addr, end);
413 if (pmd_none_or_clear_bad(pmd))
414 continue;
9e1b32ca 415 free_pte_range(tlb, pmd, addr);
1da177e4
LT
416 } while (pmd++, addr = next, addr != end);
417
e0da382c
HD
418 start &= PUD_MASK;
419 if (start < floor)
420 return;
421 if (ceiling) {
422 ceiling &= PUD_MASK;
423 if (!ceiling)
424 return;
1da177e4 425 }
e0da382c
HD
426 if (end - 1 > ceiling - 1)
427 return;
428
429 pmd = pmd_offset(pud, start);
430 pud_clear(pud);
9e1b32ca 431 pmd_free_tlb(tlb, pmd, start);
1da177e4
LT
432}
433
e0da382c
HD
434static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
435 unsigned long addr, unsigned long end,
436 unsigned long floor, unsigned long ceiling)
1da177e4
LT
437{
438 pud_t *pud;
439 unsigned long next;
e0da382c 440 unsigned long start;
1da177e4 441
e0da382c 442 start = addr;
1da177e4 443 pud = pud_offset(pgd, addr);
1da177e4
LT
444 do {
445 next = pud_addr_end(addr, end);
446 if (pud_none_or_clear_bad(pud))
447 continue;
e0da382c 448 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
449 } while (pud++, addr = next, addr != end);
450
e0da382c
HD
451 start &= PGDIR_MASK;
452 if (start < floor)
453 return;
454 if (ceiling) {
455 ceiling &= PGDIR_MASK;
456 if (!ceiling)
457 return;
1da177e4 458 }
e0da382c
HD
459 if (end - 1 > ceiling - 1)
460 return;
461
462 pud = pud_offset(pgd, start);
463 pgd_clear(pgd);
9e1b32ca 464 pud_free_tlb(tlb, pud, start);
1da177e4
LT
465}
466
467/*
e0da382c 468 * This function frees user-level page tables of a process.
1da177e4 469 */
42b77728 470void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
471 unsigned long addr, unsigned long end,
472 unsigned long floor, unsigned long ceiling)
1da177e4
LT
473{
474 pgd_t *pgd;
475 unsigned long next;
e0da382c
HD
476
477 /*
478 * The next few lines have given us lots of grief...
479 *
480 * Why are we testing PMD* at this top level? Because often
481 * there will be no work to do at all, and we'd prefer not to
482 * go all the way down to the bottom just to discover that.
483 *
484 * Why all these "- 1"s? Because 0 represents both the bottom
485 * of the address space and the top of it (using -1 for the
486 * top wouldn't help much: the masks would do the wrong thing).
487 * The rule is that addr 0 and floor 0 refer to the bottom of
488 * the address space, but end 0 and ceiling 0 refer to the top
489 * Comparisons need to use "end - 1" and "ceiling - 1" (though
490 * that end 0 case should be mythical).
491 *
492 * Wherever addr is brought up or ceiling brought down, we must
493 * be careful to reject "the opposite 0" before it confuses the
494 * subsequent tests. But what about where end is brought down
495 * by PMD_SIZE below? no, end can't go down to 0 there.
496 *
497 * Whereas we round start (addr) and ceiling down, by different
498 * masks at different levels, in order to test whether a table
499 * now has no other vmas using it, so can be freed, we don't
500 * bother to round floor or end up - the tests don't need that.
501 */
1da177e4 502
e0da382c
HD
503 addr &= PMD_MASK;
504 if (addr < floor) {
505 addr += PMD_SIZE;
506 if (!addr)
507 return;
508 }
509 if (ceiling) {
510 ceiling &= PMD_MASK;
511 if (!ceiling)
512 return;
513 }
514 if (end - 1 > ceiling - 1)
515 end -= PMD_SIZE;
516 if (addr > end - 1)
517 return;
518
42b77728 519 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
520 do {
521 next = pgd_addr_end(addr, end);
522 if (pgd_none_or_clear_bad(pgd))
523 continue;
42b77728 524 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 525 } while (pgd++, addr = next, addr != end);
e0da382c
HD
526}
527
42b77728 528void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 529 unsigned long floor, unsigned long ceiling)
e0da382c
HD
530{
531 while (vma) {
532 struct vm_area_struct *next = vma->vm_next;
533 unsigned long addr = vma->vm_start;
534
8f4f8c16 535 /*
25d9e2d1 536 * Hide vma from rmap and truncate_pagecache before freeing
537 * pgtables
8f4f8c16 538 */
5beb4930 539 unlink_anon_vmas(vma);
8f4f8c16
HD
540 unlink_file_vma(vma);
541
9da61aef 542 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 543 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 544 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
545 } else {
546 /*
547 * Optimization: gather nearby vmas into one call down
548 */
549 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 550 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
551 vma = next;
552 next = vma->vm_next;
5beb4930 553 unlink_anon_vmas(vma);
8f4f8c16 554 unlink_file_vma(vma);
3bf5ee95
HD
555 }
556 free_pgd_range(tlb, addr, vma->vm_end,
557 floor, next? next->vm_start: ceiling);
558 }
e0da382c
HD
559 vma = next;
560 }
1da177e4
LT
561}
562
8ac1f832
AA
563int __pte_alloc(struct mm_struct *mm, struct vm_area_struct *vma,
564 pmd_t *pmd, unsigned long address)
1da177e4 565{
c4088ebd 566 spinlock_t *ptl;
2f569afd 567 pgtable_t new = pte_alloc_one(mm, address);
8ac1f832 568 int wait_split_huge_page;
1bb3630e
HD
569 if (!new)
570 return -ENOMEM;
571
362a61ad
NP
572 /*
573 * Ensure all pte setup (eg. pte page lock and page clearing) are
574 * visible before the pte is made visible to other CPUs by being
575 * put into page tables.
576 *
577 * The other side of the story is the pointer chasing in the page
578 * table walking code (when walking the page table without locking;
579 * ie. most of the time). Fortunately, these data accesses consist
580 * of a chain of data-dependent loads, meaning most CPUs (alpha
581 * being the notable exception) will already guarantee loads are
582 * seen in-order. See the alpha page table accessors for the
583 * smp_read_barrier_depends() barriers in page table walking code.
584 */
585 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
586
c4088ebd 587 ptl = pmd_lock(mm, pmd);
8ac1f832
AA
588 wait_split_huge_page = 0;
589 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
e1f56c89 590 atomic_long_inc(&mm->nr_ptes);
1da177e4 591 pmd_populate(mm, pmd, new);
2f569afd 592 new = NULL;
8ac1f832
AA
593 } else if (unlikely(pmd_trans_splitting(*pmd)))
594 wait_split_huge_page = 1;
c4088ebd 595 spin_unlock(ptl);
2f569afd
MS
596 if (new)
597 pte_free(mm, new);
8ac1f832
AA
598 if (wait_split_huge_page)
599 wait_split_huge_page(vma->anon_vma, pmd);
1bb3630e 600 return 0;
1da177e4
LT
601}
602
1bb3630e 603int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 604{
1bb3630e
HD
605 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
606 if (!new)
607 return -ENOMEM;
608
362a61ad
NP
609 smp_wmb(); /* See comment in __pte_alloc */
610
1bb3630e 611 spin_lock(&init_mm.page_table_lock);
8ac1f832 612 if (likely(pmd_none(*pmd))) { /* Has another populated it ? */
1bb3630e 613 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd 614 new = NULL;
8ac1f832
AA
615 } else
616 VM_BUG_ON(pmd_trans_splitting(*pmd));
1bb3630e 617 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
618 if (new)
619 pte_free_kernel(&init_mm, new);
1bb3630e 620 return 0;
1da177e4
LT
621}
622
d559db08
KH
623static inline void init_rss_vec(int *rss)
624{
625 memset(rss, 0, sizeof(int) * NR_MM_COUNTERS);
626}
627
628static inline void add_mm_rss_vec(struct mm_struct *mm, int *rss)
ae859762 629{
d559db08
KH
630 int i;
631
34e55232 632 if (current->mm == mm)
05af2e10 633 sync_mm_rss(mm);
d559db08
KH
634 for (i = 0; i < NR_MM_COUNTERS; i++)
635 if (rss[i])
636 add_mm_counter(mm, i, rss[i]);
ae859762
HD
637}
638
b5810039 639/*
6aab341e
LT
640 * This function is called to print an error when a bad pte
641 * is found. For example, we might have a PFN-mapped pte in
642 * a region that doesn't allow it.
b5810039
NP
643 *
644 * The calling function must still handle the error.
645 */
3dc14741
HD
646static void print_bad_pte(struct vm_area_struct *vma, unsigned long addr,
647 pte_t pte, struct page *page)
b5810039 648{
3dc14741
HD
649 pgd_t *pgd = pgd_offset(vma->vm_mm, addr);
650 pud_t *pud = pud_offset(pgd, addr);
651 pmd_t *pmd = pmd_offset(pud, addr);
652 struct address_space *mapping;
653 pgoff_t index;
d936cf9b
HD
654 static unsigned long resume;
655 static unsigned long nr_shown;
656 static unsigned long nr_unshown;
657
658 /*
659 * Allow a burst of 60 reports, then keep quiet for that minute;
660 * or allow a steady drip of one report per second.
661 */
662 if (nr_shown == 60) {
663 if (time_before(jiffies, resume)) {
664 nr_unshown++;
665 return;
666 }
667 if (nr_unshown) {
1e9e6365
HD
668 printk(KERN_ALERT
669 "BUG: Bad page map: %lu messages suppressed\n",
d936cf9b
HD
670 nr_unshown);
671 nr_unshown = 0;
672 }
673 nr_shown = 0;
674 }
675 if (nr_shown++ == 0)
676 resume = jiffies + 60 * HZ;
3dc14741
HD
677
678 mapping = vma->vm_file ? vma->vm_file->f_mapping : NULL;
679 index = linear_page_index(vma, addr);
680
1e9e6365
HD
681 printk(KERN_ALERT
682 "BUG: Bad page map in process %s pte:%08llx pmd:%08llx\n",
3dc14741
HD
683 current->comm,
684 (long long)pte_val(pte), (long long)pmd_val(*pmd));
718a3821 685 if (page)
f0b791a3 686 dump_page(page, "bad pte");
1e9e6365 687 printk(KERN_ALERT
3dc14741
HD
688 "addr:%p vm_flags:%08lx anon_vma:%p mapping:%p index:%lx\n",
689 (void *)addr, vma->vm_flags, vma->anon_vma, mapping, index);
690 /*
691 * Choose text because data symbols depend on CONFIG_KALLSYMS_ALL=y
692 */
693 if (vma->vm_ops)
071361d3
JP
694 printk(KERN_ALERT "vma->vm_ops->fault: %pSR\n",
695 vma->vm_ops->fault);
72c2d531 696 if (vma->vm_file)
071361d3
JP
697 printk(KERN_ALERT "vma->vm_file->f_op->mmap: %pSR\n",
698 vma->vm_file->f_op->mmap);
b5810039 699 dump_stack();
373d4d09 700 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
b5810039
NP
701}
702
ee498ed7 703/*
7e675137 704 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 705 *
7e675137
NP
706 * "Special" mappings do not wish to be associated with a "struct page" (either
707 * it doesn't exist, or it exists but they don't want to touch it). In this
708 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 709 *
7e675137
NP
710 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
711 * pte bit, in which case this function is trivial. Secondly, an architecture
712 * may not have a spare pte bit, which requires a more complicated scheme,
713 * described below.
714 *
715 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
716 * special mapping (even if there are underlying and valid "struct pages").
717 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 718 *
b379d790
JH
719 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
720 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
721 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
722 * mapping will always honor the rule
6aab341e
LT
723 *
724 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
725 *
7e675137
NP
726 * And for normal mappings this is false.
727 *
728 * This restricts such mappings to be a linear translation from virtual address
729 * to pfn. To get around this restriction, we allow arbitrary mappings so long
730 * as the vma is not a COW mapping; in that case, we know that all ptes are
731 * special (because none can have been COWed).
b379d790 732 *
b379d790 733 *
7e675137 734 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
735 *
736 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
737 * page" backing, however the difference is that _all_ pages with a struct
738 * page (that is, those where pfn_valid is true) are refcounted and considered
739 * normal pages by the VM. The disadvantage is that pages are refcounted
740 * (which can be slower and simply not an option for some PFNMAP users). The
741 * advantage is that we don't have to follow the strict linearity rule of
742 * PFNMAP mappings in order to support COWable mappings.
743 *
ee498ed7 744 */
7e675137
NP
745#ifdef __HAVE_ARCH_PTE_SPECIAL
746# define HAVE_PTE_SPECIAL 1
747#else
748# define HAVE_PTE_SPECIAL 0
749#endif
750struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
751 pte_t pte)
ee498ed7 752{
22b31eec 753 unsigned long pfn = pte_pfn(pte);
7e675137
NP
754
755 if (HAVE_PTE_SPECIAL) {
b38af472 756 if (likely(!pte_special(pte)))
22b31eec 757 goto check_pfn;
a13ea5b7
HD
758 if (vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP))
759 return NULL;
62eede62 760 if (!is_zero_pfn(pfn))
22b31eec 761 print_bad_pte(vma, addr, pte, NULL);
7e675137
NP
762 return NULL;
763 }
764
765 /* !HAVE_PTE_SPECIAL case follows: */
766
b379d790
JH
767 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
768 if (vma->vm_flags & VM_MIXEDMAP) {
769 if (!pfn_valid(pfn))
770 return NULL;
771 goto out;
772 } else {
7e675137
NP
773 unsigned long off;
774 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
775 if (pfn == vma->vm_pgoff + off)
776 return NULL;
777 if (!is_cow_mapping(vma->vm_flags))
778 return NULL;
779 }
6aab341e
LT
780 }
781
b38af472
HD
782 if (is_zero_pfn(pfn))
783 return NULL;
22b31eec
HD
784check_pfn:
785 if (unlikely(pfn > highest_memmap_pfn)) {
786 print_bad_pte(vma, addr, pte, NULL);
787 return NULL;
788 }
6aab341e
LT
789
790 /*
7e675137 791 * NOTE! We still have PageReserved() pages in the page tables.
7e675137 792 * eg. VDSO mappings can cause them to exist.
6aab341e 793 */
b379d790 794out:
6aab341e 795 return pfn_to_page(pfn);
ee498ed7
HD
796}
797
1da177e4
LT
798/*
799 * copy one vm_area from one task to the other. Assumes the page tables
800 * already present in the new task to be cleared in the whole range
801 * covered by this vma.
1da177e4
LT
802 */
803
570a335b 804static inline unsigned long
1da177e4 805copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 806 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 807 unsigned long addr, int *rss)
1da177e4 808{
b5810039 809 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
810 pte_t pte = *src_pte;
811 struct page *page;
1da177e4
LT
812
813 /* pte contains position in swap or file, so copy. */
814 if (unlikely(!pte_present(pte))) {
815 if (!pte_file(pte)) {
0697212a
CL
816 swp_entry_t entry = pte_to_swp_entry(pte);
817
2022b4d1
HD
818 if (likely(!non_swap_entry(entry))) {
819 if (swap_duplicate(entry) < 0)
820 return entry.val;
821
822 /* make sure dst_mm is on swapoff's mmlist. */
823 if (unlikely(list_empty(&dst_mm->mmlist))) {
824 spin_lock(&mmlist_lock);
825 if (list_empty(&dst_mm->mmlist))
826 list_add(&dst_mm->mmlist,
827 &src_mm->mmlist);
828 spin_unlock(&mmlist_lock);
829 }
b084d435 830 rss[MM_SWAPENTS]++;
2022b4d1 831 } else if (is_migration_entry(entry)) {
9f9f1acd
KK
832 page = migration_entry_to_page(entry);
833
834 if (PageAnon(page))
835 rss[MM_ANONPAGES]++;
836 else
837 rss[MM_FILEPAGES]++;
838
839 if (is_write_migration_entry(entry) &&
840 is_cow_mapping(vm_flags)) {
841 /*
842 * COW mappings require pages in both
843 * parent and child to be set to read.
844 */
845 make_migration_entry_read(&entry);
846 pte = swp_entry_to_pte(entry);
c3d16e16
CG
847 if (pte_swp_soft_dirty(*src_pte))
848 pte = pte_swp_mksoft_dirty(pte);
9f9f1acd
KK
849 set_pte_at(src_mm, addr, src_pte, pte);
850 }
0697212a 851 }
1da177e4 852 }
ae859762 853 goto out_set_pte;
1da177e4
LT
854 }
855
1da177e4
LT
856 /*
857 * If it's a COW mapping, write protect it both
858 * in the parent and the child
859 */
67121172 860 if (is_cow_mapping(vm_flags)) {
1da177e4 861 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 862 pte = pte_wrprotect(pte);
1da177e4
LT
863 }
864
865 /*
866 * If it's a shared mapping, mark it clean in
867 * the child
868 */
869 if (vm_flags & VM_SHARED)
870 pte = pte_mkclean(pte);
871 pte = pte_mkold(pte);
6aab341e
LT
872
873 page = vm_normal_page(vma, addr, pte);
874 if (page) {
875 get_page(page);
21333b2b 876 page_dup_rmap(page);
d559db08
KH
877 if (PageAnon(page))
878 rss[MM_ANONPAGES]++;
879 else
880 rss[MM_FILEPAGES]++;
6aab341e 881 }
ae859762
HD
882
883out_set_pte:
884 set_pte_at(dst_mm, addr, dst_pte, pte);
570a335b 885 return 0;
1da177e4
LT
886}
887
21bda264 888static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
71e3aac0
AA
889 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
890 unsigned long addr, unsigned long end)
1da177e4 891{
c36987e2 892 pte_t *orig_src_pte, *orig_dst_pte;
1da177e4 893 pte_t *src_pte, *dst_pte;
c74df32c 894 spinlock_t *src_ptl, *dst_ptl;
e040f218 895 int progress = 0;
d559db08 896 int rss[NR_MM_COUNTERS];
570a335b 897 swp_entry_t entry = (swp_entry_t){0};
1da177e4
LT
898
899again:
d559db08
KH
900 init_rss_vec(rss);
901
c74df32c 902 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
903 if (!dst_pte)
904 return -ENOMEM;
ece0e2b6 905 src_pte = pte_offset_map(src_pmd, addr);
4c21e2f2 906 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 907 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
c36987e2
DN
908 orig_src_pte = src_pte;
909 orig_dst_pte = dst_pte;
6606c3e0 910 arch_enter_lazy_mmu_mode();
1da177e4 911
1da177e4
LT
912 do {
913 /*
914 * We are holding two locks at this point - either of them
915 * could generate latencies in another task on another CPU.
916 */
e040f218
HD
917 if (progress >= 32) {
918 progress = 0;
919 if (need_resched() ||
95c354fe 920 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
921 break;
922 }
1da177e4
LT
923 if (pte_none(*src_pte)) {
924 progress++;
925 continue;
926 }
570a335b
HD
927 entry.val = copy_one_pte(dst_mm, src_mm, dst_pte, src_pte,
928 vma, addr, rss);
929 if (entry.val)
930 break;
1da177e4
LT
931 progress += 8;
932 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 933
6606c3e0 934 arch_leave_lazy_mmu_mode();
c74df32c 935 spin_unlock(src_ptl);
ece0e2b6 936 pte_unmap(orig_src_pte);
d559db08 937 add_mm_rss_vec(dst_mm, rss);
c36987e2 938 pte_unmap_unlock(orig_dst_pte, dst_ptl);
c74df32c 939 cond_resched();
570a335b
HD
940
941 if (entry.val) {
942 if (add_swap_count_continuation(entry, GFP_KERNEL) < 0)
943 return -ENOMEM;
944 progress = 0;
945 }
1da177e4
LT
946 if (addr != end)
947 goto again;
948 return 0;
949}
950
951static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
952 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
953 unsigned long addr, unsigned long end)
954{
955 pmd_t *src_pmd, *dst_pmd;
956 unsigned long next;
957
958 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
959 if (!dst_pmd)
960 return -ENOMEM;
961 src_pmd = pmd_offset(src_pud, addr);
962 do {
963 next = pmd_addr_end(addr, end);
71e3aac0
AA
964 if (pmd_trans_huge(*src_pmd)) {
965 int err;
14d1a55c 966 VM_BUG_ON(next-addr != HPAGE_PMD_SIZE);
71e3aac0
AA
967 err = copy_huge_pmd(dst_mm, src_mm,
968 dst_pmd, src_pmd, addr, vma);
969 if (err == -ENOMEM)
970 return -ENOMEM;
971 if (!err)
972 continue;
973 /* fall through */
974 }
1da177e4
LT
975 if (pmd_none_or_clear_bad(src_pmd))
976 continue;
977 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
978 vma, addr, next))
979 return -ENOMEM;
980 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
981 return 0;
982}
983
984static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
985 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
986 unsigned long addr, unsigned long end)
987{
988 pud_t *src_pud, *dst_pud;
989 unsigned long next;
990
991 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
992 if (!dst_pud)
993 return -ENOMEM;
994 src_pud = pud_offset(src_pgd, addr);
995 do {
996 next = pud_addr_end(addr, end);
997 if (pud_none_or_clear_bad(src_pud))
998 continue;
999 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
1000 vma, addr, next))
1001 return -ENOMEM;
1002 } while (dst_pud++, src_pud++, addr = next, addr != end);
1003 return 0;
1004}
1005
1006int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
1007 struct vm_area_struct *vma)
1008{
1009 pgd_t *src_pgd, *dst_pgd;
1010 unsigned long next;
1011 unsigned long addr = vma->vm_start;
1012 unsigned long end = vma->vm_end;
2ec74c3e
SG
1013 unsigned long mmun_start; /* For mmu_notifiers */
1014 unsigned long mmun_end; /* For mmu_notifiers */
1015 bool is_cow;
cddb8a5c 1016 int ret;
1da177e4 1017
d992895b
NP
1018 /*
1019 * Don't copy ptes where a page fault will fill them correctly.
1020 * Fork becomes much lighter when there are big shared or private
1021 * readonly mappings. The tradeoff is that copy_page_range is more
1022 * efficient than faulting.
1023 */
4b6e1e37
KK
1024 if (!(vma->vm_flags & (VM_HUGETLB | VM_NONLINEAR |
1025 VM_PFNMAP | VM_MIXEDMAP))) {
d992895b
NP
1026 if (!vma->anon_vma)
1027 return 0;
1028 }
1029
1da177e4
LT
1030 if (is_vm_hugetlb_page(vma))
1031 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
1032
b3b9c293 1033 if (unlikely(vma->vm_flags & VM_PFNMAP)) {
2ab64037 1034 /*
1035 * We do not free on error cases below as remove_vma
1036 * gets called on error from higher level routine
1037 */
5180da41 1038 ret = track_pfn_copy(vma);
2ab64037 1039 if (ret)
1040 return ret;
1041 }
1042
cddb8a5c
AA
1043 /*
1044 * We need to invalidate the secondary MMU mappings only when
1045 * there could be a permission downgrade on the ptes of the
1046 * parent mm. And a permission downgrade will only happen if
1047 * is_cow_mapping() returns true.
1048 */
2ec74c3e
SG
1049 is_cow = is_cow_mapping(vma->vm_flags);
1050 mmun_start = addr;
1051 mmun_end = end;
1052 if (is_cow)
1053 mmu_notifier_invalidate_range_start(src_mm, mmun_start,
1054 mmun_end);
cddb8a5c
AA
1055
1056 ret = 0;
1da177e4
LT
1057 dst_pgd = pgd_offset(dst_mm, addr);
1058 src_pgd = pgd_offset(src_mm, addr);
1059 do {
1060 next = pgd_addr_end(addr, end);
1061 if (pgd_none_or_clear_bad(src_pgd))
1062 continue;
cddb8a5c
AA
1063 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
1064 vma, addr, next))) {
1065 ret = -ENOMEM;
1066 break;
1067 }
1da177e4 1068 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c 1069
2ec74c3e
SG
1070 if (is_cow)
1071 mmu_notifier_invalidate_range_end(src_mm, mmun_start, mmun_end);
cddb8a5c 1072 return ret;
1da177e4
LT
1073}
1074
51c6f666 1075static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 1076 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 1077 unsigned long addr, unsigned long end,
97a89413 1078 struct zap_details *details)
1da177e4 1079{
b5810039 1080 struct mm_struct *mm = tlb->mm;
d16dfc55 1081 int force_flush = 0;
d559db08 1082 int rss[NR_MM_COUNTERS];
97a89413 1083 spinlock_t *ptl;
5f1a1907 1084 pte_t *start_pte;
97a89413 1085 pte_t *pte;
d559db08 1086
d16dfc55 1087again:
e303297e 1088 init_rss_vec(rss);
5f1a1907
SR
1089 start_pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
1090 pte = start_pte;
6606c3e0 1091 arch_enter_lazy_mmu_mode();
1da177e4
LT
1092 do {
1093 pte_t ptent = *pte;
51c6f666 1094 if (pte_none(ptent)) {
1da177e4 1095 continue;
51c6f666 1096 }
6f5e6b9e 1097
1da177e4 1098 if (pte_present(ptent)) {
ee498ed7 1099 struct page *page;
51c6f666 1100
6aab341e 1101 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
1102 if (unlikely(details) && page) {
1103 /*
1104 * unmap_shared_mapping_pages() wants to
1105 * invalidate cache without truncating:
1106 * unmap shared but keep private pages.
1107 */
1108 if (details->check_mapping &&
1109 details->check_mapping != page->mapping)
1110 continue;
1111 /*
1112 * Each page->index must be checked when
1113 * invalidating or truncating nonlinear.
1114 */
1115 if (details->nonlinear_vma &&
1116 (page->index < details->first_index ||
1117 page->index > details->last_index))
1118 continue;
1119 }
b5810039 1120 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 1121 tlb->fullmm);
1da177e4
LT
1122 tlb_remove_tlb_entry(tlb, pte, addr);
1123 if (unlikely(!page))
1124 continue;
1125 if (unlikely(details) && details->nonlinear_vma
1126 && linear_page_index(details->nonlinear_vma,
41bb3476
CG
1127 addr) != page->index) {
1128 pte_t ptfile = pgoff_to_pte(page->index);
1129 if (pte_soft_dirty(ptent))
dbab31aa 1130 ptfile = pte_file_mksoft_dirty(ptfile);
41bb3476
CG
1131 set_pte_at(mm, addr, pte, ptfile);
1132 }
1da177e4 1133 if (PageAnon(page))
d559db08 1134 rss[MM_ANONPAGES]--;
6237bcd9 1135 else {
1cf35d47
LT
1136 if (pte_dirty(ptent)) {
1137 force_flush = 1;
6237bcd9 1138 set_page_dirty(page);
1cf35d47 1139 }
4917e5d0 1140 if (pte_young(ptent) &&
64363aad 1141 likely(!(vma->vm_flags & VM_SEQ_READ)))
bf3f3bc5 1142 mark_page_accessed(page);
d559db08 1143 rss[MM_FILEPAGES]--;
6237bcd9 1144 }
edc315fd 1145 page_remove_rmap(page);
3dc14741
HD
1146 if (unlikely(page_mapcount(page) < 0))
1147 print_bad_pte(vma, addr, ptent, page);
1cf35d47
LT
1148 if (unlikely(!__tlb_remove_page(tlb, page))) {
1149 force_flush = 1;
ce9ec37b 1150 addr += PAGE_SIZE;
d16dfc55 1151 break;
1cf35d47 1152 }
1da177e4
LT
1153 continue;
1154 }
1155 /*
1156 * If details->check_mapping, we leave swap entries;
1157 * if details->nonlinear_vma, we leave file entries.
1158 */
1159 if (unlikely(details))
1160 continue;
2509ef26
HD
1161 if (pte_file(ptent)) {
1162 if (unlikely(!(vma->vm_flags & VM_NONLINEAR)))
1163 print_bad_pte(vma, addr, ptent, NULL);
b084d435
KH
1164 } else {
1165 swp_entry_t entry = pte_to_swp_entry(ptent);
1166
1167 if (!non_swap_entry(entry))
1168 rss[MM_SWAPENTS]--;
9f9f1acd
KK
1169 else if (is_migration_entry(entry)) {
1170 struct page *page;
1171
1172 page = migration_entry_to_page(entry);
1173
1174 if (PageAnon(page))
1175 rss[MM_ANONPAGES]--;
1176 else
1177 rss[MM_FILEPAGES]--;
1178 }
b084d435
KH
1179 if (unlikely(!free_swap_and_cache(entry)))
1180 print_bad_pte(vma, addr, ptent, NULL);
1181 }
9888a1ca 1182 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
97a89413 1183 } while (pte++, addr += PAGE_SIZE, addr != end);
ae859762 1184
d559db08 1185 add_mm_rss_vec(mm, rss);
6606c3e0 1186 arch_leave_lazy_mmu_mode();
51c6f666 1187
1cf35d47 1188 /* Do the actual TLB flush before dropping ptl */
d16dfc55 1189 if (force_flush) {
2b047252
LT
1190 unsigned long old_end;
1191
2b047252
LT
1192 /*
1193 * Flush the TLB just for the previous segment,
1194 * then update the range to be the remaining
1195 * TLB range.
1196 */
1197 old_end = tlb->end;
e6c495a9 1198 tlb->end = addr;
1cf35d47 1199 tlb_flush_mmu_tlbonly(tlb);
2b047252
LT
1200 tlb->start = addr;
1201 tlb->end = old_end;
1cf35d47
LT
1202 }
1203 pte_unmap_unlock(start_pte, ptl);
1204
1205 /*
1206 * If we forced a TLB flush (either due to running out of
1207 * batch buffers or because we needed to flush dirty TLB
1208 * entries before releasing the ptl), free the batched
1209 * memory too. Restart if we didn't do everything.
1210 */
1211 if (force_flush) {
1212 force_flush = 0;
1213 tlb_flush_mmu_free(tlb);
2b047252
LT
1214
1215 if (addr != end)
d16dfc55
PZ
1216 goto again;
1217 }
1218
51c6f666 1219 return addr;
1da177e4
LT
1220}
1221
51c6f666 1222static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 1223 struct vm_area_struct *vma, pud_t *pud,
1da177e4 1224 unsigned long addr, unsigned long end,
97a89413 1225 struct zap_details *details)
1da177e4
LT
1226{
1227 pmd_t *pmd;
1228 unsigned long next;
1229
1230 pmd = pmd_offset(pud, addr);
1231 do {
1232 next = pmd_addr_end(addr, end);
71e3aac0 1233 if (pmd_trans_huge(*pmd)) {
1a5a9906 1234 if (next - addr != HPAGE_PMD_SIZE) {
e0897d75
DR
1235#ifdef CONFIG_DEBUG_VM
1236 if (!rwsem_is_locked(&tlb->mm->mmap_sem)) {
1237 pr_err("%s: mmap_sem is unlocked! addr=0x%lx end=0x%lx vma->vm_start=0x%lx vma->vm_end=0x%lx\n",
1238 __func__, addr, end,
1239 vma->vm_start,
1240 vma->vm_end);
1241 BUG();
1242 }
1243#endif
e180377f 1244 split_huge_page_pmd(vma, addr, pmd);
f21760b1 1245 } else if (zap_huge_pmd(tlb, vma, pmd, addr))
1a5a9906 1246 goto next;
71e3aac0
AA
1247 /* fall through */
1248 }
1a5a9906
AA
1249 /*
1250 * Here there can be other concurrent MADV_DONTNEED or
1251 * trans huge page faults running, and if the pmd is
1252 * none or trans huge it can change under us. This is
1253 * because MADV_DONTNEED holds the mmap_sem in read
1254 * mode.
1255 */
1256 if (pmd_none_or_trans_huge_or_clear_bad(pmd))
1257 goto next;
97a89413 1258 next = zap_pte_range(tlb, vma, pmd, addr, next, details);
1a5a9906 1259next:
97a89413
PZ
1260 cond_resched();
1261 } while (pmd++, addr = next, addr != end);
51c6f666
RH
1262
1263 return addr;
1da177e4
LT
1264}
1265
51c6f666 1266static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 1267 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 1268 unsigned long addr, unsigned long end,
97a89413 1269 struct zap_details *details)
1da177e4
LT
1270{
1271 pud_t *pud;
1272 unsigned long next;
1273
1274 pud = pud_offset(pgd, addr);
1275 do {
1276 next = pud_addr_end(addr, end);
97a89413 1277 if (pud_none_or_clear_bad(pud))
1da177e4 1278 continue;
97a89413
PZ
1279 next = zap_pmd_range(tlb, vma, pud, addr, next, details);
1280 } while (pud++, addr = next, addr != end);
51c6f666
RH
1281
1282 return addr;
1da177e4
LT
1283}
1284
038c7aa1
AV
1285static void unmap_page_range(struct mmu_gather *tlb,
1286 struct vm_area_struct *vma,
1287 unsigned long addr, unsigned long end,
1288 struct zap_details *details)
1da177e4
LT
1289{
1290 pgd_t *pgd;
1291 unsigned long next;
1292
1293 if (details && !details->check_mapping && !details->nonlinear_vma)
1294 details = NULL;
1295
1296 BUG_ON(addr >= end);
1297 tlb_start_vma(tlb, vma);
1298 pgd = pgd_offset(vma->vm_mm, addr);
1299 do {
1300 next = pgd_addr_end(addr, end);
97a89413 1301 if (pgd_none_or_clear_bad(pgd))
1da177e4 1302 continue;
97a89413
PZ
1303 next = zap_pud_range(tlb, vma, pgd, addr, next, details);
1304 } while (pgd++, addr = next, addr != end);
1da177e4
LT
1305 tlb_end_vma(tlb, vma);
1306}
51c6f666 1307
f5cc4eef
AV
1308
1309static void unmap_single_vma(struct mmu_gather *tlb,
1310 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1311 unsigned long end_addr,
f5cc4eef
AV
1312 struct zap_details *details)
1313{
1314 unsigned long start = max(vma->vm_start, start_addr);
1315 unsigned long end;
1316
1317 if (start >= vma->vm_end)
1318 return;
1319 end = min(vma->vm_end, end_addr);
1320 if (end <= vma->vm_start)
1321 return;
1322
cbc91f71
SD
1323 if (vma->vm_file)
1324 uprobe_munmap(vma, start, end);
1325
b3b9c293 1326 if (unlikely(vma->vm_flags & VM_PFNMAP))
5180da41 1327 untrack_pfn(vma, 0, 0);
f5cc4eef
AV
1328
1329 if (start != end) {
1330 if (unlikely(is_vm_hugetlb_page(vma))) {
1331 /*
1332 * It is undesirable to test vma->vm_file as it
1333 * should be non-null for valid hugetlb area.
1334 * However, vm_file will be NULL in the error
7aa6b4ad 1335 * cleanup path of mmap_region. When
f5cc4eef 1336 * hugetlbfs ->mmap method fails,
7aa6b4ad 1337 * mmap_region() nullifies vma->vm_file
f5cc4eef
AV
1338 * before calling this function to clean up.
1339 * Since no pte has actually been setup, it is
1340 * safe to do nothing in this case.
1341 */
24669e58
AK
1342 if (vma->vm_file) {
1343 mutex_lock(&vma->vm_file->f_mapping->i_mmap_mutex);
d833352a 1344 __unmap_hugepage_range_final(tlb, vma, start, end, NULL);
24669e58
AK
1345 mutex_unlock(&vma->vm_file->f_mapping->i_mmap_mutex);
1346 }
f5cc4eef
AV
1347 } else
1348 unmap_page_range(tlb, vma, start, end, details);
1349 }
1da177e4
LT
1350}
1351
1da177e4
LT
1352/**
1353 * unmap_vmas - unmap a range of memory covered by a list of vma's
0164f69d 1354 * @tlb: address of the caller's struct mmu_gather
1da177e4
LT
1355 * @vma: the starting vma
1356 * @start_addr: virtual address at which to start unmapping
1357 * @end_addr: virtual address at which to end unmapping
1da177e4 1358 *
508034a3 1359 * Unmap all pages in the vma list.
1da177e4 1360 *
1da177e4
LT
1361 * Only addresses between `start' and `end' will be unmapped.
1362 *
1363 * The VMA list must be sorted in ascending virtual address order.
1364 *
1365 * unmap_vmas() assumes that the caller will flush the whole unmapped address
1366 * range after unmap_vmas() returns. So the only responsibility here is to
1367 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
1368 * drops the lock and schedules.
1369 */
6e8bb019 1370void unmap_vmas(struct mmu_gather *tlb,
1da177e4 1371 struct vm_area_struct *vma, unsigned long start_addr,
4f74d2c8 1372 unsigned long end_addr)
1da177e4 1373{
cddb8a5c 1374 struct mm_struct *mm = vma->vm_mm;
1da177e4 1375
cddb8a5c 1376 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
f5cc4eef 1377 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next)
4f74d2c8 1378 unmap_single_vma(tlb, vma, start_addr, end_addr, NULL);
cddb8a5c 1379 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
1da177e4
LT
1380}
1381
1382/**
1383 * zap_page_range - remove user pages in a given range
1384 * @vma: vm_area_struct holding the applicable pages
eb4546bb 1385 * @start: starting address of pages to zap
1da177e4
LT
1386 * @size: number of bytes to zap
1387 * @details: details of nonlinear truncation or shared cache invalidation
f5cc4eef
AV
1388 *
1389 * Caller must protect the VMA list
1da177e4 1390 */
7e027b14 1391void zap_page_range(struct vm_area_struct *vma, unsigned long start,
1da177e4
LT
1392 unsigned long size, struct zap_details *details)
1393{
1394 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1395 struct mmu_gather tlb;
7e027b14 1396 unsigned long end = start + size;
1da177e4 1397
1da177e4 1398 lru_add_drain();
2b047252 1399 tlb_gather_mmu(&tlb, mm, start, end);
365e9c87 1400 update_hiwater_rss(mm);
7e027b14
LT
1401 mmu_notifier_invalidate_range_start(mm, start, end);
1402 for ( ; vma && vma->vm_start < end; vma = vma->vm_next)
4f74d2c8 1403 unmap_single_vma(&tlb, vma, start, end, details);
7e027b14
LT
1404 mmu_notifier_invalidate_range_end(mm, start, end);
1405 tlb_finish_mmu(&tlb, start, end);
1da177e4
LT
1406}
1407
f5cc4eef
AV
1408/**
1409 * zap_page_range_single - remove user pages in a given range
1410 * @vma: vm_area_struct holding the applicable pages
1411 * @address: starting address of pages to zap
1412 * @size: number of bytes to zap
1413 * @details: details of nonlinear truncation or shared cache invalidation
1414 *
1415 * The range must fit into one VMA.
1da177e4 1416 */
f5cc4eef 1417static void zap_page_range_single(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
1418 unsigned long size, struct zap_details *details)
1419{
1420 struct mm_struct *mm = vma->vm_mm;
d16dfc55 1421 struct mmu_gather tlb;
1da177e4 1422 unsigned long end = address + size;
1da177e4 1423
1da177e4 1424 lru_add_drain();
2b047252 1425 tlb_gather_mmu(&tlb, mm, address, end);
365e9c87 1426 update_hiwater_rss(mm);
f5cc4eef 1427 mmu_notifier_invalidate_range_start(mm, address, end);
4f74d2c8 1428 unmap_single_vma(&tlb, vma, address, end, details);
f5cc4eef 1429 mmu_notifier_invalidate_range_end(mm, address, end);
d16dfc55 1430 tlb_finish_mmu(&tlb, address, end);
1da177e4
LT
1431}
1432
c627f9cc
JS
1433/**
1434 * zap_vma_ptes - remove ptes mapping the vma
1435 * @vma: vm_area_struct holding ptes to be zapped
1436 * @address: starting address of pages to zap
1437 * @size: number of bytes to zap
1438 *
1439 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1440 *
1441 * The entire address range must be fully contained within the vma.
1442 *
1443 * Returns 0 if successful.
1444 */
1445int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1446 unsigned long size)
1447{
1448 if (address < vma->vm_start || address + size > vma->vm_end ||
1449 !(vma->vm_flags & VM_PFNMAP))
1450 return -1;
f5cc4eef 1451 zap_page_range_single(vma, address, size, NULL);
c627f9cc
JS
1452 return 0;
1453}
1454EXPORT_SYMBOL_GPL(zap_vma_ptes);
1455
25ca1d6c 1456pte_t *__get_locked_pte(struct mm_struct *mm, unsigned long addr,
920c7a5d 1457 spinlock_t **ptl)
c9cfcddf
LT
1458{
1459 pgd_t * pgd = pgd_offset(mm, addr);
1460 pud_t * pud = pud_alloc(mm, pgd, addr);
1461 if (pud) {
49c91fb0 1462 pmd_t * pmd = pmd_alloc(mm, pud, addr);
f66055ab
AA
1463 if (pmd) {
1464 VM_BUG_ON(pmd_trans_huge(*pmd));
c9cfcddf 1465 return pte_alloc_map_lock(mm, pmd, addr, ptl);
f66055ab 1466 }
c9cfcddf
LT
1467 }
1468 return NULL;
1469}
1470
238f58d8
LT
1471/*
1472 * This is the old fallback for page remapping.
1473 *
1474 * For historical reasons, it only allows reserved pages. Only
1475 * old drivers should use this, and they needed to mark their
1476 * pages reserved for the old functions anyway.
1477 */
423bad60
NP
1478static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1479 struct page *page, pgprot_t prot)
238f58d8 1480{
423bad60 1481 struct mm_struct *mm = vma->vm_mm;
238f58d8 1482 int retval;
c9cfcddf 1483 pte_t *pte;
8a9f3ccd
BS
1484 spinlock_t *ptl;
1485
238f58d8 1486 retval = -EINVAL;
a145dd41 1487 if (PageAnon(page))
5b4e655e 1488 goto out;
238f58d8
LT
1489 retval = -ENOMEM;
1490 flush_dcache_page(page);
c9cfcddf 1491 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1492 if (!pte)
5b4e655e 1493 goto out;
238f58d8
LT
1494 retval = -EBUSY;
1495 if (!pte_none(*pte))
1496 goto out_unlock;
1497
1498 /* Ok, finally just insert the thing.. */
1499 get_page(page);
34e55232 1500 inc_mm_counter_fast(mm, MM_FILEPAGES);
238f58d8
LT
1501 page_add_file_rmap(page);
1502 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1503
1504 retval = 0;
8a9f3ccd
BS
1505 pte_unmap_unlock(pte, ptl);
1506 return retval;
238f58d8
LT
1507out_unlock:
1508 pte_unmap_unlock(pte, ptl);
1509out:
1510 return retval;
1511}
1512
bfa5bf6d
REB
1513/**
1514 * vm_insert_page - insert single page into user vma
1515 * @vma: user vma to map to
1516 * @addr: target user address of this page
1517 * @page: source kernel page
1518 *
a145dd41
LT
1519 * This allows drivers to insert individual pages they've allocated
1520 * into a user vma.
1521 *
1522 * The page has to be a nice clean _individual_ kernel allocation.
1523 * If you allocate a compound page, you need to have marked it as
1524 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1525 * (see split_page()).
a145dd41
LT
1526 *
1527 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1528 * took an arbitrary page protection parameter. This doesn't allow
1529 * that. Your vma protection will have to be set up correctly, which
1530 * means that if you want a shared writable mapping, you'd better
1531 * ask for a shared writable mapping!
1532 *
1533 * The page does not need to be reserved.
4b6e1e37
KK
1534 *
1535 * Usually this function is called from f_op->mmap() handler
1536 * under mm->mmap_sem write-lock, so it can change vma->vm_flags.
1537 * Caller must set VM_MIXEDMAP on vma if it wants to call this
1538 * function from other places, for example from page-fault handler.
a145dd41 1539 */
423bad60
NP
1540int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1541 struct page *page)
a145dd41
LT
1542{
1543 if (addr < vma->vm_start || addr >= vma->vm_end)
1544 return -EFAULT;
1545 if (!page_count(page))
1546 return -EINVAL;
4b6e1e37
KK
1547 if (!(vma->vm_flags & VM_MIXEDMAP)) {
1548 BUG_ON(down_read_trylock(&vma->vm_mm->mmap_sem));
1549 BUG_ON(vma->vm_flags & VM_PFNMAP);
1550 vma->vm_flags |= VM_MIXEDMAP;
1551 }
423bad60 1552 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1553}
e3c3374f 1554EXPORT_SYMBOL(vm_insert_page);
a145dd41 1555
423bad60
NP
1556static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1557 unsigned long pfn, pgprot_t prot)
1558{
1559 struct mm_struct *mm = vma->vm_mm;
1560 int retval;
1561 pte_t *pte, entry;
1562 spinlock_t *ptl;
1563
1564 retval = -ENOMEM;
1565 pte = get_locked_pte(mm, addr, &ptl);
1566 if (!pte)
1567 goto out;
1568 retval = -EBUSY;
1569 if (!pte_none(*pte))
1570 goto out_unlock;
1571
1572 /* Ok, finally just insert the thing.. */
1573 entry = pte_mkspecial(pfn_pte(pfn, prot));
1574 set_pte_at(mm, addr, pte, entry);
4b3073e1 1575 update_mmu_cache(vma, addr, pte); /* XXX: why not for insert_page? */
423bad60
NP
1576
1577 retval = 0;
1578out_unlock:
1579 pte_unmap_unlock(pte, ptl);
1580out:
1581 return retval;
1582}
1583
e0dc0d8f
NP
1584/**
1585 * vm_insert_pfn - insert single pfn into user vma
1586 * @vma: user vma to map to
1587 * @addr: target user address of this page
1588 * @pfn: source kernel pfn
1589 *
c462f179 1590 * Similar to vm_insert_page, this allows drivers to insert individual pages
e0dc0d8f
NP
1591 * they've allocated into a user vma. Same comments apply.
1592 *
1593 * This function should only be called from a vm_ops->fault handler, and
1594 * in that case the handler should return NULL.
0d71d10a
NP
1595 *
1596 * vma cannot be a COW mapping.
1597 *
1598 * As this is called only for pages that do not currently exist, we
1599 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1600 */
1601int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1602 unsigned long pfn)
e0dc0d8f 1603{
2ab64037 1604 int ret;
e4b866ed 1605 pgprot_t pgprot = vma->vm_page_prot;
7e675137
NP
1606 /*
1607 * Technically, architectures with pte_special can avoid all these
1608 * restrictions (same for remap_pfn_range). However we would like
1609 * consistency in testing and feature parity among all, so we should
1610 * try to keep these invariants in place for everybody.
1611 */
b379d790
JH
1612 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1613 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1614 (VM_PFNMAP|VM_MIXEDMAP));
1615 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1616 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1617
423bad60
NP
1618 if (addr < vma->vm_start || addr >= vma->vm_end)
1619 return -EFAULT;
5180da41 1620 if (track_pfn_insert(vma, &pgprot, pfn))
2ab64037 1621 return -EINVAL;
1622
e4b866ed 1623 ret = insert_pfn(vma, addr, pfn, pgprot);
2ab64037 1624
2ab64037 1625 return ret;
423bad60
NP
1626}
1627EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1628
423bad60
NP
1629int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1630 unsigned long pfn)
1631{
1632 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1633
423bad60
NP
1634 if (addr < vma->vm_start || addr >= vma->vm_end)
1635 return -EFAULT;
e0dc0d8f 1636
423bad60
NP
1637 /*
1638 * If we don't have pte special, then we have to use the pfn_valid()
1639 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1640 * refcount the page if pfn_valid is true (hence insert_page rather
62eede62
HD
1641 * than insert_pfn). If a zero_pfn were inserted into a VM_MIXEDMAP
1642 * without pte special, it would there be refcounted as a normal page.
423bad60
NP
1643 */
1644 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1645 struct page *page;
1646
1647 page = pfn_to_page(pfn);
1648 return insert_page(vma, addr, page, vma->vm_page_prot);
1649 }
1650 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1651}
423bad60 1652EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1653
1da177e4
LT
1654/*
1655 * maps a range of physical memory into the requested pages. the old
1656 * mappings are removed. any references to nonexistent pages results
1657 * in null mappings (currently treated as "copy-on-access")
1658 */
1659static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1660 unsigned long addr, unsigned long end,
1661 unsigned long pfn, pgprot_t prot)
1662{
1663 pte_t *pte;
c74df32c 1664 spinlock_t *ptl;
1da177e4 1665
c74df32c 1666 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1667 if (!pte)
1668 return -ENOMEM;
6606c3e0 1669 arch_enter_lazy_mmu_mode();
1da177e4
LT
1670 do {
1671 BUG_ON(!pte_none(*pte));
7e675137 1672 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1673 pfn++;
1674 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1675 arch_leave_lazy_mmu_mode();
c74df32c 1676 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1677 return 0;
1678}
1679
1680static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1681 unsigned long addr, unsigned long end,
1682 unsigned long pfn, pgprot_t prot)
1683{
1684 pmd_t *pmd;
1685 unsigned long next;
1686
1687 pfn -= addr >> PAGE_SHIFT;
1688 pmd = pmd_alloc(mm, pud, addr);
1689 if (!pmd)
1690 return -ENOMEM;
f66055ab 1691 VM_BUG_ON(pmd_trans_huge(*pmd));
1da177e4
LT
1692 do {
1693 next = pmd_addr_end(addr, end);
1694 if (remap_pte_range(mm, pmd, addr, next,
1695 pfn + (addr >> PAGE_SHIFT), prot))
1696 return -ENOMEM;
1697 } while (pmd++, addr = next, addr != end);
1698 return 0;
1699}
1700
1701static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1702 unsigned long addr, unsigned long end,
1703 unsigned long pfn, pgprot_t prot)
1704{
1705 pud_t *pud;
1706 unsigned long next;
1707
1708 pfn -= addr >> PAGE_SHIFT;
1709 pud = pud_alloc(mm, pgd, addr);
1710 if (!pud)
1711 return -ENOMEM;
1712 do {
1713 next = pud_addr_end(addr, end);
1714 if (remap_pmd_range(mm, pud, addr, next,
1715 pfn + (addr >> PAGE_SHIFT), prot))
1716 return -ENOMEM;
1717 } while (pud++, addr = next, addr != end);
1718 return 0;
1719}
1720
bfa5bf6d
REB
1721/**
1722 * remap_pfn_range - remap kernel memory to userspace
1723 * @vma: user vma to map to
1724 * @addr: target user address to start at
1725 * @pfn: physical address of kernel memory
1726 * @size: size of map area
1727 * @prot: page protection flags for this mapping
1728 *
1729 * Note: this is only safe if the mm semaphore is held when called.
1730 */
1da177e4
LT
1731int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1732 unsigned long pfn, unsigned long size, pgprot_t prot)
1733{
1734 pgd_t *pgd;
1735 unsigned long next;
2d15cab8 1736 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1737 struct mm_struct *mm = vma->vm_mm;
1738 int err;
1739
1740 /*
1741 * Physically remapped pages are special. Tell the
1742 * rest of the world about it:
1743 * VM_IO tells people not to look at these pages
1744 * (accesses can have side effects).
6aab341e
LT
1745 * VM_PFNMAP tells the core MM that the base pages are just
1746 * raw PFN mappings, and do not have a "struct page" associated
1747 * with them.
314e51b9
KK
1748 * VM_DONTEXPAND
1749 * Disable vma merging and expanding with mremap().
1750 * VM_DONTDUMP
1751 * Omit vma from core dump, even when VM_IO turned off.
fb155c16
LT
1752 *
1753 * There's a horrible special case to handle copy-on-write
1754 * behaviour that some programs depend on. We mark the "original"
1755 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
b3b9c293 1756 * See vm_normal_page() for details.
1da177e4 1757 */
b3b9c293
KK
1758 if (is_cow_mapping(vma->vm_flags)) {
1759 if (addr != vma->vm_start || end != vma->vm_end)
1760 return -EINVAL;
fb155c16 1761 vma->vm_pgoff = pfn;
b3b9c293
KK
1762 }
1763
1764 err = track_pfn_remap(vma, &prot, pfn, addr, PAGE_ALIGN(size));
1765 if (err)
3c8bb73a 1766 return -EINVAL;
fb155c16 1767
314e51b9 1768 vma->vm_flags |= VM_IO | VM_PFNMAP | VM_DONTEXPAND | VM_DONTDUMP;
1da177e4
LT
1769
1770 BUG_ON(addr >= end);
1771 pfn -= addr >> PAGE_SHIFT;
1772 pgd = pgd_offset(mm, addr);
1773 flush_cache_range(vma, addr, end);
1da177e4
LT
1774 do {
1775 next = pgd_addr_end(addr, end);
1776 err = remap_pud_range(mm, pgd, addr, next,
1777 pfn + (addr >> PAGE_SHIFT), prot);
1778 if (err)
1779 break;
1780 } while (pgd++, addr = next, addr != end);
2ab64037 1781
1782 if (err)
5180da41 1783 untrack_pfn(vma, pfn, PAGE_ALIGN(size));
2ab64037 1784
1da177e4
LT
1785 return err;
1786}
1787EXPORT_SYMBOL(remap_pfn_range);
1788
b4cbb197
LT
1789/**
1790 * vm_iomap_memory - remap memory to userspace
1791 * @vma: user vma to map to
1792 * @start: start of area
1793 * @len: size of area
1794 *
1795 * This is a simplified io_remap_pfn_range() for common driver use. The
1796 * driver just needs to give us the physical memory range to be mapped,
1797 * we'll figure out the rest from the vma information.
1798 *
1799 * NOTE! Some drivers might want to tweak vma->vm_page_prot first to get
1800 * whatever write-combining details or similar.
1801 */
1802int vm_iomap_memory(struct vm_area_struct *vma, phys_addr_t start, unsigned long len)
1803{
1804 unsigned long vm_len, pfn, pages;
1805
1806 /* Check that the physical memory area passed in looks valid */
1807 if (start + len < start)
1808 return -EINVAL;
1809 /*
1810 * You *really* shouldn't map things that aren't page-aligned,
1811 * but we've historically allowed it because IO memory might
1812 * just have smaller alignment.
1813 */
1814 len += start & ~PAGE_MASK;
1815 pfn = start >> PAGE_SHIFT;
1816 pages = (len + ~PAGE_MASK) >> PAGE_SHIFT;
1817 if (pfn + pages < pfn)
1818 return -EINVAL;
1819
1820 /* We start the mapping 'vm_pgoff' pages into the area */
1821 if (vma->vm_pgoff > pages)
1822 return -EINVAL;
1823 pfn += vma->vm_pgoff;
1824 pages -= vma->vm_pgoff;
1825
1826 /* Can we fit all of the mapping? */
1827 vm_len = vma->vm_end - vma->vm_start;
1828 if (vm_len >> PAGE_SHIFT > pages)
1829 return -EINVAL;
1830
1831 /* Ok, let it rip */
1832 return io_remap_pfn_range(vma, vma->vm_start, pfn, vm_len, vma->vm_page_prot);
1833}
1834EXPORT_SYMBOL(vm_iomap_memory);
1835
aee16b3c
JF
1836static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1837 unsigned long addr, unsigned long end,
1838 pte_fn_t fn, void *data)
1839{
1840 pte_t *pte;
1841 int err;
2f569afd 1842 pgtable_t token;
94909914 1843 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1844
1845 pte = (mm == &init_mm) ?
1846 pte_alloc_kernel(pmd, addr) :
1847 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1848 if (!pte)
1849 return -ENOMEM;
1850
1851 BUG_ON(pmd_huge(*pmd));
1852
38e0edb1
JF
1853 arch_enter_lazy_mmu_mode();
1854
2f569afd 1855 token = pmd_pgtable(*pmd);
aee16b3c
JF
1856
1857 do {
c36987e2 1858 err = fn(pte++, token, addr, data);
aee16b3c
JF
1859 if (err)
1860 break;
c36987e2 1861 } while (addr += PAGE_SIZE, addr != end);
aee16b3c 1862
38e0edb1
JF
1863 arch_leave_lazy_mmu_mode();
1864
aee16b3c
JF
1865 if (mm != &init_mm)
1866 pte_unmap_unlock(pte-1, ptl);
1867 return err;
1868}
1869
1870static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1871 unsigned long addr, unsigned long end,
1872 pte_fn_t fn, void *data)
1873{
1874 pmd_t *pmd;
1875 unsigned long next;
1876 int err;
1877
ceb86879
AK
1878 BUG_ON(pud_huge(*pud));
1879
aee16b3c
JF
1880 pmd = pmd_alloc(mm, pud, addr);
1881 if (!pmd)
1882 return -ENOMEM;
1883 do {
1884 next = pmd_addr_end(addr, end);
1885 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1886 if (err)
1887 break;
1888 } while (pmd++, addr = next, addr != end);
1889 return err;
1890}
1891
1892static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1893 unsigned long addr, unsigned long end,
1894 pte_fn_t fn, void *data)
1895{
1896 pud_t *pud;
1897 unsigned long next;
1898 int err;
1899
1900 pud = pud_alloc(mm, pgd, addr);
1901 if (!pud)
1902 return -ENOMEM;
1903 do {
1904 next = pud_addr_end(addr, end);
1905 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1906 if (err)
1907 break;
1908 } while (pud++, addr = next, addr != end);
1909 return err;
1910}
1911
1912/*
1913 * Scan a region of virtual memory, filling in page tables as necessary
1914 * and calling a provided function on each leaf page table.
1915 */
1916int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1917 unsigned long size, pte_fn_t fn, void *data)
1918{
1919 pgd_t *pgd;
1920 unsigned long next;
57250a5b 1921 unsigned long end = addr + size;
aee16b3c
JF
1922 int err;
1923
1924 BUG_ON(addr >= end);
1925 pgd = pgd_offset(mm, addr);
1926 do {
1927 next = pgd_addr_end(addr, end);
1928 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1929 if (err)
1930 break;
1931 } while (pgd++, addr = next, addr != end);
57250a5b 1932
aee16b3c
JF
1933 return err;
1934}
1935EXPORT_SYMBOL_GPL(apply_to_page_range);
1936
8f4e2101
HD
1937/*
1938 * handle_pte_fault chooses page fault handler according to an entry
1939 * which was read non-atomically. Before making any commitment, on
1940 * those architectures or configurations (e.g. i386 with PAE) which
a335b2e1 1941 * might give a mix of unmatched parts, do_swap_page and do_nonlinear_fault
8f4e2101
HD
1942 * must check under lock before unmapping the pte and proceeding
1943 * (but do_wp_page is only called after already making such a check;
a335b2e1 1944 * and do_anonymous_page can safely check later on).
8f4e2101 1945 */
4c21e2f2 1946static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1947 pte_t *page_table, pte_t orig_pte)
1948{
1949 int same = 1;
1950#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1951 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1952 spinlock_t *ptl = pte_lockptr(mm, pmd);
1953 spin_lock(ptl);
8f4e2101 1954 same = pte_same(*page_table, orig_pte);
4c21e2f2 1955 spin_unlock(ptl);
8f4e2101
HD
1956 }
1957#endif
1958 pte_unmap(page_table);
1959 return same;
1960}
1961
9de455b2 1962static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e 1963{
0abdd7a8
DW
1964 debug_dma_assert_idle(src);
1965
6aab341e
LT
1966 /*
1967 * If the source page was a PFN mapping, we don't have
1968 * a "struct page" for it. We do a best-effort copy by
1969 * just copying from the original user address. If that
1970 * fails, we just zero-fill it. Live with it.
1971 */
1972 if (unlikely(!src)) {
9b04c5fe 1973 void *kaddr = kmap_atomic(dst);
5d2a2dbb
LT
1974 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1975
1976 /*
1977 * This really shouldn't fail, because the page is there
1978 * in the page tables. But it might just be unreadable,
1979 * in which case we just give up and fill the result with
1980 * zeroes.
1981 */
1982 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
3ecb01df 1983 clear_page(kaddr);
9b04c5fe 1984 kunmap_atomic(kaddr);
c4ec7b0d 1985 flush_dcache_page(dst);
0ed361de
NP
1986 } else
1987 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1988}
1989
fb09a464
KS
1990/*
1991 * Notify the address space that the page is about to become writable so that
1992 * it can prohibit this or wait for the page to get into an appropriate state.
1993 *
1994 * We do this without the lock held, so that it can sleep if it needs to.
1995 */
1996static int do_page_mkwrite(struct vm_area_struct *vma, struct page *page,
1997 unsigned long address)
1998{
1999 struct vm_fault vmf;
2000 int ret;
2001
2002 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2003 vmf.pgoff = page->index;
2004 vmf.flags = FAULT_FLAG_WRITE|FAULT_FLAG_MKWRITE;
2005 vmf.page = page;
2006
2007 ret = vma->vm_ops->page_mkwrite(vma, &vmf);
2008 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2009 return ret;
2010 if (unlikely(!(ret & VM_FAULT_LOCKED))) {
2011 lock_page(page);
2012 if (!page->mapping) {
2013 unlock_page(page);
2014 return 0; /* retry */
2015 }
2016 ret |= VM_FAULT_LOCKED;
2017 } else
2018 VM_BUG_ON_PAGE(!PageLocked(page), page);
2019 return ret;
2020}
2021
1da177e4
LT
2022/*
2023 * This routine handles present pages, when users try to write
2024 * to a shared page. It is done by copying the page to a new address
2025 * and decrementing the shared-page counter for the old page.
2026 *
1da177e4
LT
2027 * Note that this routine assumes that the protection checks have been
2028 * done by the caller (the low-level page fault routine in most cases).
2029 * Thus we can safely just mark it writable once we've done any necessary
2030 * COW.
2031 *
2032 * We also mark the page dirty at this point even though the page will
2033 * change only once the write actually happens. This avoids a few races,
2034 * and potentially makes it more efficient.
2035 *
8f4e2101
HD
2036 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2037 * but allow concurrent faults), with pte both mapped and locked.
2038 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2039 */
65500d23
HD
2040static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
2041 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 2042 spinlock_t *ptl, pte_t orig_pte)
e6219ec8 2043 __releases(ptl)
1da177e4 2044{
2ec74c3e 2045 struct page *old_page, *new_page = NULL;
1da177e4 2046 pte_t entry;
b009c024 2047 int ret = 0;
a200ee18 2048 int page_mkwrite = 0;
d08b3851 2049 struct page *dirty_page = NULL;
1756954c
DR
2050 unsigned long mmun_start = 0; /* For mmu_notifiers */
2051 unsigned long mmun_end = 0; /* For mmu_notifiers */
00501b53 2052 struct mem_cgroup *memcg;
1da177e4 2053
6aab341e 2054 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
2055 if (!old_page) {
2056 /*
64e45507
PF
2057 * VM_MIXEDMAP !pfn_valid() case, or VM_SOFTDIRTY clear on a
2058 * VM_PFNMAP VMA.
251b97f5
PZ
2059 *
2060 * We should not cow pages in a shared writeable mapping.
2061 * Just mark the pages writable as we can't do any dirty
2062 * accounting on raw pfn maps.
2063 */
2064 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
2065 (VM_WRITE|VM_SHARED))
2066 goto reuse;
6aab341e 2067 goto gotten;
251b97f5 2068 }
1da177e4 2069
d08b3851 2070 /*
ee6a6457
PZ
2071 * Take out anonymous pages first, anonymous shared vmas are
2072 * not dirty accountable.
d08b3851 2073 */
9a840895 2074 if (PageAnon(old_page) && !PageKsm(old_page)) {
ab967d86
HD
2075 if (!trylock_page(old_page)) {
2076 page_cache_get(old_page);
2077 pte_unmap_unlock(page_table, ptl);
2078 lock_page(old_page);
2079 page_table = pte_offset_map_lock(mm, pmd, address,
2080 &ptl);
2081 if (!pte_same(*page_table, orig_pte)) {
2082 unlock_page(old_page);
ab967d86
HD
2083 goto unlock;
2084 }
2085 page_cache_release(old_page);
ee6a6457 2086 }
b009c024 2087 if (reuse_swap_page(old_page)) {
c44b6743
RR
2088 /*
2089 * The page is all ours. Move it to our anon_vma so
2090 * the rmap code will not search our parent or siblings.
2091 * Protected against the rmap code by the page lock.
2092 */
2093 page_move_anon_rmap(old_page, vma, address);
b009c024
ML
2094 unlock_page(old_page);
2095 goto reuse;
2096 }
ab967d86 2097 unlock_page(old_page);
ee6a6457 2098 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 2099 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
2100 /*
2101 * Only catch write-faults on shared writable pages,
2102 * read-only shared pages can get COWed by
2103 * get_user_pages(.write=1, .force=1).
2104 */
9637a5ef 2105 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
c2ec175c 2106 int tmp;
9637a5ef
DH
2107 page_cache_get(old_page);
2108 pte_unmap_unlock(page_table, ptl);
fb09a464
KS
2109 tmp = do_page_mkwrite(vma, old_page, address);
2110 if (unlikely(!tmp || (tmp &
2111 (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
2112 page_cache_release(old_page);
2113 return tmp;
c2ec175c 2114 }
9637a5ef
DH
2115 /*
2116 * Since we dropped the lock we need to revalidate
2117 * the PTE as someone else may have changed it. If
2118 * they did, we just return, as we can count on the
2119 * MMU to tell us if they didn't also make it writable.
2120 */
2121 page_table = pte_offset_map_lock(mm, pmd, address,
2122 &ptl);
b827e496
NP
2123 if (!pte_same(*page_table, orig_pte)) {
2124 unlock_page(old_page);
9637a5ef 2125 goto unlock;
b827e496 2126 }
a200ee18
PZ
2127
2128 page_mkwrite = 1;
1da177e4 2129 }
d08b3851
PZ
2130 dirty_page = old_page;
2131 get_page(dirty_page);
9637a5ef 2132
251b97f5 2133reuse:
8c8a743c
PZ
2134 /*
2135 * Clear the pages cpupid information as the existing
2136 * information potentially belongs to a now completely
2137 * unrelated process.
2138 */
2139 if (old_page)
2140 page_cpupid_xchg_last(old_page, (1 << LAST_CPUPID_SHIFT) - 1);
2141
9637a5ef
DH
2142 flush_cache_page(vma, address, pte_pfn(orig_pte));
2143 entry = pte_mkyoung(orig_pte);
2144 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 2145 if (ptep_set_access_flags(vma, address, page_table, entry,1))
4b3073e1 2146 update_mmu_cache(vma, address, page_table);
72ddc8f7 2147 pte_unmap_unlock(page_table, ptl);
9637a5ef 2148 ret |= VM_FAULT_WRITE;
72ddc8f7
ML
2149
2150 if (!dirty_page)
2151 return ret;
2152
2153 /*
2154 * Yes, Virginia, this is actually required to prevent a race
2155 * with clear_page_dirty_for_io() from clearing the page dirty
2156 * bit after it clear all dirty ptes, but before a racing
2157 * do_wp_page installs a dirty pte.
2158 *
f0c6d4d2 2159 * do_shared_fault is protected similarly.
72ddc8f7
ML
2160 */
2161 if (!page_mkwrite) {
2162 wait_on_page_locked(dirty_page);
ed6d7c8e 2163 set_page_dirty_balance(dirty_page);
41c4d25f
JK
2164 /* file_update_time outside page_lock */
2165 if (vma->vm_file)
2166 file_update_time(vma->vm_file);
72ddc8f7
ML
2167 }
2168 put_page(dirty_page);
2169 if (page_mkwrite) {
2170 struct address_space *mapping = dirty_page->mapping;
2171
2172 set_page_dirty(dirty_page);
2173 unlock_page(dirty_page);
2174 page_cache_release(dirty_page);
2175 if (mapping) {
2176 /*
2177 * Some device drivers do not set page.mapping
2178 * but still dirty their pages
2179 */
2180 balance_dirty_pages_ratelimited(mapping);
2181 }
2182 }
2183
72ddc8f7 2184 return ret;
1da177e4 2185 }
1da177e4
LT
2186
2187 /*
2188 * Ok, we need to copy. Oh, well..
2189 */
b5810039 2190 page_cache_get(old_page);
920fc356 2191gotten:
8f4e2101 2192 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2193
2194 if (unlikely(anon_vma_prepare(vma)))
65500d23 2195 goto oom;
a13ea5b7 2196
62eede62 2197 if (is_zero_pfn(pte_pfn(orig_pte))) {
a13ea5b7
HD
2198 new_page = alloc_zeroed_user_highpage_movable(vma, address);
2199 if (!new_page)
2200 goto oom;
2201 } else {
2202 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2203 if (!new_page)
2204 goto oom;
2205 cow_user_page(new_page, old_page, address, vma);
2206 }
2207 __SetPageUptodate(new_page);
2208
00501b53 2209 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg))
8a9f3ccd
BS
2210 goto oom_free_new;
2211
6bdb913f 2212 mmun_start = address & PAGE_MASK;
1756954c 2213 mmun_end = mmun_start + PAGE_SIZE;
6bdb913f
HE
2214 mmu_notifier_invalidate_range_start(mm, mmun_start, mmun_end);
2215
1da177e4
LT
2216 /*
2217 * Re-check the pte - we dropped the lock
2218 */
8f4e2101 2219 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 2220 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 2221 if (old_page) {
920fc356 2222 if (!PageAnon(old_page)) {
34e55232
KH
2223 dec_mm_counter_fast(mm, MM_FILEPAGES);
2224 inc_mm_counter_fast(mm, MM_ANONPAGES);
920fc356
HD
2225 }
2226 } else
34e55232 2227 inc_mm_counter_fast(mm, MM_ANONPAGES);
eca35133 2228 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
2229 entry = mk_pte(new_page, vma->vm_page_prot);
2230 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
2231 /*
2232 * Clear the pte entry and flush it first, before updating the
2233 * pte with the new entry. This will avoid a race condition
2234 * seen in the presence of one thread doing SMC and another
2235 * thread doing COW.
2236 */
828502d3 2237 ptep_clear_flush(vma, address, page_table);
9617d95e 2238 page_add_new_anon_rmap(new_page, vma, address);
00501b53
JW
2239 mem_cgroup_commit_charge(new_page, memcg, false);
2240 lru_cache_add_active_or_unevictable(new_page, vma);
828502d3
IE
2241 /*
2242 * We call the notify macro here because, when using secondary
2243 * mmu page tables (such as kvm shadow page tables), we want the
2244 * new page to be mapped directly into the secondary page table.
2245 */
2246 set_pte_at_notify(mm, address, page_table, entry);
4b3073e1 2247 update_mmu_cache(vma, address, page_table);
945754a1
NP
2248 if (old_page) {
2249 /*
2250 * Only after switching the pte to the new page may
2251 * we remove the mapcount here. Otherwise another
2252 * process may come and find the rmap count decremented
2253 * before the pte is switched to the new page, and
2254 * "reuse" the old page writing into it while our pte
2255 * here still points into it and can be read by other
2256 * threads.
2257 *
2258 * The critical issue is to order this
2259 * page_remove_rmap with the ptp_clear_flush above.
2260 * Those stores are ordered by (if nothing else,)
2261 * the barrier present in the atomic_add_negative
2262 * in page_remove_rmap.
2263 *
2264 * Then the TLB flush in ptep_clear_flush ensures that
2265 * no process can access the old page before the
2266 * decremented mapcount is visible. And the old page
2267 * cannot be reused until after the decremented
2268 * mapcount is visible. So transitively, TLBs to
2269 * old page will be flushed before it can be reused.
2270 */
edc315fd 2271 page_remove_rmap(old_page);
945754a1
NP
2272 }
2273
1da177e4
LT
2274 /* Free the old page.. */
2275 new_page = old_page;
f33ea7f4 2276 ret |= VM_FAULT_WRITE;
8a9f3ccd 2277 } else
00501b53 2278 mem_cgroup_cancel_charge(new_page, memcg);
8a9f3ccd 2279
6bdb913f
HE
2280 if (new_page)
2281 page_cache_release(new_page);
65500d23 2282unlock:
8f4e2101 2283 pte_unmap_unlock(page_table, ptl);
1756954c 2284 if (mmun_end > mmun_start)
6bdb913f 2285 mmu_notifier_invalidate_range_end(mm, mmun_start, mmun_end);
e15f8c01
ML
2286 if (old_page) {
2287 /*
2288 * Don't let another task, with possibly unlocked vma,
2289 * keep the mlocked page.
2290 */
2291 if ((ret & VM_FAULT_WRITE) && (vma->vm_flags & VM_LOCKED)) {
2292 lock_page(old_page); /* LRU manipulation */
2293 munlock_vma_page(old_page);
2294 unlock_page(old_page);
2295 }
2296 page_cache_release(old_page);
2297 }
f33ea7f4 2298 return ret;
8a9f3ccd 2299oom_free_new:
6dbf6d3b 2300 page_cache_release(new_page);
65500d23 2301oom:
66521d5a 2302 if (old_page)
920fc356 2303 page_cache_release(old_page);
1da177e4
LT
2304 return VM_FAULT_OOM;
2305}
2306
97a89413 2307static void unmap_mapping_range_vma(struct vm_area_struct *vma,
1da177e4
LT
2308 unsigned long start_addr, unsigned long end_addr,
2309 struct zap_details *details)
2310{
f5cc4eef 2311 zap_page_range_single(vma, start_addr, end_addr - start_addr, details);
1da177e4
LT
2312}
2313
6b2dbba8 2314static inline void unmap_mapping_range_tree(struct rb_root *root,
1da177e4
LT
2315 struct zap_details *details)
2316{
2317 struct vm_area_struct *vma;
1da177e4
LT
2318 pgoff_t vba, vea, zba, zea;
2319
6b2dbba8 2320 vma_interval_tree_foreach(vma, root,
1da177e4 2321 details->first_index, details->last_index) {
1da177e4
LT
2322
2323 vba = vma->vm_pgoff;
d6e93217 2324 vea = vba + vma_pages(vma) - 1;
1da177e4
LT
2325 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2326 zba = details->first_index;
2327 if (zba < vba)
2328 zba = vba;
2329 zea = details->last_index;
2330 if (zea > vea)
2331 zea = vea;
2332
97a89413 2333 unmap_mapping_range_vma(vma,
1da177e4
LT
2334 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2335 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
97a89413 2336 details);
1da177e4
LT
2337 }
2338}
2339
2340static inline void unmap_mapping_range_list(struct list_head *head,
2341 struct zap_details *details)
2342{
2343 struct vm_area_struct *vma;
2344
2345 /*
2346 * In nonlinear VMAs there is no correspondence between virtual address
2347 * offset and file offset. So we must perform an exhaustive search
2348 * across *all* the pages in each nonlinear VMA, not just the pages
2349 * whose virtual address lies outside the file truncation point.
2350 */
6b2dbba8 2351 list_for_each_entry(vma, head, shared.nonlinear) {
1da177e4 2352 details->nonlinear_vma = vma;
97a89413 2353 unmap_mapping_range_vma(vma, vma->vm_start, vma->vm_end, details);
1da177e4
LT
2354 }
2355}
2356
2357/**
72fd4a35 2358 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2359 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2360 * @holebegin: byte in first page to unmap, relative to the start of
2361 * the underlying file. This will be rounded down to a PAGE_SIZE
25d9e2d1 2362 * boundary. Note that this is different from truncate_pagecache(), which
1da177e4
LT
2363 * must keep the partial page. In contrast, we must get rid of
2364 * partial pages.
2365 * @holelen: size of prospective hole in bytes. This will be rounded
2366 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2367 * end of the file.
2368 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2369 * but 0 when invalidating pagecache, don't throw away private data.
2370 */
2371void unmap_mapping_range(struct address_space *mapping,
2372 loff_t const holebegin, loff_t const holelen, int even_cows)
2373{
2374 struct zap_details details;
2375 pgoff_t hba = holebegin >> PAGE_SHIFT;
2376 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2377
2378 /* Check for overflow. */
2379 if (sizeof(holelen) > sizeof(hlen)) {
2380 long long holeend =
2381 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2382 if (holeend & ~(long long)ULONG_MAX)
2383 hlen = ULONG_MAX - hba + 1;
2384 }
2385
2386 details.check_mapping = even_cows? NULL: mapping;
2387 details.nonlinear_vma = NULL;
2388 details.first_index = hba;
2389 details.last_index = hba + hlen - 1;
2390 if (details.last_index < details.first_index)
2391 details.last_index = ULONG_MAX;
1da177e4 2392
1da177e4 2393
3d48ae45 2394 mutex_lock(&mapping->i_mmap_mutex);
6b2dbba8 2395 if (unlikely(!RB_EMPTY_ROOT(&mapping->i_mmap)))
1da177e4
LT
2396 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2397 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2398 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
3d48ae45 2399 mutex_unlock(&mapping->i_mmap_mutex);
1da177e4
LT
2400}
2401EXPORT_SYMBOL(unmap_mapping_range);
2402
1da177e4 2403/*
8f4e2101
HD
2404 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2405 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
2406 * We return with pte unmapped and unlocked.
2407 *
2408 * We return with the mmap_sem locked or unlocked in the same cases
2409 * as does filemap_fault().
1da177e4 2410 */
65500d23
HD
2411static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2412 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2413 unsigned int flags, pte_t orig_pte)
1da177e4 2414{
8f4e2101 2415 spinlock_t *ptl;
56f31801 2416 struct page *page, *swapcache;
00501b53 2417 struct mem_cgroup *memcg;
65500d23 2418 swp_entry_t entry;
1da177e4 2419 pte_t pte;
d065bd81 2420 int locked;
ad8c2ee8 2421 int exclusive = 0;
83c54070 2422 int ret = 0;
1da177e4 2423
4c21e2f2 2424 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2425 goto out;
65500d23
HD
2426
2427 entry = pte_to_swp_entry(orig_pte);
d1737fdb
AK
2428 if (unlikely(non_swap_entry(entry))) {
2429 if (is_migration_entry(entry)) {
2430 migration_entry_wait(mm, pmd, address);
2431 } else if (is_hwpoison_entry(entry)) {
2432 ret = VM_FAULT_HWPOISON;
2433 } else {
2434 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 2435 ret = VM_FAULT_SIGBUS;
d1737fdb 2436 }
0697212a
CL
2437 goto out;
2438 }
0ff92245 2439 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2440 page = lookup_swap_cache(entry);
2441 if (!page) {
02098fea
HD
2442 page = swapin_readahead(entry,
2443 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2444 if (!page) {
2445 /*
8f4e2101
HD
2446 * Back out if somebody else faulted in this pte
2447 * while we released the pte lock.
1da177e4 2448 */
8f4e2101 2449 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2450 if (likely(pte_same(*page_table, orig_pte)))
2451 ret = VM_FAULT_OOM;
0ff92245 2452 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2453 goto unlock;
1da177e4
LT
2454 }
2455
2456 /* Had to read the page from swap area: Major fault */
2457 ret = VM_FAULT_MAJOR;
f8891e5e 2458 count_vm_event(PGMAJFAULT);
456f998e 2459 mem_cgroup_count_vm_event(mm, PGMAJFAULT);
d1737fdb 2460 } else if (PageHWPoison(page)) {
71f72525
WF
2461 /*
2462 * hwpoisoned dirty swapcache pages are kept for killing
2463 * owner processes (which may be unknown at hwpoison time)
2464 */
d1737fdb
AK
2465 ret = VM_FAULT_HWPOISON;
2466 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
56f31801 2467 swapcache = page;
4779cb31 2468 goto out_release;
1da177e4
LT
2469 }
2470
56f31801 2471 swapcache = page;
d065bd81 2472 locked = lock_page_or_retry(page, mm, flags);
e709ffd6 2473
073e587e 2474 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
d065bd81
ML
2475 if (!locked) {
2476 ret |= VM_FAULT_RETRY;
2477 goto out_release;
2478 }
073e587e 2479
4969c119 2480 /*
31c4a3d3
HD
2481 * Make sure try_to_free_swap or reuse_swap_page or swapoff did not
2482 * release the swapcache from under us. The page pin, and pte_same
2483 * test below, are not enough to exclude that. Even if it is still
2484 * swapcache, we need to check that the page's swap has not changed.
4969c119 2485 */
31c4a3d3 2486 if (unlikely(!PageSwapCache(page) || page_private(page) != entry.val))
4969c119
AA
2487 goto out_page;
2488
cbf86cfe
HD
2489 page = ksm_might_need_to_copy(page, vma, address);
2490 if (unlikely(!page)) {
2491 ret = VM_FAULT_OOM;
2492 page = swapcache;
cbf86cfe 2493 goto out_page;
5ad64688
HD
2494 }
2495
00501b53 2496 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg)) {
8a9f3ccd 2497 ret = VM_FAULT_OOM;
bc43f75c 2498 goto out_page;
8a9f3ccd
BS
2499 }
2500
1da177e4 2501 /*
8f4e2101 2502 * Back out if somebody else already faulted in this pte.
1da177e4 2503 */
8f4e2101 2504 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2505 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2506 goto out_nomap;
b8107480
KK
2507
2508 if (unlikely(!PageUptodate(page))) {
2509 ret = VM_FAULT_SIGBUS;
2510 goto out_nomap;
1da177e4
LT
2511 }
2512
8c7c6e34
KH
2513 /*
2514 * The page isn't present yet, go ahead with the fault.
2515 *
2516 * Be careful about the sequence of operations here.
2517 * To get its accounting right, reuse_swap_page() must be called
2518 * while the page is counted on swap but not yet in mapcount i.e.
2519 * before page_add_anon_rmap() and swap_free(); try_to_free_swap()
2520 * must be called after the swap_free(), or it will never succeed.
8c7c6e34 2521 */
1da177e4 2522
34e55232 2523 inc_mm_counter_fast(mm, MM_ANONPAGES);
b084d435 2524 dec_mm_counter_fast(mm, MM_SWAPENTS);
1da177e4 2525 pte = mk_pte(page, vma->vm_page_prot);
30c9f3a9 2526 if ((flags & FAULT_FLAG_WRITE) && reuse_swap_page(page)) {
1da177e4 2527 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
30c9f3a9 2528 flags &= ~FAULT_FLAG_WRITE;
9a5b489b 2529 ret |= VM_FAULT_WRITE;
ad8c2ee8 2530 exclusive = 1;
1da177e4 2531 }
1da177e4 2532 flush_icache_page(vma, page);
179ef71c
CG
2533 if (pte_swp_soft_dirty(orig_pte))
2534 pte = pte_mksoft_dirty(pte);
1da177e4 2535 set_pte_at(mm, address, page_table, pte);
00501b53 2536 if (page == swapcache) {
af34770e 2537 do_page_add_anon_rmap(page, vma, address, exclusive);
00501b53
JW
2538 mem_cgroup_commit_charge(page, memcg, true);
2539 } else { /* ksm created a completely new copy */
56f31801 2540 page_add_new_anon_rmap(page, vma, address);
00501b53
JW
2541 mem_cgroup_commit_charge(page, memcg, false);
2542 lru_cache_add_active_or_unevictable(page, vma);
2543 }
1da177e4 2544
c475a8ab 2545 swap_free(entry);
b291f000 2546 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
a2c43eed 2547 try_to_free_swap(page);
c475a8ab 2548 unlock_page(page);
56f31801 2549 if (page != swapcache) {
4969c119
AA
2550 /*
2551 * Hold the lock to avoid the swap entry to be reused
2552 * until we take the PT lock for the pte_same() check
2553 * (to avoid false positives from pte_same). For
2554 * further safety release the lock after the swap_free
2555 * so that the swap count won't change under a
2556 * parallel locked swapcache.
2557 */
2558 unlock_page(swapcache);
2559 page_cache_release(swapcache);
2560 }
c475a8ab 2561
30c9f3a9 2562 if (flags & FAULT_FLAG_WRITE) {
61469f1d
HD
2563 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2564 if (ret & VM_FAULT_ERROR)
2565 ret &= VM_FAULT_ERROR;
1da177e4
LT
2566 goto out;
2567 }
2568
2569 /* No need to invalidate - it was non-present before */
4b3073e1 2570 update_mmu_cache(vma, address, page_table);
65500d23 2571unlock:
8f4e2101 2572 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2573out:
2574 return ret;
b8107480 2575out_nomap:
00501b53 2576 mem_cgroup_cancel_charge(page, memcg);
8f4e2101 2577 pte_unmap_unlock(page_table, ptl);
bc43f75c 2578out_page:
b8107480 2579 unlock_page(page);
4779cb31 2580out_release:
b8107480 2581 page_cache_release(page);
56f31801 2582 if (page != swapcache) {
4969c119
AA
2583 unlock_page(swapcache);
2584 page_cache_release(swapcache);
2585 }
65500d23 2586 return ret;
1da177e4
LT
2587}
2588
320b2b8d 2589/*
8ca3eb08
LT
2590 * This is like a special single-page "expand_{down|up}wards()",
2591 * except we must first make sure that 'address{-|+}PAGE_SIZE'
320b2b8d 2592 * doesn't hit another vma.
320b2b8d
LT
2593 */
2594static inline int check_stack_guard_page(struct vm_area_struct *vma, unsigned long address)
2595{
2596 address &= PAGE_MASK;
2597 if ((vma->vm_flags & VM_GROWSDOWN) && address == vma->vm_start) {
0e8e50e2
LT
2598 struct vm_area_struct *prev = vma->vm_prev;
2599
2600 /*
2601 * Is there a mapping abutting this one below?
2602 *
2603 * That's only ok if it's the same stack mapping
2604 * that has gotten split..
2605 */
2606 if (prev && prev->vm_end == address)
2607 return prev->vm_flags & VM_GROWSDOWN ? 0 : -ENOMEM;
320b2b8d 2608
d05f3169 2609 expand_downwards(vma, address - PAGE_SIZE);
320b2b8d 2610 }
8ca3eb08
LT
2611 if ((vma->vm_flags & VM_GROWSUP) && address + PAGE_SIZE == vma->vm_end) {
2612 struct vm_area_struct *next = vma->vm_next;
2613
2614 /* As VM_GROWSDOWN but s/below/above/ */
2615 if (next && next->vm_start == address + PAGE_SIZE)
2616 return next->vm_flags & VM_GROWSUP ? 0 : -ENOMEM;
2617
2618 expand_upwards(vma, address + PAGE_SIZE);
2619 }
320b2b8d
LT
2620 return 0;
2621}
2622
1da177e4 2623/*
8f4e2101
HD
2624 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2625 * but allow concurrent faults), and pte mapped but not yet locked.
2626 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2627 */
65500d23
HD
2628static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2629 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 2630 unsigned int flags)
1da177e4 2631{
00501b53 2632 struct mem_cgroup *memcg;
8f4e2101
HD
2633 struct page *page;
2634 spinlock_t *ptl;
1da177e4 2635 pte_t entry;
1da177e4 2636
11ac5524
LT
2637 pte_unmap(page_table);
2638
2639 /* Check if we need to add a guard page to the stack */
2640 if (check_stack_guard_page(vma, address) < 0)
320b2b8d
LT
2641 return VM_FAULT_SIGBUS;
2642
11ac5524 2643 /* Use the zero-page for reads */
62eede62
HD
2644 if (!(flags & FAULT_FLAG_WRITE)) {
2645 entry = pte_mkspecial(pfn_pte(my_zero_pfn(address),
2646 vma->vm_page_prot));
11ac5524 2647 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
a13ea5b7
HD
2648 if (!pte_none(*page_table))
2649 goto unlock;
2650 goto setpte;
2651 }
2652
557ed1fa 2653 /* Allocate our own private page. */
557ed1fa
NP
2654 if (unlikely(anon_vma_prepare(vma)))
2655 goto oom;
2656 page = alloc_zeroed_user_highpage_movable(vma, address);
2657 if (!page)
2658 goto oom;
52f37629
MK
2659 /*
2660 * The memory barrier inside __SetPageUptodate makes sure that
2661 * preceeding stores to the page contents become visible before
2662 * the set_pte_at() write.
2663 */
0ed361de 2664 __SetPageUptodate(page);
8f4e2101 2665
00501b53 2666 if (mem_cgroup_try_charge(page, mm, GFP_KERNEL, &memcg))
8a9f3ccd
BS
2667 goto oom_free_page;
2668
557ed1fa 2669 entry = mk_pte(page, vma->vm_page_prot);
1ac0cb5d
HD
2670 if (vma->vm_flags & VM_WRITE)
2671 entry = pte_mkwrite(pte_mkdirty(entry));
1da177e4 2672
557ed1fa 2673 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1c2fb7a4 2674 if (!pte_none(*page_table))
557ed1fa 2675 goto release;
9ba69294 2676
34e55232 2677 inc_mm_counter_fast(mm, MM_ANONPAGES);
557ed1fa 2678 page_add_new_anon_rmap(page, vma, address);
00501b53
JW
2679 mem_cgroup_commit_charge(page, memcg, false);
2680 lru_cache_add_active_or_unevictable(page, vma);
a13ea5b7 2681setpte:
65500d23 2682 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2683
2684 /* No need to invalidate - it was non-present before */
4b3073e1 2685 update_mmu_cache(vma, address, page_table);
65500d23 2686unlock:
8f4e2101 2687 pte_unmap_unlock(page_table, ptl);
83c54070 2688 return 0;
8f4e2101 2689release:
00501b53 2690 mem_cgroup_cancel_charge(page, memcg);
8f4e2101
HD
2691 page_cache_release(page);
2692 goto unlock;
8a9f3ccd 2693oom_free_page:
6dbf6d3b 2694 page_cache_release(page);
65500d23 2695oom:
1da177e4
LT
2696 return VM_FAULT_OOM;
2697}
2698
9a95f3cf
PC
2699/*
2700 * The mmap_sem must have been held on entry, and may have been
2701 * released depending on flags and vma->vm_ops->fault() return value.
2702 * See filemap_fault() and __lock_page_retry().
2703 */
7eae74af
KS
2704static int __do_fault(struct vm_area_struct *vma, unsigned long address,
2705 pgoff_t pgoff, unsigned int flags, struct page **page)
2706{
2707 struct vm_fault vmf;
2708 int ret;
2709
2710 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2711 vmf.pgoff = pgoff;
2712 vmf.flags = flags;
2713 vmf.page = NULL;
2714
2715 ret = vma->vm_ops->fault(vma, &vmf);
2716 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2717 return ret;
2718
2719 if (unlikely(PageHWPoison(vmf.page))) {
2720 if (ret & VM_FAULT_LOCKED)
2721 unlock_page(vmf.page);
2722 page_cache_release(vmf.page);
2723 return VM_FAULT_HWPOISON;
2724 }
2725
2726 if (unlikely(!(ret & VM_FAULT_LOCKED)))
2727 lock_page(vmf.page);
2728 else
2729 VM_BUG_ON_PAGE(!PageLocked(vmf.page), vmf.page);
2730
2731 *page = vmf.page;
2732 return ret;
2733}
2734
8c6e50b0
KS
2735/**
2736 * do_set_pte - setup new PTE entry for given page and add reverse page mapping.
2737 *
2738 * @vma: virtual memory area
2739 * @address: user virtual address
2740 * @page: page to map
2741 * @pte: pointer to target page table entry
2742 * @write: true, if new entry is writable
2743 * @anon: true, if it's anonymous page
2744 *
2745 * Caller must hold page table lock relevant for @pte.
2746 *
2747 * Target users are page handler itself and implementations of
2748 * vm_ops->map_pages.
2749 */
2750void do_set_pte(struct vm_area_struct *vma, unsigned long address,
3bb97794
KS
2751 struct page *page, pte_t *pte, bool write, bool anon)
2752{
2753 pte_t entry;
2754
2755 flush_icache_page(vma, page);
2756 entry = mk_pte(page, vma->vm_page_prot);
2757 if (write)
2758 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
2759 else if (pte_file(*pte) && pte_file_soft_dirty(*pte))
9aed8614 2760 entry = pte_mksoft_dirty(entry);
3bb97794
KS
2761 if (anon) {
2762 inc_mm_counter_fast(vma->vm_mm, MM_ANONPAGES);
2763 page_add_new_anon_rmap(page, vma, address);
2764 } else {
2765 inc_mm_counter_fast(vma->vm_mm, MM_FILEPAGES);
2766 page_add_file_rmap(page);
2767 }
2768 set_pte_at(vma->vm_mm, address, pte, entry);
2769
2770 /* no need to invalidate: a not-present page won't be cached */
2771 update_mmu_cache(vma, address, pte);
2772}
2773
3a91053a
KS
2774static unsigned long fault_around_bytes __read_mostly =
2775 rounddown_pow_of_two(65536);
a9b0f861 2776
a9b0f861
KS
2777#ifdef CONFIG_DEBUG_FS
2778static int fault_around_bytes_get(void *data, u64 *val)
1592eef0 2779{
a9b0f861 2780 *val = fault_around_bytes;
1592eef0
KS
2781 return 0;
2782}
2783
b4903d6e
AR
2784/*
2785 * fault_around_pages() and fault_around_mask() expects fault_around_bytes
2786 * rounded down to nearest page order. It's what do_fault_around() expects to
2787 * see.
2788 */
a9b0f861 2789static int fault_around_bytes_set(void *data, u64 val)
1592eef0 2790{
a9b0f861 2791 if (val / PAGE_SIZE > PTRS_PER_PTE)
1592eef0 2792 return -EINVAL;
b4903d6e
AR
2793 if (val > PAGE_SIZE)
2794 fault_around_bytes = rounddown_pow_of_two(val);
2795 else
2796 fault_around_bytes = PAGE_SIZE; /* rounddown_pow_of_two(0) is undefined */
1592eef0
KS
2797 return 0;
2798}
a9b0f861
KS
2799DEFINE_SIMPLE_ATTRIBUTE(fault_around_bytes_fops,
2800 fault_around_bytes_get, fault_around_bytes_set, "%llu\n");
1592eef0
KS
2801
2802static int __init fault_around_debugfs(void)
2803{
2804 void *ret;
2805
a9b0f861
KS
2806 ret = debugfs_create_file("fault_around_bytes", 0644, NULL, NULL,
2807 &fault_around_bytes_fops);
1592eef0 2808 if (!ret)
a9b0f861 2809 pr_warn("Failed to create fault_around_bytes in debugfs");
1592eef0
KS
2810 return 0;
2811}
2812late_initcall(fault_around_debugfs);
1592eef0 2813#endif
8c6e50b0 2814
1fdb412b
KS
2815/*
2816 * do_fault_around() tries to map few pages around the fault address. The hope
2817 * is that the pages will be needed soon and this will lower the number of
2818 * faults to handle.
2819 *
2820 * It uses vm_ops->map_pages() to map the pages, which skips the page if it's
2821 * not ready to be mapped: not up-to-date, locked, etc.
2822 *
2823 * This function is called with the page table lock taken. In the split ptlock
2824 * case the page table lock only protects only those entries which belong to
2825 * the page table corresponding to the fault address.
2826 *
2827 * This function doesn't cross the VMA boundaries, in order to call map_pages()
2828 * only once.
2829 *
2830 * fault_around_pages() defines how many pages we'll try to map.
2831 * do_fault_around() expects it to return a power of two less than or equal to
2832 * PTRS_PER_PTE.
2833 *
2834 * The virtual address of the area that we map is naturally aligned to the
2835 * fault_around_pages() value (and therefore to page order). This way it's
2836 * easier to guarantee that we don't cross page table boundaries.
2837 */
8c6e50b0
KS
2838static void do_fault_around(struct vm_area_struct *vma, unsigned long address,
2839 pte_t *pte, pgoff_t pgoff, unsigned int flags)
2840{
aecd6f44 2841 unsigned long start_addr, nr_pages, mask;
8c6e50b0
KS
2842 pgoff_t max_pgoff;
2843 struct vm_fault vmf;
2844 int off;
2845
aecd6f44
KS
2846 nr_pages = ACCESS_ONCE(fault_around_bytes) >> PAGE_SHIFT;
2847 mask = ~(nr_pages * PAGE_SIZE - 1) & PAGE_MASK;
2848
2849 start_addr = max(address & mask, vma->vm_start);
8c6e50b0
KS
2850 off = ((address - start_addr) >> PAGE_SHIFT) & (PTRS_PER_PTE - 1);
2851 pte -= off;
2852 pgoff -= off;
2853
2854 /*
2855 * max_pgoff is either end of page table or end of vma
850e9c69 2856 * or fault_around_pages() from pgoff, depending what is nearest.
8c6e50b0
KS
2857 */
2858 max_pgoff = pgoff - ((start_addr >> PAGE_SHIFT) & (PTRS_PER_PTE - 1)) +
2859 PTRS_PER_PTE - 1;
2860 max_pgoff = min3(max_pgoff, vma_pages(vma) + vma->vm_pgoff - 1,
aecd6f44 2861 pgoff + nr_pages - 1);
8c6e50b0
KS
2862
2863 /* Check if it makes any sense to call ->map_pages */
2864 while (!pte_none(*pte)) {
2865 if (++pgoff > max_pgoff)
2866 return;
2867 start_addr += PAGE_SIZE;
2868 if (start_addr >= vma->vm_end)
2869 return;
2870 pte++;
2871 }
2872
2873 vmf.virtual_address = (void __user *) start_addr;
2874 vmf.pte = pte;
2875 vmf.pgoff = pgoff;
2876 vmf.max_pgoff = max_pgoff;
2877 vmf.flags = flags;
2878 vma->vm_ops->map_pages(vma, &vmf);
2879}
2880
e655fb29
KS
2881static int do_read_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2882 unsigned long address, pmd_t *pmd,
2883 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2884{
2885 struct page *fault_page;
2886 spinlock_t *ptl;
3bb97794 2887 pte_t *pte;
8c6e50b0
KS
2888 int ret = 0;
2889
2890 /*
2891 * Let's call ->map_pages() first and use ->fault() as fallback
2892 * if page by the offset is not ready to be mapped (cold cache or
2893 * something).
2894 */
c118678b 2895 if (vma->vm_ops->map_pages && !(flags & FAULT_FLAG_NONLINEAR) &&
aecd6f44 2896 fault_around_bytes >> PAGE_SHIFT > 1) {
8c6e50b0
KS
2897 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2898 do_fault_around(vma, address, pte, pgoff, flags);
2899 if (!pte_same(*pte, orig_pte))
2900 goto unlock_out;
2901 pte_unmap_unlock(pte, ptl);
2902 }
e655fb29
KS
2903
2904 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2905 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2906 return ret;
2907
2908 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2909 if (unlikely(!pte_same(*pte, orig_pte))) {
2910 pte_unmap_unlock(pte, ptl);
2911 unlock_page(fault_page);
2912 page_cache_release(fault_page);
2913 return ret;
2914 }
3bb97794 2915 do_set_pte(vma, address, fault_page, pte, false, false);
e655fb29 2916 unlock_page(fault_page);
8c6e50b0
KS
2917unlock_out:
2918 pte_unmap_unlock(pte, ptl);
e655fb29
KS
2919 return ret;
2920}
2921
ec47c3b9
KS
2922static int do_cow_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2923 unsigned long address, pmd_t *pmd,
2924 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
2925{
2926 struct page *fault_page, *new_page;
00501b53 2927 struct mem_cgroup *memcg;
ec47c3b9 2928 spinlock_t *ptl;
3bb97794 2929 pte_t *pte;
ec47c3b9
KS
2930 int ret;
2931
2932 if (unlikely(anon_vma_prepare(vma)))
2933 return VM_FAULT_OOM;
2934
2935 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
2936 if (!new_page)
2937 return VM_FAULT_OOM;
2938
00501b53 2939 if (mem_cgroup_try_charge(new_page, mm, GFP_KERNEL, &memcg)) {
ec47c3b9
KS
2940 page_cache_release(new_page);
2941 return VM_FAULT_OOM;
2942 }
2943
2944 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2945 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
2946 goto uncharge_out;
2947
2948 copy_user_highpage(new_page, fault_page, address, vma);
2949 __SetPageUptodate(new_page);
2950
2951 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
2952 if (unlikely(!pte_same(*pte, orig_pte))) {
2953 pte_unmap_unlock(pte, ptl);
2954 unlock_page(fault_page);
2955 page_cache_release(fault_page);
2956 goto uncharge_out;
2957 }
3bb97794 2958 do_set_pte(vma, address, new_page, pte, true, true);
00501b53
JW
2959 mem_cgroup_commit_charge(new_page, memcg, false);
2960 lru_cache_add_active_or_unevictable(new_page, vma);
ec47c3b9
KS
2961 pte_unmap_unlock(pte, ptl);
2962 unlock_page(fault_page);
2963 page_cache_release(fault_page);
2964 return ret;
2965uncharge_out:
00501b53 2966 mem_cgroup_cancel_charge(new_page, memcg);
ec47c3b9
KS
2967 page_cache_release(new_page);
2968 return ret;
2969}
2970
f0c6d4d2 2971static int do_shared_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2972 unsigned long address, pmd_t *pmd,
54cb8821 2973 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2974{
f0c6d4d2
KS
2975 struct page *fault_page;
2976 struct address_space *mapping;
8f4e2101 2977 spinlock_t *ptl;
3bb97794 2978 pte_t *pte;
f0c6d4d2 2979 int dirtied = 0;
f0c6d4d2 2980 int ret, tmp;
1d65f86d 2981
7eae74af
KS
2982 ret = __do_fault(vma, address, pgoff, flags, &fault_page);
2983 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE | VM_FAULT_RETRY)))
f0c6d4d2 2984 return ret;
1da177e4
LT
2985
2986 /*
f0c6d4d2
KS
2987 * Check if the backing address space wants to know that the page is
2988 * about to become writable
1da177e4 2989 */
fb09a464
KS
2990 if (vma->vm_ops->page_mkwrite) {
2991 unlock_page(fault_page);
2992 tmp = do_page_mkwrite(vma, fault_page, address);
2993 if (unlikely(!tmp ||
2994 (tmp & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))) {
f0c6d4d2 2995 page_cache_release(fault_page);
fb09a464 2996 return tmp;
4294621f 2997 }
fb09a464
KS
2998 }
2999
f0c6d4d2
KS
3000 pte = pte_offset_map_lock(mm, pmd, address, &ptl);
3001 if (unlikely(!pte_same(*pte, orig_pte))) {
3002 pte_unmap_unlock(pte, ptl);
3003 unlock_page(fault_page);
3004 page_cache_release(fault_page);
3005 return ret;
1da177e4 3006 }
3bb97794 3007 do_set_pte(vma, address, fault_page, pte, true, false);
f0c6d4d2 3008 pte_unmap_unlock(pte, ptl);
b827e496 3009
f0c6d4d2
KS
3010 if (set_page_dirty(fault_page))
3011 dirtied = 1;
3012 mapping = fault_page->mapping;
3013 unlock_page(fault_page);
3014 if ((dirtied || vma->vm_ops->page_mkwrite) && mapping) {
3015 /*
3016 * Some device drivers do not set page.mapping but still
3017 * dirty their pages
3018 */
3019 balance_dirty_pages_ratelimited(mapping);
d08b3851 3020 }
d00806b1 3021
f0c6d4d2
KS
3022 /* file_update_time outside page_lock */
3023 if (vma->vm_file && !vma->vm_ops->page_mkwrite)
3024 file_update_time(vma->vm_file);
b827e496 3025
1d65f86d 3026 return ret;
54cb8821 3027}
d00806b1 3028
9a95f3cf
PC
3029/*
3030 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3031 * but allow concurrent faults).
3032 * The mmap_sem may have been released depending on flags and our
3033 * return value. See filemap_fault() and __lock_page_or_retry().
3034 */
54cb8821
NP
3035static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3036 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3037 unsigned int flags, pte_t orig_pte)
54cb8821
NP
3038{
3039 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 3040 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821 3041
16abfa08 3042 pte_unmap(page_table);
e655fb29
KS
3043 if (!(flags & FAULT_FLAG_WRITE))
3044 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3045 orig_pte);
ec47c3b9
KS
3046 if (!(vma->vm_flags & VM_SHARED))
3047 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3048 orig_pte);
f0c6d4d2 3049 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
3050}
3051
1da177e4
LT
3052/*
3053 * Fault of a previously existing named mapping. Repopulate the pte
3054 * from the encoded file_pte if possible. This enables swappable
3055 * nonlinear vmas.
8f4e2101
HD
3056 *
3057 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3058 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3059 * We return with pte unmapped and unlocked.
3060 * The mmap_sem may have been released depending on flags and our
3061 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3062 */
d0217ac0 3063static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23 3064 unsigned long address, pte_t *page_table, pmd_t *pmd,
30c9f3a9 3065 unsigned int flags, pte_t orig_pte)
1da177e4 3066{
65500d23 3067 pgoff_t pgoff;
1da177e4 3068
30c9f3a9
LT
3069 flags |= FAULT_FLAG_NONLINEAR;
3070
4c21e2f2 3071 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 3072 return 0;
1da177e4 3073
2509ef26 3074 if (unlikely(!(vma->vm_flags & VM_NONLINEAR))) {
65500d23
HD
3075 /*
3076 * Page table corrupted: show pte and kill process.
3077 */
3dc14741 3078 print_bad_pte(vma, address, orig_pte, NULL);
d99be1a8 3079 return VM_FAULT_SIGBUS;
65500d23 3080 }
65500d23
HD
3081
3082 pgoff = pte_to_pgoff(orig_pte);
e655fb29
KS
3083 if (!(flags & FAULT_FLAG_WRITE))
3084 return do_read_fault(mm, vma, address, pmd, pgoff, flags,
3085 orig_pte);
ec47c3b9
KS
3086 if (!(vma->vm_flags & VM_SHARED))
3087 return do_cow_fault(mm, vma, address, pmd, pgoff, flags,
3088 orig_pte);
f0c6d4d2 3089 return do_shared_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
3090}
3091
b19a9939 3092static int numa_migrate_prep(struct page *page, struct vm_area_struct *vma,
04bb2f94
RR
3093 unsigned long addr, int page_nid,
3094 int *flags)
9532fec1
MG
3095{
3096 get_page(page);
3097
3098 count_vm_numa_event(NUMA_HINT_FAULTS);
04bb2f94 3099 if (page_nid == numa_node_id()) {
9532fec1 3100 count_vm_numa_event(NUMA_HINT_FAULTS_LOCAL);
04bb2f94
RR
3101 *flags |= TNF_FAULT_LOCAL;
3102 }
9532fec1
MG
3103
3104 return mpol_misplaced(page, vma, addr);
3105}
3106
b19a9939 3107static int do_numa_page(struct mm_struct *mm, struct vm_area_struct *vma,
d10e63f2
MG
3108 unsigned long addr, pte_t pte, pte_t *ptep, pmd_t *pmd)
3109{
4daae3b4 3110 struct page *page = NULL;
d10e63f2 3111 spinlock_t *ptl;
8191acbd 3112 int page_nid = -1;
90572890 3113 int last_cpupid;
cbee9f88 3114 int target_nid;
b8593bfd 3115 bool migrated = false;
6688cc05 3116 int flags = 0;
d10e63f2
MG
3117
3118 /*
3119 * The "pte" at this point cannot be used safely without
3120 * validation through pte_unmap_same(). It's of NUMA type but
3121 * the pfn may be screwed if the read is non atomic.
3122 *
3123 * ptep_modify_prot_start is not called as this is clearing
3124 * the _PAGE_NUMA bit and it is not really expected that there
3125 * would be concurrent hardware modifications to the PTE.
3126 */
3127 ptl = pte_lockptr(mm, pmd);
3128 spin_lock(ptl);
4daae3b4
MG
3129 if (unlikely(!pte_same(*ptep, pte))) {
3130 pte_unmap_unlock(ptep, ptl);
3131 goto out;
3132 }
3133
d10e63f2
MG
3134 pte = pte_mknonnuma(pte);
3135 set_pte_at(mm, addr, ptep, pte);
3136 update_mmu_cache(vma, addr, ptep);
3137
3138 page = vm_normal_page(vma, addr, pte);
3139 if (!page) {
3140 pte_unmap_unlock(ptep, ptl);
3141 return 0;
3142 }
a1a46184 3143 BUG_ON(is_zero_pfn(page_to_pfn(page)));
d10e63f2 3144
6688cc05
PZ
3145 /*
3146 * Avoid grouping on DSO/COW pages in specific and RO pages
3147 * in general, RO pages shouldn't hurt as much anyway since
3148 * they can be in shared cache state.
3149 */
3150 if (!pte_write(pte))
3151 flags |= TNF_NO_GROUP;
3152
dabe1d99
RR
3153 /*
3154 * Flag if the page is shared between multiple address spaces. This
3155 * is later used when determining whether to group tasks together
3156 */
3157 if (page_mapcount(page) > 1 && (vma->vm_flags & VM_SHARED))
3158 flags |= TNF_SHARED;
3159
90572890 3160 last_cpupid = page_cpupid_last(page);
8191acbd 3161 page_nid = page_to_nid(page);
04bb2f94 3162 target_nid = numa_migrate_prep(page, vma, addr, page_nid, &flags);
d10e63f2 3163 pte_unmap_unlock(ptep, ptl);
4daae3b4 3164 if (target_nid == -1) {
4daae3b4
MG
3165 put_page(page);
3166 goto out;
3167 }
3168
3169 /* Migrate to the requested node */
1bc115d8 3170 migrated = migrate_misplaced_page(page, vma, target_nid);
6688cc05 3171 if (migrated) {
8191acbd 3172 page_nid = target_nid;
6688cc05
PZ
3173 flags |= TNF_MIGRATED;
3174 }
4daae3b4
MG
3175
3176out:
8191acbd 3177 if (page_nid != -1)
6688cc05 3178 task_numa_fault(last_cpupid, page_nid, 1, flags);
d10e63f2
MG
3179 return 0;
3180}
3181
1da177e4
LT
3182/*
3183 * These routines also need to handle stuff like marking pages dirty
3184 * and/or accessed for architectures that don't do it in hardware (most
3185 * RISC architectures). The early dirtying is also good on the i386.
3186 *
3187 * There is also a hook called "update_mmu_cache()" that architectures
3188 * with external mmu caches can use to update those (ie the Sparc or
3189 * PowerPC hashed page tables that act as extended TLBs).
3190 *
c74df32c
HD
3191 * We enter with non-exclusive mmap_sem (to exclude vma changes,
3192 * but allow concurrent faults), and pte mapped but not yet locked.
9a95f3cf
PC
3193 * We return with pte unmapped and unlocked.
3194 *
3195 * The mmap_sem may have been released depending on flags and our
3196 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3197 */
c0292554 3198static int handle_pte_fault(struct mm_struct *mm,
71e3aac0
AA
3199 struct vm_area_struct *vma, unsigned long address,
3200 pte_t *pte, pmd_t *pmd, unsigned int flags)
1da177e4
LT
3201{
3202 pte_t entry;
8f4e2101 3203 spinlock_t *ptl;
1da177e4 3204
c0d73261 3205 entry = ACCESS_ONCE(*pte);
1da177e4 3206 if (!pte_present(entry)) {
65500d23 3207 if (pte_none(entry)) {
f4b81804 3208 if (vma->vm_ops) {
3c18ddd1 3209 if (likely(vma->vm_ops->fault))
54cb8821 3210 return do_linear_fault(mm, vma, address,
30c9f3a9 3211 pte, pmd, flags, entry);
f4b81804
JS
3212 }
3213 return do_anonymous_page(mm, vma, address,
30c9f3a9 3214 pte, pmd, flags);
65500d23 3215 }
1da177e4 3216 if (pte_file(entry))
d0217ac0 3217 return do_nonlinear_fault(mm, vma, address,
30c9f3a9 3218 pte, pmd, flags, entry);
65500d23 3219 return do_swap_page(mm, vma, address,
30c9f3a9 3220 pte, pmd, flags, entry);
1da177e4
LT
3221 }
3222
d10e63f2
MG
3223 if (pte_numa(entry))
3224 return do_numa_page(mm, vma, address, entry, pte, pmd);
3225
4c21e2f2 3226 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
3227 spin_lock(ptl);
3228 if (unlikely(!pte_same(*pte, entry)))
3229 goto unlock;
30c9f3a9 3230 if (flags & FAULT_FLAG_WRITE) {
1da177e4 3231 if (!pte_write(entry))
8f4e2101
HD
3232 return do_wp_page(mm, vma, address,
3233 pte, pmd, ptl, entry);
1da177e4
LT
3234 entry = pte_mkdirty(entry);
3235 }
3236 entry = pte_mkyoung(entry);
30c9f3a9 3237 if (ptep_set_access_flags(vma, address, pte, entry, flags & FAULT_FLAG_WRITE)) {
4b3073e1 3238 update_mmu_cache(vma, address, pte);
1a44e149
AA
3239 } else {
3240 /*
3241 * This is needed only for protection faults but the arch code
3242 * is not yet telling us if this is a protection fault or not.
3243 * This still avoids useless tlb flushes for .text page faults
3244 * with threads.
3245 */
30c9f3a9 3246 if (flags & FAULT_FLAG_WRITE)
61c77326 3247 flush_tlb_fix_spurious_fault(vma, address);
1a44e149 3248 }
8f4e2101
HD
3249unlock:
3250 pte_unmap_unlock(pte, ptl);
83c54070 3251 return 0;
1da177e4
LT
3252}
3253
3254/*
3255 * By the time we get here, we already hold the mm semaphore
9a95f3cf
PC
3256 *
3257 * The mmap_sem may have been released depending on flags and our
3258 * return value. See filemap_fault() and __lock_page_or_retry().
1da177e4 3259 */
519e5247
JW
3260static int __handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3261 unsigned long address, unsigned int flags)
1da177e4
LT
3262{
3263 pgd_t *pgd;
3264 pud_t *pud;
3265 pmd_t *pmd;
3266 pte_t *pte;
3267
ac9b9c66 3268 if (unlikely(is_vm_hugetlb_page(vma)))
30c9f3a9 3269 return hugetlb_fault(mm, vma, address, flags);
1da177e4 3270
1da177e4 3271 pgd = pgd_offset(mm, address);
1da177e4
LT
3272 pud = pud_alloc(mm, pgd, address);
3273 if (!pud)
c74df32c 3274 return VM_FAULT_OOM;
1da177e4
LT
3275 pmd = pmd_alloc(mm, pud, address);
3276 if (!pmd)
c74df32c 3277 return VM_FAULT_OOM;
71e3aac0 3278 if (pmd_none(*pmd) && transparent_hugepage_enabled(vma)) {
c0292554 3279 int ret = VM_FAULT_FALLBACK;
71e3aac0 3280 if (!vma->vm_ops)
c0292554
KS
3281 ret = do_huge_pmd_anonymous_page(mm, vma, address,
3282 pmd, flags);
3283 if (!(ret & VM_FAULT_FALLBACK))
3284 return ret;
71e3aac0
AA
3285 } else {
3286 pmd_t orig_pmd = *pmd;
1f1d06c3
DR
3287 int ret;
3288
71e3aac0
AA
3289 barrier();
3290 if (pmd_trans_huge(orig_pmd)) {
a1dd450b
WD
3291 unsigned int dirty = flags & FAULT_FLAG_WRITE;
3292
e53289c0
LT
3293 /*
3294 * If the pmd is splitting, return and retry the
3295 * the fault. Alternative: wait until the split
3296 * is done, and goto retry.
3297 */
3298 if (pmd_trans_splitting(orig_pmd))
3299 return 0;
3300
3d59eebc 3301 if (pmd_numa(orig_pmd))
4daae3b4 3302 return do_huge_pmd_numa_page(mm, vma, address,
d10e63f2
MG
3303 orig_pmd, pmd);
3304
3d59eebc 3305 if (dirty && !pmd_write(orig_pmd)) {
1f1d06c3
DR
3306 ret = do_huge_pmd_wp_page(mm, vma, address, pmd,
3307 orig_pmd);
9845cbbd
KS
3308 if (!(ret & VM_FAULT_FALLBACK))
3309 return ret;
a1dd450b
WD
3310 } else {
3311 huge_pmd_set_accessed(mm, vma, address, pmd,
3312 orig_pmd, dirty);
9845cbbd 3313 return 0;
1f1d06c3 3314 }
71e3aac0
AA
3315 }
3316 }
3317
3318 /*
3319 * Use __pte_alloc instead of pte_alloc_map, because we can't
3320 * run pte_offset_map on the pmd, if an huge pmd could
3321 * materialize from under us from a different thread.
3322 */
4fd01770
MG
3323 if (unlikely(pmd_none(*pmd)) &&
3324 unlikely(__pte_alloc(mm, vma, pmd, address)))
c74df32c 3325 return VM_FAULT_OOM;
71e3aac0
AA
3326 /* if an huge pmd materialized from under us just retry later */
3327 if (unlikely(pmd_trans_huge(*pmd)))
3328 return 0;
3329 /*
3330 * A regular pmd is established and it can't morph into a huge pmd
3331 * from under us anymore at this point because we hold the mmap_sem
3332 * read mode and khugepaged takes it in write mode. So now it's
3333 * safe to run pte_offset_map().
3334 */
3335 pte = pte_offset_map(pmd, address);
1da177e4 3336
30c9f3a9 3337 return handle_pte_fault(mm, vma, address, pte, pmd, flags);
1da177e4
LT
3338}
3339
9a95f3cf
PC
3340/*
3341 * By the time we get here, we already hold the mm semaphore
3342 *
3343 * The mmap_sem may have been released depending on flags and our
3344 * return value. See filemap_fault() and __lock_page_or_retry().
3345 */
519e5247
JW
3346int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
3347 unsigned long address, unsigned int flags)
3348{
3349 int ret;
3350
3351 __set_current_state(TASK_RUNNING);
3352
3353 count_vm_event(PGFAULT);
3354 mem_cgroup_count_vm_event(mm, PGFAULT);
3355
3356 /* do counter updates before entering really critical section. */
3357 check_sync_rss_stat(current);
3358
3359 /*
3360 * Enable the memcg OOM handling for faults triggered in user
3361 * space. Kernel faults are handled more gracefully.
3362 */
3363 if (flags & FAULT_FLAG_USER)
49426420 3364 mem_cgroup_oom_enable();
519e5247
JW
3365
3366 ret = __handle_mm_fault(mm, vma, address, flags);
3367
49426420
JW
3368 if (flags & FAULT_FLAG_USER) {
3369 mem_cgroup_oom_disable();
3370 /*
3371 * The task may have entered a memcg OOM situation but
3372 * if the allocation error was handled gracefully (no
3373 * VM_FAULT_OOM), there is no need to kill anything.
3374 * Just clean up the OOM state peacefully.
3375 */
3376 if (task_in_memcg_oom(current) && !(ret & VM_FAULT_OOM))
3377 mem_cgroup_oom_synchronize(false);
3378 }
3812c8c8 3379
519e5247
JW
3380 return ret;
3381}
3382
1da177e4
LT
3383#ifndef __PAGETABLE_PUD_FOLDED
3384/*
3385 * Allocate page upper directory.
872fec16 3386 * We've already handled the fast-path in-line.
1da177e4 3387 */
1bb3630e 3388int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 3389{
c74df32c
HD
3390 pud_t *new = pud_alloc_one(mm, address);
3391 if (!new)
1bb3630e 3392 return -ENOMEM;
1da177e4 3393
362a61ad
NP
3394 smp_wmb(); /* See comment in __pte_alloc */
3395
872fec16 3396 spin_lock(&mm->page_table_lock);
1bb3630e 3397 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 3398 pud_free(mm, new);
1bb3630e
HD
3399 else
3400 pgd_populate(mm, pgd, new);
c74df32c 3401 spin_unlock(&mm->page_table_lock);
1bb3630e 3402 return 0;
1da177e4
LT
3403}
3404#endif /* __PAGETABLE_PUD_FOLDED */
3405
3406#ifndef __PAGETABLE_PMD_FOLDED
3407/*
3408 * Allocate page middle directory.
872fec16 3409 * We've already handled the fast-path in-line.
1da177e4 3410 */
1bb3630e 3411int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 3412{
c74df32c
HD
3413 pmd_t *new = pmd_alloc_one(mm, address);
3414 if (!new)
1bb3630e 3415 return -ENOMEM;
1da177e4 3416
362a61ad
NP
3417 smp_wmb(); /* See comment in __pte_alloc */
3418
872fec16 3419 spin_lock(&mm->page_table_lock);
1da177e4 3420#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 3421 if (pud_present(*pud)) /* Another has populated it */
5e541973 3422 pmd_free(mm, new);
1bb3630e
HD
3423 else
3424 pud_populate(mm, pud, new);
1da177e4 3425#else
1bb3630e 3426 if (pgd_present(*pud)) /* Another has populated it */
5e541973 3427 pmd_free(mm, new);
1bb3630e
HD
3428 else
3429 pgd_populate(mm, pud, new);
1da177e4 3430#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 3431 spin_unlock(&mm->page_table_lock);
1bb3630e 3432 return 0;
e0f39591 3433}
1da177e4
LT
3434#endif /* __PAGETABLE_PMD_FOLDED */
3435
1b36ba81 3436static int __follow_pte(struct mm_struct *mm, unsigned long address,
f8ad0f49
JW
3437 pte_t **ptepp, spinlock_t **ptlp)
3438{
3439 pgd_t *pgd;
3440 pud_t *pud;
3441 pmd_t *pmd;
3442 pte_t *ptep;
3443
3444 pgd = pgd_offset(mm, address);
3445 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
3446 goto out;
3447
3448 pud = pud_offset(pgd, address);
3449 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
3450 goto out;
3451
3452 pmd = pmd_offset(pud, address);
f66055ab 3453 VM_BUG_ON(pmd_trans_huge(*pmd));
f8ad0f49
JW
3454 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
3455 goto out;
3456
3457 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
3458 if (pmd_huge(*pmd))
3459 goto out;
3460
3461 ptep = pte_offset_map_lock(mm, pmd, address, ptlp);
3462 if (!ptep)
3463 goto out;
3464 if (!pte_present(*ptep))
3465 goto unlock;
3466 *ptepp = ptep;
3467 return 0;
3468unlock:
3469 pte_unmap_unlock(ptep, *ptlp);
3470out:
3471 return -EINVAL;
3472}
3473
1b36ba81
NK
3474static inline int follow_pte(struct mm_struct *mm, unsigned long address,
3475 pte_t **ptepp, spinlock_t **ptlp)
3476{
3477 int res;
3478
3479 /* (void) is needed to make gcc happy */
3480 (void) __cond_lock(*ptlp,
3481 !(res = __follow_pte(mm, address, ptepp, ptlp)));
3482 return res;
3483}
3484
3b6748e2
JW
3485/**
3486 * follow_pfn - look up PFN at a user virtual address
3487 * @vma: memory mapping
3488 * @address: user virtual address
3489 * @pfn: location to store found PFN
3490 *
3491 * Only IO mappings and raw PFN mappings are allowed.
3492 *
3493 * Returns zero and the pfn at @pfn on success, -ve otherwise.
3494 */
3495int follow_pfn(struct vm_area_struct *vma, unsigned long address,
3496 unsigned long *pfn)
3497{
3498 int ret = -EINVAL;
3499 spinlock_t *ptl;
3500 pte_t *ptep;
3501
3502 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3503 return ret;
3504
3505 ret = follow_pte(vma->vm_mm, address, &ptep, &ptl);
3506 if (ret)
3507 return ret;
3508 *pfn = pte_pfn(*ptep);
3509 pte_unmap_unlock(ptep, ptl);
3510 return 0;
3511}
3512EXPORT_SYMBOL(follow_pfn);
3513
28b2ee20 3514#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 3515int follow_phys(struct vm_area_struct *vma,
3516 unsigned long address, unsigned int flags,
3517 unsigned long *prot, resource_size_t *phys)
28b2ee20 3518{
03668a4d 3519 int ret = -EINVAL;
28b2ee20
RR
3520 pte_t *ptep, pte;
3521 spinlock_t *ptl;
28b2ee20 3522
d87fe660 3523 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
3524 goto out;
28b2ee20 3525
03668a4d 3526 if (follow_pte(vma->vm_mm, address, &ptep, &ptl))
d87fe660 3527 goto out;
28b2ee20 3528 pte = *ptep;
03668a4d 3529
28b2ee20
RR
3530 if ((flags & FOLL_WRITE) && !pte_write(pte))
3531 goto unlock;
28b2ee20
RR
3532
3533 *prot = pgprot_val(pte_pgprot(pte));
03668a4d 3534 *phys = (resource_size_t)pte_pfn(pte) << PAGE_SHIFT;
28b2ee20 3535
03668a4d 3536 ret = 0;
28b2ee20
RR
3537unlock:
3538 pte_unmap_unlock(ptep, ptl);
3539out:
d87fe660 3540 return ret;
28b2ee20
RR
3541}
3542
3543int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
3544 void *buf, int len, int write)
3545{
3546 resource_size_t phys_addr;
3547 unsigned long prot = 0;
2bc7273b 3548 void __iomem *maddr;
28b2ee20
RR
3549 int offset = addr & (PAGE_SIZE-1);
3550
d87fe660 3551 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
3552 return -EINVAL;
3553
3554 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
3555 if (write)
3556 memcpy_toio(maddr + offset, buf, len);
3557 else
3558 memcpy_fromio(buf, maddr + offset, len);
3559 iounmap(maddr);
3560
3561 return len;
3562}
5a73633e 3563EXPORT_SYMBOL_GPL(generic_access_phys);
28b2ee20
RR
3564#endif
3565
0ec76a11 3566/*
206cb636
SW
3567 * Access another process' address space as given in mm. If non-NULL, use the
3568 * given task for page fault accounting.
0ec76a11 3569 */
206cb636
SW
3570static int __access_remote_vm(struct task_struct *tsk, struct mm_struct *mm,
3571 unsigned long addr, void *buf, int len, int write)
0ec76a11 3572{
0ec76a11 3573 struct vm_area_struct *vma;
0ec76a11
DH
3574 void *old_buf = buf;
3575
0ec76a11 3576 down_read(&mm->mmap_sem);
183ff22b 3577 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
3578 while (len) {
3579 int bytes, ret, offset;
3580 void *maddr;
28b2ee20 3581 struct page *page = NULL;
0ec76a11
DH
3582
3583 ret = get_user_pages(tsk, mm, addr, 1,
3584 write, 1, &page, &vma);
28b2ee20 3585 if (ret <= 0) {
dbffcd03
RR
3586#ifndef CONFIG_HAVE_IOREMAP_PROT
3587 break;
3588#else
28b2ee20
RR
3589 /*
3590 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3591 * we can access using slightly different code.
3592 */
28b2ee20 3593 vma = find_vma(mm, addr);
fe936dfc 3594 if (!vma || vma->vm_start > addr)
28b2ee20
RR
3595 break;
3596 if (vma->vm_ops && vma->vm_ops->access)
3597 ret = vma->vm_ops->access(vma, addr, buf,
3598 len, write);
3599 if (ret <= 0)
28b2ee20
RR
3600 break;
3601 bytes = ret;
dbffcd03 3602#endif
0ec76a11 3603 } else {
28b2ee20
RR
3604 bytes = len;
3605 offset = addr & (PAGE_SIZE-1);
3606 if (bytes > PAGE_SIZE-offset)
3607 bytes = PAGE_SIZE-offset;
3608
3609 maddr = kmap(page);
3610 if (write) {
3611 copy_to_user_page(vma, page, addr,
3612 maddr + offset, buf, bytes);
3613 set_page_dirty_lock(page);
3614 } else {
3615 copy_from_user_page(vma, page, addr,
3616 buf, maddr + offset, bytes);
3617 }
3618 kunmap(page);
3619 page_cache_release(page);
0ec76a11 3620 }
0ec76a11
DH
3621 len -= bytes;
3622 buf += bytes;
3623 addr += bytes;
3624 }
3625 up_read(&mm->mmap_sem);
0ec76a11
DH
3626
3627 return buf - old_buf;
3628}
03252919 3629
5ddd36b9 3630/**
ae91dbfc 3631 * access_remote_vm - access another process' address space
5ddd36b9
SW
3632 * @mm: the mm_struct of the target address space
3633 * @addr: start address to access
3634 * @buf: source or destination buffer
3635 * @len: number of bytes to transfer
3636 * @write: whether the access is a write
3637 *
3638 * The caller must hold a reference on @mm.
3639 */
3640int access_remote_vm(struct mm_struct *mm, unsigned long addr,
3641 void *buf, int len, int write)
3642{
3643 return __access_remote_vm(NULL, mm, addr, buf, len, write);
3644}
3645
206cb636
SW
3646/*
3647 * Access another process' address space.
3648 * Source/target buffer must be kernel space,
3649 * Do not walk the page table directly, use get_user_pages
3650 */
3651int access_process_vm(struct task_struct *tsk, unsigned long addr,
3652 void *buf, int len, int write)
3653{
3654 struct mm_struct *mm;
3655 int ret;
3656
3657 mm = get_task_mm(tsk);
3658 if (!mm)
3659 return 0;
3660
3661 ret = __access_remote_vm(tsk, mm, addr, buf, len, write);
3662 mmput(mm);
3663
3664 return ret;
3665}
3666
03252919
AK
3667/*
3668 * Print the name of a VMA.
3669 */
3670void print_vma_addr(char *prefix, unsigned long ip)
3671{
3672 struct mm_struct *mm = current->mm;
3673 struct vm_area_struct *vma;
3674
e8bff74a
IM
3675 /*
3676 * Do not print if we are in atomic
3677 * contexts (in exception stacks, etc.):
3678 */
3679 if (preempt_count())
3680 return;
3681
03252919
AK
3682 down_read(&mm->mmap_sem);
3683 vma = find_vma(mm, ip);
3684 if (vma && vma->vm_file) {
3685 struct file *f = vma->vm_file;
3686 char *buf = (char *)__get_free_page(GFP_KERNEL);
3687 if (buf) {
2fbc57c5 3688 char *p;
03252919 3689
cf28b486 3690 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3691 if (IS_ERR(p))
3692 p = "?";
2fbc57c5 3693 printk("%s%s[%lx+%lx]", prefix, kbasename(p),
03252919
AK
3694 vma->vm_start,
3695 vma->vm_end - vma->vm_start);
3696 free_page((unsigned long)buf);
3697 }
3698 }
51a07e50 3699 up_read(&mm->mmap_sem);
03252919 3700}
3ee1afa3 3701
662bbcb2 3702#if defined(CONFIG_PROVE_LOCKING) || defined(CONFIG_DEBUG_ATOMIC_SLEEP)
3ee1afa3
NP
3703void might_fault(void)
3704{
95156f00
PZ
3705 /*
3706 * Some code (nfs/sunrpc) uses socket ops on kernel memory while
3707 * holding the mmap_sem, this is safe because kernel memory doesn't
3708 * get paged out, therefore we'll never actually fault, and the
3709 * below annotations will generate false positives.
3710 */
3711 if (segment_eq(get_fs(), KERNEL_DS))
3712 return;
3713
3ee1afa3
NP
3714 /*
3715 * it would be nicer only to annotate paths which are not under
3716 * pagefault_disable, however that requires a larger audit and
3717 * providing helpers like get_user_atomic.
3718 */
662bbcb2
MT
3719 if (in_atomic())
3720 return;
3721
3722 __might_sleep(__FILE__, __LINE__, 0);
3723
3724 if (current->mm)
3ee1afa3
NP
3725 might_lock_read(&current->mm->mmap_sem);
3726}
3727EXPORT_SYMBOL(might_fault);
3728#endif
47ad8475
AA
3729
3730#if defined(CONFIG_TRANSPARENT_HUGEPAGE) || defined(CONFIG_HUGETLBFS)
3731static void clear_gigantic_page(struct page *page,
3732 unsigned long addr,
3733 unsigned int pages_per_huge_page)
3734{
3735 int i;
3736 struct page *p = page;
3737
3738 might_sleep();
3739 for (i = 0; i < pages_per_huge_page;
3740 i++, p = mem_map_next(p, page, i)) {
3741 cond_resched();
3742 clear_user_highpage(p, addr + i * PAGE_SIZE);
3743 }
3744}
3745void clear_huge_page(struct page *page,
3746 unsigned long addr, unsigned int pages_per_huge_page)
3747{
3748 int i;
3749
3750 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3751 clear_gigantic_page(page, addr, pages_per_huge_page);
3752 return;
3753 }
3754
3755 might_sleep();
3756 for (i = 0; i < pages_per_huge_page; i++) {
3757 cond_resched();
3758 clear_user_highpage(page + i, addr + i * PAGE_SIZE);
3759 }
3760}
3761
3762static void copy_user_gigantic_page(struct page *dst, struct page *src,
3763 unsigned long addr,
3764 struct vm_area_struct *vma,
3765 unsigned int pages_per_huge_page)
3766{
3767 int i;
3768 struct page *dst_base = dst;
3769 struct page *src_base = src;
3770
3771 for (i = 0; i < pages_per_huge_page; ) {
3772 cond_resched();
3773 copy_user_highpage(dst, src, addr + i*PAGE_SIZE, vma);
3774
3775 i++;
3776 dst = mem_map_next(dst, dst_base, i);
3777 src = mem_map_next(src, src_base, i);
3778 }
3779}
3780
3781void copy_user_huge_page(struct page *dst, struct page *src,
3782 unsigned long addr, struct vm_area_struct *vma,
3783 unsigned int pages_per_huge_page)
3784{
3785 int i;
3786
3787 if (unlikely(pages_per_huge_page > MAX_ORDER_NR_PAGES)) {
3788 copy_user_gigantic_page(dst, src, addr, vma,
3789 pages_per_huge_page);
3790 return;
3791 }
3792
3793 might_sleep();
3794 for (i = 0; i < pages_per_huge_page; i++) {
3795 cond_resched();
3796 copy_user_highpage(dst + i, src + i, addr + i*PAGE_SIZE, vma);
3797 }
3798}
3799#endif /* CONFIG_TRANSPARENT_HUGEPAGE || CONFIG_HUGETLBFS */
49076ec2 3800
40b64acd 3801#if USE_SPLIT_PTE_PTLOCKS && ALLOC_SPLIT_PTLOCKS
b35f1819
KS
3802
3803static struct kmem_cache *page_ptl_cachep;
3804
3805void __init ptlock_cache_init(void)
3806{
3807 page_ptl_cachep = kmem_cache_create("page->ptl", sizeof(spinlock_t), 0,
3808 SLAB_PANIC, NULL);
3809}
3810
539edb58 3811bool ptlock_alloc(struct page *page)
49076ec2
KS
3812{
3813 spinlock_t *ptl;
3814
b35f1819 3815 ptl = kmem_cache_alloc(page_ptl_cachep, GFP_KERNEL);
49076ec2
KS
3816 if (!ptl)
3817 return false;
539edb58 3818 page->ptl = ptl;
49076ec2
KS
3819 return true;
3820}
3821
539edb58 3822void ptlock_free(struct page *page)
49076ec2 3823{
b35f1819 3824 kmem_cache_free(page_ptl_cachep, page->ptl);
49076ec2
KS
3825}
3826#endif
This page took 1.114912 seconds and 5 git commands to generate.