mm: vmalloc make lazy unmapping configurable
[deliverable/linux.git] / mm / memory.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/memory.c
3 *
4 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
5 */
6
7/*
8 * demand-loading started 01.12.91 - seems it is high on the list of
9 * things wanted, and it should be easy to implement. - Linus
10 */
11
12/*
13 * Ok, demand-loading was easy, shared pages a little bit tricker. Shared
14 * pages started 02.12.91, seems to work. - Linus.
15 *
16 * Tested sharing by executing about 30 /bin/sh: under the old kernel it
17 * would have taken more than the 6M I have free, but it worked well as
18 * far as I could see.
19 *
20 * Also corrected some "invalidate()"s - I wasn't doing enough of them.
21 */
22
23/*
24 * Real VM (paging to/from disk) started 18.12.91. Much more work and
25 * thought has to go into this. Oh, well..
26 * 19.12.91 - works, somewhat. Sometimes I get faults, don't know why.
27 * Found it. Everything seems to work now.
28 * 20.12.91 - Ok, making the swap-device changeable like the root.
29 */
30
31/*
32 * 05.04.94 - Multi-page memory management added for v1.1.
33 * Idea by Alex Bligh (alex@cconcepts.co.uk)
34 *
35 * 16.07.99 - Support of BIGMEM added by Gerhard Wichert, Siemens AG
36 * (Gerhard.Wichert@pdb.siemens.de)
37 *
38 * Aug/Sep 2004 Changed to four level page tables (Andi Kleen)
39 */
40
41#include <linux/kernel_stat.h>
42#include <linux/mm.h>
43#include <linux/hugetlb.h>
44#include <linux/mman.h>
45#include <linux/swap.h>
46#include <linux/highmem.h>
47#include <linux/pagemap.h>
48#include <linux/rmap.h>
49#include <linux/module.h>
0ff92245 50#include <linux/delayacct.h>
1da177e4 51#include <linux/init.h>
edc79b2a 52#include <linux/writeback.h>
8a9f3ccd 53#include <linux/memcontrol.h>
cddb8a5c 54#include <linux/mmu_notifier.h>
1da177e4
LT
55
56#include <asm/pgalloc.h>
57#include <asm/uaccess.h>
58#include <asm/tlb.h>
59#include <asm/tlbflush.h>
60#include <asm/pgtable.h>
61
62#include <linux/swapops.h>
63#include <linux/elf.h>
64
42b77728
JB
65#include "internal.h"
66
d41dee36 67#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
68/* use the per-pgdat data instead for discontigmem - mbligh */
69unsigned long max_mapnr;
70struct page *mem_map;
71
72EXPORT_SYMBOL(max_mapnr);
73EXPORT_SYMBOL(mem_map);
74#endif
75
76unsigned long num_physpages;
77/*
78 * A number of key systems in x86 including ioremap() rely on the assumption
79 * that high_memory defines the upper bound on direct map memory, then end
80 * of ZONE_NORMAL. Under CONFIG_DISCONTIG this means that max_low_pfn and
81 * highstart_pfn must be the same; there must be no gap between ZONE_NORMAL
82 * and ZONE_HIGHMEM.
83 */
84void * high_memory;
1da177e4
LT
85
86EXPORT_SYMBOL(num_physpages);
87EXPORT_SYMBOL(high_memory);
1da177e4 88
32a93233
IM
89/*
90 * Randomize the address space (stacks, mmaps, brk, etc.).
91 *
92 * ( When CONFIG_COMPAT_BRK=y we exclude brk from randomization,
93 * as ancient (libc5 based) binaries can segfault. )
94 */
95int randomize_va_space __read_mostly =
96#ifdef CONFIG_COMPAT_BRK
97 1;
98#else
99 2;
100#endif
a62eaf15
AK
101
102static int __init disable_randmaps(char *s)
103{
104 randomize_va_space = 0;
9b41046c 105 return 1;
a62eaf15
AK
106}
107__setup("norandmaps", disable_randmaps);
108
109
1da177e4
LT
110/*
111 * If a p?d_bad entry is found while walking page tables, report
112 * the error, before resetting entry to p?d_none. Usually (but
113 * very seldom) called out from the p?d_none_or_clear_bad macros.
114 */
115
116void pgd_clear_bad(pgd_t *pgd)
117{
118 pgd_ERROR(*pgd);
119 pgd_clear(pgd);
120}
121
122void pud_clear_bad(pud_t *pud)
123{
124 pud_ERROR(*pud);
125 pud_clear(pud);
126}
127
128void pmd_clear_bad(pmd_t *pmd)
129{
130 pmd_ERROR(*pmd);
131 pmd_clear(pmd);
132}
133
134/*
135 * Note: this doesn't free the actual pages themselves. That
136 * has been handled earlier when unmapping all the memory regions.
137 */
e0da382c 138static void free_pte_range(struct mmu_gather *tlb, pmd_t *pmd)
1da177e4 139{
2f569afd 140 pgtable_t token = pmd_pgtable(*pmd);
e0da382c 141 pmd_clear(pmd);
2f569afd 142 pte_free_tlb(tlb, token);
e0da382c 143 tlb->mm->nr_ptes--;
1da177e4
LT
144}
145
e0da382c
HD
146static inline void free_pmd_range(struct mmu_gather *tlb, pud_t *pud,
147 unsigned long addr, unsigned long end,
148 unsigned long floor, unsigned long ceiling)
1da177e4
LT
149{
150 pmd_t *pmd;
151 unsigned long next;
e0da382c 152 unsigned long start;
1da177e4 153
e0da382c 154 start = addr;
1da177e4 155 pmd = pmd_offset(pud, addr);
1da177e4
LT
156 do {
157 next = pmd_addr_end(addr, end);
158 if (pmd_none_or_clear_bad(pmd))
159 continue;
e0da382c 160 free_pte_range(tlb, pmd);
1da177e4
LT
161 } while (pmd++, addr = next, addr != end);
162
e0da382c
HD
163 start &= PUD_MASK;
164 if (start < floor)
165 return;
166 if (ceiling) {
167 ceiling &= PUD_MASK;
168 if (!ceiling)
169 return;
1da177e4 170 }
e0da382c
HD
171 if (end - 1 > ceiling - 1)
172 return;
173
174 pmd = pmd_offset(pud, start);
175 pud_clear(pud);
176 pmd_free_tlb(tlb, pmd);
1da177e4
LT
177}
178
e0da382c
HD
179static inline void free_pud_range(struct mmu_gather *tlb, pgd_t *pgd,
180 unsigned long addr, unsigned long end,
181 unsigned long floor, unsigned long ceiling)
1da177e4
LT
182{
183 pud_t *pud;
184 unsigned long next;
e0da382c 185 unsigned long start;
1da177e4 186
e0da382c 187 start = addr;
1da177e4 188 pud = pud_offset(pgd, addr);
1da177e4
LT
189 do {
190 next = pud_addr_end(addr, end);
191 if (pud_none_or_clear_bad(pud))
192 continue;
e0da382c 193 free_pmd_range(tlb, pud, addr, next, floor, ceiling);
1da177e4
LT
194 } while (pud++, addr = next, addr != end);
195
e0da382c
HD
196 start &= PGDIR_MASK;
197 if (start < floor)
198 return;
199 if (ceiling) {
200 ceiling &= PGDIR_MASK;
201 if (!ceiling)
202 return;
1da177e4 203 }
e0da382c
HD
204 if (end - 1 > ceiling - 1)
205 return;
206
207 pud = pud_offset(pgd, start);
208 pgd_clear(pgd);
209 pud_free_tlb(tlb, pud);
1da177e4
LT
210}
211
212/*
e0da382c
HD
213 * This function frees user-level page tables of a process.
214 *
1da177e4
LT
215 * Must be called with pagetable lock held.
216 */
42b77728 217void free_pgd_range(struct mmu_gather *tlb,
e0da382c
HD
218 unsigned long addr, unsigned long end,
219 unsigned long floor, unsigned long ceiling)
1da177e4
LT
220{
221 pgd_t *pgd;
222 unsigned long next;
e0da382c
HD
223 unsigned long start;
224
225 /*
226 * The next few lines have given us lots of grief...
227 *
228 * Why are we testing PMD* at this top level? Because often
229 * there will be no work to do at all, and we'd prefer not to
230 * go all the way down to the bottom just to discover that.
231 *
232 * Why all these "- 1"s? Because 0 represents both the bottom
233 * of the address space and the top of it (using -1 for the
234 * top wouldn't help much: the masks would do the wrong thing).
235 * The rule is that addr 0 and floor 0 refer to the bottom of
236 * the address space, but end 0 and ceiling 0 refer to the top
237 * Comparisons need to use "end - 1" and "ceiling - 1" (though
238 * that end 0 case should be mythical).
239 *
240 * Wherever addr is brought up or ceiling brought down, we must
241 * be careful to reject "the opposite 0" before it confuses the
242 * subsequent tests. But what about where end is brought down
243 * by PMD_SIZE below? no, end can't go down to 0 there.
244 *
245 * Whereas we round start (addr) and ceiling down, by different
246 * masks at different levels, in order to test whether a table
247 * now has no other vmas using it, so can be freed, we don't
248 * bother to round floor or end up - the tests don't need that.
249 */
1da177e4 250
e0da382c
HD
251 addr &= PMD_MASK;
252 if (addr < floor) {
253 addr += PMD_SIZE;
254 if (!addr)
255 return;
256 }
257 if (ceiling) {
258 ceiling &= PMD_MASK;
259 if (!ceiling)
260 return;
261 }
262 if (end - 1 > ceiling - 1)
263 end -= PMD_SIZE;
264 if (addr > end - 1)
265 return;
266
267 start = addr;
42b77728 268 pgd = pgd_offset(tlb->mm, addr);
1da177e4
LT
269 do {
270 next = pgd_addr_end(addr, end);
271 if (pgd_none_or_clear_bad(pgd))
272 continue;
42b77728 273 free_pud_range(tlb, pgd, addr, next, floor, ceiling);
1da177e4 274 } while (pgd++, addr = next, addr != end);
e0da382c
HD
275}
276
42b77728 277void free_pgtables(struct mmu_gather *tlb, struct vm_area_struct *vma,
3bf5ee95 278 unsigned long floor, unsigned long ceiling)
e0da382c
HD
279{
280 while (vma) {
281 struct vm_area_struct *next = vma->vm_next;
282 unsigned long addr = vma->vm_start;
283
8f4f8c16
HD
284 /*
285 * Hide vma from rmap and vmtruncate before freeing pgtables
286 */
287 anon_vma_unlink(vma);
288 unlink_file_vma(vma);
289
9da61aef 290 if (is_vm_hugetlb_page(vma)) {
3bf5ee95 291 hugetlb_free_pgd_range(tlb, addr, vma->vm_end,
e0da382c 292 floor, next? next->vm_start: ceiling);
3bf5ee95
HD
293 } else {
294 /*
295 * Optimization: gather nearby vmas into one call down
296 */
297 while (next && next->vm_start <= vma->vm_end + PMD_SIZE
4866920b 298 && !is_vm_hugetlb_page(next)) {
3bf5ee95
HD
299 vma = next;
300 next = vma->vm_next;
8f4f8c16
HD
301 anon_vma_unlink(vma);
302 unlink_file_vma(vma);
3bf5ee95
HD
303 }
304 free_pgd_range(tlb, addr, vma->vm_end,
305 floor, next? next->vm_start: ceiling);
306 }
e0da382c
HD
307 vma = next;
308 }
1da177e4
LT
309}
310
1bb3630e 311int __pte_alloc(struct mm_struct *mm, pmd_t *pmd, unsigned long address)
1da177e4 312{
2f569afd 313 pgtable_t new = pte_alloc_one(mm, address);
1bb3630e
HD
314 if (!new)
315 return -ENOMEM;
316
362a61ad
NP
317 /*
318 * Ensure all pte setup (eg. pte page lock and page clearing) are
319 * visible before the pte is made visible to other CPUs by being
320 * put into page tables.
321 *
322 * The other side of the story is the pointer chasing in the page
323 * table walking code (when walking the page table without locking;
324 * ie. most of the time). Fortunately, these data accesses consist
325 * of a chain of data-dependent loads, meaning most CPUs (alpha
326 * being the notable exception) will already guarantee loads are
327 * seen in-order. See the alpha page table accessors for the
328 * smp_read_barrier_depends() barriers in page table walking code.
329 */
330 smp_wmb(); /* Could be smp_wmb__xxx(before|after)_spin_lock */
331
c74df32c 332 spin_lock(&mm->page_table_lock);
2f569afd 333 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1da177e4 334 mm->nr_ptes++;
1da177e4 335 pmd_populate(mm, pmd, new);
2f569afd 336 new = NULL;
1da177e4 337 }
c74df32c 338 spin_unlock(&mm->page_table_lock);
2f569afd
MS
339 if (new)
340 pte_free(mm, new);
1bb3630e 341 return 0;
1da177e4
LT
342}
343
1bb3630e 344int __pte_alloc_kernel(pmd_t *pmd, unsigned long address)
1da177e4 345{
1bb3630e
HD
346 pte_t *new = pte_alloc_one_kernel(&init_mm, address);
347 if (!new)
348 return -ENOMEM;
349
362a61ad
NP
350 smp_wmb(); /* See comment in __pte_alloc */
351
1bb3630e 352 spin_lock(&init_mm.page_table_lock);
2f569afd 353 if (!pmd_present(*pmd)) { /* Has another populated it ? */
1bb3630e 354 pmd_populate_kernel(&init_mm, pmd, new);
2f569afd
MS
355 new = NULL;
356 }
1bb3630e 357 spin_unlock(&init_mm.page_table_lock);
2f569afd
MS
358 if (new)
359 pte_free_kernel(&init_mm, new);
1bb3630e 360 return 0;
1da177e4
LT
361}
362
ae859762
HD
363static inline void add_mm_rss(struct mm_struct *mm, int file_rss, int anon_rss)
364{
365 if (file_rss)
366 add_mm_counter(mm, file_rss, file_rss);
367 if (anon_rss)
368 add_mm_counter(mm, anon_rss, anon_rss);
369}
370
b5810039 371/*
6aab341e
LT
372 * This function is called to print an error when a bad pte
373 * is found. For example, we might have a PFN-mapped pte in
374 * a region that doesn't allow it.
b5810039
NP
375 *
376 * The calling function must still handle the error.
377 */
15f59ada
AB
378static void print_bad_pte(struct vm_area_struct *vma, pte_t pte,
379 unsigned long vaddr)
b5810039
NP
380{
381 printk(KERN_ERR "Bad pte = %08llx, process = %s, "
382 "vm_flags = %lx, vaddr = %lx\n",
383 (long long)pte_val(pte),
384 (vma->vm_mm == current->mm ? current->comm : "???"),
385 vma->vm_flags, vaddr);
386 dump_stack();
387}
388
67121172
LT
389static inline int is_cow_mapping(unsigned int flags)
390{
391 return (flags & (VM_SHARED | VM_MAYWRITE)) == VM_MAYWRITE;
392}
393
ee498ed7 394/*
7e675137 395 * vm_normal_page -- This function gets the "struct page" associated with a pte.
6aab341e 396 *
7e675137
NP
397 * "Special" mappings do not wish to be associated with a "struct page" (either
398 * it doesn't exist, or it exists but they don't want to touch it). In this
399 * case, NULL is returned here. "Normal" mappings do have a struct page.
b379d790 400 *
7e675137
NP
401 * There are 2 broad cases. Firstly, an architecture may define a pte_special()
402 * pte bit, in which case this function is trivial. Secondly, an architecture
403 * may not have a spare pte bit, which requires a more complicated scheme,
404 * described below.
405 *
406 * A raw VM_PFNMAP mapping (ie. one that is not COWed) is always considered a
407 * special mapping (even if there are underlying and valid "struct pages").
408 * COWed pages of a VM_PFNMAP are always normal.
6aab341e 409 *
b379d790
JH
410 * The way we recognize COWed pages within VM_PFNMAP mappings is through the
411 * rules set up by "remap_pfn_range()": the vma will have the VM_PFNMAP bit
7e675137
NP
412 * set, and the vm_pgoff will point to the first PFN mapped: thus every special
413 * mapping will always honor the rule
6aab341e
LT
414 *
415 * pfn_of_page == vma->vm_pgoff + ((addr - vma->vm_start) >> PAGE_SHIFT)
416 *
7e675137
NP
417 * And for normal mappings this is false.
418 *
419 * This restricts such mappings to be a linear translation from virtual address
420 * to pfn. To get around this restriction, we allow arbitrary mappings so long
421 * as the vma is not a COW mapping; in that case, we know that all ptes are
422 * special (because none can have been COWed).
b379d790 423 *
b379d790 424 *
7e675137 425 * In order to support COW of arbitrary special mappings, we have VM_MIXEDMAP.
b379d790
JH
426 *
427 * VM_MIXEDMAP mappings can likewise contain memory with or without "struct
428 * page" backing, however the difference is that _all_ pages with a struct
429 * page (that is, those where pfn_valid is true) are refcounted and considered
430 * normal pages by the VM. The disadvantage is that pages are refcounted
431 * (which can be slower and simply not an option for some PFNMAP users). The
432 * advantage is that we don't have to follow the strict linearity rule of
433 * PFNMAP mappings in order to support COWable mappings.
434 *
ee498ed7 435 */
7e675137
NP
436#ifdef __HAVE_ARCH_PTE_SPECIAL
437# define HAVE_PTE_SPECIAL 1
438#else
439# define HAVE_PTE_SPECIAL 0
440#endif
441struct page *vm_normal_page(struct vm_area_struct *vma, unsigned long addr,
442 pte_t pte)
ee498ed7 443{
7e675137
NP
444 unsigned long pfn;
445
446 if (HAVE_PTE_SPECIAL) {
447 if (likely(!pte_special(pte))) {
448 VM_BUG_ON(!pfn_valid(pte_pfn(pte)));
449 return pte_page(pte);
450 }
451 VM_BUG_ON(!(vma->vm_flags & (VM_PFNMAP | VM_MIXEDMAP)));
452 return NULL;
453 }
454
455 /* !HAVE_PTE_SPECIAL case follows: */
456
457 pfn = pte_pfn(pte);
6aab341e 458
b379d790
JH
459 if (unlikely(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP))) {
460 if (vma->vm_flags & VM_MIXEDMAP) {
461 if (!pfn_valid(pfn))
462 return NULL;
463 goto out;
464 } else {
7e675137
NP
465 unsigned long off;
466 off = (addr - vma->vm_start) >> PAGE_SHIFT;
b379d790
JH
467 if (pfn == vma->vm_pgoff + off)
468 return NULL;
469 if (!is_cow_mapping(vma->vm_flags))
470 return NULL;
471 }
6aab341e
LT
472 }
473
7e675137 474 VM_BUG_ON(!pfn_valid(pfn));
6aab341e
LT
475
476 /*
7e675137 477 * NOTE! We still have PageReserved() pages in the page tables.
6aab341e 478 *
7e675137 479 * eg. VDSO mappings can cause them to exist.
6aab341e 480 */
b379d790 481out:
6aab341e 482 return pfn_to_page(pfn);
ee498ed7
HD
483}
484
1da177e4
LT
485/*
486 * copy one vm_area from one task to the other. Assumes the page tables
487 * already present in the new task to be cleared in the whole range
488 * covered by this vma.
1da177e4
LT
489 */
490
8c103762 491static inline void
1da177e4 492copy_one_pte(struct mm_struct *dst_mm, struct mm_struct *src_mm,
b5810039 493 pte_t *dst_pte, pte_t *src_pte, struct vm_area_struct *vma,
8c103762 494 unsigned long addr, int *rss)
1da177e4 495{
b5810039 496 unsigned long vm_flags = vma->vm_flags;
1da177e4
LT
497 pte_t pte = *src_pte;
498 struct page *page;
1da177e4
LT
499
500 /* pte contains position in swap or file, so copy. */
501 if (unlikely(!pte_present(pte))) {
502 if (!pte_file(pte)) {
0697212a
CL
503 swp_entry_t entry = pte_to_swp_entry(pte);
504
505 swap_duplicate(entry);
1da177e4
LT
506 /* make sure dst_mm is on swapoff's mmlist. */
507 if (unlikely(list_empty(&dst_mm->mmlist))) {
508 spin_lock(&mmlist_lock);
f412ac08
HD
509 if (list_empty(&dst_mm->mmlist))
510 list_add(&dst_mm->mmlist,
511 &src_mm->mmlist);
1da177e4
LT
512 spin_unlock(&mmlist_lock);
513 }
0697212a
CL
514 if (is_write_migration_entry(entry) &&
515 is_cow_mapping(vm_flags)) {
516 /*
517 * COW mappings require pages in both parent
518 * and child to be set to read.
519 */
520 make_migration_entry_read(&entry);
521 pte = swp_entry_to_pte(entry);
522 set_pte_at(src_mm, addr, src_pte, pte);
523 }
1da177e4 524 }
ae859762 525 goto out_set_pte;
1da177e4
LT
526 }
527
1da177e4
LT
528 /*
529 * If it's a COW mapping, write protect it both
530 * in the parent and the child
531 */
67121172 532 if (is_cow_mapping(vm_flags)) {
1da177e4 533 ptep_set_wrprotect(src_mm, addr, src_pte);
3dc90795 534 pte = pte_wrprotect(pte);
1da177e4
LT
535 }
536
537 /*
538 * If it's a shared mapping, mark it clean in
539 * the child
540 */
541 if (vm_flags & VM_SHARED)
542 pte = pte_mkclean(pte);
543 pte = pte_mkold(pte);
6aab341e
LT
544
545 page = vm_normal_page(vma, addr, pte);
546 if (page) {
547 get_page(page);
c97a9e10 548 page_dup_rmap(page, vma, addr);
6aab341e
LT
549 rss[!!PageAnon(page)]++;
550 }
ae859762
HD
551
552out_set_pte:
553 set_pte_at(dst_mm, addr, dst_pte, pte);
1da177e4
LT
554}
555
556static int copy_pte_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
557 pmd_t *dst_pmd, pmd_t *src_pmd, struct vm_area_struct *vma,
558 unsigned long addr, unsigned long end)
559{
560 pte_t *src_pte, *dst_pte;
c74df32c 561 spinlock_t *src_ptl, *dst_ptl;
e040f218 562 int progress = 0;
8c103762 563 int rss[2];
1da177e4
LT
564
565again:
ae859762 566 rss[1] = rss[0] = 0;
c74df32c 567 dst_pte = pte_alloc_map_lock(dst_mm, dst_pmd, addr, &dst_ptl);
1da177e4
LT
568 if (!dst_pte)
569 return -ENOMEM;
570 src_pte = pte_offset_map_nested(src_pmd, addr);
4c21e2f2 571 src_ptl = pte_lockptr(src_mm, src_pmd);
f20dc5f7 572 spin_lock_nested(src_ptl, SINGLE_DEPTH_NESTING);
6606c3e0 573 arch_enter_lazy_mmu_mode();
1da177e4 574
1da177e4
LT
575 do {
576 /*
577 * We are holding two locks at this point - either of them
578 * could generate latencies in another task on another CPU.
579 */
e040f218
HD
580 if (progress >= 32) {
581 progress = 0;
582 if (need_resched() ||
95c354fe 583 spin_needbreak(src_ptl) || spin_needbreak(dst_ptl))
e040f218
HD
584 break;
585 }
1da177e4
LT
586 if (pte_none(*src_pte)) {
587 progress++;
588 continue;
589 }
8c103762 590 copy_one_pte(dst_mm, src_mm, dst_pte, src_pte, vma, addr, rss);
1da177e4
LT
591 progress += 8;
592 } while (dst_pte++, src_pte++, addr += PAGE_SIZE, addr != end);
1da177e4 593
6606c3e0 594 arch_leave_lazy_mmu_mode();
c74df32c 595 spin_unlock(src_ptl);
1da177e4 596 pte_unmap_nested(src_pte - 1);
ae859762 597 add_mm_rss(dst_mm, rss[0], rss[1]);
c74df32c
HD
598 pte_unmap_unlock(dst_pte - 1, dst_ptl);
599 cond_resched();
1da177e4
LT
600 if (addr != end)
601 goto again;
602 return 0;
603}
604
605static inline int copy_pmd_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
606 pud_t *dst_pud, pud_t *src_pud, struct vm_area_struct *vma,
607 unsigned long addr, unsigned long end)
608{
609 pmd_t *src_pmd, *dst_pmd;
610 unsigned long next;
611
612 dst_pmd = pmd_alloc(dst_mm, dst_pud, addr);
613 if (!dst_pmd)
614 return -ENOMEM;
615 src_pmd = pmd_offset(src_pud, addr);
616 do {
617 next = pmd_addr_end(addr, end);
618 if (pmd_none_or_clear_bad(src_pmd))
619 continue;
620 if (copy_pte_range(dst_mm, src_mm, dst_pmd, src_pmd,
621 vma, addr, next))
622 return -ENOMEM;
623 } while (dst_pmd++, src_pmd++, addr = next, addr != end);
624 return 0;
625}
626
627static inline int copy_pud_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
628 pgd_t *dst_pgd, pgd_t *src_pgd, struct vm_area_struct *vma,
629 unsigned long addr, unsigned long end)
630{
631 pud_t *src_pud, *dst_pud;
632 unsigned long next;
633
634 dst_pud = pud_alloc(dst_mm, dst_pgd, addr);
635 if (!dst_pud)
636 return -ENOMEM;
637 src_pud = pud_offset(src_pgd, addr);
638 do {
639 next = pud_addr_end(addr, end);
640 if (pud_none_or_clear_bad(src_pud))
641 continue;
642 if (copy_pmd_range(dst_mm, src_mm, dst_pud, src_pud,
643 vma, addr, next))
644 return -ENOMEM;
645 } while (dst_pud++, src_pud++, addr = next, addr != end);
646 return 0;
647}
648
649int copy_page_range(struct mm_struct *dst_mm, struct mm_struct *src_mm,
650 struct vm_area_struct *vma)
651{
652 pgd_t *src_pgd, *dst_pgd;
653 unsigned long next;
654 unsigned long addr = vma->vm_start;
655 unsigned long end = vma->vm_end;
cddb8a5c 656 int ret;
1da177e4 657
d992895b
NP
658 /*
659 * Don't copy ptes where a page fault will fill them correctly.
660 * Fork becomes much lighter when there are big shared or private
661 * readonly mappings. The tradeoff is that copy_page_range is more
662 * efficient than faulting.
663 */
4d7672b4 664 if (!(vma->vm_flags & (VM_HUGETLB|VM_NONLINEAR|VM_PFNMAP|VM_INSERTPAGE))) {
d992895b
NP
665 if (!vma->anon_vma)
666 return 0;
667 }
668
1da177e4
LT
669 if (is_vm_hugetlb_page(vma))
670 return copy_hugetlb_page_range(dst_mm, src_mm, vma);
671
34801ba9 672 if (unlikely(is_pfn_mapping(vma))) {
2ab64037 673 /*
674 * We do not free on error cases below as remove_vma
675 * gets called on error from higher level routine
676 */
677 ret = track_pfn_vma_copy(vma);
678 if (ret)
679 return ret;
680 }
681
cddb8a5c
AA
682 /*
683 * We need to invalidate the secondary MMU mappings only when
684 * there could be a permission downgrade on the ptes of the
685 * parent mm. And a permission downgrade will only happen if
686 * is_cow_mapping() returns true.
687 */
688 if (is_cow_mapping(vma->vm_flags))
689 mmu_notifier_invalidate_range_start(src_mm, addr, end);
690
691 ret = 0;
1da177e4
LT
692 dst_pgd = pgd_offset(dst_mm, addr);
693 src_pgd = pgd_offset(src_mm, addr);
694 do {
695 next = pgd_addr_end(addr, end);
696 if (pgd_none_or_clear_bad(src_pgd))
697 continue;
cddb8a5c
AA
698 if (unlikely(copy_pud_range(dst_mm, src_mm, dst_pgd, src_pgd,
699 vma, addr, next))) {
700 ret = -ENOMEM;
701 break;
702 }
1da177e4 703 } while (dst_pgd++, src_pgd++, addr = next, addr != end);
cddb8a5c
AA
704
705 if (is_cow_mapping(vma->vm_flags))
706 mmu_notifier_invalidate_range_end(src_mm,
707 vma->vm_start, end);
708 return ret;
1da177e4
LT
709}
710
51c6f666 711static unsigned long zap_pte_range(struct mmu_gather *tlb,
b5810039 712 struct vm_area_struct *vma, pmd_t *pmd,
1da177e4 713 unsigned long addr, unsigned long end,
51c6f666 714 long *zap_work, struct zap_details *details)
1da177e4 715{
b5810039 716 struct mm_struct *mm = tlb->mm;
1da177e4 717 pte_t *pte;
508034a3 718 spinlock_t *ptl;
ae859762
HD
719 int file_rss = 0;
720 int anon_rss = 0;
1da177e4 721
508034a3 722 pte = pte_offset_map_lock(mm, pmd, addr, &ptl);
6606c3e0 723 arch_enter_lazy_mmu_mode();
1da177e4
LT
724 do {
725 pte_t ptent = *pte;
51c6f666
RH
726 if (pte_none(ptent)) {
727 (*zap_work)--;
1da177e4 728 continue;
51c6f666 729 }
6f5e6b9e
HD
730
731 (*zap_work) -= PAGE_SIZE;
732
1da177e4 733 if (pte_present(ptent)) {
ee498ed7 734 struct page *page;
51c6f666 735
6aab341e 736 page = vm_normal_page(vma, addr, ptent);
1da177e4
LT
737 if (unlikely(details) && page) {
738 /*
739 * unmap_shared_mapping_pages() wants to
740 * invalidate cache without truncating:
741 * unmap shared but keep private pages.
742 */
743 if (details->check_mapping &&
744 details->check_mapping != page->mapping)
745 continue;
746 /*
747 * Each page->index must be checked when
748 * invalidating or truncating nonlinear.
749 */
750 if (details->nonlinear_vma &&
751 (page->index < details->first_index ||
752 page->index > details->last_index))
753 continue;
754 }
b5810039 755 ptent = ptep_get_and_clear_full(mm, addr, pte,
a600388d 756 tlb->fullmm);
1da177e4
LT
757 tlb_remove_tlb_entry(tlb, pte, addr);
758 if (unlikely(!page))
759 continue;
760 if (unlikely(details) && details->nonlinear_vma
761 && linear_page_index(details->nonlinear_vma,
762 addr) != page->index)
b5810039 763 set_pte_at(mm, addr, pte,
1da177e4 764 pgoff_to_pte(page->index));
1da177e4 765 if (PageAnon(page))
86d912f4 766 anon_rss--;
6237bcd9
HD
767 else {
768 if (pte_dirty(ptent))
769 set_page_dirty(page);
4917e5d0
JW
770 if (pte_young(ptent) &&
771 likely(!VM_SequentialReadHint(vma)))
bf3f3bc5 772 mark_page_accessed(page);
86d912f4 773 file_rss--;
6237bcd9 774 }
7de6b805 775 page_remove_rmap(page, vma);
1da177e4
LT
776 tlb_remove_page(tlb, page);
777 continue;
778 }
779 /*
780 * If details->check_mapping, we leave swap entries;
781 * if details->nonlinear_vma, we leave file entries.
782 */
783 if (unlikely(details))
784 continue;
785 if (!pte_file(ptent))
786 free_swap_and_cache(pte_to_swp_entry(ptent));
9888a1ca 787 pte_clear_not_present_full(mm, addr, pte, tlb->fullmm);
51c6f666 788 } while (pte++, addr += PAGE_SIZE, (addr != end && *zap_work > 0));
ae859762 789
86d912f4 790 add_mm_rss(mm, file_rss, anon_rss);
6606c3e0 791 arch_leave_lazy_mmu_mode();
508034a3 792 pte_unmap_unlock(pte - 1, ptl);
51c6f666
RH
793
794 return addr;
1da177e4
LT
795}
796
51c6f666 797static inline unsigned long zap_pmd_range(struct mmu_gather *tlb,
b5810039 798 struct vm_area_struct *vma, pud_t *pud,
1da177e4 799 unsigned long addr, unsigned long end,
51c6f666 800 long *zap_work, struct zap_details *details)
1da177e4
LT
801{
802 pmd_t *pmd;
803 unsigned long next;
804
805 pmd = pmd_offset(pud, addr);
806 do {
807 next = pmd_addr_end(addr, end);
51c6f666
RH
808 if (pmd_none_or_clear_bad(pmd)) {
809 (*zap_work)--;
1da177e4 810 continue;
51c6f666
RH
811 }
812 next = zap_pte_range(tlb, vma, pmd, addr, next,
813 zap_work, details);
814 } while (pmd++, addr = next, (addr != end && *zap_work > 0));
815
816 return addr;
1da177e4
LT
817}
818
51c6f666 819static inline unsigned long zap_pud_range(struct mmu_gather *tlb,
b5810039 820 struct vm_area_struct *vma, pgd_t *pgd,
1da177e4 821 unsigned long addr, unsigned long end,
51c6f666 822 long *zap_work, struct zap_details *details)
1da177e4
LT
823{
824 pud_t *pud;
825 unsigned long next;
826
827 pud = pud_offset(pgd, addr);
828 do {
829 next = pud_addr_end(addr, end);
51c6f666
RH
830 if (pud_none_or_clear_bad(pud)) {
831 (*zap_work)--;
1da177e4 832 continue;
51c6f666
RH
833 }
834 next = zap_pmd_range(tlb, vma, pud, addr, next,
835 zap_work, details);
836 } while (pud++, addr = next, (addr != end && *zap_work > 0));
837
838 return addr;
1da177e4
LT
839}
840
51c6f666
RH
841static unsigned long unmap_page_range(struct mmu_gather *tlb,
842 struct vm_area_struct *vma,
1da177e4 843 unsigned long addr, unsigned long end,
51c6f666 844 long *zap_work, struct zap_details *details)
1da177e4
LT
845{
846 pgd_t *pgd;
847 unsigned long next;
848
849 if (details && !details->check_mapping && !details->nonlinear_vma)
850 details = NULL;
851
852 BUG_ON(addr >= end);
853 tlb_start_vma(tlb, vma);
854 pgd = pgd_offset(vma->vm_mm, addr);
855 do {
856 next = pgd_addr_end(addr, end);
51c6f666
RH
857 if (pgd_none_or_clear_bad(pgd)) {
858 (*zap_work)--;
1da177e4 859 continue;
51c6f666
RH
860 }
861 next = zap_pud_range(tlb, vma, pgd, addr, next,
862 zap_work, details);
863 } while (pgd++, addr = next, (addr != end && *zap_work > 0));
1da177e4 864 tlb_end_vma(tlb, vma);
51c6f666
RH
865
866 return addr;
1da177e4
LT
867}
868
869#ifdef CONFIG_PREEMPT
870# define ZAP_BLOCK_SIZE (8 * PAGE_SIZE)
871#else
872/* No preempt: go for improved straight-line efficiency */
873# define ZAP_BLOCK_SIZE (1024 * PAGE_SIZE)
874#endif
875
876/**
877 * unmap_vmas - unmap a range of memory covered by a list of vma's
878 * @tlbp: address of the caller's struct mmu_gather
1da177e4
LT
879 * @vma: the starting vma
880 * @start_addr: virtual address at which to start unmapping
881 * @end_addr: virtual address at which to end unmapping
882 * @nr_accounted: Place number of unmapped pages in vm-accountable vma's here
883 * @details: details of nonlinear truncation or shared cache invalidation
884 *
ee39b37b 885 * Returns the end address of the unmapping (restart addr if interrupted).
1da177e4 886 *
508034a3 887 * Unmap all pages in the vma list.
1da177e4 888 *
508034a3
HD
889 * We aim to not hold locks for too long (for scheduling latency reasons).
890 * So zap pages in ZAP_BLOCK_SIZE bytecounts. This means we need to
1da177e4
LT
891 * return the ending mmu_gather to the caller.
892 *
893 * Only addresses between `start' and `end' will be unmapped.
894 *
895 * The VMA list must be sorted in ascending virtual address order.
896 *
897 * unmap_vmas() assumes that the caller will flush the whole unmapped address
898 * range after unmap_vmas() returns. So the only responsibility here is to
899 * ensure that any thus-far unmapped pages are flushed before unmap_vmas()
900 * drops the lock and schedules.
901 */
508034a3 902unsigned long unmap_vmas(struct mmu_gather **tlbp,
1da177e4
LT
903 struct vm_area_struct *vma, unsigned long start_addr,
904 unsigned long end_addr, unsigned long *nr_accounted,
905 struct zap_details *details)
906{
51c6f666 907 long zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
908 unsigned long tlb_start = 0; /* For tlb_finish_mmu */
909 int tlb_start_valid = 0;
ee39b37b 910 unsigned long start = start_addr;
1da177e4 911 spinlock_t *i_mmap_lock = details? details->i_mmap_lock: NULL;
4d6ddfa9 912 int fullmm = (*tlbp)->fullmm;
cddb8a5c 913 struct mm_struct *mm = vma->vm_mm;
1da177e4 914
cddb8a5c 915 mmu_notifier_invalidate_range_start(mm, start_addr, end_addr);
1da177e4 916 for ( ; vma && vma->vm_start < end_addr; vma = vma->vm_next) {
1da177e4
LT
917 unsigned long end;
918
919 start = max(vma->vm_start, start_addr);
920 if (start >= vma->vm_end)
921 continue;
922 end = min(vma->vm_end, end_addr);
923 if (end <= vma->vm_start)
924 continue;
925
926 if (vma->vm_flags & VM_ACCOUNT)
927 *nr_accounted += (end - start) >> PAGE_SHIFT;
928
34801ba9 929 if (unlikely(is_pfn_mapping(vma)))
2ab64037 930 untrack_pfn_vma(vma, 0, 0);
931
1da177e4 932 while (start != end) {
1da177e4
LT
933 if (!tlb_start_valid) {
934 tlb_start = start;
935 tlb_start_valid = 1;
936 }
937
51c6f666 938 if (unlikely(is_vm_hugetlb_page(vma))) {
a137e1cc
AK
939 /*
940 * It is undesirable to test vma->vm_file as it
941 * should be non-null for valid hugetlb area.
942 * However, vm_file will be NULL in the error
943 * cleanup path of do_mmap_pgoff. When
944 * hugetlbfs ->mmap method fails,
945 * do_mmap_pgoff() nullifies vma->vm_file
946 * before calling this function to clean up.
947 * Since no pte has actually been setup, it is
948 * safe to do nothing in this case.
949 */
950 if (vma->vm_file) {
951 unmap_hugepage_range(vma, start, end, NULL);
952 zap_work -= (end - start) /
a5516438 953 pages_per_huge_page(hstate_vma(vma));
a137e1cc
AK
954 }
955
51c6f666
RH
956 start = end;
957 } else
958 start = unmap_page_range(*tlbp, vma,
959 start, end, &zap_work, details);
960
961 if (zap_work > 0) {
962 BUG_ON(start != end);
963 break;
1da177e4
LT
964 }
965
1da177e4
LT
966 tlb_finish_mmu(*tlbp, tlb_start, start);
967
968 if (need_resched() ||
95c354fe 969 (i_mmap_lock && spin_needbreak(i_mmap_lock))) {
1da177e4 970 if (i_mmap_lock) {
508034a3 971 *tlbp = NULL;
1da177e4
LT
972 goto out;
973 }
1da177e4 974 cond_resched();
1da177e4
LT
975 }
976
508034a3 977 *tlbp = tlb_gather_mmu(vma->vm_mm, fullmm);
1da177e4 978 tlb_start_valid = 0;
51c6f666 979 zap_work = ZAP_BLOCK_SIZE;
1da177e4
LT
980 }
981 }
982out:
cddb8a5c 983 mmu_notifier_invalidate_range_end(mm, start_addr, end_addr);
ee39b37b 984 return start; /* which is now the end (or restart) address */
1da177e4
LT
985}
986
987/**
988 * zap_page_range - remove user pages in a given range
989 * @vma: vm_area_struct holding the applicable pages
990 * @address: starting address of pages to zap
991 * @size: number of bytes to zap
992 * @details: details of nonlinear truncation or shared cache invalidation
993 */
ee39b37b 994unsigned long zap_page_range(struct vm_area_struct *vma, unsigned long address,
1da177e4
LT
995 unsigned long size, struct zap_details *details)
996{
997 struct mm_struct *mm = vma->vm_mm;
998 struct mmu_gather *tlb;
999 unsigned long end = address + size;
1000 unsigned long nr_accounted = 0;
1001
1da177e4 1002 lru_add_drain();
1da177e4 1003 tlb = tlb_gather_mmu(mm, 0);
365e9c87 1004 update_hiwater_rss(mm);
508034a3
HD
1005 end = unmap_vmas(&tlb, vma, address, end, &nr_accounted, details);
1006 if (tlb)
1007 tlb_finish_mmu(tlb, address, end);
ee39b37b 1008 return end;
1da177e4
LT
1009}
1010
c627f9cc
JS
1011/**
1012 * zap_vma_ptes - remove ptes mapping the vma
1013 * @vma: vm_area_struct holding ptes to be zapped
1014 * @address: starting address of pages to zap
1015 * @size: number of bytes to zap
1016 *
1017 * This function only unmaps ptes assigned to VM_PFNMAP vmas.
1018 *
1019 * The entire address range must be fully contained within the vma.
1020 *
1021 * Returns 0 if successful.
1022 */
1023int zap_vma_ptes(struct vm_area_struct *vma, unsigned long address,
1024 unsigned long size)
1025{
1026 if (address < vma->vm_start || address + size > vma->vm_end ||
1027 !(vma->vm_flags & VM_PFNMAP))
1028 return -1;
1029 zap_page_range(vma, address, size, NULL);
1030 return 0;
1031}
1032EXPORT_SYMBOL_GPL(zap_vma_ptes);
1033
1da177e4
LT
1034/*
1035 * Do a quick page-table lookup for a single page.
1da177e4 1036 */
6aab341e 1037struct page *follow_page(struct vm_area_struct *vma, unsigned long address,
deceb6cd 1038 unsigned int flags)
1da177e4
LT
1039{
1040 pgd_t *pgd;
1041 pud_t *pud;
1042 pmd_t *pmd;
1043 pte_t *ptep, pte;
deceb6cd 1044 spinlock_t *ptl;
1da177e4 1045 struct page *page;
6aab341e 1046 struct mm_struct *mm = vma->vm_mm;
1da177e4 1047
deceb6cd
HD
1048 page = follow_huge_addr(mm, address, flags & FOLL_WRITE);
1049 if (!IS_ERR(page)) {
1050 BUG_ON(flags & FOLL_GET);
1051 goto out;
1052 }
1da177e4 1053
deceb6cd 1054 page = NULL;
1da177e4
LT
1055 pgd = pgd_offset(mm, address);
1056 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
deceb6cd 1057 goto no_page_table;
1da177e4
LT
1058
1059 pud = pud_offset(pgd, address);
ceb86879 1060 if (pud_none(*pud))
deceb6cd 1061 goto no_page_table;
ceb86879
AK
1062 if (pud_huge(*pud)) {
1063 BUG_ON(flags & FOLL_GET);
1064 page = follow_huge_pud(mm, address, pud, flags & FOLL_WRITE);
1065 goto out;
1066 }
1067 if (unlikely(pud_bad(*pud)))
1068 goto no_page_table;
1069
1da177e4 1070 pmd = pmd_offset(pud, address);
aeed5fce 1071 if (pmd_none(*pmd))
deceb6cd 1072 goto no_page_table;
deceb6cd
HD
1073 if (pmd_huge(*pmd)) {
1074 BUG_ON(flags & FOLL_GET);
1075 page = follow_huge_pmd(mm, address, pmd, flags & FOLL_WRITE);
1da177e4 1076 goto out;
deceb6cd 1077 }
aeed5fce
HD
1078 if (unlikely(pmd_bad(*pmd)))
1079 goto no_page_table;
1080
deceb6cd 1081 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
1082
1083 pte = *ptep;
deceb6cd 1084 if (!pte_present(pte))
89f5b7da 1085 goto no_page;
deceb6cd
HD
1086 if ((flags & FOLL_WRITE) && !pte_write(pte))
1087 goto unlock;
6aab341e
LT
1088 page = vm_normal_page(vma, address, pte);
1089 if (unlikely(!page))
89f5b7da 1090 goto bad_page;
1da177e4 1091
deceb6cd
HD
1092 if (flags & FOLL_GET)
1093 get_page(page);
1094 if (flags & FOLL_TOUCH) {
1095 if ((flags & FOLL_WRITE) &&
1096 !pte_dirty(pte) && !PageDirty(page))
1097 set_page_dirty(page);
1098 mark_page_accessed(page);
1099 }
1100unlock:
1101 pte_unmap_unlock(ptep, ptl);
1da177e4 1102out:
deceb6cd 1103 return page;
1da177e4 1104
89f5b7da
LT
1105bad_page:
1106 pte_unmap_unlock(ptep, ptl);
1107 return ERR_PTR(-EFAULT);
1108
1109no_page:
1110 pte_unmap_unlock(ptep, ptl);
1111 if (!pte_none(pte))
1112 return page;
1113 /* Fall through to ZERO_PAGE handling */
deceb6cd
HD
1114no_page_table:
1115 /*
1116 * When core dumping an enormous anonymous area that nobody
1117 * has touched so far, we don't want to allocate page tables.
1118 */
1119 if (flags & FOLL_ANON) {
557ed1fa 1120 page = ZERO_PAGE(0);
deceb6cd
HD
1121 if (flags & FOLL_GET)
1122 get_page(page);
1123 BUG_ON(flags & FOLL_WRITE);
1124 }
1125 return page;
1da177e4
LT
1126}
1127
672ca28e
LT
1128/* Can we do the FOLL_ANON optimization? */
1129static inline int use_zero_page(struct vm_area_struct *vma)
1130{
1131 /*
1132 * We don't want to optimize FOLL_ANON for make_pages_present()
1133 * when it tries to page in a VM_LOCKED region. As to VM_SHARED,
1134 * we want to get the page from the page tables to make sure
1135 * that we serialize and update with any other user of that
1136 * mapping.
1137 */
1138 if (vma->vm_flags & (VM_LOCKED | VM_SHARED))
1139 return 0;
1140 /*
0d71d10a 1141 * And if we have a fault routine, it's not an anonymous region.
672ca28e 1142 */
0d71d10a 1143 return !vma->vm_ops || !vma->vm_ops->fault;
672ca28e
LT
1144}
1145
b291f000
NP
1146
1147
1148int __get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1149 unsigned long start, int len, int flags,
1da177e4
LT
1150 struct page **pages, struct vm_area_struct **vmas)
1151{
1152 int i;
b291f000
NP
1153 unsigned int vm_flags = 0;
1154 int write = !!(flags & GUP_FLAGS_WRITE);
1155 int force = !!(flags & GUP_FLAGS_FORCE);
1156 int ignore = !!(flags & GUP_FLAGS_IGNORE_VMA_PERMISSIONS);
1da177e4 1157
900cf086
JC
1158 if (len <= 0)
1159 return 0;
1da177e4
LT
1160 /*
1161 * Require read or write permissions.
1162 * If 'force' is set, we only require the "MAY" flags.
1163 */
deceb6cd
HD
1164 vm_flags = write ? (VM_WRITE | VM_MAYWRITE) : (VM_READ | VM_MAYREAD);
1165 vm_flags &= force ? (VM_MAYREAD | VM_MAYWRITE) : (VM_READ | VM_WRITE);
1da177e4
LT
1166 i = 0;
1167
1168 do {
deceb6cd
HD
1169 struct vm_area_struct *vma;
1170 unsigned int foll_flags;
1da177e4
LT
1171
1172 vma = find_extend_vma(mm, start);
1173 if (!vma && in_gate_area(tsk, start)) {
1174 unsigned long pg = start & PAGE_MASK;
1175 struct vm_area_struct *gate_vma = get_gate_vma(tsk);
1176 pgd_t *pgd;
1177 pud_t *pud;
1178 pmd_t *pmd;
1179 pte_t *pte;
b291f000
NP
1180
1181 /* user gate pages are read-only */
1182 if (!ignore && write)
1da177e4
LT
1183 return i ? : -EFAULT;
1184 if (pg > TASK_SIZE)
1185 pgd = pgd_offset_k(pg);
1186 else
1187 pgd = pgd_offset_gate(mm, pg);
1188 BUG_ON(pgd_none(*pgd));
1189 pud = pud_offset(pgd, pg);
1190 BUG_ON(pud_none(*pud));
1191 pmd = pmd_offset(pud, pg);
690dbe1c
HD
1192 if (pmd_none(*pmd))
1193 return i ? : -EFAULT;
1da177e4 1194 pte = pte_offset_map(pmd, pg);
690dbe1c
HD
1195 if (pte_none(*pte)) {
1196 pte_unmap(pte);
1197 return i ? : -EFAULT;
1198 }
1da177e4 1199 if (pages) {
fa2a455b 1200 struct page *page = vm_normal_page(gate_vma, start, *pte);
6aab341e
LT
1201 pages[i] = page;
1202 if (page)
1203 get_page(page);
1da177e4
LT
1204 }
1205 pte_unmap(pte);
1206 if (vmas)
1207 vmas[i] = gate_vma;
1208 i++;
1209 start += PAGE_SIZE;
1210 len--;
1211 continue;
1212 }
1213
b291f000
NP
1214 if (!vma ||
1215 (vma->vm_flags & (VM_IO | VM_PFNMAP)) ||
1216 (!ignore && !(vm_flags & vma->vm_flags)))
1da177e4
LT
1217 return i ? : -EFAULT;
1218
1219 if (is_vm_hugetlb_page(vma)) {
1220 i = follow_hugetlb_page(mm, vma, pages, vmas,
5b23dbe8 1221 &start, &len, i, write);
1da177e4
LT
1222 continue;
1223 }
deceb6cd
HD
1224
1225 foll_flags = FOLL_TOUCH;
1226 if (pages)
1227 foll_flags |= FOLL_GET;
672ca28e 1228 if (!write && use_zero_page(vma))
deceb6cd
HD
1229 foll_flags |= FOLL_ANON;
1230
1da177e4 1231 do {
08ef4729 1232 struct page *page;
1da177e4 1233
462e00cc
ES
1234 /*
1235 * If tsk is ooming, cut off its access to large memory
1236 * allocations. It has a pending SIGKILL, but it can't
1237 * be processed until returning to user space.
1238 */
1239 if (unlikely(test_tsk_thread_flag(tsk, TIF_MEMDIE)))
7a36a752 1240 return i ? i : -ENOMEM;
462e00cc 1241
deceb6cd
HD
1242 if (write)
1243 foll_flags |= FOLL_WRITE;
a68d2ebc 1244
deceb6cd 1245 cond_resched();
6aab341e 1246 while (!(page = follow_page(vma, start, foll_flags))) {
deceb6cd 1247 int ret;
83c54070 1248 ret = handle_mm_fault(mm, vma, start,
deceb6cd 1249 foll_flags & FOLL_WRITE);
83c54070
NP
1250 if (ret & VM_FAULT_ERROR) {
1251 if (ret & VM_FAULT_OOM)
1252 return i ? i : -ENOMEM;
1253 else if (ret & VM_FAULT_SIGBUS)
1254 return i ? i : -EFAULT;
1255 BUG();
1256 }
1257 if (ret & VM_FAULT_MAJOR)
1258 tsk->maj_flt++;
1259 else
1260 tsk->min_flt++;
1261
a68d2ebc 1262 /*
83c54070
NP
1263 * The VM_FAULT_WRITE bit tells us that
1264 * do_wp_page has broken COW when necessary,
1265 * even if maybe_mkwrite decided not to set
1266 * pte_write. We can thus safely do subsequent
1267 * page lookups as if they were reads.
a68d2ebc
LT
1268 */
1269 if (ret & VM_FAULT_WRITE)
deceb6cd 1270 foll_flags &= ~FOLL_WRITE;
83c54070 1271
7f7bbbe5 1272 cond_resched();
1da177e4 1273 }
89f5b7da
LT
1274 if (IS_ERR(page))
1275 return i ? i : PTR_ERR(page);
1da177e4 1276 if (pages) {
08ef4729 1277 pages[i] = page;
03beb076 1278
a6f36be3 1279 flush_anon_page(vma, page, start);
08ef4729 1280 flush_dcache_page(page);
1da177e4
LT
1281 }
1282 if (vmas)
1283 vmas[i] = vma;
1284 i++;
1285 start += PAGE_SIZE;
1286 len--;
08ef4729 1287 } while (len && start < vma->vm_end);
08ef4729 1288 } while (len);
1da177e4
LT
1289 return i;
1290}
b291f000
NP
1291
1292int get_user_pages(struct task_struct *tsk, struct mm_struct *mm,
1293 unsigned long start, int len, int write, int force,
1294 struct page **pages, struct vm_area_struct **vmas)
1295{
1296 int flags = 0;
1297
1298 if (write)
1299 flags |= GUP_FLAGS_WRITE;
1300 if (force)
1301 flags |= GUP_FLAGS_FORCE;
1302
1303 return __get_user_pages(tsk, mm,
1304 start, len, flags,
1305 pages, vmas);
1306}
1307
1da177e4
LT
1308EXPORT_SYMBOL(get_user_pages);
1309
920c7a5d
HH
1310pte_t *get_locked_pte(struct mm_struct *mm, unsigned long addr,
1311 spinlock_t **ptl)
c9cfcddf
LT
1312{
1313 pgd_t * pgd = pgd_offset(mm, addr);
1314 pud_t * pud = pud_alloc(mm, pgd, addr);
1315 if (pud) {
49c91fb0 1316 pmd_t * pmd = pmd_alloc(mm, pud, addr);
c9cfcddf
LT
1317 if (pmd)
1318 return pte_alloc_map_lock(mm, pmd, addr, ptl);
1319 }
1320 return NULL;
1321}
1322
238f58d8
LT
1323/*
1324 * This is the old fallback for page remapping.
1325 *
1326 * For historical reasons, it only allows reserved pages. Only
1327 * old drivers should use this, and they needed to mark their
1328 * pages reserved for the old functions anyway.
1329 */
423bad60
NP
1330static int insert_page(struct vm_area_struct *vma, unsigned long addr,
1331 struct page *page, pgprot_t prot)
238f58d8 1332{
423bad60 1333 struct mm_struct *mm = vma->vm_mm;
238f58d8 1334 int retval;
c9cfcddf 1335 pte_t *pte;
8a9f3ccd
BS
1336 spinlock_t *ptl;
1337
238f58d8 1338 retval = -EINVAL;
a145dd41 1339 if (PageAnon(page))
5b4e655e 1340 goto out;
238f58d8
LT
1341 retval = -ENOMEM;
1342 flush_dcache_page(page);
c9cfcddf 1343 pte = get_locked_pte(mm, addr, &ptl);
238f58d8 1344 if (!pte)
5b4e655e 1345 goto out;
238f58d8
LT
1346 retval = -EBUSY;
1347 if (!pte_none(*pte))
1348 goto out_unlock;
1349
1350 /* Ok, finally just insert the thing.. */
1351 get_page(page);
1352 inc_mm_counter(mm, file_rss);
1353 page_add_file_rmap(page);
1354 set_pte_at(mm, addr, pte, mk_pte(page, prot));
1355
1356 retval = 0;
8a9f3ccd
BS
1357 pte_unmap_unlock(pte, ptl);
1358 return retval;
238f58d8
LT
1359out_unlock:
1360 pte_unmap_unlock(pte, ptl);
1361out:
1362 return retval;
1363}
1364
bfa5bf6d
REB
1365/**
1366 * vm_insert_page - insert single page into user vma
1367 * @vma: user vma to map to
1368 * @addr: target user address of this page
1369 * @page: source kernel page
1370 *
a145dd41
LT
1371 * This allows drivers to insert individual pages they've allocated
1372 * into a user vma.
1373 *
1374 * The page has to be a nice clean _individual_ kernel allocation.
1375 * If you allocate a compound page, you need to have marked it as
1376 * such (__GFP_COMP), or manually just split the page up yourself
8dfcc9ba 1377 * (see split_page()).
a145dd41
LT
1378 *
1379 * NOTE! Traditionally this was done with "remap_pfn_range()" which
1380 * took an arbitrary page protection parameter. This doesn't allow
1381 * that. Your vma protection will have to be set up correctly, which
1382 * means that if you want a shared writable mapping, you'd better
1383 * ask for a shared writable mapping!
1384 *
1385 * The page does not need to be reserved.
1386 */
423bad60
NP
1387int vm_insert_page(struct vm_area_struct *vma, unsigned long addr,
1388 struct page *page)
a145dd41
LT
1389{
1390 if (addr < vma->vm_start || addr >= vma->vm_end)
1391 return -EFAULT;
1392 if (!page_count(page))
1393 return -EINVAL;
4d7672b4 1394 vma->vm_flags |= VM_INSERTPAGE;
423bad60 1395 return insert_page(vma, addr, page, vma->vm_page_prot);
a145dd41 1396}
e3c3374f 1397EXPORT_SYMBOL(vm_insert_page);
a145dd41 1398
423bad60
NP
1399static int insert_pfn(struct vm_area_struct *vma, unsigned long addr,
1400 unsigned long pfn, pgprot_t prot)
1401{
1402 struct mm_struct *mm = vma->vm_mm;
1403 int retval;
1404 pte_t *pte, entry;
1405 spinlock_t *ptl;
1406
1407 retval = -ENOMEM;
1408 pte = get_locked_pte(mm, addr, &ptl);
1409 if (!pte)
1410 goto out;
1411 retval = -EBUSY;
1412 if (!pte_none(*pte))
1413 goto out_unlock;
1414
1415 /* Ok, finally just insert the thing.. */
1416 entry = pte_mkspecial(pfn_pte(pfn, prot));
1417 set_pte_at(mm, addr, pte, entry);
1418 update_mmu_cache(vma, addr, entry); /* XXX: why not for insert_page? */
1419
1420 retval = 0;
1421out_unlock:
1422 pte_unmap_unlock(pte, ptl);
1423out:
1424 return retval;
1425}
1426
e0dc0d8f
NP
1427/**
1428 * vm_insert_pfn - insert single pfn into user vma
1429 * @vma: user vma to map to
1430 * @addr: target user address of this page
1431 * @pfn: source kernel pfn
1432 *
1433 * Similar to vm_inert_page, this allows drivers to insert individual pages
1434 * they've allocated into a user vma. Same comments apply.
1435 *
1436 * This function should only be called from a vm_ops->fault handler, and
1437 * in that case the handler should return NULL.
0d71d10a
NP
1438 *
1439 * vma cannot be a COW mapping.
1440 *
1441 * As this is called only for pages that do not currently exist, we
1442 * do not need to flush old virtual caches or the TLB.
e0dc0d8f
NP
1443 */
1444int vm_insert_pfn(struct vm_area_struct *vma, unsigned long addr,
423bad60 1445 unsigned long pfn)
e0dc0d8f 1446{
2ab64037 1447 int ret;
7e675137
NP
1448 /*
1449 * Technically, architectures with pte_special can avoid all these
1450 * restrictions (same for remap_pfn_range). However we would like
1451 * consistency in testing and feature parity among all, so we should
1452 * try to keep these invariants in place for everybody.
1453 */
b379d790
JH
1454 BUG_ON(!(vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)));
1455 BUG_ON((vma->vm_flags & (VM_PFNMAP|VM_MIXEDMAP)) ==
1456 (VM_PFNMAP|VM_MIXEDMAP));
1457 BUG_ON((vma->vm_flags & VM_PFNMAP) && is_cow_mapping(vma->vm_flags));
1458 BUG_ON((vma->vm_flags & VM_MIXEDMAP) && pfn_valid(pfn));
e0dc0d8f 1459
423bad60
NP
1460 if (addr < vma->vm_start || addr >= vma->vm_end)
1461 return -EFAULT;
2ab64037 1462 if (track_pfn_vma_new(vma, vma->vm_page_prot, pfn, PAGE_SIZE))
1463 return -EINVAL;
1464
1465 ret = insert_pfn(vma, addr, pfn, vma->vm_page_prot);
1466
1467 if (ret)
1468 untrack_pfn_vma(vma, pfn, PAGE_SIZE);
1469
1470 return ret;
423bad60
NP
1471}
1472EXPORT_SYMBOL(vm_insert_pfn);
e0dc0d8f 1473
423bad60
NP
1474int vm_insert_mixed(struct vm_area_struct *vma, unsigned long addr,
1475 unsigned long pfn)
1476{
1477 BUG_ON(!(vma->vm_flags & VM_MIXEDMAP));
e0dc0d8f 1478
423bad60
NP
1479 if (addr < vma->vm_start || addr >= vma->vm_end)
1480 return -EFAULT;
e0dc0d8f 1481
423bad60
NP
1482 /*
1483 * If we don't have pte special, then we have to use the pfn_valid()
1484 * based VM_MIXEDMAP scheme (see vm_normal_page), and thus we *must*
1485 * refcount the page if pfn_valid is true (hence insert_page rather
1486 * than insert_pfn).
1487 */
1488 if (!HAVE_PTE_SPECIAL && pfn_valid(pfn)) {
1489 struct page *page;
1490
1491 page = pfn_to_page(pfn);
1492 return insert_page(vma, addr, page, vma->vm_page_prot);
1493 }
1494 return insert_pfn(vma, addr, pfn, vma->vm_page_prot);
e0dc0d8f 1495}
423bad60 1496EXPORT_SYMBOL(vm_insert_mixed);
e0dc0d8f 1497
1da177e4
LT
1498/*
1499 * maps a range of physical memory into the requested pages. the old
1500 * mappings are removed. any references to nonexistent pages results
1501 * in null mappings (currently treated as "copy-on-access")
1502 */
1503static int remap_pte_range(struct mm_struct *mm, pmd_t *pmd,
1504 unsigned long addr, unsigned long end,
1505 unsigned long pfn, pgprot_t prot)
1506{
1507 pte_t *pte;
c74df32c 1508 spinlock_t *ptl;
1da177e4 1509
c74df32c 1510 pte = pte_alloc_map_lock(mm, pmd, addr, &ptl);
1da177e4
LT
1511 if (!pte)
1512 return -ENOMEM;
6606c3e0 1513 arch_enter_lazy_mmu_mode();
1da177e4
LT
1514 do {
1515 BUG_ON(!pte_none(*pte));
7e675137 1516 set_pte_at(mm, addr, pte, pte_mkspecial(pfn_pte(pfn, prot)));
1da177e4
LT
1517 pfn++;
1518 } while (pte++, addr += PAGE_SIZE, addr != end);
6606c3e0 1519 arch_leave_lazy_mmu_mode();
c74df32c 1520 pte_unmap_unlock(pte - 1, ptl);
1da177e4
LT
1521 return 0;
1522}
1523
1524static inline int remap_pmd_range(struct mm_struct *mm, pud_t *pud,
1525 unsigned long addr, unsigned long end,
1526 unsigned long pfn, pgprot_t prot)
1527{
1528 pmd_t *pmd;
1529 unsigned long next;
1530
1531 pfn -= addr >> PAGE_SHIFT;
1532 pmd = pmd_alloc(mm, pud, addr);
1533 if (!pmd)
1534 return -ENOMEM;
1535 do {
1536 next = pmd_addr_end(addr, end);
1537 if (remap_pte_range(mm, pmd, addr, next,
1538 pfn + (addr >> PAGE_SHIFT), prot))
1539 return -ENOMEM;
1540 } while (pmd++, addr = next, addr != end);
1541 return 0;
1542}
1543
1544static inline int remap_pud_range(struct mm_struct *mm, pgd_t *pgd,
1545 unsigned long addr, unsigned long end,
1546 unsigned long pfn, pgprot_t prot)
1547{
1548 pud_t *pud;
1549 unsigned long next;
1550
1551 pfn -= addr >> PAGE_SHIFT;
1552 pud = pud_alloc(mm, pgd, addr);
1553 if (!pud)
1554 return -ENOMEM;
1555 do {
1556 next = pud_addr_end(addr, end);
1557 if (remap_pmd_range(mm, pud, addr, next,
1558 pfn + (addr >> PAGE_SHIFT), prot))
1559 return -ENOMEM;
1560 } while (pud++, addr = next, addr != end);
1561 return 0;
1562}
1563
bfa5bf6d
REB
1564/**
1565 * remap_pfn_range - remap kernel memory to userspace
1566 * @vma: user vma to map to
1567 * @addr: target user address to start at
1568 * @pfn: physical address of kernel memory
1569 * @size: size of map area
1570 * @prot: page protection flags for this mapping
1571 *
1572 * Note: this is only safe if the mm semaphore is held when called.
1573 */
1da177e4
LT
1574int remap_pfn_range(struct vm_area_struct *vma, unsigned long addr,
1575 unsigned long pfn, unsigned long size, pgprot_t prot)
1576{
1577 pgd_t *pgd;
1578 unsigned long next;
2d15cab8 1579 unsigned long end = addr + PAGE_ALIGN(size);
1da177e4
LT
1580 struct mm_struct *mm = vma->vm_mm;
1581 int err;
1582
1583 /*
1584 * Physically remapped pages are special. Tell the
1585 * rest of the world about it:
1586 * VM_IO tells people not to look at these pages
1587 * (accesses can have side effects).
0b14c179
HD
1588 * VM_RESERVED is specified all over the place, because
1589 * in 2.4 it kept swapout's vma scan off this vma; but
1590 * in 2.6 the LRU scan won't even find its pages, so this
1591 * flag means no more than count its pages in reserved_vm,
1592 * and omit it from core dump, even when VM_IO turned off.
6aab341e
LT
1593 * VM_PFNMAP tells the core MM that the base pages are just
1594 * raw PFN mappings, and do not have a "struct page" associated
1595 * with them.
fb155c16
LT
1596 *
1597 * There's a horrible special case to handle copy-on-write
1598 * behaviour that some programs depend on. We mark the "original"
1599 * un-COW'ed pages by matching them up with "vma->vm_pgoff".
1da177e4 1600 */
3c8bb73a 1601 if (addr == vma->vm_start && end == vma->vm_end)
fb155c16 1602 vma->vm_pgoff = pfn;
3c8bb73a 1603 else if (is_cow_mapping(vma->vm_flags))
1604 return -EINVAL;
fb155c16 1605
6aab341e 1606 vma->vm_flags |= VM_IO | VM_RESERVED | VM_PFNMAP;
1da177e4 1607
2ab64037 1608 err = track_pfn_vma_new(vma, prot, pfn, PAGE_ALIGN(size));
1609 if (err)
1610 return -EINVAL;
1611
1da177e4
LT
1612 BUG_ON(addr >= end);
1613 pfn -= addr >> PAGE_SHIFT;
1614 pgd = pgd_offset(mm, addr);
1615 flush_cache_range(vma, addr, end);
1da177e4
LT
1616 do {
1617 next = pgd_addr_end(addr, end);
1618 err = remap_pud_range(mm, pgd, addr, next,
1619 pfn + (addr >> PAGE_SHIFT), prot);
1620 if (err)
1621 break;
1622 } while (pgd++, addr = next, addr != end);
2ab64037 1623
1624 if (err)
1625 untrack_pfn_vma(vma, pfn, PAGE_ALIGN(size));
1626
1da177e4
LT
1627 return err;
1628}
1629EXPORT_SYMBOL(remap_pfn_range);
1630
aee16b3c
JF
1631static int apply_to_pte_range(struct mm_struct *mm, pmd_t *pmd,
1632 unsigned long addr, unsigned long end,
1633 pte_fn_t fn, void *data)
1634{
1635 pte_t *pte;
1636 int err;
2f569afd 1637 pgtable_t token;
94909914 1638 spinlock_t *uninitialized_var(ptl);
aee16b3c
JF
1639
1640 pte = (mm == &init_mm) ?
1641 pte_alloc_kernel(pmd, addr) :
1642 pte_alloc_map_lock(mm, pmd, addr, &ptl);
1643 if (!pte)
1644 return -ENOMEM;
1645
1646 BUG_ON(pmd_huge(*pmd));
1647
2f569afd 1648 token = pmd_pgtable(*pmd);
aee16b3c
JF
1649
1650 do {
2f569afd 1651 err = fn(pte, token, addr, data);
aee16b3c
JF
1652 if (err)
1653 break;
1654 } while (pte++, addr += PAGE_SIZE, addr != end);
1655
1656 if (mm != &init_mm)
1657 pte_unmap_unlock(pte-1, ptl);
1658 return err;
1659}
1660
1661static int apply_to_pmd_range(struct mm_struct *mm, pud_t *pud,
1662 unsigned long addr, unsigned long end,
1663 pte_fn_t fn, void *data)
1664{
1665 pmd_t *pmd;
1666 unsigned long next;
1667 int err;
1668
ceb86879
AK
1669 BUG_ON(pud_huge(*pud));
1670
aee16b3c
JF
1671 pmd = pmd_alloc(mm, pud, addr);
1672 if (!pmd)
1673 return -ENOMEM;
1674 do {
1675 next = pmd_addr_end(addr, end);
1676 err = apply_to_pte_range(mm, pmd, addr, next, fn, data);
1677 if (err)
1678 break;
1679 } while (pmd++, addr = next, addr != end);
1680 return err;
1681}
1682
1683static int apply_to_pud_range(struct mm_struct *mm, pgd_t *pgd,
1684 unsigned long addr, unsigned long end,
1685 pte_fn_t fn, void *data)
1686{
1687 pud_t *pud;
1688 unsigned long next;
1689 int err;
1690
1691 pud = pud_alloc(mm, pgd, addr);
1692 if (!pud)
1693 return -ENOMEM;
1694 do {
1695 next = pud_addr_end(addr, end);
1696 err = apply_to_pmd_range(mm, pud, addr, next, fn, data);
1697 if (err)
1698 break;
1699 } while (pud++, addr = next, addr != end);
1700 return err;
1701}
1702
1703/*
1704 * Scan a region of virtual memory, filling in page tables as necessary
1705 * and calling a provided function on each leaf page table.
1706 */
1707int apply_to_page_range(struct mm_struct *mm, unsigned long addr,
1708 unsigned long size, pte_fn_t fn, void *data)
1709{
1710 pgd_t *pgd;
1711 unsigned long next;
cddb8a5c 1712 unsigned long start = addr, end = addr + size;
aee16b3c
JF
1713 int err;
1714
1715 BUG_ON(addr >= end);
cddb8a5c 1716 mmu_notifier_invalidate_range_start(mm, start, end);
aee16b3c
JF
1717 pgd = pgd_offset(mm, addr);
1718 do {
1719 next = pgd_addr_end(addr, end);
1720 err = apply_to_pud_range(mm, pgd, addr, next, fn, data);
1721 if (err)
1722 break;
1723 } while (pgd++, addr = next, addr != end);
cddb8a5c 1724 mmu_notifier_invalidate_range_end(mm, start, end);
aee16b3c
JF
1725 return err;
1726}
1727EXPORT_SYMBOL_GPL(apply_to_page_range);
1728
8f4e2101
HD
1729/*
1730 * handle_pte_fault chooses page fault handler according to an entry
1731 * which was read non-atomically. Before making any commitment, on
1732 * those architectures or configurations (e.g. i386 with PAE) which
1733 * might give a mix of unmatched parts, do_swap_page and do_file_page
1734 * must check under lock before unmapping the pte and proceeding
1735 * (but do_wp_page is only called after already making such a check;
1736 * and do_anonymous_page and do_no_page can safely check later on).
1737 */
4c21e2f2 1738static inline int pte_unmap_same(struct mm_struct *mm, pmd_t *pmd,
8f4e2101
HD
1739 pte_t *page_table, pte_t orig_pte)
1740{
1741 int same = 1;
1742#if defined(CONFIG_SMP) || defined(CONFIG_PREEMPT)
1743 if (sizeof(pte_t) > sizeof(unsigned long)) {
4c21e2f2
HD
1744 spinlock_t *ptl = pte_lockptr(mm, pmd);
1745 spin_lock(ptl);
8f4e2101 1746 same = pte_same(*page_table, orig_pte);
4c21e2f2 1747 spin_unlock(ptl);
8f4e2101
HD
1748 }
1749#endif
1750 pte_unmap(page_table);
1751 return same;
1752}
1753
1da177e4
LT
1754/*
1755 * Do pte_mkwrite, but only if the vma says VM_WRITE. We do this when
1756 * servicing faults for write access. In the normal case, do always want
1757 * pte_mkwrite. But get_user_pages can cause write faults for mappings
1758 * that do not have writing enabled, when used by access_process_vm.
1759 */
1760static inline pte_t maybe_mkwrite(pte_t pte, struct vm_area_struct *vma)
1761{
1762 if (likely(vma->vm_flags & VM_WRITE))
1763 pte = pte_mkwrite(pte);
1764 return pte;
1765}
1766
9de455b2 1767static inline void cow_user_page(struct page *dst, struct page *src, unsigned long va, struct vm_area_struct *vma)
6aab341e
LT
1768{
1769 /*
1770 * If the source page was a PFN mapping, we don't have
1771 * a "struct page" for it. We do a best-effort copy by
1772 * just copying from the original user address. If that
1773 * fails, we just zero-fill it. Live with it.
1774 */
1775 if (unlikely(!src)) {
1776 void *kaddr = kmap_atomic(dst, KM_USER0);
5d2a2dbb
LT
1777 void __user *uaddr = (void __user *)(va & PAGE_MASK);
1778
1779 /*
1780 * This really shouldn't fail, because the page is there
1781 * in the page tables. But it might just be unreadable,
1782 * in which case we just give up and fill the result with
1783 * zeroes.
1784 */
1785 if (__copy_from_user_inatomic(kaddr, uaddr, PAGE_SIZE))
6aab341e
LT
1786 memset(kaddr, 0, PAGE_SIZE);
1787 kunmap_atomic(kaddr, KM_USER0);
c4ec7b0d 1788 flush_dcache_page(dst);
0ed361de
NP
1789 } else
1790 copy_user_highpage(dst, src, va, vma);
6aab341e
LT
1791}
1792
1da177e4
LT
1793/*
1794 * This routine handles present pages, when users try to write
1795 * to a shared page. It is done by copying the page to a new address
1796 * and decrementing the shared-page counter for the old page.
1797 *
1da177e4
LT
1798 * Note that this routine assumes that the protection checks have been
1799 * done by the caller (the low-level page fault routine in most cases).
1800 * Thus we can safely just mark it writable once we've done any necessary
1801 * COW.
1802 *
1803 * We also mark the page dirty at this point even though the page will
1804 * change only once the write actually happens. This avoids a few races,
1805 * and potentially makes it more efficient.
1806 *
8f4e2101
HD
1807 * We enter with non-exclusive mmap_sem (to exclude vma changes,
1808 * but allow concurrent faults), with pte both mapped and locked.
1809 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 1810 */
65500d23
HD
1811static int do_wp_page(struct mm_struct *mm, struct vm_area_struct *vma,
1812 unsigned long address, pte_t *page_table, pmd_t *pmd,
8f4e2101 1813 spinlock_t *ptl, pte_t orig_pte)
1da177e4 1814{
e5bbe4df 1815 struct page *old_page, *new_page;
1da177e4 1816 pte_t entry;
83c54070 1817 int reuse = 0, ret = 0;
a200ee18 1818 int page_mkwrite = 0;
d08b3851 1819 struct page *dirty_page = NULL;
1da177e4 1820
6aab341e 1821 old_page = vm_normal_page(vma, address, orig_pte);
251b97f5
PZ
1822 if (!old_page) {
1823 /*
1824 * VM_MIXEDMAP !pfn_valid() case
1825 *
1826 * We should not cow pages in a shared writeable mapping.
1827 * Just mark the pages writable as we can't do any dirty
1828 * accounting on raw pfn maps.
1829 */
1830 if ((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
1831 (VM_WRITE|VM_SHARED))
1832 goto reuse;
6aab341e 1833 goto gotten;
251b97f5 1834 }
1da177e4 1835
d08b3851 1836 /*
ee6a6457
PZ
1837 * Take out anonymous pages first, anonymous shared vmas are
1838 * not dirty accountable.
d08b3851 1839 */
ee6a6457 1840 if (PageAnon(old_page)) {
529ae9aa 1841 if (trylock_page(old_page)) {
ee6a6457
PZ
1842 reuse = can_share_swap_page(old_page);
1843 unlock_page(old_page);
1844 }
1845 } else if (unlikely((vma->vm_flags & (VM_WRITE|VM_SHARED)) ==
d08b3851 1846 (VM_WRITE|VM_SHARED))) {
ee6a6457
PZ
1847 /*
1848 * Only catch write-faults on shared writable pages,
1849 * read-only shared pages can get COWed by
1850 * get_user_pages(.write=1, .force=1).
1851 */
9637a5ef
DH
1852 if (vma->vm_ops && vma->vm_ops->page_mkwrite) {
1853 /*
1854 * Notify the address space that the page is about to
1855 * become writable so that it can prohibit this or wait
1856 * for the page to get into an appropriate state.
1857 *
1858 * We do this without the lock held, so that it can
1859 * sleep if it needs to.
1860 */
1861 page_cache_get(old_page);
1862 pte_unmap_unlock(page_table, ptl);
1863
1864 if (vma->vm_ops->page_mkwrite(vma, old_page) < 0)
1865 goto unwritable_page;
1866
9637a5ef
DH
1867 /*
1868 * Since we dropped the lock we need to revalidate
1869 * the PTE as someone else may have changed it. If
1870 * they did, we just return, as we can count on the
1871 * MMU to tell us if they didn't also make it writable.
1872 */
1873 page_table = pte_offset_map_lock(mm, pmd, address,
1874 &ptl);
c3704ceb 1875 page_cache_release(old_page);
9637a5ef
DH
1876 if (!pte_same(*page_table, orig_pte))
1877 goto unlock;
a200ee18
PZ
1878
1879 page_mkwrite = 1;
1da177e4 1880 }
d08b3851
PZ
1881 dirty_page = old_page;
1882 get_page(dirty_page);
9637a5ef 1883 reuse = 1;
9637a5ef
DH
1884 }
1885
1886 if (reuse) {
251b97f5 1887reuse:
9637a5ef
DH
1888 flush_cache_page(vma, address, pte_pfn(orig_pte));
1889 entry = pte_mkyoung(orig_pte);
1890 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
954ffcb3 1891 if (ptep_set_access_flags(vma, address, page_table, entry,1))
8dab5241 1892 update_mmu_cache(vma, address, entry);
9637a5ef
DH
1893 ret |= VM_FAULT_WRITE;
1894 goto unlock;
1da177e4 1895 }
1da177e4
LT
1896
1897 /*
1898 * Ok, we need to copy. Oh, well..
1899 */
b5810039 1900 page_cache_get(old_page);
920fc356 1901gotten:
8f4e2101 1902 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
1903
1904 if (unlikely(anon_vma_prepare(vma)))
65500d23 1905 goto oom;
557ed1fa
NP
1906 VM_BUG_ON(old_page == ZERO_PAGE(0));
1907 new_page = alloc_page_vma(GFP_HIGHUSER_MOVABLE, vma, address);
1908 if (!new_page)
1909 goto oom;
b291f000
NP
1910 /*
1911 * Don't let another task, with possibly unlocked vma,
1912 * keep the mlocked page.
1913 */
1914 if (vma->vm_flags & VM_LOCKED) {
1915 lock_page(old_page); /* for LRU manipulation */
1916 clear_page_mlock(old_page);
1917 unlock_page(old_page);
1918 }
557ed1fa 1919 cow_user_page(new_page, old_page, address, vma);
0ed361de 1920 __SetPageUptodate(new_page);
65500d23 1921
e1a1cd59 1922 if (mem_cgroup_charge(new_page, mm, GFP_KERNEL))
8a9f3ccd
BS
1923 goto oom_free_new;
1924
1da177e4
LT
1925 /*
1926 * Re-check the pte - we dropped the lock
1927 */
8f4e2101 1928 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
65500d23 1929 if (likely(pte_same(*page_table, orig_pte))) {
920fc356 1930 if (old_page) {
920fc356
HD
1931 if (!PageAnon(old_page)) {
1932 dec_mm_counter(mm, file_rss);
1933 inc_mm_counter(mm, anon_rss);
1934 }
1935 } else
4294621f 1936 inc_mm_counter(mm, anon_rss);
eca35133 1937 flush_cache_page(vma, address, pte_pfn(orig_pte));
65500d23
HD
1938 entry = mk_pte(new_page, vma->vm_page_prot);
1939 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
4ce072f1
SS
1940 /*
1941 * Clear the pte entry and flush it first, before updating the
1942 * pte with the new entry. This will avoid a race condition
1943 * seen in the presence of one thread doing SMC and another
1944 * thread doing COW.
1945 */
cddb8a5c 1946 ptep_clear_flush_notify(vma, address, page_table);
b2e18538 1947 SetPageSwapBacked(new_page);
64d6519d 1948 lru_cache_add_active_or_unevictable(new_page, vma);
9617d95e 1949 page_add_new_anon_rmap(new_page, vma, address);
1da177e4 1950
64d6519d
LS
1951//TODO: is this safe? do_anonymous_page() does it this way.
1952 set_pte_at(mm, address, page_table, entry);
1953 update_mmu_cache(vma, address, entry);
945754a1
NP
1954 if (old_page) {
1955 /*
1956 * Only after switching the pte to the new page may
1957 * we remove the mapcount here. Otherwise another
1958 * process may come and find the rmap count decremented
1959 * before the pte is switched to the new page, and
1960 * "reuse" the old page writing into it while our pte
1961 * here still points into it and can be read by other
1962 * threads.
1963 *
1964 * The critical issue is to order this
1965 * page_remove_rmap with the ptp_clear_flush above.
1966 * Those stores are ordered by (if nothing else,)
1967 * the barrier present in the atomic_add_negative
1968 * in page_remove_rmap.
1969 *
1970 * Then the TLB flush in ptep_clear_flush ensures that
1971 * no process can access the old page before the
1972 * decremented mapcount is visible. And the old page
1973 * cannot be reused until after the decremented
1974 * mapcount is visible. So transitively, TLBs to
1975 * old page will be flushed before it can be reused.
1976 */
1977 page_remove_rmap(old_page, vma);
1978 }
1979
1da177e4
LT
1980 /* Free the old page.. */
1981 new_page = old_page;
f33ea7f4 1982 ret |= VM_FAULT_WRITE;
8a9f3ccd
BS
1983 } else
1984 mem_cgroup_uncharge_page(new_page);
1985
920fc356
HD
1986 if (new_page)
1987 page_cache_release(new_page);
1988 if (old_page)
1989 page_cache_release(old_page);
65500d23 1990unlock:
8f4e2101 1991 pte_unmap_unlock(page_table, ptl);
d08b3851 1992 if (dirty_page) {
8f7b3d15
AS
1993 if (vma->vm_file)
1994 file_update_time(vma->vm_file);
1995
79352894
NP
1996 /*
1997 * Yes, Virginia, this is actually required to prevent a race
1998 * with clear_page_dirty_for_io() from clearing the page dirty
1999 * bit after it clear all dirty ptes, but before a racing
2000 * do_wp_page installs a dirty pte.
2001 *
2002 * do_no_page is protected similarly.
2003 */
2004 wait_on_page_locked(dirty_page);
a200ee18 2005 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
2006 put_page(dirty_page);
2007 }
f33ea7f4 2008 return ret;
8a9f3ccd 2009oom_free_new:
6dbf6d3b 2010 page_cache_release(new_page);
65500d23 2011oom:
920fc356
HD
2012 if (old_page)
2013 page_cache_release(old_page);
1da177e4 2014 return VM_FAULT_OOM;
9637a5ef
DH
2015
2016unwritable_page:
2017 page_cache_release(old_page);
2018 return VM_FAULT_SIGBUS;
1da177e4
LT
2019}
2020
2021/*
2022 * Helper functions for unmap_mapping_range().
2023 *
2024 * __ Notes on dropping i_mmap_lock to reduce latency while unmapping __
2025 *
2026 * We have to restart searching the prio_tree whenever we drop the lock,
2027 * since the iterator is only valid while the lock is held, and anyway
2028 * a later vma might be split and reinserted earlier while lock dropped.
2029 *
2030 * The list of nonlinear vmas could be handled more efficiently, using
2031 * a placeholder, but handle it in the same way until a need is shown.
2032 * It is important to search the prio_tree before nonlinear list: a vma
2033 * may become nonlinear and be shifted from prio_tree to nonlinear list
2034 * while the lock is dropped; but never shifted from list to prio_tree.
2035 *
2036 * In order to make forward progress despite restarting the search,
2037 * vm_truncate_count is used to mark a vma as now dealt with, so we can
2038 * quickly skip it next time around. Since the prio_tree search only
2039 * shows us those vmas affected by unmapping the range in question, we
2040 * can't efficiently keep all vmas in step with mapping->truncate_count:
2041 * so instead reset them all whenever it wraps back to 0 (then go to 1).
2042 * mapping->truncate_count and vma->vm_truncate_count are protected by
2043 * i_mmap_lock.
2044 *
2045 * In order to make forward progress despite repeatedly restarting some
ee39b37b 2046 * large vma, note the restart_addr from unmap_vmas when it breaks out:
1da177e4
LT
2047 * and restart from that address when we reach that vma again. It might
2048 * have been split or merged, shrunk or extended, but never shifted: so
2049 * restart_addr remains valid so long as it remains in the vma's range.
2050 * unmap_mapping_range forces truncate_count to leap over page-aligned
2051 * values so we can save vma's restart_addr in its truncate_count field.
2052 */
2053#define is_restart_addr(truncate_count) (!((truncate_count) & ~PAGE_MASK))
2054
2055static void reset_vma_truncate_counts(struct address_space *mapping)
2056{
2057 struct vm_area_struct *vma;
2058 struct prio_tree_iter iter;
2059
2060 vma_prio_tree_foreach(vma, &iter, &mapping->i_mmap, 0, ULONG_MAX)
2061 vma->vm_truncate_count = 0;
2062 list_for_each_entry(vma, &mapping->i_mmap_nonlinear, shared.vm_set.list)
2063 vma->vm_truncate_count = 0;
2064}
2065
2066static int unmap_mapping_range_vma(struct vm_area_struct *vma,
2067 unsigned long start_addr, unsigned long end_addr,
2068 struct zap_details *details)
2069{
2070 unsigned long restart_addr;
2071 int need_break;
2072
d00806b1
NP
2073 /*
2074 * files that support invalidating or truncating portions of the
d0217ac0 2075 * file from under mmaped areas must have their ->fault function
83c54070
NP
2076 * return a locked page (and set VM_FAULT_LOCKED in the return).
2077 * This provides synchronisation against concurrent unmapping here.
d00806b1 2078 */
d00806b1 2079
1da177e4
LT
2080again:
2081 restart_addr = vma->vm_truncate_count;
2082 if (is_restart_addr(restart_addr) && start_addr < restart_addr) {
2083 start_addr = restart_addr;
2084 if (start_addr >= end_addr) {
2085 /* Top of vma has been split off since last time */
2086 vma->vm_truncate_count = details->truncate_count;
2087 return 0;
2088 }
2089 }
2090
ee39b37b
HD
2091 restart_addr = zap_page_range(vma, start_addr,
2092 end_addr - start_addr, details);
95c354fe 2093 need_break = need_resched() || spin_needbreak(details->i_mmap_lock);
1da177e4 2094
ee39b37b 2095 if (restart_addr >= end_addr) {
1da177e4
LT
2096 /* We have now completed this vma: mark it so */
2097 vma->vm_truncate_count = details->truncate_count;
2098 if (!need_break)
2099 return 0;
2100 } else {
2101 /* Note restart_addr in vma's truncate_count field */
ee39b37b 2102 vma->vm_truncate_count = restart_addr;
1da177e4
LT
2103 if (!need_break)
2104 goto again;
2105 }
2106
2107 spin_unlock(details->i_mmap_lock);
2108 cond_resched();
2109 spin_lock(details->i_mmap_lock);
2110 return -EINTR;
2111}
2112
2113static inline void unmap_mapping_range_tree(struct prio_tree_root *root,
2114 struct zap_details *details)
2115{
2116 struct vm_area_struct *vma;
2117 struct prio_tree_iter iter;
2118 pgoff_t vba, vea, zba, zea;
2119
2120restart:
2121 vma_prio_tree_foreach(vma, &iter, root,
2122 details->first_index, details->last_index) {
2123 /* Skip quickly over those we have already dealt with */
2124 if (vma->vm_truncate_count == details->truncate_count)
2125 continue;
2126
2127 vba = vma->vm_pgoff;
2128 vea = vba + ((vma->vm_end - vma->vm_start) >> PAGE_SHIFT) - 1;
2129 /* Assume for now that PAGE_CACHE_SHIFT == PAGE_SHIFT */
2130 zba = details->first_index;
2131 if (zba < vba)
2132 zba = vba;
2133 zea = details->last_index;
2134 if (zea > vea)
2135 zea = vea;
2136
2137 if (unmap_mapping_range_vma(vma,
2138 ((zba - vba) << PAGE_SHIFT) + vma->vm_start,
2139 ((zea - vba + 1) << PAGE_SHIFT) + vma->vm_start,
2140 details) < 0)
2141 goto restart;
2142 }
2143}
2144
2145static inline void unmap_mapping_range_list(struct list_head *head,
2146 struct zap_details *details)
2147{
2148 struct vm_area_struct *vma;
2149
2150 /*
2151 * In nonlinear VMAs there is no correspondence between virtual address
2152 * offset and file offset. So we must perform an exhaustive search
2153 * across *all* the pages in each nonlinear VMA, not just the pages
2154 * whose virtual address lies outside the file truncation point.
2155 */
2156restart:
2157 list_for_each_entry(vma, head, shared.vm_set.list) {
2158 /* Skip quickly over those we have already dealt with */
2159 if (vma->vm_truncate_count == details->truncate_count)
2160 continue;
2161 details->nonlinear_vma = vma;
2162 if (unmap_mapping_range_vma(vma, vma->vm_start,
2163 vma->vm_end, details) < 0)
2164 goto restart;
2165 }
2166}
2167
2168/**
72fd4a35 2169 * unmap_mapping_range - unmap the portion of all mmaps in the specified address_space corresponding to the specified page range in the underlying file.
3d41088f 2170 * @mapping: the address space containing mmaps to be unmapped.
1da177e4
LT
2171 * @holebegin: byte in first page to unmap, relative to the start of
2172 * the underlying file. This will be rounded down to a PAGE_SIZE
2173 * boundary. Note that this is different from vmtruncate(), which
2174 * must keep the partial page. In contrast, we must get rid of
2175 * partial pages.
2176 * @holelen: size of prospective hole in bytes. This will be rounded
2177 * up to a PAGE_SIZE boundary. A holelen of zero truncates to the
2178 * end of the file.
2179 * @even_cows: 1 when truncating a file, unmap even private COWed pages;
2180 * but 0 when invalidating pagecache, don't throw away private data.
2181 */
2182void unmap_mapping_range(struct address_space *mapping,
2183 loff_t const holebegin, loff_t const holelen, int even_cows)
2184{
2185 struct zap_details details;
2186 pgoff_t hba = holebegin >> PAGE_SHIFT;
2187 pgoff_t hlen = (holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2188
2189 /* Check for overflow. */
2190 if (sizeof(holelen) > sizeof(hlen)) {
2191 long long holeend =
2192 (holebegin + holelen + PAGE_SIZE - 1) >> PAGE_SHIFT;
2193 if (holeend & ~(long long)ULONG_MAX)
2194 hlen = ULONG_MAX - hba + 1;
2195 }
2196
2197 details.check_mapping = even_cows? NULL: mapping;
2198 details.nonlinear_vma = NULL;
2199 details.first_index = hba;
2200 details.last_index = hba + hlen - 1;
2201 if (details.last_index < details.first_index)
2202 details.last_index = ULONG_MAX;
2203 details.i_mmap_lock = &mapping->i_mmap_lock;
2204
2205 spin_lock(&mapping->i_mmap_lock);
2206
d00806b1 2207 /* Protect against endless unmapping loops */
1da177e4 2208 mapping->truncate_count++;
1da177e4
LT
2209 if (unlikely(is_restart_addr(mapping->truncate_count))) {
2210 if (mapping->truncate_count == 0)
2211 reset_vma_truncate_counts(mapping);
2212 mapping->truncate_count++;
2213 }
2214 details.truncate_count = mapping->truncate_count;
2215
2216 if (unlikely(!prio_tree_empty(&mapping->i_mmap)))
2217 unmap_mapping_range_tree(&mapping->i_mmap, &details);
2218 if (unlikely(!list_empty(&mapping->i_mmap_nonlinear)))
2219 unmap_mapping_range_list(&mapping->i_mmap_nonlinear, &details);
2220 spin_unlock(&mapping->i_mmap_lock);
2221}
2222EXPORT_SYMBOL(unmap_mapping_range);
2223
bfa5bf6d
REB
2224/**
2225 * vmtruncate - unmap mappings "freed" by truncate() syscall
2226 * @inode: inode of the file used
2227 * @offset: file offset to start truncating
1da177e4
LT
2228 *
2229 * NOTE! We have to be ready to update the memory sharing
2230 * between the file and the memory map for a potential last
2231 * incomplete page. Ugly, but necessary.
2232 */
2233int vmtruncate(struct inode * inode, loff_t offset)
2234{
61d5048f
CH
2235 if (inode->i_size < offset) {
2236 unsigned long limit;
2237
2238 limit = current->signal->rlim[RLIMIT_FSIZE].rlim_cur;
2239 if (limit != RLIM_INFINITY && offset > limit)
2240 goto out_sig;
2241 if (offset > inode->i_sb->s_maxbytes)
2242 goto out_big;
2243 i_size_write(inode, offset);
2244 } else {
2245 struct address_space *mapping = inode->i_mapping;
1da177e4 2246
61d5048f
CH
2247 /*
2248 * truncation of in-use swapfiles is disallowed - it would
2249 * cause subsequent swapout to scribble on the now-freed
2250 * blocks.
2251 */
2252 if (IS_SWAPFILE(inode))
2253 return -ETXTBSY;
2254 i_size_write(inode, offset);
2255
2256 /*
2257 * unmap_mapping_range is called twice, first simply for
2258 * efficiency so that truncate_inode_pages does fewer
2259 * single-page unmaps. However after this first call, and
2260 * before truncate_inode_pages finishes, it is possible for
2261 * private pages to be COWed, which remain after
2262 * truncate_inode_pages finishes, hence the second
2263 * unmap_mapping_range call must be made for correctness.
2264 */
2265 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2266 truncate_inode_pages(mapping, offset);
2267 unmap_mapping_range(mapping, offset + PAGE_SIZE - 1, 0, 1);
2268 }
d00806b1 2269
acfa4380 2270 if (inode->i_op->truncate)
1da177e4
LT
2271 inode->i_op->truncate(inode);
2272 return 0;
61d5048f 2273
1da177e4
LT
2274out_sig:
2275 send_sig(SIGXFSZ, current, 0);
2276out_big:
2277 return -EFBIG;
1da177e4 2278}
1da177e4
LT
2279EXPORT_SYMBOL(vmtruncate);
2280
f6b3ec23
BP
2281int vmtruncate_range(struct inode *inode, loff_t offset, loff_t end)
2282{
2283 struct address_space *mapping = inode->i_mapping;
2284
2285 /*
2286 * If the underlying filesystem is not going to provide
2287 * a way to truncate a range of blocks (punch a hole) -
2288 * we should return failure right now.
2289 */
acfa4380 2290 if (!inode->i_op->truncate_range)
f6b3ec23
BP
2291 return -ENOSYS;
2292
1b1dcc1b 2293 mutex_lock(&inode->i_mutex);
f6b3ec23
BP
2294 down_write(&inode->i_alloc_sem);
2295 unmap_mapping_range(mapping, offset, (end - offset), 1);
2296 truncate_inode_pages_range(mapping, offset, end);
d00806b1 2297 unmap_mapping_range(mapping, offset, (end - offset), 1);
f6b3ec23
BP
2298 inode->i_op->truncate_range(inode, offset, end);
2299 up_write(&inode->i_alloc_sem);
1b1dcc1b 2300 mutex_unlock(&inode->i_mutex);
f6b3ec23
BP
2301
2302 return 0;
2303}
f6b3ec23 2304
1da177e4 2305/*
8f4e2101
HD
2306 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2307 * but allow concurrent faults), and pte mapped but not yet locked.
2308 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2309 */
65500d23
HD
2310static int do_swap_page(struct mm_struct *mm, struct vm_area_struct *vma,
2311 unsigned long address, pte_t *page_table, pmd_t *pmd,
2312 int write_access, pte_t orig_pte)
1da177e4 2313{
8f4e2101 2314 spinlock_t *ptl;
1da177e4 2315 struct page *page;
65500d23 2316 swp_entry_t entry;
1da177e4 2317 pte_t pte;
83c54070 2318 int ret = 0;
1da177e4 2319
4c21e2f2 2320 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
8f4e2101 2321 goto out;
65500d23
HD
2322
2323 entry = pte_to_swp_entry(orig_pte);
0697212a
CL
2324 if (is_migration_entry(entry)) {
2325 migration_entry_wait(mm, pmd, address);
2326 goto out;
2327 }
0ff92245 2328 delayacct_set_flag(DELAYACCT_PF_SWAPIN);
1da177e4
LT
2329 page = lookup_swap_cache(entry);
2330 if (!page) {
098fe651 2331 grab_swap_token(); /* Contend for token _before_ read-in */
02098fea
HD
2332 page = swapin_readahead(entry,
2333 GFP_HIGHUSER_MOVABLE, vma, address);
1da177e4
LT
2334 if (!page) {
2335 /*
8f4e2101
HD
2336 * Back out if somebody else faulted in this pte
2337 * while we released the pte lock.
1da177e4 2338 */
8f4e2101 2339 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2340 if (likely(pte_same(*page_table, orig_pte)))
2341 ret = VM_FAULT_OOM;
0ff92245 2342 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
65500d23 2343 goto unlock;
1da177e4
LT
2344 }
2345
2346 /* Had to read the page from swap area: Major fault */
2347 ret = VM_FAULT_MAJOR;
f8891e5e 2348 count_vm_event(PGMAJFAULT);
1da177e4
LT
2349 }
2350
073e587e
KH
2351 mark_page_accessed(page);
2352
2353 lock_page(page);
2354 delayacct_clear_flag(DELAYACCT_PF_SWAPIN);
2355
e1a1cd59 2356 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
8a9f3ccd 2357 ret = VM_FAULT_OOM;
073e587e 2358 unlock_page(page);
8a9f3ccd
BS
2359 goto out;
2360 }
2361
1da177e4 2362 /*
8f4e2101 2363 * Back out if somebody else already faulted in this pte.
1da177e4 2364 */
8f4e2101 2365 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
9e9bef07 2366 if (unlikely(!pte_same(*page_table, orig_pte)))
b8107480 2367 goto out_nomap;
b8107480
KK
2368
2369 if (unlikely(!PageUptodate(page))) {
2370 ret = VM_FAULT_SIGBUS;
2371 goto out_nomap;
1da177e4
LT
2372 }
2373
2374 /* The page isn't present yet, go ahead with the fault. */
1da177e4 2375
4294621f 2376 inc_mm_counter(mm, anon_rss);
1da177e4
LT
2377 pte = mk_pte(page, vma->vm_page_prot);
2378 if (write_access && can_share_swap_page(page)) {
2379 pte = maybe_mkwrite(pte_mkdirty(pte), vma);
2380 write_access = 0;
2381 }
1da177e4
LT
2382
2383 flush_icache_page(vma, page);
2384 set_pte_at(mm, address, page_table, pte);
2385 page_add_anon_rmap(page, vma, address);
2386
c475a8ab 2387 swap_free(entry);
b291f000 2388 if (vm_swap_full() || (vma->vm_flags & VM_LOCKED) || PageMlocked(page))
c475a8ab
HD
2389 remove_exclusive_swap_page(page);
2390 unlock_page(page);
2391
1da177e4 2392 if (write_access) {
61469f1d
HD
2393 ret |= do_wp_page(mm, vma, address, page_table, pmd, ptl, pte);
2394 if (ret & VM_FAULT_ERROR)
2395 ret &= VM_FAULT_ERROR;
1da177e4
LT
2396 goto out;
2397 }
2398
2399 /* No need to invalidate - it was non-present before */
2400 update_mmu_cache(vma, address, pte);
65500d23 2401unlock:
8f4e2101 2402 pte_unmap_unlock(page_table, ptl);
1da177e4
LT
2403out:
2404 return ret;
b8107480 2405out_nomap:
8a9f3ccd 2406 mem_cgroup_uncharge_page(page);
8f4e2101 2407 pte_unmap_unlock(page_table, ptl);
b8107480
KK
2408 unlock_page(page);
2409 page_cache_release(page);
65500d23 2410 return ret;
1da177e4
LT
2411}
2412
2413/*
8f4e2101
HD
2414 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2415 * but allow concurrent faults), and pte mapped but not yet locked.
2416 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2417 */
65500d23
HD
2418static int do_anonymous_page(struct mm_struct *mm, struct vm_area_struct *vma,
2419 unsigned long address, pte_t *page_table, pmd_t *pmd,
2420 int write_access)
1da177e4 2421{
8f4e2101
HD
2422 struct page *page;
2423 spinlock_t *ptl;
1da177e4 2424 pte_t entry;
1da177e4 2425
557ed1fa
NP
2426 /* Allocate our own private page. */
2427 pte_unmap(page_table);
8f4e2101 2428
557ed1fa
NP
2429 if (unlikely(anon_vma_prepare(vma)))
2430 goto oom;
2431 page = alloc_zeroed_user_highpage_movable(vma, address);
2432 if (!page)
2433 goto oom;
0ed361de 2434 __SetPageUptodate(page);
8f4e2101 2435
e1a1cd59 2436 if (mem_cgroup_charge(page, mm, GFP_KERNEL))
8a9f3ccd
BS
2437 goto oom_free_page;
2438
557ed1fa
NP
2439 entry = mk_pte(page, vma->vm_page_prot);
2440 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2441
557ed1fa
NP
2442 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
2443 if (!pte_none(*page_table))
2444 goto release;
2445 inc_mm_counter(mm, anon_rss);
b2e18538 2446 SetPageSwapBacked(page);
64d6519d 2447 lru_cache_add_active_or_unevictable(page, vma);
557ed1fa 2448 page_add_new_anon_rmap(page, vma, address);
65500d23 2449 set_pte_at(mm, address, page_table, entry);
1da177e4
LT
2450
2451 /* No need to invalidate - it was non-present before */
65500d23 2452 update_mmu_cache(vma, address, entry);
65500d23 2453unlock:
8f4e2101 2454 pte_unmap_unlock(page_table, ptl);
83c54070 2455 return 0;
8f4e2101 2456release:
8a9f3ccd 2457 mem_cgroup_uncharge_page(page);
8f4e2101
HD
2458 page_cache_release(page);
2459 goto unlock;
8a9f3ccd 2460oom_free_page:
6dbf6d3b 2461 page_cache_release(page);
65500d23 2462oom:
1da177e4
LT
2463 return VM_FAULT_OOM;
2464}
2465
2466/*
54cb8821 2467 * __do_fault() tries to create a new page mapping. It aggressively
1da177e4 2468 * tries to share with existing pages, but makes a separate copy if
54cb8821
NP
2469 * the FAULT_FLAG_WRITE is set in the flags parameter in order to avoid
2470 * the next page fault.
1da177e4
LT
2471 *
2472 * As this is called only for pages that do not currently exist, we
2473 * do not need to flush old virtual caches or the TLB.
2474 *
8f4e2101 2475 * We enter with non-exclusive mmap_sem (to exclude vma changes,
16abfa08 2476 * but allow concurrent faults), and pte neither mapped nor locked.
8f4e2101 2477 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2478 */
54cb8821 2479static int __do_fault(struct mm_struct *mm, struct vm_area_struct *vma,
16abfa08 2480 unsigned long address, pmd_t *pmd,
54cb8821 2481 pgoff_t pgoff, unsigned int flags, pte_t orig_pte)
1da177e4 2482{
16abfa08 2483 pte_t *page_table;
8f4e2101 2484 spinlock_t *ptl;
d0217ac0 2485 struct page *page;
1da177e4 2486 pte_t entry;
1da177e4 2487 int anon = 0;
5b4e655e 2488 int charged = 0;
d08b3851 2489 struct page *dirty_page = NULL;
d0217ac0
NP
2490 struct vm_fault vmf;
2491 int ret;
a200ee18 2492 int page_mkwrite = 0;
54cb8821 2493
d0217ac0
NP
2494 vmf.virtual_address = (void __user *)(address & PAGE_MASK);
2495 vmf.pgoff = pgoff;
2496 vmf.flags = flags;
2497 vmf.page = NULL;
1da177e4 2498
3c18ddd1
NP
2499 ret = vma->vm_ops->fault(vma, &vmf);
2500 if (unlikely(ret & (VM_FAULT_ERROR | VM_FAULT_NOPAGE)))
2501 return ret;
1da177e4 2502
d00806b1 2503 /*
d0217ac0 2504 * For consistency in subsequent calls, make the faulted page always
d00806b1
NP
2505 * locked.
2506 */
83c54070 2507 if (unlikely(!(ret & VM_FAULT_LOCKED)))
d0217ac0 2508 lock_page(vmf.page);
54cb8821 2509 else
d0217ac0 2510 VM_BUG_ON(!PageLocked(vmf.page));
d00806b1 2511
1da177e4
LT
2512 /*
2513 * Should we do an early C-O-W break?
2514 */
d0217ac0 2515 page = vmf.page;
54cb8821 2516 if (flags & FAULT_FLAG_WRITE) {
9637a5ef 2517 if (!(vma->vm_flags & VM_SHARED)) {
54cb8821 2518 anon = 1;
d00806b1 2519 if (unlikely(anon_vma_prepare(vma))) {
d0217ac0 2520 ret = VM_FAULT_OOM;
54cb8821 2521 goto out;
d00806b1 2522 }
83c54070
NP
2523 page = alloc_page_vma(GFP_HIGHUSER_MOVABLE,
2524 vma, address);
d00806b1 2525 if (!page) {
d0217ac0 2526 ret = VM_FAULT_OOM;
54cb8821 2527 goto out;
d00806b1 2528 }
5b4e655e
KH
2529 if (mem_cgroup_charge(page, mm, GFP_KERNEL)) {
2530 ret = VM_FAULT_OOM;
2531 page_cache_release(page);
2532 goto out;
2533 }
2534 charged = 1;
b291f000
NP
2535 /*
2536 * Don't let another task, with possibly unlocked vma,
2537 * keep the mlocked page.
2538 */
2539 if (vma->vm_flags & VM_LOCKED)
2540 clear_page_mlock(vmf.page);
d0217ac0 2541 copy_user_highpage(page, vmf.page, address, vma);
0ed361de 2542 __SetPageUptodate(page);
9637a5ef 2543 } else {
54cb8821
NP
2544 /*
2545 * If the page will be shareable, see if the backing
9637a5ef 2546 * address space wants to know that the page is about
54cb8821
NP
2547 * to become writable
2548 */
69676147
MF
2549 if (vma->vm_ops->page_mkwrite) {
2550 unlock_page(page);
2551 if (vma->vm_ops->page_mkwrite(vma, page) < 0) {
d0217ac0
NP
2552 ret = VM_FAULT_SIGBUS;
2553 anon = 1; /* no anon but release vmf.page */
69676147
MF
2554 goto out_unlocked;
2555 }
2556 lock_page(page);
d0217ac0
NP
2557 /*
2558 * XXX: this is not quite right (racy vs
2559 * invalidate) to unlock and relock the page
2560 * like this, however a better fix requires
2561 * reworking page_mkwrite locking API, which
2562 * is better done later.
2563 */
2564 if (!page->mapping) {
83c54070 2565 ret = 0;
d0217ac0
NP
2566 anon = 1; /* no anon but release vmf.page */
2567 goto out;
2568 }
a200ee18 2569 page_mkwrite = 1;
9637a5ef
DH
2570 }
2571 }
54cb8821 2572
1da177e4
LT
2573 }
2574
8f4e2101 2575 page_table = pte_offset_map_lock(mm, pmd, address, &ptl);
1da177e4
LT
2576
2577 /*
2578 * This silly early PAGE_DIRTY setting removes a race
2579 * due to the bad i386 page protection. But it's valid
2580 * for other architectures too.
2581 *
2582 * Note that if write_access is true, we either now have
2583 * an exclusive copy of the page, or this is a shared mapping,
2584 * so we can make it writable and dirty to avoid having to
2585 * handle that later.
2586 */
2587 /* Only go through if we didn't race with anybody else... */
54cb8821 2588 if (likely(pte_same(*page_table, orig_pte))) {
d00806b1
NP
2589 flush_icache_page(vma, page);
2590 entry = mk_pte(page, vma->vm_page_prot);
54cb8821 2591 if (flags & FAULT_FLAG_WRITE)
1da177e4 2592 entry = maybe_mkwrite(pte_mkdirty(entry), vma);
1da177e4 2593 if (anon) {
64d6519d 2594 inc_mm_counter(mm, anon_rss);
b2e18538 2595 SetPageSwapBacked(page);
64d6519d
LS
2596 lru_cache_add_active_or_unevictable(page, vma);
2597 page_add_new_anon_rmap(page, vma, address);
f57e88a8 2598 } else {
4294621f 2599 inc_mm_counter(mm, file_rss);
d00806b1 2600 page_add_file_rmap(page);
54cb8821 2601 if (flags & FAULT_FLAG_WRITE) {
d00806b1 2602 dirty_page = page;
d08b3851
PZ
2603 get_page(dirty_page);
2604 }
4294621f 2605 }
64d6519d
LS
2606//TODO: is this safe? do_anonymous_page() does it this way.
2607 set_pte_at(mm, address, page_table, entry);
d00806b1
NP
2608
2609 /* no need to invalidate: a not-present page won't be cached */
2610 update_mmu_cache(vma, address, entry);
1da177e4 2611 } else {
5b4e655e
KH
2612 if (charged)
2613 mem_cgroup_uncharge_page(page);
d00806b1
NP
2614 if (anon)
2615 page_cache_release(page);
2616 else
54cb8821 2617 anon = 1; /* no anon but release faulted_page */
1da177e4
LT
2618 }
2619
8f4e2101 2620 pte_unmap_unlock(page_table, ptl);
d00806b1
NP
2621
2622out:
d0217ac0 2623 unlock_page(vmf.page);
69676147 2624out_unlocked:
d00806b1 2625 if (anon)
d0217ac0 2626 page_cache_release(vmf.page);
d00806b1 2627 else if (dirty_page) {
8f7b3d15
AS
2628 if (vma->vm_file)
2629 file_update_time(vma->vm_file);
2630
a200ee18 2631 set_page_dirty_balance(dirty_page, page_mkwrite);
d08b3851
PZ
2632 put_page(dirty_page);
2633 }
d00806b1 2634
83c54070 2635 return ret;
54cb8821 2636}
d00806b1 2637
54cb8821
NP
2638static int do_linear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
2639 unsigned long address, pte_t *page_table, pmd_t *pmd,
2640 int write_access, pte_t orig_pte)
2641{
2642 pgoff_t pgoff = (((address & PAGE_MASK)
0da7e01f 2643 - vma->vm_start) >> PAGE_SHIFT) + vma->vm_pgoff;
54cb8821
NP
2644 unsigned int flags = (write_access ? FAULT_FLAG_WRITE : 0);
2645
16abfa08
HD
2646 pte_unmap(page_table);
2647 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
54cb8821
NP
2648}
2649
1da177e4
LT
2650/*
2651 * Fault of a previously existing named mapping. Repopulate the pte
2652 * from the encoded file_pte if possible. This enables swappable
2653 * nonlinear vmas.
8f4e2101
HD
2654 *
2655 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2656 * but allow concurrent faults), and pte mapped but not yet locked.
2657 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4 2658 */
d0217ac0 2659static int do_nonlinear_fault(struct mm_struct *mm, struct vm_area_struct *vma,
65500d23
HD
2660 unsigned long address, pte_t *page_table, pmd_t *pmd,
2661 int write_access, pte_t orig_pte)
1da177e4 2662{
d0217ac0
NP
2663 unsigned int flags = FAULT_FLAG_NONLINEAR |
2664 (write_access ? FAULT_FLAG_WRITE : 0);
65500d23 2665 pgoff_t pgoff;
1da177e4 2666
4c21e2f2 2667 if (!pte_unmap_same(mm, pmd, page_table, orig_pte))
83c54070 2668 return 0;
1da177e4 2669
d0217ac0
NP
2670 if (unlikely(!(vma->vm_flags & VM_NONLINEAR) ||
2671 !(vma->vm_flags & VM_CAN_NONLINEAR))) {
65500d23
HD
2672 /*
2673 * Page table corrupted: show pte and kill process.
2674 */
b5810039 2675 print_bad_pte(vma, orig_pte, address);
65500d23
HD
2676 return VM_FAULT_OOM;
2677 }
65500d23
HD
2678
2679 pgoff = pte_to_pgoff(orig_pte);
16abfa08 2680 return __do_fault(mm, vma, address, pmd, pgoff, flags, orig_pte);
1da177e4
LT
2681}
2682
2683/*
2684 * These routines also need to handle stuff like marking pages dirty
2685 * and/or accessed for architectures that don't do it in hardware (most
2686 * RISC architectures). The early dirtying is also good on the i386.
2687 *
2688 * There is also a hook called "update_mmu_cache()" that architectures
2689 * with external mmu caches can use to update those (ie the Sparc or
2690 * PowerPC hashed page tables that act as extended TLBs).
2691 *
c74df32c
HD
2692 * We enter with non-exclusive mmap_sem (to exclude vma changes,
2693 * but allow concurrent faults), and pte mapped but not yet locked.
2694 * We return with mmap_sem still held, but pte unmapped and unlocked.
1da177e4
LT
2695 */
2696static inline int handle_pte_fault(struct mm_struct *mm,
65500d23
HD
2697 struct vm_area_struct *vma, unsigned long address,
2698 pte_t *pte, pmd_t *pmd, int write_access)
1da177e4
LT
2699{
2700 pte_t entry;
8f4e2101 2701 spinlock_t *ptl;
1da177e4 2702
8dab5241 2703 entry = *pte;
1da177e4 2704 if (!pte_present(entry)) {
65500d23 2705 if (pte_none(entry)) {
f4b81804 2706 if (vma->vm_ops) {
3c18ddd1 2707 if (likely(vma->vm_ops->fault))
54cb8821
NP
2708 return do_linear_fault(mm, vma, address,
2709 pte, pmd, write_access, entry);
f4b81804
JS
2710 }
2711 return do_anonymous_page(mm, vma, address,
2712 pte, pmd, write_access);
65500d23 2713 }
1da177e4 2714 if (pte_file(entry))
d0217ac0 2715 return do_nonlinear_fault(mm, vma, address,
65500d23
HD
2716 pte, pmd, write_access, entry);
2717 return do_swap_page(mm, vma, address,
2718 pte, pmd, write_access, entry);
1da177e4
LT
2719 }
2720
4c21e2f2 2721 ptl = pte_lockptr(mm, pmd);
8f4e2101
HD
2722 spin_lock(ptl);
2723 if (unlikely(!pte_same(*pte, entry)))
2724 goto unlock;
1da177e4
LT
2725 if (write_access) {
2726 if (!pte_write(entry))
8f4e2101
HD
2727 return do_wp_page(mm, vma, address,
2728 pte, pmd, ptl, entry);
1da177e4
LT
2729 entry = pte_mkdirty(entry);
2730 }
2731 entry = pte_mkyoung(entry);
8dab5241 2732 if (ptep_set_access_flags(vma, address, pte, entry, write_access)) {
1a44e149 2733 update_mmu_cache(vma, address, entry);
1a44e149
AA
2734 } else {
2735 /*
2736 * This is needed only for protection faults but the arch code
2737 * is not yet telling us if this is a protection fault or not.
2738 * This still avoids useless tlb flushes for .text page faults
2739 * with threads.
2740 */
2741 if (write_access)
2742 flush_tlb_page(vma, address);
2743 }
8f4e2101
HD
2744unlock:
2745 pte_unmap_unlock(pte, ptl);
83c54070 2746 return 0;
1da177e4
LT
2747}
2748
2749/*
2750 * By the time we get here, we already hold the mm semaphore
2751 */
83c54070 2752int handle_mm_fault(struct mm_struct *mm, struct vm_area_struct *vma,
1da177e4
LT
2753 unsigned long address, int write_access)
2754{
2755 pgd_t *pgd;
2756 pud_t *pud;
2757 pmd_t *pmd;
2758 pte_t *pte;
2759
2760 __set_current_state(TASK_RUNNING);
2761
f8891e5e 2762 count_vm_event(PGFAULT);
1da177e4 2763
ac9b9c66
HD
2764 if (unlikely(is_vm_hugetlb_page(vma)))
2765 return hugetlb_fault(mm, vma, address, write_access);
1da177e4 2766
1da177e4 2767 pgd = pgd_offset(mm, address);
1da177e4
LT
2768 pud = pud_alloc(mm, pgd, address);
2769 if (!pud)
c74df32c 2770 return VM_FAULT_OOM;
1da177e4
LT
2771 pmd = pmd_alloc(mm, pud, address);
2772 if (!pmd)
c74df32c 2773 return VM_FAULT_OOM;
1da177e4
LT
2774 pte = pte_alloc_map(mm, pmd, address);
2775 if (!pte)
c74df32c 2776 return VM_FAULT_OOM;
1da177e4 2777
c74df32c 2778 return handle_pte_fault(mm, vma, address, pte, pmd, write_access);
1da177e4
LT
2779}
2780
2781#ifndef __PAGETABLE_PUD_FOLDED
2782/*
2783 * Allocate page upper directory.
872fec16 2784 * We've already handled the fast-path in-line.
1da177e4 2785 */
1bb3630e 2786int __pud_alloc(struct mm_struct *mm, pgd_t *pgd, unsigned long address)
1da177e4 2787{
c74df32c
HD
2788 pud_t *new = pud_alloc_one(mm, address);
2789 if (!new)
1bb3630e 2790 return -ENOMEM;
1da177e4 2791
362a61ad
NP
2792 smp_wmb(); /* See comment in __pte_alloc */
2793
872fec16 2794 spin_lock(&mm->page_table_lock);
1bb3630e 2795 if (pgd_present(*pgd)) /* Another has populated it */
5e541973 2796 pud_free(mm, new);
1bb3630e
HD
2797 else
2798 pgd_populate(mm, pgd, new);
c74df32c 2799 spin_unlock(&mm->page_table_lock);
1bb3630e 2800 return 0;
1da177e4
LT
2801}
2802#endif /* __PAGETABLE_PUD_FOLDED */
2803
2804#ifndef __PAGETABLE_PMD_FOLDED
2805/*
2806 * Allocate page middle directory.
872fec16 2807 * We've already handled the fast-path in-line.
1da177e4 2808 */
1bb3630e 2809int __pmd_alloc(struct mm_struct *mm, pud_t *pud, unsigned long address)
1da177e4 2810{
c74df32c
HD
2811 pmd_t *new = pmd_alloc_one(mm, address);
2812 if (!new)
1bb3630e 2813 return -ENOMEM;
1da177e4 2814
362a61ad
NP
2815 smp_wmb(); /* See comment in __pte_alloc */
2816
872fec16 2817 spin_lock(&mm->page_table_lock);
1da177e4 2818#ifndef __ARCH_HAS_4LEVEL_HACK
1bb3630e 2819 if (pud_present(*pud)) /* Another has populated it */
5e541973 2820 pmd_free(mm, new);
1bb3630e
HD
2821 else
2822 pud_populate(mm, pud, new);
1da177e4 2823#else
1bb3630e 2824 if (pgd_present(*pud)) /* Another has populated it */
5e541973 2825 pmd_free(mm, new);
1bb3630e
HD
2826 else
2827 pgd_populate(mm, pud, new);
1da177e4 2828#endif /* __ARCH_HAS_4LEVEL_HACK */
c74df32c 2829 spin_unlock(&mm->page_table_lock);
1bb3630e 2830 return 0;
e0f39591 2831}
1da177e4
LT
2832#endif /* __PAGETABLE_PMD_FOLDED */
2833
2834int make_pages_present(unsigned long addr, unsigned long end)
2835{
2836 int ret, len, write;
2837 struct vm_area_struct * vma;
2838
2839 vma = find_vma(current->mm, addr);
2840 if (!vma)
a477097d 2841 return -ENOMEM;
1da177e4 2842 write = (vma->vm_flags & VM_WRITE) != 0;
5bcb28b1
ES
2843 BUG_ON(addr >= end);
2844 BUG_ON(end > vma->vm_end);
68e116a3 2845 len = DIV_ROUND_UP(end, PAGE_SIZE) - addr/PAGE_SIZE;
1da177e4
LT
2846 ret = get_user_pages(current, current->mm, addr,
2847 len, write, 0, NULL, NULL);
c11d69d8 2848 if (ret < 0)
1da177e4 2849 return ret;
9978ad58 2850 return ret == len ? 0 : -EFAULT;
1da177e4
LT
2851}
2852
1da177e4
LT
2853#if !defined(__HAVE_ARCH_GATE_AREA)
2854
2855#if defined(AT_SYSINFO_EHDR)
5ce7852c 2856static struct vm_area_struct gate_vma;
1da177e4
LT
2857
2858static int __init gate_vma_init(void)
2859{
2860 gate_vma.vm_mm = NULL;
2861 gate_vma.vm_start = FIXADDR_USER_START;
2862 gate_vma.vm_end = FIXADDR_USER_END;
b6558c4a
RM
2863 gate_vma.vm_flags = VM_READ | VM_MAYREAD | VM_EXEC | VM_MAYEXEC;
2864 gate_vma.vm_page_prot = __P101;
f47aef55
RM
2865 /*
2866 * Make sure the vDSO gets into every core dump.
2867 * Dumping its contents makes post-mortem fully interpretable later
2868 * without matching up the same kernel and hardware config to see
2869 * what PC values meant.
2870 */
2871 gate_vma.vm_flags |= VM_ALWAYSDUMP;
1da177e4
LT
2872 return 0;
2873}
2874__initcall(gate_vma_init);
2875#endif
2876
2877struct vm_area_struct *get_gate_vma(struct task_struct *tsk)
2878{
2879#ifdef AT_SYSINFO_EHDR
2880 return &gate_vma;
2881#else
2882 return NULL;
2883#endif
2884}
2885
2886int in_gate_area_no_task(unsigned long addr)
2887{
2888#ifdef AT_SYSINFO_EHDR
2889 if ((addr >= FIXADDR_USER_START) && (addr < FIXADDR_USER_END))
2890 return 1;
2891#endif
2892 return 0;
2893}
2894
2895#endif /* __HAVE_ARCH_GATE_AREA */
0ec76a11 2896
28b2ee20 2897#ifdef CONFIG_HAVE_IOREMAP_PROT
d87fe660 2898int follow_phys(struct vm_area_struct *vma,
2899 unsigned long address, unsigned int flags,
2900 unsigned long *prot, resource_size_t *phys)
28b2ee20
RR
2901{
2902 pgd_t *pgd;
2903 pud_t *pud;
2904 pmd_t *pmd;
2905 pte_t *ptep, pte;
2906 spinlock_t *ptl;
2907 resource_size_t phys_addr = 0;
2908 struct mm_struct *mm = vma->vm_mm;
d87fe660 2909 int ret = -EINVAL;
28b2ee20 2910
d87fe660 2911 if (!(vma->vm_flags & (VM_IO | VM_PFNMAP)))
2912 goto out;
28b2ee20
RR
2913
2914 pgd = pgd_offset(mm, address);
2915 if (pgd_none(*pgd) || unlikely(pgd_bad(*pgd)))
d87fe660 2916 goto out;
28b2ee20
RR
2917
2918 pud = pud_offset(pgd, address);
2919 if (pud_none(*pud) || unlikely(pud_bad(*pud)))
d87fe660 2920 goto out;
28b2ee20
RR
2921
2922 pmd = pmd_offset(pud, address);
2923 if (pmd_none(*pmd) || unlikely(pmd_bad(*pmd)))
d87fe660 2924 goto out;
28b2ee20
RR
2925
2926 /* We cannot handle huge page PFN maps. Luckily they don't exist. */
2927 if (pmd_huge(*pmd))
d87fe660 2928 goto out;
28b2ee20
RR
2929
2930 ptep = pte_offset_map_lock(mm, pmd, address, &ptl);
2931 if (!ptep)
2932 goto out;
2933
2934 pte = *ptep;
2935 if (!pte_present(pte))
2936 goto unlock;
2937 if ((flags & FOLL_WRITE) && !pte_write(pte))
2938 goto unlock;
2939 phys_addr = pte_pfn(pte);
2940 phys_addr <<= PAGE_SHIFT; /* Shift here to avoid overflow on PAE */
2941
2942 *prot = pgprot_val(pte_pgprot(pte));
d87fe660 2943 *phys = phys_addr;
2944 ret = 0;
28b2ee20
RR
2945
2946unlock:
2947 pte_unmap_unlock(ptep, ptl);
2948out:
d87fe660 2949 return ret;
28b2ee20
RR
2950}
2951
2952int generic_access_phys(struct vm_area_struct *vma, unsigned long addr,
2953 void *buf, int len, int write)
2954{
2955 resource_size_t phys_addr;
2956 unsigned long prot = 0;
2957 void *maddr;
2958 int offset = addr & (PAGE_SIZE-1);
2959
d87fe660 2960 if (follow_phys(vma, addr, write, &prot, &phys_addr))
28b2ee20
RR
2961 return -EINVAL;
2962
2963 maddr = ioremap_prot(phys_addr, PAGE_SIZE, prot);
2964 if (write)
2965 memcpy_toio(maddr + offset, buf, len);
2966 else
2967 memcpy_fromio(buf, maddr + offset, len);
2968 iounmap(maddr);
2969
2970 return len;
2971}
2972#endif
2973
0ec76a11
DH
2974/*
2975 * Access another process' address space.
2976 * Source/target buffer must be kernel space,
2977 * Do not walk the page table directly, use get_user_pages
2978 */
2979int access_process_vm(struct task_struct *tsk, unsigned long addr, void *buf, int len, int write)
2980{
2981 struct mm_struct *mm;
2982 struct vm_area_struct *vma;
0ec76a11
DH
2983 void *old_buf = buf;
2984
2985 mm = get_task_mm(tsk);
2986 if (!mm)
2987 return 0;
2988
2989 down_read(&mm->mmap_sem);
183ff22b 2990 /* ignore errors, just check how much was successfully transferred */
0ec76a11
DH
2991 while (len) {
2992 int bytes, ret, offset;
2993 void *maddr;
28b2ee20 2994 struct page *page = NULL;
0ec76a11
DH
2995
2996 ret = get_user_pages(tsk, mm, addr, 1,
2997 write, 1, &page, &vma);
28b2ee20
RR
2998 if (ret <= 0) {
2999 /*
3000 * Check if this is a VM_IO | VM_PFNMAP VMA, which
3001 * we can access using slightly different code.
3002 */
3003#ifdef CONFIG_HAVE_IOREMAP_PROT
3004 vma = find_vma(mm, addr);
3005 if (!vma)
3006 break;
3007 if (vma->vm_ops && vma->vm_ops->access)
3008 ret = vma->vm_ops->access(vma, addr, buf,
3009 len, write);
3010 if (ret <= 0)
3011#endif
3012 break;
3013 bytes = ret;
0ec76a11 3014 } else {
28b2ee20
RR
3015 bytes = len;
3016 offset = addr & (PAGE_SIZE-1);
3017 if (bytes > PAGE_SIZE-offset)
3018 bytes = PAGE_SIZE-offset;
3019
3020 maddr = kmap(page);
3021 if (write) {
3022 copy_to_user_page(vma, page, addr,
3023 maddr + offset, buf, bytes);
3024 set_page_dirty_lock(page);
3025 } else {
3026 copy_from_user_page(vma, page, addr,
3027 buf, maddr + offset, bytes);
3028 }
3029 kunmap(page);
3030 page_cache_release(page);
0ec76a11 3031 }
0ec76a11
DH
3032 len -= bytes;
3033 buf += bytes;
3034 addr += bytes;
3035 }
3036 up_read(&mm->mmap_sem);
3037 mmput(mm);
3038
3039 return buf - old_buf;
3040}
03252919
AK
3041
3042/*
3043 * Print the name of a VMA.
3044 */
3045void print_vma_addr(char *prefix, unsigned long ip)
3046{
3047 struct mm_struct *mm = current->mm;
3048 struct vm_area_struct *vma;
3049
e8bff74a
IM
3050 /*
3051 * Do not print if we are in atomic
3052 * contexts (in exception stacks, etc.):
3053 */
3054 if (preempt_count())
3055 return;
3056
03252919
AK
3057 down_read(&mm->mmap_sem);
3058 vma = find_vma(mm, ip);
3059 if (vma && vma->vm_file) {
3060 struct file *f = vma->vm_file;
3061 char *buf = (char *)__get_free_page(GFP_KERNEL);
3062 if (buf) {
3063 char *p, *s;
3064
cf28b486 3065 p = d_path(&f->f_path, buf, PAGE_SIZE);
03252919
AK
3066 if (IS_ERR(p))
3067 p = "?";
3068 s = strrchr(p, '/');
3069 if (s)
3070 p = s+1;
3071 printk("%s%s[%lx+%lx]", prefix, p,
3072 vma->vm_start,
3073 vma->vm_end - vma->vm_start);
3074 free_page((unsigned long)buf);
3075 }
3076 }
3077 up_read(&current->mm->mmap_sem);
3078}
3ee1afa3
NP
3079
3080#ifdef CONFIG_PROVE_LOCKING
3081void might_fault(void)
3082{
3083 might_sleep();
3084 /*
3085 * it would be nicer only to annotate paths which are not under
3086 * pagefault_disable, however that requires a larger audit and
3087 * providing helpers like get_user_atomic.
3088 */
3089 if (!in_atomic() && current->mm)
3090 might_lock_read(&current->mm->mmap_sem);
3091}
3092EXPORT_SYMBOL(might_fault);
3093#endif
This page took 0.631893 seconds and 5 git commands to generate.