writeback: don't issue wb_writeback_work if clean
[deliverable/linux.git] / mm / page-writeback.c
CommitLineData
1da177e4 1/*
f30c2269 2 * mm/page-writeback.c
1da177e4
LT
3 *
4 * Copyright (C) 2002, Linus Torvalds.
04fbfdc1 5 * Copyright (C) 2007 Red Hat, Inc., Peter Zijlstra <pzijlstr@redhat.com>
1da177e4
LT
6 *
7 * Contains functions related to writing back dirty pages at the
8 * address_space level.
9 *
e1f8e874 10 * 10Apr2002 Andrew Morton
1da177e4
LT
11 * Initial version
12 */
13
14#include <linux/kernel.h>
b95f1b31 15#include <linux/export.h>
1da177e4
LT
16#include <linux/spinlock.h>
17#include <linux/fs.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/slab.h>
21#include <linux/pagemap.h>
22#include <linux/writeback.h>
23#include <linux/init.h>
24#include <linux/backing-dev.h>
55e829af 25#include <linux/task_io_accounting_ops.h>
1da177e4
LT
26#include <linux/blkdev.h>
27#include <linux/mpage.h>
d08b3851 28#include <linux/rmap.h>
1da177e4
LT
29#include <linux/percpu.h>
30#include <linux/notifier.h>
31#include <linux/smp.h>
32#include <linux/sysctl.h>
33#include <linux/cpu.h>
34#include <linux/syscalls.h>
ff01bb48 35#include <linux/buffer_head.h> /* __set_page_dirty_buffers */
811d736f 36#include <linux/pagevec.h>
eb608e3a 37#include <linux/timer.h>
8bd75c77 38#include <linux/sched/rt.h>
6e543d57 39#include <linux/mm_inline.h>
028c2dd1 40#include <trace/events/writeback.h>
1da177e4 41
6e543d57
LD
42#include "internal.h"
43
ffd1f609
WF
44/*
45 * Sleep at most 200ms at a time in balance_dirty_pages().
46 */
47#define MAX_PAUSE max(HZ/5, 1)
48
5b9b3574
WF
49/*
50 * Try to keep balance_dirty_pages() call intervals higher than this many pages
51 * by raising pause time to max_pause when falls below it.
52 */
53#define DIRTY_POLL_THRESH (128 >> (PAGE_SHIFT - 10))
54
e98be2d5
WF
55/*
56 * Estimate write bandwidth at 200ms intervals.
57 */
58#define BANDWIDTH_INTERVAL max(HZ/5, 1)
59
6c14ae1e
WF
60#define RATELIMIT_CALC_SHIFT 10
61
1da177e4
LT
62/*
63 * After a CPU has dirtied this many pages, balance_dirty_pages_ratelimited
64 * will look to see if it needs to force writeback or throttling.
65 */
66static long ratelimit_pages = 32;
67
1da177e4
LT
68/* The following parameters are exported via /proc/sys/vm */
69
70/*
5b0830cb 71 * Start background writeback (via writeback threads) at this percentage
1da177e4 72 */
1b5e62b4 73int dirty_background_ratio = 10;
1da177e4 74
2da02997
DR
75/*
76 * dirty_background_bytes starts at 0 (disabled) so that it is a function of
77 * dirty_background_ratio * the amount of dirtyable memory
78 */
79unsigned long dirty_background_bytes;
80
195cf453
BG
81/*
82 * free highmem will not be subtracted from the total free memory
83 * for calculating free ratios if vm_highmem_is_dirtyable is true
84 */
85int vm_highmem_is_dirtyable;
86
1da177e4
LT
87/*
88 * The generator of dirty data starts writeback at this percentage
89 */
1b5e62b4 90int vm_dirty_ratio = 20;
1da177e4 91
2da02997
DR
92/*
93 * vm_dirty_bytes starts at 0 (disabled) so that it is a function of
94 * vm_dirty_ratio * the amount of dirtyable memory
95 */
96unsigned long vm_dirty_bytes;
97
1da177e4 98/*
704503d8 99 * The interval between `kupdate'-style writebacks
1da177e4 100 */
22ef37ee 101unsigned int dirty_writeback_interval = 5 * 100; /* centiseconds */
1da177e4 102
91913a29
AB
103EXPORT_SYMBOL_GPL(dirty_writeback_interval);
104
1da177e4 105/*
704503d8 106 * The longest time for which data is allowed to remain dirty
1da177e4 107 */
22ef37ee 108unsigned int dirty_expire_interval = 30 * 100; /* centiseconds */
1da177e4
LT
109
110/*
111 * Flag that makes the machine dump writes/reads and block dirtyings.
112 */
113int block_dump;
114
115/*
ed5b43f1
BS
116 * Flag that puts the machine in "laptop mode". Doubles as a timeout in jiffies:
117 * a full sync is triggered after this time elapses without any disk activity.
1da177e4
LT
118 */
119int laptop_mode;
120
121EXPORT_SYMBOL(laptop_mode);
122
123/* End of sysctl-exported parameters */
124
c42843f2 125unsigned long global_dirty_limit;
1da177e4 126
04fbfdc1
PZ
127/*
128 * Scale the writeback cache size proportional to the relative writeout speeds.
129 *
130 * We do this by keeping a floating proportion between BDIs, based on page
131 * writeback completions [end_page_writeback()]. Those devices that write out
132 * pages fastest will get the larger share, while the slower will get a smaller
133 * share.
134 *
135 * We use page writeout completions because we are interested in getting rid of
136 * dirty pages. Having them written out is the primary goal.
137 *
138 * We introduce a concept of time, a period over which we measure these events,
139 * because demand can/will vary over time. The length of this period itself is
140 * measured in page writeback completions.
141 *
142 */
eb608e3a
JK
143static struct fprop_global writeout_completions;
144
145static void writeout_period(unsigned long t);
146/* Timer for aging of writeout_completions */
147static struct timer_list writeout_period_timer =
148 TIMER_DEFERRED_INITIALIZER(writeout_period, 0, 0);
149static unsigned long writeout_period_time = 0;
150
151/*
152 * Length of period for aging writeout fractions of bdis. This is an
153 * arbitrarily chosen number. The longer the period, the slower fractions will
154 * reflect changes in current writeout rate.
155 */
156#define VM_COMPLETIONS_PERIOD_LEN (3*HZ)
04fbfdc1 157
a756cf59
JW
158/*
159 * In a memory zone, there is a certain amount of pages we consider
160 * available for the page cache, which is essentially the number of
161 * free and reclaimable pages, minus some zone reserves to protect
162 * lowmem and the ability to uphold the zone's watermarks without
163 * requiring writeback.
164 *
165 * This number of dirtyable pages is the base value of which the
166 * user-configurable dirty ratio is the effictive number of pages that
167 * are allowed to be actually dirtied. Per individual zone, or
168 * globally by using the sum of dirtyable pages over all zones.
169 *
170 * Because the user is allowed to specify the dirty limit globally as
171 * absolute number of bytes, calculating the per-zone dirty limit can
172 * require translating the configured limit into a percentage of
173 * global dirtyable memory first.
174 */
175
a804552b
JW
176/**
177 * zone_dirtyable_memory - number of dirtyable pages in a zone
178 * @zone: the zone
179 *
180 * Returns the zone's number of pages potentially available for dirty
181 * page cache. This is the base value for the per-zone dirty limits.
182 */
183static unsigned long zone_dirtyable_memory(struct zone *zone)
184{
185 unsigned long nr_pages;
186
187 nr_pages = zone_page_state(zone, NR_FREE_PAGES);
188 nr_pages -= min(nr_pages, zone->dirty_balance_reserve);
189
a1c3bfb2
JW
190 nr_pages += zone_page_state(zone, NR_INACTIVE_FILE);
191 nr_pages += zone_page_state(zone, NR_ACTIVE_FILE);
a804552b
JW
192
193 return nr_pages;
194}
195
1edf2234
JW
196static unsigned long highmem_dirtyable_memory(unsigned long total)
197{
198#ifdef CONFIG_HIGHMEM
199 int node;
200 unsigned long x = 0;
201
202 for_each_node_state(node, N_HIGH_MEMORY) {
a804552b 203 struct zone *z = &NODE_DATA(node)->node_zones[ZONE_HIGHMEM];
1edf2234 204
a804552b 205 x += zone_dirtyable_memory(z);
1edf2234 206 }
c8b74c2f
SR
207 /*
208 * Unreclaimable memory (kernel memory or anonymous memory
209 * without swap) can bring down the dirtyable pages below
210 * the zone's dirty balance reserve and the above calculation
211 * will underflow. However we still want to add in nodes
212 * which are below threshold (negative values) to get a more
213 * accurate calculation but make sure that the total never
214 * underflows.
215 */
216 if ((long)x < 0)
217 x = 0;
218
1edf2234
JW
219 /*
220 * Make sure that the number of highmem pages is never larger
221 * than the number of the total dirtyable memory. This can only
222 * occur in very strange VM situations but we want to make sure
223 * that this does not occur.
224 */
225 return min(x, total);
226#else
227 return 0;
228#endif
229}
230
231/**
ccafa287 232 * global_dirtyable_memory - number of globally dirtyable pages
1edf2234 233 *
ccafa287
JW
234 * Returns the global number of pages potentially available for dirty
235 * page cache. This is the base value for the global dirty limits.
1edf2234 236 */
18cf8cf8 237static unsigned long global_dirtyable_memory(void)
1edf2234
JW
238{
239 unsigned long x;
240
a804552b 241 x = global_page_state(NR_FREE_PAGES);
c8b74c2f 242 x -= min(x, dirty_balance_reserve);
1edf2234 243
a1c3bfb2
JW
244 x += global_page_state(NR_INACTIVE_FILE);
245 x += global_page_state(NR_ACTIVE_FILE);
a804552b 246
1edf2234
JW
247 if (!vm_highmem_is_dirtyable)
248 x -= highmem_dirtyable_memory(x);
249
250 return x + 1; /* Ensure that we never return 0 */
251}
252
ccafa287
JW
253/*
254 * global_dirty_limits - background-writeback and dirty-throttling thresholds
255 *
256 * Calculate the dirty thresholds based on sysctl parameters
257 * - vm.dirty_background_ratio or vm.dirty_background_bytes
258 * - vm.dirty_ratio or vm.dirty_bytes
259 * The dirty limits will be lifted by 1/4 for PF_LESS_THROTTLE (ie. nfsd) and
260 * real-time tasks.
261 */
262void global_dirty_limits(unsigned long *pbackground, unsigned long *pdirty)
263{
9ef0a0ff 264 const unsigned long available_memory = global_dirtyable_memory();
ccafa287
JW
265 unsigned long background;
266 unsigned long dirty;
ccafa287
JW
267 struct task_struct *tsk;
268
ccafa287
JW
269 if (vm_dirty_bytes)
270 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE);
271 else
272 dirty = (vm_dirty_ratio * available_memory) / 100;
273
274 if (dirty_background_bytes)
275 background = DIV_ROUND_UP(dirty_background_bytes, PAGE_SIZE);
276 else
277 background = (dirty_background_ratio * available_memory) / 100;
278
279 if (background >= dirty)
280 background = dirty / 2;
281 tsk = current;
282 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk)) {
283 background += background / 4;
284 dirty += dirty / 4;
285 }
286 *pbackground = background;
287 *pdirty = dirty;
288 trace_global_dirty_state(background, dirty);
289}
290
a756cf59
JW
291/**
292 * zone_dirty_limit - maximum number of dirty pages allowed in a zone
293 * @zone: the zone
294 *
295 * Returns the maximum number of dirty pages allowed in a zone, based
296 * on the zone's dirtyable memory.
297 */
298static unsigned long zone_dirty_limit(struct zone *zone)
299{
300 unsigned long zone_memory = zone_dirtyable_memory(zone);
301 struct task_struct *tsk = current;
302 unsigned long dirty;
303
304 if (vm_dirty_bytes)
305 dirty = DIV_ROUND_UP(vm_dirty_bytes, PAGE_SIZE) *
306 zone_memory / global_dirtyable_memory();
307 else
308 dirty = vm_dirty_ratio * zone_memory / 100;
309
310 if (tsk->flags & PF_LESS_THROTTLE || rt_task(tsk))
311 dirty += dirty / 4;
312
313 return dirty;
314}
315
316/**
317 * zone_dirty_ok - tells whether a zone is within its dirty limits
318 * @zone: the zone to check
319 *
320 * Returns %true when the dirty pages in @zone are within the zone's
321 * dirty limit, %false if the limit is exceeded.
322 */
323bool zone_dirty_ok(struct zone *zone)
324{
325 unsigned long limit = zone_dirty_limit(zone);
326
327 return zone_page_state(zone, NR_FILE_DIRTY) +
328 zone_page_state(zone, NR_UNSTABLE_NFS) +
329 zone_page_state(zone, NR_WRITEBACK) <= limit;
330}
331
2da02997 332int dirty_background_ratio_handler(struct ctl_table *table, int write,
8d65af78 333 void __user *buffer, size_t *lenp,
2da02997
DR
334 loff_t *ppos)
335{
336 int ret;
337
8d65af78 338 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
339 if (ret == 0 && write)
340 dirty_background_bytes = 0;
341 return ret;
342}
343
344int dirty_background_bytes_handler(struct ctl_table *table, int write,
8d65af78 345 void __user *buffer, size_t *lenp,
2da02997
DR
346 loff_t *ppos)
347{
348 int ret;
349
8d65af78 350 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997
DR
351 if (ret == 0 && write)
352 dirty_background_ratio = 0;
353 return ret;
354}
355
04fbfdc1 356int dirty_ratio_handler(struct ctl_table *table, int write,
8d65af78 357 void __user *buffer, size_t *lenp,
04fbfdc1
PZ
358 loff_t *ppos)
359{
360 int old_ratio = vm_dirty_ratio;
2da02997
DR
361 int ret;
362
8d65af78 363 ret = proc_dointvec_minmax(table, write, buffer, lenp, ppos);
04fbfdc1 364 if (ret == 0 && write && vm_dirty_ratio != old_ratio) {
eb608e3a 365 writeback_set_ratelimit();
2da02997
DR
366 vm_dirty_bytes = 0;
367 }
368 return ret;
369}
370
2da02997 371int dirty_bytes_handler(struct ctl_table *table, int write,
8d65af78 372 void __user *buffer, size_t *lenp,
2da02997
DR
373 loff_t *ppos)
374{
fc3501d4 375 unsigned long old_bytes = vm_dirty_bytes;
2da02997
DR
376 int ret;
377
8d65af78 378 ret = proc_doulongvec_minmax(table, write, buffer, lenp, ppos);
2da02997 379 if (ret == 0 && write && vm_dirty_bytes != old_bytes) {
eb608e3a 380 writeback_set_ratelimit();
2da02997 381 vm_dirty_ratio = 0;
04fbfdc1
PZ
382 }
383 return ret;
384}
385
eb608e3a
JK
386static unsigned long wp_next_time(unsigned long cur_time)
387{
388 cur_time += VM_COMPLETIONS_PERIOD_LEN;
389 /* 0 has a special meaning... */
390 if (!cur_time)
391 return 1;
392 return cur_time;
393}
394
04fbfdc1
PZ
395/*
396 * Increment the BDI's writeout completion count and the global writeout
397 * completion count. Called from test_clear_page_writeback().
398 */
93f78d88 399static inline void __wb_writeout_inc(struct bdi_writeback *wb)
04fbfdc1 400{
93f78d88 401 __inc_wb_stat(wb, WB_WRITTEN);
a88a341a 402 __fprop_inc_percpu_max(&writeout_completions, &wb->completions,
93f78d88 403 wb->bdi->max_prop_frac);
eb608e3a
JK
404 /* First event after period switching was turned off? */
405 if (!unlikely(writeout_period_time)) {
406 /*
407 * We can race with other __bdi_writeout_inc calls here but
408 * it does not cause any harm since the resulting time when
409 * timer will fire and what is in writeout_period_time will be
410 * roughly the same.
411 */
412 writeout_period_time = wp_next_time(jiffies);
413 mod_timer(&writeout_period_timer, writeout_period_time);
414 }
04fbfdc1
PZ
415}
416
93f78d88 417void wb_writeout_inc(struct bdi_writeback *wb)
dd5656e5
MS
418{
419 unsigned long flags;
420
421 local_irq_save(flags);
93f78d88 422 __wb_writeout_inc(wb);
dd5656e5
MS
423 local_irq_restore(flags);
424}
93f78d88 425EXPORT_SYMBOL_GPL(wb_writeout_inc);
dd5656e5 426
04fbfdc1
PZ
427/*
428 * Obtain an accurate fraction of the BDI's portion.
429 */
a88a341a
TH
430static void wb_writeout_fraction(struct bdi_writeback *wb,
431 long *numerator, long *denominator)
04fbfdc1 432{
a88a341a 433 fprop_fraction_percpu(&writeout_completions, &wb->completions,
04fbfdc1 434 numerator, denominator);
04fbfdc1
PZ
435}
436
eb608e3a
JK
437/*
438 * On idle system, we can be called long after we scheduled because we use
439 * deferred timers so count with missed periods.
440 */
441static void writeout_period(unsigned long t)
442{
443 int miss_periods = (jiffies - writeout_period_time) /
444 VM_COMPLETIONS_PERIOD_LEN;
445
446 if (fprop_new_period(&writeout_completions, miss_periods + 1)) {
447 writeout_period_time = wp_next_time(writeout_period_time +
448 miss_periods * VM_COMPLETIONS_PERIOD_LEN);
449 mod_timer(&writeout_period_timer, writeout_period_time);
450 } else {
451 /*
452 * Aging has zeroed all fractions. Stop wasting CPU on period
453 * updates.
454 */
455 writeout_period_time = 0;
456 }
457}
458
189d3c4a 459/*
d08c429b
JW
460 * bdi_min_ratio keeps the sum of the minimum dirty shares of all
461 * registered backing devices, which, for obvious reasons, can not
462 * exceed 100%.
189d3c4a 463 */
189d3c4a
PZ
464static unsigned int bdi_min_ratio;
465
466int bdi_set_min_ratio(struct backing_dev_info *bdi, unsigned int min_ratio)
467{
468 int ret = 0;
189d3c4a 469
cfc4ba53 470 spin_lock_bh(&bdi_lock);
a42dde04 471 if (min_ratio > bdi->max_ratio) {
189d3c4a 472 ret = -EINVAL;
a42dde04
PZ
473 } else {
474 min_ratio -= bdi->min_ratio;
475 if (bdi_min_ratio + min_ratio < 100) {
476 bdi_min_ratio += min_ratio;
477 bdi->min_ratio += min_ratio;
478 } else {
479 ret = -EINVAL;
480 }
481 }
cfc4ba53 482 spin_unlock_bh(&bdi_lock);
a42dde04
PZ
483
484 return ret;
485}
486
487int bdi_set_max_ratio(struct backing_dev_info *bdi, unsigned max_ratio)
488{
a42dde04
PZ
489 int ret = 0;
490
491 if (max_ratio > 100)
492 return -EINVAL;
493
cfc4ba53 494 spin_lock_bh(&bdi_lock);
a42dde04
PZ
495 if (bdi->min_ratio > max_ratio) {
496 ret = -EINVAL;
497 } else {
498 bdi->max_ratio = max_ratio;
eb608e3a 499 bdi->max_prop_frac = (FPROP_FRAC_BASE * max_ratio) / 100;
a42dde04 500 }
cfc4ba53 501 spin_unlock_bh(&bdi_lock);
189d3c4a
PZ
502
503 return ret;
504}
a42dde04 505EXPORT_SYMBOL(bdi_set_max_ratio);
189d3c4a 506
6c14ae1e
WF
507static unsigned long dirty_freerun_ceiling(unsigned long thresh,
508 unsigned long bg_thresh)
509{
510 return (thresh + bg_thresh) / 2;
511}
512
ffd1f609
WF
513static unsigned long hard_dirty_limit(unsigned long thresh)
514{
515 return max(thresh, global_dirty_limit);
516}
517
6f718656 518/**
a88a341a
TH
519 * wb_dirty_limit - @wb's share of dirty throttling threshold
520 * @wb: bdi_writeback to query
6f718656 521 * @dirty: global dirty limit in pages
1babe183 522 *
a88a341a 523 * Returns @wb's dirty limit in pages. The term "dirty" in the context of
6f718656 524 * dirty balancing includes all PG_dirty, PG_writeback and NFS unstable pages.
aed21ad2
WF
525 *
526 * Note that balance_dirty_pages() will only seriously take it as a hard limit
527 * when sleeping max_pause per page is not enough to keep the dirty pages under
528 * control. For example, when the device is completely stalled due to some error
529 * conditions, or when there are 1000 dd tasks writing to a slow 10MB/s USB key.
530 * In the other normal situations, it acts more gently by throttling the tasks
a88a341a 531 * more (rather than completely block them) when the wb dirty pages go high.
1babe183 532 *
6f718656 533 * It allocates high/low dirty limits to fast/slow devices, in order to prevent
1babe183
WF
534 * - starving fast devices
535 * - piling up dirty pages (that will take long time to sync) on slow devices
536 *
a88a341a 537 * The wb's share of dirty limit will be adapting to its throughput and
1babe183
WF
538 * bounded by the bdi->min_ratio and/or bdi->max_ratio parameters, if set.
539 */
a88a341a 540unsigned long wb_dirty_limit(struct bdi_writeback *wb, unsigned long dirty)
16c4042f 541{
a88a341a
TH
542 struct backing_dev_info *bdi = wb->bdi;
543 u64 wb_dirty;
16c4042f 544 long numerator, denominator;
04fbfdc1 545
16c4042f
WF
546 /*
547 * Calculate this BDI's share of the dirty ratio.
548 */
a88a341a 549 wb_writeout_fraction(wb, &numerator, &denominator);
04fbfdc1 550
a88a341a
TH
551 wb_dirty = (dirty * (100 - bdi_min_ratio)) / 100;
552 wb_dirty *= numerator;
553 do_div(wb_dirty, denominator);
04fbfdc1 554
a88a341a
TH
555 wb_dirty += (dirty * bdi->min_ratio) / 100;
556 if (wb_dirty > (dirty * bdi->max_ratio) / 100)
557 wb_dirty = dirty * bdi->max_ratio / 100;
16c4042f 558
a88a341a 559 return wb_dirty;
1da177e4
LT
560}
561
5a537485
MP
562/*
563 * setpoint - dirty 3
564 * f(dirty) := 1.0 + (----------------)
565 * limit - setpoint
566 *
567 * it's a 3rd order polynomial that subjects to
568 *
569 * (1) f(freerun) = 2.0 => rampup dirty_ratelimit reasonably fast
570 * (2) f(setpoint) = 1.0 => the balance point
571 * (3) f(limit) = 0 => the hard limit
572 * (4) df/dx <= 0 => negative feedback control
573 * (5) the closer to setpoint, the smaller |df/dx| (and the reverse)
574 * => fast response on large errors; small oscillation near setpoint
575 */
d5c9fde3 576static long long pos_ratio_polynom(unsigned long setpoint,
5a537485
MP
577 unsigned long dirty,
578 unsigned long limit)
579{
580 long long pos_ratio;
581 long x;
582
d5c9fde3 583 x = div64_s64(((s64)setpoint - (s64)dirty) << RATELIMIT_CALC_SHIFT,
5a537485
MP
584 limit - setpoint + 1);
585 pos_ratio = x;
586 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
587 pos_ratio = pos_ratio * x >> RATELIMIT_CALC_SHIFT;
588 pos_ratio += 1 << RATELIMIT_CALC_SHIFT;
589
590 return clamp(pos_ratio, 0LL, 2LL << RATELIMIT_CALC_SHIFT);
591}
592
6c14ae1e
WF
593/*
594 * Dirty position control.
595 *
596 * (o) global/bdi setpoints
597 *
de1fff37 598 * We want the dirty pages be balanced around the global/wb setpoints.
6c14ae1e
WF
599 * When the number of dirty pages is higher/lower than the setpoint, the
600 * dirty position control ratio (and hence task dirty ratelimit) will be
601 * decreased/increased to bring the dirty pages back to the setpoint.
602 *
603 * pos_ratio = 1 << RATELIMIT_CALC_SHIFT
604 *
605 * if (dirty < setpoint) scale up pos_ratio
606 * if (dirty > setpoint) scale down pos_ratio
607 *
de1fff37
TH
608 * if (wb_dirty < wb_setpoint) scale up pos_ratio
609 * if (wb_dirty > wb_setpoint) scale down pos_ratio
6c14ae1e
WF
610 *
611 * task_ratelimit = dirty_ratelimit * pos_ratio >> RATELIMIT_CALC_SHIFT
612 *
613 * (o) global control line
614 *
615 * ^ pos_ratio
616 * |
617 * | |<===== global dirty control scope ======>|
618 * 2.0 .............*
619 * | .*
620 * | . *
621 * | . *
622 * | . *
623 * | . *
624 * | . *
625 * 1.0 ................................*
626 * | . . *
627 * | . . *
628 * | . . *
629 * | . . *
630 * | . . *
631 * 0 +------------.------------------.----------------------*------------->
632 * freerun^ setpoint^ limit^ dirty pages
633 *
de1fff37 634 * (o) wb control line
6c14ae1e
WF
635 *
636 * ^ pos_ratio
637 * |
638 * | *
639 * | *
640 * | *
641 * | *
642 * | * |<=========== span ============>|
643 * 1.0 .......................*
644 * | . *
645 * | . *
646 * | . *
647 * | . *
648 * | . *
649 * | . *
650 * | . *
651 * | . *
652 * | . *
653 * | . *
654 * | . *
655 * 1/4 ...............................................* * * * * * * * * * * *
656 * | . .
657 * | . .
658 * | . .
659 * 0 +----------------------.-------------------------------.------------->
de1fff37 660 * wb_setpoint^ x_intercept^
6c14ae1e 661 *
de1fff37 662 * The wb control line won't drop below pos_ratio=1/4, so that wb_dirty can
6c14ae1e
WF
663 * be smoothly throttled down to normal if it starts high in situations like
664 * - start writing to a slow SD card and a fast disk at the same time. The SD
de1fff37
TH
665 * card's wb_dirty may rush to many times higher than wb_setpoint.
666 * - the wb dirty thresh drops quickly due to change of JBOD workload
6c14ae1e 667 */
a88a341a
TH
668static unsigned long wb_position_ratio(struct bdi_writeback *wb,
669 unsigned long thresh,
670 unsigned long bg_thresh,
671 unsigned long dirty,
de1fff37
TH
672 unsigned long wb_thresh,
673 unsigned long wb_dirty)
6c14ae1e 674{
a88a341a 675 unsigned long write_bw = wb->avg_write_bandwidth;
6c14ae1e
WF
676 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
677 unsigned long limit = hard_dirty_limit(thresh);
678 unsigned long x_intercept;
679 unsigned long setpoint; /* dirty pages' target balance point */
de1fff37 680 unsigned long wb_setpoint;
6c14ae1e
WF
681 unsigned long span;
682 long long pos_ratio; /* for scaling up/down the rate limit */
683 long x;
684
685 if (unlikely(dirty >= limit))
686 return 0;
687
688 /*
689 * global setpoint
690 *
5a537485
MP
691 * See comment for pos_ratio_polynom().
692 */
693 setpoint = (freerun + limit) / 2;
694 pos_ratio = pos_ratio_polynom(setpoint, dirty, limit);
695
696 /*
697 * The strictlimit feature is a tool preventing mistrusted filesystems
698 * from growing a large number of dirty pages before throttling. For
de1fff37
TH
699 * such filesystems balance_dirty_pages always checks wb counters
700 * against wb limits. Even if global "nr_dirty" is under "freerun".
5a537485
MP
701 * This is especially important for fuse which sets bdi->max_ratio to
702 * 1% by default. Without strictlimit feature, fuse writeback may
703 * consume arbitrary amount of RAM because it is accounted in
704 * NR_WRITEBACK_TEMP which is not involved in calculating "nr_dirty".
6c14ae1e 705 *
a88a341a 706 * Here, in wb_position_ratio(), we calculate pos_ratio based on
de1fff37 707 * two values: wb_dirty and wb_thresh. Let's consider an example:
5a537485
MP
708 * total amount of RAM is 16GB, bdi->max_ratio is equal to 1%, global
709 * limits are set by default to 10% and 20% (background and throttle).
de1fff37
TH
710 * Then wb_thresh is 1% of 20% of 16GB. This amounts to ~8K pages.
711 * wb_dirty_limit(wb, bg_thresh) is about ~4K pages. wb_setpoint is
712 * about ~6K pages (as the average of background and throttle wb
5a537485 713 * limits). The 3rd order polynomial will provide positive feedback if
de1fff37 714 * wb_dirty is under wb_setpoint and vice versa.
6c14ae1e 715 *
5a537485 716 * Note, that we cannot use global counters in these calculations
de1fff37 717 * because we want to throttle process writing to a strictlimit wb
5a537485
MP
718 * much earlier than global "freerun" is reached (~23MB vs. ~2.3GB
719 * in the example above).
6c14ae1e 720 */
a88a341a 721 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37
TH
722 long long wb_pos_ratio;
723 unsigned long wb_bg_thresh;
5a537485 724
de1fff37 725 if (wb_dirty < 8)
5a537485
MP
726 return min_t(long long, pos_ratio * 2,
727 2 << RATELIMIT_CALC_SHIFT);
728
de1fff37 729 if (wb_dirty >= wb_thresh)
5a537485
MP
730 return 0;
731
de1fff37
TH
732 wb_bg_thresh = div_u64((u64)wb_thresh * bg_thresh, thresh);
733 wb_setpoint = dirty_freerun_ceiling(wb_thresh, wb_bg_thresh);
5a537485 734
de1fff37 735 if (wb_setpoint == 0 || wb_setpoint == wb_thresh)
5a537485
MP
736 return 0;
737
de1fff37
TH
738 wb_pos_ratio = pos_ratio_polynom(wb_setpoint, wb_dirty,
739 wb_thresh);
5a537485
MP
740
741 /*
de1fff37
TH
742 * Typically, for strictlimit case, wb_setpoint << setpoint
743 * and pos_ratio >> wb_pos_ratio. In the other words global
5a537485 744 * state ("dirty") is not limiting factor and we have to
de1fff37 745 * make decision based on wb counters. But there is an
5a537485
MP
746 * important case when global pos_ratio should get precedence:
747 * global limits are exceeded (e.g. due to activities on other
de1fff37 748 * wb's) while given strictlimit wb is below limit.
5a537485 749 *
de1fff37 750 * "pos_ratio * wb_pos_ratio" would work for the case above,
5a537485 751 * but it would look too non-natural for the case of all
de1fff37 752 * activity in the system coming from a single strictlimit wb
5a537485
MP
753 * with bdi->max_ratio == 100%.
754 *
755 * Note that min() below somewhat changes the dynamics of the
756 * control system. Normally, pos_ratio value can be well over 3
de1fff37 757 * (when globally we are at freerun and wb is well below wb
5a537485
MP
758 * setpoint). Now the maximum pos_ratio in the same situation
759 * is 2. We might want to tweak this if we observe the control
760 * system is too slow to adapt.
761 */
de1fff37 762 return min(pos_ratio, wb_pos_ratio);
5a537485 763 }
6c14ae1e
WF
764
765 /*
766 * We have computed basic pos_ratio above based on global situation. If
de1fff37 767 * the wb is over/under its share of dirty pages, we want to scale
6c14ae1e
WF
768 * pos_ratio further down/up. That is done by the following mechanism.
769 */
770
771 /*
de1fff37 772 * wb setpoint
6c14ae1e 773 *
de1fff37 774 * f(wb_dirty) := 1.0 + k * (wb_dirty - wb_setpoint)
6c14ae1e 775 *
de1fff37 776 * x_intercept - wb_dirty
6c14ae1e 777 * := --------------------------
de1fff37 778 * x_intercept - wb_setpoint
6c14ae1e 779 *
de1fff37 780 * The main wb control line is a linear function that subjects to
6c14ae1e 781 *
de1fff37
TH
782 * (1) f(wb_setpoint) = 1.0
783 * (2) k = - 1 / (8 * write_bw) (in single wb case)
784 * or equally: x_intercept = wb_setpoint + 8 * write_bw
6c14ae1e 785 *
de1fff37 786 * For single wb case, the dirty pages are observed to fluctuate
6c14ae1e 787 * regularly within range
de1fff37 788 * [wb_setpoint - write_bw/2, wb_setpoint + write_bw/2]
6c14ae1e
WF
789 * for various filesystems, where (2) can yield in a reasonable 12.5%
790 * fluctuation range for pos_ratio.
791 *
de1fff37 792 * For JBOD case, wb_thresh (not wb_dirty!) could fluctuate up to its
6c14ae1e 793 * own size, so move the slope over accordingly and choose a slope that
de1fff37 794 * yields 100% pos_ratio fluctuation on suddenly doubled wb_thresh.
6c14ae1e 795 */
de1fff37
TH
796 if (unlikely(wb_thresh > thresh))
797 wb_thresh = thresh;
aed21ad2 798 /*
de1fff37 799 * It's very possible that wb_thresh is close to 0 not because the
aed21ad2
WF
800 * device is slow, but that it has remained inactive for long time.
801 * Honour such devices a reasonable good (hopefully IO efficient)
802 * threshold, so that the occasional writes won't be blocked and active
803 * writes can rampup the threshold quickly.
804 */
de1fff37 805 wb_thresh = max(wb_thresh, (limit - dirty) / 8);
6c14ae1e 806 /*
de1fff37
TH
807 * scale global setpoint to wb's:
808 * wb_setpoint = setpoint * wb_thresh / thresh
6c14ae1e 809 */
de1fff37
TH
810 x = div_u64((u64)wb_thresh << 16, thresh + 1);
811 wb_setpoint = setpoint * (u64)x >> 16;
6c14ae1e 812 /*
de1fff37
TH
813 * Use span=(8*write_bw) in single wb case as indicated by
814 * (thresh - wb_thresh ~= 0) and transit to wb_thresh in JBOD case.
6c14ae1e 815 *
de1fff37
TH
816 * wb_thresh thresh - wb_thresh
817 * span = --------- * (8 * write_bw) + ------------------ * wb_thresh
818 * thresh thresh
6c14ae1e 819 */
de1fff37
TH
820 span = (thresh - wb_thresh + 8 * write_bw) * (u64)x >> 16;
821 x_intercept = wb_setpoint + span;
6c14ae1e 822
de1fff37
TH
823 if (wb_dirty < x_intercept - span / 4) {
824 pos_ratio = div64_u64(pos_ratio * (x_intercept - wb_dirty),
825 x_intercept - wb_setpoint + 1);
6c14ae1e
WF
826 } else
827 pos_ratio /= 4;
828
8927f66c 829 /*
de1fff37 830 * wb reserve area, safeguard against dirty pool underrun and disk idle
8927f66c
WF
831 * It may push the desired control point of global dirty pages higher
832 * than setpoint.
833 */
de1fff37
TH
834 x_intercept = wb_thresh / 2;
835 if (wb_dirty < x_intercept) {
836 if (wb_dirty > x_intercept / 8)
837 pos_ratio = div_u64(pos_ratio * x_intercept, wb_dirty);
50657fc4 838 else
8927f66c
WF
839 pos_ratio *= 8;
840 }
841
6c14ae1e
WF
842 return pos_ratio;
843}
844
a88a341a
TH
845static void wb_update_write_bandwidth(struct bdi_writeback *wb,
846 unsigned long elapsed,
847 unsigned long written)
e98be2d5
WF
848{
849 const unsigned long period = roundup_pow_of_two(3 * HZ);
a88a341a
TH
850 unsigned long avg = wb->avg_write_bandwidth;
851 unsigned long old = wb->write_bandwidth;
e98be2d5
WF
852 u64 bw;
853
854 /*
855 * bw = written * HZ / elapsed
856 *
857 * bw * elapsed + write_bandwidth * (period - elapsed)
858 * write_bandwidth = ---------------------------------------------------
859 * period
c72efb65
TH
860 *
861 * @written may have decreased due to account_page_redirty().
862 * Avoid underflowing @bw calculation.
e98be2d5 863 */
a88a341a 864 bw = written - min(written, wb->written_stamp);
e98be2d5
WF
865 bw *= HZ;
866 if (unlikely(elapsed > period)) {
867 do_div(bw, elapsed);
868 avg = bw;
869 goto out;
870 }
a88a341a 871 bw += (u64)wb->write_bandwidth * (period - elapsed);
e98be2d5
WF
872 bw >>= ilog2(period);
873
874 /*
875 * one more level of smoothing, for filtering out sudden spikes
876 */
877 if (avg > old && old >= (unsigned long)bw)
878 avg -= (avg - old) >> 3;
879
880 if (avg < old && old <= (unsigned long)bw)
881 avg += (old - avg) >> 3;
882
883out:
95a46c65
TH
884 /* keep avg > 0 to guarantee that tot > 0 if there are dirty wbs */
885 avg = max(avg, 1LU);
886 if (wb_has_dirty_io(wb)) {
887 long delta = avg - wb->avg_write_bandwidth;
888 WARN_ON_ONCE(atomic_long_add_return(delta,
889 &wb->bdi->tot_write_bandwidth) <= 0);
890 }
a88a341a
TH
891 wb->write_bandwidth = bw;
892 wb->avg_write_bandwidth = avg;
e98be2d5
WF
893}
894
c42843f2
WF
895/*
896 * The global dirtyable memory and dirty threshold could be suddenly knocked
897 * down by a large amount (eg. on the startup of KVM in a swapless system).
898 * This may throw the system into deep dirty exceeded state and throttle
899 * heavy/light dirtiers alike. To retain good responsiveness, maintain
900 * global_dirty_limit for tracking slowly down to the knocked down dirty
901 * threshold.
902 */
903static void update_dirty_limit(unsigned long thresh, unsigned long dirty)
904{
905 unsigned long limit = global_dirty_limit;
906
907 /*
908 * Follow up in one step.
909 */
910 if (limit < thresh) {
911 limit = thresh;
912 goto update;
913 }
914
915 /*
916 * Follow down slowly. Use the higher one as the target, because thresh
917 * may drop below dirty. This is exactly the reason to introduce
918 * global_dirty_limit which is guaranteed to lie above the dirty pages.
919 */
920 thresh = max(thresh, dirty);
921 if (limit > thresh) {
922 limit -= (limit - thresh) >> 5;
923 goto update;
924 }
925 return;
926update:
927 global_dirty_limit = limit;
928}
929
930static void global_update_bandwidth(unsigned long thresh,
931 unsigned long dirty,
932 unsigned long now)
933{
934 static DEFINE_SPINLOCK(dirty_lock);
7d70e154 935 static unsigned long update_time = INITIAL_JIFFIES;
c42843f2
WF
936
937 /*
938 * check locklessly first to optimize away locking for the most time
939 */
940 if (time_before(now, update_time + BANDWIDTH_INTERVAL))
941 return;
942
943 spin_lock(&dirty_lock);
944 if (time_after_eq(now, update_time + BANDWIDTH_INTERVAL)) {
945 update_dirty_limit(thresh, dirty);
946 update_time = now;
947 }
948 spin_unlock(&dirty_lock);
949}
950
be3ffa27 951/*
de1fff37 952 * Maintain wb->dirty_ratelimit, the base dirty throttle rate.
be3ffa27 953 *
de1fff37 954 * Normal wb tasks will be curbed at or below it in long term.
be3ffa27
WF
955 * Obviously it should be around (write_bw / N) when there are N dd tasks.
956 */
a88a341a
TH
957static void wb_update_dirty_ratelimit(struct bdi_writeback *wb,
958 unsigned long thresh,
959 unsigned long bg_thresh,
960 unsigned long dirty,
de1fff37
TH
961 unsigned long wb_thresh,
962 unsigned long wb_dirty,
a88a341a
TH
963 unsigned long dirtied,
964 unsigned long elapsed)
be3ffa27 965{
7381131c
WF
966 unsigned long freerun = dirty_freerun_ceiling(thresh, bg_thresh);
967 unsigned long limit = hard_dirty_limit(thresh);
968 unsigned long setpoint = (freerun + limit) / 2;
a88a341a
TH
969 unsigned long write_bw = wb->avg_write_bandwidth;
970 unsigned long dirty_ratelimit = wb->dirty_ratelimit;
be3ffa27
WF
971 unsigned long dirty_rate;
972 unsigned long task_ratelimit;
973 unsigned long balanced_dirty_ratelimit;
974 unsigned long pos_ratio;
7381131c
WF
975 unsigned long step;
976 unsigned long x;
be3ffa27
WF
977
978 /*
979 * The dirty rate will match the writeout rate in long term, except
980 * when dirty pages are truncated by userspace or re-dirtied by FS.
981 */
a88a341a 982 dirty_rate = (dirtied - wb->dirtied_stamp) * HZ / elapsed;
be3ffa27 983
a88a341a 984 pos_ratio = wb_position_ratio(wb, thresh, bg_thresh, dirty,
de1fff37 985 wb_thresh, wb_dirty);
be3ffa27
WF
986 /*
987 * task_ratelimit reflects each dd's dirty rate for the past 200ms.
988 */
989 task_ratelimit = (u64)dirty_ratelimit *
990 pos_ratio >> RATELIMIT_CALC_SHIFT;
991 task_ratelimit++; /* it helps rampup dirty_ratelimit from tiny values */
992
993 /*
994 * A linear estimation of the "balanced" throttle rate. The theory is,
de1fff37 995 * if there are N dd tasks, each throttled at task_ratelimit, the wb's
be3ffa27
WF
996 * dirty_rate will be measured to be (N * task_ratelimit). So the below
997 * formula will yield the balanced rate limit (write_bw / N).
998 *
999 * Note that the expanded form is not a pure rate feedback:
1000 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) (1)
1001 * but also takes pos_ratio into account:
1002 * rate_(i+1) = rate_(i) * (write_bw / dirty_rate) * pos_ratio (2)
1003 *
1004 * (1) is not realistic because pos_ratio also takes part in balancing
1005 * the dirty rate. Consider the state
1006 * pos_ratio = 0.5 (3)
1007 * rate = 2 * (write_bw / N) (4)
1008 * If (1) is used, it will stuck in that state! Because each dd will
1009 * be throttled at
1010 * task_ratelimit = pos_ratio * rate = (write_bw / N) (5)
1011 * yielding
1012 * dirty_rate = N * task_ratelimit = write_bw (6)
1013 * put (6) into (1) we get
1014 * rate_(i+1) = rate_(i) (7)
1015 *
1016 * So we end up using (2) to always keep
1017 * rate_(i+1) ~= (write_bw / N) (8)
1018 * regardless of the value of pos_ratio. As long as (8) is satisfied,
1019 * pos_ratio is able to drive itself to 1.0, which is not only where
1020 * the dirty count meet the setpoint, but also where the slope of
1021 * pos_ratio is most flat and hence task_ratelimit is least fluctuated.
1022 */
1023 balanced_dirty_ratelimit = div_u64((u64)task_ratelimit * write_bw,
1024 dirty_rate | 1);
bdaac490
WF
1025 /*
1026 * balanced_dirty_ratelimit ~= (write_bw / N) <= write_bw
1027 */
1028 if (unlikely(balanced_dirty_ratelimit > write_bw))
1029 balanced_dirty_ratelimit = write_bw;
be3ffa27 1030
7381131c
WF
1031 /*
1032 * We could safely do this and return immediately:
1033 *
de1fff37 1034 * wb->dirty_ratelimit = balanced_dirty_ratelimit;
7381131c
WF
1035 *
1036 * However to get a more stable dirty_ratelimit, the below elaborated
331cbdee 1037 * code makes use of task_ratelimit to filter out singular points and
7381131c
WF
1038 * limit the step size.
1039 *
1040 * The below code essentially only uses the relative value of
1041 *
1042 * task_ratelimit - dirty_ratelimit
1043 * = (pos_ratio - 1) * dirty_ratelimit
1044 *
1045 * which reflects the direction and size of dirty position error.
1046 */
1047
1048 /*
1049 * dirty_ratelimit will follow balanced_dirty_ratelimit iff
1050 * task_ratelimit is on the same side of dirty_ratelimit, too.
1051 * For example, when
1052 * - dirty_ratelimit > balanced_dirty_ratelimit
1053 * - dirty_ratelimit > task_ratelimit (dirty pages are above setpoint)
1054 * lowering dirty_ratelimit will help meet both the position and rate
1055 * control targets. Otherwise, don't update dirty_ratelimit if it will
1056 * only help meet the rate target. After all, what the users ultimately
1057 * feel and care are stable dirty rate and small position error.
1058 *
1059 * |task_ratelimit - dirty_ratelimit| is used to limit the step size
331cbdee 1060 * and filter out the singular points of balanced_dirty_ratelimit. Which
7381131c
WF
1061 * keeps jumping around randomly and can even leap far away at times
1062 * due to the small 200ms estimation period of dirty_rate (we want to
1063 * keep that period small to reduce time lags).
1064 */
1065 step = 0;
5a537485
MP
1066
1067 /*
de1fff37 1068 * For strictlimit case, calculations above were based on wb counters
a88a341a 1069 * and limits (starting from pos_ratio = wb_position_ratio() and up to
5a537485 1070 * balanced_dirty_ratelimit = task_ratelimit * write_bw / dirty_rate).
de1fff37
TH
1071 * Hence, to calculate "step" properly, we have to use wb_dirty as
1072 * "dirty" and wb_setpoint as "setpoint".
5a537485 1073 *
de1fff37
TH
1074 * We rampup dirty_ratelimit forcibly if wb_dirty is low because
1075 * it's possible that wb_thresh is close to zero due to inactivity
a88a341a 1076 * of backing device (see the implementation of wb_dirty_limit()).
5a537485 1077 */
a88a341a 1078 if (unlikely(wb->bdi->capabilities & BDI_CAP_STRICTLIMIT)) {
de1fff37
TH
1079 dirty = wb_dirty;
1080 if (wb_dirty < 8)
1081 setpoint = wb_dirty + 1;
5a537485 1082 else
de1fff37 1083 setpoint = (wb_thresh +
a88a341a 1084 wb_dirty_limit(wb, bg_thresh)) / 2;
5a537485
MP
1085 }
1086
7381131c 1087 if (dirty < setpoint) {
a88a341a 1088 x = min3(wb->balanced_dirty_ratelimit,
7c809968 1089 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1090 if (dirty_ratelimit < x)
1091 step = x - dirty_ratelimit;
1092 } else {
a88a341a 1093 x = max3(wb->balanced_dirty_ratelimit,
7c809968 1094 balanced_dirty_ratelimit, task_ratelimit);
7381131c
WF
1095 if (dirty_ratelimit > x)
1096 step = dirty_ratelimit - x;
1097 }
1098
1099 /*
1100 * Don't pursue 100% rate matching. It's impossible since the balanced
1101 * rate itself is constantly fluctuating. So decrease the track speed
1102 * when it gets close to the target. Helps eliminate pointless tremors.
1103 */
1104 step >>= dirty_ratelimit / (2 * step + 1);
1105 /*
1106 * Limit the tracking speed to avoid overshooting.
1107 */
1108 step = (step + 7) / 8;
1109
1110 if (dirty_ratelimit < balanced_dirty_ratelimit)
1111 dirty_ratelimit += step;
1112 else
1113 dirty_ratelimit -= step;
1114
a88a341a
TH
1115 wb->dirty_ratelimit = max(dirty_ratelimit, 1UL);
1116 wb->balanced_dirty_ratelimit = balanced_dirty_ratelimit;
b48c104d 1117
a88a341a 1118 trace_bdi_dirty_ratelimit(wb->bdi, dirty_rate, task_ratelimit);
be3ffa27
WF
1119}
1120
a88a341a
TH
1121void __wb_update_bandwidth(struct bdi_writeback *wb,
1122 unsigned long thresh,
1123 unsigned long bg_thresh,
1124 unsigned long dirty,
de1fff37
TH
1125 unsigned long wb_thresh,
1126 unsigned long wb_dirty,
a88a341a 1127 unsigned long start_time)
e98be2d5
WF
1128{
1129 unsigned long now = jiffies;
a88a341a 1130 unsigned long elapsed = now - wb->bw_time_stamp;
be3ffa27 1131 unsigned long dirtied;
e98be2d5
WF
1132 unsigned long written;
1133
1134 /*
1135 * rate-limit, only update once every 200ms.
1136 */
1137 if (elapsed < BANDWIDTH_INTERVAL)
1138 return;
1139
a88a341a
TH
1140 dirtied = percpu_counter_read(&wb->stat[WB_DIRTIED]);
1141 written = percpu_counter_read(&wb->stat[WB_WRITTEN]);
e98be2d5
WF
1142
1143 /*
1144 * Skip quiet periods when disk bandwidth is under-utilized.
1145 * (at least 1s idle time between two flusher runs)
1146 */
a88a341a 1147 if (elapsed > HZ && time_before(wb->bw_time_stamp, start_time))
e98be2d5
WF
1148 goto snapshot;
1149
be3ffa27 1150 if (thresh) {
c42843f2 1151 global_update_bandwidth(thresh, dirty, now);
a88a341a 1152 wb_update_dirty_ratelimit(wb, thresh, bg_thresh, dirty,
de1fff37 1153 wb_thresh, wb_dirty,
a88a341a 1154 dirtied, elapsed);
be3ffa27 1155 }
a88a341a 1156 wb_update_write_bandwidth(wb, elapsed, written);
e98be2d5
WF
1157
1158snapshot:
a88a341a
TH
1159 wb->dirtied_stamp = dirtied;
1160 wb->written_stamp = written;
1161 wb->bw_time_stamp = now;
e98be2d5
WF
1162}
1163
a88a341a
TH
1164static void wb_update_bandwidth(struct bdi_writeback *wb,
1165 unsigned long thresh,
1166 unsigned long bg_thresh,
1167 unsigned long dirty,
de1fff37
TH
1168 unsigned long wb_thresh,
1169 unsigned long wb_dirty,
a88a341a 1170 unsigned long start_time)
e98be2d5 1171{
a88a341a 1172 if (time_is_after_eq_jiffies(wb->bw_time_stamp + BANDWIDTH_INTERVAL))
e98be2d5 1173 return;
a88a341a
TH
1174 spin_lock(&wb->list_lock);
1175 __wb_update_bandwidth(wb, thresh, bg_thresh, dirty,
de1fff37 1176 wb_thresh, wb_dirty, start_time);
a88a341a 1177 spin_unlock(&wb->list_lock);
e98be2d5
WF
1178}
1179
9d823e8f 1180/*
d0e1d66b 1181 * After a task dirtied this many pages, balance_dirty_pages_ratelimited()
9d823e8f
WF
1182 * will look to see if it needs to start dirty throttling.
1183 *
1184 * If dirty_poll_interval is too low, big NUMA machines will call the expensive
1185 * global_page_state() too often. So scale it near-sqrt to the safety margin
1186 * (the number of pages we may dirty without exceeding the dirty limits).
1187 */
1188static unsigned long dirty_poll_interval(unsigned long dirty,
1189 unsigned long thresh)
1190{
1191 if (thresh > dirty)
1192 return 1UL << (ilog2(thresh - dirty) >> 1);
1193
1194 return 1;
1195}
1196
a88a341a 1197static unsigned long wb_max_pause(struct bdi_writeback *wb,
de1fff37 1198 unsigned long wb_dirty)
c8462cc9 1199{
a88a341a 1200 unsigned long bw = wb->avg_write_bandwidth;
e3b6c655 1201 unsigned long t;
c8462cc9 1202
7ccb9ad5
WF
1203 /*
1204 * Limit pause time for small memory systems. If sleeping for too long
1205 * time, a small pool of dirty/writeback pages may go empty and disk go
1206 * idle.
1207 *
1208 * 8 serves as the safety ratio.
1209 */
de1fff37 1210 t = wb_dirty / (1 + bw / roundup_pow_of_two(1 + HZ / 8));
7ccb9ad5
WF
1211 t++;
1212
e3b6c655 1213 return min_t(unsigned long, t, MAX_PAUSE);
7ccb9ad5
WF
1214}
1215
a88a341a
TH
1216static long wb_min_pause(struct bdi_writeback *wb,
1217 long max_pause,
1218 unsigned long task_ratelimit,
1219 unsigned long dirty_ratelimit,
1220 int *nr_dirtied_pause)
c8462cc9 1221{
a88a341a
TH
1222 long hi = ilog2(wb->avg_write_bandwidth);
1223 long lo = ilog2(wb->dirty_ratelimit);
7ccb9ad5
WF
1224 long t; /* target pause */
1225 long pause; /* estimated next pause */
1226 int pages; /* target nr_dirtied_pause */
c8462cc9 1227
7ccb9ad5
WF
1228 /* target for 10ms pause on 1-dd case */
1229 t = max(1, HZ / 100);
c8462cc9
WF
1230
1231 /*
1232 * Scale up pause time for concurrent dirtiers in order to reduce CPU
1233 * overheads.
1234 *
7ccb9ad5 1235 * (N * 10ms) on 2^N concurrent tasks.
c8462cc9
WF
1236 */
1237 if (hi > lo)
7ccb9ad5 1238 t += (hi - lo) * (10 * HZ) / 1024;
c8462cc9
WF
1239
1240 /*
7ccb9ad5
WF
1241 * This is a bit convoluted. We try to base the next nr_dirtied_pause
1242 * on the much more stable dirty_ratelimit. However the next pause time
1243 * will be computed based on task_ratelimit and the two rate limits may
1244 * depart considerably at some time. Especially if task_ratelimit goes
1245 * below dirty_ratelimit/2 and the target pause is max_pause, the next
1246 * pause time will be max_pause*2 _trimmed down_ to max_pause. As a
1247 * result task_ratelimit won't be executed faithfully, which could
1248 * eventually bring down dirty_ratelimit.
c8462cc9 1249 *
7ccb9ad5
WF
1250 * We apply two rules to fix it up:
1251 * 1) try to estimate the next pause time and if necessary, use a lower
1252 * nr_dirtied_pause so as not to exceed max_pause. When this happens,
1253 * nr_dirtied_pause will be "dancing" with task_ratelimit.
1254 * 2) limit the target pause time to max_pause/2, so that the normal
1255 * small fluctuations of task_ratelimit won't trigger rule (1) and
1256 * nr_dirtied_pause will remain as stable as dirty_ratelimit.
c8462cc9 1257 */
7ccb9ad5
WF
1258 t = min(t, 1 + max_pause / 2);
1259 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
c8462cc9
WF
1260
1261 /*
5b9b3574
WF
1262 * Tiny nr_dirtied_pause is found to hurt I/O performance in the test
1263 * case fio-mmap-randwrite-64k, which does 16*{sync read, async write}.
1264 * When the 16 consecutive reads are often interrupted by some dirty
1265 * throttling pause during the async writes, cfq will go into idles
1266 * (deadline is fine). So push nr_dirtied_pause as high as possible
1267 * until reaches DIRTY_POLL_THRESH=32 pages.
c8462cc9 1268 */
5b9b3574
WF
1269 if (pages < DIRTY_POLL_THRESH) {
1270 t = max_pause;
1271 pages = dirty_ratelimit * t / roundup_pow_of_two(HZ);
1272 if (pages > DIRTY_POLL_THRESH) {
1273 pages = DIRTY_POLL_THRESH;
1274 t = HZ * DIRTY_POLL_THRESH / dirty_ratelimit;
1275 }
1276 }
1277
7ccb9ad5
WF
1278 pause = HZ * pages / (task_ratelimit + 1);
1279 if (pause > max_pause) {
1280 t = max_pause;
1281 pages = task_ratelimit * t / roundup_pow_of_two(HZ);
1282 }
c8462cc9 1283
7ccb9ad5 1284 *nr_dirtied_pause = pages;
c8462cc9 1285 /*
7ccb9ad5 1286 * The minimal pause time will normally be half the target pause time.
c8462cc9 1287 */
5b9b3574 1288 return pages >= DIRTY_POLL_THRESH ? 1 + t / 2 : t;
c8462cc9
WF
1289}
1290
a88a341a
TH
1291static inline void wb_dirty_limits(struct bdi_writeback *wb,
1292 unsigned long dirty_thresh,
1293 unsigned long background_thresh,
de1fff37
TH
1294 unsigned long *wb_dirty,
1295 unsigned long *wb_thresh,
1296 unsigned long *wb_bg_thresh)
5a537485 1297{
93f78d88 1298 unsigned long wb_reclaimable;
5a537485
MP
1299
1300 /*
de1fff37 1301 * wb_thresh is not treated as some limiting factor as
5a537485 1302 * dirty_thresh, due to reasons
de1fff37 1303 * - in JBOD setup, wb_thresh can fluctuate a lot
5a537485 1304 * - in a system with HDD and USB key, the USB key may somehow
de1fff37
TH
1305 * go into state (wb_dirty >> wb_thresh) either because
1306 * wb_dirty starts high, or because wb_thresh drops low.
5a537485 1307 * In this case we don't want to hard throttle the USB key
de1fff37
TH
1308 * dirtiers for 100 seconds until wb_dirty drops under
1309 * wb_thresh. Instead the auxiliary wb control line in
a88a341a 1310 * wb_position_ratio() will let the dirtier task progress
de1fff37 1311 * at some rate <= (write_bw / 2) for bringing down wb_dirty.
5a537485 1312 */
de1fff37 1313 *wb_thresh = wb_dirty_limit(wb, dirty_thresh);
5a537485 1314
de1fff37
TH
1315 if (wb_bg_thresh)
1316 *wb_bg_thresh = dirty_thresh ? div_u64((u64)*wb_thresh *
1317 background_thresh,
1318 dirty_thresh) : 0;
5a537485
MP
1319
1320 /*
1321 * In order to avoid the stacked BDI deadlock we need
1322 * to ensure we accurately count the 'dirty' pages when
1323 * the threshold is low.
1324 *
1325 * Otherwise it would be possible to get thresh+n pages
1326 * reported dirty, even though there are thresh-m pages
1327 * actually dirty; with m+n sitting in the percpu
1328 * deltas.
1329 */
de1fff37 1330 if (*wb_thresh < 2 * wb_stat_error(wb)) {
93f78d88 1331 wb_reclaimable = wb_stat_sum(wb, WB_RECLAIMABLE);
de1fff37 1332 *wb_dirty = wb_reclaimable + wb_stat_sum(wb, WB_WRITEBACK);
5a537485 1333 } else {
93f78d88 1334 wb_reclaimable = wb_stat(wb, WB_RECLAIMABLE);
de1fff37 1335 *wb_dirty = wb_reclaimable + wb_stat(wb, WB_WRITEBACK);
5a537485
MP
1336 }
1337}
1338
1da177e4
LT
1339/*
1340 * balance_dirty_pages() must be called by processes which are generating dirty
1341 * data. It looks at the number of dirty pages in the machine and will force
143dfe86 1342 * the caller to wait once crossing the (background_thresh + dirty_thresh) / 2.
5b0830cb
JA
1343 * If we're over `background_thresh' then the writeback threads are woken to
1344 * perform some writeout.
1da177e4 1345 */
3a2e9a5a 1346static void balance_dirty_pages(struct address_space *mapping,
dfb8ae56 1347 struct bdi_writeback *wb,
143dfe86 1348 unsigned long pages_dirtied)
1da177e4 1349{
143dfe86 1350 unsigned long nr_reclaimable; /* = file_dirty + unstable_nfs */
7762741e 1351 unsigned long nr_dirty; /* = file_dirty + writeback + unstable_nfs */
364aeb28
DR
1352 unsigned long background_thresh;
1353 unsigned long dirty_thresh;
83712358 1354 long period;
7ccb9ad5
WF
1355 long pause;
1356 long max_pause;
1357 long min_pause;
1358 int nr_dirtied_pause;
e50e3720 1359 bool dirty_exceeded = false;
143dfe86 1360 unsigned long task_ratelimit;
7ccb9ad5 1361 unsigned long dirty_ratelimit;
143dfe86 1362 unsigned long pos_ratio;
dfb8ae56 1363 struct backing_dev_info *bdi = wb->bdi;
5a537485 1364 bool strictlimit = bdi->capabilities & BDI_CAP_STRICTLIMIT;
e98be2d5 1365 unsigned long start_time = jiffies;
1da177e4
LT
1366
1367 for (;;) {
83712358 1368 unsigned long now = jiffies;
de1fff37 1369 unsigned long uninitialized_var(wb_thresh);
5a537485 1370 unsigned long thresh;
de1fff37 1371 unsigned long uninitialized_var(wb_dirty);
5a537485
MP
1372 unsigned long dirty;
1373 unsigned long bg_thresh;
83712358 1374
143dfe86
WF
1375 /*
1376 * Unstable writes are a feature of certain networked
1377 * filesystems (i.e. NFS) in which data may have been
1378 * written to the server's write cache, but has not yet
1379 * been flushed to permanent storage.
1380 */
5fce25a9
PZ
1381 nr_reclaimable = global_page_state(NR_FILE_DIRTY) +
1382 global_page_state(NR_UNSTABLE_NFS);
7762741e 1383 nr_dirty = nr_reclaimable + global_page_state(NR_WRITEBACK);
5fce25a9 1384
16c4042f
WF
1385 global_dirty_limits(&background_thresh, &dirty_thresh);
1386
5a537485 1387 if (unlikely(strictlimit)) {
a88a341a 1388 wb_dirty_limits(wb, dirty_thresh, background_thresh,
de1fff37 1389 &wb_dirty, &wb_thresh, &bg_thresh);
5a537485 1390
de1fff37
TH
1391 dirty = wb_dirty;
1392 thresh = wb_thresh;
5a537485
MP
1393 } else {
1394 dirty = nr_dirty;
1395 thresh = dirty_thresh;
1396 bg_thresh = background_thresh;
1397 }
1398
16c4042f
WF
1399 /*
1400 * Throttle it only when the background writeback cannot
1401 * catch-up. This avoids (excessively) small writeouts
de1fff37 1402 * when the wb limits are ramping up in case of !strictlimit.
5a537485 1403 *
de1fff37
TH
1404 * In strictlimit case make decision based on the wb counters
1405 * and limits. Small writeouts when the wb limits are ramping
5a537485 1406 * up are the price we consciously pay for strictlimit-ing.
16c4042f 1407 */
5a537485 1408 if (dirty <= dirty_freerun_ceiling(thresh, bg_thresh)) {
83712358
WF
1409 current->dirty_paused_when = now;
1410 current->nr_dirtied = 0;
7ccb9ad5 1411 current->nr_dirtied_pause =
5a537485 1412 dirty_poll_interval(dirty, thresh);
16c4042f 1413 break;
83712358 1414 }
16c4042f 1415
143dfe86
WF
1416 if (unlikely(!writeback_in_progress(bdi)))
1417 bdi_start_background_writeback(bdi);
1418
5a537485 1419 if (!strictlimit)
a88a341a 1420 wb_dirty_limits(wb, dirty_thresh, background_thresh,
de1fff37 1421 &wb_dirty, &wb_thresh, NULL);
5fce25a9 1422
de1fff37 1423 dirty_exceeded = (wb_dirty > wb_thresh) &&
5a537485 1424 ((nr_dirty > dirty_thresh) || strictlimit);
a88a341a
TH
1425 if (dirty_exceeded && !wb->dirty_exceeded)
1426 wb->dirty_exceeded = 1;
1da177e4 1427
a88a341a 1428 wb_update_bandwidth(wb, dirty_thresh, background_thresh,
de1fff37 1429 nr_dirty, wb_thresh, wb_dirty, start_time);
e98be2d5 1430
a88a341a
TH
1431 dirty_ratelimit = wb->dirty_ratelimit;
1432 pos_ratio = wb_position_ratio(wb, dirty_thresh,
1433 background_thresh, nr_dirty,
de1fff37 1434 wb_thresh, wb_dirty);
3a73dbbc
WF
1435 task_ratelimit = ((u64)dirty_ratelimit * pos_ratio) >>
1436 RATELIMIT_CALC_SHIFT;
de1fff37 1437 max_pause = wb_max_pause(wb, wb_dirty);
a88a341a
TH
1438 min_pause = wb_min_pause(wb, max_pause,
1439 task_ratelimit, dirty_ratelimit,
1440 &nr_dirtied_pause);
7ccb9ad5 1441
3a73dbbc 1442 if (unlikely(task_ratelimit == 0)) {
83712358 1443 period = max_pause;
c8462cc9 1444 pause = max_pause;
143dfe86 1445 goto pause;
04fbfdc1 1446 }
83712358
WF
1447 period = HZ * pages_dirtied / task_ratelimit;
1448 pause = period;
1449 if (current->dirty_paused_when)
1450 pause -= now - current->dirty_paused_when;
1451 /*
1452 * For less than 1s think time (ext3/4 may block the dirtier
1453 * for up to 800ms from time to time on 1-HDD; so does xfs,
1454 * however at much less frequency), try to compensate it in
1455 * future periods by updating the virtual time; otherwise just
1456 * do a reset, as it may be a light dirtier.
1457 */
7ccb9ad5 1458 if (pause < min_pause) {
ece13ac3
WF
1459 trace_balance_dirty_pages(bdi,
1460 dirty_thresh,
1461 background_thresh,
1462 nr_dirty,
de1fff37
TH
1463 wb_thresh,
1464 wb_dirty,
ece13ac3
WF
1465 dirty_ratelimit,
1466 task_ratelimit,
1467 pages_dirtied,
83712358 1468 period,
7ccb9ad5 1469 min(pause, 0L),
ece13ac3 1470 start_time);
83712358
WF
1471 if (pause < -HZ) {
1472 current->dirty_paused_when = now;
1473 current->nr_dirtied = 0;
1474 } else if (period) {
1475 current->dirty_paused_when += period;
1476 current->nr_dirtied = 0;
7ccb9ad5
WF
1477 } else if (current->nr_dirtied_pause <= pages_dirtied)
1478 current->nr_dirtied_pause += pages_dirtied;
57fc978c 1479 break;
04fbfdc1 1480 }
7ccb9ad5
WF
1481 if (unlikely(pause > max_pause)) {
1482 /* for occasional dropped task_ratelimit */
1483 now += min(pause - max_pause, max_pause);
1484 pause = max_pause;
1485 }
143dfe86
WF
1486
1487pause:
ece13ac3
WF
1488 trace_balance_dirty_pages(bdi,
1489 dirty_thresh,
1490 background_thresh,
1491 nr_dirty,
de1fff37
TH
1492 wb_thresh,
1493 wb_dirty,
ece13ac3
WF
1494 dirty_ratelimit,
1495 task_ratelimit,
1496 pages_dirtied,
83712358 1497 period,
ece13ac3
WF
1498 pause,
1499 start_time);
499d05ec 1500 __set_current_state(TASK_KILLABLE);
d25105e8 1501 io_schedule_timeout(pause);
87c6a9b2 1502
83712358
WF
1503 current->dirty_paused_when = now + pause;
1504 current->nr_dirtied = 0;
7ccb9ad5 1505 current->nr_dirtied_pause = nr_dirtied_pause;
83712358 1506
ffd1f609 1507 /*
1df64719
WF
1508 * This is typically equal to (nr_dirty < dirty_thresh) and can
1509 * also keep "1000+ dd on a slow USB stick" under control.
ffd1f609 1510 */
1df64719 1511 if (task_ratelimit)
ffd1f609 1512 break;
499d05ec 1513
c5c6343c
WF
1514 /*
1515 * In the case of an unresponding NFS server and the NFS dirty
de1fff37 1516 * pages exceeds dirty_thresh, give the other good wb's a pipe
c5c6343c
WF
1517 * to go through, so that tasks on them still remain responsive.
1518 *
1519 * In theory 1 page is enough to keep the comsumer-producer
1520 * pipe going: the flusher cleans 1 page => the task dirties 1
de1fff37 1521 * more page. However wb_dirty has accounting errors. So use
93f78d88 1522 * the larger and more IO friendly wb_stat_error.
c5c6343c 1523 */
de1fff37 1524 if (wb_dirty <= wb_stat_error(wb))
c5c6343c
WF
1525 break;
1526
499d05ec
JK
1527 if (fatal_signal_pending(current))
1528 break;
1da177e4
LT
1529 }
1530
a88a341a
TH
1531 if (!dirty_exceeded && wb->dirty_exceeded)
1532 wb->dirty_exceeded = 0;
1da177e4
LT
1533
1534 if (writeback_in_progress(bdi))
5b0830cb 1535 return;
1da177e4
LT
1536
1537 /*
1538 * In laptop mode, we wait until hitting the higher threshold before
1539 * starting background writeout, and then write out all the way down
1540 * to the lower threshold. So slow writers cause minimal disk activity.
1541 *
1542 * In normal mode, we start background writeout at the lower
1543 * background_thresh, to keep the amount of dirty memory low.
1544 */
143dfe86
WF
1545 if (laptop_mode)
1546 return;
1547
1548 if (nr_reclaimable > background_thresh)
c5444198 1549 bdi_start_background_writeback(bdi);
1da177e4
LT
1550}
1551
9d823e8f 1552static DEFINE_PER_CPU(int, bdp_ratelimits);
245b2e70 1553
54848d73
WF
1554/*
1555 * Normal tasks are throttled by
1556 * loop {
1557 * dirty tsk->nr_dirtied_pause pages;
1558 * take a snap in balance_dirty_pages();
1559 * }
1560 * However there is a worst case. If every task exit immediately when dirtied
1561 * (tsk->nr_dirtied_pause - 1) pages, balance_dirty_pages() will never be
1562 * called to throttle the page dirties. The solution is to save the not yet
1563 * throttled page dirties in dirty_throttle_leaks on task exit and charge them
1564 * randomly into the running tasks. This works well for the above worst case,
1565 * as the new task will pick up and accumulate the old task's leaked dirty
1566 * count and eventually get throttled.
1567 */
1568DEFINE_PER_CPU(int, dirty_throttle_leaks) = 0;
1569
1da177e4 1570/**
d0e1d66b 1571 * balance_dirty_pages_ratelimited - balance dirty memory state
67be2dd1 1572 * @mapping: address_space which was dirtied
1da177e4
LT
1573 *
1574 * Processes which are dirtying memory should call in here once for each page
1575 * which was newly dirtied. The function will periodically check the system's
1576 * dirty state and will initiate writeback if needed.
1577 *
1578 * On really big machines, get_writeback_state is expensive, so try to avoid
1579 * calling it too often (ratelimiting). But once we're over the dirty memory
1580 * limit we decrease the ratelimiting by a lot, to prevent individual processes
1581 * from overshooting the limit by (ratelimit_pages) each.
1582 */
d0e1d66b 1583void balance_dirty_pages_ratelimited(struct address_space *mapping)
1da177e4 1584{
dfb8ae56
TH
1585 struct inode *inode = mapping->host;
1586 struct backing_dev_info *bdi = inode_to_bdi(inode);
1587 struct bdi_writeback *wb = NULL;
9d823e8f
WF
1588 int ratelimit;
1589 int *p;
1da177e4 1590
36715cef
WF
1591 if (!bdi_cap_account_dirty(bdi))
1592 return;
1593
dfb8ae56
TH
1594 if (inode_cgwb_enabled(inode))
1595 wb = wb_get_create_current(bdi, GFP_KERNEL);
1596 if (!wb)
1597 wb = &bdi->wb;
1598
9d823e8f 1599 ratelimit = current->nr_dirtied_pause;
a88a341a 1600 if (wb->dirty_exceeded)
9d823e8f
WF
1601 ratelimit = min(ratelimit, 32 >> (PAGE_SHIFT - 10));
1602
9d823e8f 1603 preempt_disable();
1da177e4 1604 /*
9d823e8f
WF
1605 * This prevents one CPU to accumulate too many dirtied pages without
1606 * calling into balance_dirty_pages(), which can happen when there are
1607 * 1000+ tasks, all of them start dirtying pages at exactly the same
1608 * time, hence all honoured too large initial task->nr_dirtied_pause.
1da177e4 1609 */
7c8e0181 1610 p = this_cpu_ptr(&bdp_ratelimits);
9d823e8f 1611 if (unlikely(current->nr_dirtied >= ratelimit))
fa5a734e 1612 *p = 0;
d3bc1fef
WF
1613 else if (unlikely(*p >= ratelimit_pages)) {
1614 *p = 0;
1615 ratelimit = 0;
1da177e4 1616 }
54848d73
WF
1617 /*
1618 * Pick up the dirtied pages by the exited tasks. This avoids lots of
1619 * short-lived tasks (eg. gcc invocations in a kernel build) escaping
1620 * the dirty throttling and livelock other long-run dirtiers.
1621 */
7c8e0181 1622 p = this_cpu_ptr(&dirty_throttle_leaks);
54848d73 1623 if (*p > 0 && current->nr_dirtied < ratelimit) {
d0e1d66b 1624 unsigned long nr_pages_dirtied;
54848d73
WF
1625 nr_pages_dirtied = min(*p, ratelimit - current->nr_dirtied);
1626 *p -= nr_pages_dirtied;
1627 current->nr_dirtied += nr_pages_dirtied;
1da177e4 1628 }
fa5a734e 1629 preempt_enable();
9d823e8f
WF
1630
1631 if (unlikely(current->nr_dirtied >= ratelimit))
dfb8ae56
TH
1632 balance_dirty_pages(mapping, wb, current->nr_dirtied);
1633
1634 wb_put(wb);
1da177e4 1635}
d0e1d66b 1636EXPORT_SYMBOL(balance_dirty_pages_ratelimited);
1da177e4 1637
232ea4d6 1638void throttle_vm_writeout(gfp_t gfp_mask)
1da177e4 1639{
364aeb28
DR
1640 unsigned long background_thresh;
1641 unsigned long dirty_thresh;
1da177e4
LT
1642
1643 for ( ; ; ) {
16c4042f 1644 global_dirty_limits(&background_thresh, &dirty_thresh);
47a13333 1645 dirty_thresh = hard_dirty_limit(dirty_thresh);
1da177e4
LT
1646
1647 /*
1648 * Boost the allowable dirty threshold a bit for page
1649 * allocators so they don't get DoS'ed by heavy writers
1650 */
1651 dirty_thresh += dirty_thresh / 10; /* wheeee... */
1652
c24f21bd
CL
1653 if (global_page_state(NR_UNSTABLE_NFS) +
1654 global_page_state(NR_WRITEBACK) <= dirty_thresh)
1655 break;
8aa7e847 1656 congestion_wait(BLK_RW_ASYNC, HZ/10);
369f2389
FW
1657
1658 /*
1659 * The caller might hold locks which can prevent IO completion
1660 * or progress in the filesystem. So we cannot just sit here
1661 * waiting for IO to complete.
1662 */
1663 if ((gfp_mask & (__GFP_FS|__GFP_IO)) != (__GFP_FS|__GFP_IO))
1664 break;
1da177e4
LT
1665 }
1666}
1667
1da177e4
LT
1668/*
1669 * sysctl handler for /proc/sys/vm/dirty_writeback_centisecs
1670 */
cccad5b9 1671int dirty_writeback_centisecs_handler(struct ctl_table *table, int write,
8d65af78 1672 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 1673{
8d65af78 1674 proc_dointvec(table, write, buffer, length, ppos);
1da177e4
LT
1675 return 0;
1676}
1677
c2c4986e 1678#ifdef CONFIG_BLOCK
31373d09 1679void laptop_mode_timer_fn(unsigned long data)
1da177e4 1680{
31373d09
MG
1681 struct request_queue *q = (struct request_queue *)data;
1682 int nr_pages = global_page_state(NR_FILE_DIRTY) +
1683 global_page_state(NR_UNSTABLE_NFS);
1da177e4 1684
31373d09
MG
1685 /*
1686 * We want to write everything out, not just down to the dirty
1687 * threshold
1688 */
31373d09 1689 if (bdi_has_dirty_io(&q->backing_dev_info))
0e175a18
CW
1690 bdi_start_writeback(&q->backing_dev_info, nr_pages,
1691 WB_REASON_LAPTOP_TIMER);
1da177e4
LT
1692}
1693
1694/*
1695 * We've spun up the disk and we're in laptop mode: schedule writeback
1696 * of all dirty data a few seconds from now. If the flush is already scheduled
1697 * then push it back - the user is still using the disk.
1698 */
31373d09 1699void laptop_io_completion(struct backing_dev_info *info)
1da177e4 1700{
31373d09 1701 mod_timer(&info->laptop_mode_wb_timer, jiffies + laptop_mode);
1da177e4
LT
1702}
1703
1704/*
1705 * We're in laptop mode and we've just synced. The sync's writes will have
1706 * caused another writeback to be scheduled by laptop_io_completion.
1707 * Nothing needs to be written back anymore, so we unschedule the writeback.
1708 */
1709void laptop_sync_completion(void)
1710{
31373d09
MG
1711 struct backing_dev_info *bdi;
1712
1713 rcu_read_lock();
1714
1715 list_for_each_entry_rcu(bdi, &bdi_list, bdi_list)
1716 del_timer(&bdi->laptop_mode_wb_timer);
1717
1718 rcu_read_unlock();
1da177e4 1719}
c2c4986e 1720#endif
1da177e4
LT
1721
1722/*
1723 * If ratelimit_pages is too high then we can get into dirty-data overload
1724 * if a large number of processes all perform writes at the same time.
1725 * If it is too low then SMP machines will call the (expensive)
1726 * get_writeback_state too often.
1727 *
1728 * Here we set ratelimit_pages to a level which ensures that when all CPUs are
1729 * dirtying in parallel, we cannot go more than 3% (1/32) over the dirty memory
9d823e8f 1730 * thresholds.
1da177e4
LT
1731 */
1732
2d1d43f6 1733void writeback_set_ratelimit(void)
1da177e4 1734{
9d823e8f
WF
1735 unsigned long background_thresh;
1736 unsigned long dirty_thresh;
1737 global_dirty_limits(&background_thresh, &dirty_thresh);
68809c71 1738 global_dirty_limit = dirty_thresh;
9d823e8f 1739 ratelimit_pages = dirty_thresh / (num_online_cpus() * 32);
1da177e4
LT
1740 if (ratelimit_pages < 16)
1741 ratelimit_pages = 16;
1da177e4
LT
1742}
1743
0db0628d 1744static int
2f60d628
SB
1745ratelimit_handler(struct notifier_block *self, unsigned long action,
1746 void *hcpu)
1da177e4 1747{
2f60d628
SB
1748
1749 switch (action & ~CPU_TASKS_FROZEN) {
1750 case CPU_ONLINE:
1751 case CPU_DEAD:
1752 writeback_set_ratelimit();
1753 return NOTIFY_OK;
1754 default:
1755 return NOTIFY_DONE;
1756 }
1da177e4
LT
1757}
1758
0db0628d 1759static struct notifier_block ratelimit_nb = {
1da177e4
LT
1760 .notifier_call = ratelimit_handler,
1761 .next = NULL,
1762};
1763
1764/*
dc6e29da
LT
1765 * Called early on to tune the page writeback dirty limits.
1766 *
1767 * We used to scale dirty pages according to how total memory
1768 * related to pages that could be allocated for buffers (by
1769 * comparing nr_free_buffer_pages() to vm_total_pages.
1770 *
1771 * However, that was when we used "dirty_ratio" to scale with
1772 * all memory, and we don't do that any more. "dirty_ratio"
1773 * is now applied to total non-HIGHPAGE memory (by subtracting
1774 * totalhigh_pages from vm_total_pages), and as such we can't
1775 * get into the old insane situation any more where we had
1776 * large amounts of dirty pages compared to a small amount of
1777 * non-HIGHMEM memory.
1778 *
1779 * But we might still want to scale the dirty_ratio by how
1780 * much memory the box has..
1da177e4
LT
1781 */
1782void __init page_writeback_init(void)
1783{
2d1d43f6 1784 writeback_set_ratelimit();
1da177e4 1785 register_cpu_notifier(&ratelimit_nb);
04fbfdc1 1786
20ae0079 1787 fprop_global_init(&writeout_completions, GFP_KERNEL);
1da177e4
LT
1788}
1789
f446daae
JK
1790/**
1791 * tag_pages_for_writeback - tag pages to be written by write_cache_pages
1792 * @mapping: address space structure to write
1793 * @start: starting page index
1794 * @end: ending page index (inclusive)
1795 *
1796 * This function scans the page range from @start to @end (inclusive) and tags
1797 * all pages that have DIRTY tag set with a special TOWRITE tag. The idea is
1798 * that write_cache_pages (or whoever calls this function) will then use
1799 * TOWRITE tag to identify pages eligible for writeback. This mechanism is
1800 * used to avoid livelocking of writeback by a process steadily creating new
1801 * dirty pages in the file (thus it is important for this function to be quick
1802 * so that it can tag pages faster than a dirtying process can create them).
1803 */
1804/*
1805 * We tag pages in batches of WRITEBACK_TAG_BATCH to reduce tree_lock latency.
1806 */
f446daae
JK
1807void tag_pages_for_writeback(struct address_space *mapping,
1808 pgoff_t start, pgoff_t end)
1809{
3c111a07 1810#define WRITEBACK_TAG_BATCH 4096
f446daae
JK
1811 unsigned long tagged;
1812
1813 do {
1814 spin_lock_irq(&mapping->tree_lock);
1815 tagged = radix_tree_range_tag_if_tagged(&mapping->page_tree,
1816 &start, end, WRITEBACK_TAG_BATCH,
1817 PAGECACHE_TAG_DIRTY, PAGECACHE_TAG_TOWRITE);
1818 spin_unlock_irq(&mapping->tree_lock);
1819 WARN_ON_ONCE(tagged > WRITEBACK_TAG_BATCH);
1820 cond_resched();
d5ed3a4a
JK
1821 /* We check 'start' to handle wrapping when end == ~0UL */
1822 } while (tagged >= WRITEBACK_TAG_BATCH && start);
f446daae
JK
1823}
1824EXPORT_SYMBOL(tag_pages_for_writeback);
1825
811d736f 1826/**
0ea97180 1827 * write_cache_pages - walk the list of dirty pages of the given address space and write all of them.
811d736f
DH
1828 * @mapping: address space structure to write
1829 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
0ea97180
MS
1830 * @writepage: function called for each page
1831 * @data: data passed to writepage function
811d736f 1832 *
0ea97180 1833 * If a page is already under I/O, write_cache_pages() skips it, even
811d736f
DH
1834 * if it's dirty. This is desirable behaviour for memory-cleaning writeback,
1835 * but it is INCORRECT for data-integrity system calls such as fsync(). fsync()
1836 * and msync() need to guarantee that all the data which was dirty at the time
1837 * the call was made get new I/O started against them. If wbc->sync_mode is
1838 * WB_SYNC_ALL then we were called for data integrity and we must wait for
1839 * existing IO to complete.
f446daae
JK
1840 *
1841 * To avoid livelocks (when other process dirties new pages), we first tag
1842 * pages which should be written back with TOWRITE tag and only then start
1843 * writing them. For data-integrity sync we have to be careful so that we do
1844 * not miss some pages (e.g., because some other process has cleared TOWRITE
1845 * tag we set). The rule we follow is that TOWRITE tag can be cleared only
1846 * by the process clearing the DIRTY tag (and submitting the page for IO).
811d736f 1847 */
0ea97180
MS
1848int write_cache_pages(struct address_space *mapping,
1849 struct writeback_control *wbc, writepage_t writepage,
1850 void *data)
811d736f 1851{
811d736f
DH
1852 int ret = 0;
1853 int done = 0;
811d736f
DH
1854 struct pagevec pvec;
1855 int nr_pages;
31a12666 1856 pgoff_t uninitialized_var(writeback_index);
811d736f
DH
1857 pgoff_t index;
1858 pgoff_t end; /* Inclusive */
bd19e012 1859 pgoff_t done_index;
31a12666 1860 int cycled;
811d736f 1861 int range_whole = 0;
f446daae 1862 int tag;
811d736f 1863
811d736f
DH
1864 pagevec_init(&pvec, 0);
1865 if (wbc->range_cyclic) {
31a12666
NP
1866 writeback_index = mapping->writeback_index; /* prev offset */
1867 index = writeback_index;
1868 if (index == 0)
1869 cycled = 1;
1870 else
1871 cycled = 0;
811d736f
DH
1872 end = -1;
1873 } else {
1874 index = wbc->range_start >> PAGE_CACHE_SHIFT;
1875 end = wbc->range_end >> PAGE_CACHE_SHIFT;
1876 if (wbc->range_start == 0 && wbc->range_end == LLONG_MAX)
1877 range_whole = 1;
31a12666 1878 cycled = 1; /* ignore range_cyclic tests */
811d736f 1879 }
6e6938b6 1880 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae
JK
1881 tag = PAGECACHE_TAG_TOWRITE;
1882 else
1883 tag = PAGECACHE_TAG_DIRTY;
811d736f 1884retry:
6e6938b6 1885 if (wbc->sync_mode == WB_SYNC_ALL || wbc->tagged_writepages)
f446daae 1886 tag_pages_for_writeback(mapping, index, end);
bd19e012 1887 done_index = index;
5a3d5c98
NP
1888 while (!done && (index <= end)) {
1889 int i;
1890
f446daae 1891 nr_pages = pagevec_lookup_tag(&pvec, mapping, &index, tag,
5a3d5c98
NP
1892 min(end - index, (pgoff_t)PAGEVEC_SIZE-1) + 1);
1893 if (nr_pages == 0)
1894 break;
811d736f 1895
811d736f
DH
1896 for (i = 0; i < nr_pages; i++) {
1897 struct page *page = pvec.pages[i];
1898
1899 /*
d5482cdf
NP
1900 * At this point, the page may be truncated or
1901 * invalidated (changing page->mapping to NULL), or
1902 * even swizzled back from swapper_space to tmpfs file
1903 * mapping. However, page->index will not change
1904 * because we have a reference on the page.
811d736f 1905 */
d5482cdf
NP
1906 if (page->index > end) {
1907 /*
1908 * can't be range_cyclic (1st pass) because
1909 * end == -1 in that case.
1910 */
1911 done = 1;
1912 break;
1913 }
1914
cf15b07c 1915 done_index = page->index;
d5482cdf 1916
811d736f
DH
1917 lock_page(page);
1918
5a3d5c98
NP
1919 /*
1920 * Page truncated or invalidated. We can freely skip it
1921 * then, even for data integrity operations: the page
1922 * has disappeared concurrently, so there could be no
1923 * real expectation of this data interity operation
1924 * even if there is now a new, dirty page at the same
1925 * pagecache address.
1926 */
811d736f 1927 if (unlikely(page->mapping != mapping)) {
5a3d5c98 1928continue_unlock:
811d736f
DH
1929 unlock_page(page);
1930 continue;
1931 }
1932
515f4a03
NP
1933 if (!PageDirty(page)) {
1934 /* someone wrote it for us */
1935 goto continue_unlock;
1936 }
1937
1938 if (PageWriteback(page)) {
1939 if (wbc->sync_mode != WB_SYNC_NONE)
1940 wait_on_page_writeback(page);
1941 else
1942 goto continue_unlock;
1943 }
811d736f 1944
515f4a03
NP
1945 BUG_ON(PageWriteback(page));
1946 if (!clear_page_dirty_for_io(page))
5a3d5c98 1947 goto continue_unlock;
811d736f 1948
de1414a6 1949 trace_wbc_writepage(wbc, inode_to_bdi(mapping->host));
0ea97180 1950 ret = (*writepage)(page, wbc, data);
00266770
NP
1951 if (unlikely(ret)) {
1952 if (ret == AOP_WRITEPAGE_ACTIVATE) {
1953 unlock_page(page);
1954 ret = 0;
1955 } else {
1956 /*
1957 * done_index is set past this page,
1958 * so media errors will not choke
1959 * background writeout for the entire
1960 * file. This has consequences for
1961 * range_cyclic semantics (ie. it may
1962 * not be suitable for data integrity
1963 * writeout).
1964 */
cf15b07c 1965 done_index = page->index + 1;
00266770
NP
1966 done = 1;
1967 break;
1968 }
0b564927 1969 }
00266770 1970
546a1924
DC
1971 /*
1972 * We stop writing back only if we are not doing
1973 * integrity sync. In case of integrity sync we have to
1974 * keep going until we have written all the pages
1975 * we tagged for writeback prior to entering this loop.
1976 */
1977 if (--wbc->nr_to_write <= 0 &&
1978 wbc->sync_mode == WB_SYNC_NONE) {
1979 done = 1;
1980 break;
05fe478d 1981 }
811d736f
DH
1982 }
1983 pagevec_release(&pvec);
1984 cond_resched();
1985 }
3a4c6800 1986 if (!cycled && !done) {
811d736f 1987 /*
31a12666 1988 * range_cyclic:
811d736f
DH
1989 * We hit the last page and there is more work to be done: wrap
1990 * back to the start of the file
1991 */
31a12666 1992 cycled = 1;
811d736f 1993 index = 0;
31a12666 1994 end = writeback_index - 1;
811d736f
DH
1995 goto retry;
1996 }
0b564927
DC
1997 if (wbc->range_cyclic || (range_whole && wbc->nr_to_write > 0))
1998 mapping->writeback_index = done_index;
06d6cf69 1999
811d736f
DH
2000 return ret;
2001}
0ea97180
MS
2002EXPORT_SYMBOL(write_cache_pages);
2003
2004/*
2005 * Function used by generic_writepages to call the real writepage
2006 * function and set the mapping flags on error
2007 */
2008static int __writepage(struct page *page, struct writeback_control *wbc,
2009 void *data)
2010{
2011 struct address_space *mapping = data;
2012 int ret = mapping->a_ops->writepage(page, wbc);
2013 mapping_set_error(mapping, ret);
2014 return ret;
2015}
2016
2017/**
2018 * generic_writepages - walk the list of dirty pages of the given address space and writepage() all of them.
2019 * @mapping: address space structure to write
2020 * @wbc: subtract the number of written pages from *@wbc->nr_to_write
2021 *
2022 * This is a library function, which implements the writepages()
2023 * address_space_operation.
2024 */
2025int generic_writepages(struct address_space *mapping,
2026 struct writeback_control *wbc)
2027{
9b6096a6
SL
2028 struct blk_plug plug;
2029 int ret;
2030
0ea97180
MS
2031 /* deal with chardevs and other special file */
2032 if (!mapping->a_ops->writepage)
2033 return 0;
2034
9b6096a6
SL
2035 blk_start_plug(&plug);
2036 ret = write_cache_pages(mapping, wbc, __writepage, mapping);
2037 blk_finish_plug(&plug);
2038 return ret;
0ea97180 2039}
811d736f
DH
2040
2041EXPORT_SYMBOL(generic_writepages);
2042
1da177e4
LT
2043int do_writepages(struct address_space *mapping, struct writeback_control *wbc)
2044{
22905f77
AM
2045 int ret;
2046
1da177e4
LT
2047 if (wbc->nr_to_write <= 0)
2048 return 0;
2049 if (mapping->a_ops->writepages)
d08b3851 2050 ret = mapping->a_ops->writepages(mapping, wbc);
22905f77
AM
2051 else
2052 ret = generic_writepages(mapping, wbc);
22905f77 2053 return ret;
1da177e4
LT
2054}
2055
2056/**
2057 * write_one_page - write out a single page and optionally wait on I/O
67be2dd1
MW
2058 * @page: the page to write
2059 * @wait: if true, wait on writeout
1da177e4
LT
2060 *
2061 * The page must be locked by the caller and will be unlocked upon return.
2062 *
2063 * write_one_page() returns a negative error code if I/O failed.
2064 */
2065int write_one_page(struct page *page, int wait)
2066{
2067 struct address_space *mapping = page->mapping;
2068 int ret = 0;
2069 struct writeback_control wbc = {
2070 .sync_mode = WB_SYNC_ALL,
2071 .nr_to_write = 1,
2072 };
2073
2074 BUG_ON(!PageLocked(page));
2075
2076 if (wait)
2077 wait_on_page_writeback(page);
2078
2079 if (clear_page_dirty_for_io(page)) {
2080 page_cache_get(page);
2081 ret = mapping->a_ops->writepage(page, &wbc);
2082 if (ret == 0 && wait) {
2083 wait_on_page_writeback(page);
2084 if (PageError(page))
2085 ret = -EIO;
2086 }
2087 page_cache_release(page);
2088 } else {
2089 unlock_page(page);
2090 }
2091 return ret;
2092}
2093EXPORT_SYMBOL(write_one_page);
2094
76719325
KC
2095/*
2096 * For address_spaces which do not use buffers nor write back.
2097 */
2098int __set_page_dirty_no_writeback(struct page *page)
2099{
2100 if (!PageDirty(page))
c3f0da63 2101 return !TestSetPageDirty(page);
76719325
KC
2102 return 0;
2103}
2104
e3a7cca1
ES
2105/*
2106 * Helper function for set_page_dirty family.
c4843a75
GT
2107 *
2108 * Caller must hold mem_cgroup_begin_page_stat().
2109 *
e3a7cca1
ES
2110 * NOTE: This relies on being atomic wrt interrupts.
2111 */
c4843a75
GT
2112void account_page_dirtied(struct page *page, struct address_space *mapping,
2113 struct mem_cgroup *memcg)
e3a7cca1 2114{
52ebea74
TH
2115 struct inode *inode = mapping->host;
2116
9fb0a7da
TH
2117 trace_writeback_dirty_page(page, mapping);
2118
e3a7cca1 2119 if (mapping_cap_account_dirty(mapping)) {
52ebea74
TH
2120 struct bdi_writeback *wb;
2121
2122 inode_attach_wb(inode, page);
2123 wb = inode_to_wb(inode);
de1414a6 2124
c4843a75 2125 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
e3a7cca1 2126 __inc_zone_page_state(page, NR_FILE_DIRTY);
ea941f0e 2127 __inc_zone_page_state(page, NR_DIRTIED);
52ebea74
TH
2128 __inc_wb_stat(wb, WB_RECLAIMABLE);
2129 __inc_wb_stat(wb, WB_DIRTIED);
e3a7cca1 2130 task_io_account_write(PAGE_CACHE_SIZE);
d3bc1fef
WF
2131 current->nr_dirtied++;
2132 this_cpu_inc(bdp_ratelimits);
e3a7cca1
ES
2133 }
2134}
679ceace 2135EXPORT_SYMBOL(account_page_dirtied);
e3a7cca1 2136
b9ea2515
KK
2137/*
2138 * Helper function for deaccounting dirty page without writeback.
c4843a75
GT
2139 *
2140 * Caller must hold mem_cgroup_begin_page_stat().
b9ea2515 2141 */
c4843a75
GT
2142void account_page_cleaned(struct page *page, struct address_space *mapping,
2143 struct mem_cgroup *memcg)
b9ea2515
KK
2144{
2145 if (mapping_cap_account_dirty(mapping)) {
c4843a75 2146 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
b9ea2515 2147 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2148 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
b9ea2515
KK
2149 task_io_account_cancelled_write(PAGE_CACHE_SIZE);
2150 }
2151}
b9ea2515 2152
1da177e4
LT
2153/*
2154 * For address_spaces which do not use buffers. Just tag the page as dirty in
2155 * its radix tree.
2156 *
2157 * This is also used when a single buffer is being dirtied: we want to set the
2158 * page dirty in that case, but not all the buffers. This is a "bottom-up"
2159 * dirtying, whereas __set_page_dirty_buffers() is a "top-down" dirtying.
2160 *
2d6d7f98
JW
2161 * The caller must ensure this doesn't race with truncation. Most will simply
2162 * hold the page lock, but e.g. zap_pte_range() calls with the page mapped and
2163 * the pte lock held, which also locks out truncation.
1da177e4
LT
2164 */
2165int __set_page_dirty_nobuffers(struct page *page)
2166{
c4843a75
GT
2167 struct mem_cgroup *memcg;
2168
2169 memcg = mem_cgroup_begin_page_stat(page);
1da177e4
LT
2170 if (!TestSetPageDirty(page)) {
2171 struct address_space *mapping = page_mapping(page);
a85d9df1 2172 unsigned long flags;
1da177e4 2173
c4843a75
GT
2174 if (!mapping) {
2175 mem_cgroup_end_page_stat(memcg);
8c08540f 2176 return 1;
c4843a75 2177 }
8c08540f 2178
a85d9df1 2179 spin_lock_irqsave(&mapping->tree_lock, flags);
2d6d7f98
JW
2180 BUG_ON(page_mapping(page) != mapping);
2181 WARN_ON_ONCE(!PagePrivate(page) && !PageUptodate(page));
c4843a75 2182 account_page_dirtied(page, mapping, memcg);
2d6d7f98
JW
2183 radix_tree_tag_set(&mapping->page_tree, page_index(page),
2184 PAGECACHE_TAG_DIRTY);
a85d9df1 2185 spin_unlock_irqrestore(&mapping->tree_lock, flags);
c4843a75
GT
2186 mem_cgroup_end_page_stat(memcg);
2187
8c08540f
AM
2188 if (mapping->host) {
2189 /* !PageAnon && !swapper_space */
2190 __mark_inode_dirty(mapping->host, I_DIRTY_PAGES);
1da177e4 2191 }
4741c9fd 2192 return 1;
1da177e4 2193 }
c4843a75 2194 mem_cgroup_end_page_stat(memcg);
4741c9fd 2195 return 0;
1da177e4
LT
2196}
2197EXPORT_SYMBOL(__set_page_dirty_nobuffers);
2198
2f800fbd
WF
2199/*
2200 * Call this whenever redirtying a page, to de-account the dirty counters
2201 * (NR_DIRTIED, BDI_DIRTIED, tsk->nr_dirtied), so that they match the written
2202 * counters (NR_WRITTEN, BDI_WRITTEN) in long term. The mismatches will lead to
2203 * systematic errors in balanced_dirty_ratelimit and the dirty pages position
2204 * control.
2205 */
2206void account_page_redirty(struct page *page)
2207{
2208 struct address_space *mapping = page->mapping;
91018134 2209
2f800fbd 2210 if (mapping && mapping_cap_account_dirty(mapping)) {
91018134
TH
2211 struct bdi_writeback *wb = inode_to_wb(mapping->host);
2212
2f800fbd
WF
2213 current->nr_dirtied--;
2214 dec_zone_page_state(page, NR_DIRTIED);
91018134 2215 dec_wb_stat(wb, WB_DIRTIED);
2f800fbd
WF
2216 }
2217}
2218EXPORT_SYMBOL(account_page_redirty);
2219
1da177e4
LT
2220/*
2221 * When a writepage implementation decides that it doesn't want to write this
2222 * page for some reason, it should redirty the locked page via
2223 * redirty_page_for_writepage() and it should then unlock the page and return 0
2224 */
2225int redirty_page_for_writepage(struct writeback_control *wbc, struct page *page)
2226{
8d38633c
KK
2227 int ret;
2228
1da177e4 2229 wbc->pages_skipped++;
8d38633c 2230 ret = __set_page_dirty_nobuffers(page);
2f800fbd 2231 account_page_redirty(page);
8d38633c 2232 return ret;
1da177e4
LT
2233}
2234EXPORT_SYMBOL(redirty_page_for_writepage);
2235
2236/*
6746aff7
WF
2237 * Dirty a page.
2238 *
2239 * For pages with a mapping this should be done under the page lock
2240 * for the benefit of asynchronous memory errors who prefer a consistent
2241 * dirty state. This rule can be broken in some special cases,
2242 * but should be better not to.
2243 *
1da177e4
LT
2244 * If the mapping doesn't provide a set_page_dirty a_op, then
2245 * just fall through and assume that it wants buffer_heads.
2246 */
1cf6e7d8 2247int set_page_dirty(struct page *page)
1da177e4
LT
2248{
2249 struct address_space *mapping = page_mapping(page);
2250
2251 if (likely(mapping)) {
2252 int (*spd)(struct page *) = mapping->a_ops->set_page_dirty;
278df9f4
MK
2253 /*
2254 * readahead/lru_deactivate_page could remain
2255 * PG_readahead/PG_reclaim due to race with end_page_writeback
2256 * About readahead, if the page is written, the flags would be
2257 * reset. So no problem.
2258 * About lru_deactivate_page, if the page is redirty, the flag
2259 * will be reset. So no problem. but if the page is used by readahead
2260 * it will confuse readahead and make it restart the size rampup
2261 * process. But it's a trivial problem.
2262 */
a4bb3ecd
NH
2263 if (PageReclaim(page))
2264 ClearPageReclaim(page);
9361401e
DH
2265#ifdef CONFIG_BLOCK
2266 if (!spd)
2267 spd = __set_page_dirty_buffers;
2268#endif
2269 return (*spd)(page);
1da177e4 2270 }
4741c9fd
AM
2271 if (!PageDirty(page)) {
2272 if (!TestSetPageDirty(page))
2273 return 1;
2274 }
1da177e4
LT
2275 return 0;
2276}
2277EXPORT_SYMBOL(set_page_dirty);
2278
2279/*
2280 * set_page_dirty() is racy if the caller has no reference against
2281 * page->mapping->host, and if the page is unlocked. This is because another
2282 * CPU could truncate the page off the mapping and then free the mapping.
2283 *
2284 * Usually, the page _is_ locked, or the caller is a user-space process which
2285 * holds a reference on the inode by having an open file.
2286 *
2287 * In other cases, the page should be locked before running set_page_dirty().
2288 */
2289int set_page_dirty_lock(struct page *page)
2290{
2291 int ret;
2292
7eaceacc 2293 lock_page(page);
1da177e4
LT
2294 ret = set_page_dirty(page);
2295 unlock_page(page);
2296 return ret;
2297}
2298EXPORT_SYMBOL(set_page_dirty_lock);
2299
11f81bec
TH
2300/*
2301 * This cancels just the dirty bit on the kernel page itself, it does NOT
2302 * actually remove dirty bits on any mmap's that may be around. It also
2303 * leaves the page tagged dirty, so any sync activity will still find it on
2304 * the dirty lists, and in particular, clear_page_dirty_for_io() will still
2305 * look at the dirty bits in the VM.
2306 *
2307 * Doing this should *normally* only ever be done when a page is truncated,
2308 * and is not actually mapped anywhere at all. However, fs/buffer.c does
2309 * this when it notices that somebody has cleaned out all the buffers on a
2310 * page without actually doing it through the VM. Can you say "ext3 is
2311 * horribly ugly"? Thought you could.
2312 */
2313void cancel_dirty_page(struct page *page)
2314{
c4843a75
GT
2315 struct address_space *mapping = page_mapping(page);
2316
2317 if (mapping_cap_account_dirty(mapping)) {
2318 struct mem_cgroup *memcg;
2319
2320 memcg = mem_cgroup_begin_page_stat(page);
2321
2322 if (TestClearPageDirty(page))
2323 account_page_cleaned(page, mapping, memcg);
2324
2325 mem_cgroup_end_page_stat(memcg);
2326 } else {
2327 ClearPageDirty(page);
2328 }
11f81bec
TH
2329}
2330EXPORT_SYMBOL(cancel_dirty_page);
2331
1da177e4
LT
2332/*
2333 * Clear a page's dirty flag, while caring for dirty memory accounting.
2334 * Returns true if the page was previously dirty.
2335 *
2336 * This is for preparing to put the page under writeout. We leave the page
2337 * tagged as dirty in the radix tree so that a concurrent write-for-sync
2338 * can discover it via a PAGECACHE_TAG_DIRTY walk. The ->writepage
2339 * implementation will run either set_page_writeback() or set_page_dirty(),
2340 * at which stage we bring the page's dirty flag and radix-tree dirty tag
2341 * back into sync.
2342 *
2343 * This incoherency between the page's dirty flag and radix-tree tag is
2344 * unfortunate, but it only exists while the page is locked.
2345 */
2346int clear_page_dirty_for_io(struct page *page)
2347{
2348 struct address_space *mapping = page_mapping(page);
c4843a75
GT
2349 struct mem_cgroup *memcg;
2350 int ret = 0;
1da177e4 2351
79352894
NP
2352 BUG_ON(!PageLocked(page));
2353
7658cc28
LT
2354 if (mapping && mapping_cap_account_dirty(mapping)) {
2355 /*
2356 * Yes, Virginia, this is indeed insane.
2357 *
2358 * We use this sequence to make sure that
2359 * (a) we account for dirty stats properly
2360 * (b) we tell the low-level filesystem to
2361 * mark the whole page dirty if it was
2362 * dirty in a pagetable. Only to then
2363 * (c) clean the page again and return 1 to
2364 * cause the writeback.
2365 *
2366 * This way we avoid all nasty races with the
2367 * dirty bit in multiple places and clearing
2368 * them concurrently from different threads.
2369 *
2370 * Note! Normally the "set_page_dirty(page)"
2371 * has no effect on the actual dirty bit - since
2372 * that will already usually be set. But we
2373 * need the side effects, and it can help us
2374 * avoid races.
2375 *
2376 * We basically use the page "master dirty bit"
2377 * as a serialization point for all the different
2378 * threads doing their things.
7658cc28
LT
2379 */
2380 if (page_mkclean(page))
2381 set_page_dirty(page);
79352894
NP
2382 /*
2383 * We carefully synchronise fault handlers against
2384 * installing a dirty pte and marking the page dirty
2d6d7f98
JW
2385 * at this point. We do this by having them hold the
2386 * page lock while dirtying the page, and pages are
2387 * always locked coming in here, so we get the desired
2388 * exclusion.
79352894 2389 */
c4843a75 2390 memcg = mem_cgroup_begin_page_stat(page);
7658cc28 2391 if (TestClearPageDirty(page)) {
c4843a75 2392 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_DIRTY);
8c08540f 2393 dec_zone_page_state(page, NR_FILE_DIRTY);
91018134 2394 dec_wb_stat(inode_to_wb(mapping->host), WB_RECLAIMABLE);
c4843a75 2395 ret = 1;
1da177e4 2396 }
c4843a75
GT
2397 mem_cgroup_end_page_stat(memcg);
2398 return ret;
1da177e4 2399 }
7658cc28 2400 return TestClearPageDirty(page);
1da177e4 2401}
58bb01a9 2402EXPORT_SYMBOL(clear_page_dirty_for_io);
1da177e4
LT
2403
2404int test_clear_page_writeback(struct page *page)
2405{
2406 struct address_space *mapping = page_mapping(page);
d7365e78 2407 struct mem_cgroup *memcg;
d7365e78 2408 int ret;
1da177e4 2409
6de22619 2410 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2411 if (mapping) {
91018134
TH
2412 struct inode *inode = mapping->host;
2413 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2414 unsigned long flags;
2415
19fd6231 2416 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2417 ret = TestClearPageWriteback(page);
69cb51d1 2418 if (ret) {
1da177e4
LT
2419 radix_tree_tag_clear(&mapping->page_tree,
2420 page_index(page),
2421 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2422 if (bdi_cap_account_writeback(bdi)) {
91018134
TH
2423 struct bdi_writeback *wb = inode_to_wb(inode);
2424
2425 __dec_wb_stat(wb, WB_WRITEBACK);
2426 __wb_writeout_inc(wb);
04fbfdc1 2427 }
69cb51d1 2428 }
19fd6231 2429 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2430 } else {
2431 ret = TestClearPageWriteback(page);
2432 }
99b12e3d 2433 if (ret) {
d7365e78 2434 mem_cgroup_dec_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
d688abf5 2435 dec_zone_page_state(page, NR_WRITEBACK);
99b12e3d
WF
2436 inc_zone_page_state(page, NR_WRITTEN);
2437 }
6de22619 2438 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2439 return ret;
2440}
2441
1c8349a1 2442int __test_set_page_writeback(struct page *page, bool keep_write)
1da177e4
LT
2443{
2444 struct address_space *mapping = page_mapping(page);
d7365e78 2445 struct mem_cgroup *memcg;
d7365e78 2446 int ret;
1da177e4 2447
6de22619 2448 memcg = mem_cgroup_begin_page_stat(page);
1da177e4 2449 if (mapping) {
91018134
TH
2450 struct inode *inode = mapping->host;
2451 struct backing_dev_info *bdi = inode_to_bdi(inode);
1da177e4
LT
2452 unsigned long flags;
2453
19fd6231 2454 spin_lock_irqsave(&mapping->tree_lock, flags);
1da177e4 2455 ret = TestSetPageWriteback(page);
69cb51d1 2456 if (!ret) {
1da177e4
LT
2457 radix_tree_tag_set(&mapping->page_tree,
2458 page_index(page),
2459 PAGECACHE_TAG_WRITEBACK);
e4ad08fe 2460 if (bdi_cap_account_writeback(bdi))
91018134 2461 __inc_wb_stat(inode_to_wb(inode), WB_WRITEBACK);
69cb51d1 2462 }
1da177e4
LT
2463 if (!PageDirty(page))
2464 radix_tree_tag_clear(&mapping->page_tree,
2465 page_index(page),
2466 PAGECACHE_TAG_DIRTY);
1c8349a1
NJ
2467 if (!keep_write)
2468 radix_tree_tag_clear(&mapping->page_tree,
2469 page_index(page),
2470 PAGECACHE_TAG_TOWRITE);
19fd6231 2471 spin_unlock_irqrestore(&mapping->tree_lock, flags);
1da177e4
LT
2472 } else {
2473 ret = TestSetPageWriteback(page);
2474 }
3a3c02ec 2475 if (!ret) {
d7365e78 2476 mem_cgroup_inc_page_stat(memcg, MEM_CGROUP_STAT_WRITEBACK);
3a3c02ec
JW
2477 inc_zone_page_state(page, NR_WRITEBACK);
2478 }
6de22619 2479 mem_cgroup_end_page_stat(memcg);
1da177e4
LT
2480 return ret;
2481
2482}
1c8349a1 2483EXPORT_SYMBOL(__test_set_page_writeback);
1da177e4
LT
2484
2485/*
00128188 2486 * Return true if any of the pages in the mapping are marked with the
1da177e4
LT
2487 * passed tag.
2488 */
2489int mapping_tagged(struct address_space *mapping, int tag)
2490{
72c47832 2491 return radix_tree_tagged(&mapping->page_tree, tag);
1da177e4
LT
2492}
2493EXPORT_SYMBOL(mapping_tagged);
1d1d1a76
DW
2494
2495/**
2496 * wait_for_stable_page() - wait for writeback to finish, if necessary.
2497 * @page: The page to wait on.
2498 *
2499 * This function determines if the given page is related to a backing device
2500 * that requires page contents to be held stable during writeback. If so, then
2501 * it will wait for any pending writeback to complete.
2502 */
2503void wait_for_stable_page(struct page *page)
2504{
de1414a6
CH
2505 if (bdi_cap_stable_pages_required(inode_to_bdi(page->mapping->host)))
2506 wait_on_page_writeback(page);
1d1d1a76
DW
2507}
2508EXPORT_SYMBOL_GPL(wait_for_stable_page);
This page took 0.854935 seconds and 5 git commands to generate.