Restartable sequences: tests: introduce simple rseq start/finish
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4 23#include <linux/bootmem.h>
edbe7d23 24#include <linux/memblock.h>
1da177e4 25#include <linux/compiler.h>
9f158333 26#include <linux/kernel.h>
b1eeab67 27#include <linux/kmemcheck.h>
b8c73fc2 28#include <linux/kasan.h>
1da177e4
LT
29#include <linux/module.h>
30#include <linux/suspend.h>
31#include <linux/pagevec.h>
32#include <linux/blkdev.h>
33#include <linux/slab.h>
a238ab5b 34#include <linux/ratelimit.h>
5a3135c2 35#include <linux/oom.h>
1da177e4
LT
36#include <linux/notifier.h>
37#include <linux/topology.h>
38#include <linux/sysctl.h>
39#include <linux/cpu.h>
40#include <linux/cpuset.h>
bdc8cb98 41#include <linux/memory_hotplug.h>
1da177e4
LT
42#include <linux/nodemask.h>
43#include <linux/vmalloc.h>
a6cccdc3 44#include <linux/vmstat.h>
4be38e35 45#include <linux/mempolicy.h>
4b94ffdc 46#include <linux/memremap.h>
6811378e 47#include <linux/stop_machine.h>
c713216d
MG
48#include <linux/sort.h>
49#include <linux/pfn.h>
3fcfab16 50#include <linux/backing-dev.h>
933e312e 51#include <linux/fault-inject.h>
a5d76b54 52#include <linux/page-isolation.h>
eefa864b 53#include <linux/page_ext.h>
3ac7fe5a 54#include <linux/debugobjects.h>
dbb1f81c 55#include <linux/kmemleak.h>
56de7263 56#include <linux/compaction.h>
0d3d062a 57#include <trace/events/kmem.h>
268bb0ce 58#include <linux/prefetch.h>
6e543d57 59#include <linux/mm_inline.h>
041d3a8c 60#include <linux/migrate.h>
e30825f1 61#include <linux/page_ext.h>
949f7ec5 62#include <linux/hugetlb.h>
8bd75c77 63#include <linux/sched/rt.h>
48c96a36 64#include <linux/page_owner.h>
0e1cc95b 65#include <linux/kthread.h>
4949148a 66#include <linux/memcontrol.h>
1da177e4 67
7ee3d4e8 68#include <asm/sections.h>
1da177e4 69#include <asm/tlbflush.h>
ac924c60 70#include <asm/div64.h>
1da177e4
LT
71#include "internal.h"
72
c8e251fa
CS
73/* prevent >1 _updater_ of zone percpu pageset ->high and ->batch fields */
74static DEFINE_MUTEX(pcp_batch_high_lock);
7cd2b0a3 75#define MIN_PERCPU_PAGELIST_FRACTION (8)
c8e251fa 76
72812019
LS
77#ifdef CONFIG_USE_PERCPU_NUMA_NODE_ID
78DEFINE_PER_CPU(int, numa_node);
79EXPORT_PER_CPU_SYMBOL(numa_node);
80#endif
81
7aac7898
LS
82#ifdef CONFIG_HAVE_MEMORYLESS_NODES
83/*
84 * N.B., Do NOT reference the '_numa_mem_' per cpu variable directly.
85 * It will not be defined when CONFIG_HAVE_MEMORYLESS_NODES is not defined.
86 * Use the accessor functions set_numa_mem(), numa_mem_id() and cpu_to_mem()
87 * defined in <linux/topology.h>.
88 */
89DEFINE_PER_CPU(int, _numa_mem_); /* Kernel "local memory" node */
90EXPORT_PER_CPU_SYMBOL(_numa_mem_);
ad2c8144 91int _node_numa_mem_[MAX_NUMNODES];
7aac7898
LS
92#endif
93
1da177e4 94/*
13808910 95 * Array of node states.
1da177e4 96 */
13808910
CL
97nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
98 [N_POSSIBLE] = NODE_MASK_ALL,
99 [N_ONLINE] = { { [0] = 1UL } },
100#ifndef CONFIG_NUMA
101 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
102#ifdef CONFIG_HIGHMEM
103 [N_HIGH_MEMORY] = { { [0] = 1UL } },
20b2f52b
LJ
104#endif
105#ifdef CONFIG_MOVABLE_NODE
106 [N_MEMORY] = { { [0] = 1UL } },
13808910
CL
107#endif
108 [N_CPU] = { { [0] = 1UL } },
109#endif /* NUMA */
110};
111EXPORT_SYMBOL(node_states);
112
c3d5f5f0
JL
113/* Protect totalram_pages and zone->managed_pages */
114static DEFINE_SPINLOCK(managed_page_count_lock);
115
6c231b7b 116unsigned long totalram_pages __read_mostly;
cb45b0e9 117unsigned long totalreserve_pages __read_mostly;
e48322ab 118unsigned long totalcma_pages __read_mostly;
ab8fabd4 119
1b76b02f 120int percpu_pagelist_fraction;
dcce284a 121gfp_t gfp_allowed_mask __read_mostly = GFP_BOOT_MASK;
1da177e4 122
bb14c2c7
VB
123/*
124 * A cached value of the page's pageblock's migratetype, used when the page is
125 * put on a pcplist. Used to avoid the pageblock migratetype lookup when
126 * freeing from pcplists in most cases, at the cost of possibly becoming stale.
127 * Also the migratetype set in the page does not necessarily match the pcplist
128 * index, e.g. page might have MIGRATE_CMA set but be on a pcplist with any
129 * other index - this ensures that it will be put on the correct CMA freelist.
130 */
131static inline int get_pcppage_migratetype(struct page *page)
132{
133 return page->index;
134}
135
136static inline void set_pcppage_migratetype(struct page *page, int migratetype)
137{
138 page->index = migratetype;
139}
140
452aa699
RW
141#ifdef CONFIG_PM_SLEEP
142/*
143 * The following functions are used by the suspend/hibernate code to temporarily
144 * change gfp_allowed_mask in order to avoid using I/O during memory allocations
145 * while devices are suspended. To avoid races with the suspend/hibernate code,
146 * they should always be called with pm_mutex held (gfp_allowed_mask also should
147 * only be modified with pm_mutex held, unless the suspend/hibernate code is
148 * guaranteed not to run in parallel with that modification).
149 */
c9e664f1
RW
150
151static gfp_t saved_gfp_mask;
152
153void pm_restore_gfp_mask(void)
452aa699
RW
154{
155 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
156 if (saved_gfp_mask) {
157 gfp_allowed_mask = saved_gfp_mask;
158 saved_gfp_mask = 0;
159 }
452aa699
RW
160}
161
c9e664f1 162void pm_restrict_gfp_mask(void)
452aa699 163{
452aa699 164 WARN_ON(!mutex_is_locked(&pm_mutex));
c9e664f1
RW
165 WARN_ON(saved_gfp_mask);
166 saved_gfp_mask = gfp_allowed_mask;
d0164adc 167 gfp_allowed_mask &= ~(__GFP_IO | __GFP_FS);
452aa699 168}
f90ac398
MG
169
170bool pm_suspended_storage(void)
171{
d0164adc 172 if ((gfp_allowed_mask & (__GFP_IO | __GFP_FS)) == (__GFP_IO | __GFP_FS))
f90ac398
MG
173 return false;
174 return true;
175}
452aa699
RW
176#endif /* CONFIG_PM_SLEEP */
177
d9c23400 178#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
d00181b9 179unsigned int pageblock_order __read_mostly;
d9c23400
MG
180#endif
181
d98c7a09 182static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 183
1da177e4
LT
184/*
185 * results with 256, 32 in the lowmem_reserve sysctl:
186 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
187 * 1G machine -> (16M dma, 784M normal, 224M high)
188 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
189 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
84109e15 190 * HIGHMEM allocation will leave (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
191 *
192 * TBD: should special case ZONE_DMA32 machines here - in those we normally
193 * don't need any ZONE_NORMAL reservation
1da177e4 194 */
2f1b6248 195int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 196#ifdef CONFIG_ZONE_DMA
2f1b6248 197 256,
4b51d669 198#endif
fb0e7942 199#ifdef CONFIG_ZONE_DMA32
2f1b6248 200 256,
fb0e7942 201#endif
e53ef38d 202#ifdef CONFIG_HIGHMEM
2a1e274a 203 32,
e53ef38d 204#endif
2a1e274a 205 32,
2f1b6248 206};
1da177e4
LT
207
208EXPORT_SYMBOL(totalram_pages);
1da177e4 209
15ad7cdc 210static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 211#ifdef CONFIG_ZONE_DMA
2f1b6248 212 "DMA",
4b51d669 213#endif
fb0e7942 214#ifdef CONFIG_ZONE_DMA32
2f1b6248 215 "DMA32",
fb0e7942 216#endif
2f1b6248 217 "Normal",
e53ef38d 218#ifdef CONFIG_HIGHMEM
2a1e274a 219 "HighMem",
e53ef38d 220#endif
2a1e274a 221 "Movable",
033fbae9
DW
222#ifdef CONFIG_ZONE_DEVICE
223 "Device",
224#endif
2f1b6248
CL
225};
226
60f30350
VB
227char * const migratetype_names[MIGRATE_TYPES] = {
228 "Unmovable",
229 "Movable",
230 "Reclaimable",
231 "HighAtomic",
232#ifdef CONFIG_CMA
233 "CMA",
234#endif
235#ifdef CONFIG_MEMORY_ISOLATION
236 "Isolate",
237#endif
238};
239
f1e61557
KS
240compound_page_dtor * const compound_page_dtors[] = {
241 NULL,
242 free_compound_page,
243#ifdef CONFIG_HUGETLB_PAGE
244 free_huge_page,
245#endif
9a982250
KS
246#ifdef CONFIG_TRANSPARENT_HUGEPAGE
247 free_transhuge_page,
248#endif
f1e61557
KS
249};
250
1da177e4 251int min_free_kbytes = 1024;
42aa83cb 252int user_min_free_kbytes = -1;
795ae7a0 253int watermark_scale_factor = 10;
1da177e4 254
2c85f51d
JB
255static unsigned long __meminitdata nr_kernel_pages;
256static unsigned long __meminitdata nr_all_pages;
a3142c8e 257static unsigned long __meminitdata dma_reserve;
1da177e4 258
0ee332c1
TH
259#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
260static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
261static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
262static unsigned long __initdata required_kernelcore;
263static unsigned long __initdata required_movablecore;
264static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
342332e6 265static bool mirrored_kernelcore;
0ee332c1
TH
266
267/* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
268int movable_zone;
269EXPORT_SYMBOL(movable_zone);
270#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 271
418508c1
MS
272#if MAX_NUMNODES > 1
273int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 274int nr_online_nodes __read_mostly = 1;
418508c1 275EXPORT_SYMBOL(nr_node_ids);
62bc62a8 276EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
277#endif
278
9ef9acb0
MG
279int page_group_by_mobility_disabled __read_mostly;
280
3a80a7fa
MG
281#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
282static inline void reset_deferred_meminit(pg_data_t *pgdat)
283{
284 pgdat->first_deferred_pfn = ULONG_MAX;
285}
286
287/* Returns true if the struct page for the pfn is uninitialised */
0e1cc95b 288static inline bool __meminit early_page_uninitialised(unsigned long pfn)
3a80a7fa 289{
ef70b6f4
MG
290 int nid = early_pfn_to_nid(pfn);
291
292 if (node_online(nid) && pfn >= NODE_DATA(nid)->first_deferred_pfn)
3a80a7fa
MG
293 return true;
294
295 return false;
296}
297
298/*
299 * Returns false when the remaining initialisation should be deferred until
300 * later in the boot cycle when it can be parallelised.
301 */
302static inline bool update_defer_init(pg_data_t *pgdat,
303 unsigned long pfn, unsigned long zone_end,
304 unsigned long *nr_initialised)
305{
987b3095
LZ
306 unsigned long max_initialise;
307
3a80a7fa
MG
308 /* Always populate low zones for address-contrained allocations */
309 if (zone_end < pgdat_end_pfn(pgdat))
310 return true;
987b3095
LZ
311 /*
312 * Initialise at least 2G of a node but also take into account that
313 * two large system hashes that can take up 1GB for 0.25TB/node.
314 */
315 max_initialise = max(2UL << (30 - PAGE_SHIFT),
316 (pgdat->node_spanned_pages >> 8));
3a80a7fa 317
3a80a7fa 318 (*nr_initialised)++;
987b3095 319 if ((*nr_initialised > max_initialise) &&
3a80a7fa
MG
320 (pfn & (PAGES_PER_SECTION - 1)) == 0) {
321 pgdat->first_deferred_pfn = pfn;
322 return false;
323 }
324
325 return true;
326}
327#else
328static inline void reset_deferred_meminit(pg_data_t *pgdat)
329{
330}
331
332static inline bool early_page_uninitialised(unsigned long pfn)
333{
334 return false;
335}
336
337static inline bool update_defer_init(pg_data_t *pgdat,
338 unsigned long pfn, unsigned long zone_end,
339 unsigned long *nr_initialised)
340{
341 return true;
342}
343#endif
344
0b423ca2
MG
345/* Return a pointer to the bitmap storing bits affecting a block of pages */
346static inline unsigned long *get_pageblock_bitmap(struct page *page,
347 unsigned long pfn)
348{
349#ifdef CONFIG_SPARSEMEM
350 return __pfn_to_section(pfn)->pageblock_flags;
351#else
352 return page_zone(page)->pageblock_flags;
353#endif /* CONFIG_SPARSEMEM */
354}
355
356static inline int pfn_to_bitidx(struct page *page, unsigned long pfn)
357{
358#ifdef CONFIG_SPARSEMEM
359 pfn &= (PAGES_PER_SECTION-1);
360 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
361#else
362 pfn = pfn - round_down(page_zone(page)->zone_start_pfn, pageblock_nr_pages);
363 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
364#endif /* CONFIG_SPARSEMEM */
365}
366
367/**
368 * get_pfnblock_flags_mask - Return the requested group of flags for the pageblock_nr_pages block of pages
369 * @page: The page within the block of interest
370 * @pfn: The target page frame number
371 * @end_bitidx: The last bit of interest to retrieve
372 * @mask: mask of bits that the caller is interested in
373 *
374 * Return: pageblock_bits flags
375 */
376static __always_inline unsigned long __get_pfnblock_flags_mask(struct page *page,
377 unsigned long pfn,
378 unsigned long end_bitidx,
379 unsigned long mask)
380{
381 unsigned long *bitmap;
382 unsigned long bitidx, word_bitidx;
383 unsigned long word;
384
385 bitmap = get_pageblock_bitmap(page, pfn);
386 bitidx = pfn_to_bitidx(page, pfn);
387 word_bitidx = bitidx / BITS_PER_LONG;
388 bitidx &= (BITS_PER_LONG-1);
389
390 word = bitmap[word_bitidx];
391 bitidx += end_bitidx;
392 return (word >> (BITS_PER_LONG - bitidx - 1)) & mask;
393}
394
395unsigned long get_pfnblock_flags_mask(struct page *page, unsigned long pfn,
396 unsigned long end_bitidx,
397 unsigned long mask)
398{
399 return __get_pfnblock_flags_mask(page, pfn, end_bitidx, mask);
400}
401
402static __always_inline int get_pfnblock_migratetype(struct page *page, unsigned long pfn)
403{
404 return __get_pfnblock_flags_mask(page, pfn, PB_migrate_end, MIGRATETYPE_MASK);
405}
406
407/**
408 * set_pfnblock_flags_mask - Set the requested group of flags for a pageblock_nr_pages block of pages
409 * @page: The page within the block of interest
410 * @flags: The flags to set
411 * @pfn: The target page frame number
412 * @end_bitidx: The last bit of interest
413 * @mask: mask of bits that the caller is interested in
414 */
415void set_pfnblock_flags_mask(struct page *page, unsigned long flags,
416 unsigned long pfn,
417 unsigned long end_bitidx,
418 unsigned long mask)
419{
420 unsigned long *bitmap;
421 unsigned long bitidx, word_bitidx;
422 unsigned long old_word, word;
423
424 BUILD_BUG_ON(NR_PAGEBLOCK_BITS != 4);
425
426 bitmap = get_pageblock_bitmap(page, pfn);
427 bitidx = pfn_to_bitidx(page, pfn);
428 word_bitidx = bitidx / BITS_PER_LONG;
429 bitidx &= (BITS_PER_LONG-1);
430
431 VM_BUG_ON_PAGE(!zone_spans_pfn(page_zone(page), pfn), page);
432
433 bitidx += end_bitidx;
434 mask <<= (BITS_PER_LONG - bitidx - 1);
435 flags <<= (BITS_PER_LONG - bitidx - 1);
436
437 word = READ_ONCE(bitmap[word_bitidx]);
438 for (;;) {
439 old_word = cmpxchg(&bitmap[word_bitidx], word, (word & ~mask) | flags);
440 if (word == old_word)
441 break;
442 word = old_word;
443 }
444}
3a80a7fa 445
ee6f509c 446void set_pageblock_migratetype(struct page *page, int migratetype)
b2a0ac88 447{
5d0f3f72
KM
448 if (unlikely(page_group_by_mobility_disabled &&
449 migratetype < MIGRATE_PCPTYPES))
49255c61
MG
450 migratetype = MIGRATE_UNMOVABLE;
451
b2a0ac88
MG
452 set_pageblock_flags_group(page, (unsigned long)migratetype,
453 PB_migrate, PB_migrate_end);
454}
455
13e7444b 456#ifdef CONFIG_DEBUG_VM
c6a57e19 457static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 458{
bdc8cb98
DH
459 int ret = 0;
460 unsigned seq;
461 unsigned long pfn = page_to_pfn(page);
b5e6a5a2 462 unsigned long sp, start_pfn;
c6a57e19 463
bdc8cb98
DH
464 do {
465 seq = zone_span_seqbegin(zone);
b5e6a5a2
CS
466 start_pfn = zone->zone_start_pfn;
467 sp = zone->spanned_pages;
108bcc96 468 if (!zone_spans_pfn(zone, pfn))
bdc8cb98
DH
469 ret = 1;
470 } while (zone_span_seqretry(zone, seq));
471
b5e6a5a2 472 if (ret)
613813e8
DH
473 pr_err("page 0x%lx outside node %d zone %s [ 0x%lx - 0x%lx ]\n",
474 pfn, zone_to_nid(zone), zone->name,
475 start_pfn, start_pfn + sp);
b5e6a5a2 476
bdc8cb98 477 return ret;
c6a57e19
DH
478}
479
480static int page_is_consistent(struct zone *zone, struct page *page)
481{
14e07298 482 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 483 return 0;
1da177e4 484 if (zone != page_zone(page))
c6a57e19
DH
485 return 0;
486
487 return 1;
488}
489/*
490 * Temporary debugging check for pages not lying within a given zone.
491 */
492static int bad_range(struct zone *zone, struct page *page)
493{
494 if (page_outside_zone_boundaries(zone, page))
1da177e4 495 return 1;
c6a57e19
DH
496 if (!page_is_consistent(zone, page))
497 return 1;
498
1da177e4
LT
499 return 0;
500}
13e7444b
NP
501#else
502static inline int bad_range(struct zone *zone, struct page *page)
503{
504 return 0;
505}
506#endif
507
d230dec1
KS
508static void bad_page(struct page *page, const char *reason,
509 unsigned long bad_flags)
1da177e4 510{
d936cf9b
HD
511 static unsigned long resume;
512 static unsigned long nr_shown;
513 static unsigned long nr_unshown;
514
515 /*
516 * Allow a burst of 60 reports, then keep quiet for that minute;
517 * or allow a steady drip of one report per second.
518 */
519 if (nr_shown == 60) {
520 if (time_before(jiffies, resume)) {
521 nr_unshown++;
522 goto out;
523 }
524 if (nr_unshown) {
ff8e8116 525 pr_alert(
1e9e6365 526 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
527 nr_unshown);
528 nr_unshown = 0;
529 }
530 nr_shown = 0;
531 }
532 if (nr_shown++ == 0)
533 resume = jiffies + 60 * HZ;
534
ff8e8116 535 pr_alert("BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 536 current->comm, page_to_pfn(page));
ff8e8116
VB
537 __dump_page(page, reason);
538 bad_flags &= page->flags;
539 if (bad_flags)
540 pr_alert("bad because of flags: %#lx(%pGp)\n",
541 bad_flags, &bad_flags);
4e462112 542 dump_page_owner(page);
3dc14741 543
4f31888c 544 print_modules();
1da177e4 545 dump_stack();
d936cf9b 546out:
8cc3b392 547 /* Leave bad fields for debug, except PageBuddy could make trouble */
22b751c3 548 page_mapcount_reset(page); /* remove PageBuddy */
373d4d09 549 add_taint(TAINT_BAD_PAGE, LOCKDEP_NOW_UNRELIABLE);
1da177e4
LT
550}
551
1da177e4
LT
552/*
553 * Higher-order pages are called "compound pages". They are structured thusly:
554 *
1d798ca3 555 * The first PAGE_SIZE page is called the "head page" and have PG_head set.
1da177e4 556 *
1d798ca3
KS
557 * The remaining PAGE_SIZE pages are called "tail pages". PageTail() is encoded
558 * in bit 0 of page->compound_head. The rest of bits is pointer to head page.
1da177e4 559 *
1d798ca3
KS
560 * The first tail page's ->compound_dtor holds the offset in array of compound
561 * page destructors. See compound_page_dtors.
1da177e4 562 *
1d798ca3 563 * The first tail page's ->compound_order holds the order of allocation.
41d78ba5 564 * This usage means that zero-order pages may not be compound.
1da177e4 565 */
d98c7a09 566
9a982250 567void free_compound_page(struct page *page)
d98c7a09 568{
d85f3385 569 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
570}
571
d00181b9 572void prep_compound_page(struct page *page, unsigned int order)
18229df5
AW
573{
574 int i;
575 int nr_pages = 1 << order;
576
f1e61557 577 set_compound_page_dtor(page, COMPOUND_PAGE_DTOR);
18229df5
AW
578 set_compound_order(page, order);
579 __SetPageHead(page);
580 for (i = 1; i < nr_pages; i++) {
581 struct page *p = page + i;
58a84aa9 582 set_page_count(p, 0);
1c290f64 583 p->mapping = TAIL_MAPPING;
1d798ca3 584 set_compound_head(p, page);
18229df5 585 }
53f9263b 586 atomic_set(compound_mapcount_ptr(page), -1);
18229df5
AW
587}
588
c0a32fc5
SG
589#ifdef CONFIG_DEBUG_PAGEALLOC
590unsigned int _debug_guardpage_minorder;
ea6eabb0
CB
591bool _debug_pagealloc_enabled __read_mostly
592 = IS_ENABLED(CONFIG_DEBUG_PAGEALLOC_ENABLE_DEFAULT);
505f6d22 593EXPORT_SYMBOL(_debug_pagealloc_enabled);
e30825f1
JK
594bool _debug_guardpage_enabled __read_mostly;
595
031bc574
JK
596static int __init early_debug_pagealloc(char *buf)
597{
598 if (!buf)
599 return -EINVAL;
2a138dc7 600 return kstrtobool(buf, &_debug_pagealloc_enabled);
031bc574
JK
601}
602early_param("debug_pagealloc", early_debug_pagealloc);
603
e30825f1
JK
604static bool need_debug_guardpage(void)
605{
031bc574
JK
606 /* If we don't use debug_pagealloc, we don't need guard page */
607 if (!debug_pagealloc_enabled())
608 return false;
609
e30825f1
JK
610 return true;
611}
612
613static void init_debug_guardpage(void)
614{
031bc574
JK
615 if (!debug_pagealloc_enabled())
616 return;
617
e30825f1
JK
618 _debug_guardpage_enabled = true;
619}
620
621struct page_ext_operations debug_guardpage_ops = {
622 .need = need_debug_guardpage,
623 .init = init_debug_guardpage,
624};
c0a32fc5
SG
625
626static int __init debug_guardpage_minorder_setup(char *buf)
627{
628 unsigned long res;
629
630 if (kstrtoul(buf, 10, &res) < 0 || res > MAX_ORDER / 2) {
1170532b 631 pr_err("Bad debug_guardpage_minorder value\n");
c0a32fc5
SG
632 return 0;
633 }
634 _debug_guardpage_minorder = res;
1170532b 635 pr_info("Setting debug_guardpage_minorder to %lu\n", res);
c0a32fc5
SG
636 return 0;
637}
638__setup("debug_guardpage_minorder=", debug_guardpage_minorder_setup);
639
2847cf95
JK
640static inline void set_page_guard(struct zone *zone, struct page *page,
641 unsigned int order, int migratetype)
c0a32fc5 642{
e30825f1
JK
643 struct page_ext *page_ext;
644
645 if (!debug_guardpage_enabled())
646 return;
647
648 page_ext = lookup_page_ext(page);
f86e4271
YS
649 if (unlikely(!page_ext))
650 return;
651
e30825f1
JK
652 __set_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
653
2847cf95
JK
654 INIT_LIST_HEAD(&page->lru);
655 set_page_private(page, order);
656 /* Guard pages are not available for any usage */
657 __mod_zone_freepage_state(zone, -(1 << order), migratetype);
c0a32fc5
SG
658}
659
2847cf95
JK
660static inline void clear_page_guard(struct zone *zone, struct page *page,
661 unsigned int order, int migratetype)
c0a32fc5 662{
e30825f1
JK
663 struct page_ext *page_ext;
664
665 if (!debug_guardpage_enabled())
666 return;
667
668 page_ext = lookup_page_ext(page);
f86e4271
YS
669 if (unlikely(!page_ext))
670 return;
671
e30825f1
JK
672 __clear_bit(PAGE_EXT_DEBUG_GUARD, &page_ext->flags);
673
2847cf95
JK
674 set_page_private(page, 0);
675 if (!is_migrate_isolate(migratetype))
676 __mod_zone_freepage_state(zone, (1 << order), migratetype);
c0a32fc5
SG
677}
678#else
e30825f1 679struct page_ext_operations debug_guardpage_ops = { NULL, };
2847cf95
JK
680static inline void set_page_guard(struct zone *zone, struct page *page,
681 unsigned int order, int migratetype) {}
682static inline void clear_page_guard(struct zone *zone, struct page *page,
683 unsigned int order, int migratetype) {}
c0a32fc5
SG
684#endif
685
7aeb09f9 686static inline void set_page_order(struct page *page, unsigned int order)
6aa3001b 687{
4c21e2f2 688 set_page_private(page, order);
676165a8 689 __SetPageBuddy(page);
1da177e4
LT
690}
691
692static inline void rmv_page_order(struct page *page)
693{
676165a8 694 __ClearPageBuddy(page);
4c21e2f2 695 set_page_private(page, 0);
1da177e4
LT
696}
697
1da177e4
LT
698/*
699 * This function checks whether a page is free && is the buddy
700 * we can do coalesce a page and its buddy if
13e7444b 701 * (a) the buddy is not in a hole &&
676165a8 702 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
703 * (c) a page and its buddy have the same order &&
704 * (d) a page and its buddy are in the same zone.
676165a8 705 *
cf6fe945
WSH
706 * For recording whether a page is in the buddy system, we set ->_mapcount
707 * PAGE_BUDDY_MAPCOUNT_VALUE.
708 * Setting, clearing, and testing _mapcount PAGE_BUDDY_MAPCOUNT_VALUE is
709 * serialized by zone->lock.
1da177e4 710 *
676165a8 711 * For recording page's order, we use page_private(page).
1da177e4 712 */
cb2b95e1 713static inline int page_is_buddy(struct page *page, struct page *buddy,
7aeb09f9 714 unsigned int order)
1da177e4 715{
14e07298 716 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 717 return 0;
13e7444b 718
c0a32fc5 719 if (page_is_guard(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
720 if (page_zone_id(page) != page_zone_id(buddy))
721 return 0;
722
4c5018ce
WY
723 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
724
c0a32fc5
SG
725 return 1;
726 }
727
cb2b95e1 728 if (PageBuddy(buddy) && page_order(buddy) == order) {
d34c5fa0
MG
729 /*
730 * zone check is done late to avoid uselessly
731 * calculating zone/node ids for pages that could
732 * never merge.
733 */
734 if (page_zone_id(page) != page_zone_id(buddy))
735 return 0;
736
4c5018ce
WY
737 VM_BUG_ON_PAGE(page_count(buddy) != 0, buddy);
738
6aa3001b 739 return 1;
676165a8 740 }
6aa3001b 741 return 0;
1da177e4
LT
742}
743
744/*
745 * Freeing function for a buddy system allocator.
746 *
747 * The concept of a buddy system is to maintain direct-mapped table
748 * (containing bit values) for memory blocks of various "orders".
749 * The bottom level table contains the map for the smallest allocatable
750 * units of memory (here, pages), and each level above it describes
751 * pairs of units from the levels below, hence, "buddies".
752 * At a high level, all that happens here is marking the table entry
753 * at the bottom level available, and propagating the changes upward
754 * as necessary, plus some accounting needed to play nicely with other
755 * parts of the VM system.
756 * At each level, we keep a list of pages, which are heads of continuous
cf6fe945
WSH
757 * free pages of length of (1 << order) and marked with _mapcount
758 * PAGE_BUDDY_MAPCOUNT_VALUE. Page's order is recorded in page_private(page)
759 * field.
1da177e4 760 * So when we are allocating or freeing one, we can derive the state of the
5f63b720
MN
761 * other. That is, if we allocate a small block, and both were
762 * free, the remainder of the region must be split into blocks.
1da177e4 763 * If a block is freed, and its buddy is also free, then this
5f63b720 764 * triggers coalescing into a block of larger size.
1da177e4 765 *
6d49e352 766 * -- nyc
1da177e4
LT
767 */
768
48db57f8 769static inline void __free_one_page(struct page *page,
dc4b0caf 770 unsigned long pfn,
ed0ae21d
MG
771 struct zone *zone, unsigned int order,
772 int migratetype)
1da177e4
LT
773{
774 unsigned long page_idx;
6dda9d55 775 unsigned long combined_idx;
43506fad 776 unsigned long uninitialized_var(buddy_idx);
6dda9d55 777 struct page *buddy;
d9dddbf5
VB
778 unsigned int max_order;
779
780 max_order = min_t(unsigned int, MAX_ORDER, pageblock_order + 1);
1da177e4 781
d29bb978 782 VM_BUG_ON(!zone_is_initialized(zone));
6e9f0d58 783 VM_BUG_ON_PAGE(page->flags & PAGE_FLAGS_CHECK_AT_PREP, page);
1da177e4 784
ed0ae21d 785 VM_BUG_ON(migratetype == -1);
d9dddbf5 786 if (likely(!is_migrate_isolate(migratetype)))
8f82b55d 787 __mod_zone_freepage_state(zone, 1 << order, migratetype);
ed0ae21d 788
d9dddbf5 789 page_idx = pfn & ((1 << MAX_ORDER) - 1);
1da177e4 790
309381fe
SL
791 VM_BUG_ON_PAGE(page_idx & ((1 << order) - 1), page);
792 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 793
d9dddbf5 794continue_merging:
3c605096 795 while (order < max_order - 1) {
43506fad
KC
796 buddy_idx = __find_buddy_index(page_idx, order);
797 buddy = page + (buddy_idx - page_idx);
cb2b95e1 798 if (!page_is_buddy(page, buddy, order))
d9dddbf5 799 goto done_merging;
c0a32fc5
SG
800 /*
801 * Our buddy is free or it is CONFIG_DEBUG_PAGEALLOC guard page,
802 * merge with it and move up one order.
803 */
804 if (page_is_guard(buddy)) {
2847cf95 805 clear_page_guard(zone, buddy, order, migratetype);
c0a32fc5
SG
806 } else {
807 list_del(&buddy->lru);
808 zone->free_area[order].nr_free--;
809 rmv_page_order(buddy);
810 }
43506fad 811 combined_idx = buddy_idx & page_idx;
1da177e4
LT
812 page = page + (combined_idx - page_idx);
813 page_idx = combined_idx;
814 order++;
815 }
d9dddbf5
VB
816 if (max_order < MAX_ORDER) {
817 /* If we are here, it means order is >= pageblock_order.
818 * We want to prevent merge between freepages on isolate
819 * pageblock and normal pageblock. Without this, pageblock
820 * isolation could cause incorrect freepage or CMA accounting.
821 *
822 * We don't want to hit this code for the more frequent
823 * low-order merging.
824 */
825 if (unlikely(has_isolate_pageblock(zone))) {
826 int buddy_mt;
827
828 buddy_idx = __find_buddy_index(page_idx, order);
829 buddy = page + (buddy_idx - page_idx);
830 buddy_mt = get_pageblock_migratetype(buddy);
831
832 if (migratetype != buddy_mt
833 && (is_migrate_isolate(migratetype) ||
834 is_migrate_isolate(buddy_mt)))
835 goto done_merging;
836 }
837 max_order++;
838 goto continue_merging;
839 }
840
841done_merging:
1da177e4 842 set_page_order(page, order);
6dda9d55
CZ
843
844 /*
845 * If this is not the largest possible page, check if the buddy
846 * of the next-highest order is free. If it is, it's possible
847 * that pages are being freed that will coalesce soon. In case,
848 * that is happening, add the free page to the tail of the list
849 * so it's less likely to be used soon and more likely to be merged
850 * as a higher order page
851 */
b7f50cfa 852 if ((order < MAX_ORDER-2) && pfn_valid_within(page_to_pfn(buddy))) {
6dda9d55 853 struct page *higher_page, *higher_buddy;
43506fad
KC
854 combined_idx = buddy_idx & page_idx;
855 higher_page = page + (combined_idx - page_idx);
856 buddy_idx = __find_buddy_index(combined_idx, order + 1);
0ba8f2d5 857 higher_buddy = higher_page + (buddy_idx - combined_idx);
6dda9d55
CZ
858 if (page_is_buddy(higher_page, higher_buddy, order + 1)) {
859 list_add_tail(&page->lru,
860 &zone->free_area[order].free_list[migratetype]);
861 goto out;
862 }
863 }
864
865 list_add(&page->lru, &zone->free_area[order].free_list[migratetype]);
866out:
1da177e4
LT
867 zone->free_area[order].nr_free++;
868}
869
7bfec6f4
MG
870/*
871 * A bad page could be due to a number of fields. Instead of multiple branches,
872 * try and check multiple fields with one check. The caller must do a detailed
873 * check if necessary.
874 */
875static inline bool page_expected_state(struct page *page,
876 unsigned long check_flags)
877{
878 if (unlikely(atomic_read(&page->_mapcount) != -1))
879 return false;
880
881 if (unlikely((unsigned long)page->mapping |
882 page_ref_count(page) |
883#ifdef CONFIG_MEMCG
884 (unsigned long)page->mem_cgroup |
885#endif
886 (page->flags & check_flags)))
887 return false;
888
889 return true;
890}
891
bb552ac6 892static void free_pages_check_bad(struct page *page)
1da177e4 893{
7bfec6f4
MG
894 const char *bad_reason;
895 unsigned long bad_flags;
896
7bfec6f4
MG
897 bad_reason = NULL;
898 bad_flags = 0;
f0b791a3 899
53f9263b 900 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
901 bad_reason = "nonzero mapcount";
902 if (unlikely(page->mapping != NULL))
903 bad_reason = "non-NULL mapping";
fe896d18 904 if (unlikely(page_ref_count(page) != 0))
0139aa7b 905 bad_reason = "nonzero _refcount";
f0b791a3
DH
906 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_FREE)) {
907 bad_reason = "PAGE_FLAGS_CHECK_AT_FREE flag(s) set";
908 bad_flags = PAGE_FLAGS_CHECK_AT_FREE;
909 }
9edad6ea
JW
910#ifdef CONFIG_MEMCG
911 if (unlikely(page->mem_cgroup))
912 bad_reason = "page still charged to cgroup";
913#endif
7bfec6f4 914 bad_page(page, bad_reason, bad_flags);
bb552ac6
MG
915}
916
917static inline int free_pages_check(struct page *page)
918{
da838d4f 919 if (likely(page_expected_state(page, PAGE_FLAGS_CHECK_AT_FREE)))
bb552ac6 920 return 0;
bb552ac6
MG
921
922 /* Something has gone sideways, find it */
923 free_pages_check_bad(page);
7bfec6f4 924 return 1;
1da177e4
LT
925}
926
4db7548c
MG
927static int free_tail_pages_check(struct page *head_page, struct page *page)
928{
929 int ret = 1;
930
931 /*
932 * We rely page->lru.next never has bit 0 set, unless the page
933 * is PageTail(). Let's make sure that's true even for poisoned ->lru.
934 */
935 BUILD_BUG_ON((unsigned long)LIST_POISON1 & 1);
936
937 if (!IS_ENABLED(CONFIG_DEBUG_VM)) {
938 ret = 0;
939 goto out;
940 }
941 switch (page - head_page) {
942 case 1:
943 /* the first tail page: ->mapping is compound_mapcount() */
944 if (unlikely(compound_mapcount(page))) {
945 bad_page(page, "nonzero compound_mapcount", 0);
946 goto out;
947 }
948 break;
949 case 2:
950 /*
951 * the second tail page: ->mapping is
952 * page_deferred_list().next -- ignore value.
953 */
954 break;
955 default:
956 if (page->mapping != TAIL_MAPPING) {
957 bad_page(page, "corrupted mapping in tail page", 0);
958 goto out;
959 }
960 break;
961 }
962 if (unlikely(!PageTail(page))) {
963 bad_page(page, "PageTail not set", 0);
964 goto out;
965 }
966 if (unlikely(compound_head(page) != head_page)) {
967 bad_page(page, "compound_head not consistent", 0);
968 goto out;
969 }
970 ret = 0;
971out:
972 page->mapping = NULL;
973 clear_compound_head(page);
974 return ret;
975}
976
e2769dbd
MG
977static __always_inline bool free_pages_prepare(struct page *page,
978 unsigned int order, bool check_free)
4db7548c 979{
e2769dbd 980 int bad = 0;
4db7548c 981
4db7548c
MG
982 VM_BUG_ON_PAGE(PageTail(page), page);
983
e2769dbd
MG
984 trace_mm_page_free(page, order);
985 kmemcheck_free_shadow(page, order);
e2769dbd
MG
986
987 /*
988 * Check tail pages before head page information is cleared to
989 * avoid checking PageCompound for order-0 pages.
990 */
991 if (unlikely(order)) {
992 bool compound = PageCompound(page);
993 int i;
994
995 VM_BUG_ON_PAGE(compound && compound_order(page) != order, page);
4db7548c 996
9a73f61b
KS
997 if (compound)
998 ClearPageDoubleMap(page);
e2769dbd
MG
999 for (i = 1; i < (1 << order); i++) {
1000 if (compound)
1001 bad += free_tail_pages_check(page, page + i);
1002 if (unlikely(free_pages_check(page + i))) {
1003 bad++;
1004 continue;
1005 }
1006 (page + i)->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1007 }
1008 }
bda807d4 1009 if (PageMappingFlags(page))
4db7548c 1010 page->mapping = NULL;
c4159a75 1011 if (memcg_kmem_enabled() && PageKmemcg(page))
4949148a 1012 memcg_kmem_uncharge(page, order);
e2769dbd
MG
1013 if (check_free)
1014 bad += free_pages_check(page);
1015 if (bad)
1016 return false;
4db7548c 1017
e2769dbd
MG
1018 page_cpupid_reset_last(page);
1019 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
1020 reset_page_owner(page, order);
4db7548c
MG
1021
1022 if (!PageHighMem(page)) {
1023 debug_check_no_locks_freed(page_address(page),
e2769dbd 1024 PAGE_SIZE << order);
4db7548c 1025 debug_check_no_obj_freed(page_address(page),
e2769dbd 1026 PAGE_SIZE << order);
4db7548c 1027 }
e2769dbd
MG
1028 arch_free_page(page, order);
1029 kernel_poison_pages(page, 1 << order, 0);
1030 kernel_map_pages(page, 1 << order, 0);
29b52de1 1031 kasan_free_pages(page, order);
4db7548c 1032
4db7548c
MG
1033 return true;
1034}
1035
e2769dbd
MG
1036#ifdef CONFIG_DEBUG_VM
1037static inline bool free_pcp_prepare(struct page *page)
1038{
1039 return free_pages_prepare(page, 0, true);
1040}
1041
1042static inline bool bulkfree_pcp_prepare(struct page *page)
1043{
1044 return false;
1045}
1046#else
1047static bool free_pcp_prepare(struct page *page)
1048{
1049 return free_pages_prepare(page, 0, false);
1050}
1051
4db7548c
MG
1052static bool bulkfree_pcp_prepare(struct page *page)
1053{
1054 return free_pages_check(page);
1055}
1056#endif /* CONFIG_DEBUG_VM */
1057
1da177e4 1058/*
5f8dcc21 1059 * Frees a number of pages from the PCP lists
1da177e4 1060 * Assumes all pages on list are in same zone, and of same order.
207f36ee 1061 * count is the number of pages to free.
1da177e4
LT
1062 *
1063 * If the zone was previously in an "all pages pinned" state then look to
1064 * see if this freeing clears that state.
1065 *
1066 * And clear the zone's pages_scanned counter, to hold off the "all pages are
1067 * pinned" detection logic.
1068 */
5f8dcc21
MG
1069static void free_pcppages_bulk(struct zone *zone, int count,
1070 struct per_cpu_pages *pcp)
1da177e4 1071{
5f8dcc21 1072 int migratetype = 0;
a6f9edd6 1073 int batch_free = 0;
0d5d823a 1074 unsigned long nr_scanned;
3777999d 1075 bool isolated_pageblocks;
5f8dcc21 1076
c54ad30c 1077 spin_lock(&zone->lock);
3777999d 1078 isolated_pageblocks = has_isolate_pageblock(zone);
599d0c95 1079 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1080 if (nr_scanned)
599d0c95 1081 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1082
e5b31ac2 1083 while (count) {
48db57f8 1084 struct page *page;
5f8dcc21
MG
1085 struct list_head *list;
1086
1087 /*
a6f9edd6
MG
1088 * Remove pages from lists in a round-robin fashion. A
1089 * batch_free count is maintained that is incremented when an
1090 * empty list is encountered. This is so more pages are freed
1091 * off fuller lists instead of spinning excessively around empty
1092 * lists
5f8dcc21
MG
1093 */
1094 do {
a6f9edd6 1095 batch_free++;
5f8dcc21
MG
1096 if (++migratetype == MIGRATE_PCPTYPES)
1097 migratetype = 0;
1098 list = &pcp->lists[migratetype];
1099 } while (list_empty(list));
48db57f8 1100
1d16871d
NK
1101 /* This is the only non-empty list. Free them all. */
1102 if (batch_free == MIGRATE_PCPTYPES)
e5b31ac2 1103 batch_free = count;
1d16871d 1104
a6f9edd6 1105 do {
770c8aaa
BZ
1106 int mt; /* migratetype of the to-be-freed page */
1107
a16601c5 1108 page = list_last_entry(list, struct page, lru);
a6f9edd6
MG
1109 /* must delete as __free_one_page list manipulates */
1110 list_del(&page->lru);
aa016d14 1111
bb14c2c7 1112 mt = get_pcppage_migratetype(page);
aa016d14
VB
1113 /* MIGRATE_ISOLATE page should not go to pcplists */
1114 VM_BUG_ON_PAGE(is_migrate_isolate(mt), page);
1115 /* Pageblock could have been isolated meanwhile */
3777999d 1116 if (unlikely(isolated_pageblocks))
51bb1a40 1117 mt = get_pageblock_migratetype(page);
51bb1a40 1118
4db7548c
MG
1119 if (bulkfree_pcp_prepare(page))
1120 continue;
1121
dc4b0caf 1122 __free_one_page(page, page_to_pfn(page), zone, 0, mt);
770c8aaa 1123 trace_mm_page_pcpu_drain(page, 0, mt);
e5b31ac2 1124 } while (--count && --batch_free && !list_empty(list));
1da177e4 1125 }
c54ad30c 1126 spin_unlock(&zone->lock);
1da177e4
LT
1127}
1128
dc4b0caf
MG
1129static void free_one_page(struct zone *zone,
1130 struct page *page, unsigned long pfn,
7aeb09f9 1131 unsigned int order,
ed0ae21d 1132 int migratetype)
1da177e4 1133{
0d5d823a 1134 unsigned long nr_scanned;
006d22d9 1135 spin_lock(&zone->lock);
599d0c95 1136 nr_scanned = node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED);
0d5d823a 1137 if (nr_scanned)
599d0c95 1138 __mod_node_page_state(zone->zone_pgdat, NR_PAGES_SCANNED, -nr_scanned);
f2260e6b 1139
ad53f92e
JK
1140 if (unlikely(has_isolate_pageblock(zone) ||
1141 is_migrate_isolate(migratetype))) {
1142 migratetype = get_pfnblock_migratetype(page, pfn);
ad53f92e 1143 }
dc4b0caf 1144 __free_one_page(page, pfn, zone, order, migratetype);
006d22d9 1145 spin_unlock(&zone->lock);
48db57f8
NP
1146}
1147
1e8ce83c
RH
1148static void __meminit __init_single_page(struct page *page, unsigned long pfn,
1149 unsigned long zone, int nid)
1150{
1e8ce83c 1151 set_page_links(page, zone, nid, pfn);
1e8ce83c
RH
1152 init_page_count(page);
1153 page_mapcount_reset(page);
1154 page_cpupid_reset_last(page);
1e8ce83c 1155
1e8ce83c
RH
1156 INIT_LIST_HEAD(&page->lru);
1157#ifdef WANT_PAGE_VIRTUAL
1158 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
1159 if (!is_highmem_idx(zone))
1160 set_page_address(page, __va(pfn << PAGE_SHIFT));
1161#endif
1162}
1163
1164static void __meminit __init_single_pfn(unsigned long pfn, unsigned long zone,
1165 int nid)
1166{
1167 return __init_single_page(pfn_to_page(pfn), pfn, zone, nid);
1168}
1169
7e18adb4
MG
1170#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
1171static void init_reserved_page(unsigned long pfn)
1172{
1173 pg_data_t *pgdat;
1174 int nid, zid;
1175
1176 if (!early_page_uninitialised(pfn))
1177 return;
1178
1179 nid = early_pfn_to_nid(pfn);
1180 pgdat = NODE_DATA(nid);
1181
1182 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1183 struct zone *zone = &pgdat->node_zones[zid];
1184
1185 if (pfn >= zone->zone_start_pfn && pfn < zone_end_pfn(zone))
1186 break;
1187 }
1188 __init_single_pfn(pfn, zid, nid);
1189}
1190#else
1191static inline void init_reserved_page(unsigned long pfn)
1192{
1193}
1194#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
1195
92923ca3
NZ
1196/*
1197 * Initialised pages do not have PageReserved set. This function is
1198 * called for each range allocated by the bootmem allocator and
1199 * marks the pages PageReserved. The remaining valid pages are later
1200 * sent to the buddy page allocator.
1201 */
4b50bcc7 1202void __meminit reserve_bootmem_region(phys_addr_t start, phys_addr_t end)
92923ca3
NZ
1203{
1204 unsigned long start_pfn = PFN_DOWN(start);
1205 unsigned long end_pfn = PFN_UP(end);
1206
7e18adb4
MG
1207 for (; start_pfn < end_pfn; start_pfn++) {
1208 if (pfn_valid(start_pfn)) {
1209 struct page *page = pfn_to_page(start_pfn);
1210
1211 init_reserved_page(start_pfn);
1d798ca3
KS
1212
1213 /* Avoid false-positive PageTail() */
1214 INIT_LIST_HEAD(&page->lru);
1215
7e18adb4
MG
1216 SetPageReserved(page);
1217 }
1218 }
92923ca3
NZ
1219}
1220
ec95f53a
KM
1221static void __free_pages_ok(struct page *page, unsigned int order)
1222{
1223 unsigned long flags;
95e34412 1224 int migratetype;
dc4b0caf 1225 unsigned long pfn = page_to_pfn(page);
ec95f53a 1226
e2769dbd 1227 if (!free_pages_prepare(page, order, true))
ec95f53a
KM
1228 return;
1229
cfc47a28 1230 migratetype = get_pfnblock_migratetype(page, pfn);
c54ad30c 1231 local_irq_save(flags);
f8891e5e 1232 __count_vm_events(PGFREE, 1 << order);
dc4b0caf 1233 free_one_page(page_zone(page), page, pfn, order, migratetype);
c54ad30c 1234 local_irq_restore(flags);
1da177e4
LT
1235}
1236
949698a3 1237static void __init __free_pages_boot_core(struct page *page, unsigned int order)
a226f6c8 1238{
c3993076 1239 unsigned int nr_pages = 1 << order;
e2d0bd2b 1240 struct page *p = page;
c3993076 1241 unsigned int loop;
a226f6c8 1242
e2d0bd2b
YL
1243 prefetchw(p);
1244 for (loop = 0; loop < (nr_pages - 1); loop++, p++) {
1245 prefetchw(p + 1);
c3993076
JW
1246 __ClearPageReserved(p);
1247 set_page_count(p, 0);
a226f6c8 1248 }
e2d0bd2b
YL
1249 __ClearPageReserved(p);
1250 set_page_count(p, 0);
c3993076 1251
e2d0bd2b 1252 page_zone(page)->managed_pages += nr_pages;
c3993076
JW
1253 set_page_refcounted(page);
1254 __free_pages(page, order);
a226f6c8
DH
1255}
1256
75a592a4
MG
1257#if defined(CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID) || \
1258 defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP)
7ace9917 1259
75a592a4
MG
1260static struct mminit_pfnnid_cache early_pfnnid_cache __meminitdata;
1261
1262int __meminit early_pfn_to_nid(unsigned long pfn)
1263{
7ace9917 1264 static DEFINE_SPINLOCK(early_pfn_lock);
75a592a4
MG
1265 int nid;
1266
7ace9917 1267 spin_lock(&early_pfn_lock);
75a592a4 1268 nid = __early_pfn_to_nid(pfn, &early_pfnnid_cache);
7ace9917 1269 if (nid < 0)
e4568d38 1270 nid = first_online_node;
7ace9917
MG
1271 spin_unlock(&early_pfn_lock);
1272
1273 return nid;
75a592a4
MG
1274}
1275#endif
1276
1277#ifdef CONFIG_NODES_SPAN_OTHER_NODES
1278static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1279 struct mminit_pfnnid_cache *state)
1280{
1281 int nid;
1282
1283 nid = __early_pfn_to_nid(pfn, state);
1284 if (nid >= 0 && nid != node)
1285 return false;
1286 return true;
1287}
1288
1289/* Only safe to use early in boot when initialisation is single-threaded */
1290static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1291{
1292 return meminit_pfn_in_nid(pfn, node, &early_pfnnid_cache);
1293}
1294
1295#else
1296
1297static inline bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
1298{
1299 return true;
1300}
1301static inline bool __meminit meminit_pfn_in_nid(unsigned long pfn, int node,
1302 struct mminit_pfnnid_cache *state)
1303{
1304 return true;
1305}
1306#endif
1307
1308
0e1cc95b 1309void __init __free_pages_bootmem(struct page *page, unsigned long pfn,
3a80a7fa
MG
1310 unsigned int order)
1311{
1312 if (early_page_uninitialised(pfn))
1313 return;
949698a3 1314 return __free_pages_boot_core(page, order);
3a80a7fa
MG
1315}
1316
7cf91a98
JK
1317/*
1318 * Check that the whole (or subset of) a pageblock given by the interval of
1319 * [start_pfn, end_pfn) is valid and within the same zone, before scanning it
1320 * with the migration of free compaction scanner. The scanners then need to
1321 * use only pfn_valid_within() check for arches that allow holes within
1322 * pageblocks.
1323 *
1324 * Return struct page pointer of start_pfn, or NULL if checks were not passed.
1325 *
1326 * It's possible on some configurations to have a setup like node0 node1 node0
1327 * i.e. it's possible that all pages within a zones range of pages do not
1328 * belong to a single zone. We assume that a border between node0 and node1
1329 * can occur within a single pageblock, but not a node0 node1 node0
1330 * interleaving within a single pageblock. It is therefore sufficient to check
1331 * the first and last page of a pageblock and avoid checking each individual
1332 * page in a pageblock.
1333 */
1334struct page *__pageblock_pfn_to_page(unsigned long start_pfn,
1335 unsigned long end_pfn, struct zone *zone)
1336{
1337 struct page *start_page;
1338 struct page *end_page;
1339
1340 /* end_pfn is one past the range we are checking */
1341 end_pfn--;
1342
1343 if (!pfn_valid(start_pfn) || !pfn_valid(end_pfn))
1344 return NULL;
1345
1346 start_page = pfn_to_page(start_pfn);
1347
1348 if (page_zone(start_page) != zone)
1349 return NULL;
1350
1351 end_page = pfn_to_page(end_pfn);
1352
1353 /* This gives a shorter code than deriving page_zone(end_page) */
1354 if (page_zone_id(start_page) != page_zone_id(end_page))
1355 return NULL;
1356
1357 return start_page;
1358}
1359
1360void set_zone_contiguous(struct zone *zone)
1361{
1362 unsigned long block_start_pfn = zone->zone_start_pfn;
1363 unsigned long block_end_pfn;
1364
1365 block_end_pfn = ALIGN(block_start_pfn + 1, pageblock_nr_pages);
1366 for (; block_start_pfn < zone_end_pfn(zone);
1367 block_start_pfn = block_end_pfn,
1368 block_end_pfn += pageblock_nr_pages) {
1369
1370 block_end_pfn = min(block_end_pfn, zone_end_pfn(zone));
1371
1372 if (!__pageblock_pfn_to_page(block_start_pfn,
1373 block_end_pfn, zone))
1374 return;
1375 }
1376
1377 /* We confirm that there is no hole */
1378 zone->contiguous = true;
1379}
1380
1381void clear_zone_contiguous(struct zone *zone)
1382{
1383 zone->contiguous = false;
1384}
1385
7e18adb4 1386#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b 1387static void __init deferred_free_range(struct page *page,
a4de83dd
MG
1388 unsigned long pfn, int nr_pages)
1389{
1390 int i;
1391
1392 if (!page)
1393 return;
1394
1395 /* Free a large naturally-aligned chunk if possible */
1396 if (nr_pages == MAX_ORDER_NR_PAGES &&
1397 (pfn & (MAX_ORDER_NR_PAGES-1)) == 0) {
ac5d2539 1398 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
949698a3 1399 __free_pages_boot_core(page, MAX_ORDER-1);
a4de83dd
MG
1400 return;
1401 }
1402
949698a3
LZ
1403 for (i = 0; i < nr_pages; i++, page++)
1404 __free_pages_boot_core(page, 0);
a4de83dd
MG
1405}
1406
d3cd131d
NS
1407/* Completion tracking for deferred_init_memmap() threads */
1408static atomic_t pgdat_init_n_undone __initdata;
1409static __initdata DECLARE_COMPLETION(pgdat_init_all_done_comp);
1410
1411static inline void __init pgdat_init_report_one_done(void)
1412{
1413 if (atomic_dec_and_test(&pgdat_init_n_undone))
1414 complete(&pgdat_init_all_done_comp);
1415}
0e1cc95b 1416
7e18adb4 1417/* Initialise remaining memory on a node */
0e1cc95b 1418static int __init deferred_init_memmap(void *data)
7e18adb4 1419{
0e1cc95b
MG
1420 pg_data_t *pgdat = data;
1421 int nid = pgdat->node_id;
7e18adb4
MG
1422 struct mminit_pfnnid_cache nid_init_state = { };
1423 unsigned long start = jiffies;
1424 unsigned long nr_pages = 0;
1425 unsigned long walk_start, walk_end;
1426 int i, zid;
1427 struct zone *zone;
7e18adb4 1428 unsigned long first_init_pfn = pgdat->first_deferred_pfn;
0e1cc95b 1429 const struct cpumask *cpumask = cpumask_of_node(pgdat->node_id);
7e18adb4 1430
0e1cc95b 1431 if (first_init_pfn == ULONG_MAX) {
d3cd131d 1432 pgdat_init_report_one_done();
0e1cc95b
MG
1433 return 0;
1434 }
1435
1436 /* Bind memory initialisation thread to a local node if possible */
1437 if (!cpumask_empty(cpumask))
1438 set_cpus_allowed_ptr(current, cpumask);
7e18adb4
MG
1439
1440 /* Sanity check boundaries */
1441 BUG_ON(pgdat->first_deferred_pfn < pgdat->node_start_pfn);
1442 BUG_ON(pgdat->first_deferred_pfn > pgdat_end_pfn(pgdat));
1443 pgdat->first_deferred_pfn = ULONG_MAX;
1444
1445 /* Only the highest zone is deferred so find it */
1446 for (zid = 0; zid < MAX_NR_ZONES; zid++) {
1447 zone = pgdat->node_zones + zid;
1448 if (first_init_pfn < zone_end_pfn(zone))
1449 break;
1450 }
1451
1452 for_each_mem_pfn_range(i, nid, &walk_start, &walk_end, NULL) {
1453 unsigned long pfn, end_pfn;
54608c3f 1454 struct page *page = NULL;
a4de83dd
MG
1455 struct page *free_base_page = NULL;
1456 unsigned long free_base_pfn = 0;
1457 int nr_to_free = 0;
7e18adb4
MG
1458
1459 end_pfn = min(walk_end, zone_end_pfn(zone));
1460 pfn = first_init_pfn;
1461 if (pfn < walk_start)
1462 pfn = walk_start;
1463 if (pfn < zone->zone_start_pfn)
1464 pfn = zone->zone_start_pfn;
1465
1466 for (; pfn < end_pfn; pfn++) {
54608c3f 1467 if (!pfn_valid_within(pfn))
a4de83dd 1468 goto free_range;
7e18adb4 1469
54608c3f
MG
1470 /*
1471 * Ensure pfn_valid is checked every
1472 * MAX_ORDER_NR_PAGES for memory holes
1473 */
1474 if ((pfn & (MAX_ORDER_NR_PAGES - 1)) == 0) {
1475 if (!pfn_valid(pfn)) {
1476 page = NULL;
a4de83dd 1477 goto free_range;
54608c3f
MG
1478 }
1479 }
1480
1481 if (!meminit_pfn_in_nid(pfn, nid, &nid_init_state)) {
1482 page = NULL;
a4de83dd 1483 goto free_range;
54608c3f
MG
1484 }
1485
1486 /* Minimise pfn page lookups and scheduler checks */
1487 if (page && (pfn & (MAX_ORDER_NR_PAGES - 1)) != 0) {
1488 page++;
1489 } else {
a4de83dd
MG
1490 nr_pages += nr_to_free;
1491 deferred_free_range(free_base_page,
1492 free_base_pfn, nr_to_free);
1493 free_base_page = NULL;
1494 free_base_pfn = nr_to_free = 0;
1495
54608c3f
MG
1496 page = pfn_to_page(pfn);
1497 cond_resched();
1498 }
7e18adb4
MG
1499
1500 if (page->flags) {
1501 VM_BUG_ON(page_zone(page) != zone);
a4de83dd 1502 goto free_range;
7e18adb4
MG
1503 }
1504
1505 __init_single_page(page, pfn, zid, nid);
a4de83dd
MG
1506 if (!free_base_page) {
1507 free_base_page = page;
1508 free_base_pfn = pfn;
1509 nr_to_free = 0;
1510 }
1511 nr_to_free++;
1512
1513 /* Where possible, batch up pages for a single free */
1514 continue;
1515free_range:
1516 /* Free the current block of pages to allocator */
1517 nr_pages += nr_to_free;
1518 deferred_free_range(free_base_page, free_base_pfn,
1519 nr_to_free);
1520 free_base_page = NULL;
1521 free_base_pfn = nr_to_free = 0;
7e18adb4 1522 }
a4de83dd 1523
7e18adb4
MG
1524 first_init_pfn = max(end_pfn, first_init_pfn);
1525 }
1526
1527 /* Sanity check that the next zone really is unpopulated */
1528 WARN_ON(++zid < MAX_NR_ZONES && populated_zone(++zone));
1529
0e1cc95b 1530 pr_info("node %d initialised, %lu pages in %ums\n", nid, nr_pages,
7e18adb4 1531 jiffies_to_msecs(jiffies - start));
d3cd131d
NS
1532
1533 pgdat_init_report_one_done();
0e1cc95b
MG
1534 return 0;
1535}
7cf91a98 1536#endif /* CONFIG_DEFERRED_STRUCT_PAGE_INIT */
0e1cc95b
MG
1537
1538void __init page_alloc_init_late(void)
1539{
7cf91a98
JK
1540 struct zone *zone;
1541
1542#ifdef CONFIG_DEFERRED_STRUCT_PAGE_INIT
0e1cc95b
MG
1543 int nid;
1544
d3cd131d
NS
1545 /* There will be num_node_state(N_MEMORY) threads */
1546 atomic_set(&pgdat_init_n_undone, num_node_state(N_MEMORY));
0e1cc95b 1547 for_each_node_state(nid, N_MEMORY) {
0e1cc95b
MG
1548 kthread_run(deferred_init_memmap, NODE_DATA(nid), "pgdatinit%d", nid);
1549 }
1550
1551 /* Block until all are initialised */
d3cd131d 1552 wait_for_completion(&pgdat_init_all_done_comp);
4248b0da
MG
1553
1554 /* Reinit limits that are based on free pages after the kernel is up */
1555 files_maxfiles_init();
7cf91a98
JK
1556#endif
1557
1558 for_each_populated_zone(zone)
1559 set_zone_contiguous(zone);
7e18adb4 1560}
7e18adb4 1561
47118af0 1562#ifdef CONFIG_CMA
9cf510a5 1563/* Free whole pageblock and set its migration type to MIGRATE_CMA. */
47118af0
MN
1564void __init init_cma_reserved_pageblock(struct page *page)
1565{
1566 unsigned i = pageblock_nr_pages;
1567 struct page *p = page;
1568
1569 do {
1570 __ClearPageReserved(p);
1571 set_page_count(p, 0);
1572 } while (++p, --i);
1573
47118af0 1574 set_pageblock_migratetype(page, MIGRATE_CMA);
dc78327c
MN
1575
1576 if (pageblock_order >= MAX_ORDER) {
1577 i = pageblock_nr_pages;
1578 p = page;
1579 do {
1580 set_page_refcounted(p);
1581 __free_pages(p, MAX_ORDER - 1);
1582 p += MAX_ORDER_NR_PAGES;
1583 } while (i -= MAX_ORDER_NR_PAGES);
1584 } else {
1585 set_page_refcounted(page);
1586 __free_pages(page, pageblock_order);
1587 }
1588
3dcc0571 1589 adjust_managed_page_count(page, pageblock_nr_pages);
47118af0
MN
1590}
1591#endif
1da177e4
LT
1592
1593/*
1594 * The order of subdivision here is critical for the IO subsystem.
1595 * Please do not alter this order without good reasons and regression
1596 * testing. Specifically, as large blocks of memory are subdivided,
1597 * the order in which smaller blocks are delivered depends on the order
1598 * they're subdivided in this function. This is the primary factor
1599 * influencing the order in which pages are delivered to the IO
1600 * subsystem according to empirical testing, and this is also justified
1601 * by considering the behavior of a buddy system containing a single
1602 * large block of memory acted on by a series of small allocations.
1603 * This behavior is a critical factor in sglist merging's success.
1604 *
6d49e352 1605 * -- nyc
1da177e4 1606 */
085cc7d5 1607static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
1608 int low, int high, struct free_area *area,
1609 int migratetype)
1da177e4
LT
1610{
1611 unsigned long size = 1 << high;
1612
1613 while (high > low) {
1614 area--;
1615 high--;
1616 size >>= 1;
309381fe 1617 VM_BUG_ON_PAGE(bad_range(zone, &page[size]), &page[size]);
c0a32fc5 1618
2847cf95 1619 if (IS_ENABLED(CONFIG_DEBUG_PAGEALLOC) &&
e30825f1 1620 debug_guardpage_enabled() &&
2847cf95 1621 high < debug_guardpage_minorder()) {
c0a32fc5
SG
1622 /*
1623 * Mark as guard pages (or page), that will allow to
1624 * merge back to allocator when buddy will be freed.
1625 * Corresponding page table entries will not be touched,
1626 * pages will stay not present in virtual address space
1627 */
2847cf95 1628 set_page_guard(zone, &page[size], high, migratetype);
c0a32fc5
SG
1629 continue;
1630 }
b2a0ac88 1631 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
1632 area->nr_free++;
1633 set_page_order(&page[size], high);
1634 }
1da177e4
LT
1635}
1636
4e611801 1637static void check_new_page_bad(struct page *page)
1da177e4 1638{
4e611801
VB
1639 const char *bad_reason = NULL;
1640 unsigned long bad_flags = 0;
7bfec6f4 1641
53f9263b 1642 if (unlikely(atomic_read(&page->_mapcount) != -1))
f0b791a3
DH
1643 bad_reason = "nonzero mapcount";
1644 if (unlikely(page->mapping != NULL))
1645 bad_reason = "non-NULL mapping";
fe896d18 1646 if (unlikely(page_ref_count(page) != 0))
f0b791a3 1647 bad_reason = "nonzero _count";
f4c18e6f
NH
1648 if (unlikely(page->flags & __PG_HWPOISON)) {
1649 bad_reason = "HWPoisoned (hardware-corrupted)";
1650 bad_flags = __PG_HWPOISON;
e570f56c
NH
1651 /* Don't complain about hwpoisoned pages */
1652 page_mapcount_reset(page); /* remove PageBuddy */
1653 return;
f4c18e6f 1654 }
f0b791a3
DH
1655 if (unlikely(page->flags & PAGE_FLAGS_CHECK_AT_PREP)) {
1656 bad_reason = "PAGE_FLAGS_CHECK_AT_PREP flag set";
1657 bad_flags = PAGE_FLAGS_CHECK_AT_PREP;
1658 }
9edad6ea
JW
1659#ifdef CONFIG_MEMCG
1660 if (unlikely(page->mem_cgroup))
1661 bad_reason = "page still charged to cgroup";
1662#endif
4e611801
VB
1663 bad_page(page, bad_reason, bad_flags);
1664}
1665
1666/*
1667 * This page is about to be returned from the page allocator
1668 */
1669static inline int check_new_page(struct page *page)
1670{
1671 if (likely(page_expected_state(page,
1672 PAGE_FLAGS_CHECK_AT_PREP|__PG_HWPOISON)))
1673 return 0;
1674
1675 check_new_page_bad(page);
1676 return 1;
2a7684a2
WF
1677}
1678
1414c7f4
LA
1679static inline bool free_pages_prezeroed(bool poisoned)
1680{
1681 return IS_ENABLED(CONFIG_PAGE_POISONING_ZERO) &&
1682 page_poisoning_enabled() && poisoned;
1683}
1684
479f854a
MG
1685#ifdef CONFIG_DEBUG_VM
1686static bool check_pcp_refill(struct page *page)
1687{
1688 return false;
1689}
1690
1691static bool check_new_pcp(struct page *page)
1692{
1693 return check_new_page(page);
1694}
1695#else
1696static bool check_pcp_refill(struct page *page)
1697{
1698 return check_new_page(page);
1699}
1700static bool check_new_pcp(struct page *page)
1701{
1702 return false;
1703}
1704#endif /* CONFIG_DEBUG_VM */
1705
1706static bool check_new_pages(struct page *page, unsigned int order)
1707{
1708 int i;
1709 for (i = 0; i < (1 << order); i++) {
1710 struct page *p = page + i;
1711
1712 if (unlikely(check_new_page(p)))
1713 return true;
1714 }
1715
1716 return false;
1717}
1718
46f24fd8
JK
1719inline void post_alloc_hook(struct page *page, unsigned int order,
1720 gfp_t gfp_flags)
1721{
1722 set_page_private(page, 0);
1723 set_page_refcounted(page);
1724
1725 arch_alloc_page(page, order);
1726 kernel_map_pages(page, 1 << order, 1);
1727 kernel_poison_pages(page, 1 << order, 1);
1728 kasan_alloc_pages(page, order);
1729 set_page_owner(page, order, gfp_flags);
1730}
1731
479f854a 1732static void prep_new_page(struct page *page, unsigned int order, gfp_t gfp_flags,
c603844b 1733 unsigned int alloc_flags)
2a7684a2
WF
1734{
1735 int i;
1414c7f4 1736 bool poisoned = true;
2a7684a2
WF
1737
1738 for (i = 0; i < (1 << order); i++) {
1739 struct page *p = page + i;
1414c7f4
LA
1740 if (poisoned)
1741 poisoned &= page_is_poisoned(p);
2a7684a2 1742 }
689bcebf 1743
46f24fd8 1744 post_alloc_hook(page, order, gfp_flags);
17cf4406 1745
1414c7f4 1746 if (!free_pages_prezeroed(poisoned) && (gfp_flags & __GFP_ZERO))
f4d2897b
AA
1747 for (i = 0; i < (1 << order); i++)
1748 clear_highpage(page + i);
17cf4406
NP
1749
1750 if (order && (gfp_flags & __GFP_COMP))
1751 prep_compound_page(page, order);
1752
75379191 1753 /*
2f064f34 1754 * page is set pfmemalloc when ALLOC_NO_WATERMARKS was necessary to
75379191
VB
1755 * allocate the page. The expectation is that the caller is taking
1756 * steps that will free more memory. The caller should avoid the page
1757 * being used for !PFMEMALLOC purposes.
1758 */
2f064f34
MH
1759 if (alloc_flags & ALLOC_NO_WATERMARKS)
1760 set_page_pfmemalloc(page);
1761 else
1762 clear_page_pfmemalloc(page);
1da177e4
LT
1763}
1764
56fd56b8
MG
1765/*
1766 * Go through the free lists for the given migratetype and remove
1767 * the smallest available page from the freelists
1768 */
728ec980
MG
1769static inline
1770struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
1771 int migratetype)
1772{
1773 unsigned int current_order;
b8af2941 1774 struct free_area *area;
56fd56b8
MG
1775 struct page *page;
1776
1777 /* Find a page of the appropriate size in the preferred list */
1778 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
1779 area = &(zone->free_area[current_order]);
a16601c5 1780 page = list_first_entry_or_null(&area->free_list[migratetype],
56fd56b8 1781 struct page, lru);
a16601c5
GT
1782 if (!page)
1783 continue;
56fd56b8
MG
1784 list_del(&page->lru);
1785 rmv_page_order(page);
1786 area->nr_free--;
56fd56b8 1787 expand(zone, page, order, current_order, area, migratetype);
bb14c2c7 1788 set_pcppage_migratetype(page, migratetype);
56fd56b8
MG
1789 return page;
1790 }
1791
1792 return NULL;
1793}
1794
1795
b2a0ac88
MG
1796/*
1797 * This array describes the order lists are fallen back to when
1798 * the free lists for the desirable migrate type are depleted
1799 */
47118af0 1800static int fallbacks[MIGRATE_TYPES][4] = {
974a786e
MG
1801 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1802 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_TYPES },
1803 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_TYPES },
47118af0 1804#ifdef CONFIG_CMA
974a786e 1805 [MIGRATE_CMA] = { MIGRATE_TYPES }, /* Never used */
47118af0 1806#endif
194159fb 1807#ifdef CONFIG_MEMORY_ISOLATION
974a786e 1808 [MIGRATE_ISOLATE] = { MIGRATE_TYPES }, /* Never used */
194159fb 1809#endif
b2a0ac88
MG
1810};
1811
dc67647b
JK
1812#ifdef CONFIG_CMA
1813static struct page *__rmqueue_cma_fallback(struct zone *zone,
1814 unsigned int order)
1815{
1816 return __rmqueue_smallest(zone, order, MIGRATE_CMA);
1817}
1818#else
1819static inline struct page *__rmqueue_cma_fallback(struct zone *zone,
1820 unsigned int order) { return NULL; }
1821#endif
1822
c361be55
MG
1823/*
1824 * Move the free pages in a range to the free lists of the requested type.
d9c23400 1825 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
1826 * boundary. If alignment is required, use move_freepages_block()
1827 */
435b405c 1828int move_freepages(struct zone *zone,
b69a7288
AB
1829 struct page *start_page, struct page *end_page,
1830 int migratetype)
c361be55
MG
1831{
1832 struct page *page;
d00181b9 1833 unsigned int order;
d100313f 1834 int pages_moved = 0;
c361be55
MG
1835
1836#ifndef CONFIG_HOLES_IN_ZONE
1837 /*
1838 * page_zone is not safe to call in this context when
1839 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
1840 * anyway as we check zone boundaries in move_freepages_block().
1841 * Remove at a later date when no bug reports exist related to
ac0e5b7a 1842 * grouping pages by mobility
c361be55 1843 */
97ee4ba7 1844 VM_BUG_ON(page_zone(start_page) != page_zone(end_page));
c361be55
MG
1845#endif
1846
1847 for (page = start_page; page <= end_page;) {
344c790e 1848 /* Make sure we are not inadvertently changing nodes */
309381fe 1849 VM_BUG_ON_PAGE(page_to_nid(page) != zone_to_nid(zone), page);
344c790e 1850
c361be55
MG
1851 if (!pfn_valid_within(page_to_pfn(page))) {
1852 page++;
1853 continue;
1854 }
1855
1856 if (!PageBuddy(page)) {
1857 page++;
1858 continue;
1859 }
1860
1861 order = page_order(page);
84be48d8
KS
1862 list_move(&page->lru,
1863 &zone->free_area[order].free_list[migratetype]);
c361be55 1864 page += 1 << order;
d100313f 1865 pages_moved += 1 << order;
c361be55
MG
1866 }
1867
d100313f 1868 return pages_moved;
c361be55
MG
1869}
1870
ee6f509c 1871int move_freepages_block(struct zone *zone, struct page *page,
68e3e926 1872 int migratetype)
c361be55
MG
1873{
1874 unsigned long start_pfn, end_pfn;
1875 struct page *start_page, *end_page;
1876
1877 start_pfn = page_to_pfn(page);
d9c23400 1878 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 1879 start_page = pfn_to_page(start_pfn);
d9c23400
MG
1880 end_page = start_page + pageblock_nr_pages - 1;
1881 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
1882
1883 /* Do not cross zone boundaries */
108bcc96 1884 if (!zone_spans_pfn(zone, start_pfn))
c361be55 1885 start_page = page;
108bcc96 1886 if (!zone_spans_pfn(zone, end_pfn))
c361be55
MG
1887 return 0;
1888
1889 return move_freepages(zone, start_page, end_page, migratetype);
1890}
1891
2f66a68f
MG
1892static void change_pageblock_range(struct page *pageblock_page,
1893 int start_order, int migratetype)
1894{
1895 int nr_pageblocks = 1 << (start_order - pageblock_order);
1896
1897 while (nr_pageblocks--) {
1898 set_pageblock_migratetype(pageblock_page, migratetype);
1899 pageblock_page += pageblock_nr_pages;
1900 }
1901}
1902
fef903ef 1903/*
9c0415eb
VB
1904 * When we are falling back to another migratetype during allocation, try to
1905 * steal extra free pages from the same pageblocks to satisfy further
1906 * allocations, instead of polluting multiple pageblocks.
1907 *
1908 * If we are stealing a relatively large buddy page, it is likely there will
1909 * be more free pages in the pageblock, so try to steal them all. For
1910 * reclaimable and unmovable allocations, we steal regardless of page size,
1911 * as fragmentation caused by those allocations polluting movable pageblocks
1912 * is worse than movable allocations stealing from unmovable and reclaimable
1913 * pageblocks.
fef903ef 1914 */
4eb7dce6
JK
1915static bool can_steal_fallback(unsigned int order, int start_mt)
1916{
1917 /*
1918 * Leaving this order check is intended, although there is
1919 * relaxed order check in next check. The reason is that
1920 * we can actually steal whole pageblock if this condition met,
1921 * but, below check doesn't guarantee it and that is just heuristic
1922 * so could be changed anytime.
1923 */
1924 if (order >= pageblock_order)
1925 return true;
1926
1927 if (order >= pageblock_order / 2 ||
1928 start_mt == MIGRATE_RECLAIMABLE ||
1929 start_mt == MIGRATE_UNMOVABLE ||
1930 page_group_by_mobility_disabled)
1931 return true;
1932
1933 return false;
1934}
1935
1936/*
1937 * This function implements actual steal behaviour. If order is large enough,
1938 * we can steal whole pageblock. If not, we first move freepages in this
1939 * pageblock and check whether half of pages are moved or not. If half of
1940 * pages are moved, we can change migratetype of pageblock and permanently
1941 * use it's pages as requested migratetype in the future.
1942 */
1943static void steal_suitable_fallback(struct zone *zone, struct page *page,
1944 int start_type)
fef903ef 1945{
d00181b9 1946 unsigned int current_order = page_order(page);
4eb7dce6 1947 int pages;
fef903ef 1948
fef903ef
SB
1949 /* Take ownership for orders >= pageblock_order */
1950 if (current_order >= pageblock_order) {
1951 change_pageblock_range(page, current_order, start_type);
3a1086fb 1952 return;
fef903ef
SB
1953 }
1954
4eb7dce6 1955 pages = move_freepages_block(zone, page, start_type);
fef903ef 1956
4eb7dce6
JK
1957 /* Claim the whole block if over half of it is free */
1958 if (pages >= (1 << (pageblock_order-1)) ||
1959 page_group_by_mobility_disabled)
1960 set_pageblock_migratetype(page, start_type);
1961}
1962
2149cdae
JK
1963/*
1964 * Check whether there is a suitable fallback freepage with requested order.
1965 * If only_stealable is true, this function returns fallback_mt only if
1966 * we can steal other freepages all together. This would help to reduce
1967 * fragmentation due to mixed migratetype pages in one pageblock.
1968 */
1969int find_suitable_fallback(struct free_area *area, unsigned int order,
1970 int migratetype, bool only_stealable, bool *can_steal)
4eb7dce6
JK
1971{
1972 int i;
1973 int fallback_mt;
1974
1975 if (area->nr_free == 0)
1976 return -1;
1977
1978 *can_steal = false;
1979 for (i = 0;; i++) {
1980 fallback_mt = fallbacks[migratetype][i];
974a786e 1981 if (fallback_mt == MIGRATE_TYPES)
4eb7dce6
JK
1982 break;
1983
1984 if (list_empty(&area->free_list[fallback_mt]))
1985 continue;
fef903ef 1986
4eb7dce6
JK
1987 if (can_steal_fallback(order, migratetype))
1988 *can_steal = true;
1989
2149cdae
JK
1990 if (!only_stealable)
1991 return fallback_mt;
1992
1993 if (*can_steal)
1994 return fallback_mt;
fef903ef 1995 }
4eb7dce6
JK
1996
1997 return -1;
fef903ef
SB
1998}
1999
0aaa29a5
MG
2000/*
2001 * Reserve a pageblock for exclusive use of high-order atomic allocations if
2002 * there are no empty page blocks that contain a page with a suitable order
2003 */
2004static void reserve_highatomic_pageblock(struct page *page, struct zone *zone,
2005 unsigned int alloc_order)
2006{
2007 int mt;
2008 unsigned long max_managed, flags;
2009
2010 /*
2011 * Limit the number reserved to 1 pageblock or roughly 1% of a zone.
2012 * Check is race-prone but harmless.
2013 */
2014 max_managed = (zone->managed_pages / 100) + pageblock_nr_pages;
2015 if (zone->nr_reserved_highatomic >= max_managed)
2016 return;
2017
2018 spin_lock_irqsave(&zone->lock, flags);
2019
2020 /* Recheck the nr_reserved_highatomic limit under the lock */
2021 if (zone->nr_reserved_highatomic >= max_managed)
2022 goto out_unlock;
2023
2024 /* Yoink! */
2025 mt = get_pageblock_migratetype(page);
2026 if (mt != MIGRATE_HIGHATOMIC &&
2027 !is_migrate_isolate(mt) && !is_migrate_cma(mt)) {
2028 zone->nr_reserved_highatomic += pageblock_nr_pages;
2029 set_pageblock_migratetype(page, MIGRATE_HIGHATOMIC);
2030 move_freepages_block(zone, page, MIGRATE_HIGHATOMIC);
2031 }
2032
2033out_unlock:
2034 spin_unlock_irqrestore(&zone->lock, flags);
2035}
2036
2037/*
2038 * Used when an allocation is about to fail under memory pressure. This
2039 * potentially hurts the reliability of high-order allocations when under
2040 * intense memory pressure but failed atomic allocations should be easier
2041 * to recover from than an OOM.
2042 */
2043static void unreserve_highatomic_pageblock(const struct alloc_context *ac)
2044{
2045 struct zonelist *zonelist = ac->zonelist;
2046 unsigned long flags;
2047 struct zoneref *z;
2048 struct zone *zone;
2049 struct page *page;
2050 int order;
2051
2052 for_each_zone_zonelist_nodemask(zone, z, zonelist, ac->high_zoneidx,
2053 ac->nodemask) {
2054 /* Preserve at least one pageblock */
2055 if (zone->nr_reserved_highatomic <= pageblock_nr_pages)
2056 continue;
2057
2058 spin_lock_irqsave(&zone->lock, flags);
2059 for (order = 0; order < MAX_ORDER; order++) {
2060 struct free_area *area = &(zone->free_area[order]);
2061
a16601c5
GT
2062 page = list_first_entry_or_null(
2063 &area->free_list[MIGRATE_HIGHATOMIC],
2064 struct page, lru);
2065 if (!page)
0aaa29a5
MG
2066 continue;
2067
0aaa29a5
MG
2068 /*
2069 * It should never happen but changes to locking could
2070 * inadvertently allow a per-cpu drain to add pages
2071 * to MIGRATE_HIGHATOMIC while unreserving so be safe
2072 * and watch for underflows.
2073 */
2074 zone->nr_reserved_highatomic -= min(pageblock_nr_pages,
2075 zone->nr_reserved_highatomic);
2076
2077 /*
2078 * Convert to ac->migratetype and avoid the normal
2079 * pageblock stealing heuristics. Minimally, the caller
2080 * is doing the work and needs the pages. More
2081 * importantly, if the block was always converted to
2082 * MIGRATE_UNMOVABLE or another type then the number
2083 * of pageblocks that cannot be completely freed
2084 * may increase.
2085 */
2086 set_pageblock_migratetype(page, ac->migratetype);
2087 move_freepages_block(zone, page, ac->migratetype);
2088 spin_unlock_irqrestore(&zone->lock, flags);
2089 return;
2090 }
2091 spin_unlock_irqrestore(&zone->lock, flags);
2092 }
2093}
2094
b2a0ac88 2095/* Remove an element from the buddy allocator from the fallback list */
0ac3a409 2096static inline struct page *
7aeb09f9 2097__rmqueue_fallback(struct zone *zone, unsigned int order, int start_migratetype)
b2a0ac88 2098{
b8af2941 2099 struct free_area *area;
7aeb09f9 2100 unsigned int current_order;
b2a0ac88 2101 struct page *page;
4eb7dce6
JK
2102 int fallback_mt;
2103 bool can_steal;
b2a0ac88
MG
2104
2105 /* Find the largest possible block of pages in the other list */
7aeb09f9
MG
2106 for (current_order = MAX_ORDER-1;
2107 current_order >= order && current_order <= MAX_ORDER-1;
2108 --current_order) {
4eb7dce6
JK
2109 area = &(zone->free_area[current_order]);
2110 fallback_mt = find_suitable_fallback(area, current_order,
2149cdae 2111 start_migratetype, false, &can_steal);
4eb7dce6
JK
2112 if (fallback_mt == -1)
2113 continue;
b2a0ac88 2114
a16601c5 2115 page = list_first_entry(&area->free_list[fallback_mt],
4eb7dce6
JK
2116 struct page, lru);
2117 if (can_steal)
2118 steal_suitable_fallback(zone, page, start_migratetype);
b2a0ac88 2119
4eb7dce6
JK
2120 /* Remove the page from the freelists */
2121 area->nr_free--;
2122 list_del(&page->lru);
2123 rmv_page_order(page);
3a1086fb 2124
4eb7dce6
JK
2125 expand(zone, page, order, current_order, area,
2126 start_migratetype);
2127 /*
bb14c2c7 2128 * The pcppage_migratetype may differ from pageblock's
4eb7dce6 2129 * migratetype depending on the decisions in
bb14c2c7
VB
2130 * find_suitable_fallback(). This is OK as long as it does not
2131 * differ for MIGRATE_CMA pageblocks. Those can be used as
2132 * fallback only via special __rmqueue_cma_fallback() function
4eb7dce6 2133 */
bb14c2c7 2134 set_pcppage_migratetype(page, start_migratetype);
e0fff1bd 2135
4eb7dce6
JK
2136 trace_mm_page_alloc_extfrag(page, order, current_order,
2137 start_migratetype, fallback_mt);
e0fff1bd 2138
4eb7dce6 2139 return page;
b2a0ac88
MG
2140 }
2141
728ec980 2142 return NULL;
b2a0ac88
MG
2143}
2144
56fd56b8 2145/*
1da177e4
LT
2146 * Do the hard work of removing an element from the buddy allocator.
2147 * Call me with the zone->lock already held.
2148 */
b2a0ac88 2149static struct page *__rmqueue(struct zone *zone, unsigned int order,
6ac0206b 2150 int migratetype)
1da177e4 2151{
1da177e4
LT
2152 struct page *page;
2153
56fd56b8 2154 page = __rmqueue_smallest(zone, order, migratetype);
974a786e 2155 if (unlikely(!page)) {
dc67647b
JK
2156 if (migratetype == MIGRATE_MOVABLE)
2157 page = __rmqueue_cma_fallback(zone, order);
2158
2159 if (!page)
2160 page = __rmqueue_fallback(zone, order, migratetype);
728ec980
MG
2161 }
2162
0d3d062a 2163 trace_mm_page_alloc_zone_locked(page, order, migratetype);
b2a0ac88 2164 return page;
1da177e4
LT
2165}
2166
5f63b720 2167/*
1da177e4
LT
2168 * Obtain a specified number of elements from the buddy allocator, all under
2169 * a single hold of the lock, for efficiency. Add them to the supplied list.
2170 * Returns the number of new pages which were placed at *list.
2171 */
5f63b720 2172static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88 2173 unsigned long count, struct list_head *list,
b745bc85 2174 int migratetype, bool cold)
1da177e4 2175{
5bcc9f86 2176 int i;
5f63b720 2177
c54ad30c 2178 spin_lock(&zone->lock);
1da177e4 2179 for (i = 0; i < count; ++i) {
6ac0206b 2180 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 2181 if (unlikely(page == NULL))
1da177e4 2182 break;
81eabcbe 2183
479f854a
MG
2184 if (unlikely(check_pcp_refill(page)))
2185 continue;
2186
81eabcbe
MG
2187 /*
2188 * Split buddy pages returned by expand() are received here
2189 * in physical page order. The page is added to the callers and
2190 * list and the list head then moves forward. From the callers
2191 * perspective, the linked list is ordered by page number in
2192 * some conditions. This is useful for IO devices that can
2193 * merge IO requests if the physical pages are ordered
2194 * properly.
2195 */
b745bc85 2196 if (likely(!cold))
e084b2d9
MG
2197 list_add(&page->lru, list);
2198 else
2199 list_add_tail(&page->lru, list);
81eabcbe 2200 list = &page->lru;
bb14c2c7 2201 if (is_migrate_cma(get_pcppage_migratetype(page)))
d1ce749a
BZ
2202 __mod_zone_page_state(zone, NR_FREE_CMA_PAGES,
2203 -(1 << order));
1da177e4 2204 }
f2260e6b 2205 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 2206 spin_unlock(&zone->lock);
085cc7d5 2207 return i;
1da177e4
LT
2208}
2209
4ae7c039 2210#ifdef CONFIG_NUMA
8fce4d8e 2211/*
4037d452
CL
2212 * Called from the vmstat counter updater to drain pagesets of this
2213 * currently executing processor on remote nodes after they have
2214 * expired.
2215 *
879336c3
CL
2216 * Note that this function must be called with the thread pinned to
2217 * a single processor.
8fce4d8e 2218 */
4037d452 2219void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 2220{
4ae7c039 2221 unsigned long flags;
7be12fc9 2222 int to_drain, batch;
4ae7c039 2223
4037d452 2224 local_irq_save(flags);
4db0c3c2 2225 batch = READ_ONCE(pcp->batch);
7be12fc9 2226 to_drain = min(pcp->count, batch);
2a13515c
KM
2227 if (to_drain > 0) {
2228 free_pcppages_bulk(zone, to_drain, pcp);
2229 pcp->count -= to_drain;
2230 }
4037d452 2231 local_irq_restore(flags);
4ae7c039
CL
2232}
2233#endif
2234
9f8f2172 2235/*
93481ff0 2236 * Drain pcplists of the indicated processor and zone.
9f8f2172
CL
2237 *
2238 * The processor must either be the current processor and the
2239 * thread pinned to the current processor or a processor that
2240 * is not online.
2241 */
93481ff0 2242static void drain_pages_zone(unsigned int cpu, struct zone *zone)
1da177e4 2243{
c54ad30c 2244 unsigned long flags;
93481ff0
VB
2245 struct per_cpu_pageset *pset;
2246 struct per_cpu_pages *pcp;
1da177e4 2247
93481ff0
VB
2248 local_irq_save(flags);
2249 pset = per_cpu_ptr(zone->pageset, cpu);
1da177e4 2250
93481ff0
VB
2251 pcp = &pset->pcp;
2252 if (pcp->count) {
2253 free_pcppages_bulk(zone, pcp->count, pcp);
2254 pcp->count = 0;
2255 }
2256 local_irq_restore(flags);
2257}
3dfa5721 2258
93481ff0
VB
2259/*
2260 * Drain pcplists of all zones on the indicated processor.
2261 *
2262 * The processor must either be the current processor and the
2263 * thread pinned to the current processor or a processor that
2264 * is not online.
2265 */
2266static void drain_pages(unsigned int cpu)
2267{
2268 struct zone *zone;
2269
2270 for_each_populated_zone(zone) {
2271 drain_pages_zone(cpu, zone);
1da177e4
LT
2272 }
2273}
1da177e4 2274
9f8f2172
CL
2275/*
2276 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
93481ff0
VB
2277 *
2278 * The CPU has to be pinned. When zone parameter is non-NULL, spill just
2279 * the single zone's pages.
9f8f2172 2280 */
93481ff0 2281void drain_local_pages(struct zone *zone)
9f8f2172 2282{
93481ff0
VB
2283 int cpu = smp_processor_id();
2284
2285 if (zone)
2286 drain_pages_zone(cpu, zone);
2287 else
2288 drain_pages(cpu);
9f8f2172
CL
2289}
2290
2291/*
74046494
GBY
2292 * Spill all the per-cpu pages from all CPUs back into the buddy allocator.
2293 *
93481ff0
VB
2294 * When zone parameter is non-NULL, spill just the single zone's pages.
2295 *
74046494
GBY
2296 * Note that this code is protected against sending an IPI to an offline
2297 * CPU but does not guarantee sending an IPI to newly hotplugged CPUs:
2298 * on_each_cpu_mask() blocks hotplug and won't talk to offlined CPUs but
2299 * nothing keeps CPUs from showing up after we populated the cpumask and
2300 * before the call to on_each_cpu_mask().
9f8f2172 2301 */
93481ff0 2302void drain_all_pages(struct zone *zone)
9f8f2172 2303{
74046494 2304 int cpu;
74046494
GBY
2305
2306 /*
2307 * Allocate in the BSS so we wont require allocation in
2308 * direct reclaim path for CONFIG_CPUMASK_OFFSTACK=y
2309 */
2310 static cpumask_t cpus_with_pcps;
2311
2312 /*
2313 * We don't care about racing with CPU hotplug event
2314 * as offline notification will cause the notified
2315 * cpu to drain that CPU pcps and on_each_cpu_mask
2316 * disables preemption as part of its processing
2317 */
2318 for_each_online_cpu(cpu) {
93481ff0
VB
2319 struct per_cpu_pageset *pcp;
2320 struct zone *z;
74046494 2321 bool has_pcps = false;
93481ff0
VB
2322
2323 if (zone) {
74046494 2324 pcp = per_cpu_ptr(zone->pageset, cpu);
93481ff0 2325 if (pcp->pcp.count)
74046494 2326 has_pcps = true;
93481ff0
VB
2327 } else {
2328 for_each_populated_zone(z) {
2329 pcp = per_cpu_ptr(z->pageset, cpu);
2330 if (pcp->pcp.count) {
2331 has_pcps = true;
2332 break;
2333 }
74046494
GBY
2334 }
2335 }
93481ff0 2336
74046494
GBY
2337 if (has_pcps)
2338 cpumask_set_cpu(cpu, &cpus_with_pcps);
2339 else
2340 cpumask_clear_cpu(cpu, &cpus_with_pcps);
2341 }
93481ff0
VB
2342 on_each_cpu_mask(&cpus_with_pcps, (smp_call_func_t) drain_local_pages,
2343 zone, 1);
9f8f2172
CL
2344}
2345
296699de 2346#ifdef CONFIG_HIBERNATION
1da177e4
LT
2347
2348void mark_free_pages(struct zone *zone)
2349{
f623f0db
RW
2350 unsigned long pfn, max_zone_pfn;
2351 unsigned long flags;
7aeb09f9 2352 unsigned int order, t;
86760a2c 2353 struct page *page;
1da177e4 2354
8080fc03 2355 if (zone_is_empty(zone))
1da177e4
LT
2356 return;
2357
2358 spin_lock_irqsave(&zone->lock, flags);
f623f0db 2359
108bcc96 2360 max_zone_pfn = zone_end_pfn(zone);
f623f0db
RW
2361 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
2362 if (pfn_valid(pfn)) {
86760a2c 2363 page = pfn_to_page(pfn);
ba6b0979
JK
2364
2365 if (page_zone(page) != zone)
2366 continue;
2367
7be98234
RW
2368 if (!swsusp_page_is_forbidden(page))
2369 swsusp_unset_page_free(page);
f623f0db 2370 }
1da177e4 2371
b2a0ac88 2372 for_each_migratetype_order(order, t) {
86760a2c
GT
2373 list_for_each_entry(page,
2374 &zone->free_area[order].free_list[t], lru) {
f623f0db 2375 unsigned long i;
1da177e4 2376
86760a2c 2377 pfn = page_to_pfn(page);
f623f0db 2378 for (i = 0; i < (1UL << order); i++)
7be98234 2379 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 2380 }
b2a0ac88 2381 }
1da177e4
LT
2382 spin_unlock_irqrestore(&zone->lock, flags);
2383}
e2c55dc8 2384#endif /* CONFIG_PM */
1da177e4 2385
1da177e4
LT
2386/*
2387 * Free a 0-order page
b745bc85 2388 * cold == true ? free a cold page : free a hot page
1da177e4 2389 */
b745bc85 2390void free_hot_cold_page(struct page *page, bool cold)
1da177e4
LT
2391{
2392 struct zone *zone = page_zone(page);
2393 struct per_cpu_pages *pcp;
2394 unsigned long flags;
dc4b0caf 2395 unsigned long pfn = page_to_pfn(page);
5f8dcc21 2396 int migratetype;
1da177e4 2397
4db7548c 2398 if (!free_pcp_prepare(page))
689bcebf
HD
2399 return;
2400
dc4b0caf 2401 migratetype = get_pfnblock_migratetype(page, pfn);
bb14c2c7 2402 set_pcppage_migratetype(page, migratetype);
1da177e4 2403 local_irq_save(flags);
f8891e5e 2404 __count_vm_event(PGFREE);
da456f14 2405
5f8dcc21
MG
2406 /*
2407 * We only track unmovable, reclaimable and movable on pcp lists.
2408 * Free ISOLATE pages back to the allocator because they are being
2409 * offlined but treat RESERVE as movable pages so we can get those
2410 * areas back if necessary. Otherwise, we may have to free
2411 * excessively into the page allocator
2412 */
2413 if (migratetype >= MIGRATE_PCPTYPES) {
194159fb 2414 if (unlikely(is_migrate_isolate(migratetype))) {
dc4b0caf 2415 free_one_page(zone, page, pfn, 0, migratetype);
5f8dcc21
MG
2416 goto out;
2417 }
2418 migratetype = MIGRATE_MOVABLE;
2419 }
2420
99dcc3e5 2421 pcp = &this_cpu_ptr(zone->pageset)->pcp;
b745bc85 2422 if (!cold)
5f8dcc21 2423 list_add(&page->lru, &pcp->lists[migratetype]);
b745bc85
MG
2424 else
2425 list_add_tail(&page->lru, &pcp->lists[migratetype]);
1da177e4 2426 pcp->count++;
48db57f8 2427 if (pcp->count >= pcp->high) {
4db0c3c2 2428 unsigned long batch = READ_ONCE(pcp->batch);
998d39cb
CS
2429 free_pcppages_bulk(zone, batch, pcp);
2430 pcp->count -= batch;
48db57f8 2431 }
5f8dcc21
MG
2432
2433out:
1da177e4 2434 local_irq_restore(flags);
1da177e4
LT
2435}
2436
cc59850e
KK
2437/*
2438 * Free a list of 0-order pages
2439 */
b745bc85 2440void free_hot_cold_page_list(struct list_head *list, bool cold)
cc59850e
KK
2441{
2442 struct page *page, *next;
2443
2444 list_for_each_entry_safe(page, next, list, lru) {
b413d48a 2445 trace_mm_page_free_batched(page, cold);
cc59850e
KK
2446 free_hot_cold_page(page, cold);
2447 }
2448}
2449
8dfcc9ba
NP
2450/*
2451 * split_page takes a non-compound higher-order page, and splits it into
2452 * n (1<<order) sub-pages: page[0..n]
2453 * Each sub-page must be freed individually.
2454 *
2455 * Note: this is probably too low level an operation for use in drivers.
2456 * Please consult with lkml before using this in your driver.
2457 */
2458void split_page(struct page *page, unsigned int order)
2459{
2460 int i;
2461
309381fe
SL
2462 VM_BUG_ON_PAGE(PageCompound(page), page);
2463 VM_BUG_ON_PAGE(!page_count(page), page);
b1eeab67
VN
2464
2465#ifdef CONFIG_KMEMCHECK
2466 /*
2467 * Split shadow pages too, because free(page[0]) would
2468 * otherwise free the whole shadow.
2469 */
2470 if (kmemcheck_page_is_tracked(page))
2471 split_page(virt_to_page(page[0].shadow), order);
2472#endif
2473
a9627bc5 2474 for (i = 1; i < (1 << order); i++)
7835e98b 2475 set_page_refcounted(page + i);
a9627bc5 2476 split_page_owner(page, order);
8dfcc9ba 2477}
5853ff23 2478EXPORT_SYMBOL_GPL(split_page);
8dfcc9ba 2479
3c605096 2480int __isolate_free_page(struct page *page, unsigned int order)
748446bb 2481{
748446bb
MG
2482 unsigned long watermark;
2483 struct zone *zone;
2139cbe6 2484 int mt;
748446bb
MG
2485
2486 BUG_ON(!PageBuddy(page));
2487
2488 zone = page_zone(page);
2e30abd1 2489 mt = get_pageblock_migratetype(page);
748446bb 2490
194159fb 2491 if (!is_migrate_isolate(mt)) {
2e30abd1
MS
2492 /* Obey watermarks as if the page was being allocated */
2493 watermark = low_wmark_pages(zone) + (1 << order);
2494 if (!zone_watermark_ok(zone, 0, watermark, 0, 0))
2495 return 0;
2496
8fb74b9f 2497 __mod_zone_freepage_state(zone, -(1UL << order), mt);
2e30abd1 2498 }
748446bb
MG
2499
2500 /* Remove page from free list */
2501 list_del(&page->lru);
2502 zone->free_area[order].nr_free--;
2503 rmv_page_order(page);
2139cbe6 2504
400bc7fd 2505 /*
2506 * Set the pageblock if the isolated page is at least half of a
2507 * pageblock
2508 */
748446bb
MG
2509 if (order >= pageblock_order - 1) {
2510 struct page *endpage = page + (1 << order) - 1;
47118af0
MN
2511 for (; page < endpage; page += pageblock_nr_pages) {
2512 int mt = get_pageblock_migratetype(page);
194159fb 2513 if (!is_migrate_isolate(mt) && !is_migrate_cma(mt))
47118af0
MN
2514 set_pageblock_migratetype(page,
2515 MIGRATE_MOVABLE);
2516 }
748446bb
MG
2517 }
2518
f3a14ced 2519
8fb74b9f 2520 return 1UL << order;
1fb3f8ca
MG
2521}
2522
060e7417
MG
2523/*
2524 * Update NUMA hit/miss statistics
2525 *
2526 * Must be called with interrupts disabled.
2527 *
2528 * When __GFP_OTHER_NODE is set assume the node of the preferred
2529 * zone is the local node. This is useful for daemons who allocate
2530 * memory on behalf of other processes.
2531 */
2532static inline void zone_statistics(struct zone *preferred_zone, struct zone *z,
2533 gfp_t flags)
2534{
2535#ifdef CONFIG_NUMA
2536 int local_nid = numa_node_id();
2537 enum zone_stat_item local_stat = NUMA_LOCAL;
2538
2539 if (unlikely(flags & __GFP_OTHER_NODE)) {
2540 local_stat = NUMA_OTHER;
2541 local_nid = preferred_zone->node;
2542 }
2543
2544 if (z->node == local_nid) {
2545 __inc_zone_state(z, NUMA_HIT);
2546 __inc_zone_state(z, local_stat);
2547 } else {
2548 __inc_zone_state(z, NUMA_MISS);
2549 __inc_zone_state(preferred_zone, NUMA_FOREIGN);
2550 }
2551#endif
2552}
2553
1da177e4 2554/*
75379191 2555 * Allocate a page from the given zone. Use pcplists for order-0 allocations.
1da177e4 2556 */
0a15c3e9
MG
2557static inline
2558struct page *buffered_rmqueue(struct zone *preferred_zone,
7aeb09f9 2559 struct zone *zone, unsigned int order,
c603844b
MG
2560 gfp_t gfp_flags, unsigned int alloc_flags,
2561 int migratetype)
1da177e4
LT
2562{
2563 unsigned long flags;
689bcebf 2564 struct page *page;
b745bc85 2565 bool cold = ((gfp_flags & __GFP_COLD) != 0);
1da177e4 2566
48db57f8 2567 if (likely(order == 0)) {
1da177e4 2568 struct per_cpu_pages *pcp;
5f8dcc21 2569 struct list_head *list;
1da177e4 2570
1da177e4 2571 local_irq_save(flags);
479f854a
MG
2572 do {
2573 pcp = &this_cpu_ptr(zone->pageset)->pcp;
2574 list = &pcp->lists[migratetype];
2575 if (list_empty(list)) {
2576 pcp->count += rmqueue_bulk(zone, 0,
2577 pcp->batch, list,
2578 migratetype, cold);
2579 if (unlikely(list_empty(list)))
2580 goto failed;
2581 }
b92a6edd 2582
479f854a
MG
2583 if (cold)
2584 page = list_last_entry(list, struct page, lru);
2585 else
2586 page = list_first_entry(list, struct page, lru);
5f8dcc21 2587
83b9355b
VB
2588 list_del(&page->lru);
2589 pcp->count--;
2590
2591 } while (check_new_pcp(page));
7fb1d9fc 2592 } else {
0f352e53
MH
2593 /*
2594 * We most definitely don't want callers attempting to
2595 * allocate greater than order-1 page units with __GFP_NOFAIL.
2596 */
2597 WARN_ON_ONCE((gfp_flags & __GFP_NOFAIL) && (order > 1));
1da177e4 2598 spin_lock_irqsave(&zone->lock, flags);
0aaa29a5 2599
479f854a
MG
2600 do {
2601 page = NULL;
2602 if (alloc_flags & ALLOC_HARDER) {
2603 page = __rmqueue_smallest(zone, order, MIGRATE_HIGHATOMIC);
2604 if (page)
2605 trace_mm_page_alloc_zone_locked(page, order, migratetype);
2606 }
2607 if (!page)
2608 page = __rmqueue(zone, order, migratetype);
2609 } while (page && check_new_pages(page, order));
a74609fa
NP
2610 spin_unlock(&zone->lock);
2611 if (!page)
2612 goto failed;
d1ce749a 2613 __mod_zone_freepage_state(zone, -(1 << order),
bb14c2c7 2614 get_pcppage_migratetype(page));
1da177e4
LT
2615 }
2616
16709d1d 2617 __count_zid_vm_events(PGALLOC, page_zonenum(page), 1 << order);
78afd561 2618 zone_statistics(preferred_zone, zone, gfp_flags);
a74609fa 2619 local_irq_restore(flags);
1da177e4 2620
309381fe 2621 VM_BUG_ON_PAGE(bad_range(zone, page), page);
1da177e4 2622 return page;
a74609fa
NP
2623
2624failed:
2625 local_irq_restore(flags);
a74609fa 2626 return NULL;
1da177e4
LT
2627}
2628
933e312e
AM
2629#ifdef CONFIG_FAIL_PAGE_ALLOC
2630
b2588c4b 2631static struct {
933e312e
AM
2632 struct fault_attr attr;
2633
621a5f7a 2634 bool ignore_gfp_highmem;
71baba4b 2635 bool ignore_gfp_reclaim;
54114994 2636 u32 min_order;
933e312e
AM
2637} fail_page_alloc = {
2638 .attr = FAULT_ATTR_INITIALIZER,
71baba4b 2639 .ignore_gfp_reclaim = true,
621a5f7a 2640 .ignore_gfp_highmem = true,
54114994 2641 .min_order = 1,
933e312e
AM
2642};
2643
2644static int __init setup_fail_page_alloc(char *str)
2645{
2646 return setup_fault_attr(&fail_page_alloc.attr, str);
2647}
2648__setup("fail_page_alloc=", setup_fail_page_alloc);
2649
deaf386e 2650static bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2651{
54114994 2652 if (order < fail_page_alloc.min_order)
deaf386e 2653 return false;
933e312e 2654 if (gfp_mask & __GFP_NOFAIL)
deaf386e 2655 return false;
933e312e 2656 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
deaf386e 2657 return false;
71baba4b
MG
2658 if (fail_page_alloc.ignore_gfp_reclaim &&
2659 (gfp_mask & __GFP_DIRECT_RECLAIM))
deaf386e 2660 return false;
933e312e
AM
2661
2662 return should_fail(&fail_page_alloc.attr, 1 << order);
2663}
2664
2665#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
2666
2667static int __init fail_page_alloc_debugfs(void)
2668{
f4ae40a6 2669 umode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
933e312e 2670 struct dentry *dir;
933e312e 2671
dd48c085
AM
2672 dir = fault_create_debugfs_attr("fail_page_alloc", NULL,
2673 &fail_page_alloc.attr);
2674 if (IS_ERR(dir))
2675 return PTR_ERR(dir);
933e312e 2676
b2588c4b 2677 if (!debugfs_create_bool("ignore-gfp-wait", mode, dir,
71baba4b 2678 &fail_page_alloc.ignore_gfp_reclaim))
b2588c4b
AM
2679 goto fail;
2680 if (!debugfs_create_bool("ignore-gfp-highmem", mode, dir,
2681 &fail_page_alloc.ignore_gfp_highmem))
2682 goto fail;
2683 if (!debugfs_create_u32("min-order", mode, dir,
2684 &fail_page_alloc.min_order))
2685 goto fail;
2686
2687 return 0;
2688fail:
dd48c085 2689 debugfs_remove_recursive(dir);
933e312e 2690
b2588c4b 2691 return -ENOMEM;
933e312e
AM
2692}
2693
2694late_initcall(fail_page_alloc_debugfs);
2695
2696#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
2697
2698#else /* CONFIG_FAIL_PAGE_ALLOC */
2699
deaf386e 2700static inline bool should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
933e312e 2701{
deaf386e 2702 return false;
933e312e
AM
2703}
2704
2705#endif /* CONFIG_FAIL_PAGE_ALLOC */
2706
1da177e4 2707/*
97a16fc8
MG
2708 * Return true if free base pages are above 'mark'. For high-order checks it
2709 * will return true of the order-0 watermark is reached and there is at least
2710 * one free page of a suitable size. Checking now avoids taking the zone lock
2711 * to check in the allocation paths if no pages are free.
1da177e4 2712 */
86a294a8
MH
2713bool __zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
2714 int classzone_idx, unsigned int alloc_flags,
2715 long free_pages)
1da177e4 2716{
d23ad423 2717 long min = mark;
1da177e4 2718 int o;
c603844b 2719 const bool alloc_harder = (alloc_flags & ALLOC_HARDER);
1da177e4 2720
0aaa29a5 2721 /* free_pages may go negative - that's OK */
df0a6daa 2722 free_pages -= (1 << order) - 1;
0aaa29a5 2723
7fb1d9fc 2724 if (alloc_flags & ALLOC_HIGH)
1da177e4 2725 min -= min / 2;
0aaa29a5
MG
2726
2727 /*
2728 * If the caller does not have rights to ALLOC_HARDER then subtract
2729 * the high-atomic reserves. This will over-estimate the size of the
2730 * atomic reserve but it avoids a search.
2731 */
97a16fc8 2732 if (likely(!alloc_harder))
0aaa29a5
MG
2733 free_pages -= z->nr_reserved_highatomic;
2734 else
1da177e4 2735 min -= min / 4;
e2b19197 2736
d95ea5d1
BZ
2737#ifdef CONFIG_CMA
2738 /* If allocation can't use CMA areas don't use free CMA pages */
2739 if (!(alloc_flags & ALLOC_CMA))
97a16fc8 2740 free_pages -= zone_page_state(z, NR_FREE_CMA_PAGES);
d95ea5d1 2741#endif
026b0814 2742
97a16fc8
MG
2743 /*
2744 * Check watermarks for an order-0 allocation request. If these
2745 * are not met, then a high-order request also cannot go ahead
2746 * even if a suitable page happened to be free.
2747 */
2748 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
88f5acf8 2749 return false;
1da177e4 2750
97a16fc8
MG
2751 /* If this is an order-0 request then the watermark is fine */
2752 if (!order)
2753 return true;
2754
2755 /* For a high-order request, check at least one suitable page is free */
2756 for (o = order; o < MAX_ORDER; o++) {
2757 struct free_area *area = &z->free_area[o];
2758 int mt;
2759
2760 if (!area->nr_free)
2761 continue;
2762
2763 if (alloc_harder)
2764 return true;
1da177e4 2765
97a16fc8
MG
2766 for (mt = 0; mt < MIGRATE_PCPTYPES; mt++) {
2767 if (!list_empty(&area->free_list[mt]))
2768 return true;
2769 }
2770
2771#ifdef CONFIG_CMA
2772 if ((alloc_flags & ALLOC_CMA) &&
2773 !list_empty(&area->free_list[MIGRATE_CMA])) {
2774 return true;
2775 }
2776#endif
1da177e4 2777 }
97a16fc8 2778 return false;
88f5acf8
MG
2779}
2780
7aeb09f9 2781bool zone_watermark_ok(struct zone *z, unsigned int order, unsigned long mark,
c603844b 2782 int classzone_idx, unsigned int alloc_flags)
88f5acf8
MG
2783{
2784 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2785 zone_page_state(z, NR_FREE_PAGES));
2786}
2787
48ee5f36
MG
2788static inline bool zone_watermark_fast(struct zone *z, unsigned int order,
2789 unsigned long mark, int classzone_idx, unsigned int alloc_flags)
2790{
2791 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2792 long cma_pages = 0;
2793
2794#ifdef CONFIG_CMA
2795 /* If allocation can't use CMA areas don't use free CMA pages */
2796 if (!(alloc_flags & ALLOC_CMA))
2797 cma_pages = zone_page_state(z, NR_FREE_CMA_PAGES);
2798#endif
2799
2800 /*
2801 * Fast check for order-0 only. If this fails then the reserves
2802 * need to be calculated. There is a corner case where the check
2803 * passes but only the high-order atomic reserve are free. If
2804 * the caller is !atomic then it'll uselessly search the free
2805 * list. That corner case is then slower but it is harmless.
2806 */
2807 if (!order && (free_pages - cma_pages) > mark + z->lowmem_reserve[classzone_idx])
2808 return true;
2809
2810 return __zone_watermark_ok(z, order, mark, classzone_idx, alloc_flags,
2811 free_pages);
2812}
2813
7aeb09f9 2814bool zone_watermark_ok_safe(struct zone *z, unsigned int order,
e2b19197 2815 unsigned long mark, int classzone_idx)
88f5acf8
MG
2816{
2817 long free_pages = zone_page_state(z, NR_FREE_PAGES);
2818
2819 if (z->percpu_drift_mark && free_pages < z->percpu_drift_mark)
2820 free_pages = zone_page_state_snapshot(z, NR_FREE_PAGES);
2821
e2b19197 2822 return __zone_watermark_ok(z, order, mark, classzone_idx, 0,
88f5acf8 2823 free_pages);
1da177e4
LT
2824}
2825
9276b1bc 2826#ifdef CONFIG_NUMA
957f822a
DR
2827static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2828{
5f7a75ac
MG
2829 return node_distance(zone_to_nid(local_zone), zone_to_nid(zone)) <
2830 RECLAIM_DISTANCE;
957f822a 2831}
9276b1bc 2832#else /* CONFIG_NUMA */
957f822a
DR
2833static bool zone_allows_reclaim(struct zone *local_zone, struct zone *zone)
2834{
2835 return true;
2836}
9276b1bc
PJ
2837#endif /* CONFIG_NUMA */
2838
7fb1d9fc 2839/*
0798e519 2840 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
2841 * a page.
2842 */
2843static struct page *
a9263751
VB
2844get_page_from_freelist(gfp_t gfp_mask, unsigned int order, int alloc_flags,
2845 const struct alloc_context *ac)
753ee728 2846{
c33d6c06 2847 struct zoneref *z = ac->preferred_zoneref;
5117f45d 2848 struct zone *zone;
3b8c0be4
MG
2849 struct pglist_data *last_pgdat_dirty_limit = NULL;
2850
7fb1d9fc 2851 /*
9276b1bc 2852 * Scan zonelist, looking for a zone with enough free.
344736f2 2853 * See also __cpuset_node_allowed() comment in kernel/cpuset.c.
7fb1d9fc 2854 */
c33d6c06 2855 for_next_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
a9263751 2856 ac->nodemask) {
be06af00 2857 struct page *page;
e085dbc5
JW
2858 unsigned long mark;
2859
664eedde
MG
2860 if (cpusets_enabled() &&
2861 (alloc_flags & ALLOC_CPUSET) &&
002f2906 2862 !__cpuset_zone_allowed(zone, gfp_mask))
cd38b115 2863 continue;
a756cf59
JW
2864 /*
2865 * When allocating a page cache page for writing, we
281e3726
MG
2866 * want to get it from a node that is within its dirty
2867 * limit, such that no single node holds more than its
a756cf59 2868 * proportional share of globally allowed dirty pages.
281e3726 2869 * The dirty limits take into account the node's
a756cf59
JW
2870 * lowmem reserves and high watermark so that kswapd
2871 * should be able to balance it without having to
2872 * write pages from its LRU list.
2873 *
a756cf59 2874 * XXX: For now, allow allocations to potentially
281e3726 2875 * exceed the per-node dirty limit in the slowpath
c9ab0c4f 2876 * (spread_dirty_pages unset) before going into reclaim,
a756cf59 2877 * which is important when on a NUMA setup the allowed
281e3726 2878 * nodes are together not big enough to reach the
a756cf59 2879 * global limit. The proper fix for these situations
281e3726 2880 * will require awareness of nodes in the
a756cf59
JW
2881 * dirty-throttling and the flusher threads.
2882 */
3b8c0be4
MG
2883 if (ac->spread_dirty_pages) {
2884 if (last_pgdat_dirty_limit == zone->zone_pgdat)
2885 continue;
2886
2887 if (!node_dirty_ok(zone->zone_pgdat)) {
2888 last_pgdat_dirty_limit = zone->zone_pgdat;
2889 continue;
2890 }
2891 }
7fb1d9fc 2892
e085dbc5 2893 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
48ee5f36 2894 if (!zone_watermark_fast(zone, order, mark,
93ea9964 2895 ac_classzone_idx(ac), alloc_flags)) {
fa5e084e
MG
2896 int ret;
2897
5dab2911
MG
2898 /* Checked here to keep the fast path fast */
2899 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
2900 if (alloc_flags & ALLOC_NO_WATERMARKS)
2901 goto try_this_zone;
2902
a5f5f91d 2903 if (node_reclaim_mode == 0 ||
c33d6c06 2904 !zone_allows_reclaim(ac->preferred_zoneref->zone, zone))
cd38b115
MG
2905 continue;
2906
a5f5f91d 2907 ret = node_reclaim(zone->zone_pgdat, gfp_mask, order);
fa5e084e 2908 switch (ret) {
a5f5f91d 2909 case NODE_RECLAIM_NOSCAN:
fa5e084e 2910 /* did not scan */
cd38b115 2911 continue;
a5f5f91d 2912 case NODE_RECLAIM_FULL:
fa5e084e 2913 /* scanned but unreclaimable */
cd38b115 2914 continue;
fa5e084e
MG
2915 default:
2916 /* did we reclaim enough */
fed2719e 2917 if (zone_watermark_ok(zone, order, mark,
93ea9964 2918 ac_classzone_idx(ac), alloc_flags))
fed2719e
MG
2919 goto try_this_zone;
2920
fed2719e 2921 continue;
0798e519 2922 }
7fb1d9fc
RS
2923 }
2924
fa5e084e 2925try_this_zone:
c33d6c06 2926 page = buffered_rmqueue(ac->preferred_zoneref->zone, zone, order,
0aaa29a5 2927 gfp_mask, alloc_flags, ac->migratetype);
75379191 2928 if (page) {
479f854a 2929 prep_new_page(page, order, gfp_mask, alloc_flags);
0aaa29a5
MG
2930
2931 /*
2932 * If this is a high-order atomic allocation then check
2933 * if the pageblock should be reserved for the future
2934 */
2935 if (unlikely(order && (alloc_flags & ALLOC_HARDER)))
2936 reserve_highatomic_pageblock(page, zone, order);
2937
75379191
VB
2938 return page;
2939 }
54a6eb5c 2940 }
9276b1bc 2941
4ffeaf35 2942 return NULL;
753ee728
MH
2943}
2944
29423e77
DR
2945/*
2946 * Large machines with many possible nodes should not always dump per-node
2947 * meminfo in irq context.
2948 */
2949static inline bool should_suppress_show_mem(void)
2950{
2951 bool ret = false;
2952
2953#if NODES_SHIFT > 8
2954 ret = in_interrupt();
2955#endif
2956 return ret;
2957}
2958
a238ab5b
DH
2959static DEFINE_RATELIMIT_STATE(nopage_rs,
2960 DEFAULT_RATELIMIT_INTERVAL,
2961 DEFAULT_RATELIMIT_BURST);
2962
d00181b9 2963void warn_alloc_failed(gfp_t gfp_mask, unsigned int order, const char *fmt, ...)
a238ab5b 2964{
a238ab5b
DH
2965 unsigned int filter = SHOW_MEM_FILTER_NODES;
2966
c0a32fc5
SG
2967 if ((gfp_mask & __GFP_NOWARN) || !__ratelimit(&nopage_rs) ||
2968 debug_guardpage_minorder() > 0)
a238ab5b
DH
2969 return;
2970
2971 /*
2972 * This documents exceptions given to allocations in certain
2973 * contexts that are allowed to allocate outside current's set
2974 * of allowed nodes.
2975 */
2976 if (!(gfp_mask & __GFP_NOMEMALLOC))
2977 if (test_thread_flag(TIF_MEMDIE) ||
2978 (current->flags & (PF_MEMALLOC | PF_EXITING)))
2979 filter &= ~SHOW_MEM_FILTER_NODES;
d0164adc 2980 if (in_interrupt() || !(gfp_mask & __GFP_DIRECT_RECLAIM))
a238ab5b
DH
2981 filter &= ~SHOW_MEM_FILTER_NODES;
2982
2983 if (fmt) {
3ee9a4f0
JP
2984 struct va_format vaf;
2985 va_list args;
2986
a238ab5b 2987 va_start(args, fmt);
3ee9a4f0
JP
2988
2989 vaf.fmt = fmt;
2990 vaf.va = &args;
2991
2992 pr_warn("%pV", &vaf);
2993
a238ab5b
DH
2994 va_end(args);
2995 }
2996
c5c990e8
VB
2997 pr_warn("%s: page allocation failure: order:%u, mode:%#x(%pGg)\n",
2998 current->comm, order, gfp_mask, &gfp_mask);
a238ab5b
DH
2999 dump_stack();
3000 if (!should_suppress_show_mem())
3001 show_mem(filter);
3002}
3003
11e33f6a
MG
3004static inline struct page *
3005__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
a9263751 3006 const struct alloc_context *ac, unsigned long *did_some_progress)
11e33f6a 3007{
6e0fc46d
DR
3008 struct oom_control oc = {
3009 .zonelist = ac->zonelist,
3010 .nodemask = ac->nodemask,
2a966b77 3011 .memcg = NULL,
6e0fc46d
DR
3012 .gfp_mask = gfp_mask,
3013 .order = order,
6e0fc46d 3014 };
11e33f6a
MG
3015 struct page *page;
3016
9879de73
JW
3017 *did_some_progress = 0;
3018
9879de73 3019 /*
dc56401f
JW
3020 * Acquire the oom lock. If that fails, somebody else is
3021 * making progress for us.
9879de73 3022 */
dc56401f 3023 if (!mutex_trylock(&oom_lock)) {
9879de73 3024 *did_some_progress = 1;
11e33f6a 3025 schedule_timeout_uninterruptible(1);
1da177e4
LT
3026 return NULL;
3027 }
6b1de916 3028
11e33f6a
MG
3029 /*
3030 * Go through the zonelist yet one more time, keep very high watermark
3031 * here, this is only to catch a parallel oom killing, we must fail if
3032 * we're still under heavy pressure.
3033 */
a9263751
VB
3034 page = get_page_from_freelist(gfp_mask | __GFP_HARDWALL, order,
3035 ALLOC_WMARK_HIGH|ALLOC_CPUSET, ac);
7fb1d9fc 3036 if (page)
11e33f6a
MG
3037 goto out;
3038
4365a567 3039 if (!(gfp_mask & __GFP_NOFAIL)) {
9879de73
JW
3040 /* Coredumps can quickly deplete all memory reserves */
3041 if (current->flags & PF_DUMPCORE)
3042 goto out;
4365a567
KH
3043 /* The OOM killer will not help higher order allocs */
3044 if (order > PAGE_ALLOC_COSTLY_ORDER)
3045 goto out;
03668b3c 3046 /* The OOM killer does not needlessly kill tasks for lowmem */
a9263751 3047 if (ac->high_zoneidx < ZONE_NORMAL)
03668b3c 3048 goto out;
9083905a
JW
3049 if (pm_suspended_storage())
3050 goto out;
3da88fb3
MH
3051 /*
3052 * XXX: GFP_NOFS allocations should rather fail than rely on
3053 * other request to make a forward progress.
3054 * We are in an unfortunate situation where out_of_memory cannot
3055 * do much for this context but let's try it to at least get
3056 * access to memory reserved if the current task is killed (see
3057 * out_of_memory). Once filesystems are ready to handle allocation
3058 * failures more gracefully we should just bail out here.
3059 */
3060
4167e9b2 3061 /* The OOM killer may not free memory on a specific node */
4365a567
KH
3062 if (gfp_mask & __GFP_THISNODE)
3063 goto out;
3064 }
11e33f6a 3065 /* Exhausted what can be done so it's blamo time */
5020e285 3066 if (out_of_memory(&oc) || WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
c32b3cbe 3067 *did_some_progress = 1;
5020e285
MH
3068
3069 if (gfp_mask & __GFP_NOFAIL) {
3070 page = get_page_from_freelist(gfp_mask, order,
3071 ALLOC_NO_WATERMARKS|ALLOC_CPUSET, ac);
3072 /*
3073 * fallback to ignore cpuset restriction if our nodes
3074 * are depleted
3075 */
3076 if (!page)
3077 page = get_page_from_freelist(gfp_mask, order,
3078 ALLOC_NO_WATERMARKS, ac);
3079 }
3080 }
11e33f6a 3081out:
dc56401f 3082 mutex_unlock(&oom_lock);
11e33f6a
MG
3083 return page;
3084}
3085
33c2d214
MH
3086/*
3087 * Maximum number of compaction retries wit a progress before OOM
3088 * killer is consider as the only way to move forward.
3089 */
3090#define MAX_COMPACT_RETRIES 16
3091
56de7263
MG
3092#ifdef CONFIG_COMPACTION
3093/* Try memory compaction for high-order allocations before reclaim */
3094static struct page *
3095__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3096 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3097 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3098{
98dd3b48 3099 struct page *page;
53853e2d
VB
3100
3101 if (!order)
66199712 3102 return NULL;
66199712 3103
c06b1fca 3104 current->flags |= PF_MEMALLOC;
c5d01d0d 3105 *compact_result = try_to_compact_pages(gfp_mask, order, alloc_flags, ac,
c3486f53 3106 prio);
c06b1fca 3107 current->flags &= ~PF_MEMALLOC;
56de7263 3108
c5d01d0d 3109 if (*compact_result <= COMPACT_INACTIVE)
98dd3b48 3110 return NULL;
53853e2d 3111
98dd3b48
VB
3112 /*
3113 * At least in one zone compaction wasn't deferred or skipped, so let's
3114 * count a compaction stall
3115 */
3116 count_vm_event(COMPACTSTALL);
8fb74b9f 3117
31a6c190 3118 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
53853e2d 3119
98dd3b48
VB
3120 if (page) {
3121 struct zone *zone = page_zone(page);
53853e2d 3122
98dd3b48
VB
3123 zone->compact_blockskip_flush = false;
3124 compaction_defer_reset(zone, order, true);
3125 count_vm_event(COMPACTSUCCESS);
3126 return page;
3127 }
56de7263 3128
98dd3b48
VB
3129 /*
3130 * It's bad if compaction run occurs and fails. The most likely reason
3131 * is that pages exist, but not enough to satisfy watermarks.
3132 */
3133 count_vm_event(COMPACTFAIL);
66199712 3134
98dd3b48 3135 cond_resched();
56de7263
MG
3136
3137 return NULL;
3138}
33c2d214 3139
56de7263
MG
3140#else
3141static inline struct page *
3142__alloc_pages_direct_compact(gfp_t gfp_mask, unsigned int order,
c603844b 3143 unsigned int alloc_flags, const struct alloc_context *ac,
a5508cd8 3144 enum compact_priority prio, enum compact_result *compact_result)
56de7263 3145{
33c2d214 3146 *compact_result = COMPACT_SKIPPED;
56de7263
MG
3147 return NULL;
3148}
33c2d214 3149
6b4e3181
MH
3150#endif /* CONFIG_COMPACTION */
3151
33c2d214 3152static inline bool
86a294a8
MH
3153should_compact_retry(struct alloc_context *ac, unsigned int order, int alloc_flags,
3154 enum compact_result compact_result,
a5508cd8 3155 enum compact_priority *compact_priority,
33c2d214
MH
3156 int compaction_retries)
3157{
31e49bfd
MH
3158 struct zone *zone;
3159 struct zoneref *z;
3160
3161 if (!order || order > PAGE_ALLOC_COSTLY_ORDER)
3162 return false;
3163
3164 /*
3165 * There are setups with compaction disabled which would prefer to loop
3166 * inside the allocator rather than hit the oom killer prematurely.
3167 * Let's give them a good hope and keep retrying while the order-0
3168 * watermarks are OK.
3169 */
3170 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3171 ac->nodemask) {
3172 if (zone_watermark_ok(zone, 0, min_wmark_pages(zone),
3173 ac_classzone_idx(ac), alloc_flags))
3174 return true;
3175 }
33c2d214
MH
3176 return false;
3177}
56de7263 3178
bba90710
MS
3179/* Perform direct synchronous page reclaim */
3180static int
a9263751
VB
3181__perform_reclaim(gfp_t gfp_mask, unsigned int order,
3182 const struct alloc_context *ac)
11e33f6a 3183{
11e33f6a 3184 struct reclaim_state reclaim_state;
bba90710 3185 int progress;
11e33f6a
MG
3186
3187 cond_resched();
3188
3189 /* We now go into synchronous reclaim */
3190 cpuset_memory_pressure_bump();
c06b1fca 3191 current->flags |= PF_MEMALLOC;
11e33f6a
MG
3192 lockdep_set_current_reclaim_state(gfp_mask);
3193 reclaim_state.reclaimed_slab = 0;
c06b1fca 3194 current->reclaim_state = &reclaim_state;
11e33f6a 3195
a9263751
VB
3196 progress = try_to_free_pages(ac->zonelist, order, gfp_mask,
3197 ac->nodemask);
11e33f6a 3198
c06b1fca 3199 current->reclaim_state = NULL;
11e33f6a 3200 lockdep_clear_current_reclaim_state();
c06b1fca 3201 current->flags &= ~PF_MEMALLOC;
11e33f6a
MG
3202
3203 cond_resched();
3204
bba90710
MS
3205 return progress;
3206}
3207
3208/* The really slow allocator path where we enter direct reclaim */
3209static inline struct page *
3210__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
c603844b 3211 unsigned int alloc_flags, const struct alloc_context *ac,
a9263751 3212 unsigned long *did_some_progress)
bba90710
MS
3213{
3214 struct page *page = NULL;
3215 bool drained = false;
3216
a9263751 3217 *did_some_progress = __perform_reclaim(gfp_mask, order, ac);
9ee493ce
MG
3218 if (unlikely(!(*did_some_progress)))
3219 return NULL;
11e33f6a 3220
9ee493ce 3221retry:
31a6c190 3222 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
9ee493ce
MG
3223
3224 /*
3225 * If an allocation failed after direct reclaim, it could be because
0aaa29a5
MG
3226 * pages are pinned on the per-cpu lists or in high alloc reserves.
3227 * Shrink them them and try again
9ee493ce
MG
3228 */
3229 if (!page && !drained) {
0aaa29a5 3230 unreserve_highatomic_pageblock(ac);
93481ff0 3231 drain_all_pages(NULL);
9ee493ce
MG
3232 drained = true;
3233 goto retry;
3234 }
3235
11e33f6a
MG
3236 return page;
3237}
3238
a9263751 3239static void wake_all_kswapds(unsigned int order, const struct alloc_context *ac)
3a025760
JW
3240{
3241 struct zoneref *z;
3242 struct zone *zone;
e1a55637 3243 pg_data_t *last_pgdat = NULL;
3a025760 3244
a9263751 3245 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist,
e1a55637
MG
3246 ac->high_zoneidx, ac->nodemask) {
3247 if (last_pgdat != zone->zone_pgdat)
52e9f87a 3248 wakeup_kswapd(zone, order, ac->high_zoneidx);
e1a55637
MG
3249 last_pgdat = zone->zone_pgdat;
3250 }
3a025760
JW
3251}
3252
c603844b 3253static inline unsigned int
341ce06f
PZ
3254gfp_to_alloc_flags(gfp_t gfp_mask)
3255{
c603844b 3256 unsigned int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1da177e4 3257
a56f57ff 3258 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
e6223a3b 3259 BUILD_BUG_ON(__GFP_HIGH != (__force gfp_t) ALLOC_HIGH);
933e312e 3260
341ce06f
PZ
3261 /*
3262 * The caller may dip into page reserves a bit more if the caller
3263 * cannot run direct reclaim, or if the caller has realtime scheduling
3264 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
d0164adc 3265 * set both ALLOC_HARDER (__GFP_ATOMIC) and ALLOC_HIGH (__GFP_HIGH).
341ce06f 3266 */
e6223a3b 3267 alloc_flags |= (__force int) (gfp_mask & __GFP_HIGH);
1da177e4 3268
d0164adc 3269 if (gfp_mask & __GFP_ATOMIC) {
5c3240d9 3270 /*
b104a35d
DR
3271 * Not worth trying to allocate harder for __GFP_NOMEMALLOC even
3272 * if it can't schedule.
5c3240d9 3273 */
b104a35d 3274 if (!(gfp_mask & __GFP_NOMEMALLOC))
5c3240d9 3275 alloc_flags |= ALLOC_HARDER;
523b9458 3276 /*
b104a35d 3277 * Ignore cpuset mems for GFP_ATOMIC rather than fail, see the
344736f2 3278 * comment for __cpuset_node_allowed().
523b9458 3279 */
341ce06f 3280 alloc_flags &= ~ALLOC_CPUSET;
c06b1fca 3281 } else if (unlikely(rt_task(current)) && !in_interrupt())
341ce06f
PZ
3282 alloc_flags |= ALLOC_HARDER;
3283
d95ea5d1 3284#ifdef CONFIG_CMA
43e7a34d 3285 if (gfpflags_to_migratetype(gfp_mask) == MIGRATE_MOVABLE)
d95ea5d1
BZ
3286 alloc_flags |= ALLOC_CMA;
3287#endif
341ce06f
PZ
3288 return alloc_flags;
3289}
3290
072bb0aa
MG
3291bool gfp_pfmemalloc_allowed(gfp_t gfp_mask)
3292{
31a6c190
VB
3293 if (unlikely(gfp_mask & __GFP_NOMEMALLOC))
3294 return false;
3295
3296 if (gfp_mask & __GFP_MEMALLOC)
3297 return true;
3298 if (in_serving_softirq() && (current->flags & PF_MEMALLOC))
3299 return true;
3300 if (!in_interrupt() &&
3301 ((current->flags & PF_MEMALLOC) ||
3302 unlikely(test_thread_flag(TIF_MEMDIE))))
3303 return true;
3304
3305 return false;
072bb0aa
MG
3306}
3307
0a0337e0
MH
3308/*
3309 * Maximum number of reclaim retries without any progress before OOM killer
3310 * is consider as the only way to move forward.
3311 */
3312#define MAX_RECLAIM_RETRIES 16
3313
3314/*
3315 * Checks whether it makes sense to retry the reclaim to make a forward progress
3316 * for the given allocation request.
3317 * The reclaim feedback represented by did_some_progress (any progress during
7854ea6c
MH
3318 * the last reclaim round) and no_progress_loops (number of reclaim rounds without
3319 * any progress in a row) is considered as well as the reclaimable pages on the
3320 * applicable zone list (with a backoff mechanism which is a function of
3321 * no_progress_loops).
0a0337e0
MH
3322 *
3323 * Returns true if a retry is viable or false to enter the oom path.
3324 */
3325static inline bool
3326should_reclaim_retry(gfp_t gfp_mask, unsigned order,
3327 struct alloc_context *ac, int alloc_flags,
7854ea6c 3328 bool did_some_progress, int no_progress_loops)
0a0337e0
MH
3329{
3330 struct zone *zone;
3331 struct zoneref *z;
3332
3333 /*
3334 * Make sure we converge to OOM if we cannot make any progress
3335 * several times in the row.
3336 */
3337 if (no_progress_loops > MAX_RECLAIM_RETRIES)
3338 return false;
3339
bca67592
MG
3340 /*
3341 * Keep reclaiming pages while there is a chance this will lead
3342 * somewhere. If none of the target zones can satisfy our allocation
3343 * request even if all reclaimable pages are considered then we are
3344 * screwed and have to go OOM.
0a0337e0
MH
3345 */
3346 for_each_zone_zonelist_nodemask(zone, z, ac->zonelist, ac->high_zoneidx,
3347 ac->nodemask) {
3348 unsigned long available;
ede37713 3349 unsigned long reclaimable;
0a0337e0 3350
5a1c84b4 3351 available = reclaimable = zone_reclaimable_pages(zone);
0a0337e0
MH
3352 available -= DIV_ROUND_UP(no_progress_loops * available,
3353 MAX_RECLAIM_RETRIES);
5a1c84b4 3354 available += zone_page_state_snapshot(zone, NR_FREE_PAGES);
0a0337e0
MH
3355
3356 /*
3357 * Would the allocation succeed if we reclaimed the whole
5a1c84b4 3358 * available?
0a0337e0 3359 */
5a1c84b4
MG
3360 if (__zone_watermark_ok(zone, order, min_wmark_pages(zone),
3361 ac_classzone_idx(ac), alloc_flags, available)) {
ede37713
MH
3362 /*
3363 * If we didn't make any progress and have a lot of
3364 * dirty + writeback pages then we should wait for
3365 * an IO to complete to slow down the reclaim and
3366 * prevent from pre mature OOM
3367 */
3368 if (!did_some_progress) {
11fb9989 3369 unsigned long write_pending;
ede37713 3370
5a1c84b4
MG
3371 write_pending = zone_page_state_snapshot(zone,
3372 NR_ZONE_WRITE_PENDING);
ede37713 3373
11fb9989 3374 if (2 * write_pending > reclaimable) {
ede37713
MH
3375 congestion_wait(BLK_RW_ASYNC, HZ/10);
3376 return true;
3377 }
3378 }
5a1c84b4 3379
ede37713
MH
3380 /*
3381 * Memory allocation/reclaim might be called from a WQ
3382 * context and the current implementation of the WQ
3383 * concurrency control doesn't recognize that
3384 * a particular WQ is congested if the worker thread is
3385 * looping without ever sleeping. Therefore we have to
3386 * do a short sleep here rather than calling
3387 * cond_resched().
3388 */
3389 if (current->flags & PF_WQ_WORKER)
3390 schedule_timeout_uninterruptible(1);
3391 else
3392 cond_resched();
3393
0a0337e0
MH
3394 return true;
3395 }
3396 }
3397
3398 return false;
3399}
3400
11e33f6a
MG
3401static inline struct page *
3402__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
a9263751 3403 struct alloc_context *ac)
11e33f6a 3404{
d0164adc 3405 bool can_direct_reclaim = gfp_mask & __GFP_DIRECT_RECLAIM;
11e33f6a 3406 struct page *page = NULL;
c603844b 3407 unsigned int alloc_flags;
11e33f6a 3408 unsigned long did_some_progress;
a5508cd8 3409 enum compact_priority compact_priority = DEF_COMPACT_PRIORITY;
c5d01d0d 3410 enum compact_result compact_result;
33c2d214 3411 int compaction_retries = 0;
0a0337e0 3412 int no_progress_loops = 0;
1da177e4 3413
72807a74
MG
3414 /*
3415 * In the slowpath, we sanity check order to avoid ever trying to
3416 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
3417 * be using allocators in order of preference for an area that is
3418 * too large.
3419 */
1fc28b70
MG
3420 if (order >= MAX_ORDER) {
3421 WARN_ON_ONCE(!(gfp_mask & __GFP_NOWARN));
72807a74 3422 return NULL;
1fc28b70 3423 }
1da177e4 3424
d0164adc
MG
3425 /*
3426 * We also sanity check to catch abuse of atomic reserves being used by
3427 * callers that are not in atomic context.
3428 */
3429 if (WARN_ON_ONCE((gfp_mask & (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)) ==
3430 (__GFP_ATOMIC|__GFP_DIRECT_RECLAIM)))
3431 gfp_mask &= ~__GFP_ATOMIC;
3432
9bf2229f 3433 /*
31a6c190
VB
3434 * The fast path uses conservative alloc_flags to succeed only until
3435 * kswapd needs to be woken up, and to avoid the cost of setting up
3436 * alloc_flags precisely. So we do that now.
9bf2229f 3437 */
341ce06f 3438 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 3439
23771235
VB
3440 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3441 wake_all_kswapds(order, ac);
3442
3443 /*
3444 * The adjusted alloc_flags might result in immediate success, so try
3445 * that first
3446 */
3447 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
3448 if (page)
3449 goto got_pg;
3450
a8161d1e
VB
3451 /*
3452 * For costly allocations, try direct compaction first, as it's likely
3453 * that we have enough base pages and don't need to reclaim. Don't try
3454 * that for allocations that are allowed to ignore watermarks, as the
3455 * ALLOC_NO_WATERMARKS attempt didn't yet happen.
3456 */
3457 if (can_direct_reclaim && order > PAGE_ALLOC_COSTLY_ORDER &&
3458 !gfp_pfmemalloc_allowed(gfp_mask)) {
3459 page = __alloc_pages_direct_compact(gfp_mask, order,
3460 alloc_flags, ac,
a5508cd8 3461 INIT_COMPACT_PRIORITY,
a8161d1e
VB
3462 &compact_result);
3463 if (page)
3464 goto got_pg;
3465
3eb2771b
VB
3466 /*
3467 * Checks for costly allocations with __GFP_NORETRY, which
3468 * includes THP page fault allocations
3469 */
3470 if (gfp_mask & __GFP_NORETRY) {
a8161d1e
VB
3471 /*
3472 * If compaction is deferred for high-order allocations,
3473 * it is because sync compaction recently failed. If
3474 * this is the case and the caller requested a THP
3475 * allocation, we do not want to heavily disrupt the
3476 * system, so we fail the allocation instead of entering
3477 * direct reclaim.
3478 */
3479 if (compact_result == COMPACT_DEFERRED)
3480 goto nopage;
3481
a8161d1e 3482 /*
3eb2771b
VB
3483 * Looks like reclaim/compaction is worth trying, but
3484 * sync compaction could be very expensive, so keep
25160354 3485 * using async compaction.
a8161d1e 3486 */
a5508cd8 3487 compact_priority = INIT_COMPACT_PRIORITY;
a8161d1e
VB
3488 }
3489 }
23771235 3490
31a6c190 3491retry:
23771235 3492 /* Ensure kswapd doesn't accidentally go to sleep as long as we loop */
31a6c190
VB
3493 if (gfp_mask & __GFP_KSWAPD_RECLAIM)
3494 wake_all_kswapds(order, ac);
3495
23771235
VB
3496 if (gfp_pfmemalloc_allowed(gfp_mask))
3497 alloc_flags = ALLOC_NO_WATERMARKS;
3498
e46e7b77
MG
3499 /*
3500 * Reset the zonelist iterators if memory policies can be ignored.
3501 * These allocations are high priority and system rather than user
3502 * orientated.
3503 */
23771235 3504 if (!(alloc_flags & ALLOC_CPUSET) || (alloc_flags & ALLOC_NO_WATERMARKS)) {
e46e7b77
MG
3505 ac->zonelist = node_zonelist(numa_node_id(), gfp_mask);
3506 ac->preferred_zoneref = first_zones_zonelist(ac->zonelist,
3507 ac->high_zoneidx, ac->nodemask);
3508 }
3509
23771235 3510 /* Attempt with potentially adjusted zonelist and alloc_flags */
31a6c190 3511 page = get_page_from_freelist(gfp_mask, order, alloc_flags, ac);
7fb1d9fc
RS
3512 if (page)
3513 goto got_pg;
1da177e4 3514
d0164adc
MG
3515 /* Caller is not willing to reclaim, we can't balance anything */
3516 if (!can_direct_reclaim) {
aed0a0e3 3517 /*
33d53103
MH
3518 * All existing users of the __GFP_NOFAIL are blockable, so warn
3519 * of any new users that actually allow this type of allocation
3520 * to fail.
aed0a0e3
DR
3521 */
3522 WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL);
1da177e4 3523 goto nopage;
aed0a0e3 3524 }
1da177e4 3525
341ce06f 3526 /* Avoid recursion of direct reclaim */
33d53103
MH
3527 if (current->flags & PF_MEMALLOC) {
3528 /*
3529 * __GFP_NOFAIL request from this context is rather bizarre
3530 * because we cannot reclaim anything and only can loop waiting
3531 * for somebody to do a work for us.
3532 */
3533 if (WARN_ON_ONCE(gfp_mask & __GFP_NOFAIL)) {
3534 cond_resched();
3535 goto retry;
3536 }
341ce06f 3537 goto nopage;
33d53103 3538 }
341ce06f 3539
6583bb64
DR
3540 /* Avoid allocations with no watermarks from looping endlessly */
3541 if (test_thread_flag(TIF_MEMDIE) && !(gfp_mask & __GFP_NOFAIL))
3542 goto nopage;
3543
a8161d1e
VB
3544
3545 /* Try direct reclaim and then allocating */
3546 page = __alloc_pages_direct_reclaim(gfp_mask, order, alloc_flags, ac,
3547 &did_some_progress);
3548 if (page)
3549 goto got_pg;
3550
3551 /* Try direct compaction and then allocating */
a9263751 3552 page = __alloc_pages_direct_compact(gfp_mask, order, alloc_flags, ac,
a5508cd8 3553 compact_priority, &compact_result);
56de7263
MG
3554 if (page)
3555 goto got_pg;
75f30861 3556
33c2d214
MH
3557 if (order && compaction_made_progress(compact_result))
3558 compaction_retries++;
8fe78048 3559
9083905a
JW
3560 /* Do not loop if specifically requested */
3561 if (gfp_mask & __GFP_NORETRY)
a8161d1e 3562 goto nopage;
9083905a 3563
0a0337e0
MH
3564 /*
3565 * Do not retry costly high order allocations unless they are
3566 * __GFP_REPEAT
3567 */
3568 if (order > PAGE_ALLOC_COSTLY_ORDER && !(gfp_mask & __GFP_REPEAT))
a8161d1e 3569 goto nopage;
0a0337e0 3570
7854ea6c
MH
3571 /*
3572 * Costly allocations might have made a progress but this doesn't mean
3573 * their order will become available due to high fragmentation so
3574 * always increment the no progress counter for them
3575 */
3576 if (did_some_progress && order <= PAGE_ALLOC_COSTLY_ORDER)
0a0337e0 3577 no_progress_loops = 0;
7854ea6c 3578 else
0a0337e0 3579 no_progress_loops++;
1da177e4 3580
0a0337e0 3581 if (should_reclaim_retry(gfp_mask, order, ac, alloc_flags,
7854ea6c 3582 did_some_progress > 0, no_progress_loops))
0a0337e0
MH
3583 goto retry;
3584
33c2d214
MH
3585 /*
3586 * It doesn't make any sense to retry for the compaction if the order-0
3587 * reclaim is not able to make any progress because the current
3588 * implementation of the compaction depends on the sufficient amount
3589 * of free memory (see __compaction_suitable)
3590 */
3591 if (did_some_progress > 0 &&
86a294a8 3592 should_compact_retry(ac, order, alloc_flags,
a5508cd8 3593 compact_result, &compact_priority,
86a294a8 3594 compaction_retries))
33c2d214
MH
3595 goto retry;
3596
9083905a
JW
3597 /* Reclaim has failed us, start killing things */
3598 page = __alloc_pages_may_oom(gfp_mask, order, ac, &did_some_progress);
3599 if (page)
3600 goto got_pg;
3601
3602 /* Retry as long as the OOM killer is making progress */
0a0337e0
MH
3603 if (did_some_progress) {
3604 no_progress_loops = 0;
9083905a 3605 goto retry;
0a0337e0 3606 }
9083905a 3607
1da177e4 3608nopage:
a238ab5b 3609 warn_alloc_failed(gfp_mask, order, NULL);
1da177e4 3610got_pg:
072bb0aa 3611 return page;
1da177e4 3612}
11e33f6a
MG
3613
3614/*
3615 * This is the 'heart' of the zoned buddy allocator.
3616 */
3617struct page *
3618__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
3619 struct zonelist *zonelist, nodemask_t *nodemask)
3620{
5bb1b169 3621 struct page *page;
cc9a6c87 3622 unsigned int cpuset_mems_cookie;
e6cbd7f2 3623 unsigned int alloc_flags = ALLOC_WMARK_LOW;
83d4ca81 3624 gfp_t alloc_mask = gfp_mask; /* The gfp_t that was actually used for allocation */
a9263751
VB
3625 struct alloc_context ac = {
3626 .high_zoneidx = gfp_zone(gfp_mask),
682a3385 3627 .zonelist = zonelist,
a9263751
VB
3628 .nodemask = nodemask,
3629 .migratetype = gfpflags_to_migratetype(gfp_mask),
3630 };
11e33f6a 3631
682a3385 3632 if (cpusets_enabled()) {
83d4ca81 3633 alloc_mask |= __GFP_HARDWALL;
682a3385
MG
3634 alloc_flags |= ALLOC_CPUSET;
3635 if (!ac.nodemask)
3636 ac.nodemask = &cpuset_current_mems_allowed;
3637 }
3638
dcce284a
BH
3639 gfp_mask &= gfp_allowed_mask;
3640
11e33f6a
MG
3641 lockdep_trace_alloc(gfp_mask);
3642
d0164adc 3643 might_sleep_if(gfp_mask & __GFP_DIRECT_RECLAIM);
11e33f6a
MG
3644
3645 if (should_fail_alloc_page(gfp_mask, order))
3646 return NULL;
3647
3648 /*
3649 * Check the zones suitable for the gfp_mask contain at least one
3650 * valid zone. It's possible to have an empty zonelist as a result
4167e9b2 3651 * of __GFP_THISNODE and a memoryless node
11e33f6a
MG
3652 */
3653 if (unlikely(!zonelist->_zonerefs->zone))
3654 return NULL;
3655
a9263751 3656 if (IS_ENABLED(CONFIG_CMA) && ac.migratetype == MIGRATE_MOVABLE)
21bb9bd1
VB
3657 alloc_flags |= ALLOC_CMA;
3658
cc9a6c87 3659retry_cpuset:
d26914d1 3660 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 3661
c9ab0c4f
MG
3662 /* Dirty zone balancing only done in the fast path */
3663 ac.spread_dirty_pages = (gfp_mask & __GFP_WRITE);
3664
e46e7b77
MG
3665 /*
3666 * The preferred zone is used for statistics but crucially it is
3667 * also used as the starting point for the zonelist iterator. It
3668 * may get reset for allocations that ignore memory policies.
3669 */
c33d6c06
MG
3670 ac.preferred_zoneref = first_zones_zonelist(ac.zonelist,
3671 ac.high_zoneidx, ac.nodemask);
3672 if (!ac.preferred_zoneref) {
5bb1b169 3673 page = NULL;
4fcb0971 3674 goto no_zone;
5bb1b169
MG
3675 }
3676
5117f45d 3677 /* First allocation attempt */
a9263751 3678 page = get_page_from_freelist(alloc_mask, order, alloc_flags, &ac);
4fcb0971
MG
3679 if (likely(page))
3680 goto out;
11e33f6a 3681
4fcb0971
MG
3682 /*
3683 * Runtime PM, block IO and its error handling path can deadlock
3684 * because I/O on the device might not complete.
3685 */
3686 alloc_mask = memalloc_noio_flags(gfp_mask);
3687 ac.spread_dirty_pages = false;
23f086f9 3688
4741526b
MG
3689 /*
3690 * Restore the original nodemask if it was potentially replaced with
3691 * &cpuset_current_mems_allowed to optimize the fast-path attempt.
3692 */
3693 if (cpusets_enabled())
3694 ac.nodemask = nodemask;
4fcb0971 3695 page = __alloc_pages_slowpath(alloc_mask, order, &ac);
cc9a6c87 3696
4fcb0971 3697no_zone:
cc9a6c87
MG
3698 /*
3699 * When updating a task's mems_allowed, it is possible to race with
3700 * parallel threads in such a way that an allocation can fail while
3701 * the mask is being updated. If a page allocation is about to fail,
3702 * check if the cpuset changed during allocation and if so, retry.
3703 */
83d4ca81
MG
3704 if (unlikely(!page && read_mems_allowed_retry(cpuset_mems_cookie))) {
3705 alloc_mask = gfp_mask;
cc9a6c87 3706 goto retry_cpuset;
83d4ca81 3707 }
cc9a6c87 3708
4fcb0971 3709out:
c4159a75
VD
3710 if (memcg_kmem_enabled() && (gfp_mask & __GFP_ACCOUNT) && page &&
3711 unlikely(memcg_kmem_charge(page, gfp_mask, order) != 0)) {
3712 __free_pages(page, order);
3713 page = NULL;
4949148a
VD
3714 }
3715
4fcb0971
MG
3716 if (kmemcheck_enabled && page)
3717 kmemcheck_pagealloc_alloc(page, order, gfp_mask);
3718
3719 trace_mm_page_alloc(page, order, alloc_mask, ac.migratetype);
3720
11e33f6a 3721 return page;
1da177e4 3722}
d239171e 3723EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
3724
3725/*
3726 * Common helper functions.
3727 */
920c7a5d 3728unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4 3729{
945a1113
AM
3730 struct page *page;
3731
3732 /*
3733 * __get_free_pages() returns a 32-bit address, which cannot represent
3734 * a highmem page
3735 */
3736 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
3737
1da177e4
LT
3738 page = alloc_pages(gfp_mask, order);
3739 if (!page)
3740 return 0;
3741 return (unsigned long) page_address(page);
3742}
1da177e4
LT
3743EXPORT_SYMBOL(__get_free_pages);
3744
920c7a5d 3745unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4 3746{
945a1113 3747 return __get_free_pages(gfp_mask | __GFP_ZERO, 0);
1da177e4 3748}
1da177e4
LT
3749EXPORT_SYMBOL(get_zeroed_page);
3750
920c7a5d 3751void __free_pages(struct page *page, unsigned int order)
1da177e4 3752{
b5810039 3753 if (put_page_testzero(page)) {
1da177e4 3754 if (order == 0)
b745bc85 3755 free_hot_cold_page(page, false);
1da177e4
LT
3756 else
3757 __free_pages_ok(page, order);
3758 }
3759}
3760
3761EXPORT_SYMBOL(__free_pages);
3762
920c7a5d 3763void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
3764{
3765 if (addr != 0) {
725d704e 3766 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
3767 __free_pages(virt_to_page((void *)addr), order);
3768 }
3769}
3770
3771EXPORT_SYMBOL(free_pages);
3772
b63ae8ca
AD
3773/*
3774 * Page Fragment:
3775 * An arbitrary-length arbitrary-offset area of memory which resides
3776 * within a 0 or higher order page. Multiple fragments within that page
3777 * are individually refcounted, in the page's reference counter.
3778 *
3779 * The page_frag functions below provide a simple allocation framework for
3780 * page fragments. This is used by the network stack and network device
3781 * drivers to provide a backing region of memory for use as either an
3782 * sk_buff->head, or to be used in the "frags" portion of skb_shared_info.
3783 */
3784static struct page *__page_frag_refill(struct page_frag_cache *nc,
3785 gfp_t gfp_mask)
3786{
3787 struct page *page = NULL;
3788 gfp_t gfp = gfp_mask;
3789
3790#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3791 gfp_mask |= __GFP_COMP | __GFP_NOWARN | __GFP_NORETRY |
3792 __GFP_NOMEMALLOC;
3793 page = alloc_pages_node(NUMA_NO_NODE, gfp_mask,
3794 PAGE_FRAG_CACHE_MAX_ORDER);
3795 nc->size = page ? PAGE_FRAG_CACHE_MAX_SIZE : PAGE_SIZE;
3796#endif
3797 if (unlikely(!page))
3798 page = alloc_pages_node(NUMA_NO_NODE, gfp, 0);
3799
3800 nc->va = page ? page_address(page) : NULL;
3801
3802 return page;
3803}
3804
3805void *__alloc_page_frag(struct page_frag_cache *nc,
3806 unsigned int fragsz, gfp_t gfp_mask)
3807{
3808 unsigned int size = PAGE_SIZE;
3809 struct page *page;
3810 int offset;
3811
3812 if (unlikely(!nc->va)) {
3813refill:
3814 page = __page_frag_refill(nc, gfp_mask);
3815 if (!page)
3816 return NULL;
3817
3818#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3819 /* if size can vary use size else just use PAGE_SIZE */
3820 size = nc->size;
3821#endif
3822 /* Even if we own the page, we do not use atomic_set().
3823 * This would break get_page_unless_zero() users.
3824 */
fe896d18 3825 page_ref_add(page, size - 1);
b63ae8ca
AD
3826
3827 /* reset page count bias and offset to start of new frag */
2f064f34 3828 nc->pfmemalloc = page_is_pfmemalloc(page);
b63ae8ca
AD
3829 nc->pagecnt_bias = size;
3830 nc->offset = size;
3831 }
3832
3833 offset = nc->offset - fragsz;
3834 if (unlikely(offset < 0)) {
3835 page = virt_to_page(nc->va);
3836
fe896d18 3837 if (!page_ref_sub_and_test(page, nc->pagecnt_bias))
b63ae8ca
AD
3838 goto refill;
3839
3840#if (PAGE_SIZE < PAGE_FRAG_CACHE_MAX_SIZE)
3841 /* if size can vary use size else just use PAGE_SIZE */
3842 size = nc->size;
3843#endif
3844 /* OK, page count is 0, we can safely set it */
fe896d18 3845 set_page_count(page, size);
b63ae8ca
AD
3846
3847 /* reset page count bias and offset to start of new frag */
3848 nc->pagecnt_bias = size;
3849 offset = size - fragsz;
3850 }
3851
3852 nc->pagecnt_bias--;
3853 nc->offset = offset;
3854
3855 return nc->va + offset;
3856}
3857EXPORT_SYMBOL(__alloc_page_frag);
3858
3859/*
3860 * Frees a page fragment allocated out of either a compound or order 0 page.
3861 */
3862void __free_page_frag(void *addr)
3863{
3864 struct page *page = virt_to_head_page(addr);
3865
3866 if (unlikely(put_page_testzero(page)))
3867 __free_pages_ok(page, compound_order(page));
3868}
3869EXPORT_SYMBOL(__free_page_frag);
3870
d00181b9
KS
3871static void *make_alloc_exact(unsigned long addr, unsigned int order,
3872 size_t size)
ee85c2e1
AK
3873{
3874 if (addr) {
3875 unsigned long alloc_end = addr + (PAGE_SIZE << order);
3876 unsigned long used = addr + PAGE_ALIGN(size);
3877
3878 split_page(virt_to_page((void *)addr), order);
3879 while (used < alloc_end) {
3880 free_page(used);
3881 used += PAGE_SIZE;
3882 }
3883 }
3884 return (void *)addr;
3885}
3886
2be0ffe2
TT
3887/**
3888 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
3889 * @size: the number of bytes to allocate
3890 * @gfp_mask: GFP flags for the allocation
3891 *
3892 * This function is similar to alloc_pages(), except that it allocates the
3893 * minimum number of pages to satisfy the request. alloc_pages() can only
3894 * allocate memory in power-of-two pages.
3895 *
3896 * This function is also limited by MAX_ORDER.
3897 *
3898 * Memory allocated by this function must be released by free_pages_exact().
3899 */
3900void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
3901{
3902 unsigned int order = get_order(size);
3903 unsigned long addr;
3904
3905 addr = __get_free_pages(gfp_mask, order);
ee85c2e1 3906 return make_alloc_exact(addr, order, size);
2be0ffe2
TT
3907}
3908EXPORT_SYMBOL(alloc_pages_exact);
3909
ee85c2e1
AK
3910/**
3911 * alloc_pages_exact_nid - allocate an exact number of physically-contiguous
3912 * pages on a node.
b5e6ab58 3913 * @nid: the preferred node ID where memory should be allocated
ee85c2e1
AK
3914 * @size: the number of bytes to allocate
3915 * @gfp_mask: GFP flags for the allocation
3916 *
3917 * Like alloc_pages_exact(), but try to allocate on node nid first before falling
3918 * back.
ee85c2e1 3919 */
e1931811 3920void * __meminit alloc_pages_exact_nid(int nid, size_t size, gfp_t gfp_mask)
ee85c2e1 3921{
d00181b9 3922 unsigned int order = get_order(size);
ee85c2e1
AK
3923 struct page *p = alloc_pages_node(nid, gfp_mask, order);
3924 if (!p)
3925 return NULL;
3926 return make_alloc_exact((unsigned long)page_address(p), order, size);
3927}
ee85c2e1 3928
2be0ffe2
TT
3929/**
3930 * free_pages_exact - release memory allocated via alloc_pages_exact()
3931 * @virt: the value returned by alloc_pages_exact.
3932 * @size: size of allocation, same value as passed to alloc_pages_exact().
3933 *
3934 * Release the memory allocated by a previous call to alloc_pages_exact.
3935 */
3936void free_pages_exact(void *virt, size_t size)
3937{
3938 unsigned long addr = (unsigned long)virt;
3939 unsigned long end = addr + PAGE_ALIGN(size);
3940
3941 while (addr < end) {
3942 free_page(addr);
3943 addr += PAGE_SIZE;
3944 }
3945}
3946EXPORT_SYMBOL(free_pages_exact);
3947
e0fb5815
ZY
3948/**
3949 * nr_free_zone_pages - count number of pages beyond high watermark
3950 * @offset: The zone index of the highest zone
3951 *
3952 * nr_free_zone_pages() counts the number of counts pages which are beyond the
3953 * high watermark within all zones at or below a given zone index. For each
3954 * zone, the number of pages is calculated as:
834405c3 3955 * managed_pages - high_pages
e0fb5815 3956 */
ebec3862 3957static unsigned long nr_free_zone_pages(int offset)
1da177e4 3958{
dd1a239f 3959 struct zoneref *z;
54a6eb5c
MG
3960 struct zone *zone;
3961
e310fd43 3962 /* Just pick one node, since fallback list is circular */
ebec3862 3963 unsigned long sum = 0;
1da177e4 3964
0e88460d 3965 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 3966
54a6eb5c 3967 for_each_zone_zonelist(zone, z, zonelist, offset) {
b40da049 3968 unsigned long size = zone->managed_pages;
41858966 3969 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
3970 if (size > high)
3971 sum += size - high;
1da177e4
LT
3972 }
3973
3974 return sum;
3975}
3976
e0fb5815
ZY
3977/**
3978 * nr_free_buffer_pages - count number of pages beyond high watermark
3979 *
3980 * nr_free_buffer_pages() counts the number of pages which are beyond the high
3981 * watermark within ZONE_DMA and ZONE_NORMAL.
1da177e4 3982 */
ebec3862 3983unsigned long nr_free_buffer_pages(void)
1da177e4 3984{
af4ca457 3985 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 3986}
c2f1a551 3987EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4 3988
e0fb5815
ZY
3989/**
3990 * nr_free_pagecache_pages - count number of pages beyond high watermark
3991 *
3992 * nr_free_pagecache_pages() counts the number of pages which are beyond the
3993 * high watermark within all zones.
1da177e4 3994 */
ebec3862 3995unsigned long nr_free_pagecache_pages(void)
1da177e4 3996{
2a1e274a 3997 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 3998}
08e0f6a9
CL
3999
4000static inline void show_node(struct zone *zone)
1da177e4 4001{
e5adfffc 4002 if (IS_ENABLED(CONFIG_NUMA))
25ba77c1 4003 printk("Node %d ", zone_to_nid(zone));
1da177e4 4004}
1da177e4 4005
d02bd27b
IR
4006long si_mem_available(void)
4007{
4008 long available;
4009 unsigned long pagecache;
4010 unsigned long wmark_low = 0;
4011 unsigned long pages[NR_LRU_LISTS];
4012 struct zone *zone;
4013 int lru;
4014
4015 for (lru = LRU_BASE; lru < NR_LRU_LISTS; lru++)
2f95ff90 4016 pages[lru] = global_node_page_state(NR_LRU_BASE + lru);
d02bd27b
IR
4017
4018 for_each_zone(zone)
4019 wmark_low += zone->watermark[WMARK_LOW];
4020
4021 /*
4022 * Estimate the amount of memory available for userspace allocations,
4023 * without causing swapping.
4024 */
4025 available = global_page_state(NR_FREE_PAGES) - totalreserve_pages;
4026
4027 /*
4028 * Not all the page cache can be freed, otherwise the system will
4029 * start swapping. Assume at least half of the page cache, or the
4030 * low watermark worth of cache, needs to stay.
4031 */
4032 pagecache = pages[LRU_ACTIVE_FILE] + pages[LRU_INACTIVE_FILE];
4033 pagecache -= min(pagecache / 2, wmark_low);
4034 available += pagecache;
4035
4036 /*
4037 * Part of the reclaimable slab consists of items that are in use,
4038 * and cannot be freed. Cap this estimate at the low watermark.
4039 */
4040 available += global_page_state(NR_SLAB_RECLAIMABLE) -
4041 min(global_page_state(NR_SLAB_RECLAIMABLE) / 2, wmark_low);
4042
4043 if (available < 0)
4044 available = 0;
4045 return available;
4046}
4047EXPORT_SYMBOL_GPL(si_mem_available);
4048
1da177e4
LT
4049void si_meminfo(struct sysinfo *val)
4050{
4051 val->totalram = totalram_pages;
11fb9989 4052 val->sharedram = global_node_page_state(NR_SHMEM);
d23ad423 4053 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 4054 val->bufferram = nr_blockdev_pages();
1da177e4
LT
4055 val->totalhigh = totalhigh_pages;
4056 val->freehigh = nr_free_highpages();
1da177e4
LT
4057 val->mem_unit = PAGE_SIZE;
4058}
4059
4060EXPORT_SYMBOL(si_meminfo);
4061
4062#ifdef CONFIG_NUMA
4063void si_meminfo_node(struct sysinfo *val, int nid)
4064{
cdd91a77
JL
4065 int zone_type; /* needs to be signed */
4066 unsigned long managed_pages = 0;
fc2bd799
JK
4067 unsigned long managed_highpages = 0;
4068 unsigned long free_highpages = 0;
1da177e4
LT
4069 pg_data_t *pgdat = NODE_DATA(nid);
4070
cdd91a77
JL
4071 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++)
4072 managed_pages += pgdat->node_zones[zone_type].managed_pages;
4073 val->totalram = managed_pages;
11fb9989 4074 val->sharedram = node_page_state(pgdat, NR_SHMEM);
75ef7184 4075 val->freeram = sum_zone_node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 4076#ifdef CONFIG_HIGHMEM
fc2bd799
JK
4077 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
4078 struct zone *zone = &pgdat->node_zones[zone_type];
4079
4080 if (is_highmem(zone)) {
4081 managed_highpages += zone->managed_pages;
4082 free_highpages += zone_page_state(zone, NR_FREE_PAGES);
4083 }
4084 }
4085 val->totalhigh = managed_highpages;
4086 val->freehigh = free_highpages;
98d2b0eb 4087#else
fc2bd799
JK
4088 val->totalhigh = managed_highpages;
4089 val->freehigh = free_highpages;
98d2b0eb 4090#endif
1da177e4
LT
4091 val->mem_unit = PAGE_SIZE;
4092}
4093#endif
4094
ddd588b5 4095/*
7bf02ea2
DR
4096 * Determine whether the node should be displayed or not, depending on whether
4097 * SHOW_MEM_FILTER_NODES was passed to show_free_areas().
ddd588b5 4098 */
7bf02ea2 4099bool skip_free_areas_node(unsigned int flags, int nid)
ddd588b5
DR
4100{
4101 bool ret = false;
cc9a6c87 4102 unsigned int cpuset_mems_cookie;
ddd588b5
DR
4103
4104 if (!(flags & SHOW_MEM_FILTER_NODES))
4105 goto out;
4106
cc9a6c87 4107 do {
d26914d1 4108 cpuset_mems_cookie = read_mems_allowed_begin();
cc9a6c87 4109 ret = !node_isset(nid, cpuset_current_mems_allowed);
d26914d1 4110 } while (read_mems_allowed_retry(cpuset_mems_cookie));
ddd588b5
DR
4111out:
4112 return ret;
4113}
4114
1da177e4
LT
4115#define K(x) ((x) << (PAGE_SHIFT-10))
4116
377e4f16
RV
4117static void show_migration_types(unsigned char type)
4118{
4119 static const char types[MIGRATE_TYPES] = {
4120 [MIGRATE_UNMOVABLE] = 'U',
377e4f16 4121 [MIGRATE_MOVABLE] = 'M',
475a2f90
VB
4122 [MIGRATE_RECLAIMABLE] = 'E',
4123 [MIGRATE_HIGHATOMIC] = 'H',
377e4f16
RV
4124#ifdef CONFIG_CMA
4125 [MIGRATE_CMA] = 'C',
4126#endif
194159fb 4127#ifdef CONFIG_MEMORY_ISOLATION
377e4f16 4128 [MIGRATE_ISOLATE] = 'I',
194159fb 4129#endif
377e4f16
RV
4130 };
4131 char tmp[MIGRATE_TYPES + 1];
4132 char *p = tmp;
4133 int i;
4134
4135 for (i = 0; i < MIGRATE_TYPES; i++) {
4136 if (type & (1 << i))
4137 *p++ = types[i];
4138 }
4139
4140 *p = '\0';
4141 printk("(%s) ", tmp);
4142}
4143
1da177e4
LT
4144/*
4145 * Show free area list (used inside shift_scroll-lock stuff)
4146 * We also calculate the percentage fragmentation. We do this by counting the
4147 * memory on each free list with the exception of the first item on the list.
d1bfcdb8
KK
4148 *
4149 * Bits in @filter:
4150 * SHOW_MEM_FILTER_NODES: suppress nodes that are not allowed by current's
4151 * cpuset.
1da177e4 4152 */
7bf02ea2 4153void show_free_areas(unsigned int filter)
1da177e4 4154{
d1bfcdb8 4155 unsigned long free_pcp = 0;
c7241913 4156 int cpu;
1da177e4 4157 struct zone *zone;
599d0c95 4158 pg_data_t *pgdat;
1da177e4 4159
ee99c71c 4160 for_each_populated_zone(zone) {
7bf02ea2 4161 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4162 continue;
d1bfcdb8 4163
761b0677
KK
4164 for_each_online_cpu(cpu)
4165 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
1da177e4
LT
4166 }
4167
a731286d
KM
4168 printk("active_anon:%lu inactive_anon:%lu isolated_anon:%lu\n"
4169 " active_file:%lu inactive_file:%lu isolated_file:%lu\n"
d1bfcdb8
KK
4170 " unevictable:%lu dirty:%lu writeback:%lu unstable:%lu\n"
4171 " slab_reclaimable:%lu slab_unreclaimable:%lu\n"
d1ce749a 4172 " mapped:%lu shmem:%lu pagetables:%lu bounce:%lu\n"
d1bfcdb8 4173 " free:%lu free_pcp:%lu free_cma:%lu\n",
599d0c95
MG
4174 global_node_page_state(NR_ACTIVE_ANON),
4175 global_node_page_state(NR_INACTIVE_ANON),
4176 global_node_page_state(NR_ISOLATED_ANON),
4177 global_node_page_state(NR_ACTIVE_FILE),
4178 global_node_page_state(NR_INACTIVE_FILE),
4179 global_node_page_state(NR_ISOLATED_FILE),
4180 global_node_page_state(NR_UNEVICTABLE),
11fb9989
MG
4181 global_node_page_state(NR_FILE_DIRTY),
4182 global_node_page_state(NR_WRITEBACK),
4183 global_node_page_state(NR_UNSTABLE_NFS),
3701b033
KM
4184 global_page_state(NR_SLAB_RECLAIMABLE),
4185 global_page_state(NR_SLAB_UNRECLAIMABLE),
50658e2e 4186 global_node_page_state(NR_FILE_MAPPED),
11fb9989 4187 global_node_page_state(NR_SHMEM),
a25700a5 4188 global_page_state(NR_PAGETABLE),
d1ce749a 4189 global_page_state(NR_BOUNCE),
d1bfcdb8
KK
4190 global_page_state(NR_FREE_PAGES),
4191 free_pcp,
d1ce749a 4192 global_page_state(NR_FREE_CMA_PAGES));
1da177e4 4193
599d0c95
MG
4194 for_each_online_pgdat(pgdat) {
4195 printk("Node %d"
4196 " active_anon:%lukB"
4197 " inactive_anon:%lukB"
4198 " active_file:%lukB"
4199 " inactive_file:%lukB"
4200 " unevictable:%lukB"
4201 " isolated(anon):%lukB"
4202 " isolated(file):%lukB"
50658e2e 4203 " mapped:%lukB"
11fb9989
MG
4204 " dirty:%lukB"
4205 " writeback:%lukB"
4206 " shmem:%lukB"
4207#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4208 " shmem_thp: %lukB"
4209 " shmem_pmdmapped: %lukB"
4210 " anon_thp: %lukB"
4211#endif
4212 " writeback_tmp:%lukB"
4213 " unstable:%lukB"
33e077bd 4214 " pages_scanned:%lu"
599d0c95
MG
4215 " all_unreclaimable? %s"
4216 "\n",
4217 pgdat->node_id,
4218 K(node_page_state(pgdat, NR_ACTIVE_ANON)),
4219 K(node_page_state(pgdat, NR_INACTIVE_ANON)),
4220 K(node_page_state(pgdat, NR_ACTIVE_FILE)),
4221 K(node_page_state(pgdat, NR_INACTIVE_FILE)),
4222 K(node_page_state(pgdat, NR_UNEVICTABLE)),
4223 K(node_page_state(pgdat, NR_ISOLATED_ANON)),
4224 K(node_page_state(pgdat, NR_ISOLATED_FILE)),
50658e2e 4225 K(node_page_state(pgdat, NR_FILE_MAPPED)),
11fb9989
MG
4226 K(node_page_state(pgdat, NR_FILE_DIRTY)),
4227 K(node_page_state(pgdat, NR_WRITEBACK)),
4228#ifdef CONFIG_TRANSPARENT_HUGEPAGE
4229 K(node_page_state(pgdat, NR_SHMEM_THPS) * HPAGE_PMD_NR),
4230 K(node_page_state(pgdat, NR_SHMEM_PMDMAPPED)
4231 * HPAGE_PMD_NR),
4232 K(node_page_state(pgdat, NR_ANON_THPS) * HPAGE_PMD_NR),
4233#endif
4234 K(node_page_state(pgdat, NR_SHMEM)),
4235 K(node_page_state(pgdat, NR_WRITEBACK_TEMP)),
4236 K(node_page_state(pgdat, NR_UNSTABLE_NFS)),
33e077bd 4237 node_page_state(pgdat, NR_PAGES_SCANNED),
599d0c95
MG
4238 !pgdat_reclaimable(pgdat) ? "yes" : "no");
4239 }
4240
ee99c71c 4241 for_each_populated_zone(zone) {
1da177e4
LT
4242 int i;
4243
7bf02ea2 4244 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4245 continue;
d1bfcdb8
KK
4246
4247 free_pcp = 0;
4248 for_each_online_cpu(cpu)
4249 free_pcp += per_cpu_ptr(zone->pageset, cpu)->pcp.count;
4250
1da177e4
LT
4251 show_node(zone);
4252 printk("%s"
4253 " free:%lukB"
4254 " min:%lukB"
4255 " low:%lukB"
4256 " high:%lukB"
71c799f4
MK
4257 " active_anon:%lukB"
4258 " inactive_anon:%lukB"
4259 " active_file:%lukB"
4260 " inactive_file:%lukB"
4261 " unevictable:%lukB"
5a1c84b4 4262 " writepending:%lukB"
1da177e4 4263 " present:%lukB"
9feedc9d 4264 " managed:%lukB"
4a0aa73f 4265 " mlocked:%lukB"
4a0aa73f
KM
4266 " slab_reclaimable:%lukB"
4267 " slab_unreclaimable:%lukB"
c6a7f572 4268 " kernel_stack:%lukB"
4a0aa73f 4269 " pagetables:%lukB"
4a0aa73f 4270 " bounce:%lukB"
d1bfcdb8
KK
4271 " free_pcp:%lukB"
4272 " local_pcp:%ukB"
d1ce749a 4273 " free_cma:%lukB"
1da177e4
LT
4274 "\n",
4275 zone->name,
88f5acf8 4276 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
4277 K(min_wmark_pages(zone)),
4278 K(low_wmark_pages(zone)),
4279 K(high_wmark_pages(zone)),
71c799f4
MK
4280 K(zone_page_state(zone, NR_ZONE_ACTIVE_ANON)),
4281 K(zone_page_state(zone, NR_ZONE_INACTIVE_ANON)),
4282 K(zone_page_state(zone, NR_ZONE_ACTIVE_FILE)),
4283 K(zone_page_state(zone, NR_ZONE_INACTIVE_FILE)),
4284 K(zone_page_state(zone, NR_ZONE_UNEVICTABLE)),
5a1c84b4 4285 K(zone_page_state(zone, NR_ZONE_WRITE_PENDING)),
1da177e4 4286 K(zone->present_pages),
9feedc9d 4287 K(zone->managed_pages),
4a0aa73f 4288 K(zone_page_state(zone, NR_MLOCK)),
4a0aa73f
KM
4289 K(zone_page_state(zone, NR_SLAB_RECLAIMABLE)),
4290 K(zone_page_state(zone, NR_SLAB_UNRECLAIMABLE)),
d30dd8be 4291 zone_page_state(zone, NR_KERNEL_STACK_KB),
4a0aa73f 4292 K(zone_page_state(zone, NR_PAGETABLE)),
4a0aa73f 4293 K(zone_page_state(zone, NR_BOUNCE)),
d1bfcdb8
KK
4294 K(free_pcp),
4295 K(this_cpu_read(zone->pageset->pcp.count)),
33e077bd 4296 K(zone_page_state(zone, NR_FREE_CMA_PAGES)));
1da177e4
LT
4297 printk("lowmem_reserve[]:");
4298 for (i = 0; i < MAX_NR_ZONES; i++)
3484b2de 4299 printk(" %ld", zone->lowmem_reserve[i]);
1da177e4
LT
4300 printk("\n");
4301 }
4302
ee99c71c 4303 for_each_populated_zone(zone) {
d00181b9
KS
4304 unsigned int order;
4305 unsigned long nr[MAX_ORDER], flags, total = 0;
377e4f16 4306 unsigned char types[MAX_ORDER];
1da177e4 4307
7bf02ea2 4308 if (skip_free_areas_node(filter, zone_to_nid(zone)))
ddd588b5 4309 continue;
1da177e4
LT
4310 show_node(zone);
4311 printk("%s: ", zone->name);
1da177e4
LT
4312
4313 spin_lock_irqsave(&zone->lock, flags);
4314 for (order = 0; order < MAX_ORDER; order++) {
377e4f16
RV
4315 struct free_area *area = &zone->free_area[order];
4316 int type;
4317
4318 nr[order] = area->nr_free;
8f9de51a 4319 total += nr[order] << order;
377e4f16
RV
4320
4321 types[order] = 0;
4322 for (type = 0; type < MIGRATE_TYPES; type++) {
4323 if (!list_empty(&area->free_list[type]))
4324 types[order] |= 1 << type;
4325 }
1da177e4
LT
4326 }
4327 spin_unlock_irqrestore(&zone->lock, flags);
377e4f16 4328 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a 4329 printk("%lu*%lukB ", nr[order], K(1UL) << order);
377e4f16
RV
4330 if (nr[order])
4331 show_migration_types(types[order]);
4332 }
1da177e4
LT
4333 printk("= %lukB\n", K(total));
4334 }
4335
949f7ec5
DR
4336 hugetlb_show_meminfo();
4337
11fb9989 4338 printk("%ld total pagecache pages\n", global_node_page_state(NR_FILE_PAGES));
e6f3602d 4339
1da177e4
LT
4340 show_swap_cache_info();
4341}
4342
19770b32
MG
4343static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
4344{
4345 zoneref->zone = zone;
4346 zoneref->zone_idx = zone_idx(zone);
4347}
4348
1da177e4
LT
4349/*
4350 * Builds allocation fallback zone lists.
1a93205b
CL
4351 *
4352 * Add all populated zones of a node to the zonelist.
1da177e4 4353 */
f0c0b2b8 4354static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
bc732f1d 4355 int nr_zones)
1da177e4 4356{
1a93205b 4357 struct zone *zone;
bc732f1d 4358 enum zone_type zone_type = MAX_NR_ZONES;
02a68a5e
CL
4359
4360 do {
2f6726e5 4361 zone_type--;
070f8032 4362 zone = pgdat->node_zones + zone_type;
6aa303de 4363 if (managed_zone(zone)) {
dd1a239f
MG
4364 zoneref_set_zone(zone,
4365 &zonelist->_zonerefs[nr_zones++]);
070f8032 4366 check_highest_zone(zone_type);
1da177e4 4367 }
2f6726e5 4368 } while (zone_type);
bc732f1d 4369
070f8032 4370 return nr_zones;
1da177e4
LT
4371}
4372
f0c0b2b8
KH
4373
4374/*
4375 * zonelist_order:
4376 * 0 = automatic detection of better ordering.
4377 * 1 = order by ([node] distance, -zonetype)
4378 * 2 = order by (-zonetype, [node] distance)
4379 *
4380 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
4381 * the same zonelist. So only NUMA can configure this param.
4382 */
4383#define ZONELIST_ORDER_DEFAULT 0
4384#define ZONELIST_ORDER_NODE 1
4385#define ZONELIST_ORDER_ZONE 2
4386
4387/* zonelist order in the kernel.
4388 * set_zonelist_order() will set this to NODE or ZONE.
4389 */
4390static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
4391static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
4392
4393
1da177e4 4394#ifdef CONFIG_NUMA
f0c0b2b8
KH
4395/* The value user specified ....changed by config */
4396static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4397/* string for sysctl */
4398#define NUMA_ZONELIST_ORDER_LEN 16
4399char numa_zonelist_order[16] = "default";
4400
4401/*
4402 * interface for configure zonelist ordering.
4403 * command line option "numa_zonelist_order"
4404 * = "[dD]efault - default, automatic configuration.
4405 * = "[nN]ode - order by node locality, then by zone within node
4406 * = "[zZ]one - order by zone, then by locality within zone
4407 */
4408
4409static int __parse_numa_zonelist_order(char *s)
4410{
4411 if (*s == 'd' || *s == 'D') {
4412 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
4413 } else if (*s == 'n' || *s == 'N') {
4414 user_zonelist_order = ZONELIST_ORDER_NODE;
4415 } else if (*s == 'z' || *s == 'Z') {
4416 user_zonelist_order = ZONELIST_ORDER_ZONE;
4417 } else {
1170532b 4418 pr_warn("Ignoring invalid numa_zonelist_order value: %s\n", s);
f0c0b2b8
KH
4419 return -EINVAL;
4420 }
4421 return 0;
4422}
4423
4424static __init int setup_numa_zonelist_order(char *s)
4425{
ecb256f8
VL
4426 int ret;
4427
4428 if (!s)
4429 return 0;
4430
4431 ret = __parse_numa_zonelist_order(s);
4432 if (ret == 0)
4433 strlcpy(numa_zonelist_order, s, NUMA_ZONELIST_ORDER_LEN);
4434
4435 return ret;
f0c0b2b8
KH
4436}
4437early_param("numa_zonelist_order", setup_numa_zonelist_order);
4438
4439/*
4440 * sysctl handler for numa_zonelist_order
4441 */
cccad5b9 4442int numa_zonelist_order_handler(struct ctl_table *table, int write,
8d65af78 4443 void __user *buffer, size_t *length,
f0c0b2b8
KH
4444 loff_t *ppos)
4445{
4446 char saved_string[NUMA_ZONELIST_ORDER_LEN];
4447 int ret;
443c6f14 4448 static DEFINE_MUTEX(zl_order_mutex);
f0c0b2b8 4449
443c6f14 4450 mutex_lock(&zl_order_mutex);
dacbde09
CG
4451 if (write) {
4452 if (strlen((char *)table->data) >= NUMA_ZONELIST_ORDER_LEN) {
4453 ret = -EINVAL;
4454 goto out;
4455 }
4456 strcpy(saved_string, (char *)table->data);
4457 }
8d65af78 4458 ret = proc_dostring(table, write, buffer, length, ppos);
f0c0b2b8 4459 if (ret)
443c6f14 4460 goto out;
f0c0b2b8
KH
4461 if (write) {
4462 int oldval = user_zonelist_order;
dacbde09
CG
4463
4464 ret = __parse_numa_zonelist_order((char *)table->data);
4465 if (ret) {
f0c0b2b8
KH
4466 /*
4467 * bogus value. restore saved string
4468 */
dacbde09 4469 strncpy((char *)table->data, saved_string,
f0c0b2b8
KH
4470 NUMA_ZONELIST_ORDER_LEN);
4471 user_zonelist_order = oldval;
4eaf3f64
HL
4472 } else if (oldval != user_zonelist_order) {
4473 mutex_lock(&zonelists_mutex);
9adb62a5 4474 build_all_zonelists(NULL, NULL);
4eaf3f64
HL
4475 mutex_unlock(&zonelists_mutex);
4476 }
f0c0b2b8 4477 }
443c6f14
AK
4478out:
4479 mutex_unlock(&zl_order_mutex);
4480 return ret;
f0c0b2b8
KH
4481}
4482
4483
62bc62a8 4484#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
4485static int node_load[MAX_NUMNODES];
4486
1da177e4 4487/**
4dc3b16b 4488 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
4489 * @node: node whose fallback list we're appending
4490 * @used_node_mask: nodemask_t of already used nodes
4491 *
4492 * We use a number of factors to determine which is the next node that should
4493 * appear on a given node's fallback list. The node should not have appeared
4494 * already in @node's fallback list, and it should be the next closest node
4495 * according to the distance array (which contains arbitrary distance values
4496 * from each node to each node in the system), and should also prefer nodes
4497 * with no CPUs, since presumably they'll have very little allocation pressure
4498 * on them otherwise.
4499 * It returns -1 if no node is found.
4500 */
f0c0b2b8 4501static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 4502{
4cf808eb 4503 int n, val;
1da177e4 4504 int min_val = INT_MAX;
00ef2d2f 4505 int best_node = NUMA_NO_NODE;
a70f7302 4506 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 4507
4cf808eb
LT
4508 /* Use the local node if we haven't already */
4509 if (!node_isset(node, *used_node_mask)) {
4510 node_set(node, *used_node_mask);
4511 return node;
4512 }
1da177e4 4513
4b0ef1fe 4514 for_each_node_state(n, N_MEMORY) {
1da177e4
LT
4515
4516 /* Don't want a node to appear more than once */
4517 if (node_isset(n, *used_node_mask))
4518 continue;
4519
1da177e4
LT
4520 /* Use the distance array to find the distance */
4521 val = node_distance(node, n);
4522
4cf808eb
LT
4523 /* Penalize nodes under us ("prefer the next node") */
4524 val += (n < node);
4525
1da177e4 4526 /* Give preference to headless and unused nodes */
a70f7302
RR
4527 tmp = cpumask_of_node(n);
4528 if (!cpumask_empty(tmp))
1da177e4
LT
4529 val += PENALTY_FOR_NODE_WITH_CPUS;
4530
4531 /* Slight preference for less loaded node */
4532 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
4533 val += node_load[n];
4534
4535 if (val < min_val) {
4536 min_val = val;
4537 best_node = n;
4538 }
4539 }
4540
4541 if (best_node >= 0)
4542 node_set(best_node, *used_node_mask);
4543
4544 return best_node;
4545}
4546
f0c0b2b8
KH
4547
4548/*
4549 * Build zonelists ordered by node and zones within node.
4550 * This results in maximum locality--normal zone overflows into local
4551 * DMA zone, if any--but risks exhausting DMA zone.
4552 */
4553static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 4554{
f0c0b2b8 4555 int j;
1da177e4 4556 struct zonelist *zonelist;
f0c0b2b8 4557
54a6eb5c 4558 zonelist = &pgdat->node_zonelists[0];
dd1a239f 4559 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c 4560 ;
bc732f1d 4561 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
dd1a239f
MG
4562 zonelist->_zonerefs[j].zone = NULL;
4563 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
4564}
4565
523b9458
CL
4566/*
4567 * Build gfp_thisnode zonelists
4568 */
4569static void build_thisnode_zonelists(pg_data_t *pgdat)
4570{
523b9458
CL
4571 int j;
4572 struct zonelist *zonelist;
4573
54a6eb5c 4574 zonelist = &pgdat->node_zonelists[1];
bc732f1d 4575 j = build_zonelists_node(pgdat, zonelist, 0);
dd1a239f
MG
4576 zonelist->_zonerefs[j].zone = NULL;
4577 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
4578}
4579
f0c0b2b8
KH
4580/*
4581 * Build zonelists ordered by zone and nodes within zones.
4582 * This results in conserving DMA zone[s] until all Normal memory is
4583 * exhausted, but results in overflowing to remote node while memory
4584 * may still exist in local DMA zone.
4585 */
4586static int node_order[MAX_NUMNODES];
4587
4588static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
4589{
f0c0b2b8
KH
4590 int pos, j, node;
4591 int zone_type; /* needs to be signed */
4592 struct zone *z;
4593 struct zonelist *zonelist;
4594
54a6eb5c
MG
4595 zonelist = &pgdat->node_zonelists[0];
4596 pos = 0;
4597 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
4598 for (j = 0; j < nr_nodes; j++) {
4599 node = node_order[j];
4600 z = &NODE_DATA(node)->node_zones[zone_type];
6aa303de 4601 if (managed_zone(z)) {
dd1a239f
MG
4602 zoneref_set_zone(z,
4603 &zonelist->_zonerefs[pos++]);
54a6eb5c 4604 check_highest_zone(zone_type);
f0c0b2b8
KH
4605 }
4606 }
f0c0b2b8 4607 }
dd1a239f
MG
4608 zonelist->_zonerefs[pos].zone = NULL;
4609 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
4610}
4611
3193913c
MG
4612#if defined(CONFIG_64BIT)
4613/*
4614 * Devices that require DMA32/DMA are relatively rare and do not justify a
4615 * penalty to every machine in case the specialised case applies. Default
4616 * to Node-ordering on 64-bit NUMA machines
4617 */
4618static int default_zonelist_order(void)
4619{
4620 return ZONELIST_ORDER_NODE;
4621}
4622#else
4623/*
4624 * On 32-bit, the Normal zone needs to be preserved for allocations accessible
4625 * by the kernel. If processes running on node 0 deplete the low memory zone
4626 * then reclaim will occur more frequency increasing stalls and potentially
4627 * be easier to OOM if a large percentage of the zone is under writeback or
4628 * dirty. The problem is significantly worse if CONFIG_HIGHPTE is not set.
4629 * Hence, default to zone ordering on 32-bit.
4630 */
f0c0b2b8
KH
4631static int default_zonelist_order(void)
4632{
f0c0b2b8
KH
4633 return ZONELIST_ORDER_ZONE;
4634}
3193913c 4635#endif /* CONFIG_64BIT */
f0c0b2b8
KH
4636
4637static void set_zonelist_order(void)
4638{
4639 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
4640 current_zonelist_order = default_zonelist_order();
4641 else
4642 current_zonelist_order = user_zonelist_order;
4643}
4644
4645static void build_zonelists(pg_data_t *pgdat)
4646{
c00eb15a 4647 int i, node, load;
1da177e4 4648 nodemask_t used_mask;
f0c0b2b8
KH
4649 int local_node, prev_node;
4650 struct zonelist *zonelist;
d00181b9 4651 unsigned int order = current_zonelist_order;
1da177e4
LT
4652
4653 /* initialize zonelists */
523b9458 4654 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 4655 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
4656 zonelist->_zonerefs[0].zone = NULL;
4657 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
4658 }
4659
4660 /* NUMA-aware ordering of nodes */
4661 local_node = pgdat->node_id;
62bc62a8 4662 load = nr_online_nodes;
1da177e4
LT
4663 prev_node = local_node;
4664 nodes_clear(used_mask);
f0c0b2b8 4665
f0c0b2b8 4666 memset(node_order, 0, sizeof(node_order));
c00eb15a 4667 i = 0;
f0c0b2b8 4668
1da177e4
LT
4669 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
4670 /*
4671 * We don't want to pressure a particular node.
4672 * So adding penalty to the first node in same
4673 * distance group to make it round-robin.
4674 */
957f822a
DR
4675 if (node_distance(local_node, node) !=
4676 node_distance(local_node, prev_node))
f0c0b2b8
KH
4677 node_load[node] = load;
4678
1da177e4
LT
4679 prev_node = node;
4680 load--;
f0c0b2b8
KH
4681 if (order == ZONELIST_ORDER_NODE)
4682 build_zonelists_in_node_order(pgdat, node);
4683 else
c00eb15a 4684 node_order[i++] = node; /* remember order */
f0c0b2b8 4685 }
1da177e4 4686
f0c0b2b8
KH
4687 if (order == ZONELIST_ORDER_ZONE) {
4688 /* calculate node order -- i.e., DMA last! */
c00eb15a 4689 build_zonelists_in_zone_order(pgdat, i);
1da177e4 4690 }
523b9458
CL
4691
4692 build_thisnode_zonelists(pgdat);
1da177e4
LT
4693}
4694
7aac7898
LS
4695#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4696/*
4697 * Return node id of node used for "local" allocations.
4698 * I.e., first node id of first zone in arg node's generic zonelist.
4699 * Used for initializing percpu 'numa_mem', which is used primarily
4700 * for kernel allocations, so use GFP_KERNEL flags to locate zonelist.
4701 */
4702int local_memory_node(int node)
4703{
c33d6c06 4704 struct zoneref *z;
7aac7898 4705
c33d6c06 4706 z = first_zones_zonelist(node_zonelist(node, GFP_KERNEL),
7aac7898 4707 gfp_zone(GFP_KERNEL),
c33d6c06
MG
4708 NULL);
4709 return z->zone->node;
7aac7898
LS
4710}
4711#endif
f0c0b2b8 4712
6423aa81
JK
4713static void setup_min_unmapped_ratio(void);
4714static void setup_min_slab_ratio(void);
1da177e4
LT
4715#else /* CONFIG_NUMA */
4716
f0c0b2b8
KH
4717static void set_zonelist_order(void)
4718{
4719 current_zonelist_order = ZONELIST_ORDER_ZONE;
4720}
4721
4722static void build_zonelists(pg_data_t *pgdat)
1da177e4 4723{
19655d34 4724 int node, local_node;
54a6eb5c
MG
4725 enum zone_type j;
4726 struct zonelist *zonelist;
1da177e4
LT
4727
4728 local_node = pgdat->node_id;
1da177e4 4729
54a6eb5c 4730 zonelist = &pgdat->node_zonelists[0];
bc732f1d 4731 j = build_zonelists_node(pgdat, zonelist, 0);
1da177e4 4732
54a6eb5c
MG
4733 /*
4734 * Now we build the zonelist so that it contains the zones
4735 * of all the other nodes.
4736 * We don't want to pressure a particular node, so when
4737 * building the zones for node N, we make sure that the
4738 * zones coming right after the local ones are those from
4739 * node N+1 (modulo N)
4740 */
4741 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
4742 if (!node_online(node))
4743 continue;
bc732f1d 4744 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
1da177e4 4745 }
54a6eb5c
MG
4746 for (node = 0; node < local_node; node++) {
4747 if (!node_online(node))
4748 continue;
bc732f1d 4749 j = build_zonelists_node(NODE_DATA(node), zonelist, j);
54a6eb5c
MG
4750 }
4751
dd1a239f
MG
4752 zonelist->_zonerefs[j].zone = NULL;
4753 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
4754}
4755
4756#endif /* CONFIG_NUMA */
4757
99dcc3e5
CL
4758/*
4759 * Boot pageset table. One per cpu which is going to be used for all
4760 * zones and all nodes. The parameters will be set in such a way
4761 * that an item put on a list will immediately be handed over to
4762 * the buddy list. This is safe since pageset manipulation is done
4763 * with interrupts disabled.
4764 *
4765 * The boot_pagesets must be kept even after bootup is complete for
4766 * unused processors and/or zones. They do play a role for bootstrapping
4767 * hotplugged processors.
4768 *
4769 * zoneinfo_show() and maybe other functions do
4770 * not check if the processor is online before following the pageset pointer.
4771 * Other parts of the kernel may not check if the zone is available.
4772 */
4773static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch);
4774static DEFINE_PER_CPU(struct per_cpu_pageset, boot_pageset);
1f522509 4775static void setup_zone_pageset(struct zone *zone);
99dcc3e5 4776
4eaf3f64
HL
4777/*
4778 * Global mutex to protect against size modification of zonelists
4779 * as well as to serialize pageset setup for the new populated zone.
4780 */
4781DEFINE_MUTEX(zonelists_mutex);
4782
9b1a4d38 4783/* return values int ....just for stop_machine() */
4ed7e022 4784static int __build_all_zonelists(void *data)
1da177e4 4785{
6811378e 4786 int nid;
99dcc3e5 4787 int cpu;
9adb62a5 4788 pg_data_t *self = data;
9276b1bc 4789
7f9cfb31
BL
4790#ifdef CONFIG_NUMA
4791 memset(node_load, 0, sizeof(node_load));
4792#endif
9adb62a5
JL
4793
4794 if (self && !node_online(self->node_id)) {
4795 build_zonelists(self);
9adb62a5
JL
4796 }
4797
9276b1bc 4798 for_each_online_node(nid) {
7ea1530a
CL
4799 pg_data_t *pgdat = NODE_DATA(nid);
4800
4801 build_zonelists(pgdat);
9276b1bc 4802 }
99dcc3e5
CL
4803
4804 /*
4805 * Initialize the boot_pagesets that are going to be used
4806 * for bootstrapping processors. The real pagesets for
4807 * each zone will be allocated later when the per cpu
4808 * allocator is available.
4809 *
4810 * boot_pagesets are used also for bootstrapping offline
4811 * cpus if the system is already booted because the pagesets
4812 * are needed to initialize allocators on a specific cpu too.
4813 * F.e. the percpu allocator needs the page allocator which
4814 * needs the percpu allocator in order to allocate its pagesets
4815 * (a chicken-egg dilemma).
4816 */
7aac7898 4817 for_each_possible_cpu(cpu) {
99dcc3e5
CL
4818 setup_pageset(&per_cpu(boot_pageset, cpu), 0);
4819
7aac7898
LS
4820#ifdef CONFIG_HAVE_MEMORYLESS_NODES
4821 /*
4822 * We now know the "local memory node" for each node--
4823 * i.e., the node of the first zone in the generic zonelist.
4824 * Set up numa_mem percpu variable for on-line cpus. During
4825 * boot, only the boot cpu should be on-line; we'll init the
4826 * secondary cpus' numa_mem as they come on-line. During
4827 * node/memory hotplug, we'll fixup all on-line cpus.
4828 */
4829 if (cpu_online(cpu))
4830 set_cpu_numa_mem(cpu, local_memory_node(cpu_to_node(cpu)));
4831#endif
4832 }
4833
6811378e
YG
4834 return 0;
4835}
4836
061f67bc
RV
4837static noinline void __init
4838build_all_zonelists_init(void)
4839{
4840 __build_all_zonelists(NULL);
4841 mminit_verify_zonelist();
4842 cpuset_init_current_mems_allowed();
4843}
4844
4eaf3f64
HL
4845/*
4846 * Called with zonelists_mutex held always
4847 * unless system_state == SYSTEM_BOOTING.
061f67bc
RV
4848 *
4849 * __ref due to (1) call of __meminit annotated setup_zone_pageset
4850 * [we're only called with non-NULL zone through __meminit paths] and
4851 * (2) call of __init annotated helper build_all_zonelists_init
4852 * [protected by SYSTEM_BOOTING].
4eaf3f64 4853 */
9adb62a5 4854void __ref build_all_zonelists(pg_data_t *pgdat, struct zone *zone)
6811378e 4855{
f0c0b2b8
KH
4856 set_zonelist_order();
4857
6811378e 4858 if (system_state == SYSTEM_BOOTING) {
061f67bc 4859 build_all_zonelists_init();
6811378e 4860 } else {
e9959f0f 4861#ifdef CONFIG_MEMORY_HOTPLUG
9adb62a5
JL
4862 if (zone)
4863 setup_zone_pageset(zone);
e9959f0f 4864#endif
dd1895e2
CS
4865 /* we have to stop all cpus to guarantee there is no user
4866 of zonelist */
9adb62a5 4867 stop_machine(__build_all_zonelists, pgdat, NULL);
6811378e
YG
4868 /* cpuset refresh routine should be here */
4869 }
bd1e22b8 4870 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
4871 /*
4872 * Disable grouping by mobility if the number of pages in the
4873 * system is too low to allow the mechanism to work. It would be
4874 * more accurate, but expensive to check per-zone. This check is
4875 * made on memory-hotadd so a system can start with mobility
4876 * disabled and enable it later
4877 */
d9c23400 4878 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
4879 page_group_by_mobility_disabled = 1;
4880 else
4881 page_group_by_mobility_disabled = 0;
4882
756a025f
JP
4883 pr_info("Built %i zonelists in %s order, mobility grouping %s. Total pages: %ld\n",
4884 nr_online_nodes,
4885 zonelist_order_name[current_zonelist_order],
4886 page_group_by_mobility_disabled ? "off" : "on",
4887 vm_total_pages);
f0c0b2b8 4888#ifdef CONFIG_NUMA
f88dfff5 4889 pr_info("Policy zone: %s\n", zone_names[policy_zone]);
f0c0b2b8 4890#endif
1da177e4
LT
4891}
4892
4893/*
4894 * Helper functions to size the waitqueue hash table.
4895 * Essentially these want to choose hash table sizes sufficiently
4896 * large so that collisions trying to wait on pages are rare.
4897 * But in fact, the number of active page waitqueues on typical
4898 * systems is ridiculously low, less than 200. So this is even
4899 * conservative, even though it seems large.
4900 *
4901 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
4902 * waitqueues, i.e. the size of the waitq table given the number of pages.
4903 */
4904#define PAGES_PER_WAITQUEUE 256
4905
cca448fe 4906#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 4907static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
4908{
4909 unsigned long size = 1;
4910
4911 pages /= PAGES_PER_WAITQUEUE;
4912
4913 while (size < pages)
4914 size <<= 1;
4915
4916 /*
4917 * Once we have dozens or even hundreds of threads sleeping
4918 * on IO we've got bigger problems than wait queue collision.
4919 * Limit the size of the wait table to a reasonable size.
4920 */
4921 size = min(size, 4096UL);
4922
4923 return max(size, 4UL);
4924}
cca448fe
YG
4925#else
4926/*
4927 * A zone's size might be changed by hot-add, so it is not possible to determine
4928 * a suitable size for its wait_table. So we use the maximum size now.
4929 *
4930 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
4931 *
4932 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
4933 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
4934 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
4935 *
4936 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
4937 * or more by the traditional way. (See above). It equals:
4938 *
4939 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
4940 * ia64(16K page size) : = ( 8G + 4M)byte.
4941 * powerpc (64K page size) : = (32G +16M)byte.
4942 */
4943static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
4944{
4945 return 4096UL;
4946}
4947#endif
1da177e4
LT
4948
4949/*
4950 * This is an integer logarithm so that shifts can be used later
4951 * to extract the more random high bits from the multiplicative
4952 * hash function before the remainder is taken.
4953 */
4954static inline unsigned long wait_table_bits(unsigned long size)
4955{
4956 return ffz(~size);
4957}
4958
1da177e4
LT
4959/*
4960 * Initially all pages are reserved - free ones are freed
4961 * up by free_all_bootmem() once the early boot process is
4962 * done. Non-atomic initialization, single-pass.
4963 */
c09b4240 4964void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 4965 unsigned long start_pfn, enum memmap_context context)
1da177e4 4966{
4b94ffdc 4967 struct vmem_altmap *altmap = to_vmem_altmap(__pfn_to_phys(start_pfn));
29751f69 4968 unsigned long end_pfn = start_pfn + size;
4b94ffdc 4969 pg_data_t *pgdat = NODE_DATA(nid);
29751f69 4970 unsigned long pfn;
3a80a7fa 4971 unsigned long nr_initialised = 0;
342332e6
TI
4972#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
4973 struct memblock_region *r = NULL, *tmp;
4974#endif
1da177e4 4975
22b31eec
HD
4976 if (highest_memmap_pfn < end_pfn - 1)
4977 highest_memmap_pfn = end_pfn - 1;
4978
4b94ffdc
DW
4979 /*
4980 * Honor reservation requested by the driver for this ZONE_DEVICE
4981 * memory
4982 */
4983 if (altmap && start_pfn == altmap->base_pfn)
4984 start_pfn += altmap->reserve;
4985
cbe8dd4a 4986 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02 4987 /*
b72d0ffb
AM
4988 * There can be holes in boot-time mem_map[]s handed to this
4989 * function. They do not exist on hotplugged memory.
a2f3aa02 4990 */
b72d0ffb
AM
4991 if (context != MEMMAP_EARLY)
4992 goto not_early;
4993
4994 if (!early_pfn_valid(pfn))
4995 continue;
4996 if (!early_pfn_in_nid(pfn, nid))
4997 continue;
4998 if (!update_defer_init(pgdat, pfn, end_pfn, &nr_initialised))
4999 break;
342332e6
TI
5000
5001#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
b72d0ffb
AM
5002 /*
5003 * If not mirrored_kernelcore and ZONE_MOVABLE exists, range
5004 * from zone_movable_pfn[nid] to end of each node should be
5005 * ZONE_MOVABLE not ZONE_NORMAL. skip it.
5006 */
5007 if (!mirrored_kernelcore && zone_movable_pfn[nid])
5008 if (zone == ZONE_NORMAL && pfn >= zone_movable_pfn[nid])
5009 continue;
342332e6 5010
b72d0ffb
AM
5011 /*
5012 * Check given memblock attribute by firmware which can affect
5013 * kernel memory layout. If zone==ZONE_MOVABLE but memory is
5014 * mirrored, it's an overlapped memmap init. skip it.
5015 */
5016 if (mirrored_kernelcore && zone == ZONE_MOVABLE) {
5017 if (!r || pfn >= memblock_region_memory_end_pfn(r)) {
5018 for_each_memblock(memory, tmp)
5019 if (pfn < memblock_region_memory_end_pfn(tmp))
5020 break;
5021 r = tmp;
5022 }
5023 if (pfn >= memblock_region_memory_base_pfn(r) &&
5024 memblock_is_mirror(r)) {
5025 /* already initialized as NORMAL */
5026 pfn = memblock_region_memory_end_pfn(r);
5027 continue;
342332e6 5028 }
a2f3aa02 5029 }
b72d0ffb 5030#endif
ac5d2539 5031
b72d0ffb 5032not_early:
ac5d2539
MG
5033 /*
5034 * Mark the block movable so that blocks are reserved for
5035 * movable at startup. This will force kernel allocations
5036 * to reserve their blocks rather than leaking throughout
5037 * the address space during boot when many long-lived
974a786e 5038 * kernel allocations are made.
ac5d2539
MG
5039 *
5040 * bitmap is created for zone's valid pfn range. but memmap
5041 * can be created for invalid pages (for alignment)
5042 * check here not to call set_pageblock_migratetype() against
5043 * pfn out of zone.
5044 */
5045 if (!(pfn & (pageblock_nr_pages - 1))) {
5046 struct page *page = pfn_to_page(pfn);
5047
5048 __init_single_page(page, pfn, zone, nid);
5049 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
5050 } else {
5051 __init_single_pfn(pfn, zone, nid);
5052 }
1da177e4
LT
5053 }
5054}
5055
1e548deb 5056static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 5057{
7aeb09f9 5058 unsigned int order, t;
b2a0ac88
MG
5059 for_each_migratetype_order(order, t) {
5060 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
5061 zone->free_area[order].nr_free = 0;
5062 }
5063}
5064
5065#ifndef __HAVE_ARCH_MEMMAP_INIT
5066#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 5067 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
5068#endif
5069
7cd2b0a3 5070static int zone_batchsize(struct zone *zone)
e7c8d5c9 5071{
3a6be87f 5072#ifdef CONFIG_MMU
e7c8d5c9
CL
5073 int batch;
5074
5075 /*
5076 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 5077 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
5078 *
5079 * OK, so we don't know how big the cache is. So guess.
5080 */
b40da049 5081 batch = zone->managed_pages / 1024;
ba56e91c
SR
5082 if (batch * PAGE_SIZE > 512 * 1024)
5083 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
5084 batch /= 4; /* We effectively *= 4 below */
5085 if (batch < 1)
5086 batch = 1;
5087
5088 /*
0ceaacc9
NP
5089 * Clamp the batch to a 2^n - 1 value. Having a power
5090 * of 2 value was found to be more likely to have
5091 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 5092 *
0ceaacc9
NP
5093 * For example if 2 tasks are alternately allocating
5094 * batches of pages, one task can end up with a lot
5095 * of pages of one half of the possible page colors
5096 * and the other with pages of the other colors.
e7c8d5c9 5097 */
9155203a 5098 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 5099
e7c8d5c9 5100 return batch;
3a6be87f
DH
5101
5102#else
5103 /* The deferral and batching of frees should be suppressed under NOMMU
5104 * conditions.
5105 *
5106 * The problem is that NOMMU needs to be able to allocate large chunks
5107 * of contiguous memory as there's no hardware page translation to
5108 * assemble apparent contiguous memory from discontiguous pages.
5109 *
5110 * Queueing large contiguous runs of pages for batching, however,
5111 * causes the pages to actually be freed in smaller chunks. As there
5112 * can be a significant delay between the individual batches being
5113 * recycled, this leads to the once large chunks of space being
5114 * fragmented and becoming unavailable for high-order allocations.
5115 */
5116 return 0;
5117#endif
e7c8d5c9
CL
5118}
5119
8d7a8fa9
CS
5120/*
5121 * pcp->high and pcp->batch values are related and dependent on one another:
5122 * ->batch must never be higher then ->high.
5123 * The following function updates them in a safe manner without read side
5124 * locking.
5125 *
5126 * Any new users of pcp->batch and pcp->high should ensure they can cope with
5127 * those fields changing asynchronously (acording the the above rule).
5128 *
5129 * mutex_is_locked(&pcp_batch_high_lock) required when calling this function
5130 * outside of boot time (or some other assurance that no concurrent updaters
5131 * exist).
5132 */
5133static void pageset_update(struct per_cpu_pages *pcp, unsigned long high,
5134 unsigned long batch)
5135{
5136 /* start with a fail safe value for batch */
5137 pcp->batch = 1;
5138 smp_wmb();
5139
5140 /* Update high, then batch, in order */
5141 pcp->high = high;
5142 smp_wmb();
5143
5144 pcp->batch = batch;
5145}
5146
3664033c 5147/* a companion to pageset_set_high() */
4008bab7
CS
5148static void pageset_set_batch(struct per_cpu_pageset *p, unsigned long batch)
5149{
8d7a8fa9 5150 pageset_update(&p->pcp, 6 * batch, max(1UL, 1 * batch));
4008bab7
CS
5151}
5152
88c90dbc 5153static void pageset_init(struct per_cpu_pageset *p)
2caaad41
CL
5154{
5155 struct per_cpu_pages *pcp;
5f8dcc21 5156 int migratetype;
2caaad41 5157
1c6fe946
MD
5158 memset(p, 0, sizeof(*p));
5159
3dfa5721 5160 pcp = &p->pcp;
2caaad41 5161 pcp->count = 0;
5f8dcc21
MG
5162 for (migratetype = 0; migratetype < MIGRATE_PCPTYPES; migratetype++)
5163 INIT_LIST_HEAD(&pcp->lists[migratetype]);
2caaad41
CL
5164}
5165
88c90dbc
CS
5166static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
5167{
5168 pageset_init(p);
5169 pageset_set_batch(p, batch);
5170}
5171
8ad4b1fb 5172/*
3664033c 5173 * pageset_set_high() sets the high water mark for hot per_cpu_pagelist
8ad4b1fb
RS
5174 * to the value high for the pageset p.
5175 */
3664033c 5176static void pageset_set_high(struct per_cpu_pageset *p,
8ad4b1fb
RS
5177 unsigned long high)
5178{
8d7a8fa9
CS
5179 unsigned long batch = max(1UL, high / 4);
5180 if ((high / 4) > (PAGE_SHIFT * 8))
5181 batch = PAGE_SHIFT * 8;
8ad4b1fb 5182
8d7a8fa9 5183 pageset_update(&p->pcp, high, batch);
8ad4b1fb
RS
5184}
5185
7cd2b0a3
DR
5186static void pageset_set_high_and_batch(struct zone *zone,
5187 struct per_cpu_pageset *pcp)
56cef2b8 5188{
56cef2b8 5189 if (percpu_pagelist_fraction)
3664033c 5190 pageset_set_high(pcp,
56cef2b8
CS
5191 (zone->managed_pages /
5192 percpu_pagelist_fraction));
5193 else
5194 pageset_set_batch(pcp, zone_batchsize(zone));
5195}
5196
169f6c19
CS
5197static void __meminit zone_pageset_init(struct zone *zone, int cpu)
5198{
5199 struct per_cpu_pageset *pcp = per_cpu_ptr(zone->pageset, cpu);
5200
5201 pageset_init(pcp);
5202 pageset_set_high_and_batch(zone, pcp);
5203}
5204
4ed7e022 5205static void __meminit setup_zone_pageset(struct zone *zone)
319774e2
WF
5206{
5207 int cpu;
319774e2 5208 zone->pageset = alloc_percpu(struct per_cpu_pageset);
56cef2b8
CS
5209 for_each_possible_cpu(cpu)
5210 zone_pageset_init(zone, cpu);
319774e2
WF
5211}
5212
2caaad41 5213/*
99dcc3e5
CL
5214 * Allocate per cpu pagesets and initialize them.
5215 * Before this call only boot pagesets were available.
e7c8d5c9 5216 */
99dcc3e5 5217void __init setup_per_cpu_pageset(void)
e7c8d5c9 5218{
b4911ea2 5219 struct pglist_data *pgdat;
99dcc3e5 5220 struct zone *zone;
e7c8d5c9 5221
319774e2
WF
5222 for_each_populated_zone(zone)
5223 setup_zone_pageset(zone);
b4911ea2
MG
5224
5225 for_each_online_pgdat(pgdat)
5226 pgdat->per_cpu_nodestats =
5227 alloc_percpu(struct per_cpu_nodestat);
e7c8d5c9
CL
5228}
5229
bd721ea7 5230static noinline __ref
cca448fe 5231int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
5232{
5233 int i;
cca448fe 5234 size_t alloc_size;
ed8ece2e
DH
5235
5236 /*
5237 * The per-page waitqueue mechanism uses hashed waitqueues
5238 * per zone.
5239 */
02b694de
YG
5240 zone->wait_table_hash_nr_entries =
5241 wait_table_hash_nr_entries(zone_size_pages);
5242 zone->wait_table_bits =
5243 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
5244 alloc_size = zone->wait_table_hash_nr_entries
5245 * sizeof(wait_queue_head_t);
5246
cd94b9db 5247 if (!slab_is_available()) {
cca448fe 5248 zone->wait_table = (wait_queue_head_t *)
6782832e
SS
5249 memblock_virt_alloc_node_nopanic(
5250 alloc_size, zone->zone_pgdat->node_id);
cca448fe
YG
5251 } else {
5252 /*
5253 * This case means that a zone whose size was 0 gets new memory
5254 * via memory hot-add.
5255 * But it may be the case that a new node was hot-added. In
5256 * this case vmalloc() will not be able to use this new node's
5257 * memory - this wait_table must be initialized to use this new
5258 * node itself as well.
5259 * To use this new node's memory, further consideration will be
5260 * necessary.
5261 */
8691f3a7 5262 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
5263 }
5264 if (!zone->wait_table)
5265 return -ENOMEM;
ed8ece2e 5266
b8af2941 5267 for (i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 5268 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
5269
5270 return 0;
ed8ece2e
DH
5271}
5272
c09b4240 5273static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e 5274{
99dcc3e5
CL
5275 /*
5276 * per cpu subsystem is not up at this point. The following code
5277 * relies on the ability of the linker to provide the
5278 * offset of a (static) per cpu variable into the per cpu area.
5279 */
5280 zone->pageset = &boot_pageset;
ed8ece2e 5281
b38a8725 5282 if (populated_zone(zone))
99dcc3e5
CL
5283 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%u\n",
5284 zone->name, zone->present_pages,
5285 zone_batchsize(zone));
ed8ece2e
DH
5286}
5287
4ed7e022 5288int __meminit init_currently_empty_zone(struct zone *zone,
718127cc 5289 unsigned long zone_start_pfn,
b171e409 5290 unsigned long size)
ed8ece2e
DH
5291{
5292 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
5293 int ret;
5294 ret = zone_wait_table_init(zone, size);
5295 if (ret)
5296 return ret;
ed8ece2e
DH
5297 pgdat->nr_zones = zone_idx(zone) + 1;
5298
ed8ece2e
DH
5299 zone->zone_start_pfn = zone_start_pfn;
5300
708614e6
MG
5301 mminit_dprintk(MMINIT_TRACE, "memmap_init",
5302 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
5303 pgdat->node_id,
5304 (unsigned long)zone_idx(zone),
5305 zone_start_pfn, (zone_start_pfn + size));
5306
1e548deb 5307 zone_init_free_lists(zone);
718127cc
YG
5308
5309 return 0;
ed8ece2e
DH
5310}
5311
0ee332c1 5312#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
c713216d 5313#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
8a942fde 5314
c713216d
MG
5315/*
5316 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
c713216d 5317 */
8a942fde
MG
5318int __meminit __early_pfn_to_nid(unsigned long pfn,
5319 struct mminit_pfnnid_cache *state)
c713216d 5320{
c13291a5 5321 unsigned long start_pfn, end_pfn;
e76b63f8 5322 int nid;
7c243c71 5323
8a942fde
MG
5324 if (state->last_start <= pfn && pfn < state->last_end)
5325 return state->last_nid;
c713216d 5326
e76b63f8
YL
5327 nid = memblock_search_pfn_nid(pfn, &start_pfn, &end_pfn);
5328 if (nid != -1) {
8a942fde
MG
5329 state->last_start = start_pfn;
5330 state->last_end = end_pfn;
5331 state->last_nid = nid;
e76b63f8
YL
5332 }
5333
5334 return nid;
c713216d
MG
5335}
5336#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
5337
c713216d 5338/**
6782832e 5339 * free_bootmem_with_active_regions - Call memblock_free_early_nid for each active range
88ca3b94 5340 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
6782832e 5341 * @max_low_pfn: The highest PFN that will be passed to memblock_free_early_nid
c713216d 5342 *
7d018176
ZZ
5343 * If an architecture guarantees that all ranges registered contain no holes
5344 * and may be freed, this this function may be used instead of calling
5345 * memblock_free_early_nid() manually.
c713216d 5346 */
c13291a5 5347void __init free_bootmem_with_active_regions(int nid, unsigned long max_low_pfn)
cc289894 5348{
c13291a5
TH
5349 unsigned long start_pfn, end_pfn;
5350 int i, this_nid;
edbe7d23 5351
c13291a5
TH
5352 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid) {
5353 start_pfn = min(start_pfn, max_low_pfn);
5354 end_pfn = min(end_pfn, max_low_pfn);
edbe7d23 5355
c13291a5 5356 if (start_pfn < end_pfn)
6782832e
SS
5357 memblock_free_early_nid(PFN_PHYS(start_pfn),
5358 (end_pfn - start_pfn) << PAGE_SHIFT,
5359 this_nid);
edbe7d23 5360 }
edbe7d23 5361}
edbe7d23 5362
c713216d
MG
5363/**
5364 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 5365 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d 5366 *
7d018176
ZZ
5367 * If an architecture guarantees that all ranges registered contain no holes and may
5368 * be freed, this function may be used instead of calling memory_present() manually.
c713216d
MG
5369 */
5370void __init sparse_memory_present_with_active_regions(int nid)
5371{
c13291a5
TH
5372 unsigned long start_pfn, end_pfn;
5373 int i, this_nid;
c713216d 5374
c13291a5
TH
5375 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, &this_nid)
5376 memory_present(this_nid, start_pfn, end_pfn);
c713216d
MG
5377}
5378
5379/**
5380 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
5381 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
5382 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
5383 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
5384 *
5385 * It returns the start and end page frame of a node based on information
7d018176 5386 * provided by memblock_set_node(). If called for a node
c713216d 5387 * with no available memory, a warning is printed and the start and end
88ca3b94 5388 * PFNs will be 0.
c713216d 5389 */
a3142c8e 5390void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
5391 unsigned long *start_pfn, unsigned long *end_pfn)
5392{
c13291a5 5393 unsigned long this_start_pfn, this_end_pfn;
c713216d 5394 int i;
c13291a5 5395
c713216d
MG
5396 *start_pfn = -1UL;
5397 *end_pfn = 0;
5398
c13291a5
TH
5399 for_each_mem_pfn_range(i, nid, &this_start_pfn, &this_end_pfn, NULL) {
5400 *start_pfn = min(*start_pfn, this_start_pfn);
5401 *end_pfn = max(*end_pfn, this_end_pfn);
c713216d
MG
5402 }
5403
633c0666 5404 if (*start_pfn == -1UL)
c713216d 5405 *start_pfn = 0;
c713216d
MG
5406}
5407
2a1e274a
MG
5408/*
5409 * This finds a zone that can be used for ZONE_MOVABLE pages. The
5410 * assumption is made that zones within a node are ordered in monotonic
5411 * increasing memory addresses so that the "highest" populated zone is used
5412 */
b69a7288 5413static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
5414{
5415 int zone_index;
5416 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
5417 if (zone_index == ZONE_MOVABLE)
5418 continue;
5419
5420 if (arch_zone_highest_possible_pfn[zone_index] >
5421 arch_zone_lowest_possible_pfn[zone_index])
5422 break;
5423 }
5424
5425 VM_BUG_ON(zone_index == -1);
5426 movable_zone = zone_index;
5427}
5428
5429/*
5430 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
25985edc 5431 * because it is sized independent of architecture. Unlike the other zones,
2a1e274a
MG
5432 * the starting point for ZONE_MOVABLE is not fixed. It may be different
5433 * in each node depending on the size of each node and how evenly kernelcore
5434 * is distributed. This helper function adjusts the zone ranges
5435 * provided by the architecture for a given node by using the end of the
5436 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
5437 * zones within a node are in order of monotonic increases memory addresses
5438 */
b69a7288 5439static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
5440 unsigned long zone_type,
5441 unsigned long node_start_pfn,
5442 unsigned long node_end_pfn,
5443 unsigned long *zone_start_pfn,
5444 unsigned long *zone_end_pfn)
5445{
5446 /* Only adjust if ZONE_MOVABLE is on this node */
5447 if (zone_movable_pfn[nid]) {
5448 /* Size ZONE_MOVABLE */
5449 if (zone_type == ZONE_MOVABLE) {
5450 *zone_start_pfn = zone_movable_pfn[nid];
5451 *zone_end_pfn = min(node_end_pfn,
5452 arch_zone_highest_possible_pfn[movable_zone]);
5453
2a1e274a
MG
5454 /* Check if this whole range is within ZONE_MOVABLE */
5455 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
5456 *zone_start_pfn = *zone_end_pfn;
5457 }
5458}
5459
c713216d
MG
5460/*
5461 * Return the number of pages a zone spans in a node, including holes
5462 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
5463 */
6ea6e688 5464static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5465 unsigned long zone_type,
7960aedd
ZY
5466 unsigned long node_start_pfn,
5467 unsigned long node_end_pfn,
d91749c1
TI
5468 unsigned long *zone_start_pfn,
5469 unsigned long *zone_end_pfn,
c713216d
MG
5470 unsigned long *ignored)
5471{
b5685e92 5472 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5473 if (!node_start_pfn && !node_end_pfn)
5474 return 0;
5475
7960aedd 5476 /* Get the start and end of the zone */
d91749c1
TI
5477 *zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
5478 *zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
5479 adjust_zone_range_for_zone_movable(nid, zone_type,
5480 node_start_pfn, node_end_pfn,
d91749c1 5481 zone_start_pfn, zone_end_pfn);
c713216d
MG
5482
5483 /* Check that this node has pages within the zone's required range */
d91749c1 5484 if (*zone_end_pfn < node_start_pfn || *zone_start_pfn > node_end_pfn)
c713216d
MG
5485 return 0;
5486
5487 /* Move the zone boundaries inside the node if necessary */
d91749c1
TI
5488 *zone_end_pfn = min(*zone_end_pfn, node_end_pfn);
5489 *zone_start_pfn = max(*zone_start_pfn, node_start_pfn);
c713216d
MG
5490
5491 /* Return the spanned pages */
d91749c1 5492 return *zone_end_pfn - *zone_start_pfn;
c713216d
MG
5493}
5494
5495/*
5496 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 5497 * then all holes in the requested range will be accounted for.
c713216d 5498 */
32996250 5499unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
5500 unsigned long range_start_pfn,
5501 unsigned long range_end_pfn)
5502{
96e907d1
TH
5503 unsigned long nr_absent = range_end_pfn - range_start_pfn;
5504 unsigned long start_pfn, end_pfn;
5505 int i;
c713216d 5506
96e907d1
TH
5507 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
5508 start_pfn = clamp(start_pfn, range_start_pfn, range_end_pfn);
5509 end_pfn = clamp(end_pfn, range_start_pfn, range_end_pfn);
5510 nr_absent -= end_pfn - start_pfn;
c713216d 5511 }
96e907d1 5512 return nr_absent;
c713216d
MG
5513}
5514
5515/**
5516 * absent_pages_in_range - Return number of page frames in holes within a range
5517 * @start_pfn: The start PFN to start searching for holes
5518 * @end_pfn: The end PFN to stop searching for holes
5519 *
88ca3b94 5520 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
5521 */
5522unsigned long __init absent_pages_in_range(unsigned long start_pfn,
5523 unsigned long end_pfn)
5524{
5525 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
5526}
5527
5528/* Return the number of page frames in holes in a zone on a node */
6ea6e688 5529static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5530 unsigned long zone_type,
7960aedd
ZY
5531 unsigned long node_start_pfn,
5532 unsigned long node_end_pfn,
c713216d
MG
5533 unsigned long *ignored)
5534{
96e907d1
TH
5535 unsigned long zone_low = arch_zone_lowest_possible_pfn[zone_type];
5536 unsigned long zone_high = arch_zone_highest_possible_pfn[zone_type];
9c7cd687 5537 unsigned long zone_start_pfn, zone_end_pfn;
342332e6 5538 unsigned long nr_absent;
9c7cd687 5539
b5685e92 5540 /* When hotadd a new node from cpu_up(), the node should be empty */
f9126ab9
XQ
5541 if (!node_start_pfn && !node_end_pfn)
5542 return 0;
5543
96e907d1
TH
5544 zone_start_pfn = clamp(node_start_pfn, zone_low, zone_high);
5545 zone_end_pfn = clamp(node_end_pfn, zone_low, zone_high);
9c7cd687 5546
2a1e274a
MG
5547 adjust_zone_range_for_zone_movable(nid, zone_type,
5548 node_start_pfn, node_end_pfn,
5549 &zone_start_pfn, &zone_end_pfn);
342332e6
TI
5550 nr_absent = __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
5551
5552 /*
5553 * ZONE_MOVABLE handling.
5554 * Treat pages to be ZONE_MOVABLE in ZONE_NORMAL as absent pages
5555 * and vice versa.
5556 */
5557 if (zone_movable_pfn[nid]) {
5558 if (mirrored_kernelcore) {
5559 unsigned long start_pfn, end_pfn;
5560 struct memblock_region *r;
5561
5562 for_each_memblock(memory, r) {
5563 start_pfn = clamp(memblock_region_memory_base_pfn(r),
5564 zone_start_pfn, zone_end_pfn);
5565 end_pfn = clamp(memblock_region_memory_end_pfn(r),
5566 zone_start_pfn, zone_end_pfn);
5567
5568 if (zone_type == ZONE_MOVABLE &&
5569 memblock_is_mirror(r))
5570 nr_absent += end_pfn - start_pfn;
5571
5572 if (zone_type == ZONE_NORMAL &&
5573 !memblock_is_mirror(r))
5574 nr_absent += end_pfn - start_pfn;
5575 }
5576 } else {
5577 if (zone_type == ZONE_NORMAL)
5578 nr_absent += node_end_pfn - zone_movable_pfn[nid];
5579 }
5580 }
5581
5582 return nr_absent;
c713216d 5583}
0e0b864e 5584
0ee332c1 5585#else /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
6ea6e688 5586static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d 5587 unsigned long zone_type,
7960aedd
ZY
5588 unsigned long node_start_pfn,
5589 unsigned long node_end_pfn,
d91749c1
TI
5590 unsigned long *zone_start_pfn,
5591 unsigned long *zone_end_pfn,
c713216d
MG
5592 unsigned long *zones_size)
5593{
d91749c1
TI
5594 unsigned int zone;
5595
5596 *zone_start_pfn = node_start_pfn;
5597 for (zone = 0; zone < zone_type; zone++)
5598 *zone_start_pfn += zones_size[zone];
5599
5600 *zone_end_pfn = *zone_start_pfn + zones_size[zone_type];
5601
c713216d
MG
5602 return zones_size[zone_type];
5603}
5604
6ea6e688 5605static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d 5606 unsigned long zone_type,
7960aedd
ZY
5607 unsigned long node_start_pfn,
5608 unsigned long node_end_pfn,
c713216d
MG
5609 unsigned long *zholes_size)
5610{
5611 if (!zholes_size)
5612 return 0;
5613
5614 return zholes_size[zone_type];
5615}
20e6926d 5616
0ee332c1 5617#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5618
a3142c8e 5619static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
7960aedd
ZY
5620 unsigned long node_start_pfn,
5621 unsigned long node_end_pfn,
5622 unsigned long *zones_size,
5623 unsigned long *zholes_size)
c713216d 5624{
febd5949 5625 unsigned long realtotalpages = 0, totalpages = 0;
c713216d
MG
5626 enum zone_type i;
5627
febd5949
GZ
5628 for (i = 0; i < MAX_NR_ZONES; i++) {
5629 struct zone *zone = pgdat->node_zones + i;
d91749c1 5630 unsigned long zone_start_pfn, zone_end_pfn;
febd5949 5631 unsigned long size, real_size;
c713216d 5632
febd5949
GZ
5633 size = zone_spanned_pages_in_node(pgdat->node_id, i,
5634 node_start_pfn,
5635 node_end_pfn,
d91749c1
TI
5636 &zone_start_pfn,
5637 &zone_end_pfn,
febd5949
GZ
5638 zones_size);
5639 real_size = size - zone_absent_pages_in_node(pgdat->node_id, i,
7960aedd
ZY
5640 node_start_pfn, node_end_pfn,
5641 zholes_size);
d91749c1
TI
5642 if (size)
5643 zone->zone_start_pfn = zone_start_pfn;
5644 else
5645 zone->zone_start_pfn = 0;
febd5949
GZ
5646 zone->spanned_pages = size;
5647 zone->present_pages = real_size;
5648
5649 totalpages += size;
5650 realtotalpages += real_size;
5651 }
5652
5653 pgdat->node_spanned_pages = totalpages;
c713216d
MG
5654 pgdat->node_present_pages = realtotalpages;
5655 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
5656 realtotalpages);
5657}
5658
835c134e
MG
5659#ifndef CONFIG_SPARSEMEM
5660/*
5661 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
5662 * Start by making sure zonesize is a multiple of pageblock_order by rounding
5663 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
5664 * round what is now in bits to nearest long in bits, then return it in
5665 * bytes.
5666 */
7c45512d 5667static unsigned long __init usemap_size(unsigned long zone_start_pfn, unsigned long zonesize)
835c134e
MG
5668{
5669 unsigned long usemapsize;
5670
7c45512d 5671 zonesize += zone_start_pfn & (pageblock_nr_pages-1);
d9c23400
MG
5672 usemapsize = roundup(zonesize, pageblock_nr_pages);
5673 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
5674 usemapsize *= NR_PAGEBLOCK_BITS;
5675 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
5676
5677 return usemapsize / 8;
5678}
5679
5680static void __init setup_usemap(struct pglist_data *pgdat,
7c45512d
LT
5681 struct zone *zone,
5682 unsigned long zone_start_pfn,
5683 unsigned long zonesize)
835c134e 5684{
7c45512d 5685 unsigned long usemapsize = usemap_size(zone_start_pfn, zonesize);
835c134e 5686 zone->pageblock_flags = NULL;
58a01a45 5687 if (usemapsize)
6782832e
SS
5688 zone->pageblock_flags =
5689 memblock_virt_alloc_node_nopanic(usemapsize,
5690 pgdat->node_id);
835c134e
MG
5691}
5692#else
7c45512d
LT
5693static inline void setup_usemap(struct pglist_data *pgdat, struct zone *zone,
5694 unsigned long zone_start_pfn, unsigned long zonesize) {}
835c134e
MG
5695#endif /* CONFIG_SPARSEMEM */
5696
d9c23400 5697#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c 5698
d9c23400 5699/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
15ca220e 5700void __paginginit set_pageblock_order(void)
d9c23400 5701{
955c1cd7
AM
5702 unsigned int order;
5703
d9c23400
MG
5704 /* Check that pageblock_nr_pages has not already been setup */
5705 if (pageblock_order)
5706 return;
5707
955c1cd7
AM
5708 if (HPAGE_SHIFT > PAGE_SHIFT)
5709 order = HUGETLB_PAGE_ORDER;
5710 else
5711 order = MAX_ORDER - 1;
5712
d9c23400
MG
5713 /*
5714 * Assume the largest contiguous order of interest is a huge page.
955c1cd7
AM
5715 * This value may be variable depending on boot parameters on IA64 and
5716 * powerpc.
d9c23400
MG
5717 */
5718 pageblock_order = order;
5719}
5720#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5721
ba72cb8c
MG
5722/*
5723 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
955c1cd7
AM
5724 * is unused as pageblock_order is set at compile-time. See
5725 * include/linux/pageblock-flags.h for the values of pageblock_order based on
5726 * the kernel config
ba72cb8c 5727 */
15ca220e 5728void __paginginit set_pageblock_order(void)
ba72cb8c 5729{
ba72cb8c 5730}
d9c23400
MG
5731
5732#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
5733
01cefaef
JL
5734static unsigned long __paginginit calc_memmap_size(unsigned long spanned_pages,
5735 unsigned long present_pages)
5736{
5737 unsigned long pages = spanned_pages;
5738
5739 /*
5740 * Provide a more accurate estimation if there are holes within
5741 * the zone and SPARSEMEM is in use. If there are holes within the
5742 * zone, each populated memory region may cost us one or two extra
5743 * memmap pages due to alignment because memmap pages for each
5744 * populated regions may not naturally algined on page boundary.
5745 * So the (present_pages >> 4) heuristic is a tradeoff for that.
5746 */
5747 if (spanned_pages > present_pages + (present_pages >> 4) &&
5748 IS_ENABLED(CONFIG_SPARSEMEM))
5749 pages = present_pages;
5750
5751 return PAGE_ALIGN(pages * sizeof(struct page)) >> PAGE_SHIFT;
5752}
5753
1da177e4
LT
5754/*
5755 * Set up the zone data structures:
5756 * - mark all pages reserved
5757 * - mark all memory queues empty
5758 * - clear the memory bitmaps
6527af5d
MK
5759 *
5760 * NOTE: pgdat should get zeroed by caller.
1da177e4 5761 */
7f3eb55b 5762static void __paginginit free_area_init_core(struct pglist_data *pgdat)
1da177e4 5763{
2f1b6248 5764 enum zone_type j;
ed8ece2e 5765 int nid = pgdat->node_id;
718127cc 5766 int ret;
1da177e4 5767
208d54e5 5768 pgdat_resize_init(pgdat);
8177a420
AA
5769#ifdef CONFIG_NUMA_BALANCING
5770 spin_lock_init(&pgdat->numabalancing_migrate_lock);
5771 pgdat->numabalancing_migrate_nr_pages = 0;
5772 pgdat->numabalancing_migrate_next_window = jiffies;
a3d0a918
KS
5773#endif
5774#ifdef CONFIG_TRANSPARENT_HUGEPAGE
5775 spin_lock_init(&pgdat->split_queue_lock);
5776 INIT_LIST_HEAD(&pgdat->split_queue);
5777 pgdat->split_queue_len = 0;
8177a420 5778#endif
1da177e4 5779 init_waitqueue_head(&pgdat->kswapd_wait);
5515061d 5780 init_waitqueue_head(&pgdat->pfmemalloc_wait);
698b1b30
VB
5781#ifdef CONFIG_COMPACTION
5782 init_waitqueue_head(&pgdat->kcompactd_wait);
5783#endif
eefa864b 5784 pgdat_page_ext_init(pgdat);
a52633d8 5785 spin_lock_init(&pgdat->lru_lock);
a9dd0a83 5786 lruvec_init(node_lruvec(pgdat));
5f63b720 5787
1da177e4
LT
5788 for (j = 0; j < MAX_NR_ZONES; j++) {
5789 struct zone *zone = pgdat->node_zones + j;
9feedc9d 5790 unsigned long size, realsize, freesize, memmap_pages;
d91749c1 5791 unsigned long zone_start_pfn = zone->zone_start_pfn;
1da177e4 5792
febd5949
GZ
5793 size = zone->spanned_pages;
5794 realsize = freesize = zone->present_pages;
1da177e4 5795
0e0b864e 5796 /*
9feedc9d 5797 * Adjust freesize so that it accounts for how much memory
0e0b864e
MG
5798 * is used by this zone for memmap. This affects the watermark
5799 * and per-cpu initialisations
5800 */
01cefaef 5801 memmap_pages = calc_memmap_size(size, realsize);
ba914f48
ZH
5802 if (!is_highmem_idx(j)) {
5803 if (freesize >= memmap_pages) {
5804 freesize -= memmap_pages;
5805 if (memmap_pages)
5806 printk(KERN_DEBUG
5807 " %s zone: %lu pages used for memmap\n",
5808 zone_names[j], memmap_pages);
5809 } else
1170532b 5810 pr_warn(" %s zone: %lu pages exceeds freesize %lu\n",
ba914f48
ZH
5811 zone_names[j], memmap_pages, freesize);
5812 }
0e0b864e 5813
6267276f 5814 /* Account for reserved pages */
9feedc9d
JL
5815 if (j == 0 && freesize > dma_reserve) {
5816 freesize -= dma_reserve;
d903ef9f 5817 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 5818 zone_names[0], dma_reserve);
0e0b864e
MG
5819 }
5820
98d2b0eb 5821 if (!is_highmem_idx(j))
9feedc9d 5822 nr_kernel_pages += freesize;
01cefaef
JL
5823 /* Charge for highmem memmap if there are enough kernel pages */
5824 else if (nr_kernel_pages > memmap_pages * 2)
5825 nr_kernel_pages -= memmap_pages;
9feedc9d 5826 nr_all_pages += freesize;
1da177e4 5827
9feedc9d
JL
5828 /*
5829 * Set an approximate value for lowmem here, it will be adjusted
5830 * when the bootmem allocator frees pages into the buddy system.
5831 * And all highmem pages will be managed by the buddy system.
5832 */
5833 zone->managed_pages = is_highmem_idx(j) ? realsize : freesize;
9614634f 5834#ifdef CONFIG_NUMA
d5f541ed 5835 zone->node = nid;
9614634f 5836#endif
1da177e4 5837 zone->name = zone_names[j];
a52633d8 5838 zone->zone_pgdat = pgdat;
1da177e4 5839 spin_lock_init(&zone->lock);
bdc8cb98 5840 zone_seqlock_init(zone);
ed8ece2e 5841 zone_pcp_init(zone);
81c0a2bb 5842
1da177e4
LT
5843 if (!size)
5844 continue;
5845
955c1cd7 5846 set_pageblock_order();
7c45512d 5847 setup_usemap(pgdat, zone, zone_start_pfn, size);
b171e409 5848 ret = init_currently_empty_zone(zone, zone_start_pfn, size);
718127cc 5849 BUG_ON(ret);
76cdd58e 5850 memmap_init(size, nid, j, zone_start_pfn);
1da177e4
LT
5851 }
5852}
5853
bd721ea7 5854static void __ref alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 5855{
b0aeba74 5856 unsigned long __maybe_unused start = 0;
a1c34a3b
LA
5857 unsigned long __maybe_unused offset = 0;
5858
1da177e4
LT
5859 /* Skip empty nodes */
5860 if (!pgdat->node_spanned_pages)
5861 return;
5862
d41dee36 5863#ifdef CONFIG_FLAT_NODE_MEM_MAP
b0aeba74
TL
5864 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
5865 offset = pgdat->node_start_pfn - start;
1da177e4
LT
5866 /* ia64 gets its own node_mem_map, before this, without bootmem */
5867 if (!pgdat->node_mem_map) {
b0aeba74 5868 unsigned long size, end;
d41dee36
AW
5869 struct page *map;
5870
e984bb43
BP
5871 /*
5872 * The zone's endpoints aren't required to be MAX_ORDER
5873 * aligned but the node_mem_map endpoints must be in order
5874 * for the buddy allocator to function correctly.
5875 */
108bcc96 5876 end = pgdat_end_pfn(pgdat);
e984bb43
BP
5877 end = ALIGN(end, MAX_ORDER_NR_PAGES);
5878 size = (end - start) * sizeof(struct page);
6f167ec7
DH
5879 map = alloc_remap(pgdat->node_id, size);
5880 if (!map)
6782832e
SS
5881 map = memblock_virt_alloc_node_nopanic(size,
5882 pgdat->node_id);
a1c34a3b 5883 pgdat->node_mem_map = map + offset;
1da177e4 5884 }
12d810c1 5885#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
5886 /*
5887 * With no DISCONTIG, the global mem_map is just set as node 0's
5888 */
c713216d 5889 if (pgdat == NODE_DATA(0)) {
1da177e4 5890 mem_map = NODE_DATA(0)->node_mem_map;
a1c34a3b 5891#if defined(CONFIG_HAVE_MEMBLOCK_NODE_MAP) || defined(CONFIG_FLATMEM)
c713216d 5892 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
a1c34a3b 5893 mem_map -= offset;
0ee332c1 5894#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 5895 }
1da177e4 5896#endif
d41dee36 5897#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
5898}
5899
9109fb7b
JW
5900void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
5901 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 5902{
9109fb7b 5903 pg_data_t *pgdat = NODE_DATA(nid);
7960aedd
ZY
5904 unsigned long start_pfn = 0;
5905 unsigned long end_pfn = 0;
9109fb7b 5906
88fdf75d 5907 /* pg_data_t should be reset to zero when it's allocated */
38087d9b 5908 WARN_ON(pgdat->nr_zones || pgdat->kswapd_classzone_idx);
88fdf75d 5909
3a80a7fa 5910 reset_deferred_meminit(pgdat);
1da177e4
LT
5911 pgdat->node_id = nid;
5912 pgdat->node_start_pfn = node_start_pfn;
75ef7184 5913 pgdat->per_cpu_nodestats = NULL;
7960aedd
ZY
5914#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
5915 get_pfn_range_for_nid(nid, &start_pfn, &end_pfn);
8d29e18a 5916 pr_info("Initmem setup node %d [mem %#018Lx-%#018Lx]\n", nid,
4ada0c5a
ZL
5917 (u64)start_pfn << PAGE_SHIFT,
5918 end_pfn ? ((u64)end_pfn << PAGE_SHIFT) - 1 : 0);
d91749c1
TI
5919#else
5920 start_pfn = node_start_pfn;
7960aedd
ZY
5921#endif
5922 calculate_node_totalpages(pgdat, start_pfn, end_pfn,
5923 zones_size, zholes_size);
1da177e4
LT
5924
5925 alloc_node_mem_map(pgdat);
e8c27ac9
YL
5926#ifdef CONFIG_FLAT_NODE_MEM_MAP
5927 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
5928 nid, (unsigned long)pgdat,
5929 (unsigned long)pgdat->node_mem_map);
5930#endif
1da177e4 5931
7f3eb55b 5932 free_area_init_core(pgdat);
1da177e4
LT
5933}
5934
0ee332c1 5935#ifdef CONFIG_HAVE_MEMBLOCK_NODE_MAP
418508c1
MS
5936
5937#if MAX_NUMNODES > 1
5938/*
5939 * Figure out the number of possible node ids.
5940 */
f9872caf 5941void __init setup_nr_node_ids(void)
418508c1 5942{
904a9553 5943 unsigned int highest;
418508c1 5944
904a9553 5945 highest = find_last_bit(node_possible_map.bits, MAX_NUMNODES);
418508c1
MS
5946 nr_node_ids = highest + 1;
5947}
418508c1
MS
5948#endif
5949
1e01979c
TH
5950/**
5951 * node_map_pfn_alignment - determine the maximum internode alignment
5952 *
5953 * This function should be called after node map is populated and sorted.
5954 * It calculates the maximum power of two alignment which can distinguish
5955 * all the nodes.
5956 *
5957 * For example, if all nodes are 1GiB and aligned to 1GiB, the return value
5958 * would indicate 1GiB alignment with (1 << (30 - PAGE_SHIFT)). If the
5959 * nodes are shifted by 256MiB, 256MiB. Note that if only the last node is
5960 * shifted, 1GiB is enough and this function will indicate so.
5961 *
5962 * This is used to test whether pfn -> nid mapping of the chosen memory
5963 * model has fine enough granularity to avoid incorrect mapping for the
5964 * populated node map.
5965 *
5966 * Returns the determined alignment in pfn's. 0 if there is no alignment
5967 * requirement (single node).
5968 */
5969unsigned long __init node_map_pfn_alignment(void)
5970{
5971 unsigned long accl_mask = 0, last_end = 0;
c13291a5 5972 unsigned long start, end, mask;
1e01979c 5973 int last_nid = -1;
c13291a5 5974 int i, nid;
1e01979c 5975
c13291a5 5976 for_each_mem_pfn_range(i, MAX_NUMNODES, &start, &end, &nid) {
1e01979c
TH
5977 if (!start || last_nid < 0 || last_nid == nid) {
5978 last_nid = nid;
5979 last_end = end;
5980 continue;
5981 }
5982
5983 /*
5984 * Start with a mask granular enough to pin-point to the
5985 * start pfn and tick off bits one-by-one until it becomes
5986 * too coarse to separate the current node from the last.
5987 */
5988 mask = ~((1 << __ffs(start)) - 1);
5989 while (mask && last_end <= (start & (mask << 1)))
5990 mask <<= 1;
5991
5992 /* accumulate all internode masks */
5993 accl_mask |= mask;
5994 }
5995
5996 /* convert mask to number of pages */
5997 return ~accl_mask + 1;
5998}
5999
a6af2bc3 6000/* Find the lowest pfn for a node */
b69a7288 6001static unsigned long __init find_min_pfn_for_node(int nid)
c713216d 6002{
a6af2bc3 6003 unsigned long min_pfn = ULONG_MAX;
c13291a5
TH
6004 unsigned long start_pfn;
6005 int i;
1abbfb41 6006
c13291a5
TH
6007 for_each_mem_pfn_range(i, nid, &start_pfn, NULL, NULL)
6008 min_pfn = min(min_pfn, start_pfn);
c713216d 6009
a6af2bc3 6010 if (min_pfn == ULONG_MAX) {
1170532b 6011 pr_warn("Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
6012 return 0;
6013 }
6014
6015 return min_pfn;
c713216d
MG
6016}
6017
6018/**
6019 * find_min_pfn_with_active_regions - Find the minimum PFN registered
6020 *
6021 * It returns the minimum PFN based on information provided via
7d018176 6022 * memblock_set_node().
c713216d
MG
6023 */
6024unsigned long __init find_min_pfn_with_active_regions(void)
6025{
6026 return find_min_pfn_for_node(MAX_NUMNODES);
6027}
6028
37b07e41
LS
6029/*
6030 * early_calculate_totalpages()
6031 * Sum pages in active regions for movable zone.
4b0ef1fe 6032 * Populate N_MEMORY for calculating usable_nodes.
37b07e41 6033 */
484f51f8 6034static unsigned long __init early_calculate_totalpages(void)
7e63efef 6035{
7e63efef 6036 unsigned long totalpages = 0;
c13291a5
TH
6037 unsigned long start_pfn, end_pfn;
6038 int i, nid;
6039
6040 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid) {
6041 unsigned long pages = end_pfn - start_pfn;
7e63efef 6042
37b07e41
LS
6043 totalpages += pages;
6044 if (pages)
4b0ef1fe 6045 node_set_state(nid, N_MEMORY);
37b07e41 6046 }
b8af2941 6047 return totalpages;
7e63efef
MG
6048}
6049
2a1e274a
MG
6050/*
6051 * Find the PFN the Movable zone begins in each node. Kernel memory
6052 * is spread evenly between nodes as long as the nodes have enough
6053 * memory. When they don't, some nodes will have more kernelcore than
6054 * others
6055 */
b224ef85 6056static void __init find_zone_movable_pfns_for_nodes(void)
2a1e274a
MG
6057{
6058 int i, nid;
6059 unsigned long usable_startpfn;
6060 unsigned long kernelcore_node, kernelcore_remaining;
66918dcd 6061 /* save the state before borrow the nodemask */
4b0ef1fe 6062 nodemask_t saved_node_state = node_states[N_MEMORY];
37b07e41 6063 unsigned long totalpages = early_calculate_totalpages();
4b0ef1fe 6064 int usable_nodes = nodes_weight(node_states[N_MEMORY]);
136199f0 6065 struct memblock_region *r;
b2f3eebe
TC
6066
6067 /* Need to find movable_zone earlier when movable_node is specified. */
6068 find_usable_zone_for_movable();
6069
6070 /*
6071 * If movable_node is specified, ignore kernelcore and movablecore
6072 * options.
6073 */
6074 if (movable_node_is_enabled()) {
136199f0
EM
6075 for_each_memblock(memory, r) {
6076 if (!memblock_is_hotpluggable(r))
b2f3eebe
TC
6077 continue;
6078
136199f0 6079 nid = r->nid;
b2f3eebe 6080
136199f0 6081 usable_startpfn = PFN_DOWN(r->base);
b2f3eebe
TC
6082 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6083 min(usable_startpfn, zone_movable_pfn[nid]) :
6084 usable_startpfn;
6085 }
6086
6087 goto out2;
6088 }
2a1e274a 6089
342332e6
TI
6090 /*
6091 * If kernelcore=mirror is specified, ignore movablecore option
6092 */
6093 if (mirrored_kernelcore) {
6094 bool mem_below_4gb_not_mirrored = false;
6095
6096 for_each_memblock(memory, r) {
6097 if (memblock_is_mirror(r))
6098 continue;
6099
6100 nid = r->nid;
6101
6102 usable_startpfn = memblock_region_memory_base_pfn(r);
6103
6104 if (usable_startpfn < 0x100000) {
6105 mem_below_4gb_not_mirrored = true;
6106 continue;
6107 }
6108
6109 zone_movable_pfn[nid] = zone_movable_pfn[nid] ?
6110 min(usable_startpfn, zone_movable_pfn[nid]) :
6111 usable_startpfn;
6112 }
6113
6114 if (mem_below_4gb_not_mirrored)
6115 pr_warn("This configuration results in unmirrored kernel memory.");
6116
6117 goto out2;
6118 }
6119
7e63efef 6120 /*
b2f3eebe 6121 * If movablecore=nn[KMG] was specified, calculate what size of
7e63efef
MG
6122 * kernelcore that corresponds so that memory usable for
6123 * any allocation type is evenly spread. If both kernelcore
6124 * and movablecore are specified, then the value of kernelcore
6125 * will be used for required_kernelcore if it's greater than
6126 * what movablecore would have allowed.
6127 */
6128 if (required_movablecore) {
7e63efef
MG
6129 unsigned long corepages;
6130
6131 /*
6132 * Round-up so that ZONE_MOVABLE is at least as large as what
6133 * was requested by the user
6134 */
6135 required_movablecore =
6136 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
9fd745d4 6137 required_movablecore = min(totalpages, required_movablecore);
7e63efef
MG
6138 corepages = totalpages - required_movablecore;
6139
6140 required_kernelcore = max(required_kernelcore, corepages);
6141 }
6142
bde304bd
XQ
6143 /*
6144 * If kernelcore was not specified or kernelcore size is larger
6145 * than totalpages, there is no ZONE_MOVABLE.
6146 */
6147 if (!required_kernelcore || required_kernelcore >= totalpages)
66918dcd 6148 goto out;
2a1e274a
MG
6149
6150 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
2a1e274a
MG
6151 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
6152
6153restart:
6154 /* Spread kernelcore memory as evenly as possible throughout nodes */
6155 kernelcore_node = required_kernelcore / usable_nodes;
4b0ef1fe 6156 for_each_node_state(nid, N_MEMORY) {
c13291a5
TH
6157 unsigned long start_pfn, end_pfn;
6158
2a1e274a
MG
6159 /*
6160 * Recalculate kernelcore_node if the division per node
6161 * now exceeds what is necessary to satisfy the requested
6162 * amount of memory for the kernel
6163 */
6164 if (required_kernelcore < kernelcore_node)
6165 kernelcore_node = required_kernelcore / usable_nodes;
6166
6167 /*
6168 * As the map is walked, we track how much memory is usable
6169 * by the kernel using kernelcore_remaining. When it is
6170 * 0, the rest of the node is usable by ZONE_MOVABLE
6171 */
6172 kernelcore_remaining = kernelcore_node;
6173
6174 /* Go through each range of PFNs within this node */
c13291a5 6175 for_each_mem_pfn_range(i, nid, &start_pfn, &end_pfn, NULL) {
2a1e274a
MG
6176 unsigned long size_pages;
6177
c13291a5 6178 start_pfn = max(start_pfn, zone_movable_pfn[nid]);
2a1e274a
MG
6179 if (start_pfn >= end_pfn)
6180 continue;
6181
6182 /* Account for what is only usable for kernelcore */
6183 if (start_pfn < usable_startpfn) {
6184 unsigned long kernel_pages;
6185 kernel_pages = min(end_pfn, usable_startpfn)
6186 - start_pfn;
6187
6188 kernelcore_remaining -= min(kernel_pages,
6189 kernelcore_remaining);
6190 required_kernelcore -= min(kernel_pages,
6191 required_kernelcore);
6192
6193 /* Continue if range is now fully accounted */
6194 if (end_pfn <= usable_startpfn) {
6195
6196 /*
6197 * Push zone_movable_pfn to the end so
6198 * that if we have to rebalance
6199 * kernelcore across nodes, we will
6200 * not double account here
6201 */
6202 zone_movable_pfn[nid] = end_pfn;
6203 continue;
6204 }
6205 start_pfn = usable_startpfn;
6206 }
6207
6208 /*
6209 * The usable PFN range for ZONE_MOVABLE is from
6210 * start_pfn->end_pfn. Calculate size_pages as the
6211 * number of pages used as kernelcore
6212 */
6213 size_pages = end_pfn - start_pfn;
6214 if (size_pages > kernelcore_remaining)
6215 size_pages = kernelcore_remaining;
6216 zone_movable_pfn[nid] = start_pfn + size_pages;
6217
6218 /*
6219 * Some kernelcore has been met, update counts and
6220 * break if the kernelcore for this node has been
b8af2941 6221 * satisfied
2a1e274a
MG
6222 */
6223 required_kernelcore -= min(required_kernelcore,
6224 size_pages);
6225 kernelcore_remaining -= size_pages;
6226 if (!kernelcore_remaining)
6227 break;
6228 }
6229 }
6230
6231 /*
6232 * If there is still required_kernelcore, we do another pass with one
6233 * less node in the count. This will push zone_movable_pfn[nid] further
6234 * along on the nodes that still have memory until kernelcore is
b8af2941 6235 * satisfied
2a1e274a
MG
6236 */
6237 usable_nodes--;
6238 if (usable_nodes && required_kernelcore > usable_nodes)
6239 goto restart;
6240
b2f3eebe 6241out2:
2a1e274a
MG
6242 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
6243 for (nid = 0; nid < MAX_NUMNODES; nid++)
6244 zone_movable_pfn[nid] =
6245 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
66918dcd 6246
20e6926d 6247out:
66918dcd 6248 /* restore the node_state */
4b0ef1fe 6249 node_states[N_MEMORY] = saved_node_state;
2a1e274a
MG
6250}
6251
4b0ef1fe
LJ
6252/* Any regular or high memory on that node ? */
6253static void check_for_memory(pg_data_t *pgdat, int nid)
37b07e41 6254{
37b07e41
LS
6255 enum zone_type zone_type;
6256
4b0ef1fe
LJ
6257 if (N_MEMORY == N_NORMAL_MEMORY)
6258 return;
6259
6260 for (zone_type = 0; zone_type <= ZONE_MOVABLE - 1; zone_type++) {
37b07e41 6261 struct zone *zone = &pgdat->node_zones[zone_type];
b38a8725 6262 if (populated_zone(zone)) {
4b0ef1fe
LJ
6263 node_set_state(nid, N_HIGH_MEMORY);
6264 if (N_NORMAL_MEMORY != N_HIGH_MEMORY &&
6265 zone_type <= ZONE_NORMAL)
6266 node_set_state(nid, N_NORMAL_MEMORY);
d0048b0e
BL
6267 break;
6268 }
37b07e41 6269 }
37b07e41
LS
6270}
6271
c713216d
MG
6272/**
6273 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 6274 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
6275 *
6276 * This will call free_area_init_node() for each active node in the system.
7d018176 6277 * Using the page ranges provided by memblock_set_node(), the size of each
c713216d
MG
6278 * zone in each node and their holes is calculated. If the maximum PFN
6279 * between two adjacent zones match, it is assumed that the zone is empty.
6280 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
6281 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
6282 * starts where the previous one ended. For example, ZONE_DMA32 starts
6283 * at arch_max_dma_pfn.
6284 */
6285void __init free_area_init_nodes(unsigned long *max_zone_pfn)
6286{
c13291a5
TH
6287 unsigned long start_pfn, end_pfn;
6288 int i, nid;
a6af2bc3 6289
c713216d
MG
6290 /* Record where the zone boundaries are */
6291 memset(arch_zone_lowest_possible_pfn, 0,
6292 sizeof(arch_zone_lowest_possible_pfn));
6293 memset(arch_zone_highest_possible_pfn, 0,
6294 sizeof(arch_zone_highest_possible_pfn));
90cae1fe
OH
6295
6296 start_pfn = find_min_pfn_with_active_regions();
6297
6298 for (i = 0; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
6299 if (i == ZONE_MOVABLE)
6300 continue;
90cae1fe
OH
6301
6302 end_pfn = max(max_zone_pfn[i], start_pfn);
6303 arch_zone_lowest_possible_pfn[i] = start_pfn;
6304 arch_zone_highest_possible_pfn[i] = end_pfn;
6305
6306 start_pfn = end_pfn;
c713216d 6307 }
2a1e274a
MG
6308 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
6309 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
6310
6311 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
6312 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
b224ef85 6313 find_zone_movable_pfns_for_nodes();
c713216d 6314
c713216d 6315 /* Print out the zone ranges */
f88dfff5 6316 pr_info("Zone ranges:\n");
2a1e274a
MG
6317 for (i = 0; i < MAX_NR_ZONES; i++) {
6318 if (i == ZONE_MOVABLE)
6319 continue;
f88dfff5 6320 pr_info(" %-8s ", zone_names[i]);
72f0ba02
DR
6321 if (arch_zone_lowest_possible_pfn[i] ==
6322 arch_zone_highest_possible_pfn[i])
f88dfff5 6323 pr_cont("empty\n");
72f0ba02 6324 else
8d29e18a
JG
6325 pr_cont("[mem %#018Lx-%#018Lx]\n",
6326 (u64)arch_zone_lowest_possible_pfn[i]
6327 << PAGE_SHIFT,
6328 ((u64)arch_zone_highest_possible_pfn[i]
a62e2f4f 6329 << PAGE_SHIFT) - 1);
2a1e274a
MG
6330 }
6331
6332 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
f88dfff5 6333 pr_info("Movable zone start for each node\n");
2a1e274a
MG
6334 for (i = 0; i < MAX_NUMNODES; i++) {
6335 if (zone_movable_pfn[i])
8d29e18a
JG
6336 pr_info(" Node %d: %#018Lx\n", i,
6337 (u64)zone_movable_pfn[i] << PAGE_SHIFT);
2a1e274a 6338 }
c713216d 6339
f2d52fe5 6340 /* Print out the early node map */
f88dfff5 6341 pr_info("Early memory node ranges\n");
c13291a5 6342 for_each_mem_pfn_range(i, MAX_NUMNODES, &start_pfn, &end_pfn, &nid)
8d29e18a
JG
6343 pr_info(" node %3d: [mem %#018Lx-%#018Lx]\n", nid,
6344 (u64)start_pfn << PAGE_SHIFT,
6345 ((u64)end_pfn << PAGE_SHIFT) - 1);
c713216d
MG
6346
6347 /* Initialise every node */
708614e6 6348 mminit_verify_pageflags_layout();
8ef82866 6349 setup_nr_node_ids();
c713216d
MG
6350 for_each_online_node(nid) {
6351 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 6352 free_area_init_node(nid, NULL,
c713216d 6353 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
6354
6355 /* Any memory on that node */
6356 if (pgdat->node_present_pages)
4b0ef1fe
LJ
6357 node_set_state(nid, N_MEMORY);
6358 check_for_memory(pgdat, nid);
c713216d
MG
6359 }
6360}
2a1e274a 6361
7e63efef 6362static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
6363{
6364 unsigned long long coremem;
6365 if (!p)
6366 return -EINVAL;
6367
6368 coremem = memparse(p, &p);
7e63efef 6369 *core = coremem >> PAGE_SHIFT;
2a1e274a 6370
7e63efef 6371 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
6372 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
6373
6374 return 0;
6375}
ed7ed365 6376
7e63efef
MG
6377/*
6378 * kernelcore=size sets the amount of memory for use for allocations that
6379 * cannot be reclaimed or migrated.
6380 */
6381static int __init cmdline_parse_kernelcore(char *p)
6382{
342332e6
TI
6383 /* parse kernelcore=mirror */
6384 if (parse_option_str(p, "mirror")) {
6385 mirrored_kernelcore = true;
6386 return 0;
6387 }
6388
7e63efef
MG
6389 return cmdline_parse_core(p, &required_kernelcore);
6390}
6391
6392/*
6393 * movablecore=size sets the amount of memory for use for allocations that
6394 * can be reclaimed or migrated.
6395 */
6396static int __init cmdline_parse_movablecore(char *p)
6397{
6398 return cmdline_parse_core(p, &required_movablecore);
6399}
6400
ed7ed365 6401early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 6402early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 6403
0ee332c1 6404#endif /* CONFIG_HAVE_MEMBLOCK_NODE_MAP */
c713216d 6405
c3d5f5f0
JL
6406void adjust_managed_page_count(struct page *page, long count)
6407{
6408 spin_lock(&managed_page_count_lock);
6409 page_zone(page)->managed_pages += count;
6410 totalram_pages += count;
3dcc0571
JL
6411#ifdef CONFIG_HIGHMEM
6412 if (PageHighMem(page))
6413 totalhigh_pages += count;
6414#endif
c3d5f5f0
JL
6415 spin_unlock(&managed_page_count_lock);
6416}
3dcc0571 6417EXPORT_SYMBOL(adjust_managed_page_count);
c3d5f5f0 6418
11199692 6419unsigned long free_reserved_area(void *start, void *end, int poison, char *s)
69afade7 6420{
11199692
JL
6421 void *pos;
6422 unsigned long pages = 0;
69afade7 6423
11199692
JL
6424 start = (void *)PAGE_ALIGN((unsigned long)start);
6425 end = (void *)((unsigned long)end & PAGE_MASK);
6426 for (pos = start; pos < end; pos += PAGE_SIZE, pages++) {
dbe67df4 6427 if ((unsigned int)poison <= 0xFF)
11199692
JL
6428 memset(pos, poison, PAGE_SIZE);
6429 free_reserved_page(virt_to_page(pos));
69afade7
JL
6430 }
6431
6432 if (pages && s)
11199692 6433 pr_info("Freeing %s memory: %ldK (%p - %p)\n",
69afade7
JL
6434 s, pages << (PAGE_SHIFT - 10), start, end);
6435
6436 return pages;
6437}
11199692 6438EXPORT_SYMBOL(free_reserved_area);
69afade7 6439
cfa11e08
JL
6440#ifdef CONFIG_HIGHMEM
6441void free_highmem_page(struct page *page)
6442{
6443 __free_reserved_page(page);
6444 totalram_pages++;
7b4b2a0d 6445 page_zone(page)->managed_pages++;
cfa11e08
JL
6446 totalhigh_pages++;
6447}
6448#endif
6449
7ee3d4e8
JL
6450
6451void __init mem_init_print_info(const char *str)
6452{
6453 unsigned long physpages, codesize, datasize, rosize, bss_size;
6454 unsigned long init_code_size, init_data_size;
6455
6456 physpages = get_num_physpages();
6457 codesize = _etext - _stext;
6458 datasize = _edata - _sdata;
6459 rosize = __end_rodata - __start_rodata;
6460 bss_size = __bss_stop - __bss_start;
6461 init_data_size = __init_end - __init_begin;
6462 init_code_size = _einittext - _sinittext;
6463
6464 /*
6465 * Detect special cases and adjust section sizes accordingly:
6466 * 1) .init.* may be embedded into .data sections
6467 * 2) .init.text.* may be out of [__init_begin, __init_end],
6468 * please refer to arch/tile/kernel/vmlinux.lds.S.
6469 * 3) .rodata.* may be embedded into .text or .data sections.
6470 */
6471#define adj_init_size(start, end, size, pos, adj) \
b8af2941
PK
6472 do { \
6473 if (start <= pos && pos < end && size > adj) \
6474 size -= adj; \
6475 } while (0)
7ee3d4e8
JL
6476
6477 adj_init_size(__init_begin, __init_end, init_data_size,
6478 _sinittext, init_code_size);
6479 adj_init_size(_stext, _etext, codesize, _sinittext, init_code_size);
6480 adj_init_size(_sdata, _edata, datasize, __init_begin, init_data_size);
6481 adj_init_size(_stext, _etext, codesize, __start_rodata, rosize);
6482 adj_init_size(_sdata, _edata, datasize, __start_rodata, rosize);
6483
6484#undef adj_init_size
6485
756a025f 6486 pr_info("Memory: %luK/%luK available (%luK kernel code, %luK rwdata, %luK rodata, %luK init, %luK bss, %luK reserved, %luK cma-reserved"
7ee3d4e8 6487#ifdef CONFIG_HIGHMEM
756a025f 6488 ", %luK highmem"
7ee3d4e8 6489#endif
756a025f
JP
6490 "%s%s)\n",
6491 nr_free_pages() << (PAGE_SHIFT - 10),
6492 physpages << (PAGE_SHIFT - 10),
6493 codesize >> 10, datasize >> 10, rosize >> 10,
6494 (init_data_size + init_code_size) >> 10, bss_size >> 10,
6495 (physpages - totalram_pages - totalcma_pages) << (PAGE_SHIFT - 10),
6496 totalcma_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6497#ifdef CONFIG_HIGHMEM
756a025f 6498 totalhigh_pages << (PAGE_SHIFT - 10),
7ee3d4e8 6499#endif
756a025f 6500 str ? ", " : "", str ? str : "");
7ee3d4e8
JL
6501}
6502
0e0b864e 6503/**
88ca3b94
RD
6504 * set_dma_reserve - set the specified number of pages reserved in the first zone
6505 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e 6506 *
013110a7 6507 * The per-cpu batchsize and zone watermarks are determined by managed_pages.
0e0b864e
MG
6508 * In the DMA zone, a significant percentage may be consumed by kernel image
6509 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
6510 * function may optionally be used to account for unfreeable pages in the
6511 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
6512 * smaller per-cpu batchsize.
0e0b864e
MG
6513 */
6514void __init set_dma_reserve(unsigned long new_dma_reserve)
6515{
6516 dma_reserve = new_dma_reserve;
6517}
6518
1da177e4
LT
6519void __init free_area_init(unsigned long *zones_size)
6520{
9109fb7b 6521 free_area_init_node(0, zones_size,
1da177e4
LT
6522 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
6523}
1da177e4 6524
1da177e4
LT
6525static int page_alloc_cpu_notify(struct notifier_block *self,
6526 unsigned long action, void *hcpu)
6527{
6528 int cpu = (unsigned long)hcpu;
1da177e4 6529
8bb78442 6530 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
f0cb3c76 6531 lru_add_drain_cpu(cpu);
9f8f2172
CL
6532 drain_pages(cpu);
6533
6534 /*
6535 * Spill the event counters of the dead processor
6536 * into the current processors event counters.
6537 * This artificially elevates the count of the current
6538 * processor.
6539 */
f8891e5e 6540 vm_events_fold_cpu(cpu);
9f8f2172
CL
6541
6542 /*
6543 * Zero the differential counters of the dead processor
6544 * so that the vm statistics are consistent.
6545 *
6546 * This is only okay since the processor is dead and cannot
6547 * race with what we are doing.
6548 */
2bb921e5 6549 cpu_vm_stats_fold(cpu);
1da177e4
LT
6550 }
6551 return NOTIFY_OK;
6552}
1da177e4
LT
6553
6554void __init page_alloc_init(void)
6555{
6556 hotcpu_notifier(page_alloc_cpu_notify, 0);
6557}
6558
cb45b0e9 6559/*
34b10060 6560 * calculate_totalreserve_pages - called when sysctl_lowmem_reserve_ratio
cb45b0e9
HA
6561 * or min_free_kbytes changes.
6562 */
6563static void calculate_totalreserve_pages(void)
6564{
6565 struct pglist_data *pgdat;
6566 unsigned long reserve_pages = 0;
2f6726e5 6567 enum zone_type i, j;
cb45b0e9
HA
6568
6569 for_each_online_pgdat(pgdat) {
281e3726
MG
6570
6571 pgdat->totalreserve_pages = 0;
6572
cb45b0e9
HA
6573 for (i = 0; i < MAX_NR_ZONES; i++) {
6574 struct zone *zone = pgdat->node_zones + i;
3484b2de 6575 long max = 0;
cb45b0e9
HA
6576
6577 /* Find valid and maximum lowmem_reserve in the zone */
6578 for (j = i; j < MAX_NR_ZONES; j++) {
6579 if (zone->lowmem_reserve[j] > max)
6580 max = zone->lowmem_reserve[j];
6581 }
6582
41858966
MG
6583 /* we treat the high watermark as reserved pages. */
6584 max += high_wmark_pages(zone);
cb45b0e9 6585
b40da049
JL
6586 if (max > zone->managed_pages)
6587 max = zone->managed_pages;
a8d01437 6588
281e3726 6589 pgdat->totalreserve_pages += max;
a8d01437 6590
cb45b0e9
HA
6591 reserve_pages += max;
6592 }
6593 }
6594 totalreserve_pages = reserve_pages;
6595}
6596
1da177e4
LT
6597/*
6598 * setup_per_zone_lowmem_reserve - called whenever
34b10060 6599 * sysctl_lowmem_reserve_ratio changes. Ensures that each zone
1da177e4
LT
6600 * has a correct pages reserved value, so an adequate number of
6601 * pages are left in the zone after a successful __alloc_pages().
6602 */
6603static void setup_per_zone_lowmem_reserve(void)
6604{
6605 struct pglist_data *pgdat;
2f6726e5 6606 enum zone_type j, idx;
1da177e4 6607
ec936fc5 6608 for_each_online_pgdat(pgdat) {
1da177e4
LT
6609 for (j = 0; j < MAX_NR_ZONES; j++) {
6610 struct zone *zone = pgdat->node_zones + j;
b40da049 6611 unsigned long managed_pages = zone->managed_pages;
1da177e4
LT
6612
6613 zone->lowmem_reserve[j] = 0;
6614
2f6726e5
CL
6615 idx = j;
6616 while (idx) {
1da177e4
LT
6617 struct zone *lower_zone;
6618
2f6726e5
CL
6619 idx--;
6620
1da177e4
LT
6621 if (sysctl_lowmem_reserve_ratio[idx] < 1)
6622 sysctl_lowmem_reserve_ratio[idx] = 1;
6623
6624 lower_zone = pgdat->node_zones + idx;
b40da049 6625 lower_zone->lowmem_reserve[j] = managed_pages /
1da177e4 6626 sysctl_lowmem_reserve_ratio[idx];
b40da049 6627 managed_pages += lower_zone->managed_pages;
1da177e4
LT
6628 }
6629 }
6630 }
cb45b0e9
HA
6631
6632 /* update totalreserve_pages */
6633 calculate_totalreserve_pages();
1da177e4
LT
6634}
6635
cfd3da1e 6636static void __setup_per_zone_wmarks(void)
1da177e4
LT
6637{
6638 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
6639 unsigned long lowmem_pages = 0;
6640 struct zone *zone;
6641 unsigned long flags;
6642
6643 /* Calculate total number of !ZONE_HIGHMEM pages */
6644 for_each_zone(zone) {
6645 if (!is_highmem(zone))
b40da049 6646 lowmem_pages += zone->managed_pages;
1da177e4
LT
6647 }
6648
6649 for_each_zone(zone) {
ac924c60
AM
6650 u64 tmp;
6651
1125b4e3 6652 spin_lock_irqsave(&zone->lock, flags);
b40da049 6653 tmp = (u64)pages_min * zone->managed_pages;
ac924c60 6654 do_div(tmp, lowmem_pages);
1da177e4
LT
6655 if (is_highmem(zone)) {
6656 /*
669ed175
NP
6657 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
6658 * need highmem pages, so cap pages_min to a small
6659 * value here.
6660 *
41858966 6661 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
42ff2703 6662 * deltas control asynch page reclaim, and so should
669ed175 6663 * not be capped for highmem.
1da177e4 6664 */
90ae8d67 6665 unsigned long min_pages;
1da177e4 6666
b40da049 6667 min_pages = zone->managed_pages / 1024;
90ae8d67 6668 min_pages = clamp(min_pages, SWAP_CLUSTER_MAX, 128UL);
41858966 6669 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 6670 } else {
669ed175
NP
6671 /*
6672 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
6673 * proportionate to the zone's size.
6674 */
41858966 6675 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
6676 }
6677
795ae7a0
JW
6678 /*
6679 * Set the kswapd watermarks distance according to the
6680 * scale factor in proportion to available memory, but
6681 * ensure a minimum size on small systems.
6682 */
6683 tmp = max_t(u64, tmp >> 2,
6684 mult_frac(zone->managed_pages,
6685 watermark_scale_factor, 10000));
6686
6687 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + tmp;
6688 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + tmp * 2;
49f223a9 6689
1125b4e3 6690 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 6691 }
cb45b0e9
HA
6692
6693 /* update totalreserve_pages */
6694 calculate_totalreserve_pages();
1da177e4
LT
6695}
6696
cfd3da1e
MG
6697/**
6698 * setup_per_zone_wmarks - called when min_free_kbytes changes
6699 * or when memory is hot-{added|removed}
6700 *
6701 * Ensures that the watermark[min,low,high] values for each zone are set
6702 * correctly with respect to min_free_kbytes.
6703 */
6704void setup_per_zone_wmarks(void)
6705{
6706 mutex_lock(&zonelists_mutex);
6707 __setup_per_zone_wmarks();
6708 mutex_unlock(&zonelists_mutex);
6709}
6710
1da177e4
LT
6711/*
6712 * Initialise min_free_kbytes.
6713 *
6714 * For small machines we want it small (128k min). For large machines
6715 * we want it large (64MB max). But it is not linear, because network
6716 * bandwidth does not increase linearly with machine size. We use
6717 *
b8af2941 6718 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
1da177e4
LT
6719 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
6720 *
6721 * which yields
6722 *
6723 * 16MB: 512k
6724 * 32MB: 724k
6725 * 64MB: 1024k
6726 * 128MB: 1448k
6727 * 256MB: 2048k
6728 * 512MB: 2896k
6729 * 1024MB: 4096k
6730 * 2048MB: 5792k
6731 * 4096MB: 8192k
6732 * 8192MB: 11584k
6733 * 16384MB: 16384k
6734 */
1b79acc9 6735int __meminit init_per_zone_wmark_min(void)
1da177e4
LT
6736{
6737 unsigned long lowmem_kbytes;
5f12733e 6738 int new_min_free_kbytes;
1da177e4
LT
6739
6740 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
5f12733e
MH
6741 new_min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
6742
6743 if (new_min_free_kbytes > user_min_free_kbytes) {
6744 min_free_kbytes = new_min_free_kbytes;
6745 if (min_free_kbytes < 128)
6746 min_free_kbytes = 128;
6747 if (min_free_kbytes > 65536)
6748 min_free_kbytes = 65536;
6749 } else {
6750 pr_warn("min_free_kbytes is not updated to %d because user defined value %d is preferred\n",
6751 new_min_free_kbytes, user_min_free_kbytes);
6752 }
bc75d33f 6753 setup_per_zone_wmarks();
a6cccdc3 6754 refresh_zone_stat_thresholds();
1da177e4 6755 setup_per_zone_lowmem_reserve();
6423aa81
JK
6756
6757#ifdef CONFIG_NUMA
6758 setup_min_unmapped_ratio();
6759 setup_min_slab_ratio();
6760#endif
6761
1da177e4
LT
6762 return 0;
6763}
bc22af74 6764core_initcall(init_per_zone_wmark_min)
1da177e4
LT
6765
6766/*
b8af2941 6767 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
1da177e4
LT
6768 * that we can call two helper functions whenever min_free_kbytes
6769 * changes.
6770 */
cccad5b9 6771int min_free_kbytes_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6772 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6773{
da8c757b
HP
6774 int rc;
6775
6776 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6777 if (rc)
6778 return rc;
6779
5f12733e
MH
6780 if (write) {
6781 user_min_free_kbytes = min_free_kbytes;
bc75d33f 6782 setup_per_zone_wmarks();
5f12733e 6783 }
1da177e4
LT
6784 return 0;
6785}
6786
795ae7a0
JW
6787int watermark_scale_factor_sysctl_handler(struct ctl_table *table, int write,
6788 void __user *buffer, size_t *length, loff_t *ppos)
6789{
6790 int rc;
6791
6792 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6793 if (rc)
6794 return rc;
6795
6796 if (write)
6797 setup_per_zone_wmarks();
6798
6799 return 0;
6800}
6801
9614634f 6802#ifdef CONFIG_NUMA
6423aa81 6803static void setup_min_unmapped_ratio(void)
9614634f 6804{
6423aa81 6805 pg_data_t *pgdat;
9614634f 6806 struct zone *zone;
9614634f 6807
a5f5f91d 6808 for_each_online_pgdat(pgdat)
81cbcbc2 6809 pgdat->min_unmapped_pages = 0;
a5f5f91d 6810
9614634f 6811 for_each_zone(zone)
a5f5f91d 6812 zone->zone_pgdat->min_unmapped_pages += (zone->managed_pages *
9614634f 6813 sysctl_min_unmapped_ratio) / 100;
9614634f 6814}
0ff38490 6815
6423aa81
JK
6816
6817int sysctl_min_unmapped_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6818 void __user *buffer, size_t *length, loff_t *ppos)
0ff38490 6819{
0ff38490
CL
6820 int rc;
6821
8d65af78 6822 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
0ff38490
CL
6823 if (rc)
6824 return rc;
6825
6423aa81
JK
6826 setup_min_unmapped_ratio();
6827
6828 return 0;
6829}
6830
6831static void setup_min_slab_ratio(void)
6832{
6833 pg_data_t *pgdat;
6834 struct zone *zone;
6835
a5f5f91d
MG
6836 for_each_online_pgdat(pgdat)
6837 pgdat->min_slab_pages = 0;
6838
0ff38490 6839 for_each_zone(zone)
a5f5f91d 6840 zone->zone_pgdat->min_slab_pages += (zone->managed_pages *
0ff38490 6841 sysctl_min_slab_ratio) / 100;
6423aa81
JK
6842}
6843
6844int sysctl_min_slab_ratio_sysctl_handler(struct ctl_table *table, int write,
6845 void __user *buffer, size_t *length, loff_t *ppos)
6846{
6847 int rc;
6848
6849 rc = proc_dointvec_minmax(table, write, buffer, length, ppos);
6850 if (rc)
6851 return rc;
6852
6853 setup_min_slab_ratio();
6854
0ff38490
CL
6855 return 0;
6856}
9614634f
CL
6857#endif
6858
1da177e4
LT
6859/*
6860 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
6861 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
6862 * whenever sysctl_lowmem_reserve_ratio changes.
6863 *
6864 * The reserve ratio obviously has absolutely no relation with the
41858966 6865 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
6866 * if in function of the boot time zone sizes.
6867 */
cccad5b9 6868int lowmem_reserve_ratio_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6869 void __user *buffer, size_t *length, loff_t *ppos)
1da177e4 6870{
8d65af78 6871 proc_dointvec_minmax(table, write, buffer, length, ppos);
1da177e4
LT
6872 setup_per_zone_lowmem_reserve();
6873 return 0;
6874}
6875
8ad4b1fb
RS
6876/*
6877 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
b8af2941
PK
6878 * cpu. It is the fraction of total pages in each zone that a hot per cpu
6879 * pagelist can have before it gets flushed back to buddy allocator.
8ad4b1fb 6880 */
cccad5b9 6881int percpu_pagelist_fraction_sysctl_handler(struct ctl_table *table, int write,
8d65af78 6882 void __user *buffer, size_t *length, loff_t *ppos)
8ad4b1fb
RS
6883{
6884 struct zone *zone;
7cd2b0a3 6885 int old_percpu_pagelist_fraction;
8ad4b1fb
RS
6886 int ret;
6887
7cd2b0a3
DR
6888 mutex_lock(&pcp_batch_high_lock);
6889 old_percpu_pagelist_fraction = percpu_pagelist_fraction;
6890
8d65af78 6891 ret = proc_dointvec_minmax(table, write, buffer, length, ppos);
7cd2b0a3
DR
6892 if (!write || ret < 0)
6893 goto out;
6894
6895 /* Sanity checking to avoid pcp imbalance */
6896 if (percpu_pagelist_fraction &&
6897 percpu_pagelist_fraction < MIN_PERCPU_PAGELIST_FRACTION) {
6898 percpu_pagelist_fraction = old_percpu_pagelist_fraction;
6899 ret = -EINVAL;
6900 goto out;
6901 }
6902
6903 /* No change? */
6904 if (percpu_pagelist_fraction == old_percpu_pagelist_fraction)
6905 goto out;
c8e251fa 6906
364df0eb 6907 for_each_populated_zone(zone) {
7cd2b0a3
DR
6908 unsigned int cpu;
6909
22a7f12b 6910 for_each_possible_cpu(cpu)
7cd2b0a3
DR
6911 pageset_set_high_and_batch(zone,
6912 per_cpu_ptr(zone->pageset, cpu));
8ad4b1fb 6913 }
7cd2b0a3 6914out:
c8e251fa 6915 mutex_unlock(&pcp_batch_high_lock);
7cd2b0a3 6916 return ret;
8ad4b1fb
RS
6917}
6918
a9919c79 6919#ifdef CONFIG_NUMA
f034b5d4 6920int hashdist = HASHDIST_DEFAULT;
1da177e4 6921
1da177e4
LT
6922static int __init set_hashdist(char *str)
6923{
6924 if (!str)
6925 return 0;
6926 hashdist = simple_strtoul(str, &str, 0);
6927 return 1;
6928}
6929__setup("hashdist=", set_hashdist);
6930#endif
6931
6932/*
6933 * allocate a large system hash table from bootmem
6934 * - it is assumed that the hash table must contain an exact power-of-2
6935 * quantity of entries
6936 * - limit is the number of hash buckets, not the total allocation size
6937 */
6938void *__init alloc_large_system_hash(const char *tablename,
6939 unsigned long bucketsize,
6940 unsigned long numentries,
6941 int scale,
6942 int flags,
6943 unsigned int *_hash_shift,
6944 unsigned int *_hash_mask,
31fe62b9
TB
6945 unsigned long low_limit,
6946 unsigned long high_limit)
1da177e4 6947{
31fe62b9 6948 unsigned long long max = high_limit;
1da177e4
LT
6949 unsigned long log2qty, size;
6950 void *table = NULL;
6951
6952 /* allow the kernel cmdline to have a say */
6953 if (!numentries) {
6954 /* round applicable memory size up to nearest megabyte */
04903664 6955 numentries = nr_kernel_pages;
a7e83318
JZ
6956
6957 /* It isn't necessary when PAGE_SIZE >= 1MB */
6958 if (PAGE_SHIFT < 20)
6959 numentries = round_up(numentries, (1<<20)/PAGE_SIZE);
1da177e4
LT
6960
6961 /* limit to 1 bucket per 2^scale bytes of low memory */
6962 if (scale > PAGE_SHIFT)
6963 numentries >>= (scale - PAGE_SHIFT);
6964 else
6965 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
6966
6967 /* Make sure we've got at least a 0-order allocation.. */
2c85f51d
JB
6968 if (unlikely(flags & HASH_SMALL)) {
6969 /* Makes no sense without HASH_EARLY */
6970 WARN_ON(!(flags & HASH_EARLY));
6971 if (!(numentries >> *_hash_shift)) {
6972 numentries = 1UL << *_hash_shift;
6973 BUG_ON(!numentries);
6974 }
6975 } else if (unlikely((numentries * bucketsize) < PAGE_SIZE))
9ab37b8f 6976 numentries = PAGE_SIZE / bucketsize;
1da177e4 6977 }
6e692ed3 6978 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
6979
6980 /* limit allocation size to 1/16 total memory by default */
6981 if (max == 0) {
6982 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
6983 do_div(max, bucketsize);
6984 }
074b8517 6985 max = min(max, 0x80000000ULL);
1da177e4 6986
31fe62b9
TB
6987 if (numentries < low_limit)
6988 numentries = low_limit;
1da177e4
LT
6989 if (numentries > max)
6990 numentries = max;
6991
f0d1b0b3 6992 log2qty = ilog2(numentries);
1da177e4
LT
6993
6994 do {
6995 size = bucketsize << log2qty;
6996 if (flags & HASH_EARLY)
6782832e 6997 table = memblock_virt_alloc_nopanic(size, 0);
1da177e4
LT
6998 else if (hashdist)
6999 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
7000 else {
1037b83b
ED
7001 /*
7002 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
7003 * some pages at the end of hash table which
7004 * alloc_pages_exact() automatically does
1037b83b 7005 */
264ef8a9 7006 if (get_order(size) < MAX_ORDER) {
a1dd268c 7007 table = alloc_pages_exact(size, GFP_ATOMIC);
264ef8a9
CM
7008 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
7009 }
1da177e4
LT
7010 }
7011 } while (!table && size > PAGE_SIZE && --log2qty);
7012
7013 if (!table)
7014 panic("Failed to allocate %s hash table\n", tablename);
7015
1170532b
JP
7016 pr_info("%s hash table entries: %ld (order: %d, %lu bytes)\n",
7017 tablename, 1UL << log2qty, ilog2(size) - PAGE_SHIFT, size);
1da177e4
LT
7018
7019 if (_hash_shift)
7020 *_hash_shift = log2qty;
7021 if (_hash_mask)
7022 *_hash_mask = (1 << log2qty) - 1;
7023
7024 return table;
7025}
a117e66e 7026
a5d76b54 7027/*
80934513
MK
7028 * This function checks whether pageblock includes unmovable pages or not.
7029 * If @count is not zero, it is okay to include less @count unmovable pages
7030 *
b8af2941 7031 * PageLRU check without isolation or lru_lock could race so that
80934513
MK
7032 * MIGRATE_MOVABLE block might include unmovable pages. It means you can't
7033 * expect this function should be exact.
a5d76b54 7034 */
b023f468
WC
7035bool has_unmovable_pages(struct zone *zone, struct page *page, int count,
7036 bool skip_hwpoisoned_pages)
49ac8255
KH
7037{
7038 unsigned long pfn, iter, found;
47118af0
MN
7039 int mt;
7040
49ac8255
KH
7041 /*
7042 * For avoiding noise data, lru_add_drain_all() should be called
80934513 7043 * If ZONE_MOVABLE, the zone never contains unmovable pages
49ac8255
KH
7044 */
7045 if (zone_idx(zone) == ZONE_MOVABLE)
80934513 7046 return false;
47118af0
MN
7047 mt = get_pageblock_migratetype(page);
7048 if (mt == MIGRATE_MOVABLE || is_migrate_cma(mt))
80934513 7049 return false;
49ac8255
KH
7050
7051 pfn = page_to_pfn(page);
7052 for (found = 0, iter = 0; iter < pageblock_nr_pages; iter++) {
7053 unsigned long check = pfn + iter;
7054
29723fcc 7055 if (!pfn_valid_within(check))
49ac8255 7056 continue;
29723fcc 7057
49ac8255 7058 page = pfn_to_page(check);
c8721bbb
NH
7059
7060 /*
7061 * Hugepages are not in LRU lists, but they're movable.
7062 * We need not scan over tail pages bacause we don't
7063 * handle each tail page individually in migration.
7064 */
7065 if (PageHuge(page)) {
7066 iter = round_up(iter + 1, 1<<compound_order(page)) - 1;
7067 continue;
7068 }
7069
97d255c8
MK
7070 /*
7071 * We can't use page_count without pin a page
7072 * because another CPU can free compound page.
7073 * This check already skips compound tails of THP
0139aa7b 7074 * because their page->_refcount is zero at all time.
97d255c8 7075 */
fe896d18 7076 if (!page_ref_count(page)) {
49ac8255
KH
7077 if (PageBuddy(page))
7078 iter += (1 << page_order(page)) - 1;
7079 continue;
7080 }
97d255c8 7081
b023f468
WC
7082 /*
7083 * The HWPoisoned page may be not in buddy system, and
7084 * page_count() is not 0.
7085 */
7086 if (skip_hwpoisoned_pages && PageHWPoison(page))
7087 continue;
7088
49ac8255
KH
7089 if (!PageLRU(page))
7090 found++;
7091 /*
6b4f7799
JW
7092 * If there are RECLAIMABLE pages, we need to check
7093 * it. But now, memory offline itself doesn't call
7094 * shrink_node_slabs() and it still to be fixed.
49ac8255
KH
7095 */
7096 /*
7097 * If the page is not RAM, page_count()should be 0.
7098 * we don't need more check. This is an _used_ not-movable page.
7099 *
7100 * The problematic thing here is PG_reserved pages. PG_reserved
7101 * is set to both of a memory hole page and a _used_ kernel
7102 * page at boot.
7103 */
7104 if (found > count)
80934513 7105 return true;
49ac8255 7106 }
80934513 7107 return false;
49ac8255
KH
7108}
7109
7110bool is_pageblock_removable_nolock(struct page *page)
7111{
656a0706
MH
7112 struct zone *zone;
7113 unsigned long pfn;
687875fb
MH
7114
7115 /*
7116 * We have to be careful here because we are iterating over memory
7117 * sections which are not zone aware so we might end up outside of
7118 * the zone but still within the section.
656a0706
MH
7119 * We have to take care about the node as well. If the node is offline
7120 * its NODE_DATA will be NULL - see page_zone.
687875fb 7121 */
656a0706
MH
7122 if (!node_online(page_to_nid(page)))
7123 return false;
7124
7125 zone = page_zone(page);
7126 pfn = page_to_pfn(page);
108bcc96 7127 if (!zone_spans_pfn(zone, pfn))
687875fb
MH
7128 return false;
7129
b023f468 7130 return !has_unmovable_pages(zone, page, 0, true);
a5d76b54 7131}
0c0e6195 7132
080fe206 7133#if (defined(CONFIG_MEMORY_ISOLATION) && defined(CONFIG_COMPACTION)) || defined(CONFIG_CMA)
041d3a8c
MN
7134
7135static unsigned long pfn_max_align_down(unsigned long pfn)
7136{
7137 return pfn & ~(max_t(unsigned long, MAX_ORDER_NR_PAGES,
7138 pageblock_nr_pages) - 1);
7139}
7140
7141static unsigned long pfn_max_align_up(unsigned long pfn)
7142{
7143 return ALIGN(pfn, max_t(unsigned long, MAX_ORDER_NR_PAGES,
7144 pageblock_nr_pages));
7145}
7146
041d3a8c 7147/* [start, end) must belong to a single zone. */
bb13ffeb
MG
7148static int __alloc_contig_migrate_range(struct compact_control *cc,
7149 unsigned long start, unsigned long end)
041d3a8c
MN
7150{
7151 /* This function is based on compact_zone() from compaction.c. */
beb51eaa 7152 unsigned long nr_reclaimed;
041d3a8c
MN
7153 unsigned long pfn = start;
7154 unsigned int tries = 0;
7155 int ret = 0;
7156
be49a6e1 7157 migrate_prep();
041d3a8c 7158
bb13ffeb 7159 while (pfn < end || !list_empty(&cc->migratepages)) {
041d3a8c
MN
7160 if (fatal_signal_pending(current)) {
7161 ret = -EINTR;
7162 break;
7163 }
7164
bb13ffeb
MG
7165 if (list_empty(&cc->migratepages)) {
7166 cc->nr_migratepages = 0;
edc2ca61 7167 pfn = isolate_migratepages_range(cc, pfn, end);
041d3a8c
MN
7168 if (!pfn) {
7169 ret = -EINTR;
7170 break;
7171 }
7172 tries = 0;
7173 } else if (++tries == 5) {
7174 ret = ret < 0 ? ret : -EBUSY;
7175 break;
7176 }
7177
beb51eaa
MK
7178 nr_reclaimed = reclaim_clean_pages_from_list(cc->zone,
7179 &cc->migratepages);
7180 cc->nr_migratepages -= nr_reclaimed;
02c6de8d 7181
9c620e2b 7182 ret = migrate_pages(&cc->migratepages, alloc_migrate_target,
e0b9daeb 7183 NULL, 0, cc->mode, MR_CMA);
041d3a8c 7184 }
2a6f5124
SP
7185 if (ret < 0) {
7186 putback_movable_pages(&cc->migratepages);
7187 return ret;
7188 }
7189 return 0;
041d3a8c
MN
7190}
7191
7192/**
7193 * alloc_contig_range() -- tries to allocate given range of pages
7194 * @start: start PFN to allocate
7195 * @end: one-past-the-last PFN to allocate
0815f3d8
MN
7196 * @migratetype: migratetype of the underlaying pageblocks (either
7197 * #MIGRATE_MOVABLE or #MIGRATE_CMA). All pageblocks
7198 * in range must have the same migratetype and it must
7199 * be either of the two.
041d3a8c
MN
7200 *
7201 * The PFN range does not have to be pageblock or MAX_ORDER_NR_PAGES
7202 * aligned, however it's the caller's responsibility to guarantee that
7203 * we are the only thread that changes migrate type of pageblocks the
7204 * pages fall in.
7205 *
7206 * The PFN range must belong to a single zone.
7207 *
7208 * Returns zero on success or negative error code. On success all
7209 * pages which PFN is in [start, end) are allocated for the caller and
7210 * need to be freed with free_contig_range().
7211 */
0815f3d8
MN
7212int alloc_contig_range(unsigned long start, unsigned long end,
7213 unsigned migratetype)
041d3a8c 7214{
041d3a8c 7215 unsigned long outer_start, outer_end;
d00181b9
KS
7216 unsigned int order;
7217 int ret = 0;
041d3a8c 7218
bb13ffeb
MG
7219 struct compact_control cc = {
7220 .nr_migratepages = 0,
7221 .order = -1,
7222 .zone = page_zone(pfn_to_page(start)),
e0b9daeb 7223 .mode = MIGRATE_SYNC,
bb13ffeb
MG
7224 .ignore_skip_hint = true,
7225 };
7226 INIT_LIST_HEAD(&cc.migratepages);
7227
041d3a8c
MN
7228 /*
7229 * What we do here is we mark all pageblocks in range as
7230 * MIGRATE_ISOLATE. Because pageblock and max order pages may
7231 * have different sizes, and due to the way page allocator
7232 * work, we align the range to biggest of the two pages so
7233 * that page allocator won't try to merge buddies from
7234 * different pageblocks and change MIGRATE_ISOLATE to some
7235 * other migration type.
7236 *
7237 * Once the pageblocks are marked as MIGRATE_ISOLATE, we
7238 * migrate the pages from an unaligned range (ie. pages that
7239 * we are interested in). This will put all the pages in
7240 * range back to page allocator as MIGRATE_ISOLATE.
7241 *
7242 * When this is done, we take the pages in range from page
7243 * allocator removing them from the buddy system. This way
7244 * page allocator will never consider using them.
7245 *
7246 * This lets us mark the pageblocks back as
7247 * MIGRATE_CMA/MIGRATE_MOVABLE so that free pages in the
7248 * aligned range but not in the unaligned, original range are
7249 * put back to page allocator so that buddy can use them.
7250 */
7251
7252 ret = start_isolate_page_range(pfn_max_align_down(start),
b023f468
WC
7253 pfn_max_align_up(end), migratetype,
7254 false);
041d3a8c 7255 if (ret)
86a595f9 7256 return ret;
041d3a8c 7257
8ef5849f
JK
7258 /*
7259 * In case of -EBUSY, we'd like to know which page causes problem.
7260 * So, just fall through. We will check it in test_pages_isolated().
7261 */
bb13ffeb 7262 ret = __alloc_contig_migrate_range(&cc, start, end);
8ef5849f 7263 if (ret && ret != -EBUSY)
041d3a8c
MN
7264 goto done;
7265
7266 /*
7267 * Pages from [start, end) are within a MAX_ORDER_NR_PAGES
7268 * aligned blocks that are marked as MIGRATE_ISOLATE. What's
7269 * more, all pages in [start, end) are free in page allocator.
7270 * What we are going to do is to allocate all pages from
7271 * [start, end) (that is remove them from page allocator).
7272 *
7273 * The only problem is that pages at the beginning and at the
7274 * end of interesting range may be not aligned with pages that
7275 * page allocator holds, ie. they can be part of higher order
7276 * pages. Because of this, we reserve the bigger range and
7277 * once this is done free the pages we are not interested in.
7278 *
7279 * We don't have to hold zone->lock here because the pages are
7280 * isolated thus they won't get removed from buddy.
7281 */
7282
7283 lru_add_drain_all();
510f5507 7284 drain_all_pages(cc.zone);
041d3a8c
MN
7285
7286 order = 0;
7287 outer_start = start;
7288 while (!PageBuddy(pfn_to_page(outer_start))) {
7289 if (++order >= MAX_ORDER) {
8ef5849f
JK
7290 outer_start = start;
7291 break;
041d3a8c
MN
7292 }
7293 outer_start &= ~0UL << order;
7294 }
7295
8ef5849f
JK
7296 if (outer_start != start) {
7297 order = page_order(pfn_to_page(outer_start));
7298
7299 /*
7300 * outer_start page could be small order buddy page and
7301 * it doesn't include start page. Adjust outer_start
7302 * in this case to report failed page properly
7303 * on tracepoint in test_pages_isolated()
7304 */
7305 if (outer_start + (1UL << order) <= start)
7306 outer_start = start;
7307 }
7308
041d3a8c 7309 /* Make sure the range is really isolated. */
b023f468 7310 if (test_pages_isolated(outer_start, end, false)) {
dae803e1
MN
7311 pr_info("%s: [%lx, %lx) PFNs busy\n",
7312 __func__, outer_start, end);
041d3a8c
MN
7313 ret = -EBUSY;
7314 goto done;
7315 }
7316
49f223a9 7317 /* Grab isolated pages from freelists. */
bb13ffeb 7318 outer_end = isolate_freepages_range(&cc, outer_start, end);
041d3a8c
MN
7319 if (!outer_end) {
7320 ret = -EBUSY;
7321 goto done;
7322 }
7323
7324 /* Free head and tail (if any) */
7325 if (start != outer_start)
7326 free_contig_range(outer_start, start - outer_start);
7327 if (end != outer_end)
7328 free_contig_range(end, outer_end - end);
7329
7330done:
7331 undo_isolate_page_range(pfn_max_align_down(start),
0815f3d8 7332 pfn_max_align_up(end), migratetype);
041d3a8c
MN
7333 return ret;
7334}
7335
7336void free_contig_range(unsigned long pfn, unsigned nr_pages)
7337{
bcc2b02f
MS
7338 unsigned int count = 0;
7339
7340 for (; nr_pages--; pfn++) {
7341 struct page *page = pfn_to_page(pfn);
7342
7343 count += page_count(page) != 1;
7344 __free_page(page);
7345 }
7346 WARN(count != 0, "%d pages are still in use!\n", count);
041d3a8c
MN
7347}
7348#endif
7349
4ed7e022 7350#ifdef CONFIG_MEMORY_HOTPLUG
0a647f38
CS
7351/*
7352 * The zone indicated has a new number of managed_pages; batch sizes and percpu
7353 * page high values need to be recalulated.
7354 */
4ed7e022
JL
7355void __meminit zone_pcp_update(struct zone *zone)
7356{
0a647f38 7357 unsigned cpu;
c8e251fa 7358 mutex_lock(&pcp_batch_high_lock);
0a647f38 7359 for_each_possible_cpu(cpu)
169f6c19
CS
7360 pageset_set_high_and_batch(zone,
7361 per_cpu_ptr(zone->pageset, cpu));
c8e251fa 7362 mutex_unlock(&pcp_batch_high_lock);
4ed7e022
JL
7363}
7364#endif
7365
340175b7
JL
7366void zone_pcp_reset(struct zone *zone)
7367{
7368 unsigned long flags;
5a883813
MK
7369 int cpu;
7370 struct per_cpu_pageset *pset;
340175b7
JL
7371
7372 /* avoid races with drain_pages() */
7373 local_irq_save(flags);
7374 if (zone->pageset != &boot_pageset) {
5a883813
MK
7375 for_each_online_cpu(cpu) {
7376 pset = per_cpu_ptr(zone->pageset, cpu);
7377 drain_zonestat(zone, pset);
7378 }
340175b7
JL
7379 free_percpu(zone->pageset);
7380 zone->pageset = &boot_pageset;
7381 }
7382 local_irq_restore(flags);
7383}
7384
6dcd73d7 7385#ifdef CONFIG_MEMORY_HOTREMOVE
0c0e6195 7386/*
b9eb6319
JK
7387 * All pages in the range must be in a single zone and isolated
7388 * before calling this.
0c0e6195
KH
7389 */
7390void
7391__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
7392{
7393 struct page *page;
7394 struct zone *zone;
7aeb09f9 7395 unsigned int order, i;
0c0e6195
KH
7396 unsigned long pfn;
7397 unsigned long flags;
7398 /* find the first valid pfn */
7399 for (pfn = start_pfn; pfn < end_pfn; pfn++)
7400 if (pfn_valid(pfn))
7401 break;
7402 if (pfn == end_pfn)
7403 return;
7404 zone = page_zone(pfn_to_page(pfn));
7405 spin_lock_irqsave(&zone->lock, flags);
7406 pfn = start_pfn;
7407 while (pfn < end_pfn) {
7408 if (!pfn_valid(pfn)) {
7409 pfn++;
7410 continue;
7411 }
7412 page = pfn_to_page(pfn);
b023f468
WC
7413 /*
7414 * The HWPoisoned page may be not in buddy system, and
7415 * page_count() is not 0.
7416 */
7417 if (unlikely(!PageBuddy(page) && PageHWPoison(page))) {
7418 pfn++;
7419 SetPageReserved(page);
7420 continue;
7421 }
7422
0c0e6195
KH
7423 BUG_ON(page_count(page));
7424 BUG_ON(!PageBuddy(page));
7425 order = page_order(page);
7426#ifdef CONFIG_DEBUG_VM
1170532b
JP
7427 pr_info("remove from free list %lx %d %lx\n",
7428 pfn, 1 << order, end_pfn);
0c0e6195
KH
7429#endif
7430 list_del(&page->lru);
7431 rmv_page_order(page);
7432 zone->free_area[order].nr_free--;
0c0e6195
KH
7433 for (i = 0; i < (1 << order); i++)
7434 SetPageReserved((page+i));
7435 pfn += (1 << order);
7436 }
7437 spin_unlock_irqrestore(&zone->lock, flags);
7438}
7439#endif
8d22ba1b 7440
8d22ba1b
WF
7441bool is_free_buddy_page(struct page *page)
7442{
7443 struct zone *zone = page_zone(page);
7444 unsigned long pfn = page_to_pfn(page);
7445 unsigned long flags;
7aeb09f9 7446 unsigned int order;
8d22ba1b
WF
7447
7448 spin_lock_irqsave(&zone->lock, flags);
7449 for (order = 0; order < MAX_ORDER; order++) {
7450 struct page *page_head = page - (pfn & ((1 << order) - 1));
7451
7452 if (PageBuddy(page_head) && page_order(page_head) >= order)
7453 break;
7454 }
7455 spin_unlock_irqrestore(&zone->lock, flags);
7456
7457 return order < MAX_ORDER;
7458}
This page took 1.719772 seconds and 5 git commands to generate.