page-allocator: use integer fields lookup for gfp_zone and check for errors in flags...
[deliverable/linux.git] / mm / page_alloc.c
CommitLineData
1da177e4
LT
1/*
2 * linux/mm/page_alloc.c
3 *
4 * Manages the free list, the system allocates free pages here.
5 * Note that kmalloc() lives in slab.c
6 *
7 * Copyright (C) 1991, 1992, 1993, 1994 Linus Torvalds
8 * Swap reorganised 29.12.95, Stephen Tweedie
9 * Support of BIGMEM added by Gerhard Wichert, Siemens AG, July 1999
10 * Reshaped it to be a zoned allocator, Ingo Molnar, Red Hat, 1999
11 * Discontiguous memory support, Kanoj Sarcar, SGI, Nov 1999
12 * Zone balancing, Kanoj Sarcar, SGI, Jan 2000
13 * Per cpu hot/cold page lists, bulk allocation, Martin J. Bligh, Sept 2002
14 * (lots of bits borrowed from Ingo Molnar & Andrew Morton)
15 */
16
1da177e4
LT
17#include <linux/stddef.h>
18#include <linux/mm.h>
19#include <linux/swap.h>
20#include <linux/interrupt.h>
21#include <linux/pagemap.h>
10ed273f 22#include <linux/jiffies.h>
1da177e4
LT
23#include <linux/bootmem.h>
24#include <linux/compiler.h>
9f158333 25#include <linux/kernel.h>
1da177e4
LT
26#include <linux/module.h>
27#include <linux/suspend.h>
28#include <linux/pagevec.h>
29#include <linux/blkdev.h>
30#include <linux/slab.h>
5a3135c2 31#include <linux/oom.h>
1da177e4
LT
32#include <linux/notifier.h>
33#include <linux/topology.h>
34#include <linux/sysctl.h>
35#include <linux/cpu.h>
36#include <linux/cpuset.h>
bdc8cb98 37#include <linux/memory_hotplug.h>
1da177e4
LT
38#include <linux/nodemask.h>
39#include <linux/vmalloc.h>
4be38e35 40#include <linux/mempolicy.h>
6811378e 41#include <linux/stop_machine.h>
c713216d
MG
42#include <linux/sort.h>
43#include <linux/pfn.h>
3fcfab16 44#include <linux/backing-dev.h>
933e312e 45#include <linux/fault-inject.h>
a5d76b54 46#include <linux/page-isolation.h>
52d4b9ac 47#include <linux/page_cgroup.h>
3ac7fe5a 48#include <linux/debugobjects.h>
dbb1f81c 49#include <linux/kmemleak.h>
1da177e4
LT
50
51#include <asm/tlbflush.h>
ac924c60 52#include <asm/div64.h>
1da177e4
LT
53#include "internal.h"
54
55/*
13808910 56 * Array of node states.
1da177e4 57 */
13808910
CL
58nodemask_t node_states[NR_NODE_STATES] __read_mostly = {
59 [N_POSSIBLE] = NODE_MASK_ALL,
60 [N_ONLINE] = { { [0] = 1UL } },
61#ifndef CONFIG_NUMA
62 [N_NORMAL_MEMORY] = { { [0] = 1UL } },
63#ifdef CONFIG_HIGHMEM
64 [N_HIGH_MEMORY] = { { [0] = 1UL } },
65#endif
66 [N_CPU] = { { [0] = 1UL } },
67#endif /* NUMA */
68};
69EXPORT_SYMBOL(node_states);
70
6c231b7b 71unsigned long totalram_pages __read_mostly;
cb45b0e9 72unsigned long totalreserve_pages __read_mostly;
22b31eec 73unsigned long highest_memmap_pfn __read_mostly;
8ad4b1fb 74int percpu_pagelist_fraction;
1da177e4 75
d9c23400
MG
76#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
77int pageblock_order __read_mostly;
78#endif
79
d98c7a09 80static void __free_pages_ok(struct page *page, unsigned int order);
a226f6c8 81
1da177e4
LT
82/*
83 * results with 256, 32 in the lowmem_reserve sysctl:
84 * 1G machine -> (16M dma, 800M-16M normal, 1G-800M high)
85 * 1G machine -> (16M dma, 784M normal, 224M high)
86 * NORMAL allocation will leave 784M/256 of ram reserved in the ZONE_DMA
87 * HIGHMEM allocation will leave 224M/32 of ram reserved in ZONE_NORMAL
88 * HIGHMEM allocation will (224M+784M)/256 of ram reserved in ZONE_DMA
a2f1b424
AK
89 *
90 * TBD: should special case ZONE_DMA32 machines here - in those we normally
91 * don't need any ZONE_NORMAL reservation
1da177e4 92 */
2f1b6248 93int sysctl_lowmem_reserve_ratio[MAX_NR_ZONES-1] = {
4b51d669 94#ifdef CONFIG_ZONE_DMA
2f1b6248 95 256,
4b51d669 96#endif
fb0e7942 97#ifdef CONFIG_ZONE_DMA32
2f1b6248 98 256,
fb0e7942 99#endif
e53ef38d 100#ifdef CONFIG_HIGHMEM
2a1e274a 101 32,
e53ef38d 102#endif
2a1e274a 103 32,
2f1b6248 104};
1da177e4
LT
105
106EXPORT_SYMBOL(totalram_pages);
1da177e4 107
15ad7cdc 108static char * const zone_names[MAX_NR_ZONES] = {
4b51d669 109#ifdef CONFIG_ZONE_DMA
2f1b6248 110 "DMA",
4b51d669 111#endif
fb0e7942 112#ifdef CONFIG_ZONE_DMA32
2f1b6248 113 "DMA32",
fb0e7942 114#endif
2f1b6248 115 "Normal",
e53ef38d 116#ifdef CONFIG_HIGHMEM
2a1e274a 117 "HighMem",
e53ef38d 118#endif
2a1e274a 119 "Movable",
2f1b6248
CL
120};
121
1da177e4
LT
122int min_free_kbytes = 1024;
123
86356ab1
YG
124unsigned long __meminitdata nr_kernel_pages;
125unsigned long __meminitdata nr_all_pages;
a3142c8e 126static unsigned long __meminitdata dma_reserve;
1da177e4 127
c713216d
MG
128#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
129 /*
183ff22b 130 * MAX_ACTIVE_REGIONS determines the maximum number of distinct
c713216d
MG
131 * ranges of memory (RAM) that may be registered with add_active_range().
132 * Ranges passed to add_active_range() will be merged if possible
133 * so the number of times add_active_range() can be called is
134 * related to the number of nodes and the number of holes
135 */
136 #ifdef CONFIG_MAX_ACTIVE_REGIONS
137 /* Allow an architecture to set MAX_ACTIVE_REGIONS to save memory */
138 #define MAX_ACTIVE_REGIONS CONFIG_MAX_ACTIVE_REGIONS
139 #else
140 #if MAX_NUMNODES >= 32
141 /* If there can be many nodes, allow up to 50 holes per node */
142 #define MAX_ACTIVE_REGIONS (MAX_NUMNODES*50)
143 #else
144 /* By default, allow up to 256 distinct regions */
145 #define MAX_ACTIVE_REGIONS 256
146 #endif
147 #endif
148
98011f56
JB
149 static struct node_active_region __meminitdata early_node_map[MAX_ACTIVE_REGIONS];
150 static int __meminitdata nr_nodemap_entries;
151 static unsigned long __meminitdata arch_zone_lowest_possible_pfn[MAX_NR_ZONES];
152 static unsigned long __meminitdata arch_zone_highest_possible_pfn[MAX_NR_ZONES];
b69a7288 153 static unsigned long __initdata required_kernelcore;
484f51f8 154 static unsigned long __initdata required_movablecore;
b69a7288 155 static unsigned long __meminitdata zone_movable_pfn[MAX_NUMNODES];
2a1e274a
MG
156
157 /* movable_zone is the "real" zone pages in ZONE_MOVABLE are taken from */
158 int movable_zone;
159 EXPORT_SYMBOL(movable_zone);
c713216d
MG
160#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
161
418508c1
MS
162#if MAX_NUMNODES > 1
163int nr_node_ids __read_mostly = MAX_NUMNODES;
62bc62a8 164int nr_online_nodes __read_mostly = 1;
418508c1 165EXPORT_SYMBOL(nr_node_ids);
62bc62a8 166EXPORT_SYMBOL(nr_online_nodes);
418508c1
MS
167#endif
168
9ef9acb0
MG
169int page_group_by_mobility_disabled __read_mostly;
170
b2a0ac88
MG
171static void set_pageblock_migratetype(struct page *page, int migratetype)
172{
49255c61
MG
173
174 if (unlikely(page_group_by_mobility_disabled))
175 migratetype = MIGRATE_UNMOVABLE;
176
b2a0ac88
MG
177 set_pageblock_flags_group(page, (unsigned long)migratetype,
178 PB_migrate, PB_migrate_end);
179}
180
7f33d49a
RW
181bool oom_killer_disabled __read_mostly;
182
13e7444b 183#ifdef CONFIG_DEBUG_VM
c6a57e19 184static int page_outside_zone_boundaries(struct zone *zone, struct page *page)
1da177e4 185{
bdc8cb98
DH
186 int ret = 0;
187 unsigned seq;
188 unsigned long pfn = page_to_pfn(page);
c6a57e19 189
bdc8cb98
DH
190 do {
191 seq = zone_span_seqbegin(zone);
192 if (pfn >= zone->zone_start_pfn + zone->spanned_pages)
193 ret = 1;
194 else if (pfn < zone->zone_start_pfn)
195 ret = 1;
196 } while (zone_span_seqretry(zone, seq));
197
198 return ret;
c6a57e19
DH
199}
200
201static int page_is_consistent(struct zone *zone, struct page *page)
202{
14e07298 203 if (!pfn_valid_within(page_to_pfn(page)))
c6a57e19 204 return 0;
1da177e4 205 if (zone != page_zone(page))
c6a57e19
DH
206 return 0;
207
208 return 1;
209}
210/*
211 * Temporary debugging check for pages not lying within a given zone.
212 */
213static int bad_range(struct zone *zone, struct page *page)
214{
215 if (page_outside_zone_boundaries(zone, page))
1da177e4 216 return 1;
c6a57e19
DH
217 if (!page_is_consistent(zone, page))
218 return 1;
219
1da177e4
LT
220 return 0;
221}
13e7444b
NP
222#else
223static inline int bad_range(struct zone *zone, struct page *page)
224{
225 return 0;
226}
227#endif
228
224abf92 229static void bad_page(struct page *page)
1da177e4 230{
d936cf9b
HD
231 static unsigned long resume;
232 static unsigned long nr_shown;
233 static unsigned long nr_unshown;
234
235 /*
236 * Allow a burst of 60 reports, then keep quiet for that minute;
237 * or allow a steady drip of one report per second.
238 */
239 if (nr_shown == 60) {
240 if (time_before(jiffies, resume)) {
241 nr_unshown++;
242 goto out;
243 }
244 if (nr_unshown) {
1e9e6365
HD
245 printk(KERN_ALERT
246 "BUG: Bad page state: %lu messages suppressed\n",
d936cf9b
HD
247 nr_unshown);
248 nr_unshown = 0;
249 }
250 nr_shown = 0;
251 }
252 if (nr_shown++ == 0)
253 resume = jiffies + 60 * HZ;
254
1e9e6365 255 printk(KERN_ALERT "BUG: Bad page state in process %s pfn:%05lx\n",
3dc14741 256 current->comm, page_to_pfn(page));
1e9e6365 257 printk(KERN_ALERT
3dc14741
HD
258 "page:%p flags:%p count:%d mapcount:%d mapping:%p index:%lx\n",
259 page, (void *)page->flags, page_count(page),
260 page_mapcount(page), page->mapping, page->index);
3dc14741 261
1da177e4 262 dump_stack();
d936cf9b 263out:
8cc3b392
HD
264 /* Leave bad fields for debug, except PageBuddy could make trouble */
265 __ClearPageBuddy(page);
9f158333 266 add_taint(TAINT_BAD_PAGE);
1da177e4
LT
267}
268
1da177e4
LT
269/*
270 * Higher-order pages are called "compound pages". They are structured thusly:
271 *
272 * The first PAGE_SIZE page is called the "head page".
273 *
274 * The remaining PAGE_SIZE pages are called "tail pages".
275 *
276 * All pages have PG_compound set. All pages have their ->private pointing at
277 * the head page (even the head page has this).
278 *
41d78ba5
HD
279 * The first tail page's ->lru.next holds the address of the compound page's
280 * put_page() function. Its ->lru.prev holds the order of allocation.
281 * This usage means that zero-order pages may not be compound.
1da177e4 282 */
d98c7a09
HD
283
284static void free_compound_page(struct page *page)
285{
d85f3385 286 __free_pages_ok(page, compound_order(page));
d98c7a09
HD
287}
288
01ad1c08 289void prep_compound_page(struct page *page, unsigned long order)
18229df5
AW
290{
291 int i;
292 int nr_pages = 1 << order;
293
294 set_compound_page_dtor(page, free_compound_page);
295 set_compound_order(page, order);
296 __SetPageHead(page);
297 for (i = 1; i < nr_pages; i++) {
298 struct page *p = page + i;
299
300 __SetPageTail(p);
301 p->first_page = page;
302 }
303}
304
8cc3b392 305static int destroy_compound_page(struct page *page, unsigned long order)
1da177e4
LT
306{
307 int i;
308 int nr_pages = 1 << order;
8cc3b392 309 int bad = 0;
1da177e4 310
8cc3b392
HD
311 if (unlikely(compound_order(page) != order) ||
312 unlikely(!PageHead(page))) {
224abf92 313 bad_page(page);
8cc3b392
HD
314 bad++;
315 }
1da177e4 316
6d777953 317 __ClearPageHead(page);
8cc3b392 318
18229df5
AW
319 for (i = 1; i < nr_pages; i++) {
320 struct page *p = page + i;
1da177e4 321
e713a21d 322 if (unlikely(!PageTail(p) || (p->first_page != page))) {
224abf92 323 bad_page(page);
8cc3b392
HD
324 bad++;
325 }
d85f3385 326 __ClearPageTail(p);
1da177e4 327 }
8cc3b392
HD
328
329 return bad;
1da177e4 330}
1da177e4 331
17cf4406
NP
332static inline void prep_zero_page(struct page *page, int order, gfp_t gfp_flags)
333{
334 int i;
335
6626c5d5
AM
336 /*
337 * clear_highpage() will use KM_USER0, so it's a bug to use __GFP_ZERO
338 * and __GFP_HIGHMEM from hard or soft interrupt context.
339 */
725d704e 340 VM_BUG_ON((gfp_flags & __GFP_HIGHMEM) && in_interrupt());
17cf4406
NP
341 for (i = 0; i < (1 << order); i++)
342 clear_highpage(page + i);
343}
344
6aa3001b
AM
345static inline void set_page_order(struct page *page, int order)
346{
4c21e2f2 347 set_page_private(page, order);
676165a8 348 __SetPageBuddy(page);
1da177e4
LT
349}
350
351static inline void rmv_page_order(struct page *page)
352{
676165a8 353 __ClearPageBuddy(page);
4c21e2f2 354 set_page_private(page, 0);
1da177e4
LT
355}
356
357/*
358 * Locate the struct page for both the matching buddy in our
359 * pair (buddy1) and the combined O(n+1) page they form (page).
360 *
361 * 1) Any buddy B1 will have an order O twin B2 which satisfies
362 * the following equation:
363 * B2 = B1 ^ (1 << O)
364 * For example, if the starting buddy (buddy2) is #8 its order
365 * 1 buddy is #10:
366 * B2 = 8 ^ (1 << 1) = 8 ^ 2 = 10
367 *
368 * 2) Any buddy B will have an order O+1 parent P which
369 * satisfies the following equation:
370 * P = B & ~(1 << O)
371 *
d6e05edc 372 * Assumption: *_mem_map is contiguous at least up to MAX_ORDER
1da177e4
LT
373 */
374static inline struct page *
375__page_find_buddy(struct page *page, unsigned long page_idx, unsigned int order)
376{
377 unsigned long buddy_idx = page_idx ^ (1 << order);
378
379 return page + (buddy_idx - page_idx);
380}
381
382static inline unsigned long
383__find_combined_index(unsigned long page_idx, unsigned int order)
384{
385 return (page_idx & ~(1 << order));
386}
387
388/*
389 * This function checks whether a page is free && is the buddy
390 * we can do coalesce a page and its buddy if
13e7444b 391 * (a) the buddy is not in a hole &&
676165a8 392 * (b) the buddy is in the buddy system &&
cb2b95e1
AW
393 * (c) a page and its buddy have the same order &&
394 * (d) a page and its buddy are in the same zone.
676165a8
NP
395 *
396 * For recording whether a page is in the buddy system, we use PG_buddy.
397 * Setting, clearing, and testing PG_buddy is serialized by zone->lock.
1da177e4 398 *
676165a8 399 * For recording page's order, we use page_private(page).
1da177e4 400 */
cb2b95e1
AW
401static inline int page_is_buddy(struct page *page, struct page *buddy,
402 int order)
1da177e4 403{
14e07298 404 if (!pfn_valid_within(page_to_pfn(buddy)))
13e7444b 405 return 0;
13e7444b 406
cb2b95e1
AW
407 if (page_zone_id(page) != page_zone_id(buddy))
408 return 0;
409
410 if (PageBuddy(buddy) && page_order(buddy) == order) {
a3af9c38 411 VM_BUG_ON(page_count(buddy) != 0);
6aa3001b 412 return 1;
676165a8 413 }
6aa3001b 414 return 0;
1da177e4
LT
415}
416
417/*
418 * Freeing function for a buddy system allocator.
419 *
420 * The concept of a buddy system is to maintain direct-mapped table
421 * (containing bit values) for memory blocks of various "orders".
422 * The bottom level table contains the map for the smallest allocatable
423 * units of memory (here, pages), and each level above it describes
424 * pairs of units from the levels below, hence, "buddies".
425 * At a high level, all that happens here is marking the table entry
426 * at the bottom level available, and propagating the changes upward
427 * as necessary, plus some accounting needed to play nicely with other
428 * parts of the VM system.
429 * At each level, we keep a list of pages, which are heads of continuous
676165a8 430 * free pages of length of (1 << order) and marked with PG_buddy. Page's
4c21e2f2 431 * order is recorded in page_private(page) field.
1da177e4
LT
432 * So when we are allocating or freeing one, we can derive the state of the
433 * other. That is, if we allocate a small block, and both were
434 * free, the remainder of the region must be split into blocks.
435 * If a block is freed, and its buddy is also free, then this
436 * triggers coalescing into a block of larger size.
437 *
438 * -- wli
439 */
440
48db57f8 441static inline void __free_one_page(struct page *page,
ed0ae21d
MG
442 struct zone *zone, unsigned int order,
443 int migratetype)
1da177e4
LT
444{
445 unsigned long page_idx;
1da177e4 446
224abf92 447 if (unlikely(PageCompound(page)))
8cc3b392
HD
448 if (unlikely(destroy_compound_page(page, order)))
449 return;
1da177e4 450
ed0ae21d
MG
451 VM_BUG_ON(migratetype == -1);
452
1da177e4
LT
453 page_idx = page_to_pfn(page) & ((1 << MAX_ORDER) - 1);
454
f2260e6b 455 VM_BUG_ON(page_idx & ((1 << order) - 1));
725d704e 456 VM_BUG_ON(bad_range(zone, page));
1da177e4 457
1da177e4
LT
458 while (order < MAX_ORDER-1) {
459 unsigned long combined_idx;
1da177e4
LT
460 struct page *buddy;
461
1da177e4 462 buddy = __page_find_buddy(page, page_idx, order);
cb2b95e1 463 if (!page_is_buddy(page, buddy, order))
3c82d0ce 464 break;
13e7444b 465
3c82d0ce 466 /* Our buddy is free, merge with it and move up one order. */
1da177e4 467 list_del(&buddy->lru);
b2a0ac88 468 zone->free_area[order].nr_free--;
1da177e4 469 rmv_page_order(buddy);
13e7444b 470 combined_idx = __find_combined_index(page_idx, order);
1da177e4
LT
471 page = page + (combined_idx - page_idx);
472 page_idx = combined_idx;
473 order++;
474 }
475 set_page_order(page, order);
b2a0ac88
MG
476 list_add(&page->lru,
477 &zone->free_area[order].free_list[migratetype]);
1da177e4
LT
478 zone->free_area[order].nr_free++;
479}
480
092cead6
KM
481#ifdef CONFIG_HAVE_MLOCKED_PAGE_BIT
482/*
483 * free_page_mlock() -- clean up attempts to free and mlocked() page.
484 * Page should not be on lru, so no need to fix that up.
485 * free_pages_check() will verify...
486 */
487static inline void free_page_mlock(struct page *page)
488{
489 __ClearPageMlocked(page);
490 __dec_zone_page_state(page, NR_MLOCK);
491 __count_vm_event(UNEVICTABLE_MLOCKFREED);
492}
493#else
494static void free_page_mlock(struct page *page) { }
495#endif
496
224abf92 497static inline int free_pages_check(struct page *page)
1da177e4 498{
92be2e33
NP
499 if (unlikely(page_mapcount(page) |
500 (page->mapping != NULL) |
a3af9c38 501 (atomic_read(&page->_count) != 0) |
8cc3b392 502 (page->flags & PAGE_FLAGS_CHECK_AT_FREE))) {
224abf92 503 bad_page(page);
79f4b7bf 504 return 1;
8cc3b392 505 }
79f4b7bf
HD
506 if (page->flags & PAGE_FLAGS_CHECK_AT_PREP)
507 page->flags &= ~PAGE_FLAGS_CHECK_AT_PREP;
508 return 0;
1da177e4
LT
509}
510
511/*
512 * Frees a list of pages.
513 * Assumes all pages on list are in same zone, and of same order.
207f36ee 514 * count is the number of pages to free.
1da177e4
LT
515 *
516 * If the zone was previously in an "all pages pinned" state then look to
517 * see if this freeing clears that state.
518 *
519 * And clear the zone's pages_scanned counter, to hold off the "all pages are
520 * pinned" detection logic.
521 */
48db57f8
NP
522static void free_pages_bulk(struct zone *zone, int count,
523 struct list_head *list, int order)
1da177e4 524{
c54ad30c 525 spin_lock(&zone->lock);
e815af95 526 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
1da177e4 527 zone->pages_scanned = 0;
f2260e6b
MG
528
529 __mod_zone_page_state(zone, NR_FREE_PAGES, count << order);
48db57f8
NP
530 while (count--) {
531 struct page *page;
532
725d704e 533 VM_BUG_ON(list_empty(list));
1da177e4 534 page = list_entry(list->prev, struct page, lru);
48db57f8 535 /* have to delete it as __free_one_page list manipulates */
1da177e4 536 list_del(&page->lru);
ed0ae21d 537 __free_one_page(page, zone, order, page_private(page));
1da177e4 538 }
c54ad30c 539 spin_unlock(&zone->lock);
1da177e4
LT
540}
541
ed0ae21d
MG
542static void free_one_page(struct zone *zone, struct page *page, int order,
543 int migratetype)
1da177e4 544{
006d22d9 545 spin_lock(&zone->lock);
e815af95 546 zone_clear_flag(zone, ZONE_ALL_UNRECLAIMABLE);
006d22d9 547 zone->pages_scanned = 0;
f2260e6b
MG
548
549 __mod_zone_page_state(zone, NR_FREE_PAGES, 1 << order);
ed0ae21d 550 __free_one_page(page, zone, order, migratetype);
006d22d9 551 spin_unlock(&zone->lock);
48db57f8
NP
552}
553
554static void __free_pages_ok(struct page *page, unsigned int order)
555{
556 unsigned long flags;
1da177e4 557 int i;
8cc3b392 558 int bad = 0;
da456f14 559 int clearMlocked = PageMlocked(page);
1da177e4 560
1da177e4 561 for (i = 0 ; i < (1 << order) ; ++i)
8cc3b392
HD
562 bad += free_pages_check(page + i);
563 if (bad)
689bcebf
HD
564 return;
565
3ac7fe5a 566 if (!PageHighMem(page)) {
9858db50 567 debug_check_no_locks_freed(page_address(page),PAGE_SIZE<<order);
3ac7fe5a
TG
568 debug_check_no_obj_freed(page_address(page),
569 PAGE_SIZE << order);
570 }
dafb1367 571 arch_free_page(page, order);
48db57f8 572 kernel_map_pages(page, 1 << order, 0);
dafb1367 573
c54ad30c 574 local_irq_save(flags);
da456f14
MG
575 if (unlikely(clearMlocked))
576 free_page_mlock(page);
f8891e5e 577 __count_vm_events(PGFREE, 1 << order);
ed0ae21d
MG
578 free_one_page(page_zone(page), page, order,
579 get_pageblock_migratetype(page));
c54ad30c 580 local_irq_restore(flags);
1da177e4
LT
581}
582
a226f6c8
DH
583/*
584 * permit the bootmem allocator to evade page validation on high-order frees
585 */
af370fb8 586void __meminit __free_pages_bootmem(struct page *page, unsigned int order)
a226f6c8
DH
587{
588 if (order == 0) {
589 __ClearPageReserved(page);
590 set_page_count(page, 0);
7835e98b 591 set_page_refcounted(page);
545b1ea9 592 __free_page(page);
a226f6c8 593 } else {
a226f6c8
DH
594 int loop;
595
545b1ea9 596 prefetchw(page);
a226f6c8
DH
597 for (loop = 0; loop < BITS_PER_LONG; loop++) {
598 struct page *p = &page[loop];
599
545b1ea9
NP
600 if (loop + 1 < BITS_PER_LONG)
601 prefetchw(p + 1);
a226f6c8
DH
602 __ClearPageReserved(p);
603 set_page_count(p, 0);
604 }
605
7835e98b 606 set_page_refcounted(page);
545b1ea9 607 __free_pages(page, order);
a226f6c8
DH
608 }
609}
610
1da177e4
LT
611
612/*
613 * The order of subdivision here is critical for the IO subsystem.
614 * Please do not alter this order without good reasons and regression
615 * testing. Specifically, as large blocks of memory are subdivided,
616 * the order in which smaller blocks are delivered depends on the order
617 * they're subdivided in this function. This is the primary factor
618 * influencing the order in which pages are delivered to the IO
619 * subsystem according to empirical testing, and this is also justified
620 * by considering the behavior of a buddy system containing a single
621 * large block of memory acted on by a series of small allocations.
622 * This behavior is a critical factor in sglist merging's success.
623 *
624 * -- wli
625 */
085cc7d5 626static inline void expand(struct zone *zone, struct page *page,
b2a0ac88
MG
627 int low, int high, struct free_area *area,
628 int migratetype)
1da177e4
LT
629{
630 unsigned long size = 1 << high;
631
632 while (high > low) {
633 area--;
634 high--;
635 size >>= 1;
725d704e 636 VM_BUG_ON(bad_range(zone, &page[size]));
b2a0ac88 637 list_add(&page[size].lru, &area->free_list[migratetype]);
1da177e4
LT
638 area->nr_free++;
639 set_page_order(&page[size], high);
640 }
1da177e4
LT
641}
642
1da177e4
LT
643/*
644 * This page is about to be returned from the page allocator
645 */
17cf4406 646static int prep_new_page(struct page *page, int order, gfp_t gfp_flags)
1da177e4 647{
92be2e33
NP
648 if (unlikely(page_mapcount(page) |
649 (page->mapping != NULL) |
a3af9c38 650 (atomic_read(&page->_count) != 0) |
8cc3b392 651 (page->flags & PAGE_FLAGS_CHECK_AT_PREP))) {
224abf92 652 bad_page(page);
689bcebf 653 return 1;
8cc3b392 654 }
689bcebf 655
4c21e2f2 656 set_page_private(page, 0);
7835e98b 657 set_page_refcounted(page);
cc102509
NP
658
659 arch_alloc_page(page, order);
1da177e4 660 kernel_map_pages(page, 1 << order, 1);
17cf4406
NP
661
662 if (gfp_flags & __GFP_ZERO)
663 prep_zero_page(page, order, gfp_flags);
664
665 if (order && (gfp_flags & __GFP_COMP))
666 prep_compound_page(page, order);
667
689bcebf 668 return 0;
1da177e4
LT
669}
670
56fd56b8
MG
671/*
672 * Go through the free lists for the given migratetype and remove
673 * the smallest available page from the freelists
674 */
728ec980
MG
675static inline
676struct page *__rmqueue_smallest(struct zone *zone, unsigned int order,
56fd56b8
MG
677 int migratetype)
678{
679 unsigned int current_order;
680 struct free_area * area;
681 struct page *page;
682
683 /* Find a page of the appropriate size in the preferred list */
684 for (current_order = order; current_order < MAX_ORDER; ++current_order) {
685 area = &(zone->free_area[current_order]);
686 if (list_empty(&area->free_list[migratetype]))
687 continue;
688
689 page = list_entry(area->free_list[migratetype].next,
690 struct page, lru);
691 list_del(&page->lru);
692 rmv_page_order(page);
693 area->nr_free--;
56fd56b8
MG
694 expand(zone, page, order, current_order, area, migratetype);
695 return page;
696 }
697
698 return NULL;
699}
700
701
b2a0ac88
MG
702/*
703 * This array describes the order lists are fallen back to when
704 * the free lists for the desirable migrate type are depleted
705 */
706static int fallbacks[MIGRATE_TYPES][MIGRATE_TYPES-1] = {
64c5e135
MG
707 [MIGRATE_UNMOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
708 [MIGRATE_RECLAIMABLE] = { MIGRATE_UNMOVABLE, MIGRATE_MOVABLE, MIGRATE_RESERVE },
709 [MIGRATE_MOVABLE] = { MIGRATE_RECLAIMABLE, MIGRATE_UNMOVABLE, MIGRATE_RESERVE },
710 [MIGRATE_RESERVE] = { MIGRATE_RESERVE, MIGRATE_RESERVE, MIGRATE_RESERVE }, /* Never used */
b2a0ac88
MG
711};
712
c361be55
MG
713/*
714 * Move the free pages in a range to the free lists of the requested type.
d9c23400 715 * Note that start_page and end_pages are not aligned on a pageblock
c361be55
MG
716 * boundary. If alignment is required, use move_freepages_block()
717 */
b69a7288
AB
718static int move_freepages(struct zone *zone,
719 struct page *start_page, struct page *end_page,
720 int migratetype)
c361be55
MG
721{
722 struct page *page;
723 unsigned long order;
d100313f 724 int pages_moved = 0;
c361be55
MG
725
726#ifndef CONFIG_HOLES_IN_ZONE
727 /*
728 * page_zone is not safe to call in this context when
729 * CONFIG_HOLES_IN_ZONE is set. This bug check is probably redundant
730 * anyway as we check zone boundaries in move_freepages_block().
731 * Remove at a later date when no bug reports exist related to
ac0e5b7a 732 * grouping pages by mobility
c361be55
MG
733 */
734 BUG_ON(page_zone(start_page) != page_zone(end_page));
735#endif
736
737 for (page = start_page; page <= end_page;) {
344c790e
AL
738 /* Make sure we are not inadvertently changing nodes */
739 VM_BUG_ON(page_to_nid(page) != zone_to_nid(zone));
740
c361be55
MG
741 if (!pfn_valid_within(page_to_pfn(page))) {
742 page++;
743 continue;
744 }
745
746 if (!PageBuddy(page)) {
747 page++;
748 continue;
749 }
750
751 order = page_order(page);
752 list_del(&page->lru);
753 list_add(&page->lru,
754 &zone->free_area[order].free_list[migratetype]);
755 page += 1 << order;
d100313f 756 pages_moved += 1 << order;
c361be55
MG
757 }
758
d100313f 759 return pages_moved;
c361be55
MG
760}
761
b69a7288
AB
762static int move_freepages_block(struct zone *zone, struct page *page,
763 int migratetype)
c361be55
MG
764{
765 unsigned long start_pfn, end_pfn;
766 struct page *start_page, *end_page;
767
768 start_pfn = page_to_pfn(page);
d9c23400 769 start_pfn = start_pfn & ~(pageblock_nr_pages-1);
c361be55 770 start_page = pfn_to_page(start_pfn);
d9c23400
MG
771 end_page = start_page + pageblock_nr_pages - 1;
772 end_pfn = start_pfn + pageblock_nr_pages - 1;
c361be55
MG
773
774 /* Do not cross zone boundaries */
775 if (start_pfn < zone->zone_start_pfn)
776 start_page = page;
777 if (end_pfn >= zone->zone_start_pfn + zone->spanned_pages)
778 return 0;
779
780 return move_freepages(zone, start_page, end_page, migratetype);
781}
782
b2a0ac88 783/* Remove an element from the buddy allocator from the fallback list */
0ac3a409
MG
784static inline struct page *
785__rmqueue_fallback(struct zone *zone, int order, int start_migratetype)
b2a0ac88
MG
786{
787 struct free_area * area;
788 int current_order;
789 struct page *page;
790 int migratetype, i;
791
792 /* Find the largest possible block of pages in the other list */
793 for (current_order = MAX_ORDER-1; current_order >= order;
794 --current_order) {
795 for (i = 0; i < MIGRATE_TYPES - 1; i++) {
796 migratetype = fallbacks[start_migratetype][i];
797
56fd56b8
MG
798 /* MIGRATE_RESERVE handled later if necessary */
799 if (migratetype == MIGRATE_RESERVE)
800 continue;
e010487d 801
b2a0ac88
MG
802 area = &(zone->free_area[current_order]);
803 if (list_empty(&area->free_list[migratetype]))
804 continue;
805
806 page = list_entry(area->free_list[migratetype].next,
807 struct page, lru);
808 area->nr_free--;
809
810 /*
c361be55 811 * If breaking a large block of pages, move all free
46dafbca
MG
812 * pages to the preferred allocation list. If falling
813 * back for a reclaimable kernel allocation, be more
814 * agressive about taking ownership of free pages
b2a0ac88 815 */
d9c23400 816 if (unlikely(current_order >= (pageblock_order >> 1)) ||
46dafbca
MG
817 start_migratetype == MIGRATE_RECLAIMABLE) {
818 unsigned long pages;
819 pages = move_freepages_block(zone, page,
820 start_migratetype);
821
822 /* Claim the whole block if over half of it is free */
d9c23400 823 if (pages >= (1 << (pageblock_order-1)))
46dafbca
MG
824 set_pageblock_migratetype(page,
825 start_migratetype);
826
b2a0ac88 827 migratetype = start_migratetype;
c361be55 828 }
b2a0ac88
MG
829
830 /* Remove the page from the freelists */
831 list_del(&page->lru);
832 rmv_page_order(page);
b2a0ac88 833
d9c23400 834 if (current_order == pageblock_order)
b2a0ac88
MG
835 set_pageblock_migratetype(page,
836 start_migratetype);
837
838 expand(zone, page, order, current_order, area, migratetype);
839 return page;
840 }
841 }
842
728ec980 843 return NULL;
b2a0ac88
MG
844}
845
56fd56b8 846/*
1da177e4
LT
847 * Do the hard work of removing an element from the buddy allocator.
848 * Call me with the zone->lock already held.
849 */
b2a0ac88
MG
850static struct page *__rmqueue(struct zone *zone, unsigned int order,
851 int migratetype)
1da177e4 852{
1da177e4
LT
853 struct page *page;
854
728ec980 855retry_reserve:
56fd56b8 856 page = __rmqueue_smallest(zone, order, migratetype);
b2a0ac88 857
728ec980 858 if (unlikely(!page) && migratetype != MIGRATE_RESERVE) {
56fd56b8 859 page = __rmqueue_fallback(zone, order, migratetype);
b2a0ac88 860
728ec980
MG
861 /*
862 * Use MIGRATE_RESERVE rather than fail an allocation. goto
863 * is used because __rmqueue_smallest is an inline function
864 * and we want just one call site
865 */
866 if (!page) {
867 migratetype = MIGRATE_RESERVE;
868 goto retry_reserve;
869 }
870 }
871
b2a0ac88 872 return page;
1da177e4
LT
873}
874
875/*
876 * Obtain a specified number of elements from the buddy allocator, all under
877 * a single hold of the lock, for efficiency. Add them to the supplied list.
878 * Returns the number of new pages which were placed at *list.
879 */
880static int rmqueue_bulk(struct zone *zone, unsigned int order,
b2a0ac88
MG
881 unsigned long count, struct list_head *list,
882 int migratetype)
1da177e4 883{
1da177e4 884 int i;
1da177e4 885
c54ad30c 886 spin_lock(&zone->lock);
1da177e4 887 for (i = 0; i < count; ++i) {
b2a0ac88 888 struct page *page = __rmqueue(zone, order, migratetype);
085cc7d5 889 if (unlikely(page == NULL))
1da177e4 890 break;
81eabcbe
MG
891
892 /*
893 * Split buddy pages returned by expand() are received here
894 * in physical page order. The page is added to the callers and
895 * list and the list head then moves forward. From the callers
896 * perspective, the linked list is ordered by page number in
897 * some conditions. This is useful for IO devices that can
898 * merge IO requests if the physical pages are ordered
899 * properly.
900 */
535131e6
MG
901 list_add(&page->lru, list);
902 set_page_private(page, migratetype);
81eabcbe 903 list = &page->lru;
1da177e4 904 }
f2260e6b 905 __mod_zone_page_state(zone, NR_FREE_PAGES, -(i << order));
c54ad30c 906 spin_unlock(&zone->lock);
085cc7d5 907 return i;
1da177e4
LT
908}
909
4ae7c039 910#ifdef CONFIG_NUMA
8fce4d8e 911/*
4037d452
CL
912 * Called from the vmstat counter updater to drain pagesets of this
913 * currently executing processor on remote nodes after they have
914 * expired.
915 *
879336c3
CL
916 * Note that this function must be called with the thread pinned to
917 * a single processor.
8fce4d8e 918 */
4037d452 919void drain_zone_pages(struct zone *zone, struct per_cpu_pages *pcp)
4ae7c039 920{
4ae7c039 921 unsigned long flags;
4037d452 922 int to_drain;
4ae7c039 923
4037d452
CL
924 local_irq_save(flags);
925 if (pcp->count >= pcp->batch)
926 to_drain = pcp->batch;
927 else
928 to_drain = pcp->count;
929 free_pages_bulk(zone, to_drain, &pcp->list, 0);
930 pcp->count -= to_drain;
931 local_irq_restore(flags);
4ae7c039
CL
932}
933#endif
934
9f8f2172
CL
935/*
936 * Drain pages of the indicated processor.
937 *
938 * The processor must either be the current processor and the
939 * thread pinned to the current processor or a processor that
940 * is not online.
941 */
942static void drain_pages(unsigned int cpu)
1da177e4 943{
c54ad30c 944 unsigned long flags;
1da177e4 945 struct zone *zone;
1da177e4 946
ee99c71c 947 for_each_populated_zone(zone) {
1da177e4 948 struct per_cpu_pageset *pset;
3dfa5721 949 struct per_cpu_pages *pcp;
1da177e4 950
e7c8d5c9 951 pset = zone_pcp(zone, cpu);
3dfa5721
CL
952
953 pcp = &pset->pcp;
954 local_irq_save(flags);
955 free_pages_bulk(zone, pcp->count, &pcp->list, 0);
956 pcp->count = 0;
957 local_irq_restore(flags);
1da177e4
LT
958 }
959}
1da177e4 960
9f8f2172
CL
961/*
962 * Spill all of this CPU's per-cpu pages back into the buddy allocator.
963 */
964void drain_local_pages(void *arg)
965{
966 drain_pages(smp_processor_id());
967}
968
969/*
970 * Spill all the per-cpu pages from all CPUs back into the buddy allocator
971 */
972void drain_all_pages(void)
973{
15c8b6c1 974 on_each_cpu(drain_local_pages, NULL, 1);
9f8f2172
CL
975}
976
296699de 977#ifdef CONFIG_HIBERNATION
1da177e4
LT
978
979void mark_free_pages(struct zone *zone)
980{
f623f0db
RW
981 unsigned long pfn, max_zone_pfn;
982 unsigned long flags;
b2a0ac88 983 int order, t;
1da177e4
LT
984 struct list_head *curr;
985
986 if (!zone->spanned_pages)
987 return;
988
989 spin_lock_irqsave(&zone->lock, flags);
f623f0db
RW
990
991 max_zone_pfn = zone->zone_start_pfn + zone->spanned_pages;
992 for (pfn = zone->zone_start_pfn; pfn < max_zone_pfn; pfn++)
993 if (pfn_valid(pfn)) {
994 struct page *page = pfn_to_page(pfn);
995
7be98234
RW
996 if (!swsusp_page_is_forbidden(page))
997 swsusp_unset_page_free(page);
f623f0db 998 }
1da177e4 999
b2a0ac88
MG
1000 for_each_migratetype_order(order, t) {
1001 list_for_each(curr, &zone->free_area[order].free_list[t]) {
f623f0db 1002 unsigned long i;
1da177e4 1003
f623f0db
RW
1004 pfn = page_to_pfn(list_entry(curr, struct page, lru));
1005 for (i = 0; i < (1UL << order); i++)
7be98234 1006 swsusp_set_page_free(pfn_to_page(pfn + i));
f623f0db 1007 }
b2a0ac88 1008 }
1da177e4
LT
1009 spin_unlock_irqrestore(&zone->lock, flags);
1010}
e2c55dc8 1011#endif /* CONFIG_PM */
1da177e4 1012
1da177e4
LT
1013/*
1014 * Free a 0-order page
1015 */
920c7a5d 1016static void free_hot_cold_page(struct page *page, int cold)
1da177e4
LT
1017{
1018 struct zone *zone = page_zone(page);
1019 struct per_cpu_pages *pcp;
1020 unsigned long flags;
da456f14 1021 int clearMlocked = PageMlocked(page);
1da177e4 1022
1da177e4
LT
1023 if (PageAnon(page))
1024 page->mapping = NULL;
224abf92 1025 if (free_pages_check(page))
689bcebf
HD
1026 return;
1027
3ac7fe5a 1028 if (!PageHighMem(page)) {
9858db50 1029 debug_check_no_locks_freed(page_address(page), PAGE_SIZE);
3ac7fe5a
TG
1030 debug_check_no_obj_freed(page_address(page), PAGE_SIZE);
1031 }
dafb1367 1032 arch_free_page(page, 0);
689bcebf
HD
1033 kernel_map_pages(page, 1, 0);
1034
3dfa5721 1035 pcp = &zone_pcp(zone, get_cpu())->pcp;
974709bd 1036 set_page_private(page, get_pageblock_migratetype(page));
1da177e4 1037 local_irq_save(flags);
da456f14
MG
1038 if (unlikely(clearMlocked))
1039 free_page_mlock(page);
f8891e5e 1040 __count_vm_event(PGFREE);
da456f14 1041
3dfa5721
CL
1042 if (cold)
1043 list_add_tail(&page->lru, &pcp->list);
1044 else
1045 list_add(&page->lru, &pcp->list);
1da177e4 1046 pcp->count++;
48db57f8
NP
1047 if (pcp->count >= pcp->high) {
1048 free_pages_bulk(zone, pcp->batch, &pcp->list, 0);
1049 pcp->count -= pcp->batch;
1050 }
1da177e4
LT
1051 local_irq_restore(flags);
1052 put_cpu();
1053}
1054
920c7a5d 1055void free_hot_page(struct page *page)
1da177e4
LT
1056{
1057 free_hot_cold_page(page, 0);
1058}
1059
920c7a5d 1060void free_cold_page(struct page *page)
1da177e4
LT
1061{
1062 free_hot_cold_page(page, 1);
1063}
1064
8dfcc9ba
NP
1065/*
1066 * split_page takes a non-compound higher-order page, and splits it into
1067 * n (1<<order) sub-pages: page[0..n]
1068 * Each sub-page must be freed individually.
1069 *
1070 * Note: this is probably too low level an operation for use in drivers.
1071 * Please consult with lkml before using this in your driver.
1072 */
1073void split_page(struct page *page, unsigned int order)
1074{
1075 int i;
1076
725d704e
NP
1077 VM_BUG_ON(PageCompound(page));
1078 VM_BUG_ON(!page_count(page));
7835e98b
NP
1079 for (i = 1; i < (1 << order); i++)
1080 set_page_refcounted(page + i);
8dfcc9ba 1081}
8dfcc9ba 1082
1da177e4
LT
1083/*
1084 * Really, prep_compound_page() should be called from __rmqueue_bulk(). But
1085 * we cheat by calling it from here, in the order > 0 path. Saves a branch
1086 * or two.
1087 */
0a15c3e9
MG
1088static inline
1089struct page *buffered_rmqueue(struct zone *preferred_zone,
3dd28266
MG
1090 struct zone *zone, int order, gfp_t gfp_flags,
1091 int migratetype)
1da177e4
LT
1092{
1093 unsigned long flags;
689bcebf 1094 struct page *page;
1da177e4 1095 int cold = !!(gfp_flags & __GFP_COLD);
a74609fa 1096 int cpu;
1da177e4 1097
689bcebf 1098again:
a74609fa 1099 cpu = get_cpu();
48db57f8 1100 if (likely(order == 0)) {
1da177e4
LT
1101 struct per_cpu_pages *pcp;
1102
3dfa5721 1103 pcp = &zone_pcp(zone, cpu)->pcp;
1da177e4 1104 local_irq_save(flags);
a74609fa 1105 if (!pcp->count) {
941c7105 1106 pcp->count = rmqueue_bulk(zone, 0,
b2a0ac88 1107 pcp->batch, &pcp->list, migratetype);
a74609fa
NP
1108 if (unlikely(!pcp->count))
1109 goto failed;
1da177e4 1110 }
b92a6edd 1111
535131e6 1112 /* Find a page of the appropriate migrate type */
3dfa5721
CL
1113 if (cold) {
1114 list_for_each_entry_reverse(page, &pcp->list, lru)
1115 if (page_private(page) == migratetype)
1116 break;
1117 } else {
1118 list_for_each_entry(page, &pcp->list, lru)
1119 if (page_private(page) == migratetype)
1120 break;
1121 }
535131e6 1122
b92a6edd
MG
1123 /* Allocate more to the pcp list if necessary */
1124 if (unlikely(&page->lru == &pcp->list)) {
535131e6
MG
1125 pcp->count += rmqueue_bulk(zone, 0,
1126 pcp->batch, &pcp->list, migratetype);
1127 page = list_entry(pcp->list.next, struct page, lru);
535131e6 1128 }
b92a6edd
MG
1129
1130 list_del(&page->lru);
1131 pcp->count--;
7fb1d9fc 1132 } else {
dab48dab
AM
1133 if (unlikely(gfp_flags & __GFP_NOFAIL)) {
1134 /*
1135 * __GFP_NOFAIL is not to be used in new code.
1136 *
1137 * All __GFP_NOFAIL callers should be fixed so that they
1138 * properly detect and handle allocation failures.
1139 *
1140 * We most definitely don't want callers attempting to
1141 * allocate greater than single-page units with
1142 * __GFP_NOFAIL.
1143 */
1144 WARN_ON_ONCE(order > 0);
1145 }
1da177e4 1146 spin_lock_irqsave(&zone->lock, flags);
b2a0ac88 1147 page = __rmqueue(zone, order, migratetype);
f2260e6b 1148 __mod_zone_page_state(zone, NR_FREE_PAGES, -(1 << order));
a74609fa
NP
1149 spin_unlock(&zone->lock);
1150 if (!page)
1151 goto failed;
1da177e4
LT
1152 }
1153
f8891e5e 1154 __count_zone_vm_events(PGALLOC, zone, 1 << order);
18ea7e71 1155 zone_statistics(preferred_zone, zone);
a74609fa
NP
1156 local_irq_restore(flags);
1157 put_cpu();
1da177e4 1158
725d704e 1159 VM_BUG_ON(bad_range(zone, page));
17cf4406 1160 if (prep_new_page(page, order, gfp_flags))
a74609fa 1161 goto again;
1da177e4 1162 return page;
a74609fa
NP
1163
1164failed:
1165 local_irq_restore(flags);
1166 put_cpu();
1167 return NULL;
1da177e4
LT
1168}
1169
41858966
MG
1170/* The ALLOC_WMARK bits are used as an index to zone->watermark */
1171#define ALLOC_WMARK_MIN WMARK_MIN
1172#define ALLOC_WMARK_LOW WMARK_LOW
1173#define ALLOC_WMARK_HIGH WMARK_HIGH
1174#define ALLOC_NO_WATERMARKS 0x04 /* don't check watermarks at all */
1175
1176/* Mask to get the watermark bits */
1177#define ALLOC_WMARK_MASK (ALLOC_NO_WATERMARKS-1)
1178
3148890b
NP
1179#define ALLOC_HARDER 0x10 /* try to alloc harder */
1180#define ALLOC_HIGH 0x20 /* __GFP_HIGH set */
1181#define ALLOC_CPUSET 0x40 /* check for correct cpuset */
7fb1d9fc 1182
933e312e
AM
1183#ifdef CONFIG_FAIL_PAGE_ALLOC
1184
1185static struct fail_page_alloc_attr {
1186 struct fault_attr attr;
1187
1188 u32 ignore_gfp_highmem;
1189 u32 ignore_gfp_wait;
54114994 1190 u32 min_order;
933e312e
AM
1191
1192#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1193
1194 struct dentry *ignore_gfp_highmem_file;
1195 struct dentry *ignore_gfp_wait_file;
54114994 1196 struct dentry *min_order_file;
933e312e
AM
1197
1198#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1199
1200} fail_page_alloc = {
1201 .attr = FAULT_ATTR_INITIALIZER,
6b1b60f4
DM
1202 .ignore_gfp_wait = 1,
1203 .ignore_gfp_highmem = 1,
54114994 1204 .min_order = 1,
933e312e
AM
1205};
1206
1207static int __init setup_fail_page_alloc(char *str)
1208{
1209 return setup_fault_attr(&fail_page_alloc.attr, str);
1210}
1211__setup("fail_page_alloc=", setup_fail_page_alloc);
1212
1213static int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1214{
54114994
AM
1215 if (order < fail_page_alloc.min_order)
1216 return 0;
933e312e
AM
1217 if (gfp_mask & __GFP_NOFAIL)
1218 return 0;
1219 if (fail_page_alloc.ignore_gfp_highmem && (gfp_mask & __GFP_HIGHMEM))
1220 return 0;
1221 if (fail_page_alloc.ignore_gfp_wait && (gfp_mask & __GFP_WAIT))
1222 return 0;
1223
1224 return should_fail(&fail_page_alloc.attr, 1 << order);
1225}
1226
1227#ifdef CONFIG_FAULT_INJECTION_DEBUG_FS
1228
1229static int __init fail_page_alloc_debugfs(void)
1230{
1231 mode_t mode = S_IFREG | S_IRUSR | S_IWUSR;
1232 struct dentry *dir;
1233 int err;
1234
1235 err = init_fault_attr_dentries(&fail_page_alloc.attr,
1236 "fail_page_alloc");
1237 if (err)
1238 return err;
1239 dir = fail_page_alloc.attr.dentries.dir;
1240
1241 fail_page_alloc.ignore_gfp_wait_file =
1242 debugfs_create_bool("ignore-gfp-wait", mode, dir,
1243 &fail_page_alloc.ignore_gfp_wait);
1244
1245 fail_page_alloc.ignore_gfp_highmem_file =
1246 debugfs_create_bool("ignore-gfp-highmem", mode, dir,
1247 &fail_page_alloc.ignore_gfp_highmem);
54114994
AM
1248 fail_page_alloc.min_order_file =
1249 debugfs_create_u32("min-order", mode, dir,
1250 &fail_page_alloc.min_order);
933e312e
AM
1251
1252 if (!fail_page_alloc.ignore_gfp_wait_file ||
54114994
AM
1253 !fail_page_alloc.ignore_gfp_highmem_file ||
1254 !fail_page_alloc.min_order_file) {
933e312e
AM
1255 err = -ENOMEM;
1256 debugfs_remove(fail_page_alloc.ignore_gfp_wait_file);
1257 debugfs_remove(fail_page_alloc.ignore_gfp_highmem_file);
54114994 1258 debugfs_remove(fail_page_alloc.min_order_file);
933e312e
AM
1259 cleanup_fault_attr_dentries(&fail_page_alloc.attr);
1260 }
1261
1262 return err;
1263}
1264
1265late_initcall(fail_page_alloc_debugfs);
1266
1267#endif /* CONFIG_FAULT_INJECTION_DEBUG_FS */
1268
1269#else /* CONFIG_FAIL_PAGE_ALLOC */
1270
1271static inline int should_fail_alloc_page(gfp_t gfp_mask, unsigned int order)
1272{
1273 return 0;
1274}
1275
1276#endif /* CONFIG_FAIL_PAGE_ALLOC */
1277
1da177e4
LT
1278/*
1279 * Return 1 if free pages are above 'mark'. This takes into account the order
1280 * of the allocation.
1281 */
1282int zone_watermark_ok(struct zone *z, int order, unsigned long mark,
7fb1d9fc 1283 int classzone_idx, int alloc_flags)
1da177e4
LT
1284{
1285 /* free_pages my go negative - that's OK */
d23ad423
CL
1286 long min = mark;
1287 long free_pages = zone_page_state(z, NR_FREE_PAGES) - (1 << order) + 1;
1da177e4
LT
1288 int o;
1289
7fb1d9fc 1290 if (alloc_flags & ALLOC_HIGH)
1da177e4 1291 min -= min / 2;
7fb1d9fc 1292 if (alloc_flags & ALLOC_HARDER)
1da177e4
LT
1293 min -= min / 4;
1294
1295 if (free_pages <= min + z->lowmem_reserve[classzone_idx])
1296 return 0;
1297 for (o = 0; o < order; o++) {
1298 /* At the next order, this order's pages become unavailable */
1299 free_pages -= z->free_area[o].nr_free << o;
1300
1301 /* Require fewer higher order pages to be free */
1302 min >>= 1;
1303
1304 if (free_pages <= min)
1305 return 0;
1306 }
1307 return 1;
1308}
1309
9276b1bc
PJ
1310#ifdef CONFIG_NUMA
1311/*
1312 * zlc_setup - Setup for "zonelist cache". Uses cached zone data to
1313 * skip over zones that are not allowed by the cpuset, or that have
1314 * been recently (in last second) found to be nearly full. See further
1315 * comments in mmzone.h. Reduces cache footprint of zonelist scans
183ff22b 1316 * that have to skip over a lot of full or unallowed zones.
9276b1bc
PJ
1317 *
1318 * If the zonelist cache is present in the passed in zonelist, then
1319 * returns a pointer to the allowed node mask (either the current
37b07e41 1320 * tasks mems_allowed, or node_states[N_HIGH_MEMORY].)
9276b1bc
PJ
1321 *
1322 * If the zonelist cache is not available for this zonelist, does
1323 * nothing and returns NULL.
1324 *
1325 * If the fullzones BITMAP in the zonelist cache is stale (more than
1326 * a second since last zap'd) then we zap it out (clear its bits.)
1327 *
1328 * We hold off even calling zlc_setup, until after we've checked the
1329 * first zone in the zonelist, on the theory that most allocations will
1330 * be satisfied from that first zone, so best to examine that zone as
1331 * quickly as we can.
1332 */
1333static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1334{
1335 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1336 nodemask_t *allowednodes; /* zonelist_cache approximation */
1337
1338 zlc = zonelist->zlcache_ptr;
1339 if (!zlc)
1340 return NULL;
1341
f05111f5 1342 if (time_after(jiffies, zlc->last_full_zap + HZ)) {
9276b1bc
PJ
1343 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
1344 zlc->last_full_zap = jiffies;
1345 }
1346
1347 allowednodes = !in_interrupt() && (alloc_flags & ALLOC_CPUSET) ?
1348 &cpuset_current_mems_allowed :
37b07e41 1349 &node_states[N_HIGH_MEMORY];
9276b1bc
PJ
1350 return allowednodes;
1351}
1352
1353/*
1354 * Given 'z' scanning a zonelist, run a couple of quick checks to see
1355 * if it is worth looking at further for free memory:
1356 * 1) Check that the zone isn't thought to be full (doesn't have its
1357 * bit set in the zonelist_cache fullzones BITMAP).
1358 * 2) Check that the zones node (obtained from the zonelist_cache
1359 * z_to_n[] mapping) is allowed in the passed in allowednodes mask.
1360 * Return true (non-zero) if zone is worth looking at further, or
1361 * else return false (zero) if it is not.
1362 *
1363 * This check -ignores- the distinction between various watermarks,
1364 * such as GFP_HIGH, GFP_ATOMIC, PF_MEMALLOC, ... If a zone is
1365 * found to be full for any variation of these watermarks, it will
1366 * be considered full for up to one second by all requests, unless
1367 * we are so low on memory on all allowed nodes that we are forced
1368 * into the second scan of the zonelist.
1369 *
1370 * In the second scan we ignore this zonelist cache and exactly
1371 * apply the watermarks to all zones, even it is slower to do so.
1372 * We are low on memory in the second scan, and should leave no stone
1373 * unturned looking for a free page.
1374 */
dd1a239f 1375static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1376 nodemask_t *allowednodes)
1377{
1378 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1379 int i; /* index of *z in zonelist zones */
1380 int n; /* node that zone *z is on */
1381
1382 zlc = zonelist->zlcache_ptr;
1383 if (!zlc)
1384 return 1;
1385
dd1a239f 1386 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1387 n = zlc->z_to_n[i];
1388
1389 /* This zone is worth trying if it is allowed but not full */
1390 return node_isset(n, *allowednodes) && !test_bit(i, zlc->fullzones);
1391}
1392
1393/*
1394 * Given 'z' scanning a zonelist, set the corresponding bit in
1395 * zlc->fullzones, so that subsequent attempts to allocate a page
1396 * from that zone don't waste time re-examining it.
1397 */
dd1a239f 1398static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1399{
1400 struct zonelist_cache *zlc; /* cached zonelist speedup info */
1401 int i; /* index of *z in zonelist zones */
1402
1403 zlc = zonelist->zlcache_ptr;
1404 if (!zlc)
1405 return;
1406
dd1a239f 1407 i = z - zonelist->_zonerefs;
9276b1bc
PJ
1408
1409 set_bit(i, zlc->fullzones);
1410}
1411
1412#else /* CONFIG_NUMA */
1413
1414static nodemask_t *zlc_setup(struct zonelist *zonelist, int alloc_flags)
1415{
1416 return NULL;
1417}
1418
dd1a239f 1419static int zlc_zone_worth_trying(struct zonelist *zonelist, struct zoneref *z,
9276b1bc
PJ
1420 nodemask_t *allowednodes)
1421{
1422 return 1;
1423}
1424
dd1a239f 1425static void zlc_mark_zone_full(struct zonelist *zonelist, struct zoneref *z)
9276b1bc
PJ
1426{
1427}
1428#endif /* CONFIG_NUMA */
1429
7fb1d9fc 1430/*
0798e519 1431 * get_page_from_freelist goes through the zonelist trying to allocate
7fb1d9fc
RS
1432 * a page.
1433 */
1434static struct page *
19770b32 1435get_page_from_freelist(gfp_t gfp_mask, nodemask_t *nodemask, unsigned int order,
5117f45d 1436 struct zonelist *zonelist, int high_zoneidx, int alloc_flags,
3dd28266 1437 struct zone *preferred_zone, int migratetype)
753ee728 1438{
dd1a239f 1439 struct zoneref *z;
7fb1d9fc 1440 struct page *page = NULL;
54a6eb5c 1441 int classzone_idx;
5117f45d 1442 struct zone *zone;
9276b1bc
PJ
1443 nodemask_t *allowednodes = NULL;/* zonelist_cache approximation */
1444 int zlc_active = 0; /* set if using zonelist_cache */
1445 int did_zlc_setup = 0; /* just call zlc_setup() one time */
54a6eb5c 1446
5117f45d 1447 classzone_idx = zone_idx(preferred_zone);
9276b1bc 1448zonelist_scan:
7fb1d9fc 1449 /*
9276b1bc 1450 * Scan zonelist, looking for a zone with enough free.
7fb1d9fc
RS
1451 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1452 */
19770b32
MG
1453 for_each_zone_zonelist_nodemask(zone, z, zonelist,
1454 high_zoneidx, nodemask) {
9276b1bc
PJ
1455 if (NUMA_BUILD && zlc_active &&
1456 !zlc_zone_worth_trying(zonelist, z, allowednodes))
1457 continue;
7fb1d9fc 1458 if ((alloc_flags & ALLOC_CPUSET) &&
02a0e53d 1459 !cpuset_zone_allowed_softwall(zone, gfp_mask))
9276b1bc 1460 goto try_next_zone;
7fb1d9fc 1461
41858966 1462 BUILD_BUG_ON(ALLOC_NO_WATERMARKS < NR_WMARK);
7fb1d9fc 1463 if (!(alloc_flags & ALLOC_NO_WATERMARKS)) {
3148890b 1464 unsigned long mark;
41858966 1465 mark = zone->watermark[alloc_flags & ALLOC_WMARK_MASK];
0798e519
PJ
1466 if (!zone_watermark_ok(zone, order, mark,
1467 classzone_idx, alloc_flags)) {
9eeff239 1468 if (!zone_reclaim_mode ||
1192d526 1469 !zone_reclaim(zone, gfp_mask, order))
9276b1bc 1470 goto this_zone_full;
0798e519 1471 }
7fb1d9fc
RS
1472 }
1473
3dd28266
MG
1474 page = buffered_rmqueue(preferred_zone, zone, order,
1475 gfp_mask, migratetype);
0798e519 1476 if (page)
7fb1d9fc 1477 break;
9276b1bc
PJ
1478this_zone_full:
1479 if (NUMA_BUILD)
1480 zlc_mark_zone_full(zonelist, z);
1481try_next_zone:
62bc62a8 1482 if (NUMA_BUILD && !did_zlc_setup && nr_online_nodes > 1) {
d395b734
MG
1483 /*
1484 * we do zlc_setup after the first zone is tried but only
1485 * if there are multiple nodes make it worthwhile
1486 */
9276b1bc
PJ
1487 allowednodes = zlc_setup(zonelist, alloc_flags);
1488 zlc_active = 1;
1489 did_zlc_setup = 1;
1490 }
54a6eb5c 1491 }
9276b1bc
PJ
1492
1493 if (unlikely(NUMA_BUILD && page == NULL && zlc_active)) {
1494 /* Disable zlc cache for second zonelist scan */
1495 zlc_active = 0;
1496 goto zonelist_scan;
1497 }
7fb1d9fc 1498 return page;
753ee728
MH
1499}
1500
11e33f6a
MG
1501static inline int
1502should_alloc_retry(gfp_t gfp_mask, unsigned int order,
1503 unsigned long pages_reclaimed)
1da177e4 1504{
11e33f6a
MG
1505 /* Do not loop if specifically requested */
1506 if (gfp_mask & __GFP_NORETRY)
1507 return 0;
1da177e4 1508
11e33f6a
MG
1509 /*
1510 * In this implementation, order <= PAGE_ALLOC_COSTLY_ORDER
1511 * means __GFP_NOFAIL, but that may not be true in other
1512 * implementations.
1513 */
1514 if (order <= PAGE_ALLOC_COSTLY_ORDER)
1515 return 1;
1516
1517 /*
1518 * For order > PAGE_ALLOC_COSTLY_ORDER, if __GFP_REPEAT is
1519 * specified, then we retry until we no longer reclaim any pages
1520 * (above), or we've reclaimed an order of pages at least as
1521 * large as the allocation's order. In both cases, if the
1522 * allocation still fails, we stop retrying.
1523 */
1524 if (gfp_mask & __GFP_REPEAT && pages_reclaimed < (1 << order))
1525 return 1;
cf40bd16 1526
11e33f6a
MG
1527 /*
1528 * Don't let big-order allocations loop unless the caller
1529 * explicitly requests that.
1530 */
1531 if (gfp_mask & __GFP_NOFAIL)
1532 return 1;
1da177e4 1533
11e33f6a
MG
1534 return 0;
1535}
933e312e 1536
11e33f6a
MG
1537static inline struct page *
1538__alloc_pages_may_oom(gfp_t gfp_mask, unsigned int order,
1539 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1540 nodemask_t *nodemask, struct zone *preferred_zone,
1541 int migratetype)
11e33f6a
MG
1542{
1543 struct page *page;
1544
1545 /* Acquire the OOM killer lock for the zones in zonelist */
1546 if (!try_set_zone_oom(zonelist, gfp_mask)) {
1547 schedule_timeout_uninterruptible(1);
1da177e4
LT
1548 return NULL;
1549 }
6b1de916 1550
11e33f6a
MG
1551 /*
1552 * Go through the zonelist yet one more time, keep very high watermark
1553 * here, this is only to catch a parallel oom killing, we must fail if
1554 * we're still under heavy pressure.
1555 */
1556 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask,
1557 order, zonelist, high_zoneidx,
5117f45d 1558 ALLOC_WMARK_HIGH|ALLOC_CPUSET,
3dd28266 1559 preferred_zone, migratetype);
7fb1d9fc 1560 if (page)
11e33f6a
MG
1561 goto out;
1562
1563 /* The OOM killer will not help higher order allocs */
1564 if (order > PAGE_ALLOC_COSTLY_ORDER)
1565 goto out;
1566
1567 /* Exhausted what can be done so it's blamo time */
1568 out_of_memory(zonelist, gfp_mask, order);
1569
1570out:
1571 clear_zonelist_oom(zonelist, gfp_mask);
1572 return page;
1573}
1574
1575/* The really slow allocator path where we enter direct reclaim */
1576static inline struct page *
1577__alloc_pages_direct_reclaim(gfp_t gfp_mask, unsigned int order,
1578 struct zonelist *zonelist, enum zone_type high_zoneidx,
5117f45d 1579 nodemask_t *nodemask, int alloc_flags, struct zone *preferred_zone,
3dd28266 1580 int migratetype, unsigned long *did_some_progress)
11e33f6a
MG
1581{
1582 struct page *page = NULL;
1583 struct reclaim_state reclaim_state;
1584 struct task_struct *p = current;
1585
1586 cond_resched();
1587
1588 /* We now go into synchronous reclaim */
1589 cpuset_memory_pressure_bump();
1590
1591 /*
1592 * The task's cpuset might have expanded its set of allowable nodes
1593 */
1594 p->flags |= PF_MEMALLOC;
1595 lockdep_set_current_reclaim_state(gfp_mask);
1596 reclaim_state.reclaimed_slab = 0;
1597 p->reclaim_state = &reclaim_state;
1598
1599 *did_some_progress = try_to_free_pages(zonelist, order, gfp_mask, nodemask);
1600
1601 p->reclaim_state = NULL;
1602 lockdep_clear_current_reclaim_state();
1603 p->flags &= ~PF_MEMALLOC;
1604
1605 cond_resched();
1606
1607 if (order != 0)
1608 drain_all_pages();
1609
1610 if (likely(*did_some_progress))
1611 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1612 zonelist, high_zoneidx,
3dd28266
MG
1613 alloc_flags, preferred_zone,
1614 migratetype);
11e33f6a
MG
1615 return page;
1616}
1617
11e33f6a
MG
1618/*
1619 * This is called in the allocator slow-path if the allocation request is of
1620 * sufficient urgency to ignore watermarks and take other desperate measures
1621 */
1622static inline struct page *
1623__alloc_pages_high_priority(gfp_t gfp_mask, unsigned int order,
1624 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1625 nodemask_t *nodemask, struct zone *preferred_zone,
1626 int migratetype)
11e33f6a
MG
1627{
1628 struct page *page;
1629
1630 do {
1631 page = get_page_from_freelist(gfp_mask, nodemask, order,
5117f45d 1632 zonelist, high_zoneidx, ALLOC_NO_WATERMARKS,
3dd28266 1633 preferred_zone, migratetype);
11e33f6a
MG
1634
1635 if (!page && gfp_mask & __GFP_NOFAIL)
1636 congestion_wait(WRITE, HZ/50);
1637 } while (!page && (gfp_mask & __GFP_NOFAIL));
1638
1639 return page;
1640}
1641
1642static inline
1643void wake_all_kswapd(unsigned int order, struct zonelist *zonelist,
1644 enum zone_type high_zoneidx)
1645{
1646 struct zoneref *z;
1647 struct zone *zone;
1648
1649 for_each_zone_zonelist(zone, z, zonelist, high_zoneidx)
1650 wakeup_kswapd(zone, order);
1651}
1652
341ce06f
PZ
1653static inline int
1654gfp_to_alloc_flags(gfp_t gfp_mask)
1655{
1656 struct task_struct *p = current;
1657 int alloc_flags = ALLOC_WMARK_MIN | ALLOC_CPUSET;
1658 const gfp_t wait = gfp_mask & __GFP_WAIT;
1659
a56f57ff
MG
1660 /* __GFP_HIGH is assumed to be the same as ALLOC_HIGH to save a branch. */
1661 BUILD_BUG_ON(__GFP_HIGH != ALLOC_HIGH);
1662
341ce06f
PZ
1663 /*
1664 * The caller may dip into page reserves a bit more if the caller
1665 * cannot run direct reclaim, or if the caller has realtime scheduling
1666 * policy or is asking for __GFP_HIGH memory. GFP_ATOMIC requests will
1667 * set both ALLOC_HARDER (!wait) and ALLOC_HIGH (__GFP_HIGH).
1668 */
a56f57ff 1669 alloc_flags |= (gfp_mask & __GFP_HIGH);
341ce06f
PZ
1670
1671 if (!wait) {
1672 alloc_flags |= ALLOC_HARDER;
1673 /*
1674 * Ignore cpuset if GFP_ATOMIC (!wait) rather than fail alloc.
1675 * See also cpuset_zone_allowed() comment in kernel/cpuset.c.
1676 */
1677 alloc_flags &= ~ALLOC_CPUSET;
1678 } else if (unlikely(rt_task(p)))
1679 alloc_flags |= ALLOC_HARDER;
1680
1681 if (likely(!(gfp_mask & __GFP_NOMEMALLOC))) {
1682 if (!in_interrupt() &&
1683 ((p->flags & PF_MEMALLOC) ||
1684 unlikely(test_thread_flag(TIF_MEMDIE))))
1685 alloc_flags |= ALLOC_NO_WATERMARKS;
1686 }
1687
1688 return alloc_flags;
1689}
1690
11e33f6a
MG
1691static inline struct page *
1692__alloc_pages_slowpath(gfp_t gfp_mask, unsigned int order,
1693 struct zonelist *zonelist, enum zone_type high_zoneidx,
3dd28266
MG
1694 nodemask_t *nodemask, struct zone *preferred_zone,
1695 int migratetype)
11e33f6a
MG
1696{
1697 const gfp_t wait = gfp_mask & __GFP_WAIT;
1698 struct page *page = NULL;
1699 int alloc_flags;
1700 unsigned long pages_reclaimed = 0;
1701 unsigned long did_some_progress;
1702 struct task_struct *p = current;
1da177e4 1703
72807a74
MG
1704 /*
1705 * In the slowpath, we sanity check order to avoid ever trying to
1706 * reclaim >= MAX_ORDER areas which will never succeed. Callers may
1707 * be using allocators in order of preference for an area that is
1708 * too large.
1709 */
1710 if (WARN_ON_ONCE(order >= MAX_ORDER))
1711 return NULL;
1712
952f3b51
CL
1713 /*
1714 * GFP_THISNODE (meaning __GFP_THISNODE, __GFP_NORETRY and
1715 * __GFP_NOWARN set) should not cause reclaim since the subsystem
1716 * (f.e. slab) using GFP_THISNODE may choose to trigger reclaim
1717 * using a larger set of nodes after it has established that the
1718 * allowed per node queues are empty and that nodes are
1719 * over allocated.
1720 */
1721 if (NUMA_BUILD && (gfp_mask & GFP_THISNODE) == GFP_THISNODE)
1722 goto nopage;
1723
11e33f6a 1724 wake_all_kswapd(order, zonelist, high_zoneidx);
1da177e4 1725
9bf2229f 1726 /*
7fb1d9fc
RS
1727 * OK, we're below the kswapd watermark and have kicked background
1728 * reclaim. Now things get more complex, so set up alloc_flags according
1729 * to how we want to proceed.
9bf2229f 1730 */
341ce06f 1731 alloc_flags = gfp_to_alloc_flags(gfp_mask);
1da177e4 1732
11e33f6a 1733restart:
341ce06f 1734 /* This is the last chance, in general, before the goto nopage. */
19770b32 1735 page = get_page_from_freelist(gfp_mask, nodemask, order, zonelist,
341ce06f
PZ
1736 high_zoneidx, alloc_flags & ~ALLOC_NO_WATERMARKS,
1737 preferred_zone, migratetype);
7fb1d9fc
RS
1738 if (page)
1739 goto got_pg;
1da177e4 1740
b43a57bb 1741rebalance:
11e33f6a 1742 /* Allocate without watermarks if the context allows */
341ce06f
PZ
1743 if (alloc_flags & ALLOC_NO_WATERMARKS) {
1744 page = __alloc_pages_high_priority(gfp_mask, order,
1745 zonelist, high_zoneidx, nodemask,
1746 preferred_zone, migratetype);
1747 if (page)
1748 goto got_pg;
1da177e4
LT
1749 }
1750
1751 /* Atomic allocations - we can't balance anything */
1752 if (!wait)
1753 goto nopage;
1754
341ce06f
PZ
1755 /* Avoid recursion of direct reclaim */
1756 if (p->flags & PF_MEMALLOC)
1757 goto nopage;
1758
11e33f6a
MG
1759 /* Try direct reclaim and then allocating */
1760 page = __alloc_pages_direct_reclaim(gfp_mask, order,
1761 zonelist, high_zoneidx,
1762 nodemask,
5117f45d 1763 alloc_flags, preferred_zone,
3dd28266 1764 migratetype, &did_some_progress);
11e33f6a
MG
1765 if (page)
1766 goto got_pg;
1da177e4 1767
11e33f6a
MG
1768 /*
1769 * If we failed to make any progress reclaiming, then we are
1770 * running out of options and have to consider going OOM
1771 */
1772 if (!did_some_progress) {
1773 if ((gfp_mask & __GFP_FS) && !(gfp_mask & __GFP_NORETRY)) {
7f33d49a
RW
1774 if (oom_killer_disabled)
1775 goto nopage;
11e33f6a
MG
1776 page = __alloc_pages_may_oom(gfp_mask, order,
1777 zonelist, high_zoneidx,
3dd28266
MG
1778 nodemask, preferred_zone,
1779 migratetype);
11e33f6a
MG
1780 if (page)
1781 goto got_pg;
1da177e4 1782
11e33f6a
MG
1783 /*
1784 * The OOM killer does not trigger for high-order allocations
1785 * but if no progress is being made, there are no other
1786 * options and retrying is unlikely to help
1787 */
1788 if (order > PAGE_ALLOC_COSTLY_ORDER)
1789 goto nopage;
e2c55dc8 1790
ff0ceb9d
DR
1791 goto restart;
1792 }
1da177e4
LT
1793 }
1794
11e33f6a 1795 /* Check if we should retry the allocation */
a41f24ea 1796 pages_reclaimed += did_some_progress;
11e33f6a
MG
1797 if (should_alloc_retry(gfp_mask, order, pages_reclaimed)) {
1798 /* Wait for some write requests to complete then retry */
3fcfab16 1799 congestion_wait(WRITE, HZ/50);
1da177e4
LT
1800 goto rebalance;
1801 }
1802
1803nopage:
1804 if (!(gfp_mask & __GFP_NOWARN) && printk_ratelimit()) {
1805 printk(KERN_WARNING "%s: page allocation failure."
1806 " order:%d, mode:0x%x\n",
1807 p->comm, order, gfp_mask);
1808 dump_stack();
578c2fd6 1809 show_mem();
1da177e4 1810 }
1da177e4 1811got_pg:
1da177e4 1812 return page;
11e33f6a
MG
1813
1814}
1815
1816/*
1817 * This is the 'heart' of the zoned buddy allocator.
1818 */
1819struct page *
1820__alloc_pages_nodemask(gfp_t gfp_mask, unsigned int order,
1821 struct zonelist *zonelist, nodemask_t *nodemask)
1822{
1823 enum zone_type high_zoneidx = gfp_zone(gfp_mask);
5117f45d 1824 struct zone *preferred_zone;
11e33f6a 1825 struct page *page;
3dd28266 1826 int migratetype = allocflags_to_migratetype(gfp_mask);
11e33f6a
MG
1827
1828 lockdep_trace_alloc(gfp_mask);
1829
1830 might_sleep_if(gfp_mask & __GFP_WAIT);
1831
1832 if (should_fail_alloc_page(gfp_mask, order))
1833 return NULL;
1834
1835 /*
1836 * Check the zones suitable for the gfp_mask contain at least one
1837 * valid zone. It's possible to have an empty zonelist as a result
1838 * of GFP_THISNODE and a memoryless node
1839 */
1840 if (unlikely(!zonelist->_zonerefs->zone))
1841 return NULL;
1842
5117f45d
MG
1843 /* The preferred zone is used for statistics later */
1844 first_zones_zonelist(zonelist, high_zoneidx, nodemask, &preferred_zone);
1845 if (!preferred_zone)
1846 return NULL;
1847
1848 /* First allocation attempt */
11e33f6a 1849 page = get_page_from_freelist(gfp_mask|__GFP_HARDWALL, nodemask, order,
5117f45d 1850 zonelist, high_zoneidx, ALLOC_WMARK_LOW|ALLOC_CPUSET,
3dd28266 1851 preferred_zone, migratetype);
11e33f6a
MG
1852 if (unlikely(!page))
1853 page = __alloc_pages_slowpath(gfp_mask, order,
5117f45d 1854 zonelist, high_zoneidx, nodemask,
3dd28266 1855 preferred_zone, migratetype);
11e33f6a
MG
1856
1857 return page;
1da177e4 1858}
d239171e 1859EXPORT_SYMBOL(__alloc_pages_nodemask);
1da177e4
LT
1860
1861/*
1862 * Common helper functions.
1863 */
920c7a5d 1864unsigned long __get_free_pages(gfp_t gfp_mask, unsigned int order)
1da177e4
LT
1865{
1866 struct page * page;
1867 page = alloc_pages(gfp_mask, order);
1868 if (!page)
1869 return 0;
1870 return (unsigned long) page_address(page);
1871}
1872
1873EXPORT_SYMBOL(__get_free_pages);
1874
920c7a5d 1875unsigned long get_zeroed_page(gfp_t gfp_mask)
1da177e4
LT
1876{
1877 struct page * page;
1878
1879 /*
1880 * get_zeroed_page() returns a 32-bit address, which cannot represent
1881 * a highmem page
1882 */
725d704e 1883 VM_BUG_ON((gfp_mask & __GFP_HIGHMEM) != 0);
1da177e4
LT
1884
1885 page = alloc_pages(gfp_mask | __GFP_ZERO, 0);
1886 if (page)
1887 return (unsigned long) page_address(page);
1888 return 0;
1889}
1890
1891EXPORT_SYMBOL(get_zeroed_page);
1892
1893void __pagevec_free(struct pagevec *pvec)
1894{
1895 int i = pagevec_count(pvec);
1896
1897 while (--i >= 0)
1898 free_hot_cold_page(pvec->pages[i], pvec->cold);
1899}
1900
920c7a5d 1901void __free_pages(struct page *page, unsigned int order)
1da177e4 1902{
b5810039 1903 if (put_page_testzero(page)) {
1da177e4
LT
1904 if (order == 0)
1905 free_hot_page(page);
1906 else
1907 __free_pages_ok(page, order);
1908 }
1909}
1910
1911EXPORT_SYMBOL(__free_pages);
1912
920c7a5d 1913void free_pages(unsigned long addr, unsigned int order)
1da177e4
LT
1914{
1915 if (addr != 0) {
725d704e 1916 VM_BUG_ON(!virt_addr_valid((void *)addr));
1da177e4
LT
1917 __free_pages(virt_to_page((void *)addr), order);
1918 }
1919}
1920
1921EXPORT_SYMBOL(free_pages);
1922
2be0ffe2
TT
1923/**
1924 * alloc_pages_exact - allocate an exact number physically-contiguous pages.
1925 * @size: the number of bytes to allocate
1926 * @gfp_mask: GFP flags for the allocation
1927 *
1928 * This function is similar to alloc_pages(), except that it allocates the
1929 * minimum number of pages to satisfy the request. alloc_pages() can only
1930 * allocate memory in power-of-two pages.
1931 *
1932 * This function is also limited by MAX_ORDER.
1933 *
1934 * Memory allocated by this function must be released by free_pages_exact().
1935 */
1936void *alloc_pages_exact(size_t size, gfp_t gfp_mask)
1937{
1938 unsigned int order = get_order(size);
1939 unsigned long addr;
1940
1941 addr = __get_free_pages(gfp_mask, order);
1942 if (addr) {
1943 unsigned long alloc_end = addr + (PAGE_SIZE << order);
1944 unsigned long used = addr + PAGE_ALIGN(size);
1945
1946 split_page(virt_to_page(addr), order);
1947 while (used < alloc_end) {
1948 free_page(used);
1949 used += PAGE_SIZE;
1950 }
1951 }
1952
1953 return (void *)addr;
1954}
1955EXPORT_SYMBOL(alloc_pages_exact);
1956
1957/**
1958 * free_pages_exact - release memory allocated via alloc_pages_exact()
1959 * @virt: the value returned by alloc_pages_exact.
1960 * @size: size of allocation, same value as passed to alloc_pages_exact().
1961 *
1962 * Release the memory allocated by a previous call to alloc_pages_exact.
1963 */
1964void free_pages_exact(void *virt, size_t size)
1965{
1966 unsigned long addr = (unsigned long)virt;
1967 unsigned long end = addr + PAGE_ALIGN(size);
1968
1969 while (addr < end) {
1970 free_page(addr);
1971 addr += PAGE_SIZE;
1972 }
1973}
1974EXPORT_SYMBOL(free_pages_exact);
1975
1da177e4
LT
1976static unsigned int nr_free_zone_pages(int offset)
1977{
dd1a239f 1978 struct zoneref *z;
54a6eb5c
MG
1979 struct zone *zone;
1980
e310fd43 1981 /* Just pick one node, since fallback list is circular */
1da177e4
LT
1982 unsigned int sum = 0;
1983
0e88460d 1984 struct zonelist *zonelist = node_zonelist(numa_node_id(), GFP_KERNEL);
1da177e4 1985
54a6eb5c 1986 for_each_zone_zonelist(zone, z, zonelist, offset) {
e310fd43 1987 unsigned long size = zone->present_pages;
41858966 1988 unsigned long high = high_wmark_pages(zone);
e310fd43
MB
1989 if (size > high)
1990 sum += size - high;
1da177e4
LT
1991 }
1992
1993 return sum;
1994}
1995
1996/*
1997 * Amount of free RAM allocatable within ZONE_DMA and ZONE_NORMAL
1998 */
1999unsigned int nr_free_buffer_pages(void)
2000{
af4ca457 2001 return nr_free_zone_pages(gfp_zone(GFP_USER));
1da177e4 2002}
c2f1a551 2003EXPORT_SYMBOL_GPL(nr_free_buffer_pages);
1da177e4
LT
2004
2005/*
2006 * Amount of free RAM allocatable within all zones
2007 */
2008unsigned int nr_free_pagecache_pages(void)
2009{
2a1e274a 2010 return nr_free_zone_pages(gfp_zone(GFP_HIGHUSER_MOVABLE));
1da177e4 2011}
08e0f6a9
CL
2012
2013static inline void show_node(struct zone *zone)
1da177e4 2014{
08e0f6a9 2015 if (NUMA_BUILD)
25ba77c1 2016 printk("Node %d ", zone_to_nid(zone));
1da177e4 2017}
1da177e4 2018
1da177e4
LT
2019void si_meminfo(struct sysinfo *val)
2020{
2021 val->totalram = totalram_pages;
2022 val->sharedram = 0;
d23ad423 2023 val->freeram = global_page_state(NR_FREE_PAGES);
1da177e4 2024 val->bufferram = nr_blockdev_pages();
1da177e4
LT
2025 val->totalhigh = totalhigh_pages;
2026 val->freehigh = nr_free_highpages();
1da177e4
LT
2027 val->mem_unit = PAGE_SIZE;
2028}
2029
2030EXPORT_SYMBOL(si_meminfo);
2031
2032#ifdef CONFIG_NUMA
2033void si_meminfo_node(struct sysinfo *val, int nid)
2034{
2035 pg_data_t *pgdat = NODE_DATA(nid);
2036
2037 val->totalram = pgdat->node_present_pages;
d23ad423 2038 val->freeram = node_page_state(nid, NR_FREE_PAGES);
98d2b0eb 2039#ifdef CONFIG_HIGHMEM
1da177e4 2040 val->totalhigh = pgdat->node_zones[ZONE_HIGHMEM].present_pages;
d23ad423
CL
2041 val->freehigh = zone_page_state(&pgdat->node_zones[ZONE_HIGHMEM],
2042 NR_FREE_PAGES);
98d2b0eb
CL
2043#else
2044 val->totalhigh = 0;
2045 val->freehigh = 0;
2046#endif
1da177e4
LT
2047 val->mem_unit = PAGE_SIZE;
2048}
2049#endif
2050
2051#define K(x) ((x) << (PAGE_SHIFT-10))
2052
2053/*
2054 * Show free area list (used inside shift_scroll-lock stuff)
2055 * We also calculate the percentage fragmentation. We do this by counting the
2056 * memory on each free list with the exception of the first item on the list.
2057 */
2058void show_free_areas(void)
2059{
c7241913 2060 int cpu;
1da177e4
LT
2061 struct zone *zone;
2062
ee99c71c 2063 for_each_populated_zone(zone) {
c7241913
JS
2064 show_node(zone);
2065 printk("%s per-cpu:\n", zone->name);
1da177e4 2066
6b482c67 2067 for_each_online_cpu(cpu) {
1da177e4
LT
2068 struct per_cpu_pageset *pageset;
2069
e7c8d5c9 2070 pageset = zone_pcp(zone, cpu);
1da177e4 2071
3dfa5721
CL
2072 printk("CPU %4d: hi:%5d, btch:%4d usd:%4d\n",
2073 cpu, pageset->pcp.high,
2074 pageset->pcp.batch, pageset->pcp.count);
1da177e4
LT
2075 }
2076 }
2077
7b854121
LS
2078 printk("Active_anon:%lu active_file:%lu inactive_anon:%lu\n"
2079 " inactive_file:%lu"
2080//TODO: check/adjust line lengths
2081#ifdef CONFIG_UNEVICTABLE_LRU
2082 " unevictable:%lu"
2083#endif
2084 " dirty:%lu writeback:%lu unstable:%lu\n"
d23ad423 2085 " free:%lu slab:%lu mapped:%lu pagetables:%lu bounce:%lu\n",
4f98a2fe
RR
2086 global_page_state(NR_ACTIVE_ANON),
2087 global_page_state(NR_ACTIVE_FILE),
2088 global_page_state(NR_INACTIVE_ANON),
2089 global_page_state(NR_INACTIVE_FILE),
7b854121
LS
2090#ifdef CONFIG_UNEVICTABLE_LRU
2091 global_page_state(NR_UNEVICTABLE),
2092#endif
b1e7a8fd 2093 global_page_state(NR_FILE_DIRTY),
ce866b34 2094 global_page_state(NR_WRITEBACK),
fd39fc85 2095 global_page_state(NR_UNSTABLE_NFS),
d23ad423 2096 global_page_state(NR_FREE_PAGES),
972d1a7b
CL
2097 global_page_state(NR_SLAB_RECLAIMABLE) +
2098 global_page_state(NR_SLAB_UNRECLAIMABLE),
65ba55f5 2099 global_page_state(NR_FILE_MAPPED),
a25700a5
AM
2100 global_page_state(NR_PAGETABLE),
2101 global_page_state(NR_BOUNCE));
1da177e4 2102
ee99c71c 2103 for_each_populated_zone(zone) {
1da177e4
LT
2104 int i;
2105
2106 show_node(zone);
2107 printk("%s"
2108 " free:%lukB"
2109 " min:%lukB"
2110 " low:%lukB"
2111 " high:%lukB"
4f98a2fe
RR
2112 " active_anon:%lukB"
2113 " inactive_anon:%lukB"
2114 " active_file:%lukB"
2115 " inactive_file:%lukB"
7b854121
LS
2116#ifdef CONFIG_UNEVICTABLE_LRU
2117 " unevictable:%lukB"
2118#endif
1da177e4
LT
2119 " present:%lukB"
2120 " pages_scanned:%lu"
2121 " all_unreclaimable? %s"
2122 "\n",
2123 zone->name,
d23ad423 2124 K(zone_page_state(zone, NR_FREE_PAGES)),
41858966
MG
2125 K(min_wmark_pages(zone)),
2126 K(low_wmark_pages(zone)),
2127 K(high_wmark_pages(zone)),
4f98a2fe
RR
2128 K(zone_page_state(zone, NR_ACTIVE_ANON)),
2129 K(zone_page_state(zone, NR_INACTIVE_ANON)),
2130 K(zone_page_state(zone, NR_ACTIVE_FILE)),
2131 K(zone_page_state(zone, NR_INACTIVE_FILE)),
7b854121
LS
2132#ifdef CONFIG_UNEVICTABLE_LRU
2133 K(zone_page_state(zone, NR_UNEVICTABLE)),
2134#endif
1da177e4
LT
2135 K(zone->present_pages),
2136 zone->pages_scanned,
e815af95 2137 (zone_is_all_unreclaimable(zone) ? "yes" : "no")
1da177e4
LT
2138 );
2139 printk("lowmem_reserve[]:");
2140 for (i = 0; i < MAX_NR_ZONES; i++)
2141 printk(" %lu", zone->lowmem_reserve[i]);
2142 printk("\n");
2143 }
2144
ee99c71c 2145 for_each_populated_zone(zone) {
8f9de51a 2146 unsigned long nr[MAX_ORDER], flags, order, total = 0;
1da177e4
LT
2147
2148 show_node(zone);
2149 printk("%s: ", zone->name);
1da177e4
LT
2150
2151 spin_lock_irqsave(&zone->lock, flags);
2152 for (order = 0; order < MAX_ORDER; order++) {
8f9de51a
KK
2153 nr[order] = zone->free_area[order].nr_free;
2154 total += nr[order] << order;
1da177e4
LT
2155 }
2156 spin_unlock_irqrestore(&zone->lock, flags);
8f9de51a
KK
2157 for (order = 0; order < MAX_ORDER; order++)
2158 printk("%lu*%lukB ", nr[order], K(1UL) << order);
1da177e4
LT
2159 printk("= %lukB\n", K(total));
2160 }
2161
e6f3602d
LW
2162 printk("%ld total pagecache pages\n", global_page_state(NR_FILE_PAGES));
2163
1da177e4
LT
2164 show_swap_cache_info();
2165}
2166
19770b32
MG
2167static void zoneref_set_zone(struct zone *zone, struct zoneref *zoneref)
2168{
2169 zoneref->zone = zone;
2170 zoneref->zone_idx = zone_idx(zone);
2171}
2172
1da177e4
LT
2173/*
2174 * Builds allocation fallback zone lists.
1a93205b
CL
2175 *
2176 * Add all populated zones of a node to the zonelist.
1da177e4 2177 */
f0c0b2b8
KH
2178static int build_zonelists_node(pg_data_t *pgdat, struct zonelist *zonelist,
2179 int nr_zones, enum zone_type zone_type)
1da177e4 2180{
1a93205b
CL
2181 struct zone *zone;
2182
98d2b0eb 2183 BUG_ON(zone_type >= MAX_NR_ZONES);
2f6726e5 2184 zone_type++;
02a68a5e
CL
2185
2186 do {
2f6726e5 2187 zone_type--;
070f8032 2188 zone = pgdat->node_zones + zone_type;
1a93205b 2189 if (populated_zone(zone)) {
dd1a239f
MG
2190 zoneref_set_zone(zone,
2191 &zonelist->_zonerefs[nr_zones++]);
070f8032 2192 check_highest_zone(zone_type);
1da177e4 2193 }
02a68a5e 2194
2f6726e5 2195 } while (zone_type);
070f8032 2196 return nr_zones;
1da177e4
LT
2197}
2198
f0c0b2b8
KH
2199
2200/*
2201 * zonelist_order:
2202 * 0 = automatic detection of better ordering.
2203 * 1 = order by ([node] distance, -zonetype)
2204 * 2 = order by (-zonetype, [node] distance)
2205 *
2206 * If not NUMA, ZONELIST_ORDER_ZONE and ZONELIST_ORDER_NODE will create
2207 * the same zonelist. So only NUMA can configure this param.
2208 */
2209#define ZONELIST_ORDER_DEFAULT 0
2210#define ZONELIST_ORDER_NODE 1
2211#define ZONELIST_ORDER_ZONE 2
2212
2213/* zonelist order in the kernel.
2214 * set_zonelist_order() will set this to NODE or ZONE.
2215 */
2216static int current_zonelist_order = ZONELIST_ORDER_DEFAULT;
2217static char zonelist_order_name[3][8] = {"Default", "Node", "Zone"};
2218
2219
1da177e4 2220#ifdef CONFIG_NUMA
f0c0b2b8
KH
2221/* The value user specified ....changed by config */
2222static int user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2223/* string for sysctl */
2224#define NUMA_ZONELIST_ORDER_LEN 16
2225char numa_zonelist_order[16] = "default";
2226
2227/*
2228 * interface for configure zonelist ordering.
2229 * command line option "numa_zonelist_order"
2230 * = "[dD]efault - default, automatic configuration.
2231 * = "[nN]ode - order by node locality, then by zone within node
2232 * = "[zZ]one - order by zone, then by locality within zone
2233 */
2234
2235static int __parse_numa_zonelist_order(char *s)
2236{
2237 if (*s == 'd' || *s == 'D') {
2238 user_zonelist_order = ZONELIST_ORDER_DEFAULT;
2239 } else if (*s == 'n' || *s == 'N') {
2240 user_zonelist_order = ZONELIST_ORDER_NODE;
2241 } else if (*s == 'z' || *s == 'Z') {
2242 user_zonelist_order = ZONELIST_ORDER_ZONE;
2243 } else {
2244 printk(KERN_WARNING
2245 "Ignoring invalid numa_zonelist_order value: "
2246 "%s\n", s);
2247 return -EINVAL;
2248 }
2249 return 0;
2250}
2251
2252static __init int setup_numa_zonelist_order(char *s)
2253{
2254 if (s)
2255 return __parse_numa_zonelist_order(s);
2256 return 0;
2257}
2258early_param("numa_zonelist_order", setup_numa_zonelist_order);
2259
2260/*
2261 * sysctl handler for numa_zonelist_order
2262 */
2263int numa_zonelist_order_handler(ctl_table *table, int write,
2264 struct file *file, void __user *buffer, size_t *length,
2265 loff_t *ppos)
2266{
2267 char saved_string[NUMA_ZONELIST_ORDER_LEN];
2268 int ret;
2269
2270 if (write)
2271 strncpy(saved_string, (char*)table->data,
2272 NUMA_ZONELIST_ORDER_LEN);
2273 ret = proc_dostring(table, write, file, buffer, length, ppos);
2274 if (ret)
2275 return ret;
2276 if (write) {
2277 int oldval = user_zonelist_order;
2278 if (__parse_numa_zonelist_order((char*)table->data)) {
2279 /*
2280 * bogus value. restore saved string
2281 */
2282 strncpy((char*)table->data, saved_string,
2283 NUMA_ZONELIST_ORDER_LEN);
2284 user_zonelist_order = oldval;
2285 } else if (oldval != user_zonelist_order)
2286 build_all_zonelists();
2287 }
2288 return 0;
2289}
2290
2291
62bc62a8 2292#define MAX_NODE_LOAD (nr_online_nodes)
f0c0b2b8
KH
2293static int node_load[MAX_NUMNODES];
2294
1da177e4 2295/**
4dc3b16b 2296 * find_next_best_node - find the next node that should appear in a given node's fallback list
1da177e4
LT
2297 * @node: node whose fallback list we're appending
2298 * @used_node_mask: nodemask_t of already used nodes
2299 *
2300 * We use a number of factors to determine which is the next node that should
2301 * appear on a given node's fallback list. The node should not have appeared
2302 * already in @node's fallback list, and it should be the next closest node
2303 * according to the distance array (which contains arbitrary distance values
2304 * from each node to each node in the system), and should also prefer nodes
2305 * with no CPUs, since presumably they'll have very little allocation pressure
2306 * on them otherwise.
2307 * It returns -1 if no node is found.
2308 */
f0c0b2b8 2309static int find_next_best_node(int node, nodemask_t *used_node_mask)
1da177e4 2310{
4cf808eb 2311 int n, val;
1da177e4
LT
2312 int min_val = INT_MAX;
2313 int best_node = -1;
a70f7302 2314 const struct cpumask *tmp = cpumask_of_node(0);
1da177e4 2315
4cf808eb
LT
2316 /* Use the local node if we haven't already */
2317 if (!node_isset(node, *used_node_mask)) {
2318 node_set(node, *used_node_mask);
2319 return node;
2320 }
1da177e4 2321
37b07e41 2322 for_each_node_state(n, N_HIGH_MEMORY) {
1da177e4
LT
2323
2324 /* Don't want a node to appear more than once */
2325 if (node_isset(n, *used_node_mask))
2326 continue;
2327
1da177e4
LT
2328 /* Use the distance array to find the distance */
2329 val = node_distance(node, n);
2330
4cf808eb
LT
2331 /* Penalize nodes under us ("prefer the next node") */
2332 val += (n < node);
2333
1da177e4 2334 /* Give preference to headless and unused nodes */
a70f7302
RR
2335 tmp = cpumask_of_node(n);
2336 if (!cpumask_empty(tmp))
1da177e4
LT
2337 val += PENALTY_FOR_NODE_WITH_CPUS;
2338
2339 /* Slight preference for less loaded node */
2340 val *= (MAX_NODE_LOAD*MAX_NUMNODES);
2341 val += node_load[n];
2342
2343 if (val < min_val) {
2344 min_val = val;
2345 best_node = n;
2346 }
2347 }
2348
2349 if (best_node >= 0)
2350 node_set(best_node, *used_node_mask);
2351
2352 return best_node;
2353}
2354
f0c0b2b8
KH
2355
2356/*
2357 * Build zonelists ordered by node and zones within node.
2358 * This results in maximum locality--normal zone overflows into local
2359 * DMA zone, if any--but risks exhausting DMA zone.
2360 */
2361static void build_zonelists_in_node_order(pg_data_t *pgdat, int node)
1da177e4 2362{
f0c0b2b8 2363 int j;
1da177e4 2364 struct zonelist *zonelist;
f0c0b2b8 2365
54a6eb5c 2366 zonelist = &pgdat->node_zonelists[0];
dd1a239f 2367 for (j = 0; zonelist->_zonerefs[j].zone != NULL; j++)
54a6eb5c
MG
2368 ;
2369 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2370 MAX_NR_ZONES - 1);
dd1a239f
MG
2371 zonelist->_zonerefs[j].zone = NULL;
2372 zonelist->_zonerefs[j].zone_idx = 0;
f0c0b2b8
KH
2373}
2374
523b9458
CL
2375/*
2376 * Build gfp_thisnode zonelists
2377 */
2378static void build_thisnode_zonelists(pg_data_t *pgdat)
2379{
523b9458
CL
2380 int j;
2381 struct zonelist *zonelist;
2382
54a6eb5c
MG
2383 zonelist = &pgdat->node_zonelists[1];
2384 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
dd1a239f
MG
2385 zonelist->_zonerefs[j].zone = NULL;
2386 zonelist->_zonerefs[j].zone_idx = 0;
523b9458
CL
2387}
2388
f0c0b2b8
KH
2389/*
2390 * Build zonelists ordered by zone and nodes within zones.
2391 * This results in conserving DMA zone[s] until all Normal memory is
2392 * exhausted, but results in overflowing to remote node while memory
2393 * may still exist in local DMA zone.
2394 */
2395static int node_order[MAX_NUMNODES];
2396
2397static void build_zonelists_in_zone_order(pg_data_t *pgdat, int nr_nodes)
2398{
f0c0b2b8
KH
2399 int pos, j, node;
2400 int zone_type; /* needs to be signed */
2401 struct zone *z;
2402 struct zonelist *zonelist;
2403
54a6eb5c
MG
2404 zonelist = &pgdat->node_zonelists[0];
2405 pos = 0;
2406 for (zone_type = MAX_NR_ZONES - 1; zone_type >= 0; zone_type--) {
2407 for (j = 0; j < nr_nodes; j++) {
2408 node = node_order[j];
2409 z = &NODE_DATA(node)->node_zones[zone_type];
2410 if (populated_zone(z)) {
dd1a239f
MG
2411 zoneref_set_zone(z,
2412 &zonelist->_zonerefs[pos++]);
54a6eb5c 2413 check_highest_zone(zone_type);
f0c0b2b8
KH
2414 }
2415 }
f0c0b2b8 2416 }
dd1a239f
MG
2417 zonelist->_zonerefs[pos].zone = NULL;
2418 zonelist->_zonerefs[pos].zone_idx = 0;
f0c0b2b8
KH
2419}
2420
2421static int default_zonelist_order(void)
2422{
2423 int nid, zone_type;
2424 unsigned long low_kmem_size,total_size;
2425 struct zone *z;
2426 int average_size;
2427 /*
2428 * ZONE_DMA and ZONE_DMA32 can be very small area in the sytem.
2429 * If they are really small and used heavily, the system can fall
2430 * into OOM very easily.
2431 * This function detect ZONE_DMA/DMA32 size and confgigures zone order.
2432 */
2433 /* Is there ZONE_NORMAL ? (ex. ppc has only DMA zone..) */
2434 low_kmem_size = 0;
2435 total_size = 0;
2436 for_each_online_node(nid) {
2437 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2438 z = &NODE_DATA(nid)->node_zones[zone_type];
2439 if (populated_zone(z)) {
2440 if (zone_type < ZONE_NORMAL)
2441 low_kmem_size += z->present_pages;
2442 total_size += z->present_pages;
2443 }
2444 }
2445 }
2446 if (!low_kmem_size || /* there are no DMA area. */
2447 low_kmem_size > total_size/2) /* DMA/DMA32 is big. */
2448 return ZONELIST_ORDER_NODE;
2449 /*
2450 * look into each node's config.
2451 * If there is a node whose DMA/DMA32 memory is very big area on
2452 * local memory, NODE_ORDER may be suitable.
2453 */
37b07e41
LS
2454 average_size = total_size /
2455 (nodes_weight(node_states[N_HIGH_MEMORY]) + 1);
f0c0b2b8
KH
2456 for_each_online_node(nid) {
2457 low_kmem_size = 0;
2458 total_size = 0;
2459 for (zone_type = 0; zone_type < MAX_NR_ZONES; zone_type++) {
2460 z = &NODE_DATA(nid)->node_zones[zone_type];
2461 if (populated_zone(z)) {
2462 if (zone_type < ZONE_NORMAL)
2463 low_kmem_size += z->present_pages;
2464 total_size += z->present_pages;
2465 }
2466 }
2467 if (low_kmem_size &&
2468 total_size > average_size && /* ignore small node */
2469 low_kmem_size > total_size * 70/100)
2470 return ZONELIST_ORDER_NODE;
2471 }
2472 return ZONELIST_ORDER_ZONE;
2473}
2474
2475static void set_zonelist_order(void)
2476{
2477 if (user_zonelist_order == ZONELIST_ORDER_DEFAULT)
2478 current_zonelist_order = default_zonelist_order();
2479 else
2480 current_zonelist_order = user_zonelist_order;
2481}
2482
2483static void build_zonelists(pg_data_t *pgdat)
2484{
2485 int j, node, load;
2486 enum zone_type i;
1da177e4 2487 nodemask_t used_mask;
f0c0b2b8
KH
2488 int local_node, prev_node;
2489 struct zonelist *zonelist;
2490 int order = current_zonelist_order;
1da177e4
LT
2491
2492 /* initialize zonelists */
523b9458 2493 for (i = 0; i < MAX_ZONELISTS; i++) {
1da177e4 2494 zonelist = pgdat->node_zonelists + i;
dd1a239f
MG
2495 zonelist->_zonerefs[0].zone = NULL;
2496 zonelist->_zonerefs[0].zone_idx = 0;
1da177e4
LT
2497 }
2498
2499 /* NUMA-aware ordering of nodes */
2500 local_node = pgdat->node_id;
62bc62a8 2501 load = nr_online_nodes;
1da177e4
LT
2502 prev_node = local_node;
2503 nodes_clear(used_mask);
f0c0b2b8
KH
2504
2505 memset(node_load, 0, sizeof(node_load));
2506 memset(node_order, 0, sizeof(node_order));
2507 j = 0;
2508
1da177e4 2509 while ((node = find_next_best_node(local_node, &used_mask)) >= 0) {
9eeff239
CL
2510 int distance = node_distance(local_node, node);
2511
2512 /*
2513 * If another node is sufficiently far away then it is better
2514 * to reclaim pages in a zone before going off node.
2515 */
2516 if (distance > RECLAIM_DISTANCE)
2517 zone_reclaim_mode = 1;
2518
1da177e4
LT
2519 /*
2520 * We don't want to pressure a particular node.
2521 * So adding penalty to the first node in same
2522 * distance group to make it round-robin.
2523 */
9eeff239 2524 if (distance != node_distance(local_node, prev_node))
f0c0b2b8
KH
2525 node_load[node] = load;
2526
1da177e4
LT
2527 prev_node = node;
2528 load--;
f0c0b2b8
KH
2529 if (order == ZONELIST_ORDER_NODE)
2530 build_zonelists_in_node_order(pgdat, node);
2531 else
2532 node_order[j++] = node; /* remember order */
2533 }
1da177e4 2534
f0c0b2b8
KH
2535 if (order == ZONELIST_ORDER_ZONE) {
2536 /* calculate node order -- i.e., DMA last! */
2537 build_zonelists_in_zone_order(pgdat, j);
1da177e4 2538 }
523b9458
CL
2539
2540 build_thisnode_zonelists(pgdat);
1da177e4
LT
2541}
2542
9276b1bc 2543/* Construct the zonelist performance cache - see further mmzone.h */
f0c0b2b8 2544static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2545{
54a6eb5c
MG
2546 struct zonelist *zonelist;
2547 struct zonelist_cache *zlc;
dd1a239f 2548 struct zoneref *z;
9276b1bc 2549
54a6eb5c
MG
2550 zonelist = &pgdat->node_zonelists[0];
2551 zonelist->zlcache_ptr = zlc = &zonelist->zlcache;
2552 bitmap_zero(zlc->fullzones, MAX_ZONES_PER_ZONELIST);
dd1a239f
MG
2553 for (z = zonelist->_zonerefs; z->zone; z++)
2554 zlc->z_to_n[z - zonelist->_zonerefs] = zonelist_node_idx(z);
9276b1bc
PJ
2555}
2556
f0c0b2b8 2557
1da177e4
LT
2558#else /* CONFIG_NUMA */
2559
f0c0b2b8
KH
2560static void set_zonelist_order(void)
2561{
2562 current_zonelist_order = ZONELIST_ORDER_ZONE;
2563}
2564
2565static void build_zonelists(pg_data_t *pgdat)
1da177e4 2566{
19655d34 2567 int node, local_node;
54a6eb5c
MG
2568 enum zone_type j;
2569 struct zonelist *zonelist;
1da177e4
LT
2570
2571 local_node = pgdat->node_id;
1da177e4 2572
54a6eb5c
MG
2573 zonelist = &pgdat->node_zonelists[0];
2574 j = build_zonelists_node(pgdat, zonelist, 0, MAX_NR_ZONES - 1);
1da177e4 2575
54a6eb5c
MG
2576 /*
2577 * Now we build the zonelist so that it contains the zones
2578 * of all the other nodes.
2579 * We don't want to pressure a particular node, so when
2580 * building the zones for node N, we make sure that the
2581 * zones coming right after the local ones are those from
2582 * node N+1 (modulo N)
2583 */
2584 for (node = local_node + 1; node < MAX_NUMNODES; node++) {
2585 if (!node_online(node))
2586 continue;
2587 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2588 MAX_NR_ZONES - 1);
1da177e4 2589 }
54a6eb5c
MG
2590 for (node = 0; node < local_node; node++) {
2591 if (!node_online(node))
2592 continue;
2593 j = build_zonelists_node(NODE_DATA(node), zonelist, j,
2594 MAX_NR_ZONES - 1);
2595 }
2596
dd1a239f
MG
2597 zonelist->_zonerefs[j].zone = NULL;
2598 zonelist->_zonerefs[j].zone_idx = 0;
1da177e4
LT
2599}
2600
9276b1bc 2601/* non-NUMA variant of zonelist performance cache - just NULL zlcache_ptr */
f0c0b2b8 2602static void build_zonelist_cache(pg_data_t *pgdat)
9276b1bc 2603{
54a6eb5c 2604 pgdat->node_zonelists[0].zlcache_ptr = NULL;
9276b1bc
PJ
2605}
2606
1da177e4
LT
2607#endif /* CONFIG_NUMA */
2608
9b1a4d38 2609/* return values int ....just for stop_machine() */
f0c0b2b8 2610static int __build_all_zonelists(void *dummy)
1da177e4 2611{
6811378e 2612 int nid;
9276b1bc
PJ
2613
2614 for_each_online_node(nid) {
7ea1530a
CL
2615 pg_data_t *pgdat = NODE_DATA(nid);
2616
2617 build_zonelists(pgdat);
2618 build_zonelist_cache(pgdat);
9276b1bc 2619 }
6811378e
YG
2620 return 0;
2621}
2622
f0c0b2b8 2623void build_all_zonelists(void)
6811378e 2624{
f0c0b2b8
KH
2625 set_zonelist_order();
2626
6811378e 2627 if (system_state == SYSTEM_BOOTING) {
423b41d7 2628 __build_all_zonelists(NULL);
68ad8df4 2629 mminit_verify_zonelist();
6811378e
YG
2630 cpuset_init_current_mems_allowed();
2631 } else {
183ff22b 2632 /* we have to stop all cpus to guarantee there is no user
6811378e 2633 of zonelist */
9b1a4d38 2634 stop_machine(__build_all_zonelists, NULL, NULL);
6811378e
YG
2635 /* cpuset refresh routine should be here */
2636 }
bd1e22b8 2637 vm_total_pages = nr_free_pagecache_pages();
9ef9acb0
MG
2638 /*
2639 * Disable grouping by mobility if the number of pages in the
2640 * system is too low to allow the mechanism to work. It would be
2641 * more accurate, but expensive to check per-zone. This check is
2642 * made on memory-hotadd so a system can start with mobility
2643 * disabled and enable it later
2644 */
d9c23400 2645 if (vm_total_pages < (pageblock_nr_pages * MIGRATE_TYPES))
9ef9acb0
MG
2646 page_group_by_mobility_disabled = 1;
2647 else
2648 page_group_by_mobility_disabled = 0;
2649
2650 printk("Built %i zonelists in %s order, mobility grouping %s. "
2651 "Total pages: %ld\n",
62bc62a8 2652 nr_online_nodes,
f0c0b2b8 2653 zonelist_order_name[current_zonelist_order],
9ef9acb0 2654 page_group_by_mobility_disabled ? "off" : "on",
f0c0b2b8
KH
2655 vm_total_pages);
2656#ifdef CONFIG_NUMA
2657 printk("Policy zone: %s\n", zone_names[policy_zone]);
2658#endif
1da177e4
LT
2659}
2660
2661/*
2662 * Helper functions to size the waitqueue hash table.
2663 * Essentially these want to choose hash table sizes sufficiently
2664 * large so that collisions trying to wait on pages are rare.
2665 * But in fact, the number of active page waitqueues on typical
2666 * systems is ridiculously low, less than 200. So this is even
2667 * conservative, even though it seems large.
2668 *
2669 * The constant PAGES_PER_WAITQUEUE specifies the ratio of pages to
2670 * waitqueues, i.e. the size of the waitq table given the number of pages.
2671 */
2672#define PAGES_PER_WAITQUEUE 256
2673
cca448fe 2674#ifndef CONFIG_MEMORY_HOTPLUG
02b694de 2675static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
1da177e4
LT
2676{
2677 unsigned long size = 1;
2678
2679 pages /= PAGES_PER_WAITQUEUE;
2680
2681 while (size < pages)
2682 size <<= 1;
2683
2684 /*
2685 * Once we have dozens or even hundreds of threads sleeping
2686 * on IO we've got bigger problems than wait queue collision.
2687 * Limit the size of the wait table to a reasonable size.
2688 */
2689 size = min(size, 4096UL);
2690
2691 return max(size, 4UL);
2692}
cca448fe
YG
2693#else
2694/*
2695 * A zone's size might be changed by hot-add, so it is not possible to determine
2696 * a suitable size for its wait_table. So we use the maximum size now.
2697 *
2698 * The max wait table size = 4096 x sizeof(wait_queue_head_t). ie:
2699 *
2700 * i386 (preemption config) : 4096 x 16 = 64Kbyte.
2701 * ia64, x86-64 (no preemption): 4096 x 20 = 80Kbyte.
2702 * ia64, x86-64 (preemption) : 4096 x 24 = 96Kbyte.
2703 *
2704 * The maximum entries are prepared when a zone's memory is (512K + 256) pages
2705 * or more by the traditional way. (See above). It equals:
2706 *
2707 * i386, x86-64, powerpc(4K page size) : = ( 2G + 1M)byte.
2708 * ia64(16K page size) : = ( 8G + 4M)byte.
2709 * powerpc (64K page size) : = (32G +16M)byte.
2710 */
2711static inline unsigned long wait_table_hash_nr_entries(unsigned long pages)
2712{
2713 return 4096UL;
2714}
2715#endif
1da177e4
LT
2716
2717/*
2718 * This is an integer logarithm so that shifts can be used later
2719 * to extract the more random high bits from the multiplicative
2720 * hash function before the remainder is taken.
2721 */
2722static inline unsigned long wait_table_bits(unsigned long size)
2723{
2724 return ffz(~size);
2725}
2726
2727#define LONG_ALIGN(x) (((x)+(sizeof(long))-1)&~((sizeof(long))-1))
2728
56fd56b8 2729/*
d9c23400 2730 * Mark a number of pageblocks as MIGRATE_RESERVE. The number
41858966
MG
2731 * of blocks reserved is based on min_wmark_pages(zone). The memory within
2732 * the reserve will tend to store contiguous free pages. Setting min_free_kbytes
56fd56b8
MG
2733 * higher will lead to a bigger reserve which will get freed as contiguous
2734 * blocks as reclaim kicks in
2735 */
2736static void setup_zone_migrate_reserve(struct zone *zone)
2737{
2738 unsigned long start_pfn, pfn, end_pfn;
2739 struct page *page;
2740 unsigned long reserve, block_migratetype;
2741
2742 /* Get the start pfn, end pfn and the number of blocks to reserve */
2743 start_pfn = zone->zone_start_pfn;
2744 end_pfn = start_pfn + zone->spanned_pages;
41858966 2745 reserve = roundup(min_wmark_pages(zone), pageblock_nr_pages) >>
d9c23400 2746 pageblock_order;
56fd56b8 2747
d9c23400 2748 for (pfn = start_pfn; pfn < end_pfn; pfn += pageblock_nr_pages) {
56fd56b8
MG
2749 if (!pfn_valid(pfn))
2750 continue;
2751 page = pfn_to_page(pfn);
2752
344c790e
AL
2753 /* Watch out for overlapping nodes */
2754 if (page_to_nid(page) != zone_to_nid(zone))
2755 continue;
2756
56fd56b8
MG
2757 /* Blocks with reserved pages will never free, skip them. */
2758 if (PageReserved(page))
2759 continue;
2760
2761 block_migratetype = get_pageblock_migratetype(page);
2762
2763 /* If this block is reserved, account for it */
2764 if (reserve > 0 && block_migratetype == MIGRATE_RESERVE) {
2765 reserve--;
2766 continue;
2767 }
2768
2769 /* Suitable for reserving if this block is movable */
2770 if (reserve > 0 && block_migratetype == MIGRATE_MOVABLE) {
2771 set_pageblock_migratetype(page, MIGRATE_RESERVE);
2772 move_freepages_block(zone, page, MIGRATE_RESERVE);
2773 reserve--;
2774 continue;
2775 }
2776
2777 /*
2778 * If the reserve is met and this is a previous reserved block,
2779 * take it back
2780 */
2781 if (block_migratetype == MIGRATE_RESERVE) {
2782 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
2783 move_freepages_block(zone, page, MIGRATE_MOVABLE);
2784 }
2785 }
2786}
ac0e5b7a 2787
1da177e4
LT
2788/*
2789 * Initially all pages are reserved - free ones are freed
2790 * up by free_all_bootmem() once the early boot process is
2791 * done. Non-atomic initialization, single-pass.
2792 */
c09b4240 2793void __meminit memmap_init_zone(unsigned long size, int nid, unsigned long zone,
a2f3aa02 2794 unsigned long start_pfn, enum memmap_context context)
1da177e4 2795{
1da177e4 2796 struct page *page;
29751f69
AW
2797 unsigned long end_pfn = start_pfn + size;
2798 unsigned long pfn;
86051ca5 2799 struct zone *z;
1da177e4 2800
22b31eec
HD
2801 if (highest_memmap_pfn < end_pfn - 1)
2802 highest_memmap_pfn = end_pfn - 1;
2803
86051ca5 2804 z = &NODE_DATA(nid)->node_zones[zone];
cbe8dd4a 2805 for (pfn = start_pfn; pfn < end_pfn; pfn++) {
a2f3aa02
DH
2806 /*
2807 * There can be holes in boot-time mem_map[]s
2808 * handed to this function. They do not
2809 * exist on hotplugged memory.
2810 */
2811 if (context == MEMMAP_EARLY) {
2812 if (!early_pfn_valid(pfn))
2813 continue;
2814 if (!early_pfn_in_nid(pfn, nid))
2815 continue;
2816 }
d41dee36
AW
2817 page = pfn_to_page(pfn);
2818 set_page_links(page, zone, nid, pfn);
708614e6 2819 mminit_verify_page_links(page, zone, nid, pfn);
7835e98b 2820 init_page_count(page);
1da177e4
LT
2821 reset_page_mapcount(page);
2822 SetPageReserved(page);
b2a0ac88
MG
2823 /*
2824 * Mark the block movable so that blocks are reserved for
2825 * movable at startup. This will force kernel allocations
2826 * to reserve their blocks rather than leaking throughout
2827 * the address space during boot when many long-lived
56fd56b8
MG
2828 * kernel allocations are made. Later some blocks near
2829 * the start are marked MIGRATE_RESERVE by
2830 * setup_zone_migrate_reserve()
86051ca5
KH
2831 *
2832 * bitmap is created for zone's valid pfn range. but memmap
2833 * can be created for invalid pages (for alignment)
2834 * check here not to call set_pageblock_migratetype() against
2835 * pfn out of zone.
b2a0ac88 2836 */
86051ca5
KH
2837 if ((z->zone_start_pfn <= pfn)
2838 && (pfn < z->zone_start_pfn + z->spanned_pages)
2839 && !(pfn & (pageblock_nr_pages - 1)))
56fd56b8 2840 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
b2a0ac88 2841
1da177e4
LT
2842 INIT_LIST_HEAD(&page->lru);
2843#ifdef WANT_PAGE_VIRTUAL
2844 /* The shift won't overflow because ZONE_NORMAL is below 4G. */
2845 if (!is_highmem_idx(zone))
3212c6be 2846 set_page_address(page, __va(pfn << PAGE_SHIFT));
1da177e4 2847#endif
1da177e4
LT
2848 }
2849}
2850
1e548deb 2851static void __meminit zone_init_free_lists(struct zone *zone)
1da177e4 2852{
b2a0ac88
MG
2853 int order, t;
2854 for_each_migratetype_order(order, t) {
2855 INIT_LIST_HEAD(&zone->free_area[order].free_list[t]);
1da177e4
LT
2856 zone->free_area[order].nr_free = 0;
2857 }
2858}
2859
2860#ifndef __HAVE_ARCH_MEMMAP_INIT
2861#define memmap_init(size, nid, zone, start_pfn) \
a2f3aa02 2862 memmap_init_zone((size), (nid), (zone), (start_pfn), MEMMAP_EARLY)
1da177e4
LT
2863#endif
2864
1d6f4e60 2865static int zone_batchsize(struct zone *zone)
e7c8d5c9 2866{
3a6be87f 2867#ifdef CONFIG_MMU
e7c8d5c9
CL
2868 int batch;
2869
2870 /*
2871 * The per-cpu-pages pools are set to around 1000th of the
ba56e91c 2872 * size of the zone. But no more than 1/2 of a meg.
e7c8d5c9
CL
2873 *
2874 * OK, so we don't know how big the cache is. So guess.
2875 */
2876 batch = zone->present_pages / 1024;
ba56e91c
SR
2877 if (batch * PAGE_SIZE > 512 * 1024)
2878 batch = (512 * 1024) / PAGE_SIZE;
e7c8d5c9
CL
2879 batch /= 4; /* We effectively *= 4 below */
2880 if (batch < 1)
2881 batch = 1;
2882
2883 /*
0ceaacc9
NP
2884 * Clamp the batch to a 2^n - 1 value. Having a power
2885 * of 2 value was found to be more likely to have
2886 * suboptimal cache aliasing properties in some cases.
e7c8d5c9 2887 *
0ceaacc9
NP
2888 * For example if 2 tasks are alternately allocating
2889 * batches of pages, one task can end up with a lot
2890 * of pages of one half of the possible page colors
2891 * and the other with pages of the other colors.
e7c8d5c9 2892 */
9155203a 2893 batch = rounddown_pow_of_two(batch + batch/2) - 1;
ba56e91c 2894
e7c8d5c9 2895 return batch;
3a6be87f
DH
2896
2897#else
2898 /* The deferral and batching of frees should be suppressed under NOMMU
2899 * conditions.
2900 *
2901 * The problem is that NOMMU needs to be able to allocate large chunks
2902 * of contiguous memory as there's no hardware page translation to
2903 * assemble apparent contiguous memory from discontiguous pages.
2904 *
2905 * Queueing large contiguous runs of pages for batching, however,
2906 * causes the pages to actually be freed in smaller chunks. As there
2907 * can be a significant delay between the individual batches being
2908 * recycled, this leads to the once large chunks of space being
2909 * fragmented and becoming unavailable for high-order allocations.
2910 */
2911 return 0;
2912#endif
e7c8d5c9
CL
2913}
2914
b69a7288 2915static void setup_pageset(struct per_cpu_pageset *p, unsigned long batch)
2caaad41
CL
2916{
2917 struct per_cpu_pages *pcp;
2918
1c6fe946
MD
2919 memset(p, 0, sizeof(*p));
2920
3dfa5721 2921 pcp = &p->pcp;
2caaad41 2922 pcp->count = 0;
2caaad41
CL
2923 pcp->high = 6 * batch;
2924 pcp->batch = max(1UL, 1 * batch);
2925 INIT_LIST_HEAD(&pcp->list);
2caaad41
CL
2926}
2927
8ad4b1fb
RS
2928/*
2929 * setup_pagelist_highmark() sets the high water mark for hot per_cpu_pagelist
2930 * to the value high for the pageset p.
2931 */
2932
2933static void setup_pagelist_highmark(struct per_cpu_pageset *p,
2934 unsigned long high)
2935{
2936 struct per_cpu_pages *pcp;
2937
3dfa5721 2938 pcp = &p->pcp;
8ad4b1fb
RS
2939 pcp->high = high;
2940 pcp->batch = max(1UL, high/4);
2941 if ((high/4) > (PAGE_SHIFT * 8))
2942 pcp->batch = PAGE_SHIFT * 8;
2943}
2944
2945
e7c8d5c9
CL
2946#ifdef CONFIG_NUMA
2947/*
2caaad41
CL
2948 * Boot pageset table. One per cpu which is going to be used for all
2949 * zones and all nodes. The parameters will be set in such a way
2950 * that an item put on a list will immediately be handed over to
2951 * the buddy list. This is safe since pageset manipulation is done
2952 * with interrupts disabled.
2953 *
2954 * Some NUMA counter updates may also be caught by the boot pagesets.
b7c84c6a
CL
2955 *
2956 * The boot_pagesets must be kept even after bootup is complete for
2957 * unused processors and/or zones. They do play a role for bootstrapping
2958 * hotplugged processors.
2959 *
2960 * zoneinfo_show() and maybe other functions do
2961 * not check if the processor is online before following the pageset pointer.
2962 * Other parts of the kernel may not check if the zone is available.
2caaad41 2963 */
88a2a4ac 2964static struct per_cpu_pageset boot_pageset[NR_CPUS];
2caaad41
CL
2965
2966/*
2967 * Dynamically allocate memory for the
e7c8d5c9
CL
2968 * per cpu pageset array in struct zone.
2969 */
6292d9aa 2970static int __cpuinit process_zones(int cpu)
e7c8d5c9
CL
2971{
2972 struct zone *zone, *dzone;
37c0708d
CL
2973 int node = cpu_to_node(cpu);
2974
2975 node_set_state(node, N_CPU); /* this node has a cpu */
e7c8d5c9 2976
ee99c71c 2977 for_each_populated_zone(zone) {
23316bc8 2978 zone_pcp(zone, cpu) = kmalloc_node(sizeof(struct per_cpu_pageset),
37c0708d 2979 GFP_KERNEL, node);
23316bc8 2980 if (!zone_pcp(zone, cpu))
e7c8d5c9 2981 goto bad;
e7c8d5c9 2982
23316bc8 2983 setup_pageset(zone_pcp(zone, cpu), zone_batchsize(zone));
8ad4b1fb
RS
2984
2985 if (percpu_pagelist_fraction)
2986 setup_pagelist_highmark(zone_pcp(zone, cpu),
2987 (zone->present_pages / percpu_pagelist_fraction));
e7c8d5c9
CL
2988 }
2989
2990 return 0;
2991bad:
2992 for_each_zone(dzone) {
64191688
AM
2993 if (!populated_zone(dzone))
2994 continue;
e7c8d5c9
CL
2995 if (dzone == zone)
2996 break;
23316bc8
NP
2997 kfree(zone_pcp(dzone, cpu));
2998 zone_pcp(dzone, cpu) = NULL;
e7c8d5c9
CL
2999 }
3000 return -ENOMEM;
3001}
3002
3003static inline void free_zone_pagesets(int cpu)
3004{
e7c8d5c9
CL
3005 struct zone *zone;
3006
3007 for_each_zone(zone) {
3008 struct per_cpu_pageset *pset = zone_pcp(zone, cpu);
3009
f3ef9ead
DR
3010 /* Free per_cpu_pageset if it is slab allocated */
3011 if (pset != &boot_pageset[cpu])
3012 kfree(pset);
e7c8d5c9 3013 zone_pcp(zone, cpu) = NULL;
e7c8d5c9 3014 }
e7c8d5c9
CL
3015}
3016
9c7b216d 3017static int __cpuinit pageset_cpuup_callback(struct notifier_block *nfb,
e7c8d5c9
CL
3018 unsigned long action,
3019 void *hcpu)
3020{
3021 int cpu = (long)hcpu;
3022 int ret = NOTIFY_OK;
3023
3024 switch (action) {
ce421c79 3025 case CPU_UP_PREPARE:
8bb78442 3026 case CPU_UP_PREPARE_FROZEN:
ce421c79
AW
3027 if (process_zones(cpu))
3028 ret = NOTIFY_BAD;
3029 break;
3030 case CPU_UP_CANCELED:
8bb78442 3031 case CPU_UP_CANCELED_FROZEN:
ce421c79 3032 case CPU_DEAD:
8bb78442 3033 case CPU_DEAD_FROZEN:
ce421c79
AW
3034 free_zone_pagesets(cpu);
3035 break;
3036 default:
3037 break;
e7c8d5c9
CL
3038 }
3039 return ret;
3040}
3041
74b85f37 3042static struct notifier_block __cpuinitdata pageset_notifier =
e7c8d5c9
CL
3043 { &pageset_cpuup_callback, NULL, 0 };
3044
78d9955b 3045void __init setup_per_cpu_pageset(void)
e7c8d5c9
CL
3046{
3047 int err;
3048
3049 /* Initialize per_cpu_pageset for cpu 0.
3050 * A cpuup callback will do this for every cpu
3051 * as it comes online
3052 */
3053 err = process_zones(smp_processor_id());
3054 BUG_ON(err);
3055 register_cpu_notifier(&pageset_notifier);
3056}
3057
3058#endif
3059
577a32f6 3060static noinline __init_refok
cca448fe 3061int zone_wait_table_init(struct zone *zone, unsigned long zone_size_pages)
ed8ece2e
DH
3062{
3063 int i;
3064 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe 3065 size_t alloc_size;
ed8ece2e
DH
3066
3067 /*
3068 * The per-page waitqueue mechanism uses hashed waitqueues
3069 * per zone.
3070 */
02b694de
YG
3071 zone->wait_table_hash_nr_entries =
3072 wait_table_hash_nr_entries(zone_size_pages);
3073 zone->wait_table_bits =
3074 wait_table_bits(zone->wait_table_hash_nr_entries);
cca448fe
YG
3075 alloc_size = zone->wait_table_hash_nr_entries
3076 * sizeof(wait_queue_head_t);
3077
cd94b9db 3078 if (!slab_is_available()) {
cca448fe
YG
3079 zone->wait_table = (wait_queue_head_t *)
3080 alloc_bootmem_node(pgdat, alloc_size);
3081 } else {
3082 /*
3083 * This case means that a zone whose size was 0 gets new memory
3084 * via memory hot-add.
3085 * But it may be the case that a new node was hot-added. In
3086 * this case vmalloc() will not be able to use this new node's
3087 * memory - this wait_table must be initialized to use this new
3088 * node itself as well.
3089 * To use this new node's memory, further consideration will be
3090 * necessary.
3091 */
8691f3a7 3092 zone->wait_table = vmalloc(alloc_size);
cca448fe
YG
3093 }
3094 if (!zone->wait_table)
3095 return -ENOMEM;
ed8ece2e 3096
02b694de 3097 for(i = 0; i < zone->wait_table_hash_nr_entries; ++i)
ed8ece2e 3098 init_waitqueue_head(zone->wait_table + i);
cca448fe
YG
3099
3100 return 0;
ed8ece2e
DH
3101}
3102
c09b4240 3103static __meminit void zone_pcp_init(struct zone *zone)
ed8ece2e
DH
3104{
3105 int cpu;
3106 unsigned long batch = zone_batchsize(zone);
3107
3108 for (cpu = 0; cpu < NR_CPUS; cpu++) {
3109#ifdef CONFIG_NUMA
3110 /* Early boot. Slab allocator not functional yet */
23316bc8 3111 zone_pcp(zone, cpu) = &boot_pageset[cpu];
ed8ece2e
DH
3112 setup_pageset(&boot_pageset[cpu],0);
3113#else
3114 setup_pageset(zone_pcp(zone,cpu), batch);
3115#endif
3116 }
f5335c0f
AB
3117 if (zone->present_pages)
3118 printk(KERN_DEBUG " %s zone: %lu pages, LIFO batch:%lu\n",
3119 zone->name, zone->present_pages, batch);
ed8ece2e
DH
3120}
3121
718127cc
YG
3122__meminit int init_currently_empty_zone(struct zone *zone,
3123 unsigned long zone_start_pfn,
a2f3aa02
DH
3124 unsigned long size,
3125 enum memmap_context context)
ed8ece2e
DH
3126{
3127 struct pglist_data *pgdat = zone->zone_pgdat;
cca448fe
YG
3128 int ret;
3129 ret = zone_wait_table_init(zone, size);
3130 if (ret)
3131 return ret;
ed8ece2e
DH
3132 pgdat->nr_zones = zone_idx(zone) + 1;
3133
ed8ece2e
DH
3134 zone->zone_start_pfn = zone_start_pfn;
3135
708614e6
MG
3136 mminit_dprintk(MMINIT_TRACE, "memmap_init",
3137 "Initialising map node %d zone %lu pfns %lu -> %lu\n",
3138 pgdat->node_id,
3139 (unsigned long)zone_idx(zone),
3140 zone_start_pfn, (zone_start_pfn + size));
3141
1e548deb 3142 zone_init_free_lists(zone);
718127cc
YG
3143
3144 return 0;
ed8ece2e
DH
3145}
3146
c713216d
MG
3147#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3148/*
3149 * Basic iterator support. Return the first range of PFNs for a node
3150 * Note: nid == MAX_NUMNODES returns first region regardless of node
3151 */
a3142c8e 3152static int __meminit first_active_region_index_in_nid(int nid)
c713216d
MG
3153{
3154 int i;
3155
3156 for (i = 0; i < nr_nodemap_entries; i++)
3157 if (nid == MAX_NUMNODES || early_node_map[i].nid == nid)
3158 return i;
3159
3160 return -1;
3161}
3162
3163/*
3164 * Basic iterator support. Return the next active range of PFNs for a node
183ff22b 3165 * Note: nid == MAX_NUMNODES returns next region regardless of node
c713216d 3166 */
a3142c8e 3167static int __meminit next_active_region_index_in_nid(int index, int nid)
c713216d
MG
3168{
3169 for (index = index + 1; index < nr_nodemap_entries; index++)
3170 if (nid == MAX_NUMNODES || early_node_map[index].nid == nid)
3171 return index;
3172
3173 return -1;
3174}
3175
3176#ifndef CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID
3177/*
3178 * Required by SPARSEMEM. Given a PFN, return what node the PFN is on.
3179 * Architectures may implement their own version but if add_active_range()
3180 * was used and there are no special requirements, this is a convenient
3181 * alternative
3182 */
f2dbcfa7 3183int __meminit __early_pfn_to_nid(unsigned long pfn)
c713216d
MG
3184{
3185 int i;
3186
3187 for (i = 0; i < nr_nodemap_entries; i++) {
3188 unsigned long start_pfn = early_node_map[i].start_pfn;
3189 unsigned long end_pfn = early_node_map[i].end_pfn;
3190
3191 if (start_pfn <= pfn && pfn < end_pfn)
3192 return early_node_map[i].nid;
3193 }
cc2559bc
KH
3194 /* This is a memory hole */
3195 return -1;
c713216d
MG
3196}
3197#endif /* CONFIG_HAVE_ARCH_EARLY_PFN_TO_NID */
3198
f2dbcfa7
KH
3199int __meminit early_pfn_to_nid(unsigned long pfn)
3200{
cc2559bc
KH
3201 int nid;
3202
3203 nid = __early_pfn_to_nid(pfn);
3204 if (nid >= 0)
3205 return nid;
3206 /* just returns 0 */
3207 return 0;
f2dbcfa7
KH
3208}
3209
cc2559bc
KH
3210#ifdef CONFIG_NODES_SPAN_OTHER_NODES
3211bool __meminit early_pfn_in_nid(unsigned long pfn, int node)
3212{
3213 int nid;
3214
3215 nid = __early_pfn_to_nid(pfn);
3216 if (nid >= 0 && nid != node)
3217 return false;
3218 return true;
3219}
3220#endif
f2dbcfa7 3221
c713216d
MG
3222/* Basic iterator support to walk early_node_map[] */
3223#define for_each_active_range_index_in_nid(i, nid) \
3224 for (i = first_active_region_index_in_nid(nid); i != -1; \
3225 i = next_active_region_index_in_nid(i, nid))
3226
3227/**
3228 * free_bootmem_with_active_regions - Call free_bootmem_node for each active range
88ca3b94
RD
3229 * @nid: The node to free memory on. If MAX_NUMNODES, all nodes are freed.
3230 * @max_low_pfn: The highest PFN that will be passed to free_bootmem_node
c713216d
MG
3231 *
3232 * If an architecture guarantees that all ranges registered with
3233 * add_active_ranges() contain no holes and may be freed, this
3234 * this function may be used instead of calling free_bootmem() manually.
3235 */
3236void __init free_bootmem_with_active_regions(int nid,
3237 unsigned long max_low_pfn)
3238{
3239 int i;
3240
3241 for_each_active_range_index_in_nid(i, nid) {
3242 unsigned long size_pages = 0;
3243 unsigned long end_pfn = early_node_map[i].end_pfn;
3244
3245 if (early_node_map[i].start_pfn >= max_low_pfn)
3246 continue;
3247
3248 if (end_pfn > max_low_pfn)
3249 end_pfn = max_low_pfn;
3250
3251 size_pages = end_pfn - early_node_map[i].start_pfn;
3252 free_bootmem_node(NODE_DATA(early_node_map[i].nid),
3253 PFN_PHYS(early_node_map[i].start_pfn),
3254 size_pages << PAGE_SHIFT);
3255 }
3256}
3257
b5bc6c0e
YL
3258void __init work_with_active_regions(int nid, work_fn_t work_fn, void *data)
3259{
3260 int i;
d52d53b8 3261 int ret;
b5bc6c0e 3262
d52d53b8
YL
3263 for_each_active_range_index_in_nid(i, nid) {
3264 ret = work_fn(early_node_map[i].start_pfn,
3265 early_node_map[i].end_pfn, data);
3266 if (ret)
3267 break;
3268 }
b5bc6c0e 3269}
c713216d
MG
3270/**
3271 * sparse_memory_present_with_active_regions - Call memory_present for each active range
88ca3b94 3272 * @nid: The node to call memory_present for. If MAX_NUMNODES, all nodes will be used.
c713216d
MG
3273 *
3274 * If an architecture guarantees that all ranges registered with
3275 * add_active_ranges() contain no holes and may be freed, this
88ca3b94 3276 * function may be used instead of calling memory_present() manually.
c713216d
MG
3277 */
3278void __init sparse_memory_present_with_active_regions(int nid)
3279{
3280 int i;
3281
3282 for_each_active_range_index_in_nid(i, nid)
3283 memory_present(early_node_map[i].nid,
3284 early_node_map[i].start_pfn,
3285 early_node_map[i].end_pfn);
3286}
3287
3288/**
3289 * get_pfn_range_for_nid - Return the start and end page frames for a node
88ca3b94
RD
3290 * @nid: The nid to return the range for. If MAX_NUMNODES, the min and max PFN are returned.
3291 * @start_pfn: Passed by reference. On return, it will have the node start_pfn.
3292 * @end_pfn: Passed by reference. On return, it will have the node end_pfn.
c713216d
MG
3293 *
3294 * It returns the start and end page frame of a node based on information
3295 * provided by an arch calling add_active_range(). If called for a node
3296 * with no available memory, a warning is printed and the start and end
88ca3b94 3297 * PFNs will be 0.
c713216d 3298 */
a3142c8e 3299void __meminit get_pfn_range_for_nid(unsigned int nid,
c713216d
MG
3300 unsigned long *start_pfn, unsigned long *end_pfn)
3301{
3302 int i;
3303 *start_pfn = -1UL;
3304 *end_pfn = 0;
3305
3306 for_each_active_range_index_in_nid(i, nid) {
3307 *start_pfn = min(*start_pfn, early_node_map[i].start_pfn);
3308 *end_pfn = max(*end_pfn, early_node_map[i].end_pfn);
3309 }
3310
633c0666 3311 if (*start_pfn == -1UL)
c713216d 3312 *start_pfn = 0;
c713216d
MG
3313}
3314
2a1e274a
MG
3315/*
3316 * This finds a zone that can be used for ZONE_MOVABLE pages. The
3317 * assumption is made that zones within a node are ordered in monotonic
3318 * increasing memory addresses so that the "highest" populated zone is used
3319 */
b69a7288 3320static void __init find_usable_zone_for_movable(void)
2a1e274a
MG
3321{
3322 int zone_index;
3323 for (zone_index = MAX_NR_ZONES - 1; zone_index >= 0; zone_index--) {
3324 if (zone_index == ZONE_MOVABLE)
3325 continue;
3326
3327 if (arch_zone_highest_possible_pfn[zone_index] >
3328 arch_zone_lowest_possible_pfn[zone_index])
3329 break;
3330 }
3331
3332 VM_BUG_ON(zone_index == -1);
3333 movable_zone = zone_index;
3334}
3335
3336/*
3337 * The zone ranges provided by the architecture do not include ZONE_MOVABLE
3338 * because it is sized independant of architecture. Unlike the other zones,
3339 * the starting point for ZONE_MOVABLE is not fixed. It may be different
3340 * in each node depending on the size of each node and how evenly kernelcore
3341 * is distributed. This helper function adjusts the zone ranges
3342 * provided by the architecture for a given node by using the end of the
3343 * highest usable zone for ZONE_MOVABLE. This preserves the assumption that
3344 * zones within a node are in order of monotonic increases memory addresses
3345 */
b69a7288 3346static void __meminit adjust_zone_range_for_zone_movable(int nid,
2a1e274a
MG
3347 unsigned long zone_type,
3348 unsigned long node_start_pfn,
3349 unsigned long node_end_pfn,
3350 unsigned long *zone_start_pfn,
3351 unsigned long *zone_end_pfn)
3352{
3353 /* Only adjust if ZONE_MOVABLE is on this node */
3354 if (zone_movable_pfn[nid]) {
3355 /* Size ZONE_MOVABLE */
3356 if (zone_type == ZONE_MOVABLE) {
3357 *zone_start_pfn = zone_movable_pfn[nid];
3358 *zone_end_pfn = min(node_end_pfn,
3359 arch_zone_highest_possible_pfn[movable_zone]);
3360
3361 /* Adjust for ZONE_MOVABLE starting within this range */
3362 } else if (*zone_start_pfn < zone_movable_pfn[nid] &&
3363 *zone_end_pfn > zone_movable_pfn[nid]) {
3364 *zone_end_pfn = zone_movable_pfn[nid];
3365
3366 /* Check if this whole range is within ZONE_MOVABLE */
3367 } else if (*zone_start_pfn >= zone_movable_pfn[nid])
3368 *zone_start_pfn = *zone_end_pfn;
3369 }
3370}
3371
c713216d
MG
3372/*
3373 * Return the number of pages a zone spans in a node, including holes
3374 * present_pages = zone_spanned_pages_in_node() - zone_absent_pages_in_node()
3375 */
6ea6e688 3376static unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3377 unsigned long zone_type,
3378 unsigned long *ignored)
3379{
3380 unsigned long node_start_pfn, node_end_pfn;
3381 unsigned long zone_start_pfn, zone_end_pfn;
3382
3383 /* Get the start and end of the node and zone */
3384 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3385 zone_start_pfn = arch_zone_lowest_possible_pfn[zone_type];
3386 zone_end_pfn = arch_zone_highest_possible_pfn[zone_type];
2a1e274a
MG
3387 adjust_zone_range_for_zone_movable(nid, zone_type,
3388 node_start_pfn, node_end_pfn,
3389 &zone_start_pfn, &zone_end_pfn);
c713216d
MG
3390
3391 /* Check that this node has pages within the zone's required range */
3392 if (zone_end_pfn < node_start_pfn || zone_start_pfn > node_end_pfn)
3393 return 0;
3394
3395 /* Move the zone boundaries inside the node if necessary */
3396 zone_end_pfn = min(zone_end_pfn, node_end_pfn);
3397 zone_start_pfn = max(zone_start_pfn, node_start_pfn);
3398
3399 /* Return the spanned pages */
3400 return zone_end_pfn - zone_start_pfn;
3401}
3402
3403/*
3404 * Return the number of holes in a range on a node. If nid is MAX_NUMNODES,
88ca3b94 3405 * then all holes in the requested range will be accounted for.
c713216d 3406 */
b69a7288 3407static unsigned long __meminit __absent_pages_in_range(int nid,
c713216d
MG
3408 unsigned long range_start_pfn,
3409 unsigned long range_end_pfn)
3410{
3411 int i = 0;
3412 unsigned long prev_end_pfn = 0, hole_pages = 0;
3413 unsigned long start_pfn;
3414
3415 /* Find the end_pfn of the first active range of pfns in the node */
3416 i = first_active_region_index_in_nid(nid);
3417 if (i == -1)
3418 return 0;
3419
b5445f95
MG
3420 prev_end_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3421
9c7cd687
MG
3422 /* Account for ranges before physical memory on this node */
3423 if (early_node_map[i].start_pfn > range_start_pfn)
b5445f95 3424 hole_pages = prev_end_pfn - range_start_pfn;
c713216d
MG
3425
3426 /* Find all holes for the zone within the node */
3427 for (; i != -1; i = next_active_region_index_in_nid(i, nid)) {
3428
3429 /* No need to continue if prev_end_pfn is outside the zone */
3430 if (prev_end_pfn >= range_end_pfn)
3431 break;
3432
3433 /* Make sure the end of the zone is not within the hole */
3434 start_pfn = min(early_node_map[i].start_pfn, range_end_pfn);
3435 prev_end_pfn = max(prev_end_pfn, range_start_pfn);
3436
3437 /* Update the hole size cound and move on */
3438 if (start_pfn > range_start_pfn) {
3439 BUG_ON(prev_end_pfn > start_pfn);
3440 hole_pages += start_pfn - prev_end_pfn;
3441 }
3442 prev_end_pfn = early_node_map[i].end_pfn;
3443 }
3444
9c7cd687
MG
3445 /* Account for ranges past physical memory on this node */
3446 if (range_end_pfn > prev_end_pfn)
0c6cb974 3447 hole_pages += range_end_pfn -
9c7cd687
MG
3448 max(range_start_pfn, prev_end_pfn);
3449
c713216d
MG
3450 return hole_pages;
3451}
3452
3453/**
3454 * absent_pages_in_range - Return number of page frames in holes within a range
3455 * @start_pfn: The start PFN to start searching for holes
3456 * @end_pfn: The end PFN to stop searching for holes
3457 *
88ca3b94 3458 * It returns the number of pages frames in memory holes within a range.
c713216d
MG
3459 */
3460unsigned long __init absent_pages_in_range(unsigned long start_pfn,
3461 unsigned long end_pfn)
3462{
3463 return __absent_pages_in_range(MAX_NUMNODES, start_pfn, end_pfn);
3464}
3465
3466/* Return the number of page frames in holes in a zone on a node */
6ea6e688 3467static unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3468 unsigned long zone_type,
3469 unsigned long *ignored)
3470{
9c7cd687
MG
3471 unsigned long node_start_pfn, node_end_pfn;
3472 unsigned long zone_start_pfn, zone_end_pfn;
3473
3474 get_pfn_range_for_nid(nid, &node_start_pfn, &node_end_pfn);
3475 zone_start_pfn = max(arch_zone_lowest_possible_pfn[zone_type],
3476 node_start_pfn);
3477 zone_end_pfn = min(arch_zone_highest_possible_pfn[zone_type],
3478 node_end_pfn);
3479
2a1e274a
MG
3480 adjust_zone_range_for_zone_movable(nid, zone_type,
3481 node_start_pfn, node_end_pfn,
3482 &zone_start_pfn, &zone_end_pfn);
9c7cd687 3483 return __absent_pages_in_range(nid, zone_start_pfn, zone_end_pfn);
c713216d 3484}
0e0b864e 3485
c713216d 3486#else
6ea6e688 3487static inline unsigned long __meminit zone_spanned_pages_in_node(int nid,
c713216d
MG
3488 unsigned long zone_type,
3489 unsigned long *zones_size)
3490{
3491 return zones_size[zone_type];
3492}
3493
6ea6e688 3494static inline unsigned long __meminit zone_absent_pages_in_node(int nid,
c713216d
MG
3495 unsigned long zone_type,
3496 unsigned long *zholes_size)
3497{
3498 if (!zholes_size)
3499 return 0;
3500
3501 return zholes_size[zone_type];
3502}
0e0b864e 3503
c713216d
MG
3504#endif
3505
a3142c8e 3506static void __meminit calculate_node_totalpages(struct pglist_data *pgdat,
c713216d
MG
3507 unsigned long *zones_size, unsigned long *zholes_size)
3508{
3509 unsigned long realtotalpages, totalpages = 0;
3510 enum zone_type i;
3511
3512 for (i = 0; i < MAX_NR_ZONES; i++)
3513 totalpages += zone_spanned_pages_in_node(pgdat->node_id, i,
3514 zones_size);
3515 pgdat->node_spanned_pages = totalpages;
3516
3517 realtotalpages = totalpages;
3518 for (i = 0; i < MAX_NR_ZONES; i++)
3519 realtotalpages -=
3520 zone_absent_pages_in_node(pgdat->node_id, i,
3521 zholes_size);
3522 pgdat->node_present_pages = realtotalpages;
3523 printk(KERN_DEBUG "On node %d totalpages: %lu\n", pgdat->node_id,
3524 realtotalpages);
3525}
3526
835c134e
MG
3527#ifndef CONFIG_SPARSEMEM
3528/*
3529 * Calculate the size of the zone->blockflags rounded to an unsigned long
d9c23400
MG
3530 * Start by making sure zonesize is a multiple of pageblock_order by rounding
3531 * up. Then use 1 NR_PAGEBLOCK_BITS worth of bits per pageblock, finally
835c134e
MG
3532 * round what is now in bits to nearest long in bits, then return it in
3533 * bytes.
3534 */
3535static unsigned long __init usemap_size(unsigned long zonesize)
3536{
3537 unsigned long usemapsize;
3538
d9c23400
MG
3539 usemapsize = roundup(zonesize, pageblock_nr_pages);
3540 usemapsize = usemapsize >> pageblock_order;
835c134e
MG
3541 usemapsize *= NR_PAGEBLOCK_BITS;
3542 usemapsize = roundup(usemapsize, 8 * sizeof(unsigned long));
3543
3544 return usemapsize / 8;
3545}
3546
3547static void __init setup_usemap(struct pglist_data *pgdat,
3548 struct zone *zone, unsigned long zonesize)
3549{
3550 unsigned long usemapsize = usemap_size(zonesize);
3551 zone->pageblock_flags = NULL;
58a01a45 3552 if (usemapsize)
835c134e 3553 zone->pageblock_flags = alloc_bootmem_node(pgdat, usemapsize);
835c134e
MG
3554}
3555#else
3556static void inline setup_usemap(struct pglist_data *pgdat,
3557 struct zone *zone, unsigned long zonesize) {}
3558#endif /* CONFIG_SPARSEMEM */
3559
d9c23400 3560#ifdef CONFIG_HUGETLB_PAGE_SIZE_VARIABLE
ba72cb8c
MG
3561
3562/* Return a sensible default order for the pageblock size. */
3563static inline int pageblock_default_order(void)
3564{
3565 if (HPAGE_SHIFT > PAGE_SHIFT)
3566 return HUGETLB_PAGE_ORDER;
3567
3568 return MAX_ORDER-1;
3569}
3570
d9c23400
MG
3571/* Initialise the number of pages represented by NR_PAGEBLOCK_BITS */
3572static inline void __init set_pageblock_order(unsigned int order)
3573{
3574 /* Check that pageblock_nr_pages has not already been setup */
3575 if (pageblock_order)
3576 return;
3577
3578 /*
3579 * Assume the largest contiguous order of interest is a huge page.
3580 * This value may be variable depending on boot parameters on IA64
3581 */
3582 pageblock_order = order;
3583}
3584#else /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3585
ba72cb8c
MG
3586/*
3587 * When CONFIG_HUGETLB_PAGE_SIZE_VARIABLE is not set, set_pageblock_order()
3588 * and pageblock_default_order() are unused as pageblock_order is set
3589 * at compile-time. See include/linux/pageblock-flags.h for the values of
3590 * pageblock_order based on the kernel config
3591 */
3592static inline int pageblock_default_order(unsigned int order)
3593{
3594 return MAX_ORDER-1;
3595}
d9c23400
MG
3596#define set_pageblock_order(x) do {} while (0)
3597
3598#endif /* CONFIG_HUGETLB_PAGE_SIZE_VARIABLE */
3599
1da177e4
LT
3600/*
3601 * Set up the zone data structures:
3602 * - mark all pages reserved
3603 * - mark all memory queues empty
3604 * - clear the memory bitmaps
3605 */
b5a0e011 3606static void __paginginit free_area_init_core(struct pglist_data *pgdat,
1da177e4
LT
3607 unsigned long *zones_size, unsigned long *zholes_size)
3608{
2f1b6248 3609 enum zone_type j;
ed8ece2e 3610 int nid = pgdat->node_id;
1da177e4 3611 unsigned long zone_start_pfn = pgdat->node_start_pfn;
718127cc 3612 int ret;
1da177e4 3613
208d54e5 3614 pgdat_resize_init(pgdat);
1da177e4
LT
3615 pgdat->nr_zones = 0;
3616 init_waitqueue_head(&pgdat->kswapd_wait);
3617 pgdat->kswapd_max_order = 0;
52d4b9ac 3618 pgdat_page_cgroup_init(pgdat);
1da177e4
LT
3619
3620 for (j = 0; j < MAX_NR_ZONES; j++) {
3621 struct zone *zone = pgdat->node_zones + j;
0e0b864e 3622 unsigned long size, realsize, memmap_pages;
b69408e8 3623 enum lru_list l;
1da177e4 3624
c713216d
MG
3625 size = zone_spanned_pages_in_node(nid, j, zones_size);
3626 realsize = size - zone_absent_pages_in_node(nid, j,
3627 zholes_size);
1da177e4 3628
0e0b864e
MG
3629 /*
3630 * Adjust realsize so that it accounts for how much memory
3631 * is used by this zone for memmap. This affects the watermark
3632 * and per-cpu initialisations
3633 */
f7232154
JW
3634 memmap_pages =
3635 PAGE_ALIGN(size * sizeof(struct page)) >> PAGE_SHIFT;
0e0b864e
MG
3636 if (realsize >= memmap_pages) {
3637 realsize -= memmap_pages;
5594c8c8
YL
3638 if (memmap_pages)
3639 printk(KERN_DEBUG
3640 " %s zone: %lu pages used for memmap\n",
3641 zone_names[j], memmap_pages);
0e0b864e
MG
3642 } else
3643 printk(KERN_WARNING
3644 " %s zone: %lu pages exceeds realsize %lu\n",
3645 zone_names[j], memmap_pages, realsize);
3646
6267276f
CL
3647 /* Account for reserved pages */
3648 if (j == 0 && realsize > dma_reserve) {
0e0b864e 3649 realsize -= dma_reserve;
d903ef9f 3650 printk(KERN_DEBUG " %s zone: %lu pages reserved\n",
6267276f 3651 zone_names[0], dma_reserve);
0e0b864e
MG
3652 }
3653
98d2b0eb 3654 if (!is_highmem_idx(j))
1da177e4
LT
3655 nr_kernel_pages += realsize;
3656 nr_all_pages += realsize;
3657
3658 zone->spanned_pages = size;
3659 zone->present_pages = realsize;
9614634f 3660#ifdef CONFIG_NUMA
d5f541ed 3661 zone->node = nid;
8417bba4 3662 zone->min_unmapped_pages = (realsize*sysctl_min_unmapped_ratio)
9614634f 3663 / 100;
0ff38490 3664 zone->min_slab_pages = (realsize * sysctl_min_slab_ratio) / 100;
9614634f 3665#endif
1da177e4
LT
3666 zone->name = zone_names[j];
3667 spin_lock_init(&zone->lock);
3668 spin_lock_init(&zone->lru_lock);
bdc8cb98 3669 zone_seqlock_init(zone);
1da177e4 3670 zone->zone_pgdat = pgdat;
1da177e4 3671
3bb1a852 3672 zone->prev_priority = DEF_PRIORITY;
1da177e4 3673
ed8ece2e 3674 zone_pcp_init(zone);
b69408e8
CL
3675 for_each_lru(l) {
3676 INIT_LIST_HEAD(&zone->lru[l].list);
6e08a369 3677 zone->lru[l].nr_saved_scan = 0;
b69408e8 3678 }
6e901571
KM
3679 zone->reclaim_stat.recent_rotated[0] = 0;
3680 zone->reclaim_stat.recent_rotated[1] = 0;
3681 zone->reclaim_stat.recent_scanned[0] = 0;
3682 zone->reclaim_stat.recent_scanned[1] = 0;
2244b95a 3683 zap_zone_vm_stats(zone);
e815af95 3684 zone->flags = 0;
1da177e4
LT
3685 if (!size)
3686 continue;
3687
ba72cb8c 3688 set_pageblock_order(pageblock_default_order());
835c134e 3689 setup_usemap(pgdat, zone, size);
a2f3aa02
DH
3690 ret = init_currently_empty_zone(zone, zone_start_pfn,
3691 size, MEMMAP_EARLY);
718127cc 3692 BUG_ON(ret);
76cdd58e 3693 memmap_init(size, nid, j, zone_start_pfn);
1da177e4 3694 zone_start_pfn += size;
1da177e4
LT
3695 }
3696}
3697
577a32f6 3698static void __init_refok alloc_node_mem_map(struct pglist_data *pgdat)
1da177e4 3699{
1da177e4
LT
3700 /* Skip empty nodes */
3701 if (!pgdat->node_spanned_pages)
3702 return;
3703
d41dee36 3704#ifdef CONFIG_FLAT_NODE_MEM_MAP
1da177e4
LT
3705 /* ia64 gets its own node_mem_map, before this, without bootmem */
3706 if (!pgdat->node_mem_map) {
e984bb43 3707 unsigned long size, start, end;
d41dee36
AW
3708 struct page *map;
3709
e984bb43
BP
3710 /*
3711 * The zone's endpoints aren't required to be MAX_ORDER
3712 * aligned but the node_mem_map endpoints must be in order
3713 * for the buddy allocator to function correctly.
3714 */
3715 start = pgdat->node_start_pfn & ~(MAX_ORDER_NR_PAGES - 1);
3716 end = pgdat->node_start_pfn + pgdat->node_spanned_pages;
3717 end = ALIGN(end, MAX_ORDER_NR_PAGES);
3718 size = (end - start) * sizeof(struct page);
6f167ec7
DH
3719 map = alloc_remap(pgdat->node_id, size);
3720 if (!map)
3721 map = alloc_bootmem_node(pgdat, size);
e984bb43 3722 pgdat->node_mem_map = map + (pgdat->node_start_pfn - start);
1da177e4 3723 }
12d810c1 3724#ifndef CONFIG_NEED_MULTIPLE_NODES
1da177e4
LT
3725 /*
3726 * With no DISCONTIG, the global mem_map is just set as node 0's
3727 */
c713216d 3728 if (pgdat == NODE_DATA(0)) {
1da177e4 3729 mem_map = NODE_DATA(0)->node_mem_map;
c713216d
MG
3730#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
3731 if (page_to_pfn(mem_map) != pgdat->node_start_pfn)
467bc461 3732 mem_map -= (pgdat->node_start_pfn - ARCH_PFN_OFFSET);
c713216d
MG
3733#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
3734 }
1da177e4 3735#endif
d41dee36 3736#endif /* CONFIG_FLAT_NODE_MEM_MAP */
1da177e4
LT
3737}
3738
9109fb7b
JW
3739void __paginginit free_area_init_node(int nid, unsigned long *zones_size,
3740 unsigned long node_start_pfn, unsigned long *zholes_size)
1da177e4 3741{
9109fb7b
JW
3742 pg_data_t *pgdat = NODE_DATA(nid);
3743
1da177e4
LT
3744 pgdat->node_id = nid;
3745 pgdat->node_start_pfn = node_start_pfn;
c713216d 3746 calculate_node_totalpages(pgdat, zones_size, zholes_size);
1da177e4
LT
3747
3748 alloc_node_mem_map(pgdat);
e8c27ac9
YL
3749#ifdef CONFIG_FLAT_NODE_MEM_MAP
3750 printk(KERN_DEBUG "free_area_init_node: node %d, pgdat %08lx, node_mem_map %08lx\n",
3751 nid, (unsigned long)pgdat,
3752 (unsigned long)pgdat->node_mem_map);
3753#endif
1da177e4
LT
3754
3755 free_area_init_core(pgdat, zones_size, zholes_size);
3756}
3757
c713216d 3758#ifdef CONFIG_ARCH_POPULATES_NODE_MAP
418508c1
MS
3759
3760#if MAX_NUMNODES > 1
3761/*
3762 * Figure out the number of possible node ids.
3763 */
3764static void __init setup_nr_node_ids(void)
3765{
3766 unsigned int node;
3767 unsigned int highest = 0;
3768
3769 for_each_node_mask(node, node_possible_map)
3770 highest = node;
3771 nr_node_ids = highest + 1;
3772}
3773#else
3774static inline void setup_nr_node_ids(void)
3775{
3776}
3777#endif
3778
c713216d
MG
3779/**
3780 * add_active_range - Register a range of PFNs backed by physical memory
3781 * @nid: The node ID the range resides on
3782 * @start_pfn: The start PFN of the available physical memory
3783 * @end_pfn: The end PFN of the available physical memory
3784 *
3785 * These ranges are stored in an early_node_map[] and later used by
3786 * free_area_init_nodes() to calculate zone sizes and holes. If the
3787 * range spans a memory hole, it is up to the architecture to ensure
3788 * the memory is not freed by the bootmem allocator. If possible
3789 * the range being registered will be merged with existing ranges.
3790 */
3791void __init add_active_range(unsigned int nid, unsigned long start_pfn,
3792 unsigned long end_pfn)
3793{
3794 int i;
3795
6b74ab97
MG
3796 mminit_dprintk(MMINIT_TRACE, "memory_register",
3797 "Entering add_active_range(%d, %#lx, %#lx) "
3798 "%d entries of %d used\n",
3799 nid, start_pfn, end_pfn,
3800 nr_nodemap_entries, MAX_ACTIVE_REGIONS);
c713216d 3801
2dbb51c4
MG
3802 mminit_validate_memmodel_limits(&start_pfn, &end_pfn);
3803
c713216d
MG
3804 /* Merge with existing active regions if possible */
3805 for (i = 0; i < nr_nodemap_entries; i++) {
3806 if (early_node_map[i].nid != nid)
3807 continue;
3808
3809 /* Skip if an existing region covers this new one */
3810 if (start_pfn >= early_node_map[i].start_pfn &&
3811 end_pfn <= early_node_map[i].end_pfn)
3812 return;
3813
3814 /* Merge forward if suitable */
3815 if (start_pfn <= early_node_map[i].end_pfn &&
3816 end_pfn > early_node_map[i].end_pfn) {
3817 early_node_map[i].end_pfn = end_pfn;
3818 return;
3819 }
3820
3821 /* Merge backward if suitable */
3822 if (start_pfn < early_node_map[i].end_pfn &&
3823 end_pfn >= early_node_map[i].start_pfn) {
3824 early_node_map[i].start_pfn = start_pfn;
3825 return;
3826 }
3827 }
3828
3829 /* Check that early_node_map is large enough */
3830 if (i >= MAX_ACTIVE_REGIONS) {
3831 printk(KERN_CRIT "More than %d memory regions, truncating\n",
3832 MAX_ACTIVE_REGIONS);
3833 return;
3834 }
3835
3836 early_node_map[i].nid = nid;
3837 early_node_map[i].start_pfn = start_pfn;
3838 early_node_map[i].end_pfn = end_pfn;
3839 nr_nodemap_entries = i + 1;
3840}
3841
3842/**
cc1050ba 3843 * remove_active_range - Shrink an existing registered range of PFNs
c713216d 3844 * @nid: The node id the range is on that should be shrunk
cc1050ba
YL
3845 * @start_pfn: The new PFN of the range
3846 * @end_pfn: The new PFN of the range
c713216d
MG
3847 *
3848 * i386 with NUMA use alloc_remap() to store a node_mem_map on a local node.
cc1a9d86
YL
3849 * The map is kept near the end physical page range that has already been
3850 * registered. This function allows an arch to shrink an existing registered
3851 * range.
c713216d 3852 */
cc1050ba
YL
3853void __init remove_active_range(unsigned int nid, unsigned long start_pfn,
3854 unsigned long end_pfn)
c713216d 3855{
cc1a9d86
YL
3856 int i, j;
3857 int removed = 0;
c713216d 3858
cc1050ba
YL
3859 printk(KERN_DEBUG "remove_active_range (%d, %lu, %lu)\n",
3860 nid, start_pfn, end_pfn);
3861
c713216d 3862 /* Find the old active region end and shrink */
cc1a9d86 3863 for_each_active_range_index_in_nid(i, nid) {
cc1050ba
YL
3864 if (early_node_map[i].start_pfn >= start_pfn &&
3865 early_node_map[i].end_pfn <= end_pfn) {
cc1a9d86 3866 /* clear it */
cc1050ba 3867 early_node_map[i].start_pfn = 0;
cc1a9d86
YL
3868 early_node_map[i].end_pfn = 0;
3869 removed = 1;
3870 continue;
3871 }
cc1050ba
YL
3872 if (early_node_map[i].start_pfn < start_pfn &&
3873 early_node_map[i].end_pfn > start_pfn) {
3874 unsigned long temp_end_pfn = early_node_map[i].end_pfn;
3875 early_node_map[i].end_pfn = start_pfn;
3876 if (temp_end_pfn > end_pfn)
3877 add_active_range(nid, end_pfn, temp_end_pfn);
3878 continue;
3879 }
3880 if (early_node_map[i].start_pfn >= start_pfn &&
3881 early_node_map[i].end_pfn > end_pfn &&
3882 early_node_map[i].start_pfn < end_pfn) {
3883 early_node_map[i].start_pfn = end_pfn;
cc1a9d86 3884 continue;
c713216d 3885 }
cc1a9d86
YL
3886 }
3887
3888 if (!removed)
3889 return;
3890
3891 /* remove the blank ones */
3892 for (i = nr_nodemap_entries - 1; i > 0; i--) {
3893 if (early_node_map[i].nid != nid)
3894 continue;
3895 if (early_node_map[i].end_pfn)
3896 continue;
3897 /* we found it, get rid of it */
3898 for (j = i; j < nr_nodemap_entries - 1; j++)
3899 memcpy(&early_node_map[j], &early_node_map[j+1],
3900 sizeof(early_node_map[j]));
3901 j = nr_nodemap_entries - 1;
3902 memset(&early_node_map[j], 0, sizeof(early_node_map[j]));
3903 nr_nodemap_entries--;
3904 }
c713216d
MG
3905}
3906
3907/**
3908 * remove_all_active_ranges - Remove all currently registered regions
88ca3b94 3909 *
c713216d
MG
3910 * During discovery, it may be found that a table like SRAT is invalid
3911 * and an alternative discovery method must be used. This function removes
3912 * all currently registered regions.
3913 */
88ca3b94 3914void __init remove_all_active_ranges(void)
c713216d
MG
3915{
3916 memset(early_node_map, 0, sizeof(early_node_map));
3917 nr_nodemap_entries = 0;
3918}
3919
3920/* Compare two active node_active_regions */
3921static int __init cmp_node_active_region(const void *a, const void *b)
3922{
3923 struct node_active_region *arange = (struct node_active_region *)a;
3924 struct node_active_region *brange = (struct node_active_region *)b;
3925
3926 /* Done this way to avoid overflows */
3927 if (arange->start_pfn > brange->start_pfn)
3928 return 1;
3929 if (arange->start_pfn < brange->start_pfn)
3930 return -1;
3931
3932 return 0;
3933}
3934
3935/* sort the node_map by start_pfn */
3936static void __init sort_node_map(void)
3937{
3938 sort(early_node_map, (size_t)nr_nodemap_entries,
3939 sizeof(struct node_active_region),
3940 cmp_node_active_region, NULL);
3941}
3942
a6af2bc3 3943/* Find the lowest pfn for a node */
b69a7288 3944static unsigned long __init find_min_pfn_for_node(int nid)
c713216d
MG
3945{
3946 int i;
a6af2bc3 3947 unsigned long min_pfn = ULONG_MAX;
1abbfb41 3948
c713216d
MG
3949 /* Assuming a sorted map, the first range found has the starting pfn */
3950 for_each_active_range_index_in_nid(i, nid)
a6af2bc3 3951 min_pfn = min(min_pfn, early_node_map[i].start_pfn);
c713216d 3952
a6af2bc3
MG
3953 if (min_pfn == ULONG_MAX) {
3954 printk(KERN_WARNING
2bc0d261 3955 "Could not find start_pfn for node %d\n", nid);
a6af2bc3
MG
3956 return 0;
3957 }
3958
3959 return min_pfn;
c713216d
MG
3960}
3961
3962/**
3963 * find_min_pfn_with_active_regions - Find the minimum PFN registered
3964 *
3965 * It returns the minimum PFN based on information provided via
88ca3b94 3966 * add_active_range().
c713216d
MG
3967 */
3968unsigned long __init find_min_pfn_with_active_regions(void)
3969{
3970 return find_min_pfn_for_node(MAX_NUMNODES);
3971}
3972
37b07e41
LS
3973/*
3974 * early_calculate_totalpages()
3975 * Sum pages in active regions for movable zone.
3976 * Populate N_HIGH_MEMORY for calculating usable_nodes.
3977 */
484f51f8 3978static unsigned long __init early_calculate_totalpages(void)
7e63efef
MG
3979{
3980 int i;
3981 unsigned long totalpages = 0;
3982
37b07e41
LS
3983 for (i = 0; i < nr_nodemap_entries; i++) {
3984 unsigned long pages = early_node_map[i].end_pfn -
7e63efef 3985 early_node_map[i].start_pfn;
37b07e41
LS
3986 totalpages += pages;
3987 if (pages)
3988 node_set_state(early_node_map[i].nid, N_HIGH_MEMORY);
3989 }
3990 return totalpages;
7e63efef
MG
3991}
3992
2a1e274a
MG
3993/*
3994 * Find the PFN the Movable zone begins in each node. Kernel memory
3995 * is spread evenly between nodes as long as the nodes have enough
3996 * memory. When they don't, some nodes will have more kernelcore than
3997 * others
3998 */
b69a7288 3999static void __init find_zone_movable_pfns_for_nodes(unsigned long *movable_pfn)
2a1e274a
MG
4000{
4001 int i, nid;
4002 unsigned long usable_startpfn;
4003 unsigned long kernelcore_node, kernelcore_remaining;
37b07e41
LS
4004 unsigned long totalpages = early_calculate_totalpages();
4005 int usable_nodes = nodes_weight(node_states[N_HIGH_MEMORY]);
2a1e274a 4006
7e63efef
MG
4007 /*
4008 * If movablecore was specified, calculate what size of
4009 * kernelcore that corresponds so that memory usable for
4010 * any allocation type is evenly spread. If both kernelcore
4011 * and movablecore are specified, then the value of kernelcore
4012 * will be used for required_kernelcore if it's greater than
4013 * what movablecore would have allowed.
4014 */
4015 if (required_movablecore) {
7e63efef
MG
4016 unsigned long corepages;
4017
4018 /*
4019 * Round-up so that ZONE_MOVABLE is at least as large as what
4020 * was requested by the user
4021 */
4022 required_movablecore =
4023 roundup(required_movablecore, MAX_ORDER_NR_PAGES);
4024 corepages = totalpages - required_movablecore;
4025
4026 required_kernelcore = max(required_kernelcore, corepages);
4027 }
4028
2a1e274a
MG
4029 /* If kernelcore was not specified, there is no ZONE_MOVABLE */
4030 if (!required_kernelcore)
4031 return;
4032
4033 /* usable_startpfn is the lowest possible pfn ZONE_MOVABLE can be at */
4034 find_usable_zone_for_movable();
4035 usable_startpfn = arch_zone_lowest_possible_pfn[movable_zone];
4036
4037restart:
4038 /* Spread kernelcore memory as evenly as possible throughout nodes */
4039 kernelcore_node = required_kernelcore / usable_nodes;
37b07e41 4040 for_each_node_state(nid, N_HIGH_MEMORY) {
2a1e274a
MG
4041 /*
4042 * Recalculate kernelcore_node if the division per node
4043 * now exceeds what is necessary to satisfy the requested
4044 * amount of memory for the kernel
4045 */
4046 if (required_kernelcore < kernelcore_node)
4047 kernelcore_node = required_kernelcore / usable_nodes;
4048
4049 /*
4050 * As the map is walked, we track how much memory is usable
4051 * by the kernel using kernelcore_remaining. When it is
4052 * 0, the rest of the node is usable by ZONE_MOVABLE
4053 */
4054 kernelcore_remaining = kernelcore_node;
4055
4056 /* Go through each range of PFNs within this node */
4057 for_each_active_range_index_in_nid(i, nid) {
4058 unsigned long start_pfn, end_pfn;
4059 unsigned long size_pages;
4060
4061 start_pfn = max(early_node_map[i].start_pfn,
4062 zone_movable_pfn[nid]);
4063 end_pfn = early_node_map[i].end_pfn;
4064 if (start_pfn >= end_pfn)
4065 continue;
4066
4067 /* Account for what is only usable for kernelcore */
4068 if (start_pfn < usable_startpfn) {
4069 unsigned long kernel_pages;
4070 kernel_pages = min(end_pfn, usable_startpfn)
4071 - start_pfn;
4072
4073 kernelcore_remaining -= min(kernel_pages,
4074 kernelcore_remaining);
4075 required_kernelcore -= min(kernel_pages,
4076 required_kernelcore);
4077
4078 /* Continue if range is now fully accounted */
4079 if (end_pfn <= usable_startpfn) {
4080
4081 /*
4082 * Push zone_movable_pfn to the end so
4083 * that if we have to rebalance
4084 * kernelcore across nodes, we will
4085 * not double account here
4086 */
4087 zone_movable_pfn[nid] = end_pfn;
4088 continue;
4089 }
4090 start_pfn = usable_startpfn;
4091 }
4092
4093 /*
4094 * The usable PFN range for ZONE_MOVABLE is from
4095 * start_pfn->end_pfn. Calculate size_pages as the
4096 * number of pages used as kernelcore
4097 */
4098 size_pages = end_pfn - start_pfn;
4099 if (size_pages > kernelcore_remaining)
4100 size_pages = kernelcore_remaining;
4101 zone_movable_pfn[nid] = start_pfn + size_pages;
4102
4103 /*
4104 * Some kernelcore has been met, update counts and
4105 * break if the kernelcore for this node has been
4106 * satisified
4107 */
4108 required_kernelcore -= min(required_kernelcore,
4109 size_pages);
4110 kernelcore_remaining -= size_pages;
4111 if (!kernelcore_remaining)
4112 break;
4113 }
4114 }
4115
4116 /*
4117 * If there is still required_kernelcore, we do another pass with one
4118 * less node in the count. This will push zone_movable_pfn[nid] further
4119 * along on the nodes that still have memory until kernelcore is
4120 * satisified
4121 */
4122 usable_nodes--;
4123 if (usable_nodes && required_kernelcore > usable_nodes)
4124 goto restart;
4125
4126 /* Align start of ZONE_MOVABLE on all nids to MAX_ORDER_NR_PAGES */
4127 for (nid = 0; nid < MAX_NUMNODES; nid++)
4128 zone_movable_pfn[nid] =
4129 roundup(zone_movable_pfn[nid], MAX_ORDER_NR_PAGES);
4130}
4131
37b07e41
LS
4132/* Any regular memory on that node ? */
4133static void check_for_regular_memory(pg_data_t *pgdat)
4134{
4135#ifdef CONFIG_HIGHMEM
4136 enum zone_type zone_type;
4137
4138 for (zone_type = 0; zone_type <= ZONE_NORMAL; zone_type++) {
4139 struct zone *zone = &pgdat->node_zones[zone_type];
4140 if (zone->present_pages)
4141 node_set_state(zone_to_nid(zone), N_NORMAL_MEMORY);
4142 }
4143#endif
4144}
4145
c713216d
MG
4146/**
4147 * free_area_init_nodes - Initialise all pg_data_t and zone data
88ca3b94 4148 * @max_zone_pfn: an array of max PFNs for each zone
c713216d
MG
4149 *
4150 * This will call free_area_init_node() for each active node in the system.
4151 * Using the page ranges provided by add_active_range(), the size of each
4152 * zone in each node and their holes is calculated. If the maximum PFN
4153 * between two adjacent zones match, it is assumed that the zone is empty.
4154 * For example, if arch_max_dma_pfn == arch_max_dma32_pfn, it is assumed
4155 * that arch_max_dma32_pfn has no pages. It is also assumed that a zone
4156 * starts where the previous one ended. For example, ZONE_DMA32 starts
4157 * at arch_max_dma_pfn.
4158 */
4159void __init free_area_init_nodes(unsigned long *max_zone_pfn)
4160{
4161 unsigned long nid;
db99100d 4162 int i;
c713216d 4163
a6af2bc3
MG
4164 /* Sort early_node_map as initialisation assumes it is sorted */
4165 sort_node_map();
4166
c713216d
MG
4167 /* Record where the zone boundaries are */
4168 memset(arch_zone_lowest_possible_pfn, 0,
4169 sizeof(arch_zone_lowest_possible_pfn));
4170 memset(arch_zone_highest_possible_pfn, 0,
4171 sizeof(arch_zone_highest_possible_pfn));
4172 arch_zone_lowest_possible_pfn[0] = find_min_pfn_with_active_regions();
4173 arch_zone_highest_possible_pfn[0] = max_zone_pfn[0];
4174 for (i = 1; i < MAX_NR_ZONES; i++) {
2a1e274a
MG
4175 if (i == ZONE_MOVABLE)
4176 continue;
c713216d
MG
4177 arch_zone_lowest_possible_pfn[i] =
4178 arch_zone_highest_possible_pfn[i-1];
4179 arch_zone_highest_possible_pfn[i] =
4180 max(max_zone_pfn[i], arch_zone_lowest_possible_pfn[i]);
4181 }
2a1e274a
MG
4182 arch_zone_lowest_possible_pfn[ZONE_MOVABLE] = 0;
4183 arch_zone_highest_possible_pfn[ZONE_MOVABLE] = 0;
4184
4185 /* Find the PFNs that ZONE_MOVABLE begins at in each node */
4186 memset(zone_movable_pfn, 0, sizeof(zone_movable_pfn));
4187 find_zone_movable_pfns_for_nodes(zone_movable_pfn);
c713216d 4188
c713216d
MG
4189 /* Print out the zone ranges */
4190 printk("Zone PFN ranges:\n");
2a1e274a
MG
4191 for (i = 0; i < MAX_NR_ZONES; i++) {
4192 if (i == ZONE_MOVABLE)
4193 continue;
5dab8ec1 4194 printk(" %-8s %0#10lx -> %0#10lx\n",
c713216d
MG
4195 zone_names[i],
4196 arch_zone_lowest_possible_pfn[i],
4197 arch_zone_highest_possible_pfn[i]);
2a1e274a
MG
4198 }
4199
4200 /* Print out the PFNs ZONE_MOVABLE begins at in each node */
4201 printk("Movable zone start PFN for each node\n");
4202 for (i = 0; i < MAX_NUMNODES; i++) {
4203 if (zone_movable_pfn[i])
4204 printk(" Node %d: %lu\n", i, zone_movable_pfn[i]);
4205 }
c713216d
MG
4206
4207 /* Print out the early_node_map[] */
4208 printk("early_node_map[%d] active PFN ranges\n", nr_nodemap_entries);
4209 for (i = 0; i < nr_nodemap_entries; i++)
5dab8ec1 4210 printk(" %3d: %0#10lx -> %0#10lx\n", early_node_map[i].nid,
c713216d
MG
4211 early_node_map[i].start_pfn,
4212 early_node_map[i].end_pfn);
4213
4214 /* Initialise every node */
708614e6 4215 mminit_verify_pageflags_layout();
8ef82866 4216 setup_nr_node_ids();
c713216d
MG
4217 for_each_online_node(nid) {
4218 pg_data_t *pgdat = NODE_DATA(nid);
9109fb7b 4219 free_area_init_node(nid, NULL,
c713216d 4220 find_min_pfn_for_node(nid), NULL);
37b07e41
LS
4221
4222 /* Any memory on that node */
4223 if (pgdat->node_present_pages)
4224 node_set_state(nid, N_HIGH_MEMORY);
4225 check_for_regular_memory(pgdat);
c713216d
MG
4226 }
4227}
2a1e274a 4228
7e63efef 4229static int __init cmdline_parse_core(char *p, unsigned long *core)
2a1e274a
MG
4230{
4231 unsigned long long coremem;
4232 if (!p)
4233 return -EINVAL;
4234
4235 coremem = memparse(p, &p);
7e63efef 4236 *core = coremem >> PAGE_SHIFT;
2a1e274a 4237
7e63efef 4238 /* Paranoid check that UL is enough for the coremem value */
2a1e274a
MG
4239 WARN_ON((coremem >> PAGE_SHIFT) > ULONG_MAX);
4240
4241 return 0;
4242}
ed7ed365 4243
7e63efef
MG
4244/*
4245 * kernelcore=size sets the amount of memory for use for allocations that
4246 * cannot be reclaimed or migrated.
4247 */
4248static int __init cmdline_parse_kernelcore(char *p)
4249{
4250 return cmdline_parse_core(p, &required_kernelcore);
4251}
4252
4253/*
4254 * movablecore=size sets the amount of memory for use for allocations that
4255 * can be reclaimed or migrated.
4256 */
4257static int __init cmdline_parse_movablecore(char *p)
4258{
4259 return cmdline_parse_core(p, &required_movablecore);
4260}
4261
ed7ed365 4262early_param("kernelcore", cmdline_parse_kernelcore);
7e63efef 4263early_param("movablecore", cmdline_parse_movablecore);
ed7ed365 4264
c713216d
MG
4265#endif /* CONFIG_ARCH_POPULATES_NODE_MAP */
4266
0e0b864e 4267/**
88ca3b94
RD
4268 * set_dma_reserve - set the specified number of pages reserved in the first zone
4269 * @new_dma_reserve: The number of pages to mark reserved
0e0b864e
MG
4270 *
4271 * The per-cpu batchsize and zone watermarks are determined by present_pages.
4272 * In the DMA zone, a significant percentage may be consumed by kernel image
4273 * and other unfreeable allocations which can skew the watermarks badly. This
88ca3b94
RD
4274 * function may optionally be used to account for unfreeable pages in the
4275 * first zone (e.g., ZONE_DMA). The effect will be lower watermarks and
4276 * smaller per-cpu batchsize.
0e0b864e
MG
4277 */
4278void __init set_dma_reserve(unsigned long new_dma_reserve)
4279{
4280 dma_reserve = new_dma_reserve;
4281}
4282
93b7504e 4283#ifndef CONFIG_NEED_MULTIPLE_NODES
52765583 4284struct pglist_data __refdata contig_page_data = { .bdata = &bootmem_node_data[0] };
1da177e4 4285EXPORT_SYMBOL(contig_page_data);
93b7504e 4286#endif
1da177e4
LT
4287
4288void __init free_area_init(unsigned long *zones_size)
4289{
9109fb7b 4290 free_area_init_node(0, zones_size,
1da177e4
LT
4291 __pa(PAGE_OFFSET) >> PAGE_SHIFT, NULL);
4292}
1da177e4 4293
1da177e4
LT
4294static int page_alloc_cpu_notify(struct notifier_block *self,
4295 unsigned long action, void *hcpu)
4296{
4297 int cpu = (unsigned long)hcpu;
1da177e4 4298
8bb78442 4299 if (action == CPU_DEAD || action == CPU_DEAD_FROZEN) {
9f8f2172
CL
4300 drain_pages(cpu);
4301
4302 /*
4303 * Spill the event counters of the dead processor
4304 * into the current processors event counters.
4305 * This artificially elevates the count of the current
4306 * processor.
4307 */
f8891e5e 4308 vm_events_fold_cpu(cpu);
9f8f2172
CL
4309
4310 /*
4311 * Zero the differential counters of the dead processor
4312 * so that the vm statistics are consistent.
4313 *
4314 * This is only okay since the processor is dead and cannot
4315 * race with what we are doing.
4316 */
2244b95a 4317 refresh_cpu_vm_stats(cpu);
1da177e4
LT
4318 }
4319 return NOTIFY_OK;
4320}
1da177e4
LT
4321
4322void __init page_alloc_init(void)
4323{
4324 hotcpu_notifier(page_alloc_cpu_notify, 0);
4325}
4326
cb45b0e9
HA
4327/*
4328 * calculate_totalreserve_pages - called when sysctl_lower_zone_reserve_ratio
4329 * or min_free_kbytes changes.
4330 */
4331static void calculate_totalreserve_pages(void)
4332{
4333 struct pglist_data *pgdat;
4334 unsigned long reserve_pages = 0;
2f6726e5 4335 enum zone_type i, j;
cb45b0e9
HA
4336
4337 for_each_online_pgdat(pgdat) {
4338 for (i = 0; i < MAX_NR_ZONES; i++) {
4339 struct zone *zone = pgdat->node_zones + i;
4340 unsigned long max = 0;
4341
4342 /* Find valid and maximum lowmem_reserve in the zone */
4343 for (j = i; j < MAX_NR_ZONES; j++) {
4344 if (zone->lowmem_reserve[j] > max)
4345 max = zone->lowmem_reserve[j];
4346 }
4347
41858966
MG
4348 /* we treat the high watermark as reserved pages. */
4349 max += high_wmark_pages(zone);
cb45b0e9
HA
4350
4351 if (max > zone->present_pages)
4352 max = zone->present_pages;
4353 reserve_pages += max;
4354 }
4355 }
4356 totalreserve_pages = reserve_pages;
4357}
4358
1da177e4
LT
4359/*
4360 * setup_per_zone_lowmem_reserve - called whenever
4361 * sysctl_lower_zone_reserve_ratio changes. Ensures that each zone
4362 * has a correct pages reserved value, so an adequate number of
4363 * pages are left in the zone after a successful __alloc_pages().
4364 */
4365static void setup_per_zone_lowmem_reserve(void)
4366{
4367 struct pglist_data *pgdat;
2f6726e5 4368 enum zone_type j, idx;
1da177e4 4369
ec936fc5 4370 for_each_online_pgdat(pgdat) {
1da177e4
LT
4371 for (j = 0; j < MAX_NR_ZONES; j++) {
4372 struct zone *zone = pgdat->node_zones + j;
4373 unsigned long present_pages = zone->present_pages;
4374
4375 zone->lowmem_reserve[j] = 0;
4376
2f6726e5
CL
4377 idx = j;
4378 while (idx) {
1da177e4
LT
4379 struct zone *lower_zone;
4380
2f6726e5
CL
4381 idx--;
4382
1da177e4
LT
4383 if (sysctl_lowmem_reserve_ratio[idx] < 1)
4384 sysctl_lowmem_reserve_ratio[idx] = 1;
4385
4386 lower_zone = pgdat->node_zones + idx;
4387 lower_zone->lowmem_reserve[j] = present_pages /
4388 sysctl_lowmem_reserve_ratio[idx];
4389 present_pages += lower_zone->present_pages;
4390 }
4391 }
4392 }
cb45b0e9
HA
4393
4394 /* update totalreserve_pages */
4395 calculate_totalreserve_pages();
1da177e4
LT
4396}
4397
88ca3b94
RD
4398/**
4399 * setup_per_zone_pages_min - called when min_free_kbytes changes.
4400 *
4401 * Ensures that the pages_{min,low,high} values for each zone are set correctly
4402 * with respect to min_free_kbytes.
1da177e4 4403 */
3947be19 4404void setup_per_zone_pages_min(void)
1da177e4
LT
4405{
4406 unsigned long pages_min = min_free_kbytes >> (PAGE_SHIFT - 10);
4407 unsigned long lowmem_pages = 0;
4408 struct zone *zone;
4409 unsigned long flags;
4410
4411 /* Calculate total number of !ZONE_HIGHMEM pages */
4412 for_each_zone(zone) {
4413 if (!is_highmem(zone))
4414 lowmem_pages += zone->present_pages;
4415 }
4416
4417 for_each_zone(zone) {
ac924c60
AM
4418 u64 tmp;
4419
1125b4e3 4420 spin_lock_irqsave(&zone->lock, flags);
ac924c60
AM
4421 tmp = (u64)pages_min * zone->present_pages;
4422 do_div(tmp, lowmem_pages);
1da177e4
LT
4423 if (is_highmem(zone)) {
4424 /*
669ed175
NP
4425 * __GFP_HIGH and PF_MEMALLOC allocations usually don't
4426 * need highmem pages, so cap pages_min to a small
4427 * value here.
4428 *
41858966 4429 * The WMARK_HIGH-WMARK_LOW and (WMARK_LOW-WMARK_MIN)
669ed175
NP
4430 * deltas controls asynch page reclaim, and so should
4431 * not be capped for highmem.
1da177e4
LT
4432 */
4433 int min_pages;
4434
4435 min_pages = zone->present_pages / 1024;
4436 if (min_pages < SWAP_CLUSTER_MAX)
4437 min_pages = SWAP_CLUSTER_MAX;
4438 if (min_pages > 128)
4439 min_pages = 128;
41858966 4440 zone->watermark[WMARK_MIN] = min_pages;
1da177e4 4441 } else {
669ed175
NP
4442 /*
4443 * If it's a lowmem zone, reserve a number of pages
1da177e4
LT
4444 * proportionate to the zone's size.
4445 */
41858966 4446 zone->watermark[WMARK_MIN] = tmp;
1da177e4
LT
4447 }
4448
41858966
MG
4449 zone->watermark[WMARK_LOW] = min_wmark_pages(zone) + (tmp >> 2);
4450 zone->watermark[WMARK_HIGH] = min_wmark_pages(zone) + (tmp >> 1);
56fd56b8 4451 setup_zone_migrate_reserve(zone);
1125b4e3 4452 spin_unlock_irqrestore(&zone->lock, flags);
1da177e4 4453 }
cb45b0e9
HA
4454
4455 /* update totalreserve_pages */
4456 calculate_totalreserve_pages();
1da177e4
LT
4457}
4458
556adecb 4459/**
556adecb
RR
4460 * The inactive anon list should be small enough that the VM never has to
4461 * do too much work, but large enough that each inactive page has a chance
4462 * to be referenced again before it is swapped out.
4463 *
4464 * The inactive_anon ratio is the target ratio of ACTIVE_ANON to
4465 * INACTIVE_ANON pages on this zone's LRU, maintained by the
4466 * pageout code. A zone->inactive_ratio of 3 means 3:1 or 25% of
4467 * the anonymous pages are kept on the inactive list.
4468 *
4469 * total target max
4470 * memory ratio inactive anon
4471 * -------------------------------------
4472 * 10MB 1 5MB
4473 * 100MB 1 50MB
4474 * 1GB 3 250MB
4475 * 10GB 10 0.9GB
4476 * 100GB 31 3GB
4477 * 1TB 101 10GB
4478 * 10TB 320 32GB
4479 */
e9bb35df 4480static void __init setup_per_zone_inactive_ratio(void)
556adecb
RR
4481{
4482 struct zone *zone;
4483
4484 for_each_zone(zone) {
4485 unsigned int gb, ratio;
4486
4487 /* Zone size in gigabytes */
4488 gb = zone->present_pages >> (30 - PAGE_SHIFT);
5c87eada
CG
4489 if (gb)
4490 ratio = int_sqrt(10 * gb);
4491 else
556adecb
RR
4492 ratio = 1;
4493
4494 zone->inactive_ratio = ratio;
4495 }
4496}
4497
1da177e4
LT
4498/*
4499 * Initialise min_free_kbytes.
4500 *
4501 * For small machines we want it small (128k min). For large machines
4502 * we want it large (64MB max). But it is not linear, because network
4503 * bandwidth does not increase linearly with machine size. We use
4504 *
4505 * min_free_kbytes = 4 * sqrt(lowmem_kbytes), for better accuracy:
4506 * min_free_kbytes = sqrt(lowmem_kbytes * 16)
4507 *
4508 * which yields
4509 *
4510 * 16MB: 512k
4511 * 32MB: 724k
4512 * 64MB: 1024k
4513 * 128MB: 1448k
4514 * 256MB: 2048k
4515 * 512MB: 2896k
4516 * 1024MB: 4096k
4517 * 2048MB: 5792k
4518 * 4096MB: 8192k
4519 * 8192MB: 11584k
4520 * 16384MB: 16384k
4521 */
4522static int __init init_per_zone_pages_min(void)
4523{
4524 unsigned long lowmem_kbytes;
4525
4526 lowmem_kbytes = nr_free_buffer_pages() * (PAGE_SIZE >> 10);
4527
4528 min_free_kbytes = int_sqrt(lowmem_kbytes * 16);
4529 if (min_free_kbytes < 128)
4530 min_free_kbytes = 128;
4531 if (min_free_kbytes > 65536)
4532 min_free_kbytes = 65536;
4533 setup_per_zone_pages_min();
4534 setup_per_zone_lowmem_reserve();
556adecb 4535 setup_per_zone_inactive_ratio();
1da177e4
LT
4536 return 0;
4537}
4538module_init(init_per_zone_pages_min)
4539
4540/*
4541 * min_free_kbytes_sysctl_handler - just a wrapper around proc_dointvec() so
4542 * that we can call two helper functions whenever min_free_kbytes
4543 * changes.
4544 */
4545int min_free_kbytes_sysctl_handler(ctl_table *table, int write,
4546 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4547{
4548 proc_dointvec(table, write, file, buffer, length, ppos);
3b1d92c5
MG
4549 if (write)
4550 setup_per_zone_pages_min();
1da177e4
LT
4551 return 0;
4552}
4553
9614634f
CL
4554#ifdef CONFIG_NUMA
4555int sysctl_min_unmapped_ratio_sysctl_handler(ctl_table *table, int write,
4556 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4557{
4558 struct zone *zone;
4559 int rc;
4560
4561 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4562 if (rc)
4563 return rc;
4564
4565 for_each_zone(zone)
8417bba4 4566 zone->min_unmapped_pages = (zone->present_pages *
9614634f
CL
4567 sysctl_min_unmapped_ratio) / 100;
4568 return 0;
4569}
0ff38490
CL
4570
4571int sysctl_min_slab_ratio_sysctl_handler(ctl_table *table, int write,
4572 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4573{
4574 struct zone *zone;
4575 int rc;
4576
4577 rc = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4578 if (rc)
4579 return rc;
4580
4581 for_each_zone(zone)
4582 zone->min_slab_pages = (zone->present_pages *
4583 sysctl_min_slab_ratio) / 100;
4584 return 0;
4585}
9614634f
CL
4586#endif
4587
1da177e4
LT
4588/*
4589 * lowmem_reserve_ratio_sysctl_handler - just a wrapper around
4590 * proc_dointvec() so that we can call setup_per_zone_lowmem_reserve()
4591 * whenever sysctl_lowmem_reserve_ratio changes.
4592 *
4593 * The reserve ratio obviously has absolutely no relation with the
41858966 4594 * minimum watermarks. The lowmem reserve ratio can only make sense
1da177e4
LT
4595 * if in function of the boot time zone sizes.
4596 */
4597int lowmem_reserve_ratio_sysctl_handler(ctl_table *table, int write,
4598 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4599{
4600 proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4601 setup_per_zone_lowmem_reserve();
4602 return 0;
4603}
4604
8ad4b1fb
RS
4605/*
4606 * percpu_pagelist_fraction - changes the pcp->high for each zone on each
4607 * cpu. It is the fraction of total pages in each zone that a hot per cpu pagelist
4608 * can have before it gets flushed back to buddy allocator.
4609 */
4610
4611int percpu_pagelist_fraction_sysctl_handler(ctl_table *table, int write,
4612 struct file *file, void __user *buffer, size_t *length, loff_t *ppos)
4613{
4614 struct zone *zone;
4615 unsigned int cpu;
4616 int ret;
4617
4618 ret = proc_dointvec_minmax(table, write, file, buffer, length, ppos);
4619 if (!write || (ret == -EINVAL))
4620 return ret;
4621 for_each_zone(zone) {
4622 for_each_online_cpu(cpu) {
4623 unsigned long high;
4624 high = zone->present_pages / percpu_pagelist_fraction;
4625 setup_pagelist_highmark(zone_pcp(zone, cpu), high);
4626 }
4627 }
4628 return 0;
4629}
4630
f034b5d4 4631int hashdist = HASHDIST_DEFAULT;
1da177e4
LT
4632
4633#ifdef CONFIG_NUMA
4634static int __init set_hashdist(char *str)
4635{
4636 if (!str)
4637 return 0;
4638 hashdist = simple_strtoul(str, &str, 0);
4639 return 1;
4640}
4641__setup("hashdist=", set_hashdist);
4642#endif
4643
4644/*
4645 * allocate a large system hash table from bootmem
4646 * - it is assumed that the hash table must contain an exact power-of-2
4647 * quantity of entries
4648 * - limit is the number of hash buckets, not the total allocation size
4649 */
4650void *__init alloc_large_system_hash(const char *tablename,
4651 unsigned long bucketsize,
4652 unsigned long numentries,
4653 int scale,
4654 int flags,
4655 unsigned int *_hash_shift,
4656 unsigned int *_hash_mask,
4657 unsigned long limit)
4658{
4659 unsigned long long max = limit;
4660 unsigned long log2qty, size;
4661 void *table = NULL;
4662
4663 /* allow the kernel cmdline to have a say */
4664 if (!numentries) {
4665 /* round applicable memory size up to nearest megabyte */
04903664 4666 numentries = nr_kernel_pages;
1da177e4
LT
4667 numentries += (1UL << (20 - PAGE_SHIFT)) - 1;
4668 numentries >>= 20 - PAGE_SHIFT;
4669 numentries <<= 20 - PAGE_SHIFT;
4670
4671 /* limit to 1 bucket per 2^scale bytes of low memory */
4672 if (scale > PAGE_SHIFT)
4673 numentries >>= (scale - PAGE_SHIFT);
4674 else
4675 numentries <<= (PAGE_SHIFT - scale);
9ab37b8f
PM
4676
4677 /* Make sure we've got at least a 0-order allocation.. */
4678 if (unlikely((numentries * bucketsize) < PAGE_SIZE))
4679 numentries = PAGE_SIZE / bucketsize;
1da177e4 4680 }
6e692ed3 4681 numentries = roundup_pow_of_two(numentries);
1da177e4
LT
4682
4683 /* limit allocation size to 1/16 total memory by default */
4684 if (max == 0) {
4685 max = ((unsigned long long)nr_all_pages << PAGE_SHIFT) >> 4;
4686 do_div(max, bucketsize);
4687 }
4688
4689 if (numentries > max)
4690 numentries = max;
4691
f0d1b0b3 4692 log2qty = ilog2(numentries);
1da177e4
LT
4693
4694 do {
4695 size = bucketsize << log2qty;
4696 if (flags & HASH_EARLY)
74768ed8 4697 table = alloc_bootmem_nopanic(size);
1da177e4
LT
4698 else if (hashdist)
4699 table = __vmalloc(size, GFP_ATOMIC, PAGE_KERNEL);
4700 else {
1037b83b
ED
4701 /*
4702 * If bucketsize is not a power-of-two, we may free
a1dd268c
MG
4703 * some pages at the end of hash table which
4704 * alloc_pages_exact() automatically does
1037b83b 4705 */
a1dd268c
MG
4706 if (get_order(size) < MAX_ORDER)
4707 table = alloc_pages_exact(size, GFP_ATOMIC);
1da177e4
LT
4708 }
4709 } while (!table && size > PAGE_SIZE && --log2qty);
4710
4711 if (!table)
4712 panic("Failed to allocate %s hash table\n", tablename);
4713
b49ad484 4714 printk(KERN_INFO "%s hash table entries: %d (order: %d, %lu bytes)\n",
1da177e4
LT
4715 tablename,
4716 (1U << log2qty),
f0d1b0b3 4717 ilog2(size) - PAGE_SHIFT,
1da177e4
LT
4718 size);
4719
4720 if (_hash_shift)
4721 *_hash_shift = log2qty;
4722 if (_hash_mask)
4723 *_hash_mask = (1 << log2qty) - 1;
4724
dbb1f81c
CM
4725 /*
4726 * If hashdist is set, the table allocation is done with __vmalloc()
4727 * which invokes the kmemleak_alloc() callback. This function may also
4728 * be called before the slab and kmemleak are initialised when
4729 * kmemleak simply buffers the request to be executed later
4730 * (GFP_ATOMIC flag ignored in this case).
4731 */
4732 if (!hashdist)
4733 kmemleak_alloc(table, size, 1, GFP_ATOMIC);
4734
1da177e4
LT
4735 return table;
4736}
a117e66e 4737
835c134e
MG
4738/* Return a pointer to the bitmap storing bits affecting a block of pages */
4739static inline unsigned long *get_pageblock_bitmap(struct zone *zone,
4740 unsigned long pfn)
4741{
4742#ifdef CONFIG_SPARSEMEM
4743 return __pfn_to_section(pfn)->pageblock_flags;
4744#else
4745 return zone->pageblock_flags;
4746#endif /* CONFIG_SPARSEMEM */
4747}
4748
4749static inline int pfn_to_bitidx(struct zone *zone, unsigned long pfn)
4750{
4751#ifdef CONFIG_SPARSEMEM
4752 pfn &= (PAGES_PER_SECTION-1);
d9c23400 4753 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4754#else
4755 pfn = pfn - zone->zone_start_pfn;
d9c23400 4756 return (pfn >> pageblock_order) * NR_PAGEBLOCK_BITS;
835c134e
MG
4757#endif /* CONFIG_SPARSEMEM */
4758}
4759
4760/**
d9c23400 4761 * get_pageblock_flags_group - Return the requested group of flags for the pageblock_nr_pages block of pages
835c134e
MG
4762 * @page: The page within the block of interest
4763 * @start_bitidx: The first bit of interest to retrieve
4764 * @end_bitidx: The last bit of interest
4765 * returns pageblock_bits flags
4766 */
4767unsigned long get_pageblock_flags_group(struct page *page,
4768 int start_bitidx, int end_bitidx)
4769{
4770 struct zone *zone;
4771 unsigned long *bitmap;
4772 unsigned long pfn, bitidx;
4773 unsigned long flags = 0;
4774 unsigned long value = 1;
4775
4776 zone = page_zone(page);
4777 pfn = page_to_pfn(page);
4778 bitmap = get_pageblock_bitmap(zone, pfn);
4779 bitidx = pfn_to_bitidx(zone, pfn);
4780
4781 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4782 if (test_bit(bitidx + start_bitidx, bitmap))
4783 flags |= value;
6220ec78 4784
835c134e
MG
4785 return flags;
4786}
4787
4788/**
d9c23400 4789 * set_pageblock_flags_group - Set the requested group of flags for a pageblock_nr_pages block of pages
835c134e
MG
4790 * @page: The page within the block of interest
4791 * @start_bitidx: The first bit of interest
4792 * @end_bitidx: The last bit of interest
4793 * @flags: The flags to set
4794 */
4795void set_pageblock_flags_group(struct page *page, unsigned long flags,
4796 int start_bitidx, int end_bitidx)
4797{
4798 struct zone *zone;
4799 unsigned long *bitmap;
4800 unsigned long pfn, bitidx;
4801 unsigned long value = 1;
4802
4803 zone = page_zone(page);
4804 pfn = page_to_pfn(page);
4805 bitmap = get_pageblock_bitmap(zone, pfn);
4806 bitidx = pfn_to_bitidx(zone, pfn);
86051ca5
KH
4807 VM_BUG_ON(pfn < zone->zone_start_pfn);
4808 VM_BUG_ON(pfn >= zone->zone_start_pfn + zone->spanned_pages);
835c134e
MG
4809
4810 for (; start_bitidx <= end_bitidx; start_bitidx++, value <<= 1)
4811 if (flags & value)
4812 __set_bit(bitidx + start_bitidx, bitmap);
4813 else
4814 __clear_bit(bitidx + start_bitidx, bitmap);
4815}
a5d76b54
KH
4816
4817/*
4818 * This is designed as sub function...plz see page_isolation.c also.
4819 * set/clear page block's type to be ISOLATE.
4820 * page allocater never alloc memory from ISOLATE block.
4821 */
4822
4823int set_migratetype_isolate(struct page *page)
4824{
4825 struct zone *zone;
4826 unsigned long flags;
4827 int ret = -EBUSY;
4828
4829 zone = page_zone(page);
4830 spin_lock_irqsave(&zone->lock, flags);
4831 /*
4832 * In future, more migrate types will be able to be isolation target.
4833 */
4834 if (get_pageblock_migratetype(page) != MIGRATE_MOVABLE)
4835 goto out;
4836 set_pageblock_migratetype(page, MIGRATE_ISOLATE);
4837 move_freepages_block(zone, page, MIGRATE_ISOLATE);
4838 ret = 0;
4839out:
4840 spin_unlock_irqrestore(&zone->lock, flags);
4841 if (!ret)
9f8f2172 4842 drain_all_pages();
a5d76b54
KH
4843 return ret;
4844}
4845
4846void unset_migratetype_isolate(struct page *page)
4847{
4848 struct zone *zone;
4849 unsigned long flags;
4850 zone = page_zone(page);
4851 spin_lock_irqsave(&zone->lock, flags);
4852 if (get_pageblock_migratetype(page) != MIGRATE_ISOLATE)
4853 goto out;
4854 set_pageblock_migratetype(page, MIGRATE_MOVABLE);
4855 move_freepages_block(zone, page, MIGRATE_MOVABLE);
4856out:
4857 spin_unlock_irqrestore(&zone->lock, flags);
4858}
0c0e6195
KH
4859
4860#ifdef CONFIG_MEMORY_HOTREMOVE
4861/*
4862 * All pages in the range must be isolated before calling this.
4863 */
4864void
4865__offline_isolated_pages(unsigned long start_pfn, unsigned long end_pfn)
4866{
4867 struct page *page;
4868 struct zone *zone;
4869 int order, i;
4870 unsigned long pfn;
4871 unsigned long flags;
4872 /* find the first valid pfn */
4873 for (pfn = start_pfn; pfn < end_pfn; pfn++)
4874 if (pfn_valid(pfn))
4875 break;
4876 if (pfn == end_pfn)
4877 return;
4878 zone = page_zone(pfn_to_page(pfn));
4879 spin_lock_irqsave(&zone->lock, flags);
4880 pfn = start_pfn;
4881 while (pfn < end_pfn) {
4882 if (!pfn_valid(pfn)) {
4883 pfn++;
4884 continue;
4885 }
4886 page = pfn_to_page(pfn);
4887 BUG_ON(page_count(page));
4888 BUG_ON(!PageBuddy(page));
4889 order = page_order(page);
4890#ifdef CONFIG_DEBUG_VM
4891 printk(KERN_INFO "remove from free list %lx %d %lx\n",
4892 pfn, 1 << order, end_pfn);
4893#endif
4894 list_del(&page->lru);
4895 rmv_page_order(page);
4896 zone->free_area[order].nr_free--;
4897 __mod_zone_page_state(zone, NR_FREE_PAGES,
4898 - (1UL << order));
4899 for (i = 0; i < (1 << order); i++)
4900 SetPageReserved((page+i));
4901 pfn += (1 << order);
4902 }
4903 spin_unlock_irqrestore(&zone->lock, flags);
4904}
4905#endif
This page took 0.793179 seconds and 5 git commands to generate.